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Abstract

Background: With the advent of low cost, fast sequencing technologies metagenomic analyses are made possible.
The large data volumes gathered by these techniques and the unpredictable diversity captured in them are still,
however, a challenge for computational biology.

Results: In this paper we address the problem of rapid taxonomic assignment with small and adaptive data models
(< 5 MB) and present the accelerated k-mer explorer (AKE). Acceleration in AKE’s taxonomic assignments is achieved
by a special machine learning architecture, which is well suited to model data collections that are intrinsically
hierarchical. We report classification accuracy reasonably well for ranks down to order, observed on a study on real
world data (Acid Mine Drainage, Cow Rumen).

Conclusion: We show that the execution time of this approach is orders of magnitude shorter than competitive
approaches and that accuracy is comparable. The tool is presented to the public as a web application (url: https://ani.
cebitec.uni-bielefeld.de/ake/, username: bmc, password: bmcbioinfo).
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Background
Metagenomics is the direct sequencing and analysis of
environmental samples. Metagenomic studies are used in
a variety of fields including, e.g. bio-medical studies [1]
and ecological diversity studies [2]. As a first step after
sequencing taxonomic composition is estimated and tax-
onomic categories are assigned to the data. This is a
challenging problem due to sequence length and complex-
ity of the data captured [2]. For analysis of the taxonomic
composition the analysis of 16S rRNA sequences is a
prominent step, see [3,4]. This imposed some limitations,
e.g. the copy number can vary by an order of magni-
tude [5] and therefore we will focus on wholemetagenome
analysis. Multiple tools exist that are able to predict
the class of a genomic sample sequence, most of them
using alignments (e.g. Megan4 [6], (Web)Carma3 [7,8],
MG-Rast [9]). As these can be very time consuming,
alternative approaches based on profile features have
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been proposed (Phylopythia(S) [10,11], NBC [12], TAC-
ELM [13], TAXSOM [14], PhymmBL [15], Kraken [16],
taxy [17]). Sequence data are transformed to profile fea-
tures, i.e. feature vectors that consist of various measure-
ments describing the nucleic composition of the sequence.
Frequently employed characteristics are G/C content [18]
and k-mer occurrence [19,20]. The speedup of these tech-
niques is traded in for a loss of accuracy, compared to
the alignment-based methods. Nevertheless, it has been
shown that k-mer profiles are distinctive enough for bin-
ning in metagenomic studies and for classification up
to certain levels in the tree of life [21]. For benchmark-
ing we compared AKE with Phylopythia(S) and NBC.
Phylopythia classifies profile features with a SVM-based
classifier architecture. The web-based version is called
PhylopythiaS. It uses two differentmodels, either a generic
model for classification or a sample specific one, which
can be generated by the user prior to classification. We
benchmarked against the parameterless generic model.
NBC implements the naive Bayes classifier for taxonomic
assignment as a web application. The k-mer length as
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well as the genomes to match against can be chosen. We
chose the Bacteria/Archea genomes to match against and
a k-mer length of 6 for benchmarking.
This paper presents AKE (Accelerated k-mer Explo-

ration web-tool) a computational approach to rapid taxo-
nomic assignment for an immediate response to new data.
A rapid taxonomic assignment can be of interest, when
data sets from lots of samples are to be analyzed immedi-
ately or new data sets are generated rapidly by filtering and
fusion. A result of AKE is a rapid taxonomic assignment
presented as a web-based, interactive and dynamic visu-
alization. AKEs computational speed is achieved by (1)
using refined k-mer profile features [21], (2) a data-driven,
i.e. learned, hierarchical and descriptive model, which
provides the basis for classification and visualization, and
(3) parallel computing. This work is based on a previous
paper by Martin et al. [21] sharing the features and bin-
ning method, namely the H2SOM. However, the classifier
architecture is different and Martin et al. do not provide a
web interface for visualization of results. Furthermore, the
execution speed is increased by using parallelization and a
faster implementation. To boost classification accuracy a
rejection class is introduced to the model containing non-
specific profiles. This results in a web accessible system
for low performance computers that features an imme-
diate first visual inspection of new data, i.e. some data
might be rejected if it is unspecific. The accuracy is com-
parable to similar approaches but with a faster execution
time. The tool is publicly available as a web application
(https://ani.cebitec.uni-bielefeld.de/ake/, username: bmc,
pw: bmcbioinfo), which facilitates the ease of use. This
releases the users of the burden of resourceful operations
on their own systems, e.g. analyses on small-scale com-
puters in laboratories are made possible. Furthermore, no
software packages have to be downloaded and installed.
The only requirement is an up-to-date web-browser
(≈ not older than 2 years).
Recent reports of IMG4 [[22], progress report (http://

img.jgi.doe.gov/w/doc/releaseNotes.pdf)] show a rapidly
growing amount of available metagenomes. Likewise, the
PubMed hits for the term “metagenomics” grewmassively
in the latter years, showing the importance of the field.
The following Methods section describes the features,

methods and data used in this study and how these are
used to build a classification system for metagenomic
data. In the Results section we present the performance on
two real world data sets, compared to similar approaches.
Furthermore, the differences in runtime are reported. The
Conclusion sums up the results of this study.

Methods
As can be seen in Figure 1 AKE consists of two modules:
taxonomic assignment (TA) and modeling (M). In the
M-module, a reference set of genome sequences �ref = {S(ζ )}

is used to learn a model that describes the function for
assignment of taxonomic classes to sequence reads S(ζ )

based on a read’s profile feature x(ζ ). For assigning new
sequence data�new{S(ξ)}with the TA-module, these reads
are also represented by profile features x(ξ) and those
are assigned to taxonomic classes. The composition of all
assignments of �new{S(ξ)} are visualized in a dynamic and
interactive web-tool.

k-mer features
For using the sequences S(ζ )ζ = 0, . . . , n with a mathe-
matical model like the H2SOM, features x(ζ )ζ = 0, . . . , n
have to be computed for the sequence reads. For this pur-
pose k-mer profiles with three different normalizations
are used and referred to as

[
x(ζ )

tf , x(ζ )

tfti , x
(ζ )

oligo

]
. They are

listed here with basic explanations, further information
can be found in [21].
A k-mer κj(k,�) is a word of length k on an alphabet �.

In this case � = {a, c, g, t} is the DNA alphabet and there-
fore 4k k-mers κj(j=0,...,4k−1)(k,�) exist. Let t(ζ )

j be the
number of occurrences of the k-mer κj(k,�) in sequence
S(ζ ), Cκ(κj(k,�) a function counting these occurrences
and S′ a substring of S matching the specified k-mer.

t(ζ )
j = Cκ

(
κj(k,�), S(ζ )

)
with

Cκ

(
κj(k,�), S(ζ )

)
=

∣∣∣{S′ ∈ S(ζ )|S′ = κj(k,�)
}∣∣∣ (1)

A k-mer-profile K (ζ )(k,�) ∈ N
4k is defined as

K (ζ )(k,�) =
(
t(ζ )
0 , t(ζ )

1 , . . . , t(ζ )

4k−1

)
(2)

For the sake of compactness we omit the term (k,�)

for K (ζ )(k,�) and κj(k,�) in the following text. The term
frequency features (tf ) are gained by normalizing every
k-mer profile to unit length.

x(ζ )

tf = K (ζ )∥∥K (ζ )
∥∥ (3)

By taking into account the abundance of a certain
k-mer in all k-mer-profiles we gain the term frequency
term importance (tfti) weighted features. Let tj = ∑

ζ

t(ζ )
j

denote the sum of frequencies of k-mer κj in all k-mer-

profiles in �ref. Let t(ζ ) =
4k−1∑
0

t(ζ )
j be the sum of all

frequencies for a sequence S(ζ ). Therefore, we compute
the tfti-weighted features for every k-mer profile as:

x(ζ )

tfti =
⎛
⎝ t(ζ )

0
t0t(ζ )

,
t(ζ )
1

t1t(ζ )
, . . . ,

t(ζ )

4k−1
t4k−1t(ζ )

⎞
⎠ (4)
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Figure 1Workflow of AKE. Blue boxes are data, whereas green ones are applications.

To reduce a bias towards frequent k-mers the vectors
are normalized to unit length.
Considering the over- and under-representation of

k-mers in one sequence compared to the others we com-
pute the oligo features (oligo). Therefore, the occurrence
of each k-mer is computed and the expected occurrence
of it is estimated. Let

p(ζ )(η) = 1
|S(ζ )|C�(η) with η ∈ �,

C�

(
η, S(ζ )

)
=

∣∣∣{η′ ∈ S(ζ )|η′ = η
}∣∣∣

be the probability to observe a certain nucleotide η in
a sequence S(ζ ) with a sequence length |S(ζ )| and let η′
be a nucleotide in the sequence S(ζ ) matching a speci-

fied nucleotide. Let E(ζ )(κj) ≈ |S(ζ )|
k−1∏
l=0

p(ζ )(κj,l) (with κj,l

referring to the l-th symbol in κj) be an estimate for the
occurrence of a k-mer κj in a sequence S(ζ ). The contrast
of expectation and observation is

g(ζ )(κj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if K (ζ )
j = 0

K (ζ )
j

E(ζ )(κj)
, if K (ζ )

j > E(ζ )(κj)

−E(ζ )(κj)

K (ζ )
j

, else

The oligo features are computed for each k-mer as

x(ζ )

oligo =
(
g(ζ )(κ0), g(ζ )(κ1), . . . , g(ζ )

(
κ4k−1

))
(5)

The H2SOM classifier
For creating a descriptive model of the k-mers a Hyper-
bolic Self Organizing Map is used. The Self Organizing
Map is a neural network proposed by Teuvo Kohonen [23].

Many variants have been proposed since, but all share the
basic setup that consists of a set of neurons (ui, zi)i=1...I
that are arranged in a grid with zi being the grid coordi-
nate and ui being the attached neural unit also called the
prototype. The architecture of the grid differs by the type
applied.
In the Hyperbolic SOM (HSOM) [24] the algorithm is

defined in non-euclidean space. The Hyperbolic Hierar-
chical SOM (H2SOM) [25] as used in this paper intro-
duces a hierarchical grid structure to the hyperbolic
version.
In metagenomics, the H2SOM has been applied already

for visual exploration and binning [21]. In [26] it was
shown, that clustering genome data with a HSOM corre-
lates more to the tree-of-life structure than the standard
SOM clustering.
The network is built by placing a central neuron and

spawning its s − 1 children around it using the Möbius
transformation. This is done recursively for every neural
unit until all have s neighbors and the maximum number
of rings r is reached. Hereby s − 3 neighbors are placed as
children, 2 as siblings and 1 already exists as parent. For
further information refer to [25] or see Additional file 1.
An example of a H2SOM grid with two rings and seven
neighbors (s = 7, r = 2) is shown in Figure 2.
The learning of a non-euclidean SOM is done equiva-

lently to an euclidean SOM using a reference set �ref =
{x(ζ )}, but with a refined neighborhood function (Eq. 6)
taking the change from euclidean to hyperbolic space into
account.

h(i, i′) = exp

⎛
⎝−

arctan
(∣∣∣ zi−zi′

1−z̄izi′

∣∣∣)
σ 2(t)

⎞
⎠. (6)
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Figure 2 Architecture of H2SOM. The construction of a H2SOM grid with s = 7 and r = 2. A Möbius transform is used in a recursive way to create
a regular shaped hierarchical grid in hyperbolic space.

The number of neural units in the grid of a H2SOM
grows exponentially with the number of rings r. This leads
to a more trustworthy mapping but dramatically increases
the time required for the search for the best matching
unit (BMU) during training. Leveraging the hierarchical
structure of the grid a beam search is applied to approx-
imate the global BMU in each training step. The search
starts with the central neural unit as the initial BMU. For a
beam width of w = 1 it continues by recursively choosing
the BMU among the children of the last winning neural
unit until it reaches the current periphery of the grid. The
BMU determined for the last ring is an approximation of
the global BMU. For values of w > 1 searching is done
equivalently, but the children of w different neural units
are searched for the BMU. It has been shown in [25] that
this strategy accelerates the training significantly while
staying close to or even surpassing the performance using
global search.
The H2SOM depends on parameters that need to be

optimized. These are the number of rings r, the spread
factor s, the neighborhood adaption modifier n and the
learning rate ε. The algorithm is very robust against
changes in ε and n but the parameters determining
size and architecture (r, s) are important. By employ-
ing cross validation the parameters r = 5 and s = 8
were determined to create a good descriptive model (see
Additional file 2).

Taxonomic labeling of unsupervised neural networks
After training the H2SOM neural units are linked to
semantics, i.e. taxonomic categories. To this end, the
labeled training data �ref

{(
x(ζ ), L(ζ )

)}
, where �ref is a set

of features with their respective labels, are mapped to the
H2SOM. This is done with a labeling function L(ui) that
is defined on the Voronoi cell V (ui) of the training data
for each prototype

V (ui) : V (ui) =
{
x(ζ ) ∈ �ref|d

(
x(ζ ),ui

)
< d

(
x(ζ ),uj

)
, ∀i �= j

}

using a given metric d (in our case the euclidean metric).
We propose two approaches: majority voting Lmaj and
purity voting Lpur defined as

Lmaj(ui) = argmax
l

(
(V (ui), l)) with


(V (ui), l) =
∣∣∣{x(ζ ) ∈ V (ui)|L(ζ ) = l

}∣∣∣ (7)

and

Lpur(ui) =
{
Lmaj(ui), if 
(V (ui),Lmaj(ui)) > α

R, else ,

(8)

withR being a special label namely the rejection class and
α a threshold value.

Classification rules
AH2SOM labeled in one of the above ways can be used for
classification. To assign a sample ξ (a sequence), the pro-
file feature vector x(ξ) is computed, employing the same
k-mer normalization strategy as used for labeling the
model. For assignment a particular function C

(
x(ξ)

)
is chosen from

[
Cnn

(
x(ξ)

)
, Cthresh

(
x(ξ)

)
, Cnbrs

(
x(ξ)

)]
,

defined in the following.
The most straightforward function is to assign x(ξ) to

the label L(uj), which is assigned to the nearest neighbor
uj in the model.

Cnn
(
xξ

) = L(uj) with j =
(
argmin

i
d

(
x(ξ),ui

))
(9)

Furthermore, the distance function d
(
x(ξ),uj

)
can be

seen as a certainty measure that the BMU uj is the
correct association of x(ξ). Therefore, we define an
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arbitrary threshold β beyond which the association is
assumed to be uncertain. The value of β is empirically
determined.

Cthresh
(
x(ξ)

)

=
{
Cnn

(
x(ξ)

)
, if d

(
x(ξ),uj

)
< β with j = argmin

i
d

(
x(ξ),ui

)
R, else

(10)

The previous strategies determine the label in aWinner-
Takes-All (WTA) manner. But the H2SOM has the
property that neighboring neural units, i.e. grid neigh-
bors, share common properties, usually referred to as
“neighborhood preservation”. The third version uses this
feature to reduce the number of false positive classi-
fications. To this end, the neighborhood of a BMU is
evaluated to smooth out unlikely assignments with a

large BMU distance and “taxonomic disagreement” to the
neighborhood.

Cnbrs
(
xξ

)

=

⎧⎪⎨
⎪⎩

L(uj+1), if d
(
x(ξ),uj+1

)+d
(
x(ξ),uj−1

)
<3 ∗ d

(
x(ξ),uj

)∧
L(uj−1) = L(uj+1) with j = argmin

i
d
(
x(ξ),ui

)
Cnn

(
x(ξ)

)
, else

(11)

For training sequences exceeding 4 kb from the
NCBI full genome database (bacteria/virus, 2014/04/13)
were used. A list of GI numbers (http://www.ncbi.nlm.
nih.gov/Class/FieldGuide/glossary.html#GI) is provided
(see Additional file 3). Out of these sequence data four
different data sets were generated for model building.
Therefore, the sequences S(ζ ) were cut at different length(
15 kb, 4 kb, |S(ζ )|

2 , |S(ζ )|
4

)
.

Figure 3 Results of the AMD study. Comparison of AKE/NBC/PhylopythiaS with a generic model/PhylopythiaS with a sample specific model. Data
for NBC/PhylopythiaS derived from [11].

(http://www.ncbi.nlm.nih.gov/Class/FieldGuide/glossary.html#GI)
(http://www.ncbi.nlm.nih.gov/Class/FieldGuide/glossary.html#GI)


Langenkämper et al. BMC Bioinformatics  (2014) 15:384 Page 6 of 11

Results and discussion
For parameter optimization and model evaluation a cross
validation study (see Additional file 2) was done. Themost
promising k-mer length was determined to be k = 4.
For larger values of k the classification accuracy increased
partly, however a decrease in speed can be observed. The
two labeling strategies (Eqs. 7, 8), for building the taxo-
nomic model, combined with the three different classifi-
cation algorithms (Eqs. 9, 10, 11) were applied. A trade-off
between correctness of assignment and number of rejec-
tions was observed for all six variants. A good balance
between assignment correctness, number of rejections
and execution speed was determined using purity vot-
ing (Eq. 8) for model construction and nearest neighbor
selection (Eq. 9) for taxonomic assignment.
Thus, for the following real world data set examples,

purity voting with a threshold of α = 0.8 for labeling

(Eq. 8) and the nearest neighbor strategy (Eq. 9) for
assignment were the most promising settings compared
to the other variants. For the H2SOM algorithm an archi-
tecture with r = 5 rings and s = 8 neighbors was
chosen.

Acid mine drainage
The Acid Mine Drainage data set [27] was taken at
Iron Mountain in California. The community is com-
prised of five high abundant species namely Ferroplasma
Types I and II, a Thermoplasmatales species, all of phy-
lum Euryarchaeota, and Leptospirillum sp. Group I and
II of phylum Nitrospirae. The data has been received
from DOE Joint Genome Institute (http://img.jgi.doe.gov
(taxon 2001200000)) along with its taxonomic affiliation
and is build of 1183 scaffolds of approximately 10 Mb of
sequence information.

Figure 4 Results of cow rumen bins study. Comparison of AKE/NBC/PhylopythiaS with a generic model.

http://img.jgi.doe.gov
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Table 1 Execution times of AKE

Data set #Sequences Megabases

Runtime Runtime
(k-mers) (Assignment)

in s in s

AMD 1183 10.83 0.63 0.43

Cow rumen
(bins)

466 34.14 0.71 0.21

Cow rumen
(scaffolds)

26042 568.59 13.68 10.4

Measures for typical metagenome data sets.

We compared AKE with some similar approaches
including NBC [12] and PhyloPythiaS [11] with generic
and sample specific model. All results were obtained using
a model derived from the 15 Kb data set of NCBI genomes
mentioned above. We did not explore the possibility to
generate a sample specific model as described in [11], but
expect it to have a similar positive influence as in the cited
study. When using the web service the parameters given
above are applied.
The high abundant species are Thermoplasmatales

archaeon Gpl (410), Leptospirillum sp. Group II (70), Lep-
tospirillum sp. Group III (474), Ferroplasma acidarmanus
Type I (170), Ferroplasma acidarmanus Type II (59).
When looking at the results (Figure 3) we see that AKE
outperforms NBC and PhylopythiaS (generic model). But
it is outperformed by PhylopythiaS employing a sample
specific model.

Cow rumen
The Cow Rumen data set consists of a community
taken from the deconstruction process of switchgrass

in a cow rumen [28]. The cited study could iden-
tify 15 draft genomes with completeness between 60%
and 93%. On the phylogenetic level of order these
samples are comprised of Spirochaetales, Clostridiales,
Bacteroidales and Myxococcales. Since a gold standard
for all scaffolds does not exist, this reference compo-
sition (see Figure 4d)) has to be taken as a rough
estimate. The data has been received from NERSC
Science Gateways (http://portal.nersc.gov/project/jgimg/
CowRumenRawData/submission/). An assignment for
the genomic bins (cow_rumen_genome_bins.tar.gz) as
well as for the scaffolds (cow_rumen_fragmented_velvet_
assembly_scaffolds.fas.gz) is provided.We compared Phy-
lopythiaS (generic model) and NBC with AKE. When
looking at the results (Figure 4) we see that AKE outper-
forms NBC and predicts slightly better than PhylopythiaS.

Online resources
Please note that further classification results are provided
online within AKE. These include the results of the AMD
and cow rumen data sets with classification down to order
as well as a reference composition for these data sets visu-
alized with AKE. Furthermore, the analysis of simulated
data sets [29] is provided.

Execution times
The application is written in Python using a C extension
for fast computation. The authors implemented the k-mer
counting as well as the H2SOM. The execution times are
measured using Python’s time() function. All experiments
were repeated ten times and the mean value of this is
stated below. The machine used, is the same web server

Figure 5 Overview of AKE. a) Login as well as registration and password retrieval can be done here. b) Landing Page of AKE: Here all important
pages are accessible directly. 1) Create a Project 2) Browse Projects 3) Browse Models 4) Logout c) Project View: Basic project management features
are provided.

(http://portal.nersc.gov/project/jgimg/CowRumenRawData/submission/)
(http://portal.nersc.gov/project/jgimg/CowRumenRawData/submission/)
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Figure 6 AKE results view with coloration options. a) The entities, i.e. taxonomic categories are colorized according to the position on the disc.
b) Every entity is colorized in a predefined way.

that serves the results for the web interface. It is a virtual
machine running two Intel Xeon E5450 CPUs at 3 GHz
with 32 GBmain memory operated by Sun Solaris 10. The
application is multi-threaded using 4 threads.
The execution times are dominated by the counting of

k-mers, which is heavily influenced by I/O load on the sys-
tem (see Table 1). For faster loading all data resides on a
tmpfs filesystem (a RAMdisk like filesystem). It is to note
that the times were measured with a standalone non-CGI
application. A little overhead using CGI can be expected
as well as some time for uploading of data.

The web-application
The web-interface is accessible at www.ani.cebitec.uni-
bielefeld.de/ake. The website is protected by a login

screen (Figure 5a). A login with password can be cho-
sen on this page. The browsers, which are known to
work properly with AKE are indicated at the bottom of
the page. After login the user is redirected to the land-
ing page (Figure 5b) where every subpage is accessible.
A basic project management – creation, removal, stor-
age of basic information (date, last access and model
selection) for the creation of the project – is supported
(Figure 5c).
During project creation two modes of operation can be

chosen. The preview mode is for receiving a fast result
for data sets smaller than 100 MB. Here the results are
computed immediately. For larger files, which need more
computation time, the classification mode can be used.
The computation is done on a powerful machine in this

Figure 7 Zooming in of AKE results view.When clicking on one category like a) the disc is transformed. The activated category is the new root
and the new whole disk is used to display only its descendant results in the taxonomic subtree. This helps in exploring smaller entities (e.g. see d))
on lower ranks. In addition, the amount of information is reduced so that the remaining one can be accessed more easily. With a click on c) one can
go back to the prior view. Furthermore, one can skip taxonomic ranks on zooming in. It is not only possible to zoom in on the next rank but on
arbitrary levels of the hierarchy e.g. by clicking on b).

www.ani.cebitec.uni-bielefeld.de/ake
www.ani.cebitec.uni-bielefeld.de/ake
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Figure 8 Comparison of web-based taxonomic classifiers for AMD data set. The data is based on [12], the respective web sites and personal
measures. Note that Speed (runtime in seconds) is depicted in reverse order. Predicted correctly is the number of predictions which are also present
in the reference composition. Model size is the number of genomes which are included in the model building process. The percent classified value
expresses the inverse of the percentage of rejected data. (Note that differences between Figure 3 (data is cited) and this Figure (data is measured,
July 2014) are most probably due to different application versions).

mode but is not guaranteed to start immediately, so that
the user will get notified by email when all results are
computed. The Projects’ assignment visualizations con-
tain a Krona [30] inspired view. For this view two different
colorization options are available (Figure 6). One option
colorizes every item in a specific predefined color. This
is especially helpful to compare two different results as
entities, because taxonomic categories are colorized con-
sistently across results. The other option is helpful when
looking at only one result and colorization is inspired
by the HSV color wheel. It helps in retaining orientation
when zooming in (see Figure 7). The zoom enables the
user to interactively browse the classification results. By
clicking on a category, it becomes the new root of the visu-
alization. This allows the inspection of small entities and
interesting subtrees. For visualization the D3 framework

[31] was used. Here the so-called sunburst tree is gen-
erated with the automatic D3 partition layout. A client-
server architecture is used with the back end written in
Python with C-extensions. The communication is done
via JSON.

Table 2 Performance comparison of PhylopythiaS, NBC,
WebCarma and AKE for AMD data set on phylum level

Algorithm #Correct #Wrong #Unknown Runtime
assignments assignments assignments (assignment)

in s

AKE 902 213 68 0.43

NBC 218 717 248 3480

PhylopythiaS 105 411 832 207

WebCarma 678 13 492 6 ∗ 105
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Conclusion
A comparison of web-based taxonomic classifiers is
shown in Figure 8 based on the analysis of the AMD data
set. AKE outperforms PhylopythiaS [11] (generic model)
and NBC [12] in all measured categories and the exe-
cution time is one (PhylopythiaS) or two (NBC) orders
of magnitude faster. A result with WebCarma [8], which
is a homology-based classifier, has been obtained within
about a week. It outperforms all composition-basedmeth-
ods, with 678 correct assignments, except our systemAKE
(902 correct assignments) on phylum level. The number
of rejects of WebCarma, i.e. the assignment to an “other”
unknown class, on phylum level (42%) is comparable to
PhylopythiaS but it is much higher than in NBCs or AKEs
results. The detailed results are given in Table 2.
The evaluation of different web-based taxonomic clas-

sifiers shows that the runtime differs dramatically from
a second (AKE), to minutes (PhylopythiaS), to an hour
(NBC), to almost a week (WebCarma) due to algorith-
mic features and implementation details. AKE is faster
compared to the other applications because it only needs
to compute the euclidean distance between the descrip-
tive model and the data that should be classified, whereas
the others need to compute alignments (WebCarma) or
apply decision functions (Phylopythia, NBC). Further-
more, optimized C code and multi-threading accelerates
the application. The neural network used is especially
suited to generate a hierarchical, compact, descriptive
model, which allows fast queries using a beam search to
limit the number of euclidean distance searches. Although
there might be methods reported to be equally fast and
more accurate, to the authors knowledge there exists no
web-based solution which performs equally well, in terms
of execution time and accuracy for generic metagenome
data. Since accuracy drops down significantly for ranks
lower than order we do not report these here, since our
focus in development lay on acceleration and a dynamic
web-based visualization system.
AKE is a fast taxonomic assignment tool for first visual

inspection of whole metagenome data sets. Its web-based
dynamic visualization allows fast analyses even on low
performance computers without installation of software.
Furthermore, the web-based approach enables a coopera-
tive analysis of data with colleagues.

Additional files

Additional file 1: Detailed description of H2SOM. PDF file giving a
detailed description of the H2SOM algorithm. Open with you favorite pdf
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Additional file 2: Table for cross validation study. PDF file presenting
results for the cross validation study. Open with you favorite pdf reader, e.g.
Adobe Reader.

Additional file 3: List of GI numbers of sequences used for training.
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and open with your favorite text editor.
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