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Center for Mathematical Economics (IMW)
Bielefeld University
Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/

ISSN: 0931-6558

mailto:imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/


The El Farol Problem Revisited

Volker Böhm∗

February 2015

Abstract

The so-called El Farol problem describes a prototypical situation of interacting agents
making binary choices to participate in a non-cooperative environment or to stay by
themselves and choosing an outside option. In a much cited paper Arthur (1994) ar-
gues that persistent non-converging sequences of rates of participation with permanent
forecasting errors occur due to the non-existence of a prediction model for agents to
forecast the attendance appropriately to induce stable rational expectations solutions.
From this he concludes the need for agents to use boundedly rational rules.
This note shows that in a large class of such models the failure of agents to find rational
prediction rules which stabilize is not due to a non-existence of perfect rules, but rather
to the failure of agents to identify the correct class of predictors from which the perfect
ones can be chosen. What appears as a need to search for boundedly rational predictors
originates from the non existence of stable confirming self-referential orbits induced by
predictors selected from the wrong class.
Specifically, it is shown that, within a specified class of the model and due to a structural
non-convexity (or discontinuity), symmetric Nash equilibria of the associated static
game may fail to exist generically depending on the utility level of the outside option.
If they exist, they may induce the least desired outcome while, generically, asymmetric
equilibria are uniquely determined by a positive maximal rate of attendance.
The sequential setting turns the static game into a dynamic economic law of the Cobweb
type for which there always exist nontrivial ǫ−perfect predictors implementing ǫ−perfect
steady states as stable outcomes. If zero participation is a Nash equilibrium of the game
there exists a unique perfect predictor implementing the trivial equilibrium as a stable
steady state. In general, Nash equilibria of the one-shot game are among the ǫ−perfect
foresight steady states of the dynamic model.
If agents randomize over indifferent decisions the induced random Cobweb law together
with recursive predictors becomes an iterated function system (IFS). There exist unbi-
ased predictors with associated stable stationary solutions for appropriate randomiza-
tions supporting nonzero asymmetric equilibria which are not mixed Nash equilibria of
the one-shot game. However, the least desired outcome remains as the unique stable
stationary outcome for ǫ = 0 if it is a Nash equilibrium of the static game.

Keywords : El Farol, participation games, repeated play, forecasting, rational expectations,
Cobweb models
JEL classification : C7, C73, D83, D84
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1 Introduction

The so called El Farol problem stands for an interactive non-cooperative setting of N partic-
ipants in a market or a game form who have to decide whether to stay by themselves (chose
an outside option) or participate in a common activity whose benefits to each individual de-
pend in a concave way on the number of active participants. There are numerous economic
situations with the same prototypical setting and many examples, among them entry-exit
decisions for firms in markets, activities in clubs, mechanisms for supporting a local public
project, – or going to a popular bar in Santa Fe on Thursday night (see Arthur, 1994). He
argues that within such a setting when participants dislike crowding (in a bar, at noontime
for lunch in a restaurant, etc. and when there are limits to coordination) attendance rates will
typically fluctuate due to consistent misanticipation of the number of attendees. He infers
that a “rational” solution to the prediction problem does not exist since standard deduc-
tive reasoning will fail structurally to find or identify a self-confirming rational expectations
solution. He writes (Arthur, 1994, p. 3):

“First, if there were an obvious model that all agents could use to forecast atten-
dance and base their decisions on, then a deductive solution would be possible. But
this is not the case here. Given the numbers attending in the recent past, a large
number of expectational models might be reasonable and defensible. Thus, not
knowing which model other agents might choose, a reference agent cannot chose
his in a well-defined way. There is no deductively rational solution – no“correct”
expectational model. From the agents’ viewpoint, the problem is ill-defined and
they are propelled into a world of induction.
Second, and diabolically, any commonalty of expectations gets broken up: If all
believe few will go, all will go. But this would invalidate that belief. Similarly, if
all believe most will go, nobody will go, invalidating that belief. Expectations will
be forced to differ.”

Applying such reasoning to an expectations mechanism in a repeated or recursive setting,
Arthur shows by means of an example that it may induce complex or non-stationary sequences
of plays. This is taken as an indication for the need to search for solutions under bounded
rationality.

This note shows that, within a specified class of the problem and due to a structural non-
convexity (or discontinuity), Nash equilibria of the associated static game may fail to exist
generically. However, if they exist, they may induce the least desired outcome to all partici-
pants. The sequential setting becomes a dynamic economic law of the Cobweb type for which
approximately perfect predictors always exist. They may induce the trivial equilibrium as a
stable steady state as well as those with positive attendances. Moreover, a randomization
by agents to break indifferences converts the random Cobweb law into an an iterated func-
tion system for which unbiased predictors exist which implement positive stationary rational
expectations outcomes. What appears as a need to search for boundedly rational predic-
tors originates from the non existence of stable confirming self-referential orbits induced by
predictors selected from the wrong class.
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2 The El Farol Game

Although Arthur does not give an explicit formal description of the model he has in mind, the
formulation chosen here seems to be a generic representation for the scenario he describes
which captures the essential features of interaction of the El Farol problem as a game of
participation with crowding. The presentation assumes homogeneous identical agents. The
implications of heterogeneity for the results are discussed in the final section.

Let I = {1, . . . , i, . . . , N} denote the set of players/visitors to El Farol where N ∈ N is a
relatively large number and let n ∈ [0, 1] denote the proportion of players present at El Farol.
Assuming identical (homogeneous and anonymous) preferences for each player i, denote by
u : [0, 1]× {0, 1} → R the utility of a player i, defined by

u(n, x) = xv(n) + (1− x)B 0 ≤ B ≤ 1(2.1)

where v : [0, 1] → [0, 1] is a concave function.

If v has an interior maximum, i.e. for some 0 < n̄ < 1, v(n̄) ≥ v(n), for all n ∈ [0, 1]
with v(n̄) > B ≥ max{v(1/N), v(1)}, then individuals prefer medium crowded bars to
under- or overcrowded ones, but they also dislike being alone in the bar. It will be assumed
throughout that B > v(1), which reflects the fact that players dislike maximum crowding.
For concreteness, v could be any asymmetric unimodal map or the symmetric logistic map
v(n) = An (1− n) for 0 ≤ A ≤ 4 in which case u could also be written as

u(n, x) :=







An (1− n) x = 1 0 ≤ A ≤ 4

B x = 0 B > 0
.

Denote by x := (x1, . . . , xN) a list of choices for each player and define by

ν(x) :=

∑N

j=1
xj

N

the proportion of players at El Farol induced by x. This yields a payoff function for each i
given by πi(x) := u(ν(x), xi). Then, the pair G := (I,Π) is a symmetric normal form game
with payoff function Π : {0, 1}N → R

N given by

Π(x) :=
∏

πi(x) =
N
∏

i=1

u(ν(x), xi).(2.2)

Clearly, x = (1, . . . , 1) =: 1 and x = (0, . . . , 0) =: 0 are the only candidates for a symmetric
Nash equilibrium since partial attendance is never symmetric. x = (1, . . . , 1) is not a Nash
equilibrium if B > v(1), for any concave v. If B > v(1/N), i.e. if being alone in the bar
is less attractive than staying at home, x = 0 = (0, . . . , 0) is the unique symmetric Nash
equilibrium. Conversely, if the condition B < v(1/N) holds, G has no nontrivial symmetric
equilibrium in pure strategies.

Existence of asymmetric Nash equilibria requires that the payoff for those participating must
be at least as good as staying at home. Define the upper contour set of v with respect to
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B as v+(B) := {n ∈ (0, 1) | v(n) ≥ B}. Then, asymmetric equilibria exist only if v+(B) ∩
{1/N, . . . , (N−1)/N} is nonempty. Under a generic condition there exists a unique maximal
level of participation supporting the only asymmetric equilibria.

Lemma 1. Let v be concave and assume that 1 ≥ B > v(1) holds. Then:

(1) x = 0 is the unique symmetric Nash equilibrium of G if and only if B ≥ v(1/N).

(2) Let v+(B) ∩ {1/N, . . . , (N − 1)/N} 6= ∅ .

1. There exists a unique maximal group size (participation rate) k̂ ∈ {1, . . . , N − 1} and
associated list x̂ ∈ {0, 1}N with

∑N

1
x̂j = k̂ such that 0 6= x̂ 6= 1 is an asymmetric

Nash equilibrium. k̂ is the only group size supporting asymmetric Nash equilibria if
v(k̂/N) > B.

2. If v(k̂/N) = B and (k̂−1)/N ∈ v+(B), then k̂−1 =
∑N

1
xj is an additional group size

(participation rate) with associated asymmetric Nash equilibrium x. If v((k̂ − 1)/N) =
v(k̂/N) = B, then all k/N ∈ v+(B) support asymmetric Nash Equilibria.

Proof. For i = 1, . . . , N , let πi(x1, . . . , xN) ≡ π(xi, x−i), where x−i := (xj)j 6=i. Then,

πi(0,0−i) ≥ πi(1,0−i) if and only if B ≥ v(1/N).

Thus, xi = 0 is a best response to x−i = 0−i for every i = 1, . . . , N so that 0 is a Nash
equilibrium. Conversely, πi(1,1−i) = v(1) < B = πi(0,1−i) implies that x = 1 cannot be a
Nash equilibrium.

For any x ∈ {0, 1}N , define S(x) := {j ∈ N | xj = 1}. Then, 0 6= x 6= 1 is a Nash equilibrium
if and only if:

v

(

1 +
∑N

1
xj

N

)

= πi(1, x−i) ≤ πi(0, x−i) = B for i /∈ S(x)

and

B = πi(0, x−i) ≤ π(1, x−i) = v

(

∑N

1
xj

N

)

for i ∈ S(x).

Therefore, for any Nash equilibrium x one has

(2.3) v

(

|S(x)|

N

)

= v

(

∑N

1
xj

N

)

≥ B ≥ v

(

1 +
∑N

1
xj

N

)

= v

(

1 + |S(x)|

N

)

,

i.e. v must be decreasing below B at S(x) for any Nash equilibrium.

Let k̂ = max{k ∈ (1, . . . , (N − 1)) | k/N ∈ v+(B) }. Chose x̂ such that k̂ = |S(x̂)|. Then,
by construction, v((k̂ + 1)/N) < B. Therefore, x̂ is a Nash equilibrium. If v(k̂/N) > B,
concavity of v implies that v((k+1)/N) > B for all k ∈ {1, . . . , k̂−1} such that k/N ∈ v+(B).
Therefore, there exists no k < k̂ which supports Nash equilibria.

If v(k̂/N) = B, then k̂ − 1 supports a Nash equilibrium if v((k̂ − 1)/N) ≥ v(k̂/N) = B.
However, if v((k̂−1)/N) = B, then concavity of v implies that v(k/N) = B for all k ∈ v+(B)
with k < k − 1.
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If x is an asymmetric Nash equilibrium, the payoff is weakly decreasing in the number of
the participants implying that the size of the participating group has to be maximal on
the set of outcomes which dominate B. This implies that there cannot exist asymmetric
Nash equilibria with higher participation. For games with strict concavity this also excludes
asymmetric equilibria with lower rates of participation except when k̂ is on the boundary
of the better set v+(B), in which case there are at most two levels of participation which
support Nash equilibria.

More than two levels supporting Nash equilibria occur if and only if the function v is equal
to B at three levels. Then, concavity implies that v attains its maximum at B on an interval.
Thus, for strictly concave functions v and generic levels B, asymmetric equilibria have a
unique size of participation whose equilibria are defined by redistributing participation.

In summary, with sufficient disutility of crowding relative to the outside option, symmetric
Nash equilibria with positive attendance do not exist, while x = 0 becomes the unique sym-
metric equilibrium when B is large. Equilibria with positive attendance are non-symmetric
which have a unique size generically.

3 Going to El Farol Repeatedly

Assume that all players decide independently and repeatedly to go to El Farol without prior
communication or collusion, but after making a forecast/prediction of the relative number of
players to be present causing a sequential (or informational) delay between the forecast and
the actual decision of each agent which is assumed to be utility maximizing. Formally, let
0 ≤ ne ≤ 1 denote i’s forecast. This induces his best response defining an attendance map
of each player as

ξ(ne) := arg max
x∈{0,1}

u(ne, x)(3.1)

if he assumes that ne visitors (including himself) will come. As a consequence the individual
attendance decision becomes a mapping from the space of forecasts. This mapping is of
the Cobweb type, - a terminology adapted from dynamic price theory - indicating that the
outcome depends on the forecast only and is independent of the previous outcome (see also
footnote 1).

Lemma 2.
Let v be continuous and concave such that there exists n ∈ [0, 1] with v(n) > B > v(1).

For B < v(0), the best response correspondence ξ has the form

ξ(ne) :=











1 0 ≤ ne < n̄e

{0, 1} ne = n̄e

0 n̄e < ne ≤ 1

(3.2)

where n̄e satisfies v(n̄e) = B.

If B > v(0), there exist two positive numbers 0 < ne
1 < ne

2 < 1 defined by

v(ne
1) = v(ne

2) = B(3.3)
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such that

ξ(ne) :=































0 0 ≤ ne < ne
1

{0, 1} ne = ne
1

1 ne
1 < ne < ne

2

{0, 1} ne = ne
2

0 ne
2 < ne ≤ 1

(3.4)

The correspondence ξ : [0, 1] → {0, 1} has a closed graph (is upper hemi-continuous).

The best response map is a continuous function except at the positive critical levels n̄e or
0 < ne

1 < ne
2 < 1 respectively, which are determined by the preferences. At the critical values

ξ consists of the two values zero and one implying that the correspondence is not convex
valued at these two points.

3.1 The Dynamics of Expectations and Attendance

Given the sequential interpretation that forecasts are made before the decisions to attend
are taken, it is useful to keep the attendance mechanism and the forecasting rules as two
conceptually separate mappings. However, in order to examine whether stable equilibrium
configurations exist and whether they can be reached it is necessary to analyze the dynamics
of expectations and of attendances as a joint process arising from the interaction of these
two mappings in order to understand the causes and failures of stable configurations. Let us
first define the two essential characteristics of steady states of such processes.

Definition 1. A pair of (x, ne) ∈ {0, 1}N × [0, 1] is called an equilibrium under best response
and perfect foresight if

ne = ν(x) and xi ∈ ξ(ne) for every i ∈ I.(3.5)

Equivalently, x = (x1, . . . , xn) is an equilibrium if

xi ∈ ξ(ν(x)) for every i ∈ I.(3.6)

Observe that such an equilibrium is a state with self-confirming expectations and best re-
sponse to expectations which occur only at the critical levels n̄e, n̄i, i = 1, 2 respectively.
Thus, generically, the induced participation is not a Nash equilibrium of the El Farol game
G = (I,Π) (see Lemma 1).

Given the best response behavior of all agents for any forecast ne, the induced next state of
attendance nt is given by a recursive attendance mapping induced by the simultaneous best
response of all agents as follows.
Definition 2. Let Ξ(ne) := (ξ(ne), . . . , ξ(ne)) denote the N−fold product of the best re-
sponse correspondence ξ. There exists a correspondence F : [0, 1] → [0, 1] describing the
outcome/attendance map written as F := ν ◦ Ξ defined by

F (ne) :=











1 0 ≤ ne < n̄e

1

N
{0, 1, 2, . . . , N} ne = n̄e

0 n̄e < ne ≤ 1

(3.7)
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for B < v(0) and by

F (ne) :=































0 0 ≤ ne < ne
1

1

N
{0, 1, 2, . . . , N} ne = ne

1

1 ne
1 < ne < ne

2

1

N
{0, 1, 2, . . . , N} ne = ne

2

0 ne
2 < ne ≤ 1

(3.8)

for B > v(0).

The set valued mapping F describes next periods attendance nt ∈ F (ne
t−1,t) under best

response behavior of the agents for given expectations ne
t−1,t. It is the recursive rule describing

the one-step ahead determination of the next state inducing a dynamic process. Note that
F is upper-hemicontinuous. It is a continuous function for all ne 6= n̄e or ne 6= ne

1, n
e
2

respectively, but it is not convex valued at these critical levels.

In models of temporary equilibria in markets mappings like F determine the next equilibrium
price as a function of the current state and expectations. Such maps (when they are func-
tions!) are called economic laws. They have been termed Laws of the Cobweb type if they
are independent of actual or previous states, a property which corresponds to the essential
feature of the common Cobweb models of dynamic price theory1. Keeping in line with that
terminology (see Böhm & Wenzelburger, 1999), let us call the set valued mapping F the
El Farol Law and observe that it is of the Cobweb type, since neither previous states nor
previous expectations enter as an argument.

Using the law F to rewrite Definition 1, one finds that (x, ne) is a best response perfect
foresight equilibrium if ne ∈ F (ν(x)) and ne = ν(x). As a consequence n is called a per-
fect foresight state if it is a fixed point of the El Farol Law F . The following proposition
characterizes the structure of the set of equilibria which is essentially a consequence of the
restriction of agents’ decisions to binary choices.

Proposition 1.
Let v be continuous and concave such that there exists n ∈ [0, 1] with v(n) > B > v(1).

1. For any function v, the set of {B ∈ R|B > v(1)} for which there exists a nonzero best
response perfect foresight equilibrium has Lebesgue measure zero.

2. Let F̃ denote the smallest pointwise convex valued correspondence containing the map-
ping F . Then, n̄e ∈ F̃ (n̄e) for B < v(0) and ne

1 ∈ F̃ (ne
1) and ne

2 ∈ F̃ (ne
2) for B > v(0)

are the only fixed points in the two cases respectively.

The result is immediate since the set of agents is finite and the critical levels cannot be
fractions of N for general v and B. In other words, generically, zero may be the only perfect
foresight equilibrium for F and there are no positive perfect foresight equilibria for F , while
the positive critical levels of partial attendance are generic nontrivial fixed points of the
convexified Cobweb law. This indicates that the nonconvexity of ξ and of F are the reasons
for the generic failure of existence of equilibria with positive partial attendance.

1See Ezekiel (1938); Nerlove (1958); Waugh (1964); Pashigian (1987)
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3.2 Predictors and Dynamics

Forecasting mechanisms or rules determining the prediction in any period are called predic-
tors. These are given as mappings from past data to forecasts which are used to update the
forecast at each step in time. They are called stationary (or recursive) if they are defined on
the same finite dimensional space of observations and if they do not depend on time.

Let T ≥ 1 denote the length of a finite history of observations and denote by (x−T , n−T , n
e
−T ) :=

(xτ , nτ , n
e
τ )

−1

τ=−T ∈ {0, 1}NT × [0, 1]2T a specific list of observed data in an arbitrary period
where ne

τ ≡ ne
τ−1,τ denotes the forecast made in period τ − 1 for τ .

Definition 3. A mapping ψ : {0, 1}NT × [0, 1]2T → [0, 1],
(x−T , n−T , n

e
−T ) 7→ ψ

(

x−T , n−T , n
e
−T

)

= ne is called a predictor.

Definition 4. Given the El Farol Law F and a predictor ψ, the pair of mappings (ψ, F ◦ ψ)
defines the one-step movement of a set valued dynamical system on {0, 1}NT × [0, 1]2T .
An orbit of the system is a sequence {(xt, nt, n

e
t )}

∞
t=0

such that

ne
t+1 = ψ(xt−T , nt−T , n

e
t−T )

nt+1 ∈ F (ψ(xt−T , nt−T , n
e
t−T ))

(3.9)

with xt ∈ Ξ(ne
t ) and nt = ν(xt).

It is evident from the definition of the system (ψ, F ◦ ψ) that without the specification of a
predictor no recursive dynamics is defined and that the chosen predictor drives/determines
the dynamics of expectations and states in an essential way. In other words, a predictor
becomes a structural input into an autonomous dynamical system (a control function of
the system). The concept of a perfect predictor is introduced in two steps (see Böhm &
Wenzelburger, 1999).

Definition 5. For ǫ ≥ 0, an orbit {(xt, nt, n
e
t )}

∞
t=0

of (ψ, F ◦ ψ) is said to be ǫ-perfect if

|ne
t+1 − nt+1| ≤ ǫ for all t ≥ 0.(3.10)

It is said to have the perfect foresight property if ǫ = 0, or equivalently if

nt+1 = ne
t+1(3.11)

holds for all t with ne
t+1 = ψ(xt, nt, n

e
t ), nt = ν(xt), and xt ∈ Ξ(ne

t ).

Definition 6. A predictor ψ∗ is called ǫ−perfect for ǫ ≥ 0 if it induces an ǫ−perfect foresight
orbit. It is called perfect for ǫ = 0. Therefore, ψ∗ is a perfect predictor if

nt+1 = ne
t+1 = ψ∗(xt, nt, n

e
t ) for all t ≥ 0,(3.12)

or equivalently if

ψ∗(xt, nt, n
e
t ) ∈ F (ψ∗(xt, nt, n

e
t ))(3.13)

holds for all t and ne
t+1 = ψ(xt, nt, n

e
t ), xt ∈ Ξ(ne

t ) and nt = ν(xt).

Under the assumptions of Proposition 1 one obtains the following result.
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Proposition 2.
Assume B > v(0) and let zero be the unique fixed point of the El Farol Law F as given in
Definition 2.

1. The constant predictor ψ∗(x−T , n−T , n
e
−T ) ≡ 0 is the unique globally perfect predictor

for F .

2. The state x = n = ne = 0 is the unique globally stable steady state of the dynamical
system (ψ∗, F ◦ ψ∗).

3. There exist ǫi > 0, i = 1, 2, such that the constant predictors ψi(x−T , n−T , n
e
−T ) ≡ ne

i

are ǫi−perfect for i = 1, 2 respectively, i.e. there exist (xi, ni) = (xi, ν(xi)) such that

|ni − ne
i | = |ν(xi)− ne

i | ≤ ǫi, i = 1, 2

4. (xi, ni, n
e
i ) are globally stable for (ψi, F ◦ ψi), i = 1, 2 respectively.

Proof. For i = 1, 2, choose ki ∈ {0, . . . , N} and xi ∈ {0, 1}N such that ne
i ∈ [ki/N, (ki+1)/N ]

and ki =
∑N

j=1
xji . Then, (xi, ni) = (xi, ν(xi)) is an approximately perfect foresight steady

state for ǫi = 1/N induced by the constant predictor ψi(x−T , n−T , n
e
−T ) ≡ ne

i . Therefore, all
four properties follow from Lemma 4 in Böhm & Wenzelburger (1999).

The corresponding result for the case B < v(0) follows as a corollary.

Corollary Let B < v(0).

1. There exists no continuous globally perfect predictor for F .

2. There exists ǫ > 0 such that the constant predictor ψ∗(x−T , n−T , n
e
−T ) ≡ n̄e is ǫ−perfect,

i.e. there exist (x, n) = (x, ν(x)) such that |n− n̄e| = |ν(x)− n̄e| ≤ ǫ,

3. (x, n, n̄e) is globally stable for (ψ∗, F ◦ ψ∗).

One finds that for B > v(0) the El Farol Law always has a unique globally stable solution
which is obtainable under full rationality and noncooperative behavior of all agents provided
they agree on choosing the unique perfect predictor – or that an outside analyst suggests
that this is the only one for which consistency of expectations can be obtained and all agents
follow the suggestion. Since it is the unique equilibrium with the perfect foresight property
it can be found by rational deduction either by the outside analyst or by each individual
agent. In such a case, convergence under perfect foresight is obtained in one step. No cycles
occur and there is no room or need for considerations of bounded rationality. This holds for
the perfect foresight case with zero attendance only, clearly not the case that Arthur (1994)
had in mind originally. If there is no positive equilibrium with perfect foresight the perfect
predictor for zero attendance (in the space of recursive forecasting rules for Cobweb laws)
must be unique. This implies also that no other continuous recursive predictor could induce
a positive limiting self-confirming orbit.

Statements 3 and 4 of the Proposition and the Corollary show that there exist approximately
globally perfect predictors which support equilibria with positive asymmetric attendance close
to the respective critical values under uniform prediction. The predictors must be constant
value predictors independent of any history of attendance and past expectations in order to
be globally ǫ−perfect. The proof shows that the associated rates of attendances at steady
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states are defined by a unique group size. In conjunction with Lemma 1 one finds that a
steady state with the largest group size implements a Nash equilibrium of the static game
if B > v(0) and k2/N < ne

2 (or if B < v(0) and k̄/N < n̄e) hold. In other words, not all
non-zero steady states under best response behavior and self-confirming expectations induce
Nash equilibria.

Thus, depending on the level of the reservation value B there exist distinct approximately
perfect predictors with corresponding self-confirming positive levels of equilibrium attendance
obtainable under deductive reasoning. Since the levels of attendance are not unique they
always induce a coordination problem to implement the associated asymmetric attendances
while the predictor is unique and globally approximately perfect. In other words, the lack of
a deductive solution to find a self-confirming predictor (for positive attendance) as argued by
Arthur has to be attributed to the generic non-existence of positive perfect foresight equilibria
in the specific Cobweb environment when zero prediction errors are imposed. There is no such
lack under approximately perfect predictions since deductive reasoning identifies the constant
predictors and leads to unique ones (for B < v(0)) and to the corresponding statements in
the proposition and the corollary.

The multiplicity of approximately perfect predictors (for B > v(0)) and not their non-
existence imply an additional equilibrium selection issue which is beyond the individual
non-cooperative rational of the game or of the recursive description of the model. It may
seem that Arthur’s reasoning, motivated by his experimental example, points at the in-
duced coordination issue arising from multiple steady state attendances as an argument for
inductive reasoning to justify the need for bounded rationality for expectations formation.
However, the conceptual separation of the forecasting issue from the attendance mapping,
reveals that there is no need to consider boundedly rational predictors in the El Farol model if
constant and approximately perfect predictors are included in the set of allowable forecasting
rules. Nevertheless, the coordination of attendances under uniform approximately perfect
predictions remains a challenging problem to be solved under dynamic repetitions.

3.3 A Stochastic El Farol Law and Rational Expectations

Extending the above model to a situation with random attendance (or mixed plays of best
responses), let the forecast ne be interpreted as the subjective prediction of each agent for
the mean attendance next period. Then, using (3.4) define for every agent i ∈ N a pair of
best response functions ξmax : [0, 1] → {0, 1} and ξmin : [0, 1] → {0, 1} as

ξmax(n
e) := argmax{x|x ∈ ξ(ne)} and ξmin(n

e) := argmin{x|x ∈ ξ(ne)}(3.14)

which satisfy ξmax(n
e) = ξmin(n

e) for ne 6= ne
1, n

e
2 when B > v(0) and ne = n̄e when B <

v(0), respectively. Let P := (p1, . . . , pN), 0 < pi < 1 denote a probability distribution on
{0, 1}N , where pi is the probability according to which i randomizes over the pair of functions
(ξmin(n

e), ξmax(n
e)). For a given realization w ∈ {0, 1}N define the random choice of i as

ξ(wi, n
e) := wiξmax(n

e) + (1− wi)ξmin(n
e).(3.15)

As a consequence, one obtains a random family of finitely many mappings (functions!)
F (·, ne) : [0, 1] → [0, 1] given by

F (w1, . . . , wn, n
e) :=

1

N

∑

ξi(wi, n
e)(3.16)
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describing the one step random change of the attendance as a stochastic difference equation

nt = F (wt, n
e
t ).(3.17)

Thus, F (w, ·) : [0, 1] → [0, 1] is a random El Farol Law which is again of the Cobweb type.

In order to define and investigate the dynamics of randomized sequential play under rational
expectations and its stability we proceed as in Böhm & Wenzelburger (2002). Let ne =
ψ(x−T , n−T , n

e
−T ) denote a mean value predictor for F . Then,

ne = ψ(x−T , n−T , n
e
−T )

n = F (w,ψ(x−T , n−T , n
e
−T ))

(3.18)

defines a pair of finitely many difference equations describing the random one step evolution
of expectations and attendance with randomized attendance at the critical levels, but which
are identical deterministic functions at all other values of ne. Therefore, given the discrete
probability measure P on {0, 1}N , the list {(ψ, F (w,ψ);P} becomes an iterated function
system IFS (see Barnsley, 1988; Arnold & Crauel, 1992). The IFS induces random orbits

{(xτ , n
e
τ , nτ )}

∞
0

for any sample path ω := (. . . , w0, w1, . . . , wτ , . . .) ∈ Ω :=
{

{0, 1}N
}N

and
initial states (x0, n

e
0, n0). To investigate the performance of a predictor consider the mean of

the prediction error

E {ne
t − nt} = ne

t − E {F (wt, n
e
t ))}(3.19)

at any time t.
Definition 7. A mean value predictor ψ∗ is called unbiased if its induced mean error is zero,
i.e. if

EP

{

F (wt, ψ
∗(x−, n−, n

e
−))
}

= ψ∗(x−, n−, n
e
−).(3.20)

Lemma 3. Let F denote the random El Farol Law defined in (3.16) and denote by

(EF )(ne, P ) := EP {F (·, ne)}(3.21)

its expected value function with respect to P . ψ⋆ is an unbiased predictor for F , if ψ∗ predicts
a fixed point of the mean El Farol Law (EF ).

The lemma follows directly from the fact that the mean law is of the Cobweb type. Therefore,
unbiased predictors must be constant value predictors predicting fixed points of the mean
law. By construction the mean law is discontinuous at the respective critical levels for the
two cases, i.e. for B > v(0) one has

(EF )(ne, P ) :=































0 0 ≤ ne < ne
1

1

N

∑N

1
pj ne = ne

1

1 ne
1 < ne < ne

2

1

N

∑N

1
pj ne = ne

2

0 ne
2 < ne ≤ 1

(3.22)

while for B < v(0) one finds

(EF )(ne, P ) :=











1 0 ≤ ne < n̄e

1

N

∑N

1
pj ne = n̄e

0 n̄e < ne <≤ 1.

(3.23)
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By construction the mean law takes on the value zero or one everywhere except at the respec-
tive positive critical levels. Therefore, for any (v,B, P ) with B < v(0), n̄e 6= (EF )(n̄e, P ) and
(EF ) has no fixed point unless

∑

pj = Nn̄e. Thus, there is no unbiased predictor in most
cases. Similarly, for any (v,B, P ) with B > v(0), ne

1 6= (EP )(ne
1, P ) and ne

2 6= (EP )(ne
2, P ),

making zero the unique fixed point of the mean law generically. Thus, one has the following
result.

Theorem 1. Let v satisfy the conditions of Proposition 1 and denote by F a random law as
defined in (3.16) for (v,B) with P given.

(i) If B > v(0):

1. ψ∗ ≡ 0 is the unique unbiased predictor if and only if
∑N

1
pj 6= Nne

i , i = 1, 2.

2. Zero is the unique asymptotically stable solution of {(ψ∗, F (w,ψ∗));P}.

3. There exist two unbiased predictors with constant positive value ψi ≡ ne
i , i=1,2, if

and only if
∑

j p
j
i = Nne

i , Pi := (p1i , . . . , p
j
i , . . . , p

N
i ), i = 1, 2.

4. All random orbits {ne
i , nt}

∞
t=0

of the IFS {(ψi, F (w,ψi);Pi} are stationary solutions
with sample mean ne

i and rational expectations EPi
(nt) = ne

i , i = 1, 2.

(ii) If B < v(0):

1. The constant mean value predictor n̄e ≡ ψ̄ is the unique unbiased predictor for
(v,B, P ) if and only if

∑

p̄j = Nn̄e.

2. All random orbits {(n̄e, nt}
∞
t=0

of the iterated function system
{

(ψ̄, F (w, ψ̄)); P̄
}

are
stationary solutions with sample mean n̄e and rational expectations EP̄ (nt) = n̄e.

Theorem 1 extends the results from Proposition 2 to the case were agents jointly randomize
their choices, independently across time, but not necessarily independently across agents.
When the outside option dominates the situation of ’lonely participation’ (v(0) < B), time
independent randomizations induce the unique but least desirable attendance as a stable
outcome of the dynamics under rational expectations in all cases and with any randomization.
The two positive critical levels ne

1 and ne
2 are fixed points of the mean law under a set of

different restricted randomizations which do not correspond to mixed Nash equilibria of the
one shot game. These include, however, the specific symmetric randomization with pj = ne

i

for all j = 1, . . . , N ; i = 1, 2 which provide an intuitive explanation for symmetric stationary
behavior.

When v(0) > B, zero attendance is no longer a limiting rational expectations outcome, so
that the unbiased predictor ψ̄ with associated probabilities

∑

p̄j = Nn̄e induces a unique
stationary unbiased solution {nt}

∞
t=0

with EP̄ {nτ} = n̄e for all τ = 1, . . . ,.

4 Summary and Conclusions

What has become known in the literature as the “El Farol problem” can be described by
a class of one shot games of participation with crowding. Their equilibrium properties are
determined by a structural discontinuity originating from the binary decision which players
face when choosing the maximizers of two concave functions. For all symmetric concave
preferences it is the level of the outside option which determines whether the game has no
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Nash equilibrium or whether the unique Nash equilibrium is the one with zero attendance,
which is a least desired outcome for all agents. The crowding effect prevents the existence
of Nash equilibria with all agents participating. Moreover, for generic concave functions and
outside option levels, asymmetric equilibria have a unique size of participation, implying that
different equilibria are characterized by the redistribution of a uniquely determined constant
number of players.

Under a recursive and strictly non-cooperative setting of repeated decision making the El
Farol problem induces a recursive economic law of the Cobweb type whose steady states
under perfect foresight are typically not Nash equilibria of the original one-shot game. When
the outside option is significant there exists a unique perfect predictor generically in the space
of preferences. In this case, the dynamics under perfect foresight are globally converging to
the boundary state with zero attendance. However, for all levels of the outside option,
asymmetric equilibria with partial positive attendance rates can be obtained as stable steady
states under approximately perfect predictors including Nash equilibria, where the prediction
error can be kept below a maximum level of 1/N . In exceptional (nongeneric) cases these
exhibit perfect foresight with ǫ = 0.

Since the El Farol Law is of the Cobweb type, ǫ−perfect predictors must be constant functions
independent of any history, a logic which is inherent in Cobweb laws. This feature can be
used by each participating agent (or by an outside observer) to identify perfect predictors
as those which minimize the forecasting error at any time. In other words, in contrast to
the reasoning put forward by Arthur (1994), the occurrence of persistent non-converging
sequences of rates of attendance with permanent forecasting errors in such models is not due
to a non-existence of perfect rules, but rather to the failure of agents to identify and to use
them. Nevertheless, when the ǫ−perfect predictors are not unique or coexist with the zero
perfect predictor a coordination problem or equilibrium selection issue arises as to which of
the predictors and associated asymmetric attendance rates should be implemented. To solve
the coordination or the selection question requires cooperative reasoning or other mechanisms
which are beyond the rational of non-cooperative and strict individualistic behavior used in
the definition of equilibrium.

The results under deterministic behavior were extended to situations where agents random-
ize over their binary choices to break indifferences. In this case, the stochastic economic
law becomes a family of random maps which induce an iterated function system (IFS) when
agents use stationary (recursive) forecasting. Their stationary equilibria under rational ex-
pectations do not implement mixed equilibria of the original game. Due to the fact that the
random El Farol Law is again of the Cobweb type, there exists a unique unbiased predictor
implying rational expectations along orbits of the induced iterated function system. As in
the deterministic case, depending on the level of the outside option, all orbits converge either
to the (deterministic) steady state with zero attendance or a stationary solution with positive
partial attendance. With non-uniqueness of the unbiased predictors, there remains the same
coordination or equilibrium selection question as in the deterministic case.

It seems that none of the above results loose their general validity when agents’ preferences
and outside options are heterogeneous. It is well known and part of common economic
reasoning in markets that heterogeneous expectations are the source of nontrivial orbits which
cannot be self-confirming for all agents under heterogeneity of forecasts. Thus, one may argue
that stable attendance configurations of an El Farol Law with heterogeneity would exist and
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could best be described by imposing a positive ǫ on the measure of rational expectations,
allowing possibly a large enough class of ǫ−unbiased predictors which may differ across
agents. Otherwise, for ǫ = 0, there may indeed be no predictors inducing self-confirming
and stabilizing orbits of positive attendances or participations for many interesting economic
choice problems with outside options.

These findings confirm the two main structural features of rational expectations dynamics
for models of the Cobweb type. First, perfect foresight or rational expectations dynamics
require a constant predictor - an almost trivial choice in the space of predictors. This fact
is counterintuitive to common reasoning used by agents and analysts trying to search and
identify perfect predictors. Unfortunately, this is based on the false presumption that past
states determine the next state, while the Cobweb law indicates that the last forecast deter-
mines the next state. What may look as a need to search for boundedly rational predictors
originates primarily from the non existence of stable confirming self-referential orbits for the
predictors used. The reason is the choice of a predictor within the wrong class for which there
are no self-confirming rational expectations orbits. This is not a failure of an application of
deductive reasoning, but rather a failure to identify the correct class of predictors. If there
are several predictors in the correct class an additional equilibrium selection problem arises.

Second, the stability of the dynamics with rational expectations is trivially fulfilled for con-
stant predictors. Thus, the principle reason for cyclical and non-converging dynamics with
consistent and permanent forecast errors in models of the Cobweb type lies in the fact that
agents (and the analysts of such models!) chose predictors from the wrong class. Therefore,
the failure of observable stationary solutions or perfect foresight orbits in Cobweb models with
adaptive, recursive, or learning predictors arises because of the misconception of agents and
analysts of the underlying dynamics, a belief which seems to be deeply rooted in the minds
of many economists (see for example the discussion and reasoning in Nerlove, 1958; Samuel-
son, 1976; Pashigian, 1987, and others). Thus, cycles in Cobweb models using non-constant
stationary predictors are self-inflicted and their orbits cannot induce rational expectations
along orbits.

The fundamental interaction between an economic law and the predictor indicates that
economies with expectations feed back in their intertemporal structure are closed loop sys-
tems in contrast to physical systems. Thus, predictors become controls in economic systems
where forecasts influence future outcomes, something unheard of in meteorology! The ra-
tionality of forecasts and the stability of the system are only two of many possible criteria
according to which predictors are and may be chosen.

Finally, there remains the question of how to find or identify the perfect or unbiased predictor
from finite time series data along an orbit. Note that under recursive predictors the data
of any orbit is always contained in a subset of the graph of the predictor and the law itself,
which is a time invariant object accessible to empirical estimation at least in principle. Thus,
orbits generated with given predictors reveal mostly information about the predictor used
and little of an economic law of the Cobweb type or its associated error function. Therefore,
a learning procedure has to be designed in such a way that it improves information about the
contours/level sets of the error function and thus of the economic law. Often such procedures
are time dependent so that the dynamical system becomes nonautonomous and the sets on
which the dynamics of states and expectations occur may become complex or are no longer
forward invariant, making successful learning possibly a difficult computational issue.
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