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Abstract

We analyze a model of strategic network formation prior to a Manea (2011) bargain-
ing game: ex-ante homogeneous players form an undirected network with explicit linking
costs anticipating expected equilibrium payoffs from the subsequent sequential network
bargaining. Assuming patient players, we provide a complete characterization of networks
being pairwise (Nash) stable on a cost interval of positive length: specific disjoint unions
of separated pairs, odd circles and isolated players constitute this class. Even for all single
cost levels we are able to exclude a wide range of structures from being pairwise stable,
including all other equitable networks. As an important implication, this reveals the diver-
sity of possible bargaining outcomes to be substantially narrowed down provided pairwise
stability. Further, we find that for sufficiently high costs the pairwise stable and efficient
networks coincide whereas this does not hold if costs are low or at an intermediate level.
As a robustness check, we also study the case of time-discounting players.

Keywords: Bargaining, Network Formation

JEL-Classification: C78, D85

∗Center for Mathematical Economics (IMW), Economic Behavior and Interaction Models (EBIM), Bielefeld
University, P.O. Box 100131, D-33501 Bielefeld, Germany. Email: fgauer@uni-bielefeld.de, Phone: +49 521 106-
4918. The author would like to thank Michael Günther, Tim Hellmann, Christoph Kuzmics, Jakob Landwehr, Mihai
Manea, and Fernando Vega-Redondo, as well as the participants of various seminars at Bielefeld University and
University Paris 1 Panthéon-Sorbonne for valuable comments and suggestions. This research was carried out within
the International Research Training Group "Economic Behavior and Interaction Models" (EBIM) financed by the
German Research Foundation (DFG) under contract GRK 1134/2.

1



1 Introduction

People often engage in bi- and multilateral bargaining: firms bargain with workers’ unions over
contracts, firms with other firms over prices or collaborations, politicians over environmental

or trade agreements, or even friends and family members over household duties or other ar-
rangements. However, in most of the situations that come to mind not everyone will be able

or willing to bargain with anyone else. This idea can be expressed by means of a network.
One’s bargaining power in negotiations then commonly depends on the number and types of

alternative partners as they present outside options. Agents typically intend to maximize their
expected profit from bargaining, which suggests that beforehand they might want to influence

and optimize their network of potential bargaining partners. This motivates that the underlying
network should not be regarded as being exogenously given but as the outcome of strategic in-

teraction among agents. However, establishing a connection to someone else usually costs some
time and effort, which should be taken into account as well. This gives rise to an interesting

trade-off between the costs of forming links and potential benefits from it, which is the topic of

this paper.

We set up and analyze a sequential model of strategic network formation prior to a Manea

(2011) infinite horizon network bargaining game. We consider ex-ante homogeneous players
who in the first stage form undirected costly links strategically. In the second stage, we take the

resulting network as given and players sequentially bargain with a neighbor for the division of a
mutually generated unit surplus. According to Manea (2011) all subgame perfect equilibria of

the bargaining game are payoff equivalent. Players are supposed to anticipate these outcomes
during the preceding network formation game and to choose their actions accordingly. We ex-

amine players’ strategic behavior regarding network formation, characterize stable and efficient
network structures, and determine possible induced bargaining outcomes.

After giving a description of the model including a summary of the underlying Manea (2011)
bargaining game and his decisive results, we consider the concept of pairwise stability estab-

lished by Jackson and Wolinsky (1996) and first assume players in the bargaining game to be
infinitely patient. For all levels of linking costs we state and prove sufficient conditions for a

network to be pairwise stable (Theorem 1). While costs are relatively high, the only structures
we find to be pairwise stable are specific disjoint unions of separated pairs and isolated players.

When costs decrease, odd circles of increasing size can additionally emerge. At a transition
point also lines of length three can be contained in a pairwise stable network. This result will

also establish global existence of pairwise stable networks. For every combination of the above
subnetworks we state precisely for which cost range it is pairwise stable and for which it is not

(Corollary 1). To provide a complete characterization of pairwise stable equitable networks, i.e.
of structures inducing homogeneous payoffs among players, we establish that any such network
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which is non-empty must be a disjoint union of separated pairs and odd circles (Theorem 2).

Then we focus on the remaining networks inducing heterogeneous payoffs within a component
and show that any of these can at most be pairwise stable at a single cost level which moreover

has to be sufficiently small (Theorem 3, Corollary 2). This finishes the complete characteriza-
tion of networks being pairwise stable on a cost interval of positive length, which is a principal

achievement of this paper.
As a second main result, we deduce that pairwise stability narrows down the diversity of induced

bargaining outcomes substantially (Corollary 3). Specifically, any player’s payoff is either 1
2 or

0 while profits are 1
2 minus at most twice the linking costs or 0 in networks being pairwise stable

on a cost interval of positive length. If one drops the latter restriction, payoffs of both 1
2 plus

and minus the costs of one link can additionally occur. Furthermore, we reveal that networks

containing a tree with more than three players or a certain kind of component-connecting player
are never pairwise stable, that is not even at a single cost level (Proposition 2 and 3). The ob-

servation that structures being pairwise stable for more than a single cost level even prove to be
pairwise Nash stable concludes the main part (Corollary 4).

Beyond that, we establish that for sufficiently high linking costs the networks being efficient in
terms of a utilitarian welfare criterion coincide with those we identified to be pairwise stable.

However, as long as costs are low, the efficient networks constitute a proper subset of the pair-
wise stable ones while there also exists an intermediate cost range which does not even yield

such a subset relation (Theorem 4 and Corollary 5). As a robustness check, we also relax the
assumption that players are infinitely patient and show that pairwise stability in this framework

does not necessarily imply pairwise stability for the original case with infinitely patient players

and vice versa (Example 1 and 2).

For a concrete economic application which is captured by our model and which might contribute

to a better understanding of the framework one can have the following in mind: Consider a
number of similar firms beginning operation at the same time. They can mutually generate

an (additional) surplus within bilateral projects by exploiting synergy potentials. For instance,
this possibility might be based on capacity constraints or cost-saving opportunities. However,

the underlying cooperation network is not existent yet and will therefore be the outcome of
strategic interaction between firms. In charge of that are project managers who receive bonus

payments proportional to their employer’s profit from the project. We assume that each of them
keeps her job until she finalizes a joint project successfully by finding an agreement with the

corresponding counterpart and leaves or is promoted afterwards and then gets replaced by a
successor. Thus, the network remains unchanged after it has initially been established by the

first project managers.

To take the suitable framework and convenient results established by Manea (2011) as a start-

ing point in this context is fairly obvious. To my best knowledge, it is the only work which
purely focuses on the impact of explicit network structures on players’ bargaining power and
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outcomes in a setting of decentralized bilateral bargaining without ex-ante imposing any restric-

tions to the class of networks considered. Therefore, there are no distorting effects present in
this setting as they might arise from heterogeneity among players and it is more general than

buyer-seller scenarios which impose bipartite network structures. Moreover, Manea’s (2011)
network bargaining game remains analytically tractable and has some important properties. For

any level of time discount there may exist several subgame perfect equilibria but he shows that
all of these are payoff equivalent. Furthermore, he develops an equally convenient and sophis-

ticated algorithm determining the limit equilibrium payoffs for a given network if players are
infinitely patient. We will extensively make use of this algorithm and contribute to a profound

understanding of its features throughout the paper.

The analysis of bargaining problems has a long tradition in the economic literature and dates

back to the work of Nash (1950). A Nash bargaining solution is based on factors like play-
ers’ bargaining power and outside options, where its origin is however not part of the theory.

This also applies for Rubinstein (1982), who analyzes perfect equilibrium partitions in a two
player framework of sequential bargaining in discrete time with an infinite horizon, as well as

for Rubinstein and Wolinsky (1985), who set up a model of bargaining in stationary markets
with two populations. The work of Manea (2011) – to which we add a preceding stage of strate-

gic interaction – can be regarded as an extension or microfoundation of these seminal papers.
Here, bargaining power is endogenized as an outcome of the given network structure and the

respective player’s position therein in a natural and well-defined manner. Further important

contributions to the literature on decentralized bilateral bargaining in exogenously given net-
works have been made by Abreu and Manea (2012) and Corominas-Bosch (2004), where the

latter considers the special case of buyer-seller networks.

Second, this paper contributes to the more recently emerging literature on strategic network for-

mation, which has mainly been aroused by the seminal works of Jackson and Wolinsky (1996)
and Bala and Goyal (2000). Among other lines of research, some effort has been dedicated to

gaining rather general insights regarding the existence, uniqueness and structure of stable net-
works. Therefore, we take results such as the ones found by Hellmann (2013) and Hellmann

and Landwehr (2014) into account when considering stability issues in our model. We will
show that crucial conditions are not met in our model, which implies that their results are not

applicable here.

So far there exist only few papers combining these two fields of research. Calvó-Armengol

(2003) studies a bargaining framework à la Rubinstein (1982) embedded in a network context
and considers stability and efficiency issues. However, the mechanism determining bargaining

partners is different from Manea (2011) and the network bargaining game ends after the first
agreement has been found. As a consequence, in Calvó-Armengol’s (2003) model a player’s

network position does not affect her bargaining power as such but only the probability that she
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is selected as proposer or responder. This leads to a characterization of pairwise stable networks

in which the players’ neighborhood size is the only relevant feature of the network structure.
Thus, it differs substantially from our results though both papers have in common the assump-

tion that links are costly. By contrast, Manea (2011, Online Appendix) abstracts from explicit
linking costs when approaching the issue of network formation as an extension of his model.

He shows that for zero linking costs a network is pairwise stable if and only if it is equitable.
Though results differ and get more complex for positive linking costs, we will see that the paper

at hand is in line with this finding such that both works complement one another. Our additional
considerations regarding efficiency and time discount further contribute to this.

Furthermore, the paper of Condorelli and Galeotti (2012) is related to some extent. They an-
alyze the strategic network formation process in a trading framework and also provide a com-

parison between stable and efficient networks. However, they consider an indivisible object
being traded via the network according to a particular class of trading protocols, which again

implies significant differences regarding the structure of stable and efficient networks compared
to our results. Most other papers studying strategic network formation in a bargaining context

again focus on buyer-seller networks, which is complementary to our general approach. Kran-
ton and Minehart (2001) and Polanski and Vega-Redondo (2013) are prominent examples for

this, whereby the latter also does not involve explicit linking costs.

The rest of the paper is organized as follows: In Section 2 we introduce the model including the

decisive results of Manea (2011). The main results of the paper at hand are developed in Section
3, which focuses on the structure of stable networks in the case that players are infinitely patient.

In Section 4 we state commonalities and differences regarding stability if players discount time

to some degree. In Section 5 we examine efficient networks. Section 6 concludes and discusses
different questions for future research. In Appendix A we elaborate on the work of Hellmann

(2013) and Hellmann and Landwehr (2014). The detailed proofs not provided immediately are
postponed to Appendix B.

2 The Model

Let time be discrete, t = 0,1,2, .... For the initial period t = 0 consider a set of players N =

{1,2, ...,n} connected by an undirected graph g ⊆ gN = {i j | i, j ∈ N, i ̸= j}. These players are
assumed to be homogeneous apart from their potentially differing network positions. Here i j ∈ g

means that players i and j are able to jointly generate a unit surplus. Let Ni(g) = { j ∈N | i j ∈ g}
denote the set of player i’s neighbors in g and let ηi(g) = |Ni(g)| be its cardinality. Each link is

assumed to cause costs of c > 0 for both players involved such that given network g player i has
to bear total costs of ηi(g)c in t = 0. We assume players to discount time by a uniform discount

factor δ ∈ (0,1].
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We take this as a starting point for an infinite horizon bargaining game à la Manea (2011).

In each period t = 0,1,2, ... nature randomly chooses one link i j ∈ g, which means that i and
j are matched to bargain for the mutually generated unit surplus. One of the two players is

randomly assigned the role of the proposer, while the other one is selected as responder. Then
the proposer makes an offer how to distribute the unit surplus and the responder has the choice:

If she rejects, then both receive a payoff of 0 and stay in the game, whereas if she accepts, then
both leave with the shares agreed on. In the latter case both players get replaced one-to-one in

the next period.1 This implies that each of the initial players 1,2, ...,n will bargain successfully
one time at most. A player’s strategy in this setting lays down the offer she makes as proposer

and the answer she gives as responder after each possible history of the game. Based on this, a
player’s payoff is then specified as her discounted expected agreement gains. A strategy profile

is said to be a subgame perfect equilibrium of the bargaining game if it induces Nash equilibria
in subgames following every history (cf. Manea, 2011).

From Manea (2011, Theorem 1) we know that all subgame perfect equilibria are payoff equiv-
alent and each player’s equilibrium payoff exclusively depends on her network position and

the discount factor δ which is at this point restricted to be strictly smaller than 1. Moreover,

the equilibrium payoff vector which we denote as v∗δ (g) is the unique solution to the equation

system

vi =

(
1− ∑

j∈Ni(g)

1
2d#(g)

)
δvi + ∑

j∈Ni(g)

1
2d#(g)

max{1−δv j,δvi}, i ∈ N, (2.1)

where d#(g) denotes the total number of links in the network g. If it is δ
(
v∗δ

i (g)+ v∗δ
j (g)

)
< 1

for i j ∈ g, then this means that player i and j will find an agreement when their mutual link

is selected, whereas δ
(
v∗δ

i (g) + v∗δ
j (g)

)
> 1 means that they will each prefer to wait for a

potentially better deal with a weaker partner.2 This gives rise to the definition of the so called
equilibrium agreement network g∗δ :=

{
i j ∈ g : δ

(
v∗δ

i (g)+ v∗δ
j (g)

)
≤ 1
}

.

We assume that players 1,2, ...,n know the whole structure of the network g they are part of.

Therefore they are able to anticipate equilibrium payoffs and are assumed to play a a subgame
perfect equilibrium strategy profile. Given a network g and a discount factor δ , we will for sim-

plicity refer to v∗δ
i (g) as player i’s payoff. Throughout this paper it is important to distinguish

this precisely from the profit which is payoff minus total linking costs, so for player i ∈ N

u∗δ
i (g) = v∗δ

i (g)−ηi(g)c.

1This replacement is primarily due to technical reasons since this implies that the network structure does not
change over time, which makes the model analytically tractable. However, recalling the motivating example on
bilateral project cooperation shows that there are indeed situations in reality captured by that.

2In the case δ
(
v∗δ

i (g)+ v∗δ
j (g)

)
= 1 both players are indifferent.
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Notice that in our model a non-isolated player’s profit is always strictly smaller than her payoff

since we assume strictly positive linking costs c > 0.

For a large part of this paper we will as a benchmark focus on the limit case of δ = 1 meaning

that players are infinitely patient. For this case Manea (2011, Theorem 2) finds that there exists
some bound such that for all δ above it the corresponding equilibrium agreement networks are

equal. This network g∗ is then defined as limit equilibrium agreement network. We adopt this
notation here. Moreover, we deduce again from Manea (2011, Theorem 2) that the so called

limit equilibrium payoff vector v∗(g) = v∗1(g) = limδ→1 v∗δ (g) exists. Beyond that, Manea
(2011, Proposition 2) shows that it is v∗i (g)+v∗j(g)≥ 1 for all i j ∈ g and if i j ∈ g∗, then we even

have v∗i (g)+ v∗j(g) = 1, which will be important throughout our analysis as well.

Manea (2011) develops a smart algorithm to compute the payoff vector v∗(g) and we will make

use of this. To understand the algorithm we need to introduce some additional notation. For
any set of players M ⊆ N and any network g let Lg(M) = { j ∈ N | i j ∈ g, i ∈ M} be the set of

the corresponding partners in g, that is the set of players having one or more links to players
in M in g.3 A set M ⊆ N is called g-independent if g|M = {i j ∈ g | i, j ∈ M} = /0, that is no

two players contained in M are linked in g. Moreover, let I (g) ⊆ P(N) denote the set of all
nonempty g-independent subsets of N. Then the algorithm determining the payoff vector v∗(g)

is the following.

Definition 1 (Manea (2011)). For a given network g on the player set N, the algorithm A (g)

provides a sequence (rs,xs,Ms,Ls,Ns,gs)s=1,...,s̄ which is defined recursively as follows: Let

N1 = N and g1 = g. For s ≥ 1, if Ns = /0 then stop and set s̄ = s. Otherwise, let

rs = min
M⊆Ns,M∈I (g)

|Lgs(M)|
|M|

. (2.2)

If rs ≥ 1 then stop and set s̄ = s. Otherwise, set xs =
rs

1+rs
. Let Ms be the union of all minimizers

M in (2.2). Denote Ls = Lgs(Ms). Let Ns+1 = Ns\(Ms ∪Ls) and gs+1 = g|Ns+1 .

Given such a sequence of parameters being the outcome of the described algorithm it is straight-
forward to calculate the limit equilibrium payoff vector for the network at hand. However, this

sophisticated result of Manea (2011, Theorem 4) is absolutely fundamental for our work:

Payoff Computation (Manea (2011)). Let (rs,xs,Ms,Ls,Ns,gs)s=1,...,s̄ be the outcome of A (g)

for a given network g. Then the limit equilibrium payoffs are given by

v∗i (g) = xs ∀ i ∈ Ms ∀ s < s̄,

v∗j(g) = 1− xs ∀ j ∈ Ls ∀ s < s̄,

v∗k(g) =
1
2 ∀ k ∈ Ns̄.

(2.3)

3Do not confuse with the notation of Manea (2011) who calls Lg∗(M) partner set.
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Let us figure out what the algorithm A (g) in combination with the previous result actually does.

Starting with the network g and player set N, at each step s it identifies the so called minimal
shortage ratio rs among the remaining players Ns in the network gs = g|Ns . There is a largest set

Ms which minimizes this shortage ratio such that

rs =
|Ls|
|Ms|

,

where Ls is the partner set of Ms. The limit equilibrium payoff of all players in Ms is then given
by xs =

rs
1+rs

= |Ls|
|Ms|+|Ls| , whereas their partners in Ls receive 1−xs =

|Ms|
|Ms|+|Ls| . These players and

their links are then deleted from the network and the algorithm moves forward to the next step.
It stops when there are either no more players left or if the minimal shortage ratio is greater than

or equal to 1. In the latter case the limit equilibrium payoff of all remaining players is 1
2 . Manea

(2011, Proposition 3) shows that the sequence of minimal shortage ratios (rs)s and therefore

also (xs)s are strictly increasing.

In the framework of our paper with δ = 1 the described algorithm A (g) together with the

previous considerations then determines the profit u∗i (g) = v∗i (g)−ηi(g)c of every player i ∈ N.

Obviously, the profile of the payoffs and therefore also the profile of the profits u∗ =
(
u∗i
)

i∈N is
component-decomposable, that is u∗i (g) = u∗i

(
g|Ci(g)

)
for all i ∈ N and for all networks g. Here

Ci(g)⊆ N denotes the so called component player i is part of in the network g which is defined
as the minimal set of players such that both i ∈ Ci(g) and no player in Ci(g) has a g-link to

a player not contained in Ci(g). This means that the structure of the network within a certain
component does not affect the profit of players outside this component. Furthermore, notice

that Manea (2011) develops the algorithm A (g) assuming that there are no isolated players in

the underlying network g. However, it is easy to see that the equations (2.3) are still fulfilled
if one relaxes this restriction. It is clear that isolated players have a limit equilibrium payoff of

0 since they have no bargaining partner they could generate a unit surplus with . On the other
hand, in this case the algorithm A (g) provides r1 = 0 such that x1 = 0 and M1 is the set of

all isolated players in the network such that L1 = /0. Then according to (2.3) all players in M1

receive a limit equilibrium payoff of x1 = 0 as required.

Throughout the next Section we will assume that each player can influence the network structure
by altering own links before the bargaining game starts. This means that the network is no longer

exogenously given as in the work of Manea (2011) but the outcome of strategic interaction
between players. This implies questions regarding the stability of networks and leads to the

main results of this paper. Our analysis will mainly be based on the seminal concept of pairwise
stability, which has been introduced by Jackson and Wolinsky (1996).

Definition 2 (Pairwise Stability, Jackson and Wolinsky (1996)). Given a profile of network

utility or profit functions (ui)i∈N , a network g is pairwise stable if both
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(i) for all i j ∈ g: ui(g)≥ ui(g− i j) and

(ii) for all i j /∈ g: ui(g+ i j)> ui(g)⇒ u j(g+ i j)< u j(g).

This notion of stability focuses on one link deviations and thus a network is called pairwise

stable if no player can improve by deleting a single link and also no two players can both
individually benefit from adding a mutual link. One might argue that in general severing links

does not cost any effort since there is no coordination between players required and therefore
one should allow for the possibility of multiple link deletion in this context. This gives rise to

the notion of pairwise Nash stability where condition (i) of Definition 2 is replaced by

(i)’ for all i ∈ N, li ⊆ {i j ∈ g}: ui(g)≥ ui(g− li).

In Section 5 we will then concentrate our attention on networks being efficient, that is on struc-

tures which yield maximal utilitarian welfare.

Definition 3 (Utilitarian Welfare and Efficiency). Let N be a set set of players and (ui)i∈N a

profile of network utility or profit functions.

• The utilitarian welfare yielded by a network g is defined as

U(g) := ∑
i∈N

ui(g).

• A network g is called efficient if for all g′ ⊆ gN

U(g)≥U(g′).

So we will denote a network to be efficient if the unweighted sum of individual profits cannot
be further increased. Based on these fundamental concepts and definitions we are now able to

establish our results in the following Sections 3, 4 and 5.

3 Stability

Throughout this Section we consider infinitely patient players who intend to maximize their

profit from the subsequent network bargaining game by link creation and deletion. We examine
which network structures turn out to be stable such that none of the players wants to add or

delete further links. For all levels of linking costs we identify structures being pairwise stable.
Afterwards, we gradually rule out the possibility to be pairwise stable for a broad range of

networks and in doing so provide a complete characterization of networks being pairwise stable
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on a cost interval of positive length. We show that these networks are even pairwise Nash stable

and that the induced payoff and profit structures are highly homogeneous.

It is important to notice first that the literature provides some general results about the exis-

tence, uniqueness and structure of pairwise stable networks, which we should take into ac-
count. For instance, according to Hellmann (2013) the existence of a pairwise stable network

is guaranteed if the profile of utility or profit functions
(
ui
)

i∈N is ordinal convex in own links
and satisfies ordinal strategic complements. Other findings of Hellmann (2013) and Hellmann

and Landwehr (2014) concerning these issues are further and among other properties based
on concavity, anonymous convexity, the strategic substitutes property or strong preference for

centrality. Explanations and definitions of these concepts are summarized in Section A of the
Appendix. Beyond that and even more importantly, counterexamples are provided which prove

that crucial ones of these properties are not satisfied in our model with δ = 1. Thus, the results

of Hellmann (2013) and Hellmann and Landwehr (2014) are not applicable here, which gives

rise to the upcoming more profound analysis.

As already mentioned, we will first focus on one link deviations, which is captured by the notion

of pairwise stability (cf. Definition 2). To get a first impression of the problem let us have a look
at the situation for three players. It will turn out that this case already covers many important

aspects of the network formation game. Figure 1 illustrates the four types of networks which
might appear including the corresponding profits u∗i for players i = 1,2,3. Notice that all other

possible networks can be derived by permuting the three players, which does not provide any

further insight since players are ex-ante homogeneous.

0 0

0 1
2 − c

1
2 − c 0

1
3 − c

2
3 − 2c 1

3 − c

1
2 − 2c

1
2 − 2c1

2 − 2c

gI gII gIII gIV

Figure 1: 3-Player Example

We see immediately that the network gI is pairwise stable if and only if the linking costs c are

greater than or equal to 1
2 . Otherwise any two players could both increase their profit from 0 to

1
2 − c by creating a mutual link. However, for c = 1

2 also no player wants to delete this link and

indeed, the cost range c ∈
(1

6 ,
1
2

]
is the one for which gII is pairwise stable. Link deletion can

obviously not be improving and if one of the two connected players creates a link to the third

player, she would end up with a profit of 2
3 −2c which is strictly smaller than 1

2 −c for this cost
range. These two terms are equal for c = 1

6 , but the third player would improve from 0 to 1
6 .
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Therefore in this case and also if costs are even smaller, gII is no longer pairwise stable. But so

is gIII for c = 1
6 because no player has incentives to delete a link and the two players who are

not connected are indifferent between creating a mutual link and refraining from this since for

this cost level 1
3 − c = 1

6 = 1
2 −2c. However, if linking costs are even smaller, then both would

profit from the mutual link. Hence, gIII is pairwise stable if and only if c = 1
6 . For c ∈

(
0, 1

6

]
the

network gIV is pairwise stable, which is not true for higher cost levels.

We will see that these mechanisms being crucial in the three-player example transfer similarly

to more general cases. The following important Theorem 1 reveals sufficient conditions for
pairwise stability, that is for all levels of costs it provides concrete network structures being

pairwise stable.

Theorem 1 (Sufficient Conditions for Pairwise Stability). In the framework as introduced in

Section 2 with δ = 1 the following holds:

(i) The empty network is pairwise stable if c ≥ 1
2 .

(ii) A network which is a disjoint union of separated pairs4 and at most one isolated player

is pairwise stable if c ∈
(1

6 ,
1
2

]
. Additionally, if c = 1

2 , then several isolated players can

coexist in a pairwise stable network.

(iii) A network which is a disjoint union of odd circles5 with at most 1
2c members and either

separated pairs or at most one isolated player is pairwise stable if c ∈
(
0, 1

6

]
. Addition-

ally, if c = 1
6 and given that there is no isolated player, there can also exist lines of length

three6 in a pairwise stable network.

The formal proof of Theorem 1 as well as all subsequent proofs not provided immediately in

a detailed and formal manner can be found in the Appendix. Notice that of course not all of
the structures listed above must necessarily be present in a network to be pairwise stable. For

instance, if it is c = 1
6 , then also a network consisting only of lines of length three is pairwise

stable or if it is c = 1
3 , then – as we have seen in Figure 1 – there do not need to be several

separated pairs.

A byproduct of Theorem 1 is that it guarantees the existence of a pairwise stable network at

each level of costs. Furthermore, we have given a characterization of at least some pairwise
stable networks for each level of costs. However, it is not clear at all that the types of networks

examined in Theorem 1 are in each case the only pairwise stable ones. Anyway, we can already
state some consequences from our observations in Figure 1 and the Proof of Theorem 1:

4A separated pair denotes a subnetwork induced by a two player component.
5An odd circle denotes a subnetwork which is induced by a component consisting of an odd number of players

and moreover is regular of degree two.
6A line of length K ≥ 3 denotes a subnetwork induced by a K player component which can be transformed to a

circle by adding one link.
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Corollary 1. In the model with δ = 1 a network is not pairwise stable if it contains

(i) more than one isolated player while c < 1
2 .

(ii) a separated pair while c > 1
2 .

(iii) a line of length three while c ̸= 1
6 .

(iv) an odd circle with more than 1
2c members. In particular this means that there can be no

odd circles at all in pairwise stable networks as long as c > 1
6 .

(v) an isolated player combined with a separated pair or a line of length three while c ≤ 1
6 .

The statements (i)-(iv) follow immediately from the three-player example (cf. Figure 1) and the
Proof of Theorem 1. The short proof of part (v) is as usual given in the Appendix.

In general, it is clear that a network can only be pairwise stable if any link is profitable for both
players involved or at least linking costs are covered by the additional payoff. Therefore, the

intuition says that there cannot be disagreement links in a pairwise stable network. One might
argue that such a link leads to higher costs for both players connected through it, whereas it

seems to be irrelevant regarding payoffs. If it is selected by nature at some point in time, the

two players will not find an agreement in the bargaining game. So why should they connect?
However, things are a bit more complicated. With regard to the mechanism of the algorithm

A (g) which determines the payoff of each player in a given network, a disagreement link could
have a rather global effect. It is conceivable that deleting such a link can change the whole

payoff structure induced by the network, which then might also affect the two edge players.
For instance, the presence of a link, though giving rise to a disagreement, might prevent one of

the players it connects and who receives a payoff of at least 1
2 from being deleted during the

algorithm as part of a g-independent set, which would induce a lower payoff for this player.

However, we find that our first intuition is indeed correct:

Proposition 1 (Disagreement Links). If a network g is pairwise stable for δ = 1, then g∗ = g,

that is g does not contain disagreement links. In particular, this implies v∗i (g)+ v∗j(g) = 1 for

all i j ∈ g.

In the following this will repeatedly prove to be a valuable insight while ruling out the possibil-

ity to be pairwise stable for a broad range of network structures. The idea of the proof (which
can again be found in the Appendix) is to assume for contradiction that g is pairwise stable and

contains a disagreement link i j. By adapting the proof of Manea (2011, Theorem 4) appropri-
ately we show that it is indeed v∗k(g) = v∗k(g− i j) for all k ∈ N such that players i and j will

want to delete their mutual link.

We will now first consider networks with a homogeneous payoff structure. In line with Manea

(2011) we call a network equitable if every player receives a payoff of 1
2 . For a given network
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g with player set N we define the subset Ñ(g) :=
{

i ∈ N | v∗i (g) =
1
2

}
. This notation will be of

importance for the following Theorem, which together with Proposition 1 reveals that a network
can only be pairwise stable if any player receiving a payoff of 1

2 is contained in a component

which either induces a separated pair or an odd circle.

Theorem 2 (Equitability and Pairwise Stability). In the model with δ = 1 consider a network g

with player set N. If g is pairwise stable, then g|Ñ(g) must be a disjoint union of separated pairs

and odd circles.

In the proof we assume for contradiction that g is pairwise stable but g|Ñ(g) is not a disjoint union

of separated pairs and odd circles. Notice that by Proposition 1 a link from a player in Ñ(g) to
a player outside this set cannot exist, which implies that it is v∗i (g) = v∗i (g|Ñ(g)) for all i ∈ Ñ(g).

Further, we make use of both directions of Manea (2011, Theorem 5), which establishes that a
network is equitable if and only if it has a so called edge cover g′ formed by a disjoint union of

separated pairs and odd circles. In this context a network g′ is said to be an edge cover of g|Ñ(g)

if it is g′ ⊆ g|Ñ(g) and no player in Ñ(g) is isolated in g′. This implies that any player in Ñ(g)

will want to delete each of her links not contained in g′.

Notice that the statement of Theorem 2 is different from, but to some extent as well in line with

Manea (2011, Theorem 1(ii) of the Online Appendix), which establishes that for zero linking
costs a network is pairwise stable if and only if it is equitable. Of course in this case no player

can gain anything by deleting redundant links from an equitable network, which gives rise to
a larger class of pairwise stable equitable networks. However, as we have seen in Figure 1

and Theorem 1 for positive linking costs there exist also non-equitable structures such as the
network consisting of an isolated player combined with separated pairs or odd circles which can

be pairwise stable. In addition, the line of length three has to be mentioned as well though such
a component can only occur if it is exactly c = 1

6 and therefore solely on a cost interval of length

zero. In what follows, this kind of singularity will appear again in a more general context.

Summing up, with regard to conditions on the network structure which are necessary for pair-

wise stability we so far focused on networks inducing homogeneous payoffs within each of its
components. Notice that according to Manea (2011, Proposition 2, Lemma 1) in such networks

all payoffs must be equal to either 1
2 or 0. Thus, through Theorem 1, Corollary 1 and Theorem

2 we achieved a complete characterization of pairwise stable structures among this particular

class of networks.

Most of the rest of this Section will now be devoted to the remaining networks inducing hetero-

geneous payoffs within a component and the examination of the possibility for these structures
to be pairwise stable. As we will see, this is somewhat more complex. First, let us make sure

to be aware of the following property of pairwise stable non-equitable networks, which is again

an immediate consequence of Proposition 1.
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Remark 1. Let g ̸= /0 be a non-equitable network consisting of only one component and assume

that it is pairwise stable for δ = 1. Then there exists a unique partition M ∪̇L=N with |M|> |L|
and g|M = g|L = /0, meaning that g is bipartite. What is more, payoffs are

v∗i (g) = x <
1
2

∀i ∈ M and v∗j(g) = 1− x >
1
2

∀ j ∈ L,

where x = |L|
|M|+|L| .

Notice here that according to Manea (2011, Proposition 3) the sequence of minimal shortage

ratios provided by the algorithm in Definition 1 is strictly increasing for any network. Thus,
Remark 1 implies that in the given case A (g) already stops after removing all players during

the first step. This leads to a heterogeneous payoff distribution with two different payoffs, one
below and one above 1

2 .

In the following we will first establish a rather general property of the algorithm given in Defi-
nition 1. This will then be used to prove two important Lemmata which taken together result in

the final Theorem of this Section. To start with, we consider some network and a subset of the
player set which for some step of the algorithm contains less players belonging to the shortage

ratio minimizing independent set than corresponding partners. We show that in this case there
exists a player outside the subset who is both part of the shortage ratio minimizing independent

set and neighbor of a member of the partner set inside the considered subset:

Lemma 1. Let g̃ be a network with A (g̃) providing (r̃s, x̃s,M̃s, L̃s, Ñs, g̃s)s. For any step s < s̄

and any set I ⊆ N the following implications must apply:

(i) 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I)∩ M̃s ∩ I{| ≥ 1,

(ii) 1 ≤ |M̃s ∩ I|< |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I)∩ M̃s ∩ I{| ≥ 2,

To prove these implications we assume that they are not fulfilled for some step s < s̄. Given this,

we show that one can reduce the shortage ratio r̃s by removing the respective players contained
in the subset I ⊆ N from M̃s and L̃s. However, this contradicts the minimality of r̃s. For a

detailed proof see the Appendix.

Now, we will use this result to basically demonstrate that whenever two weakest players in a

pairwise stable network inducing heterogeneous payoffs within a component link to each other,

then in the altered network both players will receive a payoff of 1
2 .

Lemma 2. In the framework with δ = 1 consider a pairwise stable network g with player set

N for which the algorithm A (g) provides (r1,x1,M1,L1,N1,g1) with r1 ∈ (0,1). Then for all

i, j ∈ M1 it is

v∗i (g+ i j) = v∗j(g+ i j) =
1
2
.
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Further, if the player set is extended by an isolated player n+ 1 while the network g contains

the same links as before, it similarly is v∗i (g+ i(n+1)) = v∗n+1(g+ i(n+1)) = 1
2 .

While the formal proof is again provided in the Appendix, we briefly sketch the first part here:

Assume that there exists a player belonging to M1 who receives a payoff being strictly greater
than 1

2 in the network g+ i j. Based on this, one can alternately apply Lemma 1(i) to the network

g and (ii) to g+ i j and thereby sequentially add appropriate players to the subset I ⊆ N without
coming to an end. This then leads to a contradiction to the finiteness of the player set. Therefore,

the payoff of player i and j can be at most 1
2 each. The result then follows immediately since

by Manea (2011, Proposition 2) it is v∗i (g+ i j)+ v∗j(g+ i j)≥ 1.

In a similar way we will next address the issue of one link deletion from a pairwise stable
network with heterogeneous payoffs. We will establish that this cannot change players’ payoffs

fundamentally. In particular, this means that players who were able to rake in a larger share of
the surplus generated with their bargaining partners in g will never fall back below a payoff of
1
2 even if they delete an own link.

Lemma 3. In the model with δ = 1 let g be a pairwise stable network consisting of one single

component such that A (g) provides (r1,x1,M1,L1,N1,g1) with r1 < 1. It then is

v∗j(g− kl)≥ 1
2
≥ v∗i (g− kl)

for all j ∈ L1, i ∈ M1 and kl ∈ g.

The corresponding proof is similar to the one of Lemma 2. This time we assume that there
is a player in L1 who falls back below a payoff of 1

2 after some link kl is dropped from the

pairwise stable network g. Here, it is then possible to sequentially and endlessly increase I ⊆ N

by alternately applying Lemma 1(i) to the network g− kl and (ii) to g. This contradiction then

already concludes the proof given in the Appendix.

Taken together, Lemma 2 and Lemma 3 lead to the following result, which narrows down the

class of potentially pairwise stable networks substantially.

Theorem 3 (Payoff Heterogeneity and Pairwise Stability). In the model with δ = 1 a network

containing a component in which players receive heterogeneous payoffs can only be pairwise

stable if there occur exactly two different payoffs x ∈
(
0, 1

2

)
and 1− x ∈

(1
2 ,1
)

in any such

component and it is

x+ c =
1
2
.

Based on the previous results the proof of this Theorem is straightforward:

Proof. Let g be a pairwise stable network containing a component in which there exist two play-

ers receiving different payoffs. Let C ⊂ N be one such component and let (r1,x,M1,L1,N1,g1)
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be the outcome of A (g|C). Notice that in this case the algorithm already has to stop after the

first step by Proposition 1 (cf. Remark 1). Also, this yields that there must be exactly two
different payoffs given by x ∈

(
0, 1

2

)
and 1− x ∈

(1
2 ,1
)

within C. Moreover, for i ∈ M1 Lemma

2 provides the stability condition

x−ηi(g|C)c ≥
1
2
− (ηi(g|C)+1)c ⇔ x+ c ≥ 1

2
.

Similarly, according to Lemma 3 for j ∈ L1 we need to have

(1− x)−η j(g|C)c ≥
1
2
− (η j(g|C)−1)c ⇔ 1

2
≥ x+ c.

So the payoffs must be x = 1
2 − c and 1− x = 1

2 + c. Obviously, this has to hold for all compo-
nents of g in which players receive heterogeneous payoffs.

Notice by considering the limit case c → 0 that Theorem 3 is in line with Manea’s (2011, Online

Appendix) result that for zero linking costs any pairwise stable network must be equitable. An
immediate consequence of Theorem 3 and the previous results is the following:

Corollary 2. In the considered framework a network not presented in Theorem 1 could only be

pairwise stable at a single cost level c ∈
(
0, 1

4

]
.

This is easy to see so that a formal proof can be omitted. According to Theorem 2 the only
candidates we have to consider are networks containing a component in which players receive

heterogeneous payoffs. For the weaker players’ payoff it must be x = 1
2 − c according to The-

orem 3. By link deletion such a player is able to save costs of c while falling back to a payoff

of 0 in the worst case. The corresponding stability condition then implies that it is x ≥ c. Taken
together, this requires c ≤ 1

4 .

Let us now examine the contribution of the Theorem in detail. As we have seen, it rules out
the possibility to be pairwise stable for all networks inducing payoff heterogeneity within at

least one of its components, that is for all remaining structures, if linking costs are greater than
1
4 . This means that we have a complete characterization of pairwise stable networks for this

case. Perhaps even more importantly, it also rules out the possibility to be pairwise stable on a
cost interval of positive length for all remaining networks. Certainly, it is not at all clear that

a network where all players either receive a payoff of x ∈
(
0, 1

2

)
or 1− x is pairwise stable for

c = 1
2 − x. However, observe that even if linking costs c ∈

(
0, 1

4

]
take exactly the single value

for which such a structure is indeed pairwise stable, then any two players being worse off are
indifferent between leaving the network unchanged and adding a mutual link. Also, any player

receiving a payoff which is greater than 1
2 must be indifferent between keeping all of her links

and deleting any of them. In this sense, the case that a network which generates heterogeneous

payoffs, but does not consist of an isolated player combined with either separated pairs or odd
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circles, is pairwise stable and does in indeed form, is really special and insofar a singularity.

However, we already identified such a network: the line of length three with payoffs x = 1
3 and

1− x = 2
3 , which is pairwise stable if and only if it is c = 1

6 . 7 As opposed to this, we will even

rule out the possibility to be pairwise stable at a single point c ∈
(
0, 1

4

]
for a broad range of

network structures in the further course of this Section.

However, at first, we will now discuss and note the implications regarding payoffs and profits
that might occur in pairwise stable networks. Beside the characterization of pairwise stable

networks this is the main result of the paper. The following Corollary establishes and specifies
that provided pairwise stability a high degree of inequality among players cannot appear.

Corollary 3 (Limited Outcome Diversity). In the framework with δ = 1 consider a network g

which is pairwise stable for a given level of linking costs c > 0. It holds that either v∗j(g) ∈{1
2 − c, 1

2 ,
1
2 + c

}
with c ∈

(
0, 1

4

]
or v∗j(g) ∈

{
0, 1

2

}
for all j ∈ N.

If g is additionally assumed to be pairwise stable on a cost interval of positive length, then only

the latter of these two cases can occur, and furthermore, there exists a set P ⊂
{

0, 1
2 −2c, 1

2 −c
}

with |P| ≤ 2 such that u∗j(g) ∈ P for all j ∈ N.

A short proof is provided in the Appendix though the Corollary is basically a direct consequence
of Theorem 2 and 3, Corollary 1 and Lemma 2. Meanwhile, it should be clear that in a pairwise

stable network there can only occur four kinds of players characterized by their payoffs: isolated
players receiving 0, players belonging to a separated pair or an odd circle with a payoff of 1

2

and players contained in a component with heterogeneous payoffs who receive 1
2 + c ∈

(1
2 ,

3
4

]
or 1

2 − c ∈
[1

4 ,
1
2

)
. However, Lemma 2 implies that the former and the latter player type cannot

coexist in a pairwise stable network. Taken together, we established that the number of different
possible bargaining outcomes gets narrowed down substantially compared to the work of Manea

(2011) if one allows for strategic network formation in advance. To this end observe that in
Manea’s (2011) basic framework with δ = 1 one can induce any payoff which is a rational

number from the interval [0,1) by a suitable complete bipartite network on a sufficiently large
player set.

Beyond that, the second part of the Corollary focuses on the crucial class of networks which are
pairwise stable on a cost interval of positive length and the induced profits. It points out that

in any of these cases the player set can at most be divided into two parts since regarding the
network position not more than two of the following three kinds of players can coexist: players

being part of a separated pair receiving a profit of 1
2 − c, players contained in an odd circle

facing twice the costs and isolated players with a profit of zero.

As already announced, we will next rule out the possibility to be pairwise stable at all for certain
kinds of subnetworks induced by components in which players receive heterogeneous payoffs,

7In Section 4 we will additionally reveal that the stability of this particular subnetwork is not robust in another
respect as well.
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even if the conditions of Theorem 3 are fulfilled. The main idea of the proofs of the following

Propositions, which are rather lengthy and can again be found in the Appendix, is to identify
network positions in which the player receives a payoff strictly greater than 1

2 and still does so

after deleting a certain link. Using the notation of Theorem 3 this then leads to the unfulfillable
stability condition x+ c < 1

2 . Another approach we use focuses on players who are in an weak

bargaining position but whose loss in payoff from dropping a certain own link is too small to be
compatible with the condition x+ c = 1

2 .

We show first that all networks containing a tree component8 not considered in Theorem 1
cannot be pairwise stable.

Proposition 2 (Trees). If a network g is pairwise stable for δ = 1, then it does not contain a

component of more than three players which has a tree structure.

Proposition 2 further reduces the class of potentially pairwise stable networks. It implies that

any component of a pairwise stable network either contains at most three players or induces a
subnetwork which has a cycle9. The former case has been analyzed completely by Theorem 1

and Corollary 1. This gives rise to the following examination of structures which have a cycle
and in which players receive heterogeneous payoffs.

Proposition 3 (Cycles and Component-Connecting Players). Consider a network g containing

a player k ∈ N who is part of a cycle, receives a payoff v∗k(g) >
1
2 and is such that g|N\{k}

consists of more components than g. Then g is not pairwise stable for δ = 1.

This Proposition might seem somewhat artificial but it rules out the possibility to be pairwise

stable for several generic kinds of networks. For instance many components containing a cy-
cle and a loose-end player, i.e. a player having only one link are excluded. For an illustration

of exemplary structures which cannot be pairwise stable according to Proposition 3 see Figure 2.

gV gVI gVII

Figure 2: Unstable Network Structures

8A tree component denotes a subnetwork induced by a component of players which is minimally connected.
9A network g is said to have a cycle if there exist distinct players i1, i2, ..., iK ∈ N, K ≥ 3 such that i1iK ∈ g and

ikik+1 ∈ g for all k = 1,2, ...,K −1
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However, there exist other networks not captured by Proposition 3 which have a cycle and could

potentially be pairwise stable. Two examples for this are given in Figure 3. Anyway, though a
further generalization is not provided in this paper, it is straightforward to check that the con-

crete networks gVIII and gIX cannot be pairwise stable. Also, recall that any remaining network
belongs to the special and somewhat neglectable class of structures which can at most be pair-

wise stable at a single point c∈
(
0, 1

4

]
, that is particularly not on a cost interval of positive length.

gVIII gIX

Figure 3: Cylic Network Structures of Different Kind

So far we have considered pure one link deviations and the concept of pairwise stability. Finally,

we will now relax this assumption and allow for multiple link deletion as it is captured by the
notion of pairwise Nash stability which has been introduced in Section 2. It is clear that every

pairwise Nash stable network is also pairwise stable whereas the reverse is in general not true.
This gives rise to the question whether in the model at hand there exist pairwise stable networks

which are not pairwise Nash stable. The following Corollary constitutes that this is not the case
for networks which are relevant in the sense that they are pairwise stable for more than one

single point c ∈ (0,+∞)

Corollary 4 (Pairwise Nash Stability). In the framework with δ = 1 a network is pairwise Nash

stable on a cost interval of positive length if and only if it is pairwise stable for the same cost

range.

This result is easy to prove. As already pointed out, one direction is trivially clear. To show

that any pairwise stable network of the above kind is also pairwise Nash stable, this obviously
has to be checked solely for odd circles. This is because according to our previous results

only in this case there exist players with more than two links such that multiple link deletion
is possible and the definitions of pairwise Nash stability and pairwise stability differ. Recall

that odd circles can only occur in pairwise stable networks if it is c ≤ 1
6 and that each player

contained in such a circle receives a payoff of 1
2 . Hence, each player’s profit must at least be 1

6 .

On the contrary, multiple link deletion would lead to a profit of zero since the player would be
isolated afterwards.

Furthermore, observe that the three player line is also not only pairwise stable at c = 1
6 but even

pairwise Nash stable: the central player would get isolated by deleting both of her links whereas

she receives a profit of 1
3 if she keeps them. Finally, notice that according to Corollary 2 the
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equivalence of pairwise stability and pairwise Nash stability is even fulfilled without limitation

as long as c > 1
4 . These additional considerations conclude this Section.

4 Effects of Time Discount

So far, we considered players being infinitely patient captured by the choice δ = 1. However, in

many situations it might be reasonable to assume that players are rather impatient, meaning that
in the network bargaining game they discount time at least to some degree. In the underlying

model this is captured by a parametrization with δ ∈ (0,1). In this section we will reveal

some important commonalities and differences between these two cases with regard to strategic
network formation and stability.

In Proposition 1 we proved that there are no disagreement links in pairwise stable networks if it
is δ = 1. For two reasons it is intuitively clear that this must still hold if we set δ ∈ (0,1). On

the one hand, if ik ∈ g is a disagreement link, then it is δv∗δ
i (g)> 1−δv∗δ

k (g) by definition and

therefore the ith equation of the system (2.1) determining the equilibrium payoffs is equivalent

to

vi =

(
1− ∑

j∈Ni(g−ik)

1
2d#(g)

)
δvi + ∑

j∈Ni(g−ik)

1
2d#(g)

max{1−δv j,δvi}.

This means that from player i’s perspective it does not make a difference whether she can get
selected to bargain with player k or not since they will either way not find an agreement. This is

of course similarly true from player k’s and also any other player’s point of view. On the other
hand, an additional amplifying effect comes into play when players are impatient. In this case,

players care about the time they have to wait until a certain outcome of a bargain is achieved.
They discount these payments by δ when calculating their expected payoffs. The existence of a

disagreement link prolongs the expected time until any other link gets selected in the bargaining
game and therefore has a negative impact on any player’s payoff.

However, we will see next that there are networks which are pairwise stable for a certain level
of costs if players are infinitely patient while this possibility can be ruled out if there is some

time discount. The converse will turn out to be true as well.

Example 1. Let g be a line of length three. Then g is pairwise stable if δ = 1 and c = 1
6 .

However, for δ ∈ (0,1) it is not pairwise stable for any c ∈ (0,+∞).

The first statement of Example 1 has been established by Theorem 1(iii). So let us deliberate

why a line of length three cannot be pairwise stable if players are impatient to some degree. By
applying the equation system (2.1) to g we find that the payoff of player 1 – who is supposed to
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be the player in the middle with two links – is v∗δ
1 (g) = 2

4−δ and v∗δ
2 (g) = v∗δ

3 (g) = 1
4−δ for the

two loose-end players 2 and 3. Similarly, for g− 12 and g+ 23 we calculate v∗δ
1 (g− 12) = 1

2 ,
v∗δ

2 (g−12) = 0 and v∗δ
2 (g+23) = v∗δ

3 (g+23) = 1
3−δ . Consequently, for g to be pairwise stable

the following three conditions would have to be satisfied simultaneously:

u∗δ
2 (g)≥ u∗δ

2 (g−12) ⇔ v∗δ
2 (g)≥ c ⇔ 1

4−δ
≥ c, (4.1)

u∗δ
1 (g)≥ u∗δ

1 (g−12) ⇔ v∗δ
1 (g)− v∗δ

1 (g−12)≥ c ⇔ δ
2(4−δ )

≥ c, (4.2)

u∗δ
2 (g)≥ u∗δ

2 (g+23) ⇔ v∗δ
2 (g+23)− v∗δ

2 (g)≤ c ⇔ 1
(3−δ )(4−δ )

≤ c. (4.3)

However, one can show by simple transformations that conditions (4.2) and (4.3) cannot be
fulfilled at the same time. Figure 4 illustrates this. According to condition (4.2) the level

of costs must be below the blue line and (4.3) requires that c is above the red line, which is
obviously not possible simultaneously for δ < 1.

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

δ

1
4−δ

1
(3−δ)(4−δ)

δ

2(4−δ)

Figure 4: Stability Conditions Example 1

Thus, we notice that the existence of lines of length three within pairwise stable networks of
patient players is not robust in two respects. We already know that these components may only

occur if linking costs are exactly c = 1
6 and therefore solely on a cost interval of length zero.

Now, we have additionally seen that already a marginal decrease of δ – meaning however that

players are still almost completely patient – causes global instability for this kind of networks.
This is a valuable insight regarding the appraisal of the results derived in Section 3.

On the contrary, given any δ ∈ (0,1) there exist networks which are pairwise stable at some

level of costs, whereas such c ∈ (0,+∞) does not exist if players are infinitely patient, that is if
we set δ = 1.

Example 2. Let gN be the complete network with n ≥ 4 players. Then for all δ ∈ (0,1) there
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exists c> 0 such that u∗δ
i (gN)≥ u∗δ

i (gN − i j) for all i, j ∈N. However, it is u∗i (g
N)< u∗i (g

N − i j)

for all i, j ∈ N and all c ∈ (0,+∞).

As usual a formal proof can be found in the Appendix. However, the second part should be

clear, for instance by Theorem 2. To establish the first part we basically solve the equation

system (2.1) for gN and gN − i j and show that for sufficiently small costs it is profitable for any
two players i and j to keep their mutual link.

At this, notice that the cost range for which the complete network of impatient players is pair-
wise stable gets arbitrarily small and close to 0 as δ approaches 1. In this sense, δ = 1 is not a

point of discontinuity regarding our previous results as it might seem at first sight in the light of
Example 2.

5 Efficiency

Beside different stability concepts, it is of importance to ask for efficiency of the bargaining
networks. From the perspective of a social planner it is of particular interest to understand the

connection between pairwise stable network structures on the one hand and efficient ones on the
other. Polanski and Vega-Redondo (2013) argue that the discrepancy between pairwise stability

and efficiency in their model is due to the ex-ante heterogeneity between players. Insofar,
we would expect that in our model the set of efficient networks coincides with the one of the

pairwise stable, which we have characterized in Section 3. However, it will turn out that things
are actually slightly more complicated. Our analysis will be based on the concept of utilitarian

welfare, which postulates that a society’s welfare is simply given by the sum of the individual
profits (cf. Definition 3). Notice that by using this notion we indeed solely consider profits

of the initial players who are in charge of forming the network. One might argue that this is
somewhat short-sighted, but it is these players who are present today and moreover it is usually

uncertain whether or when they will get replaced during the subsequent bargaining game. And

not least, these considerations can be of interest from a purely technical perspective as well.
Applying Definition 3 to the model with infinitely patient players reveals the following result.

Theorem 4 (Efficiency). Consider the model with δ = 1. For c > 1
2 , g = /0 is the unique efficient

network. For c = 1
2 , a network g is efficient if and only if it is a disjoint union of a number of

separated pairs and isolated players. And for c ∈
(
0, 1

2

)
, a network g is efficient if and only if it

is a disjoint union of separated pairs, in case that n is odd supplemented by

• an isolated player if c ∈
(1

6 ,
1
2

)
,

• an isolated player or a line of length three if c = 1
6 ,

• a line of length three if c ∈
( 1

12 ,
1
6

)
,
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• a line of length three or a three player circle if c = 1
12 and

• a three player circle if c ∈
(
0, 1

12

)
.

In the following we will comprehend the situation for an even number of players. The proof of
the case n odd is as usual given in the Appendix.

Proof of Theorem 4 (n even). First, we need to introduce some additional notation. Given the

player set N and a network g, let N′(g) := {i ∈ N : ηi(g) ≥ 1} comprise all players being not

isolated and let g′ := g|N′(g) be the induced network with player set N′(g). Moreover, let gSP
N′(g)

denote the network on N′(g) consisting of |N′(g)|
2 separated pairs.10 Notice that this network is

only well-defined for |N′(g)| even. Finally, let (r′s,x
′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄ be the outcome of the

algorithm A (g′). Additionally, notice that for any y,z ∈ R it is y · z ≤ 1
4(y+ z)2 and that this

holds strictly as long as y ̸= z. Using this, we calculate

U∗(g) =U∗(g′) = ∑
i∈N′(g)

(
v∗i (g

′)−ηi(g′)c
)
= ∑

i∈N′(g)
v∗i (g

′)−2d#(g′)c

=
s̄−1

∑
s=1

(
x′s|M′

s|+(1− x′s)|L′
s|
)
+

1
2
|N′

s̄|−2d#(g′)c

= 2
s̄−1

∑
s=1

|M′
s||L′

s|
|M′

s|+ |L′
s|
+

1
2
|N′

s̄|−2d#(g′)c

≤ 1
2

s̄−1

∑
s=1

(
|M′

s|+ |L′
s|
)
+

1
2
|N′

s̄|−2d#(g′)c

=
1
2
|N′(g)|−2d#(g′)c (5.1)

Since it is ηi(g′) ≥ 1 for all i ∈ N′(g), we have that d#(g′) ≥ 1
2 |N

′(g)|. Moreover, if d#(g′) =
1
2 |N

′(g)|, then this obviously implies that |N′(g)| even and g′ = gSP
N′(g). Hence, according to (5.1)

for a network g inducing g′ ̸= gSP
N′(g) it holds that

U∗(g)<
1
2
|N′(g)|− |N′(g)|c = |N′(g)|

(1
2
−c
)
≤

{
0 =U∗(gSP

/0 ) =U∗( /0), for c ≥ 1
2

|N|
(1

2 − c
)
=U∗(gSP

N ), for c ∈
(
0, 1

2

)
This means that only networks which are disjoint unions of separated pairs and isolated players
are potentially efficient. It remains to identify those networks among these candidates which

induce maximal utilitarian welfare. For c > 1
2 this is obviously solely the network with minimal

|N′(g)|, namely the empty network, whereas for c ∈ (0, 1
2) it is the one with maximal |N′(g)|,

namely gSP
N . For c = 1

2 all candidates provide the same welfare of 0.

10Strictly speaking, there are of course many networks of this kind. Since any two of these can be converted
into each other by a permutation of players, they are all payoff respectively welfare equivalent. This justifies the
simplistic consideration of one such representative network in this context.
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A comparison of Theorem 4 with the results of Section 3 reveals some interesting insights con-

cerning the relationship between pairwise stable and efficient networks. They are summarized
in the following Corollary.

Corollary 5 (Efficiency vs. Stability). In the model with δ = 1 it applies

(i) for c> 1
6 that a network is efficient if and only if it is pairwise stable according to Theorem

1,

(ii) for c ∈
[ 1

12 ,
1
6

]
that there exists both efficient networks being not pairwise stable and

pairwise stable networks being not efficient and

(iii) for c ∈
(
0, 1

12

)
that every efficient network is also pairwise stable, but there exist pairwise

stable networks being not efficient.

Notice that in Corollary 5(i) we only take the networks into account which we identified to be
pairwise stable in Section 3. In principle, there could be other networks, however at most being

pairwise stable on a cost interval of length zero, which are not efficient in this case. Anyway,
we can constitute that as long as linking costs are high enough, efficient and pairwise stable

networks coincide to the greatest extent. However, there is an intermediate level of costs for
which a general statement is not possible and for low costs the efficient networks constitute a

proper subset of the pairwise stable ones. This confirms the intuition that as long as linking costs
are relatively low, there might be incentives for players to implement individually beneficial but

non-efficient outside options. For an illustration consider the examples of networks given in
Figure 5, which are for certain cost ranges efficient but not pairwise stable or the other way

around.

gX gXI gXII gXIII

Figure 5: Efficiency vs. Stability

Observe that for c= 1
6 the network gX is efficient according to Theorem 4 but not pairwise stable

(cf. Figure 1 or Corollary 1). The same is true for gXI and the cost range c ∈
[ 1

12 ,
1
6

)
. On the

other hand, gXII is pairwise stable for c ∈
( 1

12 ,
1
6

]
but not efficient. And finally, for c ∈

(
0, 1

12

]
the network gXIII is pairwise stable – as larger odd circles are as well for smaller costs – but
circles containing more than three players are never efficient.
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Altogether, we find that efficiency does in general not coincide with pairwise stability although

we deal with a setting of ex-ante homogeneous players. Anyway, if we restrict our attention
to player sets with an even number of players, then the efficient networks are a subset of the

pairwise stable ones at each level of linking costs.

6 Conclusion

Throughout this paper we developed a well-founded and analytically tractable model of strate-
gic network formation in the context of decentralized bilateral bargaining involving ex-ante

homogeneous players and explicit linking costs. One reasonable application of our model is
constituted by the stylized example of project collaboration between firms we introduced at the

beginning.
In the case that players are infinitely patient, we developed a complete characterization of net-

works being pairwise (Nash) stable on a cost interval of positive length: specific disjoint unions
of separated pairs, odd circles and isolated players exclusively have this property depending on

the cost level. The induced bargaining outcomes are mostly homogeneous but a certain level
of diversity regarding players’ payoffs and profits can still occur. Besides, we studied the re-

maining networks which could possibly be pairwise stable at a single, sufficiently low cost level
and succeeded in ruling out this possibility for a broad range of structures. These results are

complementary to Manea (2011, Online Appendix). As a robustness check, we relaxed the
assumption that players are infinitely patient and gained important insights regarding common-

alities and differences between the two cases. Finally, we provided a complete characterization

of networks being efficient in terms of a utilitarian welfare criterion and revealed that these co-
incide only partially with the class of the pairwise stable ones.

Altogether, our work contributes to a better understanding of the behavior of players in a non-
cooperative setting of decentralized bilateral bargaining when the underlying network is not

exogenously given but the outcome of preceding strategic interaction. We gained important
insights concerning the structure of the resulting networks, induced bargaining outcomes and

regarding the effects which influence players aiming at an optimization of their bargaining po-
sition in the network.

Regarding future research, it would be a reasonable next step to approach a complete charac-
terization of pairwise stable networks in general for our model. This would call for a further

discussion of networks which – according to the results of the paper at hand – might be pairwise
stable at one certain cost level. If it is not feasible to rule out this possibility in general, that is for

all such structures apart from the three player line, one could instead work towards a generaliza-
tion of Example 1 as an additional robustness check. Notwithstanding the foregoing, it could be

enriching to thoroughly analyze the class of stable and efficient networks when allowing players
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to discount time to some degree. A consideration of alternative stability concepts such as pair-

wise stability with transfers, which seems quite natural in a bargaining context, could generate
further important insights. Beyond that, it would surely be interesting to set up an analytically

tractable model of network formation in a bargaining framework, in which players do not get
replaced one-to-one after dropping out. Due to the resulting stochastic change of the network

structure over time, this would certainly constitute a challenging research topic.

A Marginal Effects of Link Creation

As mentioned in Section 3, the literature provides some general results about the existence,
uniqueness and structure of (pairwise) stable networks. However, we show in this Section that

crucial conditions are not met in our model with δ = 1, which confirms this part of our research

question to be non-trivial and provides additional motivation. The findings of Hellmann (2013)

and Hellmann and Landwehr (2014) are based on marginal effects of link creation. Given a
network g on player set N let ∆ui(g+ i j, i j) := ui(g+ i j)− ui(g) denote the marginal utility

of the link i j /∈ g for player i ∈ N. Then at least one of the following properties is among
the conditions of each relevant Theorem, Proposition or Corollary of Hellmann (2013) and

Hellmann and Landwehr (2014):

Definition 4 (Marginal Effects). A profile of utility functions (ui)i∈N

• is concave in own links if ∀ g, ∀ i ∈ N, ∀ li ⊆ Li(gN −g) and ∀ i j /∈ g+ li:

∆ui(g+ i j, i j)≥ ∆ui(g+ li + i j, i j),

• is ordinal convex in own links if ∀ g, ∀ i ∈ N, ∀ li ⊆ Li(gN −g) and ∀ i j /∈ g+ li:

(i) ∆ui(g+ i j, i j)≥ 0 ⇒ ∆ui(g+ li + i j, i j)≥ 0,

(ii) ∆ui(g+ i j, i j)> 0 ⇒ ∆ui(g+ li + i j, i j)> 0,

• satisfies anonymous convexity if ∀ g and ∀ i, j,k ∈ N with ηi(g) ≤ η j(g), ik ∈ g and

jk /∈ g:

∆ui(g, ik)≥ 0 ⇒ ∆u j(g+ jk, jk)≥ 0,

• satisfies strong preference for centrality if ∀ g and ∀ i, j,k ∈ N with η j(g)≤ ηk(g), i j ∈ g

and ik /∈ g:

∆ui(g, i j)≥ 0 ⇒ ∆ui(g+ ik, ik)> 0,

• satisfies ordinal strategic complements (substitutes) if ∀ g, ∀ i ∈ N, ∀ l−i ⊆ L−i(gN −g)

and ∀ i j /∈ g:
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(i) ∆ui(g+ i j, i j)≥ 0 ⇒ (⇐) ∆ui(g+ l−i + i j, i j)≥ 0,

(ii) ∆ui(g+ i j, i j)> 0 ⇒ (⇐) ∆ui(g+ l−i + i j, i j)> 0,

• satisfies positive (negative) externalities if ∀ g, ∀ jk /∈ g, ∀ i ∈ N\{ j,k}:

ui(g+ jk)≥ (≤)ui(g).

We establish by appropriate counterexamples that the profile of utility functions (u∗i )i∈N in our

model with δ = 1 is neither concave or ordinal convex nor does it satisfy anonymous convexity,

strong preference for centrality, ordinal strategic complements/substitutes or positive/negative
externalities.

Counterexample 1 (Concavity). Let n = 7, g = {14,45,56,67}, l1 = {13} and c ∈ (0,+∞).

Then it is

∆u∗1(g+12,12) = u∗1(g+12)−u∗1(g) =
1
2
−2c−

(
2
5
− c
)
=

1
10

− c,

∆u∗1(g+ l1 +12,12) = u∗1(g+ l1 +12)−u∗1(g+ l1) =
2
3
−3c−

(
1
2
−2c

)
=

1
6
− c.

Hence, it is ∆u∗1(g+ l1 +12,12)> ∆u∗1(g+12,12), so (u∗i )i∈N is in general not concave.

Counterexample 2 (Ordinal Convexity). Let n = 4, g = {24}, l1 = {13,14} and c ∈
(
0, 1

3

]
.

Then it is

∆u∗1(g+12,12) = u∗1(g+12)−u∗1(g) =
1
3
− c−0 ≥ 0, but

∆u∗1(g+ l1 +12,12) = u∗1(g+ l1 +12)−u∗1(g+ l1) =
1
2
−3c−

(
1
2
−2c

)
=−c < 0.

Thus, (u∗i )i∈N is in general also not convex, even not in ordinal notion.

Counterexample 3 (Anonymous Convexity and Strong Preference for Centrality). Let n = 4,

g = {13,24}, and c ∈
(
0, 1

2

]
. Then it is ηi(g) = 1 for all i ∈ N and

∆u∗1(g,13) = u∗1(g)−u∗1(g−13) =
1
2
− c−0 ≥ 0, but both

∆u∗2(g+23,23) = u∗2(g+23)−u∗2(g) =
1
2
−2c−

(
1
2
− c
)
=−c < 0 and

∆u∗1(g+12,12) = u∗1(g+12)−u∗1(g) =
1
2
−2c−

(
1
2
− c
)
=−c < 0.

Thus, (u∗i )i∈N does in general neither satisfy anonymous convexity nor strong preference for
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centrality.

Counterexample 4 (Ordinal Strategic Substitutes). Let n = 5, g = {14,23}, l−1 = {45} and

c ∈
(
0, 1

15

]
. Then

∆u∗1(g+ l−1 +12,12) = u∗1(g+ l−1 +12)−u∗1(g+ l−1) =
2
5
−2c−

(
1
3
− c
)
=

1
15

− c ≥ 0, but

∆u∗1(g+12,12) = u∗1(g+12)−u∗1(g) =
1
2
−2c−

(
1
2
− c
)
=−c < 0.

Hence, (u∗i )i∈N does in general not satisfy ordinal strategic substitutes.

Counterexample 5 (Ordinal Strategic Complements). Let n = 4, g = {14}, l−1 = {23} and

c ∈
(
0, 1

6

]
. Then

∆u∗1(g+12,12) = u∗1(g+12)−u∗1(g) =
2
3
−2c−

(
1
2
− c
)
=

1
6
− c ≥ 0, but

∆u∗1(g+ l−1 +12,12) = u∗1(g+ l−1 +12)−u∗1(g+ l−1) =
1
2
−2c−

(
1
2
− c
)
=−c < 0.

Hence, (u∗i )i∈N does in general also not satisfy ordinal strategic complements.

Counterexample 6 (Positive/Negative Externalities). Let n = 4 and g = {12,23}. Then we

have

u∗1(g+34) =
1
2
− c >

1
3
− c = u∗1(g) and

u∗2(g+34) =
1
2
−2c <

2
3
−2c = u∗2(g).

Consequently, (u∗i )i∈N does in general neither satisfy positive nor negative externalities.

Thus the question concerning the existence and the form of appearance of stable networks can-

not be answered by applying general results as established by Hellmann (2013) and Hellmann
and Landwehr (2014). In this sense, our problem is autonomous and indeed requires a deepen-

ing analysis as conducted in Section 3.
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B Proofs

Proof of Theorem 1. From Example 1 it is straightforward to see that the empty network is
pairwise stable for c ≥ 1

2 . In the empty network every player makes a zero profit. Adding a link

would lead to a profit of 1
2 −c ≤ 0 for both players involved. This proves part (i) of the theorem.

Conversely, if c ≤ 1
2 , then no player in a separated pair has an incentive to delete her link.

Moreover, if two players who are members of two different separated pairs create a mutual link,
then restricted to this four player component, the algorithm A (g) stops immediately and hence

the two newly connected players receive an unchanged payoff of 1
2 , but have to bear higher

costs of 2c instead of c. Therefore, such a link will not be formed.

Let now c ∈
(1

6 ,
1
2

]
and consider a network containing at least one separated pair and an isolated

player. As we have seen in Example 1, a member of a separated pair and an isolated player will

not create a mutual link in this situation. Beyond that, if c = 1
2 , then two isolated players are

indifferent between linking to each other and receiving 1
2 − c or refraining and having as well a

profit of 0. This completes the proof of part (ii).

With regard to (iii) we consider first odd circles. Let k ∈ N be the number of players within the
circle g. Then k must be odd and greater than or equal to 3. One can see immediately that it

is impossible to find a g-independent set of players such that the corresponding partner set is
smaller than the independent set itself. Hence A (g) stops in the first step and every member

of the circle receives a profit of 1
2 −2c. Adding a link between any two members of the circle

who are not connected yet does not change the situation with regard to the algorithm and hence

both players would be worse off due to higher costs. Next, consider two players i and j who
are neighbors within the circle. If they delete their link, the circle will turn into a line network

with an odd number of players. Let M be the independent set of players which includes i, j and
every second player within the line network. Obviously this set minimizes the shortage ratio

and it is |M|= k+1
2 , |Lg−i j(M)|= k−1

2 . Hence, it is v∗i (g− i j) = k−1
2k and therefore

u∗i (g)−u∗i (g− i j) =
1
2
−2c−

(
k−1

2k
− c
)
≥ 0 ⇐⇒ 1

2k
≥ c ⇐⇒ k ≤ 1

2c

The same holds for player j and hence an odd circle is indeed pairwise stable if and only if it

has at most 1
2c members. Let now c ∈

(
0, 1

6

]
. If besides one or several odd circles there is one

isolated player, then adding a link between a member of a circle and the yet isolated player will

lead to a payoff of 1
2 for all players in the network. This means that the player with three links

would be worse off. Therefore, such a link will not be formed. Similarly, if two players connect

who are members of different circles, according to the algorithm A (g) they will stay with a
payoff of 1

2 facing higher costs. And for the same reason a player being part of a separated pair

and a player in an odd circle will not create a mutual link as well.
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Finally, consider the case c = 1
6 and that – possibly beside some odd circles and separated pairs

– there are one or several components in the network g which are lines of length 3. We already
know from Example 1 that g restricted to such a component is pairwise stable. It remains to

check whether a line of length 3 is also stable with regard to link addition to players in other
components. For that purpose consider w.l.o.g. the following network g

1 4

3

5

2

6

where the last component is an odd circle. The labeled players 1, ...,6 will be of interest. The

algorithm A (g) provides the following profits for the network g:

u∗1(g) =
2
3
−2c =

1
3
, u∗2(g) = u∗3(g) =

1
3
− c =

1
6
, u∗6(g) =

1
2
−2c =

1
6

Based on this, we will see next that link addition either leads to a worsening for at least one of
the two players involved or both are indifferent. It is

u∗2(g+23) = u∗3(g+23) =
1
2
−2c =

1
6
= u∗2(g) = u∗3(g),

u∗1(g+13) = u∗1(g+14) = u∗1(g+15) = u∗1(g+16) =
2
3
−3c =

1
6
<

1
3
= u∗1(g),

u∗2(g+25) =
2
5
−2c =

1
15

<
1
6
= u∗2(g),

u∗6(g+26) =
1
2
−3c = 0 <

1
6
= u∗6(g).

This completes the proof of part (iii) and the whole theorem.

Proof of Corollary 1 (v). Consider w.l.o.g. the following network g:

3

2

1

By using again the algorithm A (g) we get for c ≤ 1
6

1. u∗1(g+12) =
1
2
− c > 0 = u∗1(g),
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u∗2(g+12) =
1
2
−2c ≥ 1

3
− c = u∗2(g) and

2. u∗1(g+13) =
1
3
− c > 0 = u∗1(g),

u∗3(g+13) =
2
3
−2c ≥ 1

2
− c = u∗3(g).

Hence, for this cost range a network containing an isolated player combined with a separated
pair or a line of length three is not pairwise stable.

Proof of Proposition 1. For ease of notation consider a network g′ on player set N and assume

that it is pairwise stable. Moreover, assume that there is a disagreement link in the network, that
is g′\g′∗ ̸= /0. Let w.l.o.g. 12∈ g′\g′∗ be such a link and define g := g′−12. This implies g′∗ ⊆ g.

Furthermore assume w.l.o.g. that every player has at least one link in g′ (otherwise neglect
isolated players, which is permissible since the utility function is component-decomposable).

According to Manea (2011, Lemma 1) every player has at least one link in g′∗ and therefore
also in g.

Take the network g as a basis and let (rs,xs,Ms,Ls,Ns,gs)s=1,2,...,s̄ be the outcome of A (g)

(cf. Definition 1). Then by equations (2.3) the limit equilibrium payoffs v∗(g) are given by

v∗i (g) = xs ∀ i ∈ Ms ∀ s < s̄,

v∗j(g) = 1− xs ∀ j ∈ Ls ∀ s < s̄,

v∗k(g) =
1
2 ∀ k ∈ Ns̄.

Now consider g′∗. The following findings being equivalent to Manea (2011, Proposition 2,

Theorem 3) are important:

• From Manea (2011, Proposition 2) we have that if i j ∈ g, then v∗i (g
′)+ v∗j(g

′)≥ 1 and if
i j ∈ g′∗, then v∗i (g

′)+ v∗j(g
′) = 1.

• By Manea (2011, Theorem 3) for all M ∈ I (g′∗) the following bounds on limit equilib-

rium payoffs hold:

min
i∈M

v∗i (g
′)≤ |Lg′∗(M)|

|M|+ |Lg′∗(M)|

max
j∈Lg′∗ (M)

v∗j(g
′)≥ |M|

|M|+ |Lg′∗(M)|

If in Manea’s (2011, Theorem 4) proof of the payoff computation rule (2.3) one replaces g∗ by
g′∗, v∗i by v∗i (g

′), v∗j by v∗j(g
′), v∗k by v∗k(g

′) and Proposition 2, Lemma 1 and Theorem 3 (Manea,
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2011) by the corresponding statements from above, then this leads to the result that also

v∗i (g
′) = xs ∀ i ∈ Ms ∀ s < s̄,

v∗j(g
′) = 1− xs ∀ j ∈ Ls ∀ s < s̄,

v∗k(g
′) = 1

2 ∀ k ∈ Ns̄.

Thus, it is v∗(g′) = v∗(g) and hence

u∗1(g
′) = v∗1(g

′)−η1(g′)c = v∗1(g)− (η1(g)+1)c < v∗1(g)−η1(g)c = u∗1(g
′−12).

This is a contradiction to pairwise stability and proves that a pairwise stable network cannot

contain a disagreement link.
Finally notice that for any network g it is v∗i (g)+ v∗j(g) = 1 for all i j ∈ g∗ as we know from

Manea (2011, Proposition 2). Based on the above result this implies v∗i (g)+ v∗j(g) = 1 for all
i j ∈ g if g is pairwise stable.

Proof of Theorem 2. Consider a pairwise stable network g and assume that g|Ñ(g) is not a dis-
joint union of separated pairs and odd circles. Notice that due to Proposition 1 for any compo-

nent C ⊆ N in g it must either be C ⊆ Ñ(g) or C ⊆ Ñ(g){. Furthermore and as we already know,
the profile of the payoffs is component-decomposable such that it is v∗i (g) = v∗i

(
g|Ñ(g)

)
for all

i∈ Ñ(g). Consequently, the network g|Ñ(g) is equitable and by Manea (2011, Theorem 5), Berge
(1981) it therefore has a so called edge cover formed by a disjoint union of separated pairs and

odd circles. This means that there exists a disjoint union of separated pairs and odd circles
g′ ⊆ g|Ñ(g) such that no player i ∈ Ñ(g) is isolated in g′. Now consider a link i j ∈ g|Ñ(g)\g′,

which must exist by assumption. Obviously, the network g′ is also an edge cover of the network
g|Ñ(g)− i j. Again from Manea (2011, Theorem 5), Berge (1981) it then follows that g|Ñ(g)− i j

is still equitable. Hence, recalling the implication of Proposition 1 mentioned above it is

u∗i (g) = v∗i
(
g|Ñ(g)

)
−ηi

(
g|Ñ(g)

)
c =

1
2
−ηi

(
g|Ñ(g)

)
c <

1
2
−
(
ηi
(
g|Ñ(g)

)
−1
)
c

= v∗i
(
g|Ñ(g)− i j

)
−ηi

(
g|Ñ(g)− i j

)
c

= u∗i (g− i j).

This obviously constitutes a contradiction to g being pairwise stable.

Proof of Lemma 1. To see part (i) assume that we had 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| and Lg̃s(L̃s ∩ I)∩
M̃s ∩ I{ = /0 in some step s < s̄ and for some set I ⊆ N. It obviously is

|L̃s|
|M̃s|

< 1 ≤ |L̃s ∩ I|
|M̃s ∩ I|

.
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Additionally, we have that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I). This induces that

M̃s\I ̸= /0 since it is |M̃s ∩ I| ≤ |L̃s ∩ I| ≤ |L̃s| but |M̃s|> |L̃s|. It follows that

|L̃s\I|
|M̃s\I|

<
|L̃s|
|M̃s|

.

Moreover, it is Lg̃s(M̃s\I)⊆ L̃s\I since by assumption Lg̃s(L̃s ∩ I)∩ M̃s ⊆ I. Taken together, this

then gives
|Lg̃s(M̃s\I)|

|M̃s\I|
≤ |L̃s\I|

|M̃s\I|
<

|L̃s|
|M̃s|

= r̃s,

which contradicts the minimality of r̃s.

For part (ii) it remains to show that having 1 ≤ |M̃s ∩ I|< |L̃s ∩ I| and |Lg̃s(L̃s ∩ I)∩ M̃s ∩ I{|= 1
in some step s < s̄ and for some set I ⊆ N leads to a contradiction as well. Somewhat different

from part (i) we here have
|L̃s|
|M̃s|

< 1 ≤ |L̃s ∩ I|
|M̃s ∩ I|+1

.

Again, it holds that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I), which in this case even
guarantees that |M̃s\I| ≥ 2 since it is |M̃s ∩ I|< |L̃s ∩ I| ≤ |L̃s|, but |M̃s|> |L̃s|. This gives

|L̃s\I|
|M̃s\I|−1

<
|L̃s|
|M̃s|

.

Beyond that we have that there exists a unique player ĩ ∈ Lg̃s(L̃s ∩ I)∩ M̃s ∩ I{. Similarly to part

(i) this implies that it is Lg̃s(M̃s\(I ∪ ĩ))⊆ L̃s\I, which combined with the above leads to

|Lg̃s(M̃s\(I ∪ ĩ))|
|M̃s\(I ∪ ĩ)|

≤ |L̃s\I|
|M̃s\I|−1

<
|L̃s|
|M̃s|

= r̃s,

which again contradicts the minimality of r̃s.

Proof of Lemma 2. For i, j ∈M1 consider the network g′= g+i j. Let (r′s,x
′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄′

be the outcome of A (g′). Assume for contradiction that there exists a step ŝ ∈ {1, ..., s̄′− 1}
such that L1∩M′

s =M1∩L′
s = /0 for all s∈{1, ..., ŝ−1} but M1∩L′

ŝ ̸= /0. Observe that L1∩M′
ŝ ̸= /0

would also entail M1 ∩L′
ŝ ̸= /0 since due to the minimality of r′ŝ any player k ∈ L1 ∩M′

ŝ needs to
have at least one neighbor in the network g′ŝ who then must have been a neighbor in g as well.

In the following, we will construct a sequence of players (i0, i1, i2, ...) and show by induction
that the underlying procedure which sequentially adds players to it will never break up so that

we get a contradiction to the finiteness of the player set N. For m ∈N let Im = {i0, i1, ..., im} ⊆ N

denote the players of the sequence up to the mth one. We need to distinguish two cases.

First consider the case that i ∈ L′
ŝ and set i0 = i. It then must be |Ni0(g

′
ŝ)∩ M′

ŝ| ≥ 2 since
otherwise one could reduce r′ŝ by not including i0 and possibly her one contact belonging to M′

ŝ.
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This guarantees that there exists i1 ∈ Ni0(g
′
ŝ)∩M′

ŝ\{ j}. So it is i0 ∈ M1 ∩L′
ŝ and i1 ∈ L1 ∩M′

ŝ.

Let I1 = {i0, i1}. Now consider some odd number m ∈ N. Assume that L1 ∩ Im = M′
ŝ ∩ Im,

M1 ∩ Im = L′
ŝ ∩ Im and that the cardinalities of these two sets are equal. We then have:

• It is 1 ≤ |M1 ∩ Im| = |L1 ∩ Im| and therefore by Lemma 1(i) there exists a player im+1 ∈
Lg(L1 ∩ Im)∩M1 ∩ I{m. For this player it must hold that im+1 ∈ M1 ∩L′

ŝ\Im since L1 ∩ Im ⊆
M′

ŝ and M1 ∩L′
s = /0 for all s ∈ {1, ..., ŝ−1}.

• It then is 1 ≤ |M′
ŝ ∩ Im+1|< |L′

ŝ ∩ Im+1| and therefore by Lemma 1(ii) there exists a player
im+2 ∈ Lg′ŝ(L′

ŝ ∩ Im+1)∩ M′
ŝ ∩ I{m+1\{ j}. For this player it must hold that im+2 ∈ L1 ∩

M′
ŝ\Im+1 since L′

ŝ ∩ Im+1 ⊆ M1 and im+2 ̸= j.

Thus it is L1 ∩ Im+2 = M′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities of these two
sets are equal. Moreover, it is |Im+2| = |Im|+2. By induction it follows as a contradiction that

the player set N must be infinitely large.

Second we analyze the situation for i /∈ L′
ŝ. This implies j /∈ M′

ŝ since by assumption M1∩L′
s = /0

for all s ∈ {1, ..., ŝ − 1}. For the same reason i ∈ M′
ŝ would imply j ∈ L′

ŝ, a case which is

equivalent to the first one. This holds likewise for i /∈ M′
ŝ and j ∈ L′

ŝ. So it remains to consider
the case that i, j /∈ (M′

ŝ ∪L′
ŝ).

However, by assumption there must be a player i0 ∈ M1 ∩L′
ŝ. As in the previous case, existence

of another player i1 ∈ Ni0(g
′
ŝ)∩M′

ŝ is then guaranteed and it must be i1 /∈ {i, j} since i, j /∈ M′
ŝ.

Therefore it is i1 ∈ L1 ∩M′
ŝ. Let again I1 = {i0, i1} and assume for some odd number m ∈ N

that L1 ∩ Im = M′
ŝ ∩ Im, M1 ∩ Im = L′

ŝ ∩ Im and that the cardinalities of these two sets are equal.

Furthermore, assume that i, j /∈ Im. Similarly to the first case we have:

• There exists im+1 ∈ M1 ∩L′
ŝ\Im for the stated reasons.

• By Lemma 1(ii) there then exists a player im+2 ∈ Lg′ŝ(L′
ŝ ∩ Im+1)∩M′

ŝ ∩ I{m+1. For this
player it must hold that im+2 ∈ L1 ∩M′

ŝ\Im+1 since L′
ŝ ∩ Im+1 ⊆ M1\{i, j}.

Thus it is again L1 ∩ Im+2 = M′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities of
these two sets are equal. Beyond that, we have i, j /∈ Im+2. By induction this leads again to a

contradiction to the finiteness of the player set N.

Summing up, we have that L1∩M′
s =M1∩L′

s = /0 for all s< s̄′. Therefore, it must be v∗i (g
′),v∗j(g

′)≤
1
2 . On the other hand, we know by Manea (2011, Proposition 2) that v∗i (g

′)+ v∗j(g
′)≥ 1. Taken

together, this implies v∗i (g
′) = v∗j(g

′) = 1
2 .

With regard to the second part of the Lemma consider the network g′ = g+ i(n+ 1) and let
(r′s,x

′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄′ be the outcome of A (g′). It is clear that n+ 1 /∈ L′

s for all s < s̄′

since otherwise one could simply reduce r′s by deleting n+ 1 from L′
s and possibly her one
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neighbor i from M′
s. The possibility that i ∈ L′

s for some s < s̄′ can be ruled out by a line of

argumentation which is equivalent to the proof of the first part if one substitutes n+1 for j, M2

for M1 and L2 for L1 (while taking into account that A (g) provides M1 = {n+1} and L1 = /0 in

this case).

Proof of Lemma 3. Beside g consider the network g′ := g−kl and let (r′s,x
′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄′

be the outcome of A (g′). Similarly to the proof of Lemma 2 assume for contradiction that
there exists a step ŝ ∈ {1, ..., s̄′−1} such that L1∩M′

s = M1∩L′
s = /0 for all s ∈ {1, ..., ŝ−1}, but

L1∩M′
ŝ ̸= /0. Observe that M1∩L′

ŝ ̸= /0 would also entail L1∩M′
ŝ ̸= /0 since due to the minimality

of r′ŝ any player in M1∩L′
ŝ needs to have a g′-neighbor in M′

ˆ̂s
who then must have been a neighbor

in g as well. We will again construct a sequence of players (i0, i1, i2, ...) and show by induction

that the underlying procedure which sequentially adds players to it will never break up so that
we get a contradiction to the finiteness of the player set N. For m ∈N let Im = {i0, i1, ..., im} ⊆ N

denote the players of the sequence up to the mth one.

Initially, select some player i0 ∈ L1 ∩M′
ŝ. i0 cannot be isolated or a loose-end player in g since

otherwise one could reduce r1 by not including i0 in L1 and possibly her one contact in M1. This
guarantees that there exists i1 ∈ Ni0(g

′). It must be i1 ∈ M1∩L′
ŝ since by assumption M1∩L′

s = /0

for all s ∈ {1, ..., ŝ−1}. Let I1 = {i0, i1}. Now consider some odd number m ∈ N. Assume that
L1 ∩ Im = M′

ŝ ∩ Im, M1 ∩ Im = L′
ŝ ∩ Im and that the cardinalities of these two sets are equal. We

then have:

• It is 1 ≤ |M′
ŝ ∩ Im| = |L′

ŝ ∩ Im| and therefore by Lemma 1(i) there exists a player im+1 ∈
Lg′ŝ(L′

ŝ ∩ Im)∩M′
ŝ ∩ I{m. For this player it must hold that im+1 ∈ L1 ∩M′

ŝ\Im since it is

L′
ŝ ∩ Im ⊆ M1.

• It then is 1 ≤ |M1∩ Im+1|< |L1∩ Im+1| and therefore by Lemma 1(ii) there exists a player
im+2 ∈ Lg(L1 ∩ Im+1)∩M1 ∩ I{m+1 ∩Lg′ŝ(L1 ∩ Im+1) since g′ arose from g by a single link

deletion and additionally M1 ∩L′
s = /0 for all s ∈ {1, ..., ŝ−1} and L1 ∩ Im+1 ⊆ M′

ŝ. These
arguments then also imply that im+2 ∈ M1 ∩L′

ŝ\Im+1.

Thus it is L1∩Im+2 =M′
ŝ∩Im+2, M1∩Im+2 = L′

ŝ∩Im+2 and also the cardinalities of these two sets

are equal. Moreover, it is |Im+2|= |Im|+2. By induction this here leads as well to a contradiction
to the finiteness of the player set N. Consequently, it must be L1 ∩M′

s = M1 ∩ L′
s = /0 for all

s < s̄′.

Proof of Corollary 3. For a pairwise stable network g according to Theorem 3 and Proposition

1 it must be v∗j(g) ∈
{

0, 1
2 − c, 1

2 ,
1
2 + c

}
for all j ∈ N. Assume for contradiction that there

exist players k, i ∈ N such that v∗k(g) = 0 ̸= 1
2 − c = v∗i (g). Notice that c > 1

2 would imply

v∗i (g) < 0 and c = 1
2 would require to have a player with a payoff of 1

2 + c = 1 to generate a
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contradiction, which is both generally impossible. Therefore we need to have c < 1
2 . Consider

the set N′ =
{

j ∈ N | |v∗j(g)− 1
2 | = c

}
. Notice that there cannot be a link from a player in N′

to a player in N\N′ and hence g|N′ must be pairwise stable as well. Then Lemma 2 gives that

v∗k(g|N′∪̇{k}+ ik) = 1
2 . Since the profile of profits is component-decomposable this leads to

u∗k(g) = 0 <
1
2
− c = u∗k(g|N′∪̇{k}+ ik) = u∗k(g+ ik),

which is a contradiction to g being pairwise stable. So it must indeed either be v∗j(g) ∈
{1

2 −
c, 1

2 ,
1
2 + c

}
or v∗j(g) ∈

{
0, 1

2

}
for all i ∈ N.

Let now g be pairwise stable on a cost interval of positive length. For all j ∈ N by Theorem
3 it then must be v∗j(g) ∈

{
0, 1

2

}
and moreover by Theorem 2 u∗j(g) ∈

{
0, 1

2 − 2c, 1
2 − c

}
. Fur-

thermore, Corollary 1(iv) implies that u∗j(g) ∈
{

0, 1
2 − c

}
for c > 1

6 while Corollary 1(i) and (v)
imply that u∗j(g) ∈

{1
2 −2c, 1

2 − c
}

for c ≤ 1
6 .

Proof of Proposition 2. Consider a network g which is a tree with n> 3 players and assume that

it is pairwise stable. It is permissible to assume w.l.o.g. that g consists of only one component

since the utility function is component-decomposable. Based on Theorem 2 we can immediately
rule out the possibility that all players receive a payoff of 1

2 in g. Therefore and in line with

Proposition 1 and Remark 1 the algorithm A (g) has to stop after the first step providing an
outcome (r1,x1,M1,L1,N1,g1) with M1 ∪̇ L1 = N, |M1| > |L1| and g|M1 = g|L1 = /0. So it is

r1 ∈ (0,1) and v∗i (g) = 1− v∗j(g) = x1 ∈
(
0, 1

2

)
for all i ∈ M1, j ∈ L1. Theorem 3 then implies

that it is

x1 + c =
1
2
. (B.1)

We divide the tree networks considered here into the following three classes. Notice that a
player i ∈ N is called loose-end player if it is ηi(g) = 1, that is if she has exactly one link.

(a) No player has more than two links in g (line networks).

(b) There is a player who has at least three neighbors in g including at least two loose-end
players.

(c) There is a player who has more than two links in g but no player has more than one

loose-end contact.

In the following, we will distinguish between these three cases and show separately that there

arises a contradiction to pairwise stability.

Class (a):

W.l.o.g. let g = {12,23, ...,(n− 1)n}. Here n must be odd since otherwise it would obviously
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be |Lg(M)|
|M| ≥ 1 for all g-independent sets M ⊆ N inducing a payoff of 1

2 for every player. So by
assumption it must be n ≥ 5. Considering the algorithm A (g), we find that the shortage ratio is

minimized by the g-independent set which contains the players 1,3, ...,n−2,n. Therefore, it is
r1 =

n−1
n+1 and x = n−1

2n . Hence, here condition (B.1) is equivalent to

c =
1
2n

(B.2)

Now, if player 3 deletes her link to player 2, then she becomes a loose-end player in a component

which is again a line with an odd number of n− 2 players in the network g− 23. Hence, it is
v∗3(g− 23) = n−3

2(n−2) . Taking equation (B.2) into account the corresponding stability condition

becomes

u∗3(g)−u∗3(g−23)≥ 0 ⇔ v∗3(g)− v∗3(g−23)− c ≥ 0

⇔ n−1
2n

− n−3
2(n−2)

− 1
2n

≥ 0

⇔ 4−n
2n(n−2)

≥ 0.

Obviously, this is never fulfilled for n≥ 5 meaning that a line network cannot be pairwise stable.

Class (b):

Let k ∈ N be a player with at least three neighbors including two or more loose-end players.
Then Manea (2011, Theorem 3) implies that it is v∗k(g)≥

2
3 . So it must be k ∈ L1. Select a player

i ∈ Nk(g) such that ηi(g) ≥ ηi′(g) for all i′ ∈ Nk(g). Notice that in the network g− ki player k

still has at least two loose-end contacts such that again according to Manea (2011, Theorem 3)

it is v∗k(g− ki)≥ 2
3 . The corresponding stability condition then gives

u∗k(g)≥ u∗k(g− ki) ⇔ v∗k(g)− c ≥ v∗k(g− ki) ⇒ 1− x1 − c ≥ 2
3

⇔ x1 + c ≤ 1
3
.

This obviously contradicts equation (B.1). So a network g of class (b) cannot be pairwise stable.

Class (c):

For this purpose, first deliberate the following: For any tree network g̃ and any player k ∈ N

there exists a unique partition
(
Brk

ν
)

ν∈Nk(g)
of N\{k} such that for all ν ∈ Nk(g) it is ν ∈ Brk

ν

and g|Brk
ν

is connected, i.e. g|Brk
ν

consists of a single component. Based on this observation, we

define the networks
(
g|Brk

ν

)
ν∈Nk(g)

as the branches of player k in g and ν ∈ Nk(g) will be called

the fork player of g|Brk
ν
.

Notice that if g belongs to class (c), then there exists a player k ∈ N who has three or more links
such that for at least all but one of her branches, all players contained in these have at most two

links in g. If this would not be the case, the following procedure would never stop, meaning
that there would have to be infinitely many players in N: Initially, select a player k0 having
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more than two links and one of her branches containing another player k1 with more than two

links. Then by assumption player k1 must have a branch in g which does not contain player
k0 but a player k2 who also has more than two links. For this player k2 there must again be a

branch in g not containing k0 and k1 but a player k3 having more than two links. Continuing this
way, for any m ∈N there is a player km+1 ∈ N\{k0, ...,km}, which then gives a contradiction by

induction. Consequently, a player k as mentioned above must indeed exist.
In the following we will distinguish between two subcases, namely whether it is k ∈ M1 or

k ∈ L1.

First consider the case where k ∈ L1. If there are one or more other players having more than two

links, let i ∈ N be the fork player of player k’s branch which contains all of them. Otherwise,
arbitrarily pick some i ∈ Nk(g). In both cases consider the component C ⊂ N to which player k

belongs in the network g− ki. In the network g|C, there is only player k who might have more
than two links. Furthermore, every branch of player k in g|C must be a line of odd length since

Manea (2011, Theorem 3) implies that any loose-end player in g belongs to M1 in the case at
hand. This in turn implies that for any g|C-independent set M with |Lg|C (M)|

|M| < 1 it is k ∈ Lg|C(M).

One example for such a set is M1 ∩C with partner set L1 ∩C. Hence, it must be v∗k(g− ki)> 1
2 .

The corresponding stability condition then gives

u∗k(g)≥ u∗k(g− ki) ⇔ v∗k(g)− c ≥ v∗k(g− ki) ⇒ 1− x1 − c >
1
2

⇔ x1 + c <
1
2
.

This obviously again contradicts equation (B.1). Consequently, a network g of class (c) with
k ∈ L1 cannot be pairwise stable.

This means that solely the subcase k ∈ M1 is remaining. For this purpose we need to introduce
some additional notation. Identify a branch of player k which is a line network with minimal

length among all of these line branches. The set of the players contained in this branch will be
denoted C1 ⊂ N. Notice that any branch of player k which is a line network is of even length.

Let M̂1 = M1 ∩C1 and L̂1 = L1 ∩C1. Then it is |M̂1|= |L̂1|. Let j denote the fork player of this
branch. In addition, let C2 ⊂N denote the set of all players contained in the other line branch(es)

of player k. Let similarly M̂2 = M1∩C2 and L̂2 = L1∩C2. Then |M̂2|= |L̂2| ≥ |M̂1|. Finally, let
C3 = N\(C1 ∪̇C2 ∪̇ {k}) and M̂3 := M1 ∩C3, L̂3 := L1 ∩C3. Then it must be |M̂3| ≥ |L̂3| since

it was |M1|> |L1|.
We must have r1 = |L1|

|M1| ≤
|L̂3|
|M̂3| as relationship between these two shortage ratios since r1 is

minimal for g and obviously Lg(M̂3) = L̂3. Hence, with this notation, it is

x1 =
|L1|

|M1|+ |L1|
=

|M̂1|+ |M̂2|+ |L̂3|
2|M̂1|+2|M̂2|+ |M̂3|+ |L̂3|+1

.

Now consider the network g′ := g− k j. Let (r′s,x
′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄′ be the outcome of the

algorithm A (g′). Notice first that the set M̂2 ∪̇ M̂3 ∪̇ {k} ⊂ M1 is g′-independent and L̂2 ∪̇ L̂3 is
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the corresponding partner set in g′. Furthermore, it is

|L̂2|+ |L̂3|
|M̂2|+ |M̂3|+1

=
|M̂2|+ |L̂3|

|M̂2|+ |M̂3|+1
< 1.

Now assume for contradiction that there is another g′-independent set M′ ⊆ N with partner set

L′ = Lg′(M′) ⊆ N which is shortage ratio minimizing in step s = 1 of A (g′). Since the set
C1 is a component in g′ and g|C1 is a line network of even length where every player receives

a payoff of 1
2 , it is (M′ ∪̇ L′)∩C1 = /0 and s̄′ ≥ 2. Moreover, according to Lemma 3 it is

M1 ∩L′
s = L1 ∩M′

s = /0 for all s < s̄′. Hence, it must be M′ ⊂ M̂2 ∪̇ M̂3 ∪̇ {k} and L′ ⊂ L̂2 ∪̇ L̂3

and therefore
|L′|
|M′|

<
|M̂2|+ |L̂3|

|M̂2|+ |M̂3|+1
< 1.

On the other hand, M′ ∪̇ M̂1 ⊂ M1 is also g-independent and Lg(M′ ∪̇ M̂1) = L′ ∪̇ L̂1. The mini-

mality of r1 =
|L1|
|M1| in A (g) then implies

r1 =
|M̂2|+ |L̂3|+ |M̂1|

|M̂2|+ |M̂3|+1+ |M̂1|
≤ |L′|+ |M̂1|

|M′|+ |M̂1|
< 1 ⇒ |M̂2|+ |L̂3|

|M̂2|+ |M̂3|+1
≤ |L′|

|M′|
,

which is obviously a contradiction. Thus it is

v∗k(g
′) =

|M̂2|+ |L̂3|
2|M̂2|+ |M̂3|+ |L̂3|+1

.

Taking again equation (B.2) into account the corresponding stability condition becomes

u∗k(g)≥ u∗k(g− k j) ⇔ v∗k(g)−ηk(g)c ≥ v∗k(g− k j)−ηk(g− k j)c

⇔ x1 ≥ v∗k(g− k j)+
1
2
− x1

⇔ 2x1 − v∗k(g− k j)≥ 1
2

(B.3)

However, as we will now finally establish, it always is 2x1−v∗k(g
′)< 1

2 . Some calculations yield

2x1 − v∗k(g− k j) =
2|M̂1|+2(|M̂2|+ |L̂3|)

2|M̂1|+(2|M̂2|+ |M̂3|+ |L̂3|+1)
− (|M̂2|+ |L̂3|)

(2|M̂2|+ |M̂3|+ |L̂3|+1)

=
2|M̂1|(|M̂2|+ |M̂3|+1)+(|M̂2|+ |L̂3|)(2|M̂2|+ |M̂3|+ |L̂3|+1)

2|M̂1|(2|M̂2|+ |M̂3|+ |L̂3|+1)+(2|M̂2|+ |M̂3|+ |L̂3|+1)2

=
D−R

2D
,

where

D = 2|M̂1|(2|M̂2|+ |M̂3|+ |L̂3|+1)+(2|M̂2|+ |M̂3|+ |L̂3|+1)2 > 0
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is the denominator of the preceded line and

R =−2|M̂1||M̂3|+2|M̂1||L̂3|−2|M̂1|+2|M̂2||M̂3|−2|M̂2||L̂3|+2|M̂2|+ |M̂3|2 +2|M̂3|− |L̂3|2 +1

= 2(|M̂2|− |M̂1|︸ ︷︷ ︸
≥0

)+2(|M̂3|− |L̂3|︸ ︷︷ ︸
≥0

)(|M̂2|− |M̂1|︸ ︷︷ ︸
≥0

)+(|M̂3|2 −|L̂3|2︸ ︷︷ ︸
≥0

)+2|M̂3|+1

≥ 2|M̂3|+1

> 0.

Hence, it is indeed 2x− v∗k(g− k j) = D−R
2D < 1

2 . This concludes the proof of case (c) and the
whole Proposition.

Proof of Proposition 3. Assume for contradiction that g is pairwise stable and w.l.o.g. that it
consists of only one component. Since there is player k receiving a payoff v∗k(g) >

1
2 , the

algorithm A (g) must provide (r1,x1,M1,L1,N1,g1) with r1 = |L1|
|M1| < 1 and M1 ∪L1 = N and

of course k ∈ L1. From Theorem 3 we already know that x1 + c = 1
2 has to be satisfied for

g to be pairwise stable. We will prove that player k can delete a certain link such that in the
resulting network she will still receive a payoff greater than 1

2 . As we will see, this constitutes

a contradiction.

To start with, based on the assumptions of the Proposition there must be a set K ⊂ N such that

k ∈ K fulfilling

• Lg(K\{k}) = K and Lg(K{) = K{∪{k},

• k is contained in a cycle in g|K{∪{k},

• g|K{ consists of one component.

Since it is k ∈ Lg(K\{k}), it must be Nk(g)∩K ̸= /0. Also, there exists i′ ∈ Nk(g)\K such

that k and i′ belong to the same cycle in g. Now consider the network g′ := g− ki′ and let
(r′s,x

′
s,M

′
s,L

′
s,N

′
s,g

′
s)s=1,...,s̄′ be the outcome of A (g′). Lemma 3 guarantees that it is v∗k(g

′)≥ 1
2 .

So assume that we had v∗k(g
′) = 1

2 meaning that k ∈ N′
s̄′ .

As a first step, we establish that given this assumption it is

|L1 ∩Ck(g|N′
s̄′∩K)|

|M1 ∩Ck(g|N′
s̄′∩K)|

= 1, (B.4)

where Ck(g|N′
s̄′∩K) denotes the component to which player k belongs in the network g restricted

to the set N′
s̄′ ∩K. Notice first that it is Nk(g′|K) ̸= /0 and it must be Nk(g′)⊆ M1 ∩N ′

s̄′ since ac-
cording to Lemma 3 it is M1∩L′

s = /0 for all s < s̄′. This guarantees M1∩Ck(g|N′
s̄′∩K) ̸= /0. Based

on this, we can immediately rule out the possibility that the left-hand side of (B.4) is strictly
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smaller than 1 since M1 ∩Ck(g|N′
s̄′∩K) is g′-independent and clearly Lg′s̄′ (M1 ∩Ck(g|N′

s̄′∩K)) ⊆
L1 ∩Ck(g|N′

s̄′∩K). To construct a contradiction assume that the left-hand side of (B.4) is strictly
greater than 1. We make use of the following implication, which we will verify at the end of the

proof:

|L̂|= |M̂| ≥ 1 for L̂ ⊆ L1 ∩Ck(g|N′
s̄′∩K)\{k}, Nk(g)∩K ⊆ M̂ ⊆ M1 ∩Ck(g|N′

s̄′∩K) ⇒ Lg′s̄′ (L̂)\M̂ ̸= /0

(B.5)

We know that it is /0 ̸= Nk(g)∩K ⊆ N′
s̄′ . Let M̂0 = Nk(g)∩K such that M̂0 ⊆ M1 ∩Ck(g|N′

s̄′∩K).

Hence, it must be |L1 ∩Ck(g|N′
s̄′∩K)\{k}| ≥ |M̂0| since otherwise we had

|L1 ∩Ck(g|N′
s̄′∩K)|

|M1 ∩Ck(g|N′
s̄′∩K)|

≤
|L1 ∩Ck(g|N′

s̄′∩K)|
|M̂0|

≤ 1,

contradicting our assumption. Select a set of players L̂0 ⊆ L1 ∩Ck(g|N′
s̄′∩K)\{k} with |L̂0| =

|M̂0|. Notice that M̂0 and L̂0 satisfy the conditions of implication B.5.

Based on this, we can construct a sequence of players ( j1, j2, j3, ...) in a certain way such that
according to the previous considerations, the underlying procedure which sequentially adds

players to the sequence will never break up. As in the proofs of Lemma 2 and 3, this leads to
a contradiction to the finiteness of the player set N. For this purpose, let M̂m := { jl : 1 ≤ l ≤
m odd}∪M̂0 and L̂m := { jl : 1 ≤ l ≤ m even}∪ L̂0 for m ∈N. Now consider some even number
m ∈N∪{0}. Assume that L̂m ⊆ L1∩Ck(g|N′

s̄′∩K)\{k}, Nk(g)∩K ⊆ M̂m ⊆ M1∩Ck(g|N′
s̄′∩K) and

|L̂m|= |M̂m| ≥ 1. We then have:

• By implication (B.5) there exists jm+1 ∈ Lg′s̄′ (L̂m)\M̂m. For this player it must hold that
jm+1 ∈ M1 ∩Ck(g|N′

s̄′∩K)\M̂m since L̂m ⊆ L1 ∩Ck(g|N′
s̄′∩K)\{k}.

• There then must exist jm+2 ∈ L1 ∩Ck(g|N′
s̄′∩K)\(L̂m+1 ∪̇ {k}) since otherwise we would

have

1 <
|L1 ∩Ck(g|N′

s̄′∩K)|
|M1 ∩Ck(g|N′

s̄′∩K)|
≤ |L̂m+1 ∪̇ {k}|

|M̂m+1|
= 1.

Thus it is L̂m+2 ⊆ L1 ∩Ck(g|N′
s̄′∩K)\{k}, Nk(g)∩K ⊆ M̂m+2 ⊆ M1 ∩Ck(g|N′

s̄′∩K) and |L̂m+2| =
|M̂m+2|= |L̂m|+1 ≥ 1. By induction this leads to a contradiction to the finiteness of the player

set N. This proves equation (B.4).

During the second step we will now use the previous result to construct a conclusive contradic-

tion of similar kind arising from the assumption that it is v∗k(g
′) = 1

2 . Additionally, we will need
the following implication:

|L̃|= |M̃| ≥ 1 for L̃ ⊆ L1 ∩N′
s̄′\K, M̃ ⊆ M1 ∩N ′

s̄′\K ⇒ Lg′s̄′ (L̃)\(M̃ ∪̇K) ̸= /0 (B.6)

41



Its verification is as well postponed to the end of this proof. Moreover, notice that by definition

it is |Lgs̄′ (M̄)|
|M̄| ≥ 1 for all g′-independent sets M̄ ⊆ N′

s̄′ . Based on this we can again construct a
sequence of players (i1, i2, i3, ...) such that according to the previous considerations, the sequen-

tial adding of new players will never break up. Thus, we will again get a contradiction to the
finiteness of the player set N. For this purpose, we define the sets M̃m = {il : 1 ≤ l ≤ m odd}
and L̃m = {il : 1 ≤ l ≤ m even} for m ∈ N.

Initially, select a player i1 ∈ M1 ∩N′
s̄′\K. Notice that such a player must exist since k ∈ L1 ∩N′

s̄′

is part of a cycle in g|N\K∪{k} and according to Lemma 3 M1 ∩ L′
s = /0 for all s < s̄′. Now

consider some odd number m ∈ N. Assume that M̃m ⊆ M1 ∩N′
s̄′\K, L̃m ⊆ L1 ∩N′

s̄′\K and that

|M̃m|= m+1
2 > m−1

2 = |L̃m|. We then have:

• M̃m ∪̇ (M1 ∩Ck(g|N′
s̄′∩K))⊆ N′

s̄′ is g′-independent and

|L̃m ∪̇ (L1 ∩Ck(g|N′
s̄′∩K))|

|M̃m ∪̇ (M1 ∩Ck(g|N′
s̄′∩K))|

< 1

since it is |Lg′s̄′ (M1 ∩Ck(g|N′
s̄′∩K))| ≤ |L1 ∩Ck(g|N′

s̄′∩K)| = |M1 ∩Ck(g|N′
s̄′∩K)| as we know

from (B.4). Therefore, there must exist a player im+1 ∈ Lg′s̄′ (M̃m)\(L̃m ∪̇K). Since M̃m ⊆
M1, it is im+1 ∈ L1 ∩N′

s̄′\(L̃m ∪̇K).

• We then have |L̃m+1|= |M̃m+1|= m+1
2 ≥ 1 and L̃m+1 ⊆ L1 ∩N ′

s̄′\K, M̃m+1 ⊆ M1 ∩N′
s̄′\K.

Therefore by implication (B.6) there exists im+2 ∈ Lg′s̄′ (L̃m+1)\(M̃m+1 ∪̇K). Since L̃m+1 ⊆
L1, it is im+2 ∈ M1 ∩N′

s̄′\(M̃m+1 ∪̇K).

Thus, it is M̃m+2 ⊆ M1∩N′
s̄′\K, L̃m+2 ⊆ L1∩N′

s̄′\K and |M̃m+2|= (m+2)+1
2 > (m+2)−1

2 = |L̃m+2|.
By induction this leads again to a contradiction to the finiteness of the player set N. So we have
proven that player k’s payoff v∗k(g

′) must indeed be strictly greater than 1
2 . The corresponding

stability condition then leads to

u∗k(g)≥ u∗k(g− ki′) ⇔ v∗k(g)− c ≥ v∗k(g
′) ⇒ 1− x1 − c >

1
2

⇔ x1 + c <
1
2
,

which is a contradiction to Theorem 3. Therefore, the network g cannot be pairwise stable.

It remains to prove implications (B.5) and (B.6). We start with the first one. Given the two
sets L̂ ⊆ L1∩Ck(g|N′

s̄′∩K)\{k} and M̂ ⊆ M1∩Ck(g|N′
s̄′∩K) with Nk(g)∩K ⊆ M̂ and |L̂|= |M̂| ≥ 1

assume for contradiction that Lg′s̄′ (L̂) ⊆ M̂. Notice that it must be N j(g′s̄′) = N j(g) for all j ∈ L̂

since it is L̂ ⊆ L1 ∩N′
s̄′\{k} and according to Lemma 3 M1 ∩L′

s = /0 for all s < s̄′. So we have
that Lg(M1 ∩K\M̂) ⊆ L1 ∩K\L̂. Moreover, since Nk(g)∩K ⊆ M̂, it even is Lg(M1 ∩K\M̂) ⊆
L1 ∩K\(L̂ ∪̇ {k}).
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Further, we will establish and make use of the following inequalities:

|L1 ∩K|−1
|M1 ∩K|

≤ r1 ≤
|L1 ∩K|
|M1 ∩K|

≤ 1 (B.7)

First notice that it is Lg(M1∩K)⊆ L1∩K and similarly Lg(M1\K)⊆ L1\K ∪̇{k}. So it must be
r1 ≤ |L1∩K|

|M1∩K| and r1 ≤ |L1\K|+1
|M1\K| since otherwise one would get a contradiction to the minimality

of r1. Moreover, it is r1 = |L1|
|M1| < 1, M1 = (M1 ∩K) ∪̇ (M1\K) and L1 = (L1 ∩K) ∪̇ (L1\K).

Therefore it must be |L1∩K|−1
|M1∩K| = |L1|−(|L1\K|+1)

|M1|−|M1\K| ≤ r1. And finally, if it was |L1∩K|
|M1∩K| > 1, then this

would mean that also |L1∩K|−1
|M1∩K| ≥ 1, which is a contradiction to the above.

The third inequality in (B.7) implies that M1∩K\M̂ ̸= /0 since otherwise it would be |M1∩K|=
|M̂|= |L̂|< |L̂ ∪̇ {k}| ≤ |L1 ∩K|. Taken together, this leads to the following contradiction:

r1 ≤
|Lg(M1 ∩K\M̂)|
|M1 ∩K\M̂|

≤ |L1 ∩K\(L̂ ∪̇ {k})|
|M1 ∩K\M̂|

=
|L1 ∩K|− |L̂|−1
|M1 ∩K|− |M̂|

=
|L1 ∩K|−1−|L̂|
|M1 ∩K|− |L̂|

<
|L1 ∩K|−1
|M1 ∩K|

≤ r1,

where the last two inequalities are due to (B.7) and the fact that r1 < 1.

Regarding implication (B.6), we start from two sets L̃ ⊆ L1 ∩N′
s̄′\K and M̃ ⊆ M1 ∩N′

s̄′\K with

|L̃| = |M̃| ≥ 1 and assume that it was Lg′s̄′ (L̃) ⊆ M̃. Notice that it must be N j(g′s̄′) = N j(g) for
all j ∈ L̃ since according to Lemma 3 it is M1 ∩L′

s = /0 for all s < s̄′. Therefore, we have that

Lg(M1\M̃) ⊆ L1\L̃. Also, it is clear that M1\M̃ ̸= /0 since otherwise it would be |M1| = |M̃| =
|L̃| ≤ |L1| contradicting r1 < 1. Summing up, this implies

r1 ≤
|Lg(M1\M̃)|
|M1\M̃|

≤ |L1\L̃|
|M1\M̃|

=
|L1|− |L̃|
|M1|− |M̃|

=
|L1|− |L̃|
|M1|− |L̃|

<
|L1|
|M1|

= r1,

which is obviously again a contradiction. So we have that Lg′s̄′ (L̃)\(M̃ ∪̇ K) ̸= /0 since it is

Lg′s̄′ (L̃)⊆ K{. This concludes the proof.

Proof of Example 2. There are several ways to easily check that gN with n ≥ 4 is not pairwise
stable for any positive level of linking costs if players are infinitely patient. For any nonempty

gN-independent set M it is |M|= 1 and |LgN
(M)|= n−1 and hence, according to the algorithm

A (gN) we have v∗i (g
N) = 1

2 for all i ∈ N. The situation does not change crucially if some link

i j is deleted from gN . In this case A (gN − i j) provides r1 =
n−2

2 ≥ 1 and therefore it is again
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v∗i (g
N − i j) = 1

2 for all i ∈ N. Thus, it is

u∗i (g
N) = v∗i (g

N)−ηi(gN)c =
1
2
− (n−1)c <

1
2
− (n−2)c = u∗i (g

N − i j).11

Now consider the case δ ∈ (0,1). As a starting point, we take the equation

vī =

(
1− n−1

n(n−1)

)
δvī +

n−1
n(n−1)

(1−δvī)

for some fixed ī ∈ N. Solving this gives vī =
1

(1−δ )n+2δ . Obviously, it is vī ∈
(
0, 1

2

)
, which

implies 1−2δvī > 0. Moreover, it is d#(gN) = n(n−1)
2 and all players are in symmetric positions

within the network gN . This shortcut avoiding extensive calculations establishes that the n-tuple

(vī,vī, ...,vī) solves the equation system (2.1). Therefore, it is for all i ∈ N

v∗δ
i (gN) =

1
(1−δ )n+2δ

. (B.8)

After that, consider the network gN − i j for some i, j ∈N. For this purpose, let ṽ= (ṽ1, ṽ2, ..., ṽn)

be given by

ṽi = ṽ j =
(1−δ )n2 +(2δ −1)n− (δ +2)

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)
,

ṽk =
(1−δ )n2 +δn− (2δ +1)

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)
, (B.9)

where k ∈ N\{i, j}. By showing that the denominator in the terms (B.9) is in both cases greater

than the nominator and that both nominators are greater than 0 we show first that ṽ ∈ (0,1)n. It
is for δ ∈ (0,1) and n ≥ 4:

(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

)
−
(
(1−δ )n2 +(2δ −1)n− (δ +2)

)
=(1−δ )2n3 +(1−δ )(3δ −1)n2 +(2δ 2 +δ −2)n−δ (2δ +1)

=(1−δ )n
[
(1−δ )n2 +(3δ −1)n− (2δ +3)

]
+n−δ (2δ +1)

>(1−δ )n[2n− (2δ +3)]+n−δ (2δ +1)

>(1−δ )n[2n−5]+ (n−3)

>0

and

(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

)
11An alternative way to verify this would be to apply Theorem 2 combined with Manea (2011, Theorem 5).
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−
(
(1−δ )n2 +δn− (2δ +1)

)
=(1−δ )2n3 +(1−δ )(3δ −1)n2 +(2δ 2 +2δ −3)n− (2δ 2 +1)

=(1−δ )n
[
(1−δ )n2 +(3δ −1)n− (2δ +4)

]
+n− (2δ 2 +1)

>(1−δ )n[2n− (2δ +4)]+n− (2δ 2 +1)

>(1−δ )n[2n−6]+ (n−3)

>0,

and moreover

(1−δ )n2 +(2δ −1)n− (δ +2)> n− (δ +2)> n−3 > 0,

(1−δ )n2 +δn− (2δ +1)> n− (2δ +1)> n−3 > 0.

Next, we show that it is 1−δ ṽi−δ ṽk > 0 and 1−2δ ṽk > 0, which implies max{1−δ ṽi,δ ṽk}=
1−δ ṽi, max{1−δ ṽk,δ ṽi}= 1−δ ṽk and max{1−δ ṽk,δ ṽk}= 1−δ ṽk. We calculate

1−δ ṽi −δ ṽk =
(δ 2 −2δ +1)n3 +(−δ 2 +δ )n2 +(−δ 2 +4δ −3)n+(δ 2 +δ −2)

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

=
(1−δ )

[
(1−δ )n3 +δn2 +(δ −3)n− (δ +2)

]
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

>
(1−δ )[n2 +(δ −3)n− (δ +2)]

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

>
(1−δ )[

>0︷ ︸︸ ︷
n2 −3n−3]

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

> 0

and

1−2δ ṽk =
(δ 2 −2δ +1)n3 +(−δ 2 +δ )n2 +(3δ −3)n+(2δ 2 −2)

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

=
(1−δ )

[
(1−δ )n3 +δn2 −3n−2(δ +1)

]
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

>
(1−δ )[n2 −3n−2(δ +1)]

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

>
(1−δ )[

≥0︷ ︸︸ ︷
n2 −3n−4]

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

≥ 0

Furthermore, notice that it is d#(gN − i j) = n(n−1)−2
2 and hence, for the network gN − i j the
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equation system (2.1) is equivalent to

vl =

(
1− n−2

n(n−1)−2

)
δvl +

n−2
n(n−1)−2

max{1−δvk,δvl},

vk =

(
1− n−1

n(n−1)−2

)
δvk +

2
n(n−1)−2

max{1−δvl,δvk}+
n−3

n(n−1)−2
max{1−δvk,δvk},

(B.10)

l ∈ {i, j}, k ∈ N\{i, j}. Using our preparatory work, one can show by straightforward calcu-
lations that ṽ as given in (B.9) solves the system (B.10) and hence for the equilibrium payoff

vector it is v∗δ (gN − i j) = ṽ.

After we have successfully calculated the payoffs in both networks gN and gN − i j, it remains
to show that for all δ ∈ (0,1), n ≥ 4, there exists c > 0 such that for all i, j ∈ N it is

v∗δ
i (gN)− v∗δ

i (gN − i j)≥ c. (B.11)

For this purpose let

c =
2(1−δ )(n−1)(

(1−δ )n+2δ
)(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

) ,
where the denominator is the product of the denominators of the terms in (B.8) and (B.9) and
therefore positive as well. Hence, it is c > 0 and we calculate

v∗δ
i (gN)− v∗δ

i (gN − i j)

=
1

(1−δ )n+2δ
− (1−δ )n2 +(2δ −1)n− (δ +2)

(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

=
(δ 2 −2δ +1)n2 +(−3δ 2 +4δ −1)n+(2δ −2)(

(1−δ )n+2δ
)(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

)
=

(1−δ )
[
(1−δ )n2 +(3δ −1)n−2

](
(1−δ )n+2δ

)(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

)
>

(1−δ )[2n−2](
(1−δ )n+2δ

)(
(δ 2 −2δ +1)n3 +(−3δ 2 +3δ )n2 +(2δ 2 +3δ −3)n− (2δ 2 +2δ +2)

)
=c.

Proof of Theorem 4 (n odd). It remains to prove the statements for the case n = |N| odd. Let g

denote such a network. We adopt the notation we introduced for the case that n is even. Based on

the player set N we consider again the corresponding set N′(g)⊆ N excluding isolated players
and g′ = g|N′(g) on this player set. Let gSPL

N′(g) denote a representative of the networks on N′(g)
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consisting of |N′(g)|−3
2 separated pairs and one line of length three. Similarly, let gSPC

N′(g) be a

network consisting of |N′(g)|−3
2 separated pairs and one three players circle. Since we did not

use that |N| was even to derive inequality (5.1), we again have

U∗(g)≤ 1
2
|N′(g)|−2d#(g′)c.

Again, since ηi(g′) ≥ 1 for all i ∈ N′(g), it must be d#(g′) ≥ 1
2 |N

′(g)|. We distinguish now

between |N′(g)| even and odd.

In the former case, if it is d#(g′) = 1
2 |N

′(g)|, then this implies again g′ = gSP
N′(g). So conversely,

for a network g with g′ ̸= gSP
N′(g) this means that it is d#(g′)> 1

2 |N
′(g)| and therefore according

to (5.1)

U∗(g)<
1
2
|N′(g)|− |N′(g)|c = ∑

i∈N′(g)

(1
2
− c
)
=U∗(gSP

N′(g)).

In the case that |N′(g)| is odd, notice first that it must be d#(g′) ≥ 1
2(|N

′(g)|+ 1) since the
interval

[1
2 |N

′(g)|, 1
2(|N

′(g)|+ 1)
)

does not contain a natural number. Consider the following

subcases:

• If it is d#(g′) = 1
2(|N

′(g)|+ 1), then it follows g′ = gSPL
N′(g). That is because otherwise

we would either have η j(g′) ≥ 3 for at least one player j ∈ N′(g) or ηk(g′),ηl(g′) ≥ 2
for k ̸= l ∈ N′(g), which both implies d#(g′) ≥ 1

2(4+(|N′(g)|− 2)) = 1
2(|N

′(g)|+ 2) >
1
2(|N

′(g)|+1).

• If it is d#(g′) = 1
2(|N

′(g)|+3), then g′ must be of one of the following types:

– A network with three players having two links each and |N′(g)| − 3 players with
one link,

– a network consisting of one player with three links, one player with two links and
|N′(g)|−2 players with one link or

– a network with one player having four links and |N′(g)|−1 players with one link.

Notice that the network gSPC
N′(g) is included here. On closer examination, one realizes that

for any other g′ ̸= gSPC
N′(g) being of one of the above types, the algorithm A (g′) yields

|M′
1| > |L′

1|. This implies a strict inequality in (5.1). Hence, for g inducing g′ ̸= gSPC
N′(g)

with d#(g′) = 1
2(|N

′(g)|+3) it is

U∗(g)<
1
2
|N′(g)|−2d#(g′)c=

1
2
|N′(g)|−(|N′(g)|+3)c= |N′(g)|

(1
2
−c
)
−3c=U∗(gSPC

N′(g)).
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• Finally, for g with d#(g′)> 1
2(|N

′(g)|+3) it is again according to (5.1)

U∗(g)≤ 1
2
|N′(g)|−2d#(g′)c<

1
2
|N′(g)|−(|N′(g)|+3)c= |N′(g)|

(1
2
−c
)
−3c=U∗(gSPC

N′(g)).

Summarizing this, we have shown that a network g inducing g′ /∈
{

gSP
N′(g),g

SPL
N′(g),g

SPC
N′(g)

}
cannot

be efficient. To conclude the proof, we have to examine, which of the remaining candidates

is efficient depending on the level of linking costs. Notice that the set N′(g) always satisfies
0 ≤ |N′(g)| ≤ |N| and |N′(g)| ̸= 1. Moreover, recall that gSP

N′(g) is only well-defined for |N′(g)|
even and gSPL

N′(g),g
SPC
N′(g) only for |N′(g)| odd. Hence, it is

max
N′(g) f easible

U∗(gSP
N′(g)) = max

N′(g) f easible
|N′(g)|

(1
2
− c
)
=

{
0, for c ≥ 1

2

(|N|−1)
(1

2 − c
)
, for c ∈

(
0, 1

2

) ,

max
N′(g) f easible

U∗(gSPL
N′(g)) = max

N′(g) f easible
|N′(g)|

(1
2
− c
)
−
(

c+
1
6

)
=

{
4
3 −4c, for c ≥ 1

2

|N|
(1

2 − c
)
−
(
c+ 1

6

)
, for c ∈

(
0, 1

2

) ,

max
N′(g) f easible

U∗(gSPC
N′(g)) = max

N′(g) f easible
|N′(g)|

(1
2
− c
)
−3c =

{
3
2 −6c, for c ≥ 1

2

|N|
(1

2 − c
)
−3c, for c ∈

(
0, 1

2

) .

We find that for c ≥ 1
2 it is

max
N′(g) f easible

U∗(gSPL
N′(g)), max

N′(g) f easible
U∗(gSPC

N′(g))< 0 = max
N′(g) f easible

U∗(gSP
N′(g)),

so in this case a network g with g′ ∈
{

gSPL
N′(g),g

SPC
N′(g)

}
cannot be efficient. For c > 1

2 N′(g) = /0 is

the unique maximizer of U∗(gSP
N′(g)) and therefore the empty network is uniquely efficient. For

c = 1
2 any feasible N′(g) maximizes U∗(gSP

N′(g)) meaning that a network g is efficient if and only

if it is a disjoint union of a number of separated pairs and isolated players.

With regard to c ∈
(
0, 1

2

)
we calculate

max
{
−
(1

2
− c
)
,−
(

c+
1
6

)
,−3c

}
=


−
(1

2 − c
)
, for c ≥ 1

6

−
(

c+ 1
6

)
, for c ∈

[ 1
12 ,

1
6

]
−3c, for c ≤ 1

12

This means that for n = |N| odd a network which is

• a disjoint union of |N|−1
2 separated pairs and one isolated player is efficient iff c ∈

[1
6 ,

1
2

]
,

• a disjoint union of |N|−3
2 separated pairs and a line of length three is efficient iff c∈

[ 1
12 ,

1
6

]
,

• a disjoint union of |N|−3
2 separated pairs and a three player circle is efficient iff c ∈

(
0, 1

12

]
.

Since we have already ruled out any other network, this concludes the proof.
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