

7ICOM

International Conference on Multimodality

June 2014

Caro Kirchhof Bielefeld University Germany ckirchhof@uni-bielefeld.de

Asynchrony of multimodal signals in real life

- thunder & lightning
- dubbing
- subtitles in movies or video games
- delays in online streaming or on Skype/facetime

Asynchrony of multimodal signals in research

- thunder & lightningdubbing
- subtitles in movies or video games
 delays in online
 - streaming or on Skype/facetime

- > psychophysics
- > phonetics & psycholinguistics
- > psycholinguistics
- > phonetics & psycholinguistics

Perception of asynchrony – audiovisual integration (AVI)

- thunder & lightningdubbing
- subtitles in movies or video games
 delays in online
 - streaming or on Skype/facetime

- > cause & effect
- irritating to inacceptable
- distracting to confusing
- irritating to inacceptable

Asynchrony: speech-lips vs. speech-gesture

• McGurk effect:

- "fused percepts" (McGurk 1976)
- temporal window of AVI:
 - lips up to 500ms before speech (Massaro et al. 1996)
 - speech up to 30 ms before lips (van Wassenhove et al. 2007)

- little research (yet)
- synchrony is essential to production (e.g. McNeill 2005)
- visual 160-360 ms before speech acceptable (Habets et al. 2011)

Do multimodal messages get the message across when the channels are not in synchrony?

speech + lips

= yes (within a small temporal window)

speech + gestures = ?

Study 1: Perceptual judgment study

gesture first

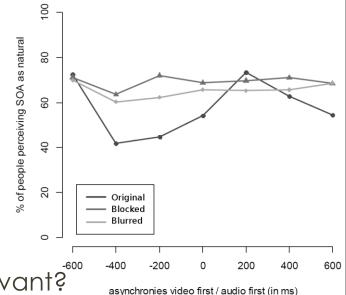
-400

-200

0

-600

- 24 clips of natural speech
- AV-desynchronization:



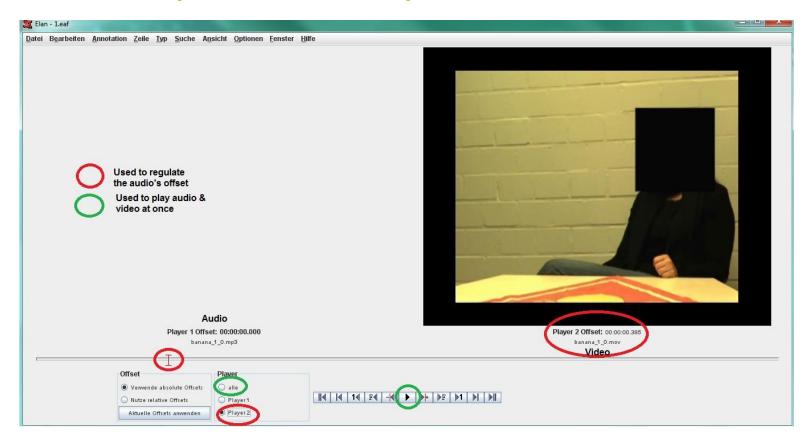
• 618 participants

- visible: within known AVI window
- obscured/invisible: >60% of people accepted
 -600 to +600ms
 for head-obscured conditions (p<.05)

Is speech-gesture synchrony less relevant?

speech first

+400


+200

+600

7

But: Do the windows **accepted** differ from those **reproduced**?

Studies 2 & 3: User-specified synchronization

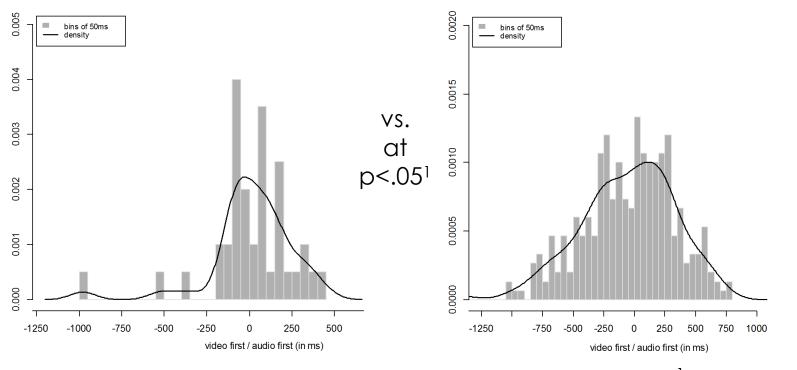
Study 2

- 18 stimuli:
 - 15 iconic gestures from Study 1 w/ blob with
 - 5 pseudorandomized initial asynchronies (277-1034ms)
 - Baseline: 3 "physical events" (hammer & snap) w/ 902ms video advance
- a slider-interface (ELAN)
- 20 participants (mean age 25, 6 male)
- > 300 manipulated stimuli

Study 2 - results

physical events

audio first: 21/40
video first: 19/40


- range: (video first)
 -978 ms to +442 ms (audio first)
- mean: +14 ms (stddev. 246)

gestures

- audio first: 155/300
- video first: 153/300
- range: (gesture first)
 -1778 ms to +754 ms (speech first)
- mean: -72 ms (stddev. 422)

Study 2 - results physical

^Iright-tailed t-test

Study 3 – follow-up to study 2

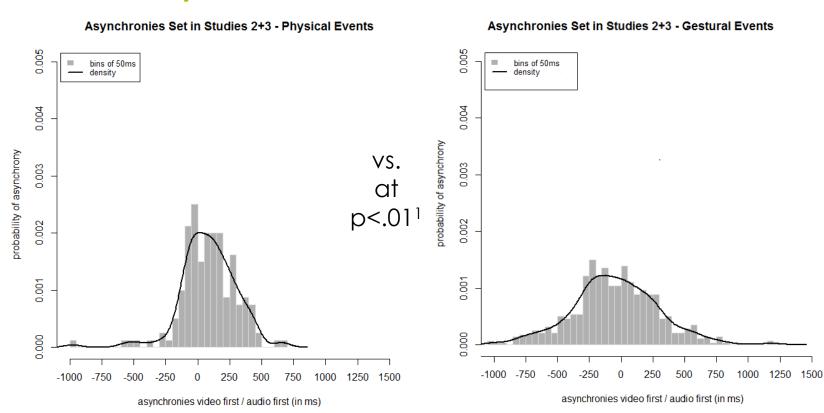
- 19 stimuli:
 - gestures from Study 1 w/ blob:
 - 6 iconic, 4 deictic, 3 emblematic
 - with 5 pseudorandomized initial asynchronies (277-1034ms)
 - 6 "physical events" (book, clap, glass, keyboard, knock, champagne)

• with 902ms video advance

23 participants (mean age 25, 12 male)
437 manipulated stimuli

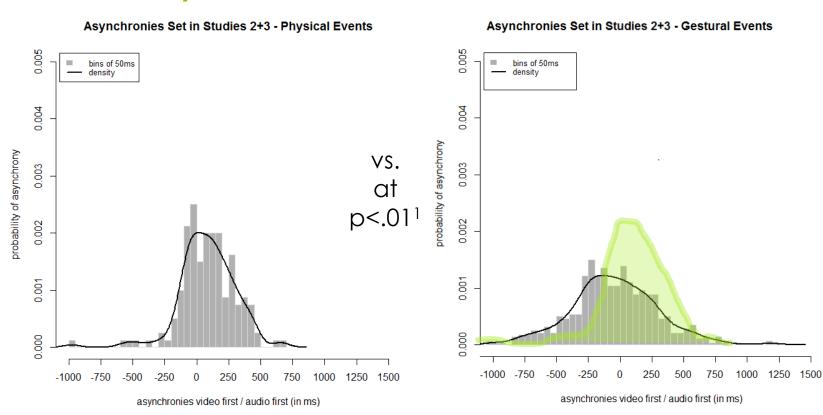
Study 2+3 - results

physical events

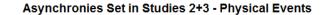

audio first: 21/40
video first: 19/40

- range: (video first)
 -978 ms to +672 ms (audio first)
- mean: +86 (stddev. 214.4)

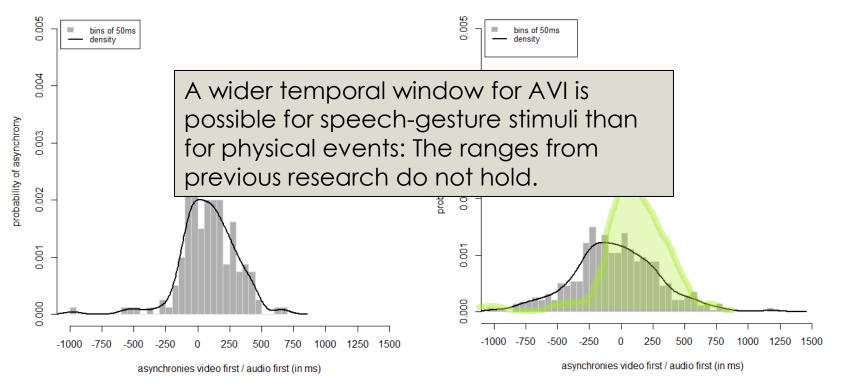
gestures


- audio first: 155/300
- video first: 153/300
- range: (gesture first)
 -1908 ms to +1216 ms (speech first)
- mean: -54.5 (stddev. 370.7)

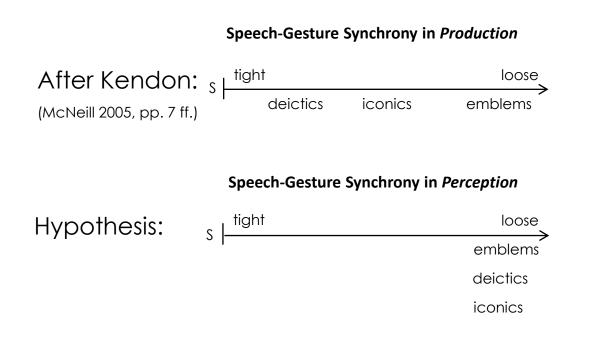
Study 2+3 - results

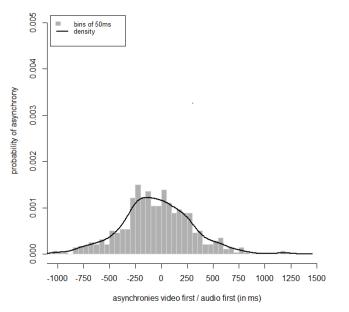

¹right-tailed t-test

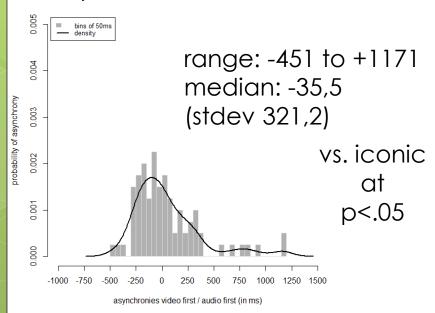
Study 2+3 - results

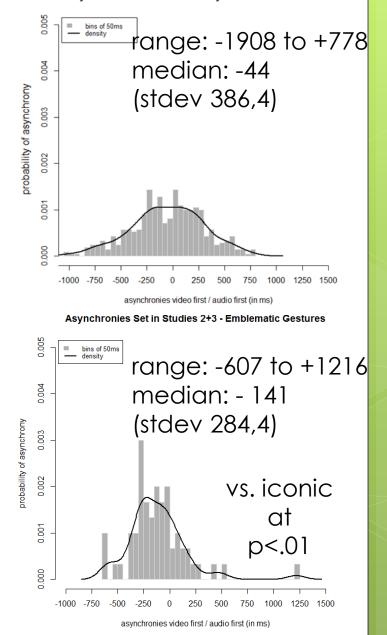


¹right-tailed t-test


Study 2+3 - results

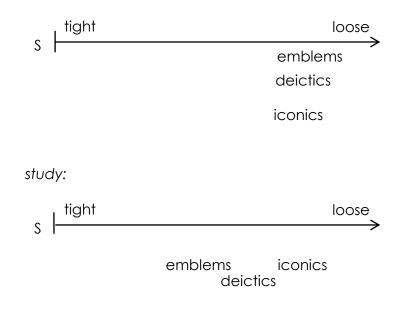

Asynchronies Set in Studies 2+3 - Gestural Events


Continua of Speech-Gesture Production & Perception

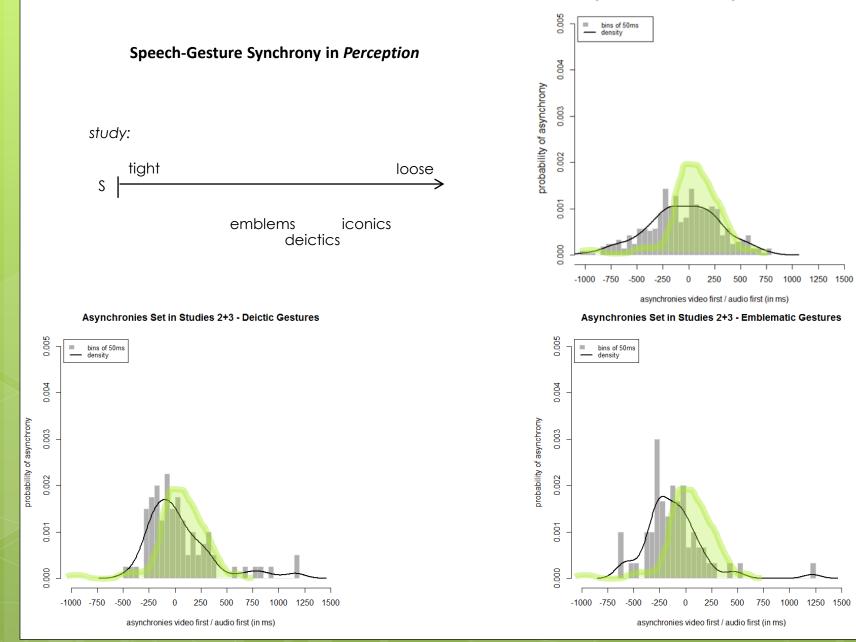

Asynchronies Set in Studies 2+3 - Gestural Events

Asynchronies Set in Studies 2+3 - Deictic Gestures

Asynchronies Set in Slider Study 1 & 2 - Iconic Gestures


Different gestures, different synchrony ties

- iconics: wider, flatter tolerance
- deictics: preferred start before speech, still looser than physical events
- emblems: even more preferred before speech


20

Speech-Gesture Synchrony in Perception

hypothesis:

Asynchronies Set in Slider Study 1 & 2 - Iconic Gestures

22

Findings

- 1. Speech-gesture synchrony is tighter in production than necessary for perception.
- 2. Synchronization for emblems is similarly critical as for deictics.
- 3. Synchronization for deictics & emblems is more critical than for iconics.

Do multimodal messages get the message across when the channels are not in synchrony?

speech + lips

= yes (within a small temporal window)

speech + gestures

= yes (within larger temporal windows)

Questions or comments?

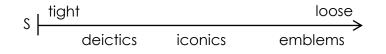
Speak now or contact me later:

ckirchhof@uni-bielefeld.de

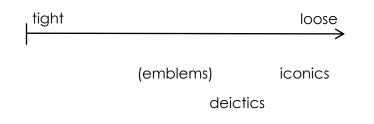
Discussion

Caro Kirchhof Bielefeld University Desynchronized speech-gesture signals still get the message across

• The hypothesis that **gestures in general** need only be synchronized loosely with speech for perception has been **falsified**. Speech-Gesture Synchrony in Perception



- Explanation:
 - **Deictic** gestures **correspond** to deictic POS to which they are semantically/temporally bound. Their phases are short, the temporal window for AVI is small.
 - **Emblematic** gestures are **redundant** to certain POS to which they are semantically/temporally bound. Their phases are short, the temporal window for AVI is slightly larger.
 - Iconic gestures complement utterances. They do not target specific POS.


Their phases are flexible in duration, the temporal window for AVI is only bound by the duration of the utterance.

Alternative Hypothesis

• In **production**, the **gesture stroke** is synchronized with the speech it corresponds to semantically (cf. *Kendon Continuum*, McNeill 2005, pp. 7 ff.):

• For perception, the duration of the gesture phrase is synchronized with the speech it corresponds to semantically.

Sources

- De Ruiter, J. (2000). The production of gesture and speech. In McNeill, D. (Ed.), Language and Gesture (pp. 284-311). Cambridge, UK: CUP.
- Habets, B., Kita, S., Shao, .Z, Özyürek, A., & Hagoort, P. (2011). The role of synchrony and ambiguity in speech-gesture integration during comprehension. *Journal of Cognitive Neuroscience*, 23(8), 1845-54.
- Kendon, A. (2004). Gesture: Visible Action as Utterance. Cambridge, UK: CUP.
- Kirchhof, C. (2011). So What's Your Affiliation With Gesture? Proceedings of GeSpIn, 5-7 Sep 2011, Bielefeld, Germany.
- Kirchhof, C. (2012). On the audiovisual integration of speech and gesture. *Presented at the ISGS 2012*, 24-27 July 2012, Lund, Sweden.
- Massaro, D.W., Cohen, M.M.,& Smeele, P.M.T. (1996). Perception of Asynchronous and Conflicting Visual and Auditory Speech. Journal of the Acoustical Society of America, 100, 1777-1786.
- Mc Neill, D. (2005). Gesture and thought. Chicago, IL: University of Chicago Press.
- Özyürek, A., Willems, R. M., Kita, S., & Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. *Journal of Cognitive Neuroscience*, 19(4), 605-616.
- Van Wassenhove V., Grant K. W., & Poeppel D. (2007). Temporal window of integration in auditory-visual speech perception. *Neuropsychologia*, 45, 598–607.
- Vatakis, A., Navarra, J., Soto-Faraco, S., & Spence, C. (2008). Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. *Experimental Brain Research*, 185(3), 521-9.