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Abstract. We present a cognitively motivated vision architecture for
the evaluation of pointing gestures. The system views a scene of several
structured objects and a pointing human hand. A neural classifier gives
an estimation of the pointing direction, then the object correspondence
is established using a sub-symbolic representation of both the scene and
the pointing direction. The system achieves high robustness because the
result (the indicated location) does not primarily depend on the accuracy
of the pointing direction classification. Instead, the scene is analysed
for low level saliency features to restrict the set of all possible pointing
locations to a subset of highly likely locations. This transformation of the
“continuous” to a “discrete” pointing problem simultaneously facilitates
an auditory feedback whenever the object reference changes, which leads
to a significantly improved human-machine interaction.

1 Introduction

Establishing a common focus of attention (FOA) is a major task of communica-
tion. To influence the spatial FOA humans often use hand gestures. Therefore,
pointing direction evaluation is a key topic in the field of human-machine inter-
action, in particular, gestural reference to objects increasingly attracts interest.
However, humans use several modalities at once to establish a common FOA
like gesture, speech and gaze direction. Moreover, feedback from the partner is
constantly evaluated. In contrast, gesture recognition used in machine vision to
direct the FOA is still mostly stand alone and unidirectional, i.e. without feed-
back. To compensate for these shortcomings, much effort is spent to increase
the accuracy of pointing direction recognition. However, we argue that it is not
primarily pointing accuracy which leads to good results but interaction with a
system. Therefore, a system for gestural object reference recognition should offer
three features: (i) A basic “understanding” of the scene to limit the set of objects
that can be pointed at, (i7) feedback to the user to indicate how a gesture was
understood, and (744) the possibility to include other modalities like speech.

In this paper, we present a human-machine interaction system that addresses
these three points. It allows the user to refer to objects or structures of objects



(like buttons of a technical device) by pointing gestures. It relies on the interac-
tion of a neural classifier for pointing directions and a saliency map S generated
from context-free attentional mechanisms. The attentional system is related to
the approach of Backer et al. [1]; an earlier version was presented in [2, 7]. Simi-
larly motivated architectures for FOA were proposed by Itti et al. [9] and Walther
et al. [17]. The latter approach is based on the Neocognitron introduced by [3].

The maxima of S are used to select conspicuous image structures. These re-
sults are combined with the down-propagated output of the classifier (pointing
angle) on a sub-symbolic level using an “attention map” (ATM). The repre-
sentation of the common FOA as the maximum of the ATM facilitates (7) the
stabilisation even in the presence of inaccurate or noisy pointing results, (i7) an
auditory feedback when the indicated point “hops” to a new object and (7i7) the
future integration of spatial anticipations from other modalities.

Fig.1. Left: In a test sce-
nario viewed by a stationary
camera a user is pointing to
objects on the table. Right:
Setting used for system per-
formance evaluation as de-
scribed in Sect. 3.

2 System description

The system relies on two data driven processing branches (Fig. 2): From the
camera image first three feature maps are calculated (Sect. 2.1) in which different
image features stand out (Fig. 5). The saliency map S is calculated as a weighted
sum of the feature maps by an adaptive weighting (Sect. 2.2). Maxima of S are
considered as “interesting” areas and serve as a possible pointing targets.

In the second branch, a skin colour segmentation module yields candidate
regions which might contain a hand. These regions are input to the VPL clas-
sifier (Sect. 2.3) which (a) decides if the region is a pointing hand and if so (b)
determines the pointing direction. The symbolic output angle is translated back
to the sub-symbolic level by calculating a manipulator map (Sect. 2.4) which is
multiplied to S to obtain the attention map, the maximum of which is the FOA.
The focus shift detection module (FSD) outputs an auditory feedback to the
user, reconsulting intermediate processing results from the ATM module. Next,
the single components are described in more detail.

2.1 Generation of context-free feature maps

We currently use three different methods to generate saliency maps which com-
plement each other: Grey value entropy, local symmetry and edge-corner detec-
tion. A local entropy map M; yields high saliency value for image windows which
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have a high informational content in the sense of information theory [10]. The
window size determines the scale on which structures are evaluated. Here, we
use windows large enough to detect large objects (see Fig. 5).

A symmetry map M, after Reisfeld et al. [13] attracts attention to objects
or details which are locally symmetric. The use of symmetry is cognitively moti-
vated e.g. by [12]. The third feature map Mj; concentrates on edges and corners
as small salient details of objects. Here we use the detector proposed by Harris
and Stephens [4], which proved to be superior to other detectors in [15].
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2.2 Adaptive integration algorithm

From the N = 3 feature maps M;(z,y) the saliency map S is calculated as a
weighted sum. S is spatially weighted by the manipulator map L(z,y) which
codes the pointing direction (Sect. 2.4) to obtain the attention map C (Fig. 3):

C(x,y) = S(xvy) ’ L(‘Tay) with S("L‘v y) = Za(wz - Mi(ﬁ,y)), (1)

with 6(-) as a threshold function. The maximum of C(-, -) determines the common
FOA of user and machine, which can be used for further processing.

To equalise contributions of the maps M;, we calculate the contributions M;
as a sum over all pixels of each M;. To reach approximate equalisation of the

M;, the map weights w; are adapted by iterating

wi(t+1) = wi(t) + e(wi (t) —w;(t)), 0<e<]1, (2)
with the following target weights w;:
. 1YY My, . ey Mi(z,y) +7)
wi = S5 with ~ M; = 3 : (3)

v enforces a limit for weight growing. The parameters §; can be used if certain
saliency features should a priori be weighted higher. In Sect. 2.4 we make use of
this possibility to give entropy higher weight for large-scale selection of objects
and low weight when object details are pointed at.



Fig. 3. Left: Processing flow of the ATM-module (central box in Fig. 2). The saliency
map S is generated from an (adaptively) weighted superposition of the feature maps.
The manipulator map, which allows the coupling of information from other modules like
the pointing direction recognition, is multiplicatively overlaid on S. Right: Examples
of manipulator maps L (“spotlight of attention”). A wide cone is used as long as the
user wants to indicate large objects, a narrow one for precise pointing to details.

2.3 The neural VPL classification system

We use the VPL system [5] for visual classification, which was previously ap-
plied to several computer vision tasks [6]. “VPL” stands for three processing
stages: Vector quantisation, PCA and LLM-network. The VPL classifier com-
bines visual feature extraction and classification by means of a local principal
component analysis (PCA) for dimension reduction followed by a classification
stage using neural networks, see Fig. 4. Local PCA can be viewed as a nonlinear
extension of simple, global PCA [16].

The vector quantisation is carried out on the raw image windows to provide
a first data partitioning with Ny reference vectors r; € RP,i =1... Ny, using
the Activity Equalisation Algorithm proposed in [8]. To each reference vector r;
a single layer feed forward network for the successive calculation of the principal
components (PCs) as proposed by Sanger [14] is attached. It projects the input
x € RP to the Np < D PCs with the largest eigenvalues: ¢ — p;(z) € RV? i =
1...Ny. In the third stage, to each PCA-net one “expert” neural classifier of
the Local Linear Map — type (LLM network) is attached. It performs the final
mapping p;(z) — y. The LLM network is related to the self-organising map [11],
see e.g. [5] for details. It can be trained to approximate a nonlinear function by
a set of locally valid linear mappings.

The output vector y codes both the decision as to whether the input « is a
pointing hand, and, if so, its pointing angle. The three VPL processing stages
are trained successively with labelled sample windows of the cropped pointing
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hand plus objects assigned to a rejection class. The rejection class contains other
objects which are part of the scenario, e.g. the objects the user points at or parts
of the background. In addition, hand postures other than pointing gestures are
part of the rejection class, e.g. a fist.

The major advantage of the VPL classifier is its ability to form many highly
specific feature detectors (the Ny - Np local PCs). It could be shown that clas-
sification performance and generalisation properties are well-behaved when the
main parameters are changed, which are Ny, Np and the number of nodes in
the LLM nets Ny, [6].

2.4 Translation from symbolic to sub-symbolic level

Skin colour segmentation and the VPL classifier yield the position of the hand
(zH,yn) and the pointing direction «, respectively. Both these (symbolic) in-
formations are translated to a manipulator map L and thus back to the sub-
symbolic level. The manipulator map shows a “Gaussian cone” of width o, which
determines the effective angle of beam spread

L(z,y) = ﬁ exp (_ (arctan(g;%) _ a)2> | N

here in the form for the first quadrant for simplicity, see Fig. 3. The cone gives
higher weight in the attention map to image regions in the pointing direction
and thus “strengthens” salient points in this area.

To facilitate selection of objects on differing scales, o is adjusted online ac-
cording to the user behaviour. The pointing angles a and hand positions (z g, yg)
are recorded over the last six frames. If they show large variance, it is assumed
that the user has moved the hand on a large scale to select a big object, so also
a large o, is chosen. In contrast, o, is reduced for small variance to establish a
“virtual laser pointer” since it is assumed that the user tries to point to detail.

As an additional assistance for coarse / fine selection, the a priori weights
& of (3) are changed such that the large scale entropy map M; dominates for
large pointing variance whereas the symmetry map M> and the corner saliency
M3 are weighted higher for detail selection.

2.5 Auditory feedback

The FSD module in Fig. 2 detects spatial shifts of the FOA for auditory user
feedback. A short “bop” sound is produced when the current FOA shifts to a
different maximum 3; of the saliency map S. Such an event is detected when

1 At
(Zt Z 3*(t— i)) — §*(t)

where §*(t) denotes the maximum of S closest to the FOA (i.e. the maximum
of the ATM) in frame t. The parameter At has to be adjusted according to the
processing frame rate of the system and the threshold d can be estimated by
analysing the distance matrix of the maxima §; of the map.

> d, (5)




3 Results

Figure 5 shows the results of intermediate processing stages. The user has just
slowed down the pointing movement, so the manipulator map shows a cone of
medium width in the pointing direction, starting at the approximate position
of the hand centre. The parameter ; of the entropy map is decreased while the
symmetry map is weighted higher. So the edges of the phone are suppressed
while the key pad is highlighted most through the combination of high weighted
symmetry map and the manipulator cone.
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Fig. 5. Processing results for a pointing gesture towards an object. From the input im-
age (bottom right) skin colour is segmented (bottom left); the VPL classifier calculates
the angle which is transformed to a manipulator map (top left). The manipulator cone
“illuminates” the object; the maxima of the feature maps stand out.

To evaluate the system performance we choose a setup which is based on a
“generic” pointing task that can be easily reproduced: A proband points at a
row of six white circles on a black table (Fig. 1, right). The distance between
the hand and the targets is approximately 40 cm. So the diameter of each circle
is of an angular range of 1.7° and the distances between the circle centres vary
from an angular resolutions of 4° to 28°. To test performance for pointing to
details, circles of a diameter of 0.9° with a distance angle of 2° were used in an
additional experiment. A supervisor gives the command to point at one of the
circles by reading a randomly generated circle number. We use only the inner
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four circles to avoid border effects. A match is counted if the system outputs
a focus point on the correct circle within three seconds. The experiment was
repeated under three conditions. As the results in Fig. 6 show, the best match
percentages are reached under the full visual feedback condition (proband sees
system output on a computer screen), whereas the values substantially decrease
under the without feedback condition at small distances. Under the auditory
feedback condition (proband hears a “bop” sound, if the focus point shifts from
on maximum to another) a better percentage could be reached.

The major result achieved in this test scenario is that system performance
can be significantly increased by giving feedback because (i) the user is enabled
to adjust single pointing gestures to a target and (i) the user can adapt himself
or herself to the system behaviour. This way the achievable effective resolution
can be improved, because it does not solely rely on the accuracy of the pointing
gesture recognition anymore. It could be shown that the rather simple means of
giving auditory feedback already leads to a better performance.

A limitation is that the hand has to be completely visible, otherwise the VPL
classifier gets an unknown input. A “beep” is used as an error signal if the hand
is too close to the border. Another restriction is that the saliency operators do
not yield maxima on all of the objects or not on the desired locations.

4 Conclusion and Acknowledgement

We have presented a human-machine interface for visual detection of gestural
object reference. It could be shown that using auditory feedback to indicate
shifts of the FOA increases performance significantly.

The functionality of the presented system is not limited to the current sce-
nario. Since arbitrary other saliency features like colour or movement can be
integrated, the bottom-up focus of attention can be directed to a wide variety
of objects. Even more important is the possibility to transform cues from other
modules top-down to the sub-symbolic level using further manipulator maps.
One of the first steps will be the integration of speech-driven cues to generate



spatial large scale anticipations. As precision and user independence are still
problems in the field of gesture recognition, a major advantage of the new ap-
proach is that it does not require high recognition accuracy. This is achieved by
the system’s anticipation that only salient image points will be selected.

This work was conducted within the scope of the project VAMPIRE (Visual

Active Memory Processes and Interactive REtrieval) which is part of the IST
programme (IST-2001-34401).
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