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Abstract

This thesis introduces a Markov chain approach that allows a rigorous analy-
sis of a class of agent-based models (ABMs). It provides a general framework
of aggregation in agent-based and related computational models by making
use of Markov chain aggregation and lumpability theory in order to link
between the micro and the macro level of observation.

The starting point is a microscopic Markov chain description of the dy-
namical process in complete correspondence with the dynamical behavior
of the agent model, which is obtained by considering the set of all possi-
ble agent configurations as the state space of a huge Markov chain. This is
referred to as micro chain, and an explicit formal representation including
microscopic transition rates can be derived for a class of models by using
the random mapping representation of a Markov process. The explicit micro
formulation enables the application of the theory of Markov chain aggrega-
tion – namely, lumpability – in order to reduce the state space of the micro
chain and relate microscopic descriptions to a macroscopic formulation of
interest. Well-known conditions for lumpability make it possible to establish
the cases where the macro model is still Markov, and in this case we obtain
a complete picture of the dynamics including the transient stage, the most
interesting phase in applications.

For such a purpose a crucial role is played by the type of probability
distribution used to implement the stochastic part of the model which de-
fines the updating rule and governs the dynamics. Namely, if we decide to
remain at a Markovian level, then the partition, or equivalently, the collec-
tive variables used to build the macro model must be compatible with the
symmetries of the probability distribution ω. This underlines the theoretical
importance of homogeneous or complete mixing in the analysis of »voter-
like« models at use in population genetics, evolutionary game theory and
social dynamics. On the other hand, if a favored level of observation is not
compatible with the symmetries in ω, a certain amount of memory is intro-
duced by the transition from the micro level to such a macro description,
and this is the fingerprint of emergence in ABMs. The resulting divergence
from Markovianity can be quantified using information-theoretic measures
and the thesis presents a scenario in which these measures can be explicitly
computed.

Two simple models are used to illustrate these theoretical ideas: the voter
model (VM) and an extension of it called contrarian voter model (CVM).
Using these examples, the thesis shows that Markov chain theory allows
for a rather precise understanding of the model dynamics in case of »sim-
ple« population structures where a tractable macro chain can be derived.
Constraining the system by interaction networks with a strong local struc-
ture leads to the emergence of meta-stable states in the transient of the
model. Constraints on the interaction behavior such as bounded confidence



or assortative mating lead to the emergence of new absorbing states in the
associated macro chain and are related to stable patterns of polarization
(stable co-existence of different opinions or species). Constraints and het-
erogeneities in the microscopic system and complex social interactions are
the basic characteristics of ABMs, and the Markov chain approach to link
the micro chain to a macro level description (and likewise the failure of a
Markovian link) highlights the crucial role played by those ingredients in the
generation of complex macroscopic outcomes.
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Chapter I

Introduction

I think that nowadays most people would confirm that the world we live in is
a complex one. Not only the problems that we face at a global scale (such as
climate change and financial crises) but also many of our very personal day-
to-day decisions (such as choosing between a fresh organic apple from oversee
and a local apple maintained in an energy-expensive cooling chamber) in-
volve nowadays, if carefully considered, the evaluation of entanglements of
global scope. There is a high level of uncertainty in the evaluation of the
consequences of our actions owing to the fact that those entanglements are
often not clearly evident. There is also a high degree of freedom in what
concerns the number of options that are in principle at our disposal, but if
we do not sufficiently understand the functioning of the system there is no
way to choose among them.

The »new science of complex systems« is an attempt to better under-
stand the behavior of systems that are composed of elementary units and
structures of mutual dependencies (Wechselwirkungen) between those units.
The fundamental idea is that complex patterns of higher-level organization
emerge in a dynamical system of interacting individuals that participate in
a self-organizing process. While no central control is assumed to direct this
process, the global emergences that are generated by it may well have an
effect on the individual dynamics. Complexity, in this dynamical context,
relates to the fact that higher-level patterns and processes are not easily un-
derstood by considering the dynamical mechanisms at the lower level only.

Of course, the fact that the behavior of many real-world systems is not
predictable in simple way from the behavior of the system’s components has
been acknowledged long ago. Likewise, the observation that systems from
very different fields and at different scales share important principles of or-
ganization. But especially the last two decades have witnessed a tremendous
increase in scientific activity trying to make visible the empirical fingerprints
of complex behavior (such as power law distributions or long range corre-
lations) on the one hand, and to extract the underlying mechanisms and
causal relations at work in those systems in order to really understand the
fundamental principles of self-organized complexity on the other. For its
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2 Introduction

enormous range of application – from biology to sociology, from physics to
linguistics – complexity has become one of the most promising concepts in
modern science.

In all of this, computational tools have become very important. Several
methodological innovations are in fact enabled only by the general avail-
ability of relatively powerful computers: from the retrieval of information,
statistical regularities and patterns from large amounts of data to the simula-
tive testing of different behavioral assumptions in models of biological, social
or cultural evolution. In general, the use of computational instruments does
not make mathematics dispensable, to the contrary, it rather calls for the
development of sound mathematical foundations of these new methods. In
data science, this relates to questions concerned with statistical significance,
algorithmic complexity, information theory, among many others; for compu-
tational models, it is related to proper formal model specifications, to the
development of mathematical theories for multi-level systems and analytical
solution strategies.

This thesis is concerned with the latter problem area. It develops mathe-
matical concepts for the formal treatment of a class of computational models.
Namely, it formulates agent-based models – models in which a finite number
of agents interact according to simple behavioral assumptions – as Markov
chains and makes use of Markov chain theory to derive explicit statements
about the possibility of linking a microscopic agent model to the dynamical
processes at the level of macroscopic observables. The questions that this
thesis aims to address are inherently dynamic ones: the focus is not on the
structural properties of certain agent networks, but rather on the dynamical
processes at the micro and the macro level that differently structured sys-
tems give rise to. A particular aspect in that is the role that microscopic
heterogeneity and constraints in the agent behavior play in the generation
of macroscopic complexity. In this way, it touches upon questions related to
the micro-macro link in social simulation and to computational emergence
in general. Moreover, the question of deriving macroscopic descriptions with
a minimal loss of information also goes to the heart of statistical mechanics.

1.1 Agent-Based Models

Recent improvements in multidisciplinary methods and, particularly, the
availability of powerful computational tools are giving researchers an ever
greater opportunity to investigate societies in their complex nature. The
adoption of a complex systems approach allows the modeling of macro-
sociological or economic structures from a bottom-up perspective – under-
stood as resulting from the repeated local interaction of socio-economic
agents – without disregarding the consequences of the structures themselves
on individual behavior, emergence of interaction patterns and social welfare.
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Agent-based models (henceforth ABMs) are at the leading edge of this
endeavor. ABMs are an attempt to understand how macroscopic regularities
may emerge through processes of self-organization in systems of interacting
agents. The main idea is to place a population of agents characterized by a
set of attributes within a virtual environment and specify simple rules of how
agents interact with each other and the environment. The interaction rules
are usually based on simple behavioral assumptions with the aim to mimic
the individual behavior of real actors in their local environment. While the
system is modeled at the microscopic level, its explanatory scope is the macro
level. In that, ABMs follow the tradition of methodological individualism
which claims »that social phenomena must be explained by showing how
they result from individual actions« (Heath, 2011, par. 1).

Agent-based systems are dynamical systems. Typically implemented on
a computer, the time evolution is computed as an iterative process – an
algorithm – in which agents are updated according to the specified rules.
ABMs usually also involve a certain amount of stochasticity, because the
agent choice and sometimes also the choice among different behavioral op-
tions is random. This is why Markov chain theory is such a good candidate
for the mathematical formalization of ABMs.

The Voter Model (VM from now on) is a simple paradigmatic example
(Kimura and Weiss, 1964; Castellano et al., 2009, among many others). In
the VM, agents can adopt two different states, which we may denote as
white � and black �. The attribute could account for the opinion of an
agent regarding a certain issue, its approval or disapproval regarding certain
attitudes. In an economic context � and � could encode two different be-
havioral strategies, or, in a biological context, the occurrence of mutants in
a population of individuals. The iteration process implemented by the VM
is very simple. At each time step, an agent i is chosen at random along
with one of its neighboring agents j and one of them imitates the state of
the other. In the long run, the model leads to a configuration in which all
agents have adopted the same state (either � or �). In the context biological
evolution, this has been related to the fixation or extinction of a mutant in
a population. The VM has also been interpreted as a simplistic form of a
social influence process by which a shared convention is established in the
entire population.

Let us consider an example simulation run of the VM to provide an
intuition about its behavior (Fig. 1.1). Assume there are 20 agents connected
by a chain such that an agent at position i is connected to agents i− 1 and
i + 1 (except the first and the last agent who have only one neighbor). Let
the random initial population be x = (��������������������)
corresponding to the left-most column in Fig. 1.1. The time evolution is
shown from left to right, the columns represent the configuration of the
population each time after 10 VM steps have been performed. This example
shows two main features of the VM: (i.) the emergence of a meta-stable
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Figure 1.1: Example of the time evolution of the VM on the chain network.

transient state of local alignment, and (ii.) the final convergence to complete
consensus. The first feature is clearly due to the interaction topology because
initial local divergences are leveled with a high probability and once an areal
of local alignment is achieved change is admitted, due to the chain topology,
only at the borders of that domain. The second feature is a more general
feature of the finite VM, sooner or later consensus occurs in every topology.

When designing an agent model, one is inevitably faced with the prob-
lem of finding an acceptable compromise between realism and simplicity. If
many aspects are included into the agent description, the model might be
plausible with regard to the individual behaviors, but it will be impossible
to derive rigorous analytical results. In fact, it can even be very hard to per-
form systematic computations to understand the model dynamics if many
parameters and rules are included. On the other hand, models that allow for
an analytical treatment often oversimplify the problem at hand. The VM
is good example of this kind. In ABM, we can find the whole spectrum be-
tween these two extremes. While simplicity is often favored by physicists in
order to be able to apply their well-developed tools from statistical physics,
more realistic descriptions are often desired by researchers in the humanities
because they are interested in incorporating into the model a reasonable part
of their qualitative knowledge at the micro and macro scales. Both views
have, of course, their own merits.

1.2 Markov Chain Description of Agent-Based

Models

This thesis is a contribution to interweaving two lines of research that have
developed in almost separate ways: ABMs and Markov chains. The former
represents the simplest form of a stochastic process while the latter puts a
strong emphasis on heterogeneity and social interactions. The main expected
output of a Markov chain strategy applied to ABM is a better understanding
of the relationship between microscopic and macroscopic dynamical proper-
ties. Moreover, we aim to contribute not only to the understanding of the
asymptotic properties of ABM but also to the transient mechanisms that
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rule the system on intermediate time scales. For practical purposes this
is the most relevant information for two reasons: first, in many cases the
chains are absorbing, so the asymptotic dynamics is trivial and second, they
describe the evolution of the system before external perturbations take place
and possibly throw it into a new setting.

The possibility of using Markov chains in the analysis of ABMs has been
pointed out in Izquierdo et al. (2009). The main idea is to consider all pos-
sible configurations of the agent system as the state space of a huge Markov
chain. While Izquierdo et al. (2009) mainly rely on numerical computations
to estimate the stochastic transition matrices of the models, here we show
for a class of models how to derive explicitly the transition probabilities P̂ in
terms of the update function u and a probability distribution ω accounting
for the stochastic parts in the model. It turns out that ABMs with a sequen-
tial update scheme can be conceived as random walks on regular graphs.

Consider an ABM defined by a set N of agents, each one characterized
by individual attributes that are taken from a finite list of possibilities. We
denote the set of possible attributes by S and we call the configuration space
Σ the set of all possible combinations of attributes of the agents, i.e. Σ =
SN . Therefore, we denote an agent configuration as x ∈ Σ and write x =
(x1, . . . , xi, . . . , xN ) with xi ∈ S. The updating process of the attributes of
the agents at each time step typically consists of two parts. First, a random
choice of a subset of agents is made according to some probability distribution
ω. Then the attributes of the agents are updated according to a rule u, which
depends on the subset of agents selected at this time. With this specification,
ABMs can be represented by a so-called random map representation which
may be taken as an equivalent definition of a Markov chain (Levin et al.
(2009)). We refer to the process (Σ, P̂ ) as micro chain.

1.3 Markov Chain Aggregation

When performing simulations of an ABM we are actually not interested in all
the dynamical details but rather in the behavior of certain macro-level prop-
erties that inform us about the global state of the system (such as average
opinion, number of communities, etc.). The explicit formulation of ABMs as
Markov chains enables the development of a mathematical framework to link
a micro chain corresponding to an ABM to such a macro-level description of
interest. Namely, from the Markov chain perspective, the transition from the
micro to the macro level is a projection of the micro chain with state space
Σ onto a new state space X by means of a (projection) map Π from Σ to
X. The meaning of the projection Π is to lump sets of micro configurations
in Σ into an aggregate set according to the macro property of interest. Such
a situation naturally arises if the ABM is observed not at the micro level of
Σ, but rather in terms of a measure φ on Σ by which all configuration in



6 Introduction

Σ that give rise to the same measurement are mapped into the same macro
state, say Xk ∈ X. An illustration of such a projection is provided in Fig.
1.2.
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Figure 1.2: A micro process (x,y, z ∈ Σ) is observed (φ) at a higher level
and this observation defines another macro level process (Xk, Xl, Xm ∈ X).
The micro process is a Markov chain with transition matrix P̂ . The macro
process is a Markov chain (with P ) only in the case of lumpability.

There are two things that may happen when projecting a micro process
onto a macroscopic state space X. First, under certain conditions the macro-
level process is still a Markov chain. This case is known as lumpability in
Markov chain theory and necessary and sufficient conditions are provided in
a well-known textbook on finite Markov chains by Kemeny and Snell (1976).
The question this thesis aims to address concerns, first of all, the conditions
on the microscopic system and the projection construction that have to be
met in order to lead to a macro process that is still a Markov chain. In this
regard, if we decide to remain at a Markovian level, then the projection,
or equivalently the collective variables to be used to build the macro model
must be compatible with the symmetry of the probability distribution ω. In
turn, in the absence of any symmetry, there is no other choice than to stay
at the micro-level because no Markovian macro-level description is possible
in this case.

Secondly, and more generally, the price to pay in passing from the micro
to the macro dynamics by such a projection construction is that the projected
system is no longer a Markov chain. Long memory (even infinite) may appear
in the projected system. Consequently, this setting can provide a suitable
framework to understand how aggregation may lead to the emergence of long
range memory effects. This opens up a series of interesting questions: for
instance, why and in what sense does the behavior of the macro process
deviate from Markovianity? How can we measure these deviations? Do
we introduce memory or long-range correlations at the macro level by the
very way we observe a process and is the emergence of these effects just
due to an aggregation which is insensitive to microscopic heterogeneities?
In particular, there is usually a strong interest in the effects that different



Chapter I 7

interaction topologies have on the transient model dynamics as well as on
the emergence of characteristic meta-stable situations, such as the persistent
pattern of local alignment shown in Fig. 1.1. In that regard, how good
does the mean field solution approximate network dynamics and for which
networks does it provide acceptable approximations? Is there an alternative
macro-level formulation that leads to better results? If yes, which properties
can be captured by it? A micro-macro formalism may shed new light on
some of these questions.

To my point of view, the non-Markovian case is in many ways even more
interesting than the case of lumpability. In particular, because it relates
microscopic heterogeneity to macroscopic complexity (structure generation).
Constraints, heterogeneities in the microscopic system and complex social
interactions are the basic characteristics of ABMs, and the Markov chain
approach to link the micro chain to a macro level description (and likewise
the failure of a Markovian link) highlights the crucial role played by those
ingredients in the generation of complex macroscopic outcomes. The for-
malization of the relations between the micro and the macro levels in the
description of the dynamics of ABMs as well as their mathematical charac-
terization is a step towards a mathematical theory of emergence in complex
adaptive systems.

1.4 Micro-Macro Transition in the Voter Model

Let us exemplify the link between a micro and a macro chain by Markov
chain aggregation for the VM. From the microscopic perspective, the VM
corresponds to an absorbing random walk on the N -dimensional hypercube.
If N agents can be in two different states, the set of all agent configurations
Σ is the set of all bit-strings of length N . Due to the dyadic conception of
the interaction along with a sequential update scheme only one agent may
change at a time which means that transitions are only possible between
configurations that differ in at most one bit. The structure of the VM micro
chain is shown for a small system of three agents in the upper part of Fig. 1.3.

In the VM, the most typical level of observation is to count the number
of agents in the different states. In hypercube terminology this corresponds
to the Hamming weight (i.e., φ(x) = h(x)). By the projection that this
observation induces, all micro configurations with the same number of (say)
white agents are mapped into the same macro state. If k is the number
of white agents (h(x) = k), we denote the respective macro state as Xk.
Therefore, if we are dealing with a system of N agents, there are N + 1
macro states which is a tremendous reduction compared to the 2N micro
configurations. The projection construction for the VM is shown in Fig. 1.3.

Voter-like models – as used in physics-inspired models of social dynamics
as well as in population genetics or evolutionary dynamics – are nice examples
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Figure 1.3: Micro and macro level in the VM with three agents.

where such a projection construction is particularly meaningful. Namely,
because it corresponds to the most typical description of the model dynamics
in terms of attribute frequencies. Lumpability allows to determine conditions
for which the macro chain on X = (X0, . . . , Xk, . . . , XN ) is again a Markov
chain and, as will be shown in Chapter 3, this requires that the probability
distribution ω over agent choices must be invariant under the group SN of
all the permutations of N agents, and therefore uniform. This underlines the
theoretical importance of homogeneous mixing and respectively the complete
graph in the analysis of the VM and related models.

1.5 Thesis Structure

The thesis is organized into seven chapters. Chapter 2 provides an elemen-
tary introduction to ABMs and discusses different ideas for their mathe-
matical formalization. It proceeds with a review of different approaches to
lumpability in Markov chains and motivates their application to ABMs.

Chapter 3 develops the most important theoretical ideas and applies them
to the VM with homogeneous mixing. The first part of Chapter 3, addresses
the micro level and shows that a class of ABMs are Markov chains on regular
graphs. This is followed by general description of the transition from the
micro to the macro level. After that, a detailed analysis of the VM with
homogeneous mixing is presented including the multi-state version of the
model. Chapter 3 also shows that interaction constraints such as bounded
confidence may lead to the stable co-existence of polarization. The final part
is devoted to a discussion of most important implications.

In the next chapter, Chapter 4, we discuss what happens in the case
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of inhomogeneous interaction probabilities. A systematic approach to ag-
gregation is developed which exploits all the dynamical redundancies that
have its source in the agent network on which the model is implemented.
This enables the analytical treatment of a leader-follower system as well as
the two-community model in which two strongly connected groups interact
weakly with one another. Implications are discussed at the end.

The main objective of Chapter 5 is to study the influence of interaction
topology on the macro-level dynamics in the case of non-lumpability. The
contrarian voter model (CVM) is used here. We start from the micro-level
description and derive a macro chain for homogeneous mixing as well as a
meso-level description for the two-community graph. This provides an ana-
lytical scenario to study the discrepancy between the homogeneous mixing
case and the model on a slightly more complex topology. It shows that
memory effects are introduced at the macro level when we aggregate over
agent attributes without sensitivity to the microscopic details and quantifies
these effect using concepts from information theory. The possibility of weak
lumpability is also discussed.

While the specific issues are discussed at the end of each chapter, Chapter
6 aims at a synthetic view on how this work may contribute more generally to
the study of complexity and emergence. A definition of emergence in terms of
lumpability provides a link between two different perspectives on emergence,
namely, the concept of dynamical incompressibility and Wimsatt’s notion of
non-aggregativity.

Finally, Chapter 7 draws a conclusion on the project as a whole and
outlines some ideas and challenges for future research.
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Background

This thesis is a contribution to interweaving two lines of research that have
developed in almost separate ways: Markov chains and agent-based models
(ABMs). The former represents the simplest form of a stochastic process
while the latter puts a strong emphasis on heterogeneity and social inter-
actions. This chapter provides an introduction to ABMs and reviews ap-
proaches to use Markov chains in their analysis.

The main expected output of the Markov chain strategy applied to ABMs
is a better understanding of the relationship between microscopic and macro-
scopic dynamical properties. This brings into the discussion concepts of
aggregation and emergence, and it also relates to macroscopic mean-field
formulations as a substantial tool in the statistical mechanics approach to
social dynamics. A complete review of the literature dealing with these topics
is clearly beyond the scope of this chapter which is rather aimed at intro-
ducing the most important concepts with reference to ABMs and Markov
chains. Especially the physics-inspired approach to social dynamics has at-
tracted a lot of interest in the last years and a huge number of papers is
still produced every year. For a relatively coherent review (though, may be,
no longer completely up-to-date), the reader may be referred to Castellano
et al. (2009).

2.1 Agent-Based and Related Models

ABMs are an attempt to understand how macroscopic regularities may emerge
through processes of self-organization in systems of interacting agents. A
system at question is modeled at the microscopic level by specifying the ele-
mentary units of that system – the agents – and implementing simple rules
for how these agents interact with one another. Typically implemented on
a computer, the time evolution of such a system is computed as an iterative
process – an algorithm – in which agents are updated according to the spec-
ified rules. One of the main purposes of this modeling strategy is »to enrich
our understanding of fundamental processes« (Axelrod, 1997, 25) underly-

11
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ing certain observed patterns, or to »explore the simplest set of behavioral
assumptions required to generate a macro pattern of explanatory interest«
(Macy and Willer, 2002, 146).

One paradigmatic example of ABMs is Reynolds model of the flocking
behavior of birds (Reynolds, 1987). While the modeling of a flock as such is
difficult, quite realistic flocking behavior is achieved if the individual birds
follow simple rules of how to react upon the action of other individuals
in their neighborhood. Another well-known example is Schelling’s model of
segregation (Schelling, 1971). Here, two kinds of householders (say black and
white) located on a lattice are endowed with a slight preference to settle in a
neighborhood with more households of the same kind. Running that system
leads to a clear spatial segregation at the global level even if the homophily
preference is small. Similar effects can be observed in models of opinion and
cultural dynamics, see, for instance, Axelrod (1997); Deffuant et al. (2001);
Hegselmann and Krause (2002); Banisch et al. (2010). Another paradigmatic
problem that has been addressed by ABM research is the emergence of a
set of norms or common conventions. In the naming game proposed by
Steels (1997), for instance, robots learn common word-object relations in a
communication process based on trail and error. Other models in which an
initial plurality in a population of agents evolves to a common consensus state
include various models of opinion formation with the VM as the most simple
representative (see Castellano et al., 2009 for a review of these models).

It is common to trace back the history of ABMs to the cellular automata
(henceforth CA) designed by von Neumann and Ulam (von Neumann, 1951)
and later shaped by Conway (Berlekamp et al., 1982) and Wolfram (1983,
2002). And in fact, many ABMs can be viewed as a stochastic CA with
asynchronous update. The methods developed in this work apply precisely
to that type of models.

However, even some years before von Neumann and Ulam came up with
the first CA design, another type of »individual-based« model had been in-
troduced in a branch of theoretical biology which is today called population
genetics (see Li, 1977 for a collection of the seminal papers in that field).
Wright and Fisher (along with Haldane known as the founders of population
genetics) advocated a simple model for the evolution of allele frequencies
(Wright, 1932) based on microscopic assumptions of gene transmission from
the parent to the children generation. In 1958, Moran (1958) made use of
Markov chain theory to study a modified model and introduced what today
is known as the Moran process. Later, Kimura went further in this line of re-
search on a neutral theory of evolution with the stepping stone model Kimura
and Weiss (1964) which still later became known as the voter model (abbre-
viated by VM throughout this thesis). From the very beginning population
genetics developed as a mathematical discipline and has inspired various so-
lution strategies from probabilistic methods including Markov chains and
coalescing random walks to mean-field approaches in statistical physics.
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The biological literature on evolutionary dynamics on graphs has mainly
started from the model proposed by Moran (1958). In the Moran model, at
each time step, an individual is chosen at random to reproduce and replaces
a second one chosen at random as well. In the original model, there is no
population structure which means that all individuals are chosen with equal
probability. Therefore – this is something that will be made explicit in the
third chapter of this thesis – the dynamics can be formulated as a birth-death
random walk on the line. See Claussen and Traulsen (2005); Traulsen et al.
(2005); Nowak (2006) for treatments of the associated Moran process. While
early studies Maruyama (1974); Slatkin (1981) had indicated that population
structure has no or only little effect on the model behavior, it has recently
been shown that population structure can have a significant influence (Liber-
man et al., 2005; Nowak, 2006; Shakarian et al., 2012; Voorhees and Murray,
2013; Voorhees, 2013, among many others). The setting – sometimes re-
ferred to as evolutionary graph theory (Liberman et al., 2005) – is usually as
follows: suppose the is a population of N individuals with fitness 1; suppose
that a mutant with fitness r is introduced in one of the individuals; what is
the probability that the mutant invades the entire population? The Moran
case of unstructured populations is usually taken as a benchmark such that
a graph which leads to a fixation probability different from the unstructured
case are said to suppress or respectively enhance selection.

In the physics literature, the analysis of binary models as the VM is
usually based on mean-field arguments. The system dynamics is traced in
form of an aggregate order parameter and the system is reformulated on
the macro-scale as a differential equation which describes the temporal evo-
lution of that parameter. In many cases, the average opinion (due to the
analogy to spin systems often called »magnetization«) has proven to be an
adequate choice, but sometimes the number of (re)active interfaces yields
a more handable transformation (e.g., Frachebourg and Krapivsky, 1996;
Krapivsky and Redner, 2003; Vazquez and Eguíluz, 2008). A mean-field
analysis for the VM on the complete graph was presented by Slanina and
Lavicka (2003), and naturally, we come across the same results using our
method (Sec. 3.3.2). Slanina and Lavicka (2003) derive expressions for the
asymptotic exit probabilities and the mean time needed to converge, but
the partial differential equations that describe the full probability distribu-
tion for the time to reach the stationary state is too difficult to be solved
analytically (Slanina and Lavicka, 2003, 4). Further analytical results have
been obtained for the VM on d-dimensional lattices (Cox, 1989; Frachebourg
and Krapivsky, 1996; Liggett, 1999; Krapivsky and Redner, 2003) as well as
for networks with uncorrelated degree distributions (Sood and Redner, 2005;
Vazquez and Eguíluz, 2008). It is noteworthy, that the analysis of the VM
(and more generally, of binary-state dynamics) on networks has inspired a
series of solution techniques such as refined mean-field descriptions (e.g.,
Sood and Redner, 2005; Moretti et al., 2012), pairwise approximation (e.g.,



14 Background

De Oliveira et al., 1993; Vazquez and Eguíluz, 2008; Schweitzer and Behera,
2008; Pugliese and Castellano, 2009) and approximate master equations (e.g.,
Gleeson, 2011, 2013).

The early works in population genetics (Fisher, 1930, in particular) have
inspired still another modeling approach that is related to ABMs, namely,
evolutionary game theory (see Smith, 1982 for a seminal volume and Roca
et al., 2009 for a recent review). Here, games are designed in which agents
repeatedly play against one another adopting one out of a set of predefined
strategies. A fitness is assigned to the combinations of strategies and the
population evolves as a response to this fitness. As in the framework of
statistical mechanics, the model evolution is typically captured in form of
differential equation describing the evolution of the (relative) frequencies of
the different strategies, referred to as replicator dynamics in this context
(Taylor and Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and Sig-
mund, 2003). One of the main purposes of this work is to spell out explicitly
how to link the dynamics at the micro level to these macroscopic descriptions.

Finally, it is worth mentioning that research in economics has experi-
enced a growing interest in modeling economic phenomena as the result of
the interactions of heterogeneous individuals (Tesfatsion and Judd, 2006).
In particular in the field of finance, this has led to the development of ABMs
for the identification of (macro) patterns of collective dynamics from (mi-
cro) investor heterogeneity in many financial settings (Cont and Bouchaud,
2000; LeBaron, 2000; Hommes, 2006; Preis et al., 2013). Noteworthy, there
is also a number of empirical applications of Markov chains in the field of
finance (e.g., Corcuera et al., 2005; Nielsen, 2005; Norberg, 2006). Interac-
tion and heterogeneity on the one hand, and non-Gaussianity, heavy tails
and long-range correlations on the other appear to be natural features of
modern economies, to which the formerly dominating tradition of modeling
representative agents has, to a large extent, paid little attention. This thesis
shows that memory effects at the macroscopic level are an immediate conse-
quence of microscopic heterogeneity and it may therefore contribute to the
identification of the relevant microscopic mechanisms that presumably play
a role in the market.

2.2 Basic Ingredients of Agent-Based Models

Roughly speaking, an ABM is a set of autonomous agents which interact
according to relatively simple interactions rules with other agents and the
environment. The agents themselves are characterized (or modeled) by a set
of attributes some of which may change over time. Interaction rules specify
the agent behavior with respect to other agents in the social environment and
in some models there are also rules for the interaction with an external envi-
ronment. Accordingly, the environment in an ABM is sometimes a model of
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a real physical space in which the agents move and interact upon encounter,
in other models interaction relations between the agents are defined by an
agent interaction network and the resulting neighborhood structure.

In the simulation of an ABMs the interaction process is iterated and
the repeated application of the rules gives rise to the time evolution. There
are different ways in which this update may be conceived and implemented.
As virtually all ABMs are made to be simulated on a computer, I think
it is reasonable to add to the classic three-fold characterization of ABMs
as »agents plus interactions plus environment« a time-component because
different modes of event scheduling can be of considerable importance.

2.2.1 Agents as Elementary Units

Figure 2.1: Caricature of an agent.

In this work, we deal with agents that are characterized by a finite set of
attributes. The agent in the example above, for instance, can be described
by a four-dimensional vector encoding the four different attributes from top
to the bottom. In the sequel we will denote the state of an agent i as xi.
Let us assume that, in this example, for each of the four features there are
two alternatives: blank or covered. Then we could encode its state from the
top to the bottom as xi = (����), � accounting for »covered« and � for
»blank«. It is clear that, in this case, there are 24 = 16 possible agent states
and we shall refer to this set as attribute space and denote it by S = {�,�}4.

For the purposes of this work, the meaning of the content of such at-
tributes is not important because the interpretation depends on the applica-
tion for which the agent model is designed. It could account for the behav-
ioral strategies with regard to four different dimensions of an agent’s live,
it could be words or utterances that the agent prefers in a communication
with others, or represent a genetic disposition. Consequently, xi may encode
static agent attributes or qualities that change in the life-time of the agent,
or a mixture of static and dynamic features.

ABMs are usually an attempt to analyze the behavior of an entire pop-
ulation of agents as it follows from many individual decisions. Therefore,
there is actually a number of N agents each one characterized by a state
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xj ∈ S. We shall denote the configuration of N agents by x = (x1, . . . , xN )
and call this an agent profile or agent configuration.

2.2.2 The Environment
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Figure 2.2: A social agent and its environment.

For the moment, we keep our eye on a single agent and consider environ-
mental aspects an agent may take into account for its decisions. As noted
earlier, the environment can be a model of real physical space in which the
agent moves around according to some movement rules and where interaction
with other individuals occurs whenever these agents encounter in the phys-
ical space. But environment is actually a more abstract concept in ABMs.
It also accounts for the agent’s social environment, its friends and family,
as well as for social norms, idols or fads brought about by television. In a
biological context the environment might be modeled by a fitness function
which assigns different reproduction chances to different agent attributes xi.

One of the most important aspects in ABMs is the introduction of so-
cial relations between the agents. Family structures and friendship relations
are usually included by means of a graph G = (N,E), the so-called social
network. Here N denotes the set of agents and E is the set of connections
(i, j) between the agents. These connections, called edges, can be weighted
to account for the strength of the relation between agent i and j and neg-
ative values might even be taken to model adverse relations. Very often,
the probability that two agents are part of the same interaction event de-
pends directly on their connectivity in G. In fact, many models, especially
simple physics-inspired models of social dynamics, take into account only
a social interaction network and leave other environmental aspects out of
consideration.
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2.2.3 Interaction Rules

In an interaction event, typically, an agent has to take a decision on the
basis of the information within its environment. This includes a set of other
agents, friends, family, with which the agent is connected as well as global
information about norms, and possibly, internalized individual preferences.
Each decision corresponds to an update of the agent’s state xi → yi where
we use xi to denote the agent state before the interaction takes place and yi
to denote the updated state.
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Figure 2.3: Interaction and iteration involve indeterminism and stochasticity.
Therefore, there are several possible future states to which an agent may
evolve in one step.

Usually, an agent in a specific situation has several well-defined behav-
ioral options. Although in some sophisticated models agents are endowed
with the capacity of evaluating the efficiency of these options, it is an impor-
tant mark of ABMs that this evaluation is based on incomplete information
and not perfect, and therefore the choice an agent takes involves a level of
uncertainty. That is, a probability is assigned to the different options and
the choice is based on those probabilities. This means that an agent in state
xi may end up after the interaction in different states yi, y

′

i, y
′′

i , . . .. The
indeterminism introduced in this way is an essential difference to neoclassi-
cal game-theoretic models and rational choice theory. And it is the reason
why Markov chain theory is such a good candidate for the mathematical
formalization of ABMs.
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2.2.4 Iteration Process

The conceptual design of an ABM is mainly concerned with a proper defini-
tion of agents, their interaction rules and the environment in which they are
situated. In order to study the time evolution of such a system of interdepen-
dent agents, however, it is also necessary to define how the system proceeds
from one time step to the other. As virtually all ABMs are simulation models
implemented on a computer, it is an inherent part of the modeling task to
specify the order in which events take place during an update of the system.

(x
1
 x

2
 x

3
)

(x
1
 x

2
 y

3c
)

(x
1
 x

2
 y

3b
)

(x
1
 x

2
 y

3a
)

(x
1
 y

2c
 x

3
)

(x
1
 y

2b
 x

3
)

(x
1
 y

2a
 x

3
)

(y
1a

 x
2
 x

3
)

x

=

(y
1b

 x
2
 x

3
)

(y
1c

 x
2
 x

3
)

Figure 2.4: Possible paths in a small system of three agents (labeled by
1, 2, 3) where every agent has three alternative options (labeled by a, b, c).

A typical procedure is to first choose an agent at random (say agent i).
The current agent state xi along with all the information this agent has about
his environment defines the actual situation of the agent and determines the
different behavioral options. If, in this situation, there is more than one
option available to the agent, in a second step, one of these options has to
be chosen with a certain probability. In this light, the update of an ABM
can be seen as a stochastic choice out of a set of deterministic options, where
stochastic elements are involved first into the agent choice and second into
the selection of one out of several well-defined alternatives.

This procedure is illustrated for a small system of three agents in Fig. 2.4.
The current agent profile is x = (x1x2x3). To proceed to the next time step,
first, one of the agents is chosen to update its state with some probability. So
the new configuration of the system (denoted as y) might differ from x in the
first (x1 → y1), the second (x2 → y2), or the third (x3 → y3) position. As
every agent himself has three different behavioral alternatives chosen with a
certain probability (as in Fig. 2.3), there are three paths for each potential
agent (x1 → y1a or x1 → y1b or x1 → y1c). As a whole, there are thus 9
(= 3× 3) possible future agent configurations y to which the update process



Chapter II 19

may lead with a well-defined probability after a single step.

In the update scheme described above the agents are updated one after
the other and therefore this scheme is called sequential or sometime asyn-
chronous update. A single time step corresponds in this scheme to a single
interaction event. An alternative update scheme is synchronous or simulta-
neous update where the agents are updated »in parallel«. That is, given a
system profile x, all agents are chosen, determine and select their behavioral
options at the same time. The transition structure becomes more complex
in that case mainly because the number of possible future configurations y is
large compared to the asynchronous case since all agents change at once and
there are several paths for each agent. In our example system of three agents
each with three different options, the number of possible future states y is
27 (= 33). Most ABMs, however, have been implemented using the sequen-
tial update scheme, may be because the sequential philosophy of traditional
programming languages made it more convenient. In this work, we will also
concentrate on the sequential scheme.

2.3 Markov Chain Formalization of Agent-Based

Models

The ABM approach is first and foremost a computational methodology and
the mathematical formalization of the models is in its infancy. This is prob-
ably due to the fact that a major motivation in the development of ABMs
has been to relax a series of unrealistic assumptions made in other mod-
eling frameworks just in order to keep mathematical tractability; namely,
rationality, perfect information, agent homogeneity, and others. The other
side of the coin is that the focus on computer models and algorithms makes
difficult the comparison of different models and also complicates a rigorous
analysis of the model behavior. In fact, the problems of code verification and
model comparison including the discussion of standards for the replication
of ABMs has nowadays become an area of research in its own (e.g., Axtell
et al., 1996; Axelrod, 2003; Hales et al., 2003; David et al., 2005; Grimm
et al., 2006; Wilensky and Rand, 2007; Galán et al., 2009). As a matter
of fact, many of those problems would actually vanish with a sound math-
ematical formulation of an ABM. On the other hand, it is also clear that
the precise mathematical specification of a high-dimensional system of het-
erogeneous interacting agents along with their update mechanisms can be
cumbersome in more complex ABM.

To the authors knowledge, the first systematic approach to the develop-
ment of mathematical formalism for ABMs in general is due to Laubenbacher
and co-workers. Laubenbacher et al. (2009) review existing formal frame-
works that have the potential to model ABMs, such as cellular automata
and finite dynamical systems and argue for the latter as an appropriate
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mathematical framework to represent ABMs. However, the probabilistic
nature of most ABMs can only be accounted for by the stochastic version
– the so-called stochastic finite dynamical systems – the analysis of which
»is still in its infancy« (ibid., 14). On the other hand, Laubenbacher et al.
(2009) recognize that stochastic finite dynamical systems give rise to Markov
chains. However, for reasons that do not become very clear in their paper,
the authors argue:

»To understand the effect of structural components such as the
topology of the dependency graph or the stochastic nature of the
update, it is important to study them not as Markov chains but
as SFDS [stochastic finite dynamical systems]« (ibid., 10)

I clearly disagree with them in this point, because the microscopic specifi-
cation of ABMs as Markov chains developed in this thesis turns out to be
a useful starting point for further analysis. But of course, the incentive of
Laubenbacher et al. (2009) to further elaborate the theory of stochastic dy-
namical systems in order to derive rigorous results for ABMs in future is
highly appreciable.

The usefulness of the Markov chain formalism in the analysis of ABMs
has first been realized by Izquierdo et al. (2009). The authors look at 10 well-
known social simulation models and discuss for each of them how to represent
the model as a time-homogeneous Markov chain. Among the ABMs stud-
ied in Izquierdo et al. (2009) are the Schelling segregation model (Schelling
(1971), for which some analytical results are available, for example, in Pol-
licott and Weiss (2001); Grauwin et al. (2010)), the Axelrod model of cul-
tural dissemination (Axelrod (1997), see also Castellano et al. (2000) for a
mean-field approximation) and the sugarscape model from Epstein and Ax-
tell (1996). Noteworthy, the sugarscape model – one of the reference models
in the field of social simulation – contains virtually all features that may
occur in ABMs: heterogeneous agents placed in a dynamic spatial environ-
ment, death and birth of agents, various static and dynamic attributes that
may evolve on different time scales.

The main idea of Izquierdo et al. (2009) is to consider all possible con-
figurations of the system as the state space of a huge Markov chain and the
construction of that state space is actually the main challenge for Izquierdo
and co-workers. Despite the fact that all the information of the dynamics
on the ABM is encoded in a Markov chain, however, it is difficult to learn
directly from this fact, due to the huge dimension of the configuration space
and its corresponding Markov transition matrix. The analyses provided in
Izquierdo et al. (2009) are essentially based on the classification of states into
transient and absorbing communicating classes which allows some statements
about the convergence as times goes to infinity.

The paper of Izquierdo et al. (2009) is designated »for researchers who
may not have a strong mathematical background« (par.1.1) and probably
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therefore lacks rigorous arguments sustaining some of the results. Most fun-
damentally, there is no proof that the process on the constructed configu-
ration space indeed satisfies the Markov property. Their work also mainly
relies on numerical computations to estimate the stochastic transition ma-
trices of the models. Both issues are addressed in this thesis. The explicit
computation of transition probabilities, in particular, allows for the applica-
tion of the theory of Markov chain aggregation in order to reduce the state
space of the model.

2.4 Lumpability and State Space Aggregation

The state space of a Markov chain derived by considering as states all possible
system configurations is far too big to directly use the respective transition
matrix for exact numerical computations. As an example, consider a model
with binary agent attributes such as the VM. A system of N agents will lead
to a Markov chain of size 2N which for our introductory example of only
20 agents (Fig. 1.1) leads to a chain with more than a million states. In
order to use the Markov chain machinery for ABMs, the system size has to
be reduced in some way.

2.4.1 Strong Lumpability

This brings lumpability into play as a way to combine and aggregate the
states of a Markov chain so that the process at the aggregate level is still
a Markov chain. Consider that the state space of a Markov chain is Σ and
the transition probabilities between all pairs of states in Σ are given by
the |Σ| × |Σ| transition matrix P̂ . Throughout this work, the chain (Σ, P̂ )
will be called micro chain and, respectively, the states in Σ micro states.
Now assume that X = (X0, X1, . . . , Xn) is a partition of Σ where each Xk

contains a set of micro states in Σ, such the Xk are disjoint (Xk∩Xs = ∅ for
any pair of aggregate sets) and for the union of all sets

⋃n
i=0Xi = Σ. Such a

situation naturally arises if the process is observed not at the micro level of
Σ, but rather in terms of a measure on Σ, φ : Σ → {0, 1, . . . , n}, by which all
states in Σ that give rise to the same measurement are mapped into the same
aggregate set Xk (also referred to as macro states). An important question
that arises in such a setting is whether the new aggregate process on X is still
a Markov chain or not. This is what lumpability is about. The lumpability
theory adopted for the purposes of this thesis is largely based on Kemeny
and Snell (1976), which is, to the authors knowledge, the first textbook in
which the strong as well as the weak form of lumpability are discussed with
some detail. Notice that there are some other early and seminal works on
lumpability, such as Burke and Rosenblatt (1958); Rosenblatt (1959); Rogers
and Pitman (1981).
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To illustrate the concept of strong lumpability, let us use the Land of
Oz example repeatedly considered in Kemeny and Snell (1976) (see pages
29/30 for the introduction of the example and page 125 for the lumpability
example). There, a three-state Markov chain is formed which approximates
how the whether develops from one day to the other. There is rain (R), nice
whether (N) and snow (S) and the transition rates are given by

P̂ =
R
N
S





1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2



 . (2.1)

Therefore, a nice day is never followed by a nice day, but there is an equal
chance to have rain or snow. For a rainy day as well as for a day with
snow, on the contrary, there is a chance of 1/2 that the whether remains
as it is for the next day, and the remaining options are equally likely with
probability 1/4. From this assignment of probabilities, we can already see
that the behavior for rain (R) and snow (S) is actually equal and therefore
we may combine the two states into a »macro« state called »bad whether«
(B = {R,S}). Hence, the states space is partitioned into two sets: N on the
one hand and B = {R,S} on the other. Now, as the probability that nice
whether follows is equal for R and S the transition matrix of the new chain
is uniquely defined by:

P =
N
B

(

0 1
1/4 3/4

)

. (2.2)

It is the equality of conjoint transition rates from the states that shall be
combined to all the other partitions (P̂ (R,N) = P̂ (S,N) = 1/4 in this
simple example) on which the condition for lumpability is based.

More precisely, if the probability of moving from a micro state x ∈ Xk to
a macro state Xl is equal for all micro states in Xk, then all the information
about the history which led to a particular state in Xk is actually irrelevant,
because from the macro perspective the future evolution is equivalent for any
state in Xk. This leads to a condition on the transition matrix P̂ , namely,
∑

y∈Xl
P̂ (x ∈ Xk,y ∈ Xl) must be equal for all x ∈ Xk. For a process to be

lumpable with respect to a partition X, it is sufficient and necessary if this
is true for any pair of sets Xk, Xl of the partition. The respective theorem is
presented in (Kemeny and Snell, 1976, Thm. 6.3.2) and we will come back
to it with more detail and a focus on an application to ABMs in Sec. 3.2.3
(next chapter).

If the chain along with the desired state space partition is given, the ap-
plication of the conditions provided in (Kemeny and Snell, 1976, Thm. 6.3.2)
(as well as the subsequent matrix conditions) is relatively simple. However,
if only the chain is given, it may be a real challenge to find partitions with
respect to which the process is lumpable, not least due to the combinatorial
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explosion of the number of possible partitions. In this context, some algo-
rithms have been presented for the task is to find the optimal or coarsest par-
tition (Buchholz, 2000; Derisavi et al., 2003). Other authors have addressed
these issues by studying the spectral properties of lumpable chains and have
proposed algorithms based on that (Barr and Thomas, 1977; Meila and Shi,
2001; Takacs, 2006; Jacobi, 2008; Filliger and Hongler, 2008; Görnerup and
Jacobi, 2010).

Another approach in which aggregate Markov chain descriptions are de-
rived on the basis of model specifications that include the hierarchical and
symmetric composition of sub-models has been followed by Buchholz (1995)
and is also advised in the context of interactive Markov chains by Hermanns
(1999); Hermanns and Katoen (2010). Namely for systems that »include
a large number of identical and symmetric components« (Buchholz, 1995,
93/94), a reduced Markov chain description »resulting from exact lumping«
(ibid., 94) is constructed directly during the modeling process. This avoids
time-consuming (up to unfeasibility) computations on the huge transition
matrices that the model would give rise to without the reduction. In this
thesis, we formulate explicitly the complete microscopic system – contain-
ing all symmetries that come by the ABM at question – and lumpability
arguments are based on that description (Secs. 3.1 and 3.2, next chapter).
However, one of the main messages of this work concerns the translation of
model symmetries into regularities on the associated micro chain which then
enable lumpability. Especially Chapter 4, in which aggregate descriptions
are derived starting from the symmetries of the agent network, is clearly
related to the hierarchical approach due to Buchholz (1995) and the idea of
symmetric composition in Hermanns (1999).

2.4.2 Weak Lumpability

This thesis mostly applies the strong version of lumpability described above
in order to achieve a Markovian aggregation for ABMs. However, it is im-
portant to note that there is a weaker version of lumpability often referred to
as weak lumpability which will play some role in the fifth chapter. While in
the case of strong lumpability the projected process on X = {X0, X1, . . .} is
a Markov chain for any (initial) distribution, the weaker form of lumpability
makes statements about the possibility to obtain a Markovian process at the
aggregate level only for particular initial vectors.

For a description of the intuition behind weak lumpability the reader is
encouraged to have a look to (Kemeny and Snell, 1976, Sec. 6.4., and pages
132/33 in particular) who themselves refer to Burke and Rosenblatt (1958)
for some of their results. The main idea resides in the following possibility:

»Assume that no matter what the past information is, we always
end up with the same assignment of probabilities for being in
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each of the states in [Xk]. Then again the past can have no
influence on our predictions.« (Kemeny and Snell, 1976, 133)

A necessary and sufficient (though not always practical) condition (Kemeny
and Snell, 1976, Thm. 6.4.1) is also provided, but the necessity and suffi-
ciency of conditions for weak lumpability have also been subject of further
discussion Abdel-Moneim and Leysieffer (1982); Rubino and Sericola (1989);
Peng (1996).

On of the most important observations concerns the fact that if a regular
chain is weakly lumpable with respect to a partition X for some probability
vector, then it is weakly lumpable for the stationary vector (the left invariant
vector of the transition matrix πP = π). See (Kemeny and Snell, 1976,
Thm. 6.4.3) and also Rubino and Sericola (1989). This may be useful for
the decision whether there is one distribution altogether for which a chain is
weakly lumpable or not, (Kemeny and Snell, 1976, Thm. 6.4.4). This result
has been extended to absorbing Markov chains by Ledoux et al. (1994). In
the absorbing case, the quasi-stationary distribution is shown to play the
role of the stationary vector which allows to relate the lumpability problem
and existing algorithms for irreducible chains to the absorbing case.

2.4.3 Nearly Lumpable and Non-Lumpable Aggregation

It is well known that lumpability (the strong as well as the weak version)
is rather an exception than the rule (Chazottes and Ugalde, 2003; Gurvits
and Ledoux, 2005). Some form of aggregation, state space reduction, or
macroscopic observation, however, is omnipresent in the analysis of complex
systems and their dynamics. The question that then arises concerns the ex-
tend to which an aggregate process still informs us about the real microscopic
model behavior.

There are some works that discuss these issues for the cases that the ag-
gregation satisfies different types of lumpability. Namely, Schweitzer (1984);
Sumita and Rieders (1989); Buchholz (1994) show that important station-
ary and transient measures are preserved by the lump. However, the direct
derivation of stationary and transient properties of the original chain only by
knowledge of the aggregated chain is possible only for a special case of weak
lumpability referred to as exact lumpability (Buchholz, 1994, Thm. 3, Thm.
6). Buchholz (1994) also states that for any micro process and any parti-
tion it is possible to construct an aggregation that preserves the stationary
measure. However, for the construction of this so-called ideal aggregate the
stationary state of the original micro system has to be known. Though all
lumpable aggregation are also ideal, the converse is not true and (Buchholz,
1994, 6) states:

»In all cases considered here, no information about the transient
behaviour can be gained from the ideal aggregate.«
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In Chapter 5 of this work, we will construct an ideal non-lumpable aggregate
for the contrarian VM on networks. While this thesis does not go much
further in analyzing the relation between that ideal aggregate and the micro
process, it does present an analytical example in which these questions can
be addressed in the future.

A second important contribution due to Schweitzer (1984) and Buchholz
(1994) is an operational concept of near lumpability. The main idea is that
a nearly lumpable transition matrix P̂ can be represented as P̂ = Â + ǫB̂
where Â is lumpable and ǫ is a sufficiently small constant used in analogy
to its use in perturbation theory. Buchholz (1994) constructs bounding ma-
trices for the transition probabilities that can be used to compute bounds
for the stationary and transient quantities of the aggregated process. The
computation of bounds in Buchholz (1994) is in part based on the work of
Courtois and Semal (1984). See also Franceschinis and Muntz (1994); Dayar
and Stewart (1997) for other concepts of nearly- or quasi-lumpability.

2.4.4 Time-Series-Based Aggregation

So far, we have mainly considered lumpability as a property of the transition
matrix of the original chain, either directly or as induced by some (composi-
tional) model. A useful complementary view on lumpability is provided by
looking at it from an information-theoretic perspective, namely, in terms of
the time series a model generates. A method to derive a Markovian state
space aggregation on the basis of an information-theoretic view on time se-
ries data (typically created by some simple models) has been proposed by
Görnerup and Jacobi (2008) and is inspired by the framework of compu-
tational mechanics (Crutchfield and Young, 1989; Shalizi and Crutchfield,
2001; Shalizi and Moore, 2003).

The approach in Görnerup and Jacobi (2008) starts from a sequence of
symbols (say s̄ = . . . , st−1, st, st+1,...) defined by some stochastic process on a
finite alphabet Σ. (For our purposes, we may assume that the sequence has
been created by the microscopic Markov chain (Σ, P̂ ).) As usually in lumpa-
bility, consider further a projection map Π : Σ → X that induces a partition
(X = {X0, X1, . . . , Xn}) of the state space Σ by mapping sets of micro states
in Σ into macro states Xk ∈ X. By the projection map Π, the sequence s̄
is transformed into a new sequence x̄ = Π(s̄) = . . . , xt−1, xt, xt+1, . . . with a
new reduced alphabet set X (i.e., xτ = Π(sτ ) ∈ X). Now, in this context,
lumpability of the process with respect to the partition X means that the
macro sequence x̄ exhibits the Markov property. In that case, Görnerup and
Jacobi (2008) refer to the projection Π as Markov projection, a notion that
will be adopted throughout this thesis.

The decision whether the macro process x̄ (obtained by a certain pro-
jection) is Markovian or not is based on the mutual information between
the past (. . . , xt−2, xt−1) and the future (xt+1, xt+2, . . .) with respect to the
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present (xt). If the expected mutual information between past and future
is zero, looking further back into the past does not provide any new infor-
mation about the future evolution, that is, the future depends only on the
present xt and x̄ is a Markov process.

With its focus on time series and computations on it, the devision of
a process or sequence into past, present and future, and the intense use
of information theory, the approach due to Görnerup and Jacobi (2008) is
located within a larger program called computational mechanics (Crutch-
field and Young, 1989; Shalizi and Crutchfield, 2001; James et al., 2011, and
references therein). The main idea in computational mechanics is to group
histories which give rise to the same conditional probability distribution over
futures into equivalence classes – so-called causal states – and to construct
in this way a minimal causal model – called ǫ-machines – for the predic-
tion of the process at question. The reader may be referred to Shalizi and
Crutchfield (2001) for an overview and several interesting theoretical results
in computational mechanics. It is also noteworthy, in this context, that the
particular role of Markovianity in the definition of macroscopic observables
has been emphasized in Shalizi and Moore (2003). Finally, different concepts
for the level identification in complex dynamical systems are compared and
related in Pfante et al. (2013) who emphasize the particular role played by
commutativity of aggregation and dynamics.

Time-series-based aggregation schemes as the one proposed by Görnerup
and Jacobi (2008) as well as ǫ-machines (Crutchfield and Young, 1989; Shal-
izi and Crutchfield, 2001) are appealing from the theoretical point of view,
but their application to ABM aggregation is limited by their computational
complexity (cf. Görnerup and Jacobi, 2008, 13). The fact that, even in very
simple ABMs, the state space of the process to be handled becomes very
large, challenges these approaches in two ways. The first one concerns the
»combinatorial explosion« (ibid., 11) of the number of possible partitions,
which is in fact a general difficulty in lumpability whenever the partition is
not given a priori (see Sec. 2.4.1). More importantly, however, the larger the
alphabet (and Σ becomes really large!), the more data must be generated
and evaluated in order to obtain a workable approximation of the probabil-
ity distribution of sequence blocks (cf. Shalizi and Crutchfield, 2001, Sec.
VII.B/C). One way around this problem is to restrict to block size to one,
as in Shalizi et al. (2004), which is actually exact if the original process is
a Markov chain. Still, in this case, the number of states is huge and the
estimation of the conditional probabilities (on the basis of which equivalence
classes are constructed) requires a lot of simulation data.

2.4.5 Aggregation in Dynamical Systems

Finally, to complete this section, we should notice that aggregation and state
space decomposition is a wide field which has been vividly discussed across
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different disciplines, during quite some time. In philosophy, it relates strongly
to the more general discussions about the decomposability of a complex sys-
tem (Simon, 1962) and from there to emergence (Wimsatt, 1986; Auger and
Poggiale, 1998) and even further to the possible limitations of an reduc-
tionist account of complex systems (Wimsatt, 2006a). In economics, where
much theory is in fact developed around aggregate measures, techniques for
the aggregation of variables in dynamical systems have been developed (e.g.,
Theil, 1965; Simon and Ando, 1961; Ando and Fisher, 1963) as an opera-
tionalization »decomposability« and »nearly-decomposability« of a complex
system mentioned above (Simon, 1962). These techniques have been trans-
ferred to theoretical biology, ecological modeling and population dynamics in
particular, by Iwasa et al. (1987) in which conditions for exact aggregation in
non-linear dynamical systems are given and Iwasa et al. (1989) which deals
with approximate aggregations. The fact that the explicit consideration of
more and more factors is a tendency in modern model development, has led
to a renewed interest in aggregation techniques not only in Markov chains
but also in the context of dynamical systems (see Auger et al., 2008 for a
review of aggregation methods with application to population dynamics).

It is clear that aggregation techniques are actually relevant to all models
which involve a large number of variables (or agents), in order to derive
reduced model descriptions that might be amenable to analytical strategies.
Markov chains and dynamical systems are probably the two most important
mathematical formalisms to represent complex and high-dimensional systems
that evolve in time. In this context, it is very interesting that methods
for aggregation of variables in linear dynamical systems and lumpability in
Markov chains can be based on the same principles, a fact that has recently
been exploited in Jacobi and Görnerup (2009); Görnerup and Jacobi (2010).

2.5 Motivation: Towards a Markov Chain Theory

of Aggregation for Agent-Based Models

2.5.1 Bridging a Gap

Though it has often been recognized that ABMs may be conceived as (stochas-
tic) dynamical systems or Markov chains (Epstein and Axtell, 1996; Lauben-
bacher et al., 2009; Izquierdo et al., 2009; Page, 2012), the afore mentioned
aggregation techniques developed for these systems have not yet been ap-
plied to ABMs. One of the reasons for this is that an explicit formulation of
the micro process in terms of dynamical systems or Markov chains has been
accomplished only in an abstract (Laubenbacher et al., 2009; Page, 2012) or
approximate (Izquierdo et al., 2009) way. The explicit formalization of the
micro process as a Markov chain – the reasoning presented in this thesis will
be started with it (Sec. 3.1) – enables the application of the Markov chain
theory of aggregation – that is, lumpability – to ABMs.
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The need for a mathematical framework that links the micro and the
macro level has, of course, been noted earlier. For instance:

»Of course, microscopic and macroscopic theories are related,
and understanding the connection between the two, e.g., through
simulation or by deriving the latter from the former, is an im-
portant goal of any complex systems research.« (Lerman, 2001,
225)

Also the general possibility of applying mathematical aggregation techniques
(Page, 2012) and complexity reduction by symmetry exploitation (Lauben-
bacher et al., 2009) has been noted, namely, in the context of dynamical sys-
tems and partly based on earlier work by Iwasa et al. (1987) in population
ecology. However, a sophisticated and practicable mathematical framework
for linking between micro and macro level processes in ABMs does not yet
exist. This thesis is a first step to bridge this gap.

2.5.2 The Micro-Macro Link

The relation between the microscopic and the macroscopic has since long
been subject for controversy. In sociology, it is manifest in the dichotomy of
methodological individualism and structural functionalism. A good overview
over the historical development of micro-macro debates from philosophy to
social theory is provided in the introductory chapter (Alexander and Giesen,
1987) of a volume headed »The Micro-Macro Link« (Alexander et al., 1987).

»The Micro-Macro Link« is a collection of essays by very influential so-
cial theorists in the micro as well as in the macro tradition about ways to
overcome the micro-macro divide and link between the different levels of
analysis. A synthetic formulation embracing the different levels from in-
dividual action to social order and back requires on the one hand a link
from the micro to the macro pointing at questions related to various (from
weaker to stronger) forms of emergence (Brodbeck, 1968; Giesen, 1987), ag-
gregation and equilibrium (Coleman, 1987). On the other, it should also
include concepts for the retro-action of the macro on the micro level, such as
internalization (Parsons, 1954) or constraints on and the environment of in-
dividual actions (Alexander, 1987). One of the first acknowledged synthetic
formulations of this linkage between micro and macro in sociology studies
is from Max Weber (Weber, 1978) from where we quote the following basic
observation:

»within the realm of social action, certain empirical uniformi-
ties can be observed, that is, courses of action that are repeated
by the actor or (simultaneously) occur among numerous actors«
(Weber, 1978, 29)
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We shall see how a stylized version of this belief is incorporated in our study
when passing from micro to macro dynamics.

ABMs are sometimes considered as a methodology to provide a »the-
oretical bridge« (Macy and Willer, 2002, 148) between micro and macro
theories (see also Saam, 1999; Squazzoni, 2008). Even if most of the mod-
els (especially the early ones) are actually a straight implementation of the
individualistic program, there are some attempts to include into the model
agents with some socio-cognitive abilities (see Squazzoni, 2008, 14-16) ca-
pable of the perception and internalization of the macro sphere. Also the
experimentation with different interaction topologies can actually be seen
as an attempt to understand the influence of social structure (macro) on
the emergence of collective order (macro) transmitted through the level of
individual interaction (micro).

Clearly, this thesis is not about social theory. It is about a mathematical
technique to link micro dynamics to macro dynamics in models that may
be designed on the basis of sociological theorizing. To my opinion, a well
posed mathematical basis for these models may help the understanding of
many of their observed properties, and it also provides a new perspective on
aggregation and emergence and on how they are related. Linking the micro-
description of an ABM to a macro-description in the form of a Markov chain
provides information about the transition from the interaction of individual
actors to the complex macroscopic behaviors observed in social systems.
In particular, well-known conditions for lumpability (Sec. 2.4.1) make it
possible to decide whether the macro model is still Markov. Conversely, this
setting can also provide a suitable framework to understand the emergence of
long range memory effects and patterns of spatial organization (Chapter 5).

2.5.3 Computational Emergence and Aggregativity

ABMs and other related computational tools (such as CA) play an in-
creasingly important role also in the contemporary philosophical discussions
of emergence. Some philosophers (e.g., Bedau, 1997, 2003; Huneman and
Humphreys, 2008; Humphreys, 2008) advocate a position which makes use
of computational models as a playground to address fundamental questions of
emergence (see Symons, 2008 for a critical consideration). Questions about
the relation of these artificial model environments to real phenomena are
not ignored, but considered as an independent issue which is actually part of
another debate. The field of computational emergence aims to establish »a
close link between the concept of emergence and computation or computer
simulations, which can perhaps be captured by the idea that an emergent
phenomenon is one that arises from a computationally incompressible pro-
cess« (Huneman and Humphreys, 2008, 425/26). The framework presented
here provides explicit knowledge about the (in)compressibility of computa-
tional models and the dynamical processes which these models give rise to.
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While scientists use the term »emergence« relatively freely, the philosoph-
ical literature differentiates more carefully between different forms of emer-
gence (ontological versus epistemological, strong versus weak, synchronic
versus diachronic emergence) and the existence of some of these forms (onto-
logical emergence in particular) is in fact highly controversial. In the context
of computational models, emergence is often paraphrased by »the whole is
more than the sum of its parts« and an emergent property can be a cer-
tain macro-level pattern that could not be expected (and not predicted!) by
looking at the micro level rules only. Along this lines, a well-known and
explicitly computational account of weak emergence that fits the use of the
term in complexity science has been offered by Bedau (1997, 2003):

»The behavior of weakly emergent systems cannot be determined
by any computation that is essentially simpler than the intrinsic
natural computational process by which the system’s behavior is
generated.« (Bedau, 2003, 18)

Bedau (2003) uses CAs to illustrate these ideas and makes explicit reference
to simulations: according to him a system property is emergent if it can be
derived »only by simulation« (ibid., 15).

An alternative position on emergence has been advocated by Wimsatt
(1986) even before computer simulations became widespread. Wimsatt (1986)
starts out from analyzing the conditions for a system property to be a mere
aggregate of the properties of the parts of which the system is composed (see
also Wimsatt, 2000, 2006a,b). Accordingly, a property of a system is called
emergent if it does not satisfy these condition for aggregativity. In this way,
Wimsatt is able to give a rather straightforward meaning to the dictum »a
complex system is more than the sum of its parts« by relating emergence
to the lack of aggregativity. What makes Wimsatt’s position particularly
interesting for this work is not only that relation between aggregation and
emergence, but also the observation expressed by the following statements:

»[I]t is better to talk about properties of systems and their parts,
and to analyze aggregativity as a kind of relation between these
properties.« (Wimsatt, 1986, 260)

»Aggregativity and emergence concern the relationship between
a property of a system under study and properties of its parts.«
(Wimsatt, 2006a, 675)

The reason for which it is better to focus on properties, or rather to be
explicit on that point, is that a system might be aggregative for one but
emergent for another property. Just as a Markov chain might be lumpable
with respect to one but non-lumpable with respect to another partition!



Chapter III

Agent–Based Models as Markov

Chains

This chapter spells out the most important theoretical ideas developed in
this thesis. It first shows for a class of agent-based models (ABMs) that at
the micro level they give rise to random walks on regular graphs. Secondly,
it shows that observations of the models partition the state space of the
micro chains such that micro configurations with the same observable value
are projected into the same macro state. The conditions for the projected
process to be again a Markov chain are given which relates the symmetry
structure of the micro chains to the partition induced by macroscopic observ-
ables. The third and biggest part of this chapter is devoted to the analysis
of a simple opinion model in order to illustrate these ideas. The projection
from micro to macro emphasizes the particular role played by homogeneous
mixing as a requirement for the Markovianity of the projected model. We
present a Markov chain analysis of the binary voter model (VM) with a par-
ticular focus on its transient dynamics and show that the general VM can
be reduced to the binary case by further projection. Finally, the question of
interaction constraints in form of bounded confidence is addressed. Homo-
geneous interaction probabilities (homogeneous mixing) are assumed in all
the analyses presented in this chapter. Interaction heterogeneities are left
for the next chapters.

Most of the results presented in this chapter have been published in
Banisch et al. (2012). In relation to this, the description of the micro process
(Sec. 3.1) as well as the micro-macro projection (Sec. 3.2) contain much more
details. The chapter also contains new material, the analysis of the transient
with bounded confidence (Sec. 3.4.4) in particular.

31
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3.1 The Micro Level

3.1.1 The Grammar of an ABM

Let us consider an abstract ABM with finite configuration space Σ = SN

(meaning that there are N agents with attributes xi ∈ S). Any iteration of
the model (any run of the ABM algorithm) maps a configuration x ∈ Σ to
another configuration y ∈ Σ. In general, the case that no agent changes such
that x = y is also possible. Let us denote such a mapping by Fz : Σ → Σ

and denote the set of all possible mappings by F . Notice that any element
of F can be seen as a word of length |Σ| over an |Σ|-ary alphabet, and there
are |Σ||Σ| such words (Flajolet and Odlyzko, 1990, 3).

Any Fz ∈ F induces a directed graph (Σ, Fz) the nodes of which are the
elements in Σ (i.e., the agent configurations) and edges the set of ordered
pairs (x, Fz(x)), ∀x ∈ Σ. Such a graph is called functional graph of Fz

because it displays the functional relations of the map Fz on Σ. That is, it
represents the logical paths induced by Fz on the space of configurations for
any initial configuration x.

Each iteration of an ABM can be thought of as a stochastic choice out
of a set of deterministic options. For an ABM in a certain configuration
x, there are usually several options (several y) to which the algorithm may
lead with a well-defined probability (see Sec. 2.2). Therefore, in an ABM,
the transitions between the different configurations x,y, . . . ∈ Σ are not
defined by one single map Fz, but there is rather a subset FZ ⊂ F of maps
out of which one map is chosen at each time step with certain probability.
Let us assume we know all the mappings FZ = {F1, . . . , Fz, . . . , Fn} that
are realized by the ABM of our interest. With this, we are able to define
a functional graph representation by (Σ,FZ) which takes as the nodes all
elements of Σ (all agent configurations) and an arc (x,y) exists if there is at
least one Fz ∈ FZ such that Fz(x) = y. This graph defines the »grammar«
of the system for it displays all the logically possible transitions between any
pair of configurations of the model.

Consider the VM with three agents as an example. In the VM agents
have two possible states (S = {�,�}) and the configuration space for a
model of three agents is Σ = {�,�}3. In the iteration process, one agent i
is chosen at random along with one of its neighbors j and agent i imitates the
state of j. This means that yi = xj after the interaction event. Notice that
once an agent pair (i, j) is chosen the update is defined by a deterministic
map u : S2 → S. Stochasticity enters first because of the random choice of
i and second through the random choice of one agent in the neighborhood.
Let us look at an example with three agents in the configuration x = (���).
If the first agent is chosen (i = 1 and x1 = �) then this agent will certainly
change state to y1 = � because it will in any case meet a black agent.
For the second and the third agent (i = 2 or i = 3) the update result
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depends on whether one or the other neighbor is chosen because they are in
different states. Noteworthy, different agent choices may lead to the same
configuration. Here, this is the case if the agent pair (2, 3) or (3, 2) is chosen
in which case the agent (2 or 3) does not change its state because x2 = x3.
Therefore we have y = x and there are two paths realizing that transition.

(□ ■ ■)

(□ ■ □)

(□ ■ ■)
(□ □ ■)

x

=
(■ ■ ■)

Figure 3.1: Possible paths from configuration x = (���) in a small VM of
three agents.

In practice, the explicit construction of the entire functional graph may
rapidly become a tedious task due to the huge dimension of the configuration
space and the fact that one needs to check if Fz(x) = y for each mapping
Fz ∈ FZ and all pairs of configurations x,y. On the other hand, the main
interest here is a theoretical one, because, as a matter of fact, a representation
as a functional graph of the form Γ = (Σ,FZ) exists for any model that
comes in form of a computer algorithm. It is therefore a quite general way
of formalizing ABMs and, as we will see in the sequel, allows under some
conditions to verify the Markovianity of the models at the micro level.

If we really want to construct the »grammar« of an ABM explicitly this
requires the dissection of stochastic and deterministic elements of the itera-
tion procedure of the model. As an example, let us consider again the VM
for which such a dissection is not difficult. In the VM, the random part con-
sists of the choice of two connected agents (i, j). Once this choice is made
we know that yi = xj by the interaction rule. This is sufficient to derive the
functional representation of the VM, because we need only to check one by
one for all possible choices (i, j) which transitions this choice induces on the
configuration space. For a system of three agents, with all agents connected
to the other two, the set of functions FZ = {F1, . . . , Fz, . . . , Fn} is specified
in Table 3.1. Notice that with three agents, there are 8 possible configura-
tions indexed here by a, b, . . . , h. Moreover, there are 6 possible choices for
(i, j) such that FZ consists of n = 6 mappings.

Each row of the table represents a mapping Fz : Σ → Σ by listing
to which configuration y the respective map takes the configurations a to
h. The first row, to make an example, represents the choice of the agent
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z (i, j) a b c d e f g h
��� ��� ��� ��� ��� ��� ��� ���

1 (1, 2) a b g a h b g h
2 (1, 3) a f c a h f c h
3 (2, 1) a b a g b h g h
4 (3, 1) a a c f c f h h
5 (2, 3) a e a d e h d h
6 (3, 2) a a e d e d h h

Table 3.1: FZ for the VM with three agents.

pair (1, 2). The changes this choice induces depend on the actual agent
configuration x. Namely, for any x with x1 = x2 we have F1(x) = F(1,2)(x) =
x. So the configurations a, b, g, h are not changed by F(1,2). For the other
configurations it is easy to see that (���) → (���) (c → g), (���) →
(���) (d → a), (���) → (���) (e → h), and (���) → (���) (f →
b). Notice that the two configurations (���) and (���) with all agents
equal are not changed by any map and correspond therefore to the final
configurations of the VM.

In Fig. 3.2, the complete functional graph Γ = (Σ,FZ) of the VM with
three agents is shown. This already gives us some important information
about the behavior of the VM such as the existence of two final configurations
with all agents in the same state. We also observe that the VM iteration
gives rise to a very regular functional graph, namely, the N -dimensional
hypercube. In what follows, we show how to derive the respective transition
probabilities associated to the arrows in Fig. 3.2.

ha

b

c

d

e

f

g

Figure 3.2: Grammar of the VM with three agents.

3.1.2 From Functional Graphs to Markov Chains

A functional graph Γ = (Σ,FZ) defines the »grammar« of an ABM in the
sense that it shows all possible transitions enabled by the model. It is the
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first essential step in the construction of the Markov chain associated with
the ABM at the micro level because there is a non-zero transition probability
only if there is an arrow in the functional graph. Consequently, all that is
missing for a Markov chain description is the computation of the respective
transition probabilities.

For a class of models, including the VM, this is relatively simple because
we can derive a random mapping representation (Levin et al., 2009, 6/7)
directly from the ABM rules. Namely, if Fz1 , Fz2 , . . . is a sequence of inde-
pendent random maps, each having the same distribution ω, and S0 ∈ Σ has
distribution µ0, then the sequence S0, S1, . . . defined by

St = Fzt(St−1), t ≥ 1 (3.1)

is a Markov chain on Σ with transition matrix P̂ :

P̂ (x,y) = Prω[z, Fz(x) = y];x,y ∈ Σ. (3.2)

Conversely (Levin et al. (2009)), any Markov chain has a random map rep-
resentation (RMR). Therefore, in that case, (3.1) and (3.2) may be taken
as an equivalent definition of a Markov chain. This is particularly useful in
our case, because it shows that an ABM which can be described as above is,
from a mathematical point of view, a Markov chain. This includes several
models described in Izquierdo et al. (2009).

In the VM, the separation of stochastic and deterministic elements is
clear-cut and therefore a random mapping representation is obtained easily.
As already shown in Table 3.1, we can use the possible agent choices (i, j)
directly to index the collection of maps F(i,j) ∈ FZ . We denote as ω(i, j) the
probability of choosing the agent pair (i, j) which corresponds to choosing
the map F(i,j). It is clear that we can proceed in this way in all models where
the stochastic part concerns only the choice of agents. Then, the distribution
ω is independent of the current system configuration and the same for all
times (ω(zt) = ω(z)). In this case, we obtain for the transition probabilities

P̂ (x,y) = Prω[(i, j), F(i,j)(x) = y] =
∑

(i,j):
F(i,j)(x)=y

ω(i, j). (3.3)

That is, the probability of transition from x to y is the conjoint probability
∑

ω(i, j) of choosing an agent pair (i, j) such that the corresponding map
takes x to y (i.e., F(i,j)(x) = y).

3.1.3 Single-Step Dynamics

In this thesis, we focus on a class of models which we refer to as single-step
dynamics. They are characterized by the fact that only one agent changes
at a time step. Notice that this is very often the case in ABMs with a
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sequential update scheme and that sequential update is, as a matter of fact,
the most typical iteration scheme in ABMs. In terms of the »grammar«
of these models, this means that non-zero transition probabilities are only
possible between system configuration that differ in at most one position.
And this gives rise to random walks on regular graphs.

Consider a set of N agents each one characterized by individual attributes
xi that are taken in a finite list of possibilities S = {1, . . . , δ}. In this case,
the space of possible agent configurations is Σ = SN . Consider further a
deterministic update function u : Sr × Λ → S which takes configuration
x ∈ Σ at time t to configuration y ∈ Σ at t+ 1 by

yi = u(xi, xj , . . . , xk, λ). (3.4)

To go from one time step to the other in agent systems, usually, an agent i is
chosen first to perform a step. The decision of i then depends on its current
state (xi) and the attributes of its neighbors (xj , . . . , xk). The finite set Λ
accounts for a possible stochastic part in the update mechanism such that
different behavioral options are implemented by different update functions
u(. . . , λ1), u(. . . , λ2) etc. Notice that for the case in which the attributes
of the agents (xi, xj , . . . , xk) uniquely determine the agent decision we have
u : Sr → S which strongly resembles the update rules implemented in cellular
automata (CA).

As opposed to classical CA, however, a sequential update scheme is used
in the class of models considered here. In the iteration process, first, a
random choice of agents along with a λ to index the possible behavioral
options is performed with probability ω(i, j, . . . , k, λ). This is followed by
the application of the update function which leads to the new state of agent
i by Eq. (3.4).

Due to the sequential application of an update rule of the form u : Sr ×
Λ → S only one agent (namely agent i) changes at a time so that all elements
in x and y are equal except that element which corresponds to the agent that
was updated during the step from x to y. Therefore, xj = yj , ∀j 6= i and

xi 6= yi. We call x and y adjacent and denote this by x
i
∼ y.

It is then also clear that a transition from x to y is possible if x ∼ y.
Therefore, the adjacency relation ∼ defines the »grammar« ΓSSD of the
entire class of single-step models. Namely, the existence of a map Fz that

takes x to y, y = Fz(x), implies that x
i
∼ y for some i ∈ {1, . . . , N}. This

means that any ABM that belongs to the class of single-step models performs
a walk on ΓSSD or on a subgraph of it.

Let us briefly consider the structure of the graph ΓSSD associated to the

entire class of single-step models. From x
i
∼ y for i = 1, . . . , N we know that

for any x, there are δN different vectors y which differ from x in a single
position, where δ is the number of possible agent attributes. Therefore, ΓSSD

is a regular graph with degree δN + 1, because in our case, the system may
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loop by yi = xi. As a matter of fact, our definition of adjacency as »different
in one position of the configuration« is precisely the definition of so-called
Hamming graphs which tells us that ΓSSD = H(N, δ) (with loops). In the
case of the VM, where δ = 2 we find H(N, 2) which corresponds to the
N -dimensional hypercube.

As before, the transition probability matrix of the micro chain is denoted
by P̂ with P̂ (x,y) being the probability for the transition from x to y. The
previous considerations tell us that non-zero transition probabilities can exist
only between two configurations that are linked in H(N, d) plus the loop
(P̂ (x,x)). Therefore, each row of P̂ contains no more than δN + 1 non-
zero entries. In the computation of P̂ we concentrate on pairs of adjacent

configurations. For x
i
∼ y with xi 6= yi we have

P̂ (x,y) =
∑

(i,j,...,k,λ):
yi=u(xi,xj ,...,xk,λ)

ω(i, j, . . . , k, λ) (3.5)

which is the conjoint probability to choose agents and a rule (i, j, . . . , k, λ)
such that the ith agent changes its attribute by yi = u(xi, xj , . . . , xk, λ). For
the probability that the model remains in x, P̂ (x,x), we have

P̂ (x,x) = 1−
∑

y∼x

P̂ (x,y). (3.6)

Eq. (3.5) makes visible that the probability distribution ω plays the crucial
role in the computation of the elements of P̂ .

The VM is a very simple instance of single-step dynamics. The update
function is given by yi = u(xi, xj) = xj and the stochastic part of the model
concerns only the choice of an agent pair (i, j) with probability ω(i, j). For

adjacent configuration with x
i
∼ y, Eq. (3.5) simplifies to

P̂ (x,y) =
∑

j:(yi=u(xi,xj))

ω(i, j) =
∑

j:(yi=xj)

ω(i, j) (3.7)

Notice that (3.7) is applicable to all ABMs in which first an agent pair
(i, j) is chosen at random and second a deterministic update rule yi =
u(xi, xj) defines the outcome of the interaction between i and j. For a
binary attribute space S = {�,�} some possible update rules u : S×S → S

are shown in Table 3.2 below.

xj xj
xi yi yi
xi yi yi

VM � �

� � �

� � �

AC � �

� � �

� � �

DF � �

� � �

� � �

Table 3.2: Update rules yi = u(xi, xj) for the voter model (VM), anti-
ferromagnetic coupling (AC) and diffusion (DF).
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3.2 Macrodynamics, Projected Systems and Ob-

servables

3.2.1 Micro and Macro in ABMs

What do we look at when we analyze an ABM? Typically, we try to cap-
ture the dynamical behavior of a model by studying the time evolution of
parameters or indicators that inform us about the global state of the system.
Although, in some cases, we might understand the most important dynami-
cal features of a model by looking at repeated visualizations of all details of
the agent system through time, basic requirements of the scientific method
will eventually enforce a more systematic analysis of the model behavior in
the form of systematic computational experiments and »extensive sensitivity
analysis« (Epstein, 2006, 28). In this, there is no other choice than to leave
the micro level of all details and to project the system behavior or state onto
global structural indicators representing the system as a whole. In many
cases, a description like that will even be desired, because the focus of atten-
tion in ABMs, the facts to be explained, are usually at a higher macroscopic
level beyond the microscopic description. In fact, the search for microscopic
foundations for macroscopic regularities has been an integral motivation in
the development of ABMs (see Macy and Willer, 2002; Squazzoni, 2008).

It is characteristic of any such macroscopic system property that it is
invariant with respect to certain details of the agent configuration. In other
words, any observation defines, in effect, a many-to-one relation by which
sets of micro configurations with the same observable value are subsumed
into the same macro state. Consider the population dynamics in the sug-
arscape model by Epstein and Axtell (1996) as an example. The macroscopic
indicator is, in this case, the number of agents N . This aggregate value is not
sensitive with respect to the exact positions (the sites) at which the agents
are placed, but only to how many sites are occupied. Consequently, there
are many possible configurations of agent occupations in the sugarspace with
an equal number of agents N and all of them correspond to the same macro
state. Another slightly more complicated example is the skewed wealth dis-
tribution in the sugarscape model. It is not important which agents con-
tribute to each specific wealth (sugar) level, but only how many there are in
each level. This describes how macro descriptions of ABMs are related to
observations, system properties, order parameters and structural indicators,
and it also brings into the discussion to the concepts of aggregation and
decomposition.

Namely, aggregation is one way (in fact, a very common one) of realiz-
ing such a many-to-one mapping from micro-configurations to macroscopic
system properties and observables. For simple models of opinion dynamics
inspired by spin physics, for instance, it is very common to use the average
opinion – due to the spin analogy often called »system magnetization« – as
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an order parameter and to study the system behavior in this way. Magne-
tization, computed by summation over the spins and division by the total
number of spins, is a true aggregative measure. Magnetization levels or val-
ues are then used to classify spin or opinion configurations, such that those
configurations with the same magnetization value correspond to the same
macro state. This many-to-one mapping of sets of micro configurations onto
macro states automatically introduces a decomposition of the state space at
the micro level Σ.

3.2.2 Observables, Partitions and Projected Systems

The formulation of an ABM as a Markov chain developed in the previous
section allows a formalization of this micro-macro link in terms of projections.
Namely, a projection of a Markov chain with state space Σ is defined by a
new state space X and a projection map Π from Σ to X. The meaning of the
projection Π is to lump sets of micro configurations in Σ according to some
macro property in such a way that, for each X ∈ X, all the configurations
of Σ in Π−1(X) share the same property.

Therefore, such projections are important when catching the macroscopic
properties of the corresponding ABM because they are in complete cor-
respondence with a classification based on an observable property of the
system. To see how this correspondence works let us suppose that we are
interested in some factual property of our agent-based system. This means
that we are able to assign to each configuration the specific value of its cor-
responding property. Regardless of the kind of value used to specify the
property (qualitative or quantitative), the set X needed to describe the con-
figurations with respect to the given property is a finite set, because the set
of all configurations is also finite. Let then φ : Σ → X be the function that
assigns to any configuration x ∈ Σ the corresponding value of the considered
property. It is natural to call such φ an observable of the system. Now, any
observable of the system naturally defines a projection Π by lumping the set
of all the configurations with the same φ value. Conversely any (projection)
map Π from Σ to X defines an observable φ with values in the image set X.
Therefore these two ways of describing the construction of a macro-dynamics
are equivalent and the choice of one or the other point of view is just a matter
of taste.

The price to pay in passing from the micro to the macro-dynamics in
this sense (Kemeny and Snell, 1976; Chazottes and Ugalde, 2003) is that
the projected system is, in general, no longer a Markov chain: long memory
(even infinite) may appear in the projected system. This »complexification«
of the macro dynamics with respect to the micro dynamics is a fingerprint
of dynamical emergence in agent-based and other computational models (cf.
Humphreys, 2008).
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3.2.3 Lumpability and Symmetry

Under certain conditions, the projection of a Markov chain (Σ, P̂ ) onto
a coarse-grained partition X, obtained by aggregation of states, is still a
Markov chain. In Markov chain theory this is known as lumpability (or
strong lumpability), and necessary and sufficient conditions for this to hap-
pen are known. Let us restate the respective Thm. 6.3.2 of Kemeny and Snell
(1976) using our notations, where Σ denotes the configuration space of the
micro chain and P̂ the respective transition matrix, and X = (X1, . . . , Xr)

is a partition of Σ. Let p̂xY =
∑

y∈Y

P̂ (x,y) denote the conjoint probability

for x ∈ Σ to go to the set of elements y ∈ Y where Y ⊆ Σ is a subset of the
configuration space.

Theorem 3.2.1 (Kemeny and Snell, 1976, 124) A necessary and sufficient
condition for a Markov chain to be lumpable with respect to a partition X =
(X1, . . . , Xr) is that for every pair of sets Xi and Xj, p̂xXj

have the same
value for every x in Xi. These common values {p̂ij} form the transition
matrix for the lumped chain.

In general it may happen that, for a given Markov chain, some projections are
Markov and others not. Therefore a judicious choice of the macro properties
to be studied may help the analysis.

In order to establish the lumpability in the cases of interest we shall use
symmetries of the model. For further convenience, we state a result for which
the proof is easily given Thm. 6.3.2 of Kemeny and Snell (1976):

Theorem 3.2.2 Let (Σ, P̂) be a Markov chain and X = (X1, . . . , Xn) a
partition of Σ. Suppose that there exists a group G of bijections on Σ that
preserve the partition (∀x ∈ Xi and ∀σ̂ ∈ G we have σ̂(x) ∈ Xi). If the
Markov transition probability P̂ is symmetric with respect to G,

P̂ (x,y) = P̂ (σ̂(x), σ̂(y)) : ∀σ̂ ∈ G, (3.8)

the partition (X1, . . . , Xn) is (strongly) lumpable.

Proof. For the proof it is sufficient to show that any two configurations x

and x′ with x′ = σ̂(x) satisfy

p̂xY =
∑

y∈Y

P̂ (x,y) =
∑

y∈Y

P̂ (x′,y) = p̂x′Y (3.9)

for all Y ∈ X. Consider any two subsets X,Y ∈ X and take x ∈ X. Because
G preserves the partition it is true that x′ ∈ X. Now we have to show that
Eq. (3.9) holds. First the probability for x′ = σ̂(x) to go to an element
y ∈ Y is

p̂σ̂(x)Y =
∑

y∈Y

P̂ (σ̂(x),y). (3.10)
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Because the σ̂ are bijections that preserve the partition X we have σ̂(Y ) = Y
and there is for every y ∈ Y exactly one σ̂(y) ∈ Y . Therefore we can
substitute

p̂σ̂(x)Y =
∑

y∈Y

P̂ (σ̂(x), σ̂(y)) =
∑

y∈Y

P̂ (x,y) = p̂xY , (3.11)

where the second equality comes by the symmetry condition (3.8) that
P̂ (x,y) = P̂ (σ̂(x), σ̂(y)).

The usefulness of the conditions for lumpability stated in Thm. 3.2.2
becomes apparent recalling that ABMs can be seen as random walks on
regular graphs defined by the functional graph or »grammar« of the model
Γ = (Σ,FZ). The full specification of the random walk (Σ, P̂ ) is obtained
by assigning transition probabilities to the connections in Γ and we can
interpret this as a weighted graph. The regularities of (Σ, P̂ ) are captured
by a number of non-trivial automorphisms which, in the case of ABMs, reflect
the symmetries of the models.

In fact, Thm. 3.2.2 allows to systematically exploit the symmetries of an
agent model in the construction of partitions with respect to which the micro
chain is lumpable. Namely, the symmetry requirement in Thm. 3.2.2, that
is, Eq. (3.8), corresponds precisely to the usual definition of automorphisms
of (Σ, P̂ ). The set of all permutations σ̂ that satisfy (3.8) corresponds then
to the automorphism group of (Σ, P̂ ).

Lemma 3.2.3 Let G be the automorphism group of the micro chain (Σ, P̂ ).
The orbits of G define a lumpable partition X such that every pair of micro
configurations x,x′ ∈ Σ for which ∃σ̂ ∈ G such that x′ = σ̂(x) belong to the
same subset Xi ∈ X.

Remark 3.2.1 Lemma 3.2.3 actually applies to any G that is a proper sub-
group of the automorphism group of (Σ, P̂ ). The basic requirement for such
a subset G to be a group is that be closed under the group operation which
establishes that σ̂(Xi) = Xi. With the closure property, it is easy that any
such subgroup G defines a lumpable partition in the sense of Thm. 3.2.2.

3.3 Opinion Dynamics and Projected Systems

Voter-like models – here we shall interpret them as models of opinion and so-
cial dynamics – provide nice examples where such a projection construction is
particularly meaningful. If there are δ possible agent attributes, we consider
the projection Π that maps each x ∈ Σ into a macro state X〈k1,...,kδ〉 ∈ X

where ks, s = 1, . . . , δ, is the number of agents in x with attribute s. This
captures the model dynamics in terms of frequencies of all δ attributes. The
projected configuration space is then made of the X〈k1,...,kδ〉 where ks ≥ 0,

s = 1, . . . , δ and
∑δ

1 ks = N . We shall now treat in detail the VM as an
example of the previous ideas.
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3.3.1 The Macro Dynamics of the Binary Voter Model

The case of a binary opinion model, δ = 2, is particularly simple and there-
fore well-suited for an analytical starting point. In binary state models, the
attribute of agent i at time t is a binary variable xi(t) ∈ {�,�} ≡ {0, 1}. The
opinion profile is given by the bit-string x(t) = {x1(t), . . . , xN (t)} so that, as
for all binary single-step dynamics, the space of all possible configurations is
the set of all bit-strings of length N , Σ = {�,�}N .

For further convenience, let us use the convention that the black state is
treated as zero and the white state as one (� ≡ 0 and � ≡ 1) and let us
define the Hamming weight of a configuration as

h(x) =
N
∑

i=1

xi = N�(x). (3.12)

Notice that the Hamming weight is precisely the measure usually consid-
ered in the analysis of binary opinion or population genetics models as
it corresponds to the opinion or gene frequency. With N� = h(x) and
N� = N −h(x), the Hamming weight h(x) defines the most relevant macro-
scopic observable φ of interest in the context of these models.

As stated earlier, h(x) (just as any other macroscopic observable) de-
fines a partition of the configuration space Σ. Namely, we can look at h(x)
as an equivalence relation such that any two configurations x,x′ ∈ Σ with
h(x) = h(x′) belong to the same equivalence class. The respective equiv-
alence classes therefore collect all configurations with the same Hamming
weight, or respectively, opinion frequency. Formally, let us define Xk ⊂ Σ

by
Xk = {x : h(x) = k} . (3.13)

Each Xk ∈ X, k = 0 . . . N contains all the configurations (x) in which exactly
k agents hold opinion � (and then N − k hold opinion �). In this way
we obtain a partition X = {X0, X1, . . . , XN} of the configuration space Σ.
Notice that X0 and XN contain only one configuration, namely the final
configurations X0 = {(�� . . .�)} and XN = {(�� . . .�)}.

The projection of the VM micro chain (Σ, P̂ ) yields a new macro process
with state space X = (X0, . . . , XN ). This is illustrated for a small system of
three agents in Fig. 3.3. Noteworthy, in this macro description, the number
of states is reduced from 2N to N + 1. While the number of states grows
exponentially with the system size in the micro description, it grows now
only linearly in the macro description.

Now, what are the conditions under which the macro process on the
state space X = (X0, . . . , XN ) is again a Markov chain? It is easy to see
that the partition X is preserved under the group of all permutations of the
N agents, denoted by SN . Agent permutations are also compatible with the
equivalence relation defined by h(x) because h(x) is invariant with respect
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Figure 3.3: The micro chain for the VM with 3 agents and its projection
onto a birth-death random walk obtained by agglomeration of states with
the Hamming weight h(x) = k.

to any alternative labeling of the agents. We can therefore use SN in the
construction of a group of bijections G that satisfies Thm. 3.2.2. Namely,
for each σ ∈ SN we define a σ̂ ∈ G such that

σ̂(x) := (xσ1, . . . , xσi, . . . , xσN ). (3.14)

The respective group G acting on Σ preserves X and is compatible with
h(x): that is, for ∀σ̂ ∈ G and ∀Xi ∈ X, x ∈ Xi implies that σ̂(x) ∈ Xi and
h(x) = h(σ̂(x)). Therefore, according to Thm. 3.2.2, lumpability leans on
the condition of the invariance of the Markov transition matrix P̂ under the
permutation group of agents, P̂ (x,y) = P̂ (σ̂(x), σ̂(y)). It is easy to see by
Eq. (3.7) that this is satisfied if the probability distribution ω is invariant
under the permutation group SN and therefore uniform: ω(i, j) = 1/N2, for
all pairs of agents (i, j).1

This emphasizes the particular role of homogeneous mixing in the context
of these models. Homogeneous mixing is special insofar as we can get rid
of the sum in Eq. (3.7) because ω is uniform. In this case P̂ (x,y) can be
expressed only in terms of the Hamming weight of x

P̂ (x,y) =
∑

xi 6=xj

ω(i, j) =
h(x)[N − h(x)]

N2
, (3.15)

because only the numbers of possible attribute pairs with (xi, xj) = (�,�)
(respectively (xi, xj) = (�,�)) matter. For the macro chain we obtain

1Notice that permutation invariance is also present if »self interactions« are excluded
such that ω(i, i) = 0. Then ω(i, j) = 1/N(N − 1), ∀i 6= j. For the following computations
the possibility that an agent i »interacts« with itself is not excluded.
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therefore:

P (Xk, Xk+1) = P (Xk, Xk−1) =
k(N − k)

N2
. (3.16)

and

P (Xk, Xk) =
k2 + (N − k)2

N2
. (3.17)

The macro process specified by Eqs. (3.16) and (3.17) is a typical birth-
death random walk sometimes referred to as Moran process (Moran, 1958).
It has two absorbing states X0 and XN for P (X0, X0) = P (XN , XN ) = 1
corresponding to the two consensus configurations with all agents in the same
state. The Markovianity of the VM process obtained by a projection onto
X = (X0, . . . , XN ) is well-established in the case of homogeneous mixing,
but it seems to be less well-known that the preservation of Markovianity by
this projection construction is the exception rather than the rule. This is
due to the fact that for heterogeneous ω the second equality in Eq. (3.15)
does not hold in general, and the transition rates depend not only on the
Hamming weight, but also on the population structure.

X
0

X
1

X
k-1

X
k

X
k+1

X
N

X
N-1

Figure 3.4: Macro chain for the binary VM with homogeneous mixing.

The macro chain for the binary VM with homogeneous mixing is shown
in Fig. 3.4. The transition probability matrix P of the Markov chain is given
by the stochastic transition matrix:

P =









































1 0 0 0 0 . . . 0

p1 q1 p1 0 0 . . . 0

0 p2 q2 p2 0 . . . 0
...

. . .
. . .

. . .
...

0 pk qk pk 0
...

. . .
. . .

. . .
...

0 . . . 0 pN−2 qN−2 pN−2 0

0 . . . 0 0 pN−1 qN−1 pN−1

0 . . . 0 0 0 0 1









































, (3.18)

with pk = P (Xk, Xk±1) and qk = P (Xk, Xk) given in (3.16) and (3.17).
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The probability that any opinion change happens in the system is 2pk
and then depends on the current opinion balance. But there is no general
tendency of the system to be attracted by one of the extremes. In other
words, the macro chain performs an unbiased random walk. Due to the
particular form of pk the prevalence of one opinion results in a reduced
probability of further opinion change, contrary to the usual random walk
with constant transition probabilities.

For k ∼= N
2 we have pk ∼= 1

4 . By contrast, when k is closed to 0 or N , there
is a large probability for the system to stay unchanged. Notice that for k = 1
or k = N − 1 this probability tends to 1 when N → ∞. This indicates that
in this model once one opinion dominates over the other, public opinion as a
whole becomes less dynamic, which also reveals a difficulty for new opinions
to spread in the artificial society.

3.3.2 Transient Macro Dynamics

In Markov chains with absorbing states (and therefore in ABMs) the asymp-
totic status is quite trivial. As a result, it is the understanding of the tran-
sient that becomes the interesting issue. We shall now analyze the transient
dynamics for the macro dynamics of the binary VM. In order to do so, all
that is needed is to compute the fundamental matrix F of the Markov chain
(Kemeny and Snell, 1976; Behrends, 2000).

Let us express P in its standard form in which the two first rows and
columns stand for the absorbing states X0 and XN and the remaining for
the N − 1 transient states:

P =

(

1 | 0

R | Q

)

. (3.19)

Here, Q is the (N−1)×(N−1) matrix corresponding to the transient states
(without the first two rows and columns associated with X0 and XN ). The
fundamental matrix F is the inverse of (1−Q) where 1 is the (N−1)×(N−1)
identity matrix. Due to the structure of P , (1 − Q) is a tridiagonal matrix
that can be inverted using, for instance, the tridiagonal matrix algorithm
(also known as Thomas algorithm, Conte and Boor, 1980).

For the VM, moreover, we have P (Xk, Xk+1) = P (Xk, Xk−1) = pk which
allows for an analytical inversion of (1−Q). We have

(1−Q) =































2p1 −p1 0 0 0 . . . 0

−p2 2p2 −p2 0 0 . . . 0
...

. . .
. . .

. . .
...

0 −pk 2pk −pk 0
...

. . .
. . .

. . .
...

0 . . . 0 0 −pN−2 2pN−2 −pN−2

0 . . . 0 0 0 pN−1 2pN−1































. (3.20)
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In order to compute (1 − Q)−1 we can use the system of equations defined
by 1 = (1−Q)−1F and 1 = F(1−Q)−1. Due to the fact that there is only
one variable per row (namely, pk) the recursive equations that have to be
solved simplify and we have as a general solution of (1−Q)−1:

Fij =







i(N−j)
Npj

: i ≤ j

j(N−i)
Npj

: i > j







. (3.21)

For the VM, with pk given by Eq. (3.16) we obtain:

Fij =







Ni
j : i ≤ j

N(N−i)
N−j : i > j







. (3.22)

Eq. (3.22) provides us with the fundamental matrix of the system for an
arbitrary number of agents N , giving information about mean quantities of
the transient dynamics in this model.

The corresponding matrix G that encodes information about the variance
(Kemeny and Snell, 1976, 82–84) of the same quantities can be computed on
the basis of F by

G = F(Fdiag − 1)Fsquare (3.23)

where Fdiag contains the diagonal elements of F and is zero for the non-
diagonal elements and (Fsquare)ij = (F)2ij . For the VM it reads:

Gij =



















N(N − 1) : i = j

(2N2 −N) (N−i)
(N−j) −N2 (N−i)2

(N−j)2
: i > j

(2N2 −N) ij −N2 i2

j2
: i < j



















. (3.24)

The matrices F and G provide us with a good understanding about the
transient dynamics of the VM: Fi,k is the mean of the time the process is
in the transient configuration Xk when started in the configuration Xi and
Gi,k is the corresponding variance.

An interesting quantity to characterize opinion dynamics is the time a
process starting in Xk takes to end in one of the two consensual absorbing
states. Defining τk and υk as the mean and the variance of the random
variable for k = 1, . . . , N − 1 we got from (3.22) and Kemeny and Snell
(1976):

τk = N





k−1
∑

j=1

(N − k)

(N − j)
+ 1 +

N−1
∑

j=k+1

k

j



 (3.25)

and the corresponding expression for υ can explicitly be written from (3.24)
using:

υ = (2F− 1)τ − τsq (3.26)
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where τsq denotes the vector resulting from τ by squaring each entry. This
yields

υk = 2N2(N − k)





k−1
∑

i=1

1

(N − i)





i−1
∑

j=1

(N − i)

(N − j)
+ 1 +

N−1
∑

j=i+1

i

j







+ (3.27)

+(2N − 1)N





k−1
∑

j=1

(N − k)

(N − j)
+ 1 +

N−1
∑

j=k+1

k

j



+

+2N2k





N−1
∑

i=1

1

k + i





k+i−1
∑

j=1

(N − k − i)

(N − j)
+ 1 +

N−1
∑

j=k+i+1

k + i

j







−

−N2





k−1
∑

j=1

(N − k)

N − j
+ 1 +

N−1
∑

j=k+1

k

j





2

.

For a system of 1000 agents, Fig. 3.5 shows the mean times until ab-
sorption τk from each Xk and the corresponding variances υk. Notice the
contrast among the two scales showing how the variance is large compared
with the mean.
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Figure 3.5: Mean time τk (l.h.s.) and variance υk (r.h.s.) until absorption
as a function of the initial configuration Xk for N = 1000.

There are interesting consequences of (3.25) and (3.27), in cases where
the number of agents (N) becomes large. First, as already pointed out, we
see that the ratio between the variance and the mean is quite large and in
fact it diverges with N . Hence, the means are fairly unreliable estimates in
this system. This is often the case for absorbing Markov chains (Kemeny and
Snell, 1976) making a direct interpretation of numerical simulations for this
type of models tough. Even more subtle, the time scale depends significantly
on the starting configuration k. In fact τk scales as N logN for k = 1 and
k = N − 1 but as N2 for k = N

2 . We are therefore faced with a situation
where to take the limit of asymptotic times first and then large number of
agents or to do it in the reverse order is not equivalent. In other words, for a
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finite, even large, number of agents, there is a probability 1 of reaching one
of the consensual configurations in finite time. By contrast, in the limit of
an infinite number of agents this probability is 0 and the process will stay
essentially in the configurations close to parity, k = N

2 . Together with the
presence of large fluctuations revealed in (3.27) (see Fig. 3.5) this fact is the
imprint of a (dynamical) phase transition.

Besides this analysis of the scaling law of the dynamics for large N , it is
also interesting to have an insight into the distributions of absorbing times
for a system of fixed number of agents, the second item mentioned above.
As known by the Perron-Frobenius Theorem (Seneta, 2006) this distribution
is exponential for large t with rate (1 − λmax), λmax being the maximal
eigenvalue of the matrix Q. However, the correction to this distribution
for intermediate times depends on the initial configuration. Indeed in our
case, the distribution of the times taken by the process to fall into one of
the consensual configurations departs from the exponential in a way that is
strongly dependent upon the initial state, as shown in Figs. 3.6 and 3.7.
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Figure 3.6: Cumulative probability of being absorbed after time tabs for
N = 100 and three starting configurations k = 1 (green), k = 24 (blue) and
k = 50 (red). Vertical lines show the respective expected mean convergence
times τk.

The computation of the full time distribution is based on the fact that
the powers Qt of Q contain all the information about the probability that
the process is still not absorbed after t steps. To be precise, the sum over the
kth row of Qt equals the probability that the process starting at Xk is not
absorbed after t iterations. This yields the cumulative distribution function
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Figure 3.7: Probability of absorbency at time tabs for N = 100 and three
starting configurations k = 1 (green), k = 24 (blue) and k = 50 (red).
Exponential functions (dashed) are shown to illustrate the exponential decay
of the convergence times as a function of (1− λmax).

shown in Fig. 3.6 for a system of 100 agents and three starting configurations
k = 1 (green), k = 24 (blue) and k = 50 (red). The vertical dashed lines
represent the respective mean values τk obtained using Eq. (3.25). For
k = 50 it becomes clear that around 60% of simulation runs are absorbed
until the expected absorption time is reached. Fig. 3.7 shows the probability
that the process is absorbed exactly at time tabs. The three solid curves
represent the respective probabilities for k = 1, 24, 50. The dashed curves
are exponential functions that fit the distributions for large tabs showing that
the distributions decay with (1− λmax) as claimed above.

This leads to an interesting feature of the distribution of the absorption
times coming from the fact that λmax tends to one when N → ∞. More
precisely (Seneta, 2006) and (3.18) implies

1 > λmax ≥ 1− p1 ≥
N − 1

N
. (3.28)

As a consequence, we see that the times for the system to get absorbed in the
final states diverge with N , and Q approaches a stochastic matrix. In fact
in the limit of infinite N consensus cannot be reached. This is not the only
reason why the dynamics inside the transient configurations is so important.
In fact we might speculate that, in a more realistic description, exogenous
events may interfere with the system and reset it from time to time, and
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then, in view of the previous analysis, even when the number of agents is
finite but sufficiently large, the system will similarly never fall into a final
absorbing consensus configuration.

Notice that Eqs. (3.22) and (3.24) can be used to gain new insight into
the dynamics inside the transient. As noted above, Fi,k is the mean of the
time the process is in the transient configuration Xk when started in the
configuration Xi and Gi,k is the corresponding variance. Figs. 3.8 and 3.9
show a quite different behavior depending on the initial situation. Starting
from Xi close to X1 or XN−1 – the strongly »biased« configurations – the
residence mean times in Xk naturally decrease with the distance from i, but
become almost independent of k and N for large k, whereas the correspond-
ing variance diverges with N . Instead, starting from Xi close to XN/2 – the
quasi-homogeneous configurations – the residence mean times and variance
in Xk always diverge.
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Figure 3.8: The mean times for the process in a configuration Xk before
absorption for a walk starting in X1, X24 and X50 as function of k for N =
100.
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Figure 3.9: The variance in the number of times a realization starting in
X1, X24 and X50 is in Xk before absorption as function of k for N = 100.
Notice the scale as compared with Fig. 3.8

The reason for such »strange« behavior is quite clear: as N becomes
large, almost all the realizations are trapped during very large times close
to their initial configuration, see (3.18), and only very few realizations reach
the opposite configurations but staying there for large times. That is, a
complete overturn of the opinions is very rare but, when happened, the
new situation naturally becomes as stable as the previous. Therefore we
are in a case where there is almost no realization behaving as the mean.
On the other hand, starting from Xi closed to XN/2, the »homogeneous«
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configurations, the mean times in Xk also decrease with the distance from
N/2, but now the mean times all scale linearly with N and the variances
with N2. Surprisingly these two behaviors – almost static on the border and
very unstable »back-and-forth« in the center – compensate perfectly to end
up in the same mean residence times and variance (the diagonals of F and
G) for all the initial configurations. The same compensation appears when
we compare the probabilities for a walk stating in Xi to return in Xi, which
is independent of i and almost sure for large N :

lim
t→∞

P (t)(Xi, Xi) =
Fii − 1

Fii
=

N − 1

N
. (3.29)

It is reasonable to hypothesize a correlation, if not a causal link, between
fast changes in the agent opinion induced by the social process, here stylized
in the dynamical rules, and the inconsistency experienced by agents between
the micro and the macro level. This conflict is referred to as practical emer-
gence (Giesen, 1987). It consists of a gradual separation of the individual
mental patterns from the reality. The agent is then faced with a representa-
tion that is not always perfectly in keeping with the situation (Giesen, 1987,
342). In the opinion model, a possible rating of this practical emergence
inconsistency is the mean time the macro process takes to change of state.
Indeed any change of state in this process corresponds to an opinion change
of an agent. Therefore the faster this rate, the smaller the switching mean
time, and the more likely is the emergence of a practical disruption between
picture and reality from the agent’s point of view.

From (3.16) and Kemeny and Snell (1976), Thm. 3.5.6, the mean time
ηk that the process remains in state Xk once the state is entered (including
the entering step) is:

ηk =
N2

2k(N − k)
. (3.30)

Therefore, ηk is of order N
2 for k close to (but smaller than) N and 2 for

k close to N
2 . Again, for N large the process will be almost stationary in

presence of a large majority supporting one of the opinions but extremely
unstable when no opinion is clearly predominant. In the latter case practical
emergence is plausible. We suggest correlating small values of ηk with this
phenomenon.

To conclude the analysis of the transient dynamics, Fig. 3.10 shows dif-
ferent realizations of the agent simulation along with the expected evolution
in form of a confidence interval. The measure of the realizations inside a
given confidence interval is an increasing function of time. However, since
any individual realization may cross the border of this interval several times
before falling in one of the final absorbing states a numerical evaluation of
the convergence times may be quite delicate.
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Figure 3.10: Different realizations of simulations with 24 out of 100 agents in
initial state � (i.e a process starting in X24). Markov chain analysis shows
that with probability 0.95 the process is in the shaded region.

3.3.3 Exit Probabilities

The fundamental matrix F, Eq. (3.22), can also be used to compute the
probabilities for a process starting in Xi to end up in X0 or XN . These
probabilities are obtained by multiplying FR where R is the respective sub-
matrix from the canonical form of P shown in Eq. (3.19). It is well-known
that the exit probabilities depend linearly on the initial proportion of agents
in the different states as

lim
t→∞

P (t)(Xi, X0) =
N − i

N
(3.31)

and

lim
t→∞

P (t)(Xi, XN ) =
i

N
. (3.32)

In other words, the probability to end up in configuration (�� . . .�) is
proportional to the initial number of �-agents.

3.3.4 Macrodynamics of the General Voter Model

For the VM with δ different attributes, the state of any agent i at time t is
a variable xi(t) ∈ {0, . . . , δ − 1}. The opinion profile is given by the vector
x(t) = {x1(t), . . . , xN (t)}. The space of all possible configurations is then
Σ = {0, . . . , δ − 1}N . As described in Sec. 3.1, the micro chain of single-
step model with |S| = δ is a random walk with loops on the Hamming graph
H(N, δ).

In the projection construction, we follow the same argument as for δ = 2.
We define Ns(x) to be the number of agents in the configuration x with



Chapter III 53

opinion s, s = 0, . . . , δ − 1, and then X〈k0,k1,...,kδ−1〉 ⊂ Σ as

X〈k0,...,ks,...,kδ−1〉 =

{

x ∈ Σ : N0(x) = k0, . . . , Ns(x) = ks, . . .

. . . , Nδ−1(x) = kδ−1 and
δ−1
∑

s=0

ks = N

}

.

(3.33)

Each X〈k0,k1,...,kδ−1〉 contains all the configurations x in which exactly ks
agents hold opinion s for any s. We use the notation 〈k0, k1, . . . , kδ−1〉 to
indicate that

∑δ−1
s=0 ks = N . As in the binary case, we obtain in this way a

partition X of the configuration space Σ.

Again, as for the binary model, the symmetry condition (3.8) of Thm.
3.2.2 is verified if the probability distribution ω is permutation invariant and
therefore uniform: ω(i, j) = 1

N2 , for all pairs of agents (i, j). That is, the

projection of the micro process (Σ, P̂ ) onto X yields a Markov chain in the
case of homogeneous mixing. In this case, Eq. (3.16) generalizes to:

P (X〈k0,k1,...,kδ−1〉, X〈k′0,k
′

1,...,k
′

δ−1〉
) =

kskr
N2

(3.34)

if k′s = ks ± 1 and k′r = kr ∓ 1 whereas k′j = kj for all other j, and the
probability that no opinion changes, Eq. (3.17), becomes

P (X〈k0,k1,...,kδ−1〉, X〈k0,k1,...,kδ−1〉) =
1

N2

δ−1
∑

s=0

(ks)
2.

The structure of (3.34) has an interesting consequence on the dynamics
of the system. We see that, if there is an s for which ks = 0, the probability
of transition to a state with ks > 0 is zero. In other words, to change the
number of agents sharing opinion s, at least one agent with such an opinion is
needed. Therefore, the state space is organized as a δ-simplex with absorbing
faces ordered by inclusion, corresponding to increasing sets of opinions with
no supporters.

Starting in some state with no null ks the process will finish at certain
time in a state where, for the first time, ks = 0 for some s (notice that
only one s at each time can fall to zero since the sum of all ks is constant).
From there, the given ks will stay equal to zero for ever, and (3.34 – 3.35)
tell us that the transition probabilities are now those of a system with δ −
1 opinions. Because the condition

∑δ−1
s=0 ks = N is to be fulfilled by the

remaining opinions, the system will then evolve exactly as if the N agents
share δ − 1 opinions from the very beginning. After a certain time a new
opinion will lose all its supporters and the system is now equivalent to a full
system of δ− 2 opinions, and so on. The system will cascade up to the final
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absorbing state, with only one opinion shared by all the N agents. We recall
that each of such cascade transitions is achieved in finite (random) times.

By computing the fundamental matrix of the subsystems it would be
possible to access the mean and variance of the times the system evolves
between two successive extinctions of group opinions. We conjecture the
same scaling laws for a system of δ opinions as the ones already described
for δ = 2.

3.3.5 Further Reduction

Alternatively, we can make use of the symmetries in the structure of (3.34)
and search for lumpable partitions to further reduce the problem. This can
be done by considering the model from the perspective of a single »party«
associated with (say) opinion 0. For that »party«, it may be important to
know how many agents are supportive because they share the same opinion,
and how many are not because they support one of the remaining opinions.
Thus, we reduce the model to a quasi-binary variant with the supporter
opinion 0 on one side and all other opinions (1 ∪ · · · ∪ δ − 1) on the other,
grouping together all the states with k0 = r, r = 0, . . . , N .

The corresponding partition reads:

Y 0
r =

⋃

k1,...,kδ−1
k0=r

X〈r,k1,...,kδ−1〉, r = 0, . . . , N. (3.35)

It is easy to verify that the chain (on X) is indeed lumpable with respect to
Y by considering the transition probabilities (3.34).2 One can show that

∑

k1,...,kδ−1
k0=r

P (X〈r,k1,...,kδ−1〉, Y
0
r±1) =

r(N − r)

N2
(3.36)

and therefore independent of the ks, s > 0. This tells us that

P (Y 0
r , Y

0
r+1) = P (Y 0

r , Y
0
r−1) =

r(N − r)

N2
. (3.37)

It thus turns out that the chain formed by the Y 0
r , r = 0, 1, . . . , N is exactly

the same as the chain derived for the binary model. Therefore, the questions
regarding the evolution of one opinion in relation to all the others taken
together are addressed by the transient analysis performed in Sec. 3.3.2. That

2Alternatively, one could also verify the lumpability of Y directly with respect to the
micro process. Namely, as shown in Sec. 3.1, the micro chain is a random walk on H(N, δ).
The group SN acting on the agents as well as the permutation group Sδ acting on the
agent attributes give rise to automorphisms of H(N, δ) such that the automorphism group
is given by the direct product Aut(H(N, δ)) = SN ⊗ Sδ. The transformation group that
generates the new partition Y is a subgroup of that, namely, Λ = SN ⊗ Sδ−1 ⊂ SN ⊗ Sδ.
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is to say, from this point of view, each »party« may rely on the dynamics of
a binary model as a coarse description of the evolution of its own status.

There is however an important subtlety when doing such an analysis.
The asymmetry of the partition one-against-all-others will be encoded in the
initial condition. For instance, starting with an equally distributed profile
of N agents corresponds to the initial condition X〈k,k,...,k〉 in the detailed
description but to Y 0

N/δ in the coarse case. In such a way the asymmetry in
the one-against-all-others description is recovered.

In particular, this tells us that the probability to end up in the final
configuration Y 0

N = {(�� . . .�)} is proportional to this initial bias and
becomes

lim
t→∞

P (t)(Y 0
N/δ, Y

0
N ) =

1

δ
. (3.38)

Consequently, with probability 1 − 1/δ the process will transit to the class
of states in which r = 0 with a zero probability to return to the r > 0
class. Viewed in the space X, the process is not finished then, but performs
a random walk until one of the uniformity states is reached, each with equal
probability 1/δ.

3.4 Bounded Confidence and the Emergence of Opin-

ion Polarization

An important issue in the study of opinion dynamics concerns the effects
of bounded confidence on the model dynamics. Especially the models con-
ceived by Hegselmann and Krause (2002) and Deffuant et al. (2001) (but
also Axelrod, 1997; Banisch et al., 2010) are designed to study the situation
that the willingness of agents to communicate depends on the similarity of
their attributes. It is also noteworthy that similarity constraints of this kind
play an important role in population genetics, where they go under the la-
bel assortative mating (e.g., Kondrashov and Shpak, 1998; Dieckmann and
Doebeli, 1999 see also Banisch and Araújo, 2012).

In this section, we treat in detail the simplest case where bounded con-
fidence (and other communication constraints) can be integrated, namely
δ = 3. Consider that agents can choose between three different alternatives
S = {a, b, c}. In order to model bounded confidence we define a S×S »con-
fidence matrix« α which encodes for any attribute pair whether or not the
attributes are compatible. If all entries in α are one, this yields the uncon-
strained VM with δ = 3 and the results of the previous section apply. For
bounded confidence, we set α(a, c) = α(c, a) = 0 meaning that the attributes
a and c are incompatible (a = c). The consequence of this constraint is the
emergence of non-consensual absorbing states, that is, the stable co-existence
of different attributes.
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3.4.1 The Unconstrained Case

We are particularly interested in the δ = 3 case because it is the simplest
version in which one can meaningfully consider the effects of bounded con-
fidence. According to the general results of Sec. 3.3.4, the projection from
micro to macro dynamics is lumpable with respect to X (under the homo-
geneous hypothesis on ω of course). We denote the number of a, b and c
agents by (respectively) k, l and m so that X = {X〈k,l,m〉 : 0 ≤ k, l,m ≤
N, k+ l+m = N}. The Markov chain topology obtained by this projection
is shown in Fig. 3.11 along with the transition structure for a system of 8
agents. The probabilities of the transitions are given by Eqs. (3.34) and
(3.35) which allows us to compute the complete transition matrix P .
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Figure 3.11: Transition structure (l.h.s) and state topology (r.h.s) of the
unbounded confidence model with three opinions S = {a, b, c}, here N = 8.

For the construction of P , the nodes in the Markov chain are labeled
in increasing order from the absorbing to the central nodes, see Fig. 3.11:
labels 1 to 3 (black) for absorbing consensus states, labels 4 to 24 (blue) for
two-opinion states, labels 25 to 39 (red) for three-opinion states with one of
the opinion supporters reduced to one element, and labels 40 to 45 (red) for
the remainder states. It is possible to compute the fundamental matrix, at
least numerically if N is large, and this makes it possible to compute the
significant statistical indicators of the model. For instance, if N = 8, the
state space of the macro dynamics has 45 states and the mean times for the
transient nodes to reach an absorbing state (consensus) range between 21
and 48 time steps, see Fig. 3.15. Not surprisingly the mean transition times
are a function of the distance to the absorbing states as measured on the
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graph of the state space (Fig. 3.11).
From the fundamental matrix F it is also easy to compute the prob-

abilities of ending up in each of the absorbing (consensus) states starting
from any transient node using the matrix B = FR, where R is defined as in
(3.19). For instance, for N = 8, the absorbing probabilities for any state are
represented in Fig. 3.12.
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Figure 3.12: The probabilities of reaching the three absorbing states for all
initial nodes X〈k,l,m〉. Notice that all three final states can be reached only
from the inner nodes (numbers 25 to 45).

3.4.2 Bounded Confidence

Let us now turn to the question of what happens if agents with a certain
opinion do not accept to change their opinion after meeting an agent of
another given opinion. In the opinion dynamics literature, this is referred
to as bounded confidence (Deffuant et al., 2001; Hegselmann and Krause,
2002). From the Markov chain perspective the emergence of opinion polar-
ization becomes a simple consequence of the restrictions posed on the inter-
action process. As certain transitions are excluded, the state space topology
of the Markov chain changes in a way that new absorbing states become
present. The respective states correspond to non-consensus configurations,
hence, they represent a population with opinion clustering.

As an example, let us assume that agents in opinion state a are not
willing to communicate with agents in state c and vice versa, that is to say
α(a, c) = α(c, a) = 0. The corresponding Markov transition matrix P now
reads:

P (X〈k,l,m〉, X〈k−1,l,m+1〉) = P (X〈k,l,m〉, X〈k+1,l,m−1〉) = 0. (3.39)

and

P (X〈k,l,m〉, X〈k,l,m〉) =

(

k2 + l2 +m2

N2

)

+ 2

(

km

N2

)

. (3.40)

The remaining entries are, as before, given by (3.34) and (3.35). The result-
ing state space topology is shown in Fig. 3.13, where all horizontal transi-
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tion paths are removed, since those paths correspond to the a ↔ c opinion
changes.
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Figure 3.13: Transition structure and state topology of the bounded confi-
dence model for N = 8. All states on the l = 0 line (no b-agents) are now
absorbing states.

For the set of bordering nodes X〈k,0,N−k〉 : k = 1, . . . , N − 1 with l = 0
(no b-agents) there is no longer any transition that leads away from them,
so that all these nodes become absorbing states. The fact that these ad-
ditional absorbing states X〈k,0,N−k〉 represent opinion configurations with
k agents in state a and N − k agents in state c explains why the intro-
duction of interaction restrictions leads to possible final states with opinion
polarization. It is noteworthy, however, that the opinion clustering would
not be observed if only one of the two transitions, a → c or c → a, were
excluded. In this case, there would still be a path leading away from the
bordering nodes to one of the nodes (X〈0,0,N〉 or X〈N,0,0〉) in the corner of
the graph. Such a set-up corresponds to an asymmetric model where the
bordering atoms X〈k,0,N−k〉 : k = 1, . . . , N − 1 become again transient, such
that the process eventually leads to the final consensus configurations as
previously described. However, in the case that a → c but c 9 a the final
configuration x = (cc . . . c) would be much more likely than x = (aa . . . a),
as a consequence of the asymmetry of such a model variant.

As for the unconstrained case, the fundamental matrix can be computed
here as well and allows us to calculate the statistical quantities of the model
such as absorbing probabilities and times. In Fig. 3.14 the probabilities of
a realization starting in one of the transient states ending up in each of the
absorbing final states are shown for each initial node (computed again by B =
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FR). If the process is in the first 10 nodes at t = 0, it will remain there forever
as all these nodes are absorbing in the bounded confidence case. Notice that
nothing changes for the nodes 11 to 24 with respect to the unconstrained case
shown in Fig. 3.12. For a system in these configurations the communication
constraint has no effect on the dynamics. The six absorbing non-consensus
states (numbers 4 to 10 with only a and c opinion supporters) are reachable
only from the inner nodes, that is only if all opinions are present initially.
It becomes clear that for some of these configurations, the probability of
converging to consensus becomes very small (e.g. nodes 25 to 30).
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Figure 3.14: The probabilities for all initial nodes X〈k,l,m〉 converging to
opinion clustering or to the three consensus nodes. Notice again that all
final states and the non-consensus states in particular can be reached only
from the inner nodes (numbers 25 to 45).

Finally, we can compare the mean time before a realization starting in
a transient state remains in the transient before absorption for the bounded
and the unbounded case. This statistical indicator is represented in Fig.
3.15. Notice that the times for the states 1 to 3 (unbounded) and 1 to 10
(bounded) are zero as in this case the process is absorbed from the very
beginning. Again, the non-absorbing two-opinion states (11 to 24) are not
affected.

3.4.3 Non-Lumpability for Further Reduction

As in the general case of any δ, we can search here for lumpable partitions
to further reduce the problem taking the point of view of each »party« asso-
ciated with opinions a, b or c. For the unconstrained case, we have shown in
Sec. 3.3.5 that the dynamics from any of these points of view reduces to the
δ = 2 case. The status of the bounded confidence model is different. From
the perspective of opinion b the partition in »supporters« and »opponents« is
lumpable, therefore, the system evolves as a binary chain (see next section).
This is not the case from the perspectives of opinions a or c. For instance,
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Figure 3.15: Mean times for the transient nodes to reach an absorbing state.
Blue bars: unbounded confidence, red bars: bounded confidence with a 6↔ c.
Labels of the nodes are explained in the text.

from the point of view of opinion a, the corresponding partition reads:

Y a
r =

⋃

l+m=N−r

X〈r,l,m〉, r = 0, 1, . . . , N. (3.41)

and

P (X〈r,l,m〉, Y
a
r+1) =

rl

N2
. (3.42)

It turns out that the chain formed by the Y a
r , r = 0, 1, . . . , N is not a Markov

chain since the r.h.s. of (3.42) depends on l and not only on r (Kemeny and
Snell, 1976).

We see that the introduction of bounded confidence in this model leads
to memory effects due to the fact that an agent switching from opinion a to
opinion c necessarily goes through a visit to opinion b for at least one time
step. Therefore, the probability of this transfer will depend on the number
of supporters of opinion b at that time.

3.4.4 Transient Behavior with Bounded Confidence

As noted above, a further reduction of the Markov chain is possible if the dy-
namics are considered from the perspective of »party« b. The corresponding
partition reads

Y b
r =

⋃

k+m=N−r

X〈k,r,m〉, r = 0, 1, . . . , N (3.43)

and the transition probabilities are

P (X〈k,r,m〉, Y
b
r+1) =

r(N − r)

N2
. (3.44)
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As discussed in Sec. 3.3.5, the probability to converge to Y b
N = {(bb . . . b)}

is 1/δ = 1/3 and the probability to end up in one of the configurations in
Y b
0 is 2/3, provided that the model is initialized with an equal number of a,

b and c agents. Notice that contrary to the unbounded confidence case the
process is really in its final state whenever r = 0 as all configurations in Y b

0

are absorbing.
The convergence times (see Fig. 3.15 for a small system) are composed

of the (relatively short) time needed to end up in the class of states Y b
0 in-

cluding those of opinion polarization and the (relatively long) time needed
to converge to Y b

N . In the following, we use a transformation proposed in
Kemeny and Snell (1976), 64/65, in order to assess the two times indepen-
dently. Notice that all the results obtained in this section are also applicable
to the binary VM (with Xk ≡ Y b

k ) to study the effects of initial opinion bias.
The basic idea is to »compute all probabilities relative to the hypothesis

that the process ends up in the given absorbing state« (ibid, 64). This leads
to a new absorbing chain with the specified state as the single absorbing
state. In fact, for our purpose, it is not necessary to completely determine
the transition matrix for that new chain as the fundamental matrix of the
original process (F) can be used directly to compute the fundamental matrix
of the new chain (F̃). Let B = FR where F is the fundamental matrix of the
binary chain (3.22) and R the respective 2 × N submatrix of the canonical
form (3.19). The elements b1j (b2j) of B correspond to the exit probabilities
of the process started in j to end up in X0 ≡ Y b

0 (XN ≡ Y b
N ). Recall

that b1j = (N − j)/N and b2j = j/N (see Sec. 3.3.3). Now let D0 be a
diagonal matrix with djj = b1j and respectively define DN as djj = b2j .
Then, according to Kemeny and Snell (1976), 65, the fundamental matrices
of the new chains with absorbing state X0 ≡ Y b

0 and XN ≡ Y b
N respectively

is given by

F̃0 = D−1
0 FD0

F̃N = D−1
N FDN . (3.45)

In our case with the fundamental matrix given in Eq. 3.22 we obtain

(F̃0)ij = b1j
Fij

b1i
=







iN(N−j)
j(N−i) : i ≤ j

N : i > j
(3.46)

and

(F̃N )ij = b2j
Fij

b2i
=







N : i ≤ j

jN(N−i)
i(N−j) : i > j

. (3.47)

The fundamental matrices F̃0 and F̃N allow for a very good understand-
ing of the average behavior of the model. F̃0 encodes the mean number of
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steps that the realizations which eventually converge to Y b
0 pass through any

state Y b
r , and F̃N informs us about the mean behavior of realizations that

end up in Y b
N . For instance, we can compute the mean convergence time to

each absorbing state independently. For convergence to Y b
0 from the initial

state Y b
r we have

τ̃0(r) = rN +
N
∑

j=r+1

rN(N − j)

j(N − r)
(3.48)

and for convergence to uniformity corresponding to Y b
N

τ̃N (r) = (N − r)N +
r−1
∑

j=1

jN(N − r)

r(N − j)
(3.49)

For a system of 100 agents these times are shown in Fig. 3.16. It becomes
clear that the mean convergence times to Y b

0 and Y b
N are equal if the initial

situation is unbiased, that is, if there are r = N/2 agents with attribute b and
N/2 agents in the other two states a or c. However, with an increasing initial
bias, there is an increasing gap between average convergence time to one or
the other absorbing state. For the system with three possible attributes a, b
and c and random initial conditions the initial number of b agents is around
N/3 ≈ 33. This is illustrated by the dashed vertical line. In that case, the
mean convergence time for realizations that end up in possible polarized con-
figurations with only a and c agents becomes considerably smaller compared
to the configuration with all agents in state b.

0 20 40 60 80 100

2000

4000
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8000

10 000

k

Τ

Figure 3.16: Mean convergence times to X0 ≡ Y b
0 (red) and XN ≡ Y b

N (blue)
independently. The vertical dashed line represents the initial bias for the
model with δ = 3.

F̃0 and F̃N enable moreover to study the transient behavior of the model
with initial bias in more detail. For a system of 100 agents, Fig. 3.17 shows
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Figure 3.17: Mean number of steps a process that eventually converges to Y b
0

(l.h.s.) and Y b
N (r.h.s.) is in the transient states for a system of 100 agents

and an initial number of r = 33 agent in state b.

the mean number of steps that a process ending up in Y b
0 (l.h.s.) and Y b

N

(r.h.s.) is in the transient states provided the model is initialized with 33
agents in b and 67 agents in a or c. This information is encoded in the 33rd
row of F̃0 and F̃N respectively. We first comment on the l.h.s. showing the
mean behavior of realizations ending up in an absorbing configuration where
only a and c agents remain (Y b

0 ). The figure shows that, in average, all the
transient states that are closer to Y b

0 than the initial configuration in Y b
33

are met N times. Naturally, the states »to the right« are encountered less
frequently. It should be clear that the entries of F̃0 should not be read as the
mean behavior of every single realization, but rather as the average behavior
over a large series of realizations. For instance, the mean number of steps
to Y b

99, which is very close to the opposite absorbing state, is approximately
1/2. However, this does not mean that every second realization approaches
the opposite absorbing state so closely. It rather means that there are rare
realizations that take that way, and once they are at the opposite extreme,
these realizations have a high chance to stay there for some while. In fact,
the fundamental matrix F̃0 tells us that, once a realization reached Y b

99, the
mean number of returns to that state is N − 1. The interpretation of the
r.h.s. (F̃N ) goes in the same way.

Finally, the probability distribution of convergence times to one or the
other absorbing state can be computed easily for a given N . In this compu-
tation, we first compute the respective matrices Q̃0 as (Q̃0)ij = (b1j/b1i)Qij

and Q̃N as (Q̃N )ij = (b2j/b2i)Qij . This is in complete analogy to the com-
putation of the independent fundamental matrices and follows the work of
(Kemeny and Snell, 1976, 64-65). The computation of the probability distri-
bution is then based on the evaluation of powers of Q̃ as done in Sec. 3.3.2.
The result is shown in Fig. 3.18. For comparison, the distribution of conver-
gence times to either absorbing state (dashed, red) is shown for r = 33. All
in all, this shows how the general convergence behavior is a composite of the
two different convergence trends obtained by considering the two absorbing
states independently.
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Figure 3.18: Probability distribution of convergence times for a system of
100 agents when started with r = 33. Convergence to Y b

0 , τ0, is considerably
faster than convergence to Y b

N , τN .

3.5 Simple Generalizations

We first mention an easy generalization of the existence of absorbing states
for the case of bounded confidence in a model with any number δ of different
opinions. In order to get non-consensual absorbing states it is necessary
and sufficient that a subset of opinions is mutually incommunicable. In
this case all the states belonging to the simplex generated by the mutually
incommunicable opinions become absorbing. It is worthwhile noticing that
absorbing states may appear in different clusters of simplexes provided that
the corresponding opinions are related by chains of communicating links. An
example of this type appears for δ = 3 if (a = b) and (a = c) but (b ↔ c)
where the absorbing states are either the simplex with only a and b or with
only a and c opinions.

Another interesting issue concerns agent models with vectorial (or equiva-
lently matrix or table) individual attribute space. Suppose that at each time
step each agent i is characterized by a list of q attributes, where the first
attribute may take n1 possible values, the second attribute n2 values and so
on up to the qth attribute with nq possible values. The corresponding ABM
can then be easily built as in Sec. 3.3.4 by taking δ = n1 × n2 × · · · × nq.
As long as one is interested in following the macrodynamics obtained by
lumping all agent configurations with an equal attribute frequency for all
the δ attributes, the reduction proposed in Sec. 3.3.5 also applies. More-
over, absorbing non-consensual states will appear in exactly the same way
as described above as a consequence of bounded confidence.

For this vectorial opinion model there is, however, an unexpected sub-
tlety when we are interested in the macrodynamics of the agents ranked by
only one of their attributes, for instance, if the agents are separated in n1 dif-
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ferent groups according to the number of agents sharing their first attribute.
Then, the partition is no longer lumpable, and therefore the evolution of
the corresponding random variables (for instance, the number of elements of
each group) is not a Markov chain. Again, in this case, new memory effects
may appear from this choice of aggregation to build the macrodynamics.
The proof can be done as in (3.41) and (3.42).

3.6 Discussion

In this chapter, we considered a class of ABMs from a Markovian perspective
and derive explicit statements about the possibility of linking a microscopic
agent model to the dynamical processes of macroscopic observables that are
useful for a precise understanding of the model dynamics. We showed that
the class of single-step ABMs may be described as random walks on regular
graphs and that the symmetries of the corresponding transition structure is
related to lumpable macro partitions. In this way the dynamics of collective
variables may be studied, and a description of macro dynamics as emer-
gent properties of micro dynamics, in particularly during transient times, is
possible.

Using Markov chain computations, we obtain a very detailed understand-
ing of the VM with homogeneous mixing. On the one hand, the computation
of the fundamental matrix of the macro chain provides us with precise knowl-
edge about the mean transient behavior, on the other, it also tells us that
some care must be taken in order to relate those mean quantities to sin-
gle realizations of the model. Regarding convergence times, full information
(probability distribution of convergence times) is provided by numerical in-
tegration over the transient states which gives a better idea of the transient
behaviors that single realizations may exhibit. The analysis is extended to
the general (multi-state) VM, the analysis of which is reducible to the binary
case in the absence of interaction constraints. On the other hand, similarity
constraints as bounded confidence or assortative mating lead to additional
absorbing states in the macro chain. This shows that opinion polarization is
a direct consequence of bounded confidence (see Banisch and Araújo, 2012
for a biological interpretation in terms of sympatric speciation).

In our context, the random map representation (RMR) of a Markov pro-
cess helps to understand the role devoted to the collection of (deterministic)
dynamical rules used in the model from one side and of the probability dis-
tribution ω governing the sequential choice of the dynamical rule used to
update the system at each time step from the other side. The importance
of this probability distribution, often neglected, is to encode the design of
the social structure of the exchange actions at the time of the analysis. Not
only, then, are features of this probability distribution concerned with the
social context the model aims to describe, but they are also crucial in pre-
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dicting the properties of the macro dynamics. If we decide to remain at a
Markovian level, then the partition, or equivalently the collective variables,
to be used to build the model should be compatible with the symmetry of
the probability distribution ω.

This is what makes homogeneous mixing (and respectively, the com-
plete graph) so special because the full permutation invariance is realized
(Aut(KN ) = SN ). On the other hand, an important mark of ABMs is
their ability to include arbitrary levels of heterogeneity and stochasticity
(or uncertainty) into the description of a system of interacting agents. In
a sense, the partition of the configuration space defining the macro level of
the description has to be refined in order to account for an increased level
of heterogeneity or a falloff in the symmetry of the probability distribution.
It is, however, clear that, in absence of any symmetry, there is no other
choice for this partition than to stay at the micro level and, in this sense, no
Markovian description of a macro level is possible in this case. This will be
spelled out in detail in the next chapter.



Chapter IV

From Network Symmetries to

Markov Projections

In the previous chapter, we have seen that an ABM defines a process of
change at the individual level – a micro process – by which in each time step
one configuration of individuals is transformed into another configuration.
For a class of models we have shown this micro process to be a Markov chain
on the space of all possible agent configurations. Moreover, we have shown
that the full aggregation – that is, the re-formulation of the model by mere
aggregation over the individual attributes of all agents – may give rise to a
new process that is again a Markov chain, however, only under the rather
restrictive assumption of homogeneous mixing. Heterogeneities in the micro
description, in general, destroy the Markov property of the macro process
obtained by such a full aggregation.

The question addressed in this chapter is how to derive Markovian coarse-
grainings (Markov projections) if the assumption of homogeneous mixing is
relaxed. In other words, how must the micro model and the projection con-
struction be so that the projected system is still a Markov chain? We develop
a tool which relates symmetries in the interaction topology to partitions of
the configuration space with respect to which the micro process is lumpable.
In effect, this leads to a refinement of the full aggregation which exploits
all the dynamical redundancies that have its source in the agent network on
which the model is implemented. Notably, the result is stated in terms of
the symmetries of the agent network which is much simpler than the micro
chain on the configuration space where the aggregation process (lump) is
achieved.

The theoretical ideas presented here have been made available under
Banisch and Lima (2012). A more detailed version containing the results for
the example studied in Sec. 4.4 is under review (Banisch and Lima, 2013).
The results have been presented at a series of conferences (Banisch et al.,
2013; Banisch, 2013, a,b).

67
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4.1 Interaction Heterogeneity and Projection Re-

finement

Let us begin this chapter with the simple example that is running through
this thesis. Consider the VM with three agents on different networks defined
by a 3× 3 adjacency matrix A with aij = 1 whenever i and j are connected.
As before, in the iteration process, an agent pair (i, j) is chosen at random out
of the set of all agent pairs with aij = 1 and the first adopts the state of the
second. Notice that an alternative way of realizing the agent update is to first
choose an agent i and then choose another agent j out of all agents connected
to i. The former is called link update and the latter node update dynamics
and we shall see that this can lead to different probability distributions ω. We
mainly consider link update in this chapter, but comment on the differences
between the two variants in Sec. 4.2.

We first consider the complete graph defined by aij = 1 whenever i 6= j
and aii = 0. Notice that in that case, the two update variants are lead to
the same ω(i, j). Namely, the probability of a pair (i, j) to be chosen is for
every pair ω = 1/6. That is, except for the exclusion of self-choice (with
ω(i, i) = 0) it leads to the case dealt with in the previous chapter. Fig.
4.1 briefly recalls the respective Markov chain formulation and projection by
illustrating (i.) the connectivity structure ω(i, j) = ω; ∀i 6= j, (ii.) the micro
chain this leads to along with the transition rates, and (iii.) the resulting
macro chain.

In order to go beyond complete homogeneity let us consider what hap-
pens to that picture of one link is removed. Therefore, let us assume that
a23 = a32 = 0. Under link update this leads to the following interac-
tion probabilities: ω(1, 2) = ω(2, 1) = ω(1, 3) = ω(3, 1) = ω = 1/4, and
ω(2, 3) = ω(3, 2) = 0. This topology, the resulting micro chain and the
probabilistic effects on the macro level are shown in Fig. 4.2.

It becomes clear that the introduction of interaction heterogeneity trans-
lates into irregularities in the probabilistic structure of the micro chain in a
way that the symmetry condition in Theorem 3.2.2, P̂ (x,y) = P̂ (σ̂(x), σ̂(y)),
is violated for the macro partition X = (X0, X1, X2, X3). In other words,
it leads to the non-lumpability of the partition X = (X0, X1, X2, X3). As
shown in Fig. 4.2 the transition probabilities at the macro level are not
uniquely defined and depend upon the respective micro configuration. Con-
sider, as an example, the transitions from X2 to X3. The probability (3.7)
of a transition form configuration (���) to (���) is P̂ (���,���) =
ω(1, 2) + ω(1, 3) = 2ω, whereas P̂ (���,���) = ω(2, 1) + ω(2, 3) = ω and
P̂ (���,���) = ω(3, 1) + ω(3, 2) = ω. While all these probabilities are
equal for the complete graph (as ω(i, j) = ω : ∀i, j) they are not all equal if
one or two connections are absent which violates the lumpability condition.

Deriving a partition such that the micro process projected onto it is a
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Figure 4.1: Probabilistic structure of the model with three agents on the
complete graph.
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Figure 4.2: Probabilistic structure of the model with three agents if the
connection between 2 and 3 is absent.
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Figure 4.3: Refinement of the partition that preserves Markovianity.
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Markov chain requires a refinement of the aggregation procedure. For the
example considered here the respective refined partition is shown in Fig. 4.3.

The main purpose of this chapter is to develop a systematic approach
to this projection refinement by exploiting all the dynamical redundancies
resulting from the symmetries of agent network. Network symmetries can
be used to identify bundles of micro configurations that can be interchanged
without changing the hypercubic micro chain. Our example may provide a
first intuition. The interaction graph in our example has a symmetry such
that the agents 2 and 3 can be permuted without affecting the connectiv-
ity structure, (i.e., Autω = (1)(23)). This symmetry imposes a symmetries
in the hypercube graph associated to the micro process such that the con-
figurations (���) and (���) with k = 2 and respectively (���) and
(���) with k = 1 can be permuted without affecting the transition struc-
ture. See also Fig. 4.4. In this simple example, therefore, the previous
macro atoms X2 (and X1) must be refined such that the sets of configu-
rations {(���), (���)} (respectively {(���), (���)}) on the one hand
and {(���)} (respectively {(���)}) on the other form different sets in a
Markovian partition.

1

2 3

1

2 3

1

2 3

Figure 4.4: The 3 different configurations (���), (���) and (���) of
length 3 with one agent in � and two in � (k = 2). The first two configura-
tions (���) and (���) are what we will call macroscopically equivalent.

4.2 Social Structure at the Micro Level

The effect of different social networks on the dynamics of ABMs plays an
increasingly important role in the research of these models. Certain aspects
of the model behavior may sometimes be very different when implemented
on different topologies. One might be surprised that in the consideration of
the micro level dynamics (Sec. 3.1, previous chapter) nothing is said about
how different agent networks incorporate into this framework. The simple
reason is that the role of networks in the models is essentially to determine
the interaction probabilities of agents and that we consider that kind of
information via the probability distribution ω.

For instance, in the VM two agents (i, j) linked in the network are chosen
at random. From the network it is possible to infer directly the respective
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probability ω(i, j). As mentioned earlier, there are two different ways of
agent choice: first, one can first choose an agent i and then choose another
agent j out of its neighborhood (node update dynamics); second, both agents
are chosen at one instance by the choice of an edge in the network (link
update dynamics). In general, the two modes of agent choice lead to a
different ω(i, j). Node update leads to

ω(i, j) =
1

N

1

ki
, (4.1)

where ki is the degree of agent i. For the second version with link choice, on
a graph with adjacency matrix A the probability ω(i, j) is

ω(i, j) =
aij
|E|

, (4.2)

where aij is the element in A corresponding to the edge (i, j) and |E| is the
total number of edges in the graph.

1
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2 3

1/3
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1/3
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original networkω with node update ω with link update

Figure 4.5: Node versus link update in the example considered above.

Fig. 4.5 illustrates the differences in the probability distribution ω for
node and link update using the small example considered in the previous
section. Notice that in any case

∑

ω(i, j) = 1 for it is a distribution over
agent choices. Notice moreover, that the symmetry (1)(23) is preserves for
the two update schemes.

The notion of ω is quite general and allows also to incorporate other types
of social structure. There may be cases in which agents are heterogeneous
with respect to certain static characteristics: for instance, if they belong to
different ethnical groups or working classes. This might effect not only there
likeliness to meet in the model, but also the choice probabilities for different
behavioral options, that is, the behavior of agents within their group may be
different from the agent behavior across different groups. All those effect are
encoded into the probability distribution ω along with the social network of
agents.
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4.3 Markovian Aggregation

For those reasons, it is convenient to formulate the theoretical ideas presented
in this section in terms of the probability distribution ω. We first define the
notion of macroscopic equivalence, then we consider the VM and finally we
discuss the generalization to the class of models with single-step dynamics
(see Sec. 3.1.3).

4.3.1 Macroscopic Equivalence

Let (Σ, P̂ ) be a micro chain corresponding to an ABM. Let M be a parti-
tion of the configuration space Σ with respect to which the micro process is
lumpable. For further convenience we define the following notion of macro-
scopic equivalence:

Definition 4.3.1 Two configurations x and x′ are macroscopically equiva-
lent if the lumpability condition (Kemeny and Snell, 1976, Thm. 6.3.2)

p̂xY =
∑

y∈Y

P̂ (x,y) =
∑

y∈Y

P̂ (x′,y) = p̂x′Y (4.3)

is satisfied for all Y ∈ M. Then x and x′ belong to the same atom X of the
partition M.

The notion of macroscopic equivalence is motivated by the fact that two
macroscopically equivalent configurations contribute in exactly the same way
to the dynamical behavior of the macro process on M. It is important to
notice that macroscopic equivalence is inherently linked to a partition M,
that is, with a macro description of the process, because two configurations
that are equivalent with respect to one partition might not be with respect
to another.

4.3.2 The Voter Model

Let Autω(N) be the subgroup of the permutations σ acting on the set N of
agents such that ω(σi, σj) = ω(i, j) for all i, j ∈ N. To each σ ∈ Autω(N)
we associate a σ̂ which is a bijection on the configuration space Σ. If x ∈ Σ

with x = (x1, . . . , xi, . . . , xN ) then

σ̂(x) = (xσ1, . . . , xσi, . . . , xσN ). (4.4)

We now define a partition Mω of Σ using Autω(N). Two configurations
x,x′ ∈ Σ belong to the same atom of the partition Mω iff there is a σ ∈
Autω(N) such that x′ = σ̂(x). Clearly this is an equivalence relation and
therefore it defines a partition on Σ.
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Proposition 4.3.1 The partition Mω is lumpable for the agent model on
Σ with agent choice based on ω and therefore the corresponding projected
process is a Markov chain.

Proof. Consider the distribution of interaction probabilities ω and its per-
mutation group of symmetries Autω(N) = {σ : ω(σi, σj) = ω(i, j), ∀i, j ∈
N}. Suppose we know (at least) one configuration (the generator) xk ∈ Σ

for each Xk ⊂ Σ and construct the partition Mω = (X1, . . . , Xk, . . .) by

Xk = Autω(N) ◦ xk =
⋃

∀σ̂

σ̂(xk). (4.5)

A necessary and sufficient condition for lumpability is that the transition
probability from a configuration x ∈ Xk to any atom Xs ∈ Mω be the same
for all x ∈ Xk (Kemeny and Snell, 1976, Thm. 6.3.2). That is, we have
to show macroscopic equivalence, Eq. (4.3.1), for the pairs of configurations
x and σ̂(x). By Theorem 3.2.2 we know that this is satisfied whenever
P̂ (x,y) = P̂ (σ̂(x), σ̂(y)) for any σ ∈ Autω(N).

In the VM, for the case that x
i
∼ y we know that xj = yj for all j except i

and that the transition requires the choice of an edge (i, . ). Denoting xi = s
and yi = s̄ we rewrite Eq. (3.7) as

P̂ (x,y) =
∑

j:(xj=s̄)

ω(i, j). (4.6)

If x
i
∼ y it is easy to show that σ̂(x)

σi
∼ σ̂(y) and we know that s = σ̂(xσi) 6=

σ̂(yσi) = s̄. The transition therefore requires the choice of an edge (σi, . ).
We obtain

P̂ (σ̂(x), σ̂(y)) =
∑

k:(σ(xk)=s̄)

ω(σi, k). (4.7)

Given an arbitrary configuration x, for any j with xj = s̄ we have a cor-
responding k = σj with σ̂(xk) = s̄ because xj = s̄ ⇔ σ̂(xσj) = s̄. That
is, the summations in Eq. (4.6) and (4.7) are equal for any σ for which
ω(i, j) = ω(σi, σj). This is true by the definition of Autω(N) for all permu-
tations σ ∈ Autω(N).

4.3.3 Single-Step Dynamics

Proposition 4.3.1 can be applied without modification to any interacting
particle system in which the local transition probabilities are a function
solely of the local neighborhood configuration, as defined by an unchanging
graph.1 For the class of models with single-step dynamics the proof can be
done following the same argument.

1I am grateful to an anonymous reviewer for this formulation.
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As discussed in Sec. 3.1.3, the update from one time step to the next
is defined by a function u : Sr × Λ → S that depends on the attributes
of an arbitrary number of agents (r) and on an additional variable λ ∈ Λ
accounting for a possible stochastic part in the update mechanism. The
probability distribution ω is therefore over r + 1-tuples (ω(i, j, . . . , k, λ)).
For the construction of a partition Mω we must now consider the group
of σ ∈ Autω with ω(i, j, . . . , k, λ) = ω(σi, σj, . . . , σk, σλ). Then, as before,
classes of macroscopically equivalent configurations (and therewith Mω) are
defined by x′ = σ̂(x) with σ̂(x) as in (4.4).

4.4 The Two-Community Model

4.4.1 Model

Consider a population composed of two sub-population of size L and M
such that L + M = N and assume that individuals within the same sub-
population are connected by strong ties whereas only weak ties connect in-
dividuals that belong to different communities. We could think of that in
terms of a spatial topology with the paradigmatic example of two villages
with intensive interaction among people of the same village and some con-
tact across the villages. This is similar to the most common interpretation in
population genetics where this is called the island model (Wright, 1943). In
another reading the model could by related to status homophily (Lazarsfeld
and Merton, 1954) accounting for a situation where agents belonging to the
same class (social class, race, religious community) interact more intensively
than people belonging to different classes.
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Figure 4.6: A two-component graph with two homogeneous sub-populations.

Let us adopt the perspective of a weighted graph and say that an edge
with weight aij = 1 connects agents of the same community whereas edges
across the two communities have a weight aij = r. Therefore, r is the
ratio between strong and weak ties. For the VM run on such a network,
notice again that there may be subtle differences in the resulting interaction
probabilities ω(i, j) depending on how the agent choice is performed. First,
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in the case of link update dynamics a link (i, j) is chosen out of the set of
all links and so the ω(i, j) are proportional to the edge weight. Namely, let
γ denote the interaction probability between agents of the same community
and α the respective probability across communities, then

γ =
1

2LM + ((L− 1)L+ (M − 1)M)r
(4.8)

α =
r

2LM + ((L− 1)L+ (M − 1)M)r
, (4.9)

where the divisor is the sum over all edge weights and establishes that
∑

(i,j) ω(i, j) = 1. A second mode of agent choice is to first choose an agent
i and then choose a second agent j out of its neighbor set. In the case that
M 6= L, the interaction probabilities become different from (4.9). In the
following, however, we will concentrate on the example with M = L = 50,
and in this case Eq. (4.9) gives the right interaction probabilities for node
and link update dynamics.

4.4.2 Markov Projection

Notice, moreover, that independent of M and L both update modes give rise
to the same symmetry group Autω(N) = (1 . . .M)(M+1 . . . N). Autω(N) is
composed of the symmetric group SL and SM acting on the two subgraphs
and it means that ω is invariant under permutations of agents within the
same community.2 Let us denote by m and l the number of �-agents in
M and L. It is then clear that all configurations x and y with [m(x) =
m(y)] ∩ [l(x) = l(y)] are macroscopically equivalent. As 0 ≤ m ≤ M and
0 ≤ l ≤ L the aggregation defines a Markov chain with (M + 1)(L + 1)
states which is still very small compared to the number of 2(M+L) micro
configurations. Notice that this generalizes naturally to a larger number
of subgraphs. Notice also that the multipartite graphs studied in Sood and
Redner (2005) fall into this category and that the authors used the respective
sub-densities in their mean-field description.

The structure of the Markov chain associated to the VM on the two-
community graph is shown in Fig. 4.7. For the system of size M and L the
transition probabilities for the transitions leaving an atom X̃m,l are given by

P (X̃m,l, X̃m+1,l) = γ(m(M −m)) + α(M −m)l

P (X̃m,l, X̃m−1,l) = γ(m(M −m)) + αm(L− l)

P (X̃m,l, X̃m,l+1) = γ(L− l)l + α(L− l)m

P (X̃m,l, X̃m,l−1) = γ(L− l)l + α(M −m)l

2Notice that the case M = L is special because it leads to additional symmetries as
the two communities are interchangeable. This is not generally the case and therefore
we develop the more general case of M 6= L here, even if the computations are mostly
performed for the example M = L = 50.
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Figure 4.7: The structure of the chain for L = M = 10. The consensus states
X̃0,0, X̃M,L as well as the states of inter-community polarization X̃0,L, X̃M,0

are highlighted. The quasi-stationary distribution is mapped into node colors
from blue (low values) to red (high values).

The four states located at the corners are highlighted in Fig. 4.7. The atom
on the lower left (l = 0,m = 0) and the upper right corner (l = L,m = M)
correspond to the two states of complete consensus where all agent in the two
communities have adopted the same state. These are the absorbing states
of the process. The other two (l = L,m = 0 and l = 0,m = M) correspond
to the situation that agents within the same community are aligned, but
there is disagreement between the different communities. This is a form
of »local alignment and global polarization«, and especially if the coupling
across the communities becomes weak, there is a relatively high transient
(quasi-stationary) probability for those situations. We will refer to them as
inter-community polarization.

In what follows, we study a system with M = L = 50. This gives a
Markov chain of size (M + 1)(L+ 1) = 2601. Notice that the computations
(matrix inversion and powers) needed in the analysis of that chain bear
already some computational cost and that a further increase in system size
will increase these costs greatly.

4.4.3 Convergence Times

We start the analysis of the model behavior on the two-community topology
by computing the mean number of steps required to reach a final consensus



Chapter IV 77

configuration X̃0,0 or X̃M,L. The mean convergence times can be computed
on the basis of the fundamental matrix F which contains the mean number of
visits before absorption for all node pairs (see Sec. 3.3.2). Fig. 4.8 compares
the mean convergence times for all initial states X̃m,l and a coupling ratio of
r = 1/100 (l.h.s.) to the homogeneous mixing situation with r = 1 (r.h.s.).
In comparison to the homogeneous mixing case (Eq. 3.25) the mean number
of steps before absorption increases considerably for all initial configurations.
For m+ l = k = 50 the complete graph will order in average after 6880 steps
whereas for a weak coupling with r = 1/100 this number increases to 9437
for the completely disordered configurations with m = 25, l = 25. Notably,
it increases further to 11921 for the initial configurations with consensus in
the communities but disagreement between the two islands (polarization).
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Figure 4.8: Mean convergence times for M = L = 50 for all initial config-
urations Xm,l. The disordered initial configuration XM/2,L/2 and the two

ordered configurations X̃M,0 and X̃0,L are highlighted by +. On the l.h.s.
r = α/γ = 1/100, on the r.h.s. r = 1, α = γ.

Notice, that in the homogeneous situation where α = γ the convergence
times are only a function of the total density k = m + l. For every two
atoms X̃m1,l1 , X̃m2,l2 for which m1 + l1 = m2 + l2 we obtain the same mean
convergence time. This is not surprising, of course, because for α = γ
the Markov chain on X̃ is lumpable with respect to the full aggregation
X = (X0, . . . , Xk, . . . , XN ) and so the behavior of every X̃m,l within the
same Xk is identical, from the macro perspective. This changes if the VM
is run on the two-community topology and the coupling between the com-
munities is smaller than the coupling among agents in the same island (i.e.,
α < γ). Due to the topological effects and a reduced communication across
communities, the emergence of a meta-stable configuration of local alignment
within communities but global polarization across communities is likely. In
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general, the process requires more time to converge if initialized in a situation
where one community is ordered from the beginning and the opinions diverg-
ing from that consensus concentrate in the other community. Notably, an
increase in convergence times is observed even for the initial configurations
which are completely disordered (e.g., X̃25,25), because a considerable num-
ber of realizations is first driven to a state of inter-community polarization
before it eventually evolves further to a consensus profile (see below).

We compare these two situations (namely initial disorder X̃25,25 and ini-
tial order X̃50,0) by considering the distribution of convergence times for two
configurations with m+ l = N/2 = 50. The respective cumulative distribu-
tions for r = 1/100 is shown on the l.h.s. of Fig. 4.9 and on the r.h.s. the
respective probability of absorbency at time t is shown.
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Figure 4.9: Distribution of convergence times τ for M = L = 50, r =
1/100 for the disordered initial configuration XM/2,L/2 and the two ordered

configurations X̃M,0 and X̃0,L with inter-community polarization.

In the case of initial disorder (red curve), where the states � and �

are distributed equally over the two islands, there is a certain number of
realizations that approaches one absorbing consensus state without entering
the states of partial order (X̃M,0 and X̃0,L). The probability of absorbency
reaches a peak after a relatively short time of around t ≈ 3000 steps whereas
the highest absorbency probability lies around t ≈ 5000 for the ordered initial
condition. At around t ≈ 5000 already 40 % of realizations have converged
for the disordered case, but only 20 % in case of initial order. This shows
that there is a strong influence of the interaction topology leading to a high
heterogeneity between different initial configurations with the same global
magnetization k = m+l. The ordered configurations X̃M,0 and X̃0,L function
as dynamical traps and it may take a long time to escape from them especially
when r becomes small. On the other hand, however, Markov chain theory
tells us that the probability for very long waiting times decays exponentially.

In Fig. 4.10, a more detailed picture of how convergence times increases
as r = α/γ decreases is provided. For the two initial situations considered
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Figure 4.10: Mean convergence times τ as a function of the relative inter-
group interaction strength r = α/γ for the ordered initial configuration X̃M,0

and the disordered initial configuration X̃M/2,L/2.

previously the mean convergence times are shown as a function of r = α/γ.
Notice again that these extreme configuration are highlighted by + in Fig.
4.8. It is clear that the mean times to absorbency diverge as r approaches
zero, lim

r→0
τ = ∞. This is due to the fact that the interaction topology

becomes disconnected in that extreme case, and therefore, the non-consensus
configurations X̃M,0 and X̃0,L become absorbing. In other words, to go from
(say) X̃0,L to (say) X̃0,0 requires an infinite number of steps. In fact, we then
deal with a completely new chain that has four absorbing states, or more
precisely, with two chains one for each island. However, as long as r > 0 the
possibility to escape from X̃0,L remains, even if it takes very long.

4.4.4 Quasi-Stationary Distribution

Finally, to characterize the long-term transient behavior, let us look at the
quasi-stationary distribution of the two-community VM. This distribution
contains the probabilities to be in the different transient states for realiza-
tions that are not absorbed after a certain time. It corresponds the nor-
malized left eigenvector associated to the largest eigenvalue of the transient
sub-matrix Q of P (just as the stationary distribution of a regular chain is
the normalized left eigenvector of the transition matrix P ). See, for instance,
Darroch and Seneta (1965) (pages 91 – 93 in particular) for a description of
the quasi-stationary distribution.

Fig. 4.11 shows the quasi-stationary distribution for the two-community
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Figure 4.11: Quasi-stationary distribution for the VM on two islands with
r = 1/100 (l.h.s.) and r = 1 (r.h.s.).

VM with r = 1/100 and r = 1. Notice again that the later corresponds to the
homogeneous mixing case. If r is small there is a high (conditional) probabil-
ity that the process is trapped in one of the states of inter-community polar-
ization. Also the states X̃m,0 and X̃0,l with one uniform sub-population have
a relatively high probability indicating that convergence to complete consen-
sus out of local order does not happen via a transition through complete
disorder. This is in stark contrast to the homogeneous mixing situation,
which is shown on the r.h.s. of Fig. 4.11. In this case, states of inter-
community polarization (m = M, l = 0 and m = 0, l = L) and states close
to that become in effect very rare random events.3

4.5 On the Role of Peer-to-Peer Communication in

an Opinion Model with Leader

This section presents a Markov chain treatment of the VM on a topology that
models leadership. We show how the probability that the leader imposes its
opinion on a follower population increases with the influence asymmetry be-
tween a leader and the followers and is independent of peer-to-peer processes
among followers. A greater influence does not only increase the respective
exit probability, it also accelerates the convergence process. However, this
acceleration is undermined by a stronger peer-to-peer communication among
followers.

4.5.1 Model

Here we study the binary VM on an asymmetric topology. Namely, we
introduce an opinion leader that has an increased influence on the rest of the

3The reason for this is clear. The number of micro configurations x ∈ Σ mapped into
the state X̃m,l is

(

M

m

)(

L

l

)

which is a huge number for m ≈ M/2, l ≈ L/2 but only 1 for
m = M, l = 0 and m = 0, l = L. Because under homogeneous mixing there is no favoring
of particular agent configurations with the same k = m + l the stationary probability at
macro scale is proportional to the cardinality of the set X̃m,l.
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agent population. Therefore, consider a homogeneous population of N agents
indexed by i = 1, . . . , N . As before, each agent can adopt two opinions, �
or �. Consider further that there is another agent (the leader indexed by
i = 0) with a stronger influence on the population such that the probability
that its attribute spreads in the population is increased. In principle, we also
want to allow that the population influences the leader, but the probability
of such an event is rather small.

The VM operates by choosing an agent (i) which adopts the opinion of
one of its neighbors (j). As before, ω(i, j) is the probability that the pair
(i, j) is chosen. Under link update, and with the convention that the first
agent (i) imitates the second (j), leadership can be included by introducing
an asymmetry in the interaction probabilities such that it is more probable
to choose the leader in second place. Then, it becomes more probable that
its state is adopted by another agent. We index the leader with a 0 and
assign the following interaction probabilities:

ω(0, j) = β,

ω(i, 0) = α,

ω(i, j) = γ, (4.10)

i, j = 1, . . . , N . An increased probability that the leader opinion is adopted
by a follower is modeled by α ≫ β. The third probability, γ, accounts
for the probability of a peer-to-peer interaction which does not involve the
leader. Notice that with Eqs. (4.10) the model is formulated directly in
terms of interaction probabilities ω by which we avoid a possible confusion
between link and node update dynamics (Sec. 4.2). The resulting interaction
topology is shown in Fig. 4.12.
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Figure 4.12: Agent interaction topology in which one agent (indexed by 0)
has an increased influence on the rest of the population.
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4.5.2 Markov Projection

It is clear that ω is still highly symmetric, because ω(i, j) = γ (4.10) for all
agents in the follower population. More precisely, ω is invariant under all
permutations SN of the N agents in the follower population and therefore
the topology shown in Fig. 4.12 is topologically equivalent to the star graph
of size N + 1 (in fact, with γ = 0 it is a star). Notice, moreover, that the
leader topology is actually a special case of the two-community structure
obtained by setting M = 1 and L = N .

Namely, the topology shown in Fig. 4.12 gives rise to the symmetry
group Autω = (0)(1 . . . N). In this case, a lumpable partition is obtained by
the independent observation of the state of the leader x0 and the number
of follower agents in the different states (given by f = N�(x/x0)). This
partition is given by X̃ = {X̃l,f : l = 0, 1; f = 0, . . . , N} with

X̃l,f = {x : N�(x0) = l ∩N�(x/x0) = f}. (4.11)

In words, the subsets X̃0,f contain all configurations x ∈ Σ in which the
leader is in state � and f follower agents are in state �. Respectively, the
subsets X̃1,f contain the configurations with x0 = � and f follower agents
in state �. It is thus clear that for the leader-follower system with total size
of N + 1 the macro chain has 2(N + 1) states. The associated chain along
with the corresponding transition probabilities is shown in Fig. 4.13.
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Figure 4.13: The macro chain associated with the binary VM on the leader-
follower topology. The transition probabilities are also shown.

In principle, all the information about the convergence probabilities and
the transient behavior can be obtained by computing the fundamental matrix
of that system (Kemeny and Snell, 1976, Chapter 3). For the leader-follower
system the transition matrix P is a 2(N +1)× 2(N +1) dimensional matrix
and the matrices Q and F = (1 − Q)−1 are of size 2N × 2N . Hence, the
computation of the fundamental matrix requires the inversion of a matrix
of that size. At least numerically, this is doable on an up-to-date computer
platform for systems of several thousand agents.
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4.5.3 Simple Observations

However, let us begin the analysis with two simple observations. First of
all, it is clear from Fig. 4.13 and the transition probabilities that the macro
chain has two absorbing states corresponding to the uniformity configura-
tions X̃1,N ≡ (�� . . .�) and X̃0,0 ≡ (�� . . .�).

Secondly, notice that in case β = 0 – the case that followers have no
influence on the leader at all – there is a zero probability that the leader
changes its state. This means that the macro chain is disconnected and the
model performs a random walk on the upper or the lower chain depending
on the initial state of the leader (see Fig. 4.13). It is clear, then, that the
process converges to the configuration in which all follower agents adopted
the state of the leader.

4.5.4 Influence of the Leader

How does an increasing asymmetry (α > β) effect the model behavior? To
address this question we compute the probability that the system converges
to the initial state of the leader. Consider the opinion leader is in state � at
t = 0. The probability that all agents end up in � as t → ∞ is

Prt→∞[X̃1,f → X̃1,N ] =
α+ fβ

α+Nβ
. (4.12)

As the ratio α
β increases, the chances that the system converges to the leader’s

opinion increase very fast in the beginning, and approach 1 in the limit
α
β → ∞. Notice that even in the case that all followers are against the
opinion of the leader, an influence ratio of α

β > N is sufficient to obtain a

chance of Prt→∞[X̃1,0 → X̃1,N ] > 1/2 that the leader imposes its opinion
against the consensus opinion in the follower population. More precisely, for
α
β = N , Eq. (4.12) becomes Prt→∞[X̃1,0 → X̃1,N ] = 1

2 + f
N . If the leader

has such a strong influence, convergence to its state hence becomes the most
probable option.

Fig. 4.14 shows this probability as a function of the ratio α
β for different

initial proportions f of follower agents in the same state as the leader. We
set N = 100 in Eq. (4.12) in which case f = N/2 = 50 corresponds to the
case that the followers are divided into two groups of equal size.

It is noteworthy, that the exit probabilities do not depend on the strength
of the peer-to-peer interaction γ. Therefore the influence of the opinion
leader is as if there was no communication at all among the followers. At a
first sight this seems a bit counter-intuitive, but considering that γ does not
introduce any bias in favor of one or the other consensus state it is not too
surprising (see Fig. 4.13).

Finally, we see from Eq. (4.12) that the case α = β restores the results
obtained in the VM with homogeneous mixing (and in general for the VM



84 From Network Symmetries to Markov Projections

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

Α�Β

Pr
IX

1,
f
®

X
1,

N
M

f = 75

f = 0

f = 25

f = N�2

Figure 4.14: The probability that the leader imposes its opinion onto the
entire population as a function of α

β for different initial proportions f of
follower agents in the leader’s state.

on undirected networks). For the configurations with the leader in � we
obtain for Prt→∞[X̃1,0 → X̃1,N ] = f+1

N+1 where f +1 is just the total number
of individuals in state � and N + 1 the total number of agents.

4.5.5 Convergence Times

We now look at the mean convergence times as a function of the network
parameters α, β and γ for a finite system of N = 100 followers and one leader.
Because ω is a distribution over all agent pairs, we have N [α+β+(N−1)γ] =
1. This means that there are effectively two free parameters in that analysis
and it is convenient to study the network influence in term of the ratios α/β
and γ/β. To obtain the mean convergence time, the fundamental matrix
is computed for different ratios α/β = 1, 2, . . . 50 and γ/β = 1, 2, . . . 50
from which the respective mean convergence times can be obtained directly
(Kemeny and Snell, 1976, 49-51). Notice that with any relative increase of
α/β and γ/β the probability β decreases and this means that a leader change
becomes less likely. Increasing α/β corresponds to an increasing asymmetry
between leader and followers, an increase in γ/β to an intensification of the
(symmetric) mutual influence in the follower population.

The result of this analysis is shown in form of a contour plot in Fig. 4.15.
We notice two basic opposing trends in that plot. First, a stronger influence
of the leader (increasing α/β) tremendously speeds up the convergence to
one of the absorbing consensus states. The leader strongly drives the entire
system towards its initial state and with a relatively high probability con-
sensus is reached without a state change of the leader. On the other hand,
however, an increasing mutual influence among the followers (increasing γ/β)
may rule out this effect and slow down the process so that convergence to
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Figure 4.15: Mean convergence times for α/β = 1 . . . 50 and γ/β = 1 . . . 50.
The thick blue line indicates the convergence time for the VM with homo-
geneous mixing.

a final consensus state takes more time. Noteworthy, in a large area of the
parameter space it takes even more time than the VM with homogeneous
mixing of the same size (obtained with α = β = γ). This is illustrated by
the thicker blue contour line. For all parameter configurations above this
line, mean convergence times become larger compared to the homogeneous
mixing case.

Let us consider two examples. First, the case α/β = 100 and γ/β = 1 in
a system of N = 100 followers with an initial number of N/2 = 50 followers
and the leader in �. With this parameter constellation, the mean number
of steps until convergence is (only) 887 steps. It is easy to compute that
in this relatively short period, approximately 60% of the realizations have
been absorbed, 50% in X̃1,N and 10% in X̃0,0 (the latter involving at least
one change of the leader). Virtually all remaining 40% of realizations are in
fact very close to absorbency: in ≈ 33.5% of the cases more than 90% of
followers are in the state of the leader.

While a stronger mutual influence among the followers does not affect
the overall exit probabilities (see above), it may rule out the acceleration
of convergence to the state a strong leader. Consider, as another extreme
example, the case α/β = 100 and γ/β = 100 in a system of N = 100
followers with an initial number of N/2 = 50 followers and the leader in �.
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This leads to an average convergence time of 9278 steps and to a long-term
transient behavior in which all follower constellations are equally likely (see
below, Fig. 4.16).

4.5.6 Transient Behavior

In order to obtain a complete picture of the transient behavior of the model,
we first compute the quasi-stationary distribution for the two examples. The
respective probability to observe f followers in state � in the long run is
shown in Fig. 4.16. The blue curve represents the case of a strong leader
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Figure 4.16: The probability to observe f followers in the long run for the
two examples computed using the quasi-stationary distribution.

(α/β = 100 and γ/β = 1). Eq. (4.10) tells us that in this case, an agent pair
(i, 0) (follower, leader) will be chosen in half of the cases (as Nα = 1/2),
the probability for the choice of two follower agents is also close to one
half, namely N(N − 1)γ = 99/200. Therefore, a constellation (0, j) (leader,
follower) is chosen in average only once in 200 time steps. Notice, moreover,
that a state change really takes place only if x0 6= xi and that therefore
the change of the leader becomes even more unlikely because the leader has
already imposed its opinion on most of the followers. Therefore, even if the
parameter constellation allows that followers change the state of the leader
(β > 0), a persistent situation in which the follower population opposes
the leader or at least remains close to the fifty-fifty configuration cannot be
observed. Once the leader changes its state, it quite immediately drives the
population of followers to the opposite extreme corresponding to its opinion.

The most likely behavior of the model with strong leader is also high-
lighted by the mean hitting times shown in Fig. 4.17. It shows the expected
number of steps a process starting in X̃1,50 is in the different atoms X̃1,f

(white circles for x0 = �) and X̃0,f (dark circles for x0 = �). Notice that
the initial state X̃1,50 corresponds to the light circle at f = 50. In order to
approach the more probable absorbing state X̃1,N the process has to transit
through all the states to the right with f > 50, and consequently the mean
hitting times of these states are high compared to the rest. If, on that way, a
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Figure 4.17: Mean number of steps a process starting in X̃1,50 is in the
different atoms X̃1,f (light) and X̃0,f (dark) for α/β = 100 and γ/β = 1.

state change of the leader takes place, the process goes to the other extreme
passing through the transient states with intermediate f rather rapidly. Fi-
nally, the drop off in the hitting time to the left of the initial state gives an
idea of how strong the leader influence is in this case. There is virtually a
zero probability that social influence processes among the followers drive the
system far from the leader state and, in fact, at least in a small system of
100 followers a second state change of the leader is quite rare.

In the second example with α/β = 100 and γ/β = 100 the model behaves
in a different way. First of all, the quasi-stationary distribution shown in Fig.
4.16 (red curve) tells us that, in the long run, all follower constellations are
equally likely. This decoupling from the leader is surprising if we recall that
the exit probabilities are strongly biased in favor of the initial state of the
leader (see Eq. (4.12) and Fig. 4.12) and are not affected by the strong
peer-to-peer interaction.
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Figure 4.18: Mean number of steps a process starting in X̃1,50 is in the
different atoms X̃1,f (light) and X̃0,f (dark) for α/β = 100 and γ/β = 100.

The mean hitting times for that example are shown in Fig. 4.18. It
becomes clear that the behavior strongly resembles the behavior of the VM
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with homogeneous mixing (see Fig. 3.8, previous chapter). But despite these
similarities in mixing behavior the exit probabilities remain strongly biased
for α/β = 100. The main reason for the difference in the transient behav-
ior is that the effective influence rate of the leader is reduced tremendously
as γ approaches α. By Eq. (4.10) we see that the probability of choos-
ing an agent pair (i, 0) (follower, leader) becomes in fact very small now (as
Nα = 100/10001 ≈ 1%), the probability for the choice of two follower agents
instead effectively increases to N(N − 1)γ = 9900/10001 ≈ 98.99%. Con-
sequently, a constellation (0, j) (leader, follower) in which the leader could
change its state is chosen in average only once in 10000 time steps.

4.5.7 Alternative Interpretation

In fact, the second example with α/β = 100 and γ/β = 100 (and conse-
quently α = γ) calls for an interpretation not in terms of leader and fol-
lowers, but suggests to understand the »leader« as a member of the group
that is just not so amenable to influence, compared to the others. Namely,
ω(i, 0) = α = γ = ω(i, j) means that followers give the same importance to
the leader as to any other follower agent. On the other hand, β becomes very
small so that the chances that followers change the leader are reduced. Of
course, such a situation may appear only in a small system, but not at the
scale of populations. It may happen at the group level of (say) 20 individ-
uals (of course, only in an approximate sense). In this context, the analysis
shows that a single stubborn individual can strongly influence the outcome
of a consensus process (in small groups).

4.6 The Ring

Prop. 4.3.1 generalizes to networks with arbitrary automorphisms which we
illustrate at the example of the ring graph. When the model on the ring
with nearest neighbor interactions is defined by ω(i, i + 1) = 1

N : i mod N ,
it possesses an invariance with respect to translations. That is, the auto-
morphism group Autω(N) consists of all cyclic shifts of agents generated by
σ : (1, 2, . . . , N) → (N, 1, 2, . . . , N − 1). Notice that translational symme-
tries of this kind also play an important role in the determination of the
relevant dimensions of spin rings Bärwinkel et al. (2000) and that there are
interesting parallels in between the two problems.

Consider a ring of five agents (N = 5) with 25 = 32 micro states. For x =
(�����) it is clear that σk(x) = x for all k. That is, x = (�����) with
k = 0 constitutes a class of its own. For k = 1, we may use x1 = (�����)
as a generator (4.5) for its class. As all 5 configurations with k = 1 can
be obtained shifting x1, all of them are in the same equivalence class. The
10 configurations with k = 2 cannot be lumped into the same macro state.
There are two classes differentiated by the distance of zero or one in between
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Figure 4.19: Two configurations with equal k = 2 which are not macroscop-
ically equivalent for the ring with N = 5.

the two black agents (see Fig. 4.19). Using the two configurations shown
in Fig. 4.19 as generators yields two equivalence classes each containing five
micro states. The cases k = 3, 4, 5 follow by symmetry so that all in all the
dimension X̃ of macro chain is reduced to 8.

In the general case of N agents we can in principle proceed in the same
way. However, the number of macro states will increase considerably with
the system size. We finish this section with a quantification of this number
for the ring for which we can use a well-known enumeration theorem due
to Pólya (see Harary and Palmer (1973), 35-45, Eqs.(2.2.10) and (2.4.15) in
particular). According to this, the number of macro states is

|X̃| =
1

N

∑

k|N

ϕ(k)2
N
k (4.13)

where ϕ(k) is the Euler ϕ-function and the sum is over the divisors k|N of
N . As an approximation we have |X̃| ≈ 2N/N . Hence, an explicit solution
of the macro chain will be possible only for very small systems.

4.7 Discussion

We have seen in the previous chapter that the full aggregation illustrated in
Figs. 3.3 and 4.1 is lumpable only if the interaction probabilities are uniform.
This corresponds to the VM implemented on the complete graph in which
ω(i, j) = 1/N(N−1) (or 1/N2 if self-choice is allowed). It is, of course, well-
known that the macro model obtained in terms of h(x) = k fully describes
the evolution of the micro model on the complete graph, but not on other
topologies, see (Slanina and Lavicka, 2003, 3) and (Castellano et al., 2009,
601). Nevertheless, Proposition 4.3.1 sheds light on the (probabilistic) reason
for this. Namely, the complete graph and respectively homogeneous mixing
is the only topology for which the automorphism group is the group SN of all
permutations of N agents. In this case, for any two configurations x,x′ with
an equivalent aggregate k there is a σ ∈ SN such that x = σ(x′). Hence, an
equivalent aggregate value k implies macroscopic equivalence. The fact that
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this is only true for complete graph and homogeneous mixing underlines how
restrictive these conditions are.

The more complex the internal structure of the agents and the more
heterogeneous their interaction behavior, the lower our chances to derive a
loss-less coarse-graining that leads to a tractable Markov chain. It is clear
that in heterogeneous networks with a small number of automorphisms the
coarse-graining is limited because only a few micro states are macroscopically
equivalent and can be lumped. As this method is based on exact graph
automorphisms it is more suited for stylized situations as the two-community
and the leadership model discussed in Secs. 4.4 and 4.5.

On the other hand, the method informs us in this way about the com-
plexity of a system introduced by non-trivial interaction relations. Even in a
model as simple as the VM, the behavior of whole system is not completely
described by summation over its elements (full aggregation in terms of k),
because non-trivial dynamical and spatial effects may emerge at the macro
level. In this sense, our work is related to key concepts in the area of compu-
tational emergence (Bedau, 2003; Huneman and Humphreys, 2008) dealing
with criteria and proper definitions of emergence. Thereafter »an emer-
gent phenomenon is one that arises from a computationally incompressible
process« (Huneman and Humphreys, 2008, 425/26). Markov projections as
discussed here in the context of the VM provide explicit knowledge about the
(in)compressibility of computational models and may therefore help to op-
erationalize these rather abstract definitions. This issue is further discussed
in Chapter 6.

Let us finally note that in general there may be many partitions M of
the state space that are lumpable and here no statement is made here about
optimality of the partition Mω generated by the application of Prop. 4.3.1.
On the other hand, a simple answer is provided by a closer inspection of
the VM with homogeneous mixing telling us that Mω is not optimal in
that case. Namely, we have for any k, P (Xk, Xk±1) = P (X(N−k), X(N−k)∓1)
which means that the pairs {Xk, X(N−k)} can be lumped into the same
state. The reason for this is that the VM update rule brings about an
additional symmetry that is not accounted for in Autω and therefore not in
Mω. More generally, the micro structure of the VM is always symmetric
with respect to the simultaneous flip of all agent states xi → x̄i, ∀i and
therefore, independent of the interaction topology, P̂ (x,y) = P̂ (x̄, ȳ).



Chapter V

Network Effects in the

Contrarian Voter Model

The objective of this chapter is two-fold. On the one hand, it presents an
application of the theory to the contrarian voter model (CVM) including
a Markov chain solution for homogeneous mixing and the two-community
model. On the other hand, this chapter presents a first step to study how
microscopic heterogeneity may lead to macroscopic complexity when the
aggregation procedure defines a non-Markovian macro process.

Sec. 5.1 introduces the CVM and derives the corresponding microscopic
Markov chain. Sec. 5.2 deals with the model on the complete and the two-
community graph with a particular focus on the stationary dynamics of the
model. The model dynamics are studies in terms of the contrarian rate p
and the coupling r between the two-communities. After the discussion of
the two stylized topologies, Sec. 5.3 shows the effect of various paradigmatic
networks on the macroscopic stationary behavior. In Sec. 5.4 we return to
the two-community CVM and find with it an analytical scenario to study
the discrepancy between a mean-field model (homogeneous mixing) and the
model on a more complex (though still very simple) topology. It shows that
memory effects are introduced at the macro level when we aggregate over
agent attributes without sensitivity to the microscopic details.

Some parts of this chapter have been presented at the ECCS 2013 satellite
on cultural and opinion dynamics (Banisch, 2013) and will be submitted to
an associated special issue in Advances in Complex Systems.

5.1 The Contrarian Voter Model

In order to address questions related to the macro effects of heterogeneous
interaction probabilities we will concentrate on an extension of the VM called
contrarian voter model (CVM) or sometimes anti-voter model. Contrarian
behavior relates to the presence of individuals that do not seek conformity
under all circumstances or to the existence of certain situations in which

91
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agents would not desire to adopt the behavior or attitude of their interac-
tion partner. Contrarian behavior has been addressed previously, see, for
instance, Galam (2004); Li et al. (2012).

5.1.1 Model

As the VM, which has been discussed at length in the previous chapters,
the CVM is a binary opinion model where N agents can adopt two different
opinions: � and �. The model is an extension of the VM in order to include
a form of contrarian behavior. At each step, an agent (i) is chosen at random
along with one of its neighbors (j). Usually (with probability 1−p), i imitates
j, but there is also a small probability p that agent i will do the opposite
(contrarian extension). More specifically, if i holds opinion � and meets an
agent j in �, i will change to � with probability 1 − p, and will maintain
its current state � with probability p. Likewise, if i and j are in the same
state, i will flip to the opposite state with probability p.

While the VM rule may be interpreted as a kind of ferromagnetic cou-
pling by which neighboring spins (agents) align, the contrarian rule can be
interpreted as anti-ferromagnetic coupling by which neighbors are of opposed
sign after the interaction. Table 5.1 illustrates the update rules for the CVM.

Prob. xj xj
xi yi yi
xi yi yi

(1− p) � �

� � �

� � �

p � �

� � �

� � �

Table 5.1: Update rules yi = u(xi, xj) for the CVM. The VM rule (ferro-
magnetic coupling) is applied with probability (1 − p), the contrarian rule
(anti-ferromagnetic coupling) with probability p.

5.1.2 Micro Dynamics

From the micro-level perspective (see Sec. 3.1), the CVM implements an
update function of the form u : S× S× Λ → S. That is, the new state of a
randomly chosen agent i is given by

yi = u(xi, xj , λ) =

{

xj : λ = λV

x̄j : λ = λC

}

, (5.1)

where x̄j denotes the opposite attribute of xj . In each iteration, two agents
i, j are chosen along with a random variable λ ∈ Λ = {λV , λC} that decides
whether the voter (λV ) or the contrarian rule (λC) is performed. The proba-
bility for that is ω(i, j, λ). Notice that the update rule is equal for all agents
and independent from the agent choice. Therefore the probability that an
agent pair (i, j) is chosen to perform the contrarian rule can be written as
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ω(i, j)Pr(λ = λC) = pω(i, j). Respectively, we have (1 − p)ω(i, j) for the
VM rule.

Let us briefly discuss the random mapping representation of the CVM for
three agents and complete connections (i.e., ω(i, j) = 1/N(N − 1), ∀i 6= j).
As shown in Table 5.2, this model variant implements 12 mappings Fz, be-
cause for any of the 6 possible agent choices (i, j) there is an additional binary
choice between the voter (λV ) and the contrarian (λC) update mechanism.
To index the set FZ of mappings we now use a triple (i, j, λ) where i and
j correspond to the random agent choice and λ = {λV , λC} to the random
choice of one or the other rule. From Table 5.2 it is easy to see that the
respective probability distribution ω(i, j, λ) is independent and identically
distributed as it remains the same for any iteration at any time. That is to
say, the micro-level process is a Markov chain.

z (i, j, λ) a b c d e f g h
��� ��� ��� ��� ��� ��� ��� ���

1 (1, 2, λV ) a b g a h b g h
2 (1, 2, λC) d f c d e f c e
3 (1, 3, λV ) a f c a h f c h
4 (1, 3, λC) d b g d e b g e
5 (2, 1, λV ) a b a g b h g h
6 (2, 1, λC) c e c d e f d f
7 (3, 1, λV ) a a c f c f h h
8 (3, 1, λC) b b e d c d g g
9 (2, 3, λV ) a e a d e h d h
10 (2, 3, λC) c b c g b f g f
11 (3, 2, λV ) a a e d e d h h
12 (3, 2, λC) b b c f c f g g

Table 5.2: FZ for the CVM with three agents.

Considering that λC (for contrarian rule) is chosen with probability p and
λV (VM rule) with (1− p), and that this choice is independent of the agent
choice, the micro-level transition probability P̂ (x,y) between two adjacent

configurations x
i
∼ y is given by

P̂ (x,y) = (1− p)
∑

j:(yi=xj)

ω(i, j) + p
∑

j:(yi=x̄j)

ω(i, j). (5.2)

It is clear that, as for the original VM, the micro-level process for the CVM
corresponds to a random walk on the hypercube. However, it is notewor-
thy that the CVM leads to a regular chain (as opposed to an absorbing
random walk for the original VM). Namely, whenever p > 0, there is a non-
zero probability that the process leaves the consensus states (�� . . .�) and
(�� . . .�). Eq. (5.2) tells us that this probability is precisely p. Therefore,
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the system does not converge to a fixed configuration and the long-term
behavior of the model can be characterized by its stationary distribution.

5.2 Homogeneous Mixing and the Two-Community

Graph

This section analyses the behavior of the CVM for homogeneous mixing and
the two-community graph. As seen in the previous chapter, for both interac-
tion topologies there is a Markov projection which tremendously reduces the
size of the chain such that the important entities of interest (e.g., station-
ary distribution) can be computed on the basis of the respective transition
matrices.

5.2.1 Homogeneous Mixing

The case of homogeneous mixing is again particularly simple. Let us consider
that the model is implemented on the complete graph without loops. That
is, contrary to the treatment of the VM in Chapter 3, we do not allow that
agents interact with themselves. In that case, the probability to choose
a pair (i, j) of agents becomes ω(i, j) = 1/N(N − 1) whenever i 6= j and
ω(i, i) = 0, ∀i. As before, it is clear that the interaction structure is invariant
with respect to all agent permutations (that is, ω(i, j) = ω(σi, σj), ∀σ ∈ SN

and all pairs (i, j)) and therefore all agent configurations with the same
number k of agents in � (and therefore N −k in �) belong to the same class
of macroscopic equivalence and can be mapped into the same macro atom
(Xk). See Sec. 3.3.1 and Prop. 4.3.1. In other words, for homogeneous
mixing full aggregation over all agents does not destroy Markovianity, which
is in complete analogy to the pure VM. Notice again that in hypercube
terminology that level of observation corresponds to the Hamming weight of
a configuration h(x) = k.

Consequently, since all agents interact with all the others with equal
probability, the respective transition rates depend only on the numbers k
and N−k of agents in the two states. Consider, for example, the probability
P (Xk, Xk+1) that a black agent flips its state. There are two situations in
which this change can happen: first, if a pair of states (xi, xj) = (�,�) along
with VM update is chosen, i.e., (xi, xj , λ) = (�,�, λV ), second, if a pair
(�,�) is chosen along with contrarian update, i.e., (xi, xj , λ) = (�,�, λC).
In a configuration with k agents in �, there are (N −k)k possibilities for the
first option and (N − k)(N − k − 1) possibilities for the latter.1

1Notice that in the case self-choice is allowed (ω(i, i) > 0), the number of possibilities
for (�,�) modifies to (N − k)2. We also have ω(i, j) = 1/N(N − 1), ∀i 6= j compared
to 1/N2 in the model with self-choice. Even for systems of moderate size the dynamical
effect of this slight difference in transition rates is neglectable.
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Alternatively, P (Xk, Xk+1) can be obtained by evaluating the transition
probability (5.2) from some x ∈ Xk to the set of y ∈ Xk+1, denoted in the
previous chapter as p̂x,Xk+1

Then we obtain

P (Xk, Xk+1) =
∑

xi=�

[

(1− p)
∑

j:(xj=�)

ω(i, j) + p
∑

j:(xj=�)

ω(i, j)

]

= (N − k) [(1− p)kω + p(N − k)ω]

= (1− p) (N−k)k
N(N−1) + p (N−k)(N−k−1)

N(N−1) .

(5.3)

Similarly, we obtain for P (Xk, Xk−1)

P (Xk, Xk−1) = (1− p) (N−k)k
N(N−1) + p k(k−1)

N(N−1) . (5.4)

And finally,

P (Xk, Xk) =
k2(2−4p)+2kN(2p−1)+N(N−Np+p−1)

N(N−1)
(5.5)

Fig. 5.1 aims at giving an intuition about the dynamical structure of the
process by considering the relation between the probability for a transition
one step to the right, P (Xk, Xk+1), and a transition to the left, P (Xk, Xk−1),
as a function of k. This informs us about the more probable tendency for
future evolution for every atom in the macro chain. Fig. 5.1 shows that
P (Xk, Xk+1) > P (Xk, Xk−1) for k < N/2 and respectively P (Xk, Xk+1) <
P (Xk, Xk−1) for k > N/2 telling us that the contrarian rule (performed
with probability p) introduces in every atom Xk a small bias that drives the
system towards the fifty-fifty configurations. This bias is given by

P (Xk, Xk+1)− P (Xk, Xk−1) = p−
2kp

N
. (5.6)

P(Xk,Xk+1) P(Xk,Xk-1)
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Figure 5.1: Transition probabilities and difference in transition probabilities
as function of k (N = 100).
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5.2.2 Stationary Dynamics for Homogeneous Mixing

As already mentioned, contrary to the pure VM, the contrarian variant does
no longer lead to an absorbing Markov chain, but results in a regular chain.
In the case that the population reaches consensus (k = 0 or k = N) there
is still a small probability, (namely P (X0, X1) = P (XN , XN−1) = p) with
which the consensus configuration is left. In that case, a statistical under-
standing of the model behavior is provided by the limiting vector or station-
ary distribution it converges to. That is, by the distribution π that remains
unchanged under further application of P :

πP = π. (5.7)

Notice that Eq. (5.7) tells us that the stationary distribution π of a Markov
chain (X, P ) is proportional to the left eigenvector of P associated to the
maximal eigenvalue λmax = 1. It is well-known (Kemeny and Snell, 1976,
69ff) that regular chains have a unique limiting vector and that the process
converges to it for any initial distribution. Notice also, that the rate of
convergence is usually related to the second largest eigenvalue of P (λ2 < 1)
in the sense that the order of convergence is proportional to λt

2 (Kemeny and
Snell, 1976; Behrends, 2000, among others).

For a system of 100 agents the stationary vector π is shown in Fig. 5.2 for
various contrarian rates p. The horizontal axis represents the macro states
Xk for k = 0, 1, . . . , N and the πk correspond to the probability with which
the process is in atom Xk provided it is run long enough and has reached
stationarity. Notice that, for a large number of steps, the πk also represent
the expected value for the fraction of time the process is in Xk (Kemeny
and Snell, 1976, Sec. 4.2). On the bottom of Fig. 5.2, three characteristic
time series (three single simulation runs) are shown, one for large, one for
intermediate and one for low p values. This provides a better understanding
of the meaning of the stationary vector in relation to the time evolution of
the respective processes.

Two different regimes can be observed in Fig. 5.2 characterized by the
green and the red curves respectively. A large contrarian rate p (green curves)
leads to a process which fluctuates around the states with approximately the
same number of black and white agents – the fifty-fifty situation (k = N/2)
being the most probable observation. The larger p, the lower the probability
to deviate strongly from the fifty-fifty configurations. In fact, the process
resembles a random process in which agent states are flipped at random.

A different behavior is observed if p is small. This is represented by
the red curves. For a small contrarian rate, the population is almost uni-
form (consensus) for long periods of time, but due to the random shocks
introduced by the contrarian rule there are rare transitions between the two
extremes. This is very similar to the VM at low (but non-zero) temperature,
where random state switches or excitations take the role of mutations and
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Figure 5.2: Stationary vector of the CVM with N = 100 and homogeneous
mixing for various p. There is a transition from the absorbing VM to the ran-
dom fluctuations around the mean. On the bottom, the respective example
time series are shown.
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Figure 5.3: Stationary vector of the CVM with 1000 agents. Notice the
(almost) uniform stationary distribution when p = 1/N .
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prevent the system from complete freezing to the zero-temperature ground
state. In between these two regimes, there is a p ≈ 0.01 for which the process
wanders through the entire state space, in such a way that the stationary
distribution is almost uniform.

Fig. 5.3 shows the situation for a system of 1000 agents. The same two
regimes are observed for the larger system. However, the value p at which
the behavior changes from the switching between two consensus states to
fluctuations around the fifty-fifty situation is decreased compared to the N =
100 case. In the case of N = 1000, an almost uniform stationary distribution
is observed for p ≈ 0.001 = 1/N . To be more precise, it is, in fact, not
difficult to show that for any system size N the stationary distribution is
uniform with πk = 1/(N + 1), ∀k exactly for p∗ = 1/(N + 1). All that is
necessary in order to verify this is to show that πP = π in this case. Hence,
we have to show that

1

N + 1
(P (Xk−1, Xk) + P (Xk, Xk) + P (Xk+1, Xk)) =

1

N + 1
(5.8)

which is satisfied whenever

P (Xk−1, Xk) + P (Xk, Xk) + P (Xk+1, Xk) = 1. (5.9)

Notice that Eq. (5.9) is equivalent to requiring that P is a doubly stochastic
matrix, and it is well-known that any doubly stochastic matrix has a uniform
stationary vector. It is easy to show that for the CVM, Eqs. (5.8) and (5.9)
are satisfied precisely for p∗ = 1/(N +1), but not for other contrarian rates.

When the contrarian rate p crosses the critical value p∗ = 1/(N +1), the
system undergoes a phase transition from majority-minority switching (or-
dered phase) to a balanced fifty-fifty situation in which no stable majorities
form (disordered phase). A similar transition has been observed, for instance,
in the contrarian model due to Galam (2004). The fact that p∗ = 1/(N +1)
leads to πk = 1/(N + 1), ∀k shows the existence of large fluctuations at the
critical contrarian rate, because the only way to have a stationary uniform
distribution is to have very large fluctuations at any value of the state space.
For large p, the system behaves around the mean value (here 50) with only
small deviations. For small p closed to 0, the system is rarely far from the
two states of complete order (the consensus states) and in the limit of p = 0
has no asymptotic fluctuations at all.

5.2.3 Rate of Majority-Minority Switching

One of the most interesting advantages of using Markov chains as a macro
description of the model is that it facilitates the computation of a series of
quantities that one might wish to look at and which are more difficult to
assess with other techniques. For the CVM, for instance, we can look at
the mean number of steps required to go from one consensus state to the
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opposite consensus state. As in the absorbing case, the key to this (and
to several other) computations is a matrix called the fundamental matrix
(Kemeny and Snell, 1976, p.75ff). For regular chains it is computed by

F = (I− (P −W ))−1 (5.10)

where W is the limiting matrix with all rows equal to π (note that, lim
n→∞

Pn =

W ). Following Kemeny and Snell (1976), the fundamental matrix can be
used to compute another matrix M which contains the mean number of
steps between two states, say i and j, for any pair of states:

M = (I− F+EFdiag)D (5.11)

where E is a matrix with all elements equal to one, Fdiag the diagonal fun-
damental matrix with (Fdiag)ii = (F)ii; (Fdiag)ij = 0, and D the diagonal
matrix with (D)ii = 1/πi. The mean time from one consensus state to the
other is then given by the element M(0, N) which is plotted in Fig. 5.4 for
system sizes from N = 100 to N = 500.
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Figure 5.4: Mean number of steps required to go from one to the other
consensus state as a function of the scaled contrarian rate (N + 1)p.

Notice that in Fig. 5.4 the contrarian rate p is scaled by the size of the
macro chain (N + 1) in order to compare the different cases. This accounts
for the above-mentioned fact that the »critical« parameter value p∗ at which
a uniform stationary distribution is found depends inversely on the number
of agents as p∗ = 1/(N + 1). Consequently, in Fig. 5.4, the uniform case is
represented by (N + 1)p = 1. The switching behavior (from one consensus
to the other and back) is found for values below that and the behavior
approaches the random regime for values larger than one.

We observe in Fig. 5.4 that transitions between the two different consen-
sus states are most frequent for a contrarian rate that is slightly below the
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»critical« contrarian rate p∗. There is a trade-off between the probability
to indeed enter the state of complete consensus and the probability to go
away from that and approach to the other extreme. For the p-values where
M(0, N) is minimal, both probabilities are relatively high. As contrarian
rate decreases, the probability to reach consensus increases significantly, but
a transition to the opposite consensus state is becoming rare. On the other
hand, when p increases slightly, transitions from k ≈ 0 to k ≈ N and back
are still rather likely, but in many case the process turns in direction before
a complete ordering has been achieved. This is true also for p ≈ p∗. As p
increases further, there is a strong decrease in probability to reach consen-
sus altogether (see Fig. 5.2) and therefore the mean time between the two
consensus states increases tremendously.

Finally, Fig. 5.5 shows the same analysis for transitions between states
with a strong majority of �-agents to an equally strong majority of �-agents.
The same qualitative behavior is observed in the sense that switching be-
tween strong majorities (X0 ↔ XN , X5 ↔ X95, X10 ↔ X90) becomes rather
unlikely as the contrarian rate increases. On the other hand, transitions be-
tween moderate majorities of different sign (80% and respectively 67%) occur
rather frequently and the contrarian rate at which the mean time between
them becomes minimal is larger.
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Figure 5.5: Mean number of steps required to go from Xk to Xs as a function
of the scaled contrarian rate (N + 1)p. Here N = 100.

5.2.4 Two-Community Model

In this section, we consider the CVM on a two-community graph where the
size of the two communities is given by M = L = 50. The pure VM on two
communities has been discussed in the previous chapter (Sec. 4.4) and for
the CVM the same procedure can be used to obtain a Markov projection by
strong lumpability; namely, Prop. 4.3.1.
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In particular, the description of the interaction topology in Sec. 4.4.1
and derivation of the respective interaction probabilities ω is in complete
analogy to the previous chapter. That is,

γ =
r

2LM + ((L− 1)L+ (M − 1)M)r

α =
1

2LM + ((L− 1)L+ (M − 1)M)r
, (5.12)

where γ is the probability of intra-community interaction (strong ties) and
α the probability of inter-community interaction (weak ties), and r = α/γ
the ratio between the two.

As described in Sec. 4.4.2 for the pure VM, the interaction probabili-
ties ω defined by Eqs. (5.12) give rise to a symmetry group Autω(N) =
(1 . . .M)(M + 1 . . . N) and Prop. 4.3.1 tells us that Markovianity is pre-
served by a projection onto the (M +1)× (L+1) lattice. Each lattice point
X̃m,l is associated to the attribute frequencies m and l within the two sub-
communities. In other words, the model dynamics can be captured without
loss of information by a »mesoscopic« formulation in terms of attribute fre-
quencies m and l in the two communities. The state space of the projected
model is visualized in Fig. 5.6.
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Figure 5.6: The structure of the CVM meso chain for L = M = 10. The
consensus states X̃0,0, X̃M,L as well as the states of inter-community polar-
ization X̃0,L, X̃M,0 are highlighted. The stationary distribution is mapped
into node colors from blue (low values) to red (high values).
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The colors shown in Fig. 5.6 represent the stationary distribution of
the CVM with a relatively small contrarian probability p and a very weak
coupling between the two islands. The large atoms in the corners of the grid
highlight the states that represent configurations of high order. On the one
hand (red-shaded in Fig. 5.6) there are the consensus configuration with
all agents in the same state: X̃L,M and X̃0,0. On the other hand (yellow-
shaded), we have the states in which all agents of the same sup-group are
aligned, but there is a disagreement across the sub-groups: X̃0,M and X̃L,0.
As before, we refer to these states as inter-community polarization.

In what follows, we shall refer to the chain shown in Fig. 5.6 (ob-
tained via strong lumpability) as meso chain and denote the state space
as X̃ = (X̃0,0, . . . , X̃m,l, . . . , X̃M,L). The notion of »meso« in this context
accounts for the fact that the process (X̃, P̃ ) is indeed in between the micro
and the macro level. Namely, it is a strong reduction compared to the micro-
scopic chain (Σ, P̂ ), but the number of states is still considerably larger than
the macro system (X, P ) obtained by aggregation over the entire agent pop-
ulation (h(x) = k). While the full aggregation compatible with homogeneous
mixing has lead to a random walk on the line with N +1 = O(N) states, the
two-community model leads to a random walk on a 2D lattice with O(N2)
states. Noteworthy, the latter is a proper refinement of the former.

The transition probabilities of the meso chain are obtained on the basis
of Eq. (5.2) by substitution of the respective interaction probabilities (5.12).
That is, ω(i, j) = γ whenever two agent i and j are in the same community
and ω(i, j) = α whenever they are in different communities. For the CVM
on two islands of size M and L the transition probabilities for the transitions
leaving the atom X̃m,l are then given by

P̃ (X̃m,l, X̃m+1,l) = (1− p)[γ(m(M −m)) + α(M −m)l]
+ p[γ(M −m)(M −m− 1) + α(L− l)(M −m)]

P̃ (X̃m,l, X̃m−1,l) = (1− p)[γ(m(M −m)) + αm(L− l)]
+ p[γm(m− 1) + αlm]

P̃ (X̃m,l, X̃m,l+1) = (1− p)[γ(L− l)l + α(L− l)m]
+ p[γ(L− l)(L− l − 1) + α(L− l)(M −m)]

P̃ (X̃m,l, X̃m,l−1) = (1− p)[γ(L− l)l + α(M −m)l]
+ p[γl(l − 1) + αlm].

(5.13)

5.2.5 Stationary Dynamics on the Two-Community Graph

As described in Sec. 5.2.2, the stationary distribution π of a Markov chain
with transition matrix P is the probability vector that satisfies πP = π.
In other words, the computation of π requires the computation of the left
eigenvector of P . The Markov projection of the two-community model with
M = L = 50 results in a Markov chain of size (M + 1)(L + 1) = 2601. For
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Figure 5.7: Stationary distribution for different p and r for a system of
M = L = 50. The column on the l.h.s. is for a moderate coupling r = 1/100
and the four plots on the r.h.s. are for a weak coupling r = 1/1000. From top
to bottom the contrarian rates are p = 0.01, 0.015, 0.02, 0.03. The stationary
probability for the consensus states (m = l = 0 and m = l = 50) increases
with decreasing p. The stationary probability for the states of partial order
(m = M, l = 0 and m = 0, l = L) increases as the coupling between the
island r decreases. This topological effect is undermined by an increasing
contrarian rate p.
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a matrix of size 2601 × 2601 the (numerical) solution of the corresponding
eigenvalue problem is still possible, but increasing the number of agents
(that is, M and L) will soon lead to matrix sizes for which the solution for
eigenvalues and vectors is rather costly.

There are two parameters that decide about the dynamical behavior of
the CVM on the two-community graph: (i.) the contrarian rate p, and
(ii.) the coupling between the two islands captured by r = α/γ. To obtain a
complete picture of the model dynamics, the stationary distribution has been
computed for various different values p and r which is shown in Fig. 5.7. From
the top to the bottom, p is increased from p = 0.01, p = 0.015, p = 0.02 to
p = 0.03. The plots in the left-hand column show the result for a moderate
coupling between the two island with r = 1/100. A reduced coupling of
r = 1/1000 is shown in the plots in the right-hand column.

The comparison of the left- and the right-hand side of Fig. 5.7 shows that
the stationary probability for states of inter-community polarization, as well
as the states close to them, increases with a decreasing coupling between the
communities. That is, the configurations with intra-community consensus,
but disagreement across the communities become more and more probable.
This is very obvious for the plots with a small contrarian rate p = 0.01
and p = 0.015 where the probability to observe the states X̃0,50 or X̃50,0

becomes very high when decreasing the coupling to r = 1/1000. In fact, all
configurations in which consensus is formed in at least one of the communities
are rather likely (values along the border of the surface) whereas disordered
configurations are rare. This is in direct analogy to the pure VM (p = 0) and
the corresponding quasi-stationary distribution (see Fig. 4.11). However,
this significant difference between a moderate (r = 1/100) and a very weak
(r = 1/1000) coupling diminishes as the contrarian rate becomes larger. This
second trend observed in Fig. 5.7 is in agreement with what happens in the
homogeneous mixing case as the contrarian rate p increases: the probability
to observe consensus configurations with all agents in equal state becomes
more and more unlikely and it is more and more likely to observe disordered
agent configurations all together. In fact, a further increase of the contrarian
rate will lead to a behavior that is essentially random and insensitive to
topological constraints since the consensus formation within the communities
is frequently perturbed by random events.

In order to show that a decreasing inter-community coupling leads gen-
erally to an increased stationary probability of intra-community polarization
(local alignment, global polarization), let us compare the previous cases to
the homogeneous mixing situation (r = 1). This is shown in Fig. 5.8 for the
(relatively small) contrarian rates p = 0.01 and p = 0.03. It becomes clear
that for α = γ states of partial order (m = M, l = 0 and m = 0, l = L) and
states close to that become in effect exceptionally rare random events. The
reason for this is clear. The number of micro configurations x ∈ Σ mapped
into the state X̃m,l is

(

M
m

)(

L
l

)

which is a huge number for m ≈ M/2, l ≈ L/2
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Figure 5.8: Stationary distribution for p = 0.01 and p = 0.03 for a system
of M = L = 50 and α = γ (homogeneous mixing). States of partial order
(m = M, l = 0 and m = 0, l = L) become a very rare random event.

but only 1 for m = M, l = 0 and m = 0, l = L. Because under homogeneous
mixing there is no favoring of particular agent configurations with the same
k = m + l the stationary probability at meso scale is proportional to the
cardinality of the set X̃m,l.

5.3 Network Dynamics from the Macro Perspective

5.3.1 Full Aggregation

The most natural level of observation in binary state dynamics is to consider
the temporal evolution of the attribute densities, or respectively, the number
of agents in the two different states. While a mean-field description would
typically formulate the macro dynamics a differential equation describing the
evolution of attribute densities, the Markov chain approach operates with a
discrete description (in time as well as in space) in which all possible levels
of absolute attribute frequencies and transitions between them are taken
into account. Regardless of the microscopic details such as more complex
interaction networks or rules, a macro level description of that kind, which
is always a tremendous reduction of original system, is desirable in order to
obtain a better understanding of the model behavior. As a matter of fact, it
is desirable for both numerical as well as analytical arguments.

One of the main contributions of the framework proposed here is that the
link between the microscopic system and a certain macro level description is
made explicit. Namely, a system property induces a partition on the space of
all possible micro configurations and the macro-level process corresponds to
the micro process projected onto that partition (see Chapter. 3, Sec. 3.2).
For the CVM and many other binary single-step model the most relevant
macro formulation corresponds to a projection of the micro-level process on
the hypercube onto a macro-level process with the state space defined by
the partition X = {X0, X1, . . . , Xk, . . . , XN}, where 0 ≤ k ≤ N corresponds
to the number of �-agents in the population. Each Xk collects all micro
configurations with k with the same Hamming weight h(x) = k, that is, the
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same frequency level (see Sec. 3.3.1, Eqs. (3.12) and (3.13) in particular).
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Figure 5.9: Full aggregation is obtained by the agglomeration of states with
the same Hamming weight h(x) = k. The resulting macro process is, in
general, a non-Markovian process on the line.

In this regard, one important observation in Chapter 3 has been that,
for the VM, homogeneous mixing is a prerequisite for lumpability, and that
microscopic heterogeneities (be it in the agents or in their connections) trans-
late into dynamical irregularities that prevent lumpability with respect to X.
This means that full aggregation over the agent attributes (k = h(x)) leads
in general to a non-Markovian macro process. We illustrate this process in
Fig. 5.9. Still, the process obtained by the projection from micro to macro
is characterized by the fact that from an atom Xk the only possible tran-
sitions are the loop to Xk, or a transition to neighboring atoms Xk−1 and
Xk+1. This is of course due to the fact that the CVM implements single-step
dynamics in which only one agent changes at a time. However, the micro
level transition rates (5.2) depend essentially on the connectivity structure
between the agents, and therefore, the transition probabilities at the macro
level (denoted as Prβ(l|k) in Fig. 5.9) are not uniquely defined (except for
the case of homogeneous mixing) in the sense that for two configurations in
the same macro state x,x′ ∈ Xk the probability to go to another macro state
(e.g., Xk+1) may be very different.

In this chapter, we use the CVM as a very simple model in which ques-
tions related to non-lumpable projections can be addressed. The scope is
rather theoretical in the sense that we are interested in the kind of macro ef-
fects to which a non-trivial interaction structure at the micro level may lead.
The questions we aim to address are of the following type: Why and in what
sense does the behavior of the macro process deviate from Markovianity? Do
we introduce memory or long-range correlations at the macro level by the
very way we observe the process? Is the emergence of these effects just due
to an aggregation which is insensitive to microscopic heterogeneities? And
furthermore: How good does the mean field (homogeneous mixing) solution
approximate network dynamics and for which networks does it provide ac-
ceptable approximations? Is there an alternative assignment of probabilities
Prβ(l|k) that leads to better results? Which properties can be captured?
Finally, an interesting question concerns the reducibility of the micro chain
by a weaker form of lumpability. At least to some of these question answers
will be provided in the remainder of this chapter.
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5.3.2 Network Influence on the Stationary Dynamics

Let us first consider, in a numerical experiment, the effect of different in-
teraction topologies ω on the stationary dynamics of the resulting macro
process. For this purpose, we define the stationary macro measure π as

πk =
∑

x∈Xk

π̂x. (5.14)

In other words, the elements πk of the stationary vector are determined by
counting the frequency with which the model is in the respective set of micro
states with h(x) = k. Notice that on the basis of a stationary micro chain, it
is always possible to construct an approximate macro chain – an aggregation
– the stationary vector of which satisfies Eq. (5.14) (see Kemeny and Snell,
1976, 140 and Buchholz, 1994, 61–63). This will be discussed below.

To compute the πk, a series of simulations has been performed in which
the CVM with N = 100 is run on different paradigmatic agent networks. To
capture the model in stationarity, the model is iterated for several thousands
of steps first and the statistics of this »burn-in« phase are not considered
in the computation of πk. (In this exploratory analysis with 100 agents a
»burn-in« period of 20000 steps has been used.) The result is shown in Fig.
5.10 for the case of a small contrarian rate p = 0.005.
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Figure 5.10: Stationary statistics for the CVM on different topologies. Due to
effects of local ordering, the stationary behavior of the small-world network,
the ring and the lattice as well as the two-community topology differs greatly
from the well-mixed situations.

We observe in Fig. 5.10 that some interaction topologies give rise to
strong deviations from the theoretical result derived for homogeneous mixing
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(solid, blue). In general, there is an increase in the probability to observe
balanced configurations and the case of complete consensus tends to become
less likely. However, the results obtained for the random graph are indeed
very similar to the theoretical prediction and also the scale-free topology
leads to stationary statistics that, in qualitative terms, correspond to the
mean-field case. On the other hand, we observe a strong »modulation«
of the stationary statistics by networks that tend to foster the emergence
of »local alignment and global polarization«. By local alignment and the
dynamics that lead to it, we refer to situations in which different clusters of
agents approach independently a certain local consensus which is in general
different from agent cluster to agent cluster. From the global perspective
the entire population appears to be far from complete consensus and the
probability to observe the respective intermediate macro states is increased.
These effects are observed for the small-world network, the two-community
graph as well as for the lattice, and it is strongest for the ring where the
probability of complete consensus is practically zero.

5.3.3 The Two-Community Case

For the two-community graph with a peak around k = N/2 the interpretation
of the result is particularly straightforward. Local alignment, in this case,
refers to inter-community polarization – the situation in which a different
consensus has emerged in the two communities. If the size of the commu-
nities is N/2, as in the example we study, the polarization configurations
give rise to an macro observation k = N/2 since one half of the population
(organized in one community) agrees on � and the other half (that is, the
other community) is in state �.

The two-community CVM is particularly interesting because we can com-
pute the exact stationary vector by analyzing the respective meso chain
(X̃, P̃ ) obtained via strong lumpability. This has been done in Sec. 5.2.5.
We first compute the stationary distribution of the meso chain assigning the
respective limiting probability π̃m,l to each state X̃m,l. In that case, Eq. 5.14
reads

πk =
∑

m+l=k

π̃m,l. (5.15)

That is, πk associated to the macro state Xk is obtained by summing up
the respective π̃m,l with m + l = k. This is shown in Fig. 5.11 for different
contrarian rates p and different couplings between the two sub-graphs.

It becomes clear that the probability to observe a fifty-fifty situation
(k ≈ N/2) generally increases, the weaker the coupling between the commu-
nities. The analysis of the meso level stationary distribution shown in Fig.
5.7 makes clear that this is due to an increased probability for the config-
urations with intra-community consensus and inter-community polarization
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Figure 5.11: The stationary distribution from the macro perspective for
different r = α/γ = 1, 1/10, 1/100, 1/1000. From left to right p =
0.005, 0.01, 0.02.

(X̃N/2,0, X̃0,N/2) which contribute to that probability. (Notice that the com-
munity sizes have a direct effect onto the macro level statistics and that in
general the states with k = L and k = M will be observed more frequently
when the coupling is weak.) In general, we can also observe that the influence
of the different topological choices onto the macro behavior (captured here in
terms of πk) decreases with an increasing contrarian rate p. As explained in
Sec. 5.2.5, the more contrarian behavior is allowed by the parameter setting,
the more random becomes the entire process which undermines the effects
of local alignment and, consequently, of interaction topology. This can be
taken is a first indication that the mean-field solution (here represented by
r = 1) might approximate well the model behavior with a relatively high
contrarian rate because the entire setting is characterized more and more by
random state flips. It will be less accurate for a small contrarian rate where
dynamics of local ordering become more and more characteristic.

5.4 The Two-Community Model as an Analytical

Framework

5.4.1 From Micro to Meso, and from Meso to Macro

The previous section has shown that heterogeneous interaction structures can
have a strong impact on the model behavior. From the lumpability point
of view, but also from the point of view of observation, a macro process
obtained by aggregation over the agent attributes neglects important infor-
mation about the microscopic details. In other words, for heterogeneous
networks in general, the micro-level process and the macro process do not
commute, neither in an observational sense nor in the strict mathematical
sense (Görnerup and Jacobi, 2008; Pfante et al., 2013). The only case where
full aggregation provides us with a exact macro description is the homoge-
neous mixing case for which we have provided a Markov chain analysis in
Sec. 5.2.
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We have also discussed in Sec. 5.2 the two-community graph for which
a meso level chain with O(N2) states provides an loss-less coarse-graining.
As the two-community coarse-graining (X̃) is a proper refinement of the full
aggregation (X), and for it is still tractable, we may use this topology as
a test case to address questions that concern the relation between the two
coarse-grainings. Having available an aggregated mean-field-like description
of the process (X, P ) on the one hand, and a bigger Markov chain that
describes exactly the model dynamics on an interaction topology with a
small amount of inhomogeneity (X̃, P̃ ) on the other, we can also analytically
assess how the topology effects the macro dynamics and in which regard the
network dynamics deviate from the mean-field behavior.

l=0

m=0

l=L

m=M

l=L

m=0

l=0

m=M

0 1 2 3 4 5 6 7 8

(X,P)

x

„Strong Lumpability“

(Σ,P)

(X,?)

y

y‘

ˆ

˜ ˜

Figure 5.12: From micro to meso, and from meso to macro.

The general idea which we follow in this section is illustrated in Fig. 5.12.
Consider the CVM on the two-community graph and the associated micro-
level process (Σ, P̂ ). As shown in form of Prop. 4.3.1, the two-community
micro chain (Σ, P̂ ) is (strongly) lumpable with respect to the partition X̃.
This gives rise to what we have called the meso-level process (X̃, P̃ ) in Sec.
5.2.4. The meso-level Markov chain (meso chain) gives us a complete under-
standing of the (micro) behavior of the CVM on two coupled communities,
because the coarse-graining via strong lumpability is compatible with the
exact symmetries of the micro process and no information is lost. However,
the process (the micro as well as the meso chain) is clearly not (strongly)
lumpable with respect to the macro level of full aggregation (partition X).
Therefore, if we wish to observe the process at the global level, which is often
the case in practice, we must live with the fact that the resulting macro pro-
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cess on X is no longer a Markov chain. As illustrated in Fig. 5.12, here we
project onto the level of full aggregation despite the fact that Markovianity is
lost, in order to understand (i.) the reasons for which lumpability is violated
and (ii.) the dynamical effects that this introduces at the macro level. The
fact that we have an explicit understanding of the meso chain facilitates an
explicit analysis of the transition from micro to meso to macro.

5.4.2 Why Lumpability Fails

Let us first inspect the reasons for which the meso chain (X̃, P̃ ) is not
lumpable with respect to the macro partition X. By the lumpability theorem
(Kemeny and Snell, 1976, Thm. 6.3.2), it is clear that the non-lumpability
of the meso chain with respect to X comes by the fact that the probabilities
Pr(Xk|X̃m,l) are not equal for all meso states X̃m,l ∈ X(m+l) in the same
macro set. As an example, let us consider the transition rates from the single
X̃m,l ∈ X50 to the macro set X51 in a system with M = L = 50. One by
one, the conjoint probability from X̃0,50, X̃1,49, X̃2,48, . . . , X̃50,0 to the sets
X̃m,l ∈ X51 is shown in Fig. 5.13 for various ratios r and a small contrarian
rate p = 0.01.
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Figure 5.13: The island topology leads to inhomogeneous transition prob-
abilities and is therefore not (strongly) lumpable. Here the example of a
transition from X̃m,l ∈ X50 to X51 in a system with M = L = 50 is shown.

We first notice that the transition rates P̃ (X̃m,l, X(m+l+1)) are uniform
when the coupling within is equal to the coupling across communities, that
is for α = γ and r = 1. Obviously, this is the case of homogeneous mixing
and the uniformity of the P̃ (X̃m,l, X(m+l+1)) is precisely the lumpability
condition spelled out in Thm. 6.3.2 of Kemeny and Snell (1976).

In general, the P̃ (X̃m,l, X(m+l+1)) are no longer equal for all m and l
with m + l = k when heterogeneity is introduced in form of a different
coupling within and across communities, i.e., α 6= γ. This explains the
non-lumpability of the two-community model with respect to X. As the
weak ties across communities becomes weaker such that the ratio r between
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strong and weak ties decreases, the transition rates become inhomogeneous,
the main effect being a strong decrease of P̃ (X̃m,l, X(m+l+1)) for the atoms
close to polarization (m = M, l = 0 and m = 0, l = L). This decrease in
transition probability, in turn, explains the increased stationary probability
of the states X̃50,0 and X̃0,50, because once entered there is a relatively small
probability to leave them so that the process is likely to »wait« in these
states for quite some time.

Notice that there is only the small difference in transition rates be-
tween r = 1/10 and r = 1/100 (the difference to r = 1/1000 is even
smaller!). On the one hand, this is somewhat surprising, as from the dy-
namical point of view r = 1/10 is much more related to the homogeneous
mixing case (r = 1) than to the situation with r = 1/100 (cf. Fig. 5.11).
On the other hand, the probability to leave a polarized state (X̃0,50, X̃50,0)
decreases significantly with every decrease in r and therefore the waiting
times for these states grow tremendously. Notice, however, that in the limit
of r → 0, the probability of leaving a polarized state converges to p (with
P̃ (X̃M,0, X(M+1)) = P̃ (X̃M,0, X(M−1)) = p/2). Therefore a strong difference
between a weak (e.g., r = 1/100) and a very weak coupling (r = 1/1000) in
form of an increased stationary probability of polarization can be expected
only if also the contrarian rate p is small. Likewise, as already observed
in Sec. 5.2.5, a large contrarian rate can completely undermine effects of
polarization altogether.

5.4.3 Stationarity and Aggregation

We shall now look at what happens to the macro level system as the micro or
respectively meso process reaches stationarity. For this purpose we first look
at the time evolution of the macroscopic transition rates. It is well-known
that this measure (corresponding to the time dependent distribution over
blocks of length two) converges in the case of an stationary macro process.
We develop these ideas for a general micro chain (Σ, P̂ ) and show the two-
community case (where we can indeed compute these entities) as an example.

Let β̂(0) denote the initial distribution over all micro configurations and
β̂(t) be the respective distribution at time t. Notice that β̂(t) = β̂(0)P̂ t.
Let us further define the probability distribution at time t restricted to the
macro set Xk ∈ X as β̂k(t). That is, the xth element β̂k

x(t) = 0 whenever
x /∈ Xk and proportional to β̂x(t) with

β̂k
x(t) =

β̂x(t)
∑

∀x′∈Xk

β̂x′(t)
, (5.16)

for every x ∈ Xk. Notice that by convention β̂k
x(t) = 0 whenever x /∈ Xk

and that β̂k(t) is defined only if
∑

x′∈Xk

β̂x′(t) > 0, that is, if there is a positive
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probability that the process has reached at least one configuration x′ ∈ Xk.
The probability β̂k

x(t) shall be interpreted as the conditional probability that
the process is in the configuration x at time t provided that it is in the set
Xk at that time.

We now denote the expected transition probability from macro state Xk

to macro state Xs as Prt
β̂(0)

(Xs|Xk). With β̂k(t) defined as above, it is given

by

Prt
β̂(0)

(Xs|Xk) =
∑

x∈Xk



β̂k
x(t)

∑

y∈Xs

P̂ (x,y)



 . (5.17)

For the interpretation of Eq. (5.17) consider that β̂k
x(t) is the probability

(restricted to Xk) that the process is in x ∈ Xk at time t and
∑

y∈Xs

P̂ (x,y) =

P̂ (x, Xs) is the probability for a transition from x to some y ∈ Xs. A
transition from the set Xk to Xs is then the conjoint transition probability
considering all x ∈ Xk along with their conditional probability β̂k

x(t) (first
sum). Notice again that (5.17) corresponds to the probability of observing a
sequence of two measurements (h(x), h(y)) = (k, s) at a certain time t when
looking at the micro system through the eye of absolute attribute frequencies.
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Figure 5.14: Time evolution of transition rates Prt
β̃(0)

(X51|X50) from X50 to

X51 in the two-community model for some of the meso states considered in
Fig. 5.13 and different initial conditions.

Now, notice that the only time dependent term in Eq. (5.17) is the
conditional distribution β̂k

x(t) which is obtain by (5.16) from β̂(t), and β̂(t) =
β̂(0)P̂ t. Considering that (Σ, P̂ ) is regular, it is clear that the process reaches
its stationary state ( lim

t→∞
β̂(t) = π̂) independent of the initial β̂(0). Therefore,
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the Prt
β̂(0)

(Xs|Xk) converge to

Prπ̂(Xs|Xk) =
∑

x∈Xk



π̂k
x

∑

y∈Xs

P̂ (x,y)



 (5.18)

as the micro process reaches stationarity. See Fig. 5.14 for the two com-
munity model. Consequently (Kemeny and Snell, 1976; Buchholz, 1994),
Eq. (5.18) can be interpreted as a macroscopic transition matrix with
P (Xk, Xs) = Prπ̂(Xs|Xk), and the stationary vector of that matrix will
be correct in the sense of (Eq. 5.14).

The possibility of deriving such a macro description has been commented
on by Kemeny and Snell (1976), page 140, and it is discussed with some detail
by Buchholz (1994), pages 61 – 63, where it is referred to as an ideal aggregate.
The most important thing to notice (Kemeny and Snell, 1976, 140) is that P 2

does not correctly describe the two-step transition probabilities that would
be measured on the micro system. That is, the system evolution described
solely at the aggregated macro level is different from the macro evolution
that would be observed by running the microscopic process and performing
an aggregation after each micro step. In other words (cf. Pfante et al.,
2013), as some information about the dynamical behavior of the microscopic
system is omitted by the aggregation, it violates a commutativity condition
and in our case this violation is equal to non-lumpability. In fact, one can
basically look at an ideal aggregate obtained by (5.18) as a Markov model
that approximates a certain stationary process (in our case the macro process
obtained by measurements from the micro chain) on the basis of the empirical
distribution of cylinders of length two. It is in fact not clear whether the
process is informative about certain properties of the real macro process
beyond the stationary measure (see Sec. 2.4.3). Finally, even if the chain
defined by (5.18) would be informative about certain transient properties of
the real macro process, it still suffers from the fact that the construction of it
requires knowledge of the stationary distribution of the micro chain π̂ which
is usually unknown.

Notice that Eqs. (5.17) and (5.18) do not involve any particular assump-
tion on the nature of the partition meaning that an ideal aggregate can be
constructed by them for any partition of Σ. Buchholz (1994), Thm. 1, has
shown that if the original transition matrix (P̂ in our case) is irreducible than
the transition matrix of the ideal aggregate P (Xk, Xs) = Prπ̂(Xs|Xk) will
also be irreducible and therefore possess a unique stationary distribution.

5.4.4 Why Weak Lumpability Fails

Weak lumpability (see Sec. 2.4.2) refers to the fact that a Markov chain
might be lumpable only for particular starting vectors (Burke and Rosen-
blatt, 1958; Kemeny and Snell, 1976; Ledoux et al., 1994). The question
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whether or not an ideal aggregate (and hence the micro chain) is weakly
lumpable arises naturally from our construction of an ideal aggregate, (5.17)
and (5.18), mainly by two considerations: first, it is well-known that if a chain
is weakly lumpable with respect to some distribution, it must be lumpable
with respect to the stationary distribution; and second, the transition prob-
abilities of the lumped process would be given by Eq. (5.18) (Kemeny and
Snell, 1976, Thm. 6.4.3). Therefore questions of weak lumpability of the mi-
cro process with respect to full aggregation X can be answered by checking
if the ideal aggregate is lumpable.

For the two-community model it is in fact easy to show that the CVM
process is not weakly lumpable by the construction of a counter example
which shows that the conditions of Thm. 6.4.1 in Kemeny and Snell (1976)
are violated. The argument is two-fold. First, starting from π̂ the pro-
cess generally reaches different assignments of probabilities over the micro
states in the different macro sets (different β̂s), because, at least for the
two-community model,

(πkP )s 6= πs. (5.19)

The superscripts k and s denotes, as before, restriction to Xk and Xs re-
spectively. Let us denote the left-hand side of (5.19) as π̂′s = (πkP )s. Notice
that, in fact, for weak lumpability it would be sufficient to show that π̂′s = πs

is satisfied for any k and s (cf. Kemeny and Snell (1976), p.136). However,
even if the situation is as in (5.19), weak lumpability could still be the case
if the two distribution π̂′s and πs lead to the same transition probabilities to
all other macro sets Xl

Prπ̂(Xl|Xs) = Prπ̂′(Xl|Xs). (5.20)

In other words, weak lumpability (according to Kemeny and Snell, 1976,
Thm. 6.4.1) is violated if the probability of a transition from Xs to another
macro state Xl is different for π̂s and π̂′s. This is in general the case for the
two-community model, as will be shown in the sequel.

As an example, let us consider a small system with M = L = 2. That is,
the two communities each consist of only two agents. Let us say the process
is in equilibrium with distribution π̂ at time t. Now we consider the macro
probability X2 → X1, Prπ̂(X1|X2), which is given by:

Prπ̂(X1|X2) =
(1 + r − p)(2r(−1 + p)− p)(1 + p)

2 (−1 + 2r2(−2 + p) + 2p− 3p2 + r (−1− 7p+ 6p2))
(5.21)

for arbitrary r and p. Let us further assume that the process performs a
loop in the first step (t → t + 1) and transits to X1 only after that (in
t+1 → t+2). That is, X2 → X2 → X1. For weak lumpability with starting
vector π̂ the probability of X2 → X1 must be the same independent of how
many and which previous steps are taken. However, for the second case we
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have π̂′2 = (π2P )2 6= π2 and then

Prπ̂′(X1|X2) =
(1 + r − p)(2r(−1 + p)− p)

(

1− 2p− 4r(−2 + p)p+ 3p2 + r2
(

2 + 4p2
))

2(1 + 2r)2 (1− 3p+ 3p2 + p3 + 2r2 (1− p+ p2)− r (1− 8p+ 5p2 + 2p3))
,

(5.22)

which is obviously not equal to (5.21). This shows that the two-community
model is not weakly lumpable with respect to X.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

Pr
HX

1
X

2L

2® 2® 2® 2® 1
2® 2® 2® 1
2® 2® 1
2® 1

0.40 0.45 0.50 0.55 0.60

0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260

p

Pr
HX

1
X

2L

0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.15

0.20

0.25

0.30

r

Pr
HX

1
X

2L

2® 2® 2® 2® 1
2® 2® 2® 1
2® 2® 1
2® 1

0.90 0.92 0.94 0.96 0.98 1.00
0.2994

0.2995

0.2996

0.2997

0.2998

0.2999

0.3000

Pr
HX

1
X

2L

Figure 5.15: Transition probabilities Prβ̂(X1|X2) for β̂ = π̂, π̂′, π̂′′, π̂′′′ for
the small example M = L = 2 are not equal as would be required for weak
lumpability. Top: Prβ̂(X1|X2) is shown as a function of p for r = 1/5.

The curves converge to the same value at p = 1/2. Bottom: Prβ̂(X1|X2) is

shown as a function of r for p = 1/5. Equal probabilities are observed for
the strongly lumpable case r = 1.

In Fig. 5.15 we show the probabilities Prβ̂(X1|X2) for the cases from

X2 → X1 to X2 → X2 → X2 → X2 → X1 as a function of p (top) and r
(bottom). As we would expect (see figure on the bottom and the inset) the
curves approach the same value as r → 1. This is the strongly lumpable
case of homogeneous mixing. Interestingly, we observe in the upper image
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of Fig. 5.15 that the probabilities are actually equal for p = 1/2, namely
Prβ̂(X1|X2) = 1/4 in that case. See the respective inset in the upper figure.

This indicates lumpability of the process for p = 1/2 and, in fact, it is possible
to show that the two-community model is strongly lumpable whenever p =
1/2. The reason is that for p = 1/2, the meso-level transition matrix P̃
is independent of the topological parameter r. Even if the case p = 1/2 is
not that interesting from the point of view of the dynamical behavior of the
CVM, it would be interesting to check whether a similar effect also occurs
for other networks.

5.4.5 Measuring (Non)-Markovianity

Having shown that the macro process associated to the CVM on two coupled
communities is non-Markovian, the next logical step is to quantify in some
way the deviations from Markovianity. The framework of information theory
– relative entropy and mutual information in particular – has been shown to
be quite useful for this purpose (Chazottes et al., 1998; Vilela Mendes et al.,
2002; Görnerup and Jacobi, 2008; Ball et al., 2010; James et al., 2011; Pfante
et al., 2013, among others).

Let us, to simplify the writing, denote as [. . . , kt−2, kt−1, kt, kt+1, kt+2,...] a
sequence of macro states . . . → Xkt−2 → Xkt−1 → Xkt → Xkt+1 → Xkt+2 →
. . .. Likewise, let us denote as [kt−m, . . . , kt] a finite sequence of m macro
states and refer to this as block or cylinder of length m. Then, the block
entropy associated to cylinders of length m is defined by

Hm =
∑

[kt−m,...,kt]∈Gm

µ([kt−m, . . . , kt]) log µ([kt−m, . . . , kt]) (5.23)

where µ([kt−m, . . . , kt]) denotes the probability to observe the respective
cylinder [kt−m, . . . , kt]. Notice that for m > 1 there exist in general »for-
bidden« sequences with µ([kt−m, . . . , kt]) = 0, a fact that is usually formal-
ized in terms of a grammar Gm ⊆ Xm by defining Gm := {[kt−m, . . . , kt] :
µ([kt−m, . . . , kt]) > 0}. In our case of single-step dynamics, all sequences
containing subsequent elements with |kt−kt−1| > 1 are »forbidden« because
only Xk, Xk−1 and Xk+1 can be reached from Xk in one step.

It is well-known (Chazottes et al., 1998; Vilela Mendes et al., 2002; James
et al., 2011) that the slope of the block entropy ∆Hm = Hm−Hm−1 converges
to a fixed value called entropy rate (usually denoted as h(µ)) and that this
fact can be used to estimate the memory range of the process. Namely,
following Chazottes et al. (1998); Vilela Mendes et al. (2002), the range of
the process is given, at least in an approximative sense, by the m at which
∆Hm reaches a constant value, that is, ∆Hm−∆Hm+1 ≈ 0. It is clear then
that for a Markovian process this point must be reached at m = 2 such that

∆H2 −∆H3 = 0 (5.24)
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and more generally
∆H2 −∆Hm = 0. (5.25)

Notice that Eq. (5.25) is precisely the »Markov property measure« pro-
posed in Görnerup and Jacobi (2008), pp.6-8, to identify projections of a
process onto a smaller state space (a partition of the original process) which
lead to Markovian dynamics. Noteworthy, the starting point of Görnerup
and Jacobi (2008) is the expected mutual information 〈I〉 between pasts and
the future state. Namely, how much information about the next symbol
([kt+1]) is on average over all symbols contained in the sequence of sym-
bols ([. . . , kt−2, kt−1]) before the current symbol ([kt]). They show that the
expected past future mutual information can be expressed in terms of the
slopes of the block entropy as

〈I〉 = ∆H2 −∆H∞ (5.26)

and likewise
〈In〉 = ∆H2 −∆H2+n (5.27)

if finite histories of length n ([kt−n . . . , kt−2, kt−1]) are considered.2 Notice
that in their notation n accounts for the ranges beyond the Markov range
of two (m = n + 2 in Eq. 5.25). We will follow this notation here and
compute 〈I1〉 = ∆H2 −∆H3 and 〈I2〉 = ∆H2 −∆H4, the latter being used
by Görnerup and Jacobi (2008).

The advantage of the two-community CVM as a framework to link be-
tween a micro and a macro level of description via an intermediate meso level
description is that we are able to compute the Markovianity measures 〈I1〉
and 〈I2〉 instead of performing an extensive series of numerical simulations.
Namely, it is possible to compute the µ([kt−1, kt, kt+1]) and respectively the
µ([kt−2, kt−1, kt, kt+1]) on the basis of the meso chain (X̃, P̃ ) which in turn
is a loss-less description of the microscopic system (see Fig. 5.12).

kk

k-1

k+1

k

k-1

k+1

Figure 5.16: Possible paths of length 3 through Xk.

Let us consider that for the cylinders of length 3. As noted above, the
grammar G3 of the system is determined by the fact that |kt−kt−1| ≤ 1 and

2In real computations, one always has to restrict to finite histories. Görnerup and
Jacobi (2008) compute 〈I2〉 = ∆H2 −∆H4 which means that they consider cylinders up
to length four [kt−2, kt−1, kt, kt+1] in their Markovianity test.
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Figure 5.17: Illustration of the possible paths for one X̃m,l with m+ l = k for
cylinders of length three (l.h.s) and four (r.h.s). An arrow indicates whether
or not one state can be followed by another in a sequence.

|kt+1 − kt| ≤ 1. Therefore, as illustrated in Fig. 5.16, for any kt = k with
0 < k < N there are nine possible paths [kt−1, k, kt+1] and for k = 0 and
k = N there are respectively four paths. In order to compute the probability
of a certain macro path, say [p, k, f ] p for past and f for future, we have to
sum over all meso level paths that contribute to the given macro path. Let us
denote a meso level path as [(mplp), (ml), (mf lf )] with mp+lp = p, m+l = k
and mf + lf = f . Its probability is given by

µ([(mplp), (ml), (mf lf )]) = π̃mp,lpP̃ (X̃mp,lp , X̃m,l)P̃ (X̃m,l, X̃mf ,lf ). (5.28)

The l.h.s. in Fig. 5.17 illustrates the possible paths for one X̃m,l with
m + l = k. Notice that for a given macro state Xk there are k + 1 meso
states if k ≤ M and respectively N − k + 1 meso states for k > M (these
numbers are for the case M = L with M + L = N). In the case sequences
of length three are considered, the situation is still quite clear. For instance,
a macro path [k− 1, k, k+1] can be realized in four different ways for each3

X̃m,l with m+ l = k:

[(m− 1 l), (m l), (m+ 1 l)] (5.29)

[(m− 1 l), (m l), (m l + 1)]

[(m l − 1), (m l), (m+ 1 l)]

[(m l − 1), (m l), (m l + 1)]

3Notice that the number of possibilities reduces at the corners or borders of the meso
chain whenever m = 0 or l = 0.
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The same reasoning can be applied to derive the probabilities for cylinders
of length four even though the situation becomes slightly more complicated,
as illustrated on the r.h.s. of Fig. 5.17.

On the basis of the probabilities of blocks of length three and four respec-
tively, the computation of the Markovianity measures 〈I1〉 = ∆H2 − ∆H3

and 〈I2〉 = ∆H2 −∆H4 is straightforward. All that is needed is to compute
the respective block entropies. Fig. 5.18 shows 〈I1〉 (dashed curves) and 〈I2〉
(solid curves) as a function of the coupling between the two communities
r for a system of N = 100 agents (M = L = 50). The different curves
represent various different contrarian rates p from 0.001 to 0.05. Notice the
log-linear scaling of the figure.
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Figure 5.18: 〈I1〉 (dashed curves) and 〈I2〉 (solid curves) as a function of the
coupling between the two communities r for a system of N = 100 agents.
The different curves represent various different contrarian rates p from 0.05
to 0.001, see legend.

What becomes clear in Fig. 5.18, first of all, is that the deviation from
Markovianity is most significant for small inter-community couplings. This
means, in the reading of Görnerup and Jacobi (2008), that the additional in-
formation about the future state (beyond that given by the present) provided
by pasts of length n is larger than zero if r becomes small. In general and
not surprisingly, 〈I2〉 > 〈I1〉 which means that both the first and the second
outcome before the present provide a considerable amount of information.
In fact, the numbers indicate that the first and the second step into the past
contribute in almost the same way. Noteworthy, the two measures 〈I1〉 and
〈I2〉 behave in the same way from the qualitative point of view which sug-
gests that the computationally less expensive 〈I1〉 can be well-suited for the
general Markovianity test.

The inset in Fig. 5.18 shows the situation for values around r = 1
(homogeneous mixing) as well as r > 1. As we would expect by the strong
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lumpability of homogeneous mixing, 〈I1〉 and 〈I2〉 are effectively zero (order
10−17) in the case r = 1. Also if the inter-community coupling becomes larger
than the coupling within communities (a situation that resembles a bipartite
graph) 〈I1〉 and 〈I2〉 are very small which indicates that a Markovian macro
description (that is, ideal aggregation) describes well these situations.

Finally, we notice in Fig. 5.18 that the measures do not generally increase
monotonically with a decreasing ratio r which is most obvious for the example
with a very small p = 1/1000 (green curves). This is somewhat unexpected
and it indicates the existence of certain parameter constellations at which
macroscopic complexity (for this is how non-Markovianity may be read) is
maximized. To obtain a better understanding of this behavior, the measures
〈I1〉 and 〈I2〉 are plot in Fig. 5.19 as a function of the contrarian rate p.
Notice again the log-linear scaling of the plot.
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Figure 5.19: 〈I1〉 and 〈I2〉 as a function of the contrarian rate p for various
coupling ratios r and a system of M = L = 50.

It becomes clear that there is a strong and non-trivial dependence of the
Markovianity measures on the contrarian rate p. Namely, 〈I1〉 and 〈I2〉 are
very small if p is relatively large but they are also relatively small if p becomes
very small. There is a parameter regime in between in which deviations from
Markovianity become most significant. Notice that in the inset of Fig. 5.19
the same curves are shown on a double-logarithmic scale. This shows, first,
that 〈I1〉 and 〈I2〉 for very small p are still significantly larger compared to
the case of relatively large p (say p > 0.1). Secondly, we observe that 〈I1〉
and 〈I2〉 actually vanish for p = 1/2. As discussed in the previous section,
the reason for that is the strong lumpability of the two-community CVM
whenever p = 1/2.

Finally, a detailed picture of the dependence of 〈In〉 on the contrarian
rate is provided in Fig. 5.20. The plot compares the cases r = 1/100 and
r = 1/1000 in order to show that the peak in the 〈In〉 depend also on r.
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For the interpretation of this behavior, notice that the p at which deviations
from Markovianity become largest, lie precisely in the parameter interval in
which switching times between the two complete consensus states become
minimal. Compare Fig. 5.4 in Sec. 5.2.3.
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Figure 5.20: Detailed picture of the dependence of 〈In〉 on the contrarian
rate. Blue curves correspond to r = 1/100 and red curves to r = 1/1000. In
the first case the peak is at around p ≈ 0.05, in the latter at p ≈ 0.065.

5.5 Discussion

This chapter has provided an analysis of the CVM on the complete and the
two-community graph. Based on the previous chapters, higher-level Markov
chain descriptions have been derived and allow a detailed understanding of
the two cases. A large contrarian rate p leads to a process which fluctuates
around the states with approximately the same number of black and white
agents, the fifty-fifty situation k = N/2 being the most probable observation.
This is true for homogeneous mixing as well as for the two-community model.
However, if p is small, a significant difference between the two topologies
emerges as the coupling between the two communities becomes weaker. On
the complete graph the population is almost uniform for long periods of
time, but due to the random perturbations introduced by the contrarian
rule there are rare transitions between the two consensus profiles. On the
community graph, an effect of local alignment is observed in addition to
that, because the system is likely to approach a meta-stable state of intra-
community consensus but inter-community polarization.

A particular focus of this chapter has been on the effect of inhomo-
geneities in the interaction topology on the stationary behavior. In this
regard, the two-community CVM served as a suitable scenario to assess
the macroscopic effects introduced by a slight microscopic heterogeneity.
Namely, homogeneous mixing compatible with the usual way of aggrega-
tion over all agents leads to a random walk on the line with N + 1 = O(N)
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states whereas the two-community model leads to a random walk on a 2D
lattice with O(N2) states. As the latter is a proper refinement of the former
this gives us means to study the relation between the two coarse-grainings
in a Markov chain setting. In this regard, this chapter has made visible the
reasons for which lumpability fails, even in its weaker form (Sec. 5.4.4). And
it has also provided a first analysis of the macroscopic memory effects that
are introduced by heterogeneous interaction structures.

There are various issues that deserve further discussion. For instance, is
the emergence of memory in the transition from the micro to the macro level
a useful characterization for the complexity of a certain system? We shall
discuss this point in the next chapter.

To finish this chapter, I would like to mention the possibility of apply-
ing the arguments developed throughout this chapter to the case of models
with absorbing states as, for instance, the pure VM (p = 0). In that case,
the quasi-stationary distribution (see Darroch and Seneta, 1965) takes the
role of π̂ or respectively π̃ in the construction of an ideal aggregate and the
computation of cylinder measures. One interesting issue to be addressed in
this regard is to reconsider the question of weak lumpability for the VM.
Finally, to understand how microscopic heterogeneity and macroscopic com-
plexity are related, numerical experiments with different network topologies
are another promising way to continue the analysis started in this chapter.
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Chapter VI

Aggregation and Emergence: A

Synthesis

This chapter is an attempt to synthesize some of the thoughts that have been
developed throughout this work. While more specific problems concerning
the methods developed in Chapter 3, 4 and 5, their limitations and possible
generalizations have been discussed at the end of each chapter, this chapter
aims at a synthetic view on how this work may contribute to an important
aspect of complexity science.

6.1 The Computational View on Emergence

To my point of view, one of the most important contributions is the per-
spective that a Markov chain theory of aggregation for ABMs may provide
on emergence and emergent phenomena. Namely, as explained in the sec-
ond Chapter, ABMs along with cellular automata (CA), genetic algorithms
and other related computational tools play an increasingly important role in
the philosophical discussions around emergence. Interestingly enough, some
philosophers advocate a position which makes use of computational mod-
els as a playground to address fundamental questions of emergence (Bedau,
1997; Huneman and Humphreys, 2008; Humphreys, 2008, among others).
Questions about the relation of these artificial model environments to real
phenomena are not ignored, but considered as an independent issue which is
actually part of another debate.1 In this way, the philosophical controversy
that usually comes with the term »emergence« (see O’Connor and Wong,
2012) is circumvented to some extend. This thesis has been following a sim-
ilar tradition, as the models dealt with are also very simple and the focus
has been on the method rather than on empirical adequacy.

Let us quote from the introduction to a special issue on »Dynamical

1To me, this position has been most clearly articulated by Humphreys (2012) in a talk
given at the 2012 DPG Tagung. See Symons (2008) for a critical account on the possible
contributions of this approach to the »metaphysical« problem of emergence.
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Emergence and Computation« in Minds & Machines (2008) Volume 18 (Hune-
man and Humphreys, 2008, 426) in order to point out in what regard our
approach may contribute to these discussions:

»Other problems appear concerning the criteria for those types
of emergence. Up to this point, the link between criteria for emer-
gence and simulation can be put in this way: Is the unavoidabil-
ity of simulation, or the incompressibility of computing the final
state, a sufficient criterion for diachronic emergence? And is this
criterion epistemological or ontological, i.e. does this criterion
lead to a description of emergence which depends on our cogni-
tive abilities, or does it provide an essential characterization of
the phenomenon? Yet how can we prove that the unpredictabil-
ity, except by simulations, picks out an objective property of a
system, and is not a peculiar limitation of our cognitive abilities?
What kind of further criteria do we need if we want a more fine-
grained classification of diachronic emergences? Can we derive
such a classification from a typology of simulations?«

By means of a formulation of computational models as Markov chains we
may shed new light some of these questions. First of all, a Markov chain for-
mulation at the micro level challenges a definition that makes strong reference
to simulation (as by »unavoidability of simulation«, ibid., 426) or likewise
to analytical unpredictability (»emergent phenomena [...] as unpredictable
in an analytical way from the equations of the system«, ibid., 425) of dy-
namical emergent phenomena. All criteria with reference to our capabilities
of dealing analytically with the problems are prone to mere epistemologi-
cal accounts of emergence and will not lead to an ontology of dynamical
emergences. On the other hand, the possibility or impossibility to lump
sets of states into a new chain at the macro level – that is, to compress the
process – indicates that the dynamical incompressibility of a computational
process might indeed form an appropriate criterion for dynamical emergence.
Though both »the unavoidability of simulations« and »the incompressibility
of computing the final state« capture the essential aspect of computational
emergence, dynamical incompressibility seems to be the more sophisticated
argument.

This is not least so because it should be in the relation between the micro
and the macro where appropriate criteria for emergence may be found. In
fact, the analysis of the micro-macro link in simple computational models
as the voter model (VM), leads naturally to some of the conditions for non-
aggregativity (and therefore emergence) proposed in Wimsatt (1986, 2006a).
Wimsatt’s aggregativity conditions, most importantly inter-substitution of
parts, are derived in a probabilistic framework to be the mathematical con-
ditions that have to be met so that the micro process is lumpable. This
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work suggests to base a proper differentiation between emergent phenom-
ena and non-emergent features on the question whether they meet certain
aggregativity conditions, notably, in a dynamical setting.

6.2 Challenging Definitions of Weak Emergence

6.2.1 Unavoidability of Simulations

Bedau (2003) defines weak emergence in the following way:

»Assume that P is a nominally emergent property possessed by
some locally reducible system S. Then P is weakly emergent if
and only if P is derivable from all of S’s micro facts but only by
simulation.« (p.15)

We have shown in Chapter 3 that many computational models can be for-
malized as random walks on more or less regular graphs. The configuration
space Σ of the model is the set of all possible configurations of the simula-
tion and for a considerable class of models we are able to derive explicitly the
transition probabilities between all these configurations, among them models
that are widely considered to give rise to weakly emergent patterns. As a
result we have at hand an analytical description of the computational model
that allows us, in principle, to understand all the dynamical processes, final
states or stationary distributions without a need of performing simulations.
For instance, if the emergent property P is a stable pattern which the model
converges to, this corresponds to an absorbing state in the Markov chain
formulation. We are able to compute the probability with which the random
walk will end up in that (and in any alternative absorbing) state, and, even
without any computation, we know that convergence happens in finite time.
In principle, therefore, simulations are avoidable.

However, analytical predictability of the model results are challenged by
the exponential increase of the dimension of the Markov chain description
as the number of elements increases. In practice, therefore, the problem
remains unpredictable at this level of description and there is no other choice
than performing simulations. The resulting unavoidability of simulations is
then essentially due to the cognitive difficulties to derive and calculate the
explicit Markov chains for some more complicated and bigger models and the
technical impossibility to handle matrices of that size on current computer
systems. Seen in this way, a criterion based on the analytical unpredictability
of a model of emergent phenomena is an epistemological criterion and leads
to an epistemological account of emergence. One could also object that even
if an analytical description in form of a micro chain (Σ, P̂ ) is found, one still
has to »simulate« the chain by applying the transition matrix to a certain
initial distribution of interest. One still has to rely on all »micro facts«.
On the other hand, however, certain properties of the chain (as, for instance,
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convergence to an absorbing state in finite time) can be assessed without any
computation or reduction to a simpler description (see also Izquierdo et al.
(2009) who mention some of these properties for rather complex models).

To my point of view, criteria for emergent behavior should not be defined
with reference to our capabilities of dealing with the respective problem us-
ing analytical methods. It seems that this view originates from an implicit
tendency to assume that analytical descriptions are differential equation de-
scribing the problem at an aggregate macro level, disregarding the possibility
of an analytical formulation at the micro level. For our mathematical tools
are under constant development and because we cannot foresee whether new
methods for the analysis of complex systems allow analytical predictions in
the future, any such criterion makes – by the very construction – emergence a
purely epistemological question and rules out any hypothesis about emergent
phenomena in an ontological sense.

6.2.2 Computational Incompressibility

Very often, the necessity of performing simulation has been related to the
impossibility to reduce the problem to a simpler one by deriving »directly«
a macroscopic description of the problem. In his 2003 paper (Bedau, 2003),
from which the above definition has been cited, Bedau himself equates weak
emergence and computational irreducibility (»Computational irreducibility
– that is, weak emergence«, p.18) with reference to the well-known work on
CA by Wolfram (1994). Here we will use the term computational incompress-
ibility which has been used by Huneman and Humphreys (2008); Humphreys
(2008) especially in the context of diachronic (i.e., dynamical) emergence.

While preserving the essence of the argument, the concept of dynamical
incompressibility provides a definition of weak emergence which is not by
construction an epistemological one, because the question whether a process
or a model can be compressed is truly a property of the process. It is cer-
tainly closely related to analytical predictability (and thus unavoidability of
simulations), namely, when a macro description in form of, for instance, a
differential equation is considered as the reference analytical formulation to
which the micro process can be reduced. According to this view, a property is
weakly emergent if the process leading to the generation of it is computation-
ally incompressible (Humphreys, 2008). Markov chain aggregation provides
precise arguments for whether such a complexity reduction is feasible. The
transition from micro to macro corresponds, in essence, to a compression of
subsets of micro configurations into macro states and in this way Markov
chain aggregation – that is, lumpability – operationalizes the concept of
computational compressibility. The question of dynamical incompressibility
(and therefore, the question of emergence) is then understood as whether
this transition from micro to macro is with or without loss of information.

More precisely, we have seen in the third chapter (and other have before,
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e.g., Shalizi and Moore, 2003) that any system property defines a partition of
the state space of the micro chain. Then, there are necessary and sufficient
conditions (Kemeny and Snell, 1976, Thm. 6.3.2) for the process projected
onto this partition to be again a Markov chain, that is, a macro description
of the process which contains all information about the system (in the true
sense of information, see Chapter 5, Sec. 5.4.5). If we want to keep up a
definition of emergence on the basis of dynamical incompressibility, we could
put forth the following definition: a system property P is emergent if the
system is lumpable with respect to the macro description defined by P.
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Figure 6.1: An instance of emergent »spatial alignment« in a simple segre-
gation model.

At its core, this Markov chain approach to emergence deals with a type
of emergent behavior that might be called »process emergence«. It relates
processes at a micro level, typically those arising from simple local rules, to
processes at a macro level typically obtained by averaging or aggregating
certain properties. The focus is not on the emergence of a stable pattern
or a higher level structure that »results« from a simulation, it is rather on
establishing a relation between processes on the different levels. In fact,
»resultant« stable or recurring macro properties are often reflected, in the
process point of view, as absorbing or meta-stable states with a high sta-
tionary probability (or classes of those).

Notice that this view on computational incompressibility is closely related
to the information-theoretic approaches to measure complexity and emer-
gence as developed, for instance, in Grassberger (1986); Lindgren and Nor-
dahl (1988); Crutchfield and Young (1989); Crutchfield and Shalizi (1999);
Shalizi and Crutchfield (2001); Shalizi et al. (2004); Ball et al. (2010); Gmeiner
(2013) and that a construction based on Markovianity is in fact a special case
of these more general approaches.
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I briefly comment on some possible objections to such a definition. The
first point is in fact a general difficulty of defining a property as weakly
emergent if the processes leading to it are computationally incompressible.
Consider, as an example, the emergence of »spatial alignment« in voter-like
and segregation models. See Fig. 6.1 for an instance of »spatial alignment«
that emerged in a simple version of Schelling’s segregation model (Schelling,
1971). In the two-community model (for the VM as well as for the CVM)
we observe the emergence of »spatial alignment« or segregation in the form
of intra-community consensus and inter-community polarization (Chapter
4 and 5). However, the process with 2(M+L) states at the micro level (M
and L being the community sizes) is compressible to a description of size
(M+1)×(L+1) which is an essential reduction. On the other hand, we have
seen that on the ring topology (and similarly for the grid, see Fig. 6.1) the
number of states that are needed to obtain a Markovian macro description
is larger than 2N/N states which cannot be considered »essentially simpler
than the microscopic computational process by which the system’s behavior
is generated« (Bedau, 2003, 18). This raises the question whether »spatial
alignment« is emergent in one case but not in the other. In the same way one
could ask whether the emergence of complete consensus in the VM (which
often comes as a surprise to people unacquainted with this kind of models)
is emergent if the model is run on a complex network but not emergent if it
is run on the complete graph.

Secondly, a definition based on Markov chain aggregation requires to
rigorously define the system property corresponding to a certain emergent
feature. On the one hand, this points at a deficiency of existing definitions
which are usually not explicit on the property and the processes related to
it. On the other hand, it may not always by easy to rigorously define the
system property corresponding to a pattern of interest even if the feature
catches the observer’s eye immediately when looking at the outcome of a
simulation. In the above example, one could argue that it is not so clear
to which micro configurations an observer would ascribe the property of
»spatial alignment«. However, there are clearly ways to measure the amount
of alignment, for instance, by taking into account the number of aligned
neighbors. The respective measure defines again a partition on the space of
micro configuration. In fact, pair approximation and approximate mean field
theories (Gleeson, 2013, and references therein) derive systems of differential
equations in a similar way. This point also brings into the discussion the role
of the observer and the idea that emergence comes in degrees (Humphreys,
2008). In this regard, the non-Markovianity measure used in Sec. 5.4.5 could
be a way to »measure emergence«.

Finally, a definition based on exact lumpability may be too unrestrictive
on the one and not widely applicable on the other hand. Too unrestric-
tive because in Markov chains in general lumpability is the exception rather
than the rule Chazottes and Ugalde (2003); Gurvits and Ledoux (2005).
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Not applicable to important cases, because the full specification of a micro
chain and the projection operator may become very complicated for more
sophisticated computational models. Even for classical CA with synchronous
update, which are widely used in the context of computational emergence,
such a specification is by no means straightforward.2

6.3 From Computational Incompressibility to Non-

Aggregativity

Emergence is a concept that relates parts and wholes. Dynamical (or di-
achronic) emergence is a concept that relates processes on the level of parts
to processes on the level of the whole. In our setting, processes at the micro
level are processes of change of certain attributes of a set of agents arising
from simple local interaction rules. The macro-level process is obtained by
the observation or measurement of certain indicators that inform us about
the global state of the entire agent population. Typically (though probably
not in every case) such a measurement corresponds to an averaging or ag-
gregation of certain agent properties or of properties of the links between
agents (i.e., link-between-parts properties). In the VM, for instance, consid-
ering the frequency of the different attributes in the population is a one of the
simplest forms of aggregation. In the sugarscape model (Epstein and Axtell,
1996), to make another example, the number of agents in the environment or
the average amount of sugar they carry are similarly aggregative measures.
Examples of system properties obtained by aggregation over links-between-
parts properties include the number of unaligned neighbors (active bonds)
in the VM or, in a more complex setting, the time evolution of density or
other structural indicators of a network that co-evolves in the simulation.

Hence, the link between the level of parts and the whole is realized in
form of system properties and the typical way to define them is via some
form of aggregation. Emergence occurs when the dynamical evolution of the
system property ceases to be Markovian. That is, when a Markovian process
at the micro-level gives rise to a non-Markovian process at the macro-level.
In other words, when aggregation fails to capture all the dynamical details of
the micro-level process.

In this reading, emergence and »aggregativity« define a fundamental di-
chotomy between emergent and non-emergent phenomena; a view that, to
the authors knowledge, has first been expressed by Wimsatt (Wimsatt, 1986,
2006a,b):

»Aggregativity, a claim that "the whole is nothing more than the
sum of its parts", is the proper opposite to emergence« (Wimsatt,
2006b, 4)

2Notice that CA with asynchronous stochastic update, to the contrary, belong to the
class of single-step dynamics the specification of which has been the subject of this thesis.
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Calling for an account of emergence consistent with reductionism, Wimsatt
starts out from the question of aggregativity: »When intuitively is a system
"more than the sum of its parts"?« (Wimsatt, 2006a, 673). He states four
criteria that a system property in relation with the parts of that system must
fulfill to be a fully aggregative property (ibid, 676):

1. invariance of the system property under operations rearranging the
parts (inter-substitution),

2. qualitative similarity of the system property under addition or sub-
traction of parts (size scaling),

3. invariance of the system property under operations involving decompo-
sition and re-aggregation of parts (decomposition and re-aggregation),

4. there are no cooperative or inhibitory interactions among the parts
which affect the system property (linearity).

Noteworthy (see Chapter 2), such an account of emergence requires to be
explicit on the definition of the system property at question, for one and the
same system might be aggregative for one but emergent for another property.
This is very similar to lumpability which only makes sense (it is actually only
defined) in relation to a certain partition of the state space.

With the analysis of the VM in Chapter 3 we recover the first of Wim-
satt’s criteria.3 Actually we came to the conclusion that aggregativity de-
pends exclusively on the invariance of the system property with respect to
the inter-substitution of parts. If the system property (the projection from
micro to macro) is defined in accordance with the symmetries of the agent re-
lations, it will be an aggregative measure and correctly describe the evolution
of the system (Chapter 4). It might be that models with more complicated
interaction mechanisms will require a closer inspection of the other three
criteria. On the other hand, Wimsatt (2006a) notes that »[t]hese conditions
are not independent of one another.« (p.675). Moreover, for all models in
which the local transitions depend only on the neighborhood configurations,
invariance of agent relations with respect to agent permutations is sufficient
for lumpability and ensures compressibility of the process.

Finally, in order to stress that we are dealing with dynamical emergence,
let me mention a subtlety when applying Wimsatt’s arguments to the VM.
One could actually argue that all of the aggregativity criteria are met by a
macro formulation in terms of attribute frequencies h(x) (Hamming weight)
independent of the agent network. Namely, at each instance, that is, for
each single micro configuration, the system property h(x) satisfies all of

3One of Wimsatt’s main concerns is to show that in natural phenomena full aggrega-
tivity (present if all four conditions are satisfied) is the exception rather than the rule
and that in many models – including voter-like models of population genetics – the use of
aggregative procedures is unjustified (Wimsatt, 2006a).
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Wimsatt’s aggregativity conditions. It is invariant with respect to alter-
native arrangements of the agents. Qualitative similarity (even an obvious
quantitative relation) after addition or subtraction of parts is also satisfied.
Thirdly, given any configuration x, it is possible to decompose the system
in an arbitrary way, compute h(x) for subsets of agents, and re-aggregate
(sum up) the measures for the different subsets. Finally, h(x) is also invari-
ant with respect to non-symmetric interaction relation, just because it only
takes into account node (agent) properties. Noteworthy, this works for any
agent network.

The answer to this simple puzzle resides in the shift from a synchronic to
a diachronic – that is, process-based – perspective. A dynamical argument
is also presented in Wimsatt (2006a) to illustrate aggregation failures in
classical population genetics, but the distinction between a synchronic and
a diachronic emergence is not always clear. It might even be the case (but
this certainly deserves a further inspection) that the aggregativity criteria
with reference to dynamical operations (most importantly criteria 4) appear
redundant if an explicit process perspective is taken. Namely, in the context
of Markov chain aggregation the system property on which aggregativity
condition must be assessed is not the attribute frequency, but rather the
transition probability from one frequency level to the other. From the point
of view of lumpability this is obvious, but it is not, in general, from the point
of view of emergence.

To sum up, a definition of emergence in terms of lumpability provides
a link between the concept of dynamical incompressibility and Wimsatt’s
notion of non-aggregativity. It shares an intrinsic emphasis on processes
with the former and with the latter a clear concept of system property as
well as the idea that emergence and aggregativity define a dichotomy between
emergent and non-emergent phenomena.
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Chapter VII

Conclusion

This thesis introduces a Markov chain approach for the analysis of agent-
based models (ABMs). It provides a general framework of aggregation in
agent-based and related computational models by making use of Markov
chain aggregation and lumpability theory in order to link between the micro-
level dynamical behavior and higher-level processes defined by macroscopic
observables. The starting point is a formal representation of a class of ABMs
as Markov chains – so-called micro chains – obtained by considering the set
of all possible agent configurations as the state space of a huge Markov chain.
This allows for the application of the theory of Markov chain aggregation –
namely, lumpability – in order to reduce the state space of the models and
relate microscopic descriptions to a macroscopic formulation of interest. In
some cases, the aggregation is without loss of information and the macro
chain can be used to compute several stationary and transient characteris-
tics of the models. In general, however, a certain amount of macroscopic
complexity is introduced by the transition from the micro level to a favored
macro description which is a fingerprint of emergence in agent-based com-
putational models.

1. ABMs are Markov chains.

While Markov chains represent a relatively simple form of a stochastic
process, ABMs put a strong emphasis on heterogeneity and social interac-
tions. Nevertheless, most ABMs are from the formal point of view Markov
chains. Intuitively, this might be clear by the fact that ABMs usually come
in form of a computer program which takes a certain initial population of
agents as an input and iteratively applies an algorithm to evolve the agent
population from one time step to the other. In order to formally represent
such an iterative process as a Markov chain, a single state of the chain must
be conceived of as a possible configuration of the entire system and con-
tain all the dynamical variables and microscopic details – agent attributes,
their connectivity structure, state of the environment etc. – an idea that
this thesis has borrowed from Izquierdo et al. (2009). A rigorous proof of
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the Markovianity of ABMs is not always straightforward. However, the mi-
cro process is a Markov chain whenever the iteration it implements can be
understood as a (time-independent) stochastic choice out of a set of deter-
ministic options. In this respect, the random mapping representation of a
Markov process helps to understand the role of the collection of (determinis-
tic) dynamical rules used in the model from one side and of the probability
distribution ω governing the sequential choice of the dynamical rule used to
update the system at each time step from the other side.

2. A class of ABMs that we have called single-step models give rise to
random walks on regular graphs.

Moreover, for a class of models which we have referred to as single-step
dynamics, it is possible to derive explicitly the transition probabilities P̂
in terms of the update function u and the probability distribution ω. Due
to a sequential update mechanism in which an agent along with a set of
neighbors is chosen and the state of that agent is updated as a function of
the neighborhood configuration, non-zero transition probabilities are possible
only between configurations that differ in at most on element (one agent).
This characterizes ABMs as random walks on regular graphs. Namely, in a
system with N agents each of which may be in one out of δ states, the set
Σ of all agent configurations is the set of strings of length N of δ possible
symbols. Under sequential update of only one agent at a time, transitions
are possible only between adjacent strings so that the maximal »grammar«
of such a system is the Hamming graph H(N, δ). However, a completely
regular walk on H(N, δ) with non-zero transition probabilities between all
adjacent configurations is realized only if no constraints act in the system.
In particular, as will be resumed below, if the interaction probabilities and
therewith the distribution ω are constrained, for instance, by an underlying
interaction network, the structure of the micro chain becomes more and
more irregular. The same is true for other interaction constraints such as
assortativity or bounded confidence.

3. Regularity implies dynamical redundancy and therefore the possibility
of state space reduction.

Nevertheless, the approach to ABMs as random walks on more or less
regular graphs hints at the possibility of reducing the state space of the micro
chain by exploiting systematically the dynamical symmetries that an ABM
gives rise to. Namely, the existence of non-trivial automorphisms of the micro
chain tells us that certain sets of micro configurations can be interchanged
without changing the probability structure of the random walk. These sets
of micro states can be aggregated or lumped into a single macro state and the
resulting macro-level process is still a Markov chain. In Markov chain theory,
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such a state space reduction by which no information about the dynamical
behavior is lost is known as lumpability.

4. Macro observations and system properties induce state space partitions
and reductions.

There is another way of looking at state space reductions or aggregation
which is particularly relevant in the study of ABMs. Namely, any observable
of the system naturally defines a many-to-one relation by which sets of micro
configurations with the same observable value are aggregated into the same
macro state. In other words, tracking the time evolution of a model in
terms of a system property or order parameter φ that informs us about the
global state of the system corresponds to a projection Π of the micro chain
onto a partition X of the space of micro configurations Σ. Vice versa, any
projection map Π from Σ to X defines an observable φ with values in the
image set X that are in complete correspondence with a classification based
on an observable property of the system. These two ways of describing the
construction of macro-dynamics are equivalent and the choice of one or the
other point of view is just a matter of taste.

5. A macro observation defines a Markov process if it is compatible with
the symmetries of the micro chain.

6. Vice versa, the symmetries of the micro chain induce a partition with
respect to which the process is lumpable

The main question that this thesis has been concerned with is about the
conditions on the microscopic system (Σ, P̂ ) and the projection construction
(Π : Σ → X or respectively φ) that have to be met in order to lead to a
macro process that is still a Markov chain. The starting point has been
Kemeny and Snell (1976), Thm. 6.3.2, in which necessary and sufficient
condition for lumpability are provided. On that basis, a sufficient condition
has been provided with Thm. 3.2.2 that relates the question of lumpability
to the symmetries in the dynamical structure of the micro chain. Namely,
to any partition X of Σ there is a transformation group G acting on Σ

that generates X and Thm. 3.2.2 states that the micro process (P̂ ,Σ) is
lumpable to a macro process (X, P ), if P̂ is symmetric with respect to G.
The automorphisms of the microscopic transition matrix (for G ⊆ Aut(P̂ )
see Lemma 3.2.3) can therefore be used to construct a partition (X) with
respect to which the process is lumpable. In turn, an observation on the
system will define a lumpable macro process if it is compatible with the
symmetries of the micro chain.

7. In the voter model, homogeneous mixing is a prerequisite for lumpability
with respect to aggregation over all agent attributes.
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This thesis has made extensive use of the voter model (VM) – one of the
simplest ABM – to illustrate these points. In the binary VM each agent can
be in two possible states � and �. At each time step, two agents (linked in
the interaction network) are chosen at random with probability ω(i, j) and
one of them copies the state of the other. From the microscopic perspective
the binary VM is a random walk on the N -dimensional hypercube (H(N, 2))
and the Hamming weight φ(x) = h(x) (to maintain this terminology) of
an agent configuration is the most typical macro level of observation. In
effect, all micro configurations with the same Hamming weight are mapped
into the same macro state which is a tremendous reduction from 2N micro
states to N + 1 macro states. However, Chapter 3 has shown that the
symmetries of the micro chain P̂ are compatible with that level of observation
only if the probability distribution ω is invariant with respect to all agent
permutations. Markovianity at the macro level requires that the probability
with which two agents are chosen ω(i, j) is equal for all agents pairs which
renders homogeneous mixing a prerequisite for lumpability. The resulting
process is known as Moran process (after Moran, 1958).

8. The use of Markov chain theory enables a complete characterization of
the dynamical behavior of the VM with homogeneous mixing.

Throughout Chapter 3 the VM with homogeneous mixing and the re-
sulting macro chain on X = (X0, . . . , Xk, . . . XN ) with h(x) = k has been
discussed in detail. Due to the structure of the macro chain it has been
possible to derive a closed-form expression for the fundamental matrix F for
arbitrary N . Encoding the recurrence and hitting times of the system, this
provides all the information about the mean quantities and variances of the
transient dynamics in this model. Noteworthy, Markov chain theory allows
for some computations that are not easy with other methods such as mean-
field approaches. For instance, it is possible to characterize the convergence
behavior of realizations that end up in one absorbing state independently
from those that end up in the other one (Section 3.4.4). Moreover, the
multi-state VM in which agents can adopt δ different states is shown to be
reducible to the binary VM by a further lumping. However, only if the inter-
action is unconstrained in the sense that all agents and all attributes interact
in the same way. In turn, if interactions are constrained by assortativity or
bounded confidence this may lead to a stable pattern of polarization at the
level of the entire population (Section 3.4).

9. Microscopic heterogeneity translates into dynamical irregularities in the
micro chain and requires a refinement of the aggregation and the cor-
responding level of observation.

When inhomogeneities are introduced in the model, the symmetry con-
ditions for lumpability in Thm. 3.2.2 (as well as Kemeny and Snell, 1976,
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Thm. 6.3.2) are no longer satisfied for the partition X induced by aggrega-
tion over all agents (i.e., by h(x)). However, Chapter 4 shows at the example
of the VM that a refinement of the aggregation procedure is possible which
is based entirely on the symmetries of the interaction probabilities ω. Prop.
4.3.1 states that the automorphism of ω may be used to define a group G of
bijections on Σ which generates a lumpable partition Mω of Σ. Noteworthy,
while Thm. 3.2.2 as well as common approaches to lumpability require the
analysis of the δN -dimensional micro chain, with Prop. 4.3.1 the result is
stated in terms of the symmetries of a interaction network of size N . The
most important implication of Prop. 4.3.1 is that the higher the amount
of heterogeneity in the agent system, the lesser the coarse-graining that is
possible if a Markovian description is desired to capture all the dynami-
cal details of the micro process. In other words, the more constrained and
heterogeneous the microscopic interaction probabilities and rules, the more
irregular the micro process and the lower the chances to obtain a reasonable
reduction by Markov chain aggregation.

10. Markov chain aggregation leads to solvable chains (only for) for »sim-
ple« population structures.

It is clear then that the exact aggregation by lumpability significantly
reduces the number of states only if the interaction network that underlies
the model possesses a lot of symmetries. This restricts the applicability of
the method as a solution technique for ABMs to stylized situations as the
leader-follower topology (Section 4.5) or the two-community model (Section
4.4 and 5.2.4). Nevertheless, even in those stylized situations interesting fea-
tures can be observed. In the leader-follower system, the probability that
the leader imposes its opinion on a follower population increases with the in-
fluence asymmetry between a leader and the followers but is independent of
peer-to-peer processes among followers. A greater influence of the leader also
accelerates the convergence process, however, this effect is undermined by a
stronger peer-to-peer communication (Section 4.5). For the two-community
VM, in which a weak influence exists between two strongly connected groups,
a general increase in convergence times is observed due to the existence of
meta-stable states of intra-community consensus and inter-community po-
larization. This is also observed in the quasi-stationary distribution of the
two-community VM.

Similar results are obtained for the contrarian VM (CVM) in which
agents act in a contrarian way with a small probability p (Chapter 5). An
increasing contrarian rate leads to a process that is characterized more and
more by random state flips independent of whether the agents are completely
connected or organized in communities. As p becomes smaller, topological
effects become visible. On the complete graph the population is almost
uniform for long periods of time, but due to the random perturbations in-
troduced by the contrarian rule there are rare transitions between the two
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consensus profiles. Noteworthy, there is a characteristic p at which the rate
of switching becomes maximal (Section 5.2.2). On the two-community graph
the system is likely to approach the states of inter-community polarization
and remain there for quite some time. Such ordering behavior is also ob-
served for other networks with a strong local structure (Section 5.3.2).

11. Microscopic heterogeneity leads to macroscopic complexity.

Another interpretation that Prop. 4.3.1 suggests is that microscopic het-
erogeneity introduces complexity at the macroscopic level. This idea has
been taken up in Chapter 5 using the CVM as an example. If we decide to
stay at the level of full aggregation over all agents (h(x)) despite the fact
that it is not compatible with the symmetries of the micro chain, the process
obtained by this projection is no longer a Markov chain. This means that a
certain amount of memory is introduced at the macroscopic level by the very
way the system is observed. In the last part of Chapter 5, this divergence
from Markovianity has been quantified in terms of the information that the
past (before the present) contains about the future. The two-community
CVM has served as a scenario in which these entities can be explicitly com-
puted. Again, there is a characteristic contrarian rate p at which deviations
from Markovianity are maximal.

The method informs us in this way about the complexity of a system in-
troduced by non-trivial interaction relations. Namely, the theory of Markov
chain aggregation makes explicit statements about when a micro process is
compressible to a certain macro-level description. This links non-lumpability
to computational incompressibility, one of the key concepts in dynamical
emergence (Bedau, 2003; Huneman and Humphreys, 2008, among others).
Moreover, in the context of Markov chain aggregation, computational incom-
pressibility becomes directly related to Wimsatt’s notion of non-aggregativity
(Wimsatt, 1986, 2006a), another important account of emergence. The ar-
gumentation in Chapter 6 suggests that deviations from Markovianity at the
macro level can be understood as a fingerprint of dynamical emergence – and
hence complexity – as the macroscopic process displays features that are not
present in the micro level process.

The models used in this thesis are very simple and I would not claim
that they are reasonable descriptions of real social phenomena. Their main
purpose is to shed light on some fundamental mechanism of self-organizing
systems. In this regard, I would like to emphasize the role that constraints
on the agent behavior play regarding the aggregativity or reducibility of the
models to a macro-level description. Even in those simple models, complex
and heterogeneous interactions structures rule out completely the possibility
of deriving a loss-less Markovian macro description which is sensitive to
all dynamical details. Likewise do constraints on the interaction rules (as
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assortativity) necessitate the inclusion of more detail into a valid macro-level
description in order to account for population effects (as polarization) that
emerge from them. With their obvious limitations, the models used here do
not allow for a direct generalization to more realistic cases, their treatment is
only the first step in the stochastic analysis of the micro-macro link in social
simulation. On the other hand, an increase in model complexity in more
sophisticated ABMs comes often by introducing various levels or dimensions
of agent heterogeneity, different types of agents with different rules, and a
possibly variable environment. The macro patterns we observe in them are
always the result of an adjustment of the constraints on and heterogeneities
in the microscopic system and the fundamental mechanisms those that are
at play also in the simpler models.

Nevertheless, the application of the ideas presented in this thesis to other
ABMs is certainly an interesting issue for the future. Even if this has to
be carefully considered model by model, a micro formulation in form of a
micro chain will usually be possible (see Section 3.5). For more sophisticated
ABMs, however, deriving an exact aggregate description of a size which
allows for direct computations by the use of strong lumpability is not likely.
On the other hand, there are nowadays powerful computational techniques
to deal with large Markov chains, and interestingly, these methods are often
based on approximate aggregations of the chains (Buchholz, 2006; Stewart,
2009; Touzene, 2013, among many others). In this context, the presented
concepts might help in the analysis of the adequacy of such approximate
techniques, and they may also shed light on the relation between approximate
aggregations and the macroscopic measures they can be associated with.

The method is most directly applicable to models at use in socio-cultural
dynamics, evolutionary graph theory as well as to stochastic cellular au-
tomata (CA). Regarding the first field, one interesting extension concerns
simple forms of memory in the agent decisions such as agents that remember
the states that they have already visited (Bornholdt et al., 2011) or by as-
suming that the probability of an agent to change its opinion decreases with
the time it sticks to the current one (Stark et al., 2008). The macroscopic
effects of these simple extensions are very interesting and encouraging for fur-
ther analysis. Likewise, a more sophisticated modeling consists of coupling
the individual agent dynamics with the macro dynamics and allow certain
macro-structural properties to feed back onto the level of individual deci-
sions. Such ingredients have been introduced into models of herd behavior
in finance (Krause and Bornholdt, 2013) and they are also relevant in voting
behavior (Caruso and Castorina, 2005).

The main question in evolutionary graph theory is how the population
structure ω affects the outcome of an evolutionary process. It is now well-
known that certain population structures may enhance or suppress selection
in the sense that the probability of a randomly placed mutant to invade the
entire population differs from the respective Moran probability obtained for
homogeneous mixing (Liberman et al., 2005). We have seen such a divergence
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from the Moran probabilities in Section 4.5 where the VM on a leader-
follower topology has been discussed. The search for paradigmatic network
structures which affect the fixation probabilities is still a topic of current
research (e.g., Shakarian et al., 2012; Voorhees and Murray, 2013) and the
methods developed here, Prop. 4.3.1 in particular, can be directly applied
to study not only exit probabilities, but also the pace of mutant fixation.

Thirdly, regarding the idea of relating lumpability to dynamical emer-
gence (Chapter 6), the application to CA is a compelling idea. However, a
micro description of the original synchronous CA as Markov chains is chal-
lenging as, in principle, all agents can change at a time (notice that original
CA are deterministic systems, but that their transitions can nevertheless be
encoded in a »transition matrix«). On the other hand, their asynchronous
probabilistic counterparts belong precisely to the class of single-step dynam-
ics which we have been concerned with in this thesis. (See, for instance,
Schönfisch and de Roos, 1999; Nehaniv, 2004 for the relation between asyn-
chronous and synchronous automata.) In particular, when the probability
of choosing a triple (i, j, k) of cells is equal for all triples (complete graph),
the micro chain is lumpable with respect to a (macro) description in term
of the number of white and respectively black cells (as sensible as such a
description might be). Some preliminary computations with the respective
macro chains indicate, that the different rules alone, even in a non-localized
form, lead to behaviors by which the more complex rules are distinguishable
from the simpler ones. This might be useful for classification. While this
thesis has been more concerned with the effects of heterogeneity in ω, the
systematic study of elementary CA in a homogeneous setting could be a way
to understand the contribution of different update rules u to the dynamic
behavior of complex computational models.

Another more general topic that should be addressed in the future is to
obtain a more detailed but also more synthetic understanding of the macro-
scopic effects that may emerge in micro simulation models. One starting
point could be a quantification of the range of memory at the macro level in
order to gain insight about the microscopic conditions for long-term mem-
ory effects that are known to exist in many real world systems from Finance
(Cont, 2001) to Biology (Stanley et al., 1994). More generally, under certain
circumstances the macro process may undergo dynamical changes in its own
structural rules. This fact is referred to as explanatory emergence, a contro-
versial issue in social theory (Giesen, 1987). It can be understood either as
a consequence of some external (to the model) inputs or on the basis of deep
accelerations of the micro dynamics that in turn bring about the processes
of change at the macro level. In both cases this question opens up to new
theoretical as well as very interesting practical developments.

All in all, the theory of Markov chain aggregation applied to ABMs
provides a useful instrument for the analysis of the link from a microscopic
ABM to macroscopic observables and may contribute to our understanding
of aggregation and emergence in complex adaptive systems.
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