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1 Introduction

The main result of this thesis is the following: If (R, A) is a form ring such that R is
almost commutative (i.e. finitely generated as module over a subring in its center)
and H is a subgroup of the hyperbolic unitary group Us,(R, A) where n > 3, then

H is normalized by the elementary subgroup EUs, (R, A) of Us,(R,A) < (1.1)
3! form ideal (I,T") such that EUs,((R,A), (I,T)) € H < CUy,((R,A), (I,T))

where EUs,((R,A),(I,I")) denotes the relative elementary subgroup of level (7,T")
and CUy,((R,A), (I,T")) denotes the full congruence subgroup of level (7,I"). This
result extends the range of validity of previous results. If R has finite Bass-Serre di-
mension d (cf.[2]) then the result was proved already in [I] provided n > sup(d+2, 3)
and if R is commutative, it was proved recently in [II]. An incorrect proof, which
can be repaired when 2 is invertible in R, was given in [9].

The dissertation is organized as follows.

In section 2 we recall some standard notation which will be used throughout
the dissertation.

In section 3 we present a model theoretic approach of A. Bak for studying
Chevalley groups, unitary groups, classical-like groups and their generalizations.

In section 4 we recall the definitions of the general linear group and some
important subgroups. In section 5 we show how the model theoretic approach given
in section 3 can be used to prove the following result (this result is not new, see
[8], but its proof is): If R is a ring such that R is almost commutative and H is a
subgroup of the general linear group GL,(R) where n > 3, then

H is normalized by the elementary subgroup E,(R) of GL,(R) <
3! ideal I such that E,(R,I) € H < C,(R, ) (1.2)

where E, (R, I) denotes the relative elementary subgroup of level I and C, (R, I)
denotes the full congruence subgroup of level I.

In section 6 we recall the definitions of the hyperbolic unitary group and some
important subgroups. In the last section we use the model theoretic approach of
section 3 to prove (1.1).

2 Notation

Let G be a group and H, K be subsets of G. The subgroup of GG generated by H is
denoted by (H). If g, h € G, let "g := hgh™!, g" := h='gh and [g, h] := ghg *h~".
Set *H := ({*h|h € H,k € K}) and HX := ({h¥|h € H,k € K}). Analogously
define [H, K] and HK. Instead of X{g} we write X¢g (analogously we write g



instead of {g}’, 9H instead of {9 H, [¢, K] instead of [{g}, K] etc.).

In this thesis, ring will always mean associative ring with 1 such that 1 # 0.
Ideal will mean two-sided ideal. By a multiplicative subset of a commutative ring
C we mean a subset S € C such that 0¢ S, 1 e S and zy e S Vx,ye S. If R is
a ring and m,n € N, then the set of all invertible elements in R is denoted by R*
and the set of all m x n matrices with entries in R is denoted by M,,«,(R). We
set M,(R) := Myxn(R). The identity matrix in M, (R) is denoted by e or e,y
and the matrix with an 1 at position (4, j) and zeros elsewhere is denoted by e;;. If
a = (aij)ij € Mimxn(R), we denote the transpose of a by a', the i-th row of a by a;
and the j-th column of a by a;. If a = (a;;);; € M, (R) is invertible, the entry of a~*
at position (4, 7) is denoted by a;;, the i-th row of a~! by al, and the j-th column
of a=' by d;. Further we denote by R"™ the set of all columns u = (uy, ..., up)"
with entries in R and by "R the set of all rows v = (vy,...,v,) with entries in R.
In sections 4 and 5, e; € R™, where i € {1,...,n}, denotes the column whose i-th
entry is 1 and whose other entries are 0 and f; € "R, where i € {1,...,n}, denotes
the row whose i-th entry is 1 and whose other entries are 0. In sections 6 and 7,
e; € R? whereie {1,...,n,—n,...,—1}, denotes the column whose i-th entry is 1
and whose other entries are 0 if i € {1,...,n} and the column whose (2n + 1 + 7)-th
entry is 1 and whose other entries are 0 if i € {—n,...,—1}. In sections 6 and 7,
fi € "R, where i € {1,...,n,—n,...,—1}, denotes the row whose i-th entry is 1
and whose other entries are 0 if ¢ € {1,...,n} and the row whose (2n + 1 + i)-th
entry is 1 and whose other entries are 0 if i € {—n,..., —1}.

3 Standard groups

The concepts, constructions and results of this section are unpublished work of A.
Bak. Their purpose is to provide a model theoretic setting for studying Chevalley
groups, unitary groups, classical-like groups and their generalizations. This ap-
proach will be applied in the current dissertation to proving sandwich classification
results for general linear and unitary groups.

Definition 3.1 Let GG denote a group and B a set of subgroups of GG such that
(1) for any U,V € B there is a W € B such that W < U n' V' and
(2) for any g € G and U € B there is a V € B such that 9V < U.

Then B is called a base of open subgroups of 1 € G. B is called discrete (respectively
nondiscrete), if it contains (respectively does not contain) the trivial subgroup.

Remark Let B be a base of open subgroups of 1 € G. The set of all left cosets
of members of B is a base of open sets for a topology on G such that G is a
topological group, i.e. such that the operations of taking inverse and multiplication



are continuous (cf. [7]). This topology is the discrete one (i.e. any subset of G is
open) if and only if B is discrete.

Definition 3.2 Let G be a group, E a subgroup of G and Gen(E) a subset of
G containing 1 such that F is generated by Gen(E). Further let B(E) be a set
of subgroups of £ and G(-) a rule which associates to each U € B(FE) a normal
subgroup G(U) of G containing U. The quintuple (G, E,Gen(E), B(E),G(+)) is

called a standard group if the following are satisfied:

(3.2.1) B(FE) is a base of open subgroups of 1 € F, which contains E as a member.

(3.2.2) A subgroup of E which is generated by members of B(FE) is a member of
B(E).

(3.2.3) If U € B(F) then Gen(U) := Gen(E) n U generates U. Furthermore, it is
assumed that if g € Gen(F) and g € G(U), then g€ U.

The elements of Gen(FE) are called base generators and the members of B(FE) are
called base subgroups. For each U € B(FE) the normal closure of U in E is denoted
by E(U) and the preimage of Center(G/G(U)) under the canonical homomorphism
G — G/G(U) by C(U).

Remark

(1) General linear groups and hyperbolic unitary groups are examples of standard
groups. For details see Lemma 5.1 resp. Lemma 7.1.

(2) The following condition is satisfied in many situations including those in (1)
above, motivates the key notions below of supplemented base and local map
and is inherited by quotients (see 3.4 below), but is needed neither for the
results of this section nor their applications in sections 5 and 7.

(3.2.4) Let U be a nontrivial member of B(E). If g € Gen(E) such that g ¢
U, then £g contains a (nontrivial) member V of B(E), which is not
contained in U.

In all of the examples in (1), it turns out that g € V', thus guaranteeing that V'
is not contained in U.

(3) The following condition is also satisfied in many situations, including those in
(1) above, and is inherited by quotients. However, only the weakened form of
the condition, which is stated in (3.8.1) in Lemma 3.8, is needed for sandwich
classification.

(3.2.5) If g € Gen(F) and U and V' are subgroups of B(E) such that V &€ U
then conjugation by g leaves some elements of Gen(V)\Gen(U) fixed.

Definition 3.3 A morphism ¢ : (G, E,Gen(E), B(E),G(:)) — (G, E',Gen(E"),
B(E'),G'(+)) of standard groups is a group homomorphism ¢ : G — G’ which
maps base generators to base generators and induces a continuous homomorphism
E— L.



Definition 3.4 Let (G, E,Gen(E), B(E),G(+)) be a standard group, U € B(E) and
Y : G — G/G(U) the canonical homomorphism. Then (G, E,Gen(E), B(E),G(+))
/U = (G/U,E/U,Gen(E/U), B(E/U),G/U(-)) where G/U = G/G(U) = (G),
E/U = (E), Gen(E/U) := ¢¥(Gen(E)), B(E/U) = {4(V)|V € B(E)} and
G/U((V)) := »(GKU,V))) is called a quotient. (In general, 1»(G(V')) is smaller
than ¢(G(U,V))).)

Lemma 3.5 Let (G, E,Gen(E),B(E),G(:)) be a standard group and U € B(E).
Then the quotient (G, E,Gen(E), B(E),G(+))/U is a standard group such that Gen(

(V) = ¢(Gen((U,V))).
Proof Straightforward. ]

There can be nontrivial subgroups V' € B(FE), other than F, which have
property (3.2.4), namely if U € B(F) and g € Gen(FE) such that g ¢ U, then Vg
contains a nontrivial member of B(E) which is not contained in U. In interesting
cases, there are usually many such subgroups. The next definition is designed to
carve out a useful concept for this situation and use it to define the notion of a local
morphism.

Definition 3.6 Let (G, E,Gen(E), B(E),G(+)) be a standard group. A pair (A, B)
is called a supplemented base for (G, E, Gen(F), B(E),G(+)) if A and B and are sets
of nontrivial subgroups of £ (not necessarily members of B(F)) such that A forms
a nondiscrete base of open subgroups of 1 € E, each member of B is contained in

some member of A, and if U € A and V € B then U n V contains a member of B.
A supplemented base (A, B) is called special, if A, B < B(FE).

Definition 3.7 Let ¢ : (G, E,Gen(FE),B(E),G(-)) — (G',E' Gen(E"), B(EF'),
G'(+)) be a morphism of standard groups. Let (A, B) be a special supplemented
base for (G, E,Gen(E), B(E),G(+)). Then ¢ is called local with respect to (A, B), if
the following holds:

(3.7.1) ¢(A,B) := (¢(A), ¢(B)) is a supplemented base (not necessarily a special
supplemented base) for (G', E', Gen(E'"), B(E'),G'(+)).

(3.7.2) ¢ is injective on G(U) for each member U of A.
e e B, g € Gen 1} an e A then g') contains or
3.73) If f' e E', ¢ € Gen(E' d U € A then ¢ (/¢ H(V) f

some nontrivial member V' of B, which we may assume is contained in U.

A morphism ¢ is called local, if it is local for some special supplemented base (A, B)

for (G, B, Gen(E), B(E), G(-)).

Remark If it turns out that F(U) is normal in G, for each U € B(F) then to prove
the results of this section, one can replace in (3.7.2) above G(U) by the smaller
group E(U).

In practice, we often find ourselves in the situation that we have a morphism
¢ and a special supplemented base (A, B) for the domain of ¢ such that ¢ satisfies



(3.7.1) and (3.7.2) and we feel that it should also satisfy (3.7.3). The following
lemma is a useful tool for verifying the validity (3.7.3).

Lemma 3.8 Let ¢ : (G, E,Gen(FE), B(E),G(-)) — (G', E',Gen(E"), B(E'),G'("))
be a morphism of standard groups and (A, B) a special supplemented base for (G, E,
Gen(E), B(E),G(-)) such that (3.7.1) and (3.7.2) hold. Assume the following:

(3.8.1) If ¢’ € Gen(E)\{1} and U € A then ®V) g’ contains a ¢(V) such that V € B
and we may assume V < U.

(3.8.2) If f' € Gen(E') and V € B then ¥'¢(V) contains a nontrivial element
g € Gen(E").

Then ¢ satisfies (3.7.3) and so is a local morphism.

Proof Let f' € E'. If f' = 1 then we are done, by (3.8.1). Assume f’ # 1 and
write f' as a product f; ... f] of nontrivial members of Gen(E’). We proceed by
induction on k.

case 1 Assume that k = 1. Let U € A. Choose U, € A such that /1¢(U,) < ¢(U).

/ y 3.8.1 ’ (3.8.2
Then #U) (£ g7) 29O (£ (60D 1)) “SD6@) (£ 5(17)) (for some V € B) 5 40g" (for
@3
some ¢" € Gen(E")\{1})

gl)gb(Vl) (for some Vj € B) 2 ¢(UnV;) 2 (by definition
of a supplemented base) ¢(V3) (for some V; € B).

case 2 Assume that k > 1. Let U e A. Let b’ = f{_, ... f{. Thus f' = f, ... fi =
fih!. We can assume by induction on k that given U; € A, W (*g) 2 ¢(V)

for some V € B. Now we proceed similarly to case 1, replacing ¢’ by "¢’ and
fi by fi. Here are the details. Choose U; such that fc¢(U;) < ¢(U). Then

A ) PO (1)) 'S0 (1)) SO (for some o € Gen(B)

3.8.1
\{1}) ( - )gzﬁ(Vl) (for some V] € B) 2 ¢p(UnV;) 2 (by definition of a supplemented
base) ¢(V3) (for some V5 € B). O

8.2
=2

Definition 3.9 Let (G, E,Gen(FE), B(E),G(+)) be a standard group and let A be a
nondiscrete base for E. Then (G, E, Gen(FE), B(E),G(+)) is called a solution group
for A and we call the quadruple (G, E, Gen(FE), A)) a solution group, if the following
is satisfied: Given a noncentral element h € G and a member U of A, there are a
kEeN, li,...,lx e {—1,1}, €y,...,ex € E and gy, ..., g € G such that g, € Gen(E),

gr is nontrivial, %g; € U Vi € {0,...,k}, where d; = (¢; ... €)* Vi € {0,..., k},
and
S (R gol ™) ) )y gk ™) = g (3.9.1)
Clearly (3.9.1) is equivalent to
[ [[h%ge]" Bgi]2 ... F1gy ] =% g, (3.9.2)

(just conjugate (3.9.1) by dp = (€x-...-€)~1). A standard group is called a solution
group, if it is a solution group for some nondiscrete base A of E. The equations
(3.9.1) and (3.9.2) are called solution equations for h with respect to A. In case
there is a solution equation for h with respect to A, we shall say that h satisfies a
solution equation with respect to A.



Remark In practice, to show that a standard group is a solution group for A, one
has to supplement A to a supplemented base (A, B).

Definition 3.10 A covering of a standard group (G, FE, Gen(E), B(FE),G(-)) is a set
of local morphisms ¢ such that the domain of each ¢ is (G, E, Gen(E), B(E), G(+))
and such that given a noncentral element h € G there is a morphism ¢ in the covering
such that ¢(h) is noncentral in the codomain of ¢. For each local morphism ¢ of
a covering Cov of (G, FE,Gen(E),B(E),G()), let (A(¢), B(¢)) denote a special
supplemented base such that ¢ is local with respect to (A(¢), B(¢)). We shall
say that a covering Cov is a covering by solution groups, if for each ¢ in Cov the
codomain of ¢ is a solution group for ¢(A(¢)).

Theorem 3.11 Let (G, E,Gen(FE), B(F),G(-)) be a standard group and h a non-
central element of G. If (G,E,Gen(FE), B(E),G(-)) has a covering by solution
groups then h contains a nontrivial member of B(E). (Compare with (3.2.4))

Proof By assumption there is a local morphism ¢ : (G, E,Gen(E), B(E),G(:)) —
(G',E',Gen(E"), B(E'),G'(-)) with respect to a special supplemented base (A, B)
(for the domain of ¢) such that the codomain of ¢ is a solution group for ¢(A) and
¢(h) is a noncentral element of G'. Hence there are a k € N, [y,...,l; € {—1,1},
€y €. €EFE ghy...,g, € G and a U € A" := ¢(A) such that g, € Gen(E'), g, is

!’

nontrivial, %ig/ € U’ Vi € {0,...,k}, where d, = (¢, - ... -€,)"tVie {0,...,k}, and

i

R [ R R /8 (3.11.1)

Let U € A(¢) such that ¢(U) = U’. Since %igl e U’ = ¢(U) Vi € {0, ..., k}, there are
To, ..., 7 € U such that ¢(z;) = %g, Vie {0,..., k}. Let & = [...[[h, zo]", 21] ...,
zr_1]™. Clearly the Lh.s. of (3.11.1) equals ¢(x) and the r.h.s. of (3.11.1) equals
d(xy,). Clearly Eh 2Px 2Vz. We shall show that thereis a V € B such that Yz 2 V.
This will complete the proof, because (A, B) is a special supplemented base for
(G, E,Gen(F), B(E),G(-)) and therefore V' is a nontrivial member of B(F). Since
Yz < G(U), because G(U) is normal in G, and ¢ is injective on G(U) (at this point in
the argument, we could replace G(U) by E(U) and only insist that ¢ be injective on
E(U), if E(U) were normal in G), it suffices to show that V' ¢(z) =V (%g;) 2 ¢(V)
for some V' € B which is contained in U. But this follows from the definition of a
local morphism with respect to (A, B). O

Definition 3.12 Let (G, E,Gen(E), B(E),G(-)) be a standard group such that

(1) (G, E,Gen(E), B(E),G(+)) and each of its quotients have a covering by solution
groups.

(2) [C(U), E] = [E(U), E] = E(U) holds for any U € B(E).
Then (G, E,Gen(FE), B(E),G(-)) is called a sandwich classification group.

Theorem 3.13 Let (G, E,Gen(E), B(E),G(+)) be a sandwich classification group
and H a subgroup of G. Then H is normalized by E if and only if either H is central,
or there is a unique nontrivial U € B(FE) such that E(U) < H < C(U).



Proof

“=". Assume that H is normalized by E. If H is central, we are done. Suppose H
is noncentral. From Theorem 3.11 it follows that H contains a nontrivial member of
B(E). Let U be the largest nontrivial member of B(FE) such that U € H. We shall
show that H € C(U). The proof is by contradiction. Suppose H is not contained
in C(U). We shall produce a nontrivial V' € B(FE) such that V' is not contained
in U, but V € H. This will contradict the maximality of U. Let H denote the
image of H in (G, E,Gen(E), B(E),G(:))/U. Clearly H is normalized by E/U.
If H is central in G/U, then we are done, because this implies by definition that
H < C(U). Suppose H is not contained in center(G/U). Then by Theorem 3.11,
H contains a nontrivial subgroup V of B(E/U). Since V € B(E/U), there is a
V e B(E) such that V = V/(V ~n G(U)). Tt follows that V < HG(U). This implies
E(V)< HG(U), since both H and G(U) are normalized by E. Hence

E(V) = [E.E(V)] < [B, HG(U)| < [E, H|("[E,GU))) < H

since [E,G(U)] = E(U) < H. 1t follows that V' < H which contradicts the maxi-
mality of U (Clearly V' & U since the image V' of V in G/G(U) is nontrivial). Thus
E(U)<c H< CU).

Now we show the uniqueness of U. Let V' € B(F), V nontrivial such that E(V) <
Hc C(V). It follows that E(U) < H < C(V) and E(V) < H < C(U). Hence

EU) = [E,E(U)] < [E,C(V)] = E(V)

and

E(V) =[E,EV)] < [E,CU)| = EU).
By (3.2.3) it follows that U € V and V < U. Thus U = V.

“<” If H is central it is clearly normalized by FE. If there is a U € B(E) such
that E(U) < H < C(U), then

[H,E] < [C(U),E] = E(U) < H

and hence H is normalized by FE. ]

4 General linear groups

In this section, let R be an associative ring with identity, I an ideal (2-sided)
in R and n € N. We shall recall the definitions of the following subgroups of
the general linear group GL,(R); the preelementary groups F,(I), the relative
elementary groups E, (R, I), the principal congruence subgroups GL,, (R, I) and the
full congruence subgroups C,,(R, I). In the model theoretic setting of section 3, these
groups are accounted for respectively by the groups U in B(E), the groups E(U),
the groups G(U) and the groups C(U). The elementary group E,(R) := E,(R, R)
is accounted for by E in the model theoretic setting and the generators of E,(R),
namely the elementary matrices, are accounted for by Gen(FE).



Definition 4.1 GL,(R) := (M,(R))* is called the general linear group.

Definition 4.2 Let i,5 € {1,...,n} such that ¢ # j and z € R. Then t;;(z) :=
e + xe;; is called an elementary transvection. The subgroup of GL,(R) generated
by all elementary transvections is called the elementary subgroup and is denoted
by E,(R). An elementary transvection ¢;;(x) is called elementary of level I or
I-elementary if © € I. The subgroup of GL,(R) generated by all I-elementary
transvections is called the preelementary subgroup of level I and is denoted by E,,(1).

Its normal closure in E,(R) is called the elementary subgroup of level I and is
denoted by E,(R,I).

Definition 4.3 Let i,j € {1,...,n} such that i # j. Define p;; := e + e;; —
€ji — €y — €55 = tw(l)tﬂ(—l)tw(l) € En(R) It is easy show that (pij)_l = Dji- If
1 <14 < j <n, p;j has the form

7 7 n
1
1
1 0 1
1
1
J -1 0
1
n 1
where all blank entries are zero.
Lemma 4.4 The relations
tij(2)ti;(y) = tij (v +y), (R1)

hold where i # 1,j # k in (R2) and i # k in (R3).
Proof Straightforward computation. ]

Definition 4.5 The kernel of the group homomorphism GL,(R) — GL,(R/I)
induced by the canonical map R — R/I is called the principal congruence subgroup
of level I and is denoted by GL, (R, I).

Remark Obviously GL,, (R, I) is a normal subgroup of GL,(R).



Definition 4.6 The preimage of Center(GL,(R)/GL,(R,I)) under the canonical
homomorphism GL,(R) — GL,(R)/GL,(R,I) is called the full congruence sub-
group of level I and is denoted by C, (R, I).

Remark
(1) Obviously GL,(R,I) < C,(R,I) and C, (R, I) is a normal subgroup of GL,(R).

(2) Sometimes C,(R,I) is defined as the preimage of Center(GL,(R/I)) under
the group homomorphism GL,,(R) — GL,(R/I) induced by the canonical map
R — R/I. One can show, using the fact that Center(GL,(R/I)) equals the set
of all matrices in GL,,(R/I) which commute with all elementary transvections,
that the two definitions are equivalent.

Recall that R is called almost commutative if it is module finite over a subring
of Center(R).

Lemma 4.7 Ifn > 3 and R is almost commutative, then the equalities

[Cn(R, 1), En(R)]
:[ER<R’ I)7 En(R)]
=E,(R,I)

hold.

Proof See [§], Corollary 14. O

5 Sandwich classification for general linear groups

In this section, we construct in the setting of general linear groups, specific supple-
mented bases, local maps, solution groups and coverings by these solution groups,
and show in the Solution Group Lemma 5.7 that any noncentral element in any so-
lution group of any of these coverings satisfies a solution equation. 5.7 is the main
technical input of the section. A road map of the proof is provided at its conclusion,
in terms of a (long) inverted tree diagram. Then we deduce the sandwich classifi-
cation theorem (1.2) for subgroups of GL, (R) normalized by E,,(R) from Theorem
3.13.

In this section let n > 3, R be a ring and C' a subring of Center(R). For any
ideal I of R and multiplicative subset S < C, set Rg := S™'R and Ig := S~'I. Let

¢s: GL,(R)/GL,(R,I) - GL,(Rs)/GL,(Rs, Is)
be the homomorphism induced by Fs where

Fs: GL,(R) — GLn(Rs)



is the homomorphism induced by the localisation homomorphism
Js: R — Rs.

Let
v :GL,(R) — GL,(R)/GL,(R,I)

and
S . GLn(Rs) - GLn(Rs)/GLn(RS,IS)

be the canonical homomorphisms. Note that the diagram

GLo(R) —Y—~ GL,(R)/GL,(R, )
Fg ¢s

GLn(RS)

GL,(Rs)/GL,(Rs,Is)

is commutative for any ideal I of R and multiplicative subset S < C. For any
maximal ideal m of C set S,, := C\m and ¢,, := ¢g,, (define F,,, fi, pm, Rmn and
I,,, similarly).

Lemma 5.1 Set

G := GL,(R),
E := E,(R),
Gen(E) := {t;j(z)|lx € R,i,j € {1,...,n},i # j},

iz
B(FE) := {E,(I)|I ideal of R} and
G(E.(I)) :== GL,(R,I) VI ideal of R.

Then (G, E, Gen( ), B(E),G(+)) is a standard group. Further E(E,(I)) = E,(R,I)
and C(E,(I)) = C,(R,I) for any ideal I of R.

Proof We have to show that the conditions (3.2.1) — (3.2.3) in Definition 3.2 are
satisfied.

(3.2.1) Obviously B(F) is a base of open subgroups of 1 € E, since it contains the
identity subgroup {1} = E,({0}). Clearly F = E,,(R) € B(E).

(3.2.2) Let {/;|7 € J} be a family of ideals of R. One checks easily that
(U En(ly)) = En(CU 1))
jedJ jedJ

(3.2.3) Let U € B(FE). Then there is an ideal I of R such that U = E,(I).
Clearly Gen(U) = Gen(E) n U contains all the elements t;;(x) where
i,je{l,...,n}, i # j and x € I. But these elements generate U. Hence
U = E,(I) is generated by Gen(U). Now let g = t;;(x) € Gen(E) and U =
E,.(I) e B(E). Assume that g € G(U) = GL,(R,I). Then all nondiagonal
entries of g lie in /. It follows that = € I and hence g = t;;(z) € E,(I) = U.

[
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For the rest of this section, we assume that R is a Noetherian C-module.

Lemma 5.2 Let I be an ideal of R and S < C' a multiplicative subset. Then there
s an so € S with the property that if x € soR and I3t € S : tx € I, then x € I. It
follows that ¢g is injective on Y(GLy(R, I + soR)).

Proof For any s € S set Y(s) := {x € R|sx € I}. Then for any s € S, Y(s) is a
C-submodule of R. Since R is a Noetherian C-module, the set {Y(s)|s € S} has
a maximal element Y (sg). Clearly all elements x € soR have the property that
tr € I for some t € S implies x € I. We will show now that ¢g is injective on
U(GLn(R, I + s0R)). Let g1,95 € W(GLn(R, I + soR)) such that ¢s(g;) = ¢s(g5).
Since g1, g5 € Y(GL,(R,I + soR)), there are g1,92 € GL,(R,I + soR) such that
¥(g1) = g; and ¥(ge) = g Set h:= (91) " 'go € GL,(R,I + soR). Clearly ¢s(g)) =
os(gh) is equivalent to Fs(h) € GL,(Rs, Is), i.e. Fs(h) = e(mod Is). We want to
show that ¢g| = ¢, which is equivalent to h € GL,(R,I), i.e. h = e(mod I). Let
i,j €{1l,...,n} such that ¢ # j. Since fg(h;;) € Is,
175e[,seS:@=z
1 5
= drel,s,teS tlhyjs—z)=0
=dvel,s,teS:sthyj=trel

Since h € GL,(R,I + soR), h;j € I + soR. Hence there are elements y € I and
z € sopR such that h;; = y + 2. (5.2.1) implies that uz € I. It follows that z € [
since z € soR. Thus h;; € I. Analogously one can show that h; — 1 € I for all
ie{l,...,n}. Hence h = e(mod I). This implies g; = ¢4 and thus ¢g is injective
on Y(GL,(R, I + soR)). O

We construct now a specific supplemented base that we will use to construct
specific local morphisms. In the lemma below we use the following convention. If
x € R, then RxR denotes the (twosided) ideal of R generated by x.

Lemma 5.3 Let I be an ideal of R, S < C a multiplicative subset and sqg € S
as in the previous lemma. Set A := {E,(ssoR)|s € S} and B := {E,(RxsoR)|x €
R,xso ¢ 1}. Then (A, B) is a special supplemented base for GL,(R) and Fs(A, B)
is a supplemented base for GL,(Rg).

Proof First we show (A, B) is a special supplemented base for GL,(R). Clearly A
and B are sets of nontrivial subgroups of £. We show now that A is a (nondiscrete)
base of open subgroups of 1 € E. Therefore we must show that A satisfies the
conditions (1) and (2) in Definition 3.1.

(1) Let U = E,(ssoR),V = E,(tsoR) € A. Set W := E,(stsoR) € A. Then clearly
WcUnV.

(2) Let g€ Eand U = E,(ssoR) € A. There is a K € N such that g is the product
of K elementary transvections. Set V := E,((s50)>****“ '+ +1R) € A. Then
9V < U (see Lemma 4.6 in [2]).
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Hence A is a base of open subgroups of 1 € E. Let E,(RxsoR) € B. Then
E.(RzsoR) < E,(soR) € A. It remains to show that if U € A and V € B then
U n'V contains a member of B. Let U = E, (ssoR) € A and V = E, (RzsyR) € B.
Set W := E,(RxssoR). Clearly xsy ¢ I implies that xssy ¢ I (by the definition
of sg, see the previous lemma). Hence W € B. Obviously W € U n V. Since
A,B < B(E), (A, B) is a special supplemented base for GL,(R).

Now we show Fg(A, B) is a supplemented base for GL,(Rg). Clearly Fs(A) and
Fs(B) are sets of nontrivial subgroups of E’ := E, (Rg). We show now that Fg(A)
is a (nondiscrete) base of open subgroups of 1 € E’. Therefore we show that Fg(A)
satisfies the conditions (1) and (2) in Definition 3.1.

(1) Let U = Fs(E,(ssoR)),V = Fs(E,(tsoR)) € Fs(A). Set W := Fg(E,(stsoR)) €
Fg(A). Then clearly W< U nV.

(2) Let ge E' and U = Fs(E,(tsoR)) € Fs(A). There are a K € N and elementary
transvections 7 = t;,5, (1), ..., Tk = t;;,(75) € E' such that g = 71... 7. Set

s:=s51...5¢ and V := Fg(E,((stsg)>*" +*" "+ +1R)) € Fg(A). Then 9V < U
(see Lemma 4.6 in [2]).

Hence Fg(A) is a base of open subgroups of 1 € E’. That each member of Fg(B) is
contained in some member of Fg(A) follows from the fact that any member of B is
contained in a member of A. That given U € Fs(A) and V € Fg(B), UV contains
a member of Fg(B) follows from the fact that given U € Aand V € B, U nV
contains a member of B. Hence Fs(A, B) is a supplemented base for GL,(Rs). [

Now we construct specific local morphisms which will be used to prove (1.2).

Lemma 5.4 Let I be an ideal of R and S < C a multiplicative subset such that
Snl=¢g. Then ¢g is a local morphism of standard groups.

Proof First we show that ¢g is a morphism of standard groups. Clearly ¢g maps a
base generator to a base generator. Since {1} is base subgroup of GL,(R)/GL,(R,
I), the topology induced by the base subgroups of GL,(R)/GL,(R,I) is the dis-
crete one. It follows that ¢g induces a continuous homomorphism E,,(R)/(E,(R) n
GL,(R,I)) —» E,(Rs)/(E.(Rs) n GL,(Rs, Is)). Hence ¢g is a morphism of stan-
dard groups.

Let (A, B) be the special supplemented base for GL,(R) defined in the previous
lemma. Since 9 induces a surjective homomorphism E,(R) — E,(R)/(E.(R) n
GL,(R,1I)), it follows easily that ¢(A, B) is a special supplemented base for GL,,(R)/
GL,(R,I). We will show now that ¢g is local with respect to the special sup-
plemented base (A(¢s), B(¢s)) := ¥(A, B). Therefore we have to show that the
conditions (3.7.1) — (3.7.3) in Definition 3.7 are satisfied.

(3.7.1) By the previous lemma, Fs(A, B) is a supplemented base for GL,(Rg).
Since pg induces a surjective homomorphism E,(Rg) — E,(Rs)/(E, (Rs)N
GL,(Rs,Is)), it is easy to deduce that ps(Fs(A, B)) is a supplemented base
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for GL,(Rs)/GL,(Rs, Is). Since psoFs = ¢pgor), it follows that ¢g(¢(A, B))
is a supplemented base for GL,(Rgs)/GL,(Rs, Is).

(3.7.2) By Lemma 5.2, ¢g is injective on ¥(GL,(R,I + soR)). Let U € ¢(A).
Then there is an s € S such that U = ¢(FE,(ssoR)). Hence G(U) =
G (En(ssoR))) = Y(GLu(R, I + ssoR)) € (GL,(R, I + soR)). It follows
that ¢g is injective on G(U) for any U € ¢)(A).

(3.7.3) It suffices to show that the conditions (3.8.1) and (3.8.2) in Lemma 3.8 are
satisfied.

(3.8.1) Let ¢ = ps(t;j(2)) be a nontrivial base generator in GL,(Rg)/
GL,(Rs,1Is), and U = ¢(E,(ssoR)) € ¥(A). Choose an x € R

and a t € S such that z = 7. Since ¢’ is nontrivial, z ¢ Is and

hence s ¢ I. Set V := ¢(E,(R(ss9)'xR)) € ¥(B). One can show
routinely, using the relations (R1) — (R3) in Lemma 4.4, that ¢s(V) ¢/
contains ¢g(V'). Since (A, B) is a supplemented base, there is a
W e (B) such that W < U n V. Clearly *s(W¢’ contains ¢g(WW)
and W < U.

(3.8.2) Let f" = ps(ti;(£)) be a base generator in GL,(Rs)/GLyn(Rs, Is)
and V = ¢(E,(RysoR)) € ¥(B). Choose a nontrivial base generator
g € ¢s(V) which commutes with f' (e.g. ¢ = ps(ti;(%3%))). Then
' ¢5(V) clearly contains /¢’ = ¢'.

Hence ¢g is local with respect to (A(¢s), B(¢s)) = ¥ (A, B). O

Next we show that the local morphisms ¢,, where m is a maximal ideal of C
such that I n C' < m form a covering.

Lemma 5.5 Any quotient of the standard group (G, E, Gen(E), B(E),G(-)) (where
G, E, Gen(E), B(F) and G(-) are defined as in Lemma 5.1) has a covering.

Proof Let I be an ideal of R. Set Z := {¢,|m maximal ideal of C,I n C < m}.
We show that Z is a covering of the standard group GL,(R)/GL,(R,I). By the
previous lemma, for any maximal ideal m of C such that I n C' < m, ¢,, is a local
morphism (note that I n C' < m implies S,, n [ = ). It remains to show that for
any noncentral ¢’ € GL,,(R)/GL,(R,I) there is a maximal ideal m of C' such that
I nC < m and ¢,(¢") is noncentral. Let ¢ € GL,(R)/GL,(R,I) be noncentral.
Then there is an h' € GL,(R)/GL,(R,I) such that ¢'h’ # h'g’. Let g,h € GL,(R)
such that ¢ = gGL,(R,I) and W' = hGL,(R,I). Set o := [g7, h™!]. Clearly
g'h # h'¢g implies 0 ¢ GL,(R, ). Hence o;; ¢ I for some 4,5 € {1,...,n} such that
i#joro;—1¢I for someie{l,... n}.

case 1 Assume that o;; ¢ [ for some 4,j € {1,...,n} such that ¢ # j. Set
Y := {ce C|co;; € I}. Since 0;; ¢ I, Y is a proper ideal of C. Hence it is contained
in a maximal ideal m of C. Clearly I n C' € Y < m and hence S,, nY = . We
show now that ¢,,(¢’) does not commute with ¢,, (1), i.e. F, (o) ¢ GL,(Rp, In).
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Obviously (F,(0))i; = fm(0i;). Assume (F,,(0))ij € I Then

Hscel,seSm:&:E

1 S
= drvel,s,teS, tlo;s—z)=0
=dvel,s,tel, sto;=trel

= Jue S, :uo;; € l.

But this contradicts S, Y = . Hence (F,,(0));; ¢ I, and thus ¢,,(¢’) is non-
central.

case 2 Assume that o;;—1 ¢ I forsomei € {1,...,n}. SetY := {c e Clc(o;—1) € I}.
Since og; — 1 ¢ I, Y is a proper ideal of C. Hence it is contained in a maximal
ideal m of C. Clearly I nC' <Y < m and hence S,, nY = ¢J. We show now
that ¢,,(¢") does not commute with ¢,,(h'), i.e. F,(0) ¢ GL,(Rp,I). Obviously
(Fn(0))ii — 1 = filou) — 1 = fin(os — 1). Assume (F,,(0)); — 1 € I,,. Then

drel,sels, : T =

= Jdxel s, tesS,  t((o;—

= Jrel, s, te S, :st(oy—

oy —1 =
s

l)s—x)=0

1)

= Jue s, uloy;—1)el.

But this contradicts S,, Y = . Hence (F,,(0))i — 1 ¢ I, and thus ¢,,(¢) is
noncentral. L]

The following lemma will be used in the proof of Lemma 5.7.

Lemma 5.6 Let K be a commutative ring and A a finite K-algebra. Then A is a
Dedekind finite ring, i.e. if x € A is right or left invertible, then x is invertible.

Proof Let x,y € A such that xy = 1. Define the maps

a:A— A
Z > T2
and
G:A— A
Z > yz.

One checks easily that a and § are K-module-homomorphisms, a o 8 = id4 and «
is surjective. By Nakayama’s Lemma, « is a K-module-isomorphism. Hence it has
an inverse o~ 1. Since

=ids o

=(atoa)op
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=a ' o (aop)

=aloidy

:Oéil’
[ is an isomorphism. Hence there is a z € A such that yz = 1. It follows that
yr = yryz = yz = 1. ]

Now we show that the codomains of the local morphisms ¢,, are solution
groups and hence (G, E,Gen(E), B(F),G(+)) and each of its quotients have a cov-
ering by solution groups.

Solution Group Lemma 5.7 Let I be an ideal of R and m a maximal ideal
of C' such that I n C < m. Then the codomain of ¢, is a solution group for

A" = ¢ (A(dm)) where A(om) is defined as in Lemma 5.4.

Proof Let b € GL,(R,,)/GLy(Rm,In) be noncentral. We have to show that A’
satisfies a solution equation with respect to A’. Let U’ € A'. Set R, := R/ L.
Let n : GLn(Ry)/GLy(Rim, I) — GLyp(Ry) be the homomorphism induced by
the canonical homomorphism R,, — R,,. One checks easily that 7 is injective.

~

Hence h := n(h') € GL,(R,,) is noncentral. Set A := n(A’) and U’ = n(U). It is
easy to show that A is a nondiscrete base of open subgroups of 1 e En(Z:?m) (no-
tice that 1 induces an isomorphism E, (Rm)/(GLy(Rm, I;m) 0 En(Rim)) — En(Ryp)).
Choose Uy, ...,Uy € A such that for all (k 4+ 1)-tuples (e, ...,€;) used in this
proof, 4U; < U Vi € {0,...,k} (possible since A is a base of open subgroups of
1 € E,(R,,) and there are only finitely many (k + 1)-tuples (e, . . ., e;) which are
used in this proof). Since Uy,...,Uy € A, there are tg,...,ts € S,, such that U; =
(P (V(En(tisoR))) Yi € {0,...,4}. Set s; := fi(tiso) + Ly, (1 =0,...,4). Since R
is a Noetherian C-module, R,, is semilocal and hence R,, has stable rank 1 (see [3]).

It follows that there is a matrix ¢ € En(}?im) of the form ¢y = Cn—1)x(n-1) *

0 1
such that (aq,...,a,—1) is unimodular where (ay,...,a,)" =: a is the first column
of ©h. Since (ay,...,a,_1) is unimodular, there is a matrix €; € En(}?m) of the form

ai
€ = (e(”_l):("_l) ?) such that e;a =
Qp—1
0

case 1 Assume that p := “h does not commute with t15(s7).

Set go := t12(s0) € Up. We show now that [©h, go| is noncentral. Suppose that
[©©h, go] is central. Then [©h, go] = ue for some u € Center(R,y,). Clearly e1[©h, go] =
e1(e+ 15105 )90 " = €19y -+ e1as1ph, gy - Since the last row of €;asy ph, gy ' is zero,
the last row of €[, go] equals the last row of e;g;'. Hence (e1[*h, go])nn = 1. On
the other hand €;[®h, go] = ue; and hence (e1[h, go|)nn = (u€1)n, = u which is a
contradiction since “h does not commute with gg by assumption. Now we show that
i[®h, go] has a zero entry. Clearly “1[*h, go] = €195 €] " + €108005.90 "€, +. Hence
the last rtow of “1[h, go] equals the last row of €19y (e1)™! = € — (e1)s150(€1)hs-
Clearly ((€1)s150(€1)54)n1 = 0. Therefore (e — (€1)s150(€1)54)n1 = 0 and hence
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(‘*[°h, go])n1 = 0. Since [®h, go] is noncentral, <'[®h, go] is noncentral.

case 1.1 Assume that o := “1[h, go] does not commute with ¢,(s1).

Set g1 := tin(s1) € Up. Clearly [“[“h, go],01] = [0, 91] = 97 + 0w1510%,9; . Since
0,1 = 0, the last tow of & := [1[®h, go],91] = [0, 1] equals the last row of g;*
which equals f,,. Assume that £ is central. Since the last row of £ equals f,, & = e.
But this contradicts the assumption that o does not commute with g;. Hence £ is
noncentral. Clearly ¢ has the form

=(01)

A ~

where = (13, ...,2,) € (R,)" " and A€ M, 1(R,,).

case 1.1.1 Assume A # epm—1)x(n-1)-
For any [ € {1,...,n—1} set w(l) := [£,t1n(s2)]. Then foralll e {1,...,n—1}, w(l)
has the form ( )
(etm—xin-1) S2(A = emn_1)x(n—1))x

w(l) = ( 0 1 ) :
Since A # e(_1)x(n—1) there are [,j € {1,...,n — 1} such that (w(l));, # 0. Since
(w(l));n € R, there are an @’ € R and an s’ € S such that (w(l));, = @+ I Set
§ 1= ST/ + I, and a = “Tl—i— I,,. Choose an i # j,n and set go := t;,(s2) € Us,
g3 := tij(s3s48) € Uz and gy := tin(—s3518(w(l))jn) = tin(—s354a) € Us. Then one
checks easily that

[[[El [eoha 90]791]’92]793] = [w(l),g3] = 44.

Since (w(l))jn # 0 and sssys is invertible, —s3s4s(w(l));, # 0. Hence g4 # e.
Let n7' : n(GL,(R,)/GLy(Rp, 1)) — GL,(Ry)/GLy(Ry, I,) be the inverse
of n and set ¢ := n g) Vi € {0,...,4}, € := n7'(e) Vi € {0,1} and d} :=
n~1(d;) Vi € {0,...,4}. Then €),€,,¢y € E' := E,(Rpy)/(GLn(Rp, L) N En(Ry)),
g, € Gen(E")\{e}, %igl e U' Vi€ {0,...4} and

[[[[F, gp], 911, 95], 951 = dh-

case 1.1.2 Assume A = e(,—1)x(n—1)-

Since £ is noncentral, there is a j € {1,...,n — 1} such that z; # 0. Since z; € R,
there are an ¢’ € R and an s’ € S such that z; = ‘;—: +1,. Set s := ST/ + 1,
and a := aT/ + I,,. Choose an i # j,n and set go := t;j(s2s35) € Us. Then
(€, g2] = tin(—s25352;) = tin(—S253a) € Us. As in case 1.1.1, pull this equation
back to GL,(Ry)/GLy(R, I,) by applying n~L.

case 1.2 Assume that o =[h, go] commutes with t1,,(s1). A
Then it follows that the last row of o equals rf, for some r € R,,. Clearly ¢ has

the form
B A =z
7= 0 r
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where © = (z9,...,2,)" € (]:Em)”_1 and A € Mn_l(f%m). Since o € GLn(Rm), it
follows that r is right invertible. Since R is a Noetherian C-module, R is almost
commutative. It follows that R,, is almost commutative and hence r is invertible,
by Lemma 5.6.

case 1.2.1 Assume A # rep—1)x(n—1)-
Forany le {1,...,n—1} set w(l) := [0, t1n(s1)]. Then forallle {1,...,n—1}, w(l)
has the form

w(l) _ (e(n—l)ox(n—l) 51(147”_1 — ein—l)x(n—l))*l) ]

Since A # re(,—1)x(n—1) there are [,j € {1,...,n — 1} such that (w(l));, # 0. One
can proceed as in case 1.1.1.

case 1.2.2 Assume A = req,_1)x(n-1)-
Since o is noncentral, 3j e {1,...,n—1} :2; #0orz; =0Vje{l,..., n—1}Ar¢

~

Center(R,,).

case 1.2.2.1 Assume that 3j € {1,...,n— 1} : x; # 0.

There are a ¢’ € R and an s’ € S such that z;r~! = -+ I,. Set s := ST, + I,
and a = “T/ + I,,. Choose an i # j,n and set ¢; tij(s1s25) € U;. Then
[0, 91] = tin(—s18252;77) = tin(—s1890a) € Us. Apply 57! to this equation.

m\|@

~

case 1.2.2.2 Assume that z; = 0 Vje {1,...,n} A r ¢ Center(R,,).
Since r ¢ Center(f%m), there is an ' = z—,, + I, € R,, such that 7' # r'r. Set
a:= "“T’ +1,€R,, and s := ST’ + 1, € R,,. Since rr'r~! — 1’ € R, there are a b/ € R
and a t' € S such that rr'r=t — ¢ = i’—: + 1. Set t := t—ll + 1, and b := bT/ + 1.
Set gy := t12(s1895t1") = t19(s189ta) € Uy. Then [0, g1] = tia(s1sest(rr'r™! —1')) =
t12(s1895b) € Us. Since rr’ # r'r, rr'r=1 —r’ # 0. Hence sys3st(rr'r~! —r') # 0 since
S9s3st is invertible. As in case 1.1.1, pull the result back to GL,(R,,)/GLyn (R, L)

by applying !

case 2 Assume that ©h commutes with t12(sg).
Then the second row of ©“h equals rfy for some r € R,,. Set €1 := pa, € En(Ry).
Then the last row of ©1°h equals r f,, and one can proceed as in case 1.2.

The following diagram language is intended to give an overview of the case
analysis above. The overview begins with the second diagram below. It starts
with the matrix A. An arrow between two matrices means that one gets the target
matrix by applying certain operations to the source matrix. The operations are the
following:

(1) Form a commutator with a matrix.

(2) Conjugate by a matrix.
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The operations of type (1) are performed with the g;’s and the operations of type
(2) are performed with the ¢;’s. A box around several matrices means that some
case distinction is going on (corresponding to the case analysis above). For example

A
g1 = t’iljl (371),
€1 = gy, (yl)
“ [Aagl] B
1 2
C D
G2 = tiyj,(72) g2 = tir 1 (75)
E F

means the following. One gets the matrix B by first forming the commutator [A, ¢; ]
of A and g; = t;,;,(x1) and then conjugating this commutator by €; = tj,;, (y1). The
matrix “[A, g1] in the left margin reminds us how we got B. Then there are two
cases. In case 1, the matrix B looks like C' and in case 2, like D. The logic of the
situation tells us that B must look like C' or D. In case 1 we form the commutator
[C, g2] of C(= B) and g2 = t;,j,(r2) and get the matrix E. In case 2, we form the
commutator [D, go] of D(= B) and ga = t;j; (75) and get the matrix F'. It is helpful
to keep in mind that all matrices appearing in a diagram are noncentral and the
goal is to produce nontrivial elementary matrices which are of course noncentral.
When breaking a matrix in several cases, we do not necessarily handle the cases
one after the other, but will postpone handling some cases to later. Each case in
the entire diagram is given a unique number, so that we can come back to it by
referring to its number.
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EOh

“[*h, go]

€0 € En(Rm)
% % * *
0 r 0 0 2 *
* * k
commutes with #12(sp)
1
*
* *

does not commute with ¢12(sp)

go = t12(s0),
€1 € En(Rm)

A T

0 r
commutes with t1,(s1)

1.1
* *
0 %

does not commute with t1,,(s1)
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g1 = tin(s1)

[[“h, gol, g1]

[[61 [thv gO]v 91]7 92]

y#0

g3 = tij(53343)‘

[[[61 [eohng]agl]ng]agB] tm(—3334a)

“[h, go]




[ [P, g0], 911

[[El [60h7 90]7 91]7 92]

E()h

€01€0 h

r noncentral in R,,

g1 = tin(s1)
g1 = tij(s1528) g1 = t12(s152ta)
tin(—s152a) t12(51525b)
g2 = tij(s5253s)
tm(—SgSga)
2
* * % *
0O r O 0
*
€01 = P2n

see case 1.2
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Theorem 5.8 Let H be a subgroup of GL,(R). Then

H is normalized by E,(R) <
3 ideal I such that E,(R,I) € H < C,(R, ).

Proof It follows from the previous lemmas of this section and from Lemma 4.7
that (G, E,Gen(F), B(E),G(-)) (where G, E, Gen(E), B(E) and G(-) are defined
as in Lemma 5.1) is a sandwich classification group. Hence we can apply Theorem
3.13 (note that if H is central, then there clearly is a unique ideal I such that
E.(R,I) < H < C,(R,1)). O

Remark By [2], p. 377, any almost commutative ring R is the direct limit of
subrings R; of R such that for each i, R; is a Noetherian C;-module where C; :=
Center(R;). Hence the theorem above still holds true if we drop the assumption
that R is a Noetherian C-module and instead assume that R is almost commutative
(note that £, and C,, commute with direct limits).

6 Bak’s hyperbolic unitary groups

In section 5, we saw that the notion of an ideal in a ring is sufficient to classify
subgroups of a general linear group normalized by its elementary subgroup. Bak’s
dissertation [I] showed that the notion of an ideal by itself was not sufficient to solve
the analogous classification problem for unitary groups, but that a refinement of the
notion an ideal, called a form ideal, was necessary. This led naturally to a more
general notion of unitary group, which was defined over a form ring instead of just a
ring and generalized all previous concepts. We describe form rings (R, A) and form
ideals ideals (I,T") first, then hyperbolic unitary groups Us,(R,A) over form rings
(R,A). For form ideals (I,I"), we recall the definitions of the following subgroups
of Usp (R, A); the preelementary groups EUs,(I,T"), the relative elementary groups
EUs,((R,\), (I,1)), the principal congruence subgroups Us, ((R, A), (I,T")), and the
full congruence subgroups CUs,((R,A),(I,I')). In the model theoretic setting of
section 3, these groups are accounted for respectively by the groups U in B(FE),
the groups E(U), the groups G(U) and the groups C'(U). The elementary group
EUs,(R,A) := EUs,((R,A), (R,A)) is accounted for by E in the model theoretic
situation and the generators of EUs, (R, A), namely the unitary elementary matrices,
are accounted for by Gen(E).

Definition 6.1 Let R be a ring and
“TR—R
re—T

an involution on R, ie. 7+s =T +3, s = §r and 7 = r for any r,s € R. Let
A € Cent(R) such that A\ = 1 and set A, := {r — AF|r € R} and A, = {r €
R|r = —A7}. An additive subgroup A of R such that

(1) Apin © A S Ay and
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(2) rAFC AVreR

is called a form parameter. If A is a form parameter for R, the pair (R, A) is called
a form ring.

Definition 6.2 Let (R,A) be a form ring and I an ideal such that I = I. Set
Tpae = I 0 A and Ty = {6 — M€ € T} + {{CaC|¢ € I,a € A}). If we want to
stress that Tpae (resp. i) belongs to I, we write T2 (resp. I'Z . ). An additive
subgroup I' of I such that

(1) Thuin T S IN'jpae and
(2) al'acT'Vae R

is called a relative form parameter of level I. If T' is a relative form parameter of

level I, then (I,T") is called a form ideal of (R, A).

In the following let n € N, (R, A) be a form ring and (/,I") a form ideal of
(R, A).

Definition 6.3 Let V' be a free right R-module of rank 2n and B = (e1, ..., €,, ey,
...,e_1) an ordered basis of V. Let ¢p : V — R be the module isomorphism
mapping e; to the column whose i-th coordinate is one and all the other coordinates
are zero if 1 < i < n and the column whose (2n + 1 + i)-th coordinate is one and
all the other coordinates are zero if —n < i < —1. In the following we will identify
elements v € V with their images ¢g(v) € R*™. Let

1

p= € M,(R)

be the matrix with ones on the skew diagonal and zeros elsewhere. We define the
maps

fT:VxV->R
L it 0 p
o) (D) w

h:VxV >R

—t 0 P
(v,w) »> T ()\p O>w

and

q:V — R/A
v f(v,v) + A
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The maps f, h and q are denoted in [4], page 164, by f, h and g, respectively. It is
easy to check that f(v,w) = vjw_1 + ... + Tpyw_,, h(v,w) = Tyw_1 + ... + Tw_, +
ANO_pwy, + ... + A0_qw; = (v, w) + M(w,v) and q(v) = 5101 + ... + To_, + A for
any v,w € V. For any v e V, ff(v,v) is called the length of v and is denoted by |v].

Definition 6.4 The subgroup Us,(R,A) := {o € GL(V)|(h(ou,ov) = h(u,v)) A
(gq(ou) = q(u)) Yu,v € V} of GL(V) is called the hyperbolic unitary group. We
will identify Us, (R, A) with its image in G Ly, (R) under the isomorphism GL(V) —
G Ls,(R) determined by the ordered base (e1,..., €4, p,...,€_1).

Definition 6.5 Let o0 € M,(R). By definition ¢* is the matrix in M, (R) whose
entry at position (¢, j) equals ;. Further we define AH,,(R,A) := {a € M,(R)|a =
—Xa*,a; € AVie{l,..,n}}.

Lemma 6.6 Let (R, A) be a form ring, ne N and o = (CCL Z

a,b,c,de M,(R). Then o € Uy, (R, ) if and only if

1 _ (pd*p Apb*p
(1) 7' = ()\pc*p pa*p) and

) € GLy,(R), where

(2) a*pe,b*pd e AH,(R,N\).
Proof See [4], p.166.
Remark

(1) If @ € M,(R), then pa*p is the matrix one gets by applying the involution to
each entry of a and mirroring all entries on the skew diagonal.

(2) In [, [10] and [1I] the ordered basis (e1, ..., en, €_1, ..., e_y) is used and hence
the matrices may look different. Let o € GL(V). If the image of o under the
isomorphism GL(V) — G Ly, (R) determined by the ordered base (e, ..., e,, e_1,

d )
a,b,c,d € M,(R), then the image of ¢ under the isomorphism GL(V) —
G Ls,(R) determined by the ordered base (eq, ..., €,,€_p,...,e_1) (which is used

. . . a bp
in this thesis) equals .
) ed (pc pdp)

L . ) b
...y€_pn) (which is used in the papers mentioned above) equals <CCZ where

Definition 6.7 We define Q, := {1,....,n}, Q_:={-n,...,—1}, Q:=Q, U Q_ and
e:Q—{-1,1}

s ) 1, ifieqQ.,
11— €)=
-1, if1eQ_.

Lemma 6.8 Let 0 € GLy,(R). Then o € Usy (R, A) if and only if

1) ol = NW=<)2F_. . Vi je{l,..,—1} and
17 s
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(2) lowjl e AVje{l,..,—1}. (low| = D Gijo_i; is defined just before 6.4.)
i=1

Proof Sece [4], p.167.

Lemma 6.9 Let 0 € Uy, (R,A), x € R* and k € {1,...,—1}. Then the statements
below are true.

(1) If the k-th column of o equals xey, then the (—k)-th row of o equals x=1f_j.
(2) If the k-th row of o equals xf;, then the (—k)-th column of o equals x=le_j,.

Proof

(1) Since 0 'o = e it follows that

—1 P .
1 fi=
<a-1a>ij=202mj={’ e (6.1)
=1

0, otherwise.

—1
This implies that 1 = Y] 0},01 = 0},.0kk = 0. Since any left inverse of an
=1
invertible element is the inverse of that element, o}, = z~'. By Lemma 6.8, it
- -1
follows that o_g _; = z~!. On the other hand (6.1) implies that 0 = )] o/,00 =
=1
ohoe = ox Vie {1,...,—1}\{k}. It follows that o/, =0 Vie {1,...,—1}\{k}
and hence, by Lemma 6.8, 0_; _; = 0 Vi e {1,..., —1}\{k}, i.e. 04, =0Vie
{17 SRR _1}\{_k}

(2) Since oo~ = e it follows that
(00 i ;1 ifi=, (6.2)
g0 i = 0;10;;, = . .
T4 i 0, otherwise.
-1
This implies 1 = 121 kO, = OpkOfp = TOp,. oince any right inverse of an
invertible element is the inverse of that element, o}, = 2~'. By Lemma 6.8, it
o -1
follows that o_; _;, = x~1. On the other hand (6.2) implies that 0 = }] ORi0y; =
i

1
ork0y; = vo; Vi e {1, ..., —1}\{k}. It follows that o3 ; = 0Vj e {1,..., —1}\{k}
and hence, by Lemma 6.8, 0_; , = 0Vje {1,...,—1}\{k}, ie. 0, =0Vje
{17 SO _1}\{_k}

[
Definition 6.10 Let ¢,j € 2,7 # j. If i # —j and & € R, the matrix

ﬂ]<§) =€+ 56@' — )\(E(j)ie(i))ﬂg@_j’_i € U2n<R, A)
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is called an elementary short root element. If i = —j and o € A=€D+D/2A_ then the
matrix

T;_i(a) := e+ ae;_; € Uy (R, A)

is called an elementary long root element. If o € U,,(R,A) is an elementary
short root element or an elementary long root element, it is called an elemen-
tary unitary transvection. The subgroup of Uy, (R, A) generated by all elemen-
tary unitary transvections is called the elementary unitary group and is denoted by
EUy, (R, A). Let T;; (f) be an elementary unitary transvection. If i # —j A £ € [
ori = —j A& e NEDHD2D then Ty;(€) is called elementary of level (I,T) or
(1, F) elementary. The subgroup of Us,(R,A) generated by all (I, I')-elementary
transvections is called the preelementary subgroup of level (I,T") and is denoted by
EUs,,(1,T'). Its normal closure in EUy, (R, A) is called the elementary subgroup of
level (I,T) and is denoted by EUs,((R,A), (I,T)).

Definition 6 11 Let ¢,7 € {1,...,—1} such that ¢ # +j. Define P,; := e +
e” ej _|_ >\ .7))/2 .77 — )\(6(.7 )/2 4771. — e’i’i — ej] e_ Z i 67] J = ](1>
T;i(=1)T;;(1) € EUs, (R, A). Tt is easy to show that (P;)™' = Pj. If 1 < 4,5 < n,

P;; has the form

v )
0 pj
where p;;, pji € E,(R).

Lemma 6.12 The relations

Tiy(€) = Ty s ~NOI—<OD12), (R1)

Ty (€)T5(0) = Tiy(€ +0), (R2)

[75(6). Tl Q)] = e, (R3)

[735(6). Ty ()] = T (€0), (R4.1)

[T35(), Th5(O)] = Ts_(~NCD=</2¢0), (R4.2)
[74(6). T )] = Toon(~AO—9D2Eg), (R4.3)
[734(6). Ty ()] = Thu( 6, (R4.4)

[75(8). T ()] = Tii(6C — A0CE), (R5.1)
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[T3;(€), T - ()] = Tii(=ACCD=EOVDE L 4 NG =eD2¢ gy (R5.2)

[T5.:(8), Tji(Q)] = Toi (=N =IDDeg ¢ 4 NN (), (R5.3)
[T5:(€), T3, (¢)] = Toi4(—C€ + AEQ), (R5.4)
[Ti,—i(a)vT—i,j (5)] = zj (04§> —Jj< A(E(j)_ﬁ(_i))/z)gaf)a (R6‘1>

[T, —i(a), T_;:(€)] = nj<—A<€<”—6<-j>>/2a£>T_j,j(—Mf“)*(—j”/?)faé) and  (R6.2)
[T5:(€), Ti—i(a)] = Tj—i(£a) Tj,—; (A =02)¢af) (R6.3)

hold where h # j,—i and k # i,—j in (R3), i,h # +j and i # +h in (R4.1)-(R4.4)
and i # +j in (R5.1)-(R6.3).

Proof Straightforward calculation.

Definition 6.13 The group consisting of all o € Uy, (R, A) such that o = e(mod I)
and f(ou,ou) € f(u,u) + T' Yu € V is called the principal congruence subgroup of
level (I,T") and is denoted by Us,((R, A), (I,1)).

Remark One can show that Us,((R,A), (I,I')) is a normal subgroup of Us, (R, A)
(see [4]).

Lemma 6.14 Let 0 = ch Z) € Uy(R, N), where a,b,c,d € M,(R). Then o €

Usn((R,A), (I,T)) if and only if
(1) o =e(mod I) and

(2) |ow;l €T Vie{l,...,=1}. (low| = D) ij0-ij is defined just before 6.4.)
=1
Proof See [4], p.174.

Definition 6.15 The preimage of the center of Uy, (R, A)/Us,((R, A), (I,T)) under
the canonical homomorphism Us, (R, A) — Us, (R, A)/Us,((R, A), (I,T)) is called
the full congruence subgroup of level (I,T) and is denoted by CUs,((R,A), (I,T)).

Remark Obviously U, ((R,A),(I,T)) < CUs,((R,A),(I,T)) and CUy,((R,A),
(1,T')) is a normal subgroup of Us, (R, A).

Lemma 6.16 I[fn > 3 and R is almost commutative, then the equalities

[CUsn((R,A), (I,T)), EUsy (R, A)]
=[EUs,((R,A), (I,T)), EUsp (R, A)]
=EUs,((R,A), (1,T))
hold.

Proof See [4], Theorem 1.1 and Lemma 5.2. O
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7 Sandwich classification for hyperbolic unitary
groups

In this section, we construct in the setting of hyperbolic unitary groups, specific
supplemented bases, local maps, solution groups and coverings by these solution
groups, and show in the Solution Group Lemma 7.9 that any noncentral element
in any solution group of any of these coverings satisfies a solution equation. 7.9 is
the main technical input of the section. Road maps of the proof are provided at
the conclusions of Parts I, II, and III of the proof, in terms of (long) inverted tree
diagrams. Then we deduce the sandwich classification theorem (1.1) for subgroups
of Usn (R, A) normalized by EUs, (R, A) from Theorem 3.13.

In the following let n > 3, (R,A) be a form ring and C' be the subring of
R consisting of all finite sums of elements of the form c¢¢ and —cc¢ where ¢ ranges
over some subring C" < Center(R) such that R is module finite over C’. One can
check that R is also module finite over C'. The reason for replacing C’" by C is that
any form parameter or form ideal is a C-module. This is not necessarily the case
for C’. For any form ideal (I,T") of (R, A) and multiplicative subset S < C, set
Rs:=S'R, Ag:=S'A, Ig:= ST and I'g := S7'I". Let

¢s : Usn(R, A) /U2 (R, A), (1,T)) = Usn(Rs, As)/Uzn((Rs, As), (Is,T's))
be the homomorphism induced by Fs where
Fg : U (R, A) = Usn(Rs, Asg)
is the homomorphism induced by the localisation homomorphism
fs: R— Rg.

Let
(0 U2n(Ra A) - U2n(R’ A)/U2n((R> A)? (L F))

and
ps : Usp(Rg, Ag) = Usn(Rs, As)/Usn((Rs, As), (Is,I's))

be the canonical homomorphisms. Further set A\g := f5(\). Note that the diagram

Usn(R, ) v

UQn(Rv A)/U2n((R7 A)’ (]7 F))
Fg s

Usn(Rg, Ag) —225 Usn (Rg, Ag) /Usn((Rs, As), (I, T's))

is commutative for any form ideal (I,I") of (R, A) and multiplicative subset S < C.
For any maximal ideal m of C' set S,, := C\m and ¢, := ¢g, (define F,,, fim, pm,
Ry, A, Ly, Ty and Ay, similarly).
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Lemma 7.1 Set

G = Un(R, M),
E = EUsn(R, A),
Gen(E) = {Ty;(x)|i,je {1,...,—1}i # jx e R if i # —j,

x e NEOTURA Gf i = — 51
B(E) := {EUs,,(I,1)|(1,T') form ideal of (R,A)} and
G(EU(1,T)) := Usn((R,A), (I,T)) Y(I,T) form ideal of (R, ).

Then (G, E,Gen(E),B(E),G(-)) is a standard group. Further E(EUy,(I,T)) =
EUs,((R,A), (I,T)) and C(EUy,(I,T)) = CUsn((R,A), (I,T)) for any form ideal
(L,T) of (R, A).

Proof We have to show that the conditions (3.2.1) — (3.2.3) in Definition 3.2 are
satisfied.

(3.2.1) Obviously B(FE) is a base of open subgroups of 1 € F, since it contains the
identity subgroup {1} = EU,,({0},{0}). Clearly F = EU,,(R,A) € B(FE).

(3.2.2) Let {(I;,I';)|7 € J} be a family of form ideals of (R, A). One checks easily
that {\J EU(1;,1;)) = EU((U 1), (U ')
jed jed jed
(3.2.3) Let U € B(FE). By definition there is a form ideal (1,I") of (R, A) such that
U = EU,,(I,T"). Clearly Gen(U) = Gen(FE) n U contains all the elements
Ti;(xz) where d,j e {1,...,—1}, i # j, x € [ if i # —j and o € A~ DTV if
i = —j. But these elements generate U. Hence U = EU,,(I,T") is generated
by Gen(U). Now let g = T;;(x) € Gen(E) and U = EU,,(I,T") € B(E).
Assume that g € G(U) = Uy, ((R, A), (I,T)).
case 1 Asssume ¢ # +j and x € R. Since g € Us,((R,A), (I,T)), all non-
diagonal entries of ¢ lie in 1. It follows that x € I and hence g = T;;(z) €
EUsy(I,T) = U.
case 2 Asssume that i = —j and z € A=CW+TV/2A Since g € Uy, ((R, A), (I,
I')), all lengths of columns of g lie in I'. It follows that 2 € A=(€@+1/2]" and
thus g = T}j(x) € EUy,(I,T) = U.
]

From now on we assume that R is a Noetherian C-module.

Lemma 7.2 Let (I,T") be a form ideal of (R,A) and S < C' a multiplicative subset.
Then there is an so € S with the properties

(1) if v e soR andIte S :txel, thenx el and
(2) if v € soR and It e S :tx e, thenx e T.

It follows that ¢g is injective on (Us,((R, A), (I + soR, T + so/))).
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Proof For any s € S set Y(s) := {z € R|sx € I}. Then for any s € S, Y(s) is
a C-submodule of R. Since R is Noetherian C-module, the set {Y(s)|s € S} has
a maximal element Y'(s;). Clearly all elements = € s;R have the property that
tx € I for some t € S implies z € I. For any s € S set Z(s) := {zr € R|sx € T'}.
Then for any s € S, Z(s) is a C-submodule of R. Since R is a Noetherian C-
module, the set {Z(s)|s € S} has a maximal element Z(s3). Clearly all elements
T € Sy R have the property that tz € I' for some ¢t € S implies z € I'. Set s¢ :=
$182. Since soR = s155R S s1R N syR, s has the properties (1) and (2) above.
We will show now that ¢g is injective on ¥(Us,((R, A), (I + soR,T" + soA)). Let
91,93 € V(Uan((R, A), (I + soR, T + 50AA))) such that ¢s(g1) = ¢s(g3). Since g3, g5 €
W(Usn (R, A), (I + soR, T + so/\))), there are g1, g2 € Us, (R, A), (I + soR, " + so/))
such that 1(g;) = g} and ¥(g2) = gb. Set h:= (g91) g2 € U ((R, A), (I + soR,T +
so/\)). Clearly ¢s(g)) = ¢s(gs) is equivalent to Fg(h) € Us,((Rs, As), (Is,I's)), i.e.

(a) Fg(h) = e(mod Ig) and
(b) fs(lhssl) eTs Vje{l,...,—1}.
We want to show that ¢ = g} which is equivalent to h € Us,((R, A), (I,T)), i.e.

(a’) h =e(mod I) and

(b’) Ty = |h*J| el \V/j € {1, RN *1}
First we show (a’). Let 7,7 € {1,...,—1} such that ¢ # j. Since (a) holds, fs(h;;) €
Is. Hence

B
EIJIEI,SESZ%Z

w8

= drvel,s,teS: t(hyjs—z)=0
=drvel,s,teS:sthj=trel
= Jue S :uhy el (7.2.1)

Since h € Us,,((R, A), (I +soR, '+ soA)), hi; € I + soR. Hence there are a y € I and
a z € soRR such that h;; = y + 2. (7.2.1) implies that uz € I. Since sy has property
(1), it follows that z € I. Thus h;; € I. Analogously one can show that h; — 1€ [
forallie {1,...,—1}. Hence h = e(mod I). Now we show (b’). Let j e {1,...,—1}.
Since (b) holds, fs(z;) € I's. Hence

Hyef,ses:ﬁzg
1 S

= dyel,s,teS: txjs—y)=0

= Jyel,s,teS:ste;=tyel

= Jue S :uxjel. (7.2.2)
Since h € Uy, (R, A), (I +50R, '+ s50/)), z; € I' + soA. Hence there are a y € I and

a z € soA such that x; = y + 2. (7.2.2) implies that uz € I'. Since s, has property
(2), it follows that z € I'. Thus x; € I'. Hence ¢} = ¢} and thus ¢g is injective on

30



Y (Usn((R,A), (I + soR,T + soA))).
[

We construct now a specific supplemented base that we will use to construct
specific local morphisms. In the lemma below we use the following conventions.
Let z € R. Then RxR denotes the involution invariant ideal generated by x, i.e.
the ideal of R generated by {z,z}. Now let (I,I') be a form ideal of (R, A) and
assume that z € R\l or z € T/ \I'. Set ['(z) := M if x € R\I and T'(z) :=
PEel o Uyxgly € R} if x € L \I'. T'(x) is called the relative form parameter
defined by x and (I,T"). One checks easily that (RzR,I'(z)) is a form ideal of (R, A)
which is not contained in (I,I'), i.e. ReR & I or I'(x) € I'. It is called the form

ideal defined by x and (I,T).

Lemma 7.3 Let (I,T') be a form ideal of (R,A), S < C a multiplicative subset
and so € S as in the previous lemma. Set A := {EUsy,(ssoR, ssoM\)|s € S} and
B = {EUs,(RxsoR, I'(xsg))|(x € R,xso € R\I) v (x € A,zsg e I\I')}. Then (A, B)
is a special supplemented base for Us,(R,\) and Fs(A, B) is a supplemented base
fOT’ Ugn(RS, AS)

Proof First we show (A, B) is a special supplemented base for Uy, (R, A). Clearly A
and B are sets of nontrivial subgroups of £. We show now that A is a (nondiscrete)
base of open subgroups of 1 € E. Therefore we must show that A satisfies the
conditions (1) and (2) in Definition 3.1.

(1) Let U = EUs,(ssoR, sso\),V = EUs,(tsoR,tsoA) € A. Set W := EU,,(stsoR,
stsoA) € A. Then clearly W c U n V.

(2) Let g € E and U = EUy,(ssoR, ssoA) € A. There is a K € N such that g is
the product of K elementary unitary transvections. Set V := EUsy,((s50)2*"*
AT R (550) 24 H4 T HA) € A Then 9V < U (see Lemma 4.1 in [6]).

Hence A is a base of open subgroups of 1 € E. Let EUs,(RzsoR,T'(xsg)) € B. Then
EUs,(RxsoR,T'(xs0)) € EUsp(soR, soA) € A. It remains to show that if U € A and
V € B then U n'V contains a member of B. Let U = EU,,(ssoR, ssoA) € A and
V = EUs,(RzsoR,T'(xsg)) € B. Set W := EUs,(RxssoR,I'(zssg)). If xsg ¢ I, then
xssg ¢ I and if xsg ¢ T, then xssy ¢ T' (by the definition of sq, see the previous
lemma). Hence W € B. Obviously W e U n'V. Since A,B < B(E), (A,B) is a
special supplemented base for Us, (R, A).

Now we show Fs(A, B) is a supplemented base for Us,,(Rg, Ag). Clearly Fs(A)
and Fg(B) are sets of nontrivial subgroups of E' := EUy,(Rg, As). We show now
that Fs(A) is a (nondiscrete) base of open subgroups of 1 € E’. Therefore we must
show that Fs(A) satisfies the conditions (1) and (2) in Definition 3.1.

(1) Let U = Fs(EUs,(ssoR, sso/\)), V = Fs(EUs,(tsoR,tso\)) € Fs(A). Set W :=
Fs(EUy,(stsoR, stsg\)) € Fs(A). Then clearly W < U n'V.

(2) Let g€ E' and U = Fg(EUs,(tsoR,tso\)) € Fs(A). There are a K € N and ele-

mentary unitary transvections 71 = T;,;, (1), ..., i = T3, 5, (Y5) € E' such that
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g=T1...Tk. Set s :=s1...55 and V 1= Fg(EUs,((stso)>* +4 '+ R (st
50) 24 HA TN Y) € Fig(A). Then 9V € U (see Lemma 4.1 in [6]).

Hence F5(A) is a base of open subgroups of 1 € E’. That each member of Fg(B) is
contained in some member of Fg(A) follows from the fact that any member of B is
contained in a member of A. That given U € Fs(A) and V € Fg(B), UV contains
a member of Fg(B) follows from the fact that given U € A and V e B, U nV
contains a member of B. Hence Fs(A, B) is a supplemented base for U, (Rg, Ag).

[

Now we construct specific local morphisms which will be used to prove (1.1).

Lemma 7.4 Let (I,T") be a form ideal of (R,A) and S < C' a multiplicative subset
such that S n I = . Then ¢g is a local morphism of standard groups.

Proof First we show that ¢g is a morphism of standard groups. Clearly ¢g maps a
base generator to a base generator. Since {1} is base subgroup of Us, (R, A)/Us,((R,
A), (1,T)), the topology induced by the base subgroups of Us,, (R, A)/Us,((R, A), (I,
') is the discrete one. It follows that ¢g induces a continuous homomorphism
EUs(R, A)/(EUsn (R, A)  Usn (R, A), (I,T))) — EUsn(Rs, As)/(EUsn(Rs, Ag) N
Uan((Rs,As), (Is,I's))). Hence ¢g is a morphism of standard groups.

Let (A, B) be the special supplemented base for Uy, (R, A) defined in the previ-
ous lemma. Since ¢ induces a surjective homomorphism EUs, (R, A) — EUy, (R, A)/
(EUsp (R, A) n Uz ((R,A), (1,1))), it follows easily that 1(A, B) is a special supple-
mented base for Uy, (R, A)/Us,((R, A), (I,T)). We will show now that ¢g is local
with respect to the special supplemented base (A(¢s), B(¢s)) := ¥(A, B). There-
fore we have to show that conditions (3.7.1) — (3.7.3) in Definition 3.7 are satisfied.

(3.7.1) By the previous lemma, Fs(A, B) is a supplemented base for Us,(Rg, Ag).
Since pg induces a surjective homomorphism EUs,(Rg,As) — EUs,(Rs,
As)/(EU,(Rs, As) N Usn((Rs, As), (Is,T's))), it is easy to deduce that pg(
Fs(A, B)) is a supplemented base for Us,(Rs, As)/ Uan((Rs, As), (Is,T's)).
Since pg o Fs = ¢g o 1, it follows that ¢s(¢(A, B)) is a supplemented base
for Ugn(Rs, As)/UQn((RS, As), (IS, FS))

(3.7.2) By Lemma 7.2, ¢ is injective on ¢ (Us, ((R, A), (I +soR, '+ 59/A))). Let U €
1(A). Then there is an s € S such that U = ¢(EUs,(ssoR, sspA)). Hence
G(U) = G((EUy,(ssoR, sso))) = (U (R, A), (I + ssoR,T" + ssp/))) <
V(U (R, A), (I + soR, T + soA))). It follows that ¢g is injective on G(U)
for any U € ¢(A).

(3.7.3) It suffices to show that the conditions (3.8.1) and (3.8.2) in Lemma 3.8 are
satisfied.

(3.8.1) Let ¢’ = ps(T;;(2)) be a nontrivial base generator in Us,,(Rg, Ag)/Usn(
(Rs,As), (Is,T's)), and U = (EUs,(ssoR, sso\)) € P(A).
case 1 Assume that ¢ # +j.
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Choose an x € R and a t € S such that z = £. Since ¢ is nontrivial,
z ¢ Isgand hence xsg ¢ I. Set V := w(EUgn(R(sso) zR, [ fi(ss0)? w1y =

mwn

Y(EUy,(R(s50)°xR,T((s50)°x))) € 1(B). One can show routinely,
using the relations (R1) — (R6) in Lemma 6.12, that ?s(V)¢’ contains

os(V).

case 2 Assume that i = —j. '

Choose an = € A and ate S such that z = )\E(E(Z)H)/Q%. Since ¢’ is
nontrivial, z ¢ )\ )+1)/2F and hence xsg ¢ T'.

case 2.1 Assume that xsg ¢ 1.
Set V 1= t)(EUsn(R(s80)0xR, TR0 2Ry _ 0 BUL, (R(ss0)02R, T'(

(580)7))) € ¥(B). One can show routinely, using the relations
(R1) — (R6) in Lemma 6.12, that ¢s(Y) ¢’ contains ¢g(V).
case 2.2 Assume that xsy € I.

Set V := (EUs,(R(ss0) xR, leffo B4 Yylsso)Tzgly € RY)) =
Y(EUs,(R(ss0) 2R, T'((ss9)"x))) € ¥(B). One can show routinely,
using the relations (R1) — (R6) in Lemma 6.12, that *s(V)¢’ contains
os(V).

Since ¥ (A, B) is a supplemented base, there is a W € 1(B) such
that W < U n V. Clearly ?s(")¢’ contains ¢5(W) and W < U.

(3.8.2) Let f” be a base generator in Us,(Rgs, As)/Un((Rs, As), (Is,I's))
and V € ¢(B). Choose a nontrivial base generator ¢’ € ¢5(V) which
commutes with f’. Such a base generator exists by relation (R3) of
Lemma 6.12. Then /' ¢4(V) clearly contains ¢’ = ¢'.

Hence ¢g is local with respect to (A(¢s), B(¢s)) = ¥ (A, B). [

Next we show that the local morphisms ¢,, where m is a maximal ideal of C
such that I n C' € m form a covering.

Lemma 7.5 Any quotient of the standard group (G, E,Gen(E), B(E),G(-)) (where
G, E, Gen(E), B(E) and G(-) are defined as in Lemma 7.1) has a covering.

Proof Let (I,I") be a form ideal of Uy, (R, A). Set Z := {¢,,|m maximal ideal of C,
InC < m}. We show that Z is a covering of the standard group Us, (R, A)/Us,((R
A),(1,T)). By the previous lemma, for any maximal ideal m of C' such that
I nC < m, ¢, is a local morphism (note that I n C' < m implies S,, n [ = ).
It remains to show that for any noncentral ¢’ € Us, (R, A)/Uspn((R,A), (I,T)) there
is a maximal ideal m of C such that I n C < m and ¢,,(¢’) is noncentral. Let
g € Usp(R,AN)/Usn((R,A),(I,T)) be noncentral. Then there is an i’ € Us,(R,
A)/Usn((R,A), (I,T)) such that ¢'h’ # h'g’. Let g,h € Uy,(R,A) such that ¢ =
gUan((R,A),(I,T)) and b = hUs,((R,A),(I,T)). Set o := [g7', h7]. Clearly
g'h' # h'g’ implies o ¢ Us,((R,A), (I,I')). Hence either o;; ¢ I for some ,j €

{1,...,—1} such that ¢ # j, or 0;; —1 ¢ [ for some i € {1,..., =1} or z; := |oy;| ¢ '
for some j e {1,...,—1}.
case 1 Assume that o;; ¢ I for some4,j € {1,...,—1} such that 7 # j. Set Y := {ce
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Clco;j € 1}. Since o5 ¢ 1, 'Y is a proper ideal of C. Hence it is contained in a max-
imal ideal m of C'. Clearly I n C' < Y € m and hence S,, nY = ¢J. We show now
that ¢,,(¢") does not commute with ¢,,(h), i.e. F,(0) ¢ Usp((Rpmy M), (Lins T))-
Obviously (F,(0))ij = fm(0ij). Assume (F,(0))ij € I,. Then
391:6[,3657”:%:E
1 s
= drvel,s,teSy, tlo;s—z)=0
=dxel,s,teS,: sto;=trel

= Jue S, 1 uo;; € l.

But this contradicts S,, n'Y = J. Hence (F,,(0));; ¢ I, and thus ¢,,(¢’) is non-
central.

case 2 Assume that o;; —1 ¢ I forsome i€ {1,...,—1}. Set Y := {ce Clc(o;; —1) €
I}. Since 0;; — 1 ¢ I, Y is a proper ideal of C. Hence it is contained in a maximal
ideal m of C. Clearly I nC' € Y < m and hence S,, nY = . We show now
that ¢,,(¢') does not commute with ¢,,(h'), i.e. F(0) ¢ Usp((Romy M)y (Liny T'im))-
Obviously (Fi,(0))ii — 1 = fi(0i) — 1 = fi(ou — 1). Assume (F,(0)); — 1 € I,.
Then

dJrel,seS,:

oy —1 x

1 s
= Jdrel s, teS, t((cys—1)s—x)=0
= Jrxel, s, tesS, : stloy;—1)=trxel

= Jue S, ruloy; —1) e I.

But this contradicts S,, Y = . Hence (F,,(0))i; — 1 ¢ I,,, and thus ¢,,(¢) is
noncentral.

case 3 Assume that z; = |o,;| ¢ I for some j € {1,...,—1}. Set Y := {c € C|cx; €
I'}. Since x; ¢ I', Y is a proper ideal of C'. Hence it is contained in a maximal ideal
mof C. Since z; € A and y?A € T,y S T forany y € InC, (InC)* =Y < m. This
implies S;, N Y = & and I n C' < m, since m is prime. We show now that ¢,,(¢")
does not commute with ¢,,(h), i.e. F,,.(0) & Usn((Rim, Am), (I, I'n)). Obviously

|(En (@)

|
—
3.
N
g
3.
N
&



=fm(|0451)
:fm(xj)'
Assume f,,(z;) € I';;,. Then

HyeF,seSm:ﬂ:y
1 S

= dJyel,s,teS, tlxjs—y) =0
=dJyel,s,teS:ste;=tyel
= Jue S, uzr;el.

But this contradicts S,, 'Y = J. Hence |(F,,(0))«j| = fn(z;) ¢ '), and thus
®m(g') is noncentral. 0

The lemmas 7.6, 7.7 and 7.8 will be used in the proof of Lemma 7.9.

Lemma 7.6 Let (I,T") be a form ideal of (R,A\) and S < C' a multiplicative subset.
Let T;;(z) € EUs,(Rg,As) be an elementary short or long root, o € Us,(Rg, Ag)
and s € S. Then [0,T;;(z)] € Us,((Rs, As), (Is,I's)) if and only if [0, T;;(fs(s)x)] €
Uzn((Rs, As), (Is,T's)).

Proof Straightforward computation. ]

Lemma 7.7 Let m be a maximal ideal of C' and o € Usy (R, Ayy). Then there is
an € € EUsy (R, Ayy) such that (‘o)q1 is invertible.

Proof By Lemma 1.4 in [9] and Lemma 3.4 in [3], R, satisfies the A-stable range

condition AS;. Hence there is an ¢ = enf;" 60 € EUsy, (R, Ay), where
nxn
v € M,(Ry), such that (zq,...,x,) is right unimodular where (xy,...,2_1) is
the first row of “*o. Since AS; implies SRy, there is a matrix e; = 061 :}) €
2

EUsy (R, Ary), where wy and wo are lower triangular matrices in M, (Rys) with 1’s
on the diagonal, such that the entry of (“*'¢)q; is right invertible. Since R is a
Noetherian C-module, R is almost commutative. It follows that R,, is almost com-
mutative and hence (““¢);; is invertible, by Lemma 5.6. O

The following lemma has been proven by You (see [10], Lemma 3.5).

Lemma 7.8 Let (I,I') be a form ideal of (R,A\) and o € Us,(R,A). Further let
re€ R andi,je{l,...,—1} such that i # £j. Set 7 := [0, T;;(x)]. Then

|Ter| = _;kf"f*i|x0;k + 5-Li,k'r’0-*,—j|jo-ii,k + Yk,
|Twj| = 6;jf|a*i|$03j + 6'_i7jx|0*7_j|jal_i7j + Z|TwiT + y;

and
|Ts —i| = 6;-’_if|cr*i|x0;’_i + 6’_i7_ix|a*’_j|£a'_i’_i + @] T —j|T + Y
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where for each k € {1,..., =1}, yx is a finite sum of terms of the form z — A\Z where
2 lies in the ideal generated by the nondiagonal entries of o and o='. It follows that
if 0 € Usn((R,A), (I, 1 nA)), then |Tux| € T Vk # j, —i, |Tj| = Z|0ow|z(mod I') and

[T —i| = x|os —;|Z(mod I').

Proof Straightforward computation. O]

Now we show that the codomains of the local morphisms ¢,, are solution
groups and hence (G, E, Gen(E), B(E),G(+)) and each of its quotients have a cover-
ing by solution groups. In the following lemma we will apply lemmas and corollaries
in [, chapter IV, §3. We are allowed to do this since for any maximal ideal m of C,
C! .= S, 1C"is semilocal by Lemma 1.4 in [9] and hence the Bass-Serre-dimension
of C! is 0. Since R is module finite over C’, R,, is module finite over C] and hence
R,, is a finite C] -algebra.

Solution Group Lemma 7.9 Let (I,T") be a form ideal of (R, A) and m a mazimal
wdeal of C' such that I n C' < m. Then the codomain of ¢,, is a solution group for
A= ¢ (A(dm)) where A(oy,) is defined as in Lemma 7.4.

Proof Let b/ € Usp(Rpny M) /Usn((Riny A), (I, I'y)) be noncentral. We have to
show that h’ satisfies a solution equation with respect to A’. Let U' € A’. Let h €
Uan (R, Ay such that b’ = p,,(h). Since A is noncentral, h ¢ CUsy, (R, M), (L,
I';n)). The proof is divided into three parts, I, IT and III. In Part I we assume
that h ¢ CUsp((Rim, Am), (I, Im 0 Ay)) and n > 3. In Part IT we assume that
h ¢ CUsn((Rpy M), (Limy I, 0 Ayy)) and n = 3. In Part III we assume that
h e CUpp((Rmy M)y (Iimy Iy 0 Ay)). Set A := {F,,,(EUs,(ssoR, sso\))|s € S;,}. By
Lemma 7.3, A is a base of open subgroups of 1 € EUs, (R, A,,). Let U € A such that
pm(U) = U’. In each of the parts I, IT and III choose Uy, ...,Uy € A such that for
all (k + 1)-tuples (e, ..., €,) used in that particular part, 4¥U; < U Vi € {0, ..., k}
(possible since A is a base of open subgroups of 1 € EUs,,(R,,,A,,) and in each
part there are only finitely many (k + 1)-tuples (e, . .., €x) which are used). Since
Up, ..., Uy € A, there are ty, . .., tg € Sy, such that U; = F,,(EUs,(t;s0R, t;s0\)) Vi €
{0,...,9}. Set s; := fi(tiso) (i =0,...,9).

Part I Assume that h ¢ CUs, (R, M), (I Iy 0 Ayy)) and n > 3.

By [1], chapter IV, Corollary 3.10 (applied with H =FV2n(BmAm)(p%) there is an
€0 € EUs, (R, Ay) and an v = ¢ € R, such that [h, Ty _»(2)] ¢ CUzp((Rin, M),
(Imy Im 0 Ayy)). By [, chapter IV, Lemma 3.12, Part I, case 7 there is a matrix

€1 € EUsp (R, Apy) of the form
(XY
€1 = O Z )

where XY, Z € M,(R,,), such that the first n coordinates of € (“h),; equal
(1 0 ... ())t and the first n coordinates of €1(h),o equal (O 1 0 ... O)t. Set
fm(a) :=a and f,(s) := 8. Set go := T1,_2(s057) = T1,_2(507%) = T1,-2(50a) € Up.
By Lemma 7.6, [“h, go| ¢ Usn((Rm, M), (I, I;m 0 Ay)). Since Usyp (R, A, (I,
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I, nA,,)) is normal, it follows that o := “[h, go] ¢ Uspn (R, M), (i, LI 0 A)).
Since

[60}1 9o]
=gy "+ (“h)urso@((Ph) ™) 295
— (“h)s2Amsoa((°h) ™) 1495 )
=" (g5 ")+ ((“R)sasoa((“h) ™) 2490 ")
= ((h)s2Amsoa((“h) ™) 1490 ")
=(go ") + e1(h)srs0a((Ch) ™) augy (€)™
- 61(th)w;\mé‘o_&((eoh)_l)—l,*)go_l(ﬁl)_l

and ¢ (gal) =e+ (61)*180&((61)_1)_27* - (61)*25\m80_&<(61)_1)_17* has the form

o has the form

b B
0 €(n—2)x /63 54 = (a g)
v \ 0

where ay, 82 € Ma(R,,), aa, 1 € Moy (n—2) (Rm), B3 € My _o(Rp), Ba € M- 2)x2(R )
and o = (aij)lgi,jgmﬁ = (bz]) I<isn 7 = (ng) ?<Z< 5 (d ) -n<ij<—-1 € M (

—n<y<—1 <g<n
Ry).

case 1 Assume that either o # e,,x,(mod I,,,) or v % 0(mod 1,,,) or § # €,,x,(mod
I,).

We will show that it follows that a # e, x,(mod I,,) or v # 0(mod I,,,). Assume
that @ = e, x,(mod I,,,) and v = 0(mod 1[,,,). Let x : M, (R,,) — M,(R,,/I) be
the homomorphism induced by the canonical homomorphism R,, — R,,/I,,. Since
the image of o in Usy, (Ryn/ Iy A/ (A 0 1y,)) equals (G”OX" Zig))), K(0) = enxn by
Lemma 6.9. That is equivalent to § = ey, (mod I,,,). Since this is a contradiction,
a # e,yn(mod I,,) or v # 0(mod I,,). Hence there is an ¢ € {1,...,n} such that
04 # e;(mod I,).

case 1.1 Assume that i € {1,...,n — 2}.
Clearly the (n — 1)-th row of

[0, T} — (n—1)(1)]
=(e+ 040" (1) 4 = AnOuin-1)0" ) Ti - (n-1)(—1)
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a2

1 n -n -1

:(e + 0 (}\méfl’nfl - )\méfn,nfl 0 10... Odg(n_l) a,l(n_l) )

1 A1(n—1)

a2(n—1)

1 n -n —1 -1

— Am (/\mé—l,i~-~ )\mé—n,i 0...010... Odgiéli))

—-n C_nn—1

-1 C-1,n—-1
T —(n—1)(—1)

is not congruent to f,_; modulo I,, since o4, # e;(mod I,,). Hence [0, T; _(,—1)(1)] ¢
Usn (R, M), (Iiny In 0 Ay)). Set go = T, _—1y(s1) € U;. By Lemma 7.6,
[0, 92] ¢ Usn((Rim, Amn), (I, Im 0 Ayy)). Clearly the n-th row of [0, ¢2] equals f,.
Set €y := Py, € EUy, (R, Ayn). Then the first row of 7 :=%|0, go] equals f;. Since
Uan (R An)y (I Iy 0 Ayy)) is normal, 7 ¢ Usy, (R, A)y (I, I 0 Ayy)). Clearly
7 has the form

1 0]0 0
Ay Ay|Bs 0| (A B
Ci G| Dy 0 _<C D)
Cs Cy| Dy 1

where Cg € Rm7 A3,Cl € (Rm)n_l, C4,D3 € n_1<Rm), A4,Bg,CQ,D1 € Mn_l(Rm>
and A = (Ajj)i<ij<n, B = (Bij) 1<isn ,C = (Ci')—{iSZS—LD = (Dij)-n<ij<-1 €

—n<Y<— <Js<n
M, (R,,). Set
Ay | B
B = (Byueises = (g o) € Mancaln).

case 1.1.1 Assume that E # €(2p—2)x(2n—2)(mod I,).
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There are i,j € {2,..., —2} such that (F — e@p_2)x@2n-2))ij ¢ Im- Set go =
T_1;(s2) € Us. Then w := [771, go] has the form

1 0 0
*  €(n-2)x(2n-2) 0
* w 1
where w = (U}27 s 7w—2) = Sz(E - €(2n—2)><(2n—2))i*- Since (E - e(2n—2)><(2n—2))ij

¢ I, w; =: It)—: ¢ I,. Set b := bTI € R, and t := % € R,,. Choose an | # +1,+j

and set g3 := Tj(s3) € Us, gs4 := T _j(sasst) € Uy and g5 := T_1 _;(S3S485tw;) =
T_1_;(s35455b) € Us. Notice that g5 ¢ Usy (R, Am), (I, Im 0 Ayy)), since w; ¢ I,
and s3sysst is invertible. One checks easily that

[62 [61 [th g] ] 1)792]793]’94]
(2[R, go], 92]) ", 9], 93], 94
w, 93], 9]

=9s.
Set g} := pm(gi) Vi € {0,...,5}, € 1= pm(e) Vi € {0,1,2} and d; := p,,(d;) Vi €
{0,...,5}. Then ¢y,¢€p, ¢y, € E' = pp(EUsp(Rm, A1), g5 € Gen(E’)\{e} digl e
U' Vie{0,...,5} and
[, g0) 91171, 651, 951, 94] = g5
case 1.1.2 Assume that ' = e@,_2)x(2n—2)(mod I,,) and Az = 0(mod I,,,).
Set 51 = H 7}1( All) € EUQn((Rm,Am), (Ima Fm)) Since 51 € EUQn((Rm,Am>, ([m7

[')) € Ugn((Rm,A )y (I;s T)) € Uy (R M), (L, Iy 0 Ayy)) and 7 ¢ Usy, (R,
A, (L Iy 0 A))y &7 € Usy (R M), (L, I 0 Ayy)). Clearly

1l
=l
=l

1 0]o0 o
| o4, 0
SUE IreAares 0
c, 1

for some C} € R, and C}, D € ""'(R,,) such that D; = 0(mod I,,,) (consider the
image of ;7 in U2n(Rm/Im7 Am/(Am N Im)))

case 1.1.2.1 Assume that there is an i € {3,...,n} such that C", ; ¢ I,,.
Set €91 := T12(—1) € EUsp (R, Ayy). Then 21 (&;7) has the form

1 AL| B! By
0 A,|B! B!
C// C// D// D//
c; | by D

where B, C4, D € Ry, BY,CY € (R,)"™', Af, B, C4, Dy (R, B, C4,Dj e
My _1(Ry,). Furthermore A5 = 0(mod I,,,) and C”,; = C”; ;(mod I,,,). Set & :=
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[T1Tu(—A%) € EUs (R, A, (I, Tin)). w :=21(£,7)&, has the form
=2

m

B 2
"

B 4

1 0 |BY
0 A | B
C/// C/// D///
¢y oyl oy

n
D 2

n
D 4

n " " n n n n—1 4 " 4 n—1 4 n
where By, CY D} € R,,, B},C!,Dy € (R,)" ', BY,C{,Dy € (R,,), BY,CY,

Di” € Mn—l(Rm)
C/—I/Q,i ¢ I, Set go := T _;(s2) € Uy. Then

[w, go]
=(€ + CU*QSQCUI_Z',* - W*i>\m52w/—27*)(g2)_1

1
(AnC

Ani
o

—n,i

(A

-1\ C%;
(g2) 7.

Clearly [w, g2]1+ = f1 and

n — " —
Furthel" 0_272' — 0_2#* —

)\m Cv///

Am'

—n,t

M A

C’,(mod I,). Since C"; ¢ Iy,

A 0))

[w, g2]22 =1+ SQAQQ)\mCYiﬂzyi - meQAQi)\mC'Z/Q72-

Since Ay; € I,

—S\mSQAgi)\mC_’ﬁ’m € In. Since C"y; ¢ I, C_”_”Qﬂ- ¢ I,,. Hence

89 Ao A C" o ¢ I, since Agy = 1(mod I,,) and sy and A, are invertible. It fol-
lows that [w, g2]22 # 1(mod I,,). One can proceed now as in case 1.1.1 (note that
pm<§1) = pm<§2) = e since 51752 € EU2n<<Rm,Am), (]mvrm)) = U2n(<Rm7Am)7 (Im7

L))
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case 1.1.2.2 Assume that C” , ¢ I,

Set €91 1= Tlg(—l) S EUQn(Rm,Am) Then 2! (517') has the form

1 AY| B! By
0 A, |B! B!
C” C// D// D//
¢ | oy D

" " " " " -1 " " " " —1 " " "
where B),C%, D) € R,,, B],C{ € (R,,)" ", A, BY,C}, D} €' (R,,), BY,CY,Dj €

M, _1(R,,). Furthermore A} =

(mod I,,,) and C”3, = € 5(mod I,,). Set & :

1_[ Tll<_A,1,l) € EUQn((Rma Am)a (Im7 Fm)) w ::n(flT)éé has the form
=2

m

B 2
"

B 4

1 0 |B
0 Ay |BY
Ci/l Cé// Dg/
cy cy| oy

7
D 2

m
D 4

4 " 4 n n n n—1 n n n n—1 n n
where BY . CY, D} € R,,, BY,C!",Dy € (R,)" ", B',CY,Dy € (R,,), BY,CY,

Dgﬂ € Mn71<Rm)
CL”3,2 ¢ I,. Set go 1= T5 _5(s2) € Uy. Then

[w, g2]
2(6 + w*382w/,2,* - W*2)‘m52w/—3,*)<92)71

: 1
Aps (/\mC*’_”m
—nl c” 7

—n,3

( )\m C_Wl 5
—-n C/// o

—n,2

n
-1\ %,
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)\m C_W

A’Zan

—n,2

N
)\mC—n,3

C" ) 5(mod I,).

Ay o)

Since C”, 5 ¢ Inm,



Clearly [w>g2]1* = f1 and
[w. gl = 1+ 52433 AmC”5 5 — Ams2 A2 A O 5.

Since Aszy € I, —j\mSQAggAmCT373 € Ip,. Since C"3, ¢ I, C_'Z’&Q ¢ I,,. Hence
S9A33 A C" _39 ¢ I, since Agz = 1(mod I,,) and s, and A, are invertible. It follows
that [w, ga]ss # 1(mod I,,,). One can proceed now as in case 1.1.1

case 1.1.2.3 Assume that C”, ; € I,,, Vi€ {2,...,n}.
It follows that Cy € I, Vi € {—n,...,—2}. Since &7 ¢ Usp((Rms M), (Lny I 0
M), Oy & I Set ez1 := Tha(—1) € EUsp (R, Apy). Then 1(&;7) has the form

1 Ay| B! By
0 A,|B Bl
Cl/ C// Dl/ D//
cr cr| Dy D

where BY,C%, D} € R,,, B],C € (R,)" ', Ay, B!, C}, D} €""Y(R,,), By, CY D/ €
M 1(Ry). Furthermore A5 = 0(mod I,,,) and C”y 5 = C_99+C" | ,+C 5, +C" | | =

", (mod I,,). Set & = Z_ﬁQ Tou(=AL) € EUs((Ro, M)y (I o). w0 ="(€,7)&

has the form

1 0 |B/ By
0 A | By By

Ci// Cé// Di// Dg/

cy oyl oy oy
where By, C%¥ DY € R,,, BY,C{,Dy € (R,)" ', BY,CY, DY €""Y(R,,), BY,CY,
DY € M, 1(R,). Further C",, = C”,, = ", (mod I,,). Since C", ¢ I,
C/*”2:2 ¢ Im Set go = T27,3(fm(t380)) S UQ. Then

[w, g2]
=(6 + W*QSQWI_&* - W*3>\m32w/—2,*)(g2)_1

1 0
A22
: 1 n -n —1
—(etsmn | An | (MCMs 0 Ml As . Ay 0)
-n CL”nQ
-1 Cﬁll,2
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1 0

A23
: 1 n —n -1
- 5\m32 n AnS ()\mCﬂLILQ . )\méﬁlng Ang e AQQ 0 >)
-n Czln 3
1\ o

(g2) 7"

Clearly [w, g2]1« = f1 and
[W, 92]32 = 82A32)\m(jz/2,3 - 5\m52A33/\mé/—”2,2-

Since Asy € I, —S\mszAw}\méﬁ’m € I,. Since C”, ¢ I, C’Z’m ¢ I,. Hence
89 A33AmC" o ¢ I,y since Azz = 1(mod I,,,) and s and )\, are invertible. It follows
that [w, g2]32 ¢ I,,. One can proceed now as in case 1.1.1

case 1.1.3 Assume that £ = e(2,—2)x(2n—2)(mod I,,,) and Az # 0(mod I,,,).
Since Az # 0(mod I,,,), D3 # 0(mod I,,,). Hence there is an i € {—n,...,—2} such
that D_q; ¢ I,,. Choose a j € {2,...,n}\{—i} and set g5 := T;;(s2) € Us. Then

[77 92]

=(€ + T*Z'SQTJI‘* - T*,fj)\mSQT/—i,*)(QQ)_l
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(g2)7h

Clearly [, go]1+ = f1 and

[7', 92]—1,]'
ZSQD,IJ;D,J',,J‘ — )\mSQDfl,ijfj,i
- SQ(SQD—l,ij\mB—i,—j - /\m32D—1,—j5\mB—i,i)

S_iIlCG D,jyi,B,L,j,B,_i’i S Im, it follows that —)\mSQD,L,jD,jﬁ' — 82<S2D71’/L’5\m

B_;_j —Ans2 D_y_j\,B_;;) € I,. On the other hand s9D_;,D_;_; ¢ I,,, since
Dy ;¢ I, D_;_; = 1(mod I,,,) and sy is invertible. It follows that [7,ga]_1; & In
and hence [7,92] ¢ Usn((Rim, Am), (I, I 0 Ayy)).  Further [7,¢0]n € I, VI €
{2,...,n} since B = 0(mod I,,). Thus one can proceed now as in case 1.1.1 or
as in case 1.1.2.

case 1.2 Assume o,; = e;(mod I,,) Vj € {1,...,n — 2}, 0um-1) # en—1(mod I,,,)
and aj(n—1) € Iy,
Consider the first row of

[07 Tl,—(n—l) (1)]

=(e+ 010" (1) 4 = AnTu(n-1)0"1:) 1~ (n-1)(—1)
1 ail
as1

1 n -n —1

()\mé—l,n—l oo AmCnn—1 0 10...0 a2(n—1) A1(n—1) )

1 Qa1(n—1)

az(n—1)

1 n -n —1

—Am <)\m5—1,1 - /\mé—n,l 0 ...0a91a11 ))

—Nn| C-nn-1

=1\ co1pna1
Ty (n—1)(=1).
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which equals

1 n -n -1
<1 0O ... 0 0 . 0 >
1 n -n -1
+ an <)\m0—1,n—1 AConmna 0 10 0 Gom-1) C11(711))
1 n  —n -1
— j\mal(nq) (Amc_m AmCopni 0 ...0 ag CL11)
1 n -n —1
+ <O 0 0 =z O 0 2 )
where 21 = —(14+a11AmE1.n-1 = Am@1n-1)AmC-11) and 23 = Ay (@11 Ao (n—1) -1~

Am@1(n—1)AmC—(n—1)1). It is clearly not congruent to f; modulo I,, since a;; =
I(mod I,), Oxmn-1) # en—1(mod I,) and ayn—1) € 1. Hence [0,T) _-1)(1)] ¢
UZn((RmyAm)y([nu[m M Am)) Set g = Tl,—(n—1)<31) € Ul- By Lemma 76,
[0, 1] ¢ Usn((Rin, M), (I, In 0 Ayy)). Clearly the n-th row of [0, ¢1] equals f,.
Set €3 := Py, € EUs, (R, Arn). Then the first row of 7 :=|0, g1] equals f;. Since
Uan (R An)y (I, Iy 0 Ayy)) is normal, 7 ¢ Usy, (R, Ay (Iny Iy 0 Ayy)). One can
proceed now as in case 1.1.

case 1.3 Assume o,; = ej(mod I,,,) Vj € {1,...,n —2} and ay(n—1) ¢ Im.
Consider the second row of

[U’ T2,f(n71) (1)]

=(e+0u20" (, 1) 4 = AOs(n-1)0"2.)T1,—(n-1)(=1)
1 a12
a2

1 n -n —1

=(€ + ()\mé—l,n—l c Amé—n,n—l 0 10... Oéz(n,l) dl(n—l) )
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1 a1(n—1)
az(n—1)
0
[:) 1 n -n -1
- j\m 1 ()\mE_LQ ce )\mé—n,Z 0 ...0a9 EL12))
n 0
—Nn | C—nn-1
-1 \co1pn1
: T2,7(n71)(_1)
which equals
1 n —-n -1
(O 10 ... 0 0 ... 0 )
1 n -n —1
+an ()\méml o AmCmma 01 0 .0 e al(n_l))
1 n —n -1
— Amlz(n-1) <>\mé_1,2 i AmCona 0 .0 G au)
1 n o —-n —1
+(0...00:;1:10...0:1[;20)
where z; = —(1+a22)\m6_2,n_1—j\maz(n,l))\mé_m) and o = j\m(agg)\mé,(n,l),n,l—

Am@2(n—1)AmC—(n—1),2). Its last entry clearly does not lie in I,,,. Hence [0, T5 _(,—1)(1)]
¢ Usn((Rm, Am), (Ims Iy 0 Ayy)). Set g1 := T _(n—1)(s1) € Ur. By Lemma 7.6,
[0, 01] ¢ Usn((Rin, M), (I, In 0 Ay)). Clearly the n-th row of [0, ¢g1] equals f,.
Set €y := P, € EUy, (R, Ayn). Then the first row of 7 :=%[0, g1] equals f;. Since
Uan (R An)y (I Iy 0 Ayy)) is normal, 7 ¢ Usy, (R, Amn)y (Ijny Iy 0 Ay)). One can

proceed now as in case 1.1.

case 1.4 Assume o,; = e;(mod I,,,) Vj € {1,...,n — 1}, 04, # e,(mod I,) and
a1p € [m
Consider the first row of

[0, T1,—n(1)]

=(e+ U*lal—n,* - j‘mg*nal—l,*)TI,fn(_l)
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1 ail
a1
0
: 1 n -n -1
=(e+ . 0 <)\m6_17n... AmConn 1 0... Oagna1n>
—Nn | C-nja
—1 \co1
1 QA1n
A2n
0
: 1 n -n -1
- j\m 0 ()\méflyl ce )\méfn,l 0 ...0ao1a11 ))
n
—n| C-nn
-1 C_1n
T —n(—1)
which equals
1 n -n -1
(1o0..00 .. 0)
1 n -n —1
+ an (Amé—l,n Ce )\mé—n,n 1 0o ... 0 &Qn &1n>
1 n -n -1
- j\maln (Amé—l,l e Amé—n,l 0 .0 ao1 Q11 )
1 n —n -1
where r = —(1 + a11>\m571’n — /_\maln)\mé,m) and Ty = j\m(au/\méfn’n — j\maln
AmC—n1). It is clearly not congruent to f; modulo I, since a;; = 1(mod I,,),

Oxn # en(mod I,,) and ay, € I,,. Hence [0, 11 _n(1)] ¢ Uz ((Riny M), (I, I 0 A)).
Set g1 := T1_n(s1) € Uy. By Lemma 7.6, [0,91] ¢ Usn((Rims M)y (Lims I 0 Ap))-
Clearly the (n — 1)-th row of [0, g1] equals f,_1. Set €3 := Py(,—1) € EUsp(Ryn, Apn).
Then the first row of 7 :=%[0, g1] equals fi1. Since Us,((Rim, A)y (I Iy 0 Ayy)) 18
normal, 7 ¢ Us, (R, Amm)y (I;my Iy 0 Ayy)). One can proceed now as in case 1.1.
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case 1.5 Assume o0,; = e;(mod I,) Vj e {1,...,n — 1} and ay,, ¢ .
Consider the second row of
[07 TQ,—H(l)]
=(e + a*gaLn’* — Xma*nal27*)Tg7_n(—1)

1 a12
a22
0
. 1 n —-n -1
=(e + " 0 <)\m5,17n... AnConn 1 0... Oaznam)
—Nn | C-ny2
—1 \c1p
1 QA1n
a2n
0
: 1 n o -n -1
- j\m 0 (/\mE_LQ - )\mé_n’g 0 ...0a9 a2 ))
n
-n C—nn
-1 C—1,n
T _p(—1)
which equals
1 n —-n —1
(O 10 ... 0 0 ... O )
1 n —n —1
+ Qo2 (Amé—l,n Ce )\mé—n,n 1 0o ... 0 @gn &1,1)
1 n —n —1
- j\mGQn ()\mE_LQ e )\mé—n,Q 0 .0 99 du)
1 n —-n —1
where r = —(1 + a22>\mé_2’n - /_\magn)\mé_zg) and T = j\m(agg/\mé_n,n — S\magn

AmC—n2). Its last entry does clearly not lie in I,,, and hence [0, T5,_(1)] ¢ Usy (R,
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M)y (L, I, 0 Ay)). Set g1 := T _(s1) € Uy. By Lemma 7.6, [0,91] ¢ Usn((Rim,
An), (L, I 0 Ayy)). Clearly the (n — 1)-th row of [0, ¢1] equals f,_1. Set €5 :=
Pin—1) € EUsy(Rp, Apy). Then the first row of 7 :=%[0, g;] equals f;. Since
Usn((Rimy M)y (L I 0 Ayy)) is normal, 7 ¢ Uy (R, Amn)y (I, I 0 Apy)). One

can proceed now as in case 1.1.

case 2 Assume that a, d = e, (mod I,,,) and v = 0(mod I,,).
Recall that o =[h, go] & Uzn((Rim, Am), (I, I 0 Ayy,)) has the form
0 €(n—2)x (n—2)

B Ba
)= (2))
v 9 7

where oy, B2 € Ma(Ry,), o, B1 € Moy n—2)(Rn), B3 € My_2(Rp), Bs € Mn_2)x2(Rm,
and «, 8,7,6 € M, (R,,). Clearly 5 # 0(mod I,,) since o ¢ Usy,((Rpny M), (L, I 0
An)).

(651 (6%)

case 2.1 Assume that B3 # 0(mod I,,,) or 4 # 0(mod I,,,).
Set g1 :=T pn-1 (s1) €Uy and w:= [0, g1]. Then
w
:[071791]
/

:(6 + 0;7_71810'(”_1)* — U*’,(n,l))\mSmn*)(gﬂ_l

1 [ ABn 1
n S\Bn,—n 1 n -n -1
:(6 +S81 1 (0 ... 0 1 0 anl,fn e anl,fl )
0
-1 0
1 ABp_1,-1
n ABp-1,-n 1 n —-n -1
—Ams1 0 (o .. 0 1 Bup_p ... Bn,_l))
1
0
-1 0
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Since f3 # 0(mod 1,,,) or By # 0(mod I,,,), (W—_p,—n,- .- w_pn—1) # (1,0,...,0)(mod
L) or (W_(n-1)—ns-- -, W—(n-1),-1) # (0,1,0,...,0)(mod I,,,). Hence w ¢ Us,((Rn,
M)y (I, I 0 Apy)). Further the next to last row of w equals f_o. Set €9 := P, 5 €
EUsp (R, Ayy). Then the first row of 2w equals fi. Since Us, (R, M), (Iiny I 0
A.,)) is normal, 2w ¢ Usy, (R, M), (L, I, 0 Ayy)). One can proceed now as in
case 1.1 (“w has the same properties as 7 in case 1.1).

case 2.2 Assume that 3 = 0(mod I,,) and 4 = 0(mod I,,,).
It follows that £y = 0(mod I,,,). Since § # 0(mod I,,,), 52 # 0(mod I,,). Set

Ap(Ba)*p 0
f = Enxn € EU2n<(RmaAm)v<]m)Fm))

o o 1 B, A
(0]
0 €n-2)x(n—2) | B3 0 |= ( g,)
v 0

where O/lvﬁé € M2(Rm)> 0/2751 € M2><(n—2)<Rm)7 ﬂé € Mn72<Rm) and 0/76/77/76/ €
M, (R,,). Further o/,¢" = e, xn(mod I,,,), v/ = 0(mod I,,,), B = 0(mod I,,,), 5} =
0(mod I,,,) and (3} # 0(mod I,,). Since ) # 0(mod I,,,), there are an i € {1,2} and
a j € {—2,—1} such that 8}, ¢ I,,. Let [ =11if j = —2and [ =2if j = —1. Set
€1 := Tj(—1) € EUgp (R, Ayy). Then 1w has the form

" 1 1!
a; e%) 1

"

2 " "

(6]

0 €(n—2)x(n—2) ;’;’ X = ( " §//>
")/” ‘ 5 v

where 0/1/7 é/ € MZ(Rm)7 0/2/7 i/ € MQX(n—Q)(Rm)a g € Man(Rm% 4/1/ € M(n—2)><2<Rm)
and o, ",~4",8" € M,,(R,,). Further of, ¢ I,,, if i # [ and o, # 1(mod I,,,) if i = L.
Hence o # e,,x,(mod I,,,) and thus one can proceed as in case 1.1.

The following inverted tree diagram extending over several pages gives an

overview of the case by case proof just concluded of Part I. How to read a diagram
is explained at the conclusion of the proof of the Solution Group Lemma 5.7.
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“1[h, go]

[, go], g1]

*

¢ CUQn((Rvam)y ([ma Im N Am))

€y € EUZn(Rma Am)a
go = T1,—2(s0a),
€1 € EUQn(Rm, Am)

o a1 %
( 0 e |’ ) 2 ( 0 em—2)x(n-2) P )
K v K

a,d = epxp(mod Ip,) # e(mod I,,)
Ay = 0(mod I,)
AB # 0(mod Iy,) 1

a1 9
~y )

a # epxpn(mod I,)
vy # 0(mod Ip,)
VO # epxpn(mod I,)

a1 9
0 e p
~ 5 1.

(a*(n—l) # en—1(mod Ip,)
\/’y*(n_l) §é O(mod Im))
nagy — 1,a12 € Iy
AQ1(n—1) ¢ Im

a1 2
¥ )

(Qi(n—1) # en—1(mod I,)

VYs(n—1) # 0(mod I,))
Anair —1,a1(-1) € Im

w

1.9 1.1

a1 Qs
¥ )

Jie{l,...,n—2}:
(auxi # e;(mod Iy,)
Vs Z 0(mod I,))

Qa1
0 e p
1.4 v S

(en # en(mod I,,)

VYsn Z 0(mod I,))
nayy — 1 a1, € Iy

a; Qs
vy 1)

(e # en(mod I,)
VYsn # 0(mod I,y,))
nagy — 1,a12 € I,

1.5

NQ1n ¢ I,
91 =T _(n—1)(51),
€2 = Pip
1 0 0 O 1 0 0 1 0 0 0
As A4 | Bs 0 1.1.2 ( *x FE 0 ) 1.1.3 As A4 | Bs 0
Ci Cy| Dy 0 I | Ci Cy| Dy 0
C3 Cy4| D3 1 # e(mOd Im) C3 Cy| D3 1
# e(mod I,,), # e(mod I,,),
Ay, Dy = e(mod I,,), 1.1.1 Ay, Dy = e(mod I,),
B3, Cy = 0(mod I,,), B3, Cy = 0(mod I,,),
Az = 0(mod I,) As # 0(mod I,,)

51




g2 =T_1,(s2)

1
*
*

g o O [«——

0
[(2[“[h, go], g1]) ", 2] ( (1) )
w % 0(mod I,,)

g3 = Tji(s3)

1 0 O
*= e 0
* w 1

w’ # 0(mod I,),
at most two entries
of w' are nonzero

[[([[*h, go]. g1]) ™, g2], 93]

g4 = T} _j(s455t)

(L[ [ [N, gol, 91]) " 921, 93], 9a] | 71,—j(s35455) |

1.1.2

1 0
Az Ay
C1 Cy | Dy
C3 Cy| Ds

# e(mod 1),
Ay, D1 = e(mod I,),
B3,y = 0(mod I,),
As = 0(mod I,,)

0
B3

— oo O

€2 [El [eohu 90]7 gl]

&1 = 112[2 T (—An)

1 0

0 Ay
C1 Cy | Dy
C3 Cy| Dy
# e(mod I,),
Ay, Dy = e(mod I,),
Bg, CQ = O(mod Im),
Df = 0(mod I,;,)

0
Bs

— oo O

E1(2[1 [N, go], 91])
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€21

€1 (51 (62 [61 [60 h, go], 91]))

1 0[]0 O 1 0[]0 O 1 0[]0 O
0 Ay B3 0 0 A4 | Bsg 0 0 Ay B3 0
C1 Oy 0 Ci, Cy| D1 O C; Oy 0
cy O 1 cy CY 51 cy O 1
Ay, Dy = e(mod I,), Ay, Dy = e(mod I,), Ay, Dy = e(mod I,),
B3, Cy = 0(mod I,), B3, Cy = 0(mod I,), B3, Cy = 0(mod I,),
37:6{37...,774}:0/ ¢ 0/1’2¢I Clle‘[ VZE{Q }7
Cl 1,1 ¢ I mOd I
= Ti2(—1) Ti3(—1) 1 =Ti2(—1)
Ay = e(mod I,), Aq = e(mod T,,), Ay = e(mod I,,)
A = 0(mod I,,), A% = 0(mod I,,), A = 0(mod I,,),
C’Zgﬂ- ¢ I Cﬁ372 ¢ I, Cﬁg,g ¢ I,
& =[] Tu(—A7) §2 = [[ Tu(—A7) &2 = [[Tu(—A7)
=2 =2

€21 (fl (52 [51 [60 h, 90]7 gl]))§2

Ay = e(mod I,,),
C”i ¢ I,

g2 =T> _i(s2)

[ (&1 (2[ [, go], 91])) €2, 92]

see case 1.1.1

23

see case 1.1.1

Es ¢ 1,

see case 1.1.1




[ [*h, g0], 91]

[62 [61 [60h7 gU]7 gl]? 92]

“[*h, g0l

1.2

1.1.3

1 0,0 0
A3 A4 Bg 0
01 02 D1 0
Cs Cy|Ds 1

# e(mod T,,),
Ay, D1 = e(mod I,),
B3, Cy = 0(mod I,),
A3 ;é O(mod Im)

g2 = Tij(s2)

1 0 0 0
AL Ay | By 0O
cy Cy 1Dy 0
c; Cy| Dy 1
# e(mod I,,),

Al = 0(mod I,;,)

1.3

|

see case 1.1.1 or 1.1.2

a1 9
¥ )

(a*(nfl) # ep—1(mod Ip,)

VYs(n—1) 7 0(mod I,,))
Aai —1,ay-1) € I;m

aq
0
gl

1.5

a2
eﬂ)
)

a1
0
~

o)
e

B
5

a1 9
07 ]

(a*(n—l) * enfl(m()d Im)
VY (n—1) * O(mOd Im))
ANA92 — 1,0,12 € Im
Aa’l(nfl) ¢ I,

(tsn % en(mod I,;,)

VYsn # 0(mod I,))
ANa11 — 17a1n S Im

(qvun # en(mod I,)

VYsen Z 0(mod I,))
ANA92 — 1,0,12 € Im

ANQ1n ¢ Im

g1 =T1(n-1)(51):
€2 = Pip

g1 =Ts _(n—1)(51),
e = P,

g1 =T1,_n(s1),
€2 = Py(n1)

g1 =T _n(s1),
€2 = Pl(nfl)

[ [*h, 0], 91]

see case 1.1

see case 1.1

54

see case 1.1

see case 1.1



“[*h, go]

“[([*h, go]) ' 1]

“[*h, go]

a; az | f1 B2
( 0 e |B3 B4 )
v | 0
a,0 = epxn(mod I;,)
A, B3, Ba = 0(mod I,,)
A(B1 # 0(mod I,,,)
v B2 # 0(mod I,,))

a1 9
0 e 2
2.2 v )

a,0 = epxn(mod Iy,)
Ay = 0(mod I,)
AB # 0(mod I,,)

2.1

a; ag | B B2
0 e [P35 B4
v |9
a, 0 = epxpn(mod I,)

Ay = 0(mod Ip,)

A (B3 # 0(mod I,)
v B4 # 0(mod I,,))

95

g1 = T—n,n—l(sl)a
€2 =P 2

see case 1.1

2.2

ap az | B Pe
( 0 e |B3 Ba )
v | 4
a,0 = epxn(mod Iy,)
/\'}/,/83754 = O(mod Im>

A(B1 # 0(mod 1)
v P2 # 0(mod I,,))




ap ay | B By
0 e |, O
7/ ‘ 5/
o8 = epxn(mod Iy,)

Y, B, B4 = 0(mod I,)
B % 0(mod I,,)

“[h, go]¢

en = Ty(=1)
o o |87 B
0 e 1! "
€11 (61 [€Oh,go]f) 7” ‘ 35” 4
aff # esxo(mod Iy,)

see case 1.1
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Part IT Assume that h ¢ CUs, (R, Arm), (Imy Iy 0 Ayy)) and n = 3.
There are a g9 € Uy and a €y,€e; € EUs(Ry, Ap) such that o :=1[“h, go| ¢
Us((Rum, Am), (Im, I, 0 A,,)) and o has the form

*

001" :(O‘5>
gl 0 i

where a = (Oéij)lgi,js?nﬁ = (ﬁij) 15@531,7 = (%’j)—i’é;égla(s = (5ij)73<i,j<fl €

—3<j<—

M3(R,,) (see Part I above and [1]], chapter IV, Lemma 3.12, Part II, general case).

case 1 Assume that there is an i € {—3,—2, —1} such that ;2 ¢ I,,.
Set g1 :=T1 —2(s1) € Uy and w := [0, ¢1]. Then

w
:[Uagl]
=(e+ 0*1310,—2,* - U*2>\m310/—1,*)(91)_1
11
Qg1
0 _ _ _ _ _
=(e+ 51 s (>\m7—172 AmV—22 AmY-32 0 Qo9 0412)
Y-2,1
V-1,1
12
Qo2
< 0 _ _ _ _ _
— AmS1 (/\m7—1,1 )\m7—2,1 )\m7—3,1 0 a9 0411))
V-3,2
V-2,2
V-1,2
‘(91) !

Assume that
51041 (AmT-12 AmV-22 AmT-32)
- 5\m810'*2 ()\mﬁ/—l,l )\m’7—2,1 /\m’7—3,1) = O(mOd Im)

By multiplying o7, from the left we get that s; (/\m7—1,2 AmY—2.2 >\m7—3,2) =
0(mod 1,,) which implies (7_172 V2.2 7_372) = O(mod I,,,). Since that is a contra-
diction,

51041 ()\m7—1,2 AmV—2,2 /\m7—3,2)

= An51042 (Am¥-1,1 AmT-21 AmT-31) # 0(mod I,

and hence w ¢ Us((Rpm, Am), (Im, Im 0 Ay,)). Further the third row of w equals
fs. Set ea := Pj3 € EUg(R,,, A). Then the first row of “w equals f;. Since
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Us((Ryn, M)y (I, Iy 0 Ayy)) is normal, w ¢ Us((Ryny A)s (I, Iy 0 Ayy)). One can
proceed now as in Part I, case 1 (Yw has the same properties as 7 in Part I, case 1).

case 2 Assume that there is an i € {—3,—2, —1} such that ~;; ¢ I,,,.
This case can be treated similarly.

case 3 Assume that v_31,7v-32,7-21,7-22,7-1,1,7Y-12 € I, and one of the entries
Bs—3 and P35 _o does not lie in I,,,.

By [1], chapter IV, Lemma 3.12, Part I, general case there are z1, x5 € I,,, such that
Yo11 + za(x1y-11 + Y—21) € rad(R,,) N I, where rad(R,,) is the Jacobson radical
of the ring R,,. Set & = T_1 _o(x9)T 9_1(x1) € EUs((Rpm, Amn), (Im,')). Then
p := & o has the form

where o/ = (Oééj)1<i,j<3>5/ = (ﬁz{j>

/ / / /
1<i<3 = (7i;)-3<i<—1,0" = (0j;)—3<ij<—1 €
3<}< 177 (77,]) 1$Z' ) ( 'Lj) 3<14,J

x

M;3(R,,). Further (83 5 ¢ I, v B3 5 \¢_ In) A € rad(Ry) N Iy Set g1 =
Ti3(s1) € Uy and w := [p~!, g1]. Then

w
:[pilagl]
=(e+ phrs1P3e — P _3510-1,4)(91) "

=(e+s1 |, 2|0 01 By 5 B5 5 B y)

V11 7/—1,2 7/—1,3 5/—1,—3 5/—1,—2 5/—1,—1))

Assume that
8101 (5§,—3 5:/3,—2)
—s1py 3 (0013 04 ) =0(mod ).

By multiplying pi. from the left we get that s, (85_5 5% _,) = 0(mod I,,) which
implies (85 _5 5 _5) = 0(mod I,,,). Since that is a contradiction,

$1041 (5:,’),73 5:/),,72)
- S1p;7_3 (5,—17—3 5/—1,—2) # 0(mod I,

o8



and hence w ¢ Us((Rpn, Am), (I, Im 0 Ayy,)). Obviously w_; . = f_1(mod I, )
w_1-1 = l(mod rad(R,,) N I,). Set ea := P3_1 € EUs(Ry,, Ayy) and ¢ =

Then ¢ ¢ Us((Rpm,Am), (I, Im 0 Ayy)).  Further (5. = f3(mod 1,,,) and (33 =
1(mod rad(R,,)nI,,). By Nakayama’s lemma (33 is invertible. Set & := Tso(—({33) "
Ca2) T (—(Ca3) ™" Can)Ts,-1(—(Ca3) 7' Ga.-1) Ts,—2(—(C33) 7' G3.-2) € EUs((Riny An), (I,
[';,)) and 7 := (&. Then 7 has the form

* * ” "
0 0 ag?; :/3/ -3 0 0 = (a// 6// )
’7” 5" Y 0

|
where o = (af))i1<ij<3, 8" = (B) 1 1siss ,7” = (7{})—%32?,5” = (0};)-3<ij<—1 €
M;(R,,). Since ¢ ¢ Us((Rpm, Am), ([ Iy 0 AR))y & Us((Ry M)y (Lny Iy 0 Ayy)).-
Further of; = 1(mod rad(R,,) N [m) and 33 3 € I,. Since 13, = f3(mod I,,),
Ny—3 = e_z(mod I,) (apply Lemma 6.8 to the image of n in Uz, (Ryn/Iim, A/ (A 0
In))). Hence By 5,85 5,0"5 53— 1,07, 3,0”y € In.

//\ n

case 3.1 Assume that there are an i € {—3,—2,—1} and a j € {1,2} such that

Vi; & I
See case 1.

case 3.2 Assume that V31,7 327 20V 2057V 11:7 12 € I and one of the en-
tries B _o, B 1, By 9, By 1, 0”5 5 and 0”5 does not lie in I,
Set gg :=T_ 1,2(32) €Uy and 0 := [77 ga]. Then

0
:[77792]
=(€ + e, 1527, — 77*,—2>\m327/1*)(92)_1
11
"
2,—1
0 _ _ _ -
=lets g |0 s 85 0 A AnfiL)
&271
51171
"
1,—2
"
2,—2
0 - - - - =
— AmS2 5//3 ) (511,—1 512,—1 513,—1 0 )‘m 2,—1 Am i/,—1)>
&y
5”2, 2
—1,-2
(g2)7"

Assume that

527]x,—1 (513,72 0 Anfs 22 Am _i/,72)
- )\m82n*7_2 (5_37_1 0 )\m 2 1 S\m 7:/{7_1) = O(Hlod ]m)
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It follows that (0”5 _5 0 B5_5 B7_5), (65, 0 B5_, B{_4) = O(mod I,).
Since that is a contradiction,

S27%,—1 (5137,2 0 S\m _é/’72 /_\m _i/,72)
— AmS2Mx,—2 (&37_1 0 Am 757_1 A 7{'7_1) # 0(mod I,,).

and hence 6 ¢ Us((Ryn, A )y (Iny Iy 0 Ayy)). Clearly 63, = f3. Set €3 := Py3. Thus
the first row of 0 equals fi. Since 0 ¢ Us((Rum, Am), (I, I 0 Ayy)), one can
proceed now as in Part I, case 1.

" " " " " " " " " "
case 3.3 Assume that ’7_3,177_3,277_2,1’7_2727’7_1,177_1,2751,_27 1,10 P22 P2 _1,

0”3 9,0”3 4 € I,, and one of the elements a7, — 1, ag;, 7”13, 6", | —1and 07, ,
does not lie in 1,,,.
Set gy := Ti3(s9) € Uy and 6 := [n7!, go]. Then

0
:[n_1792]
= (€ 4+ Ny 5am3e — 1 _3520-1,4)(92) "
§Z1 -1
01 o
511 -3 " /"
=(e+ 59 A\ 7’//13 (0 0 a3 B35 0 0)
A"y
ATTL—//12
mY 1,1
0
0
5\ an
— 82 angg (711,1 7Z1,2 711,3 511,73 511,72 511,4))
0
0
(g2)7

Assume that 0 € Us((Rim, Amm)s (I, I, " Ay)). Then 325Z1’71a§3 — 89 = b013 € I,,, and
520" _y033 = s € I,. Since agy = 1(mod I,,), it follows that 0", |, —1,6", , € I,.
Consider the column

/ " / n" 2y an " 2=n N t
71*132@33*77*,_3527_1,3*(52 0 —s3AmfP5 37011 —s3a337%, 0 O)-

Since by assumption 0 € Us(( Ry, A, (L, Im 0 Apn)), the column above is congru-
ent to 0 modulo I,,,. By multiplying 13, from the left we get that 7", 5 € I,,, since
V31,711 € Im (73, is the first entry of n_3.). Hence n_;, = f_i(mod I,,). It
follows that 7,1 = e;(mod I,,,) (apply Lemma 6.8 to the image of n in Uz, (Ryn/In,
An/(Ay 0 1)) and hence of; — 1,04, € I,,. Since that is a contradiction, 6 ¢
Us((Rpmy M)y (L, Iy 0 Ay)).
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case 3.3.1 Assume that 6,3 ¢ I,,, or O3 ¢ I,,,.
Set g3 :=T 51(s3) € U and 7 := [0, g3]. Then

T

[9717 93]
(6 + 9;’_28301* —

o1 Am5302:)(93) "

|

—~

9]

+

V)

w
> >
3 3
o
Lo L

N~

—

>

S

o

>

S

[\~]

>

S

@

>

S

|

w

(@]

>

S

|

AN

N—

(g3) 7"

Assume that 7 € Us((Rm; Am), (Ims I 0 Ap)). Then 8, 583013 — 0, 1 \ps3bo3 =
O(mod I,,). It follows that 603,095 € I, which is a contradiction. Hence 7 ¢
Us((Rim, M)y (Imy I, 0 Ayy)). Clearly 1o, = fo. Set €4 := Pj. Then the first
row of “6 equals f;. Since “0 ¢ Us((Rpm, Am); (I, I, 0 Ayy)), one can proceed now
as in Part I, case 1.

case 3.3.2 Assume that 613 € I, and o3 € I,,. R
Let 6 be the image of 6 in Us, (Ryn/Im, A/ (A 0 I,,)). Clearly 6 has the form

10 0 0 0 0
01 0 0 0 0
00 63| O 0 0
00 03|05 3 045 5 05,
00 O 1

00 0 0

It follows that égg is invertible. Let h be the map defined in Definition 6.3. Then

0330 3 s
=h (0.3, 04 o)
—h(fes, fe_s)
=h(es, e_s)
=0.
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Hence é_g,_g = 0 and therefore 6_35 5 € I,,,. Further

O350 s,
h(f,s,
(é €3,
= (6376 1)

0.

Q)>\

1)
1)

Qb>

Hence é,g,,l = 0 and therefore 0_5_; € I,,. Clearly 5 = 1. Set & := To3(—ba3)
T27,1(—927,1) S Uﬁ((Rm,Am), (]m,Fm)) and X = ‘953 Then X23,X2,-1 = 0 and the
image x of x in Us(Rp /I, A/ (A, 0 1)) has the form

1 0 0 0 0 0
01 0 0 00
0 0 xs33 0 00
0 0 X-=33|X-3-3 00
0 0 0 0 10
0 0 0 0 01

Since 0 ¢ Us((Rpn, M), (s Im 0 A)), X € Us((Rony Amn)s (I, L0 Ayy)) (e X # e).
Set g3 := T31(s3) € Us and p := [x, g3]. Then

1

=[x, 93]

=(e + X«353X 14 — X*,—183X/_3,*)(93)_1
X13

=(e + s3

— 83 ;(3;11 (/\mX—l,s AmX—-23 AmX-33 X33 O 213))
X-2,—1

X-1,-1
(gs) 7"
Assume that JYRS U@((Rm, Am); ([m, Im ﬁAm)) Then 83X33)Z_17_1 _33X3,—1>\m>2—1,3 —

s3(1 + 83X33X-3,-1 — 53X3,-1AmX—3,3) = H31 € I, and hence s3x33X-1,-1 — 83 € L.
It follows that ys3 = 1(mod I,,) (i.e. X33 = 1) since s3 € (R;,)* and x_1,1 =
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1(mod I,,,). That implies

Further s3x—33X—1,-1 — S3X-3,-1AmX—1,3 — 53(S3X-33X—3,-1 — S3X—3,-1AmX—3,3) =
fi—s1 € I, and hence s3x_33X-1,-1 € Ip,. It follows that x_33 = 0(mod 1,,,) (i.e.
X—33 = 0) since s3 € (R,,)* and x_; 1 = 1(mod I,,,). But that implies the contra-
diction x = e. Hence p ¢ Us((Rpm, M), (I I 0 Ayy)). Clearly o, = fo. Set €4 1=
Pi2. Then the first row of %46 equals fi. Since “u ¢ Us((Rum, M)y (Inmy Im 0 M),
one can proceed as in Part I, case 1.

" " " 7 " " " " " "
case 3.4 Assume that 7_3,17')’_3,277_27177_272/7_1,17')’_1,2>ﬁ17_2> 51,_17 2,—2) M2,-13
8 50" 0y — 1, oy, Yy s, 07y — 1,0", 5 € I, and one of the elements
g, gy — 1,9793,0"5 1,0"5 5 — 1,073 and ag; does not lie in I,,.

Set go := Ta1(s2) € Uy and 6 := [, g2]. Then

0

:[777.92]
= (€ + Nu252M1y — 1520 5.)(g2) "

o N/ N/ N/ N Qn N Qn
=(e+sy| s (571,71 079 1 05 1 0 AnfBy 1 Am 1,71)

= = = = = Il
—S2 | sn ()\m’Y—lz )\m”Y—Q,z >\m7—3,2 0 ah a12))
3,—1

Assume that 0 € Us((Rp, M), (I, I 0 Ayy)). Then SQH*QXm/Biil — SoM 10y =
O(mod I,,,). It follows that of, € I,,,. Hence —san, 104, + sse_y = 0(mod I,,). By
multiplying 7, , from the left we get that —syd5, + s2a7; € I,,, which implies a5, =
1(mod I,,) since of; = 1(mod I,,). Let /) be the image of n in Uy (R /L, A/ (A0

I,,)). By Lemma 6.8, 7)o, = f_ since fj4o = €5. Hence 7", 5,0", 5 —1,0", ;| € I,
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Hence 7} has the form

1 0 a3 /000
0 1 ”2’3 0 0O
0 0 1 0 0 0
00 %1373 1 00
00 0 010
00 0 0 0 1
Clearly
O3
(77*3,77*,—1)
(7763,776—1)
= (637671)
=(
and
Qg

—ﬂl(n*3, 77*,—2)
=h(nes, ne_»)
h(es, e_2)

0.

Hence &3 = 0 = a4, and therefore ofy, af5 € I,,,. Since that is a contradiction,
0 ¢ Us((Rm, Am)s (Im, I, 0 Ayy)). Clearly 03, = f3. Set €3 := Py3. Then the first
row of 6 equals f;. Since 0 ¢ Us((Rym, Am), (Inm, I, 0 Ay)), one can proceed as in
Part I, case 1.

" "
case 3.5 Assume that ’Y 31a7—3277 21»’7 2277 11a7—12751 -2 1 —1> P2,—25 P2,-1s

0%y 275”3 “afy = Lo 0l 5”1,71 511,727041270422 1 7Z2,375Z2,717512¢2_
1,af5, abs € Iy,.

Since 1 ¢ Us((Rins Am), (Ims I 0 M), V"33 ¢ Im. By [1], chapter IV, Lemma
3.12, Part II, case 4 there are 1,29 € I, such that 77, 5 + zo(217”, 3 + 7753) €
Tad(Rm) M [m Set, 53 = T,l’,Q(ZL'Q)T,Q’,l(iL'l) € EU(;((Rm,Am),([m,Fm)) and
6 := &n. Then 0 = n(mod I,,), 033 = ol = 1(mod rad(R,,) N I,,) and 0_, 3 €
rad(Ry,) 0 Iyn. Set € := T3_4(1) € EUg(Ry, Ay) and 7 :=%0. Then 733 =
L(mod rad(R,,) N I,,) and 73 1 = 0_3_1 —0_33 = 0_33 =7"33(mod I,,,). Since
’7/_,3’3 ¢ I, it follows that T_3,-1 ¢ I,. Set & = ng(*(ng)fngg)Tgl(*(7‘33)71
731) T —1(—(733) '3, 1) T5 —2(—(733) '73.-2) € EUs((Rm, Am), (Im; ') and x :=
7&4. Then y has the form

* #
" "
O O O{/” " O O — @ /8
33 3,—3 mesm
" ‘ 5" v

o
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where o, 8",4",0" € M3(Ry,). Further azy = 1(mod rad(Ry,) 0 1), By 3 € In,
and ¢”3 | ¢ I,,. One can proceed now as in case 3.1 or case 3.2.

case 4 Assume that v_31,7-32,7-2,1,7-2.2, Y=1,1, V1,2, 03,-3, B3,—2 € I, and B3 _; ¢
L.

Set €11 := T12(1) € EUs(Rym, Ay) and p :=“20. Clearly p_s1, p_32, p—2.1, P22, P—1.15
p—12 € Ip,. Further

P3x = (0 0 1 B33 [_3_2+pP3 5—3,—1)-

Since 3 _9 € I, and B_3_1 ¢ Iy, B_3_2 4+ f_3_1 ¢ I,,. One can proceed now as in
case 3.

case 5 Assume that v 31,732,721, 722 7-1,1,V-1.2, 03,-3, 83,2, 33,1 € L.
One can proceed as in case 3 (o has the same properties as ¢ in case 3).

The following inverted tree diagram extending over several pages gives an
overview of the case by case proof just concluded of Part II. In the diagram a “+”
at a position (i,7) of a matrix o means that o;; € I,,, if ¢ # j and 0;; = 1(mod 1,,)
if © = j. If positions in a matrix o are marked by a “—”, it means that there is
one position (¢, j) among all the positions marked by a “—" such that o;; ¢ I, if
i # 7 and o0;; # 1(mod I,,) if i = j. A “—=” does not mean that the entry at this
position does not lie in I,,, (resp. is not congruent to 1 modulo 1,,,). A “+” stands for
an arbitrary entry. If we write 7;;(+) we mean an elementary transvection 7;;(z)
where x € I,,,.
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“[*h, go]

¢ CUZn«Rm: Am)y (Ima Im M Am))

€0,€1 € EU(;(Rm,Am),
go € Uy

+ + + o

+ + + o

+ + + o

+ + + o

+ + +|o

+ + +]o

+ o+ [+ + o+
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[* [P, g0l 91]

[ [*h, g0l 91]

“[h, g0]

analog to case 1

0

0
0O 0 1]0 0 O
- 1 = -
e |
- - —l0o - -—
€2 = P13
1 0 0|0 0 O
— - —|- -0
— - = =0
I
— - —|- -0
S |

see Part I, case 1

*
*
*
*

+ + +|o
+ + + o
%
*
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&1 =T 12(+)T—2-1(+)

o 0 1|— — =
51 (61 [thv 90]) 4+ 4+ x| % ¥ =
+ 4+ x| x k%

g1 = Thz(s1)
Jr J— — — — —
_l’_ — — — — —
_l’_ — — — — —
[(&(H [, 90])) ", 01] R D
+ — — — —
+ o+ + |+ y
y = 1(mod rad(Ry,) N Ip,)

€2 =P34

— — — _|_ — —

—_ — — + — J—

o+ oy o+ o+
[ [*h, g90]) ", 91 — — |+ - -

— — — + i J—

—_ — — + — J—

y = 1(mod rad(Ry,) N L),

& = T3o(+)T31(+)
51 (+)T5,-2(+)

— % x|+ o+ o+ - - =+ - - + - =+ + +
T - - -+ - - + - — |+ + +
00 y|+ 0 0 00 y|+ 0 0 00 y|+ 0 0
ElaEm o) habe | | & 5 o ls 5 5 || = - —x — = |2 | T s e 1 =
+o+ o= x - - -+ - - + + =+ - -
+ + =+ - - - - |+ - - + o+ 4|+ + o+

y = 1(mod rad(R,,) n I,) y = 1(mod rad(Ry) N 1Iy) y=1(mod rad(Ry) N Ip,)
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+ + +

+ 4+ + |+ + +

+ o+ + |+ + o+

00 y|+ 0 0

_|_
+ 4+ + [+ + +

o+ 4+ o+ +

0 0 y|+ 00

0 0 y|+ 0 0

= 1(mod rad(Ry,) n I,) y = 1(mod rad(Ry,) N Ly,)

1(mod rad(Rm) N Im) y

yE

see case 1

110 0 O

0 O

5
+ 4+ o + nTﬁ
+ + o + + ¢
<
+ + 4|+ + 5
]
<t ~ | —~
- [ > % +1m/mw~\
I ol + +E &
+ + o + +
m{
yg
5
[ o | * C
L o .
=
+ + +|+ + 3
* * O| + AT(M\ M_7
¥ % o + +_aT
I
S
[w))

(2[(&2([R, go])) ™, g1])é2

170 0 O

0 O

[(2[(&([*h, 90])) ", 1])€2, 2]
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€3 = Pi3 €3 = P13

S[(2[(& (R, 90])) 7 g1])E2, g2]

|
|
|
|
|
R o o|loc o o
|
|
|
|
|

= o oo o O

see Part I, case 1 see Part I, case 1

3.3
— x|+ + o+
— x|+ o+ o+
00 yl+ 0 0
(L& ([, go])) 916 P S—
+ + x|+ x %
+ + =+ - -
y = 1(mod rad(Ry,) N Iy,)

g2 = Th3(s2)
1 0 —|+ 0 +
O 1 —|+ 0 +
o+ -+ + o+
[((2[(&(M[®h, go])), 1])€2) 1, g2]
+ o+ == = -
00 +[+ 1 +
00 +|+ 0 +
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3.3.2

3.3.1

+ + + + +
o o + — O
+ + + + +
+ + | + +
o~ + o O
— o + o o
+ + + + +
o o + — O
+ + + + +

o = + +
o — + o o
— o + o o

{3 = T23(+)T2,—1(+)J

53—%

+ <o + |+ + +
+ + + |+ + +
+ + + + +
+ <o | + +
o~ 4+ |+ o o
— o 4+ |+ o o
+ + + + +
o o + — O
+ + + + +

[ . + +
o —~ 4+ |+ o o
— o 4|+ o o

(L& [0h, go])) ™ g1])&2) 71, g2])€s

_

—~

™

@

- S~—

— o)

™

I &

=2

e}

D

s

—~~

o™

a)

-~ ~—

— —

_ O_w
Il

=l

™

D

070 0 O

1

0

€4 = P12

0 0j]0 0 O

1

00 0 O

1

0

€4 = P12

0 0j]0 0 O

1

see Part I, case 1

(L2 [ [0h, g0]) ", g1])&2) ", 92])€3)", 93]

L2 [, go]) ™Y g1])€2) 71, 92])€3)", 93]

see Part I, case 1
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5 5 = 5
+ 4+ o+ + + + 4+ o+ + + * + +| 1+ 4+ C * + o1 + 4+ C
C C
+ + o+ + + & + + o+ + + & + + +|+ + + E + + o+ + + E
< & & &
+ 4+ 4+ + + + T + 4+ 4+ + + T + 4+ |+ + 4T + 4+ |+ + 4T
] ]
&~ =
%++y_++1mW++y_+zwm *+w*++1mﬂﬂ*+w*++1m
+ + o|l+ + + 3| T ++0+++M U B S o B o =) B I o S I o S
Sl 5 K gl I =
+ + o+ + + 7 _ + + o+ + + | S R I S 1 R B A =T A S S
il = Y T
>+ I 3| o + 3
7 i S
— TS
| o ¥
I
G

(2[(& ([, go])) " 1])&2

&(2[(&([0h, go])) L, g1])&2

(& (2[(&1(2[0h, 90])) T g1])&2)

(2 (E3([(& ([ R, 90])) ™ 91])€2))84

see case 3.2
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* * % *
* * % *
i 0 0 1|+
! [ Oh) gO]
e S S
+ + k| %
+ + k| o*
err = T2 (1)
% * * %
% * % %
€11€1 [eoh7g0] 0 0 1]+
+ + x| %
+ + % | %
+ + x| ok
see case 3
5
- - — |+
- - —|+
0o o0 1]+
L[©h, go]
+ + — |+
+ + — |+
+ + — |+
see case 3

73



Part IIT Assume that h € CUs, ((Rpy Amm)s (Iny I 0 Ary)).

This part corresponds to Proposition 3.3 in [I], chapter IV. By [I], chapter IV,
Corollary 3.4, there is an elementary transvection T;;(z) € EUs, (R, Ap) such that
[h, Ti;(2)] ¢ Usn((Rimy A, (I, ') since b ¢ CUsy, ((Ryny Arn), (I, T'i)). Since h €
CUsn((Rny M)y (L L 0 M), [h Tij(2)] € U ((Runs M)y (I Iy 0 Ay)). There
are an a € R and an s € Sy, such that = 2. Set a := f,,(a) and 3 := f,,(s). Set
9o = Tij(sosz) = T;j(soa) € Uy. By Lemma 7.6, [h, go] € Usn((Rm, Am), (L, Lo, 0
A)) but [k, go] ¢ Usn((Rim, Am), (In, T'n)). Set o := [h,go]. By Lemma 7.7,
there is an e; € EUs,(R,,A,) such that y; := (“0)p; is invertible. Clearly
Yo € U ((Rmy Amm)s (Imy I 0 Ap)) but o & Usy (R, A )y (I, ') Set w =
Ao, & =T o1(—wo1(y1)™) ... Toa(—wan(y1)™) € EUsn((Rim, A, (In, T')) and
& = Tia(—(y1) twia) ... Th—o(—(y1) ‘w1 —2) € EUsn((Rim,An), (In, T1n)). Then
T 1= &Lwés has the form

yi 0wy
0 A O
yz 0y

where y2,ys,ys € Ry, and A € My, _o(R,,).

case 1 Assume that y3(y1)™' € I', and (y1) gz € Al

Set 53 = T—171(y3(y1)71) € EUQn((RmaAm)v (Imyrm)) and 54 = Tl,—l((yl)ilyQ) €
EUsp (R, M), (I, T'n)). Then ¢ := &37&, has the form

yr 0 0
0 A 0
0 0 ws

where y; € R,,. Clearly ¢ € Uspn((Rm, Am), (I, I, 0 Ayy)) but ¢ ¢ Us,((Rm,
An), (I, Ty)) - Hence there is an [ € {2,..., —2} such that |(y| ¢ ).

case 1.1 Assume that €(l) = 1.

There are a O/ € R and a t' € S,, such that y1|Culthn — Coiuth + Amloith = Zt’—: Set

t:i= % € R, and gy := T} _1(s159t) € Uy. One can show that [(, g1] equals

Ty _1(s182tCutn)-

Ti—1,—1(s152tCa—1y2h)-
T} —1(s152tCuyr — S152t)-
Tii1,-1(s182tC4101)-

T 5 _1(s152tC—2,71)-
T17_1 (Z)
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where z = Aps152t (1[Gl — Corafr + AmCora§1)s152t. Since [(| ¢ T, and iy
is invertible, y1|Cu|g1 ¢ Thn. Since (_iy € Ly, —Coru¥n + AmCru¥1 € (Din)min S Do
Since s1 8ot is invertible, it follows that s189t(y1|Car|tr — 1491 + AmC_1171) 5152t & T
Hence z ¢ A\, ). Set

§s 1=
T o _1(—s152tC_2,71)-

Tii1,-1(—=s152tCas1)81)-
1)1 (—(s152tCuy1 — s152t))-
Ti_1,—1(—5152tCu—1)01)-

Ty _1(—s152tCt1) € EUsy((Riny Am), (I, ')
and go := T _1(2) € Uy. Then

(&5[63€1 (M [P, g0])62€4, 91]) = go-

Note that go & Usn((Rm, Am), (I, D)) since 2 & Anli. Set g; := pu(gi) Vi €
{0,1,2}, €] := pm(er) and d := p,,(d;) Vi € {0,1,2}. Then €} € E' = p,,(EUsp (R,
Aw)), gy € Gen(E")\{e}, gl e U’ Vi e {0,1,2} and

[ 11, 96), 91] = 5.
case 1.2 Assume that ¢(l) = —1.
This case can be treated similarly.
case 2 Assume that ys(y1) ™' ¢ T'),.
case 2.1 Assume that |7| € I, Vi€ {2,...,—2}.

Set x :=T_11(—y3(y1)™') € EUsn (R, Ay) (ome checks easily that —ys(y1) ™' € Ayy).
Then ¢ := x7 has the form

y1 0y
0 A O
0 0 ws
where y5 € R,,. There are an ¥/ € R and a t’ € S,, such that y3(y;)™' = Zt’—: Set

t:= % € R, and ¢; := T1a(s1s9t) € Uy. Using the equality [af,v] = *[5,v][a, 7]
one gets that [, g1] = [x ¢, 1] =% [C, 1][x ", g1]. Tt is easy to show that [(, g1] €
EUs, ((Rms M), (I, T')) and hence X_I[C,gl] € EUs (R, Am), (I, T'n)). On the
other hand [x™*, g1] = T-12(ys(y1) 's1828) T 2.2(—s182tys(y1) 's159t), by (R6.1).
Set &3 1= T10(—ys(y1) s159t) (X [, 01]) 7" € EUsp((Rumy Am), (I, Thn)) and gy :=
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T 95( —s182tys (Y1) 's1s0t) € Us. Since y3(y1) ™" ¢ Ty g2 € Usn((Rins Am)s (I, T'a)).-

Clearly
(&6 [hs g0])€2, 1) = go-

As above, push this equation into Usn(Rm, Am)/Usn((Rimy Am), (Im, T'm)) by apply-
g pr,.

case 2.2 Assume that there is an [ € {2,..., —2} such that |7| ¢ T'p..
Choose a p € {2,...,—2} such that p # =+l and set g, := T},(s;) € U;. Then
¢ := |7, ¢91] has the form

o O =

0 0
B 0
0 1
where B € My, _o(R,,). Since 7 € Usp (R, M), (Lnny Iy 0 As)), € € Uy (R An),

(I, I, 0 Ayy,)). By Lemma 7.8, |(yp| ¢ ['. Hence ¢ ¢ Us, (R, M), (I I'in)) and
thus one can proceed as in case 1.

—~

case 3 Assume that (y1) 'y2 ¢ Al
See case 2.

The inverted tree diagram below extending over several pages gives an overview
of the proof just concluded of Part III.

76



¢ CUQn((Rn% Am)a (Im7 Fm))a
€ CU2n((Rm7Am)a (Ima I N Am))

g0 = Ti;(s0a)

[h7 90]

= e(mod I,,),
length of one column ¢ I';,

€1 € EUQn(Rn’m Am)

“ [h’a gO]

= e(mod Ip,),
length of one column ¢ I,
y1 invertible

&1 = fﬁ T (—or(y1) ™),

=—2

. kn Toe(— (1)~ ur)
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§1(*[R, g0])&2

£361( [h go])€aéa

v 0y v1 0 y2 v 0y
0 A 0 0 A 0 0 A 0
2 3
y3 0 s — y3 0 s — y3 0 s
= e(mod I,,), = e(mod I,,), = e(mod I,,,),
length of one column ¢ I',,, length of one column ¢ I'y,, length of one column ¢ I',,
y1 invertible, y1 invertible y1 invertible,
ys(y1) " ¢ T (y1) "2 # Aml'm
1
y1 0 yo
0 A 0
ys 0 s
= e(mod I,,,),
length of one column ¢ I',,
y1 invertible,
y3(y1) "' € Ty (1) '42 € Al
& =To11(ys(y1) ™),
&0="T1-1((y1) "v2)
yr 0 0
0 A 0
0 0 ys
= e(mod I,,,),
length of one column ¢ I',,,
y1 invertible
1.1/ \.2
yi 0 0 yr 0 0O
0 A 0 0 A 0
0 0 Ys 0 0 Ys
= e(mod Ip,), = e(mod I,),
y1 invertible, y1 invertible,
de{2,...,n}: de{-n,...,—2}:
length of I-th column ¢ I'), length of I-th column ¢ I',,
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g1 = Tj—1(s152t)

—2
H T, 1 (k) T1,-1(2)
(€361 ([, 90]) €284, 91] k=2
xp € I, Yk e {2,..., -2},
2 ¢ Al

& = (I] T (ax))~!
k=2

analog to case 1.1

c T1,-1(%)
1 h ’_
58361 (' [R, go]) €264, 91 ] c AT
2
y1 0y
0 A 0
ys 0
€1 h,
&1(“![h, go])&2 = c(mod L),
length of one column ¢ I,
y1 invertible,
y3(y1)71 ¢ |
2.1 2.2
yr 0w i 0 w2
0 A O 0 A 0
y3 0 y3 0 wa
= e(mod I,), = e(mod Ip,),
length of one column ¢ I',,, length of one column ¢ I',,
y1 invertible, y1 invertible,
y3(y1) " ¢ O, y3(y1) "' ¢ T,
length of I-th column €Ty, Nef{2...,-2}:
Vie{2,...,—-2} length of [-th column ¢ T,
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[§1(* [P, g0])§2, 91]

&3[&1(1 [h, g0])&2, 91]

&(“[h, g0])&2

g1 = Ti2(s152t)

g1 = T‘lp(81>

O’T_272 (Z)

g e UQn((Rm, Am)a (Im> Fm>)7
z¢ ),

—_—_ O O =

0 O
B 0
0 1

mod I,,),

length of p-th column ¢ I'),

yi 0 e
0 A 0

ys 0 ya
= e(mod I,),
length of one column ¢ I,
y1 invertible,

(yl)_1y2 ¢ S\mrm

analog to case 2
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Theorem 7.10 Let H be a subgroup of Us,(R,\). Then

H is normalized by EUs,,(R,\) <
3! form ideal (I,T') such that EUs,((R,A), (I,T)) € H < CUs,((R,A), (I,T)).

Proof It follows from the previous lemmas of this section and from Lemma 6.16
that (G, E,Gen(F), B(E),G(+)) (where G, E, Gen(E), B(E) and G(-) are defined
as in Lemma 7.1) is a sandwich classification group. Hence we can apply Theorem
3.13 (note that if H is central, then there clearly is a unique form ideal (I,T"),
namely (1,T') = (0,0), such that EUs,((R,A), (I,T)) = H = CUs,((R, A), (1,1))).

[

Remark By [6], Corollary 3.8, any form ring (R, A) where R is almost commuta-
tive is the direct limit of form subrings (R;, A;) of (R, A) where for any i, R; is a
Noetherian C;-module (where C; is the subring of R; consisting of all finite sums of
elements of the form c¢¢ and —cé where ¢ € Center(R;)). Hence the theorem above
is still true if we drop the assumption that R is a Noetherian C-module and instead
assume only that R is almost commutative (note that EUs,, and CUs,, commute
with direct limits).
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