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Abstract In naturally occurring speech and gesture,

meaning occurs organized and distributed across the

modalities in different ways. The underlying cognitive

processes are largely unexplored. We propose a model

based on activation spreading within dynamically shaped

multimodal memories, in which coordination arises from

the interplay of visuo-spatial and linguistically shaped

representations under given cognitive resources. A sketch

of this model is presented together with simulation re-

sults.
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1 Introduction

Gestures are an integral part of human communication

and they are inseparably intertwined with speech [21].

The detailed nature of this connection, however, is still

a matter of considerable debate. The data that underlie

this debate have for the most part come from studies

on the coordination of overt speech and gestures show-

ing that the two modalities are coordinated in their

temporal arrangement and in meaning, but with con-
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siderable variations. When occurring in temporal prox-

imity, the two modalities express the same underly-

ing idea, however, not necessarily identical aspects of

it: Iconic gestures can be found to be redundant with

the information encoded verbally (e.g., ’round cake’

+ gesture depicting a round shape), to supplement it

(e.g., ‘cake’ + gesture depicting a round shape), or even

to complement it (e.g., ‘looks like this’ + gesture de-

picting a round shape). These variations in meaning

coordination–together with temporal synchrony–led to

different hypotheses about how the two modalities en-

code aspects of meaning and what mutual influences

between the two modalities could underlie this. How-

ever, a concrete picture of this and in particular of the

underlying cognitive processes is still missing.

A couple of studies have investigated how the fre-

quency and nature of gesturing, including its coordi-

nation with speech is influenced by cognitive factors.

There is evidence that speakers indeed produce more

gestures at moments of relatively high load on the con-

ceptualization process for speaking [13,22]. Moreover,

supplementary gestures are more likely in cases of prob-

lems of speech production (e.g. disfluencies) or when the

information conveyed is introduced into the dialogue

(and thus conceptualized for the first time) [4]. Like-

wise, speakers are more likely to produce non-redundant

gestures in face-tip-face dialogue as opposed to addressees

who are not visible [2].

Chu et al. [8] provided data from an analysis of in-

dividual differences in gesture use demonstrating that

poorer visual/spatial working memory is correlated with

a higher frequency of representational gestures. How-

ever, despite this evidence, Hostetter and Alibali [10] re-

port findings suggesting that speakers who have stronger

visual-spatial skills than verbal skills produce higher

rates of gestures than other speakers. A follow-up study
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demonstrated that speakers with high spatial skills also

produced a higher proportion of non-redundant ges-

tures than other speakers, whereas verbal-dominant speak-

ers tended to produce such gestures more in case of

speech disfluencies [12]. Taken together this suggests

that non-redundant gesture-speech combinations are the

result of speakers having both strong spatial knowledge

and weak verbal knowledge simultaneously, and avoid-

ing the effort of transforming the one into the other.

In the literature, different models of speech and ges-

ture production have been proposed. One major dis-

tinguishing feature is the point where in the produc-

tion process cross-modal coordination can take place.

The Growth Point Theory [21] assumes that gestures

arise from idea units combining imagery and categorial

content. Assuming that gestures are generated “pre-

linguistically”, Krauss et al. [17] hold that the readily

planned and executed gesture facilitates lexical retrieval

through cross-modal priming. De Ruiter [24] proposed

that speech-gesture coordination arises from a multi-

modal conceptualization process that selects the infor-

mation to be expressed in each modality and assigns

a perspective for the expression. Kita & Özyürek [14]

agree that gesture and speech are two separate systems

interacting during the conceptualization stage. Based

on cross-linguistic evidence, their account holds that

language shapes iconic gestures such that the content

of a gesture is determined by bidirectional interactions

between speech and gesture production processes at the

level of conceptualization, i.e. the organization of mean-

ing. Finally, Hostetter & Alibali [11] proposed the Ges-

tures as Simulated Action framework that emphasizes

how gestures may arise from an interplay of mental im-

agery, embodied simulations, and language production.

According to this view, language production evokes en-

active mental representations which give rise to motor

activation.

Inspite of a consistent theoretical picture starting

to emerge, many questions about the detailed mecha-

nisms remain open. A promising approach to explicate

and test hypotheses are cognitive models that allow for

computational simulation. However, such modeling at-

tempts for the production of speech and gestures are

almost inexistent. Only Breslow et al. [7] proposed an

integrated production model based on the cognitive ar-

chitecture ACT-R [1]. This model, however, has diffi-

culties to explain gestures that clearly complement or

supplement verbally encoded meaning.

2 A Cognitive Model of Semantic Coordination

In recent and ongoing work we develop a model for mul-

timodal conceptualization that accounts for the range

of semantic coordination we see in real-life speech-gesture

combinations. This account is embedded into a larger

production model that comprises three stages: (1) con-

ceptualization, where a message generator and an im-

age generator work together to select and organize in-

formation to be encoded in speech and gesture, respec-

tively; (2) formulation, where a speech formulator and

a gesture formulator determine appropriate verbal and

gestural forms for this; (3) motor control and articu-

lation to finally execute the behaviors. Motor control,

articulation, and formulation have been subject of ear-

lier work [5]. In the following we provide a sketch of the

model, details can be found in [15,3].

2.1 Multimodal Memory

The central component in our model is a multimodal

memory which is accessible by modules of all processing

stages. We assume that language production requires

a preverbal message to be formulated in a symbolic-

propositional representation that is linguistically shaped

[19] (SPR, henceforth). During conceptualization the

SPR, e.g., a function-argument structure denoting a

spatial property of an object, needs to be extracted

from visuo-spatial representations (VSR), i.e., the men-

tal image of this object. We assume this process to

involve the invocation and instantiation of memorized

supramodal concepts (SMC, henceforth), e.g. the con-

cept ‘round’ which links the corresponding visuo-spatial

properties to a corresponding propositional denotation.

Fig. 1 illustrates the overall relation of these tripartite

multimodal memory structures.

To realize the VSR and part of the SMC, we em-

ploy a model of visuo-spatial imagery called Imagistic

Description Trees (IDT) [25]. The IDT model unifies

models from [20], [6], and [18] and was designed, based

on empirical data, to cover the meaningful visuo-spatial

features in shape-depicting iconic gestures. Each node

in an IDT contains an imagistic description which holds

a schema representing the shape of an object or ob-

ject part. Important aspects include (1) a tree struc-

ture for shape decomposition, with abstracted object

schemas as nodes, (2) extents in different dimensions

as an approximation of shape, and (3) the possibility

of dimensional information to be underspecified. The

latter occurs, e.g., when the axes of an object schema

cover less than the three dimensions of space or when

an exact dimensional extent is left open but only a

coarse relation between axes like “dominates” is given.

This allows to represent the visuo-spatial properties of

SMCs such as ‘round’, ‘left-of’ or ‘longish’. Applying

SMC to VSR is realized through graph unification and

similarity matching between object schemas, yielding
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Fig. 1 Overall production architecture.

similarity values that assess how well a certain SMC

applies to a particular visuo-spatially represented en-

tity (cf. Fig. 1). SPR are implemented straight forward

as predicate-argument sentences.

2.2 Overall production process

Fig. 1 shows an outline of the overall production ar-

chitecture. Conceptualization consists of cognitive pro-

cesses that operate upon the abovementioned mem-

ory structures to create a, more or less coherent, mul-

timodal message. These processes are constrained by

principles of memory retrieval, which we assume can

be modeled by principles of activation spreading [9]. As

in cognitive architectures like ACT-R [1], activations

float dynamically, spread across linked entities (in par-

ticular via SMCs), and decay over time. Activation of

more complex SMCs are assumed to decay more slowly

than activation in lower VSR or SPR.

Production starts with the message generator and

image generator inducing local activations of modal en-

tries, evoked by a communicative goal. VSRs that are

sufficiently activated invoke matching SMCs, leading to

an instantiation of SPRs representing the corresponding

visuo-spatial knowledge in linguistically shaped ways.

The generators independently select modal entries and

pass them on to the formulators. As in ACT-R, highly

activated features or concepts are more likely to be re-

trieved and thus to be encoded. Note that, as activation

is dynamic, feature selection depends on the time of re-

trieval and thus available resources. The message gener-

ator has to map activated concepts in SPR onto gram-

matically determined categorical structures, anticipat-

ing what the speech formulator is able to process (cf.

[19]). Importantly, interaction between generators and

formulators in each modality can run top-down and

bottom-up. For example, a proposition being encoded

by the speech formulator results in reinforced activation

of the concept in SPR, and thus increased activation of

associated concepts in VSR.

In result, semantic coordination emerges from the

local choices generators and formulators take, based on

the activation dynamics in multimodally linked mem-

ory representations. Redundant speech and gesture re-

sult from focused activation of supramodally linked men-

tal representations, whereas non-redundant speech and

gesture arise when activations scatter over entries not

connected via SMCs.

3 Results and outlook

To quantify our modeling results we ran simulation ex-

periments in which we manipulated the available time

(in terms of memory update cycles) before the model

had to come up with a sentence and a gesture [15,

3]. We analyzed the resulting multimodal utterances

with respect to semantic coordination: Supplementary

(i.e., non-redundant) gestures were dominant in those
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runs with stricter temporal limitations, while redun-

dant ones become more likely when time available is

increased. The model, thus, offers a natural account for

the empirical finding that non-redundant gestures are

more likely when conceptualization load is high, based

on the assumption that memory-based cross-modal co-

ordination consumes resources (memory, time), and is

reduced or compromised when such resources are lim-

ited.

To enable a direct evaluation of our simulation re-

sults in comparison with empirical data, we currently

conduct experiments to set up a reference data corpus.

In this study, participants are engaged in a dyadic de-

scription task and we manipulate the preparation time

available for utterance planning. The verbal output will

subsequently be analyzed with respect to semantic co-

ordination of speech and gestures based on a semantic

feature coding approach as already applied in [4].

In ongoing work we extend the model to also ac-

count for complementary speech-gesture ensembles in

which deictic expressions in speech refer to their co-

speech gesture as in “the window looks like this”. To

this end, we advance and refine the feedback signals

provided by the behavior generators to allow for the

fine-grained coordination as it is necessary for the pro-

duction of this kind of utterances. With this extension

the model will allow to further investigate predictions

as postulated in the lexical retrieval hypothesis [16,23,

17]. Although that model was set up on the basis of

empirical data, it was subject to much criticism based

on psycholinguistic experiments and data. Data from

detailed simulation experiments based on our cognitive

model can provide further arguments in this debate.
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