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Introduction

This thesis deals with spatial birth-and-death processes. Specifically, at each moment of

time the system is represented as a collection of motionless points in some metric space

X. We interpret the points as particles, or individuals. Existing particles may die and

new particles may appear. Each particle is characterized by its location. We consider the

cases X = Rd or X = Zd. With the exception of Chapter 5, we treat models with finite

number of particles in Rd.

The state space of a spatial birth-and-death Markov process on Rd with finite number

of points is the space of finite configurations over Rd,

Г0(Rd) = {η ⊂ Rd : |η| <∞},

where |η| is the number of points of η.

Denote by B(Rd) the Borel σ-algebra on Rd. The evolution of a spatial birth-and-

death process in Rd admits the following description. Two functions characterize the

development in time, the birth rate coefficient b : Rd × Γ0(Rd) → [0;∞) and the death

rate coefficient d : Rd × Γ0(Rd)→ [0;∞). If the system is in state η ∈ Г0(Rd) at time t,

then the probability that a new particle appears (a “birth”) in a bounded set B ∈ B(Rd)

over time interval [t; t+ ∆t] is

∆t

∫
B

b(x, η)dx+ o(∆t),
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the probability that a particle x ∈ η is deleted from the configuration (a “death”) over

time interval [t; t+ ∆t] is

d(x, η)∆t+ o(∆t),

and no two events happen simultaneously. By an event we mean a birth or a death.

Using a slightly different terminology, we can say that the rate at which a birth occurs

in B is
∫
B
b(x, η)dx, the rate at which a particle x ∈ η dies is d(x, η), and no two events

happen at the same time.

Such processes, in which the birth and death rates depend on the spatial structure of

the system as opposed to classical Z+-valued birth-and-death processes (see e.g. [KM59],

[CG], [Har63, Page 116], [AN72, Page 109], and references therein), were first studied by

Preston in [Pre75]. A heuristic description similar to that above appeared already there.

Our description resembles the one in [GK06].

The (heuristic) generator of a spatial birth-and-death process should be of the form

LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx+
∑
x∈η

d(x, η)(F (η \ x)− F (η)), (1)

for F in an appropriate domain, where η ∪ x and η \ x are shorthands for η ∪ {x} and

η \ {x}, respectively.

Spatial point processes have been used in statistics for simulation purposes, see e.g.

[MS94], [MW04, chapter 11] and references therein. For application of spatial and stochas-

tic models in biology see e.g. [Lev03], [FOK+14], and references therein.

To construct a spatial birth-and-death process with given birth and death rate coef-

ficients, we consider in Chapter 2 stochastic equations with Poisson type noise
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ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v)

(2)

where (ηt)t≥0 is a suitable Г0(Rd)-valued cadlag stochastic process, the “solution” of the

equation, IA is the indicator function of the set A, B ∈ B(Rd) is a Borel set, N1 is a

Poisson point processes on Rd × R+ × R+ with intensity dx × ds × du, N2 is a Poisson

point process on Z×R+ ×R+ with intensity #× dr× dv, # is the counting measure on

Zd, η0 is a (random) initial finite configuration, b, d : Rd× Γ0(Rd)→ [0;∞) are functions

that are measurable with respect to the product σ-algebra B(R) ×B(Г0(R)) and {xi}

is some collection of points satisfying ηs ⊂ {xi} for every moment of time s (the precise

definition is given in Section 1.3.1). We require the processes N1, N2, η0 to be independent

of each other. Equation (2) is understood in the sense that the equality holds a.s. for all

bounded B ∈ B(Rd) and t ≥ 0.

Garcia and Kurtz studied in [GK06] equations similar to (2) for infinite systems. In

the earlier work [Gar95] of Garcia another approach was used: birth-and-death processes

were obtained as projections of Poisson point processes. A further development of the

projection method appears in [GK08]. Fournier and Meleard in [FM04] considered a

similar equation for the construction of the Bolker-Pacala-Dieckmann-Law process with

finitely many particles.

Holley and Stroock [HS78] constructed a spatial birth-and-death process as a Markov

family of unique solutions to the corresponding martingale problem. For the most part,

they consider a process contained in a bounded volume, with bounded birth and death

rate coefficients. They also proved the corresponding result for the nearest neighbor

model in R1 with an infinite number of particles.
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Kondratiev and Skorokhod [KS06] constructed a contact process in continuum, with

the infinite number of particles. The contact process can be described as a spatial birth-

and-death process with

b(x, η) = λ
∑
y∈η

a(x− y), d(x, η) ≡ 1,

where λ > 0 and 0 ≤ a ∈ L1(Rd). Under some additional assumptions, they showed

existence of the process for a broad class of initial conditions. Furthermore, if the value

of some energy functional on the initial condition is finite, then it stays finite at any point

in time.

In the aforementioned references as well as in the present work the evolution of the

system in time via Markov process is described. An alternative approach consists in using

the concept of statistical dynamics that substitutes the notion of a Markov stochastic pro-

cess. This approach is based on considering evolutions of measures and their correlation

functions. For details see e.g. [FKK12a], [FKK14], and references therein.

There is an enormous amount of literature concerning interacting particle systems on

lattices and related topics (e.g., [Lig85], [Lig04], [KL99], [Ald13], [Fra14], [Spi77], etc.)

Penrose in [Pen08] gives a general existence result for interacting particle systems on

a lattice with local interactions and bounded jump rates (see also [Lig85, Chapter 9]).

The spin space is allowed to be non-compact, which gives the opportunity to incorporate

spatial birth-and-death processes in continuum. Unfortunately, the assumptions become

rather restrictive when applied to continuous space models. More specifically, the birth

rate coefficient should be bounded, and for every bounded Borel set B the expression

∑
x∈η∩B

d(x, η)

should be bounded uniformly in η, η ∈ Г(Rd).
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Finkelshtein, Kondratiev, Kutoviy and Zhizhina [FKKZ14] consider different aspects

of statistical dynamics for the aggregation model. In this model the death rate coefficient

is given by

d(x, η) = exp
(
−
∑
y∈η\x

φ(x− y)
)
,

where φ is a positive measurable function. For more details see [FKKZ14] and references

therein. In Chapter 4 we consider the corresponding microscopic dynamics. Namely,

we show that we can construct the Markov process using Theorem 2.1.16 about the

existence and uniqueness of solution to equation (2). We give results about the pathwise,

or microscopic, behavior in some bounded region. Also, we estimate the probability of

extinction and the speed of growth of the average number of points.

Let us briefly describe the contents of the thesis.

In Chapter 1 we introduce general notions, definitions and results used in other chap-

ters. We start with configuration spaces, which are the state spaces for birth-and-death

processes, then we introduce and discuss metrical and topological structures thereof.

Also, we present some facts and constructions from probability theory, such as integra-

tion with respect to a Poisson point process, or a sufficient condition for a functional

transformation of a Markov chain to be a Markov chain again.

In the second chapter we construct a spatial birth-and-death process (ηt)t≥0 as a

unique solution to equation (2). We prove strong existence and pathwise uniqueness for

(2). A key condition is that we require b to grow not faster than linearly in the sense that

∫
Rd

b(x, η)dx ≤ c1|η|+ c2. (3)

The equation is solved pathwisely, “from one jump to another”. Also, we prove unique-

ness in law for equation 2 and the Markov property for the unique solution. Considering

(2) with a (non-random) initial condition α ∈ Г0(Rd) and denoting corresponding solu-
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tion by (η(α, t))t≥0, we see that a unique solution induces a Markov family of probability

measures on the Skorokhod space DГ0(Rd)[0;∞) (which can be regarded as the canonical

space for a solution of (2)).

When birth and death rate coefficients b and d satisfy some continuity assumptions,

the solution is expected to have continuous dependence on the initial condition, at least in

some proper sense. Realization of this idea and precise formulations are given in Section

2.1.2. The proof is based on considering a coupling of two birth-and-death processes.

The formal relation of a unique solution to (2) and operator L in (1) is given via the

martingale problem, in Section 2.1.2, and via some kind of a pointwise convergence, in

Section 2.1.5.

If (3) is not fulfilled, we can not rule out the possibility of an explosion. This is the

subject of Section 2.2. We show that, indeed, an explosion can occur, and, on the other

hand, equation (2) may have a unique solution on [0;∞) even if (3) is not fulfilled. For

that to happen, the death rate coefficient d has to dominate b in some sense.

Several times throughout the thesis we couple a spatial birth-and-death process with

another, in some way more convenient for analysis process. The idea to compare a spatial

birth-and-death process with some “simpler” process goes back to Preston, [Pre75]. In

[FM04] this technique was applied to the study of the probability of extinction. We

formulate and prove a theorem about coupling of two birth-and-death processes in Section

2.1.4.

In Chapter 3, we apply the general theory of stochastic stability of Markov chains

to (η(α, t))t≥0, the unique solution of (2). The process (η(α, t))t≥0 is of pure jump type,

therefore many questions about (η(α, t))t≥0 may be reduced to those about the embedded

chain of (ηt)t≥0. In Section 3.1 we list general definitions and facts of stochastic stability

we use in the sequel. The main reference to this part is the book by Meyn and Tweedie,

[MT93].
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The main result of Chapter 3 is the theorem about ψ-irreducibility of the embedded

chain of (η(α, t))t≥0. It turns out that (η(α, t))t≥0 will hit set A ∈ B(Г0(Rd)) with

positive probability whichever initial condition we take if, and only if, A is of positive

Lebesgue-Poisson measure. Formally,

(
∀α : P{(η(α, t))t≥0 ever enters A} > 0

)
⇔ λ(A) > 0.

Based on this theorem and on general recurrence and transience criteria given in

[MT93], we give sufficient conditions for a birth-and-death process to be recurrent or

transient. In Section 3.3, we discuss recurrence and transience for two specific models:

the the Bolker-Pacala process (see e.g. [BP97], [BP99], [DL05], [FOK+14], [FKKK]) and

some asymmetric dispersion process.

Chapter 4 is devoted to the aggregation process with finite number of particles. Mak-

ing certain assumptions on the behavior of the coefficients in some fixed set Λ ∈ B(Rd),

we obtain results about the asymptotic behavior of the process in this region. In partic-

ular, we estimate the probability of extinction, prove that only finitely many deaths may

occur and estimate pathwisely the number of points in Λ.

Chapter 5 is devoted to infinite systems. A general result about a cadlag process in

Г(Rd) is given in Section 5.1. In Section 5.2 we consider a birth-and-death process on a

lattice. We prove an existence and uniqueness result for the equation

ωt(i) =

∫
(0;t]×[0;∞]

I[0;b(i,ωs−)](u)dN1(i, s, u)

−
∫

[0;t]×[0;∞]

I[0;d(i,ωr−)](v)dN2(i, r, v) + ω0(i),

(4)

where i ∈ Zd, ωt is a cadlag ZZd
+ -valued process, the “solution” of the equation, N1, N2 are

Poisson point processes on Zd×R+×R+ with intensity #×ds×du, ω0 is a (random) initial
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configuration, b, d are birth and death coefficients given below. We require processes

N1, N2, ω0 to be independent of each other. Equation (4) is understood in the sense that

the equality holds a.s. for all i ∈ Zd and t ∈ (0;T ].

We assume that the initial condition ω0 satisfies
∑
i∈Zd

e−|i|1Eω0(i) < ∞, where |i|1 =

|i1| + ... + |id|, i ∈ Zd. We consider a special case of (4), b(i, ω) = A
∑
j:j^i

ω(j), where

j ^ i means that |i− j| ≤ 1, and d(i, ω) = ω2(i).

The (heuristic) generator of the solution process is

L1F (ω) =
∑
i∈Zd

b(i, ω)[F (ω+
i )− F (ω)] +

∑
i∈Zd

d(i, ω)[F (ω−i )− F (ω)], (5)

for an appropriate class of functions, where

ω+
i (j) =

 ω(j), if j 6= i,

ω(j) + 1, if j = i,
ω−i (j) =

 ω(j), if j 6= i,

ω(j)− 1, if j = i.

We can regard L1 in (5) as a generator describing an interacting particle system on

ZZd
+ . Note that the spin space Z+ is non-compact. If the system is in state ω ∈ ZZd

+

and ω(i) = m, i ∈ Zd, then ω(i) flips to m + 1 at the rate b(i, ω) and ω(i) flips to

m − 1 at the rate d(i, ω). We see that the flip rates are unbounded. Thus, the unique

solution of (4) gives an example of an interacting particle system with a non-compact spin

space and unbounded flip rates. To the best of our knowledge, this is the first example

of a construction of an interacting particle system of such a class. For an example of

a system on {0, 1}Zd with unbounded flip rates see Meester [Mee00]. Boldrighini, De

Masi, Pellegrinotti and Presutti [BDMPP87] considered a scaling limit of an interacting

particle system with unbounded rates. We note that the system we consider does not

belong to the well-studied class of zero-range processes (see e.g. [EH05], [And82], [Spi70],

and references therein).

The interaction in the system is produced by the birth rate coefficient b, whose value
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at i ∈ Zd depends on the values of ω ∈ ZZd
+ in the neighboring sites of i. The death

rate coefficient is local, but “non-linear”. In Theorem 5.2.3 we prove the existence and

uniqueness of solution. We deal with “quadratic” death rate d(i, ω) = ω2(i), but exami-

nation of the proof shows that we can take d(i, ω) = ϕ(ω(i)) for any non-decreasing map

ϕ : Z+ → R+.

Proving the uniqueness of solution represents a serious obstacle in the analysis of

equations of type (4). We manage to get uniqueness by combining the “Lipschitz” property

of the birth rate coefficient and some kind of monotonicity present in the system. The

corresponding result is given in Theorem 5.2.3.
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Chapter 1

Preliminaries

In this chapter we list some notions and facts we use in this work.

1.1 Some notations and conventions

Sometimes we write∞ and +∞ interchangeably, so that f →∞ and f → +∞, or a <∞

and a < +∞ may have the same meaning. However, +∞ is reserved for the real line

only, whereas ∞ have wider range of applications, e.g. for a sequence {xn}n∈N ⊂ Rd we

may write xn →∞, n→∞, which is equivalent to |xn| → +∞. On the other hand, we

do not assign any meaning to xn → +∞.

In all probabilistic constructions we work on some probability space (Ω,F , P ), some-

times equipped with a filtration of σ-algebras. Elements of Ω are usually denoted as

ω.

The set Ac is the complement of the set A ⊂ Ω: Ac = Ω \ A. We write [a; b], [a; b)

etc. for the intervals of real numbers. For example, (a; b] = {x ∈ R | a < x ≤ b},

−∞ ≤ a < b ≤ +∞. The half line R+ includes 0: R+ = [0;∞).
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1.2 Configuration spaces

We consider a spatial birth-and-death process as a Markov processes whose state space

is some space of configurations. Thus, spaces of configurations play an important role

in this thesis. In this section we introduce notions and facts about them that will be

used in this thesis, in particular, topological and metrical structures on Г(Rd) as well as

a characterization of compact sets of Г(Rd). We discuss configurations over Euclidean

spaces only.

1.2.1 Definition. For d ∈ N and a measurable set Λ ⊂ Rd, the configuration space Г(Λ)

is defined as

Г(Λ) = {γ ⊂ Λ : |γ ∩K| < +∞ for any compact K ⊂ Rd}.

We recall that |A| denotes the number of elements of A. We also say that Г(Λ) is the

space of configurations over Λ. Note that ∅ ∈ Г(Λ).

Let Z+ be the set {0, 1, 2, ...}. We say that a Radon measure µ on (Rd,B(Rd)) is a

counting measure on Rd if µ(A) ∈ Z+ for all A ∈ B(Rd). When a counting measure ν

satisfies additionally ν({x}) ≤ 1 for all x ∈ Rd, we call it a simple counting measure.

As long as it does not lead to ambiguities, we identify a configuration with a simple

counting Radon measures on Rd: as a measure, a configuration γ ∈ Г(Rd) maps a set

B ∈ B into |γ ∩B|. In other words, γ =
∑
x∈γ

δx.

One equips Г(Rd) with the vague topology, i.e., the weakest topology such that for all

f ∈ Cc(Rd) (the set of continuous functions on Rd with compact support) the map

Г(Rd) 3 γ 7→ 〈γ, f〉 :=
∑
x∈γ

f(x) ∈ R

is continuous.

Equipped with this topology, Г(Rd) is a Polish space, i.e., there exists a metric on
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Г(Rd) compatible with the vague topology and with respect to which Г(Rd) is a complete

separable metric space, see, e.g., [KK06], and references therein. We say that a metric

is compatible with a given topology if the topology induced by the metric coincides with

the given topology.

For a bounded B ⊂ Rd and γ ∈ Г(Rd), we denote δ(γ,B) = min{|x − y| : x, y ∈

γ ∩B, x 6= y}. Let Br(x) denote the closed ball in Rd of the radius r centered at x.

A set is said to be relatively compact if its closure is compact. The following theorem

gives a characterization of compact sets in Г(Rd), cf. [KK06], [HS78].

1.2.2 Theorem. A set F ⊂ Г(Rd) is relatively compact in the vague topology if and only

if

sup
γ∈F
{γ(Bn(0)) + δ−1(γ,Bn(0))} <∞ (1.1)

holds for all n ∈ N.

Proof. Assume that (1.1) is satisfied for some F ⊂ Г(Rd). In metric spaces com-

pactness is equivalent to sequential compactness, therefore it is sufficient to show that an

arbitrary sequence contains a convergent subsequence in Г(Rd). To this end, consider an

arbitrary sequence {γn}n∈N ⊂ F . The supremum sup
n
γn(B1(0)) is finite, consequently, by

the Banach–Alaoglu theorem there exists a measure α1 ∈ C(B1(0))∗
(
here C(B1(0))∗ is

the dual space of C(B1(0))

)
and a subsequence {γ(1)

n } ⊂ {γn} such that γ(1)
n |B1(0) → α1

in C(B1(0))∗. Furthermore, one may see that α1 ∈ Г(B1(0)) (it is particularly important

here that sup
γ∈F
{δ−1(γ,B1(0))} <∞ ). Indeed, arguing by contradiction one may get that

α1(A) ∈ Z+ for all Borel sets A, and Lemma 1.2.5 below ensures that α1 is a simple

counting measure.

Similarly, from the sequence γ(1)
n we may extract subsequence {γ(2)

n } ⊂ {γ(1)
n } in such a

way that γ(2)
n converges to some α2 ∈ Г(B2(0)). Continuing in the same way, we will find
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a sequence of sequences {γ(m)
n } such that γ(m)

n → αm ∈ Г(Bm(0)) and {γ(m+1)
n } ⊂ {γ(m)

n }.

Consider now the sequence {γ(n)
n }n∈N. For any m, restrictions of its elements to Bm(0)

converge to αm in Г(Bm(0)), Therefore, γ(n)
n → α in Г(Rd), where α =

⋃
n

αn.

Conversely, if (1.1) is not fulfilled for some n0 ∈ N, then we can construct a sequence

{γn}n∈N ⊂ F such that either the first summand in (1.1) tends to infinity:

γj(Bn0(0))→∞, j →∞

in which case, of course, there is no convergent subsequence, or the second summand in

(1.1) tends to infinity. In the latter case, a subsequence of the sequence {γn|Bn0 (0)}n∈N

may converge to a counting measure (when all γn are considered as measures). However,

the limit measure can not be a simple counting measure. Thus, the sequence {γn}n∈N ⊂ F

does not contain a convergent subsequence in Г(Rd). �

We denote by CS(Г(Rd)) the space of all compact subsets of Г(Rd).

1.2.3 Proposition. The topological space Г(Rd) is not σ - compact.

Proof. Let {Km}n∈N be an arbitrary sequence from CS(Г(Rd)). We will show that⋃
n

Kn 6= Г(Rd). To each compact Km we may assign a sequence q(m)
1 , q

(m)
2 , ... of positive

numbers such that

sup
γ∈Km

{γ(Bn(0)) + δ−1(γ,Bn(0))} < q(m)
n .

There exists a configuration whose intersection with Bn(0) contains at least q(n)
n + 1

points, for each n ∈ N. This configuration does not belong to any of the sets {Km}m∈N,

hence it can not belong to the union
⋃
m

Km. �

Remark. Since Г(Rd) is a separable metrizable space, Proposition 1.2.3 implies that

Г(Rd) is not locally compact.

For another description of all compact sets in Г(Rd) we will use the set Φ ⊂ C(Rd) of
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all positive continuous functions φ satisfying the following conditions:

1) φ(x) = φ(y) whenever |x| = |y|, x, y ∈ Rd,

2) lim|x|→∞ φ(x) = 0.

For φ ∈ Φ we denote

Ψ = Ψφ(x, y) := φ(x)φ(y)
|x− y|+ 1

|x− y|
I{x 6= y}.

1.2.4 Proposition. (i) For all c > 0 and φ ∈ Φ

Kc :=

{
γ :

∫∫
Rd×Rd

Ψφ(x, y)γ(dx)γ(dy) 6 c

}
∈ CS(Г(Rd));

(ii) For all K ∈ CS(Г(Rd)) there exist φ ∈ Φ such that

sup
γ∈K
{
∫∫

Rd×Rd

Ψφ(x, y)γ(dx)γ(dy)} 6 1.

Proof. (i) Denote θn = min
x∈Bn(0)

φ(x) > 0.

For γ ∈ Kc we have

c >
∫∫

Bn(0)×Bn(0)

Ψ(x, y)γ(dx)γ(dy)

>
∫∫

Bn(0)×Bn(0)

φ(x)φ(y)I{x 6= y}γ(dx)γ(dy) > θ2
nγ(Bn(0))(γ(Bn(0))− 1)

and

c >
∫∫

Bn(0)×Bn(0)

Ψ(x, y)γ(dx)γ(dy) > θ2
n

δ−1(γ,Bn(0)) + 1

δ−1(γ,Bn(0))
> θ2

nδ
−1(γ,Bn(0)).

Consequently,

sup
γ∈Kc

γ(Bn(0)) 6 θn
√
c+ 1,
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and

sup
γ∈Kc

δ−1(γ,Bn(0)) 6
c

θ2
n

.

It remains to show that Kc is closed, in which case Theorem 1.2.2 will imply compactness

of Kc. The space Г(Rd) is metrizable, therefore sequential closedness will suffice. Take

γk ∈ Kc, γk → γ in Г(Rd), k → ∞. For n ∈ N, let Ψn ∈ Cc(Rd × Rd) be an increasing

sequence of functions such that Ψn 6 Ψ, Ψn(x, y) = Ψ(x, y) for x, y ∈ Rd satisfying

|x|, |y| ≤ n, |x− y| ≥ 1
n
. For such a sequence we have Ψn(x, y) ↑ Ψ(x, y) for all x, y ∈ Rd,

x 6= y. For each f ∈ Cc(Rd × Rd), the map

η 7→ 〈η × η, f〉 :=

∫∫
Rd×Rd

f(x, y)η(dx)η(dy)

is continuous in the vague topology. Thus for all n ∈ N, 〈γk × γk,Ψn〉 → 〈γ × γ,Ψn〉.

Consequently, 〈γ × γ,Ψn〉 ≤ c, n ∈ N, and by Fatou’s Lemma

〈γ × γ,Ψ〉 =

∫∫
Rd×Rd

Ψ(x, y)γ(dx)γ(dy) =

=

∫∫
Rd×Rd

lim inf
n

Ψn(x, y)γ(dx)γ(dy) ≤ lim inf
n

∫∫
Rd×Rd

Ψn(x, y)γ(dx)γ(dy) ≤ c.

To prove (ii), for a given compact set K ⊂ Г(Rd) and a given function φ ∈ Φ, denote

an(K) := sup
γ∈K
{γ(Bn(0)) + δ−1(γ,Bn(0))}

and

bn(φ) := sup
|x|>n
|φ(x)|.

Theorem 1.2.2 implies an(K) <∞, and we can estimate
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∫∫
(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

)Ψ(x, y)γ(dx)γ(dy) =

=

∫∫
(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

)φ(x)φ(y)
|x− y|+ 1

|x− y|
I{x 6= y}γ(dx)γ(dy) 6

6
∫∫

(
Bn+1(0)\Bn(0)

)
×
(
Bn+1(0)\Bn(0)

) b2
n(an + 1)γ(dx)γ(dy) 6 b2

n(an + 1)3.

Taking a function φ ∈ Φ such that

3b2
n(φ)(an + 1)3 <

6

π2

1

(n+ 1)2
,

we get

sup
γ∈K
{
∫∫

Rd×Rd

Ψ(x, y)γ(dx)γ(dy)} 6 1.�

1.2.1 The space of finite configurations Г0(Rd)

For Λ ⊂ Rd, the space Г0(Λ) is defined as

Г0(Λ) := {η ⊂ Λ : |η| <∞}.

We see that Г0(Λ) is the collection of all finite subsets of Λ. We denote the space of

n-point configurations as Г(n)
0 (Λ):

Г(n)
0 (Λ) := {η ∈ Г0(Λ) | |η| = n}, n ∈ N,

and Г(0)
0 (Λ) := {∅}. Sometimes we will write Г0 instead of Г0(Rd). Recall that we

occasionally write η \ x instead of η \ {x} , η ∪ x instead of η ∪ {x}.

To define a topological structure on Г0(Rd), we introduce the following surjections
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(see, e.g., [KK02] and references therein)

sym :
∞⊔
n=0

(̃Rd)n → Г0(Rd)

sym((x1, ..., xn)) = {x1, ..., xn},

(1.2)

where

(̃Rd)n := {(x1, ..., xn) ∈ (Rd)n | xj ∈ Rd, j = 1, ..., n, xi 6= xj, i 6= j}, (1.3)

and, by convention, (̃Rd)0 = {∅}.

The map sym produces a one-to-one correspondence between Г(n)
0 (Rd), n ≥ 1, and

the quotient space (̃Rd)n/ ∼n, where ∼n is the equivalence relation on (Rd)n,

(x1, ..., xn) ∼n (y1, ..., yn)

when there exist a permutation σ : {1, ..., n} → {1, ..., n} such that

(xσ(1), ..., xσ(n)) = (y1, ..., yn).

We endow Г(n)
0 (Rd) with the topology induced by this one-to-one correspondence.

Equivalently, a set A ⊂ Г(n)
0 (Rd) is open iff sym−1(A) is open in (̃Rd)n. The space

(̃Rd)n ⊂ (Rd)n we consider, of course, with the relative, or subspace, topology. As far as

Г(0)
0 (Rd) = {∅} is concerned, we regard it as an open set.

Having defined topological structures on Г(n)
0 (Rd), n ≥ 0, we endow Г0(Rd) with the

topology of disjoint union,

Г0(Rd) =
∞⊔
n=0

Г(n)
0 (Rd). (1.4)
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In this topology, a set K ⊂ Г0(Rd) is compact iff K ⊂
N⊔
n=0

Г(n)
0 (Rd) for some N ∈ N

and for each n ≤ N the set K ∩ Г(n)
0 (Rd) is compact in Г(n)

0 (Rd). A set Kn ⊂ Г(n)
0 (Rd) is

compact iff sym−1(Kn) is compact in (̃Rd)n. We note that in order for Kn to be compact,

the set sym−1Kn, regarded as a subset of (Rd)n, should not have limit points on the

diagonals, i.e. limit points from the set (Rd)n \ (̃Rd)n.

Let us introduce a metric compatible with the described topology on Г0(Rd). We set

dist(ζ, η) :=

 1 ∧ dEucl(ζ, η), |ζ| = |η|,

1, otherwise.

Here dEucl(ζ, η) is the metric induced by the Euclidean metric and the map sym:

dEucl(ζ, η) = inf{|x− y| : x ∈ sym−1ζ, y ∈ sym−1η}, (1.5)

where |x−y| is the Euclidean distance between x and y, sym−1η = sym−1({η}). In many

aspects, this metric resembles the Wasserstein type distance in [RS99]. The differences

are, dist is bounded by 1 and it is defined on Г0(Rd) only.

Note that the metric dist satisfies equalities

dist(ζ ∪ x, η ∪ x) = dist(ζ, η) (1.6)

for ζ, η ∈ Г0(Rd), x ∈ Rd, x /∈ ζ, η, and

dist(ζ \ x, η \ x) = dist(ζ, η), (1.7)

x ∈ ζ, η. We note that the space Г0(Rd) equipped with this metric is not complete.

Nevertheless, Г0(Rd) is a Polish space, i.e., Г0(Rd) is separable and there exists a metric

ρ̃ which induces the same topology as dist does and such that Г0(Rd) equipped with ρ̃
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is a complete metric space. To prove this, we embed Г(n)
0 (Rd) into the space Г̈(n)

0 (Rd) of

n-point multiple configurations, which we define as the space of all counting measures η

on Rd with η(Rd) = n. Abusing notation, we may represent each η ∈ Г̈(n)
0 (Rd) as a set

{x1, ..., xn}, where some points among xj ∈ Rd may be equal (recall our convention on

identifying a configuration with a measure; as a measure, η =
n∑
j=1

δxj). One should keep

in mind that {x1, ..., xn} is not really a set here, since it is possible that xi = xj for i 6= j,

i, j ∈ {1, ..., n}. The representation allows us to extend sym to the map

sym :
∞⊔
m=0

(Rd)n → Г̈(n)
0 (Rd)

sym((x1, ..., xn)) := {x1, ..., xn},

(1.8)

and define a metric on Г̈(n)
0 (Rd): for ζ, η ∈ Г̈(n)

0 (Rd) we set dist(ζ, η) = 1 ∧ dEucl(ζ, η),

dEucl(ζ, η) is the metric induced by the Euclidean metric and the map sym:

dEucl(ζ, η) = inf{|x− y| : x ∈ sym−1ζ, y ∈ sym−1η}, (1.9)

The metrics dist and dist coincide on Г(n)
0 (Rd)×Г(n)

0 (Rd) (as functions). Furthermore,

one can see that (Г̈(n)
0 (Rd), dist) is a complete separable metric space, and thus a Polish

space. The next lemma describes convergence in Г̈(n)
0 (Rd) (compare with Lemma 3.3 in

[KK06]).

1.2.5 Lemma. Assume that ηm → η in Г̈(n)
0 (Rd), and let η = {x1, ..., xn}. Then ηm,

m ∈ N, may be numbered, ηm = {xm1 , ..., xmn }, in such a way that

xmi → xi, m→∞
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in Rd.

Proof. The inequality dist(ηm, ηm) < ε implies existence of a point from ηm in the

ball Bε(xi) of radius ε centered at xi, i ∈ {1, ..., n}. Furthermore, in the case when xi is a

multiple point, i.e., if xj = xi for some j 6= i, then there are at least as many points from

ηm in Bε(xi) as η({xi}). Observe that, for ε < 1
2

inf{|x− y| : η({x}), η({x}) ≥ 1} ∧ 1, we

have in the previous sentence “exactly as many” instead of “at least as many”, because

otherwise there would not be enough points in ηm. The statement of the lemma follows

by letting ε→ 0.

1.2.6 Lemma. Г0(Rd) is a Polish space.

Proof. Since Г0(Rd) is a disjoint union of countably many spaces Г(n)
0 (Rd), it suffices

to establish that each of them is a Polish space. To prove that Г(n)
0 (Rd) is a Polish space,

n ∈ N, we will show that it is a countable intersection of open sets in a Polish space

Г̈(n)
0 (Rd). Then we may apply Alexandrov’s theorem: any Gδ subset of a Polish space is

a Polish space, see §33, VI in [Kur66].

To do so, denote by Bm the closed ball of radius m in Rd, with the center at the

origin. Define Fm := {η ∈ Г̈(n)
0 (Rd) | η({x}) ≥ 2 for some x ∈ Bm} and note that

Г(n)
0 (Rd) =

∞⋂
m=1

[Г̈(n)
0 (Rd) \ Fm]

Since Г̈(n)
0 (Rd) is Polish, it only remains to show that Fm is closed in Г̈(n)

0 (Rd). This

is an immediate consequence of the previous lemma.

1.2.2 Lebesgue-Poisson measures

Here we define the Lebesgue-Poisson measure on Г0(Rd), corresponding to a non-atomic

Radon measure σ on Rd. Our prime example for σ will be the Lebesgue measure on Rd.
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For any n ∈ N the product measure σ⊗n can be considered by restriction as a measure

on (̃Rd)n. The projection of this measure on Г(n)
0 via sym we denote by σ(n), so that

σ(n)(A) = σ⊗n(sym−1A), A ∈ B(Г(n)
0 ).

On Г(0)
0 the measure σ(0) is given by σ(0)({∅}) = 1. The Lebesgue-Poisson measure

on (Г0(Rd),B(Г0(Rd))) is defined as

λσ :=
∞∑
n=0

1

n!
σ(n). (1.10)

The measure λσ is finite iff σ is finite. We say that σ is the intensity measure of λσ.

1.2.3 Spaces DГ(Rd)[0;T ] and DГ0(Rd)[0;T ]

For a complete separable metric space (E, ρ) the spaceDE of all cadlag E-valued functions

equipped with the Skorokhod topology is a Polish space; for this statement and related

definitions, see, e.g., Theorem 5.6, Chapter 3 in [EK86]. Let ρD be a metric on DE

compatible with the Skorokhod topology and such that (DE, ρD) is a complete separable

metric space. Denote by (P(DE), ρp) the metric space of probability measures on B(DE),

the Borel σ - algebra of DE, with the Prohorov metric, i.e. for P,Q ∈ P(DE)

ρp(P,Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε for all F ∈ B(DE)} (1.11)

where

F ε = {x ∈ DE : ρD(x, F ) < ε}.

Then (P(DE), ρp) is separable and complete; see, e.g., [EK86], Section 1, Chapter

3, and Theorem 1.7, Chapter 3. The Borel σ-algebra B(DE) coincides with the one

generated by the coordinate mappings; see Theorem 7.1, Chapter 3 in [EK86]. In this
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work, we mostly consider DГ0(Rd)[0;T ] and DГ(Rd)[0;T ] endowed with the Skorokhod

topology.

1.3 Integration with respect to Poisson point processes

We give a short introduction to the theory of integration with respect to Poisson point pro-

cesses. For construction of Poisson point processes with given intensity, see e.g. [Kal02,

Chapter 12], [Kin93], [RY05, Chapter 12, § 1] or [IW81, Chapter 1, § 8,9]. All defini-

tions, constructions and statements about integration given here may be found in [IW81,

Chapter 2, § 3]. See also [GS79, Chapter 1] for the theory of integration with respect to

an orthogonal martingale measure.

On some filtered probability space (Ω,F , {F}t≥0, P ), consider a Poisson point process

N on R+ ×X× R+ with intensity measure dt× β(dx)× du, where X = Rd or X = Zd.

We require the filtration {F}t≥0 to be increasing and right-continuous, and we assume

that F0 is complete under P . We interpret the argument from the first space R+ as time.

For X = Rd the intensity measure β will be the Lebesgue measure on Rd, for X = Zd we

set β = #, where

#A = |A|, A ∈ B(Zd).

The Borel σ-algebra over Zd is the collection of all subsets of Zd, i.e. B(Zd) = 2Zd .

Again, as is the case with configurations, for X = Rd we treat a point process as a

random collection of points as well as a random measure.

We say that the process N is called compatible with (Ft, t ≥ 0) if N is adapted,

that is, all random variables of the type N(T̄1, U), T̄1 ∈ B([0; t]), U ∈ B(X × R+), are

Ft-measurable, and all random variables of the type N(t + h, U) − N(t, U), h ≥ 0, U ∈

B(X×R+), are independent of Ft, N(t, U) = N([0; t], U). For any U ∈ B(X×R+) with

(β× l)(U) <∞, l is the Lebesgue measure on Rd, the process (N([0; t], U)−tβ× l(U), t ≥
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0) is a martingale (with respect to (Ft, t ≥ 0); see [IW81, Lemma 3.1, Page 60]).

1.3.1 Definition. A process f : R+×X×R+×Ω→ R is predictable, if it is measurable

with respect to the smallest σ - algebra generated by all g having the following properties:

(i) for each t > 0, (x, u, ω) 7→ g(t, x, u, ω)) is B(X× R+)×Ft measurable;

(ii) for each (x, u, ω), the map t 7→ g(t, x, u, ω)) is left continuous.

For a predictable process f ∈ L1([0;T ]×X×R+×Ω), t ∈ [0;T ] and U ∈ B(X×R+) we

define the integral It(f) =
∫

[0;t]×U
f(s, x, u, ω)dN(s, x, u) as the Lebesgue-Stieltjes integral

with respect to the measure N :

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) =
∑

s≤t,(s,x,u)∈N

f(s, x, u, ω).

This sum is well defined, since

E
∑

s≤t,(s,x,u)∈N

|f(s, x, u, ω)| =
∫

[0;t]×U

|f(s, x, u, ω)|dsβ(dx)du <∞

We use dN(s, x, u) andN(ds, dx, du) interchangeably when we integrate over all variables.

The process It(f) is right-continuous as a function of t, and adapted. Moreover, the

process

Ĩt(f) =

∫
[0;t]×U

f(s, x, u, ω)[dN(s, x, u)− dsβ(dx)du]

is a martingale with respect to (Ft, t ≥ 0), [IW81, Page 62]. Thus,

E

∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) = E

∫
[0;t]×U

f(s, x, u, ω)dsβ(dx)du. (1.12)

This equality will be used several times throughout the thesis.

1.3.2 Remark. We can extend the collection of integrands, in particular, we can define
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∫
[0;t]×U

f(s, x, u, ω)dN(s, x, u) for f satisfying

E

∫
[0;t]×U

(|f(s, x, u, ω)| ∧ 1)dsβ(dx)du <∞.

However, we do not use such integrands in this work.

The Lebesgue-Stieltjes integral is defined ω-wisely and it is a function of an integrand

and an integrator. As a result, we have the following statement. The sign d
= means

equality in distribution.

1.3.3 Statement. Let Mk be Poisson point processes defined on some, possibly different,

probability spaces, and let αk be integrands, k = 1, 2, such that integrals
∫
αkdMk are well

defined. If (α1,M1)
d
= (α2,M2), then

∫
α1dM1

d
=

∫
α2dM2.

The proof is straightforward.

1.3.1 An auxiliary construction

Let #̃ be the counting measure on [0, 1], i.e.

#̃C = |C|, C ∈ B([0; 1]).

The measure #̃ is not σ-finite. For a cadlag Г0(Rd)-valued process (ηt)t∈[0;∞], adapted to

{Ft}t∈[0;∞], we would like to define integrals of the form

∫
Rd×[0;∞]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)dÑ2(x, r, v) (1.13)
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where B is a bounded Borel subset of Rd, f is a bounded predictable process and Ñ2 is

a Poisson point process on Rd × [0;T ] × [0;∞) with intensity #̃ × dr × dv, compatible

with {Ft}t∈[0;∞].

We can not hope to give a meaningful definition for an integral of the type (1.13),

because of the measurability issues. For example, the map

Ω→ R,

ω 7→ Ñ2(u(ω), [0; 1], [0; 1]),

where u is an independent of Ñ2 uniformly distributed on [0; 1] random variable, does

not have to be a random variable. Even if it were a random variable, some undesirable

phenomena would appear, see, e.g., [Pod09].

To avoid this difficulty, we employ another construction. A similar approach was used

in [FM04]. If we could give meaningful definition to the integrals of the type (1.13), we

would expect

∫
Rd×[0;t]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)dÑ2(x, r, v)−

∫
Rd×[0;t]×[0;∞)

I{x∈B∩ηr−}f(x, r, v, ω)#̃(dx)drdv

to be a martingale (under some conditions on f and B).

Having this in mind, consider a Poisson point process N2 on Z×R+×R+ with intensity

#× dr × dv, defined on (Ω,F , {F}t≥0, P ) (here # denotes the counting measure on Z.

This measure is σ-finite). We require N2 to be compatible with {F}t≥0. Let (ηt)t∈[0,∞] be

an adapted cadlag process in Γ0(Rd), satisfying the following condition: for any T <∞,

RT = |
⋃

t∈[0;T ]

ηt| <∞ a.s. (1.14)
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The set R∞ :=
⋃
t∈[0;∞] ηt is at most countable, provided (1.14). Let 4 be the lexico-

graphical order on Rd. We can label the points of η0,

η0 = {x0, x−1, ..., x−q}, x0 4 x−1 4 ... 4 x−q.

There exists an a.s. unique representation

R∞ \ η0 = {x1, x2, ...}

such that for any n,m ∈ N, n < m, either inf
s≥0
{s : xn ∈ ηs} < inf

s≥0
{s : xm ∈ ηs}, or

inf
s≥0
{s : xn ∈ ηs} = inf

s≥0
{s : xm ∈ ηs} and xn 4 xm. In other words, as time goes on,

appearing points are added to {x1, x2, ...} in the order in which they appear. If several

points appear simultaneously, we add them in the lexicographical order.

For the sake of convenience, we set x−i = ∆, i ≤ −q − 1, where ∆ /∈ Z. We say that

the sequence {..., x−1, x1, x2, ...} is related to (ηt)t∈[0;∞].

For a predictable process f ∈ L1(Rd × R+ × R+ × Ω) and B ∈ B(Rd), consider

∫
Z×(t1;t2]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)dN2(i, r, v). (1.15)

Assume that RT is bounded for some T > 0. Then, for a bounded predictable

f ∈ L1(Rd × R+ × R+ × Ω) and B ∈ B(Rd), the process

∫
Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)dN2(i, r, v)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}f(xi, r, v, ω)#(di)drdv

is a martingale, cf. [IW81, Page 62].
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1.3.2 The strong Markov property of a Poisson point process

We will need the strong Markov property of a Poisson point process. To simplify no-

tations, assume that N is a Poisson point process on R+ × Rd with intensity measure

dt× dx. Let N be compatible with a right-continuous complete filtration {Ft}t≥0, and τ

be a finite a.s. {Ft}t≥0-stopping time (stopping time with respect to {Ft}t≥0). Introduce

another Point process N on R+ × Rd,

N([0; s]× U) = N((τ ; τ + s]× U), U ∈ B(Rd).

1.3.4 Proposition. The process N is a Poisson point process with intensity dt × dx,

independent of Fτ .

Proof. To prove the proposition, it is enough to show that

(i) for any b > a > 0 and open bounded U ⊂ Rd, N((a; b), U) is a Poisson random

variable with mean (b− a)β(U), and

(ii) for any bk > ak > 0, k = 1, ...,m, and any open bounded Uk ⊂ Rd, such that

((ai; bi) × Ui) ∩ ((aj; bj) × Uj) = ∅, i 6= j, the collection {N((ak; bk) × Uk)}k=1,m is a

sequence of independent random variables, independent of Fτ .

Indeed, N is determined completely by values on sets of type (b−a)β(U), a, b, U as in

(i), therefore it must be an independent of Fτ Poisson point process if (i) and (ii) hold.

Let τn be the sequence of {Ft}t≥0-stopping times, τn = k
2n

on {τ ∈ (k−1
2n

; k
2n

]}, k ∈ N.

Then τn ↓ τ and τn − τ ≤ 1
2n
. The stopping times τn take only countably many values.

The process N satisfies the strong Markov property for τn: the processes Nn, defined by

Nn([0; s]× U) := N((τn; τn + s]× U),

are Poisson point processes, independent of Fτn . To prove this, take k with P{τn =

k
2n
} > 0 and note that on {τn = k

2n
}, Nn coincides with process the Poisson point process
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Ñ k
2n

given by

Ñ k
2n

([0; s]× U) := N

(
(
k

2n
;
k

2n
+ s]× U)

)
, U ∈ B(Rd).

Conditionally on {τn = k
2n
}, Ñ k

2n
is again a Poisson point process, with the same inten-

sity. Furthermore, conditionally on {τn = k
2n
}, Ñ k

2n
is independent of F k

2n
, hence it is

independent of Fτ ⊂ F k
2n
.

To prove (i), note that Nn((a; b)× U)→ N((a; b)× U) a.s. and all random variables

Nn((a; b) × U) have the same distribution, therefore N((a; b) × U) is a Poisson random

variable with mean (b − a)λ(U). The random variables Nn((a; b) × U) are independent

of Fτ , hence N((a; b)× U) is independent of Fτ , too. Similarly, (ii) follows. �

Analogously, the strong Markov property for a Poisson point process on R+×N with

intensity dt×# may be formulated and proven.

1.3.5 Remark. We assumed in Proposition 1.3.4 that the filtration {Ft}t≥0, compatible

with N , is right-continuous and complete. To be able to apply Proposition 1.3.4, we

should show that such filtrations exist.

Introduce the natural filtration of N ,

F 0
t = σ{Nk(C,B), B ∈ B(Rd), C ∈ B([0; t])},

and let Ft be the completion of F 0
t under P . Then N is compatible with {Ft}. We

claim that {Ft}t≥0, defined in such a way, is right-continuous (this may be regarded as

an analog of Blumenthal 0 − 1 law). Indeed, as in the proof of Proposition 1.3.4, one

may check that Ña is independent of Fa+. Since F∞ = σ(Ña) ∨Fa, σ(Ña) and Fa are

independent and Fa+ ⊂ F∞, one sees that Fa+ ⊂ Fa. Thus, Fa+ = Fa.

1.3.6 Remark. We prefer to work with right-continuous complete filtrations, because

we want to ensure that there is no problem with conditional probabilities, and that the
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hitting times we will consider are stopping times.

1.4 Miscellaneous

When we write ξ ∼ Exp(λ), we mean that the random variable ξ is exponentially dis-

tributed with parameter λ.

1.4.1 Lemma. If α and β are exponentially distributed random variables with parameters

a and b respectively (notation: α ∼ Exp(a), β ∼ Exp(b) ) and they are independent, then

P{α < β} =
a

a+ b
.

Indeed,

P{α < β} =

∫ ∞
0

aP{x < β}e−ax = a

∫ ∞
0

e−(a+b)x =
a

a+ b
.

Here are few other properties of exponential distributions. If ξ1, ξ2, ..., ξn are indepen-

dent exponentially distributed random variables with parameters c1, ..., cn respectively,

then min
k∈{1,...,n}

ξk is exponentially distributed with parameter c1 + ... + cn. Again, the

proof may be done by direct computation. If ξ1, ξ2, ... are independent exponentially

distributed random variables with parameter c and α1, α2, ... is an independent sequence

of independent Bernoulli random variables with parameter p ∈ (0; 1), then the random

variable

ξ =
θ∑
i=1

ξi, θ = min{k ∈ N : αk = 1}

is exponentially distributed with parameter c
p
. The random variable ξ is the time of the

first jump of a thinned Poisson point process with intensity c. The statement about the

distribution of ξ is a consequence of the property that the independent thinning of a
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Poisson point process with intensity λ is a Poisson point process with intensity pλ, see

[Kal02, Theorem 12.2,(iv)].

We will also need the result about finiteness of the expectation of the Yule process.

A Yule process (Zt)t≥0 is a pure birth Markov process in Z+ with birth rate µn, µ > 0,

n ∈ Z+. That is, if Zt = n, then a birth occur at rate µn, i.e.

P{Zt+∆t − Zt = 1 | Zt = n} = µn+ o(∆t).

For more details about Yule processes see e.g. [AN72, Chapter 3], [Har63, Chapter 5],

[Arn06] and references therein. Let (Zt(n))t≥0 be a Yule process started at n. The process

(Zt(n))t≥0 can be considered as a sum of n independent Yule processes started from 1,

see e.g. [Arn06]. The expectation of Zt(1) is finite and EZt(1) = eµt, see e.g. [AN72,

Chapter 3, Section 6] or [Har63, Chapter 5, Sections 6,7]. Consequently, if (Zt)t≥0 is a

Yule process with EZ0 <∞, then EZt <∞ and EZt = EZ0e
µt.

Here are some other properties of Poisson point processes which are used throughout

the thesis. If N is a Poisson point process on R+×Rd×R+ with intensity ds× dx× du,

then a.s.

∀x ∈ Rd : N(R+ × {x} × R+) ≤ 1. (1.16)

Put differently, no plane of the form R+ × {x} × R+ contains more than 1 point of N .

Using the σ-additivity of the probability measure, one can deduce (1.16) from

∀x ∈ Rd : N([0; 1]× {x} × [0; 1]) ≤ 1. (1.17)

We can write {
∀x ∈ Rd : N([0; 1]× {x} × [0; 1]) ≤ 1

}

⊃
{
∀k ∈ {0, 1, ..., n− 1} : N([0; 1]× [

k

n
;
k + 1

n
]× [0; 1]) ≤ 1

}
,
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and then we can compute

P

{
∀k ∈ {0, 1, ..., n− 1} : N([0; 1]× [

k

n
;
k + 1

n
]× [0; 1]) ≤ 1

}

=
(
P{N([0; 1]× [0;

1

n
]× [0; 1]) ≤ 1}

)n
=
(

exp(− 1

n
)[1 +

1

n
]
)n

=
(

1−o( 1

n
)
)n

= 1−o( 1

n
).

Thus, (1.17) holds.

Let ψ ∈ L1(Rd), ψ ≥ 0. Consider the time until the first arrival

τ = inf{t > 0 :

∫
[0;t]×Rd×R+

I[0;ψ(x)](u)N(ds, dx, du) > 0}. (1.18)

The random variable τ is distributed exponentially with the parameter ||ψ||L1 . From

(1.16) we know that a.s.

N({τ} × Rd × R+) = N
(
{(τ, x, u) | x ∈ Rd, u ∈ [0;ψ(x)]}

)
= 1

Let xτ be the unique element of Rd defined by

N({τ} × {xτ} × R+) = 1.

Then

P{xτ ∈ B} =

∫
B
ψ(x)dx∫

Rd ψ(x)dx
, B ∈ B(Rd). (1.19)

1.5 Pure jump type Markov processes

In this section we give a very concise treatment of pure jump type Markov processes.

Most of the definitions and facts given here can be found in [Kal02, Chapter 12]; see also,

e.g., [GS75, Chapter 3, § 1].

We say that a process X = (Xt)t≥0 in some measurable space (S,S) is of pure jump
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type if its paths are a.s. right-continuous and constant apart from isolated jumps. In that

case we may denote the jump times of X by τ1, τ2, ..., with understanding that τn = ∞

if there are fewer that n jumps. The times τn are stopping times with respect to the

right-continuous filtration induced by X. For convenience we may choose X to be the

identity mapping on the canonical path space (Ω,F ) = (S[0;∞),S [0;∞)). When X is a

Markov process, the distribution with initial state x is denoted by Px, and we note that

the mapping x 7→ Px(A) is measurable in x, A ∈ Ω.

Theorem 12.14 [Kal02] (strong Markov property, Doob) A pure jump type Markov

process satisfies strong Markov property at every stopping time.

We say that a state x ∈ S is absorbing if Px{X ≡ x} = 1.

Lemma 12.16 [Kal02] If x is non-absorbing, then under Px the time τ1 until the first

jump is exponentially distributed and independent of θτ1X.

Here θt is a shift, and θτ1X defines a new process,

θτ1X(s) = X(s+ τ1).

For a non-absorbing state x, we may define the rate function c(x) and jump transition

kernel µ(x,B) by

c(x) = (Exτ1)−1, µ(x,B) = Px{Xτ1 ∈ B}, x ∈ S, B ∈ S.

In the sequel, c(x) will also be referred to as jump rate. The kernel cµ is called a rate

kernel.

The following theorem gives an explicit representation of the process in terms of a

discrete-time Markov chain and a sequence of exponentially distributed random variables.

This result shows in particular that the distribution Px is uniquely determined by the

rate kernel cµ. We assume existence of the required randomization variables (so that the

underlying probability space is “rich enough”).
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Theorem 12.17 [Kal02] (embedded Markov chain) Let X be a pure jump type Markov

process with rate kernel cµ. Then there exists a Markov process Y on Z+ with transition

kernel µ and an independent sequence of i.i.d., exponentially distributed random variables

γ1, γ2, ... with mean 1 such that a.s.

Xt = Yn, t ∈ [τn, τn+1), n ∈ Z+, (1.20)

where

τn =
n∑
k=1

γk
c(Yk−1)

, n ∈ Z+. (1.21)

In particular, the differences between the moments of jumps τn+1− τn of a pure jump

type Markov process are exponentially distributed given the embedded chain Y , with

parameter c(Yn). If c(Yk) = 0 for some (random) k, we set τn = ∞ for n ≥ k + 1, while

Yn are not defined, n ≥ k + 1.

Theorem 12.18 [Kal02] (synthesis) For any rate kernel cµ on S with µ(x, {x}) ≡ 0,

consider a Markov chain Y with transition kernel µ and a sequence γ1, γ2, ... of indepen-

dent exponentially distributed random variables with mean 1, independent of Y . Assume

that
∑

n
γn
c(Yn)

=∞ a.s. for every initial distribution for Y . Then (1.20) and (1.21) define

a pure jump type Markov process with rate kernel cµ.

Next proposition gives a convenient criterion for non-explosion.

Proposition 12.19 [Kal02] (explosion) For any rate kernel cµ and initial state x, let

(Yn) and (τn) be such as in Theorem 12.17. Then a.s.

τn →∞ iff
∑
n

1

c(Yn)
=∞. (1.22)

In particular, τn →∞ a.s. when x is recurrent for (Yn).
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1.6 Markovian functions of a Markov chain

Let (S,B(S)) be a Polish (state) space. Consider a (homogeneous) Markov chain on

(S,B(S)) as a family of probability measures on S∞. Namely, on the measurable space

(Ω,F ) = (S∞,B(S∞)) consider a family of probability measures {Ps}s∈S such that for

the coordinate mappings

Xn : Ω→ S,

Xn(s1, s2,...) = sn

the process X = {Xn}n∈Z+ is a Markov chain, and for all s ∈ S

Ps{X0 = s} = 1,

Ps{Xn+mj ∈ Aj, j = 1, ..., k1 | Fn} = PXn{Xmj ∈ Aj, j = 1, ..., k1}.

Here Aj ∈ B(S), mj ∈ N, k1 ∈ N, Fn = σ{X1, ..., Xn}. The space S is separable,

hence there exists a transition probability kernel Q : S ×B(S)→ [0; 1] such that

Q(s, A) = Ps{X1 ∈ A}, s ∈ S, A ∈ B(S).

Consider a transformation of the chain X, Yn = f(Xn), where f : S → Z+ is a Borel-

measurable function, with convention B(Z+) = 2Z+ . In the future we will need to know

when the process Y = {Yn}Z+ is a Markov chain. A similar question appeared for the

first time in [BR58].

A sufficient condition for Y to be a Markov chain is given in the next lemma.

1.6.1 Lemma. Assume that for any bounded Borel function h : S → S
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Esh(X1) = Eqh(X1) whenever f(s) = f(q), (1.23)

Then Y is a Markov chain.

Remark. Condition (1.23) is the equality of distributions of X1 under two different

measures, Ps and Pq.

Proof. For the natural filtrations of the processes X and Y we have an inclusion

FX
n ⊃ F Y

n , n ∈ N, (1.24)

since Y is a function of X. For k ∈ N and bounded Borel functions hj : Z+ → R,

j = 1, 2, ..., k (any function on Z+ is a Borel function),

Es

[
k∏
j=1

hj(Yn+j) | FX
n

]
= EXn

k∏
j=1

hj(f(Xj)) =

∫
S

Q(x0, dx1)h1(f(x1))

∫
S

Q(x1, dx2)h2(f(x2))...

∫
S

Q(xn−1, dxn)hn(f(xn))

∣∣∣∣∣
x0=Xn

(1.25)

To transform the last integral, we introduce a new kernel: for y ∈ f(S) chose x ∈ S

with f(x) = y, ans then for B ⊂ Z+ define

Q(y,B) = Q(x, f−1(B)); (1.26)

The expression on the right-hand side does not depend on the choice of x because of

(1.23). To make the kernel Q defined on Z+ ×B(Z+), we set

Q(y,B) = I{0∈B}, y /∈ f(S).

Then from the change of variables formula for the Lebesgue integral it follows that
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the last integral in (1.25) allows the representation

∫
S

Q(xn−1, dxn)hn(f(xn)) =

∫
Z+

Q(f(xn−1), dzn)hn(zn).

Likewise, we set zn−1 = f(xn−1) in the next to last integral:

∫
S

Q(xn−2, dxn−1)hn(f(xn−1))

∫
S

Q(xn−1, dxn)hn(f(xn)) =

∫
S

Q(xn−2, dxn−1)hn(f(xn−1))

∫
Z+

Q(f(xn−1), dzn)hn(zn) =

∫
Z+

Q(f(xn−2), dzn−1)hn(zn−1)

∫
Z+

Q(zn−1, dzn)hn(zn).

Further proceeding, we get

∫
S

Q(x0, dx1)h1(f(x1))

∫
S

Q(x1, dx2)h2(f(x2))...

∫
S

Q(xn−1, dxn)hn(f(xn)) =

∫
Z+

Q(z0, dz1)h1(z1)

∫
Z+

Q(z1, dz2)h2(z2)...

∫
Z+

Q(zn−1, dzn)hn(zn),

where z0 = f(x0).

Thus,

Es

[
k∏
j=1

hj(Yn+j) | FX
n

]
=

∫
Z+

Q(f(X0), dz1)h1(z1)

∫
Z+

Q(z1, dz2)h2(z2)...

∫
Z+

Q(zn−1, dzn)hn(zn).

This equality and (1.24) imply that Y is a Markov chain.

1.6.2 Remark. The kernel Q and the chain f(Xn) are related: for all s ∈ S, n,m ∈ N

and M ⊂ N,

Ps{f(Xn+1) ∈M | f(Xn) = m} = Q(m,M)
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whenever Ps{f(Xn+1) = m} > 0. Informally, one may say that Q is the transition

probability kernel for the chain {f(Xn)}n∈Z+ .

1.6.3 Remark. Clearly, this result holds for a Markov chain which is not necessarily

defined on a canonical state space, because the property of a process to be a Markov

chain depends on its distribution only.
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Chapter 2

Birth-and-death processes in the space

of finite configurations

2.1 A birth-and-death process in the space of finite

configurations: construction and general theory

We would like to construct a Markov process in the space of finite configurations Г0(Rd),

with a heuristic generator of the form

LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx+
∑
x∈η

d(x, η)(F (η \ x)− F (η)). (2.1)

for F in an appropriate domain. We call the functions b : Rd × Γ0(Rd)→ [0;∞) and d :

Rd×Γ0(Rd)→ [0;∞) the birth rate coefficient and the death rate coefficient, respectively.

Theorem 2.1.16 summarizes the main results obtained in this section.

To construct a spatial birth-and-death process, we consider the stochastic equation

with Poisson noise
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ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v),

(2.2)

where (ηt)t≥0 is a suitable cadlag Г0(Rd)-valued stochastic process, the “solution” of the

equation, B ∈ B(Rd) is a Borel set, N1 is a Poisson point process on Rd×R+×R+ with

intensity dx × ds × du, N2 is a Poisson point process on Z × R+ × R+ with intensity

#× dr× dv ; η0 is a (random) finite initial configuration, b, d : Rd × Γ0(Rd)→ [0;∞) are

functions measurable with respect to the product σ-algebra B(R) ×B(Г0(R)), and the

sequence {x−1, x0, x1, ...} is related to (ηt)t∈[0;∞], as described in Section 1.3.1. We require

the processes N1, N2, η0 to be independent of each other. Equation (2.2) is understood in

the sense that the equality holds a.s. for every bounded B ∈ B(Rd) and t ≥ 0.

As it was said in the preliminaries on Page 15, we identify a finite configuration with

a finite simple counting measure, so that a configuration γ acts as a measure in the

following way:

γ(A) = |γ ∩ A|, A ∈ B(Rd).

We will treat an element of Г0(Rd) both as a set and as a counting measure, as long

as this does not lead to ambiguity. An appearing of a new point will be interpreted as a

birth, and a disappearing will be interpreted as a death. We will refer to points of ηt as

particles.

Some authors write d̃(x, η \ x) where we write d(x, η), so that (2.1) translates to

43



LF (η) =

∫
x∈Rd

b(x, η)[F (η ∪ x)− F (η)]dx+
∑
x∈η

d̃(x, η \ x)(F (η \ x)− F (η)), (2.3)

see e.g. [Pre75], [FKK12b].

These settings are formally equivalent: the relation between d and d̃ is given by

d(x, η) = d̃(x, η \ x), η ∈ Г0(Rd), x ∈ η,

or, equivalently,

d(x, ξ ∪ x) = d̃(x, ξ), ξ ∈ Г0(Rd), x ∈ Rd \ ξ.

The settings used in this thesis appeared in [HS78], [GK06], etc.

We define the cumulative death rate at ζ by

D(ζ) =
∑
x∈ζ

d(x, ζ), (2.4)

and the cumulative birth rate by

B(ζ) =

∫
x∈Rd

b(x, ζ)dx. (2.5)

2.1.1 Definition. A (weak) solution of equation (2.2) is a triple ((ηt)t≥0, N1, N2), (Ω,F , P ),

({Ft}t≥0), where

(i) (Ω,F , P ) is a probability space, and {Ft}t≥0 is an increasing, right-continuous

and complete filtration of sub - σ - algebras of F ,

(ii) N1 is a Poisson point process on Rd × R+ × R+ with intensity dx× ds× du,

(iii) N2 is a Poisson point process on Z× R+ × R+ with intensity #× ds× du,

(iv) η0 is a random F0-measurable element in Г0(Rd),
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(v) the processes N1, N2 and η0 are independent, the processes N1 and N2 are com-

patible with {Ft}t≥0,

(vi) (ηt)t≥0 is a cadlag Г0(Rd)-valued process adapted to {Ft}t≥0 , ηt
∣∣
t=0

= η0,

(vii) all integrals in (2.2) are well-defined, and

(viii) equality (2.2) holds a.s. for all t ∈ [0;∞] and all bounded Borel sets B, with

{xm}m∈Z being the sequence related to (ηt)t≥0.

Note that due to Statement 1.3.3 item (viii) of this definition is a statement about

the joint distribution of (ηt), N1, N2.

Let

C 0
t = σ

{
η0, N1(B, [0; q], C), N2(i, [0; q], C);

B ∈ B(Rd), C ∈ B(R+), q ∈ [0; t], i ∈ Z
}
,

and let Ct be the completion of C 0
t under P . Note that {Ct}t≥0 is a right-continuous

filtration, see Remark 1.3.5.

2.1.2 Definition. A solution of (2.2) is called strong if (ηt)t≥0 is adapted to (Ct, t ≥ 0).

2.1.3 Remark. In the definition above we considered solutions as processes indexed by

t ∈ [0;∞). The reformulations for the case t ∈ [0;T ], 0 < T < ∞, are straightforward.

This remark applies to the results below, too.

Sometimes only the solution process (that is, (ηt)t≥0) will be referred to as a (strong

or weak) solution, when all the other structures are clear from the context.

We will say that the existence of strong solution holds, if on any probability space

with given N1, N2, η0, satisfying (i)-(v) of Definition (2.1.1), there exists a strong solution.

2.1.4 Definition. We say that pathwise uniqueness holds for equation (2.2) and an

initial distribution ν if, whenever the triples ((ηt)t≥0, N1, N2), (Ω,F , P ), ({Ft}t≥0) and
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((η̄t)t≥0, N1, N2), (Ω,F , P ), ({F̄t}t≥0) are weak solutions of (2.2) with P{η0 = η̄0} = 1

and Law(η) = ν, we have P{ηt = η̄t, t ∈ [0;T ]} = 1 (that is, the processes η, η̄ are

indistinguishable).

We assume that the birth rate b satisfies the following conditions: sublinear growth

on the second variable in the sense that

∫
Rd

b(x, η)dx ≤ c1|η|+ c2, (2.6)

and let d satisfy

∀m ∈ N : sup
x∈Rd,|η|≤m

d(x, η) <∞. (2.7)

We also assume that

E|η0| <∞. (2.8)

By a non-random initial condition we understand an initial condition with a distribu-

tion, concentrated at one point: for some η′ ∈ Г0(Rd), P{η0 = η′} = 1.

From now on, we work on some filtered probability space (Ω,F , ({Ft}t≥0), P ). On

this probability space, the Poisson point processes N1, N2 and η0 are defined, so that the

whole set-up satisfies (i)-(v) of Definition 2.1.1.

Let us now consider the equation

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs)]
dN(x, s, u) + η0(B), (2.9)

where b(x, η) := sup
ξ⊂η

b(x, ξ). Note that b satisfies sublinear growth condition (2.6), if b

satisfies it.

This equation is of the type (2.2) (with b being the birth rate coefficient, and the zero

function being the death rate coefficient), and all definitions of existence and uniqueness
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of solution are applicable here. Later a unique solution of (2.9) will be used as a majorant

of a solution to (2.2).

2.1.5 Proposition. Under assumptions (2.6) and (2.8), strong existence and pathwise

uniqueness hold for equation (2.9). The unique solution (η̄t)t≥0 satisfies

E|η̄t| <∞, t ≥ 0. (2.10)

Proof. For ω ∈ {
∫
Rd
b(x, η0)dx = 0}, set ζt ≡ η0, σn =∞, n ∈ N.

For ω ∈ F := {
∫
Rd
b(x, η0)dx > 0}, we define the sequence of random pairs {(σn, ζσn)},

where

σn+1 = inf{t > 0 :

∫
Rd×(σn;σn+t]×[0;∞)

I[0;b(x,ζσn )](u)dN1(x, s, u) > 0}+ σn, σ0 = 0,

and

ζ0 = η0, ζσn+1 = ζσn ∪ {zn+1}

for zn+1 = {x ∈ Rd : N1(x, σn+1, [0; b(x, ζσn)]) > 0}. From (1.16) it follows that the

points zn are uniquely determined almost surely on F . Moreover, σn+1 > σn a.s., and

σn are finite a.s. on F (particularly because b(x, ζσn) ≥ b(x, η0)). For ω ∈ F , we define

ζt = ζσn for t ∈ [σn;σn+1). Then by induction on n it follows that σn is a stopping time

for each n ∈ N, and ζσn is Fσn ∩F -measurable. By direct substitution we see that (ζt)t≥0

is a strong solution for (2.9) on the time interval t ∈ [0; lim
n→∞

σn). Although we have not

defined what is a solution, or a strong solution, on a random time interval, we do not

discuss it here. Instead we are going to show that

lim
n→∞

σn =∞ a.s. (2.11)

This relation is evidently true on the complement of F . If P (F ) = 0, then (2.11) is
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proven.

If P (F ) > 0, define a probability measure on F , Q(A) = P (A)
P (F )

, A ∈ S := F ∩F , and

define St = Ft ∩ F .

The processN1 is independent of F , therefore it is a Poisson point process on (F,S , Q)

with the same intensity, compatible with {St}t≥0. From now on and until other is

specified, we work on the filtered probability space (F,S , {St}t≥0, Q). We use the same

symbols for random processes and random variables, having in mind that we consider

their restrictions to F .

The process (ζt)t∈[0; lim
n→∞

σn) has the Markov property, because the process N1 has the

strong Markov property and independent increments. Indeed, conditioning on Sσn ,

E
[
I{ζσn+1=ζσn∪x for some x∈B} | Sσn

]
=

∫
B

b(x, ζσn)dx∫
Rd
b(x, ζσn)dx

,

thus the chain {ζσn}n∈Z+ is a Markov chain, and, given {ζσn}n∈Z+ , σn+1 − σn are dis-

tributed exponentially:

E{I{σn+1−σn>a} | {ζσn}n∈Z+} = exp{−a
∫
Rd

b(x, ζσn)dx}.

Therefore, the random variables γn = (σn − σn−1)(
∫
Rd
b(x, ζσn)dx) constitute a sequence

of independent random variables exponentially distributed with parameter 1, indepen-

dent of {ζσn}n∈Z+ . Theorem 12.18 in [Kal02] (see Page 37 of this thesis) implies that

(ζt)t∈[0; lim
n→∞

σn) is a pure jump type Markov process.

The jump rate of (ζt)t∈[0; lim
n→∞

σn) is given by

c(α) =

∫
Rd

b(x, α)dx.
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Condition (2.6) implies that c(α) ≤ c1|α|+ c2. Consequently,

c(ζσn) ≤ c1|ζσn|+ c2 = c1|ζ0|+ c1n+ c2.

We see that
∑

n
1

c(ζσn )
=∞ a.s., hence Proposition 12.19 in [Kal02] (given in the first

chapter of this thesis, Section 1.5) implies that σn →∞.

Now, we return again to our initial probability space (Ω,F , {Ft}t≥0, P ).

Thus, we have existence of a strong solution. Uniqueness follows by induction on

jumps of the process. Indeed, let (ζ̃t)t≥0 be another solution of (2.9). From (viii) of

Definition 2.1.1 and equality

∫
Rd×(0;σ1)×[0;∞]

I[0;b(x,η0)]dN1(x, s, u) = 0,

one can see that P{ζ̃ has a birth before σ1} = 0. At the same time, equality

∫
Rd×{σ1}×[0;∞]

I[0;b(x,η0)]dN1(x, s, u) = 1,

which holds a.s., yields that ζ̃ has a birth at the moment σ1, and in the same point of

space at that. Therefore, ζ̃ coincides with ζ up to σ1 a.s. Similar reasoning shows that

they coincide up to σn a.s., and, because σn →∞ a.s.,

P{ζ̃t = ζt for all t ≥ 0} = 1

Thus, pathwise uniqueness holds. The constructed solution is strong.

Now we turn our attention to (2.10). We can write
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|ζt| = |η0|+
∞∑
n=1

I{|ζt| − |η0| ≥ n}

= |η0|+
∞∑
n=1

I{σn ≤ t}. (2.12)

Since σn =
n∑
i=1

γi∫
Rd
b(x,ζσi )dx

, we have

{σn ≤ t} = {
n∑
i=1

γi∫
Rd
b(x, ζσi)dx

≤ t} ⊂ {
n∑
i=1

γi
c1|ζσi |+ c2

≤ t}

⊂ {
n∑
i=1

γi
(c1 + c2)(|η0|+ i)

≤ t} = {Zt − Z0 ≥ n},

where (Zt) is the Yule process (see Page 34) with birth rate defined as follows: Zt−Z0 = n

when
n∑
i=1

γi
(c1 + c2)(|η0|+ i)

≤ t <

n+1∑
i=1

γi
(c1 + c2)(|η0|+ i)

,

and Z0 = |η0|. Thus, we have |ζt| ≤ Zt a.s., hence E|ζt| ≤ EZt <∞. �

2.1.6 Theorem. Under assumptions (2.6)-(2.8), pathwise uniqueness and strong ex-

istence hold for equation (2.2). The unique solution (ηt) is a pure jump type process

satisfying

E|ηt| <∞, t ≥ 0. (2.13)

Proof. Let us define stopping times with respect to {Ft, t ≥ 0}, 0 = θ0 ≤ θ1 ≤ θ2 ≤

θ3 ≤ ..., and the sequence of (random) configurations {ηθj}j∈N as follows: as long as

B(ηθn) +D(ηθn) > 0,

we set

θn+1 = θbn+1 ∧ θdn+1 + θn,
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θbn+1 = inf{t > 0 :

∫
Rd×(θn;θn+t]×[0;∞)

I[0;b(x,ηθn )](u)dN1(x, s, u) > 0},

θdn+1 = inf{t > 0 :

∫
(θn;θn+t]×[0;∞)

I{xi∈ηθn}I[0;d(xi,ηθn )](v)dN2(i, r, v) > 0},

ηθn+1 = ηθn ∪ {zn+1} if θbn+1 ≤ θdn+1, where {zn+1} = {z ∈ Rd : N1(z, θn + θbn+1,R+) > 0};

ηθn+1 = ηθn \ {zn+1} if θbn+1 > θdn+1, where {zn+1} = {xi ∈ ηθn : N2(i, θn + θdn+1,R+) > 0};

the configuration ηθ0 = η0 is the initial condition of (2.2), ηt = ηθn for t ∈ [θn; θn+1), {xi}

is the sequence related to (ηt)t≥0. Note that

P{θbn+1 = θdn+1 for some n | B(ηθn) +D(ηθn) > 0} = 0,

the points zn are a.s. uniquely determined, and

P{zn+1 ∈ ηθn | θbn+1 ≤ θdn+1} = 0.

If for some n

B(ηθn) +D(ηθn) = 0,

then we set θn+k =∞, k ∈ N, and ηt = ηθn , t ≥ θn.

As in the proof of Proposition 2.1.5, (ηt) is a strong solution of (2.2), t ∈ [0; limn θn).

Random variables θn, n ∈ N, are stopping times with respect to the filtration {Ft, t ≥ 0}.

Using the strong Markov property of a Poisson point process, we see that, on {θn <∞},

the conditional distribution of θbn+1 given Fθn is exp(
∫
Rd
b(x, ηθn)dx), and the conditional

distribution of θdn+1 given Fθn is exp(
∑

x∈ηθn
d(x, ηθn)). In particular, θbn, θdn > 0, n ∈ N,

and the process (ηt) is of pure jump type.

Similarly to the proof of Proposition 2.1.5, one can show by induction on n that

equation (2.2) has a unique solution on [0; θn]. Namely, each two solutions coincide on

[0; θn] a.s. Thus, any solution coincides with (ηt) a.s. for all t ∈ [0; θn].
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Now we will show that θn →∞ a.s. as n→∞. Denote by θ′k the moment of the k-th

birth. It is sufficient to show that θ′k → ∞, k → ∞, because only finitely many deaths

may occur between any two births, since there are only finitely particles. By induction

on k′ one may see that {θ′k}k′∈N ⊂ {σi}i∈N, where σi are the moments of births of (ηt)t≥0,

the solution of (2.9), and ηt ⊂ ηt for all t ∈ [0; limn θn). For instance, let us show that

(ηt)t≥0 has a birth at θ′1. We have ηθ′1− ⊃ η0 = η0, and ηθ′1− ⊂ ηt |t=0= η0, hence for all

x ∈ Rd

b(x, ηθ′1−) ≥ b(x, ηθ′1−) ≥ b(x, ηθ′1−)

The latter implies that at time moment θ′1 a birth occurs for the process (ηt)t≥0 in

the same point. Hence, ηθ′1 ⊂ ηθ′1 , and we can go on. Since σk → ∞ as k → ∞, we also

have θ′k →∞, and therefore θn →∞, n→∞.

Since ηt ⊂ ηt a.s., Proposition 2.1.5 implies (2.13). �

In particular, for any time t the integral

∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

is finite a.s.

2.1.7 Remark. Let η0 be a non-random initial condition, η0 ≡ α, α ∈ Г0(Rd). The

solution of (2.2) with η0 ≡ α will be denoted as (η(α, t))t≥0. Let Pα be the push-forward

of P under the mapping

Ω 3 ω 7→ (η(α, ·)) ∈ DГ0(Rd)[0;T ]. (2.14)

From the proof one may derive that, for fixed ω ∈ Ω, constructed unique solu-

tion is jointly measurable in (t, α). Thus, the family {Pα} of probability measures on

DГ0(Rd)[0;T ] is measurable in α. We will often use formulations related to the probabil-
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ity space (DГ0(Rd)[0;T ],B(DГ0(Rd)[0;T ]), Pα); in this case, coordinate mappings will be

denoted by ηt,

ηt(x) = x(t), x ∈ DГ0(Rd)[0;T ].

The processes (ηt)t∈[0;T ] and (η(α, ·))t∈[0;T ] have the same law (under Pα and P , re-

spectively). As one would expect, the family of measures {Pα, α ∈ Г0(Rd)} is a Markov

process, or a Markov family of probability measures; see Theorem 2.1.15 below. For a

measure µ on Г0(Rd), we define

Pµ =

∫
Pαµ(dα).

We denote by Eµ the expectation under Pµ.

2.1.8 Remark. Let b1, d1 be another pair of birth and death coefficients, satisfying all

conditions imposed on b and d. Consider a unique solution (η̃t) of (2.2) with coefficients

b1, d1 instead of b, d, but with the same initial condition η0 and all the other underlying

structures. If for all ζ ∈ D, where D ∈ B(Г0(Rd)) , b1(·, ζ) ≡ b(·, ζ), d1(·, ζ) ≡ d(·, ζ),

then η̃t = ηt for all t ≤ inf{s ≥ 0 : ηs /∈ D} = inf{s ≥ 0 : η̃s /∈ D}. This may be proven

in the same way as the theorem above.

2.1.9 Remark. Assume that all the conditions of Theorem 2.1.6 are fulfilled except

Condition (2.8). Then we could not claim that (2.13) holds. However, other conclusions

of the Theorem would hold. We are mostly interested in the case of a non-random initial

condition, therefore we do not discuss the case when (2.13) is not satisfied.

2.1.10 Remark. We solved equation (2.2) ω-wisely. As a consequence, there is a func-

tional dependence of the solution process and the “input”: the process (ηt)t≥0 is some

function of η0, N1 and N2.
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2.1.11 Proposition. If (ηt)t≥0 is a solution to equation (2.2), then the inequality

E|ηt| < (c2t+ E|η0|)ec1t

holds for all t > 0.

Proof. We already know that E|ηt| is finite. Since ηt satisfies equation (2.2) we have

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{xi∈ηr−∩B}I[0;d(xi,ηr−)](v)dN2(i, r, v) ≤

∫
B×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u) + η0(B).

For B = Rd, taking expectation in the last inequality, we obtain

E|ηt| = Eηt(Rd) ≤ E

∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dN1(x, s, u) + Eη0(Rd) =

= E

∫
Rd×(0;t]×[0;∞]

I[0;b(x,ηs−)](u)dxdsdu+ Eη0(Rd) = E

∫
Rd×(0;t]

b(x, ηs−)dxds+ Eη0(Rd).

Since η is a solution of (2.2), we have for all s ∈ [0; t] almost surely ηs− = ηs.

Consequently, E|ηs−| = E|ηs|. Applying this and (2.6), we see that

Eηt(Rd) ≤ E

∫
(0;t]

(c1|ηs−|+ c2)ds+ Eη0(Rd) = c1

∫
(0;t]

E|ηs|ds+ c2t+ Eη0(Rd),

so the statement of the lemma follows from (2.8) and Gronwall’s inequality. �

2.1.12 Definition. We say that joint uniqueness in law holds for equation (2.2) with an
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initial distribution ν if any two (weak) solutions ((ηt), N1, N2) and ((ηt)
′, N ′1, N

′
2) of (2.2),

Law(η0) = Law((η0)′) = ν, have the same joint distribution:

Law((ηt), N1, N2) = Law((ηt)
′, N ′1, N

′
2).

The following corollary is a consequence of Theorem 2.1.6 and Remark 2.1.10 .

2.1.13 Corollary. Joint uniqueness in law holds for equation (2.2) with initial distribu-

tion ν satisfying

∫
Г0(Rd)

|γ|ν(dγ) <∞.

2.1.14 Remark. We note here that altering the order of the initial configuration does

not change the law of the solution. We could replace the lexicographical order with any

other. To see this, note that if ς is a permutation of Z (that is, ς : Z→ Z is a bijection),

then the process Ñ2 defined by

Ñ2(K,R, V ) = N2(ςK,R, V ), K ⊂ Z, R, V ∈ B(R+), (2.15)

has the same law as N2, and is adapted to {Ft}t≥0, too. Therefore, solutions of (2.2)

and of (2.2) with N2 being replaced by Ñ2 have the same law. But replacing N2 with Ñ2

in equation (2.2) is equivalent to replacing {x−|η0|+1, ..., x0, x1, ...} with

{xς−1(−|η0|+1), ..., xς−1(0), xς−1(1), ...}.

Let ν be a distribution on Г0(Rd), and let T > 0. Denote by L (ν, b, d, T ) the law of

the restriction (ηt)t∈[0;T ] of the unique solution (ηt)t≥0 to (2.2) with an initial condition

distributed according to ν. Note that L (ν, b, d, T ) is a distribution on DГ0(Rd)([0;T ]). As

usually, the Markov property of a solution follows from uniqueness.

2.1.15 Theorem. The unique solution (ηt)t∈[0;T ] of (2.2) is a Markov process.
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Proof. Take arbitrary t′ < t, t′, t ∈ [0;T ]. Consider the equation

ξt(B) =

∫
B×(t′;t]×[0;∞]

I[0;b(x,ξs−)](u)dN1(x, s, u)

−
∫

Z×(t′;t]×[0;∞)

I{x′i∈ξr−∩B}I[0;d(x′i,ξr−)]dN2(i, r, v) + ηt′(B),

(2.16)

where the sequence {x′i} is related to the process (ξs)s∈[0;t], ξs = ηs. The unique solution

of (2.16) is (ηs)s∈[t′;t]. As in the proof of Theorem 2.1.6 we can see that (ηs)s∈[t′;t] is mea-

surable with respect to the filtration generated by the random variables N1(B, [s; q], U),

N2(i, [s; q], U), and ηt′(B), where B ∈ B(Rd), i ∈ Z, t′ ≤ s ≤ q ≤ t, U ∈ B(R+). Poisson

point process have independent increments, hence

P{(ηt)t∈[s;T ] ∈ U | Fs} = P{(ηt)t∈[s;T ] ∈ U | ηs}

almost surely. Furthermore, using arguments similar to those in Remark 2.1.14, we can

conclude that (ηs)s∈[t′;t] is distributed according to L (νt′ , b, d, t − t′), where νt′ is the

distribution of ηt′ . �

The following theorem sums up the results we have obtained so far.

2.1.16 Theorem. Under assumptions (2.6), (2.7), (2.8), equation (2.2) has a unique

solution. This solution is a pure jump type Markov process. The family of push-forward

measures {Pα, α ∈ Г0(Rd)} defined in Remark 2.1.7 forms a Markov process, or a Markov

family of probability measures, on DГ0(Rd)[0;∞).

Proof. The statement is a consequence of Theorem 2.1.6, Remark 2.1.7 and Theorem

2.1.15. In particular, the Markov property of {Pα, α ∈ Г0(Rd)} follows from the statement

given in the last sentence of the proof of Theorem 2.1.15. �

We call the unique solution of (2.2) (or, sometimes, the corresponding family of mea-
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sures on DГ0(Rd)[0;∞)) a (spatial) birth-and-death Markov process.

2.1.17 Remark. We note that d does not need to be defined on the whole space Rd ×

Γ0(Rd). The equation makes sense even if d(x, η) is defined on {(x, η) | x ∈ η}. Of course,

any such function may be extended to a function on Rd × Γ0(Rd).

2.1.1 Continuous dependence on initial conditions

In order to prove the continuity of the distribution of the solution of (2.2) with respect

to initial conditions, we make the following continuity assumptions on b and d.

2.1.18 Continuity assumptions. Let b, d be continuous with respect to both arguments.

Furthermore, let the map

Г0(Rd) 3 η 7→ b(·, η) ∈ L1(Rd)

be continuous.

In light of Remark 2.1.17, let us explain what we understand by continuity of d when

d(x, η) is defined only on {(x, η) | x ∈ η}. We require that, whenever ηn → η and

ηn 3 zn → x ∈ η, we also have d(zn, ηn)→ d(x, η). Similar condition appeared in [HS78,

Theorem 3.1].

2.1.19 Theorem. Let the birth and death coefficients b and d satisfy the above continuity

assumptions 2.1.18. Then for every T > 0 the map

Г0(Rd) 3 α 7→ Law{η(α, ·)·, · ∈ (0;T ]},

which assigns to a non-random initial condition η0 = α the law of the solution of equation

(2.2) stopped at time T , is continuous.
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Remark. We mean continuity in in the space of measures on DГ0(Rd)[0;T ]; see Page

25.

Proof. Denote by η(α, · ) the solution of (2.2), started from α. Let αn → α, αn, α ∈

Г0(Rd), α = {x0, x−1, ..., x−|α|+1}, x0 4 x−1 4 ... 4 x−|α|+1. With no loss in generality

we assume that |αn| = |α|, n ∈ N. By Lemma 1.2.5 we can label elements of αn,

αn = {x(n)
0 , x

(n)
−1 , ..., x

(n)
−|α|+1}, so that x(n)

−i → x−i, i = 0, ..., |α| − 1. Taking into account

Remark 2.1.14, we can assume

x
(n)
0 4 x

(n)
−1 4 ... 4 x

(n)
−|α|+1 (2.17)

without loss of generality (in the sense that we do not have to use lexicographical order;

not in the sense that we can make x(n)
0 , x

(n)
−1 , ... satisfy (2.17) with the lexicographical

order).

We will show that

sup
t∈[0;T ]

dist(η(α, t), η(αn, t))
p→ 0, n→∞. (2.18)

Let {θi}i∈N be the moments of jumps of process η(α, · ). Without loss of generality,

assume that d(x, α) > 0, x ∈ α, and ||b(·, α)||L1 > 0, L1 := L1(Rd) (if some of these

inequalities are not fulfilled, the following reasonings should be changed insignificantly).

Depending on whether a birth or a death occurs at θ1, we have either

N1({x1} × {θ1} × [0; b(x1, η0)]) = 1 (2.19)

or for some x−k ∈ α

N2({−k} × {θ1} × [0; d(x−k, α)]) = 1.

The probability of last two equalities holding simultaneously is zero, hence we can neglect
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this event. In both cases N1(x1, {θ1}, {b(x1, α)}) = 0, N2(−k, {θ1}, {d(x−k, α)}) = 0 a.s.

We also have

N1(Rd × [0; θ1)× [0; b(x, α)]) = 0,

and for all j ∈ 0, 1, ..., |α| − 1

N2({−j} × [0; θ1)× [0; d(x−j, α)]) = 0.

Denote

m := b(x1, α) ∧min{d(x, α) : x ∈ α} ∧ ||b(·, α)||L1 ∧ 1

and fix ε > 0. Let δ1 > 0 be so small that for ν ∈ Г0(Rd), ν = {x′0, x′−1, ..., x
′
−|α|+1},

|x−j − x′−j| ≤ δ1 the inequalities

|d(x′−j, ν)− d(x−j, α)| < εm,

and

||b(·, ν)− b(·, α)||L1 < εm

hold. Then we may estimate

P
{ ∫
Rd×[0;θ1)×[0;∞]

I[0;b(x,ν)](u)dN1(x, s, u) ≥ 1
}
< ε. (2.20)

and

P
{ ∫
Z×[0;θ1)×[0;∞]

I{x′−i∈ν}I[0;d(x′−i,ν)](v)dN2(i, r, v) ≥ 1
}
< ε|α|. (2.21)

Indeed, the random variable

θ̃ := inf
t>0
{

∫
Rd×[0;t)×[0;∞]

I[0;0∨{b(x,ν)−b(x,α})](u)dN1(x, s, u) ≥ 1} (2.22)
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is exponentially distributed with parameter ||(b(·, ν) − b(·, α))+||L1 < ε||b(·, α)||L1 . By

Lemma 1.4.1,

P{θ̃ < θ1} <
ε||b(·, α)||L1

||b(·, α)||L1

= ε, (2.23)

which is exactly (2.20). Likewise, (2.21) follows.

Similarly, the probability that the same event as for η(α, ·) occurs at time θ1 for η(ν, ·)

is high. Indeed, assume, for example, that a birth occurs at θ1, that is to say that (2.19)

holds. Once more using Lemma 1.4.1 we get

P{N1({x1} × {θ1} × [0; b(x1, ν)]) = 0} ≤ ||(b(·, ν)− b(·, α))+||L1

||b(·, α)||L1

≤ ε.

The case of death occurring at θ1 may be analyzed in the same way.

From inequalities (1.6) and (1.7) we may deduce

sup
t∈(0;θ1]

dist(η(α, t), η(αn, t))
p→ 0, n→∞. (2.24)

Proceeding in the same manner we may extend this to

sup
t∈(0;θn]

dist(η(α, t), η(αn, t))
p→ 0, n→∞, (2.25)

particularly because of the strong Markov property of a Poisson point process. In fact,

with high probability the processes η(αn, · ) and η(α, · ) change up to time θn in the same

way in the following sense: births occur in the same places at the same time moments.

Deaths occur at the same time moments, and when a point is deleted from η(α, · ), then

its counterpart is deleted from η(αn, · ).

Since θn →∞, we get (2.18). �

2.1.20 Remark. In fact, we have proved an even stronger statement. Namely, take

αn → α. Then there exist processes (ξ
(n)
t )t∈[0;T ] such that (ξ

(n)
t )t∈[0;T ]

d
= (η(αn, t))t∈[0;T ]
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and

sup
t∈[0;T ]

dist(η(α, t), ξ
(n)
t )

p→ 0, n→∞.

Thus, Law{η(α, · ), · ∈ (0;T ]} and Law{η(αn, · ), · ∈ (0;T ]} are close in the space of mea-

sures over DГ0 , even when DГ0 is considered as topological space equipped with the

uniform topology (induced by metric dist), and not with the Skorokhod topology.

2.1.2 The martingale problem

Now we briefly discuss the martingale problem associated with L defined in (2.1). Let

Cb(Г0(Rd)) be the space of all bounded continuous functions on Г0(Rd). We equip

Cb(Г0(Rd)) with the supremum norm.

2.1.21 Definition. A probability measure Q on (DГ0 [0;∞),B(DГ0 [0;∞))) is called a

solution to the local martingale problem associated with L if

M f
t = f(y(t))− f(y(0))−

t∫
0

Lf(y(s−))ds, It, 0 ≤ t <∞,

is a local martingale for every f ∈ Cb(Г0). Here y is the coordinate mapping, y(t)(ω) =

ω(t), ω ∈ DГ0 [0;∞), It is the completion of σ(y(s), 0 ≤ s ≤ t) under Q.

Thus, we require M f to be a local martingale under Q with respect to {It}t≥0. Note

that L can be considered as a bounded operator on Cb(Г0(Rd)).

2.1.22 Proposition. Let (η(α, t))t≥0 be a solution to (2.2). Then for every f ∈ C(Г0)

the process

M f
t = f(η(α, t))− f(η(α, t))−

t∫
0

Lf(η(α, s−))ds (2.26)

is a local martingale under P with respect to {Ft}t≥0.

Proof. In this proof ζt will stand for η(α, t). Denote τn = inf{t ≥ 0 : |ζt| > n or ζt *
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[−n;n]d}. Clearly, τn, n ∈ N, is a stopping time and τn → ∞ a.s. Let ζnt = ζt∧τn . We

want to show that ((n)M f
t )t≥0 is a martingale, where

(n)M f
t = f(ζnt )− f(ζnt )−

t∫
0

Lf(ζns−)ds. (2.27)

The process (ζt)t≥0 satisfies

ζt =
∑

s≤t,ζs 6=ζs−

[ζs − ζs−] + ζ0. (2.28)

In the above equality as well as in few other places throughout this proof we treat elements

of Г0(Rd) as measures rather than as configurations. Since (ζt) is of the pure jump type,

the sum on the right-hand side of (2.28) is a.s. finite. Consequently we have

f(ζnt )− f(ζn0 ) =
∑

s≤t,ζs 6=ζs−

[f(ζns )− f(ζns−)]

=

∫
B×(0;t]×[0;∞]

[f(ζs)− f(ζs−)]I{s≤τn}I[0;b(x,ζs−)](u)dN1(x, s, u) (2.29)

−
∫

Z×(0;t]×[0;∞]

I{xi∈ζs−}[f(ζs)− f(ζs−)]I{s≤τn}I[0;d(xi,ζs−)](v)dN2(i, s, v).

Note that ζs = ζs− ∪x a.s. in the first summand on the right-hand side of (2.29), and

ζs = ζs− \ xi a.s. in the second summand. Now, we may write

t∫
0

I{s≤τn}Lf(ζs)ds =

t∫
0

∫
x∈Rd,u≥0

I{s≤τn}I[0;b(x,ζs−)](u)[f(ζs− ∪ x)− f(ζs−)]dxduds− (2.30)

t∫
0

∫
x∈Rd,u≥0

I{s≤τn}I[0;d(x,ζs−))](v)[f(ζs− \ x)− f(ζs−)]ζs−(dx)dvds.
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Functions b, d(·, ·) and f are bounded on Rd × {α : |α| ≤ n and α ⊂ [−n;n]d} and

{α : |α| ≤ n and α ⊂ [−n;n]d} respectively by a constant C > 0. Now, for a predictable

bounded processes (γs(x, u))0≤s≤t and (βs(x, v))0≤s≤t, the processes

∫
B×(0;t]×[0;C]

I{s≤τn}γs(x, u)[dN1(x, s, u)− dxdsdu],

∫
Z×(0;t]×[0;C]

I{s≤τn}I{xi∈ζs−}βs(xi, v)[dN2(i, s, v)−#(di)dsdv].

are martingales. Observe that

∫
Z×(0;t]×[0;C]

I{s≤τn}I{xi∈ζs−}βs(xi, v)#(di)dsdv =

∫
Z×(0;t]×[0;C]

I{s≤τn}βs(x, v)ζs−(dx)dsdv

Taking

γs(x, u) = I[0;b(x,ζs−)](u)[f(ζs− ∪ x)− f(ζs−)],

βs(x, v)) = I[0;d(x,ζs−)](v)[f(ζs− \ x)− f(ζs−)],

we see that the difference on the right hand side of (2.27) is a martingale because of

(2.29) and (2.30). �

2.1.23 Corollary. The unique solution of (2.2) induces a solution of the martingale

problem 2.1.21.

2.1.24 Remark. Since y(s) = y(s−) Pα - a.s., the process

f(y(t))− f(y(0))−
t∫

0

Lf(y(s))ds, 0 ≤ t <∞,

is a local martingale, too.

63



2.1.3 Birth rate without sublinear growth condition

In this section we will consider equation (2.2) with the a birth rate coefficient that does

not satisfy the sublinear growth condition (2.6).

Instead, we assume only that

sup
x∈Rd,|η|≤m

b(x, η) <∞. (2.31)

Under this assumption we can not guarantee existence of solution on the whole line

[0;∞) or even on a finite interval [0;T ]. It is possible that infinitely many points appear

in finite time.

We would like to show that a unique solution exists up to an explosion time, maybe

finite. Consider birth and death coefficients

bn(x, η) = b(x, η)I{|η|≤n},

dn(x, η) = d(x, η)I{|η|≤n}.

(2.32)

Functions bn, dn are bounded, so equation (2.2) with birth rate coefficient bn and death

rate coefficient dn has a unique solution by Theorem 2.1.6. Remark 2.1.8 provides the

existence and uniqueness of solution to (2.2) (with birth and death rate coefficients b and

d, respectively) up to the (random stopping) time τn = inf{s ≥ 0 : |ηs| > n}. Clearly,

τn+1 ≥ τn; if τn →∞ a.s., then we have existence and uniqueness for (2.2); if τn ↑ τ <∞

with positive probability, then we have an explosion. However, existence and uniqueness

hold up to explosion time τ . When we have an explosion we say that the solution blows

up. In Section 2.2 we discuss the possibility of an explosion for the Dieckmann-Law

model.
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2.1.4 Coupling

Here we discuss the coupling of two birth-and-death processes. The theorem we prove

here will be used in the sequel. As a matter of fact, we have already used the coupling

technique in the proof of Theorem 2.1.6.

Consider two equations of the form (2.2),

ξ
(k)
t (B) =

∫
B×(0;t]×[0;∞]

I
[0;bk(x,ξ

(k)
s− )]

(u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{x(k)
i ∈ξ

(k)
r−∩B}

I
[0;d(x

(k)
i ,ηr−)]

(v)dN2(i, r, v) + ξ
(k)
0 (B), k = 1, 2,

(2.33)

where t ∈ [0;T ] and {x(k)
i } is the sequence related to (ξ

(k)
t )t∈[0;T ].

Assume that initial conditions ξ(k)
0 and coefficients bk, dk satisfy the conditions of

Theorem 2.1.6. Let (ξ
(k)
t )t∈[0;T ] be the unique strong solutions.

2.1.25 Theorem. Assume that almost surely ξ(1)
0 ⊂ ξ

(2)
0 , and for any two finite configu-

rations η1 ⊂ η2,

b1(x, η1) ≤ b2(x, η2), x ∈ Rd (2.34)

and

d1(x, η1) ≥ d2(x, η2), x ∈ η1.

Then there exists a cadlag Г0(Rd)-valued process (ηt)t∈[0;T ] such that (ηt)t∈[0;T ] and

(ξ
(1)
t )t∈[0;T ] have the same law and

ηt ⊂ ξ
(2)
t , t ∈ [0;T ]. (2.35)

Proof. Let {..., x(2)
−1, x

(2)
0 , x

(2)
1 , ...} be the sequence related to (ξ

(2)
t )t∈[0;T ]. Consider the
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equation

ηt(B) =

∫
B×(0;t]×[0;∞]

I[0;bk(x,ηs−)](u)dN1(x, s, u)

−
∫

Z×(0;t]×[0;∞)

I{x(2)
i ∈ηr−∩B}

I
[0;d(x

(2)
i ,ηr−)]

(v)dN2(i, r, v) + ξ
(1)
0 (B), k = 1, 2.

(2.36)

Note that here {x(2)
i } is related to (ξ

(2)
t )t∈[0;T ] and not to (ηt)t∈[0;T ]. Thus (2.36) is not

an equation of form (2.2). Nonetheless, the existence of a unique solution can be shown

in the same way as in the proof of Theorem 2.1.6. Denote the unique strong solution of

(2.36) by (ηt)t∈[0;T ].

Denote by {τm}m∈N the moments of jumps of (ηt)t∈[0;T ] and (ξ
(2)
t )t∈[0;T ], 0 < τ1 < τ2 <

τ3 < .... More precisely, a time t ∈ {τm}m∈N iff at least one of the processes (ηt)t∈[0;T ] and

(ξ
(2)
t )t∈[0;T ] jumps at time t.

We will show by induction that each moment of birth for (ηt)t∈[0;T ] is a moment of

birth for (ξ
(2)
t )t∈[0;T ] too, and each moment of death for (ξ

(2)
t )t∈[0;T ] is a moment of death

for (ηt)t∈[0;T ] if the dying point is in (ηt)t∈[0;T ]. Moreover, in both cases the birth or the

death occurs at exactly the same point. Here a moment of birth is a random time at which

a new point appears, a moment of death is a random time at which a point disappears

from the configuration. The statement formulated above is in fact equivalent to (2.35).

Here we deal only with the base case, the induction step is done in the same way. We

have nothing to show if τ1 is a moment of a birth of (ξ
(2)
t )t∈[0;T ] or a moment of death of

(ηt)t∈[0;T ]. Assume that a new point is born for (ηt)t∈[0;T ] at τ1,

ητ1 \ ητ1− = {x1}.

The process (ηt)t∈[0;T ] satisfies (2.36), therefore N1({x}, {τ1}, [0; bk(x1, ητ1−)]) = 1. Since

ητ1− = ξ
(1)
0 ⊂ ξ

(2)
0 = ξ

(2)
τ1−,
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by (2.34)

N1({x}, {τ1}, [0; bk(x1, ξ
(2)
τ1−)]) = 1,

hence

ξ(2)
τ1
\ ξ(2)

τ1− = {x1}.

The case when τ2 is a moment of death for (ξ
(2)
t )t∈[0;T ] is analyzed analogously.

It remains to show that (ηt)t∈[0;T ] and (ξ
(1)
t )t∈[0;T ] have the same law. We mentioned

above that formally equation (2.36) is not of the form (2.2), so we can not directly apply

the uniqueness in law result. However, since ηt ∈ ξ(2)
t a.s., t ∈ [0;T ], we can still consider

(2.36) as an equation of the form (2.2). Indeed, let {..., y−1, y0, y1, ...} be the sequence re-

lated to ηt. We have {y−|ξ(1)
0 |+1

, ..., y−1, y0, y1, ...} ⊂ {x−|ξ(2)
0 |+1

, ..., x
(2)
−1, x

(2)
0 , x

(2)
1 , ...}. There

exists an injection ς : {−|ξ(1)
0 |+1, ..., 0, 1, ...} → {−|ξ(2)

0 |+1, ..., 0, 1, ...} such that yς(i) = xi.

Denote θi = inf{s ≥ 0 : yi ∈ ηs}. Note that θi is a stopping time with respect to {Ft}.

Define a Poisson point process N̄2 by

N̄2({i} ×R× V ) = N2({i} ×R× V ), i ∈ Z, R ⊂ [0; θi], V ⊂ R+,

and

N̄2({i} ×R× V ) = N2({ς(i)} ×R× V ), i ∈ Z, R ⊂ (θi;∞), V ⊂ R+.

The process N̄2 is {Ft}-adapted. One can see that (ηt)t∈[0;T ] is the unique solution of

equation (2.2) with N2 replaced by N̄2. Hence (ηt)t∈[0;T ]
d
= (ξ

(1)
t )t∈[0;T ].

2.1.5 Related semigroup of operators

We say now a few words about the semigroup of operators related to the unique solution

of (2.2). We write η(α, t) for a unique solution of (2.2), started from α ∈ Г0(Rd). We
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want to define an operator St by

Stf(α) = Ef(η(α, t)) (= Eαf(η(t))) (2.37)

for an appropriate class of functions. Unfortunately, it seems difficult to make St a

C0-semigroup on some functional Banach space for general b, d satisfying (2.6) and (2.7).

We start with the case when the cumulative birth and death rates are bounded. Let

Cb = Cb(Г0(Rd)) be the space of all bounded continuous functions on Г0(Rd). It becomes

a Banach space once it is equipped with the supremum norm. We assume the existence

of a constant C > 0 such that for all ζ ∈ Г0(Rd)

|B(ζ)|+ |D(ζ)| < C, (2.38)

where B and D are defined in (2.4) and (2.5). Formula (2.1) defines then a bounded op-

erator L : Cb → Cb, and we will show that St coincides with etL. For f ∈ Cb, the function

Stf is bounded and continuous. Boundedness is a consequence of the boundedness of f ,

and continuity of Stf follows from Remark 2.1.20. Indeed, let αn → α, ξ(n)
t

d
= η(αn, t)

and

dist(η(α, t), ξ
(n)
t )

p→ 0, n→∞.

Unlike Г(Rd), the space Г0(Rd) is a σ-compact space. Consequently, for all ε > 0 there

exists a compact Kε ⊂ Г0(Rd) such that for large enough n

P{η(α, t) ∈ Kε, ξ
(n)
t ∈ Kε} ≥ 1− ε.

Also, for fixed δ > 0 and for large enough n

P{dist(η(α, t), ξ
(n)
t ) ≤ δ} ≥ 1− δ.
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Fix ε > 0. There exists δε ∈ (0; ε) such that |f(β)−f(γ)| ≤ ε whenever dist(β, γ) ≤ δε,

β, γ ∈ Kε. We have for large enough n

|E[f(η(α, t))− f(ξ
(n)
t )]|

≤ E|f(η(α, t))− f(ξ
(n)
t )|I{η(α, t) ∈ Kε, ξ

(n)
t ∈ Kε, dist(η(α, t), ξ

(n)
t ) ≤ δε}

+2(δε + ε)||f || ≤ ε+ 2(δε + ε)||f ||,

where ||f || = supζ∈Г0(Rd) |f(ζ)|. Letting ε→ 0, we see that

Ef(η(αn, t)) = Ef(ξ
(n)
t )→ Ef(η(α, t)).

Thus, Stf is continuous (note that the continuity of Stf does not follow from Theorem

2.1.19 alone, since for a fixed t ∈ [0;T ] the functional DГ0(Rd)[0;T ] 3 x 7→ x(t) ∈ R is

not continuous in the Skorokhod topology). Furthermore, since for small t and for all

A ∈ B(Rd),

P{η(α, t) = α} = 1− t[B(α) +D(α)] + o(t), (2.39)

P{η(α, t) = α ∪ {y} for some y ∈ A} = t

∫
y∈A

b(y, α)dy + o(t), (2.40)

and for x ∈ α

P{η(α, t) = α \ {x}} = td(x, α) + o(t), (2.41)

we may estimate

|Stf(α)− f(α)| ≤ t [B(α) +D(α)] ||f ||+ o(t)||f || ≤ C||f ||t+ o(t).
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Therefore, (2.37) defines a C0 semigroup on Cb. Its generator

L̃f(α) = lim
t→0+

Stf(α)

t
=

lim
t→0+

 ∫
x∈Rd

b(x, α)[f(α ∪ x)− f(α)]dx+
∑
x∈α

d(x, α)(f(α \ x)− f(α)) + o(t)

 = Lf(α).

Thus, St = etL, and we have proved the following

2.1.1 Proposition. Assume that (2.38) is fulfilled. Then the family of operators (St, t ≥

0) on Cb defined in (2.37) constitutes a C0-semigroup. Its generator coincides with L

given in (2.1).

Now we turn out attention to general b, d satisfying (2.6) and (2.7) but not necessarily

(2.38). The family of operators (St)t≥0 still constitutes a semigroup, however it does not

have to be strongly continuous anymore. Consider truncated birth and death coefficients

(2.32) and corresponding process ηn(α, t). Remark 2.1.8 implies that ηn(α, t) = η(α, t)

for all t ∈ [0; τn], where

τn = inf{s ≥ 0 : |η(α, s)| > n}. (2.42)

Growth condition (2.6) implies that τn →∞ for any α ∈ Г0(Rd).

Truncated coefficients bn, dn satisfy (2.38) and

S
(n)
t f(α) = Ef(η(n)(α, t)) (2.43)

defines a C0 - semigroup on Cb. In particular, for all α ∈ Г0(Rd)

L(n)f(α) = lim
t→0+

Ef(η(n)(α, t))− f(α)

t
,

where L(n) is operator defined as in (2.1) but with bn, dn instead of b, d. Letting n→∞
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we get, for fixed α and f ,

Lf(α) = lim
t→0+

Ef(η(α, t))− f(α)

t
= lim

t→0+

Stf(α)− f(α)

t
. (2.44)

Taking limit by n is possible: for n ≥ |α| + 2, η(n)(α, t) satisfies (2.39), (2.40) and

(2.41), therefore η(α, t) satisfies (2.39), (2.40) and (2.41), too. Thus, we have

2.1.2 Proposition. Let b and d satisfy (2.6) and (2.7) but not necessarily (2.38). Then

the family of operators (St, t ≥ 0) constitutes a semigroup on Cb which does not have to

be strongly continuous. However, for every α ∈ Г0(Rd) and f ∈ Cb we have (2.44).

Formula (2.44) gives us the formal relation of (η(α, t))t≥0 to the operator L. Of course,

for fixed f the convergence in (2.44) does not have to be uniform in α.

2.1.3 Remark. The question about the construction of a semigroup acting on some class

of probability measures on Г0(Rd) is yet to be studied.

2.2 Explosion and non-explosion for birth-and-death

processes in Г0(Rd)

In this section we consider the possibility of an explosion in finite time for some birth-

and-death Markov processes in Г0(Rd). We are only interested in the cases which are not

covered by the theorem about existence and uniqueness of solution to (2.2). The idea of

the proof is suggested by Finkelshtein and Kondratiev (private conversation).

2.2.1 Explosion

Consider a generator of the form
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(LF )(γ) =
∑
y∈γ

∫
Rd
a+(x− y)

(
λ+

∑
y′∈γ\y

b+(y − y′)

)[
F (γ ∪ x)− F (γ)

]
dx, (2.45)

so that the birth and death coefficients are

b(x, γ) =
∑
y∈γ

a+(x− y)

(
λ+

∑
y′∈γ\y

b+(y − y′)

)
, d(x, γ) ≡ 0. (2.46)

Here 0 ≤ a+, b+ ∈ L1(Rd), λ > 0 and
∫
Rd a

+(x)dx = 1.

Let Λ, a+ and b+ be such that there exists a constant cΛ > 0 for which

a+(x− y), a+(x− y)b+(y − y′) ≥ cΛ, x, y, y′ ∈ Λ. (2.47)

Under these assumptions, we will prove that explosion happens with positive proba-

bility under Pµ , where µ is the distribution of the initial condition satisfying

∫
|γ ∩ Λ|µ(dγ) = Eµ|η0| > 0. (2.48)

2.2.1 Proposition. For a solution (ηt) of (2.2) with birth and death coefficients given

in (2.46) and initial distribution µ satisfying (2.48), an explosion occurs with positive

probability.

It suffices to consider µ concentrated at one point, that is, we may assume that η0

is not random and |η0 ∩ Λ| ≥ 1. We are going to use the coupling technique. Let us

introduce a new birth rate coefficient, ã+(x, y) = cΛI{x,y∈Λ}, b̃+(x, y) = I{x,y∈Λ},

b̃(x, γ) =
∑
y∈γ

ã+(x, y)

(
λ+

∑
y′∈γ\y

b̃+(y, y′)

)
= I{x∈Λ}|γ ∩ Λ|(λ+ |γ ∩ Λ| − 1). (2.49)
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Then b̃(x, γ1) ≤ b̃(x, γ2) ≤ b(x, γ2), γ1 ⊂ γ2. Consider the unique solution (ξ(η0, t))t∈[0;T ]

of (2.2) with the death coefficient equal identically zero and the birth coefficient as in

(2.49) and initial condition η0. Let τn = inf{t > 0 : |ηt(η0, t)| > n}. Remark 2.1.8 and

a straightforward generalization of Theorem 2.1.25 imply that there exists a process (ξ̄t)

such that (ξ̄t)
d
= (ξt) and a.s.

ξ̄t ⊂ η(η0, t), t ∈ [0; τ). (2.50)

Thus, it is sufficient to show that (ξ(η0, t))t∈[0;T ] blows up. Clearly, the embedded

chain Y = (Yn)n∈N of (ξ(η0, t))t∈[0;T ] satisfies |Yn| = n + |η0| and, since all new points

appear inside Λ, |Yn ∩Λ| = n+ |η0 ∩Λ|. Given Y , the times {ςn}n∈N between consequent

jumps of (ξt)t∈[0;T ] are exponentially distributed, and the parameter of ςn+1 is almost

surely equal to

pn =

∫
Rd
b̃(x, Yn)dx =

∑
y∈Yn

∫
Rd
ã+(x, y)

(
λ+

∑
y′∈γ\y

b̃+(y, y′)

)
dx =

cΛ

∑
y∈Yn∩Λ

l(Λ)
(
λ+ |Yn ∩ Λ| − 1

)
= cΛl(Λ)|Yn ∩ Λ|

(
λ+ |Yn ∩ Λ| − 1

)
=

cΛl(Λ)(n+ |η0 ∩ Λ|)
(
λ+ n+ |η0 ∩ Λ| − 1

)
,

where l is the Lebesgue measure on Rd. We see that the parameter pn is a.s. constant,

therefore ςn is exponentially distributed with parameter pn ≥ cΛl(Λ)n2. Since
∑

n≥1
1
pn
<

∞ and
∑

n≥1
1
p2
n
< ∞ (those are the sums of the expectations and the variances of ςn,

respectively), we have
∑

n≥1 ςn <∞ a.s. Thus, the process (ξ(η0, t))t∈[0;T ] explodes.

2.2.2 Non-explosion

Let us consider so-called Dieckmann-Law heuristic generator
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(LF )(γ) =
∑
x∈γ

(
m+

∑
y∈γ\x

a−(x− y)

)[
F (γ \ x)− F (γ)

]
(2.51)

+
∑
y∈γ

∫
Rd
a+(x− y)

(
λ+

∑
y′∈γ\y

b+(y − y′)

)[
F (γ ∪ x)− F (γ)

]
dx.

The birth rate coefficient is the same as in (2.46), the death rate coefficient is given

by

d(x, γ) = m+
∑
y∈γ\x

a−(x− y). (2.52)

We saw in the previous section that a solution of (2.2) may explode when the birth

rate coefficient b is of such a “quadratic” form. Here we want to demonstrate that the

growth of the number of points may be suppressed by including a sufficiently large death

rate coefficient.

To do so, we will assume that

m > λ||a+||L1 ,

a−(z) ≥ b+(z)||a+||L1 , z ∈ Rd.

(2.53)

Let Ln be the generator of the C0-semigroup associated with the process η(n)(·, ·). In

fact,

LnF (ζ) = [LF (ζ)]I|ζ|≤n.

Assumptions (2.53) ensure that the function Vn ∈ Cb(Г0(Rd)), Vn(ζ) = |ζ|∧n satisfies

LnVn(ζ) ≤ 0, ζ ∈ Г0(Rd). (2.54)
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Indeed, for |ζ| ≤ n

LnVn(ζ) = −
∑
y∈γ

(
m+

∑
y′∈γ\y

a−(y − y′)

)

+
∑
y∈γ

∫
Rd
a+(x− y)

(
λ+

∑
y′∈γ\y

b+(y − y′)

)
dx =

|γ|(λ||a+||L1 −m) +
∑
{y,y′}⊂γ

(
||a+||L1b+(y − y′)− a−(y − y′)

)
≤ 0.

We have for all ζ

EVn(η(n)(ζ, t)) = etLnVn(ζ) = Vn(ζ) +

t∫
0

esLnLnVn(ζ)ds,

see e.g. [EN00, Chapter 2, Lemma 1.3] or [EN06, Chapter 2, Lemma 1.3]. By the Markov

property we obtain an analog of Dynkin’s formula: for t′ < t

E[Vn(η(n)(ζ, t)) | It′ ] = EVn(η(n)(ζ, t′)) + E

t∫
t′

esLnLnVn(η(n)(ζ, t′))ds,

where It′ = σ((η(n)(ζ, s)), s ≤ t′). Now, esLn preserves the cone of non-positive functions,

therefore (2.54) implies that

E[Vn(η(n)(ζ, t)) | It′ ] ≤ EVn(η(n)(ζ, t′)).

We see that the process (Vn(η(n)(ζ, t)))t∈[0;T ] is a bounded non-negative supermartin-

gale. In particular,

P{ sup
t∈[0;T ]

Vn(η(n)(ζ, t)) ≥ n} ≤ EVn(η(n)(ζ, 0)

n
≤ |ζ|

n
→ 0

as n→∞. Since τn = inf{t > 0 : η(ζ, t) > n} = inf{t > 0 : η(n+1)(ζ, t) > n}, we have for
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all T > 0

P{τn ≤ T} → 0, n→∞.

Consequently, τn → ∞ a.s., and a solution to equation (2.2) exists on [0;∞] and is

unique in the sense that any two solutions are version of each other. Just, we have

2.2.2 Proposition. Strong existence and pathwise uniqueness hold for equation (2.2)

with a non-random initial condition, the birth rate coefficient given in (2.46) and the

death rate coefficient given in (2.52).

Remark. Considering equations for the density functions of the processes corre-

sponding to heuristic generators (2.45) and (2.51), one could show that an explosion of

densities occurs or does not occur, respectively. Computations are similar to those we

use here.
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Chapter 3

Stability analysis

The spatial birth-and-death process constructed in the previous chapter is a pure jump

type Markov process in Г0(Rd). Therefore, asymptotic analysis of the process sometimes

comes down to the analysis of the embedded chain. For example, the question when the

unique solution (η(α, t))t≥0 of (2.2) hits a Borel set A ⊂ Г0(Rd) with positive probability

is discussed in section (3.2). This question admits an equivalent formulation in terms

of the embedded Markov chain. Indeed, the process (η(α, t))t≥0 hits A if and only if its

embedded chain hits A.

3.1 Stability structures

We give here several definitions and statements from the theory of stochastic stability for

(discrete time) Markov chains. The main reference for this section is the book by Meyn

and Tweedie [MT93], where one can find all the definitions and statements given here

except for Lemma 3.1.2.
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3.1.1 Stochastic stability for discrete Markov chains: general no-

tions

Let X be a Polish space. Consider a transition probability kernel P : X×B(X)→ [0; 1].

Theorem ( [MT93, Theorem 3.4.1]) For any initial measure µ on B(X) and any

transition probability kernel P = {P (x,A), x ∈ X,A ∈ B(X)}, there exists a stochastic

process Ф = {Ф1,Ф2, ...} on Ω = X∞, measurable with respect to F = B(X∞), and a

probability measure Pµ on F such that Pµ(B) is the probability of the event {Ф ∈ B}

for B ∈ F ; and for measurable Ai ⊂ Xi, i = 0, 1, ..., n, and n ∈ Z+

Pµ(Ф0 ∈A0,Ф1 ∈ A1, ...,Фn ∈ An) =∫
y0∈A0

...

∫
yn−1∈An−1

µ(dy0)P (y0, dy1)...P (yn−1, dyn).
(3.1)

According to this theorem, for any probability measure µ on X and transition prob-

ability kernel P there exists a Markov chain with initial distribution µ and transition

probability kernel P . We note that there exists only one such chain, in the sense that

any two have the same distribution in X∞. We will consider a Markov chain defined on

the canonical space Ω =
∏∞

i=0 X, with Фn being the coordinate mappings,

Фn((x0, x1, ...)) = xn.

Let Px denote the distribution of Ф in X∞ when the initial distribution is the Dirac

measure at x, Px{Ф0 = x} = 1.

For any set A ∈ B(X), the variables

τA = min{n ≥ 1 : Фn ∈ A}, σA = min{n ≥ 0 : Фn ∈ A}
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are called the first return time and the first hitting time respectively, and the variable

JA =
∞∑
n=1

I{Фn∈A}

is called the occupation time. Define also the return probabilities

L(x,A) : = Px{τA <∞}

= Px{Ф ever enters A}.
(3.2)

3.1.1 Definition. A chain Ф is called φ-irreducible if there exists a finite non-trivial

measure φ on B(Г0(Rd)) such that φ(A) > 0 implies L(x,A) > 0 for all x ∈ X. A

Markov chain Ф is called ψ-irreducible if there exists a finite non-trivial measure ψ on

B(Г0(Rd)) such that

(∀x ∈ X : L(x,A) > 0)⇔ ψ(A) > 0.

The measures φ and ψ from the definition above are called an irreducibility measure

and a maximal irreducibility measure for Ф, respectively.

Let a = {a(n)} be a probability measure on Z+ = {0, 1, 2, ...}. Define the probability

transition kernel

Ka(x,A) :=
∞∑
n=0

P n(x,A)a(n), x ∈ X, A ∈ B(X). (3.3)

For ε ∈ (0; 1), we set aε to be the geometric distribution with parameter ε: aε(n) =

(1 − ε)εn. The relation between irreducibility and maximal irreducibility is clarified in

the next proposition.

Proposition ([MT93, Proposition 4.2.2]) If Ф is φ-irreducible for some measure φ,

then there exists a probability measure ψ on B(X) such that
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(i) Ф is ψ-irreducible;

(ii) for any other measure φ′, the chain Ф is φ′-irreducible if and only if φ′ is absolutely

continuous with respect to ψ;

(iii) if ψ(A) = 0, then ψ{y ∈ X : P (y, A) > 0} = 0;

(iv) the probability measure ψ is equivalent to

ψ′ :=

∫
X

φ′(dy)Ka 1
2

(y, A),

for any finite irreducibility measure φ′.

The next Lemma provides a sufficient condition for an irreducibility measure to be a

maximal irreducibility measure.

3.1.2 Lemma. If Ф is φ-irreducible and the measure φ is such that φ{y : P (y, A) > 0} =

0 whenever φ(A) = 0, then Ф is ψ-irreducible with φ = ψ.

Proof. Let φ be a measure satisfying conditions of the lemma. We first prove that

φ{y : L(y, A) > 0} = 0 whenever φ(A) = 0. (3.4)

Note that

{y : L(y, A) > 0} =
⋃
n∈N

{y : P n(y, A) > 0}. (3.5)

For A ∈ B(X) and k ∈ N, denote A(−k) := {x ∈ X : P k(x,A) > 0}. To prove (3.4),

we will proceed by induction and show that φ{y : P n(y, A) > 0} = 0 as long as φ(A) = 0,

for all n ∈ N. Assume that φ{y : Pm(y, A) > 0} = 0 whenever φ(A) = 0. Then, if

φ(A) = 0,

φ{y : Pm+1(y, A) > 0} = φ{y :

∫
x∈X

P (y, dx)Pm(x,A) > 0} ≤
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φ{y :

∫
x∈X

P (y, dx)IA(−m)(x) > 0} = φ{y : P (y, A(−m)) > 0} = 0.

The base case is given in the condition, therefore (3.4) holds.

Assume now that the statement of the lemma does not hold, so that φ is not a maximal

irreducible measure for Ф. Proposition 4.2.2 from [MT93] (see Page 79 of the present

work) implies the existence of a maximal irreducible measure ψ′ for Ф. Then there exists

a set C ∈ B(X) such that φ(C) = 0 whereas ψ′(C) > 0. By definition of irreducibility,

L(x,C) > 0 for all x ∈ X. By (3.4), φ{y : L(y, C) > 0} = 0, hence φ(X) = 0, which

contradicts to the non-triviality of φ. �

3.1.3 Definition. A set C ∈ B(X) is called a small set if there exists an m ∈ N, and a

non-trivial measure νm on B(X) such that for all x ∈ C,B ∈ B(X),

Pm(x,B) ≥ νm(B).

A set C ∈ B(X) is νa-petite if the transition probability kernel Ka satisfies the bound

Ka(x,B) ≥ νa(B), B ∈ B(X)

for all x ∈ C, where νa is a non-trivial measure on B(X). Here a is a distribution on Z+,

Ka is defined in (3.3). C is called petite when it is νa-petite for some non-trivial measure

νa and some distribution a.

3.1.2 Transience and recurrence

Here we briefly discuss the concepts of transience and recurrence for a Markov chain on

a general state space.

3.1.4 Definition. A set A ∈ B(X) is called uniformly transient if there exist M < ∞

such that ExJA ≤M for all x ∈ A.
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A set A ∈ B(X) is called recurrent if ExJA =∞ for all x ∈ A.

For a ψ-irreducible Markov chain Ф, denote by B+(X) the collection of sets from

σ-algebra B(X) of positive ψ measure: A ∈ B+(X)⇔ ψ(A) > 0. Note that all maximal

irreducible measures are equivalent, therefore B+(X) does not depend on the choice of

ψ.

Theorem. ([MT93, Theorem 8.0.1]) Suppose that Ф is ψ-irreducible. Then either

(i) every set in B+(X) is recurrent, in which case we call Ф recurrent, or

(ii) there is a countable cover of X with uniformly transient sets, in which case we call

Ф transient, and every petite set is uniformly transient.

Let us introduce another, stronger concept of recurrence, known as Harris recurrence.

Definition([MT93, page 200]). A set A ∈ B(X) is called Harris recurrent if

Px{JA =∞} = 1, x ∈ A.

A chain Ф is called Harris (recurrent) if it is ψ-irreducible and every set in B+(X) is

Harris recurrent.

For a measurable function V : X → [0;∞), denote ∆V (x) =
∫

y∈X
V (y)P (x, dy)−V (x).

The operator ∆ is called the drift operator. We say that V is unbounded off petite sets

for Ф if for any r <∞, the sublevel set

CV (r) := {x ∈ X : V (x) ≤ r}

is petite.

In the next section we will discuss transience and recurrence for spatial birth-and-

death Markov processes. We will use the following criteria, cf. [MT93, Theorems 8.4.2,

8.4.3 and 9.1.8] .

3.1.5 Drift criterion for transience. Suppose Ф is a ψ-irreducible chain. Then Ф is
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transient if and only if there exists a bounded function V : X → [0;∞) and r ≥ 0 such

that

(i) the set CV (r) and its complement CV (r)c lie in B+(X);

(ii) whenever x ∈ CV (r)c,

∆V (x) > 0. (3.6)

3.1.6 Drift condition for recurrence. Suppose Ф is ψ-irreducible. If there exists a

petite set C ⊂ X and a positive function V which is unbounded off petite sets such that

∆V (x) ≤ 0 (3.7)

holds whenever x ∈ Cc, then L(x,C) ≡ 1, and Ф is recurrent. Furthermore, Ф is Harris

recurrent.

3.2 Stochastic stability for birth-and-death processes

in Г0(Rd)

In this section we give some results about stability of the embedded chain of the unique

solution (η(α, t))t≥0 of (2.2). The main result in this section is Theorem 3.2.2.

Denote by (ξn)n∈Z+ the embedded chain of (η(α, t))t≥0.

The transition probabilities of (ξn)n∈Z+ are completely described by

Q(η, {η \ {x}}) =
d(x, η)

(B +D)(η)
, x ∈ η, η ∈ Г0(Rd), (3.8)

Q(η, {η ∪ {x}, x ∈ U}) =

∫
x∈U b(x, η)dx

(B +D)(η)
, U ∈ B(Rd), η ∈ Г0(Rd),

where (B +D)(η) =
∫

x∈Rd
b(x, η)dx+

∑
x∈η

d(x, η), the jump rate at η.
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Let λ be the Lebesgue-Poisson measure (see Section 1.2.2) on (Г0(Rd),B(Г0(Rd)))

whose intensity measure is the Lebesgue measure on Rd. Denote by Qα the distribution

of the embedded chain of (η(α, t))t≥0 on ((Г0(Rd))∞,B((Г0(Rd))∞)), i.e., the distribution

of (ξn)n∈Z+ , started from α. Here B((Г0(Rd))∞)) is the σ-algebra generated by the coor-

dinate mappings. In order not to introduce new notations, we use the same symbol ξn for

a coordinate mapping on ((Г0(Rd))∞,B((Г0(Rd))∞)). For example, for B ∈ B(Г0(Rd))

P{ξn ∈ B} = Qα{ξn ∈ B}.

Under some assumptions, we will prove that λ is a maximal irreducibility measure for

(ξn)n∈Z+ . In other words,

(∀α : Qα{(ξn)n∈Z+ ever enters A} > 0)⇔ λ(A) > 0.

This is the statement of Theorem 3.2.2 below.

While the thesis is devoted to continuous time spatial birth-and-death processes, here

we formulate and prove our results in terms of the embedded chain (ξn)n∈Z+ . We do so

because formulations are more natural and simpler for the questions we consider here.

Besides that, the process (ξn)n∈Z+ can be an object of interest on its own. A Markov chain

on Г0(Rd) with transition probabilities (3.8) may be considered as a generalized version

of the classical discrete time Z+-valued birth-and-death Markov processes. The general-

ization consists in taking into account the spatial structure. We may deem (ξn)n∈Z+ a

discrete time spatial birth-and-death Markov process. However, we will give reformula-

tions of obtained results in terms of (η(α, t))t≥0, too.

Assumption on b, d. We require that b, d satisfy all condition assumed in Theorem

2.1.6.

Furthermore, assume that b, d are continuous functions of two variables,
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inf
η∈Г0(Rd),x∈η

d(x, η) > 0, (3.9)

and for some constants r > 0 and c3 > 0,

b(x, η) > c3, if there exists y ∈ η, |x− y| ≤ r,

and b(x,∅) > c3 for x ∈ B∅, B∅ is some open ball in Rd.

(3.10)

Under the above assumptions we have

sup{(B +D)(η) : |η| ≤ n+ 1} <∞.

3.2.1 Remark. The second part of (3.10) means that points may come “out of nowhere”.

We need such kind of condition in order for ∅ not to be an absorbing state of the

Markov chain (ξn)n∈N. Also, each of conditions (3.9) and (3.10) implies that every state

η ∈ Г0(Rd), η 6= ∅, is non-absorbing.

For two finite configurations η, ζ, |η| = |ζ| > 0, we define

ρ(η, ζ) = min
ς

max
x∈η
{|ς(x)− x|},

where minimum is taken over the set of all bijections ς : η → ζ. The function ρ is

symmetric. One can check that ρ defines a metric on Г(n)
0 (Rd) which induces the same

topology as dist.

Define a path of configurations as a finite sequence of configurations ζ0, ζ1, ..., ζn such

that |ζk 4 ζk+1| = 1, k = 0, ..., n − 1, and if ζk+1 = ζk ∪ z, then |z − y| ≤ r
2
for some

y ∈ ζk; that is, ζk+1 is obtained from ζk either by adding one point to ζk or by removing

one point from ζk; in the case of the adding, it is required that the “new” point appears

not further than r
2
from an “old” one. If ζk = ∅, then we require ζk+1 = {x∅}, where x∅

is the center of B∅. We say that such a path has length n, and we call ζ0 and ζn the
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starting vertex and the final vertex, respectively. Also, we say that ζ0, ζ1, ..., ζn is a path

from ζ0 to ζn.

3.2.1 Lemma. For all η ∈ Г0(Rd) there exists a path from ∅ to η.

Proof. We will show that there exists a path from ∅ to η of length less than

2
(∑
x∈η

|x− x∅|
4

r
+ |η|

)
,

where x∅ is the center of B∅.

Starting from ∅ and adding points only, we can see that there exists a path of length

≤
(∑
x∈η

|x− x∅|
4

r
+ |η|

)
,

with the starting vertex ∅ and with the final vertex being some configuration η′ ⊃ η.

Indeed, for each x ∈ η there exists a sequence of points x∅ = x0, x1, ..., xn = x such that

|xi − xi+1| ≤ r
4
and n ≤ |x − x∅|4r . Having reached η′ ⊃ η, we only need to delete some

points from η′. �

For a configuration η ∈ Г0(Rd) and a > 0, let

Bρ(η, a) := {ζ ∈ Г(|η|)
0 | ρ(η, ζ) ≤ a}.

3.2.2 Lemma. Let ∅ = η0, η1, ..., ηn be a path. Then for every a > 0

Qn(η0,Bρ(ηn, a)) > 0.

Proof. Without loss of generality we can assume a < r
4
. Denote Ak = Bρ(ηk, a). We

will first show that

inf
η∈Ak

Q(η, Ak+1) ≥ c̄n (3.11)
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for some positive constant c̄n that depends on n but does not depend on the path we

consider.

We have either ηk ⊂ ηk+1 or ηk ⊃ ηk+1. Consider first the case ηk ⊂ ηk+1. We know

that ηk+1 = ηk ∪ z, and |z − y| ≤ r
2
for some y ∈ ηk.

Take arbitrary η ∈ Ak. There exists y′ ∈ η such that |y − y′| ≤ a. For x ∈ Ba(z) we

have then |x− y′| ≤ |x− z|+ |z− y|+ |y− y′| ≤ a+ r
2

+a < r. Moreover, if x ∈ Ba(z)\ η,

then η ∪ {x} ∈ Ak+1.

From (3.10) we obtain

Q(η, Ak+1) ≥

∫
x∈Ba(z)

b(x, η)dx

(B +D)(η)
≥

∫
x∈Ba(z)

c3dx

(B +D)(η)

=
c3a

dvd
(B +D)(η)

,

where vd is the volume of a unit ball in Rd. The denumerator of the last fraction is

bounded in η, η ∈
⊔n
k=0 Г

(k)
0 (Rd). Therefore, (3.11) holds.

Now we turn our attention to the case when ηk ⊃ ηk+1. We may write ηk+1 = ηk \ y

for some y ∈ ηk, and (3.11) follows from (3.9).

The statement of the lemma follows from (3.11), since

Qn(∅,Bρ(ηn, a)) =

∫
ζ1,ζ2,...,ζn

Q(∅, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...×Q(ζn−1, dζn)I{ζn∈Bρ(ηn,a)}

≥
∫

ζ1,ζ2,...,ζn

Q(∅, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...×Q(ζn−1, dζn)I{ζk∈Bρ(ηk,a),k=1,...,n} ≥ (c̄n)n.

3.2.3 Lemma. Let A ∈ B(Г0(Rd)), β′ ∈ Г(n)
0 and λ(A ∩ Bρ(β′, r4)) > 0. Then

Q2n(β,A) > 0
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for any β ∈ Bρ(β′, r4).

The idea of the proof. Let β = {x1, ..., xn}. The event R described in the next sentence

has positive probability. Let ξ1 = β ∪ y1 for some y1 ∈ B r
4
(x1), ξ2 = ξ1 \ x1, ξ3 = ξ2 ∪ y2

for some y2 ∈ B r
4
(x2), ξ4 = ξ3 \ x2, and so on, so that ξ2n = ξ2n−1 \ xn. We will see that

Qβ{ξ2n ∈ A | R} > 0.

Proof.

Fix β = {x1, ..., xn}. Consider a measurable subset Ξ of (Г0)(2n),

Ξ =

{
(ζ1, ..., ζ2n) | ζ2k−1 = {y1, ..., yk, xk, ..., xn}, ζ2k = {y1, ..., yk, xk+1, ..., xn}

for some yj ∈ Rd, j = 1, ..., n, |yj − xj| ≤
r

4

}
.

Define R = {(ξ1, ..., ξ2n) ∈ Ξ}.

By the Markov property,

Q2n(β,A) =

∫
ζ1,ζ2,...,ζ2n

Q(β, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...×Q(ζ2n−1, dζ2n)I{ξ2n∈A}

≥
∫

ζ1,ζ2,...,ζ2n

Q(β, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...

×Q(ζ2n−1, dζ2n)I{(ζ1,...,ζ2n)∈Ξ}I{(ζ2\ζ1)g(ζ4\ζ3)g...g(ζ2n\ζ2n−1)∈sym−1A}.

(3.12)

Here for singletons S1 = {s1}, S2 = {s2}, ...,Sn = {sn} we define

S1 g S2 g ...g Sn = (s1, s2, ..., sn).

Note that ζ2n = (ζ2 \ ζ1)g (ζ4 \ ζ3)g ...(ζ2n \ ζ2n−1), if (ζ1, ..., ζ2n) ∈ Ξ.

From the definition of the Lebesgue Poisson measure we have

l(sym−1A) = n!λ(A), (3.13)
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where l is the Lebesgue measure on (Rd)n.

Define a measure σ on
( n∏
k=1

B r
4
(xk),B(

n∏
k=1

B r
4
(xk))

)
by

σ(D) =

∫
ζ1,ζ2,...,ζ2n

Q(β, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...×Q(ζ2n−1, dζ2n)

×I{(ζ1,...,ζ2n)∈Ξ}I{(ζ2\ζ1)g(ζ4\ζ3)g...g(ζ2n\ζ2n−1)∈D}, D ∈ B
( n∏
k=1

B r
4
(xk)

)
.

We can rewrite (3.12) as

Q2n(β,A) ≥ σ(sym−1A). (3.14)

We will show that

σ(D) ≥ c̃3l(D), D ∈ B(
n∏
k=1

B r
4
(xk)) (3.15)

for some constant c̃3 > 0.

The statement of the lemma is a consequence of (3.13), (3.14) and (3.15). To establish

(3.15) we only need to consider sets of the form D1 × ...×Dn, Dj ∈ B(B r
4
(xj)). Define

Ξ(D1,...,Dn) =

{
(ζ1, ..., ζ2n) | ζ2k−1 = {y1, ..., yk, xk, ..., xn}, ζ2k = {y1, ..., yk, xk+1, ..., xn}

for some yj ∈ Dj, j = 1, ..., n

}
.

We have

σ(D1 × ...×Dn) =

∫
ζ1,ζ2,...,ζ2n

Q(β, dζ1)Q(ζ1, dζ2)Q(ζ2, dζ3)× ...

×Q(ζ2n−1, dζ2n)I{(ζ1, ..., ζ2n) ∈ Ξ(D1,...,Dn)}.
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Fix zj ∈ Dj. Using our assumptions on b and d, we see that

Q

(
{z1, ..., zk, xk, ..., xn},

{
{z1, ..., zk, xk+1, ..., xn}

})
=

d(xk, {z1, ..., zk, xk, ..., xn})
(B +D){z1, ..., zk, xk, ..., xn}

≥ d(xk, {z1, ..., zk, xk, ..., xn})
sup{(B +D)(η) | |η| ≤ n+ 1}

≥
inf

η∈Г0(Rd),x∈η
d(x, η)

sup{(B +D)(η) | |η| ≤ n+ 1}

and

Q

(
{z1, ..., zk, xk+1, ..., xn},

{
{z1, ..., zk, yk+1, xk+1, ..., xn} | yk+1 ∈ Dk+1

})
=

=

∫
y∈Dk+1

b(y, {z1, ..., zk, xk+1, ..., xn})dy

(B +D)({z1, ..., zk, xk+1, ..., xn})
≥ c3ld(Dk+1)

(B +D)({z1, ..., zk, xk+1, ..., xn})
,

where ld is the Lebesgue measure on Rd. Hence

σ(D1 × ...×Dn) ≥
( inf

η∈Г0(Rd),x∈η
d(x, η)

sup{(B +D)(η) : |η| ≤ n+ 1}
)n n∏

j=1

c3ld(Dj)

sup{(B +D)(η) : |η| ≤ n+ 1}
.

It remains to note that
n∏
j=1

ld(Dj) = l(D1 × ...×Dn).

3.2.2 Theorem. The Lebesgue-Poisson measure λ is an irreducibility measure for (ξn)n∈N.

Furthermore, the Lebesgue-Poisson measure λ is a maximal irreducibility measure for

(ξn)n∈N.

Proof. We will first establish φ-irreducibility. Starting from any configuration, the

process may extinct in finite time: for all η ∈ Г0(Rd)

Qη{ξk = ∅ for some k > 0} > 0.
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Therefore, it is sufficient to show that

L(∅, A) > 0 whenever λ(A) > 0, A ∈ B(Г0(Rd)). (3.16)

Let us take A ∈ B(Г0(Rd)) with λ(A) > 0. There exists n ∈ N and β′ ∈ Г(n)
0 such

that

λ(A ∩ Bρ(β′,
r

4
)) > 0. (3.17)

By Lemma 3.2.1 there exists a path from ∅ to β′. Denote by m the length of this

path. Applying Lemma 3.2.2 and Lemma 3.2.3 we get

Qm+2n(∅, A) ≥
∫

β∈Bρ(β′, r
4

)

Qm(∅, dβ)Q2n(β,A) > 0,

which proves (3.16).

Now let us prove that λ is a maximal irreducibility measure for (ξn)n∈N. Taking

into account Lemma 3.1.2, we see that it suffices to show that for all A ⊂ Г0(Rd) with

λ(A) = 0 we have

λ{η : Q(η,A) > 0} = 0. (3.18)

With no loss of generality, we assume that A ⊂ Г(n)
0 (Rd), n ≥ 2. We have sym−1(A) ⊂

(Rd)n and ldn(sym−1(A)) = 0, ldk is the Lebesgue measure on (Rd)k = Rdk. Now,

η ∈ Г(n+1)
0 (Rd) and Q(η, A) > 0 if and only if η may be represented as ξ ∪ {x}, where

ξ ∈ A, x ∈ Rd \ ξ. Then we also have for any y = (y1, ..., yn+1) ∈ sym−1(η)

Π̌jy ∈ sym−1(A)

for some j ∈ {1, 2, ..., n + 1}, where Π̌jy = (y1, ..., yi−1, yi+1, ..., yn+1) ∈ (Rd)n. Since
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ldn(sym−1(A)) = 0, one also has λd(n+1)(Π̌(·)−1
j (sym−1(A))) = 0, and consequently

λ{η : η ∈ Г(n+1)
0 , Q(η, A) > 0} = 0. (3.19)

Similarly, if η ∈ Г(n−1)
0 (Rd) and Q(η, A) > 0, then for y ∈ sym−1(η)

ld{z ∈ Rd : (z, y) ∈ sym−1(A)} > 0. (3.20)

because a “newly born” point has an absolutely continuous distribution with respect to

the Lebesgue measure on Rd, in the sense that Q(η, {η ∪ z | z ∈ D}) = 0 if ld(D) = 0.

However, the set of all y satisfying (3.20) has zero Lebesgue measure, otherwise we would

have

ldn(sym−1(A)) =

∫
ld(n−1)(dy)ld{z : (z, y) ∈ sym−1(A)} > 0.

Therefore,

λ{η : η ∈ Г(n−1)
0 , Q(η, A) > 0} = 0. (3.21)

Note that in cases n = 0, 1 some changes should be made in the proofs of (3.19), (3.21),

because of the special structure of Г(0)
0 (Rd) = {∅}. Now, we also have

{η : η ∈ Г(k)
0 , P (η, A) > 0} = ∅,

k 6= n− 1, n+ 1, n ≥ 0. Consequently, (3.19) and (3.21) imply (3.18). �

3.2.3 Corollary. The chain (ξn)n∈N is either recurrent or transient.

3.2.4 Corollary. Under conditions of Theorem 3.2.2 we have

(∀α : P{(η(α, t))t≥0 ever enters A} > 0)⇔ λ(A) > 0,
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or

(∀α : P{∃t > 0 : η(α, t) ∈ A, η(α, t) 6= η(α, t−)} > 0)⇔ λ(A) > 0.

3.2.5 Remark. Assume that all conditions of Theorem 3.2.2 are satisfied except for

the second part of (3.10). If b(x,∅) ≡ 0, then (ξn)n∈N is ψ-irreducible with ψ being a

multiplier of the Dirac measure at ∅.

In the next section, we will use recurrence and transience Criteria 3.1.5 and 3.1.6. To

be able to apply drift condition for recurrence, we need the following Lemma.

3.2.6 Lemma. For every m ∈ N the set
k=m⊔
k=0

Г(k)
0 is petite.

Proof. Let a(k) = 1
m+1

I{k≤m}. The cumulative birth rate
∫

x∈Rd
b(x, η)dx is bounded

uniformly in η, η ∈
k=m⊔
k=0

Г(k)
0 , by (2.6), and the cumulative death rate

∑
x∈η

d(x, η) is sepa-

rated from zero by (3.9), η 6= ∅. Therefore,

inf
{
Pη{ξk = ∅ for some k ∈ {0, 1, ...,m}} : η ∈

k=m⊔
k=0

Г(k)
0

}
> 0.

Thus, the set
k=m⊔
k=0

Г(k)
0 is νa - petite with νa = sδ∅, for some small enough constant s > 0.

3.2.1 Recurrence criteria for birth-and-death processes

Now that we have proved the irreducibility of the chain (ξn)n∈N, we turn our attention

to transience and recurrence. Let the conditions of Theorem 3.2.2 hold. We will first

represent the drift Criterion for recurrence 3.1.6 in some more specific forms. Namely,

set V (η) = |η|. Lemma 3.2.6 implies that V is unbounded off petite sets, and

(B +D)(η)∆V (η) = LV (η) =

∫
x∈Rd

b(x, η)dx−
∑
x∈η

d(x, η).

Thus, we have the following
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Proposition 1. If there exist n0 ∈ N such that for all η with |η| ≥ n0 one has

∫
x∈Rd

b(x, η)dx−
∑
x∈η

d(x, η) ≤ 0, (3.22)

then the chain (ξn)n∈N is Harris recurrent.

More generally, set V (η) = 〈η, φ〉, where φ is a positive measurable function,

inf
y∈Rd

φ(y) > 0. Then V is again unbounded off petite sets, and

(B +D)(η)∆V (η) = LV (η) =

∫
x∈Rd

φ(x)b(x, η)dx−
∑
x∈η

d(x, η)φ(x). (3.23)

Consequently, we may formulate

Proposition 2. If there exist a positive measurable function φ with inf
y∈Rd

φ(y) > 0 and

a constant C > 0 such that for all η for which V (η) > C one has

∫
x∈Rd

φ(x)b(x, η)dx−
∑
x∈η

d(x, η)φ(x) ≤ 0, (3.24)

then (ξn)n∈N is Harris recurrent.

Comment. We describe here what recurrence or transience of the embedded chain

(ξn)n∈N means in terms of the process (η(α, t))t≥0. Recall the definitions of recurrence

and transience for a discrete time Markov chain given as a part of the theorem on Page

82. Also, recall that
k=m⊔
k=0

Г(k)
0 is petite according to Lemma 3.2.6, m ∈ N.

Transience. If (ξn)n∈N is transient, then every petite set is uniformly transient, and

for every m ∈ N there exists a constant Mm > 0 such that for every α ∈ Г0(Rd),

E#

{
t > 0 : η(α, t) ∈

k=m⊔
k=0

Г(k)
0 , η(α, t) 6= η(α, t−)

}
< Mm.

In particular, #

{
t > 0 : η(α, t) ∈

k=m⊔
k=0

Г(k)
0 , η(α, t) 6= η(α, t−)

}
is a.s. finite.
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Under assumptions of Theorem 3.2.2, the jump rate of the process η(α, t) is separated

from 0:

inf
α∈Г0(Rd)

(B(α) +D(α)) > 0.

Therefore, Theorem 12.17 in [Kal02] (see (1.21) in our work) implies

P

{
l{t : η(α, t) ∈ A} <∞

}
= 1,

and

E

[
l{t : η(α, t) ∈ A}

]
<∞,

where l is the Lebesgue measure on R+.

Harris recurrence. If (ξn)n∈N is Harris recurrent and λ(A) > 0, A ∈ B(Г0(Rd)), then

for every α ∈ A,

P

{
η(α, t) ∈ A and η(α, t) 6= η(α, t−) for infinitely many different t > 0

}
= 1.

In case when A ⊂
k=m⊔
k=0

Г(k)
0 , the jump rate is bounded:

sup
α∈A

(
B(α) +D(α)

)
<∞.

Therefore, Theorem 12.17 in [Kal02] (see (1.21) in our work) and Kolmogorov’s three-

series theorem yield

P

{
l{t : η(α, t) ∈ A} =∞

}
= 1. (3.25)

Actually, (3.25) holds for all A ∈ B(Г0(Rd)) with λ(A) > 0, since there exists m ∈ Z+

such that λ(A ∩ Г(m)
0 ) > 0.
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3.3 Examples and applications

Bolker-Pacala model. Let

b(x, η) =
∑
y∈η

a+(x− y),

η 6= ∅,

d(x, η) = m+
∑
y∈η\x

a−(x− y), (3.26)

where m is a constant, a+, a− ∈ C(Rd; [0;∞)), a+ ∈ L1(Rd), and let b(·,∅) be a bounded

non-negative function from L1(Rd) ∩ C(Rd) such that b satisfied (3.10).

Such b and d satisfy all the assumptions of Theorems 2.1.6 and 3.2.2. We will use

Criteria 3.1.5 and 3.1.6 in the proof of the next theorem.

3.3.1 Proposition. (i) The chain (ξn)n∈N is Harris recurrent, if m ≥ ||a+||L1;

(ii) The chain (ξn)n∈N is transient, if m < ||a+||L1 and a− ≡ 0.

Proof. To prove (i), set V (η) = |η|. Then (3.22) holds for all η with V (η) ≥ 1, and

we get recurrence.

To prove (ii), set V (η) = 1−u|η|+1

1−u =
j=|η|∑
j=0

uj, where u ∈ (0; 1), u > m
||a+||L1

. Then for

η 6= ∅,

(B +D)(η)∆V (η) =

∫
x∈Rd

b(x, η)[V (η ∪ x)− V (η)]dx−
∑
x∈η

d(x, η)[V (η \ x)− V (η)] =

|η|||a+||L1u|η|+1 − |η|mu|η| = |η|u|η|[||a+||L1u−m] > 0,

and V is bounded: V (η) ≤ 1
1−u . Thus, Criterion 3.1.5 implies the transience of (ξn)n∈N.

Asymmetric dispersion model. Consider the birth-and-death process with slightly

alternated compared with the previous example coefficients. Namely, let the death rate
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coefficient be as in (3.26), and for a non-empty configuration η let the birth rate coefficient

be given by

b(x, η) =
∑
y∈η

a+(x− y)[1− 〈y, x− y〉
|y|R

],

where R is such that a+(x) = 0, |x| ≥ R. Note that 〈y,x−y〉|y|R ≤ 1 if |x− y| ≤ R, hence b is

non-negative. We admit the convention 0
0

= 0 in this example, though it is not necessary.

This model is noticeable because we can get recurrence for the embedded chain, even

though the inequality ||a+||L1 ≤ m may not hold. The multiplier [1 − 〈y,x−y〉|y|R ] does not

change the rate of appearing of new points, since for all y ∈ Rd

∫
x∈Rd

a+(x− y)[1− 〈y, x− y〉
|y|R

]dx =

∫
x∈Rd

a+(x− y)dx = ||a+||1.

It does however influence the distribution of a new appearing point, so that it tends

to be closer to the origin than its “predecessor”.

The assumptions of Theorems 2.1.6 and 3.2.2 are fulfilled. We would like to show

under some additional assumptions on b and d that the chain (ξn)n∈Z+ is recurrent. Let

a+ be rotationally invariant and such that for some fixed unit vector e in Rd

−γ := (1− ε)
∫

z∈Rd

a+(z)[1− 〈e, z〉
R

](e〈e,z〉 − 1)dz < 0, (3.27)

where ε ∈ (0; 1) is some (small) number. Of course, γ does not depend on the choice of

e. We will require

γ +m > ||a+||1, (3.28)

where ||a+||1 = ||a+||L1 .

Also, as was already mentioned above, we assume that a+(x) = 0, |x| ≥ R, and that
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for some r > 0

a−(x) > δ, |x| ≤ r. (3.29)

To simplify computations we assume δ < m. Under these conditions, we will prove

recurrence of (ξn)n∈Z+ .

3.3.2 Proposition. Under assumptions listed above, the chain (ξn)n∈Z+ is Harris recur-

rent.

We start with an auxiliary lemma. Denote

ψ(y) :=

∫
Rd

a+(x− y)[1− 〈y, x− y〉
|y|R

]e|x|dx− ||a+||1e|y|.

3.3.3 Lemma. The function ψ is a rotationally invariant function satisfying

lim sup
|y|→∞

ψ(y)

e|y|
< −γ. (3.30)

Proof. We first prove that ψ is invariant under rotations. Indeed, let A be a rotation

in Rd. Then

∫
Rd

a+(x− Ay)[1− 〈Ay, x− Ay〉
|Ay|R

]e|x|dx =

∫
Rd

a+(Av − Ay)[1− 〈Ay,Av − Ay〉
|Ay|R

]e|v|dv =

∫
Rd

a+(v − y)[1− 〈y, v − y〉
|y|R

]e|v|dv,

where we set x = Av in the first step; the last step is possible particularly due to the

rotational invariance of a+. Hence, it will be sufficient to establish (3.30) for y moving

along some fixed direction, say y = qe. Using change of variables z = x− qe, q > R, we

obtain
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ψ(qe) =

∫
Rd

a+(x− qe)[1− 〈qe, x− qe〉
|qe|R

]e|x|dx− eq||a+||l1 =

∫
Rd

a+(z)[1− 〈e, z〉
R

](e|qe+z| − eq)dz =

eq
∫

z:|z|≤R

a+(z)[1− 〈e, z〉
R

](e|qe+z|−q − 1)dz.

(3.31)

Denote hz(q) := |qe + z| − q. We have hz(q) = 2q〈e,z〉+|z|2
|qe+z|+q = 2q〈e,z〉

|qe+z|+q + |z|2
|qe+z|+q . The

second summand is bounded by |R|2
2q−R for all z, |z| ≤ R. As for the first one, let us consider

the inequality

2q〈e, z〉
|qe + z|+ q

≤ 〈e, z〉. (3.32)

In case 〈e, z〉 ≥ 0, (3.32) holds, since |qe + z| ≥ q in this case; in case 〈e, z〉 < 0

inequality (3.32) is equivalent to q ≥ |qe + z|, which is in its turn equivalent to

〈e, z〉 ≤ −|z|
2

2q
.

The Lebesgue measure of the set {z : |z| ≤ R,− |z|
2

2q
≤ 〈e, z〉 ≤ 0} tends to 0 as q tends

to infinity. Therefore, by the Lebesgue’s dominated convergence theorem,

∫
z:|z|≤R,

− |z|
2

2q
≤〈e,z〉≤0

a+(z)[1− 〈e, z〉
R

](e|qe+z|−q − 1)dz → 0, q →∞,

as well as

∫
z:|z|≤R

− |z|
2

2q
≤〈e,z〉≤0

a+(z)[1− 〈e, z〉
R

](e
|R|2

2q−R+〈e,z〉 − 1)dz → 0, q →∞.
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For z from B(0, R) \ {z : |z| ≤ R,− |z|
2

2q
≤ 〈e, z〉 ≤ 0} inequality (3.32) holds, therefore by

(3.27)

lim sup
q→∞

∫
z:|z|≤R

a+(z)[1− 〈e, z〉
R

](e|qe+z|−q − 1)dz

≤ lim sup
q→∞

∫
z:|z|≤R

a+(z)[1− 〈e, z〉
R

](e
|R|2

2q−R+〈e,z〉 − 1)dz

=

∫
z:|z|≤R

a+(z)[1− 〈e, z〉
R

](e〈e,z〉 − 1)dz < −γ

The statement of the lemma follows from this inequality and (3.31). �

We would like to show now that the chain (ξn)n∈Z+ is transient. Let φ(x) = e|x|,

V (η) = 〈η, φ〉. Take R1 ≥ R such that

ψ(y) < −γe|y|. (3.33)

Such R1 exists by the previous lemma. Let k denote the minimal number of balls of

radius r1 in Rd needed to cover a ball of radius R1.

Claim. There exists C > 0 such that LV (η) ≤ 0 for all η with V (η) ≥ C.

Proof. One can write

LV (η) =

∫
v∈Rd

φ(v)b(v, η)dv −
∑
u∈η

d(u, η)φ(u)

=

∫
v∈Rd

φ(v){
∑
u∈η

a+(v − u)[1− 〈u, v − u〉
|u|R

]}dv −
∑
u∈η

d(u, η)φ(u)

=
∑

u∈η,|u|≤R1

{
∫

v∈Rd

φ(v)a+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)φ(u)}

+
∑

u∈η,|u|>R1

{
∫

v∈Rd

φ(v)a+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)φ(u)}.
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Since d(u, η) ≥ m,

∫
v∈Rd

φ(v)a+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)φ(u)

= ψ(u) + (||a+||1 − d(u, η))φ(u) ≤ ψ(u) + (||a+||1 −m)φ(u).

Thus,

LV (η) ≤
∑

u∈η,|u|≤R1

{
∫

v∈Rd

φ(v)a+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)φ(u)}+

∑
u∈η,|u|>R1

[ψ(u) + (||a+||1 −m)φ(u)] := S1 + S2.

We are going to estimate S1 and S2. We begin with S1. For |u| ≤ R1, we have

φ(v) ≤ eR1+R for all v satisfying a+(v − u) > 0, since a+(v − u) = 0 when |u − v| > R.

The ball B(0, R1) contains |η ∩ B(0, R1)| points from η, therefore there exists a ball

B of radius r1 containing not less than |η∩B(0,R1)|
k

points. For u ∈ B we have then

d(u, η) ≥ |η∩B(0,R1)|
k

δ because of (3.29). Note that

∫
v∈Rd

a+(v − u)
〈u, v − u〉
|u|R

dv =

∫
z∈Rd,|z|≤R

a+(z)
〈u, z〉
|u|R

dz = 0.

The first summand S1 can thus be estimated in the following way:

∑
u∈η,|u|≤R1

{
∫

v∈Rd

φ(v)a+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)φ(u)} ≤

∑
u∈η,|u|≤R1

{
∫

v∈Rd

eR1+Ra+(v − u)[1− 〈u, v − u〉
|u|R

]dv − d(u, η)} ≤

∑
u∈η,|u|≤R1

{||a+||L1eR1+R − δ

k
|η ∩B(0, R1)|I{u∈B}}
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= ||a+||L1eR1+R|η ∩B(0, R1)| − δ

k2
|η ∩B(0, R1)|2.

Therefore,

S1 ≤
k2

4δ
[||a+||L1eR1+R]2, (3.34)

and S1 ≤ 0 whenever |η ∩B(0, R1)| ≥ k2

δ
||a+||L1eR1+R.

Let us now turn our attention to S2. For |u| > R1 we have ψ(u) < −γφ(u) by (3.33),

and

ψ(u) + (||a+||1 −m)φ(u) < (−γ + ||a+||1 −m)φ(u) = −θφ(u),

where θ = γ − ||a+||1 +m > 0, see (3.28).

Consequently,

S2 ≤ −θ
∑

u∈η,|u|>R1

φ(u).

In particular, S2 ≤ 0.

Take C > 0 so large that θC ≥ k2

4δ
[||a+||L1eR1+R]2 and C

eR1
≥ k2

δ
||a+||L1eR1+R, and let

η be such that V (η) ≥ 2C. Then at least one of the following two inequalities hold,

∑
u∈η,|u|≤R1

φ(u) ≥ C, (3.35)

∑
u∈η,|u|>R1

φ(u) ≥ C. (3.36)

If (3.35) holds, then we can write

∑
u∈η,|u|≤R1

e|u| ≥ C ⇒ |η ∩B(0, R1)| ≥ C

eR1
≥ k2

δ
||a+||L1eR1+R ⇒

S1 ≤ 0⇒ LV (η) ≤ 0.

If (3.36) holds, then
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∑
u∈η,|u|>R1

φ(u) ≥ C ⇒ −θ
∑

u∈η,|u|>R1

φ(u) ≤ −θC ≤ −k
2

4δ
[||a+||L1eR1+R]2 ⇒

S2 ≤ −
k2

4δ
[||a+||L1eR1+R]2

and the last inequality together with (3.34) implies LV (η) ≤ 0.

Our claim is proven. The drift Criterion 3.1.6 and equality (3.23) imply the recurrence

of (ξn)n∈Z+ . Proposition 3.3.2 is proven.

3.3.4 Remark. In the case when we have

b(x,∅) ≡ 0 (3.37)

instead of the second part of (3.10), ∅ is an absorbing state for (ξn)n∈N. The Lebesgue-

Poisson measure λ on Г0(Rd) is no longer an irreducibility measure for (ξn)n∈N. We may

get the following information from the results about transience and recurrence. If (ξn)n∈N

was Harris recurrent under the assumptions of Theorem 3.2.2, then it ends up at ∅ (the

process “extincts”) with probability 1 for any initial condition:

Qα{ξn = ∅ for some n ∈ N} = 1.

If (ξn)n∈N was transient, then L(α, {∅}) < 1 at least for some α ∈ Г0(Rd). That is, and

some α

Qα{ξn 6= ∅ for all n ∈ N} > 0.

103



Chapter 4

The aggregation process in Г0(Rd)

4.1 The aggregation process in the space of finite con-

figuration: set-up

The model we discuss here has a pathological property that the death rate coefficient

declines as the number of neighbors grows. We treat here the death rate coefficient given

in (4.1), and we require the birth rate coefficient to grow linearly on the number of points

in configuration in the sense (4.2). We prove in Proposition 4.2.1 that the probability

of extinction is small if the initial configuration has many points in some fixed Borel set

Λ ⊂ Rd. Propositions 4.2.2, 4.2.3 and Theorem 4.2.4 describe the pathwise behavior of

the process.

Let us consider a particular case of equation (2.2), with

d(x, η) = exp{−
∑
y∈η

ϕ(x− y)}, (4.1)

where ϕ is a nonnegative measurable function. Under assumptions of Theorem 2.1.6 we

have existence and uniqueness of solution, and this solution is a pure jump type Markov

process.
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For the sake of convenience, we work in this section on the probability space

(
DГ0(Rd)[0;∞),B(DГ0(Rd)[0;∞)), Pα

)
,

where Pα is the push-forward of the measure P under the map

Ω 3 ω 7→ (η(α, ·)) ∈ DГ0(Rd)[0;∞),

The process (ηt)t≥0 denotes the canonical process. All processes in this section are

adapted to the right-continuous filtration {Bt}t≥0,

Bt = σ(ηs, s ≥ t),

see also Subsection 1.2.3. Notions such as stopping times or the strong Markov property

are considered with respect to this filtration.

We want to show that, if the initial configuration has m points in some bounded

region, then, under some assumption on b and ϕ, the probability of extinction declines

faster than exponentially by m. Also, we would like to give a few statements describing

the pace of growth of the number of points of the system.

The main idea behind our analysis in this section is to couple the process (ηt)t≥0

with another, in a way “simpler” birth-and-death process (using Theorem 2.1.25). The

“simplicity” consists in the possibility to apply Theorem 1.6.1.

4.2 Asymptotic behavior and qualitative analysis

More specifically, let Λ be a measurable subset of Rn, the birth rate coefficient and the

initial condition η0 satisfy the same condition as Theorem 2.1.6, and, besides that, the
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inequalities ∫
Λ

b(x, η)dx ≥ c|η|, η ∈ Г0(Rd) (4.2)

and

b(x, η1) ≤ b(x, η2), η1, η2 ∈ Г0(Rd), η1 ⊂ η2 (4.3)

hold for some positive c. We assume also that

inf
x,y∈Λ

ϕ(x− y) ≥ log a, (4.4)

where a > 1.

Let us introduce another pair of the birth and death rate coefficients, b1, d1, and an

initial condition ξ0 = η0 ∩ Λ, such that b1(x, η) = d1(x, η) = 0 for x /∈ Λ, d1(x, η) = a−|η|

for x ∈ Λ, b1(x, η) ≤ b(x, η) for all x, η, and for some constant c > 0

∫
Λ

b1(x, η)dx = c|η ∩ Λ|, η ∈ Г0(Rd).

There exists a function b1 satisfying these assumptions.

Functions b1, d1 satisfy conditions of Theorem 2.1.6. Furthermore, the conditions of

Theorem 2.1.25 are fulfilled here: for η1, η2 ∈ Г0(Rd), η1 ⊂ η2 we have

b1(x, η1) ≤ b(x, η1) ≤ b(x, η2)

as well as

d1(x, η1) ≥ d(x, η1) ≥ d(x, η2).

Using Theorem 2.1.25, we consider an auxiliary process (ξt)t≥0 satisfying the following

two properties. First, let (ξt)t≥0 have the same law as the unique solution (η(1)(α, t))t≥0 of

equation (2.2) with the birth and death coefficients b1, d1 and initial condition ξ0. Second,
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let ξt ⊂ ηt hold Pα-a.s. for all t ≥ 0. Note that ξt ∈ Λ for all t ≥ 0, Pα -a.s.

Remark. We agreed above to work on the canonical probability space. In general, we

may not be able to define (ξt)t≥0 on it, since the process (ξt)t≥0 need not be measurable

with respect to the σ-algebra generated by (ηt)t≥0. In this case, we should extend the

canonical probability space to DГ0(Rd)[0;∞) × DГ0(Rd)[0;∞) with the corresponding σ-

algebra, and for Pα we should take the push-forward of the measure P under

Ω 3 ω 7→ (η(α, ·), (ξ(α, ·)) ∈ DГ0(Rd)[0;∞)×DГ0(Rd)[0;∞),

where (ξ(α, t))t≥0
d
= (η(1)(α, t))t≥0 and ξ(α, ·) ⊂ η(α, ·).

The canonical process becomes then

(ηt(x), ξt(x)) = (x1(t), x2(t)), x = (x1, x2) ∈ DГ0(Rd)[0;∞)×DГ0(Rd)[0;∞).

The thus defined family of measures is a Markov family with respect to

Bt = σ{ηs, ξs, s ≤ t}.

We say that the process extincts, if inf{t ≥ 0 : ηt = ∅} <∞. This infimum is called the

time of extinction.

Consider the embedded Markov chain of the process (ξt)t≥0, Yk := ξτk , where τk are

the moments of jumps of (ξt). It turns out that the process u = {uk}k∈N, where uk := |Yk|,

is a Markov chain too. Indeed, the equality

Pα1{|Y1| = k} = Pα2{|Y1| = k}, k ∈ N, α ∈ Г0(Rd).
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holds when |α1 ∩ Λ| = |α2 ∩ Λ|, since both sides are equal to


c

c+a−|α1∩Λ| if k = |α1 ∩ Λ|+ 1,

a−|α1∩Λ|

c+a−|α1∩Λ| if k = |α1 ∩ Λ| − 1,

0 in other cases.

Therefore, Theorem 1.6.1 is applicable here, with f(·) = | · |.

4.2.1 Proposition. Under the assumptions above, the probability of the extinction of the

process (ηt)t≥0 declines at least exponentially fast by the number of points of the initial

configuration in Λ. More precisely, for any constant C̃ > 0 the probability of the extinction

is less than C̃−m for large enough m, where m is the number of points of the intersection

of the initial configuration with Λ.

Proof. Having in mind the inclusion ξt ⊂ ηt (Pα-a.s.), we will prove this Lemma for

the auxiliary process ξt.

The transition probabilities for the Markov chain {uk}k∈Z+ are given by the formulas

pi,j = Pα{uk = j | |uk−1| = i} =


c

c+a−i
if j = i+ 1,

a−i

c+a−i
if j = i− 1,

0 in other cases,

(4.5)

for i ∈ N, j ∈ Z+, and p0,j = I{j=0}, see (1.26) and (3.8).

Since the zero is an absorbing state and it is accessible from all other states, there are

no recurrent states except zero, and the process u has only two possible types of behavior

on infinity:

Pα{∃l ∈ N s.t. ul = ∅ or lim
m→∞

um =∞} = 1.

We will now use results of the theory of discrete time Markov chains with a count-

able state space, see e.g. [Chu67, § 12, chapter 1]. Chung considers there Markov chain
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with a reflecting barrier at 0, but we may still apply those results, adapting them cor-

respondingly. Denote %m =
m∏
k=1

pk,k−1

pk,k+1
. Then the probability Pα{∃k ∈ N s.t. uk = 0}

equals to 1 if and only if
∞∑
j=1

%j = ∞, whichever initial condition α, |α ∩ Λ| > 0, we

have. Moreover, if
∞∑
j=1

%j < ∞ and Pα{u0 = q} = 1 (or, equivalently, |α ∩ Λ| = q),

then pq := Pα{∃k ∈ N s.t. uk = 0} =

∞∑
j=q

%j

1+
∞∑
j=1

%j

. From (4.5) we see that in our case

%j = c−ja−
j(j+1)

2 , and

pq =

∞∑
j=q

c−ja−
j(j+1)

2

1 +
∞∑
j=1

c−ja−
j(j+1)

2

≤

∞∑
j=q

c−ja−
j2

2

1 +
∞∑
j=1

c−ja−
j2

2

. (4.6)

Now, for arbitrary C > 1 chose q ∈ N for which c−1a−
q
2 < C−1. For j > q we have

c−ja−
j2

2 < c−ja−
jq
2 = (c−1a−

−q
2 )j < C−j, and

∞∑
j=q

c−ja−
j2

2 <
∞∑
j=q

C−j =
C−q

1− C−1
,

so that the statement of the lemma for (ξt)t≥0 follows from (4.6). �

Note that under assumptions of Proposition 4.2.1 the number of particles of the pro-

cess will go to infinity with probability 1 even though the probability of extinction is

positive, unless b(·,∅) = 0 almost everywhere with respect to the Lebesgue measure.

However, if b(·,∅) ≡ 0, then

P

(
{|ξt| = 0 for large t } ∪ {|ξt| → ∞ , t→∞}

)
= 1

and

P

(
{|ξt| = 0 for large t } ∩ {|ξt| → ∞ , t→∞}

)
= 0.

The following equality is also taken from [Chu67, § 12, chapter 1]; for q > s and all β
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with |β ∩ Λ| = q,

Pβ{∃k ∈ N : |uk| = s} =

∞∑
j=q

%j(s)

1 +
∞∑

j=s+1

%j(s)
,

where %m(s) =
m∏

k=s+1

pk,k−1

pk,k+1
= c−(m−s)a−

1
2

(m−s)(m+s+1); in our case

Pβ{∃k ∈ N : |uk| = s} =

∞∑
j=q

c−(j−s)a−
1
2

(j−s)(j+s+1)

1 +
∞∑

j=s+1

c−(j−s)a−
1
2

(j−s)(j+s+1)

:= cq,s < 1. (4.7)

Note that

cq+1,1 → 0, q →∞ (4.8)

4.2.2 Proposition. For all α ∈ Г0(Rd),

Pα

(
{|ηt ∩ Λ| → ∞} ∪ {∃t′ : ∀t ≥ t′, |ηt ∩ Λ| = ∅}

)
= 1. (4.9)

Remark. Note that we do not require b(·,∅) ≡ 0; if
∫

Λ
b(x,∅)dx > 0, then (4.9)

implies

Pα{|ηt ∩ Λ| → ∞} = 1.

Proof. Let (Xk)k∈Z+ be the embedded chain of (ηt)t≥0. Firstly, we will show that for

all m ∈ N and α ∈ Г0(Rd),

Pα{|Xk ∩ Λ| = m infinitely often } = 0. (4.10)

Let β ∈ Г0(Rd), |β ∩ Λ| = m, m ∈ N (the case of m = 0 is similar, and we do not

write it down). Denote k̃ = min{k ∈ N : Xk ∩Λ 6= X0 ∩Λ}. Since ξt ⊂ ηt holds Pβ - a.s.,
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Pβ
{
|Xk ∩ Λ| > m,∀k ≥ k̃

}
≥ Pβ

{
|Yk ∩ Λ| > m,∀k ≥ 1

}
= Pβ

{
uk > m, ∀k ≥ 1

}
.

(4.11)

By (4.7), the probability Pβ{uk > m,∀k ≥ 1} is positive and does not depend on β,

|β ∩ Λ| = m:

sm := Pβ{uk > m,∀k ≥ 1} ≥ pm,m+1(1− cm+1,m) > 0. (4.12)

Define kmi , i ∈ N, subsequently by kmj+1 = min{k > kmj : |Xk ∩ Λ| = m and ∃k̄ < k :

|Xk̄ ∩ Λ| 6= m}, km0 = 0. Note that for all β

Pβ

{
∃n0 : |Xn ∩ Λ| = m for all n ≥ n0

}
= 0.

By the strong Markov property,

Pα

{
|Xk ∩ Λ| = m infinitely often

}
≤ Pα

{
kmj <∞,∀j ∈ N

}

=
∞∏
j=1

Pα
{
kmj+1 <∞ | kmj <∞

}
= 0,

by (4.11) and (4.12). Indeed, if Pα{kmj <∞} > 0, then

Pα{kmj+1 <∞ | kmj <∞} =
EαI{kmj <∞}PXkmj

{km1 <∞}

EαI{kmj <∞}

≤
EαI{kmj <∞}

(
1− PXkm

j
{|Xk ∩ Λ| > m,∀k ≥ k̃}

)
EαI{kmj <∞}

≤
EαI{kmj <∞}

(
1− PXkm

j
{uk > m,∀k ≥ 1}

)
EαI{kmj <∞}

= 1− sm < 1.

Having proved (4.10), we note that
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{
|ηt ∩ Λ| → ∞

}
∪
{
∃t′ : ∀t ≥ t′, |ηt ∩ Λ| = ∅

}
=

( ∞⋃
m=1

{|Xk ∩ Λ| =m infinitely often}
)c
.

(4.13)

Note that if for some element of probability space ω ∈ Ω the process (ηt)t≥0 is stuck in an

absorbing state γ, γ ∩ Λ = ∅ , then ω belongs to the set on the left-hand side of (4.13)

and does not belong to the set
{
|Xk ∩ Λ| = m infinitely often

}
, m ∈ N.

The statement of the lemma follows from (4.10) and (4.13). �

The next lemma is a consequence of the exponentially fast decay of the death rate

coefficient.

4.2.3 Proposition. With probability 1 only a finite number of deaths inside Λ occur:

Pα

{
|ηt ∩ Λ| − |ηt− ∩ Λ| = −1 for infinitely many different t ≥ 0

}
= 0, α ∈ Г0(Rd).

Proof. Let {X̃k}k∈Z+ be the process with values in Г0(Λ), which is the “embedded

chain” for the process η̃t := ηt ∩ Λ. More precisely, let X̃k = η̃ςk , where ςk is the ordered

sequence of jumps of (η̃t)t≥0. Of course, the process {η̃t}t≥0 is not Markov in general, and

neither is {X̃k}k∈N. However, for all α ∈ Г0(Rd) the inequality

Pα{|X̃1| − |X̃0| = 1} ≥ p|α∩Λ|,|α∩Λ|+1

holds, because for every ζ ∈ Г0(Rd), ζ ∩ Λ = m, the integral of the birth rate coefficient

b(·, ζ) over Λ is larger than cm, and the cumulative death rate in Λ,
∑

x∈ζ∩Λ

d(x, ζ), is less

than ma−m.

The probability of the event that absolutely no death occurs is positive, even when
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the initial configuration contains only one point inside Λ:

Pα

{
|η̃t| − |η̃t−| ≥ 0 for all t ≥ 0

}
= Pα

{
|X̃k+1| − |X̃k| = 1 for all k ∈ N

}

=
∏
k∈N

Pα

{
|X̃k+1| − |X̃k| = 1

∣∣∣|X̃k| − |X̃k−1| = 1, ..., |X̃1| − |X̃0| = 1
}

≥
∏
k∈N

inf
ζ∈Г0(Rd),

|ζ∩Λ|=|α∩Λ|+k

Pζ{|X̃1| − |X̃0| = 1}

≥
∞∏

i=|α|

pi,i+1 =
∞∏

i=|α|

c

c+ a−i
=

∞∏
i=|α|

(
1− a−i

c+ a−i
)
> 0,

because the series
∞∑

i=|α|

a−i

c+a−i
converges. In particular,

∞∏
i=m

pi,i+1 → 1 as m goes to ∞.

Also,

Pαn
{
|η̃t| − |η̃t−| ≥ 0 for all t ≥ 0

}
→ 1, |αn ∩ Λ| → ∞. (4.14)

It is clear only an a.s. finite number of deaths inside Λ occurs on {∃t′ : ∀t ≥ t′, |ηt∩Λ| =

∅}.

By Proposition 4.2.2, it remains to show that only an a.s. finite number of deaths

inside Λ occurs on {|ηt ∩ Λ| → ∞} = {|η̃t| → ∞}. Let us introduce the stopping times

σn = inf{s ∈ R : |η̃s| ≥ n}, which are finite on {|η̃t| → ∞}. Only a finite number of

events (births and deaths) occur until arbitrary finite time Pβ-a.s. for all β ∈ Г0(Rd),

hence for n ∈ N

Pα

(
{|η̃t| − |η̃t−| ≥ 0 for all but finitely many t ≥ 0} ∩ {|η̃t| → ∞}

)
≥ Pα

(
{|η̃t| − |η̃t−| ≥ 0 for all t ≥ σn} ∩ {|η̃t| → ∞}

)
= PαI{|η̃t|→∞}Pησn

{
|η̃t| − |η̃t−| ≥ 0 for all t ≥ 0

}
.

113



From |ησn| ≥ n we have by (4.14)

Pησn
{
|η̃t| − |η̃t−| ≥ 0 for all t ≥ 0

}
→ 1, n→∞.

Therefore,

Pα

(
{|η̃t| − |η̃t−| ≥ 0 for all but finitely many t ≥ 0} ∩ {|η̃t| → ∞}

)
= Pα{|η̃t| → ∞}. �

Proposition 4.2.3 is also applicable to (ξ)t≥0, since b1, d1 satisfy all the conditions

imposed on b, d.

4.2.4 Theorem. Let α ∈ Г0(Rd). For Pα-almost all ω ∈ F := { lim
t→∞
|ηt ∩ Λ| = ∞} the

relation

lim inf
t→∞

|ηt ∩ Λ|
ect

> 0

is fulfilled.

Proof. First we prove the Lemma for (ξ)t≥0: we prove that for Pα-almost all ω ∈

F1 := { lim
t→∞
|ξt ∩ Λ| =∞},

lim inf
t→∞

|ξt ∩ Λ|
ect

> 0. (4.15)

There is no loss in generality in assuming u0 = |α∩Λ| > 0. Let 0 = τ0 < τ1 < τ2 < ...

be the moments of jumps of (ξt)t≥0, so that ξτk = Yk. We recall that the random variables

un = |Yn| constitute a Markov chain. Denote ψ(n) = cn+ na−n. Note that

∫
Λ

b1(x, Yk)dx+
∑
x∈Yk

d1(x, Yk) = c|Yk|+ |Yk|a−|Yk| = ψ(uk),

By Theorem 12.17 in [Kal02] (see Page 37 of this thesis), random variables γk :=

ψ(uk)(τk+1 − τk), k ∈ Z+ are independent and exponentially distributed with parameter

114



1. Furthermore, the sequence {γk} is independent of Y . In particular, it is independent

of {uk}k∈Z+ .

From Proposition 4.2.3 we know that only a finite number of deaths inside Λ occur

a.s. on F1. Particularly, there exists a positive finite random variable m such that the

inequalities

u0 + n ≥ un ≥ u0 + n−m(ω), n ∈ N (4.16)

hold with probability 1.

We can write

τn =
n−1∑
k=1

(τk+1 − τk) =
n−1∑
k=1

γk
ψ(uk)

≥
n−1∑
k=1

γk
u0 + k

.

Due to Kolmogorov’s two-series theorem, the series
∞∑
k=1

γk
u0+k

is divergent (we recall

that Eγk = Dγk = 1). Hence τn →∞ a.s.

We will show below that

cτn ≤ ln(n+ u0) + cγ̃, n ∈ N, (4.17)

where γ̃ is some finite random variable. Using (4.17), we obtain

Pα
{
|ξt| ≥

ect

2ecγ̃
, t ≥ 0

}
= Pα

{
|ξτn| ≥

ecτn+1

2ecγ̃
, n ∈ N

}

= Pα
{
un ≥

1

2
ecτn+1−cγ̃, n ∈ N

}
= Pα

{
ln(un) + ln 2 ≥ cτn+1 − cγ̃, n ∈ N

}
= 1.

Therefore, (4.15) holds.

Inequality (4.17) follows from the convergence of the series

∞∑
k=1

(
γk

ψ(uk)
− 1

ck

)
. (4.18)
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To establish the convergence of (4.18), we note that

∞∑
k=1

(
γk

ψ(uk)
− γk
cuk

)
(4.19)

converges by Kolmogorov’s theorem:

−
∞∑
k=1

(
γk

ψ(uk)
− γk
cuk

)
=
∞∑
k=1

γk
uka

−uk

cukψ(uk)
≤ 1

c2

∞∑
k=1

γk
a−uk

uk

=
1

c2

m∑
k=1

+
1

c2

∞∑
k=m+1

≤ 1

c2

m∑
k=1

γk
a−uk

uk
+

1

c2

∞∑
j=1

γk
a−j

j
,

and
∞∑
k=1

(
1

ck
− 1

cuk

)
(4.20)

converges by (4.16).

The convergence of the series in (4.18) follows from the fact that (4.19) and (4.20)

converge.

We have thus proved (4.15). To establish the statement of the theorem, note that

σ̃n = inf{t > 0 : |ηt| ≥ n} is finite on F and

{
lim inf

|ηt ∩ Λ|
ect

= 0, |ηt| → ∞
}
⊂
{

lim inf
|ξt|
ect

= 0
}
.

It follows from what we have already proved that

Pβ
{

lim inf
|ξt|
ect

= 0
}

= Pβ
{

(ξt)t≥0 extincts
}
, β ∈ Г0(Rd).

Therefore, by Proposition 4.2.1 and the strong Markov property

Pα
{

lim inf
|ηt ∩ Λ|
ect

= 0, |ηt| → ∞
}

= PαPησ̃n
{

lim inf
|ηt ∩ Λ|
ect

= 0, |ηt| → ∞
}
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≤ PαPησ̃n
{

lim inf
|ξt|
ect

= 0
}
≤ C̃−n,

where C̃ is the constant that appeared in Proposition 4.2.1. Since n is arbitrary,

Pα
{

lim inf
|ηt ∩ Λ|
ect

= 0, |ηt| → ∞
}

= 0.�

4.2.5 Corollary. For all configurations α with α ∩ Λ 6= ∅,

inf
t>0

Eα
|ηt ∩ Λ|
ect

> 0. (4.21)

Proof. Let us fix a configuration α, α ∩ Λ 6= ∅. We saw in the proof of Theorem

4.2.4 that for almost all ω ∈ F = {ω : lim inf
t→∞

|ηt∩Λ|
ect

> 0} we have

Pα{|ξt| ≥
1

2ecγ̃
ect, t ≥ 0} = 1.

Let Fk be the set {ω : 1
2ecγ̃
≥ 1

k
}. Then

⋃
k∈N

Fk = F , and, since Pα(F ) > 0,

Pα(Fk) > 0

for some k ∈ N. Hence

Eα|ηt ∩ Λ| ≥ Eα|ηt ∩ Λ|IFk ≥
1

k
ectPα(Fk). �

Together with Proposition (2.1.11) the corollary above describe behavior of the average

of the process.
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Chapter 5

Infinite systems

5.1 Markov processes on Г(Rd)

In this section, we prove one general result about a right-continuous stochastic process

in Г(Rd).

Denote by ΣC(Г(Rd) the collection of those subsets of Г(Rd) which can be represented

as a union of countably many compact sets, i.e., U ∈ ΣC(Г(Rd) if

U =
⋃
n

Kn, Kn ∈ CS(Г(Rd)).

We can prove the following statement.

5.1.1 Lemma. Let γ(ω, t) be a right continuous (ω-wisely) stochastic process defined on

a probability space (Ω,F , P ). Then for some set U ∈ ΣC(Г(Rd)

P{ω : γ(ω, t) ∈ U, t ≥ 0} = 1. (5.1)

Proof. Since the collection of sets ΣC(Г(Rd) is closed under countable unions, it is
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sufficient to show that there exists U ∈ ΣC(Г(Rd) such that

P{ω : γ(ω, t) ∈ U, 0 ≤ t ≤ 1} = 1.

The space Г(Rd) is a Polish space. Therefore, the Skorohod space DГ(Rd)[0; 1] is a Polish

space too, see Section 1.2.3. Every probability measure is tight on a Polish space, hence for

all ε > 0 there exists a compact set Kε ⊂ DГ(Rd)[0; 1] such that P{γ(ω, · ) ∈ Kε} > 1− ε.

All elements of Kε take values in some compact set Kε ⊂ Г(Rd). Consequently,

P{ω : γ(ω, t) ∈ Kε} > 1− ε.

The statement follows by taking a sequence εn → 0.

5.2 Spatial birth-and-death processes with infinitely many

particles

In this section, we discuss a stochastic equation of the form (5.2) below. A solution of

the equation is a ZZd
+ -valued cadlag stochastic process. The space ZZd

+ is the space of all

maps from Zd to Z+.

Informally, the space ZZd
+ may be regarded as a discrete analog of the configuration

space Г(Rd). Assume that we do not distinguish points of a configuration η in each cube

of the form
∏d

i=1(ni − 1
2
;ni + 1

2
]. Then the configuration “becomes” an element of ZZd

+ .

For β ∈ ZZd
+ , we interpret β(i) as the number of points at i, i ∈ Zd.

Let us introduce the vague topology on ZZd
+ as the minimal topology such that for

every function f : Zd → R with compact support the map

ZZd
+ 3 β 7→

∑
i∈Zd

β(i)f(i)
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is continuous. A function f : Zd → R has a compact support if and only if f(i) = 0 for all

but finitely many i ∈ Zd. We note that if (ηt, t ∈ [0;T ]) is a cadlag ZZd
+ -valued function,

then (ηt(i), t ∈ [0;T ]) is a cadlag Z+-valued function for every i ∈ Zd.

The generator of a solution to (5.2) should be of the form

LF (χ) =
∑
i∈Zd

b(i, χ)[F (χ+
i )− F (χ)] +

∑
i∈Zd

d(i, χ)[F (χ−i )− F (χ)],

where b : Zd × ZZd
+ → R+ and d : Zd × ZZd

+ → R+ are the birth rate coefficient and the

death rate coefficient, respectively. We recall that

χ+
i (j) =

 χ(j), if j 6= i,

χ(j) + 1, if j = i,
χ−i (j) =

 χ(j), if j 6= i,

χ(j)− 1, if j = i.

A solution to (5.2) should evolve in time as follows. If the system is in state χ ∈ ZZd
+

at time t, then the probability that the number of points at a site i ∈ Zd is increased by

1 (“birth”) in the next time interval of length ∆t is

b(i, χ)∆t+ o(∆t),

the probability that the number of points at the site i is decreased by 1 (“death”) in the

next time interval of length ∆t is

d(i, χ)∆t+ o(∆t),

and no two changes occur at the same time. Put differently, a birth at the site i occurs

at the rate b(i, χ), a death at the site i occurs at the rate d(i, χ). No two events happen

simultaneously.

Consider the equation

120



χt(i) =

∫
(0;t]×[0;∞)

I[0;b(i,χs−)](u)N1(i, ds, du)

−
∫

(0;t]×[0;∞)

I[0;d(i,χr−)](v)N2(i, dr, dv) + χ0(i),

(5.2)

where (χt)t∈[0;T ] is a cadlag ZZd
+ -valued solution process, i ∈ Zd, N1, N2 are Poisson point

processes on Zd×R+×R+ with intensity #×ds×du, # is the counting measure on Zd, χ0

is a (random) initial configuration, b, d are birth and death coefficients given below. We

require processes N1, N2, χ0 to be independent of each other. Equation (5.2) is understood

in the sense that the equality holds a.s. for every i ∈ Zd and t ∈ (0;T ].

Here we consider a special case of (5.2), b(i, χ) = A
∑
j:j^i

χ(j), where j ^ i means

|i− j| ≤ 1, and d(i, χ) = χ2(i). For i ∈ Zd we define |i|1 = |i1|+ ...+ |id|.

5.2.1 Definition. A (weak) solution of equation (5.2) is a triple ((χt)t∈[0;T ], N1, N2),

(Ω,F , P ), ({Ft}t∈[0;T ]), where

(i) (Ω,F , P ) is a probability space, {Ft}t∈[0;T ] is an increasing, right-continuous and

complete filtration of sub - σ - algebras of F ,

(ii) (χt)t∈[0;T ] is a cadlag adapted to {Ft}t∈[0;T ] process in ZZd
+ , E

∑
i∈Zd

e−|i|1χt(i) <∞,

N1, N2 are independent Poisson point processes with intensity # × ds × du, compatible

with {Ft}t∈[0;T ],

(iii) all integrals in (5.2) are well-defined, and

(iv) equality (5.2) holds a.s. for all t ∈ [0;T ] and all i ∈ Zd.

5.2.2 Definition. A solution is called strong if (χt)t∈[0;T ] is adapted to the completion

under P of the filtration

St = σ{χ0, Nk(i, [0; q], C), i ∈ Zd, C ∈ B(R+), q ∈ [0; t], k = 1, 2}.
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We say that pathwise uniqueness holds for equation (5.2) and an initial distribu-

tion ν if any two solutions of the form ((χt)t∈[0;T ], N1, N2) (Ω,F , P ), ({Ft}t∈[0;T ]) and

((χ̃t)t∈[0;T ], N1, N2), (Ω,F , P ), ({F̃t}t∈[0;T ]) such that P{χ0 = χ̃0} = 1 and Law(χ0) = ν

satisfy P{χt = χ̃t for all t ≥ 0} = 1.

We assume that the initial condition χ0 satisfies

sup
i∈Zd

Eχ0(i) <∞. (5.3)

The functions b, d posses the properties

b(i, χ1 ∨ χ2) ≥ b(i, χ1) ∨ b(i, χ2), (5.4)

and

d(i, χ1 ∨ χ2) = d(i, χ1) ∨ d(i, χ2). (5.5)

For a cadlag process (χt)t∈[0;T ], we define

Ft(χ)(i) =

∫
(0;t]×[0;∞)

I[0;b(i,χs−)](u)N1(i, ds, du)

−
∫

(0;t]×[0;∞)

I[0;d(i,χr−)](v)N2(i, dr, dv) + χ0(i), t ∈ (0;T ].

The process {Ft(χ), t ∈ (0; t]} is an adapted process with values in ZZd , provided that
t∫

0

E|b(i, χs−)∨ d(i, χs−)|ds is finite for all i. Note that if α is a solution of equation (5.2),

then F (α) = α in the sense that Ft(α) = αt a.s. for all t ∈ (0; t].

Let α, β be adapted processes with values in (Z+)Z
d . Using (5.4) and (5.5), we see

that
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∫
(0;t]×[0;∞)

I[0;b(i,αs−∨βs−)](u)N1(i, ds, du) ≥
∫

(0;t]×[0;∞)

I[0;b(i,αs−)∨b(i,βs−)](u)N1(i, ds, du)

≥
∫

(0;t]×[0;∞)

I[0;b(i,αs−)](u)N1(i, ds, du) ∨
∫

(0;t]×[0;∞)

I[0;b(i,b(βs−)](u)N1(i, ds, du),

and

∫
(0;t]×[0;∞)

I[0;d(i,αs−∨βs−)](u)N2(i, ds, du) =

∫
(0;t]×[0;∞)

I[0;d(i,αs−)∨d(i,βs−)](u)N2(i, ds, du).

5.2.3 Theorem. Assume that (5.3) is fulfilled. Then pathwise uniqueness and strong

existence hold for equation (5.2).

Proof. Uniqueness. Let ξ, ζ be two solutions to (5.2), and let ξ ∨ ζ be the cadlag

process defined by

(ξ ∨ ζ)t(i) = ξt(i) ∨ ζt(i).

Denote by dt(i) the number of deaths for the process ξ ∨ ζ at site i occurred before

time t. Then

dt(i) =

∫
(0;t]×[0;∞)

I[0;d(i,ξs−)∨d(i,ζs−)](u)N2(i, ds, du) =

=

∫
(0;t]×[0;∞)

I[0;d(i,ξs−∨ζs−)](u)N2(i, ds, du).

Indeed, if at some moment, say τ , a death for ξ ∨ ζ occurs (that is, ξτ (i) ∨ ζτ (i) −

ξτ−(i) ∨ ζτ−(i) = −1 ), then a death also occurs for the process (ξ or ζ) whose value

at i before τ was larger. Consequently, N2(i, {τ}, [0; d(ξτ− ∨ ζτ−)]) = 1. Conversely, if

N2(i, {τ}, [0; d(ξτ− ∨ ζτ−)]) = 1, then a death occurs at the moment τ for a process with

the largest value at i, therefore a death occurs for ξ ∨ ζ, too.
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On the other hand, one can see that the number bt(i) of births of the process ξ ∨ ζ on

the interval (0; t] satisfies

bt(i) =

∫
(0;t]×[0;∞)

I[0;b(i,ξs−)∨b(i,ζs−)](u)N1(i, ds, du) ≤

≤
∫

(0;t]×[0;∞)

I[0;b(i,ξs−∨ζs−)](u)N1(i, ds, du).

We used here (5.4).

Thus,

Ft(ξ∨ζ)(i) =

∫
(0;t]×[0;∞)

I[0;b(i,ξs−∨ζs−)](u)N1(i, ds, du)−
∫

(0;t]×[0;∞)

I[0;d(i,ξr−∨ζr−)](v)N2(i, dr, dv)

+χ0(i) ≥ bt(i)− dt(i) + χ0(i) = ξt ∨ ζt.

Now we may write

0 ≤ ξt(i) ∨ ζt(i)− ξt(i) ≤ Ft(ξt ∨ ζt)(i)− Ft(ξt)(i) =∫
(0;t]×[0;∞)

I[0;b(i,ξs−∨ζs−)](u)N1(i, ds, du)−
∫

(0;t]×[0;∞)

I[0;d(i,ξr−∨ζr−)](v)N2(i, dr, dv)

−
∫

(0;t]×[0;∞)

I[0;b(i,ξs−)](u)N1(i, ds, du) +

∫
(0;t]×[0;∞)

I[0;d(i,ξr−)](v)N2(i, dr, dv) =

∫
(0;t]×[0;∞)

I[b(i,ξs−);b(i,ξs−∨ζs−)](u)N1(i, ds, du)−
∫

(0;t]×[0;∞)

I[d(i,ξr−);d(i,ξr−∨ζr−)](v)N2(i, dr, dv) ≤

∫
(0;t]×[0;∞)

I[b(i,ξs−);b(i,ξs−∨ζs−)](u)N1(i, ds, du).

Taking expectation, we obtain
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E(ξt(i) ∨ ζt(i)− ξt(i)) ≤ E

∫
(0;t]×[0;∞)

I[b(i,ξs−);b(i,ξs−∨ζs−)](u)N1(i, ds, du)

= E

∫
(0;t]

[b(i, ξs− ∨ ζs−)− b(i, ξs−)]ds = A

∫
(0;t]×[0;∞)

∑
j^i

E[ξs−(j) ∨ ζs−(j)− ξs−(j)]ds.

Denote φ(i, t) := E(ξt(i) ∨ ζt(i)− ξt(i)). Then the inequality above becomes

φ(i, t) ≤ A

t∫
0

∑
j^i

φ(j, s−)ds. (5.6)

Denote ϕ(t) =
∑
i∈Zd

e−|i|1φ(i, t). Multiplying (5.6) by e−|i|1 and summing over Zd, we

obtain

ϕ(t) ≤ (2d+ 1)A

t∫
0

ϕ(s−)ds.

The function ϕ is finite by item (iii) of Definition 5.2.1. Consequently, the Gronwall’s

inequality implies that ϕ ≡ 0. Therefore, for a fixed t,

E(ξt(i) ∨ ζt(i)− ξt(i)) = 0.

for all i, hence ζt(i) ≤ ξt(i) a.s. Since ζt(i), ξt(i) are cadlag processes, it follows that

ζt(i) ≤ ξt(i) a.s. for all t ∈ (0;T ].

Swapping the roles of ζ and ξ, we see that ζt(i) = ξt(i) a.s. for all t ∈ (0;T ].

Now we turn our attention to the existence.

Existence. Let us consider equation 5.2 with a ’truncated’ initial condition, that is,

with the initial condition χ(n)
0 (i) = I{|i|1≤n}χ

(n)
0 (i), n ∈ N. Then the initial configuration

is “finite” in the sense that
∑

i χ
(n)
0 (i) < ∞, therefore one can show that equation (5.2)

has a unique solution χ(n)
t , which stays finite. Furthermore, some kind of monotonicity

can be shown; namely, if η0 and ζ0 are finite initial conditions with η0(i) ≤ ζ0(i) a.s. for
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all i ∈ Zd, then the inequality is preserved for the solutions: for all t ∈ (0;T ] and i ∈ Zd

ηt(i) ≤ ζt(i) a.s.

In particular, χ(m)
t ≤ χ

(n)
t a.s. provided m ≤ n. We have

χ
(n)
t (i)−χ(m)

t (i) =

∫
(0;t]×[0;∞)

I
[0;b(i,χ

(n)
s− )]

(u)N1(i, ds, du)−
∫

(0;t]×[0;∞)

I
[0;d(i,χ

(n)
r− )]

(v)N2(i, dr, dv)

+I{|i|1≤n}χ0(i)−
∫

(0;t]×[0;∞)

I
[0;b(i,χ

(m)
s− )]

(u)N1(i, ds, du)

−
∫

(0;t]×[0;∞)

I
[0;d(i,χ

(m)
r− )]

(v)N2(i, dr, dv) + I{|i|1≤m}χ0(i)

=

∫
(0;t]×[0;∞)

I
[b(i,χ

(m)
s− ;b(i,χ

(n)
s− )]

(u)N1(i, ds, du)

−
∫

(0;t]×[0;∞)

I
[d(i,χ

(m)
r− ;d(i,χ

(n)
r− )]

(v)N2(i, dr, dv) + I{m<|i|1≤n}χ0(i)

≤
∫

(0;t]×[0;∞)

I
[b(i,χ

(m)
s− ;b(i,χ

(n)
s− )]

(u)N1(i, ds, du) + I{m<|i|1≤n}.

The sum
∑
k∈Zd

e−|k|1χ0(k) converges a.s. and in L1(Ω, P ), therefore

∑
k∈Zd

I{m<|k|1≤n}e
−|k|1χ0(k)→ 0

a.s. and in L1(Ω, P ) as n,m→∞. Let us note that for ζ ≤ η
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∑
i∈Zd

e−|i|1 [b(i, η)− b(i, ζ)] = A
∑
i∈Zd

e−|i|1
∑
j^i

[η(j)− ζ(j)]

≤A(2d+ 1)e
∑
i∈Zd

e−|i|1 [η(i)− ζ(i)]

(5.7)

Consequently we have

E
∑
i∈Zd

e−|i|1 [χ
(n)
t (i)− χ(m)

t (i)] ≤

E

[∑
i∈Zd

e−|i|1
∫

(0;t]×[0;∞)

I
[b(i,χ

(m)
s− ;b(i,χ

(n)
s− )]

(u)N1(i, ds, du) +
∑
i∈Zd

e−|i|1I{m<|i|1≤n}χ0(i)

]
=

E

[ ∫
(0;t]

∑
i∈Zd

e−|i|1 [b(i, χ
(n)
s− − b(i, χ

(m)
s− )]ds+

∑
i∈Zd

e−|i|1I{m<|i|1≤n}χ0(i)

]
≤

∫
(0;t]

A(2d+ 1)eE
∑
i∈Zd

e−|i|1 [χ
(n)
s− (i)− χ(m)

s− (i)]ds+ E
∑
i∈Zd

e−|i|1I{m<|i|1≤n}χ0(i).

Denote f(t) := E
∑
i∈Zd

e−|i|1 [χ
(n)
t (i)−χ(m)

t (i)]. We can show that f is finite in the same

way as we showed the finiteness of E|ζt| in the proof of Proposition 2.1.5.

Taking into account continuity of f , we see that

f(t) ≤ A(2d+ 1)e

∫
(0;t]

f(s)ds+ E
∑
i∈Zd

e−|i|1I{m<|i|1≤n}χ0(i).

Hence

f(t) ≤ eA(2d+1)eE
∑
i∈Zd

e−|i|1I{m<|i|1≤n}χ0(i). (5.8)
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Define

Y
(k)
t (i) := χ

(k)
t (i) +

∫
(0;t]×[0;∞)

I
[0;d(i,χ

(k)
r−)]

(v)N2(i, dr, dv)

(
=

∫
(0;t]×[0;∞)

I
[0;b(i,χ

(k)
s− )]

(u)N1(i, ds, du) + χ
(k)
0 (i)

)
,

and let Xk(t) =
∑
i∈Zd

e−|i|1Y
(k)
t (i). For m < n the process Xn(t) − Xm(t) is an (cadlag)

increasing process, hence

P{ sup
s∈(0;T ]

(Xn(s)−Xm(s)) ≥ ε} ≤ E(Xn(T )−Xm(T ))

ε
=

A(2d+ 1)e
T∫
0

f(s)ds

ε
.

By (5.8), the last fraction goes to zero as n,m go to infinity. The inclusion

{
sup
s∈(0;T ]

(Xn(t)−Xm(t)) < ε

}
⊂
{
for all t ∈ (0;T ], k with e−|k|1 ≥ ε : Y n

k (t) = Y m
k (t)

}

implies that for arbitrary R > 0

P

{
Y

(n)
t (k) = Y

(m)
t (k) for all t ∈ (0;T ], k ∈ Zd, |k|1 ≤ R

}
→ 1, (5.9)

m,n→∞.

Monotonicity of d and the inequality χ(n)
t ≥ χ

(m)
t , t ∈ (0;T ] give us

∫
(0;t]×[0;∞)

I
[0;d(i,χ

(n)
r− )]

(v)N2(i, dr, dv) ≥
∫

(0;t]×[0;∞)

I
[0;d(i,χ

(m)
r− )]

(v)N2(i, dr, dv),

hence χ(n)
t (k)− χ(m)

t (k) ≤ Y
(n)
t (k)− Y (m)

t (k). Together with (5.9) this implies
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P

{
χ

(n)
t (k) = χ

(n)
t (k) for all t ∈ (0;T ], k ∈ Zd, |k|1 ≤ R

}
→ 1,m, n→∞. (5.10)

One can construct a subsequence {nm} of N along which the convergence in probability

in (5.10) is replaced by convergence almost surely; for some finite random variable n0(ω),

P

{
χ

(nm+1)
t (k) = χ

(nm)
t (k) for all t ∈ (0;T ], k ∈ Zd, |k|1 ≤ R, nm ≥ n0(ω)

}
= 1. (5.11)

Because the functions b, d are local (in the sense that their values at (i, η) depend

only on {η(j), j ^ i}), we see by the direct substitution that the limit χt = lim
m→∞

χ
(nm)
t

satisfies (5.2).

It remains to check that

E
∑
i∈Zd

e−|i|1χt(i) <∞ (5.12)

to conclude that (χt)t∈[0;T ] is a solution to (5.2). Arguments similar to those we used to

prove (5.8) give

E
∑
i∈Zd

e−|i|1χ
(n)
t (i) ≤ eA(2d+1)eE

∑
i∈Zd

e−|i|1I{|i|1≤n}χ0(i) ≤ eA(2d+1)eE
∑
i∈Zd

e−|i|1χ0(i).

Letting n→∞, we get (5.12).

The solution (χt)t∈[0;T ] is strong, since χ
(n)
t (k) is adapted to {St}t∈[0;T ] for every n ∈ N.

�

5.2.4 Remark. An examination of the proof shows that Theorem (5.2.3) holds for general

b, d : Zd × ZZd
+ → R+ satisfying certain conditions. Namely, we need d to be local and

monotone in the sense that d(i, ξ) = g(ξ(i)) for some non-decreasing function g : Z+ →
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R+, and we need b to be monotone and to have a Lipschitz property and a finite range

property. By the monotonicity we mean

b(i, ξ) ≤ b(i, ζ), ξ ≤ ζ,

by the finite range property we mean existence of R ∈ N such that

b(i, ξ) = b(i, ζ) whenever ξ(i+ j) = ζ(i+ j), |j|1 ≤ R,

and the Lipschitz property we understand in the sense that

|b(i, ξ)− b(i, ζ)| ≤
∑
j∈Zd

ϕ(j)|ξ(i+ j)− ζ(i+ j)|

holds for some summable function ϕ : Zd → R+. Furthermore, we expect that some of

these conditions may be relaxed.
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