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Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial Communicator AbstractIn this paper we propose an architecture of an image understanding system for a situatedarti�cial communicator realizing human-machine interaction. Starting with sensor input theprocessing is initially carried out in separate pathways using di�erent schemes of image seg-mentation. Subsequently, a hybrid technique for 2D-object recognition is employed. The �nalmodel based 3D-reconstruction yields a 3D-scene representation. Intermediate results are linkedover time in memory moduls to enhance e�ciency of processing on image sequences. Resultsof the individual moduls will be presented and discussed.1 IntroductionThe goal of the project we are jointly working on with researchers in the �eld of pattern recog-nition, arti�cial intelligence, and linguistics is to study advanced human-machine interaction.The machine should be able to process acoustic and visual input and react meaningfully byproducing speech output or by manipulating objects in the environment of the communicatingpartners. This device is called a \situated arti�cial communicator".The domain was chosen to be the cooperative construction of a toy-airplane with partsfrom a wooden construction-kit for children. In the �rst phases of the project the arti�cialsituated communicator is to act as service robot carrying out simple tasks speci�ed by thehuman instructor. It is not yet intended to plan the construction process. It is, however,intended to recognize acoustically or visually referenced complex objects from the task domain,provide information about its current understanding of the environment, and perform basicmanipulations.2 ArchitectureA situated arti�cial communicator as outlined in the last section constitutes a complex systemof interacting components combining di�erent modalities as vision, speech, and actuators. Thesystem has to act and react in a situated way within a evolving environment. It has to copewith uncertainty and errors of perception results and world models as well as with di�erenttime scales and overlapping capabilities of the various modules. Fig. 1Figure 1 shows the current architecture of the visual system using a static stereo camera as2



Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial Communicatorsensors. Here we follow the visual pathways proposed by van Essen [1]. The main purpose of oursystem is the recognition of visible objects including their temporal correspondence and three-dimensional pose. Starting with the sensor input the processing is initially carried out in twoseparate pathways. The �rst one uses intensity information for contour based segmentation intostraight lines and elliptical arcs and subsequent grouping into more abstract image primitives.The second pathway relies on color information to segment the input images into homogeneousregions. Results of both processing paths are combined matching contour groups to regionswhen caused by the same event in the scene. The subsequent hybrid 2D-object recognitionis based mainly on regions, while 2D object hypotheses with the associated contour groupsare exploited by the �nal model based 3D-reconstruction. At this stage results of the so farseparately processed stereo images are combined to enhance 3D reconstruction. For region and2D object hypotheses a memory was realized linking the results over time. This supports onthe one hand the recognition of events and actions and allows on the other hand an e�cientprocessing of image sequences.3 RealizationThe architecture outlined above was implemented as a distributed system consisting of sev-eral independent modules. The inter-module communication is realized using the DistributedApplications Communication System [2]. In the following we will shortly describe the system'scomponents for color-based region segmentation, contour-based grouping, matching of regionand contour information, hybrid 2D-object recognition, and model-based 3D-reconstruction.Region Segmentation Region segmentation starts by classifying every single pixel of theYUV-image into one of the twelve �xed colors of our domain using a polynomial classi�er ofsixth degree. To speed up this process a look-up table is used where for every combinationof YUV-values the corresponding pre-calculated classi�cation result is stored. Subsequentlya smoothing operation is applied deciding for the color with maximum occurance within awindow. Finally for every region of identical color a set of form-parameters is calculated.
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Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial CommunicatorContour-Based Grouping In addition to region segmentation the system exploits discon-tinuities of the intensity image in a separate pathway. Subsequent to initial edge detection,straight line segments and elliptical arcs are approximated using the method of Leonardis [3].These are used to de�ne a hierarchy of grouping hypotheses with growing complexity using theGestalt laws of proximity, good continuation, symmetry, and closure. In the lowest level contoursegments are combined to form collinear and curvilinear groups which are again approximatedwith straight line segments or elliptical arcs. In addition, pairs of contour segments or lineargroups may form a proximity grouping. The next 2�1D level deals with pairs of symmetric orparallel linear groups. The last level organizes linear groups into closed contours.In the �rst stage of the grouping process, grouping hypotheses are generated within thishierarchy taking only local evidence into account. For the �rst two levels of the hierarchywe de�ne the concept of Areas of Perceptual Attentiveness introduced in [4]. These areasare derived from a hand labelled training set of our domain and restrict relative distanceand position when grouping two contour segments or groupings. In addition, local criterialike orientation di�erence are employed to restrict potential grouping. To hypothesize closedcontours of the highest level of the hierarchy, a proximity graph is constructed from all contoursegments, col- and curvilinear groupings as nodes and proximities between them as edges.From this graph closed contours are generated searching for simple cycles where the underlyingcontour segments do not intersect.To obtain a set of global consistent groupings the results are judged in a global context usinga Markov Random Field in the second stage (see [5]). Each grouping hypothesis correspondsto a node (or site) of this graph with an associated random variable representing the signif-icance (or correctness) of the associated interpretation. Therefore, in contrast to most otherapproaches using MRFs, di�erent sites may interpret a common subset of the image data, whilethe neighborhood system of the MRF represents support and competition of the groupings hy-potheses within the hierarchy. With appropriately de�ned clique potential the energy of theMRF is minimized yielding a global judgement of the grouping hypotheses.
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Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial CommunicatorMatching of Regions and Contours Matching of regions to contour groupings and viceversa is integrated to resolve the drawbacks inherent to both segmentation schemes and to en-hance the performance of the object recognition and contour-based grouping. Matches describea relation between primitives of both segmentation techniques in the meaning of being causedby the same event in the scene, e.g. the projection of the same surface of an object. Theyare distinguished into boundary and structural matches. Boundary matches establish relationswith groupings approximating the boundary of a region, whereas structural matches relategroupings based on the structure (or texture) of an object surface to the region approximatingthat surface. Generally, the matching process is controlled by calculating the endpoint distanceand average distance of the contour group to the region boundary [6]. To this end, a parameterset is estimated on a hand labeled training set for both types of matches.Within the grouping process only boundary matches are used. The groupings matching tothe same region boundary facilitate the generation of additional grouping hypotheses, e.g. prox-imity groupings along the region boundary, and augment the judgment in the Markov RandomField. For object recognition, closed contours and boundary matches serve as alternative con-tour based regions to resolve errorneous region segmentation. Additionally, structural matcheswill be included to enhance the object recognition in cases, where the color classi�cation basedregion segmentation looses the internal structure on an object surface.Object Recognition For the recognition of isolated parts from our construction-kit we use ahybrid approach combining the semantic network language Ernest [7, 8] with a holistic objectrecognition module. The latter generates hypotheses on the object's identities in mainly threeprocessing steps as described in [9]: First, the objects are located by a colour segmentation.Then from the segmented regions features are extracted using an optimized set of Gabor-�lters. In the third stage, these features are classi�ed by a neural network of the Local-Linear-Map (LLM) type. For each competing LLM-hypothesis a so-called holistic instance inside thesemantic network is created which are stored in competing search tree nodes. Dependent on theobject type detected by the LLM-network an appropriate specialization is selected to verify theobject hypothesis according to the structural knowledge stored in the semantic network [10].5



Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial CommunicatorDuring this instantiation process restrictions for position, color, and shape are propagated ina model{driven way. To increase the robustness of our analysis and to speed up processing weextended this approach to image sequences where on the basis of previous structural resultsthe current image is analyzed [11]. So temporally linked results are calculated supportingthe recognition of events and actions. Additionally, we developed a cyclic semantic networkmodeling assembled objects of our construction scenario. On the one hand this simple modelguarantees the representation of every possible assembly. On the other hand it allows a straightrecognition of assembled objects. The processing is based on the results of our hybrid objectrecognition for single objects and on the examination of the topological arrangement of regionsin a cluster [12].Model-Based 3D-Reconstruction As described earlier, the system is to interact in a 3Dworld with a human instructor. Therefore, information about 3D poses of objects is useful inorder to supply the robotics part of the communicator with metric 3D information e.g. forgrasping objects and also to interpret spatial relations of an utterance. This 3D-reconstructionis facilitated by simple geometric models for the object of our domain using points, circles, andline segments. The projection of these model features into the image plane is explicitly modeledusing a pin-hole camera model. The resulting image features are constituted by contour groupsand correspondence between model and image features is determined using previously foundmatchings between object regions and contour groups as well as knowledge supplied by theobject models. Given these correspondences, we de�ne a multivariate cost function measuringthe distance of projected model features to detected image features. This cost function in turnis minimized using a monitored Levenberg-Marquardt-Method [13]. If more than one viewof the scene is available, as for stereo images, this information can be exploited to enhancethe accuracy of reconstruction results, given the correspondence of the objects in the di�erentviews.Memory and Scene Representation The calculation of a 2D- or 3D-representation of theactual contents of a scene provides enough information for a dialog about the scene as long6



Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial Communicatoras the scene is relatively static. In real construction scenes however, it is necessary to keepknowledge about temporary hidden objects (e.g. by a robot arm) or some history of objects toprovide a stable scene representation over time to allow robust dialogs. Therefore, we integrateda universal memory module that links the results from the recognition modules over time usingadaptive associative mechanisms [14]. The memory module is able to recognize unchangedobjects (that need not necessarily be processed by the following modules) as well as changesand events that should be propagated in the system resulting in a more e�cient processing ofimage sequences. Furthermore, the module provides multiple communication links to act as abu�er for simultaneous top-down and bottom-up evaluation.4 ResultsIn this section we discuss various aspects of the system's performance and show exemplaryresults for a typical scene of our domain. Fig. 2As the results of the polynomial classi�er are pre-computed the color-based region segmen-tation works extremely e�cient. At full image resolution (502� 566 pixels) it takes on average800 ms to do the pixel-wise classi�cation, apply the smoothing, and calculate regions with as-sociated form parameters1. Reduction of image resolution results in an almost linear speedup.When sub-sampling by a factor of 3 only 95 ms are required to generate the region segmentationfor a single image. Results for a typical scene from our domain are shown in Fig. 2(a).Signi�cant contour segments and co- and curvilinear groupings are shown in Fig. 2(b). Inconjunction with the detected closed contours, not being displayed, they describe the relevantstructures in the image. Additionally, some noisy contours are detected mainly for ellipticalstructures. In most cases the grouping process is also able to overcome fragmentation of contoursegments due to occlusion or low contrast, which do not occur in the example of Fig. 2. Closedcontours are detected for the outer contour of most objects including occlusion, except for cubesand rings, which is caused by overlapping elliptical arcs or missing proximities. Summarizing,the signi�cant grouping hypotheses contain the salient parts of the projected objects in theimages. Computation times for this example are 17:6 sec for initial segmentation and 3:5 sec1All experiments were carried out on a DIGITAL AlphaStation 500/400 (SPECint95 12.3, SPECfp95 14.1).7



Bauckhage et. al.: Towards an Image Understanding Architecture for a SituatedArti�cial Communicatorfor generation and judgment of the grouping hypotheses.The runtimes of contour grouping and region segmentation vary signi�cantly. Therefore,matching of contours and regions is only applied to regions, which have been detected with acertain stability during the computations of the grouping process, since otherwise the resultswould already be outdated. Exploiting these matches for additional proximities to generateclosed contours yields some important additional image structures. The added computationalneeds for matchings and generation of hypotheses using these matches is only about 0:5 sec,thus negligible compared to the overall runtime.Hybrid object recognition was evaluated on 50 color images containing 12 objects on theaverage. The scenes were arranged by �ve persons who had no knowledge about the process-ing strategy of the system. Although there were no overlaps on the working platform someocclusions occurred due to the viewpoint of the camera. With region segmentation carried outat full image resolution an object recognition rate of 93.5% is achieved (for an example seeFig.2(c)). In contrast to the region segmentation process the speed of the object recognitiondepends only on the number of objects in the image. On average 84 ms are needed to recognizea scene object.Qualitative results of the 3D-reconstruction based on recognition and grouping results areshown in Fig. 2(d). The 3D poses are very well reconstructed, except for the tires, wheresubstantial deviations occur due to mismatches of image to model features. A typical �gurefor the quantitative accuracy is a mean error of about 3:5 mm for the relative distance and4:5 degrees for the relative orientation between any two objects in the scene. The accuracyis mainly determined by the localization accuracy of the image features and the number offeatures available.5 ConclusionWe presented the architecture of a vision system for a \situated arti�cial communicator".It consists of several components realized as individual modules within a large distributedprocessing system. Currently the control strategy is mainly data driven but in the next futurewe will integrate the propagation of regions of interest determined by other modalities like8
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Fig. 1: (p. 2) Architecture of the vision system11
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(a) (b)

(c) (d)Fig. 2: p. 7) Results for an example from the construction domain (a) Regions resulting from colorsegmentation; (b) Contour hypotheses; (c) 2D-object hypotheses generated using the hybrid approach;(d) 3D reconstruction 12


