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Preface

Partial differential equation and inequalities of elliptic type is a well-established area

of Mathematics. In this thesis, we are concerned with inequality

∆u+ uσ ≤ 0, (0.0.1)

and its far reaching generalizations in Rn and on geodesically complete Riemannian

manifolds. The main question to be discussed here is under what conditions any

nonnegative solution of (0.0.1) (and its generalizations) is identical zero.

The question of uniqueness of nonnegative solution of (0.0.1) in Rn was investi-

gated by Ni and Serrin [53, 54] (and for the exact equation ∆u + uσ = 0 by Gidas

and Spruck [18]).

A rich class of differential inequalities in Rn was systematically studied by Miti-

dieri and Pokhozhaev [44, 46, 47], who developed a general method for proving such

results.

On the other hand, until recently not much was known for (0.0.1) on general Rie-

mannian manifolds. Our study of this problem was motivated by a celebrated result

of Cheng and Yau: they proved that, under a quadratic volume growth hypothesis,

any positive superharmonic function on the manifold in question is identical zero.

An extension of this result to m-Laplace operator is due to Holopainen [33, 34].

A priori it is not obvious that restrictions on the volume growth of a manifold can

be used to obtain information about global nonnegative solutions of (0.0.1) and its

generalizations. However, it happens to be the case. It is obvious that any solution

of (0.0.1) is a superharmonic function, which by Theorem of Cheng and Yau implies

that, under quadratic volume growth, any solution of (0.0.1) is zero.

In this thesis we obtain more relaxed volume growth conditions that imply the

uniqueness of nonnegative solutions of (0.0.1) and its generalizations. Moreover, we

show that these conditions are sharp. Our results cover many known results in Rn.

Note that differential equations and inequalities in Rn can be studied using such

classical tools as Harnack inequalities, estimate of fundamental solutions, a priori

estimate. In the setting of Riemannian manifolds, only under the volume growth

assumption, none of these tools is available. We have developed a new method, that
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is a further elaboration of the method of Grigor’yan and Kondratiev [28], which is

based on a subtle choice of test functions. This enables us to investigate a variety

of differential inequalities on manifolds.
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Chapter 1

Introduction

1.1 Differential Inequalities in Rn

This thesis is about the uniqueness of nonnegative solutions of certain differential

inequalities on geodesically complete Riemannian manifolds.

In the last fifty years, many attentions have been devoted to the study of differ-

ential inequalities in Rn and on manifolds, see [8, 9, 10, 11, 31, 34, 50, 56, 59, 63]

and the references therein. Many topics are involved, such as maximum principle

and compact support principle [60, 62], comparison theorem [36, 37], Liouville type

theorem [13, 49, 65, 66], a priori estimate [14, 47, 48], existence and nonexistence

of solutions [15, 16, 28]. Among these topics, the importance of uniqueness results

(or called nonexistence results) in the PDEs is well recognized, and has its roots

on the fundamental Liouville theorem for positive harmonic functions in Rn. The

previously developed methods for investigation of the above question include such

advanced tools as Harnack inequalities and estimates of fundamental solutions.

For the first time the question of uniqueness of nonnegative solutions of semilinear

elliptic equations was considered by Gidas and Spruck in [18]. Namely, they studied

the following equation

∆u+ uσ = 0, in Rn, (1.1.1)

and proved that if n > 2 and

1 ≤ σ <
n+ 2

n− 2
, (1.1.2)

then any nonnegative solution of (1.1.1) is zero. Their proofs were highly non-trivial

and used the De Giorgi-Nash-Moser bootstrap arguments. It is worth pointing out

that there is no assumption about the behavior of the possible solutions at infinity.
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The sharpness of n+2
n−2

was proved by Ni, Serrin, and Bidaut-Veron in [3, 54], namely,

they showed that if σ ≥ n+2
n−2

, then (1.1.1) has a nontrivial positive solution. Note

that the initial motivation for considering (1.1.1) was Yamabe problem of finding

a Riemannian metric with constant scalar curvature (cf. [7, 39]). However, the

subject of uniqueness of nonnegative solutions of semilinear equations and inequal-

ities happens to be rich in mathematical phenomenas and ideas, and now is being

developed on its own merit.

A different critical exponent appears, if we consider the inequality

∆u+ uσ ≤ 0, in Rn. (1.1.3)

Ni and Serrin proved that when n > 2, if

1 ≤ σ ≤ n

n− 2
, (1.1.4)

then any nonnegative solution of (1.1.1) is identical zero (cf. [53, 54]). They used

in the proof spherical mean operator and Jensen operator. Namely, denote by ū(r)

the average of u over the sphere Rn of radius r and observe that ū satisfies an ODE

−(rn−1ū′)′ ≥ rn−1ūσ, ū′(0) = 0.

By analysing the ODE, one solves the problem. It is however clear, that such

an approach can not work on arbitrary Riemannian manifolds without rotation

symmetry.

A number of generalizations of these results to more general differential equations

and inequalities in Rn have been obtained in a series of works of Mitidieri and

Pokhozhaev [44, 46, 47] and many others. Let us mention one of their results,

Mitidieri and Pokhozhaev considered the following quasilinear inequality

∆mu+ uσ ≤ 0, in Rn, (1.1.5)

where

∆mu := div(|∇u|m−2∇u),

is called the m-Laplace operator. They proved that if n > m, and

0 < σ ≤ n(m− 1)

n−m
, (1.1.6)

then the only nonnegative solution of (1.1.5) is identical zero (cf. [43]). The exponent
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n(m−1)
n−m is sharp, namely, if σ > n(m−1)

n−m , one could check that the function u such that

u = c1(c2 + |x|
m
m−1 )−

m−1
σ−m+1 , (1.1.7)

is a positive solution to (1.1.5), where c1, c2 are some appropriate constants.

Bidaut-Veron and Pokhozhaev [4] studied (1.1.5) on the exterior domain Ω rather

than entire space Rn. They proved that the only nonnegative solution of (1.1.5) is

identical zero, provided under (1.1.6), when n > m, or 0 < σ <∞, when n = m.

Other results in this direction were obtained in [15, 51, 56, 63, 65, 73].

Mitidieri and Pohozaev developed a powerful technique to investigate the ab-

sence of positive solutions in [48]. The underlying idea of the method is that sharp

estimates of the capacity type should be obtained. These techniques are also widely

used by Caristi, Filippucci, Pucci, D’Ambrosio [9, 10, 11, 12, 13, 14]. These works

are based on a method originating from [57] (see also [58] and other parpers) that

uses carefully chosen test functions.

In this thesis, we use the technique developed by Kondratiev, Grigor’yan and

the author to investigate the uniqueness of nonnegative solutions to different types

of differential inequalities on Riemannian manifolds (cf. [28, 30, 67]).

1.2 Volume Growth of Riemannian manifolds

Let M be a geodesically complete non-compact connected Riemannian manifold.

Denote by µ the Riemannian measure on M , and by d(x, y) the geodesic distance

between x, y ∈ M . Let B(x, r) be the geodesic ball centered at x ∈ M of radius r.

Fix some x0 ∈M and set

Vol(r) = µ(B(x0, r)). (1.2.1)

Function Vol(r) is called the volume growth function, and it will play an important

role in our results.

Volume is a very fundamental geometric quantity. It can be used not only to

investigate geometric property but also to obtain information about the behavior of

differential inequalities on manifold, even without any curvature assumption. It is

well known that many problems in differential geometry can be reduced to problems

in differential equations on Riemannian manifolds. This motivated an extensive

study of PDEs on manifolds, initiated by S.-T. Yau.

In particular, Cheng and Yau proved in [8] that if the volume of the geodesic

balls of a complete Riemannian grows at most a quadratic polynomial, namely, if

Vol(r) ≤ Cr2, for large enough r, (1.2.2)
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then any positive superharmonic function on M is constant. Here the exponent 2

in (1.2.2) is sharp and cannot be replaced by 2 + ε for any ε > 0.

Recall that M is called parabolic, if any of the following equivalent conditions

holds:

(i) Any positive superharmonic function on M is constant;

(ii) ∆ has no positive fundamental solution;

(iii) Brownian motion on M is recurrent.

Hence, (1.2.2) implies the parabolicity of M .

Grigor’yan relaxed the condition (1.2.2) as follows: if∫ ∞ r

Vol(r)
dr =∞, (1.2.3)

then M is parabolic, or equivalently, any positive superharmonic function on M is

constant (cf. [21, 27].

The notion of parabolicity of manifold originated from the type problem for

Riemannian surfaces. By the Uniformization theorem of Koebe-Poincaré, every

simply connected Riemannian surface M is conformally equivalent to one of the

three model surfaces S2, R2, H2. In the first case M is called elliptic, in the second

case M is called parabolic, and in the third case M is hyperbolic. Note S2 is

compact, while R2, H2 are non-compact. The problem of deciding whether a non-

compact M is parabolic or hyperbolic is called a type problem. A number of famous

mathematicians contributed to solution of this problem in different terms, such as

Ahlfors, Kakutani, Nevanlinna and many others (cf. [2, 20, 35, 52]).

The notion of parabolicity can be extended to deal with the m-Laplace operator

∆m. A Riemannian manifoldM is calledm-parabolic, if any positivem-superharmonic

function on M is constant. Here a function u is called m-superharmonic, if ∆mu ≤ 0.

Holopainen proved in [33, 34] the following generalization of (1.2.3): if

∫ ∞( r

Vol(r)

) 1
m−1

dr =∞, (1.2.4)

then M is m-parabolic.

Volume growth condition can be also used to obtain stochastic completeness

of M . Manifold M is also stochastic complete if it satisfies any of the equivalent

conditions (cf. [27]):

(a) Brownian motion on M has almost surely infinite lifetime;
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(b) Any bounded solution to the heat equation ∂u
∂t

= ∆u on [0,∞) with the initial

conidtion u(0, x) = 0 is u ≡ 0;

(c) Any bounded solution to ∆v = v on M is identical zero.

In [22], Grigor’yan proved that if∫ ∞ r

ln Vol(r)
dr =∞, (1.2.5)

holds, then M is stochastically complete. In particular, if the Ricci curvature of

M is bounded below, it follows that Vol(r) ≤ eCr, and hence (1.2.5) holds, and M

is stochastically complete (in a different way, this theorem was also proved by Yau

[74]). Note that (1.2.5) is also satisfied if Vol(r) ≤ ecr
2

or Vol(r) ≤ ecr
2 ln r. More-

over, Grigor’yan also proved if (1.2.5) holds, then every nonnegative superharmonic

function u ∈ L1(M) is equal to a constant. The condition (1.2.5) is sharp in the

following sense: if ∫ ∞ r

ln f(r)
dr <∞

for a positive solution f(r)(regular in some sense), then there exists a complete but

stochastically incomplete weighted manifold M such that ln Vol(r) = f(r) for some

x0 ∈M and large enough r. For the detailed proof, see [27, Example 11.11].

Any parabolic manifold is stochastically complete, but the opposite implication

does not hold. A simple example is that all the Euclidean spaces Rn are stochasti-

cally complete, but only R1 and R2 are parabolic.

From (1.2.3) and (1.2.5), we see that the volume growth can be used to charac-

terize the parabolicity and the stochastic completeness of M . Besides the volume

growth, there are other conditons to characterize the two notions, for example, cur-

vature bounds [74], and the Liouville property for Schrödinger operators [24], and

the existence of cut-off functions satisfying certain properties [55].

1.3 Structure

In this thesis, we focus on the inequalities of the type

Lu+ f(x, u, |∇u|) ≤ 0, (1.3.1)

on a geodesically complete non-compact connected Riemannian manifold M . Here

L is a second order partial differential operator in the divergence form, and f ≥ 0

is a nonnegative function.
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In the subsequent chapters, we will present many results related to different types

of operator L, which are sharp, in terms of volume growth, and cover many known

results in Rn. Let us emphasize again, that the only geometric hypothesis about M

we use here is a volume growth assumption. Besides, we make no assumption about

the behavior of solutions at infinity, assuming only that the solution is nonnegative

and is defined on the whole manifold M .

The structure of the thesis is as follows: In Chapter 2, we study the problem

∆u+ uσ ≤ 0, on M . (1.3.2)

We prove that, if for some x0 ∈M

µ(B(x0, r)) ≤ cr
2σ
σ−1 ln

1
σ−1 r, for all large enough r. (1.3.3)

then any nonnegative solution of (1.3.2) is identical zero. We show the sharpness of

parameters 2σ
σ−1

and 1
σ−1

in (1.3.3), namely, if any of these numbers is replaced by a

larger value, then the statement is not true.

In Chapter 3, we study the following differential inequality

div(A(x)∇u) + V (x)uσ ≤ 0, on M , (1.3.4)

where σ > 1, A is a nonnegative definite symmetric operator in the tangent space

TxM , and V is a given locally integrable positive measurable function. Define a new

measure ν by

dν = ‖A‖
σ
σ−1 V −

1
σ−1dµ.

Assume A and V satisfy that the following condition: for almost all x ∈ M the

following

cr(x)−δ1 ≤ V (x)

‖A(x)‖
≤ Cr(x)δ2 , (1.3.5)

holds for all large enough r(x) := d(x, x0), where δ1, δ2 are arbitrary nonnegative

constants. We prove that if

ν(B(x0, r)) ≤ Cr
2σ
σ−1 ln

1
σ−1 r, for all large enough r, (1.3.6)

then the only nonnegative solution of (1.3.4) is identical zero. We also show the

sharpness of parameters 2σ
σ−1

and 1
σ−1

in (1.3.6) .

In Chapter 4, we deal with quasilinear and mean curvature type inequalities,
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namely

∆mu+ uσ ≤ 0, on M , (1.3.7)

and

div

(
|∇u|m−2∇u√

1 + |∇u|m

)
+ uσ ≤ 0, on M , (1.3.8)

where m > 1 and σ > m− 1. We obtain that if

µ(B(x0, r)) ≤ Cr
mσ

σ−m+1 ln
m−1

σ−m+1 r, (1.3.9)

holds for large enough r, then for both problems (1.3.7) and (1.3.8), the only non-

negative solution is identical zero. The sharpness of exponents mσ
σ−m+1

and m−1
σ−m+1

for (1.3.7) is also showed.

In Chapter 5, we investigate the inequality with the gradient term, that is

div(A(x)|∇u|m−2∇u) + V (x)uσ1|∇u|σ2 ≤ 0, on M , (1.3.10)

where A(x), V (x) are given positive measurable functions on M , σ1, σ2 ≥ 0, and

σ1 + σ2 > m− 1. Introduce the measure ν by

dν = A
σ1+σ2

σ1+σ2−m+1V
− m−1
σ1+σ2−m+1dµ.

Assume A and V satisfy the following condition: for almost all x ∈M the following

cr(x)−δ1 ≤ V (x)

A(x)
≤ Cr(x)δ2 , (1.3.11)

holds for all large enough r(x), where δ1, δ2 are arbitrary nonnegative constants.

We obtain that if

ν(B(x0, r)) ≤ Cr
mσ1+σ2

σ1+σ2−m+1 ln
m−1

σ1+σ2−m+1 r (1.3.12)

holds for large enough r, then the only nonnegative solution of (1.3.10) is constant.

Noting that in the case of σ2 = 0, we obtain again (1.3.9) under the condition

A = V = 1.

In Chapter 6, we investigate the following quasilinear inequality

−∆mu+ V (x)uσ ≤ 0, on M , (1.3.13)

which differs from the previous chapters by the sign in front of ∆m. Here σ > m−1,
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and

V (x) =
1

r(x)α
, for large enough r.

The result for this type of inequality is drastically different. We prove that: if

α < m, and if for some positive number N , the following inequality

µ(B(x0, r)) ≤ CrN , (1.3.14)

holds for all large enough r, then the only nonnegative solution of (1.3.13) is identical

zero.

In the setting of manifolds, the classical tools such as Harnack inequalities, es-

timate of fundamental solutions and a priori estimate, dealing with differential e-

quations and inequalities, are not available only under the condition of the volume

growth. In this thesis, we developed a new method, that is a further elaboration of

the method of Grigor’yan and Kondratiev [28], which is based on a subtle choice of

test functions. This enables us to investigate a variety of differential inequalities on

manifolds with minimal geometric assumption.

1.4 Notations

Throughout the thesis we assume that M is a geodesically complete non-compact

connected Riemannian manifold. Denote by d(x, y) the geodesic distance between

x, y ∈M . Let B(x, r) = {y : d(x, y) < r} and r(x) = d(x, x0). A Riemannian metric

on M is a family g = {g(x)}x∈M such that g(x) is symmetric, positive definite,

bilinear form on the tangent space TxM , smoothly depending on x ∈ M . In the

local coordinates {x1, ..., xn},

g(x) =
∑
i,j

gij(x)dxidxj, (1.4.1)

where gij = g( ∂
∂xi
, ∂
∂xj

).

The Riemannian measure µ on M is defined in any chart by

dµ =
√

det gdλ, (1.4.2)

where g = (gij) is the matrix of the Riemannian metric g, and λ is the Lebesgue

measure.

Define the Riemannian gradient ∇ by

∇f = gik
∂f

∂xk
∂

∂xi
, (1.4.3)
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where (gij) = (gij)
−1.

Denote div the Riemannian divergence: for any smooth vector field v(x) on M ,

div v =
1√

det g

∂

∂xk

(√
det gvk

)
. (1.4.4)

The Laplace-Beltrami operator ∆ on M is defined by ∆ = div ◦ ∇: in the local

coordinates {x1, ..., xn}

∆ =
1√

det g

∂

∂xi

(√
det ggij

∂

∂xj

)
. (1.4.5)

The operator

∆mu := div(|∇u|m−2∇u),

is called the m-Laplace operator.

The letters c, c0, C, C ′, C0... denote positive constants whose values are unim-

portant and may vary at different occurrences. Besides the above notations, we also

use the following

const a constant.

A(r) ≈ B(r) there exist c, C > 0, such that cB(r) ≤ A(r) ≤ CB(r).



Chapter 2

Special Semilinear Inequalities

This chapter is based on the joint work with Prof. Grigor’yan [30].

2.1 Background and Statement

In this chapter we are concerned with nonnegative solutions of the differential in-

equality

∆u+ uσ ≤ 0, (2.1.1)

on M , where ∆ is Laplace-Beltrami operator on M , and σ > 1 is a given parameter.

It is clear that (2.1.1) has always a trivial solution u ≡ 0. In Rn with n ≤ 2 the

only nonnegative solution of (2.1.1) is identical zero for any σ. While, in Rn with

n > 2 the uniqueness of nonnegative solutions of (2.1.1) takes place if and only if

σ ≤ n
n−2

(cf.[11, 53, 54]).

Inspired by Kurta’s work [38], Grigor’yan and Kondratiev developed in [28] a

new method, that uses only the gradient of the distance function and volume of

geodesic balls and, hence, is free from curvature assumptions. Fix some σ > 1 in

(2.1.1) and set

p =
2σ

σ − 1
, q =

1

σ − 1
. (2.1.2)

Let B (x, r) be the geodesic ball on M of radius r centered at x. It was proved in

[28, Theorem 1.3] that if, for some x0 ∈M , C > 0, ε > 0 and all large enough r,

µ(B(x0, r)) ≤ Crp lnq−ε r, (2.1.3)

then the only nonnegative solution of (2.1.1) on M is zero. The sharpness of the

exponent p here is clear from the example of Rn where (2.1.3) holds with p = n that

by (2.1.2) corresponds to the critical value σ = n
n−2

. The question of the sharpness

of the exponent of ln r remained unresolved in [28].
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In this chapter, we show that in the critical case ε = 0, the uniqueness of

nonnegative solutions of (2.1.1) holds as well. We also show that if ε < 0, then

under the condition (2.1.3) there may exist a positive solution of (2.1.1).

Solutions of (2.1.1) are understood in a weak sense. Denote by W 1,2
loc (M) the

space of functions f ∈ L2
loc (M) whose weak gradient ∇f is also in L2

loc (M) . Denote

by W 1,2
c (M) the subspace of W 1,2

loc (M) of functions with compact support.

Definition 2.1.1. A function u on M is called a weak solution of the inequali-

ty (2.1.1) if u is a nonnegative function from W 1,2
loc (M), and, for any nonnegative

function ψ ∈ W 1,2
c (M), the following inequality holds:

−
∫
M

(∇u,∇ψ)dµ+

∫
M

uσψdµ ≤ 0, (2.1.4)

where (·, ·) is the inner product in TxM given by Riemannian metric.

Remark 2.1.2. Note that the first integral in (2.1.4) is finite by the compactness

of suppψ. Therefore, the second integral in (2.1.4) is also finite, and hence, u ∈
Lσloc(M).

Our main result is as follows:

Theorem 2.1.3. Assume that, for some x0 ∈M , the following inequality

µ(B(x0, r)) ≤ Crp lnq r, (2.1.5)

holds for all large enough r, where p and q are defined by (2.1.2). Then the only

nonnegative weak solution of (2.1.1) is identical zero.

Note that if

µ (B (x0, r)) ≤ Cr2 ln r (2.1.6)

holds for all large r, then the manifold M is parabolic, that is, any nonnegative su-

perharmonic function on M is constant (cf. [8], [25]). For example, Rn is parabolic

if and only if n ≤ 2. Since any positive solution of (2.1.1) is a superharmonic func-

tion, it follows that, on any parabolic manifold, in particular, under the condition

(2.1.6), any nonnegative solution of (2.1.1) is zero, for any value of σ. Obviously,

our Theorem 2.1.3 is specific to the value of σ, and the value of p is always greater

than 2, so that our hypothesis (2.1.5) is weaker than (2.1.6).

2.2 Proof of Theorem 2.1.3

We divide the proof into three parts. In Part 1, we prove that every non-trivial

nonnegative solution to (2.1.1) is in fact positive and, moreover, 1
u
∈ L∞loc(M) .
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In Part 2, we obtain the estimates (2.2.10) and (2.2.11) involving a test function

and positive parameters. In Part 3, we choose in (2.2.10) and (2.2.11) specific test

functions and parameters, which will allow us to conclude that
∫
M
uσdµ = 0 and,

hence, to finish the proof.

Part 1. We claim that if u is a nonnegative solution to (2.1.1) and essinfU u = 0

for some non-empty precompact open set U , then u ≡ 0 on M . Let us cover U by

a finite family {Ωj} of charts. Then we must have essinfU∩Ωj u = 0 for at least one

value of j. Replacing U by U ∩ Ωj, we can assume that U lies in a chart.

Note that by (2.1.1) the function u is (weakly) superharmonic function. Applying

in U a strong minimum principle for weak supersolutions (cf. [19, Theorem 8.19]),

we obtain u = 0 a.e. in U .

In order to prove that u = 0 a.e. on M , it suffices to show that u = 0 a.e. on

any precompact open set V that lies in a chart on M . Let us connect U with V by

a sequence of precompact open sets {Ui}ni=0 such that each Ui lies in a chart and

U0 = U, Ui ∩ Ui+1 6= ∅, Un = V.

By induction, we obtain that u = 0 a.e. on Ui for any i = 0, ..., n. Indeed, the

induction bases has been proved above. If it is already known that u = 0 a.e. on Ui
then the condition Ui ∩ Ui+1 6= ∅ implies that essinfUi+1

u = 0 whence as above we

obtain u = 0 a.e. on Ui+1. In particular, u = 0 a.e. on V , which was claimed.

Hence, if u is a non-trivial nonnegative solution to (2.1.1) then essinfU u > 0

for any non-empty precompact open set U ⊂ M . It follows that 1
u

is essentially

bounded on U , whence 1
u
∈ L∞loc(M) follows.

In what follows we assume that u is a positive solutions of (2.1.1) satisfying the

condition 1
u
∈ L∞loc (M), and show that this assumption leads to contradiction.

Part 2. Fix some non-empty compact set K ⊂M and a Lipschitz function ϕ on

M with compact support, such that 0 ≤ ϕ ≤ 1 on M and ϕ ≡ 1 in a neighborhood

of K. In particular, we have ϕ ∈ W 1
c (M). We use the following test function for

(2.1.4):

ψ(x) = ϕ(x)su(x)−t, (2.2.1)

where t, s are parameters that will be chosen to satisfy the conditions

0 < t < min

(
1,
σ − 1

2

)
and s >

4σ

σ − 1
. (2.2.2)

In fact, s can be fixed once and for all as in (2.2.2), while t will be variable and will

take all small enough values.

The function ψ has a compact support and is bounded, due to the local bound-
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edness of 1
u
. Since

∇ψ = −tu−t−1ϕs∇u+ su−tϕs−1∇ϕ,

we see that ∇ψ ∈ L2(M) and, consequently, ψ ∈ W 1
c (M). We obtain from (2.1.4)

that

t

∫
M

ϕsu−t−1|∇u|2dµ+

∫
M

ϕsuσ−tdµ ≤ s

∫
M

ϕs−1u−t(∇u,∇ϕ)dµ. (2.2.3)

Using the Cauchy-Schwarz inequality, let us estimate the right-hand side of (2.2.3)

as follows

s

∫
M

ϕs−1u−t(∇u,∇ϕ)dµ =

∫
M

(√
tu−

t+1
2 ϕ

s
2∇u, s√

t
u−

t−1
2 ϕ

s
2
−1∇ϕ

)
dµ

≤ t

2

∫
M

u−t−1ϕs|∇u|2dµ

+
s2

2t

∫
M

u1−tϕs−2|∇ϕ|2dµ.

Substituting this inequality into (2.2.3), and cancelling out the half of the first term

in (2.2.3), we obtain

t

2

∫
M

ϕsu−t−1|∇u|2dµ+

∫
M

ϕsuσ−tdµ ≤ s2

2t

∫
M

u1−tϕs−2|∇ϕ|2dµ. (2.2.4)

Applying Young’s inequality in the form∫
M

fgdµ ≤ ε

∫
M

|f |p1dµ+ Cε

∫
M

|g|p2dµ,

where ε > 0 is arbitrary and

p1 =
σ − t
1− t

, and p2 =
σ − t
σ − 1

,

are the Hölder conjugate, we estimate the right-hand side of (2.2.4) as follows:

s2

2t

∫
M

u1−tϕs−2|∇ϕ|2dµ

=

∫
M

[u1−tϕ
s
p1 ] · [ s2

2t
ϕ

s
p2
−2|∇ϕ|2]dµ

≤ ε

∫
M

uσ−tϕsdµ+ Cε

(
s2

2t

) σ−t
σ−1
∫
M

ϕs−2 σ−t
σ−1 |∇ϕ|2

σ−t
σ−1dµ. (2.2.5)
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Choose here ε = 1
2

and use in the right-hand side the obvious inequalities

(
s2

t

) σ−t
σ−1

≤
(
s2

t

) σ
σ−1

and ϕs−2 σ−t
σ−1 ≤ 1.

Combining (2.2.5) with (2.2.4), we obtain that

t

2

∫
M

ϕsu−t−1|∇u|2dµ+
1

2

∫
M

ϕsuσ−tdµ ≤ Ct
σ

1−σ

∫
M

|∇ϕ|2
σ−t
σ−1dµ, (2.2.6)

where the value of s is absorbed into constant C.

Let us come back to (2.1.4) and use another test function ψ = ϕs, which yields∫
M

ϕsuσdµ

≤ s

∫
M

ϕs−1(∇u,∇ϕ)dµ

≤ s

(∫
M

ϕsu−t−1|∇u|2dµ
)1/2(∫

M

ϕs−2ut+1|∇ϕ|2dµ
)1/2

. (2.2.7)

On the other hand, we obtain from (2.2.6) that∫
M

ϕsu−t−1|∇u|2dµ ≤ Ct−1− σ
σ−1

∫
M

|∇ϕ|2
σ−t
σ−1dµ.

Substituting into (2.2.7) yields∫
M

ϕsuσdµ ≤ C

[
t−1− σ

σ−1

∫
M

|∇ϕ|2
σ−t
σ−1dµ

]1/2

×
[∫

M

ϕs−2ut+1|∇ϕ|2dµ
]1/2

. (2.2.8)

Recall that ϕ ≡ 1 in a neighborhood of K so that ∇ϕ = 0 on K. Applying Hölder

inequality to the last term in (2.2.8) with the Hölder couple

p3 =
σ

t+ 1
, p4 =

σ

σ − t− 1
,

we obtain ∫
M

ϕs−2ut+1|∇ϕ|2dµ

=

∫
M\K

(
ϕ

s
p3 ut+1

)(
ϕ

s
p4
−2|∇ϕ|2

)
dµ
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≤
(∫

M\K
ϕsuσdµ

) t+1
σ
(∫

M\K
ϕs−

2σ
σ−t−1 |∇ϕ|

2σ
σ−t−1dµ

)σ−t−1
σ

. (2.2.9)

By (2.2.2) we have s − 2σ
σ−t−1

> 0 so that the term ϕs−
2σ

σ−t−1 is bounded by 1.

Substituting (2.2.9) into (2.2.8), we obtain

∫
M

ϕsuσdµ ≤ C0t
− 1

2
− σ

2(σ−1)

(∫
M

|∇ϕ|2
σ−t
σ−1dµ

) 1
2

×
(∫

M\K
ϕsuσdµ

) t+1
2σ
(∫

M

|∇ϕ|
2σ

σ−t−1dµ

)σ−t−1
2σ

. (2.2.10)

Since
∫
M
ϕsuσdµ is finite due to Remark in Introduction, it follows from (2.2.10)

that (∫
M

ϕsuσdµ

)1− t+1
2σ

≤ C0t
− 1

2
− σ

2(σ−1)

(∫
M

|∇ϕ|2
σ−t
σ−1dµ

) 1
2

×
(∫

M

|∇ϕ|
2σ

σ−t−1dµ

)σ−t−1
2σ

. (2.2.11)

Part 3. Set r (x) = d (x, x0), where x0 is the point from the hypothesis (2.1.5).

Fix some large R > 1, set

t =
1

lnR
, K = BR := B(x0, R),

and consider the function

ϕ(x) =

 1, r (x) < R,(
r(x)
R

)−t
, r (x) ≥ R.

(2.2.12)

Note that R will be chosen large enough so that t can be assumed to be sufficiently

small, in particular, to satisfy (2.2.2).

We would like to use (2.2.11) with this function ϕ(x). However, since suppϕ

is not compact, we consider instead a sequence {ϕn} of functions with compact

supports that is constructed as follows. For any n = 1, 2, ... define a cut-off function

ηn by

ηn (x) =


1, 0 ≤ r (x) ≤ nR,

2− r(x)
nR
, nR ≤ r (x) ≤ 2nR,

0, r (x) ≥ 2nR.

(2.2.13)

Consider the function

ϕn(x) = ϕ(x)ηn(x), (2.2.14)
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so that ϕn(x) ↑ ϕ(x) as n→∞. Notice that

|∇ϕn|2 ≤ 2
(
η2
n|∇ϕ|2 + ϕ2|∇ηn|2

)
, (2.2.15)

which implies that, for any a ≥ 2,

|∇ϕn|a ≤ Ca (ηan|∇ϕ|a + ϕa|∇ηn|a) . (2.2.16)

We will consider only the values of a of the bounded range a ≤ 2p so that the

constant Ca can be regarded as uniformly bounded.

Let us estimate the integral

In(a) :=

∫
M

|∇ϕn|adµ. (2.2.17)

By (2.2.16), we have

In(a) ≤ C

∫
M

ηan|∇ϕ|adµ+ C

∫
M

ϕa|∇ηn|adµ

≤ C

∫
M\BR

|∇ϕ|adµ+ C

∫
B2nR\BnR

ϕa|∇ηn|adµ, (2.2.18)

where we have used that ∇ϕ = 0 in BR, and ∇ηn = 0 outside B2nR \ BnR. Since

|∇ηn| ≤ 1
nR

, the second integral in (2.2.18) can be estimated as follows∫
B2nR\BnR

ϕa|∇ηn|adµ ≤ 1

(nR)a

∫
B2nR\BnR

ϕadµ

≤ 1

(nR)a

(
sup

B2nR\BnR
ϕa

)
µ(B2nR)

≤ C

(nR)a

(
nR

R

)−at
(2nR)p lnq(2nR)

= C ′np−a−atRp−a lnq(2nR), (2.2.19)

where we have used the definition (2.2.12) of the function ϕ and the volume estimate

(2.1.5).

Before we estimate the first integral in (2.2.18), observe the following: if f is a

nonnegative decreasing function on R+ then, for large enough R,∫
M\BR

f (r (x)) dµ (x) ≤ C

∫ ∞
R/2

f(r)rp−1 lnq rdr, (2.2.20)
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which follows from (2.1.5) as follows:∫
M\BR

fdµ =
∞∑
i=0

∫
B2i+1R\B2iR

fdµ

≤
∞∑
i=0

f(2iR)µ(B2i+1R)

≤ C

∞∑
i=0

f(2iR)(2i+1R)p lnq(2i+1R)

≤ C ′
∞∑
i=0

f(2iR)(2i−1R)p−1(2i−1R) lnq(2i−1R)

≤ C ′
∫ ∞
R/2

f(r)rp−1 lnq rdr.

Hence, using |∇ϕ| ≤ Rttr−t−1, (2.2.20), and R/2 > 1, we obtain∫
M\BR

|∇ϕ|adµ ≤ C

∫ ∞
R/2

Rattar−at−arp−1 lnq rdr

≤ CRatta
∫ ∞

1

r−at−a+p lnq r
dr

r

= CRatta
∫ ∞

0

e−bξξqdξ,

where we have made the change ξ = ln r and set

b := at+ a− p. (2.2.21)

Assuming that b > 0 and making one more change τ = bξ, we obtain∫
M\BR

|∇ϕ|adµ ≤ CRattab−q−1

∫ ∞
0

e−ττ qdτ = C ′Rattab−q−1, (2.2.22)

where the value Γ(q + 1) of the integral is absorbed into the constant C ′.

Substituting (2.2.19) and (2.2.22) into (2.2.18) yields

In(a) ≤ CRattab−q−1 + Cn−bRp−a lnq(2nR). (2.2.23)

We will use (2.2.23) with those values of a for which b > t. Noting also that

Rt = exp (t lnR) = e, we obtain

In (a) ≤ Ceata−q−1 + Cn−tRp−a lnq(2nR).
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As we have remarked above, we will consider only the values of a in the bounded

range a ≤ 2p. Hence, the term ea in the above inequality can be replaced by a

constant. Letting n→∞, we obtain

lim sup
n→∞

In (a) ≤ Cta−q−1. (2.2.24)

Let us first use (2.2.24) with a = 2(σ−t)
σ−1

. Note that a < p, and for this value of a

and for t as in (2.2.2), we have

b =
2(σ − t)
σ − 1

t+
2(σ − t)
σ − 1

− 2σ

σ − 1

=
2t[(σ − 1)− t]

σ − 1
> t

and

a− q − 1 =
2(σ − t)
σ − 1

− σ

σ − 1
=
σ − 2t

σ − 1
.

Hence, (2.2.24) yields

lim sup
n→∞

In

(
2(σ − t)
σ − 1

)
≤ Ct

σ−2t
σ−1 . (2.2.25)

Similarly, for a = 2σ
σ−t−1

, we have by (2.2.2) a < 2p and

b =
2σ

σ − t− 1
t+

2σ

σ − t− 1
− 2σ

σ − 1
> t,

whence

lim sup
n→∞

In

(
2σ

σ − t− 1

)
≤ Ct

2σ
σ−t−1

− σ
σ−1 . (2.2.26)

The inequality (2.2.11) with function ϕn implies that(∫
M

ϕsnu
σdµ

)1− t+1
2σ

≤ Jn (t) , (2.2.27)

where

Jn (t) = C0t
− 1

2
− σ

2(σ−1) In

(
2(σ − t)
σ − 1

) 1
2

In

(
2σ

σ − t− 1

)σ−t−1
2σ

.

Letting n→∞ and substituting the estimates (2.2.25) and (2.2.26), we obtain that

lim sup
n→∞

Jn (t) ≤ C0t
− 1

2
− σ

2(σ−1) t
σ−2t

2(σ−1) t1−
σ−t−1
2(σ−1) = Ct−

t
2(σ−1) . (2.2.28)

The main point of the above argument is that all the “large” exponents in the power
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of t have cancelled out, which in the end is a consequence of the estimate (2.2.22)

based on the hypothesis (2.1.5). The remaining term t−
t

2(σ−1) tends to 1 as t → 0,

which implies that the right-hand side of (2.2.28) is a bounded function of t. Hence,

there is a constant C1 such that

lim sup
n→∞

Jn (t) ≤ C1, (2.2.29)

for all small enough t. It follows from (2.2.27) that also∫
M

ϕsuσdµ ≤ C, (2.2.30)

for all small enough t. Since ϕ = 1 on BR, it follows that∫
BR

uσdµ ≤ C,

which implies for R→∞ that ∫
M

uσdµ ≤ C. (2.2.31)

Inequality (2.2.10) with function ϕn implies that

∫
M

ϕsnu
σdµ ≤ Jn (t)

(∫
M\BR

ϕsnu
σdµ

) t+1
2σ

. (2.2.32)

Letting n→∞ and applying (2.2.29), we obtain

∫
M

ϕsuσdµ ≤ C1

(∫
M\BR

ϕsuσdµ

) t+1
2σ

,

whence ∫
BR

uσdµ ≤ C1

(∫
M\BR

uσdµ

) t+1
2σ

, (2.2.33)

Since by (2.2.31) ∫
M\BR

uσdµ→ 0 as R→∞,

letting in (2.2.33) R→∞, we obtain∫
M

uσdµ = 0,
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which finishes the proof.

2.3 Sharpness of p, q

In this section, we will give an example that shows that the values of the parameters

p and q in Theorem 2.1.3 are sharp and cannot be relaxed.

In Rn, when p = n > 2σ
σ−1

, equivalently, σ > n
n−2

, we know that

u(x) :=
ε

(1 + |x|2)
1

σ−1

, (2.3.1)

is a positive solution to (2.1.1), when ε is small positive constant. Since σ could be

chosen close to n
n−2

, hence, the parameter p is sharp.

Concerning the sharpness of q, We need the following statement.

Proposition 2.3.1. ([70], [28, Proposition 3.2 ]) Let α(r) be a positive C1-function

on (r0,+∞) satisfying ∫ ∞
r0

dr

α(r)
<∞. (2.3.2)

Define the function γ(r) on (r0,∞) by

γ(r) =

∫ ∞
r

ds

α(s)
. (2.3.3)

Let β(r) be a continuous function on (r0,∞) such that∫ ∞
r0

γ(r)σ|β(r)|dr <∞. (2.3.4)

Then the differential equation

(α(r)y′)′ + β(r)yσ = 0, (2.3.5)

has a positive solution y(r) in an interval [R0,+∞) for large enough R0 > r0, such

that

y(r) = O(γ(r)), as r →∞. (2.3.6)

Given σ > 1, set as before p = 2σ
σ−1

and choose some q > 1
σ−1

. We will construct

an example of a manifold M satisfying the volume growth condition (2.1.5) with

these values p, q and admitting a positive solution u of (2.1.1).

The manifold M will be (Rn, g) with the following Riemannian metric

g = dr2 + ψ(r)2dθ2, (2.3.7)
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where (r, θ) are the polar coordinates in Rn and ψ (r) is a smooth, positive function

on (0,∞) such that

ψ(r) =

{
r, for small enough r,

(rp−1 lnq r)
1

n−1 , for large enough r.
(2.3.8)

It follows that, in a neighborhood of 0, the metric g is exactly Euclidean, so that

it can be extended smoothly to the origin. Hence, M = (Rn, g) is a complete

Riemannian manifold.

By (2.3.7), the geodesic ball Br = B (0, r) on M coincides with the Euclidean

ball {|x| < r} . Denote by S (r) the surface area of Br in M . It follows from (2.3.7)

that S (r) = ωnψ
n−1(r), that is

S(r) = ωn

{
rn−1, for small enough r,

rp−1 lnq r, for large enough r,
(2.3.9)

where ωn is the surface area of the unit ball in Rn. The Riemannian volume of the

ball Br can be determined by

µ (Br) =

∫ r

0

S (τ) dτ ,

whence it follows that, for large enough r,

µ(Br) ≤ Crp lnq r. (2.3.10)

Hence, the manifold M satisfied the volume growth condition of Theorem 2.1.3.

In what follows we prove the existence of a weak positive solution of ∆u+uσ ≤ 0

on M . In fact, the solution u will depend only on the polar radius r, so that we can

write u = u (r) . The construction of u will be done in two steps.

Step I. For a function u = u (r), the inequality (2.1.1) becomes

u′′ +
S ′

S
u′ + uσ ≤ 0, (2.3.11)

(cf. [27, (3.93)]), that is

(Su′)
′
+ Suσ ≤ 0. (2.3.12)

For r >> 1, we have

γ(r) :=

∫ ∞
r

dτ

S(τ)
=

∫ ∞
r

dτ

τ p−1 lnq τ
≈

1

rp−2 lnq r
,
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and ∫ ∞
r0

γ(τ)σS(τ)dτ =

∫
r0

τ p lnq τ

τσ(p−2) lnσq τ

dτ

τ

=

∫ ∞
r0

1

τσ(p−2)−p lnq(σ−1) τ

dτ

τ

=

∫ ∞
r0

1

lnq(σ−1) τ

dτ

τ
< ∞,

where we have used that q > 1
σ−1

.

Applying Proposition 2.3.1 with α (r) = β (r) = S (r), we obtain that there

exists a positive solution u of (2.3.12) on [R0,+∞) for some large enough R0, such

that

u(r) = O(γ(r)) = O(r−(p−2) ln−q r), as r →∞.

In particular, u(r) → 0 as r → ∞. By increasing R0 if necessary, we can assume

that u
′
(R0) < 0.

Step II. Consider the following eigenvalue problem in a ball Bρ of M :{
∆v + λv = 0 in Bρ,

v|∂Bρ = 0.
(2.3.13)

Denote by λρ the principal (smallest) eigenvalue of this problem. It is known that

λρ > 0 and the corresponding eigenfunction vρ does not change sign in Bρ (cf. [27,

Theorem 10.11, 10.22]). Normalizing vρ, we can assume that vρ(0) = 1 and, hence,

vρ > 0 in Bρ, while vρ|∂Bρ = 0.

Since the principal eigenvalue λρ is simple (cf. [27, Corollary 10.12]) and the

Riemannian metric g is spherically symmetric, the eigenfunction vρ must also be

spherically symmetric. Therefore, vρ can be regarded as a function of the polar

radius r only. In terms of r, we can rewrite (2.3.13) as follows

v′′ρ +
S ′

S
v′ρ + λρvρ = 0, (2.3.14)

where vρ(ρ) = 0, vρ(0) = 1, v
′
ρ(0) = 0, and vρ > 0 in (0, ρ).

Multiplying (2.3.14) by S, we obtain

(Sv′ρ)
′ + λρSvρ = 0.

It follows that (Sv′ρ)
′ ≤ 0, so that the function Sv′ρ is decreasing. Since it vanishes at

r = 0, it follows that Sv′ρ(r) ≤ 0 and, hence v′ρ (r) ≤ 0 for all r ∈ (0, ρ). Hence, the
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function vρ (r) is decreasing for r < ρ which together with the boundary conditions

implies that 0 ≤ vρ ≤ 1. It follows that vρ is a positive solution in Bρ of the

inequality

∆vρ + λρv
σ ≤ 0. (2.3.15)

Let us show that λρ → 0 as ρ→∞. Indeed, it is known that

lim
ρ→∞

λρ = λmin (M)

where λmin (M) is the bottom of the spectrum of −∆ in L2 (M,µ), while by a

theorem of Brooks

λmin (M) ≤ 1

4

(
lim sup
ρ→∞

lnµ(Bρ)

ρ

)2

(2.3.16)

(cf. [6], [27, Theorem 11.19]). The right-hand side of (2.3.16) vanishes by (2.3.10),

where we obtain that limρ→∞ λρ = 0.

Let us show that there exists a sequence {ρk} such that vρk → 1, as k → ∞,

where the convergence is local in C1. Indeed, let us first take that ρk = k. As vk
satisfies the equation ∆vk +λkvk = 0, the sequence {vk} is bounded, and λk → 0, it

follows by local elliptic regularity properties that there exists a subsequence {vki}
that converges in C∞loc to a function v, and the latter satisfies ∆v = 0 (cf. [27,

Theorem 13.14]). The function v depends only on the polar radius and, hence,

satisfies the conditions  v′′ +
S ′

S
v′ = 0,

v(0) = 1.

Solving this ODE, we obtain a general solution

v(r) = C

∫ r

0

dr

S(r)
+ 1.

Since
∫ r

0
dr
S(r)

diverges at 0, so the only bounded solution is v ≡ 1. We conclude that

vki
C∞loc−→ 1 as i→∞. (2.3.17)

Choose ρ large enough so that ρ > R0 and

v′ρ
vρ

(R0) >
u′

u
(R0), (2.3.18)

where u is the function constructed in the first step. Indeed, it is possible to achieve
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(2.3.18) by choosing ρ = ki with large enough i because by (2.3.17)

v′ki
vki

(R0)→ 0 as i→∞

whereas u′

u
(R0) < 0 by construction.

Let us fix ρ > R0 for which (2.3.18) is satisfied, and compare the functions u(r)

and vρ(r) in the interval [R0, ρ). Set

m = inf
r∈[R0,ρ)

u(r)

vρ(r)
.

Since vρ vanishes at ρ and, hence,

u(r)

vρ (r)
→∞ as r → ρ+,

the ratio u
vρ

attains its infimum value m at some point ξ ∈ [R0, ρ). We claim that

ξ > R0. Indeed, at r = R0, we have by (2.3.18)(
u

vρ

)′
(R0) =

u′vρ − uv′ρ
v2

(R0) < 0,

so that u/vρ is strictly decreasing at R0 and cannot have minimum at R0. Hence,
u
vρ

attains its minimum at an interior point ξ ∈ (R0, ρ), and at this point we have

(
u

vρ

)′
(ξ) = 0.

It follows that

u(ξ) = mvρ(ξ) and u′(ξ) = mv′ρ(ξ) (2.3.19)

The function u (r) has been defined for r ≥ R0, in particular, for r ≥ ξ, whereas

vρ (r) has been defined for r ≤ ρ, in particular, for r ≤ ξ. Now we merge the two

definitions by redefining/extending the function u(r) for all 0 < r < ξ by setting

u(r) = mvρ(r).

It follows from (2.3.19) that u ∈ C1 (M), in particular, u ∈ W 1,2
loc (M). By

(2.3.15), u satisfies the following inequality in Bξ:

∆u+
λρ
mσ−1

uσ ≤ 0. (2.3.20)
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By (2.1.1), u satisfies the following inequality in M \BR0 :

∆u+ uσ ≤ 0. (2.3.21)

Combining (2.3.20) and (2.3.21), we obtain that u satisfies on M the following

inequality

∆u+ δuσ ≤ 0, (2.3.22)

where δ = min{λρ/mσ−1, 1}. Finally, changing u 7→ cu where c = δ−
1

σ−1 we obtain

a positive solution to (2.1.1) on M , which concludes this example.



Chapter 3

Semilinear Differential Inequalities

This chapter is based on the paper [67].

3.1 Background and Statement

Consider a geodesically complete non-compact connected manifold M and the fol-

lowing differential inequality

div(A(x)∇u) + V (x)uσ ≤ 0, on M, (3.1.1)

where A(x) is a nonnegative definite symmetric operator in the tangent space TxM ,

such that x 7→ A(x) is measurable, V is a given locally integrable positive measurable

function, and σ > 1 is a given constant.

Throughout this chapter, assume that V (x) ∈ L1
loc(M,µ). Let us set

p =
2σ

σ − 1
, q =

1

σ − 1
. (3.1.2)

For the case A = Id, V ≡ 1, the uniqueness result was obtained in Chapter 2. For

general A, V in (3.1.1), Grigor’yan and Kondratiev in [28] used measure νε defined

for any ε > 0 by

dνε = ‖A‖
σ
σ−1
−ε V −

1
σ−1

+εdµ,

and proved that if

νε(B(x0, r)) ≤ Crp+Cε lnκ r, (3.1.3)

holds for all large enough r, and for some κ < q and all small enough ε > 0, where

p, q are given by (3.1.2), then the only nonnegative solution of (3.1.1) is identical
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zero. Some conditions for uniqueness of nonnegative solutions in terms of capacities

were proved in [28, 38].

Here, we improve the result of [28, Theorem 1.3] by allowing ε = 0. Namely,

consider the measure ν, defined by

dν = ‖A‖
σ
σ−1 V −

1
σ−1dµ. (3.1.4)

We also need the following assumption on A, V : there exist δ1, δ2 ≥ 0 and positive

constants c0, C0 such that, for almost all x ∈M ,

c0r(x)−δ1 ≤ V (x)

‖A(x)‖
≤ C0r(x)δ2 , (VA)

holds for large enough r(x). In particular, we assume V (x) > 0 and ‖A(x)‖ > 0 for

almost all x ∈ M . Let us emphasize that the operator A(x) is only assumed to be

nonnegative definite, so it can be degenerate.

Here is our main result.

Theorem 3.1.1. Assume that (VA) holds with some δ1, δ2 ≥ 0. If for some x0 ∈M ,

the following inequality

ν(B(x0, r)) ≤ Crp lnq r, (3.1.5)

holds for all large enough r, where ν is defined as in (3.1.4), p and q are defined by

(3.1.2), then the only nonnegative weak solution of (3.1.1) is identical zero.

In the following, we will explain the notion of a weak solution of (3.1.1). Let us

introduce the following notations. If v, w are the vectors in the tangent space TxM ,

denote

(v, w)A := (A(x)v, w), (3.1.6)

with the corresponding semi-norm defined by

|v|A = (A(x)v, v)1/2.

Then for the operator norm ‖A(x)‖, we have for any v ∈ TxM

|v|2A ≤ ‖A(x)‖ · |v|2, (3.1.7)

where |v| is the Riemannian length of v.

Define

dω = ‖A(x)‖ dµ,
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and denote by

W 1,2
loc (M,ω) :=

{
f |f ∈ L2

loc (M,ω) ,∇f ∈ L2
loc (M,ω)

}
, (3.1.8)

and denote by W 1,2
c (M,ω) the subspace of W 1,2

loc (M,ω) of functions with compact

support.

Solutions of (3.1.1) are understood in the following weak sense

Definition 3.1.2. A function u on M is called a weak solution of the inequality

(3.1.1) if u is a nonnegative function from W 1,2
loc (M,ω), and for any nonnegative

function ψ ∈ W 1,2
c (M,ω), the following inequality holds:

−
∫
M

(∇u,∇ψ)Adµ+

∫
M

V (x)uσψdµ ≤ 0, (3.1.9)

where (·, ·)A is defined as in (3.1.6).

Remark 3.1.3. Notice here if u is the solution of (3.1.1), the first integral term is

bounded. Furthermore, the finiteness of the first integral on the left-hand side will

lead to the finiteness of the second one, since this is derived from (3.1.9) automati-

cally.

3.2 First Proof of Theorem 3.1.1

Let u be a nonnegative solution of (3.1.1). Fix some ball BR := B(x0, R), where

x0 is the reference point from the hypothesis (3.1.5), and R > 0 to be chosen later.

Take a Lipschitz function ϕ on M with compact support, such that 0 ≤ ϕ ≤ 1 and

ϕ ≡ 1 in a neighborhood of B̄R. Particularly, ϕ ∈ W 1,2
c (M,ω). We use the following

test function for (3.1.9):

ψρ(x) = ϕ(x)s(u+ ρ)−t, (3.2.1)

where ρ > 0 is a parameter near zero, and the constants t, s satisfy the conditions{
0 < t < min

(
1, σ−1

2

)
,

s > max
{

4σ
σ−1

, 1 + 2+δ2
σ−1

, 1 + 2σ(δ1−2)
(σ−1)2

}
.

(3.2.2)

In fact, in what follows s will be chosen to be a large enough fixed constant, and t

will take arbitrarily small positive values.

Since 1
u+ρ

is bounded, hence, ψρ has compact support and is bounded. The

identity

∇ψρ = −tϕs(u+ ρ)−t−1∇u+ sϕs−1(u+ ρ)−t∇ϕ,
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implies that ∇ψρ ∈ L2(M,ω), hence, ψρ ∈ W 1,2
c (M,ω). We obtain from (3.1.9) that

t

∫
M

ϕs(u+ ρ)−t−1|∇u|2Adµ+

∫
M

ϕsV uσ(u+ ρ)−tdµ

≤ s

∫
M

ϕs−1(u+ ρ)−t(∇u,∇ϕ)Adµ. (3.2.3)

Applying Cauchy-Schwarz inequality, let us estimate the right-hand side of (3.2.3)

as follows

s

∫
M

ϕs−1(u+ ρ)−t(∇u,∇ϕ)Adµ

=

∫
M

(√
tϕ

s
2 (u+ ρ)−

t+1
2 ∇u, s√

t
ϕ
s
2
−1(u+ ρ)−

t−1
2 ∇ϕ

)
A

dµ

≤ t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|2Adµ

+
s2

2t

∫
M

ϕs−2(u+ ρ)1−t|∇ϕ|2Adµ.

Substituting the above into (3.2.3), and cancelling out the half of the first term in

(3.2.3), we obtain

t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|2Adµ+

∫
M

ϕsV uσ(u+ ρ)−tdµ

≤ s2

2t

∫
M

ϕs−2(u+ ρ)1−t|∇ϕ|2Adµ. (3.2.4)

Using Young’s inequality∫
M

fgdµ ≤ ε

∫
M

|f |p1dµ+ Cε

∫
M

|g|p′1dµ,

where ε > 0 is arbitrary, and (p1, p
′
1) is the Hölder conjugate such that

p1 =
σ − t
1− t

, p′1 =
σ − t
σ − 1

.

Let us estimate the right-hand side of (3.2.4) as follows

s2

2t

∫
M

ϕs−2(u+ ρ)1−t|∇ϕ|2Adµ

=

∫
M

[ϕ
s
p1 V

1
p1 (u+ ρ)1−t] · [ s2

2t
ϕ

s
p′1
−2
V
− 1
p1 |∇ϕ|2A]dµ

≤ ε

∫
M

ϕsV (u+ ρ)σ−tdµ
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+Cε

(
s2

2t

) σ−t
σ−1
∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ. (3.2.5)

Choosing ε = 1
2

and using in the right-hand side of (3.2.5) the simple inequality

(
s2

t

) σ−t
σ−1

≤
(
s2

t

) σ
σ−1

.

and combining (3.2.5) with (3.2.4), we obtain that

t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|2Adµ+

∫
M

ϕsV uσ(u+ ρ)−tdµ

≤ 1

2

∫
M

ϕsV (u+ ρ)σ−tdµ+ Ct−
σ
σ−1

∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ,

(3.2.6)

where the value of s is absorbed into constant C.

Before moving to the next step, let us specify the boundedness of the above

integrals. It is easy to obtain from the definition of the solution the boundedness of

the following three integral terms∫
M

ϕs(u+ ρ)−t−1|∇u|2Adµ,

and ∫
M

ϕsV uσ(u+ ρ)−tdµ,

and ∫
M

ϕs−1(u+ ρ)−t(∇u,∇ϕ)Adµ.

The boundedness of
∫
M
ϕsV (u+ ρ)σ−tdµ follows by the boundedness of∫

M

ϕsV uσ(u+ ρ)−tdµ,

and V ∈ L1
loc(M,µ).

By Dominated Convergence theorem, we know

lim
ρ↓0

∫
M

ϕsV (u+ ρ)σ−tdµ =

∫
M

ϕsV uσ−tdµ,
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Letting ρ ↓ 0 in (3.2.6), applying Monotone Convergence theorem, we have

t

2

∫
M

ϕsu−t−1|∇u|2Adµ+

∫
M

ϕsV uσ−tdµ

≤ lim
ρ↓0

1

2

∫
M

ϕsV (u+ ρ)σ−tdµ+ Ct−
σ
σ−1

∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ,

that is

t

2

∫
M

ϕsu−t−1|∇u|2Adµ+
1

2

∫
M

ϕsV uσ−tdµ

≤ Ct−
σ
σ−1

∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ. (3.2.7)

We apply (3.1.9) once more, using another test function ψ = ϕs, which yields∫
M

ϕsV uσdµ

≤ s

∫
M

ϕs−1(∇u,∇ϕ)Adµ

≤ s

(∫
M

ϕsu−t−1|∇u|2Adµ
) 1

2
(∫

M

ϕs−2ut+1|∇ϕ|2Adµ
) 1

2

. (3.2.8)

On the other hand, we obtain from (3.2.7) that∫
M

ϕsu−t−1|∇u|2Adµ ≤ Ct−1− σ
σ−1

∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ.

Substituting into (3.2.8) yields

∫
M

ϕsV uσdµ ≤ C

[
t−1− σ

σ−1

∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ

] 1
2

×
[∫

M

ϕs−2ut+1|∇ϕ|2Adµ
] 1

2

. (3.2.9)

Recalling that ∇ϕ = 0 on BR, and applying the Hölder inequality to the last term

of (3.2.9) with the Hölder couple

p3 =
σ

t+ 1
, p′3 =

σ

σ − t− 1
,

we obtain ∫
M

ϕs−2ut+1|∇ϕ|2Adµ
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=

∫
M\BR

(
ϕ

s
p3 V

1
p3 ut+1

)(
ϕ

s
p′3
−2
V
− 1
p3 |∇ϕ|2A

)
dµ

≤
(∫

M\BR
ϕsV uσdµ

) t+1
σ
(∫

M\BR
ϕs−

2σ
σ−t−1V −

t+1
σ−t−1 |∇ϕ|

2σ
σ−t−1

A dµ

)σ−t−1
σ

.(3.2.10)

Substituting (3.2.10) into (3.2.9), we obtain∫
M

ϕsV uσdµ

≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ

) 1
2

×
(∫

M

ϕs−
2σ

σ−t−1V −
t+1

σ−t−1 |∇ϕ|
2σ

σ−t−1

A dµ

)σ−t−1
2σ

(∫
M\BR

ϕsV uσdµ

) t+1
2σ

.

(3.2.11)

Since
∫
M
ϕsV uσdµ is finite due to Remark 3.1.3, it follows from (3.2.11) that

(∫
M

ϕsV uσdµ

)1− t+1
2σ

≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ

) 1
2

×
(∫

M

ϕs−
2σ

σ−t−1V −
t+1

σ−t−1 |∇ϕ|
2σ

σ−t−1

A dµ

)σ−t−1
2σ

. (3.2.12)

Note that the first integral in the right-hand side of (3.2.12) has the following esti-

mate ∫
M

ϕs−
2(σ−t)
σ−1 V −

1−t
σ−1 |∇ϕ|

2(σ−t)
σ−1

A dµ

≤
∫
M

ϕs−
2(σ−t)
σ−1 |∇ϕ|

2(σ−t)
σ−1 ‖A‖

σ−t
σ−1 V −

1−t
σ−1dµ

=

∫
M

ϕs−
2(σ−t)
σ−1 |∇ϕ|

2(σ−t)
σ−1

(
V

‖A‖

) t
σ−1

dν, (3.2.13)

where we have used that dν = ‖A‖
σ
σ−1 V −

1
σ−1dµ. Similarly, the second integral in

the right-hand side of (3.2.12) can be estimated as follows∫
M

ϕs−
2σ

σ−t−1V −
t+1

σ−t−1 |∇ϕ|
2σ

σ−t−1

A dµ

≤
∫
M

ϕs−
2σ

σ−t−1 |∇ϕ|
2σ

σ−t−1

(
V

‖A‖

)− σt
(σ−t−1)(σ−1)

dν. (3.2.14)
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Substituting that (3.2.13) and (3.2.14) into (3.2.11), we have

∫
M

ϕsV uσdµ ≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

ϕs−
2(σ−t)
σ−1 |∇ϕ|

2(σ−t)
σ−1

(
V

‖A‖

) t
σ−1

dν

) 1
2

×

(∫
M

ϕs−
2σ

σ−t−1 |∇ϕ|
2σ

σ−t−1

(
V

‖A‖

)− σt
(σ−t−1)(σ−1)

dν

)σ−t−1
2σ

×
(∫

M\BR
ϕsV uσdµ

) t+1
2σ

. (3.2.15)

Substituting that (3.2.13) and (3.2.14) into (3.2.12), we obtain(∫
M

ϕsV uσdµ

)1− t+1
2σ

≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

ϕs−
2(σ−t)
σ−1 |∇ϕ|

2(σ−t)
σ−1

(
V

‖A‖

) t
σ−1

dν

) 1
2

×

(∫
M

ϕs−
2σ

σ−t−1 |∇ϕ|
2σ

σ−t−1

(
V

‖A‖

)− σt
(σ−t−1)(σ−1)

dν

)σ−t−1
2σ

. (3.2.16)

Fix R > 1 large enough, and set t = 1
lnR

to satisfy (3.2.2). Consider the integral

In(a, b) :=

∫
M

ϕs−an |∇ϕn|a
(

V

‖A‖

)b
dν. (3.2.17)

Here we take the same ϕn as in (2.2.14).

(a, b) are taking values from the couples
(

2(σ−t)
σ−1

, t
σ−1

)
and

(
2σ

σ−t−1
,− σt

(σ−t−1)(σ−1)

)
.

By (2.2.16), we have

In(a, b) ≤ C

∫
M\BR

ϕs−aηsn|∇ϕ|a
(

V

‖A‖

)b
dν

+C

∫
B2nR\BnR

ϕsηs−an |∇ηn|a
(

V

‖A‖

)b
dν

≤ C

∫
M\BR

ϕs−a|∇ϕ|a
(

V

‖A‖

)b
dν

+C

∫
B2nR\BnR

ϕs|∇ηn|a
(

V

‖A‖

)b
dν. (3.2.18)

Here ∇ϕ = 0 in BR, and ∇ηn = 0 outside B2nR \BnR are used, and s will be chosen

bigger enough than a.
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Since |∇ηn| ≤ 1
nR

by (2.2.13) , and using (VA), when b > 0, the last integral in

(3.2.18) can be estimated as follows∫
B2nR\BnR

ϕs|∇ηn|a
(

V

‖A‖

)b
dν

≤ C

(nR)a

∫
B2nR\BnR

ϕsrδ2bdν

≤ C

(nR)a

(
sup

B2nR\BnR
ϕs

)
(2nR)δ2bν(B2nR)

≤ C

(nR)a

(
nR

R

)−st
(2nR)δ2b(2nR)p lnq(2nR)

= C ′nδ2b+p−a−stRδ2b+p−a lnq(2nR), (3.2.19)

where we have used the definition (2.2.12) of ϕ and the volume estimate (3.1.5).

When b < 0, the second integral on the right-hand side of (3.2.18) can be esti-

mated as follows∫
B2nR\BnR

ϕs|∇ηn|a
(

V

‖A‖

)b
dν ≤ Cn−δ1b+p−a−stR−δ1b+p−a lnq(2nR). (3.2.20)

Before we give the estimate of the first integral in (3.2.18), using the following

estimate from [30]: if f is a nonnegative decreasing function on R+, then, for large

enough R, ∫
M\BR

f (r (x)) dν (x) ≤ C

∫ ∞
R/2

f(r)rp−1 lnq rdr, (3.2.21)

Thus, using |∇ϕ| ≤ Rttr−t−1, (3.2.21), and R/2 > 1, when b > 0, we obtain∫
M\BR

ϕs−a|∇ϕ|a
(

V

‖A‖

)b
dν ≤ C

∫ ∞
R/2

( r
R

)−t(s−a)

Rattar−at−arδ2brp−1 lnq rdr

≤ CRstta
∫ ∞

1

r−st−a+δ2b+p lnq r
dr

r

= CRstta
∫ ∞

0

e−h1ξξqdξ, (3.2.22)

where we have used the change ξ = ln r and set

h1 := st+ a− δ2b− p. (3.2.23)
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Assuming that h1 > 0 and making one more change τ = h1ξ, we obtain∫
M\BR

ϕs−a|∇ϕ|a
(

V

||A||

)b
dν ≤ CRsttah−q−1

1

∫ ∞
0

e−ττ qdτ ≤ C ′Rsttah−q−1
1 ,

(3.2.24)

where the value Γ(q + 1) of the integral is absorbed into the constant C ′.

When b > 0, substituting (3.2.19) and (3.2.24) into (3.2.18) yields

In(a, b) ≤ CRsttah−q−1
1 + Cn−h1Rδ2b+p−a lnq(2nR). (3.2.25)

Similarly, when b < 0, we have

In(a, b) ≤ CRsttah−q−1
2 + Cn−h2R−δ1b+p−a lnq(2nR). (3.2.26)

where

h2 = st+ a+ δ1b− p. (3.2.27)

We will use (3.2.25) for which h1 > t. Noticing also that Rt = exp (t lnR) = e,

we obtain

In (a, b) ≤ Cesta−q−1 + Cn−tRδ2b+p−a lnq(2nR).

As we have remarked above, we will consider only the values of a in the bounded

range a ≤ 3p. Hence, the term ea in the above is uniformly bounded. Letting

n→∞, we obtain

lim sup
n→∞

In (a, b) ≤ Cta−q−1. (3.2.28)

Similarly, when b < 0, we have

lim sup
n→∞

In (a, b) ≤ Cta−q−1. (3.2.29)

Let us first use (3.2.28) with (a, b) =
(

2(σ−t)
σ−1

, t
σ−1

)
. Note that a < p, and b > 0,

for this value of a and for t as in (3.2.2), we should testify that h1 > t, that is

h1 = st+ a− δ2b− p

= st+
2(σ − t)
σ − 1

− δ2
t

σ − 1
− 2σ

σ − 1

=

(
s− 2 + δ2

σ − 1

)
t > t,

Since

a− q − 1 =
2(σ − t)
σ − 1

− 1

σ − 1
− 1 =

σ − 2t

σ − 1
.
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Hence, we use (3.2.28) to obtain that

lim sup
n→∞

In

(
2(σ − t)
σ − 1

,
t

σ − 1

)
≤ Ct

σ−2t
σ−1 . (3.2.30)

While, for (a, b) =
(

2σ
σ−t−1

,− σt
(σ−t−1)(σ−1)

)
, note that b < 0, and from (3.2.2) to get

that a < 3p, we should testify that h2 > t, that is

h2 = st+ a+ δ1b− p

= st+
2σ

σ − t− 1
− δ1

σt

(σ − t− 1)(σ − 1)
− 2σ

σ − 1

=

(
s− (δ1 − 2)σ

(σ − t− 1)(σ − 1)

)
t > t.

Since

a− q − 1 =
2σ

σ − t− 1
− 1

σ − 1
− 1 =

σ2 − σ + σt

(σ − t− 1)(σ − 1)
.

whence (3.2.29) yields

lim sup
n→∞

In

(
2σ

σ − t− 1
,− σt

(σ − t− 1)(σ − 1)

)
≤ Ct

σ2−σ+σt
(σ−t−1)(σ−1) . (3.2.31)

The inequality (3.2.16) with function ϕn implies that

lim sup
n→∞

(∫
M

ϕsnV u
σdµ

)1− t+1
2σ

≤ lim sup
n→∞

Ct−
1
2
− σ

2(σ−1) In

(
2(σ − t)
σ − 1

,
t

σ − 1

) 1
2

×In
(

2σ

σ − t− 1
,− σt

(σ − t− 1)(σ − 1)

)σ−t−1
2σ

. (3.2.32)

Combining with (3.2.30) and (3.2.31), noting that ϕn ↑ ϕ, we have(∫
M

ϕsV uσdµ

)1− t+1
2σ

≤ Ct−
t

2(σ−1) . (3.2.33)

The remaining term t−
t

2(σ−1) on the right-hand side of (3.2.33) tends to 1 as t→ 0,

which implies that the right-hand side of (3.2.33) is a bounded function of t. Hence,
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there is a constant C1 such that(∫
M

ϕsV uσdµ

)1− t+1
2σ

≤ C1 <∞, for all small enough t. (3.2.34)

It follows that also ∫
M

ϕsV uσdµ ≤ C <∞, (3.2.35)

Since ϕ = 1 on BR, it follows that∫
BR

V uσdµ ≤ C <∞,

which implies for R→∞ that ∫
M

V uσdµ ≤ C <∞. (3.2.36)

Applying the same argument, inequality (3.2.15) with function ϕn implies that

∫
M

ϕsnV u
σdµ ≤ C1

(∫
M\BR

ϕsnV u
σdµ

) t+1
2σ

. (3.2.37)

Letting n→∞ and applying that ϕn ↑ ϕ, we obtain

∫
M

ϕsV uσdµ ≤ C1

(∫
M\BR

ϕsV uσdµ

) t+1
2σ

,

whence ∫
BR

V uσdµ ≤ C1

(∫
M\BR

V uσdµ

) t+1
2σ

, (3.2.38)

Since by (3.2.36), letting R→∞, we have∫
M\BR

V uσdµ→ 0,

letting in (3.2.38) R→∞, we obtain∫
M

V uσdµ = 0.

Since V > 0 a.e. on M , thus u ≡ 0.
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3.3 Second Proof of Theorem 3.1.1

Here we present a modification of the above proof of Theorem 3.1.1. We use the first

proof up to (3.2.16). Then letting s > 4σ
σ−1

, and t < σ−1
2

, and noting that 0 ≤ ϕ ≤ 1,

from (3.2.15), we obtain

∫
M

ϕsV uσdµ ≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

|∇ϕ|
2(σ−t)
σ−1

(
V

‖A‖

) t
σ−1

dν

) 1
2

×

(∫
M

|∇ϕ|
2σ

σ−t−1

(
V

‖A‖

)− σt
(σ−t−1)(σ−1)

dν

)σ−t−1
2σ

×
(∫

M\BR
ϕsV uσdµ

) t+1
2σ

, (3.3.1)

and from (3.2.16), we obtain(∫
M

ϕsV uσdµ

)1− t+1
2σ

≤ Ct−
1
2
− σ

2(σ−1)

(∫
M

|∇ϕ|
2(σ−t)
σ−1

(
V

‖A‖

) t
σ−1

dν

) 1
2

×

(∫
M

|∇ϕ|
2σ

σ−t−1

(
V

‖A‖

)− σt
(σ−t−1)(σ−1)

dν

)σ−t−1
2σ

. (3.3.2)

We see, that all integral terms in the right-hand side of (3.3.1) and (3.3.2) have the

form ∫
M

|∇ϕ|a
(

V

‖A‖

)b
dν,

with the following two pairs of (a, b)

(a, b) =

(
2(σ − t)
σ − 1

,
t

σ − 1

)
, (a, b) =

(
2σ

σ − t− 1
,− σt

(σ − t− 1)(σ − 1)

)
.(3.3.3)

Consequently, we could write a in the following way

a = p+ lt, (3.3.4)

with the corresponding two values of l

l = − 2

σ − 1
and l =

2σ

(σ − t− 1)(σ − 1)
. (3.3.5)
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where p = 2σ
σ−1

is defined as before in (3.1.2). It is very clear to obtain that the

values of a, b, l are uniformly bounded, when t is near zero. Let {ϕ̃k}k∈N be a

sequence satisfying that each ϕ̃k is a Lipschitz function such that supp(ϕ̃k) ⊂ B2k ,

ϕ̃k = 1 in a neighborhood of B2k−1 , and

|∇ϕ̃k|

{
≤ C

2k−1 for x ∈ B2k \B2k−1 ,

= 0, otherwise.
(3.3.6)

where C does not depend on k.

Fix some n ∈ N and set

t =
1

n
, (3.3.7)

and

ϕn =

∑2n
k=n+1 ϕ̃k
n

, (3.3.8)

Note that ϕn = 1 on B2n , ϕn = 0 outside B22n , 0 ≤ ϕn ≤ 1 on M . Note that for

any a ≥ 1, using that supp(∇ϕ̃k) are disjoint, we have

|∇ϕn|a =

∑2n
k=n+1 |∇ϕ̃k|a

na
. (3.3.9)

It is easy to see that

ϕn ∈ W
1,2
loc (M,ω).

Consider the integral

Jn(a, b) =

∫
M

|∇ϕn|a
(

V

‖A‖

)b
dν, (3.3.10)

Assume that b > 0. Substituting (3.3.8) into (3.3.10), applying (3.3.9), (3.3.6), and

(VA), we obtain

Jn(a, b) =

∫
M

|∇ϕn|a
(

V

‖A‖

)b
dν

=

∫
M

∑2n
k=n+1 |∇ϕ̃k|a

na

(
V

‖A‖

)b
dν

≤
2n∑

k=n+1

∫
B

2k
\B

2k−1

|∇ϕ̃k|a

na

(
V

‖A‖

)b
dν
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≤ C
2n∑

k=n+1

∫
B

2k
\B

2k−1

(
21−k

n

)a
rδ2bdν

≤ C

2n∑
k=n+1

(
21−k

n

)a
(2k)δ2bν(B2k)

≤ C

2n∑
k=n+1

(
21−k

n

)a
(2k)δ2bν(B2k). (3.3.11)

Noting that a = p+ lt, n+ 1 ≤ k ≤ 2n,(
21−k

n

)a
(2k)δ2b =

(
2−k

n

)p(
2−k

n

)lt
(2k)δ2b

≤
(

2−k

n

)p
(2k)δ2b sup

n+1≤k≤2n,t= 1
n

(
2−k

n

)lt
≤ C

(
2−k

n

)p
(2k)δ2b. (3.3.12)

Using (3.3.12) and (3.1.5), recalling that by (3.1.2) p = 2σ
σ−1

, q = 1
σ−1

, when b ≥ 0,

we obtain

Jn(a, b) ≤ C
2n∑

k=n+1

(
2−k

n

)p
(2k)δ2bν(B2k)

≤ C
2n∑

k=n+1

(
2−k

n

)p
(2k)δ2b(2k)p lnq(2k)

≤ C
1

np

2n∑
k=n+1

kq2kδ2b

≤ Cnq+1−p22nδ2b

≤ Cn−
σ
σ−1 22nδ2b. (3.3.13)

Similarly, when b ≤ 0, we have

Jn(a, b) ≤ Cn−
σ
σ−1 2−2nδ1b. (3.3.14)

Setting ϕ = ϕn in (3.3.2), we obtain(∫
M

ϕsnV u
σdµ

)1− t+1
2σ

≤ Ct−
1
2
− σ

2(σ−1)

(
Jn(

2(σ − t)
σ − 1

,
t

σ − 1
)

) 1
2

×
(
Jn(

2σ

σ − t− 1
,− σt

(σ − t− 1)(σ − 1)
)

)σ−t−1
2σ

.
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(3.3.15)

Substituting (3.3.13) and (3.3.14) into (3.3.15), recalling t = 1
n
, we have

(∫
M

ϕsnV u
σdµ

)1−
1
n+1

2σ

≤ Cn
1
2

+ σ
2(σ−1)

(
n−

σ
σ−1 22nδ2

1
n
σ−1

) 1
2

×

(
n−

σ
σ−1 2

2nδ1
σ 1
n

(σ− 1
n−1)(σ−1)

)σ− 1
n−1

2σ

≤ Cn
1

2n(σ−1) 2
δ1+δ2
σ−1

≤ C ′n
1

2n(σ−1) . (3.3.16)

Recalling that ϕn = 1 on B2n , and taking the limsup of both sides in (3.3.16) as

n→∞, we obtain ∫
M

V uσdµ ≤ C lim sup
n→∞

n
1

2n(σ−1)
/[1−

1
n+1

2σ
]

< ∞. (3.3.17)

Applying the same argument as in the first proof, we obtain that u ≡ 0.

3.4 Sharpness of p, q

In this section, we will construct examples to show the parameters of p and q in

(3.1.5) are sharp and cannot be relaxed.

The sharpness of p is already known in Rn, which is given by Mitidieri and

Pokhozhaev in [48]: Let µ be the classical Lebesgue measure, if σ > n−γ2
n−2+γ1

, σγ1 +

γ2 + n(σ − 1) > 0, and 2− n < γ1 < 2− γ2, then the function

u(x) := ε[1 + |x|2−γ1−γ2 ]−
1

σ−1

is a solution to (3.1.1) with A(x) = |x|γ1 , V (x) = |x|−γ2 , where ε is a suitable small

positive constant. In this case, we know (VA) holds, V ∈ L1
loc(Rn), and

ν(B(0, r)) =

∫
B(0,r)

A
σ
σ−1V −

1
σ−1dµ

=

∫
B(0,r)

|x|
σγ1
σ−1 |x|

γ2
σ−1dµ

≈ rp, as r →∞, (3.4.1)
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where p = σγ1+γ2
σ−1

+n. From the assumption σ > n−γ2
n−2+γ1

, we know it is equivalent to

p >
2σ

σ − 1
, (3.4.2)

hence, by carefully choosing parameters of γ1 and γ2, p could be close to 2σ
σ−1

.

Regarding to the sharpness of q, setting as before p = 2σ
σ−1

, and choosing q =
1

σ−1
+ ε for small ε > 0, we will construct a positive solution in Rn with (3.1.5)

holding with these values p, q.

Let M = Rn, µ is the classical Lebesgue measure, and x0 is the origin point, take

A = a(r)Id, V = rβ1 lnβ2 r, for large enough r > 0. (3.4.3)

where a(r) = rα1 lnα2 r for large enough r, and for small r near zero, a(r) and V are

constants. Moreover, parameters α1, α2, β1, β2 are chosen to satisfy the following

condition 
α1σ−β1

σ−1
+ n = 2σ

σ−1
,

α2σ−β2

σ−1
= 1

σ−1
+ ε,

α1 + n > 2.

(3.4.4)

It is easily to check that (VA) is satisfied with δ1 = δ2 = |β1 − α1| + 1. Moreover,

under the measure dν = ‖A‖
σ
σ−1 V −

1
σ−1dµ, for large enough r, the volume ν(B(0, r))

could be estimated from (3.4.3) as follows

ν(B(0, r)) =

∫
B(0,r)

‖A‖
σ
σ−1 V −

1
σ−1dµ

≤
∫ r

(sα1 lnα2 s)
σ
σ−1
(
sβ1 lnβ2 s

)− 1
σ−1 ωns

n−1ds

≤ C

∫ r

s
α1σ−β1
σ−1

+n−1 ln
α2σ−β2
σ−1 sds

≤ Cr
α1σ−β1
σ−1

+n ln
α2σ−β2
σ−1 r, (3.4.5)

where ωn is the surface area of the unit ball in Rn. By (3.4.4), we obtain

ν(B(0, r)) ≤ Crp lnq r, for large enough r > 0. (3.4.6)

Hence, Rn satisfies the volume growth condition (3.1.5) with A, V from (3.4.3).

In fact, since A, V are radially defined, thus the solution u to (3.1.1) actually

depends on polar radius r, we can write u = u(r). Hence, (3.1.1) could be written

in the following form

(Sau′)′ + SV uσ ≤ 0, (3.4.7)
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where S(r) = ωnr
n−1.

Applying Proposition 2.3.1 in Chapter 2 with

α(r) = S(r)a(r) = ωnr
α1+n−1 lnα2 r,

and

β(r) = S(r)V = ωnr
β1+n−1 lnβ2 r,

we know from (3.4.4) ∫ ∞
r0

dr

α(r)
<∞, (3.4.8)

and for r >> 1

γ(r) =

∫ ∞
r

ds

α(s)
=

∫ ∞
r

ds

ωnsα1+n−1 lnα2 s
≈

1

rα1+n−2 lnα2 r
, (3.4.9)

and by (3.4.4), we obtain∫ ∞
r0

γ(r)σβ(r)dr ≤ C1

∫ ∞
r0

1

(rα1+n−2 lnα2 r)σ
rβ1+n−1 lnβ2 rdr

≤ C2

∫ ∞
r0

1

rσ(α1+n−2)−(β1+n−1) lnσα2−β2 r
dr

= C2

∫ ∞
r0

1

rσα1+σ(n−2)−β1−n lnσα2−β2 r

dr

r

= C2

∫ ∞
r0

1

ln1+(σ−1)ε r

dr

r
<∞. (3.4.10)

Applying Proposition 2.3.1, we know there exists a solution on [r0,∞)

u(r) = O(γ(r)) = O(r2−n−α1 ln−α2 r), as r →∞, (3.4.11)

one could apply similar argument as in [30] to extend u to be a positive solution of

(3.1.1) in Rn.



Chapter 4

Quasilinear and Mean Curvature

Type Inequalities

This chapter is based on the work [68].

4.1 Background and Statement

In this chapter, we study the uniqueness of nonnegative solutions to the following

two differential inequalities

∆mu+ uσ ≤ 0, on M, (4.1.1)

and

div

(
|∇u|m−2∇u√

1 + |∇u|m

)
+ uσ ≤ 0. (4.1.2)

where ∆m is the m-Laplace operator, div and ∇ are the Riemannian divergence

and gradient respectively, m > 1 and σ > m − 1 are given parameters. We call

div

(
|∇u|m−2∇u√

1+|∇u|m

)
the mean curvature type operator, in particular, when m = 2, this

is the well-known mean curvature operator.

Mitidieri and Pokhozhaev in [45] obtained the result concerning the nonexistence

of positive solution to (4.1.1) in Rn. They proved that if

0 < m− 1 < σ ≤ n(m− 1)

n−m
, and n > m. (4.1.3)

then (4.1.1) has no positive solution. For the mean curvature type inequalities, the

problem (4.1.2) in case of m = 2 has also been investigated in [45]. They proved
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that if n > 2 and

1 < σ ≤ n

n− 2
, (4.1.4)

then (4.1.2) has no positive solution in Rn .

Let us turn to results on Riemannian manfolds. In [34], Holopainen proved if u

is a nonnegative solution to

∆mu ≤ 0, (4.1.5)

and the following condition∫ ∞( r

µ(B(x0, r))

) 1
m−1

dr =∞, (4.1.6)

holds for some reference point x0 ∈ M , then any nonnegative solution to (4.1.5) is

identical constant. In particular, this implies that any nonnegative solution to

∆mu+ uσ ≤ 0.

is identical zero for any σ. Note that (4.1.6) is satisfied if

µ(B(x0, r)) ≤ Crm,

or even if

µ(B(x0, r)) ≤ Crm lnm−1 r,

for all large enough r.

In this part, we concentrate our attention on obtaining optimal volume growth

conditions that ensure the uniqueness of nonnegative solutions to (4.1.1) and (4.1.2)

for all m > 1 and σ > m− 1.

Before we state the results, let us first give the definitions of solutions to (4.1.1)

and (4.1.2). Set

W 1,m
loc (M) = {f : M → R|f ∈ Lmloc (M) ,∇f ∈ Lmloc (M)} , (4.1.7)

where ∇f is understood in distributional sense. Denote by W 1,m
c (M) the subspace

of W 1,m
loc (M) of functions with compact support.

Definition 4.1.1. A function u on M is called a weak solution of (4.1.1) if u ∈
W 1,m
loc (M), u ≥ 0, and for any nonnegative function ψ ∈ W 1,m

c (M), the following
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inequality holds:

−
∫
M

|∇u|m−2(∇u,∇ψ)dµ+

∫
M

uσψdµ ≤ 0, (4.1.8)

Similarly, we call a function u a weak solution of (4.1.2) if u ∈ W 1,m
loc (M), u ≥ 0 and

for any nonnegative function ψ ∈ W 1,m
c (M), the following inequality holds:

−
∫
M

|∇u|m−2(∇u,∇ψ)√
1 + |∇u|m

dµ+

∫
M

uσψdµ ≤ 0, (4.1.9)

where (·, ·) is the inner product in TxM given by the Riemannian metric.

Remark 4.1.2. Using the defintion of ψ, we have∣∣∣∣∫
M

|∇u|m−2(∇u,∇ψ)dµ

∣∣∣∣ ≤ ∫
supp(ψ)

|∇u|m−1|∇ψ|dµ

≤
(∫

supp(ψ)

|∇u|mdµ
)m−1

m
(∫

supp(ψ)

|∇ψ|mdµ
) 1

m

,

Since u ∈ W 1,m
loc (M) and ψ ∈ W 1,m

c (M). Therefore, the first term in (4.1.8) is finite,

which implies the finiteness of the second term, that is
∫
M
uσψdµ <∞.

Similarly, we also can obtain that
∫
M
uσψdµ <∞ from (4.1.9).

Assuming always σ > m− 1, let us introduce two paramters

p =
mσ

σ −m+ 1
, q =

m− 1

σ −m+ 1
. (4.1.10)

Here are our main results.

Theorem 4.1.3. If for some x0 ∈M , the following inequality

µ(B(x0, r)) ≤ Crp lnq r, (4.1.11)

holds for all large enough r, then the only nonnegative solution of (4.1.1) is identical

zero.

Theorem 4.1.4. If for some x0 ∈M , the following inequality

µ(B(x0, r)) ≤ Crp lnq r, (4.1.12)

holds for all large enough r, then the only nonnegative solution of (4.1.2) is identical

zero.
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Both values of p, q in Theorem 4.1.3 are sharp, that is, the statement of Theorem

4.1.3 is not true for large values of p and q.

4.2 Proof of Theorem 4.1.3

Let u be some nonnegative weak solution to (4.1.1). x0 is the reference point as

before in Theorem 4.1.3. Denote BR := B(x0, R), and fix a Lipschitz function ϕ on

M with compact support, such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of B̄R.

In particular, we have ϕ ∈ W 1,m
c (M). Take the following test function for (4.1.8):

ψρ(x) = ϕ(x)s(u+ ρ)−t, (4.2.1)

where ρ is some positive constant near zero, t, s satisfy two conditions

0 < t < min

{
1,
σ −m+ 1

2

}
, s >

4mσ

σ −m+ 1
. (4.2.2)

The value of s is fixed, while t is variable and can be chosen arbitrarily close to 0.

Since 1
u+ρ

is locally bounded, hence, ψρ has compact support and is bounded.

Since

∇ψρ = −t(u+ ρ)−t−1ϕs∇u+ s(u+ ρ)−tϕs−1∇ϕ,

we see that, ∇ψρ ∈ Lm(M). It follows that, ψρ ∈ W 1,m
c (M). We obtain from (4.1.8)

that

t

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ s

∫
M

ϕs−1(u+ ρ)−t|∇u|m−2(∇u,∇ϕ)dµ.

thus

t

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ s

∫
M

ϕs−1(u+ ρ)−t|∇u|m−1|∇ϕ|dµ. (4.2.3)

In what follows, we use the following Young’s inequality∫
M

fgdµ ≤ ε

∫
M

|f |p0dµ+ Cε

∫
M

|g|p′0dµ, (4.2.4)
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where ε > 0 is arbitrary, and (p0, p
′
0) is a Hölder conjugate couple such that

p0 =
m

m− 1
, p′0 = m. (4.2.5)

Applying (4.2.4) to the right-hand-side integral of (4.2.3), we obtain

s

∫
M

ϕs−1(u+ ρ)−t|∇u|m−1|∇ϕ|dµ

=

∫
M

(
t
m−1
m ϕ

s(m−1)
m (u+ ρ)−

(t+1)(m−1)
m |∇u|m−1

)
×
(

s

t
m−1
m

ϕs−1− s(m−1)
m (u+ ρ)−t+

(t+1)(m−1)
m |∇ϕ|

)
dµ

≤ εt

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+ Cε
sm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1|∇ϕ|mdµ.

Letting ε = 1
2
, substituting the above estimate into (4.2.3), and cancelling out the

half of the first term in (4.2.3), we obtain

t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ Csm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1|∇ϕ|mdµ. (4.2.6)

Using (4.2.4) once more to the right-hand side of (4.2.6) with another Hölder con-

jugate couple (p1, p
′
1) satisfying

p1 =
σ − t

m− t− 1
, p′1 =

σ − t
σ −m+ 1

, (4.2.7)

we obtain

Csm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1|∇ϕ|mdµ

=

∫
M

[ϕ
s
p1 (u+ ρ)m−t−1] · [ Csm

tm−1ϕ
s
p′1
−m
|∇ϕ|m]dµ

≤ 1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1

(
sm

tm−1

) σ−t
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ. (4.2.8)

Using in the right-hand side of (4.2.8) the obvious inequality(
sm

tm−1

) σ−t
σ−m+1

≤
(
sm

tm−1

) σ
σ−m+1

,
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and combining (4.2.8) with (4.2.6), we obtain

t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ 1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ, (4.2.9)

where the term that contains s is absorbed into constant C1.

Since if∫
M

ϕs(u+ ρ)σ−tdµ =

∫
M

ϕs(u+ ρ)σ(u+ ρ)−tdµ

≤ C

(∫
M

ϕsuσ(u+ ρ)−tdµ+ ρσ
∫
M

ϕs(u+ ρ)−tdµ

)
,

By the definition of solution, we know
∫
M
ϕsuσ(u + ρ)−tdµ is bounded. Hence, the

term ∫
M

ϕs(u+ ρ)σ−tdµ

is bounded. By Dominated Convergence theorem, letting ρ→ 0, we have

lim
ρ→0

∫
M

ϕs(u+ ρ)σ−tdµ =

∫
M

ϕsuσ−tdµ,

Letting ρ → 0, applying Monotone Convergence theorem to the right-hand side

integrals in (4.2.9), we obtain

lim
ρ→0

t

2

∫
M

ϕs(u+ ρ)−t−1|∇u|mdµ+ lim
ρ→0

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ lim
ρ→0

1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ,

which is

t

2

∫
M

ϕsu−t−1|∇u|mdµ+
1

2

∫
M

ϕsuσ−tdµ

≤ C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ, (4.2.10)
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Applying (4.1.8) once more with another test function ψ = ϕs, we obtain∫
M

ϕsuσdµ

≤ s

∫
M

ϕs−1|∇u|m−2(∇u,∇ϕ)dµ

≤ s

∫
M

ϕs−1|∇u|m−1|∇ϕ|dµ

≤ s

(∫
M

ϕsu−t−1|∇u|mdµ
)m−1

m

×
(∫

M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ
) 1

m

. (4.2.11)

On the other hand, we obtain from (4.2.10) that∫
M

ϕsu−t−1|∇u|mdµ ≤ Ct−1−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ.

Substituting this into (4.2.11) yields

∫
M

ϕsuσdµ ≤ C

[
t−1−σ(m−1)

σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ

]m−1
m

×
[∫

M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ
] 1
m

. (4.2.12)

Recalling that ∇ϕ = 0 on BR, and applying Hölder inequality to the last term of

(4.2.12) with the following Hölder couple (p2, p
′
2)

p2 =
σ

(t+ 1)(m− 1)
, p′2 =

σ

σ − (t+ 1)(m− 1)
, (4.2.13)

we obtain ∫
M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ

=

∫
M\BR

(
ϕ

s
p2 u(t+1)(m−1)

)(
ϕ

s
p′2
−m
|∇ϕ|m

)
dµ

≤
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
σ

×
(∫

M\BR
ϕs−

mσ
σ−(t+1)(m−1) |∇ϕ|

mσ
σ−(t+1)(m−1)dµ

)1− (t+1)(m−1)
σ

. (4.2.14)
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Substituting (4.2.14) into (4.2.12), we obtain∫
M

ϕsuσdµ

≤ Ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ

)m−1
m

×
(∫

M

ϕs−
mσ

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1)dµ

) 1
m
− (t+1)(m−1)

mσ

×
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
mσ

. (4.2.15)

Noting s > 4mσ
σ−m+1

, and t < σ−m+1
2

in (4.2.2), and recalling that 0 ≤ ϕ ≤ 1, from

(4.2.15), we obtain ∫
M

ϕsuσdµ

≤ Ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(∫
M

|∇ϕ|
m(σ−t)
σ−m+1dµ

)m−1
m

×
(∫

M

|∇ϕ|
mσ

σ−(t+1)(m−1)dµ

) 1
m
− (t+1)(m−1)

mσ

×
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
mσ

. (4.2.16)

Since
∫
M
ϕsuσdµ is finite due to the definition of the solution, it follows from (4.2.16)

that (∫
M

ϕsuσdµ

)1− (t+1)(m−1)
mσ

≤ Ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(∫
M

|∇ϕ|
m(σ−t)
σ−m+1dµ

)m−1
m

×
(∫

M

|∇ϕ|
mσ

σ−(t+1)(m−1)dµ

) 1
m
− (t+1)(m−1)

mσ

. (4.2.17)

We see, that all integral terms in the right-hand side of (4.2.17) have the form∫
M

|∇ϕ|adµ,
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with the following two values of a such that

a =
m(σ − t)
σ −m+ 1

, a =
mσ

σ − (t+ 1)(m− 1)
. (4.2.18)

Consequently, a could be written in the form

a = p+ bt, (4.2.19)

with the following two respective values of b

b = − m

σ −m+ 1
, b =

mσ(m− 1)

[σ − (t+ 1)(m− 1)](σ −m+ 1)
. (4.2.20)

where p = mσ
σ−m+1

is defined as before in (4.1.10). Clearly, the both values of a and

b are uniformly bounded, when t is near zero.

Fix some n ∈ N and set

t =
1

n
, (4.2.21)

Consider the integral

Jn(a) =

∫
M

|∇ϕn|adµ, (4.2.22)

where a is as above, and ϕn is the same as defined in (3.3.8).

Substituting (3.3.8) into (4.2.22), applying (3.3.9) and (3.3.6), we obtain

Jn(a) =

∫
M

|∇ϕn|adν

=

∫
M

∑2n
k=n+1 |∇ϕ̃k|a

na
dµ

=
2n∑

k=n+1

∫
B

2k
\B

2k−1

|∇ϕ̃k|a

na
dµ

≤ C

2n∑
k=n+1

(
21−k

n

)a
µ(B2k)

≤ C

2n∑
k=n+1

(
2−k

n

)a
µ(B2k), (4.2.23)

where we have used that a is uniformly bounded. Noting that a = p + bt, n + 1 ≤
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k ≤ 2n, and substituting t = 1
n
, if b > 0, we obtain

(
2−k

n

)a
=

(
2−k

n

)p(
2−k

n

)bt
≤

(
2−k

n

)p
.

If b < 0, since |b| is uniformly bounded, then(
2−k

n

)a
=

(
2−k

n

)p(
2−k

n

)bt
≤

(
2−k

n

)p (
n22n

) |b|
n

≤
(

2−k

n

)p
sup
n

(
n22n

) |b|
n

< C

(
2−k

n

)p
.

Thus, in both cases, we obtain(
2−k

n

)a
≤ C

(
2−k

n

)p
. (4.2.24)

Using (4.2.24) and (4.1.11), recalling that by (4.1.10) p = mσ
σ−m+1

, q = m−1
σ−m+1

, we

obtain

Jn(a) ≤ C
2n∑

k=n+1

(
2−k

n

)p
µ(B2k)

≤ C

2n∑
k=n+1

(
2−k

n

)p
(2k)p lnq(2k)

≤ C
1

np

2n∑
k=n+1

kq

≤ Cnq+1−p

≤ Cn−
(m−1)σ
σ−m+1 . (4.2.25)

Setting ϕ = ϕn in (4.2.17), we obtain

(∫
M

ϕsnu
σdµ

)1− (t+1)(m−1)
mσ
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≤ ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(
Jn(

m(σ − t)
σ −m+ 1

)

)m−1
m

×
(
Jn(

mσ

σ − (t+ 1)(m− 1)
)

) 1
m
− (t+1)(m−1)

mσ

. (4.2.26)

Substituting (4.2.25) into (4.2.26), using t = 1
n

as before, we obtain

(∫
M

ϕsnu
σdµ

)1− ( 1
n+1)(m−1)

mσ

≤ Cn
m−1
m

+
σ(m−1)2

m(σ−m+1)

(
n−

(m−1)σ
σ−m+1

)m−1
m

×
(
n−

(m−1)σ
σ−m+1

) 1
m
− ( 1

n+1)(m−1)

mσ
, (4.2.27)

the exponent in the power of n in the right-hand side of (4.2.27) is then equal to

m− 1

m
+

σ(m− 1)2

m(σ −m+ 1)
− (m− 1)σ

σ −m+ 1
· m− 1

m
− (m− 1)σ

σ −m+ 1
· [ 1

m
− m− 1

mσ
− m− 1

nmσ
]

a (careful) computation shows that all the terms here that do not contain n mirac-

ulously cancel out, so that the above expression reduces to

(m− 1)2

nm(σ −m+ 1)

Therefore, we obtain

(∫
M

ϕsnu
σdµ

)1− ( 1
n+1)(m−1)

mσ

≤ Cn
(m−1)2

nm(σ−m+1) . (4.2.28)

Recalling that ϕn = 1 on B2n , and taking the lim sup of both sides in (4.2.28) as

n→∞, we obtain∫
M

uσdµ ≤ C lim sup
n→∞

n
(m−1)2

nm(σ−m+1)
/[1− ( 1

n+1)(m−1)

mσ
]

< ∞. (4.2.29)

The same computation can be used in (4.2.16), which implies

∫
M

ϕsnu
σdµ ≤ C

(∫
M\B2n

ϕsnu
σdµ

) ( 1
n+1)(m−1)

mσ

, (4.2.30)
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Using that 0 ≤ ϕn ≤ 1 and ϕn|B2n
= 1 once more, we obtain

∫
B2n

uσdµ ≤ C

(∫
M\B2n

uσdµ

) ( 1
n+1)(m−1)

mσ

, (4.2.31)

Letting n→∞, and using (4.2.29), we obtain∫
M

uσdµ = 0,

which implies that u = 0.

4.3 Proof of Theorem 4.1.4

Let u be some nonnegative weak solution to (4.1.2). Taking the same test function

ψρ as in (4.2.1), we obtain from (4.1.9) that

t

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ s

∫
M

ϕs−1(u+ ρ)−t|∇u|m−2 (∇u,∇ϕ)√
1 + |∇u|m

dµ.

thus

t

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ s

∫
M

ϕs−1(u+ ρ)−t
|∇u|m−1|∇ϕ|√

1 + |∇u|m
dµ. (4.3.1)

Applying (4.2.4) with (4.2.5) to the right-hand-side integral of (4.3.1), we obtain

s

∫
M

ϕs−1(u+ ρ)−t
|∇u|m−1|∇ϕ|√

1 + |∇u|m
dµ

=

∫
M

1√
1 + |∇u|m

(
t
m−1
m ϕ

s(m−1)
m (u+ ρ)−

(t+1)(m−1)
m |∇u|m−1

)
×
(

s

t
m−1
m

ϕs−1− s(m−1)
m (u+ ρ)−t+

(t+1)(m−1)
m |∇ϕ|

)
dµ

≤ εt

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ

+Cε
sm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1 |∇ϕ|m√
1 + |∇u|m

dµ.
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Letting ε = 1
2
, substituting the above estimate into (4.3.1), and cancelling out the

half of the first term in (4.3.1), we obtain

t

2

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ Csm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1 |∇ϕ|m√
1 + |∇u|m

dµ

≤ Csm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1|∇ϕ|mdµ. (4.3.2)

Using (4.2.4) once more to the right-hand side of (4.3.2) with the Hölder conjugate

couple (p1, p
′
1) of (4.2.7) we obtain

Csm

tm−1

∫
M

ϕs−m(u+ ρ)m−t−1|∇ϕ|mdµ

=

∫
M

[ϕ
s
p1 (u+ ρ)m−t−1] · [ Csm

tm−1ϕ
s
p′1
−m
|∇ϕ|m]dµ

≤ 1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1

(
sm

tm−1

) σ−t
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ. (4.3.3)

Using in the right-hand side of (4.3.3) the obvious inequality(
sm

tm−1

) σ−t
σ−m+1

≤
(
sm

tm−1

) σ
σ−m+1

,

and combining (4.3.3) with (4.3.2), we obtain

t

2

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ+

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ 1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ, (4.3.4)

where the term that contains s is absorbed into constant C1.

By the same arguments as in Section 4.2, we can show
∫
M
ϕs(u + ρ)σ−tdµ is

bounded. Hence, by Dominated Convergence theorem, letting ρ→ 0, we have

lim
ρ→0

∫
M

ϕs(u+ ρ)σ−tdµ =

∫
M

ϕsuσ−tdµ,
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Letting ρ→ 0 in (4.3.4), applying Monotone Convergence theorem to the right-hand

side integrals of (4.3.4), we obtain

lim
ρ→0

t

2

∫
M

ϕs(u+ ρ)−t−1 |∇u|m√
1 + |∇u|m

dµ+ lim
ρ→0

∫
M

ϕsuσ(u+ ρ)−tdµ

≤ lim
ρ→0

1

2

∫
M

ϕs(u+ ρ)σ−tdµ

+C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ,

which is

t

2

∫
M

ϕsu−t−1 |∇u|m√
1 + |∇u|m

dµ+
1

2

∫
M

ϕsuσ−tdµ

≤ C1t
−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ, (4.3.5)

Applying (4.1.9) once more with another test function ψ = ϕs, we obtain∫
M

ϕsuσdµ

≤ s

∫
M

ϕs−1|∇u|m−2 (∇u,∇ϕ)√
1 + |∇u|m

dµ

≤ s

∫
M

ϕs−1 |∇u|m−1√
1 + |∇u|m

|∇ϕ|dµ

≤ s

(∫
M

ϕsu−t−1 |∇u|m√
1 + |∇u|m

dµ

)m−1
m

×

(∫
M

ϕs−mu(t+1)(m−1) |∇ϕ|m√
1 + |∇u|m

dµ

) 1
m

≤ s

(∫
M

ϕsu−t−1 |∇u|m√
1 + |∇u|m

dµ

)m−1
m

×
(∫

M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ
) 1

m

. (4.3.6)

On the other hand, we obtain from (4.3.5) that∫
M

ϕsu−t−1 |∇u|m√
1 + |∇u|m

dµ ≤ Ct−1−σ(m−1)
σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ.
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Substituting this into (4.3.6) yields

∫
M

ϕsuσdµ ≤ C

[
t−1−σ(m−1)

σ−m+1

∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ

]m−1
m

×
[∫

M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ
] 1
m

. (4.3.7)

Recalling that ∇ϕ = 0 on BR, and applying Hölder inequality to the last term of

(4.3.7) with (p2, p
′
2) of (4.2.13), we obtain∫
M

ϕs−mu(t+1)(m−1)|∇ϕ|mdµ

=

∫
M\BR

(
ϕ

s
p2 u(t+1)(m−1)

)(
ϕ

s
p′2
−m
|∇ϕ|m

)
dµ

≤
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
σ

×
(∫

M\BR
ϕs−

mσ
σ−(t+1)(m−1) |∇ϕ|

mσ
σ−(t+1)(m−1)dµ

)1− (t+1)(m−1)
σ

. (4.3.8)

Substituting (4.3.8) into (4.3.7), we obtain∫
M

ϕsuσdµ

≤ Ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(∫
M

ϕs−
m(σ−t)
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1dµ

)m−1
m

×
(∫

M

ϕs−
mσ

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1)dµ

) 1
m
− (t+1)(m−1)

mσ

×
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
mσ

. (4.3.9)

Noting s > 4mσ
σ−m+1

, and t < σ−m+1
2

in (4.2.2), and recalling that 0 ≤ ϕ ≤ 1, from

(4.3.9), we obtain ∫
M

ϕsuσdµ

≤ Ct−
m−1
m
− σ(m−1)2

m(σ−m+1)

(∫
M

|∇ϕ|
m(σ−t)
σ−m+1dµ

)m−1
m

×
(∫

M

|∇ϕ|
mσ

σ−(t+1)(m−1)dµ

) 1
m
− (t+1)(m−1)

mσ
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×
(∫

M\BR
ϕsuσdµ

) (t+1)(m−1)
mσ

. (4.3.10)

Applying the same arguments as in Section 4.2 from (4.2.16), we obtain that u ≡ 0.

Thus, we complete the proof of Theorem 4.1.4.

4.4 Sharpness of p, q

In this section, we show the sharpness of parameters p and q in Theorem 4.1.3.

Obviously, it suffices to verify the sharpness of q.

Fix p = mσ
σ−m+1

, and choose any q > m−1
σ−m+1

. We will construct an example of a

manifold M satisfying the volume growth condition (4.1.11) with these values p,q

and admitting a positive solution u of (4.1.1).

We will use the following Proposition (cf. [70])

Proposition 4.4.1. Let m > 1, σ > 0 be a constant. Let β(r) be a positive C1-

function on [r0,∞) satisfying∫ ∞
r0

(β(s))−
1

m−1ds <∞. (4.4.1)

Define the function γ(r) on [r0,∞) by

γ(r) =

∫ ∞
r

(β(s))−
1

m−1ds. (4.4.2)

If ∫ ∞
r0

β(s)γ(s)σds <∞, (4.4.3)

then the following equation

(β(r)|y′|m−2y′)′ + β(r)yσ = 0, (4.4.4)

has at least one positive solution on [r0,∞), which satisfies

y(r) = O(γ(r)), as r →∞. (4.4.5)

By definition in [70], a solution of (4.4.4) is a C1-function y, such that |y′|m−2y′

is also C1, and (4.4.4) is satisfied.
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Let M be (Rn, g) with the following Riemannian metric

g = dr2 + ψ(r)2dθ2, (4.4.6)

where (r, θ) are the polar coordinates in Rn and ψ (r) is a smooth, positive function

on (0,∞) such that

ψ(r) =

{
r, for small enough r,

(rp−1 lnq r)
1

n−1 , for large enough r.
(4.4.7)

thus, in a neighborhood of 0, the metric g is exactly Euclidean, which can be ex-

tended smoothly to the origin. Hence, M = (Rn, g) is a complete Riemannian

manifold.

By (4.4.6), the geodesic ball Br = B(0, r) on M coincides with the Euclidean

ball {|x| < r}. Denote by S (r) the surface area of Br in M . It follows from (4.4.6)

that S (r) = ωnψ
n−1(r), that is

S(r) = ωn

{
rn−1, for small enough r,

rp−1 lnq r, for large enough r,
(4.4.8)

where ωn is the surface area of the unit ball in Rn. The Riemannian volume of the

ball Br can be determined by

V (r) := µ (Br) =

∫ r

0

S (τ) dτ , (4.4.9)

whence it follows that, for large enough r,

V (r) ≤ Crp lnq r. (4.4.10)

Hence, the manifold M satisfies the volume growth condition of Theorem 4.1.3.

In what follows we prove the existence of a weak positive solution of

∆mu+ uσ ≤ 0,

on M . This solution u will depend only on the polar radius r, so that we write

u = u (r) .

The construction of u will be done in two steps.

Step 1. For a function u = u(r), the inequality (4.1.1) becomes

[S|u′|m−2u′]′ + Suσ ≤ 0. (4.4.11)
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Note that for large enough r0∫ ∞
r0

S(r)−
1

m−1dr =

∫ ∞
r0

1

(ωnrp−1 lnq r)
1

m−1

dr

=

∫ ∞
r0

1

ω
1

m−1
n r

p−1
m−1 ln

q
m−1 r

dr

< ∞, (4.4.12)

this is because p = mσ
σ−m+1

> m. For all r ≥ r0, we have

γ(r) :=

∫ ∞
r

(S(τ))−
1

m−1dτ =

∫ ∞
r

dτ

(ωnτ p−1 lnq τ)
1

m−1

≈
1

r
p−1
m−1

−1 ln
q

m−1 r
.

It follows that ∫ ∞
r0

S(τ)γσ(τ)dτ ≤ C

∫ ∞
r0

τ p lnq τ

τ
σ(p−1)
m−1

−σ ln
σq
m−1 τ

dτ

τ

≤ C

∫ ∞
r0

1

τ
σ(p−1)
m−1

−σ−p ln
σq
m−1

−q τ

dτ

τ

≤ C

∫ ∞
r0

1

ln
q(σ−m+1)
m−1 τ

dτ

τ

< ∞, (4.4.13)

where we have used that p = mσ
σ−m+1

and q > m−1
σ−m+1

.

Applying Proposition 4.4.1 with β(r) = S(r), we obtain that there exists some

C1 solution u of (4.4.11) on [r0,∞), such that

u(r) = O(γ(r)) = O(r−
m

σ−m+1 ln−
q

m−1 r), as r →∞.

In particular, u(r) → 0 as r → ∞. By increasing r0 if necessary, we can assume

that u′(r0) < 0.

Step 2. Consider the following eigenvalue problem in a ball Bρ of M{
div(|∇v|m−2∇v) + λρ|v|m−2v = 0, in Bρ,

v|∂Bρ = 0.
(4.4.14)

We denote by λρ the principal (smallest) eigenvalue of this problem. It is known

from [41] that λρ > 0 and the corresponding eigenfunction vρ > 0 in Bρ. Hence, we

rewrite (4.4.14) in the following form{
div(|∇v|m−2∇v) + λρv

m−1 = 0, in Bρ,

v|∂Bρ = 0.
(4.4.15)
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Moreover, by [41, Theorem 1.3] and [71], we know the principal eigenvalue λρ is

simple, and vρ depends only on the polar radius, we have vρ = vρ(r). From [64] and

[72], we know vρ(r) is C1,β for some β ∈ (0, 1). Normalizing vρ, we can assume that

vρ(0) = 1, while vρ|∂Bρ = 0.

Therefore, for a radial function vρ, the equation (4.4.15) becomes

[S|v′ρ|m−2v′ρ]
′ + λρSv

m−1
ρ = 0, (4.4.16)

where also vρ(ρ) = 0, vρ(0) = 1, v
′
ρ(0) = 0, and vρ > 0 in (0, ρ).

From (4.4.16), we obtain [S|v′ρ|m−2v′ρ]
′ ≤ 0, so that the function S|v′ρ|m−2v′ρ is

decreasing. Since S|v′ρ|m−2v′ρ vanishes at r = 0, it follows that S|v′ρ|m−2v′ρ(r) ≤ 0

and, hence v′ρ (r) ≤ 0 for all r ∈ (0, ρ). Hence, the function vρ (r) is decreasing for

r < ρ which together with the boundary conditions implies that 0 ≤ vρ ≤ 1. Since

σ > m− 1, it follows that vρ is a positive solution in Bρ of the inequality

div(|∇vρ|m−2∇vρ) + λρv
σ
ρ ≤ 0. (4.4.17)

Let us show that λρ → 0 as ρ→∞. Indeed, it is known that

lim
ρ→∞

λρ = λmin (M)

where λmin (M) is the essential m-first eigenvalue of −∆m in W 1,m(M) (cf. [40]).

We know from [40, Theorem 1.4] (when m = 2, one also could see [6])

λmin (M) ≤
(

lim sup
ρ→∞

lnV (ρ)

mρ

)m
, (4.4.18)

It follows from (4.4.10) that limρ→∞ λρ = λmin(M) = 0.

In what follows we consider only integer values of ρ, and consider the sequence

{vk}∞k=1. Let us show that the sequence {vk} satisfy that vk → 1 and v′k → 0 locally

uniformly as k → ∞, By the above analysis, we know vk is decreasing. It follows

that v′k ≤ 0. Integrating (4.4.16), noting that v′k(0) = 0, we obtain

|v′k|m−1(r) =
λk
∫ r

0
S(t)vm−1

k (t)dt

S(r)
. (4.4.19)

Note that 0 ≤ vk ≤ 1 and (4.4.9), it follows that

|v′k|m−1(r) ≤ λk
V (r)

S(r)
,
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since λk → 0 as k →∞, we obtain that

v′k → 0, (4.4.20)

uniformly on any bounded range of r as k →∞. The identity

vk(r) = 1 +

∫ r

0

v′k(t)dt, (4.4.21)

implies that

vk → 1, (4.4.22)

uniformly on any bounded range of r as k →∞.

Choose ρ large enough so that ρ > r0 and

v′ρ
vρ

(r0) >
u′

u
(r0), (4.4.23)

where u is the function constructed in the first step. Indeed, it is possible to achieve

(4.4.23) by choosing ρ = k with large enough i because by (4.4.20) and (4.4.22)

v′k
vk

(r0)→ 0, as k →∞,

whereas u′

u
(r0) < 0 by construction in Step 1.

Let us fix ρ > r0 for which (4.4.23) is satisfied, and compare the functions u(r)

and vρ(r) in the interval [r0, ρ). Set

θ = inf
r∈[r0,ρ)

u(r)

vρ(r)
.

Since vρ vanishes at ρ and, hence,

u(r)

vρ (r)
→ +∞, as r → ρ−,

and, at r = r0, by (4.4.23)(
u

vρ

)′
(r0) =

u
′
vρ − uv

′
ρ

v2
(r0) < 0,

so that u/vρ is strictly decreasing at r0 and cannot have minimum at r0. Hence, u
vρ
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attains its minimum at an interior point ξ ∈ (r0, ρ), and at this point we have(
u

vρ

)′
(ξ) = 0.

It follows that

u(ξ) = θvρ(ξ) and u
′
(ξ) = θv

′

ρ(ξ) (4.4.24)

The function u (r) has been defined for r ≥ r0, in particular, for r ≥ ξ, whereas

vρ (r) has been defined for r ≤ ρ, in particular, for r ≤ ξ. Now we merge the two

definitions by redefining/extending the function u(r) for all 0 < r < ξ by setting

u(r) = θvρ(r).

It follows from (4.4.24) that u ∈ C1 (M), in particular, u ∈ W 1,m
loc (M). By

(4.4.17), u satisfies the following inequality in Bξ:

div(|∇u|m−2∇u) +
λρ

θσ−m+1u
σ ≤ 0. (4.4.25)

By (4.1.1), u satisfies the following inequality in M \Br0 :

div(|∇u|m−2∇u) + uσ ≤ 0. (4.4.26)

Combining (4.4.25) and (4.4.26), we obtain that u satisfies on M the following

inequality

div(|∇u|m−2∇u) + δuσ ≤ 0, (4.4.27)

where δ = min{λρ/θσ−m+1, 1}. Finally, changing u 7→ cu where c = δ−
1

σ−m+1 we

obtain a positive solution to (4.1.1) on M , which concludes this example.



Chapter 5

Differential Inequalities with

Gradient Terms

This chapter is based on the work [69].

5.1 Background and Statement

In this chapter, we study the uniqueness of nonnegative solutions of the following

differential inequality

div(A(x)|∇u|m−2∇u) + V (x)uσ1 |∇u|σ2 ≤ 0, on M, (5.1.1)

where div and ∇ are the Riemannian divergence and gradient respectively, A, V

are positive measurable functions, m > 1, and σ1, σ2 ≥ 0 are given parameters such

that σ1 + σ2 > m− 1.

We say that A, V satisfy (VA′) condition, if there exist δ1, δ2 ≥ 0, and positive

constants c0, C0 such that for all most x ∈M , the following

c0r(x)−δ1 ≤ V (x)

A(x)
≤ C0r(x)δ2 , (VA′)

holds for all large enough r(x). We can see that the condition (VA′) is a special case

of condition (VA) in Chapter 3. We emphasize here that A(x), V (x) > 0 for almost

all x ∈M .

Let us introduce two paramters

p =
mσ1 + σ2

σ1 + σ2 −m+ 1
, q =

m− 1

σ1 + σ2 −m+ 1
. (5.1.2)
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and a new measure ν by

dν = A
σ1+σ2

σ1+σ2−m+1V
− m−1
σ1+σ2−m+1dµ, (5.1.3)

Here are our main results.

Theorem 5.1.1. Assume that (VA′) holds with some δ1, δ2 ≥ 0. If for some x0 ∈M ,

the following inequality

ν(B(x0, r)) ≤ Crp lnq r, (5.1.4)

holds for all large enough r, then the only nonnegative solution of (5.1.1) is identical

constant.

When A = V = 1, we have the following corollary

Corollary 5.1.2. If for some x0 ∈M , the following inequality

µ(B(x0, r)) ≤ Crp lnq r, (5.1.5)

holds for all large enough r, then the only nonnegative solution of (5.1.1) is identical

constant.

Mitidieri and Pokhozhaev [45] obtained the nonexistence result for problem

(5.1.1) in Rn with n > m > 1, σ1, σ2 ≥ 0, and σ1 + σ2 > m − 1. They proved for

the case A(x) = V (x) = 1 that if

σ1 + σ2
n− 1

n−m
≤ n(m− 1)

n−m
, (5.1.6)

then (5.1.1) has no positive solutions except constants. By Corollary 5.1.2, we see

that if for large enough r (5.1.5) holds, then the only nonnegative solution of (5.1.1)

is constant. Note that in Rn

µ(B(0, r)) = crn,

so that the condition (5.1.5) is equivalent to

n ≤ p =
mσ1 + σ2

σ1 + σ2 −m+ 1
,

which in turn is equivalent to (5.1.6). Therefore, the result of [45] is covered by

Corollary 5.1.2.

For the case V (x) = |x|−γ2 , A(x) = |x|γ1 for |x| ≥ 1, the problem (5.1.1) in Rn
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with n > m > 1 was studied by Filippucci [16], who proved that if{
0 ≤ σ2 < m− 1, m− n < γ1 < m− γ2 − σ2,

m− 1− σ2 < σ1 ≤ (n−γ2)(m−1)
n−m+γ1

− σ2
n−1+γ1
n−m+γ1

.
(5.1.7)

then (5.1.1) has no positive solutions except constants. Let us compare the result

of [16] with our Theorem 5.1.1. Using the measure ν in (5.1.3), we obtain in Rn for

large enough r

ν(B(0, r)) =

∫
B(0,r)

A
σ1+σ2

σ1+σ2−m+1V
− m−1
σ1+σ2−m+1dµ

= C

∫ r

1

r
γ1(σ1+σ2)
σ1+σ2−m+1 r

(m−1)γ2
σ1+σ2−m+1 rn−1dr + C1

≈ r
γ1(σ1+σ2)+(m−1)γ2

σ1+σ2−m+1
+n
,

where µ is the Lebesgue measure. The condition (5.1.4) is then equivalent to

γ1(σ1 + σ2) + (m− 1)γ2

σ1 + σ2 −m+ 1
+ n ≤ p =

mσ1 + σ2

σ1 + σ2 −m+ 1
, (5.1.8)

which in turn is equivalent to (5.1.7). Under (5.1.7), we obtain that (5.1.1) has no

positive solutions except constants. Thus, our Theorem 5.1.1 covers the aforemen-

tioned results in Rn.

Now we will explain in what sense the solutions of (5.1.1) are defined. Define

the measure ω by

dω = Adµ,

and set

W 1,m
loc (M,ω) = {f : M → R|f ∈ Lmloc (M,ω) ,∇f ∈ Lmloc (M,ω)} , (5.1.9)

where∇f is understood in distributional sense. Denote byW 1,m
c (M,ω) the subspace

of W 1,m
loc (M,ω) of functions with compact support.

Definition 5.1.3. A function u on M is called a weak solution of the inequality

(5.1.1), if u ≥ 0, u ∈ W 1,m
loc (M,ω), V |∇u|σ2 ∈ L1

loc(M,µ), and for any nonnegative

function ψ ∈ W 1,m
c (M,ω), the following inequality holds:

−
∫
M

A(x)|∇u|m−2(∇u,∇ψ)dµ+

∫
M

V (x)uσ1|∇u|σ2ψdµ ≤ 0, (5.1.10)

where (·, ·) is the inner product in TxM given by the Riemannian metric.
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Remark 5.1.4. Using the defintion of ψ, we have∣∣∣∣∫
M

A(x)|∇u|m−2(∇u,∇ψ)dµ

∣∣∣∣
≤

∫
supp(ψ)

A|∇u|m−1|∇ψ|dµ

≤
(∫

supp(ψ)

A|∇u|mdµ
)m−1

m
(∫

supp(ψ)

A|∇ψ|mdµ
) 1

m

,

Since u ∈ W 1,m
loc (M,ω) and ψ ∈ W 1,m

c (M,ω). Therefore, the first term in (5.1.10) is

finite, which implies the finiteness of the second term, that is∫
M

V uσ1 |∇u|σ2ψdµ <∞.

5.2 Proof of Theorem 5.1.1

Let u be some nonnegative weak solution to (5.1.1). x0 is the reference point as

before in Theorem 5.1.1. Denote BR := B(x0, R), and fix a Lipschitz function ϕ on

M with compact support, such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of

BR. In particular, we have ϕ ∈ W 1,m
c (M,ω). Take the following test function for

(5.1.10):

ψρ(x) = ϕ(x)s(u+ ρ)−t, (5.2.1)

where the value of ρ is some positive constant near zero, s is some fixed bigger

enough constant, and t is variable and can be chosen arbitrarily close to 0. Hence

ψρ has compact support and is locally bounded. Since

∇ψρ = −t(u+ ρ)−t−1ϕs∇u+ s(u+ ρ)−tϕs−1∇ϕ,

we see that, ∇ψρ ∈ Lm(M,ω). It follows that, ψρ ∈ W 1,m
c (M,ω). We obtain from

(5.1.10) that

t

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ

≤ s

∫
M

ϕs−1A(x)(u+ ρ)−t|∇u|m−2(∇u,∇ϕ)dµ. (5.2.2)

thus

t

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ



5.2. Proof of Theorem 5.1.1 69

≤ s

∫
M

ϕs−1A(x)(u+ ρ)−t|∇u|m−1|∇ϕ|dµ. (5.2.3)

In what follows, we use the following Young’s inequality∫
M

fgdµ ≤ ε

∫
M

|f |p0dµ+ Cε

∫
M

|g|p′0dµ, (5.2.4)

where ε > 0 is arbitrary, and when t is small enough, (p0, p
′
0) is a Hölder conjugate

couple such that

p0 =
mσ1 − t(m− σ2) + σ2

mσ1 − σ1 + t− t(m− σ2)
> 1, p′0 =

mσ1 − t(m− σ2) + σ2

σ1 + σ2 − t
> 1.

Applying (5.2.4) to the right-hand side integral of (5.2.3), we obtain

s

∫
M

ϕs−1A(x)(u+ ρ)−t|∇u|m−1|∇ϕ|dµ

=

∫
M

(
t

1
p0ϕ

s
p0A(x)

1
p0 (u+ ρ)

− t+1
p0 |∇u|

m
p0

)
×
(
s

t
1
p0

ϕ
s−1− s

p0A(x)
1
p′0 (u+ ρ)

−t+ t+1
p0 |∇u|m−1−m

p0 |∇ϕ|
)
dµ

≤ εt

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ

+Cε
sp
′
0

t
p′0
p0

∫
M

ϕ
p′0(s−1)− sp

′
0

p0 A(x)(u+ ρ)
−p′0t+

p′0(t+1)

p0 |∇u|(m−1)p′0−
mp′0
p0 |∇ϕ|p′0dµ

≤ εt

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ

+Cε
sp
′
0

tp
′
0−1

∫
M

ϕs−p
′
0A(x)(u+ ρ)p

′
0−t−1|∇u|m−p′0|∇ϕ|p′0dµ.

Letting ε = 1
2
, substituting the above into (5.2.3), and cancelling out the half of the

first term in (5.2.3), we obtain

t

2

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ

≤ C
sp
′
0

tp
′
0−1

∫
M

ϕs−p
′
0A(x)(u+ ρ)p

′
0−t−1|∇u|m−p′0|∇ϕ|p′0dµ. (5.2.5)

Using (5.2.4) once more to the right-hand side of (5.2.5) with another Hölder con-

jugate couple (p1, p
′
1) satisfying

p1 =
σ2

m− p′0
=
σ1 + σ2 − t
m− t− 1

, p′1 =
σ2

σ2 −m+ p′0
=

σ1 + σ2 − t
σ1 + σ2 −m+ 1

,
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We obtain

Csp
′
0

tp
′
0−1

∫
M

ϕs−p
′
0A(x)(u+ ρ)p

′
0−t−1|∇u|m−p′0|∇ϕ|p′0dµ

=

∫
M

[ϕ
s
p1 V (x)

1
p1 (u+ ρ)p

′
0−t−1|∇u|m−p′0 ]

×[
Csp

′
0

tp
′
0−1

ϕ
s
p′1
−p′0V (x)

− 1
p1A(x)|∇ϕ|p′0 ]dµ

≤ 1

2

∫
M

ϕsV (x)(u+ ρ)(p′0−t−1)p1|∇u|(m−p′0)p1dµ

+C1

(
sp
′
0

tp
′
0−1

)p′1 ∫
M

ϕs−p
′
0p
′
1V (x)

− p
′
1
p1A(x)p

′
1|∇ϕ|p′0p′1dµ

=
1

2

∫
M

ϕsV (x)(u+ ρ)σ1−t|∇u|σ2dµ

+C1

(
sp
′
0

tp
′
0−1

)p′1 ∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1|∇ϕ|p′0p′1dµ. (5.2.6)

Combining with (5.2.5), we obtain

t

2

∫
M

ϕsA(x)(u+ ρ)−t−1|∇u|mdµ+

∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ

≤ 1

2

∫
M

ϕsV (x)(u+ ρ)σ1−t|∇u|σ2dµ

+C1

(
sp
′
0

tp
′
0−1

)p′1 ∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1 |∇ϕ|p′0p′1dµ. (5.2.7)

We know that∫
M

ϕsV (x)(u+ ρ)σ1−t|∇u|σ2dµ ≤ C

∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ

+Cρσ1−t
∫
M

ϕsV (x)|∇u|σ2dµ,

From (5.2.2) by definition of the solution, we know∫
M

ϕsV (x)uσ1(u+ ρ)−t|∇u|σ2dµ,

is bounded, and noting that by definition of the solution V |∇u|σ2 ∈ L1
loc(M,µ), we

obtain ∫
M

ϕsV (x)(u+ ρ)σ1−t|∇u|σ2dµ
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is bounded.

Taking ρ → 0 in (5.2.7), applying Monotone Convergence theorem to left-hand

side integrals, and Dominated Convergence theorem to the right-hand side integrals,

we obtain

t

2

∫
M

ϕsA(x)u−t−1|∇u|mdµ+

∫
M

ϕsV (x)uσ1−t|∇u|σ2dµ

≤ 1

2

∫
M

ϕsV (x)uσ1−t|∇u|σ2dµ

+C1

(
sp
′
0

tp
′
0−1

)p′1 ∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1|∇ϕ|p′0p′1dµ,

which is

t

2

∫
M

ϕsA(x)u−t−1|∇u|mdµ+
1

2

∫
M

ϕsV (x)uσ1−t|∇u|σ2dµ

≤ C1t
−(p′0−1)p′1

∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1|∇ϕ|p′0p′1dµ, (5.2.8)

where the term that contains s is absorbed into constant C1.

Applying (5.1.10) once more with another test function ψ = ϕs, we obtain∫
M

ϕsV (x)uσ1|∇u|σ2dµ

≤ s

∫
M

ϕs−1A(x)|∇u|m−2(∇u,∇ϕ)dµ

≤ s

∫
M

ϕs−1A(x)|∇u|m−1|∇ϕ|dµ

= s

∫
M

[ϕ
s
p2A(x)

1
p2 u
− t+1

p2 |∇u|
m
p2 ] · [ϕ(s−1)− s

p2A(x)
1
p′2 u

t+1
p2 |∇u|m−1−m

p2 |∇ϕ|]dµ

≤ s

(∫
M

ϕsA(x)u−t−1|∇u|mdµ
) 1

p2

×
(∫

M

ϕ
(s−1)p′2−

sp′2
p2 A(x)u

(t+1)p′2
p2 |∇u|(m−1)p′2−

mp′2
p2 |∇ϕ|p′2dµ

) 1
p′2

= s

(∫
M

ϕsA(x)u−t−1|∇u|mdµ
) 1

p2

×
(∫

M

ϕs−p
′
2A(x)u(t+1)(p′2−1)|∇u|m−p′2|∇ϕ|p′2dµ

) 1
p′2
. (5.2.9)
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where we have used the following conjugate pair

p2 =
mσ1 + σ2(t+ 1)

mσ1 − σ1

, p′2 =
mσ1 + σ2(t+ 1)

σ1 + σ2(t+ 1)
. (5.2.10)

From (5.2.8), we have∫
M

ϕsA(x)u−t−1|∇u|mdµ ≤ Ct−1−(p′0−1)p′1

∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1|∇ϕ|p′0p′1dµ.

Substituting this into (5.2.9) yields∫
M

ϕsV (x)uσ1|∇u|σ2dµ

≤ C

[
t−1−(p′0−1)p′1

∫
M

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1|∇ϕ|p′0p′1dµ

] 1
p2

×
[∫

M

ϕs−p
′
2A(x)u(t+1)(p′2−1)|∇u|m−p′2|∇ϕ|p′2dµ

] 1
p′2
. (5.2.11)

Noting that ∇ϕ = 0 on BR, and applying Hölder inequality to the last term of

(5.2.11) with the following couple (p3, p
′
3)

p3 =
σ1 + σ2(t+ 1)

(t+ 1)(m− 1)
, p′3 =

σ1 + σ2(t+ 1)

σ1 + σ2(t+ 1)− (t+ 1)(m− 1)
,

It is easy to check that

(t+ 1)(p′2 − 1) =
(t+ 1)(m− 1)

σ1 + σ2(t+ 1)
σ1 =

σ1

p3

,

m− p′2 =
(t+ 1)(m− 1)

σ1 + σ2(t+ 1)
σ2 =

σ2

p3

.

We obtain∫
M

ϕs−p
′
2A(x)u(t+1)(p′2−1)|∇u|m−p′2|∇ϕ|p′2dµ

=

∫
M\BR

(
ϕ

s
p3 V (x)

1
p3 u(t+1)(p′2−1)|∇u|m−p′2

)(
ϕ

s
p′3
−p′2V (x)

− 1
p3A(x)|∇ϕ|p′2

)
dµ

=

∫
M\BR

(
ϕ

s
p3 V (x)

1
p3 u

σ1
p3 |∇u|

σ2
p3

)(
ϕ

s
p′3
−p′2V (x)

− 1
p3A(x)|∇ϕ|p′2

)
dµ

≤
(∫

M\BR
ϕsV (x)uσ1|∇u|σ2dµ

) 1
p3



5.2. Proof of Theorem 5.1.1 73

×
(∫

M\BR
ϕ
sp′3
p3
−p′2p′3V (x)1−p′3A(x)p

′
3 |∇ϕ|p′2p′3dµ

) 1
p′3
. (5.2.12)

Substituting (5.2.12) into (5.2.11), we obtain∫
M

ϕsV (x)uσ1|∇u|σ2dµ

≤ C

[
t−1−(p′0−1)p′1

∫
M\BR

ϕs−p
′
0p
′
1V (x)1−p′1A(x)p

′
1 |∇ϕ|p′0p′1dµ

] 1
p2

×
(∫

M\BR
ϕ
sp′3
p3
−p′2p′3V (x)1−p′3A(x)p

′
3|∇ϕ|p′2p′3dµ

) 1
p′2p
′
3

×
(∫

M\BR
ϕsV (x)uσ1 |∇u|σ2dµ

) 1
p′2p3

. (5.2.13)

Choosing s large enough, and recalling that 0 ≤ ϕ ≤ 1, from (5.2.13), we obtain∫
M

ϕsV (x)uσ1|∇u|σ2dµ

≤ C

[
t−1−(p′0−1)p′1

∫
M\BR

V (x)1−p′1A(x)p
′
1|∇ϕ|p′0p′1dµ

] 1
p2

×
(∫

M\BR
V (x)1−p′3A(x)p

′
3|∇ϕ|p′2p′3dµ

) 1
p′2p
′
3

×
(∫

M\BR
ϕsV (x)uσ1|∇u|σ2dµ

) 1
p′2p3

.

Using the new measure dν = A
σ1+σ2

σ1+σ2−m+1V
− m−1
σ1+σ2−m+1dµ, we have∫

M

ϕsV (x)uσ1|∇u|σ2dµ

≤ C

[
t−1−(p′0−1)p′1

∫
M\BR

(
V

A

) t
σ1+σ2−m+1

|∇ϕ|p′0p′1dν

] 1
p2

×

∫
M\BR

(
V

A

)− tσ1(m−1)
(σ1+σ2−m+1)[σ1+σ2(t+1)−(t+1)(m−1)]

|∇ϕ|p′2p′3dν

 1
p′2p
′
3

×
(∫

M\BR
V (x)ϕsuσ1|∇u|σ2dµ

) 1
p′2p3

. (5.2.14)

We know
∫
M
ϕsV (x)uσ1|∇u|σ2dµ is finite in Introduction, it follows from (5.2.14)
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that (∫
M

ϕsV (x)uσ1 |∇u|σ2dµ

)1− 1
p′2p3

≤ C

[
t−1−(p′0−1)p′1

∫
M\BR

(
V

A

) t
σ1+σ2−m+1

|∇ϕ|p′0p′1dν

] 1
p2

×

∫
M\BR

(
V

A

)− tσ1(m−1)
(σ1+σ2−m+1)[σ1+σ2(t+1)−(t+1)(m−1)]

|∇ϕ|p′2p′3dν

 1
p′2p
′
3

.(5.2.15)

We notice, that all integral terms in the right-hand side of (5.2.15) have the form∫
M

|∇ϕ|a
(
V

A

)b
dν,

with the following two pairs of (a, b) such that{
a1 = p′0p

′
1 = mσ1−t(m−σ2)+σ2

σ1+σ2−m+1
,

b1 = t
σ1+σ2−m+1

.
(5.2.16)

and {
a2 = p′2p

′
3 = mσ1+σ2(t+1)

σ1+σ2(t+1)−(t+1)(m−1)
,

b2 = − tσ1(m−1)
(σ1+σ2−m+1)[σ1+σ2(t+1)−(t+1)(m−1)]

.
(5.2.17)

Besides, a could be written in the form

a = p+ lt, (5.2.18)

with the following two respective values of l{
l1 = σ2−m

σ1+σ2−m+1
,

l2 = σ1(m−σ2)(m−1)
[σ1+σ2(t+1)−(t+1)(m−1)](σ1+σ2−m+1)

.
(5.2.19)

where p = mσ1+σ2

σ1+σ2−m+1
is defined as before in (5.1.2). Clearly, it is obvious that all

the values of a and l are uniformly bounded, when t is small enough near zero.

Consider the integral

Jn(a, b) =

∫
M

|∇ϕn|a
(
V

A

)b
dν, (5.2.20)

where ϕn is the same as defined in (3.3.8), and (a, b) take values from (5.2.16) and

(5.2.17).
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Substituting (3.3.8) into (5.2.20), applying (3.3.6), (3.3.9) and (VA′), when b > 0,

we obtain

Jn(a, b) =

∫
M

|∇ϕn|a
(
V

A

)b
dν

= C

∫
M

∑2n
k=n+1 |∇ϕ̃k|a

na

(
V

A

)b
dν

≤
2n∑

k=n+1

∫
B

2k
\B

2k−1

|∇ϕ̃k|a

na
rbδ2dν

≤ C

2n∑
k=n+1

(
21−k

n

)a
(2k)bδ2ν(B2k)

≤ C
2n∑

k=n+1

(
2−k

n

)a
(2k)bδ2ν(B2k), (5.2.21)

where we have used that a is uniformly bounded. Noting that a = p + bt, n + 1 ≤
k ≤ 2n, and substituting t = 1

n
, if b > 0, we obtain

(
2−k

n

)a
(2k)bδ2 =

(
2−k

n

)p(
2−k

n

)lt
(2k)bδ2

≤
(

2−k

n

)p
sup

n≤k≤2n,t= 1
n

(
2−k

n

) l
n

(2k)bδ2

≤ C

(
2−k

n

)p
.

Thus, using (5.1.4), recalling that by (5.1.2) p = mσ1+σ2

σ1+σ2−m+1
, q = m−1

σ1+σ2−m+1
, we

obtain

Jn(a, b) ≤ C

2n∑
k=n+1

(
2−k

n

)p
ν(B2k)

≤ C
2n∑

k=n+1

(
2−k

n

)p
(2k)p lnq(2k)

≤ C
1

np

2n∑
k=n+1

kq

≤ Cnq+1−p

≤ Cn
− (m−1)σ1
σ1+σ2−m+1 . (5.2.22)
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Similarly, if b < 0, we also have

Jn(a, b) ≤ Cn
− (m−1)σ1
σ1+σ2−m+1 . (5.2.23)

Setting ϕ = ϕn in (5.2.15), we obtain(∫
M

ϕsnV u
σ1|∇u|σ2dµ

)1− 1
p′2p3

≤ ct
− 1
p2
− (p′0−1)p′1

p2 (Jn(a1, b1))
1
p2 (Jn(a2, b2))

1
p′2p
′
3 . (5.2.24)

where (ai, bi)i=1,2 are defined in (5.2.16) and (5.2.17).

Substituting (5.2.22), (5.2.23) into (5.2.24), using t = 1
n

as before, we obtain

(∫
M

ϕsnV u
σ1 |∇u|σ2dµ

)1− 1
p′2p3

≤ Cn
1
p2

+
(p′0−1)p′1

p2

(
n
− (m−1)σ1
σ1+σ2−m+1

) 1
p2

×
(
n
− (m−1)σ1
σ1+σ2−m+1

) 1
p′2p
′
3
. (5.2.25)

Substituting the values of p′0, p2, p′2 and p′3, we obtain that the exponents in the

power of n in the right-hand side of (5.2.25) is equal to

1

p2

+
(p′0 − 1)p′1

p2

− (m− 1)σ1

p2(σ1 + σ2 −m+ 1)
− (m− 1)σ1

p′2p
′
3(σ1 + σ2 −m+ 1)

= 0.

Therefore, we obtain(∫
M

ϕnV u
σ1 |∇u|σ2dµ

)1− 1
p′2p3 ≤ C <∞. (5.2.26)

Recalling that ϕn = 1 on B2n , and taking the lim sup of both sides in (5.2.26) as

n→∞, we obtain ∫
M

V uσ1|∇u|σ2dµ ≤ C <∞. (5.2.27)

The same argument can be used in (5.2.14), which implies

∫
M

ϕsnV u
σ1|∇u|σ2dµ ≤ C

(∫
M\B2n

ϕsnV u
σ1|∇u|σ2dµ

) 1
p′2p3

, (5.2.28)
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Using that 0 ≤ ϕn ≤ 1 and ϕn|B2n
= 1 once more, we obtain

∫
B2n

V uσ1 |∇u|σ2dµ ≤ C

(∫
M\B2n

V uσ1|∇u|σ2dµ

) 1
p′2p3

, (5.2.29)

Letting n→∞, and using (5.2.27), we obtain∫
M

V uσ1 |∇u|σ2dµ = 0,

since V is a positive function, which implies that u ≡ const.

5.3 Applications

Theorem 5.1.1 could be applied to get the uniqueness of nonnegativem-superharmonic

function, namely, the uniqueness of the following problem

∆mv ≤ 0, on M, (5.3.1)

where M is the same as before, i.e. a geodesically complete connected Riemannian

manifold.

Let u = ln(v+1). Since v is nonnegative, hence, u is also nonnegative. Moreover,

an easy calculation shows that u satisfies the following inequality

e(m−1)u (∆mu+ (m− 1)|∇u|m) ≤ 0, (5.3.2)

which simplifies to

∆mu+ (m− 1)|∇u|m ≤ 0, (5.3.3)

By changing u → cu, we can get rid of the factor m − 1 in (5.3.3). By Theorem

5.1.1, we obtain that if

µ(B(x0, r)) ≤ Crm lnm−1 r, (5.3.4)

then the only nonnegative solution of (5.3.3) is constant, and hence the only non-

negative solution of (5.3.1) is constant.

Let us recall the celebrated result of Holopainen [33]: if

∫ ∞( r

µ(B(x0, r))

) 1
m−1

dr =∞, (5.3.5)
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then any positive m-superharmonic function is constant.

Obviously, (5.3.4) implies (5.3.5). However, the function r 7→ rm lnm−1 r is right

on the borderline of divergence of the integral in (5.3.5), so that the condition cannot

be significantly improved.

Another application of Theorem 5.1.1 is to investigate the following inequality

∆mu+ |∇u|m−2∇B · ∇u+ uσ1|∇u|σ2 ≤ 0, on M, (5.3.6)

where B is a given measurable function on M , and ∇B does not have any singular

point, σ1, σ2 are defined as in Section 5.1. One can rewrite (5.3.6) as the following

e−Bdiv(eB|∇u|m−2∇u) + uσ1 |∇u|σ2 ≤ 0,

which is equivalent to

div(eB|∇u|m−2∇u) + eBuσ1|∇u|σ2 ≤ 0.

Thus, applying Theorem 5.1.1, we obtain the following result.

Corollary 5.3.1. If for some x0 ∈M , the following inequality

ν(B(x0, r)) ≤ Crp lnq r, (5.3.7)

holds for all large enough r, where ν is defined by dν = eBdµ, p and q are defined

by (5.1.2), then the only nonnegative solution of (5.3.6) is constant.

5.4 Sharpness of p, q

In this section, we show the sharpness of parameters p and q in Theorem 5.1.1.

The sharpness of p is already known in Rn with n > m > 1. The following

example was given by Mitidieri and Pokhozhaev in [48]: If
σ1 >

(n−γ2)(m−1)
n−m+γ1

− σ2
n−1+γ1
n−m+γ1

,

m− n < γ1 < m− γ2 − σ2,

γ1(σ1 + σ2) + γ2(m− 1) + n(σ1 + σ2 −m+ 1) > 0,

0 ≤ σ2 < m− 1.

(5.4.1)

then the function

u(x) := ε[1 + |x|
m−σ2−γ1−γ2
m−1−σ2 ]

− m−1−σ2
σ1+σ2−m+1

is a solution to (5.1.1) with A(x) = |x|γ1 , V (x) = |x|−γ2 , where ε is a suitable small
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constant. Actually, using the measure ν of (5.1.4)

ν(B(o, r)) =

∫
B(0,r)

A
σ1+σ2

σ1+σ2−m+1V
− m−1
σ1+σ2−m+1dµ

=

∫
B(0,r)

|x|
γ1(σ1+σ2)
σ1+σ2−m+1 |x|

γ2(m−1)
σ1+σ2−m+1dµ

≈ rp, (5.4.2)

where p = γ1(σ1+σ2)+γ2(m−1)
σ1+σ2−m+1

+ n. From the assumption (5.4.1), we know it is equiv-

alent to

p >
mσ1 + σ2

σ1 + σ2 −m+ 1
, (5.4.3)

One could let p be close to mσ1+σ2

σ1+σ2−m+1
from above, by carefully choosing γ1, γ2.

In what follows we will show the sharpness of q in case of A = 1, V = m − 1,

σ1 = 0 and σ2 = m. Fix here

p =
mσ1 + σ2

σ1 + σ2 −m+ 1
= m,

and for arbitrary ε > 0, choose

q =
m− 1

σ1 + σ2 −m+ 1
+ ε = m− 1 + ε.

Recall that M is called m-parabolic, if any positive m-superharmonic function v on

M is constant, namely ∆mv ≤ 0. Holopainen proved in [33] that M is m-parabolic

if and only if (5.3.5) holds. Thus, if

µ(B(x0, r)) ≤ Crm lnm−1+ε r, for large enough r, (5.4.4)

we know (5.3.5) does not hold any more. Thus, there exists a positive function v

such that ∆mv ≤ 0. Letting u = ln(v + 1), we know u is a positive solution of

(5.3.3). Hence, the exponent m− 1 is sharp here.



Chapter 6

Opposite Quasilinear Inequalities

6.1 Background and Statement

In this chapter, we obtain the analogous uniqueness results for inequalities in which

the operator ∆m is replaced by −∆m, that is

−∆mu+ V (x)uσ ≤ 0, on M, (6.1.1)

where σ > m − 1, m > 1, and V (x) is a nonnegative regular function such that

V ∈ L1
loc(M), and for large enough r(x)

V (x) =
1

r(x)α
, (6.1.2)

where α is any real number such that α ≤ m.

The importance of such inequalities has been widely recognized recently, see

[15, 51, 56, 63, 73] and the references therein. Existence and nonexistence results,

and asymptotic theory about the positive solution have also been obtained.

Birindelli proved in [5] that in Rn, if α < m and σ > m − 1, then the only

nonnegative weak solution to (6.1.1) is identical zero.

Naito and Usami obtained in [50] similar results for the positive entire solutions

to (6.1.1) in Rn. Here they call u an entire solution of (6.1.1) if u is a positive

function u ∈ C1(Rn) such that |∇u|m−2∇u ∈ C1(Rn) and satisfies (6.1.1) at each

x ∈ Rn. They proved that if

lim inf
|x|→∞

|x|mV (x) > 0, (6.1.3)

then (6.1.1) has no positive entire solutions. They used the ODE method, which

strongly depends on the rotation symmetry of Rn.
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The aforementioned papers dealt with the nonexistence of the solution. Let us

cite one of the papers concerning the existence results: let M = Rn, and let V be

radially symmetric. If for some ε > 0, either of the following conditions holds
lim sup|x|→∞ |x|m+εV (x) <∞, when m < n;

lim sup|x|→∞ |x|m+ε lnσ+1+ε |x|V (x) <∞, when m = n;

lim sup|x|→∞ |x|m+
σ(m−n)
m−1

+εV (x) <∞, when m > n.

(6.1.4)

then (6.1.1) has a positive radial entire solution (cf. [17]).

In this chapter we apply for investigation of (6.1.1) a modification of the method

that we used in the previous chapters.

First, we should explain in what sense we define the solution to (6.1.1). Denote

by

W 1,m
loc (M) := {f |f ∈ Lmloc (M) ,∇f ∈ Lmloc (M)} , (6.1.5)

and denote by W 1,m
c (M) the subspace of W 1,m

loc (M) of functions with compact sup-

port.

Solutions of (6.1.1) are understood in the following weak sense

Definition 6.1.1. A function u on M is called a weak solution of the inequality

(6.1.1) if u is a nonnegative function from W 1,m
loc (M)∩L∞loc(M) and for any nonneg-

ative function ψ ∈ W 1,m
c (M), the following inequality holds:∫
M

|∇u|m−2(∇u,∇ψ)dµ+

∫
M

V uσψdµ ≤ 0, (6.1.6)

where (·, ·) is the inner product in TxM given by the Riemannian metric.

Remark 6.1.2. Using the defintion of ψ, we have

−
∫
M

|∇u|m−2(∇u,∇ψ)dµ ≤
∫
supp(ψ)

|∇u|m−1|∇ψ|dµ

≤
(∫

supp(ψ)

|∇u|mdµ
)m−1

m
(∫

supp(ψ)

|∇ψ|mdµ
) 1

m

,

thus the finiteness of the first term on the left-hand side of (6.1.6) will lead to the

finiteness of the second term, that is
∫
M
uσV ψdµ <∞.

Introduce two paramters denoted by

p =
mσ

σ −m+ 1
, q =

m− 1

σ −m+ 1
, (6.1.7)
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and another measure ν by

dν = V −
m−1

σ−m+1dµ. (6.1.8)

First, we need the following lemma.

Lemma 6.1.3. If

ν(B(x0, r)) ≤ Cr
mσ

σ−m+1 ln
m−1

σ−m+1 r, (6.1.9)

holds for all large enough r, then the only nonnegative solution of (6.1.1) is identical

zero.

Here are our main results.

Theorem 6.1.4. (i) Let α < m. If for some N > 1, the following inequality

µ(B(x0, r)) ≤ CrN (6.1.10)

holds for all large enough r, then the only nonnegative solution of (6.1.1) is

identical zero.

(ii) Let α = m. If for some N > 1, the following inequality

µ(B(x0, r)) ≤ Crm lnN r, (6.1.11)

holds for all large enough r, then the only nonnegative solution of (6.1.1) is

identical zero.

Remark 6.1.5. Restriction of the volume growth (6.1.11) seems to be technical.

We conjecture in the case α = m, the condition (6.1.10) implies that the only

nonnegative solution of (6.1.1) is identical zero.

Remark 6.1.6. The uniqueness results do not hold in case of 0 < σ ≤ 1, m = 2.

Consider

−∆u+ uσ ≤ 0, in Rn, (6.1.12)

where 0 < σ ≤ 1. One easily could check that the function

u(x) = ex
2
1 ,

is a regular solution of (6.1.12).
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6.2 Proof of Theorem 6.1.4

Before we give the proof of Theorem 6.1.4, we first show the proof of Lemma 6.1.3.

Proof of Lemma 6.1.3. : Let u be some nonnegative solution to (6.1.1). x0 is the

reference point. Denote BR := B(x0, R), and fix a Lipschitz function ϕ on M

with compact support, such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of BR.

Particularly, ϕ ∈ W 1,m
c (M). Take the following test function for (6.1.6):

ψρ(x) = ϕ(x)s(u+ ρ)t, (6.2.1)

where ρ is a small positive constant, t, s satisfy that

0 < t < min

{
1,
σ −m+ 1

2

}
, s >

4σ

σ −m+ 1
.

(6.2.2)

Actually, here t will take arbitrarily small positive constants, and s is a fixed large

enough constant.

From Definition 6.1.1, we know ψρ has compact support. Since

∇ψρ = t(u+ ρ)t−1ϕs∇u+ s(u+ ρ)tϕs−1∇ϕ,

noting that for t < 1, (u+ ρ)t−1 is locally bounded, and

(u+ ρ)t ≤ max{u+ ρ, 1},

and recalling u ∈ W 1,m
loc (M), then (u + ρ)t ∈ Lmloc(M). Hence, ψρ ∈ W 1,m

c (M). We

obtain from (6.1.6) that

t

∫
M

ϕs(u+ ρ)t−1|∇u|mdµ+ s

∫
M

ϕs−1(u+ ρ)t|∇u|m−2(∇u,∇ϕ)dµ

+

∫
M

ϕsV uσ(u+ ρ)tdµ ≤ 0. (6.2.3)

Applying Young’s inequality to the second integral of (6.2.3) as follows

−s
∫
M

ϕs−1(u+ ρ)t|∇u|m−2(∇u,∇ϕ)dµ

≤
∫
M

[t
m−1
m ϕ

s(m−1)
m (u+ ρ)

(t−1)(m−1)
m |∇u|m−1]

×[st−
m−1
m ϕ

s−m
m (u+ ρ)

t+m−1
m |∇ϕ|]dµ
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≤ t

2

∫
M\BR

ϕs(u+ ρ)t−1|∇u|mdµ

+C1
sm

tm−1

∫
M\BR

ϕs−m(u+ ρ)t+m−1|∇ϕ|mdµ,

(6.2.4)

Substituting into (6.2.3), we obtain

t

2

∫
M

ϕs(u+ ρ)t−1|∇u|mdµ+

∫
M

ϕsV uσ(u+ ρ)tdµ

≤ C1
sm

tm−1

∫
M\BR

ϕs−m(u+ ρ)t+m−1|∇ϕ|mdµ. (6.2.5)

Using Young’s inequality once more to the right-hand side of (6.2.5) with the con-

jugate pair

(p1, p
′
1) = (

σ + t

t+m− 1
,

σ + t

σ −m+ 1
),

we obtain

sm

tm−1

∫
M\BR

ϕs−m(u+ ρ)t+m−1|∇ϕ|mdµ

=

∫
M\BR

[ϕ
s(t+m−1)

σ+t V
1
p1 (u+ ρ)t+m−1] · [ s

m

tm−1
ϕs−m−

s(t+m−1)
σ+t V

− 1
p1 |∇ϕ|m]dµ

≤ 1

2

∫
M\BR

ϕsV (u+ ρ)σ+tdµ

+C

(
sm

tm−1

) σ+t
σ−m+1

∫
M\BR

ϕs−
m(σ+t)
σ−m+1V −

t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ. (6.2.6)

Combining with (6.2.5), we obtain

t

2

∫
M

ϕs(u+ ρ)t−1|∇u|mdµ+

∫
M

ϕsV uσ(u+ ρ)tdµ

≤ 1

2

∫
M\BR

ϕsV (u+ ρ)σ+tdµ

+C

(
sm

tm−1

) σ+t
σ−m+1

∫
M\BR

ϕs−
m(σ+t)
σ−m+1V −

t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ. (6.2.7)

From the definition of the solution, we know the term∫
M

ϕsV uσ(u+ ρ)tdµ (6.2.8)
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is bounded. Noting the term ∫
M

ϕsV (u+ ρ)σ+tdµ (6.2.9)

could be controlled by the terms of (6.2.8) and
∫
M
ϕsV (u+ ρ)tdµ. Since∫

M

ϕsV (u+ ρ)tdµ ≤
∫
{u+ρ≥1}∩supp(ϕ)

ϕsV (u+ ρ)σdµ

+

∫
{u+ρ≤1}∩supp(ϕ)

ϕsV dµ

≤ C

∫
{u+ρ≥1}∩supp(ϕ)

ϕsV uσdµ

+Cρσ
∫
{u+ρ≥1}∩supp(ϕ)

ϕsV dµ

+

∫
{u+ρ≤1}∩supp(ϕ)

ϕsV dµ, (6.2.10)

we obtain that the term
∫
M
ϕsV (u + ρ)tdµ is bounded. Hence, the term of (6.2.9)

is bounded. Applying Dominated Convergence theorem, we obtain that

lim
ρ→0

∫
M

ϕsV (u+ ρ)σ+tdµ =

∫
M

ϕsV uσ+tdµ. (6.2.11)

Letting ρ→ 0 in (6.2.7), applying Monotone Convergence theorem to the left-hand

side integrals, combining with (6.2.11), we obtain

t

2

∫
M

ϕsut−1|∇u|mdµ+
1

2

∫
M

ϕsV uσ+tdµ

≤ C

(
sm

tm−1

) σ+t
σ−m+1

∫
M

ϕs−
m(σ+t)
σ−m+1V −

t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ. (6.2.12)

Applying (6.1.6) once more with another test function ψ = ϕs, we obtain∫
M

ϕsV uσdµ

≤ −s
∫
M

ϕs−1|∇u|m−2(∇u,∇ϕ)dµ

≤ s

∫
M

ϕs−1|∇u|m−1|∇ϕ|dµ

≤ s

(∫
M

ϕsut−1|∇u|mdµ
)m−1

m
(∫

M

ϕs−mu(1−t)(m−1)|∇ϕ|mdµ
) 1

m

.(6.2.13)
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From (6.2.12), we have∫
M

ϕsut−1|∇u|mdµ

≤ Ct−
(σ+t)(m−1)
σ−m+1

−1

∫
M

ϕs−
m(σ+t)
σ−m+1V −

t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ. (6.2.14)

where the term that contains s is absorbed into the constant C. Noting that ∇ϕ = 0

onBR. Applying Hölder inequality to the last term of (6.2.13) with the Hölder couple

(p2, p
′
2) =

(
σ

(1− t)(m− 1)
,

σ

σ − (1− t)(m− 1)

)
,

we obtain ∫
M

ϕs−mu(1−t)(m−1)|∇ϕ|mdµ

=

∫
M\BR

[ϕ
s
p2 V

1
p2 u(1−t)(m−1)] · [ϕ

s
p′2
−m
V
− 1
p2 |∇ϕ|m]dµ

≤
(∫

M\BR
ϕsV uσdµ

) (1−t)(m−1)
σ

×
(∫

M

ϕs−
mσ

σ−(1−t)(m−1)V −
(1−t)(m−1)

σ−(1−t)(m−1) |∇ϕ|
mσ

σ−(1−t)(m−1)dµ

)1− (1−t)(m−1)
σ

.(6.2.15)

Substituting (6.2.14) and (6.2.15) into (6.2.13), we obtain∫
M

ϕsV uσdµ

≤ C

(
t−

(σ+t)(m−1)
σ−m+1

−1

∫
M

ϕs−
m(σ+t)
σ−m+1V −

t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ

)m−1
m

×
(∫

M

ϕs−
mσ

σ−(1−t)(m−1)V −
(1−t)(m−1)

σ−(1−t)(m−1) |∇ϕ|
mσ

σ−(1−t)(m−1)dµ

) 1
m
− (1−t)(m−1)

mσ

×
(∫

M\BR
ϕsV uσdµ

) (1−t)(m−1)
mσ

. (6.2.16)

where the term that contains s is absorbed into the constant C. Taking s > 4mσ
σ−m+1

,

when t is small enough, we obtain∫
M

ϕsV uσdµ ≤ Ct−
(σ+t)(m−1)2

m(σ−m+1)
−m−1

m

(∫
M

V −
t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ

)m−1
m
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×
(∫

M

V −
(1−t)(m−1)

σ−(1−t)(m−1) |∇ϕ|
mσ

σ−(1−t)(m−1)dµ

) 1
m
− (1−t)(m−1)

mσ

×
(∫

M\BR
ϕsV uσdµ

) (1−t)(m−1)
mσ

. (6.2.17)

Since
∫
M
ϕsuσdµ is finite by the Remark 6.1.2, we obtain

(∫
M

ϕsV uσdµ

)1− (1−t)(m−1)
mσ

≤ Ct−
(σ+t)(m−1)2

m(σ−m+1)
−m−1

m

(∫
M

V −
t+m−1
σ−m+1 |∇ϕ|

m(σ+t)
σ−m+1dµ

)m−1
m

×
(∫

M

V −
(1−t)(m−1)

σ−(1−t)(m−1) |∇ϕ|
mσ

σ−(1−t)(m−1)dµ

) 1
m
− (1−t)(m−1)

mσ

. (6.2.18)

Taking s > 4mσ
σ−m+1

, and using another measure dν = V −
m−1

σ−m+1dµ, the above becomes

(∫
M

ϕsV uσdµ

)1− (1−t)(m−1)
mσ

− (t+m−1)(m−1)
m(σ+t)

≤ Ct−
(σ+t)(m−1)2

m(σ−m+1)
−m−1

m

(∫
M

V −
t

σ−m+1 |∇ϕ|
m(σ+t)
σ−m+1dν

)m−1
m

×
(∫

M

V
(m−1)σt

[σ−(1−t)(m−1)](σ−m+1) |∇ϕ|
mσ

σ−(1−t)(m−1)dν

) 1
m
− (1−t)(m−1)

mσ

. (6.2.19)

and ∫
M

ϕsV uσdµ

≤ Ct−
(σ+t)(m−1)2

m(σ−m+1)
−m−1

m

(∫
M

V −
t

σ−m+1 |∇ϕ|
m(σ+t)
σ−m+1dν

)m−1
m

×
(∫

M

V
(m−1)σt

[σ−(1−t)(m−1)](σ−m+1) |∇ϕ|
mσ

σ−(1−t)(m−1)dν

) 1
m
− (1−t)(m−1)

mσ

×
(∫

M

ϕsV uσdµ

) (1−t)(m−1)
mσ

. (6.2.20)

We see, that the first two integral terms in the right-hand side of (6.2.19) have the

form ∫
M

V b|∇ϕ|adν,
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with various (a, b) such that

(a, b) =

(
m(σ + t)

σ −m+ 1
,− t

σ −m+ 1

)
, (6.2.21)

(a, b) =

(
mσ

σ − (1− t)(m− 1)
,

(m− 1)σt

[σ − (1− t)(m− 1)](σ −m+ 1)

)
.(6.2.22)

Consequently, a could be written in the form

a = p+ lt, (6.2.23)

with various l

l =
m

σ −m+ 1
and l = − mσ(m− 1)

[σ − (1− t)(m− 1)](σ −m+ 1)
. (6.2.24)

where p = mσ
σ−m+1

is defined as before in (6.1.7). Here both a, l and b are uniformly

bounded, when t is small enough.

Consider the integral

Jn(a, b) =

∫
M

V b|∇ϕn|adν, (6.2.25)

where ϕn is the same as defined in (3.3.8).

Substituting (3.3.8) into (6.2.25), applying (3.3.9) and (3.3.6), when b ≤ 0, we

obtain

Jn(a, b) =

∫
M

V b|∇ϕn|adν

≤
∫
M

V b

∑2n
k=n+1 |∇ϕ̃k|a

na
dν

≤ C
2n∑

k=n+1

∫
B

2k
\B

2k−1

(2k)−bα
|∇ϕ̃k|a

na
dν

≤ C

2n∑
k=n+1

(2k)−bα
(

21−k

n

)a
ν(B2k)

≤ C
2n∑

k=n+1

(2k)−bα
(

2−k

n

)a
ν(B2k), (6.2.26)

Noting that n+ 1 ≤ k ≤ 2n, a = p+ lt, and taking t = 1
n

(2k)−bα
(

2−k

n

)a
= (2k)−bα

(
2−k

n

)p(
2−k

n

)lt
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≤ C(2k)−bα
(

2−k

n

)p
. (6.2.27)

thus, we obtain

Jn(a, b) ≤ C
2n∑

k=n+1

(2k)−bα
(

2−k

n

)p
(2k)p lnq(2k)

≤ C
1

np

2n∑
k=n+1

(2k)−bαkq

≤ Cnq+1−p2−2nbα, (6.2.28)

where we have used the volume assumption (6.1.9).

Similarly, when b ≥ 0, we have

Jn(a, b) ≤ Cnq+1−p2−nbα. (6.2.29)

Setting ϕ = ϕn in (6.2.20), we obtain

(∫
M

ϕsnV u
σdµ

)1− (1−t)(m−1)
mσ

≤ ct−
(σ+t)(m−1)2

m(σ−m+1)
−m−1

m

(
Jn(

m(σ + t)

σ −m+ 1
,− t

σ −m+ 1
)

)m−1
m

×
(
Jn(

mσ

σ − (1− t)(m− 1)
,− (m− 1)σt

[σ − (1− t)(m− 1)](σ −m+ 1)
)

) 1
m
− (1−t)(m−1)

mσ

.

(6.2.30)

Substituting (6.2.29),(6.2.28) into (6.2.30), and letting t = 1
n
, we obtain

(∫
M

ϕsnV u
σdµ

)1− (1− 1
n )(m−1)

mσ

≤ Cn
(σ+ 1

n )(m−1)2

m(σ−m+1)
+m−1

m

(
n−

(m−1)σ
σ−m+1 22nα

1
n

σ−m+1

)m−1
m

×

(
n−

(m−1)σ
σ−m+1 2

−nα (m−1)σ 1
n

[σ−(1− 1
n )(m−1)](σ−m+1)

) 1
m
− (1− 1

n )(m−1)

mσ

≤ C2
α(m−1)

m(σ−m+1) . (6.2.31)
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Hence ∫
M

V uσdµ < ∞. (6.2.32)

Repeating the same procedures in (6.2.20), we obtain

∫
M

ϕsnV u
σdµ ≤ C

(∫
M\B2n

ϕsnV u
σdµ

) (1− 1
n )(m−1)

mσ

, (6.2.33)

Using that 0 ≤ ϕn ≤ 1 and ϕn|B2n
= 1 once more, we obtain

∫
B2n

V uσdµ ≤ C

(∫
M\B2n

V uσdµ

) (1− 1
n )(m−1)

mσ

, (6.2.34)

Letting n→∞, and using (6.2.32), we obtain∫
M

V uσdµ = 0,

by the positiveness of V , which implies that u ≡ 0. Thus, we complete the proof of

Lemma 6.1.3. �

Now we give the proof of Theorem 6.1.4:

Proof of Theorem 6.1.4. Notice that if u satisfies (6.1.1), then v = uβ with β ≥ 1

satisfies the following inequality

−∆mv + βm−1V v
σ+(β−1)(m−1)

β ≤ −βm−1(β − 1)(m− 1)u(β−1)(m−1)−1|∇u|m.
(6.2.35)

Consequently, since u is a nonnegative weak solution to (6.1.1), we obtain v ∈
W 1,m
loc (M) ∩ L∞loc(M), satisfying

−∆mv + βm−1V v
σ+(β−1)(m−1)

β ≤ 0, (6.2.36)

By Lemma 6.1.3, we know under the measure

dν1 =
(
βm−1V

)− m−1
σ+(β−1)(m−1)

β
−m+1 dµ

= β−
β(m−1)2

σ−m+1 V −
β(m−1)
σ−m+1dµ, (6.2.37)
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if for large enough r, the following inequality

ν1(B(x0, r)) ≤ Crγ1 lnγ2 r, (6.2.38)

holds, then the only nonnegative solution of (6.2.36) is identical zero. Here

γ1 =
mσ+(β−1)(m−1)

β

σ+(β−1)(m−1)
β

−m+ 1
=
m[σ + (β − 1)(m− 1)]

σ −m+ 1
, (6.2.39)

and

γ2 =
m− 1

σ+(β−1)(m−1)
β

−m+ 1
=

β(m− 1)

σ −m+ 1
, (6.2.40)

We know that for large enough r, (6.2.38) is implied by

µ(B(x0, r)) ≤ Cβ
β(m−1)2

σ−m+1 V
β(m−1)
σ−m+1 r

m[σ+β(m−1)]
σ−m+1 ln

β(m−1)
σ−m+1 r

≤ C1r
−αβ(m−1)

σ−m+1 r
m[σ+(β−1)(m−1)]

σ−m+1 ln
β(m−1)
σ−m+1 r

= C1r
mσ+[(m−α)β−m](m−1)

σ−m+1 ln
β(m−1)
σ−m+1 r, (6.2.41)

In the case α < m choose β so large that

mσ + [(m− α)β −m](m− 1)

σ −m+ 1
≥ N, (6.2.42)

then we know (6.1.10) implies that (6.2.41), and also implies that (6.2.38). By

Lemma 6.1.3, we conclude that v ≡ 0, and hence u ≡ 0.

In the case α = m, choose β to satisfy β(m−1)
σ−m+1

≥ N , then the condition (6.1.11)

implies that (6.2.41), and also implies that (6.2.38). By Lemma 6.1.3, we obtain

that u ≡ 0. �

6.3 Model Manifolds

In this section, we want to investigate the uniqueness of nonnegative solution of the

problem

−∆mu+ V (x)uσ ≤ 0, (6.3.1)
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on the model manifold M . Here σ > m − 1, m > 1, and V (x) is a nonnegative

regular function such that for large enough r(x)

V (x) =
1

r(x)m
. (6.3.2)

Let M be the model manifold with the following Riemannian metric

g = dr2 + φ(r)2dθ2, (6.3.3)

where (r, θ) are the polar coordinates in Rn, and φ(r) is a smooth positive increasing

function on (0,∞). Let Br be the geodesic ball centered at 0. Denote by S (r) the

surface area of Br in M . It follows from (6.3.3) that

S (r) = ωnφ(r)n−1. (6.3.4)

For more information about the Model manifolds, one can refer to [27].

In this section we call that u is the entire solution of (6.3.1), if u ∈ C1(M), and

|∇u|m−2∇u ∈ C1(M) and satisfies (6.3.1) at each x ∈M .

We have the following results analogous to Theorem 6.1.4

Theorem 6.3.1. If S(r) is increasing, and S(2r) ≤ cS(r) holds for all r ≥ 0, then

the only nonnegative entire solution of (6.3.1) is identical zero.

Remark 6.3.2. Theorem 6.3.1 improves in the case of model manifolds the result

of (ii) of Theorem 6.1.4 as the latter required the restriction (6.1.11), whereas the

hypothesis of Theorem 6.3.1 is satisfied for the case

µ(Br) = crN , (6.3.5)

for any N > 1.

Consider the following ODE

(S(r)|v′|m−2v′)′ = S(r)V (r)vσ, (6.3.6)

with v′(0) = 0.

Assume that the maximal interval for v is [0, R), and remains positive in [0, R),

then we get that v′(r) > 0 for 0 < r < R. Integrating (6.3.6), we obtain

|v′|m−2v′(r) =
1

S(r)

∫ r

0

S(t)V (t)vσ(t)dt, 0 < r < R. (6.3.7)
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Moreover, if R <∞, we have

lim
r→R−

v(r) =∞.

If R =∞, we have

v′(r) =

(
1

S(r)

∫ r

0

S(t)V (t)vσ(t)dt

) 1
m−1

, r ≥ 0, (6.3.8)

and

v(r) = v(0) +

∫ r

0

(
1

S(s)

∫ s

0

S(t)V (t)vσ(t)dt

) 1
m−1

ds, r ≥ 0. (6.3.9)

Similar to [50, Lemma 2.1, 2.2], we introduce the following lemmas.

Lemma 6.3.3. Let Ω be a bounded domain in M with smooth boundary ∂Ω. Let u

be a nonnegative entire solution of (6.3.1) and let v ∈ C(Ω̄)∩C1(Ω) be a nonnegative

function satisfying |∇v|m−2∇v ∈ C1(Ω). If ∆mv ≤ V (x)vσ in Ω and u ≤ v on ∂Ω,

then u ≤ v in Ω.

Proof. Let ϕ : R → [0,∞) be a C1 function which vanishes on (−∞, 0], and is

strictly increasing on (0,∞). Since

(∆mu−∆mv)ϕ(u− v) ≥ V (x)(uσ − vσ)ϕ(u− v) in Ω, (6.3.10)

thus

−
∫

Ω

(|∇u|m−2∇u− |∇v|m−2∇v) · (∇u−∇v)ϕ′(u− v)dµ

≥
∫

Ω

V (x)(uσ − vσ)ϕ(u− v)dµ, (6.3.11)

Noting that

(|∇u|m−2∇u− |∇v|m−2∇v) · (∇u−∇v)

= (|∇u|m−1 − |∇v|m−1) · (|∇u| − |∇v|)
+(|∇u|m−2 + |∇v|m−2)(|∇u||∇v| − ∇u · ∇v)

≥ 0, (6.3.12)

we obtain ∫
Ω

V (x)(uσ − vσ)ϕ(u− v)dµ ≤ 0. (6.3.13)

which implies that u ≤ v in Ω. �
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Lemma 6.3.4. If (6.3.1) has a non-trivial nonnegative entire solution u, then there

exists a positive solution v of (6.3.6) defined on the interval [0,∞).

Proof. Suppose that there exists no such function v. Assume to the contrary, that

there exists a non-trivial nonnegative entire solution u, by considering a suitable

parallel transformation, we may assume that u(0) > 0. Let v be a solution of (6.3.6)

with initial values v(0), v′(0) such that 0 < v(0) < u(0) and v′(0) = 0. Since that

v is is not globally defined, we assume the maximal existence interval of v is [0, R)

with R <∞. We know that v′(r) > 0 for r ∈ (0, R), and limr→R− v(r) =∞. Hence,

there exists an R1 ∈ (0, R) so that

v(R1) ≥ max
|x|=R1

u(x).

Let Ω = BR1 . We have ∆mv ≤ V (x)vσ in Ω, and v ≥ u on ∂Ω. By Lemma 6.3.3, we

have u ≤ v in Ω. But this contradicts v(0) < u(0). Thus, we complete the proof. �

Now we give the proof of Theorem 6.3.1

Proof of Theorem 6.3.1. Suppose that (6.3.1) has a non-trivial nonnegative entire

solution. Then, by Lemma 6.3.4 that (6.3.6) has a positive entire solution v(r). If

∫ ∞
0

(
1

S(s)

∫ s

0

S(t)V (t)dt

) 1
m−1

ds =∞, (6.3.14)

we claim that

lim
r→∞

v(r) =∞. (6.3.15)

By (6.3.9) and noting that v is increasing, we obtain

v(r) ≥ v(0) + v(0)
σ

m−1

∫ r

0

(
1

S(s)

∫ s

0

S(t)V (t)dt

) 1
m−1

ds. (6.3.16)

If ∫ ∞
0

(
1

S(s)

∫ s

0

S(t)V (t)dt

) 1
m−1

ds =∞, (6.3.17)

hence

lim
r→∞

v(r) =∞. (6.3.18)
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Integrating (6.3.6) twice over [R, r], we have

v(r) ≥ v(R) +

∫ r

R

(
1

S(s)

∫ s

R

S(t)V (t)vσ(t)dt

) 1
m−1

ds, (6.3.19)

For R ≤ r ≤ 2R, note that

S(R)

S(r)
≥ S(R)

S(2R)
≥ c1, (6.3.20)

we have

v(r) ≥ v(R) +

∫ r

R

(
1

S(s)

∫ s

R

S(t)V (t)vσ(t)dt

) 1
m−1

ds, (6.3.21)

Recalling that S(r) is an increasing function and (6.3.20), for R ≤ r ≤ 2R, we

obtain

v(r) ≥ v(R) + c
1

m−1

1

∫ r

R

(∫ s

R

V (t)vσ(t)dt

) 1
m−1

ds. (6.3.22)

Let w satisfy w(R) = v(R), w(r) ≤ v(r), and

w′(r) = c
1

m−1

1

(∫ r

R

V (t)vσ(t)dt

) 1
m−1

≥ 0, (6.3.23)

consequently

(|w′|m−2w′)′ = c1V (r)vσ(r) ≥ c1V (r)wσ(r), (6.3.24)

Multiplying by w′ ≥ 0 and integrating on [R, r) for R ≤ r ≤ 2R, we obtain

m− 1

m
(w′)m ≥ c1

∫ r

R

V (s)wσ(s)w′(s)ds

≥ c1V (r)

∫ r

R

wσ(s)w′(s)ds =
c1

σ + 1
V (r)[wσ+1(r)− wσ+1(R)],

It follows that

[wσ+1(r)− wσ+1(R)]−
1
mw′(r) ≥ c2V (r)−

1
m , R < r < 2R,

where c2 =
(

mc1
(σ+1)(m−1)

) 1
m
> 0. Making once more integration over [R, 2R], we
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obtain ∫ ∞
v(R)

[sσ+1 − wσ+1(R)]−
1
mds ≥

∫ w(2R)

w(R)

[sσ+1 − wσ+1(R)]−
1
mds

≥ c2

∫ 2R

R

V (r)−
1
mdr ≥ c3 ln 2.

Here we have used that V (r) = c
rm

for large enough r. Making the variable change

of s = w(R)t to the first integral above, we obtain

[v(R)]−
σ+1−m
m

∫ ∞
1

(tσ+1 − 1)−
1
mdt ≥ c3 ln 2. (6.3.25)

On the other hand, from (6.3.18) and σ + 1−m > 0, we obtain

lim
R→∞

[v(R)]−
σ+1−m
m

∫ ∞
1

(tσ+1 − 1)−
1
mdt = 0,

which is a contradiction with (6.3.25).

The only thing left here is to verify (6.3.14). Actually, the condition (6.3.14)

could be derived from the double property S(2r) ≤ cS(r), since

∫ ∞
0

(
1

S(s)

∫ s

0

S(t)V (t)dt

) 1
m−1

ds

≥
∫ ∞

1

(
1

S(s)

∫ s

s
2

S(t)V (t)dt

) 1
m−1

ds

≥
∫ ∞

1

(
S( s

2
)

S(s)

∫ s

s
2

V (t)dt

) 1
m−1

ds

≥ C

∫ ∞
1

(
S( s

2
)V ( s

2
)s

S(s)

) 1
m−1

ds

≥ C

∫ ∞
1

1

s
dµ =∞. (6.3.26)

where we have used that V (r) = Cr−m for large enough r. Hence

∫ ∞
0

(
1

S(s)

∫ s

0

S(t)V (t)dt

) 1
m−1

ds =∞.

Thus, we complete the proof. �
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