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1 Introduction

Suppose you own a firm and want to fill an open vacancy through the social contacts
of one of your current employees. Whom would you ask to recommend someone?
Most probably you would address the worker who would himself perform best in
the position in question. While this seems to be intuitively reasonable, why do we
expect it to be optimal? One important reason is that people tend to connect to
similar others. This phenomenon is known as homophily (Lazarsfeld et al., 1954).

In this paper we introduce a continuous notion of homophily based on incorpo-
rating heterogeneity of agents into the Bernoulli Random Graph (BRG) model as
examined by Erdős and Rényi (1959). To this end we propose a two-stage ran-
dom process. First, agents are assigned characteristics independently drawn from
a continuous interval and second a network realizes, linking probabilities being
contingent on a homophily parameter and the pairwise distance between agents’
characteristics. This enables us to account for homophily in terms of similarity
rather than equality of agents, capturing the original sociological definition instead
of the stylized version up to now commonly used in the economic literature.

As a first result we determine the expected linking probabilities between agents
(Proposition 1) as well as the expected number of links (Corollary 2). We then
calculate the expected probability that an agent has a certain number of links
(Proposition 2), showing that the according binomial distribution of the original
BRG model is preserved to some degree. In Proposition 3 we establish a threshold
theorem for any given agent to be connected. For all these results we demonstrate
that the BRG model is recuperated as the limit case of no homophily and we thus
provide a generalization thereof.
As a main result, we show that in our model homophily induces clustering (Propo-
sition 4), two stylized facts frequently observed in real-world networks which are
not captured by the BRG model. Furthermore, clustering proves to be strictly
increasing in homophily. Additionally, two simulations will indicate that even at
high homophily levels the well-known small-world phenomenon is preserved. We
finally provide an application of the homophilous random network model within a
stylized labor market setting to answer the introductory questions.

In the literature the presence of homophily has been established in a wide range of
sociological and economic settings. Empirical studies on social networks discovered
strong evidence for the similarity of connected individuals with respect to age
(e.g. Verbrugge, 1977; Marsden, 1988; Burt, 1991), education (e.g. Marsden, 1987;
Kalmijn, 2006), income (e.g. Laumann, 1966, 1973), ethnicity (e.g. Baerveldt et al.,
2004; Ibarra, 1995) or geographical distance (e.g. Campbell, 1990; Wellman, 1996).
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For an extensive survey see McPherson et al. (2001). In recent years economists
have developed an understanding of the relevance of network effects in a range of
economic contexts. Thus, bearing in mind the presence of homophily in real-world
networks can be of great importance for creating meaningful economic models.

There already exists a strand of economic literature examining homophily effects
in different settings (see e.g. Currarini et al., 2009). Most of the models assume a
finite type-space and binary homophily in the sense that an agent prefers to connect
to others that are of the same type while not distinguishing between other types.1

Thus, these models rather capture the idea of equality than of similarity. However,
in reality people are in many respects neither “equal” nor “different”. We therefore
believe that a notion that provides an ordering of the “degree of similarity” with
respect to which an agent orders his preference for connections can capture real-
world effects more accurately. This gives rise to a continuous notion of homophily
in networks.

Besides the presence of homophily, further stylized facts about real-world networks
have been identified in empirical studies, such as the well-known small-world phe-
nomenon and high levels of clustering (see e.g. Milgram, 1967; Watts and Strogatz,
1998).2 As in many cases these networks are very large and remain unknown for
an analysis, typically random networks are used as an approximation. This con-
stitutes a challenge to design the random network formation process in a way to
ensure it complies with the observed stylized facts.

Since the seminal work of Erdős and Rényi (1959), who developed and analyzed
a random graph model where a fixed number out of all possible bilateral connec-
tions is randomly chosen, a lot of different models have been proposed (see e.g.
Wasserman and Pattison, 1996; Watts and Strogatz, 1998; Barabási and Albert,
1999). The most commonly used until today is the BRG model, where connections
between any two agents are established with the same constant probability. It has
been shown that for large networks this model is almost equal to the original model
of Erdős and Rényi (1959) (for details see Jackson, 2005; Bollobás, 2001).3 It is well
understood that this model reproduces the small-world phenomenon but does not
exhibit clustering. Equally, a notion of homophily is not present as the described
random process does not rely on individual characteristics.
The latter is also true for the small-world model proposed by Watts and Strogatz

1For several homophily measures of this kind see Currarini et al. (2009).
2The small-world phenomenon describes the observation that even in large networks on average
there exist relatively short paths between two individuals, while clustering means that two
individuals with a common neighbor have an increased probability of being connected.

3In fact, the BRG model rather than their original one is nowadays also known as the Erdős-
Rényi model.
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(1998). Starting from a network built on a low-dimensional regular lattice, they
reallocate randomly chosen links and obtain a random network showing a small-
world phenomenon. According to their notion this encompasses an increased level
of clustering. However, the socio-economic causality of this occurrence remains
uncertain. In this regard our model can to some extend serve as a socio-economic
foundation of the work of Watts and Strogatz (1998).

In general, not much work has yet been dedicated to the incorporation of homophily
into random networks. However, some papers exist that include similar ideas.
Jackson (2008) analyzes the impact of increasing homophily on network statistics
such as clustering and the average distance of nodes. A finite number of types as
well as linking probabilities between them are exogenously given. Though linking
probabilities may vary among types, which allows for cases where similar types are
preferred, his notion of homophily remains binary. Golub and Jackson (2012) also
assume a finite number of types as well as the linking probabilities between them
to be exogenously given. Based on this they analyze the implications of homophily
in the framework of dynamic belief formation on networks. Bramoullé et al. (2012)
combine random link formation and local search in a sequentially growing society
of heterogeneous agents and establish a version of binary homophily along with a
degree distribution.
Besides the continuous notion of homophily, a major distinction of our approach is
the sequential combination of two random processes, where agents’ characteristics
are considered as random variables that influence the random network formation.
We thus account for the fact that in many applications in which the network
remains unobserved, it seems unnatural to assume that individual characteristics,
which in fact may depict attitudes, beliefs or abilities, are perfectly known.

We conclude the paper by providing an application of our model for the labor
market, proposing an analysis of the introductory question: When is it optimal for
a firm to search for a new employee via the contacts of a current employee? We
assume the characteristic of each worker to be her individual ability to fill the open
vacancy and use our homophilous random network model as an approximation of
the workers’ network. Given an agent and her characteristic, we determine the
expected characteristic of a random contact (Proposition 5). This gives rise to a
simple decision rule, stating in which constellations firms should hire via the social
network. In particular, given sufficiently high levels of homophily and the current
employee’s ability, it proves to be always optimal to hire via the social network.

Within the job search literature, Horváth (2011) and Zaharieva (2013) incorporate
homophily among contacts into job search models. However, these models are again
based on a binary concept of homophily and do not include an explicit notion of
networks. This research strand traces back to the work of Montgomery (1991), who
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was the first to address this issue. Finally, our application to some extent captures
an idea proposed by Ioannides and Loury (2004) to combine this class of models
with a random network setting à la Erdős-Rényi.

The rest of the paper is organized as follows. In Section 2 we set up the model.
Section 3 reveals basic properties of homophilous random networks, while results on
clustering can be found in Section 4. In Section 5 we simulate the model focusing
on the small-world phenomenon. Section 6 contains the labor market application
and Section 7 concludes.

2 The Model

We set up a model of random network formation, where first each agent is randomly
assigned a continuous characteristic which then will influence the respective linking
probabilities.

Consider a set of agents N = {1, 2, ..., n}, who will be connected via a non-directed
network. A connection of two agents i, j ∈ N will be denoted by ij, and we will
denote by gN = {ij | i, j ∈ N} the complete network, that is the network where
any two agents are connected. Then, we let G = {g | g ⊆ gN} be the set of all
possible non-directed networks. Further, we define Ni(g) = {j ∈ N | ij ∈ g} to
be the set of neighbors of agent i in network g, and let ηi(g) = |Ni(g)| denote the
number of her neighbors.

Each agent will be assigned a characteristic pi, where the vector p = (p1, p2, ..., pn)
will be a realization of the random variable P = (P1, P2, ..., Pn). The underly-
ing distribution of each Pi is assumed to be standard uniform, hence all Pi are
identically and independently distributed.

Subsequent to the assignment of characteristics a random network forms. Here,
we assume the following variation of the Bernoulli Random Graph (BRG) model
as introduced by Erdős and Rényi (1959). The linking probability of two agents
i, j ∈ N is given by

q(pi, pj) = λa|pi−pj |, (2.1)

where λ, a ∈ [0, 1] are exogenous parameters independent of agents i and j.
Figure 1 depicts the linking probabilities q(pi, pj) for different parameters a, first as
a function of the distance of characteristics and second as a function of pj for given
pi = 0.25. As in our model λ simply serves as a scaling parameter corresponding to
the linking probability in the BRG model, in Figure 1 it is fixed to 1 for simplicity.

5



0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

( 1
100)

|pi−pj |

( 1
4)

|pi−pj |

( 2
3)

|pi−pj |

1|pi−pj |

(10−10)
|pi−pj | |pi−pj |

a|pi−pj |

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

( 1
100)

|0.25−pj |

( 1
4)

|0.25−pj |

( 2
3)

|0.25−pj |

1|0.25−pj |

pj

a|0.25−pj |

(10−10)
|0.25−pj |

Figure 1: (i) Linking probability for all distances of characteristics, for several ho-
mophily parameters a; (ii) Linking probabilities for an agent with char-
acteristic pi = 0.25, for several homophily parameters a.

In addition, let us shortly elaborate on the role of parameter a. Observe that
the linking probability q is decreasing in |pi − pj|, as a takes values only in [0, 1].
In particular, for a = 1 the model is equal to the BRG model, as all linking
probabilities are equal to λ and hence independent of the agents’ characteristics,
whereas if a = 0 solely agents with identical characteristics pi = pj will connect
with probability λ, while all other linking probabilities are zero.

Insofar, the parameter a serves as a measure of homophily in the model, where
lower values correspond to a higher homophily level in the network. The notion
at hand measures homophily in a continuous instead of a binary manner, since the
distance function | · | is continuous.
Finally, it is important to understand that in situations where the vector of charac-
teristics is unknown the linking probability q(Pi, Pj) is in fact a conditional prob-
ability.

3 Basic Properties of Homophilous Random

Networks

This section will constitute a foundation for the upcoming main results. To this
end we first need to collect several important properties of the homophilous random
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network model, such as the expected linking probabilities and the number of links
of agents. We moreover discuss a threshold theorem for an agent to be isolated,
what will particularly be of importance for the labor market application provided
in Section 6.
Throughout this section we explore on the one hand situations in which the real-
ization of one considered agent i ∈ N is known while all others are not, and on the
other hand situations in which the whole vector of characteristics is unknown. In
any case we demonstrate that the BRG model is recuperated as the limit case of
no homophily and we thus provide a generalization thereof.

We start by determining the expected linking probabilities for two given agents
i, j ∈ N .

Proposition 1.

The expected probability that the link ij forms, given agent i’s realized characteristic

is Pi = pi while all other characteristics p−i are unknown is

E
P
[
P
G (ij ∈ G | P )

∣
∣ Pi = pi

]
=

λ

ln(a)

(
api + a1−pi − 2

)
=: ϕ(λ, a, pi). (3.1)

The expected probability that the link ij forms if the vector p is unknown is

E
P
[
P
G (ij ∈ G | P )

]
=

2λ

ln(a)2
(a− 1− ln(a)) =: Φ(λ, a). (3.2)

The proof of Proposition 1 as well as all subsequent proofs can be found in the
Appendix. It is straightforward to understand that the function ϕ indeed has to
depend on characteristic pi, as it makes a difference whether pi tends to the center
or to the boundaries of the interval [0, 1]. The closer pi is to 0.5 the smaller is the
expected distance to other agents’ characteristics, hence the higher is the expected
linking probability ϕ. In particular, it is argmaxpiϕ = 0.5 and argminpi

ϕ = {0, 1}
for all a ∈ (0, 1). To this respect it is obvious that ϕ(λ, a, 0) ≤ Φ(λ, a) ≤ ϕ(λ, a, 0.5)
for all λ, a ∈ [0, 1].
It is also important to notice that the expected linking probability is decreasing in
homophily, that is for all a ∈ (0, 1]

∂

∂a
Φ(λ, a) =

∂

∂a

[

2λ
a− 1− ln(a)

ln(a)2

]

= 2λ
2(1− a) + ln(a)(1 + a)

a ln(a)3
> 0.4

4We indeed can include the value a = 1 here, as it happens to be a removable discontinuity of
the derivative. On the contrary at a = 0 the right-handed derivative is infinity as the expected
number of links is zero with probability one.
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To verify intuition that our model reproduces the BRG model as a limit case and to
gain insights on the behavior in boundary cases the following corollary is concerned
with the limits of the expected linking probabilities with respect to the homophily
parameter a.

Corollary 1.

For maximal homophily, meaning a → 0 the expected linking probability is

lim
a→0

ϕ(λ, a, pi) = lim
a→0

Φ(λ, a) = 0. (3.3)

In case of no homophily, meaning a → 1 the expected linking probability is

lim
a→1

ϕ(λ, a, pi) = lim
a→1

Φ(λ, a) = λ. (3.4)

Maximal homophily in this model means that only agents with identical character-
istics would have a strictly positive linking probability. However, since the standard
uniform distribution has no mass point such two agents do not exist with positive
probability. Therefore, both according expected linking probabilities ϕ and Φ tend
to zero.
In case of no homophily, as mentioned before the model indeed reproduces the
BRG model, such that all linking probabilities are alike, independent of individual
characteristics p.

Based on Proposition 1 we also immediately get the expected number of links of
an agent.

Corollary 2.

The expected number of links of an agent with given characteristic Pi = pi is

E
P
[
E

G [ηi(G) | P ]
∣
∣ Pi = pi

]
= (n− 1)ϕ(λ, a, pi), (3.5)

and likewise if p is unknown

E
P
[
E

G [ηi(G) | P ]
]
= (n− 1)Φ(λ, a). (3.6)

A proof of Corollary 2 is omitted as it is clear that all expected linking probabilities
are independent and the result hence directly follows from the proof of Proposition
1. Observe that from this result we can also directly calculate the expected number
of links in a network to be

n(n− 1)

2
Φ(λ, a).
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From Corollary 1, we deduce that the expected number of links is zero for maximal
homophily while in case of no homophily one gets λn(n−1)/2 links in expectation,
again as in the BRG model.

In the following we calculate the expected probability for an agent with given
characteristic to have a certain number of links and thus show that the model
inherits a version of the binomial distribution known from the BRG model.

Proposition 2.

The expected probability that an agent with given characteristic Pi = pi has exactly
k ∈ {0, 1, ..., n− 1} links is given by

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

]
=

(
n− 1

k

)

· ϕ(λ, a, pi)k · (1− ϕ(λ, a, pi))
n−k−1 .

(3.7)

Observe that this form can be interpreted as a binomial distribution with param-
eters ϕ(λ, a, pi) and n− 1. It is also worth noting that the extreme cases meet the
expected outcome, as it is

lim
a→0

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

] (3.3)
=

(
n− 1

k

)

· 0k · 1n−k−1 =

{

1, if k = 0

0, else
,

lim
a→1

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

] (3.4)
=

(
n− 1

k

)

· λk · (1− λ)n−k−1 ,

where the latter case unsurprisingly is exactly the probability for any agent to have
exactly k links in the BRG model, where the independent linking probability is λ.
Unfortunately, the calculation of such a form in case of the whole vector of char-
acteristics p being unknown is analytically not tractable.

One major reason why random network models are used frequently is to match
qualitative characteristics of real world networks. The Law of Large Numbers
in this case yields that large networks indeed meet these characteristics with a
high probability (cf. e.g. Jackson, 2010b, Chapter 4). A seminal contribution of
Erdős and Rényi (1959) was to give so-called threshold theorems for the case of
the BRG model. These results state that if the network size n goes to infinity
while the linking probability λ(n) goes to zero slower than some threshold t(n),
the limit network has a certain property with probability one, while if λ(n) goes
to zero faster than t(n) then the limit network has the same property only with
probability zero.5

5For a more elaborate characterization of thresholds as well as several results see Bollobás (1998).
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It is clear that this kind of results can only be found for monotone properties,
that is for those which yield that if any network g has the property then also any
network g′ ⊇ g has it. One example is the property that a given agent has at least
one link. Observe that particularly regarding our application of the labor market
(Section 6) this feature will be a prerequisite and therefore of great importance,
as determining the expected characteristic of a given agent’s contact is meaningful
only if this agent is not isolated. Thus, we now establish a threshold function for
this particular monotone property.

Proposition 3.

Assume a minimal level of homophily to be guaranteed in the model as the network

size becomes large. Then the function t(n) = 1/(n − 1) is a threshold for a given

agent to be non-isolated in the following sense:

E
P
[
P
G (ηi(G) ≥ 1 | P )

∣
∣Pi = pi

]
→ 1 ∀ pi ∈ [0, 1] if

−λ(n)/ ln(a(n))

t(n)
→ ∞,

E
P
[
P
G (ηi(G) ≥ 1 | P )

∣
∣Pi = pi

]
→ 0 ∀ pi ∈ [0, 1] if

−λ(n)/ ln(a(n))

t(n)
→ 0.

Notice first that in Proposition 3 the right-hand side conditions are equivalent
to ϕ(λ(n), a(n), p̂)/t(n) converging to infinity or 0, respectively, for any arbitrary
p̂ ∈ [0, 1]. For details refer to the proof in the Appendix.
What is surprising about this as well as about other threshold theorems is the
sharp distinction made by the threshold t(n), in the sense that if the growth of
the probability ϕ passes the threshold t(n), the probability of any agent being
isolated changes “directly” from 0 to 1. What is more, notice that the threshold
t(n) = 1/(n − 1) is actually the same as in the BRG model, however it has to
hold for ϕ rather than just for λ, as in this model both λ and a may vary on the
size of the network. Indeed, it does not seem farfetched to assume that homophily
increases with the network size, as the assortment of similar agents gets larger.
Having understood this one can directly deduce the cases where only one of the
two parameters varies with n:

Corollary 3.

If a ≡ a(n) depends on n but λ does not, one gets that if a(n) goes toward zero

faster than exp(−n) then any given agent will be isolated with probability one in

the limit, while if a(n) does not go toward zero or at least slower than exp(−n)
then any given agent will have at least one link with probability one in the limit.

If λ ≡ λ(n) depends on n but a does not, the condition collapses to the threshold
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of t(n) for λ(n) as in the BRG model, where any given agent has at least one link

if λ(n) grows faster than t(n) while if λ(n) grows slower than t(n) any given agent

is isolated with probability 1.

Both parts of Corollary 3 follow directly from Proposition 3, such that a proof can
be omitted.

4 Clustering

As mentioned in the Introduction a main criticism of the Bernoulli Random Graph
(BRG) model is that the resulting networks do not exhibit clustering, while most
examples of real-world networks do (see e.g. Watts and Strogatz, 1998; Newman,
2003, 2006). In this section we will show that our model indeed exhibits clustering
and one can use the homophily parameter a to calibrate the model to a broad range
of clustering degrees.

The notion of clustering in general captures the extent to which connections in
networks are transitive, that is the frequency with which two agents are linked
to each other if they have a common neighbor. Watts and Strogatz (1998), who
introduced this concept, measure the transitivity of a network by a global clustering
coefficient C which denotes the average probability that two neighbors of a given
agent are also directly linked. A random graph model is said to exhibit clustering,
if the coefficient C is larger than the general, unconditional linking probability of
two agents (cf. Newman, 2006). Defining the set of networks that include some
link ij ∈ gN as Gij = {g ⊆ gN | ij ∈ g} ⊂ G, this can be transferred to our model
in the following way:

Definition 1 (Clustering):

For the model as introduced in Section 2 with λ ∈ [0, 1] and a ∈ (0, 1), the clus-
tering coefficient is defined as

C(λ, a) := E
P
[
P
G (G ∈ Gjk | P )

∣
∣ G ∈ Gij ∩Gik

]
,

where i, j, k ∈ N .

The model is said to exhibit clustering if C(λ, a) > Φ(λ, a).

The choice of the agents i, j and k obviously cannot have an influence in this con-
text, since ex-ante all agents are equal. Remember also that Φ gives the probability
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of two agents to be connected, characteristics being unknown. The function C as
well captures this probability, however conditional on the existence of a common
neighbor.
It should be clear that the original BRG model does not exhibit clustering since
every link is formed with the same probability independent of the presence of com-
mon neighbors. However, as we will discover next, apart from the limit case of no
homophily the model at hand possesses this feature and is insofar more realistic.

Proposition 4.

In the homophilous random network model the clustering coefficient is given by

C(λ, a) = λ
3
(
ln(a)a2 + ln(a)− a2 + 1

)

2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) .

Given a non-extreme homophily parameter the model exhibits clustering, that is for

all λ ∈ (0, 1], a ∈ (0, 1) it is

C(λ, a) > Φ(λ, a).

The intuition for Proposition 4 is the following: If there is homophily to some
degree and two agents have a common neighbor, then this fact contains additional
information. The expected distance between these two agents is smaller than if the
assumption of a common neighbor had not been given. Again due to homophily, it
is therefore more likely that a link between these two agents will form. Beyond that,
Figure 2 might also contribute to a better understanding of the situation. Notice
here that it is C(λ, a)/λ = C(1, a) and Φ(λ, a)/λ = Φ(1, a). One can perceive that
the difference C(λ, a)− Φ(λ, a) is strictly decreasing in a ∈ (0, 1) for all λ ∈ (0, 1],
that is clustering is strictly increasing in the degree of homophily. Moreover, it
again turns out to be interesting to consider the limit cases of maximal and no
homophily:

Corollary 4.

For maximal homophily, meaning a → 0 it is

lim
a→0

C(λ, a) = lim
a→0

[C(λ, a)− Φ(λ, a)] =
3λ

8
.

In case of no homophily, meaning a → 1 we get

lim
a→1

C(λ, a) = lim
a→1

Φ(λ, a) = λ.
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If there is no homophily, we are again back in the BRG model about which we
already knew that it does not exhibit clustering. The second part of Corollary 4
confirms this. However, the more interesting case is the one of maximal homophily.
Though in the limit no link forms with positive probability, from this analysis one
can deduce properties in case of homophily being high, yet non-maximal, due to
continuity of the functional forms.
Let us clarify the intuition why the clustering coefficient for maximal homophily
takes a value strictly between zero and λ. Recall first that it is lima→0 Φ(λ, a) = 0,

since for maximal homophily only agents with identical characteristics are linked
with positive probability and such two agents exist with probability zero. However,
the clustering coefficient is a probability already conditioned on the existence of
links to a common neighbor. This additional information implies that either char-
acteristics are equal or links have formed despite differing characteristics. Though
both events occur only with probability zero, this does not preclude them per se.
Having understood this, it should be clear that in the first case the probability of
the third link would indeed be λ, while in the second case it would still be zero.
Taken together, this yields lima→0C(λ, a) ∈ (0, λ). However, it remains surprising

that the clustering coefficient takes the specific value 3λ
8
.
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5 The Small-World Phenomenon

Besides the presence of homophily and clustering another stylized fact is frequently
observed in many real-world networks, which is widely known as the small-world
phenomenon. It captures the finding that even in large networks there typically
exist remarkably short paths between two individuals. The original BRG model
is known to reproduce this characteristic (see e.g. Bollobás, 2001; Chung and Lu,
2002). Thus, in this section we aim to establish the small-world phenomenon
to be preserved within our homophilous random network (HRN) model even in
case of high homophily. For this purpose we will simulate a variety of homophilous
random networks, since this issue seems to be no longer analytically tractable. The
simulations will provide a strong indication that also in cases of high homophily
the small-world phenomenon remains present. Additionally, we will apply two
alternative statistical notions of clustering. It will turn out that their values are
not significantly different from the analytical measure given in Definition 1.
Figure 3 may already provide an intuition regarding the differences between cases
of high and low homophily. In particular, while the total number of links is almost
the same in both simulated 100 agent networks one observes clustering merely in
the first case.

The notion of the small-world phenomenon usually grounds on the average short-
est path length between all pairs of agents belonging to a network and having a
connecting path. With regard to real-world networks the small-world phenomenon
is a rather vague concept, since it is typically based on subjective assessments of
path lengths rather than on verifiable, definite criteria. However, most people will
agree that the values for several real-world networks as for instance compiled by
Watts and Strogatz (1998) and Newman (2003) are surprisingly low. Insofar it
could be said that most of these networks exhibit the small-world phenomenon.
A formal definition of the small-world phenomenon applicable to most random
network models is given by Newman (2003):

Definition 2 (Small-world Phenomenon):

A network is said to show the small-world phenomenon if the average shortest

path length d̄ between pairs of agents having a connecting path scales logarithmically

or slower with network size n while keeping agents’ expected degree constant, that

is if d̄/ ln(n) is non-increasing in n.

As already mentioned it has been established that the original BRG model exhibits
the small-world phenomenon according to Definition 2 (see e.g. Bollobás, 2001;
Chung and Lu, 2002). However, it is not clear whether this still holds for our
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Figure 3: (1) HRN with λ = 0.5, a = 10−8; #links = 484
(2) BRG with linking probability Φ(0.5, 10−8) = 0.0513; #links = 496.

generalization given a considerably high level of homophily, but the results of the
following simulations will give some indication.

Prior to this, let us additionally introduce two statistical notions of clustering,
which are frequently used in the literature and closely related to the one given
in Definition 1. The simulations will offer the possibility to compare these. Here
clustering is associated with an increased number of triangles in the network. More
precisely, both alternative clustering measures are defined based on the ratio of the
number of triangles and the number of connected triples. A triangle is a subset of
three agents all of whom being connected to each other while a connected triple is
a subset of three agents such that at least one of them is linked to the other two.
Formally, this means the following:

Definition 3 (Statistical Clustering):

For a given network with set of agents N = {1, ..., n} the clustering coefficients
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C(1) and C(2) are determined by

C(1) =
3× number of triangles in the network

number of connected triples in the network
and

C(2) =
1

n

∑

i∈N

number of triangles containing agent i

number of connected triples centered on agent i
.

The coefficient C(1) counts the overall number of triangles and relates it to the
overall number of connected triples in the network. The factor of three accounts
for the fact that each triangle contributes to three connected triples and ensures
that C(1) ∈ [0, 1]. The second one, C(2), which goes back to Watts and Strogatz
(1998), first calculates an individual clustering coefficient for each agent and then
averages these. Compared to the first one, C(2) gives more weight to low-degree
agents.6 Additionally, notice that C(2) is only well-defined if there are no isolated
or loose-end agents in the network.

To capture both the heuristic and the formal approach to the small-world phe-
nomenon, we conduct two different simulations. In the first we fix the number of
agents n = 500 and the ex-ante expected degree of any agent to E[ηi] = 15. Fur-
thermore, we select several homophily levels ranging from no homophily, i.e. the
limit case of the BRG model, to very high homophily, represented by a = 10−8.
For each a we then simulate a homophilous random network R = 1000 times and
assess the averaged network statistics. All parameters and network statistics of the
simulation are stated in Table 1.
Fixing the expected degree enables us to compare the results for the different ho-
mophily levels, as this leads to identical values for Φ(λ, a) in all cases. Recall that
Φ captures the expected probability of two agents to be connected, characteristics
being unknown (cf. Proposition 1).

Regarding the results of the simulation, we find that the average path length in-
creases in homophily. This is in line with intuition as agents with distant charac-
teristics are increasingly likely to be distant in the network. However, it increases
by less than one step from no to highest homophily and an average distance of less
than 3.4 between two agents can still be considered relatively small in a network of
500 agents with about 15 links on average. Thus regarding the heuristic approach
it seems reasonable to accept the small-world phenomenon to be present for all
homophily levels.7

6C(2) calculates the mean of the ratios while C(1) rather constitutes the ratio of the means (see
Newman, 2003).

7To calculate average shortest paths one commonly restricts to agents having a connecting path
if the network is not connected. However, such a network realized extremely rarely within
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Parameter / Statistics a = 1 a = 10−2 a = 10−4 a = 10−6 a = 10−8

n 500
R 1000
Exp. Degree E[ηi] 15
Exp. Linking Prob. Φ 0.0301

λ 0.0301 0.0882 0.1553 0.2239 0.2928

Avg. Degree η̄ 14.9990 15.0074 15.0098 14.9899 15.0037
(0.2475) (0.3064) (0.2986) (0.2925) (0.2839)

Avg. Shortest Path d̄ 2.5944 2.6288 2.8086 3.0806 3.3939
(0.0113) (0.0164) (0.0277) (0.0429) (0.0611)

d̄/ ln(n) 0.4175 0.4230 0.4519 0.4957 0.5461
(0.0018) (0.0026) (0.0045) (0.0069) (0.0098)

Clustering Coeff. C 0.0301 0.0411 0.0641 0.0892 0.1147

Clustering Coeff. C(1) 0.0301 0.0411 0.0642 0.0891 0.1147
(0.0013) (0.0016) (0.0023) (0.0029) (0.0035)

Clustering Coeff. C(2) 0.0301 0.0411 0.0642 0.0892 0.1148
(0.0015) (0.0019) (0.0026) (0.0032) (0.0039)

Table 1: Results of Simulation 1 comparing network statistics for different ho-
mophily levels ranging from no homophily (BRG) to extreme homophily;
Standard errors stated in parentheses.

Furthermore, we observe an increasing level of clustering for the simulated ho-
mophilous random networks, what is in line with the findings in Section 4. If
homophily is highest, the probability that two agents are linked given they have
a common neighbor is about four times as high as in the case of the Bernoulli
Random Graphs, where this probability coincides with the unconditional linking
probability Φ(λ, a). Another expectable yet important observation is that there are
no significant differences between the expected clustering coefficient C (cf. Defini-
tion 1) and the values we determined for the statistical coefficients C(1) and C(2)

(cf. Definition 3).8

All in all, Simulation 1 indicates that the homophilous random network model ex-
hibits the small-world phenomenon and clustering at the same time for a ∈ (0, 1).
In the following we will consider the most interesting case of highest homophily
captured by a = 10−8 in more detail.

The second simulation focuses on the formal Definition 2 of the small-world phe-

this simulation, namely only in 0.06% of all cases.
8Notice that isolated and loose-end agents never appeared in the simulation guaranteeing that
C(2) was steadily well-defined.
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nomenon. For this purpose we simulate a collection of R = 100 networks for each
size n = 150, 200, 250, ..., 1000 and compute the respective averages of the relevant
network statistics. To this end we use the parameter of highest homophily that is
considered in Simulation 1. The precise data is stated in Table 2. Notice that the
simulation for each network size is structurally the same as in the first simulation,
merely a smaller number of iterations is chosen due to computational restrictions.
However, as can be seen in Table 1, all standard errors and especially the one of the
ratio d̄/ ln(n) are very low. Hence, 100 iterations should be sufficient to generate a
precise estimate.
Figure 4, where the ratio of the average shortest path length and the logarithm
of the network size d̄/ ln(n) is plotted for the different network sizes n, reveals
that this ratio decreases. We thus deduce that the average path length d̄ increases
slower in n than ln(n) does. Therefore, the homophilous random networks exhibit
the small-world phenomenon according to Definition 2.
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Figure 4: Small World of HRN with n from 150 to 1000 and constant expected
degree 15.
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Parameter / Statistics n = 150 200 250 300 350 400 450 500 550
R 100
a 10−8

Expected Degree 15
Average Degree η̄ 14, 99 15, 02 14, 98 15, 02 14, 97 15, 00 15, 01 15, 03 15, 02
Average Shortest Path d̄ 3, 05 3, 14 3, 19 3, 25 3, 29 3, 33 3, 35 3, 39 3, 42
d̄/ ln(n) 0, 609 0, 593 0, 577 0, 569 0, 562 0, 556 0, 549 0, 545 0, 543

Parameter / Statistics n = 600 650 700 750 800 850 900 950 1000
R 100
a 10−8

Expected Degree 15
Average Degree η̄ 15, 01 15, 00 15, 01 14, 99 14, 98 15, 03 15, 04 14, 97 15, 01
Average Shortest Path d̄ 3, 44 3, 47 3, 50 3, 52 3, 54 3, 55 3, 57 3, 59 3, 61
d̄/ ln(n) 0, 538 0, 536 0, 534 0, 532 0, 529 0, 526 0, 524 0, 524 0, 522

Table 2: Results of Simulation 2 computing average degrees, shortest paths and small world ratios of the HRN model
for a growing network size.
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6 An Example of the Labour Market

So far we gave a theoretical analysis of the suggested homophilous random net-
work model. In this section however, we want to provide one possible economic
application.

In recent years more and more research in the field of labor economics was dedicated
to understanding the mechanisms of different hiring channels. One of these channels
which is commonly used in reality relies on the contacts of current employees.
Starting with the seminal contribution of Montgomery (1991), a lot of researchers
decided to model the contacts between workers as a social network (cf. e.g. Calvó-
Armengol, 2004; Calvó-Armengol and Jackson, 2007; Dawid and Gemkow, 2013).9

As known from the extensive sociological literature (cf. Section 1), within these
social networks one should expect to observe homophily with respect to skills or
competence, performance, education, level of income, and geographical distance.
While there are lots of empirical studies confirming the existence of homophily
in worker’s social contacts and analyzing the implications (e.g. Mayer and Puller,
2008; Rees, 1966), only few work has yet been dedicated to developing theoretical
models capturing this effect.10

In our application we consider a firm that wants to fill an open vacancy. Two
possible hiring channels are available, on the one hand the formal job market and
on the other hand the possibility to hire a contact of its current employee.

Based on the model introduced in Section 2, consider a network of n workers
and a vector of characteristics p capturing the ability of each worker to do the
vacant job. Further, assume that agent 1 is the current employee of the firm
while all other agents 2, ..., n are supposed to be available on the job market.
While we fix p1 as a parameter of the model, meaning that the firm knows the
ability of its current employee, p−1 = (p2, .., pn) is as before a realization of the
(n− 1)–dimensional random variable P−1. Finally, we assume that a homophilous
network randomly forms according to individual linking probabilities (2.1), for
given parameters λ, a ∈ (0, 1).

Knowing the distribution function of the random variable P−1 and the conditional
linking probabilities but not the realization, the firm has to decide on one hiring
channel. The expected characteristic of a contact of agent 1 can be calculated as

9For an extensive survey including both empirical and theoretic literature from sociology and
economics see Ioannides and Loury (2004).

10Exceptions are Horváth (2011), Van der Leij and Buhai (2008) and Zaharieva (2013), all using
binary notions of homophily.
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Figure 5: Expected characteristic of a contact.

follows.11

Proposition 5.

Given some homophily parameter a ∈ (0, 1), the expected characteristic of a neigh-

bor j ∈ {2, ..., n} of agent 1 with given characteristic p1 ∈ [0, 1] is

E
P [Pj | G ∈ G1j ] =

1

2
+

(ap1 − a1−p1)(1
2
− 1

ln(a)
) + 2p1 − 1

2− ap1 − a1−p1
. (6.1)

A plot of function (6.1) is given in Figure 5. However, on investigating the ex-
pected characteristic (6.1), it turns out that it has some intuitive properties for
some special cases which should yield some insight to the appearance of the rather
complicated functional form. We collect these in the following Corollary

11Notice that this probability is meaningful only if the given agent 1 has at least one link. For
large networks however this is guaranteed whenever the respective condition of the threshold
theorem (cf. Proposition 3) is fulfilled.
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Corollary 5.

The functional form (6.1) yields:

• E
P [Pj | G ∈ G1j]

∣
∣
p1=

1
2

= 1
2

∀a ∈ (0, 1),

• lima→0 E
P [Pj | G ∈ G1j] = p1 ∀p1 ∈ [0, 1],

• lima→1 E
P [Pj | G ∈ G1j] =

1
2

∀p1 ∈ [0, 1].

Again, all of these properties can be identified also in Figure 5.

Assuming for simplicity that the expected ability of a worker hired via the formal
job market is some value p̄ ∈ (0, 1) independent of the homophily parameter a and
the ability of the current employee p1, it becomes clear that the firm faces a simple
decision rule when to hire via the social network. Namely, for sufficiently high p1
and low a, respectively, the expected ability of a contact exceeds any ability level
p̄, such that in this case the firm should prefer to hire a randomly chosen contact.

7 Conclusion

In this work we try to set up a novel homophilous random network model in-
corporating heterogeneity of agents. In a two-stage random process, first a one-
dimensional characteristic is assigned to each vertex, throughout the paper denoted
as agents. Second, based on the realized characteristics the links of a random
network form whilst taking into account a continuous notion of homophily that
captures the frequently observed propensity of individuals to connect with similar
others. Due to a continuous formalization of homophily our approach allows for
a broad range of homophily levels ranging from the extreme case of maximal ho-
mophily where only equal agents get linked with positive probability to the case
where there is no homophily at all. The latter case corresponds to the Bernoulli
Random Graph (BRG) model, often referred to as the Erdős-Rényi model. Insofar,
our model can also be regarded as a generalization hereto.
Most importantly, unlike the vast majority of related economic models we indeed
capture homophily as it is defined and used in the sociological literature in terms
of similarity rather than equality.

In Section 3 we reveal some basic properties and network statistics of the ho-
mophilous random network model and establish a threshold theorem. The com-
parison with the BRG model provides additional insight. In Section 4 we focus on
another stylized fact of real-world networks, namely the occurrence of clustering,
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a form of transitivity among connections. Though homophily and clustering are
frequently observed in reality, both phenomena are not captured by the original
BRG model. While we reveal by simulations that the small-world phenomenon is
apparently preserved, we are able to show analytically that in our model homophily
induces clustering. This gives rise to the conjecture that also in reality there might
be a considerable causality between the two. It might be worthwhile for future
research to pursue this question.
Finally, we provide an easily accessible application of our model for labor economics
(Section 6). Assuming homophily with respect to abilities, we consider a network
of workers according to the setting of the introduced homophilous random network
model. We determine the expected ability of a given worker’s random contact to
do a certain job. This yields a simple decision rule for a firm which wants to fill a
vacancy and needs to decide whether to hire through a current employee’s contacts
or the formal job market. It proves to be always optimal to rely on the current
employee’s contacts if this worker’s ability as well as the level of homophily in the
network are sufficiently high.

While our simulation results already yield a strong indication, for future work it
still remains open to show analytically that even in cases of high homophily the
small-world phenomenon is preserved in homophilous random networks.
As a second point it would be a natural yet analytically challenging extension to
check the qualitative robustness of the findings for different distributions of charac-
teristics. For many applications a distribution that puts more weight on intermedi-
ate characteristics would without doubt capture reality more accurately. Also, an
extension of the model to multidimensional characteristics would be valuable, in
particular if one would succeed to combine characteristics of both continuous and
binary nature.
Finally, a calibration of the model to real-world data is yet to be done. Doing
this in a meaningful way is most certainly a challenge, especially as the level of
homophily within a network is not clearly observable. However, one way to deal
with this would be to calibrate the model to the observable degree of clustering,
which we showed to be directly connected to homophily in our model.
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8 Appendix

Proof of Proposition 1. Calculate the expected probability:

E
P
[
P
G (ij ∈ G | P ) | Pi = pi

]
= E

P
[
λa|Pi−Pj | | Pi = pi

]

= λ





∫ 1

0

fPj
(pfj)

︸ ︷︷ ︸

1

a|pi−pj |dpj





= λ

(∫ pi

0

api−pjdpj +

∫ 1

pi

apj−pidpj

)

= λ

(

api
∫ pi

0

a−pjdpj + a−pi

∫ 1

pi

apjdpj

)

= λ

(

api
1− a−pi

ln(a)
+ a−pi

a− api

ln(a)

)

=
λ

ln(a)

(
api + a1−pi − 2

)
. (8.1)

What is more, by integrating (8.1) with respect to pi we get the expected probability
if p is unknown.

E
P
[
P
G [ij ∈ G | P ]

]
= E

P
[
λa|Pi−Pj |

]

= λ

(∫

[0,1]2
fPi,Pj

(pi, pj)
︸ ︷︷ ︸

=fPi
(pi)fPj

(pj)=1

a|pi−pj |d(pi, pj)

)

(8.1)
= λ

(∫ 1

0

(api + a1−pi − 2)

ln(a)
dpi

)

=
λ

ln(a)

[
api − a1−pi − 2pi ln(a)

ln(a)

] ∣
∣
∣
∣

1

0

=
λ

ln(a)2
[a− 1− 2 ln(a)− 1 + a]

=
2λ

ln(a)2
[a− 1− ln(a)] .
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Proof of Corollary 1. Using l’Hôpital’s rule, calculate the limit of ϕ as

lim
a→0

ϕ(λ, a, pi) = lim
a→0

λ(api + a1−pi − 2)

ln(a)

= lim
a→0

λ(pia
pi−1 + (1− pi)a

−pi)

1/a

= lim
a→0

λ(pia
pi + (1− pi)a

1−pi) = 0,

and likewise

lim
a→1

ϕ(λ, a, pi) = lim
a→1

λ(api + a1−pi − 2)

ln(a)

= lim
a→1

λ(pia
pi−1 + (1− pi)a

−pi)

1/a

= lim
a→1

λ(pia
pi + (1− pi)a

1−pi) = λ.

For the case of Φ, we get by using l’Hôpital’s rule twice

lim
a→0

Φ(λ, a) = lim
a→0

2λ
a− 1− ln(a)

ln(a)2
= lim

a→0
2λ

1− 1/a

2 ln(a)/a
= lim

a→0
λ
a− 1

ln(a)
= 0,

as well as

lim
a→1

Φ(λ, a) = lim
a→1

2λ
a− 1− ln(a)

ln(a)2
= lim

a→1
2λ

a− 1

2 ln(a)
= lim

a→1
λ

1

1/a
= λ.
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Proof of Proposition 2. Calculate

E
P
[
P
G (ηi(G) = k | P ) | Pi = pi

]

= E
P




∑

K⊆N\{i}:|K|=k




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1− q(Pi, Pl))



 | Pi = pi





=
∑

K⊆N\{i}:|K|=k



E
P




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1− q(Pi, Pl)) | Pi = pi









=
∑

K⊆N\{i}:|K|=k





∫

[0,1]n−1



fP−i
(p−i)

︸ ︷︷ ︸

=1

·
∏

j∈K

(q(pi, pj)) ·
∏

l∈N\K\{i}

(1− q(pi, pl))



 dp−i





=
∑

K⊆N\{i}:|K|=k




∏

j∈K

(∫ 1

0

(q(pi, pj)) dpj

)

·
∏

l∈N\K\{i}

(∫ 1

0

(1− q(pi, pl)) dpl

)




(3.1)
=

∑

K⊆N\{i}:|K|=k

((
λ

ln(a)

(
api + a1−pi − 2

)
)k

·
(

1− λ

ln(a)

(
api + a1−pi − 2

)
)n−k−1

)

(3.1)
=

(
n− 1

k

)

· (ϕ(λ, a, pi))k · (1− ϕ(λ, a, pi))
n−k−1 .

Proof of Proposition 3. The probability that an agent with given characteristic pi
is isolated is

E
P
[
P
G (ηi(G) = 0 | P ) | Pi = pi

] (3.7)
= (1− ϕ(λ(n), a(n), pi))

n−1.

If we assume that there will be at least some homophily as the size of the network
becomes large, that is formally

∃ ǫ̃ > 0, n̄ ∈ N : a(n) ≤ 1− ǫ̃ ∀ n ≥ n̄

then we have that

∃ ǫ > 0 : 2− a(n)p̂ − a(n)1−p̂ ∈ [ǫ, 2] ∀ n ≥ n̄.
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Now it holds that if limn→∞[−λ(n)/(ln(a(n))t(n))] = ∞ then

lim
n→∞

(1− ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

(

1− ϕ(λ(n), a(n), pi)/t(n)

n− 1

)n−1

(3.1)
= lim

n→∞

(

1−
λ(n)(n−1)
ln(a(n))

(a(n)pi + a(n)1−pi − 2)

n− 1

)n−1

= lim
n→∞

exp









−λ(n)(n− 1)

ln(a(n))
︸ ︷︷ ︸

→∞

(a(n)pi + a(n)1−pi − 2)
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∈[−2,−ǫ]









=0,

while if limn→∞[−λ(n)/(ln(a(n))t(n))] = 0 we have

lim
n→∞

(1− ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

exp









−λ(n)(n− 1)

ln(a(n))
︸ ︷︷ ︸

→0

(a(n)pi + a(n)1−pi − 2)
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∈[−2,−ǫ]









=1.
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Proof of Proposition 4. We calculate

C(λ, a)

= E
P
[
λa|Pj−Pk|

∣
∣ G ∈ Gij ∩Gik

]

= λ

∫

[0,1]n
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∫
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a|pj−pk|
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dp

=
λ
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λ
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∫
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︷ ︸︸ ︷

fP (p) dp

=
λ

∫
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∫

[0,1]n
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=
λ

∫
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PG(G ∈ Gij ∩Gik | P = x)dx

∫

[0,1]n
a|pj−pk|P

G(G ∈ Gij ∩Gik | P = p)dp

=
λ

∫

[0,1]n
λa|xi−xj |λa|xi−xk|dx

∫

[0,1]n
a|pj−pk|λa|pi−pj |λa|pi−pk|dp

= λ

∫

[0,1]n
a|pj−pk|+|pi−pj |+|pi−pk|dp

∫

[0,1]n
a|xi−xj |+|xi−xk|dx

= λ

∫

[0,1]3
a|pj−pk|+|pi−pj |+|pi−pk|d(pi, pj , pk)

∫

[0,1]3
a|xi−xj |+|xi−xk|d(xi, xj , xk)

. (8.2)

Let us solve the integral in the denominator first. For the sake of readability denote
x = (xi, xj , xk).
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∫

[0,1]3
a|xi−xj |+|xi−xk|dx

=

∫

x∈[0,1]3:
xj ,xk≤xi
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∫
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2 ln(a)− 4a+ a2 + 3

2(ln(a))3

+
2 ln(a)− 4a+ 2a ln(a) + 4

2(ln(a))3
+

2 ln(a)− 4a+ 2a ln(a) + 4

2(ln(a))3

=
1

2(ln(a))3
[
8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

]
.

Now solve the integral in the nominator of (8.2), substituting x for p in order to
use the same notation as above.

∫

[0,1]3
a|xj−xk|+|xi−xj |+|xi−xk|dx

=

∫

x∈[0,1]3:
xi≤xj≤xk

a2xk−2xidx+

∫

x∈[0,1]3:
xi≤xk≤xj

a2xj−2xidx

+

∫

x∈[0,1]3:
xj≤xi≤xk

a2xk−2xjdx+

∫

x∈[0,1]3:
xj≤xk≤xi

a2xi−2xjdx

+

∫

x∈[0,1]3:
xk≤xi≤xj

a2xj−2xkdx+

∫

x∈[0,1]3:
xk≤xj≤xi

a2xi−2xkdx

=6
ln(a)− a2 + a2 ln(a) + 1

4(ln(a))3

=
1

2(ln(a))3
[
3 ln(a)− 3a2 + 3a2 ln(a) + 3

]
.

All in all, we get

C(λ, a) = λ
3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14
.
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By using this, we can now start with the actual proof. It is

C(λ, a)− Φ(λ, a)

=λ

(

3
(
ln(a)a2 + ln(a)− a2 + 1

)

2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) +
2
(
ln(a)− a+ 1

)

ln(a)2

)

=λ3 ln(a)3(a2+1)+ln(a)2(−3a2+8a+19)+ln(a)(−4a2−40a+44)+(−4a3+36a2−60a+28)

2 ln(a)2
(
2 ln(a)a+4 ln(a)+a2−8a+7

) (8.3)

In the following, we will use that for a ∈ (0, 1)

ln(a) = −
∞∑

m=0

(1− a)m+1

m+ 1

and therefore ln(a) < −∑M
m=0

(1−a)m+1

m+1
< 0 for all M ∈ N. The first and easier

part is to show that the denominator of (8.3) is negative for all a ∈ (0, 1):

2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

=2(a+ 2) ln(a) + a2 − 8a+ 7

<− 2(a+ 2)
(
1− a+ 1

2
(1− a)2 + 1

3
(1− a)3

)
+ a2 − 8a+ 7

=1
3
(a+ 2)

(
2a3 − 9a2 + 18a− 11

)
+ a2 − 8a+ 7

=1
3

(
2a4 − 5a3 + 3a2 + a− 1

)

=− 1
3
(1− a)3(2a+ 1)

<0

Furthermore, we define

g(a) := 3 ln(a)3(a2+1)+ln(a)2(−3a2+8a+19)+ln(a)(−4a2−40a+44)+(−4a3+36a2−60a+28).

Then λg(a) is the nominator of (8.3). We calculate

dg

da
(a) =

1

a

[

6 ln(a)3a2 + ln(a)2(3a2 + 8a+ 9) + 2 ln(a)(−7a2 − 12a+ 19) + 4(−3a3 + 17a2 − 25a+ 11)
]

,

d2g

da2
(a) =

1

a2

[

6 ln(a)3a2 + 3 ln(a)2(7a2 − 3) + 4 ln(a)(−2a2 + 4a− 5) + 6(−4a3 + 9a2 − 4a− 1)
]

,

d3g

da3
(a) =

1

a3

[

18 ln(a)2(a2 + 1) + 2 ln(a)(21a2 − 8a+ 11) + 8(−3a3 − a2 + 5a− 1)
]

,

d4g

da4
(a) =

1

a4

[

18 ln(a)2(−a2 − 3) + 2 ln(a)(−3a2 + 16a− 15) + 2(25a2 − 48a+ 23)
]

,

d5g

da5
(a) =

1

a5

[

36 ln(a)2(a2 + 6) + 12 ln(a)(−2a2 − 8a+ 1) + 2(−53a2 + 160a− 107)
]

,

d6g

da6
(a) =

1

a6

[

108 ln(a)2(−a2 − 10) + 12 ln(a)(12a2 + 32a+ 31) + 2(147a2 − 688a+ 541)
]

.
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Notice that

g(1) =
dg

da
(1) =

d2g

da2
(1) =

d3g

da3
(1) =

d4g

da4
(1) =

d5g

da5
(1) = 0

and moreover

d6g

da6
(a) =

1

a6

[

108 ln(a)2 (−a2 − 10)
︸ ︷︷ ︸

<0

+12 ln(a) (12a2 + 32a+ 31)
︸ ︷︷ ︸

>0

+2(147a2 − 688a+ 541)
]

<
1

a6

[

108(1− a)2(−a2 − 10)− 12(1− a)(12a2 + 32a+ 31) + 2(147a2 − 688a+ 541)
]

=
2

a6

[

− 54a4 + 180a3 − 327a2 + 386a− 185
]

=
2

a6
(1− a)

[

54(a− 7
9
)3 + 103(a− 7

9
)− 2146

27

]

<
2

a6
(1− a)

[

542
9

3
+ 1032

9
− 2146

27

]

= −112

a6
(1− a)

< 0.

Combining this it follows for all a ∈ (0, 1)

d5g

da5
(a) > 0 ⇒ d4g

da4
(a) < 0 ⇒ d3g

da3
(a) > 0 ⇒ d2g

da2
(a) < 0 ⇒ dg

da
(a) > 0 ⇒ g(a) < 0.

Taken together we have indeed that

C(λ, a)− Φ(λ, a) = λ
g(a)

2 ln(a)2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) > 0.
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Proof of Corollary 4. By applying l’Hôpital’s rule three times we calculate

lim
a→0

C(λ, a) = λ lim
a→0

3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

= λ lim
a→0

3/a− 6a+ 6a ln(a) + 3a

8/a− 16 + 4a+ 4 ln(a) + 4

=
3λ

4
lim
a→0

1− a2 + 2a2 ln(a)

2− 3a+ a2 + a ln(a)

=
3λ

4

lima→0[1− a2 + 2a2 ln(a)]

lima→0[2− 3a+ a2 + a ln(a)]

=
3λ

4

lima→0[1]− lima→0[a
2] + lima→0[2a

2 ln(a)]

lima→0[2]− lima→0[3a] + lima→0[a2] + lima→0[a ln(a)]

=
3λ

4

1− 0 + limx→∞[2 ln(1/x)/x2]

2− 0 + 0 + limx→∞[ln(1/x)/x]

=
3λ

4

1 + limx→∞[−2x(1/x2)/2x]

2 + limx→∞[−x(1/x2)/1]

=
3λ

4

1 + limx→∞[−1/x2]

2 + limx→∞[−1/x]
=

3λ

8
.

The stated result follows immediately, since we established in Corollary 1 that
lima→0 Φ(λ, a) = 0.

On the other side, by again using l’Hôpital’s rule three times we get

lim
a→1

C(λ, a) = λ lim
a→1

3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

= λ lim
a→1

3/a− 6a+ 6a ln(a) + 3a

8/a− 16 + 4a+ 4 ln(a) + 4

= λ lim
a→1

3− 3a2 + 6a2 ln(a)

8− 12a+ 4a2 + 4a ln(a)

= λ lim
a→1

−6a+ 12a ln(a) + 6a

−12 + 8a+ 4 ln(a) + 4

= λ lim
a→1

12 ln(a) + 12

8 + 4/a

= λ.
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According to Corollary 1 it is as well lima→1Φ(λ, a) = λ which concludes the

proof.

Proof of Proposition 5. We calculate

E
P [Pj | G ∈ G1j] =

∫ 1

0

pjfPj |G(pj,G1j)dpj

=

∫ 1

0

pjfPj
(pj | G ∈ G1j)dpj

=

∫ 1

0

pj
fPj ,G(pj,G1j)

fG(G1j)
dpj

=

∫ 1

0

pj
fG(G1j | Pj = pj)

1
︷ ︸︸ ︷

fPj
(pj)

fG(G1j)
dpj

=

∫ 1

0

pj
fG(G1j | Pj = pj)

∫ 1

0
fPj

(x)
︸ ︷︷ ︸

1

fG(G1j | Pj = x)
︸ ︷︷ ︸

P(G∈G1j | Pj=x)

dx
dpj

=

∫ 1

0

pj

λa|p1−pj |

︷ ︸︸ ︷

fG(G1j | Pj = pj)
∫ 1

0
λa|p1−x|dx

︸ ︷︷ ︸
λ

ln(a)
(ap1+a1−p1−2)

dpj

=
ln(a)

ap1 + a1−p1 − 2

∫ 1

0

pja
|p1−pj |dpj.

The integral can be calculated as follows:

∫ 1

0

pja
|p1−pj |dpj =

∫ p1

0

pja
(p1−pj)dpj +

∫ 1

p1

pja
(pj−p1)dpj

=
ap1 − p1 ln(a)− 1

ln(a)2
+

a1−p1(ln(a)− 1)− p1 ln(a) + 1

ln(a)2
.

It follows that

E
P (Pj | G ∈ G1j) =

ap1 + a1−p1(ln(a)− 1)− 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)
(8.4)

=
1

2
+

(ap1 − a1−p1)(1
2
− 1

ln(a)
) + 2p1 − 1

2− ap1 − a1−p1
. (8.5)
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Proof of Corollary 5. Consider the functional form (6.1). We calculate the prop-
erties in question, where the first and second one turn out to be straightforward.
For a ∈ (0, 1) it is

E
P [Pj | G ∈ G1j ]

∣
∣
p1=

1
2

=
1

2
+

(
√
a−√

a)(1
2
− 1

ln(a)
) + 1− 1

2−√
a−√

a
=

1

2
.

Furthermore, we get for p1 ∈ (0, 1)

lim
a→0

E
P [Pj | G ∈ G1j ] =

1

2
+

(0− 0)(1
2
+ 0) + 2p1 − 1

2− 0− 0
= p1

and for the marginals

lim
a→0

E
P [Pj | G ∈ G1j ]

∣
∣
p1=0

=
1

2
+

(1− 0)(1
2
+ 0) + 0− 1

2− 1− 0
= 0,

lim
a→0

E
P [Pj | G ∈ G1j ]

∣
∣
p1=1

=
1

2
+

(0− 1)(1
2
+ 0) + 2− 1

2− 0− 1
= 1.

And finally, by using l’Hôpital’s rule twice, we get for p1 ∈ [0, 1]

lim
a→1

E
P [Pj | G ∈ G1j ]

(8.4)
= lim

a→1

ap1 + a1−p1(ln(a)− 1)− 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)

= lim
a→1

p1a
p1−1 + (1− p1)a

−p1(ln(a)− 1) + a−p1 − 2p1
a

1
a
(ap1 + a1−p1 − 2) + ln(a)(p1ap1−1 + (1− p1)a−p1)

= lim
a→1

p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1(ln(a)− 1) + (1− p1)a
−p1−1 − p1a

−p1−1 + 2p1
a2

− 1
a2
(ap1 + a1−p1 − 2) + 2

a
(p1ap1−1 + (1− p1)a−p1) + ln(a)(p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1)

=
p1(p1 − 1) + p1(p1 − 1)(0− 1) + (1− p1)− p1 + 2p1

−(1 + 1− 2) + 2(p1 + (1− p1)) + 0

=
1

2
.
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