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1 General introduction

1.1 Beliefs in the classical Savage framework

Beliefs over uncertain future consequences are important determinants of individ-

ual behavior. However, in economic theory the belief formation process is most

of time excluded from the analysis and models since uncertainty is described and

implemented by assuming variants of the prominent Savage (1954) and Bayesian ap-

proach. This underlying idea is to model uncertainty by a grand state space that is

sufficiently rich to describe and resolve all possible sources of uncertainties. It means

that all information, knowledge and past experiences are encoded and reflected in

the definition of the states. In this way the definition and determination of such an

all encompassing state space requires the (immense) cognitive ability to implicitly

come up with some ”perfect” belief and theories about structures and relationships

in the future. However, in many situations states are not naturally given, readily

available or easy to imagine and generate. Basically, often environments do not offer

sufficient (or too complex) information to suggest a ”correct” definition of a grand

state space.

Another cornerstone of the state based approach is the representation of a belief

as an unique probability over the grand state space that is endogenously deduced

from observable behavior of the agents. Such a purely subjective belief does not

explicitly process and incorporate (past) information into a belief formation in an

objective way. More importantly, the approach inherently lacks an explicit descrip-

tion of the formation of the belief and thus does not help an agent to form the

belief that eventually would lead to the behavior. Gilboa et al. (2012) discuss this

issue extensively and nicely summarize it (on p.8) ”... main difficulty with assigning

probability to the Grand State Space is that there is no information on which one

can base the choice of prior beliefs. Any information that one may obtain, and that

may help in the choice of a prior, should be incorporated into the description of the

Grand State Space. This means that the prior on this state has to specify beliefs one

had before obtaining the information in question. Thus, the information may help

one choose posterior beliefs (presumably according to Bayes’s rule), but not prior

6



1.2 Belief formation in a case based framework of information representation

beliefs.” Consequently, employing the state based approach in modeling uncertainty

induces by definition an impossibility of an explicit belief formation. If the avail-

able information is sufficient to define an all encompassing state space, structurally

a state space precludes a belief formation process that takes into account (no ”re-

maining”) information directly. Thus, in order to allow for an explicit (objective)

belief formation process that enables agents to directly incorporate information into

a belief formation an alternative representation or description of the available infor-

mation and uncertainty is necessary. This applies also to environments that are not

appropriate to translate and condense its information into a ”perfect ” state space

(and thus prevents per se a deduction of a subjective belief a la Savage). Usually,

information can be interpreted as a list or collection of single pieces of past observa-

tions or cases, i.e. so called databases. In the following, we also have in mind that

a database might represent an agent’s memory. In the following we will adopt this

”database or case based”-representation of information and replace the state space

as an information aggregation. This appears especially appropriate for situations in

which the information is not all encompassing as needed for the correct description

of a grand state space. The main advantage of the database representation of in-

formation is that it enables an explicit belief formation that relies on the contained

information.

1.2 Belief formation in a case based framework of

information representation

In contrast to Savage’s state based approach a belief will and cannot be derived

purely subjectively anymore. A belief based on a database needs to explicitly pro-

cess and incorporate factual knowledge, properties and theoretical considerations

provided by the present database. This task appears to be very close to the goal

of statistical inference. However, statistical inference mainly deals with asymptotic

considerations (i.e. sufficiently rich databases), but the focus of our analysis lies

on environments that are mainly characterized by databases that contain insuffi-

ciently rich information (i.e. small or medium sized databases). In particular, we

are concerned with a belief formation process and its behavioral foundation (axiom-

atization) (similar as Billot et al. (Econometrica, 2005)). In contrast to statisti-

cal experiments that usually deal with identical observations which are considered

equally relevant, small or medium sized databases contain limited and heterogenous

information that might be differently relevant. Thus, agents might want to take into

account not only (a few) identical but also partially relevant observations for their

7



1 General introduction

belief formation. In this sense - differently to statistical experiments - relevance or

similarity measures become important, when data sets contain limited heterogenous

information. The underlying assumption of this idea is the similarity hypothesis,

stating that similar situations/actions induce similar outcomes, e.g. in the spirit of

Hume (1748): ”Reasoning rests on the principle of analogy”.

Case-based Decision Theory (Gilboa and Schmeidler (1995, 2001)) deals with such

a framework in decision theoretic contexts. Billot et al. (2005) can be interpreted

as an adoption of it to belief formation1. Their axiomatized belief describes a gen-

eralized (subjective) frequentist in which agents assign different similarity weights

to information with different degree of relevance. For a new problem, described

by a vector of properties x, and given a database or memory D of past observa-

tions/cases c = (x′, r′), their belief P over possible outcomes r is represented as a

similarity weighted average of estimates that are induced by the observed cases, i.e.

”BGSS- belief”: P (x,D) =

∑
c∈D s(x, c)fD(c)P c∑
c∈D s(x, c)fD(c)

, (1.1)

where s(x, c) measure the degree of similarity of the problem under consideration x

with the past case c and P c is the estimate or prediction over outcomes an agent

derives from observing case c.

1.3 Content of the thesis

The thesis mainly consists of the Chapters 2-4, where each chapter is based on a self

contained article. Each chapter starts with a detailed introduction and motivation

of the particular issue and its relevance for the related existing literature. The three

chapters deal with axiomatizations of different belief formation process in the vein

of BGSS, i.e. (1.1). Their axiomatic belief formation can be seen as a starting point

for this thesis.

Chapter 22 deals with an issue that arises when dealing with small databases that

consist of limited and heterogenous content. As in controlled statistical experiments,

the number of observations may serve as a proxy for its informativeness, precision

or accuracy. Thus, small databases with few or insufficiently many observation of

cases might appear to be relatively imprecise or unreliable and evoke some concerns

about precision. Additional observations of the cases might increase its precision

and reliability.

1Related also to Gilboa and Schmeidler (2003), Gilboa (2009) and Gilboa et al. (2011).
2Based on Bleile (2014a) ”Cautious Belief Formation”, Working Paper No. 507, Center of Math-

ematical Economics, Bielefeld.
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1.3 Content of the thesis

However, not only the precision per se is important for prediction, but also the

related perception and sensation of it in form of confidence and cautiousness (or

anxiety) in evaluating or predicting based on differently precise information. Ells-

berg (1961) (p.657) summarizes the problem as follows: ”What is at issue might

be called the ambiguity [or imprecision] of this information, a quality depending on

the amount, type, reliability, and ”unanimity” of information, and giving rise to

ones degree of ”confidence” in an estimate of relative likelihoods.” In fact increasing

the number of observations is likely to influence both the forecast made by agent

and his confidence in this forecast, i.e. confidence that the observed frequencies

reflect the actual data-generating process. The more additional confirming evidence

is observed, the less cautious (anxious) and the more confident are the induced esti-

mates. This intuition is in line with approaches in controlled statistical experiments,

in which the set of possible priors shrinks as additional data confirm the evaluation,

as well as with the usual Bayesian updating method, in which additional information

is used to exclude states that have not occurred.

Chapter 2 tackles exactly the issue that additional confirming observations in-

creases precision and reliability of the information, which leads to more confident

and less cautious beliefs. The axiomatized cautious belief formation capture the im-

pact of precision and related cautiousness on the induced belief. The precision and

cautiousness concerns are in particular relevant for small databases with differently

precise pieces of information, for which the belief formation of BGSS is not suitable,

since their axiomatization incorporates some form of irrelevance of growing precision

or insensitivity to additional information. Our axiomatization leads to the following

representation

”Cautious belief”: PT (x,D) =

∑
c∈C s(x, c)fD(c)P c

T ∗D∑
c∈C s(x, c)fD(c)

,

where T ∗D := maxc∈C fD(c)T and the estimates P c
T ∗D

reflect the impact of precision

and related feelings of cautiousness and confidence in estimating based on differently

precise pieces of information c in the database, i.e. the estimate based on observing

a case T or L times should differ P c
T 6= P c

L.

Chapter 33 covers a belief formation process that does not rely on all potentially

available information, but relies only a somehow filtered subset of information. Ev-

idence and insight from psychology, marketing and recent decision theoretic devel-

opments show that individuals want to or are constraint to pay attention to (or

3Based on Bleile (2014b) ”Limited Attention in Case Based Belief Formation”, Working Paper,
Center of Mathematical Economics, Bielefeld.
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1 General introduction

recall) only parts of the in principle available information. Unintentional filtering

induced by unawareness, cognitive or psychological limitations (limited attention

span, cognitive overload, etc.) are plausible sources, but also intentional rough

screening heuristic for reasons of cost/effort efficiency are identified as sources in

the literature. We incorporate such a pre-stage of filtering information into the ax-

iomatization of a belief formation and allow for a deviation of the ”full attention”

hypothesis in BGSS and Chapter 2. This two stage approach enables to cover more

realistic and cognitively less demanding belief formation processes, which might, for

instance, be of interest for bounded rational agents or if the databases are inter-

preted as memory and the filtering as a retrieving process. An intuitive special case

of the axiomatized belief formation is the following similarity satisficing principle

(regarding a threshold level of similarity)

”Similarity Satisficing belief”: P (x,D,Γ) =

∑
c∈D s(x, c)1{s(x,c)≥sD}P

c∑
c∈D s(x, c)1{s(x,c)≥sD}

,

where sD denotes some appropriate database D specific threshold level and Γ repre-

sents the filtering process that selects ((un)intentional) the cases (from the database

or memory D, i.e. Γ(D) ⊆ D), that meet the filtering criterion, i.e. surpasses the

similarity threshold sD. Such an agent considers only cases in her memory, which

are sufficiently similar and hence relevant for the problem at hand. If one assumes

that those cases are retrieved or recalled first which are most similar to the ac-

tual problem, then the above principle would just take into account the cases that

comes to her mind first and ignore the experiences that were not retrieved quickly

enough. In this vein, the retrieval process stops after some time of brainstorming

about relevant past cases.

Chapter 44 deals with another characteristic of individual information process-

ing. There is a rich literature in cognitive science that shows that human minds

structure, process and store information by grouping (or summarizing) them into

subgroups or categories, rather than by treating the information piece by piece.

Depending on how the categorized information is activated and employed the liter-

ature distinguishes between two main procedures. One approach examines only the

single prices of information within the most appropriate (target) categories for a spe-

cific problem, whereas the information in the other categories are ignored. Another

benchmark approach considers only the summarized representative (prototypical)

information given by each category and ignores the detailed information in each

4Based on Bleile (2014c) ”Belief Formation based on Categorization”, Working Paper, Center of
Mathematical Economics, Bielefeld.
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1.3 Content of the thesis

category. Both procedures of categorizing information reduce the cognitive effort

and required ability of processing information.

In this chapter we axiomatize belief formation processes based on information

that is categorized according to the two mentioned procedures. For a category

based belief formation we obtain the following representation, which is based only

on the cases of the database that are also in (”target”) categories that are activated

by a specific problem x (i.e. C̃(x,D)).

”Category based belief”: P (x,D) =

∑
c∈C̃(x,D) s(x, xc)P

c∑
c∈C̃(x,D) s(x, xc)

,

where s measures the degree of similarity.

A prototype based belief only relies on the prototypical estimates P C̃Dl on R for each

of the categories {(C̃D
l )l} that partition database D.

”Prototype based belief”: P (x,D) =

∑
l≤L s̃(x, C̃

D
l )P C̃Dl∑

l≤L s̃(x, C̃
D
l

where s̃ measures the relevance or similarity of the particular category for the actual

problem. Basically, belief formations based on categorized and thus somehow orga-

nized information might reduce the cognitive effort and simplify the belief formation

process.

Thus far we have just introduced the main content of the thesis and briefly men-

tioned the structure of the framework. However, even though the chapters are closely

related, they still differ in the particular matter and axiomatizations, such that we

postpone the detailed discussion and placement into the relevant literature to the

particular chapters.
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2 Cautious Belief Formation

Abstract

We provide an axiomatic approach to a belief formation process in an informational

environment characterized by limited, heterogenous and differently precise informa-

tion. For a list of previously observed cases an agent needs to express her belief by

assigning probabilities to possible outcomes. Different numbers of observations of a

particular case give rise to varying precision levels associated to the pieces of infor-

mation. Different precise information affects the cautiousness and confidence with

which agents form estimations. We modify the Concatenation Axiom introduced in

Billot, Gilboa, Samet and Schmeidler (BGSS) (Econometrica, 2005) in a way to cap-

ture the impact of precision and its related perceptional effects, while still keeping

its normative appealing spirit. We obtain a representation of a belief as a weighted

sum of estimates induced by past cases. The estimates are affected by cautiousness

and confidence considerations depending on the precision of the underlying observed

information, which generalizes BGSS. The weights are determined by frequencies of

the observed cases and their similarities with the problem under consideration.

2.1 Introduction and motivation

Beliefs of agents are important ingredients of many economic models dealing with

uncertainties. Belief formation is studied recently in environments with limited and

heterogenous information that are not suitable to be modeled in the widely used

and accepted state space framework of Savage (1954) and Bayes. Lacking a state

space representation of uncertainties an agent needs to form her belief explicitly by

directly incorporating available information.

We axiomatize a belief formation process based on limited, differently relevant and

precise information. Our main axiom modifies the Concatenation axiom in Billot et

al. (2005)(BGSS), which precludes the impact of agents’ perceptions and reactions

to differently precise information. Their axiom says that for any two information

sets the belief induced by their combination can be expressed as a weighted average

of the beliefs induced by each information set separately. The averaging of beliefs

12



2.1 Introduction and motivation

induced by any arbitrary information sets requires a cognitive challenging tradeoff of

identical, but differently precise information contained in the particular information

sets. Our axiom says that agents who care about precision of information can only

average beliefs (in a normatively reasonable way) induced by specific - almost disjoint

- information sets. Thereby, we focus not only on the precision itself, but mainly on

its perception and impact in form of cautiousness and confidence feelings.

The most prominent and often used models to describe and analyze uncertainty in

economic theory are versions of the approach of Savage and Bayes. The fundamental

idea in this approach is to model uncertainty by a grand state space, which is

sufficiently rich to describe and resolve all possible sources of uncertainties. In this

way a state space implicitly incorporates some (perfect) belief and theories about

structures and relationships in the future and thereby requires a large (often un-

achievable) task of imagination and theorization. In addition, insufficient (or too

complex) information may preclude the derivation or definition of a grand state

space. Another principle of the state based approach is the representation of a

belief as an unique probability over the grand state space. In this framework a

purely subjective probability distribution over states can be endogenously deduced

from preferences, which inherently lacks an explicit description of the formation of

the belief that generated the preference.1

There is basically only one way to deal with these two difficulties. Sticking to the

grand state space principle, but abandoning the subjective prior approach, would

precludes an direct (objective) assignment of probabilities, since the state space

already encodes all available information. More promising is to give up the repre-

sentation of uncertainties by a state space, when an agent is (cognitive) incapable to

translate information into states or when the information is not all encompassing as

needed for the ”correct” description of a grand state space. Usually in real life, our

information basis can be represented by a list or collection of pieces of information

(databases). Thus, we will replace the state space as an information aggregation by

such a database representation of (actually observed) information (data-points or

recalled cases).

However, a belief based on a database needs to explicitly incorporate factual

objective knowledge, characteristics and theoretical considerations provided by the

present database. In general, belief formation based on a database is very close to

the goal of statistical inference. In contrast to mainly asymptotic considerations in

statistical inference, our focus (as in BGSS and Eichberger and Guerdjikova (2010)

(EG)) lies on behavioral foundations (axiomatizations) of a belief formation and in

1See Gilboa et al. (2012) for extensive discussion of these issues.
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2 Cautious Belief Formation

particular in the analysis of small databases containing differently precise informa-

tion.

Usually statistical experiments are dealing with identical observations that are

equally relevant. However, since small or medium sized databases contain limited

and heterogenous information agents might want to take into account not only (a

few) identical but also partially relevant observations for their belief formation. In

this sense - differently to statistical experiments - relevance or similarity measures

become important for data sets containing limited heterogenous information.

Case-based Decision Theory (Gilboa and Schmeidler (1995, 2001)) deals with

such a framework in decision theoretic contexts. BGSS can be interpreted as an

adoption of it to belief formation.2 Their axiomatized belief describes a generalized

(subjective) frequentist, in which agents assign different similarity weights to infor-

mation with different degree of relevance. For a new problem and given a database

of past observations,their belief over possible outcomes is represented as a similarity

weighted average of estimates that are induced by the observed cases.

Their main Concatenation Axiom deals with relationships between databases and

their induced belief. It requires that for a new problem x the belief P (probability

vector over outcomes for x) induced by the combination (concatenation) of any two

databases (D◦E), is a weighted average of the belief induced by each single database

(D and resp. E) separately, i.e. for all databases D and E, there exists a λ ∈ (0, 1)

such that

P (x,D ◦ E) = λP (x,D) + (1− λ)P (x,E)

Our paper deals mainly with the modification of this Concatenation Axiom in order

to allow for impacts of precision of information and its induced cautiousness and con-

fidence concerns. Additionally, our precision dependent belief formation is suitable

for small databases, which is only partially possible and reasonable for BGSS.

The Concatenation Axiom shows some irrelevance of growing precision. The belief

induced by a database coincides with the belief induced by arbitrary many repli-

cations of the same database, i.e. P (x,D) = P (x,DT ) for all T ∈ N. Growing

precision might not be a concern for sufficiently rich and large databases such that

observing additional identical information will not affect her predictions. However,

for small database, specifically consisting only of one piece of information c, it is un-

reasonable that additional observations do not induce some learning and refinement

of an already ”perfect” estimation, i.e. P (x, cT ) = P (x, c) for all T.

In this way the Concatenation Axiom implies that one observation carries already

all that can be inferred by arbitrary many confirming observations. Such an in-

2Related also to Gilboa and Schmeidler (2003), Gilboa (2009) and Gilboa et al. (2011).
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2.1 Introduction and motivation

stantaneous learning in a highly objective (and perfect) way of forecasting appears

to be questionable and un-intuitive. For instance consider a situation, in which an

agent throws a dice once and the figure six results. A guess of the outcome of the

next throw of the dice would differ from the estimation an agent would come up

after observing one million times a six in one million throws of that dice. However,

roughly speaking, the Concatenation Axiom requires that an agent would infer right

after the first dice throw that all sides of the dice show the figure six without any

doubt. A procedure to base the estimation on just one observation appears to be

in-cautious, hazardous (error-prone) and unrealistic and cannot be considered as an

appealing normative advice. In fact, as in controlled statistical experiments, ad-

ditional (identical) confirming observations may serve as a proxy for its increased

informativeness, precision or accuracy, which should be reflected in a dynamic learn-

ing and refinement of the estimations.

In addition, increasing precision might affect estimations through its perception in

form of altered cautiousness (to wrongly eliminate some outcomes) with which the

forecast is made and her changed confidence in this forecast.3 If information becomes

more precise, an agent’s decreased cautiousness and increased confidence might allow

to specify their prediction more narrowly. After receiving substantial information of

disconfirming evidence that makes some outcomes negligible, agents (even) might

want to eliminate some (not observed) outcomes. More general, differently precise

information should lead to different induced beliefs, i.e. P (x, cT ) 6= P (x, cL) for

different L, T ∈ N, which contradicts the Concatenation Axiom and requires a

modification in order to incorporate precision and cautiousness issues.

In general, the Concatenation Axiom is stated for any kind of databases, but (with

regard to potentially induced different precise estimations) it is most appealing and

appropriate as a normative advice for disjoint databases. For disjoint databases,

the belief induced by the concatenated database can be quite intuitively interpreted

as an average of the beliefs induced by the single databases separately, since no

pieces of information appear in different precision in different databases and cause

conflicting considerations. The average is determined solely by a weighting of the

relevances of the concatenating databases.

However, we will explain that for unrestricted non-disjoint databases - with com-

mon, but differently precise pieces of information - the normative appealing spirit of

averaging beliefs conflicts with a simultaneous care about precision and cautiousness

3Ellsberg (1961) (p.657): ”What is at issue might be called the ambiguity of this information, a
quality depending on the amount, type, reliability, and ”unanimity” of information, and giving
rise to ones degree of ”confidence” in an estimate of relative likelihoods.”
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2 Cautious Belief Formation

in the belief formation.4

A first obvious modification deals with the issue that a precision related Concate-

nation Axiom cannot be formulated for pure (non-disjoint) concatenating database,

but would require additional information, such that averaging occurs according to

P (D ◦E) = λP (DL) + (1− λ)P (ET ) for some appropriate L, T ∈ N (which we will

specify later). For example consider the concatenation of the easiest non-disjoint

databases (c7) = (c3)◦(c4). By definition, the beliefs induced by combining databases

(e.g. (c3), (c4)) are based on less precise pieces of information (and hence also their

weighted average) than the belief based on the combined database (e.g. (c7)). Thus,

for a cautious agent, who cares about precisions, the information contained in con-

catenating databases may not be sufficient for a belief formation according to the

(unmodified) Concatenation Axiom.5

However, in general there are no replications T and L, such that each single pieces

of information is captured in equal precision in all involved databases D◦E, DT and

EL. These differences in precision of single common cases complicate the averaging

of the beliefs. Determining the average weight cannot anymore be interpreted as

normatively appealing comparison based solely on relative relevance of the particular

databases. Rather, it is a result of a cognitive challenging (impossible) interwoven

tradeoff, balancing and aggregation of different emphasis an agent assigns to sin-

gle pieces of differently precise information in the various database. Moreover, the

average weight might need to reflect also the compensation for failures of the ”com-

pulsory” incorporation (by the axiom) of relative more imprecise estimations (based

on the same kind of information) contained in some beliefs than in others. There-

fore, a (modified) Concatenation Axiom allowing for all (replicated) databases leads

to the serious problem that agents might be cognitively overstrained by averaging

beliefs based on several identical information with different precision levels.6

As a consequence, we propose a restriction on databases to be admissible for our

modified version of the Concatenation Axiom, such that it sustains its normative

appealing spirit. Our anchored Concatenation Axiom restricts databases to a specific

(almost disjoint) structure consisting of only two cases, where only exactly one

of these cases (the anchor) appears in all involved databases and all other cases

4Stating the axiom only in terms of disjoint databases does not offer sufficient structure to derive
a belief formation.

5This problematic issue does not appear in the Concatenation Axiom of BGSS, where precision
is (endogenously) neglected and one appearance of a case captures already all information.

6Alternatively, if one would stick to general non-disjoint databases, then the only way to ”unify”
the differently precise information in all involved databases is given by assuming ad hoc some
arbitrary (imagined) level of precision, according to which all cases are evaluated independent
of their actual observation. This will be discussed in detail in Section 2.5 and 2.7.2.
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appear only in one database. The main feature is that this single common (anchor)

piece of information is contained in all involved databases in equal precision. This

enables an easy averaging of beliefs without cognitively demanding compromising

between estimations induced by differently precise observations. In addition, the

equal appearance of the anchor case in all involved databases intuitively allows to

”neglect” its effect in determining the average weights and to compare only the

relative importance of the pieces of information that appear only in exactly one

of the involved databases. This facilitates a very straightforward way to find the

average weights for the beliefs - almost in the spirit of averaging beliefs induced by

disjoint (singleton) databases or distinct cases.

In order to take into account the precision of beliefs induced by databases, our

agent focusses on the most precise and hence reliable information in the database.

Since it is impossible to capture all information in its actual precision level perfectly

in a non-disjoint combination of databases (as explained above), our agents require

to cover at least the most precise information objectively in her belief. Consequently,

our axiom requires that there exists no distortion of the most reliable information

in the process of averaging beliefs. To achieve this, the precision of the most reliable

information in the concatenated database must be conveyed by the single beliefs

induced by the corresponding admissible (sufficiently replicated) databases used for

the concatenation.

Besides BGSS, the closest work to ours is the axiomatization of multi-prior be-

liefs in Eichberger and Guerdjikova (2010) (EG) ”Case based belief formation under

ambiguity”. Their extension of the framework of BGSS aims to formalize two kinds

of ambiguity caused by insufficient information (vanishing ambiguity) and irrelevant

information (persistent ambiguity). The focus in their paper lies predominantly on

the introduction of a multi-prior setup for an information environment with persis-

tent ambiguity. Whereas our work focuses on the analysis of precision in the sense of

vanishing ambiguity (imprecision) and related cautiousness in a single prior belief.

EG’s modification of the Concatenation Axiom of BGSS is adequate to specify how

beliefs over outcomes change in response to additional information and tackles also

the mentioned drawback of BGSS regarding irrelevance of growing precision of in-

formation. Different to our work, their modification reflects the idea of ”controlling

for the ambiguity ” (p.4) (precision) by restricting the involved databases to equal

length. However, as discussed above controlling for precision by equal lengths of

the involved databases is not sufficient to control for different precise single pieces

of information contained in these databases. As a direct consequence, EG’s modifi-

cation of the Concatenation Axiom assumes (and does not prevent) that agents are
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2 Cautious Belief Formation

(cognitively) able to aggregate and balance information of the same kind, but in dif-

ferent precision. In contrast, the focus of our paper lies exactly on the issue to avoid

such cognitive challenging or even impossible tradeoffs in the aggregation of differ-

ently precise information and to keep the spirit of a normatively reasonable and easy

averaging procedure. Moreover, in general EG’s axiom implies that no estimation

is based on objectively present information in the database, which would require

(in our context) that agents need to imagine the (true) cautiousness feeling evoked

by a precision level that is imagined as well. In contrast, our approach implicitly

requires only the ability to estimate based on already experienced cautiousness and

thus avoids imaginations of unexperienced feelings of cautiousness.

In sum, adopting parts of the axiomatization of BGSS and EG, our anchored

Concatenation Axiom will allow for a structural similar belief representation as in

BGSS and EG. All three axiomatized representations differ in the way, how they

treat information of different qualities of precision. BGSS does not take into account

precision at all and EG captures the effect of (persistent) ambiguous information by

a set of beliefs, which are based on precision-dependent estimates, where the level

of (imagined) precision is according to the total amount of information contained

in the entire database. In our representation the cautiousness related estimates are

based on the level of precision and cautiousness induced by the most precise infor-

mation in the database. More precisely, for a new problem and a given database,

its induced belief can be represented as a similarity-weighted average of cautious

estimates induced by past observations in the database. Thereby the similarities

and estimates are endogenously derived.

The remainder of the chapter is organized as follows. In the next section we will

outline the model and in Section 2.3 we develop an example to illustrate reason-

able belief formations and our leading example. Then, the axioms are stated and

discussed, where the central Section 2.4.2 points out the drawbacks and necessary

modification of the Concatenation Axiom to incorporate precision, which eventually

leads to our version of the Concatenation Axiom. Section 2.5 presents and discusses

the main representation result and gives a rough sketch of the main part of the proof.

Section 2.6 concludes the chapter and Section 2.7 deals with an objective belief, the

relationship to EG’s Concatenation Axiom and an alternative axiomatization of a

very cautious belief. The last two sections contain both directions of the proof.
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2.2 The model

2.2 The model

2.2.1 Database framework

A basic case c = (x, r) consists of a description of the environment or problem

x ∈ X and an outcome r ∈ R, where X = X1 ×X2 × ....×XN is a finite set of all

characteristics of the environment, in which Xj denotes the set of possible values

features j can take. R denotes a finite set of potential outcomes, R = {r1, ..., rn}.
The set C ⊆ X ×R consists of all m ≥ 3 basic cases, i.e. |C| = m.

A database D is a sequence or list of basic cases c ∈ C. The set of databases D

consisting of L cases, i.e. D = ((x1, r1), ..., (xL, rL)) is denoted by CL and the set

of all databases by C∗ = ∪L≥1C
L. The description of databases as sequence of po-

tentially identical cases allows multiple observation of an identical case to be taken

into account and treated as an additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in

databases D.

The concatenation of two databasesD = (c1, c2, ..., cL) ∈ CL and E = (c′1, c
′
2, ..., c

′
T ) ∈

CT is denoted by D◦E ∈ CL+T and is defined by D◦E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the

identical databases D by DL. Specifically, cL represents a database consisting of

L-times case c.

Definition 2.1

(i) The ∈- relation on databases is defined by c ∈ D if fD(c) > 0.

(ii) Two databases D and E are disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

2.2.2 Induced beliefs

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for

n ∈ N ∆n denotes the simplex over the set {1, 2, ..., n}.
An agent will form a belief over the outcomes P (x,D) ∈ ∆(R) for a certain problem

characterized by x ∈ X using her information captured in a database D ∈ C∗, i.e.

P : X × C∗ → ∆(R). The restriction to databases of length T is denoted by

PT (x,D) ∈ ∆(R) for D ∈ CT and PT : X × CT → ∆(R).

One can interpret PT (x,D) as the belief over outcomes induced by database D ∈ CT

(given environment or problem x ∈ X).

Throughout the paper the problem x is fixed, therefore x is often suppressed in the

following, i.e. P (x,D) = P (D).
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2 Cautious Belief Formation

2.3 Motivating examples

2.3.1 Exemplary development of a belief formation process

A doctor needs to evaluate the likelihood of potential outcomes of a specific treat-

ment.

Let a patient be described by a vector of characteristics x ∈ X, where X might con-

sist of measures of characteristics like age, gender, weight, height, blood pressure,

temperature, blood count, vital signs, medical history, drug tolerability, etc.

The doctor might have observed several outcomes of the treatment in the past, which

are collected in a set R, containing for instance feels better/worse/unchanged, mea-

sures of side effects like headaches, sleepy, depressive, passed out, giddy, dizzy, etc.

The doctor has acquired some working experience prescribing this treatment and/or

has access to some medical record of this treatment. Thus, she is able to base her

judgement on past experience or observations collected in a databaseD = (c1, ..., cT ),

where in each case ci the characteristic and the observable outcome of patient i is

recorded, i.e. ci = (xi, ri). It means that a patient characterized by xi ∈ X re-

sponded to the treatment with outcome ri ∈ R.

Given the characteristics x ∈ X of a current patient and her available information

and experience in form of a database D, the doctor derives a probabilistic belief

P (x,D) ∈ ∆(R) over potential outcomes in R for this treatment. How can she do

the prediction?

a) A first intuitive approach for the prediction is to consider only patients in the

database that are identical (with respect to the measured characteristics) with the

present patient. Based on this sub-sample Dx := (c ∈ D|c = (x, ri) for some ri ∈
R) ⊆ D the doctor might derive a prediction over potential outcomes via empirical

frequencies:

P (x,D) =

∑
cj∈Dx δrj

|Dx|
,

where δj is the probability vector on R with mass 1 on the outcome rj ∈ R. Of

course this belief formation process is not practical if the sub-sample Dx contains

only few observations, i.e. if there are only a couple of identical (with respect to the

measured characteristics) patients.

b) To overcome this problem of limited or insufficiently many identical observa-

tions, the doctor might include into her prediction procedure not only identical,

but in addition also similar patients. Suppose that she is able to judge how similar
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patients are, i.e. she is able to employ a function s : X × X → R, where s(xt, xj)

measures the degree of similarity between patients characterized by xt and xj. Her

belief formation process might run in a ”subjective” frequentist way:

P (x,D) =

∑
cj∈D s(x, xj)δrj∑
cj∈D s(x, xj)

c) In addition, the doctor might infer from a case cj = (xj, rj) ∈ X × R not only

a point prediction on δrj , but a more general induced estimation P cj .7 For instance,

she attaches also some likelihood to outcomes that are closely or reasonably related

to the observed rj:

P (x,D) =

∑
c∈D s(x, xj)P

c∑
c∈D s(x, xj)

. (2.1)

This belief formation process is axiomatized in BGSS.

d) Furthermore, the doctor might process the past observations not in an one by

one estimation problem as in the approaches above, but might want to sample the

database beforehand according to identical cases (i.e. patient-outcome pair). Many

observations of the same case might foster some learning and improved understand-

ing of the relationship between characteristics of a patient and corresponding out-

comes. Additional confirming observations should affect the judgment of a cautious

doctor as well by an increased confidence and decreased cautiousness in predicting

the observed outcome. In this way, the doctor might generate different predictions

depending on how many observations of this case are present in the database.

For instance, suppose there is a generally observed side-effect of many different

medicines, then the doctor might still assign a positive likelihood to this side-effect

if the doctor has observed just a few (identical) patients not suffering from this side

effect under the specific treatment. However, if the treatment is well established and

many identical patients did not feel this side-effect, then she might not consider this

side-effect as a potential hazard anymore. This intuition can be modeled by incor-

porating precision into a cautious belief formation, where the number of observation

can be interpreted as a proxy for the precision of the information:

P (x,D) =

∑
c∈D s(x, c)fD(c)P c

TD(c)∑
c∈D s(x, c)fD(c)

,

7More precisely, actually P c = P (x,c) represents an (conditional) estimate induced by c given the
current patient x, i.e. if c is totally unrelated to the current patient, it might be that P c is
uniform on R.
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where P c
L represents the precision dependent estimation on R induced by L obser-

vation of case c, where usually P c
T 6= P c

L for T 6= L. Hence TD(c) ∈ N denotes a

database dependent precision (and induced cautiousness) level, according to which

a doctor will estimate the outcomes based on observation of case c.

Interestingly, the already mentioned belief formations of BGSS and EG are special

cases of this representation:

(i) BGSS’s axiomatization implies TD(c) = ∞. Hence, their agent learns instanta-

neously the ”correct” distribution P c
∞ = P c induced by case c (see representation

(2.1)).

(ii) The axiomatic derivation in EG results in TD(c) = T for D ∈ CT .

(e) A natural interpretation of TD(c) in (d) is TD(c) = fD(c)T for all c ∈ D ∈ CT :

PT (x,D) =

∑
c∈D s(x, c)fD(c)P c

fD(c)T∑
c∈D s(x, c)fD(c)

, (2.2)

where fD(c)T gives the actual number of appearance of case c in database D. Such

a representation is very objective by incorporating only actually available and ob-

served information. This representation is (unfortunately) irreconcilable (see Section

2.7.1) with any generalized version of a Concatenation Axiom (in the sense of not

only combining disjoint databases), which we consider as an important behavioral

component of a belief formation.

However, unless its appealing objective character, this belief formation might en-

tail the following problem. Obviously, the belief employs (in general) an aggregation

of estimates (P c
fD(c)T )c∈D based on different precise single pieces of information c,

which carry different deficits in their ”correctness” of prediction. This might over-

complicate the evaluation since the doctor might want to accompany the fact that

some of her predictions are more reliable than others and should receive more weight

independent from the similarity and frequency weighting. In this sense, she might

want to include an additional weighting scheme taking into account the precision or

reliability of the estimates.8

f) However, a doctor might not only rely on objective precisions of the estimations,

but also wants to capture her perception of its precision, i.e. the influence of how

cautious and confident she feels while estimating P c
TD(c). In this vein, we prefer a

8Alternatively, these considerations might be incorporated into the weights s, which prevents an
desirable independent interpretation in similarity terms and requires the function s to depend
also on the databases directly, which will be precluded (later) by our Constant Similarity Axiom.
In addition, it conflicts with the easy averaging intuition
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different choice for TD(c) in order to take the doctor’s cautiousness and confidence

concerns into account.

The underlying intuition is that she does not change or adjust constantly her cau-

tiousness and confidence attitude in response to each differently precise information.

Rather, after the doctor has experienced an (extreme) level of cautiousness and con-

fidence by estimating based on objectively available (unimagined) information, she

might keep it and adopt it to other estimations. Basically she attained an ”appro-

priate” sustainable attitude regarding her cautiousness sensation or learned how to

confidently estimate sufficiently cautious and applies it to all remaining estimations.

This also overcomes the mentioned potential disfavor of aggregating different precise

estimations emerging in the objective belief formation (2.2).

The most intuitive choices for a cautiousness attitude are the two extreme percep-

tions, i.e. the experience of minimal and maximal cautiousness, which are induced

by the most or least precise information in the database. A minimal cautious at-

titude might distract from any other more cautious perceptions, since the doctor

learned how to handle information in an appropriate cautious way. A maximal cau-

tious agent might be intimidated by the largest experienced imprecision and can

not be convinced to leave her skeptical mood to adopt a more confident attitude for

estimating according to the available more accurate information.

The following cautious belief formation captures these ideas (for a attitude of

minimal cautiousness) and will be axiomatized in this chapter:

PT (x,D) =

∑
c∈D s(x, c)fD(c)P c

T ∗D∑
c∈D s(x, c)fD(c)

,

where T ∗D := maxc∈C fD(c)T .

The above examples were intended to clarify the framework and demonstrate

a meaningful evolution of a belief formation taking into account subjective and

precision concerns. However, in the following we will use a reduced version as our

leading example.

2.3.2 Leading example

Assume that the patients are not anymore described by a large vector of their

personal characteristics, but just according to their symptoms or diagnosed sickness.

In particular, each patient is characterized by just a single symptom and the outcome

of a treatment is only roughly distinguishable between w(orse), n(ot affected) or

b(etter), i.e. R = {w, n, b}.
So basically a doctor has prescribed a certain medicine to many patients with
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different symptoms or illnesses and observed the outcome of this drug, i.e. a case

is described as a pair of symptom and outcome of the treatment. For example the

drug improved the state of patients suffering from sore throat, but was harmful for

most patients suffering from stomach problems.

2.4 Axioms

In the first part we state modified versions of the axioms in BGSS that we will

adopt. The second main part discusses in detail the Concatenation Axiom and its

drawbacks in a precision dependent framework that eventually leads to our new

anchored Concatenation Axiom.

2.4.1 Retained axioms

Invariance Axiom

For every T ≥ 1, every database D = (c1, ..., cT ) ∈ CT and any permutation π on

{1, ..., T}
PT ((c1, ..., cT )) = PT ((cπ(1), ..., cπ(T ))).

The Invariance Axiom states that an induced belief over outcomes depends only

on the content of that database and is insensitive to the sequence or order in which

data arrives.

However, the order in which information is provided or obtained can influence

the judgment strongly and may carry information by itself (e.g. see Rubinstein and

Salant (2006)). For example, first and last impressions or reference effect demon-

strate the different impacts of cases depending on their positions. One way to cope

with these order effects is to describe the cases informative enough. E.g. if one

wants to capture the position or time of occurrence of a case in a database, one

could implement this information into the description of the cases itself. Put dif-

ferently, if one challenges the Invariance Axiom, then there must be some criteria

which distinguish the cases at different positions in a database and paying attention

explicitly to this difference in the description of the cases may lead the agent to

reconcile with the invariance assumption.

Hence, we will base our belief formation only on the content of the database D,

which allows to characterize each D by the pair of its frequency vector and length.

Learning Axiom

For every c ∈ C the limit of (PT (cT ))T exists, i.e. the sequence converges to P c
∞.
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In the context of precision dependent beliefs the axiom can be interpreted as a stable

learning process. For instance, an agent starts out with an initial prior (like a uni-

form as in the principle of insufficient reason) that will be adjusted in the process of

observing additional information. Increasing the number of confirming observations

will lead to vanishing imprecision and cautiousness in estimating. Basically, the es-

timate will become less sensitive to new additional confirming information and will

eventually converge to a limit distribution. This intuition is as in Bayesian updating,

where additional (confirming) information may render the prior beliefs more precise,

but differently to Bayesian updating the support might change here. For instance,

it is reasonable to assume that finally the agent will learn the true distribution of a

case c = (x, r) ∈ C given the problem x ∈ X, i.e. limT→∞ P (x, cT ) = δr, where δr is

again the Dirac measure. However, for a problem x′ 6= x ∈ X the belief might just

converge to a general uniform-like distribution on R, since the observed case might

not give relevant information for the current problem at all. Hence, we require only

that a limit estimation exists.

Another intuition, that we mentioned already, runs as follows. T many observa-

tions a case c = (x, r) might not make a cautious agent feel confident to reliably rule

out a non-observed outcomes completely, but she wants to assign at least some pos-

itive likelihood to it, i.e. PT ((x, r)T )(r′) > 0. However, observing further confirming

cases might carry sufficient evidence, such that an agent would feel confident not to

make a mistake or act incautious in excluding some outcomes, i.e. PL((x, r)L)(r′) = 0

for L� T .

Alternatively, one can apply a (accordingly adjusted) learning procedure as in

Epstein and Schneider (2007), where an agent might start out with a uniform esti-

mation and after observing new information keep only the most plausible estimates.

Plausible estimations in their sense are those that survive a maximum likelihood test

(according to some strictness parameter, which might correspond with a cautious-

ness measure in our setup) against the belief that best explains the observations,

i.e. the Dirac measure on the observed outcome.

Diversity Axiom

There exist T ∗ ∈ N, such that for all T ≥ T ∗, no three of {PT (cT )}c∈C are collinear.

From a technical point of view this axiom allows to derive an unique similarity

function, but it also carries an appealing intuition. Roughly it states that sufficiently

many observations induce always estimations that are informative (or diverse) in

the sense that no combination of two other sufficiently often observed cases can
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deliver the same estimation. Hence, no sufficiently precise case can be ”replaced”

by sufficient observations of two other cases in this sense. The reason to base the

diversity of induced estimation on a precision threshold T ∗ is the following. In order

to derive unique similarity values one could also require non-collinearity for every

value of T, but this would exclude learning as mentioned in the description of the

Learning Axiom. If an agent would start out with an uniform-like prior for databases

containing few observations, it might happen that different cases induce very similar

estimations, which are likely to be collinear. The axiom just rules out that after a

sufficient learning period any three estimations are still collinear.

2.4.2 Different versions of the Concatenation Axiom

Concatenation Axiom of BGSS

For every database D,E ∈ C∗ there exists some λ ∈ (0, 1) such that:

P(D ◦ E) = λP (D) + (1− λ)P (E).

In the following we will call the database that emerges from concatenations of other

databases the combined or concatenated database, whereas the databases used

for the concatenation will be called combining or concatenating databases. We

call the weights λ, (1− λ) average weights.

The Concatenation Axiom states that the belief induced by a combined database is

a weighted average of the beliefs induced by its combining databases. It captures

the idea that a belief based on the combined database cannot lie outside the interval

spanned by the beliefs induced by each combining database separately. Intuitively

it can be interpreted in the following way (from an exclusion point of view). If the

information in any database induces an belief that does not exclude an outcome r,

then the outcome r cannot be excluded by the belief induced by the combination

of all these databases.9 Alternatively, if a certain conclusion is reached given two

databases, the same conclusion should be reached given their union.

The normatively appealing spirit of the axiom is that the average weights are

determined by relative relevances or importance of the combining databases for its

combination.

As already mentioned, the Concatenation Axiom implies an irrelevance of growing

precision or insensitivity to additional information in the beliefs, i.e. P (D) = P (DZ)

9Of course the axiom is stronger in the sense that it not only requires that the probability of
such an r is positive, but it should lie between the minimal and maximal assigned probabilities
induced by the combining databases.
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for all D ∈ C∗ and Z ∈ N, which might be appropriate for sufficiently rich and large

databases. However, already BGSS admit that it ”... might be unreasonable when

the entire database is very small ....” (BGSS (2005), p. 1129).10 Indeed, the axiom

induces some sort of perfect objectivity and instantaneously learning. Estimation

based on one observation c = (x, r) needs to coincide with the estimation induced by

arbitrarily many observation, which can be identified in some sense with the ”true”

limiting distribution, i.e. P (x, (x, r)) = P (x, (x, r)∞). For our leading example it

would mean that a doctor would predict after one unsuccessful treatment of a sore

throat that this treatment is worthless for (identical) patients suffering from sore

throat. However, this appears very unrealistic and un-intuitive, since a database

c = (x, r) might be considered more imprecise and might induce a more cautious

belief than cT = (x.r)T for sufficiently many observations T, i.e. P (c) 6= P (cT ).

In order to incorporate precision and cautiousness aspects into the belief formation

process, the Concatenation Axiom needs to be modified in various ways to maintain

its normative appeal in a modified framework.

For this purpose an immediate modification concerns the issue that an agents can

not rely on beliefs induced by the concatenating databases directly, but requires

appropriately replicated concatenating database11, i.e.

P (D ◦ E) = λP (DT ) + (1− λ)P (EL) for appropriate T, L ∈ N (2.3)

The reason for this is that the information contained in non-disjoint concatenat-

ing databases appears by definition in less precision as in their concatenation, e.g.

consider c2Z = cZ ◦ cZ . However, for a cautious agent caring about precision,

P (cZ)(r) > 0 does not necessarily imply P (c2Z)(r) > 0. For example our doc-

tor might not want to rule out a successful treatment of a coughing agent after

observing 20 or 30 unsuccessful treatments according to her perceived cautiousness,

i.e. P (cT )(r) > 0 for T = 20, 30. However, the combined information of 50 un-

successful treatments on coughs might make her feel confident and convinced to

evaluate the treatment as useless for curing a cough without violating her cautious-

ness feeling, i.e. P (c50)(r) = 0. Thus, non-disjoint concatenating databases do not

carry sufficient information to capture refinements of a cautious belief implied by

the concatenated database and as stated in (2.3) more precise (i.e. appropriately

replicated) concatenating information is required.

10From this perspective, our modification can be interpreted as an extension of BGSS to derive a
belief formation also for relatively small databases, which is only partially possible and reason-
able given their Concatenation Axiom.

11This problem emerges only if the databases are non-disjoint. However, to allow only disjoint
databases in the Concatenation Axiom does not offer enough structure to derive a belief.
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2 Cautious Belief Formation

Furthermore, in general there exist no replications T and L that ensure that

each case in D ◦ E is captured in identical precision for unrestricted non-disjoint

DT and EL.12 Depending on its precision the same case might induce differently

cautious estimations. This leads to the difficulties that agents need to balance the

differently cautious estimations induced by the same case appearing in different

precisions in the replicated concatenating databases. Such a compromising between

estimates is necessary for all cases that are observed in more than one database.

For instance, our doctor compares the (replicated) databases D2 = (c4
1, c

6
2, c

4
3) and

E2 = (c4
1, c

8
2, c

2
3) (and eventually average its induced beliefs), where each (replicated)

database contains differently many observations of harmfully treated colds c2 (6 vs.

8), neutrally treated colds c3 (4 vs. 2) and at least the successfully treated sore

throats c1 are observed identically often (4 vs. 4) (by replicating D and E, with

the focus on unifying according to c1). Hence each induced beliefs rely on different

precision with regard to observations of cases c2 and c3. How could an objective

doctor compare and average the differently precise information incorporated in these

databases? Intuitively, the doctor should use the most precise available information

contained in these databases. Information c2 is contained in the belief induced by

E2 in a more precise fashion than in database D2 and hence the doctor would like

to rely predominately on (i.e. assign high weight to) E2 regarding c2 (since P c2
8 vs

P c2
6 ) and to ignore the less precise estimation wrt. c2 in D2. However, the opposite

is true for the precision of information c3, for which she relies predominately on D2

and ignores E2.

Anyway, such a reasonable behavior is not admissible in any version of a Concate-

nation Axiom, in which an agent is forced to assign exactly one (non-zero) average

weight to the beliefs induced by the entire databases D2 and E2 and not many

different weights to the estimates induced by the single pieces of information con-

tained in the databases.13 In order to reach one ”aggregated” average weight, these

single weights would need to be balanced, traded off and aggregated somehow. In

particular, since the beliefs induced by D2 and E2 contain induced estimates that

are too imprecise and cautious in comparison to other available ones, our doctor

needs to offset and capture these imprecisions and mistakes by adjusting the aver-

age weights accordingly. However, a determination of the average weight as a result

of difficult balancing and interwoven compromising appears to be even in this easy

12This follows from the general non-existence of solutions T, L to the system of equations resulting
from fD(c)|D|T ∈ {0, fD◦E(c)|D ◦ E|} and fE(c)|E|L ∈ {0, fD◦E(c)|D ◦ E|} for all c ∈ D ◦ E.

13However, this potential cognitive difficulties are not an issue in the way the Concatenation Axiom
of BGSS processes information, where information is additive in the sense that L observations
in one database and T observations in another is equivalent to observing T + L. Since one
observation caries all information.
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2.4 Axioms

example rather cognitively challenging and becomes impossible for more complex

(decompositions of) databases. Further and most importantly, it conflicts with the

normatively appealing spirit of the Concatenation Axiom to average beliefs by an

easy comparison of relevances of the particular underlying databases.

Our modification of the Concatenation Axiom will deal with this problem by re-

stricting it to specifically structured database such that balancing and compromising

due to differently precise information is avoided and the cognitively simple averaging

intuition sustains.

However, interestingly, following the idea of a Concatenation Axiom that still al-

lows for unrestricted non-disjoint concatenating databases would eventually arrive

at an (not yet given) intuition and explanation for the modification of the Con-

catenation Axiom followed in EG. The basic idea is that agents tackle the immense

compromising considerations of different cautious estimations by assuming or choos-

ing a common arbitrary level of precision, according to which all cases are estimated

- independent of their true objective precision. Since objective or imagined preci-

sions might evoke different feelings of cautiousness such an approach would interfere

with our purpose to seriously take into account objective precision and its related

concerns. A more detailed discussion on that and on EG’s modification can be found

in Section 2.7.2.

Anchored Concatenation Axiom

The above discussion shows that a Concatenation Axiom for unrestricted non-

disjoint concatenating databases might destroy the underlying normatively appeal-

ing idea of an easy averaging, when agents care about precision and its perceptional

consequences. In order to keep the normative appealing spirit, we will restrict the

involved databases to a specific reasonable structure. These databases will contain

sufficiently precise information (in the sense of (2.3)) and allow an cognitively easy

averaging. We have seen that an agent will run into a difficult balancing process

to determine the average weights when she is faced with concatenating databases

containing common cases. For this reason, our anchored databases are as disjoint

as possible, but still sharing a specific (exploitable) structure to facilitate an easy

comparison (and in the end a straightforward averaging of its induced beliefs). In

particular, the anchored databases consist of only two different cases, where all

anchored databases admissible for the concatenation contain a common anchor (ref-

erence) case with identical frequency and one additional mutually different case in
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2 Cautious Belief Formation

each of the databases.14 Apart from the desire to employ databases that are almost

disjoint, their structure is also driven by the general observation that agents can

compare items easier if they consist of less features (here: only two) and if they

contain common features in the same fashion as a reference (here: anchor case).

Recall that m ∈ N denotes the number of basic cases, i.e. |C| = m.

Definition 2.2

Let k ∈ [0, 1] and Tj ∈ N be s.th. kTj ∈ N for all 1 ≤ j ≤ m and let T :=
∑

j 6=i≤m Tj.

Let ci, cj ∈ C for all j 6= i ≤ m

(i) For all j 6= i ≤ m a database Dj
i (k, Tj) ∈ CTj defined by

Dj
i (k, Tj) : = (c

(1−k)Tj
j , c

kTj
i )

is called an anchored database of length Tj with non-anchor case cj (for all

j 6= i) and anchor (case) ci, which appears in the database with frequency k.

(ii) An anchored chain F ∈ CT (wrt. to case ci) is defined as a concatenation of

anchored databases Dj
i (k, Tj) ∈ CTj for all j 6= i (with common anchor case ci ∈ C)

F = ◦j 6=i≤mDj
i (k, Tj) = (c

(1−k)T1

1 , ..., c
(1−k)Ti−1

i−1 , ckTi , c
(1−k)Ti+1

i+1 , ..., c(1−k)Tm
m )

Note hat not all databases can be interpreted as an anchored chain, since it requires

to be a result of a concatenation of specifically structured anchored databases.

In order to illustrate the anchor-framework, we use our leading example of a doc-

tor that forms a belief over the outcomes of a treatment -worse, no effect, better-

{w, n, b}.
For our doctor anchored databases and chains might look as follows. Each involved

(anchored) database consist of only two different cases (patient groups or symptom-

outcome pairs), where one of these groups (the anchor case) needs to be observed

in all involved database, e.g. patients with a successful treatment (b) of their cough

(c) might be the anchor group (i.e. c1 = (c, b)). The other patient group observed

in each database is different in all involved databases, for instance the different non-

anchor groups might be patients with a neutral treatment (n) of their sore throats

(st) (i.e. c2 = (st, n)) or stomachache problems (i.e. c3 = (s, n)) or harmful treat-

ment (w) of patients suffering from sore throats (st) (i.e. c4 = (st, w)).

To simplify the comparison of the databases (by providing a systematical structural

guideline) the anchored database contain the (anchor) group c1 in a specific propor-

tion k (e.g. k = 2
3
) of the databases’ total length. E.g. each database consisting of

14In some sense, one can interpret the restriction to such database by agents feeling to be cogni-
tively skilled or capable to confidently compare only such easily structured databases.
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two thirds of successfully treated coughing patients and one third of patients with

any other mutually different (symptom,outcome)-pair.

• For example a anchored database consists of 20 successfully treated coughs

(i.e. c20
1 ) and 10 neutrally treated sore throats (i.e. c10

2 ), which results in the

anchored database with 30 patients D2
1(2

3
, 30) = (c20

1 , c
10
2 ).

• Another database might contain 40 successfully treated coughs (i.e. c40
1 ) and 20

neutrally treated stomachaches (i.e. c20
3 ), i.e. anchored database D3

1(2
3
, 60) =

(c40
1 , c

20
2 ) with 60 patients.

• Another anchored database consist of 16 successfully and 8 harmfully treated

coughs (i.e. c16
1 and c8

4), i.e. D4
1(2

3
, 24) = (c16

1 , c
8
4) with 24 patients.

The corresponding anchored chain based on Dj
1(2

3
, Tj) (for j = 2, .., 4 and T2 =

30, T3 = 60, T4 = 24 and T :=
∑5

j=2 Tj = 114) reads F = ◦4
j=2D

j
1(2

3
, Tj) =

(c76
1 , c

10
2 , c

20
3 c

8
4).

However, within the anchor structure the comparison of the almost disjoint an-

chored databases (Dj
i (k, Tj))j 6=i is still not directly straightforward, since the pre-

cision of the anchor case ci in each of the database varies with the corresponding

lengths Tj, i.e. ci is contained in Dj
i (k, Tj) in the amount of kTj. In our leading

example reflected by the different numbers of successfully treated coughing patients.

These difference in the precision would again cause the already extensively discussed

difficulties in determining the average weights. In order to avoid this problem and

as well to respond to the issue of insufficiently precise information in non-disjoint

concatenating database (see equation (2.3) and its derivation), we need to replicate

some of the anchored database to attain a common level of precision for the anchor

case. Due to the identical structure of the databases, enforcing a common precision

for anchor case is equivalent to obtain a specific common length L for all involved

anchored databases.15 More precisely, for an anchored chain F of (Dj
i (k, Tj))j 6=i≤m

a belief induced by F should rely on an average of the beliefs induced by anchored

databases (Dj
i (k, L))j 6=i≤m. Obviously, this enables an agent to easily compare the

involved databases Dj
i (k, L) since their only common case -the anchor case ci - ap-

pears in identical amounts kL in all databases. Therefore, in comparing the anchored

database (and determining the average weights) the agent can concentrate on the

single and mutually different non-anchor cases.

15This seem to be close to the EG approach in fixing the lengths of the databases. However,
here it is a consequence of fixing a common precision for a single case. The two approaches
use different incompatible restrictions on the databases involved in the modifications of the
Concatenation Axiom.
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2 Cautious Belief Formation

It remains to specify and motivate a choice for a common precision level of the

anchor case and (indirect) the common length L. We will introduce it in close rela-

tionship to our notion of the precision of an induced belief. As already discussed in

general for non-disjoint databases in the last section (see discussion after equation

(2.3)), there exists no replication for anchored concatenating databases, such that

all single cases appear in equally precision in (Dj
i (k, L))j 6=i≤m and in the related an-

chored chain F = ◦j 6=i≤mDj
i (K,Tj).

16 Obviously, this leaves the freedom to reason

for a specific piece of information that should be captured in equal precision in all

involved induced beliefs. A very intuitive (and from our point of view most reason-

able) choice to control for precision (and related confidence and cautiousness) is to

ensure that the most precise and hence reliable piece of information in the anchored

chain is captured in the identical precision in the beliefs induced by the correspond-

ing replicated combining databases.17 The focus and reliance on the most precise

case can be justified by interpreting it as the driving factor of the precision of the

belief. Focussing on another, less precise information would imply a less precise be-

lief, since the most precise information would not be captured objectively anymore

(in all involved databases).18 Hence it appears reasonable to require that at least

the most reliable information is incorporated in the belief without any distortions,

which requires that it is also contained unbiased its generating (averaging) beliefs.

More technically, this can be achieved by requiring a particular adjusted length of

the combining anchored databases, which is given in the following definition.

Definition 2.3

Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m.

A length L ∈ N is called the adjusted (maximal) length, denoted by L(k, (Tj)j 6=i≤m),

if it is such that the number of observations of the most frequent case in an an-

chored chain F ∈ CT is identical to the number of observations of the most frequent

case in the anchored databases Dj
i (k, L) (for all j 6= i), (i.e. maxc∈C fF (c)T =

maxc∈C fDji (k,L)(c)L).19

Our leading example will clarify the relationships and intuition of the adjusted

16This is due to the different appearances of the cases, i.e. for the anchored chain the appearance of
a non-anchor case cj is (1− k)Tj (for all j 6= i ≤ m) in contrast to (1− k)L in the (replicated)

anchored databases Dj
i (K,Tj) and similar for the anchor case ci, there exists the difference

between kT = k
∑

j 6=i≤m Tj and kL.
17Another reasonable choice is the least precise information that a very cautious agent might adopt

(see Section 2.7.3).
18Section 2.5.1 discusses another interpretation in terms of an induced persistent cautiousness

attitude that is evoked by the most precise information in the database and serves as basis for
all other estimations.

19In Section 2.7.3 the maximum is replaced by a minimum to focus on least precise information.
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length.

Example:

(i) Our doctor considers the records of different patient groups collected in two stud-

ies, i.e. D2
1(2

3
, 30) = (c20

1 , c
10
2 ) and D3

1(2
3
, 60) = (c40

1 , c
20
2 ) with common patient group

c1. Patient group c1 is also the most precise information (with 60 observations) in

the corresponding anchored chain F = (c60
1 , c

10
2 , c

20
3 ) ∈ C90. Thus the doctor requires

it be matched equally precise in appropriate replications (of the study results) of

the anchored databases D2
1(2

3
, 30) and D3

1(2
3
, 60). The adjusted length L such that

for j = 2, 3

60 = max
c∈F

fF (c)90 = max
c∈Dj1

fDj1
(c)L = max{2

3
,
1

3
}L =

2

3
L,

is given by L = 90, i.e. D2
1(2

3
, 90) = (c60

1 , c
30
2 ) and D3

1(2
3
, 90) = (c60

1 , c
30
2 ). Obviously,

the most precise case c1 is capture in identical precision (60) in all three databases

F,D2
1(2

3
, 90) and D3

1(2
3
, 90). This allows an easy averaging of beliefs induced by

Dj
1(2

3
, 90).

(ii) Similarly, let there be two public studies of the treatment for some specific

patient groups summarized in the following anchored chain

F = (c30
1 , c

40
2 , c

80
3 ) = (c10

1 , c
40
2 ) ◦ (c20

1 , c
80
3 ) = D2

1(
1

5
, 50) ◦D3

1(
1

5
, 100),

where again the anchor patient group is ”successfully treated coughs” c1. The

most precise case in F is c3 (with 80 observations). This implies that an ad-

justed length L = 100 is determined by 80 = max{1
5
, 4

5
}L. Again, the most pre-

cise case c3 is capture in identical precision (80) in the relevant databases F and

D2
1(1

5
, 100) = (c20

1 , c
80
3 ), D3

1(1
5
, 100) = (c20

1 , c
80
2 ).

With these definitions at hand we can state our anchored Concatenation Axiom,

where a modified version focussing on least precise information can be found in Sec-

tion 2.7.3.

Recall that the length T of a database in an induced belief P becomes visible via

the restriction to PT . In particular for anchored databases Dj
i (k, Tj), we can skip

the length Tj in the induced belief, i.e. PTj(D
j
i (k, Tj)) = PTj(D

j
i (k)).
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Maximal Anchored Concatenation Axiom:

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iDj

i (k, Tj) and

let L = L(k, (T ji )j 6=i) ∈ N be the corresponding adjusted (maximal) length. Then

there exists λ ∈ ∆m (where λj = 0 for all j ≤ m s. th. Tj = 0) such that

PT (F ) =
∑
j 6=i≤m

λjPL(Dj
i (k))

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N: Dj
i (1, V ) = (cVi ) ∈ CV and

Dl
j(1/2, 2W ) = (cWj , c

W
l ) ∈ C2W . Let F = Dj

i (1, V ) ◦Dl
j(1/2, 2W ), then there exist

λ ∈ int(∆2) such that

PV+2W (F ) = λPmax{V,W}(D
j
i (1)) + (1− λ)Pmax{2V,2W}(D

l
j(1/2)).

Part (i) states that the belief induced by an anchored chain is a weighted average of

the beliefs induced by the related (replicated) anchored databases. The very similar

and almost disjoint databases allow a simple averaging, which keeps the normative

appealing spirit of the Concatenation Axiom. The databases share only one identi-

cal precise piece of information (the anchor case in kL-many observations). Hence

its induced identical estimate is contained in all their induced beliefs. This allows

to ”neglect” its impact for the determination of the average weights. Since in ad-

dition the mutually different non-anchor cases appear only in one of the anchored

databases, there emerge no difficulties in (cognitively challenging (interwoven)) bal-

ancing of differently cautious estimations based on identical, but differently precise

observations in various databases. Thus, the anchored-agent can basically determine

the average weights based on judging the relative importance and relevance of the

mutual different non-anchor cases.20 In this way, an anchored agent can find the

average weights in a very simple case by case comparison.

The particular (maximal adjusted) length of the related corresponding concate-

nating databases ensures that the most precise case in an anchored chain is captured

objectively in the average of their induced beliefs. An cautious agent does not ac-

cept an average of beliefs induced by databases that evoke less precise estimations

regarding this information, since this would directly imply a distortion of the preci-

sion of the belief induced by the anchored chain.

We continue the Examples to illustrate the anchored Concatenation Axiom.

(i) continued: The belief induced by F = (c60
1 , c

10
2 , c

20
3 ) is an average of the beliefs

20Of course, the estimation based on the anchor case is not contained in the same weight in each
belief, but this is directly adjusted for by assigning the desired weights to the beliefs induced
by the particular databases.

34



2.4 Axioms

induced by D2
1(2

3
, 90) = (c60

1 , c
30
2 ) and D3

1(2
3
, 90) = (c60

1 , c
30
2 ). Since by construc-

tion the estimate based on the anchor case c1 is identically contained in all beliefs,

the doctor can neglect its influence of the anchor case for determining the average

weight. Hence the weights can be easily determined by just comparing the relative

(a frequency-weighted) importance of c30
2 and c30

3 for evaluating the remaining parts

of the anchored chain (c10
2 , c

20
3 ). Intuitively, the discrepancies in the precisions for c2

and c3 are negligible, since the focus lies predominantly on capturing perfectly the

impact of the most precise case c1. This is directly achieved in this example, since

the most precise case c1 is also the anchor case, and hence appears equally often in

all databases.

(ii) continued: The belief induced by F = (c30
1 , c

40
2 , c

80
3 ) is an average of the beliefs

induced by D2
1(1

5
, 100) = (c20

1 , c
80
2 ) and D3

1(1
5
, 100) = (c20

1 , c
80
3 ). Again, the anchor

case c1 appears equally in both replicated anchored databases, i.e. c20
1 , which en-

ables to neglect it for finding the average weight. The agent only needs to weight

the amount and relevance of c80
2 and c80

3 for judging (c40
2 , c

80
3 ). Thereby it is essential

that the most precise case (in the anchored chain F) c3 is captured perfectly. The

discrepancies in the objective precisions for the cases c1 (20 in Dj
1 vs 30 in F) and

c2 are negligible, since the focus lies on capturing the most precise information c3

objectively.

A straightforward consequence of the agent’s focus on the most precise case and

the specific structure of the anchored databases is that the estimations based on

minor precise pieces of information are not made in their objective precision, but in

the precision of the most precise case. This can be seen directly by the recursive ap-

plication of the anchored Concatenation Axiom, i.e. PT (D) =
∑

c∈D λcP
c
maxc fD(c)·T

for appropriate λc ∈ (0, 1).

Since this structure (obviously) reappears in our representation theorem, we will

postpone the discussion of its plausibility and reasonability to Section 2.5.1.

Part (ii) of the anchored Concatenation Axiom describes just a restriction to the

very intuitive requirement that a belief induced by a combination of two disjoint

databases should lie in between the induced beliefs of the disjoint databases sepa-

rately. Averaging beliefs based on disjoint database are at the heart of the axiom,

since there are no interdependencies between the information (and their precision)

in the different databases. Furthermore, the axiom requires averaging only for very

specific databases, i.e. a database consisting only of observations of one case and

a database containing (potentially different, but) equally many observations of two
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other cases. The main assumption concerns the condition on the lengths that is

again driven by the agent’s focus on the most precise cases, in the sense that the

most precise information should be captured equally in all averaging beliefs induced

by the respective databases.

Constant Similarity Axiom (for maximal anchored version)

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iDj

i (k, Tj) and

let L ∈ N be the corresponding adjusted (maximal) length, i.e. L = L(k, (T ji )j 6=i).

If there exist some vector λ ∈ ∆m, (where λj = 0 for all j ≤ m such that Tj = 0)

such that for some Z ∈ N the following equation holds:

PZT (FZ) =
m∑
j 6=i

λjPLZ(Dj
i (k)),

then this equation holds for all Z ∈ N.

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N F = Dj
i (1, V ) ◦Dl

j(1/2, 2W ).

If there exist λ ∈ int(∆2) for some Z ∈ N such that the following equation holds:

PZ(V+2W )(F
Z) = λPZ max{V,W}(D

j
i (1)) + (1− λ)PZ max{2V,2W}(D

l
j(1/2)),

then this equation holds for all Z ∈ N.

The average weights (λj)j are related to (frequency weighted) relevance or similarity

weights, which could in principle depend on the length of the database. However,

the Constant Similarity Axiom allows to identify the similarity function independent

of the content and the size of the databases. It is reasonable to require a length-

independent similarity if the similarity values are determined by some primitive or

prior knowledge about the environment, which can not be learned, influenced or

based on the information contained in the database. Of course, the axiom is ques-

tionable if an agent uses the databases not solely for evaluation of the outcome

distribution, but also to learn something about structural (causal) relationship of

particular features in the cases. However, the approach taken in this work excludes

such deductive reasoning in deriving and updating the similarities from underlying

databases.21

21For deductive reasoning see also Section 2.5.4 about the relationship to statistical methods.
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2.5 Representation result of cautious belief formation

2.5.1 Representation Theorem with maximal anchored axioms

Theorem 2.1

Let there be given a function P : C∗ → ∆(R). Let PT be the restriction of P to CT

for T ∈ N. Let P satisfies the Learning and the Diversity Axiom.

Then the following are equivalent.

(i) The function P satisfies the Invariance, the maximal anchored Concatenation

and the Constant Similarity Axiom

(ii) There exists for each (T, c) ∈ N× C a unique P c
T ∈ ∆(R), and a unique -up to

multiplication by a strictly positive number- strictly positive function s : C → R+,

such that for all T and any D ∈ CT :

PT (D) =

∑
c∈D s(c)fD(c)P c

T ∗D∑
c∈D s(c)fD(c)

, (2.4)

where T ∗D ∈ N+ is defined by T ∗D := T ·maxc∈C fD(c).

Rough sketch of the proof:

The necessity part is straightforward calculations. The sufficiency part follows the

rough structure of the proof of BGSS and EG, but differs in the crucial arguments.

The idea is to transform the framework from the space of databases to the space

of frequency vectors that is structurally more tractable, i.e. the belief based on

databases PT (D) =

∑
c∈D s(c)fD(c)P c

T∗
D∑

c∈D s(c)fD(c)
for D ∈ CT translates to frequency vectors

PT (f) =

∑
j≤m sjf(j)P j

T∗
f∑

j≤m sjf(j)
for f that represents D ∈ CT via f = fD ∈ ∆(C) .

The essential part of the proof is to derive the similarity weights (si)i≤m. This will

be down inductively over m = |C|.
Step 1: Base case for the induction, i.e. |C| = m = 3, w.l.o.g. C = {c1, c2, c3}, i.e.

aim to find s1, s2, s3.

Step 1.1: A function P satisfying the anchored Concatenation and Constant Similar-

ity Axiom can be written as PT (f) =
∑

j≤m λiPT ∗f (f j) for some appropriate λ ∈ ∆3

and j-th unit vectors (f j)j. Plugging f := 1
3
(f 1 + f 2 + f 3) into this equation and

in the representation given by the theorem yields (with the Diversity Axiom) the

similarity values in terms of λ ∈ int(∆3). Using these derived similarity values, we

will define P s
T (f) :=

∑
j≤3 sjf(j)PT∗

f
(fj)∑

j≤3 sjf(j)
for all f ∈ ∆(C) and T ∈ N. The aim is to

show that

PT (f) = P s
T (f) (2.5)
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2 Cautious Belief Formation

for all f ∈ ∆(C). Of course (f j)j≤3 and f do already satisfy this equality.

Step 1.2: Partition the simplex ∆(C) into so called simplicial triangles recursively

and show that PT (f) = P s
T (f) for all simplicial points. Simplicial partitions are

defined as follows (see Figure 2.1 in Section 2.9.6). The 0-th simplicial partition is

exactly the simplex, i.e. consists of vertices qj0 ∈ ∆(C), which are exactly the unit

vectors f j for j = 1, 2, 3. The first simplicial partition of ∆(C) is a partition to four

triangles separated by the segments connecting the middle points between the two

of the three unit frequency vectors, i.e. q1
1 := (1

2
f 1 + 1

2
f 2), q2

1 := (1
2
f 2 + 1

2
f 3) and

q3
1 := (1

2
f 3 + 1

2
f 1). The second simplicial partition is obtained by similarly parti-

tioning each of the four triangles to four smaller triangles, and the l-th simplicial

partition is defined recursively. The simplicial points of the l-th simplicial partition

are all the vertices of triangles of this partition.

Based on the fact that the points of the 0-th simplicial partition and f already sat-

isfy (2.5), the idea of the proof is to find a recursive procedure to cover all points of

any l-th simplicial partition.

The underlying intuition and reason that allows such a procedure is the following

observation. For any four specifically structured frequency vectors (namely anchored

frequency vectors or the pairs of vectors appearing in the anchored Concatenation

Axiom (ii)) that fulfill equation (2.5), also the intersection of the lines between two

of these vectors satisfies (2.5). The crucial step in the proof is to apply his fact

in a appropriate recursive way. Our ”algorithm” -which is different than the one

in BGSS and EG- ensures that all simplicial points of any l-th partition satisfies

equation (2.5).

Step 1.3: Show that PT (f) = P s
T (f) for all frequency vectors f ∈ ∆(C) for |C| = 3.

One can show that the beliefs P and P s induced by a sequence of simplicial points

that approximates f converge to the belief of P and P s induced by its limit f. Thereby

the Learning Axiom ensures the existence of such a limit belief. Thus the base case

for the induction is shown and we need to proceed with

Step 2: |C| = m > 3.

Step 2.1: Determination of s1, .., sm.

One can show that the similarity weights derived in Step 1 for any set of basic

cases C = {ci, cj, ck} are independent of the triplet {i, j, k} and thus we can define

P s
T (f) :=

∑
j≤m sjf(j)PT∗

f
(fj)∑

j≤m sjf(j)
for all f ∈ ∆(C) and T ∈ N.
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2.5 Representation result of cautious belief formation

Step 2.2: Show PT (f) = P s
T (f) for all f ∈ ∆(C) via induction over m and us-

ing Step 1 (m = 3) as base case.

Any f ∈ ∆(C) can be written in m different ways as anchored chain with respect

to m different anchors. Applying the maximal anchored Concatenation Axiom to

these m different anchored chains delivers m-many different hyperplanes. Each of

these hyperplanes is spanned by m−1- many beliefs induced by anchored frequency

vectors, for which already the equation (2.5) holds by induction assumption. Since

both P s
T (f) and PT (f) are elements of all these m many hyperplanes and one can

show that their intersection is unique, we have also (2.5) for all f ∈ ∆(C), which

concludes the proof.

Although the rough structure of the proof is similar to BGSS and EG, our proof

needs different arguments to complete the different parts of the proof. In partic-

ular the anchored version version of the Concatenation Axiom requires a different

recursive approach/algorithm to cover all simplicial points (Step 1.2), which is the

crucial step of the proof. Namely, in BGSS the combination of any databases or

frequency vector is allowed. Also in EG the combination of any frequency vectors

(by taking care about the lengths and the Constant Similarity Axiom) is basically

possible. However, we can combine only specific anchored databases or frequency

vectors. Also the induction step (Step 2.2) requires a different reasoning as in BGSS

or EG. As in EG, the Constant Similarity Axiom is an essential ingredient to facil-

itate the proof.

Interpretation of Theorem

The induced belief is a frequency and similarity weighted average of the estimations

based on past observations. All estimations (P c
maxc fD(c)T )c∈D are made according to

the level of cautiousness implied by the most precise case. This means that only the

most precise piece of information is captured objectively in its estimation. Hence, the

axiomatized belief formation does not achieve a perfectly objective representation

(as mentioned in (2.2)) without any imagination effort. However, such a ”perfect

imagination-free representation ” is impossible for a sufficiently rich Concatenation

Axiom (see Section 2.7.3) and also carries some drawbacks (see the discussion after

(2.2)). In any case, we are not concerned with imagining additional information to

take into account objective precision.

In fact, in first place we are interested in capturing the perception of precision

in form of the induced psychological effects on cautiousness and confidence. This is
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2 Cautious Belief Formation

essential for small database containing relatively few information and is manifested

in the way how estimations P c
T ∗D

are made. From this perspective, the seemingly un-

desirable imagination in the axiomatized belief delivers the following intuitive and

reasonable interpretation. The underlying intuition is that an agent does not adjust

constantly her cautiousness and confidence attitude in response to each differently

precise information she encounters in a database. Rather, once an agent has ex-

perienced a (extreme) cautiousness and confidence feelings while estimating based

on objectively available information, she keeps, adopts and transmits her developed

feeling to other estimation situations. A fixed level of cautiousness according to

which all estimates are made can be interpreted as an gained attitude regarding

cautiousness or as a learned skill or ability to confidently estimate sufficiently cau-

tiously. In this way, it is a sustainable reference or state of mind, which does not

vanish and change for each new estimation.

For instance, an agent gained a feeling of cautiousness in the spirit of eliminating

un-reasonable outcomes. Suppose she feels confident and considers herself cautious

enough to assign only a small probability ε to non observed outcomes r̃ 6= r in

estimating based on c = (x, r)L. Separately, her estimation induced by c′ = (x′, r′)T

with T > L assigns a slightly lower likelihood ε′ < ε to the not observed outcome

r̃ 6= r′ according to her lower cautiousness and higher confidence. Assume now that

in the past she has only estimated according to a precision level lower than L and

someone tells her that T −L pieces of information c were lost and she should better

estimate according to T many imagined observations. Without having experienced

estimating according to higher precision T (i.e. how far she can narrow down the

estimation) and being unable to imagine how she would feel if this information would

be objectively available, she might still stick to her already made estimation based on

objective information cL. However, if the agent would have estimated based on case

(c′)T in the past, then she has experienced her feeling of estimating according to the

objective precision in (c′)T and might adopt and apply the ”learned” procedure how

to eliminate and assign the likelihoods confidently for cT without concerns about

being too in-cautious.

The most intuitive choices for adopting a specific attitude towards cautiousness

are the two extreme situations, i.e. the least and most cautious (and confident)

experiences. The most precise case might come directly to her mind, because it has

been observed most frequently in the database and induces an attitude of (least)

cautiousness (and highest confidence) that is the basis for all estimation. In some

sense the most confident and least cautious feeling outshines and distracts from any

other more cautious perceptions. In contrast, the least precise information might

40



2.5 Representation result of cautious belief formation

intimidate or scare an agent and leaves a very cautious impression. She cannot be

persuaded to leave her skeptical mood for a less cautious attitude that might be

more appropriate for the remaining more accurate information. In our represen-

tation we focus on the optimistic view, i.e. our agent estimates according to the

confidence and cautiousness gained and experienced by estimating the most precise

information in the database.

In this way it is reasonable and natural to interpret the imagination of additional

information in the sense of estimating according to an experienced cautiousness level

or as gained skill to estimate cautiously.22

Differences in imagined information and its imagined perception

In fact, the imagination of further additional information or more precise cases

is not the cognitive difficult or challenging part in estimating based on imagined

information. Think about our doctor, who just needs to imagine that the same

patient enters her office again and shows the same outcome after being treated iden-

tically. Hence, the difficult part is to imagine the ”correct” feeling, which would

be induced by objective precision, but which is actually only existing in imagined

precision. Put differently, usually the implied perception of imagined (non exist-

ing) precision differs from the perception based on objective precision. The beliefs

(EG and partly our) require that agents are able to ignore this difference, which

might be fine if agents have experienced already a situation in which they actually

estimated according to that objective precision and know her induced perception of

that precision (as in our work). However, if an agent has never experienced such

a situation before (as in EG), the requirement to imagine her feeling ”correctly”

(i.e. ignore the differences) is cognitively challenging and psychologically confusing

and can be interpreted as intentionally lying to yourself without noticing. Does our

doctor judge the treatment less cautiously after adding an imagined patient to her

record?

2.5.2 Comparison to related belief representations

The initial motivation of EG and our paper is to modify the Concatenation Axiom

of BGSS to capture variations in the precision of data. A related and implied issue

concerns the way how an agent is capable to deal with the problem of combining

22From that perspective, our representation is even more convincing than the perfectly objective
imagination-free representation (2.2), in which the cautiousness and confidence is altered for
each case, putting the agent in different moods of cautiousness and confidence for each piece of
information.
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2 Cautious Belief Formation

beliefs that might be based on identical, but different precise information and thus

contain induced differently cautious estimates.

BGSS, EG and our work share the property that eventually the estimations in-

volved in the final representation of a belief are subject to an unique level of preci-

sion.23 By that, technically speaking the aggregation of different precise information

is eventually not an issue. However, from an interpretational perspective, there are

important differences in the motivation and reasonability of the corresponding Con-

catenation Axioms.

Consider for example the database D = (c3
1, c

4
2, c

2
3) for which a purely objective

agent forms a belief according to P (D) ∈ conv({P (c3
1), P (c4

2), P (c2
3)}). In BGSS, the

induced belief is given by P (D) ∈ conv({P (c1), P (c2), P (c3)}), which neglects pre-

cision and cautiousness completely. EG gives P (D) ∈ conv({P (c9
1), P (c9

2), P (c9
3)}),

where no involved estimation is made according to its objective precision. Apart

from the (unproblematic) imagination of additional pieces of observation for all

cases, the main problematic point is the imagination on how this imagined precision

is perceived, since the estimation is based on a never (not yet) experienced cautious-

ness level 9 (see also the discussion above). In our paper, the belief would be based

on the most precise information, i.e. P (D) ∈ conv({P (c4
1), P (c4

2), P (c4
3)}), which also

would require some (unproblematic) imagination of additional observations with re-

spect to objective precision. However, the perception of this precision needs not to

be imagined, since the agent estimates according to an already experienced precision

and cautiousness level 4 (experienced for c2).

Arad and Gayer (2012) analyze beliefs based on datasets containing imprecise

pieces of information in the sense that ”it is not entirely clear what occurred in

them”. Roughly speaking, their approach models this sort of imprecision (ambigu-

ity) by assuming subjective capacities. The rough relationship to the approaches

discussed above is that these capacities would play the role of the probabilistic es-

timations occurring in the axiomatized representations of BGSS, EG and ours.

2.5.3 Remarks on the similarity function

One could be tempted to perceive and interpret the belief formation approaches as

a translation of the question from which probability to assign to which similarity to

employ. This is not completely misleading since the axiomatizations do not provide

help in choosing the similarity function. This problem occurs in a similar spirit for

the choice of a prior in the Bayesian approach. In the axiomatizations the similar-

ity function is derived from presumably observable probability assignments given

23in BGSS: P c
∞ for all D ∈ C∗, in EG: P c

T for all D ∈ CT and here PmaxcfD(c)T for all D ∈ CT .
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various databases. Fortunately, the similarity values need not satisfy any partic-

ular properties (even no symmetry) and hence can be derived also objectively or

empirically. For example, Gilboa et al. (2006) estimate an empirical similarity func-

tion from the data by asking which similarity function best explains the observed

data in a similarity-weighted frequency formula. Billot et al. (2004) axiomatized an

exponential similarity function. Moreover, assigning similarities appears to be cog-

nitively easier than stating explicit probabilities and many models in the psychology

and computer-science literature deal with determination of similarity measures (e.g.

Tversky (1977), Schank (1986), Heit, Heit and Rubinstein (1994), Goldstone and

Son (2005)).

2.5.4 Remarks on relationship to statistical methods

In the introduction we mentioned already the relationship between the axiomatic

approaches to belief formation in the data-based information structure and statisti-

cal approaches like inferences. In this section we want to discuss shortly similarities

and differences to existing statistical methods. Obviously, the versions of the Con-

catenation Axioms and the derived representations satisfies the following special

cases of frequentism. For s(xi, xt) = 1, our belief formation coincides with the sim-

ple average or frequentist approach if we identify with P c a Dirac measure on the

actually observed outcome. However, the conditional frequentist cannot be covered

since the corresponding s(xi, xt) = 1{xt=xi}(xi) is not strictly positive (as required),

but Bleile (2014b) (or Chapter 3) offers a modification that captures it. Gilboa

et al. (2010, 2011) and EG show the compatibility with other statistical methods,

like kernel estimation and classification (e.g. assign x to either class a or b: de-

fine s(a, (xc, ac)) = k(xc, x)1{a=ac} using a kernel function k). As discussed in more

detail in Gilboa et al. (2010) p. 16f, the framework can be also employed in con-

texts, where the observations (e.g. cases) and the prediction (e.g. possible theories)

are structurally disjoint. For instance ranking theories by log likelihood methods

s(t, c) = log(p(c|t)) is also possible where t represent a theory and p(c|t) denotes the

conditional likelihood of case c if theory t is true.

However, the main difference to statistical inference is that the axiomatic ap-

proaches are concerned with inductive reasoning and do not allow for deductive

reasoning, which is the issue of traditional statistical regression approaches. Let

there be a database consisting of observation D = ((xi, ri)i≤n) and a new prob-

lem xt. A regression approach would try to learn the (empirical) similarity weights

(s(xi, xt))i that best explains the database by best fitting an estimate of rj for all

j ≤ n and rsj =
∑
i6=j s(xi,xj)ri∑
i s(xi,xj)

(see also Gilboa et al. (2006)). Hence in a statistical
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regression context the weights s are deduced endogenously via the observed data and

are updated with new observation, i.e. the weights would be database dependent.

Put differently, linear regression analysis (and empirical similarities) use deductive

reasoning to derive the weights and then apply them inductively to infer the predic-

tion. In contrast, the Constant Similarity (and the Concatenation) Axiom requires

that the weights are fixed and database independent, i.e. there is no updating or

learning of the weights.

However, the axiomatization of a belief formation (in close relationship to statis-

tical methods) is still meaning- and insightful, since it allows to inspect, how plausi-

ble, consistent and sensible (in the sense of normative appealing axioms) asymptotic

statistical methods are also for small database and its implied precision related con-

cerns. From this perspective, axiomatizations suitable for small databases (as done

here) play an important role in order to find a sound foundation of statistical meth-

ods in non-asymptotic contexts.

Basically, our paper tries to capture exactly the environment of small databases,

whereas the framework of implied instantaneously perfect learning of BGSS and

EG are rather embeddable in an asymptotic setup. Interpreting EG in asymptotic

terms requires some explanation, since EG is intended to deal with different (”non-

asymptotic”) precisions. From our point of view, when dealing with small and

less precise databases, not only the objective precision is important for the belief

formation, but also an agent’s feeling regarding the precision (e.g. in terms of its

implied cautiousness). In this context, EG’s axiomatized agent is able to imagine the

true feeling induced by any imagined level of precision, as if she actually observed

the precision objectively and experienced that feeling. Endowed with this skill (of

”perfect” imagination of feelings), it appears un-intuitive that an agent limits herself

to use it only until an arbitrary pre-specified level of precision (given by the entire

amount of observations in the database, i.e. unrelated to any former experience).

Rather one would expect her to continue (unboundedly) with the imaginations such

that she will estimate according to an imagined full precision level P c
∞ for all c ∈ D

and does not need to deal with imprecisions at all. Thus, from our perspective the

approaches of BGSS and EG coincide for an interpretation in terms of precision

related perception and feelings.

2.6 Conclusion

Chapter 2 deals with the question how agents form beliefs explicitly in an envi-

ronment with limited, heterogenous and differently precise information that cannot
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be condensed into a widely used (perfect) state space a la Savage. We axiomatize

a belief formation that can be interpreted as a generalized subjective frequentist

approach that incorporates subjective perceptions regarding the relevance and pre-

cision of the information in the database. We identify increasing precision of infor-

mation by additionally observed pieces of confirming information.

Our work is based on the axiomatization of a belief in BGSS that neglects the po-

tential impacts of differently precise information. Thereby, their belief formation is

most suitable for sufficiently large databases and less reasonable for small databases,

which are captured by our approach. Their belief formation implies that an agent is

able to perfectly learn from observations in a very objective and instantaneously way,

without displaying any sense of cautiousness and concerns about being potentially

mistaken. Our axiomatized cautious belief focusses on precision related cautiousness

and confidence in the predictions. The different versions of the main Concatenation

Axiom in the approaches of BGSS, EG and ours describe the relationships between

databases and their induced beliefs. In the context of caring for precisions in a

cautious belief formation an agent following the Concatenation Axiom of BGSS and

EG’s version would be faced by immense cognitive problems to handle and com-

pare differently precise pieces of information contained in different databases. Our

modification and restriction of the axiom takes into account these precision related

cognitive problems in describing the relationships. This is achieved by requiring that

agents only need to be capable to determine the relationship between databases and

their induced beliefs for specifically structured (almost disjoint) databases that al-

low an cognitively easy comparison (without precision and cautiousness concerns).

Moreover, it states that an agent controls for precision and its perceptional impacts

in a cautious belief by capturing the most precise (and hence reliable) information

objectively in its induced belief.

The resulting cautious belief is a weighted sum of cautious estimates induced by past

observed information. The weights are determined by frequencies of the observed

cases and their similarities with the problem under consideration. The induced es-

timates depend on a cautiousness level implied by the most precise case, which can

be interpreted as the appropriate (gained) attitude regarding cautiousness in this

database.
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2.7 Further remarks and considerations

2.7.1 Incompatible objective belief formation

An objective belief without any imagination effort for each case reads

PT (D) =

∑
j≤C s(cj)fD(cj)P

cj
fD(cj)·T∑

j≤C s(cj)fD(cj)
.

Is there a modification of the Concatenation Axiom that is necessary for an objec-

tive representation and which database are admissible?

(Specifically) Modified Version of the Concatenation Axiom

For two databases D ∈ DT1 and E ∈ DT2 , T := T1 +T2 and two numbers G,H ∈ N+

such that fD ·G ∈ Nm and fE ·H ∈ Nm, there exists a λ ∈ (0, 1) such that

PT (D ◦ E) = λPL(DG) + (1− λ)PH(EH).

Applying the objective belief to the modified Concatenation Axiom yields:∑
j≤m s(cj)fD◦E(cj)P

cj
fD(cj)T1+fE(cj)T2∑

j≤m s(cj)fD◦E(cj)
= λ

∑
j≤m s(cj)fD(cj)P

cj
fD(cj)L∑

j≤m s(cj)fD(cj)

+(1− λ)

∑
j≤m s(cj)fE(cj)P

cj
fE(cj)H∑

j≤m s(cj)fE(cj)

We do not consider a law of dynamics for the probabilities P
cj
T (which is also not

reasonable), e.g. like some function Y of P
cj
T = Y (P

cj
L , P

cj
H ). Thus, we directly need

to equalize the precision level for the estimations for each single case, i.e. for all

j ≤ m

Situation 1

Assume that there exists c ∈ D such that fD(c) = 0, then we get directly from

fD(c)T1 + fE(D)(c)T2 = fE(c)H

that H = T2. Assume that there is another c ∈ D∩E, then we have that fD(c)T1 +

fE(c)T2 = fE(c)T2 = fD(c)G, which is impossible. Hence, a databases D with

fD(c) = 0 for some c ∈ D allows only concatenations of disjoint databases.

Situation 2

We consider only databases that share the same support, i.e. fD(c) > 0 iff fE(c) > 0.

Thus we need to have fD(c)T1 + fD(c)T2 = fD(c)G = fE(c)H. Summing over all
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c ∈ D ∩ E leads to T1 + T2 = G = H. This also implies that fD(c) = fE(c)

for all c ∈ D ∩ E. Thus, the only non-disjoint concatenating database a modified

Concatenation Axiom allows for are replicated identical databases, which is naturally

true for all λ ∈ (0, 1), i.e. PT1+T2(A) = λPT1+T2(A) + (1− λ)PT1+T2(A).

In sum, a objective belief satisfies a modified Concatenation Axiom only for con-

catenations of disjoint databases or replicated identical databases. However, it will

become clear in the proof that a restriction to disjoint concatenating databases offers

not sufficient structure to derive the desired objective belief.

2.7.2 Relationship to EG’s axiom ”Concatenation restricted to

databases of equal length”

As mentioned at the end of Section 2.4.2, a Concatenation Axiom that allows for

concatenations of any unrestricted databases faces immense compromising between

differently precise (or cautious) estimates. This can only be avoided by assuming a

common arbitrary level of precision according to which all cases are estimated, inde-

pendent of the objective precision of the information. For each piece of information,

literally agents need to imagine (or forget) sufficiently many observation of cases to

reach an assumed artificial common level of precision. This ensures that no con-

siderations and compromising regarding different precisions is required and allows

an easy averaging based only on relative relevances of the concatenating databases.

However, thereby an agent also needs to know a priori that she evaluates all infor-

mation in an imagined precision and the beliefs contains only (imagined) equally

precise and cautious estimations. Consequently, a version of a Concatenation Ax-

iom that cares for precision and also applies to arbitrary non-disjoint concatenations

accomplishes the averaging of differently precise information by explicitly assuming

(consciously) away these differences. This is somehow problematic if one wants to

take precision into account seriously.

Nevertheless, this discussion delivers an explanation and intuition for the (unex-

plained) statement in EG: ” ... we modify the Concatenation Axiom of BGSS by

restricting it to databases of equal length, i.e. thus controlling for the ambiguity

resulting from insufficient amount of data ”. Their restriction to equal lengths is

ad hoc. However, technically one could argue for the equal length assumption by

referring to the discussion above. An aggregation of differently precise information

is only feasible if estimations are based on a common precision level, which is a

consequence of the restrictions in their axiom. More detailed, their axiom demands

that for a set of n databases of the same length T, that can be concatenated to a

n-times replication of a database, a belief induced by this database (not the n-th
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replication) is a average of the beliefs induced by each of the n databases separately.

Obviously, this implies for a appropriate set of concatenating databases (consisting

only of a single case)24 that the belief induced by the database - which underlie the

n-th replication- is formed by an average of the beliefs induced by T-times observed

cases, i.e. for some appropriate (λc)c∈D ∈ (0, 1)

P (D) =
∑
c∈D

λcP (cT ).

Thus, the restriction to equal lengths implies directly that all contained estimation

are based on this common level as well. In this way, EG is indirectly adopting the

procedure discussed above.

However, as already discussed, from our perspective and motivation, equal lengths

of database are not sufficient to control for precision of its contained information.

Moreover, in the spirit of the above discussion, EG’s restriction to equal lengths

cannot be meaningful interpreted as controlling for imprecision, but more as an

(implicit) proposal to employ the length of the entire databases as the common

(imagined) precision level according to which all estimations are made.

2.7.3 Minimal anchored axiomatization

Instead of focussing on the most precise case in a database to determine the precision

of its induced belief, we can also take the least precise case as the key determinant

for the precision of a belief. This modification results in a minimal version of an

anchored Concatenation and Constant Similarity Axiom and a corresponding ex-

tremely cautious belief formation.

Definition 2.4

Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m.

A length M ∈ N is called the adjusted (minimal) length, denoted M(k, (Tj)j 6=i≤m),

if it is such that the number of observations of the least frequent case in an an-

chored chain F ∈ CT is identical to the number of observations of the least fre-

quent case in the anchored databases Dj
i (k, L) (for all j 6= i) (i.e. minc∈C fF (c)T =

minc∈C fDji (k,M)(c)M).

Minimal Anchored Concatenation Axiom:

(i) Let F ∈ CT be an anchored chain of (Dj
i (k, Tj))j 6=i≤m, i.e. F = ◦mj 6=iDj

i (k, Tj) and

let M = M(k, (T ji )j 6=i) ∈ N be the corresponding adjusted (minimal) length. Then

24This is always possible, for example consider D = (c21, c2, c
3
3) ∈ C6, then D6 = (c61) ◦ (c61) ◦ (c62) ◦

(c63) ◦ (c63) ◦ (c63), which implies P (D) = λ1P (c61) + λ2P (c62) + (1− λ1 − λ2)P (c63)
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2.8 Proof of Theorem 2.1, necessity part

there exists λ ∈ ∆m (where λj = 0 for all j ≤ m s. th. Tj = 0), such that

PT (F ) =
∑
j 6=i≤m

λjPM(Dj
i (k)).

(ii) Let for three distinct i, j, l ≤ m and any V,W ∈ N F = Dj
i (1, V ) ◦Dl

j(1/2, 2W )

then there exist λ ∈ int(∆2):

PV+2W (F ) = λPmin{V,W}(D
j
i (1)) + (1− λ)Pmin{2V,2W}(D

l
j(1/2))

For an analogously adjusted Constant Similarity Axiom the resulting theorem

reads:

Theorem 2.2

Let there be given a function P : C∗ → ∆(R). Let PT be the restriction of P to CT

for T ∈ N+. Let P satisfies the Learning and the Diversity Axiom.

Then the following are equivalent:

(i) The function P satisfies the Invariance, the minimal anchored Concatenation

and the (minimal) Constant Similarity Axiom.

(ii) There exists for each (T, c) ∈ N× C a unique P c
T ∈ ∆(R), and a unique -up to

multiplication by a strictly positive number- strictly positive function s : C → R+,

such that for all T and any D ∈ CT :

PT (D) =

∑
c∈D s(c)fD(c)P c

TD∗∑
c∈D s(c)fD(c)

,

where TD∗ ∈ N+ is defined by TD∗ := T ·minc∈D fD(c).

Interpretational, this means that all estimations are based on the least precise infor-

mation contained in the database and no information needs to be imagined. How-

ever, the focus on the least precise information results in neglecting and discarding

many more precise pieces of information, by processing only until the level of least

precision. A detailed interpretation in terms of perception of precision and an adop-

tion of an implied attitude of extreme cautiousness can be found in the discussion

after Theorem 2.1.

2.8 Proof of Theorem 2.1, necessity part

We need to show that the representation (2.4) satisfies the axioms. The Invariance

Axiom is obviously met.
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2 Cautious Belief Formation

Maximal Anchored Concatenation Axiom, part (i):

Let D ∈ CT be a chain of Dj
i (k, Tj) = (c

(1−k)Tj
j , c

kTj
i ) for all j 6= i ≤ m and

T :=
∑

j 6=i Tj, i.e.

D = ◦j 6=iDi = (c
(1−k)T1

1 , c
(1−k)T2

2 , ..., c
(1−k)Ti−1

i−1 , ckTi , c
(1−k)Ti+1

i+1 , ....., c
(1−k)Tm
m ).

Let L = L(k, (Tj)j 6=i) be the corresponding adjusted length. Hence, we have

fD = ( (1−k)T1

T
, (1−k)T2

T
, ...., (1−k)Ti−1

T
, k, (1−k)Ti+1

T
, ..., (1−k)Tm

T
)t and

fDji (k,ZTj)
= (0, ..., 0, (1− k), 0, .., 0, k, 0, ..., 0)t for any Z ∈ N.

Observe that fDji (k,Tj)
= fDji (k,ZTj)

and hence we will abbreviate fDji (k,ZTj)
by fDji (k).

Let T ∗D := T maxc∈D fD(c), then:

PT (D) =

∑
c∈C s(c)fD(c)P c

T ∗D∑
c∈C s(c)fD(c)

=
1∑

c∈C s(c)fD(c)
·
(∑

j 6=i
s(cj)

(1− k)Tj
T

P
cj
T ∗D

+ s(ci)

∑
j 6=i kTj

T
P ci
T ∗D

)
=

1∑
c∈C s(c)fD(c)

·
(∑

j 6=i

[
s(cj)

(1− k)Tj
T

P
cj
T ∗D

+ s(ci)
kTj
T
P ci
T ∗D

])
=

1∑
c∈C s(c)fD(c)

·
(∑

j 6=i

Tj
T

∑
c∈C

s(c)fDji (k)(c)P
c
T ∗D

[∑
c∈C s(c)fDji (k)(c)∑
c∈C s(c)fDji (k)(c)

])
To proceed, we need to specify T ∗D = maxc∈C fD(c) · T , which is by definition of the

adjusted length L exactly equal to maxc∈C fDji
(c)L. Observe that (∗)∑c∈C s(c)fD(c) =∑

j 6=i
Tj
T

∑
c∈C s(c)fDji (k)(c), hence

PT (D) =
1∑

c∈C s(c)fD(c)
·
(∑

j 6=i

Tj
T

∑
c∈C

s(c)fDji (k)(c)

∑
c∈C s(c)fDji (k)(c)P

c
maxc∈C f

D
j
i

(c)L∑
c∈C s(c)fDji (k)

)
(∗)
=

1∑
j 6=i

Tj
T

∑
c∈C s(c)fDji (k)(c)

·
(∑

j 6=i

Tj
T

∑
c∈C

s(c)fDji (k)(c)PL(Dj
i (k, L))

)
=

∑
j 6=i

λjPL(Dj
i (k, L))

From the last equation we get for all j 6= i ≤ m

λj =

Tj
T

∑
c∈C s(c)fDji (k)(c)∑

j 6=i
Tj
T

∑
c∈C s(c)fDji (k)(c)

(2.6)
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2.8 Proof of Theorem 2.1, necessity part

Hence the first part of the anchored Concatenation Axiom is satisfied.

For the Maximal Anchored Concatenation Axiom, part (ii):

let w.l.o.g. Dj
i (1, T ) = D2

1(1, T ) = (cT1 ) ∈ CT and Dl
j(1/2, 2W ) = D3

2(1/2, 2W ) =

(cW2 , c
W
3 ) ∈ C2W , then we need to show:

PT+2W (D2
1(1, T ) ◦D3

2(1/2, 2W )) = λPmax{T,W}(D
2
1(1,max{T,W}))

+ (1− λ)Pmax{2T,2W}(D
3
2(1/2, 2 max{T, L}))

We have Pmax{T,W}(D2
1(1,max{T,W}) = P c1

max{T,W}
Since P satisfies the maximal anchored Concatenation Axiom part (i) we have for

D3
2(1/2, 2 max{T,W}) = D2

1(0,max{T,W}) ◦D3
1(0,max{T,W})

= (c2)max{T,W} ◦ (c3)max{T,W}

with the adjusted length L such that 1
2
2 max{T,W} = L, i.e.

L(0,max{T,W},max{T,W}) = max{T,W}

the existence of some λ ∈ (0, 1) such that

Pmax{2T,2W}(D
3
2(1/2, 2 max{T,W})) = λP c2

max{T,W} + (1− λ)P c3
max{T,W}

Using this, we get for the maximal anchored Concatenation Axiom (ii) the following

representation for some λ ∈ ∆3:

PT+2W (D2
1(1, T ) ◦D3

2(1/2, 2W )) =
3∑
i=1

λiP
ci
max{T,W}

But this is obviously satisfied by the representation (2.4) in Theorem 2.1, since for

the frequency vector fD2
1(1,T )◦D3

2(1/2,2W ) = ( T
T+2W

, W
T+2W

, W
T+2W

, 0, ...., 0)t, we have

maxc∈C fD2
1(1,T )◦D3

2(1/2,2L)(c)(T + 2W ) = max{T,W}, and hence

PT+2W (D2
1(1, T ) ◦ D3

2(1/2, 2W )) =

∑3
i=1 s(ci)fD2

1(1,T )◦D3
2(1/2,2W )

(i)P
ci
max{T,W}∑3

i=1 s(ci)fD2
1(1,T )◦D3

2(1/2,2W )
(ci)

, i.e. for i =

1, 2, 3

λi =
s(c1)fD2

1(1,T )◦D3
2(1/2,2W )(ci)P

c1
max{T,W}∑3

i=1 s(ci)fD2
1(1,T )◦D3

2(1/2,2W )(ci)
(2.7)
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2 Cautious Belief Formation

Hence the (ii)-part of the maximal anchored Concatenation Axiom is also satisfied.

The Constant Similarity Axiom is also satisfied, which can be shown by adopt-

ing the above proof for the anchored Concatenation Axiom.

Replacing D = ◦mj 6=iDj
i (k, Tj) by DZ = ◦mj 6=iDj

i (k, ZTj) (where
∑m

j 6=i Tj = T ) in

the proof of the maximal anchored Concatenation Axiom part (i) and transforming

equation (2.6) delivers the existence of some λj(Z) ∈ (0, 1) such that

λj(Z) =

ZTj
ZT

∑
c∈C s(c)fDji (k,ZTj)

(c)∑
j 6=i

ZTj
ZT

∑
c∈C s(c)fDji (k,ZT )(c)

= λj,

where in the last equation fDji (k,ZT )(c) = fDji (k)(c) is used.

For part (ii), analogous reasoning using equation (2.7) yields the desired result.

Therefore the Constant Similarity Axiom is satisfied, which completes the neces-

sity part of the proof of Theorem 2.1.

�.

2.9 Proof of Theorem 2.1, sufficiency part

An essential step in the proof will be to identify databases with their frequency

vectors of contained cases (and its length), which allows to exploit the more tractable

structure of the space of frequencies on C (rather than the space of databases) and

to adopt the approach taken in BGSS. By the Invariance Axiom each database

D ∈ CT can be identified (with respect to the induced belief formation) by a pair

(fD, T ), where fD ∈ ∆(C) represents a frequency vector of appearances of cases in

the database D and T is the length of the database. Based on this, we will translate

the database structure to a frequency framework.

2.9.1 General definitions for a frequency framework

The set of all frequency vectors on C is given by

∆(C) := {f = (f1, ..., fm) s. th. fi ∈ Q ∩ [0, 1] for all i ≤ m and
∑

i≤m fi = 1}
Without knowing the exact database D that a frequency vector f ∈ ∆(C) represents,

the frequency vector can be linked to infinitely many databases DZ for all Z ∈ N+.

Hence one needs to link frequency and the length of the database for an ”unique”

(up to reordering) representation of a database.
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2.9 Proof of Theorem 2.1, sufficiency part

The following set represents frequency vectors corresponding to databases D ∈ CT :

∆T (C) : = {f ∈ ∆(C) ∩Qm, f(i) =
li
T
, li ∈ N+,

m∑
i=1

li = T and

∃D ∈ CT such that fD(i) = f(i) = li/T}

Observe that if f ∈ ∆T (C), then f ∈ ∆TZ(C) for all Z ∈ N+.

Since the set of cases C is fixed, we reduce the notational effort and will abbreviate

∆T (C) by ∆T , i.e. ∆T denotes the set of all frequency vectors representing databases

of length T and the set of all rational frequency vectors on C is denoted by ∆.

Hence by the Invariance Axiom each D ∈ CT can be represented by a f ∈ ∆T ,

where again f(i) := fD(ci) denotes the frequency of case ci for all i ≤ m.

Definition 2.5

(i) For all j ∈ {1, 2, ...,m} denote by f j the j-th unit vector in Rm, i.e. the frequency

vector representing a database containing only cases cj ∈ C, hence an extremal point

in ∆, i.e. f j = (0, ..., 0, 1︸︷︷︸
j−th

, 0, ..., 0)t

(ii) The frequency vector corresponding to the anchored database

Dj
i (k, T ) = (c

(1−k)T
j , ckTi ) is given by

fDji (k,T ) = (0, ...0, (1− k)︸ ︷︷ ︸
j−th

, 0, .., 0, k︸︷︷︸
i−th

, 0, ..., 0)t

Since fDji (k,W ) = fDji (k,T ) for all T and W, the length is totally immaterial for the

frequency vector and hence neglected from now on, i.e. the frequency vector corre-

sponding to the anchored databases Dj
i (k, T ) for all j 6= i ≤ m is denoted for all T

such that kT ∈ N by

f ji (k) := fDji (k,T )

Note that f ji (k) is still the whole frequency vector, i.e. f ji (k) ∈ ∆, whereas f ji (k)(l)

represents the l-th component of the vector and refers to the frequency of case cl,

i.e. f ji (k)(l) ∈ [0, 1] ∩Q.

2.9.2 Beliefs induced by frequency vectors

From now on we consider only beliefs P that satisfy the Invariance Axiom. Con-

sequently, as mentioned above, we can transform beliefs defined on databases to

beliefs defined on frequency vectors in the following way (remember that we fixed a
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2 Cautious Belief Formation

problem x ∈ X and skip it).

Definition 2.6

The beliefs P : C∗ → ∆(R) and its restriction PT : CT → ∆(R) for all T ∈ N
based on databases translates to corresponding beliefs based on frequency vectors in

the following way:

(i) P : ∆ → ∆(R) such that P (f) := P (D) for f ∈ ∆ and D ∈ C related by

f = fD.

(ii) PT : X × ∆T → ∆(R) such that PT (f) := PT (D) for f ∈ ∆T and D ∈ CT

related by f = fD.

As long as no length is fixed, f ∈ ∆ is universal and the length T of the database that

f represents becomes ”visible” only through the restriction of P (f) to the specific

PT (f), i.e. PT ”pins” down the unique database the frequency vector is able to

represent, namely the database with length T. Of course, under the condition that

the frequency vector allows the existence of such a database with this specific length.

2.9.3 Axioms in the frequency framework

Maximal anchored Concatenation Axiom:

(i) Let there be f ∈ ∆T , for all j 6= i ≤ m f ji (f(i)) ∈ ∆Tj and
∑m

j 6=i Tj = T such

that for (αj)j 6=i≤m ∈ [0, 1] and
∑m

j 6=i αj = 1, i.e. f =
∑m

j 6=i αjf
j
i (f(i)).

Let L = L(f(i), (Tj)j 6=i≤m) ∈ N be the corresponding adjusted length, i.e.

maxi≤m f(i)T = maxl≤m f
j
i (f(i))(l)L = max{f(i), 1− f(i)}L.

Then there exist λ ∈ ∆m−1 (where λj = 0 for all j 6= i ≤ m such that αj = 0), such

that

PT (f) =
∑
j 6=i≤m

λjPL(f ji (f(i)).

(ii) Let f ji (1) ∈ ∆T and f lj(1/2) = (0, ...0, 1/2, 0, ..., 0, 1/2, 0, .., 0)t ∈ ∆2W for distinct

i, j, l ≤ m, then for all α ∈ (0, 1) there exist λ ∈ ∆2 such that

PT+2W (αf ji (1) + (1−α)f lj(1/2)) = λPmax{T,W}(f
j
i (1)) + (1−λ)Pmax{2T,2W}(f

l
j(1/2)).

Constant Similarity Axiom:

(i) Let there be f ∈ ∆T , for all j 6= i ≤ m f ji (f(i)) ∈ ∆Tj such that for (αj)j 6=i≤m ∈
[0, 1] and

∑m
j 6=i αj = 1, i.e. f =

∑m
j 6=i αjf

j
i (f(i)).

Let L = L(f(i), (Tj)j 6=i≤m) ∈ N be the corresponding adjusted length.
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2.9 Proof of Theorem 2.1, sufficiency part

If there exist λ ∈ ∆m−1 (where λj = 0 for all j 6= i ≤ m such that αj = 0), such

that for some Z ∈ N+

PZT (f) =
∑
j 6=i≤m

λjPZL(f ji (k)),

then the equation holds for all Z ∈ N+.

(ii) Let f ji (1) ∈ ∆T and f lj(1/2) = (0, ...0, 1/2, 0, ..., 0, 1/2, 0, .., 0)t ∈ ∆2W for dis-

tinct i, j, l ≤ m. Then (for all α ∈ (0, 1)) if there exist λ ∈ ∆2 such that for some

Z ∈ N+

PZ(T+2W )(αf
j
i (1)+(1−α)f lj(1/2)) = λPZ max{T,W}(f

j
i (1))+(1−λ)PZ max{2T,2W}(f

l
j(1/2)),

then the equation holds for all Z ∈ N+.

Learning Axiom:

For all i ∈ {1, 2, ..., C}: (PT (f i))T∈N+ converges to P∞(f i) = P i
∞.

Diversity Axiom:

There exist some T ∗ ∈ N+, such that for all T ≥ T ∗, no three elements of {(PT (f j))j≤m}
are collinear.

Before stating the sufficiency part of Theorem 2.1 in the frequency version we will

present some helpful observations.

2.9.4 Useful observations

Smallest anchored chain of a frequency vector

Remark 2.1

For all anchor cases ci ∈ C, i ≤ m, there exists for each f ∈ ∆ an (frequency

based) anchored chain f =
∑

j 6=i α
j
if

j
i (f(i)), where αji ∈ [0, 1] are given by f(j) =

αji (1− f(i)) for all j 6= i ≤ m.

Note that αji corresponds to the (relative) lengths of the databases Dj
i (f(i), ·) (cor-

responding to the particular frequency vectors f ji (f(i))) to the length of the specific

database D (which is represented by the frequency vector f).

For instance, assume that f ji (f(i)) ∈ ∆Vj and
∑

j 6=i Vj = V , then f ∈ ∆V and

αji =
Vj
V

.
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2 Cautious Belief Formation

In general for all j 6= i ≤ m, f ji (f(i)) can represent a database with length t · T̃ ji ,

where t ∈ N and T̃ ji ∈ N is the smallest length W such that f(i)W is a natural

number (and hence also (1− f(i))W ∈ N).

To specify the (smallest) length Zi ∈ N of the database D corresponding to the

anchored chain of f via anchor case ci, i.e. f =
∑

j 6=i α
j
if

j
i (f(i)), we extend all

T̃ ji ∈ N with the smallest zji ∈ N such that all αji are the fractions with the smallest

common denominator Zi, i.e. αji =
zji T̃

j
i

Zi
(for j 6= i ≤ m). In this way, the small-

est lengths of the databases represented by (f ji (f(i)))j 6=i that can be used for the

decomposition of f via anchor ci are exactly given by

T ji := zji T̃
j
i = αjiZi ∈ N and Zi =

∑
j 6=i≤m

T ji (2.8)

Hence f ∈ ∆Zi and f ji (f(i)) ∈ ∆T ji
for all j 6= i ≤ m.

Obviously, choosing a different anchor case cl ∈ C for the decomposition of f will

lead to a different smallest denominator Zl (and induced length of database which

f represents) and different lengths of the databases (Dj
l (f(l), T jl ))j 6=l≤m that are

represented by (f jl (f(l)) ∈ ∆T jl
)j 6=l≤m.

Definition 2.7

For all f ∈ ∆ and i ≤ m, we call the anchored chain (wrt. to anchor case ci)

f =
∑

j 6=i α
j
if

j
i (f(i)) defined in (2.8) the smallest anchored chain of f representing

a database of length Zi =
∑

j 6=i≤m T
j
i and denote it by (f ji (f(i)), T ji )j 6=i.

The following Lemma shows consistency of the axiomatization with respect to the

possible smallest decompositions based on different anchor cases.

Lemma 2.1

Let P : ∆→ ∆(R) and its restriction PT to ∆ satisfies the maximal anchored Con-

catenation and the Constant Similarity Axiom. Then, P is consistent with respect

to the different possible smallest decomposition and for all T ≥ 2 and any f ∈ ∆T

there exist λ ∈ ∆m

PT (f) =
∑
j≤m

λjPmaxi≤mf(i)T (f j) (2.9)

Proof:

For all f ∈ ∆, there exists the smallest anchored chain via anchor case ci ∈ C

(as in Definition 2.7) (f li (f(i)), T li )l 6=i, where f(l) =
T li
Zi

(1 − f(i)) (which implies
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2.9 Proof of Theorem 2.1, sufficiency part

(1− f(i))T li = f(l)Zi).

We have to show that independent of the choice of the anchor case ci ∈ C, the

induced beliefs PT (f) coincide for all T ∈ N such that f ∈ ∆T .

Observe that the adjusted length defined in Definition 2.3 can be stated explicitly:

L(k, T1, T2, ..., Tm) =


maxj{Tj} if k ≤ maxj{Tj}

maxj{Tj}+T =: k∗ ∈ ( 1
m+1

, 1
2
)

k
1−kT if k ∈ (k∗, 1

2
)

T if k ≥ 1
2

Thus, we can differentiate the three situations of adjusted lengths depending on the

different frequencies of the chosen anchor case ci ∈ C, i.e. (i) f(i) ≤ k∗ or (ii)

f(i) ∈ (k∗, 1
2
) or (iii) f(i) ≥ 1

2
.

(i) Let f(i) ≤ k∗, assume w.l.o.g. that maxl≤m f(l) = f(j), hence maxl≤m T li = T ji :

Applying the maximal anchored Concatenation Axiom in a first step for k = f(i) ≤
maxj 6=i T

j
i

maxj 6=i T
j
i +Zi

with adjusted length L(f(i), (T li )l 6=i) = T ji , and in the second line for

k = 0 with adjusted length L(0, f(i)T ji , (1−f(i))T ji ) = (1−f(i))T ji . Then, for some

a ≤ m such that a 6= i, l, we get for some λ, γ, β ∈ ∆m:

PZi(f) =
∑
l 6=i

λlPL(f(i),(T li )l 6=i)
(f li (f(i))) =

∑
l 6=i

λlPT ji
(f li (f(i)))

=
∑
l 6=i

λl(γlPL(0,f(i)T ji ,(1−f(i))T ji )(f
i
a(0)) + (1− γl)PL(0,f(i)T ji ,(1−f(i))T ji )(f

l
a(0)))

=
∑
l 6=i

λl(γlP(1−f(i))T ji
(f i) + (1− γl)P(1−f(i))T ji

(f l))

=
∑
l

βlP(1−f(i))T ji
(f l) =

∑
l

βlPmaxl≤m f(l)Zi(f
l)

By the Constant Similarity Axiom we get that PT (f) =
∑

l βlPmaxl≤m f(l)T (f l) for all

T such that f ∈ ∆T .

Analogous reasoning and application of the Constant Similarity Axiom would yield

the same result for (ii) and (iii) directly. However, we just show that for all f ∈ ∆,

there exist i 6= j ≤ m, such that f(i) ≤ k∗. Assume that would not be true, then

for all l ≤ m f(l) >
maxj 6=i T

j
i

maxj 6=i T
j
i +Zi

and hence
∑

l≤m f(l) > m
maxj 6=i T

j
i

maxj 6=i T
j
i +Zi

≥ 1, since

Zi ≤ (m− 1)(maxj 6=i T
j
i ). �

The following Lemma mirrors Lemma A.4 in EG.
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2 Cautious Belief Formation

Lemma 2.2

Let P satisfy the maximal anchored Concatenation, Constant Similarity and Diver-

sity Axiom and let (sj)j≤m be a collection of positive numbers (similarity weights).

Define the function P s : ∆(C)→ ∆(R) and for any T ∈ N, T ≥ 2 and any f ∈ ∆T

the restriction P s
T to ∆T by

P s
T (f) =

∑
j≤m sjf(j)Pmaxj≤m f(j)T (f j)∑

j≤m sjf(j)
.

Suppose that for some T ≥ T ∗ (given by the Diversity Axiom) and f ∈ ∆T it holds

PT (f) = P s
T (f).

Then, PW (f) = P s
W (f) for all W ∈ Z+ such that f ∈ ∆W .

Proof:

Let T (f) be the smallest T such that f ∈ ∆T (f), then for all l ∈ N f ∈ ∆lT (f).

By Lemma 2.1 we know that P can be represented as in representation (2.9).

Hence, if there exist some λ ∈ ∆m (with λi = 0 if and only if f(i) = 0) such that it

satisfies for some l ∈ N+,

PlT (f)(f) =
m∑
j=1

λjPmaxi≤mf(i)T (f)(f
j),

then by the Constant Similarity Axiom it also holds for all l ∈ N+. In particular,

for l such that lT (f) = T the following holds.

PT (f) =
m∑
j=1

λjPmaxi≤mf(i)T (f)(f
j)

by ass.
=

∑m
j=1 sjf(j)Pmaxi≤mf(i)T (f j)∑m

j=1 sjf(j)
= P s

T (f)

By the Diversity Axiom we get λj =
sjf(j)∑m
j=1 sjf(j)

.

Since P s
lT (f) =

∑m
j=1 sjf(j)Pmaxi≤mf(i)lT (f)(f

j)∑m
j=1 sjf(j)

=
∑m

j=1 λjPmaxi≤mf(i)lT (f)(f
j) = PlT (f)(f)

for all l, the proof is completed. �.

Remark 2.2

Let f ∈ ∆ be expressed as convex combination of the set {f1, f2, f3} for some fi ∈ ∆T

for all i = 1, 2, 3, i.e. f = β1f1 + β2f2 + (1− β1 − β2)f3.

As in Remark 2.1 we apply the relative length interpretation of the weights βi ∈ (0, 1)

for all i = 1, 2, 3, to get the (potentially) smallest induced length H of the database

represented by f via the convex combination of databases Di ∈ CT , which are repre-

sented by fi ∈ ∆T . That is, H is again the smallest possible denominator of all βi

such that for all i = 1, 2, 3 βi = ziT
H

for some zi ∈ N and hence we have that f ∈ ∆H
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2.9 Proof of Theorem 2.1, sufficiency part

can be combined by the decomposition (fi)i≤3, where fi ∈ ∆βiH=ziT for i = 1, 2, 3.

2.9.5 Theorem 2.1, sufficiency part in frequency version

Theorem 2.3

Let there be given a function P : X × ∆ → ∆(R). Let PT be the restriction of P

to X × ∆T and let for T ≥ 2 PT : ∆T → ∆(R) satisfy the Learning, Diversity,

maximal Anchored Concatenation and Constant Similarity Axiom.

Then there exist unique probability vectors (P j
T )j≤C ∈ ∆(R) for all T ≥ 2 and

unique -up to multiplication by a strictly positive number- strictly positive numbers

(sj)j≤m ∈ R+ such that for every f ∈ ∆T

PT (f) =

∑
j≤qm sjf(j)P j

maxj f(j)·T∑
j≤m sjf(j)

. (2.10)

Proof

Step 0:

Obviously, we have to define P j
T = PT (f j) for all T ≥ 2 and j ≤ m.

Thus it remains to show that there exist positive numbers (sj)j≤m such that the

representation holds for all T ≥ 2 and for every f ∈ ∆T .

Rough outline of the proof

As already mentioned in the Sketch of the Proof, we follow an inductive proof on

the number of cases in the set of basic cases, i.e. on m = |C|.
In Step 1, which serves in Step 2 as the base case for the induction, we proof the

theorem for a set of basic cases consisting only of three different basic cases, i.e.

C = {c1, c2, c2}.

Step 1.1: Determination of the similarity values s1, s2, s3

The representation (2.9) in Lemma 2.1 and the representation (2.10) in Theorem

2.3 applied to f := 1
3
(f 1 + f 2 + f 3) yields (with the Diversity Axiom) the similarity

values, which allows the definition of P s
T (f) :=

∑
j≤3 sjf(j)P j

maxj f(j)T∑
j≤3 sjf(j)

for all f ∈ ∆T

and T ∈ N. Of course f ∈ {f 1, f 2, f 3, f} satisfy PT (f) = P s
T (f).

Step 1.2: Show that PT (f) = P s
T (f) for all simplicial points (Figure 2.1 illustrates

simplicial partitions and points)
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2 Cautious Belief Formation

The main tool to show this claim is the observation that for four specifically struc-

tured frequency vectors (anchored frequency vectors) that satisfies already the de-

sired equation, also the intersection of the lines between two of these (specific)

vectors satisfies the above equation (Lemma 2.4). The crucial step in the proof is

to apply this fact in an appropriate recursive way. In this step again the maxi-

mal anchored Concatenation Axiom and the Constant Similarity Axiom (in form of

Lemma 2.2) are necessary.

Step 1.3: Show that PT (f) = P s
T (f) for all frequency vectors f ∈ ∆(C)

The proof is similar to a (rewritten/revised) proof of Lemma A.6 in EG, which is

based on the existence of the limit of P c
T for all c ∈ C (Learning Axiom). Since all fre-

quency vectors f ∈ ∆ can be approximated by a series of simplicial triangles/points,

we can show the claim (by using Lemma 2.1 and Lemma 2.2). In particular, one can

show that the beliefs P and P s induced by the sequence of simplicial points, which

approximates f, converges to the belief of P and P s induced by the limit f. Using

the equivalence of P s
T (g) and PT (g) for the sequence of simplicial points g ∈ ∆ by

Step 1.2 delivers the claim.

In Step 2, the result from Step 1 is used inductively for a general set of basic

cases C = {c1, c2, ..., cm} with m > 3.

Step: 2.1: Defining the similarity weights s1, ..., sm

Step 1 yield for any triple of cases {cj, ck, cl} ⊆ C for distinct j, k, l ∈ {1, 2, ...,m}
similarity weights s

(j,k,l)
j , s

(j,k,l)
k , s

(j,k,l)
l . As in the proof of Proposition 3, Step 2.1 in

BGSS, one can show that each similarity weight can be chosen independent of the

choice of the triple, i.e. s
(j,k,l)
j = sj. Hence, we define P s

T (f) :=

∑
j≤m sjf(j)P j

maxj f(j)T∑
j≤m sjf(j)

for all f ∈ ∆(C) and T ∈ N.

Step 2.2: Show PT (f) = P s
T (f) for all f ∈ ∆(C)

Inductively on |C| = m for f ∈ conv({(f j)j≤m}), where we use Step 1 as base case of

the induction. Each f ∈ ∆ can be written as anchored chain with different anchors

(Remark 2.1). Applying the maximal anchored Concatenation Axiom to these chains

yield m-many different hyperplanes, which are spanned by (P (f ji (f(i))))j 6=i≤m, for

different i ≤ m. All these hyperplanes contain P (f) and include P s(f) as well, since

PT (f ji (k)) = P s
T (f ji (k)) for any i 6= j ≤ m and f ji (k) ∈ ∆T by induction assumption.

Using the Constant Similarity Axiom (Lemma 2.2) and Lemma 2.1 to harmonize

the different hyperplanes wrt. lengths, we can show that the intersection of all these
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2.9 Proof of Theorem 2.1, sufficiency part

induced hyperplanes is unique, which delivers the desired result.

2.9.6 Step 1: C = {c1, c2, c3}, i.e. m = 3

Step 1.1:

Define f :=
∑

j≤3 1/3f j, for f j ∈ ∆T , and T ≥ T ∗ then f ∈ ∆3T . The positive

numbers s1, s2, s3 result from equating the evaluation of f using the representation

(2.9) in Lemma 2.1, i.e. P3T (f) = λ1P
1
T + λ2P

2
T + (1− λ1 − λ2)P 3

T with representa-

tion (2.10) in Theorem 2.3 and solving the linear system. The solution of this linear

system s1, s2, s3 exist uniquely up to multiplication by a positive number due to the

non collinearity condition of the Diversity Axiom for T ≥ T ∗, otherwise uniqueness

is not achievable.

Define for all T and f ∈ ∆T

P s
T (f) :=

∑
j≤3 sjf(j)P j

maxj f(j)T∑
j≤3 sjf(j)

Obviously P s
T (f j) = PT (f j) (Step 0) for all j = 1, 2, 3 and P s

T (f) = PT (f).

The aim is to show for all T and for every f ∈ ∆T :

P s
T (f) = PT (f) (2.11)

In the following, we will recursively partition the simplex ∆ into so called simplicial

triangles, as illustrated in the Figure 2.1 below.

Definition of Simplicial Triangles:

The 0-th simplicial partition consist of vertices qj0 ∈ ∆, which are exactly the unit

vectors f j for j = 1, 2, 3. The first simplicial partition of ∆ is a partition to four

triangles separated by the segments connecting the middle points between two of

the three unit frequency vectors, i.e. q1
1 := (1

2
f 1 + 1

2
f 2), q2

1 := (1
2
f 2 + 1

2
f 3) and

q3
1 := (1

2
f 3 + 1

2
f 1). The second simplicial partition is obtained by similarly parti-

tioning each of the four triangles to four smaller triangles, and the l-th simplicial

partition is defined recursively. The simplicial points of the l-th simplicial partition

are all the vertices of triangles of this partition. Note that for j = 1, 2, 3 the qj0

are frequency vectors representing databases consisting only of one case, but of any

length T ∈ N, i.e. qj0 ∈ ∆T for all T ∈ N+. All vertices qvl of the l-th simplicial

partition are in ∆2lT for all T ∈ N+ for appropriate v ≤ nl (defined below in (2.12)).
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2 Cautious Belief Formation

f1 f2

f3

q21q31

q11
•

•
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• •

•
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•

• •

••
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•
q22

•q32 •
q42

•
q52

• q62

•
q72

•q82 • q92

Abbildung 1: a

1

Figure 2.1: 1st and 2nd simplicial partitions

Considering the simplicial points on the line between f 1 and f 2, we get for the 0-

th simplicial partition: 2 simplicial points, for 1st simplicial partition: 3 simplicial

points: for 2nd simplicial partition: 5 simplicial points, for 3rd simplicial partition:

9 simplicial points and so forth, i.e. it follows the series al = 2l + 1 for all l ∈ N.

Observe that for each parallel line to (f 1, f 2) between simplicial points of the l-th

simplicial partition, the line which is one ”step closer” to f 3, possesses one simpli-

cial point less than the parallel line that is further away from f 3. The number of

simplicial points on these parallel lines decreases until reaching the point f 3. Hence

the total number nl of simplicial points of the l-th partition is given by

nl :=

al∑
i=1

i =
2l+1∑
i=1

i = 22l−1 + 2l + 2l−1 + 1 where al = 2l + 1 (2.12)

Step 1.2: PT (f) = P s
T (f) holds for all Simplicial Points

Lemma 2.3

The vertices qvl with v ≤ nl of the l-th simplicial partition satisfy equation (2.11)

for all l ∈ N.

Notation: In the following we will denote for a, b ∈ ∆ or a, b ∈ ∆(R) the straight

line through a and b by (a, b) (since there is no confusion with the usual interval

notation).

Main tool of the proof of this Lemma is the following observation.
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2.9 Proof of Theorem 2.1, sufficiency part

Lemma 2.4

Let a, b, c, d ∈ ∆ be distinct frequency vector satisfying equation (2.11) and the

lines (a, b) and (c, d) are not collinear. Then the intersection y of the line (a,b) and

(c,d), i.e. y = (a, b)∩ (c, d) satisfies equation (2.11) (for an appropriate T such that

y ∈ ∆T ) if either of the following conditions hold for the pairs a, b and c, d:

(i) both vectors a and b (respectively c and d) lie on a line (f ji (k), fhi (k)) for some

k ∈ [0, 1] and distinct i, j, h ≤ m, which represent anchored databases with identical

anchor case ci ∈ C or

(ii) a, b (respectively c, d) lie on a line through (f ji (1), fhj (1/2)) for some distinct

i, j, h ≤ m.

Proof of Lemma 2.4

We will show the situation, where both pairs a, b and c, d satisfy condition (i).

Assume that a, b ∈ (f ji (k), fhi (k)), hence also y ∈ (f ji (k), fhi (k)). By Remark 2.1 we

know that there exist an anchored chain of y composed of (f ji (k), fhi (k)), i.e. there

exists some α ∈ (0, 1) and Zy ∈ N such that y = αf ji (k) + (1 − α)fhi (k) ∈ ∆Zy

with corresponding adjusted length Ly := L(k, αZy, (1− α)Zy) such that PZy(y) ∈(
PLy(f

j
i (k)), PLy(f

h
i (k))

)
.

Analogously, there exist some Zx and Lx for all x ∈ {a, b}. Let L := LCM(Zy, Za, Zb)

(least common multiple), then for all v ∈ {y, x} the following holds

PZv L
Lv

(v) ∈
(
PL(f ji (k)), PL(fhi (k))

)
In particular PZa L

La
(a) and PZb L

Lb
(b) determine already the slope of the line(

PL(f ji (k)), PL(fhi (k))
)

and hence PZy L
Ly

(y) ∈
(
PZa L

La
(a), PZb L

Lb
(b)
)

.

The same derivation with P s yields P s
Zy L

Ly
(y) ∈

(
P s
Za L

La
(a), P s

Zb L
Lb

(b)
)

and since we

know that a, b ∈ ∆ satisfy (2.11), we get:

PZy L
Ly

(y), P s
Zy L

Ly
(y) ∈

(
PZa L

La
(a), PZb L

Lb
(b)
)

The same procedure applied to pair c, d instead to a, b with G := LCM(Ly, Lc, Ld)

yields:

PZy G
Ly

(y), P s
Zy G

Ly
(y) ∈

(
PZc G

Lc
(c), PZb G

Lc
(c)
)

Finding a least common multiple J = LCM(L,G) will deliver the desired result,

since

PZy J
Ly

(y), P s
Zy J

Ly
(y) ∈

(
PZa J

La
(a), PZb J

Lb
(b)
)
∩
(
PZc J

Lc
(c), PZd J

Ld
(d)
)
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2 Cautious Belief Formation

and the intersection is unique (otherwise this would be a contradiction to the Di-

versity Axiom). Hence P s
Zy J

Ly
(y) = PZy J

Ly
(y) and by Lemma 2.2 PT (y) = P s

T (y) for

all T such that y ∈ ∆T .

The situation, in which one of the two pairs satisfies condition (i) and the other

condition (ii) or both pairs fulfill condition (ii) can be shown analogously. �

The proof of Lemma 2.3 is conducted by using the observation in Lemma 2.4 in

an appropriate procedure recursively, as can be seen in the series of figures (Figures

2.2 to 2.4) below.

Proof of Lemma 2.3 by induction over l (l-th simplicial partition)

Base case for induction l = 0:

By Step 1.1 we know that for (f 1 = q1
0, f

2 = q2
0, f

3 = q3
0) the representation holds.

Induction step:

The idea of the (recursive) procedure to capture all simplicial points of the (l+1)−th

simplicial partitions as intersections of two lines that run through simplicial points

of the l-th simplicial partition can be understand by inspecting the series of Figures

2.2-2.4. However, we need some definitions first:

(i) g
(i,j)
l (d) denotes the simplicial point in the l-th partition on the line (f i, f j) such

that it is the d closest to f i.

(ii) bil(d) denotes the simplicial point of the l-th partition that lies on the line (f i, q∗)

and also on the d- closest line to f i that is parallel to (f j, fh) in the l-th partition.

We construct a procedure such that appropriately chosen lines through these points

can intersect exactly in all simplicial points. Lines through these points are essential

to cover all simplicial points through intersections.

More precisely, for all l ∈ N and all distinct i, j, h ∈ {1, 2, 3} it holds that bil+1(d) :=

(f i, 1
2
(f j + fh)) ∩ (g

(i,j)
l (d), g

(i,h)
l (d)), where all frequency vectors on the right hand

side satisfy the conditions in Lemma 2.3 and given that (2.11) holds for the fre-

quency vector of the l-th partition, also it holds for bil+1(d). Figures 2.2-2.4 show the

procedure given that all simplicial points of the 2nd partition satisfy (2.11) and show

how all simplicial points of the 3rd partition can be covered. In each of these figures

bullets represent points that satisfy (already) equation (2.11) and any intersections

of (appropriate) lines through these ”bullet”-points are again simplicial points that

satisfy (2.11).

For the sake of completeness we will spell out the general steps of the illustrated
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2.9 Proof of Theorem 2.1, sufficiency part

procedure.

Let the claim be true for the l-th simplicial partition. For the (l + 1)-th partition

the following procedure will capture all simplicial points qvl+1 for v ≤ nl+1.

f1 f2

f3

q21q31

q11
•

•

•

• •

•

•
• •

•

• •

• •

• •

• •

•

•g
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2 (1) • g

(2,3)
2 (1)

•
g
(1,2)
2 (1)

•
g
(2,1)
2 (1)

•g
(3,1)
2 (1) • g

(3,2)
2 (1)

Abbildung 1: a

1
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•
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•
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•
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•
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•
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(1,3)
2 (1) • g

(2,3)
2 (1)

•
g
(1,2)
2 (1)
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(2,1)
2 (1)
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2 (1) • g

(3,2)
2 (1)

•
b13(1)

•b23(1)

•b
3
3(1)

Abbildung 1: a

1

Figure 2.2: From 2nd to 3rd simplicial partition.
Assume that all simplicial points (bullets) of the 2-nd partition satisfy
already equation (2.11). Here some points are named according to the
notation used in the procedure.
For example take the simplicial points of the 2nd partition that is on
(f 1, f 2) and closest to f 1, i.e. g

(1,2)
2 (1). Analogously, take the clos-

est to f 1 on (f 1, f 3), i.e. g
(1,3)
2 (1). Intersecting (g

(1,2)
2 (1), g

(1,3)
2 (1)) with

(f 1, q2
1) shows that b1

3(1) satisfies equation (2.11) as well. Analogously,
this can be shown for bi3(1) (i = 2, 3) using appropriate combinations of

g
(i,j)
2 (1), qu1 , f

h for u, h ∈ {1, 2, 3}.

Procedure:

(i) For d = 1:

W.l.o.g. take the perspective of f j = f 1 for a j ∈ {1, 2, 3}. Given the l-th simplicial

partition, there exist a simplicial point of the (l + 1)-th simplicial partition b1
l+1(1),

which is the intersection of the lines (f 1, f 2) and (g
(1,2)
l (1), g

(1,3)
l (1)) (Corresponds

to Figure 2.2 RHS). By the induction assumption these pairs of points satisfy equa-

tion (2.11) and the conditions of the Lemma 2.4. Hence P s
2l+1(b1

l+1) = P2l+1(b1
l+1),

i.e. b1
l+1(1) satisfies equation (2.11). Analogously the same procedure applied to f j

for j = 2, 3 yields that bjl+1(1) satisfies equation (2.11).

(ii) Draw the line between two elements of {b1
l+1(1), b2

l+1(1), b3
l+1(1)}, w.l.o.g. take

b1
l+1(1) and b3

l+1(1). (Corresponds to Figure 2.3 LHS) The line (b1
l+1(1), b3

l+1(1)) in-

tersects for all 0 ≤ z ≤ al (defined in (2.12)) with the lines (g
(1,3)
l (z), g

(2,3)
l (z)) (that
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Figure 2.3: From 2nd to 3rd simplicial partition.
a) Using lines (bi3(1), bj3(1)) and their intersections with existing lines will
show equation (2.11) for all simplicial points of the 3rd partition that
are on the closest parallel lines to the rim of the simplex.
b) Now, consider the simplicial points of the 2nd partition that are on
the lines (f i, f j) and third closest to f i (note: the second closest are

covered indirectly). For example, take g
(1,2)
2 (3) (third closest to f 1 on

line (f 1, f 2)) and g
(1,3)
2 (3)) (third closest to f 1 on (f 1, f 3)). Intersect-

ing (g
(1,2)
2 (3), g

(1,3)
2 (3)) with (f 1, q2

1) shows that b1
3(3) satisfies equation

(2.11) as well. Analogously, this can be shown for bi3(3) (i = 2, 3) using

appropriate combinations of g
(i,j)
2 (3), qu1 , f

h for u, h ∈ {1, 2, 3}.

are parallel to the line (f 1, f 2)) and also with all lines (g
(1,2)
l (z), g

(1,3)
l (z)) (that are

parallel to (f 2, f 3)). Lemma 2.4 yields that all simplicial points of the (l + 1)-th

partition that lie on the line (b1
l+1(1), b3

l+1(1)) satisfy equation (2.11).

Analogously, the procedure yields that all simplicial points of the (l + 1)-th parti-

tion that lie on the lines (bil+1(1), bjl+1(1)) for all combinations of i 6= j ∈ {1, 2, 3}
satisfy equation (2.11), i.e. all points that are on the closest parallel lines to

(f 1, f 2), (f 1, f 3), (f 2, f 3) and in particular, the closest (l + 1)-simplicial points to

f 1, f 2, f 3 on the boundary of conv({f 1, f 2, f 3}).

(iii) Apply the procedure of (i) and (ii) (where d = 1) (Corresponds partially to

Figure 2.3 RHS and 2.4) recursively for d = 2n− 1 > 1 for 2 ≤ n ≤ al+1−1

2
(from f 1-

view).

Derive {b1
l+1(d), b2

l+1(d), b3
l+1(d)} by (i) using fh and (g

(i,j)
l (d) for i, j, h ∈ {1, 2, 3}

appropriately. Using (ii), we can show that all simplicial points of the (l+1)-th par-

tition that lie on the lines (bil+1(d), bjl+1(d)) for all combinations of i 6= j ∈ {1, 2, 3}
satisfy equation (2.11).

66



2.9 Proof of Theorem 2.1, sufficiency part

f1 f2

f3

q21q31

q11
•

•

•

• •

•

•
• •

•

• •

• •

• •

• •

•

• •

• •

• •

•
b33(3)

•
b23(3) •

b13(3)

• •

•

•

•

•
•

•
•

•

•

•

•

•
•

• •

•

•

••

•

• •• ••• •

Abbildung 1: a

1

Figure 2.4: As before, the next step would be to intersect the lines between
(bi3(1), bj3(1)) for any distinct i, j ∈ {1, 2, 3} and the existing lines. It
shows that all simplicial points of the 3rd partition that are on the third
closest parallel lines to the rim of the simplex satisfy (2.11). This covers
all simplicial points of the 3rd partition.

Observe that for d = 2n with 1 ≤ n ≤ al+1−1

2
the simplicial points of the (l+1)-th par-

tition, which lie on the lines (bil+1(d), bjl+1(d)) for all combinations of i 6= j ∈ {1, 2, 3}
are already satisfying the equation (2.11) directly, since these lines already are ’used’

for the procedure in the l-th partition and the simplicial points of the (l+ 1)-th par-

tition are just indirectly processed via the intersection steps in (ii).

Step 1.3: Completion to all f ∈ ∆, i.e. for all 2 ≤ T ∈ N and f ∈ ∆T :

PT (f) = P s
T (f).

Some helpful considerations:

For each f ∈ ∆ there exists a sequence of simplicial triangles of the l-th partition

(qill , q
jl
l , q

hl
l )l∈N (remember qvl ∈ ∆2l for all v ≤ nl) for distinct il, jl, hl ≤ nl such that:

(i) f ∈ conv({qill , qjll , qhll }) for all l ∈ N, i.e. there exist βvl ∈ [0, 1] for all v ∈ {il, jl, hl}
such that f = βill q

il
l + βjll q

jl
l + βhll q

hl
l

(ii) For all v ∈ {il, jl, hl} and l ∈ N it holds qvl ∈ ∆βvl Hl
, such that Hl (as in Remark

2.2) is the smallest common denominator of all βvl , i.e. there exist zvl , such that

βvl =
zvl 2l

Hl
. Hence, if f is represented by combination of l-th simplicial points, then

f ∈ ∆Hl .

(iii) liml→∞qvl = f for all v ∈ {il, jl, hl}
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2 Cautious Belief Formation

Clearly this construction is possible for all f ∈ ∆.

In order to proof that for all f ∈ ∆T : PT (f) = P s
T (f) we will show the follow-

ing observations.

(A) liml→∞ ||P s
Hl

(f)− P s
Hl

(qvl )|| = 0 and

(B) liml→∞ ||PHl(f)− PHl(qvl )|| = 0 for all v ∈ {1, 2, 3}.

Proof of (A):

By the Learning Axiom and since P s
T (f i) = PT (f i) for all T ∈ N, we know that for

all i ≤ 3, we have liml→∞P s
Hl

(f i) = P∞(f i) = P i
∞.

We want to show for all v ∈ {il, jl, hl}: liml→∞||P s
Hl

(f)− P s
Hl

(qvl )|| = 0.

Let for all r ∈ R, P i
T (r) be the r-th component of the probability vector.

For all l, any v ∈ {il, jl, hl} and qvl we have that liml→∞ qvl = f and hence

liml→∞ P
j
maxj qvl (j)Hl

(r) = P j
maxj f(j)Hl

(r) holds. This directly implies liml→∞(P s
Hl

(f)(r)−
P s
Hl

(qvl )(r)) = 0 for all r ∈ R and hence the desired result.

Proof of (B):

By Lemma 2.1 we know that PH(f) =
∑3

j=1 λjPmaxi=1,2,3 f(i)H(f j), where λ ∈ ∆2 is

independent of the length of the database by the Constant Similarity Axiom .

Hence by the Learning Axiom liml→∞PHl(f) = liml→∞
∑3

j=1 λjPmax{i=1,2,3} f(i)Hl(f
j)

exists and hence with the same reasoning as in (A) for P s we get

lim
l→∞
||PHl(qvl )− PHl(f)|| = 0 for all v ∈ {il, jl, hl}

Combining Step (A) and (B) and the triangle inequality yields:

liml→∞||P s
Hl

(f)− P s
Hl

(qvl )− PHl(f) + PHl(q
v
l )|| ≤ 0
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2.9 Proof of Theorem 2.1, sufficiency part

By Step 1.2 we know that PHl(q
v
l ) = P s

Hl
(qvl ) for all l, which leads to liml→∞ ||P s

Hl
(f)−

PHl(f)|| = 0 and for all r ∈ R we get:

0 = lim
l→∞

(PHl(f)(r)− P s
Hl

(f)(r))

= liml→∞
( 3∑
j=1

λjPmaxi f(j)Hl(f
j)(r)−

∑
j≤3 sjf(j)P j

maxj f(j)Hl
(r)∑

j≤3 sjf(j)

)
= lim

l→∞

3∑
j=1

Pmaxi f(j)Hl(f
j)(r)

(
λj −

sjf(j)∑
j≤3 sjf(j)

)
=

3∑
j=1

P∞(f j)(r)
(
λj −

sjf(j)∑
j≤3 sjf(j)

)
By the Diversity Axiom no three of (P∞(f j))j≤3 are collinear (i.e. also no three of

(P∞(f j)(r))j≤3 are convex combinations for all r), which implies that it must hold

that λj =
sjf(j)∑
j≤3 sjf(j)

for all j ∈ {1, 2, 3}. Therefore, PHl(f) = P s
Hl

(f) for all l and by

Lemma 2.2 PT (f) = P s
T (f) for all T such that f ∈ ∆T . �.

Thus, the proof for C = {c1, c2, c3} is concluded.

2.9.7 Step 2: Set of basic cases with |C| = m > 3 many cases

Step 2.1 Defining the similarity weights:

Consider for T ≥ T ∗ and distinct j, k, l ≤ m a triple {P j
T , P

k
T , P

l
T}

Adopting the considerations of Step 1 in the previous subsection for {j, k, l}, i.e.

f3T :=
∑

i∈{j,k,l} f
i and f i ∈ ∆T we can derive the similarity weights (s

{j,k,l}
i )i∈{j,k,l}

and the following representation for all f ∈ conv({f j, fk, f l}) ∩∆T :

P
{j,k,l}
T (f) =

∑
i∈{j,k,l} s

{j,k,l}
i f(i)P

{j,k,l}
maxif(i)T (f i)∑

i∈{j,k,l} s
{j,k,l}f(i)
i

.

Moreover for all i ∈ {j, k, l}, we have P
{j,k,l}
T (f i) = PT (f i) = P i

T and (s
{j,k,l}
i )i∈{j,k,l}

are unique up to multiplication by a positive number.

Now we want to show that the similarity values s
{j,k,l}
i are independent of the choice

of j, k and l for all i ∈ {j, k, l}. Similar to BGSS we shown it two steps:

1. We show that
s
{j,k,l}
j

s
{j,k,l}
k

=
s
{j,k,n}
j

s
{j,k,n}
k

for any n 6= l, i.e. the ratio between two simi-

larity number is independent of the choice of a third case/frequency.

Consider the evaluation of a rational combinations of f j ∈ ∆T and fk ∈ ∆T , i.e.
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2 Cautious Belief Formation

for α ∈ Q: f = αf j + (1 − α)fk, where H is the smallest common denominator of

α, (1− α) and hence f ∈ ∆H , w.l.o.g. assume α ≥ (1− α). Then,

P
{j,k,l}
H (f) =

s
{j,k,l}
j αP jαH+s

{j,k,l}
k (1−α)PkαH

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

and P
{j,k,n}
H (f) =

s
{j,k,n}
j αP jαH+s

{j,k,n}
k (1−α)PkαH

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

.

Equating these two expressions, we get:

s
{j,k,l}
j α

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

=
s
{j,k,n}
j α

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

and
s
{j,k,l}
k (1−α)

s
{j,k,l}
j α+s

{j,k,l}
k (1−α)

=
s
{j,k,n}
k (1−α)

s
{j,k,n}
j α+s

{j,k,n}
k (1−α)

,

which leads to
s
{j,k,l}
j

s
{j,k,l}
k

=
s
{j,k,n}
j

s
{j,k,n}
k

Denote this ratio by Sj,k :=
s
{j,k,l}
j

s
{j,k,l}
k

, which is defined for all distinct j, k ≤ m, since

the similarity numbers are strictly positive.

Further observe that the following holds:

Sj,kSk,lSl,j =
s
{j,k,l}
j

s
{j,k,l}
k

s
{j,k,l}
k

s
{j,k,l}
l

s
{j,k,l}
l

s
{j,k,l}
j

= 1 (2.13)

2. Define s1 := 1 and sj = Sj,1 for all j ≤ m.

The aim is to show that for all triple {j, k, l} it holds that s
{j,k,l}
i = asi for some

a ∈ R+.

If we can show that
s
{j,k,l}
i

s
{j,k,l}
m

= si
sm

for all m 6= i ∈ {j, k, l}, then s
{j,k,l}
i = si

sm
s
{j,k,l}
m = asi

for all m 6= i ∈ {j, k, l}, e.g. with m = k we have a =
s
{j,k,l}
k

sk
and hence s

{j,k,l}
j =

asj, s
{j,k,l}
k =

s
{j,k,l}
k

sk
sk, s

{j,k,l}
l = asl and we have shown the claim.

Hence it suffices to show w.l.o.g. that
s
{j,k,l}
j

s
{j,k,l}
k

=
sj
sk

or equivalent Sj,k =
sj
sk

.

The latter follows directly from (2.13), i.e. 1 = S1,jSj,kSk,1 = 1/sjSj,ksk, hence

Sj,k =
sj
sk

.

The independence of the similarity values s
{j,k,l}
i on {j, k, l} allows to replace the

(unique up to multiplication by a strictly positive number) s
{j,k,l}
i by the just defined

si for all i ≤ m. Based on these (si)i≤m we define as in the consideration in Step 1.1

for all 2 ≤ T ∈ N and any f ∈ ∆T .

P s
T (f) :=

∑
i≤m sif(i)P i

maxif(i)T∑
i≤m sif(i)

As in the subsection before the aim is to show that for all T and any f ∈ ∆T

P s
T (f) = PT (f) holds.
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2.9 Proof of Theorem 2.1, sufficiency part

Step 2.2: Completion to all f ∈ ∆

For M ⊆ {1, 2, ....,m}, let ∆M
T := ∆T ∩ conv({f j | j ∈ M}) denote the set of all

frequency vectors f ∈ ∆T , which assign zero frequency to all cases (ci)i∈{1,2,...,m}\M .

Lemma 2.5

For every subset M ⊆ {1, 2, ....,m} with |M | = m ≥ 3, PT (f) = P s
T (f) holds for

every f ∈ ∆M
T .

Proof:

For m = 3 the claim has been shown in Step 1 (or Step 1.3) and serves as the base

case for our induction over m.

Hence we assume now that the claim holds for m ≥ 3 and we prove it for M with

|M | = m+ 1.

(1) Let f ∈ ∆M
T such that f ∈ conv({f j}j∈M\l) for some l ∈ M , then by induc-

tion assumption P s
T (f) = PT (f).

(2) Now we consider f ∈ int(conv({f l | l ∈M}))
By Remark 2.1 we know that for all i ∈ M and l ∈ M\{i} there exist for all

l 6= i ≤ m some αli ∈ (0, 1) and
∑

l∈M\{i} α
l
i = 1 such that f =

∑
l∈M\{i} α

l
if
l
i (f(i))

with f li (f(i)) ∈ ∆T li
and then f ∈ ∆Zl (where T ji = αjiZi). W.l.o.g. (due to Constant

Similarity Axiom, Lemma 2.2) assume that for all l 6= i ≤ m there exist T li such

that max{f(i), (1− f(i))}T li ≥ T ∗ (to overcome potential collinearity problems). In

the following we abbreviate the corresponding adjusted lengths L(f(i), (T ji )j 6=i∈M)

by Li for all i ∈M .

The maximal anchored Concatenation Axiom induces that PZl(f) lies on the fol-

lowing induced (m+ 1)-many hyper-planes Am+1
l (Zl) for all l ∈M , w.l.o.g. assume

that M = {1, 2, ...,m+ 1}:

PZ1(f) ∈ int(conv({PL1(f 2
1 (f(1))), PL1(f 3

1 (f(1))), ..., PL1(fm+1
1 (f(1)))})) =: Am+1

1 (Z1)

PZ2(f) ∈ int(conv({PL2(f 1
2 (f(2))), PL2(f 3

2 (f(2))), ..., PL2(fm+1
2 (f(2)))})) =: Am+1

2 (Z2)

∈ · · ··
PZm+1(f) ∈ int(conv({PLm+1(f 1

m+1(f(m+ 1))), PLm+1(f 2
m+1(f(m+ 1))), .....

....., PLm+1(fmm+1(f(m+ 1)))})) =: Am+1
m+1(Zm+1)

Since for all l 6= j ≤ m, P s
T (f jl (f(l))) = PT (f jl (f(l))) for all T such that f jl (fl) ∈ ∆T ,

we have also P s
Zl

(f) ∈ Am+1
l (Zl) for all l ∈M .

For Z = LCM(Z1, ...Zm+1) Lemma 2.2 implies that PZ(f), P s
Z(f) ∈ Am+1

l (Z) for
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2 Cautious Belief Formation

all l ∈ M , i.e. PZ(f), P s
Z(f) ∈ ⋂l∈M Am+1

l (Z). By Lemma 2.1 we have that for

all l ∈ M the sets Am+1
l (Z) consist of identical (P j

maxl∈Mf(l)Z)j∈M (with (differ-

ent) positive weights after evaluation of PZ(f ji (f(i))) = λjP
j
max{f(i),(1−f(i))}Z + (1 −

λj)P
i
max{f(i),(1−f(i))}Z for particular λj ∈ (0, 1)).

This implies that determining
⋂
l∈M Am+1

l (Z) means solving the (m+ 1)× (m+ 1)

system of linear equations. We know that |⋂l∈M Am+1
l (Z)| ≥ 1, since P s

Z(f) and

PZ(f) are included in the intersection. The claim of PZ(f) = P s
Z(f) is proofed if we

can show that
⋂
l∈M Am+1

l (Z) is a singleton.

We will proof this by contradiction:

Assume that PZ(f) 6= P s
Z(f), then the line g := (PZ(f), P s

Z(f)) has to be contained

in Am+1
l (Z) for all l ∈M . Hence this line g must intersect two of the faces

Hj := conv({(P k
maxi≤m f(i)Z)k∈M\{j}}) (for j ∈M).

W.l.o.g. let these two faces be named Hu, Hv for some distinct u, v ∈ M . But then

for all l ∈ M Am+1
l (Z) has to intersect with these two faces Hu, Hv. We will show

that this is not true. Observe that each Am+1
l (Z) intersects with all (Hj)j 6=l∈M .

Further, observe that applying the successive intersection, we get for t ≤ m + 1

∩tj=1A
m+1
j (Z) ∩ {H1, ...Ht} = ∅, which implies that there is no faces Hj for any

j ∈ M that intersects with ∩m+1
j=1 A

m+1
j (Z), i.e. there exist no faces such that all

Am+1
l (Z) intersect them.

Hence there cannot exist a line g such that g ∈ Ak+1
l (Z) for all l ∈ M , which

implies that there cannot be more than one unique element in the intersection

of all (Am+1
l (Z))l, i.e. ∩l∈MAm+1

l (Z) = P s
Z(f) = PZ(f). By Lemma 2.2 we get

PT (f) = P s
T (f) for all T such that f ∈ ∆T , which completes the proof of the Theo-

rem 2.3 and hence also Theorem 2.1.

�
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3 Limited Attention in Case Based

Belief Formation

Abstract

An agent wants to derive her belief over outcomes based on past observations col-

lected in her database (memory). There is well establish evidence in the psychology

and marketing literature that agents consistently fail (or choose not) to process all

available information. An agent might be constraint to pay attention (recall) and

consider only parts of her potentially available information due to unawareness, cog-

nitive or psychological limitations or intentionally for effort-efficiency. Based on this

insight, we axiomatize a two-stage belief formation process in which in a first step

agents filter ((un)intentionally) the available information. In a second step individ-

uals employ the remaining observations to express a belief. We impose cognitively

and normatively desirable properties on the filtering process. The axioms on the

belief formation stage describe the relationship between databases and their induced

beliefs. The axiomatized belief induced by a filtered databases is representable by

a similarity weighted average of the estimations induced by each past attention-

grabbing observation. An appealing application is a satisficing filter that induces

a filtered belief that relies only on past experiences that are sufficiently relevant

for a current problem. For the specific situation that agents (are able to) always

pay attention to all available information, our axiomatization coincides with the

axiomatization of belief formation in Billot et al. (Econometrica, 2005).

3.1 Introduction and motivation

In many situations agents need to evaluate uncertain consequences of their actions.

In order to compare different potential consequences agents need to assign likelihoods

to these outcomes. How can individuals form (probabilistic) beliefs over outcomes?

Traditionally, economic theory models uncertainties in a state space representa-

tion a la Savage (1954) and Bayes and derive a subjective prior based on observable
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3 Limited Attention in Case Based Belief Formation

actions of an agent. This implicitly requires that an agent already posses a subjec-

tive prior belief, which is expressed by her observable actions. However, the Savage

and Bayesian approach does not help an agent to find or form a prior explicitly, for

instance by incorporating pieces of information directly into a belief formation. In

particular in situations in which an agent might not be able to condense her insuf-

ficient or too complex information into a consistent state space, their normatively

appealing and convincing approach to endogenously derive a belief is not feasible.1

We will consider such an environment and axiomatize a belief formation that

allows to take directly into account the available information. This is strongly related

to the aim of (asymptotic) statistical inference, where from data a distribution

is derived. However, in this chapter we give a behavioral foundation for a belief

formation in ”non-asymptotic environments” that are characterized by heterogenous

and limited information gathered in a list or database.

The impact of data and experience on the formation of a probabilistic belief was

examined initially by the axiomatization of Billot et al. (2005) (BGSS from now

on).2 The axiomatizations of BGSS and related ones of Eichberger and Guerdjikova

(2010) (EG) (for ambiguous multiprior beliefs) and Bleile (2014a) (precision de-

pendent cautious beliefs) yield that a belief induced by a database is a similarity

weighted average of the estimations induced by all observed cases in the database.3

Thereby similarity weights capture different degrees of relevance of the potentially

very heterogenous information.

A common shortcoming of these approaches is that an agent is obliged to take into

consideration and account all past observations in her database. This precludes rea-

sonable situations in which an agent might want to neglect, does miss or just forgets

some pieces of information that would be in principle available. Our work relaxes

this drawback of ”compulsory” paying attention to all obtainable information. For

this purpose we extend the mentioned axiomatic approaches (in particular BGSS)

by adding a component of limited attention or consideration regarding available

information.

A traditional and widely accepted assumption in economic theory is that gaining

more information is beneficial and leads to improved actions. In this way, it is

usually assumed that agents incorporate and take into account all available pieces

of information.4 However, the assumption of full attention and consideration of all

1For more details on the difficulties of the Savage and Bayesian approach, see e.g. Gilboa et al.
(2012) and Chapter 1 and Section 2.1.

2The framework is based on Case based Decision Theory and its application to prediction problems
(Gilboa and Schmeidler (1995, 2001, 2003)).

3Basically, the three axiomatizations differ in the way the estimations are made.
4In addition, it is also a key assumption in all traditional revealed preference approaches.
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3.1 Introduction and motivation

available information requires that agents are aware of it, perceive it (unbiased) and

eventually are able to process it without any cognitive and psychological constraints.5

The idea and concept of limited attention goes back to the seminal studies in

psychology of Miller (1956), in which he identified limited cognitive abilities in pro-

cessing information as the source for incomplete consideration, especially deficits

and constraints in parallel (simultaneous) processing of information. Since then,

mounting evidence in psychology and marketing shows that agents process and re-

strict attention to only a small fraction of the overall available information and

consistently fail to consider all potentially available information due to their limited

attention span (e.g. Broadbent (1958), Stigler (1961), Pessemier (1978), Hauser and

Wernerfelt (1990), Chiang et al. (1998)). Often agents employ (implicitly) a multi-

stage process to assign different degrees of attention to specific pieces of information

(Bettman (1979)). In an initial rough filtering or screening stage agents pre-selects

these elements that receive (or are worth to capture) full attention and considera-

tion. In the literature this set of ”surviving” elements is called a consideration set

(Wright and Barbour (1977), Bettmann (1979), Roberts and Lattin (1991)).

A formation of a consideration set might emerge for many reasons. Cognitive

constraints in parallel processing of information and unawareness of the presence of

information (due to complexity, size, sequential processing or search) might cause

an unintentional filtering (Miller (1956), Nedungadi (1990), Schwartz (2004)). The

formation of a consideration sets as a (unintentionally) reply to avoid cognitive

overload has been also studied in economic problems, e.g. recently Masatlioglu et

al. (2012) axiomatized choices under (unintentional) limited attention.

In contrast, a consideration set can also be the result of a purposeful strategic

elimination process. Agents often use (heuristic) filtering procedures to screen in-

formation rapidly and roughly before engaging into a costly and detailed evaluation

(e.g. Wright and Barbour (1977), Gensch (1987), Nedungadi (1990), Gigerenzer et

al. (1999), Hauser (2013)). Usually, these heuristics are noncompensatory cutoff

or satisficing rules that allow for an uncomplicated ”effort-efficient” comparison.

This approach has recently gained prominence in economics (in particular in deci-

sion theory), e.g. through the works of Lleras et al. (2010) and Eliaz and Spiegler

(2011a,b).

Another reason for the emergence of a consideration set relies on mounting evi-

dence from psychology showing that often non-objective criteria like value systems,

5According to Simon (1959, p.272) perception and cognition intervene between subjective view
and the objective real world. In this context perception is often referred to as a ”filter”, where
filtering can not only be seen as a passive, but also as an active selection process involving
exclusion of almost all that is not within the scope of attention.
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subjective motives or aversions, etc. restrict the attention of agents. Recent work

has modeled these subjective and psychological biases ranging from overwhelming

temptation (Gul and Pesendorfer (2001), Dekel and Lipman (2012)), rationalization

(Cherepanov et al. (2013)), status quo bias (Masatlioglu and Ok (2005)), routes

(Apesteguia and Ballester (2013)) and reason based choice (Lombardi (2009), De

Clippel and Eliaz (2012)).

In this chapter, we want to incorporate the formation of a consideration set in-

duced by limited attention (consideration) as an intermediate stage into a belief

formation process. In this way, our agent is not obliged to take into account all po-

tentially available information, but might base her belief only on (survived) filtered

information in the consideration set. In order to illustrate the basic idea and plau-

sibility of such a two stage belief formation process we modify the doctor example

of BGSS.

A doctor needs to evaluate different outcomes of a treatment. She has some

working experience or access to some medical database D = (c1, ..., cl), where she

recorded in a case ci = (xi, ri) the vector of characteristic of a patient i, xi ∈ X (e.g.

age, gender, weight, blood count) and the observable outcome of the treatment

ri ∈ R (e.g. better, worse, adverse effects). A new patient characterized by x

enters her office and using a medical record D, the doctor wants to derive a belief

Px(D) ∈ ∆(R) over potential outcomes in R. She might apply an empirical frequency

and use only a part Dx of the database D, which contains only cases c = (x, rc) of

patients with ”identical” characteristic x compared to the current patient:

”Frequentist”: Px(D) =

∑
c∈Dx δrc
|Dx|

.

However, if the database contains not sufficiently many of these ”identical” patients

x, she might want to include also ”similar” patients. She judges the degree of

similarity between patients x and x′ by s(x, x′) ∈ R+. Further, she might induce

from a case c = (xc, rc) not only a point estimate δrc on the realized outcome, but

derives a more general estimate P c ∈ ∆(R) on likelihoods of particular (related)

outcomes and forms the belief as axiomatized in BGSS by:

”BGSS-belief”: Px(D) =

∑
c∈D s(x, xc)P

c∑
c∈D s(x, xc)

. (3.1)

However, if the database D is long, complex or retrieved partly from her memory, the

doctor might not want or is just not able to (recall) pay attention to and take into

account all potential cases (patients) in the database D. She filters out some patients
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3.1 Introduction and motivation

contained in her record D with specific features Γ(D) ⊆ D. An intuitive example is

a similarity satisficing procedure, in which she considers only sufficiently relevant

patients that surpass a threshold of similarity s∗, i.e. Γ(D) = (c ∈ D|s(x, xc) ≥ s∗):

”Filtered-belief”: (Px ◦ Γ)(D) =

∑
c∈D 1{s(x,xc)≥s∗}(c)s(x, xc)P

c∑
c∈D 1{s(x,xc)≥s∗}(c)s(x, xc)

(3.2)

The filtered belief formation based on the similarity satisficing principle (under addi-

tional restrictions on the threshold value s∗) represents a special case of the general

result we obtain in our representation theorem in Section 3.5.

Roughly, our filtered belief formation consist of two stages, in which initially a

subjective (specific) filter process ”selects” the information that builds the consid-

eration set. In the second step, the agent forms her belief based on the remaining

un-eliminated information in her consideration set.

One might be tempted to interpret such a filtered belief as the belief (3.1) of BGSS,

based on an already (exogenously) ex-ante and independently filtered database

Γ(D). However, such an separation of filtering and belief formation would exclude

plausible and appealing filters based on similarities (as in (3.2)), since the similarity

values are endogenously derived in the belief formation. Moreover, in our axiomati-

zation both stages are merged by an axiom that focusses on the relationship between

filtered databases and their induced beliefs.

The initial filtering process captures appealing and desirable psychological prop-

erties that are rooted in psychology and marketing literature. The main property

is the well known and accepted consideration property. It is based on the idea and

evidence that if a case is considered in a database, i.e. is attention grabbing, then it

should attract attention also in all of its subdatabases, since it faces less competition

for attention by fewer pieces of information.6 Further, we make some assumptions

on the cognitive ability of agents and assume that an agent is able to pay attention

to at least k (k ≥ 3)-many available different pieces of information. A slightly more

demanding characteristics requires that order and frequency in which information

appears in a databases does not affect the level of attention an agent attributes to

it. Basically that means that pieces of information are per se attention grabbing

and not due to their specific position or a sufficiently high number of appearance.

The second layer of a filtered belief formation concerns the axiomatization on

the belief level. The normatively reasonable axioms follow the basic intuition of

the axioms in BGSS, but are modified to capture the previous filtering stage. We

6This property is also implied by the appealing axiomatic rationalization theory of Cherepanov
et al. (2013) (based on specific kinds of rationales).
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3 Limited Attention in Case Based Belief Formation

generalize the Concatenation Axiom of BGSS in order to capture the previous fil-

tering process on the involved databases. The original Concatenation Axiom says

that a belief induced by a combination of two databases is formed as an average

of the beliefs that are induced by each of these databases separately. We cannot

directly translate this to filtered database, since concatenations of already filtered

databases can differ enormously from the result of filtering the concatenation of the

two underlying databases (before they were filtered).7 Thus, in order to ensure a

reasonable averaging of the induced beliefs in the spirit of the axiom, we require

consistent relationships between the involved filtered databases. Another (implicit

enforced) axiom ensures that the order in which information appears is irrelevant

for the belief it induces.

As a result, our filtered belief formation can be represented as a similarity weighted

average of the estimates induced by each case that the agent actually pays attention

to, i.e. of those that survive the filtering. Hence the representation coincides with

BGSS if the agent does not filter any information, but takes into account always all

available information.

Apart from the appealing intuition of filtering according to similarities (as in

(3.2)), the filtering process can be any general arbitrary process that satisfies the

required properties. Various subjective and psychological motives, constraints, bi-

ases and justifications can be employed as elimination criteria.8 In particular, many

recently developed multi-criteria decision procedures include elimination procedures

to (implicitly) form a consideration set. The literature varies in the kind of criteria

that are employed, e.g. using (compositions of) rationale(s) (sequentially) to elim-

inate alternatives (Manzini and Mariotti (2007, 2012a), Apesteguia and Ballester

(2013), Houy (2007, 2010), Houy and Tadenuma (2009), Horan (2013)), focusing

only on subjectively justifiable alternatives (Cherepanov et al. (2013), Gerasi-

mou (2013)), considering only alternatives belonging to un-dominated or best cat-

egory(ies) (Manzini and Mariotti (2012b)) or considering only top N eye-catching

elements according to some exogenously given order or ranking (Salant and Rubin-

stein (2008)). Most of these approaches form consideration set in a way that can

be interpreted as seeking for a reasons to select (based on Shafir et al. (1993) and

Tversky (1972) and more related also in Lombardi (2009) and de Clippel and Eliaz

(2012)).

Another approach to form a consideration set can be seen in a satisficing procedure

7This is unproblematic for unfiltered databases, where the result of their combinations is directly
clear.

8For instance salience, familiarity, ”roughly” identical features, heuristics, fairness, extremeness
aversion, limited memory, reference effects, etc.
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(Simon (1959) and more related Tyson (2008, 2013), Papi (2012), Manzini et al.

(2013a)). The resulting consideration set contains only these elements which surpass

a (endogenously) given threshold level according to some criteria. This is close to

our motivating similarity satisficing example in (3.2).

However, for our purpose the most interesting paper is the axiomatic rationaliza-

tion theory of Cherepanov et al. (2013), since our assumed consideration property

(of the filter) is a direct consequence of their normatively and descriptively appeal-

ing rationalization process. Modifying their justification procedure in order to cope

with our other filter properties yields a corollary of our main representation result

that allows for an interpretation in terms of a ”rationalized” filtered belief.

The next section gives the general framework for the two stage filtered belief

formation. In Section 3.3 we introduce and discuss the properties on the filtering

process. Section 3.4 deals with the axioms on the belief formation induced by a

filtered database. The main representation theorem and a sketch of the proof is

presented in Section 3.5 and we derive as a corollary the similarity satisficing belief

process. Section 3.6 relates the filtering process to the recently developed multi-

criteria/stage decision procedures. In particular we exemplarily modify the choice

model of Cherepanov et al. (2013) to a filter process in our terms. An interpretation

of the resulting representation in terms of multi-similarities is given. Section 3.7

concludes. All proofs can be found in the last section.

3.2 The model

In this section, we introduce the case-based information framework and the basic

building blocks of our belief formation based on filtered information. Further, we

introduce some definitions and notations necessary for our approach.

3.2.1 Database framework

A basic case c = (x, r) consists of a description of the environment or problem

x ∈ X and an outcome r ∈ R, where X = X1 ×X2 × ....×XN is a finite set of all

characteristics of the environment, in which Xj denotes the set of possible values

features j can take. R denotes a finite set of potential outcomes, R = {r1, ..., rn}
The ordered set C ⊆ X ×R consists of all m ≥ 3 basic cases, i.e. C = {c1, ..., cm}.
A database D is a sequence or list of basic cases c ∈ C. The set of databases D

consisting of L cases, i.e. D = (c1, ..., cL) where ci ∈ C for all i ≤ L, is denoted

by CL and the set of all databases by C∗ = ∪L≥1C
L, including the empty database

∅. The description of databases as sequence of potentially identical cases allows
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3 Limited Attention in Case Based Belief Formation

multiple observation of an identical case to be taken into account and treated as an

additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in

databases D.

The concatenation of two databasesD = (c1, c2, ..., cL) ∈ CL andE = (c′1, c
′
2, ..., c

′
T ) ∈

CT (where ci, c
′
j ∈ C for all i ≤ L, j ≤ T ) is denoted by D◦E ∈ CL+T and is defined

by D ◦ E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the

identical databases D by DL. Specifically, cL represents a database consisting of

L-times case c.

For any D ∈ C∗ the diversity of a database D is given by div(D) := |{D}|, where

as usual {D} denotes the set of different cases contained in database D. So div(D)

gives the number of different cases contained in database D.

We need to translate some relations from sets to the list framework.

Definition 3.1

(i) The ∈-relation on databases is defined by c ∈ D if fD(c) > 0.

(ii) The ⊆-relation on the set of databases C∗ is defined by D ⊆ E ⇔ fD(c)|D| ≤
fE(c)|E| for all c ∈ C. We will call such databases to be nested.

(iii) The ∩-relation on databases is given by D ∩ E = ((cmin{fD(c)|D|,fE(c)|E|})c∈C)

(iv) Two databases D and E are disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

The definitions are basically independent of the order of cases in the databases.

Note however that the definition of ∩-relation in (iii) is very specific, since the order

of C is transferred, i.e. by intersection a specific order (on C) is induced.9

3.2.2 Filter

In the literature so far, a filter on C∗ is usually defined as a set function Γ : C∗ → C∗,

such that for all E ∈ C∗ ∅ 6= Γ(E) ⊆ E. In this way, implicitly the information E

is filtered from the perspective of the available information E. However, it does not

cover and specify how any subdatabase D of E is filtered, while knowing database

E. In particular a case c in subdatabase D might attract attention in D if the

agent does not take into account the additional information in E. But she might

not pay attention to this case when having the larger database E in mind (and

its relevant cases). Thus, the underlying perspective from which a filtering occurs

might affect the assigned attention (see Section 3.3.1 for further discussion). Our

9In contrast to intersections of sets, where orderings are immaterial, intersection of databases do
require some assumption on resulting orderings.
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filter determines as well, how any subdatabase D of E is filtered from the perspective

of E. Formally, a function Γ : X × C∗ × C∗ → C∗ such that for all x ∈ X and

D ⊆ E ∈ C∗, Γ(x,D,E) := ΓE(x,D) ⊆ D is called a filter on (sub)database D

induced by (perspective) database E and given a problem x. We use the notation

ΓE(x,D) to highlight the roles of the two database. Basically the (sub)database D

is screened from the perspective of (or having in mind) the richer information E.

3.2.3 Induced belief

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for

n ∈ N ∆n denotes the simplex over the set {1, 2, ..., n}.
In the axiomatizations of BGSS, EG and Bleile (2014a) (or Chapter 2), an agent

will form a belief over outcomes P (x,D) ∈ ∆(R) for a certain problem charac-

terized by x ∈ X using her information captured in a database D ∈ C∗, i.e.

P : X × C∗ → ∆(R).

In the current approach a filtered belief is formed based only on parts of the in-

formation captured in D and that is filtered from the perspective of richer in-

formation E ∈ C∗, i.e. filtered belief (P ◦ Γ) : X × C∗ × C∗ → ∆(R) and

(P ◦Γ)(x,D,E) = (P ◦ΓE)(x,D) for D ⊆ E (with slight abuse of notation). In this

sense the filtered belief (P ◦ΓE)(x,D) is induced by a nested pair of databases D and

E and can be interpreted as the belief over outcomes induced by database D ∈ C∗
seen through a filter that rests on perspective E (given problem x ∈ X). Hence, a

filtered belief is a two stage process of filtering followed by a belief formation.

Technically, the filtered belief induced by the pair of nested databases D and E co-

incides with the BGSS belief based on an a priori already filtered database ΓE(D).10

However, as discussed in the introduction, a priori filtering would separate the filter

procedure and the belief formation process that would exclude desirable applications

based on endogenously derived similarity values, like the similar satisficing behavior

(as discussed in our motivating example (equation (3.2)). Further, the nice axioma-

tization of BGSS based on relationships between filtered database and their induced

beliefs would need to be defined on filtered databases as well, which merges both

stages again. However, for our motivation and purpose the most intuitive (and de-

sirable) filtered belief formation is based on a single database, i.e. the filtered belief

(P ◦ Γ)(x,D,D) induced by database D.

Throughout the paper the problem x is fixed, therefore x is often suppressed in

the following, i.e. (P ◦ ΓE)(x,D) = (P ◦ ΓE)(D).

10Basically meaning that (P ◦ ΓE)(D) = P (ΓE(D)).
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3 Limited Attention in Case Based Belief Formation

3.3 Filter definition and properties

Instead of defining explicitly a procedure how to filter information we are more gen-

eral and rather impose natural, well accepted and established properties in psychol-

ogy and marketing. These properties are normatively and descriptively compelling

in several situations and are indeed true for many heuristics people actually use

in real life to screen their ”information set”. In particular many of the recently

developed multistage decision models contain a wide variety of (endogenous and

exogenous) filter procedures that satisfy our filter properties, which supports their

relevance and generality (see Section 3.6). In this sense, we can also interpret our

filter as a choice correspondence in which elements surviving the pre-choice process

form a consideration set of acceptable and relevant information. This (filtered) con-

sideration set represents the underlying basis for a filtered belief formation process.

3.3.1 Basic properties of a filter

In the last section, we mentioned briefly our concept of a filter. More precisely:

Definition 3.2 Filter

A set function Γ : C∗×C∗ → C∗ is called a filter on D induced by (perspective)

database E if for all D,E ∈ C∗ such that D ⊆ E ∈ C∗ it holds

(i) Γ(E,E) =: ΓE(E) =: Γ(E) 6= ∅ and

(ii) Γ(D,E) =: ΓE(D) = Γ(E) ∩D.

Note that by definition ΓE(D) ⊆ D holds for all D ⊆ E, but it does not imply that

ΓE(D) 6= ∅.
As mentioned already, the traditional definition of a filter is based only on one

database, i.e. ∅ 6= Γ(D) ⊆ D, which is covered as well by our definition for D = E.

However, our definition also specifies how all subdatabases D of a given database E

are filtered. The knowledge of a database E affects the evaluation of the relevance of

cases in the subdatabase D, since the ”attractiveness” of pieces of information might

vary strongly with different perspectives, available information or knowledge. Basi-

cally, the aim is to capture that a case c ∈ D∩E may attract attention in database

D, but not in database E, i.e. ΓD(c) = c, but ΓE(c) = ∅. Thus, the perspec-

tive from which filtering occurs is an important characteristic to determine whether

some piece of information survives a filtering process or not. Our definition requires

a consistent filtering of parts of the available information, i.e. knowing database E,

an agent should pay only attention to those cases in a (smaller) subdatabase D that

(already) captured attention in the richer database E.
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We will discuss the three properties the definition proposes, namely the filtering,

its specific content and induced ordering.

There are many reasons, why an agent demonstrates partial attention to available

information. Cognitive limitations and constraints in parallel processing of complex

and large information sets is often associated with an unconsciously allocation of

attentional resources (Anderson (2005) pp.72-105). This kind of cognitive unaware-

ness can lead to a formation of a consideration sets as well as an intentional heuristic

elimination procedure in order to explicitly simplify the information set in a cost or

effort efficient way, while still keeping the most relevant information. In addition,

consideration sets are often constructed unrelated to the objective features of the

elements in their information sets, e.g. subjective constraints, like motives, mood,

rationales, value systems, biases, attitudes might affect acceptability, attractiveness

or moral justification of an object and affects its assigned attention level. In sum,

filtering a set of available information is a natural and plausible behavior under

many circumstances and for many reasons.

The nested perspective-structure in our definition of the induced filter, i.e. ΓE(D) =

Γ(E)∩D for D ⊆ E, states that a subdatabase D is filtered from the perspective of

a database E. In this specific form an agent already processed and filtered out the

information in E (resulting in Γ(E)) that she deems relevant, wants to consider or

is able to pay attention to. Since an agent actually needs to process and screen only

information in a subdatabase D, she will pay attention to all elements in D that

already grabbed her attention and are still in her mind, i.e. Γ(E) ∩ D. Basically

D is not filtered independently but compared with the information that is atten-

tion grabbing in E. Put differently, D is filtered through E- colored glasses and not

by inspecting elements in D in detail. However, it is important to stress that this

definition applies only to situation in which both databases are processed ”simul-

taneously”. If databases are processed independently, such an interwoven filtering

(from the perspective of one) is not feasible or desirable. In particular, in the follow-

ing we will introduce a (consideration) property which specifies how independently

filtered nested databases are related.

Finally, we are concerned with the ordering of the resulting filtered database,

which stems from the definition of the intersection and the ordering on C. Of course,

it is restrictive to assume ad hoc a specific arbitrary ordering of a resulting filtered

database, since amongst other things this may depend on orders of D or/and E.

However, in course of the axiomatization of a belief formation, we would adopt the

Invariance Axiom of BGSS, which states that only the content and not the ordering

of cases is important for an induced belief. From that perspective any reordering of
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a resulting filtered database would lead to the same induced belief, which leaves the

definition and its induced ordering rather harmless.

Moreover, the implied ΓE(D) = ΓE(π(D)) for all D ⊆ E and any reordered database

π(D) will be further generalized by the following property.

Definition 3.3 Filter order invariance

For all L ∈ N and D ∈ CL and any permutation π on {1, .., L}, let D = (c1, .., cL)

and π(D) = (cπ(1), ..., cπ(L)). A filter Γ is order invariant if it holds that

c ∈ Γ(D) if and only if c ∈ Γ(π(D)).11

Basically it states (in close relationship to BGSS Invariance Axiom for beliefs) that

the order of the cases is immaterial for the resulting filtering of the cases, i.e. only

the content of a database matters. Information should be attention grabbing per se

and not due to its specific position in the database. From a first sight the property

seems to be rather restrictive since agents appear to be able to consider all cases in

the database ”simultaneously” without any order biases, like first impressions and

recency effect (see Rubinstein and Salant (2006)). However, if some of these effects

are important, then they can be captured by a more elaborated description of the

cases. For example, its description can include time or the order in which it was

observed.

The filter order Invariance implies that in combination with the definition of inter-

sections of databases

ΓE(D) = Γπ
′(E)(π(D)) for all D ⊆ E and any reordered databases π(D) ⊆ π′(E),(3.3)

It will imply the identity of beliefs induced by all possible combinations of reordered

databases π(D) and π′(E) that enter the filtering process.

A closely related property states and ensures quite naturally that if a case catches

attention then all other cases of this type are attention grabbing as well.

Definition 3.4 Equal treatment of information

A filter Γ on C∗ × C∗ treats information equally if for all c ∈ D

ΓD(c) = c if and only if ΓD(cT ) = cT for all T such that cT ∈ D.

Basically, this means that all pieces of the same type are treated equally and either

are attention grabbing or not.

11Note that independent of the filter definition, the property would just enforce that the content
is identical. Only in combination with our definition of a filter the ordering coincide, i.e.
Γ(D) = Γ(π(D)) is implied.
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Another content dependent property is similarly based on the view that attention

or disregard is structural in a way that per se either a piece of information is eye-

catching or attention grabbing or not. Namely, the filtering process is not affected

by an (sufficiently large) amount of occurrence of a piece of information.

Definition 3.5 Filter ignorance of repeated information

A filter Γ satisfies the ignorance property if for all D ∈ C∗ it holds:

Γ(D ◦ c) ∩D = Γ(D) for all c ∈ D.12

A repeated appearance of a case does not influence its perception in the sense that

a case attracts attention if it is relevant or outstanding in itself and not because

itself or another case appears in a specific amount. The assignment of attention to

a case might be altered only if another new case appears or all appearances of a

specific case are removed from the database (as induced by the consideration filter

property defined below). In this sense, additional observation of already known and

evaluated cases do not alter (already attached) attention levels.

The property finds support in Gul et al. (2012), which examines the probabilities

of choices when alternatives are duplicated. They propose, that duplicate alterna-

tives should be identified as observational identically and should be (in a specific

sense) irrelevant for the likelihoods with which an observational identical alterna-

tive is chosen. This can be related to a ”pay attention”- choice in which we restrict

the probabilities to pay attention to zero or one. However, duplication of evidence

might affect the composition of a filtered consideration set in the list-framework of

Rubinstein and Salant (2006) and hence violate our property (and their partition

independence property). Of course, the number of times an element appears might

have an influence on attention, for instance in a procedure that pays attention only

to the most frequent element.

3.3.2 Main structural properties of a filter

The two following structural properties characterize the impact of nested databases

on their induced filtered consideration set and the cognitive ability of an agent to

process and pay attention to at least a minimum amount of available information.

12This is equivalent to: for all D ⊆ E and all c ∈ E, ΓE◦c(D) = ΓE(D).
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Consideration property

The consideration property specifies the relationship between the induced consider-

ation sets of nested databases in a quiet naturally way. It states that if an agent

pays attention to a case in a database, then also her attention is drawn to this case

in all of its subdatabases. This follows the idea and evidence that elements in an

information set compete for attention and need to outperform other pieces of infor-

mation to be considered. If a case manages to attract attention or is salient enough

in a database, then it also gains attention in a subdatabase, in which some of its

rivals for attention are not anymore present. The classical example in marketing

deals with the attention an agent assigns to products in a supermarket with a huge

variety compared to a small neighborhood store. A specific jam catching your eye

standing in front of a large supermarket shelf with fifty different jams will catch

your attention also in the convenience store selling only five different sorts of jam.

Definition 3.6 Consideration property

A filter Γ on C∗×C∗ satisfies the consideration property if for all D ⊆ E ∈ C∗
and c ∈ D: c ∈ Γ(E) implies c ∈ Γ(D).

From another point of view, if there is no reason (e.g. an (outstanding) piece of

information) in the larger sample E that shadows case c, i.e. c ∈ Γ(E), then it still

cannot happen that case c is shadowed by any reason (e.g. any information) in the

smaller subdatabase.

Apart from the ”competition for attention”-explanation the consideration prop-

erty can be motivated by the finding that with increasing complexity and size of

a set agents reduce the amount of alternatives they consider and also lower its in-

tensity and seriousness.13 If the complexity of a database is caused by a difficult

detailed evaluation of alternatives involving compromising and tradeoffs, an agent

might find it much harder to find reasons why to ”choose” to consider a case. As

a consequence agents might stick to only superficial analysis, where only the very

important, salient or extraordinary alternatives receive attention. With decreasing

complexity of a set agents might return to a more detailed analysis that facilitates

the selection of more alternatives to be worth or justified to be included into the

consideration set.

13See e.g. Hauser and Wernerfelt (1990) and Shugan (1980).
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Minimal attention span

The following property describes the cognitive ability of an agent to handle and

process information. Our minimal attention property requires that an agent consid-

ers in full detail at least k-many (k ≥ 3) available different pieces of information.

More precisely, for all databases containing less than k many different information

an agent takes into account all pieces of information. For more complex databases

an agent is free to apply filtering techniques to process her information and neglects

some pieces of information, as long as she pays attention to at least k-many different

pieces of information.

Definition 3.7 Minimal attention span

A filter is minimal attentive with k ≥ 3 if for all D ∈ C∗ such that

(i) for div(D) = l ≤ k it holds div(Γ(D)) = l and

(ii) for div(D) > k it holds div(Γ(D)) ≥ k.

From this perspective, the property induces that agents are cognitively sophisticated

enough to handle at least k-many different pieces of information completely and

with full attention. Also, agents might want to gather a certain minimal amount of

information in order to evaluate and act in an informed and confident way. Thus

they take into account all available information, when only few (less than k different)

information is around.14

The property combines basically two components -minimum required amount of

information and filtering in case of potential information overload - which are well

supported by empirical findings. We state it in terms of a general minimal attention

span k, but for our purpose k = 3 is sufficient and also meets empirical evidence.

For example Gensch (1987) found that screening and filtering rules may be invoked

for as few as four alternatives, but agents consider and rely on all information for

less diverse information sets. In the marketing literature Jarvis and Wilcox (1977)

examined the usual size of consideration sets and discovered that the average size

of consideration sets is three to eight products, independent of the size of the initial

information.15

So far a minimal attention property is usually not assumed in the (choice) liter-

ature in which usually no lower limit is given for the filtering stage unless a non-

emptiness condition. In a special case of Lleras et al. (2010) agents have no limited

14One can also think about it as in Simon (1959, p.263) based on an aspiration or satisfaction
level such that at least k cases are attracting interest or attention. If not, the level was too
high and a reduction of the level leads to some search behavior of the agent to pay attention
to more available alternatives.

15Miller’ s insight (1956) that agents can process or remember at least seven case is also covered.
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attention problem for situations of binary alternative set, i.e. their agents are always

able to pay attention to both alternatives.16 However, their version does not cover

any restrictions for more general situations, as specified in our property.

The requirement of filtering a minimum amount of information constitutes a

strong constraint to identify filters as choice correspondences. We will discuss this

problematic issue in Section 3.6, where we interpret filtering in a choice theoretic

perspective.

Definition 3.8 Admissible Filter

A filter Γ on C∗×C∗ is called an admissible filter if it satisfies the invariance, equal

treatment, ignorance, consideration and minimal attention span property.

3.4 Axioms on level of belief formation

In this section we introduce the axioms on the stage of belief formation.

As mentioned in the section before, a natural axiom for a belief process that is al-

ready implied by the definition of intersections and the filter properties, is a version

of an Invariance Axiom as in BGSS for filtered databases that reads:

Filtered Invariance Axiom (already implied)

For every T ≥ 1, every database D,E ∈ C∗ with D ⊆ E. Let ΓE(D) = (c1, .., cT ) ∈
CT and for every permutation π : {1, ..., T} → {1, ..., T} and any filter ΓE(D), where

π(ΓE(D)) = (cπ(1), ..., cπ(T )) the following holds:

(P ◦ ΓE)(D) = (P ◦ π(ΓE))(D)

Basically it says that an induced belief over outcomes depends only on the content

of a filtered database and is insensitive to the sequence and order in which data

arrives. However, by our definitions of a filter any filtered databases containing

the same content have exactly the same specific ordering (according to the order

on C), which makes the invariance property superfluous, since re-orderings do not

occur after filtering (see eq. (3.3)). In this sense the filtered Invariance Axiom is

substituted by the definition of a filter and the filter ignorance property.17

16See also Masatlioglu et al. (2012), where Γ(D) ≥ 2 allows the full revelation of preferences
17We would have required the axiom directly if our filtering process would have allowed for dif-

ferent orderings of databases consisting of the same content. Technically speaking, there is no
difference between restricting the filtering process to specific orders or allowing for different
orderings and requiring an Invariance Axiom for beliefs.
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Per se the invariance property does not allow for different impacts whether a

case appears earlier or later. However, the order in which information is provided

or obtained can influence the judgment strongly and may carry information by it-

self. One way to cope with these order effects is to describe the cases informative

enough. E.g. if one wants to capture the position or time of occurrence of a case in

the filtered database, one could implement this information into the description of

the cases itself. Put differently, if one challenges the consequences of an invariance

property, then there must be some criteria which distinguish the cases. Taking into

account these differences explicitly in the description of the cases may lead the agent

to reconcile with such an invariance.

Filtered Concatenation Axiom

Let Γ be a filter. For all database D,E, F ∈ C∗ such that D ◦ E ⊆ F there exists

λ ∈ [0, 1] such that:

(P ◦ ΓF )(D ◦ E) = λ(P ◦ ΓF )(D) + (1− λ)(P ◦ ΓF )(E)

where λ = 0 if and only if ΓF (D) = ∅.

In the following we will call the database which emerges from concatenation of other

databases as the combined or concatenated database, whereas the databases

used for the concatenation will be called combining or concatenating databases.

The filtered Concatenation Axiom says that a filtered belief induced by a con-

catenated database is a weighted average of the filtered beliefs induced by their

respective combining databases. The axiom captures the idea that the belief based

on the combination of two databases cannot lie outside the interval spanned by

the beliefs induced by each combining database separately. Intuitively it can be

interpreted in the following way (stated from an exclusion point of view): if the

information in any database induces an agent’s belief not to exclude an outcome r,

then the outcome r cannot be excluded by the belief induced by the combination

of all these databases.18 Alternatively, if a certain conclusion is reached given two

filtered databases, the same conclusion should be reached given their filtered union.

However, in order to sustain the normative appealing interpretation of averag-

ing (filtered) beliefs, the filtered concatenation of two databases must coincide with

18Of course the axiom is stronger in the sense that it not only requires that the probability of
such an r is positive, but it should lie between the minimal and maximal assigned probabilities
induced by the combining (filtered) databases.
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the concatenation of these two filtered databases. This is achieved by employing

the common perspective F ⊇ D ◦ E according to which all involved databases are

filtered, i.e. ΓF . Otherwise it would not be in general reasonable to require the exis-

tence of such an average of beliefs, since the elements surviving the filtering process

for each single database might differ from the elements surviving the elimination of

the database generated by the combination of the two.19 In this situation, it would

be implausible and unreasonable to determine a relationship between the induced

filtered beliefs. The required structure ensures that a filtered belief induced by the

concatenated database relies on information that is also employed in the filtered be-

liefs induced by the single concatenating databases and thus allows for an interwoven

filtering and belief formation.

Moreover, another important reason for requiring this specific common perspec-

tive is based on the motivation that an agent should filter from the perspective of

the richest information available, which is at least the concatenated database D ◦E,

i.e. F ⊇ D ◦ E. This is very reasonable and natural, since the agent processed

already at least the information in the concatenated database due to the fact that

she actually wants to form a (filtered) belief based on this filtered database. In this

way she cannot remove (intentionally) some (gained or experienced) information for

filtering the concatenating database from a less informative perspective.20 In this

way, the concatenated databases represent a quite natural choice as a ”smallest”

perspective from which the filtering process is initiated.

Collinearity Axiom

No three elements of {((P ◦ Γc)(c))c∈C} are collinear.

Technically speaking this axiom allows to derive a unique similarity function (in

combination with the other axioms), but it has also some reasonable intuition.

Roughly it states that the estimation based on a case is never equivalent to the

combined estimations based on two other cases. Hence, a case is always informative

in the sense that no combination of two other cases can deliver the same estimate

and would make this case ”redundant”.

19In an unfiltered concatenated database any information appear in either of their (unfiltered)
concatenating databases and find weight in their induced beliefs. However, for filtered databases
(P ◦ΓD◦E)(D ◦E) = λ(P ◦ΓD)(D) + (1−λ)(P ◦ΓE)(E) is meaningless, since the relationships
between Γ(D ◦ E) and the parts Γ(D) and Γ(E) are unclear.

20This is even impossible if the filtering occurs unconsciously, since the information entered already
her mind by the nature of the task.
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3.5 Representation Theorem

Theorem 3.1

Let there be given a function (P ◦ Γ) : C∗ × C∗ → ∆(R), where P : C∗ → ∆(R)

and Γ be an admissible filter on C∗×C∗. Let (P ◦ Γ) : C∗×C∗ → ∆(R) satisfy the

Collinearity Axiom.

Then the following are equivalent:

(i) The function (P ◦ Γ) satisfies the filtered Concatenation Axiom

(ii) There exists for each c ∈ C a unique P c ∈ ∆(R), and a unique -up to multipli-

cation by a strictly positive number- strictly positive function s : C → R+, such that

for all D ⊆ E ∈ C∗ such that ΓE(D) 6= ∅

(P ◦ ΓE)(D) =

∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

. (3.4)

Rough sketch of the proof

The necessity part is straightforward calculation. The sufficiency part follows the

rough structure of the proof of BGSS and Bleile (2014a) (or Chapter 2), but differs

in the crucial arguments. The idea is to transform the framework from the space of

databases to the space of frequency vectors that is structural more tractable, i.e. the

filtered belief based on databases (P ◦ ΓE)(D) =
∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

for D ⊆ E ∈ C∗

translates to frequency vectors fD ⊆ fE by (P ◦ ΓfE)(fD) =
∑
j≤m sjΓ

fE
j (fD)P j∑

j≤m sjΓ
fE
j (fD)

. In

order to show that this is viable we exploit some properties of the filter and the

Concatenation Axiom.

The essential part of the proof is to derive the similarity weights (si)i≤m. This will

be shown inductively over |C| = m and div(fE) ≤ m.

Step 1: Base case for the induction, i.e. |C| = m = 3 and div(fE) ≤ 3, w.l.o.g.

C = {c1, c2, c3}, i.e. aim to find s1, s2, s3.

For pairs (fD, fE) ∈ ∆ ×∆ (i.e. such that div(fE) ≤ 3) the properties of the filter

(in particular the minimal attention span) induce that the filtering stage disappears

and the axioms coincide with BGSS. Thus, the same steps (using simplicial parti-

tions) as in BGSS (or Chapter 2) will show the above representation for all pairs

(fD, fE) such that fD ⊆ fE and div(fE) ≤ 3.

Step 2: |C| = m > 3 and div(fE) ≤ m.

As in BGSS or Chapter 2, we can show (again using the minimal attention property)

that the similarity weights derived in Step 1 for any set of basic cases C = {ci, cj, ck}
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are independent of the triplet {i, j, k} and thus we can define for all fD ⊆ fE ∈ ∆

(P ◦ ΓfE)s(fD) =
∑
j≤m sjΓ

fE
j (fD)P j∑

j≤m sjΓ
fE
j (fD)

using the derived s = (s1, .., sm)

The aim is to show (P ◦ ΓfE)(fD) = (P ◦ ΓfE)s(fD) for all fD ⊆ fE ∈ ∆ via

induction over m and using Step 1 (m = 3) as base case.

a) For all pairs (fD, fE) such that div(fE) = m and div(fD) < m the ”idempotence”

of the filter (i.e. Γ(ΓfE(fD)) = ΓfE(fD)) is used to exploit the induction assumption.

b) For div(fD) = div(fE) = m we adopt (with different reasoning) the construc-

tion used in BGSS, i.e. fD = αqj + (1 − α)f(j) (for some α ∈ (0, 1), where f(j)

denotes the point on conv{(ql)l∈{1,...,m}\j} on the line through fD and j-th unit vec-

tor qj. The result of a) allows to apply the filtered Concatenation Axiom, i.e.

(P ◦ΓfD)(fD) = λ(P ◦ΓfD)(qj) + (1−λ)(P ◦ΓfD)(f(j)). The filter properties (min-

imal attention and consideration property) ensure that there exist at least three qj

such that ΓfD(qj) 6= 0m and therefore there exist three P j that do not lie on one

line by the Collinearity Axiom. Thus, there are at least three different lines on

which (P ◦ΓfD)(fD) and (P ◦ΓfD)s(fD) lie and since their intersection is unique the

beliefs (P ◦Γ) and (P ◦Γ)s induced by the pair (fD, fD) have to coincide. The filter

ignorance property concludes the proof for all (fD, fE).

Interpretation of Theorem

The main difference to the axiomatized representation of BGSS (i.e. (3.1)) lies

obviously in the inclusion of the filtering process that captured by the indicator

function in the representation (3.4). Thereby the agent only employs and needs

to take into account the information that she really filtered to be most important,

”relevant” or acceptable (according to some criteria, such that the admissible filter

properties are met).21 Thus, the belief formation follows a two-stage procedure of

filtering and subsequent belief formation. Another deviation from BGSS concerns

the dependence of the axiomatization on pairs of databases and no single database

as in BGSS. Such a structure is necessary and reasonable for our axiomatization.

However, for interpretational purpose and the motivation behind this work, the

situation E = D is most interesting. In this context, an agent is not concerned

with additional information or priming of her mind by E, but evaluates the given

or evoked database D. By interpreting a database D as her potentially available

memory, an agent might recall or retrieve only some of her memorized experiences

21It allows also a conditional belief formation, i.e. s(x, c) = 1{x=xc}(c), mentioned already in
BGSS, but unfeasible in their setup.
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Γ(D). Basically Γ(D) can be seen as the result of a brainstorming or coming to

mind process of those past experiences that she deems most appropriate, valuable,

salient or wants to take into account.

3.5.1 Example: Similarity satisficing

Initially Simon (1955, 1957) introduced satisficing behavior as an alternative ap-

proach to the classical rational choice theory. According to him, in most global

models of rational choice all alternatives are evaluated before a choice is made, but

” in actual human decision-making alternatives are often examined sequentially.

We may, or may not, know the mechanism that determines the order of procedure.

When alternatives are examined sequentially, we may regard the first satisfactory

alternative that is evaluated as such as the one actually selected” (Simon (1955),

p. 110). In general, satisficing behavior is a relevant and often observed heuristic

in reality (e.g. for experimental evidence see Caplin et al. (2011), Reutskaja et al.

(2011)).

In our motivating example of a similarity satisficing procedure (3.2), the filtered

belief was

(P ◦ ΓE)(D) =

∑
c∈D s(c)1{s(c)≥s∗}(c)P

c∑
c∈D s(c)1{s(c)≥s∗}(c)

.

Its interpretation is especially appealing if a database is identified with recalled mem-

ory and assuming that those experiences are retrieved earlier that are most similar

to the current problem. In this situation an agent will stop to contemplate after

some time and starts to process the till-then recalled (most relevant) information.

Obviously, setting the threshold level to zero, i.e. s∗ = 0, would result in the BGSS

representation (3.1). This directly shows that s∗ needs to be restricted in order to be

meaningful embedded in our filtered belief formation framework. In particular, our

filtering process must satisfy the minimal attention and consideration property. The

former property requires that we need to take into consideration the k (k ≥ 3) most

similar cases. This determines the threshold values s∗. Obviously, such a threshold

needs to be database-dependent, i.e. s∗(E) =: sE for all E ∈ C∗. More precisely,

define for all E ∈ C∗ SE := {(s(c))c∈E} and denote by sEj the j-largest number

s(c) according to ≥ in SE. Then we get directly that for all E ∈ C∗ the database-

dependent threshold level sE is given by sE = sEk1{div(E)≥k}(E) for any cognitive

ability k ≥ 3. Such a definition of the threshold sE implies the minimal attention

property. In order to also satisfy the consideration property - i.e. c ∈ Γ(E), then

c ∈ Γ(D) for all D ⊆ E - we need to enforce sE ≥ sD for D ⊆ E. The resulting

filter ΓE(D) = (c ∈ D | s(c) ≥ sE) satisfies the remaining properties directly.
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Summarized, this yields the following Corollary.

Corollary 3.1

Let P be as in Theorem 3.1 and Γ a similarity satisficing filter ΓE(D) := (c ∈
D|s(c) ≥ sE) for D ⊆ E ∈ C∗ with database dependent similarity thresholds sE as

defined above. Then the equivalence in Theorem 3.1 holds with the specific represen-

tation

(P ◦ ΓE)(D) =

∑
c∈D s(c)1{s(c)≥sE}(c)P

c∑
c∈D s(c)1{s(c)≥sE}(c)

.

A database dependent threshold is even more in the spirit of Simon’s satisficing

behavior. Simons hypothesis is that most subjects search sequentially and stop

search when an environmentally determined level of reservation utility (similarity in

this context) has been surpassed. Hence, for the specification of their reservation

or satisficing level individuals take into account the environment, i.e. in our setup

the perspective or information set E. In addition, Simon proposed that the levels

of reservation utility (similarity here) increase with set size and object complexity,

i.e. for larger databases in our setup. Thus, both conditions on the threshold -

database dependence and increasing in database complexity - are well-grounded in

the satisficing literature.

A recent related paper that is concerned with the axiomatization of a two-stage

threshold representation (Manzini et al. (2013a)) obtains various structures for the

threshold values. Comparing it to Lleras et al. (2010) (or our admissible filter) they

get as well sE > sD for D ⊂ E. However, the attention filter model of Masatlioglu

et al. (2012) results in sE = sD for any nested D and E, such that Γ(E) ⊆ D and

for the two stage salience model of Tyson (2013) even the converse inequality holds.

3.6 Related literature with consideration or

elimination stage

3.6.1 Relationship to multi-criteria/stage Decision Theory

As mentioned in the introduction the (implicit) formation of a consideration set is

part of many recently developed multistage decision procedures in which a considera-

tion set is constructed by eliminating several alternatives according to some criteria.

The literature varies in the process of filtering. Some employ (sequences of) ratio-

nal(es) to eliminate alternatives (Manzini and Mariotti (2007, 2012a), Apesteguia
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and Ballester (2013), Houy (2007, 2010), Houy and Tadenuma (2009)) or accept

alternatives that can be justified by some of multiple criteria (Cherepanov et al.

(2013) (CFS from now on), Gerasimou (2013)). Other procedures are based on un-

dominated category(ies) (Manzini and Mariotti (2012b)) or specific frames (orders,

lists, moods, fairness) which are unrelated to preferences (Salant and Rubinstein

(2008)). Also mental constrains might induce consideration sets (Masatlioglu and

Ok (2005)).

The aim of this section is to interpret and identify our filter in terms of a multi-

criteria choice correspondence by adopting the above mentioned multistage elimina-

tion procedures. A problematic issue in merging both concepts lies in the fact that

choice models usually are intended to identify a single chosen alternative by choos-

ing in the final step the ”best” alternative within the remaining consideration set.

However, for a filtering process and implied corresponding consideration sets single-

tons are not desirable. For this reason we do not identify and compare the entire

choice process with a filtering process, but we are mainly interested in the filtering

and elimination stages and not on the final choice stage. On the other hand we can

stick to these choice models if we replace the criteria applied in the final choice step

(often binary asymmetric relations) by appropriate satisficing criteria (as discussed

above) such that we end up with a set of acceptable alternatives. Roughly speaking,

we discuss and relate the models in a more approximative and intuitive style, being

aware of the difficulties and basic differences.

3.6.2 Filter as choice correspondence in multistage procedures

In order to identify a filter Γ as a choice correspondence we need to discuss our filter

properties in a multistage decision theoretic framework.

The filter definition ∅ 6= Γ(D) ⊆ D is plausible for a choice correspondence since

active, non-empty choices need to be made from D. The second part of the definition

-ΓE(D) = Γ(E)∩D- can be interpreted as a usual consistency condition or as choice

from E given a (budget) constraint D.

Since usual decision theoretic frameworks deal with sets of alternatives in which

orderings and repetitions are immaterial, the properties of invariance, equal

treatment and ignorance of additional identical information are directly

satisfied for a choice correspondence.

Our minimal attention span property can be interpreted as a restriction to

multiple choices (i.e. correspondences) such that a minimum of k available cases

need to be chosen. Of course this requirement differs from common decision theoretic

frameworks in which no restrictions on the quantity of chosen elements is enforced
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(unless non-emptiness). Thus, it will be crucial to implement this property into an

adopted choice correspondence. A possible approach will be proposed and discussed

later in this section. In particular, we exemplarily adopt CFS’s rationalization

model, but the taken approach can be applied to other models as well (see below).

Another approach to guarantee for a minimum amount of choices can be imposed

by enforcing an appropriate satisficing strategy at some stage of the choice process.

However, for the moment we want to focus on the consideration property. In

the choice literature it is known as Sen’s property α or akin as Contraction Axiom.

Many modified versions of the weak Axiom of revealed preferences (WARP) satisfy

the consideration property. Manzini and Mariotti (2007) introduce a Weak WARP

that is also satisfied by CFS (2013), Lleras et al. (2010) and Lombardi (2009) that

states that for all c, c′ ⊂ D ⊂ E and c = Γ((c, c′)) = Γ(E), then c′ 6∈ Γ(D). This

coincides with ReWARP of Gerasimou (2013). Lleras et al. (2010) introduce a

Limited Consideration WARP that states that for any c ∈ D ∩E it holds that

c ∈ Γ(E) if (i) Γ(E) ∈ D and (ii) c ∈ Γ(A) for some A ⊇ E.

However, there are also some refinements of WARP in our context that do not satisfy

the consideration property, e.g. Gerasimou (2013)’s DeWARP is neither satisfied

in generality nor Moody WARP of Manzini, Mariotti (2013b).

For the remaining section our interest lies on the link between the elimination pro-

cedures suggested in the multistage decision models and the consideration property.

We translate the choice theoretic approaches directly into our database framework

and will not state the original versions of their models.

Models without an explicit procedure to form consideration
sets

In Lleras et al. (2010) the formation of the consideration set is directly charac-

terized by the consideration property, as in our approach.

Masatlioglu et al. (2012) axiomatizes choice based on a consideration set gener-

ated by an attention filter, which is characterized by

Γ(D) = Γ(D\c) for all c ∈ D\Γ(D).

Basically, such a filter selects only those cases in a database D that she is aware of

and effectively pays attention to. Hence, if an agent is not aware of c ∈ D\Γ(D),

then removing c from the database D should not affect the set of cases an agent

would pay attention to. In contrast, our consideration property does not rely on
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such an unawareness component and in general both properties (attention and con-

sideration) are independent (see Lleras et al. (2010) for an example demonstrating

the differences).

Models with explicit formation procedures

Given a binary relation R on C, we denote by U(D,R) := (c ∈ D | 6 ∃c̃ with c̃Rc)

the cases in D that are undominated22 in D and by Dom(D,R) := (c̃ ∈ D | ∃c ∈
D\c̃ such that cRc̃) the set of cases in D that are dominated by a case in D.

Sequential elimination Procedures

The following approaches adopt the same rough idea of ”short-listing” in which

multi-criteria are checked sequentially and only those alternatives survive until the

final consideration stage that meet some or all criteria. The elimination is based

mainly on un-dominance inspections regarding the specific criterion.

Manzini and Mariotti (2007) axiomatize choice following a rational shortlisting

behavior. The final choice is made according to criterion R2 within the alternatives

in the consideration set that are undominated and survived the elimination according

to R1 (asymmetric and transitive binary relation)

Γ(D) = (c ∈ D |c ∈ U(R2, U(R1, D))).

Houy (2007, 2010) introduces as well another mechanism to form a consideration

set that is based on a composition of some binary relations Ri, in which agents se-

quentially check for a certain pattern of (un)dominance according to ordered criteria

Γ(D) = (c ∈ D | for all c̃, cR1c̃ or (¬(c̃R1c) and cR2c̃) or (¬(c̃R2c) ∨ cR3c̃...)).

In a similar spirit Horan (2013) summarizes many of these two stage models in

which a consideration stage is formed according to undominance based on a asym-

metric relation and then a second (asymmetric) relation is used for the choice.

Obviously, all such short-listing procedures (and extended to more criteria (Ri)i) do

satisfy the consideration property.

A sequential elimination procedure of a different kind is discussed in Manzini and

22For our purpose it might make more sense to think rather in terms of satisficing than maximal
elements, e.g. in the sense of U(R,D) = (c ∈ D|cRc∗) for some threshold case c∗.
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Mariotti (2012b). Their consideration set is formed according to a (asymmetric,

possibly incomplete) relation P on subsets that are interpreted as categories. The

un-dominated categories survive the elimination phase.

Γ(D) = (S ⊂ D | 6 ∃S̃ ⊂ D such that S̃PS).

In order to capture the consideration property, specific requirements on the cate-

gorization structure are necessary. Bleile (2014c) (or Chapter 4) implements two

potential versions of categorizations on databases into a belief formation process.

Satisficing procedures

The following branch of literature adopts the satisficing idea of Simon (1955, 1957).

Tyson (2008) axiomatizes a satisficing procedure based on a considerations set

that contains only those elements that exceed some database dependent threshold

level Θ according to some numerical representation of a criterion f

Γ(D) = (c ∈ D | f(c) ≥ Θ(D)).

Such a filter satisfies the consideration property for an appropriate definition of the

database dependent threshold value Θ (as in our similarity satisficing example in

Section 3.5.1).

Tyson (2013) and Manzini et al. (2013a) modify and generalize this procedure to

salience measures and general relations.

Papi (2012) proposes an axiomatic characterization of the satisficing heuristic un-

der various informational structures in which the order of inspecting alternatives are

either full, partially or not observable. Especially the case of unobserved sequences

can be interpreted within a framework of choice correspondences by assuming that

for all possible orders the satisficing elements enter the consideration set.

Frame related elimination procedures

Salant and Rubinstein (2008) model a general approach in which the in princi-

ple available choice set is restricted by subjective and psychological constraints,

rationales or biases. They call such additional characteristics that are not directly

covered by the objective description of the alternatives as frames

Γ(D) = (c ∈ D |Γ(D, f) = c for some frame f).
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Obviously, for an unspecified frame our filter properties are not directly satisfied.

Reason Based Choice procedures

In general, the above mentioned procedures to form a consideration set can be

interpreted under the premise of having and/or seeking a reason to accept or elimi-

nate alternatives. This general idea follows the stream of literature on reason based

choice initiated by Shafir et al. (1993) or even Tversky (1972). That is, elements in

the consideration set are those that can be (internally) justified most easily (accord-

ing to some reasons). Thereby, as above, an (un)dominance structure (according

to one, some or all criteria) serves as convincing reason for choosing the specific

element. A link between reason based choice and the consideration property can be

established by the insight that in a smaller set it might be easier to find a reason

to choose some alternative, whereas in a larger set it also might be easier to find a

reason to reject.

Lombardi (2009) relies on the concept of reason based choice in the sense of

finding the best and most easily justifiable alternatives by possessing the ”most

convincing” dominance structure. It constructs a consideration filter by employing

the same criterion for the screening as well as for the final evaluation, but in different

ways.23 The rational (acyclical binary relation) used as a criterion in the first stage

is used to construct another criterion for the second stage.

Γ(D) = (c ∈ U(D) | 6 ∃ c̃ ∈ U(D) such that Dom(c̃, D,R) ⊃ Dom(c,D,R)),

where Dom(c,D,R) := (c̃ ∈ D such that cRc̃). Such a procedure does not satisfies

the consideration property in general.

Gerasimou (2013) also relies on a procedure based on a single (acyclical or asym-

metric) relation R. The consideration set contains elements that are justified by the

fact that they are un-dominated, but at least one alternative is worse24

Γ(D,R) = (c ∈ D | 6 ∃ c̃ ∈ D such that c̃Rc and ∃c′ ∈ D s. th. cRc′).

Such a procedure does not satisfy in general the consideration property.

Similarly, in the vein of seeking reasons to justify the selection, De Clippel and

23In general, the psychological literature (e.g. Andrews and Srinivasan (1995), Roberts and Lattin
(1997)) states that the criteria influencing consideration and the final evaluation stage may
differ as well as (partially) overlap. Overlapping criteria, however, play different roles at both
stages.

24Note, there is a difference to undomination
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3 Limited Attention in Case Based Belief Formation

Eliaz (2012) employ a pro-cons bargaining procedure based on linear orders P1, P2.

The agent forms the consideration set via (internal) compromising between P1 and P2

by trying to receive as many as possible dominated alternatives for both rationales.

Γ(D) = (c ∈ D | argmaxcmini|Dom(D,Pi)|)

The consideration property needs not to hold in general for this procedure.

However, the most interesting and elegantly fitting model for our approach is CFS’s

(2013) rationalization theory that we want to merge with our approach exemplarily.

Rationalization Theory and related psychological filter

CFS model a consideration filter explicitly as a rationalization procedure. For a

set of binary relations R = {R1, ..., Rn} on C, a case in database D is rational-

ized if cRic̃ for all c̃ ∈ D for some i ≤ n. This psychological filter contains those

alternatives that are justifiable by at least one criterium, rational, reason, story, etc.

ΓR(D) = (c ∈ D | ∃i ≤ n such that cRic̃ for all c̃ ∈ D).

This procedure is very interesting, since such a psychological filter satisfies the con-

sideration property directly and hence the rationalization procedure can be seen

as a generator of any filter satisfying the consideration property. However, for our

purpose we need to take care of our additional minimal attention property. Roughly

speaking, we want to find a reasonable procedure that delivers an admissible filter

via a rationalization similar to CFS.

For a binary relations S and for D ∈ C∗, we define the following recursive (maxi-

mal) domination sets for an attention level k ≥ 3

Max(D,S) =: Max1(D,S) := (c ∈ D | cSc̃ for all c̃ ∈ D)

for n > 1 : Maxn(D,S) := Max(D\ ∪i≤n−1 Maxi(D,S), S) and

Max∗(D,S) := Maxd(D,R) for d := argminn{div(Maxn(D,S)) ≥ k}.

Note that Max∗(D,S) can be empty, e.g. for div(D) < k.

Definition 3.9

a) Let S = {S1, ..., SN} be a be a set of binary relations on C and D ∈ C∗. Then

we call a case c minimal k-attentive rationalizable (MAR) by S in D if and only if

c ∈Max∗(D,S1) ∨ c ∈ ◦Ni=2Max(D,Si).
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3.6 Related literature with consideration or elimination stage

The set of all MAR cases (by rationales S) in database D is denoted by MAR(D,S).

b) A filter Γ is called a minimal k-attentive psychological filter based on a set of

binary relations S = {S1, .., SN}, i.e. Γ = MAR(D,S), if it holds

(i) for any D ∈ C∗ such that div(D) ≤ k: Γ(D) = D and

(ii) for any D ∈ C∗ such that div(D) ≥ k and Max∗(D,S1) 6= ∅: Γ(D) =

MAR(D,S).

Basically the modification of a CFS filter serves the reason to capture the required

minimal attention property by enforcing ad hoc that always the k-best cases ac-

cording to a most important, seminal, distinguishing, leading rational (criterium,

reason, story) S1 are consider for sure. In addition, if they differ from the ”best”

cases according to the other criteria, also all cases which are rationalizable by these

other rationales survive the elimination procedure. A plausible way to justify such a

formation process would emphasize the extraordinary role of criterion S1. An agent

is focussing on the (at least) k-best un-dominated or most salient alternatives for the

most important criterion S1 and only the best alternatives according to the minor,

rather marginal or negligible criteria are worth to consider. For instance, an agent

buying a car would choose according to different criteria, like speed, mileage, gas

consumption, etc. Her major criteria might be gas consumption and hence includes

the k best cars regarding economy into her consideration set, whereas she only takes

the fastest car and that with lowest mileage into account, since they are outstanding

or salient within the minor criteria.

For the definition and the underlying recursive domination we had in mind k = 3.

For larger minimal attentions k one can generalize this approach to any specific

structure of ranking criteria. For instance for k = 4, one might assume to consider

for sure the two best alternatives according to rational S1, and additional the two

best remaining alternatives regarding to story S2. In this sense a minimal attentive

psychological filter can be generalized in arbitrary ways for specific attention levels.

The non-emptiness requirement of a MAR-filter, i.e. Max∗(D,S1) 6= ∅, is for

example satisfied if the binary relation S1 is complete. But also for an incomplete

”benchmark” or satisficing relation S1
25 the non-emptiness is satisfied if c∗ is chosen

such that there exist at least k cases c ∈ D such that cS1c
∗.

Consequently, we can state the following corollary.

Corollary 3.2

Let Γ be an (extended) MAR-filter on C∗ × C∗ based on a set of binary relations

25I.e. for a benchmark c∗ cS1c
′ if and only if cS1c

∗S1c
′ or (cS1c

∗ and c′S1c
∗) for c, c′, c∗ ∈ D, see

also Definition 6.2 later.
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3 Limited Attention in Case Based Belief Formation

S = {S1, ..., SN}. Then Γ is an admissible filter and the equivalence in the Theorem

3.1 holds for all D ⊆ E ∈ C∗, such that ΓE(D) 6= ∅ with the specific representation

(P ◦ ΓE)(D) =

∑
c∈D s(c)1MAR∗(E,S)(c)P

c∑
c∈D s(c)1MAR∗(E,S)(c)

.

In general, most of the above mentioned multistage procedures can be adopted to

satisfy the minimal attention property by replacing an usual dominance structure

by our defined Max∗ structure for some rational at some stage of their elimination

procedures. In this way, these modified multistage choice processes (that satisfy the

consideration property) can be interpreted as an admissible filter and incorporated

into our filtered belief formation.

An appealing and intuitive example for rationales Si in S is to interpret them as

rationales that are related to componentwise similarities on the characteristics space

X = X1 × ...×XN , i.e. si(c) ∈ R+ for all c ∈ C (i ≤ N). One can understand the

endogenously derived similarity value s as an (complex) aggregation f (f: RN → R)

of these componentwise similarities- i.e. s(c) = f(s1(c), ...., sN(c)). An underlying

motive for choosing such a form relies on the fact that agents tend to evaluate the di-

mensions lexicographically instead of aggregating multi-evaluation criteria (Tversky

et al. (1988), Dulleck et al. (2011)), i.e. (si)i≤N versus s = f(s1, .., sN). In addition,

research shows that in the filtering stage agents use noncompensatory heuristics for a

rough screening based on simple criteria, e.g. a satisficing behavior like comparing si

with thresholds s∗i . But for the final evaluation stage a compensatory, more detailed

multi-component and compromise-based procedure is taken, as in our aggregated

similarity measure s = f(s1, .., sN).26

Two candidates for a reasonable and plausible, but ad hoc, definition of binary

relations Si are based on comparisons of the componentwise similarities si in the

following way.

Definition 3.10

Let there be functions si : C → R for all i ≤ N .

(i) ”Componentwise similarity”: For all i ≤ N , a transitive and complete binary

relation S̃i is defined on C × C by cS̃ic
′ if and only if si(c) ≥ si(c

′)

(ii) ”Benchmark exceeding componentwise similarity”: For all i ≤ N the asymmet-

ric, transitive and possibly incomplete binary relation S∗i is defined by cS∗i c̃ if and

only if (si(c) ≥ s∗i > si(c̃) ∨ si(c) ≥ si(c̃) ≥ s∗i ) for componentwise threshold

26See e.g. Bettman (1979), Gensch (1987), Hauser and Wernerfelt (1990), Roberts and Lattin
(1991, 1997), Andrews and Srinivasan (1995) and for a model Lombardi (2009).
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3.7 Conclusion

values (s∗i )i.

Obviously, the binary relation defined in (i) can be used to define a MAR-filter. The

relations in (ii) can be applicable for a MAR-filter if for any D ∈ C∗ s∗1 is chosen

according to s∗1 ≤ sDk1 1{div(D)≥k}(D) (as defined in Section 3.5.1).

3.7 Conclusion

Chapter 3 examines how beliefs are formed by agents that are constraint or not

willing to pay attention to all potentially available pieces of information. It is

well known in the psychology and marketing literature that humans do not take

into account all available information due to many different reasons. Based on this

insight we axiomatize a two stage belief formation procedure in which agents employ

only these pieces of information that ”survived” a first step of (un(intentional))

filtering (or screening). The filter is required to satisfy natural, reasonable and well

known properties. The axioms on the belief level are closely related to the axioms

introduced in BGSS and modified in a way to capture the link to filtering information

and their consequences for induced beliefs. The resulting filtered belief is a weighted

sum of estimates induced by past observed information that are attention grabbing.

Thus, only pieces of information that attracted the attention and consideration of

an agent are taken into account. The weights are determined by the similarities of

the observed cases with the problem under consideration.

The axiomatized filtered belief formation generalizes the axiomatizations of BGSS,

EG and Bleile (2014a) in which all available pieces of information are necessarily

taken into account which prevents unintentional forgetting or unawareness as well

as intentional application of a heuristic screening techniques that often drive human

judgment. Hence, a filtered belief formation offers a cognitively less demanding and

more realistic behavioral procedure to form beliefs based on data.

An intuitive and natural application of a filtered belief formation are models of

satisficing behavior regarding the relevance or appropriateness of information for the

current problem. Moreover, it captures also a conditional belief formation process

that only takes into account identical problems in the past and neglects all not

perfectly similar observations - which cannot be covered by BGSS, EG and Bleile

(2014a).

In particular interesting is that filtering (and elimination) of information (or alter-

natives) emerged very recently as a research topic in the decision theory literature.

These multi-stage/criteria models incorporate as well a first step of filtering before

engaging into the final choice step. Many of these models can be easily translated
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3 Limited Attention in Case Based Belief Formation

and embedded into the filtering stage of our belief formation process such that our

filter stage can be interpreted as a choice correspondence in terms of decision theory.

3.8 Proof of Theorem 3.1, necessity part

Let (P ◦ ΓE)(D) =
∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

for all D ⊆ E ∈ C∗, such that ΓE(D) 6= ∅.
Let D = D1 ◦D2 and D ⊆ E ∈ C∗ .

(P ◦ ΓE)(D) =

∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

=
1∑

c∈D s(c)1Γ(E)(c)

(∑
c∈D1

s(c)1Γ(E)(c)P
c +

∑
c∈D2

s(c)1Γ(E)(c)P
c
)

=
∑
i=1,2

∑
c∈Di s(c)1Γ(E)(c)∑
c∈D s(c)1Γ(E)(c)

(∑
c∈Di s(c)1Γ(E)(c)P

c∑
c∈Di s(c)1Γ(E)(c)

)
= λ(P ◦ ΓE)(D1) + (1− λ)(P ◦ ΓE(D2)

Thus, the filtered Concatenation Axiom is satisfied. �.

3.9 Proof of Theorem 3.1, sufficiency part

3.9.1 Important observations

In the proof, we treat the situation in which the level of minimal attention k is set

equal to three, i.e. k = 3. This simplifies notational effort and is sufficient to follow

the main steps of the proof that analogously work for any k ≥ 3.

The following Lemma states useful and crucial properties for the proof.

Lemma 3.1

Let Γ be an admissible filter, then the following holds:

(i) For all c ∈ D ∈ C∗, ΓD(cT ) ∈ {∅, cT} for all T such that cT ∈ D.
(ii) For all D ⊆ E ∈ C∗ such that div(E) ≤ 3: D ⊆ ΓE(D) ⊆ D = ((cfD(C)|D|)c∈C).

(iii) For all D ⊆ E ∈ C∗ we have some kind of idempotence, i.e.

Γ(ΓE(D)) = ΓE(D).

Proof:

(i) By definition ΓD(c) ⊆ c, hence the equal treatment property delivers directly the

desired result.
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3.9 Proof of Theorem 3.1, sufficiency part

(ii) By definition and the equal treatment property, we have for all D ⊆ E ∈ C∗

that ΓE(D) = ◦c∈C(ΓE(c))fD(c)|D|

If div(E) = k ≤ 3, then by minimal attention property div(Γ(E)) = k and thus by

the equal treatment property Γ(E) = ◦c∈CcfE(c)|E|. Since D ⊆ E, we get directly

ΓE(D) = ◦c∈CcfD(c)|D|.

(iii) By definition of a filter, we have Γ(ΓE(D)) ⊆ ΓE(D). The consideration prop-

erty implies

Γ(ΓE(D)) = ΓΓE(D)(ΓE(D)) ⊇ ΓE(ΓE(D)) = ΓE(E) ∩ ΓE(D) ⊇ ΓE(D)

and hence the claim holds true. �

Basically (ii) just says that no filtering of D takes place in this situation and only a

reordering takes place ( which is ”immaterial” for the induced belief).

3.9.2 Translating the database framework to frequencies

An essential step in the proof is to identify databases with their frequency vec-

tors. The space of frequency vectors is more tractable and enables us to adopt the

structure of BGSS’s proof (and use the procedure of Bleile (2014a) (or Chapter 2)).

However, the proof here requires some additional features, since in addition filters

are involved, which alters the crucial steps in the inductive proof.

General Definitions for a Frequency Framework

We need to introduce some definitions regarding the frequency framework.

The set of all frequency vectors on the ordered set of basic cases C = {c1, .., cm} is

given by (since C is fixed we skip it in the following)

∆(C) = ∆ := {f = (f1, ..., fm) s. th. fi ∈ Q∩ [0, 1] for all i ≤ m and
∑

i≤m fi = 1}
The following set represents all frequency vectors related to databases D ∈ CT :

∆T := {f ∈ ∆ fi =
li
T
, li ∈ N+,

m∑
i=1

li = T and ∃D ∈ CT such that fD(ci) = fi = li/T}

Observe that if f ∈ ∆T (C), then f ∈ ∆TZ(C) for all Z ∈ N+, i.e. the frequency

vector fD represents all databases DZ for some Z ∈ N and we cannot relate it to

any specific database Dk for a specific k ∈ N.
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3 Limited Attention in Case Based Belief Formation

Definition 3.11

(i) Om denotes the null-vector on Rm.

(ii) For all j ∈ {1, 2, ...,m} denote by qj the j-th unit vector in Rm, i.e. the frequency

vector representing a database containing only case cj ∈ C.

(iii) For all d ∈ ∆ its diversity is given by div(d) := |{i ≤ m | di > 0}|

Definition 3.12

(i) The ⊆-relation on frequencies ∆×∆ is defined as follows for d, e ∈ ∆:

d ⊆ e if and only if di ≥ 0 only if ei > 0 for all i ≤ m.

(ii) Let d ∈ ∆T and e ∈ ∆L, then the ∩-relation on ∆×∆ is defined by

d ∩ e := ((
min{diT, eiL}∑
i≤m min{diT, eiL}

)i≤m) 27.

For definition (i) we have in mind that there exist T and L such that d represents

a database of length T, i.e. D ∈ CT , and e represents an E ∈ CL such that

minj≤m djT ≤ minj≤m ejL.

Why is a transformation viable?

Roughly, we want to show that for a filtered belief formation we can identify

databases D ⊆ E ∈ C∗ in the filtering process by frequencies fD ⊆ fE such that

ΓfE(fD) corresponds to ΓE(D). For this purpose, we exploit the properties of an

admissible filter and the axioms on filtered belief formation in the following way.

(i) The filter ignorance property for Γ implies directly ΓE
L
(D) = ΓE(D) for D ⊆ E

and for all L ∈ N, i.e. (P ◦ ΓE)(D) = (P ◦ ΓE
L
)(D).

(ii) The filtered Concatenation Axiom implies (by DZ = D ◦ ... ◦D) (P ◦ ΓF )(D) =

(P ◦ ΓF )(DZ) for an appropriate F such that DZ ⊆ F holds for Z ∈ N.

However, since for all Z ∈ N there exists a L ∈ N such that DZ ⊆ FL, observations

(i) yields that for D ⊆ E

(P ◦ ΓE)(D) = (P ◦ ΓE
L

)(DZ) for all Z ∈ N and sufficiently large L ∈ N. (3.5)

27 (Consistency) Remark: If d ⊆ e, then obviously d ∩ e = (( min{diT,eiL}∑
i≤m min{diT,eiL} )i≤m) =

(( diT∑
i≤m diT

)i≤m) = d
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3.9 Proof of Theorem 3.1, sufficiency part

Further, by the definition of a filter and its order invariance property (and hence

its implied belief invariance property) the order of the cases do not matter, which

enables us to represent all involved databases by their frequency vector on C (which

are independent of lengths) and their corresponding lengths.

However, by the above observations, within the filtered belief formation, lengths

of databases become irrelevant in the sense of equation (3.5). In particular, since

each DZ ∈ C∗ (for any Z ∈ N) is represented by the same frequency vector fD, the

”sufficiently large”-condition looses its bite (see below). Thus, we can identify the

filtered belief formation process on databases by frequency vectors.

Filtered belief induced by frequencies

Definition 3.13

The filtered beliefs (P ◦ Γ) : C∗ × C∗ → ∆(R) based on databases D ⊆ E translates

to corresponding beliefs based on frequency vectors fD ⊆ fE in the following way:

(P ◦ Γ) : ∆ × ∆ → ∆(R) such that Γ(fD, fE) := Γ(D,E) and (P ◦ Γ)(fD, fE) :=

(P ◦ Γ)(D,E).

Basically, the weakening of the condition D ⊆ E to fD ⊆ fE runs through the

implicit or intuitive interpretation of ΓfE(fD) in a way such that there exists an ap-

propriate replication Z of database E (i.e. fE = fEZ ) such that EZ ⊇ D is matched

and since by the ignorance property ΓE
Z
(D) = ΓE(D) the nestedness condition can

be relaxed.

Thus an application of filter properties and belief axioms show the viability of the

transformation from databases to the frequency framework.

Filter definition in frequency terms

Definition 3.14

For d ⊆ e ∈ ∆, a function Γ: ∆×∆→ ∆ is called an e-induced filter on d if

(i) Γ(e, e) := Γe(e) := Γ(e) ∈ ∆ and (ii) Γe(d) := Γ(e) ∩ d hold.

Definition 3.15

(i) Consideration property

A filter Γ on ∆×∆ satisfies the consideration property if for d ⊆ e ∈ ∆: Γ(e)∩d ⊆
Γ(d)

(ii) Minimal attention span

A filter Γ satisfies the minimal attention of k ≥ 3 if for all d ∈ ∆:
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3 Limited Attention in Case Based Belief Formation

(a) If div(d) = l ≤ k, then div(Γ(d)) = l

(b) If div(d) > k, then div(Γ(d)) ≥ k.

(iii) Filter ignorance of repeated information

Let e = (p1

p
, p2

p
, ..., pm

p
), f = ( p1

p+1
, p2

p+1
, .., pi+1

p+1
, ..., pm

p+1
) ∈ ∆, where p :=

∑
j≤m pj ∈ N

and pi > 0. Let d ⊆ e ⊆ f . A filter Γ satisfies the ignorance property if Γe(d) =

Γf (d).

The equal treatment property is directly satisfied by the definition of a filter in

frequency terms.

Definition 3.16

A filter Γ on ∆ × ∆ → ∆ satisfying the consideration, equal treatment, minimal

attention span and ignorance property is called admissible.

Analogously to Lemma 3.1, we get in frequency terms:

Lemma 3.2 (Lemma 3.1 in frequency terms)

Let Γ be an admissible filter on ∆×∆.

(i) For all qj ⊆ d ∈ ∆, we have Γd(qj) ∈ {∅, qj}.
(ii) For all d ⊆ e ∈ ∆ such that div(e) ≤ 3 Γe(d) = d holds.

(iii) For all d ⊆ e ∈ ∆: Γ(Γe(d)) = Γe(d).

Axioms in frequency terms

Filtered Concatenation Axiom

Let Γ be a filter on ∆ × ∆. For all d ∈ ∆T and e ∈ ∆L for any T, L ∈ N, there

exists λ ∈ [0, 1], such that for g ⊇ f := T
T+L

d+ L
T+L

e

(P ◦ Γg)(f) = λ(P ◦ Γg)(d) + (1− λ)(P ◦ Γg)(e),

where λ = 0 if and only if Γg(d) = 0m.

Collinearity Axiom

No three of {((P ◦ Γq
j
)(qj))j≤m} are collinear.

Sufficiency part of Theorem 3.1 in frequency terms

Proposition 3.1

Let there be given a function (P ◦ Γ) : ∆ → ∆(R), where P : ∆ → ∆(R) and Γ an
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3.9 Proof of Theorem 3.1, sufficiency part

admissible filter on ∆×∆. Let a filtered belief (P ◦Γ) : ∆×∆→ ∆(R) satisfies the

filtered Concatenation and Collinearity Axiom.

Then, there exist unique probability vectors (P j)j≤m ∈ ∆(R), and unique -up to

multiplication by a strictly positive number- strictly positive numbers (sj)j≤m ∈ R
such that for all q ⊆ f ∈ ∆ such that Γf (q) 6= 0m

(P ◦ Γf )(q) =

∑
j≤m sjΓ

f
j (q)P

j∑
j≤m sjΓ

f
j (q)

,

where Γfj (q) denotes the frequency of case cj in Γf (q).

3.9.3 Proof of sufficiency part of Theorem 3.1 in frequency

terms

We have by Lemma 3.2 (ii) directly that Γf (qj) = qj for all f ⊇ qj such that

div(f) ≤ 3 and hence we need to choose

P j = (P ◦ Γf )(qj) (3.6)

The aim of the inductive proof over m with |C| = m and div(f) ≤ m is to find the

similarity values s1, ..., sm.

Step 1: |C| = m = 3, w.l.o.g. C = {c1, c2, c3}, thus ∆ = ∆(q1, q2, q3)

Step 1.1: Defining similarity weights

We define q∗ := 1
3
(q1 + q2 + q3) and for f ⊇ q∗ Lemma 3.2 (ii) yields

(P ◦ Γf )(q∗) =

∑
j≤3 sjΓ

f
j (q
∗)P j∑

j≤3 sjΓ
f
j (q
∗)

=

∑
j≤3 sj

1
3
P j∑

j≤3 sj
1
3

=

∑
j≤3 sjP

j∑
j≤3 sj

According to the filtered Concatenation Axiom there exist λ ∈ int(∆3) (by minimal

attention, i.e. Γf (qj) = qj) such that

(P ◦ Γf )(q∗) =
∑
j≤3

λj(P ◦ Γf )(qj) =
∑
j≤3

λjP
j,

where the last equality follows from (3.6).

By equating both representations we can derive the corresponding similarity weights

s1, s2, s3 uniquely up to multiplication by a strictly positive number and define for

all q ⊆ f ∈ ∆

(P ◦ Γf )s(q) :=

∑
j≤m sjΓ

f
j (q)P

j∑
j≤m sjΓ

f
j (q)
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3 Limited Attention in Case Based Belief Formation

The aim is now to show that for all (q, f) ∈ ∆×∆ such that q ⊆ f

(P ◦ Γf )s(q) = (P ◦ Γf )(q). (3.7)

All such (q,f) are collected in E := {(q, f) ∈ ∆ × ∆ | (P ◦ Γf )s(q) = (P ◦ Γf )(q)},
where obviously by definition

(qj, f) ∈ E for all j ≤ 3 and f ∈ ∆ such that qj ⊆ f

and (q∗, f) ∈ E for all f ∈ ∆ such that q∗ ⊆ f. (3.8)

Step 1.2: All simplicial points (with appropriate perspective) satisfy

equation (3.7)

Notation: In the following we will denote for a, b ∈ ∆ or a, b ∈ ∆(R) the straight

line through a and b by (a, b) (since there won’t be a confusion to the usual interval

notation).

The main tool of the proof is the following observation, which will be recursively

applied in an appropriate manner in the proof.

Lemma 3.3

Let a, b, c, d, e ∈ ∆, where e = (a, b)∩ (c, d) and for all f ∈ {a, b, c, d} let div(f) ≤ 3

and (f, f) ∈ E. If ((P ◦Γf )(f))f∈{a,b,c,d} are not collinear, then (e, g) ∈ E for g ∈ ∆

such that div(g) ≤ 3 and e, f ⊆ g for all f ∈ {a, b, c, d}.

Proof:

W.l.o.g. let e be between a and b on the line through a and b. Since (P ◦ Γ)s and

(P ◦ Γ) satisfy filtered Concatenation Axiom we get

(P ◦ Γe)(e) ∈ ((P ◦ Γe)(a), (P ◦ Γe)(b)) and

(P ◦ Γe)s(e) ∈ ((P ◦ Γe)s(a), (P ◦ Γe)s(b)).

For f ∈ {a, b} such that div(f) ≤ 3, we get with Lemma 3.2 (ii) for all g ∈ ∆ such

that div(g) ≤ 3 and e, f ⊆ g

(P ◦ Γg)(e) ∈ ((P ◦ Γg)(a), (P ◦ Γg)(b)) and

(P ◦ Γg)s(e) ∈ ((P ◦ Γg)s(a), (P ◦ Γg)s(b))

Analogously, we get a similar result for the segment (c, d).

By Lemma 3.2 we know that Γg(f) = Γf (f) for all f ∈ {a, b, c, d} and since by
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3.9 Proof of Theorem 3.1, sufficiency part

assumption (f, f) ∈ E, i.e. (P ◦Γf )s(f) = (P ◦Γf )(f), we directly get (P ◦Γg)s(f) =

(P ◦ Γg)(f) and

(P ◦ Γg)(e), (P ◦ Γg)s(e) ∈ ((P ◦ Γg)(a), (P ◦ Γg)(b)) ∩ ((P ◦ Γg)(c), (P ◦ Γg)(d)).

Since the intersection of the two line is unique due to the Collinearity Axiom, we

get the desired result, i.e. (P ◦ Γg)(e) = (P ◦ Γg)s(e) and (e, g) ∈ E. �.

By Lemma 3.2 we know that Γf (q) = q for any q ⊆ f such that div(f) ≤ 3, hence

we need to show equality (3.7) not for all appropriate pairs (q, f), but only for any

q and some appropriate f such that q ⊆ f . Then it will hold for all f such that q ⊆ f .

In the following, we will partition the simplex ∆ into so called simplicial trian-

gles recursively, as illustrated in the Figure 3.1 below.

Definition of Simplicial Triangles:

The 0-th simplicial partition consist of vertices qj0 ∈ ∆, which are exactly the unit

vectors qj for j = 1, 2, 3. The first simplicial partition of ∆ is a partition to four

triangles separated by the segments connecting the middle points between the two

of the three unit frequency vectors, i.e. q1
1 := (1

2
q1 + 1

2
q2), q2

1 := (1
2
q2 + 1

2
q3) and

q3
1 := (1

2
q3 + 1

2
q1). The second simplicial partition is obtained by similarly parti-

tioning each of the four triangles to four smaller triangles, and the l-th simplicial

partition is defined recursively. The simplicial points of the l-th simplicial partition

are all the vertices of triangles of this partition.

q1 q2

q3

q∗

q21q31

q11
•

•

•

• •

•

•

•
q12

•
q22

•q32 •
q42

•
q52

• q62

•
q72

•q82 • q92

Figure 1: a

1

Figure 3.1: 1st and 2nd Simplicial partitions
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3 Limited Attention in Case Based Belief Formation

We want to show that all simplicial points (with appropriate perspective) satisfy

equation (3.7), i.e. are in E, by induction over the l-th simplicial partitions. Step

1.1. showed the claim for l = 0 (equation (3.8)). We proceed to the points in the

First simplicial partition:

Since

q1
1 = (q1, q2) ∩ (q3, q∗),

and we already know that for all f ∈ {q1, q2, q3, q∗} (f, f) ∈ E we can apply Lemma

3.3 if the collinearity condition holds. However, since (P ◦Γqi)(qi) = P i for i = 1, 2, 3

and (P ◦Γq
∗
)(q∗) ∈ int(conv({P 1, P 2, P 3})) the Collinearity Axiom directly induces

the non-collinearity condition. Hence, by Lemma 3.3 we get that (q1
1, f) ∈ E for all

f such that q1
1 ⊆ f .

With the same reasoning, we get (q2
1, f), (q3

1, f) ∈ E where f ⊇ q2
1 (respectively q3

1).

Thus all pairs (qi1, f) consisting of a simplicial points of the first simplicial partition

and all f such that qj1 ⊆ f are included in E.

For the second simplicial partition we distinguish between inner simplicial points

and points on the boundary of the simplex ∆, i.e. between two of the corners qj.

Figure 3.2 demonstrates the intuition.

q1 q2

q3

q∗

q21q31

q11
•

•

•

• •

•

•
•
q42

•
q52

•
q72

•q92

•

Figure 1: a

1

Figure 3.2: Step from 1st to 2nd Simplicial partition

(a) The first step involves the inner simplicial points q4
2, q

5
2, q

7
2 ∈ int(conv({q1, q2, q3})).

Since

q4
2 ∈ (q1

1, q
3
1) ∩ (q1, q2

1)

and for all f ∈ {q1
1, q

3
1, q

1, q2
1} (f, f) ∈ E by Step 1.1 and Step 1.2 for the first sim-

plicial partition, we need to check the collinearity condition to apply Lemma 3.3.
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3.9 Proof of Theorem 3.1, sufficiency part

However, the condition is met since the induced beliefs for (qj1, q
j
1) with j = 1, 2, 3

are in int(conv({P i, P j})) (for appropriate i 6= j) that cannot lie on one line since

(P j)j≤3 are not collinear by the Collinearity Axiom. Consequently by Lemma 3.3

we get that (q4
2, f) ∈ E for all f ⊇ q4

2.

Analogously, we can get that all simplicial points (combined with appropriate per-

spective f) of the 2nd partition in the interior of ∆, i.e. q5
2, q

7
2 with appropriate

super-frequencies f are in E.

(b) In the second step we will deal with and focus on the simplicial points on

the boundary of ∆ (e.g. representative q9
2, see Figure 3.2).

We have that q9
2 ∈ (q3, q2) ∩ (q4

2, q
7
2). All frequencies f involved in the intersec-

tion are shown (Step 1.1. and Step 1.2 (a) for second partition) to be contained

in E, in the sense of (f, f) ∈ E. Again, the non-collinearity is fulfilled since (P 2

and P 3) and induced beliefs in int(conv({P 1, P 2, P 3})) are involved and (P 2, P 3) 6∈
int(conv({P 1, P 2, P 3})) since (P j)j≤3 are not collinear. Thus, Lemma 3.3 delivers

(q9
2, f) ∈ E for all f ⊇ q3

2.

The same procedure with analogous and adjusted arguments yield that all simplicial

points on the boundary of the 2nd simplicial partition combined with appropriate

super-frequencies (perspectives) are also included in E.

The same kind of algorithm works for all simplicial points of any l-th simplicial

partitions, i.e. obviously each q ∈ rim(conv({q1, q2, q3})) is for some l captured. For

q ∈ int(conv({q1, q2, q3})) one can approximate q via a series of simplicial points

(q1
l , q

2
l , q

3
l ) such that q ∈ int(conv({q1

l , q
2
l , q

3
l }l)) for all l. In detail, the completion

for all permissible (q, f) ∈ ∆×∆ can be shown almost similarly as in Step 1.3 Bleile

(2014a) (or Chapter 2) (or differently in BGSS Step 1.2 in their proof) and hence

we refer to these papers for the entire procedure.

This concludes the proof for the case |C| = 3 and (q, f) with q ⊆ f such that

div(f) ≤ 3.

Now we need to show the claim for |C| = m > 3 and div(f) ≤ m.

Step 2: |C| = m > 3

Step 2.1: Defining the similarity weights

Using the considerations from Step 1 above for {j, k, l} (i.e. q∗{j,k,l} := 1
3

∑
i∈{j,k,l} q

i,

qi ∈ ∆ and q ⊆ f ∈ ∆(qj, qk, ql)) we can derive the similarity weights (s
{j,k,l}
i )i∈{j,k,l}.

Further, for all (q,f) such that q ⊆ f ∈ conv({qj, qk, ql}) the following representation
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3 Limited Attention in Case Based Belief Formation

holds

(P ◦ Γf ){j,k,l}(q) =

∑
i=j,k,l s

{j,k,l}
i Γfi (q)P

{j,k,l}(qi)∑
i=j,k,l s

{j,k,l}Γfi (q)
i

.

Moreover for all i ∈ {j, k, l}, we have (P ◦Γf ){j,k,l}(qi)) = P i and (s
{j,k,l}
i )i∈{j,k,l} are

unique up to multiplication by a positive number.

Similar to BGSS or Bleile (2014a) (or Chapter 2), we can show that the similarity

values s
{j,k,l}
i are independent of the choice of j, k and l for all i ∈ {j, k, l}, since

filtering is not present in the arguments. Thus we can define for all q ⊆ f ∈ ∆

(P ◦ Γf )s(q) :=

∑
i≤m siΓ

f
i (q)P

i∑
i≤m siΓ

f
i (q)

.

The aim is to show that for all (q, f) ∈ ∆ × ∆ such that q ⊆ f (P ◦ Γf )(q) =

(P ◦ Γf )(q).

Step 2.2: Completion to all (q, f) ∈ ∆×∆

By Step 1 we know that the claim (P ◦ Γf )s(q) = (P ◦ Γf )(q) is true for all (q, f)

such that div(f) ≤ 3. We take this as the base case of our induction.

For the induction assumption, we have that (P ◦ Γf )s(q) = (P ◦ Γf )(q) for all

(q, f) ∈ ∆×∆ with q ⊆ f and div(f) ≤ k − 1.

The induction step considers q, f ∈ ∆ with q ⊆ f and div(f) ≤ k :

We can restrict the analysis to f such that div(f) = k, since for all other f ∈ ∆ the

claim is true by the induction assumption.

We split the proof into two parts. First for which div(q) ≤ k − 1 and then for

div(q) = k.

First Situation: Consider q ⊂ f , i.e. div(q) ≤ k − 1.

By Lemma 3.2 (iii), we have Γ(Γf (q)) = ΓΓf (q)(Γf (q)) = Γf (q) and hence directly

(P ◦ Γf )(q) = (P ◦ ΓΓf (q))(Γf (q)), (3.9)

since Γf (q) ⊆ q by definition of a filter and hence div(Γf (q)) ≤ k − 1 the induc-

tion assumption applies to the RHS of equation (3.9), i.e. (P ◦ ΓΓf (q))(Γf (q)) =

(P ◦ ΓΓf (q))s(Γ
f (q)) which is again identical to (P ◦ Γf )s(q) and hence the desired

result (P ◦ Γf )s(q) = (P ◦ Γf )(q) is implied directly.
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3.9 Proof of Theorem 3.1, sufficiency part

Second Situation: Consider q ⊆ f with div(q) = k

A similar construction as in BGSS, but with different reasoning, yields the result.

Let q =
∑

l∈K αlq
l with αl > 0 and K ⊆ {1, ...,m} such that |K| = k.

Define the frequency vector q(l) to be the vector in conv({(qj)j∈K\l}) such that q

lies on the line (q(l), ql).

By the minimal attention span property div(Γq(q)) = div(◦{l:ql>0}Γq(ql)) ≥ 3, i.e.

there exist at least three l’s (e.g. l = i, j, k) such that Γq(ql) = ql 6= 0m and hence

(P ◦ Γq)(ql) = P l = (P ◦ Γq)s(q
l).

Further, for these l ∈ {i, j, k} we get (P ◦Γq)s(q(l)) = (P ◦Γq)(q(l)) by the result of

the first situation, since div(q(l)) ≤ k − 1.

Hence we have that (P ◦ Γq)s(q), (P ◦ Γq)(q) ∈ (P l, (P ◦ Γq)(q(l))) =: L(l), for

those three l = i, j, k. Since no three P j are collinear, there are at least two dis-

tinct lines L(l), i.e. L(l) 6= L(n) for at least two distinct l, n ∈ {i, j, k}. Since

(P ◦ Γq)s(q), (P ◦ Γq)(q) are both on these distinct lines and these lines need to

intersect uniquely, we have (P ◦ Γq)s(q) = (P ◦ Γq)(q). By the ignorance property

(P ◦ Γq)(q) = (P ◦ Γf )(q) for all f with div(f) = k, which completes the proof. �.
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4 Belief Formation Based on

Categorization

Abstract

An agent needs to determine a belief over potential outcomes for a new problem

based on past observations gathered in her database (memory). There is a rich lit-

erature in cognitive science showing that human minds process information in cat-

egories, rather than piece by piece. We assume that agents are naturally equipped

(by evolution) with a efficient heuristic intuition how to categorize information in

general.. Depending on how available categorized information is activated and pro-

cessed, we axiomatize two different versions of belief formation relying on categoriza-

tions. In one approach an agent relies only on the estimates induced by the single

pieces of information contained in so called target categories that are activated by

the problem for which a belief is asked for. Another approach forms a prototype

based belief by averaging over all category-based estimates (so called prototypical

estimates) corresponding to each category in the database. In both belief forma-

tions the involved estimates are weighted according to their similarity or relevance

to the new problem. We impose normatively desirable and natural properties on

the categorization of databases. On the stage of belief formation our axioms spec-

ify the relationship between different categorized databases and their corresponding

induced (category or prototype based) beliefs. The axiomatization of a belief forma-

tion in Billot et al. (Econometrica, 2005) is covered for the situation of a (trivial)

categorization of a database that consists only of singleton categories and agents

basically do not process information categorical.

4.1 Introduction and motivation

Often agents need to evaluate and judge the likelihood of future uncertain events.

On which basis can individuals derive and assign likelihoods and form probabilistic

beliefs over random incidents?
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4.1 Introduction and motivation

Traditionally, economic theory models uncertainties in a state space representation

a la Savage (1954) and Bayes and derive a subjective prior based on observable

actions of the agent. However, this procedure implicitly assumes that agents already

know or are endowed with a subjective prior belief, which they express through their

observable actions. In this way, the Savage and Bayesian approach does not advice

agents how to find or form a prior explicitly. Basically, the belief is purely subjective

and offers no mechanism to incorporate information directly into a belief formation.

Consequently, their normatively appealing and convincing approach to endogenously

derive a belief is not feasible in situation in which an agent might not be able to

condense her insufficient or too complex information into a consistent state space.

We consider an axiomatization of belief formation that allows and requires to

take directly into account the available information (gathered in form of a list or

database of past observations or cases). The influence of data and experience on

the formation of a probabilistic belief was examined initially by the axiomatization

of Billot et al. (2005) (BGSS from now on). The axiomatizations of BGSS and

related ones of Eichberger and Guerdjikova (2010) (EG) (for ambiguous multiprior

beliefs) and Bleile (2014a) (precision dependent cautious beliefs) yield that a belief

induced by a database is a similarity weighted average of the estimations induced

by all observed cases in the database. Thereby similarity weights capture different

degrees of relevance of the potentially very heterogenous information.

A common shortcoming of these approaches to belief formation is that an agent

processes each distinct single piece of information separately and forms its induced

estimate. Interpreting a database as memory an agent is assumed to store (memo-

rize) all single pieces of information and needs to retrieve any single piece of infor-

mation from her memory.1

However, numerous studies in (social) psychology and cognitive science show that

humans do not store and treat single pieces of information in such a one by one

procedure, but classify information in different categories. The prominent social

psychologist Allport (1954) memorably noted ”the human mind must think with

the aid of categories. We cannot possibly avoid this process. Orderly living depends

upon it ”. There is a wealth of research demonstrating that humans’ cognition pro-

cesses information by employing categorical thinking, reasoning and stereotyping.2

1An axiomatization that does not take into account all potentially available information in this
vein is Bleile (2014b)(or Chapter 3). It deals with a two stage belief formation that consists of
a initial filtering process that ”screens and selects” the information that finally flows into the
belief formation process.

2The psychology literature on categorization is vast, e.g. see Rosch and Lloyd (1976), Murphy
and Medin (1985), Goldstone (1994), Rips (1989), Smith et al. (1998), Medin and Aguilar
(1999), Murphy (2002). Real life examples discuss that consumers categorize products (Smith
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4 Belief Formation Based on Categorization

In particular, one can interpret categorization as model of similarity-based reasoning

(Tversky (1977), Gilboa and Schmeidler (1995)) in which information needs not to

be understood in its particularity, but as member of a larger classified category that

allows to generalize properties from category members to new members through

analogies and similarities. This makes categorical thinking especially helpful for

predictions (Osherson et al. (1990), Anderson (1991)).

In order to capture the impact of categorical thinking and reasoning in agent’s

belief, we modify and extend the mentioned axiomatic approaches (in particular

BGSS) by adding a categorization procedure that affects the processing, storing,

retrieving and employing of potentially available information.

In complex and poorly understood environments, categorizations emerge naturally

to simplify actions by gathering many distinct experiences together and ignoring the

details of each single piece of information. Limited learning and memorizing oppor-

tunities drive agents into relying on abstractions and (categorical) summarizations

rather than on single past cases. Processing and storing of all past cases in full detail

bears costs in storing and retrieving the information, since the finer information is

stored the more effort is required to activate it. The classification of information

in different categories offers a less demanding way of storing and retrieving infor-

mation, since only the assignment to suitable categories and their characteristics

needs to be memorized. In particular, the literature on ”optimal” categorization

focuses on the issue how fine or coarse categories ought to be formed in order to

process information in a way to gain a maximum amount of information with the

least cognitive effort. In particular, it should be more efficient than some other form

of case-based reasoning, as for instance kernel-based estimation.

Another important function of categorical reasoning concerns its role for facilitat-

ing and improving inductive inference and prediction. The underlying idea is that

an assignment to categories does allow an agent not only to use the information

contained in the current problem, but exploit as well the additional information

provided by the categories to which this problem belongs (or which it activates). Of

course, this is only helpful if the previous experiences contained in the specific cate-

gories provide some information for the actual problem such that the agent can infer

or generalize some information and properties from past observations in the cate-

gories. From this perspective, a categorization of information enables and implicitly

provides an agent with additional (more detailed) information than mentioned in the

initial description of the problem. Ideally categories are formed like sufficient statis-

1965), investors engage in ”style investing” (Sharpe (1992), Bernstein (1995)), rating agencies
categorize firms wrt. default risk (Coval et al. (2009)), etc.
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4.1 Introduction and motivation

tics for its assigned members and thus would make prediction particularly simple

and reliable.3

In this chapter, we are not concerned with the formation of categories, but assume

that a set of (optimal) categories is already naturally or evolutionary determined.4

In particular, we are solely interested in an axiomatic description on how categorized

information is incorporated into a belief formation by agents.

The categorization literature identified several procedures in using categorical

thinking for belief formation. The approaches differ in the way how many categories

are taken into account. Either all categories are considered or only some specific

target category(ies) are taken into account. Another difference concerns (a still on-

going discussion about) the issue how categories are represented themselves. Either

categories are represented by an aggregated summarizing representative that cap-

tures the essence or central tendency of the category - a so called prototype - or all

members of the category are used for its representation.5

There is experimental evidence in psychology that individuals tend to rely on

(a single) most likely target category(ies), whereas the other categories (and their

content) are immaterial for the belief formation (e.g. Murphy and Ross (1994),

Krueger and Clement (1994), Malt et al. (1995)). When faced with a new problem,

an agent’s mind activates automatically some already generated category(ies) that

are best fitting according to some metric for the current problem.6 Depending on

how an agent treats categories she will form her belief either based on all single pieces

of information contained in the target category(ies) or use the estimates induced by

a prototypical representative associated with the (target) category(ies). Our first

axiomatization of a category based belief formation will adopt this approach based

on activated target categories, which simplifies (cognitively) the belief formation,

since an agent only needs to process the information that is directly evoked for the

current problem.

The second stream of literature -which is covered in our second axiomatization of

3Peski’s (2011) categorization model can be interpreted as such an optimal statistical procedure.
4Traditionally, categories are formed based on (attribute-wise, overall, functional or casual) simi-

larity considerations. Roughly speaking, in general categories are often formed as to maximize
the similarity of objects within a category and the dissimilarity of objects from different cate-
gories. However, there is an ongoing discussion and debated whether categorization presupposes
a notion of similarity or not (see Goldstone (1994) and Gärdenfors (2000), Pothos (2005)). For
instance some literature argue that categorization is theory or rule-based (according to various
criteria).

5There are also approaches in between (Vanpaemel and Storms (2008)), but we stick to the
benchmark procedures.

6For example by comparing the actual problem to the prototypical problem of different categories
until a closest match is found. The automaticity in categorical thinking is discussed e.g. in
Allport (1954), Bargh (1994, 1997, 1999).
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a prototype based belief- is based on the prototype of all categories in a database.

Such a prototype based belief adopts the approach taken in Anderson (1991) and

models the situation, in which an agent might not be able to figure out best fit-

ting target category(ies). The simplifying power of categorization in this approach

results from taking into account all (categorized) information through prototypical

summaries and not by memorizing and retrieving all single pieces of information.

This reduces the cognitive and memorization effort. It averages the particular pro-

totypical estimates induced by the categories.

Our axiomatizations of both kinds of belief formation -category and prototype

based- are based on modified and extended versions of the axioms of BGSS and

partly Bleile (2014b) (or Chapter 3). Categorization based belief formations can be

seen as two stage procedures. First, agents are endowed with a natural categoriza-

tion structure on the in principle available information (e.g. like through a natural

or evolutionary developed optimal heuristic algorithm). On the basis of this cate-

gorization structure and the current problem, the available information (provided

by the database/memory of past experiences) will be categorized. We will assume

some reasonable, natural and well known -but rather weak- properties on this in-

duced categorization of databases. The (structural) properties on the (induced)

categorization of databases differ for our two versions of categorization based belief

formation. However, a common feature concerns our main requirement that an agent

will not categorize any database, but that databases must be sufficiently complex

or diverse to initiate a categorization process. We assume that a database need to

contain a minimum amount of distinct cases such that an agent really (wants to)

thinks in categories.7 However, this is a quite natural requirement, since one rea-

son for categorizing information is to overcome limitations in processing cognitively

challenging information or environments. Another common property says that the

order of cases in a database is immaterial for the categorization, i.e. a categorization

procedure depends only on content and not on the sequences of pieces of informa-

tion.

For a prototype based belief we require that a ”real” category ought to contain a

minimum number of distinct cases. In particular, we require for a prototype based

belief formation that a database is categorized (in some accordance with the natu-

ral categorization) in such a way that at most one singleton category exits and all

other non empty categories consist of at least two members. Of course a degenerate

categorization in which each category contains only one member is meaningless for

7Complexity is certainly related to the number of options to be considered, but also few options
characterized by difficult interwoven features might be challenging to evaluate.
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4.1 Introduction and motivation

our purpose (and is covered directly by BGSS).

The second stage of a belief formation based on categorized information deals with

the behavioral impacts on the actual belief level. As in BGSS, we require that the

belief is independent of the order of the (categorized) information and that some form

of Concatenation Axiom holds. Explicitly, a belief induced by the combination of

two databases should lie between the beliefs induced by the two databases separately.

However, to keep the normatively appealing spirit of the axiom, we need to ensure

that the categorized information of the combination of two databases coincides with

the combination of the two separately categorized underlying databases.8

The particular properties of the categorization procedures and the axioms on the

belief formation level guarantee that the beliefs based on categorized information

can be represented only based on information in the target categories evoked by the

new problem (i.e. as the category based belief) or based only on all prototypes of

the categorized information (i.e. as the prototype based belief).

As already mentioned, there exist research discussing predictions based on cate-

gorical thinking, but none of them is of an axiomatic nature. However, we are solely

interested in the behavioral foundation of a belief formation based on categorized

information. Our approach is closest to BGSS and Bleile (2014b) with regard to the

proposed axioms. In particular, a category based belief can be seen as a special case

of a belief formation under limited attention as axiomatized in Bleile (2014b). Such

a filtered belief relies only on pieces of information that are contained in a so called

consideration set that gather all information that survive a filtering stage. Basically,

the evoked target categories can be interpreted as such a consideration set and thus

a category based belief is a specifically filtered belief.

Concerning the two axiomatized procedures of employing categorized informa-

tion, the most relevant works are Anderson (1991) for the prototype based belief

and Murphy and Ross (1994) for the category based belief. The existing literature

deals either with applying prediction procedures based on categorized information

and discussing its consequences for specific situation (e.g. Mullainathan (2002)) or is

concerned with how and why ”optimal ” formations of categories emerge (Fryer and

Jackson (2008), Mohlin (2014), Peski (2011)). The mentioned papers all employ a

belief formation relying on prototypes (of the main target categories or the category

the current problem belongs to). However, they all differ with regard to their notion

of an ”optimal” categorization. In Fryer and Jackson (2008) the optimal categoriza-

8For the axiomatization of a prototype based belief we deal with this issue in a similar spirit as in
Bleile (2014b) by introducing another simultaneously available (super)-database, which serves
as the common reference which ”dictates” the categorization in a consistent manner for any
subdatabase.
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4 Belief Formation Based on Categorization

tion minimizes the sum (across categories) of within category variations between

objects that have already been encountered (for an exogenously fixed number of

categories). Mohlin (2014) aims to find the optimal number of categories in order

to minimize the prediction error, which amounts to tackling the tradeoff between

small and fine or more coarse but larger categories to avoid overfitting problems

(which is also the principle rational of Peski (2011) and Al Najjar and Pai (2014)

for decision making). Peski (2011) shows when categorical learning is optimal for

prediction (in the sense of an (asymptotic) statistical tool equivalent to learning

by Bayesian updating). He compares a categorization algorithm with Bayesian up-

dating. The underlying assumption is that the environment is symmetric meaning

that the Bayesian prior is symmetric. The categorization algorithm is such that

categories are formed in order to minimize the inner entropy of the categories, i.e.

to maximize the informational content in the categories. His categorization proce-

dure combines deductive reasoning (i.e. learn to form categories) and applying the

deduced categorization inductively to belief formation. This is structural impossible

in our axiomatization.

The following section will introduce the database related framework. Section

4.3 illustrates by means of an example the two beliefs based on categorizations.

In Section 4.4 our natural categorization structure is discussed. Section 4.5 and 4.6

cover the categorization of databases, the axioms on the belief level and the resulting

belief formations for both categorization based belief formations separately. We

conclude in Section 4.7. All proofs can be found in the last two sections.

4.2 The model

In this section, we introduce the case-based information framework and the basic

building blocks of our belief formation based on filtered information. Further, we

introduce some definitions and notations necessary for our approach.

4.2.1 Database framework

A basic case c = (x, r) consists of a description of the environment or problem

x ∈ X and an outcome r ∈ R, where X = X1 ×X2 × ....×XN is a finite set of all

characteristics of the environment, in which Xj denotes the set of possible values

features j can take. R denotes a finite set of potential outcomes, R = {r1, ..., rn}
The ordered set C ⊆ X ×R consists of all m ≥ 3 basic cases, i.e. C = {c1, ..., cm}.
A database D is a sequence or list of basic cases c ∈ C. The set of databases D

consisting of L cases, i.e. D = (c1, ..., cL) where ci ∈ C for all i ≤ L, is denoted
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4.2 The model

by CL and the set of all databases by C∗ = ∪L≥1C
L, including the empty database

∅. The description of databases as sequence of potentially identical cases allows

multiple observation of an identical case to be taken into account and treated as an

additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in

databases D.

The concatenation of two databasesD = (c1, c2, ..., cL) ∈ CL and E = (c′1, c
′
2, ..., c

′
T ) ∈

CT (where ci, c
′
j ∈ C for all i ≤ L, j ≤ T ) is denoted by D◦E ∈ CL+T and is defined

by D ◦ E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the

identical databases D by DL. Specifically, cL represents a database consisting of

L-times case c.

For any D ∈ C∗ the diversity of a database D is given by div(D) := |{D}|, where

as usual {D} denotes the set of different cases contained in database D. So div(D)

gives the number of different cases contained in database D.

We need to translate some relations from sets to the list framework.

Definition 4.1

(i) The ∈-relation on databases is defined by c ∈ D if fD(c) > 0.

(ii) The ⊆-relation on the set of databases C∗ is defined by D ⊆ E ⇔ fD(c)|D| ≤
fE(c)|E| for all c ∈ C. We will call such databases to be nested.

(iii) The ∩-relation on databases is given by D ∩ E = ((cmin{fD(c)|D|,fE(c)|E|})c∈C)

(iv) Two databases D and E are disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

The definitions are basically independent of the order of cases in the databases.

Note however that the definition of ∩-relation in (iii) is very specific, since the order

of C is transferred, i.e. by intersection a specific order (on C) is induced.9

4.2.2 Induced belief

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for

n ∈ N ∆n denotes the simplex over the set {1, 2, ..., n}.
As in BGSS, EG and Bleile (2014a) an agent forms a belief over outcomes P (x,D) ∈
∆(R) in a certain problem characterized by x ∈ X using her information captured

in a database D ∈ C∗, i.e. P : X × C∗ → ∆(R).

9In contrast to intersections of sets, where orderings are immaterial, intersection of databases do
require some assumption on resulting orderings.
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4 Belief Formation Based on Categorization

4.3 Motivating example

In order to illustrate the basic idea and plausibility of categorization based belief

formation, we incorporate the two categorization procedures into the doctor example

of BGSS.

A doctor needs to evaluate different outcomes of a treatment. She has some

working experience or access to some medical database related to the treatment

D = (c1, ..., cl), where she recorded in a case ci = (xi, ri) the vector of characteristics

of a patient i, xi ∈ X, (e.g. age, gender, weight, blood count, specific illness) and

the observable outcome of the treatment ri ∈ R (e.g. better, worse, adverse effects).

A new patient characterized by x enters her office and using a medical record D, the

doctor wants to derive a belief Px(D) ∈ ∆(R) over potential outcomes in R. She

might apply an empirical frequency and use only a part Dx of the database D, which

contains only cases c = (xc, rc) of patients with ”identical” characteristics xc = x

compared to the current patient,

”Frequentist”: Px(D) =

∑
c∈Dx δrc
|Dx|

.

However, if the database contains not sufficiently many of these ”identical” patients

x, she might want to include also ”similar” patients. She judges the degree of

similarity between patients x and x′ by s(x, x′) ∈ R+. Further, she might induce

from a case c = (xc, rc) not only a point estimate δrc on the realized outcome, but

derives a more general estimate P c ∈ ∆(R) on likelihoods of particular (related)

outcomes and forms the belief as axiomatized in BGSS (2005) by

”BGSS-belief”: Px(D) =

∑
c∈D s(x, xc)P

c∑
c∈D s(x, xc)

.

However, as discussed above, the cognitive science literature emphasized the role of

categories in storing, retrieving and processing of information. The literature argues

as well for a naturally (by evolution) given ability or heuristic feeling to categorize.

Thus, assume the doctor is implicitly able to categorize the set C of all potentially

possible patient-outcome pairs (x, r) ∈ C into different categories C̃l ⊂ C for l ≤ L,

such that the set C̃ = {C̃1, .., C̃L} partitions the set of all possible cases c = (x, r).

For example category C̃1 contains all male patients, with age below 60 years, any

weight, good blood count and sore throats and category C̃l contains all male pa-

tients, overweight and heart problems and so forth. In general, categories might

be exclusive or non-disjoint, for instance male patients might appear in different

categories. Such an implicit preexisting natural categorization structure might be
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subconsciously rooted in the mind of a doctor and induces some consistent (embed-

ded) categorization of a database D. Alternative, one might think of the preexisting

natural categorization structure as the patient groups that the doctor are taught at

medical school and the database D as the experience she made working in a hospital.

Receiving information about a new patient, she wants to predict the outcome based

on (a natural or taught) categorization of her past experience. Depending on how

the doctor uses her categorized patient database D, she might form a category or

prototype based belief as follows.

Suppose the current patient x is male, older than 40 years, overweight, etc. and

the doctor knows for each characteristic its value. The doctor partitioned her expe-

rience D with the treatment into categories consistent with the natural (preexisting)

categorization. A specific patient x might trigger, activate or evoke automatically

the category(ies) to which this patient belongs, is related to or matches best. For

example this might be the category C̃1 (as above) ”synchronized” (intersected) with

the actually experienced database D, which we denote by C̃(x,D) ⊆ D. Thus,

not only the identical patient profiles are recalled and considered, but the entire

x-evoked category in D that also may contain different, but somehow similar or re-

lated patients (according to the criteria for categorization, which might be optimal

for predictive tasks by evolution). A doctor might form a category based belief

based only on the members the category(ies) that patient x evokes, i.e. C̃(x,D),

”Category based belief”: Px(D) =

∑
c∈C̃(x,D) s(x, xc)P

c∑
c∈C̃(x,D) s(x, xc)

,

where as above s measures the similarity between the current patient and the al-

ready treated patients.

Of course C̃(x,D) might not consist only of a single category, but several categories

that are activated by the patient x.

Alternatively, the doctor might have already categorized her experience D prior a

new patient arrives, i.e. C̃D = {C̃D
1 , .., C̃

D
L } for l ≤ L, such that

⋃
l≤L C̃

D
l = D in a

consistent manner with respect to the (preexisting) natural categorization structure

C̃. Furthermore, she might have formed some prototypical estimates P C̃Dl ∈ ∆(R)

for each of these categories. For a given database D and a new patient x, the doctor’s

prototype based belief in such a situation might be given by a weighted average

of these prototypical estimates, where the weights are determined by the relevance
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4 Belief Formation Based on Categorization

of the particular category for the current patient, i.e. s̃(x, C̃D
l ) for all l ≤ L,10

”Prototype based belief”: Px(D) =

∑
l≤L s̃(x, C̃

D
l )P C̃Dl∑

l≤L s̃(x, C̃
D
l

.

4.4 Natural evolutionary (optimal) categorization

structure

Definition 4.2

A (natural) categorization structure C̃ = {C̃1, .., C̃L} on the set of basic cases C

partitions C into L different nonempty categories C̃l ⊆ C for l ≤ L ∈ N, i.e.

C =
⋃
l≤L{C̃l}.

The definition allows non-disjoint categories, since it is quite naturally that a case

could be classified into multiple categories if a categorization depends on more than

one criterion. For instance, the categories of young and male patients are not neces-

sarily disjoint, when gender and age are criteria. Moreover, hierarchical categories

are not mutually exclusive, e.g. the category of young patients and the one of young

male patients.

We will not care about the formation of categories and assume that agents are

naturally endowed with an idea, how to construct categories. In particular, through

evolutionary pressure nature equipped us with an heuristic algorithm or tool that

allows to form categorizations that organize our experience in an almost optimal

way for prediction and that tends to minimize prediction errors (and thus increase

the likelihood to survive and stay fit). This is supported by the findings that young

children appear to form, acquire and use categories from very early on (Gelman

and Markman (1986), Smith (1989), Murphy (2002)), showing also that many cat-

egorizations are innate.11 However, if the categorization is based on data, the de-

velopmental literature shows that especially in the beginning of learning (i.e. with

small databases (i.e. for children)) the categorization is still flexible (Hayne (1996),

Quinn and Eimas (1996)). This concern is immaterial for a natural categorization,

since it is based already on all potential pieces of information. However, we will

take care of it, when we consider categorization induced by database (in particular

in the framework of a prototype based belief formation).

Another justification for assuming such a fixed preexisting categorization structure

on the set of all potential cases is by interpreting it as a result of an already developed

10Alternatively, s̃ measures likelihood of patients x to be assigned or belonging to the particular
category.

11It is not observable that children rely on on purely empirical learning.

126



4.5 Axiomatization of category based belief formation

optimal categorization with regard to numbers and content of the categories. The

literature varies in the way how they define an optimal categorization (as already

discussed in the introduction, e.g. Fryer and Jackson (2008), Peski (2011), Mohlin

(2014)).

A more direct reason, why we assume a preexisting natural categorization is based

on the fact that we want to avoid the many difficult and interacting mechanisms

involved in a categorization process12 and want to focus solely on the belief formation

issue.

Also in the literature it is not uncommon to assume a fixed preexisting catego-

rization structure (Anderson (1991), Murphy and Ross (1994), Mullainathan (2002),

Manzini and Mariotti (2012), Al-Najjar and Pai (2014) or Mohlin’s (2014) ex ante

optimal categorization).

4.5 Axiomatization of category based belief formation

4.5.1 Specific properties of the categorization procedure

In this section we specify the list of categories a problem x ∈ X evokes or activates

and our concept of a x-evoked categorization of a database.

Problem evoked categorization of a database

The definition of a problem evoked categorization of information captures the intu-

ition that a new problem activates specific most appropriate or relevant categories

(that are already generated in the natural categorization structure). An agent takes

into account these ”target” categories for the current problem.

Definition 4.3

For all x ∈ X a categorization structure C̃ induces a list C̃x of categories that problem

x evokes. For all x there exist a Mx ⊆ {1, .., L}, such that C̃x := ((C̃l)l∈Mx) ∈ C∗
We call C̃x the categories that are activated (evoked) by problem x or short

x-activated categories.

There is substantial experimental evidence showing that when faced with an object,

humans’ brains automatically activate category(ies) that (according to some metric)

appears to suit the current problem best (with regard to best fitting, most likely

12e.g. initial encoding, abstraction of conceptual representation (if any), storage of the abstraction
and/or exemplars in memory, retrieval of stored representations, decision process that produce
categorization or typicality, see Murphy and Ross (1994).
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4 Belief Formation Based on Categorization

or analogous category(ies)).13 Basically, a new problem does not trigger some most

relevant single pieces of information, but the activation process is based on categor-

ical thinking.

Our definition does not specify the exact procedure of activation. However, for our

purpose to form a belief given a current problem, i.e. the characteristic part of case

x ∈ X, it is most reasonable to think about a categorization of past observations

according to their characteristics.14 In this way, the characteristic x can be seen

as a basic sensory input such that categories are formed based on a relationships

between the characteristics of the cases (e.g. like a metric on the characteristics

space or feature overlaps, etc.). In this way, for instance a very specific procedure to

evoke categories might solely activates categories that contain a case that coincides

(with regard to the characteristic part) with the current problem, i.e. C̃x is the

list of categories that contain at least one case with characteristic x ∈ X, i.e. let

Al := {x ∈ X|∃c = (x, r) ∈ C s. th. c ∈ C̃l} for all l ≤ L, then

C̃x := (1A1(x)C̃1, 1A2(x)C̃2, ...., 1AL(x)C̃L) ∈ C∗.

Such an procedure would imply that cases with different characteristics than x are

only activated if they are contained in categories that include member cases with

characteristic (problem) x.15

However, our definition is general and thus may not necessary rely on the x charac-

teristics specifically, but may take into account the categories that are activated by

any characteristics that are close or related to x. Furthermore another widely ac-

cepted procedure depends on the closest ”distance” (with respect to similar, salient,

related, familiar) to the prototypical element of a categories (e.g. Rosch and Lloyd

(1978)), which then trigger their corresponding category(ies) members.

Properties on problem activated categories

Now we define a consistent transfer to activations of the categories in a database.

Based on a natural categorization structure C̃ = {C̃1, C̃2, ...., C̃L}, we will define a

function C̃ : X × C∗ → C∗ that determines the single pieces of information in a

database D ∈ C∗ that belong to categories that are activated by a specific problem

x ∈ X.

13Some research on this issue is mentioned in the introduction. Note that under automaticity
subjects are often not even aware of this process.

14However, an outcome dependent categorization is in principle also possible.
15Such a categorization is only useful if cases with different characteristics are in the same cate-

gories.
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4.5 Axiomatization of category based belief formation

Thereby, our main assumption concerns a minimal amount of distinct cases in a

database that initiates categorical processing of information in agents’ minds. For

a less diverse or complex database (i.e. div(D) ≤ k) an agent’s brain does not

start to simplify and reduce the set of information by categorizing the information,

but will just process, inspect and take into account all single pieces of information

directly. However, for more diverse or complex databases agent’s mind will initiate a

rough (problem evoked) classification of the database in accordance with the natural

categorization C̃ and then consider in detail only the information in her database

that are also contained in categories activated by the current problem.

Definition 4.4 Induced minimal categorization

Let C̃ be a categorization structure on C and k ∈ N with k ≥ 3 . A database

C̃(x,D) results from a categorization function C̃ : X × C∗ → C∗16 that categorizes

each database D ∈ C∗ according to the categories in C̃x that are evoked by problem

x ∈ X. We call C̃(x,D) the x-evoked/activated categorized database D (for cognitive

ability level k) and define it for all D ∈ CT for all T ∈ N by

C̃(x,D) :=

{
D ∩ (cT )c∈C for div(D) ≤ k

D ∩ (C̃x)
T for div(D) > k.

In the following, we will fix k = 3 without loss of generality. Obviously C̃(x,D) ⊆ D.

Example:

In order to clarify the definition of the categorization function for a database D ∈ CT

such that div(D) > 3, i.e. C̃(x,D) := (C̃x)
T ∩D, consider the following situation.

Let D = (c2
1, c2, c

4
3, c6, c

3
7) ∈ C11, i.e. div(D) = 5, and a categorization structure

induced by problem x ∈ X C̃x = (C̃1, C̃2), where C̃1 = (c1, c2) and C̃2 = (c2, c4, c7).

Then (C̃x)
11 ∩D = (c1, c2)11 ◦ (c2, c4, c7)11 ∩D ≈ (c2

1, c2, c
3
7) (up to order), which is

normatively and descriptively appealing for such a categorized database.

Remark 4.1

(i) Since C̃x is insensitive to repetitions of cases, we need to ensure that repeated

observations in D ∈ CT are captured, which is guaranteed by introducing the T-

replicated C̃x.17

(ii) An immediate consequence of the minimal induced categorization property is that

16With slight abuse of notation we name the function and the natural categorization identical to
emphasize that for each fixed categorization structure a corresponding function can be defined,
i.e. that the function relies on this fixed categorization structure like a parameter.

17We use the total length of the database just for simplicity. One might also take the maximal
amount of a case appears in D.
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4 Belief Formation Based on Categorization

for database D such that div(D) ≤ 3, we have no categorization and the framework

(and later defined axioms) coincides with the framework of BGSS. Thus, it enables

us to mirror their proof for these kind of databases.

Apart from the minimality condition for an activated categorization of databases,

the definition makes implicitly three additional important assumptions.

First, a very important ingredient of this definition is that the evoked categories

C̃x are totally unrelated to the database under consideration. Only the underlying

problem activates the relevant categories. In accordance with these categories the

actually available information in the database is intersected. One may argue that a

database itself determines which categories are evoked (or even formed), since the

database might provide some intuition and motivation how to categorize it. How-

ever, our intuition runs solely through a new problem x that activates the relevant

categories in the subconsciously pre-existing natural categorization C̃. In this sense

the induced categorization of the database occurs not directly on the level of the

database.

Second, the ordering of the database D does not affect the resulting categorized

database. Any reordered database π(D) of the database D results identically acti-

vated categorized information, i.e. the content of the categorized database C̃(x,D)

and C̃(x, π(D)) coincides. In this sense, the definition induces some categorization

invariance that is driven by our assumption that the categorization is evoked by the

underlying problem x and not by the database. This precludes that a categorization

of a database is affected by order effects.18 However, since the x-evoked categories

are activated independent from any database in our approach, it is quite natural

that their intersections with any reordered database result in the same content.

Finally however, even though the content of differently ordered database are iden-

tical after the categorization, the order of its evoked content (cases) in the catego-

rized databases may still be different, i.e. C̃(x,D) and C̃(x, π(D)) may consist of

the same content but differently ordered. However, the definition precludes this dif-

ference by assuming a specific ordering for all categorized databases according to the

order on the set of basic cases (induced by the definition of ∩ for databases and the

order on C). Yet, the reason for this assumption is not that we want to restrict the

categorization process on databases in this way, but it is rather an anticipation of

a property (or axiom) we would enforce for the subsequent belief formation. In the

manner of BGSS, an Invariance Axiom on beliefs would say that the belief induced

by a database is determined only by its content and not its ordering in the database,

18For instance a first impression effect might might induce a bias for the category that the first
case in the database is most related to.

130



4.5 Axiomatization of category based belief formation

i.e. the beliefs induced by any reordering of the same content coincides. Thus, the

assumption of a specific (seemingly restrictive) order of the categorized databases

is innocent in combination with an Invariance Axiom on the belief stage, since then

the order of any categorized database would be immaterial for a belief.

4.5.2 Induced category based belief

A category based belief is composed of a usual belief P : X × C∗ → ∆(R) and a

previous problem evoked categorization of the underlying information C̃ : X×C∗ →
C∗ (i.e. C̃(x,D) ⊆ D), such that (P ◦ C̃) : X × C∗ → ∆(R), i.e.

(P ◦ C̃)(x,D) = P (x, C̃(x,D)). Faced with a new problem x ∈ X, the agent’s brain

activates or evokes some appropriate categories for this problem according to the

natural categorization structure C̃ and forms the belief based only on those pieces of

information in the activated categories that are actually available in her database,

i.e. subdatabase C̃(x,D) ⊆ D.

In the following we will fix a problem x ∈ X and write for convenience C̃(x,D) =

C̃(D) and for (P ◦ C̃)(x,D) = (P ◦ C̃)(D) when no confusion arises.

4.5.3 Axioms on the level of belief formation

Categorized Invariance Axiom (already implied)

For all D ∈ C∗ and all permutations π on D, i.e. D = (c1, ..., cT ), then π(D) =

(cπ(1), ..., cπ(T )) the following holds:

(P ◦ C̃)(D) = (P ◦ C̃)(π(D)).

The axiom basically says that the order or sequence of appearance of the cases in D

is immaterial for the induced category based belief, only the content matters. Thus,

the axiom is directly implied by our definition of a problem evoked categorization

of databases, since we discussed already that for any two databases containing the

same content, their induced categorization coincide, i.e. C̃(D) = C̃(π(D)) for all

databases D ∈ C∗ and reordered database π(D). In this sense the categorized

Invariance Axiom is superfluous and indirectly substituted by the definition of a

categorized database.19

Per se the invariance property does not allow for different impacts if a case appears

earlier or later in a database. However, the order in which information is provided

19Technically speaking, there is no difference between restricting the categorization process to
specific orders or allowing for different orderings and requiring an Invariance Axiom for beliefs.
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or obtained can influence the judgment strongly and may carry information by it-

self. One way to cope with these order effects is to describe the cases informative

enough. E.g. if one wants to capture the position or time of occurrence of a case in

the categorized database, one could implement this information into the description

of the cases itself. Put differently, if one challenges the consequences of an invari-

ance property, then there must be some criteria which distinguishes the cases and

paying attention explicitly to this difference in the description of the case may lead

the agent to reconcile with such an invariance.

Category based Concatenation Axiom

There exists some λ ∈ [0, 1], such that for C̃(D ◦ E) 6= ∅

(P ◦ C̃)(D ◦ E) = λ(P ◦ C̃)(D) + (1− λ)(P ◦ C̃)(E),

where λ = 0 if and only if C̃(D) = ∅.

In the following we will call the database which emerges from concatenation

of other databases as the combined or concatenated database, whereas the

databases used for the concatenation will be called combining or concatenat-

ing databases.

The category based Concatenation Axiom states that a category based belief

induced by a concatenated database is a weighted average of the category based

beliefs induced by its respective combining databases. The axiom captures the

idea that a belief based on the combination of two databases can not lie outside

the interval spanned by the beliefs induced by each combining database separately.

Intuitively it can be interpreted in the following way (stated from an exclusion point

of view): if the information in any database induces an agent’s belief not to exclude

an outcome r, then the outcome r cannot be excluded by the belief induced by the

combination of all these databases.20

However, in order to sustain the normative appealing interpretation of averaging

(category based) beliefs, the categorized concatenation of two databases must co-

incide with the concatenation of these two categorized databases, i.e. the union of

the elements surviving the categorization process for each single database should

not differ from the elements surviving the categorization of the database generated

20Of course the axiom is stronger in the sense that it not only requires that the probability of
such an r is positive, but it should lie between the minimal and maximal assigned probabilities
induced by the combining (filtered) databases.
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by the combination of the two. This would ensure that a category based belief in-

duced by the concatenated database relies on information that is also employed in

the category based beliefs induced by the single concatenating databases. However,

this is directly achieved by the definition of a problem evoked categorization of a

database, i.e. for D ∈ CT and E ∈ CL

C̃(x,D ◦ E) = (C̃x)
T+L ∩ (D ◦ E) = ((C̃x)

T ∩D) ◦ ((C̃x)
L ∩ E) = C̃(x,D) ◦ C̃(x,E)

The category based Concatenation Axiom assumes λ = 0 for databases such that

C̃(D) = ∅. Of course λ 6= 0 would result in inconsistencies, since then (P ◦ C̃)(D ◦
E) = λP (∅) + (1 − λ)(P ◦ C̃)(E), which implicitly states that the category based

beliefs induced by C̃(D ◦ E) and C̃(E) would differ, even though the categorized

databases coincide.

Collinearity Axiom

No three of {((P ◦ C̃)(c))c∈C} such that C̃(c) 6= ∅ are collinear.

Technically speaking this axiom allows to derive an unique similarity function (in

combination with the other axioms), but it has also some reasonable intuition.

Roughly it states that a (non trivial) estimate based on a case is never equiva-

lent to the combined (non-trivial) estimates based on two other cases. Hence, a

case is always informative in the sense that no combination of two other cases can

deliver the same estimation and would make this case ”redundant”. By non trivial

we mean that the case is activated (since a not activated case might only contribute

a trivial (uninformed) uniform-like estimate).

4.5.4 Representation Theorem of category based belief

formation

Theorem 4.1

Let there be a function (P ◦ C̃) : C∗ → ∆(R), where P : C∗ → ∆(R) and C̃ =

{C̃1, ..., C̃L} a categorization structure on C with corresponding induced minimal

categorization function C̃ : C∗ → C∗, i.e. for each D ∈ C∗ a categorized database

C̃(D) ⊆ C∗ is given. Let (P ◦ C̃) : C∗ → ∆(R) satisfy the Collinearity Axiom.

Then the following are equivalent:

(i) The function (P ◦ C̃) satisfies the category based Concatenation Axiom

(ii) There exists for each c ∈ C a unique P c ∈ ∆(R), and a unique strictly positive

-up to multiplication by a strictly positive number- function s : C → R+, such that
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for all D ∈ C∗ with C̃(D) 6= ∅

(P ◦ C̃)(D) =

∑
c∈C̃(D) s(c)P

c∑
c∈C̃(D) s(c)

.

Rough sketch of the proof:

The necessity part is straightforward calculation. The sufficiency part follows the

rough structure of the proof of BGSS and Bleile (2014b) (or Chapter 3), but differs

in the crucial arguments. The idea is to transform the framework from the space

of databases to the space of frequency vectors that is structural more tractable, i.e.

the category based belief (P ◦ C̃)(D) =
∑
c∈C̃(D) s(c)P

c∑
c∈C̃(D) s(c)(c)

based on database D ∈ C∗

translates to frequency vectors fD by (P ◦ C̃)(fD) =
∑
j≤m sjC̃j(fD)P j∑
j≤m sjC̃j(fD)

. In order to

show that this is viable we exploit the structure of the categorization procedure and

the category based Concatenation Axiom.

The essential part of the proof is to derive the similarity weights (si)i≤m. This will

be shown inductively over |C| = m and div(fE) ≤ m.

Step 1: Base case for the induction, i.e. |C| = m = 3. Since C̃(f) = f for all

f such that div(f) ≤ 3, we are exactly in the BGSS framework, which directly de-

liver the result for these kind of frequency vectors.

Step 2: |C| = m > 3 and div(fE) ≤ m.

As in BGSS or Chapter 2, we can show (using C̃(f) = f for all f such that div(f) ≤ 3)

that the similarity weights derived in Step 1 are independent of the triplet {i, j, k}
for any set of basic cases C = {ci, cj, ck} and thus we can define for all f ∈ ∆(C)

(P ◦ C̃)s(f) :=

∑
j≤m sjC̃j(f)P j∑
j≤m sjC̃j(f)

.

The aim is to show (P ◦ C̃)s(f) = (P ◦ C̃)(f) for all f ∈ ∆(C) via induction over m

and using Step 1 (m = 3) as base case.

Let f = αqj + (1− α)f(j) (*) (for some α ∈ (0, 1)) where f(j) denotes the point in

conv({(ql)l∈{1,...,m}\j}) that is on the line through f and the j-th unit vector qj, as

in BGSS.

(i) If there exists a j ≤ m such that qj 6∈ C̃(f), then the decomposition (*) and

the category based Concatenation Axiom (and induction assumption) delivers the

claim.

(ii) If qj ∈ C̃(f) for all j ≤ m, then there are m many qj such that C̃(qj) 6= 0m.
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Again, the category based Concatenation Axiom applied to the m many decom-

positions yields that (P ◦ C̃)(f) lies in the interior of the intervals spanned by

((P ◦ C̃)(qj), (P ◦ C̃)(f(j))) for all j ≤ m. Combined with the Collinearity Axiom

this delivers a unique intersection of these lines in (P ◦ C̃)(f) and (P ◦ C̃)s(f), since

the elements determining the lines satisfy already the claim by the induction as-

sumption.

Interpretation of Theorem

A category based belief formation can be interpreted as a two stage process in

which in an initial step the rough categorized information is activated by the cur-

rent problem and in a subsequent step the information contained in these activated

categories are processed and evaluated in detail for the belief formation.

A category based belief follows exactly the experimental evidence in psychology in

which individuals focus on the category(ies) that a problem belongs to or are most

relevant and fitting (Murphy and Ross (1994)) and all other categories are imma-

terial, not retrieved and excluded. This implies that an agent does not need to

retrieve or consider all potentially memorized or all past cases (as in BGSS, EG,

Bleile (2014a)). In this way, such a procedure may reduce enormously the cogni-

tive effort, since only a subset of past cases is processed in detail and all pieces of

information that are members of irrelevant categories are not even needed to be

retrieved.

A category based belief is not based on estimations that are associated with

entire categories, but it relies on all estimates induced by the single cases in the

categories activated by the problem. This is an important distinction to the ax-

iomatized prototype based belief in the next section and reflects the disagreement

in the categorization literature on how categories are actually represented. One

stream of literature argues for a representation through all its members (Kruschke

(1992), Medin and Schaffer (1978)), whereas another branch reasons in favor of an

abstracted summary in terms of a prototype representation (e.g. Rosch and Mervis

(1975) and references in Murphy (1994)).21

Since a category based belief relies only on the information of some activated

categories, it can be interpreted as a limited attention model as in Bleile (2014b),

21In general, there is tradeoff between informativeness and economy involved that might be better
balanced by a more intermediary representation as offered in VAM models (Vanpaemel and
Storms (2008)), which allows for varying abstraction levels. It seems that people shift from
using a prototype representation early in training to using an exemplar representation late in
training.
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where a filtered belief22 is based only on some parts of the potentially available

information (so called consideration set that survives a screening/filtering stage).

For a category based belief, the information in the evoked categories can be identified

as the information that is contained in such a consideration set. From this point of

view, the filtering runs on the category level and the categories are roughly screened

with the purpose to ”determine” whether they are appropriate or not for the current

problem. The ”surviving” categories are examined in full detail in the further belief

formation. In this way, the category based belief formation can also be interpreted

as an adaption of the choice model of Manzini and Mariotti (2012b) (”Categorize

then choose”) to belief formation. In particular, the category based belief can be

embedded into a filtered belief in the following way. A filter process Γ : X × C∗ ×
C∗ → C∗ is defined for any x ∈ X by (i) Γ(x,E,E) 6= ∅ for all E ∈ C∗ and (ii)

Γ(x,D,E) = Γ(x,E,E) ∩ D for all D ⊆ E. A problem evoked categorization of a

database E ∈ CT , i.e. C̃(x,E), can be related to a specific filter defined by

Γ(x,E,E) :=

{
E ∩ (cT )c∈C for div(E) ≤ k

(C̃x)
T for div(D) > k.

Then Γ(x,D,E) coincides with C̃(x,D) for all D ⊆ E and all the required properties

of the filter process (order invariance, equal treatment of information, ignorance of

repeated information, consideration property, minimal attention span) are met by

the (x-evoked) categorization function. As well, the category based Concatenation

Axiom translates into its filtered version. In this way, Theorem 4.1 is a corollary of

representation theorem in Bleile (2014b) or Theorem 3.1. However, for the sake of

completeness and self-containedness of the chapter, we state a direct (lighter) proof

of Theorem 4.1 (in Section 4.8).

4.6 Axiomatization of prototype based belief

formation

4.6.1 Specific properties of the categorization procedure

For a prototype based approach we will define a specific categorization of databases

in accordance with a natural categorization structure, but independent of the current

problem of categorizing information. In this regard it differs from the first procedure.

22A filtered belief (P ◦ Γ)(x,D,E) that is based only on some filtered Γ(D,E) ⊆ D information
captured in D, i.e. (P ◦ Γ) : X × C∗ × C∗ → ∆(R).
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4.6 Axiomatization of prototype based belief formation

Natural categorization structure

Let there be given a natural (evolutionary optimal) categorization structure C̃ as

discussed in Section 4.4. We slightly restrict the natural categorization structure

such that it satisfies some additional structural properties regarding the content of

the categories.

Definition 4.5

For a set of basic cases C we call C̃ = {C̃1, ..., C̃L} for some L ∈ N a categorization

structure, if

(i) C̃k ∩ C̃l = ∅ and

(ii) C = ◦j≤LC̃l and

(iii) for all l < L |C̃l| ≥ 2 and |C̃L| ≥ 1

In contrast to the unrestricted natural categorization structure in the section before,

now the categories are explicitly defined to be disjoint and should contain sufficiently

many elements. Disjointness is natural when a category is identified by a (set of)

property or attribute. An object does either possess a property or it does not,

which implies the disjointness. We stick to disjoint categories mainly for reasons of

technical and notational simplicity, but it could be generalized.

The assumption that almost all categories contain at least two members captures

the motivation to deal with ”real” categories.23 Basically, a ”real” category in our

definition exists whenever at least two heterogenous or distinguishable cases can be

gathered in the same category according to some common criteria. Categorization

is only meaningful if some pieces of information can be classified into a common

genuine category. We rule out a degenerate (trivial) singleton-categorization, in

which all cases get their own category. Furthermore, the optimal categorization

literature (Fryer and Jackson (2008), Mohlin (2014), Peski (2011)) supports our

defining properties (under some mild conditions). It shows that there exist many

more cases than categories and that an optimal categorization results in few and

relatively coarse categories, which implies that ”optimal” categories should contain

many members, i.e. |C̃l| ≥ 2.

The underlying reason originates from a tradeoff between benefits and disad-

vantages of a fine or coarse categorization.24 A finer categorization implies more

23Manzini and Mariotti (2012b) consider a similar requirement for their 2nd version of categoriza-
tion.

24This is closely relate to the problem of over-fitting in statistics, where a too close/precise fit
of limited observations- i.e. using high-dimensional models- comes with risk of loosing the
predictive power.
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categories that contain less but more homogenous and similar members, but results

in a decreasing robustness or reliability of a prediction based on these (less precise

or noisy) categories with less many observations. Another compromise concerns

the increasing challenge in searching and identifying the ”correct” category(ies) for

new objects for finer (and more narrow) categorization (e.g. Medin (1983), Jones

(1983)). Thus, an agent might prefer to categorize more coarsely into larger cate-

gories, which is well known and discussed in the psychology literature and referred

to as basic level categories. Basic level categories are neither the most general nor

the most detailed categories.

A categorization based solely on characteristics satisfies our definition under the

condition that the L categories are not empty, since if a case c = (x, r) ∈ C̃l, then

the cases c = (x, ri) would be in the category C̃l for all i ≤ n.

The assumption that there exists at most one singleton category reflects the in-

tuition of a category that might collect the cases that are ”uncategorizable” into

”real” categories.

Specific database induced categorization

Based on a natural categorization structure, we define a specific categorization pro-

cedure for given databases that transmits the idea that there is one category that

contains the ”uncategorizable” elements. Further it assumes - similar to the prob-

lem evoked categorization of databases in Section 4.5.1 - that a minimum amount of

complexity of the database is required in order to initiate categorical thinking and

processing of information. For less diverse databases categorization is not necessary

and the agent considers just all cases in detail.

Definition 4.6

Let C̃ = {C̃1, .., C̃L} be a categorization structure on C. For all E ∈ C∗ a categoriza-

tion of E or E-categorization structure C̃E = {C̃E
1 , ..., C̃

E
L+1} is given in the following

way:

(i) If div(E) < 5, i.e. E = (cri , c
s
j , c

t
k, c

u
n) for distinct i, j, k, n ≤ m and r, s, t, u ∈ N0,

then C̃E = {C̃E
1 = {ci}, C̃E

2 = {cj}, C̃E
3 = {ck}, C̃E

4 = {cn}, C̃E
5 = ∅, ..., C̃E

L+1 = ∅}
Basically C̃E = {{c}c∈E}
(ii) If div(E) ≥ 5, then C̃E := {C̃E

1 , ..., C̃
E
L+1}, where C̃E

l for l ≤ L is defined as
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4.6 Axiomatization of prototype based belief formation

follows:

C̃E
l =

{
C̃l ∩ E if div(C̃l ∩ E) ≥ 2

∅ if div(C̃l ∩ E) ≤ 1
and

C̃E
L+1 =

⋃
{l≤L||C̃l∩E|=1}

C̃l ∩ E

Note that by definition C̃E
l (for all l ≤ L+ 1) does not contain repetitions of cases.

The difference in processing information depending on div(D) Q 5 captures the mo-

tivation to have at least three meaningful categories, in the sense that at least two

”real” non singleton categories exist, which requires div(D) ≥ 5.

A category C̃E
L+1 of ”uncategorizable” cases is supported by an implication of opti-

mal categorizations (e.g. Fryer and Jackson (2008)) which shows that experiences

and objects in databases that are not ”easy” to categorize (i.e. tend to form a sin-

gleton category) are more coarsely categorized and more often lumped together (i.e.

gathered in the category of uncategorizable elements C̃L+1).

Remark 4.2

The definition of a categorization of a database implies some sort of categorization

invariance, i.e. categorizations are independent of the order, number and frequency

of cases in a database. More precisely,

C̃E = C̃D for all D,E ∈ C∗ containing the same cases, i.e. for all c ∈ C fD(c) > 0

if and only if fE(c) > 0.

In particular C̃E = C̃EZ and C̃E = C̃π(E) for all re-orderings π(E) on E.

Basically, we require that a category (and later its prototype) is not affected by

repetitions of already observed information, indirectly saying that categories are

characterized by single observations of different cases and not influenced by their

frequencies. Interestingly, an optimal categorization procedure (a la Jackson and

Fryer (2008)) results as well in categories that remain unchanged when experiences

is simply replicated (and also their prototypes), i.e. C̃EZ

l = C̃E
l for some Z ∈ N.25

The categories of an E-categorization structure (that an agent has in mind) can

be evoked or activated by cases that are also contained in another (simultaneously)

available (somehow related) database D.

25However, the optimal categorization of Fryer and Jackson is sensitive to additional already known
information if it concerns only single pieces of information. Increasing the size of only a single
group of cases may lead to a shift in the categorization.
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Definition 4.7

Let D,E ∈ C∗, such that fD(ci) ≥ 0 only if fE(ci) > 0 for all i ≤ m. Then,

the E-categories evoked by D result from an D-induced E-categorization function

C̃ : C∗ × C∗ → P (C∗)

C̃(D,E) := C̃E(D) = (C̃E
1 (D), .., C̃E

L+1(D)), where for all l ≤ L+ 1

C̃E
l (D) :=

{
C̃E
l if D ∩ C̃E

l 6= ∅
∅ otherwise.

The definition is basically some consistency condition (note that C̃E
l (E) = C̃E

l ), but

one can interpret it as well in the following way. An agent having already categorized

a database E and is ”simultaneously” faced with processing the less rich database

D (consisting only of already categorized cases in E) will not forget her already

”internalized” E-categorization structure. In particular, the cases in D activate some

categories in the richer E-categorization structure C̃E and it might only happen that

some of these categories are not activated by cases in D, i.e. if for a l ≤ L+1 and all

c ∈ D c 6∈ C̃E
l , then C̃E

l is not evoked by D. However, this interpretation does only

apply to ”simultaneously” available and actively categorized databases. It does not

hold for the natural categorization structure that is subconsciously (evolutionary

and automatically) anchored in the brain and thus not actively formed in a process.

An important implication of the definition is that for any reordering π(D) of the

database D, we have the same list of evoked categories in terms of content as well

as in terms of order, i.e. C̃E(D) = C̃E(π(D)). In combination with the Remark 4.2,

this implies a categorization invariance, i.e. for any (D,E) ∈ C∗ × C∗ such that

fD(c) ≥ 0 if fE(c) > 0 and appropriate permutations π, π′

C̃E(D) = C̃EL(DZ) = C̃π(E)(π′(D)). (4.1)

This property of a database evoked categorization of information is restrictive, since

the order of cases in D might affect the order in which the E-categories are ac-

tivated.26 However, similar as in Section 4.5.1, this specific assumption is not a

property we want to enforce explicitly, but it is an anticipation of an Invariance Ax-

iom on the belief level, we would have enforced if the evoked categorization structure

would be order sensitive.

26With additional effort on notation and definitions we could take care of orders.
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Admissability of database based categorization

We defined an environment in which pairs of (somehow nested) databases (D,E) ∈
C∗×C∗ affect the belief formation. The richer database E induces some categoriza-

tion, where the cases of D activate the E-categories for the actual process of belief

formation. In such a framework not all potential combinations of databases are

plausible and meaningful for a belief formation based on categorized information.

Our admissibility condition specifies the circumstances under which categorization

of information is normatively and descriptively reasonable.

As discussed already, a categorization heuristics is useful for sufficiently complex

and diverse databases. However, a sufficiently diverse database is not directly com-

plex, e.g. if it is classified into a single (or very few) large category(ies) or into almost

singleton (very fine) categories. Basically, only if sufficiently many meaningful cat-

egories are evoked an agent starts to think and process information categorical and

feels confident in relying on (summarized) information on the category level. For

databases that involve only very few activated databases an agent may not want

to rely on only coarse (imprecise) summaries of these few categories, but might go

through the information case by case in order to be sufficiently informed.27 Thus,

in such a situation a categorization of information does not offer some advantage to

an approach of just taking into account all single pieces of information directly.

Our admissibility condition (i.e. (ii) and (iii)) restricts the pairs of databases for

which an agent starts categorical thinking and processing. It requires that a mini-

mum number of ”real” categories of C̃E (namely three) are in some sense activated

by a database D and considered for its evaluation.

Definition 4.8

The admissible pairs (D,E) ∈ C∗ × C∗ are given by the set A as follows

A :=
{

(D,E) ∈ C∗ × C∗| (i) fD(c) > 0 then fE(c) > 0 for all c ∈ C
(ii) if div(D) = 2 then there must exist c ∈ E\D

such that |C̃E(D ◦ c)| = 3

(iii) if div(D) ≥ 3 then |C̃E(D)| ≥ 3
}

Note that (D,E) ∈ A if and only if (DZ , EL) ∈ A.

A necessary condition for a ”real” categorization is div(E) ≥ 5. For less diverse E

each contained case is interpreted as singleton category and all conditions in A are

27As in the setup of a category based belief or the original belief formation without a categorization
as taken in BGSS, EG, Bleile (2014a).
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naturally satisfied. Thus, we need to discuss the admissibility conditions only for

more diverse databases that induce non trivial singleton categories.

For condition (ii) and (iii) to be satisfied we need |C̃E| ≥ 3, which captures our

motivation to employ only sufficiently ”rich” categorizations. Consequently, those

pairs (D,E) are ruled out such that |C̃E| < 3. Part (iii) captures explicitly the

intuition of ”satisfactorily” many activated E-categories, by enforcing that there

must exist at least three different cases in D that evoke three different E-categories.

For database D such that div(D) = 2 part (ii) requires that both contained dif-

ferent cases need to belong to different categories according to the E-categorization

structure. The underlying idea is that D activates two different E-categories and

thus triggers (makes aware) some categorical thinking and processing. However, if

the database D evokes just one category C̃E
l in the E-categorization, then an agent

might not initiate any categorical thinking and processing at all or is just not aware

of different categories, but might rely on each single case directly. This is exactly

ruled out by condition (ii).28

The admissibility condition is justifiable in general, but our initial motivation

originates in the most interesting situation D = E. The condition (i) is directly

met. A pair (D,D) with div(D) = 2 is not admissible. This matches our desire

that no categorization is induced for databases that has no sufficiently complex cat-

egorization - i.e. not at least three categories- such that a categorization procedure

offers (summarized) information on the category level for acceptable many cate-

gories. For more diverse databases, div(D) ≥ 3, the admissibility just requires that

the D-categorization structure consists of at least three different categories, as we

desire.

4.6.2 Induced prototype based belief

An agent forms a prototype based belief based on her available admissible pair of

information (D,E) ∈ C∗ × C∗ in the following way. Based on a natural catego-

rization structure C̃, a categorization of a database E result in the categorization

C̃E. An agent evaluates the simultaneously available database D by exploiting the

categorized information C̃E contained in the richer database E that is activated by

cases in D.

Thus, a prototype based belief relies on categories in E that are evoked/activated by

28Note that for all D ⊆ E ∈ C∗ with div(D) = 1 (D,E) is admissible, in particular for any
E ∈ C∗ and all c ∈ E (c, E) ∈ A. This requires an exception of the given interpretation,
since it is obvious that only one E-category can be activated. However, this is driven by the
situation D = E = (cT ), which implies a belief only based on information c (and single category
member), which is acceptable in the light of the desired representation in Theorem 4.2.
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the D induced categorization function C̃ : C∗ × C∗ → C∗ (i.e. C̃(D,E) = C̃E(D))

such that (P ◦ C̃) : X ×C∗ ×C∗ → ∆(R), i.e. (P ◦ C̃)(x,D,E) = P (x, C̃(D,E)) =

P (x, C̃E(D)).29

(P ◦ C̃) is a belief induced by the categories in the richest database available (i.e. E)

that are activated by single pieces of information in the database under considera-

tion (i.e. D). The most intuitive situation is where E = D, in which all D-categories

are employed.

Throughout the paper the problem x is fixed, therefore x is often suppressed in

the following, i.e. (P ◦ C̃)(x,D,E) = (P ◦ C̃)(D,E).

4.6.3 Axioms on the level of belief formation

As already mentioned above, our (restrictive) assumptions on the categorization

procedure (see Remark and 4.2 equation (4.1)) replaces the otherwise imposed In-

variance Axiom.

Implied Invariance Axiom

For all admissible pairs (D,E) ∈ A and D ∈ CT and all permutations π on T for

all T, we have

(P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), E)

The Invariance Axiom says that the order of the information in the database is

immaterial for the induced belief. Only their content is important. For a discussion

of the axiom see Section 4.2.

Remark 4.3

Note that in particular (P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), π′(E)) by Remark 4.2.

Thus the order invariance accounts for both databases, which is important for the

proof.

Prototype based Concatenation Axiom:

For all D,E, F ∈ C∗ such that (D,F ) ∈ A, (E,F ) ∈ A and (D ◦ E,F ) ∈ A are

admissible pairs, then there exist λ ∈ (0, 1) such that:

(P ◦ C̃)(D ◦ E,F ) = λ(P ◦D)(D,F ) + (1− λ)(P ◦ C̃)(E,F ).

29I.e. P : X × P (C∗)→ ∆(R) relies only on categories.
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The interpretation of the axiom is similar to the Concatenation Axiom in BGSS

and as in Section 4.5.3. In order to keep the normatively desirable spirit of aver-

aging, we need to ensure that the information employed in the belief formation for

the concatenation D ◦ E is meaningfully related to the single databases D and E.

Intuitively, the categories evoked by (D ◦ E) need to be covered by the categories

evoked by either D or E. This can only hold in general if a common categoriza-

tion structure underlies all involved activation processes, i.e. for a common C̃F .

A determination of a belief as an average of two other beliefs would be hard to

justify if the underlying beliefs rely on different categorizations. If so, there might

be very different categories involved in the different beliefs that would prevent an

easy averaging, since no common evaluation basis exists. Of course, to be able to

activate some categories from this common categorization structure, all observed

cases in D and E need to be categorizable with regard to this common basis. Thus,

the F-categorization ought to cover at least the available information in D ◦ E, i.e.

F ⊇ D ◦ E. Moreover, having this categorization structure in mind, it appears

reasonable to employ it in the belief formation process and not to shift to another

less rich categorization, e.g. like moving to a E-categorization for database E, i.e.

C̃E(E). Thus, the assumed structure ensures that C̃F (D ◦ E) = C̃F (D) ∪ C̃F (E)

and therefore the induced beliefs rely on the same F-categories and are only distinct

in the way which categories their contained cases evoke.

The prefix ”prototype based” Concatenation Axiom or belief will become clear in

the representation in Theorem 6.1, which suggests an interpretation of the axiom in

terms of category related prototypes.

Identity Axiom

Let (D1, E), (D2, E) ∈ A and related categorization structure C̃E = {C̃E
1 , .., C̃

E
L+1}.

For all D1, D2 such that C̃E(D1) = C̃E(D2) = C̃E
l for some l ≤ L + 1, then

(P ◦ C̃)(D1, E) = (P ◦ C̃)(D2, E).

The axiom says that the prototype based beliefs induced by databases (given an

E-categorization structure) coincide if the databases evoke only one identical E-

category. In this situation, the specific content of the information is immaterial for

the induced belief, since only the activated category is relevant.

Collinearity Axiom

For all databases D ∈ C∗, no three distinct vectors of {((P ◦ C̃)(c,D))c∈D} are

collinear.
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4.6 Axiomatization of prototype based belief formation

The interpretation is the same as in Section 4.5 or BGSS.

The only difference is the requirement of distinctiveness, since (P ◦ C̃)(c,D) is iden-

tical for cases in D that are contained in (and activate) the same category. Basically,

no three (prototypical) estimates based on different categories are collinear.

4.6.4 Representation Theorem of prototype based belief

formation

Theorem 4.2

Let (P ◦ C̃) be a function (P ◦ C̃) : C∗ × C∗ → ∆(R), where C̃ : C∗ × C∗ → P (C∗)

is an induced categorization function with underlying E-categorization structures

C̃E = {C̃E
1 , ..., C̃

E
L+1} for all E ∈ C∗. Let the prototype based belief (P ◦ C̃) satisfy

the Collinearity Axiom.

Then the following are equivalent

(i) (P ◦ C̃) satisfies the prototype based Concatenation and Identity Axiom

(ii) For all E ∈ C∗ and any l ≤ L + 1 such that C̃E
l 6= ∅ there exists a unique

P C̃El ∈ ∆(R) and a unique -up to multiplication by a strictly positive number- strictly

positive function s̃ : C∗ × C∗ → R+, such that for all (D,E) ∈ A the following

representation holds:

(P ◦ C̃)(D,E) =

∑L+1
l=1 s̃(D, C̃

E
l )P C̃El∑L+1

l=1 s̃(D, C̃
E
l )

.

Moreover, s̃(D ◦ c, C̃E
l ) > s̃(D, C̃E

l ) for all c ∈ C̃E
l .

Rough sketch of the proof:

The necessity part is straightforward calculation. The sufficiency part follows the

rough structure of the proof of BGSS and Bleile (2014b) (or Chapter 3), but differs

in the crucial arguments. Again, the first step is to reason, why it is viable to trans-

form (P ◦ C̃)(D,E) for (D,E) ∈ A into (P ◦ f̃)(fD, fE) for appropriate adjusted

definitions of admissible pairs (fD, fE).

The essential part of the proof is to derive the similarity weights (si)i≤m. This will

be shown inductively over div(fD) ≤ m.

Step 1: Base case for the induction, take any triplet {i, j, k} ⊂ {1, ..,m} such that

fD ∈ conv({(qv)v∈{i,j,k}}), i.e. div(fD) ≤ 3, and (fD, fE) ∈ A.

(i) For (fD, fE) ∈ A such that 2 ≤ div(fD) ≤ 3 and 3 ≤ div(fE) ≤ 4 the categoriza-

tion procedure is vanished and coincide with the BGSS framework.
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4 Belief Formation Based on Categorization

(ii) For (fD, fE) ∈ A such that div(fD) ≤ 3 and div(fE) ≥ 4.

(a) For fD ∈ (qi, qj) and (fD, fE) ∈ A, there exist some k-th unit vector qk

such that admissibility condition (ii) holds. Then take the simplex spanned by

{qi, qj, qk} and adopt Step 1 of BGSS, Bleile (2014a,b), i.e. find si, sj, sk, define

(P ◦ f̃)s(fD, fE) and run the recursive procedure to cover all simplicial points on

this simplex for the fixed fE. This yields that for (P ◦ f̃)s(fD, fE) = (P ◦ f̃)(fD, fE)

for all fD ∈ conv({qi, qj, qk}) and fixed fE.

(b) Since for an admissible pair (fD, fE) ∈ A from (a) there might exist many qk

such that the admissibility condition (ii) holds. Repeat (a) for all such k.

(c) Since for fD ∈ (qi, qj) in (a) there exist many fE such that (fD, fE) is admissible,

repeat (a) and (b) for all these fE.

(d) Repeat (a), (b) and (c) for any pair (qi, qj) with distinct i, j ≤ m.

Thus, we have that (P ◦f̃)s(fD, fE) = (P ◦f̃)(fD, fE) for all admissible pairs (fD, fE)

such that div(fD) ≤ 3.

Step 2: For all (fD, fE) ∈ A such that div(fD) > 3

By the properties of the categorization, we know that at least two fE-categories

contain a least two cases and another category contains at least one member, e.g.

f̃ fE1 ⊇ {q1, qi}, f̃ fE2 ⊇ {q2, qj}, etc.

Let fD = αqj + (1 − α)f(j) (for some α ∈ (0, 1)) where f(j) denotes the point in

conv{(ql)l∈{1,...,m}\j} that is on the line through fD and qj, as in BGSS.

Then the prototype based Concatenation Axiom and the induction assumption de-

livers

(P ◦ f̃)(fD, fE), (P ◦ f̃)s(fD, fE) ∈
⋂
t=1,2

((P ◦ f̃)(qt, fE), (P ◦ f̃)(f(t), fE)).

Applying the Collinearity Axiom yields the uniqueness of the intersection and the

desired result.

Interpretation of Theorem

The theorem is described for general pairs of admissible databases (D,E) ∈ A.

However, the most interesting and natural situation is given by identical information

(D,D), which motivated our examination of a belief formation based on categorized

information. For (D,D) ∈ A, an agent only employs the categorized information in

database D and is not involved in the process of case based activation of categories

as necessary for pairs (D,E) ∈ A. For (D,D), the admissibility condition for a
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4.6 Axiomatization of prototype based belief formation

”real” categorization of the information D requires that the database D is catego-

rized at least into three different categories (which is in principle only possible for

databases with at least five different cases). Thus, the most interesting and mean-

ingful situation is for (large) databases that allow sufficiently rich categorization

structures.

A prototype based belief formation does not focus on employing the information

contained in the most appropriate evoked (target) categories for a problem, but

it takes into account the entire categorized information in a database. The belief

uses the summarized category based information across all categories. This tries to

compensate for potential misassignments if the actual problem does not allow for

straightforward most appropriate ”target” category(ies). The process is not based

on a detailed piece by piece evaluation of all cases and their induced estimates sepa-

rately, but relies on the summarized coarse information on the category level. This

is in line with the procedure in Anderson (1991). In particular, an agent only needs

to compare and balance the categories (as an entity) at large and use their category

specific predictions. Thus not all single pieces of information need to be evaluated,

which is a severe (cognitive) simplification and captures the underlying aspect and

motivation of a categorization (heuristic). The category based estimation P C̃Dl is

the main ingredient and eponymous for our belief, since it can be interpreted as

representative or prototypical estimate associated with the category C̃D
l . Each cat-

egory has a unique representative prototypical estimate, which does not distinguish

between between cases in the same category, i.e. for all c ∈ C̃E
l (P ◦C̃)(c, E) = P C̃El .

Implicitly, this means that a category is understood in terms of a prototypical el-

ement that captures, compresses, aggregates, summaries and abstracts the essence

and central tendency of a category (for prototype theory see e.g. Posner and Keele

(1968), Reed (1972)). A specific representation of such an aggregated prototype

based estimate is not implied, but a very natural prototype is simply the mean

across previously experienced objects in the category. But also other statistics can

serve as prototypes.

The weights (s̃(C̃D
l , D))l that are assigned to each category specific estimate P C̃Dl

reflect the relevance of category l in the database D for the current problem. The

weights do not only measure the relevance of the categories C̃D
l , but also incor-

porate how often (in similarity weighted terms) this category is activated by the

specific database D.30 Thus, the specific content and structure (frequencies) of the

(activating) databases are taken care of, i.e. two databases that are categorized

in identical categories can induced different beliefs if they contain differently many

30Remember that a category does not contain repetitions of cases, i.e. C̃D
l = C̃D◦c

l for any c ∈ C̃D
l .
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4 Belief Formation Based on Categorization

cases of specific types, since then the relative relevance of the same categories can

be altered.

In sum, a prototype based belief formation facilitates fast and cognitive less de-

manding predictions compared to ”smoother” forms of similarity based reasoning as

for instance provided by kernel-based predictions or BGSS, EG and Bleile (2014a).

These approaches need to incorporate all single pieces of information. For the proto-

type based approach, an agent simply evaluates a problem in terms of prototypical

thinking and reasoning, by averaging the categories’ prototypical estimates, which

can be derived, stored and retrieved solely on the category level, independent of the

problem. A kernel based or BGSS belief requires a higher and more complex cogni-

tive load and task by the need to store a large amount of information and generate

many more (conditional) estimations that complicates the belief formation.

4.7 Conclusion

Chapter 4 examines how beliefs are formed by agents that use a categorization proce-

dure in order to process, store and retrieve the available information. The cognitive

science literature emphasizes the role of categorical processing, thinking and reason-

ing. Based on this insight we axiomatize two stage belief formation procedures in

which agents employ categorized information and do not incorporate the available

information piece by piece. We assume that an agent is equipped (or has acquired

(evolutionary)) subconsciously with some intuition or heuristic how to (optimally)

categorize the entire set of possible pieces of information. Based on such a naturally

given categorization heuristic, we introduce a procedure that consistently categorizes

databases. We consider two well known and observed procedures of categorizations

differing in how categories are activated for a new problem and how they are repre-

sented. One procedure relies only on the information in specific ”target” categories

that are the most appropriate categories for the current problem (our axiomatized

category based belief formation). Another procedure relies on all categories of the

database. However, they are not represented by their contained single pieces of in-

formation, but rest on so called prototypical elements that represent a summary or

central tendency of the category (our axiomatized prototype based belief formation).

These two versions of belief formation based on categorizations are represented as

weighted sums of estimates induced by past respectively categorized and represented

information. The weights, that are assigned to the different estimates, measure the

similarity of the current problem with the single piece of information that induced

the estimate or respectively its relevance with the particular category (or its proto-
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type).

For both procedures, we require a minimum amount of complexity/diversity of the

underlying information such that an agent really engages into categorical processing

and thinking. Otherwise an agent sticks just to piece by piece evaluation of the

information.

The axioms on the belief level are closely related to the axioms introduced in BGSS

and Bleile (2014b) (or Chapter 3) and modified in a way to capture the categoriza-

tion of information and their consequences for induced beliefs.

Compared to the beliefs axiomatized in BGSS, EG and Bleile (2014a), both belief

formations based on categorized information reduce the cognitive effort extensively.

For the category based belief an agent only needs to consider, evaluate and esti-

mate each single piece of information within the target categories, i.e. only some

subset of the available information. In the prototype based belief, an agent even

thinks entirely categorical or in prototypes and thus treats information always on

an aggregate level.

4.8 Proof of Theorem 4.1 (Category based belief

formation)

It is straightforward to show that the representation satisfy the axioms.

The difficult part is the sufficiency direction, i.e. axioms imply representation. As

before, the essential step in the proof will be to identify database with their fre-

quency vectors, which allows to exploit the more tractable structure of the space of

frequencies on C and to adopt the approach taken in BGSS (and use the mechanism

of Bleile (2014a) (or Chapter 2)). However, since in addition a categorization step

is involved, the crucial steps in the inductive proof require different arguments.

The notation and definitions on the space of frequency vectors are identical as in

Section 3.9.2.

4.8.1 Translating the database framework into frequencies

Why is it viable?

Remember that we fixed a categorization structure C̃ and a problem x ∈ X.

In the following, we show that a consistent transformation from databases to fre-

quencies is viable. Roughly, we want to identify a problem evoked categorization
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4 Belief Formation Based on Categorization

C̃(D) of a database D by its frequency vector in ∆(C) such that C̃(fD) ∈ ∆(C)

corresponds to C̃(D) ∈ C∗ within the category based belief formation, i.e. such that

(P ◦ C̃)(D) corresponds to (P ◦ C̃)(fD). For this purpose, we exploit the structure

of the categorization procedure and the axioms on the belief formation stage.

We need to show that the two stage procedure is independent of the order of the

involved database and its length. However, as already discussed in Section 4.5.1,

for the specific categorization procedure only the content matters and the order of

cases is irrelevant, i.e. C̃(D) = C̃(π(D)) for any reordering π(D) of the database

D. Furthermore, the length of the database is immaterial, since the category based

Concatenation Axiom implies that (P ◦ C̃)(DZ) =
∑

i≤Z λi(P ◦ C̃)(D) = (P ◦ C̃)(D)

for all Z ∈ N and appropriate λ ∈ ∆Z . Consequently, for a category based belief

we can identify any database D ∈ C∗ by its frequency vector fD, i.e. the category

based belief translates from (P ◦ C̃) : C∗ → ∆(R) to (P ◦ C̃) : ∆(C) → ∆(R) by

(P ◦ C̃)(fD) := (P ◦ C̃)(D).

We need to reformulate the categorization, axioms and results from databases to

frequency vectors, given a fixed problem x ∈ X.

Categorization in frequency terms

Definition 4.9

(i) Given a natural categorization C̃ = (C̃1, .., C̃L), the list of x-evoked categories on

C, i.e. C̃x = (C̃l)l∈Mx ⊆ C̃ ⊆ C∗ for a corresponding Mx ⊆ {1, .., L} translates to a

x-evoked categorized frequency vector C̃x ∈ ∆(C):

C̃x =
( 1

|C̃x|
∑
l∈Mx

1{C̃l}(c
1), ...,

1

|C̃x|
∑
l∈Mx

1{C̃l}(c
m)
)
∈ ∆(C),

which describes how often the ordered cases in C appear in the list of evoked cate-

gories.

(ii) A x-evoked categorization function for a database D ∈ C∗, i.e. C̃(x,D) ∈ C∗
translates to a x-evoked categorization function for a frequency vector f = fD, i.e.

C̃ : X×∆(C)→ ∆(C)∪0m such that C̃(x, f) = (C̃1(x, f), ..., C̃m(x, f)) ∈ ∆(C)∪0m

is defined for j ≤ m by

C̃j(x, f) = fj1{div(f)≤3}(f) +
fj1{C̃x}(q

j)∑
i≤m fi1{C̃x}(q

i)
1{div(f)>3}(f).

C̃(x, f) is the frequency vector of a categorized database D (represented by frequency
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4.8 Proof of Theorem 4.1 (Category based belief formation)

vector f) evoked by a problem x, i.e. describes the resulting frequencies of the cases

in D that are also contained in the x-evoked categories.

Note that C̃(fD) represents C̃(E) for all E = π(DZ) and any Z ∈ N.

As before, we will suppress a fixed x, i.e. C̃(x, f) = C̃(f).

Axioms in frequency terms

Category based Concatenation Axiom

For all Ti ∈ N (i = 1, 2) and any fi ∈ ∆Ti , there exists λ ∈ [0, 1], such that for

f = T1

T1+T2
f1 + T2

T1+T2
f2

(P ◦ C̃)(f) = λ(P ◦ C̃)(f1) + (1− λ)(P ◦ C̃)(f2),

where λ = 0 if and only if C̃(f1) = 0m.

Collinearity Axiom

No three of {((P ◦ C̃)(qj))j≤m} such that C̃(qj) 6= 0m are collinear.

4.8.2 Theorem 4.1, sufficiency part in frequency terms

Proposition 4.1

Let there be a function (P ◦ C̃) : ∆(C) → ∆(R), where P : ∆(C) → ∆(R) and

C̃ : ∆(C)→ ∆(C) a categorization function on the set of frequency vectors.

If (P ◦ C̃) satisfies the category based Concatenation and Collinearity Axiom, then

there exist unique probability vectors (P j)j≤m ∈ ∆(R), and unique -up to multiplica-

tion by a strictly positive number- strictly positive numbers (sj)j≤m ∈ R, such that

for all q ∈ ∆(C) such that C̃(q) 6= 0m

(P ◦ C̃)(q) =

∑
j≤m sjC̃j(q)P

j∑
j≤m sjC̃j(q)

, (4.2)

where C̃j(q) denotes the frequency of case cj in C̃(q).

4.8.3 Proof of Theorem 4.1, sufficiency part in frequency terms

Step 0:

Obviously, by the definition of the categorization on frequency vectors we need to

choose P j = (P ◦ C̃)(qj) for j ≤ m, since C̃j(q) ∈ {qj, 0m} and for some q (e.g. for

q s.th. div(q) ≤ 3)) C̃j(q) = qj.
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The aim is to find numbers (sj)j≤m such that representation (4.2) holds for all

q ∈ ∆(C).

Step 1: |C| = m = 3

By the definition of the categorization function we have that C̃(q) = q for all

q ∈ ∆(C), since div(q) ≤ 3. In such a situation a categorization of information does

not take place and thus the framework coincides with the one in BGSS. Basically

(P ◦ C̃)(q) coincides with P (q) in the BGSS framework for div(q) ≤ 3 and there-

fore Step 1 of the proof in BGSS can be directly adopted for these frequency vectors.

Step 2: Now we consider |C| = m > 3.

Step 2.1: Defining the similarity weights

Using the considerations from Step 1 for all triplets {i, j, k} and C = {ci, cj, ck}
we can derive the similarity weights (s

{i,j,k}
v )v∈{i,j,k} and we know that for all q ∈

∆({qi, qj, qk}), the following representation holds

(P {i,j,k} ◦ C̃)(q) =

∑
v∈{i,j,k} s

{i,j,k}
v C̃v(q)P

v∑
v∈{i,j,k} s

{i,j,k}
v C̃v(q)

,

where for all v ∈ {i, j, k} P v are independent of the triplet {i, j, k} (by Step 0) and

(s
{i,j,k}
v )v∈{i,j,k} are unique up to multiplication by a positive number.

With a similar reasoning as in the proof in BGSS Step 2.1 (or Section 2.9.7) and

using again that C̃(q) = q for q such that div(q) ≤ 3, we can show that the similarity

values s
{i,j,k}
v are independent of the choice of i, j and k for all v.

Thus, given these (sv)v≤m we can define for all q ∈ ∆

(P ◦ C̃)s(q) :=

∑
j≤m sjC̃j(q)P

j∑
j≤m sjC̃j(q)

.

Obviously, (P ◦ C̃)s satisfies the category based Concatenation Axiom.

Step 2.2: Completion to all q ∈ ∆(C), i.e. show that for all q ∈ ∆(C)

(P ◦ C̃)s(q) = (P ◦ C̃)(q)
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We proof this by induction over k for q ∈ ∆(C) such that div(q) = k.

By Step 1 we know that the claim (P ◦ C̃)s(q) = (P ◦ C̃)(q) is true for all q ∈ ∆(C)

such that div(q) ≤ 3. This serves as the base case for the induction. Now we assume

that (P ◦ C̃)s(q) = (P ◦ C̃)(q) for q ∈ ∆(C) such that div(q) = k − 1 and we will

show it for q ∈ ∆(C) such that div(q) = k.

A similar construction as in BGSS, but with different reasoning yields the result.

Let q =
∑

l∈K αlq
l with αl > 0 and K ⊆ {1, ...,m} such that |K| = k.

Define for all l ∈ K the frequency vector q(l) to be the vector in conv({(qj)j∈K\l})
such that q lies on the line generated by (q(l), ql). By the category based Concate-

nation Axiom there exists some λ ∈ [0, 1] such that for all j ∈ K

(P ◦ C̃)(q) = λ(P ◦ C̃)(qj) + (1− λ)(P ◦ C̃)(q(j)).

We distinguish between two cases:

(i) If there exists a j ∈ K such that qj 6∈ C̃(q), then the category based Concate-

nation Axiom implies for q = αqj + (1 − α)q(j) for an appropriate α ∈ (0, 1) that

(P ◦C̃)(q) = (P ◦C̃)(q(j)), since (P ◦C̃)(qj) receives zero-weight. The same is true for

(P ◦ C̃)s, since it satisfies also the category based Concatenation Axiom. However,

since div(q(j)) = k−1, the induction assumption yields (P◦C̃)s(q(j)) = (P◦C̃)(q(j))

and we get the desired result:

(P ◦ C̃)(q) = (P ◦ C̃)(q(j)) = (P ◦ C̃)s(q(j)) = (P ◦ C̃)s(q).

(ii) If for all j ∈ K qj ∈ C̃(q), then there are k > 3 many qj such that C̃(qj) 6= 0m.

Again, the category based Concatenation Axiom applied to the k many decomposi-

tions of q = αjqj + (1− αj)q(j) for appropriate αj ∈ (0, 1) for all j ∈ K yields that

(P ◦C̃)(q) lies in the interior of the intervals spanned by ((P ◦C̃)(qj), (P ◦C̃)(q(j))) for

all j ∈ K. Since for no three different j ∈ K these intervals can lie on the same line

by the Collinearity Axiom (since no three of {((P ◦ C̃)(qj) = P j)j≤C} are collinear),

there must exist some intersections of the lines. However, since (P ◦ C̃)(q) lies in

all these intervals, the intersection must be unique and exactly equal to (P ◦ C̃)(q).

However, also (P ◦ C̃)s(q) lies on all these intervals, since by induction assumption

(P ◦ C̃)(f) = (P ◦ C̃)s(f) for all f ∈ ∆(C) such that div(f) ≤ k − 1 (which qj and

q(j) satisfy). Thus the unique intersection can only be (P ◦ C̃)s(q), which shows the

equivalence of (P ◦ C̃)(q) = (P ◦ C̃)s(q). This completes the proof for |C| > 3 and

eventually the Proposition 4.1 and Theorem 4.1. �
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4.9 Proof of Theorem 4.2 (Prototype based belief

formation)

It is straightforward to show that the representation satisfies the axioms.

To show that the axioms imply the representation requires some work. As before,

we identify databases with their frequency vectors in order to adopt the approach

taken in BGSS (and use the mechanism of Bleile (2014a) (or Chapter 2)). However,

the additional categorization procedure alters the reasoning in the inductive proof

significantly.

The notation and definitions necessary for the framework of frequencies are identical

as in Section 3.9.2.

4.9.1 Translating the database framework into frequencies

Why is it viable?

We want to identify the prototype based belief induced by categorized databases,

i.e. (P ◦ C̃) : C∗×C∗ → ∆(R) by a belief (P ◦ f̃) : ∆(C)×∆(C)→ ∆(R) based on

frequency vectors and their induced categorization structures f̃ ∈ P (∆(C)), i.e. C̃

is represented by f̃ and (P ◦ C̃)(D,E) by (P ◦ f̃)(fD, fE).

Let (D,E) ∈ A.

(1) In a first step we exploit Remark 4.3, i.e. (P ◦ C̃)(D,E) = (P ◦ C̃)(π(D), π′(E)),

where π, π′ are permutations that reorder the cases in D and respectively in E ar-

bitrarily. Basically it says that orders of databases are totally immaterial for the

induced prototype based belief, i.e. only frequency vectors matter.

(2) a) The definition of a prototype based belief and database related categorization

structures yields

(P ◦ C̃)(D,E) = P (C̃E(D)) = P (C̃EZ (D)) = (P ◦ C̃)(D,EZ) for all Z ∈ N

b) In addition the prototype based Concatenation Axiom implies for DZ = D◦...◦D
for all Z ∈ N.

(P ◦ C̃)(DZ , E) = (P ◦ C̃)(D,E).

Combining (2)a) and (2)b) yields for all (D,E) ∈ A and V, Z ∈ N

(P ◦ C̃)(DV , EZ) = (P ◦ C̃)(D,E) (4.3)
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and thus the lengths of the involved databases are immaterial as well.

Combining (1) and equation (4.3) shows that we can identify any D,E ∈ C∗ by

their frequency vectors fD, fE ∈ ∆(C) for a prototype based belief formation.

Consequently, we can rewrite our framework into a frequency framework.

Categorization structures in frequency terms

Definition 4.10

A categorization structure f̃ = {f̃1, ..., f̃L} on ∆(C) satisfies the following properties

(i) (f̃l)i := 1
|C̃l|

1C̃l(ci) for all l ≤ L and i ≤ m

(ii) (f̃k)i > 0 if and only if (f̃j)i = 0 for all i ≤ m and any distinct j, k ≤ L (i.e.

disjointness)

(iii)
∑

l≤L(f̃l)i > 0 for all i ≤ m (i.e. all cases are categorized)

(iv) for all l ≤ L (f̃l)i ≤ 1/2 and f̃L(i) ≤ 1 for all i ≤ m (i.e. specific content

structure)

Define for all l ≤ L+ 1 and any q ∈ ∆(C) A(l, q) := {j ≤ m|(f̃l)j > 0 and qj > 0},
i.e. the indices j such that case qj contained in database q belongs to category f̃l.

Definition 4.11

Let f̃ = {f̃1, ..., f̃L} be a categorization structure on ∆(C). A categorization struc-

ture f̃ q = {f̃ q1 , ..., f̃ qL+1} on q is defined by

(i) if div(q) ≤ 4, i.e. q ∈ conv({qh, q, qj, qk}), then f̃ q = {f̃1 = qh, f̃2 = qi, f̃3 =

qj, f̃4 = qk, f̃5 = 0m, ..., f̃L+1 = 0m}

(ii) if div(q) > 4, then f̃ q is given for all l ≤ L+ 1 by

f̃ ql : =


(1A(l,q)(1)

|A(l, q)| , ...,
1A(l,q)(m)

|A(l, q)|
)

if |A(l, q)| ≥ 2

∅ = 0m if |A(l, q)| ≤ 1

f̃ qL+1 =

∑
l≤L 1{l≤L||A(l,q)|=1}(l)qA(l,q)∑

l≤L 1{l≤L||A(l,q)|=1}(l)

By the equation (4.1) it is also possible to define C̃E(D) in frequency term.

Definition 4.12

For any q, e ∈ ∆(C) such that qi ≥ 0 only if ei > 0:

f̃ e(q) = {f̃ e1 1{q|∃i≤m qi>0 and f̃e1 (i)>0}(q), ..., f̃
e
L+11{q|∃i≤m qi>0 and f̃eL+1(i)>0}(q)} ∈ P (∆(C))

is the result of an q-induced e-categorization function f̃ : ∆(C)×∆(C)→ P (∆(C)).
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Admissibility condition in frequency terms

Definition 4.13

Define the set of admissible pairs (q, e) ∈ ∆(C)×∆(C) by the following

A :=
{

(q, e)| (i) for all i ≤ m qi > 0 only if ei > 0

(ii) if div(q) = 2 then ∃i ≤ m qi = 0 and ei > 0

s. th. for α ∈ (0, 1) |f̃ e(αq + (1− α)qi)| = 3

(iii) if div(q) ≥ 3 then |f̃ e(q)| ≥ 3
}

Axioms in frequency terms

Prototype based Concatenation Axiom

For all (αq + (1− α)q′, e) ∈ A for some α ∈ (0, 1), there exists λ ∈ (0, 1)

(P ◦ f̃)(αq + (1− α)q′, e) = λ(P ◦ f̃)(q, e) + (1− λ)(P ◦ f̃)(q′, e).

Identity Axiom

For all (q, e), (q′, e) ∈ A such that there exists a unique e-category f̃ el (q) 6= 0m and

f̃ el (q′) 6= 0m and f̃ ej (q) = 0m = f̃ ej (q) for all j 6= l ≤ L+ 1 it holds

(P ◦ f̃)(q1, e) = (P ◦ f̃)(q2, e).

Collinearity Axiom

No three distinct vectors of {((P ◦ f̃)(qj, e))j≤m} are collinear for any (qj, e) ∈ A.

4.9.2 Theorem 4.2, sufficiency part in frequency terms

Proposition 4.2

Let there be given a function (P◦f̃) : ∆(C)×∆(C)→ ∆(R), where f̃ a categorization

function f̃ : ∆(C) ×∆(C) → P (∆(C)) with related categorization structure f̃ e for

all e ∈ ∆(C). If the prototype based belief (P ◦ f̃) satisfies the prototype based

Concatenation, Identity and Collinearity Axiom.

Then for all e ∈ ∆(C) and each l ≤ L + 1 such that f̃ el 6= 0m there exist P f̃el ∈
∆(R) and a strictly positive -and unique up to multiplication with a strictly positive

number- values s = (sj)j≤m such that for all admissible (q, e) ∈ A

(P ◦ f̃)(q, e) =

∑
l≤L+1 s̃(f̃

e
l , q)P

f̃el∑
l≤L+1 s̃(f̃

e
l , q)

, (4.4)
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4.9 Proof of Theorem 4.2 (Prototype based belief formation)

where s̃(f̃ el , q) :=
∑
{i≤m|qi⊆q ∧ qi⊆f̃el }

qisi.

4.9.3 Proof of Theorem 4.2, sufficiency part in frequency terms

Step 0:

We get directly that for all l ≤ L + 1 and all e ⊆ ∆(C) P f̃el must be chosen by

(P ◦ f̃)(qj, e) for an appropriate j ≤ m such that qj ⊆ f̃ el . By the Identity Axiom

this is unique.

The aim is to find the (sj)j≤m such that the representation (4.4) holds for all ad-

missible pairs (q, e) ∈ A. We proceed in two steps, where the first step considers

(q, e) ∈ A such that div(q) ≤ 3 and in a second step we inductively generalize it to

q with larger diversity.

Step 1: (q, e) ∈ A such that div(q) ≤ 3, i.e. take any triplet {i, j, k} ⊂ {1, ..,m}
such that q ∈ conv({(qv)v∈{i,j,k}}).

Step 1.1: (q, e) ∈ A such that div(q) = 1 is covered in Step 0.

Step 1.2: (q, e) ∈ A such that 2 ≤ div(q) ≤ 3 and 3 ≤ div(e) ≤ 4

Note that (q, e) with div(e) = 2 are not admissible.

By the definition of an e-categorization structure the categorization step vanishes for

all such pairs (q,e). This means that the prototype based framework (and axioms)

directly amounts to the BGSS framework, i.e. (P ◦ f̃)(q, e) coincides with the belief

P (q) in BGSS. Applying their proof yields the desired representation for all (q, e)

with the above properties.

Step 1.3: (q, e) ∈ A such that div(q) ≤ 3 and div(e) > 4

Step 1.3.1: Determine the similarity weights (sv)v∈{i,j,k}

Define for all triplets {i, j, k} ⊂ {1, ..,m} q∗{i,j,k} := 1
3
(qi + qj + qk)

Obvious div(q∗{i,j,k}) = 3 and to fulfill the admissability take e such that |f̃ e(q∗{j,k,l})| =
3 and hence each qv for v ∈ {i, j, k} needs to be contained in a different category of

f̃ e.

We assume for convenience that qv ∈ f̃ ev (it simplifies the notational effort

extensively) for v ∈ {i, j, k} which is possible after renaming the categories appro-
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4 Belief Formation Based on Categorization

priately.

Observe that, since (q∗{i,j,k}, e) is admissible, also (q, e) ∈ A for any q ∈ conv({qi, qj, qk})
and q ⊆ e.

Now, we use q∗{i,j,k} to determine the values (sv)v∈{i,j,k} given in the representa-

tion of the theorem. By the prototype based Concatenation Axiom there exist

λ = (λv)v∈{i,j,k} ∈ int(∆3) such that

(P ◦ f̃)(q∗{i,j,k}, e) =
∑

v∈{i,j,k}
λvP

f̃ev ,

where we have used that (P ◦ f̃)(qv, e) = P f̃ev , as shown in Step 0.

The representation of the theorem (plugging in the definition of s̃) delivers

(P ◦ f̃)(q∗{i,j,k}, e) =

∑
v∈{i,j,k} sv1/3P

f̃ev∑
v∈{i,j,k} sv1/3

Equating these two equations and using that (P f̃ev )v∈{i,j,k} are not collinear yields

a solution for (sv)v=i,j,k, (i.e. sv = λv∑
v∈{i,j,k} λv

). These sv might depend on the

specific triplet used in q∗{i,j,k}, whereas obviously P f̃ev = (P ◦ f̃)(qv, e) is independent

of {i, j, k}, since only depending on e and qv. However, similar as in Step 2.1 of the

previous proof (or as in BGSS) we can show that the similarity values can be chosen

independently of the particular triplet.

Thus, given these s = (s1, ..., sm) we define for any triplet {i, j, k} ⊂ {1, ...,m} and

q ∈ conv({qi, qj, qk}) and e such that (q, e) ∈ A the following prototype based belief

(P ◦ f̃)s(q, e) :=

∑
v∈{i,j,k} svqvP

f̃ev∑
v∈{i,j,k} svqv

. (4.5)

Recall that we assumed for convenience that qv ∈ f̃ ev , which allows this easy repre-

sentation.

Furthermore, observe that Ps satisfies the prototype based Concatenation Axiom.

Step 1.3.2: Completion to all (q, e) ∈ A such that div(q) ≤ 3

Define E := {(q, e) ∈ A | (P ◦ f̃)s(q, e) = (P ◦ f̃)(q, e)}. In the following we want to

derive that for all q ∈ conv({qi, qj, qk}) and all e such that (q, e) ∈ A also (q, e) ∈ E.

As in BGSS, the idea is to show that for all simplicial points g of any simplicial

partition (see Section 2.9.6 for a definition) such that (g, e) ∈ A as well (g, e) ∈ E
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4.9 Proof of Theorem 4.2 (Prototype based belief formation)

holds. We apply the mechanism as in Bleile (2014a,b) to cover all simplicial points

recursively. Based on this, it is possible to cover each q ∈ conv({qi, qj, qk}) by se-

quences of (appropriate) simplicial points.

In order to illustrate the intuition, we will describe only the first step, i.e. the

simplicial points of the first simplicial partition. The further steps are analogously

modified versions (to the prototype based setup) of arguments used in Bleile (2014b).

Remark 4.4

For all e ∈ ∆(C) such that qi ⊂ e, the pair (qi, e) is admissible. However, for q

such that div(q) ∈ {2, 3} this does not hold true in general. Nevertheless the sets of

frequency vectors e ∈ ∆(C) that makes (q, e) admissible for div(q) = 3 coincides with

the set of frequency vectors that ”make” (q′, e) admissible for q′ ⊂ q and div(q′) = 2.

This follows directly from the definition of the admissibility condition (ii). This

guarantees that there exists a common set of vectors e that make any t-th (t ≥ 1)

simplicial point admissible, when it is paired with such an e. This is important for

our recursive procedure of combining all (differently diverse) simplicial points (as

well become clear below).

Consider q such that 2 ≤ div(q) ≤ 3

Step A:

Consider any two distinct qi, qj (i, j ≤ m), w.l.o.g let i = 1, j = 2. Define q1
1 :=

1
2
q1 + 1

2
q2 and obviously div(q1

1) = 2. For all e such that (q, e) ∈ A, there exist some

qk (which might be different for different e) such that for α ∈ (0, 1) |f̃ e(αq1
1 + (1 −

α)qk)| = 3. q1
1 is a simplicial point of the first simplicial partition of the triangle

spanned by conv({q1, q2, qk}).
The prototype based Concatenation Axiom delivers the existence of β, γ ∈ (0, 1)

such that

(P ◦ f̃)(q∗{1,2,k}, e) = β(P ◦ f̃)(q1
1, e) + (1− β)(P ◦ f̃)(qk, e)

(P ◦ f̃)(q1
1, e) = γ(P ◦ f̃)(q1, e) + (1− γ)(P ◦ f̃)(q2, e)

Hence we get (using the notation that (a,b) indicates the line running through a

and b) that (P ◦ f̃)(q1
1, e) is contained in

((P ◦ f̃)(q1, e), (P ◦ f̃)(q2, e)) ∩ ((P ◦ f̃)(qk, e), (P ◦ f̃)(q∗{1,2,k}, e)). (4.6)

The same holds true for (P ◦ f̃)s, since it also satisfies the prototype based Concate-

nation Axiom. Moreover, by Step 0 we know already that for all (qj, e) ∈ A, also

(qj, e) ∈ E and that for any triplet {i, j, k} and all (q∗{i,j,k}, e) ∈ A also (q∗{i,j,k}, e) ∈ E.
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4 Belief Formation Based on Categorization

Thus, it only remains to check, whether the induced prototype based beliefs of

(q1, e), (q2, e), (qk, e) and q∗{1,2,k} are not collinear. Then, the two lines involved in

(4.6) have an unique intersection. This implies that (P ◦ f̃)(q1
1, e) and (P ◦ f̃)s(q

1
1, e)

must coincide, since both lie on both lines, i.e. (q1
1, e) ∈ E. However, the non-

collinearity can be easily seen, since (qv, e) for v = 1, 2, k induce three different

prototype based beliefs P f̃ev (since |f̃ e(αq1
1 + (1−α)qk)| = 3 for any α ∈ (0, 1)) that

are not collinear by the Collinearity Axiom.

Analogously, we can analyze all simplicial points of the first simplicial partition of

conv({q1, q2, qk}), i.e. for q2
1 = 1

2
(q1 +qk) and q3

1 = 1
2
(q2 +qk). Following the (slightly

modified) reasoning/method as in Sections 2.9.6 or 3.9.3 (or Bleile (2014a,b) Step 1),

we can show that for the chosen e, all simplicial points of any t-th simplicial partition

are in E. Finally, one can find a sequence of simplicial points that converges to any

q ∈ ∆({q1, q2, qk}), where their induced prototype based belief converge. For the

details see the proofs of BGSS or the above mentioned sections. Thus, for a given e

such that (q, e) ∈ E (which induces qk as above) we have for all q ∈ conv({q1, q2, qk})
as well (q, e) ∈ A.

Step B:

Observe that for each admissible pair (q, e) ∈ A such that div(q) = 2 the frequency

vector e induces a set of frequency vectors ead := {qk | ∃k ≤ m s. th. |f̃ e(αq1
1 + (1−

α)qk| = 3}.
Hence keeping q1, q2 fixed, the same procedure as in Step A can be applied to the

triangle conv({q1, q2, qk}) for all k ≤ m such that qk ∈ ead for this specific e.

Step C:

Now, apply Step A and B to all e such that (q, e) ∈ A for div(q) ∈ {2, 3}.

Step D:

Finally, applying the procedure to all possible pairs qi, qj, instead of i = 1, j = 2,

we get that for all admissible (q, e) ∈ A such that div(q) ≤ 3 the claim (q, e) ∈ E,

i.e. A = E for all q such div(q) ≤ 3, which concludes the proof of Step 1.

Now, we consider the situation for (q, e) ∈ A such that div(q) > 3. Therefore

we need an extended definition of (P ◦ f̃)s for (q, e) ∈ ∆(C)×∆(C):

(P ◦ f̃)s(q, e) :=

∑
i≤m siqi(

∑
l≤L+1 1f̃el

(qi)P f̃el )∑
i≤m siqi

.
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The indicator function appears in comparison to definition (4.5) since at this point,

it is not anymore clear to which category f̃ el a specific unit vector qi belongs. Basi-

cally, (P ◦ f̃)s is a reformulation of the representation (4.4).

Step 2: Show that (q, e) ∈ E for all (q, e) ∈ A such that div(q) > 3

We prove inductively over k that for all q such that div(q) = k with 3 ≤ k ≤ m

and all admissible pairs (q, e) ∈ A it holds, that (P ◦ f̃)s(q, e) = (P ◦ f̃)(q, e), i.e.

(q, e) ∈ E.
We take the situation div(q) = k = 3, which was shown in Step 1, as the basis of the

induction and assume that the claim is true for all (q, e) ∈ A such that div(q) = k−1

for k > 3.

Take any (q, e) ∈ A such that div(q) = k, w.l.o.g. q ∈ int(conv({q1, .., qk})). By

admissibility |f̃ e(q)| ≥ 3 holds, i.e. there are at least two categories f̃ el for some

l ≤ L + 1 containing at least two different cases qj for some j ≤ m and another

category containing at least one different case. W.l.o.g. let these categories be given

in the following way (for distinct i, j, k 6= 1, 2)

f̃ e1 (q) ⊇ {q1, qi}
f̃ e2 (q) ⊇ {q2, qj}

f̃ eL+1(q) ⊇ {qk}
f̃ el (q) ⊇ ∅ for all l 6= 1, 2 ≤ L

Now, let q be decomposed by q = αtq
t + (1 − αt)q(t), where for t = 1, 2 q(t) is

the point in conv({qj|j ≤ k, j 6= t}) that is on the line connecting qt and q and

αt ∈ (0, 1) accordingly. By the prototype based Concatenation Axiom we know that

there exist λt ∈ (0, 1) such that

(P ◦ f̃)(q, e) = λt(P ◦ f̃)(qt, e) + (1− λt)(P ◦ f̃)(q(t), e)

This is possible since (qt, e) ∈ A and (q(t), e) ∈ A, since f̃ e(q(t)) = f̃ e(q) by con-

struction. Since in addition (qt, e), (q(t), e) ∈ E by the induction assumption (since

div(q(t)) = k− 1) and (P ◦ f̃)s satisfies the prototype based Concatenation Axiom,

we have

(P ◦ f̃)(q, e), (P ◦ f̃)s(q, e) ∈
⋂
t=1,2

((P ◦ f̃)(qt, e), (P ◦ f̃)(q(t), e))
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This intersection is unique since for t = 1, 2 it can be shown that the following holds:

(P ◦ f̃)(q2, e) = P f̃e2 6∈ ((P f̃e1 , (P ◦ f̃)(q(t), e)) =: h (4.7)

If this would not be true, i.e. if P f̃e2 would be on this line h, it would require

that (P ◦ f̃)(q(t), e) is on the line between P f̃e1 and P f̃e2 . However, by construction

(P ◦ f̃)(q(t), e) ∈ int(conv({P f̃e1 , P f̃e2 , P f̃ek , ...})), which implies that it cannot lie

on (P f̃e1 , P f̃e2 ) , since by the Collinearity Axiom no three of (P f̃el )l are collinear.

Thus in sum, claim (4.7) is true, which implies that for t = 1, 2 the lines based on

((P ◦ f̃)(qt, e), (P ◦ f̃)(q(t), e)) are distinct and intersect uniquely in (P ◦ f̃)(q, e) =

(P ◦ f̃)s(q, e), i.e. (q, e) ∈ E.

This completes the entire proof. �
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