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Abstract

Metric learning constitutes a well-investigated field for vectorial data
with successful applications, e.g. in computer vision, information retrieval,
or bioinformatics. One particularly promising approach is offered by low-
rank metric adaptation integrated into modern variants of learning vector
quantization (LVQ). This technique is scalable with respect to both, data
dimensionality and the number of data points, and it can be accompanied
by strong guarantees of learning theory. Recent extensions of LVQ to
general (dis-)similarity data have paved the way towards LVQ classifiers
for non-vectorial, possibly discrete, structured objects such as sequences,
which are addressed by classical alignment in bioinformatics applications.
In this context, the choice of metric parameters plays a crucial role for the
result, just as it does in the vectorial setting. In this contribution, we pro-
pose a metric learning scheme which allows for an autonomous learning
of parameters (such as the underlying scoring matrix in sequence align-
ments) according to a given discriminative task in relational LVQ. Besides
facilitating the often crucial and problematic choice of the scoring param-
eters in applications, this extension offers an increased interpretability of
the results by pointing out structural invariances for the given task.

∗Funding by the DFG priority programme 1527 “autonomous learning” under grant num-
ber HA 2719/6-1, and by the CITEC center of excellence, as well as the Marie Curie Intra-
European Fellowship (IEF): FP7-PEOPLE-2012-IEF (FP7-327791-ProMoS) is gratefully ac-
knowledged.
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1 Introduction

1.1 Motivation and related work

Similarity-based classification or clustering constitutes a well-investigated field
of research, two of the most popular methods, the k-nearest-neighbor classifier
and k-means classification, falling into this category [8, 22]. One striking prop-
erty of these techniques is that they can be extended easily to general metric
structures, by substituting the Euclidean metric with a more general choice,
such as alignment distances or structure kernels. Due to their crucial depen-
dency on the metric, however, these techniques fail if the choice of the metric or
its parameterization are not suited for the given task. This observation moti-
vated research about metric adaptation strategies based on given training data:
today, several highly efficient metric learners are readily available for the vecto-
rial setting, and the area constitutes a well-established field of research, see e.g.
the excellent overview articles [2, 21].

In the vectorial setting, metric learning generally aims at an automatic adap-
tation of the Euclidean metric towards a more general (possibly local) quadratic
form based on auxiliary information. Most strategies act solely upon the metric
and are not interlinked with the subsequent classification or clustering method.
This has the advantage that efficient, usually convex optimization schemes can
be derived. However, no such technique currently offers an adaptation which is
efficient with respect to data size and dimensionality, which can deal with local
metrics, and which can be accompanied by guarantees of learning theory.

By linking metric adaptation to the subsequent classification tool, the prop-
erty of a convex cost function is lost, depending on the considered classifier.
However, metric learning can be integrated efficiently into the classification
scheme, and results from learning theory can be derived by referring to the re-
sulting function class. This has been demonstrated in the context of learning
vector quantization (LVQ), where metric learning opened the way towards ef-
ficient state-of-the-art results in various areas, including biomedical data anal-
ysis, robotic vision, and spectral analysis [4, 19, 1]. Because of the intuitive
definition of models in terms of prototypical representatives, prototype-based
methods like LVQ enjoy a wide popularity in application domains, particularly
if human inspection and interaction are necessary, or life-long model adaptation
is considered [29, 20, 18]. Modern LVQ schemes are accompanied by mathe-
matical guarantees about their convergence behavior and generalization ability
[30, 31]. Metric adaptation techniques in LVQ do not not only enhance the
representational power of the classifier, but also facilitate interpretability by
means of an attention focus regarding the input features and possible direct
data visualization in case of low-rank matrices [30, 6].

Most classical LVQ approaches can process vectorial data only, limiting
the suitability of these methods regarding complex data structures, such as
sequences, trees or graph structures, for which a direct vectorial representation
is often not available. Recent developments offer possible extensions of LVQ
towards more general data, which are represented in terms of (dis)similarities
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only: kernel LVQ, relational LVQ, or generalizations thereof [13]. These tech-
niques provide competitive results to modern kernel classifiers, see [13], but they
are based on cost functions which relate to the distance of data to prototypes in
a possibly complex structure space. An underlying implicit pseudo-Euclidean
embedding opens the possibility of smooth prototype updates, even for discrete
data structures. In this contribution, we focus on one variant which is suitable
for data described by a general dissimilarity matrix, so-called relational LVQ.

Relational LVQ shares the sensitivity of LVQ with respect to a correct metric
parameterization. For structure metrics, such as sequence alignment, metric
parameters correspond to the choice of the underlying scoring matrix in case of
symbolic sequences over a discrete alphabet, or the choice of relevance weights
for the sequence entries in case of sequences of numeric vectors. Note that
there exist ad hoc techniques how to pick a suitable scoring function e.g. in the
biomedical domain: prime examples are given by the PAM or BLOSUMmatrices
often used for aligning DNA sequences, which rely on simple evolutionary models
and corresponding data sets [14, 32]. It is, however, not clear in how far these
scoring matrices are suitable for a given classification task. Thus, the question
arises, how to extend metric learning strategies to the case of structure metrics.

It has been pointed out in a recent survey [2] that structure metric learning
constitutes a novel, challenging area of research with high relevance, and only a
few approaches exist particularly in the context of sequence alignment. Sequence
alignment plays a major role in the biomedical domain, for processing time
series data, or for string comparisons. Its optimum computation is usually
based on dynamic programming or even more efficient approximations thereof.
The question of how to infer an optimal scoring matrix from aligned sequences
has been investigated under the umbrella term of ‘inverse alignment’. Several
promising approaches have been proposed in this context. While the resulting
techniques can be accompanied by theoretical guarantees in simple settings,
more complex approaches often rely on heuristics, see e.g. [12, 34, 3]. A popular
platform which combines various adaptation methods for scoring functions is
offered by SEDiL, for example [5].

In our scenario, however, we are dealing with the different question of how
to infer structure metric parameters, given a classification task. Hence, opti-
mal alignments are not known, rather data are separated into given classes,
and metric parameters should be adapted such that sequences within one class
are considered similar by the alignment. Eventually, this question aims at the
identification of structural invariances for the given classification task at hand:
which structural substitutions do not deteriorate the classification result? In
this contribution, we will investigate in how far structure metric learning can
be introduced into relational LVQ in a similar way as for its vectorial counter-
parts. For this purpose, we approximate discrete alignment by a differentiable
function, and show that metric learning is possible based on the relational LVQ
cost function and gradient mechanisms.
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1.2 Scientific contributions and structure of the article

The paper presents the following key contributions:

• A novel approach for metric learning is proposed, driven by the cost func-
tion of the relational LVQ classification technique, in order to adapt pa-
rameters of a dissimilarity measure for structured data, in particular sym-
bolic sequences. Metric adaptation is performed in conjunction with the
classifier’s own optimization procedure, providing a seamless integration.

• The proposed learning scheme is realized and demonstrated in particular
for sequence alignment, where the complex choice of the underlying scoring
parameters is inferred from the data. Practical experiments show how
metric adaptation does not only facilitate class-discrimination, but also
increases the interpretability of the classifier model.

• Several approximation techniques are investigated, in order to compensate
for the inherent high computational cost of the metric learning algorithm.

The remainder of the paper is structured as follows: In Section 2, we will
recall relational LVQ and its rationale shortly, before focusing on the considered
metric, in our case sequence alignment. We will explain its objective and effi-
cient computation via dynamic programming. By approximating the alignment
with a smooth function, derivatives become well-defined, and metric adaptation
can be integrated into the relational LVQ update rules. In this context, we in-
troduce efficient approximations that warrant the feasibility of the algorithm. In
Section 3, we demonstrate the behavior of our method in simple mock-up scenar-
ios, where ground truth for the metric parameters is available, and the resulting
cost surfaces can be inspected directly. Afterwards, in Section 4, we investigate
the efficiency and effectiveness of the technique in two real-world examples, one
dealing with discrete sequences from bioinformatics, where the scoring matrix
is adapted, the other originating from the domain of educational tutoring sys-
tems, where metric parameters correspond to the relevance of multi-dimensional
sequence entries. Finally, we discuss additional approximations to tackle large
data sets in Section 5: on the one hand, alignment paths with small contribu-
tion can be ignored; on the other hand, general-purpose approximations, such
as the Nyström technique, can be integrated easily into the workflow to reduce
the number of necessary distance calculations. We briefly underline the validity
of these techniques in one of our example scenarios, before closing with a con-
clusion and an outlook regarding future work in Section 6. We will occasionally
refer to additional information in the Appendix Section 7.

2 Adaptive metric parameters in relational LVQ

2.1 Learning vector quantization for dissimilarity data

LVQ models aim at the classification of given data into a fixed number of classes.
Assume data are assembled in a set A. Then, an LVQ classifier is characterized
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by a fixed number of prototypes ~w1, . . . , ~wM ∈ A which are equipped with
labels c(~wj) ∈ {1, . . . , C}, where C is the number of classes. Classification is
based on a distance measure d : A × A → R by a winner-takes-all scheme: a
data point ~a ∈ A is classified according to its closest prototype ~a 7→ c(~wi) where
d(~a, ~wi) is minimum. In classical LVQ variants, Euclidean data A = R

n are
usually considered and the dissimilarity measure d is provided by the squared
Euclidean distance [20]. Metric learning schemes use a more general quadratic
form dλ, whereby metric parameters λ are optimized during LVQ training [30, 6].

Original LVQ variants are based on heuristic adaptation rules. We will
rely on generalized LVQ (GLVQ) and its extension to relational data [13]. For
training, labeled data are given of the form (~ai, c(~ai)), i = 1, . . . , N . GLVQ
minimizes the error term

EGLVQ =
N∑

i=1

Ei
GLVQ =

N∑

i=1

Φ

(
d+(~ai)− d−(~ai)

d+(~ai) + d−(~ai)

)
(1)

where Φ is a monotonic function like the sigmoidal function, d+ is the squared
distance of ~ai to the closest prototype with a matching label, and d− refers to
a non-matching label [30]. Since a data point is classified correctly iff d− is
larger than d+, this cost function constitutes a reasonable choice. It has been
shown that the difference d+ − d− can be related to the so-called hypothesis
margin of LVQ classifiers, a quantity which directly regulates the generaliza-
tion ability of the resulting classifier. For numerical reasons, this numerator is
normalized to the interval [−1, 1] to prevent divergence of the prototypes. In
the vectorial setting, prototype updates can directly be derived from this cost
function via gradients, as detailed in [30], for example. Interestingly, for any
differentiable metric such as a general quadratic form, metric parameters can be
adapted simultaneously to the prototypes by simple gradient-based optimization
techniques.

We are interested in the setting where A is a structure space such as sequen-
tial data and d is a structure metric, such as a pairwise alignment measure. Here,
the problem occurs that a vectorial embedding of the training data is not fixed
a priori. A general framework how to treat dissimilarity data was proposed
in [27], and was transferred to LVQ techniques in [13]. Assume dissimilarity
data are described by a symmetric matrix D with entries dij characterizing
the dissimilarity dij = d(~ai,~aj). We assume that dissimilarities are symmetric
dij = dji, and have zero diagonal dii = 0. Under these conditions, it has been
shown in [27] that an implicit, so-called pseudo-Euclidean embedding of data
always exists, such that the dissimilarities are induced by a suitable symmet-
ric bilinear form in this vector space. In general, the quadratic form can have
negative Eigenvectors; it is positive semidefinite only iff the metric is in fact
Euclidean, which is usually not the case for common structure metrics.

GLVQ can be extended to this setting by means of an implicit reference to
this pseudo-Euclidean embedding, resulting in relational LVQ (RGLVQ) vari-
ants, see [27, 13]. It is assumed that vectors ~ai induce the matrix entries dij
via the pseudo-Euclidean embedding [27]. Prototypes are restricted to con-
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vex combinations of data in this pseudo-Euclidean space: ~wj =
∑N

i αj
i~a

i with∑N
i αj

i = 1. Then, dissimilarities can be computed as

d(~ai, ~wj) =

N∑

l

αj
l dil − 0.5

N∑

ll′

αj
lα

j
l′dll′ .

This distance calculation is based on the coefficients ~αj and dissimilarities D

only, without explicitly referring to the vectors ~ai, see [13]. Hence, classification
of data is possible without computing the pseudo-Euclidean embedding of the
data itself. Inserting these distance calculations into the error term of GLVQ
results in a valid error function ERGLVQ =

∑N
i=1E

i
RGLVQ for RGLVQ, which

depends on the coefficients ~αj and dissimilarities D only. Learning rules for the
prototypes can be derived, by a stochastic gradient descent with respect to the
coefficients ~αj : In every update step, given the sample number i, coefficients
~α+ or ~α− of the closest correct or incorrect prototype are adapted as follows:

∆α+
l ∼ − Φ′ · 2d−(~ai)

(d+(~ai)+d−(~ai))2 ·
(
dil −

∑N
l′ α

+
l dll′

)

∆α−
l ∼ +Φ′ · 2d+(~ai)

(d+(~ai)+d−(~ai))2 ·
(
dil −

∑N
l′ α

−
l dll′

) (2)

where Φ is evaluated at the position
(
d+(~ai)− d−(~ai)

)/(
d+(~ai) + d−(~ai)

)
.

As demonstrated in [13], RGLVQ provides state-of-the-art results in com-
parison to alternative classifiers such as support vector machines. It can be used
directly for any data set described by a symmetric dissimilarity matrix, which is
not required to be positive semidefinite, due to its reference to the coefficients in
pseudo-Euclidean space rather than a direct kernelization of the update rules.
However, RGLVQ has been proposed for a fixed dissimilarity measure D, and
it does not yet incorporate the adaptation of metric parameters in its current
form.

2.2 Sequence alignment

We are interested in possibilities to extend RGLVQ by automatic metric adapta-
tion schemes, aiming at a twofold goal: to improve the accuracy and generaliza-
tion ability of the resulting prototype model, and to enhance its interpretability
by learning explicit structural invariances in terms of metric parameters. In the
following, we will consider one particularly relevant type of structured data and
corresponding metric, namely sequential data and sequence alignment. Note
that the proposed rationale can be extended to alternative structure metrics, as
long as they are differentiable with respect to metric parameters.

Assume an alphabet Σ is given, which can be discrete or continuous. We
denote sequences with entries aI ∈ Σ as ā = (a1, . . . , aI , . . . , a|ā|). Thereby,
their length |ā| can vary. The set of all sequences is denoted as A = Σ∗. We
assume that a symmetric dissimilarity measure dλ : Σ× Σ → R, with zero self-
dissimilarities, is given to quantify the dissimilarity between single elements of
the alphabet. This measure involves parameters λ which we would like to adapt
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by means of metric learning. Common choices of the dissimilarity measure are,
for example:

• A scoring matrix for discrete alphabets |Σ| <∞:
Let k = aI ∈ Σ, m = bJ ∈ Σ be symbols from the respective sequences
ā, b̄. Then, the dissimilarity dλ(aI , bJ ) = λkm ≥ 0 specifies the substitu-
tion costs if symbol k is aligned with symbol m.

• A relevance weighting for vectorial sequence entries:
Let ~aI ,~bJ ∈ Σ = R

n be vectorial elements from the respective sequences
ā, b̄. The notation arI refers to the r-th entry in the vector ~aI = (a1I , . . . , a

n
I ).

Then, dλ(~aI ,~bJ ) =
∑n

r=1 λr · dr(a
r
I , b

r
J ) is a weighted sum of appropriate

non-negative and symmetric dissimilarity measures dr for each dimension.
Therefore, the value λr ≥ 0 specifies the ‘relevance’ of the r-th dimension
for all sequence elements w.r.t. the given task.

Alignment incorporates the possibility of deletions and insertions to be able to
compare two sequences of different lengths. For this purpose, the alphabet Σ is
extended by a specific symbol, the gap “−”. Similarly, the dissimilarity measure
is extended to incorporate gaps, using the same symbol for simplicity:

dλ : (Σ ∪ {−})2 → R

specifying the gap costs

dλ(aI ,−) = dλ(−, aI) ≥ 0 .

We exclude the case of two gaps being aligned, by the choice dλ(−,−) = ∞.
Based on these definitions, a dissimilarity measure for sequences can be

defined via alignment: A (global) alignment of sequences ā and b̄ consists of
extensions ā∗ ∈ (Σ ∪ {−})∗ and b̄∗ ∈ (Σ ∪ {−})∗ by gaps such that |ā∗| = |b̄∗|.
The overall costs of a fixed alignment is comprised of the sum of pairwise local
distances d(a∗i , b

∗
i ). The optimal alignment costs (which we also refer to as

alignment dissimilarity) are given by the minimal achievable costs

d∗(ā, b̄) = min





|ā∗|∑

i=1

dλ(a
∗
i , b

∗
i )
∣∣ (ā∗, b̄∗) is alignment of (ā, b̄)



 . (3)

Although this definition inherently considers all possible arrangements (which
is an exponential number), these costs can be computed efficiently based on the
following dynamic programming (DP) scheme. We use the shorthand notation
ā(I) = (a1, . . . , aI) and b̄(J) = (b1, . . . , bJ ) to denote the first I or J components
of a sequence. Then, the following Bellman equality holds for the alignment costs
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of the parts ā(I) and b̄(J):

d∗(ā(0), b̄(0)) = 0 , (4)

d∗(ā(0), b̄(J)) =
J∑

j=1

dλ(−, bj) ,

d∗(ā(I), b̄(0)) =
I∑

i=1

dλ(ai,−) ,

d∗(ā(I + 1), b̄(J + 1)) = min
{
ARep := d∗(ā(I), b̄(J)) + dλ(aI+1, bJ+1),

AIns := d∗(ā(I + 1), b̄(J)) + dλ(−, bJ+1),

ADel := d∗(ā(I), b̄(J + 1)) + dλ(aI+1,−)
}
.

Note that the three terms ARep, AIns, ADel, respectively, refer to the cases

• replacement : symbols aI+1, bJ+1 are aligned (called match if aI+1=bJ+1),

• insertion: symbol bJ+1 is aligned with a gap,

• deletion: symbol aI+1 is aligned with a gap.

This recursive scheme can be computed efficiently in time and memory O(|ā|·|b̄|)
based on DP.

2.3 Learning scoring parameters from labeled data

Sequence alignment crucially depends on the local dissimilarities dλ, which in
turn are determined by the parameters λ. For a discrete alphabet, these parame-
ters correspond to the scoring matrix which quantifies the costs of substituting a
symbol by another one (i.e. for symbolic replacements, insertions, or deletions).
Based on the preliminary work in [25], we propose an adaptation of λ based on
the RGLVQ error function, given labeled training data. This provides a way to
automatically learn a suitable parameterization of the alignment dissimilarity
for a given task.

We transfer the basic idea that was precedented for vectorial LVQ in [30]:
simultaneously to prototype updates, the alignment parameters are optimized
by means of a gradient descent based on the RGLVQ error. Thus, we consider
the derivative of the summand Ei

RGLVQ corresponding to a sequence āi with
respect to one parameter λq in λ:

∂Ei
RGLVQ

∂λq
= Φ′ ·

2d−(āi)

(d+(āi) + d−(āi))2
·
∂d+(āi)

∂λq
(5)

− Φ′ ·
2d+(āi)

(d+(āi) + d−(āi))2
·
∂d−(āi)

∂λq



Preprint of the publication [26], as provided by the authors. 9

with
∂d(āi, w̄j)

∂λq
=
∑

l

αj
l ∂d

∗
il/∂λq − 0.5

∑

ll′

αj
lα

j
l′∂d

∗
ll′/∂λq (6)

where d∗il refers to the alignment dissimilarity of sequences i and l. An alignment
d∗(ā, b̄) as introduced above is not differentiable. Therefore, we consider an
approximation, which we call soft alignment. We substitute min by

softmin(x1, . . . , xn) =
∑

i

xi ·
exp(−βxi)∑
j exp(−βxj)

with the derivative

softmin′(xi) =
(
1− β · (xi − softmin(x1, . . . , xn))

)
·

exp(−βxi)∑
j exp(−βxj)

.

The derivative ∂d∗(ā, b̄)/∂λq can be computed in a DP scheme analog to the
alignment:

∂d∗(ā(0), b̄(0))

∂λq
= 0 , (7)

∂d∗(ā(0), b̄(J))

∂λq
=

J∑

j=1

∂dλ(−, bj)

∂λq
,

∂d∗(ā(I), b̄(0))

∂λq
=

I∑

i=1

∂dλ(ai,−)

∂λq
,

∂d∗(ā(I + 1), b̄(J + 1))

∂λq
= softmin′(ARep) ·

(
∂d∗(ā(I), b̄(J))

∂λq
+
∂dλ(aI+1, bJ+1)

∂λq

)

+ softmin′(AIns) ·

(
∂d∗(ā(I + 1), b̄(J))

∂λq
+
∂dλ(−, bJ+1)

∂λq

)

+ softmin′(ADel) ·

(
∂d∗(ā(I), b̄(J + 1))

∂λq
+
∂dλ(aI+1,−)

∂λq

)

The full derivation of Equation 7 is specified in the Appendix Section 7.1.
The derivative ∂dλ

(
ā(I), b̄(J)

)/
∂λq depends on the choice of the dissimilarity

measure dλ. For the two particularly interesting cases of discrete symbolic, and
vectorial sequence entries, we get:

• Dissimilarities for a discrete alphabet dλ(aI , bJ ), with scoring parameters
λkm:

∂dλ(aI , bJ )

∂λkm
= δ(aI , k) · δ(bJ ,m)

∂dλ(aI ,−)

∂λkm
= δ(aI , k) · δ(−,m)

∂dλ(−, bJ )

∂λkm
= δ(−, k) · δ(bJ ,m), with Kronecker-δ
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• Dissimilarities for a vector alphabet dλ(~aI ,~bJ ) =
∑n

r=1 λr · dr(a
r
I , b

r
J ),

with relevance weights λr:

∂dλ(aI , bJ )

∂λr
= dr(a

r
I , a

r
J )

∂dλ(aI ,−)

∂λr
= dr(a

r
I ,−)

∂dλ(−, bJ )

∂λr
= dr(−, a

r
J )

where, in the latter case, parameterized gap costs are considered as a
suitable extension of dr. For real numbers, this can be chosen as dr(a

r, ψ)
for some constant ψ ∈ R such as ψ = 0, for example.

The costs of computing the derivative ∂d∗(ā, b̄) are O(|ā| · |b̄|), as for alignment
itself. This, however, has to be performed for every possible parameter. Further,
due to the implicit prototype representation as a convex combination, it has to
be computed for all pairs of sequences to achieve a single update step, see Eq. 6.

Hence, costs amount to O
(
|λ|·N2 ·max

{
|ā|
∣∣ā is sequence in the training set

}2)

for an update, where N denotes the number of training sequences, which is in-
feasible. Therefore, we will present an efficient approximation in the following,
where every prototype is substituted by a convex combination over a fixed num-
ber of k data instances only.

Approximation of prototypes by closest exemplars Equation 6 contains
two sums which both refer to all sequences āl in the given set, weighted by a
corresponding coefficient αj

l . Therefore, computing the update for one sample
āi requires the derivatives for all sequences āl, l ∈ {1, . . . , N}.

To avoid this, we transfer an approximation principle from existing litera-
ture, and thereby restrict the dependency of metric updates to only a few ‘exem-
plar’ sequences per prototype. In [13], the authors have shown that positional
updates of RGLVQ prototypes can be realized by a so-called k-approximation

of the convex combination. This assumes that sparsity can be imposed on the
weight vectors ~αj by restricting them to their largest k components, without
loosing too much precision. Empirical results indicate that it works well for real
data distributions, even when choosing k ≪ N .

Transferring this approximation to the representation of prototypes for met-
ric adaptation, we calculate the derivative ∂d(āi, w̄j)/∂λq based only on a subset
of sequences, namely the prototype’s exemplars āl, l ∈ Ej where Ej is a set of
indices with fixed size k = |Ej |. The indices Ej refer to the k largest compo-
nents in the respective weight vector ~αj . Therefore, the number of exemplars
k is a meta-parameter in our method, which will be discussed further in Sec-
tion 3.2. For the minimal choice k = 1, the derivative reduces to the single term
∂d∗il/∂λq, i.e. a soft alignment derivative between the sample sequence āi and
only one exemplar āl. Even this coarse approximation seems to work well for
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practical data, as will be shown in later experiments. This approximation makes
updates feasible, and allows for a user-controlled compromise between precision
and speed of the metric adaptation. The complexity of a single update therefore

reduces severely to O
(
|λ| · k2 ·max

{
|ā|
∣∣ ā is sequence in the training set

}2)
.

Hebbian learning as a limit case Finally, we want to point out that, in a
limit case, the derived update rules strongly resemble Hebbian learning, hence
the metric adaptation follows intuitive learning steps. We consider the limit
where every prototype can be approximated by one data point, i.e. αj

l is 0 for
all but one l, so the approximation by k = 1 is exact. Then, the derivative in
Equation 6 is dominated by only one summand, namely the derivative of the
alignment distance between a given training sequence and the corresponding
prototype’s single exemplar sequence. Further, the considered limit case refers
to a crisp instead of a soft minimum, i.e. a softmin function with β → ∞. Hence,
only one path, the optimal alignment path, is relevant in the computation of
the alignment dissimilarity. On this path, the contribution of a considered
parameter is measured, as follows:

• for a specified pair of symbols, in case of a discrete alphabet, it is the
number of the alignments of this pair on an optimal alignment path,

• for a given dimension in case of vectorial sequence entries, it is the optimal
alignment distance restricted to the dimension in question.

A more formal demonstration is given in the Appendix Section 7.1.
For both settings, this number represents the learning stimulus, which (i)

decreases the corresponding metric parameter if the labeling is correct, and (ii)
increases the corresponding metric parameter if the labeling is incorrect. In
general, normalization can take place, since the number of parameters |λ| is
fixed. Hence:

• For a discrete alphabet, in the limit, symbolic replacements are marked
as costly if they contribute to a wrong labeling, while they become inex-
pensive if the labeling is correct.

• For vectorial alphabets, those vector dimensions are marked as relevant
where the small values indicate a closeness to a correctly labeled prototype,
while dimensions are marked as irrelevant otherwise.

3 Practical implementation

In this section, we will discuss the practical realization of the proposed met-
ric learning strategy. First, we describe how the actual learning algorithm is
implemented, followed by a discussion about meta-parameters and their influ-
ence. Thereafter, we investigate the algorithm’s performance for artificial data
in a first proof-of-concept evaluation and exemplify general characteristics of
the error function.
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3.1 Algorithm overview

To summarize our method, we provide pseudo-code in Algorithm 1 for the case
of a discrete symbolic alphabet, i.e. the result of metric learning is a scoring ma-
trix λ with entries λkm. The algorithm works in a similar fashion for vectorial
sequence entries. Since a learning step for the metric terms is more costly than
an update of the prototypes, the former requiring alignment calculations, we
always perform several prototype updates before addressing the metric param-
eters. We refer to this as a batch update since, typically, a batch of data points
is considered. Similarly, metric parameter updates are performed in batches to
avoid the necessity of recurring alignments for sequences in the batch.

As an initial solution for λ, see Line 1, a simple configuration is applied,
in the following referred to as equal costs : we set λkm = 1/|Σ| for all pairs
(k,m) ∈ (Σ ∪ {−})2, k 6= m, and add small random noise to break ties in the
initial alignments. Only symbolic matches require no costs: λkk = 0. During the
adaptation (see Line 12), small or negative values λkm < ǫ = 0.005/|Σ| are reset
to ǫ in order to keep D non-negative, and to ensure that an alignment always
favors matches (k, k) over the trivial alternative of a deletion (k,−) directly
followed by an insertion (−, k) or similar unnecessary replacements. RGLVQ
requires symmetric dissimilarities in D, which is ensured if the scoring matrix λ
is itself symmetric. Therefore, we enforce the symmetry of λ after every update,
in Line 13. We will refer to the part from Line 5 to 14 as one epoch of learning.
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Algorithm 1: RGLVQ with metric adaptation

Data: a set of sequences {ā1, . . . , āN} = S ∋ āi over an alphabet Σ
Result: a set of prototypes {~α1, . . . , ~αM} ∋ ~αj , a scoring matrix λ

1 initialize parameters λ ∈ R
(|Σ|+1)2 , e.g. with equal costs as in Sec. 3.1

2 calculate all dissimilarities D according to λ
3 initialize prototypes ~αj near the center of the corresponding class

4 for number of epochs do

// classic RGLVQ update:

5 perform (batch) update of prototypes ~αj acc. to Equation 2

// find representative sequences for each prototype:

6 for j = 1 to M do

7 determine k exemplar sequences āl ∈ S with indices l ∈ Ej for

prototype ~αj , as the k largest entries αj
l

// update of metric parameters:

8 for i = 1 to N do

9 foreach pair of symbols (k,m) ∈ (Σ ∪ {−})2, k 6= m do

10 gradient descent step: λkm := λkm − η ·
∂Ei

RGLVQ

∂λkm

11 if λkm < ǫ then
12 enforce small positive costs by setting: λkm := ǫ

13 symmetrize: λ := (λ⊤ + λ) / 2

14 re-calculate dissimilarities D according to new λ

3.2 Meta-parameters

Since our metric adaptation scheme optimizes the RGLVQ error function via
a stochastic gradient descent, there are several meta-parameters that influence
this learning process:

(I) RGLVQ meta-parameters

(II) the learning rate η

(III) the number of exemplars k

(IV) the ‘crispness’ β in the softmin function

(I) The RGLVQ meta-parameters are comprised of the number of training
epochs, the prototype learning rate, and the number of prototypes. It has
been observed in experiments with RGLVQ, that the algorithm is not sensi-
tive to its meta-parameters: few prototypes often yield excellent results, and
there is a small risk of overfitting even when a large number of prototypes is
considered [13].
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The necessary number of epochs and prototype learning rate are correlated,
requiring a higher number of epochs when a smaller learning rate is chosen, and
vice versa. In all our experiments, the number of epochs was fixed to 10. This
choice is well justified, since a plausible convergence was achieved within the
given time frame: during the last training epoch, the absolute error changes by
less than 2% of the final error value, in every experiment.

The number of prototypes is crucial to determine the complexity of clas-
sification boundaries in RGLVQ, as is generally the case in prototype-based
classifiers. For multimodal classes, too few prototypes lead to a high classifica-
tion error. However, in particular in the light of an adaptive and hence very
flexible metric, a good starting point is to train the classifier in the most simplis-
tic setting with only one prototype per class, and increasing the number when
necessary. To automatically adjust the number of prototypes, quite a few incre-
mental variants of LVQ have been proposed, see e.g. [9, 17, 40]. Interestingly,
for a complex image segmentation task, only few prototypes (3-4 per class, on
average) were generated, supporting the claim that rather small LVQ networks
already show representative behavior in particular in the context of an adaptive
metric [9].

In our experiments, we will generally focus our discussion on the choice of
one prototype per class, which allows us to emphasize the capability of adding
sufficient complexity to the classifier model via metric adaptation only. For
comparison, we will report the classifier performance using more prototypes, in
addition to the highlighted results.

(II) The learning rate η for metric parameters is, in contrast to the prototype
learning rate, a sensitive meta-parameter for the optimization via stochastic
gradient descent. Considering parameters for alignment scoring in particular,
changes in the gap costs (i.e. for deletions λk− and insertions λ−m) have a
stronger influence on the overall alignment than single pairwise replacement
costs λkm. Therefore, it can be advisable to assign separate learning rates ηGap
and ηRep for the respective costs, similar to previous vectorial metric adaptation
in the context of LVQ [30]. In this way, it is also possible to restrict the adap-
tation to parameters of interest, and limit the degrees of freedom for learning.
In our experiments, we will not use this separation and generally maintain the
simpler case of a single η.

(III) The number of exemplars k determines by how many real sequences a
prototype ~wj is represented in the update rule for metric parameter learning.
As described in the end of Section 2.3, this is an approximation of the precise
theoretical update where k = N . While a lower number could hypothetically
decrease precision, it has shown to work well in practice, even for choices k ≪ N ,
for example k = 1. Since the approximation strongly influences the computa-
tional demand of a single update step, the parameter has an immense impact
on the overall runtime. The minimum choice of k = 1 yields the fastest update
calculation, and usually provides sufficiently accurate results from our practical
experience. In fact, all experiments presented in this article rely on this setting,
and we could achieve no considerable improvement in these cases, by choosing
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a larger number of exemplars k > 1.

(IV) The crispness in the softmin function β influences the classifier training
progress. In the following Sections 3.3 and 3.5, its direct effect on the conver-
gence characteristics are discussed in artificial data scenarios. In Figure 1, we
can see how a lower crispness (e.g. for β = 2) generally slows down the adap-
tation, while higher values seem to facilitate a faster convergence, sometimes at
the expense of robustness (see β = 80 in Figure 1b). Generally, we can observe
that β directly affects the convergence characteristics, with an optimal value
lying in a medium range.

3.3 Proof-of-concept with artificial data

We designed two artificial data sets with class structures that demonstrate the
method’s ability to adequately adapt (i) replacement costs and (ii) gap costs for
the case of discrete sequence entries. Both data sets contain random sequences
which follow deliberate structural patterns, such that a specific parameter con-
figuration in the scoring matrix λ leads to a perfect class separation, while a
naive choice of costs λ causes severe overlaps between classes.

Replacement data: In this data set, all strings have 12 symbols, randomly
generated from the alphabet Σ = {A,B,C,D} according to the regular expres-
sions: (A|B)5 (A|B) (C|D) (C|D)5 for the first, and (A|B)5 (C|D) (A|B) (C|D)5

for the second class. Hence, replacements of A or B by C or D are discrimina-
tive, while replacements A with B, and C with D are not. After the training of λ,
we expect high costs for discriminative replacements, while other replacement
costs in λ are close to zero. Also, we expect positive gap costs, since gaps could
otherwise circumvent the alignment of the discriminative middle parts.

Gap data: The second data set focuses on gap scoring. Strings in the first
class are random sequences āi ∈ Σ10 of length 10, whereas strings āl ∈ Σ12

in the second class are longer by 2 symbols. Therefore, replacements of letters
are not discriminative, while the introduction of any gaps discriminates classes.
Thus, gap costs are expected to become high, while any other replacements
should cost less.

Evaluation: For each data set, we created N = 100 sequences (50 for each
class) and evaluated the average classifier performance in a 5-fold cross-validation
with 5 repeats. RGLVQ was trained using one prototype per class, for 10 epochs.
The learning rate for the adaptation of λkm was set to η = 1/N , and the num-
ber of exemplars k = 1. We use the aforementioned equal costs for the initial
alignment parameters λ. Several settings of the ‘crispness’ β in the softmin

function have been evaluated, but for now let us consider the intermediate set-
ting of β = 5. We will discuss the influence of this meta-parameter later in this
Section, and in Section 3.5.
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Figure 1: The figures show the average test accuracy achieved during 10 epochs
of RGLVQ training in a 5-fold cross-validation with 5 repeats on artificial data
sets. The dashed black line represents the training without adapting λ, and
serves as a baseline in which the classifier remains close to random guessing. The
other curves show the accuracies achieved with the proposed metric adaptation
scheme, for different settings of the ‘crispness’ parameter β. The adaptation
yields nearly perfect results in all settings, while the convergence characteristics
are slightly affected by β.

The experimental results in Figure 1 show a drastically increased accuracy
when adapting λ, for example, with β = 5 a perfect average test accuracy of
100% (with 0 deviation) was achieved after the 4th epoch. Consequently, the
adapted λ represent ideal scoring matrices for both data sets, which exactly ful-
fill our aforementioned expectations: Figure 2 exemplarily shows the respective
λ matrices before and after training from the last respective cross-validation
run. For comparison, we trained RGLVQ in the classical fashion, based on
fixed dissimilarities D, without adapting the underlying scoring parameters. In
this case, λ refers to the initial equal costs, which does not emphasize class-
discrimination. As expected, classification remains close to random guessing in
this setting, see the baseline in Figure 1: the average test accuracy after training
was 64% for the Replacement data and 61% for the Gap data.

Figure 1 shows the progression of accuracy during training, for different
values of the ‘crispness’ β. For lower settings (e.g. β = 2), we can see that
the final level of accuracy is often achieved in later epochs, which indicates that
the metric adaptation is slower. In contrast, higher values facilitate a faster
adaptation, sometimes at the expense of robustness (see β = 80 in Figure 1b). In
Section 3.5, we will demonstrate the influence of β in a soft alignment, implying
its impact on the metric adaptation process and convergence characteristics.

From the proof-of-concept we can conclude that the proposed supervised
metric adaptation strategy is indeed able to single-out discriminative parame-
ters, which leads to a clear class separation and enables the training of a robust
classifier model in our examples. The training arrives at the expected results,
even for k = 1, the most efficient approximation where each (virtual) prototype
is represented by only one (tangible) exemplar sequence. In the following, we



Preprint of the publication [26], as provided by the authors. 17

 

 

A B C D _

A

B

C

D

_
0.00

0.06

0.13

0.19

0.25

(a) Standard/init. λ

 

 

A B C D _

A

B

C

D

_
0.00

0.25

0.50

0.75

1.00

(b) Replacement data

 

 

A B C D _

A

B

C

D

_
0.00

0.25

0.50

0.75

1.00

(c) Gap data

Figure 2: Visualizations of the scoring matrix λ, where color/intensity encodes
the values. On the left is a standard choice of λ as equal costs which serves as
the initial state for the training, the middle and right show the final state of λ
after adaptation, fulfilling the expectations for the respective artificial data set.

will first observe the characteristics of the RGLVQ error function w.r.t. met-
ric parameters in our toy scenario, and thereafter, take a closer look on the
crispness in a soft alignment.

3.4 RGLVQ error function surface

To get an impression of the characteristics of the RGLVQ error function with re-
gard to metric parameters, we visualize its values for varying parameter settings
as a 3-D surface. Therefore, we simplify our artificial data sets even further,
to restrict to only a few degrees of freedom in the parameters λ. We obtained
an adapted λ, as well as prototype positions ~α1, ~α2 from a single training run
of 10 epochs (β = 10, η = 0.07/N). To evaluate various configurations of λ, a
pair of entries (λkm, λqr) will be iterated over all combinations, while keeping
the others fixed to their final state after training. Given the prototypes, we can
visualize ERGLVQ as a surface for all combinations (λkm, λqr).

The simplified Gap data consists of random sequences over the two-letter
alphabet Σ = {A,B}, as before with length 10 in the first, and length 12 in the
second class, and N = 100. Again, the introduction of any gaps is crucial for
class-discrimination, so a minimum of the error surface is expected for settings
where both costs λA− and λB−, become high. Figure 3 shows ERGLVQ for
configurations (λA−, λB−) in increasing steps of 0.1 over the interval [0, 1]. The
remaining third parameter in λ is fixed to the final value after training, in this
case it is close to the small constant λAB ≈ ǫ. As expected, the error surface
drops smoothly to a low plateau, when both gap costs are increased.

For the simplified Replacement data, we now use the three-letter alphabet
Σ = {A,B,C}, and regular expressions (A|B)5 B C (B|C)5 and (A|B)5 C B (B|C)5

to generate sequences in the first and second class, respectively. ERGLVQ is then
evaluated for all combinations of λAB and λAC (see Figure 4a), as well as λAB and
λBC (Figure 4b). The respective remaining parameters in λ are constant at their
final value from training, with low λAC ≈ ǫ, and high λBC, λA−, λB−, λC− > 0.7.
Since only replacements (B,C) and (C,B) are relevant for class-discrimination,
we expect the error function to approach its minimum when λAB as well as λAC
are low, and λBC is high. The surfaces in Figure 4 meet these expectations, with
a monotonic decrease of error toward the optimum.
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Figure 3: The error ERGLVQ for the simplified Gap data, evaluated with all
parameter combinations (λA−, λB−) in steps of 0.1 over the interval [0, 1], while
replacement costs are at a low constant λAB ≈ ǫ. As expected, the error surface
drops smoothly to a low plateau, when both gap cost parameters are increased.

In a realistic scenario, the number of metric parameters is likely to be much
higher. For sequence alignments with a scoring matrix for discrete alphabets
(where we assume symmetry and a zero diagonal in λ), the number of free
parameters is (|Σ|2 + |Σ|)/2, i.e. it grows quadratically with the size of the
alphabet. Their influence on the RGLVQ error can be rather complex, including
intricate dependencies among the parameters themselves. Therefore, we can
expect the error function to exhibit several local optima w.r.t. changes of metric
parameters in a real data scenario.

3.5 Influence of crispness on the alignment

In this paragraph, we demonstrate, on a small example, how soft alignment (with
its crucial parameter β) compares to classical sequence alignment (which is the
limit case of soft alignment, for β → ∞). Here, we address only the calculation
of the alignment distance, not the learning of parameters. As described in
Section 2.2, page 8, the alignment of two sequences can be calculated by DP
via a recursive algorithm, see Equation 5. All different possibilities to partially
align the sequences and accumulate costs can be assembled in a DP matrix:

[
M
]
(I,J)

=M(I,J) = d∗
(
ā(I), b̄(J)

)
∀ 0 ≤ I ≤ |ā|, 0 ≤ J ≤ |b̄|

The upper left entry M(0,0) = d∗
(
ā(0), b̄(0)

)
= 0 represents the initialization

of the recursive calculation, while the bottom right entry contains the final
accumulated costs for the full alignment M(|ā|,|b̄|) = d∗(ā, b̄).

In a crisp alignment (where β → ∞), the accumulated cost at a position
M(I+1,J+1) is determined by selecting the discrete minimum among the choices
{ARep, AIns, ADel}, see Equation 5. This means that every value M(I+1,J+1)

depends on only one of the preceding entries {M(I,J),M(I+1,J),M(I,J+1)}. In
contrast, using a softmin function (with smaller β) means that all choices con-
tribute to the result to a certain extent. Therefore, M(I+1,J+1) depends on
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Figure 4: Surfaces of ERGLVQ for the simplified Replacement data, evaluated
with parameter combinations λAB and λAC (left), as well as λAB and λBC (right)
in steps of 0.1 over the interval [0, 1]. The respective remaining parameters are
constant at the final value after training. As expected, the error approaches its
minimum for λAB = λAC = 0 and λBC = 1.

several preceding entries in the DP matrix. Accordingly, sub-optimal alignment
choices have an increasing influence on the accumulated cost if β is decreased.

To demonstrate the impact of parameter β, we investigate the character-
istics of M in a simple example. Consider the alignment of a sequence ā =
(AAAAAAAAA) with itself (i.e. ā = b̄), using the simple scoring scheme λAA = 0
and λA− = λ−A = 1. Obviously, in a crisp sequence alignment, the optimal
alignment path would match all symbols

(
āI , b̄I

)
= (A,A) without making use

of deletions or insertions. This corresponds to the diagonal of M, ending at a
total cost of zero. Since only insertions or deletions can increase the accumu-
lated cost in this case, the optimal alignment path (along the diagonal, using
only matches) remains zero in every step, as can be seen in Figure 5d.

The three images on the left (Figures 5a-5c) show the corresponding DP
matrix for values β ∈ {0, 12 , 1}: when increasing β from zero to one, the optimal
path becomes more pronounced and stands out with significantly lower costs.
Accordingly, the accumulated cost of the entire alignment drops for higher β.

For β = 5, the alignment approaches the de facto crisp condition. With
λAA = 0, λA− = λ−A = 1, the weight by which a match operation ARep for (A,A)
contributes to the softmin choice is

softmin(ARep, AIns, ADel) =
e(−5·0)

e(−5·1) + e(−5·1) + e(−5·0)
=

1

2 e(−5)+1
≈ 0.99 .

Therefore, insertions and deletions only contribute 1% to the total soft alignment
in this case. For other scoring schemes, a higher β might be required to achieve
the de facto crisp alignment. It is therefore helpful to evaluate softmin values
exemplarily, given a scoring λ, to assess the impact of a certain β setting.
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Figure 5: The images demonstrate the impact of different choices of ‘crispness’
β on the DP matrix M for a trivial alignment of ā = (AAAAAAAAA) with itself,
using the simple scoring scheme of λAA = 0 and λA− = λ−A = 1. Each figure
shows a color-coded view of values in M for a setting β ∈ {0, 12 , 1,∞}. While
the diagonal is the optimal alignment path in all four settings, it becomes more
distinguished as a low-cost path when β is high. With lower β values, sub-
optimal alignment operations (in this case off-diagonal entries) get a higher
contribution to the accumulated cost in the optimal path along the diagonal.

4 Experiments with real-world data

In this section, we investigate the classification performance of our method on
two real-world data sets. Additionally, we will take a look at general class-
separation in the original and the adapted data dissimilarities, as well as inter-
pretable aspects of the resulting adapted metric parameters.

4.1 Experimental procedure

Our experimental procedure, applied for both data sets, is summarized in the
following. As before, the accuracy of an RGLVQ classifier with fixed metric
parameters serves as a baseline, and is compared to the accuracy achieved via
the proposed adaptation of metric parameters during RGLVQ training. This
comparison directly reflects benefits which the classifier gains from metric adap-
tation. We report the respective average training and test accuracies (along with
their standard deviation) obtained in a 5-fold cross-validation with 10 repeats.

To assess the overall class-separation without relying specifically on RGLVQ,
we further evaluate the corresponding data dissimilarities before and after the
metric is adapted. In the latter case, we use the adapted metric parameters
resulting from the last respective cross-validation run of RGLVQ.

First, we report the average test accuracy of a support vector machine clas-
sifier (SVM), along with its corresponding average number of support vectors
(#SV). The quantity of support vectors reflects the complexity of an SVM’s
classification boundary, where a lower number suggests that class-separation is
easier in the given data, while higher values (up to the total number of given
training data) indicate overlapping classes. In our practical implementation,
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we use the Open Source software LIBSVM 1 3.18, and perform a 5-fold cross-
validation with 10 repeats, based on the original, as well as the adapted metric.
However, in order to apply SVM correctly, we need to obtain a valid kernel
matrix from given dissimilarities dij in the matrix D. Therefore, we first use
Torgerson’s double centering, see [35, p.258] to get similarities, as:

[S](i,j) = sij = −
1

2
·
(
d2ij − ~c 2j − ~r 2

i + o2
)

where ~cj , ~ri, o are the mean of the j-th column, of the i-th row, and of all
values in D, respectively. Thereafter, a kernel matrix K is created from S by
correcting possible non-metric aspects in the given similarities, via ‘flipping’
negative Eigenvalues of S, as described in [13].

Further, the accuracy of a simple k-nearest-neighbor classifier (k-NN) is eval-
uated, using k = 5 neighbors. Obviously, k-NN and SVM are expected to
achieve a higher accuracy in general, since the model complexity in the sparse
RGLVQ classifier is highly restricted by using only one prototype per class. For
these evaluation models, we will therefore focus on differences between fixed
and adapted dissimilarities, instead of comparing the sparse RGLVQ model
with SVM or k-NN classification in terms of accuracy.

As an additional quantitative indicator, independent of any particular classi-
fication model, we measure the ratio of mean intra-class distances to mean inter-
class distances, in the following referred to as separation ratio. Here, smaller
values indicate a clearer class-separation in general, which is an expected result
from the metric adaptation procedure.

4.2 Copenhagen Chromosomes

The sequences in this set represent band patterns from the Copenhagen Chro-
mosomes database [23]. Every sequence encodes the differential succession of
density levels observed in gray-scale images of a human chromosome. Since 7 lev-
els of density are distinguished, a 13-letter alphabet Σ = {f, . . . , a,=,A, . . . ,F}
represents a difference coding of successive positions, where upper and lower
case letters mark positive and negative changes respectively, and “=” means no
change2. Table 6 on page 39 in the Appendix section 7.2 lists all symbols with
their associated difference levels, and the number of occurrences in the consid-
ered data set. From the database we use the “CopChromTwo” subset for binary
classification, containing classes 4 and 5 with 200 sequences each (N = 400). In
the literature, these two classes have been reported to yield a lower recognition
rate than the others, see [10]. The authors in [10] used an organized ensem-
ble of multilayer perceptrons to classify all 22 chromosomes in the Copenhagen
database, and list the classification accuracies for individual classes. For the
chromosomes 4 and 5, they report 91% and 89% accuracy on the test set, re-
spectively, whereas the overall average is 95.86%. However, since every class is

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2For details, see http://algoval.essex.ac.uk/data/sequence/copchrom/
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Figure 6: Metric parameters and results for the Chromosomes data set. The
bottom left shows the initial alignment scoring pattern in the parameters λ ac-
cording to a weighting scheme from [15]. The bottom right shows an adaptation
of λ where costs for an insertion or deletion of the most frequent symbol “=”
are strongly reduced, and replacements of neighboring symbols are decreased
slightly. The graphs in the top figure show that the adaptation improves classi-
fication accuracy over 10 learning epochs in a repeated 5-fold cross-validation.

addressed by a one-versus-all classifier, these values are not directly comparable
to the binary classification task on which we will focus in the following. To
handle the full 22-class database, a local scoring matrix λj for every prototype
~αj would be necessary, which is the subject of ongoing work, see Section 6.

For the Copenhagen Chromosomes data, assumptions about a meaningful
parameterization of the metric are available in [15]. The authors propose a
weighting scheme for the edit distance, where replacement costs are the absolute
difference of corresponding density changes: for example, λ a e = |−1− (−5)| =
4, and λ f F = |−6− 6| = 12. The introduction of any gaps requires half the
maximum of replacement costs, i.e. λk− = λ−m = 6 for all k,m ∈ Σ. See Fig-
ure 6b for the full cost matrix3. Therefore, we compared two different options
to initialize metric parameters λ in our experiment: (i) using the cost pattern
from [15], and (ii) using the simple initialization with equal costs. For both cases,

3Symbols f,F did not occur in the CopChromTwo subset and were thus not considered.
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Method Init. Train (Std) Test (Std) SVM (#SV) 5-NN Sep.

Fixed λ prior 74% (2%) 73% (6%) 97% (174) 95% 0.93
Adapted λ prior 97% (2%) 97% (2%) 98% (129) 98% 0.91
Fixed λ equal 89% (3%) 89% (6%) 96% (210) 97% 0.99
Adapted λ equal 95% (1%) 95% (3%) 97% (139) 97% 0.93

Table 1: Performance of RGLVQ for the Chromosomes data set, comparing
fixed vs. adaptive metric parameters λ, measured by the average Training and
Test accuracies and their standard deviation (Std) in a 5-fold cross-validation
with 10 repeats. From the respective last run, dissimilarities induced by λ are
evaluated by 5-NN classification accuracy, the separation ratio (Sep., where
smaller is better), as well as the average test accuracy of SVM (and number
of support vectors #SV) from a repeated 5-fold cross-validation. All results
are reported for two initialization methods for λ: equal costs, and a weighting
scheme from [15] using prior knowledge.

we compare the classification performance of RGLVQ with and without metric
adaptation, as before. In the latter case, RGLVQ training uses fixed dissimi-
larities based on the respective initial costs λ. The choice of meta-parameters
was optimized w.r.t. the data in a 5-fold cross-validation with 10 repeats, set-
ting crispness β = 20, and learning rate η = 0.45/N to adapt λ. In order to
minimize the computational effort, we chose k = 1, which prove to be sufficient.

First, we consider the initialization of λ according to the weighting scheme
from [15]. The results are displayed in Figure 6, and Table 1 (the two top rows).
With fixed metric parameters, the final classification accuracies are rather low
with 73% average test accuracy, see the baseline in Figure 6a. This is expectable,
since the number of prototypes for RGLVQ was deliberately chosen to be only
one per class, which implies minimal complexity of the classification boundary.
Using more prototypes yields some improvements: with 3, 5, and 7 prototypes
per class, 79%, 79%, and 81% average test accuracy is achieved, respectively.

However, metric adaptation with only one prototype enables a nearly perfect
average accuracy of 97% for training and test sets. This demonstrates how a
problem-adapted metric can alleviate the given classification task, even without
a complex classifier model. (We observed no considerable benefit, when more
prototypes are used.) Interestingly, this major improvement was achieved by
subtle changes in λ from the initial scoring (see Figure 6b) to the final state after
training (see Figure 6c, taken from the last cross-validation run). The adapta-
tion mainly changes the replacement costs for neighboring scales of difference:
many values on the first off-diagonals become nearly zero, signifying that these
symbols are interchangeable within classes. At the same time, the gap costs for
the symbol “=” become lower, which can be attributed to the fact that it is the
most frequent symbol in the set (see Table 6 in the Appendix 7.2).

Comparing the class-separation in the fixed vs. the adapted dissimilarities,
we observe that the separation ratio drops and the 5-NN accuracy improves,
as reported in Table 1. Also, the average number of support vectors used in
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the trained SVM classifiers decreases drastically, which indicates a less complex
classification boundary. This underlines our hypothesis, that metric learning
can greatly facilitate class-discrimination, especially when the parameterization
of the underlying dissimilarity measure is complex.

In the next step, we consider the case of initializing λ with equal costs (meta-
parameters set to β = 7, η = 0.45/N , k = 1). Surprisingly, this very simple
setting of λ yields higher accuracies than the cost pattern proposed in [15], see
the bottom two rows in Table 1. Without any adaptation of the alignment
costs, RGLVQ achieves 89% average test accuracy for one prototype per class.
This can be improved by increasing the model complexity: 93%, 95%, and 95%
average test accuracy are achieved with 3, 5, and 7 prototypes per class, respec-
tively. Learning the metric parameters provides the same level of improvement
to 95%, however, with only one prototype, since the underlying data representa-
tion is tuned according to the classification task. Thereby, the resulting model
is very sparse, and it offers the possibility to inspect and interpret the adapted
metric parameterization. In this case, increasing the number of prototypes also
results in a slightly better classification performance: for example, 5 prototypes
per class yield 96% average test accuracy. Although the 5-NN accuracy is not
increased, the separation ratio is improved by the metric adaptation, and the
average number of support vectors for SVM drops, again supporting our claim.

4.3 Intelligent tutoring systems for Java programming

In the context of educational technology, intelligent tutoring systems (ITSs)
have greatly advanced in recent years. The goal of these systems is to provide
intelligent, one-on-one, computer-based support to students, as they learn to
solve problems in a type of instruction that is often not available because of
scarce (human) resources [36, 7, 37]. One approach to facilitate ITSs is based
on the automatic clustering and classification of student solutions, see [11, 24].
Therefore, a crucial ingredient is a reliable (dis)similarity measure for pairs of
solutions [24]. While a solution could be represented in many forms, we will
focus here on a representation as a (multi-dimensional) sequence. In this exper-
iment, we will consider the dissimilarity between Java programs, as an example
pointing towards the idea of adaptive metrics in an ITS for Java programming,
as described in [24]. Given the complexity of syntactic structures, we demon-
strate how the parameterization of such a dissimilarity measure can be adapted
to facilitate a classification task.

To properly model Java programs as sequential data, we no longer consider
discrete symbolic sequences as before, but instead refer to sequences with more
complex, multi-modal entries. Each entry, in the following called a node, holds
a collection of properties, where the number of properties K is fixed a priori for
the given data set. For every single property, either a finite discrete symbolic
alphabet, or a numeric domain is defined a priori. Given the property number
κ ∈ {1, . . . ,K}, we refer to its designated alphabet or domain as Σκ, i.e. the set
of all possible values for that property. A multi-modal sequence is denoted by:
ã = (a1, . . . , aI , . . . , a|ã|) where aI is a node, and aκI refers to the (symbolic or
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numeric) content of property number κ in this node.
In the case of Java, the nodes represent syntactic building blocks of a Java

program, which were extracted from the abstract syntax tree via the official
Oracle Java Compiler API. Properties are, for example, the node’s position in
the source code file (codePosition, an array of integers indicating the starting
and ending line and column), the type of this node (e.g. a method declaration,
a variable declaration, an assignment, etc.), or more specific properties like the
name of a variable, method or class that is declared.

To define a parameterized alignment measure for such multi-modal sequences,
we will use a generalization of the two alignment scenarios described in Sec-
tion 2.2, on page 6. We adopt the relevance weighting from vectorial sequence
alignment, but loose the restriction to numerical vectors containing real-valued
entries, in favor of a more general notion of nodes containing multiple prop-
erties. Therefore, we replace the ‘inner’ dissimilarity measures for each vector
dimension with a measure for each property: assume a symmetric dissimilarity
dκ : Σκ × Σκ → [0, 1] for each property κ. This measure can be parameter-
ized by some λ (denoted as dκλ), but if this is not specified, we simply assume
dκ(s, t) = 0 ⇔ s = t, and dκ(s, t) = 1 ⇔ s 6= t for all symbols or values
s, t ∈ Σκ ∪ {−} in the corresponding symbolic alphabet or numeric domain.
This means that costs for replacements, insertions, and deletions can be speci-
fied, which corresponds to the case of a scoring matrix in Section 2.2, but now
individually for every property κ. Then, we redefine the ‘outer’ dissimilarity
between single nodes as:

d~g(aI , bJ ) =

K∑

κ=1

gκ · dκλ(a
κ
I , b

κ
J ) .

The vector ~g = (g1, . . . , gK) contains the relevance weights gκ for each property
κ, which lie in the interval [0, 1] and are normalized to sum up to one. Thus,
for gκ = 1, no other property is considered, but κ. If gκ = 0, the property κ
does not contribute to the alignment at all.

In this experiment, our goal is to learn the metric parameters of both, the
outer and inner dissimilarity, i.e. gκ and λ, respectively. Therefore, we use
a two-stage consecutive process: first, we fix the ‘inner’ parameterization λ
for all properties κ, and adapt the ‘outer’ parameters gκ. Thereafter, the re-
sulting weights gκ remain fixed, and the ‘inner’ parameters λ are adapted for
the property with the highest relevance, given by argmaxκ∈{1,...,K}(gκ). For
the adaptation in each stage, we can directly transfer the respective learning
scheme for relevance weights and scoring matrices, as described in Section 2.3.

The Sorting data set consists of a collection of Java programs, which are
freely available in online code-sharing platforms. The programs implement two
different algorithms to sort sets of integer numbers: we collected N = 78 pro-
grams in total, of which 44 implement the BubbleSort algorithm, and 34 realize
InsertionSort. From each program, the sequence of syntactic nodes was ex-
tracted by a parser, where 8 properties are defined for every node. A list of the
properties is given in Figure 7a.
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Figure 7: Results for the Sorting data set, in which the (semantically sound)
adaptation of weights gκ for properties κ (left) yields an improvement of 11%
in average test accuracy (right) in a 5-fold cross-validation with 5 repeats.

Initially, every property κ ∈ {1, . . . , 8} is weighted equally, with gκ = 1/8.
First, we aim to learn a configuration of weights gκ to facilitate class discrimina-
tion. The RGLVQ classifier was trained, with and without metric adaptation,
for 10 epochs with one prototype per class, in a 5-fold cross-validation with 5
repeats. The meta-parameters for metric learning were set to: η = 0.002/N ,
k = 1, and β = 200 (i.e. using a de facto crisp alignment).

The results in Figure 7 and Table 2 (the two top rows) show that RGLVQ
with metric adaptation improves the average test accuracy by 11%, compared
to the default metric with all equal weights gκ. Under the initial metric param-
terization, even a higher number of prototypes in RGLVQ does not yield com-
parable performance: for 7 prototypes per class, the average accuracy is 72%
on the test set. The 5-NN accuracy and separation ratio are also improved
by the metric adaptation, and the average number of support vectors for SVM
decreases, indicating a simpler classification boundary.

The resulting weights are reported in the bar graph in Figure 7a and can be
interpreted as semantically sound for the classification task: type is weighted
as the most relevant property, while parent and codePosition are deactivated
entirely. This is justified, since type holds the most important semantic in-
formation by specifying one out of 29 possible categorial values encoding the
basic functionality of the respective syntax part. (The alphabet for this prop-
erty refers to token types in the abstract syntax tree of a program, a full list
of symbols and corresponding Java code examples can be found in Section 7.3
in the Appendix.) In contrast, (i) parent and (ii) codePosition clearly intro-
duce noise w.r.t. classification, since they encode (i) the index of the previous
node in the syntax tree, and (ii) the position in the raw source code file, both
of which can drastically change from minor alterations in the program and are
thus not discriminative. The intermediate weights for the remaining properties
like className and returnType are also justified, since they convey valuable
information about the semantics, like the class of (return) variables, such as
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Method Init. Train (Std) Test (Std) SVM (#SV) 5-NN Sep.

Fixed g λ equal 75% (3%) 70% (14%) 75% (58) 82% 0.93
Adapted g λ equal 81% (3%) 81% (12%) 87% (49) 87% 0.81
Adapted λ g prior 83% (2%) 82% (9%) 87% (49) 87% 0.81

Table 2: Performance of RGLVQ for the Sorting data set, comparing fixed vs.
adaptive metric parameters (λ and g), measured by the average Training and
Test accuracies and their standard deviation (Std) in a 5-fold cross-validation
with 5 repeats. From the respective last run, dissimilarities (induced by λ or
g) are evaluated with the 5-NN classification accuracy, the separation ratio
(Sep., where smaller is better), as well as the average test accuracy of SVM

(and number of support vectors #SV) from a repeated 5-fold cross-validation.
The results refer to a two-stage learning process: the adaptation of property
weights g (in the two top rows) where λ is set to equal costs, and the subsequent
adaptation of costs λ (in the bottom row) where g is fixed to the result of the
previous learning procedure.

Integer or String. However, since they are empty for many nodes, the lower rel-
evance, as compared to type, can be explained. Interestingly, the property name

refers to textual definitions for variable, class, and function names, freely chosen
by the programmer. Of course, such names are not guaranteed to be meaning-
ful for class-discrimination, and could potentially introduce noise in the data.
However, since our set contains programs from an educational context, these
names are likely to be defined in an explanatory fashion, which justifies the
intermediate weighting.

To facilitate the classification further, we assume the trained weights gκ as
fixed, and subsequently adapt the metric again, now by learning the parameters
dκλ for the most relevant property type. Thus, κ refers to the index of property
type in the following, and we focus on the alphabet Σκ of 29 symbols, as listed
in the Appendix Section 7.3. We therefore return to the learning scheme for
alignment scoring parameters dκλ, in the following denoted as λkm for symbols
k,m ∈ Σκ ∪ {−}. The subsequent adaptation improves the results again, by
1% for the average test accuracy. While this is only a moderate quantitative
enhancement, it can be seen as a refinement of the metric, since the standard
deviation of training and test accuracies was reduced, suggesting a higher ro-
bustness, see Table 2 (the bottom row).

5 Reducing computational demand

Besides an approximation of prototypes by its k most prominent exemplars,
a variety of further approximation techniques can be integrated to enhance
the computational performance. While these methods are not mandatory for
standard data sets, they become necessary as soon as larger data sets, e.g.
N > 500 are addressed: The complexity of RGLVQ scales quadratically with
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the number of data points, so that it becomes infeasible for large data sets. We
will discuss two options for speedup, which address two different bottlenecks of
the computational load:

• Section 5.1 addresses the computation of derivatives with respect to met-
ric parameters: soft alignment requires the consideration of the full align-
ment path for every metric parameter, while crisp alignment reduces to
contributions of the optimal path only. We will consider an approxima-
tion scheme, which disregards small contributions of the alignment paths,
enabling a computation of the derivatives in linear time with respect to
sequence length in the best case, as compared to squared complexity. This
approximation is particularly relevant for long input sequences.

• Section 5.2 addresses the computation of dissimilarities by means of a
reference to the full dissimilarity matrix D: the full dissimilarity matrix
scales quadratically with the number of data. We can approximate D by
a low rank matrix via the popular Nyström approximation. Since D is
used in matrix vector operations only, a low rank approximation speeds
up these operations to linear instead of quadratic time with respect to
the number of sequences. This approximation is particularly relevant if a
large number of training sequences is considered.

5.1 Approximated alignment derivative

As before, we exemplarily consider the setting of a discrete alphabet and the
adaptation of the scoring matrix, parameterized by λkm. The overall runtime for
online learning of metric parameters is strongly affected by the computational
effort to calculate a single alignment derivative: given a set of sample sequences
S and the set of exemplars Ej for one prototype ~αj in one learning epoch,
the derivative ∂d∗(āi, w̄l)/∂dλ is calculated for all pairs of samples āi ∈ S and
exemplars w̄l ∈ Ej , i.e. it is done |S| × |Ej | = N · k times for the update w.r.t.
one prototype in one epoch alone.

Therefore, we empirically evaluate the speedup gained from dropping align-
ment paths with a small contribution, as follows: In the limit β → ∞, contribu-
tions restrict to the best alignment path, hence derivatives ∂d∗(ā, b̄)/∂λkm for
all λkm can be computed in time O(|ā|+ |b̄|) based on the DP matrix. In gen-
eral, derivatives are weighted sums corresponding to alignments of the symbols
k and m at some position (I, J) of the matrix. Weighting takes into account
all possible paths which include this pair according to the path eligibility mea-
sured by softmin′(Ai) for actions Ai ∈ {ARep, AIns, ADel} on the path. The
worst case complexity is O(|ā| · |b̄| · |Σ|2), using backtracing in the alignment
matrix. We propose an approximation based on the observation that a small
softmin′(Ai) leads to a small weight of paths including Ai. Hence, we store the
3 terms ARep, ADel, AIns together with the distances softmin(ARep, ADel, AIns)
in the data structure of the DP matrix, and we cut all values softmin′(Ai) < θ
for a fixed threshold θ ≥ 0. Backtracing depends on the nonzero values only, so
that a speedup to linear complexity is possible in the best case.
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The threshold θ therefore determines that values softmin′(Ai) < θ are ig-
nored in the backtracing of alignment paths. Since the impact of θ depends on
the alphabet size and sequence length, it should be tuned according to good
classification results for the given data set. Typical values lie in the interval
θ ∈ [0.01, 0.2]. As a simple test scenario, we created several sets of random
sequences, each consisting of 10 sequences āi ∈ ΣL with Σ = {A,B,C,D}, with
four different choices of length L. For various thresholds θ, we tracked the run-
time of calculating alignment derivatives for all 100 sequence pairs on a standard
laptop computer with an Intel Core i7 processor (4 cores at 2.9 GHz, and cal-
culations done in parallel). The results in Table 3 clearly show how increasing
θ drastically reduces the computational effort, especially for longer sequences.

To demonstrate that reasonable approximations do not impede classifier per-
formance in practice, we performed single training runs on the Chromosomes

data from Section 4.2, using a random split of 80% training and 20% test data,
with various settings of θ. The training was performed on a server computer
with two Intel Xeon X5690 processors (each with 6 cores at 3.47 GHz), using
the same meta-parameter settings as in the original experiment. Table 4 lists
the achieved test accuracies and runtimes, in comparison with the original re-
sult from Section 4.2. The values show that a slight approximation with θ = 0.1
already reduces the average runtime for one learning epoch by 21%, without de-
creasing the classification accuracy. More crude degrees of approximation yield
further, but marginal speedup, which stagnates for settings θ ≥ 0.2, while the
accuracy drops continuously to 90% for the extreme setting of θ = 0.65. In
general, choices θ > 1/3 carry the risk of loosing potentially valuable learning
stimuli, since all three values ARep, AIns, ADel could be lower than θ for certain
steps in the soft alignment, and therefore this entire alignment path would be
ignored.

Table 3: Runtimes (in seconds) to calculate the alignment derivatives for all
pairs of random strings āi ∈ ΣL, i ∈ {1 . . . 10}, using different thresholds θ and
β = 10. (Note, that this is not a classification task to discriminate labeled data,
but a plain runtime test using all pairs of sequences. Therefore, no classification
accuracies are reported.)

Sequence length L 100 150 200 250
Runtime for θ = 0 7.2 24.6 87.6 426
Runtime for θ = 0.15 4.2 13.2 31.8 98.4
Runtime for θ = 0.2 1.8 6.6 13.8 27.0
Runtime for θ = 0.25 1.2 3.6 7.2 13.2

5.2 Nyström approximation

In our algorithm, metric parameters λ are adapted in every epoch. They induce
a different dissimilarity measure, thus D needs to be re-calculated according to
this new parameterization, see Line 14 in Algorithm 1 on page 13. To avoid
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Table 4: RGLVQ with metric adaptation, evaluated in single training runs on
the Chromosomes data from Section 4.2, using an approximation technique to
calculate the alignment derivative. The degree of approximation is controlled via
the threshold θ by which marginally contributing alignment paths are neglected
in the derivative calculation, i.e. with higher θ the approximation becomes more
crude. For each setting of θ, the final test accuracy is reported, along with the
average runtime for one learning epoch (in seconds). For small settings of θ, the
approximation yields speedup without sacrificing accuracy.

Degree of approximation no approx. θ = 0.1 θ = 0.2 θ = 0.35 θ = 0.65
Epoch runtime in s (%) 303 (100%) 240 (79%) 225 (74%) 228 (75%) 228 (75%)
Test accuracy avg. 95% 97% 95% 94% 90%

the repeated alignment between all sequence pairs, we refer to the Nyström

technique to approximate the full matrix as Dν ≈ D.
The Nyström approximation, as introduced by Williams and Seeger in [38],

allows for an efficient approximation of a kernel matrix by a low-rank matrix.
This approximation can be directly transferred to dissimilarity data, see [28].
The basic principle is to pick a number of V representative landmarks, and
consider the rectangular sub-matrix DV,N of dissimilarities between landmarks
and all data points (in our case sequences). This matrix is of linear size, as-
suming that V is fixed. The full matrix can be approximated in an optimal
way, in the form D ≈ Dν = D⊤

V,ND−1
V,V DV,N where DV,V is the square sub-

matrix of D, and D−1
V,V refers to its pseudo-inverse. While calculating the full

pairwise dissimilarity matrix D takes O(N2) time, the complexity to produce
its approximated counterpart Dν is dominated by: the calculation of DV,N in
O(V ·N) steps, and the pseudo-inverse D−1

V,V , which is O(V 3). This results in an

overall complexity of O(V 2 ·N), which becomes profitable when N is increasing
while V is assumed to be constant. The resulting approximation is exact, if V
corresponds to the rank of matrix D.

To demonstrate the suitability of Nyström approximation for our method,
we replaced the corresponding dissimilarity calculations in our algorithm, and
consider single training runs on the Chromosomes data from Section 4.2. Using
this data set, with N = 400 sequences, we can showcase the validity of the
Nyström technique in principle. However, since the approximation trades the
O(N2) complexity for O(V 2 ·N) based on the chosen number of landmarks V ,
the benefits become more apparent in large-scale scenarios, where the number of
sequences is very high, e.g. N > 1000, and a choice V ≪ N is justified. For the
selection of appropriate landmark sequences, we use a random sample of the data
in the corresponding epoch. This simple strategy relies on no assumptions about
the data structure, and has shown to work well in our experiment. However,
more informed selection plans can be found in the literature, see [39] for example.

The results in Table 5 show that the average runtime for one training epoch
is decreased by 17%, when 70% of the data are chosen as landmarks, i.e.
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V = ⌊0.7 · N⌋. However, this causes a slight drop in test accuracy, from 95% to
89%. Interestingly, we observe that the accuracy does not decrease monoton-
ically with the crudeness of the approximation: using 80% of all sequences as
landmarks yields a better accuracy than using 90%. In the context of Nyström
approximation, this effect has been observed in the literature for the Copen-
hagen Chromosomes data, see [41]. A plausible explanation would be that noise
in the data representation is suppressed at a certain level of approximation.
Our experiment shows, that the Nyström approximation is a valid technique to
decrease the computational effort of the proposed algorithm. A more elaborate
evaluation is the subject of ongoing work, since a realistic application scenario
would involve larger data sets.

Table 5: RGLVQ with metric adaptation, evaluated in single training runs on the
Chromosomes data, using the Nyström approximation to (repeatedly) calculate
the dissimilarity matrix Dν ≈ D. The degree of approximation is controlled via
the number of landmarks V , in relation to the total number of sequences N ,
i.e. with lower V the approximation becomes more crude. For each setting of
V , the final test accuracy is reported, along with the average runtime for one
learning epoch (in seconds).

Degree of approximation no approx. V = ⌊0.9 ·N⌋ V = ⌊0.8 ·N⌋ V = ⌊0.7 ·N⌋
Epoch runtime in s (%) 303 (100%) 274 (91%) 261 (87%) 251 (83%)
Test accuracy 95% 91% 93% 89%

6 Discussion and future work

In this article, we have extended relational LVQ by the powerful concept of
metric learning for sequential data, enabling an automatic adaptation of crucial
metric parameters to the given classification task. Unlike alternative approaches
for sequence metric learning [2], we have combined the metric adaptation strat-
egy with the classifier itself. This enables a very straightforward adaptation
by means of cost function optimization, and an easy evaluation of the perfor-
mance by a reference to the resulting classification error. Besides an improved
classification accuracy and generalization ability of the models, this method
can enhance the interpretability of the resulting classifiers, by pointing out the
relevance of single edit operations. We have demonstrated this effect on sev-
eral examples: an inspection of metric parameters enables us to interpret the
relevance of certain data components for the overall learning task. Thus, the
proposed metric adaptation transfers the principle of relevance learning to the
structural domain.

Although this article focuses on sequence alignment, the approach opens the
way towards efficient metric adaptation schemes for distance-based methods in
other discrete structure spaces, such as trees or graph structures. A similar
metric learning becomes possible, provided the metric is differentiable with re-
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spect to its significant parameters. Note that, unlike the approach [16], we
do not assume differentiability of the dissimilarity measure with respect to the
data structures itself, but differentiability with respect to the adaptive metric
parameters only. Hence, discrete structure spaces are covered by our proposed
technique.

So far, our method relies on a global metric with one set of parameters λ.
This can be problematic, if relevant structural constituents change, depending
on their position in the data space, as is common e.g. for classification problems
with more than two classes. In this context, it could be beneficial to use class-
specific parameter sets λj associated with every prototype ~wj . For vectorial
LVQ, this ‘local’ metric learning has been proposed in [30, 13], and it could be
transferred to the relational setting. However, its computational efficiency be-
comes problematic, due to the computational demand for calculating individual
dissimilarity matrices for every parameter set λj . In this context, it might be
worthwhile to investigate efficient low-rank metric approximations only.

Another important question arises in the context of the interpretability of
metric parameters: it is not clear whether parameter configurations are unique,
and whether invariances exist, caused e.g. by structural invariances. In the lat-
ter case, metric parameters do not necessarily relate to the true relevance of
these structural constituents, rather random effects can occur. This property
has recently been observed in the vectorial setting, when dealing with very high
data dimensionalities. In this case, high relevance can be related to correlations
of data dimensions in some cases, falsely suggesting a high feature relevance if
interpreted directly [33]. Therefore, before relying on the interpretation of met-
ric parameters, a normalization of the representation with respect to structural
invariances is mandatory. For structural data, similar effects can be expected.
Therefore, it is the subject of ongoing work to exactly identify these invari-
ances for a given metric, and to devise unique representatives of the resulting
equivalence classes for valid interpretation.
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7 Appendix

7.1 Derivative of soft alignment

Recall the definition of the soft minimum:

softmin(x1, . . . , xn) =
1

Z

∑

i

pi · xi

where

pi = exp(−β · xi)

Z =
∑

j

pj

The derivative of the soft sequence alignment dissimilarity with respect to the
parameter λq is given as:

∂

∂λq
softmin(x1, . . . , xn) =

∂

∂λq

1

Z

∑

i

pi · xi

=
1

Z2

[(
∑

i

∂

∂λq
pi · xi

)
· Z −

(
∑

i

pi · xi

)
·

(
∂

∂λq
Z

)]

=
1

Z

[
∑

i

∂

∂λq
pi · xi − softmin(x1, . . . , xn) ·

∂

∂λq
Z

]
(∗)

Furthermore:

∂

∂λq
pi · xi =

(
∂

∂λq
pi

)
· xi + pi ·

(
∂

∂λq
xi

)

= pi · (−β) ·

(
∂

∂λq
xi

)
· xi + pi ·

(
∂

∂λq
xi

)

= pi ·

(
∂

∂λq
xi

)
· (−β · xi + 1)

and:

∂

∂λq
Z =

∑

j

∂

∂λq
pj

=
∑

j

pj · (−β) ·
∂

∂λq
xj



Preprint of the publication [26], as provided by the authors. 36

It follows:

(∗) =
1

Z



∑

i

pi ·

(
∂

∂λq
xi

)
· (−β · xi + 1)− softmin(x1, . . . , xn) ·



∑

j

pj · (−β) ·
∂

∂λq
xj






=
1

Z

[
∑

i

pi ·

(
∂

∂λq
xi

)
· (−β · xi + 1) +

∑

i

softmin(x1, . . . , xn) ·

(
pi · β ·

∂

∂λq
xi

)]

=
1

Z

[
∑

i

pi ·

(
∂

∂λq
xi

)
· (−β · xi + 1) + softmin(x1, . . . , xn) ·

(
pi · β ·

∂

∂λq
xi

)]

=
1

Z

∑

i

pi ·

(
∂

∂λq
xi

)
· [−β · xi + 1 + softmin(x1, . . . , xn) · β]

=
1

Z

∑

i

pi ·

(
∂

∂λq
xi

)
· [1− β · (xi − softmin(x1, . . . , xn))]

=
∑

i

(
∂

∂λq
xi

)
· softmin′(xi)

with
softmin′(xi) =

pi
Z

· [1− β · (xi − softmin(x1, . . . , xn))]

This directly leads to Equation 7.

Hebbian learning as a limit case The derivative has a particular nice
interpretation for β → ∞. Consider:

pi
Z

=
exp(−β · xi)∑
j exp(−β · xj)

=
exp(−β · xi) · exp(β ·min(x1, . . . , xn))∑
j exp(−β · xj) · exp(β ·min(x1, . . . , xn))

=
exp[−β · (xi −min(x1, . . . , xn))]∑
j exp[−β · (xj −min(x1, . . . , xn))]

Consider two distinct cases for xj :

• xj = min(x1, . . . , xn). Then:

exp[−β · (xj −min(x1, . . . , xn))] = exp[−β · 0] = 1

• xj > min(x1, . . . , xn). Then (using β → ∞):

exp[−β · (xj −min(x1, . . . , xn))] ≈ 0

Let i1, . . . , iT be the indices, for which xit = min(x1, . . . , xn). Then it follows:

∑

j

exp[−β·(xj−min(x1, . . . , xn)) ≈

T∑

t=1

exp[−β·(xit−min(x1, . . . , xn)) =

T∑

t=1

1 = T
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which in turn leads to:

pi
Z

≈ δmin(xi)

where

δmin(xi) :=

{
1
T

if xi = min(x1, . . . , xn)

0 otherwise

Now it is obvious that softmin does indeed approach min for large β:

softmin(x1, . . . , xn) =
1

Z

∑

i

pi · xi ≈
T∑

t=1

1

T
·min(x1, . . . , xn) = min(x1, . . . , xn)

For softmin′(xit) we get:

softmin′(xit) =
pi
Z

· [1− β · (xi − softmin(x1, . . . , xn))]

≈
1

T
· [1− β · (xit −min(x1, . . . , xn))]

=
1

T
· [1− β · 0]

=
1

T

For all other xj with xj > min(x1, . . . , xn):

softmin′(xj) =
pi
Z

· [1− β · (xj − softmin(x1, . . . , xn))]

≈ 0 · [1− β · (xj −min(x1, . . . , xn))]

= 0

Therefore: softmin′(xi) = δmin(xi). Consider Equation 7 again, and plug in
that result:

∂d∗(ā(I + 1), b̄(J + 1))

∂λq
= δmin(ARep) ·

(
∂d∗

(
ā(I), b̄(J)

)

∂λq
+
∂dλ(aI+1, bJ+1)

∂λq

)

+ δmin(AIns) ·

(
∂d∗

(
ā(I + 1), b̄(J)

)

∂λq
+
∂dλ(−, bJ+1)

∂λq

)

+ δmin(ADel) ·

(
∂d∗

(
ā(I), b̄(J + 1)

)

∂λq
+
∂dλ(aI+1,−)

∂λq

)

Recall Equation 3 and consider the optimal extensions ā∗ and b̄∗ using argmin
instead of min. Using a simple inductive argument it clearly follows:
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• For the case of symbolic sequences:

∂

∂λkm
d(ā, b̄) =

|ā∗|∑

i=1

δ(a∗i , k) · δ(b
∗
i ,m)

• For the case of vectorial sequences:

∂

∂λr
d(ā, b̄) =

|ā∗|∑

i=1

dr(a
∗
i
r, b∗i

r)

where a∗i
r = ψ if a∗i = − and b∗i

r = ψ if b∗i = −.

This strongly resembles Hebbian learning as argued in Section 2.3.
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7.2 Information about the Chromosomes data set

Σ ∆ # occ.

f -6 0
e -5 32
d -4 149
c -3 468
b -2 770
a -1 2542
= 0 17675
A +1 2746
B +2 596
C +3 318
D +4 195
E +5 114
F +6 0

Table 6: The differential encoding for sequences from the Chromosomes data,
described in Section 4.2: each symbol of the alphabet Σ represents a level of
difference ∆ in the density along a banded chromosome. The number of occur-
rences (# occ.) of each symbol are reported for the “CopChromTwo” set, which
is a subset of the original Copenhagen Chromosomes database, see [23, 15].
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7.3 Information about the Sorting data set

Σκ for property ‘type’ Example

array access arr[4]

array type int[]

assignment tmp = arr[i]

binary arr[i] > arr[i + 1]

block { ... }

break break;

class public class MyClass { ... }

compilation unit The entire program file
compound assignment a += 2

do while loop do{ i++;} while(i < 10);

expression statement tmp = arr[i];

for loop for(i = 1; i < 10; i++) { ... }

identifier i

if if(i > 10){ ... }

import import java.util.HashMap;

literal 5

member select arr.length

method int my_fun(int i) { ... }

method invocation bubble(A, l, r)

modifiers public

new array new arr[4]

new class new ArrayList<Integer>()

parameterized type new ArrayList<Integer>

paranthesized (arr[i] > arr[i + 1])

primitive type int

return return arr;

unary i++

variable int i = 0;

while loop while (swapped) { ... }

Table 7: The alphabet Σκ for property type used in the Sorting data set, in
Section 4.3: every symbol of the alphabet (left), with an example Java code
snippet illustrating the respective type (right).


