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Abstract

We address the problem of inferring the appropriate behavior of a human

driver from visual information about urban traffic scenes. The visual information

is acquired by an on-board camera that monitors the scene in front of the car,

resulting in a video stream as seen by the driver. The appropriate behavior

consists in the actions a responsible driver would typically perform in the depicted

situations, including both longitudinal and lateral control. As solving the problem

would enable a technical system to generate independent behavioral expectations,

potential applications are in driver assistance and autonomous navigation.

While autonomous vehicles have mastered highway, off-road, and urban traffic

environments by now, their perceptual basis has fundamentally shifted towards

non-visual sensors. The same is true of driver assistance systems, which are

in addition limited to specific functions like collision avoidance or lane keeping.

Partly, the reason lies in the complexity of urban traffic scenes, being rich in visual

information and often densely populated by other traffic participants. Moreover,

their diversity complicates their relationship to driving behavior: Many situations

require the same behavior while others allow for several alternatives.

In this context, we propose a novel framework based on scene categorization

that approaches the problem from its behavioral side: Subdividing the behavior

space induces visual categories for which dedicated classifiers are then learned.

The visual complexity is handled by decomposing the traffic scenes into their

constituent semantic entities and computing object-level features. While using

known techniques, our linking them to actual human driver behavior is also novel.

To validate our approach, we conduct experiments on video streams recorded in

real urban traffic, including a detailed comparison to the state-of-the-art.

Our results give compelling evidence of the superior robustness of our system,

compared to the filter-based representation of the current method. This finding

is consistent with general results in scene categorization and emphasizes their

importance for behavior prediction. Moreover, our scene categorization based

behavior prediction framework offers exciting possibilities for future research.

Examples include a route-planning layer on top of the proposed system to go

beyond reactive behavior, multi-modal extensions by audio or tactile sensors to

enrich the perceptual basis, and real-time applications in the automotive domain.
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Chapter 1

Introduction

1.1 Objective

Human drivers perceive the traffic situations they encounter mainly by means

of their visual senses. Based on the information thus acquired, they ultimately

arrive at behavioral decisions that affect the course of the vehicle in a way that is

appropriate for the traffic situations at hand. How this mapping from visual input

to behavioral output is actually achieved, in terms of the underlying neurobiolog-

ical processes, is still far from being fully understood. Nevertheless, the fact that

human drivers successfully perform this task every day convincingly demonstrates

that vision-based generation of appropriate driving behavior is indeed possible.

Our goal is to enable a technical system to do the same (see Figure 1.1).

To this end, the system observes the scene in front of the car by means of

an on-board camera. The resulting video stream closely matches the perspective

of the human driver and depicts what he or she sees while driving. In addition,

the system also observes what the driver is actually doing in terms of braking,

accelerating, and steering. This information can be acquired from the CAN bus

of the vehicle, or reconstructed from the video stream itself. Given the video

stream and the behavior stream, the goal of the system is to learn how the two are

correlated with each other. After learning, the system should be able to predict

the behavior data from the visual stream alone. We thus refer to the problem as

(driving) behavior prediction, and a formal definition is given in Chapter 3.
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Figure 1.1: Human drivers essentially perform a mapping from visual information
about the current traffic situation to appropriate behavioral commands affecting
the course of the vehicle. Our goal is to enable a technical system to do the same.

1.2 Motivation

A technical system capable of interpreting visual information about traffic scenes

such that it gains a basic understanding of what human drivers would typically do

in these situations has potential applications in the automotive domain. Examples

of such applications include driver assistance and autonomous navigation.

Driver Assistance

Although humans are generally capable of driving a car with apparent ease, they

are subject to occasional mistakes. Such mistakes are often caused by lack of

attention in a critical moment, potentially leading to dangerous situations and

traffic accidents. Failure of technical components, in contrast, can be ruled out

nowadays by rigorous quality and maintenance standards. It is therefore useful

to have a technical system observe the same traffic situations as the human driver

and generate its own expectations of appropriate driving behavior. The system

could then compare these expectations to the actual behavior of the human driver.

Given a sufficiently high confidence of the system in its own predictions, any

mismatch indicates a potential mistake by the human driver. In these cases,

the system could react by providing a warning signal to notify the driver, or by

directly executing the expected behavior (see Figure 1.2).

2



Figure 1.2: The trained system is able to generate its own behavioral expectations.
By comparison to the actual behavior of the human driver, the system could
detect mismatches and react – by warning the driver or by direct intervention.

Autonomous Navigation

In the above example of driver assistance, the system is designed to remain passive

unless it detects a mismatch between the actual behavior of the human driver and

its own predictions. Nevertheless, the predictions made by the system actually

form a continuous stream, and they are completely independent from what the

human driver is actually doing, depending solely on the visual information about

the given traffic situations. For this reason, the system could as well be designed

to actively execute the predicted driving behavior for extended periods of time,

thus constantly circumventing the human driver.

Traffic situations that allow for multiple behavioral alternatives, however,

would require additional information to be resolved. Crossings are an example of

such situations, as the choice whether to continue driving straight, turning left,

or turning right depends on the intention of the human driver and cannot be told

from the visual information itself. The required information could be provided

by the human driver via operating the blinker of the vehicle, for example, or by

a dedicated route-planning layer on top of the proposed system. The reason for

this necessity is that the system has to make a decision on which driving behavior

to execute at any given point in time, whereas in driver assistance the system

may refrain from making a decision if the confidence in its own predictions is not

high enough. Details on this confidence mechanism are given in Chapter 3.
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Source: [114]

Figure 1.3: Highway, off-road, and urban traffic environments can be handled to
the point of autonomous driving by now, but their increasing complexity requires
extensive sensor technology. No purely vision-based solution exists to date.

1.3 Challenges

Despite the practical relevance of driving behavior prediction, a purely vision-

based solution for urban traffic environments still eludes us. Major factors that

contribute to the difficulty of this problem are the high visual complexity of

urban traffic scenes, their non-trivial relation to appropriate driving behavior,

and global scene conditions that fundamentally affect their visual appearance.

Visual Scene Complexity

Urban scenes are more complex than other traffic environments (see Figure 1.3):

For example, highway environments are primarily composed of the road itself,

trees in the background, and the sky. Interaction with other traffic participants,

predominantly with other cars, is relatively infrequent and usually involves a

large safety distance due to the overall high velocity. Clear lane markings and the

absence of crossings or junctions facilitate the visual processing of highway scenes.

Urban environments, in contrast, are characterized by rich scene content that

typically comprises the road, sidewalks, buildings, trees, and the sky. Other traffic

participants include cars, bicyclists and pedestrians, with frequent interactions at

often close range. Irregular lane markings, as well as the presence of crossings

and junctions, further contribute to the complexity of urban traffic environments.
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Figure 1.4: The robustness of visual processing is challenged by uncontrollable
weather conditions. For example, the road may exhibit strong shadows (left),
appear as homogeneous surface (center), or contain bright reflections (right).

Changing Weather Conditions

Visual traffic scene understanding is complicated by the fact that global factors

such as the weather can have a great effect on the visual appearance of a scene

(see Figure 1.4). The resulting changes in visual appearance impose additional ro-

bustness requirements on vision-based approaches to driving behavior prediction,

which are currently circumvented by the use of non-visual sensors (see Chapter 2).

Appropriate Driving Behavior

While the appropriate driving behavior for highway environments largely consists

in driving straight at a constantly high velocity, urban traffic environments require

a much broader range of behaviors: Due to the frequent interactions with other

traffic participants and the presence of crossings, junctions, and curves, driving in

urban scenes involves considerable velocity changes and steering maneuvers. The

difficulty for technical systems trying to learn the appropriate driving behavior

lies in the complex dependencies of such actions on the visual scene content:

On the one hand, we have already seen examples of traffic situations that allow

for more than one possible driving behavior, depending on the driver’s intentions

(e.g., at crossings and junctions). On the other hand, many traffic situations that

are visually dissimilar actually require the same driving behavior (see Figure 1.5).
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Figure 1.5: The complexity of urban traffic situations complicates the mapping
between visual scene content and appropriate driving behavior. For example,
braking can be due to a small stop light, an extended obstacle, or a diffuse curve.

1.4 Contributions

To overcome the above challenges, our dissertation work makes the following

contributions to driving behavior prediction in urban traffic environments using

visual perception alone.

Scene Categorization Architecture

We propose a novel system architecture based on visual scene categorization that

enables supervised learning of the appropriate driving behavior in reaction to the

visual content of urban traffic scenes. To cope with the visual dissimilarity of

traffic situations that are behaviorally equivalent (see Figure 1.5), we employ a

behavior-driven approach that begins by subdividing the behavior space into dis-

crete classes. These behavior classes induce image categories in the visual domain,

consisting of all scenes in which the respective behavior was actually performed

by a human driver. For each visual category, a dedicated image classifier is then

trained in a one-versus-all manner, to distinguish its corresponding traffic scenes

from all others. By applying these classifiers and deciding on the behavior class

associated with the strongest response, the trained system is able to predict the

appropriate behavior for previously unseen traffic situations. To our knowledge,

we are the first [43] to propose a scene categorization approach for this problem.

6



Visual Scene Decomposition

Our scene categorization architecture itself does not specify how to represent

the traffic scenes for subsequent processing by the image classifiers. In order to

break down the visual complexity of urban traffic scenes, we therefore propose a

full decomposition into their constituent semantic entities. This decomposition

is achieved by learning a dedicated object classifier per semantic entity type

and integrating their response maps in a Conditional Random Field framework

using energy minimization (see Chapter 4). While the underlying techniques

and the resulting object-level features are well-known state-of-the-art methods,

our contribution lies in explicitly linking them to human driver behavior and

demonstrating their suitability for behavior prediction. Classical segmentation

typically remains in the visual domain only, without addressing its usefulness for

scene understanding in the context of a larger system. Driver assistance systems,

in turn, usually focus on a manually selected subset of the above semantic entities

as governed by their assumed behavioral relevance. In contrast, we consider the

full range of semantic entities and let the system learn which of them are relevant.

Comparative Performance Analysis

The segmentation-based representation of urban traffic scenes as described above

essentially operates at the level of semantic entities and objects, which reflects a

degree of abstraction that is generally associated with higher visual processing in

the human brain. An alternative representation [84] has recently been proposed

for driving behavior prediction that, unlike our approach, operates at the level of

raw image filter responses and can be seen as a model of early visual processing

prior to attention. As these representations correspond to fundamentally different

ends of the cognitive spectrum, we conduct a comparative performance evaluation

(see Chapter 5), which has not been done before. Our experiments include a

principled investigation of the effect that different weather conditions have on

the performance robustness, and also demonstrate the importance of stabilizing

the single-frame predictions over time, in combination with a confidence-based

reject option to temporarily suppress ambiguous predictions. Our results show

the superior robustness of our approach over the best method currently known.
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1.5 Thesis Outline

The rest of this dissertation is organized as follows.

Chapter 2. We begin with an overview of the current state-of-the-art in

autonomous vehicles, driver assistance systems, and visual scene understanding.

Our literature review shows that autonomous navigation in real urban traffic is

possible by now, but generally requires non-visual sensor technology. In contrast,

driver assistance systems often employ visual processing, but typically only for

isolated support functions such as lane departure warning, for example. However,

visual scene understanding has reached a maturity level that enables us to tackle

driving behavior prediction in real urban traffic by visual perception alone.

Chapter 3. We proceed by describing our scene categorization architecture

for driving behavior prediction. Our discussion starts with a problem formulation

that includes a specification of the available data, the proposed subdivision of the

behavior space, and how the resulting visual classes lead to scene categorization.

We then explain the supervised learning that is enabled by our framework, from

acquiring the ground truth behavior data over balancing the training examples

to learning a multi-classifier for the actual prediction. A qualitative comparison

to a related architecture for driving behavior prediction concludes this chapter.

Chapter 4. Our qualitative comparison of the two architectures continues

with their different traffic scene representations. We first discuss the filter-based

representation of the alternative approach, describing its oriented edge filters,

pooling over image grid cells, and stabilization by Gaussian kernel weights. We

then explain the segmentation-based representation used by our own approach,

including its semantic object classifiers, the visual scene decomposition, and our

feature vector computation. Two different implementations are given at the end.

Chapter 5. Finally, we report on the prediction accuracy achieved by our

proposed approach, with detailed comparison to the state-of-the-art performance.

After discussing public video datasets from the perspective of behavior prediction,

we first conduct a stand-alone evaluation of the object-level representation. We

then address the adequate definition of the behavior classes, evaluate the effect of

different weather conditions as well as the temporal stabilization with confidences,

and conclude our work with automatic weather recognition for model selection.
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Chapter 2

State of the Art

As pointed out in the previous chapter, our work has potential applications in

autonomous navigation and driver assistance, and we emphasize visual perception

to infer the appropriate driving behavior in a given traffic situation. We therefore

provide a brief overview of the current state-of-the-art in autonomous vehicles,

discuss existing behavior prediction methods for driver assistance, and introduce

relevant computer vision techniques for visual scene understanding.

Our review of the autonomous vehicles literature shows that driverless cars

are now capable of successfully navigating in highway, off-road, and urban traffic.

Their sensory processing, however, is largely based on extensive technical setups

rather than on visual perception as in human drivers. The same is true of most

driver assistance systems, which are specifically designed to implement a variety

of individual support functions. In this context, driving behavior prediction is

a well-established research field of its own, but its focus is more on recognizing

the actual behavior of the human drivers to infer their intentions and predict

their future trajectories. In contrast, we focus on the inference of the appropriate

behavior in a given traffic situation from the visual scene content itself.

Computer vision techniques have sufficiently matured by now to be applicable

to real-world urban traffic environments. While they generally do not go beyond

the visual domain, however, our work establishes a direct link to driving behavior

as part of a scene categorization approach (see Chapter 3). In doing so, we also

promote a fundamental shift away from the non-visual sensors that, in our view,

essentially reflect an apparent cognitive limitation in the systems of today.

9



2.1 Autonomous Vehicles

Although the field of mobile robotics dates back to the late 1960s [71, 72, 75],

it was not until the late 1980s that such technology was successfully applied to

commercially available cars. Early work in this direction, particularly in Europe,

had a strong focus on autonomous navigation in highway environments [13, 26],

due to their rather well-structured nature and low scene complexity. Importantly,

these systems relied on visual perception alone, and demonstrated remarkable

driving skills over large distances and at high velocities (see Section 2.1.1).

In contrast, research efforts on autonomous vehicles in the United States were

overall tailored towards off-road navigation from the very beginning [16, 90, 101],

corresponding to different military applications of this technology. Apart from a

limited number of early approaches that were based on visual processing [83, 108],

GPS and map data played a central role in this context, and non-visual sensors

became a hallmark of the resulting vehicles. Impressive achievements were made

particularly in unstructured and physically difficult terrain (see Section 2.1.2).

Given the success of autonomous vehicles in off-road environments, it was a

natural transition to apply similar technology to urban scenarios as well [17].

While originally restricted to rather artificial settings with simplified conditions,

recent efforts are clearly heading towards a deployment in real city traffic [62, 102].

As a consequence, sensors are now being integrated more seamlessly into the

prototype vehicles than before, but the underlying technology is still based on

non-visual perception such as given by 360◦ laser scanners (see Section 2.1.3).

In the following, we briefly discuss the most important milestones.

2.1.1 Highway Traffic

One of the leading pioneers of autonomous vehicles was Ernst Dickmanns from the

Bundeswehr University Munich in Germany, who equipped a Mercedes-Benz van

called VaMoRs with cameras in a stereoscopic arrangement, and also modified it

such that steering and acceleration could be controlled electronically rather than

by human mechanical operation [26]. Using computer vision techniques alone,

VaMoRs was capable of autonomous road-following on public highways by 1987

at velocities of up to 96 km/h, but without any other traffic participants [28].

10



Source: [111] Source: [109] Source: [110]

Figure 2.1: The VaMP car (left) was capable of autonomous driving on highways
over large distances and at high velocities (right), solely based on visual perception
as given by a movable array of video cameras (center).

In the following EUREKA Prometheus project of the European Union [9, 10],

comparable in funding and participation to the later DARPA Grand Challenges as

discussed in Section 2.1.2, the autonomous passenger car VaMoRs-P (or VaMP)

was created in collaboration with Daimler-Benz (see Figure 2.1). Like VaMoRs,

it was equipped with several cameras on a movable rig and relied on stereo vision.

In 1994, as part of the final demonstration of the EUREKA Prometheus project,

VaMP demonstrated its autonomous driving capabilities on a highway near Paris

in France, including regular traffic and achieving up to 130 km/h velocity [27].

One year later, an improved version drove autonomously from Munich in Germany

to Odense in Denmark, traveling a distance of over 1600 km on public highways

at velocities of up to 175 km/h [25].

After the Prometheus project, Alberto Broggi from the University of Parma

in Italy adapted a regular Lancia passenger car named ARGO to be capable of

autonomously turning the steering wheel, by simply attaching an electric motor.

Also, standard cameras were installed in a stereoscopic setup with large baseline

to monitor the scene in front [13]. The emphasis was on low technical overhead,

contrasting the highly engineered VaMoRs and VaMP with their sophisticated

camera rigs. Although ARGO was capable of autonomous steering only, with a

human driver having to operate the pedals, it demonstrated similar performance

as VaMP when completing a 2000 km journey on Italian highways in 1998 [12].

Apart from occasional human intervention for safety reasons, the above examples

all show that autonomous navigation in real highway traffic is largely solved.
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2.1.2 Off-road Navigation

As we have seen in the previous section, visual processing was highly successful

in providing control for autonomous vehicles. However, these approaches were

all designed for operation in well-structured traffic environments with a known

infrastructure such as highways, in which lane following and obstacle detection

are the fundamental tasks. It is therefore no surprise that off-road environments,

being largely unstructured and also imposing additional tasks like route planning,

attracted non-visual sensor technology in addition.

An early example in this context is the DARPA-funded Autonomous Land

Vehicle (ALV) project [90], of which the NavLab vehicle from Carnegie Mellon

University was a promising candidate. The original NavLab was a large van-like

mobile platform that was particularly suited for rough terrain, and its perception

of the environment was based on cameras on the one hand as well as on 3D

laser scanners on the other hand [101]. In the beginning, research on this vehicle

included neural network approaches that relied solely on the cameras [82, 83],

but these techniques were predominantly demonstrated in highway scenarios like

their European counterparts, with similar results around 1990.

The extended period of ALV -related research ultimately led to the DARPA

Grand Challenge, which was first held in 2004 and basically consisted in a large

off-road race through the Mojave desert of California, USA [20]. The final race

involved 15 autonomous vehicles and a previously unknown route spanning about

142 miles. None of the vehicles achieved this goal, however, mostly because of

mechanical problems due to the rough terrain or because of getting stuck. The

best vehicle, Sandstorm from Carnegie Mellon University, made it 7 miles.

Although unsuccessful, interest in the event was nevertheless increased, and

the DARPA Grand Challenge was held again in the subsequent year [16]. The

new route was comparable to the 2004 route, being a 132 miles parcours through

the Mojave desert, in rugged terrain and with narrow paths (see Fig. 2.2, left).

Specifically, it included three particularly narrow passages such as a tunnel, a

gate, and a pass seamed by rocks on one side and a cliff on the other (see Fig. 2.2,

center). Also, the total number of curves was much higher than in the year

before. Only vehicles were admitted to the final race that demonstrated sufficient
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Source: [113] Source: [115] Source: [98]

Figure 2.2: The DARPA Grand Challenge required autonomous navigation in an
off-road desert environment (left), characterized by unstructured terrain (center).
It was successfully completed by Stanley (right) as well as four other vehicles.

capabilities of following paths, avoiding obstacles and collisions, and navigating

through tunnels, so 23 teams participated in the final race. As before, the time

limit for completing the course was 10 hours, and map data of the route was

only made available shortly before the race. Five vehicles were able to complete

the entire 132-miles trip, the fastest taking less than 7 hours (see Fig. 2.2, right).

Stanley from Stanford University won the first place [104], followed by Sandstorm

and H1ghlander from Carnegie Mellon University [122].

As pointed out earlier, it is important to note that the success of the Grand

Challenge was not built on visual processing alone. In contrast to most European

vehicles, the DARPA cars had a strong tendency towards relying on technical sen-

sors such as ultrasonic, radar and lidar, or laser scanners in general. If at all,

cameras were used as auxiliary sensors only. For example, Stanley explicitly

made use of visual information for detecting the drivable road area, thus comple-

menting the GPS and map information, whereas Sandstorm did not utilize visual

information at all. Also, the use of map data with GPS waypoints was inherent

to the Grand Challenge, as these defined the course to be followed. To a large

extent, the actual challenge therefore consisted in properly localizing the vehicle

on the map, typically by GPS in combination with inertial measurement units to

account for odometry information, and matching the coarse map data to the ac-

tual terrain as perceived by the high-resolution laser scanners. This architectural

paradigm remained strong in the subsequent approaches to autonomous driving

in urban traffic environments, given its success in the off-road terrain.
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2.1.3 Urban Environments

The same technology that enabled autonomous driving in off-road environments

was put to the test again in the 2007 DARPA Urban Challenge [17]. For safety,

an abandoned US airbase was chosen for the event rather than a real city, but it

shared many characteristics with real urban environments such as paved roads,

sidewalks, vegetation and buildings, as well as intersections and T-junctions with

traffic signs. Although no pedestrians were present, the vehicles navigating in

the scenery frequently encountered each other at the intersections, where they

had to obey standard traffic rules such as precedence of driving. Compared to

the Grand Challenge, the environment thus proved to be much more dynamic.

Like before, a map of the site was provided shortly before the race, but each

vehicle was assigned missions to be completed by driving autonomously along

routes defined by GPS waypoints.

Six vehicles were able to complete their missions, partly within the time limit

of 6 hours [3, 6, 34, 69, 70, 112]. Many other vehicles, however, either crashed

into obstacles or were shut down because of dangerous behavior. Nevertheless,

the event successfully demonstrated the ability of autonomous vehicles to handle

constrained urban-like traffic environments. One important technical advance

over the previous Grand Challenge cars was the use of a 360◦ LIDAR mounted

on top. These high-velocity, high-resolution sensors create a detailed sensory

representation of the surrounding traffic environment without having a blind spot,

apart from a rather small radius in the immediate area around the vehicle. To

compensate for this weakness, and to further enhance the sensory coverage of the

environment, the classical SICK laser scanners from the earlier Grand Challenge

are still heavily used, typically in combination with the 360-degree LIDAR. With

the increasingly complex urban traffic environment, cameras have also become

more important than before, as can be seen in Boss and Odin with their large

double-cameras mounted on top. Nevertheless, visual sensors remained just one

of several non-visual types in these vehicles.

After the success in constrained urban-like environments, the technology was

gradually transferred to real city traffic. In continued collaboration with VW,

Sebastian Thrun from Stanford University led the Google Driverless Car project,
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Source: [105] Source: [107] Source: [106]

Figure 2.3: The autonomous vehicle Leonie of the Braunschweig Stadtpilot
project is capable of driving in real-world urban traffic, but requires laser-based
and radar-based perception with GPS information instead of visual sensors.

aiming for fully autonomous driving in urban traffic [102]. A fleet of seven vehicles

was equipped with technical sensors similar to those used in the Urban Challenge,

but they were more decently integrated. Specifically, each vehicle had a 360◦

LIDAR on top, three cameras inside the cabin to monitor the upcoming traffic

scene, as well as laser scanners and radar sensors to the front. The sensors give

rise to a detailed 3D representation of the vehicle’s surroundings, and Google

Street View information is combined with the sensor data. Like in the DARPA

Urban Challenge, GPS is used for route planning and localization.

Another current successor of the Urban Challenge is the Stadtpilot project [62],

in which the TU Braunschweig builds on their experience with the Caroline ve-

hicle, one of the 11 Urban Challenge finalists. Their new vehicles Leonie and

Henry are modified VW Passats and were equipped with a similar sensor setup

like the Google Driverless Cars, including a 360-degree LIDAR on top as well as

laser scanners and radar sensors (see Figure 2.3). In contrast to the Google cars,

cameras are not yet installed, and the status of traffic lights has to be provided

manually. Apart from this limitation, the system also relies on GPS and aerial

map data to localize itself, and autonomously drove along the 3-km inner ring

of Braunschweig in Germany. The demonstration included automatic merging

into traffic, turning maneuvers at intersections, lane changes, and autonomous

parking. Overall, we conclude that autonomous navigation in real city traffic

is already possible to a large extent, but nevertheless still ongoing research and

generally requires non-visual perception to cope with the scene complexity.
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2.2 Driving Behavior Prediction

According to the well-known driver model proposed by Michon [68], which is

an automotive version of the more generic cognitive architectures for modeling

human behavior in general [88], the cognitive process of driving a car is thought of

as involving tasks at three hierarchical levels of abstraction: Overall destination

and route planning are dealt with at a strategic level, the appropriate selection

of driving maneuvers is handled at a tactical level, and their actual execution by

motor commands is performed at an operational level. While autonomous vehicles

as discussed in the previous section necessarily involve tasks at all three levels,

driver assistance systems typically focus on the tactical level, as their purpose is

to assist the human driver in the current or upcoming traffic situation.

In this context, behavior prediction was originally designed to recognize the

current maneuver of the human driver at an early stage, to provide appropriate

support that is consistent with his or her intentions (see Section 2.2.1). While

early approaches only considered the car’s physical data for maneuver recognition,

other work also included the driver’s gaze behavior and other traffic participants

in the surrounding environment. Consequently, the focus of behavior prediction

shifted from the ego-vehicle towards other cars, thus modeling the traffic situation

as a whole (see Section 2.2.2). Such models try to anticipate the likely trajectories,

as these are potentially relevant for the ego-vehicle. Recently, machine learning

has been used for direct correlation of the actions of a human driver with the

traffic situations in which they are typically being performed (see Section 2.2.3).

Our own approach, given in Chapter 3, is a representative of the latter group.

2.2.1 Maneuver Recognition

The goal is to recognize the ongoing or upcoming maneuver as early as possible

in order to be able to offer adequate assistance to the driver, as opposed to

classifying entire maneuvers after their completion [37]. The key idea is that

driving maneuvers are manifestations of the driver’s intentions, which are not

directly observable as they depend on his or her internal cognitive state. Thus,

the internal state must be inferred from other (observable) quantities, such as

changes in the velocity and the steering angle of the vehicle, for example.
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Figure 2.4: Example of a Hidden Markov Model as used for maneuver recognition.

Hidden Markov Models (HMMs) [45] and various extensions are widely used

for maneuver recognition, as they offer a principled framework for inferring the

unobservable states from observable evidence, and also lend themselves naturally

to the modeling of temporal sequences (see Figure 2.4): Each maneuver is rep-

resented by a pre-defined series of atomic steps (or states) of which it consists,

with transition probabilities linking the individual states in a chain, and output

probabilities that associate each state with its typical observations. Thanks to

their probabilistic nature, HMMs are capable of dealing with uncertainty, both

in terms of noisy observations by the sensors and in terms of the inherent uncer-

tainty by the possible driving maneuvers. Also, efficient algorithms are available

for learning their parameters from training data (e.g., the Baum-Welch algorithm)

and for inferring the most likely sequence of internal states given the observable

data (e.g., the Viterbi algorithm) [74]. The typical procedure is to represent each

possible driving maneuver by a separate HMM, and the actual recognition is then

achieved by determining the model that is most consistent with the observations.

To this end, the Viterbi algorithm can be used as well. Being generative models,

HMMs can also be used for temporal prediction into the future, by evaluating

the most likely model at some future timestep without observations [51]. While

classical HMMs are applied to the raw observations, thus abstracting from their

continuous values and operating at the tactical level, extensions have been pro-

posed that also incorporate operational aspects into the HMM framework [58, 80].

These approaches model the raw sensor data with Linear Dynamical Systems

(LDS) such as Kalman filters, for example, and then have the HMMs operate on

their stabilized output such that the continuous observations are preserved.
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As for the observable data underlying the HMMs and their extensions, early

approaches only considered physical quantities of the vehicle itself, which can

be observed directly from the CAN bus, for example [50, 51, 80]. Since these

quantities are directly correlated with the ongoing driving maneuvers, they can

be used as evidence for their recognition. The first methods simply evaluated

their models at some fixed timestep for early recognition, while later methods

often evaluate and update the models at each timestep for continuous on-the-fly

recognition [50, 93]. Some approaches model a wide variety of driving maneuvers

whereas others restrict themselves to either longitudinal or lateral control (e.g.,

lane changing versus lane keeping maneuvers).

An important extension for earlier recognition is the direct observation of

the human driver [58, 77]: Human gaze is generally influenced by the internal

cognitive state, and the gaze patterns of human drivers are strongly correlated

with different maneuver types [53, 73, 119]. As gaze patterns can be modeled by a

first-order Markov process, their incorporation into HMMs is a natural extension.

Because the driver mostly observes the traffic scene in front, such gaze patterns

generally indicate the upcoming maneuvers prior to the CAN data.

Finally, the external surroundings of the vehicle have also been taken into

account later on [37, 77, 93], since driving maneuvers are essentially reactions

to the traffic situation at hand. Thus, external information also contributes

to an earlier maneuver recognition, and information about the vehicle in front,

the vehicles in the rear and adjacent lanes, as well as lane markings have been

used. Maneuver recognition systems of today typically consider the full range

of the driver-vehicle-environment spectrum, and achieve good recognition results

several seconds before the onset of a maneuver takes place.

However, most of these approaches are designed for highway environments,

and early attempts have systematically circumvented real perception by manually

annotating the sensor data, although this is no longer the case. Moreover, in

analogy to our discussion of autonomous vehicles in the preceding section, laser

and radar sensors are heavily used instead of visual perception, which is mainly

restricted to the detection of lane markings. In particular, maneuver recognition

as discussed above concentrates on recognizing the actual (current or future)

behavior of the human driver, instead of evaluating its situational necessity.
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2.2.2 Traffic Situation Models

McCall and Trivedi address the problem of driver assistance for braking [64],

using a Bayesian model that incorporates both the prediction of the driver’s

intention to brake as well as the situational necessity of braking. These two are

handled independently, and are compared later on to determine whether or not a

warning should be communicated to the driver. It is arguably the first work that

explicitly distinguishes between what the driver actually does and what he or she

should be doing, like in our own work. The driver’s intention is estimated from

camera data of the head and foot movements, and the Bayesian model performs

a probabilistic weighting between the driver’s intention and the situational need

to assess the overall “criticality” of the current situation, where each part is

modeled by a random variable. The input data forms a large feature vector that

is processed over a moving time window, and Sparse Bayesian Learning (SBL)

is used to extract the most relevant feature vector dimensions, thus reducing the

input feature space as well as preventing overfitting. This reduction is similar

to our own use of GentleBoost classifiers, which also selects the most relevant

feature vector dimensions, but the SBL framework remains fully probabilistic.

Meyer-Delius et al. [67] propose a model for spatio-temporal situations, con-

sisting of an HMM operating on relational descriptions, which in turn are the

estimated states of dynamical systems: Observations are integrated by dynami-

cal systems, their estimated states are abstracted to relational descriptions, and

hidden states in a Markov Chain are connected to these relational descriptions.

The temporal evolution of the agent and its surroundings is modeled by a stan-

dard DBN [21], consisting of random variables for the internal state of the agent

and the observable data at each timestep, and chained together by conditional

probability tables (CPTs). The relational layer on top of the DBN abstracts from

the often continuous observation data (e.g., vehicle distances), and on top of the

relational layer we have multiple parallel models that are being tracked, repre-

senting the situation types (driving maneuvers) that are possible for the agent in

its current state. Maneuver recognition involves arbitration between the concur-

rent HMMs, which is done by computing their Bayes factors [48], a quantitative

measure for determining which of two models explains the observed data best.
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A similar model of situations is presented in [66], consisting of an observation

layer with a corresponding temporal chain of system states on top, and a number

of parallely tracked HMMs on top of that. DBNs are used to represent and

arbitrate between the possible driving maneuvers. The most notable difference is

the missing of an intermediate relational abstraction layer, but the observations on

which the HMMs operate are still relations to the other vehicles. The efficiency

of the HMM framework gives rise to online recognition. More specifically, the

model consists of a lower-level, more fine-grained state space model, realized by

a DBN that captures the interactions of agents in the scene where the state

is estimated by standard recursive estimation [92], as well as a range of more

coarse-grained situation models that are tracked in parallel and implemented

by HMMs with Baum-Welch parameter estimation [24]. Model evaluation for

recognition, given the observed sequence of states, is performed by computing

the model likelihoods via standard forward-procedure and then comparing the

resulting posterior odds [87]. The real-world experiments are mostly conducted

on highways, where the observations are provided by SICK laser scanners and the

vehicle positions are automatically tracked, after manual initialization. However,

only following and passing maneuvers are considered in the evaluation.

Gindele et al. [38] present a complex DBN for modeling various traffic-related

variables, ranging from metric sensor data over more symbolic behaviors of others

to their most likely (metric) trajectories. The focus is on modeling the interactions

between vehicles, and the experiments are conducted on a simulated highway

using four different maneuvers. The DBN is justified in that most of the relevant

data cannot be observed (e.g., vehicle distances, but not the future trajectories),

and hence need to be inferred. Also, low-level metric aspects and high-level

symbolic aspects can thus be combined in a single framework, and uncertainty as

well as sensor noise are properly dealt with. Reasonable conditional independence

assumptions between the random variables lead to a “sparse” DBN [74], and it is

further assumed that the Markov property holds, i.e., the current state contains

all relevant information for estimating the next state. The joint distribution of

the DBN is thus decomposed into factors that are regularly updated by applying

Bayes’ theorem, but no analytical solution exists and the posterior distribution

is therefore approximated by means of a particle filter [103].
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Lefevre et al. [55] address the problem of maneuver recognition at intersections

from vehicle data, as in earlier approaches (e.g., Kuge et al. [50]), but use map

data of the roads and lanes. The intersection and the maneuvers are modeled in

a probabilistic framework, evaluated on real intersection data, and the Bayesian

Network comprises the following random variables: entrance road, entrance lane,

exit lane, vehicle path, and turn signals. A rule-based algorithm for computing the

CPTs makes the model applicable to any intersection. Inference mainly concerns

the lanes taken by the vehicle, which cannot be measured accurately enough

(otherwise, lanes and path of the vehicle were evident). Discrete probability

distributions are used by the model, contributing to its computational efficiency.

Finally, Agamennoni et al. [2] present a Bayesian approach to driving behavior

prediction formulated as stochastic filtering, where the probabilistic approach

combines low-level metric observations with high-level symbolic representations

and handles the uncertainty. The study focuses on the interaction of two mining

vehicles at an intersection with real-world data. Like its most related work [38],

the method employs stochastic filtering to estimate the vehicle trajectories. The

model is an instance of recursive Bayesian filtering over discretized timesteps,

modeling the dynamics of each vehicle and linking the individual models by a

context layer on top. The GPS positions of the vehicles are observed, and the

vehicle dynamics on top comprise the vehicles’ pose, velocity, and steering angle.

The context model consists of a term per agent that ensures temporal coherence

over time, and a common term over all agents that establishes the inter-vehicle

relations. As the model is highly non-linear, variational approximation of the

joint posterior distribution is performed rather than exact inference [5, 46].

While the above traffic situation models enable the inference of appropriate

driving behavior from the scene content itself, going beyond the actual behavior

of the human driver and thus being more directly related to our own approach

(see Chapter 3), they are also far more complex than necessary for our purposes.

As generative probabilistic models, they contain a wide range of random variables

to cover many different aspects about traffic scenes and enable complex reasoning

about future timesteps and trajectories, for example. However, we only require

behavioral decisions about the appropriate driving behavior at each point in time,

which can be obtained more efficiently by learning direct correlations.
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2.2.3 Direct Correlation Learning

Vidugiriene et al. [120] investigate whether or not similar settings can be used

for different drivers. Their goal is to predict the appropriate steering angle from

visual data, recorded by a camera while driving on rural roads (like Pugeault [85]),

with four lane marking based features as input [22, 23] and a neural network or

look-up table as predictive model. Apart from the visual data, CAN data of

two different drivers is recorded, with a driving time of about 6 minutes each.

The neural network has two layers with only two neurons in the hidden layer,

the input is smoothed by a moving window low-pass filtering, and the output is

stabilized by averaging the predicted signal over 10 initializations. The look-up

table just stores the observed features with their corresponding steering angles

in training, and then retrieves the MSE-closest feature values for testing. Both

models perform continuous regression, and their predictions are compared to the

actual steering angles of the two drivers. Several combinations of the four input

features are tested, showing that different feature combinations are optimal for

the two drivers. Also, the neural network performs better than the look-up table

(1st driver: MSE about 4 – 7 % compared to 7 – 20 %, 2nd driver: MSE about

3 – 5 % compared to 5 – 8 %). Training on one driver and testing on the other

leads to the same general pattern, thus confirming the above results.

Garcia Ortiz et al. [79] address driving behavior prediction in the near future,

from current and past observations of the vehicle’s physical data and selected en-

vironmental information. Approaching a traffic light at an intersection or junction

is considered, where the state of the traffic light (3 values) as well as distance and

velocity of the car (2 values) serve as input features. While the visual features are

manually annotated, the behavior data stream is automatically segmented into

“behavior primitives” (“stopped”, “braking”, and “other”). Low-dimensional

representations are used, unlike Pugeault [84], Heracles [43], and McCall [64, 65]

who operate on high-dimensional input feature vectors that are later reduced to

their most relevant dimensions. The problem is cast as multi-class classification

like in our previous work [43], but using a Multi-Layer Perceptron (MLP) [41]

with backpropagation [89] for correlation learning. The focus is on prediction into

the future by simply shifting the target vectors, and a variance-based confidence

22



is also introduced. ROC curves are used for the evaluation, as in Pugeault [84]

and McCall [65], annotated with different rejection rates and showing that in-

creasing the confidence threshold improves prediction but then decreases again,

with an optimal rejection rate of about 10 %. The 10 % ROC curves for different

time-scales show good performance up to 3 seconds (EER: 85 % to 75 %).

Maye et al. [63] address the learning of situation types and typical actions of

the driver, from Inertial Measurement Unit (IMU) data and video data. First,

the IMU data is cut into motion segments by a probabilistic Bayesian approach to

change-point detection [1, 32], with a particle filter implementation for efficiency.

Second, the image data is represented in a Bag-of-Words (BoW) scheme [97]

by Difference-of-Gaussian keypoints and SIFT descriptors [59], where Dirichlet

Compound Multinomials (DCM) represent the final codeword histograms. Third,

the motion segments are clustered into “situation types” by visual similarity of

their corresponding BoW representations, thus leading to situation labels (e.g.,

“approaching a red traffic light”). As the situation labels are associated with the

original motion data, typical vehicle motions (driver’s actions) are also learned

(e.g., “braking”). Importantly, no manual interaction or labeling is required

at any point, and the learning process happens online while driving. Cast as

probabilistic filtering, the joint distribution over motion segment length (online

change-point detection), situation label (by image data), and associated action

(appropriate driving behavior) is split in three conditionally independent models:

The motion segmentation is done automatically by inferring at each timestep

whether or not a new motion segment starts, given the observed IMU data,

where the posterior distribution is approximated by a particle filter with Rao-

Blackwellization [19] for lower variance. The current situation label is determined

by Bayesian reasoning over the existing situation types, given the observations.

At each timestep, the Bayes factors [48] between the existing situation models

are computed, and a confidence threshold indicates whether or not an additional

model should be added for the current situation. The possible actions of each

situation type are modeled by a Gaussian Mixture Model (GMM), to account for

multiple possibilities. The evaluation is done on simulated and real urban data,

but in a repeating loop only. Motion segmentation and situation labeling achieve

over 90 % accuracy, while the action prediction performs “accurately”.
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Importantly, Pugeault et al. [85] learn correlations between holistic descriptors

of visual traffic scenes and the observed behavior of a human driver. Afterwards,

the system can infer the appropriate behavior from a visual description of such

traffic scenes alone. In contrast to Heracles [43] and Pugeault [84], their study con-

centrates on the steering angle only, but learns a continuous regression by means

of a random forest (RF) with an extension called “Medoid-RF”, which performs

better for extreme but correct steering angles. Several image-filter based visual

representations are considered: standard GIST, kernel-GIST (see Pugeault [84]),

and HOG features. The system is evaluated by autonomous steering of a robot

following an indoor track, and by predicting the behavior of a human driver in

a rural road-following scenario, showing the kernel-GIST to perform best. The

GIST descriptor is the same 2048-dimensional feature vector as in [84], computed

at 4 scales and 8 orientations from a 128 x 128 image. For kernel-GIST, the

uniform averaging within each grid cell is replaced by a Gaussian kernel weighted

version, without an additional layer here. The HOG features are computed di-

rectly from the gradient images, again within grid cells but without convolutions,

at four scales and eight orientation bins. The random forest [11] is an ensemble

classifier similar to the GentleBoost framework, but large trees are used instead

of stumps. As the original formulation uses the arithmetic mean for leaf node

computations and for the entire forest, which cannot handle outliers and extreme

but correct steering angle values in the training data, the median is used instead.

The first scenario (indoor track) has sharp 90◦ curves with clear lane markings,

and a remote controlled car is operated by a human to collect training data,

10% of which are randomly sampled for training while the rest is used for test-

ing. The best results (Medoid-RF) have an average angle deviation of about 13◦

(both for GIST and C-GIST), which is sufficient for autonomous road following.

The second dataset (rural road) was recorded while driving without clear lane

markings and changing road appearance, again using 10 percent of the data for

training and the rest being used for the testing. Here, the angle deviation was

approximately 7 degrees (both GIST and C-GIST), which is surprisingly lower.

Using a scene categorization approach as well, the work of Pugeault [84] is the

most related work to our own. We thus discuss their techniques in greater detail

throughout this thesis, and compare our behavior prediction results to theirs.
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2.3 Visual Scene Understanding

In the following, we provide an overview of techniques that have been developed

in the fields of image segmentation (see Section 2.3.1) and scene categorization

(see Section 2.3.2). These are relevant for our own scene categorization approach

to driving behavior prediction (see Chapter 3), and for our semantic object-

level representation of urban traffic scenes (see Chapter 4), respectively. Readers

familiar with these domains, however, may directly continue with Chapter 3.

2.3.1 Image Segmentation

Segmentation deals with segregating semantic entities such as objects of interest

from their surrounding background that is considered irrelevant for the task at

hand. It is important to note that in segmentation, one is interested in an ac-

curate description of the exact object boundaries, going beyond what is required

for object detection in general, where it is sufficient to approximate the object

location by a coarse bounding box (e.g., [29]). The challenge arises from the fact

that semantic aspects defining objects of interest are difficult to incorporate into

mathematical algorithms, as they involve higher cognitive interpretation skills

in humans, and from the requirement of robustness to the often considerable

variations in visual appearance, particularly in the case of real-world images.

Single objects. Early segmentation approaches mostly dealt with individual

objects of interest. Some of them required additional knowledge in form of human

interaction. Such interaction could, for example, consists in drawing a coarse

bounding box around the object of interest, as in OBJ-Cut or GrabCut [91],

which helps the algorithm to determine which image features can be considered

as belonging mostly to the object of interest (within the bounding box) and

which are belonging to the background (those outside of the bounding box).

Also, initializing an active contour model by manually placing it inside an image,

preferrably close to the actual boundaries of the object to be segmented, is an

example of user-input to guide the segmentation process [47]. In active contour

models, the initial contour then adapts to the actual object contours by following

the image gradient, for example, while at the same time maintaining physical

constraints that are incorporated in the flexibility of the active contour itself.
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Graph cuts. Graph cuts, the underlying technique of OBJ-Cut and GrabCut,

became a popular segmentation framework because they enabled the propagation

of local evidence based on image features across the image domain, and they

essentially operate on energy functions that are minimized such that the resulting

segmentation violates as little of the evidence as possible. The original graph cuts

were applied to foreground/background segmentation, which is consistent with

the user-aided scenario of individual objects as outlined above. In fact, however,

graph cuts can be applied to segmenting an image into multiple regions, not

just an object of interest. This is an important transition in segmentation that

was made possible by the use of alpha-expansions [8], which extend the binary

graph cuts to multiple labels. While the original graph cuts are exact methods,

using alpha-expansions for the multi-case is approximative only. Nevertheless,

the approach works well in practice and is efficient to compute.

Random Field models. Also note that the use of graph cuts, in which each

pixel in the image is modeled by a node in a rectangular, regular graph and where

neighboring pixels are connected by an edge, is the beginning of understanding

segmentation as a labeling problem. Each node is assigned one out of several

possible labels, two in the binary case and more in the extended case, and the

goal of optimization is that in the end the labeling is consistent with the objects

to be segmented, essentially forming regions in the image as defined by connected

pixels of the same label. From this graph-theoretic modeling framework, several

important techniques arise, including Markov Random Fields and Conditional

Random Fields [52]. While the former is a generative model that jointly represents

the evidence as given by the image as well as the respective pixel labels, and

from which a labeling can be inferred by using the Bayes theorem, the latter are

discriminative models that directly represent the posterior distribution over the

labels. Since in segmentation, one is usually only interested in the labeling itself,

Conditional Random Fields have been the preferred method, and they have been

continuously developed further in recent years.

Energy potentials. Improvements on Conditional Random Fields have ad-

dressed their underlying graph structure, in an attempt to enable more long-

distance propagation of local evidence across the image, which is limited in a

standard grid, and also their energy potentials that govern the pixel label assign-
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ments. Typical potentials include a unary potential, modeling the relationship

between the local evidence at a pixel (typically by considering the surrounding

patch) and the most likely pixel label, as well as a pairwise potential that models

the relationship between adjacent pixel labels. The unary potentials are where

discriminative models can be used, as they are given by the scores of classifiers

that operate at the patch level, whereas the pairwise potentials typically employ

a contrast-sensitive Potts model to ensure that neighboring labels tend to be

equal unless there is sufficient contrast between the corresponding pixels [8]. The

intuition is that the unary potentials determine the most likely labels based on

the visual appearance of the patches (e.g., patches recognized as belonging to a

car would give rise to “car” pixel labels), while the pairwise potentials tend to

spread this evidence (i.e., increasing the likelihood of nearby pixels being labeled

as “car”, too), unless there is an edge that supports an object boundary.

Higher-order potentials. Extensions of the potentials include the introduc-

tion of a third type, called higher-order potentials, that take into account region

information from an unsupervised segmentation of the image [99]. Unsupervised

segmentations may be obtained by the watershed, mean-shift, or some other suit-

able method. The region information is used to impose constraints on the labels

within each region, such that the cost of assigning uniform labels within a region

is “cheaper” than assigning different labels. The optimal labeling therefore tends

to respect the boundaries of the (unsupervisedly obtained) regions, which in turn

are an oversegmentation of the image that respects the actual object bound-

aries. In particular, higher-order potentials improve the segmentation of thin

objects, as these often are preserved in an unsupervised oversegmentation and

would otherwise get “propagated over” by the labels of adjacent locations with

strong evidence, in a standard Conditional Random Field. Another extension is

the introduction of temporal potentials [123], which make use of the coherence

between subsequent frames if the images are taken from a video sequence.

Texture features. As for the features used to represent and classify the

patches sampled from an image, as required by the patch classifiers implementing

the unary potentials, the possibilities include histograms of oriented gradients,

blob information, color, and texture. Particularly the latter has been shown to

be highly useful, being the basis of the well-known TextonBoost segmentation
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approach [96]. In this paradigm, textures are being learned from training images

by sampling patches, which are then represented in terms of the output of a filter

bank that typically includes oriented edge and blob filters at multiple scales, and

finally clustered to form textons. These textons are similar to codewords as used

in image representations for scene categorization, as we will see later, and new

images can subsequently be represented in terms of these textons. One of the most

important techniques in the context of TextonBoost is the use of shape filters,

which go beyond mere patch classification and instead take into account typical

neighborhood relations between textons. As an example, pixels that belong to a

car are therefore not only labeled as such because of a car-like visual appearance

of the patch located at these pixels, but also because of the visual appearance of

patches below that are classified as belonging to the road.

3D features. A fundamentally different type of features is 3D information

about the scene, which has also been shown to be useful for segmentation. While

still images require stereo cameras (or extensions thereof) in order to reconstruct

3D information, and monocular approaches may infer 3D information based on

reasonable assumptions about a scene [44], sparse 3D information can also be

reconstructed by structure-from-motion techniques [40]. 3D features for segmen-

tation include the height of points above the camera or ground, their distance

from the camera trajectory, the reprojection error that highlights moving objects,

the density of points that correlates with the amount of texture an object has,

and coarse estimations of local surface normals [15]. Not only can these features

be used to yield a basic segmentation of a scene, but they are also complemen-

tary to appearance-based features such as textons, so their combination leads to

a higher segmentation accuracy than using either of the two alone.

State-of-the-art Conditional Random Field models for segmentation integrate

unary, binary, and higher-order potentials, and combine 3D features with textons,

histograms of oriented gradients, and color information. Importantly, such models

have recently been applied to the segmentation of urban traffic scenes [99]. We

thus observe not only a transition from the early object-oriented segmentation to

more holistic scene decomposition, but also from arbitrary landscapes to rural and

urban traffic scenes, among others. This reflects the importance of traffic scene

understanding and its growing relevance for the computer vision community.
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Figure 2.5: Example of scene categorization with a global image histogram.

2.3.2 Scene Categorization

The goal of scene categorization is to decide for a given image which of several

possible categories it belongs to, based on its visual content. For example, an im-

age depicting cars, pedestrians and roads might be categorized as “city”, whereas

an image depicting sand, water and boats might be categorized as “beach”. The

available categories are typically defined in advance, and the methods involve a

training stage in which they are given several example images of each category. As

we will see, the crucial aspect is how the images are represented such that differ-

ent categories can be easily distinguished from each other while at the same time

preserving the similarity of images falling into the same category. As with object

recognition, the considerable intra-class variations are particularly challenging.

Global image histograms. The simplest way to represent an image is to

consider it as a whole, without explicitly accounting for the fact that the image

might actually be composed of semantically different regions or objects. In this

vein, the earliest approaches to scene categorization begin by computing global

image statistics [116, 117], such as the orientations of edges. By discretizing the

possible edge orientations, the image can then be represented by a histogram that

counts for each edge orientation how frequently it occurs in the image. Such his-

tograms can be used to distinguish between images falling into categories that are

characterized by fundamentally different types of edge orientations, such as “man-

made” environments with buildings (characterized by frequent vertical edges that

correspond to walls) and “natural” environments with vegetation (characterized

by more randomly oriented edges corresponding to branches, see Figure 2.5).
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Image sub-block histograms. An improvement over the global image his-

tograms is to break an image into multiple sub-blocks [95, 100], computing a

histogram over the statistics within each sub-block only. This way, information

from different regions within the field of view is kept separate from each other,

giving the approach more robustness to misclassifications in individual subblocks

of the image that might look like they belonged to another category. By in-

dividually categorizing each sub-block based on its respective histogram, and

performing a majority vote on the category of the image as a whole based on the

individual sub-block categorizations, local ambiguities do not affect the overall

categorization. In contrast, a global image histogram would inevitably be altered

as a whole, even if the reason is confined to a single sub-block only. Another

potential advantage of sub-block representations is that some spatial information

about the image features is preserved. However, this property was not used at

this early stage of scene categorization and introduced separately later on.

Bag-of-words representation. Taking the idea of dividing an image into

sub-blocks to the limit, we end up at the level of patches. In this paradigm [81, 97],

small image regions are sampled either randomly across the image or densely

along a regular grid, and each patch is represented by some feature descriptor,

for example, edge orientations and magnitude within the patch, yielding a vector

representation. In training, these feature vectors are condensed into codewords

by clustering the feature vectors in feature space, typically by using k-means.

New images can then be represented in terms of how similar the patches sampled

from these image are in comparison to the learned codewords. As the codewords

are learned beforehand their number and types are fixed, so each new image

can therefore be expressed by a histogram over these codewords, where a high

value of a bin means that the image contains many patches that are similar to

the respective codeword. Decision boundaries can then be learned between the

different image categories as before, by operating on the resulting histograms

over codewords (or “bags of words”). The advantage of this approach over the

previously discussed histograms is that the codewords are not the result of some

pre-defined discretization of the feature space but are actually learned from the

training data. Hence, the codewords provide a better coverage of the feature

space and thus lead to improved classification in the given application domain.
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Bag-of-topics representation. An important improvement over the raw

Bag-of-Words representation that operates at the level of the codewords consists

in creating an additional layer of abstraction between the words and the images.

As the clustering process that gives rise to the codewords is unsupervised, it

frequently happens that different codewords might actually contain similar infor-

mation that would better be assigned to a single codeword. This is known as

synonymity of codewords, meaning that several codewords actually refer to the

same visual content. Also, a single codeword might represent more than one type

of image patches, simply because these lie close to each other in feature space,

although humans would tend to represent these patches by different codewords.

This is referred to as polysemy of codewords, where a codeword does not form

only one semantic entity. Topics now “group” multiple of the learned codewords

together, to form a new entity at a somewhat higher level of abstraction. For

example, patches corresponding to eyes, noses, and mouths could be grouped to

a “face” topic, if this is supported by the actual scene categorization task at hand.

While topics do not overcome the polysemy of codewords, which would involve

splitting them, they improve on the synonymity. Thus, bag-of-topics representa-

tions [7, 33, 86] generally perform better than bag-of-words representations. Also,

dense patch sampling is superior to random sampling, as it yields more data.

Spatial Pyramid matching. Spatial Pyramids [54] counter the most severe

drawback of the previous bag representations, namely, their lack of capturing

spatial information about the underlying patches. In fact, standard bag repre-

sentations are unable to distinguish between images consisting of similar patches

at completely different locations, as this information is lost in the histograms. To

compensate, Spatial Pyramids apply the Bag-of-Words (or Bag-of-Topics) pro-

cedure at multiple levels, dividing the image into sub-blocks: Level 0 considers

the image as a whole, hence is identical to the standard bag representation, level

1 divides the image into four blocks each of which is represented as a bag of its

own, level 2 divides the image into 16 blocks, etc. The scheme is similar to image

sub-block histograms as discussed before, but multiple layers are used, and bag

representations are computed rather than histograms. Spatial pyramids are an

extension of the Pyramid Match Kernel proposed earlier for efficient similarity

computation between sets of features.
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Kernel codebooks. Another improvement of bag representations addresses

the way the histograms are formed. The original approach makes hard assign-

ments between image patches and codewords, using a nearest neighbor scheme

that gives equal weight to each patch in the resulting histogram. However, how

similar the patches are is disregarded (“codeword uncertainty”), as well as how

uniquely a patch is explained by its codeword, which concerns patches lying

“between” codewords (“codeword ambiguity”). The improvement consists in re-

placing the nearest-neighbor paradigm by considering Gaussian kernels at the

codeword locations [118], thus weighting the influence of each patch on the re-

sulting histogram by its proximity to the codewords (all codewords, that is, but

distant codewords have negligible weight). This deals with both codeword uncer-

tainty and ambiguity, and the latter leads to increased performance. The former

(i.e., effectively not assigning a codeword at all if a patch is too far away) does

not, as it is better to assign some approximate codeword rather than none.

Spatial region constraints. The previously discussed approaches did not

go beyond the domain of patches. However, regions in an image that share

some appearance-based property such as color, texture, or the like can be used

to impose constraints on the codewords that can be assigned to patches sampled

from within the same region. The underlying assumption is that patches sampled

from the same region are likely to belong to the same codeword or topic. Taking

this constraint into account, and operating at the level of regions as well as

patches, enables the method to not only categorize an image but also segment

its “topics” in accordance to the region boundaries [18]. This represents a joint

categorization and segmentation framework, and recent extensions add the ability

to automatically annotate the segments with learned object labels [57, 121].

After this overview of the developments in visual scene categorization over the

recent years, we now proceed to develop our own account of scene categorization

in a behavior-driven system architecture (see Chapter 3). The segmentation

techniques presented here, in turn, will form an important building block for our

semantic object-level representation of urban traffic scenes, particularly regarding

the Conditional Random Field framework (see Chapter 4). Finally, our behavior

prediction experiments (see Chapter 5) involve a detailed performance analysis

and comparison to the most related work [84] as identified in this chapter.
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Chapter 3

Behavior Prediction Framework

In this chapter, we detail our system architecture for learning correlations between

visual traffic scenes on the one hand and the typical behavior of a human driver

on the other hand. At the heart of our approach lies the assumption that the

behavior of the driver has an observable reason in the given traffic situation,

such as braking due to a car in front or steering because of a curve. It does not

incorporate behavior of non-visible origin, like driving slowly because the driver is

unfamiliar with the current environment or steering due to a parking maneuver.

We begin by showing that the problem can be cast as scene categorization,

where the continuous behavior data is discretized according to the requirements

of the intended application. This discretization gives rise to behavior classes that,

in turn, induce visual categories on the corresponding images of traffic situations,

serving as training examples for our system. By learning discriminative models

of these visual categories, in a training phase prior to the actual application,

our system is then able to predict the appropriate behavior class for new images

depicting traffic situations while driving, employing a winner-take-all scheme.

Our behavior-driven approach represents an adequate solution to the challenge

of identifying visually dissimilar but behaviorally equivalent traffic scenes as such.

The proposed subdivision of the behavior space into discrete classes also preserves

the ability to approximate the continuous-valued behavior data to an arbitrarily

fine-grained degree. We further discuss practical aspects such as the acquisition of

ground truth data, temporal stabilization for robustness, and confidence measures

to automatically detect and react to ambiguous traffic situations while driving.
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3.1 Problem Formulation

To start with, we formally define the available data streams that serve as input

to our system architecture. These include a visual data stream I that consists of

images acquired by a car-mounted camera, monitoring the traffic scene in front,

and a behavioral data stream B that consists of physical quantities about the

moving vehicle, measured by the CAN bus while driving. In a training phase,

the system observes both data streams to learn typical correlations between the

visual and the behavioral domain (see Figure 3.1), and subsequently should be

able to infer the appropriate driving behavior from the visual scene content alone.

In the following, we show how to solve this problem by scene categorization.

3.1.1 Input Data

The visual data stream I = (i(1), . . . , i(T )) consists of T ∈ N stereo image pairs

i(t) = (i
(t)
left, i

(t)
right), acquired by the left and right camera of a calibrated stereo rig,

respectively. More specifically, the stereo camera provides color images i
(t)
left,right :

W ×H → {0, . . . , 255}3 in RGB color space, where t ∈ {1, . . . , T} is a timestamp

and W,H ∈ N denote the image width and height, respectively. As an alternative,

a monocular camera could be used instead, leading to i
(t)
left = i

(t)
right = i(t), and if

the camera provides grayscale images only, we have i(t) : W ×H → {0, . . . , 255}.
However, color information and stereo disparities arguably represent valuable cues

for visual traffic scene understanding, and we therefore continue to develop our

behavior prediction framework in its full generality as originally stated above.

The behavior data stream B = (b(1), . . . , b(T )) consists of T ∈ N state vectors

b(t) = (q
(t)
1 , . . . , q

(t)
D ), where each of the D ∈ N behavioral quantities q1, . . . , qD ∈ R

is a potentially continuous-valued measurement describing some physical property

of the vehicle at timestep t ∈ {1, . . . , T}. Such measurements can be obtained

directly from the CAN bus of the moving vehicle, which is arguably the easiest

and most complete way, or from separate sensors like inertial measurement units,

and even from the visual data stream I itself by using structure-from-motion

techniques for pose estimation. In practice, however, we found the CAN bus to be

the most reliable solution, which is why we continue to focus on the measurements

that it provides, assuming that B and I are synchronized by the timestamps t.

34



Figure 3.1: The input data consists of a visual stream (top), acquired by a car-
mounted camera that observes the traffic scene in front, and a behavioral stream
(bottom) that consists of various physical quantities about the moving vehicle.

It is worth spending a moment to examine the range of behavioral quantities

provided by the CAN bus, to determine which of them are relevant for us and

which are not. A closer look reveals that they can be organized in a hierarchy

from the driver to the ego-vehicle, and to other cars in the scene (see Figure 3.2).

From the perspective of autonomous driving, it would be sufficient to focus on

the third group alone, consisting of the velocity q
(t)
vel = v(t) ∈ [−V,+V ] and the

yaw rate q
(t)
yaw = y(t) ∈ [−Y,+Y ] at any given point in time t ∈ {1, . . . , T}, where

V, Y ∈ R>0 denote the maximum possible velocity and yaw rate, respectively:

If we were able to correctly predict the velocity and yaw rate a human driver

would maintain in all traffic situations i(t), this would be sufficient for the car

to reactively follow the road by steering, avoiding obstacles, etc. The quantities

in the second group could be computed from v(t) and y(t) as well, because the

lateral acceleration is given by the derivative of the yaw rate, and the longitudinal

acceleration is given by the derivative of the velocity of the car. Also, quantities of

the first group such as the steering angle and the pedal status could be inferred,

as the steering angle is directly related to the yaw rate and the pedal status

affects the velocity. Overall, we conclude that the hierarchy is largely redundant,

and it is basically our choice which quantities to consider. As we are ultimately

interested in the effects on the ego-vehicle, we choose to predict b(t) = (v(t), y(t)).
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Figure 3.2: The physical quantities of the CAN bus actually form a hierarchy,
leading from the driver to the ego-vehicle and to other cars in the scene. Note
that most actions of the driver ultimately affect the course of the ego-vehicle.

3.1.2 Behavior Classes

Given the visual data stream I = (i(1), . . . , i(T )) and the behavioral data stream

B = (b(1), . . . , b(T )), our goal is to have a technical system learn to predict the

appropriate velocity and yaw rate b(t∗) = (v(t∗), y(t∗)) for traffic situations at some

future timestep t∗ ∈ N with t∗ > T , solely based on the visual scene content of the

corresponding camera images i(t
∗) = (i

(t∗)
left , i

(t∗)
right). As both velocity and yaw rate

are continuous-valued quantities v(t) ∈ [−V,+V ] ⊆ R and y(t) ∈ [−Y,+Y ] ⊆ R,

respectively, when taken together they span a two-dimensional behavior space

B = [−Y,+Y ]× [−V,+V ] ⊆ R2 (see Figure 3.3, left). While the learning problem

is therefore an instance of continuous regression, it is worth spending a moment

to judge whether this granularity is appropriate for the intended applications.

While it appears beneficial for autonomous navigation to be able to predict

the exact values b(t∗) = (v(t∗), y(t∗)) at any given timestep t∗ > T , as these result

in a smooth trajectory of the vehicle when used to generate motor commands,

this is not true for driver assistance: Here, qualitative predictions are more useful,

such as telling the driver that he or she should drive slowly in a certain situation,

or that gentle steering in a particular direction is required now, whereas providing

the exact values (like steering y(t∗) = 23.5◦ to the right or keeping a velocity of

v(t∗) = 27.1 km/h) would be unnecessary and even distracting. For this reason,

we discretize the behavior space into disjoint behavior classes B1, . . . ,BM ⊆ B

such that Bi ∩Bj = ∅ for all i, j ∈ {1, . . . ,M} with i 6= j, and M ∈ N.
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Figure 3.3: The continuous behavior space spanned by velocity and yaw rate (left)
is discretized into semantically meaningful behavior classes (center). Depending
on the application, this discretization can be arbitrarily fine-grained (right).

One way to define such behavior classes B1, . . . ,BM is by imposing thresholds

τ1, . . . , τM−1 ∈ R on the continuous domains of velocity and yaw rate, respectively.

Assuming τm < τm+1 for all m ∈ {1, . . . ,M − 2}, each τm effectively represents

the boundary between adjacent behavior classes Bm and Bm+1. More specifically,

each behavior class is then given by B
(d)
m = Bqd≤τm \B

(d)
m−1 for m ∈ {1, . . . ,M−1},

with B
(d)
0 = ∅, B

(d)
M = B \ B(d)

M−1, and d ∈ {1, . . . , D} denoting the dimension.

For example, the yaw rate domain could be subdivided by thresholds τ1 ∈ R<0

and τ2 ∈ R>0, leading to behavior classes Byaw
1 = By≤τ1 , Byaw

2 = By≤τ2 \B
yaw
1 , and

Byaw
3 = B \Byaw2 that correspond to steering left, straight, and right, respectively

(see Figure 3.3, center). Despite the coarse granularity of these behavior classes,

they are already useful for potential applications in driver assistance.

Note that the proposed subdivision of the behavior space is also suitable for

autonomous navigation: While the above 3-class subdivision would result in a

considerably non-smooth trajectory if used to control a real vehicle, more fine-

grained subdivisions could be used instead. For example, a 5-class subdivision

by thresholds τ1 < τ2 ∈ R<0 and τ3 < τ4 ∈ R>0 gives rise to behavior classes

B
yaw
1 = By≤τ1 , Byaw

2 = By≤τ2 \B
yaw
1 , Byaw

3 = By≤τ3 \B
yaw
2 , Byaw

4 = By≤τ4 \B
yaw
3 , and

B
yaw
5 = B \ Byaw

4 that correspond to steering strongly left, slightly left, straight,

slightly right, and strongly right, respectively (see Figure 3.3, right). Thus, the

discretization can be chosen to match the application, with coarser granularity for

driver assistance and more fine-grained granularity for autonomous navigation.
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Figure 3.4: As the observed measurements of velocity and yaw rate fall into
different behavior classes (right), the behavior stream is effectively segmented
into batches whose corresponding images give rise to visual categories (left).

3.1.3 Image Categories

We assume that we have a subdivision of the continuous-valued behavior space

B = [−Y,+Y ] × [−V,+V ] ⊆ R2 into discrete behavior classes Bvel
1 , . . . ,Bvel

M and

B
yaw
1 , . . . ,Byaw

N . These behavior classes effectively segment the behavior stream

B = (b(1), . . . , b(T )) into batches, as each b(t) ∈ B is also an element (v(t), y(t)) ∈ B

that falls into exactly one of the behavior classes Bvel
1 , . . . ,Bvel

M and B
yaw
1 , . . . ,Byaw

N ,

respectively. Abstracting from the temporal order within B, we therefore have

corresponding sets Bvel
1 , . . . , Bvel

M and Byaw
1 , . . . , Byaw

N that contain all the b(t) ∈ B
belonging to the same behavior class, i.e., B

(d)
i = {b(t) ∈ B|(v(t), y(t)) ∈ B

(d)
i } for

i ∈ {1, . . . ,M} and i ∈ {1, . . . , N}, respectively, where d ∈ {1, . . . , D} denotes

the dimension. As the image sequence I = (i(1), . . . , i(T )) is synchronized with

B = (b(1), . . . , b(T )) via the timestamps t ∈ {1, . . . , T}, the sets B
(d)
i in turn induce

corresponding sets I
(d)
i = {i(t) ∈ I|b(t) ∈ B(d)

i } in the visual domain, containing

all stereo image pairs i(t) ∈ I that depict traffic situations in which the driver

maintained a velocity and yaw rate falling into behavior class B
(d)
i (see Figure 3.4).

In contrast to image categories that are typically encountered in classical

scene categorization tasks (see Chapter 2), the image categories Ivel
1 , . . . , Ivel

M and

Iyaw
1 , . . . , Iyaw

N are not defined in terms of similar appearance in the visual domain.

Rather, their formation is automatically induced by the observed behavior of the

human driver who provides the training data B = (b(1), . . . , b(T )). In this sense,

our approach is behavior-driven and ensures that the resulting image categories
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Figure 3.5: By comparing the visual scene content of previously unseen images
to the image categories as learned by the system in training (left), we obtain
corresponding predictions of the appropriate driving behavior (right).

are grounded in the task itself (i.e., safely driving a car). As a consequence,

no explicit labeling of the image data i(t) ∈ I is required at any point, since

the labeling is implicitly performed on-the-fly while driving the car. This is a

fundamental difference to supervised learning in general, which is often limited in

the availability of training data as it has to be manually annotated, either at the

pixel-level (as in segmentation) or at the image-level (as in scene categorization).

We will further discuss the process of acquiring ground truth data in order to

provide the system with training data in a subsequent section of this chapter.

By discretizing the velocity and yaw rate values into behavior classes, we have

effectively cast the behavior prediction problem as visual scene categorization:

Given a previously unseen (stereo) image i(t
∗) /∈ I that shows the traffic situation

at some future timestep t∗ ∈ N \ {1, . . . , T}, our goal is to decide on the correct

image categories I
(vel)
m∗ ∈ {I

(vel)
1 , . . . , I

(vel)
M } and I

(yaw)
n∗ ∈ {I(yaw)

1 , . . . , I
(yaw)
N } that

give us the appropriate driving behavior by their corresponding behavior classes

B
(vel)
m∗ ∈ {B

(vel)
1 , . . . ,B

(vel)
M } and B

(yaw)
n∗ ∈ {B(yaw)

1 , . . . ,B
(yaw)
N } (see Figure 3.5).

To this end, a similar procedure as in classical scene categorization can now be

applied, where the images i(t) ∈ I are represented in a suitable feature space

that will be discussed in detail in Chapter 4, image classifiers are then learned

from the resulting feature vectors as explained in the following section, and the

individual classifier responses for i(t
∗) are finally combined to obtain predictions

of the appropriate behavior classes B
(vel)
m∗ and B

(yaw)
n∗ , respectively.
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3.2 Training Procedure

As explained in the previous section, our subdivision of the continuous-valued

behavior space B ⊆ R2 into disjoint behavior classes B
(vel)
1 , . . . ,B

(vel)
M ⊆ B and

B
(yaw)
1 , . . . ,B

(yaw)
N ⊆ B yields corresponding image categories I

(vel)
1 , . . . , I

(vel)
M ⊆ I

and I
(yaw)
1 , . . . , I

(yaw)
N ⊆ I, respectively. By construction, all the images i ∈ I(d)

j

are examples of traffic situations in which the human driver has performed some

behavior b ∈ B
(d)
j , and hence they can be used as positive training examples to

learn an image classifier C
(d)
j that is specific for behavior class B

(d)
j . Now we show

how to learn such image classifiers C
(vel)
1 , . . . , C

(vel)
M and C

(yaw)
1 , . . . , C

(yaw)
N from

the training images in I
(vel)
1 , . . . , I

(vel)
M and I

(yaw)
1 , . . . , I

(yaw)
N (see Figure 3.6).

3.2.1 Ground Truth Acquisition

We have already seen how the two input data streams B = (b(1), . . . , b(T )) and

I = (i(1), . . . , i(T )) are automatically acquired from observations of a human driver

while conducting a camera-equipped vehicle, and that no manual annotations

are necessary for organizing the training images i(t) ∈ I into image categories

I
(vel)
1 , . . . , I

(vel)
M ⊆ I and I

(yaw)
1 , . . . , I

(yaw)
N ⊆ I. However, an implicit assumption

underlying the subsequent training procedure is that the human driver provides

valid examples of how to drive correctly throughout the entire recording session,

such that b(t) = (v(t), y(t)) ∈ B is indeed an appropriate driving behavior when

confronted with a traffic situation as depicted by i(t) ∈ I, for all t ∈ {1, . . . , T}.
Only then will recognizing a previously unseen image i(t

∗) /∈ I with t∗ > T as

belonging to the image categories I
(vel)
m∗ and I

(yaw)
n∗ enable the system to predict

the appropriate driving behavior by the behavior classes B
(vel)
m∗ and B

(yaw)
n∗ .

The assumption about the human driver to always perform the appropriate

driving behavior is only made when acquiring the ground truth data B and I,

however. Once the system has learned the image classifiers C
(vel)
1 , . . . , C

(vel)
M and

C
(yaw)
1 , . . . , C

(yaw)
N from the training images i(t) ∈ I that are distributed over the

image categories I
(vel)
1 , . . . , I

(vel)
M and I

(yaw)
1 , . . . , I

(yaw)
N , respectively, we do not

make any such assumptions anymore. On the contrary, it is precisely the goal

of the driver assistance application to detect inappropriate actions of the driver.

This is achieved by having the trained system compare the observed behavior
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Figure 3.6: Internally, all images are first represented by feature vectors (left)
that are subsequently split into positive and negative training examples (right).
From these data splits, dedicated image classifiers are then learned.

b(t∗) /∈ B of the human driver, which satisfies b(t∗) ∈ B
(vel)
m◦ and b(t∗) ∈ B

(yaw)
n◦ for

some m◦ ∈ {1, . . . ,M} and n◦ ∈ {1, . . . , N}, to the predicted behavior classes

B
(vel)
m∗ and B

(yaw)
n∗ as obtained by recognizing that the corresponding image i(t

∗) /∈ I
belongs to the image categories I

(vel)
m∗ and I

(yaw)
n∗ , respectively. The independence

of the trained system from the actual behavior of a human driver is even more

evident in the case of autonomous navigation, as there is no observed behavior

b(t∗) = (v(t∗), y(t∗)) for any future t∗ ∈ N \ {1, . . . , T} at all, and instead has to be

generated from the predicted behavior classes B
(vel)
m∗ and B

(yaw)
n∗ themselves.

Besides learning the image classifiers C
(vel)
1 , . . . , C

(vel)
M and C

(yaw)
1 , . . . , C

(yaw)
N

from the ground truth data in the two input streams B and I, we also require

ground truth data for evaluating these classifiers once the training has finished.

This enables us to quantitatively measure the accuracy of the resulting velocity

and yaw rate predictions. The requirement of using different ground truth data

for training and testing can be met by recording additional streams B′ and I ′, or

by using only a subset B′′ ⊂ B and I ′′ ⊂ I of the ground truth for training and

testing on the remaining dataB′ = B\B′′ and I ′ = I\I ′′. Either way, the accuracy

is then measured by applying the C
(vel)
1 , . . . , C

(vel)
M and C

(yaw)
1 , . . . , C

(yaw)
N to all

images i(t
′) ∈ I ′ of the test set, which results in predictions B

(vel)
mt′ and B

(yaw)
nt′

with mt′ ∈ {1, . . . ,M} and nt′ ∈ {1, . . . , N}, counting the correct predictions

c(vel) = |{i(t′) ∈ I ′|b(t′) ∈ B
(vel)
mt′ }| and c(yaw) = |{i(t′) ∈ I ′|b(t′) ∈ B

(yaw)
nt′ }|, and

computing the ratios a(vel) = c(vel)/|I ′| ∈ [0, 1] and a(yaw) = c(yaw)/|I ′| ∈ [0, 1].
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3.2.2 Image Classifier Training

There are several possibilities when it comes to learning discriminative models

for multiple classes to be distinguished, as in the case of our image categories

I
(vel)
1 , . . . , I

(vel)
M and I

(yaw)
1 , . . . , I

(yaw)
N . Two widely used paradigms in this context

are the one-versus-all scheme and the one-versus-one scheme (see Figure 3.7).

Both of these paradigms have been shown to work comparably well in practice,

as far as the accuracy of their resulting predictions is concerned, but they differ

in terms of other relevant aspects such as the memory consumption, for example.

Therefore, we briefly introduce and discuss both alternatives in the following, and

then pick the one that better matches the intended applications of our system.

In the one-versus-all paradigm (see Figure 3.7, left), a single image classifier

C
(d)
j is learned for each of the image categories I

(d)
j . The training data for C

(d)
j

consists in a set of positive training images P
(d)
j = I

(d)
j ⊂ I, containing all available

ground truth images i(t) ∈ I that are known to belong to the image category I
(d)
j ,

and a set of negative training images N
(d)
j = I\P (d)

j that contains all other images

from the available ground truth data, regardless of their actual class memberships.

In the one-versus-one paradigm (see Figure 3.7, right), the image categories I
(d)
j

are considered pairwise, hence a classifier C
(d)
j,k is learned for each possible pair of

image categories I
(d)
j and I

(d)
k , where k > j to prevent learning classifiers twice

due to symmetry. In this scheme, the positive training examples for classifier C
(d)
j,k

consist of all available ground truth images P
(d)
j,k = I

(d)
j ⊂ I that are known to

belong to image category I
(d)
j , and the negative training examples consist of all

ground truth images N
(d)
j,k = I

(d)
k ⊂ I that belong to image category I

(d)
k .

Since the training examples in P
(d)
j,k and N

(d)
j,k are only a subset of the available

ground truth data in I, which generally satisfies |P (d)
j,k ∪N

(d)
j,k | << |I|, an advantage

of the one-versus-one paradigm is its comparably low memory consumption when

learning the classifiers C
(d)
j,k . However, there are M(M − 1)/2 and N(N − 1)/2

possible pairs that can be formed without symmetry from the image categories

I
(vel)
1 , . . . , I

(vel)
M and I

(yaw)
1 , . . . , I

(yaw)
N , respectively, leading to a quadratic number

of classifiers C
(d)
j,k . In contrast, the one-versus-all paradigm only requires learning

M and N classifiers C
(d)
j , respectively, which is preferrable. Its disadvantage is the

higher memory consumption in training, as each C
(d)
j is learned from all available
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Figure 3.7: In the one-versus-all scheme (left), classifiers are trained separately
for each class, using all other classes as negative examples. In the one-versus-one
scheme (right), classifiers are trained pairwise with data of only two classes each.

ground truth data P
(d)
j ∪ N

(d)
j = I. However, the training is conducted off-line

prior to the actual application on a mobile platform, as far as we are concerned,

hence it is safe to assume that no particular constraints on the hardware resources

apply in the training phase, and we therefore employ the one-versus-all scheme.

While the overall scene categorization problem involves multiple categories

I
(vel)
1 , . . . , I

(vel)
M and I

(yaw)
1 , . . . , I

(yaw)
N , respectively, learning the image classifiers

C
(vel)
1 , . . . , C

(vel)
M and C

(yaw)
1 , . . . , C

(yaw)
N is thus a series of binary problems only,

which can be handled separately from each other. Any type of binary classifier

can be used for the individual C
(d)
j : In our implementation, we use an ensemble

of decision stumps S
(d)
j,1 , . . . , S

(d)
j,R that are combined in a GentleBoost framework,

where the optimal number of decision stumps R ∈ N is empirically determined

by blockwise cross-validation, for each of the C
(d)
j (see Chapter 5). Specifically,

in each round r ∈ {1, . . . , R} of the boosting procedure, the most discriminative

feature vector dimension f̂
(d)
j,r ∈ {1, . . . , F} is determined by iteratively checking

which of all feature vector dimensions f ∈ {1, . . . , F} separates P
(d)
j andN

(d)
j best,

resulting in a corresponding threshold θ̂
(d)
j,r ∈ R and an accuracy-based weight

ω̂
(d)
j,r ∈ R. The boosting procedure also performs a dimensionality reduction on

the usually high-dimensional input feature space F ⊆ RF (see Chapter 4), as we

generally have R << F in practice, consistent with our philosophy to tolerate

high computational complexity and memory requirements in the training phase

to enable a comparably low resource consumption in the application later on.
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3.2.3 Training Data Balance

Before we explain how to combine the decision stumps S
(d)
j,1 , . . . , S

(d)
j,R into their

corresponding image classifiers C
(d)
j , and how to combine these binary classifiers

C
(vel)
1 , . . . , C

(vel)
M and C

(yaw)
1 , . . . , C

(yaw)
N into an M-ary classifier C(vel) and an N-

ary classifier C(yaw), respectively, one important aspect has yet to be discussed:

Discriminative models for binary classification implicitly assume the cardinalities

|P (d)
j | and |N (d)

j | of the positive and the negative training data sets to be equal.

Violating this assumption effectively gives more weight to the overrepresented set

during training, which leads to a bias in the responses of the resulting classifier

later on. For example, when training a classifier to distinguish traffic situations

in which braking is appropriate from all other situations, without compensating

for the fact that there are much more examples of the latter type (i.e., braking

is performed only occasionally in practice), the resulting classifier would have a

tendency to predict not to brake, just because there were more such examples.

The reason is that the optimization problem underlying the learning process

involves a scoring function that imposes a penalty for each training example

being misclassified. If |P (d)
j | = |N (d)

j | is satisfied, the sum of these penalties is

at minimum when the best possible separation between P
(d)
j and N

(d)
j has been

reached. If there are significantly more examples in either of the two sets, however,

the average number of misclassifications will be higher for that particular set,

which is penalized by the scoring function. As a consequence, the optimization

yields parameters that avoid misclassifying the examples in the overrepresented

training set, at the cost of misclassifying examples in the underrepresented set.

While the resulting separation between P
(d)
j and N

(d)
j is not the same as before,

its sum of penalties is lower, which should not be the case (see Figure 3.8).

Several strategies exist in the machine learning community for balancing the

training data sets, as this problem is of significance in terms of the resulting

classification performance, and many classification tasks are multi-class problems

for which imbalanced data is particularly prevalent. One approach is to use the

smaller training data set as it is, and to downsample the larger training data set

such that it has the same size. The downsampling can be performed randomly,

or by identifying a subset of training examples that preserves as much of the
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Figure 3.8: Imbalanced training sets (right) can influence the decision boundary,
as misclassifications in the overrepresented training set have a stronger effect.
Balancing the training sets (left) before the learning process avoids this problem.

information content as possible (i.e., by removing largely redundant examples).

For example, when operating on data streams like in our case, successive frames

carry similar information and can thus be dropped to some extent. An advantage

of downsampling is that the training data sets are relatively small, while at the

same time preserving most of the information. On the downside, information is

deliberately thrown away, and learning from the smaller sets might also lead to

inaccuracies in the parameter optimization.

Another viable strategy for balancing the training data sets is to keep the

larger training data set as it is and upsample the smaller training data set instead,

until it has the same size as the larger set. In practice, this can be achieved by

simply including some of the existing training examples multiple times. This

approach involves a similar process of choosing suitable examples from the data

set in question, which can again be done either randomly or by identify the

most informative examples. However, the upsampling strategy does not actually

increase the information content in the training set, as the information is entirely

redundant. Upsampling has the advantage that all available training data is used

for learning, potentially leading to higher accuracy. However, a strong replication

of training examples in the smaller set might lead to artifacts caused by the

resulting distortion of the actual distribution. Since we are dealing with streams

of data, where relatively large numbers of frames can be dropped without losing

much information if done carefully, we adopt the downsampling approach.
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3.3 Application Phase

We now assume that we have a number of decision stumps S
(d)
j,1 , . . . , S

(d)
j,R for

each image classifier C
(d)
j to be learned, which are the result of imposing a

one-versus-all training scheme on the image categories I
(vel)
1 , . . . , I

(vel)
M ⊆ I and

I
(yaw)
1 , . . . , I

(yaw)
N ⊆ I containing the available ground truth images, respectively.

Each decision stump S
(d)
j,r is defined by exactly one feature space dimension

f̂
(d)
j,r ∈ {1, . . . , F} that separates the training examples in P

(d)
j and N

(d)
j best

at round r ∈ {1, . . . , R} of the boosting, a corresponding threshold θ̂
(d)
j,r ∈ R that

applies to this particular feature space dimension, and a weighting factor ω̂
(d)
j,r ∈ R

that defines the contribution of S
(d)
j,r to the ensemble formed by all S

(d)
j,1 , . . . , S

(d)
j,R.

Remember that each of the resulting image classifiers C
(d)
j is specifically trained

to recognize images of category I
(d)
j , and hence to predict behavior class B

(d)
j .

In the following, we explain how the decision stumps S
(d)
j,r are combined to

obtain the image classifiers C
(d)
j , and how to combine the binary classifiers C

(d)
j

to form multi-class image classifiers C(vel) and C(yaw), respectively. Furthermore,

we introduce additional mechanisms such as temporal stabilization and various

confidence measures to our behavior prediction framework, which can be derived

from the continuous-valued responses of the image classifiers C(vel) and C(yaw),

to address conceptual aspects that we have not yet considered. Our experiments

show that incorporating these mechanisms into our system architecture leads to

considerable improvements of the resulting prediction accuracy (see Chapter 5).

3.3.1 Combined Prediction

Given the decision stumps S
(d)
j,r and a new image i /∈ I, the ensemble classifier C

(d)
j

for deciding whether or not i ∈ I(d)
j is defined by the weighted linear combination

C
(d)
j (f) =

∑R
r=1 ω̂

(d)
j,r S

(d)
j,r (f) ∈ R, where f ∈ F ⊆ RF is the feature vector that

represents the input image i in our F -dimensional feature space (see Chapter 4),

S
(d)
j,r (f) ∈ R is the response of decision stump S

(d)
j,r on the input image i, and

C
(d)
j (f) ∈ R is the response of the resulting binary classifier C

(d)
j . This process

is performed in parallel for each of the C
(d)
j , hence we end up with a series of

binary classifier scores C
(vel)
1 (f), . . . , C

(vel)
M (f) and C

(yaw)
1 (f), . . . , C

(yaw)
N (f) ∈ R,

respectively, all of which are continuous-valued in nature (see Figure 3.9, left).
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Figure 3.9: A new image i is converted into its feature vector representation f
and processed by all binary classifiers Cj in parallel (left). The resulting scores
Cj(f) are then compared to determine the strongest-response classifier (right).

Intuitively, each of the continuous-valued binary classifier scores C
(d)
j (f) ∈ R

is a similarity measure that quantitatively tells us how well the input image

i /∈ I matches the corresponding image category I
(d)
j ⊂ I. To obtain decisions

C(vel)(f) ∈ {1, . . . ,M} and C(yaw)(f) ∈ {1, . . . , N}, respectively, it is there-

fore reasonable to compare all of the velocity-related binary classifier responses

C
(vel)
1 (f), . . . , C

(vel)
M (f) ∈ R and all of the yaw-rate related classifier responses

C
(yaw)
1 (f), . . . , C

(yaw)
N (f) ∈ R to each other, and to decide on the image categories

I
(vel)
m∗ ⊂ I and I

(yaw)
n∗ ⊂ I whose corresponding image classifiers C

(vel)
m∗ and C

(yaw)
n∗

have the strongest responses C
(vel)
m∗ (f) ∈ R and C

(yaw)
n∗ (f) ∈ R, respectively. Thus,

we have m∗ = argmaxm∈{1,...,M}C
(vel)
m and n∗ = argmaxn∈{1,...,N}C

(yaw)
n , and the

predictions are the behavior classes B
(vel)
m∗ and B

(yaw)
n∗ (see Figure 3.9, right).

The above procedure is a winner-take-all scheme, as the decisions C(vel)(f) ∈
{1, . . . ,M} and C(yaw)(f) ∈ {1, . . . , N} are given by the image classifiers C

(vel)
m∗

and C
(yaw)
n∗ with the strongest responses C

(vel)
m∗ (f) ∈ R and C

(yaw)
n∗ (f) ∈ R alone.

In particular, the continuous-valued scores C
(vel)
m (f) ∈ R and C

(yaw)
n (f) ∈ R

of all other image classifiers C
(vel)
m and C

(yaw)
n with m ∈ {1, . . . ,M} \ {m∗} and

n ∈ {1, . . . , N}\{n∗}, respectively, are entirely disregarded afterwards. However,

they can also be used to compute a confidence value for the predictions, which we

discuss in one of the next sections. But first we address another important aspect

that should be considered when computing the C
(d)
j (f) and making the decisions

C(vel) and C(yaw), namely, to exploit temporal coherence between frames.
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3.3.2 Temporal Stabilization

Until now, the predictions B
(vel)
m∗ and B

(yaw)
n∗ of the system for an image i /∈ I

with feature vector representation f ∈ F ⊆ RF are given by the image categories

I
(vel)
m∗ and I

(yaw)
n∗ whose corresponding binary classifiers C

(vel)
m∗ and C

(yaw)
n∗ have the

strongest responses, but without considering any other images i′ /∈ I. That is,

our system architecture as described so far implicitly assumes the images i, i′ /∈ I
to be independent samples and hence to be processed separately from each other.

However, this assumption is clearly not valid in practical applications, as all

i′ /∈ I are acquired by a car-mounted camera while driving, just like the ground

truth data streams I = (i(1), . . . , i(T )) and B = (b(1), . . . , b(T )) were obtained,

and hence they actually form similar data streams I ′ = (i′(T+1), . . . , i′(T+T ′)) and

B = (b′(T+1), . . . , b′(T+T ′)) each having a total duration of T ′ ∈ N frames.

Considering the nature of the drivers actions, it can be observed from the

CAN data that these are not singular events but rather have a certain duration.

This is partly because the vehicle is a massive physical body and therefore subject

to considerable inertia that has to be overcome for an action to be effective (e.g.,

when accelerating and braking), and partly because of the spatial extent of the

road that is being followed (e.g., when steering in a curve). In other words,

the actions of the human driver always exhibit temporal coherence, and high-

frequency changes are neither plausible nor appropriate driving behavior, which

is however not yet addressed by the single-frame predictions B
(vel)
m∗ and B

(yaw)
n∗ .

This lack of accounting for the temporal coherence between successive frames

i′(T+t′) ∈ I ′ and i′(T+t′+1) ∈ I ′ as well as b′(T+t′) ∈ B′ and b′(T+t′+1) ∈ B′, with

t′ ∈ {1, . . . , T ′−1} as an index, generally results in noisy single-frame predictions

B
(vel)
m∗ and B

(yaw)
n∗ , which is particularly problematic at the boundaries between

adjacent behavior classes B
(vel)
m ,B

(vel)
m+1 and B

(yaw)
n ,B

(yaw)
n+1 . But knowing that high-

frequency changes in the behavior predictions are implausible, as explained above,

and therefore can only be erroneous predictions of the system rather than the

actual behavior of the driver, we are able to eliminate such changes by applying a

window-based filter to the single-frame predictions of the system. Median filtering

is preferable to Gaussian filtering, as it leaves the correct predictions unaffected

by the noisy outliers, no matter how wrong the latter might be.
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Figure 3.10: Example of temporal stabilization. Shown are the continuous-valued
binary classifier responses for a previously unseen image sequence and the result-
ing decisions with ground truth, before (left) and after stabilization (right).

More specifically, we apply a one-dimensional median filter µ : Nw → N with

window size w ∈ N>0 to the temporal sequences C(vel)(f (T+1)), . . . , C(vel)(f (T+T ′))

and C(yaw)(f (T+1)), . . . , C(yaw)(f (T+T ′)) formed by the single-frame predictions,

where µ(n1, . . . , nw) ∈ N is the median value of all n1, . . . , nw ∈ N inside the

current window. The median filter µ is in fact successively applied to each of

the positions t′ ∈ {T + 1, . . . , T + T ′} such that the window is effectively shifted

along the entire temporal sequences, replacing each of the single-frame predictions

C(vel)(f (t′)) ∈ {1, . . . ,M} and C(yaw)(f (t′)) ∈ {1, . . . , N} by stabilized predictions

µ(C(vel)(f (t′))) ∈ {1, . . . ,M} and µ(C(yaw)(f (t′))) ∈ {1, . . . , N}, respectively. In-

tuitively, this filter operation performs a soft version of majority voting within

the sliding window, eliminating outliers that arise due to misclassifications.

The above filtering only operates at the level of the single-frame predictions

C(d)(f (t′)) ∈ N, after the decisions have already been made. In addition, we there-

fore stabilize the underlying continuous-valued responses C
(d)
j (f (t′)) ∈ R of the

binary classifiers as well, before they are combined to make the actual decisions.

This is achieved by applying a second median filter µ′ : Rw → R to the temporal

sequences C
(vel)
j (f (T+1)), . . . , C

(vel)
j (f (T+T ′)) and C

(yaw)
j (f (T+1)), . . . , C

(yaw)
j (f (T+T ′))

for each j ∈ {1, . . . ,M} and j ∈ {1, . . . , N}, respectively. In practice, we found

this combination to be more effective than filtering at only one of these two levels,

and also superior to using Gaussian filters instead. We report on the accuracy

with and without temporal stabilization in our experiments (see Chapter 5).
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3.3.3 Ambiguous Situations

One last aspect that has not yet been addressed by our system architecture,

up to this point, is the occasional encountering of ambiguous traffic situations

in which more than one particular driving behavior is possible. For example,

such situations occur when the vehicle arrives at a crossing, where the driver can

choose to continue in any of the available directions by steering appropriately.

The decision mainly depends on the unobservable intentions of the human driver,

and it is therefore impossible for the system to make any valid predictions from

the visual scene content itself. So far, our system architecture has been designed

in a way that mainly addresses the challenge of identifying multiple, visually

dissimilar traffic situations as requiring the same choice of appropriate driving

behavior, whereas in this context it now should be able to identify individual

traffic situations as allowing for multiple possible driving behaviors. Doing so

requires an additional mechanism that we build on the computation of confidence

values for the individual behavior predictions of our system, and we proceed to

describe this confidence mechanism and how it prevents erroneous predictions in

ambiguous traffic situations in the following.

The key idea is to not only consider the binary classifiers C
(vel)
m∗ and C

(yaw)
n∗

that have the strongest responses C
(vel)
m∗ (f) ∈ R and C

(yaw)
n∗ (f) ∈ R, when given

a traffic situation depicted by image i /∈ I with feature vector f ∈ F ⊆ RF ,

but also how they relate to the other binary classifier responses C
(vel)
m (f) ∈ R

and C
(yaw)
n (f) ∈ R, where j ∈ {1, . . . ,M} and j ∈ {1, . . . , N}, respectively.

Currently, none of the C
(vel)
j (f) and C

(yaw)
j (f) is taken into account any further

once the decisions C(vel)(f) ∈ {1, . . . ,M} and C(yaw)(f) ∈ {1, . . . , N} have been

made, no matter how strong they might be. Intuitively, however, these decisions

should be regarded as having a high confidence if C
(vel)
m∗ (f) and C

(yaw)
n∗ (f) are high

compared to the other C
(vel)
j (f) and C

(yaw)
j (f), and as having a low confidence if

C
(vel)
m∗ (f) and C

(yaw)
n∗ (f) are not significantly higher than any of the other C

(vel)
j (f)

and C
(yaw)
j (f), respectively. Then, the adequate response of the system would

consist in saying that it is unable to make a decision in the current situation, or

in providing the plausible behaviors without a decision. We therefore introduce

a reject option to automatically suppress predictions of insufficient confidence.
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Figure 3.11: Example of the three different confidence measures. Typically, the
third measure has the strongest effect at low rejection rates (although becoming
detrimental for higher rejection rates), while the first measure is least effective.

There are several possiblities how to derive confidence values ζ(vel)(f) ∈ R
and ζ(yaw)(f) ∈ R from the binary classifier responses C

(vel)
1 (f), . . . , C

(vel)
M (f) ∈ R

and C
(yaw)
1 (f), . . . , C

(yaw)
N (f) ∈ R, respectively. A simple measure is to just con-

sider the magnitudes ζ(vel)(f) = C
(vel)
m∗ (f) ∈ R and ζ(yaw)(f) = C

(yaw)
n∗ (f) ∈ R of

the strongest classifier responses C
(vel)
m∗ (f) and C

(yaw)
n∗ (f). This measure already

goes beyond the decisions C
(vel)
m∗ (f) ∈ {1, . . . ,M} and C

(yaw)
n∗ (f) ∈ {1, . . . , N}

themselves, and could be thresholded by appropriate Θ(vel),Θ(yaw) ∈ R to sup-

press the decisions if ζ(vel)(f) < Θ(vel) and ζ(yaw)(f) < Θ(yaw), respectively.

However, this measure does not consider any of the other classifier responses

C
(d)
j (f) ∈ R. Another confidence measure that takes into account one additional

classifier response is to compute the ratios ζ(vel)(f) = C
(vel)
m∗ (f)/C

(vel)

m+ (f) ∈ R
and ζ(yaw)(f) = C

(yaw)
n∗ (f)/C

(yaw)

n+ (f) ∈ R, where C
(vel)

m+ and C
(yaw)

n+ are the bi-

nary classifiers with the second-highest responses, respectively. This measure is

also used in other domains, such as the stereo correspondence problem in which

image patches have to be matched based on their pairwise similarity. Taking

this idea one step further, we can take into account all of the binary classifier

responses C
(vel)
1 (f), . . . , C

(vel)
M (f) ∈ R and C

(yaw)
1 (f), . . . , C

(yaw)
N (f) ∈ R by com-

puting their variances ζ(vel)(f) =
∑M

m=1(C
(vel)
m (f)− avg(C

(vel)
1 , . . . , C

(vel)
M ))2/M ∈

R and ζ(yaw)(f) =
∑N

n=1(C
(yaw)
n (f) − avg(C

(yaw)
1 , . . . , C

(yaw)
N ))2/N ∈ R, where

avg(C
(vel)
1 , . . . , C

(vel)
M ) =

∑(M)
m=1C

(vel)
m (f)/M ∈ R and avg(C

(yaw)
1 , . . . , C

(yaw)
N ) =∑(N)

n=1C
(yaw)
n (f)/N is the arithmetic mean, respectively (see Figure 3.11).
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To the best of our knowledge, we have been the first to propose a vision-based

scene categorization approach for driving behavior prediction. It is worth noting

that a closely related approach was published shortly after ours, however [84],

which also uses scene categorization for driving behavior prediction. Nevertheless,

our approach being published first [43] proves the originality of our solution.

Second, our approach is based on a discretization into multiple behavior

classes, which enables an arbitrarily fine-grained subdivision of the behavior

space, depending on the requirements of the intended application. The other

approach, in contrast, only considers binary problems such as whether or not to

press a pedal or to turn the steering wheel, but not to what extent. Importantly,

these binary problems can be seen as a special case of our more generic behav-

ior prediction framework, and the idea of approximating the continuous-valued

behavior data is explicitly developed in our framework but not in the other.

Third, the features we use to represent the traffic scenes capture information

about the scene at the semantic level, as they are based on a scene decomposition

that is learned in a supervised manner. In contrast, the other approach employs

raw image-filter based responses, only capturing the magnitude and orientation of

edge information in the scene, without any explicit notion of objects. Arguably,

our semantic object-level representation is therefore more sophisticated, and we

conduct a quantitative comparison of the two representations in our experiments

(see Chapter 5), showing our object-level representation to be more robust.

Fourth, we have addressed the inherent limitations of operating at the single-

frame level as well as the processing of ambiguous traffic situations, and we have

proposed temporal stabilization and a confidence mechanism to this end. The

other approach, in contrast, does not consider such limitations at all, although

our experiments give quantitative evidence that the proposed techniques help.

To summarize, our scene categorization approach to driving behavior pre-

diction is indeed novel, and can be seen as a more generic version of the other

approach, on a conceptual level. We continue to compare these two approaches

in the following chapters up to the quantitative level, as the other approach is

the most related work to our own. In the next chapter, we will turn towards the

question of how the traffic scenes are represented, before they are fed into the

scene categorization architecture that we have presented in this chapter.
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Chapter 4

Traffic Scene Representations

In this chapter, we examine two fundamentally different but related feature spaces

to which all camera images depicting traffic scenes are converted. The resulting

feature vectors can then be processed by our scene categorization architecture as

described in the previous chapter. More specifically, one representation operates

at the level of raw image filter responses, while the other one operates at the level

of object classifier responses that correspond to semantic entities in the scene.

The filter-based representation employs a series of oriented edge filters at

different scales that are applied in parallel to each image. Their continuous-valued

response maps are then post-processed by computing the average response values

within regularly-spaced image grid cells, and the resulting feature vectors are

further stabilized by Gaussian kernel weighting inside each grid cell. In contrast,

the object-level representation employs an array of dedicated object classifiers,

each of which is specific for a different semantic entity and trained beforehand

in a supervised manner. The continuous-valued response maps that result from

applying these classifiers in parallel to each image are then post-processed as well,

by averaging over image grid cells and Gaussian kernel weighting as before.

Both traffic scene representations address the challenge of dealing with the

enormous visual complexity of urban traffic environments. In this context, our

behavior prediction framework serves as a testbed, enabling us to directly compare

these representations to each other, both qualitatively as in this chapter and

quantitatively as in the next chapter. Although the underlying techniques are

well-known state-of-the-art methods, no such comparison has been done before.
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4.1 Image Filter Responses

We begin by formally describing the filter-based representation of traffic scenes

as employed by the state-of-the-art method for driving behavior prediction that

is most directly related to our own work [84]. This representation is an extension

of the classical GIST [76], in which a predefined number of edge filter kernels eλω

with different orientations ω and scales λ is applied to each of the input images i

as explained below. The result is a continuous-valued response map rλω for each

filter kernel eλω, having the same size as the original image i and containing values

that are directly determined by the values in eλω. Their subsequent averaging over

regular image grid cells is part of the GIST procedure, while their stabilization by

Gaussian kernel weights is an extension as in visual codeword improvement. [78]

Despite the simplicity of the resulting feature vectors, which only represent

edge information without any semantic notion attached to them, the filter-based

representation performs well in practice (see Chapter 5), and serves as a baseline

to our semantic object-level representation as presented later on in this chapter.

It is hypothesized [84] that conducting a vehicle involves a substantial amount of

sub-conscious, pre-attentive visual processing by the human driver and therefore

can largely be explained by such filter-based representations, because early vision

in biological systems also relies on filter operations to a large extent.

4.1.1 Oriented Edge Filters

Generally speaking, an image filter operation is uniquely defined by its filter kernel

k : {0, . . . ,Wk−1}×{0, . . . , Hk−1} → R, whereWk, Hk ∈ N denote the width and

height of the filter kernel, respectively. In practice, we typically have Wk << W

and Hk << H for input images i : {0, . . . ,W−1}×{0, . . . , H−1} → {0, . . . , 255}3

in RGB color space. To apply k, the color image i is first converted into a

grayscale image i′, obtained by setting i′(w, h) = (iR(w, h)+iG(w, h)+iB(w, h))/3

at each pixel (w, h) ∈ {0, . . . ,W − 1} × {0, . . . , H − 1}, where iR, iG, iB denote

the red, green, and blue color channel of i, respectively. The grayscale image i′

can then be convolved with the filter kernel k, which results in a response map

r : {0, . . . ,W − 1} × {0, . . . , H − 1} → R whose values are given by r(w, h) =∑X
w′=−X

∑Y
h′=−Y i(w+w′, h+h′)k(X−w′, Y −h′), with X = bWk/2c, Y = bHk/2c.
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Figure 4.1: Example of a filter bank that consists of Gabor kernels, which are
sensitive to oriented contrast edges at various scales. These are used by the
filter-based representation of traffic scenes, as in the state-of-the-art method [84].

Oriented edge filters have a special type of kernel k = eω : {0, . . . ,Wk − 1} ×
{0, . . . , Hk−1} → R that is sensitive to contrast edges of orientation ω ∈ [0◦, 180◦)

in the grayscale image i′ with which is it convolved. Its characteristic structure

is given by an elongated center region of positive values, surrounded by one or

two corresponding regions of negative values to enhance the local contrast. A

well-known implementation is the Gabor filter, which combines a two-dimensional

Gaussian envelope function g(x, y) = exp(−(x̃2+ỹ2ε2)/2Σ2) ∈ R with a harmonic

carrier function c(x, y) = cos(2πx̃/λ) ∈ R, where x̃ = x cosω + y sinω and ỹ =

−x sinω + y cosω give rise to the edge orientation, λ ∈ R is the wavelength of c

and hence sets the scale of the filter, and Σ, ε ∈ R denote the standard deviation

and ellipticity of g, respectively. The Gabor filter kernel is then given by k(w, h) =

eω(w, h) = c(w, h)g(w, h) ∈ R, for all (w, h) ∈ {0, . . . ,Wk} × {0, . . . , Hk}.
In practice, such filter kernels are typically pre-computed for a fixed number

of orientations ω and wavelengths λ, thus leading to the formation of a filter bank

(see Figure 4.1). Specifically, we use 8 different orientations and 4 different scales,

such that the filter bank consists of 32 edge filter kernels eλω in total. When applied

to an input image i, each of these filter kernels is independently convolved with i

in parallel, and hence the result is a two-dimensional response map rλω for each eλω.

Although the amount of data increases linearly with the size of the filter bank,

parallel convolution operations effectively circumvent a corresponding increase in

computation time, which is important for practical applications.
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Figure 4.2: Input image (left), and one of the continuous-valued response maps
that result from the application of the Gabor filter bank (right). The filter kernel
used in the underlying convolution is shown as well (see bottom left corner).

4.1.2 Image Grid Histograms

By applying the pre-computed filter bank of Gabor kernels eλω to an input image i,

we obtain a series of continuous-valued response maps rλω, in which rλω(w, h) ∈ R
indicates the presence of a contrast edge with orientation ω ∈ [0◦, . . . , 180◦) and

scale λ ∈ R at location (w, h) ∈ {0, . . . ,W − 1}×{0, . . . , H− 1} (see Figure 4.2).

Each image pixel (w, h) can now be associated with a fixed-size array R(w, h) =

(rλ1
ω1

(w, h), . . . , rλ1
ωΩ

(w, h); . . . ; rλΛ
ω1

(w, h), . . . , rλΛ
ωΩ

(w, h)) ∈ RΛΩ, having a length of

L = ΛΩ ∈ N and containing all edge filter response values rλω(w, h). In theory,

the same procedure could then be applied to the entire image i, by concatenating

all of these arrays R(w, h) ∈ RL to form a single feature vector f = R(i) =

(R(0, 0), . . . , R(0,W − 1); . . . ;R(H − 1, 0), . . . , R(H − 1,W − 1)) ∈ RWHL = F,

representing the image i in the feature space F as defined by the Gabor filters.

While this approach preserves all of the available information, the resulting

feature vectors would be ill-suited for learning the behavior classifiers when fed

into our scene categorization architecture, however: First, the above feature space

is generally too large to be tractable, as the optimization process underlying our

learning procedure essentially performs an exhaustive greedy search for the most

discriminative feature vector dimensions (see Chapter 3). Second, the pixel-level

response values are inherently subject to noise, which impedes the ability of the

classifiers to find consistent patterns throughout the entire training set. Regular

image grids are a common technique for addressing both issues simultaneously.
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Figure 4.3: Example image shown with rectangular grid cells on top (red boxes),
using an 8x8 image grid. The edge orientation histograms (red bars) summarize
the pixel values of all response maps within each grid cell (only one scale shown).

A regular image grid GM×N consists of C = MN ∈ N rectangular grid cells

that cover the entire image domain D = {0, . . . ,W −1}×{0, . . . , H−1} without

overlapping. Specifically, each grid cell GM×N(m,n) ⊆ D contains bW
M
cbH

N
c ∈ N

image pixels as given by GM×N(m,n) = {(w, h) ∈ D|(m − 1)W
M
≤ w < mW

M
∧

(n − 1)H
N
≤ h < nH

N
}, where m ∈ {0, . . . ,M − 1} and n ∈ {0, . . . , H − 1}.

By construction, we have GM×N(m,n) ∩ GM×N(m′, n′) = ∅ for grid cells with

m 6= m′ ∈ {0, . . . ,M − 1} and n 6= n′ ∈ {0, . . . , H − 1}, and we also have

(w, h) ∈ GM×N(m∗, n∗) for some m∗ ∈ {0, . . . ,M − 1} and n∗ ∈ {0, . . . , N − 1}.
To abstract from the response values R(w, h) = (r1(w, h), . . . , rL(w, h)) ∈ RL

at the level of individual pixels (w, h) ∈ D, a single edge orientation histogram

HM×N(m,n) ∈ RL is then computed for each grid cell GM×N(m,n), by setting

HM×N(m,n) = (
∑

(w′,h′)∈GM×N (m,n) r1(w′, h′), . . . ,
∑

(w′,h′)∈GM×N (m,n) rL(w′, h′)).

Intuitively, HM×N(m,n) ∈ RL correlates with the presence of contrast edges

at orientation ω and scale λ anywhere within the corresponding image grid cell

GM×N(m,n), without further specifying their exact locations (see Figure 4.3).

The entire image can thus be summarized by C = MN ∈ N continuous-valued

edge orientation histograms HM×N(m,n) ∈ RL, which are further serialized into

a sparse feature vector fM×N = RM×N(i) = (HM×N(0, 0), . . . , HM×N(0, N −
1); . . . ;HM×N(M − 1, 0), . . . , HM×N(M − 1, N − 1)) ∈ RMNL = FM×N . Since

MNL << WHL ∈ N is generally satisfied in practice, fM×N is a much more

compact representation of the input image i than f , and hence more feasible.
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Figure 4.4: Toy example showing an undesired side-effect that is induced by the
discretization of the image domain into grid cells (using a 4x4 image grid here):
Slightly shifting the image (left) can greatly alter its feature vector (right).

4.1.3 Gaussian Kernel Weighting

As explained in the previous section, pooling the response values R(w, h) ∈ RL

at individual pixels (w, h) ∈ D within regular image grid cells GM×N(m,n) ⊆ D

results in a rather low-dimensional feature vector representation fM×N ∈ RMNL

of the input image i. At the same time, the values in fM×N are stabilized by the

average computations of the pooling process, and also exhibit a certain degree of

invariance to small shifts in the exact locations of the response values R(w, h).

However, the application of regular image grids also introduces artifacts into the

feature vector representation, as a direct consequence of its spatial discretization.

To see this, consider the case in which a strong response r∗ ∈ R(w∗, h∗) is located

in a grid cell GM×N(m∗, n∗). Such a response could be caused by a sign post,

for example, especially when it is highly contrasting with the background. While

driving along, the pole will apparently change its location within the field of view,

until it enters some adjacent grid cell GM×N(m+, n+) with (m+, n+) 6= (m∗, n∗).

Inevitably, the feature vector fM×N undergoes a sudden change at this point,

since r∗ now fully contributes to the respective histogram value in HM×N(m+, n+)

instead of HM×N(m∗, n∗). As a consequence, the feature vector representation

suggests the situations right before and after the transition to be more dissimilar

than they actually are (see Figure 4.4). This phenomenon is a general drawback

of histogram-based representations, and typically leads to a slight but significant

distortion in the values of the resulting feature vectors.
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Figure 4.5: Standard image grid (left), and extended image grid with overlapping
grid cells (center). Each of these grid cells is weighted by a Gaussian kernel to
suppress borderline response values (right, showing one-dimensional example).

To further stabilize the feature vectors fM×N ∈ RMNL, we therefore employ

the same technique as proposed in [84], which extends an image grid GM×N by

Gaussian kernels Γ : {0, . . . , bW
M
c− 1}×{0, . . . , bH

N
c− 1} → R. More specifically,

we define that Γ(w′, h′) = Nµ,σ(w′, h′) for all w′ ∈ {0, . . . , bW
M
c − 1} and h′ ∈

{0, . . . , bH
N
c − 1}, where Nµ,σ is a two-dimensional Gaussian function with mean

µ = (1
2
bW
M
c, 1

2
bH
N
c) and standard deviation σ = (1

4
bW
M
c, 1

4
bH
N
c). This way, Γ

exactly matches the size of a grid cell GM×N(m,n), with a Gaussian at its center

that assumes close-to-zero values at the boundaries. When multiplied to the

pixel-level responses R(w′, h′) in GM×N(m,n), the histogram computation gives

stronger weight to responses that are located closer to the center of GM×N(m,n),

while giving less weight to responses at its boundaries. Then, HM×N(m,n) =

(
∑

(w′,h′)∈GM×N (m,n) Γ(w′, h′)r1(w′, h′), . . . ,
∑

(w′,h′)∈GM×N (m,n) Γ(w′, h′)rL(w′, h′)).

As the histogram representations using such Gaussian kernel weights, however,

also become effectively “blind” to any observations close to grid cell boundaries,

the authors propose to incorporate additional grid cells at regular intervals, lo-

cated “in between” the original grid cells. The additional grid cells are again

weighted by Gaussian kernels (see Figure 4.5), and explicitly capture responses

close to the boundaries of the original grid cells that would otherwise be lost.

Note that the histogram representation increases in size, regarding the number

of feature values obtained, which is due to the increased number of grid cells

(roughly doubling in the process).
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4.2 Object Classifier Responses

While we generally agree with the assumption of the filter-based representation

that pre-attentive visual processing at the level of raw image filter responses

contributes to visual scene understanding in human drivers, we also hypothesize

that higher cognitive functions play an important role as well. For example,

humans are capable of analyzing and interpreting traffic scenes in terms of their

constituent objects and semantic entities, which introduces an abstraction layer

in between the raw image filter responses and the resulting feature vectors. Our

semantic object-level representation of traffic scenes explicitly takes into account

such information, considering a wide variety of different object types.

More specifically, this abstraction is achieved by the supervised learning of

object classifiers O1, . . . ,OO that effectively decompose each traffic scene into its

constituent semantic entities. The semantics are grounded in human perception,

since the training procedure relies on manually annotated ground truth images

showing the different object types that are typically encountered in urban traffic.

To determine which of the resulting features are actually relevant for predicting

the appropriate driving behavior, in the various types of traffic scenes as defined

by the behavior classes of our scene categorization architecture, is left for the

system to learn without further supervision (see Chapter 3).

4.2.1 Object Recognition

Fundamental to our object-level representation of traffic scenes is the ability to

detect and localize potentially relevant objects in an image i : D → {0, . . . , 255}3

that depicts the current traffic situation. To this end, we train a broad range of

object classifiers O1, . . . ,OO each of which is specific for a particular object class,

where O ∈ N denotes the total number of object classes considered. In practice,

these object classes include static scene elements with large spatial extent, such as

the road and sidewalks, dynamic scene elements that exhibit independent motion,

such as other cars and pedestrians, and symbolic scene elements that have some

pre-defined meaning, such as lane markings, for example (see Chapter 5). How

can these objects be described in terms of their characteristic features, such that

we can detect and localize them in previously unseen images i?
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Figure 4.6: A typical urban traffic scene (left) taken from the CamVid dataset [14]
that was recorded in the UK, and its manually annotated object labels (right).
The different colors are globally defined to indicate the different object types.

To this end, we assume that we have an independent set I = {i1, . . . , iP}
of training images ip : D → {0, . . . , 255}3 in RGB color space, each of which

is depicting a real-world traffic scene, and a corresponding set L = {l1, . . . , lP}
of label images lp : D → {0, . . . , O} that are obtained by manually annotating

the training images ip ∈ I to serve as ground truth for the object classifiers,

where p ∈ {1, . . . , P}. Intuitively, lp ∈ L indicates for each pixel (w, h) ∈ D in

the respective image ip ∈ I which object class it belongs to, with lp(w, h) = o

if (w, h) ∈ D belongs to an object of class o ∈ {1, . . . , O}. The label images

lp ∈ L therefore specify both the class-membership and the location of objects,

and actually represent a full segmentation of the ip ∈ I (see Figure 4.6). Though

expensive a process, labeling tools can be used to create L from I [14].

By sampling local image patches πw,h = {(w′, h′) ∈ D|(w−X ≤ w′ ≤ w+X)∧
(h− Y ≤ h′ ≤ h+ Y )} ⊂ D with X, Y ∈ N from the training images ip ∈ I, and

assigning a single object label lp(πw,h) = argmaxo∈{1,...,O}{#(πw,h, o)} to each πw,h

by majority voting, we end up with a set of patches Πo = {πw,h|lp(πw,h) = o} per

object class. Specifically, #(πw,h, o) = |{(w′, h′) ∈ πw,h|lp(w′, h′) = o}| denotes

the number of pixels (w′, h′) ∈ πw,h labeled as o ∈ {1, . . . , O}. Given Π1, . . . ,ΠO,

we can train each object classifier Oo in a one-versus-all manner, where π+ ∈ Πo

are the positive examples and π− ∈
⋃
o′∈{1,...,O}\{o}Πo′ are the negative examples,

using GentleBoost classifiers again (see Chapter 3). Thus, our object classifiers

are trained like the behavior classifiers, but on patches rather than images.
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Figure 4.7: Input image (left), and one of the continuous-valued response maps
that result from the application of the object classifiers (right). The map shown
corresponds to lane markings, detected without using edge orientations at all.

4.2.2 Scene Decomposition

Given the trained object classifiers O1, . . . ,OO, we can then apply each Oo to a

previously unseen image i : D → {0, . . . , 255}3 of the current traffic situation,

which results in a continuous-valued object classifier response map co : D → R
(see Figure 4.7). More specifically, each classifier response value co(w, h) ∈ R
indicates the similarity of the patch πw,h ⊂ D at location (w, h) ∈ D to the

positive training examples π+ ∈ Πo of object class o ∈ {1, . . . , O}, and a high

classifier response value co(w, h) ∈ R thus correlates with the presence of an

object of class o ∈ {1, . . . , O} at location (w, h) ∈ D while a low value suggests

the absence of such an object. Since we have O ∈ N classifier response maps

co : D → R for each input image i : D → {0, . . . , 255}3, we also have O ∈ N
classifier response values co(w, h) ∈ R at each image pixel (w, h) ∈ D. Therefore,

the most likely object class at location (w, h) ∈ D is given by the object classifier

Oo with the strongest response co(w, h) ∈ R at that pixel, using a winner-take-all

scheme. Like the label images lp ∈ L, the resulting map s : D → {1, . . . , O}
as obtained by setting s(w, h) = argmaxo∈{1,...,O}{co(w, h)} for each (w, h) ∈ D
is a segmentation of i. Intuitively, this segmentation can therefore be used to

visualize the object classifier output on i. In principle, s could also be processed

to form a feature vector and then be fed into our scene categorization architecture

for driving behavior prediction (see Chapter 3), as in our original approach [43].
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Figure 4.8: Given a segmentation of the scene (left), binary maps can be extracted
to separate the information by object type, as shown for lane markings (right).
Note, however, that our current approach does not rely on binary maps anymore.

To this end, we have derived a series of binary maps s1, . . . , sO : D → {0, 1}
from s by setting so(w, h) = 1 if s(w, h) = o and so(w, h) = 0 if s(w, h) 6= o,

for all (w, h) ∈ D. The segmentation data of s is thus split by object type,

with each so now indicating only the locations of objects in class o ∈ {1, . . . , O}
(see Figure 4.8). The binary maps so were then post-processed by computing

their average response values in regular image grid cells, possibly with Gaussian

kernel weighting, for the same purpose of dimensionality and noise reduction

as with the post-processing of the raw image filter response maps r1, . . . , rL in

the previous section. Comparing the S(w, h) = (s1(w, h), . . . , sO(w, h)) ∈ RO

to the R(w, h) = (r1(w, h), . . . , rL(w, h)) ∈ RL, however, reveals that the latter

preserves the entire distribution of oriented edge filter responses, while the former

only represents the final decision s(w, h) = o ∈ {1, . . . , O} without the underlying

distribution of classifier responses: In particular, each S(w, h) ∈ RO has a single

non-zero value, which always equals 1. As with the confidence measures that we

have discussed in the context of our behavior classifiers (see Chapter 3), however,

an object label should be regarded as more confident if the maximum classifier

response value is significantly higher than all others, and less confident if their

difference is not particularly pronounced. To incorporate this kind of information

into our feature vectors, the semantic object-level representation in this work is

always computed directly from the object classifier response maps c1, . . . , cO,

rather than from the segmentation s and its binary maps s1, . . . , sO.
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Figure 4.9: Our traffic scene representation is derived from the object classifier
response maps (left), by computing a response histogram for each grid cell (center)
and serializing all of the resulting histograms to form a large feature vector (right).

4.2.3 Feature Vector Formation

Given the continuous-valued response maps c1, . . . , cO : D → R that result from

applying the object classifiers O1, . . . ,OO to input image i : D → {0, . . . , 255}3,

we now compute a single feature vector f ′ = C(i) ∈ RZ = F′ to represent i, where

Z ∈ N is the dimensionality of feature space F′. The response maps c1, . . . , cO

are technically equivalent to the continuous-valued response maps r1, . . . , rL as

obtained by applying the oriented edge filters eλω to i, which have been introduced

in the context of the filter-based representation. We thus perform the same

average computations over regular image grid cells GM×N(m,n) = {(w, h) ∈
D|(m−1)W

M
≤ w ≤ mW

M
∧ (n−1)H

N
≤ h ≤ H

N
} on each co, with a Gaussian kernel

Γ : {0, . . . , bW
M
c−1}×{0, . . . , bH

N
c−1} → R centered at each grid cell GM×N(m,n)

to define weights (see Figure 4.9). Specifically, we have Γ(w, h) = Nµ,σ(w, h) ∈ R
with µ = (1

2
bW
M
c, 1

2
bH
N
c) and σ = (1

4
bW
M
c, 1

4
bH
N
c) as before, and W,H ∈ N are the

width and height of domain D while M,N ∈ N are the horizontal and vertical

number of grid cells, respectively, with (m,n) ∈ {1, . . . ,M} × {1, . . . , N}. The

histograms over all corresponding GM×N(m,n) in c1, . . . , cO, i.e., H ′M×N(m,n) =

(
∑

(w′,h′)∈GM×N (m,n) Γ(w′, h′)c1(w′, h′), . . . ,
∑

(w′,h′)∈GM×N (m,n) Γ(w′, h′)cO(w′, h′)),

are then serialized to form f ′1 = (H ′M×N(0, 0), . . . , H ′M×N(M−1, N−1)) ∈ RMNO,

which is a partial feature vector whose dimensionality is comparable to that

of fM×N ∈ RMNL, which represents i in the filter-based feature space FM×N .

Importantly, however, f ′1 ∈ RMNO represents semantic information about i.
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Figure 4.10: In addition to the feature vector that is obtained by applying the
standard image grid cells, we also compute a row feature vector (right) and a
column feature vector (bottom). These are appended to the main feature vector.

Operating at the level of objects, we can also incorporate information about

the spatial distribution of traffic scene elements with respect to additional types

of rectangular image grid cells. Following the idea of Ess et al. [30], we define

elongated row cells Grow(1), . . . , Grow(P ) and column cells Gcol(1), . . . , Gcol(Q)

that span the entire width W ∈ N and height H ∈ N of i, respectively. Formally,

this is achieved by setting Grow(p) = {(w′, h′) ∈ D|(p − 1)bH
P
c ≤ h′ ≤ pbH

P
c}

and Gcol(q) = {(w′, h′) ∈ D|(q − 1)bW
Q
c ≤ w′ ≤ qbW

Q
c}, for all p ∈ {1, . . . , P}

and q ∈ {1, . . . , Q}. We then compute the average response values Frow(p) =

(
∑

(w′,h′)∈Grow(p) c1(w′, h′), . . . ,
∑

(w′,h′)∈Grow(p) cO(w′, h′)) as row features, and the

average responses Fcol(q) = (
∑

(w′,h′)∈Gcol(q)
c1(w′, h′), . . . ,

∑
(w′,h′)∈Gcol(q)

cO(w′, h′))

as column features, which are serialized to form another partial feature vector

f ′2 = (Frow(1), . . . , Frow(P );Fcol(1), . . . , Fcol(Q)) (see Figure 4.10). Row features

correlate with the distance of objects and hence are relevant for the velocity, while

column features correlate with the lateral position of obstacles, which is related

to steering. A third feature type is derived from the classifier reponse map co∗

for lane markings, by applying oriented edge filters eλω, computing histograms

Hori
M×N(m,n) = (

∑
(w′,h′)∈GM×N (m,n) l1(w′, h′), . . . ,

∑
(w′,h′)∈GM×N (m,n) lΩΛ(w′, h′)),

and serializing them to form f ′3 = (Hori
M×N(0, 0), . . . , Hori

M×N(M − 1, N − 1)). Note

that, unlike the filter-based representation, these features are actually computed

at the object-level, even if using filters. Finally, the partial feature vectors are all

combined to form f ′ = (f ′1, f
′
2, f

′
3) to represent i.
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4.3 Implementation Details

We have not yet specified how the patches πw,h of our object-level representation

are themselves represented for the object classifiers O1, . . . ,OO. Just like the

traffic scene representations in this chapter serve to represent images for our

behavior classifiers (see Chapter 3), these patches need to be represented as well

for our object classifiers. In this context, we have implemented two alternatives

that mainly differ in terms of their choice of patch descriptors and post-processing.

Specifically, the first approach employs an edge filter bank with a state-of-the-art

Conditional Random Field (CRF), whereas the second approach is built around

a computationally efficient Walsh-Hadamard filter bank.

4.3.1 Conditional Random Field

At the heart of our first approach to representing the patches πw,h ⊂ D for our

object classifiers O1, . . . ,OO lies the application of a filter bank that is similar to

the bank of oriented edge filters eλω as discussed at the beginning of this chapter

(see Figure 4.11). It also contains a variety of edge filters at multiple orientations

and scales, but incorporates center-surround filters for blob detection as well.

The application of this filter bank to an input image i is performed separately for

each of its color channels iR, iG, iB : D → {0, . . . , 255}, which results in a series of

continuous-valued response maps mR
1 , . . . ,m

R
A;mG

1 , . . . ,m
G
A;mB

1 , . . . ,m
B
A : D → R

akin to the response maps r1, . . . , rL : D → R of the filter-based representation.

To further increase the discriminative power of the patch descriptors d(πw,h) ∈
RB that are computed on this basis, it is common to cluster the response values

m∗i (w, h) ∈ R into a fixed set of textons t1, . . . , tC ∈ R. Intuitively speaking,

these textons are used as representatives for the actual response values in m∗i ,

and can be learned without supervision from example images such as the i ∈ I

by running a k-means algorithm on the set of all m∗i (w, h) ∈ R resulting from the

training images i ∈ I. After this learning process, previously unseen input images

i /∈ I can then be converted into a texton map T : D → {t1, . . . , tC}, by applying

the filter bank in order to obtain the mR
i ,m

G
i ,m

B
i : D → R and replacing each

response value m∗i (w, h) by the texton t∗i (w, h) = argmint∈{t1,...,tC}|t −m
∗
i (w, h)|

that represents it best, in a nearest-neighbor sense.
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Figure 4.11: The Leung-Malik filter bank [56] on which the CRF implementation
of our semantic object-level representation is based. In contrast to the filter-based
traffic scene representation, object classifiers are learned from its response maps.

One technique to further increase the discriminatory power of the features,

beyond the formation of textons, is to consider them in pairwise conjunctions.

For example, cars typically drive on the road, and pedestrians are usually located

along the sidewalks. As a consequence, observing features d(πw,h) ∈ RB that

strongly suggest an image patch πw,h ⊂ D to belong to the road or the sidewalk

at the same time gives evidence that image patches πw′,h′ ⊂ D close to πw,h

might belong to a car or a pedestrian, respectively, if not to the road or sidewalk

as well. Because such pairs of textons are potentially more discriminative than the

individual textons alone, in the above sense, we systematically incorporate them

into our object classifiers by extending the GentleBoost framework to implement

shape filters [96]. Instead of operating on the textons t ∈ {t1, . . . , tC} themselves,

shape filters work by considering spatial constellations s ∈ R3 each of which

is characterized by a triplet s = (φ, ρ, ξ). The parameters φ ∈ [−π,+π] ⊂ R
and ρ ∈ [θmin, θmax] ⊂ N denote the direction and the distance to the second

location of the pair, while the first location is always set to the current pixel

ξ = (w, h) ∈ D. Further, θmin, θmax ∈ N set the minimum and maximum distance

between these two locations, respectively. In practice, the exact values for φ, ρ, ξ

are randomly sampled from a pre-defined range of discrete sets during training,

thus generating candidate pairs (see Figure 4.12). From these candidate pairs,

the subsequent boosting procedure determines their most discriminative subset

as explained earlier (see Chapter 3 for details on the boosting procedure).
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Figure 4.12: The principle of shape filters is to consider pairwise constellations as
potential features. Like in the example [61], random rectangles (red) are sampled
at each location (yellow), serving as feature candidates for the boosting scheme.

The most essential operation that takes us from mere object classification to

the benefits of CRF integration is the incorporation of the pairwise potentials,

in addition to the unary potentials as given by the response maps of our object

classifiers. In practice, we follow the standard procedure by adopting a contrast-

sensitive Potts model, which essentially penalizes adjacent labels that do not

match each other, thus giving rise to transitions from one object class to another

and hence to object boundaries, unless they are supported by visual evidence in

form of an edge. This does not necessarily prevent object boundaries from being

maintained, even if there is little such evidence at a given location, since the

pairwise potentials merely introduce a penalty to avoid implausible boundaries.

In effect, the pairwise potentials therefore act as a force that encourages the

object boundaries to follow visible edges, but at the same time allows them to

smoothly continue if there are gaps in the contours (i.e., object boundaries with

occasional lack of visible edges, which often occur in real-world images due to

inhomogeneous lighting conditions and background clutter, for example). The

primary purpose of the pairwise potentials, and hence the CRF framework in

general, is to stabilize the raw, noisy object classifier response maps such that

local evidence is being obeyed where present and, as far as the limited range

of pairwise potentials permits, to also propagate such evidence to less confident

or ambiguous locations. As a consequence, we obtain contiguous regions for all

scene elements, seamed by continuous object boundaries (see Figure 4.13).
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Figure 4.13: Example of a traffic scene decomposition that results from applying
our Conditional Random Field [61], using only unary potentials (left) that directly
correspond to the object classifier output, and pairwise potentials as well (right).

The CRF framework also enables us to integrate additional information about

traffic scenes in particular, most prominently the typical spatial distributions of

objects in the scene. While the existence of such constraints is not guaranteed

for scenes in general, we have a fundamentally different situation due to the fixed

camera focusing forward and sharing the same field of view as perceived by the

human driver. For example, the road is typically at the bottom part of the scene,

the sky is always above, buildings typically appear to the left and to the right

of the road, and traffic participants can only occupy the lower part of the scene

due to physical constraints. Mathematically, we can account for such spatial

prior knowledge about the object types by probability maps (see Figure 4.14),

spanning the entire field of view just like the filter and classifier response maps,

with pixel values ranging from 0 to 1 to indicate the prior probability that an

object of the respective type is observed at the given location. In practice, these

probabilities can be learned offline, in parallel to learning the object classifiers,

from the same manually annotated training data. Specifically, the frequency

of a pixel labeled as belonging to an object class is being counted across the

entire set of training images, and the resulting values are normalized within each

such map to yield a probability distribution. In the end, the unary potentials

from the object classifiers, the pairwise potentials from the Potts model, and the

location potentials are all combined to determine an optimal segmentation, which

is obtained by energy minimization using graph cuts (e.g., see [99]).
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Figure 4.14: Examples of spatial prior knowledge about urban traffic scenes,
learned from manually annotated label images. The left probability map shows
typical locations of the road, the right one shows typical locations of sidewalks.

4.3.2 Walsh-Hadamard Features

The second approach to represent the patches πw,h for our object classifiers

O1, . . . ,OO relies on a different type of filter bank [42], which implements a

Walsh-Hadamard transform when applied to the individual πw,h ⊂ D. Unlike

the previously discussed LM filter bank that mainly consists of oriented edge fil-

ters, and hence resembles the Gabor filter bank of the filter-based representation

as discussed at the beginning of this chapter, the Walsh-Hadamard filter bank is

sensitive to the spatial frequency of contrast edges rather than their orientations.

Its filters can efficiently be implemented by means of binary operations alone,

in contrast to the continuous-valued floating point operations that are involved

when convolving an image with the aforementioned edge orientation filters, and

this is a main reason why Walsh-Hadamard features have become a predominant

texture descriptor for applications in the automotive domain (see Figure 4.15).

The Walsh-Hadamard transform of an image can be seen as a binary version of

the Discrete Cosine Transform, which is itself closely related to the continuous

Fourier transform that is capable of approximating any given function or texture

to an arbitrarily fine-grained degree. The accuracy to which this approximation is

performed can be influenced by the number of coefficients computed for a patch:

While computing all Walsh-Hadamard coefficients enables lossless reconstruction,

it is practical to restrict their computation to the first 16 coefficients, for example,

since higher coefficients are increasingly subject to the image noise anyway.
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Figure 4.15: The Walsh-Hadamard transform of an image patch can efficiently
be implemented by a filter bank with only binary operations. These filters are
sensitive to the local frequencies of the patch texture, from coarse- to fine-grained.

Specifically, we first convert the label images l ∈ L of the CamVid dataset [14]

to reflect the O = 9 object classes that we actually consider in our experiments

(see Chapter 5), resulting in a corresponding set of simplified label images l′ ∈ L′

that only represent the object classes of interest and in particular match the

labeling used by the state-of-the-art method [99]. The second pre-processing step

consists in converting the camera images i ∈ I from RGB color space to the metric

L∗a∗b∗ color space, thereby effectively decoupling the individual color channels

from each other as well as separating the luminance component L∗ : D → R from

the color component, which is in turn being represented along two orthogonal

color opponency axes to yield a∗, b∗ : D → R. Further, we apply the well-known

gray-world assumption to the resulting L∗a∗b∗ images i′ ∈ I′, essentially stating

that all channels L∗, a∗, b∗ of an image i′ ∈ I′ should individually be normalized

to have zero mean and unit variance [30]. In practice, this can be achieved

by computing the global average avg(L) = 1
WH

∑
(w,h)∈D L(w, h) as well as the

variance var(L) = 1
WH

∑
(w,h)∈D(L(w, h) − avg(L))2 of L, and by then setting

L(w, h) = (L(w, h) − avg(L))/var(L) for all pixels (w, h) ∈ D (and analogously

for a∗ and b∗). This step is generally considered an important contributor to

robustness against fluctuations in the visual appearance of objects in the scene,

in particular with respect to illumination changes that are frequently occuring

when driving in unconstrained real-world environments, as is the main scope of

the present work.
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Figure 4.16: Illustration of the way how we sample patches from an input image:
Within the image (dashed red box), 4x4 patches are considered (solid red box),
with 8x8 (green), 16x16 (blue), and 32x32 patches (yellow) in addition.

Finally, we densely sample patches π
(U×V )
w,h = {(w′, h′) ∈ D|(w ≤ w′ ≤ w +

U−1)∧ (h ≤ h′ ≤ h+V −1)} of size U = V = 4 ∈ N from each of the gray-world

images i′′ ∈ I′′, starting in the upper left corner of i′′ with the patch π
(4x4)
(1)+14,(1)+14,

and ending in the lower right corner of i′′ with the patch π
(4x4)
(W−U+1)−14,(H−V+1)−14,

where the offset of 14 pixels allows for the incorporation of larger patches as well,

as explained further below. The pre-computed Walsh-Hadamard filter bank is

then applied to each of these 4x4 patches π
(4x4)
w,h ∈ D, which results in a fixed

number of 16 Walsh-Hadamard coefficients for each of the L∗a∗b∗ channel, and

the 3∗16 = 48 values thus obtained are serialized to form a partial feature vector

d′(πw,h) ∈ R48 that fully describes π
(4x4)
w,h without any loss of information. In

addition, and following well-established practice (e.g., [30, 123]), we also consider

larger patches of size 8x8, 16x16, and 32x32, all centered at their corresponding

basic patches π
(4x4)
w,h ∈ D (see Figure 4.16). The reason is to also consider the

larger spatial context of each of the basic 4x4 patches, and by applying the Walsh-

Hadamard filter bank to each of these additional patches π
(8x8)
w,h , π

(16x16)
w,h , π

(32x32)
w,h ⊂

D as well, and serializing their first 16 coefficients again, respectively, we end up

with an extended feature vector dw,h ∈ R(3∗16)∗4 that describes the local texture

at position (w, h) ∈ D in the field of view. Instead of using location maps that

are learned from the ground truth per object class, as in the CRF implementation

discussed before, we now directly incorporate the patch locations (w, h) ∈ D into

their corresponding feature vectors d(πw,h) ∈ R194, having 194 feature dimensions.
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Chapter 5

Performance Analysis

In this chapter, we quantitatively evaluate the behavior prediction methods that

were discussed in Chapter 3 and Chapter 4. In particular, we conduct a detailed

comparison of our own approach to the best vision-based correlation method

currently known for driving behavior prediction [84], and we also investigate into

the impact of different weather conditions on the prediction accuracy. To our

knowledge, no such comparison has been done before, and we are also the first

to systematically analyze the effect of weather conditions in this context.

Our experiments are conducted on a challenging video dataset [36], acquired

by a car-mounted camera while driving naturally in real-world urban traffic. Its

total duration is over 1 hour, and five different weather conditions are covered

by separate streams. Apart from the behavior prediction experiments, we also

perform a stand-alone evaluation of the segmentation techniques underlying our

traffic scene representation (see Chapter 4), including a quantitative comparison

to the results achieved by state-of-the-art segmentations [15, 99]. Importantly, all

datasets are publicly available such that others are able to reproduce our results.

We begin with a discussion of public video datasets from the perspective of

driving behavior prediction, focusing in particular on the CamVid dataset [14]

and the HRI dataset [36]. Subsequently, we report on the results of our segmenta-

tion experiments, which include both the CRF and the WH implementation (see

Chapter 4). Finally, we turn to the actual behavior prediction and conduct our

main experiments. As we shall see, our method achieves competitive results for

yaw rate prediction, and outperforms the state-of-the-art on velocity prediction.
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5.1 Video Datasets

Our comparative performance evaluation of different correlation methods for

vision-based behavior prediction is an important part of our thesis work. While

naturally limited to behavior prediction methods of today, we envision our work

to serve as a starting point for other researchers to evaluate their own approaches

under the same conditions. Common datasets have proven to be effective for

driving scientific progress in other research fields such as object detection and

recognition [31, 39], optic flow and stereo [4, 94], and image segmentation [14, 60].

It is our hope that the present work facilitates the formation of a common basis

for evaluating behavior prediction methods as well. For this reason, it is vital

that all datasets used in our experiments are also accessible to others.

We therefore consider a number of publicly available video datasets that were

recorded by car-mounted cameras while driving naturally in real urban traffic.

Specifically, these include the Daimler Pedestrian Dataset (Daimler) [35], the

Cambridge-driving Labeled Video Dataset (CamVid) [14], the HRI Road Traffic

Dataset (HRI) [36], and the Caltech Pedestrian Dataset (Caltech) [29]. All of

them were created for applications other than behavior prediction, and hence

require careful examination with regard to their suitability for our own experi-

ments. In particular, these datasets exhibit a considerable variability in terms

of their overall duration, number of streams, camera setup, and available ground

truth, among others (see Table 5.1).

5.1.1 Overview

CamVid. The CamVid dataset consists of four different streams, recorded by a

high-resolution color camera, and has a total duration of about 10 minutes. While

this is too short for behavior prediction other than a proof-of-concept evaluation

(see [43]), the advantage of this dataset lies in its rich annotations. Specifically,

it comes with pre-computed structure-from-motion data, and manually labeled

ground truth segmentation data of pixel-level accuracy. We therefore use the

CamVid dataset for training the object classifiers underlying our traffic scene

representation (see Chapter 4), and for conducting our segmentation experiments.

Further details on this particular dataset are given in the following section.
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Dataset Duration Framerate Resolution Camera Color GT

CamVid [14] 10 min 1 fps 960 x 720 Mono Yes Yes
Daimler [35] 30 min 10 fps 640 x 480 Mono No No
HRI [36] 1 hour 10 fps 400 x 300 Stereo Yes Yes
Caltech [29] 10 hour 30 fps 640 x 480 Mono Yes No

Table 5.1: Public video datasets, each recorded from within a moving vehicle
while driving in real urban traffic.

Daimler. The Daimler dataset consists of a single stream whose duration

of about 30 minutes is considerably longer than that of the CamVid dataset.

In addition, it has a much higher framerate of approximately 10 fps. A serious

drawback of the Daimler dataset, however, is its lack of ground truth information

about the driver’s behavior or the vehicle motion. Moreover, it was recorded by a

monocular grayscale camera only, although color information is arguably relevant

for traffic scene understanding. For these reasons, we do not use this dataset in

any of our experiments and resort to the HRI dataset instead.

HRI. The HRI dataset consists of five different streams, which in turn corre-

spond to five different weather and lighting conditions: sunny, overcast, raining,

night, and snow. Its total duration is more than 1 hour of driving, which exceeds

the previous datasets by far. Also, the streams were all acquired by a calibrated

stereo camera instead of a monocular camera only, and they are available in color.

What sets the HRI dataset apart from the other datasets, in the context of driv-

ing behavior prediction, is its being accompanied by ground truth behavior data

that was directly recorded from the CAN bus of the moving vehicle. We therefore

conduct our behavior prediction experiments on this particular dataset.

Caltech. The Caltech dataset is clearly the largest of the above datasets,

having a total duration of about 10 hours. It consists of eleven video streams

that were all recorded at a high framerate of 30 fps. As with the Daimler dataset,

however, no ground truth behavior data is made available, hence such information

would have to be inferred from the vehicle motion (e.g., by structure-from-motion

like in the CamVid dataset). Moreover, only a monocular camera was used,

making the computation of 3D features more difficult than with the stereo setup

of the HRI dataset. Thus, the Caltech dataset it not an alternative for us.
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Figure 5.1: The CamVid dataset consists of four streams, recorded in the UK.
Note that one of the streams corresponds to dusk conditions (see Figure 5.2).

5.1.2 CamVid Dataset

As pointed out in the previous section, we use the CamVid dataset for conducting

our segmentation experiments, mainly because of the segmentation ground truth

that accompanies the video streams. Specifically, the ground truth enables us to

train and evaluate our object classifiers, whose activation maps are the basis of the

semantic object-level representation used by our behavior prediction. As current

state-of-the-art methods for object recognition and segmentation were evaluated

on this dataset as well, we can quantitatively compare their reported performance

to our own results. In the following, we therefore examine the CamVid dataset

in more detail, giving examples of the video streams and the ground truth data,

and identifying the most frequent object types.

Example images of the four video streams are shown in Figure 5.1 (top row)

and Figure 5.2 (top left). As we can see, the vehicle is driving in typical city traffic

that is characterized by large static objects such as the road, buildings, and trees
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Figure 5.2: Over 30 object classes were manually annotated at the pixel-level.
The most frequent ones are shown in the diagram. (numbers in percent)

as well as dynamic objects such as other cars, pedestrians, and bicyclists. The

objects are all meticulously annotated in the corresponding segmentation images

that are provided as ground truth, which are shown in Figure 5.1 (bottom row)

and Figure 5.2 (bottom left). In particular, the accuracy of these annotations

goes far beyond the bounding boxes or polygons that are typical for datasets

used in object detection, and is beneficial for both training and evaluation.

Due to the abundance of object classes that are labeled in the CamVid dataset,

a complete decomposition of the traffic scenes into their constituent semantic

entities is actually provided. However, while some of the classes are predominant

in most of the scenes (see Figure 5.2), others are either very rare or very small.

For this reason, it is common practice to consider a subset of the most frequent

object classes only, typically around ten, and to recombine some of the labels

into larger classes. For example, the various types of vehicles that are annotated

separately from each other are often merged to form a single class, representing

cars in general without further distinction.
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Figure 5.3: The HRI dataset consists of five streams, all recorded in Germany.
Each stream corresponds to one of five different weather conditions.

5.1.3 HRI Road Traffic Dataset

In contrast to the CamVid dataset that was discussed in the previous section,

the HRI dataset itself does not include any segmentation data as ground truth.

However, the behavior data that is provided alongside with its video streams

enables us to train and evaluate our behavior classifiers (see Chapter 3), and to

directly compare their prediction accuracy to the state-of-the-art method [84].

The clear separation of the different weather conditions into different streams,

moreover, makes it possible to systematically analyze how the visual appearance

of the traffic scenes affects the performance of the two approaches. We therefore

take a closer look at the video streams and their corresponding behavior data.

Example images of the video streams, also showing their weather conditions,

are given in Figure 5.3. Note the considerable influence of the weather on the

visual appearance of the traffic scenes: While the road surface, for example,

appears homogeneous in the overcast stream, strong shadows are frequently cast
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Figure 5.4: The video streams are accompanied by ground truth behavior data
from the vehicle’s CAN bus. Only velocity and yaw rate are shown here.

under sunny conditions, and rain often leads to bright reflections. Driving at night

fundamentally changes the illumination of the entire scene, and snow covers the

scene elements to a degree that impedes their clear segregation. Apart from these

differences in their visual appearance, however, the streams are all very similar

to each other: All were recorded while driving along the same route, although

the overcast stream follows this route in the opposite direction (i.e., to the left,

see Figure 5.4), and the night and raining streams begin somewhat later and end

somewhat earlier than the others (thus missing some curves, see Figure 5.4).

The behavior data consists of various physical quantities about the vehicle,

including its current velocity, yaw rate, steering angle, pedal status, and gear. As

explained in Chapter 3, however, we only require the velocity and yaw rate data

for our behavior prediction experiments. These two quantities are visualized in

Figure 5.4, shown as plots over time. Note that each video frame gives rise to a

single point, hence the formation of a trajectory for each stream.
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Stream Urban Rural Highway Private Invalid

Overcast 53 % 21 % 11 % 14 % 1 %
Sunny 53 % 6 % 9 % 26 % 6 %
Night 54 % 9 % 11 % 0 % 26 %
Rain 78 % 8 % 14 % 0 % 1 %
Snow 59 % 7 % 13 % 17 % 5 %

Total 58 % 10 % 11 % 13 % 7 %

Table 5.2: Overview of the different scene types. Note that urban traffic scenes
are clearly predominating, both in the entire dataset and in each of the streams.

Stream First Last Frames Duration

Overcast 1 9335 9335 16 min
Sunny 1 9190 9190 15 min
Night 150 4750 4601 8 min
Rain 1 6315 6315 11 min
Snow 340 8200 7861 13 min

Total 37302 1h 2 min

Table 5.3: Clipping the invalid data at the beginning and ending of each stream
leaves us with over 1 hour of natural driving. (Note that all streams have been
downsampled to a framerate of 10 fps.)

A closer look at the plots shown in Figure 5.4 reveals that the vehicle has

occasionally been driving at velocities that are much higher than appropriate for

urban traffic. The reason lies in the heterogeneity of the route itself: While most

of the driving actually takes place in urban traffic environments, it also includes

a short period of driving on a highway, with rural roads leading to that highway,

and some private property as well. Table 5.2 shows their relative frequencies,

where differences mainly arise from the amount of traffic encountered.

Another important observation is that the original streams of the HRI dataset,

as introduced by [36], contain short phases of invalid data: These phases are

typically characterized by the vehicle waiting before the actual session begins,

or after it has already finished. To ensure that each stream begins with the

vehicle moving and ends with the vehicle stopping (or before driving into the

dark garage), we have clipped all streams as specified in Table 5.3.
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5.2 Segmentation Experiments

We now turn to our segmentation experiments, in which we evaluate the accuracy

of our traffic scene representations as described in Chapter 4. By independently

evaluating the representations prior to the behavior prediction system as a whole,

we can assess the quality of our visual scene decomposition before using it further.

This helps to distinguish whether potential limitations in the performance are

inherent to our architecture, or caused by the perception already. Moreover,

evaluating the traffic scene representations at the level of classical segmentation

gives us quantitative results that we can directly compare to the state-of-the-art

as reported in the literature. Note that our behavior prediction actually operates

on the continuous response maps from which the segmentations are computed,

but the latter are their direct visualization, as explained in Section 4.2.2.

In this context, we start with a quantitative evaluation of our representations

on the CamVid dataset, using exactly the same object classes and data splits

as in the literature. After that, we critically discuss the appropriateness of the

object classes from the perspective of our behavior prediction experiments, and

also propose a different split of the available data into a training and a test set.

Finally, we apply the object classifiers thus trained on the CamVid dataset to

each stream of the HRI dataset, and report on the results of this transfer.

5.2.1 Comparison to State-of-the-Art

Since the CamVid dataset consists of three daylight streams and one dusk stream,

the available data is usually split for training and testing as follows (see Table 5.4).

Two of the daylight streams (E5 and R0) are combined to form a day-specific

training set, while the third daylight stream (VD) serves as a test set. Note that,

in this case, training and testing can be performed not only on disjoint data but

also on disjoint streams. As there is only one dusk stream (TP) in the dataset,

however, the first half of this stream is commonly used for dusk-specific training,

and testing is done on the second half of this stream. Although it implies that,

in the dusk scenario, training and testing are conducted on the same stream,

the blockwise splitting nevertheless ensures that the system is still evaluated on

previously unseen data, given by disjoint parts along the driving route.

81



Set Sequence First Last Frames

Day Train E5, R0 390 / 930 8640 / 3930 305
Day Test VD 0 5100 171

Dusk Train TP 6690 8520 62
Dusk Test TP 8550 10380 62

Table 5.4: Typical splits of the CamVid dataset into training and testing sets,
separately for daylight and dusk conditions. (The remaining 101 frames, being
part of the E5 sequence but labeled at a higher framerate, are usually ignored.)

ID Class Labels

1 Building Building
2 Tree Tree, VegetationMisc
3 Sky Sky
4 Car Car, SUVPickupTruck, Truck Bus
5 Sign-Symbol SignSymbol, TrafficLight, Misc Text
6 Road Road, RoadShoulder, LaneMkgsDriv, LaneMkgsNonDriv
7 Pedestrian Pedestrian
8 Fence Fence, Wall
9 Column-Pole Column Pole

10 Sidewalk Sidewalk, ParkingBlock
11 Bicyclist Bicyclist

Table 5.5: Standard object classes as in state-of-the-art segmentations [15, 99],
and their corresponding CamVid labels (determined by visual inspection).

As for the object classes, it is common to consider a subset of the raw labels

used in the segmentation ground truth, and to form 11 standard object classes

by merging (see Table 5.5). For each of these object classes, a separate classifier

is then learned from the training set (day or dusk), as explained in Section 4.2.1.

The resulting object classifiers are then combined in a winner-take-all manner,

where the predicted object label for a new image patch is given by the strongest-

response classifier. By applying the combined classifiers to each of the test images,

we obtain segmentations as shown in Figure 5.5.

To obtain a quantitative evaluation of the classifiers, we compute their global

and average accuracies. The former is the share of correctly recognized patches
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Figure 5.5: Example images (left) and their segmentations (center), using the
WH implementation. The ground truth segmentations are also shown (right).

WH CRF Brostow Sturgess
Day Dusk All Day Dusk All All All

Global 69 62 66 68 67 68 69 84
Average 35 38 37 35 41 38 53 59
Baseline 9 9 9 9 9 9 9 9

Table 5.6: Accuracy of our WH and CRF segmentations, and state-of-the-art.

in the test set (i.e., aglobal = #correct

#all
), and intuitively correlates with the visual

quality of the segmentations. The latter is obtained as the mean of the per-class

accuracies (i.e., aaverage = 1
O

∑
o∈{1,...,O}

#
(o)
correct

#
(o)
all

), a harder measure giving equal

weight to all classes regardless of their actual frequencies. It shows whether the

classifiers are consistent, or better on some objects than on others. Our results

(see Table 5.6) are similar with both implementations. In comparison to the

state-of-the-art methods, our global accuracy is comparable to that of Brostow,

although not reaching the level of Sturgess. Our average accuracy, however, is

considerably lower than achieved by either of the two methods, indicating that

misclassifications are mainly introduced by the infrequent classes.
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ID Class Labels

1 Sky Sky
2 Tree Tree, VegetationMisc
3 Building Building
4 Sidewalk Sidewalk, ParkingBlock
5 Road Road, RoadShoulder

6 Car Car, SUVPickupTruck, Truck Bus
7 Pedestrian Pedestrian
8 Bicyclist Bicyclist

9 Marking LaneMkgsDriv, LaneMkgsNonDriv

Table 5.7: Our revised 9 object classes, and their corresponding CamVid labels.
Note the grouping into “static” (1 – 5), “dynamic” (6 – 8), and “symbolic” (9).

5.2.2 Stand-alone Evaluation

As smaller object classes are a major source of confusion in our representations,

it is worth examining which of them to consider at all. While larger object classes

are generally justified in that they account for large parts of the traffic scenes,

the inclusion of small objects should be governed by their potential relevance for

driving behavior: For example, the “Column-Pole” class mostly consists of thin,

elongated sign posts that are very difficult to detect and at the same time of rather

limited behavioral relevance. The “Fence” class, in turn, is mostly comprised of

narrow walls and fences in front of buildings, which are frequently confused with

either the buildings or the adjacent sidewalks. Finally, the “Sign-Symbol” class

contains many irrelevant signs like advertisements, intermixed with traffic signs

and traffic lights. Although the latter are clearly relevant for driving behavior,

traffic signs go beyond the requirement that the reason for the driver’s behavior is

visible in the corresponding traffic scenes, being valid long after leaving the field

of view. Also, they cannot be treated as a single class because different signs have

different semantics, which is also true for traffic lights and their various states.

Since the HRI dataset itself does not support learning the proper reactions to

traffic lights anyway, as the camera’s field of view is too narrow to depict them

while waiting, we leave symbolic information of these types for future extensions

of this work, and concentrate on the object classes as given in Table 5.7.
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TRAIN TEST
First Last Total First Last Total

E5 390 4515 74 4516 8640 130
R0 930 2430 51 2431 3930 50
VD 0 2550 86 2551 5100 85
TP 6690 8535 62 8536 10380 62

Table 5.8: Revised split of the CamVid dataset into a training and a test set.

Figure 5.6: Confusion matrices of our trained object classifiers (WH and CRF).

Since we intend to apply the trained object classifiers to the HRI streams,

which are characterized by heterogeneous weather and lighting conditions, a broad

range of visual appearances should be covered in training already. We therefore

combine all four streams of the CamVid dataset, mixing their lighting conditions

and traffic scenes for robustness. To still obtain a quantitative evaluation of the

resulting object classifiers, training is done on the first half of each stream, and

the second half is used for testing (see Table 5.8). The results (see Figure 5.6)

show that the average accuracy has greatly improved in both implementations

(compare to Table 5.6), indicating that the classifiers perform well on most of the

revised object classes. From the confusion matrices, the CRF implementation is

slightly better on some of the larger static objects (e.g., trees vs. buildings), but

the WH implementation is able to maintain a higher performance on the smaller

dynamic objects as well (e.g., cars vs. road). We therefore hypothesize that it

also performs better in the subsequent behavior prediction (see Section 5.3).
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Figure 5.7: Example images taken from the HRI overcast stream (top row), and
their manually annotated segmentation ground truth (bottom row).

5.2.3 Application to HRI Streams

We now apply the object classifiers, trained on the CamVid dataset as described

in the previous section, to the video streams of the HRI dataset. To obtain a

quantitative impression of the segmentation accuracy that is maintained after this

transition, despite the lack of ground truth segmentation data in the HRI dataset,

we have sparsely annotated the overcast stream as a representative example. The

annotations were done analogously to those of the CamVid dataset, using the

same annotation tool (called InteractLabeler [14]) but for every 100-th frame only,

corresponding to an interval of 10 seconds (see Figure 5.7). The performance of

the object classifiers was then measured on the 94 resulting frames, by computing

their global and average accuracies as before. We obtain 62 % global accuracy and

44 % average accuracy for the WH implementation, and 58 % global accuracy and

41 % average accuracy for the CRF implementation. In other words, we only lose

about 10 % global accuracy and 5 % average accuracy when making the transition

from the CamVid dataset to the HRI dataset. However, we also hypothesize that

weather conditions not included in the CamVid dataset, such as night and snow,

lead to a greater loss and affect behavior prediction (see Section 5.3).
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Figure 5.8: Qualitative results of our object classifiers applied to the HRI streams,
using the WH implementation.

Example segmentations for all weather conditions are shown in Figure 5.8.

The noise is an artifact of the winner-take-all scheme by which they are computed.

As our behavior prediction utilizes the underlying response maps of the object

classifiers, not the above visualizations, these artifacts have no further effect.
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5.3 Behavior Prediction Experiments

In the following, we build on the results of the previous section by computing

the semantic object-level representation for the HRI traffic scenes, as described

in Chapter 4: These computations involve a kernel-weighted averaging of the

continuous activation maps that are the immediate output of our CamVid-trained

object classifiers, with regular but overlapping image grid cells. After serialization

of the resulting feature maps into a single feature vector for each frame in the

HRI dataset, we can then use these feature vectors to train our behavior classifiers

(see Chapter 3). For comparison, we also compute the continuous response maps

of the oriented edge filters that form the basis of the state-of-the-art method

for behavior prediction [84], resulting in separate WH-, CRF-, and GIST-based

behavior classifiers that we quantitatively evaluate and compare to each other.

Our evaluation of these behavior classifiers begins at the level of their raw

single-frame responses, representing independent predictions of the appropriate

driving behavior for each point in time. To obtain a physically plausible and

robust performance, we then establish temporal coherence in successive frames

by means of various signal filters, applied to the single-frame responses. Finally,

we address the incorporation of different confidence measures to enable the system

to refrain from making a behavior prediction in ambiguous traffic situations.

5.3.1 Behavior Class Thresholds

Prior to the actual behavior prediction experiments, however, it is fundamental

to ensure that the behavior classes under consideration reflect the typical range

of human driving behavior. While, technically speaking, any choice of thresholds

in the continuous-valued domains of velocity and yaw rate yields a corresponding

set of behavior classes, as explained in Chapter 3, not all can be considered

semantically meaningful such that they are useful for practical applications in

driver assistance or autonomous navigation. We therefore begin with a discussion

of how to adequately set these thresholds, given the actual behavior data as

recorded by the CAN bus of the moving vehicle. The resulting behavior classes

of velocity and yaw rate are then used throughout the remainder of this chapter,

forming the basis for our quantitative evaluation of their prediction accuracy.
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Figure 5.9: The behavior class thresholds (blue lines) as used in our experiments,
resulting in three velocity classes (horizontal) and three yaw rate classes (vertical).

Since our goal is to have the behavior classes match the actual behavior of a

human driver, it is reasonable to consider real CAN data for the purpose of setting

their underlying thresholds. Figure 5.9 shows plots of the velocity and yaw rate

for each of the different streams or weather conditions in the HRI dataset, with

further distinction of the overall scene types as specified earlier (see Table 5.2).

The horizontal blue lines indicate the velocity thresholds that are used for our

subsequent experiments, and the vertical blue lines show the yaw rate thresholds.

Their values are given in Table 5.9, which could either be determined manually

as in our original approach [43], or automatically fitted to the data by running a

k-means clustering algorithm. More specifically, we only consider the inner-city

urban part of the velocity and yaw rate data, respectively, and apply the clustering

to each of these two subsets separately, with k ∈ N defining the number of desired

behavior classes. To obtain symmetric classes despite the obvious imbalance of

left and right curves, the yaw rate subset is also included with all signs flipped.
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VEL YAW
Cslow t Cmedium t Cfast Cleft t Cstraight t Cright

Sunny 3 16 30 37 44 8 4 0 -4 -7
Overcast 7 20 33 38 43 5 2 0 -2 -5
Raining 2 13 25 33 42 8 4 0 -4 -8
Snow 3 13 23 30 37 5 3 0 -3 -5
Night 3 16 28 37 46 8 4 0 -4 -8

Table 5.9: Rounded values of the behavior class thresholds t (see blue lines in
previous figure) and the behavior class centers C∗ (blue circles in previous figure).

VEL YAW
Cslow Cmedium Cfast Cleft Cstraight Cright

Sunny 24 % 41 % 35 % 7 % 80 % 13 %
Overcast 26 % 28 % 46 % 19 % 67 % 14 %
Raining 24 % 21 % 55 % 5 % 85 % 10 %
Snow 29 % 47 % 24 % 15 % 64 % 21 %
Night 22 % 21 % 57 % 6 % 77 % 17 %

Table 5.10: Distributions of the resulting behavior classes, per stream (rounded).
As velocity and yaw rate are predicted in parallel, they sum up to 100 % each.

Notice the importance of only fitting the behavior classes to the inner-city

urban parts of each stream, rather than to the entire stream data. As each stream

consists of urban, rural, and highway parts, characterized by their own ranges of

velocities and yaw rates, respectively, the latter would tend to yield a single class

for each of these scene types, which is more like classical image categorization

and has been done before [49]. By fitting the behavior classes on the inner-city

urban parts, in contrast, we can ensure that they indeed correspond to different

actions of the human driver in an otherwise similar urban traffic environment,

which is consistent with the general objective of our thesis work (see Chapter 1).

After the fitting, of course, the resulting behavior class thresholds can then be

applied to the entire stream data, giving rise to the behavior class distributions

as shown in Table 5.10. To illustrate their adequacy for practical applications,

qualitative examples of our behavior classes are depicted in Figure 5.10 and in

Figure 5.11, for the velocity domain and for the yaw rate domain, respectively.
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Figure 5.10: Qualitative example situations to illustrate our velocity classes.
Their semantic labels are “fast” (green), “medium” (yellow), and “slow” (red).

Figure 5.11: Qualitative example situations to illustrate our yaw rate classes.
Their semantic labels are “right” (magenta), “straight” (black), and “left” (cyan).

5.3.2 Instantaneous Prediction

The behavior classifiers are trained on the HRI streams like the object classifiers

on the CamVid dataset, with the following distinction: As we are interested in the

effect of different weather conditions, encapsulated in the different HRI streams,

training and testing is done separately for each stream. This situation resembles

the CamVid dusk condition, where the TP stream was split in two blocks for

disjoint training and test sets. The behavior classifiers need more training images

than the object classifiers, however, because a single training image provides a

high number of example patches, but only one velocity and yaw rate example.

To compensate, we split the HRI streams in ten blocks and perform a blockwise

cross-validation. As each block consists of 1 - 2 minutes of continuous driving,

adjacent blocks contain different traffic situations despite their overall similarity.

In particular, we always test on previously unseen parts of the route this way.
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Figure 5.12: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based velocity prediction. Confusion matrices are shown below.

By concatenating the single-frame predictions of the individual test blocks,

we obtain a full sequence of velocity and yaw rate predictions for each stream.

A frame-wise comparison to the actual velocity and yaw rate data enables us to

compute their confusion matrices, global and average accuracies, separated by

weather conditions and traffic scene representations. Looking at the graphs for

velocity prediction in Figure 5.12, we see that our CRF and WH implementations

are rather similarly affected by the different weather conditions, but the latter is

consistently superior. Limitations of this representation arise in night conditions

where the accuracies are lowest, presumably because the visual appearance of

traffic scenes at night is changed the most. The GIST representation, in contrast,

is affected differently by the weather conditions: Its accuracies are highest for

snow scenes, but they quickly degrade in more standard conditions. Particularly,

sunny weather causes the GIST performance to drop to CRF level, while our WH

implementation is able to maintain a considerably higher accuracy. We attribute

this weakness of the GIST implementation to its oriented edge filters, which are

apparently sensitive to the strong shadows that are typical of sunny conditions.
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Figure 5.13: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based yaw rate prediction. Note the asymmetric confusion matrices.

As for the yaw rate prediction results (see Figure 5.13), the graphs show

that all representations are similarly affected by the different weather conditions.

With the only exception being the average accuracy of the CRF implementation

in raining conditions, we again find that our WH implementation is performing

consistently better. Also, the GIST representation does not reach the accuracy

of our WH implementation in sunny conditions, but the difference is much less

pronounced here. Overall, our WH implementation achieves a similar perfor-

mance as the GIST representation, with the difference becoming more prominent

in the non-standard conditions like night and snow. In contrast to the results for

velocity prediction, however, the average accuracies are considerably lower than

the global accuracies, which indicates that not all yaw rate classes were learned

equally well. A closer look at the confusion matrices shows that the predictions

are generally accurate for steering in the direction in which the route was followed

(see rectangles), but not for the opposite direction. This reveals a limitation of

the HRI dataset whose streams do not provide enough training examples, hence

we expect a more balanced dataset to yield higher average accuracies as well.
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Figure 5.14: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based velocity prediction, with temporal stabilization by median filters.

5.3.3 Temporal Stabilization

While the single-frame responses are the basic output of our behavior classifiers,

we have argued in Chapter 3 to stabilize them over time for noise reduction and

to better match the driver’s actions. We therefore apply a median filter to the

discrete single-frame predictions, and also to the continuous responses from which

they are computed. As filtering introduces a temporal lag as well, practical con-

siderations impose a limit on the viable filter size. Given that human drivers

are generally subject to a reaction time of about 1 second, we thus set the size

of our filters correspondingly. Looking at the accuracy graphs for velocity pre-

diction (see Figure 5.14), we observe an increase for all methods in nearly all

conditions. The overall characteristics of the curves is nevertheless preserved,

indicating that the effect of the filters is mainly restricted to noise reduction.

Although the improvement may appear rather gentle in terms of numbers, it

considerably contributes to the visual plausibility of the resulting predictions, as

frequent oscillations are effectively suppressed. Note that, unlike our WH imple-
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Figure 5.15: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based yaw rate prediction, using the same temporal stabilization.

mentation, the GIST representation is unable to benefit from the stabilization

in sunny weather at all, which emphasizes the advantage of our method in this

condition and also supports our view that the GIST representation suffers from a

more fundamental limitation here that cannot be explained away by noise alone.

From the accuracy graphs of the stabilized yaw rate prediction (see Fig-

ure 5.15), a similar effect as in the stabilized velocity prediction can be observed:

Without changing the overall characteristics of the curves themselves, the filter-

ing improves the (global) accuracy of each method in all weather conditions. Its

effect on the average accuracies, however, may appear surprising at first: Here, it

leads to inconsistent results in that some values are slightly improved while others

are slightly decreased, and the CRF implementation is even negatively affected.

This finding indicates that the limits of the yaw rate prediction are not primarily

imposed by the presence of noise but are more deeply rooted, which is consistent

with our earlier observation that steering could not be learned equally well in

both directions. This reason is also visible in the confusion matrices, where the

dominant direction is slightly improved at the expense of the other direction.
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Figure 5.16: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based velocity prediction, with temporal stabilization and confidences.

5.3.4 Confidence Measures

Finally, we investigate into the effect of allowing the system to refrain from mak-

ing a prediction if the confidence is not high enough. As explained in Chapter 3,

we measure the confidence of a prediction as the ratio between the amplitudes of

the winning and the second-winning responses of the behavior classifiers, for each

frame. By applying a threshold to the resulting confidence values, the system

is able to detect unreliable predictions by their sub-threshold confidences, and

suppress their output. While the confidence mechanism generally improves the

prediction accuracy, as unreliable predictions are no longer counted against the

system, it also implies a certain share of effective “downtime” that impedes its

usefulness if too long. To meet the anticipated requirements of practical appli-

cations, we therefore set the confidence threshold such that 10 % rejections are

allowed here (autonomous navigation may require less whereas driver assistance

may allow for more).

As for the velocity prediction results (see Figure 5.16), allowing 10 % rejec-
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Figure 5.17: Global (top left) and average accuracies (top right) for WH-, CRF-,
and GIST-based yaw rate prediction, with temporal stabilization and confidences.

tion rate considerably improves all accuracy values beyond what was possible

by temporal stabilization, both for the global and the average accuracies. This

observation indicates that the confidence mechanism is capable of dealing with

limitations of the different methods that are not just the result of noise reduc-

tion or outlier removal. Also, we see that the overall characteristics of the graphs,

again for both types of accuracies, is still preserved by the confidence mechanism,

only the accuracies themselves are generally higher. In particular, our WH im-

plementation still performs better than the CRF implementation for all weather

conditions, and the GIST representation still excels in snow conditions while be-

ing strongly outperformed in sunny conditions (with similar results for overcast

and raining). As the accuracies of both our WH implementation and the GIST

representation are very similar for overcast and raining conditions, apart from

their large difference in sunny conditions, we conclude that our WH implemen-

tation is more robust as far as the standard weather conditions are concerned.

The results for yaw rate prediction (see Figure 5.17) show a similar effect

of the confidence mechanism on the prediction accuracies in that a considerable
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Figure 5.18: Qualitative example situations of our behavior prediction system in
action. Top: gradually slowing down, center: speeding up again, bottom: driving
a curve. All predictions (small dots) match the ground truth here (large dots).

improvement over the stabilized results of the previous section are achieved. Like

in the previous section, however, these improvements are mainly limited to the

global accuracies, without considerable benefits for the average accuracies (except

for our WH implementation in sunny and overcast weather conditions). This

result is to be expected, as neither the temporal stabilization nor the confidence-

based suppression of unreliable predictions will be able to compensate for the

general lack of training examples in the non-dominant steering direction of the

HRI streams. To convey an intuitive impression of the final behavior prediction

system in action, Figure 5.18 shows qualitative examples for different weather

conditions, obtained when using the WH implementation.
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Figure 5.19: Raw weather recognition results (left: classifier responses, right:
confusion matrix).

5.3.5 Weather Recognition

While we have considered the different weather conditions of the HRI dataset

separately from each other, in our previous behavior prediction experiments, real

applications cannot make such a rigid distinction because the weather condition

might change during the ride. We therefore investigate whether it is possible to

automatically determine which of the five weather conditions is actually present,

at any given point in time. Being a classical scene categorization task such as the

distinction between different scene types like “urban”, “rural”, and “highway”

(see [49], for example), as global properties of the images are to be distinguished,

we employ a standard GIST approach with the extension by Gaussian kernels and

overlapping image grid cells as in the filter-based traffic scene representation [84],

and represent all images of the HRI dataset by the corresponding feature vectors.

After splitting each stream into a first and a second half for training and testing,

respectively, we use the set of feature vectors corresponding to the training data

to learn image classifiers for each stream in a one-versus-all manner, sub-sampling

the feature vectors for speed such that only 1000 are used for each stream. The

classifiers are then applied to the set of feature vectors corresponding to the

test data, and the resulting classifier response curves are shown in Figure 5.19,

99



Figure 5.20: Stabilized weather recognition results (left: classifier responses, right:
confusion matrix).

left. Note that the classifier with the maximum response value is considered

the winner, for each frame, and consequently determines the predicted weather

condition at that timestep. By computing the confusion matrix and the accuracies

in the usual way as before, we obtain the results depicted in Figure 5.19, right.

Apparently, the weather condition is recognized with a high accuracy, having

almost no misclassifications for “night”, “snow”, and “raining”, and moderate

misclassifications between “overcast” and “sunny” conditions.

As the weather condition can only change gradually, at a relatively slow fre-

quency, the same considerations about temporal coherence between successive

frames are applicable, and we therefore stabilize the single-frame predictions of

the weather condition as well. While predictions of the appropriate velocity and

yaw rate should be made as fast as possible, to be useful in real driver assis-

tance or autonomous navigation applications, this is not as critical in the case of

weather recognition, and we can therefore choose a slightly larger filter size de-

spite the slightly longer temporal lag that comes with it. Specifically, we tolerate

a 5-second lag instead of the previous 1-second lag, which leads to a considerable

improvement of the weather recognition (see Figure 5.20). This information could

thus be used to arbitrate between the parallel predictors, with little additional

effort and largely transparent for the human driver.
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Chapter 6

Conclusion

In this work, we have dealt with the problem of how to achieve that a technical

system can develop a general scene understanding of its immediate environment,

such that it is capable of recognizing, interpreting, and reacting to the current

traffic situation in a basic manner, like a human driver. The purpose of such

a technical system is to generate independent predictions about the appropriate

driving behavior in a given traffic scene, separately from the actual behavior of

the human driver, which can then be compared to each other to detect and warn

the driver about potential mismatches, if not directly intervening temporarily.

To be able to handle the underlying learning problem in a technical sense,

given the continuous video data stream of a car-mounted front stereo camera

on the one hand, as well as the continuous behavior data stream of the driver

from the CAN bus of the moving vehicle on the other hand, from which typical

correlations should be extracted, we have developed a system architecture for

driving behavior prediction that is an extension of our original approach [43],

as described in Chapter 3. The basic idea is to subdivide the continuous-valued

behavior space spanned by the CAN data of interest into discrete, semantically

meaningful behavior classes, such that the resulting image categories in the vi-

sual data stream can be used to train a number of dedicated image classifiers

in a supervised way. The prediction of the appropriate driving behavior for new

images depicting traffic scenes is then obtained by the application of all image

classifiers in parallel, and determining the corresponding behavior classes in a

winner-take-all manner. In particular, the behavior classes are automatically fit-
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ted to example CAN data, such that a useful discretization of the behavior space

in the context of the intended application is achieved without having to manually

set the parameters. In addition, a property that distinguishes our system archi-

tecture for driving behavior prediction from other approaches [84] is the idea of

approximating the continuous CAN data as required by the application, rather

than considering binary quantities such as the pedal status only.

Of central importance is the way the traffic situations are visually represented

for subsequent processing in our behavior prediction architecture. This is because

the behavior data from the CAN bus actually spans a relatively low-dimensional

space of interest that can be handled well by the aforementioned sub-division

into behavior classes, whereas the visual domain is of much higher complexity.

In particular, our focus on urban traffic situations rather than highway or off-

road environments strongly contributes to the difficulty of the learning problem,

since these are generally more densely populated by other traffic participants,

composed of a wide variety of different objects or scene elements, and exhibit

higher fluctuations of different traffic situations with corresponding implications

for the behavioral side, which is the reason why we have placed emphasis on the

traffic scene representations in Chapter 4. Our approach consists in a thorough

decomposition of each traffic scene into its constituent semantic entities, which

is achieved by training an additional range of object classifiers. The underlying

learning process again relies on training data, which is composed of manually

annotated example images of traffic scenes that indicate the different objects by

means of labels, and is therefore supervised as well. Unlike the behavior classifiers,

which operate on entire images, these object classifiers operate on patches that

are densely sampled from an image. While our original CRF implementation [43]

was built upon the LM filter bank, with subsequent integration of the classifier

responses in a state-of-the-art Conditional Random Field and thus operating at

the level of segmentations, our current WH implementation is an extension that

operates on the continuous-valued response maps of the object classifiers, which

are now trained on efficient Walsh-Hadamard features. While the underlying

techniques of these traffic scene representations are well-known state-of-the-art

methods, and not a part of our own contribution, investigating their usefulness

for driving behavior prediction has not been done before, and our qualitative
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comparison to the extended GIST representation as used by the most related

approach to driving behavior prediction [84] has also not been conducted so far.

At the end of this thesis work, we have put the proposed techniques and

frameworks to the test, evaluating them quantitatively under realistic conditions.

In particular, we have conducted a detailed analysis of the accuracy with which

the appropriate driving behavior can be predicted by our proposed system archi-

tecture from Chapter 3, directly comparing the predicted behavior classes to the

correct ones as given by the ground truth CAN data of a human driver. In this

context, we have also conducted a comparative evaluation of our two different

implementations for the semantic object-level representation, namely, the CRF

implementation and the WH implementation. Our experiments show that the

latter consistently outperforms the former, which we attribute to the gray-world

normalization of the individual color channels that arguably contributes to the

robustness against illumination and color fluctuations, in conjunction with the

systematic sampling of overlapping image patches at each location in the field

of view. Moreover, the advantages of the CRF implementation in that a visu-

ally plausible segmentation of the traffic scene can be obtained did not outweigh

the advantage of the WH implementation in that uncertainty is being preserved

in the feature vectors, and our direct comparison of the two also suggests that

the Walsh-Hadamard filter bank appears to be better than the LM filter bank,

in this context. Importantly, we have always compared the prediction accu-

racies of our own implementations for the semantic object-level representation

to the best traffic scene representation for driving behavior prediction currently

used, which relies on raw image filter responses and is an extended version of the

GIST descriptor [84]. Systematically evaluating the prediction accuracies of these

methods in a variety of different weather conditions that are often encountered

in real-world environments, we found our WH implementation to be more ro-

bust than the GIST-based representation, when considering velocity predictions,

as sunny weather conditions led to a significant decrease in prediction accuracy

for the latter while ours was able to maintain a high accuracy. For yaw rate

prediction, both performed approximately equally well for standard weather con-

ditions, and only when considering more extreme conditions such as night and

snow, the WH implementation did not keep up with the GIST representation,
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which we attribute to the fact that our training data [14] did not contain any

examples of such conditions. Importantly, we have also shown that temporal sta-

bilization and the introduction of a confidence-based reject option considerably

improves the prediction accuracy and are therefore useful for practical applica-

tions. Neither these practical considerations nor the quantitative comparison of

different traffic scene representations for driving behavior prediction have been

conducted before, and our systematic evaluation of different weather conditions

is also unparalleled in the respective literature. It is our hope that future work

on this topic be evaluated in a similar way, and that our performance analysis on

public datasets can contribute to the formation of an evaluation standard that

goes beyond the current practice of testing on non-accessible streams, to make

the results comparable and thus advance the progress on this important problem.

Future work should address the explicit modeling of small but behaviorally

relevant symbolic objects, beyond lane markings as considered in our work. Im-

portant examples are traffic signs and traffic lights, which need to be further

distinguished by their respective types or states, as these have different semantic

meanings. Specialized features may also be needed for their reliable detection,

unlike standard filter banks. The incorporation of temporal dependencies is an-

other important extension that should be investigated further. Such dependencies

arise in the context of traffic signs, for example, which are valid long after leaving

the field of view, but are also necessary to account for the inertia of the ego-

vehicle when making predictions about the appropriate driving behavior, as the

car always requires some time to change its current physical state. By further an-

alyzing the behavior prediction performance in dependence of prototypical traffic

situations, such as crossings, junctions, stop lights, construction sites, or traffic

jams among others, more insight could be gained into which of these situations

may require more specific techniques to be handled correctly. For example, our

proposed approach explicitly focuses on learning typical reactions to frequently

encountered situations, while construction sites, for example, are examples of non-

standard situations that nevertheless must be dealt with. With these possibilities

for future research in mind, we are convinced that our vision-based approach to

driving behavior prediction by direct correlation learning will prove to be useful

for serving as a fundamental building block.
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