
Automation of Common Cause Analysis

-

Monitoring Improvement Measure Performance and

Predicting Accidents

Dipl.-Inform. Jan Sanders
Computer Networks and Distributed Systems Group

Technical Faculty, Bielefeld University
mail: jsanders@TechFak.Uni-Bielefeld.DE

web: www.rvs.uni-bielefeld.de

Zur Erlangung des akademischen Grades des
Doktors der Ingenieurwissenschaften

der Technischen Fakultät
der Universität Bielefeld

vorgelegte
Dissertation

von Jan Sanders

September 8, 2014

2

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

3

Acknowledgements

There are many people who have supported me in one kind or another with
my thesis. Of course there is my thesis supervisor, Prof. Peter B. Ladkin
PhD. I would not have taken up writing a thesis without his encouragement.
I am very grateful that Peter has always shown keen interest in the course
of the thesis and is also a frequent user of the software, which has given me
plenty of opportunity to fix all the things that did not work. Apart from
thesis and software I have learned too many things from working with Peter
since I started working with the RVS. I would also like to thank Dr. Bernd
Sieker, who also works in the AG RVS, is interested in accident analysis and
has probably found the most bugs in the software. I am very much indebted
to all the people I have worked with at the Uni Bielefeld. While having a
normal computer support job at the AG Rechnerbetriebsgruppe I always
had the freedom to work on my thesis when there was some slack. Many
thanks go to Prof. Dr, Andre Doering, who offered to be my second thesis
advisor. Its been some time since we have done WBAs together. And also
to the Prof. Dr. Franz Kummert and Dr. Thorsten Schneider for being on
my Promotionsausschuss.

4

Preface: Thesis

Common cause analysis for accidents is a necessity for effective safety engi-
neering. Modern accident databases, e.g. [7][10][1][9], offer a great number
of accident reports and help safety engineers to find reports for known acci-
dents quickly.

The databases mainly serve as report repositories, to search and access
specific reports. Some predefined commonalities of accidents can be used in
search queries of databases, but there is no provision to analyse databases
for common causes in accidents, especially if the common causes are yet
unknown to be common causes.

Common cause analysis, obviously, needs causal analysis. There are
causal analysis methods which offer the prospect of more structure in de-
scribing cause-effect relationships in accidents. State of the art is to formu-
late accident reports as texts, which is very difficult to parse for cause-effect
relationships.

Causal analysis methods[27] offer more explicit descriptions of cause-
effect relationships.

If accident report databases must be searched automatically for com-
mon causes, the problem of finding common causes has to be solved al-
gorithmically. This entails, that cause-effect denotations must be machine
understandable with well defined semantics.

AcciMaps[24], one example of a causal analysis method, has the feature
to formally indicate accidents’ cause-effect relationships. Unfortunately it
lacks well-defined semantics for what a cause-effect relationship is. That
means that an algorithm could in principle search for patterns in AcciMaps,
but the semantic evaluation of the results must be done in the head of the
user/investigator. The algorithm itself cannot be used for causal reasoning.

This thesis will show that with well-defined causal semantics, algorithms
can be developed which offer causal reasoning capabilites and can be used for
improved funcitonality in accident databases. The accompanying software
is a proof of concept. It contains algorithms for

• searching for causally-specified system behaviour,

• comparing two or more accident descriptions for similarity and

• finding previously unknown common causes of accidents automatically.

Contents

1 Introduction 11

2 Technical Terms 15
2.1 Systems . 15

2.1.1 Teleological Systems 15
2.1.2 Systems, Environment and the World 16
2.1.3 System State and Behaviour 16

2.2 Different Kinds of Accidents 17

3 The Occurrence Investigation Process 19
3.1 Occurrence Investigation Process, OIP 19

3.1.1 Single Occurrence Analysis 19
3.1.2 Meta-analysis . 21

4 Accident Databases 23
4.1 Report Corpora . 23

4.1.1 U.S. NTSB . 23
4.1.2 Australian ATSB . 24
4.1.3 Canadian CTAISB . 24
4.1.4 French BEA . 24
4.1.5 German BFU . 24
4.1.6 U.K. AAIB . 24
4.1.7 U.S. NASA ASRS . 24
4.1.8 Boeing Statistical Summary of Statistical Jet Airplane

Accidents . 25
4.2 Improving Report Corpuses 25

5 Introduction to Why-Because Analysis 27
5.1 Accidents and Causality . 28

5.1.1 Fukushima: Three Disasters in One Day 28
5.1.2 Concepts of Accident Analysis 29

5.2 Counterfactual Reasoning . 37
5.2.1 Seeing it Coming . 37
5.2.2 Cause-Relation . 38

5

6 CONTENTS

5.2.3 Countermeasures . 39

5.3 The First Accident Analysis 43

5.3.1 Why-Because Graph (WBG) 43

5.3.2 Friendly Fire isn’t . 43

5.4 First Accident, contd. 49

5.4.1 Factors from the Narrative 50

5.4.2 The Stopping Rule . 50

5.4.3 Further Analysis . 51

5.4.4 Unknowns in the Analysis 54

5.4.5 Technical Term: Assumption 55

5.4.6 Not a Tree anymore 57

5.5 Sufficient, but Not Neccessary 60

5.5.1 Similar Factors . 60

5.5.2 Dissimilar Factors . 60

6 Accident Analysis Methods - An Overview 63

6.1 STAMP . 66

6.2 MES . 67

6.3 SOL . 69

6.4 WBA and AcciMaps . 71

6.5 ECF . 72

6.6 Conclusion . 72

7 Past Approaches 75

7.1 Early Software to Create and Edit Why-Because Graphs . . . 75

7.2 Towards Automatic Common Cause Analysis 76

7.2.1 Manual Occurrence Data Comparison 76

7.2.2 Controlled English for WBA, CE4WBA 76

7.2.3 IQualizeIT . 77

7.2.4 Integrating CE4WBA and IQualizeIT 77

7.2.5 A New Approach . 78

8 Requirements for Automatic Common Cause Analysis 79

8.1 Representing Complex Behaviour in Reports 79

8.2 Distinction between Cause and Effect 80

8.3 Distinction between Causes and non-Causes 81

8.4 Classes of Occurrences . 82

8.5 Common Cause Analysis . 83

9 Algorithmically Finding Common Causes 85

9.1 Causal Analysis Method . 85

9.1.1 Factors . 85

9.1.2 Causality . 85

9.1.3 Hopkins’ AcciMaps . 86

CONTENTS 7

9.1.4 Ladkin’s Why-Because Analysis 86

9.1.5 Semantics of Causal Data Representation 87

9.1.6 Comparing NCF Relations 90

9.1.7 Equality of the Cause-Relation 91

9.1.8 Causal Commonalities Graph 92

9.1.9 Definition of the Causal Commonalities Subgraph . . 94

9.2 Causal Commonalities in more than two WBGs 95

9.2.1 Clustering Algorithm 98

10 First Accident, continued 101

11 Attribute Value List Extractor 105

11.1 Equality of Factors . 105

11.1.1 Atomicity of Factors 105

11.1.2 Phrasing Guideline . 106

11.1.3 Machine Processable Representation 107

11.2 Automatic Guessing of Attribute Value Lists 109

11.2.1 Guessing Actors, Actions, Omitted Actions, Objects
and Properties . 109

12 WBA Toolkit 113

12.1 Constituent Systems . 113

12.2 Graphical User Interface . 114

12.2.1 Monotony . 114

12.2.2 Modelessness . 114

12.2.3 Visibility . 114

12.2.4 Conditional Availability 115

12.2.5 Undo and Redo . 115

12.2.6 Graph Rendering . 115

12.2.7 User Reception . 116

12.3 Project and File Management 116

12.3.1 Project Overview . 116

12.3.2 Saving Progress . 116

12.3.3 Sharing . 117

12.3.4 Collaboration . 117

12.4 Action Management . 117

12.5 Button and Widget State Management 118

12.6 Linguistic Analysis of Factor Texts 118

12.7 Database . 118

12.8 Root Cause Cluster Detection 119

8 CONTENTS

13 Implementing the Comparison 121

13.1 Overview . 121

13.2 Storing Graphs, Nodes and NCF Relations 122

13.3 Selecting Comparison Candidates 122

13.4 Example . 124

13.5 Tweaks . 126

14 Notes on the Software Implementation 129

14.1 Using the WordNet 3.0 Thesaurus 129

14.1.1 Word Corpus Data Flow 129

14.2 Testing the Attribute Value List Generation 132

14.3 Testing the Clustering . 133

14.3.1 Random Generation of Why-Because Graphs 133

14.3.2 Using the Random WBGs 134

15 Conclusion 135

15.1 Causal Commonality Graphs 135

15.2 Computer Aided Why-Because Analysis 135

15.3 Further Improvement . 136

A Advanced Concepts in WBA 139

A.1 Factor Types . 140

A.1.1 Which Factor Types are there? 140

A.1.2 Assumption . 142

A.2 Continuous Functions . 143

A.2.1 A Train Derailment 143

A.2.2 Continous Values vs. Discrete Values 143

A.2.3 Back to Reality . 144

A.2.4 Conclusion . 145

B The WBA Toolkit Manual 147

B.1 Introduction . 148

B.1.1 License . 148

B.2 Installation . 150

B.2.1 Installation Steps in Short 150

B.2.2 Prerequisites . 150

B.2.3 First Run . 151

B.3 Quick Start Guide . 152

B.3.1 Starting the Software 152

B.3.2 The Graph View . 152

B.3.3 The Factor View . 154

B.3.4 Printing . 156

B.3.5 Last Words . 156

B.4 Reference . 157

CONTENTS 9

B.4.1 General Notes . 157
B.4.2 The Views . 158
B.4.3 The Project View Reference 160
B.4.4 The Graph View Reference 163
B.4.5 The Factor View Reference 170
B.4.6 Actors View Reference 172
B.4.7 Timeline View Reference 173
B.4.8 Group View Reference 174
B.4.9 Reporter View Reference 175
B.4.10 Report Generator Reference 177

10 CONTENTS

Chapter 1

Introduction

Accident Analysis Accidents are analysed to see if there is a way to
improve a system, so that future accidents can be prevented. No one can
foresee all the hazards that a man-made system encounters during the course
of its life. Many man-made systems are simply to complex for even the
most advanced methods of safety analysis to make things 100% safe. At
the same time the consequences of system failure can be so big that each
single prevented accident is worth the effort. Think nuclear power plants,
for example.

Every time such a system fails, even if it is not an actual accident, but a
near-accident, the system’s behaviour is analysed and the conclusions drawn
from such analysis may form the basis for significant improvement.

When there are many similar systems, some of which have accidents from
time to time, the accident analyses are gathered to do meta-analysis. The
analysis of many accidents brings additional insight into the safety properties
of a system.

If there are many options in which to improve a system, then meta-
analysis can tell where to start. The most severe and most frequent types
of accidents have to be addressed first, especially when resources are scarce.
System improvements may also be mutually exclusive. A soldier’s gun must
be operational in action, but safe it is not used. A failure to fire when needed
can have as severe consequences as an accidental shot among friendlies.
Every measure that is taken to improve the safety of a gun when it is not
needed must hinder the gun to fire. Introducing such a safety measure
decreases the reliability of the gun and thereby poses a safety threat during
combat operations. If enough data is available an informed decision can be
taken. Since both cannot be achieved at the same time the kind of accident
that poses the greater risk can be eliminated.

Every improvement to a system has to be monitored. It is the hope
of any accident analyst that safety recommendations can be drawn from
his/her work, but the recommendations have to be proven in use. This

11

12 CHAPTER 1. INTRODUCTION

can only be achieved by monitoring the safety performance of an improved
system. If the rate of a certain kind of accidents reduces or if the amount
of harm done in a certain kind of accident reduces, then the improvement
is successful. If it does not, other interventions should be explored, so that
resources can be spent where they are needed and effective.

Meta-analysis is mostly done by counting how many accident of a specific
type have occurred. Many nations regularly publish road accident statistics,
for example. How many aircraft have overrun the runway? How many
have flown into terrain? How many have lost an engine? etc. These are
examples of accident classes according to outcome. Other classes of accident
are categorised according to cause. How many road accidents have been
caused by drunk driving? How many road accidents have been caused by
speeding? How many road accidents have been caused by deer? Trends in
the frequencies of such accidents are monitored so that from time to time
you will read that this or that is the greatest threat to road safety at the
moment.

One drawback of counting how many accidents of a specific type occur
is that the type must be known. If there are 10 different accident types
for a system, then either one of the 10 types has the most accidents or the
”other” category has the most. Some types wane while other emerge when
the ”others” are inspected closer. Once a new type of accident is deemed
interesting the old categorisation may not fit any longer. This is either
ignored, so that the history of accidents is not categorised according the
new scheme, or all past accidents have to be reclassified. Depending on the
number of accidents this may well be too much.

Why-Because Analysis and Common Cause Analysis Why-Because
Analysis is a causal accident analysis method. One of the results of Why-
Because Analysis is the Why-Because Graph, an acyclic, directed graph
depicting the causal relations between accident factors. The causal relations
follow a formal notion of causality, so the edges of the Why-Because Graph
have a well defined meaning. By looking for recurring patterns in Why-
Because Graphs of different accidents commonalities in causation can be
found among the Why-Because Graphs.

When designing a new system the safety engineer looks for factors which
can be causes for many different types of misbehaviour. Eliminating common
causes reduces the probability of many different accident types. The term
widely used in a priori safety analysis.

In accident analysis however, in a posteriori safety analysis, the term is
not so often used. If different accidents of the same system share a cause,
it would have been termed a Common Cause in a priori safety analysis. So
it is reasonable to refer to commonalities in accident causation which have
been identified by accident analysis as Common Causes.

13

Finding Accidents Before They Happen With the availability of com-
puter aided accident meta-analysis, as described in this thesis, the number
of cases which can be processed increases. If it was only feasible to analyse
accidents, it may become feasible to also analyse near-accidents or incidents.
Common failure causes may become apparent during the analysis of inci-
dents before a real accident happens. This is even more so when newly
emerging trends can be found algorithmically.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Technical Terms

Throughout I will use terms which have special meaning. In some cases the
terms will be obvious, because they are not part of day-to-day language. In
the cases where terms used are part of day-to-day language the terms may
denote different things from their technical homonyms in the language of
accident analysis or system safety.

This section introduces many of the terms and the meaning they will have
throughout this thesis. This also has the benefit to lay out core concepts of
causal analysis of accidents in particular and system behaviour in general.
Even among safety professionals there are sometimes arguments about the
meaning of phrases1.

2.1 Systems

2.1.1 Teleological Systems

The term ”system” can practically mean anything, just like ”thing” or ”ob-
ject”, so there is some need to further specify which types of systems are of
interest in this thesis. For accident analysis systems are of interest which
are systems that serve a purpose and systems over which we have influence.

Systems with a Purpose I could call everything a system, nothing pre-
vents me from saying that the arrangement of pencils on my desk is a system.
I can even give it a name: ”P”. As should be obvious, this is not the kind
of system that accident analysis concerns itself with. I have just arbitrarily
”made” the pencils a system. The system P lacks a purpose2, it is not a
teleological system.

1For an example please see the discussion of the different definitions for ”hazard” in
Chapter 5, pp 71 of [27]

2Yes I know, now it has a purpose, namely demonstrating what a purposeless system
is.

15

16 CHAPTER 2. TECHNICAL TERMS

Take the Fukushima Dai-Ichi nuclear power plant for example. The plant
was struck by an earthquake and a tidal wave, which resulted in one of the
worlds most severe nuclear crises. The tectonic plates whose interaction
caused the earthquake and the tidal wave are a system, but not a teleo-
logical one. The plant itself is man-made for the express purpose of power
generation, it is a teleological system.

Influence on Systems Accident analysis aims to learn from past mistakes
in order not to repeat them in the future. If systems behave in an unwanted
way and the causes are known, then the systems can be changed in the light
of the knowledge gained from the analysis of unwanted behaviour.

To prevent future accidents, the way in which a known accident occurred
must be found out and then the system must be changed. Change can only
be accomplished in so far as there is a possibility to influence a system.

In the above example the tectonic plates clearly behaved in an unwanted
way, but there is no way we could influence the tectonics to prevent future
earthquakes. The power plant is man-mand and there is considerable influ-
ence over its design, construction, maintenance, operation, decommissioning,
etc. At least in principle.

2.1.2 Systems, Environment and the World

When we analyse unwanted behaviour of teleological systems the surround-
ings of the systems’ whose behaviour we want to understand play an im-
portant role. The environment consists of other systems, teleological, influ-
enceable and otherwise. Everything belongs to a system’s environment with
which the system interacts, all else is the world.

In the Fukushima Dai-Ichi example the teleological system ”power plant”
is of central interest, because it is the system we need to change in order to
reduce the likelihood or impact of a nuclear crisis. The tectonic plates and
the ocean are the environment of the power plant. They are only interesting
in so far that they influence the behaviour of the power plant.

2.1.3 System State and Behaviour

A system state is a (sufficiently) complete description or a system at a fixed
point in time. If the description changes, then the state changes.

If we observe a system and note all the state changes we have a history
of system states. This is the systems observed behaviour (Behaviour-1).

From our knowledge of the system and its environment we can infer
future Behaviour-1 under different circumstances. What will be the observed
(or what is the expected) system state history in environment X, what will
it be in environment Y or in environment Z. The way in which the system

2.2. DIFFERENT KINDS OF ACCIDENTS 17

changes its state depending on the state of the environment and its own
current state is the systems potential behaviour (Behaviour-2).

If we have observed unwanted states in Behaviour-1 then we can change
the system and thereby its Behaviour-2, so that the unwanted states are
more unlikely or less harmful in a systems new Behaviour-2.

For example, after observing a car crash, we may want to change the car.
The introduction of anti-skid brakes reduces the likelihood of an accident
and the introduction of airbags reduces the harm inflicted in a crash.

2.2 Different Kinds of Accidents

Accident analysis is the analysis of unwanted Behaviour-1 of teleological
systems with respect to their environment.

When is behaviour unwanted? All kinds of behaviour could be unwanted.
If unwanted behaviour warrants an analysis depends on the amount of harm
done. On a side note: In before-the-fact safety analysis the likelihood of
harm being done will also be a factor, but in accident analysis, after-the-
fact analysis, we know that harm was already done.

Severity Threshold Let’s assume that all system behaviour is results in
a measurable amount of harm. If the measurable amount of harm lies over
a certain threshold then it is unwanted behaviour, if it is below or on the
threshold then it is normal behaviour.

In practice there are even more severity thresholds. For example the
International Civil Aviation Organisation has two severity thresholds [21]
explicitly stated for the purpose of accident investigation. The ICAO distin-
guishes between ”Accident” and ”Incident” as defined in [21]. All above the
Accident-Threshold is an Accident, all between the Accident-Threshold and
the Incident-Threshold is an Incident and all below the Incident-Threshold
is not to be reported for investigation.

An ”Accident” is an ”occurrence [...] in which [...] a person is fatally or
seriously injured” and/or ”the aircraft sustains damage or structural failure”
or ”is missing or is completely inaccessible”. An Incident is an ”occurrence
other than an accident, [...] which affects or could affect the safety of oper-
ations.”

Both definitions relate to the concept of ”Occurrence” which we may
infer from [21] to be a behaviour which deviates from normal behaviour, so
all ”Accidents” and ”Incidents” are ”Occurrences”, but not vice versa.

Occurrences by Severity In principle there is no limit on the number of
thresholds, as long as the words to denote them do not run out. Common
accident types found in safety literature are terms like ”mishaps”, ”near
misses”, ”catastrophies” or ”minor issues”. Thresholds can be set arbitrarily

18 CHAPTER 2. TECHNICAL TERMS

Which number of thresholds to use and which level of damage or harm to
set a threshold is up to an anlyst, as long as it fits the analysts need.

Most of the time in this thesis I will use the term ”accident” to denote all
unwanted behaviour of teleological systems. In some context a distinction
between different types of accidents will be necessary. I will make it apparent
to the reader when a specific type of accident is meant by using italics.

• The term occurrence will denote all kinds of unwanted behaviour of
teleological systems.

• The term accident will denote the most severe kind of unwanted be-
haviour, above the accident threshold.

• The term incident will denote all unwanted behaviour below the acci-
dent threshold, but above the incident threshold.

• The term mishap will denote all occurrences below the incident thresh-
old.

In principle thresholds are arbitrary, but in practice they will be set so
that they best serve their purpose. Depending on the amount of occurrences
over time the thresholds may be set to allow proper handling of the most
severe accidents while completely ignoring mishaps. Handling occurrences
may be costly, so cost-benefit trade-offs have to be found and thresholds
have to be set accordingly. In Germany for example, road accidents go on
record without damage if the damage in money terms is below EUR 25.

Chapter 3

The Occurrence
Investigation Process

3.1 Occurrence Investigation Process, OIP

Accident investigation is not a means to itself, it does not happen in a void.
Accident investigations aim to improve the knowledge of system behavior
(2.1.3, p. 16), in order to improve systems, assign blame1 or gain awareness
on the state of things.

Other things than accdidents can also be analysed using the same meth-
ods. Some domains have specific meaning attached to the term ”accident”
and distinguish between different forms of occurrences.

But this does not change the means nor the aims.

This chapter outlines a general occurrence investigation process. Al-
though implementations differ, the general process is the same in aircraft
accident investigation or in company quality assurance processes. At the
different stages of the process I will indicate how the presented approach
and the WBA software can support the stage.

The purpose is to give an overview where the presented approach and
the software will fit into the process. This is not intended as an in depth
discussion of the analysis process and its subprocesses.

3.1.1 Single Occurrence Analysis

Reporting and Detection Anomalies are either reported, when they are
observed by someone, or detected automatically. Without knowledge of an
anomaly there can be no investigation. For example, in industrial quality
assurance programs, some product flaws are detected during production
by dedicated sensors, while others are reported by the customer to quality
assurance staff.

1Although this is frowned upon in the System Safety community

19

20 CHAPTER 3. THE OCCURRENCE INVESTIGATION PROCESS

When an anomaly is made known to an investigator the investigator
must decide if

• the anomaly fits the requirements for any kind of further investigation,

• is of sufficient interest,

• and/or promises sufficient new insight.

For each type of detected anomaly there may be rules which state what
is to be investigated and if so, how much resources are to be spent2.

Fact Gathering The fact gathering phase establishes the state of the
environment and the systems involved in anoccurrence at the time of the
occurrence and the relevant time frame before the occurrence.

E.g. in the aviation domain fact gathering means to retrieve data recorders
of air and ground systems and download their data, gather debris in case
of structural damage and interview operators and witnesses. Cockpit voice
recorders of commercial aircraft will only contain the last 30 minutes before
the device stopped recording, which is, for cockpit voice recorders, consid-
ered the appropriate relevant time frame before an occurrence. CVRs and
other recorders also reveal information from which the environment of the
system at the time of occurrence can be inferred.

In other domains, with simpler systems, fact gathering has already been
done simultaneously with reporting.

The WBA software allows management of the gathered facts. The list
of facts can be annotated to keep a record where facts have come from,
provide justification and other annotations. The list can be used directly in
the analysis stage.

Reconstruction From the gathered data the history of an occurrence
should ideally be reconstructable. This is the first phase where insufficiencies
may become apparent and further fact gathering is warranted.

E.g. flight recorder data is analysed to reconstruct the history of states
2.1.3 an aircraft went through before an accident.

Analysis There are many ways in which an occurrence can be analysed.
There exist a large number of frameworks, models and methods for analysis
and simple systems may be satisfactorily analysed completely without them.

This thesis focuses on causal analysis, so at this point a causal analysis
method would be used to develop an understanding of the facts and history
of an occurrence. Other non-causal methods exist. Some rely on check-
lists and/or questionnaires (also used for fact finding) to identify points of

2This is done mostly in terms of a description of the investigation process appropriate.

3.1. OCCURRENCE INVESTIGATION PROCESS, OIP 21

interest. Some rely on deviation of the reconstructed occurrence from a
predefined reference model.

For a comparison of different analysis methods see [4], [30], [11] and [27].

The software supports causal analysis methods like WBA and, to a lim-
ited extent, AcciMaps. Other methods may be possible, but should be
supported by a clear statement which elements of the software denote which
relations of a method.

Improving Systems An anaysis can lead to system improvements, e.g.
by implementing countermeasures that prevent unwanted behaviour or its
causes.

The software can document implemented countermeasures. The docu-
mentation of countermeasures is integrated into the WBG clearly showing
which factors in an occurrence are affected by it.

This means that countermeasures can also be integrated into the Au-
tomation of Common Cause Analysis, see ”Monitoring System Improve-
ments” below.

Preventing Accidents This is the prime motivator for accident analy-
sis. To prevent accidents which are known to happen, either because they
have been observed or because it can be inferred from observes incidents
or mishaps, trumps other system improvements. Improvement of unwanted
behaviour (3.1.1) in general could mean, e.g. to improve economic perfor-
mance. Preventing accidents may even lead to system changes which would
otherwise be considered unwanted behaviour. The improvement of system
safety can negatively influence other performance factors of a system.

3.1.2 Meta-analysis

Monitoring System Improvements Some analyses will lead to system
changes to improve their safety, reliability or other desired properties. The
effectiveness has to be monitored. The change of the rate of occurrence
of specific unwanted behaviour, which the system improvement should ad-
dress, will indicat the success of the improvement. With the integration of
countermeasures into the WBG an algorithm can search all known WBGs
in a database for an occurrence and also distinguish between those where
countermeasurs have been implemented and those that don’t. Distiction
between different kinds of countermeasures is also possible, allowing com-
parative analysis.

Marking Failed Attempts to System Improvement Failed improve-
ments, which have been identified, e.g. by the above mentioned monitoring,
need to be documented. Otherwise attempts may be tried twice. In the

22 CHAPTER 3. THE OCCURRENCE INVESTIGATION PROCESS

same way that countermeasures are integrated into the WBGs failed coun-
termeasures are. Before a system change is implemented a system designer
can research whether the proposed countermeasure has been tried and with
which success.

Early Warning Process Another stage can be included if Automatic
Common Cause Anaysis can be implemented. Incidents can be analysed for
similarities with other incidents. Risk assessment data available for a system
can be reassessed with the new found knowledge of frequently occurring
common causes of incidents. The reassessment may result in a system change
if the risk assessment results no longer hold in light of the incident data. For
example, frequently occurring common causes could easily lead to accidents
instead of incidents in slightly different circumstances. In that case there is
early warning before an accident happened.

Analysing incidents and applying Automatic Common Cause Analysis
can prevent accidents.

Chapter 4

Accident Investigation
Report Databases

The level of improvement of the proposed approached can only be compared
with current practice. As noted in the introduction, the most sophisticated
accident investigation bodies have accident databases which are open to the
public. Four of them will be presented here.

There is also a project by the U.S. Department of Transportation, which
researches improvements in accidnet databases, among other things. Some of
the requirements of the project are addressed by this thesis and implemented
in the WBA Toolkit.

4.1 Report Corpora

4.1.1 U.S. National Transportation Safety Board (NTSB)

The NTSB is the U.S. body for accident investigation in th aviation, rail-
way, highway, marine, pipeline and hazardous materials domain. On the
NTSB website you can find the complete NTSB accident investigation re-
port corpus[7]. The corpus is searchable by a number of criteria, such as
mode (e.g. aviation, railway) and date of report. The site search of the
NTSB can also be used for full text search in the complete accident investi-
gation report corpus.

This at least is the interface that is open to the public to analyse the
investigation report corpus. In principle the availability of all accident in-
vestigation reports can be downloaded and used for further processing. If the
neccessary resources are available the accident investigation reports could be
manually processed and converted into whatever format is desired. The text
structure of the PDF files containing the accident investigation reports is
known, so that text mining can be used to extract information from accident

23

24 CHAPTER 4. ACCIDENT DATABASES

investigation reports. That would be the approach for automatic process-
ing. A hybrid approach can also be imagined where manual processing is
supported by automation for a better cost-benefit ratio.

4.1.2 Australian Transportation Safety Bureau (ATSB)

The Australian ATSB[10] offers nearly identical services as the NTSB, but
is restricted to aviation, marine and railway domains.

4.1.3 Canadian Transportation Accident Investigation and
Safety Board

The CTAISB[28] investigates accidents in the marine, aviation, railway and
road domain. It also closely resembles the U.S. NTSB.

4.1.4 French Bureau d’ Enquêtes et d’Analyses pour la se-
curite de l’ aviation civile (BEA)

The BEA[14] offers a keyword, type of aircraft and date search for its acci-
dent investigation report corpus.

4.1.5 German Bundesstelle für Flugunfalluntersucung

The BFU[20] offers all accident investigation reports on its publication web-
site. The search functions are limited to date and type of aircraft based
search and a keyword search1.

4.1.6 U.K. Air Accidents Investigation Branch

The AAIB[9] is the U.K. body for aviation accident investigation. Unlike
the NTSB it is specialized on aviation accidents and does not investigate
other domains. Those are covered by other investigation bodies. The AAIB
report site2 features search mask with keyword search. The keyword search
is not a full text search in the investigation reports, so for easy access the
AAIB site offer less in terms of accident investigation report analysis.

4.1.7 NASA Aviation Safety Reporting System

The ASRS[1] is a self reporting system. NASA provides the ASRS web
service for all who wish to report on an aviation occurrence. The report
database is open to the public, both for searching the database contents an
to providing reports to the database. The database query website is a very
good example of a searchable database with predefined classes assigned to
reports(see 8.4).

1For some reason the keyword does not find phrases that contain a line break.
2http://www.aaib.gov.uk/publications/index.cfm

4.2. IMPROVING REPORT CORPUSES 25

4.1.8 Boeing Statistical Summary of Statistical Jet Airplane
Accidents

The StatSum[8] is a statistical summary report of commercial heavy jet
aircraft3. StatSum contains lists of brief descriptions of aircraft accidents
for the year under consideration. The yearly safety record is compared with
past years, according to a number of different measures, e.g. flight hours per
accident or cycles per accident. The statistical summary goes bach until the
year 1959. The StatSum report is a very good illustration of the aviation
sector’s safety track record and the progress in safety that has been achieved.

4.2 Improving Report Corpuses

All institutions regularly publish statistical summaries of accident rates,
fatality and accident numbers. The U.S. Department of Tranportation[46]
and the NTSB[5] have an ongoing program to improve the utility of safety
data. As will explained (see 8.1) there are limits to how safety data can
be computationally processed. [46] explicitly states that research should
improve

• ”common data on accident circumstances” and

• ”better data on accident precursors”.

Both of which is addressed in this thesis. Automation of Common Cause
Analysis will make discovering leading accident indicators, that is data indi-
cating likely accidents before they happen, feasible and reduce the reliance
on lagging, after the fact, indicators.

3More than 60.000 pounds maximum gross weight

26 CHAPTER 4. ACCIDENT DATABASES

Chapter 5

Introduction to
Why-Because Analysis

27

28 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

5.1 Accidents and Causality

5.1.1 Fukushima: Three Disasters in One Day

At the time of writing the last Big Disaster happened on March 11th 2011
in Fukushima Prefecture, Japan. The first disaster was the so called To-
hoku Earthquake, which occurred approximately at a quarter to three, local
time. The epicenter of the quake was approximately 70 km off the Oshika
Peninsula the coast with a magnitude of 9.0. A magnitude 9.0 quake is
an immensely powerful earthquake, indeed it was one of the most powerful
earthquakes ever recorded. The close proximity to the north eastern part of
the Japanese main island of Honshu and the huge amount of power meant
serious destruction.

Then there was a second disaster following immediately. Shortly after
the earthquake a tsunami struck the east coast of northern Honshu. The
tsunami was a direct result of the moving sea bed. The tsunami traveled as
far as 10 km inland and wiped out entire villages.

After the tsunami retreated a third disaster was already becoming ap-
parent. The Fukushima Dai-Ichi nuclear power plant was first struck by
the Tohoku quake, then by the tsunami and this caused problems with
decay heat removal of reactor cores and spent fuel pools and containment
of radioactive matter. A nuclear disaster followed.

It is unfortunate enough to be the victim of an earthquake or a tsunamior
exposure to radioactive contamination, much more so to be a victim of an
earchquake and a tsunami and exposure to radioactive contamination. In tha
case of Fukushima it was not bad luck to be exposed to all three disasters,
since the three disasters did not occur independent of each other. The
three disasters were linked causally. One causing another. The earthquake
caused the tsunami and damaged the Fukushima Dai-Ichi nuclear plant.
The tsunami further damaged the nuclear plant and left it in a state that
was not longer controllable.

Two of the disasters are naturally occurring disasters. The nuclear crisis
could only happen because there was a man-made system with the potential
of an uncontrollable radioactive reaction. This potential was realized, both
by the existence of the plant and the preceding natural disasters.

From the point of view of accident analysis only the man-made system is
within the ability of humans to control and influence. An accident analysis
will focus on the nuclear accident and try to find out what went wrong.
That does not mean that analyzing the quake and tsunami does not have
benefits. But since humans can only change the design of the nuclear plant,
and not of tectonic plates or the sea, the two natural disasters are only of
interest insofar that they concern the safe operation of the plant.

5.1. ACCIDENTS AND CAUSALITY 29

5.1.2 Concepts of Accident Analysis

The Fukushima story illustrates some basic and important concepts of ac-
cident analysis. Some occurrences are accidents, others are not. How do
we distinguish them? Another important concept is causality. Everybody
has an intuitive grasp on the concept of causality, but for accident analysis
it is very helpful to have a formal understanding of the concept. As with
accidents, causality in this scope will be used as a technical term, to be
distinguished from its day to day use.

For the scope of this book the term Accident, and some other related
terms, will have special meaning. They are technical terms, which will
receive special attention in this book.

Technical Terms

Technical terms will be introduced throughout this book. Some are part of
jargon and are widely used in safety literature. Not all literature uses the
exact same definitions as I do, but they will be sufficiently similar to allow
the understanding of other texts on the topic. Jargon is used to express very
specific things that day-to-day language cannot easily. It is helpful to learn
the jargon presented here.

Technical Terms: Accident and Incident

There are many definitions out there that define the term Accident. One
good example is the definition used by the International Civil Aviation Or-
ganization ICAO.

Accident - ICAO ”An occurrence associated with the operation of an
aircraft which takes place between the time any person boards the aircraft with
the intention of flight until such time as all such persons have disembarked,
in which (a) a person is fatally or seriously injured [...] or (b) the aircraft
sustains damage or structural failure [...] or (c) the aircraft is missing or is
completely inaccessible.”

The definition is about aircraft accidents and does not aim to give a gen-
eral definition of what an Accident is. The scope is even further narrowed
e.g. by the ”between the time” phrase. The ICAO is interested in Acci-
dents of a specific type, so it is reasonable to exclude from the definition
all oc- currences e.g. not ”associated with the operation of an aircraft”.
On a side note, ”associated” is not well defined, in a formal way, but for
our purposes it should be fairly obvious what the meaning of the statement
is. ICAO is not interested in occurrences that involve injury to persons
who dismantle a decommissioned aircraft. The purpose of ICAO is to set

30 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

international rules for civil aviation. This includes aviation accident inves-
tigation. Since decommissioned aircraft are no longer operated in a civil
aviation environment they can be excluded from the scope of interest. Note
also that there has to be a certain level of loss. Light injury to a person
associated with the operation of an aircraft does not constitute an Accident.
There is a practical reason to require a minimum of harm for an ocurrence
to be called an Accident. For ICAO member states an Accident means work
and there are only finite resources to do that work. The efforts of analysts
are best spent on worthwhile Accidents, those that have caused significant
harm. Another reason is, that a low threshold means that large numbers of
Accidents show up in statistics. The reduction of Accident numbers should
mirror the increase in flight safety.

Man-Made Systems In the introduction I mentioned different types of
occurrences. I simply wrote that neither the Tohoku quake, nor the tsunami
were Accidents. The failure to remove excess heat however is an Accident.
The reason to exclude the natural disasters from the list of occurrences
that may be Accidents is that natural disasters differ in one very important
way from nuclear power plants. Power plants are man-made, but natural
disastersarenot. If a nuclear Accident is analyzed and understood, changes
can be made to other similar plants to prevent future Accidents. But we
cannot change the design of tectonic plates of fluid body physics, which does
not mean that we should not try to understand them. Both natural disasters
were causes for the nuclear Accident and understanding their behavior can
also lead to insights to improve the design of nuclear plants.

Our own working definition of Accident will now be:

Accident An Accident is an occurrence that results in very significant
loss.

For pragmatic reason the ICAO defined minimum level of loss for an
occurrence to be an Accident. We do not want to go into specifics, that
are best dealt with by domain experts, who will ultimately responsible for
analysing Accidents. The phrase very significant loss will stand in to remind
us that there should be threshold that divides the Accidents from the non-
Accidents. Another pragmatic consideration is, to allow for multiple levels
of loss, so that responses can be tailored to occurrences.

Incident An Incident is an unwanted occurrence that results in significant
loss.

Within this definition all Accidents are also Incidents, but not the other
way round. Intuitively we could say that Incidents are near-Accidents.

5.1. ACCIDENTS AND CAUSALITY 31

Something went wrong so that an analysis is warranted, but no very sig-
nificant amount of loss resulted from the Incident.

Let’s have a look at ICAO’s definition of Incident.

Incident - ICAO ”An occurrence, other than an accident, associated with
the operation of an aircraft which affects or could affect the safety of opera-
tion.”

It is defined relative to the definition of Accident, but here Accidents are
not Incidents. They have been explicitly excluded. Both ways are OK if
they fit their purpose.

I chose to define Accidents to be a subset of Incidents so that I would
not have to write ”Accidents and Incidents” throughout this book. I prefer
to just write ”Incidents” where I mean both, which will be most of the time.

Causality

The Tohoku earthquake caused the tsunami and both contributed to the
nuclear crisis. Did both cause the crisis? Intuitively we would say, Yes they
did. But when I rephrase the above statement to ”The Tohoku earthquake
caused the tsunami and both contributed to the nuclear crisis” then the
phrasing implies that there have been other causes to the nuclear crisis.

One occurrence causing exactly one other occurrence is a special case.
Usually a number of causes are necesary to cause one other occurrence.
Consider the number of safety systems in your car: anti lock brakes, anti
skid, airbags or the crush zone to name a few. For a frontal crash to be fatal
a number of these must either be ineffective or inoperative. Each safety
system is supposed to increase the number of causes necessary for a fatal
frontal crash by one. Think of each safety system a barrier, with barriers
lined up to prevent you from reaching the accident. The barriers are not
perfect, there are wholes in them, like there are wholes in swiss cheese.
Every time you move in the direction of the accident one of the barriers is
supposed to stop you. If the first barrier does not stop you, because you
went right through one of its holes, then the next one should, and so on. In
the unfortunate case that you found only holes where the barriers shold have
been, the accident happens. This illustration of barrier failure is sometimes
referred to under the name The Swiss Cheese Model[49].

The common view on causation is sometimes called a ”causal chain”,
which suggests one-to-one causal relations between causes and effects. For
simple Incidents that may be sufficiently explanatory, but if it is accepted as
the norm it will stop an analyst looking for other causes. Complex systems
tend to have complex cause and effect relations that require a more rigorous
approach to causality.

32 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

WBA is built upon one such rigorous notion of causality, the basis of
which is counterfactual reasoning. A counterfactual statement is a state-
ment, that is contrary to fact. It is not true. To determine if one thing
is the cause of another, we ask ourselves what would be if a counterfactual
statement would in fact be true. Could the bomb have exploded if I had
not pushed the trigger? The part in italics is the counterfactual statement.
We imagine it to be true and we also imagine what the consequences would
have been for the bomb. If the answer to the question is ”NO”, the bomb
would not have been exploded I had not pushed the trigger, then the trigger
pushing caused the explosion. This kind of Would-if-not? question is called
a counterfactual test.

Counterfactual Test If C had not happened, could E have happened, all
else being equal?

In other words, contrary to the fact that C and E both happened, we
assume that C would not have happened. In that case can E happen? If
the answer is no, then C is necessary for E to happen. If the answer is yes,
then C is not necessary for E to happen, E would have happened anyway.

In WBA speak we say:

Necessary Causal Factor (NFC) Cause C is a Necessary Causal Factor
for effect E if C passes the Counterfactual Test for E. C is an NFC for E.

Why another word for cause? If C is a cause of E according to the Coun-
terfactual Test, then why do we need another name for their relationship?
First, another concept is to come, that of sufficiency (see below). Second,
we are interested in factors, a concept that will be introduced later (??).

An example: You want to withdraw money from your bank account.
This can most easily be done at an ATM1. You insert a mag-stripe card
into the card slot of the ATM and then enter your PIN2 and the ATM will
dispense the amount you requested. Would you receive the money if you
had inserted the card, but would not have entered the PIN? No, the PIN
is necessary. Would you receive the money if you had entered the PIN, but
would not have inserted the card? No, the card is also necessary. Card and
PIN are necessary, but none is sufficient on its own.

I have already presented the Counterfactual Test, and there is a comple-
mentary test for sufficiency:

Causal Sufficiency Test Causes C1, C2, ... and Cn are causally suffi-
cient for effect E to happen if, and only if, E inevitably happens when C1,
C2, ... and C3 happen, all else being equal.

1Automated Teller Machine
2Personal Identification Number

5.1. ACCIDENTS AND CAUSALITY 33

With both tests, the Counterfactual Test and the Causal Sufficiency Test,
it is possible to determine if a suspected cause-effect relation really is one.
And if the causation of an effect can be completely determined.

All Else Being Equal The phrase all else being equal has a special mean-
ing for the Counterfactual Test and the Causal Sufficiency Test. It means
that the statements which are assumed to be true in both tests, are to be
minimally invasive. This means for one thing, that only simple counterfac-
tual statements must be used for the Counterfactual Test. It also means,
that only the immediate cause-relations must be the subject of the tests.

34 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Tohoku earthquake

Tsunami

Fukushima Dai-Ichi runaway nuclear reaction

Figure 5.1: Simple causation from Tohoku earthquake to the Fukushima
Dai-Ichi nuclear disaster

Tohoku earthquake

Tsunami

Fukushima Dai-Ichi runaway nuclear reaction

Figure 5.2: The earthquake and the tsunami both contributed to the nuclear
disaster.

Cause 1 Cause 2 Cause 3 Cause 4 Effect

Figure 5.3: Causal chains are too simplistic to explain complex causal rela-
tionships.

5.1. ACCIDENTS AND CAUSALITY 35

Figure 5.4: Causal relationships can be quite complex. This does not bear
any resemblance to a chain.

Insert magstripe card into ATM

Get money

Enter PIN into ATM

ATM is in working condition

ATM contains enough money to serve the request

Figure 5.5: Necessary and sufficient causes to get money from an ATM

36 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Now E passes the Causal Sufficiency Test

C1, C2 and C3 are NCFs for E,
but C1 and C2 alone are insufficient for E

E

C1

C2

C3

E

C1

C2

C3

Figure 5.6: Sufficient and Insufficient Set of Causes for E

5.2. COUNTERFACTUAL REASONING 37

5.2 Counterfactual Reasoning

5.2.1 Seeing it Coming

On July 1st, 2002 two aircraft collided mid-air over Lake Constance in south-
ern Germany. The Accident happened despite the fact that both aircraft
were equipped with collision avoidance systems. But before a collision avoid-
ance system alerts the crew a ground based system alerts the air traffic con-
troller. The ground based system, called Short Term Collision Avoidance
STCA, sounds an alarm if it detects a possible mid-air collision within ap-
proximately two minutes. The air traffic controller then has to instruct the
aircraft to keep them sufficiently separated.

The airborne system, the Traffic Collision Avoidance System TCAS only
warns the crew a little under 50 seconds ahead. In case of a potential mid-
air collision the air traffic controller usually has advance warning and the
airborne TCAS is only needed if the air traffic controller cannot keep the
aircraft separated.

The air traffic controller at Zurich, Switzerland, did not have the STCA
system at his disposal due to maintenance. The radar system, the air traf-
fic controller was using, was running in a degraded mode, but was deemed
sufficient for the low density night time traffic, that was expected. Another
system was down due to maintenance on the same night: One of the tele-
phone systems used to contact other air traffic controllers in other air control
centers.

Air control center Zurich was not the only air control centers whose radar
covered the flight path of the two aircraft that were about to collide. The so
called upper area control center at Karlsruhe, Germany, was monitoring the
situation, but was not responsible for air traffic control in that area. But the
STCA in Karlsruhe was fully operational and a controller in Karsruhe tried
to phone Zurich three times immediately before the collision. Unfortunately
the air traffic controller at Zurich was busy directing an aircraft to the air-
port Friedrichshafen, Germany. The Zurich controller was not continuously
monitoring the situation over Lake Constance.

Please note that the situation was a little bit more complex that outlined
here, but this simplified version is better suited for learning the concepts of
Counterfactual Reasoning. For the same reason, lets focus on the inability of
Karlsruhe to reach Zurich by phone. Please excuse the rather cumbersome
statements below, but I will try and keep the form of the Counterfactual
Test intact.

• Could the mid-air collision have happened, had the air traffic controller
at Zurich been monitoring the situation?

• Could the the air traffic controller at Zurich not have been monitoring
the situation, had the air traffic controller at Karlsruhe been able to

38 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

reach him by phone?

• Could the air traffic controller at Karlsruhe have reached Zurich by
phone, had the phone system not been offline for maintenance?

If you read the three Counterfactual Tests another question suggests
itself: Could the mid-air collision have happened, had the phone system not
been offline for maintenance?

5.2.2 Cause-Relation

Intuitively we would answer the last question in the mid-air collision story
with No, if we would answer the three preceding Counterfactual Tests with
No. The factors we used in the three questions above, in our simplified
account of the Lake Constance mid-air collision, are

• A - mid-air collision

• B - the air traffic controller at Zurich is not monitoring the situation
over Lake Constance

• C - the air traffic controller at Karlsruhe is not able to reach Zurich
by phone

• D - part of the phone system at Zurich is offline for maintenance

As the three Counterfactual Tests showed D is an NFC3 for C. C is an
NFC for B. B is an NFC for A.

Is D a NFC for A? No. If that would be that case there would be no need
for B and C. Remember the phrase all else being equal. If the Counterfactual
Test is done for D and A, then B and C must remain what they are! In
other cases, which have the same form, D could well be a NFC for A. In
a later section I will show the differences between analyzes that differ in
their level of detail. It may well be possible to omit detail and suddenly two
factors are NCFs, because intermittent factors fall away. For the moment the
important thing is to understand, that the phone system’s maintenance is a
causal factor for the mid-air collision, but not a NFC for the mid-air itself.
There is another word that we will use for this type of causal relationship.

Technical Term: Cause-Relation If two factors F1 and F2 are causally
linked by NCFs N1, .., Nn, so that F1 is an NFC for Nn, ... N2 is an NFC
for N1 and F2 is a NFC for N1, the Cause-Relation holds for F1 and F2.

To make things a little simpler,

3Remember: Necessary Causal Factor

5.2. COUNTERFACTUAL REASONING 39

Technical Term: Cause If F1 and F2 are either related by the Counter-
factual Test or are subject to the Cause-Relation, the we simply say F1 is a
Cause for (or caused) F2.

Not only was our story a simplified version of the real Lake Constance mid-
air collision, but our selection of factors for the Counterfactual Tests was
also limited. There are other Causes for the collision within the simplified
story.

• Would the mid-air collision have happened, had the STCA not been
inoperative?

• Would the STCA have been inoperative, had it not been taken offline
for maintenance?

• Would the air traffic controller at Zurich not have monitored the situa-
tion over Lake Constance continuously, had he not been busy directing
incoming traffic for Friedrichshafen airport?

5.2.3 Countermeasures

The main reason for the analysis of Accidents is to improve systems. If a
system fails, an Accident analysis is conducted, the results are evaluated and
this may lead to the change in the design of the system. This is the way in
which Accident analysis can make the world a safer place. Counterfactual
reasoning is one way of bridging the gap between an Accident analysis and
the decision to change a system’s design.

What can we learn from our simplistic story of the Lake Constance
mid- air collision? From the Cause-Relation we know that the Acci- dent
has many Causes whose disappearance would effect the disappearance of
the Accident, or at least alter the course of the Accident significantly. If
we want to eliminate this Accident, or to be a bit more ambitious, many
similar Accidents, then we have to implement Countermeasures that elimi-
nate one of the Causes of the Accident. There are Causes in our simplified
version of the story that we do not have influence on. For example non of the
equipment used for air traffic control is maintenance free. We cannot assume
that simply not doing maintenance work will solve the problem, simply be-
cause the equipment will deteriorate and then the air traffic controllers are
again in a similar, if not worse, situation with degraded radar or telephone
functionality.

What about a rule that requires maintenance to be conducted on only
on one system at a time? In our case the Karlsruhe air traffic controller
would have been able to phone the Zurich air traffic controller. This would
surely be an improvement, but only for those Accidents where there is a
second air traffic controller monitoring neighboring controlled air space. An

40 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

additional rule requiring the notification of other air traffic controllers on
the reduced functionality of an air control center may further improve the
odds of preventing another Accident of this type.

If we develop Countermeasures we can use our Accident analysis for
a first effectiveness check. From every Accident analysis we can derive a
number of Countermeasures. Even from our simplified example we can
infer Countermeasures that would also hold in the real thing, given that
all the information in the simple story also hold in the real one. Some
Countermeasures may be of technical nature, others may be of legal nature.
Thus different people can each work on Countermeasures from their field of
expertise.

5.2. COUNTERFACTUAL REASONING 41

part of the phone system at Zurich

is offline for maintenance

the air traffic controller at Karslruhe

is not able to reach Zurich by phone

the air traffic controller at Zurich

is not monitoring the situation over Lake Constance

mid-air collision

Figure 5.7: Simplistic causation of the Lake Constance Mid Air. Note, that
this graph does not fulfill the Causal Sufficiency Test.

42 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Factor 1

Factor 2

NCF

Factor 4

Cause

Factor 3

NCF

NCF

Figure 5.8: Cause-Relation: F1 and F2 are not direcly related as Necesary
Causal Factors.

5.3. THE FIRST ACCIDENT ANALYSIS 43

5.3 The First Accident Analysis

If you are using the WBA Software Tool you can find instructions to the
topics covered in the following sections at the end of each section. Instuctions
are not very detailled. It is assumed that at least the Quick Start Guide
was read.

5.3.1 Why-Because Graph (WBG)

In previous sections we have already learned concepts of causal relations.
Causal relations are directed, which means that it is important which oc-
currence is at which end of a causal relation. One is a Cause and the other
is an Effect. If we revert the relation it would denote something different.

There have already been some diagrams depicting causal relations using
boxes and arrows. The arrows are always pointing from the Cause to the
Effect, which is the same direction in which a time-arrow would point. For
a complex Accident analysis many such relations exist and it is helpful to
visualize complex data and complex relations. We draw boxes for all ocur-
rences and arrows for all NCF relations in one diagramm then we have a
constructed a Why-Because Graph.

The WBG is a directed graph, which is mathmatician-speak for a graph
where the arrows4 have arrow heads on one end. Following the arrows must
not lead to circles. This would mean that causality is circular which violates
the laws of causality. A WBG is a non-circular directed graph.

Other terms that are used:

• A Node is a box in the WBG.

• An Edge is an arrow in the WBG.

• An Effect is the box at the pointy end of an arrow or Edge.

• A Cause is a box at the stub end of an arrow or Edge.

• A Factor is nearly the same a Node, but is not neccessarily a part of
the WBG.

5.3.2 Friendly Fire isn’t

For the next sections the following story is used to illustrate how a WBA
is done. The story is a retelling of an article that was published in the
Washington Post, by Vernon Loeb, a Staff Writer, on March 24th, 2002. It
describes a Friendly Fire accident which occurred in Decmber 2001 during
Operation Enduring Freedom in Afghanistan.

4The mathmatician uses the term Edge, or directed Edge in this case, instead of arrow.

44 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

The version given here is a redacted one which does not accurately re-
semble the events described by Vernon Loeb. The Friendly Fire Accident
is used as a first WBA case during System Safety lectures at Bielefeld Uni-
versity and during industrial courses given by Causalis Limited. I do both
and so I changed the story to be more study-friendly and less resembling
the real story. In an interactive environment many of the unknown concepts
can be explained on demand and the lecturer can substitute for a lack of
domain knowledge on the side of the students. The main aim is that this
introduction to WBA should allow self study, so some trade-offs have been
made.

The Setting

The Accident happens during the first months of Operation Enduring Free-
dom in Afghanistan. U.S. Forces have invaded Afghanistan and combat
operations are still on an all-out-war level.

The Accident

A team of U.S. Special Forces soldiers, operating in Afghanistan, were en-
gaging a Taliban position. The U.S. Special Forces soldiers called in an air
strike on the Taliban position. The target’s GPS coordinates came from
a device called a ”plugger”. The official acronym of the device is PLGR,
which is short for Precision Lightweiht GPS Receiver. The plugger can be
used to calculate positions for air strike targets. The U.S. Special Forces
air controller5, the person responsible for calling in an air strike, success-
fully used the plugger to strike the Taliban position. The controller called
in a U.S. Navy F/A-18 ground attack aircraft which attacked the Taliban
position using GPS guided munitions6. A couple of minutes later the U.S.
Special Forces intended to strike the same Taliban position a second time.
The first calculation of GPS targeting coordinates was done using the GPS
minutes-seconds format. An example would be 57 deg 38’ 56.83” N, 10 deg
24’ 26.79” E, which would mean 57 degrees, 38 minutes, 56 seconds and
83 hundreds of a second northern latitude and 10 degrees, 24 minutes, 26
seconds and 79 hundreds of a second eastern latitude. A different format is
the degrees-decimal format. 57.64911 10.40744 would be the same position,
but with minutes and seconds denoted as fractions of degrees. The F/A-18
required the minutes-seconds format, but for the second strike a B-52 was
tasked with the attack. But the B-52 needed the degrees-decimal format,
so some additional calculation was needed. The U.S. Special Forces air con-
troller was doing the calculation, but before transmitting the coordinates
to the B-52 crew the plugger’s battery died. A replacement battery was

5Please do not confuse the air controller with an air traffic controller.
6So called JDAM, Joint Direct Attack Munitions

5.3. THE FIRST ACCIDENT ANALYSIS 45

put in the plugger which came back to life. Unknown to the air controller
the plugger initializes itself with its own position, rather that the last one
displayed or used, which was what the controller was assuming. Not recog-
nizing the difference in coordinates the controller transmitted the displayed
coordinates to the B-52. The air strike hit the U.S. position killing three
soldiers and injuring 20.

Figure 5.9: Precision Lightweight GPS Receiver, source: Wikipedia

Some Unknowns

It is not clear from the article how exactly the calculation of targeting co-
ordinates is done. The plugger knows its own position. Ways of aquiring
the target position could be by using precise maps, by laser designation and
range finding or simply by estimation of distance and direction of the target
realtive to ones own position.

Also it is unknown which other aids were used by the air controller to
help in calculating the target coordinates.

The distance between the U.S. position and the Taliban position is not
known, so the number of digits that were different in their respective coor-
dinates is not known.

Why the F/A-18 and the B-52 required different formats for targetting
is also not known.

First Things First

Damage What is the damage in the story? Clearly the loss of life and the
injuries inflicted to friendlies.

46 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Accident What is the Accident? Which event caused the damage done?
Clearly the bomb, dropped by the B-52, caused the casualties.

A quick check using the Counterfactual Test: Had the bomb not been
dropped on the U.S. Special Forces Soldiers postion, had the three Soldiers
died and 20 others been wounded?

The dropping of the bomb also was sufficient. The bomb did not need
the presence of other Factors to do the damage.

Proximate Causes We term all those Causes Proximate Causes that
immediately precede the Accident. This is dependent on the level of detail
of an analysis. An analysis of a greater level of detail may have other
Proximate Causes, that an analysis of a lower level of detail. The simple
reason is, that higher detail may describe the same set of events in multiple
Factors, that a lower level of detail may subsume in one Factor.

In this case there is only one Accident Factor. This may not always be
the case, so do not try to force the structure of your WBG on the presence
of only one Accident.

Lets start with the Causal Sufficiency Test, to gather all Factors that
enable the bomb to be dropped on the U.S. Special Forces Soldier’s position.

• There had to be an aircraft that was capable of GPS guided ground
attack.

• The air traffic controller and the air craft had to communicate in order
to coordinate strikes.

• The aircraft needed clearance and target coordinates to attack.

When all these three Factors come together then the Accident can hap-
pen. We check with the Counterfactual Test:

• Had there been no aircraft equipped with GPS guided munitions, had
the bomb been dropped? No.

• Had there been no way of communication between the aircraft and the
air controller, had the bomb been dropped? No.

• Had the aircraft not been cleared to target the GPS coordinates re-
ceived by the air controller, had the bomb benn dropped there? No.

On a side note, observe that the Counterfactual Test reveals two different
kinds of questions. The first two questions are whether the bomb had been
dropped or not. The last question is about the location the bomb had been
dropped.

The intention of the U.S. Special Forces soldiers clearly was the release
of a bomb, but on a different location, the latter question is clearly the one
leading us to where things went wrong.

5.3. THE FIRST ACCIDENT ANALYSIS 47

What is it called again? Students who work on this case often no not
use precise descriptions or names. One example is confusion between the
terms position and coordinates. In the above story the term Taliban position
denotes the physical location of the Taliban, while the term coordinates is
used to denote the GPS data. When the original story is read the distinction
is not obvious and many students use the terms interchangeably.

There is also inappropriate use of value judgements to describe things.
For example some students describe the bombing of the U.S. position as at-
tacking the wrong coordinates. But it is not clear in whose frame of mind the
coordinates are wrong. The coordinates are valid in that there is a physical
location on the earth’s surface that corresponds to them. The coordinates
are within the B-52s area of operation and the B-52 crew successfully attacks
the position belonging to the coordinates given to them.

We will use the following terms from here on:

• Soldiers will denote the U.S. Special Forces soldiers as a group.

• Air Controller will denote the soldier, member of the Soldiers, who
was responsible for calculating targeting coordinates and calling in air
strikes.

• F18 will denote the F/A-18, the aircraft that conduted the first airstrike
on the Taliban Position.

• B52 will denote the B-52 bomer aircraft, that conducted the second
airstrike, which hit the Soldier’s Position.

• Taliban Position will denote the physical location of the Taliban which
the Soldiers intended to strike.

• Soldier’s Position will denote the physical location of the Soldiers.

• Taliban Coordinates will denote the GPS coordinates that correspond
to the Taliban Position.

• Soldier’s Coordinates will denote the GPS coordinates that correspond
to the Soldier’s Position.

• Displayed Coordinates will denote the GPS coordinates that appear
on the display of the plugger.

• JDAM will denote a GPS guided bomb.

Factorizing the Narrative

We already introduced the technical term Factor. We want to take the
Accident narrative, our story above, and extract all relevant information
so that we can determine the Causes of the Accident. In other words the

48 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

analysis aims to produce a WBG from the data given in the text. But in
almost no case would we be able to take the narrative verbatim. There
are many sentences that do not lend themselves to the Counterfactual Test
or the Causal Sufficiency Test. Instead we formulate new sentences, new
Factors, that preserve the meaning of the original narrative, but are better
suited to be tested. In the above paragraphs that describe the Damage for
example I have already done that. If you reread the last sentence of the
narrative you will find, that there are two factors in the same sentence. In
the same sentence the Accident, JDAM dropped on Soldier’s Position, and
the Damage, 3 dead and 20 wounded, are mentioned.

In general we want aim for each Factor to

• accurately depict data from the narrative (or other sources of Accident
data) and

• not be further divisible into meaningful statements.

For example the sentence ”I hit the brakes to slow (the car) down.”
contains three pieces of information. The sentence can be expressed by the
three following Factors:

• I intend to slow down.

• I hit the brakes.

• The car slows down.

The ”not further divisible” criterion strongly depends on the level of
detail. If the level of detail is increased then ”The car slows down” could be
further explained or substituted by the mechanical interactions from pedal
to tires. Another question is if other implied Factors of a statement add
insight into the Accident analysed. It would not make much sense to include
a Factor like ”I am in the car.”

Even though we have two rigorous tests, the Counterfactual Test and the
Causal Sufficiency Test, there is still plenty of room. As long as the analyst
is satisfied with the choice the Counterfactual Test and Causal Sufficiency
Test should suffice in assuring the correctness and completeness7. If the
correctness and/or completeness is challenged consider if the challenge is
appropriate by

• checking if the challenge considers one Factor or more,

• estimating the impact on the descriptive value of a new Factor or a
changed Factor,

7Completeness is very hard to argue. Here I use the term loosely. Someone questioning
your choice of Factors will always find something which will violate completeness in a more
rigorous sense. Just imagine listing each law of physics that is applicable. It just would
not add to the descriptive value of the WBG.

5.4. FIRST ACCIDENT, CONTD. 49

• performing the Counterfactual Test to find out if a Factor is a Cause
or not and

• performing the Causal Sufficiency Test to find out if a Factor is indeed
missing.

This means to write up an argument for the choice made and refuting
claims of incorrectness. This not part of the WBG to be constructed, but it
is part of the WBA. This is another reason to be careful with the formulation
of Factors and the naming of actors, objects and concepts.

The First Graph

After these first steps the WBG should look like this:

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Figure 5.10: The first Nodes of the Firendly Fire WBG.

The Node texts are compliant with the non-divisible criterion and also
use the terms we defined earlier. But that does not mean that this is the
only solution. Feel free to change the statements.

5.4 First Accident, contd.

In the previous section we have seen how to start our work of Accident
analysis using WBA. This is not the only way to start, there are probably
as many as there are different analysts. But the scope of this introduction
is limited, so we cannot explore in depth the pros and cons of different
approaches. Be assured, that with each WBA your approach will differ more
and more from the one initially presented here. The approach presented here
needs to take into account the readers limited knowledge of the concepts of

50 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

WBA. As those concepts become clear there are less restrictions on how to
conduct an analysis.

In this section we will continue with our analysis of the Friendly Fire
Accident from the previous section.

5.4.1 Factors from the Narrative

In the last section we already constructed an initial WBA with a Damage
Factor, an Accident Factor and Proximate Cause Factors.

Lets go through the Proximate Causes and see if we can find out their
NCFs and discover some other aspects of WBA along the way.

5.4.2 The Stopping Rule

Proximate Causes (a, b): B52 was within strike range of Taliban
Position / Soldier’s Position There are plenty of Causes why the B52
was where it was, there is little value in further analysis. Operation Enduring
Freedom was designed to include combat air support (CAS). Even though
we would prevent this accident had there been no CAS available, from a
military point of view this would be extremely undesirable.

Stopping because of infeasability of countermeasures The Accident
could have been prevented had there been not CAS. No bomb could have
been dropped on anybody. But this is also the prohibiting Factor. Ceasing
CAS operations would (most probably) endanger more friendlies than it
would harm them. The availability of CAS is a Factor of both positive
and negative consequences, but the positive consequences largely outweigh
the negative ones. The aim of investigating this Accident should not be to
eliminate Causes at any cost, but rather to reduce negative consequences.

Stopping because of insufficient explanatory value Every NFC has
to be checked by the Counterfactual Test. Some Factors cannot be explained
from the Accident narrative alone, but require further research. At some
point the cost of further explaining the Causation of some Factors is pro-
hibitive. It is better to stop8 and concentrate on Factors that offer greater
insight if they are further analyzed.

Stopping because of insufficient influence If a Factor is beyond in-
fluence, there is little need to further investigate its Causes. Consider the
Tohoku earthquake mentioned in the first section. There is no way that
earthquakes could be prevented. It is beyond human capability. Within the

8At least for the moment. During the course of analysis the cost-benefit-ratio for
further research may change.

5.4. FIRST ACCIDENT, CONTD. 51

scope of an Accident analysis there is little value in determining the Causes
of such Factors as earthquakes.

5.4.3 Further Analysis

Proximate Cause (c): Air Controller requested B52 to attack Sol-
dier’s Position We do not know if the Air Controller was directly com-
municating with the crew of the B52 or if there were intermediaries. But even
if there were intermediaries, for example air combat controllers on board of
an AWACS129, they would only have relayed the information given by the
air controller to the B52. For all practical purposes we can assume that the
Air Controller was communicating directly with the B52 crew.

It is also unclear who authorized the strike. If a different party from the
Air Controller authorized the strike, there was no way of checking whether
the Air Controller had done his job properly. Again we assume that the Air
Controller authorized the strike, since another party’s authorization could
not have relied on better data than the air controller’s.

What are the necessary and sufficient Factors for this Proximate Cause?

• The Air Controller’s intention was to call in an a second air strike on
the Taliban Position.

• The Air Controller (mistakenly) thought that he was giving the Tal-
iban Coordinates to the B52.

Are those NCFs? A quick Counterfactual Test:

• Had the Air Controller requested an air strike on the Soldier’s Coor-
dinates if he had not intended to strike the Taliban Position a second
time? No.

• Had the Air Controller requested an air strike on the Soldier’s Coordi-
nates if he had not (mistakenly) assumed that they were the Taliban
Coordinates? No.

And the Causal Sufficiency Test? All the B52 needs to strike a target
are GPS coordinates. They were provided with the Soldier’s Coordinates.
There is no reason why the B52 would not target the coordinates given if
requested, as long as they are within the B52’s operating area. There is
also no reason why the Air Controller would not request an air strike on an
assumingly enemy position. The two Factors are sufficient.

Rephrased to fit the phrasing requirements mentioned in the previous
section:

9Airborne Warning And Control System

52 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

• Cause (a): Air Controller intends to call in air strike on Taliban Po-
sition.

• Cause (b): Air Controller believes Soldier’s Coordinates to be Taliban
Coordinates.

The WBA now looks as like Figure 8:

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Figure 5.11: Friendly Fire WBG, so far.

Now we again have two Factors that we wish to further investigate.
Cause (a) and Cause (b).

Cause (a): Air Controller intends to call in air strike on Taliban
Position. The narrative is not explicitly stating the reasons why the Air
Controller intended to strike the Taliban Position a second time. But we
can reasonably assume that the Soldiers were engaging the Taliban and that
the first air strike was insufficient to decide the engagement.

As Factors:

• Cause (c): Soldiers engaged in combat with Taliban

• Cause (d): F18 air strike insufficient to neutralize Taliban

The Counterfactual Test:

• Had the Soldiers not been engaged with the Taliban, had they intended
a second air strike on the Taliban Position? No.

5.4. FIRST ACCIDENT, CONTD. 53

• Had the F18 air strike been sufficiently effective to neutralize the Tal-
iban, had the Soldiers intended a second air strike on the Taliban
Position? No.

We include both into the WBG, see Figure 9:

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Figure 5.12: Friendly Fire WBG; Version 3.

Cause (b): : Air Controller believes Displayed Coordinates to be
Taliban Coordinates. We continue, breadth first. We could also continue
width first, there is no reason why one should be better than the other.

What are the Causes of Cause (b)? The narrative states that the Air
Controller used the coordinates the plugger displayed. He believed the coor-
dinates displayed on the plugger to be the Taliban Coordinates for a number
of reasons:

• The Air Controller could not tell the Soldier’s Coordinates from the
Taliban Coordinates.

• The Air Controller was predisposed to believe that the Displayed Co-
ordinates were Taliban Coordinates.

54 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

As always we check with the Counterfactual Test:

• Had the Air Controller been able to tell the Taliban Coordinates from
the Soldier’s Coordinates, had he believed that the Displayed Coordi-
nates were Taliban Coordinates? No.

• Had the Air Controller not been predisposed to believe, had he believed
that the Displayed Coordinates were Taliban Coordinates? No.

We introduce our new Factors into the WBG, see Figure 10.

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Figure 5.13: Friendly Fire WBG; Version 4.

Cause (c):Soldiers engaged in combat with Taliban Following this
one up is of little value for our analysis. The soldiers were supposed to take
part in combat operations.

5.4.4 Unknowns in the Analysis

Cause (d):F18 air strike insufficient to neutralize Taliban Unfortu-
nately we do not have enough information to completely follow up on Cause
(d). We know that there was an air strike, had there not been one it could
not have been insufficient:

Cause (g): F18 air strike on Taliban Position.

5.4. FIRST ACCIDENT, CONTD. 55

We do not know the strength of the Taliban, the precision of the strike
nor if the bomb performed below its expected effectiveness. From the nar-
rative we know that the strike happened and from the need for a second
strike we can infer that the F18 strike was insufficient. But we cannot tell
why. Instead of a NFC we will introduce a Node into the WBG clearly
marking our lack of information. We know that there was a Cause for this.
We have no reason to assume that this unknown Cause is beyond our ability
to control, neither that it would not be a valuable insight. Needless to say
that this Factor will not be further causally analyzed and will remain a leaf
Node, as in Figure 12: Unknown (a): Strength of Taliban, Performance of
JDAM and strike precision are unknown.

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Cause (g):

F18 air strike on Taliban Position

Unknown (a):

Strength of Taliban,

Performance of JDAM and

strike precision are unknown

Figure 5.14: Friendly Fire WBG with the first indicated Unknown Factor.

5.4.5 Technical Term: Assumption

Cause (e): Air Controller could not tell Soldier’s Coordinates
from Taliban Coordinates We know that this must have happened,
even though the narrative does not explicitly state this. But why did the Air

56 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Controller not recognize the difference? The different coordinates mapped
on different locations, so they had to be different. Nevertheless we can safely
assume that the visual difference was not that great. Degrees latitude and
longitude, the left most digits in GPS coordinates irrespective of format, are
the most prominent. They mean the greatest difference in physical location
relative the the digits more on the right. If the distance between the Sol-
dier’s Position and the Taliban Position is not very great the difference in
the sequence of digits may be very small. The Air Controller was using dif-
ferent formats for different calls for air strikes, which may have contributed
to his inability to have a clear memory of the Taliban’s Coordinates. Please
note that, although this may qualify as another Assumption, it is more
speculative.

Assumptions are also tested using the Counterfactual Test:

• Had the Taliban Coordinates and the Displayed Coordinates been vi-
sually sufficiently different, had the Air Controller been able to tell the
Taliban Coordinates from the Displayed Coordinates? Yes10.

That is why I would not introduce it into the WBG, but leave it here as
an explanation for the original Assumption.

We introduce our first Assumption into the 6th version of our WBG, see
Figure 13: Assumption (a): Taliban Coordinates and Displayed Coordinates
did not visually differ sufficiently.

Cause (f): Air Controller was predisposed to believe that Dis-
played’s Coordinates were Taliban Coordinates. According to the
narrative the Air Controller was working on the Taliban Coordinates for the
second air strike. The Air Controller obviously did not expect the plugger
to display different coordinates from the ones entered after a power cycle.

The Counterfactual Test:

• Had the Air Controller not been entering the Taliban Coordinates
into the plugger, would he have been predisposed to believe that the
Displayed Coordinates were Taliban Coordinates? No.

• Had the Air Controller known that entered coordinates would not
survive a power cycle, would he have been predisposed to believe that
the Displayed Coordinates were Taliban Coordinates? No.

We introduce two new Causes:

• Cause (h):Air Controller entered Taliban Coordinates into the plugger.

• Cause (i):Air Controller did not know that power cycling the plugger
changed Displayed Coordinates.

10To pass the Counterfactual Test this time the answer must be Yes, because the second
part of the question was rephrased from ”could not tell” to ”been able to tell”.

5.4. FIRST ACCIDENT, CONTD. 57

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Cause (g):

F18 air strike on Taliban Position

Unknown (a):

Strength of Taliban,

Performance of JDAM and

strike precision are unknown

Assumption (a):

Taliban Coordinates and

Displayed Coordinates did not

visually differ sufficiently

Figure 5.15: Friendly Fire WBG with Assumption.

Our new WBG looks like Figure 14.

5.4.6 Not a Tree anymore

One of the Causes of our newly introduced Cause (h) is already part of the
WBG.

• Had the Air Controller not intended to call in an air strike on the
Taliban Position, had he entered the Taliban Coordinates into the
plugger? No.

Cause (a) is already part of the WBG. All we need to do is add an
additional Edge, giving the WBG its new form, as depicted in Figure 15.

Cause (i):Air Controller did not know that power cycling the plug-
ger changed Displayed Coordinates. No information is given in the
narrative why this would be the case. Following this Factor would only lead

58 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Cause (g):

F18 air strike on Taliban Position

Cause (g):

Air Controller entered

Taliban Coordinates into

the plugger

Cause (i):

Air Controller did not

know that power cycling

the plugger changed

Displayed Coordinates

Unknown (a):

Strength of Taliban,

Performance of JDAM and

strike precision are unknown

Assumption (a):

Taliban Coordinates and

Displayed Coordinates did not

visually differ sufficiently

Figure 5.16: Introducing Causes (h) and (i).

to speculation, which is what happened in the original narrative by Ver-
non Loeb. Insufficient training and stress during battle were candidates for
Causes for Cause (i). In an ongoing analysis this indicates where further
investigation is warranted. The Causes of Cause (i) could provide valuable
insight into the way the plugger is used by soldier in the field and it could
provide a good point for introducing Countermeasures.

5.4. FIRST ACCIDENT, CONTD. 59

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (g):

Air Controller entered

Taliban Coordinates into

the plugger

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Cause (g):

F18 air strike on Taliban Position

Cause (i):

Air Controller did not

know that power cycling

the plugger changed

Displayed Coordinates

Unknown (a):

Strength of Taliban,

Performance of JDAM and

strike precision are unknown

Assumption (a):

Taliban Coordinates and

Displayed Coordinates did not

visually differ sufficiently

Figure 5.17: The WBG looses its tree structure.

60 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

5.5 Sufficient, but Not Neccessary

There are cases where one Factor is a Cause, but does not pass the Counter-
factual Test. Consider the following: Two stone throwers destroy a window.
Both are throwing their stones simultaneously. Had stone thrower A not
thrown his stone, would the window have been destroyed? Yes, because
stone thrower B would have thrown a stone to destroy the window. And
vice versa.

Both Factors are sufficient in themselves. One stone thrower alone would
be enough to destroy the window. Indeed, one stone thrower would also pass
the Counterfactual Test, were it not for the other stone thrower.

5.5.1 Similar Factors

In the above example both Factors were very similar. The action describted
for both stone throwers is essentially the same. The difference is only that
there are different persons throwing stones.

We need not make the life of the analyst unneccessarily difficult. In this
case we can simply combine the two factors into one. This violates the gen-
eral rule, that Factors should not be further divisible11. But it is justified
here, for the following simple reason: One of the aims of the analysis is to
develop Countermeasures. In this case the two Factors are so similar that we
can reasonably expect them to be handled by the same Countermeasure. In
most cases both Factors may be a result of a so called common Cause, which
in turn suggests that a common Countermeasure may fix the problem. In-
stalling tempered glass may be an effective Countermeasure to both thrown
stones. Improving riot prevention may be an effective Countermeasute to
the emergence of stone throwers.

5.5.2 Dissimilar Factors

Let’s consider a different story with not-so-similar Factors.

This one is a little artificial. There is still a stone thrower who wants
to destroy the window. The same instant that the stone thrower throws
the stone an earthquake happens. The earthquake is sufficiently powerful
to destroy the window.

Now we have two events, dissimilar, without a common cause, both
of which destroy the window. Installing tempered glass still counters the
stone thrower. It may even prevent the glass from shattering during an
earthquake. But there is not Countermeasure that will prevent both Factors
from happening.

Aggregating these two Factors into one only complicates things. The

11As with every good rule there is an exception.

5.5. SUFFICIENT, BUT NOT NECCESSARY 61

cleanest way12 would be to make two WBGs. One analysing the stone
thrower scenario and one analysing the earthqake scenario. This assumes
that both Factors are not dependend on one another and do not share a
common cause. If they do both WBAs will reveal that the independence
assumption did not hold.

But making two WBAs is more work that one. To cope with this, rather
strange and in my experience very rare, situation, we introduce a way to
state the fact that there are two Causes that are sufficient, but in this very
situation, not neccessary. Keep in mind that this is a substitute for having
two WBGs and that the Counterfactual Test and Causal Sufficiency Test
should hold for the virtual WBGs.

12From an academic point of view

62 CHAPTER 5. INTRODUCTION TO WHY-BECAUSE ANALYSIS

Chapter 6

Accident Analysis Methods -
An Overview

For this thesis the accident analysis method ”Why-Because Analysis” was
not exactly chosen to be the method used to solve the problem of automat-
ing common cause analysis of complex incidents and accidents. It was the
other way round. Over the years WBA has seen some significant progress,
especially in computer support for the method. After there were a couple
of software products to help with graph drawing, soon a common data ex-
change format was needed. CausalML filled that role. On another front the
RVS was experimenting with quality control measures. One approach was
to have several groups analyse the same case using WBA and then compare
the results. There were some very basic rules how to do that [37] [33] and
it was a bit of an effort in record keeping, but quite effective. Students who
had just been introduced to the method were capable to produce quality
WBA graphs just by comparing results and a small set guiding rules. A
new software was written [45] to help analysts compare two graphs with
each other.

Then in 2007 an A320 overshot the runway of Congonhas-Sao Paulo.
One of the causes was an inoperative thrust reverser. There is one thrust
reverser on each engine, but in this case only one was working. How the
inoperative thrust reverser contributed to the runway excursion of flight
TAM3054 is a rather complex story. The crew knew that one of their thrust
reversers was inoperative, indeed they knew it before they departed from
Porto Alegre. In between the pilots and the engines and their respective
thrust reversers is a lot of automation.

There had been two other cases of A320s with inoperative thrust re-
versers leading to so called runway excursions in which the pilots also knew
of the fact. This already means that some factors of all three accidents were
the same:

• The accidents happened to A320 aircraft.

63

64 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

• In all accidents one thrust reverser was inoperative and the other one
was working properly.

• The crews all knew of the one inoperative thrust reverser of their
aircraft.

• All three accidents resulted in runway excursions.

One question in all three accidents was: ”Did the design of the aircraft,
including automation and operating procedures, unnecessarily provoke run-
way excursions given the initial situation?” Some may argue YES simply
from the fact, that the initial situation and the outcome were the same for
all three accidents. Aircraft with one thrust reverser inoperable are still con-
sidered safe to fly. If the initial situation would be considered unnecessarily
dangerous, then authorities would have to issue rules and recommendations
that prohibit flight with one thrust reverser inoperative.

Such rules would affect all aircraft, and the operators of aircraft other
than A320 would protest, that operations were safe in the past, for other
types. This would clearly put an unnecessary burden on aircraft with good
safety records when it comes to flying with one thrust reverser inoperative.
Would such rules affect only A320 type aircraft, then there has to be a
justification why this type has been singled out. The statistics may speak
against the A320, but that does not necessarily mean that the A320 is unsafe
flying with one thrust reverser inoperative. A320s safely fly and land with
one thrust reverser inoperative, so this alone cannot be a sufficient causal
factor for runway excursions.

The question is, which other factors have to come together in order to
lead to a runway excursion. If in all three accidents the other contributing
factors1ontributing in the sense, that they are sufficient for the runway ex-
cursion to occur together with the one inoperable thrust reverser. turn out
to be A320 specific, then A320-specific action is warranted. If they turn out
not to be A320-specific, e.g. pilots are tired or environmental conditions
were precarious, then no A320-specific action should be taken.

It should also be noted that the presence of same factors in a number
of accidents alone is not enough for accidents to be similar. The causal
relations should also correspond. With WBA comparison and correlation of
factors and their causal relations across accident Why-Because Graphs was
relatively easy. The work was done manually, though there already existed
one piece of software trying to automate the comparison between two graphs
[41].

Form this point on, automatic comparison of a large number of Why-
Because Graphs seemed within reach, so I began to devise a way of auto-
mated comparison, build on the experience with WBA so far.

1C

65

So far, other accident analysis methods have not been assessed, if there are
ways to automatically extract common causes from a number of accidents.
The following is a brief overview of accident analysis methods. The methods
are given a short introduction, their main ideas and structuring elements are
described and then their potential for automatic data extraction from pools
of accident data is assessed. Throughout it will be assumed that there exist
data formats for these methods, so that tool-availability is not an issue in
this assessment.

The methods have been compared with each other on other occasions,
especially mention worthy are the Bieleschweig Workshops [31]. Over the
course of Bieleschweig Workshops number 2 and 3, members of academia
and industry undertook a comparison of methods to assess their respective
strengths and weaknesses. The workshop participants agreed on a number
of prominent accidents from different domains and each accident should be
analysed with each of the selected methods. There were analyses done using
methods that were not designed to be accident analysis methods, e.g. Petri-
Nets or Fault-Trees. These methods will not be described here, because
they lack application specific semantics. It would also be more appropriate
to refer to such analyses not as ”Accident Analysis using Petri-Nets / Fault-
Tree”, but instead to ”Accident Analysis using structural elements of Petri-
Nets / Fault-Trees”.

The methods analysed which were designed to be accident analysis meth-
ods were:

• STAMP

• MES

• SOL

• WBA

• AcciMaps

• ECF

These methods all feature different approaches to analysing accidents.
In this chapter we will have a look at each of the methods:

• What is the general approach to accident analysis in these methods?

• How is data, especially results, structured?

• Which principles of these methods allow for conclusions or inferences
that could be used in automatic accident analysis?

Tool support or the level of standardisation of data structures will not be
an issue.

66 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

6.1 STAMP

In [38] Nancy Leveson, the inventor of STAMP, describes it as follows:

”The[.] STAMP (Systems-Theoretic Accident Model and Process) model
of accident causation is built on these three basic concepts - safety con-
straints, a hierarchical safety control structure, and process models - along
with basic systems theory concepts.[...] In STAMP, systems are viewed as
interrelated components kept in a state of dynamic equilibrium by feed-
back control loops. Systems are not treated as static but as dynamic pro-
cesses[...]. Accidents are the result of flawed processes involving interactions
among people, societal and organisational structures, engineering activities,
and physical system components that lead to violating the system safety
constraints. The process leading up to an accident is described in STAMP
in terms of an adaptive feedback function that fails to maintain safety as
system performance changes over time to meet a complex set of goals.”

In [38] the author also describes the process of how to apply the model
STAMP to actual accident analysis, a process called CAST, the ”Causal
Analysis based on STAMP”. For the purpose of this thesis, CAST is not
of importance, since all analysis is done within the STAMP framework.
CAST’s main purpose is to define a way to get data into STAMP so that
the object of interest can be analysed.

In STAMP an accident is not the object of analysis per se. A STAMP
model of the environment in which an accident happened is described in
terms of control-feedback-loops, which are hierarchically structured. For
example: physical systems are controlled by operators or computers. The
state of the physical systems is fed into the computers or made available to
the operators. Operators and computers in turn have control and feedback
relations with other operators, superiors, organisations, etc.

The analysis of an accident is done by examining the narrative of an
accident and checking if all necessary control-feedback-loops of the overall
system

1. are in place,

2. worked as designed/specified and

3. have been designed/specified appropriately.

Structuring Elements The purpose, in terms of safety, of the control-
feedback-loops is to ensure that the system stays within appropriate safety
constraints. The accident is analysed in terms of inadequacies or lack of
control-feedback-loops.

The STAMP model of the environment, or enclosing system, in which
an accident happened can be denoted by a directed graph, where

6.2. MES 67

• the nodes are systems or objects

• control edges point from hierarchically higher objects or systems to
hierarchically lower objects

• feedback edges point from hierarchically lower objects or systems to
hierarchically higher objects

• there are no cycles in the graph if only feedback OR control edges are
followed

• there has to be a control edge path from the hierarchically top-most
object or system to all hierarchically lower objects of systems

• there have to be feedback edge paths from all hierarchically lowest
objects or systems to the hierarchically top-most object or system

The structure of the control-feedback-relations is relatively easily mod-
elled and also well described in [38]. The nature of control-feedback-loop-
inadequacy is not canonised, which means that the analyst has to deliver
an explanation whenever he-she thinks that a loop is inadequate. Also, an
explanation is needed to argue for missing control-feedback-loops. While the
model asserts that control an feedback always have to go together, there is
no canonical way to determine when a system or object should be inserted
or eliminated from the structure in order to better maintain the safety con-
straints.

Automatic Analysis Using STAMP, the accident itself is not analysed
within the model, except for the explanations given why the system in which
the accident happed was inadequate to prevent it. So, analysing lots of
accidents from the same domain will not result in different models, at least
insofar as they do not change their topology, but only in the analyses which
report the systems inadequacies with regard to an accident.

In order to determine if a number of CAST reports share common causes,
the explanations of control-feedback-loop inadequacies must be machine in-
terpretable. Unfortunately, these explanations can consist of fairly long and
technical [44] plain text.

Maybe some work could be put into categorising control-feedback-loop
inadequacies.

6.2 MES

Multilinear Events Sequencing (MES) [2], as the name suggests, organises
events into sequences. The sequences are ordered chronologically, though
the method does not explicitly call for modelling of durations or time in

68 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

TS RA SD I 10
3rd Bieleschweig Workshop 12-13 Feb. 2004

Copyright (C) Siemens AG 2003. All Rights Reserved.

Center
 of

Competence

Reliability

R
Availability

A

Maintainability

M
Safety

S

Security

S

TOP

R
ai

l
A

ut
om

at
io

n

TIME

ACTORS

Second
Officer

Chief
Officer

Master

Bosun

March 6th,
1987

EREIGNISBAUSTEIN Nr.: 1

Zeit: ca. 16:10 Uhr (GMT)
Ort: Zeebrugge Hafen
Akteur: Herald of Free Enterprise
Handlung: legt am Ankerplatz Nr. 12 an

Bemerkung: um das E-Deck zu beladen, ist
das Schiff "trimmed by the head" (ca. 0,80m)

EREIGNISBAUSTEIN Nr.: 2

Zeit: 17:40 Uhr (GMT)
Ort: Zeebrugge Hafen
Akteur: Herald of Free Enterprise
Handlung: Tank Nr.14 wird abgepumpt
(Voll = 268 m³)
Bemerkung: Beladen des E-Decks ist
abgeschlossen, G-Deck wird noch beladen

EREIGNISBAUSTEIN Nr.: 5

Zeit: 18:24 Uhr (GMT)
Ort: Zeebrugge Hafen; Außenmole
Akteur: Herald of Free Enterprise
Handlung: Schiff beschleunigt von 14 auf 18
Knoten
Bemerkung: Wasser dringt über die Bug
"spade" ins G-Deck ein

EREIGNISBAUSTEIN Nr.: 3

Zeit: 18:05 Uhr (GMT)
Ort: Zeebrugge Hafen
Akteur: Herald of Free Enterprise
Handlung: Abfahrt von Ankerpatz Nr.12
(Schiff fährt ab mit dem Heck voraus)
Bemerkung: Schiff hat 5 Minuten Verspätung;
Schiff ist überladen; Bugtüren stehen offen

EREIGNISBAUSTEIN Nr.: 7

Zeit: 18:28 Uhr (GMT)
Ort: 1,3 km nach Hafenausfahrt
Akteur: Herald of Free Enterprise
Handlung: Schiff kentert
Bemerkung: Backbord Seite läuft auf Grund
im flachen Wasser; Steuerbord Seite liegt
oben

EREIGNISBAUSTEIN Nr.: 8

Zeit: ca. 16:10 Uhr (GMT)
Ort: G-Deck
Akteur: Assistant Bosun
Handlung: öffnet die Bugtüren

Bemerkung:

EREIGNISBAUSTEIN Nr.: 27

Zeit: 17:55 Uhr (GMT)++
Ort: Brücke
Akteur: Master
Handlung: sieht seinen 1. Offizier auf die
Brücke kommen
Bemerkung: verlangt keinen Bericht; geht
davon aus, dass Schiff bereit für Abfahrt ist

EREIGNISBAUSTEIN Nr.: 28

Zeit: 17:55 Uhr (GMT)++
Ort: Brücke
Akteur: Master
Handlung: stellt "Combinator" 6 ein
Bemerkung: keine übliche Praxis, da
Bugtanks noch abgepumt werden

16:10 17:40 18:05 18:24 18:2817:55

EREIGNISBAUSTEIN Nr.: 6

Zeit: 18:24 Uhr (GMT) ++
Ort: nach Zeebrugge Hafenausfahrt
Akteur: Herald of Free Enterprise
Handlung: Schiff wird instabil
Bemerkung: Tank 14 enthält noch 168 m³

Assistant
Bosun

Ship

MES Chart
Herald of Free Enterprise, March 6th, 1987

Figure 6.1: Taken from [30]

between events. Multilinear means that there is more than one sequence
of chronologically ordered events, except for trivial cases. Each event, or
Event Building Block (EBB), as an event’s description in MES is called, is
associated with an actor. For each actor that has been identified, a chrono-
logically ordered sequence of EBBs is constructed. The chronological order
of EBBs has to be preserved across all sequences. Additionally the cause-
effect-relations between EBBs are included in MES.

According to [2] EBBs should be stated in active voice and EBBs should
not denote omissions, unless there are very strong indications that something
should have happened. For example, a rule may state X must follow Y, but
did not, then an omission is in order.

Raising the bar too high to include omissions increases the difficulty to
check if the cause-effect-relations between EBBs are correct and complete.
The method does not explicitly introduce formal causal reasoning about
EBBs, but even if WBA’s Counterfacutal Test and Causal Sufficiency Test
were to be applied, the lack of omissions would result in too many failures
in the Causal Sufficiency Test.

The overall topological structure of EBBs and cause-effect-relations,
called ”logical links” in [16], is similar to a Why-Because Graph. [2] also calls
for simplicity in describing EBBs, so EBBs can be compared to nodes and
factors of Why-Because Graphs. The ”logic links” between EBBs are com-
parable to the Necessary Causal Factor Relation between factors in Why-
Because Graphs.

6.3. SOL 69

Missing is the rigour of WBA concerning causal reasoning. This means
that MES results could be processed in the same way that Why-Because
Graphs can be compared topologically. Computing the MES equivalent
of a Causal Commonality Graph may well be a good indicator, that real
causal commonalities have been found. But unless the semantics of ”logic
links” are clear and less open to expert interpretation, drawing conclusions
from resulting MES Causal Commonalities Charts still requires additional
expert opinion and a review of the cases which allegedly share the Causal
Commonalities Chart.

6.3 SOL

Nr.:

Time:

Location:

Actor:

Action:

Remarks:

Step 1: Situational Description

Decomposition of the event into “event building blocks”

Actors

Time

1
Actor 1
Action A

3
Actor 2
Action C

5
Actor 1
Action E

6
Actor 2
Action F

2
Actor 3
Action B

4
Actor 3
Action D

Step 1: Situational Description

SOL Time-Actor diagram

Figure 6.2: SOL Time Actor Diagram: The Time Actor Diagram is very
similar in structure to the diagram made for MES analysis.

Safety through Organisational Learning [15] is an accident analysis method
that shares many features with MES. Event organisation in multiple event
sequences is done in SOL as it is done in MES. The main differences are the
data on EBBs and SOL’s identification and analysis aids.

EBBs Event Building Blocks in SOL are not like factors in WBA or MES,
where descriptions of an event should be atomic and simple. EBBs in SOL
are more structured, more like a form. SOL’s EBBs should have data on:

• A number or ID,

• the date and time the event happened,

• the location where the event happened,

70 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

Nr.:

Time:

Location:

Actor:

Action:

Remarks:

Step 1: Situational Description

Decomposition of the event into “event building blocks”

Actors

Time

1
Actor 1
Action A

3
Actor 2
Action C

5
Actor 1
Action E

6
Actor 2
Action F

2
Actor 3
Action B

4
Actor 3
Action D

Step 1: Situational Description

SOL Time-Actor diagram

Figure 6.3: SOL Event Building Block: The actual action of the event is
described in the ”Action” item of the card. ”Time”, ”Location” and ”Actor”
are difficult to fill out for omissions / non-events.

• actor(s) involved,

• actions involved and finally,

• remarks.

More structured and form-like data makes automatic data extraction
easier. The actual event description is contained in the ”action” part of
the EBB and is subject to the same limitations as other event descriptions.
There is no reason not to use guidelines as in WBA or MES, so that the
”action” description can be made machine-interpretable. But SOL provides
the analyst with additional guidelines, which should help the analyst fill
out the EBB form. Additional guidelines would be needed to bring both
approaches together, so that the content of the ”action” item in a SOL EBB
can be stated in a machine interpretable way.

Identification Aid An Identification Aid in SOL is meant to help in eval-
uating an EBB. The Identification Aid has two parts. The first part is a list
of guiding questions that may be applicable to an EBB. A guiding question
may be ”Have there been conscious [rule] violations?” The identification aid
gives some examples, to help the analyst decide if the guiding question is
applicable. If the guiding question is applicable, the Identification Aid lists
a number of pointers to direct the analyst to a list of possible contribut-

6.4. WBA AND ACCIMAPS 71

Directly contributing factor

E. Violations
"Have there been conscious
violations?"

Examples are:
• inappropriate transfer of processes

from other situations
• work performance that violates

at least partly prescribed rules
• inadmissible reductions during work

performance
• non-compliance with the safety

regulations
• evading of control principles

("4-eyes-principle")
• ...

points to
1
3

5
6

8
9

10
11
12
13

18

Indirectly contributing factor

8. Control and supervision
"Was the operators' performance
not controlled or supervised
sufficiently?"

Examples are:
• missing "4-eyes-principle"
• missing protection against

violations of the "4-eyes-principle"
• missing control of the work by

supervisors or co-workers
• inadequate supervision
• missing self-control of work results
• attaching too much importance to

work results in comparison to safe
performance

• ...

Step 2: Identification of contributing factors

SOL “Identification Aid”

A Information

B Communication

C Working conditions

D Personal performance

E Violation

F Technical components

SOL directly contributing factors

Figure 6.4: SOL Identification Aid: The Identification Aid supports the
analyst to find additional factors. They can be adapted to fit different
application domains.

ing factors to the event. An example of a contributing factor to the rule
violation guiding question would be

Control and Supervision: Was the operators’ performance not controlled
or supervised sufficiently?

Again, there are a number of examples given to help the analyst in decid-
ing if a contributing factor applies to an event.

Compared with WBA or MES events are given more meta data in SOL.
The description of events using the ”action” item could be changed to be
more suitable for machine-interpretation of EBBs. Like in MES there are
no rigorous semantics for what constitutes a cause, which has the same im-
plications on deriving causal conclusions automatically. The rigid structure
of EBBs in SOL makes it difficult to introduce non-events, especially with
regard to stating time, location and also maybe actors.

6.4 WBA and AcciMaps

Why-Because Analysis[54], like SOL and MES, describes accidents in terms
of events or factors. Because WBA distinguishes between events, non-events,

72 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

processes, states and others, factor is the preferred umbrella term. WBA
places less focus on actor-associated event sequences, but relies on finding
and checking causal relations between factors. The relative non-importance
of chronological sequences makes introduction of hard to place factors, like
non-events or states, easier to integrate.

Factor descriptions should be simple and atomic, like in MES. The causal
relations between factors are (5.2.2, p. 38) checked using formal tests, so that
there are fixed semantics to the notion of one factor being causal to another
factor. Formal semantics make it easier to draw automatic conclusions from
given WBA data .

AcciMaps[24] are very similar to WBA [34], but lack the formal notion
of causality. Instead factors in AcciMaps are categorised into physical, or-
ganisational, societal and psychological factors.

As with MES an automatic analysis of AcciMaps would be possible and
results would probably good indicators of commonalities in AcciMaps, but
the results would have to be checked manually to ensure that they are au-
thoritative.

6.5 ECF

Events and Causal Factors Analysis models accidents with two kinds of
factors: Events and Conditions. Factors are very similar to EBBs in MES
or SOL or to factors in WBA. Their description should be simple and they
should be atomic. Events should denote occurrences and Conditions should
denote states or circumstances, but not occurrences. This is more or less the
same distinction made between WBA’s state- and event-factors. Like WBA
ECF makes use of Counterfacutal reasoning to establish if there is a causal
relationship between two events. According to [30] causal or Counterfacutal
reasoning is not applied to the causal relation between conditions or between
a condition and an event.

For automatic analysis this means that at least parts of ECF accidents
can be used. The lack of a causal sufficiency criterion leaves much of the
quality and (relative) completeness control to the analyst, but there is no rea-
son why ECF could not be improved by additional formal checks. Applying
Counterfacutal reasoning to other factors than events, e.g. states/conditions
or non-events, has been successfully done in WBA.

6.6 Conclusion

With the exception of STAMP/CAST accident analysis methods all rely on
notions of factors or events and on notions of causal relationships between
factors. Classification criteria for factors,

• like factor types, e.g. states, events, omissions,

6.6. CONCLUSION 73

• like actors or

• like organisational classifications, e.g. psychological, organisational,
physical,

are usually either translatable from one method into another or can be added
to methods that lack them. Again with the exception of STAMP/CAST the
accident analysis methods only differ slightly in their approach and do not
contradict each other.

This means that, in principle, all these methods can be enhanced with
each others features. While this thesis has its focus on finding automati-
cally common causes in a large accident report corpus, other features offer
opportunities for additional data mining.

• Classification of factors into organisational-, physical-, legal or psycho-
logical factors allows to statistically evaluate not only the prevalence of
certain types of factors, but also prevalence in common causes. From
this, more general statements can be made as to whether a system is
strong or weak in certain aspects of its operation.

• SOL’s analysis aids have been derived from organisational research are
may offer the opportunity to further subclass factors meaningfully.

What sets STAMP/CAST apart is the focus on control-feedback-loops
and the description of the systems and the environment in which accidents
occur. The assumption that STAMP is always the appropriate model for
accident analysis also means that systems are best described in terms of hier-
archy and control-feedback-loops. The focus on control-feedback deficiencies
of systems makes STAMP/CAST not a natural candidate for common-cause
analysis. It may very well be the case that STAMP/CAST is biased towards
certain types of accident causes. Indeed the bias may well have initially led
to the development of STAMP/CAST as it is.

74 CHAPTER 6. ACCIDENT ANALYSIS METHODS - AN OVERVIEW

Chapter 7

Past Approaches to
Automation of Occurrence
Data Comparison

7.1 Early Software to Create and Edit Why-Because
Graphs

The first pieces of software that automated part of the WBG generation
were scripts[51] that ultimately produced a file that could be rendered by
the DOT[21] rendering engine of the Graphviz[17] project. One later edition,
ybedit[51] by Bernd Sieker would offer a simple graphical user interface.

Limitations in ybedit were its lack of project management and factor
accounting. Factors that were not part of the WBG yet had to be kept in a
text file.

In his diploma thesis Thilo Paul-Stueve did a task analysis of the WBG
generation[47]. He found that lots of time was wasted keeping the rather
complex data of a WBA in several different, non-integrated places in sync.

Jan Paller wrote a software, ybfactor[51] that would do the accounting of
factors. Both programs used the CausalML[18] file format, whose develop-
ment was initiated by Oliver Lemke and was a joint effort by Oliver Lemke,
Luke Emmet, Mirco Hilbert, Peter B. Ladkin, Jan Paller, Bernd Sieker,
J̈ı¿1

2rn Stuphorn and Fergus Toolan. I later contributed the inline docu-
mentation for the file format, because different tool interpreted the meaning
of data structures differently and incompatibly with each other.

ybfactor and ybedit would both use CausalML as their native data for-
mat. Jan E. Hennig developed the distributed archiving system VDAS[51],
which was used to improve the data exchange between ybfactor and ybedit.

The overall result improved the WBA process considerably, but was still
cumbersome, very difficult to deploy, it would only run on GNU/Linux and
BSD systems and the there were many things the user of the programs had

75

76 CHAPTER 7. PAST APPROACHES

to know about the data exchange between ybedit, ybfactor and VDAS.

I then started to write a platform independent tool that would integrate
all the tasks that were needed to do a WBA. I was later joined by J̈ı¿1

2rn
Stuphorn, who added PDF exporting functionality. The software was used
for research projects inside the group and at Deutsches Institut f̈ı¿1

2r Luft
und Raumfahrt, for courses in WBA and accident analysis, both at the
university and at industrial tutorials and by Causalis Limited, a tech-transfer
company that specialises in aviation accident analysis.

7.2 Towards Automatic Common Cause Analysis

7.2.1 Manual Occurrence Data Comparison

There are accidents where expert opinions were widely different from one
another. It is a variation of the problem, that different experts identify dif-
ferent causes for an accident. The latter problem is solved by WBA. The
correctness tests of WBA[54] [36] (see also 5.1.2 and 5.1.2) assure that the
analysis is correct, relatively complete and objective. The question of sim-
ilarity can only be answered if the underlying analyses of two (or more)
accidents are correct, relatively complete and objective. This is achieved by
comparing factors and subgraphs of two WBGs of different accident analy-
ses. The comparison is done manually. There is no strict rule for assessing
the similarity of two factors in different WBGs in manual comparison, but
factors are simple enough (5.3.2) that it is obvious whether two factors are
similar or not. If the similarity of factors has been established then the
similarity of subgraphs can be also established.

Manual comparison turned out to be a very work intensive task. I have
done a manual comparison of three supposedly similar aviation accidents1.
One of the accidents, Bacolod, was done by me, the other two were done by
other analysts using WBA. Comparing each pair of accidents took almost
as long as it took to do the actual analysis.

7.2.2 Controlled English for WBA, CE4WBA

Within the scope of a diploma thesis Lars Molske developed a software tool,
CE4WBA[41], to support the comparison process. The idea was to use

1

• TAM Airlines Flight 3045 overran the runway after landing at Sao Paolo airport
on 17th of July 2007.

• Philippine Airlines Flight 137 overran the runway after landing at Bacolod airport
on 22nd of March 1998.

• Transasia Airways Flight 536 overran the runway after landing at Taipei-Sung Shan
airport on 18th of October 2004.

7.2. TOWARDS AUTOMATIC COMMON CAUSE ANALYSIS 77

controlled English to describe the factors involved in WBGs. The grammar
and vocabulary could be edited in the software. Then all expressions could
be typed in and the software would check them for conformity with the
vocabulary and grammar. After completely expressing the content of WBGs
using CE4WBA all factors could be checked automatically for similarity.

The approach was tried on the above mentioned aviation accidents. The
software was performing as intended, but the approach turned out to be
infeasible for a number of reasons. The basic grammar, that was designed
by Lars Molske, was simple and easy to use, but lacked significantly in
expressiveness. Not all factor descriptions could be expressed using the basic
grammar. Since the software allowed the grammar to be extended Bernd
Sieker, J̈ı¿1

2rn Stuphorn and me used the extension feature, which improved
expressiveness. Unfortunately the grammar reached the point where it was
very complicated to use. The software did not provide any means of checking
whether new rules opened the possibility of expressing the same statement
in different terms, which conflicted with automatic comparison. We found
that the amount of work that went into assuring that automatic comparison
could be done on CE4WBA graphs far exceeded the amount of work that
was needed to do the comparison manually.

7.2.3 IQualizeIT

Another tool was developed in parallel to CE4WBA which was intended
to aid the comparison of WBGs. IQualizeIT[45] was developed by Damian
Nowak within the scope of his diploma theses of which I was one of the
two thesis reviewers. Its main motivation was to aid in the process of qual-
ity management by comparing two WBGs. Students who were taking the
Systems Safety classes at our work group were required to compare results
with one another. That meant to find all factors that they had in common
and then discuss the remaining factors in order to improve the quality of
their results. IQualizeIT could read CausalML, but unfortunately had its
own data format for writing, because the format was still a work in progress
when Damian Nowak was working on his diploma thesis.

7.2.4 Integrating CE4WBA and IQualizeIT

Originally it was thought to integrate CE4WBA and IQualizeIT. Integra-
tion would have meant that a system could be built that could automaitcally
compare two WBGs that had been built with the CE4WBA grammar and
vocabulary. Unfortunately CE4WBA was too unwieldy to use and the inte-
gration was not seen as beneficial anymore.

78 CHAPTER 7. PAST APPROACHES

7.2.5 A New Approach

Instead of using CE4WBA another method had to be developed to improve
comparisons. This time not only the comparison of two graphs, which was
meant for quality assurance purposes, was the goal, but the comparison of
a whole corpus of WBGs. The idea was not only to compare graphs and let
the analysts figure out the rest in order to synchronize analyses, but to have
a fully automatic system that would be able to identify complex behaviour
causing occurrences.

Chapter 8

Requirements for Automatic
Common Cause Analysis

The accident investigation process presented here has new capabilities that
can not currently be found in existing accident investigation report databases.

8.1 Representing Complex Behaviour in Reports

There is nothing fundamentally wrong with describing complex behaviour
in natuaral language, humans can understand it. But machines do not
understand natural language very well, which makes natural language, the
way it is used in all report corpora currently, inadequate. More formal
languages such as CE4WBA[41] (7.2.2) are cumbersome and have a very
steep learning curve. They may be adequate for demonstrating a principle,
but turned out to be unsuitable for to real life application.

Specifying system behaviour more formally,for example with complex
mathematical models, is very desirable for data mining, but undesirable
from a useablility point of view. It is also very difficult to assure that a
model has sufficient expressiveness. Accident data has to be specifiable in a
way that an investigator, who usually is no expert in data representation or
abstraction, can do it by himself with the confidence that the data entered
will yield the expected results.

There is no way around the fact that investigations will primarily be us-
ing natural language during the analysis process. Any process that attempts
to automate later data extraction therefore must bridge the gap between
human-understandable data representation and machine-understandable data
representation. The gap should also be bridgeable by analysts in both ways,
also taking into consideration that the work of one analyst must be under-
standable by another analyst and it must also be comparable. Accident
investigators must be able to easily convert the natural language represen-
tation of a report into a machine-understandable representation. For meta-

79

80CHAPTER 8. REQUIREMENTS FOR AUTOMATIC COMMONCAUSE ANALYSIS

analysis analysts must also be able to formulate queries to the database and
understand the results delivered as a result of the queries.

Accident investigators cannot reasonably be expected to learn formal
languages. On the other hand natural language is not suitable for automatic
processing. A trade off has to be found.

8.2 Distinction between Cause and Effect

There must be a clear distinction between cause and effect. In current
databases reports have chapters on causes and contributions to an accident.
This would, in principle, allow text mining to determine single causes to be
part of an accident, but the causes and contributions to an accident are not
related to one another.

The complete report text could be mined, and indicating phrases such
as ”leads to”, ”because of” or ”causes” would indicate cause-effect rela-
tionships. The statements found with the indicating factors may also be
correlated with statements and phrases found in the report sections listing
the causes of an accident. Not all causes would necessarily be cause-effect
related to one another, but it would still be better than nothing. More
importantly, the cause-effect semantics for each relation found may differ
from relation to relation. Without such semantics further causal reasoning
is problematic. Different authors may have different notions of cause-effect
relation semantics. This has implications on causal reasoning, especially
when automated. Take transitivity for example: If A is a cause for B and
B is a cause for C, if nothing is known about transitivity it cannot be algo-
rithmically determined if A is a cause for C. (see also 9.1.5)

It is also common practice in accident reports to include findings which
did not cause the accident that was investigated, but were anyway of impor-
tance for safety. Due to the above mentioned problems of causal reasoning,
causes found by text mining may be causes for otherwise interesting behav-
ior, but not for the accident in question.

If two or more causes are part of the same causal chain, one cause being
another cause’s effect, this cannot be inferred from the structure of a text
automatically without sophisticated natural language understanding. To
understand more complex relations between the causes and contributions,
even for a human reader, a thorough understanding of the accident’s history
is required.

If the cause-effect relations between two factors can be understood by
a report database system, then understanding of arbitrarily complex cause
effect relations can be built on that.

Example
Consider two hypothetical occurrences in aviation.

8.3. DISTINCTION BETWEEN CAUSES AND NON-CAUSES 81

• Crew A loses situational awareness. Upon that realisation the crew
struggles to regain situational awareness, which turns out to be quite
difficult. The crew is anxious which then leads to bad crew resource
management and unnecessarily complicates the task.

• Crew B has an inexperienced flight captain. The captain’s leadership
abilities are inadequate which results in bad crew resource manage-
ment. During a flight phase with heavy workload the crew suddenly
realises that they have lost situational awareness.

In the first case the loss of situational awareness causes bad crew resource
management. In the second case loss of situational awareness is an effect of
bad crew resource management. In a normal1 accident investigation report
both would be listed in the conclusions part of a report among the causes
and contributions. Text mining would not be capable distinguishing between
accident investigation reports where A caused B from those were B caused
A.

8.3 Distinction between Causes and non-Causes

Another problem for automatic causal reasoning is that accident investiga-
tors very seldom use explicit criteria2 for determining if a factor found is
indeed a cause of an accident. This is a shortcoming of the analysis process
that generates the reports. Without such explicit criteria[54][36]

• the determination of a cause-effect relationship between a factor and
an accident rests solely on the expertise of the analyst,

• criteria are inconsistent across investigation reports and

• no completeness or correctness checks can be done.

The first has implications on the capabilities that a report database can
have. Without an explicit rule stating what is a cause and what not analysts
tend to include all things that deviate from normal behaviour as causes or
contributions. During the Bieleschweig workshops[3] different methods of
analysis were discussed[30][11]. Some of which featured (semi-)formal rules
on what to include in an analysis and what not.

The quality of a report database obviously depends on the quality of
reports contained in that database. Assuring completeness of query results
is especially important for all queries to a report database that are aimed
at determining the absence of something.

1e.g. an aviation accident report according to [26]
2falsifiability criteria in the scientific sense

82CHAPTER 8. REQUIREMENTS FOR AUTOMATIC COMMONCAUSE ANALYSIS

For example: A number of accidents have been analysed and resulted
in a change of a system in order to improve safety. After some time the
effectiveness of the safety measure should be statistically evaluated. It is
expected that the type of accident happens less often, in an extreme case
it is eliminated altogether. A report database that contains reports that
have been (formally) checked for completeness and correctness can more
confidently searched for the absence of something.

8.4 Defining Classes of Occurrences and Searching
Databases

The problem of defining classes of occurrences is related to the problem of
representing complex behaviour. In order to define a class there must be a
statement that allows the decision if a given occurrence is part of the class
or not. This is needed for searching and statistics.

In a search for an occurrence report in a database the search pattern is a
class description. The search result will contain all occurrences that match
the class description and none that do not match. Search results and their
change over time then can be used as the basis for statistical analysis.

In current databases of occurrence reports searches and classification are
not unified in the way just described. Part of the classification of occurrence
reports is done before the time the actual search is performed. At the time a
database is developed classifications are agreed upon. Then database fields
are used to indicate whether an occurrence report belongs to a class or not.

Examples from road safety databases would be ”Driving Under Influ-
ence”, ”Speeding” or ”Technical Fault”. These classes come from experi-
ence and are known to happen frequently. In a database search the class
attributes can be included in the search pattern, so that search patterns are
only constructable from predefined classes or patterns and from full text
searches. The rate of change in the number of occurrences of a specific class
can be monitored, e.g. if DUI has bevome more or less common.

That does not imply that classes cannot be changed when new classes
of interest emerge. Databases can be changed and data in databases can
be reviewed. The problem is only the amount of work that has to go into
reclassifying all reports in a database. If a new class is added to the existing
ones then everything must be reviewed and changed accordingly. Some
databases may be prohibitively large for that, so that only new occurrences
will be classified by the new scheme. But the size of an occurrence database
in itself is of benefit, because statistical evaluations on large databases will
have more impact that evaluations of small ones.

It would be very beneficial to have both flexible classification for large
databases. Classification at the time of the evaluation or search eliminates
the need for preset classes, which in turn would eliminate the need for reviews

8.5. COMMON CAUSE ANALYSIS 83

if a new class of interest emerges.

8.5 Common Cause Analysis - Automatically Iden-
tifying Clusters of Occurrence-Causing Behaviour

Some occurrences may share behaviour that leads to unwanted consequences.
But common behaviour is not always apparent beforehand. The identifica-
tion of emerging common behaviour depends on how high the frequency
of newly emerging behaviour is and on the severity. More severe common
causes will be easier rememberable. Depending on the method used or the
rigidity of the rules of an analysis process, analysts may be operationally
blind to emerging behaviour.

Automatic identification of emerging unwanted behaviour offers the pos-
sibility of ianalysing low severity occurrences (incidents), to prevent high
severity occurrences (accidents). The behaviour may cause different levels
of damage depending on factors outside the system in question. The severity
of runway overruns in aviation, e.g. depends on the absence or presence of
obstacles. On the 14th of September 1993 a Lufthansa A320 overran the
runway of Okecie International Airport near Warsaw, Poland, and hit a hill
that was built at the end of the runway.[55] The consequences were 2 fa-
talities and the loss of the airframe. On the 9th of May 2004 an American
Eagle ATR-72 had a runway excursion at Luis Munoz MarÃn International
Airport, San Juan, Puerto Rico.[6] The aircraft came to a halt on the grass
strip beside the runway and suffered no fatalities, though the airframe was
lost. On the 17th of July an TAM Airlines A320 overshot the runway of
Congonhas-Sao Paulo International Airport, crossed a road and ran into a
warehouse.[12] The aircraft was lost and all 199 on board and 12 people on
the ground died.

Runway excursions are a well known phenomenon, as are their causes.
But unless the same causes lead to other well known phenomena their role
in other, less severe occurrences, remains unknown. Changing technology or
organisation may give rise to new causes.

It is widely assumed that the rate of mishaps is higher than the rate
of incidents which in turn is higher than the rate of accidents[40]. This
is often referred to as the safety or accident pyramid. Newly emerging
unwanted behaviour will most likely, but not necessarily, manifest in mishaps
or incidents before accidents are caused by it. The analysis of low severity
occurrences offers the opportunity to identify unwanted behaviour before
accidents happen, this way accidents could be prevented.

One problem is that the amount of occurrences that must be analysed
grows as the severity threshold is lowered to include more incidents and
mishaps into investigation programs. Another problem is that the first time
that emerging unwanted behaviour is seen, it cannot be recognised as such.

84CHAPTER 8. REQUIREMENTS FOR AUTOMATIC COMMONCAUSE ANALYSIS

It cannot be distinguished from a one-off easily. The second time it is seen
the question remains how reliable the investigation process is in relating
it to the first time. Clearly automation would be of great help. It eases
the burden of analysts having to go through a corpus again and again in
order to find past behaviour that matches current behaviour. This may
either contribute to an increase in the number of occurrences that can be
analysed, given a fixed amount of resources, and it may lower the adoption
threshold enough.

Chapter 9

Algorithmically Finding
Common Causes

The purpose of automatic common cause analysis is to find common causes
in a large number of accident representations. This method should be ca-
pable of clustering accident representations, so that accidents with common
causes can be found ”close” to each other and accidents which do not have
common causes are ”far” from each other. To search for common causes we
need a causal representation of accidents.

9.1 Causal Analysis Method

9.1.1 Factors

All analysis methods have factors, which are arranged according to the rules
(syntax and semantics) of the respective methods. Factors are more deeply
analysed in REF (p. PAGEREF). For the time being all we need to know
about factors is that

• Factors describe part of an accident history,

• Factors can be compared for identity and

• Factors can be compared for equality and similarity.

9.1.2 Causality

To be generally applicable a method is needed that is making as few assump-
tions about its application domain as possible. Some methods, e.g. Ishikawa
Diagrams [29] or AcciMaps [23] , have emerged as methods which assume the
existence of specific classes of factors into which causes can be grouped, such
as organisational causes, psychological causes, economic causes, etc. Strict

85

86 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

causal analysis methods only assume that the laws of causality [25][39] hold.
They therefore are free from unnecessary assumptions.

There are however causal analysis methods, e.g. Ishikawa Models [29],
that assume that cause effect relationships form a tree-like or graph-like
topology. In other words, effects can have many causes, but causes can only
have one effect, which is obviously not true. Just watch a game of billiard.
Each time the a ball simultaneously hits two or more other balls and all
change momentum, there are more effects for one cause. Other approaches
assume only one ”root cause”, in other words, that there is only one ultimate
reason for an accident.

For a survey of causal analysis methods, see Chapter 11 of [32].

We already established that there is a need to distinguish between causes
and effects and causes and non-causes (8.4). We want as few assumptions
about the application domain and as few non-causality theory of accident
causation1.

This leaves two established causal analysis methods which are good can-
didates to form the foundation of the automated common cause analysis.

9.1.3 Hopkins’ AcciMaps

Hopkins describes an AcciMap to be a causal diagram[23]. ”The AcciMap is
used to show how factors quite remote from the immediate accident sequence
contributed to the accident.” The graphical representation shows an acyclic
directed graph, where the nodes denote the factors and the directed edges
denote the cause-effect relationship or flow of causality. In AcciMaps fac-
tors are categorised into five groups of Societal, Governmental/Regulatory,
Company, Organisational and Physical factors. While this violates the re-
quirement of unnecessary assumptions it is completely independent of the
the causal aspect of AcciMaps. The additional categorisation could be ig-
nored for the purpose of automatic common cause analysis and be left intact
for other purposes of analysis.

9.1.4 Ladkin’s Why-Because Analysis

WBA is a causal analysis method [35] which is built on the counterfactual
theory of causality as first described by [25] and later expanded by [39].
The graphical representation is similar to AcciMaps, an acyclic directed
graph, where the nodes denote the factors and the directed edges denote the
cause-effect relationship2. In WBA factors are categorised into Events, Non-
Events, Processes, States, Assumptions, Countermeasures, Countraindica-
tions, and Unsepcified factors. As with AcciMaps the categorisation can

1For a counterexample see the accident analysis method CAST in Chapter 11 of [32],
which is not causality-based or motivated.

2For an in depth introduction to WBA see

9.1. CAUSAL ANALYSIS METHOD 87

remain intact, while it can be ignored for the purpose of automatic common
cause analysis.

What sets WBA apart from AcciMaps and other causal analsyis methods
is the use of formal completeness and correctness criteria. Cause-effect rela-
tionships, denoted by edges in a causal graph, have a very specific meaning.
In WBA the counterfactural relation [36] between two factors is explicitly
established by the Counterfactual Test (see below 9.1.5). This is not only
an important quality control in WBA, but has positive implications on rep-
resenting accident data.

9.1.5 Semantics of Causal Data Representation

AcciMaps offer a bit more informal way of conducting occurrence analysis
than WBA. That means results of AcciMaps tend to differ more between au-
thors than results from WBA. The more formal semantics of Why-Because
Graphs allows for better semantics in data formats and algorithmic pro-
cessing. In contrast, non-rigid defined cause-effect relationships, as they are
used in AcciMaps, would result in non-rigid defined relationships in data
formats. Which means that the comparison of two non-identical syntactical
elements, such as edges in a graph, will have different meanings, but would
be equal according to syntax.

The causal semantics of WBA, and the semantically well-defined syntax
of WBGs, do not impose assumptions other than that systems described
using WBGs adhere to the laws of causality3. WBAs semantics have a
range of benefits[54] [36]. The focus here is to develop algorithms which
compare properties in different WBGs. The algorithms are designed to
deliver results which also have well-defined semantics, which are based on the
semantics of WBA. Important for determining similarity between WBGs are
the Counterfactual Test and the Counterfactual Conclusion, see paragraphs
below. The Causal Sufficiency Test is not part of the causal reasoning to
determine similarities in WBGs.

The Counterfactual Test and Necessary Causal Factors (NCF)

The Counterfactual Test[54] is one of the core principles of WBA.

To determine if two factors are causally related, one being the cause of
the other, the counterfactual test asks the following question: If factor A
had not been, could factor B have happened?[25] If the answer is No, B
could not have happened if A had not happened, then A must be necessary
for B to happen.

If the Counterfactual Test has determined that A is necessary for B to
happen, we term it that A is a necessary causal factor (NCF) for B.

3which is also true for AcciMaps

88 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

In the real world A and B did happen. The counterfactual test is a what-
if question which assumes that B did not happen contrary to fact, hence the
name.

The question assumes that all other circumstances in which A and B
take place remain the same, as far as possible. So the question, as stated
above should be added by the phrase ”all else remaining equal”.

This is based on the nearest possible world semantics [39]. The nearest
possible worlds semantics assumes the existence of other worlds, some like
ours, some not. If we have the ability to compare other possible worlds
with our own and order them according to similarity then we can find the
nearest possible world W in which B did not happen. If A did not happen
in W then B must be necessary for A to happen. This does not mean that
there is no other possible world in which A could happen without B, but
the further away such a world is from ours the less explanatory power the
counterfactual test has. At some distant world from ours things may be
completely different.

In a Why-Because Graph the counterfactual or NCF relation is denoted
by the directed edges in the graph. The pointy end going into the effect and
the stub end coming out of the cause.

Causal Conclusion

WBGs usually consist of more than two factors. Two factors may be causally
related without being NCFs of each other. Effects can be causes themselves
and so causal paths form in a Why-Because Graph.

Assume 4 factors as pictured in 7.1. Let ncf (A, B) be the counterfactual
relation between A and B, where A is the necessary causal factor (NCF) and
B is the effect. The diagram 7.1 shows

• ncf(Factor1,Factor2),

• ncf(Factor2,Factor3) and

• ncf(Factor3,Factor4)

What does this say about the causality relation between Factor1 and
Factor4?

• If Factor1 had not happened, then Factor2 could not have happened.

• If Factor2 had not happened, then Factor3 could not have happened.

• If Factor3 had not happened, then Factor4 could not have happened.

Can we follow ncf(Factor1, Factor4)? No, we cannot, because the coun-
terfactual test for Factor1 and Factor4 demands, that all else should remain

9.1. CAUSAL ANALYSIS METHOD 89

equal. If Factor3 is necessary and sufficient to cause Factor4 the presence
or absence of Factor1 does not matter. Each counterfactual test is con-
ducted in a different nearest possible world. Factor1 could be a necessary
causal factor for Factor4, but we cannot simply draw conclusions from the
three worlds and assume that the conclusions hold in a fourth world.

We can draw the conclusion that Factor1 and Factor4 are causally re-
lated, but the relation identified by the Counterfactual Test is not transitive.
But nevertheless there is a chain of factors and NCF-relations. Factor1 may
not be a NCF for Factor4, but it is a Cause: cause(Factor1, Factor4).

Factor 1

Factor 2

NCF

Factor 4

Cause

Factor 3

NCF

NCF

Figure 9.1: Necessary Causal Factor (NCF) chain illustrating the causal
relationship between Factors 1 and 4

In 9.1 there is only one causal relation (dotted line) depicted, but of
course there are many more, namely between all factors which are on the
same causal path: cause(Factor1, Factor2), cause(Factor1, Factor3), cause(Factor1, Factor4), cause(Factor2, Factor3), cause(Factor3, Factor4)and
cause(Factor3, Factor4).

90 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

Causal Sufficiency and Causal Completeness

There are two other criteria used in WBA. The Counterfactual Test es-
tablishes necessary causal relations between cause and effect. The Causal
Sufficiency test asks another question. If C1, C2 and C3 are all causes and
NCFs for effect E, then the question is if C1, C2 and C3 are sufficient to
cause E. If E must happen if C1, C2 and C3 happen, then C1, C2 and C3
are causally sufficient for E.

Both tests together form the Causal Completeness test. A WBG is
correct and relatively complete if all its factors pass the Causal Completeness
test. For the automatic common cause analysis the Causal Sufficiency Test
is only of relevance insofar as I will assume that all WBGs processed are
correct according to the Causal Completeness Test.

9.1.6 Comparing NCF Relations

Note: equality versus identity In the following paragraph notions of
equality will be introducted. I interested in the comparison of accident data
and therefore I need to compare elements of one accident with elements
of another. Two elements are identical when they are one and the same
(instance) and belong to the same accident. Two elements are equal if they
share all relevant properties, but are not identical and do not belong to
the same accident. The properties of elements which will matter will be
discussed where the different equality measures are introduced.

Equality of NCF Relations Lets assume that there already is an equal-
ity measure defined for factors. Assume that factors are tuples of numbers,
which are equal if the difference between their respective first number is 0
and which are identical if the difference between both numbers respectively
is 0. The first number depicts the factor content, the latter one the accident
the factor is part of.

• Factors C1 and E1 are in WBG1,

• factors C2 and E2 are in WBG2,

• factors C1 and C2 are equal eq1 := equalFactors(C1, C2),

• factors E1 and E2 are equal eq2 := equalFactors(E1, E2),

• C1 is an NCF for E1 and ncf1 := ncf(C1, E1),

• C2 is an NCF for E2 ncf2 := ncf(C2, E2)

• then ncf1 and ncf2 are equal equalNCF (ncf1, ncf2).

Similar for identity.
With this I can compare if two NCF relations occur in different accidents.

9.1. CAUSAL ANALYSIS METHOD 91

Cause 1

Cause 2

equal

Effect 1
NCF

Effect 2
NCF

equal

Figure 9.2: Necessary Causal Factor (NCF) and equality relations

9.1.7 Equality of the Cause-Relation

Building on the NCF relation is the Cause-Relation9.1.5.

For finding common causes in different WBGs the Cause-Relation rela-
tions of all factors involved have to be determined. In WBGs the Cause-
Relations are not explicitly included, but can be inferred from the NCF
relations.

The reason that the Cause-Relation is needed is, that different levels of
detail may express the same situation with different amounts of factors.

If for for WBG1 holds:

• Factors C1 and E1, F1,0, F1,1, ..., F1,n are in WBG1,

• ncf(C1, F1,0), ncf(F1,0, F1,1), ..., ncf(F1,n−1, F1,n), ncf(F1,n, E1),

• then cause(C1, E1)

and if for WBG2 holds:

• Factors C2 and E2, F2,0, F2,1, ..., F2,n are in WBG2,

• ncf(C2, F2,0), ncf(F2,0, F2,1), ..., ncf(F2,n−1, F2,n), ncf(F2,n, E1),

• then cause(C2, E2)

Then:

• If equalFactors(C1, C2),

• equalFactors(E1, E2),

• cause1 = cause(C1, E1) and

• cause2 = casue(C2, E2)

92 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

• then cause1 and cause2 are equal causeEqual(cc1, cc2).

If all equal Cause-Relations in two WBGs have been found, then the
Causal Commonality Graph (CCG) containing only mutually equal factors
as nodes and their associated Cause-Relations as edges can be drawn. The
CCG has very different properties of a WBG.

• The commonatlities found in two WBGs need not be such that the
CCG is connected.

• The CCG no longer carries information about NCF relations.

• It is not causally sufficient (9.1.5).

9.1.8 Causal Commonalities Graph

If two WBGs are completely equal, all factors are equal and all NCFs equal,
then their CCG has the same number of factors as each WBG. But it has
more edges, because there are substantially more Cause-Relations then there
are NCF relations. If one WBG is a subgraph of the other WBG their CCG
has a number of factors equal the number of factors of the subgraph WBG.

Cause Relation Growth The number of Coun- terfactual Conclusion
Relation grows fast. Take for example

• A is an NCF for B,

• B is an NCF for C,

• C is an NCF for D and

• D is an NCF for E.

Then the following Counterfactual Conclusion relations result from this:

• A causes B, C, D and E.

• B causes C, D and E.

• C causes D and E.

• D is an NCF of E, and thereby causes E.

There are 4 NCF relations and 10 Counterfactual Conclusion relations.
A linear causal chain of n NCF relations has n(n + 1)/2 counterfactual
conclusion relations. Because we can infer all counterfactual conclusion re-
lations from all non-redundant paths it is sufficient to only explicitly depict
all non-redundant counterfactual relations. For one, this eliminates the need
for a lot of edges to be drawn in graph visualizations and it will also serve
as normalizing for edge-count measures used in clustering.

9.1. CAUSAL ANALYSIS METHOD 93

Cause 1

Intermediate
Factor 1NCF

Effect 1Counterfactual Conclusion

Cause 2 Effect 2
NCF and Counterfactual Conclusion

Intermediate
Factor 2

NCF
NCF

Figure 9.3: Two chains of NCFs of different levels of detail, illustrating the
Counterfactual Conclusion Relations compared with NCF relation.

a

Y

b

X

c

Z

d

e

f

X

g

Y

h

i

Z

Figure 9.4: Two WBGs. The factors which are equal are denoted by capital
letters and with bold factor shapes.

94 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

Cause-Relation Redundancy Elimination Take the above example
with 5 factors and 4 NCF relations. From the fact that A is a cause for B,
which is a cause for C we can follow that A is a cause for C. In a WBG
there would be a path from A to B and a path from B to C so there is a
path from A to C. If there is a path from A to C then A must be a cause
for C, according to the counterfactual relation.

This entails that we can safely eliminate all but one path from A to C
as long as we do not eliminate non-redundant paths of other factors.

For each factor F0 in a CCG if there is more than one path from F0 to
different a factor F1, then all direct paths of a length of two factors from F0

to F1 can be eliminated if there is at least one path from F0 to F1 that is
longer than two factors.

This will reduce all redundant paths. The reason is, that all paths of
length 2 only contain the starting and ending factors. The Cause-Relation
is transitive. That means that the Cause-Relation between F0 and F1 can
be denoted by either a path of length 2 or any longer path between the
two factors. The path of length 2 can be eliminated without reducing the
information content of the CCG. This automatically eliminates redundant
parts of longer paths of which F0 and F1 are part.

The factors X,Y and Z should be equal with respect to their counterparts
in the other WBG. If only the counterfactual conclusions of mutually equal
factors are drawn as a graph then you can see that both WBGs share the
CCG 9.5.

Normalizing Effect I want to use the Causal Commonalities Graph to
cluster accident Why-Because Graphs according to common causes. There
is a minimum number of causal commonality relations in a CCG when all re-
dundant relations have been eliminated. The maximum number of relations
is the number if all relations existing are explicitly depicted, as shown in 7.6.
In between the number of relations can still be arbitrary without changing
the meaning of the Causal Commonalities Graph. If the number of edges
in a graph is arbitrary it cannot be used as a distinguishing feature useable
for clustering. The minimum and maximum number graphs on the other
hand have been normalized, so that graphs of the same meaning would have
the same edge count. For obvious reasons I will use the graphs with their
minimum edge count, that is with all edges in redundant paths between two
factors removed.

A side effect of this is that the amount of data needed to store a Causal
Commonalities Graph will be greatly reduced.

9.1.9 Definition of the Causal Commonalities Subgraph

Normally a subgraph of a graph is a subset of the nodes and subset of the
edges restricted to the nodes. In WBG terms a WBG subgraph is subset of

9.2. CAUSAL COMMONALITIES IN MORE THAN TWO WBGS 95

factors of the original WBG, and a subset of the NCF relations restricted, to
the factors. Because the counterfactual conclusion relation extends further
then normal edges or NCF relations do, we need a special definition of
subgraph for the Causal Commonalities Graph.

A subgraph of a Causal Commonalities Graph is a subset of the factors
of the original graph and a subset of all possible counterfactual conclusion
relations of the original Causal Commonalities Graph restricted to the fac-
tors.

9.2 Causal Commonalities in more than two WBGs

The CCG is a product of two WBG, but the goal is to find causal common-
alities in more than one WBG. CCGs can be made for each pair of WBGs.
The question remains how to find common causes in of many WBGs when
all we have are pairwise comparisons.

A collection of n WBGs results in n(n − 1)/2 CCGs, one for each pair
of WBGs.

The CCGs can be compared if they share common subgraphs 9.1.8.

Empty Subgraph In the case where two CCGs do not share a subgraph,
the corresponding WBGs do not have any common causes.

Completely Equal CCGs If two CCGs are completely equal then all
corresponding WBGs share the whole CCG as common causes. To have two
completely equal CCGs means that there are three or four WBGs, depending
on whether the two CCGs share one WBG, which all have common causes.

Shared Subgraphs If two CCGs share a subgraph of the two CCGs this
is no different as if the subgraph would be a CCG on its own. The above
for identical CCGs applies for the subgraph.

Non-Connected Causal Commonalities Graphs There is one prob-
lem with CCGs that is not important for the comparison of two WBGs,
but becomes a major problem when comparing many graphs. The way
that CCGs are constructed from WBGs does not ensure that the CCGs are
connected. Non-connected subgraphs in both WBGs may result in a non-
connected CCG. If two non-connected CCGs share a subgraph it may well
be the case, that the subgraph is a number of nodes which are not causally
related. To overcome this the non-connected subgraphs in CCGs should be
made CCGs on their own.

96 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

Y

X Z

Figure 9.5: The Counterfactual Conclusion Graph CCG resulting from 9.4

A

B

C

D

E

Figure 9.6: The corresponding Causal Commonalities Graph from 9.1.8 on p.
92. The graph is cluttered with redundant edges denoting causal common-
alities relations, which could otherwise be inferred. The redundant edges
are drawn dotted.

9.2. CAUSAL COMMONALITIES IN MORE THAN TWO WBGS 97

Original CCG CCG-Subgraph

E

F

C

A

D

B

E

C F

D

A

Figure 9.7: The CCG-subgraph is not a real subgraph in a graph-theoretic
sense. The transitive nature of the counterfactual conclusion relation de-
mands a different notion of subgraph for Causal Commonalities Graphs.

98 CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

9.2.1 Clustering Algorithm

At the start of the algorithm we have a collection of WBGs which we want
to examine for common causes. The aim to have a database of common
causes which can be used to determine the most prominent common causes
found among the WBGs. Note that at the moment the exact meaning of
”most prominent” remains unspecified at the moment.

Algorithm Overview

Step 1: CCGs For each WBG pair in the collection of WBGs a CCG is
constructed. The resulting CCGs are stored in a CCG database, which also
lists all WBGs which are associated with the CCGs. After this step each
CCG database entry holds one CCG and two WBGs.

Step 2: Non-Connected CCGs Each CCG is checked for connected-
ness. All entries of non-connected CCGs are eliminated from the CCG
database. The connected real subgraphs (not in the sense of 9.1.8 of the
non-connected CCGs are put into the CCG database as CCGs in their own
respect, each one of which will be associated with the WBGs of the original
CCG database entry. A WBG can only occur once in a CCG database entry,
if a WBG is to be added to an entry where it is already contained, the add-
procedure will be ignored. Each change which has been done in Step 2 must
be logged for later use (see Step 4).

Step 3: CCG Subgraph Check All CCGs in the CCG database are
compared pairwise.

• If two CCGs do not share a common subgraph nothing happens.

• If two CCGs are completely equal, then their two CCG database en-
tries are merged. One CCG entry remains, while the other is elim-
inated from the CCG database. All WBGs of the eliminated CCG
database entry which are not already part of the remaining CCG
database entry are added to the remaining CCG database entry.

• If two CCGs share a subgraph then a new CCG database entry is
added. The subgraph will be the CCG of the new CCG database
entry and the WBGs, each only once, of the original CCG database
entries will be put into the entry.

All changes in Step 3 must be logged for later user (see Step 4).

Step 4: Reiterate Steps 3 and 4 Steps 2 and 3 are repeated until there
are no further changes to the CCG database. This ensures that all the new
CCGs which have been generated in Step 3 are connected. Each new CCG

9.2. CAUSAL COMMONALITIES IN MORE THAN TWO WBGS 99

that will be introduced by Step 2 must be processed by Step 3, because it
may still change the database and affect clustering. Steps 2 and 3 must be
slightly altered during the reiteration. Every time a need for a change of the
CCG database is detected the log must be checked. If the proposed change
occurred in the past then it must not be perfumed. Otherwise Steps 3 and
4 may run indefinitely. A CCG entry may be added by Step 2 which is then
eliminated in Step 3, leaving intact the sources of the original adding in Step
2.

The final CCG Database When Steps 1-4 have run the CCG database
contains a list of CCGs with all the WBGs which share the CCG. WBGs
may appear in many CCG database entries, but within one entry a WBG
can only occur once. The larger the CCG, in terms of factors, the bigger
the commonalities between all the WBGs in the respective CCG database
entry. The more WBGs the more prominent the common causes are among
the WBG collection.

Change of the CCG Database over time The CCG database is a
snapshot at a specific point in time. It can be used to point to common
causes which can then be addressed appropriately. Taking into consideration
the change of the CCG over time, important results for accident meta-
analysis can derived:

• Newly emerging common cause patterns can be found early. New
hazards or threats can be addressed as soon as they emerge as a trend,
which may not be so prominent as to be observable by human analysts.

• Fast growing common cause patterns can be identified, compared to
other trends and allow intelligent intervention.

• Stagnation of formerly growing patterns can be identified which is a
good proxy for the effectiveness of interventions.

Practical Considerations

With the CCG database there is, essentially, a two-dimensional value to
measure the ”prominence” of common cause patterns. First, the size of the
CCG in number of factors and secondly the number of WBGs which contain
the behaviour described in the respective CCG. To use a CCG database to
base real life decisions on, the application domain may impose restrictions
on its use.

Cut-Off Not all ranges of the CCG size or the number of WBGs are
important. Depending on the relative sizes of CCG or the relative number
of WBGs for each CCG a cut-off may be appropriate. For example CCG

100CHAPTER 9. ALGORITHMICALLY FINDING COMMON CAUSES

database entries with CCGs of size two or three may be deemed unimpor-
tant. So may all CCG database entries with no more than two or three
WBGs associated with them.

Weighing Function Depending on application domain and the set goal
either the size of the CCG or the number of WBGs per CCG database
entry may be more important. Additionally the introduction of weights for
WBGs or CCGs of a specific type (for example high-damage WBGs) may
be desirable.

Ignoring Specific Entries Essentially this would be the same as assign-
ing as specific type of WBG or CCG a zero weight. Cases which are known
to be unimportant should be filtered out.

Chapter 10

First Accident, continued

Getting back to the example from 5.3 this chapter will demonstrate how
to denote the factors in terms of the attribute-value lists as described in
11.1.3 (p. 107). All factors should be expressed in terms of an ACTION, an
ACTOR and a list of OBJECTS.

Recall that we already identified the actors of the Friendly Fire Accident:

• Soldiers will denote the U.S. Special Forces soldiers as a group.

• Air Controller will denote the soldier, member of the Soldiers, who
was responsible for calculating targeting coordinates and calling in air
strikes.

• F18 will denote the F/A-18, the aircraft that conducted the first
airstrike on the Taliban Position.

• B52 will denote the B-52 bomber aircraft, that conducted the second
airstrike, which hit the Soldier’s Position.

• Taliban Position will denote the physical location of the Taliban which
the Soldiers intended to strike.

• Soldier’s Position will denote the physical location of the Soldiers.

• Taliban Coordinates will denote the GPS coordinates that correspond
to the Taliban Position.

• Soldier’s Coordinates will denote the GPS coordinates that correspond
to the Soldier’s Position.

• Displayed Coordinates will denote the GPS coordinates that appear
on the display of the plugger.

• JDAM will denote a GPS guided bomb.

101

102 CHAPTER 10. FIRST ACCIDENT, CONTINUED

Going through the factors of the Why-Because Graph (see 59) we can
identify the ACTORs, ACTIONs and OBJECTS for most of them quite
easily. For example the factor ”Accident: B52 drops JDAM on Soldiers
Position”

• has ”B52” as its ACTOR,

• the ACTION is ”to drop” and

• the OBJECTs are ”JDAM” and ”Soldiers Position”.

Given factors that are formulated as atomic factors (see 105) and stated
in active voice the assignment is fairly easy. Subjects will become ACTORs.
the predicate will become the ACTION and all indirect an direct objects
will become OBJECTs. Adjectives, pronouns and other words will simply
be omitted.

Instead of the attribute ACTION the attribute OMITTED ACTION is
used in order to denote that an action that was supposed to have happened
did not. For example the factor ”Cause (e): Air Controller could not tell
Soldier’s Coordinates from Taliban Coordinates” would be expressed as

• ACTOR: Air Controller

• OMITTED ACTION: to distinguish

• OBJECT: Soldier’s Coordinates

• OBJECT: Taliban Coordinates

One problem is with factors that are not stated in active voice and/or are
not atomic. An example is the factor ”Accident: 3 Soldiers killed and 20
Soldiers wounded”. The factor could be rephrased, for example to ”Accident:
JDAM kills 3 Soldiers and injures 20 Soldiers”. Atomicity can be easily
mended by just splitting the factor in two. The resulting two factors must
both be causes and effects of all factors that the original factor was.

Factor one:

• ACTOR: JDAM

• ACTION: to kill

• OBJECT: Soldiers

Factor two:

• ACTOR: JDAM

• ACTION: to injure

• OBJECT: Soldiers

103

Another example that is more challenging to the active voice problem
is the factor ”Proximate Cause (a): B52 within strike range of Taliban
Position”. First, the predicate is missing in this statement entirely, it should
be rephrased to ”...B52 is within strike range...”. The factor denotes a state,
that is, a property of the accident and its environment that does not change
during the course of the accident. There is no actor, so all named entities
here should be OBJECTs and the property of the state that is expressed
should be mentioned. This factor should be expressed as

• OBJECT: B52

• OBJECT: Taliban Position

• PROPERTY: within (strike) range

The resulting Why-Because Graph would look like 10.1 (p. 104). Two
factors have been omitted from the rephrasing. One factor is labelled ”As-
sumption”, the other is labelled ”Unknown”. Both are cases in which there
is no definitive knowledge as to what a cause for a factor is. For an auto-
matic analysis these should be omitted, because these factor types are just
stand ins for the ”real” factors which are unfortunately completely known.

104 CHAPTER 10. FIRST ACCIDENT, CONTINUED

Damage: 3 Soldiers killed

and 20 Soldiers wounded

Accident: B52 drops JDAM

on Soldiers Position

Proximate Cause (a):

B52 within strike range

of Taliban Position

Proximate Cause (b):

B52 within strike range

of Soldier's Position

Proximate Cause (c):

Air Controller requested B52

to attack Soldier's Position

Cause (a):

Air Controller intends

to call in a second air strike

on Taliban Position

Cause (g):

Air Controller entered

Taliban Coordinates into

the plugger

Cause (b):

Air Controller believes

Soldier's Coordinates

to be Taliban Coordinates

Cause (c):

Soldiers engaged in

combat with Taliban

Cause (d):

F18 air strike insufficient

to neutralize Taliban

Cause (e):

Air Controller could not tell

Soldier's Coordinates

from Taliban Coordinates

Cause (f):

Air Controller was predisposed

to believe that

Displayed Coordinates were

Taliban Coordinates

Cause (g):

F18 air strike on Taliban Position

Cause (i):

Air Controller did not

know that power cycling

the plugger changed

Displayed Coordinates

Unknown (a):

Strength of Taliban,

Performance of JDAM and

strike precision are unknown

Assumption (a):

Taliban Coordinates and

Displayed Coordinates did not

visually differ sufficiently

Figure 10.1: The WBG with factors expressed as lists of ACTOR, ACTION,
OBJECTs and PROPERTY.

Chapter 11

Attribute Value List
Extractor

11.1 Equality of Factors

AcciMaps, Why-Because Analysis and most other factor-based methods use
natural language to define the content of factors.

Natural language is the preferred language of humans, but for automatic
processing semantics have to be expressed syntactically. Like the graph
representation of accidents with WBGs, the syntax of the graphs denotes
cause-effect relations, which can be processed automatically and retain their
meaning of the process is meaning-preserving.

The ”language” of WBGs are easily understandable for humans and,
with the appropriate software to help rendering, can also be easily written.
This chapter outlines how to bridge the gap between human understand-
able factor statements and machine processable factor statements which are
meaning-preserving.

The starting point will be the familiar use of natural language by the
author of a WBG. Authors can easily adhere to simple rules regarding the
phrasing of texts. For example law enforcement must adhere to protocol
styles, judges adhere to specific rules when writing legal opinions or judge-
ments.

11.1.1 Atomicity of Factors

As explained in (5.3.2, 47) factor descriptions should be atomic, that is, they
should not be further divisible into sensible statements.

An example: The factor ”The driver changed gear and accelerated” can
be divided into two statements. One ”The driver changed gear.” and two
”The driver accelerated”. Both of which cannot be further divided into
meaningful statements.

105

106 CHAPTER 11. ATTRIBUTE VALUE LIST EXTRACTOR

Note: This is different from expressing the same situation in a different
level of detail!

If the above is compared for equality with a factor ”The driver changed
gear and decelerated”, the non-atomic statement would not be equal to any
of the above, because they are stating different circumstances. But dividing
the second factor into two atomic factors, then there are two equal factors
”The driver changed gear”.

Atomicity helps phrasing a factor as simple as possible. Complex, non-
atomic, factors would contain phrases that relate the different sub-statements
to one another. As we have noted (9.1.5, p. 87) relations in text cannot be
easily discerned by a natural language processor. Having as few relations,
between two or more things, as reasonably practical in a factor statement
improves makes the task of natural language processing easier. The causal
relations can be expressed as WBGs.

11.1.2 Phrasing Guideline

Factor statements resemble statements commonly found in formal protocols
such as police protocols.

Use Descriptive Statements Descriptive statements should be used to
retain objectivity. This is not a concern for the problem at hand. But, when
teaching WBA to students the use of normative statements leads to the use
of compound phrases like ”wrong coordinates” or ”bad data”. Not using
descriptive statements will reduce the number of compound phrases. Not
all compound normative phrases will be eliminated, some will be replaced
by compound descriptive phrases.

Use of Active Voice Use of active voice improves the predictability of
phrase-function with relation to the position of a phrase (or word) in a
statement.

Use of Simple Present Tense Use of only simple present tense also im-
proves the predictability of phrase-function. Other tenses use more complex
verb structures which are considerably more difficult to parse. Simple past
is similarly simple, but verbs in their past form are often used as adjectives.
Having simple past form verbs in different roles makes it more difficult to
determine the role of word in a statement. The word function guessing
heuristic takes the possibility of simple past tense into account (??), but the
use of simple past is discouraged nevertheless.

Consistent Naming Consistent naming means, that the same thing is al-
ways denoted by the same phrase[43]. This helps in identifying fixed phrase

11.1. EQUALITY OF FACTORS 107

because their recurrence in several factors is a good indication for a fixed
phrase. Consistent naming is also an important factor across WBGs. In
many application domains with institutionalised accident analysis there al-
ready are naming conventions in place, e.g. in aviation. If naming conven-
tions do not exist it is well worth the effort to create one.

11.1.3 Machine Processable Representation

The proposed machine processable representation is easy to write and under-
stand, though it may be a bit cumbersome, which is addressed later. Factors
in WBGs, which adhere to the above stated rules, come in two kinds. Fac-
tors with actions like events and processes, factors describing states and
factors describing omissions.

Actions Actions have one or more actors, an action and a number of ob-
jects. Objects could be further distinguished into categories, but this is not
done here. The question in how far categorised objects are an improvement
over non-categorised objects remains open. All events and processes can be
described as attribute value lists with the attributes ACTOR, ACTION and
OBJECT. There can only be one ACTION attribute per factor, there must
be at least one ACTOR attribute and there can be any number of OBJECT
attributes.

For example the statement ””The aircraft touched down on runway 22”
would be denoted as an attribute value list:

ACTOR aircraft

ACTION to touch down

OBJECT runway 22

Of more than one object is part of a statement it is simply added to the
attribute value list, regardless of the kind of object. ”The aircraft touched
down on runway 22 with the main landing gear” would be:

ACTOR aircraft

ACTION to touch down

OBJECT runway 22

OBJECT main landing gear

This may be interpreted as ”The aircraft touched down on the main land-
ing gear with runway 22”. When comparing the two sentences for equality
they will appear equal according to the attribute value lists, but for most
statements the attribute value list representation should be free of such col-
lisions. If a known case does happen often, then a second action can be used
to distinguish the different roles of the associated objects. In this case there
would be ”to touch down (1)” and ”to touch down (2)”. The first meaning

108 CHAPTER 11. ATTRIBUTE VALUE LIST EXTRACTOR

touching down on a runway and the second meaning touching down an ones
main landing gear.

Omissions Omissions describe actions, events and processes, that should
have happened, but did not. Describing omissions resembles the descrip-
tion of actions. All omissions can be described as attribute value lists with
the attributes ACTOR, OMITTED ACTION and OBJECT. Like with ac-
tions, there can be only one OMITTED ACTION attribute per factor, there
must be one ACTOR attribute and there can be any number of OBJECT
attributes.

ACTOR crew

OMITTED ACTION to complete

OBJECT checklist

States States describe circumstances that do not change over the course
of the events described in a WBG. States describe which system or object
has which property. They can be described using the attributes OBJECT
and PROPERTY.

For example the statement ”The runway was too short.” would be de-
noted as an attribute value list:

OBJECT runway

PROPERTY short

Approximation of Natural Language Meaning The attribute value
lists do contain the complete meaning of the sentences from which they
are derived. But they provide a good proxy for determining if two factors
describe equal circumstances or not. The concept is easy to understand, so
that the author of a WBG should not have problems writing the attribute
value lists for each factor once the factor statements are set. During lectures
I tried the attribute value list representation on students. They were given a
WBG not containing the usual natural language descriptions, but instead the
attribute value lists. Understanding took considerably longer than normal
and unknown words and phrases could not be guessed based on context.
Otherwise the attribute value representation was understandable and the
students were able to give a narrative of the accident based on the WBG
shown

Determining Similarity or Equality Now that the statements are in
the form of attribute value lists and the types of statements (actions, omis-
sions and states) can be inferred from the attributes, similarity and equality
can be determined algorithmically.

11.2. AUTOMATIC GUESSING OF ATTRIBUTE VALUE LISTS 109

Two attribute value pairs are equal if the attributes are of the same kind
and if the values are the same. Two factors are equal if they are of the same
type and if for each attribute value pair in one factor there is exactly one
equal attribute value pair in the other factor.

For any deviation from total equality a dissimilarity score can be awarded,
based on rules. All factor pairs which are over a set dissimilarity threshold
are not considered similar enough to qualify as equal factors for the purpose
of 9.2 (p. 91). Rulesets should take into account the number of cases to
consider and the number of tolerable near hits and near misses.

11.2 Automatic Guessing of Attribute Value Lists

Automatic guessing of the attribute value lists, based on the natural lan-
guage factor statements, is a function intended to help the author of a WBG
to prepare a WBG for use in 9 (p. 85).

11.2.1 Guessing Actors, Actions, Omitted Actions, Objects
and Properties

Guessing the correct attributes is done by a multi-pass scoring algorithm.
The algorithm relies on a dictionary which was derived from an English
language thesaurus ??.

Pass 1 The first pass of the algorithm determines the predominant tense
the factors of a graph are stated in. This helps in determining word types
in cases where there are multiple possibilities. If the predominant tense is
simple present tense for example the odds that a verb encountered in simple
past form is an action are lowered. Instead it becomes more likely that a
simple past verb form acts as an adjective.

In a sentence like ”The aircraft flies damaged” the knowledge that the
predominant tense is simple present tense lets the heuristic rule in favour of
”damaged” as an adjective.

Pass 2 The second pass looks for signs of non-atomicity. The algorithm
works on the assumption that factor texts are atomic (11.1.1). If there are
indications that a factor text is non-atomic, then the user will be reminded
to check the atomicity of the factor text statement. For example, phrases
like ”following” or ”because of” are indications that the factor text is a con-
junction of more than one atomic statement. While there may be instances
where non-atomic statements are necessary, all causal relations should only
be expressed through the semantics of the WBG.

110 CHAPTER 11. ATTRIBUTE VALUE LIST EXTRACTOR

Pass 3 The third pass establishes which words in a factor are composite
words. They are marked as such and will be treated like singular words in
later passes.

Some composite words can be inferred from the thesaurus used (). Fre-
quently co-occurring words within a WBG will be treated as composite
words.

Pass 4 The fourth pass simply finds out all the possibilities of word types
that a word can have. For example the word ”pilots” could mean a plural
noun, the pilots of an aircraft, or a simple present tense verb, the action of
someone at steering an aircraft. The words or phrases are compared with
an a dictionary of word forms. Each time a match is found the word form
is registered.

For example the sentence ”Pilots fly aircraft” would be classified as fol-
lows in pass 4:

pilots plural noun simple present verb

fly singular noun simple present verb

aircraft singular noun plural noun

Pass 5 The fifth pass establishes for each factor the likelihood it is an
ACTOR, ACTION, OMITTED ACTION, OBJECT or PROPERTY. The
fifth pass is the first which takes into consideration the order and context in
which words appear in a factor text, e.g.:

• In an english sentence Actors come first, then Actions then Objects.

• Adjectives and articles indicate Actors and Objects, while adverbs
indicate verbs.

• If a word is the only noun/verb/etc. in a factor text it must fill a
specific role. The only noun must be the subject, the only verb must
be the predicate.

• Statements with auxiliary verbs as only verbs indicate state descrip-
tions.

• The phrase structure noun phrase - verb - adjective indicates state
descriptions.

• An auxiliary verb followed by ”not” indicates omission phrased as
omitted actions like in ”pilots do not take off”.

• ”No” before a noun indicates omissions by absence of an actor like in
”no pilot takes off”.

• Words following an article are most likely nouns.

11.2. AUTOMATIC GUESSING OF ATTRIBUTE VALUE LISTS 111

The heuristics are helped by the explicitly set factor types each factor
has.

If a word fits a heuristic it is awarded a score to indicate its probability
to fit a specific role in a sentence.

Pass 6 Finally, based on the scores awarded, the attributes and values are
put together. Subjects of sentences will be ACTOR values in actions and
omissions and OBJECT values in state descriptions. Predicates of sentences
will be ACTION value in actions and OMITTED ACTION values in omis-
sions. Objects of sentences will be OBJECT values in actions and omissions.
Adjectives of state description sentences will be PROPERTY values. The
words are transformed to their base form to make them comparable with
other attribute value lists form factors in other WBGs. ACTOR and OB-
JECT values are singular nouns, ACTION and OMITTED ACTION values
are infinitive verb forms without the leading ”to” and PROPERTY values
are adjectives in their normal form.

112 CHAPTER 11. ATTRIBUTE VALUE LIST EXTRACTOR

Chapter 12

Why-Because Analysis
Software Toolkit Design
Choices

The toolkit’s reference manual can be found in B (147). How WBAs can
be conducted using the toolkit is explained in the Why-Because Analysis
introduction in A (139).

The toolkit aids in authoring Why-Because Analyses, storing and man-
aging Why-Because Graphs and offers automatic common cause analysis.
This chapter describes the architecture, selected festures and design choices
of the toolkit.

12.1 Constituent Systems

The software is written mainly using the programming language Java [13].
Java is, with some exceptions, operating system independent. The toolkit
uses the dot [46] rendering engine, which is part of the Graphviz [17] project.
The toolkit depends on the presence of dot, which is not written in Java,
but is available for all popular operating systems. The toolkit will use dot
from a locally installed Graphviz instance. The toolkit interfaces with the
dot rendering engine using Grappa[42], a Java library.

The toolkit also needs an SQL database if automatic common cause
analysis is required. The user can choose which SQL database to use, but
has to configure the SQL interface of the toolkit, which can be done by an
XML file. The toolkit uses the Java library MyBatis[53], with which the
chosen SQL database has to be compatible.

113

114 CHAPTER 12. WBA TOOLKIT

12.2 Graphical User Interface

The toolkit’s appearance is different from classical UI designs. The toolkits
GUI is designed with the following paradigms in mind:

• Monotony

• Modelessness

• Visibility

• Conditional Availability

12.2.1 Monotony

All actions that can be done can be done in one way only. The reverse
is also true. The button column on the right has the main controls to eidt
WHy-Because Graphs. There are no shortcuts, context menus or drop down
menus. This has been criticized by some users, who are mostly power users
with a computer science background. Having a monotnous interface makes
the UI simpler to use and assures, that all users use the UI in the same way.
This has implications on debugging and ond supporting susers. Debugging
is easier, becasue it is easier and less ambiguous to describe the actions that
lead to a software fault. In support all users do actions tha same way, which
reduces the gap between power users and normal users. Power useres tend
to make use of all shortcuts available, but then lose their ability to support
users who prefer simpler, but slower access to actions[48].

12.2.2 Modelessness

Buttons obviously are not entirely modeless. They are enables if the toolkit
is in a state that allows the action a button offers and they are disabled if
the state does not allow the button’s action. But all actions offered by the
buttons always work in the same way. There is no button which changes its
behaviour in dependence of the state of the toolkit.

Modelessness ensures that a selected action will conform to the expec-
tations of the user, because it will not choose between different functions
depending on the state of the software.

12.2.3 Visibility

There are no drop-down menus and no context menus. The reason is that all
actions should be visible to the user. There are exceptions, such as selection
using the mouse. The software also has as few modal windows as possible.
There are no actions, except for file operations and colour choosing, where
modal windows are used. Java’s Swing GUI framework provides ready to

12.2. GRAPHICAL USER INTERFACE 115

use colour chooser and file operations dialogues, so there was comparatively
less utitily in reimplementing them.

The main advantage over conventional drop-down and context menus is
that users can see at a glance all options they have. They do not need to
search menus and submenus and then remember the paths to find a specific
action. And users do not need to search every submenu to be sure that an
action they search for is not present.

The same goes for properties of data objects. All properties can be
viewed and edited using the tabbed panes in the several subviews. That
way no popup wizards are needed and the user can change faster from one
view into another, because everything is directly accessibele.

Having no popup windows means that there are no ”are you sure” dia-
logues, which is compensated for by the Undo/Redo functions (see following
paragraphs).

12.2.4 Conditional Availability

Buttons and widgets, with which data objects can be manipulated, are only
enabled and editable if the selection state of the data objects is such that the
actions executed by the buttons or widgets is sensible. Each time the selec-
tion state, or sub-selection states, change all buttons and widgets re-evaluate
the preconditions neccessary for their execution. If all preconditions are met,
then the button or widget becomes enabled or editable. This eliminates the
need for popup windows informing the user that some condition neccessary
for a requested action is invalid. A list of preconditions for all buttons and
widgets can be found in the software toolkit’s reference manual in B.4.3.

12.2.5 Undo and Redo

All graph authoring actions are undoable and redoable if undone. The undo
history is not limited, but is reset every time the software is quit or a project
is activated.

Having an Undo relieves the user of all inhibitions to just use actions
for fear of destroying work unrecoverably. Editing actions with far reaching
effects usually check the user’s intention by modal dialogues featuring ”are
you sure?” questions. Havin a reliable Undo/Redo lets the user see what
has actually happened and then just revert the last state (or anyone before
that) if the user is not satisfied with the result.

12.2.6 Graph Rendering

The software uses the dot rendering engine to draw the Why-Because Graph.
The dot rendering engine is an automaitc layout engine, which takes a speci-
fication of nodes and which noded to connect with edges and then computes
a graph with a minimum of edge crossings. [21] The user does not have

116 CHAPTER 12. WBA TOOLKIT

to arrange the nodes and edges, which is very tedious work if a graph gets
larger than approximately 20 nodes. Dot itself is not an interactive tool.
The dot interface library Grappa is used to read and write data to and from
dot, the interactivity is implemented in the toolkit itself.

From personal conversation I know that students at the TU Braun-
schweig used MS Visio to draw graphs. In one special instance a student
drew a graph of circa 80 nodes, which took several days just to lay out. Just
layouting the same graph using the toolkit takes less than one hour.

12.2.7 User Reception

The software has been used in industrial tutorials and in the University
courses. As mentioned, some power users missed shoftcuts, but otherwise
all users could fully concentrate on their analyses, and not on operating the
software, after they had a brief introduction which consisted of no more than
15 minutes of performing a small Why-Because Analysis. Questions on how
to use the software to achieve certain goals were virtually zero.

12.3 Project and File Management

As has been described earlier CausalML [18] is used as the file format for the
WBA toolkit. A WBA project is contained in a single file in the CausalML
format. User specific project management data is put in the user’s home
directory. Neither projects nor project management data is supposed to be
user serviced, but nevertheless all data will be stored in human interpretable
form.

12.3.1 Project Overview

The WBA toolkit is aware of all WBA projects that have been opened in
the past. The software has an integrated project browser, which will give a
brief overview of all projects. Unlike other software the user does not need
to do file management himself. The projects properties are displayed in the
browser, so that the user is easily able to recognize projects at a glance.
This eliminates the need to remember filenames and places and open the
files in order to check on their content.

12.3.2 Saving Progress

The WBA toolkit will save the whole project after every single user action.
The user is freed from the need of saving regularly, one of the major reasons
work is lost. The user can simply exit the application and the last state will
be saved to the project file.

12.4. ACTION MANAGEMENT 117

A failure during the saving process could easily lead to significant data
loss, because the Undo/Redo history will also be gone. To mitigate the risk
of data loss the software keeps the last successful version and loads it in case
the original file is broken.

There is still the risk that an action is performed, which alters large parts
of the project. It the software crashes on saving after such an action, the
action cannot be undone because the Undo/Redo history is not saved with
the project. Persistent Undo/Redo is a feature that will be implemented in
a future version.

12.3.3 Sharing

Because the WBA’s toolkit takes complete responsibility of file management
the user needs additional functionality to share projects with other users and
to clean up the project list.

12.3.4 Collaboration

All projects have an owner and a lock-state. The WBA-toolkit is not a
networking application, but projects that a users works on will be locked
by the user to enable collaborative working on shared filesystems. Users
working on projects together will see which other user currently holds a lock
on a file.

12.4 Action Management

Action management executes all actions, keeps track of past actions and
handles undos and redos.

All actions go through Action Management. All actions which can be
accessed by user gestures, button presses or mouse clicks or drags, consist of
subactions. If an action is executed it provides an ordered list of subactions
to Action Management which then does the actual data manipulation. All
data that is needed as context for subactions is also provided by the actions.

All subactions are also their own reverse subsection, that is their undo-
subactions. If the user requests an Undo, the Action Manager retreives
the last action from the action stack and executes all subaction’s undo-
functionality in reverse order. All subactions are designed so that this is
always possible.

On a Redo the Action Manager just re-executes actions that have been
undone.

118 CHAPTER 12. WBA TOOLKIT

12.5 Button and Widget State Management

Not only buttons generate actions, but all editable widgets do, such as text
fields or checkboxes. Such widgets server a double function. One is the
display of objects properties and the other is the manipulation of an objects
properties. When an objects property is edited through such a widget there
is no ”commit” dialogue or button. The object is changed as soon as the
widget looses its focus. As said earlier, unwanted changes can be undone,
so there is no need for a ”commit” facility.

As with buttons other widgets also are only enabled and editable if the
selection state of the objects is such that the action triggered by a widget
can be executed. Every time an action is executed by Action Management
the software’s State Management checks if the preconditions of widgets are
met or not. The state of buttons and widgets is changed accordingly.

State Management is compartmentalized, so that a change in the selec-
tion state of factors will not normally trigger a reevaluation of preconditions
for widgets only manipulating actors or groups. State Management also
manages when to rerender the graph, which can be a time consuming pro-
cess and this is only done when neccessary.

12.6 Linguistic Analysis of Factor Texts

The WBA toolkit can analyse factor texts to help in the transition between
natural language and machine interpretable language. The transition is done
by a heuristic which tries to determine which attribute value entries a factor
should have, based on the natural language description of a factor, see 9
(p. 85). The word corpus that is used for this has been derived form the
University of Princeton’s WordNet 3.0 14.1.

12.7 Database

The toolkit includes an interface to an HSQLDB [22] SQL database. The
interface uses the MyBatis [53] library and can be easily adapted to other
database engines by configuring the SQL config file. The database schema
defined by the config closely resembles the CausalML data structures. The
toolkit allows easy and quick conversion between CausalML and the database.
The database is not meant to be used for active projects, but to hols all
finished projects which are subject to the automatic root cause cluster de-
tection.

12.8. ROOT CAUSE CLUSTER DETECTION 119

12.8 Root Cause Cluster Detection

The root cause cluster detection runs on the procjects stored in the database.
The root cause cluster detection compares WBGs that are stored in the
database pairwise and rates their similarity with one another. The more
nodes and subgraphs two or more WBGs have in common the more similar
they are and are assigned a similarity score. If the score is above user defined
threshold it will be reported, so the user can browse the results.

To find WBGs with certain behaviour the user simply has to create a
WBG that describes the behaviour and let the similarity scoring algorithms
find which WBGs match the search pattern. The search pattern WBG will
be treated as a Causal Commonalities Graph.

120 CHAPTER 12. WBA TOOLKIT

Chapter 13

Implementing the
Comparison

13.1 Overview

This chapter describes the way in which the graph comparison is imple-
mented. Intuitively one would start from the simple task of comparing
nodes, get to comparing two graphs, then to comparing a number of graphs,
every time building on top of the methods that have been implemented. The
problem with that approach is, that it will result in a very inefficient way
to solve the problem. Instead the process has to be designed with the final
goal in mind from the start.

Where ever possible data structuring is designed to save as many search
or compare operations as possible.

Comparing two graphs, one with x number of nodes and one with y
number of nodes, results in comparing x × y comparisons. Comparing g
graphs means that each graph will have to be compared to all other graphs,
so there are g − 1 graph comparisons for each of the n graphs, resulting in
g times(g−1) graph comparisons. Let navg be the average number of nodes
in a graph then the upper bound for the number of graph comparisons would
is g × (g − 1) × navg

2.

The best way to reduce the number of comparisons is to reduce the
number of graph comparisons. It would be desirable to only have to compare
those graphs, that share at least two nodes each. This can be achieved if
some effort is put into preselection and structuring data so that searching
and comparing can be sped up using indexing1.

1The indexing has not been implemented in the Why-Because Analysis Toolkit, but the
indexing and table clustering features of the HSQLDB database engine have been used.

121

122 CHAPTER 13. IMPLEMENTING THE COMPARISON

13.2 Storing Graphs, Nodes and NCF Relations

Graphs contain nodes and NCF relations between the nodes. The database
table T GRAPH is used for storing the graph handles, the table T NODEKIND
is used for storing the node kinds and the table T NCF is used to store NCF
relations. Two nodes are of the same Node kinds if they share all their prop-
erties, meaning they have the same set of attributes (ACTOR, ACTION,
OMITTED ACTION, PROPERTY and OBJECT) and the same values for
all occurring attributes, where the order of OBJECT attributes does not
matter.

The table T NODEKIND is used for gathering information on the oc-
currence of nodes of a kind in the graphs. When a new graph is entered
into the database for each node of that graph one of the two following steps
happen:

1. If the table T NODEKIND already contains a node of the same kind,
then only a reference to the graph will be added to the entry of the
respective node kind. An inverse reference to the T NODE entry is
stored in the respective T GRAPH entry.

(a) If the new graph reference is the second reference to be stored
with the T NODEKIND entry, then the inverse reference for the
first graph has to be set also.

2. If the table T NODEKIND does not contain a node of the same node
kind a new entry will be created with a reference to the graph. No
inverse reference will be stored in the respective T GRAPH entry.

The idea is that two graphs need only be compared if they are co-
referenced in at least two entries in the table T NODEKIND. This property
can be easily checked by counting the number of references a graph has to
entries in the T NODEKIND table.

And only those nodes which are denoted by a T NODEKIND entry with
at least two graph references have to be taken into account for comparison.

13.3 Selecting Comparison Candidates

The goal is not only to compare all graph pairs for which we know that there
is a chance of having causes in common. The goal is also, for a given Causal
Commonality Graph 9.1.8 (p. 92) to find all graphs in the database which
contain the causal commonality graph.

The following steps will be performed on duplicates of the T GRAPH and
T NODEKIND tables, which will be called TD GRAPH and TD NODEKIND.
When creating the duplicate tables all graphs will be ignored that do not
have at least two references to node kinds.

13.3. SELECTING COMPARISON CANDIDATES 123

Going through all the entries in the TD GRAPH table the following
steps are performed:

1. All node kinds that are referenced by a graph are examined. All graph
references to other graphs are written to a special table T CANDIDATES,
which will hold one entry for each graph that came up during the ex-
amination of TD NODEKIND and a list of references to entries in
TD NODEKIND for each occurrence.

2. The nodes of the graph that have been identified to have equal nodes in
the other graphs will be examined pair-wise for their Cause-Relations
5.2.2 (p. 38). The results can be

(a) The nodes have a Cause-Relation, then the direction is noted in
TD GRAPH as an ordered couple of node kind references.

(b) The nodes no not have a Cause-Relation, then their are elimi-
nated from further investigation and references to their respec-
tive counterparts are deleted from T CANDIDATES. If after this
a graph ends up with an empty list of node kind references in
T CANDIDATES, then the graph will be eliminated from the
table.

3. For each remaining graph in T CANDIDATES the same Cause-Relation
will be done. The result will be kept in the respective graphs TD GRAPH
table entry, to prevent double work.

(a) Node kind references that have no Cause-Relation will be elimi-
nated from the T CANDIDATES table and also from the TD GRAPH
table.

(b) Node kind reference pairs that have the wrong order of Cause-
Relation will be removed from the T CANDIDATES table, but
not from the TD GRAPH table.

(c) Node kind reference pairs that have the right order of Cause-
Relation will be noted in T CANDIDATES.

4. If there are at least two Cause-Relations in the graph that remain
after the elimination steps, it must be analysed if there are Causal
Commonality Graphs bigger than only two nodes are shared by the
graphs in T CANDIDATES:

(a) All Cause-Relations that have been found to be common to all
graphs, are examined if a Cause of a Cause-Relation is equal
to an Effect of a Cause-Relation. For all that are found the
respective two-node Cause-Relations are put together to bigger
Causal Commonality Graphs.

124 CHAPTER 13. IMPLEMENTING THE COMPARISON

(b) All Causal Commonality Graphs that are bigger than just two
nodes are compared, the ones in the graph under examination
and the ones in the graphs referenced in T CANDIDATES, for
their maximum overlap.

(c) The results are written to the results table T RESULTS, which
holds the maximum overlap or the two-node Causal-Commonality
Graphs an a list of references to the graphs which share the Causal
Commonality Graph.

13.4 Example

A

B

C

D

E F

G

Figure 13.1: Graph 1

H

I

J

K

L

M

G

B

Figure 13.2: Graph 2

13.4. EXAMPLE 125

Node Kind Graph ID

A 1,4
B 1,2,4
C 1,4
D 1,4
E 1,4
F 1
G 1,2,4
H 2,3,4
I 2,3,4
J 2,3,4
K 2,3
L 2,3
M 2,3,4
X 5
Y 5
Z 5

Table 13.1: T NODEKIND example for Graphs 1 to 5

Graph ID Node Kind

1 A, B, C, D, E, G
2 B, G, H, I, J, K, L, M
3 H, I, J, K, L, M
4 A, B, C, D, E, G, H, I, J, M
5

Table 13.2: T GRAPH example for Graphs 1 to 5. Graph 5 can be elimi-
nated from further analysis.

Graph ID Common Nodes Cause-Relations

2 B, G NONE
3 NONE NONE
4 A, B, C, D, E, G AB, CB, DB, EB, GB,CA, DA,

EA, GA, DC, GC, GD, GE
5 NONE NONE

Table 13.3: T CANDIDATES example for Graphs 1 derived from cross
referencing T NODEKIND and T GRAPH. Graph 4 matches the Cause-
Relations AB, GB, DC, GC, GD and GE with Graph 1. This results in the
Causal Commonality Graphs pictured in ??

126 CHAPTER 13. IMPLEMENTING THE COMPARISON

H

I

J

K

L

M

Figure 13.3: Graph 3

13.5 Tweaks

In order to filter out common nodes that are not relevant for comparison,
but are for example needed for other functions, these can be marked and
then be ignored. A good example for this would be if there was a node
labelled ACCIDENT in some way. All graphs are analyses of accidents, but
the conceptual node denoting the accident is not relevant for common cause
analysis.

Other often occurring nodes may be marked to be ignored or filters may
be installed to weed out too common nodes. In these cases some common
cause analysis results may be lost.

All comparison intermediate results can be kept, given enough room for
data storage, to automatically update a completely analysed set of data in
case where one graph is added to the database.

13.5. TWEAKS 127

A

B

D

E

C

G

J

M I

H

Figure 13.4: Graph 4

X

Y

Z

Figure 13.5: Graph 5

128 CHAPTER 13. IMPLEMENTING THE COMPARISON

X

Y

Z

Figure 13.6: Two resulting Causal Commonality Graphs from Graph 1 and
Graph 4

Chapter 14

Notes on the Software
Implementation

14.1 Using the WordNet 3.0 Thesaurus

The basis for the dictionary used in 11.2 was the University of Princeton
WordNet 3.0 Thesaurus see [13] and [39].

The WordNet dictionaries have been processed to be more suitable for
use in the software. WordNet’s verb, noun and adjective dictionaries for
most of the basis for the word corpus used by the software. WordNet’s
index files are converted into the csv files, which can be found in the ’dict’
directory of the software.

The rest of the files for pronouns, prepositions, articles and conjunctions
have been created by hand, because they were not part of the thesaurus in
a suitable form.

Additionally there is the option to add user-defined nouns, verbs and
adjectives.

14.1.1 Word Corpus Data Flow

The index files have been filtered using shell scripting to filter out all unique
words from an index file. The index files contain many cross-referencing
data, which is not relevant for use in the software. The software read the
processed index files and built the final files. This was implemented in
Java and is part of the source code distribution of the software, but the
functionality is not accessible from within the software.

The functions used to build the final word corpus can be found in the
Java class com.causalis.textutils.MkWordList. The MkWordList class reads
the base forms and generates a large number of inflections for the base forms.
Verbs for example will be in simple present, simple past, past, continuos and
infinitive form in the database. The verb ’to write’ can be found as write,

129

130CHAPTER 14. NOTES ON THE SOFTWARE IMPLEMENTATION

wrote, written, writing and (again) write. Depending on the knowledge
about irregular forms, inflections of the base forms are generated either
procedurally according to rules of english grammar, or by looking up the
irregular forms. The lookup of irregular forms is done using the thesaurus,
which lists all irregular forms. The absence of irregular forms in the the-
saurus is taken as an indication that a word is formed regularly. Creating
the inflections of regular words is done by the software.

The resulting files are all located in the software distributions ’dict’ di-
rectory. The generated files are

• nountable.csv

• verbtable.csv and

• adjectivetable.csv.

Other files have been created by hand:

• conjunctions.lst,

• prepositions.lst and

• pronountable.csv.

If the files exist the software will also read user-defined verb, noun and
adjective files:

• verbtable.userdef.csv,

• nountable.userdef.csv and

• adjectivetable.userdef.csv

At system start the word corpus files are read and an in-memory database
is built by the com.causalis.textutils.WordCorpus class.

File Formats The csv files contain table data as comma separated values.
The lst files are simple lists, where each line has only one entry. All user
defined corpus files must be in the same format as the normal word corpus
files.

All formats share the convention that all entries are done using lower-
case letters.

14.1. USING THE WORDNET 3.0 THESAURUS 131

verbtable.csv Format The verbtable.csv file has 5 entries per line. Each
line holds different inflections for one verb, the order of appearance in a line
determines the flection type.

1. infinitive, without ’to’

2. simple present tense

3. simple past tense

4. past tense

5. continuous tense

Composite verbs are denoted with an underscore ’ ’. For example ’to
wish well’ is denoted as

wish_well,wishes_well,wished_well,wished_well,wishing_well

nountable.csv Format The nountable.csv file has 2 entries per line.
Each line holds the singular and plural inflections of a noun, the singu-
lar form is the first one, the pluralform the second. Composite nouns are
denoted with an underscore ’ ’. For example ’landing gear’ is denoted as

landing_gear,landing_gears

adjectivetable.csv Format The adjective.csv file has 3 entries per line.
Each line holds different inflections for one adjective, the order of appearance
in a line determined the flection type.

1. adjective

2. comparative

3. superlative

pronouns.lst, conjunctions.lst and prepositions.lst Format The con-
junctions.lst and prepositions.lst files contains a list of pronouns, conjunc-
tions and prepositions respectively. There is only one entry per line.

Looking up Words with the WordCorpus

The in-memory database reads each entry from the various sources and
stores the associated form-type with the entry. For example the verbtable.csv
entry for ’to pilot’ is

pilot,pilots,piloted,piloted,piloting

132CHAPTER 14. NOTES ON THE SOFTWARE IMPLEMENTATION

WordCorpus would store the following in the in-memory database:

• pilot is an infinitive form

• pilots is a simple present form

• piloted is a simple past form

• piloted is (also) a past form

• piloting is a continuous form

From the nountable.csv entry for ’pilot’

pilot,pilots

WordCorpus would store in the in-memory database:

• pilot is (also) a singular noun

• pilots is (also) a plural noun

If WordCorpus is queried for the word ’pilot’ it would deliver as a result
that the word can be

• an infinitive form verb and

• a singular noun.

This information is later used to determine the function of a word in a
factor text.

14.2 Testing the Attribute Value List Generation

To test the attribute value list generator Christoph Goeker and Tim Schuer-
mann provided me with english language graphs of theirs. The graphs were
build before they could have known of the attribute value list generator,
which also means that the phasing does not match the phrasing of factors
as proposed in 11.2 (p. 109).

The detection rate is mediocre with a little better than 50% of word
functions correctly detected. The detection rate improved to 82% once the
phrasing was brought more in line with the phrasing guideline (11.2). I did
the conversion myself. I tried to be as strict with the conversion as possible,
retaining as much of the original phrasing as possible. But since I have
written the software and also used the WBGs provided by Chritoph Goeker
and Tim Schuermann as development aids the real-world detection rate is
probably lower than 80%. However, the amount of time saved by the actual

14.3. TESTING THE CLUSTERING 133

performance is still worth it. Starting from scratch takes considerably longer
than just going through the factors and correcting the attribute value list.

The process of guessing the attribute value list for single factors is still
opaque to the user. The user is just presented with the result and has no
means of looking behind the reasoning for the results. It cannot be expected
from each user to try to understand the attribute value list generation, but
the possibility to adapt ones phrasing of factor statements will probably
improve the detection rate.

14.3 Testing the Clustering

To test the clustering (9, p. 85) data is needed on which the algorithm can
be tested. Because the complete analysis of a significant amount of WBGs is
out of the scope of this dissertation, randomly generated WBGs have been
used.

14.3.1 Random Generation of Why-Because Graphs

The random graph generation algorithm aims to generate graphs with topolo-
gies similar to those that have been made for real accidents. While there
is no reason that a specific topology should not or cannot be a WBG most
real-world WBGs share most of the following features:

• More than five causes for a factor is considered many.

• More than five effects for a factor is also considered many.

• WBGs tend to be deeper than wide.

• The number of edges is about a factor of 1.5 higher than the number
of factors.

• There is usually one accident factor at the top, but there is also one
WBG of the Lake Constance Midair Collision [19], which has two [52].

It is assumed that the way that systems are created is responsible for the
fairly regular shapes the WBGs take. If a system is assumed to be inherently
safe, with a low probability of failure, then there is not much need to design
additional safety measures into the system. If however the inherent safety
proves insufficient, then there is at least one cause for the failure. If a system
is not assumed to be safe enough inherently, then additional safety measures
are taken. Either the system becomes sufficiently safe after a number of
safety measures have been introduced into its design or the system design
becomes too expensive and is given up. For each additional safety measure
that fails in the case of an accident there is one more cause for a given
failure. But the number of safety measures is limited, mostly due to cost,
so there is an upper bound on the number of causes for a failure.

134CHAPTER 14. NOTES ON THE SOFTWARE IMPLEMENTATION

Random Generation Parameters The random graph generator first
creates a number of factors. For the purpose of the clustering algorithm
test instead of factor statements only attribute value lists are generated.
For both the attributes as for the values numbers are used. Attributes
are countable, so representing them with numbers accurately captures their
function within the clustering algorithm. The values of attributes are also
countable, so they are also represented as numbers for the same reason.

The ranges of the current implementation of the random graph generator
for randomly generated factors and edges are:

• The number of entries per factor ranges from 3 to 7.

• The number of different attributes is 10 and the number of different
values is 1000.

• The number of generated factors per WBG ranges from 20 to 90.

• The number of generated edges is not fixed. It starts at the number
of edges necessary to construct a spanning tree over all factors, then
between 25% and 60% the number of nodes additional edges are in-
serted between random factors, with their direction adjusted such that
no circles are created.

14.3.2 Using the Random WBGs

The random generated WBGs have been used to test the software implemen-
tation of the clustering algorithm. Sufficient numbers are needed to make
sure that the predicted result, namely the identification of common cause
clusters, can be achieved. The current implementation can be found in the
software under the ”Cluster Detection” tab. At the moment there is only
a table view. The resulting dataset is too complex to be easily browsable
in a simple table, but the visualisation of the dataset is not trivial and not
yet part of the software. I hope to include it in a future version, so that
the results are easily accessible and understandable enough that they can in
principle be acted upon.

Chapter 15

Conclusion

15.1 Causal Commonality Graphs

Emerging Accident Classes With the methods described in 8 and 7
the most prominent common causes in Why-Because Graphs can be found.
New Causal Commonality Graphs, which emerge after the addition of Why-
Because Graphs to a database, indicate a new class of accidents. New acci-
dent classes in conventional accident databases would only be introduced if
the common causes of the accidents belonging to that class became promi-
nent. This depends strongly on the number of accidents occurring and on
the severity and thereby memorability of the accidents. For each Causal
Commonality Graph there are at least two Why-Because Graphs, which
also means two accidents. Depending on the number of accidents processed
this may not be much, but the alert-threshold can be set to another number.

Freely Definable Accident Classes or statistical analysis it is still help-
ful to have predefined classes. These can be expressed in the form of Causal
Commonality Graphs. Classes can be easily introduced if there is a need for
new classes and complete reclassification of a Why-Because Graph database
can be done automatically.

This is only one instance in which the dynamic classification of data is
a good thing.

15.2 Computer Aided Why-Because Analysis

The software helps the author of a Why-Because Analysis is different ways.
The Why-Because Analysis projects can be managed, there is even simple
support for collaborative work on the same project. The lay outing of the
Why-Because Graph is done automatically, as is the creation of a time line
representation of the data. The automatic lay out is a great time saver
and one of the factors that make processing large numbers of Why-Because

135

136 CHAPTER 15. CONCLUSION

Graphs feasible. Other users of Why-Because Analysis use Microsoft Visio
for lay outing. For one, try to download a Why-Because Graph from the
RVS homepage and stop the time it takes to draw a visually appealing graph.
After that stop the time it takes do the same in the Why-Because Analysis
software toolkit. If you draw graphs with programs like Microsoft Visio all
your data is in the form of graphical data formats. None is in a form that
allows easy processing by other software.

Saving time means more analyses in the same amount of time. Spe-
cialised data formats means easy to process by other Why-Because Analysis
software. The data format CausalML is open and everybody can use it.

Having supporting software for performing Why-Because Analyses can
easily make the difference between the feasibility and in feasibility of more
advanced forms of data analysis.

15.3 Further Improvement

Visualisations The search for common causes in accident data results in
large datasets, which are not easily parseable. The results pose a challenge
to effectively visualise them. In the current implementation only rudimen-
tary visualisation has been done, mainly to monitor the behaviour of the
underlying algorithms by their author. It is still an open question how to
best present the results to the user.

Improving Attribute Value List Generation For one the ratio of in-
correct attribute values entries in factors is still rather high. Finding a
better set of scores and additional helpful rules are venues that must be
explored. A specialisation of vocabulary may also be feasible in cases where
the application domain is well known and parts of the dictionary can be
eliminated.

Translating the attribute value list generator into other languages is
especially worthwhile for languages of speakers in regions where the English
language is not as common as it is here. This also also involves specifying
new phrasing rules, finding or building an appropriate dictionary for the
chosen language and developing a new scoring scheme.

To better achieve this goal the attribute value generation program code
must be more modular or even scriptable. The current implementation has
no provisions for easily changing this part of the software.

Integration with other Safety Data There are computer tools for di-
verse safety analyse methods. A priori methods estimate the safety of a
system before it is build or operational. Fault-Tree Analysis for example.
Much of a priori safety analysis is probabilistic assessment. How likely is it
that a system fails, that it results in serious damage. The factors in Fault-

15.3. FURTHER IMPROVEMENT 137

Trees are stated in the same way that the factors in Why-Because Graphs
are. The relations between Fault-Tree Factors are also well defined. With
the combination of accident data and Fault-Tree data the estimates taken
in a system’s Fault-Trees are relatively easy to check. They can be revised
on the bases of actual safety performance data and the safety of the system
can be reassessed more accurately.

138 CHAPTER 15. CONCLUSION

Appendix A

Advanced Concepts in WBA

Some concepts are not immediately relevant for the automatic analysis of
Why-Because Graphs. Nevertheless they are explained briefly in this Ap-
pendix. For a textbook introduction on Why-Because Analysis see [50].

139

140 APPENDIX A. ADVANCED CONCEPTS IN WBA

A.1 Factor Types

Before you start on Factor Types you should have your causal analysis
close to being finished. If you are learning WBA you should first focus on
learning the Counterfactual Test and Causal Sufficiency Test. Get familiar
with basic concepts that were presented during the GPS Friendly Fire case
before moving on.

A.1.1 Which Factor Types are there?

Do you need Factor Types? Factor Types are classifications of Factors1.
The classification presented here is not neccessarily the only one. You may
come up with any other classification of it suits the goal of an analysis. The
classification presented here consists of the folloging Factor Types, which
will be discussed in detail:

• Event

• Process

• UnEvent

• State

• Assumption

• Contraindication

• Countermeasure

The WBG software tool supports all of the above. Each of the Factor
Types corresponds to a node shape, so they are easily identifiable at a glance.

Event

An Event in WBA is a change of the state of the world. Unfortunately,
taking this literally is not very helpful. For the purpose of Accidnet analysis,
Events are changes in states of things smaller than the world. These things,
commonly called systems, are not definable in advance. Usuall an Accident
analyst will choose a system definition implicitly when analysing the systems
behaviour, which is a sequence of Events.

If I go 50 km/h in my car and accelerate to 60 km/h it may be suffiently
details to say that there was one Event, acceleration from 50 km/h to 60
km/h. When my car moves at 50 km/h it constantly chagnes its position.
Each change in position may be an Event under the definition, but it may

1Remember: All Causes are Factors, but not all Factors are Causes.

A.1. FACTOR TYPES 141

not be one in the idealizes system used to describe Events that make sense
from an Accident analysis point of view.

If more detail does not give us additional insight into an Accident, we
should omit it.

Process

Processes are sequences of similar events. In our above example the acceler-
ation of the car from 50 km/h to 51 km/h to ... to 60 km/h, can be described
as a series of more detailed Events. Processes are used to describe the Pro-
cess nature of a Factor. The above described Event may well be described
as a Process. If the acceleration of the car is described as an Event or a Pro-
cess depends on the relative analytical value of the two descriptions. If the
Process nature should be emphasized it should be described as a Process.

In other cases the choice for classifying a Factor as a Process is simpler.
If other Factors ocurr during a Process, which may still be going on after the
Accident that is analysed, it is much easier to classify a Factor as a Process,
than it is to describe the Process in terms of Events and correlate them
with other Factors. During the meltdown of a nuclear power plant there
are other Factors going on. Safety barriers fail, heat and pressure build,
radiation emerges, monitoring and control devices fail. All these things may
happen during a meltdown, and the meltdown may, at least in part, be a
Cause for all of them.

UnEvent

An UnEvent is an Event that should have happened, but did not. A car
that crosses a red light is an Event. But there is also an UnEvent in there.
The rules of the road say that cars should stop before a red light. The car
did not stop, but it should have been, so the UnEvent is that the car did
not stop before the red light. Intuitively there is not much of a difference
between saying car crosses red light and car did not stop at red light. It
is clear to almost everybody that there are rules. The UnEvent explicitly
states that

• something did not happen and

• that it should have happened.

When classifying a Factor as an UnEvent there must be a Factor that
says there is a good reason that something should have happened. In most
cases this good reason is some kind of rule. How explicit this rule is may
well be a Cause.

142 APPENDIX A. ADVANCED CONCEPTS IN WBA

State

States are true over the whole of an Accident. The rules mentioned above
are good examples of States. The rule that says stop before a red traffic light
holds throughout the Accident. There is no point in time where it does not
hold. If you check your WBG for plausibility be reminded that an UnEvent
usually has a State as one of at least two NCFs.

Another plausibility check that involves States is that no non-State
Cause should only have States as Causes. If that were true, then the Cause
would be true all the time and be a State itself.

A.1.2 Assumption

If there is not enough evidence to support a Cause, but it is clear from
the Causal Sufficiency Test, that something is missing, the missing bit may
be introduced as an Assumption. The Assumption should state what is
assumed2 Ideally, in an ongoing investigation, Assumptions may reveal loose
ends and be resolved to be ”real” Factors.

Countermeasures

In an analysis is finished Countermeasures can be implemented. To illustrate
the effectiveness of Countermeasures they can be part of a WBG, but they
are not first class citizens, as the Causes are. Including Countermeasures as
Factor Types helps illustrate the way the Countermeasure would affect and
prevent or mitigate an Accident.

Contraindication

Contraindications, like Countermeasures, are also second class citizens. They
are not Factors or Causes, but in a sense, the opposite.

In an ongoing investigation there may be more than one hypothesis for
the Causation of parts of an Accident. All findings that support one hypoth-
esis go into the WBG and become Causes. But findings that challenge or
contradict the main hypothesis should also be presented, as it is not helpful
to exclude challenging Factors just because they don’t fit in the Counterfac-
tual Test. Ideally, like with Assumptions, these can be eliminated after an
invesigation has been completed.

2It could also state that the only thing known is that there is something missing.

A.2. CONTINUOUS FUNCTIONS 143

A.2 Continuous Functions

A.2.1 A Train Derailment

On the 15th of November 2004 the City of Townsville, a diesel tilt train,
derailed near Berajondo in Queensland, Australia. One of the Factors was
speed. The train was going at a speed of 112 km/h into a curve that was
limited to 60 km/h. There are other Factors but in this section we want to
examine continuous functions.

To illustrate the point we do the Counterfactual Test naively:

• Had the train not been travelling at 112 km/h, would it have derailed?

There are a number of possible answers to that question, depending on
how to interpret it. Had the train been travelling at 113 km/h then it would
have derailed. Travelling at 113 km/h is not-travelling at 112 km/h, which
satisfies the constraints put by the Couterfactual Test. So the answer to the
Counterfactual Test is Yes? This does not seem to be right and we would
correctly point to the fact, that increasing speed increases the likelyhood of
derailing. A rephrasing of the Conterfactual Test would be in order.

• Had the train not been travelling too fast, would it have derailed? No.

Is speed really a Cause?

We know for certain, that taking the curve at 60 km/h would have
derailed the train. Would travelling at 61 km/h have derailed the train? We
do not know, but intuitively we would say that this is close enough to 60
km/h and the train would have safely passed the curve. What speed is the
limit for safely passing the curve? Do we need to know that if we want to
determine if speed was a Cause?

A.2.2 Continous Values vs. Discrete Values

Let’s take a step back and have a look at the general problem. The Coun-
terfactual Test asks a Yes-No question. It is used to give an answer to the
original question ”Is it a Cause or not?”, which is also a Yes-No question.
But train speed is not an on-off issue. Train speed can be any number be-
tween 0 and the train’s top speed. It need not even be an integer. What
we need is a way to map the continuous values, such as train speed, to the
Yes-No answers3.

Intuitively we would select a point in the continuum, a speed number
in the derailing train case, which separates the Yeses from the Nos. For
example:

3Mathmaticians and Computer Scientists call this Discretization, just in case you’d
like to know more about the general problem.

144 APPENDIX A. ADVANCED CONCEPTS IN WBA

• If the train travels at or slower than 60 km/h then speed is not a
Cause.

• If the train travels faster than 60 km/h then speed is a Cause.

60 km/h is an obvious candidate. First we know from experience that 60
km/h is safe, because other trains went through the curve at 60 km/h with-
out incident. Second, there is a speed limit.

A.2.3 Back to Reality

The above mapping from speed to Yes-No, simplifies matters a little to much.
Imagine that something brought the train to derail and it was traveling at
63 km/h. In court it is argued that speed was a Cause and so the driver is
to blame.

No engineer would design the track without a safety margin. The train
probably derails at higher speeds than 60 km/h, so is it right to put the
blame on the driver for going 63 km/h4.

Let’s assume that the speed at which the train derails is 90 km/h. If we
know that then we could change the mapping to

• If the train travels at or slower than 90 km/h then speed is not a
Cause.

• If the train travels faster than 90 km/h then speed is a Cause.

This way a driver going 63 km/h would still be liable for exceeding the
speed limit, but speed would not be a Cause for a derailment.

But is it a clear cut mapping with 90 km/h? The derailment speed
may be dependend on a number of factors. The distribution of the train’s
mass affects its center of gravity. Environmental influences like gusts or
precipitation affect train performance. Wear and tear do so, too.

All these factors may shift the derailment speed in one or another di-
rection. In this example the shift may not be great, but we cannot assume
that to be generally the case.

At different speeds speed has a different state as a Cause:

• 0 km/h - 60 km/h: Speed is not a Cause.

• 60 km/h - lowest derailment speed (LDS): LDS is the speed
at which all environmental influences must work together in order to
derail the train. From 60 km/h up to LDS the train would not derail
and speed is not a Cause.

4We will get back to the issue of Cause verus Blame. They are not the same, even if
my story seems to suggest that.

A.2. CONTINUOUS FUNCTIONS 145

• LDS - lowest certain derailment speed (LCDS): LCDS is the
lowest speed at which the train derails given no additional environ-
mental factors. In between LDS and LCDS speed is a Cause, but it is
not sufficient. Other Causes are neccessary.

• LCDS - maximum speed (MS): In this case there is no more need
for external influence. Speed is sufficent as a Cause5.

A.2.4 Conclusion

The train derailment is only an illustrative case. We have mapped a contin-
uous function on three different results (see above). In principle we would
have to map on four different results. We have not examined the case where a
Factor is sufficient, but not neccessary. This would have complicated things
a bit and there will be a section devoted to it. I do not see a situation
where a continuous function would have such a result. Here we only have
examined one-dimensional continuous functions, there may be cases where
multi-dimensional continuous functions may have to be mapped on four re-
sults: neither sufficient nor necessary, necessary but not sufficient, sufficient
but not necessary, necessary and sufficient.

5Remember that Causes are necessary by definition.

146 APPENDIX A. ADVANCED CONCEPTS IN WBA

Appendix B

The WBA Toolkit Manual

147

148 APPENDIX B. THE WBA TOOLKIT MANUAL

B.1 Introduction

The Why-Because Analysis (WBA) Software Toolkit aims to help the WBA
user to perform an incident analysis. The software has been developed as
part of my doctoral thesis on advances in incident analysis. This manual
provides help for admins and users of the software, but assumes that the
user is familiar with WBA. For admins there is one chapter on platform and
installation issues. For users there is a quick start guide, a more comprehen-
sive guide to the softwaer and a reference guide to the functions available in
the software.

The whole software, including this manual, is subject to the so called
3-clause BSD-style license1.

B.1.1 License

Copyright (c) 2011, Jan Sanders
All rights reserved.
Redistribution and use in source and binary forms, with or without mod-

ification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the doc-
umentation and/or other materials provided with the distribution.

• Neither the names Jan Sanders, Bielefeld University, Causalis Limited
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written per-
mission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

1http://www.opensource.org/licenses/BSD-3-Clause

B.1. INTRODUCTION 149

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

150 APPENDIX B. THE WBA TOOLKIT MANUAL

B.2 Installation

B.2.1 Installation Steps in Short

1. Download and install the Java Runtime Environment version 1.5 or
greater

2. Download and install the latest version of GraphViz

3. Download the WBA Toolkit Software

4. Copy the WBA Toolkit Software to a location of your choice

5. Start the WBA Toolkit Software with

• ybt2.sh on GNU/Linux, OS X and other Unices

• ybt2.bat on Windows

B.2.2 Prerequisites

All prerequisites are the same for the Operating Systems Windows, GNULinux
and OS X. I have not tested installing the software on other BSD flavours.
But it should be clear from the other OSs prerequisites what can and should
be done.

Java Runtime Environment

The platform will need the Java Runtime Environment installed. The JRE
version should be 1.5 or greater. If the JRE does not come packaged with
the respective OS distribution it can be downloaded from Oracles website
http://java.com/en/download/index.jsp .

GraphViz

GraphViz is needed as the graph layouting engine. If it does not come
packaged with the respective OS distribution it can be downloaded from the
AT&T Research’s GraphViz website http://www.graphviz.org/Download.php.

The WBA Software Toolkit

At the time of writing the software is only available inside Bielefeld Univer-
sity’s Technical Faculty network in vol lehresyssafeybt2.DATE . The software
does not need installation in the classical sense. It is sufficient to just copy
the software someplace and directly execute it from there. There can be
multiple instances in parallel installed, but they should not be running in
parallel.

B.2. INSTALLATION 151

B.2.3 First Run

After first use

After starting the software for the first time there will be a new directory
in the user’s home directory. The directory will be called YBT2Projects.
Inside the directory all files concerning the software will be stored. If the
directory is removed the software will behave as if it started for the first
time.

Testing the Reporters Functionality

Change into the tab labeled Graph. Click on the button on the left labeled
NodeÂ inside the box labeled Create.... Then select the created node in the
canvas on the center on the screed by once left-clicking it with the mouse.
Node should be highlighted. Now click on the button on the left labeled
Cause inside the Create... box. Now you should see two node that are
connected by an arrow. If that is not the case please check your GraphViz
installation especially the dotÂ command.

152 APPENDIX B. THE WBA TOOLKIT MANUAL

B.3 Quick Start Guide

This quick start guide is intended to get you an overview over what the
software can do. It is not a comprehensible guide that will explain everything
to you quickly. Throughout the Quick Start Guide it will be assumed that
the software started for the first time.

B.3.1 Starting the Software

You can start the software with the scripts provided.

• ybt2.sh on GNULinux, OS X and other Unices

• ybt2.bat on Windows

After starting up, which may take a while depending on the computing
power of your machine, a full-screen application will be visible. On top you
can see that you are currently viewing the leftmost tab called Projects. On
the left side there are some button grouped according to function. For the
moment the Projects view should not concern us.

B.3.2 The Graph View

Let’s change the tab to the one on the immediate right of the Projects view,
the Graph view. On the left there are grouped buttons, at the bottom is a
set of tabs and in the middle is the graph although on first start there is not
yet much of the graph to be seen.

Creating, Deleting and Changing Nodes in the Graph

• Click on the button labeled Node in the box labeled Create...

• You should see a diamond with the number 1 in it

From here on we will call the diamond a Node. There are other kinds
of Nodes that have different shapes. If you click the same button a second
time then another Node will appear right beside the first one. To construct
a graph we will not only need Nodes, but also Edges.

• Click on the Node using the left mouse button

• The Node’s border should be highlighted in red

• Click on the button labeled Cause in the box labeled Create...

• You should see another Node and a directed Edge2 pointing
from the newly created Node to the one already existing

2Commonly known as an arrow

B.3. QUICK START GUIDE 153

The selection of any number of Nodes in the graph and then using one
of the Create ... Cause Effect buttons will

1. Insert a new Node into the graph

2. Connect the new Node with each of the selected Nodes with an Edge

3. The new Edges will always be pointing from an inserted Cause to a
selected Node3 and vice versa.

To remove Nodes from the graph use the left mouse button plus the
SHIFT key to highlightselect a number of nodes. A click on the button
labeled ompletely in the box labeled Remove deletes the selected Nodes as
well as all belonging Edges.

• Add additional Causes and Effects to the graph

• Select a number of Nodes of which each has at least one
incoming or outgoing Edge

• Click on the button labeled ompletely in the box labeled Re-
move

• The Nodes have been deleted and all associated Edges have
been completed with them

Edges and Undo/Redo

There is one other way to introduce Edges into a graph. To connect two
Nodes already in the graph

• Click and hold the left mouse button on one Node

• Drag the mouse to an other Node

• Release the left mouse button above the other Node

• A new Edge will have been drawn between the two Nodes

There is no visual feedback to indicate the beginning or the origin of the
mouse draw gesture. On a side note: There are no functions implemented
for the right mouse button (no context menus) or keyboard shortcuts.

Now you have seen the basic graph drawing capabilities of the WBA
Software Tool. It will automatically layout the graph and you now know
how to change the graph layout. Some additional notes for beginners:

• After every step the changes that have been made to the graph will
be saved.

3Making this one an Effect

154 APPENDIX B. THE WBA TOOLKIT MANUAL

• After having done a few graph manipulations try the Undo/Redo but-
tons. Undo/Redo remembers all steps from either starting the software
or activating a new project (which has not been discussed).

•

Labeling Nodes

The graph drawing capabilites of the WBA Software Toolkit would not be
much withouth labeling Nodes. On the bottom of the screen there are a
number of tabs. Select the tab labeled Node Properties and Text. When
you single-select a Node using the left mouse button, then you can see that
the input fields in the tab come to life.

• Select one Node

• Click inside the big text area labeled Text in the Nodes Prop-
erties and Text tab

• Type some text into the text area.

• Click back into the graph area4

• The graph will be redrawn and you should see the text appear
inside the selected Node

The Name of a Node can be changed in a similar way.
Not only the Node label (or text) can be changed. The same goes for

the shape of the Node. If you single-select a diamond shaped Node the Node
Kind combo box should show the label Unspecified.

• Single-select a Node

• Change the Node Kind combo box to Event

• The shape of the selected Node changes from diamond-shaped
to box-shaped

B.3.3 The Factor View

The graph view has some additional features to offfer. To use them effec-
tively we need to have a look on the Factor view. The Factor view is located
under the tab labeled Factor5. The view resembles the em Graph view in
that there is a panel of buttons on the left, a set of tabs on the bottom and a
main view in the middle. The main view in this case is a table. If you have

4The changes will be made after the text area looses the mouse focus; therefor clicking
anywhere will assign the changes; ther is no ”Assign” button for this

5I assume you already guessed that

B.3. QUICK START GUIDE 155

a look at the contents of the table you may recognise the textual contents
of Nodes that already are part of the graph.

Please note that there is a distinction between Node and Factor. Nodes
are Factors that are part of the graph.

The Factor view lists all Factors, including those that are not part of
the graph. A quick check whether a Factor is also an Node is provided by
the In Graph colums of the Factor table.

• Click on the button labeled Factor in the box labeled Cre-
ate...

• A new Factor should appear at the bottom of the table

The Factors in this view can be manipulated in the same way as in the
Graph view. The tab labeled Factor Properties and Text on the bottom of
the screen can be used to change Factors has the same functions that the
Node Properties and Text tab has in the Graph view.

Newly created Factors can be used directly in the Graph view.

• Change into the Graph view

• From the bottom tabs select the one labeled Factors not in
Graph

• Select the Factor in the table at the bottom

• Select any number of Nodes in the graph

• Click on either of the buttons inside the Insert Factor box6

• Depending on the button you clicked the Factor has been
inserted as a Node, a Cause or an Effect.

More on Undo/Redo

Now change back into the Factor view. Delete a Node inside the Factor view
and change back to the Graph view. When you hit the Undo button you will
see that the action from the Factor view is undone. At the beginning it may
be a bit confusing to undo actions that have occurred in a different view
than the actual one, but this behaviour is much preferred over constantly
changing views in order to undo a series of actions. Also note that undoing
an action may not result in any visible change.

6use Undo/Redo to observe the different functions of the Insert Factor buttons

156 APPENDIX B. THE WBA TOOLKIT MANUAL

B.3.4 Printing

Printing can be done in the tab labeled Report Generation. On the left is
a panel of buttons and on the right is a table. The document to be printed
is represented as the table on the right. The first column, the one with the
checkboxes, is used to determine which parts should be included and which
not. The second column contains the names of the document parts. You can
select a document part on the right and shift its position relative to other
document parts. That way you can change the order of document parts in
the resulting PDF file. Clicking on the Save as button in the Report box
will open a dialog to choose a file for output. The software will remember
the last save action and clicking on the Save button will export a PDF to
the previously specified location. With the External PDF button in the box
labeled Create... you can include PDF files in the report. A file dialog will
open, asking for the location of the external PDF, and then a new document
part will appear in the table on the right.

B.3.5 Last Words

This concludes the quick start guide. If you have gained some familiarity
with the interface it should not be difficult to grasp the functions of the re-
maining parts of the software. For a full feature by feature explanation please
use the reference manual. If you have questions or suggestions regarding this
manual or the software please send me an email to jsandersTechFak.Uni-
Bielefeld.DE.

B.4. REFERENCE 157

B.4 Reference

B.4.1 General Notes

Starting the Software

Please use the scripts provided. For GNU/Linux and other Unices use the
ybt2.sh7 script. For Windows systems use the ybt2.bat script.

You may also want to invoke the software directly with Java. For details
please consult the shell a/o bat file. If you have the source code than you
may also use ant. There is a build.xml which will let you

• ant dist: will build the binary distribution in a directory called dist

• ant run: will run ant dist and then execute the program

• ant exec: will execute the program assuming the binary distribution
has been built

Function Invocation

For all functions of the software there only one way to invoke it. That does
not mean that there are no alternative ways in the software to get to the
same end. It means that there are

• no keyboard shortcuts,

• no context menus and

• no main menus

in the software each providing its own way to invoke a specific function.
For example there is a button that will create a node. If you click on
the button the node creation function will be executed and a node will be
created. The button is the only way the function can be invoked. Since there
are no menus, context menus or shortcuts all functions are visible, meaning
not hidden in submenus. The software offers different views of the project,
because of the complexity of the whole, but within a view all functions are
easily visible and accessable.

Selection State and Fuction Availability

Buttons, text fields, text areas and other interactive GUI components can
change their state. Some times the components are active and can be used,
at other times they are inactive. The components are always active if their
function can be executed on the current selection. If a function works on one
or more Nodes but only Edges are selected, then the component providing
the function will be inactive.

7uses /bin/sh

158 APPENDIX B. THE WBA TOOLKIT MANUAL

Undoing

Nearly all functions can be undone and redone. Because the majority of
functions can be undone this reference will only explicitly mention those
functions that cannot be undone. Having undoable functions saves the user
from popup dialogues that ask for explicit acknowledgement of functions
that entail huge changes. On top of that there are no Apply buttons any-
where. If a change is made in a part of the user interface the changes are
applied immediately. If they are not desired they can easily be undone. Se-
lecting (or highlighting) an object is also an undoable and redoable function.

The undo history will go back to the time the active project has been
loaded. That happens on startup, when a project will be loaded and every
time the active project is changed.

Saving

After nearly every function invocation the whole project is saved. If the
machine crashes the user can continue to work on a very recent version.
When the software starts it will automaically load the last project worked
on. Note that even the selection state of the project is saved, aiding the user
is taking up hisher work where heshe left it.

The Log File

There is a log file called ybt2.log. It is written into the softwares main di-
rectory (which is the same where ybt2.sh und ybt2.bat reside). If you are
unfamiliar with the source of the software or even unfamiliar with the work-
ings of Java, you may not want to read the logfile. The value of the logfile
for the normal user is to have a log of the inner workings of the software
that can be sent to the developer (me8) along with an error description.

Please note that the log file may contain sensitive information. If you
are unsure do not send the logfile! Just send an error description.

B.4.2 The Views

Generally all Views are divided into three parts. One panel on the left side
with buttons, one tabbed pane on the bottom and one main component
filling the rest.

The Project View

The Project View lets you select the project to work on. There is a table con-
taining all projects and switching projects can be done with few mouseclicks.
There are provisions to facilitate collaborative work on projects.

8jsanders@TechFak.Uni-Bielefeld.DE

B.4. REFERENCE 159

The Graph View

The Graph View allows the display and manipulation of the Why-Because
Graph. After each change to the WBG the display is refresehed and the
dot9 graph layout engine renders a new graph.

The Factor View

In the Factor View all Factors can be edited. Some of the functions in the
Factor View have effects on the Graph View, but do not immediatly trigger
the layout engint. Only after the Graph View is selected the changes to the
Graph are implemented by the layouting engint.

The Actors View

Actors are used to formalize the partaking of an Actor in a Factor. Actors
defined and described in the Actors View can be assinged to Factors in the
Factors View and the Graph View as well. The Factors Actors relation will
be used in the Timeline View.

The Timeline View

The Timeline View lists all Factors in chronological order and also describes
which Actors did take part in Factors. The Timeline View uses the date
and time information of Factors as well as the Factors Actors relationships
to generate the Timeline.

The Groups View

Groups can be defined to further indicate special Factors. Groups can be
associated with colours, so that the Graph View can visualize Factor’s by
colouring them.

The Reporter View

The Reporter View is designed to be a first reporter tool. Whenever there
is an incident some one will be the first to report it. Because these reports
are seldom in the form usable directly in a WBG this tool aims to help. A
text, e.g. a protocol, can be factorized to make it a suitable starting point
for a WBA.

9Part of the GraphViz project, see www.graphviz.org

160 APPENDIX B. THE WBA TOOLKIT MANUAL

The Report Generation View

This view provides PDF generation functions. There is a standard report
form that the software can print into a PDF file. Other PDF files can be
inserted in the document to increase report generation flexibility a little.

B.4.3 The Project View Reference

The Projects Table

The table shows which projects are known to the program. At least one
project is alwayt the Current Project, which is indicated in the tables right-
most column. If on startup no project can be found a new project is created
and made the Current Project. The software only knows the location of
projects on the file and does not keep an own database. If a project file is not
found at the expected location this is indicated in the File Found column.
To facilitate collaborative work on a project a project will be marked as
locked with the username of the locking user. The lock is not a hard lock,
but only provides an indication that the file may be in use.

Buttons

Projects: Activate

• The button is enabled if a project is selected in the table on top-right,
that is not markes as the Current Project in the last column.

– a project is selected in the table on top-right, that is not markes
as the Current Project in the last column,

– the selected project file can be found as indicated by the File
Found column,

– and the selected project is not locked, as indicated by the Locked
By column.

• If this button is clicked the selected project will be activated and be-
come the Current Project.

• The new Current Project will be locked, the former Current Project
will remain locked.

• The Undo/Redo history will be reset.

Projects: New

• This button is always enabled.

• If this button is clicked a new, blank project will be created.

B.4. REFERENCE 161

• The new project will not be automatically activated.

• The new project will automatically be locked by the current user.

Projects: Lock

• The button is enabled if

– the selected project is not the Current Project,

– the selected project is not already locked by the current user

– and the project’s file location is known.

• If the button is clicked then a lock will be set.

• The lock is not a hard lock, it is intended to indicate that the project
file is in use by another user to facilitate collaborative work on a
project.

Projects: Unlock

• The button is enabled if

– the selected project is not the Current Project,

– the selected project is not already unlocked

– and the project’s file location is known.

• If the button is clicked then the lock, set by a different user, will be r
emoved.

• The lock is not a hard lock, it is intended to indicate that the project
f ile is in use by another user to facilitate collaborative work on a
project.

Modify: Unregister

• The button is enabled if the selected project is not the Current Project.

• If the button is clicked the projects entry will disappear from the list
of projects.

• The project’s file on disk will not be affected by this. The file has to
be removed separately.

162 APPENDIX B. THE WBA TOOLKIT MANUAL

Modify: Fork

• The button is enabled if a project is selected.

• If the button is clicked a copy of the selected project will be made.

• As with the New button the forked project will not be automatically
activated.

External: Export Import

• The button in enabled if

– a project is selected

– and the project’s file could be found.

• If the button is clicked

1. The user is prompted to select a file from the file system.

2. The file will be checked if it is a valid project file.

3. If the file is a valid project file it will be registered in the project
view.

4. Work on the project will be done directly on the selected file.

External: Import

• The button is enabled if

– a project is selected

– and the project’s file could be found.

• If the button is clicked

1. The user is prompted to select a file location.

2. The selected project will be copied to the location specified by
the user.

Other Functions

Selecting a Project Selection of a project is done with the left mouse
button in the projects table. Only single selection is allowed.

Project Location This label shows the file location of the Current Project.
It cannot be edited. If the project should reside in a different location the
use of Modify: Fork is suggested.

B.4. REFERENCE 163

Author This, by default, is filled with the user name (or logname) of the
current user. It is encouraged to change this to the actual authors’ names.

Master Date Time The date and time in this field are used when creating
new Nodes or Factors. Newly created Nodes or Factors have a datetime field
on their own. The Master Date Time sets the default on creation.

Title The title or short description of the project.j

Description A longer description of the project. This field only accepts
plain text, there are no formatting or highlighting provisions.

B.4.4 The Graph View Reference

The Graph

The graph is displayed in the top-right part of the display. The graph is
re-layoutet every time a change to the layout is done.

Selection Nodes and Edges can be select with the left mouse button.
There is no function on the right mouse button. Multi-selection is possi-
ble using the left mouse button and holding the CTRL key pressed during
the mouse click. The same goes for deselecting an element from a selec-
tion. If the left mouse button is clicked on the backgroud all objects will be
deselected. Selecting and deselecting are undoable functions.

Drawing an Edge A new Edge between two Nodes can be drawn with the
mouse by dragging the mouse with the left mouse button from the Cause
Node to the Effect Node.

Create: Node

• This button is always enabled.

• Clicking on this button will create a new Node in the graph.

• The new Node does not have any Edges created with it.

• After creation the new Node can usually be found on the bottom-right
or bottom-left of an already exising graph.

164 APPENDIX B. THE WBA TOOLKIT MANUAL

Create: Effect

• This node is enabled if

– a number of Nodes have been selected

– and no Edges have been selected.

• Clicking on this button will create a new Node.

• Additionally new Edges will be created along with the new Node mak-
ing the new one an Effect for all selected Nodes.

Create: Cause

• This button is enabled if

– a number of Nodes has been selected

– and no Edges have been selected.

• Clicking on this button will create a new Node.

• Additionally new Edges will be created along with the new Node mak-
ing the new one a Cause for all selected Nodes.

Remove: Completely

• This button is enabled if a number of Nodes a/o Edges has been se-
lected.

• Clicking this button will delete the selected Nodes and Edges.

Remove: From Graph

• This button is enabled if a number of Nodes a/o Edges has been se-
lected.

• Clicking this button will

– remove the selected Nodes from the graph, but will retain them
as Factors and

– delete all selected Edges.

B.4. REFERENCE 165

Insert as: Node

• This button is enabled if a number of Factors from the Factors Not in
Graph Table have been selected.

• Clicking on this button will insert the selected Factors as Nodes into
the graph.

• The new Nodes do not have any Edges created with them.

• After insertion the new Nodes can usually be found on the bottom-
right or bottom-left of an already exising graph.

Insert as: Effect

• This button is enabled if

– a number of Nodes have been selected,

– a number of Factors from the Factors Not in Graph Table have
been selected,

– and no Edges have been selected.

• Clicking on this button will insert the Factors as Nodes.

• Additionally new Edges will be created along with the inserted Factors
making all Effects for all selected Nodes.

Insert as: Cause

• This button is enabled if

– a number of Nodes have been selected,

– a number of Factors from the Factors Not in Graph Table have
been selected,

– and no Edges have been selected.

• Clicking on this button will insert the Factors as Nodes.

• Additionally new Edges will be created along with the inserted Factors
making all Causes for all selected Nodes.

Subgraph: Collapse

• The button is enabled if one Node is selected.

• If the button is clicked the graph below the selected Node will be
substituted by a placeholder Node

166 APPENDIX B. THE WBA TOOLKIT MANUAL

Subgraph: Expand

• The button is enabled if one Node is selected which is an Effect for a
subgraph Node.

• If the button is clicked the placeholder Node will be expanded into the
full graph

Zoom: Zoom In (+)

• The button is always enables.

• Clicking the button will enlarge the graph displayed in Graph View

Zoom: Zoom Out (-)

• The button is always enables.

• Clicking the button will scale down the graph displayed in Graph View

Zoom: Scale to Fit

• The button is always enables.

• Clicking the button will scale the graph so that it can be seen com-
pletely in the Graph View.

• Note that nodes may be too small to read their containing text.

Zoom: Normal (1:1)

• The button is always enables.

• Clicking the button will display the graph at its normal scaling factor.

Factors not in Graph

• This table shows all Factors that are not Nodes in the graph.

• Each table row denotes one Factor

• The selection of the Factors shown in the table is used by the Insert
Factors button group.

• A comprehensive view of all Factors and Nodes in the project can be
found in the Factors View.

B.4. REFERENCE 167

Node Properties and Text

Node Proerties and Text: ID

• This field is not editable.

• The ID is a unique identifier mainly used internally by the software.

• It is provided here in order to facilitate debugging in case the project
file gets corrupted.

Node Properties and Text: Name

• This text field is enabled if one Node is selected.

• This text field contains the name of a Node.

• The name of a node is usually automatically set by the software on
creation on the Factor or Node

• In a Node the name is displayed on top of the node text in brackets.

Node Properties and Text: Date/Time

• This text field is enabled if one Node is selected.

• The Node’s timestamp can be manipulated with this text field.

• The text field’s content is not show within the Node.

• Date/Time is used to create the Timeline in the Timline View.

Node Properties and Text: Node Kind

• This combo box is enabled if one Node is selected.

• The node kind determines the Nodes shape in the graph.

• At the time of writing the following Node Kinds exist:

1. Unspecified - the default, denoting that no choice has been made
which Node Kind the Node should be assigned.

2. Event - denoting an event in the sense of a point in time where a
system changes its state.

3. UnEvent - denoting a point in time where a system should have
changed its state but did not.

4. State - denoting a state that is true througout the whole of the
incident .

168 APPENDIX B. THE WBA TOOLKIT MANUAL

5. Process - denoting a series of sufficiently similar event so that
they can be aggregated as a process.

6. Assumption - denoting a Node for with at best circustantial evi-
cence exists, but is believed to be true.

7. Countermeasure - denotes a measure to counteract a specific Node
in order to defeat the incident.

8. Contraindication - denotes the fact that there may be conflicting
information about a Node to be true or false.

Node Properties and Text: Text

• This text area is enabled if one Node is selected.

• The text in this text area is the Node’s main text which appears inside
the node.

Annotations, Actors, Groups

Annotations, Actors, Groups: Annotation

• This text area is enabled if one Node is selected.

• The text in this text area is the Node’s additional information and is
not part of the visible text in the graph. ide the node.

Annotations, Actors, Groups: Actor Assignment

• This table is enables if one Node is selected.

• This table lists all Actors that have been defined int the Actors View.

• By clicking on a checkbox in an Actor’s row an Actor is assigned to
the selected Node.

• A Node may have any number of Actors associated to it.

• Changing this table has no effects on the graph.

• The Actor Assignment is used in the Timeline View to construct the
Timeline.

Annotations, Actors, Groups: Group Assignment

• This table is enables if one Node is selected.

• By clicking on a checkbox in a Group’s row this group is assigned to
the selected Node.

B.4. REFERENCE 169

• One Node can only be in one Group, therefor selecting a Group will
automatically unselect a previously selected Group.

• The Node in the graph will be coloured with the associated Group’s
colour.

Edge Detail

Edge Detail: Justified

• This button is enabled if one Edge is selected.

• Clicking this button will mark the selected Edge as justified10.

• The Edge will be highlighted blue when it is marked as justified.

Edge Detail: Not Justified

• This button is enabled if one Edge is selected.

• Clicking this button will mark the selected Edge as not justified11.

• The Edge highlighting will be turned off and the Edge will appear
black again.

Edge Detail: Edge Label

• This text field is anabled if one Edge is selected.

• Editing this text field will change the label of the selected Edge.

• Items will be displayed halfway between the Edge’s tail and head.

Edge Detail: Edge Justification

• This text area is enabled if one Edge is selected.

• The text entered into the text area does not affect the layout of the
graph.

• The text will be used in Report Generation.

• The text is meant to explain why two Nodes are causal factors.

10It passed the Counterfactual Test
11It did not pass the Counterfactual Test

170 APPENDIX B. THE WBA TOOLKIT MANUAL

B.4.5 The Factor View Reference

The Factor View contains an overview of all Nodes and Factors of the
project. The main difference to the Graph View is the tabular represen-
tation of data instead of the graphical representation used in the Graph
View.

The Factor Table

Create... Factor

• This button is always enabled.

• Clicking this button will create a new Factor, which will appear as the
bottom most Factor in the table.

Remove completely

• This button is enabled if at least one Factor or Node is selected.

• Clicking this button will delete all selected Factors or Nodes.

• Deleting Nodes will lead to a redraw of the graph after changing into
Graph View

Remove from Graph

• This button is enabled if at least one Node is selected.

• Clicking this button will remove all selectd Nodes from the graph and
make them Factors.

• Removing Nodes from the graph will lead to a redraw of the graph
after changing into the Graph View.

Factor Properties and Text

Factor Properties and Text: ID

• This field is not editable.

• The ID is a unique identifier mainly used internally by the software.

• It is provided here in order to facilitate debugging in case the project
f ile gets corrupted.

B.4. REFERENCE 171

Factor Properties and Text: Name

• This text field is enabled if one Node or Factor is selected.

• This text field contains the name of a Node or Factor.

• The name of a Node or Factor is usually automatically set by the
software on creation on the Factor or Node

• In a Node the name is displayed on top of the node text in brackets.

Factor Properties and Text: Date/Time

• This text field is enabled if one Node or Factor is selected.

• The Node or Factor’s timestamp can be manipulated with this text
field.

• The text field’s content is not show within the Node.

• Date/Time is used to create the Timeline in the Timline View.

Factor Properties and Text: Node Kind

• This combo box is enabled if one Node or Factor is selected.

• The node kind determines the Nodes shape in the graph.

• At the time of writing the following Node Kinds exist:

1. Unspecified - the default, denoting that no choice has been made
which Node Kind the Node should be assigned.

2. Event - denoting an event in the sense of a point in time where a
system ch anges its state.

3. UnEvent - denoting a point in time where a system should have
changed its s tate but did not.

4. State - denoting a state that is true througout the whole of the
incident .

5. Process - denoting a series of sufficiently similar event so that
they can be aggregated as a process.

6. Assumption - denoting a Node for with at best circustantial evi-
cence exists, but is believed to be true.

7. Countermeasure - denotes a measure to counteract a specific Node
in o rder to defeat the incident.

8. Contraindication - denotes the fact that there may be conflicting
informati on about a Node to be true or false.

172 APPENDIX B. THE WBA TOOLKIT MANUAL

Factor Properties and Text: Text

• This text area is enabled if one Node or Factor is selected.

• The text in this text area is the Node’s main text which appears inside
the node.

Annotations, Actors, Groups

Annotations, Actors, Groups: Annotation

• This text area is enabled if one Node or Factor is selected.

• The text in this text area is the Node’s or Factor additional information
and is not part of the visible text in the graph.

Annotations, Actors, Groups: Actor Assignment

• This table is enables if one Node or Factor is selected.

• This table lists all Actors that have been defined int the Actor s View.

• By clicking on a checkbox in an Actor’s row an Actor is assigne d to
the selected Node or Factor.

• A Node or Factor may have any number of Actors associated to it.

• The Actor Assignment is used in the Timeline View to construct the
Timeline.

Annotations, Actors, Groups: Group Assignment

• This table is enables if one Node or Factor is selected.

• By clicking on a checkbox in a Group’s row this group is assigned to
the selected Node or Factor.

• One Node or Factor can only be in one Group, therefor selecting a
Group will automatically unselect a previously selected Group.

B.4.6 Actors View Reference

In the Actors View Actors can be managed. Actors can be assigned to Nodes
or Factors are are used to construct the Timeline.

B.4. REFERENCE 173

Actor Table

Create... Actor

• This button is always enabled.

• Clicking this button will create a new Actor.

• Properties of a newly created ActorÂ will be filled with values indi-
cating that the Actor has not been worked on yet.

Remove Actor(s)

• This button is enabled if at least one Actor is selected.

• Clicking this button will delete the selected Actors.

• References of Nodes or Factors to a deleted Actor will be automatically
deleted.

ID

• This field is not editable.

• The ID is a unique identifier mainly used internally by the software.

• It is provided here in order to facilitate debugging in case the project
f ile gets corrupted.

Name

• This text field is enabled if one Actor is selected.

• This text field contains the name of a Actor.

Description

• This text area is enabled if one Actor is selected.

• The text in this text area is the Actor’s additional information.

B.4.7 Timeline View Reference

The Timeline is derived from the data given in the Actors View and the
Graph View or Factors View. Nodes and Factors can be associated with
Actors. Each row in the Timeline represents a Node or Factors. Each
column, with the excption of the first three colums, represents an Actor. If
the checkbox in an Actor column is set, then the respective Actor is taking
part in the event(s) described in the Node or Factor. The first columns are

174 APPENDIX B. THE WBA TOOLKIT MANUAL

• The Factor column displays the text of the Node or Factor.

• The Date/Time column displays the date and time at which the event(s)
described happen.

• The Duration column displays the duration of the described event(s).

In contrast to most other tables the checkboxes in the Timeline table
are editable. They serve the same function as the small Actor tables in the
Graph View or the Factor View.

B.4.8 Group View Reference

In teh Group View Groups can be managed. Groups can be assigned to
Factors and Nodes and affect their colouring in the graph.

Group Table

Create... Group

• This button is always enabled.

• Clicking this button will create a new Group.

• Properties of a newly created GroupÂ will be filled with values indi-
cating that the Group has not been worked on yet12.

Remove Group(s)

• This button is enabled if at least one Group is selected.

• Clicking this button will delete the selected Groups.

• References of Nodes or Factors to a deleted Groups will be automati-
cally deleted.

• This may affect the graph and force a redraw when the Graph View is
next displayed.

ID

• This field is not editable.

• The ID is a unique identifier mainly used internally by the software.

• It is provided here in order to facilitate debugging in case the project
f ile gets corrupted.

12The default colour is white.

B.4. REFERENCE 175

Name

• This text field is enabled if one Group is selected.

• This text field contains the name of a Group.

Colour Chooser

• This button is enabled if one Group is selected.

• Clicking this button will open a colour chooser dialogue from which
the Group’s colour can be selected.

• This may affect the graph and force a redraw when the Graph View is
next displayed.

Description

• This text area is enabled if one Group is selected.

• The text in this text area is the Group’s additional information.

B.4.9 Reporter View Reference

The Reporter is a tool to assist in the beginning on an analysis. It is an aid
to transform a natural language text into chunks, each chunk being fit as a
first approximation to a Factor text.

The Reporter Text Area

The text area is where the input to the Reporter View is put. To achieve
the best results the text provided here should be

• in simple present tense,

• and in active voice.

Most protocols will be in this form.

Factorize

• This button is always enabled.

• Clicking the button will factorize the text provided in the text area,
which will subdivide the text into Factorized Items using indicators
from punctuation and phrasing, each Factorized Item should be a good
approximation for an atomic13 expression.

13Not further subdivisible and still making sense.

176 APPENDIX B. THE WBA TOOLKIT MANUAL

• For each Factorized Item a new row will be inserted into the table at
the bottom of the text area.

• All Factorized Items in the table will be deleted on factorizing.

Delete Items

• This button is enabled if one or more Factorized Items in the table are
selected.

• Clicking this button will delete all selected Factorized Items in the
table.

Create Item

• This button is always enabled.

• Clicking this button will insert a new, empty Factorized Item into the
table.

Clone Items

• This button is enabled if one or more Factorized Items in the table are
selected.

• Clicking this button will duplicate all selected Factorized Items in the
table.

Merge Items

• This button is enabled if two or more Factorized Items in the table are
selected.

• Clicking this button will delete both slected Factorized Items and cre-
ate a new one containing the text of both previously selected Factorized
Items.

• The order in which the Factorized Items appear in the table determines
the order in which the texts are concatenated.

Make New Analysis

• This button is always enabled.

• Clicking this buttion will delete all a projects Nodes and Factors and
create new Factors from the Factorized Items.

• Factorized Items marked as Damage, Incident or Proximate Cause will
be converted to Nodes and a preliminary graph will be created.

B.4. REFERENCE 177

Factorized Item Table

The table contains all Factorized Items. The first column contains the tex-
tual descriptions, the second column the type of a Factorized Item. The
table itself is not editable.

Factorized Item Text Area

• The text area is enabled if one Factorized Item is selected.

• The text in this text area is the Factorized Item’s main text which
appears in the table.

Factorized Item Combo Box

• The combo box is enabled if one Factorized Item is selected.

• The combo box changes the selected Factorized Item’s type to one of
the following:

– None: This is the default upon creation of a Factorized Item.

– Damage: This indicates, that the Factorized Item describes the
damaga in a reported incident.

– Incident: This indicates, that the Factorzied Item describes the
incident event in a reported incident.

– Proximate Cause: This indicates that the Factorized Item de-
scribes a cause leading to the incident event.

• When creating a preliminary graph from the Reporter View all Proxi-
mate Causes will be causes for all Incidents, which will be causes for
all Damage.

B.4.10 Report Generator Reference

The table in the Report Generator View shows the Report Generator Parts
that will be included in a PDF export. Report Generator Parts can be

1. A Cover, usually for the front page of a Report.

2. The Graph on one page, which may leave Node texts unreadable.14

3. The List of Factors, which contains all Nodes and Factors of the active
Project.

4. The Causal Justification List, similar to the List of Factors.

14An alternative way to display the graph is in progress.

178 APPENDIX B. THE WBA TOOLKIT MANUAL

5. The Group List, similar to the List of Factors.

6. The Actor List, similar to the List of Factors.

7. The Timeline which is a chronological table of all Nodes and their
respective Actors.

8. Additionally other PDF documents can be used as sources for a Report.
See Create ... External PDF.

The order as shown in the table will be the order in which the Report Gener-
ator Parts will appear in the finished PDF. Reports Generator Parts can be
excluded from the PDF export by unselecting the checkboxes in the table.

Report: Save As

• This button is always enabled.

• Clicking this button will open a file output dialogue.

• After a file location has been selected the PDF export will write the
Report to that file.

• The file location will be stored in the Project.

Report: Save

• This button is always enabled.

• The PDF export will write the Report to a previously selected file
location.

• If there is no previously selected file location the behaviour will be as
in Report Save As.

Move Parts: Move Up

• This button is is enabled if one Report Generation Part is selected.

• Clicking this button will move the seleveted Report Generation Part
one row up in the table, with repect to the other Report Generation
Parts.

• If the selected Report Generation Part is already the top most, nothing
is done.

B.4. REFERENCE 179

Move Parts: Move Down

• This button is is enabled if one Report Generation Part is selected.

• Clicking this button will move the seleveted Report Generation Part
one row down in the table, with repect to the other Report Generation
Parts.

• If the selected Report Generation Part is already the bottom most,
nothing is done.

Create: Cover

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Cover below the selected Re-
port Generation Part.

Create: Graph

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Graph below the selected
Report Generation Part.

Create: Factor List

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Factor List below the selected
Report Generation Part.

Create: Causal Justification List

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Causal Justification List below
the selected Report Generation Part.

Create: Group List

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Group List below the selected
Report Generation Part.

180 APPENDIX B. THE WBA TOOLKIT MANUAL

Create: Actor List

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Actor List below the selected
Report Generation Part.

Create: Timeline

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will insert a Report Timeline below the selected
Report Generation Part.

Create... External PDF

• This button is enabled if one Report Generation Part is selected.

• Clicking this button will open a file open dialogue, to select a PDF for
inclusion in the Report.

• A new Report Generation Part will be inserted into the table below
the selected Report Generation Part.

Bibliography

[1] U.S. National Aeronautics and NASA Space Administration. Aviation
Safety Reporting System. http://asrs.arc.nasa.gov/, 2012.

[2] Ludwig Benner. Accident investigation: Multilinear events sequencing
methods. Journal of Safety Research, 7(2), March 1975.

[3] Bieleschweig Workshop participants. The Bieleschweig
Workshops on Systems Engineering. http://www.rvs.uni-
bielefeld.de/Bieleschweig/ and https://www.tu-
braunschweig.de/ifev/veranstaltungen/bieleschweig, 2002 - 2011.

[4] Bieleschweig Workshop participants. Comparison Criteria.
http://www.rvs.uni-bielefeld.de/Bieleschweig/criteria/, 2003. Cri-
teria for comparing different methods of root-cause analysis.

[5] U.S. National Transportation Safety Board. Transportation safety
databases. Technical Report NTSB/SR-02/02 PB2002-917004, U.S.
National Transportation Safety Board, 2002.

[6] U.S. National Transportation Safety Board. Crash during landing
- executive airlines (doing business as american eagle) flight 5401,
avions de transport regional 72-212, n438at, san juan, puerto rico.
http://www.ntsb.gov/doclib/reports/2005/AAR0502.pdf, 2004.

[7] U.S. National Transportation Safety Board. NTSB Accident Reports.
http://www.ntsb.gov/investigations/reports.html, 2012.

[8] Boeing. http://www.boeing.com/news/techissues/pdf/statsum.pdf.

[9] U.K. Air Accidents Investigation Branch. AAIB Formal Report
Archive. http://www.aaib.gov.uk/sites/aaib/publications/formal reports/formal report archive.cfm,
2012.

[10] Australian Transportation Safety Bureau. ATSB Research and
Analysis Reports. http://www.atsb.gov.au/publications/publications-
list.aspx?mode=all&publicationType=Research%20and%20Analysis%20Report,
2012.

181

182 BIBLIOGRAPHY

[11] Claire Blackett (UC Dublin). Analysis of the Royal
Majesty Grounding Using SOL. http://www.rvs.uni-
bielefeld.de/Bieleschweig/third/Blackett-B3-2004.pdf, 2004.

[12] Centro de Investigacao e Prevencao de Acidentes Aeronautocos
Commando da Aeronautica. Final report a - no 67/enipa/2009.
http://www.cenipa.aer.mil.br/cenipa/paginas/relatorios/pdf/3054ing.pdf,
2009.

[13] Oracle Corporation. Java runtime environment (jre) and java develop-
ment kit (jdk). http://www.java.com.

[14] French Bureau d’ Enquêtes et d’ Analyses pour la securite de l’ aviation
civile. BEA. http://www.bea.aero/index.php, 2012.

[15] Dr. Babette Fahlbruch, Dipl.-Psych. Rainer Miller.
Safety through Organizational Learning (SOL) - an in
depth event analysis methodology. http://www.rvs.uni-
bielefeld.de/Bieleschweig/first/Fahlbruch Miller SOL-Handout.pdf,
2002.

[16] Dr Dmitri Zotov, MBE, PhD, MAv, FRAeS. Multi Linear Events Se-
quencing. http://www.asasi.org/papers/2011/MES Analysis - Dmitri
Zotov.pdf, 2011.

[17] John Ellson, Emden Gansner, Yifan Hu, Arif Bilgin, and AT&T Re-
search Dwight Perry. Graphviz - graph visualization software.
http://www.graphviz.org, 2012.

[18] Luke Emmet, Mirco Hilbert, Peter B. Ladkin, Jan Paller,
Jan Sanders, Jörn Stuphorn, Bernd Sieker, and Fergus Toolan.
Causalml language definition xs:schema file. http://rzv113.rz.tu-
bs.de/dlfo/CausalML/CausalML 1.1.0 nd.xsd, 2006.

[19] Bundesstelle für Flugunfalluntersuchung. Investigation report ax001-1-
202. Technical report, 2010.

[20] Bundesstelle für Flugunfalluntersuchung. BFU. http://www.bfu-
web.de/, 2012.

[21] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique
for drawing directed graphs. IEEE Trans. Softw. Eng., 19(3):214–230,
March 1993.

[22] HSQL Development Group. www://hsqldb.org.

[23] Andrew Hopkins. An accimap of the esso australia gas plant explosion.
http://www.qrc.org.au/conference/ dbase upl/03 spk003 Hopkins.pdf,
2000.

BIBLIOGRAPHY 183

[24] Andrew Hopkins. Lessons from Longford: The Esso Gas Plant Explo-
sion. CCH, Sydney, 2000.

[25] David Hume. An Enquiry Concerning Human Understanding. Oxford
University Press, 1777/1975. Third Edition.

[26] International Civil Aviation Organization, ICAO. Annex 13 to the Con-
vention on International Civil Aviation: Aircraft Accident and Incident
Investigation. ICAO, 2010.

[27] International Electrotechnical Commission. Committee Draft, IEC
62740 Root Cause Analysis (RCS), Edition 1, IEC TC 56 WG3 PT3.23.
June 2012.

[28] Canadian Transportation Accident Investigation
and Safety Board. Transportation Safety Board.
http://www.tsb.gc.ca/eng/publications/rmr-dpr/2004/rmr-dpr-2004-
6.asp, 2012.

[29] Kaoru Ishikawa. What is total quality control? Prentice-Hall, 1985.

[30] Jens Braband, Ernesto de Stefano, Sonja-Lara Kurz (Siemens
TS). Comparison of Event-Based Root Cause Analysis Mod-
els. http://www.rvs.uni-bielefeld.de/Bieleschweig/third/Stefano-Kurz-
Braband-B3-2004.pdf, 2004.

[31] Jens Braband, Luke Emmet, Peter B. Ladkin, Claire Black-
ett, I Made Wiryana, Fergus Toolan, Oliver Lemke, Jan tecker-
Gayen, Timm Grams. Comparison Criteria. http://www.rvs.uni-
bielefeld.de/Bieleschweig/criteria/, 2002.

[32] Chris W. Johnson. University of Glasgow Press, 2003.

[33] Peter B. Ladkin. http://www.rvs.uni-
bielefeld.de/publications/Papers/ladkin WBG Comparison.pdf.

[34] Peter B. Ladkin. http://www.rvs.uni-
bielefeld.de/publications/Papers/Ladkin-Glenbrook.pdf.

[35] Peter B. Ladkin. Causal analysis of aircraft accidents. Lecture Notes
in Computer Science, 2000.

[36] Peter B. Ladkin. Causal system analysis. http://www.rvs.uni-
bielefeld.de/publications/books/CausalSystemAnalysis/index.html,
2001.

[37] Oliver Lemke. http://www.rvs.uni-
bielefeld.de/research/WBA/Neufahrn WBA-Vergleich 1.0.0.pdf.

184 BIBLIOGRAPHY

[38] Nancy G. Leveson, 2012.

[39] David Lewis. Counterfactuals. Oxford University Press, 1973.

[40] Lyle Masimore. Proving the Value of Safety - Justification and ROI of
Safety Programs and Machine Safety Investments, 2007. Publication
SAFETY-WP004B-EN-P July 2007.

[41] Lars Molske. Controlled english for why-because analysis software.
http://www.causalis.com/index.php?id=65&file=1A3B0&no cache=1&uid=57,
2005. This is a link to the software. Lars Molske’s Diploma Thesis is
not available to me.

[42] John Moncenigo. http://www2.research.att.com/ john/Grappa/, 2012.

[43] Roger Needham. Naming. Distributed Systems, pages 318 – 327, 1993.

[44] Paul S. Nelson. http%3A%2F%2Fsunnyday.mit.edu%2Fpapers%2Fnelson-
thesis.pdf, 2008.

[45] Damian Nowak. Iqualizeit software.
http://www.causalis.com/iqualizeit.zip, 2005. This is a link to
the software. Damian Nowak’s Diploma Thesis is not available to me.

[46] Bureau of Transportation Statistics. Safety in numbers - safety data
action plan. Technical report, U.S. Department of Transportation, 2000.

[47] Thilo Paul-Stueve. A practical guide to the why-because anal-
ysis method - performing a why-because analysis. www.rvs.uni-
bielefeld.de/research/WBA/WBA-Guide.pdf, 2005.

[48] J. Raskin. The Humane Interface: New Directions for Designing In-
teractive Systems. ACM Press Series. Addison-Wesley, 2000.

[49] J. Reason. Human Error. Cambridge University Press, 1990.

[50] Jan Sanders. http://www.rvs.uni-
bielefeld.de/research/WBA/WBA Introduction.pdf.

[51] Bernd Sieker, Michael Hoehl, Jan Paller, and Jan E. Hennig.
cid2ft, cid2dot, wb2dot, ybedit, ybfactor, vdas. http://www.rvs.uni-
bielefeld.de/research/WBA/#Older, 2000.

[52] Joern Stuphorn. http://www.rvs.uni- biele-
feld.de/Bieleschweig/5.5/Stuphorn Ueberlingen WBA.pdf.

[53] MyBatis Team, 2012.

BIBLIOGRAPHY 185

[54] Karsten Loer Thorsten Gerdsmeier, Peter B. Lad-
kin. Formalising failure analysis. http://www.rvs.uni-
bielefeld.de/publications/Reports/AMAST97.html, 2003.

[55] Main Commission Aircraft Accident Investigation Warsaw. Report on
the accident to airbus a320-211 aircraft in warsaw. http://www.rvs.uni-
bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-
report.html, 1994. As made available in digital form by Peter B. Ladkin
on the RVS Website in 1996.

