
Dissertation

Internal Visuomotor Models for Cognitive
Simulation Processes

Der Technischen Fakultät

der Universität Bielefeld

vorgelegt von

Alexander Kaiser

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften.

Tag der Disputation: 19. Mai 2014

Gedruckt auf alterungsbeständigem Papier gemäß ISO 9706

ii

Abstract

Recent theories in cognitive science step back from the strict separation of per-
ception, cognition, and the generation of behavior. Instead, cognition is viewed
as a distributed process that relies on sensory, motor and affective states. In this
notion, internal simulations—i.e. the mental reenactment of actions and their cor-
responding perceptual consequences—replace the application of logical rules on a
set of abstract representations. These internal simulations are directly related to
the physical body of an agent with its designated senses and motor repertoire. Cor-
respondingly, the environment and the objects that reside therein are not viewed
as a collection of symbols with abstract properties, but described in terms of their
action possibilities, and thus as reciprocally coupled to the agent.

In this thesis we will investigate a hypothetical computational model that enables
an agent to infer information about specific objects based on internal sensorimotor
simulations. This model will eventually enable the agent to reveal the behavioral
meaning of objects. We claim that such a model would be more powerful than clas-
sical approaches that rely on the classification of objects based on visual features
alone. However, the internal sensorimotor simulation needs to be driven by a num-
ber of modules that model certain aspects of the agents senses which is, especially
for the visual sense, demanding in many aspects. The main part of this thesis will
deal with the learning and modeling of sensorimotor patterns which represents an
essential prerequisite for internal simulation.

We present an efficient adaptive model for the prediction of optical flow patterns
that occur during eye movements: This model enables the agent to transform its
current view according to a covert motor command to virtually fixate a given point
within its visual field. The model is further simplified based on a geometric analysis
of the problem. This geometric model also serves as a solution to the problem of
eye control. The resulting controller generates a kinematic motor command that
moves the eye to a specific location within the visual field. We will investigate
a neurally inspired extension of the eye control scheme that results in a higher
accuracy of the controller. We will also address the problem of generating distal
stimuli, i.e. views of the agent’s gripper that are not present in its current view.
The model we describe associates arm postures to pictorial views of the gripper.
Finally, the problem of stereoptic depth perception is addressed. Here, we employ
visual prediction in combination with an eye controller to generate virtually fixated
views of objects in the left and right camera images. These virtually fixated views
can be easily matched in order to establish correspondences. Furthermore, the
motor information of the virtual fixation movement can be used to infer depth
information.

iii

Acknowledgements

First of all, I would like to thank my supervisors Prof. Dr. Ralf Möller and Dr. Wol-
fram Schenck for their endless support, stimulating discussion, and their plentiful
ideas. I am also very grateful to Prof. Dr. Martin V. Butz for accepting to review
this thesis. Furthermore, I would like to thank Prof. Dr. Barbara Hammer and
Dr. Carsten Gnörlich for joining my thesis committee.

I would also like to thank the whole team of the AG Technische Informatik,
Birthe Babies, Angelika Deister, Dario Differt, David Fleer, Lorenz Hillen, Michael
Horst, Annika Hoffmann, Tim Köhler, Martin Krzykawski, Klaus Kulitza, Frank
Röben, Wolfram Schenck, and Constanze Schwan, who contributed to the nice and
fruitful working atmosphere in our group.

I would especially like to thank Alexander Spiertz who supported me during the
collection of the training examples for the study in Chapter 4, and Jean Saydo who
introduced me to the Blender 3D modeling software with which I created some of
the figures used in this thesis.

Last, but not least, I would like to thank my friends and my parents for their
great support and backing during the period of writing this thesis.

v

Contents

1. Introduction 1
1.1. Theoretical Foundations . 2

1.1.1. Grounded Cognition . 2

1.1.2. Related Concepts . 3

1.1.3. Simulation and Emulation Theories 7

1.1.4. Experimental Evidence . 9

1.2. Learning of Sensorimotor Interactions 11

1.3. Towards a Model Architecture for Simulated Object Interaction . . . 14

1.3.1. Overview . 15

1.3.2. Visuomotor Associations . 17

1.3.3. Prediction of Object Interactions 18

1.3.4. Simulation Process . 20

1.4. Outline . 21

2. Visual Prediction by Using RBF Networks 23
2.1. Introduction . 23

2.2. Methods . 24

2.2.1. Setup . 24

2.2.2. Image Distortion Model . 25

2.2.3. Image Warping . 26

2.3. Radial Basis Functions . 26

2.3.1. Generalized Radial Basis Function Networks 28

2.3.2. Positive Definite and Conditionally Definite Kernels 29

2.3.3. Dual Representation . 31

2.4. Visual Forward Model . 32

2.4.1. Data Acquisition . 32

2.4.2. Full Mapping Model . 33

2.4.3. Two-Staged Mapping Model 34

2.4.4. Validator Model . 38

2.5. Results . 40

2.6. Conclusions & Outlook . 44

3. A Geometric Model for Visual Prediction and Saccade Control 49
3.1. Introduction . 49

3.2. Geometric model . 50

vii

Contents

3.3. Visual forward model . 52

3.3.1. Transformation . 53

3.3.2. Interpolation . 55

3.3.3. Image Distortion . 56

3.3.4. Results . 58

3.4. Saccade Control . 61

3.4.1. Geometric Saccade Controller 61

3.4.2. Adaptive Controller . 62

3.4.3. Results . 67

3.5. Conclusions . 70

3.6. Outlook . 71

4. An Associative Model for Mental Imagery 73
4.1. Introduction . 73

4.2. Robotic Agent . 75

4.2.1. Vergence Model . 75

4.2.2. Arm Postures . 76

4.3. Kinesthetic Association . 76

4.3.1. Vergence Control . 77

4.3.2. Collection of Training Data 78

4.3.3. Neural Network and Training 79

4.4. Visual Association . 81

4.4.1. Eigen-Images . 82

4.4.2. Data Collection and Image Processing 85

4.4.3. Appearance Vectors and Network Training 86

4.5. Results . 88

4.6. Conclusions & Outlook . 89

5. Stereo Matching by Internal Simulation 91
5.1. Introduction . 91

5.2. Setup . 93

5.2.1. Robotic Agent . 93

5.2.2. Retinal Images . 94

5.3. Visual forward model . 94

5.3.1. Data Acquisition . 95

5.3.2. Implementation . 96

5.4. Saccade Controller . 97

5.5. Stereo Matching . 98

5.5.1. Predictive Matching . 98

5.5.2. SIFT-Based Matching . 100

5.6. Saliency Detection . 101

5.6.1. Pre-Processing . 103

5.6.2. Segmentation and Clustering 104

viii

Contents

5.7. Results . 104
5.7.1. Experiment 1 . 104
5.7.2. Experiment 2 . 106

5.8. Conclusions & Outlook . 109

6. Overall Conclusions & Outlook 111
6.1. Visual Prediction . 111
6.2. Visuomotor Associations . 112
6.3. Future Research Directions . 113

6.3.1. Alternative Learning Methods 113
6.3.2. Alternative Approaches of “Perception through Anticipation” 114

A. Down-Dating the Inverse of a Matrix 117

B. Reconstruction of Gripper Positions 119

C. Simulated Gripper Appearance 123

Bibliography 127

ix

1. Introduction

Classical theories of cognition made a strict separation between perception and the
generation of behavior. This separation is based on the assumption that the brain
extracts abstract representations from the perceived stimuli which are then used
to trigger appropriate actions based on the intentions of the agent (e.g. picking up
a fruit item prior to eating). The advances in related research fields, especially
propositional logic, computer science and artificial intelligence (AI) during the 60s
and 70s, seemingly supported the validity of this hypothesis (for a critical review,
see Pfeifer and Scheier (2001)).

Based on the initial success of classical AI, the brain became thought of as an
object manipulating system (e.g. Fodor (1975); Newell and Simon (1961)). Higher
cognitive abilities like memory, categorization and language were explained in terms
of symbols and their corresponding manipulation. These symbols have an amodal
character which means that their assignment to modal sensory sensation is arbitrary
and synthetic. For example the sensory event of seeing a chair is facilitated in
this notion by the perceptual system assigning the label (or symbol) ’chair’ to the
corresponding pixels within the perceived image. Any higher level cognitive process
can readily access these symbolic descriptions.

This symbolic paradigm, often referred to as cognitivism, seems to strongly con-
tradict recent findings in neurophysiology (see Barsalou (2008) for a review). Many
studies in recent years have shown that cognition is a distributed process that in-
volves areas of the brain which have been previously attributed to perception and
action planning. Based on these findings, the use of amodal symbols in the brain
seems more and more implausible. In consequence of this, cognitive scientists have
developed new theories that step back from the cognitivist view that perception,
cognition and the generation of behavior (action) are strictly separated (e.g. Barsa-
lou (1999); Grush (2004); Hesslow (2002); Möller (2000); Wilson (2002)). These
new theories can largely be subsumed under the term grounded cognition (Barsa-
lou, 2008). A common theme of these novel theories is that higher cognitive abilities
are grounded in affective, sensory and motor processes. The renunciation from the
idea that the brain assigns amodal symbols to experienced stimuli has lead to a
reformulation of the theory of how the brain stores and processes information.
Symbols are now thought of to be modal—i.e. directly related to the way they are
sensed. This gives rise to the conception of the brain as an perceptual symbol sys-
tem (Barsalou, 1999) in which dynamic sensorimotor simulation take over the role
previously assigned to symbols and rule based reasoning.

Robotics has benefited to a certain degree from the advances in artificial intelli-
gence, but was also always limited by the shortcomings of classical AI. The main

1

1. Introduction

problem is that a robot is typically immersed in an environment that is variable and
rich of stimuli. The manipulation of amodal symbols is native to a digital computer
and poses little problems. But the assignment of symbols to experienced stimuli
(i.e. through a camera) is a rather hard task because these kind of data are noisy
and often reside in high dimensional spaces.

Therefore, we advocate the shift from amodal representations to sensorimotor
simulations and that rely on modal representations as it has been undertaken in
theories of cognition already (Clark and Grush, 1999; Pezzulo et al., 2011). Because
sensorimotor simulations make use of representations that are directly linked to the
sensors and robot kinematics, novel computational methods are needed. Theses
methods have to cope with the high dimensionality of certain modalities (especially
vision) and yet be computationally efficient.

The aim of this thesis is twofold: First of all, we will investigate a computational
model for simulated object interactions, and in the later chapters will we deal with
the various problems in connection with visual data, and propose corresponding so-
lutions. The computational model is based on the principals of grounded cognition
and related theories which will be outlined in the following.

1.1. Theoretical Foundations

1.1.1. Grounded Cognition

Recent theories of cognition reject the presence of amodal symbols and semantic
memory in the brain (Barsalou, 1999, 2008; Grush, 2004; Pezzulo et al., 2013;
Wilson, 2002). In this new stance, cognition is grounded in sensory, affective and
motor processes. A large body of experimental findings supports this new view. The
main prerequisites for grounded cognition is an embodied agent who is situated in a
certain environment. Therefore, the term embodied cognition or simply embodiment
is often used to describe this new theory (Wilson, 2002).

The term embodied cognition however, i.e. the way how an agent’s body with
certain characteristics (i.e. sensors and motor repertoire) influences and shapes its
mind, is too narrow to describe all aspects of cognition. Current bodily states are
important, but in many cases not necessary for cognition (Barsalou, 2008; Wilson,
2002). One prime example is mental imagery.

Mental imagery is the act of mentally simulating previous experienced sensory
and motor states, and the generation of novel states based on memory (Kosslyn
et al., 1997). Thus, imagery is clearly decoupled from the current sensory and
motor situation. Although recent theories and neurophysiological findings support
that mental imagery is grounded in sensorimotor processing, it is performed purely
off-line (Barsalou, 2008; Wilson, 2002).

Another example is abstract reasoning. While the connection between mental
imagery and sensorimotor states is obvious, the claim that reasoning is in a way
grounded is more difficult to grasp. However, there is a large body of evidence
indicating that even abstract forms of thinking rely on sensorimotor processing

2

1.1. Theoretical Foundations

(Barsalou, 2008; Wilson, 2002). These findings suggest that the brain forms and
stores bodily or modal metaphors of abstract concepts rather than utilizing amodal
symbols and logical calculus as classical theories suggest (Lakoff and Johnson, 1980).
Wilson (2002) gives the example of the abstract concept ’communication’ that
might be encoded by the metaphor of physically moving matter from one person
to another.

In summary, the basis of grounded cognition is a modal representation of knowl-
edge in a sensorimotor fashion. Reasoning and mental imagery are forms of mental
simulations that utilize the very same neural correlates that are active during per-
ception and action execution (Grush, 2004; Hesslow, 2002, 2012). The body and
the environment are reciprocally coupled, but the mind can also work in an off-line
manner (Barsalou, 2008; Grush, 2004; Hesslow, 2002, 2012; Wilson, 2002). Propo-
nents of grounded cognition have also applied this theory to aspects of language
and social cognition (Barsalou, 2008)—a thorough review of all aspects is therefore
clearly beyond the scope of this thesis.

1.1.2. Related Concepts

Affordances

Cognitivist theories state that the perceptual system extracts a high-level descrip-
tion from the senses that is presented in a symbolic way to the cognitive processor.
In this view, objects are represented as an aggregation of symbols from which a
cognitive process infers a certain meaning (the final percept) based on a semantic
memory. For example a chair may be characterized by its components: a seat,
legs, a backrest, and armrests. Whenever an agent perceives an object assembled
that way, the cognitive processor might infer that the agent is facing a chair. The
environment in which an agent is typically immersed is however complex, rich of
stimuli, and fuzzy. The extraction of high-level symbolic descriptions from the
sensory inflow is thus a very hard problem.

In theories of grounded cognition, the agent is reciprocally coupled with its envi-
ronment (embodied), and consequently all objects that reside therein. Furthermore,
the shape of the agent’s body and its current intention influence the meaning of
certain objects (to the agent). Therefore, the symbolic approach to characterize
objects can no longer be applied.

The ecological theory of (visual) perception (Gibson, 1979/1986) offers a more
suitable way of characterizing the environment which is more in line with current
grounded (or embodied) theories of cognition. Instead of subdividing the per-
ceived sensation into finer chunks (or symbolic primitives), ecological psychologists
describe the environment based on the action possibilities it offers. The action
possibilities, termed affordances, are directly linked to the bodily capabilities of
the perceiving agent. For a human observer, a chair for instance may offer the
possibility for sitting down to get some rest while a cat may perceive the chair as
a look-out for spotting potential prey.

3

1. Introduction

The ecological theory can be characterized as a form of situated cognition, be-
cause the brain is granted only a minor role in the perception process. The envi-
ronment itself already contains most information. The picking-up of affordances is
only vaguely described as a resonance between the perceptual environment and the
brain (Gibson, 1979/1986).

Grounded theories of cognition regard the picking-up of affordances as an in-
ternal sensorimotor simulation based on previous experience that is triggered by
experienced stimuli (Svensson et al., 2009; Möller and Schenck, 2008). Therefore,
we will only borrow the concept affordance from ecological psychology with the
above definition.

Sensorimotor Contingencies

Another concept which is closely related to affordance is that of sensorimotor con-
tingency (O’Regan and Noë, 2001). The concept is rooted in the theory of active
perception that is at its core linked to ecological psychology. Sensorimotor contin-
gencies are the law-like relations between actions and their sensory consequences.
Gibson (1979/1986) refers to theses laws as ecological physics, because they bear
certain similarities to the physicals laws that govern the environment. In contrast
to the classical concept of physics, sensorimotor contingencies are inseparably con-
nected to the body and the senses.

According to O’Regan and Noë (2001), perception and visual conciousness emerges
through mastery of sensorimotor contingencies. They motivate this by claiming
that, to the brain in its early stages (in a developmental sense), the many sensory
inputs and motor outputs form seemingly idiosyncratic patterns. The ability to
perceive and to attend to things (e.g. objects in the environment) emerges through
a learning process during which the brain starts to recognize certain regularities
within these patterns. Of course, the learning of theses patterns, the sensorimotor
contingencies, requires active exploration (O’Regan and Noë, 2001).

In the context of visual perception, O’Regan and Noë (2001) identify two kinds
of sensorimotor contingencies: those that are related to the oculomotor system and
those that are related to the visual attributes within the environment. The first kind
is relatively clear: it describes the influence of eye movements onto the visual sensa-
tion. This kind of sensorimotor contingency lets us for example perceive a straight
line as straight, although it appears curved on the retina due to the inhomogeneous
distribution of photoreceptors. The second kind encompasses the changes of visual
attributes such as shape when moving around. These contingencies are therefore
influenced by various external factors such as distance and illumination. Further-
more, when moving around, certain portions of the object that were previously
occluded may come into sight. Still, the perceived object stays the same (i.e. the
perceived quality of the object is invariant under these transformations).

We won’t go any deeper into this theory and its implications for perception at
this point as we just wanted to clarify one of its key concept—namely that of
sensorimotor contingency—which is a useful term that will reoccur during later

4

1.1. Theoretical Foundations

sections. We furthermore note that the theory of sensory motor contingencies is
at certain points incompatible with the grounded view that we are going to pursue
during this thesis. For example, the authors deny the existence of representations
(O’Regan and Noë, 2001)—but representations, in our view, are, to a certain degree,
important for internal simulations, and thus the basis for cognition.

In the next section, we will introduce the notion of an internal model which
originates from theories of motor control. A specific internal model, the so-called
forward model, that mimics the forward characteristics of a plant (e.g. the ocu-
lomotor system) represents a way of modeling sensorimotor contingencies. While
we conceive a sensorimotor contingency as a law-like relation which is inherently
present in a certain perceptual apparatus or the environment, we conceive an inter-
nal model as a device to capture and implement such a relation within the cognitive
architecture of the agent.

Internal Models

The notion of an internal model is a concept from computational theories of mo-
tor control (Ito, 2008; Karniel, 2002; Kawato and Wolpert, 1998; Wolpert et al.,
1995, 1998; Wolpert and Kawato, 1998). Internal models are crucial for movement
planning and are hypothesized to play an important rule in internal simulations
(see Section 1.1.3 below). Because of their formal nature, internal models can be
readily implemented in computational frameworks. Large portions of this thesis
will be concerned with the efficient implementation of internal models.

In the following, we will highlight the main characteristics of internal models,
and will only go as deep into the theory of motor control as needed to explain
where internal models originate from. The body of neurophysiological findings
that support the existence of such models is overwhelmingly large and will not be
considered as we will mainly focus on their functional role (see e.g. Wolpert et al.
(1998)).

In general, as the name suggest, an internal model mimics the characteristics of a
certain plant (e.g. musculoskeletal system in the context of motor control) in either
inverse or forward direction (Kawato and Wolpert, 1998). Thus, the literature
dichotomously divides internal models into inverse and forward models. The role of
inverse models that act as motor controllers is obvious: in order to e.g. move a limb
from an initial position to a goal position, an appropriate motor command needs
to be generated. The controller (inverse model) takes as inputs the current limb
position (through kinesthesis) and information about the goal location and issues
an appropriate motor command that moves the limb such that the goal location is
reached (subject to a certain bias and error).

This seemingly simple control scheme suggests that limb movements are ballistic
(i.e. neglecting any positional information during the movement), and thus require
the inverse model to compute a complex motor plan beforehand (Grush, 2004).
Many experimental findings contradict this assumption and postulate that motor
control relies on continuous feedback from the musculoskeletal system. In such

5

1. Introduction

a feedback control scheme, the controller (inverse model) receives an error signal
which is the deviation between the current position and the goal position and which
it tries to gradually minimize. Such a control scheme does not require a sophisti-
cated motor plan beforehand as the optimal control signal (i.e. that transitions the
limb from initial to goal position) emerges smoothly over time (Grush, 2004).

The closed-loop feedback control scheme requires the continuous evaluation of
the current limb position through kinesthesis. This feedback causes a large delay
which exceeds the timings of certain movements, and thus fails to explains the
corresponding observations in motor control. An early explanation for these effects
was given by von Holst and Mittelstaedt (1950) through their notion of the efference
copy. An efference copy is generally a copy of the motor command sent to the
muscle that is fed into the controller. On the basis of this efference copy the
controller is enabled to anticipate the corresponding results of the motor command,
and may operate on this anticipated information rather than feedback from the
musculoskeletal system (von Holst and Mittelstaedt, 1950).

However, the motor command received through the efference copy likely to be
in a different format than the feedback received through kinesthesis (Kawato and
Wolpert, 1998). The original theory of efference copy failed to explain how the mo-
tor command is transformed. Recently, researchers suggested the notion of forward
models to remediate this shortcoming of the original proposal. A forward model
mimics (emulates) the forward characteristics of a certain plant (subject to small
errors and biases). Its purpose is therefore to transform, in a predictive way, motor
commands into the corresponding format required to generate a proper error signal.
In the case of motor control, the forward model predicts the kinesthetic information
that would be sensed if a certain motor command would be executed.

Besides motor control, researchers hypothesized that forward models are involved
in many other contexts including the prediction of sensory consequences of self-
induced actions, and even cognition (Grush, 2004; Ito, 2008; Karniel, 2002; Wolpert
et al., 2003). One prominent effect that can be easily observed is the fact that most
people cannot tickle themselves. A hypothesis states that a somatosensory forward
model predicts the self-induced tickling sensation and consequently suppresses the
real stimulus sensed by the skin (Blakemore et al., 2000).

A similar finding suggest that even the visual sense is equipped with a mechanism
that anticipates the sensory effect of eye movements (Duhamel et al., 1992). This
mechanism might explain the phenomenon of visual stability, i.e. that the visual
impression seems to be stable despite the permanent execution rapid eye movements
(saccades) which induce shifts of visual stimuli on the retina. A study on single cell
recordings in monkeys revealed that the parietal cortex performs such a predictive
remapping of receptive fields in anticipation to eye movements (Duhamel et al.,
1992). The direction of the remapping directly corresponds to the location on
retina on which a certain stimulus appears after the eye movement.

6

1.1. Theoretical Foundations

1.1.3. Simulation and Emulation Theories

As mentioned above, the paradigm of internal sensorimotor simulation is a funda-
mental paradigm in grounded cognition that distinguishes it from theories of purely
embodied and situated cognition. Furthermore, for the derivation of computational
models, we need a clear formulation of internal simulation. Therefore, we will now
take a closer look at several simulation theories that were proposed by various
authors in recent years.

Möller (2000) proposed that perception is the result of an internal simulation
of actions between an agent and the environment and the subsequent evaluation
thereof. In this paradigm—perception through anticipation—the agent generates
a tree-like structure of possible interactions based on its current sensory input.
The agent remains passive throughout the perception process and manipulates the
current sensory situation based on previously learned sensorimotor patterns or sen-
sorimotor contingencies.

In the context of perception of space and shape, Möller (2000) gives an intuitive
example of an agent, a robot equipped with an image sensor, that faces an arrange-
ment of cylindrical obstacles. In this example, the agent has to determine whether
the obstacles form a passage that can be crossed or a dead-end. The criterion that
determines whether the arrangement is passable is reciprocally coupled to the size
of the agent. In order to separate his theory from others, Möller (2000) mentions
three different possible ways for implementing such a capability. The cognitivist
way would consist in a reasoning step that determines if the arrangement is passable
based on an analysis of the initial sensory situation, neglecting any motor informa-
tion. This agent would have to deal with invariances caused by the perspective
and distance towards obstacles. Therefore it would have to be equipped with a
sophisticated perception module. On the other hand, a reactive agent, equipped
with a simple collision avoiding strategy, would actively explore the arrangement.
The reactive agent has the disadvantage that it might get stuck during the explo-
ration, and would consequently not find a passage at all. Finally, the anticipating
agent would explore the arrangement “mentally” based on the initial sensory sit-
uation during multiple alternative exploration runs. The internal simulations are
subsequently evaluated to determine whether the arrangement is passable or not
based on motor information. Thus, the anticipating agent is a reactive agent that
is capable of simulating actions based on experience.

In the context of consciousness, Hesslow (2002) postulates three assumptions that
are the basis for his simulation theory: (i) motor structures involved in overt action
execution are also active during simulation of behavior, (ii) the sensory cortex is
involved in internal simulation of percepts, and (iii) simulated and executed actions
both “can elicit perceptual simulation of their normal consequences”. The third
assumption implies the ability to anticipate the sensory effect of covert actions.

The simulation theory is basically in line with the behaviourist view that a certain
stimuli trigger specific actions. (This corresponds to the reactive agent mentioned
above.) The action is not necessarily executed but may be suppressed, and the

7

1. Introduction

sensory consequences are anticipated. As in the perception through anticipation
hypothesis, this results in chains of simulated action–response pairs (Hesslow, 2002).

Anticipation of internal sensory states is a central idea shared by both theories.
The neural basis for anticipation might emerge during the developmental stages
of an organism through an anticipatory drive (Butz, 2008). This metaphorical
drive might facilitate the formation of representations that are especially suited for
forward predictions. These forward predictions are the basis for internal simulations
in which they are responsible for generating internal future sensory states.

However, there are also two striking differences between Hesslow’s simulation the-
ory and perception through anticipation. The simulation theory is about conscious
thought: that is, the anticipation is initiated and evaluated through consciousness.
On the other hand, perception through anticipation is an unconscious process that
results in a percept that is subsequently transferred to consciousness. Thus, the
anticipation process itself is not directly accessible by consciousness. The second
difference lies in the representation of sensory states and possible structures in-
volved in the anticipation process. The simulation theory is very general and does
not require a specific representation. In the perception through anticipation hy-
pothesis, sensory states are directly linked to the low-level representation of the
sensory modalities.

In a later article, Möller and Schenck (2008) presented a computer simulation
of the robot experiment mentioned above: a simulated robot that can move in
the 2D plane, and equipped with an omnidirectional sensor, is facing an obstacle
arrangement similar to the thought experiment. The robot is equipped with forward
and inverse models that predict the optical flow of the objects as if the robot moved,
and generate appropriate motor commands, respectively. These internal models are
used to drive the internal simulation, based on an initial sensory situation. The
notion an internal model plays a crucial role in this instantiation of the perception
through anticipation paradigm. In contrast, Hesslow explicitly avoids this notion
in his simulation theory, stating that a general association mechanism is involved
in the anticipatory generation of covert sensory states (Hesslow, 2012).

Internal models—termed emulators in this context—also play a crucial role in
Grush’s emulation theory of representation (Grush, 2004). One of the goals of this
theory is to provide a formal theoretic framework which allows to explain aspects
of motor control and motor imagery as well as giving prospect of explaining higher
cognitive abilities such as reasoning and language. Besides internal models, Grush’s
framework incorporates the Kalman filter—a mathematical model from the area of
signal processing (Grush, 2004). In general, a Kalman filter is a state estimator
whose central part lies in recursively updating an estimate (for an unknown state)
based on the comparison between a (noisy) measurement and its corresponding pre-
diction. The Kalman filter is used in combination with an “articulated emulator”,
i.e. an emulator that models the same input–output relation as the plant and is
part of the Kalman filter, to reduce the sensory error as long as sensory input is
available.

This framework extends first of all the feedback control scheme mentioned in

8

1.1. Theoretical Foundations

Section 1.1.2: the sensory signal emanating from the plant is not entirely replaced
by the forward model, but integrated with the forward model’s prediction through
the Kalman filter. This enables the control loop to run off-line (i.e. in the absence
of actual sensory inflow) and online, whereby the Kalman filter refines the sensory
signal by taking into account the prediction (Grush, 2004). The weighting strength
of the two signals (prediction and actual) is regulated by the so-called Kalman gain.
In the case of perception the more reliable signal gets a higher weight. In the case
of internal simulation (detached from the current sensory inflow) the corresponding
sensors are assigned zero weights.

In case of motor control, the role of the emulator is clear and closely linked to
the original notion of a forward model. In the case of visual perception (and vi-
sual imagery accordingly), Grush suggest a more complex control scheme. This
extended scheme relies on different emulators that account for the anticipation of
visual changes due to ego-motion and an amodal environment emulator—amodal
in a sense, that this emulator predicts positional information of objects in the envi-
ronment rather than producing output directly linked to the sensory representation
(i.e. visual) (Grush, 2004). The dichotomous separation of ego-motion vs. envi-
ronment emulators reflects the likewise separation of sensorimotor contingencies
(O’Regan and Noë, 2001).

1.1.4. Experimental Evidence

In this section, we will give a short account of experimental evidence from psy-
chology and neurophysiology that underpins the theory that internal sensorimotor
simulations are involved in perceptual and cognitive tasks. Many more accounts
can be found in the references of the articles in the last section.

The mental rotation experiment of Shepard and Metzler (1971) is recognized
as a prime example for an internal simulation taking place and often cited by
proponents of these theories. In their experiment, subjects were shown a pair of
complex geometric objects. The task was to determine whether the shown objects
were the same or mirrored versions of one another. An object was presented in a
rotated fashion (to a certain degree) with respect to the reference. The surprising
result of the experiment was, that the time a subject needed to draw a conclusion,
is proportional to the angle of rotation. This gives rise to the assumption, that the
brain mentally rotates the object until it matches the orientation of the reference
object. The recent advances in imaging technology have enabled researchers to peek
into the brain (albeit on a quite coarse scale) and to reveal the spatial location of
neural activity patterns. Such an analysis of subjects engaged in the mental rotation
task revealed that, besides visual areas, motor areas are also involved (Lamm et al.,
2001). This gives rise to the assumption that mental rotation is indeed an act of
sensorimotor simulation.

In the context of mental imagery, a long-standing debate of how mental images are
represented, has been going on among cognitive scientists (see e.g. Pylyshyn (1981)).
Proponents of the picture hypothesis claim that mental images are represented in an

9

1. Introduction

analogue fashion and are thus picture-like (Kosslyn et al., 1997). Finke and Kosslyn
(1980) conducted a psychophysical imagery experiment in which subjects should
judge the resolution of a specific dot pattern in the peripheral visual field either
directly or by introspection (imagery). The human retina has a inhomogeneous
layout of photoreceptors that decreases towards the borders of the visual field, thus
making the central part of the retina (the so-called fovea) more accurate than the
periphery. A correlation between judgements of resolution in the two conditions
(direct vs. imagined) would give rise to a similar representation of mental images
(with respect to retinal acuity). Prior to the experiment subjects were separated
into two groups: vivid imagers and non-vivid imagers through an assessment of the
Vividness of Visual Imagery Questionnaire (Finke and Kosslyn, 1980). The result of
this study is, that vivid imagers showed a similar judgement of peripheral resolution
in both task conditions. Furthermore, the study gives rise to the hypothesis that
mental images are not abstract descriptions, but directly linked to the sensory
(i.e. retinal) representation.

In later decades, research on mental imagery mainly centered around imaging
studies by functional magnetic resonance imaging (fRMI) and positron emission
tomography (PET). These studies revealed that the visual cortex is indeed involved
during imagery which enforced the assumption that mental images share the same
neural basis as perception (Kosslyn et al., 1993, 1997). This finding gives rise to
the validity of the picture hypothesis.

Similar findings were obtained by studies on motor imagery and specifically men-
tal practice (Jeannerod, 1994, 1995, 2001). Mental practice refers to the covert reen-
actment of certain actions with the goal of improving one’s own motor capabilities—
a type of training often performed by athletes. During mental practice activates the
same motor areas that are active when an individual performs the corresponding
task.

In the field of neurolinguistics, in which the neurophysiological origin of lan-
guage is studied, researchers recently found evidence that sensorimotor processing
is involved in the comprehension of words (Pulvermüller and Fadiga, 2010). The
findings suggest a strong linkage between semantics and certain motor areas. For
example hearing an action-related word like “kick” evokes activity in motor-areas
of the brain that are typically associate with the execution actions that involve the
corresponding part of the body (Pulvermüller and Fadiga, 2010).

There are many more accounts in the literature that indicate that all levels of
cognition are indeed grounded. A thorough review would thus be well beyond
the scope of this introduction. In the following, we will switch to the modeling
perspective, and give an overview over relevant robotic studies which are largely in
line with the grounded theory of cognition.

10

1.2. Learning of Sensorimotor Interactions

1.2. Learning of Sensorimotor Interactions

In this section, we are going to review several robotic studies that involve the
learning of sensorimotor associations and demonstrate the capabilities of grounded
cognition and simulation/emulation theories. This review is not meant to be ex-
haustive, but to cover a wide variety of different learning approaches, and to give
a general overview of the different techniques that have been so far successfully
applied.

Tani and Nolfi (1999) present a study in which a robot learns a structurally
organized internal representation of the world. They used a mobile robot that
traveled through two different rooms, connected by a door. The robot was equipped
with an array of 20 range sensor pointing in forward direction. The task was to
learn the sensorimotor relations that the robot experiences as it travels through its
environment. In a later stage, these learned sensorimotor dynamics should serve as
a basis for navigation.

The authors employed a hierarchical recursive neural network (RNN) approach
to learn the sensorimotor dynamics of the robot (Tani and Nolfi, 1999). The main
focus of the paper is not a specific application (although they mention navigation as
a possible one), but to study the dynamics of the hierarchical RRN and the overall
feasibility of this approach. They conclude, that the RRN was able to capture the
underlying sensorimotor dynamics of the traveling robot, but also discuss the lack
of goal-directedness of this approach.

In a similar vein, Ziemke et al. (2005) present a minimal neuronal model that
allowed a robot to navigate blindfolded in a previously explored environment. Fur-
thermore, they demonstrate that an internal multi-step prediction (Hesslow, 2002)
(i.e. when the predicted sensory input is used instead of actual sensory input over
a course of multiple time-steps) based on RNNs as used by Tani and Nolfi (1999)
proved unsuccessful during this task. They also used a (simulated) mobile robot
equipped with 8 proximity sensors (6 pointing in forward direction, two pointing
backwards). The successful architecture they propose consists of two feed forward
networks: (i) a controller network that maps sensory information to motor com-
mands, and (ii) a predictive network that integrates sensorimotor information to
predict the resulting sensory state (Ziemke et al., 2005). This architecture nicely
reflects the dichotomy of inverse models (controllers) and forward models (emu-
lators/state predictors) (Wolpert and Kawato, 1998). Equipped with this archi-
tecture, the robot was able to navigate blindfolded for “hundreds of time steps”
(Ziemke et al., 2005).

The above study represents an implementation of the simulation theory of con-
cious thought (Hesslow, 2002): The robot learned the sensorimotor relations as
it traveled through its confined environment. Based on these relations the agent
was able to generate an internal multi-step prediction and navigate blind-folded.
However, the internal simulation could only reenact situations within the previ-
ously explored environment, and is thus most likely unable to generalize to novel
situations.

11

1. Introduction

Hoffmann (2007a) presents a study in which a mobile robot was placed inside
a nearly circular arrangement of obstacles of different sizes. The task was to sim-
ulate movements towards these objects in order to judge the distance based on
corresponding motor information. The experiment was conducted by using a real
mobile robot. In contrast to the other two studies presented above, the robot was
equipped with an omnidirectional vision sensor. The dimensionality of the sensory
input is thus significantly higher. A forward model implemented by a feed-forward
network was used to drive the simulation process. The images generated by the for-
ward model, however, became too noisy after a few simulation steps to be further
used (Hoffmann, 2007a). Therefore, a de-noising operation was performed after
each simulation step. The de-noising consisted in projecting patches of the image
onto a previously learned manifold. The manifold was modeled by a Gaussian mix-
ture model (Hoffmann, 2007a). The final forward model was successfully applied
to to the distance judgment problem. Furthermore, the robot was able to judge
whether an arrangement of obstacles represents a dead-end or if there is a passage
through which the robot could escape; the robot was thus able to reveal the func-
tional meaning (i.e. the affordance) through an internal sensorimotor simulation
(Hoffmann, 2007a; Möller, 2000).

Recently, Schenck et al. (2012) have put the computational thought experiment
on anticipatory dead-end recognition (Möller and Schenck, 2008) to a test in the real
world. They used a mobile robot equipped with an omnidirectional vision sensor
that was placed inside an arrangement of obstacles. As in the previous though
experiment (Möller and Schenck, 2008), the robot had to determine whether an
arrangement is passable or represents a dead-end. An adaptive forward model was
used to predict the changes of object positions within the camera image based
on a given motor command. An inverse model was used to control the simulated
movements. Based on an internal simulation of possible movements, the robot could
make a judgement whether it could escape the arrangement or not. The robot was
successful in most trials.

Both of the above studies represent successful implementations of the perception
through anticipation paradigm (Möller, 2000). The agents in both studies learned to
associate motor commands and their corresponding sensory effects. Based on these
associations the agents were able to perform covert movements and to anticipate
their sensory consequences. These covert movement sequences were evaluated to
infer information about the environment. In the first study, the simulated motor
commands were used to determine the distance towards obstacles. Furthermore,
in both studies, the internal simulation enabled the agents to reveal the functional
meaning (i.e. the affordance) of their environment, and thus to discriminate dead-
ends from passages. The learned sensorimotor relations do not adhere to a specific
environment, but represent general knowledge and can thus be applied to novel
situations as well.

The first account of a quasi-humanoid robot that planned its actions based on
a sensorimotor simulation is that of Murphy (Mel, 1988, 1991)—interestingly pre-
dating most corresponding simulation/emulation theories of cognition (Grush, 2004;

12

1.2. Learning of Sensorimotor Interactions

Hesslow, 2002) by nearly a decade. Murphy was equipped with a 3-DOF planar
arm (with shoulder, wrist, and elbow joints) and a camera. The camera had its
image plane aligned in parallel to the planar workspace of the arm. The arm was
marked by white spots such that it could be easily tracked by the camera. The task
for Murphy was to reach for a goal position (given in sensory coordinates) (Mel,
1988), and, in a later study, to plan its trajectories without colliding with obstacles
(Mel, 1991).

Murphy could operate in two modes (Mel, 1988): an overt mode and a covert
(simulation) mode. During the overt mode, Murphy learned the sensorimotor as-
sociations between joint-angle configurations and the corresponding positions of
the white spots within the camera image. During the covert mode, Murphy could
optimize its movement trajectories towards a goal location or plan trajectories in
order to circumvent obstacles. All inputs and outputs are represented in a discrete
binary manner. The images were thresholded with respect to a salient color. The
underlying connectionist network consisted of retinotopic and motor maps. The as-
sociations were learned by a network of so-called of sigma–pi units that correspond
to logical disjunctions of conjunctions (Mel, 1988, 1991). The corresponding units
can be either 0 or 1, depending on the assignment of the inputs.

Nishide et al. (2008) present a study in which a robot learned to predict object
dynamics through a series of object interactions. They used a humanoid robot that
pushed objects with its left arm at two different heights above a table. One pushing
sequence consisted of 7 time-steps. The results of the pushing actions (i.e. the
appearance of the object at the different time-steps) were recorded by a camera.
The authors conducted two experiments: (i) using artificial objects, and (ii) using
real-world objects. A recursive neural network with parametric bias (RNNPB)
was used to learn the visual dynamics of the object interactions. The parametric
bias (PB) space self-organized such that objects that exhibit a similar dynamical
behaviour were closely grouped within PB space(Nishide et al., 2008). Furthermore,
a hierarchical neural network was used to associate the motor command and the
static image of the object to the corresponding parametric bias in order to drive
the prediction by the RNNPB.

The results show that the robot was able to predict the dynamical motion of dif-
ferent objects and that the clustering within PB space reflects the possible outcomes
of pushing the different objects (e.g. elongated objects fall over, round objects roll).
Furthermore, the study on real-world objects indicates that the model is able to
generalize and successfully predict the motions of objects not shown during the
training (Nishide et al., 2008).

A study presented by Montesano et al. (2008) deals with the learning of affor-
dances which they describe as the “relation between actions objects and effects”
(Montesano et al., 2008). They propose a developmental approach that comprises
three phases (Montesano et al., 2008). In the first phase, the robot should ac-
quire “basic skills” that encompass basic motor skills and visual object perception.
The second phase consists in the learning of world interactions which subsumes
the perception of action effects, the improvement of motor skills, the learning of

13

1. Introduction

affordances, and the acquisition of prediction and planning skills. At the highest
level, the third phase, stands the imitation of observed actions.

The model was implementation on a robot that consisted of an arm and a cam-
era head. The learning of perceptual skills was circumvented by a built-in system
that was able to categorize objects based on geometric features (Montesano et al.,
2008). The authors chose a probabilistic approach (i.e. a Bayesian network) for
the implementation. The key feature of such a probabilistic modeling approach is
that it can deal well with uncertainty and noise (Montesano et al., 2008). Their
developmental approach enabled the robot to imitate the experimenter in an inter-
active game that involved the interaction with different objects placed in front of
the robot (Montesano et al., 2008).

Marques and Holland (2009) present a minimal computational architecture for
functional imagination, i.e. the act of interacting with the environment in the ab-
sence of actual sensory inflow (i.e. mental imagery). The authors identify a set of
five conditions that such a minimal architecture should fulfill (Marques and Hol-
land, 2009). The first two conditions are strongly interdependent: The agent should
be able to generate state-based predictions (as consequences of possible actions),
and must consequently be able to represent these alternative sensory states. The
agent should furthermore posses an intentional goal that it seeks to fulfilled during
the imaginary action sequence. Consequently it needs to be equipped with an eval-
uation routine that examines if the actions are leading towards the goal. The last
condition is the presence of an action selection routine that selects an appropriate
action among the set of possible actions.

The proposed architecture was implemented on a complex biomimetic humanoid
robot (Marques and Holland, 2009). The task of the robot was two move a stick
placed on the table in front of it as far away as possible. The robot could perform
two possible actions: grasping the stick or throwing it. Furthermore, it had to
select between a red and a blue stick. The task referred to the red stick only.
For the internal simulation, the authors used a complete physical model the robot
and its environment (Marques and Holland, 2009). Based on this internal model
the robot simulated possible actions in order to determine which action moves the
stick farthest away, and subsequently execute the most successful action overtly.
However, the high complexity of the humanoid robot and discrepancies between
the physics simulation based “forward model” rendered the experimental evaluation
difficult (Marques and Holland, 2009).

1.3. Towards a Model Architecture for Simulated Object
Interaction

In this section, we will develop a computational model for the simulation of object
interactions. Such a model could enable an agent to learn the behavioral meaning
of objects—which is closely linked to the notion of affordances. We claim that a
general understanding of the behavioral meaning of objects (i.e. their affordances)

14

1.3. Towards a Model Architecture for Simulated Object Interaction

Figure 1.1.: Robotic agent for the study of object interactions consisting of a stereo
camera head (2 DOF per camera) and a robotic manipulator (6 DOF)
with attached two-finger gripper.

is superior to simple object recognition based on vision alone. In a later step, the
learned relations could serve as a basis for the planning of complex motor plans
through internal sensorimotor simulations.

Furthermore, we will outline the problems that have already been solved and will
be discussed in depth within the remainder of this thesis. There are nonetheless
many open problems that still need to be cast into solid algorithms. As a result,
the overall model which we will derive in the following, is not yet been fully lifted
onto a level on which it can be implemented. However, the detailed description of
the model and its challenges will provide a fruitful ground for further research.

1.3.1. Overview

The proposed model that we will review in detail is composed of a number of sub-
models whose purpose will become clear as we introduce the problem that we seek to
solve. All considerations are based on the robotic agent depicted in Figure 1.1. The
agent is a simplified model of an upper human torso that consists of a stereo camera
head and a serial manipulator. The cameras are both mounted on individual pant-
tilt units, thus allowing for variable gaze. The robotic manipulator has 6 degrees of
freedom (DOF) and an attached two-finger gripper at its end-effector position. The
agent is strongly simplified with respect to DOF of the gaze: it has no neck-like
structure. Therefore, gaze is only specified by the individual gaze directions of the
cameras and does not involve any redundant degrees of freedom (which would be
induced by a neck). Furthermore, the focal length of the cameras is fixed, so the
agent cannot change its foci through accommodation.

The robot has a total of three sense: (i) binocular vision (allowing for depth
perception through stereopsis), (ii) kinesthesis (i.e. the six angles of the current
joint configuration), and (iii) a tactile sense that is restricted to a binary value
which is based on whether the gripper can be fully closed or not.

Based on these senses, the agent should learn the sensorimotor contingencies that

15

1. Introduction

(a) (b)

Figure 1.2.: Example for two possible gripper–object interactions: (a) gripper en-
closes object, (b) gripper displaces object.

arise during the interaction with objects placed before him. As soon as the agent
has learned these sensorimotor contingencies, it is enabled to internally simulate
possible object interactions. Here, we pick up the perception through anticipation
paradigm in that the evaluation of these internal simulations finally facilitate the
perception of object affordances.

Before we start to give a detailed description of the different internal models,
we give a small example of how the learning or exploration phase may look like.
For this, we consider two differently shaped objects: a elongated cylindrical object
(e.g. a glass) and a conical object (e.g. a bottle). During the exploration phase, the
agent should learn how to grasp an object. This could be done by selecting a set
of potential grasp points on the surface of the object. Let us furthermore assume,
that a motor controller that enables the agent to reach for points within its field
of view is already available. Now the agent starts to reach for the specified grasp
point with its gripper fingers at maximum opening. The visual consequences of
this can be either that the object is enclosed by the gripper fingers, thus occluding
part of the object, or that the object is displaced, because either the object’s width
exceeds the opening width of the gripper, or the grasp-point lies beyond the length
of the gripper fingers, resulting in a collision between the gripper base and the
object. Figure 1.2a depicts the scenario when the gripper approaches a “secure”
grasp point, i.e. a not causing a collision. In Figure 1.2b, the grasp point lies within
a portion of the object where its size exceeds the maximum opening of the gripper,
thus resulting in a collision.

The two latter consequences that result in a displacement are undesirable and
the corresponding actions should be avoided. The cases where the gripper encloses
the object should trigger a closing of its fingers. After the gripper has closed its
fingers, a tactile feedback should indicate that the object could be grasped. In this
simplified setting, the gripper is alway oriented in parallel to the ground plane. That
means that the agent does not need to decide how the gripper should be oriented
prior to a grasping approach. In a more complex scenario, objects with differently
oriented handles could be used where the corresponding gripper orientation varies
as well. For now, we will restrict our considerations to the above scenario.

The above example shows what sensorimotor contingencies are involved, and
lets us cast these into formal descriptions of the corresponding internal models.

16

1.3. Towards a Model Architecture for Simulated Object Interaction

Obviously, the agent needs the ability to predict the appearance of its own gripper
as it approaches the object, which is similar to an “image emulator” in Grush’s
(2004) terminology. Such an internal model could be implemented by learning the
association between views of the gripper and the corresponding kinesthetic states
(as in Mel’s (1988) model). Furthermore, the model would need knowledge of the
current viewing direction of the cameras. The “environment emulator” that predicts
the effects of interactions between the agent and objects is more demanding. Here,
we have identified two different results of such an interaction: (i) the gripper encloses
the object, and (ii) the object is displaced. The former situation can be solved by
means of information already present in the sensory situation plus information from
the prediction of the gripper’s appearance. The second case, however, might result
in portions of the object becoming visible that have be out of view before the
interaction. This problem is known as sensory aliasing, and cannot be solved based
on the information currently available to the agent. Therefore, we propose a model
that only predicts if such a displacement event would occur or not. A third model
involved is the tactile associative model that predicts the tactile sensation if the
gripper would be closed at a certain position.

The sensory and motor states of the agent can be summarized as follows, and
will be assigned mathematical symbols for convenience:

• current sensory input (visual): view of the object O, view of the gripper G;
the image containing both, object and gripper will be denoted by O ∪G

• kinesthetic arm position ~ψ

• viewing direction ~v

• tactile information T

Motor commands related to the arm will be denoted by ∆~ψ, saccadic motor com-
mands (i.e. changes in viewing direction) by ∆~v. It should be noted that the viewing
direction ~v always encodes the individual pan and tilt angles of both cameras. Fur-
thermore, all sensory input relates to a stereo pair of images. This is obviously
necessary to encode the spatial position of grasp points/objects in order to guide
the (simulated) robot arm towards the object and to drive the internal simulation
of object interactions.

In the following, we will focus on the different internal models and the information
they rely on. We will furthermore make suggestions on how visual data could be
represented and on how the overall interaction between the various models might
look like.

1.3.2. Visuomotor Associations

The visuomotor associative network is a function of the type A : (~ψ,~v) 7→ Ĝ that
assigns an estimate view of the gripper Ĝ to a given arm posture ~ψ as viewed
from the viewing direction ~v. This model is used to drive the simulated gripper

17

1. Introduction

A
Ĝ

~ψ

~v

Figure 1.3.: Internal model for the visuomotor association: an image of the grip-
per, Ĝ, is predicted based on postural information, ~ψ, and the current
viewing direction, ~v.

approach towards the object and its output will be used to determine whether an
object interaction takes place.

Figure 1.3 depicts a schema of the visual associative model. The inputs to the
left side correspond to the postural variables and the viewing direction. The output
on the right represents an (emblematic) example view of the gripper. Note that the
gripper need not necessarily appear in the image center (fixated), but can instead
appear anywhere (based on the viewing direction ~v).

This association could be learned by the cameras observing the gripper as it
moves within the manipulator’s workspace. In Chapter 4, we will give a detailed
description on the implementation and learning for this model. For now, we simply
assume that such a model is readily available.

1.3.3. Prediction of Object Interactions

The crucial part of the architecture is the agent/environment emulator that predicts
the occurrence of possible changes in the environment based on actions of the
agent. In principle, such a model would need knowledge of the laws of physics
and thorough information on the geometrical properties of the agent/environment.
Therefore, we restrict the object interaction model to predict only results that can
be extracted from the given sensory data (i.e. stereoscopic view of the object and
gripper, kinesthetic state).

The observation of the different outcomes of a gripper approach towards the
object, i.e. non-collision (Figure 1.2a) vs. collision (Figure 1.2b), should be handled
differently by the interaction model. The main task of the object interaction model,
which we shall denote model B in the following, lies in the extraction of spatial
information about the (simulated) gripper in relation to the object. Consider the
case, when the gripper is partially occluded by the object as in Figure 1.2a, left. In
this case, one gripper finger is located behind the object. If this gripper is closed in
this situation, it will experience a tactile signal, indicating that the corresponding
grasp point is valid. Moving the gripper further towards the object will eventually
lead to collision between the object and the gripper base. These spatial relations
need to be extracted from the stereoscopic views of the gripper–object constellation
in order to make a corresponding prediction.

Figure 1.4 shows a close-up of the situation when the gripper and gripper has

18

1.3. Towards a Model Architecture for Simulated Object Interaction

O+

G+

Figure 1.4.: Close-up of the gripper at a grasp point on an example object showing
the portion of the gripper that occludes the object, G+ (white), and
the portion of the object occluding the gripper, O+ (black).

reached a valid grasp point. Gripper and object mutually overlap in this situation:
the right gripper finger is occluded by the object (indicated by region O∗), while
the left gripper finger occludes the object (region G+). Based on the stereoscopic
appearance of the gripper and the object, the interaction model should predict this
situation in order to generate a valid mental image of the situation.

We divide model B into three sub-models: B+, Bt, and B∗. The simulation is
principally driven by model B+ : (O,O ∪Gt, Gt+1) 7→ O ∪Gt+1 which predicts the
future sensorimotor state O ∪Gt+1 based on the previous state O ∪Gt, the visual
state O, and the visually coded motor command in form of the gripper image Gt+1.
Model Bt receives the same input as model B+ and predicts a tactile event T . These
two models cover the cases when the object is not physically moved by the gripper.
Model B∗ receives the same input as the former models and predicts whether a
collision will occur in time step t+ 1.

We now make the attempt at a more formal level of the input-output relations of
the three sub-models. As stated above, these models mainly operate in the visual
domain. Therefore, we assume that all inputs are visual. We note that the motor
information about the approach movement of the gripper can be translated into the
visual domain by model A. We furthermore assume that the location of the grasp
point coincides with the image center, rendering the view of the object independent
of the current viewing direction. This last step can be achieved by virtually fixating
the object at its current grasp point using a visual forward model that mimics the
characteristics of the oculomotor system to predict how the image looks like.

Figure 1.5 depicts a schematic of model B in its entirety. The model receives the
current sensorimotor state as a mental image of the current gripper–object configu-
ration, denoted by O∪Gt. It furthermore receives information on the pure sensory
situation, O, and the motor command, encoded as the future sensory appearance
of the gripper, Gt+1. Based on these information, the model generates a prediction
of a tactile signal T , that indicates whether the gripper can be fully closed in this
situation. It furthermore predicts a gripper–object collision O∗. The information

19

1. Introduction

B

Gt+1

O ∪Gt

O

O ∪Gt+1

T O∗

Figure 1.5.: Schematic of the object interaction model. See text for further details.

from the inputs of O and Gt+1 are integrated to yield a prediction of the com-
bined gripper–object image O ∪Gt+1. In the following, we will explain the overall
simulation process and explain the roles of the different internal states and their
dependencies.

1.3.4. Simulation Process

The task of the whole simulation process is to evaluate the possible outcomes of
different grasping approaches towards an object. The simulation starts by selecting
a number of potential grasp points from within the image. These grasp points are
the basis for the simulated approach movements. These movements are performed
in an iterative manner by performing a small movement each time-step t. The
outcomes of the small movements are constantly predicted by model B.

The simulation process can be summarized as follows:

1. extract grasp-points from object image; each grasp point is given by a pair of
2D coordinates for the left and right image, respectively

2. for each grasp point, generate a fixated view of the object O

3. initiate sensorimotor simulation: generate a sequence of motor commands
towards the grasp point

4. generate mental image of the gripper at each time-step t based on the motor
command and the viewing direction on the grasp point (model A)

5. predict possible gripper–object interaction based on current sensory input and
future gripper image

20

1.4. Outline

three possible cases: (i) grasp point not reached, (ii) grasp-point reached, and
(iii) gripper–object collision

6. if (i) goto 4; else if (ii) evaluate tactile model Bt and continue with next grasp
point; else continue with next grasp point (collision)

The outcome of this simulation process is that each grasp point is associated with
a sequence of motor commands and their resulting sensory states, and information
about a possible collision or a tactile sensation at the grasp point. These data can
be evaluated to gather information about the grasping profile of the object which
in turn could facilitate object categorization. Furthermore, the simulation can be
used for planning overt grasping movements based on certain criteria, e.g. selecting
grasp points based tactile sensation at the grasp point.

However, the overall simulation and its core, model B, is yet to be implemented.
Therefore, we can only speculate about its main characteristics and performance in
a real-world setting. We assume that the number of training examples needed will
be very high (because of the underlying high dimensionality of the visual data).
For this reason, an optimal training strategy will be the key to establish should a
model. Furthermore, the representation of images (gray-scale, binary or features)
and the internal structure of model B need to be clarified more thoroughly.

1.4. Outline

The main part of this thesis will be concerned with the development of efficient
models for visuomotor prediction. The handling of visual data is especially delicate,
because of its high dimensionality. The models that we will investigate are mostly
adaptive and learned through systematic explorations of the sensorimotor space1.
All models play important roles within the overall architecture (see Section 1.3).

In Chapter 2 we are going to introduce an adaptive model that captures the
forward direction of the oculomotor system (visual forward model). The model is
based on a statistical learning approach that captures the optical flow of points
within the field of view under certain eye movements. The learned flow fields are
interpolated using feed-forward neural networks with radial basis functions (RBFs).
In order to predict an image for a given eye movement (motor command), the
RBF network must be evaluated at every pixel position which is computationally
demanding. For this reason, we will present an efficient evaluation scheme. The
aim of this chapter is two-fold: we will test the influence of different basis functions
onto the quality of the prediction, and furthermore investigate efficient ways of
evaluating radial basis functions for image warping.

In Chapter 3 we will step back from the adaptive model of Chapter 1 and
instead develop a geometric model of the oculomotor system. This geometric model
comprises significantly fewer parameters than the fully adaptive model and is thus

1We use systematic explorations rather than random (i.e. babbling) strategies mainly due to time
considerations.

21

1. Introduction

computationally very simple. We furthermore show that the geometric model can
also be used for oculomotor control as well. In this context, we augment the basic
geometric model with an adaptive correction network that is inspired by neural
mechanism of saccade control. Visual prediction and eye control are key elements
within the overall model in which they are used to virtually fixate grasp points (see
Section 1.3).
Chapter 4 deals with the learning of associations between kinesthetic and sen-

sory states. We introduce a computational model that allows for the associative
learning between low-dimensional inputs and high-dimensional outputs (images).
The model is a complete implementation of model A, see Section 1.3.2. The com-
plex task of associating a set of postural variables and a given viewing direction
to the corresponding visual appearance of the gripper is tackled by a sequential
application of different steps. The model consists of four sub-models: (i) a model
that relates kinematic postures to viewing directions (that fixate the gripper), (ii)
a model that relates postures to low-dimensional descriptions of the gripper’s ap-
pearance, (iii) a model that generates a fixated visual view of the gripper, based on
the low-dimensional description, and (iv) a visual forward model that transforms
the fixated view of the gripper to an arbitrary viewing direction.

In Chapter 5 we employ the visual prediction mechanism in the context of stereo
matching, i.e. the problem of finding correspondences in a pair of stereo images.
The method is compared to a descriptor-based approach that has become common
in computational vision. We show that our approach is able to deal with severely
distorted images which pose a great problem to descriptor-based approaches. In
the context of simulated object interactions, stereo matching is important for the
extraction of depth information from views of the target object. This depth infor-
mation is in turn necessary for guiding the simulated robot arm towards specific
grasp points during the internal simulation process (see Section 1.3).

Finally, in Chapter 6, we relate the results from the different chapters and give
an outlook onto future research directions.

22

2. Visual Prediction by Using RBF
Networks

2.1. Introduction

In this chapter, we address the problem of predicting visual changes in camera
images as the consequence of camera movements as they occur, for example, when
a camera is mounted on a mobile robot or a pan-tilt unit. Visual prediction is here
defined as the task of predicting the optic flow induced by camera movements and
warping the current input image according to the optic flow field. The movement
of the camera needs to be defined by a set of movement parameters.

Visual prediction can be applied to a wide variety of robot vision applications.
Visual prediction can for example facilitate covert visual attention shifts (Schenck
et al., 2011), i.e. the fixation of objects without the actual execution of eye move-
ments. It has also been used for the perception of spatial arrangements by simulated
movements toward the obstacles and subsequent evaluation of the predicted sensory
states (Hoffmann, 2007a; Möller and Schenck, 2008). Generally, visual prediction
by adaptive learning algorithms is a hard task because the high dimensional nature
of visual data (i.e. images) which furthermore necessitates a high number of learn-
ing examples that might be—depending on the task at hand—acquired at a high
cost. Furthermore, the prediction itself may become computationally costly due to
the high complexity of the mapping function. In this chapter, we address both, the
learning process in brief and strategies to speed up the prediction in depth.

For the rest of this chapter, we focus on the case where a camera is mounted
on a two-axis gimbal or pan-tilt unit (PTU), allowing for horizontal (pan) and
vertical (tilt) movements, respectively. Under certain conditions, the change of the
camera image depends only on the relative changes of the pan and tilt angles, but
not on their current values. First, we propose an adaptive algorithm that learns
the relationship between the relative pan and tilt movements and the changes of
the camera image (in terms of a sparse optical flow field). We then employ local
interpolation techniques in order to predict changes of the whole image for arbitrary
angle combinations. We refer to this process as visual prediction. We will show that
our method works with an uncalibrated camera–PTU assembly, and that it is even
able to cope with substantial image distortion.

The proposed method is based on image warping by mapping pixels from the out-
put to pixels inside the input image (reverse mapping). The mapping is performed
by a network of radial basis functions (RBFs). We will see in the following that
the choice of basis function—or kernel—has significant impact on the quality of the

23

2. Visual Prediction by Using RBF Networks

mapping. The basis functions considered in this chapter include the widely used
Gaussian kernel (Girosi et al., 1995), the thin plate spline kernel (Duchon, 1976),
and some less common kernels found in the machine learning literature (Boughorbel
et al., 2005). Furthermore, we introduce a two-stage warping scheme which is based
on two separate networks for prediction and image interpolation, respectively, by
which we decrease the computational complexity.

Schenck and Möller (2007) approached the problem of visual prediction by a
warping via a generalized radial basis functions (GRBF) network of Gaussian units
(Moody and Darken, 1989; Girosi et al., 1995). GRBF networks consist of a number
of units that is smaller than the number of data points used for training. Such
networks can reduce the computational effort drastically, albeit imposing a large
degree of regularization (smoothing) on the function approximation. Thus, the
interpolation becomes inexact. Furthermore, the number of basis functions has
to be chosen carefully in order to assure a small approximation error. “Full” RBF
networks, i.e. networks consisting of as many units as there are data points, perfectly
approximate the data, but may have poor generalization abilities and a higher
computational cost. We demonstrate that these shortcomings can be circumvented
by using a two-staged approach that (i) imposes a certain degree of regularization
and thus improves the generalization, and (ii) reduces the computational cost if the
network has to be evaluated at many points at once (as it is the case for image
warping).

RBF networks have been previously applied for image warping in different con-
texts including morphometrics (Bookstein, 1989), where they are used for modelling
biological shape changes, facial expressions (Arad et al., 1994), and image registra-
tion (Flusser, 1992), just to name a few. The application of RBF networks for image
warping was accompanied by the development of efficient and numerically stable
strategies for the adaptation (Dyn et al., 1986; Moody and Darken, 1989; Beatson
et al., 1999) and the evaluation (Barrodale et al., 1993; Beatson and Newsam, 1992;
Beatson and Light, 1997) of these networks. We will not go into details about these
methods and develop a novel efficient evaluation strategy instead.

This chapter is organized as follows: in the following section, the camera setup
is introduced, Section 2.3 recapitulates the basic RBF theory upon which we base
our approach. In Section 2.4 we introduce the so-called visual forward model, the
procedure for data acquisition and the different types of implementation. Section
2.5 contains the results of the comparison between the different implementations of
the visual forward model, and Section 2.6 concludes this chapter.

2.2. Methods

2.2.1. Setup

Throughout this chapter, we assume that the camera is mounted on a two-axis
gimbal, so that it pans by an angle ϕ and tilts by an angle θ. Furthermore, the
camera is assumed to be mounted such that the pan and tilt axes intersect at the

24

2.2. Methods

(a) Input grid (b) Warped grid

Figure 2.1.: Effect of the (simulated) radial distortion used in our experiments. A
10 × 10 regular grid (a) is warped according to (2.1), the result (b)
shows the typical “fovea”-effect.

entrance pupil. In this case, the change of the visual information depends only on
the relative changes of the pan and tilt angles, denoted by ∆ϕ and ∆θ, but not on
the current (absolute) angles, ϕ and θ.

For our tests, we used a camera mounted on a pan-tilt unit (PTU) with two
degrees of freedom. This PTU-camera setup deviates slightly from the ideal gimbal-
camera setup mentioned above, but it can be shown that the current pan and tilt
angles have only a negligible effect (Schenck, 2008).

The camera records color images of 320×240 pixels which were cropped to a size
of w̃in = 240× h̃in = 240 pixels around the center. Further, the images were warped
according to a radial distortion model (see next subsection), thus introducing a
high degree of non-linear distortion. After the distortion model has been applied,
the images are of size win = 207 × hin = 207 pixels. These images are used for
the visual prediction. Note that our approach is purely adaptive, so neither the
intrinsic parameters of the camera (including the distortion model) nor the exact
kinematics of the PTU need to be known.

2.2.2. Image Distortion Model

The camera images were warped in order to simulate the effect of retinal distor-
tion which is caused by the inhomogeneous distribution of photoreceptors on the
human retina. The warping uses a radial mapping of the following form (in polar
coordinates):

φin = φout,

rin = λrγout + (1− λ)rout,
(2.1)

where (φin, rin) denotes a point in the (unwarped) input image and (φout, rout)
denotes a point in the output image. Note that rout and rin are assumed to lie
in the interval [0; 1] which can be achieved by normalizing the coordinates. The

25

2. Visual Prediction by Using RBF Networks

parameters are λ = 0.8 and γ = 2.5. This distortion leads to a “fovea” effect as
known from the human visual system: the resolution is much higher in the central
region of the image (leading to a large magnification) than in its periphery. Figure
2.1 shows the effect of the radial mapping (2.1) on a regular grid. Note the difference
in size between the two images. The region around the warped image which does
not contain any information from the input image is filled with black pixels in the
actual implementation.

2.2.3. Image Warping

Image warping or geometric transformation is the process of mapping pixels from a
source image, denoted by Iin(x, y), onto a destination image, denoted by Iout(u, v)
(Wolberg, 1994; Gonzalez and Woods, 2001). The mapping is established via the so-
called warping function, denoted by its two components u = gu(x, y), v = gv(x, y)
(forward mapping) or analogously x = fx(u, v), y = fy(u, v) (reverse mapping)
(Wolberg, 1994). If the warping function is invertible, both mapping directions
are equivalent. In the following, we will assume that the warping is performed by
mapping points from the destination (output) image to points in the source (input)
image (reverse mapping). In the reverse mapping scheme, the warping function is
applied to every destination pixel in the output image to calculate the position of
the corresponding source pixel in the input image.

The warping function is typically smooth and continuous, whereas digital im-
ages are discrete in their nature. Therefore, applying an interpolation technique is
inevitable (Gonzalez and Woods, 2001). Furthermore, in the case of forward map-
ping, the destination image might suffer from “holes”, i.e. regions which were not
assigned with a value by the warping function due to quantization effects. These
holes require special treatment. This is not the case for reverse mapping which
guarantees that a value is assigned to each pixel in the destination image. For our
experiments we therefore use reverse mapping with bilinear interpolation (Gonzalez
and Woods, 2001).

2.3. Radial Basis Functions

The problem of scattered data interpolation can be stated as the problem of find-
ing a function that passes through a set of reference points and establishes a
(smooth) interpolation between these points. Formally, for a set of N data points
{~x1, . . . , ~xN |~xi ∈ Rd} and corresponding function values {y1, . . . , yN |yi ∈ R}, we
seek a function f̂ such that

f̂(~xi) = yi for i = 1, . . . , N. (2.2)

If we furthermore impose smoothness constraints on f̂ , i.e. in terms of a smoothness
functional, the functions minimizing the functional have the form (Girosi et al.,

26

2.3. Radial Basis Functions

1995)

f̂(~x) =

N∑
i=1

wiκ(~x, ~xi) +

n∑
l=0

alψl(~x)︸ ︷︷ ︸
p(~x)

, (2.3)

where κ(·, ·) denotes a so-called radial basis function (RBF) or kernel, ψl(·) is a
set of n functions, typically polynomials; hence we refer to p(~x) as the polynomial
term. Note that this polynomial term is necessary, depending on the choice of
RBF, to assure that property (2.2) holds (Girosi et al., 1995). We will only consider
kernels that require polynomial terms of degrees 0 (p(~x) = a0) or 1 (p(~x) = a0 +∑d

l=1 al(~x)l). Here, the operator (·)l returns the l-th element of its vector-valued
argument.

The coefficients wi and aj are data-dependent and can be found by solving the
linear system (Girosi et al., 1995):

(K + λI)~w + Ψ>~a = ~y

Ψ~w = ~0,
(2.4)

where (K)ij = κ(~xi, ~xj), (Ψ)li = ψl(~xi), ~w = [w1, . . . , wN]>, ~a = [a0, . . . , an]>,
~y = [y1, . . . , yN]>, and λ ∈ R is a constant. The matrix K is called kernel matrix
and must not be singular. The constant λ acts as a regularization parameter whose
choice controls the degree of smoothness of f̂ . Note that property (2.2) does not
hold for λ 6= 0.

Solving (2.4) iteratively (e.g. by conjugate gradient methods) can become infea-
sible even for a medium number of RBFs (∼ 150) because the system becomes
ill-conditioned for most RBFs (Dyn et al., 1986), which leads to a low rate of
convergence of the iterative method. Therefore, the system needs to be precondi-
tioned (i.e. the system’s coefficient matrix is pre-multiplied with an approximation
of its inverse in order to improve the conditioning of the system) in an appropriate
manner. Dyn et al. (1986) suggest numerical procedures for solving (2.4) using a
conjugate gradient approach.

For our experiments, we used a direct approach for solving (2.4) based on the
Bunch-Kaufman algorithm (Bunch and Kaufman, 1977) which is closely related
to the LDL> factorization of a matrix (Golub and Van Loan, 1996). The LDL>

factorization has the advantage that it exploits the symmetry of the matrix but
does not require positive definiteness. We observe that we can rewrite (2.4) as(

K + λI Ψ
Ψ> O

)
︸ ︷︷ ︸

A

(
~w
~a

)
︸ ︷︷ ︸

~z

=

(
~y
~0

)
︸ ︷︷ ︸

~b

, (2.5)

where all symbols are defined as in (2.4), O denotes a zero matrix of size n × n
and ~0 is the null vector of length n. This system can then be solved for ~z using the
above-mentioned method in order to obtain the RBF coefficients.

27

2. Visual Prediction by Using RBF Networks

2.3.1. Generalized Radial Basis Function Networks

The above formulation of networks of radial basis functions assumes that the num-
ber of basis functions equals the number of data points N . Such networks make
especially sense in applications where the data is gridded (which is the case for
our application). If the data is scattered and noisy, choosing a large number of
RBFs eventually leads to overfitting—i.e. the network adapts to the noise and con-
sequently does not generalize well (Bishop, 1995). Explicit regularization is one
possibility to circumvent overfitting (see previous section).

However, a more efficient solution is to employ less RBFs than data points which
leads to an implicit form of regularization which we will briefly review in the fol-
lowing. Let k < N be the number of basis function, then the network function is
of the form (Girosi et al., 1995; Bishop, 1995; Moody and Darken, 1989):

f̂(~x) =
k∑
i=1

wiκ(~x,~ci) + p(~x), (2.6)

where all symbols are defined as in (2.3), except from ~ci which denotes the i-th
RBF center. We will refer to this type of network as generalized RBF (GRBF)
network. Here, the number of RBFs controls the degree of regularization; the more
RBFs are used the less smooth f̂ becomes.

The training of such a network is a two-step procedure: in the first step the RBF
centers are determined in an unsupervised manner (e.g. by running the k-means
algorithm multiple times and choosing the best set of centers based on some error
criterion (Moody and Darken, 1989)); the second step is analogous to the standard
RBF network and involves solving a linear system. As the system in the case k < N
is overdetermined (i.e. there are more data points than RBFs), we need to employ
least-squares techniques such as the Moore-Penrose pseudo-inverse (Girosi et al.,
1995; Bishop, 1995) to calculate the weights. Note that there exist alternative,
gradient-based supervised learning techniques for determining the weights (Moody
and Darken, 1989; Bishop, 1995) which we will not address here.

A convenient way to calculate the pseudo-inverse is to use a matrix factorization
(such as the Cholesky decomposition (Horn and Johnson, 1990)) for solving the
system

(A>A+ λI)~z = A>~b, (2.7)

where A denotes the coefficient matrix, ~z the vector of unknowns, ~b denotes the
constants, and λ ≥ 0 is an (optional) regularization parameter. Note that the
matrix A>A + λI is guaranteed to be positive definite if A has full column rank.
Furthermore, the additional regularization parameter makes the network less sensi-
tive to k, the choice of the number of RBFs. It is important to note that using the
Cholesky decomposition for solving (2.7) can be numerically inaccurate because we
need to form A>A explicitly (which is not the case if the QR decomposition (Horn
and Johnson, 1990) is used), but it has the great advantage that the regularization

28

2.3. Radial Basis Functions

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0.5 1 1.5

(a)

-0.2

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0.5 1 1.5

(b)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5 0.5 1 1.5

(c)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1.5 -1 -0.5 0.5 1 1.5

(d)

Figure 2.2.: 1D profiles of different kernel functions: Gaussian (σ2 = 0.25) (a), thin
plate spline (k = 2) (b), log-kernel (β = 1, 1.5, 2) (c), and Euclidean
(β = 1) (d).

matrix λI can be easily incorporated by computing A>A + λI = RR>, where R
denotes the Cholesky factor.

In a previous article, Schenck and Möller (2007) applied a GRBF network to the
problem of visual prediction. However, we will see that the data produced by their
statistical learning approach (which serves as the training set for the network), is in
fact gridded and therefore more accurately represented by a standard RBF network.

2.3.2. Positive Definite and Conditionally Definite Kernels

The type of kernel function has a substantial influence on the interpolation f̂ .
Furthermore, the choice of kernel determines whether the system (2.4) has a unique
solution at all (Driscoll and Fornberg, 2002).

Positive Definite Kernels

The system is guaranteed to have a unique solution if the kernel function (and
consequently the corresponding kernel matrix) is positive definite, i.e.

~w>K~w > 0 ∀ ~w ∈ RN \ {~0}
⇔

N∑
i=1

N∑
j=1

wiwjκ(~xi, ~xj) > 0 ∀ wi, wj ∈ R \ {0}.

In such cases, the system reduces to (2.4, upper equation) (Micchelli, 1986).
The Gaussian kernel (cf. Figure 2.2a)

κ(~xi, ~xj) = exp

(
−1

2

‖~xi − ~xj‖2
σ2

)
,

with width parameter σ, is an example of a positive definite kernel. The width
parameter controls the smoothness of the approximation and depends on the scaling

29

2. Visual Prediction by Using RBF Networks

of the data. Note that, if σ approaches infinity, the system (2.4) becomes ill-
conditioned (Driscoll and Fornberg, 2002). Furthermore, σ depends on the spacing
of the data points and has to be chosen for each data set appropriately. We do
not go into details of how to chose σ in a supervised manner, but refer to the
corresponding literature (Bishop, 1995; Moody and Darken, 1989).

A common generalization of the Gaussian kernel, which is strictly speaking not
an RBF (because it is not a function of the Euclidean distance and is thus generally
anisotropic), is the kernel function (Bishop, 1995)

κ(~xi, ~xj) = exp

(
−1

2
(~xi − ~xj)>Σ−1(~xi − ~xj)

)
, (2.8)

where Σ ∈ Rd×d is a symmetrical and positive definite matrix whose eigenvalues /
eigenvectors determine the extension / orientation of the Gaussian surface (Bishop,
1995). This kernel is especially suited for non-gridded data which forms non-uniform
clusters, or data which are scaled differently in each dimension. Note that (2.8) is
closely related to the probability density function (pdf) of the multivariate normal
distribution with mean vector ~µ = ~xj and covariance matrix Σ.

Conditionally Definite Kernels

In the following, we will consider an extended class of kernels, namely the condition-
ally definite kernels. A kernel is called conditionally (positive) definite, if it fulfills
the following conditions (Dyn et al., 1986; Micchelli, 1986; Girosi et al., 1995):

N∑
i=1

N∑
j=1

wiwjκ(~xi, ~xj) ≥ 0 with

N∑
i=1

wip(~xi) = 0, (2.9)

where p(·) is a polynomial term as defined in (2.3). The second condition (2.9)
is enforced by the linear system through (2.4, lower equation). Although this is a
weaker form of positive definiteness, it is still guaranteed that the linear system has
a unique solution (Micchelli, 1986).

Let rij = ‖~xi − ~xj‖. The following kernel functions can be shown to be condi-
tionally definite:

• The polyharmonic or thin plate spline (TPS) kernel (cf. Figure 2.2b) (Duchon,
1976; Bookstein, 1989):

κtps(~xi, ~xj) =

{
rkij log rij k even

rkij otherwise,

where k ∈ N. For k = 2, we obtain the well-known TPS kernel r2 log r
(Bookstein, 1989). Note that the parameter k determines the degree of the

30

2.3. Radial Basis Functions

polynomial term (Girosi et al., 1995); for k = 2, 3 the polynomial needs to be
of degree 1, i.e. a linear (affine) term.

• The logarithmic or log-kernel (cf. Figure 2.2c) (Boughorbel et al., 2005):

κlog(~xi, ~xj) = log(rβij + 1)

• The power distance or Euclidean kernel (cf. Figure 2.2d) (Boughorbel et al.,
2005):

κpow(~xi, ~xj) = rβij

For the special case β = 1, this kernel leads to a piece-wise linear approxima-
tion.

All of these kernel function have in common that they do not rely on a width
parameter and are thus independent of the scaling of the data.

We are aware that there exist another widely used class of RBFs, the so called
multiquadrics which were introduced by Hardy (Hardy, 1971; Micchelli, 1986).
These RBFs share the property of Gaussian RBFs in that they also include a width
parameter which depends on the scaling of the data. As we are mainly interested
in parameter-less RBFs, we did not include multiquadrics in our tests.

2.3.3. Dual Representation

Besides their representation as a weighted sum of basis functions of the current
input ~x, in which the coefficients (weights) depend on the target outputs ~y, RBF
networks can be interpreted equivalently as a weighted sum of the target outputs yi
in which the coefficient (weights) depend on the current input (Girosi et al., 1995).

Let us consider a simplified variant of (2.3) which lacks the polynomial term,
i.e. p(~x) = 0 and let us furthermore define ~k(~x) = [κ(~x, ~x1), . . . , κ(~x, ~xN)]>, and
~y = [y1, . . . , yN]>, then we can rewrite (2.3) as

f̂(~x) = ~w>~k(~x) = ((K + λI)−1~y)>~k(~x), (2.10)

where we used explicit matrix inversion to solve the system (2.4) for ~w.
By noting that K is symmetric, and by using the identity ((K + λI)−1~y)> =

~y>(K+λI)−1, we can define ~d(~x) = (K+λI)−1~k(~x) in order to yield (Girosi et al.,
1995)

f̂(~x) = ~y>~d(~x) =
N∑
i=1

yidi(~x), (2.11)

which is called the dual representation of (2.10). Note that this result can be easily
extended for RBF networks with an additional polynomial term.

The dual representation will be used to derive the two-staged mapping model
(see Section 2.4.3) that allows for a faster image warping compared to the other
approaches reviewed in this chapter.

31

2. Visual Prediction by Using RBF Networks

2.4. Visual Forward Model

In this section we will fuse the results of the former sections in order to derive a
framework for visual prediction, termed “visual forward model”. The term forward
model stems from the field of motor control and will be used here to describe a
predictor which generates a new sensory state based on a current sensory state
and a motor command (Karniel, 2002; Schenck and Möller, 2007; Schenck, 2008).
Thus, a forward model models the characteristics of a certain plant. Note that this
interpretation is one among many others (Karniel, 2002) which is closely related
to the state observer in control theory. In our case, the plant is the camera-PTU
setup. The current sensory state is the camera image and the motor command is
described by ∆ϕ,∆θ, the changes in the setup’s pan and tilt angles.

The internal structure of the forward model is two-fold: a so-called mapping
model performs the actual prediction by warping the input image, based on ∆ϕ,∆θ;
the so-called validator model indicates if a pixel can be faithfully predicted. Pixels
that are not present in the input image, but appear in the output image if the motor
command would be executed, are classified invalid. This structure is retained from
the original implementation by Schenck and Möller (2007).

Formally, the mapping model is defined by a pair of functions f̂x(u, v, ∆ϕ,
∆θ), f̂y(u, v, ∆ϕ, ∆θ) which map each pixel of the output image Iout(u, v) onto a
pixel in the input image Iin(x, y). The validator model is a discriminator function
f̂ν(u, v,∆ϕ,∆θ) ∈ {0, 1} which returns 1 in the case that Iout(u, v) is valid (given a
certain motor command (∆ϕ,∆θ)) and 0 otherwise. Therefore, the mapping model
can be seen as a regression problem while the validator model performs a binary
classification task.

In the following, we will sketch the procedures used for data acquisition as well
as two different ways to implement the mapping model. Both methods are based
on the combination of warping of the reverse mapping type with RBF networks as
warping functions.

2.4.1. Data Acquisition

In order to establish a mapping between all pixel positions before the execution of
a motor commando and thereafter, we would in general need to compute a (dense)
visual flow field between the images taken before and after the execution of a motor
command. Computing such flow fields based on two images is rather delicate and
subjected to errors due to mismatches. For this reason, we chose a statistical
learning approach which uses a large number of before-after pairs (Schenck and
Möller, 2007; Schenck, 2008).

For the learning process, we define a Nu × Nv × N∆ϕ × N∆θ regular grid G in
the joint motor-pixel position space. Each grid point, given by the tuple (ui, vj ,
∆ϕk, ∆θl), is associated with a so-called cumulator unit Cijkl which corresponds
to the input image and is of size win × hin. For every grid position (i, j, k, l) ∈ G,
each (x, y)-position within the corresponding cumulator unit Cijkl is incremented

32

2.4. Visual Forward Model

by one if the absolute difference between the pixel intensity at the position (ui, vj)
in the output image and the intensity at position (x, y) in the input image falls
beneath a certain threshold εc. For our experiments, εc was chosen as 3.5% of the
intensity range in an individual color channel. This procedure is repeated for all grid
positions and for different initial pan-tilt pairs. After the training, all cumulator
units that correspond to valid pixels should contain clear maxima and can be used
for the training of the mapping model; invalid cumulator units are only used for the
training of the validator model. A validator unit is invalid if there is no maximum
or the maximum is lower than a pre-defined threshold.

Note that a similar algorithm can be found in the literature in the context of
uncalibrated stereo matching, where it was used to recover the epipolar geometry
between two cameras (Wexler et al., 2003).

The above algorithm results in two training sets: the set which contains samples
for the mapping model, which is given by

Tm = {(ui, vj ,∆ϕk,∆θl, xijkl, yijkl)| (i, j, k, l) ∈ G, νijkl = 1},

where νijkl is either 1 or 0, depending on the validity of the corresponding cumulator
unit Cijkl, (xijkl, yijkl) is the position of the maximum inside Cijkl, and the set which
contains samples for the validator model

Tν = {(ui, vj ,∆ϕk,∆θl, νijkl) | (i, j, k, l) ∈ G},

where, as defined above, νijkl ∈ {0, 1} indicates the validity of cumulator unit Cijkl.
For our experiments, we used a 13× 13× 11× 11-grid of cumulator units. Thus,

the training set for the validator model consisted of 20, 449 samples. The training
set for the mapping model consisted of 10, 708 samples which corresponds to the
number of valid cumulator units.

2.4.2. Full Mapping Model

In the following, the “full” mapping model corresponds to the case in which every
grid pixel position in the output image is propagated through the mapping function.
The visual forward model which was originally proposed by Schenck and Möller
(2007) falls into this category. There, the mapping model was realized by a GRBF
network with extended Gaussian kernel functions.

In GRBF networks the number of RBFs is smaller than the number of data
points. The importance of this property becomes clear if we consider the prob-
lem of scattered data: in this case it is important to impose a certain degree of
regularization on the network in order to circumvent overfitting. In our present
application, where the data is gridded, we expect that a GRBF network performs
worse than a full standard RBF network, because in the former case certain grid
points share a common RBF center. The GRBF network employed by Schenck and
Möller (2007), for example, consisted of 1500 RBFs—whereas the data set consisted
of about 11, 000 data points.

33

2. Visual Prediction by Using RBF Networks

(a) Input image (b) Output image

Figure 2.3.: Example of the two-staged mapping model. Figure 2.3a shows the
input image, Figure 2.3b shows the corresponding (warped) output
image. Valid grid points Pν are depicted as green squares in Figure
2.3b, red squares symbolize invalid grid points Pg \ Pν . Warped valid
grid points Pw are depicted as green squares in Figure 2.3a.

In this chapter, we will focus on “full” standard RBF networks, where each data
point from the training set is represented by one RBF. In this case, the associated
computational cost, which is consequently very high, becomes an important aspect.
Consider the case where the output image is 159× 159 pixels in size. Now consider
a network with ∼ 11, 000 RBFs—a realistic number for visual prediction tasks (see
Section 2.4.1). Performing a single prediction would then require the evaluation
of these ∼ 11, 000 RBFs at 25, 281 test points (i.e. pixel positions), which takes,
depending on the implementation, up to a minute on current PC hardware. Because
of this, we performed all tests using a GPU based implementation of the RBF
network evaluation / image warping which reduced the average execution time for
the above example to fractions of a second1.

2.4.3. Two-Staged Mapping Model

The high computational cost of the “full” approach, along with the possibility to
view RBF networks in the dual representation, led to the idea of the so-called two-
staged mapping model. In this model, the warping is split into a prediction network
and an interpolation network. The prediction network (first stage) transforms only a
small subset of the total pixel positions in the output image, while the interpolation
network (second stage) performs the actual image warping which does not depend
on ∆ϕ,∆θ but on the output of the first stage.

1I am very grateful to Wolfram Schenck for providing the GPU implementation of the visual
forward model.

34

2.4. Visual Forward Model

This is a computationally more efficient strategy because only the evaluation of
the prediction network (first stage) involves non-linear functions (that have to be
evaluated for each prediction), while the evaluation of the interpolation network
(second stage) corresponds to a linear transformation. Formally the first stage
corresponds to equation (2.3), and the second stage corresponds to equation (2.11),
where ~y is the output of the first stage and ~d(~x) can be pre-computed for each pixel
in the output image.

First Stage

Let Pg = {(ui, vj) | i = 1 . . . Nu, j = 1 . . . Nv} denote the set of all grid points, and

let Pν = {(ui, vj) | (ui, vj) ∈ Pg, f̂ν(ui, vj ,∆ϕ,∆θ) = 1} denote the subset of valid
points, given a motor command (∆ϕ,∆θ). Figure 2.3b shows an example image,
overlaid with the grid. Valid grid points are depicted by green squares, invalid ones
by red squares. The prediction network only maps the valid positions onto the
warped positions:

Pw = {(x, y) |x = f̂x(ui, vj ,∆ϕ,∆θ), y = f̂y(ui, vj ,∆ϕ,∆θ), (ui, vj) ∈ Pν}.

Figure 2.3a shows an example input image, overlaid with the warped points, de-
picted as green squares. Note that the unwarped (input) image contains the
warped grid points and the warped (output) image contains the unwarped (reg-
ularly spaced) grid points (which is characteristic for a reverse mapping). Fur-
thermore, the prediction network, which is used to transform the grid points, is
in principle identical to the mapping network in the “full” approach. The main
difference between the “full” approach and the two-staged approach lies in the fact
that in the latter only a few grid points are mapped by the RBF network while in
the “full” approach each pixel position is mapped.

Second Stage

The second stage, i.e. the interpolation network, is inspired by point-based im-
age warping techniques which are commonly used in the field of morphometrics
(e.g. Bookstein (1989)). In point based image warping, the image is warped such
that two sets of control points (or landmarks) are brought into accordance: the
first set of control points are (source) locations in the input image, the second set
of control points are the desired (destination) locations of these points. The warp-
ing function has thus no external parameters—in contrast to the first stage—i.e. it
maps 2D points onto 2D points.

A commonly used form of kernel function in the context of point-based image
warping is the thin plate spline (TPS) kernel; for a thorough treatment of TPS
warping, see e.g. Bookstein (1989). In our application of image warping for visual
prediction, the source control points correspond to the outputs of the prediction
network Pw and the destination points correspond to the valid grid points Pν . The
interpolation network is a standard RBF network that has to be evaluated at every

35

2. Visual Prediction by Using RBF Networks

pixel position of the output image. We observe that these positions, i.e. the network
input, do not depend on the motor command (∆ϕ,∆θ); it is only the source control
points which depend thereon. Therefore, we can use the dual representations of
RBF networks (2.11) in which the network function is a linear combination of the
outputs, i.e. the source control points, while the coefficients can be efficiently pre-
computed based on the constant inputs.

The above only holds if Pg = Pν , i.e. the motor command has no effect on
the validity of any of the grid points. This assumption only holds for small PTU
movements and is generally too strict. From (2.10) we see that the regularized
inverse of the kernel matrix and the vector ~k(~x) are the only terms that depend
on the grid points. Thus, we have to modify these terms according to the set
of valid grid points Pν . The vector ~k(~x) can be trivially modified by omitting
components that depend on invalid grid points. The inverse kernel matrix must
be modified accordingly, e.g. by a rank-o down-date, where o = |Pg| − |Pν | is the
number of invalid grid points (see Appendix A for details). Note that the down-
dating procedure leads to numerical inaccuracies and that it only makes sense to
down-date the inverse matrix by a maximum of |Pg| − |Pν | = |Pg|/2 − 1 ranks.
Down-dating the inverse by o ranks involves solving a linear system of o equations.
Therefore down-dating the inverse only makes sense if |Pg| − |Pν | < |Pg|/2; in
all other cases it is more efficient to recompute the inverse directly. We observed
during our experiments that the down-dating procedure is sensitive to the values
of (K)ij . We therefore scaled the pixel positions to lie inside the range [−1; 1] as
recommended by Barrodale et al. (1993).

Matrix Form

For the sake of completeness we shall give a detailed description of the two-staged
mapping model in its matrix form which matches the concrete implementation
that we used for the experiments. Some questions regarding the runtime as well
as which parts can be pre-computed can be understood more easily when looking
at the matrix equations. To minimize notational clutter, we will redefine some of
the symbols used in section 2.3. The matrix form allows us to evaluate the RBF
network not only at a single test point ~x∗ ∈ R2, but at multiple test points at once.

The first stage consists of an RBF network which is evaluated at the valid grid
points (u∗i , v

∗
i) ∈ Pν augmented with the given motor command (∆ϕ∗,∆θ∗). In

order to evaluate the RBF network, we must pair each element of Pν×{(∆ϕ∗,∆θ∗)}
with each element of the input part of the training set Tm by applying the RBF to
each pairing. The result of this paring is what we will call the cross-kernel matrix

(K×ν)ij = κ((u∗i , v
∗
i ,∆ϕ

∗,∆θ∗)>, (uj , vj ,∆ϕj ,∆θj)
>) i = 1, . . . , |Pν |,

j = 1, . . . , |Tm|
(2.12)

which is of size |Pν | × |Tm|.
The cross-kernel matrix is the basis for the RBF network in matrix form. From

(2.3) we see that the output of the RBF network is a weighted linear combination

36

2.4. Visual Forward Model

of the RBFs. In matrix form this linear combination corresponds to the matrix
product

Lw = K×ν Ww,

where K×ν denotes the cross-kernel matrix (2.12), Ww ∈ R|Tm|×2 denotes the weight
matrix, and Lw ∈ R|Tν |×2 contains the resulting warped grid points (i.e. what would
be the elements of Pw). The weight matrix Ww is determined in analogous fashion
to (2.5) by solving the linear system

KmWw = Lm, (2.13)

where Km ∈ R|Tm|×|Tm| corresponds to the kernel matrix of the input part of Tm,
and Lm ∈ R|Tm|×2 contains the target outputs of Tm. The elements of the matrices
are given by

(Km)ij = κ((ui, vi,∆ϕi,∆θi)
>, (uj , vj ,∆ϕj ,∆θj)

>) i, j = 1, . . . , N,

Lm =

 x1 y1
...

...
xN yN

 ,
where we defined N = |Tm|.

The second stage interpolates between the valid grid points so that every point
in the output image potentially gets a corresponding warped point in the input
image. This corresponds to evaluating an RBF network for a fixed input (i.e. the
pixel positions) while the target outputs (i.e. the outputs Lw of the first stage) are
changing according to the motor command (∆ϕ∗,∆θ∗). The dual form of an RBF
network (2.11) is used for this purpose. In matrix notation, the second stage can
be written as

LI = K×I SνK
−1
ν Lw︸ ︷︷ ︸
WI

(2.14)

= K×I WI , (2.15)

where K×I ∈ Rwout·hout×|Pg | denotes the cross-kernel matrix between all pixel po-
sitions in the output image and all grid points, whose components are given by

(K×I)ij = κ((ui, vi)
>, (uj , vj)

>) (ui, vi) ∈ {1, . . . , wout} × {1, . . . , hout}
(uj , vj) ∈ Pg.

Furthermore, Sν ∈ R|Pg |×|Pν | denotes a selector matrix (i.e. an incomplete identity
matrix) whose |Pν | columns are unit vectors of dimension |Pg| which correspond
to the valid grid points. Multiplying K−1

ν Lw (from the left) with Sν has the effect
that the rows of WI ∈ R|Pg |×2 that correspond to invalid grid points are set to
zero. K−1

ν ∈ R|Pν |×|Pν | is the inverse of the kernel matrix of the valid grid points

37

2. Visual Prediction by Using RBF Networks

(a) (b) (c)

Figure 2.4.: Extrapolation behavior of two different mapping models: (a) RBF
network using the log-kernel, (b) generalized RBF network using an
anisotropic Gaussian kernel. The latter requires a validator model (c)
in order to mask the artifacts due to erroneous extrapolation.

which is calculated from the inverse kernel matrix of all grid points K−1
g using a

down-dating procedure (see Appendix A); the elements of K are given by (Kg)ij =
κ((ui, vi)

>, (uj , vj)
>) with (ui, vi), (uj , vj) ∈ Pg. The evaluation of the second stage

results in a matrix LI ∈ Rwout·hout×2 which contains all warped (i.e. input) pixel
positions for each pixel in the output image.

From these equations, it becomes clear that most of the values, i.e. those that
do not depend explicitly on the current (∆ϕ∗,∆θ∗), can be pre-computed. The
matrices that do not depend on the numerical values of the motor command but
only depend on the validity of the grid points can be either adjusted by omitting
those components that correspond to the invalid grid points (in case of Sν) or by
down-dating strategies (in case of K−1

ν). Furthermore, by introducing the selector
matrix Sν , the “big” cross-kernel matrix K×I need not be modified. This is crucial
because even for output images of moderate size, this matrix can become very large:
for our experiments we used images of size 159×159 and a grid of size 13×13, thus
K×I is of size 159 · 159× 13 · 13. Albeit its size (which poses no problem to current
computer hardware) pre-computing K×I circumvents any evaluation of nonlinear
functions during the second stage. The whole image warping boils down to a
matrix–matrix multiplication (2.15)—or merely two matrix–vector multiplications
as WI has only 2 columns.

2.4.4. Validator Model

In general, the validator model is conceptually simpler than the mapping model
because it only has to perform a binary classification task. The validity of every
pixel in the output image needs to be checked. The validator model is used to
mask regions in the predicted (output) image which contain false information due
to erroneous extrapolation of the GRBF network. Figure 2.4b shows the complete
(unmasked) output of the visual forward model using the GRBF network; Figure
2.4c shows the corresponding mask generated by the validator model from Schenck

38

2.5. Results

and Möller (2007).

In their original publication, Schenck and Möller (2007) proposed an implemen-
tation of the validator model by a GRBF network with a large number of RBFs
(i.e. 1500). In conjunction with the two-staged mapping model, we used a simpler
3-layer feed-forward network with a hidden layer of only 48 sigmoid units and one
sigmoid output unit (Bishop, 1995) (which reflects the binary character of this clas-
sification task). The network was trained on the set of the valid–invalid samples
Tν using the back-propagation algorithm (Rumelhart et al., 1986). Note, that a
small hidden layer imposes a strong degree of regularization on the network, but
makes the validator model faster to evaluate than the GRBF network by Schenck
and Möller (2007) or a full RBF network. Figure 2.3b shows the influence of the
validator model: invalid grid points are depicted as red squares, those points are
not used for the warping and have no corresponding counterpart in 2.3a.

Furthermore, we will introduce a heuristic validator model which is used in com-
bination with the full mapping model using RBF networks. The heuristic treats
those points as invalid which are mapped to points outside a certain (valid) range,
i.e.

f̂ν(u, v,∆ϕ,∆θ) =

{
0 if (x̂, ŷ) 6∈ [1;win]× [1;hin] ∨ Iin(x̂, ŷ) 6∈ [0; 1]

1 else,
(2.16)

where x̂ = f̂x(u, v,∆ϕ,∆θ), ŷ = f̂y(u, v,∆ϕ,∆θ), and win, hin denote the width
and height of the input image. The first condition states that pixel positions which
are mapped outside the bounds of the input image should be regarded as invalid;
the second condition states that pixels whose values exceed a certain range (in our
case [0; 1]) should be regarded as invalid. The second condition is important when
working with retinal images which might already contain invalid pixels (i.e. the
black margin around the actual image, see e.g. Figure 2.3a).

One should note that this heuristic can only produce reasonable results if the
mapping function does not map points outside its valid domain onto points that
fall into the valid range. Figure 2.4a shows an example that was produced by
using a log-kernel network; black regions around the border indicate invalid pixels.
Our experiments showed that the log-kernel and the Euclidean kernel are the only
RBFs that can be used in this context. All other kernels we have tested showed an
erroneous extrapolation behavior, and lead to images akin to that shown in Figure
2.4b. Therefore, a dedicated classifier-based validator model is inevitable. So far,
we did not apply any techniques for improving the behavior of RBFs towards the
edge of the domain as e.g. described by Fornberg et al. (2002). In the following we
will term the heuristic validator model associated with a certain kernel function its
“native” validator model.

39

2. Visual Prediction by Using RBF Networks

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

Classic

Eucl. (full)

Eucl. (grid)

Gauss. (full)

Gauss. (grid)

log (full)

log (grid)

TPS (full)

TPS (grid)

no
rm

al
iz

ed
 S

S
D

Figure 2.5.: Mean values of the normalized sum of squared differences (SSD) and
standard deviations for the different kernel types used by the “full” and
the two-staged (“grid”) implementation of the visual forward model.
“Classic” stands for the GRBF network by Schenck and Möller (2007).
All models use the heuristic validator model; see text for further expla-
nations.

2.5. Results

We compare the visual forward model using the “full” and the two-staged “grid” ap-
proach with different kernel functions against the original GRBF approach (Schenck
and Möller, 2007). In order to quantify the results, we performed a large number
of simulated camera movements using an image database. The image before each
camera movement was used as input for the visual forward model; the motor com-
mand corresponding to the movement ∆ϕ,∆θ was used to drive the prediction.
Thus we can measure the difference between the “real” camera image after the
movement and its prediction by the visual forward model. We use the normalized
sum of squares error given by

ESSD =
1

Nc ·M

Nc∑
c=1

wout∑
u=1

hout∑
v=1

V (u, v) · (I(c, u, v)− Î(c, u, v))2, (2.17)

where Nc is the number of channels (in our case Nc = 3 as we are using RGB
images), wout / hout denotes the image width / height, respectively, and I is the
original camera image and Î is the prediction. Furthermore, V denotes a binary
image (mask) whose values are either 1 for valid pixels or 0 otherwise, and M is the
overall number of 1’s in V .

For better comparison of the different methods, we precomputed V for each
camera movement based on either the heuristic or the MLP validator model (see
Section 2.4.4), respectively, and used these masks in the calculation of (2.17) (if
not indicated otherwise). Furthermore, we used an efficient GPU implementation
of the “full” approach.

40

2.5. Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

Classic

Eucl. (full)

Eucl. (grid)

Gauss. (full)

Gauss. (grid)

log (full)

log (grid)

TPS (full)

TPS (grid)

no
rm

al
iz

ed
 S

S
D

Figure 2.6.: The same as Figure 2.5 except that all models use the MLP classifier
as validator model.

In order to provide rich variation in the images, we used different initial viewing
directions (ϕ, θ). The initial pan angle was varied from −35.14◦ to −1.46◦ with a
step width of 8.42◦, the initial tilt angle was varied from −23.61◦ to 2.11◦ with a
step width of 6.43◦. For each of the 25 initial viewing directions, a certain number
of motor commands was executed. The pan movement, ∆ϕ, was varied between
approx. ±29.47◦ with a step width of about 4.91◦, the tilt movement, ∆θ, was
varied between approx. ±28.94◦ with a step width of about 4.82◦. This resulted in
a 5× 5 grid of initial positions, and a (theoretical) 13× 13 grid of PTU movements
for each initial position. Motor commands that would have resulted in pan and tilt
angles outside the valid range of the PTU were excluded from the tests, amounting
to a total number of 3717 combinations.

We tested the “full” RBF mapping model and the two-staged “grid” mapping
model with the procedure described above, using the masks generated by the heuris-
tic validator model to compute the SSDs for each test position. Figure 2.5 shows
the means of the normalized SSDs along with the standard deviation for the dif-
ferent mapping models and the heuristically derived validator masks. In this case,
the validator masks are logical conjunctions of the heuristic masks (see Section
2.4.4) generated by each kernel function. A two-way repeated measures analysis of
variances (ANOVA) shows that both factors, “grid” vs. “full” and kernel type are
significant (p < 0.001), as well as the interaction between these factors (p < 0.001).
Note that albeit the standard deviations are very high (see 2.5), we still get signif-
icant results. This is due to the fact that we work with repeated measures. The
biggest part of the variance is due to the different initial positions and the camera
movements (rather than the different conditions). In repeated measures ANOVA,
these sources of variance are eliminated, hence the strong significance of the tests.
This also holds for the results of the individual t-tests in the following.

From Figure 2.5 it becomes clear that the two-staged mapping models outperform
their “full” counterparts. Therefore, we performed individual t-tests to see if the
differences are significant. The two-staged mapping model using the TPS kernel

41

2. Visual Prediction by Using RBF Networks

performs best, resulting in a mean SSD of 0.0109 (0.0088), which is significantly
different (p < 0.001) from the second best, the Euclidean kernel with a mean SSD
of 0.0110 (0.0086). The worst two-staged mapping model is the one using the
Gaussian kernel with a mean SSD of 0.0125 (0.0091) which is only slightly better
than the best “full” model, the one using the Euclidean kernel with a mean SSD of
0.0126 (0.0095), albeit this difference is only significant under the 5% level.

Furthermore, we tested the full GRBF approach by Schenck and Möller (2007)
(termed “classic”) under the same condition which resulted in a mean SSD of 0.017
(0.0141) and thus performed significantly worse (p < 0.001) than the worst “full”
model, the one using the Gaussian, that resulted in a mean SSD of 0.014 (0.0102).

The same experiment has been repeated with the MLP classifier as validator
model. For this, we precomputed the corresponding validator masks for every com-
bination of ∆ϕ, ∆θ. Note that the “full” mapping models require a full validator
mask, i.e. the validity of each pixel must be checked. Figure 2.6 shows the mean
SSDs and the corresponding standard deviations for the different kernels and im-
plementations of the mapping model, respectively.

We performed the same statistical analysis as for the heuristic validator model.
The two factors “grid” vs. “full” and kernel type are significant (p < 0.001) as well
as their interaction (p < 0.001).

The best-performing model is the two-staged mapping model using the TPS
kernel which yields a mean SSD of 0.0104 (0.0084); the second best is the two-
staged mapping model using the Euclidean kernel with a mean SSD of 0.0106
(0.0083) which differs significantly from the best (p < 0.001). The best “full”
mapping model is the one using the Euclidean kernel with a mean SSD of 0.0122
(0.0091) which differs significantly (p < 0.001) from the worst two-staged model,
the one using the Gaussian kernel, with a mean SSD of 0.0120 (0.0085).

We also tested the “classic” mapping model in this condition, which yields a mean
SSD of 0.015 (0.0101). This value differs significantly (p < 0.001) from the worst
“full” mapping model, the one using the Gaussian kernel, which yields a mean SSD
of 0.0133 (0.0093).

Finally, Figure 2.7 shows the results of the “full” mapping models with their
“native” validator models. For the “full” mapping model using the Euclidean and
the log kernel, respectively, the native validator model corresponds to the heuristic
given by (2.16). The difference between the tests presented in figure 2.5 is that, in-
stead of a logical conjunction, we only used one type of kernel (either the Euclidean
or log kernel) to generate the validator masks for the corresponding mapping model.
We only consider the Euclidean and the log kernel in this test, because they were
the only kernels that produce consistent validator masks (see the discussion in Sec-
tion 2.4.4). Note that in the case of “Classic” the “native” validator model is a
separate GRBF network with a single output, akin to the MLP classifier.

The “full” mapping / validator model using the log kernel yields a mean SSD
of 0.0132 (0.0098) and thus perfoms best. Second best is the “full” mapping /
validator model using the Euclidean kernel with a mean SSD of 0.0133 (0.0099)
which is significantly (p < 0.001) worse than the best. Apparently the ”Classic”

42

2.5. Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

Classic

Eucl. (full)

log (full)

no
rm

al
iz

ed
 S

S
D

Figure 2.7.: The same as Figure 2.5 except that all models use their “native” val-
idator model.

model model (in combination with its native GRBF validator model) shows the
worst performance, yielding a mean SSD of 0.0147 (0.0105), this result also dif-
fers significantly (p < 0.001) from the one obtained by the Euclidean mapping /
validator model.

We compared the performance of the different mapping models / kernel functions
using different variants of validator models. Note that not every combination of
mapping model / validator model makes sense in practise. For the “full” mapping
models, using the “native” heuristic validator model is the most practical choice:
its application is possible without any additional computational cost. Using a
classifier-based validator model in this context would result in checking the validity
of each pixel separately which would introduce a massive computational overhead.
The two-staged mapping models on the other hand are based on the prediction of
only a few grid points (and subsequent interpolation by the second stage). Thus
the validity of only a small number of points needs to be checked. In this case,
using a classifier-based validator model would be the most obvious choice.

Furthermore, note that the results depend on the choice of the validator model:
for the MLP-based validator model, the mean SSDs are slightly lower compared to
the heuristic one. We assume that this effect is caused by the fact that the MLP
classifier produces stricter (i.e. tighter) validator masks that cut off larger parts at
the margins of the valid portion compared to the heuristic validator model. These
margins are prone to erroneous behavior of the mapping models because they lie
close to the edge of the domain (where erratic extrapolation might occur). Thus,
tightening the validator masks results in smaller SSDs, but also reduces the size of
the predicted portion.

Figure 2.8 shows 9 different predictions, using the two-staged mapping model
(see Section 2.4.3) with the Euclidean kernel, alongside the original camera images.
Only the portions of the images that were classified as valid by the MLP validator
model (see Section 2.4.4) are shown (all other pixels are masked as black). The
center image is the basis for each prediction.

43

2. Visual Prediction by Using RBF Networks

ESSD = 0.019ESSD = 0.009ESSD = 0.018

ESSD = 0.011 ESSD = 0.017ESSD = 0.005

ESSD = 0.018ESSD = 0.008ESSD = 0.010

Figure 2.8.: Original–prediction pairs and corresponding SSDs for the 9 different
motor commands from Gtest using the two-staged mapping model in
conjunction with the Euclidean kernel and the MLP validator model.

The values of the motor commands ∆ϕ,∆θ were varied within the grid

Gtest =

{
−1

2
∆ϕmax, 0,

1

2
∆ϕmax

}
×
{
−1

2
∆θmax, 0,

1

2
∆θmax

}
,

where ϕmax/θmax denotes the maximum pan/tilt angle. Note that the position 0, 0
is also included in the comparison.

At the center position 0, 0 we see two effects: (i) there are no invalid pixels
(i.e. the validator mask consists of all ones), and (ii) the SSD between the original
camera image and the prediction is minimal (compared to all other positions). If
a pure tilt movement is predicted (i.e. ∆ϕ is fixed at 0), the SSDs remain in the
same order as at the center position. For pure pan movements (i.e. ∆θ = 0) the
SSD increases slightly. For the prediction of combined pan-tilt movements the
SSD increases even more for at least 3 positions. (Note that the SSD at the lower
left position is very small which is most likely due to the large “white” portion
in the images.) We conclude that this effect is due to the slight deviation of the
PTU from a perfect gimbal, i.e. the axes of rotation do not intersect in the ray
emanating from the entrance pupil of the camera. Therefore, the current pan and
tilt angles have a small influence on the change of the camera image when the PTU
is moved by ∆ϕ,∆θ. See the appendix in Schenck (2008) for a detailed analysis of
the kinematics of the PTU used for our experiments.

2.6. Conclusions & Outlook

The problem of visual prediction approached in this chapter is to anticipate the
effects of a camera movement on the current camera image. If the camera movement

44

2.6. Conclusions & Outlook

can be parameterized, e.g. by two relative angles, ∆ϕ, ∆τ , we can perceive the
problem as a functional mapping that maps the input image (i.e. the current camera
image) onto the new camera image after the movement using the relative angles
as additional parameters. We employ an adaptive class of functions, the so-called
radial basis function (RBF) networks, to “learn” this mapping. RBF networks are
a linear combination of non-linear kernel functions.

We presented a comparative study on the influence of the used kernel function
in an RBF network on the quality of the approximation in the context of a visual
prediction task. Furthermore, a more efficient evaluation scheme—the so-called
two-staged mapping model—was presented. The experimental results show that
the choice of kernel function has a certain impact on the quality of the prediction.
We showed that there exist alternatives to the well-established Gaussian kernel that
stem from the so-called semi-definite class of kernels. These kernels have the main
advantage that they lack a width parameter that depends on the scaling of the
data and thus would have to be estimated for the problem at hand. Secondly, the
Euclidean kernel which belongs to this class is computationally very simple since it
only depends on the Euclidean distance between data points and input weights of
the corresponding RBF network. For the visual prediction task considered in this
chapter, the Euclidean kernel even beats the Gaussian one in terms of prediction
quality.

The costly “full” mapping model, which is based on passing each pixel from
the output image through a very large RBF network, shows only a moderate im-
provement over the “classic” method proposed by Schenck and Möller (2007). A
two-staged mapping model, in which prediction of only a few anchor points and
image interpolation are decoupled, shows a better performance in terms of the pre-
diction error and in terms of computation speed. The “full” mapping model has a
complexity of MN operations, were M denotes the number of pixels in the output
image and N denotes the number of RBFs. Note that both quantities are, for the
application considered in this chapter, in the magnitude of 10 000. The “classic”
approach still has a complexity of Mk operations, where k = 1500 is the number of
anisotropic basis functions. In contrast to that, the two-staged mapping model has
a complexity of Mn+ 2Nn operations, where n� N (in our case n = 169) is the
number of grid points which means a considerable reduction of the computational
cost.

One remaining issue is the classification of the validity of grid points in the
two-staged approach. By now, we use a separate classifier—currently an MLP—
although it would be more desirable to use the information already stored in the
kernel matrix (used for the prediction stage) to perform this classification. This
would yield a kind of novelty detector which assigns a confidence value to each grid
point (based on the current (∆ϕ,∆θ)). In the context of Gaussian processes this is
known as the predictive variance (Rasmussen and Williams, 2005) or kriging error
(Dubrule, 1984) which is defined as

Var[f̂(~x)] = κ(~x, ~x)− ~k(~x)>K−1~k(~x), (2.18)

45

2. Visual Prediction by Using RBF Networks

where ~x is the test input and ~k(~x) is the cross-kernel vector between ~x and all input
weights. A data point at which the predictive variance exceeds a certain threshold
would be classified as invalid.

In contrast to the technical definition of RBF networks we use in this chap-
ter, Gaussian processes and kriging both have a sound probabilistic interpretation,
viewing the kernel function as covariance function. Thus, (2.18) can be interpreted
as variance in the strict mathematical sense. However, it is unclear if this inter-
pretation still holds if the kernel function is only conditionally positive definite.
Preliminary experiments show that Var[f̂(~x)] can be computed using these kernels
(if K is augmented in the same fashion as in (2.5)) such that it is strictly positive.
However, this statement still needs to be proven. From a computational point of
view, the complexity of computing (2.18) grows quadratically with the number of
RBF units, which amounted to ∼ 11, 000 in our experiments. In order to reduce
this effort one could use the best rank-p approximation of K which is given by
K̂ = UpΛpU

>
p , where Λp is a diagonal matrix with the p largest magnitude eigen-

values and Up the corresponding eigenvectors (as columns). Thus (2.18) becomes

Ṽar[f̂(~x)] = κ(~x, ~x)− ~k(~x)>UpΛ
−1
p U>p

~k(~x). (2.19)

Numerical experiments (not shown) suggest that this approximation imposes a reg-

ularization on Ṽar[f̂(~x)] that is controlled by p, the number of ranks used for the
approximation. It should be noted that this approximation scheme is closely re-
lated to the reconstruction error of kernel PCA which has already been successfully
applied to the problem of novelty detection (Hoffmann, 2007b).

For the “full” mapping model, a heuristic validator model which is based on
the extrapolation behavior of certain kernels, i.e. the Euclidean and the log-kernel,
can be easily incorporated. Thus, no external classifier is needed. Furthermore, in
order to practically apply the full RBF-based mapping to images of even moderate
sizes, we proposed a highly parallel GPU implementation of the RBF network.
Comparisons show that this implementation considerably reduces the execution
time of the image warping in comparison to serial (CPU) implementations. By
now, the big overhead still lies in the acquisition of training data and the “learning”
phase of the RBF network which is performed by means of solving a linear system.
Improving these two aspects will be the subject of further investigations.

There is a multitude of potential applications for a visual forward model. Vi-
sual prediction can be used, for example, for shifting an agent’s attention without
executing overt eye movements (Schenck, 2013). The “classic” method (Schenck
and Möller, 2007) has already been used in the context of extra-foveal grasping
(Schenck et al., 2011; Schenck, 2013), i.e. grasping of objects that are not fixated.
The experimental setup consists of a robot manipulator with attached gripper and
a stereo vision system with four degrees of freedom (DOF). The vision system uses
retinal images (see Section 2.2.2). In the case of foveal grasping, the cameras fix-
ate the object prior to grasping. The viewing direction of the cameras along with
some visual information (encoding the object’s orientation) are used as input to

46

2.6. Conclusions & Outlook

a motor controller. The motor controller then generates a motor command that
controls the manipulator in such a way that the object can be grasped. In the
case of extra-foveal grasping, the fixating movement of the cameras is omitted and
replaced by pure visual prediction. Using visual prediction instead of the raw unfix-
ated, extra-foveal camera views drastically improves the success rate of the graping
task (Schenck et al., 2011). So the same motor controller that has been trained on
fixated views can be used for solving the extra-foveal grasping task.

Another application is in the context of view synthesis. Here, an agent gener-
ates views of its own body (especially its manipulators) based on a set of pose
parameters. These pose parameters might relate to the body configuration and the
viewing direction. The task is to establish a mapping between these pose parame-
ters and the view of the agent. To reduce the complexity of the learning task, the
association problem, i.e. the association between the body pose and its appearance,
can be decoupled from the visual prediction task (see Kaiser et al. (2011); Schenck
(2013), and Chapter 4). This means that during the learning phase, the agent (or
its parts) always appears in a specific way, e.g. as if fixated by the camera. In
the application phase, visual prediction can be used to shift the gaze such that the
agent’s body parts appears from an arbitrary viewing direction, passing the output
of the association as input to the visual forward model.

In this chapter we reviewed efficient methods for visual prediction in a fully
adaptive framework. The adaptability has the great benefit that (besides the optic
flow induced by camera movements) the model also learns the image distortion
caused by the optical components of the camera. We showed, that the adaptive
model can cope even with strongly (retinally) warped images. In the next chapter,
we will review the problem of visual prediction from a purely geometric perspective.
We will employ an approximate geometric model of the camera–PTU assembly
which will serve as a starting point for the derivation of a geometric visual forward
model. The geometric model is computationally simpler than the fully adaptive
approach but less accurate—due to the fact that it relies on a set of pre-defined
parameters.

47

3. A Geometric Model for Visual
Prediction and Saccade Control

3.1. Introduction

In this chapter, we will put the problem of visual prediction under close scrutiny
by viewing it from a purely geometric angle. From this perspective, we will also
derive a solution to its inverse problem, i.e. saccade control. The resulting visual
forward model and its corresponding inverse, the saccade controller, represent com-
putationally efficient alternatives to their fully adaptive counterparts (see Chapter
2) and other models in the literature. The internal models that will be derived in
the following are still approximations (i.e. not perfectly capturing every aspect of a
real camera–PTU assembly), but rely on a significantly smaller set of parameters.

While the problem of visual prediction has received only little attention by
others—which may be due to its great specificity—there exists a large body of
literature on saccade control, both in the context of robotics and cognitive science
since saccade control is an important prerequisite for attention and visual percep-
tion. Thus, giving an exhausting review of existing models is difficult.

Dean et al. (1994) propose a neurally-inspired adaptive model for saccade control
based on feedback-error learning (Gomi and Kawato, 1993). In feedback-error learn-
ing, a simple feedback controller is gradually improved by an adaptive controller
which is trained on-line. Convergence to a perfect controller has been proved for
this principle (Gomi and Kawato, 1993) which is biologically plausible as well. The
adaptive model for saccade control has been tested successfully in a series of sim-
ulated robot experiments (Dean et al., 1994). Based on similar principles, Bruske
et al. (1997) devised an architecture for the control of a binocular camera head.
Their architecture has been successfully tested on a real robotic setup. Shibata
and Schaal (2001) employed feedback-error learning for a variety of oculomotor
behaviors. They also introduce the notion of retinal vision, i.e. the non-uniform
distribution of cones on the retina. They tested their controller on a stereo camera
head equipped with two cameras per eye: one for peripheral and one for foveal vi-
sion, respectively. Milighetti et al. (2011) suggest an extended gaze control scheme
that encompasses the control of the upper body as well. Considering the whole
upper body results in additional redundant degrees of freedom which have to be
dealt with. The model which they devise, (besides a feedback controller and an
adaptive controller) also comprises an adaptive Kalman filter for the prediction of
future object locations. They successfully tested their architecture on a humanoid
robot.

49

3. A Geometric Model for Visual Prediction and Saccade Control

Besides the above studies (which are mostly based on feedback-error learning),
Schenck and Möller (2004) proposed an alternative learning strategy for saccade
control (or motor control in general), termed learning by averaging, which does not
rely on a feedback controller, but is based on a “smart” choice of training examples
and the averaging behavior of feed-forward networks (i.e. the error in the training
examples is nearly averaged out). For retinally distorted images, Schenck (2013)
successfully applied direct inverse modelling (Kuperstein, 1988) for the training
of a fully adaptive saccade controller. Furthermore, a visual forward model was
employed in order to re-identify the targets under the retinal distortion. Both
approaches were successfully tested on a real robot camera head.

In the following, we will first introduce a geometric model of a single 2-DOF
robotic eye or pan-tilt-unit (PTU). Based on this model, we will devise corre-
sponding internal models for visual prediction (forward model) and saccade control
(inverse model). The internal models will be tested on a real robotic setup. Fur-
thermore, we will devise an adaptive control scheme for the saccade controller that
drastically improves its performance.

3.2. Geometric model

The starting point for the derivation of our geometric model is the assumption
that the effect on the visual content of the camera image during a PTU movement
(i.e. the optic flow) is only a function of the relative movement parameters and
independent of the initial viewing direction. This assumption has been already
made in the last chapter. Schenck has shown (Schenck, 2008) that this assumption
holds partly for the real PTU–camera assembly used for the experiments: while the
current pan angle has no influence on the optic flow resulting from a saccade, the
current tilt angle still has an effect (see Schenck (2008) for a detailed analysis).

However, in the following, we will approximate the real kinematics of the PTU
by a gimbal or spherical manipulator. The camera is modeled by a pin-hole camera
(Jaehne, 2005) whose optic center lies in the intersection of the pan and tilt axes.
Under these circumstances, the above-mentioned assumption holds.

The workspace of the gimbal (PTU) describes a sphere of radius f , the focal
length of the camera–lens system. The image plane is given by a plane tangential
to the gimbal sphere; the plane’s normal vector ~n is given by a 3D vector in spherical
coordinates, ∆ϕ,∆θ, f . Furthermore, we will restrict the image plane to a ws × hs
square region around the intersection of the image plane and its normal, where
ws and hs correspond to the physical extents of the image sensor. The coordinate
system is chosen such that the z-axis is initially (i.e. for ∆ϕ = ∆θ = 0) congruent
with the normal vector and the x- and y-axes span the image plane.

Figure 3.1 shows the main components of the model: the gimbal sphere is shown
in gray, the image plane is shown in green, and the normal vector ~n in red. The
coordinate system is located in the center of the sphere. The figure depicts the
situation in which the camera is panned by ∆ϕ = π/6 and tilted by ∆θ = π/8; the

50

3.2. Geometric model

Figure 3.1.: Geometric model of the PTU–camera assembly. The gimbal sphere is
shown in gray, the camera plane is shown in green. The plane normal
~n is panned by angle ∆ϕ and tilted by angle ∆θ.

51

3. A Geometric Model for Visual Prediction and Saccade Control

focal length is f = 0.75 in this example.

The problem of visual prediction can thus be formulated as a rotation of the
tangential image plane around the gimbal sphere, while the problem of saccade
control can be solved by computing the inverse kinematics of the model. The
resulting internal models only depend on a few parameters, i.e. f , ws and hs,
which can be either obtained from the technical specifications of the camera or
alternatively learned by a similar approach as described in Chapter 2, albeit the
choice of initial values of the parameters might be critical.

We furthermore extended our model to encompass image distortion introduced
by the lens of the optic system or artificial distortions like the retinal mapping
(see Section 3.3.3). This extension introduces further parameters whose number
depends on the chosen distortion model.

In the following, we describe the necessary steps taken for the derivation of the
geometric visual forward model and its inverse, and present experimental results in
a similar fashion to those in Chapter 2.

3.3. Visual forward model

The problem of visual prediction—i.e. modelling the effect of a camera movement
on the content of the camera image—has been treated from a learning perspective in
the previous chapter. In this section we will treat visual prediction from a geometric
point of view to gather further insights into the nature of the problem. Furthermore,
we will overcome two major shortcomings of the learning-based approach: (i) the
problem of data collection which was tackled by employing a statistical learning
approach (using cumulator units), and (ii) the problem of finding a reasonably
computationally efficient neural network that interpolates the training data during
the application phase at a good quality.

The training data for the adaptive visual forward model of Chapter 2 was col-
lected defining a grid of cumulator units in a 4 dimensional space. The aim was
to capture the forward characteristics of the camera–PTU assembly, i.e. the sparse
optic flow within the camera image for a given number of camera images. Such a
learning approach requires a large number of steps (depending on the size of the
grid) to converge. The quality of the resulting training set cannot be determined
directly. Such an assessment would require the solution of the correspondence
problem (i.e. finding homologous points in a pair of images) which, if solved, would
supersede the statistical learning procedure itself. Therefore, the training data may
already contain inaccuracies.

Once the training data is collected, a neural network model has to be fitted in
order to apply the forward model. The gridded nature of the training data lead to
the choice of using full RBF networks in this context. Full RBF networks use the
whole training set as input weights which make them computationally expensive if
the training set is large. Using only a restricted number of input weights on the other
hand leads to over-smoothing of the data and eventually to even larger inaccuracies

52

3.3. Visual forward model

of the forward model (in addition to those already present in the training set).

For complex cognitive architectures (like the model for simulated object interac-
tion, see Chapter 1)—in which visual forward models are crucial building blocks—it
is important that all sub-models are computationally tractable so that the inter-
nal simulation threads terminate in a reasonable time. These requirements jus-
tify the development of computationally simple, yet sufficiently accurate model
which are non-adaptive but still retain the main characteristics of their adaptive
counterparts—they should operate on real sensory data (i.e. images) and only use
as little knowledge about the world as possible.

In the following, we will develop a visual forward model based on the geometric
model of the camera–PTU assembly. We will derive a predictive transform for
points on the image plane, given a specific camera movement, address the problem of
lens distortion and discuss the problem of image interpolation. The final model has
the same capabilities as the adaptive forward models and can also be used on retinal
images (Schenck and Möller, 2007; Schenck, 2008). We compare its performance to
the adaptive model from Chapter 2 by performing the same experiment.

3.3.1. Transformation

Before we start can start to derive a visual forward model that transforms (warps)
the entire image, we will focus on the transformation of a single point ~p on the
image plane. We will consider relative changes of the viewing direction, referred to
as (abstract) motor commands in the following. Such a motor command is defined
by a vector ~m = (∆ϕ,∆θ)>, where ∆ϕ and ∆θ denote the relative changes of the
pan and tilt angles, respectively. Our aim is now to (i) find a transformation that
transforms ~p according to ~m, and (ii) find the projection of the transformed point
back onto the image plane.

Based on the gimbal assumption, we can safely assume that our geometric model
is independent of the current viewing direction, and always define the world coor-
dinate system such that the initial (unrotated) image plane is orthogonal to the
z-axis.

Let the point on the image plane be given by

~p =

 u
v
f

 ,

where u and v denote the position of the corresponding pixel on the image sensor (in
millimeters) and f denotes the focal length (also in millimeters. The pixel positions
can be calculate by a simple transformation (see Section 3.3.2). Alternatively one
could transform the focal length into pixel units—but this would complicate the
following calculations because the pixels on the sensor are not necessarily quadratic
but rectangular which would result in separate values of the focal length in x and
y direction.

53

3. A Geometric Model for Visual Prediction and Saccade Control

w′

f
~p

~̃p ′

x

z

u′ uO

~n

~p ′ ~o

ũ′

∆ϕ

Figure 3.2.: Perspective transform for the visual forward model (2D). A point ~̃p ′ on
the rotated image plane (green) is projected onto the unrotated image
plane (stroked). The coordinates of resulting point ~p ′ are determined
using the intercept theorem.

The PTU has two degrees of freedom, it can rotate around the y-axis (pan) and
around the x-axis (tilt) (see Figure 3.1). Therefore, the position of ~p on the image
plane after the “execution” of a motor command is given by

~̃p ′ =

 ũ′

ṽ′

w′

 = Rx(∆θ)Ry(∆ϕ) ~p

=

 1 0 0
0 cos(∆θ) − sin(∆θ)
0 sin(∆θ) cos(∆θ)

 cos(∆ϕ) 0 − sin(∆ϕ)
0 1 0

sin(∆ϕ) 0 cos(∆ϕ)

 u
v
f

 , (3.1)

where ∆ϕ and ∆θ denote the relative changes in of the pan and tilt angles.

The above equation gives the new position of ~p after a pan an tilt movement in
world coordinates. In order to calculate the optic flow (i.e. the displacement of ~p
on the image plane), we need to project ~̃p ′ back onto the initial (i.e. non-rotated)
image plane.

Figure 3.2 shows the situation in 2D: the initial image plane is shown as a dashed
green line, at distance f parallel to the x-axis. The rotated image plane is shown as
solid green line, rotated by ∆φ around the optic center (O). Point ~̃p ′ is shown on
the rotated image. The task is now to determine the unknown position u′, i.e. the
projection of ~̃p ′ onto the initial image plane. Obviously, this so-called perspective

54

3.3. Visual forward model

−50 0 50 100 150 200 250

−50

0

50

100

150

200

250

Figure 3.3.: Example for the geometric visual forward model: Input image (left),
sparse optic flow field (middle), interpolated output image (right).

transform can directly be derived from the intercept theorem by observing that

w′

ũ′
=
f

u′

⇔ u′ =
f ũ′

w′
.

We can now extend the 2D case to 3D by observing that v′ = f ṽ′

w′ , and formulate
the perspective transformation for the geometric visual forward model which is
given by

~p ′ =

 u′

v′

f

 =

 f ũ′

w′
f ṽ′

w′

f

 , (3.2)

where u′ and v′ denote the position of pixels u and v on the image plane after a
camera movement. The optic flow vector (from source to destination point) for
a given motor command ~m can now be computed by ~o = (u, v)> − (u′, v′)> (see
Figure 3.2). Furthermore, we see that the optic flow is independent of the depth
of the scene—i.e. the world coordinates of ~p ′—which is an inherent property of the
underlying geometric model (gimbal: no translation).

Figure 3.3 (middle) shows an example of an optic flow field for a combined pan
and tilt movement. The field was generated by transforming every pixel of the
image sensor by the visual forward model. However, only a 12 × 12 grid of the
whole (dense) flow field that describes the translation of each pixel in the image is
depicted.

3.3.2. Interpolation

In the last section we have derived a visual forward model based on the geometric
model of the camera–PTU assembly. The forward model allows us to compute the
desired optic flow for points on the image plane (i.e. the image sensor) for a given

55

3. A Geometric Model for Visual Prediction and Saccade Control

camera movement. In order to apply this forward model to a digital image, we need
to transform the pixel coordinates of the image into position on the image plane
(the sensor frame) and employ an interpolation scheme to warp the whole image.

The first step is necessary to ensure that the pixel coordinates are given in the
same unit as the focal length (in this case millimeters)—which is a crucial param-
eter of the geometric model. If we assume that the image is sufficiently principal
point corrected (i.e. the principal point lies in the image center), we can apply the
following transformations:

u =
wS uI
wI − 1

− wS
2

v =
hS vI
hI − 1

− hS
2
,

(3.3)

where wS / hS denote the sensor width / height (in millimeters), wI / hI de-
note width / height of the image (in pixels) and uI / vI denote the discrete pixel
coordinates. The inverse transformation is trivial.

Now we are able to compute the mapping for a given motor command, i.e. com-
puting ~p ′ for every pixel in the output image. The resulting mapping can be applied
by using a suitable interpolation scheme. For our experiments, we used the function
remap from the OpenCV library (Bradski, 2000), and chose the bicubic interpola-
tion method (Hou and Andrews, 1978). Note that the choice of the interpolation
method is uncritical here, since the optic flow is nearly linear and does not result in
drastic magnifications which would require more advanced interpolation techniques.

Figure 3.3 shows an example of the visual forward model: the source image (left)
is warped according to the optic flow field (middle) which results in the destination
image (right). Note that the shown flow field only depicts a 12 × 12 subset of all
flow vectors.

The adaptive visual forward model described in Chapter 2 consists of two sub-
models: the mapping model (for image warping) and the validator model. The task
of the validator model is to mask out pixel that do not have a corresponding partner
in the source image (and are thus not predictable). This was a necessity, because
the RBF networks (especially the Gaussian RBFN) tend to behave erratically in
regions without valid training data which leads to erroneous extrapolations. This
problem is not an issue for the geometric forward model; the invalid pixels are always
mapped beyond the extents of the source image which can be easily detected as
in the heuristic validator model (see Chapter 2). Therefore, there is no need for a
dedicated validator model.

3.3.3. Image Distortion

So far, we assumed that the camera images are free of geometric distortions and ne-
glected the fact that most real cameras incorporate lenses to focus the light. Lenses
always lead to geometric distortions within the images (Jaehne, 2005). The adap-
tive visual forward model described in Chapter 2 is immune to such distortions,
because it not only learns the optic flow of camera movements but also captures

56

3.3. Visual forward model

distortion visual FWM undistortion

motor command

output

pixel pos.

input

pixel pos.

Figure 3.4.: Extended visual forward model. Output pixels are distorted before
transformed by the geometric forward model. The resulting input pixels
are undistorted by the inverse distortion model.

the distortion characteristics of lens. We used retinally distorted images to demon-
strate the feasibility of the adaptive approach even in the context of highly distorted
images. A drawback is the fact that the training data (and thus the model) insep-
arably contains information on the optic flow and the distortion. This leads to the
disadvantage that the whole data set needs to be collected anew when the distortion
model of the lenses changes.

In the following we will extend the geometric forward model to account for image
distortions. Instead of changing the model itself, we will augment it by suitable
auxiliary modules that transform the pixels according to a given distortion model.
Figure 3.4 shows the structure of the extended model: the output pixel is distorted
(reverse mapping) so that the output image has the same distortion as the input
image, then the geometric visual forward model is applied, finally the input pixel
is undistorted.

There exist a plethora of distortion models for different lens types (e.g. Fryer and
Brown (1986); Barreto et al. (2009)) and corresponding toolboxes (e.g. Bouguet
(2008); Barreto et al. (2009)) that allow the user to estimate the distortion co-
efficients for a specific camera. Basically all of those models provide transforms
for distortion and (more importantly) undistortion. Therefore, they can be conve-
niently used in combination with the geometric forward model. However, we will
only consider the retinal mapping which is used by the cognitive architecture de-
scribed in this thesis. This enables us to compare the performance of the geometric
forward model to the results obtained in Chapter 2.

The retinal mapping is given by an equation that maps the radius of the polar
coordinate of any output pixel (leaving the polar angle unchanged, φin = φout)
(Schenck and Möller, 2007; Schenck, 2008):

rin = (1− λ)rout + λrγout, (3.4)

where λ = 0.8 and γ = 2.5 throughout this thesis, and the output coordinates are
normalized such that rout ∈ [0,

√
2]. In our current setting, this equation would be

the content of the distortion module in Figure 3.4. Defining the undistortion module
as the identity, we would yield a visual forward model that takes undistorted camera
images as inputs and produces retinal images as output. Such an asymmetric model
would not be of great use. Our goal is a model that also works on retinal images
as inputs.

57

3. A Geometric Model for Visual Prediction and Saccade Control

input
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

r in

rout

distorted

undistorted

Figure 3.5.: Input image (left), the distortion (red curve, middle) and approxima-
tion of the undistortion function (green curve, middle), and two exam-
ples of the distortion and undistortion, respectivly (right).

Unfortunately, Equation (3.4) cannot be inverted analytically to obtain the undis-
tortion model. Therefore, we have to find a sufficiently exact approximation to the
inverse. We chose a polynomial of degree 7 as an interpolant. The training points
for determining the polynomial coefficients were calculated by inverting (3.4) nu-
merically on the interval [0, 1.5] (1501 training points, step size 0.001). We used
the Nelder-Mead downhill-simplex method, implemented in the Matlab function
fminsearch. The polynomial coefficients were determined by the function polyfit.
Figure 3.5 (middle) shows the distortion function (in red) alongside the polynomial
approximation of its inverse (in green) The resulting undistortion is very accurate
(Figure 3.5, right bottom).

We now have everything in place to implement a symmetric visual forward model
(as depicted in Figure 3.4) that takes retinal images as inputs and produces retinal
images as output. Thus, the geometric visual forward model mimics the character-
istics of the adaptive model presented in the previous chapter, i.e. it uses retinal
images as inputs and generates retinal images as outputs.

3.3.4. Results

In what follows, we will quantitatively asses the performance of the geometric visual
forward model. We repeat the same experiment as in Chapter 2. This allows us to
directly compare the results those obtained for the adaptive visual forward model
in the previous chapter.

We will briefly recapitulate the main steps of the experiment. The goal of the ex-
periment is to compare the predicted images generated by the visual forward model
to real images of a scene under different viewing directions. The camera images are

58

3.3. Visual forward model

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

geometric RBF

no
rm

al
iz

ed
 S

S
D

Figure 3.6.: Mean normalized SSD of 3717 post-saccadic image comparisons and
corresponding standard deviations. The plot shows the results for the
geometric and an RBF-based forward model.

recorded by the real camera–PTU setup. During the course of the experiment, the
PTU is moved along a grid of initial viewing direction. For each viewing direction,
the camera takes an image, the so-called pre-saccadic image, which serves as input
for the visual forward model. Based on the initial viewing direction, the PTU exe-
cutes a number of saccades (see Chapter 2). The corresponding motor commands
are used to generate the predicted post-saccadic images. These predicted images
(which correspond to the output of the visual forward model) are compared against
the real post-saccadic images taken by the camera.

As a similarity measure, we use the normalized sum of squared differences (SSD)
error. In order to be consistent with the adaptive visual forward model, the output
images of the geometric forward model were cropped to a 159×159 region around the
center prior to the computation of the SSD. During the experiment, a total number
of 3717 comparisons were made. Figure 3.6 (left) shows the mean normalized SSD
over all image comparisons and the standard deviation as error bar for the geometric
forward model.

Figure 3.6 (right) also shows the results for an RBF-based adaptive forward
model, in this case the two-staged approach using the Euclidean kernel in both
stages (see Chapter 2). In comparison to the geometric model, the RBF-based
model performs better. This may be due to the fact that the adaptive model is
still an approximation and contains parameters that are not exact (i.e. the size of
the image sensor and the focal length. Furthermore, we assume that the camera
images are perfectly undistorted which does not hold. We only considered the
retinal distortion which is dominant. The adaptive forward model on the other
hand captures the image distortion in its entirety (i.e. lens distortion and retinal
mapping). Still, the results suggest that for most applications (e.g. image matching)
the geometric visual forward model performs sufficiently well.

59

3. A Geometric Model for Visual Prediction and Saccade Control

Figure 3.7.: Geometric model for saccade control. The gimbal sphere is shown in
gray, the camera plane is shown in green. The position vector ~p ∗ of the
target pixel (u∗, v∗) is also shown in green.

60

3.4. Saccade Control

3.4. Saccade Control

The problem of saccade control is conceptionally simpler than visual prediction,
but can be derived from the same geometric model. The reason for this is that
we have only the target location as input and the corresponding fixation motor
command as output. The problem of saccade control can be seen as an inverse to
visual prediction. In terms of internal models, the saccade controller is thus an
inverse model or motor controller.

In this section we will derive a geometric saccade controller for the gimbal ap-
proximation of the PTU. This controller is the exact inverse of the visual forward
model. That means that we can use both models in combination to generate perfect
simulated fixated views. However, when the saccade controller is used on the real
PTU, its performance is unsatisfactory, because the real PTU–camera assembly
deviates from an ideal gimbal. Therefore, we will augment the basic geometric sac-
cade controller with an adaptive correction network which yields a higher saccadic
accuracy.

3.4.1. Geometric Saccade Controller

The starting point for the derivation of the geometric saccade controller is depicted
in Figure 3.7: the image plane is orthogonal to the z-axis. The task is now to rotate
the image plane such that the target point ~p ∗ (depicted as a blue square in Figure
3.7) lies in the image center. This means that we have to determine the pan and
tilt angles such that the normal vector ~n becomes collinear to the position vector
of the target point.

The position vector to the target point is given by ~p ∗ = (u∗, v∗, f)>. It follows
from straight trigonometry that the two angles ∆ϕ,∆θ can be obtained by:

∆ϕ = atan2(u∗, f),

∆θ = asin

(
v∗√

u∗2 + v∗2 + f2

)
,

(3.5)

where u∗ and v∗ denote the position of the target pixel on the sensor, and f denotes
the focal length (all values in millimeters).

The resulting angles define an abstract motor command ~m = (∆ϕ,∆θ)> that
can be either used to control the real PTU, or used in combination with the visual
forward model.

In order to use the saccade controller on digital images, we have to transform the
target coordinates according to Equation (3.3). Furthermore, a distortion model
can be easily incorporated: the target position has to be distorted to yield the
corresponding undistorted coordinates which can then be used as inputs to the
controller. The reason why we have to apply the distortion rather that the undis-
tortion function is that the distortion is considered to be implemented as a reverse
mapping.

61

3. A Geometric Model for Visual Prediction and Saccade Control

far target

near target

initial position near target far target

Figure 3.8.: Example for the geometric saccade controller. The two targets marked
by a green and blue circles in the leftmost image are fixated: The near
target can be fixated accurately (middle image); the far target is not
fixated accurately (right image).

Figure 3.8 shows two example fixations using the geometric saccade controller
with the real PTU. The leftmost image depicts the scene as seen from the initial
viewing position. The target positions for the fixation are marked by green and
blue circles. The saccadic motor command for the fixation of the near target is
quite accurate (Figure 3.8, middle). However, the saccadic accuracy is low for the
far target (Figure 3.8, right), i.e. the target object is not fixated accurately. Note
that both targets were fixated from the initial viewing direction. This example sug-
gests that the geometric saccade controller is too crude to generate accurate motor
commands for far targets while it works rather accurately towards the image center.
The reason for this behavior is that the geometric model is only an approximation
of the real PTU since it neglects the influence of the current viewing direction.

In the following, we will investigate an extension of the geometric controller that is
homogeneously accurate over the whole extents of the image. Instead of modifying
the underlying geometric model, we augment the controller by an adaptive corrector
module. The resulting model is closely related to neurophysiological findings in
primates.

3.4.2. Adaptive Controller

The basis for the adaptive controller is a neurophysiological model of saccadic ac-
curacy in primates (Dean et al., 1994). The model incorporates circuits located in
various areas of the brain (Scudder et al., 2002). The most important role plays the
superior colliculs which directly receives visual input from the retinae (Dean et al.,
1994; Scudder et al., 2002) and encodes the target position in retinotopic coordi-
nates. Based on these information, the superior colliculus generates appropriate
saccadic motor commands. These motor commands (which are “place” encoded)
are sent to the brain stem which is in charge of controlling the eye muscles (via
motor commands that are “rate” encoded) (Dean et al., 1994; Fuchs et al., 1985;
Scudder et al., 2002).

62

3.4. Saccade Control

pixel pos.

target saccade
controller

copy

camera

position

+

correction
network

motor

commandcommand (crude)

motor +

correction

Figure 3.9.: Extended saccadic control scheme. The geometric saccade controller
generates a (crude) motor command for a given target position. A copy
of this motor command is sent to the adaptive corrector network. The
resulting correction motor command is added to the crude command
to yield the final (accurate) motor command.

Experiments show that these motor commands issued by the superior colliculus
are rather crude (Dean et al., 1994). Therefore various various authors suggest
that circuits located in the cerebellum are correcting these crude motor commands
in order to achieve a higher degree of saccadic accuracy (Dean et al., 1994; Noda,
1991). The cerebellum does not directly receive visual input from the retinae.
It rather recieves the output of the superior colliculs (as an effernce copy) and
kinesthetic information on the viewing direction (Dean et al., 1994; Noda, 1991).
The output of the cerebellar circuit is sent to the brain stem where it modulates
the burst generator that controls the eye muscles (Dean et al., 1994; Scudder et al.,
2002). The cerebellar circuit is adaptive in the sense that saccadic accuracy is
learned during the infancy and maintained throughout the entire life (i.e. it adapts
to changes due to the weakening of the eye muscles) (Dean et al., 1994).

Dean et al. (1994) suggest a computational model for the learning of saccadic
accuracy based on these neurophysiological findings. This model is based on a P-
type controller that generates crude saccadic motor commands that are corrected
by an adaptive cerebellar mechanism. They successfully tested their model on a
simulated robot. In the following, we will extend our geometric saccade controller
based on a modified variant of Dean et al.’s (1994) model: instead of a P-type
controller we employ the geometric saccade controller for the generation of crude
motor commands that are subsequently corrected by an adaptive network.

Figure 3.9 depicts the components of the adaptive saccade controller. The ge-
ometric controller plays the role of the superior colliculus in converting retinal
(target) positions to motor commands. In our model, we do not make a distinc-
tion between “place” and “rate” encoded motor commands. Here, we stick to the
notion of abstract motor commands that are given by ~m = (∆ϕ,∆θ)> and encode
the relative change in viewing direction. The adaptive cerebellar circuit is repre-
sented by an artificial neural network that receives the crude motor command ~m
and the current viewing direction ~v0 = (ϕ0, θ0)>. The corrective motor command

63

3. A Geometric Model for Visual Prediction and Saccade Control

~mc = (∆ϕc,∆θc)
> is already in the same representation as ~m and may thus be sim-

ply added. There is no need for a brain stem because of the high level of abstraction
at which we consider the problem.

Furthermore, our model is not learning on-line. The learning and application
phases are strictly decoupled. Therefore, we do not need to incorporate an error
signal into the scheme. As a consequence of this simplification our model is able
to learn, but not to maintain saccadic accuracy (which is only important if the
oculomotor system undergoes morphological changes). This constraint has merely
practical reasons, because the main aim of this chapter is to investigate models that
can be readily used as building blocks for complex cognitive architectures and need
a minimum effort in their implementation. Also note that on-line algorithms tend
to converge at lower rates compared to their off-line counterparts. Furthermore,
maintaining saccadic accuracy is not an issue because we can assume that the PTU
does not undergo any morphological changes.

In the following, we will devise a proper learning strategy for the corrector net-
work. The underlying assumption for the collection of the training data is that the
geometric saccade controller is sufficiently accurate towards the image center. We
will present a detailed description of the corrector network and its implementation.
Finally, the collected training data will be used for a thorough error analysis of the
geometric controller and to compare the results to those obtained by the adaptive
saccade controller.

Data Collection

For the collection of training data we use the same database of images that we
have already used for the training and evaluation of the adaptive visual forward
model (see Chapter 2). The database was captured using the real PTU–camera
assembly at a fine resolution. The scene that the robot is facing contains colored
wooden bricks located on the surface of a table. These bricks make up excellent
targets whose position within the image (center of gravity) can be determined with
minimum effort.

We exclusively work on retinal images. This decision does not pose a restriction,
because the corrector network does not directly receive sensory information and is
thus invariant under the used distortion model.

The data collection process for the corrector network can be summarized as
follows:

1. the PTU is moved to a random initial viewing direction ϕ0 i, θ0 i (Figure 3.10,
far left)

2. the retinal camera image is color-segmented; the color is chosen at random
from the set {red, green, blue, yellow} (Figure 3.10, second from left, color
blue)

3. a random segment is chosen as fixation target (purple frame)

64

3.4. Saccade Control

view before target before view after target after

Figure 3.10.: Example of the data collection process. The panel shows the views
of the scene before and after the saccade along with the correspond-
ing segmented (binary) images. The target is highlighted by purple
frames.

4. the (crude) fixation motor command ∆ϕi,∆θi is computed using (3.5)

5. the fixation command is executed (Figure 3.10, second from right)

6. the post-saccadic view is segmented and the distance of the segment closest
to the image center ei =

√
(uIi − cu)2 + (vIi − cv)2, where (uIi, vIi) denotes

the post-saccadic target position and (cu, cv) denotes the image center (both
in retinal image coordinates), is calculated (Figure 3.10, far right)

7. the correction saccade ∆ϕc i,∆θc i is calculated applying (3.5) to the post-
saccadic target position

Note that we use the geometric saccade controller to calculate the correction sac-
cade, thereby transforming the (off-centered) post-saccadic target position from
sensory into motor space. This approach is based on the assumption that the
geometric controller is sufficiently accurate towards the image center.

The above procedure is repeated N = 10 000 times; the resulting training set
is given by T = {(ϕ0 i, θ0 i,∆ϕi,∆θi, ei,∆ϕc i,∆θc i)}Ni=1. The post-saccadic error
ei has been included for evaluation purposes only and will not be used in the
application phase of the corrector network.

The training process is fairly simple and does neither require sophisticated image
processing nor advanced learning strategies like direct inverse modeling (DIM) (Ku-
perstein, 1988). This is the great benefit of the crude geometric saccade controller
that already provides a usable fixation of the target. Former attempts of learn-
ing saccade controllers from scratch (i.e. without using a crude controller) relied
on target re-identification based on correlation-based measures (e.g. Schenck and
Möller (2004)). Those correlation-based measures most likely fail on retinal images
(Schenck, 2013). Therefore, Schenck (2013) proposed a learning strategy based on
DIM in combination with a visual forward model for this task. Their approach
is computationally demanding, albeit fully adaptive (i.e. it does not require prior
knowledge on the geometry of the PTU or the image distortion model).

65

3. A Geometric Model for Visual Prediction and Saccade Control

Network Structure and Training

In the following, we will give a detailed description on the structure and training
of the corrector network. We chose a network of radial basis functions (RBF) for
the interpolation of the training points T . In the context of visual prediction we
already examined that key features of RBF networks (see Chapter 2).

The input part of the network is given by vector ~x = (ϕ0, θ0,∆ϕ,∆θ)
>, where

ϕ0, θ0 denote the angles of the initial viewing direction and ∆ϕ,∆θ denote the
crude saccadic motor command generated by the geometric controller. The network
generates outputs, given by vector ~y = (e,∆ϕc,∆θc)

>, where e denotes the post-
saccadic error, and ∆ϕc,∆θc denote the correction motor command. Note, that
the post-saccadic error is only used for evaluation purposes and not necessary for
the application of the corrector model within the saccade controller.

The complete network function is given by (Beatson et al., 2001):

~fcorr =
k∑
i=1

~wout
i

∥∥∥∥∥∥∥∥


ϕ0

θ0

∆ϕ
∆θ

− ~win
i

∥∥∥∥∥∥∥∥
2

+ ~a0 + ~a1ϕ0 + ~a2θ0 + ~a3∆ϕ+ ~a4∆θ, (3.6)

where ‖ · ‖2 denotes the (Euclidean) 2-norm, ~win
i ∈ R4 denote the input weights,

and ~wout
i ,~aj ∈ R3 denote the output weights and the polynomial coefficients, re-

spectively. We chose k = 100 for all experiments.
The input weights were determined by running an on-line variant of the k-means

algorithm (MacQueen, 1967) on the 4D input portion of T , with Tmax = 30 000
training steps. The output weights and polynomial coefficients were determined by
solving the linear equation system (Beatson et al., 2001)

A>AW = A>Y, (3.7)

where

A =

(
K U>

V 05×5

)
, (K)ij = ‖~xi − ~win

j ‖2,

U =

[
1 · · · 1
~x1 · · · ~xN

]
, V =

[
1 · · · 1
~win

1 · · · ~win
k

]
,

W =
[
~wout

1 · · · ~wout
k ~a0 · · · ~a4

]>
, Y = [~y1 · · · ~yN 03×5]>.

We used the QR-decomposition for solving (3.7) for W . Note that from the def-
inition A = QR it directly follows (from the orthonormality of Q) that A>A =
R>Q>QR = R>R (Golub and Van Loan, 1996), so (3.7) reduces to RW = Q>Y—
which can be efficiently solved since R is triangular.

After the input and output weights have been determined, the corrector network
(3.6) can be used as sketched in Figure 3.9. In the next section, we will analyze
the spatial error distribution of the crude controller using the additional network
output fe. Furthermore, we will compare several results for the crude controller to
corresponding results obtained using the adaptive controller.

66

3.4. Saccade Control

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
0

5

10

15

geometric controller

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
0

5

10

15

adaptive controller

Figure 3.11.: Spatial error distribution over the extent of the retinal image for the
geometric (left), and adaptive (right) saccade controller. The x- and
y-axes are given in pixels; the blue borders correspond to the invalid
regions of the retinal images.

3.4.3. Results

In the following, we will focus on the accuracy of both the geometric and the adap-
tive saccade controller. We will analyse two important aspects of the controllers,
namely the spatial error distribution, and the overall saccadic accuracy. We will
furthermore give a visual impression of the saccadic accuracy by reconstructing the
spatial positions of the training targets from their corresponding viewing directions.

Spatial Error Distribution

The example saccades (Figure 3.8) executed by the crude controller suggest that
it becomes less accurate towards the peripheral part of the image. This suggestion
lead to the assumption that, in order to generate more accurate saccades, the crude
geometric controller may be applied twice—to perform the initial crude saccade,
followed by a small correction saccade (based on the post-saccadic target position).
This application scheme has been used in the in the data collection process for the
corrector network.

Now that we have a large amount of data, namely in form of the training set T ,
we can perform a more thorough analysis of the accuracy of the crude controller.
We will start by analyzing the spatial distribution of the post-saccadic error, i.e. the
distance between the target’s centroid and the image center after the initial (crude)
saccade. In the previous section, we already mentioned that the corrector network
has an extra output fe for that purpose.

The starting point of the spatial image analysis is to define an arbitrary initial
viewing direction ϕ0, θ0. We chose a viewing direction from which all targets are
visible. In the next step, we generate the spatial error maps. For this, we iterate
the whole retinal image and use the geometric model to generate a fixating motor
command for each pixel position within the image. This motor command, along
with the initial viewing direction, is used as input for fe, the error part of the

67

3. A Geometric Model for Visual Prediction and Saccade Control

 0

 2

 4

 6

 8

 10

crude corrected
m

ea
n

po
st

-s
ac

ca
di

c
er

ro
r

[p
ix

el
s]

Figure 3.12.: Mean post-saccadic target distance and corresponding standard devi-
ation (as error bars) for the geometric (left) and the adaptive (right)
saccade controller.

corrector network, resulting in an interpolated error value for each pixel position.
As a result, we get a spatial map of errors in which each pixel position corresponds
to the post-saccadic error that would occur if this position is fixated.

Figure 3.11 (left) shows the result for the geometric controller: as expected,
the error becomes gradually lower towards the image center. This supports our
claim that the geometric controller performs accurately if the target is already
located close to the image center, but the accuracy declines gradually towards the
image periphery. The reason for this effect is that the geometric model is only
an approximation of the true PTU–camera assembly that deviates from a perfect
gimbal.

We repeated the data collection process (see Section 3.4.2) once again for the
adaptive controller. This time, we collected N = 1000 training examples. Again,
we fitted an RBF network (using the same parameters as before) to these data.
The newly trained RBF network predicts the post-saccadic error for the corrected
saccadic motor command. Figure 3.11 (right) shows the corresponding spatial error
distribution. The overall error is low and distributed homogeneously throughout the
whole image. The high peaks at the corners may be either due to a lack of training
examples in these areas, or may be caused by noise in the segmented images.

Saccadic Accuracy

Based on the training set T , we can easily determine the overall post-saccadic target
error which is a good overall performance measure in the context of saccade control.
In order to be consistent with the data collected using the adaptive controller, we
have randomly drawn M = 1000 samples from the training set T . Thus both
samples have the same size.

We computed the mean post-saccadic error and the corresponding standard de-

68

3.4. Saccade Control

goal view crude saccades corrected saccades
(training set)

corrected saccades
(RBF network)

Figure 3.13.: Reconstruction of target positions from training set T . The goal view-
ing direction depicting the real targets and various reconstructions are
shown. See text for details.

viation. Figure 3.12 shows the results. As expected, the crude geometric con-
troller (left) performs worse than its adaptively corrected variant (right). Both,
mean post-saccadic error and the corresponding standard deviation is higher for
the purely geometric controller.

Spatial Reconstruction of Target Positions

In the following, we will once more analyze the effect of correcting the saccadic
motor commands generated by the geometric controller. In this experiment, we
will employ the geometric visual forward model to reconstruct the spatial location
of each target in the training set T . The result shall serve as a visual impression
of the increase in quality gained by the adaptive saccade controller.

The underlying assumption is that each target is characterized by a unique view-
ing direction ϕ∗i , θ

∗
i . This viewing direction can be easily computed by adding

the initial viewing direction and the motor command for the fixation saccade:
ϕ∗i = ϕ0 i + ∆ϕi, θ

∗
i = θ0 i + ∆θi. Moving the PTU to this viewing direction would

result in the corresponding target object appearing roughly in the image center.

Our goal is now to visualize as many object positions as possible. Therefore, we
chose another viewing direction ϕ1, θ1, called the goal direction, that corresponds
to a view showing as many targets as possible. Figure 3.13 (far left) shows the
scene from the goal direction we have chosen for the purpose of reconstructing the
target positions.

We now have the target viewing direction ϕ∗i , θ
∗
i and the goal viewing direction

ϕ1, θ1, as well as the information that the target is roughly located in the image
center cu, cv when gazed upon. This information is sufficient to compute an esti-
mation of the pre-saccadic target position. We compute first compute the saccadic
motor command from target to goal direction, given by

∆ϕ∗i = ϕ∗i − ϕ1 = ϕ0 i + ∆ϕi − ϕ1

∆θ∗i = θ∗i − θ1 = θ0 i + ∆θi − θ1.
(3.8)

69

3. A Geometric Model for Visual Prediction and Saccade Control

Using ∆ϕ∗i ,∆θ
∗
i and cu, cv as inputs for the geometric visual forward model, we

can now compute the pre-saccadic target position u∗i , v
∗
i . We expect that, if the

saccade controller works perfectly, each target is represented by a single point.
However, because of the low accuracy of the geometric visual forward model, each
target is represented by a cloud of points (see Figure 3.13, second left).

If we employ use the correction motor commands from the training set, we get
the following motor commands for the visual forward model:

∆ϕ∗c i = ϕ0 i + ∆ϕi + ∆ϕc i − ϕ1

∆θ∗c i = θ0 i + ∆θi + ∆θc i − θ1.
(3.9)

As expected, the corrections tighten the point clouds drastically (Figure 3.13, sec-
ond right). Instead of using the corrections from the training set, we can also apply
the corrector network for this purpose: the results are shown in Figure 3.13 (far
right). The variance of the point clouds is only slightly larger than for the corrected
data from the training set. This effect may be due to the fact that the RBF net-
work uses a layer of k = 100 internal units (in contrast to the N = 10 000 training
examples). Therefore, the network is regulated and is not able to exactly reproduce
the training data. But regularization is also important for a network to generalize
(i.e. make correct predictions for data points not included in the training set).

3.5. Conclusions

A geometric model of the camera–PTU assembly has been developed. The PTU is
modelled as a perfectly spherical manipulator. The model resets on the assumption
that the current viewing direction has no influence on a relative movement of the
PTU (i.e. a change in viewing direction).

Based on this model we devised a visual forward model. The visual forward
model predicts the optic flow within the camera image for a given motor command.
Furthermore, we incorporated a distortion model to account for retinal distortions.
The geometric forward model is therefore equivalent to the adaptive visual forward
model described in Chapter 2.

However, experiments have shown that the geometric visual forward model per-
forms worse than its adaptive variant. The reason for this may be due to the fact
that the parameters of the geometric model are only approximations and the real
PTU–camera assembly deviates from a perfect gimbal. Furthermore, the distortion
model does account for the retinal mapping, but neglects the distortion underlying
the camera images which are due to the lens system.

Although we did not compare the execution times of the geometric and adaptive
models, we are certain that the geometric model is computationally much simpler.
This assumption is based on the fact that the involved equations are much sim-
pler. Therefore, the geometric forward model represents a computationally efficient
alternative to the adaptive model.

70

3.6. Outlook

We furthermore investigated a restricted inverse problem of visual prediction,
namely saccade control. The problem is restricted in the sense that the saccade
controller generates motor commands that always lead to the fixation of a specific
target location. (The full inverse would require an arbitrary goal position as an
additional input to the controller.)

The resulting geometric saccade controller is computationally simple and follows
from straight trigonometry. Preliminary results on the PTU showed that the sac-
cadic motor commands are rather crude—i.e. not resulting in accurate saccades.
We therefore devised an extended controller, based on neurophysiogical findings,
that results in accurate saccades over the whole extent of the image, i.e. for every
possible target position.

The two internal models developed in this chapter represent computationally
efficient alternatives to their more advanced adaptive counterparts. Yet both mod-
els perform in a satisfactory manner and can be used within complex cognitive
architectures.

3.6. Outlook

The presented geometric model represents a coarse approximation of a real PTU
neglecting several aspects of the kinematics. As a result of this, the model relies on
a considerably lower number of parameters. Incorporating more parameters (like
the offset between the pan and tilt axes) would theoretically increase the precision
of the derived forward and inverse models.

However, putting too much prior knowledge into the model would strip it off of
any biological plausibility. Therefore, most authors fall back to fully adaptive mod-
els that are based on universal approximators (like neural networks). These models
rely on training data; the higher the input dimension and the more parameters
the model is based on, the higher the number of training examples needed. Fur-
thermore, depending on the problem, advanced learning schemes need to be used.
In some cases, the training process is cut short by falling back to computational
methods like collecting training points on a grid or by using the inverse kinematics.
These short-cuts simplify the collection of training data, but the prior knowledge
enters “through the back door”.

The approach we followed in the context of saccade control is almost perfectly
in line with findings from neurophysiology. An imperfect controller is supported
by an adaptive corrector to generate near-perfect saccades. This scheme is easily
applicable to the problem of saccade control, but would most like fail on the problem
of visual prediction. In that case the corrector would have to learn the error for every
pixel in an image which cannot be determined unless the correspondence problem
can be solved in that case. Therefore, the learning would turn out computationally
demanding.

The correction scheme for saccade control has also two main drawbacks. The
main issue is that the corrector has been trained off-line. This can be easily over-

71

3. A Geometric Model for Visual Prediction and Saccade Control

come by training the corrector after every saccade by determining the post-saccadic
target position and generating a purely covert (internal) fixation command (using
the crude controller) that serves as target input to the corrector. The initializa-
tion of the corrector is crucial in this scenario since it should initially not decrease
the performance of the controller any further. Another issue is the combination
of the crude and the corrective motor commands. We used a simple summation
because in our model, both commands are given in the same units (i.e. angles). In
the biological model (Scudder et al., 2002; Dean et al., 1994), the two signals are
coded differently and are integrated inside the brain stem. We can circumvent this
problem by claiming that our model resides on a higher level of abstraction and
justify its existence in the need for precise models for robot control.

72

4. An Associative Model for Mental
Imagery1

4.1. Introduction

Mental imagery is the process of generating internal sensory experiences and impres-
sions of motor activity without actual sensory inflow and without motor activity.
Humans are obviously capable of recalling sensory experiences even in a willful
manner. These sensory experiences may relate to changes in visual scenes caused
by the execution of covert motor commands (e.g. walking through an environment)
or may just be a recall of previously perceived sensations. Neuroimaging studies
suggest that cortical areas which are involved in the processing of perceived stimuli
are also active during mental imaging (Kosslyn et al., 1993). A similar finding sug-
gests that motor areas are used for executed as well as covert actions (Jeannerod,
1995).

In this chapter we suggest an artificial neural architecture which enables an agent
to generate mental views of parts of itself based on the values of a set of postu-
ral variables and motor commands. The agent might use these mental images to
identify itself (or parts of itself) in its current view. This form of “self-awareness”
becomes important when the agent starts interacting with objects or with other
agents: The self-aware agent is able to discriminate portions of the visual input
(e.g. pixels) that belong to the objects it interacts with from portions that belong
to its own body.

In the following, we will consider a stationary agent which consists of an arm with
an attached two-finger gripper and a stereo camera head. The mental imagery is
restricted to views of the gripper based on (a) the arm posture and (b) the current
gaze direction. Thus, we can model the generation of a mental image as a mapping
from parameter space into image space—a process commonly termed view synthesis
in the literature (Jägersand, 1997).

The field of view synthesis can be divided into two main branches; image synthesis
methods are based on models of the scene whereas morphing approaches use one
or more images of the scene which are morphed into a new view. A special case
of the latter is image warping which transforms one input image based on a set of
parameters (Glasbey and Mardia, 1998).

1This chapter is an extended version of the two conference papers Mental Imagery in Artificial
Agents (Kaiser et al., 2010a) and A Model Architecture for Mental Imagery (Kaiser et al., 2011)
which represent snapshots of the presented work at different stages.

73

4. An Associative Model for Mental Imagery

Î Î ′

Prediction

pose param.
Kinesthetic

Association

Visual

Association

Visual

saccade

gripper

viewing dir.
viewing dir.

− +

Figure 4.1.: Model architecture for mental imagery: views of the gripper are gen-
erated by visual association given an arm posture; these views appear
as seen from a common gaze direction, the gripper viewing direction
(image ~̂ı). After the visual prediction step, the view is in accordance
with the desired viewing direction (image ~̂ı′).

Typically, image synthesis requires a precise geometrical model of the scene,
e.g. a CAD model. While such a model can be acquired for artificial applications,
it seems very unlikely that this form of representation is used in biological brains.
Appearance-based view synthesis (Jägersand, 1997) does not require an explicit
model; the model is rather “learned” directly from provided image data. The view
(i.e. an image) is parameterized by an appearance vector whose dimensionality is
much lower than the number of pixels in the original image. For our application,
the objective is now to establish a mapping from postural parameters onto the
appearance vector.

Image warping (Glasbey and Mardia, 1998) is a general term referring to a class
of methods that involve the mapping of pixel positions in one image plane onto an-
other. Schenck and Möller (2007) describe a visual forward model (see also Chapters
2 and 3) which takes as input the current view and predicts an image as it would
appear after a given saccade, i.e. a change in gaze direction. Thus, the synthesized
view only contains information already present in the input image, but “warped”
according to the new gaze direction.

In this chapter we present a method that combines image synthesis with image
warping. A robotic agent equipped with a stereo camera head and a serial manipu-
lator with an attached two-finger gripper learns to associate a certain arm posture
and gaze direction with the corresponding view of its gripper. Here, the image
synthesis part—termed visual associative model—takes as inputs the joint angles of
the manipulator and returns the corresponding image of the gripper. These images
always appear as if the gaze is directed towards the gripper. To generate views of
the gripper from arbitrary gaze directions, we employ a visual forward model which
is used to warp the image of the current view according to a given saccade. The
saccade is generated from the desired gaze direction and the gaze direction that
would fixate the gripper. Thus we furthermore require a model—the kinesthetic
associative model—which associates an arm posture with a gaze direction such that
the gripper is fixated.

74

4.2. Robotic Agent

Figure 4.1 depicts a sketch of the overall model architecture. The kinesthetic pose
parameters (defined by the joint angles of the manipulator) and a desired viewing
direction constitute the input of the model. The pose parameters are used to drive
the two sub-models for visual and kinesthetic association, generating a synthesized
view of the gripper (fixated) and the corresponding viewing direction. The kines-
thetic association can be conceived as a transformation from arm coordinates to
head-centered coordinates. The gripper-centered and the desired viewing direction
are combined to form a saccadic motor command. Finally, a visual forward model
(see Chapters 2 and 3) is used to warp the synthesized gripper view according to
the saccadic motor command. This approach enables the model to generate views
of the gripper for a given joint angle configuration, viewed from an arbitrary di-
rection. Recently, Schenck (2013) gave a brief description of the overall model (see
Figure 4.1).

In the following, we will briefly describe the robotic agent and the necessary
constraints of the arm postures. Furthermore, we will derive a learning scheme
for the visual and kinesthetic association models. The visual forward model has
already been described thoroughly in the last two chapters.

4.2. Robotic Agent

The robotic agent used throughout this study resembles roughly the upper torso of
a human: it consists of a camera head with two cameras, each mounted on a pan-
tilt unit (PTU), and a 6-degrees-of-freedom serial manipulator with an attached
two-finger gripper. The cameras are mounted above the arm. The whole assembly
faces a table which, in our experiments, only serves as a background.

4.2.1. Vergence Model

In Chapter 3 we have already studied the control of a single camera mounted on
a pant-tilt unit (PTU). In this chapter, we will focus on the control of a binocular
camera–PTU assembly which consists of two cameras, each mounted on an indi-
vidual PTU. Instead of regarding both PTUs individually, we will employ a model
in which the individual gaze directions are coupled.

We denote the individual gaze directions by ~vl/r = (ϕl/r, θl/r)
>, where ϕl/r, θl/r

denote the left/right pan and tilt angles, respectively. The so-called vergence model
(Schenck, 2008) is a convenient way to describe the binocular viewing direction us-
ing the coupled parameters ϕ, θ, vh, vv, where ϕ, θ denote the coupled pan and tilt
angles, and vh, vv denote the horizontal and vertical vergence values, respectively.
The vergence values are abstract quantities that are related to the horizontal / ver-
tical vergence angles, i.e. the horizontal / vertical angles between the cameras. For
the control of the PTUs, the transformation from coupled to individual parameters

75

4. An Associative Model for Mental Imagery

is given by (Schenck, 2008):

ϕl/r =
ϕ± 0.25 (vh + 1)

1.5
,

θl/r =
θ ± 0.2vv

1.2
,

(4.1)

Note, that Schenck (2008) requires the angles not to be given in radians but in
normalized values in [−1, 1]. Following this notion, −1 corresponds to the minimum
and 1 the maximum pan/tilt angles of the PTU. Thus, pan and tilt are scaled
differently (as most PTUs have different ranges for pan and tilt).

The vergence model is biologically more plausible than coding the gaze directions
of both PTUs independently (Mays, 1984). Furthermore, additional depth infor-
mation is implicitly encoded in the horizontal vergence value: fixations in the near
result in smaller horizontal vergence values (i.e. the cameras are rotated towards
each other), while fixations in the distance result in greater values (i.e. the angle
between the camera axes approaches 0◦).

4.2.2. Arm Postures

The agent is equipped with a robot manipulator with six rotatory degrees of free-
dom. The joint angles will be denoted by ψ1, . . . , ψ6. The manipulator can be
decoupled into arm (joints 1–3) and wrist (joints 4–6). Thus, its inverse kine-
matics (IK) can be calculated in closed form by kinematic decoupling (Spong and
Vidyasagar, 2008). Note that this computation is just a short-cut which is required
to speed up the collection of a large sample of training data. We will only use IK
solutions that correspond to elbow-down configurations of the manipulator.

The manipulator is equipped with a two-finger gripper. The longitudinal axis of
the gripper is always kept parallel to the ground plane while its orientation about
the vertical axis is constrained to three different angles, i.e. α ∈ {0◦, 15◦, 30◦}.2

4.3. Kinesthetic Association

The kinesthetic associative model directs the agent’s gaze towards the center of
its gripper by associating an arm posture (i.e. a tuple of joint angles) with a gaze
direction (i.e. pan, tilt, and horizontal/vertical vergence values). Thus, the model
performs a transformation of arm-related to head-related coordinates.

The purpose of this model is two-fold: during the training of the visual associative
model it is used to collect training images of the gripper for different arm postures.
In the application phase, the corresponding arm posture is used to generate saccades
which are then used to drive the visual prediction via the visual forward model.

The kinesthetic associative model is implemented by an adaptive neural net-
work. We chose a multilayer perceptron (Rumelhart et al., 1986) with 6 inputs

2At an orientation of 0◦, the gripper is pointing straight away from the cameras.

76

4.3. Kinesthetic Association

(corresponding to the 6 joint angles), a hidden layer with 40 units, and 4 outputs
(corresponding to the pan, tilt and the horizontal/vertical vergence values). Linear
activation functions were used for the output layer and a sigmoid function (tanh(·))
for the hidden layer. The training data was collected by approaching points within
a regular grid of end effector coordinates. The cameras were controlled by a ver-
gence controller (Schenck, 2008) such that the gripper was fixated at every grid
point.

We chose an adaptive solution to this problem, although we are aware that there
exists a simple engineering solution based on camera calibration and the inverse
kinematics of the camera head. However, we think that using an adaptive approach
here is more appropriate for a biologically oriented model like ours.

In the following, we will first describe the vergence controller that plays an impor-
tant role during the collection of training data. We will then outline the procedure
for training data collection and describe the training of the neural network.

4.3.1. Vergence Control

The vergence controller is similar to the monocular saccade controller described in
Chapter 3: its role is to direct the gaze of the cameras towards a salient object such
that it appears in the center of the two camera images. We employ a feed-back
controller for this task.3

In terms of control theory, the reference input corresponds to the coordinates
of both image centers, the system inputs are the pan, tilt and vergence values,
and the measured output is the centroid of the salient object in image coordinates
(separately for both cameras). Thus, the measured error is the deviation between
the coordinates of the image centers and the centroid in the left and right camera
image.

We chose to use a simple P-type (proportional) feed-back controller, whose gain
matrix has been determined heuristically. The time-discrete controller equation is
given by (Schenck, 2008):

∆ϕt
∆θt

∆vh t
∆vv t


︸ ︷︷ ︸

∆~vt

=


−1

2 0 −1
2 0

0 −1
2 0 −1

2
1
2 0 −1

2 0
0 1

2 0 −1
2


︸ ︷︷ ︸

G


∆xl t
∆yl t
∆xr t
∆yr t


︸ ︷︷ ︸

~et

,

~vt+1 = ~vt + ∆~vt

(4.2)

where ∆~vt denotes the change in gaze direction (i.e. the vergence motor command),
G denotes the gain matrix, and ~et is the current error vector containing the devia-
tions between the image centers and the centroids of the salient object for the left
and right camera image, respectively. Note that the image coordinates are scaled

3Note that the adaptive saccade controller described in Chapter 3 had not yet not developed at
the time this study was conducted.

77

4. An Associative Model for Mental Imagery

−100

−50

0

50

100

150

200

250

440

460

480

500

520

540

560

580

600

620

−700

−600

−500

Figure 4.2.: 3D grid of gripper positions and trajectory of the gripper during the
collection of training points. Figure only depicts the data for the grip-
per orientation of 0◦. Axes are given in millimeters.

to be in the range [−1, 1], therefore point (0, 0) corresponds to the image center.
Furthermore, ~vt denotes the current viewing direction and ~vt+1 denotes the viewing
direction after one control step.

The PTU is controlled iteratively (starting from an initial viewing direction ~v0)
by converting the coupled viewing direction ~vt+1 into individual pan and tilt angles
using Equation (4.1). The iteration is terminated if the errors dropped to at least 1
pixel in each direction. The terminating criterion was necessary in order to prevent
oscillations of the controller.

Note that the iterative control scheme requires an image processing step at each
time step t in order to determine the error vector ~et. This is in contradiction
to physiological findings; fixation movements are usually ballistic open-loop move-
ments, i.e. they do not rely on visual feed-back during their execution. However,
generating accurate fixation movements using a real camera–PTU assembly requires
precise knowledge of the underlying inverse kinematics and the camera calibration.
The vergence controller is an auxiliary module that is only needed for the collection
of training data. Therefore, we decided to use the simple feed-back controller for
this task.

4.3.2. Collection of Training Data

For the training we defined a rectangular workspace of size 150 mm × 120 mm ×
300 mm that was sampled by a 7× 6× 15 regular grid. Thus, the distance between
adjacent grid positions is approximately 20 mm in each direction. The whole grid
was sampled for each gripper orientation α ∈ {0◦, 15◦, 30◦} separately. The six joint
angles were calculated from the Cartesian coordinates using inverse kinematics (IK).
From the 8 theoretically possible IK solutions of the given arm only those belonging
to a specific family (i.e. elbow down) were selected. Furthermore, a collision detector
was used in order to avoid collisions of the arm with itself or its environment; if a
collision was detected the corresponding position was skipped.

78

4.3. Kinesthetic Association

During the training the gripper held a salient tracking target. We used a small
styrofoam sphere attached to a fiberglass rod. The sphere was dyed red so that it
could be easily detected in the camera images. The gripper held the target such
that it appear above the fingers. The rod was placed approximately at the end of
the gripper tips. During the training, the target was fixated, using the vergence
controller, at every position within the spatial grid.

The procedure for data collection can be summarized as follows:

1. The inverse kinematics is evaluated for the grid position (xi, yi, zi).

2. From the 8 possible joint angle configurations, the elbow-down configuration
is chosen.

3. The collision detection is queried for the selected configuration.

4. If the configuration is collision-free, the arm is moved; else i← i+ 1; goto 1.

5. The gripper tip is fixated using the vergence controller.

6. The training example is added to the training set Tkin ← Tkin ∪ {(~ψi, ~vi)}.

7. i← i+ 1; goto 1.

The procedure is repeated for all values of α separately. Due to the collision de-
tection, the actual number of approached grid points deviates from the theoretical
number (630) for the different orientations: 0◦ (583), 15◦ (483), 30◦ (335). The
resulting training set Tkin = {(~ψi, ~vi)}Ni=1 contains pairs of joint angle configuration
and corresponding viewing directions.

Figure 4.2 depicts the spatial training grid and the trajectory of the gripper for
the orientation α = 0◦. Some of the grid points that are close to the table are not
reachable without causing collisions and are thus excluded. This is mainly due to
the constructional characteristics of the robotic manipulator. See Appendix B for
the trajectories that correspond to all three gripper orientations.

4.3.3. Neural Network and Training

The task now is to fit an interpolating function to the training set Tkin. We chose
a multi-layer perceptron (MLP) for this task. The network function is given by

~fkin : R6 → R4

~fkin

(
~ψ
)

=

k∑
i=1

~w out
i tanh

(
~ψ> ~w in

i + bini

)
+~b out, (4.3)

where ~w out
i ,~b out ∈ R4 denote the output weights and biases, and ~w in

i ∈ R6, bini
denote the input weights and biases. We chose a hidden layer of size k = 40.

The network was trained using the 1381 training samples from Tkin. We used
the off-line training method resilient propagation (RProp) (Riedmiller and Braun,

79

4. An Associative Model for Mental Imagery

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

Training set

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

MLP interpolation

Figure 4.3.: Reconstruction of gripper positions for all arm poses in the training
trajectory on the image plane based on the training set (left), and the
trained MLP (right); x- and y-axes are given in pixels.

1993). In contrast to standard back-propagation (Rumelhart et al., 1986), RProp
uses an heuristic to adjust the weight vectors (instead of using the gradient directly)
which leads to faster convergence. Furthermore, the total number of patterns was
divided into a training set (70%), and disjoint test and validation sets (both 15%).
If the error on the validation set did not decrease for 200 epochs, the training
was terminated (early stopping). The early stopping criterion should prevent the
network from over fitting the data and yield a smooth regularization. Before the
training, the weight vectors have been initialized with small values such that the
sigmoid functions are not driven into saturation (LeCun et al., 1998).

In order to give a visual impression of the training set and the MLP smoothing, we
project the viewing directions onto the image plane. A similar technique has been
used in the context of the adaptive saccade controller in Chapter 3. The output
part of the training set Tkin contains viewing directions that fixate the gripper at
every grid point. Thus, the gripper is located in the image center. Theses viewing
directions are now used to generate saccadic motor commands

∆ϕ∗l/r i = ϕl/r i − ϕ1

∆θ∗l/r i = θl/r i − θ1,
(4.4)

where ϕl/r i, θl/r i denotes the individual viewing direction (calculated by the ver-
gence model) of each PTU, and ϕ1, θ1 denotes the destination viewing direction.
The destination viewing direction was chosen roughly to point towards the center
of the workspace.

These saccadic motor commands, along with the coordinates of the image center
were used as inputs for the geometric visual forward model (see Chapter 3) to
predict the gripper position within the image as seen from the desired viewing
direction ϕ1, θ1. Thus, we can project the gripper trajectory onto the image plane.

80

4.4. Visual Association

modelpose param. reconstructed image

...
...

ψn

ψ1

g ◦ f

g(·)f(·) ~̂a
PCA−1ANN

Figure 4.4.: Model architecture for visual association.

Figure 4.3 (left) shows the trajectory for α = 0 as seen from the left camera.
The plot was generated by transforming the 583 training points and connecting
consecutive points by lines for better display. The training points appear unevenly
distributed and the trajectory is rough. The jitter in the training set is most likely
caused by inaccuracies of the vergence controller; the controller tolerates deviations
of 1 pixel in each direction. Furthermore, the target is tracked by computing the
centroid (or center of gravity) of the tracking target inside the images. This tracking
is inaccurate due to noise within the camera images.

In order to compare the training set to the output of the trained model, we used
5830 test points that were generated by linear interpolation between consecutive
training points (joint angle configurations) from Tkin. The test points were trans-
formed into corresponding viewing directions by applying the MLP ~fkin. The re-
sulting viewing directions were then transformed into the image plane as mentioned
above. Figure 4.3 (right) shows the result of the MLP interpolation; individual test
points are omitted from the plot. The resulting trajectory is much smoother than
the training set which is due to the regularization by the MLP. Furthermore, the
MLP seems to generalize well, i.e. it produces a smooth trajectory based on the
interpolated inputs.

By using this technique, we get a full visualization of the (high dimensional)
training set: Figure 4.2 corresponds to the input and Figure 4.3 corresponds to
the output part. A thorough visualization of the all gripper orientations and both
PTUs (left and right) can be found in Appendix B.

4.4. Visual Association

We now turn to the problem of visual association. Generally, the task of visual
association is to generate views of the agent (or specific parts thereof) based on a
tuple of postural variables. In our case, the so-called visual associative model takes
the posture variables—i.e. the joint angles ~ψ—as input and returns the correspond-
ing (fixated) view of the gripper. We will employ an adaptive approach for this
problem in which the model is learned by presenting a set of example images.

Image data is usually high-dimensional (depending on the resolution of the im-
ages) which would require a large associative network. For this reason, we propose
a two-stage architecture for this task (see Figure 4.4): the posture variables are first
associated with low-dimensional appearance vectors which are then decoded to form

81

4. An Associative Model for Mental Imagery

the corresponding images. Thus, the problem boils down to the sub-problems of
finding a low-dimensional representation of the images (in terms of appearance
vectors), and that of learning an association between postural variables and the
low-dimensional appearance vectors.

Seeking a low dimensional representation for the gripper images seems reasonable,
because it is most likely that they reside inside a small sub-space of relatively low
dimensionality within the image space. We use the well-known principal compo-
nent analysis (PCA) (Jolliffe, 1986) to compute the low dimensional gripper space
and for transforming the images into appearance vectors and vice versa. PCA is a
linear—i.e. it is assumed that the data reside on a linear low-dimensional subspace—
yet convenient method for dimensionality reduction. It has the great benefit that it
provides a forward (encoding) as well as an inverse (decoding) function. Most recent
techniques for dimensionality reduction only provide a forward function—i.e. from
high-dimensional into low-dimensional space—which is extremely helpful for visu-
alization purposes but only of little use for visual association. Here, we are mainly
interested in reconstructing images from their low-dimensional representation.

The association between the joint angles and the appearance vectors is performed
by a three-layer feed-forward network with linear output units and sigmoid hidden
units akin to the network topology for kinesthetic association. After the data
collection, the images are transformed into appearance vectors which served as
targets for the network training. During the application phase, the images are
reconstructed from the network output by applying the inverse PCA transformation
to the network output, i.e. the estimated appearance vector for a given arm posture,
see Figure 4.4.

In the following, we will describe the necessary steps for the derivation of the
visual associative model. We will start by giving a brief description of an efficient
method for the computation of the PCA of image data, the so-called eigenfaces
(Turk and Pentland, 1991) or generally eigen-images approach. We will furthermore
describe the procedure for data collection and the image processing steps, and finally
we will take a look at the structure of the associative network and its training.

4.4.1. Eigen-Images

PCA is a procedure for computing a linear mapping from a high dimensional data
space into space of lower dimension. In our case, the high dimensional space is the
space of images. The main characteristic of the PCA mapping is that it retains
the maximum possible variance for every projection direction. Furthermore, the
projections are mutually uncorrelated.

In our case, the high-dimensional input space corresponds to the images we seek
to associate with their corresponding postural variables, and the low-dimensional
output space corresponds to the space of the appearance vectors. Let an image be
denoted by vector ~ı ∈ RM , where M = w · h denotes its overall number of pixels,
then its appearance vector is given by ~a = V >p (~ı−~̄ı). Here Vp ∈ RM×p is a projection
matrix with orthonormal columns and with p�M , and ~̄ı is the mean image. If Vp

82

4.4. Visual Association

is chosen such that the elements of ~a are mutually uncorrelated and the variance
Var[ai] is maximized, then the elements of ~a are the principal components of ~ı.

The classical approach to determine Vp is to compute the eigenvectors of the data
covariance matrix, ordered by the magnitudes of their corresponding eigenvalues
(Jolliffe, 1986). The p dominant eigenvectors, i.e. those that correspond to the p
largest eigenvalues, are then arranged as columns into matrix Vp.

In the case of images, computing the M ×M covariance matrix is prohibitive.
Furthermore, we observe that the covariance matrix has only a maximum rank of
N . Therefore, we can apply a computational trick that enables us to determine all
eigenvectors V without computing the explicit covariance matrix. Note that there
is a plethora of efficient approaches which are based on the adaptive learning of
the principal eigenvectors. These approaches also circumvent the explicit calcula-
tion of the covariance matrix, and are mostly derived from Hebbian learning rules
(e.g. Möller and Könies (2004); Oja (1982)). The adaptive methods rely on critical
parameters, e.g. the learning rate and the number of time steps, which need to be
carefully chosen. Therefore, we chose to use a classical numerical approach that is
easier to handle.

Let X = [̃~ı1 . . .~̃ıN]> ∈ RN×M denote the data matrix of all N images, where
~̃ık = ~ık − ~̄ı denotes the k-th mean-centered image. Then the projection can be
calculated by performing an eigen-decomposition of the N ×N implicit covariance
matrix XX> = UΛU>, and computing Ṽ = X>U . Normalizing the columns of Ṽ
yields the desired V (Turk and Pentland, 1991).

Proof

We will prove this relation in terms of the singular value decomposition (SVD)
of the data matrix X4. Let X = USV > denote the “compact” SVD (Golub and
Van Loan, 1996), where U ∈ RN×N is the matrix of left singular vectors, V ∈ RM×N
is the matrix of right singular vectors, and S = diag(σ1, . . . , σm) ∈ RN×N contains
the N non-zero singular values. The singular values are all positive (σi > 0) and
ordered (σi ≥ σj∀j > i). Furthermore, the matrices U and V have orthonormal
columns, such that U>U = V >V = I.

From the orthogonality of the singular vectors, it directly follows that

Č = XX> = US2U>

(N − 1)C = X>X = V S2V >,

where C ∈ RM×M denotes the large rank-N explicit covariance matrix and Č
denotes the significantly smaller N × N implicit covariance matrix. The above
equations are directly related to the eigen-decompositions of C and Č: U are the
eigenvectors of Č and V the eigenvectors of C. Furthermore S2 = Λ are the
corresponding eigenvalues.

4Another proof is given by Turk and Pentland (1991).

83

4. An Associative Model for Mental Imagery

Using these relations, we can easily prove the eigenfaces equation:

X>U = V SU>U = V S = Ṽ .

We see that the resulting matrix Ṽ corresponds to the right singular vectors of
X (i.e. the eigenvectors of C), scaled by their corresponding singular values. It
furthermore follows that the desired matrix V can thus be calculated by normalizing
the columns of Ṽ as claimed above.

Compression and Reconstruction

The eigen-image approach represents a method for the lossy compression of images.
We assume that the images lie on a low dimensional manifold within the high
dimension image space. This assumption only holds if the images share common
characteristics like images of faces, handwritten digits—or in our case grippers. In
this case, we only need to calculate a small number of the eigenvectors of Č, namely
those that correspond to the p largest eigenvalues.

The resulting appearance vectors are of dimension p and can be determined by
multiplying the vectorized mean-centered image~ı by V >p , the matrix containing the
first p eigenvectors:

~a = V >p
(
~ı− ~̄ı

)
. (4.5)

The approximate inverse transformation is given by a linear combination of the
eigen-images:

~̂ı =

p∑
i=1

ai ~vi + ~̄ı

= Vp~a+ ~̄ı.

(4.6)

Equation (4.6) is basically a two-layer feed-forward network with linear activa-
tions. The weights are determined numerically, based on the eigen-decomposition of
the covariance matrix, rather than a learning rule. Furthermore, the reconstruction
error is a quantitative measure for the compression quality. A low reconstruction
error indicates a good choice of p.

The reconstruction error of a single image ~ı is defined by

Ereco =
∥∥∥~̂ı−~ı∥∥∥2

=
∥∥∥VpV >p (~ı− ~̄ı)+ ~̄ı−~ı

∥∥∥2
.

(4.7)

The compression formula (4.5) is only of significance for the training of the visual
associative model. It will be used during the training to obtain the appearance
vectors from the actual views of the gripper. The reconstruction formula (4.6)
however is a crucial building block of the final model: In Figure 4.4 it is depicted
as PCA−1 and will be used to synthesize the fixated views of the gripper.

84

4.4. Visual Association

camera image

HSV

⇒
mask

⇓

gripper image
⇓

gripper image (retinal)

Figure 4.5.: Example for the collection of training examples. The gripper is located
in the center of the camera image (left). A small region around the
center is cut out and separated from the background (right). The
resulting gripper image is warped by the retinal mapping to yield the
final training image (bottom right).

4.4.2. Data Collection and Image Processing

In the following, we will outline the data collection procedure of the visual asso-
ciative model and the image processing steps that were carried out prior to the
computation of the eigen-images. The image processing is very crucial, because in
order to compute the eigen-images, we need to segregate the gripper precisely from
the background in the recorded camera images.

The data collection is conducted in an analogous fashion to Section 4.3.2. This
time, the gripper fingers are in an open position as it would be before grasping. We
use the same spatial grid of positions as for the kinesthetic associative model. For
each grid point, the inverse kinematics is used to calculate the corresponding joint
angles and the arm is moved to this position. The previously trained kinesthetic
associative model then generates a gaze direction such that both cameras fixate the
gripper. The PTUs are moved and the camera images are stored.5

The original 240 × 240 camera images were cropped to a small 45 × 35 region
around the image center where the gripper is located. The gripper is then extracted
from the background based on color information. We convert the images into the
HSV color space for this purpose: the gripper moves above a white table which has
low saturation values in HSV space. Therefore, we can generate “gripper masks”
by applying a threshold operation to the images. The resulting masks were used
to extract the gripper. The resulting gripper images are converted to gray-scale
images and warped by the retinal mapping (see Chapters 2 and 3). Thus, the
resulting images have a resolution that is higher in the central part of the image

5For the results presented in this chapter, only the left camera is used.

85

4. An Associative Model for Mental Imagery

λ1 = 22.35 λ2 = 7.15 λ3 = 5.04 λ4 = 3.19 λ5 = 1.77

λ6 = 0.95 λ7 = 0.71 λ8 = 0.54 λ9 = 0.50 λ10 = 0.43

Figure 4.6.: The 10 principal eigen-images and the corresponding eigenvalues. Note
that the pixel values were scaled to be in the range [0, 1].

and lower towards the periphery (fovea effect). Figure 4.5 depicts the essential
image processing steps.

The resulting retinal images are of size 85 × 69 pixels; their dimensionality is
thus M = 5865. We repeated the above procedure for all three gripper orientations
resulting in a total number of N = 1401 training images. These training images
are used to compute the corresponding appearance vectors which will be used as
training examples for the visual associative network.

4.4.3. Appearance Vectors and Network Training

The appearance vectors are computed as described in Section 4.4.1. Here we use a
number of p = 10 eigen-images. The average reconstruction error, i.e. the deviation
between the original images and their reconstructions, amounts to<Ereco>M= 3.47.
Figure 4.6 shows the 10 principal eigen-gripper images alongside their corresponding
eigenvalues. The eigenvalues decay nearly exponentially; the 10th eigenvalue is
already around 98% smaller than the first one. This indicates, that the first few
eigenvectors capture most of the variance which in turn implies that only a small
number of them is needed to reconstruct the gripper images reasonably well.

The visual associative network has a similar structure as the kinesthetic asso-
ciative model (i.e. a 3-layer topology). We chose a relatively large hidden layer,
consisting of l = 100 sigmoid units. A training pattern is a pair (~ψi,~ai), consisting
of an arm posture ~ψi ∈ R6 and the appearance vector of the corresponding gripper
view ~ai ∈ R10; the total number of such patterns is N = 1401. For the training we
use the RProp algorithm with early stopping.

The network function for the visual association looks similar to Equation (4.3),
albeit the output weights are of the dimension of the appearance vectors. We can
furthermore incorporate the PCA reconstruction into the network. As we already
noted, Equation (4.6) resembles a two-layer feed-forward network with linear acti-
vations. Appending the linear layer of (4.6) to the associative network is equal to

86

4.4. Visual Association

orig.

PCA

assoc.

Figure 4.7.: Example images from three different grid positions. Original training
images (top row), PCA reconstruction (middle row), and output of the
associative model (bottom row).

a linear transformation of the network equation, yielding:

~fvis : R6 → RM

~fvis(~ψ) = Vp

(
l∑

i=1

~q out
i tanh

(
~ψ>~q in

i + cin
i

)
+ ~c out

)
+ ~̄ı

=
l∑

i=1

Vp~q
out
i︸ ︷︷ ︸

~r out
i

tanh
(
~ψ>~q in

i + cin
i

)
+ Vp~c

out + ~̄ı︸ ︷︷ ︸
~d out

=
l∑

i=1

~r out
i tanh

(
~ψ>~q in

i + cin
i

)
+ ~d out,

(4.8)

where ~q out
i ,~c out ∈ Rp denote the output weights and biases, ~q in

i ∈ R6, cin
i denote the

input weights and biases, Vp and ~̄ı are defined as in Section 4.4.1, and ~r out
i , ~d out ∈

RM denote the combined output weights and biases.

Equation (4.8) encompasses the whole visual association (light gray box in Figure
4.4) in one function that maps from arm posture-space into the space of gripper im-
ages. This representation is especially useful for the application phase of the visual
associative model. However, during the training phase, the two networks (i.e. ap-
pearance association and PCA reconstruction) need to be separated according to
Section 4.4.1 and the training method mentioned above.

We will now turn to the reconstruction capabilities of the visual associative model
(4.8). We only provide a qualitative comparison based on a few example reconstruc-
tions. Figure 4.7 shows the original views of the gripper (upper row) for 3 different
arm postures and orientations. The reconstruction results in certain artifacts (e.g.
most notably the white “shadow” underneath the right finger, rightmost column)
which are present in the PCA reconstructions (middle row) as well as the outputs

87

4. An Associative Model for Mental Imagery

Figure 4.8.: Example outputs from the overall model for three different arm pos-
tures (A, B, C) and various viewing directions (see text for details).

of the associative model (bottom row). In general, the reconstructions from the as-
sociative model (bottom row) do not differ noticeably from the PCA reconstruction
(middle row).

4.5. Results

In the following, we will demonstrate the capabilities of the overall model (see Figure
4.1). A quantitative measure of its performance is difficult to define and most
probably meaningless. Therefore, we will focus on a few exemplary synthesized
views in order to give a visual impression of the overall visual associative model.

We use the associated images of three arm postures (see Figure 4.7, bottom row)
to demonstrate the overall model in the following. The arm postures were selected
such that each of the three angles (0◦, 15◦, 30◦) is represented once. Note that the
angle space is sampled too coarsely to allow for generalization, e.g. the model would
not be able to generate an image corresponding to an angle of 22.5◦.

The three different images were fed into the visual forward model (see A, B, and
C in Figure 4.8). For each image, we used the visual forward model to predict the
result of 9 different saccades (i.e. roughly 10◦ in each direction); the images in each
center of Figures 4.8 A, B, and C correspond to the output of the visual association
before a saccade.

It can be seen from Figure 4.8 that the resulting images are smooth and consis-
tent, i.e. the images are not noticeably distorted. The borders in most of the outer
images is marked as not predictable by the validator model (see Chapter 2). This
is due to the fact that the input image does not contain any pixel information for
these regions.

We furthermore moved the real robot arm along a trajectory and recorded a
camera image at each via-point. The trajectory comprises 13 via-points. In contrast
to the training process, the arm is not fixated in this example. We applied the
associative model to generate corresponding simulated views for each posture (at
each via-point). Figure C.1 in Appendix C shows the real views of the gripper (right
column) alongside the corresponding simulated views (middle column). In order to

88

4.6. Conclusions & Outlook

give a better impression of the quality of the prediction we overlaid both images
(right column): the image of the original gripper is used as red channel, and the
predicted gripper image as green channel. The predicted gripper images match the
real views of the gripper rather good. (In some images, however, the gripper fingers
are further apart than in the real images.) The positions of the predicted gripper
match the positions of the real gripper accurately. Therefore, we can conclude that,
by visual inspection, the predicted gripper images are a good approximation of the
real gripper images.

4.6. Conclusions & Outlook

We approached the problem of generating internal visual sensory states by de-
composing it into the visual association of images of a gripper based on a set of
pose parameters and the prediction of views according to a specific gaze direc-
tion. The visual association is performed by a model-free approach to view synthe-
sis. In this approach, an image is reconstructed from its appearance vector (i.e. a
dimensionality-reduced representation of the image) which is associated with a set
of corresponding pose parameters by a neural network. The views generated by the
visual association always appear as if the gripper is fixated. Therefore, we employ a
visual forward model to warp these images according to an arbitrary gaze direction.

The architecture is fully adaptive since it is based on artificial neural networks and
subspace methods from pattern recognition. We presented some examples which
suggest that the association capabilities result in consistent images (i.e. resembling
real views of the gripper). Nevertheless, this has still to be analyzed quantitatively.
Furthermore, we expect that, in its present form, the model will not be able to
generalize over the angle space. For the present study we used a very coarse grid
of 3 different angles. Using more angles leads to a higher variability in the training
images and thus more eigen-images would be required, and consequently a larger
associative network. One possible solution would be to replace the (linear) PCA
by a non-linear technique for extracting the appearance vectors such as local PCA
(Möller and Hoffmann, 2004) or deep autoencoders (Hinton and Salakhutdinov,
2006).

Several technical shortcuts were used for the experiments in this study, e.g. the
number of exploration trials was reduced by defining a regular grid of spatial po-
sitions, and the neural networks were trained off-line. These shortcuts are prob-
lematic from a modeling perspective; in a more realistic setting, the agent would
learn its sensory-motor associations on-line while performing exploration move-
ments. Furthermore, we assumed a priori knowledge about the characteristics
of the gripper and performed a color-based segmentation of the camera images
(i.e. sensory input) in order to extract the gripper images.

In contrast, Philipona et al. (2003) propose a scenario in the context of sensorimo-
tor contingencies in which simple agents learn internal representations of “physical
space” with as little a priori knowledge as possible. This is done by sending random

89

4. An Associative Model for Mental Imagery

motor commands to the agent’s actuators and measuring the correlation between
(the unlabeled) sensory and proprioceptive inputs. Following a similar route, we
could improve our approach regarding gripper identification by performing small
gripper movements around a certain (possibly random) position which is fixated
by the camera head. If we assume that the environment is static, all changes in
the sensory input would be due to gripper movements. Thus, portions that belong
to the agent (i.e. the gripper) could be clearly separated from irrelevant content
(i.e. background) without a priori knowledge.

The presented model is intended to be used as a building-block of more complex
architectures which rely on the processing of sensorimotor (e.g. visuomotor) data.
Consider a scenario in which the agent interacts with different objects. The objec-
tive is now to predict a possible displacement of the object (in the visual domain)
based on the motor commands carried out by the agent. This can be achieved by
detecting changes in the visual input. The movement of the agent’s manipulators
during the interaction also leads to changes in the visual scene. These changes can
be predicted by the proposed architecture and subsequently canceled out. In the
context of simulation theory (see Chapter 1), the proposed model could be used to
generate a multi-step prediction in which the gripper and the objects can be dis-
tinguished from each other and interactions between them predicted in the visual
domain.

90

5. Stereo Matching by Internal
Simulation1

5.1. Introduction

In this chapter, we will take a glimpse on how to employ internal models for solving
the correspondence problem in stereoscopic vision. Solving the correspondence
problem—i.e. establishing matches between homologous points in a pair of images—
is inevitable for visual depth perception. Judging the depth of a scene on the other
hand is an important prerequisite for object manipulation. In the following, we are
going to review neurally inspired approaches towards the problem of stereopsis. The
first class of approaches we are going to review rely on sensory information alone;
the second class makes use of active vision, i.e. by employing movable camera heads.

Most computational approaches to stereo matching address this problem from
a purely sensory perspective (Marr and Poggio, 1979; Yokono and Poggio, 2004).
The neural approach by Marr and Poggio (1979) is an early attempt a formulating
a computational model for stereopsis. Their approach is based on the identification
of zero-crossings in difference of Gaussians (DoG) type filtered images. The method
yields impressive results on random-dot stereograms (Julesz, 1971). Yokono and
Poggio (2004) present a local descriptor-based approach for object detection. They
employ local responses of steerable filters, i.e. Gaussian derivatives with spatial
orientation selectivity, to construct the descriptor. Their experiments suggest that
their method is able to cope with cluttered scenes and partial occlusions.

Methods based on active vision use movable cameras for the fixation and depth es-
timation (Theimer and Mallot, 1994; Chumerin et al., 2010; Bernardino and Santos-
Victor, 1996). The approach by Theimer and Mallot (1994) uses a filter bank of
spatially distributed oriented filters. The correspondences are calculated without
an explicit searching phase which is inevitable in feature-based methods. Their
method uses multiple steps to calculate a dense disparity map of a scene using
steropsis and active vision: In a first step, a coarse disparity map is calculated;
based on this initial estimate, the vergence angle of the cameras is controlled such
that the global disparity is minimized (e.g. the average depth is fixated); finally, the
dense disparity map on a finer scale is computed. Chumerin et al. (2010) present a
distributed neural model for vergence control. In their model, the disparity is com-
puted implicitly using a convolution network modeling complex cells. Bernardino

1This chapter is derived from Solving the Correspondence Problem in Stereo Vision by Internal
Simulation (Kaiser et al., 2013) which in turn is based on the extended abstract Stereo Matching
and Depth Perception by Visual Prediction (Kaiser et al., 2012).

91

5. Stereo Matching by Internal Simulation

and Santos-Victor (1996) propose a vergence control scheme using log-polar im-
ages. Log-polar images are characterized by a non-uniform sampling grid which
is more dense towards the center of the image and sparse in the periphery, akin
to the photoreceptor distribution on the human retina. The use of log-polar in-
stead of Cartesian has certain computational benefits e.g. shape invariance towards
scaling and rotation as being the most prominent. The control architecture by
Bernardino and Santos-Victor (1996) is based on the normalized cross-correlation
(NCC) measure for image matching and a PID controller for motor control.

We present a novel approach based on simulated active vision that is entirely
based on sensorimotor simulation. Our approach is based on two internal models:
a visual forward model (Schenck and Möller, 2007; Schenck, 2008), see also Chap-
ters 2 and 3, that predicts the influence of camera movements onto the current
visual input, and a saccade controller (Schenck, 2008), see also Chapter 3, that
generates fixation movements, given the location of an object within the camera
image. These models, which are learned during a preceding exploration phase, are
used to generate “canonical” (i.e. foveated) views of a specific object in one camera
image and its potential partners in the other camera image. The canonical views
are then compared using a difference-based measure. Thus, the internal models
only generate internal (covert) states that do not result in any actions of the robot.
Therefore we claim that an instance of internal simulation is taking place. Further-
more, the internal models allow for a image representation that is invariant under
the current viewing direction. This is a crucial feature which allows our matching
approach to cope even with severely distorted images.

In most robotic studies, internal models serve the preparation of actions or the
prediction of expected perception for motor control (Datteri et al., 2003; Jamone
et al., 2012; Saegusa et al., 2008). Datteri et al. (2003) describe a control scheme for
a robot manipulator based on “expected perception”. Their “expected perception
generator” is basically what we would term a visual forward model: It predicts the
visual consequences of linear arm movements along the x-axis of the images. As
the robot arm moves, the expected perception is compared with the current sensory
state; if a disassociation occurs, the robot arm is stopped. The visual forward model
is restricted to linear movements along one image axis and is thus computationally
very simple. Jamone et al. (2012) present an online learning scheme for reaching
behavior in a 22-DOF humanoid robot. Their architecture uses a gaze controller for
the fixation of target objects and, more importantly, a visuomotor inverse internal
model for grasping. The former is implemented as a proportional controller while
the latter is learned using fast local on-line techniques. The visual information
(target location in both cameras) is at first used to generate a fixation movement
which is then converted (by the inverse model) into a grasping command for a
robotic arm. Thus, the 3D position of the object is implicitly reconstructed from
the gaze direction which. Furthermore, the whole model is bootstrapped without
any a priori knowledge.

In our architecture, the central part is a visual forward model which is able
to predict the effect of changes in gaze direction on the image content. For the

92

5.2. Setup

(a)

Left

⇓

Right

⇓

(b)

Figure 5.1.: (a) Stereo camera–PTU setup. (b) Left and right camera image for a
given gaze direction (top), left and right retinal images (bottom). Note
the non-linear image warping due to the radial foveal mapping.

present study, we use “retinal” images rather than ordinary camera images. These
retinal images are distorted such that the resolution is high in the center and low
in the periphery. This distortion closely resembles the cone distribution on the
human retina. It should be noted that the visual forward model is learned and thus
able to cope with any type of lens distortion. “Classic” matching approaches like
SIFT (Lowe, 2004) fail on these retinal images because the slightly different viewing
direction of the two cameras has a strong effect on the visual representation of the
scene. We show that the simulation-based matching approach copes well with this
fact which is due to its inherent invariance under the current viewing direction.
However, we included tests on the SIFT algorithm using undistorted (undistorted)
images as to give an idea of its performance under comparable conditions. We
are aware that there exist variants of SIFT that are able to deal with certain
types of lens distortion, see e.g. Lourenço et al. (2012). These methods are often
parametric and thus only applicable to a specific type of distortion, e.g. radial
distortion (Barreto et al., 2009). The retinal mapping we use for our experiments
is different from the distortion model described in Barreto et al. (2009), therefore
the sRD-SIFT method described in Lourenço et al. (2012) is not applicable to this
type of image.

5.2. Setup

5.2.1. Robotic Agent

The robotic agent used for our study consists of a pair of stereo cameras mounted
on individual pan-tilt units (PTUs). The PTUs allow the cameras’ gaze direction
to be arbitrarily varied. The camera–PTU setup is looking downward onto a table.

The gaze directions of the cameras are given by the angle pairs (ϕl, θl) and

93

5. Stereo Matching by Internal Simulation

(ϕr, θr), respectively. Camera movements, which will be called saccades2 in the fol-
lowing, can thus be expressed as relative changes ∆ϕ,∆θ. The PTU is constructed
such that the ray going through the camera’s entrance pupil approximately lies in
the intersection of the pan and tilt axes. This property is important because it
ensures that the change of the visual content in the camera images (induced by
camera movements) only depends on the relative changes but not on the current
angles. This is an important prerequisite for visual prediction, because in this case
the depth information is irrelevant (Schenck and Möller, 2007; Schenck, 2008). For
a detailed description of the kinematics of the PTU see Schenck (2008).

5.2.2. Retinal Images

Our model operates on retinal images rather than the planar images recorded by the
cameras. Retinal images coarsely resemble the effect of the human retina, i.e. the
image resolution is higher towards the image center and low in the periphery. The
images acquired by the stereo camera system are processed by a so-called radial
foveal mapping, which yields these retinal images. Using retinal images makes it
virtually impossible for non-parametric descriptor-based approaches (i.e. without
knowledge of the distortion model) to find correspondences in a pair of stereo images
due to the strongly non-linear warping.

The radial foveal mapping is modeled by the following equations (in normalized
polar coordinates, i.e. the radial coordinate is normalized to the range [0, 1]):

φin = φout

rin = (1− λ) · rout + λ · rγout,
(5.1)

where (φin, rin), (φout, rout) denote the polar coordinates in the input and output
image, respectively, and γ = 2.5 and λ = 0.8.

Figure 5.1b (top) shows an example pair of stereo images. The recorded images
are of size 240 × 240. The retinal images (Figure 5.1b (bottom)), which are the
result of warping the left and right camera images using (5.1), exhibit a strong fish
eye effect. These images are of size 207× 207.

5.3. Visual forward model

The visual forward model predicts the visual effect of camera movements onto
the actual camera image without executing these movements. Therefore, the visual
forward model can be seen as warping function that is parameterized by the camera
movement (∆ϕ,∆θ). By employing a warping function for visual prediction, only
those portions can be faithfully predicted that are already present in the input
image. The other portion—i.e. those for which no content is present—are marked
as invalid.

2Saccades are ballistic open-loop eye movements which can reach an angular speed of up to 900◦/s
in humans.

94

5.3. Visual forward model

Real

Predicted

(a)

(b)

Real

Predicted

(c)

Figure 5.2.: Example for the visual forward model. The input for the visual forward
model is shown in (b). A saccade to the left side is shown in (a); (c)
shows a saccade to the lower right. The real post-saccadic images are
shown for comparison to the output of the VFM.

The proposed visual forward model has thus a two-fold structure (see Schenck
and Möller (2007), and Chapter 2): It (i) consists of a mapping model that, given
a certain movement, warps the actual input image using reverse mapping, and (ii)
a validator model that classifies pixels in the output according to their validity,
given the movement. In mathematical terms, these models can be described by
two functions ~fm and fv that depend on (u, v), i.e. the current pixel in the output
image and (∆ϕ,∆θ). Note that ~fm is vector-valued, since it estimates (x̂′, ŷ′),
i.e. the position of (u, v) in the input image.

Calculating a mapping from the output image to the input image (reverse map-
ping) has the advantage that there exists a value for each position, i.e. the output
image does not contain any “holes”. These holes would occur due to the quantiza-
tion, since ~fm is continuous while the image-coordinates are discrete.

For a detailed explanation of the visual forward model, see Chapters 2 and 3.
Furthermore, note that the geometric visual forward model as described in Chapter
3 had not been developed yet at the point when the study described in this chapter
has been conducted. For a better understanding, we will recapitulate the main steps
taken for the learning and implementation of an adaptive visual forward model and
its quasi-inverse, the saccade controller, and ultimately develop a combined inverse–
forward model by fusing the former two.

5.3.1. Data Acquisition

The visual forward model is trained by an initial exploration phase. During this
exploration phase, the camera is moved systematically while facing a static scene
that should contain a large variety of visual stimuli. Formally, we define a Nu ×
Nv×N∆ϕ×N∆θ regular grid G in the joint motor-pixel position space. Here, Nu, Nv

95

5. Stereo Matching by Internal Simulation

denote the number of horizontal / vertical pixels in the output image and N∆ϕ, N∆θ

denotes the number of discrete pan / tilt movements. Each grid point, given by the
tuple (ui, vj , ∆ϕk, ∆θl), is associated with a so-called cumulator unit Cijkl which
corresponds to the input image and is of size win × hin. For every grid position
(i, j, k, l) ∈ G, each (x, y)-position within the corresponding cumulator unit Cijkl is
incremented by one if the absolute difference between the pixel intensity at position
(ui, vj) in the output image and the intensity at position (x, y) in the input image
falls beneath a certain threshold εc. This procedure is repeated for all grid positions
and for different initial pan-tilt pairs. After the training, all cumulator units that
correspond to valid pixels should contain clear maxima and can be used for the
training of the mapping model. A cumulator unit is invalid if there is no clear
maximum or if the strength of the maximum is lower than a pre-defined threshold
and thus not included in the training set.

The above algorithm results in a training set containing samples for the mapping
model ~fm, given by

Tm = {(ui, vj ,∆ϕk,∆θl, xijkl, yijkl)| (i, j, k, l) ∈ G, νijkl = 1}, (5.2)

where νijkl is either 1 or 0, depending on the validity of the corresponding cumulator
unit Cijkl (i.e. whether a clear maximum exists), and xijkl, yijkl correspond to the
location of the maximum in Cijkl.

For our experiments, we used a 13×13×11×11 training grid, resulting in a total
of 20, 449 cumulator units. The training set for the mapping model consisted of
|Tm| = 10, 708 samples which corresponds to the number of valid cumulator units.

5.3.2. Implementation

For the present study, we use a mapping model that is implemented by a “full”
network of radial basis functions (RBF) (Girosi et al., 1995). Here, “full” means
that the network comprises as many units as there are points in the training set.
This is a reasonable choice, because the training data are gridded and assumed to
be sufficiently exact (i.e. the noise level is low).

The RBF network for the mapping model writes out as

~fm(u, v,∆ϕ,∆θ) =

|Tm|∑
i=0

~wiκ((u, v,∆ϕ,∆θ)>, ~xi)

+ ~a0 + ~a1u+ ~a2v + ~a3∆ϕ+ ~a4∆θ, (5.3)

where ~wi ∈ R2 are the output weights of the non-linear part, ~xi ∈ R4, i =
1, . . . , |Tm| are the training points (i.e. the tuples corresponding to the input part
(ui, vi,∆ϕi,∆θi) from Tm), and ~a0, . . .~a4 ∈ R2 are the output weights of the linear
(affine) part. Furthermore κ(·, ·) denotes the kernel or radial basis function. In our
case, κ(~x1, ~x2) = ‖~x1− ~x2‖, the so-called Euclidean kernel. The linear part in (5.3)
is necessary in order to assure that the linear system, which needs to be solved

96

5.4. Saccade Controller

(a) (b)

Figure 5.3.: Saccade controller virtually fixating an object. The black dot marks
the image center. (a) The target object is marked by a white dot in
the initial view. (b) The input image is warped using the combined
inverse–forward model. Note that the target point is exactly located
in the image center.

for the output weights, has a unique solution (Micchelli, 1986; Girosi et al., 1995).
The Euclidean kernel has the benefit that it is computed more efficiently than the
widely-used Gaussian kernel and that it does not include a width parameter that
would depend on the scaling of the data.

The validator model has been implemented by a heuristic that checks the validity
of an image coordinate (u, v) based on two criteria: (i) the mapped coordinate
(x̂′, ŷ′) has to be within the boundaries of the input image, and (ii) the pixel value
Iin(x̂′, ŷ′) at that position must lie within the interval [0, 1]; pixels on the margin
around the retinal images have a value of −1 and are thus invalid per default. The
function fv(u, v,∆ϕ,∆θ) returns 1 for a valid pixel and 0 otherwise.

Figure 5.2 shows an example for the VFM: from an initial retinal image (Fig-
ure 5.2b) two simulated saccades are performed (Figures 5.2a and 5.2b (bottom)).
The blue area marks portion of the images which are classified as invalid by the
validator model. Note that the predictions by the VFM closely resemble the real
views (Figures 5.2a and 5.2b (top)). For a thorough analysis of the performance of
the RBF-based VFM, see Chapter 2.

5.4. Saccade Controller

The saccade controller (SC) is an inverse model that, given a target location in the
input image ~s = (x, y) and a desired goal location (u∗, v∗) (which will be fixed at

the image center in the following), generates a motor command ~̂m = (∆̂ϕ, ∆̂θ) =
~fSC(u∗, v∗, x, y) that controls the PTU such that the current location moves onto the
goal location. In other words, if an object is located at position (x, y) in the image
before the movement, it would be located at position (u∗, v∗) after the execution of

(∆̂ϕ, ∆̂θ).

97

5. Stereo Matching by Internal Simulation

A training set for the saccade controller can be derived from the VFM’s training
set (5.2) by changing the roles of (x, y) and (∆ϕ,∆θ). The pixel location in the
input image is treated as input whereas the motor command is treated as an output;
the role of (u, v), the location in the output image, is unchanged.

The function ~fSC can be approximated, just like the visual forward model, e.g. by
a network of radial basis functions. For the present study, we use an RBF network
with Euclidean kernels (see (5.3)).

Furthermore, the training sets for VFM and SC can be combined such that
a sequential application of the two internal models is avoided. This is done by
replacing every occurrences of the tuple (∆ϕ,∆θ) in the training set Tm by the
associated value of (x, y)—the target location—for which u∗ = ū and v∗ = v̄,
where (ū, v̄) denotes the image center. This was done using a nearest neighbor
search; points for which no corresponding tuple (∆ϕ,∆θ, ū, v̄) could be found were
excluded from the training set.

The function for the inverse–forward model shall be denoted by

(x̂′, ŷ′) = ~fSC–VFM(u, v, x, y).

Again, we can use an RBF network to approximate this function from the training
data. The function ~fSC–VFM is used for image warping by applying it to each pixel
in the output image just like ~fm.

Figure 5.3 shows an example for the application of the combined inverse–forward
model ~fSC–VFM. The location marked by a white dot in Figure 5.3a corresponds to
the target location (x, y). The image center is marked by a black dot. Figure 5.3b
shows the input image after the application of ~fSC–VFM: the former target location
is now congruent with the image center; the rest of the image has been warped
accordingly.

5.5. Stereo Matching

In the present study, we compare two different approaches for stereo matching:
a novel approach, based on sensorimotor simulation and visual prediction, and
a purely sensory approach based on the scale-invariant feature transform (SIFT)
(Lowe, 2004).

5.5.1. Predictive Matching

A prerequisite for the predictive matching are segmented images, i.e. the potential
partner locations to be searched are known beforehand. The predictive matching
then performs an exhaustive search on these potential partners, matching each
partner against the template object. The search process corresponds to an internal
sensorimotor simulation: for each potential partner a motor command that would
fixate this partner is generated. In the following, the left camera image is the
reference (i.e. in which the target position is known) while the right camera image
is subordinate (i.e. which is searched for the target).

98

5.5. Stereo Matching

Left

⇓

Right

⇓

(a)

(b)

Em = 0.166

Em = 0.160

Em = 0.142

Em = 0.080

Em = 0.103

Em = 0.058

Em = 0.038

Em = 0.085

(c)

Figure 5.4.: Example of the predictive matching. (a) A target object is selected
from the left retinal image, the right retinal image is segmented. (b)
The target object is virtually fixated using the SC and the VFM. (c)
All potential partners in the right retinal image are virtually fixated
and matched against the template; the values of Em are printed below
the images.

Formally, for a given target position ~sL = (xL, yL), we have a set of possible part-
ners SR = {(xR1 , yR1), . . . , (xRP , y

R
P)} which needs to be iterated accordingly. Because

of the radial foveal warping of the images, we need to generate “canonical views” of
the objects before the actual matching algorithm is applied. These canonical views
are generated internally, using the left and right images and the position ~sL and all
~sRi ∈ SR. For this purpose, the saccade controller and the visual forward model
are used in combination. While the former generates a fixation movement (for each
position), the latter generates the corresponding view. Alternatively, the combined
inverse–forward model may be used.

The canonical views of the target at position ~sL is compared to each partner at
position ~sR ∈ SR using a difference-based matching approach. Let the canonical
view of the target, the so-called template, be denoted by ÎL and let the canonical
view of the ith partner be denoted by ÎR,i for i = 1, . . . , |SR|; this shall simply
be called the “partner”. The template and the partner are compared using the
normalized sum of squared difference (SSD) error, given by

Em(ÎL, ÎR,i) =
1

w · h
w−1∑
u=0

h−1∑
v=0

(ÎL(u, v)− ÎR,i(u, v))2. (5.4)

If we assume that the pixel values are normalized to the unit interval, then
Em(·, ·) ∈ [0, 1]. There may be the case that the potential partner is not visible at
all in the right image. Therefore, it is desirable to introduce a maximum threshold
εm on Em to cancel out incorrect matches.

99

5. Stereo Matching by Internal Simulation

(a) (b)

Figure 5.5.: Example for the SIFT-based stereo matching. (a) The left camera
image; the selected target is framed by a green rectangle. (b) The
template image (top) and the right camera image (bottom). Matching
key points are connected by lines. The position of the object as well as
the rectangular region haven been projected using the homography.

Figure 5.4 shows the matching process for an example pair of stereo images.
First a salient object is selected in the left retinal image, its centroid determines its
position ~sL (Figure 5.4a (left)). The right retinal image is processed in an analogous
fashion; all salient objects are retained and their centroids determine their positions
SR (Figure 5.4a (right)). The target object is fixated by the SC and VFM, yielding a
canonical view (Figure 5.4b). This canonical view is matched against the canonical
views of all potential partners (Figure 5.4c). The partner yielding the lowest SSD
is considered as the correct match (top row, second column in Figure 5.4c).

5.5.2. SIFT-Based Matching

SIFT is a popular algorithm for feature matching that is rather invariant under
scale and rotation. It comprises two phases: key point detection and descriptor
computation. The first phase identifies “good” key points within the image; in the
second phase a 128-dimensional feature descriptor is calculated for each key point
(Lowe, 2004).

It is important to note that a target object, which is represented by its posi-
tion and template in the predictive approach, is now represented by a set of 128-
dimensional feature descriptors. The descriptors are calculated at key points found
within the template. The number of descriptors highly depends on the structure of
the image content.

In contrast to the prediction-based approach, the potential partner positions
in the right image are not taken into account. The whole image is searched for
matching descriptors. For this, we employ a k-nearest neighbor (k-NN) search
with k = 2. Let the set of key points for the template be denoted by KL =
{~kL1 , . . . ,~kLNL} and for the right image KR = {~kR1 , . . . ,~kRNR}, respectively. Each key

100

5.6. Saliency Detection

point has an associated descriptor ~d(~k
L/R
i) ∈ R128. We are looking for those key

point pairs which are homologous, i.e. correspond to the same 3D world coordinate.
Therefore, we determine for each ~d(~kLi) the nearest and second-nearest neighbors,

denoted by ~d(~kR1,i) and ~d(~kR2,i), respectively. Pairs (~kLi ,
~kR1,i) of key points for which

‖~d(~kLi) − ~d(~kR1,i)‖ < εs ‖~d(~kLi) − ~d(~kR2,i)‖ holds are considered as corresponding.
Because correct matches are characterized by a significantly closer nearest neighbor,
the smaller εs is chosen, the more selective the criterion becomes. Moreover, using
a relative threshold is more robust than a global one (Lowe, 2004); this is because
some descriptors are more discriminative than others.

In order to recover the position ~sR of the object in the right camera image, we
need to calculate the homography (Hartley and Zisserman, 2003), using the pairs
of corresponding points, determined by the SIFT algorithm. We use the robust
random sample consensus (RANSAC) algorithm (Hartley and Zisserman, 2003) for
this purpose. Once the homography is calculated, the object location ~sL can be
transformed according to [

~̃sR

w

]
= H

[
~sL

1

]
~sR = w−1 ~̃sR,

(5.5)

where H denotes the 3×3 homography matrix. Note that, in order to estimate the
homography matrix, the matching algorithm needs to find 4 corresponding point
pairs at least. For our experiments, we used the SIFT and RANSAC implemen-
tations which are freely available through the OpenCV computer vision library
(Bradski, 2000).

Figure 5.5 shows an example for the SIFT-based matching algorithm. The se-
lected object is framed by a green square (Figure 5.5a) whose size corresponds to
the actual template size of 101 × 101 pixels. The template is converted to grey
scale (Figure 5.5b (top)) from which the SIFT descriptors are computed. The same
procedure is repeated with the whole right camera image (Figure 5.5b (bottom)).
For the pair of example images, the SIFT algorithm has found 107 key points
within the template and 264 key points in the scene image. These key points where
matched according to a value of εs = 0.4. The remaining corresponding key points
are marked by lines from the template to the scene in Figure 5.5b. The estimated
homography was used to transform the target position and the outline of the tem-
plate (Figure 5.5b (bottom)). Note that the target position has been accurately
recovered.

5.6. Saliency Detection

An important prerequisite for the predictive matching approach is the selection of
interesting (salient) points within the pair of images. These interest points serve as
candidate points for the matching process. In order to establish reliable matches
between candidate points in the left and the right image, these points should be

101

5. Stereo Matching by Internal Simulation

(a) input image (RGB) (b) smoothed image (c) edge image

(d) watershed segmentation (e) merged segments

Figure 5.6.: Steps of the image processing for saliency detection: input image (a),
smoothed gray-scale image (b), detected edges (c), watershed segmen-
tation based on edge image (d), merged segments (final saliency map)
(e).

102

5.6. Saliency Detection

chosen consistently. That means that the points should roughly be homologous,
i.e. belong to the same 3D world coordinate.

We will determine these candidate points by employing techniques for image
segmentation based on color and edge information. These resulting segments serve
as “salient” regions during the matching process. For the two experiments we
will present in the following section, we use two different approaches to image
segmentation. The first approach is based on a simple color segmentation using
a pre-defined color, the second approach, which will be explained in depth in the
following, is more elaborate and can also be applied to images of real-world scenes.
Furthermore, we are only interested in segments of a certain size—i.e. medium-sized
segments that most likely belong to prominent or interesting objects in the scene.
Therefore, we term the segmentation process saliency detection. We are well aware
that usually salient detectors suppress other less interesting regions in favor of one
salient stimulus (e.g. Walther and Koch (2006); Orabona et al. (2007)). However,
for our matching approach, we need a list of quasi-salient object locations readily
available. Therefore we chose to define saliency as mentioned above.

The result of the segmentation is—in both cases—a list of coordinates (in image
space) comprising the positions of the centroid of each segment. We assume that
the centroid is a robust choice in the sense that it leads to fixated views of the
corresponding segment (in the left and right image) that can be reliably matched.

The saliency detector is based on the following image processing steps: applica-
tion of Gaussian blur, application of Canny’s edge detector (Canny, 1986), segmen-
tation by a non-parametric watershed transformation (Beucher and Meyer, 1992),
and finally reduction of over-segmentation by clustering the segments through a
variant of the DBScan algorithm (Ester et al., 1996). This procedure is inspired
by recent computational methods for saliency detection (Walther and Koch, 2006;
Orabona et al., 2007; Wischnewski et al., 2010); see those references for further de-
tails. Ideally the saliency detector should identify segments of homogeneous color
and texture, and segment the left and right images in a consistent manner. Large
and tiny segments, which most probably belong to background and noise, are re-
moved from the list. The result of the segmentation is a list of target positions that
correspond to the centroids of the segments.

5.6.1. Pre-Processing

The pre-processing comprises three major steps: (i) the RGB camera image (Figure
5.6a) is converted into gray-scale (by calculating the mean over each channel for
every pixel), (b) the resulting camera image is blurred (Figure 5.6b) to remove
noise, and finally Canny’s edge detector is applied (Figure 5.6c). The resulting
image is binary, with pixel values of 1 indicating edges.

The preprocessing step comprises several parameters. One of them, the size of
the Gaussian blur mask, needs to be adjusted according to the image size. For the
camera images of 540 × 540 pixel, we chose a blur mask of 7 × 7, for the retinal
images of 207 pixels, we chose a smaller mask of 3× 3.

103

5. Stereo Matching by Internal Simulation

For edge detection, we use the implementation of the Canny edge detector from
the OpenCV library (Bradski, 2000). The implementation requires to set two hys-
teresis parameters which define which gradient magnitudes are accepted as edge
pixels and which pixels should be rejected. The lower threshold was set to 0.2 and
the upper threshold to 0.6 (assuming normalized pixel values in [0, 1]).

5.6.2. Segmentation and Clustering

The edge image is used to calculate a rough segmentation of the image by applying
a parameter-free watershed algorithm (Beucher and Meyer, 1992; Bradski, 2000).
The output of the watershed algorithm, applied to the example image, is shown in
Figure 5.6d. It turned out in preliminary experiments that the watershed algorithm
leads to an over-segmentation of the image. This means that regions that appear
homogeneous to a human observer collapse to smaller segments in the watershed
segmentation.

Therefore, we implemented a clustering method that merges regions based on
a homogeneity criterion and the adjacency structure of the regions. The adja-
cency graph is computed based on the topology of the watershed segmentation (see
Figure 5.6d). Each segment is represented as a vertex; neighboring segments are
connected by edges. Furthermore, each segment is associated with a region de-
scriptor ~ri = (mi

10,m
i
01,m

i
00, L̄

i, āi, b̄i)> that contains the position of its centroid
(mi

10,m
i
01), its “mass” mi

00, and its mean Lab color triplet (L̄i, āi, b̄i). The moments
were normalized with respect to the image size. The Lab values were normalized
to lie within [0, 1].

We use a modified version of the DBScan algorithm (Ester et al., 1996) to perform
the clustering. The algorithm has been modified in two ways: (i) it respects the ad-
jacency graph, i.e. it only clusters adjacent regions, and (ii) it allows clusters of size
one. Segments which are topographically connected and for which ‖~ri − ~rj‖ < 0.1
holds, are merged. Figure 5.6e shows the results of the clustering. In this exam-
ple, the clustering reduced the total number of segments from 80 to 58. The final
segmentation is used to compute the target positions by determining the centroids
of each segment. Segments containing more than 10000 pixels were considered as
background, segments with less than 10 pixel as noise. Those segments were not
considered in the matching process.

5.7. Results

5.7.1. Experiment 1

We tested both matching approaches on a database of image pairs recorded by the
stereo camera setup. An arrangement of colored wooden blocks was placed on the
table in front of the camera setup. For all experiments, we used 100 random initial
viewing directions, i.e. the cameras were pointing in randomly selected directions.

104

5.7. Results

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

	

�
�
�

�
�
��
��
�
�

�
��

������
��������
���

Figure 5.7.: ROC curve for the simulation-based matching approach. The param-
eter εm has been varied in the interval [0, 1] with a step size of 0.001.
The asterisk marks the optimum ROC at ε∗m = 0.039.

The images were segmented according to the color red. All red objects that were
visible in the left image were matched against the candidates in the right image.

Preliminary tests showed that the SIFT-based matching is useless in combination
with the retinal images. The number of key points found was too low, so that the
homography could not be estimated in most cases. Therefore, we discarded the
retinal images and used undistorted camera images of 240×240 pixels for the SIFT-
based matching instead. The simulation-based approach was tested exclusively
using 207× 207 retinal images.

In order to evaluate the quality of the matching algorithms, we use a set of ground
truth data which we obtained by manually correcting the results from a preliminary
matching process. As the viewing direction of the cameras is variable, we cannot
use the objects’ positions within the images. Instead, we use the PTU angles (ϕ, θ)
when fixating an individual object as a global reference. Thus, we obtain two lists
of PTU angles for all objects in the left and right camera image, respectively. These
lists allow us to perform a nearest neighbor search to determine the object’s index
within either of the two lists. A match is considered positive if the index for the
object in the left camera image equals the index for the object in the right camera
image.

The simulation-based matching approach involves the virtual fixation of objects.
Therefore, calculating the PTU angles is trivial. The SIFT-based approach however
relies on sensory information alone; the PTU angles have to be calculated separately.
Moreover, the SIFT approach works on plain camera images. Thus, we have to

105

5. Stereo Matching by Internal Simulation

#matches %correct

pred. (εm = 0.039) 640 97.34
SIFT (εs = 0.2) 287 89.20
SIFT (εs = 0.3) 724 85.77
SIFT (εs = 0.4) 916 85.26
SIFT (εs = 0.8) 1264 78.88

Table 5.1.: Overall results of the matching test. The predictive matching approach
(pred.) reaches a high percentage of correct matches. The SIFT-based
matching approach clearly performs worse. The theoretical maximum
number of matches is 1400.

convert the object’s coordinates into the retinal domain first and then apply saccade
controller before we can validate the matching result. This rather complicated
method is not part of the approach, but a necessary detour to evaluate the quality
of the matching approaches.

Both matching approaches include parameters which control the matching qual-
ity. The size of the template is a parameter which is shared by both methods. This
parameter also influences their performance. Therefore, it needs to be selected
carefully. Based on preliminary experiments, we chose a template size of 101× 101
pixels for the SIFT-based matching. For the matching-based approach, we used the
whole 159× 159 image resulting from the virtual fixation to compute the SSD.

Furthermore, the matching-based approach includes a parameter εm that controls
the rejection of mismatches. This parameter has been optimized by plotting the
receiver operating characteristic (ROC) curve (see Figure 5.7). The optimum for
this parameter was found to be ε∗m = 0.039. Table 5.1 (top row) shows the results
of the simulation-based approach for the optimal parameter value. The matching
was very accurate and matched approximately 97% of the targets correctly.

The SIFT-based approach includes a parameter εs that controls the matching of
corresponding (homologous) key points. This parameter has to be chosen such that
the number of correspondences found is still high enough to calculate the homogra-
phy (for most cases) while keeping the number of mismatches low. Table 5.1 shows
the number of found correspondences and the percentage of correct matches for
different values of εs. It becomes clear that larger values for εs increase the number
of correspondences, but also drastically increase the number of mismatches. The
optimal parameter that yields the most comparable results (i.e. the best trade-off
between the total number of matches and the percentage of correct matches) lies
between εs = 0.2 and εs = 0.3.

5.7.2. Experiment 2

In the second experiment, we compared the performance of both matching ap-
proaches on a more commonplace scene: various tools and office utilities were placed
on the table in front of the camera setup (see Figure 5.8). In contrast to the first

106

5.7. Results

Original camera images

Undistorted camera images

Figure 5.8.: Upper row: left and right camera image showing the scene for the
second experiment. Lower row: undistorted version of the original
camera images.

107

5. Stereo Matching by Internal Simulation

(a) (b)

Figure 5.9.: Matches between objects in the left and right images. Correct matches
are marked with a green solid line, incorrect ones with a dotted red
line. (a) Results for predictive matching. (b) Results for SIFT-based
matching. Saliency was computed on the undistorted camera images.

experiment, the initial viewing direction was not varied. Furthermore, the original
camera images were undistorted for the SIFT-based matching to remove image dis-
tortions which might deteriorate the performance of SIFT (Lourenço et al., 2012)
(second row in Figure 5.8). We employed the camera calibration toolbox for Matlab
(Bouguet, 2008) for this purpose. The images have a resolution of 540× 540 pixels
and are thus substantially larger than the ones used in experiment 1.

Instead of detecting target objects for matching by a specific color (as in the
first experiment) we chose a more general approach based on saliency detector, see
Section 5.6.

The predictive approach works directly on the detected target positions and iden-
tifies matches between objects in the left and candidates in the right retinal images
(see experiment 1). We used retinal images with a resolution of 207 pixels. For
the virtual fixation, we employed the inverse–forward model ~fSC–VFM. The virtual
views had a resolution of 159 × 159 pixels. The matching was performed using
the normalized SSD error (5.4) under consideration of the validator model: the
conjunction of the validator masks of both the virtual target and partner images
were formed, and the SSD was computed only for valid pixels. If the number of
valid pixel fell below 5000, the match was discarded. Furthermore, a match was
discarded if the SSD was higher than εm = 0.08.

In contrast, SIFT-based matching relies only on the target positions in the left
image. Around each target position, a quadratic region with a size of 159 × 159
pixels is cut out which serves as a template. SIFT descriptors are determined
within the template, and this set of descriptors is matched with all descriptors in
the right image as described in Section 5.5.2. The homography is calculated from
the matching key points and finally used to determine the corresponding position
of the target in the right image. If the number of matching descriptors was too low
to compute the homography, a match could not be established.

For a better comparison there are two test cases: In the first one, saliency is
computed on the undistorted camera images, in the second one saliency is computed

108

5.8. Conclusions & Outlook

(a) (b)

Figure 5.10.: Matches between objects in the left and right images. Correct matches
are marked with a green solid line, incorrect ones with a dotted red
line. (a) Results for predictive matching. (b) Results for SIFT-based
matching. Saliency was computed on the retinal images.

on the retinal images. For the first case, the target positions are mapped onto their
corresponding positions in the retinal images for the predictive matching. For the
second case, the target positions are mapped from the retinal image onto their
corresponding positions in the undistorted images. In this way, it is guaranteed
that both matching procedures work on the same set of targets in the left image.

For the undistorted case, there are 55 target locations in the left image. By
predictive matching, 35 correct and 3 incorrect matches were established; the SIFT-
based matching yielded 42 correct and 2 incorrect ones. Rating was based on visual
inspection; a match was rated as correct if the selected position in the right image
was in close vicinity to the correct position. The correctly and wrongly established
matches are visualized in Figure 5.9. For the retinal case (see Figure 5.10), there are
58 target locations in the left image. The predictive matching yielded 32 correct
matches and 13 incorrect ones; the SIFT-based matching established 36 correct
matches and 11 incorrect ones. Note that the number of targets deviates due to a
different parameterization of the saliency detector.

SIFT worked reliably with overall very good precision. In comparison, predictive
matching performed slightly worse. However, one has to consider that with the
current test methodology it is not guaranteed that each target in the left images
has a correct partner in the right image, resulting in mismatches. This is mainly
due to the limitations of the saliency detector.

5.8. Conclusions & Outlook

We presented a novel method for solving the correspondence problem in a pair of
stereo images based on an internal sensorimotor simulation. In contrast to most
purely sensory, descriptor-based methods, our approach is able to cope with se-
vere lens distortion (retinal images) and is non-parametric—the internal models
are learned in a preceding sensorimotor exploration phase. During the simulation,

109

5. Stereo Matching by Internal Simulation

objects are virtually fixated, yielding “canonical” views of the objects that can be
compared by simple difference-based methods. Therefore, the images are repre-
sented in a way which is invariant with regard to the current viewing direction.
Furthermore, the virtual (or covert) fixation movements can be used as a means to
determine the global position of an object. This could be used to guide a robotic
manipulator to e.g. perform a grasping movement.

The model can be easily extended to directly extract depth information from the
covert fixation movements generated during the internal simulation. As one can
easily see, the vergence angle, defined by α = ϕL − ϕR, where ϕL, ϕR denote the
pan angles of the left and right PTU, is anti-proportional to the depth of the fixated
object. This relationship could be used to rank-order the target objects and assign
relative depth values which would lead to a sparse density map of the scene.

Our approach makes extensive use of virtual fixations. These need to be carried
out for all candidate points. In our experiments the number of candidates was
relatively low (14 (experiment 1), ∼ 55 (experiment 2)). Therefore, the run time
of the algorithm was moderate. With a high number of candidates (as e.g. in the
SIFT-based matching, where we had ∼200 key points) the run time would increase
drastically. To overcome this problem, the simulation would have to be parallelized.
A parallel version of the simulation-based matching could be easily derived, because
most parts of the simulation do not share resources or depend on each other.

Instead of purely sensory data, our approach also relies on motor information.
This permits the use of very simple matching measures. For the study presented
in this chapter, we used a difference-based measure. Furthermore, the approach
is able to cope with retinal images that exhibit an uneven resolution. Extensive
experiments on a image database have shown that the predictive matching approach
can outperform SIFT-based matching if the location of the potential partners is
known (in this case we used a red-segmentation to determine the positions). On
images of a realistic scene, the predictive matching appeared to be inferior to SIFT.
This is mainly due to the fact that the two images have to be segmented likewise
(i.e. segments should be detected consistently in both images). Therefore, the
performance significantly relies on the performance of the image segmentation. For
our experiments, we used a simple saliency-based image segmentation which only
resulted in suboptimal (i.e. slightly inconsistent) segmentations. An alternative
approach in favor of predictive matching could be to compute a simple region
descriptor at each target in the left image and to pre-select regions in the right
image with similar descriptor values for subsequent matching.

In conclusion, predictive matching is competitive to classical approaches from
computer vision, and it has moreover the considerable advantage that it is fully
adaptive and can cope with highly distorted images. This is accomplished by ap-
plying internal sensorimotor simulation and (subconscious) mental imagery to the
process of stereo matching.

110

6. Overall Conclusions & Outlook

We have suggested a computational model for the perception of the functional
role of objects based on internal sensorimotor simulations. The model is based on
the perception through anticipation paradigm which states that the perception of
possible object affordances is based on internally simulated object interactions. The
model comprises several sub-models which have been investigated in depth. The
main focus of this thesis lies in the efficient implementation of visuomotor models
that predict future sensory states based on motor commands and current sensory
states. Most of these models were learned based on information gathered during
active exploration of the corresponding sensorimotor space. We employed feed-
forward neural networks and geometric approximations for the implementation of
these models.

6.1. Visual Prediction

We extensively studied the problem of visual prediction—i.e. predicting the optical
flow within a camera image given a movement of the camera. Two models were
presented: a fully adaptive model based on a statistical learning approach, and a
geometric approximation. The adaptive model was implemented by a feed-forward
neural network using radial basis functions (RBFs). We employed a statistical learn-
ing approach to acquire a training set for this model. Because of the high number of
training examples, the process of data acquisition is very costly. Furthermore, each
collected data point is represented by a unit within the RBF network, leading to a
high computational complexity. Therefore, we had to investigate efficient methods
for implementing the model.

We proposed a efficient method for the evaluation of RBF networks—the two-
staged approach—in the context of image warping. The two-staged approach relies
on the sequential application of two RBF networks: The first stage transforms a
small regular grid of pixel positions inside the output image according to a given
saccadic motor command; the second stage transforms each pixel position inside
the output image by interpolating between the warped grid points. Both RBF
networks are “full”, i.e. they comprise as many units as there are training points.
The training set for the first stage is rather large, consisting of ∼ 10, 000 training
examples. The second stage is trained on the grid points only (where the points
on the regular grid serve as inputs, and the corresponding warped grid points,
generated by the first stage, serve as target outputs), and therefore consists of a
much smaller number of ∼ 100 units. Hence, the large first stage is only evaluated
at a few grid-points, while the significantly smaller second stage is evaluated at

111

6. Overall Conclusions & Outlook

all pixel positions. Furthermore, we employed a computationally simple RBF, the
Euclidean kernel, for both stages. The results show that the performance of the
novel approach outperforms the previous approach by Schenck and Möller (2007)
in terms of the prediction quality. An analysis of the number of involved operations
shows that the two-staged approach is also computationally more efficient.

As an alternative to the adaptive visual forward model, we proposed a geometric
approach for visual prediction. The underlying geometric model is based on the
assumption that the camera is mounted on a pan-tilt unit (PTU) in such a way
that the pan and tilt axes intersect in the optical center. The optic flow could be
predicted by using a perspective transformation and 3D rotations. The geometric
model requires explicit knowledge about the actual distortion function underlying
the camera optics (which is implicitly learned by the adaptive approach). Both
models predict the optical flow within the visual field as the eye moves. Therefore,
they can be seen as implementations of predictive remapping (Duhamel et al., 1992).

Both, the adaptive and the geometric model, have their individual advantages.
While the adaptive approach is able to cope with arbitrary image distortions, the
geometric model requires exact knowledge about the distortion function underlying
the camera images. The geometric model, however, constitutes relatively simple
equations, and is thus computationally more efficient.

Besides visual prediction, we also studied the inverse problem—the problem of
kinematic eye control. From the geometric model, we derived equations that relate
a position within the visual field to its corresponding relative pan and tilt angles
that could be used to fixate the position (i.e. move it into the center of the visual
field). Tested on a real PTU–camera assembly, the geometric controller proved
to be only accurate towards the central region of the visual field. In order to
circumvent these inadequacies, we proposed an adaptive error-correction scheme
that resembles neural structures in the brain. By using this correction scheme we
could significantly improved the saccadic accuracy of the controller.

The visual prediction mechanism was successfully applied in Chapter 4 to gen-
erate peripheral views of gripper images, and in Chapter 5 to generate (canonical)
fixated views of objects within a pair of stereo images. Generally, the visual pre-
diction mechanism is useful to create visual representations of objects that are
invariant under the current viewing direction.

6.2. Visuomotor Associations

We proposed an adaptive model for visuomotor associations that was able to as-
sociate high-dimensional data, in this case images, to low dimensional kinesthetic
states, in this case the postural variables of a robot arm. The model was imple-
mented by a feed-forward neural network for the image synthesis, and the subse-
quent application of the visual forward model. We employed a linear technique for
dimensionality reduction, PCA, which is well suited if the images reside in a linear
subspace.

112

6.3. Future Research Directions

The associative model could be used to transform kinesthetic states into the visual
sensory space. The object interaction model presented in Chapter 1 uses these
sensory representations to predict possible object interactions. We assume that
representing kinesthetic states in this way has several benefits: (i) the redundancies
of the kinematics are not present (i.e. the representation abstracts from the concrete
arm configuration), (ii) the object interaction-model receives all inputs in the same
format (i.e. visual representations), (iii) the geometry of the gripper is implicitly
encoded in this representation.

6.3. Future Research Directions

6.3.1. Alternative Learning Methods

For the adaptive models presented in this thesis, we employed feed-forward neural
networks of MLP and RBF type. These methods are suitable for learning functional
relationships. The training data were collected mainly in a structured systematic
manner, i.e. by defining grids in sensorimotor space (Chapter 2) or in motor space
alone (Chapter 4). The only exception is the error correction network in Chapter
3 for which we employed a random strategy. The aim of this section is to explore
alternatives for the neural network implementations and to discuss different learning
strategies.

Neural Network Types

Feed-forward networks capture the static input–output relation between motor com-
mands and their sensory consequence. These networks are well suited for scenarios
which can be described by a function. In some cases, however, the input–output
relationship is not a function, but a one-to-many mapping. These situations arise
when a motor command can have multiple possible sensory outcomes.

Associative neural networks have proved useful in these contexts. One example
of such a network is neural gas principal component analysis (NGPCA) (Möller and
Könies, 2004; Kaiser et al., 2010b)—an unsupervised neural network that represents
data distributions by a set of hyperellipsoids. Furthermore, NGPCA includes a
dimensionality reduction method which reduces the number of parameters that need
to be learned. In the context of sensorimotor modeling, the NGPCA algorithm is
applied to the joint sensorimotor space.

In order to predict sensory states based on motor information, a partial senso-
rimotor pattern is presented to the network (only including the motor state), and
completed based on the learned sensorimotor manifold. Thus allowing the asso-
ciation between motor and sensory states and vice versa (without performing a
retraining of the network). Therefore, this kind of network is extremely flexible in
practical applications.

Recurrent neural networks (RNNs) (e.g. Lukoševičius and Jaeger (2009)) rep-
resent another alternative to feed-forward neural networks. RNNs incorporate a

113

6. Overall Conclusions & Outlook

feedback loop from the output to an additional context layer. The overall RNN
is therefore a dynamical system with an internal state, and can be described by
a differential equation. RNNs have already been applied successfully by several
authors to capture the dynamic properties of sensorimotor processes (see Chapter
1). Especially in the context of the prediction of object interactions, where complex
dynamics occur due to various physical factors, these networks are good candidates
for modeling.

Learning Strategies

The learning strategies that were applied in this thesis were mostly systematic
and thus biologically implausible. Biological organisms learn through interactions
with their environment and not by systematic explorations of the sensorimotor
space. In the context of motor learning, these natural strategies are often referred
to as motor babbling (Der and Martius, 2006) in analogy to toddlers that babble
seemingly random words and phrases during the process of language acquisition.

Babbling strategies may be applied to the problem of learning object interac-
tions, providing a more natural approach. Furthermore, the random movements
that occur during the early stages of the learning process might result in a higher
sampling of the sensorimotor space than a gridded approach would.

6.3.2. Alternative Approaches of “Perception through Anticipation”

In the following, we will outline how the perception through anticipation approach
in general could be implemented in alternative ways. Basically, perception through
anticipation relies on an internal sensorimotor simulation that results in a tree of
possible action–response sequences, starting at an initial sensory situation S0. Once
the tree is built, the paths within the tree are evaluated based on a pre-defined
criterion, resulting in a final percept. The approach may lead to an intractably
large amount of simulation threads that need to be evaluated. Furthermore, the
generation of the individual threads may allocate a large amount of resources and
therefore result in high runtime.

Learning Shortcuts in the Simulation Tree

One possibility to reduce the runtime of the simulation threads could consist in
the learning of shortcuts in the simulation tree. Such a shortcut could assign the
initial sensory state and a given action to the final state of the simulation by direct
association. In such a scenario, the intermediate simulation steps emanating from
the initial sensory state would be skipped.

It must be noted that the intermediate steps may carry important information
for the subsequent evaluation (e.g. the number of motor commands could be of
interest, or the direction of certain motor commands). Therefore, the short-cut
must also contain information about the intermediate steps as well. If we employ
an associative model for relating initial sensory states to end-states and additional

114

6.3. Future Research Directions

meta-information (i.e. the number of steps skipped), we may encounter one-to-many
mappings. A one-to-many mapping, where an input corresponds to a set of possible
outputs cannot be modeled by feed-forward neural networks. Therefore, we must
investigate alternatives.

Probabilistic Formulation

Another possible reformulation of the perception by anticipation approach might
involve probabilistic representations. The big advantage of probabilistic approaches
is that they can deal with uncertainty. Therefore, these approaches are well suited
for real world applications.

We suggest a particle filter framework (Van Der Merwe et al., 2000) for this
purpose. Particle filters are typically applied in situations when the state of a
system can only be observed through noisy measurements. The state is represented
by a population of particles where each particle contains as many parameters as
the system’s state. Therefore, the particle population can be regarded as a cloud
(or multiple clouds) of vectors that reside in the (possibly high dimensional) state
space. As soon as a measurement arrives, the most probable particles (i.e. those
that are most compatible with the measurement) are retained for the next step.

In the context of perception through anticipation, each motor command and its
resulting sensory consequence could be regarded as a particle in joint sensorimotor
space. A prediction step would correspond to a selection of the most probable
particles according to a designated probability model. The probability model needs
to be formulated (or learned) based on the sensorimotor relations that the agent
experiences during overt actions. Eventually, the particle cloud converges towards
a set of valid sensorimotor end-states that could be evaluated.

115

A. Down-Dating the Inverse of a Matrix

Let A be a real n×n matrix which is regular such that its inverse A−1 exists. Now
let B denote an m×m sub-matrix of A. The aim is now to compute B−1 by only
using elements from A−1.

Let Ã denote the rearranged version of A such that the columns / rows we seek
to remove are the last n − m columns / rows. We can establish this in terms of
applying permutation matrices Pr and Pc to A; thus Ã = PrAPc. Note that, if A is
symmetric, and if we want to preserve its symmetry in B, we have P = Pr = P>c .

It can be easily shown that inverting Ã is equivalent to applying Pr, Pc to A−1,
which directly follows from the orthonormality of permutation matrices.

We will derive a formula for down-dating the inverse of n×n matrix by m ranks
by first noting that the inverse of a 4× 4 block matrix is given by (provided B and
C are invertible) (Horn and Johnson, 1990):

Ã−1 =

(
B U
V C

)−1

=

(
(B − UC−1V)−1 −B−1U(C − V B−1U)−1

−(C − V B−1U)−1V B−1 (C − V B−1U)−1

)
(A.1)

=

(
B̌ Ǔ

V̌ Č

)
,

where B, B̌ are (n−m)× (n−m), V , V̌ are m× (n−m), U , Ǔ are (n−m)×m,
and C, Č are m×m, respectively.

Now, our aim is to express B−1 in terms of B̌, V̌ , Ǔ and Č. First, we recall the
Woodbury identity, given by (Horn and Johnson, 1990):

(B − UC−1V)−1 = B−1 +B−1U(C − V B−1U)−1V B−1 (A.2)

We can now rearrange (A.2) and identify the appropriate terms from A.1 in order
to yield the desired result:

B−1 = (B − UC−1V)−1 −B−1U(C − V B−1U)−1V B−1

= B̌ − Ǔ Č−1V̌ (A.3)

We see that equation (A.3) is a Schur complement which can be conveniently cal-
culated, e.g. by using LU factorization. Furthermore, we note that for a rank-1
down-date (A.3) reduces to

B−1 = B̌ − ~̌u~̌v>

č
, (A.4)

117

A. Down-Dating the Inverse of a Matrix

where ~̌u is a column vector, ~̌v> is a row vector, and č is a scalar.
In summary, the algorithm for down-dating the inverse of a matrix works as

follows:

1. Permute columns / rows of A−1 to yield Ã−1

2. Create matrices B̌, V̌ , Ǔ and Č

3. Calculate B−1 according to (A.3) or (A.4)

118

B. Reconstruction of Gripper Positions

119

B. Reconstruction of Gripper Positions

−100

−50

0

50

100

150

200

250

440

460

480

500

520

540

560

580

600

620

−700

−600

−500

3D training trajectory
left

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

right

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

training set

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150
70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

MLP interpolation

Figure B.1.: 3D trajectory, training set, and interpolated gripper trajectory (as seen
in the left and right camera images) for a gripper orientation of 0◦; axes
are given in millimeters (top) and pixels (bottom 4), respectively.

120

−100

−50

0

50

100

150

200

250

440

460

480

500

520

540

560

580

600

620

−700

−600

−500

3D training trajectory
left

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

right

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

training set

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150
70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

MLP interpolation

Figure B.2.: 3D trajectory, training set, and interpolated gripper trajectory (as seen
in the left and right camera images) for a gripper orientation of 15◦;
axes are given in millimeters (top) and pixels (bottom 4), respectively.

121

B. Reconstruction of Gripper Positions

−100

−50

0

50

100

150

200

250

440

460

480

500

520

540

560

580

600

620

−700

−600

−500

3D training trajectory
left

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

right

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

training set

70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150
70 80 90 100 110 120 130 140 150 160 170 180

90

100

110

120

130

140

150

MLP interpolation

Figure B.3.: 3D trajectory, training set, and interpolated gripper trajectory (as seen
in the left and right camera images) for a gripper orientation of 30◦;
axes are given in millimeters (top) and pixels (bottom 4), respectively.

122

C. Simulated Gripper Appearance

123

C. Simulated Gripper Appearance

real arm model composite

Figure C.1.: Simulated gripper appearance along an example trajectory. The figure
depicts the real robot arm (left column), the output of the associative
model (middle), and a composite view (right).

124

real arm model composite

Figure C.2.: Continuation of Figure C.1
.

125

C. Simulated Gripper Appearance

real arm model composite

Figure C.3.: Continuation of Figure C.1
.

126

Bibliography

Nur Arad, Nira Dyn, Daniel Reisfeld, and Yehezkel Yeshurun. Image warping
by radial basis functions: Application to facial expressions. CVGIP: Graphical
Models and Image Processing, 56(2):161–172, 1994.

João Barreto, José Roquette, Peter Sturm, and Fernando Fonseca. Automatic
Camera Calibration Applied to Medical Endoscopy. In 20th British Machine Vi-
sion Conference (BMVC ’09), London, Royaume-Uni, 2009. The British Machine
Vision Association (BMVA).

Ian Barrodale, D. Skea, M. Berkley, R. Kuwahara, and R. Poeckert. Warping digital
images using thin plate splines. Pattern Recognition, 26(2):375–376, 1993.

Lawrence W. Barsalou. Perceptual symbol systems. Behavioral and brain sciences,
22(04):577–660, 1999.

Lawrence W. Barsalou. Grounded cognition. Annu. Rev. Psychol., 59:617–645,
2008.

Richard K. Beatson and William A. Light. Fast evaluation of radial basis functions:
methods for two-dimensional polyharmonic splines. IMA Journal of Numerical
Analysis, 17(3):343–372, 1997.

Richard K. Beatson and Garry N. Newsam. Fast evaluation of radial basis functions:
I. Computers & Mathematics with Applications, 24(12):7–19, 1992.

Richard K. Beatson, Jon B. Cherrie, and Cameron T. Mouat. Fast fitting of radial
basis functions: Methods based on preconditioned GMRES iteration. Advances
in Computational Mathematics, 11(2-3):253–270, 1999.

Richard K. Beatson, W.A. Light, and S. Billings. Fast solution of the radial basis
function interpolation equations: Domain decomposition methods. SIAM Journal
on Scientific Computing, 22(5):1717–1740, 2001.

Alexandre Bernardino and José Santos-Victor. Vergence control for robotic heads
using log-polar images. In Proceedings of the 1996 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS ’96), volume 3, pages 1264–
1271, 1996.

Serge Beucher and Fernand Meyer. The morphological approach to segmentation:
the watershed transformation. In E. Dougherty, editor, Mathematical Morphology
in Image Processing, chapter 12, pages 433–481. Marcel Dekker, 1992.

127

Bibliography

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, 1995.

Sarah-Jayne Blakemore, Daniel M. Wolpert, and Chris Frith. Why can’t you tickle
yourself? Neuroreport, 11(11):R11–R16, 2000.

Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11:567–585, 1989.

Sabri Boughorbel, J.-P. Tarel, and Nozha Boujemaa. Conditionally positive definite
kernels for SVM based image recognition. In IEEE International Conference on
Multimedia and Expo (ICME ’05), pages 113–116, 2005.

Jean-Yves Bouguet. Camera calibration toolbox for Matlab, 2008. URL http:

//www.vision.caltech.edu/bouguetj/calib_doc/.

Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 25
(11):120–126, 2000.

Jörg Bruske, Michael Hansen, Lars Riehn, and Gerald Sommer. Biologically in-
spired calibration-free adaptive saccade control of a binocular camera-head. Bi-
ological Cybernetics, 77(6):433–446, 1997.

James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia
and solving symmetric linear systems. Mathematics of Computation, 31(137):
163–179, 1977.

Martin V. Butz. How and why the brain lays the foundations for a conscious self.
Constructivist Foundations, 4(1):1–37, 2008.

John Canny. A computational approach to edge detection. IEEETransactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698, Nov. 1986.

Nikolay Chumerin, Agostino Gibaldi, Silvio Sabatini, and Marc M. van Hulle.
Learning eye vergence control from a distributed disparity representation. In-
ternational Journal of Neural Systems, 20(4):267–278, 2010.

Andy Clark and Rick Grush. Towards a cognitive robotics. Adaptive Behavior, 7
(1):5–16, 1999.

Edoardo Datteri, Giancarlo Teti, Cecilia Laschi, Guglielmo Tamburrini, Paolo
Dario, and Eugenio Guglielmelli. Expected perception: an anticipation-based
perception-action scheme in robots. In IEEE/RSJ International Conference on
Intelligent Robots and Systems 2003 (IROS ’03), volume 1, pages 934–939, 2003.

Paul Dean, John E. W. Mayhew, and Pat Langdon. Learning and maintaining
saccadic accuracy: A model of brainstem–cerebellar interactions. Journal of
Cognitive Neuroscience, 6(2):117–138, 1994.

128

http://www.vision.caltech.edu/bouguetj/calib_doc/.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

Bibliography

Ralf Der and Georg Martius. From motor babbling to purposive actions: Emerging
self-exploration in a dynamical systems approach to early robot development. In
From Animals to Animats 9, pages 406–421. Springer, 2006.

Tobin A. Driscoll and Bengt Fornberg. Interpolation in the limit of increasingly
flat radial basis functions. Comput. Math. Appl, 43:413–422, 2002.

Olivier Dubrule. Comparing splines and kriging. Computers & Geosciences, 10(2):
327–338, 1984.

Jean Duchon. Interpolation des fonctions de deux variables suivant le principe de
la flexion des plaques minces. R.A.I.R.O. Analyse numérique, 10:5–12, 1976.

Jean-René Duhamel, Carol L. Colby, and Michael E. Goldberg. The updating of
the representation of visual space in parietal cortex by intended eye movements.
Science, 255(5040):90–92, 1992.

Nira Dyn, David Levin, and Samuel Rippa. Numerical procedures for surface fitting
of scattered data by radial functions. SIAM Journal on Scientific and Statistical
Computing, 7(2):639–659, 1986.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Pro-
ceedings of KDD, pages 226–231. AAAI Press, 1996.

Ronald A. Finke and Stephen M. Kosslyn. Mental imagery acuity in the periph-
eral visual field. Journal of Experimental Psychology: Human Perception and
Performance, 6(1):126, 1980.

Jan Flusser. An adaptive method for image registration. Pattern Recognition, 25
(1):45 – 54, 1992.

Jerry A. Fodor. The language of thought, volume 5. Harvard University Press, 1975.

Bengt Fornberg, Tobin A. Driscoll, G. Wright, and R. Charles. Observations on
the behavior of radial basis function approximations near boundaries. Computers
Math. Appl., 43(3-5):473–490, 2002.

John G. Fryer and Duane C. Brown. Lens distortion for close-range photogramme-
try. Photogrammetric engineering and remote sensing, 52(1):51–58, 1986.

Albert F. Fuchs, Chris R. Kaneko, and Charles A. Scudder. Brainstem control of
saccadic eye movements. Annual Review of Neuroscience, 8(1):307–337, 1985.

James J. Gibson. The ecological approach to visual perception. Routledge,
1979/1986.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and
neural networks architectures. Neural Computation, 7(2):219–269, 1995.

129

Bibliography

Chris A. Glasbey and Kantilal V. Mardia. A review of image-warping methods.
Journal of Applied Statistics, 25(2):155–171, 1998.

Gene H. Golub and Charles F. Van Loan. Matrix computations. John Hopkins
University Press, 1996.

Hiroaki Gomi and Mitsuo Kawato. Neural network control for a closed-loop system
using feedback-error-learning. Neural Networks, 6(7):933–946, 1993.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2001.

Rick Grush. The emulation theory of representation: motor control, imagery, and
perception. Behavioral and brain sciences, 27(3):377–396, 2004.

Rolland L. Hardy. Multiquadric equations of topography and other irregular sur-
faces. Journal of Geophysical Research, 76:1905–1915, 1971.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, New York, NY, USA, 2 edition, 2003.

Germund Hesslow. Conscious thought as simulation of behaviour and perception.
Trends in cognitive sciences, 6(6):242–247, 2002.

Germund Hesslow. The current status of the simulation theory of cognition. Brain
research, 1428:71–79, 2012.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

Heiko Hoffmann. Perception through visuomotor anticipation in a mobile robot.
Neural Networks, 20(1):22–33, 2007a.

Heiko Hoffmann. Kernel PCA for novelty detection. Pattern Recognition, 40(3):
863–874, 2007b.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, repr. with corr. edition, 1990.

Hsieh S. Hou and H. Andrews. Cubic splines for image interpolation and digital
filtering. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(6):
508–517, 1978.

Masao Ito. Control of mental activities by internal models in the cerebellum. Nature
Reviews Neuroscience, 9(4):304–313, 2008.

Bernd Jaehne. Digitale Bildverarbeitung. Springer, 2005.

130

Bibliography

Martin Jägersand. Image based view synthesis of articulated agents. In IEEE
Confonference on Computer Visision and Pattern Recognition 1997 (CVPR ’97),
pages 1047–1053, 1997.

Lorenzo Jamone, Lorenzo Natale, Francesco Nori, Giorio Metta, and Giulio San-
dini. Autonomous online learning of reaching behavior in a humanoid robot.
International Journal of Humanoid Robotics, 9(3):1–26, 2012.

Marc Jeannerod. The representing brain: Neural correlates of motor intention and
imagery. Behavioral and Brain sciences, 17(2):187–201, 1994.

Marc Jeannerod. Mental imagery in the motor context. Neuropsychologia, 33(11):
1419–1432, 1995.

Marc Jeannerod. Neural simulation of action: a unifying mechanism for motor
cognition. Neuroimage, 14(1):S103–S109, 2001.

Ian Jolliffe. Principal Component Analysis. Springer, 1986.

Béla Julesz. Foundations of Cyclopean Perception. MIT Press, 1971.

Alexander Kaiser, Wolfram Schenck, and Ralf Möller. Mental imagery in artifi-
cial agents. In Thomas Villmann and Frank-Michael Schleif, editors, Machine
Learning Reports 04/2010, number MLR-04-2010, pages 25–32, 2010a.

Alexander Kaiser, Wolfram Schenck, and Ralf Möller. Distance functions for local
PCA methods. In ESANN 2010 proceedings—European Symposium on Artificial
Neural Networks, pages 469–474, Bruges (Belgium), 2010b. d-side publications.

Alexander Kaiser, Wolfram Schenck, and Ralf Möller. A model architecture for
mental imagery. In B. Kokinov, A. Karmiloff-Smith, and N. J. Nersessian, ed-
itors, European Perspectives on Cognitive Science, Sofia, 2011. New Bulgarian
University Press.

Alexander Kaiser, Wolfram Schenck, and Ralf Möller. Stereo matching and depth
perception by visual prediction. In Alessandro G. Di Nuovo, Vivian M. de la Cruz,
and Davide Marocco, editors, Proceedings of the SAB Workshop on “Artificial
Mental Imagery”, pages 7–10, Odense (Danmark), 2012.

Alexander Kaiser, Wolfram Schenck, and Ralf Möller. Solving the correspondence
problem in stereo vision by internal simulation. Adaptive Behavior, 21(4):239–
250, 2013.

Amir Karniel. Three creatures named forward model. Neural Networks, 15(3):
305–307, 2002.

Mitsuo Kawato and Daniel M. Wolpert. Internal models for motor control. Sensory
Guidance of Movement, 218:291–307, 1998.

131

Bibliography

Stephen M. Kosslyn, Nathaniel M. Alpert, William L. Thompson, Vera Maljkovic,
Steven B. Weise, Christopher F. Chabris, Sania E. Hamilton, Scott L. Rauch,
and Ferdinando S. Buonanno. Visual mental imagery activates topographically
organized visual cortex: PET investigations. Journal of Cognitive Neuroscience,
5(3):263–287, 1993.

Stephen M. Kosslyn, William L. Thompson, and Nathaniel M. Alpert. Neural
systems shared by visual imagery and visual perception: A positron emission
tomography study. Neuroimage, 6(4):320–334, 1997.

Michael Kuperstein. Neural model of adaptive hand–eye coordination for single
postures. Science, 239(4845):1308–1311, 1988.

George Lakoff and Mark Johnson. Metaphors we live by. Chicago: The University
of Chicago Press, 1980.

Claus Lamm, Christian Windischberger, Ulrich Leodolter, Ewald Moser, and Her-
bert Bauer. Evidence for premotor cortex activity during dynamic visuospa-
tial imagery from single-trial functional magnetic resonance imaging and event-
related slow cortical potentials. Neuroimage, 14(2):268–283, 2001.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 1998.

Miguel Lourenço, João Pedro Barreto, and Francisco Vasconcelos. sRD-SIFT: Key-
point detection and matching in images with radial distortion. IEEE Transactions
on Robotics, 28(3):752–760, June 2012.

David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3(3):127–149, 2009.

James MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, pages 281–297, 1967.

Hugo G. Marques and Owen Holland. Architectures for functional imagination.
Neurocomputing, 72(4):743–759, 2009.

David Marr and Tomaso Poggio. A computational theory of human stereo vision.
Proceedings of the Royal Society of London. Series B. Biological Sciences, 204
(1156):301–328, 1979.

Lawrence E. Mays. Neural control of vergence eye movements: convergence and
divergence neurons in midbrain. Journal of Neurophysiology, 51(5):1091–1108,
1984.

132

Bibliography

Bartlett W. Mel. MURPHY: A robot that learns by doing. In Neural information
processing systems, pages 544–553. American Institute of Physics, 1988.

Bartlett W. Mel. A connectionist model may shed light on neural mechanisms for
visually guided reaching. Journal of cognitive neuroscience, 3(3):273–292, 1991.

Charles A. Micchelli. Interpolation of scattered data: Distance matrices and con-
ditionally positive definite functions. Constructive Approximation, 2(1):11–22,
1986.

Giulio Milighetti, Luca Vallone, and Alessandro De Luca. Adaptive predictive gaze
control of a redundant humanoid robot head. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS ’11), pages 3192–3198. IEEE,
2011.

Ralf Möller. Perception through anticipation. a behaviour-based approach to visual
perception. In Understanding Representation in the Cognitive Sciences, pages
169–176. Springer, 2000.

Ralf Möller and Heiko Hoffmann. An extension of neural gas to local PCA. Neu-
rocomputing, 62:305–326, 2004.

Ralf Möller and Axel Könies. Coupled principal component analysis. IEEE Trans-
actions on Neural Networks, 15(1):214–222, 2004.

Ralf Möller and Wolfram Schenck. Bootstrapping cognition from behaviora com-
puterized thought experiment. Cognitive Science, 32(3):504–542, 2008.

Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José Santos-Victor.
Learning object affordances: From sensory–motor coordination to imitation.
Robotics, IEEE Transactions on, 24(1):15–26, 2008.

John Moody and Christian J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1(2):281–294, 1989.

Allen Newell and Herbert A. Simon. GPS, a program that simulates human thought.
Defense Technical Information Center, 1961.

Shun Nishide, Tetsuya Ogata, Jun Tani, Kazunori Komatani, and Hiroshi G.
Okuno. Predicting object dynamics from visual images through active sensing
experiences. Advanced Robotics, 22(5):527–546, 2008.

Hiroharu Noda. Cerebellar control of saccadic eye movements: Its neural mecha-
nisms and pathways. The Japanese Journal of Physiology, 41(3):351–368, 1991.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15(3):267–273, 1982.

133

Bibliography

Francesco Orabona, Giorgio Metta, and Giulio Sandini. A proto-object based vi-
sual attention model. In Lucas Paletta and Erich Rome, editors, Attention in
Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint,
volume 4840 of Lecture Notes in Computer Science, pages 198–215. Springer
Berlin Heidelberg, 2007.

J. Kevin O’Regan and Alva Noë. A sensorimotor account of vision and visual
consciousness. Behavioral and brain sciences, 24(5):939–972, 2001.

Giovanni Pezzulo, Lawrence W. Barsalou, Angelo Cangelosi, Martin H. Fischer,
Ken McRae, and Michael J. Spivey. Computational grounded cognition: a new
alliance between grounded cognition and computational modeling. Frontiers in
psychology, 3:612–612, 2011.

Giovanni Pezzulo, Matteo Candidi, Haris Dindo, and Laura Barca. Action simu-
lation in the human brain: twelve questions. New Ideas in Psychology, 31(3):
270–290, 2013.

Rolf Pfeifer and Christian Scheier. Understanding intelligence. MIT press, 2001.

David Philipona, J. Kevin O’Regan, and Jean-Pierre Nadal. Is there something out
there? Inferring space from sensorimotor dependencies. Neural Computation, 15
(9), 2003.

Friedemann Pulvermüller and Luciano Fadiga. Active perception: sensorimotor
circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5):
351–360, 2010.

Zenon W. Pylyshyn. The imagery debate: Analogue media versus tacit knowledge.
Psychological review, 88(1):16, 1981.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning series. The MIT Press,
2005.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-
propagation learning: the RPROP algorithm. In IEEE International Conference
on Neural Networks, volume 1, pages 586–591, 1993.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, volume 1: Foundations, pages 318–362. The MIT Press, Cambridge,
MA, USA, 1986.

Ryo Saegusa, Sophie Sakka, Giorgio Metta, and Giulio Sandini. Sensory Prediction
Learning –How to Model the Self and the Environment–. In 12th IMEKO TC1 &
TC7 Joint Symposium on “Man Science & Measurement” (IMEKO ’08), pages
269–275, 2008.

134

Bibliography

Wolfram Schenck. Adaptive Internal Models for Motor Control and Visual Predic-
tion. MPI Series in Biological Cybernetics. Logos Verlag, Berlin, 2008.

Wolfram Schenck. Robot studies on saccade-triggered visual prediction. New Ideas
in Psychology, 31(3):221–238, 2013.

Wolfram Schenck and Ralf Möller. Staged learning of saccadic eye movements with
a robot camera head. In H. Bowman and C. Labiouse, editors, Connectionist
Models of Cognition and Perception II, pages 82–91. World Scientific, New Jersey,
London, 2004.

Wolfram Schenck and Ralf Möller. Training and application of a visual forward
model for a robot camera head. In M. V. Butz, O. Sigaud, G. Pezzulo, and
G. Baldassarre, editors, Anticipatory Behavior in Adaptive Learning Systems:
From Brains to Individual and Social Behavior, number 4520 in Lecture Notes
in Artificial Intelligence, pages 153–169. Springer, Berlin, Heidelberg, New York,
2007.

Wolfram Schenck, Heiko Hoffmann, and Ralf Möller. Grasping to extrafoveal tar-
gets: A robotic model. New Ideas in Psychology, 29(3):235–259, 2011.

Wolfram Schenck, Hendrik Hasenbein, and Ralf Möller. Detecting affordances by
mental imagery. In Alessandro G. Di Nuovo, Vivian M. de la Cruz, and Da-
vide Marocco, editors, Proceedings of the SAB Workshop on “Artificial Mental
Imagery”, pages 15–18, Odense (Danmark), 2012.

Charles A. Scudder, Chris R. Kaneko, and Albert F. Fuchs. The brainstem burst
generator for saccadic eye movements. Experimental Brain Research, 142(4):
439–462, 2002.

Roger N. Shepard and Jacqueline Metzler. Mental rotation of three-dimensional
objects. Science, 171(3972):701–703, 1971.

Tomohiro Shibata and Stefan Schaal. Biomimetic gaze stabilization based on
feedback-error-learning with nonparametric regression networks. Neural Net-
works, 14(2):201–216, 2001.

Mark W. Spong and Mathukumalli Vidyasagar. Robot dynamics and control. John
Wiley & Sons, 2008.

Henrik Svensson, Anthony F. Morse, and Tom Ziemke. Neural pathways of embod-
ied simulation. In Anticipatory Behavior in Adaptive Learning Systems, pages
95–114. Springer, 2009.

Jun Tani and Stefano Nolfi. Learning to perceive the world as articulated: an
approach for hierarchical learning in sensory-motor systems. Neural Networks,
12(7):1131–1141, 1999.

135

Bibliography

Wolfgang M. Theimer and Hanspeter A. Mallot. Phase-based binocular vergence
control and depth reconstruction using active vision. CVGIP: Image Understand-
ing, 60(3):343–358, 1994.

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 1991.

Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric Wan. The
unscented particle filter. In NIPS, pages 584–590, 2000.

Erich von Holst and Horst Mittelstaedt. Das Reafferenzprinzip. Naturwis-
senschaften, 37(20):464–476, 1950.

Dirk Walther and Christof Koch. Modeling attention to salient proto-objects. Neu-
ral Networks, 19(9):1395–1407, 2006.

Yonatan Wexler, Andrew W. Fitzgibbon, and Andrew Zisserman. Learning epipolar
geometry from image sequences. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 209–216, 2003.

Margaret Wilson. Six views of embodied cognition. Psychonomic bulletin & review,
9(4):625–636, 2002.

Marco Wischnewski, Anna Belardinelli, Werner X. Schneider, and Jochen J. Steil.
Where to look next? combining static and dynamic proto-objects in a TVA-based
model of visual attention. Cognitive Computation, 2(4):326–343, 2010.

George Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1st edition, 1994.

Daniel M. Wolpert and Mitsuo Kawato. Multiple paired forward and inverse models
for motor control. Neural Networks, 11(7):1317–1329, 1998.

Daniel M. Wolpert, Zoubin Ghahramani, and Michael I. Jordan. An internal model
for sensorimotor integration. Science, 269(5232):1880–1882, 1995.

Daniel M. Wolpert, R. Chris Miall, and Mitsuo Kawato. Internal models in the
cerebellum. Trends in cognitive sciences, 2(9):338–347, 1998.

Daniel M Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying computational
framework for motor control and social interaction. Philosophical Transactions
of the Royal Society of London. Series B: Biological Sciences, 358(1431):593–602,
2003.

Jerry J. Yokono and Tomaso Poggio. Oriented filters for object recognition: an
empirical study. In Proceedings of the Sixth IEEE International Conference on
Automatic Face and Gesture Recognition, pages 755–760, 2004.

Tom Ziemke, Dan-Anders Jirenhed, and Germund Hesslow. Internal simulation of
perception: a minimal neuro-robotic model. Neurocomputing, 68:85–104, 2005.

136

	Introduction
	Theoretical Foundations
	Grounded Cognition
	Related Concepts
	Simulation and Emulation Theories
	Experimental Evidence

	Learning of Sensorimotor Interactions
	Towards a Model Architecture for Simulated Object Interaction
	Overview
	Visuomotor Associations
	Prediction of Object Interactions
	Simulation Process

	Outline

	Visual Prediction by Using RBF Networks
	Introduction
	Methods
	Setup
	Image Distortion Model
	Image Warping

	Radial Basis Functions
	Generalized Radial Basis Function Networks
	Positive Definite and Conditionally Definite Kernels
	Dual Representation

	Visual Forward Model
	Data Acquisition
	Full Mapping Model
	Two-Staged Mapping Model
	Validator Model

	Results
	Conclusions & Outlook

	A Geometric Model for Visual Prediction and Saccade Control
	Introduction
	Geometric model
	Visual forward model
	Transformation
	Interpolation
	Image Distortion
	Results

	Saccade Control
	Geometric Saccade Controller
	Adaptive Controller
	Results

	Conclusions
	Outlook

	An Associative Model for Mental Imagery
	Introduction
	Robotic Agent
	Vergence Model
	Arm Postures

	Kinesthetic Association
	Vergence Control
	Collection of Training Data
	Neural Network and Training

	Visual Association
	Eigen-Images
	Data Collection and Image Processing
	Appearance Vectors and Network Training

	Results
	Conclusions & Outlook

	Stereo Matching by Internal Simulation
	Introduction
	Setup
	Robotic Agent
	Retinal Images

	Visual forward model
	Data Acquisition
	Implementation

	Saccade Controller
	Stereo Matching
	Predictive Matching
	SIFT-Based Matching

	Saliency Detection
	Pre-Processing
	Segmentation and Clustering

	Results
	Experiment 1
	Experiment 2

	Conclusions & Outlook

	Overall Conclusions & Outlook
	Visual Prediction
	Visuomotor Associations
	Future Research Directions
	Alternative Learning Methods
	Alternative Approaches of ``Perception through Anticipation''

	Down-Dating the Inverse of a Matrix
	Reconstruction of Gripper Positions
	Simulated Gripper Appearance
	Bibliography

