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1 Introduction
The main result of this thesis is the following: If pR,Λq is a form ring such that R is
almost commutative (i.e. finitely generated as module over a subring in its center)
and H is a subgroup of the hyperbolic unitary group U2npR,Λq where n ě 3, then

H is normalized by the elementary subgroup EU2npR,Λq of U2npR,Λq ô (1.1)
D! form ideal pI,Γq such that EU2nppR,Λq, pI,Γqq Ď H Ď CU2nppR,Λq, pI,Γqq

where EU2nppR,Λq, pI,Γqq denotes the relative elementary subgroup of level pI,Γq
and CU2nppR,Λq, pI,Γqq denotes the full congruence subgroup of level pI,Γq. This
result extends the range of validity of previous results. If R has finite Bass-Serre di-
mension d (cf.[2]) then the result was proved already in [1] provided n ě suppd`2, 3q
and if R is commutative, it was proved recently in [11]. An incorrect proof, which
can be repaired when 2 is invertible in R, was given in [9].

The dissertation is organized as follows.

In section 2 we recall some standard notation which will be used throughout
the dissertation.

In section 3 we present a model theoretic approach of A. Bak for studying
Chevalley groups, unitary groups, classical-like groups and their generalizations.

In section 4 we recall the definitions of the general linear group and some
important subgroups. In section 5 we show how the model theoretic approach given
in section 3 can be used to prove the following result (this result is not new, see
[8], but its proof is): If R is a ring such that R is almost commutative and H is a
subgroup of the general linear group GLnpRq where n ě 3, then

H is normalized by the elementary subgroup EnpRq of GLnpRq ô
D! ideal I such that EnpR, Iq Ď H Ď CnpR, Iq (1.2)

where EnpR, Iq denotes the relative elementary subgroup of level I and CnpR, Iq
denotes the full congruence subgroup of level I.

In section 6 we recall the definitions of the hyperbolic unitary group and some
important subgroups. In the last section we use the model theoretic approach of
section 3 to prove (1.1).

2 Notation
Let G be a group and H,K be subsets of G. The subgroup of G generated by H is
denoted by xHy. If g, h P G, let hg :“ hgh´1, gh :“ h´1gh and rg, hs :“ ghg´1h´1.
Set KH :“ xtkh|h P H, k P Kuy and HK :“ xthk|h P H, k P Kuy. Analogously
define rH,Ks and HK. Instead of Ktgu we write Kg (analogously we write gK
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instead of tguK , gH instead of tguH, rg,Ks instead of rtgu, Ks etc.).

In this thesis, ring will always mean associative ring with 1 such that 1 ‰ 0.
Ideal will mean two-sided ideal. By a multiplicative subset of a commutative ring
C we mean a subset S Ď C such that 0 R S, 1 P S and xy P S @x, y P S. If R is
a ring and m,n P N, then the set of all invertible elements in R is denoted by R˚
and the set of all m ˆ n matrices with entries in R is denoted by MmˆnpRq. We
set MnpRq :“ MnˆnpRq. The identity matrix in MnpRq is denoted by e or enˆn
and the matrix with an 1 at position pi, jq and zeros elsewhere is denoted by eij. If
a “ paijqij PMmˆnpRq, we denote the transpose of a by at, the i-th row of a by ai˚
and the j-th column of a by a˚j. If a “ paijqij PMnpRq is invertible, the entry of a´1

at position pi, jq is denoted by a1ij, the i-th row of a´1 by a1i˚ and the j-th column
of a´1 by a1˚j. Further we denote by Rn the set of all columns u “ pu1, . . . , unq

t

with entries in R and by nR the set of all rows v “ pv1, . . . , vnq with entries in R.
In sections 4 and 5, ei P Rn, where i P t1, . . . , nu, denotes the column whose i-th
entry is 1 and whose other entries are 0 and fi P nR, where i P t1, . . . , nu, denotes
the row whose i-th entry is 1 and whose other entries are 0. In sections 6 and 7,
ei P R

2n, where i P t1, . . . , n,´n, . . . ,´1u, denotes the column whose i-th entry is 1
and whose other entries are 0 if i P t1, . . . , nu and the column whose (2n` 1` i)-th
entry is 1 and whose other entries are 0 if i P t´n, . . . ,´1u. In sections 6 and 7,
fi P

2nR, where i P t1, . . . , n,´n, . . . ,´1u, denotes the row whose i-th entry is 1
and whose other entries are 0 if i P t1, . . . , nu and the row whose (2n ` 1 ` i)-th
entry is 1 and whose other entries are 0 if i P t´n, . . . ,´1u.

3 Standard groups
The concepts, constructions and results of this section are unpublished work of A.
Bak. Their purpose is to provide a model theoretic setting for studying Chevalley
groups, unitary groups, classical-like groups and their generalizations. This ap-
proach will be applied in the current dissertation to proving sandwich classification
results for general linear and unitary groups.

Definition 3.1 Let G denote a group and B a set of subgroups of G such that

(1) for any U, V P B there is a W P B such that W Ď U X V and

(2) for any g P G and U P B there is a V P B such that gV Ď U .

Then B is called a base of open subgroups of 1 P G. B is called discrete (respectively
nondiscrete), if it contains (respectively does not contain) the trivial subgroup.

Remark Let B be a base of open subgroups of 1 P G. The set of all left cosets
of members of B is a base of open sets for a topology on G such that G is a
topological group, i.e. such that the operations of taking inverse and multiplication
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are continuous (cf. [7]). This topology is the discrete one (i.e. any subset of G is
open) if and only if B is discrete.

Definition 3.2 Let G be a group, E a subgroup of G and GenpEq a subset of
G containing 1 such that E is generated by GenpEq. Further let BpEq be a set
of subgroups of E and Gp¨q a rule which associates to each U P BpEq a normal
subgroup GpUq of G containing U . The quintuple pG,E,GenpEq, BpEq, Gp¨qq is
called a standard group if the following are satisfied:

(3.2.1) BpEq is a base of open subgroups of 1 P E, which contains E as a member.

(3.2.2) A subgroup of E which is generated by members of BpEq is a member of
B(E).

(3.2.3) If U P BpEq then GenpUq :“ GenpEq X U generates U . Furthermore, it is
assumed that if g P GenpEq and g P GpUq, then g P U .

The elements of GenpEq are called base generators and the members of BpEq are
called base subgroups. For each U P BpEq the normal closure of U in E is denoted
by EpUq and the preimage of CenterpG{GpUqq under the canonical homomorphism
GÑ G{GpUq by CpUq.

Remark

(1) General linear groups and hyperbolic unitary groups are examples of standard
groups. For details see Lemma 5.1 resp. Lemma 7.1.

(2) The following condition is satisfied in many situations including those in p1q
above, motivates the key notions below of supplemented base and local map
and is inherited by quotients (see 3.4 below), but is needed neither for the
results of this section nor their applications in sections 5 and 7.

(3.2.4) Let U be a nontrivial member of BpEq. If g P GenpEq such that g R
U , then Eg contains a (nontrivial) member V of BpEq, which is not
contained in U .

In all of the examples in p1q, it turns out that g P V , thus guaranteeing that V
is not contained in U .

(3) The following condition is also satisfied in many situations, including those in
p1q above, and is inherited by quotients. However, only the weakened form of
the condition, which is stated in p3.8.1q in Lemma 3.8, is needed for sandwich
classification.

(3.2.5) If g P GenpEq and U and V are subgroups of BpEq such that V Ę U
then conjugation by g leaves some elements of GenpV qzGenpUq fixed.

Definition 3.3 A morphism φ : pG,E,GenpEq, BpEq, Gp¨qq Ñ pG1, E 1, GenpE 1q,
BpE 1q, G1p¨qq of standard groups is a group homomorphism φ : G Ñ G1 which
maps base generators to base generators and induces a continuous homomorphism
E Ñ E 1.
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Definition 3.4 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group, U P BpEq and
ψ : G Ñ G{GpUq the canonical homomorphism. Then pG,E,GenpEq, BpEq, Gp¨qq
{U :“ pG{U,E{U,GenpE{Uq, BpE{Uq, G{Up¨qq where G{U :“ G{GpUq “ ψpGq,
E{U :“ ψpEq, GenpE{Uq :“ ψpGenpEqq, BpE{Uq :“ tψpV q|V P BpEqu and
G{UpψpV qq :“ ψpGpxU, V yqq is called a quotient. (In general, ψpGpV qq is smaller
than ψpGpxU, V yqq.)

Lemma 3.5 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group and U P BpEq.
Then the quotient pG,E,GenpEq, BpEq, Gp¨qq{U is a standard group such that Genp
ψpV qq “ ψpGenpxU, V yqq.

Proof Straightforward. l

There can be nontrivial subgroups V P BpEq, other than E, which have
property p3.2.4q, namely if U P BpEq and g P GenpEq such that g R U , then V g
contains a nontrivial member of BpEq which is not contained in U . In interesting
cases, there are usually many such subgroups. The next definition is designed to
carve out a useful concept for this situation and use it to define the notion of a local
morphism.

Definition 3.6 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group. A pair pA,Bq
is called a supplemented base for pG,E,GenpEq, BpEq, Gp¨qq if A and B and are sets
of nontrivial subgroups of E (not necessarily members of BpEq) such that A forms
a nondiscrete base of open subgroups of 1 P E, each member of B is contained in
some member of A, and if U P A and V P B then U X V contains a member of B.
A supplemented base pA,Bq is called special, if A,B Ď BpEq.

Definition 3.7 Let φ : pG,E,GenpEq, BpEq, Gp¨qq Ñ pG1, E 1, GenpE 1q, BpE 1q,
G1p¨qq be a morphism of standard groups. Let pA,Bq be a special supplemented
base for pG,E,GenpEq, BpEq, Gp¨qq. Then φ is called local with respect to pA,Bq, if
the following holds:

(3.7.1) φpA,Bq :“ pφpAq, φpBqq is a supplemented base (not necessarily a special
supplemented base) for pG1, E 1, GenpE 1q, BpE 1q, G1p¨qq.

(3.7.2) φ is injective on GpUq for each member U of A.

(3.7.3) If f 1 P E 1, g1 P GenpE 1qzt1u and U P A then φpUqpf
1

g1q contains φpV q for
some nontrivial member V of B, which we may assume is contained in U .

A morphism φ is called local, if it is local for some special supplemented base pA,Bq
for pG,E,GenpEq, BpEq, Gp¨qq.

Remark If it turns out that EpUq is normal in G, for each U P BpEq then to prove
the results of this section, one can replace in p3.7.2q above GpUq by the smaller
group EpUq.

In practice, we often find ourselves in the situation that we have a morphism
φ and a special supplemented base pA,Bq for the domain of φ such that φ satisfies
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p3.7.1q and p3.7.2q and we feel that it should also satisfy p3.7.3q. The following
lemma is a useful tool for verifying the validity p3.7.3q.

Lemma 3.8 Let φ : pG,E,GenpEq, BpEq, Gp¨qq Ñ pG1, E 1, GenpE 1q, BpE 1q, G1p¨qq
be a morphism of standard groups and pA,Bq a special supplemented base for pG,E,
GenpEq, BpEq, Gp¨qq such that p3.7.1q and p3.7.2q hold. Assume the following:

(3.8.1) If g1 P GenpE 1qzt1u and U P A then φpUqg1 contains a φpV q such that V P B
and we may assume V Ď U .

(3.8.2) If f 1 P GenpE 1q and V P B then f 1φpV q contains a nontrivial element
g1 P GenpE 1q.

Then φ satisfies p3.7.3q and so is a local morphism.

Proof Let f 1 P E 1. If f 1 “ 1 then we are done, by p3.8.1q. Assume f 1 ‰ 1 and
write f 1 as a product f 1k . . . f 11 of nontrivial members of GenpE 1q. We proceed by
induction on k.
case 1 Assume that k “ 1. Let U P A. Choose U1 P A such that f 11φpU1q Ď φpUq.

Then φpUqpf
1
1g1q ĚφpUqpf

1
1pφpU1qg1qq

p3.8.1q
Ě φpUqpf

1
1φpV qq (for some V P B)

p3.8.2q
Ě φpUqg2 (for

some g2 P GenpE 1qzt1u)
p3.8.1q
Ě φpV1q (for some V1 P B) Ě φpUXV1q Ě (by definition

of a supplemented base) φpV2q (for some V2 P B).
case 2 Assume that k ą 1. Let U P A. Let h1 “ f 1k´1 . . . f

1
1. Thus f 1 “ f 1k . . . f

1
1 “

f 1kh
1. We can assume by induction on k that given U1 P A, φpU1qph

1

g1q Ě φpV q
for some V P B. Now we proceed similarly to case 1, replacing g1 by h1g1 and
f 11 by f 1k. Here are the details. Choose U1 such that f 1kφpU1q Ď φpUq. Then
φpUqpf

1
kh
1

g1q ĚφpUqpf
1
kpφpU1qph

1

g1qqq
I. A.
Ě φpUqpf

1
kφpV qq

p3.8.2q
Ě φpUqg2 (for some g2 P GenpE 1q

zt1u)
p3.8.1q
Ě φpV1q (for some V1 P B) Ě φpUXV1q Ě (by definition of a supplemented

base) φpV2q (for some V2 P B). l

Definition 3.9 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group and let A be a
nondiscrete base for E. Then pG,E,GenpEq, BpEq, Gp¨qq is called a solution group
for A and we call the quadruple pG,E,GenpEq, Aqq a solution group, if the following
is satisfied: Given a noncentral element h P G and a member U of A, there are a
k P N, l1, . . . , lk P t´1, 1u, ε0, . . . , εk P E and g0, . . . , gk P G such that gk P GenpEq,
gk is nontrivial, digi P U @i P t0, . . . , ku, where di “ pεi ¨ . . . ¨ ε0q´1 @i P t0, . . . , ku,
and

εkpr
εk´1p. . .ε2 prε1prε0h, g0s

l1q, g1s
l2q . . . q, gk´1s

lkq “ gk. (3.9.1)

Clearly p3.9.1q is equivalent to

r. . . rrh,d0g0s
l1 ,d1g1s

l2 . . . ,dk´1gk´1s
lk “

dkgk. (3.9.2)

(just conjugate p3.9.1q by dk “ pεk ¨ . . . ¨ ε0q´1). A standard group is called a solution
group, if it is a solution group for some nondiscrete base A of E. The equations
p3.9.1q and p3.9.2q are called solution equations for h with respect to A. In case
there is a solution equation for h with respect to A, we shall say that h satisfies a
solution equation with respect to A.
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Remark In practice, to show that a standard group is a solution group for A, one
has to supplement A to a supplemented base pA,Bq.

Definition 3.10 A covering of a standard group pG,E,GenpEq, BpEq, Gp¨qq is a set
of local morphisms φ such that the domain of each φ is pG,E,GenpEq, BpEq, Gp¨qq
and such that given a noncentral element h P G there is a morphism φ in the covering
such that φphq is noncentral in the codomain of φ. For each local morphism φ of
a covering Cov of pG,E,GenpEq, BpEq, Gp¨qq, let pApφq, Bpφqq denote a special
supplemented base such that φ is local with respect to pApφq, Bpφqq. We shall
say that a covering Cov is a covering by solution groups, if for each φ in Cov the
codomain of φ is a solution group for φpApφqq.

Theorem 3.11 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group and h a non-
central element of G. If pG,E,GenpEq, BpEq, Gp¨qq has a covering by solution
groups then Eh contains a nontrivial member of BpEq. (Compare with p3.2.4q)

Proof By assumption there is a local morphism φ : pG,E,GenpEq, BpEq, Gp¨qq Ñ
pG1, E 1, GenpE 1q, BpE 1q, G1p¨qq with respect to a special supplemented base pA,Bq
(for the domain of φ) such that the codomain of φ is a solution group for φpAq and
φphq is a noncentral element of G1. Hence there are a k P N, l1, . . . , lk P t´1, 1u,
ε10, . . . , ε

1
k P E

1, g10, . . . , g1k P G1 and a U 1 P A1 :“ φpAq such that g1k P GenpE 1q, g1k is
nontrivial, d1ig1i P U 1 @i P t0, . . . , ku, where d1i “ pε1i ¨ . . . ¨ ε10q´1 @i P t0, . . . , ku, and

r. . . rrh1,d
1
0g10s

l1 ,d
1
1g11s

l2 . . . ,d
1
k´1g1k´1s

lk “
d1kg1k. (3.11.1)

Let U P Apφq such that φpUq “ U 1. Since d1ig1i P U
1 “ φpUq @i P t0, . . . , ku, there are

x0, . . . , xk P U such that φpxiq “ d1ig1i @i P t0, . . . , ku. Let x “ r. . . rrh, x0s
l1 , x1s

l2 . . . ,
xk´1s

lk . Clearly the l.h.s. of p3.11.1q equals φpxq and the r.h.s. of p3.11.1q equals
φpxkq. Clearly Eh ĚEx ĚUx. We shall show that there is a V P B such that Ux Ě V .
This will complete the proof, because pA,Bq is a special supplemented base for
pG,E,GenpEq, BpEq, Gp¨qq and therefore V is a nontrivial member of BpEq. Since
Ux Ď GpUq, becauseGpUq is normal inG, and φ is injective onGpUq (at this point in
the argument, we could replace GpUq by EpUq and only insist that φ be injective on
EpUq, if EpUq were normal in G), it suffices to show that U 1φpxq “U

1

pd
1
kg1kq Ě φpV q

for some V P B which is contained in U . But this follows from the definition of a
local morphism with respect to pA,Bq. l

Definition 3.12 Let pG,E,GenpEq, BpEq, Gp¨qq be a standard group such that

(1) pG,E,GenpEq, BpEq, Gp¨qq and each of its quotients have a covering by solution
groups.

(2) rCpUq, Es “ rEpUq, Es “ EpUq holds for any U P BpEq.

Then pG,E,GenpEq, BpEq, Gp¨qq is called a sandwich classification group.

Theorem 3.13 Let pG,E,GenpEq, BpEq, Gp¨qq be a sandwich classification group
and H a subgroup of G. Then H is normalized by E if and only if either H is central,
or there is a unique nontrivial U P BpEq such that EpUq Ď H Ď CpUq.
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Proof
“ñ”: Assume that H is normalized by E. If H is central, we are done. Suppose H
is noncentral. From Theorem 3.11 it follows that H contains a nontrivial member of
BpEq. Let U be the largest nontrivial member of BpEq such that U Ď H. We shall
show that H Ď CpUq. The proof is by contradiction. Suppose H is not contained
in CpUq. We shall produce a nontrivial V P BpEq such that V is not contained
in U , but V Ď H. This will contradict the maximality of U . Let Ĥ denote the
image of H in pG,E,GenpEq, BpEq, Gp¨qq{U . Clearly Ĥ is normalized by E{U .
If Ĥ is central in G{U , then we are done, because this implies by definition that
H Ď CpUq. Suppose Ĥ is not contained in centerpG{Uq. Then by Theorem 3.11,
Ĥ contains a nontrivial subgroup V̂ of BpE{Uq. Since V̂ P BpE{Uq, there is a
V P BpEq such that V̂ “ V {pV XGpUqq. It follows that V Ď HGpUq. This implies
EpV q Ď HGpUq, since both H and GpUq are normalized by E. Hence

EpV q “ rE,EpV qs Ď rE,HGpUqs Ď rE,HspHrE,GpUqsq Ď H

since rE,GpUqs “ EpUq Ď H. It follows that V Ď H which contradicts the maxi-
mality of U (Clearly V Ę U since the image V̂ of V in G{GpUq is nontrivial). Thus
EpUq Ď H Ď CpUq.

Now we show the uniqueness of U . Let V P BpEq, V nontrivial such that EpV q Ď
H Ď CpV q. It follows that EpUq Ď H Ď CpV q and EpV q Ď H Ď CpUq. Hence

EpUq “ rE,EpUqs Ď rE,CpV qs “ EpV q

and
EpV q “ rE,EpV qs Ď rE,CpUqs “ EpUq.

By p3.2.3q it follows that U Ď V and V Ď U . Thus U “ V .

“ð”: If H is central it is clearly normalized by E. If there is a U P BpEq such
that EpUq Ď H Ď CpUq, then

rH,Es Ď rCpUq, Es “ EpUq Ď H

and hence H is normalized by E. l

4 General linear groups
In this section, let R be an associative ring with identity, I an ideal (2-sided)
in R and n P N. We shall recall the definitions of the following subgroups of
the general linear group GLnpRq; the preelementary groups EnpIq, the relative
elementary groups EnpR, Iq, the principal congruence subgroups GLnpR, Iq and the
full congruence subgroups CnpR, Iq. In the model theoretic setting of section 3, these
groups are accounted for respectively by the groups U in BpEq, the groups EpUq,
the groups GpUq and the groups CpUq. The elementary group EnpRq :“ EnpR,Rq
is accounted for by E in the model theoretic setting and the generators of EnpRq,
namely the elementary matrices, are accounted for by GenpEq.
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Definition 4.1 GLnpRq :“ pMnpRqq
˚ is called the general linear group.

Definition 4.2 Let i, j P t1, . . . , nu such that i ‰ j and x P R. Then tijpxq :“
e ` xeij is called an elementary transvection. The subgroup of GLnpRq generated
by all elementary transvections is called the elementary subgroup and is denoted
by EnpRq. An elementary transvection tijpxq is called elementary of level I or
I-elementary if x P I. The subgroup of GLnpRq generated by all I-elementary
transvections is called the preelementary subgroup of level I and is denoted by EnpIq.
Its normal closure in EnpRq is called the elementary subgroup of level I and is
denoted by EnpR, Iq.

Definition 4.3 Let i, j P t1, . . . , nu such that i ‰ j. Define pij :“ e ` eij ´
eji ´ eii ´ ejj “ tijp1qtjip´1qtijp1q P EnpRq. It is easy show that ppijq´1 “ pji. If
1 ă i ă j ă n, pij has the form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 i j n

1 1
. . .

1
i 0 1

1
. . .

1
j ´1 0

1
. . .

n 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

where all blank entries are zero.

Lemma 4.4 The relations

tijpxqtijpyq “ tijpx` yq, (R1)
rtijpxq, tklpyqs “ e and (R2)
rtijpxq, tjkpyqs “ tikpxyq (R3)

hold where i ‰ l, j ‰ k in pR2q and i ‰ k in pR3q.

Proof Straightforward computation. l

Definition 4.5 The kernel of the group homomorphism GLnpRq Ñ GLnpR{Iq
induced by the canonical map RÑ R{I is called the principal congruence subgroup
of level I and is denoted by GLnpR, Iq.

Remark Obviously GLnpR, Iq is a normal subgroup of GLnpRq.
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Definition 4.6 The preimage of CenterpGLnpRq{GLnpR, Iqq under the canonical
homomorphism GLnpRq Ñ GLnpRq{GLnpR, Iq is called the full congruence sub-
group of level I and is denoted by CnpR, Iq.

Remark

(1) Obviously GLnpR, Iq Ď CnpR, Iq and CnpR, Iq is a normal subgroup of GLnpRq.

(2) Sometimes CnpR, Iq is defined as the preimage of CenterpGLnpR{Iqq under
the group homomorphism GLnpRq Ñ GLnpR{Iq induced by the canonical map
RÑ R{I. One can show, using the fact that CenterpGLnpR{Iqq equals the set
of all matrices in GLnpR{Iq which commute with all elementary transvections,
that the two definitions are equivalent.

Recall that R is called almost commutative if it is module finite over a subring
of CenterpRq.

Lemma 4.7 If n ě 3 and R is almost commutative, then the equalities

rCnpR, Iq, EnpRqs

“rEnpR, Iq, EnpRqs

“EnpR, Iq

hold.

Proof See [8], Corollary 14. l

5 Sandwich classification for general linear groups
In this section, we construct in the setting of general linear groups, specific supple-
mented bases, local maps, solution groups and coverings by these solution groups,
and show in the Solution Group Lemma 5.7 that any noncentral element in any so-
lution group of any of these coverings satisfies a solution equation. 5.7 is the main
technical input of the section. A road map of the proof is provided at its conclusion,
in terms of a (long) inverted tree diagram. Then we deduce the sandwich classifi-
cation theorem p1.2q for subgroups of GLnpRq normalized by EnpRq from Theorem
3.13.

In this section let n ě 3, R be a ring and C a subring of CenterpRq. For any
ideal I of R and multiplicative subset S Ď C, set RS :“ S´1R and IS :“ S´1I. Let

φS : GLnpRq{GLnpR, Iq Ñ GLnpRSq{GLnpRS, ISq

be the homomorphism induced by FS where

FS : GLnpRq Ñ GLnpRSq

9



is the homomorphism induced by the localisation homomorphism

fS : RÑ RS.

Let
ψ : GLnpRq Ñ GLnpRq{GLnpR, Iq

and
ρS : GLnpRSq Ñ GLnpRSq{GLnpRS, ISq

be the canonical homomorphisms. Note that the diagram

GLnpRq

FS

��

ψ // GLnpRq{GLnpR, Iq

φS

��
GLnpRSq

ρS // GLnpRSq{GLnpRS, ISq

is commutative for any ideal I of R and multiplicative subset S Ď C. For any
maximal ideal m of C set Sm :“ Czm and φm :“ φSm (define Fm, fm, ρm, Rm and
Im similarly).

Lemma 5.1 Set

G :“ GLnpRq,

E :“ EnpRq,

GenpEq :“ ttijpxq|x P R, i, j P t1, . . . , nu, i ‰ ju,

BpEq :“ tEnpIq|I ideal of Ru and
GpEnpIqq :“ GLnpR, Iq @I ideal of R.

Then pG,E,GenpEq, BpEq, Gp¨qq is a standard group. Further EpEnpIqq “ EnpR, Iq
and CpEnpIqq “ CnpR, Iq for any ideal I of R.

Proof We have to show that the conditions p3.2.1q ´ p3.2.3q in Definition 3.2 are
satisfied.

(3.2.1) Obviously BpEq is a base of open subgroups of 1 P E, since it contains the
identity subgroup t1u “ Enpt0uq. Clearly E “ EnpRq P BpEq.

(3.2.2) Let tIj|j P Ju be a family of ideals of R. One checks easily that
x
Ť

jPJ

EnpIjqy “ Enpx
Ť

jPJ

Ijyq.

(3.2.3) Let U P BpEq. Then there is an ideal I of R such that U “ EnpIq.
Clearly GenpUq “ GenpEq X U contains all the elements tijpxq where
i, j P t1, . . . , nu, i ‰ j and x P I. But these elements generate U . Hence
U “ EnpIq is generated by GenpUq. Now let g “ tijpxq P GenpEq and U “
EnpIq P BpEq. Assume that g P GpUq “ GLnpR, Iq. Then all nondiagonal
entries of g lie in I. It follows that x P I and hence g “ tijpxq P EnpIq “ U .

l
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For the rest of this section, we assume that R is a Noetherian C-module.

Lemma 5.2 Let I be an ideal of R and S Ď C a multiplicative subset. Then there
is an s0 P S with the property that if x P s0R and Dt P S : tx P I, then x P I. It
follows that φS is injective on ψpGLnpR, I ` s0Rqq.

Proof For any s P S set Y psq :“ tx P R|sx P Iu. Then for any s P S, Y psq is a
C-submodule of R. Since R is a Noetherian C-module, the set tY psq|s P Su has
a maximal element Y ps0q. Clearly all elements x P s0R have the property that
tx P I for some t P S implies x P I. We will show now that φS is injective on
ψpGLnpR, I ` s0Rqq. Let g11, g12 P ψpGLnpR, I ` s0Rqq such that φSpg11q “ φSpg

1
2q.

Since g11, g12 P ψpGLnpR, I ` s0Rqq, there are g1, g2 P GLnpR, I ` s0Rq such that
ψpg1q “ g11 and ψpg2q “ g12. Set h :“ pg1q

´1g2 P GLnpR, I ` s0Rq. Clearly φSpg11q “
φSpg

1
2q is equivalent to FSphq P GLnpRS, ISq, i.e. FSphq ” epmod ISq. We want to

show that g11 “ g12 which is equivalent to h P GLnpR, Iq, i.e. h ” epmod Iq. Let
i, j P t1, . . . , nu such that i ‰ j. Since fSphijq P IS,

Dx P I, s P S :
hij
1
“
x

s
ñ Dx P I, s, t P S : tphijs´ xq “ 0

ñ Dx P I, s, t P S : sthij “ tx P I

ñ Du P S : uhij P I. (5.2.1)

Since h P GLnpR, I ` s0Rq, hij P I ` s0R. Hence there are elements y P I and
z P s0R such that hij “ y ` z. p5.2.1q implies that uz P I. It follows that z P I
since z P s0R. Thus hij P I. Analogously one can show that hii ´ 1 P I for all
i P t1, . . . , nu. Hence h ” epmod Iq. This implies g11 “ g12 and thus φS is injective
on ψpGLnpR, I ` s0Rqq. l

We construct now a specific supplemented base that we will use to construct
specific local morphisms. In the lemma below we use the following convention. If
x P R, then RxR denotes the (twosided) ideal of R generated by x.

Lemma 5.3 Let I be an ideal of R, S Ď C a multiplicative subset and s0 P S
as in the previous lemma. Set A :“ tEnpss0Rq|s P Su and B :“ tEnpRxs0Rq|x P
R, xs0 R Iu. Then pA,Bq is a special supplemented base for GLnpRq and FSpA,Bq
is a supplemented base for GLnpRSq.

Proof First we show pA,Bq is a special supplemented base for GLnpRq. Clearly A
and B are sets of nontrivial subgroups of E. We show now that A is a (nondiscrete)
base of open subgroups of 1 P E. Therefore we must show that A satisfies the
conditions p1q and p2q in Definition 3.1.

(1) Let U “ Enpss0Rq, V “ Enpts0Rq P A. Set W :“ Enpsts0Rq P A. Then clearly
W Ď U X V .

(2) Let g P E and U “ Enpss0Rq P A. There is a K P N such that g is the product
of K elementary transvections. Set V :“ Enppss0q

2¨4K`4K´1`¨¨¨`4Rq P A. Then
gV Ď U (see Lemma 4.6 in [2]).
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Hence A is a base of open subgroups of 1 P E. Let EnpRxs0Rq P B. Then
EnpRxs0Rq Ď Enps0Rq P A. It remains to show that if U P A and V P B then
U X V contains a member of B. Let U “ Enpss0Rq P A and V “ EnpRxs0Rq P B.
Set W :“ EnpRxss0Rq. Clearly xs0 R I implies that xss0 R I (by the definition
of s0, see the previous lemma). Hence W P B. Obviously W P U X V . Since
A,B Ď BpEq, pA,Bq is a special supplemented base for GLnpRq.
Now we show FSpA,Bq is a supplemented base for GLnpRSq. Clearly FSpAq and
FSpBq are sets of nontrivial subgroups of E 1 :“ EnpRSq. We show now that FSpAq
is a (nondiscrete) base of open subgroups of 1 P E 1. Therefore we show that FSpAq
satisfies the conditions p1q and p2q in Definition 3.1.

(1) Let U “ FSpEnpss0Rqq, V “ FSpEnpts0Rqq P FSpAq. SetW :“ FSpEnpsts0Rqq P
FSpAq. Then clearly W Ď U X V .

(2) Let g P E 1 and U “ FSpEnpts0Rqq P FSpAq. There are a K P N and elementary
transvections τ1 “ ti1j1p

x1
s1
q, . . . , τK “ tikjkp

xK
sK
q P E 1 such that g “ τ1 . . . τK . Set

s :“ s1 . . . sK and V :“ FSpEnppsts0q
2¨4K`4K´1`¨¨¨`4Rqq P FSpAq. Then gV Ď U

(see Lemma 4.6 in [2]).

Hence FSpAq is a base of open subgroups of 1 P E 1. That each member of FSpBq is
contained in some member of FSpAq follows from the fact that any member of B is
contained in a member of A. That given U P FSpAq and V P FSpBq, UXV contains
a member of FSpBq follows from the fact that given U P A and V P B, U X V
contains a member of B. Hence FSpA,Bq is a supplemented base for GLnpRSq. l

Now we construct specific local morphisms which will be used to prove p1.2q.

Lemma 5.4 Let I be an ideal of R and S Ď C a multiplicative subset such that
S X I “ H. Then φS is a local morphism of standard groups.

Proof First we show that φS is a morphism of standard groups. Clearly φS maps a
base generator to a base generator. Since t1u is base subgroup of GLnpRq{GLnpR,
Iq, the topology induced by the base subgroups of GLnpRq{GLnpR, Iq is the dis-
crete one. It follows that φS induces a continuous homomorphism EnpRq{pEnpRqX
GLnpR, Iqq Ñ EnpRSq{pEnpRSq X GLnpRS, ISqq. Hence φS is a morphism of stan-
dard groups.

Let pA,Bq be the special supplemented base for GLnpRq defined in the previous
lemma. Since ψ induces a surjective homomorphism EnpRq Ñ EnpRq{pEnpRq X
GLnpR, Iqq, it follows easily that ψpA,Bq is a special supplemented base forGLnpRq{
GLnpR, Iq. We will show now that φS is local with respect to the special sup-
plemented base pApφSq, BpφSqq :“ ψpA,Bq. Therefore we have to show that the
conditions p3.7.1q ´ p3.7.3q in Definition 3.7 are satisfied.

(3.7.1) By the previous lemma, FSpA,Bq is a supplemented base for GLnpRSq.
Since ρS induces a surjective homomorphism EnpRSq Ñ EnpRSq{pEn pRSqX

GLnpRS, ISqq, it is easy to deduce that ρSpFSpA,Bqq is a supplemented base
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forGLnpRSq{GLnpRS, ISq. Since ρS˝FS “ φS˝ψ, it follows that φSpψpA,Bqq
is a supplemented base for GLnpRSq{GLnpRS, ISq.

(3.7.2) By Lemma 5.2, φS is injective on ψpGLnpR, I ` s0Rqq. Let U P ψpAq.
Then there is an s P S such that U “ ψpEnpss0Rqq. Hence GpUq “
GpψpEnpss0Rqqq “ ψpGLnpR, I ` ss0Rqq Ď ψpGLnpR, I ` s0Rqq. It follows
that φS is injective on GpUq for any U P ψpAq.

(3.7.3) It suffices to show that the conditions p3.8.1q and p3.8.2q in Lemma 3.8 are
satisfied.

(3.8.1) Let g1 “ ρSptijpzqq be a nontrivial base generator in GLnpRSq{

GLnpRS, ISq, and U “ ψpEnpss0Rqq P ψpAq. Choose an x P R
and a t P S such that z “ x

t
. Since g1 is nontrivial, z R IS and

hence xs0 R I. Set V :“ ψpEnpRpss0q
4xRqq P ψpBq. One can show

routinely, using the relations pR1q´pR3q in Lemma 4.4, that φSpUqg1
contains φSpV q. Since ψpA,Bq is a supplemented base, there is a
W P ψpBq such that W Ď U X V . Clearly φSpUqg1 contains φSpW q
and W Ď U .

(3.8.2) Let f 1 “ ρSptijp
x
s
qq be a base generator in GLnpRSq{GLnpRS, ISq

and V “ ψpEnpRys0Rqq P ψpBq. Choose a nontrivial base generator
g1 P φSpV q which commutes with f 1 (e.g. g1 “ ρSptijp

ys0
1
qq). Then

f 1φSpV q clearly contains f 1g1 “ g1.

Hence φS is local with respect to pApφSq, BpφSqq “ ψpA,Bq. l

Next we show that the local morphisms φm where m is a maximal ideal of C
such that I X C Ď m form a covering.

Lemma 5.5 Any quotient of the standard group pG,E,GenpEq, BpEq, Gp¨qq (where
G, E, GenpEq, BpEq and Gp¨q are defined as in Lemma 5.1) has a covering.

Proof Let I be an ideal of R. Set Z :“ tφm|m maximal ideal of C, I X C Ď mu.
We show that Z is a covering of the standard group GLnpRq{GLnpR, Iq. By the
previous lemma, for any maximal ideal m of C such that I X C Ď m, φm is a local
morphism (note that I XC Ď m implies Sm X I “ H). It remains to show that for
any noncentral g1 P GLnpRq{GLnpR, Iq there is a maximal ideal m of C such that
I X C Ď m and φmpg

1q is noncentral. Let g1 P GLnpRq{GLnpR, Iq be noncentral.
Then there is an h1 P GLnpRq{GLnpR, Iq such that g1h1 ‰ h1g1. Let g, h P GLnpRq
such that g1 “ gGLnpR, Iq and h1 “ hGLnpR, Iq. Set σ :“ rg´1, h´1s. Clearly
g1h1 ‰ h1g1 implies σ R GLnpR, Iq. Hence σij R I for some i, j P t1, . . . , nu such that
i ‰ j or σii ´ 1 R I for some i P t1, . . . , nu.

case 1 Assume that σij R I for some i, j P t1, . . . , nu such that i ‰ j. Set
Y :“ tc P C|cσij P Iu. Since σij R I, Y is a proper ideal of C. Hence it is contained
in a maximal ideal m of C. Clearly I X C Ď Y Ď m and hence Sm X Y “ H. We
show now that φmpg1q does not commute with φmph1q, i.e. Fmpσq R GLnpRm, Imq.
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Obviously pFmpσqqij “ fmpσijq. Assume pFmpσqqij P Im. Then

Dx P I, s P Sm :
σij
1
“
x

s
ñ Dx P I, s, t P Sm : tpσijs´ xq “ 0

ñ Dx P I, s, t P Sm : stσij “ tx P I

ñ Du P Sm : uσij P I.

But this contradicts Sm X Y “ H. Hence pFmpσqqij R Im and thus φmpg1q is non-
central.

case 2 Assume that σii´1 R I for some i P t1, . . . , nu. Set Y :“ tc P C|cpσii´1q P Iu.
Since σii ´ 1 R I, Y is a proper ideal of C. Hence it is contained in a maximal
ideal m of C. Clearly I X C Ď Y Ď m and hence Sm X Y “ H. We show now
that φmpg1q does not commute with φmph1q, i.e. Fmpσq R GLnpRm, Imq. Obviously
pFmpσqqii ´ 1 “ fmpσiiq ´ 1 “ fmpσii ´ 1q. Assume pFmpσqqii ´ 1 P Im. Then

Dx P I, s P Sm :
σii ´ 1

1
“
x

s
ñ Dx P I, s, t P Sm : tppσii ´ 1qs´ xq “ 0

ñ Dx P I, s, t P Sm : stpσii ´ 1q “ tx P I

ñ Du P Sm : upσii ´ 1q P I.

But this contradicts Sm X Y “ H. Hence pFmpσqqii ´ 1 R Im and thus φmpg1q is
noncentral. l

The following lemma will be used in the proof of Lemma 5.7.

Lemma 5.6 Let K be a commutative ring and A a finite K-algebra. Then A is a
Dedekind finite ring, i.e. if x P A is right or left invertible, then x is invertible.

Proof Let x, y P A such that xy “ 1. Define the maps

α : AÑ A

z ÞÑ xz

and

β : AÑ A

z ÞÑ yz.

One checks easily that α and β are K-module-homomorphisms, α ˝ β “ idA and α
is surjective. By Nakayama’s Lemma, α is a K-module-isomorphism. Hence it has
an inverse α´1. Since

β

“idA ˝ β

“pα´1
˝ αq ˝ β
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“α´1
˝ pα ˝ βq

“α´1
˝ idA

“α´1,

β is an isomorphism. Hence there is a z P A such that yz “ 1. It follows that
yx “ yxyz “ yz “ 1. l

Now we show that the codomains of the local morphisms φm are solution
groups and hence pG,E,GenpEq, BpEq, Gp¨qq and each of its quotients have a cov-
ering by solution groups.

Solution Group Lemma 5.7 Let I be an ideal of R and m a maximal ideal
of C such that I X C Ď m. Then the codomain of φm is a solution group for
A1 :“ φmpApφmqq where Apφmq is defined as in Lemma 5.4.

Proof Let h1 P GLnpRmq{GLnpRm, Imq be noncentral. We have to show that h1
satisfies a solution equation with respect to A1. Let U 1 P A1. Set R̂m :“ Rm{Im.
Let η : GLnpRmq{GLnpRm, Imq Ñ GLnpR̂mq be the homomorphism induced by
the canonical homomorphism Rm Ñ R̂m. One checks easily that η is injective.
Hence h :“ ηph1q P GLnpR̂mq is noncentral. Set A :“ ηpA1q and U 1 “ ηpUq. It is
easy to show that A is a nondiscrete base of open subgroups of 1 P EnpR̂mq (no-
tice that η induces an isomorphism EnpRmq{pGLnpRm, ImqXEnpRmqq Ñ EnpR̂mq).
Choose U0, . . . , U4 P A such that for all pk ` 1q-tuples pε0, . . . , εkq used in this
proof, diUi Ď U @i P t0, . . . , ku (possible since A is a base of open subgroups of
1 P EnpR̂mq and there are only finitely many pk ` 1q-tuples pε0, . . . , εkq which are
used in this proof). Since U0, . . . , U4 P A, there are t0, . . . , t4 P Sm such that Ui “
ηpφmpψpEnptis0Rqqq @i P t0, . . . , 4u. Set si :“ fmptis0q ` Im pi “ 0, . . . , 4q. Since R
is a Noetherian C-module, Rm is semilocal and hence R̂m has stable rank 1 (see [5]).

It follows that there is a matrix ε0 P EnpR̂mq of the form ε0 “

ˆ

epn´1qˆpn´1q ˚

0 1

˙

such that pa1, . . . , an´1q is unimodular where pa1, . . . , anq
t “: α is the first column

of ε0h. Since pa1, . . . , an´1q is unimodular, there is a matrix ε1 P EnpR̂mq of the form

ε1 “

ˆ

epn´1qˆpn´1q 0
˚ 1

˙

such that ε1α “

¨

˚

˚

˚

˝

a1

...
an´1

0

˛

‹

‹

‹

‚

.

case 1 Assume that ρ :“ ε0h does not commute with t12ps1q.
Set g0 :“ t12ps0q P U0. We show now that rε0h, g0s is noncentral. Suppose that
rε0h, g0s is central. Then rε0h, g0s “ ue for some u P CenterpR̂mq. Clearly ε1rε0h, g0s “

ε1pe`ρ˚1s1ρ
1
2˚qg

´1
0 “ ε1g

´1
0 ` ε1αs1ρ

1
2˚g

´1
0 . Since the last row of ε1αs1ρ

1
2˚g

´1
0 is zero,

the last row of ε1rε0h, g0s equals the last row of ε1g´1
0 . Hence pε1rε0h, g0sqnn “ 1. On

the other hand ε1rε0h, g0s “ uε1 and hence pε1rε0h, g0sqnn “ puε1qnn “ u which is a
contradiction since ε0h does not commute with g0 by assumption. Now we show that
ε1rε0h, g0s has a zero entry. Clearly ε1rε0h, g0s “ ε1g

´1
0 ε´1

1 ` ε1αs0ρ
1
2˚g

´1
0 ε´1

1 . Hence
the last row of ε1rε0h, g0s equals the last row of ε1g´1

0 pε1q
´1 “ e ´ pε1q˚1s0pε1q

1
2˚.

Clearly ppε1q˚1s0pε1q
1
2˚qn1 “ 0. Therefore pe ´ pε1q˚1s0pε1q

1
2˚qn1 “ 0 and hence
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pε1rε0h, g0sqn1 “ 0. Since rε0h, g0s is noncentral, ε1rε0h, g0s is noncentral.

case 1.1 Assume that σ :“ ε1rε0h, g0s does not commute with t1nps1q.
Set g1 :“ t1nps1q P U1. Clearly rε1rε0h, g0s, g1s “ rσ, g1s “ g´1

1 ` σ˚1s1σ
1
n˚g

´1
1 . Since

σn1 “ 0, the last row of ξ :“ rε1rε0h, g0s, g1s “ rσ, g1s equals the last row of g´1
1

which equals fn. Assume that ξ is central. Since the last row of ξ equals fn, ξ “ e.
But this contradicts the assumption that σ does not commute with g1. Hence ξ is
noncentral. Clearly ξ has the form

ξ “

ˆ

A x
0 1

˙

where x “ px2, . . . , xnq
t P pR̂mq

n´1 and A PMn´1pR̂mq.

case 1.1.1 Assume A ‰ epn´1qˆpn´1q.
For any l P t1, . . . , n´ 1u set ωplq :“ rξ, tlnps2qs. Then for all l P t1, . . . , n´ 1u, ωplq
has the form

ωplq “

ˆ

epn´1qˆpn´1q s2pA´ epn´1qˆpn´1qq˚l

0 1

˙

.

Since A ‰ epn´1qˆpn´1q there are l, j P t1, . . . , n ´ 1u such that pωplqqjn ‰ 0. Since
pωplqqjn P R̂, there are an a1 P R and an s1 P S such that pωplqqjn “ a1

s1
` Im. Set

s :“ s1

1
` Im and a :“ a1

1
` Im. Choose an i ‰ j, n and set g2 :“ tlnps2q P U2,

g3 :“ tijps3s4sq P U3 and g4 :“ tinp´s3s4spωplqqjnq “ tinp´s3s4aq P U4. Then one
checks easily that

rrr
ε1r

ε0h, g0s, g1s, g2s, g3s “ rωplq, g3s “ g4.

Since pωplqqjn ‰ 0 and s3s4s is invertible, ´s3s4spωplqqjn ‰ 0. Hence g4 ‰ e.
Let η´1 : ηpGLnpRmq{GLnpRm, Imqq Ñ GLnpRmq{GLnpRm, Imq be the inverse
of η and set g1i :“ η´1pgiq @i P t0, . . . , 4u, ε1i :“ η´1pεiq @i P t0, 1u and d1i :“
η´1pdiq @i P t0, . . . , 4u. Then ε10, ε

1
1, ε

1
2 P E

1 :“ EnpRmq{pGLnpRm, Imq X EnpRmqq,
g14 P GenpE

1qzteu, d1ig1i P U 1 @i P t0, . . . 4u and

rrr
ε11r

ε10h1, g10s, g
1
1s, g

1
2s, g

1
3s “ g14.

case 1.1.2 Assume A “ epn´1qˆpn´1q.
Since ξ is noncentral, there is a j P t1, . . . , n ´ 1u such that xj ‰ 0. Since xj P R̂,
there are an a1 P R and an s1 P S such that xj “ a1

s1
` Im. Set s :“ s1

1
` Im

and a :“ a1

1
` Im. Choose an i ‰ j, n and set g2 :“ tijps2s3sq P U2. Then

rξ, g2s “ tinp´s2s3sxjq “ tinp´s2s3aq P U3. As in case 1.1.1, pull this equation
back to GLnpRmq{GLnpRm, Imq by applying η´1.

case 1.2 Assume that σ “ε1rε0h, g0s commutes with t1nps1q.
Then it follows that the last row of σ equals rfn for some r P R̂m. Clearly σ has
the form

σ “

ˆ

A x
0 r

˙
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where x “ px2, . . . , xnq
t P pR̂mq

n´1 and A P Mn´1pR̂mq. Since σ P GLnpR̂mq, it
follows that r is right invertible. Since R is a Noetherian C-module, R is almost
commutative. It follows that R̂m is almost commutative and hence r is invertible,
by Lemma 5.6.

case 1.2.1 Assume A ‰ repn´1qˆpn´1q.
For any l P t1, . . . , n´ 1u set ωplq :“ rσ, tlnps1qs. Then for all l P t1, . . . , n´ 1u, ωplq
has the form

ωplq “

ˆ

epn´1qˆpn´1q s1pAr
´1 ´ epn´1qˆpn´1qq˚l

0 1

˙

.

Since A ‰ repn´1qˆpn´1q there are l, j P t1, . . . , n ´ 1u such that pωplqqjn ‰ 0. One
can proceed as in case 1.1.1.

case 1.2.2 Assume A “ repn´1qˆpn´1q.
Since σ is noncentral, Dj P t1, . . . , n´ 1u : xj ‰ 0 or xj “ 0 @j P t1, . . . , n´ 1u^ r R

CenterpR̂mq.

case 1.2.2.1 Assume that Dj P t1, . . . , n´ 1u : xj ‰ 0.
There are a a1 P R and an s1 P S such that xjr´1 “ a1

s1
` Im. Set s :“ s1

1
` Im

and a :“ a1

1
` Im. Choose an i ‰ j, n and set g1 :“ tijps1s2sq P U1. Then

rσ, g1s “ tinp´s1s2sxjr
´1q “ tinp´s1s2aq P U2. Apply η´1 to this equation.

case 1.2.2.2 Assume that xj “ 0 @j P t1, . . . , nu ^ r R CenterpR̂mq.
Since r R CenterpR̂mq, there is an r1 “ a1

s1
` Im P R̂m such that rr1 ‰ r1r. Set

a :“ a1

1
` Im P R̂m and s :“ s1

1
` Im P R̂m. Since rr1r´1 ´ r1 P R̂, there are a b1 P R

and a t1 P S such that rr1r´1 ´ r1 “ b1

t1
` Im. Set t :“ t1

1
` Im and b :“ b1

1
` Im.

Set g1 :“ t12ps1s2str
1q “ t12ps1s2taq P U1. Then rσ, g1s “ t12ps1s2stprr

1r´1 ´ r1qq “
t12ps1s2sbq P U2. Since rr1 ‰ r1r, rr1r´1´r1 ‰ 0. Hence s2s3stprr

1r´1´r1q ‰ 0 since
s2s3st is invertible. As in case 1.1.1, pull the result back to GLnpRmq{GLnpRm, Imq
by applying η´1.

case 2 Assume that ε0h commutes with t12ps0q.
Then the second row of ε0h equals rf2 for some r P R̂m. Set ε01 :“ p2n P EnpR̂mq.
Then the last row of ε01ε0h equals rfn and one can proceed as in case 1.2.

The following diagram language is intended to give an overview of the case
analysis above. The overview begins with the second diagram below. It starts
with the matrix h. An arrow between two matrices means that one gets the target
matrix by applying certain operations to the source matrix. The operations are the
following:

(1) Form a commutator with a matrix.

(2) Conjugate by a matrix.
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The operations of type (1) are performed with the gi’s and the operations of type
(2) are performed with the εi’s. A box around several matrices means that some
case distinction is going on (corresponding to the case analysis above). For example

ε1rA, g1s

A

B

C

E

g2 “ ti2j2px2q

1

D

F

g2 “ ti12j12px
1
2q

2

g1 “ ti1j1px1q,
ε1 “ tk1l1py1q

means the following. One gets the matrix B by first forming the commutator rA, g1s

of A and g1 “ ti1j1px1q and then conjugating this commutator by ε1 “ tk1l1py1q. The
matrix ε1rA, g1s in the left margin reminds us how we got B. Then there are two
cases. In case 1, the matrix B looks like C and in case 2, like D. The logic of the
situation tells us that B must look like C or D. In case 1 we form the commutator
rC, g2s of Cp“ Bq and g2 “ ti2j2px2q and get the matrix E. In case 2, we form the
commutator rD, g2s of Dp“ Bq and g2 “ ti12j12px

1
2q and get the matrix F . It is helpful

to keep in mind that all matrices appearing in a diagram are noncentral and the
goal is to produce nontrivial elementary matrices which are of course noncentral.
When breaking a matrix in several cases, we do not necessarily handle the cases
one after the other, but will postpone handling some cases to later. Each case in
the entire diagram is given a unique number, so that we can come back to it by
referring to its number.
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h

ε0h

ε1rε0h, g0s

¨

˝ ˚

˛

‚

¨

˚

˚

˝ U
N

IM
.

˚

˚ ˚

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

U
N

IM
.

˚

˚ ˚

˛

‹

‹

‹

‹

‹

‚

does not commute with t12ps0q

¨

˚

˚

˝

˚ ˚

0 ˚

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

A x

0 r

˛

‹

‹

‹

‹

‹

‚

commutes with t1nps1q

1.2

¨

˚

˚

˚

˚

˚

˝

˚ ˚

0 ˚

˛

‹

‹

‹

‹

‹

‚

does not commute with t1nps1q

1.1

g0 “ t12ps0q,
ε1 P EnpR̂mq

1

¨

˚

˚

˚

˚

˝

˚ ˚ . . . ˚ ˚

0 r 0 . . . 0

˚

˛

‹

‹

‹

‹

‚

commutes with t12ps0q

2

ε0 P EnpR̂mq
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rε1rε0h, g0s, g1s

rrε1rε0h, g0s, g1s, g2s

rrrε1rε0h, g0s, g1s, g2s, g3s

ε1rε0h, g0s

¨

˚

˚

˝

A x

0 1

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

A x

0 1

˛

‹

‹

‹

‹

‹

‚

A ‰ e

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
. . . y

1

0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

y ‰ 0

tinp´s3s4aq

¨

˚

˚

˝

A x

0 r

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

A x

0 r

˛

‹

‹

‹

‹

‹

‚

A ‰ re

1.2.1

¨

˚

˚

˚

˝

r
. . . x

r

0 r

˛

‹

‹

‹

‚

1.2.2

1.2

g3 “ tijps3s4sq

g2 “ tlnps2q

1.1.1

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
. . . x

1

0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

x ‰ 0

tinp´s2s3aq

g2 “ tijps2s3sq

1.1.2

g1 “ t1nps1q
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rε1rε0h, g0s, g1s

rrε1rε0h, g0s, g1s, g2s

ε0h

ε01ε0h

¨

˚

˚

˚

˚

˚

˝

A x

0 r

˛

‹

‹

‹

‹

‹

‚

A ‰ re

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
. . . y

1

0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

y ‰ 0

tinp´s2s3aq

g2 “ tijps2s3sq

g1 “ tlnps1q

¨

˚

˚

˚

˚

˚

˚

˚

˝

r
. . . x

r

0 r

˛

‹

‹

‹

‹

‹

‹

‹

‚

x ‰ 0

tinp´s1s2aq

¨

˚

˚

˚

˚

˝

˚ ˚ . . . ˚ ˚

0 r 0 . . . 0

˚

˛

‹

‹

‹

‹

‚

¨

˚

˚

˝

A x

0 r

˛

‹

‹

‚

see case 1.2

ε01 “ p2n

2

g1 “ tijps1s2sq

1.2.2.1

¨

˚

˚

˚

˚

˚

˚

˚

˝

r
. . .

r
r

˛

‹

‹

‹

‹

‹

‹

‹

‚

r noncentral in R̂m

t12ps1s2sbq

g1 “ t12ps1s2taq

1.2.2.2

l

21



Theorem 5.8 Let H be a subgroup of GLnpRq. Then

H is normalized by EnpRq ô
D! ideal I such that EnpR, Iq Ď H Ď CnpR, Iq.

Proof It follows from the previous lemmas of this section and from Lemma 4.7
that pG,E,GenpEq, BpEq, Gp¨qq (where G, E, GenpEq, BpEq and Gp¨q are defined
as in Lemma 5.1) is a sandwich classification group. Hence we can apply Theorem
3.13 (note that if H is central, then there clearly is a unique ideal I such that
EnpR, Iq Ď H Ď CnpR, Iq). l

Remark By [2], p. 377, any almost commutative ring R is the direct limit of
subrings Ri of R such that for each i, Ri is a Noetherian Ci-module where Ci :“
CenterpRiq. Hence the theorem above still holds true if we drop the assumption
that R is a Noetherian C-module and instead assume that R is almost commutative
(note that En and Cn commute with direct limits).

6 Bak’s hyperbolic unitary groups
In section 5, we saw that the notion of an ideal in a ring is sufficient to classify
subgroups of a general linear group normalized by its elementary subgroup. Bak’s
dissertation [1] showed that the notion of an ideal by itself was not sufficient to solve
the analogous classification problem for unitary groups, but that a refinement of the
notion an ideal, called a form ideal, was necessary. This led naturally to a more
general notion of unitary group, which was defined over a form ring instead of just a
ring and generalized all previous concepts. We describe form rings pR,Λq and form
ideals ideals pI,Γq first, then hyperbolic unitary groups U2npR,Λq over form rings
pR,Λq. For form ideals pI,Γq, we recall the definitions of the following subgroups
of U2npR,Λq; the preelementary groups EU2npI,Γq, the relative elementary groups
EU2nppR,Λq, pI,Γqq, the principal congruence subgroups U2nppR,Λq, pI,Γqq, and the
full congruence subgroups CU2nppR,Λq, pI,Γqq. In the model theoretic setting of
section 3, these groups are accounted for respectively by the groups U in BpEq,
the groups EpUq, the groups GpUq and the groups CpUq. The elementary group
EU2npR,Λq :“ EU2nppR,Λq, pR,Λqq is accounted for by E in the model theoretic
situation and the generators of EU2npR,Λq, namely the unitary elementary matrices,
are accounted for by GenpEq.

Definition 6.1 Let R be a ring and

¯: RÑ R

r ÞÑ r

an involution on R, i.e. r ` s “ r ` s, rs “ s̄r̄ and r “ r for any r, s P R. Let
λ P CentpRq such that λλ “ 1 and set Λmin :“ tr ´ λr|r P Ru and Λmax :“ tr P
R|r “ ´λru. An additive subgroup Λ of R such that

(1) Λmin Ď Λ Ď Λmax and
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(2) rΛr Ď Λ @r P R

is called a form parameter. If Λ is a form parameter for R, the pair pR,Λq is called
a form ring.

Definition 6.2 Let pR,Λq be a form ring and I an ideal such that I “ I. Set
Γmax “ I X Λ and Γmin “ tξ ´ λξ|ξ P Iu ` xtζαζ|ζ P I, α P Λuy. If we want to
stress that Γmax (resp. Γmin) belongs to I, we write ΓImax (resp. ΓImin). An additive
subgroup Γ of I such that

(1) Γmin Ď Γ Ď Γmax and

(2) αΓα Ď Γ @α P R

is called a relative form parameter of level I. If Γ is a relative form parameter of
level I, then pI,Γq is called a form ideal of pR,Λq.

In the following let n P N, pR,Λq be a form ring and pI,Γq a form ideal of
pR,Λq.

Definition 6.3 Let V be a free right R-module of rank 2n and B “ pe1, . . . , en, e´n,
. . . , e´1q an ordered basis of V . Let φB : V Ñ R2n be the module isomorphism
mapping ei to the column whose i-th coordinate is one and all the other coordinates
are zero if 1 ď i ď n and the column whose p2n ` 1 ` iq-th coordinate is one and
all the other coordinates are zero if ´n ď i ď ´1. In the following we will identify
elements v P V with their images φBpvq P R2n. Let

p “

¨

˚

˚

˚

˝

1
1

. .
.

1

˛

‹

‹

‹

‚

PMnpRq

be the matrix with ones on the skew diagonal and zeros elsewhere. We define the
maps

f : V ˆ V Ñ R

pv, wq ÞÑ vt
ˆ

0 p
0 0

˙

w,

h : V ˆ V Ñ R

pv, wq ÞÑ vt
ˆ

0 p
λp 0

˙

w

and

q : V Ñ R{Λ

v ÞÑ fpv, vq ` Λ.
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The maps f, h and q are denoted in [4], page 164, by f , h and q, respectively. It is
easy to check that fpv, wq “ v1w´1 ` ...` vnw´n, hpv, wq “ v1w´1 ` ...` vnw´n `
λv´nwn ` ...` λv´1w1 “ fpv, wq ` λfpw, vq and qpvq “ v1v´1 ` ...` vnv´n ` Λ for
any v, w P V . For any v P V , fpv, vq is called the length of v and is denoted by |v|.

Definition 6.4 The subgroup U2npR,Λq :“ tσ P GLpV q|phpσu, σvq “ hpu, vqq ^
pqpσuq “ qpuqq @u, v P V u of GLpV q is called the hyperbolic unitary group. We
will identify U2npR,Λq with its image in GL2npRq under the isomorphism GLpV q Ñ
GL2npRq determined by the ordered base pe1, . . . , en, e´n, . . . , e´1q.

Definition 6.5 Let σ P MnpRq. By definition σ˚ is the matrix in MnpRq whose
entry at position pi, jq equals σji. Further we define AHnpR,Λq :“ ta PMnpRq|a “
´λa˚, aii P Λ @i P t1, ..., nuu.

Lemma 6.6 Let pR,Λq be a form ring, n P N and σ “
ˆ

a b
c d

˙

P GL2npRq, where

a, b, c, d PMnpRq. Then σ P U2npR,Λq if and only if

(1) σ´1 “

ˆ

pd˚p λpb˚p
λpc˚p pa˚p

˙

and

(2) a˚pc, b˚pd P AHnpR,Λq.

Proof See [4], p.166.

Remark

(1) If a P MnpRq, then pa˚p is the matrix one gets by applying the involution to
each entry of a and mirroring all entries on the skew diagonal.

(2) In r1s, r10s and r11s the ordered basis pe1, ..., en, e´1, ..., e´nq is used and hence
the matrices may look different. Let σ P GLpV q. If the image of σ under the
isomorphism GLpV q Ñ GL2npRq determined by the ordered base pe1, ..., en, e´1,

..., e´nq (which is used in the papers mentioned above) equals
ˆ

a b
c d

˙

, where

a, b, c, d P MnpRq, then the image of σ under the isomorphism GLpV q Ñ
GL2npRq determined by the ordered base pe1, ..., en, e´n, ..., e´1q (which is used

in this thesis) equals
ˆ

a bp
pc pdp

˙

.

Definition 6.7 We define Ω` :“ t1, ..., nu, Ω´ :“ t´n, ...,´1u, Ω :“ Ω` YΩ´ and

ε : Ω Ñ t´1, 1u

i ÞÑ εpiq :“

#

1, if i P Ω`,

´1, if i P Ω´.

Lemma 6.8 Let σ P GL2npRq. Then σ P U2npR,Λq if and only if

(1) σ1ij “ λpεpjq´εpiqq{2σ´j,´i @i, j P t1, ...,´1u and
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(2) |σ˚j| P Λ @j P t1, ...,´1u. (|σ˚j| “
n
ř

i“1

σ̄ijσ´i,j is defined just before 6.4.)

Proof See [4], p.167.

Lemma 6.9 Let σ P U2npR,Λq, x P R˚ and k P t1, . . . ,´1u. Then the statements
below are true.

(1) If the k-th column of σ equals xek then the p´kq-th row of σ equals Ěx´1f´k.

(2) If the k-th row of σ equals xfk then the p´kq-th column of σ equals Ěx´1e´k.

Proof

(1) Since σ´1σ “ e it follows that

pσ´1σqij “
´1
ÿ

l“1

σ1ilσlj “

#

1, if i “ j,
0, otherwise.

(6.1)

This implies that 1 “
´1
ř

l“1

σ1klσlk “ σ1kkσkk “ σ1kkx. Since any left inverse of an

invertible element is the inverse of that element, σ1kk “ x´1. By Lemma 6.8, it

follows that σ´k,´k “Ěx´1. On the other hand p6.1q implies that 0 “
´1
ř

l“1

σ1ilσlk “

σ1ikσkk “ σ1ikx @i P t1, . . . ,´1uztku. It follows that σ1ik “ 0 @i P t1, . . . ,´1uztku
and hence, by Lemma 6.8, σ´k,´i “ 0 @i P t1, . . . ,´1uztku, i.e. σ´k,i “ 0 @i P
t1, . . . ,´1uzt´ku.

(2) Since σσ´1 “ e it follows that

pσσ´1
qij “

´1
ÿ

l“1

σilσ
1
lj “

#

1, if i “ j,
0, otherwise.

(6.2)

This implies 1 “
´1
ř

l“1

σklσ
1
lk “ σkkσ

1
kk “ xσ1kk. Since any right inverse of an

invertible element is the inverse of that element, σ1kk “ x´1. By Lemma 6.8, it

follows that σ´k,´k “Ěx´1. On the other hand p6.2q implies that 0 “
´1
ř

l“1

σklσ
1
lj “

σkkσ
1
kj “ xσ1kj @j P t1, . . . ,´1uztku. It follows that σ1kj “ 0 @j P t1, . . . ,´1uztku

and hence, by Lemma 6.8, σ´j,´k “ 0 @j P t1, . . . ,´1uztku, i.e. σj,´k “ 0 @j P
t1, . . . ,´1uzt´ku.

l

Definition 6.10 Let i, j P Ω, i ‰ j. If i ‰ ´j and ξ P R, the matrix

Tijpξq :“ e` ξeij ´ λ
pεpjq´εpiqq{2ξe´j,´i P U2npR,Λq
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is called an elementary short root element. If i “ ´j and α P λ´pεpiq`1q{2Λ, then the
matrix

Ti,´ipαq :“ e` αei,´i P U2npR,Λq

is called an elementary long root element. If σ P U2npR,Λq is an elementary
short root element or an elementary long root element, it is called an elemen-
tary unitary transvection. The subgroup of U2npR,Λq generated by all elemen-
tary unitary transvections is called the elementary unitary group and is denoted by
EU2npR,Λq. Let Tijpξq be an elementary unitary transvection. If i ‰ ´j ^ ξ P I
or i “ ´j ^ ξ P λ´pεpiq`1q{2Γ, then Tijpξq is called elementary of level pI,Γq or
pI,Γq-elementary. The subgroup of U2npR,Λq generated by all pI,Γq-elementary
transvections is called the preelementary subgroup of level pI,Γq and is denoted by
EU2npI,Γq. Its normal closure in EU2npR,Λq is called the elementary subgroup of
level pI,Γq and is denoted by EU2nppR,Λq, pI,Γqq.

Definition 6.11 Let i, j P t1, . . . ,´1u such that i ‰ ˘j. Define Pij :“ e `
eij ´ eji ` λpεpiq´εpjqq{2e´i,´j ´ λpεpjq´εpiqq{2e´j,´i ´ eii ´ ejj ´ e´i,´i ´ e´j,´j “ Tijp1q
Tjip´1qTijp1q P EU2npR,Λq. It is easy to show that pPijq´1 “ Pji. If 1 ď i, j ď n,
Pij has the form

ˆ

pij 0
0 pji

˙

where pij, pji P EnpRq.

Lemma 6.12 The relations

Tijpξq “ T´j,´ip´λ
pεpjq´εpiqq{2ξq, (R1)

TijpξqTijpζq “ Tijpξ ` ζq, (R2)

rTijpξq, Thkpζqs “ e, (R3)

rTijpξq, Tjhpζqs “ Tihpξζq, (R4.1)

rTijpξq, Th,´jpζqs “ Ti,´hp´λ
pεp´jq´εphqq{2ξζ̄q, (R4.2)

rT´j,ipξq, Tjhpζqs “ T´i,hp´λ
pεpiq´εp´jqq{2ξ̄ζq, (R4.3)

rTjipξq, Thjpζqs “ Thip´ζξq, (R4.4)

rTijpξq, Tj,´ipζqs “ Ti,´ipξζ ´ λ
´εpiqζ̄ ξ̄q, (R5.1)
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rTijpξq, Ti,´jpζqs “ Ti,´ip´λ
pεp´jq´εpiqq{2qξζ̄ ` λpεpjq´εpiqq{2ζξ̄q, (R5.2)

rT´j,ipξq, Tjipζqs “ T´i,ip´λ
pεpiq´εp´jqq{2qξ̄ζ ` λpεpiq´εpjqq{2ζ̄ξq, (R5.3)

rTjipξq, T´i,jpζqs “ T´i,ip´ζξ ` λ
εpiqξ̄ζ̄q, (R5.4)

rTi,´ipαq, T´i,jpξqs “ TijpαξqT´j,jp´λ
pεpjq´εp´iqq{2qξ̄αξq, (R6.1)

rTi,´ipαq, T´j,ipξqs “ Tijp´λ
pεpiq´εp´jqq{2αξ̄qT´j,jp´λ

pεpiq´εp´jqq{2qξαξ̄q and (R6.2)

rTjipξq, Ti,´ipαqs “ Tj,´ipξαqTj,´jpλ
pεpiq´εpjqq{2qξαξ̄q (R6.3)

hold where h ‰ j,´i and k ‰ i,´j in (R3), i, h ‰ ˘j and i ‰ ˘h in (R4.1)-(R4.4)
and i ‰ ˘j in (R5.1)-(R6.3).

Proof Straightforward calculation.

Definition 6.13 The group consisting of all σ P U2npR,Λq such that σ ” epmod Iq
and fpσu, σuq P fpu, uq ` Γ @u P V is called the principal congruence subgroup of
level pI,Γq and is denoted by U2nppR,Λq, pI,Γqq.

Remark One can show that U2nppR,Λq, pI,Γqq is a normal subgroup of U2npR,Λq
(see [4]).

Lemma 6.14 Let σ “
ˆ

a b
c d

˙

P U2npR,Λq, where a, b, c, d P MnpRq. Then σ P

U2nppR,Λq, pI,Γqq if and only if

(1) σ ” epmod Iq and

(2) |σ˚j| P Γ @j P t1, ...,´1u. (|σ˚j| “
n
ř

i“1

σ̄ijσ´i,j is defined just before 6.4.)

Proof See [4], p.174.

Definition 6.15 The preimage of the center of U2npR,Λq{U2nppR,Λq, pI,Γqq under
the canonical homomorphism U2npR,Λq Ñ U2npR,Λq{U2nppR,Λq, pI,Γqq is called
the full congruence subgroup of level pI,Γq and is denoted by CU2nppR,Λq, pI,Γqq.

Remark Obviously U2nppR,Λq, pI,Γqq Ď CU2nppR,Λq, pI,Γqq and CU2nppR,Λq,
pI,Γqq is a normal subgroup of U2npR,Λq.

Lemma 6.16 If n ě 3 and R is almost commutative, then the equalities

rCU2nppR,Λq, pI,Γqq, EU2npR,Λqs

“rEU2nppR,Λq, pI,Γqq, EU2npR,Λqs

“EU2nppR,Λq, pI,Γqq

hold.

Proof See [4], Theorem 1.1 and Lemma 5.2. l
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7 Sandwich classification for hyperbolic unitary
groups

In this section, we construct in the setting of hyperbolic unitary groups, specific
supplemented bases, local maps, solution groups and coverings by these solution
groups, and show in the Solution Group Lemma 7.9 that any noncentral element
in any solution group of any of these coverings satisfies a solution equation. 7.9 is
the main technical input of the section. Road maps of the proof are provided at
the conclusions of Parts I, II, and III of the proof, in terms of (long) inverted tree
diagrams. Then we deduce the sandwich classification theorem p1.1q for subgroups
of U2npR,Λq normalized by EU2npR,Λq from Theorem 3.13.

In the following let n ě 3, pR,Λq be a form ring and C be the subring of
R consisting of all finite sums of elements of the form cc̄ and ´cc̄ where c ranges
over some subring C 1 Ď CenterpRq such that R is module finite over C 1. One can
check that R is also module finite over C. The reason for replacing C 1 by C is that
any form parameter or form ideal is a C-module. This is not necessarily the case
for C 1. For any form ideal pI,Γq of pR,Λq and multiplicative subset S Ď C, set
RS :“ S´1R, ΛS :“ S´1Λ, IS :“ S´1I and ΓS :“ S´1Γ. Let

φS : U2npR,Λq{U2nppR,Λq, pI,Γqq Ñ U2npRS,ΛSq{U2nppRS,ΛSq, pIS,ΓSqq

be the homomorphism induced by FS where

FS : U2npR,Λq Ñ U2npRS,ΛSq

is the homomorphism induced by the localisation homomorphism

fS : RÑ RS.

Let
ψ : U2npR,Λq Ñ U2npR,Λq{U2nppR,Λq, pI,Γqq

and
ρS : U2npRS,ΛSq Ñ U2npRS,ΛSq{U2nppRS,ΛSq, pIS,ΓSqq

be the canonical homomorphisms. Further set λS :“ fSpλq. Note that the diagram

U2npR,Λq

FS

��

ψ // U2npR,Λq{U2nppR,Λq, pI,Γqq

φS

��
U2npRS,ΛSq

ρS // U2npRS,ΛSq{U2nppRS,ΛSq, pIS,ΓSqq

is commutative for any form ideal pI,Γq of pR,Λq and multiplicative subset S Ď C.
For any maximal ideal m of C set Sm :“ Czm and φm :“ φSm (define Fm, fm, ρm,
Rm, Λm, Im, Γm and λm similarly).

28



Lemma 7.1 Set

G :“ U2npR,Λq,

E :“ EU2npR,Λq,

GenpEq :“ tTijpxq|i, j P t1, . . . ,´1u, i ‰ j, x P R if i ‰ ´j,

x P λ´pεpiq`1q{2Λ if i “ ´ju,
BpEq :“ tEU2npI,Γq|pI,Γq form ideal of pR,Λqu and
GpEU2npI,Γqq :“ U2nppR,Λq, pI,Γqq @pI,Γq form ideal of pR,Λq.

Then pG,E,GenpEq, BpEq, Gp¨qq is a standard group. Further EpEU2npI,Γqq “
EU2nppR,Λq, pI,Γqq and CpEU2npI,Γqq “ CU2nppR,Λq, pI,Γqq for any form ideal
pI,Γq of pR,Λq.

Proof We have to show that the conditions p3.2.1q ´ p3.2.3q in Definition 3.2 are
satisfied.

(3.2.1) Obviously BpEq is a base of open subgroups of 1 P E, since it contains the
identity subgroup t1u “ EU2npt0u, t0uq. Clearly E “ EU2npR,Λq P BpEq.

(3.2.2) Let tpIj,Γjq|j P Ju be a family of form ideals of pR,Λq. One checks easily
that x

Ť

jPJ

EU2npIj,Γjqy “ EU2npx
Ť

jPJ

Ijy, x
Ť

jPJ

Γjyq.

(3.2.3) Let U P BpEq. By definition there is a form ideal pI,Γq of pR,Λq such that
U “ EU2npI,Γq. Clearly GenpUq “ GenpEq X U contains all the elements
Tijpxq where i, j P t1, . . . ,´1u, i ‰ j, x P I if i ‰ ´j and x P λ´pεpiq`1q{2Γ if
i “ ´j. But these elements generate U . Hence U “ EU2npI,Γq is generated
by GenpUq. Now let g “ Tijpxq P GenpEq and U “ EU2npI,Γq P BpEq.
Assume that g P GpUq “ U2nppR,Λq, pI,Γqq.
case 1 Asssume i ‰ ˘j and x P R. Since g P U2nppR,Λq, pI,Γqq, all non-
diagonal entries of g lie in I. It follows that x P I and hence g “ Tijpxq P
EU2npI,Γq “ U .
case 2 Asssume that i “ ´j and x P λ´pεpiq`1q{2Λ. Since g P U2nppR,Λq, pI,
Γqq, all lengths of columns of g lie in Γ. It follows that x P λ´pεpiq`1q{2Γ and
thus g “ Tijpxq P EU2npI,Γq “ U .

l

From now on we assume that R is a Noetherian C-module.

Lemma 7.2 Let pI,Γq be a form ideal of pR,Λq and S Ď C a multiplicative subset.
Then there is an s0 P S with the properties

(1) if x P s0R and Dt P S : tx P I, then x P I and

(2) if x P s0R and Dt P S : tx P Γ, then x P Γ.

It follows that φS is injective on ψpU2nppR,Λq, pI ` s0R,Γ` s0Λqqq.
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Proof For any s P S set Y psq :“ tx P R|sx P Iu. Then for any s P S, Y psq is
a C-submodule of R. Since R is Noetherian C-module, the set tY psq|s P Su has
a maximal element Y ps1q. Clearly all elements x P s1R have the property that
tx P I for some t P S implies x P I. For any s P S set Zpsq :“ tx P R|sx P Γu.
Then for any s P S, Zpsq is a C-submodule of R. Since R is a Noetherian C-
module, the set tZpsq|s P Su has a maximal element Zps2q. Clearly all elements
x P s2R have the property that tx P Γ for some t P S implies x P Γ. Set s0 :“
s1s2. Since s0R “ s1s2R Ď s1R X s2R, s0 has the properties p1q and p2q above.
We will show now that φS is injective on ψpU2nppR,Λq, pI ` s0R,Γ ` s0Λqq. Let
g11, g

1
2 P ψpU2nppR,Λq, pI ` s0R,Γ` s0Λqqq such that φSpg11q “ φSpg

1
2q. Since g11, g12 P

ψpU2nppR,Λq, pI ` s0R,Γ` s0Λqqq, there are g1, g2 P U2nppR,Λq, pI ` s0R,Γ` s0Λqq
such that ψpg1q “ g11 and ψpg2q “ g12. Set h :“ pg1q

´1g2 P U2nppR,Λq, pI ` s0R,Γ`
s0Λqq. Clearly φSpg11q “ φSpg

1
2q is equivalent to FSphq P U2nppRS,ΛSq, pIS,ΓSqq, i.e.

(a) FSphq ” epmod ISq and

(b) fSp|h˚j|q P ΓS @j P t1, . . . ,´1u.

We want to show that g11 “ g12 which is equivalent to h P U2nppR,Λq, pI,Γqq, i.e.

(a’) h ” epmod Iq and

(b’) xj :“ |h˚j| P Γ @j P t1, . . . ,´1u.

First we show (a’). Let i, j P t1, . . . ,´1u such that i ‰ j. Since (a) holds, fSphijq P
IS. Hence

Dx P I, s P S :
hij
1
“
x

s
ñ Dx P I, s, t P S : tphijs´ xq “ 0

ñ Dx P I, s, t P S : sthij “ tx P I

ñ Du P S : uhij P I. (7.2.1)

Since h P U2nppR,Λq, pI` s0R,Γ` s0Λqq, hij P I` s0R. Hence there are a y P I and
a z P s0R such that hij “ y ` z. p7.2.1q implies that uz P I. Since s0 has property
p1q, it follows that z P I. Thus hij P I. Analogously one can show that hii ´ 1 P I
for all i P t1, . . . ,´1u. Hence h ” epmod Iq. Now we show (b’). Let j P t1, . . . ,´1u.
Since (b) holds, fSpxjq P ΓS. Hence

Dy P Γ, s P S :
xj
1
“
y

s
ñ Dy P Γ, s, t P S : tpxjs´ yq “ 0

ñ Dy P Γ, s, t P S : stxj “ ty P Γ

ñ Du P S : uxj P Γ. (7.2.2)

Since h P U2nppR,Λq, pI ` s0R,Γ` s0Λqq, xj P Γ` s0Λ. Hence there are a y P Γ and
a z P s0Λ such that xj “ y ` z. p7.2.2q implies that uz P Γ. Since s0 has property
p2q, it follows that z P Γ. Thus xj P Γ. Hence g11 “ g12 and thus φS is injective on
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ψpU2nppR,Λq, pI ` s0R,Γ` s0Λqqq.
l

We construct now a specific supplemented base that we will use to construct
specific local morphisms. In the lemma below we use the following conventions.
Let x P R. Then RxR denotes the involution invariant ideal generated by x, i.e.
the ideal of R generated by tx, x̄u. Now let pI,Γq be a form ideal of pR,Λq and
assume that x P RzI or x P ΓImaxzΓ. Set Γpxq :“ ΓRxRmin if x P RzI and Γpxq :“
ΓRxRmin ` xtyxȳ|y P Ruy if x P ΓImaxzΓ. Γpxq is called the relative form parameter
defined by x and pI,Γq. One checks easily that pRxR,Γpxqq is a form ideal of pR,Λq
which is not contained in pI,Γq, i.e. RxR Ę I or Γpxq Ę Γ. It is called the form
ideal defined by x and pI,Γq.

Lemma 7.3 Let pI,Γq be a form ideal of pR,Λq, S Ď C a multiplicative subset
and s0 P S as in the previous lemma. Set A :“ tEU2npss0R, ss0Λq|s P Su and
B :“ tEU2npRxs0R, Γpxs0qq|px P R, xs0 P RzIq _ px P Λ, xs0 P IzΓqu. Then pA,Bq
is a special supplemented base for U2npR,Λq and FSpA,Bq is a supplemented base
for U2npRS,ΛSq.

Proof First we show pA,Bq is a special supplemented base for U2npR,Λq. Clearly A
and B are sets of nontrivial subgroups of E. We show now that A is a (nondiscrete)
base of open subgroups of 1 P E. Therefore we must show that A satisfies the
conditions p1q and p2q in Definition 3.1.

(1) Let U “ EU2npss0R, ss0Λq, V “ EU2npts0R, ts0Λq P A. Set W :“ EU2npsts0R,
sts0Λq P A. Then clearly W Ď U X V .

(2) Let g P E and U “ EU2npss0R, ss0Λq P A. There is a K P N such that g is
the product of K elementary unitary transvections. Set V :“ EU2nppss0q

2¨4K`

4K´1`¨¨¨`4R, pss0q
2¨4K`4K´1`¨¨¨`4Λq P A. Then gV Ď U (see Lemma 4.1 in [6]).

Hence A is a base of open subgroups of 1 P E. Let EU2npRxs0R,Γpxs0qq P B. Then
EU2npRxs0R,Γpxs0qq Ď EU2nps0R, s0Λq P A. It remains to show that if U P A and
V P B then U X V contains a member of B. Let U “ EU2npss0R, ss0Λq P A and
V “ EU2npRxs0R,Γpxs0qq P B. Set W :“ EU2npRxss0R,Γpxss0qq. If xs0 R I, then
xss0 R I and if xs0 R Γ, then xss0 R Γ (by the definition of s0, see the previous
lemma). Hence W P B. Obviously W P U X V . Since A,B Ď BpEq, pA,Bq is a
special supplemented base for U2npR,Λq.

Now we show FSpA,Bq is a supplemented base for U2npRS,ΛSq. Clearly FSpAq
and FSpBq are sets of nontrivial subgroups of E 1 :“ EU2npRS,ΛSq. We show now
that FSpAq is a (nondiscrete) base of open subgroups of 1 P E 1. Therefore we must
show that FSpAq satisfies the conditions p1q and p2q in Definition 3.1.

(1) Let U “ FSpEU2npss0R, ss0Λqq, V “ FSpEU2npts0R, ts0Λqq P FSpAq. Set W :“
FSpEU2npsts0R, sts0Λqq P FSpAq. Then clearly W Ď U X V .

(2) Let g P E 1 and U “ FSpEU2npts0R, ts0Λqq P FSpAq. There are a K P N and ele-
mentary unitary transvections τ1 “ Ti1j1p

x1
s1
q, . . . , τK “ Tikjkp

xK
sK
q P E 1 such that
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g “ τ1 . . . τK . Set s :“ s1 . . . sK and V :“ FSpEU2nppsts0q
2¨4K`4K´1`¨¨¨`4R, pst

s0q
2¨4K`4K´1`¨¨¨`4Λqq P FSpAq. Then gV Ď U (see Lemma 4.1 in [6]).

Hence FSpAq is a base of open subgroups of 1 P E 1. That each member of FSpBq is
contained in some member of FSpAq follows from the fact that any member of B is
contained in a member of A. That given U P FSpAq and V P FSpBq, UXV contains
a member of FSpBq follows from the fact that given U P A and V P B, U X V
contains a member of B. Hence FSpA,Bq is a supplemented base for U2npRS,ΛSq.

l

Now we construct specific local morphisms which will be used to prove p1.1q.

Lemma 7.4 Let pI,Γq be a form ideal of pR,Λq and S Ď C a multiplicative subset
such that S X I “ H. Then φS is a local morphism of standard groups.

Proof First we show that φS is a morphism of standard groups. Clearly φS maps a
base generator to a base generator. Since t1u is base subgroup of U2npR,Λq{U2nppR,
Λq, pI,Γqq, the topology induced by the base subgroups of U2npR,Λq{U2nppR,Λq, pI,
Γqq is the discrete one. It follows that φS induces a continuous homomorphism
EU2npR,Λq{pEU2npR,Λq X U2nppR,Λq, pI,Γqqq Ñ EU2npRS,ΛSq{pEU2npRS,ΛSq X

U2nppRS,ΛSq, pIS,ΓSqqq. Hence φS is a morphism of standard groups.

Let pA,Bq be the special supplemented base for U2npR,Λq defined in the previ-
ous lemma. Since ψ induces a surjective homomorphismEU2npR,Λq Ñ EU2npR,Λq{
pEU2npR,ΛqXU2nppR,Λq, pI,Γqqq, it follows easily that ψpA,Bq is a special supple-
mented base for U2npR,Λq{U2nppR, Λq, pI,Γqq. We will show now that φS is local
with respect to the special supplemented base pApφSq, BpφSqq :“ ψpA,Bq. There-
fore we have to show that conditions p3.7.1q ´ p3.7.3q in Definition 3.7 are satisfied.

(3.7.1) By the previous lemma, FSpA,Bq is a supplemented base for U2npRS,ΛSq.
Since ρS induces a surjective homomorphism EU2npRS,ΛSq Ñ EU2npRS,
ΛSq{pEU2npRS,ΛSq X U2nppRS,ΛSq, pIS,ΓSqqq, it is easy to deduce that ρSp
FSpA,Bqq is a supplemented base for U2npRS,ΛSq{ U2nppRS,ΛSq, pIS,ΓSqq.
Since ρS ˝ FS “ φS ˝ ψ, it follows that φSpψpA,Bqq is a supplemented base
for U2npRS,ΛSq{U2nppRS,ΛSq, pIS,ΓSqq.

(3.7.2) By Lemma 7.2, φS is injective on ψpU2nppR,Λq, pI`s0R,Γ`s0Λqqq. Let U P
ψpAq. Then there is an s P S such that U “ ψpEU2npss0R, ss0Λqq. Hence
GpUq “ GpψpEU2npss0R, ss0Λqqq “ ψpU2nppR,Λq, pI ` ss0R,Γ` ss0Λqqq Ď
ψpU2nppR,Λq, pI ` s0R,Γ ` s0Λqqq. It follows that φS is injective on GpUq
for any U P ψpAq.

(3.7.3) It suffices to show that the conditions p3.8.1q and p3.8.2q in Lemma 3.8 are
satisfied.

(3.8.1) Let g1 “ ρSpTijpzqq be a nontrivial base generator in U2npRS,ΛSq{U2np

pRS,ΛSq, pIS,ΓSqq, and U “ ψpEU2npss0R, ss0Λqq P ψpAq.
case 1 Assume that i ‰ ˘j.
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Choose an x P R and a t P S such that z “ x
t
. Since g1 is nontrivial,

z R IS and hence xs0 R I. Set V :“ ψpEU2npRpss0q
5xR,Γ

Rpss0q5xR
min qq “

ψpEU2npRpss0q
5xR,Γppss0q

5xqqq P ψpBq. One can show routinely,
using the relations pR1q´pR6q in Lemma 6.12, that φSpUqg1 contains
φSpV q.
case 2 Assume that i “ ´j.
Choose an x P Λ and a t P S such that z “ λ

´pεpiq`1q{2
S

x
t
. Since g1 is

nontrivial, z R λ´pεpiq`1q{2
S ΓS and hence xs0 R Γ.

case 2.1 Assume that xs0 R I.
Set V :“ ψpEU2npRpss0q

6xR,Γ
Rpss0q6xR
min qq “ ψpEU2npRpss0q

6xR,Γp
pss0q

6xqqq P ψpBq. One can show routinely, using the relations
pR1q ´ pR6q in Lemma 6.12, that φSpUqg1 contains φSpV q.
case 2.2 Assume that xs0 P I.
Set V :“ ψpEU2npRpss0q

7xR,Γ
Rpss0q7xR
min ` xtypss0q

7xȳ|y P Ruyqq “
ψpEU2npRpss0q

7xR,Γppss0q
7xqqq P ψpBq. One can show routinely,

using the relations pR1q´pR6q in Lemma 6.12, that φSpUqg1 contains
φSpV q.
Since ψpA,Bq is a supplemented base, there is a W P ψpBq such
that W Ď U X V . Clearly φSpUqg1 contains φSpW q and W Ď U .

(3.8.2) Let f 1 be a base generator in U2npRS,ΛSq{U2nppRS,ΛSq, pIS,ΓSqq
and V P ψpBq. Choose a nontrivial base generator g1 P φSpV q which
commutes with f 1. Such a base generator exists by relation (R3) of
Lemma 6.12. Then f 1φSpV q clearly contains f 1g1 “ g1.

Hence φS is local with respect to pApφSq, BpφSqq “ ψpA,Bq. l

Next we show that the local morphisms φm where m is a maximal ideal of C
such that I X C Ď m form a covering.

Lemma 7.5 Any quotient of the standard group pG,E,GenpEq, BpEq, Gp¨qq (where
G, E, GenpEq, BpEq and Gp¨q are defined as in Lemma 7.1) has a covering.

Proof Let pI,Γq be a form ideal of U2npR,Λq. Set Z :“ tφm|m maximal ideal of C,
IXC Ď mu. We show that Z is a covering of the standard group U2npR,Λq{U2nppR,
Λq, pI,Γqq. By the previous lemma, for any maximal ideal m of C such that
I X C Ď m, φm is a local morphism (note that I X C Ď m implies Sm X I “ H).
It remains to show that for any noncentral g1 P U2npR,Λq{U2nppR,Λq, pI,Γqq there
is a maximal ideal m of C such that I X C Ď m and φmpg

1q is noncentral. Let
g1 P U2npR,Λq{U2nppR,Λq, pI,Γqq be noncentral. Then there is an h1 P U2npR,
Λq{U2nppR,Λq, pI,Γqq such that g1h1 ‰ h1g1. Let g, h P U2npR,Λq such that g1 “
gU2nppR,Λq, pI,Γqq and h1 “ hU2nppR,Λq, pI,Γqq. Set σ :“ rg´1, h´1s. Clearly
g1h1 ‰ h1g1 implies σ R U2nppR,Λq, pI,Γqq. Hence either σij R I for some i, j P
t1, . . . ,´1u such that i ‰ j, or σii´ 1 R I for some i P t1, . . . ,´1u or xj :“ |σ˚j| R Γ
for some j P t1, . . . ,´1u.

case 1 Assume that σij R I for some i, j P t1, . . . ,´1u such that i ‰ j. Set Y :“ tc P
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C|cσij P Iu. Since σij R I, Y is a proper ideal of C. Hence it is contained in a max-
imal ideal m of C. Clearly I X C Ď Y Ď m and hence Sm X Y “ H. We show now
that φmpg1q does not commute with φmph1q, i.e. Fmpσq R U2nppRm,Λmq, pIm,Γmqq.
Obviously pFmpσqqij “ fmpσijq. Assume pFmpσqqij P Im. Then

Dx P I, s P Sm :
σij
1
“
x

s
ñ Dx P I, s, t P Sm : tpσijs´ xq “ 0

ñ Dx P I, s, t P Sm : stσij “ tx P I

ñ Du P Sm : uσij P I.

But this contradicts Sm X Y “ H. Hence pFmpσqqij R Im and thus φmpg1q is non-
central.

case 2 Assume that σii´1 R I for some i P t1, . . . ,´1u. Set Y :“ tc P C|cpσii´1q P
Iu. Since σii ´ 1 R I, Y is a proper ideal of C. Hence it is contained in a maximal
ideal m of C. Clearly I X C Ď Y Ď m and hence Sm X Y “ H. We show now
that φmpg1q does not commute with φmph1q, i.e. Fmpσq R U2nppRm,Λmq, pIm,Γmqq.
Obviously pFmpσqqii ´ 1 “ fmpσiiq ´ 1 “ fmpσii ´ 1q. Assume pFmpσqqii ´ 1 P Im.
Then

Dx P I, s P Sm :
σii ´ 1

1
“
x

s
ñ Dx P I, s, t P Sm : tppσii ´ 1qs´ xq “ 0

ñ Dx P I, s, t P Sm : stpσii ´ 1q “ tx P I

ñ Du P Sm : upσii ´ 1q P I.

But this contradicts Sm X Y “ H. Hence pFmpσqqii ´ 1 R Im and thus φmpg1q is
noncentral.

case 3 Assume that xj “ |σ˚j| R Γ for some j P t1, . . . ,´1u. Set Y :“ tc P C|cxj P
Γu. Since xj R Γ, Y is a proper ideal of C. Hence it is contained in a maximal ideal
m of C. Since xj P Λ and y2Λ P Γmin Ď Γ for any y P IXC, pIXCq2 Ď Y Ď m. This
implies Sm X Y “ H and I X C Ď m, since m is prime. We show now that φmpg1q
does not commute with φmph1q, i.e. Fmpσq R U2nppRm,Λmq, pIm,Γmqq. Obviously

|pFmpσqq˚j|

“

n
ÿ

i“1

pFmpσqqijpFmpσqq´i,j

“

n
ÿ

i“1

fmpσijqfmpσ´i,jq

“

n
ÿ

i“1

fmpσ̄ijqfmpσ´i,jq

“fmp
n
ÿ

i“1

σ̄ijσ´i,jq
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“fmp|σ˚j|q

“fmpxjq.

Assume fmpxjq P Γm. Then

Dy P Γ, s P Sm :
xj
1
“
y

s
ñ Dy P Γ, s, t P Sm : tpxjs´ yq “ 0

ñ Dy P Γ, s, t P S : stxj “ ty P Γ

ñ Du P Sm : uxj P Γ.

But this contradicts Sm X Y “ H. Hence |pFmpσqq˚j| “ fmpxjq R Γm and thus
φmpg

1q is noncentral. l

The lemmas 7.6, 7.7 and 7.8 will be used in the proof of Lemma 7.9.

Lemma 7.6 Let pI,Γq be a form ideal of pR,Λq and S Ď C a multiplicative subset.
Let Tijpxq P EU2npRS,ΛSq be an elementary short or long root, σ P U2npRS,ΛSq

and s P S. Then rσ, Tijpxqs P U2nppRS,ΛSq, pIS,ΓSqq if and only if rσ, TijpfSpsqxqs P
U2nppRS,ΛSq, pIS,ΓSqq.

Proof Straightforward computation. l

Lemma 7.7 Let m be a maximal ideal of C and σ P U2npRm,Λmq. Then there is
an ε P EU2npRm,Λmq such that pεσq11 is invertible.

Proof By Lemma 1.4 in [9] and Lemma 3.4 in [3], Rm satisfies the Λ-stable range

condition ΛS1. Hence there is an ε1 “

ˆ

enˆn 0
γ enˆn

˙

P EU2npRm,Λmq, where

γ P MnpRMq, such that px1, . . . , xnq is right unimodular where px1, . . . , x´1q is

the first row of ε1σ. Since ΛS1 implies SR1, there is a matrix ε2 “

ˆ

ω1 0
0 ω2

˙

P

EU2npRm,Λmq, where ω1 and ω2 are lower triangular matrices in MnpRMq with 1’s
on the diagonal, such that the entry of pε2ε1σq11 is right invertible. Since R is a
Noetherian C-module, R is almost commutative. It follows that Rm is almost com-
mutative and hence pε2ε1σq11 is invertible, by Lemma 5.6. l

The following lemma has been proven by You (see [10], Lemma 3.5).

Lemma 7.8 Let pI,Γq be a form ideal of pR,Λq and σ P U2npR,Λq. Further let
x P R and i, j P t1, . . . ,´1u such that i ‰ ˘j. Set τ :“ rσ, Tijpxqs. Then

|τ˚k| “ σ̄1jkx̄|σ˚i|xσ
1
jk ` σ̄

1
´i,kx|σ˚,´j|x̄σ

1
´i,k ` yk,

if k ‰ j,´i,

|τ˚j| “ σ̄1jjx̄|σ˚i|xσ
1
jj ` σ̄

1
´i,jx|σ˚,´j|x̄σ

1
´i,j ` x̄|τ˚i|x` yj

and
|τ˚,´i| “ σ̄1j,´ix̄|σ˚i|xσ

1
j,´i ` σ̄

1
´i,´ix|σ˚,´j|x̄σ

1
´i,´i ` x|τ˚,´j|x̄` y´i
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where for each k P t1, . . . ,´1u, yk is a finite sum of terms of the form z´λz̄ where
z lies in the ideal generated by the nondiagonal entries of σ and σ´1. It follows that
if σ P U2nppR,Λq, pI, I X Λqq, then |τ˚k| P Γ @k ‰ j,´i, |τ˚j| ” x̄|σ˚i|xpmod Γq and
|τ˚,´i| ” x|σ˚,´j|x̄pmod Γq.

Proof Straightforward computation. l

Now we show that the codomains of the local morphisms φm are solution
groups and hence pG,E,GenpEq, BpEq, Gp¨qq and each of its quotients have a cover-
ing by solution groups. In the following lemma we will apply lemmas and corollaries
in [1], chapter IV, §3. We are allowed to do this since for any maximal ideal m of C,
C 1m :“ S´1

m C 1 is semilocal by Lemma 1.4 in [9] and hence the Bass-Serre-dimension
of C 1m is 0. Since R is module finite over C 1, Rm is module finite over C 1m and hence
Rm is a finite C 1m-algebra.

Solution Group Lemma 7.9 Let pI,Γq be a form ideal of pR,Λq and m a maximal
ideal of C such that I X C Ď m. Then the codomain of φm is a solution group for
A1 :“ φmpApφmqq where Apφmq is defined as in Lemma 7.4.

Proof Let h1 P U2npRm,Λmq{U2nppRm,Λmq, pIm,Γmqq be noncentral. We have to
show that h1 satisfies a solution equation with respect to A1. Let U 1 P A1. Let h P
U2npRm,Λmq such that h1 “ ρmphq. Since h1 is noncentral, h R CU2nppRm,Λmq, pIm,
Γmqq. The proof is divided into three parts, I, II and III. In Part I we assume
that h R CU2nppRm,Λmq, pIm, Im X Λmqq and n ą 3. In Part II we assume that
h R CU2nppRm,Λmq, pIm, Im X Λmqq and n “ 3. In Part III we assume that
h P CU2nppRm, Λmq, pIm, Im X Λmqq. Set A :“ tFmpEU2npss0R, ss0Λqq|s P Smu. By
Lemma 7.3, A is a base of open subgroups of 1 P EU2npRm,Λmq. Let U P A such that
ρmpUq “ U 1. In each of the parts I, II and III choose U0, . . . , U9 P A such that for
all pk ` 1q-tuples pε0, . . . , εkq used in that particular part, diUi Ď U @i P t0, . . . , ku
(possible since A is a base of open subgroups of 1 P EU2npRm,Λmq and in each
part there are only finitely many pk ` 1q-tuples pε0, . . . , εkq which are used). Since
U0, . . . , U9 P A, there are t0, . . . , t9 P Sm such that Ui “ FmpEU2nptis0R, tis0Λqq @i P
t0, . . . , 9u. Set si :“ fmptis0q pi “ 0, . . . , 9q.

Part I Assume that h R CU2nppRm,Λmq, pIm, Im X Λmqq and n ą 3.
By [1], chapter IV, Corollary 3.10 (applied with H “EU2npRm,Λmqxhy), there is an
ε0 P EU2npRm,Λmq and an x “ a

s
P Rm such that rε0h, T1,´2pxqs R CU2nppRm,Λmq,

pIm, Im X Λmqq. By [1], chapter IV, Lemma 3.12, Part I, case 7 there is a matrix
ε1 P EU2npRm,Λmq of the form

ε1 “

ˆ

X Y
0 Z

˙

,

where X, Y, Z P MnpRmq, such that the first n coordinates of ε1pε0hq˚1 equal
`

1 0 . . . 0
˘t and the first n coordinates of ε1pε0hq˚2 equal

`

0 1 0 . . . 0
˘t. Set

fmpaq :“ â and fmpsq :“ ŝ. Set g0 :“ T1,´2ps0ŝxq “ T1,´2ps0
s
1
a
s
q “ T1,´2ps0âq P U0.

By Lemma 7.6, rε0h, g0s R U2nppRm,Λmq, pIm, Im X Λmqq. Since U2nppRm,Λmq, pIm,
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ImXΛmqq is normal, it follows that σ :“ ε1rε0h, g0s R U2nppRm,Λmq, pIm, ImXΛmqq.
Since

σ

“
ε1r

ε0h, g0s

“
ε1pg´1

0 ` p
ε0hq˚1s0âpp

ε0hq´1
q´2,˚g

´1
0

´ p
ε0hq˚2λ̄ms0âpp

ε0hq´1
q´1,˚g

´1
0 q

“
ε1pg´1

0 q `
ε1 pp

ε0hq˚1s0âpp
ε0hq´1

q´2,˚g
´1
0 q

´
ε1 pp

ε0hq˚2λ̄ms0âpp
ε0hq´1

q´1,˚g
´1
0 q

“
ε1pg´1

0 q ` ε1p
ε0hq˚1s0âpp

ε0hq´1
q´2,˚g

´1
0 pε1q

´1

´ ε1p
ε0hq˚2λ̄ms0âpp

ε0hq´1
q´1,˚qg

´1
0 pε1q

´1

and ε1pg´1
0 q “ e` pε1q˚1s0âppε1q

´1q´2,˚ ´ pε1q˚2λ̄ms0âppε1q
´1q´1,˚ has the form

ˆ

enˆn ˚

0 enˆn

˙

,

σ has the form
¨

˝

α1 α2 β1 β2

0 epn´2qˆpn´2q β3 β4

γ δ

˛

‚“

ˆ

α β
γ δ

˙

where α1, β2 PM2pRmq, α2, β1 PM2ˆpn´2qpRmq, β3 PMn´2pRmq, β4 PMpn´2qˆ2pRmq

and α “ paijq1ďi,jďn, β “ pbijq 1ďiďn
´nďjď´1

, γ “ pcijq´nďiď´1
1ďjďn

, δ “ pdijq´nďi,jď´1 P Mnp

Rmq.

case 1 Assume that either α ı enˆnpmod Imq or γ ı 0pmod Imq or δ ı enˆnpmod
Imq.
We will show that it follows that α ı enˆnpmod Imq or γ ı 0pmod Imq. Assume
that α ” enˆnpmod Imq and γ ” 0pmod Imq. Let κ : MnpRmq Ñ MnpRm{Imq be
the homomorphism induced by the canonical homomorphism Rm Ñ Rm{Im. Since

the image of σ in U2npRm{Im,Λm{pΛmX Imqq equals
ˆ

enˆn κpβq
0 κpδq

˙

, κpδq “ enˆn by

Lemma 6.9. That is equivalent to δ ” enˆnpmod Imq. Since this is a contradiction,
α ı enˆnpmod Imq or γ ı 0pmod Imq. Hence there is an i P t1, . . . , nu such that
σ˚i ı eipmod Imq.

case 1.1 Assume that i P t1, . . . , n´ 2u.
Clearly the pn´ 1q-th row of

rσ, Ti,´pn´1qp1qs

“pe` σ˚iσ
1
´pn´1q,˚ ´ λ̄mσ˚pn´1qσ

1
´i,˚qTi,´pn´1qp´1q
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“pe`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1i

a2i

0
...

0

i 1

0
...

n 0

´n c´n,i

...

´1 c´1,i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,n´1 . . . λmc̄´n,n´1 0 1 0 . . . 0 ā2pn´1q ā1pn´1q

¯

´ λ̄m

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1pn´1q

a2pn´1q

0
...

0

1

n 0

´n c´n,n´1

...

´1 c´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´i ´1

λmc̄´1,i . . . λmc̄´n,i 0 . . . 0 1 0 . . . 0 ā2i ā1i

¯

q

¨ Ti,´pn´1qp´1q

is not congruent to fn´1 modulo Im since σ˚i ı eipmod Imq. Hence rσ, Ti,´pn´1qp1qs R
U2nppRm,Λmq, pIm, Im X Λmqq. Set g2 :“ Ti,´pn´1qps1q P U1. By Lemma 7.6,
rσ, g2s R U2nppRm,Λmq, pIm, Im X Λmqq. Clearly the n-th row of rσ, g2s equals fn.
Set ε2 :“ P1n P EU2npRm,Λmq. Then the first row of τ :“ε2rσ, g2s equals f1. Since
U2nppRm,Λmq, pIm, Im XΛmqq is normal, τ R U2nppRm,Λmq, pIm, Im XΛmqq. Clearly
τ has the form

¨

˚

˚

˝

1 0 0 0
A3 A4 B3 0
C1 C2 D1 0
C3 C4 D3 1

˛

‹

‹

‚

“

ˆ

A B
C D

˙

where C3 P Rm, A3, C1 P pRmq
n´1, C4, D3 P

n´1pRmq, A4, B3, C2, D1 P Mn´1pRmq

and A “ pAijq1ďi,jďn, B “ pBijq 1ďiďn
´nďjď´1

, C “ pCijq´nďiď´1
1ďjďn

, D “ pDijq´nďi,jď´1 P

MnpRmq. Set

E “ pEijq2ďi,jď´2 :“

ˆ

A4 B3

C2 D1

˙

PM2n´2pRmq.

case 1.1.1 Assume that E ı ep2n´2qˆp2n´2qpmod Imq.
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There are i, j P t2, . . . , ´2u such that pE ´ ep2n´2qˆp2n´2qqij R Im. Set g2 :“
T´1,ips2q P U2. Then ω :“ rτ´1, g2s has the form

¨

˝

1 0 0
˚ ep2n´2qˆp2n´2q 0
˚ w 1

˛

‚

where w “ pw2, . . . , w´2q “ s2pE ´ ep2n´2qˆp2n´2qqi˚. Since pE ´ ep2n´2qˆp2n´2qqij

R Im, wj “: b1

t1
R Im. Set b :“ b1

1
P Rm and t :“ t1

1
P Rm. Choose an l ‰ ˘1,˘j

and set g3 :“ Tjlps3q P U3, g4 :“ Tl,´jps4s5tq P U4 and g5 :“ T´1,´jps3s4s5twjq “
T´1,´jps3s4s5bq P U5. Notice that g5 R U2nppRm,Λmq, pIm, Im X Λmqq, since wj R Im
and s3s4s5t is invertible. One checks easily that

rrr
ε2pr

ε1r
ε0h, g0s, g2s

´1
q, g2s, g3s, g4s

“rrrp
ε2r

ε1r
ε0h, g0s, g2sq

´1, g2s, g3s, g4s

“rrω, g3s, g4s

“g5.

Set g1i :“ ρmpgiq @i P t0, . . . , 5u, ε1i :“ ρmpεiq @i P t0, 1, 2u and d1i :“ ρmpdiq @i P
t0, . . . , 5u. Then ε10, ε

1
1, ε

1
2 P E 1 :“ ρmpEU2npRm,Λmqq, g15 P GenpE 1qzteu, d1ig1i P

U 1 @i P t0, . . . , 5u and

rrr
ε12pr

ε11r
ε10h1, g10s, g

1
1s
´1
q, g12s, g

1
3s, g

1
4s “ g15.

case 1.1.2 Assume that E ” ep2n´2qˆp2n´2qpmod Imq and A3 ” 0pmod Imq.

Set ξ1 :“
n
ś

l“2

Tl1p´Al1q P EU2nppRm,Λmq, pIm,Γmqq. Since ξ1 P EU2nppRm,Λmq, pIm,

Γmqq Ď U2nppRm,Λmq, pIm,Γmqq Ď U2nppRm,Λmq, pIm, Im X Λmqq and τ R U2nppRm,
Λmq, pIm, Im X Λmqq, ξ1τ R U2nppRm,Λmq, pIm, Im X Λmqq. Clearly

ξ1τ “

¨

˚

˚

˝

1 0 0 0
0 A4 B3 0
C1 C2 D1 0
C 13 C 14 D13 1

˛

‹

‹

‚

for some C 13 P Rm and C 14, D13 P n´1pRmq such that D13 ” 0pmod Imq (consider the
image of ξ1τ in U2npRm{Im,Λm{pΛm X Imqq).

case 1.1.2.1 Assume that there is an i P t3, . . . , nu such that C 1´1,i R Im.
Set ε21 :“ T12p´1q P EU2npRm,Λmq. Then ε21pξ1τq has the form

¨

˚

˚

˝

1 A22 B21 B22
0 A4 B23 B24
C21 C22 D21 D22
C23 C24 D23 D24

˛

‹

‹

‚

where B22 , C23 , D24 P Rm, B24 , C21 P pRmq
n´1, A22, B21 , C24 , D23 Pn´1pRmq, B23 , C22 , D21 P

Mn´1pRmq. Furthermore A22 ” 0pmod Imq and C2´2,i ” C 1´1,ipmod Imq. Set ξ2 :“
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n
ś

l“2

T1lp´A
2
1lq P EU2nppRm,Λmq, pIm,Γmqq. ω :“ε21pξ1τqξ2 has the form

¨

˚

˚

˝

1 0 B31 B32
0 A4 B33 B34
C31 C32 D31 D32
C33 C34 D33 D34

˛

‹

‹

‚

where B32 , C33 , D34 P Rm, B34 , C31 , D32 P pRmq
n´1, B31 , C34 , D33 Pn´1pRmq, B33 , C32 ,

D31 P Mn´1pRmq. Further C3´2,i ” C2´2,i ” C 1´1,ipmod Imq. Since C 1´1,i R Im,
C3´2,i R Im. Set g2 :“ T2,´ips2q P U2. Then

rω, g2s

“pe` ω˚2s2ω
1
´i,˚ ´ ω˚iλ̄ms2ω

1
´2,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A22

...

n An2

´n C3´n,2
...

´1 C3´1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,i . . . λmC̄

3
´n,i Āni . . . Ā2i 0

¯

´ λ̄ms2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A2i

...

n Ani

´n C3´n,i
...

´1 C3´1,i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,2 . . . λmC̄

3
´n,2 Ān2 . . . Ā22 0

¯

q

¨ pg2q
´1.

Clearly rω, g2s1˚ “ f1 and

rω, g2s22 “ 1` s2A22λmC̄
3
´2,i ´ λ̄ms2A2iλmC̄

3
´2,2.

Since A2i P Im, ´λ̄ms2A2iλmC̄
3
´2,2 P Im. Since C3´2,i R Im, C̄3´2,i R Im. Hence

s2A22λmC̄3´2,i R Im since A22 ” 1pmod Imq and s2 and λm are invertible. It fol-
lows that rω, g2s22 ı 1pmod Imq. One can proceed now as in case 1.1.1 (note that
ρmpξ1q “ ρmpξ2q “ e since ξ1, ξ2 P EU2nppRm,Λmq, pIm,Γmqq Ď U2nppRm,Λmq, pIm,
Γmqqq.
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case 1.1.2.2 Assume that C 1´1,2 R Im.
Set ε21 :“ T13p´1q P EU2npRm,Λmq. Then ε21pξ1τq has the form

¨

˚

˚

˝

1 A22 B21 B22
0 A4 B23 B24
C21 C22 D21 D22
C23 C24 D23 D24

˛

‹

‹

‚

where B22 , C23 , D24 P Rm, B24 , C21 P pRmq
n´1, A22, B21 , C24 , D23 Pn´1pRmq, B23 , C22 , D21 P

Mn´1pRmq. Furthermore A22 ” 0pmod Imq and C2´3,2 ” C 1´1,2pmod Imq. Set ξ2 :“
n
ś

l“2

T1lp´A
2
1lq P EU2nppRm,Λmq, pIm,Γmqq. ω :“ηpξ1τqξ2 has the form

¨

˚

˚

˝

1 0 B31 B32
0 A4 B33 B34
C31 C32 D31 D32
C33 C34 D33 D34

˛

‹

‹

‚

where B32 , C33 , D34 P Rm, B34 , C31 , D32 P pRmq
n´1, B31 , C34 , D33 Pn´1pRmq, B33 , C32 ,

D31 P Mn´1pRmq. Further C3´3,2 ” C2´3,2 ” C 1´1,2pmod Imq. Since C 1´1,2 R Im,
C3´3,2 R Im. Set g2 :“ T3,´2ps2q P U2. Then

rω, g2s

“pe` ω˚3s2ω
1
´2,˚ ´ ω˚2λ̄ms2ω

1
´3,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A23

...

n An3

´n C3´n,3
...

´1 C3´1,3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,2 . . . λmC̄

3
´n,2 Ān2 . . . Ā22 0

¯

´ λ̄ms2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A22

...

n An2

´n C3´n,2
...

´1 C3´1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,3 . . . λmC̄

3
´n,3 Ān3 . . . Ā23 0

¯

q

¨ pg2q
´1.
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Clearly rω, g2s1˚ “ f1 and

rω, g2s33 “ 1` s2A33λmC̄
3
´3,2 ´ λ̄ms2A32λmC̄

3
´3,3.

Since A32 P Im, ´λ̄ms2A32λmC̄
3
´3,3 P Im. Since C3´3,2 R Im, C̄3´3,2 R Im. Hence

s2A33λmC̄3´3,2 R Im since A33 ” 1pmod Imq and s2 and λm are invertible. It follows
that rω, g2s33 ı 1pmod Imq. One can proceed now as in case 1.1.1

case 1.1.2.3 Assume that C 1´1,i P Im @i P t2, . . . , nu.
It follows that Ci1 P Im @i P t´n, . . . ,´2u. Since ξ1τ R U2nppRm,Λmq, pIm, Im X
Λmqq, C 1´1,1 R Im. Set ε21 :“ T12p´1q P EU2npRm,Λmq. Then ε21pξ1τq has the form

¨

˚

˚

˝

1 A22 B21 B22
0 A4 B23 B24
C21 C22 D21 D22
C23 C24 D23 D24

˛

‹

‹

‚

where B22 , C23 , D24 P Rm, B24 , C21 P pRmq
n´1, A22, B21 , C24 , D23 Pn´1pRmq, B23 , C22 , D21 P

Mn´1pRmq. FurthermoreA22 ” 0pmod Imq and C2´2,2 “ C´2,2`C
1
´1,2`C´2,1`C

1
´1,1 ”

C 1´1,1pmod Imq. Set ξ2 :“
n
ś

l“2

T1lp´A
2
1lq P EU2nppRm,Λmq, pIm,Γmqq. ω :“ηpξ1τqξ2

has the form
¨

˚

˚

˝

1 0 B31 B32
0 A4 B33 B34
C31 C32 D31 D32
C33 C34 D33 D34

˛

‹

‹

‚

where B32 , C33 , D34 P Rm, B34 , C31 , D32 P pRmq
n´1, B31 , C34 , D33 Pn´1pRmq, B33 , C32 ,

D31 P Mn´1pRmq. Further C3´2,2 ” C2´2,2 ” C 1´1,1pmod Imq. Since C 1´1,1 R Im,
C3´2,2 R Im. Set g2 :“ T2,´3pfmpt3s0qq P U2. Then

rω, g2s

“pe` ω˚2s2ω
1
´3,˚ ´ ω˚3λ̄ms2ω

1
´2,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A22

...

n An2

´n C3´n,2
...

´1 C3´1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,3 . . . λmC̄

3
´n,3 Ān3 . . . Ā23 0

¯
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´ λ̄ms2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

A23

...

n An3

´n C3´n,3
...

´1 C3´1,3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmC̄
3
´1,2 . . . λmC̄

3
´n,2 Ān2 . . . Ā22 0

¯

q

¨ pg2q
´1.

Clearly rω, g2s1˚ “ f1 and

rω, g2s32 “ s2A32λmC̄
3
´2,3 ´ λ̄ms2A33λmC̄

3
´2,2.

Since A32 P Im, ´λ̄ms2A32λmC̄
3
´2,2 P Im. Since C3´2,2 R Im, C̄3´2,2 R Im. Hence

s2A33λmC̄3´2,i R Im since A33 ” 1pmod Imq and s2 and λm are invertible. It follows
that rω, g2s32 R Im. One can proceed now as in case 1.1.1

case 1.1.3 Assume that E ” ep2n´2qˆp2n´2qpmod Imq and A3 ı 0pmod Imq.
Since A3 ı 0pmod Imq, D3 ı 0pmod Imq. Hence there is an i P t´n, . . . ,´2u such
that D´1,i R Im. Choose a j P t2, . . . , nuzt´iu and set g2 :“ Tijps2q P U2. Then

rτ, g2s

“pe` τ˚is2τ
1
j˚ ´ τ˚,´jλms2τ

1
´i,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

B2i

...

n Bni

´n D´n,i
...

´1 D´1,i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

D̄´1,´j . . . D̄´n,´j λ̄mB̄n,´j . . . λ̄mB̄2,´j 0

¯

´ λms2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0

B2,´j

...

n Bn,´j

´n D´n,´j
...

´1 D´1,´j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

D̄´1,i . . . D̄´n,i λ̄mB̄ni . . . λ̄mB̄2i 0

¯

q

43



¨ pg2q
´1.

Clearly rτ, g2s1˚ “ f1 and

rτ, g2s´1,j

“s2D´1,iD̄´j,´j ´ λms2D´1,´jD̄´j,i

´ s2ps2D´1,iλ̄mB̄´i,´j ´ λms2D´1,´jλ̄mB̄´i,iq

Since D̄´j,i, B̄´i,´j, B̄´i,i P Im, it follows that ´λms2D´1,´jD̄´j,i ´ s2ps2D´1,iλ̄m
B̄´i,´j ´ λms2 D´1,´jλ̄mB̄´i,iq P Im. On the other hand s2D´1,iD̄´j,´j R Im since
D1,´i R Im, D̄´j,´j ” 1pmod Imq and s2 is invertible. It follows that rτ, g2s´1,j R Im
and hence rτ, g2s R U2nppRm,Λmq, pIm, Im X Λmqq. Further rτ, g2sl1 P Im @l P
t2, . . . , nu since B ” 0pmod Imq. Thus one can proceed now as in case 1.1.1 or
as in case 1.1.2.

case 1.2 Assume σ˚j ” ejpmod Imq @j P t1, . . . , n ´ 2u, σ˚pn´1q ı en´1pmod Imq
and a1pn´1q P Im.
Consider the first row of

rσ, T1,´pn´1qp1qs

“pe` σ˚1σ
1
´pn´1q,˚ ´ λ̄mσ˚pn´1qσ

1
´1,˚qT1,´pn´1qp´1q

“pe`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a11

a21

0
...

n 0

´n c´n,1
...

´1 c´1,1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,n´1 . . . λmc̄´n,n´1 0 1 0 . . . 0 ā2pn´1q ā1pn´1q

¯

´ λ̄m

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1pn´1q

a2pn´1q

0
...

0

1

n 0

´n c´n,n´1

...

´1 c´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,1 . . . λmc̄´n,1 0 . . . 0 ā21 ā11

¯

q

¨ T1,´pn´1qp´1q.
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which equals

ˆ

1 n ´n ´1

1 0 . . . 0 0 . . . 0

˙

` a11

ˆ

1 n ´n ´1

λmc̄´1,n´1 . . . λmc̄´n,n´1 0 1 0 . . . 0 ā2pn´1q ā1pn´1q

˙

´ λ̄ma1pn´1q

ˆ

1 n ´n ´1

λmc̄´1,1 . . . λmc̄´n,1 0 . . . 0 ā21 ā11

˙

`

ˆ

1 n ´n ´1

0 . . . 0 0 x1 0 . . . 0 x2

˙

where x1 “ ´p1`a11λmc̄´1,n´1´λ̄ma1pn´1qλmc̄´1,1q and x2 “ λ̄mpa11λmc̄´pn´1q,n´1´

λ̄ma1pn´1qλmc̄´pn´1q,1q. It is clearly not congruent to f1 modulo Im since a11 ”

1pmod Imq, σ˚pn´1q ı en´1pmod Imq and a1pn´1q P Im. Hence rσ, T1,´pn´1qp1qs R
U2nppRm,Λmq, pIm, Im X Λmqq. Set g2 :“ T1,´pn´1qps1q P U1. By Lemma 7.6,
rσ, g1s R U2nppRm,Λmq, pIm, Im X Λmqq. Clearly the n-th row of rσ, g1s equals fn.
Set ε2 :“ P1n P EU2npRm,Λmq. Then the first row of τ :“ε2rσ, g1s equals f1. Since
U2nppRm,Λmq, pIm, ImXΛmqq is normal, τ R U2nppRm,Λmq, pIm, ImXΛmqq. One can
proceed now as in case 1.1.

case 1.3 Assume σ˚j ” ejpmod Imq @j P t1, . . . , n´ 2u and a1pn´1q R Im.
Consider the second row of

rσ, T2,´pn´1qp1qs

“pe` σ˚2σ
1
´pn´1q,˚ ´ λ̄mσ˚pn´1qσ

1
´2,˚qT1,´pn´1qp´1q

“pe`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a12

a22

0
...

n 0

´n c´n,2
...

´1 c´1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,n´1 . . . λmc̄´n,n´1 0 1 0 . . . 0 ā2pn´1q ā1pn´1q

¯
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´ λ̄m

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1pn´1q

a2pn´1q

0
...

0

1

n 0

´n c´n,n´1

...

´1 c´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,2 . . . λmc̄´n,2 0 . . . 0 ā22 ā12

¯

q

¨ T2,´pn´1qp´1q

which equals

ˆ

1 n ´n ´1

0 1 0 . . . 0 0 . . . 0

˙

` a22

ˆ

1 n ´n ´1

λmc̄´1,n´1 . . . λmc̄´n,n´1 0 1 0 . . . 0 ā2pn´1q ā1pn´1q

˙

´ λ̄ma2pn´1q

ˆ

1 n ´n ´1

λmc̄´1,2 . . . λmc̄´n,2 0 . . . 0 ā22 ā12

˙

`

ˆ

1 n ´n ´1

0 . . . 0 0 x1 0 . . . 0 x2 0

˙

where x1 “ ´p1`a22λmc̄´2,n´1´λ̄ma2pn´1qλmc̄´2,2q and x2 “ λ̄mpa22λmc̄´pn´1q,n´1´

λ̄ma2pn´1qλmc̄´pn´1q,2q. Its last entry clearly does not lie in Im. Hence rσ, T2,´pn´1qp1qs
R U2nppRm,Λmq, pIm, Im X Λmqq. Set g1 :“ T2,´pn´1qps1q P U1. By Lemma 7.6,
rσ, g1s R U2nppRm,Λmq, pIm, Im X Λmqq. Clearly the n-th row of rσ, g1s equals fn.
Set ε2 :“ P1n P EU2npRm,Λmq. Then the first row of τ :“ε2rσ, g1s equals f1. Since
U2nppRm,Λmq, pIm, ImXΛmqq is normal, τ R U2nppRm,Λmq, pIm, ImXΛmqq. One can
proceed now as in case 1.1.

case 1.4 Assume σ˚j ” ejpmod Imq @j P t1, . . . , n ´ 1u, σ˚n ı enpmod Imq and
a1n P Im.
Consider the first row of

rσ, T1,´np1qs

“pe` σ˚1σ
1
´n,˚ ´ λ̄mσ˚nσ

1
´1,˚qT1,´np´1q
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“pe`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a11

a21

0
...

n 0

´n c´n,1
...

´1 c´1,1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,n . . . λmc̄´n,n 1 0 . . . 0 ā2n ā1n

¯

´ λ̄m

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1n

a2n

0
...

0

n 1

´n c´n,n
...

´1 c´1,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,1 . . . λmc̄´n,1 0 . . . 0 ā21 ā11

¯

q

¨ T1,´np´1q

which equals

´

1 n ´n ´1

1 0 . . . 0 0 . . . 0
¯

` a11

´

1 n ´n ´1

λmc̄´1,n . . . λmc̄´n,n 1 0 . . . 0 ā2n ā1n

¯

´ λ̄ma1n

´

1 n ´n ´1

λmc̄´1,1 . . . λmc̄´n,1 0 . . . 0 ā21 ā11

¯

`

´

1 n ´n ´1

0 . . . 0 x1 0 . . . 0 x2

¯

where x1 “ ´p1 ` a11λmc̄´1,n ´ λ̄ma1nλmc̄´1,1q and x2 “ λ̄mpa11λmc̄´n,n ´ λ̄ma1n

λmc̄´n,1q. It is clearly not congruent to f1 modulo Im since a11 ” 1pmod Imq,
σ˚n ı enpmod Imq and a1n P Im. Hence rσ, T1,´np1qs R U2nppRm,Λmq, pIm, ImXΛmqq.
Set g1 :“ T1,´nps1q P U1. By Lemma 7.6, rσ, g1s R U2nppRm,Λmq, pIm, Im X Λmqq.
Clearly the pn´ 1q-th row of rσ, g1s equals fn´1. Set ε2 :“ P1pn´1q P EU2npRm,Λmq.
Then the first row of τ :“ε2rσ, g1s equals f1. Since U2nppRm,Λmq, pIm, Im X Λmqq is
normal, τ R U2nppRm,Λmq, pIm, Im X Λmqq. One can proceed now as in case 1.1.
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case 1.5 Assume σ˚j ” ejpmod Imq @j P t1, . . . , n´ 1u and a1n R Im.
Consider the second row of

rσ, T2,´np1qs

“pe` σ˚2σ
1
´n,˚ ´ λ̄mσ˚nσ

1
´2,˚qT2,´np´1q

“pe`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a12

a22

0
...

n 0

´n c´n,2
...

´1 c´1,2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,n . . . λmc̄´n,n 1 0 . . . 0 ā2n ā1n

¯

´ λ̄m

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a1n

a2n

0
...

0

n 1

´n c´n,n
...

´1 c´1,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

λmc̄´1,2 . . . λmc̄´n,2 0 . . . 0 ā22 ā12

¯

q

¨ T2,´np´1q

which equals

´

1 n ´n ´1

0 1 0 . . . 0 0 . . . 0
¯

` a22

´

1 n ´n ´1

λmc̄´1,n . . . λmc̄´n,n 1 0 . . . 0 ā2n ā1n

¯

´ λ̄ma2n

´

1 n ´n ´1

λmc̄´1,2 . . . λmc̄´n,2 0 . . . 0 ā22 ā12

¯

`

´

1 n ´n ´1

0 . . . 0 x1 0 . . . 0 x2 0
¯

where x1 “ ´p1 ` a22λmc̄´2,n ´ λ̄ma2nλmc̄´2,2q and x2 “ λ̄mpa22λmc̄´n,n ´ λ̄ma2n

λmc̄´n,2q. Its last entry does clearly not lie in Im and hence rσ, T2,´np1qs R U2nppRm,
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Λmq, pIm, Im X Λmqq. Set g1 :“ T2,´nps1q P U1. By Lemma 7.6, rσ, g1s R U2nppRm,
Λmq, pIm, Im X Λmqq. Clearly the pn ´ 1q-th row of rσ, g1s equals fn´1. Set ε2 :“
P1pn´1q P EU2npRm,Λmq. Then the first row of τ :“ε2rσ, g1s equals f1. Since
U2nppRm,Λmq, pIm, Im X Λmqq is normal, τ R U2nppRm,Λmq, pIm, Im X Λmqq. One
can proceed now as in case 1.1.

case 2 Assume that α, δ ” enˆnpmod Imq and γ ” 0pmod Imq.
Recall that σ “ε1rε0h, g0s R U2nppRm,Λmq, pIm, Im X Λmqq has the form

¨

˝

α1 α2 β1 β2

0 epn´2qˆpn´2q β3 β4

γ δ

˛

‚“

ˆ

α β
γ δ

˙

where α1, β2 PM2pRmq, α2, β1 PM2ˆpn´2qpRmq, β3 PMn´2pRmq, β4 PMpn´2qˆ2pRmq

and α, β, γ, δ PMnpRmq. Clearly β ı 0pmod Imq since σ R U2nppRm,Λmq, pIm, Im X
Λmqq.

case 2.1 Assume that β3 ı 0pmod Imq or β4 ı 0pmod Imq.
Set g1 :“ T´n,n´1 ps1q P U1 and ω :“ rσ´1, g1s. Then

ω

“rσ´1, g1s

“pe` σ1˚,´ns1σpn´1q˚ ´ σ
1
˚,´pn´1qλms1σn˚qpg1q

´1

“pe` s1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 λ̄B̄n,´1

...

n λ̄B̄n,´n

´n 1

0
...

´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

0 . . . 0 1 0 Bn´1,´n . . . Bn´1,´1

¯

´ λms1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 λ̄B̄n´1,´1

...

n λ̄B̄n´1,´n

´n 0

1

0
...

´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

´

1 n ´n ´1

0 . . . 0 1 Bn,´n . . . Bn,´1

¯

q

¨ pg1q
´1.
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Since β3 ı 0pmod Imq or β4 ı 0pmod Imq, pω´n,´n, . . . , ω´n,´1q ı p1, 0, . . . , 0qpmod
Imq or pω´pn´1q,´n, . . . , ω´pn´1q,´1q ı p0, 1, 0, . . . , 0qpmod Imq. Hence ω R U2nppRm,
Λmq, pIm, ImXΛmqq. Further the next to last row of ω equals f´2. Set ε2 :“ P1,´2 P

EU2npRm,Λmq. Then the first row of ε2ω equals f1. Since U2nppRm,Λmq, pIm, Im X
Λmqq is normal, ε2ω R U2nppRm,Λmq, pIm, Im X Λmqq. One can proceed now as in
case 1.1 (ε2ω has the same properties as τ in case 1.1).

case 2.2 Assume that β3 ” 0pmod Imq and β4 ” 0pmod Imq.
It follows that β1 ” 0pmod Imq. Since β ı 0pmod Imq, β2 ı 0pmod Imq. Set

ξ :“

¨

˚

˚

˝

λ̄ppβ4q
˚p 0

enˆn
0 ´β4

0 enˆn

˛

‹

‹

‚

P EU2nppRm,Λmq, pIm,Γmqq.

Then ω :“ σξ has the form
¨

˝

α11 α12 β11 β12
0 epn´2qˆpn´2q β13 0

γ1 δ1

˛

‚“

ˆ

α1 β1

γ1 δ1

˙

where α11, β12 P M2pRmq, α12, β11 P M2ˆpn´2qpRmq, β13 P Mn´2pRmq and α1, β1, γ1, δ1 P
MnpRmq. Further α1, δ1 ” enˆnpmod Imq, γ1 ” 0pmod Imq, β11 ” 0pmod Imq, β13 ”
0pmod Imq and β12 ı 0pmod Imq. Since β12 ı 0pmod Imq, there are an i P t1, 2u and
a j P t´2,´1u such that β1ij R Im. Let l “ 1 if j “ ´2 and l “ 2 if j “ ´1. Set
ε11 :“ Tjlp´1q P EU2npRm,Λmq. Then ε11ω has the form

¨

˝

α21 α22 β21 β22
0 epn´2qˆpn´2q β23 β24

γ2 δ2

˛

‚“

ˆ

α2 β2

γ2 δ2

˙

where α21, β22 PM2pRmq, α22, β21 PM2ˆpn´2qpRmq, β23 PMn´2pRmq, β24 PMpn´2qˆ2pRmq

and α2, β2, γ2, δ2 P MnpRmq. Further α2il R Im if i ‰ l and α2il ı 1pmod Imq if i “ l.
Hence α2 ı enˆnpmod Imq and thus one can proceed as in case 1.1.

The following inverted tree diagram extending over several pages gives an
overview of the case by case proof just concluded of Part I. How to read a diagram
is explained at the conclusion of the proof of the Solution Group Lemma 5.7.
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h

ε1rε0h, g0s

ε2rε1rε0h, g0s, g1s

¨

˚

˚

˝

˚

˛

‹

‹

‚

R CU2nppRm,Λmq, pIm, Im X Λmqq

¨

˚

˚

˝

α1 α2 β
0 epn´2qˆpn´2q

γ δ

˛

‹

‹

‚

ı epmod Imq

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

α, δ ” enˆnpmod Imq
^γ ” 0pmod Imq
^β ı 0pmod Imq

2

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

α ı enˆnpmod Imq
_γ ı 0pmod Imq
_δ ı enˆnpmod Imq

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚pn´1q ı en´1pmod Imq
_γ˚pn´1q ı 0pmod Imqq
^a22 ´ 1, a12 P Im
^a1pn´1q R Im

1.3

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚n ı enpmod Imq
_γ˚n ı 0pmod Imqq
^a11 ´ 1, a1n P Im

1.4

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚pn´1q ı en´1pmod Imq
_γ˚pn´1q ı 0pmod Imqq
^a11 ´ 1, a1pn´1q P Im

1.2

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

Di P t1, . . . , n´ 2u :
pα˚i ı eipmod Imq
_γ˚i ı 0pmod Imqq

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
A3 A4 B3 0

C1 C2 D1 0
C3 C4 D3 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
A3 ” 0pmod Imq

1.1.2

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
A3 A4 B3 0

C1 C2 D1 0
C3 C4 D3 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
A3 ı 0pmod Imq

1.1.3

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

E ı epmod Imq

1.1.1

g1 “ Ti,´pn´1qps1q,
ε2 “ P1n

1.1
¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚n ı enpmod Imq
_γ˚n ı 0pmod Imqq
^a22 ´ 1, a12 P Im

^a1n R Im

1.5

1

ε0 P EU2npRm,Λmq,
g0 “ T1,´2ps0âq,
ε1 P EU2npRm,Λmq
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rpε2rε1rε0h, g0s, g1sq
´1, g2s

rrpε2rε1rε0h, g0s, g1sq
´1, g2s, g3s

rrrpε2rε1rε0h, g0s, g1sq
´1, g2s, g3s, g4s

ε2rε1rε0h, g0s, g1s

ξ1p
ε2rε1rε0h, g0s, g1sq

¨

˚

˚

˝

1 0 0
˚ e 0
˚ w 1

˛

‹

‹

‚

w ı 0pmod Imq

¨

˚

˚

˝

1 0 0
˚ e 0
˚ w1 1

˛

‹

‹

‚

w1 ı 0pmod Imq,
at most two entries
of w1 are nonzero

T´1,´jps3s4s5bq

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
A3 A4 B3 0

C1 C2 D1 0
C3 C4 D3 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
A3 ” 0pmod Imq

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
0 A4 B3 0

C1 C2 D1 0
C 13 C 14 D13 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
D13 ” 0pmod Imq

ξ1 “
n
ś

l“2

Tl1p´Al1q

1.1.2

g4 “ Tl,´jps4s5tq

g3 “ Tjlps3q

g2 “ T´1,ips2q
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ε21pξ1p
ε2rε1rε0h, g0s, g1sqq

ε21pξ1p
ε2rε1rε0h, g0s, g1sqqξ2

rε21pξ1p
ε2rε1rε0h, g0s, g1sqqξ2, g2s

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
0 A4 B3 0

C1 C2 D1 0
C 13 C 14 D13 1

˛

‹

‹

‹

‹

‹

‚

A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,

Di P t3, . . . , nu : C 1´1,i R Im

¨

˚

˚

˝

1 A22 B2
0 A4

C2 D2

˛

‹

‹

‚

A4 ” epmod Imq,
A22 ” 0pmod Imq,

C2´2,i R Im

¨

˚

˚

˝

1 0
B3

0 A4

C3 D3

˛

‹

‹

‚

A4 ” epmod Imq,
C3´2,i R Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

E22 ı 1pmod Imq

see case 1.1.1

g2 “ T2,´ips2q

ξ2 “
n
ś

l“2

T1lp´A
2
1lq

ε21 “ T12p´1q

1.1.2.1

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
0 A4 B3 0

C1 C2 D1 0
C 13 C 14 D13 1

˛

‹

‹

‹

‹

‹

‚

A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
C 1´1,2 R Im

¨

˚

˚

˝

1 A22 B2
0 A4

C2 D2

˛

‹

‹

‚

A4 ” epmod Imq,
A22 ” 0pmod Imq,

C2´3,2 R Im

¨

˚

˚

˝

1 0
B3

0 A4

C3 D3

˛

‹

‹

‚

A4 ” epmod Imq,
C3´3,2 R Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

E33 ı 1pmod Imq

see case 1.1.1

g2 “ T3,´2ps2q

ξ2 “
n
ś

l“2

T1lp´A
2
1lq

ε21 “ T13p´1q

1.1.2.2

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
0 A4 B3 0

C1 C2 D1 0
C 13 C 14 D13 1

˛

‹

‹

‹

‹

‹

‚

A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,

C 11,i P Im @i P t2, . . . , nu,

C 1´1,1 R Impmod Imq

¨

˚

˚

˝

1 A22 B2
0 A4

C2 D2

˛

‹

‹

‚

A4 ” epmod Imq,
A22 ” 0pmod Imq,

C2´2,2 R Im

¨

˚

˚

˝

1 0
B3

0 A4

C3 D3

˛

‹

‹

‚

A4 ” epmod Imq,
C3´2,2 R Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

E32 R Im

see case 1.1.1

g2 “ T2,´3ps2q

ξ2 “
n
ś

l“2

T1lp´A
2
1lq

ε21 “ T12p´1q

1.1.2.3
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ε2rε1rε0h, g0s, g1s

rε2rε1rε0h, g0s, g1s, g2s

ε1rε0h, g0s

ε2rε1rε0h, g0s, g1s

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
A3 A4 B3 0

C1 C2 D1 0
C3 C4 D3 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A4, D1 ” epmod Imq,
B3, C2 ” 0pmod Imq,
A3 ı 0pmod Imq

¨

˚

˚

˚

˚

˚

˝

1 0 0 0
A13 A14 B13 0

C 11 C 12 D11 0
C 13 C 14 D13 1

˛

‹

‹

‹

‹

‹

‚

ı epmod Imq,
A13 ” 0pmod Imq

see case 1.1.1 or 1.1.2

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚pn´1q ı en´1pmod Imq
_γ˚pn´1q ı 0pmod Imqq
^a11 ´ 1, a1pn´1q P Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

see case 1.1

g1 “ T1,´pn´1qps1q,
ε2 “ P1n

1.2

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚pn´1q ı en´1pmod Imq
_γ˚pn´1q ı 0pmod Imqq
^a22 ´ 1, a12 P Im
^a1pn´1q R Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

see case 1.1

g1 “ T2,´pn´1qps1q,
ε2 “ P1n

1.3

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚n ı enpmod Imq
_γ˚n ı 0pmod Imqq
^a11 ´ 1, a1n P Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

see case 1.1

g1 “ T1,´nps1q,
ε2 “ P1pn´1q

1.4

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

pα˚n ı enpmod Imq
_γ˚n ı 0pmod Imqq
^a22 ´ 1, a12 P Im

^a1n R Im

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

see case 1.1

g1 “ T2,´nps1q,
ε2 “ P1pn´1q

1.5

g2 “ Tijps2q

1.1.3
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ε1rε0h, g0s

ε2rpε1rε0h, g0sq
´1, g1s

ε1rε0h, g0s

¨

˚

˚

˝

α1 α2 β
0 e

γ δ

˛

‹

‹

‚

α, δ ” enˆnpmod Imq
^γ ” 0pmod Imq
^β ı 0pmod Imq

¨

˚

˚

˝

α1 α2 β1 β2

0 e β3 β4

γ δ

˛

‹

‹

‚

α, δ ” enˆnpmod Imq
^γ ” 0pmod Imq
^pβ3 ı 0pmod Imq
_β4 ı 0pmod Imqq

¨

˚

˚

˝

1 0 0
˚ E 0
˚ ˚ 1

˛

‹

‹

‚

ı epmod Imq

see case 1.1

¨

˚

˚

˝

α1 α2 β1 β2

0 e β3 β4

γ δ

˛

‹

‹

‚

α, δ ” enˆnpmod Imq
^γ, β3, β4 ” 0pmod Imq
^pβ1 ı 0pmod Imq
_β2 ı 0pmod Imqq

2.2

g1 “ T´n,n´1ps1q,
ε2 “ P1,´2

2.1

¨

˚

˚

˝

α1 α2 β1 β2

0 e β3 β4

γ δ

˛

‹

‹

‚

α, δ ” enˆnpmod Imq
^γ, β3, β4 ” 0pmod Imq
^pβ1 ı 0pmod Imq
_β2 ı 0pmod Imqq

2.2

2
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ε1rε0h, g0sξ

ε11pε1rε0h, g0sξq

¨

˚

˚

˝

α11 α12 β11 β12
0 e β13 0

γ1 δ1

˛

‹

‹

‚

α1, δ1 ” enˆnpmod Imq
^γ1, β11, β

1
3 ” 0pmod Imq

β12 ı 0pmod Imq

¨

˚

˚

˝

α21 α22 β21 β22
0 e β23 β24
γ2 δ2

˛

‹

‹

‚

α21 ı e2ˆ2pmod Imq

see case 1.1

ε11 “ Tjlp´1q

ξ “

¨

˝

e
λ̄ppβ4q

˚p 0
0 ´β4

0 e

˛

‚
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Part II Assume that h R CU2nppRm,Λmq, pIm, Im X Λmqq and n “ 3.
There are a g0 P U0 and a ε0, ε1 P EU6pRm,Λmq such that σ :“ε1rε0h, g0s R

U6ppRm,Λmq, pIm, Im X Λmqq and σ has the form
¨

˝

˚
β

0 0 1
γ δ

˛

‚“

ˆ

α β
γ δ

˙

where α “ pαijq1ďi,jď3, β “ pβijq 1ďiď3
´3ďjď´1

, γ “ pγijq´3ďiď´1
1ďjď3

, δ “ pδijq´3ďi,jď´1 P

M3pRmq (see Part I above and [1], chapter IV, Lemma 3.12, Part II, general case).

case 1 Assume that there is an i P t´3,´2,´1u such that γi2 R Im.
Set g1 :“ T1,´2ps1q P U1 and ω :“ rσ, g1s. Then

ω

“rσ, g1s

“pe` σ˚1s1σ
1
´2,˚ ´ σ˚2λ̄ms1σ

1
´1,˚qpg1q

´1

“pe` s1

¨

˚

˚

˚

˚

˚

˚

˝

α11

α21

0
γ´3,1

γ´2,1

γ´1,1

˛

‹

‹

‹

‹

‹

‹

‚

`

λmγ̄´1,2 λmγ̄´2,2 λmγ̄´3,2 0 ᾱ22 ᾱ12

˘

´ λ̄ms1

¨

˚

˚

˚

˚

˚

˚

˝

α12

α22

0
γ´3,2

γ´2,2

γ´1,2

˛

‹

‹

‹

‹

‹

‹

‚

`

λmγ̄´1,1 λmγ̄´2,1 λmγ̄´3,1 0 ᾱ21 ᾱ11

˘

q

¨ pg1q
´1.

Assume that

s1σ˚1

`

λmγ̄´1,2 λmγ̄´2,2 λmγ̄´3,2

˘

´ λ̄ms1σ˚2

`

λmγ̄´1,1 λmγ̄´2,1 λmγ̄´3,1

˘

” 0pmod Imq.

By multiplying σ11˚ from the left we get that s1

`

λmγ̄´1,2 λmγ̄´2,2 λmγ̄´3,2

˘

”

0pmod Imq which implies
`

γ´1,2 γ´2,2 γ´3,2

˘

” 0pmod Imq. Since that is a contra-
diction,

s1σ˚1

`

λmγ̄´1,2 λmγ̄´2,2 λmγ̄´3,2

˘

´ λ̄ms1σ˚2

`

λmγ̄´1,1 λmγ̄´2,1 λmγ̄´3,1

˘

ı 0pmod Imq

and hence ω R U6ppRm,Λmq, pIm, Im X Λmqq. Further the third row of ω equals
f3. Set ε2 :“ P13 P EU6pRm,Λmq. Then the first row of ε2ω equals f1. Since
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U6ppRm,Λmq, pIm, Im XΛmqq is normal, θω R U6ppRm,Λmq, pIm, Im XΛmqq. One can
proceed now as in Part I, case 1 (θω has the same properties as τ in Part I, case 1).

case 2 Assume that there is an i P t´3,´2,´1u such that γi1 R Im.
This case can be treated similarly.

case 3 Assume that γ´3,1, γ´3,2, γ´2,1, γ´2,2, γ´1,1, γ´1,2 P Im and one of the entries
β3,´3 and β3,´2 does not lie in Im.
By [1], chapter IV, Lemma 3.12, Part II, general case there are x1, x2 P Im such that
γ´1,1 ` x2px1γ´1,1 ` γ´2,1q P radpRmq X Im where radpRmq is the Jacobson radical
of the ring Rm. Set ξ1 :“ T´1,´2px2qT´2,´1px1q P EU6ppRm,Λmq, pIm,Γmqq. Then
ρ :“ ξ1σ has the form

¨

˝

˚
β1

0 0 1
γ1 δ1

˛

‚“

ˆ

α1 β1

γ1 δ1

˙

where α1 “ pα1ijq1ďi,jď3, β
1 “ pβ1ijq 1ďiď3

´3ďjď´1
, γ1 “ pγ1ijq´3ďiď´1

1ďjď3
, δ1 “ pδ1ijq´3ďi,jď´1 P

M3pRmq. Further pβ13,´3 R Im _ β13,´2 R Imq ^ γ1´1,1 P radpRmq X Im. Set g1 :“
T13ps1q P U1 and ω :“ rρ´1, g1s. Then

ω

“rρ´1, g1s

“pe` ρ1˚1s1ρ3˚ ´ ρ
1
˚,´3s1ρ´1,˚qpg1q

´1

“pe` s1

¨

˚

˚

˚

˚

˚

˚

˝

δ̄1´1,´1

δ̄1´1,´2

δ̄1´1,´3

λγ̄1´1,3

λγ̄1´1,2

λγ̄1´1,1

˛

‹

‹

‹

‹

‹

‹

‚

`

0 0 1 β13,´3 β13,´2 β13,´1

˘

´ s1

¨

˚

˚

˚

˚

˚

˚

˝

λ̄β̄3,´1

λ̄β̄3,´2

λ̄β̄3,´3

1
0
0

˛

‹

‹

‹

‹

‹

‹

‚

`

γ1´1,1 γ1´1,2 γ1´1,3 δ1´1,´3 δ1´1,´2 δ1´1,´1

˘

q

¨ pg1q
´1.

Assume that

s1ρ
1
˚1

`

β13,´3 β13,´2

˘

´ s1ρ
1
˚,´3

`

δ1´1,´3 δ1´1,´2

˘

” 0pmod Imq.

By multiplying ρ1˚ from the left we get that s1

`

β13,´3 β13,´2

˘

” 0pmod Imq which
implies

`

β13,´3 β13,´2

˘

” 0pmod Imq. Since that is a contradiction,

s1ρ
1
˚1

`

β13,´3 β13,´2

˘

´ s1ρ
1
˚,´3

`

δ1´1,´3 δ1´1,´2

˘

ı 0pmod Imq
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and hence ω R U6ppRm,Λmq, pIm, Im X Λmqq. Obviously ω´1,˚ ” f´1pmod Imq and
ω´1,´1 ” 1pmod radpRmq X Imq. Set ε2 :“ P3,´1 P EU6pRm,Λmq and ζ :“ε2ω.
Then ζ R U6ppRm,Λmq, pIm, Im X Λmqq. Further ζ3˚ ” f3pmod Imq and ζ33 ”

1pmod radpRmqXImq. By Nakayama’s lemma ζ33 is invertible. Set ξ2 :“ T32p´pζ33q
´1

ζ32qT31p´pζ33q
´1 ζ31qT3,´1p´pζ33q

´1ζ3,´1qT3,´2p´pζ33q
´1ζ3,´2q P EU6ppRm,Λmq, pIm,

Γmqq and η :“ ζξ2. Then η has the form
¨

˝

˚ ˚

0 0 α233 β23,´3 0 0

γ2 δ2

˛

‚“

ˆ

α2 β2

γ2 δ2

˙

where α2 “ pα2ijq1ďi,jď3, β
2 “ pβ2ijq 1ďiď3

´3ďjď´1
, γ2 “ pγ2ijq´3ďiď´1

1ďjď3
, δ2 “ pδ2ijq´3ďi,jď´1 P

M3pRmq. Since ζ R U6ppRm,Λmq, pIm, Im X Λmqq, η R U6ppRm,Λmq, pIm, Im X Λmqq.
Further α233 ” 1pmod radpRmq X Imq and β23,´3 P Im. Since η3˚ ” f3pmod Imq,
η˚,´3 ” e´3pmod Imq (apply Lemma 6.8 to the image of η in U2npRm{Im, Λm{pΛmX

Imqq). Hence β21,´3, β
2
2,´3, δ

2
´3,´3 ´ 1, δ2´2,´3, δ

2
´1,´3 P Im.

case 3.1 Assume that there are an i P t´3,´2,´1u and a j P t1, 2u such that
γ2ij R Im.
See case 1.

case 3.2 Assume that γ2´3,1, γ
2
´3,2, γ

2
´2,1, γ

2
´2,2, γ

2
´1,1, γ

2
´1,2 P Im and one of the en-

tries β21,´2, β21,´1, β22,´2, β22,´1, δ2´3,´2 and δ2´3,´1 does not lie in Im.
Set g2 :“ T´1,2ps2q P U2 and θ :“ rη, g2s. Then

θ

“rη, g2s

“pe` η˚,´1s2η
1
2˚ ´ η˚,´2λms2η

1
1˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˝

β21,´1

β22,´1

0
δ2´3,´1

δ2´2,´1

δ2´1,´1

˛

‹

‹

‹

‹

‹

‹

‚

`

δ̄2´1,´2 δ̄2´2,´2 δ̄2´3,´2 0 λ̄mβ̄
2
2,´2 λ̄mβ̄

2
1,´2

˘

´ λms2

¨

˚

˚

˚

˚

˚

˚

˝

β21,´2

β22,´2

0
δ2´3,´2

δ2´2,´2

δ2´1,´2

˛

‹

‹

‹

‹

‹

‹

‚

`

δ̄2´1,´1 δ̄2´2,´1 δ̄2´3,´1 0 λ̄mβ̄
2
2,´1 λ̄mβ̄

2
1,´1

˘

q

¨ pg2q
´1.

Assume that

s2η˚,´1

`

δ̄2´3,´2 0 λ̄mβ̄
2
2,´2 λ̄mβ̄

2
1,´2

˘

´ λms2η˚,´2

`

δ̄2´3,´1 0 λ̄mβ̄
2
2,´1 λ̄mβ̄

2
1,´1

˘

” 0pmod Imq.
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It follows that
`

δ2´3,´2 0 β22,´2 β21,´2

˘

,
`

δ2´3,´1 0 β22,´1 β21,´1

˘

” 0pmod Imq.
Since that is a contradiction,

s2η˚,´1

`

δ̄2´3,´2 0 λ̄mβ̄
2
2,´2 λ̄mβ̄

2
1,´2

˘

´ λms2η˚,´2

`

δ̄2´3,´1 0 λ̄mβ̄
2
2,´1 λ̄mβ̄

2
1,´1

˘

ı 0pmod Imq.

and hence θ R U6ppRm,Λmq, pIm, Im X Λmqq. Clearly θ3˚ “ f3. Set ε3 :“ P13. Thus
the first row of ε3θ equals f1. Since ε3θ R U6ppRm,Λmq, pIm, Im X Λmqq, one can
proceed now as in Part I, case 1.

case 3.3 Assume that γ2´3,1, γ
2
´3,2, γ

2
´2,1, γ

2
´2,2, γ

2
´1,1, γ

2
´1,2, β

2
1,´2, β21,´1, β22,´2, β22,´1,

δ2´3,´2, δ
2
´3,´1 P Im and one of the elements α211 ´ 1, α221, γ2´1,3, δ2´1,´1 ´ 1 and δ2´1,´2

does not lie in Im.
Set g2 :“ T13ps2q P U2 and θ :“ rη´1, g2s. Then

θ

“rη´1, g2s

“pe` η1˚1s2η3˚ ´ η
1
˚,´3s2η´1,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˝

δ̄2´1,´1

δ̄2´1,´2

δ̄2´1,´3

λmγ̄
2
´1,3

λmγ̄
2
´1,2

λmγ̄
2
´1,1

˛

‹

‹

‹

‹

‹

‹

‚

`

0 0 α233 β23,´3 0 0
˘

´ s2

¨

˚

˚

˚

˚

˚

˚

˝

0
0

λ̄mβ̄
2
3,´3

ᾱ233

0
0

˛

‹

‹

‹

‹

‹

‹

‚

`

γ2´1,1 γ2´1,2 γ2´1,3 δ2´1,´3 δ2´1,´2 δ2´1,´1

˘

q

¨ pg2q
´1.

Assume that θ P U6ppRm,Λmq, pIm, ImXΛmqq. Then s2δ̄
2
´1,´1α

2
33´s2 “ θ13 P Im and

s2δ̄
2
´1,´2α

2
33 “ θ23 P Im. Since α233 ” 1pmod Imq, it follows that δ2´1,´1´1, δ2´1,´2 P Im.

Consider the column

η1˚1s2α
2
33 ´ η

1
˚,´3s2γ

2
´1,3 ´

`

s2 0 ´s2
2λ̄mβ̄

2
3,´3γ

2
´1,1 ´s2

2ᾱ
2
33γ

2
´1,1 0 0

˘t
.

Since by assumption θ P U6ppRm,Λmq, pIm, Im X Λmqq, the column above is congru-
ent to 0 modulo Im. By multiplying η´3,˚ from the left we get that γ2´1,3 P Im since
γ2´3,1, γ

2
´1,1 P Im (γ2´3,1 is the first entry of η´3,˚). Hence η´1,˚ ” f´1pmod Imq. It

follows that η˚1 ” e1pmod Imq (apply Lemma 6.8 to the image of η in U2npRm{Im,
Λm{pΛm X Imqq) and hence α211 ´ 1, α221 P Im. Since that is a contradiction, θ R
U6ppRm,Λmq, pIm, Im X Λmqq.
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case 3.3.1 Assume that θ13 R Im or θ23 R Im.
Set g3 :“ T´2,1ps3q P U3 and τ :“ rθ´1, g3s. Then

τ

“rθ´1, g3s

“pe` θ1˚,´2s3θ1˚ ´ θ
1
˚,´1λms3θ2˚qpg3q

´1

“pe` s3

¨

˚

˚

˚

˚

˚

˚

˝

λ̄mθ̄2,´1

0
λ̄mθ̄2,´3

θ̄23

θ̄22

θ̄21

˛

‹

‹

‹

‹

‹

‹

‚

`

θ11 θ12 θ13 θ1,´3 0 θ1,´1

˘

´ λms3

¨

˚

˚

˚

˚

˚

˚

˝

λ̄mθ̄1,´1

0
λ̄mθ̄1,´3

θ̄13

θ̄12

θ̄11

˛

‹

‹

‹

‹

‹

‹

‚

`

θ21 θ22 θ23 θ2,´3 0 θ2,´1

˘

q

¨ pg3q
´1.

Assume that τ P U6ppRm,Λmq, pIm, Im X Λmqq. Then θ1˚,´2s3θ13 ´ θ1˚,´1λms3θ23 ”

0pmod Imq. It follows that θ13, θ23 P Im which is a contradiction. Hence τ R
U6ppRm,Λmq, pIm, Im X Λmqq. Clearly τ2˚ “ f2. Set ε4 :“ P12. Then the first
row of ε4θ equals f1. Since ε4θ R U6ppRm,Λmq, pIm, Im X Λmqq, one can proceed now
as in Part I, case 1.

case 3.3.2 Assume that θ13 P Im and θ23 P Im.
Let θ̂ be the image of θ in U2npRm{Im,Λm{pΛm X Imqq. Clearly θ̂ has the form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 θ̂33 0 0 0

0 0 θ̂´3,3 θ̂´3,´3 θ̂´3,´2 θ̂´3,´1

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

It follows that θ̂33 is invertible. Let h be the map defined in Definition 6.3. Then

¯̂
θ33θ̂´3,´2

“hpθ̂˚3, θ̂˚,´2q

“hpθ̂e3, θ̂e´2q

“hpe3, e´2q

“0.
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Hence θ̂´3,´2 “ 0 and therefore θ´3,´2 P Im. Further

¯̂
θ33θ̂´3,´1

“hpθ̂˚3, θ̂˚,´1q

“hpθ̂e3, θ̂e´1q

“hpe3, e´1q

“0.

Hence θ̂´3,´1 “ 0 and therefore θ´3,´1 P Im. Clearly θ22 “ 1. Set ξ3 :“ T23p´θ23q

T2,´1p´θ2,´1q P U6ppRm,Λmq, pIm,Γmqq and χ :“ θξ3. Then χ23, χ2,´1 “ 0 and the
image χ̂ of χ in U6pRm{Im,Λm{pΛm X Imqq has the form

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 χ̂33 0 0 0

0 0 χ̂´3,3 χ̂´3,´3 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since θ R U6ppRm,Λmq, pIm, ImXΛmqq, χ R U6ppRm,Λmq, pIm, ImXΛmqq (i.e. χ̂ ‰ e).
Set g3 :“ T31ps3q P U3 and µ :“ rχ, g3s. Then

µ

“rχ, g3s

“pe` χ˚3s3χ
1
1˚ ´ χ˚,´1s3χ

1
´3,˚qpg3q

´1

“pe` s3

¨

˚

˚

˚

˚

˚

˚

˝

χ13

0
χ33

χ´3,3

χ´2,3

χ´1,3

˛

‹

‹

‹

‹

‹

‹

‚

`

χ̄´1,´1 χ̄´2,´1 χ̄´3,´1 λ̄mχ̄3,´1 0 λ̄mχ̄1,´1

˘

´ s3

¨

˚

˚

˚

˚

˚

˚

˝

χ1,´1

0
χ3,´1

χ´3,´1

χ´2,´1

χ´1,´1

˛

‹

‹

‹

‹

‹

‹

‚

`

λmχ̄´1,3 λmχ̄´2,3 λmχ̄´3,3 χ̄33 0 χ̄13

˘

q

¨ pg3q
´1.

Assume that µ P U6ppRm,Λmq, pIm, ImXΛmqq. Then s3χ33χ̄´1,´1´s3χ3,´1λmχ̄´1,3´

s3p1 ` s3χ33χ̄´3,´1 ´ s3χ3,´1λmχ̄´3,3q “ µ31 P Im and hence s3χ33χ̄´1,´1 ´ s3 P Im.
It follows that χ33 ” 1pmod Imq (i.e. χ̂33 “ 1) since s3 P pRmq

˚ and χ´1,´1 ”
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1pmod Imq. That implies

χ̂´3,´3

“hpχ̂˚3, χ̂˚,´3q

“hpχ̂e3, χ̂e´3q

“hpe3, e´3q

“1.

Further s3χ´3,3χ̄´1,´1 ´ s3χ´3,´1λmχ̄´1,3 ´ s3ps3χ´3,3χ̄´3,´1 ´ s3χ´3,´1λmχ̄´3,3q “

µ´3,1 P Im and hence s3χ´3,3χ̄´1,´1 P Im. It follows that χ´3,3 ” 0pmod Imq (i.e.
χ̂´3,3 “ 0) since s3 P pRmq

˚ and χ´1,´1 ” 1pmod Imq. But that implies the contra-
diction χ̂ “ e. Hence µ R U6ppRm,Λmq, pIm, Im X Λmqq. Clearly µ2˚ “ f2. Set ε4 :“
P12. Then the first row of ε4θ equals f1. Since ε4µ R U6ppRm,Λmq, pIm, Im X Λmqq,
one can proceed as in Part I, case 1.

case 3.4 Assume that γ2´3,1, γ
2
´3,2, γ

2
´2,1, γ

2
´2,2, γ

2
´1,1, γ

2
´1,2, β

2
1,´2, β21,´1, β22,´2, β22,´1,

δ2´3,´2, δ
2
´3,´1, α

2
11 ´ 1, α221, γ2´1,3, δ2´1,´1 ´ 1, δ2´1,´2 P Im and one of the elements

α212, α
2
22 ´ 1, γ2´2,3, δ

2
´2,´1, δ

2
´2,´2 ´ 1, α213 and α223 does not lie in Im.

Set g2 :“ T21ps2q P U2 and θ :“ rη, g2s. Then

θ

“rη, g2s

“pe` η˚2s2η
1
1˚ ´ η˚,´1s2η

1
´2,˚qpg2q

´1

“pe` s2

¨

˚

˚

˚

˚

˚

˚

˝

α212

α222

0
γ2´3,2

γ2´2,2

γ2´1,2

˛

‹

‹

‹

‹

‹

‹

‚

`

δ̄2´1,´1 δ̄2´2,´1 δ̄2´3,´1 0 λ̄mβ̄
2
2,´1 λ̄mβ̄

2
1,´1

˘

´ s2

¨

˚

˚

˚

˚

˚

˚

˝

β21,´1

β22,´1

0
δ2´3,´1

δ2´2,´1

δ2´1,´1

˛

‹

‹

‹

‹

‹

‹

‚

`

λmγ̄
2
´1,2 λmγ̄

2
´2,2 λmγ̄

2
´3,2 0 ᾱ222 ᾱ212

˘

q

¨ pg2q
´1.

Assume that θ P U6ppRm,Λmq, pIm, Im X Λmqq. Then s2η˚2λ̄mβ̄
2
1,´1 ´ s2η˚,´1ᾱ

2
12 ”

0pmod Imq. It follows that α212 P Im. Hence ´s2η˚,´1ᾱ
2
22 ` s2e´1 ” 0pmod Imq. By

multiplying η1´1,˚ from the left we get that ´s2ᾱ
2
22` s2ᾱ

2
11 P Im which implies α222 ”

1pmod Imq since α211 ” 1pmod Imq. Let η̂ be the image of η in U2npRm{Im,Λm{pΛmX

Imqq. By Lemma 6.8, η̂´2,˚ “ f´2 since η̂˚2 “ e2. Hence γ2´2,3, δ
2
´2,´2´1, δ2´2,´1 P Im.
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Hence η̂ has the form
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 α̂213 0 0 0

0 1 α̂223 0 0 0

0 0 1 0 0 0

0 0 γ̂2´3,3 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Clearly

α̂213

“hpη̂˚3, η̂˚,´1q

“hpη̂e3, η̂e´1q

“hpe3, e´1q

“0

and

α̂223

“hpη̂˚3, η̂˚,´2q

“hpη̂e3, η̂e´2q

“hpe3, e´2q

“0.

Hence α̂213 “ 0 “ α̂223 and therefore α213, α
2
23 P Im. Since that is a contradiction,

θ R U6ppRm,Λmq, pIm, Im X Λmqq. Clearly θ3˚ “ f3. Set ε3 :“ P13. Then the first
row of ε3θ equals f1. Since ε3θ R U6ppRm,Λmq, pIm, ImXΛmqq, one can proceed as in
Part I, case 1.

case 3.5 Assume that γ2´3,1, γ
2
´3,2, γ

2
´2,1, γ

2
´2,2, γ

2
´1,1, γ

2
´1,2, β

2
1,´2, β21,´1, β22,´2, β22,´1,

δ2´3,´2, δ
2
´3,´1, α

2
11´ 1, α221, γ2´1,3, δ2´1,´1´ 1, δ2´1,´2, α

2
12, α

2
22´ 1, γ2´2,3, δ

2
´2,´1, δ

2
´2,´2´

1, α213, α
2
23 P Im.

Since η R U6ppRm,Λmq, pIm, Im X Λmqq, γ2´3,3 R Im. By [1], chapter IV, Lemma
3.12, Part II, case 4 there are x1, x2 P Im such that γ2´1,3 ` x2px1γ

2
´1,3 ` γ2´2,3q P

radpRmq X Im. Set ξ3 :“ T´1,´2px2qT´2,´1px1q P EU6ppRm,Λmq, pIm,Γmqq and
θ :“ ξ3η. Then θ ” ηpmod Imq, θ33 “ α233 ” 1pmod radpRmq X Imq and θ´1,3 P

radpRmq X Im. Set ε21 :“ T3,´1p1q P EU6pRm,Λmq and τ :“ε3θ. Then τ33 ”

1pmod radpRmq X Imq and τ´3,´1 “ θ´3,´1 ´ θ´3,3 ” θ´3,3 ” γ2´3,3pmod Imq. Since
γ2´3,3 R Im, it follows that τ´3,´1 R Im. Set ξ4 :“ T32p´pτ33q

´1τ32qT31p´pτ33q
´1

τ31qT3,´1p´pτ33q
´1τ3,´1qT3,´2p´pτ33q

´1τ3,´2q P EU6ppRm,Λmq, pIm,Γmqq and χ :“
τξ4. Then χ has the form

¨

˚

˚

˝

˚ ˚

0 0 α333 β33,´3 0 0

γ3 δ3

˛

‹

‹

‚

“

˜

α3 β3

γ3 δ3

¸
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where α3, β3, γ3, δ3 P M3pRmq. Further α333 ” 1pmod radpRmq X Imq, β33,´3 P Im
and δ3´3,´1 R Im. One can proceed now as in case 3.1 or case 3.2.

case 4 Assume that γ´3,1, γ´3,2, γ´2,1, γ´2,2, γ´1,1, γ´1,2, β3,´3, β3,´2 P Im and β3,´1 R

Im.
Set ε11 :“ T12p1q P EU6pRm,Λmq and ρ :“ε12σ. Clearly ρ´3,1, ρ´3,2, ρ´2,1, ρ´2,2, ρ´1,1,
ρ´1,2 P Im. Further

ρ3˚ “

´

0 0 1 β3,´3 β´3,´2 ` β´3,´1 β´3,´1

¯

.

Since β3,´2 P Im and β´3,´1 R Im, β´3,´2 ` β´3,´1 R Im. One can proceed now as in
case 3.

case 5 Assume that γ´3,1, γ´3,2, γ´2,1, γ´2,2, γ´1,1, γ´1,2, β3,´3, β3,´2, β3,´1 P Im.
One can proceed as in case 3 (σ has the same properties as ζ in case 3).

The following inverted tree diagram extending over several pages gives an
overview of the case by case proof just concluded of Part II. In the diagram a “`”
at a position pi, jq of a matrix σ means that σij P Im if i ‰ j and σij ” 1pmod Imq
if i “ j. If positions in a matrix σ are marked by a “´”, it means that there is
one position pi, jq among all the positions marked by a “´” such that σij R Im if
i ‰ j and σij ı 1pmod Imq if i “ j. A “´” does not mean that the entry at this
position does not lie in Im (resp. is not congruent to 1 modulo Im). A “˚” stands for
an arbitrary entry. If we write Tijp`q we mean an elementary transvection Tijpxq
where x P Im.
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h

ε1rε0h, g0s

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

R CU2nppRm,Λmq, pIm, Im X Λmqq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

0 0 1 ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ´ ´ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

3

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ˚ ˚ ˚

´ ˚ ˚ ˚ ˚ ˚

´ ˚ ˚ ˚ ˚ ˚

´ ˚ ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

0 0 1 ` ` `

` ` ´ ` ´ ´

` ` ´ ` ´ ´

` ` ´ ` ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

5

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ` ` ´

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

4

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ˚ ˚ ˚

˚ ´ ˚ ˚ ˚ ˚

˚ ´ ˚ ˚ ˚ ˚

˚ ´ ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

1

ε0, ε1 P EU6pRm,Λmq,

g0 P U0
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rε1rε0h, g0s, g1s

ε2rε1rε0h, g0s, g1s

ε1rε0h, g0s

analog to case 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ 0 ´ ´

´ ´ ´ 0 ´ ´

0 0 1 0 0 0

´ ´ ´ 1 ´ ´

´ ´ ´ 0 ´ ´

´ ´ ´ 0 ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0

´ ´ ´ ´ ´ 0

´ ´ ´ ´ ´ 0

´ ´ ´ ´ ´ 0

´ ´ ´ ´ ´ 0

´ ´ ´ ´ ´ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

see Part I, case 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ´ ´ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

3

ε2 “ P13

g1 “ T1,´2ps1q
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ξ1p
ε1rε0h, g0sq

rpξ1p
ε1rε0h, g0sqq

´1, g1s

ε2rpξ1p
ε1rε0h, g0sqq

´1, g1s

pε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ´ ´ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

x ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

x P radpRmq X Im
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˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝
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` ´ ´ ´ ´ ´

` ´ ´ ´ ´ ´

` ´ ´ ´ ´ ´

` ´ ´ ´ ´ ´

` ` ` ` ` y

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

` ` y ` ` `

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

0 0 y ` 0 0

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ˚ ˚ ` ` `

´ ˚ ˚ ` ` `

0 0 y ` 0 0

` ` ˚ ` ` `

` ` ˚ ` ˚ ˚

` ` ´ ` ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

3.3

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

` ´ ´ ` ` `

` ´ ´ ` ` `

0 0 y ` 0 0

` ` ˚ ` ` `

` ` ´ ` ´ ´

` ` ` ` ` `

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

3.4

ξ2 “ T32p`qT31p`q

¨T3,´1p`qT3,´2p`q

ε2 “ P3,´1

g1 “ T13ps1q

ξ1 “ T´1,2p`qT´2,´1p`q
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pε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2

rpε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2, g2s
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˚

˚

˚

˚

˚

˚

˚
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

3.2
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˚

˚

˚

˚

˚

˚

˚

˚

˚

˚
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˚
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˛

‹

‹

‹
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‹

‹

‹

‹

‹
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‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

see case 1
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq
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˚

˝
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´ ´ ´ 0 ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

g2 “ T´1,2ps2q

3.2
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˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚
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˚

˚
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` ´ ´ ` ` `

0 0 y ` 0 0

` ` ˚ ` ` `

` ` ´ ` ´ ´

` ` ` ` ` `

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq
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˚
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˚

˝
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´ ´ ´ 0 ´ ´

0 0 1 0 0 0
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´ ´ ´ 0 ´ ´

´ ´ ´ 0 ´ ´
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

g2 “ T21ps2q

3.4

3.1
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˚

˚
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˚
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˚
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˚

˚

˝
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq

3.5
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ε3rpε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2, g2s

pε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2

rppε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2q
´1, g2s
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see Part I, case 1
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˚
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˚
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˚

˚

˚
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˛

‹

‹

‹

‹

‹

‹

‹

‹

‹
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‹
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‹
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y ” 1pmod radpRmq X Imq
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˚
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˚
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

g2 “ T13ps2q

3.3

ε3 “ P13
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˚

˚

˚

˚

˚

˚

˚

˚
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‹

‹

‹

‹

‹

‹

‹

‚

see Part I, case 1

ε3 “ P13
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prppε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2q
´1, g2sqξ3

rpprppε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2q
´1, g2sqξ3q

l3 , g3s

ε4rpprppε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2q
´1, g2sqξ3q

l3 , g3s
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‹
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see Part I, case 1

ε4 “ P12

l3 “ ´1,

g3 “ T´2,1ps3q

ξ3 “ e

3.3.1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ` ` 0 `

0 1 ` ` 0 `

` ` ´ ` ` `

` ` ´ ´ ` `

0 0 ` ` 1 `

0 0 ` ` 0 `

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ` ` ` `

0 1 0 ` ` 0

` ` ´ ` ` `

` ` ´ ´ ` `

0 0 ` ` ` `

0 0 ` ` ` `

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ´ 0 ´

0 1 0 0 0 0

´ ´ ´ ´ 0 ´
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‹
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˚

˚

˚

˚

˚

˚

˚
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˚
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´ ´ ´ ´ ´ 0
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

see Part I, case 1

ε4 “ P12

l3 “ 1,

g3 “ T31ps3q

ξ3 “ T23p`qT2,´1p`q

3.3.2
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pε2rpξ1p
ε1rε0h, g0sqq

´1, g1sqξ2

ξ3p
ε2rpξ1p

ε1rε0h, g0sqq
´1, g1sqξ2

ε21pξ3p
ε2rpξ1p

ε1rε0h, g0sqq
´1, g1sqξ2q

pε21pξ3p
ε2rpξ1p

ε1rε0h, g0sqq
´1, g1sqξ2qqξ4
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˚

˚

˚

˚

˚

˚

˚
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‹
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‹

‹

‹

‹

‚

y ” 1pmod radpRmq X Imq
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˚

˚
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‹

‹

‚

y ´ 1, z P radpRmq X Im
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‹
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w ” 1pmod radpRmq X Imq
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‹

‹

‚

w ” 1pmod radpRmq X Imq

see case 3.2

ξ4 “ T32p`qT31p`q

¨T3,´1p`qT3,´2p`q

ε21 “ T3,´1p1q

ξ3 “ T´1,´2p`qT´2,´1p`q

3.5
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ε1rε0h, g0s

ε11ε1rε0h, g0s

ε1rε0h, g0s

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ` ` ´

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚ ˚ ˚

0 0 1 ` ´ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

` ` ˚ ˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

see case 3

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ ´ ´ ` ´ ´

´ ´ ´ ` ´ ´

0 0 1 ` ` `

` ` ´ ` ´ ´

` ` ´ ` ´ ´

` ` ´ ` ´ ´

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

see case 3

5

ε11 “ T21p1q

4
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Part III Assume that h P CU2nppRm,Λmq, pIm, Im X Λmqq.
This part corresponds to Proposition 3.3 in [1], chapter IV. By [1], chapter IV,
Corollary 3.4, there is an elementary transvection Tijpxq P EU2npRm,Λmq such that
rh, Tijpxqs R U2nppRm,Λmq, pIm,Γmqq since h R CU2nppRm,Λmq, pIm,Γmqq. Since h P
CU2nppRm,Λmq, pIm, Im X Λmqq, rh, Tijpxqs P U2nppRm,Λmq, pIm, Im X Λmqq. There
are an a P R and an s P Sm such that x “ a

s
. Set â :“ fmpaq and ŝ :“ fmpsq. Set

g0 :“ Tijps0ŝxq “ Tijps0âq P U0. By Lemma 7.6, rh, g0s P U2nppRm,Λmq, pIm, Im X
Λmqq but rh, g0s R U2nppRm,Λmq, pIm,Γmqq. Set σ :“ rh, g0s. By Lemma 7.7,
there is an ε1 P EU2npRm,Λmq such that y1 :“ pε1σq11 is invertible. Clearly
ε1σ P U2nppRm,Λmq, pIm, Im X Λmqq but ε1σ R U2nppRm,Λmq, pIm,Γmqq. Set ω :“
ε1σ, ξ1 :“ T´2,1p´ω´2,1py1q

´1q . . . T21p´ω21py1q
´1q P EU2nppRm,Λmq, pIm,Γmqq and

ξ2 :“ T12p´py1q
´1ω12q . . . T1,´2p´py1q

´1ω1,´2q P EU2nppRm,Λmq, pIm,Γmqq. Then
τ :“ ξ1ωξ2 has the form

¨

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‚

where y2, y3, y4 P Rm and A PM2n´2pRmq.

case 1 Assume that y3py1q
´1 P Γm and py1q

´1y2 P λ̄mΓm.
Set ξ3 :“ T´1,1py3py1q

´1q P EU2nppRm,Λmq, pIm,Γmqq and ξ4 :“ T1,´1ppy1q
´1y2q P

EU2nppRm,Λmq, pIm,Γmqq. Then ζ :“ ξ3τξ4 has the form
¨

˚

˚

˝

y1 0 0

0 A 0

0 0 y5

˛

‹

‹

‚

where y5 P Rm. Clearly ζ P U2nppRm, Λmq, pIm, Im X Λmqq but ζ R U2nppRm,
Λmq, pIm,Γmqq . Hence there is an l P t2, . . . , ´2u such that |ζ˚l| R Γm.

case 1.1 Assume that εplq “ 1.
There are a b1 P R and a t1 P Sm such that y1|ζ˚l|ȳ1 ´ ζ´l,lȳ1 ` λmζ´l,lȳ1 “

b1

t1
. Set

t :“ t1

1
P Rm and g1 :“ Tl,´1ps1s2tq P U1. One can show that rζ, g1s equals

T2,´1ps1s2tζ2lȳ1q¨

...

Tl´1,´1ps1s2tζpl´1qlȳ1q¨

Tl,´1ps1s2tζllȳ1 ´ s1s2tq¨

Tl`1,´1ps1s2tζpl`1qlȳ1q¨

...

T´2,´1ps1s2tζ´2,lȳ1q¨

T1,´1pzq
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where z “ λ̄ms1s2tpy1|ζ˚l|ȳ1 ´ ζ´l,lȳ1 ` λmζ´l,lȳ1qs1s2t. Since |ζ˚l| R Γm and y1

is invertible, y1|ζ˚l|ȳ1 R Γm. Since ζ´l,l P Im, ´ζ´l,lȳ1 ` λmζ´l,lȳ1 P pΓmqmin Ď Γm.
Since s1s2t is invertible, it follows that s1s2tpy1|ζ˚l|ȳ1´ζ´l,lȳ1`λmζ´l,lȳ1qs1s2t R Γm.
Hence z R λ̄mΓm. Set

ξ5 :“

T´2,´1p´s1s2tζ´2,lȳ1q¨

...

Tl`1,´1p´s1s2tζpl`1qlȳ1q¨

Tl,´1p´ps1s2tζllȳ1 ´ s1s2tqq¨

Tl´1,´1p´s1s2tζpl´1qlȳ1q¨

...

T2,´1p´s1s2tζ2lȳ1q P EU2nppRm,Λmq, pIm,Γmqq

and g2 :“ T1,´1pzq P U2. Then

pξ5rξ3ξ1p
ε1rh, g0sqξ2ξ4, g1sq “ g2.

Note that g2 R U2nppRm,Λmq, pIm,Γmqq since z R λ̄mΓm. Set g1i :“ ρmpgiq @i P
t0, 1, 2u, ε11 :“ ρmpε1q and d1i :“ ρmpdiq @i P t0, 1, 2u. Then ε11 P E 1 “ ρmpEU2npRm,
Λmqq, g12 P GenpE 1qzteu, d

1
ig1i P U

1 @i P t0, 1, 2u and

r
ε11rh1, g10s, g

1
1s “ g12.

case 1.2 Assume that εplq “ ´1.
This case can be treated similarly.

case 2 Assume that y3py1q
´1 R Γm.

case 2.1 Assume that |τ˚l| P Γm @l P t2, . . . ,´2u.
Set χ :“ T´1,1p´y3py1q

´1q P EU2npRm, Λmq (one checks easily that ´y3py1q
´1 P Λm).

Then ζ :“ χτ has the form
¨

˚

˚

˝

y1 0 y2

0 A 0

0 0 y5

˛

‹

‹

‚

where y5 P Rm. There are an b1 P R and a t1 P Sm such that y3py1q
´1 “ b1

t1
. Set

t :“ t1

1
P Rm and g1 :“ T12ps1s2tq P U1. Using the equality rαβ, γs “ αrβ, γsrα, γs

one gets that rτ, g1s “ rχ
´1ζ, g1s “

χ´1
rζ, g1srχ

´1, g1s. It is easy to show that rζ, g1s P

EU2nppRm,Λmq, pIm,Γmqq and hence χ´1
rζ, g1s P EU2nppRm,Λmq, pIm,Γmqq. On the

other hand rχ´1, g1s “ T´1,2py3py1q
´1s1s2tqT´2,2p´s1s2ty3py1q

´1s1s2tq, by pR6.1q.
Set ξ3 :“ T´1,2p´y3py1q

´1s1s2tqp
χ´1
rζ, g1sq

´1 P EU2nppRm,Λmq, pIm, Γmqq and g2 :“
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T´2,2p ´s1s2ty3 py1q
´1s1s2tq P U2. Since y3py1q

´1 R Γm, g2 R U2nppRm,Λmq, pIm,Γmqq.
Clearly

pξ3rξ1p
ε1rh, g0sqξ2, g1sq “ g2.

As above, push this equation into U2npRm,Λmq{U2nppRm,Λmq, pIm,Γmqq by apply-
ing ρm.

case 2.2 Assume that there is an l P t2, . . . ,´2u such that |τ˚l| R Γm.
Choose a p P t2, . . . ,´2u such that p ‰ ˘l and set g1 :“ Tlpps1q P U1. Then
ζ :“ rτ, g1s has the form

¨

˚

˚

˝

1 0 0

0 B 0

0 0 1

˛

‹

‹

‚

where B P M2n´2pRmq. Since τ P U2nppRm,Λmq, pIm, Im X Λmqq, ζ P U2nppRm,Λmq,
pIm, Im X Λmqq. By Lemma 7.8, |ζ˚p| R Γm. Hence ζ R U2nppRm,Λmq, pIm,Γmqq and
thus one can proceed as in case 1.

case 3 Assume that py1q
´1y2 R λ̄mΓm.

See case 2.

The inverted tree diagram below extending over several pages gives an overview
of the proof just concluded of Part III.
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h

rh, g0s

ε1rh, g0s

¨

˚

˚

˚

˚

˚

˝

˚

˛

‹

‹

‹

‹

‹

‚

R CU2nppRm,Λmq, pIm,Γmqq,
P CU2nppRm,Λmq, pIm, Im X Λmqq

¨

˚

˚

˚

˚

˚

˝

˚

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y1 u

v ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible

ξ1 “
2
ś

k“´2

Tk1p´vkpy1q
´1q,

ξ2 “
´2
ś

k“2

T1kp´py1q
´1ukq

ε1 P EU2npRm,Λmq

g0 “ Tijps0âq
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ξ1p
ε1rh, g0sqξ2

ξ3ξ1p
ε1rh, g0sqξ2ξ4

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
y3py1q

´1 R Γm

2

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
py1q

´1y2 R λ̄mΓm

3

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
y3py1q

´1 P Γm, py1q
´1y2 P λ̄mΓm

¨

˚

˚

˚

˚

˚

˝

y1 0 0

0 A 0

0 0 y5

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible

¨

˚

˚

˚

˚

˚

˝

y1 0 0

0 A 0

0 0 y5

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
y1 invertible,
Dl P t2, . . . , nu :

length of l-th column R Γm

1.1

¨

˚

˚

˚

˚

˚

˝

y1 0 0

0 A 0

0 0 y5

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
y1 invertible,

Dl P t´n, . . . ,´2u :
length of l-th column R Γm

1.2

ξ3 “ T´1,1py3py1q
´1q,

ξ4 “ T1,´1ppy1q
´1y2q

1
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rξ3ξ1p
ε1rh, g0sqξ2ξ4, g1s

ξ5rξ3ξ1p
ε1rh, g0sqξ2ξ4, g1s

ξ1p
ε1rh, g0sqξ2

´2
ź

k“2

Tk,´1pxkqT1,´1pzq

xk P Im @k P t2, . . . ,´2u,
z R λ̄mΓm

T1,´1pzq
z R λ̄mΓm

ξ5 “ p
´2
ś

k“2

Tk,´1pxkqq
´1

g1 “ Tl,´1ps1s2tq

analog to case 1.1

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
y3py1q

´1 R Γm

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
y3py1q

´1 R Γm,
length of l-th column P Γm

@l P t2, . . . ,´2u

2.1

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
y3py1q

´1 R Γm,
Dl P t2 . . . ,´2u :

length of l-th column R Γm

2.2

2
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rξ1p
ε1rh, g0sqξ2, g1s

ξ3rξ1p
ε1rh, g0sqξ2, g1s

ξ1p
ε1rh, g0sqξ2

σT´2,2pzq
σ P U2nppRm,Λmq, pIm,Γmqq,

z R Γm

T´2,2pzq
z R Γm

ξ3 “ σ´1

g1 “ T12ps1s2tq

¨

˚

˚

˚

˚

˚

˝

1 0 0

0 B 0

0 0 1

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of p-th column R Γm

see case 1

¨

˚

˚

˚

˚

˚

˝

y1 0 y2

0 A 0

y3 0 y4

˛

‹

‹

‹

‹

‹

‚

” epmod Imq,
length of one column R Γm,

y1 invertible,
py1q

´1y2 R λ̄mΓm

analog to case 2

3

g1 “ Tlpps1q

l
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Theorem 7.10 Let H be a subgroup of U2npR,Λq. Then

H is normalized by EU2npR,Λq ô

D! form ideal pI,Γq such that EU2nppR,Λq, pI,Γqq Ď H Ď CU2nppR,Λq, pI,Γqq.

Proof It follows from the previous lemmas of this section and from Lemma 6.16
that pG,E,GenpEq, BpEq, Gp¨qq (where G, E, GenpEq, BpEq and Gp¨q are defined
as in Lemma 7.1) is a sandwich classification group. Hence we can apply Theorem
3.13 (note that if H is central, then there clearly is a unique form ideal pI,Γq,
namely pI,Γq “ p0, 0q, such that EU2nppR,Λq, pI,Γqq Ď H Ď CU2nppR,Λq, pI,Γqq).

l

Remark By [6], Corollary 3.8, any form ring pR,Λq where R is almost commuta-
tive is the direct limit of form subrings pRi,Λiq of pR,Λq where for any i, Ri is a
Noetherian Ci-module (where Ci is the subring of Ri consisting of all finite sums of
elements of the form cc̄ and ´cc̄ where c P CenterpRiq). Hence the theorem above
is still true if we drop the assumption that R is a Noetherian C-module and instead
assume only that R is almost commutative (note that EU2n and CU2n commute
with direct limits).
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