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A B S T R A C T

Image acquisition of deep sea floors allows to cast a glance on an extraordi-
nary environment. Exploring the rarely known geology and biology of the
deep sea regularly questions the scientific understanding of occurring con-
ditions, processes and changes. Increasing sampling efforts, by both more
frequent image acquisition as well as widespread monitoring of large areas,
currently refine the scientific models about this environment.
Accompanied by the sampling efforts, novel challenges emerge for the image-
based marine research. These include growing data volume, growing data
variety and increased velocity at which data is acquired. Apart from the in-
cluded technical challenges, the fundamental problem is to add semantics to
the acquired data to extract further meaning and gain derived knowledge.
Manual analysis of the data in terms of manually annotating images (e.g.
annotating occurring species to gain species interaction knowledge) is an in-
tricate task and has become infeasible due to the huge data volumes.
The combination of data and interpretation challenges calls for automated ap-
proaches based on pattern recognition and especially computer vision meth-
ods. These methods have been applied in other fields to add meaning to vi-
sual data but have rarely been applied to the peculiar case of marine imaging.
First of all, the physical factors of the environment constitute a unique com-
puter vision challenge and require special attention in adapting the methods.
Second, the impossibility to create a reliable reference gold standard from
multiple field expert annotations challenges the development and evaluation
of automated, pattern recognition based approaches.

In this thesis, novel automated methods to add semantics to benthic im-
ages are presented that are based on common pattern recognition techniques.
Three major benthic computer vision scenarios are addressed: the detection
of laser points for scale quantification, the detection and classification of ben-
thic megafauna for habitat composition assessments and the detection and
quantity estimation of benthic mineral resources for deep sea mining. All
approaches to address these scenarios are fitted to the peculiarities of the
marine environment.
The primary paradigm, that guided the development of all methods, was
to design systems that can be operated by field experts without knowledge
about the applied pattern recognition methods. Therefore, the systems have
to be generally applicable to arbitrary image based detection scenarios. This
in turn makes them applicable in other computer vision fields outside the
marine environment as well.
By tuning system parameters automatically from field expert annotations
and applying methods that cope with errors in those annotations, the limi-
tations of inaccurate gold standards can be bypassed. This allows to use the
developed systems to further refine the scientific models based on automated
image analysis.
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P U B L I C AT I O N S

Some of the ideas in this thesis have been published as journal articles or
conference papers. The following list gives an overview and outlines the ma-
jor advancement for a selection of them.

Timm Schoening, Thomas Kuhn, Tim Nattkemper
"Fully automated segmentation of compact multi-component objects in underwater
images with the ES4C algorithm"
Submitted to Pattern Recognition Letters, 2014
In this paper, the idea of a fully automated segmentation of images is pre-
sented. No manual tuning of parameters, and, more importantly, no manual
data annotation is required. Therefore, a compactness measure is introduced
that is used as a fitness criterion for optimisation with the genetic algorithm.

Timm Schoening, Thomas Kuhn, Tim Nattkemper
"Seabed classification using a bag-of-prototypes feature representation"
CVAUI workshop at ICPR, 2014
Seabed classification was investigated by means of resource exploration. The
idea presented in this paper was to classify subparts of images by represent-
ing them with the frequencies of cluster prototypes contained in these sub-
parts. The prototypes were obtained through an unsupervised clustering of
colour features. The advantage of this subpart classification is that a manual
annotation can be done efficiently through the annotation of large subparts
of images rather than of individual pixels.

Timm Schoening, Thomas Kuhn, Melanie Bergmann, Tim Nattkemper
"DELPHI - a fast, iteratively learning, laser point detection web tool"
Submitted to Computers and Geosciences, 2014
This paper presents the idea of re-evaluating detection results in an iterative
manner with a field expert in-the-loop. The task of detecting laser points is
given as a straightforward example where the inclusion of morphological in-
formation regarding the laser point setup provides further ways to improve
the detection quality. This is different to the sophisticated detection of arbi-
trary objects as given in the PLoS ONE paper but shows the idea of adaptive
learning with continuous re-evaluation.

Timm Schoening, Melanie Bergmann, Jörg Ontrup, James Taylor, Jennifer
Dannheim, Julian Gutt, Autun Purser, Tim W. Nattkemper
"Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at
the Arctic Deep-Sea Observatory HAUSGARTEN"
PLoS ONE, 2012
This paper contains the first ever published study on the detection of a
diverse set of arbitrary benthic mengafauna. It explains methods to many
aspects of the analysis pipeline (illumination correction, expert annotation
interpretation, supervised learning and combination of machine learners).

v



Apart from the challenging task and the relatively novel application of machine-
learning methods in benthic imaging in general, the topic of this article was
to take first steps to creating methods that can be controlled and applied by
biologists (or other field experts) without a background in pattern recogni-
tion.
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"Investigation of hidden parameters influencing the automated object detection in
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"Application of Hydro-Acoustic and Video Data for the Exploration of Manganese
Nodule Fields"
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Part I

P R I N C I P L E S A N D B A C K G R O U N D

"Oceans, the final frontier." could be the opening for a scientific tv
show, dedicated to the exploration of those vast, unknown parts
below the surface of our blue planet rather than outer space. Cur-
rently, there is little coverage about marine science in the media
and most of it covers the small fraction of the oceans that is rel-
atively easy accessed by humans. The major part though, often
quoted to be "less explored than the back of the moon", has mostly
never been visited by any human or technology. The continen-
tal slopes, abyssal plains and ocean trenches remain white spots
on our ocean charts. Coarse information about the ocean depth
mostly makes these "light grey spots" with some sites that have
been explored in detail but information about these sites reaches
the public only rarely. Focussing on unexplored sites though reg-
ularly overthrows the ideas we have about the deep sea.
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I N T R O D U C T I O N

Chapter 1 introduces to the general topic of image based ocean explo-
ration with and without pattern recognition efforts. It explains the funda-
mental challenges and gives an overview of strategies and ideas to solve
them. Some general definitions are given to ease the reasoning about au-
tomation in the following chapters.

1.1 ocean exploration

Mankind has a lasting relation to the oceans. For tens of thousands of years
the sea has provided food and other resources and has been used for trans-
portation. The exponential growth of the human population combined with
technological advances of the last centuries have increased the rate at which
ocean resources are exploited and the amount of ships that cruise the oceans.
Along this increase in exploitation came an increase in exploration of oceanic
processes.
For most of the time, knowledge about the oceans was based on observation
rather than a fundamental understanding of the underlying processes. Tides
for example are an evident ocean feature that can be predicted and have been
related to the moon for millennia but the physical laws that govern the tides
were described much later. Until now, tidal observations remain important
to determine local tidal characteristics for safe seafaring. Observation in gen-
eral thus remains important for understanding the oceans.
The starting point of coordinated ocean research, for example to find new
marine species, global currents or to measure ice coverages at the poles and
more, is usually connected to the HMS Challenger expedition in 1872. Af-
terwards, more and more countries started research missions like the the
german Valdivia expedition in 1898. During those first cruises many new
species were discovered as parts of the ocean were sampled that had never
been reached for.
Although almost 150 years have passed since the HMS Challenger expedition,
ocean research still provides new insights in geological, oceanographical, bi-
ological and many other fields. Surprising discoveries were often made in
one of the least accessible parts of the oceans: the deep sea. This part of the
ocean is very different to the environment humans live in and thus it is al-
ways surprising how diverse and peculiar it can be. Findings like methane
hydrates, hydrothermal vent sites, cold seeps, seafloor spreading or ocean
trenches were the basis for new opportunities. These include deep sea re-
source mining, new demands like ocean conservation and new discoveries
like an extraordinary species diversity in some remote places that were pre-
viously deemed uninhabitable.
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The definition of the onset of the deep sea varies but lies at about 1, 000m
water depth. The deep sea extends down to around 11, 000m depth in some
ocean trenches and is commonly separated into several layers of which the
Bathyal is the top part, the Abyssal the middle part and the Hadal the deepest
part. Reaching for the Bathyal and Abyssal is a technically challenging task
and becomes more complicated with increasing depth. Therefore the even
deeper Hadal has rarely been sampled at all. Research targets in the Bathyal
and Abyssal are for example Abyssal Plains that are very flat regions, covered
with sediments, as well as sea mounts that can protrude several thousand
meters from the sea floor.
Wide-spread sampling of this part of the deep oceans is an almost impossible
task as the deep seafloor is estimated to cover 66 percent of the earth’s sur-
face (i.e. about 318× 106 km2). The common approach to get data anyhow
can be well described by the information visualisation mantra [1]: To get an
"Overview first", usually by acoustic mapping of a large region; then to take a
look at that data and "zoom in and filter" to find interesting spots; and finally
to sample "details on demand" with a higher resolution.
Getting the details depends on the targeted research question: for physical
oceanography, values like temperature, salinity and currents are of interest;
for resource explorations, grab samples of the material are necessary; and
for biological studies species samples or visual images of the habitats can be
a basis. Imaging in general is becoming more common in marine research
as technological advances have made it possible to attach video and still
cameras to a variety of gears and thus to make the submerged environment
more comprehensible for humans. Nowadays, resource exploration usually
includes visual sampling of the targeted areas and the installation of physical
sensors is often monitored visually as well. Taking images in shallow waters
can be challenging as biological processes can cause turbidity up to a point
where imaging is rendered impossible. The waters in the deep sea though
are often clear and thus appropriate for image acquisition.
Marine imaging can be separated in three different parts of the ocean: i)
ocean surface imaging which is usually done remotely by plane or satel-
lite and thus does not directly relate to marine imaging, ii) pelagic imaging
where objects in the water column are recorded and iii) benthic imaging where
objects close to the seafloor are imaged.
Surface and benthic imaging can be seen as sampling an almost 2D environ-
ment, where pelagic imaging samples a 3D environment. Taking images in
the water column is a wide field of research and usually requires a lot of
human interaction (e.g. zooming, pointing the camera at interesting objects).
Some automated methods have been published for the pelagic environment
[2, 3, 4, 5, 6, 7] but surface and pelagic imaging will not be targeted or further
discussed in this thesis.
Benthic imaging has been applied for years by several institutions and some
distinct camera platforms (see Section 2.2) have been developed so far. These
platforms can provide information about larger areas with average resolution
or at small spatial scales with high resolution.
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1.2 curse of dimension

Benthic imaging becomes more common as scientists aim for more detailed
data about habitats. The urge to record ever-increasing stacks of images is
rising [8] and thus marine imaging also has to deal with the "three Vs" of Big
Data: Volume, Variety and Velocity. The accompanying challenges are data
archival, data sharing and data understanding.
Mapping the complete deep benthos with images of three megapixels per
square meter, which is a common size, would produce ca. 90 exabyte of data.
No single marine research institution alone can handle that amount of data,
although it is very unlikely to monitor all ocean floors in such detail. The
number though accounts only for a singular assessment and it is common
practice to visit selected regions multiple times to observe long-term changes
thus producing a multiple of this data for these spots.
Accessing and sharing such data volumes requires technology as big Inter-
net companies are using and providing. This includes efficient indexing of
the data to be able to retrieve data, that is browse and search for specific
regions or experiments. User interfaces are required that allow manual anal-
ysis together with collaborative methods to efficiently exchange data. This
exchange includes raw image data as well as further derived data. One idea
how to design such a software is given in the Outlook chapter (see Figure
9.4).
The current hot topic in computer science of the Cloud is one approach
for large-scale data storage and global access. Yet, the dimension is so big
that common industrial services are unaffordable. Storing all benthic image
data (90 exabyte) with the Amazon Web Services Glacier1 archiving service,
would currently cost more than one billion Euro per month without the addi-
tional costs for accessing the data. For the german Exclusive Economic Zone
in the North Sea this would be about 100, 000 Euro per month.
Dividing costs and efforts by nations and institutions is common practice for
ship time and equipment. This practice should thus be similarly applied for
a shared IT infrastructure as well. Further, making the data freely available
for scientists around the world is crucial. Only thereby will benthic imaging
become a standardised, quantifiable and revisable and thus credible method
to consistently explore and monitor the oceans.

1.3 adding semantics

Capturing images in the deep sea is a laborious task (see Chapter 2) yet is
just the first step on the way to an understanding. The challenges in the sub-
sequent storing, handling and sharing of that data has been addressed in the
previous section. Still the most important step is to obtain information out of
that data by adding semantics.
The straightforward way is to let humans take a look at the images or videos
and let them annotate the data manually. Annotations can refer to entire im-
ages but usually segments of an image or point locations within an image are
annotated. This means that distinct observations are specified by a class label

1 http://aws.amazon.com/glacier/
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and the position within the image. Various annotation morphologies, with
different applicability and research target, can be used to annotate. Some of
them are explained in Chapter 4.
Manual annotation is a time-consuming task [8] where the effort depends,
amongst others, on the amount of objects per image, the amount of classes
to annotate and the pixel resolution of the individuals. In one habitat study
(about 200 individuals visible per image, 9 classes to be annotated, 10 to 180
pixel length of the objects) the annotation took about 45 minutes per image.
In a different study (about 2 individuals visible per image, 42 classes to be
annotated, 40 to 1, 500 pixel length of the objects) the annotation took about
2 minutes per image.
This coarse subsumption goes along with the general problem, that image
annotation for the deep sea has not been standardised so far. There exist no
agreed-upon guidelines to design annotation based studies let alone meth-
ods to compare competing guidelines. Varying acquisition devices are used
(see Chapter 2) with varying annotation strategies (see Chapter 4) and the
classes to be annotated are usually put together in a class-catalogue again
for each new project. Designing such a class-catalogue is not trivial as often
unknown or unexpected objects are imaged that have to be added to the cata-
logue later on. The inclusion of representative samples is also complicated as
deep sea flora, fauna and geology is extraordinary and diverges from our ev-
eryday knowledge and intuition about the appearance of natural structures.
The mental model of the annotators regarding an object can diverge, such
that different experts will classify the same object instance differently. De-
signing a procedure to solve such disparities is an important step in anno-
tation based image analysis. Rather than relying on one expert opinion only
to overcome such disparities, the fusion of expert annotations can provide
more reliable semantic data although it is tedious. The accurate inspection
of disputed instances might explain differences regarding mental models or
other factors that influence the annotation process.
Apart from diverging opinions regarding imaged object instances, an ac-
companying challenge is to correlate grab samples with images for ground
truthing the annotation process. For highly trained experts, this task might
be straightforward, yet for many field scientists, a reasoning based on images
can become difficult and is even impossible in some cases. The current trend
to annotate lower-level classes rather than at high-level (e.g. species-level)
circumvents this problem and allows to analyse more image data sets yet
introduces a bias regarding the annotation quality. It is generally infeasible
to image and physically sample enough class instances in parallel to assess a
habitat or resource deposit exhaustively. A residual sampling bias can never
be circumvented.
The coaction of all annotation complexities, be it classification disparities,
classification uncertainty, uncertain classification or else, lead to a fundamen-
tal challenge that affects all approaches to automatically add semantics to
benthic images: that a reliable and credible gold standard cannot be obtained.
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1.4 computer vision for the deep sea

Primarily due to the increasing data amounts, and also the increasing rate
at which new data can be recorded as well as the bottleneck caused by the
annotation effort, computer science in general is currently of increasing inter-
est in marine imaging. Softwares that i) support manual annotation, ii) allow
data sharing by means of images and derived metadata and iii) include ge-
ographic information systems are becoming more popular. Still these tools
only support the manual analysis of data and do not solve the problem it-
self: that marine scientists want to analyse as much data as possible but the
required effort prevents them from doing so.
At that point, marine imaging became an interesting field for computer vi-
sion (CV) and pattern recognition (PR) research. Still the field has not gained
as much attention in the CV community. This is surprising for one thing con-
sidering the massive amounts of data that have been and will be recorded
(see Section 1.2). For another thing marine imaging constitutes a peculiar spe-
cial case in CV that should attract attention. It partly relates to medical imag-
ing as natural entities are imaged and thus biological artefacts can impair the
image acquisition (e.g. marine snow, algal growth on the camera housing). It
also relates to robot vision, as the visual signal could be used to navigate in
this environment (e.g. by autonomous vehicles). In other ways, deep benthic
imaging relates closer to industrial image analysis: in the deep sea the illumi-
nation is solely provided through the camera platform and thus controllable
and well-known. Although some bioluminescence occurs, it is outshone by
the artificial light source accompanying the camera platform.
Some challenges that make benthic imaging unique arise due to the physical
properties of the light travelling through water, a topic that will be addressed
in Section 2.3.
In many ways though, CV for marine imaging is partly similar to other CV
challenges and hence the applied methods are of course similar as well (see
Chapter 3). It includes methods that are able to detect the position of an ob-
ject without assorting it to a class (the detection step) as well as methods to
determine the class label of an object automatically (the classification step).
Some efforts have been taken so far to solve benthic CV applications but usu-
ally these methods make simplifying assumptions or have constraints that
limit them to a specific marine use case. Certain studies are based on a small
set of images [9, 10] rather than on a high-throughput scale for large im-
age sets [11, 12, 13, 5, 6] or complete images are classified [14] rather than
detecting positions within images. A common simplification is to apply the
method to a limited number of classes [15, 16, 11, 17, 18, 19, 20, 21, 9, 22, 23,
24, 25, 26, 10, 27, 12, 13, 28, 29, 30] or by fusing high-level classes to a small
set of low-level classes, called morphotypes [24, 25, 26, 31, 12].
In some methods, the detection step is done manually and only afterwards the
detected objects are automatically assorted to classes [16, 32, 22, 10, 27, 23].
Other methods instead automate the detection step first and then assort the
detections to classes manually [20, 19, 17, 33, 21, 9, 29, 28]. Automating both
steps is targeted in [31, 26, 34, 12, 13].
In some cases, the developed method requires special hardware equipment
[35, 32, 18, 27, 13], has only been shown in laboratory situations [35, 36, 23, 27]
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or requires a class-specific tuning of parameters or CV system components
[17, 19, 9, 10, 27, 13, 28, 29].
An overview of some benthic CV methods is given in Table 1.

The benthic CV approaches are usually implemented as a combination of
standard PR algorithms (see Chapter 3). A common characteristic of those al-
gorithms is that they can be governed by a wide range of parameters: thresh-
olds (e.g. for segmentation, see 3.2.5; or combination of items, see 3.9.3), vari-
ances (e.g. for Gaussian kernel size σ in SVMs, see 3.7.2; or Gabor feature
sizes, see 3.2.3) or sizes (e.g. for the amount of histogram bins Nbin, see 3.2.2;
or k for the amount of clusters in k-Means, see 3.6.1) and else. The choices
regarding possible algorithms that constitute parts of a multi-component CV
approach (e.g. using SVMs or Random Forests) further define and compli-
cate the design of the complete system.
Building a benthic CV system thus requires PR experts that can combine al-
gorithms and tune their parameters. Marine field experts, like biologists or
geologists, are usually not trained to use, and thus cannot operate, such al-
gorithms. This is especially the case for combinations of several algorithms.
In principle, this can be seen as good news for PR scientists as it calls for
their expertise to operate such systems. But this is a short-term perspective.
To challenge the principle of a PR expert in-the-loop, an advancement would
be to let this PR expert design a fitted yet general-purpose benthic CV sys-
tem. Fitted in terms of addressing the unique requirements of benthic CV, yet
general enough to address different CV tasks in this environment. The devel-
oped system would have to obviate the necessity of hand-tuning parameters
as well as guiding the operator in all decisions that cannot be obviated. This
would allow to put marine experts in-the-loop in the medium term such that
they can operate a multi-component benthic CV system themselves.

1.5 scope

In this thesis, three CV scenarios will be presented that target the under-
standing of deep sea benthic images. All approaches to solve these scenarios
target high-throughput image analysis of images taken with standard 2D

cameras. The developed methods have been applied to real-world datasets
and include automated detection, automated classification and automated
quantification and are aimed to be automatically tuned, if any, by a marine
expert in-the-loop. In all methods, several PR algorithms are applied and com-
bined. The selection of those algorithms aims at preventing the creation of
semantic gaps. That way, no black box is created, as all steps in the CV process
can be traced back and analysed regarding their effect.
There are two main scenarios: the detection and classification of a range of
dissimilar species for a biological habitat assessment (Scenario (B), see Chap-
ter 7) and the detection and quantification of deep sea benthic minerals for
a resource assessment (Scenario (C), see Chapter 8). The two scenarios differ
in their requirements and so different methods are presented.
For Scenario (B), a general-purpose detection system was developed, which
is able to detect and classify arbitrary objects due to a species-independent
setup. This system is governed by biologists in-the-loop that create expert an-
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Clement et al. (2005) [9]

Kaeli et al. (2006) [12]

Gobi (2010) [21]

Kavasidis et al. (2012) [33]

Rigby et al. (2010) [15]

Bewley et al. (2012) [11]

Pizarro et al. (2009) [24]

Shihavuddin et al. (2013) [25]

Seiler et al. (2012) [14]

Di Gesu et al. (2003) [20]

Spampinato et al. (2010) [19]

Purser et al. (2009) [34]

Cline et al. (2009) [26]

Scenario (A)

Scenario (C)

Scenario (B)

Table 1: Overview of existing CV methods for benthic image analysis. Included are
only those approaches that have been applied to field data rather than in labora-
tory studies. All approaches that require specialised hardware are not included as
methods are targeted here that operate on common 2D imagery. The rows stand
for thirteen systems and the three Scenarios (A) - (C) proposed in this thesis. The
columns stand for eight selected characteristics of those systems: (1) whether a small
image set has been used or the approach has been developed for high-throughput
analysis; (2) whether large segments of images are to be detected or distinct pixel
positions are targeted; (3) whether a segmentation of the complete image is targeted
or points of interest are detected automatically in the image; (4) whether the class
of a detection is determined manually or automatically; (5) whether the parameter
tuning has to be done by a PR expert or is performed automatically; (6) whether a
set of up to five classes is used or a wider range of classes is considered for classi-
fication; (7) whether the approach is fitted to the used classes or is general-purpose
to be applied to other classes as-is; (8) whether low-level classes like morphotypes
are used or a high-level classification is targeted (e.g. species level).
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notations from which algorithmic parameters are tuned automatically. In Sce-
nario (C), a two-class (binary) segmentation is initially targeted, followed by
a resource quantification. Multiple methods with varying degree of quantifi-
cation accuracy as well as varying degree of expert interaction are presented
for Scenario (C). All expert interactions could finally be made obsolete in this
scenario.
In Scenario (B), Support Vector Machines (SVMs, see Section 3.7.2) are used
for two reasons. First, they can be applied to find separation functions in
high-dimensional feature spaces. This is important as a species-independent
classification is targeted where a range of feature descriptors is applied to
cover the visual variety in the occurring species. Second, SVMs have an in-
herent ability to allow small errors during the training step to achieve an
improved generalisation quality for unseen data. This ability is important to
address the unreliable annotation data that this scenario is based upon.
For Scenario (C), a lower-dimensional feature space is explored than in (B)
while the annotation data is similarly disputable. To improve the computa-
tional performance, Hierarchical Hyperbolic Self-Organising Maps (H2SOMs,
see Section 3.6.4) were used in this scenario. This vector quantisation algo-
rithm is beneficial as the computed clustering can be interactively browsed
and visualised. This allows to look into high-dimensional patterns and effi-
ciently adapt a sophisticated machine-learning based system to novel tasks.
So far, both Scenarios (B) and (C) exist in an operational yet rudimentary
state. Running those systems requires process monitoring of several mod-
ules. Those modules include C++ routines deployed on a compute cluster as
well as web based visualisations and tools to evaluate intermediate results
and to execute the modules.
The third method (Scenario (A), see Chapter 6) is thus a combination of (B)
and (C) and targets the fully automated detection of laser points in images.
It serves as a demonstration case of how a fully integrated system should
operate for Scenarios (B) and (C) in the future. Scenario (A) is simplified ac-
cording to (B) as it targets only a two-class separation and is tuned especially
for this task. Still it contains visualisation tools and executes computationally
intense parts on a compute cluster. Compared to (B) and (C) it exists in an
accessible state and can be run through a web-interface without the manual
handling or tuning of different PR modules.
All three Scenarios (A) - (C) are adaptable to novel problems and cope with
inaccurate or unreliable field expert annotations. In principle, this allows
to apply and adapt the methods during research cruises to novel challenges
that were not anticipated prior to the cruise. Thereby the data analysis can be
conducted onboard and the derived results be immediately used to improve
subsequent experiments. An overview of the Scenarios and which Scopes
they fulfil is given in Figure 1.1.

In short, the scopes of the presented CV approaches are:

• Scope (1): to be fitted to the marine environment
The methods are required to be applicable to images taken underwa-
ter. The peculiarities of such CV challenges is explained in Sections 1.4
and 2.3. While the methods are designed for benthic CV, they are sim-
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Figure 1.1: The Scenarios (A) - (C) and the Scopes (1) - (4) they fulfil.

ilarly applicable to comparable challenges outside the marine imaging
context.

• Scope (2): to be applicable to large data volumes
Big collections of data have already been acquired and tremendous
amounts of the seafloor have not been imaged so far (see Section 1.2).
The methods thus have to be applicable to large data volumes by means
of algorithmic efficiency, parallelisability and generalisability to similar
data.

• Scope (3): to be tuned automatically without a PR expert
Expert interaction is a further limitation regarding Scope (2) and thus
including the least amount of expert tuning is essential in targeting
large data volumes. Additionally, the methods have to be applicable by
field experts and thus complicated tuning that requires a PR expert has
to be avoided.

• Scope (4): to be integrative regarding data retrieval, annotation, trans-
formation and understanding
This scope aims at developing a usable CV software that complies with
Scopes (1) - (3). It is thus the least important scope from a PR experts
point of view as implementing software is not our primary goal but
probably the most important from a field experts point of view as
she / he requires usable methods.
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1.6 contributions

This thesis contains five major contributions:

• The feature-space based illumination and colour enhancement (fSpice) strat-
egy for benthic images that is governed by object annotations. An in-
trinsic parameter tuning is concealed from the user to make the ap-
proach applicable without image processing knowledge. The normali-
sation strategy contains one step to remove an illumination cone from
individual images and one way to make images in an image set com-
parable to each other. Thereby fSpice addresses Scope (1) to make stan-
dard PR algorithms usable subsequently.

• The fully integrated laser point detection tool DeLPHI (Detection of laser
points heuristically and iteratively) that addresses all Scopes (1) - (4). This
includes methods regarding concealed parameter tuning, web accessi-
bility, applicability to large data volumes and an integrative interface
that includes retrieval, annotation and machine-learning components.
DeLPHI is a showcase for the general aim of the other two Scenarios
(A) and (B).

• The multi-class megafauna detection and classification system iSIS (in-
telligent Screening of Image Series) for arbitrary objects in benthic images.
A range of intrinsic parameters are tuned from object annotations pro-
vided by field experts. The system architecture is kept non-specific to
make it automatically adaptable to diverse detection tasks. Addition-
ally, machine-learning algorithms are applied that are robust regarding
erroneous annotations.

• The Bag of Prototypes (BoP) feature representation, that aggregates aerial
information regarding a preceding prototype mapping. It is an applica-
tion of the Bag of Words approach and aims at describing heterogeneous
objects that are compounds of visually diverging segments and thus
delicate to model by existing classifiers. The BoP approach has been
applied to the case of benthic resource assessment. There it provided
basic quantity estimates with little expert annotation effort.

• The Evolutionary tuned Segmentation using Cluster Co-occurrence and a
Compactness Criterion (ES4C) algorithm for a fully automated binary
segmentation of images. It requires no manual annotation of any kind
and is hence independent of annotation errors. The ES4C has shown
to be applicable to the use case of marine resource assessment. There it
provided more detailed information about the resource quantities than
the BoP approach.
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1.7 notation

This section describes the mathematical notation that is used throughout
the document. Bold letters (e.g. v, b(i)) refer to vectors, regular letters (e.g.
εκ) refer to scalar values like vector components (e.g. v(i)k ). The deviation
from this definition is made for pixel values. There, p(x,y) denotes the multi-
dimensional colour vector at the x,y position in an image. The dimensional-
ity of p(x,y) is usually 3D for the channels Red, Green and Blue. The pixel
itself is denoted by p(x,y) although this is a two-dimensional vector (for the
x and y position), too. Large letters are used for matrices, images and sets
of entities. The letters i, j, k, l,m,n as well as α, β and γ are used as running
indices in various contexts.

Small latin characters:

a annotation

b(i) binary assignment vector of prototypes

c prototype co-occurrence in ES4C

d Euclidean distance function

e human expert

f arbitrary function

h histogram

i running index

j running index

k running index

l running index

m running index

n running index

o neurone

p(x,y) Pixel with the coordinate x,y

p(x,y) Multi-dimensional colour vector for p(x,y)

p(i) colour vector of the i-th pixel

q pixel-to-centimeter ratio for quantification

s SVM regularisation parameter (slack variable)

t time step

u(j) j-th prototype vector

v feature vector

v(x,y) feature vector of the pixel at coordinate x,y

v(i) i-th feature vector

w weight factor

x horizontal position in an image from the top left corner

y vertical position in an image from the top left corner

z index in ES4C
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Large latin characters:

A Set of annotations

B(n) Population of b(i) in Genetic Algorithm

C Co-occurrence matrix in ES4C

D Dimension

I(n) image

I(n)(x,y) colour vector p(x,y) at position x,y in image n

I(n,B) binary image

I(n,G) grey value image

I(n,M) binary mask image

I(n,U) BMU / index image

I(n,G) Intensity or grey value image

I(n,b) Bit depth of an image

I(n,c) Amount of channels of an image

I(n,w) Pixel height of an image

I(n,h) Pixel width of an image

K Kernel for image filtering (dilation, erosion, median, ...)

M Morphology (in DeLPHI)

N amount of something

Q Classifier Statistic (Precision, Recall, F-Score)

R connected region of pixels (blob)

S Set of items

T Tile (in BoP)

U Set of prototypes u(j)

V Set of vectors v(i)

Small greek characters:

α running index

β running index

γ running index

δ Kronecker-delta

ε threshold in various contexts

φ Kernel function

θ arbitrary parameter

η Nodule coverage (in BoP)

κ distance threshold for annotation cliques

λ In-image distance between annotations and detections
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µ Mean (average) of data values

µ Vector of mean values

ν exponent in fSpice

π fitness function in ES4C

χ Cluster index

ρ Confidence value

σ Variance of data values

σ Vector of variances

τ tile size (in BoP)

ω Class

ξ confidence of a clique

ζ regression value

Large greek characters:

Γ Training, test or validation set of feature vectors

∆ Feature descriptor

Θ Arbitrary set of parameters that govern a PR system

Λ Peak position

Π Summed distance of vectors to centroid in Cluster Indices

Σ Sum of data values

Ω Cluster

Ξ Clique of annotations

The notation | · | has multiple meanings regarding the enclosed entity: i) for
a scalar value, it refers to the absolute of that value, ii) for a vector it refers
to the vector’s length, iii) for a set of items it refers to the amount of items in
that set and iv) for a connected region of pixels R it refers to the amount of
pixels in that region. In any case the result is always a scalar.
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1.8 overview

The thesis is organised in three parts and nine Chapters. Part I (Chapters
1 - 4) introduces the challenges, the scope and the used methods. Part II
(Chapters 5 - 8) contains the main part of the thesis in form of the scenarios
and contributions. Part III (Chapters 9 and 10) concludes the thesis with
an outlook to future approaches and a summary. An Appendix follows, that
contains further examples and a brief description of developed software tools.
The content of the individual Chapters is:

1. Introduction: motivation of the thesis as well as an overview of open
questions; the scope of the questions to be solved is stated and the
mathematical notation is explained

2. Benthic Imaging: methods and peculiarities of imaging underwater are
explained; quantification of content is discussed

3. Pattern Recognition: a wide range of pattern recognition methods in-
cluding supervised and unsupervised learning algorithms, feature rep-
resentations and feature normalisation

4. Annotation: adding semantics to instances either in images or to other
data representations

5. Colour normalisation: explains a method to make diverging benthic
images comparable

6. Laserpoint Detection: introduces a method to detect arbitrary laser
point patterns for the quantification of image content (Scenario (A))

7. Megafauna detection: a system that is capable to detect a range of arbi-
trary objects based on expert annotations (Scenario (B))

8. Mineral Resource Exploration: three approaches to quantify resource
amounts with different degrees of detail and expert interaction (Scenario
(C))

9. Ideas for the future: discusses limitations and possible improvements
for the proposed approaches and their fusion to a future integrated
software tool

10. Conclusion
summarises and concludes the thesis

Chapter 1 explained the reasons for image based exploration of the ben-
thos and described the challenges in manual as well as automated image
analysis. The following three Chapters will describe the used techniques
which include the image data acquisition and characterisation in Chapter
2, the applied algorithms in Chapter 3 and the semantic annotation in
Chapter 4. Based on those Chapters, the Scenarios (A) - (C) will then be
addressed in Chapters 5 to 8, followed by an outlook to future improve-
ments to approach those scenarios in Chapter 9.



2
B E N T H I C I M A G I N G

Chapter 2 explains the technical equipment that is used to acquire ben-
thic images, addresses challenges of the submerged environment and de-
scribes opportunities and limitations regarding the amount of semantics
that can be extracted from the data.

The benthos is the entirety of all things below, within and closely above
the seabed [37]. Benthic imaging thus means taking images of this biosphere
and the communities living within. Another common term is seafloor imag-
ing. The term imaging hereby refers to visual imaging, usually with digital
CCD cameras like a Single Lens Reflex or video camera. Other optical meth-
ods are deployed in marine science as well [38] but will not be targeted here.
Capturing species that dwell below the surface is impossible but some of
these create structures like burrow holes or leave other traces in the sedi-
ment, referred to as Lebensspuren (german for "traces of life"). All bottom-
dwelling, sessile and motile species can be monitored, the limiting factor
being the size of the individual. Benthic species are assorted in three size
groups: micro-benthic (below 0.1mm size), meio-benthic (below 1mm size)
and macro-benthic (above 1mm size, also referred to as megafauna) [37].
Only larger macro-benthic species are visible individually in the captured im-
ages. Some meio- and micro-benthic communities though can become large
enough to be visible as a unit (e.g. coral reefs, bacterial mats).
Apart from the biology, benthic images contain information about geological
properties of the seafloor that usually consists of sediment in the deep sea
with rocky parts in distinct regions, especially on seamounts. Further geo-
logical structures are for example massive sulphide deposits, poly-metallic
nodules (see Chapter 8), ferro-manganese crusts and cold seeps.
While the term benthic imaging could include salt water as well as fresh wa-
ter and shallow as well as deep environments, here it refers solely to deep
environments in the oceans. Imaging in shallow waters poses some serious
challenges like ambient light and high amounts of resolved matter. These
challenges can distort the visual signal to a point where no image analysis is
possible. In the deep sea though, the water is usually clear and the only light
source is attached to the camera platform.

2.1 video acquisition

Visual data is often captured by video cameras rather than as individual
still images. All methods discussed in this thesis rely on still images and
thus singular frames have to be cut from videos to be able to apply the
described methods to that data. The process of cutting videos to frames (or
frame-grabbing) has to take care of characteristics of the video compression
(e.g. fusion of half-images) but standard procedures exist for this task. As
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videos usually have a frame-rate of 1/24th per second, the exposure time is
normally longer than for still images. Frame-grabs thus often show motion-
blur induced in case of a moving camera platform. It is thus favourable to
capture visual data as still images to prevent the inclusion of a fundamental
blur-bias.

2.2 camera platforms

A multitude of technology exists for the exploration of the oceans. Focussing
on visual exploration still leaves a range of devices that capture data with
different degrees of detail and are controllable with different degrees of free-
dom.
The applied gear usually moves at a specific altitude over the area of interest
and creates so called transects of some hundred to several thousand images
per dive. The individual images are usually captured from an altitude of one
to eight meters above the seafloor, depending on the used platform. Instead
of transects from moving platforms, there are also time series captured from
fixed gears that focus on the same spot over a longer time scale. Generally,
the captured images consist of three colour channels.

2.2.1 Towed systems

Getting technology to the deep sea is complicated and expensive and thus
keeping the camera platform simple is a way of getting more data at lower
costs. One example of this are towed camera platforms [39, 40], usually com-
prising a steel frame with camera and lighting equipment attached to it. This
steel frame is connected to the research vessel at the surface over a wire,
which contains power supply and communication cables to directly transfer
the visual signal towards the ship. Eventually, basic manoeuvring commands
can be sent towards the camera platform. Transects are then captured by mov-
ing the research vessel at the surface (see Figure 2.1 (a)). The requirement of
a surface vessel is a drawback of this technique as the vessel is limited to
image acquisition and can not be used to conduct other experiments.
Transects captured with these devices are usually straight lines (maybe with
one or more distinct bends). Hence a dissection of a habitat is observed,
rather than an overview of a wider area. The distance of the towed platform
to the seafloor is determined by the length of the wire and an eventual steer-
ing of the platform by an operator onboard the ship. Capturing continuous
transects, i.e. taking an image every n-th second hence produces images with
varying footprint (as the platform moves up and down). Techniques like a
yo-yo camera instead generate an image each time a specified camera plat-
form altitude is attained. This comes at the expense of irregularly distributed
images along the transect. Both, the varying footprint and the irregular dis-
tribution of images can bias the habitat analysis.
Examples for towed platforms are the Ocean Floor Observation Systems
(OFOS) constructed by different research institutions that were used to ac-
quire some of the images show in Chapters 7 and 8.
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2.2.2 Autonomous Underwater Vehicles

Advances in robotics and automated navigation allowed the development
of Autonomous Underwater Vehicles (AUVs) [41, p106] [42, 43]. These plat-
forms are programmed to follow a pre-defined track or explore an outlined
area on their own. AUVs are mostly torpedo-shaped and have no wired con-
nection to the research vessel at the ocean surface (see Figure 2.1 (b)). This is
a main advantage as the surface vessel can conduct other research in parallel.
Some AUVs contain an acoustic communication system allowing to track its
position. During the dive they usually map a connected area rather than a
straight transect and thus allow for a more detailed view at a habitat than
towed platforms. Depending on the attached gears, an AUV collects visual
and / or bathymetric data (or else) which can be fused for detailed habitat
mapping and prediction. AUVs are limited by battery power and only larger
versions, with larger batteries, contain cameras and lamps as these require
relatively high amounts of energy.
Operating an AUV implies the risk of losing the submersible as unexpected
incidents can compromise the execution of the pre-defined tasks. Modern
AUVs have means to avoid collisions and usually areas are first mapped
bathymetrically from higher altitudes and only later on visual transects are
captured for selected parts of the mapped area, by steering the AUV closer
to the seafloor.
The transects in Section 7.7.2 were obtained by the AUV Autosub 6000 of the
National Oceanographic Centre in Southampton, UK.

2.2.3 Remotely Operated Vehicles

More degrees of freedom come with Remotely Operated Vehicles (ROVs)
[41, p102] [44, 45]. These are again connected to the research vessel through
a wire that transmits power to the ROV and data to the ship (see Figure 2.1
(c)). Research ROVs usually have means of hovering in a fixed position as
well as one or more robot arms that can operate attached gears. ROVs are
thus used for the most detailed analysis, for example after regions of inter-
est have been identified by AUV. Possible applications are grabbing mineral
samples, coring sediment samples or trapping biological samples. ROVs are
equipped with cameras primarily to let the remote operator observe the con-
ducted experiments. Therefore ROV cameras are usually facing in an oblique,
forward direction and are thus less useful for automated detection and it is
complicated to gather scale information form such images.

2.2.4 Lander and Crawler

Questions regarding temporal changes are targeted with landers that are po-
sitioned on the seafloor at some fixed location and remain there [46]. Landers
usually have a battery for power supply similar to AUVs (see Figure 2.1 (d)).
After the deployment period, the lander is picked up again to download
the data. Landers provide a valuable insight in temporal changes of habitats.
Automated methods for evaluation focus on the occurrence of events and
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(a) Towed camera platform (b) Autonomous Underwater Vehicle

(c) Remotely Operated Vehicle (d) Crawler and Lander

Figure 2.1: Five examples for camera platforms with varying degrees of freedom and
varying imaging characteristics. (a) to (c) require the presence of a research vessel
while crawlers and landers (d) are deployed over longer time periods.

novelty detection to monitor unexpected changes.
Crawlers [47] are a hybrid gear that can to some point be assigned to the
lander group as they are deployed at a mostly fixed location but have some
means of movement in a restricted area (through crawling on the seafloor).
This allows monitoring of a slightly larger area and capturing visual data
from different angles. Crawlers are usually part of a cabled observatory with
permanent power supply. In such observatories, cabled Landers are also in-
stalled that do not have to be picked up after the deployment period, rather
the data is downloaded over a permanent data connection accompanying
the power supply. Cabled Landers are part of the trend towards integrated
environmental monitoring (IEM, see Section9.3.2) to assess sudden and long-
term changes induced by human intervention (e.g. resource mining, wind
farms, climate change).

2.2.5 Others

Bringing humans underwater demands for expensive security measures, and
so most scientific imaging platforms are unmanned. Going to water depths
below 200m is thus rare in marine exploration and only a few manned re-
search vehicles have ever been able to do so. These vehicles were equipped
with manually operated camera gear, comparable to ROVs. So far, no auto-
mated analysis has been performed on such data.
Visual ground truthing of other data (e.g. bathymetry [48]) has become an
important step in marine exploration. Commonly applied technology like
bathymetry for habitat prediction require knowledge about reference sites
which can pointedly be sampled with drop-cams [49]. These drop-cams op-
erate like a lander but are picked up immediately after the image acquisition
and thus provide only one to a handful of images for one site.
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Over the past years, visual ground truthing has become an important tech-
nique for other sampling methods as well: one example are box-corers that
were previously grabbed from the seafloor and analysed on-board. Novel
box-corers implement a camera looking towards the benthos to take a picture
before, during and after grabbing the sample to have background informa-
tion about the taken sample, the impact of sample acquisition and to relate
the state of the probe onboard the ship to the original state on the seafloor.
Like visual data from manned vehicles, images taken by these platforms are
usually explored manually, rather than via automated analysis (e.g. to corre-
late the visual assessment of resource occurrences with the true amount).
Comparable to AUVs are Drifters [50] that have no or little means of naviga-
tion but follow the ocean currents. These are operated over several months
but usually have not enough power to operate cameras and lamps.

In this work, only image transects captured by OFOS and AUVs were anal-
ysed. All further discussions about camera platforms and image analysis
hence corresponds to image acquisition with those platforms.

2.3 light and colour

Image acquisition under water, like in benthic imaging, is governed by the
water through which the light has to travel. No sunlight reaches the deep-
sea, it is rather totally absorbed at depths of 800 to 1, 000m. The part of the
oceans below this margin is called the aphotic zone as no photons from the
sun can be detected there. Any camera for the exploration of the deep-sea
thus has to be accompanied by strong lighting.

2.3.1 Illumination

Usually, a constantly shining lamp is pointed towards the camera’s field of
view, especially in video acquisition, to get an overview of the imaged area.
For still image acquisition, e.g. with a Single-Lens Reflex camera, an addi-
tional flash can be attached that is fired only during image acquisition and
outshines the overview illumination.
The positioning of the illumination is a crucial part of the image acquisition
as visual artefacts are easily caused, for example through other gear attached
to the camera platform that casts shadows to the field of view or reflections
of particles in the water. Depending on the applied gear, the altitude of the
camera platform varies (for moving platforms). This altitude is often kept be-
tween one to eight meters, the variation in which induces large differences in
the captured colour spectrum: white or overexposed images when the plat-
form got too close to the seafloor, blueish images when the platform was a
little too distant and dark blue or even black images when the light-source
was not strong enough to illuminate the scene (see Figure 2.2).
It is disputable what the correct colour of an underwater object is as its look
is defined by the unique environment. Hypothetically, by taking all water
away and imaging the objects under the familiar conditions created through
illumination by sunlight, humans would perceive the colour of an object in
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(a) (b) (c)

Figure 2.2: Three sample images from the same transect which were captured at
varying distances of the camera to the seafloor. Notable are the varying colour spec-
trum, vignetting and blurriness.

a way they see as the "correct colour". Of course, this is not possible and
also the environment would be altered, so this can not be seen as the correct
colour of the object. The effects of the water are an inherent property that
has to be accepted rather than removed. It is therefore not necessary to find
the "correct colour" for each object, but rather to transform the images to
a defined reference standard. This means that similar objects would appear
similar in all images (if they are part of a blueish, normal or overexposed
image) without the need that their apparent colour after the transformation
matches their "correct colour".
A further problem arises due to an inhomogeneous illumination of the im-
aged area, for example when the light source is too weak to illuminate the
complete scene. Depending on where within the image, and thus where
within the illumination cone, an object is located, it will be represented in
different colour and structure (e.g. due to the shadows it casts).
CV approaches can be diverted by such differences within images (due to il-
lumination) and between images (due to varying altitude) and thus a colour
normalisation is essential (see Chapter 5).

2.3.2 Effect of water on light

Water has a wavelength-dependent absorption spectrum where more pho-
tons with longer wavelength (i.e. > 500nm) are absorbed. The absorption
minimum for the visible part of the electro-magnetic spectrum lies at about
440nm, thus blue light travels further through water than red light. Out-
side of the visible part of the electro-magnetic wave spectrum, the extinction-
coefficient rises further so that infra-red light is absorbed within some decime-
tres and UV light even faster, within some centimetres. As the light has to
travel from the illumination source (the lamp) through the water, some light
is already lost before the benthos is illuminated. On the way back towards
the camera, further parts of the light are absorbed. Taking reference images
with the used light source and camera in water tanks can allow to computa-
tionally remove those effects [51, 52]. Therefore the water has to have similar
physical and biological properties as the target area for image acquisition.
Studies on this topic are just recently underway [53].
Similar to absorption, the scattering of photons is a further problem. Scatter-
ing on water molecules is rare and negligible but microscopic particles (e.g.
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(a) (b) (c) (d)

Figure 2.3: The four image patches show different instances of the sea cucumber
Kolga hyalina. (a) and (b) were captured in an image of 3.8m2 footprint and are of 88
and 93 pixel length. (c) and (d) were captured in an image of 4.4m2 footprint and
are of 84 and 86 pixel length. Due to the pixel to centimetre ratio, the samples in (c)
and (d) are effectively the same size or even larger than the ones in (a) and (b). The
lengths in mm are: (a) 60mm, (b) 63mm, (c) 61mm, (d) 63mm.

sediment and biological objects) can increase the scattering rate. The longer
the light travels through water, the more scattering occurs, making the image
blurry. This can already be seen within one image, as the corners of images
taken under water are more blurry than the central part where the light trav-
elled a shorter distance. This effect can be increased by the blurring induced
by wide-angle lenses and is more complicated to remove than the colour
shift.
Reflection is usually no problem, as no interface between different mediums
is passed. It occurs though on macroscopic particles within the water that
were not intended to be imaged (e.g. marine snow or larger sediment parti-
cles). Filtering techniques like a median-filter (see Section 5.1) can be applied
here, at least to remove small reflection artefacts.

2.4 quantification of image content

To make marine imaging a valid research tool, quantification of the imaged
objects is crucial. Quantification by number of instances can be achieved in a
straightforward manner, through both manual annotation or automated de-
tection approaches. Quantification of size, volume or weight (e.g. biomass,
resource haul) of the imaged objects though requires knowing the pixel-to-
centimetre ratio q (see Figure 2.3). In the following, three methods of quanti-
fying image content are explained. Two of the methods make the assumption
that the imaged objects are located closely to the seabed and that the seabed
itself is flat. These assumptions are valid when for example Abyssal Plains
are imaged but fail in the case of a heterogeneous seafloor morphology, as in
rocky habitats. Similar to rocky habitats, erect species cannot be quantified
as they protrude from the seafloor and thus a voxel-to-centimetre ratio has to
be known.

2.4.1 Modelling of the camera platform

A sophisticated, but complex approach to quantification lies in the complete
modelling of the applied image acquisition gear together with a depth sen-
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sor. The depth sensor provides the distance between the platform and the
seafloor (i.e. the altitude). Correlating several distance measurements with
images of a reference sample, the size of which is known, then delivers a
model about the camera platform. These measurements can be performed in
a water tank, capable of measuring all occurring distances or more ideally in
the deep-sea environment directly.
Problems can arise due to the fusion of the data, for example when techno-
logical limitation prohibits the simultaneous acquisition of distance data and
images. The modelling has to be done very carefully, as small inaccuracies
can create severe errors regarding quantification.

2.4.2 Laser points

Considerably less effort is required by adding a set of downwards directed
laser pointers to the camera platform instead of a depth sensor. These create
laser points (LPs) on the seafloor, within the imaged area, but do not disturb
the image data much. LPs are small compared to the whole image (about
0.01 percent of the pixels in the image are occupied by LPs). Similar to mod-
elling the camera platform, the LP setup has to be well known by means of
the distance between the individual lasers and their direction. Different laser
arrangements are in use, like a set of three LPs facing straight down to the
seafloor. Other setups have one LP that is attached in an angle to the camera
platform and thus moves according to the camera seafloor distance, provid-
ing further distance information. More complex LP setups can be used to
obtain basic 3D information e.g. in case of an oblique camera [54].

Detecting LPs automatically is a CV challenge and a general, data-driven
method is presented in Chapter 6 that represent Scenario (A). LPs are a very
useful method of quantification and thus highly recommended for benthic
imaging projects that aim at automation in Abyssal Plains.

2.4.3 3D methods

To allow for quantification in environments with a structured seafloor, more
information about the scene is required than a 2D image can provide. One
way to obtain 3D imagery is by imaging a scene simultaneously with two 2D
cameras. The resulting images are then combined computationally by find-
ing outstanding points that are visible in both. Therefore the camera setup
has to be well known.
A similar approach is based on a sequence of 2D images that are taken from
a variety of different positions [55, 56]. This "structure-from-motion" tech-
nique allows to create large connected 3D models of a scene but requires
several, largely overlapping images to be able to compute a detailed model.
To capture all sides of possible dents or humps requires to place the camera
in a multitude of positions which is possible only with ROVs. This makes
3D modelling expensive and impractical for large-scale analysis.
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(a) (b) (c)

Figure 2.4: The colour histograms of the sample images in Figure 2.2. A filtering
strategy could be to remove sample (a) as it contains too much green signal and
sample (c) as it contains too much red signal compared to the other channels. The
image with the spectrum in (b) would be kept as the three channels show a similar
intensity distribution.

2.5 filtering for analysable images

Even the most thorough preparation of the image acquisition process can
not guarantee, that all captured images are of high enough quality to be
analysed. Due to whirled up sediment, overexposing or a failing flash, some
images can be corrupt beyond any chance of analysis. Those images have
to be found and tagged or removed. Employing these images in the tuning
of automated detection methods would further complicate the problem and
keeping them for validation will impair any quality assessment.
One method, to filter out corrupt images, is the detection of LPs. Images in
which LPs can be found are deemed to be of good quality. Another option
is to set boundaries regarding the colours contained in an image. The colour
histograms of images in a transect should be similar, thus images with a his-
togram that deviates from an average transect histogram are candidates for
removal (see Figure 2.4). Combining LP detection with such a colour assess-
ment provides a good selection procedure.

Now that the image data is given, the focus lies on the algorithms to
analyse that data: to describe image content, to find patterns and to group
instances by those patterns. All this is addressed in Chapter 3 while the
means of manually adding semantics are given in Chapter 4.





3
PAT T E R N R E C O G N I T I O N

Chapter 3 explains possible ways to formally describe image content, su-
pervised and unsupervised methods to find patterns in that data as well
as means to assess the quality of the pattern recognition results. This in-
troduction to the algorithms is only loosely related to benthic imaging but
rather relates to CV in general.

Detecting objects automatically in benthic images requires the application
of pattern recognition (PR) methods. Pattern hereby either refers to related
structures within images or to related structures in multi-dimensional vector
spaces. Recognising patterns within images is the scope of computer vision
(CV), recognising patterns in vector spaces is the scope of data mining (DM)
and machine learning (ML). In both cases, the target is to assign patterns
with a semantics.
To detect patterns in images, a formal representation of the pixel informa-
tion is required, that is provided through feature vectors v where a set of
feature vectors is denoted by V . The feature vectors v allow for the applica-
tion of mathematical methods and are computed through feature descriptors
∆. In CV, the ∆ take an image patch as the input, but a multitude of other
descriptors exist in other contexts. These v are usually seen as elements of
a multi-dimensional vector space F that is further explored with ML or DM
methods.

3.1 digital images

Each digital image I(n) can be described by its pixel width I(n,w) and pixel
height I(n,h), the amount of colour channels I(n,c) and the bit size I(n,b) of
each pixel in each channel. Most benthic images are encoded in the Red-
Green-Blue (RGB, [57, 6.2.1]) colour space and thus have I(n,c) = 3. The chan-
nels of such an image are denoted as I(n,Red), I(n,Green) and I(n,Blue). Each
pixel p(x,y) of such images is thus described by three colour intensities: the
Red, Green and Blue signal. The pixel-wise colour values are denoted in the
colour vector p(x,y) ∈ R3 for each pixel of the image I(n) where x and y

define the pixel position within I(n) (x = 0..I(n,w) − 1,y = 0..I(n,h) − 1).
The bit size I(n,b) is usually 8 bit, so the colour values for each channel range
from 0 to 255, such that 2553 distinct colour values exist. Some benthic tran-
sects are captured as raw images with higher bit size. The encoding for file
storage is mostly TIF, PNG or JPG [57, 8.1.7]. The size of the images (I(n,w)

and I(n,h)) depends on the camera and camera settings and thus changes
from transect to transect.
A common approach in CV is the computation of the grey-value image I(n,G).
This reduces I(n,c) to 1, often making the application of CV algorithms easier
as only a one-dimensional pattern has to be explored rather than a three-
dimensional. I(n,G) can be computed pixel-wise by taking the average of the
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components of a p(x,y) as the intensity of the corresponding pixel in I(n,G).
Another way incorporates knowledge about human perception to scale each
channel independently [58], for example by:

p(x,y,G) = 0.299 · p(x,y)
Red + 0.587 · p(x,y)

Green + 0.114 · p
(x,y)
Blue

The least amount of information can be stored in binary images I(n,B) that
have I(n,b) = 1 and thus each pixel can attain only two values: 0 or 1.

3.2 feature descriptors

The mathematical description of a (visual) pattern is achieved by feature vec-
tors v that are computed by one or many feature descriptors ∆. These feature
vectors v span a multi-dimensional vector space (i.e. the feature space F [59,
1.3.3]) that is of the same dimensionality as the feature vectors themselves.
Computing several feature representations of different instances, like differ-
ent positions within an image, creates a sampling of the feature space, even-
tually with an inherent structure: the patterns that are then further analysed
with DM and ML methods. The size of a set of feature vectors V is described
by its dimension D and the amount of feature vectors N.
Feature descriptors exist for a multitude of data domains (e.g. sparsely pop-
ulated word counts to represent texts [60]). Here, the focus lies on features
that describe image content as well as feature descriptors that operate on the
multi-dimensional vector space to characterise distributions within F.

3.2.1 Colour and intensity

The colour vectors p(x,y) of pixels constitute the simplest feature representa-
tion for pixels and are the basis for all derived feature descriptions.
To obtain a single-valued representation, often the intensity p(x,y,G) of a pixel
is considered. The intensity values further are the basis for other feature de-
scriptors like the hereafter described Gabor features [61].

3.2.2 Histograms

To obtain aerial information, the histogram descriptor ∆hist is a straightfor-
ward choice. Therefore, the frequency of pixel colours or intensity values is
counted in a specific region [57, 3.3]. The region is usually defined by a pixel
coordinate x,y and a geometrical neighbourhood around this pixel which
could for example be: i) a squared shape, ii) a diamond shape or iii) a circle
(see Figure 3.1). Squared neighbourhoods can be implemented efficiently but
the marginal pixels do not all have the same distance to the centre of the
shape. Pixels on the margin of a diamond shaped neighbourhood do have
the same distance to the neighbourhood centre according to the Manhattan-
distance, where circles have a similar distance according to the Euclidean-
distance (see Section 3.3).
As normally I(n,c) = 3 and I(n,b) = 8, the histogram can contain up to
Nbin = 28 · 28 · 28 bins. It is common though to separate the colour chan-
nels into I(n,c) individual histograms, leaving Nbin = 3 · 28 bins. A further
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Figure 3.1: Different shapes for histogram feature descriptors. The left column rep-
resents a single channel digital image with four distinct colour values (0..3). High-
lighted in green are the descriptor shapes, in dark green the central pixel for which
the descriptor is computed. In the second column are the resulting histograms,
where the summed absolute values were normalised according to the pixel size
of the shape. The last column shows a condensed histogram where the first and last
two bins were fused. The top row shows a square shape that is easy to implement,
the middle row shows a diamond shape where the distance to the border pixels cor-
responds to equal Manhattan-distance and the bottom row shows a circular shape
(equal Euclidean distance to border pixels).

Figure 3.2: Gabor bank with five orientations (columns) and three sizes (rows).

way to reduce the dimensionality is to condense the bins to cover more than
one colour value.
An example would be to condense 32 colours to one bin thus leaving Nbin =

3 · 2I(n,b)/32 bins and creating v(x,y,hist) ∈ R3·2
I(n,b)/32

.

3.2.3 Gabor wavelets

The Gabor transformation [62] is a windowed Fourier transformation [57,
4.2.4]. The window function is a Gaussian thus the complete Gabor wavelet
is a combination of a cosine and the bell-shaped function. Parameters are
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the standard deviation σ of the Gaussian and the phase and wavelength of
the cosine. A set of multiple different Gabor wavelets are usually applied to
filter an image [61]. In the process, σ and the two-dimensional orientation
of the wavelet are varied, thus creating a so called Gabor bank, consisting of
the individual Gabor wavelets. A common method is to use three size steps
and five orientation steps (see Figure 3.2) as this has shown to effectively
cover the frequency space [63]. Application of the Gabor bank to an image
results in 15 Gabor filtered images. The v(x,y,Gabor) for a p(x,y) hence contain
the filter responses of the corresponding pixels in each of the filtered images
(v(x,y,Gabor) ∈ R15).
Gabor banks are suitable for texture and edge-detection, where the scale
variation allows to describe textures at different scales and the orientation
variation allows to describe patterns along different axes.

3.2.4 MPEG-7 descriptors

The MPEG-7 standard is an ISO standard defined by the Moving Picture
Expert Group, infamous for the audio and standards on video compression.
MPEG-7 though defines, amongst others, a set of feature descriptors ∆MPEG-7

for the description of video and image content [64, 65, 66]. The standard de-
fines 18 descriptors: five for colour features, three for textures and ten others
for motion and face detection that are not of interest for benthic imaging.
Of the colour features, four have been applied here to detection in benthic
images, of the texture features only two.
The ∆MPEG-7 are governed by various parameters influencing the dimension-
ality of the computed v(x,y,MPEG-7). The intention of the MPEG-7 standard
is to describe the content of complete images to match different images [67].
For CV applications, like benthic imaging, it is though of more interest to
characterise subparts of images which is achieved by cutting the image to
patches. The patches around a p(x,y) are then the input for the ∆MPEG-7 to
compute a v(x,y,MPEG-7) for p(x,y). Most of the MPEG-7 descriptors operate
on squared image patches where some can handle rectangular patches as
well. The minimum size of the image patch is descriptor-dependent where
patches with 8× 8 pixel are the absolute limit.

The used colour descriptors are:

• Colour Structure Descriptor (∆CSD):
Accounts for the frequency at which different colours occur within ele-
ments of a sub-partitioning of the image

• Colour Layout Descriptor (∆CLD):
Accounts for the relative position of different colours to each other

• Dominant Colour Descriptor (∆DCD):
Accounts for the most frequent colours regarding their prevalence and
distribution

• Scalable Colour Descriptor (∆SCD):
Accounts for colour frequencies (comparable to ∆hist)
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(a) Intensity image
I(n,G)

(b) Threshold 1 (c) Threshold 2 (d) Threshold 3

Figure 3.3: Example for the thresholding of the blob descriptor. Here, the intensity
image I(n,G) is the input (a). Three thresholds are applied and the resulting binary
images I(n,B) are shown. In (b), three black blobs exist and only one white one (the
complete background). In (b) more black blobs appear and in (c), black has become
the background on which white blobs appear.

The used texture descriptors are:

• Edge Histogram Descriptor (∆EHD):
Accounts for the frequencies and intensities of five edge types

• Homogeneous Texture Descriptor (∆HTD):
Accounts for similarities in texture, computed through orientation and
scale dependent filtering of the image (comparable to a ∆Gabor, but re-
quires patch sizes > 128× 128 pixel)

The MPEG-7 descriptors were essential to target the general approach of
benthic detection and classification. As the ∆MPEG-7 cover a broad range of
image features, various species, structures and morphotypes should be rep-
resentable by them.
Here, a C++ version of the MPEG-7 feature extraction standard was used
that has been implemented by Muhammet Bastan and was generously made
available [68]. Although there exist special distance metrics for the MPEG-7
features [69], which are beneficial in some cases, here, the Euclidean metric
was used (see Section 3.3) that is also applicable.

3.2.5 Blob descriptor

Blobs are connected regions R within an image where all pixels have the
same value [57, 9.5.3]. This is a characterisation usually applied to binary
images I(n,B) (I(n,c) = 1, I(n,b) = 1). The ∆blob thus applies a set of thresholds
to a grey value image patch and creates a set of binary images. Within these,
sixteen blob statistics are computed that correspond to the size, amount and
shape of the contained blobs for both binary classes (see Figure 3.3).
For images with I(n,b) = 8 a set of eight equally spaced thresholds is suitable.
The v(x,y,blob) are ∈ R16.
Blob descriptors are useful to represent structural properties of objects like
their shape. Through the binarisation at a few thresholds it is possible to
reduce the effect of changing illumination.
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3.2.6 SIFT / SURF

Two very common feature descriptors are the Scale Invariant Feature Trans-
form (SIFT) [70] and the Speeded Up Robust Features (SURF) [71] which are
based on SIFT.
The SIFT algorithm consists of three parts. First a Difference-of-Gaussian
(DoG) pyramid [57, 7.1.1] is constructed for the image. Second, minima and
maxima are determined within the DoG pyramid that are considered as in-
teresting key points of the image. Finally feature vectors v(x,y,SIFT) are con-
structed as histograms of gradients and magnitudes of the image around the
key points (v(x,y,SIFT) ∈ R128). Normally, those feature vectors are computed
only at the key points but it is also possible to compute them for each pixel
of an image.
SURF works in a similar way but makes intelligent use of integral images to
obviate the computation of DoG pyramids. The v(x,y,SURF) are also ∈ R128.

3.3 feature metrics

Computing the distance between two feature vectors is a fundamental part of
PR. Three distances (or metrics) are mostly used: the Manhattan, Euclidean
and Scalar distance [59, 4.6]. Throughout this thesis, the Euclidean distance
is mostly used. In case a different metric is applied it is described in that
specific application.
By d(·, ·) the Euclidean distance between two vectors is computed while | · |
denotes the Euclidean length of a vector.

d(v, v ′) =
√∑

i

(vi − v
′
i)
2

|v| =
√∑

i

v2i

3.4 feature normalisation

The variety of feature descriptors results in a variety of codomains for the
individual feature values. To allow for the combination of feature descriptors
(e.g. to analyse colour and texture together) feature normalisation is required.
Also, some PR algorithms require input data in a specific range.

3.4.1 ... by length

Normalising a feature vector by length is for example required for the appli-
cation of the scalar metric. Therefore the vectors are scaled to an equal length
(usually unit length) with a selected metric (usually the Euclidean metric, see
Figure 3.4 (b)):

v ′ =
v
|v|
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3.4.2 ... by feature

Normalising a feature vector by its individual feature components is required
to make distinct feature descriptors comparable. It prevents that singular fea-
tures with a high value suppress other features with low values that can be
of higher extent of description [72, 2.2].
One normalisation strategy therefore is to set a limit for the allowed mini-
mum (vmin ′

i ) and maximum (vmax ′
i ) value that each feature i may attain (usu-

ally vmin ′
i = 0 and vmax ′

i = 1) [73, 2.4]. The actual limits of each individual
feature i in the available feature vectors are then determined (vmin

i and vmax
i ).

The normalised feature values are then scaled and shifted accordingly (see
Figure 3.4 (c)):

v ′i =
vi − v

min
i

vmax
i − vmin

i

· (vmax ′
i − vmin ′

i ) + vmin ′
i

Another feature-wise strategy is to normalise each feature to mean zero and
variance one (i.e. to standard score, see Figure 3.4 (d)). Therefore the mean
µi and variance σ2i of each feature i are computed from the available feature
vectors. The normalised feature is then computed as:

v ′i =
vi − µi

σ2i

3.4.3 ... by feature group

As often several features belong to a group with common semantics, like the
bins of a histogram, it would be unfavourable to normalise these features in-
dividually. Rather, the whole group should be normalised according to their
joint minimum / maximum (vmin / vmax, see Figure 3.4 (d) and Figure 3.5) or
mean / variance (µ/σ2).
Given that a feature vector consists of three feature groups where one de-
scriptor created the first group and a second descriptor created the second
and third group. The dimensionality of the groups is D0, D1 and D2. Then
the vmin / vmax (or µ/σ2 respectively) are computed for each group individu-
ally (vmin

0 / vmax
0 , ..., vmin

2 / vmax
2 or µ0 / σ20, ..., µ2 / σ22). The normalised features

are then computed through:

v ′i =


vi−v

min
0

vmax
0 −vmin

0

· (vmax ′
0 − vmin ′

0 ) + vmin ′
0 i < D0

vi−v
min
1

vmax
1 −vmin

1

· (vmax ′
1 − vmin ′

1 ) + vmin ′
1 i > D0, i < D0 +D1

vi−v
min
2

vmax
2 −vmin

2

· (vmax ′
2 − vmin ′

2 ) + vmin ′
2 i > D0 +D1

and respectively for the standard score:

v ′i =


vi−µ0
σ20

i < D0

vi−µ1
σ21

i > D0, i < D0 +D1
vi−µ2
σ22

i > D0 +D1
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(a) Feature set (b) Length normalisation

(c) Normalisation by feature (d) Normalisation by feature group

Figure 3.4: Different normalisation strategies: (a) shows a two-dimensional dataset
where the grey arrows stand for the feature axes and the blue arrows highlight
the feature vectors. In (b), all feature vectors have been normalised to equal Eu-
clidean length such that they all lie on a circle. In (c) and (d) the features were
normalised by the occurring minimum / maximum values. In (d) the combined min-
imum / maximum of both feature axes was used for normalisation.

(a) Feature set (b) Normalisation by feature (c) Normalisation by group

Figure 3.5: Feature normalisation by feature group. The green bars stand for the
maximum values that occur for each of the six features in the complete dataset.
For visualisation convenience, all features have their minimum at zero. The blue
squares represent the feature values for one sample feature vector of the dataset.
The features are computed from two descriptors where the first four features belong
to ∆0 and the last two to ∆1. In (a) the original values are given whereas in (b)
each individual feature was normalised to vmax ′

i = 1. The features are now better
comparable regarding the value ranges but loose the variability with a descriptor.
In (c) the features were normalised by group. The within-descriptor characteristics
remain but the value range of ∆0 and ∆1 is now comparable.

3.5 feature selection

Generally, only a subset of the feature descriptors is effective in characterising
a specific object class. The type of the applicable feature descriptors depends
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on the size, colour, shape or texture of an object (e.g. a species) or visual
pattern. Selecting this subset of descriptors (or individual features out of
several computed by the same descriptor) can be done in three possible ways:

• By an expert with field knowledge:
This method requires information about the objects of interest as well
as all other occurring objects and the expertise by a PR professional. A
detection system with general applicability without a PR expert in-the-
loop can not be achieved this way.

• By statistics of the computed features:
Computing statistics of a single feature can be a starting point to pick
descriptive features [74]. Those with a low variance for example can
often be omitted. Investigating only single features is often misleading,
as two features can alone be ineffective in discrimination object classes
but together be effective in doing so. It is thus important to look at
higher-dimensional relationships between several features which how-
ever becomes more computationally intense.

• By result of a learning algorithm:
This wrapper method is the computationally most expensive way of
selecting features [74]. Therefore each possible subset of features has
to be fed into a selected ML algorithm (see Sections 3.6 and 3.7). The
result of those algorithms is then quantified (see Section 3.9) and used
as an indicator of how efficient the features are in describing an object
type and discriminating it from a different type.

Feature selection reduces the dimension D of a feature vector and thus also
the dimension D of a feature set. It usually requires a tradeoff between a
single-feature based selection and a brute-force evaluation of all possible
combinations of single features. Greedy approaches like the Genetic Algo-
rithm (GA) [75] are often used to find a heuristic solution.

3.6 unsupervised machine learning

Unsupervised machine learning (uML) is a data-driven approach to find sim-
ilarities (i.e. patterns) in a feature space F [76, 14]. It requires a set V of feature
vectors. Finding similarities often refers to clustering [59, 1.5.2] as clusters Ω
are groups of items (usually feature vectors) that are similar according to a
selected distance measure. One type of clustering is represented by vector
quantisation (VQ) algorithms. In VQ, a feature space F is tessellated into J
Voronoi-cells. Each Voronoi-cell is represented by a prototype u(j), j = 0..J− 1
that usually constitutes the centroid of the cell. Such prototypes can, amongst
others, be used to assess feature vector distributions and to encode and thus
compress data. The u(j) are one important aspect of the proposed benthic
CV approaches.

3.6.1 k-Means

k-Means [77], [78, 9.1] is a basic clustering algorithm that is often used as a
baseline for more sophisticated clustering methods. It is an example of a VQ
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Figure 3.6: To the left the neurone space of the SOM with a squared topology O. The
neurones o(j) are connected in a Von-Neumann neighbourhood. Each neurone o(j)

corresponds to a prototype vector u(j) (indicated for two neurones by the dotted
arrows) in a high-dimensional feature space F (right part, depicted here as three-
dimensional for visualisation).

algorithm. The parameter k represents the amount of clusters to be detected.
k governs the outcome of the clustering as does the applied distance metric,
the initialisation of the cell centroids and the implemented strategy to itera-
tively assign feature vectors to Voronoi-cells.
In k-Means, a set U of J = k prototype vectors u(j) is created, that have the
same dimensionality D as the the explored feature space F. These prototype
vectors u(j) are the centroids of the Voronoi-cells and the boundaries be-
tween two cells are equidistant to two neighbouring u(j). There are different
versions and several improvements for the k-Means algorithm. The general
principle is described as the Lloyd algorithm and works as follows:
First, a set of feature vectors V(j) is constructed for each prototype u(j),
where each element in V(j) is closer to u(j) than to any other u(k):

V(j) = {v(i) ∈ V | argminkd(v(i), u(k)) = j}

Second, the u(j) are adapted to lie in the centroid of their assigned feature
vectors V(j):

u(j) =
1

|V(j)|

∑
v(i)∈V(j)

v(i)

This two-step procedure is iterated until a stopping criterion is reached. Com-
mon criteria are a maximum number of iterations or a settling of the assign-
ments when only few v(i) are assigned to a different u(j) than in the previous
iteration. The Lloyd algorithm is also called batch k-Means and can efficiently
be parallelised.

3.6.2 Self-Organising Map

A more sophisticated group of VQ algorithms are Self-Organising Maps
(SOMs) [79]. SOMs are neural nets and are based on an idea about activations
of neurones in a (human) brain: that not only a single neurone is activated
but also neurones in close vicinity while neurones further away are inhibited.
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Figure 3.7: As for SOMs, each neurone o(j) of an HSOM corresponds to a prototype
vector u(j) in a high-dimensional feature space. The difference lies in the neurone
topology O which is embedded in the hyperbolic space rather than the Euclidean
and is projected here to 2D for visualisation.

In SOMs, this vicinity does not relate to a distance in F, rather a further neu-
rone space is defined in which neurones o(j) are connected according to a
specific topology O. This topology discriminates different types of SOMs.
For basic SOMs, the topology is a two-dimensional squared grid of neurones
where only the Von-Neumann-neighbours of neurones are connected (see
Figure 3.6). Each o(j) relates to a prototype vector u(j) in F and these u(j) are
adapted during the training of the SOM. The adaptation works as follows:
a single v(i) is picked (e.g. randomly) and compared to all u(k) to find its
best-matching unit (BMU) u(j). The SOM idea is then to not only adapt u(j),
but also other u(k) belonging to neurones o(k) around o(j) in O. The adap-
tation width of an u(k) is dependent on the distance from o(k) to o(j) and a
2D Gaussian, located at o(j) is used to determine the adaptation width. Also,
the adaptation width is reduced as the training process continues to settle
the u(j) and prevent large adaptation steps. The whole process of picking a
v(i) and adapting the u(j) is repeated until a stopping criterion is reached.

3.6.3 Hyperbolic Self-Organising Map

In hyperbolic SOMs (HSOMs) [80], the neurone topology O is embedded in
the hyperbolic space rather than the Euclidean space. This is a mathematical
trick that is particularly beneficial for information visualisation (IV) purposes
as the hyperbolic neurone space can be mapped to 2D and thus to the hue
disc of the Hue-Saturation-Value (HSV) colour space. This allows to assign a
distinct colour value to each o(j). The distinct colour is then used to visualise
the assignment of pixels to HSOM prototypes. This creates colourful visuali-
sations where similar colours correspond to similar o(j) and thus to similar
patterns in F (and eventually in the underlying images).
Mapping the hyperbolic space to 2D has a further advantage for IV: it is pos-
sible to set the focus of the mapping to a specific part of the neurone space.
Depending on this focus, the mapping to the hue disc places some neurones
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in close vicinity (thus producing very similar colour) while spreading the
other neurones over the rest of the disc (thus creating a high colour contrast).
Thereby, an interactive Link-an-brush browsing of high-dimensional feature
spaces becomes possible.

3.6.4 Hierarchical Hyperbolic Self-Organising Map

A further evolution step, with computational performance in mind, is given
by the Hierarchical HSOM (H2SOM) [81]. The topology in the neurone space
is again embedded in the hyperbolic space (preserving the IV benefits) and
consists of a layered, circular pattern of neurones o(j). The topology O is
governed by i) the amount of neighbours each neurone has in the neurone
space (common are eight neighbours) and ii) the amount of rings, the topol-
ogy shall be made of. The neurones are arranged in a layered pattern around
a central neurone o(0) (ring zero) where the amount of neurones grows in
each additional ring and is governed again by the neighbourhood size (see
Figure 3.7). This creates a parent-child relation where a parent and a child
neurone are directly connected in O and the children of a parent are in the
layer next in size.
The H2SOM training is performed ring-wise that means it starts with the
first ring and only afterwards are the prototypes of the neurones in the sec-
ond ring adapted. Ring zero contains just one neurone o(0) and so all train-
ing vectors are assigned to it. The prototypes of inner rings are kept fixed
and training of outer rings is continued until the outermost layer has been
trained.
This strategy comes with the benefit of reduced computational effort, mak-

ing the training process faster. Also, the classification of new v(i) can be sped
up through a beam search (see Figure 3.8), where again the hierarchy in O
is exploited: for a new feature vector, the BMU of the neurones in the first
ring is computed, for example o(k). Then only within the children of o(k) is
the search continued on the next ring. This way only the distances between
v(i) and the prototype vectors of those children have to be computed rather
than to all prototypes of the second ring. The search is iteratively continued
in the children of the second ring’s BMU (and so on) until the outer ring is
reached.

3.7 supervised learning

Supervised machine learning (sML, [59, 1.5]) is an alternative to unsuper-
vised learning but requires a set of annotated v, the training set Γ [59, 3.1]
(see Chapter 4). The sML algorithm then creates a model that represents the
annotated data most suitably. Thus for each v ∈ Γ , a target value has to
be given. In classification tasks this target value is a discrete class label ω,
in regression tasks it is a continuous value ξ. Obtaining annotations involves
some effort and supervised learning is thus only applicable when a reliable Γ
exists. This reliable training set is often called a gold standard and is required
also to quantify the success of a learning algorithm (see Section 3.9). Some
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Figure 3.8: Exploiting the hierarchical topology of the H2SOM: When a new feature
vector v(i) is classified with the H2SOM, it is compared with all five neurones on
the first ring. The search is then continued outwards only within the children of the
BMU in this ring (e.g. the blue neurone). For the first ring it is often useful to also
search further within the children of the second-closest BMU (e.g. the red neurone).
The search continues within the children of the BMU (or BMUs) until the outer ring
is reached. The efficiency is seen by the required amount of distance computations
d(v(i), u(j)) between prototypes and feature vectors. Only the distances to neurones
with a bold black border have to be computed rather than to all neurones in the
topology O.

sML methods can handle imperfect training sets Γ and can thus be suitable
to develop benthic CV solutions.

3.7.1 k-Nearest Neighbour

The k-Nearest-Neighbour (kNN) [82], [78, 2.5.2] algorithm is, much like the
k-Means algorithm, a straightforward algorithm and thus often applied as
an initial approach to classify new data and for benchmarking more sophis-
ticated supervised algorithms. Whether kNN is a learning algorithm is dis-
putable as no model is learned and it is rather related to case-based reason-
ing.
The elements of the training set Γ provide the required prototypes u(j). Each
new v(i) of unknown class is classified by computing the distance to all the
u(j) where the k closest u(j) are selected. There exists a multitude of ways to
derive the class label ω (or ξ respectively in regression tasks) from this selec-
tion of k prototypes. In the easiest case (k = 1) the class of the single closest
u(j) is assigned to v(i). In cases where k > 1, one can define that all u(j)

in the selection have to have the same class label or a specific percentage of
them has to. It is impossible to quote all decision rules as also the distances
can be used or even the feature setup of Γ and v(i). The kNN can also be
used as a regression algorithm by interpolating the target value ξ for a v(i)

based on the distances to its k nearest neighbours.
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Figure 3.9: A two-dimensional feature space with samples of two distinct classes
(red circles and blue squares). The classes are not linearly separable and the black
line shows the separation function as derived by an SVM. In the top left, a linear
kernel was used, thus some error could not be avoided. The three other cases show
the result of an SVM with a Gaussian kernel where in the top right the kernel
parameter σ was not effectively chosen as some errors remain. In the bottom left,
the σ was set such that the class boundary becomes more adaptable, thus no errors
are created but the generalisability of such a boundary is usually low (over-fitting).
The bottom right, finally shows a class boundary with low training error and high
generalisability which could only be achieved by setting the slack variable s > 0 to
allow some errors during the training.

Depending on the size of Γ , several distance computations have to be per-
formed, thus the kNN is computationally slow.

3.7.2 Support Vector Machines

Support Vectors Machines (SVMs) [83], [59, 5.11] are a widespread method
in sML, especially for high-dimensional feature spaces where the classes are
not linearly separable. SVMs target the best possible separation of two classes
by increasing the margin between those classes (hence their other naming as
large-margin classifiers). This large margin is targeted to reduce misclassifica-
tions of v(i) (see Figure 3.9, top left). SVMs determine a set of vectors that
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are elements of Γ , the support vectors. These support vectors define the high-
dimensional separation function between the two classes in the feature space
F.
SVMs employ the kernel trick [78, 6] that allows to transform a non-linear
problem to a higher dimensional space where the problem becomes linearly
separable. Therefore a kernel function φ has to be specified where common
options are the linear kernel φlin and the Gaussian kernel φGauss (also called
radial basis function [76, 6.7]). Using the Gaussian kernel introduces a fur-
ther parameter to the SVM training: the variance σ of the Gaussian.
An important characteristic of SMVs is their ability to allow a misclassifica-
tion of training samples with the purpose to find a class separation with a
larger margin (see Figure 3.9, bottom right). The allowed error-rate is thereby
controlled through a parameter s (the slack variable). This is beneficial, to
find separation functions based on an unreliable Γ . Obtaining the most suit-
able value for s and any kernel parameter for φ is usually done through
a grid search in the parameter space combined with cross-validation (see
Section 3.10).

3.8 other methods

3.8.1 Genetic Algorithm

The Genetic Algorithm (GA) [75] is an optimisation technique, based on bio-
logical concepts, especially the evolutionary concept of natural selection. The
GA can be used to apply a heuristic search in a parameter space. To apply
the GA, a definition of individuals b(i) and a fitness function π(b(i)) are re-
quired. Individuals b(i) are characterised by a set of nominal or continuous
parameters. The fitness of an individual (i.e. its ability to survive) is then
determined through π(b(i)) as a numerical value.
The GA initialises a population B0 of individuals b(i) and evolves the pop-
ulation in several time steps. In each time step t, a new population Bt is
created. The probability that an individual b(i) from Bt−1 will survive to
become a part of Bt is based on its fitness π(b(i)).
Other biological concepts like gene exchange and mutation are simulated by
creating new individuals in Bt out of the genomes of two different b(i), b(j)

in Bt−1 as well as random changes in the parameter setup of an b(i).
There exists a variety of rules to combine individuals, to modify the mutation
rate with increasing t, to evolve multiple populations in parallel with some
intersections and many more.

3.8.2 Bag of features

The bag-of-features (BoF) method [84] is a technique to describe the visual
content of images with a basis set of visual patches. It can be seen as a
compression technique but is usually used as a feature descriptor for whole
images. The idea is based on the bag-of-words (BoW) approach from text
mining [85]. Rather than using the words of a language as basis elements,
in BoF visual image patches are used as bases. A feature vector is then con-
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structed by counting the occurrence of each image patch of the basis set
within a whole image. As in BoW, BoF vectors are usually very large and
sparsely populated.

3.9 quality criteria

The quality of each supervised and unsupervised training result has to be
quantified. One reason therefore is the evaluation of different parameter set-
tings governing the training algorithm. Another reason is the evaluation of a
complete detection system, that consists of various steps, some of which may
have been individually tuned according to quality measures as well.

3.9.1 Cluster indices

Cluster indices (CIs) are a measure to assess distributions of items in a fea-
ture space F. The CIs χ thereby quantify the distribution of all v(i) in a set
V that were assigned to J prototype vectors u(j) (j = 0, .., J− 1). The χ are
computed through the relative position of the v(i), the u(j) and the centroid
µV of all elements in V . The set of v(i) assigned to the j-th cluster is denoted
here by Ωj and |Ωj| denotes the amount of v(i) in Ωj. The summed distance
of all v(i) to their closest u(j) is denoted here as Πj:

Πj =
∑

v(i)∈Ωj

d(v(i), u(j))

Calinski-Harabasz index (χCH) [86]:

χCH =

J−1∑
j=0

∑
v(i)∈Ωj

d(v(i), u(j))2

J−1∑
j=0

|Ωj| · d(u(l),µV)2
· |V |− J
J− 1

Index-I (χII) [87]:

χII =


∑

v(i)∈V
d(v(i),µV)

J−1∑
j=0

Πj

·

J−1
max
j,k=0

d(u(j), u(k))

J


θ

where θ is a scalar parameter value.

Davies-Boudlin index (χDB) [88]:

χDB =
1

J
·
J−1∑
j=0

max
06l6J−1,k6=j

(
Πj/|Ωj|+Πk/|Ωk|

d(u(j), u(k))

)
The CIs χCH and χII attain larger values for better clusterings whereas χDB

attains smaller. One application of the CIs involves to conduct several distinct
clusterings with varying values of J (e.g. by k-Means clustering). The number
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J for which the clustering provided the best result regarding one or more
CIs, is then picked as the assumed amount of clusters. Another application
of the CIs involves the evaluation of other arbitrary parameters Θ of an ML
approach when J is known but the best result regarding Θ is targeted (see
Section 5.2.1).

3.9.2 Item-based classifier statistics

For supervised approaches, when a gold standard exists, it is common prac-
tice to compute classifier statistics [73, 5.7] to quantify the quality of the
learning algorithm or to tune required parameters. These classifier statistics
Q generally operate on binary classifications where only two values are valid
for the classification: ω0 and ω1. Hence each item (e.g. v(i)) is assigned to
one out of four sets:

• True Positive (TP): The gold standard for the item is ω1 and the classi-
fier correctly identified the item as such

• False Positive (FP): The gold standard for the item is ω0 but the classi-
fier mistook it for ω1

• False Negative (FN): The gold standard for the item is ω1 but the clas-
sifier mistook it for ω0

• True Negative (TN): The gold standard for the item is ω0 and the clas-
sifier correctly identified the item as such

This assignment is done for a group of items (e.g. Γ test, see Section 3.10), and
from the amount of items in each group, different quality measures can be
computed. These are, amongst others:

• Precision

Qpre =
|TP|

|TP|+ |FP|

• Recall

Qrec =
|TP|

|TP|+ |FN|

• Accuracy

Qacc =
|TP|+ |TN|

|TP|+ |FP|+ |FN|+ |TN|

• F-score
Qf = 2 ∗ Q

pre ·Qrec

Qpre +Qrec

Further quality measures are the Negative Predictive Value and the Specificity.
Qpre and Qrec are sometimes also called Positive Predictive Value and Sensitiv-
ity depending on the scientific field.
The Accuracy Qacc is a measure for the overall quality of a detection system,
given that there are similar amounts of positive and negative items. In de-
tection scenarios though, the negative class is far bigger than the positive. In
such cases, the F-score is more appropriate as it does not cosider the amount
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of TNs at all.
In cases where more than two classes are evaluated, it is important to pick
a strategy to compute a single, fused quality measure. When a distinct clas-
sifier was trained for each individual class (i.e. all other classes were fused
to represent the negative class, called one-versus-all) it is suitable to take the
average of the individual binary classifier statistics. The other case is a single
multi-class classifier that results in a confusion matrix with one row (column)
for each class. Here, the TPs stand on the main diagonal and the off-diagonal
elements are either FPs or TPs depending on the class that the quality mea-
sure is computed for. Further complication arises by the introduction of a
rejection class ωrej that includes all items that could not reliably be assigned
to a class by the classifier. A suitable quality measure thus always has to be
cautiously selected and described.

3.9.3 Matching items

An important step to quantify detection quality is the matching between
detected items and the gold standard. When the gold standard was created
by annotating single pixels, it is unlikely, that the automated classifier will
find that exact pixel as well but rather a pixel in close vicinity with some
distance λ > 0. It is thus necessary to define a threshold ελ at which a
classification is still assumed to be the same object as the annotated pixel (i.e.
to add it to the TP group). The value of ελ is highly dependent on the pixel
size of the associated object and the applied classifier (see Section 4.1.1).

3.10 training data division and parameter tuning

To prevent over-fitting, the available annotated data Γ is split to three sets
prior to the training of an ML algorithm [73, 5.7]:

• Training data Γ train: the slice of data that is given to the training algo-
rithm for learning the inherent pattern (e.g. determine the prototype
vectors u(j), pick the support vectors in an SVM training)

• Test data Γ test: the slice of data that is classified by the trained algorithm.
From the known semantics and the algorithm result, quality measures
(see Section 3.9) are computed to assess the training quality (e.g. re-
garding the given set of parameters Θ)

• Validation data Γval: the slice of data that is never used for any part of
training, parameter testing or other steps of an ML system but rather
to asses the final, overall quality on unseen data

Usually a small fraction of the data is set aside as Γval and the remainder
of the data is split up multiple times to create different Γ train and Γ test. This
process is called cross-validation and prevents overfitting. In the extreme case
of only one test sample this is called the leave-one-out strategy but usually a
larger test set is used, then called n-fold cross-validation (e.g. four-fold: the
remainder of Γ after picking Γval is split to four parts and each part is in turn
used as Γ test where the other three parts are fused to make up Γ train). The
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quality of an ML system with a specific set of parameters is then assessed by
the average quality over all n folds.
To tune a set of parameters (e.g. k for the k-Means algorithm) multiple train-
ings are conducted with varying values of the parameter and that value that
yielded the best quality is picked as the final training parameter. The selec-
tion of parameter values to be tested has to be done by an PR expert. An
exhaustive, brute-force search for the optimal parameter values can become
computationally expensive when a PR system is governed by several param-
eters. All meaningful combinations of those parameters would have to be
tested. One method is to tune the parameter values in a heuristic way, e.g.
with the GA [75] (see Section 8.6).

Chapter 3 contains a selection of data descriptors and PR algorithms that
will be applied in various ways to the data in Part II. Feature descriptors to
describe, among other things, the images, supervised and unsupervised
methods to find patterns in data and strategies to assess training quality
are the main tools that are required for automated benthic image analysis
from a computer science point of view. By having the fundamental image
data and the algorithms to analyse those images, the next step is to add
semantics to parts of the data as described in Chapter 4.





4
A N N O TAT I O N

Chapter 4 explains the required methods of adding semantics to images
and vectorial data. Different annotation strategies are discussed together
with decisions that have to be made, depending on the type of data at
hand.

Until now, most annotation of benthic images is done for a manual analy-
sis of the derived semantic data [89, 90, 91, 92, 93, 94, 95, 96, 97]. To obtain
annotations manually, systems that are not marine imaging specific can be
considered [98, 99] but specific annotation tools exist for the marine imaging
use case [100, 101, 32, 102, 103].
The techniques described in the following generally apply to annotations for
manual analysis but mostly have annotation for PR in mind. For those auto-
mated cases, a distinction can be made between sML and uML. Supervised
ML algorithms (see Section 3.7) fundamentally rely on an annotated train-
ing set Γ , but unsupervised ML algorithms also require means of adding
semantics to the (clustered) data as well. Thus for sML the annotation has to
happen before the training, for uML it can also happen afterwards.
Each annotation is defined through a class label ω, a location in a multi-
dimensional space (e.g. a v(i) or a p(x,y)) and, in collaborative scenarios, an
identifier e for the expert that created the annotation. Continuous labels (e.g.
for regression tasks) are also possible, but to perform the annotation, a dis-
tinct value has to be picked and thus continuous values are included here in
ω as well.
Which annotation strategy is deployed, depends on the targeted problem and
the ML algorithm. A distinction of the annotation strategies is given here by
the multi-dimensional space within which the data items reside.
Collecting annotations is a time-consuming step that is also error-prone [8].
A guidance through intelligent software interfaces is beneficial. Annotation
requires an initial training of the experts to rely on a common annotation
scheme. Such a scheme would have to include rules regarding what part of
an object is to be annotated and how to settle disparities of expert opinions.
Some biologist for example prefer to annotate the head of an animal, others
annotate the centre. To obtain a comparable training set Γ for a PR algorithm,
the annotation placement strategy for a class ω always has to be the same.
Defining expertise is an ambiguous and domain-specific task [104] and mea-
surements for expert agreement or discordance are known from other fields
like medical imaging [105, 106] (see Section 7.1.2). Also, the current hot-topic
of public science has reached the marine imaging field and promotes to in-
clude the "knowledge of the crowd" [107, 108, 109], so far with disputed
results.
Most importantly, an annotation scheme would include a class-catalogue and
describe methods to pick an appropriate ω for an annotation. In the case of
marine species, it would be most appropriate to use the scientific species
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names as class labels. Unfortunately, it is sometimes not possible to identify
a species from an image since microscopic differences can discriminate two
species. To perfectly identify a species, a genetic sample would be required
from each instance but such an identification is invasive, time-consuming
and expensive.
One common method in the case of classification uncertainty in biota annota-
tion is to annotate species on a higher level within the phylogenetic tree (e.g.
to annotate humpback whales with the order name Cetacea as the class label
rather than their species name Megaptera novaeangliae). Another method, that
takes the limitations of imaging into account, is to define morphotypes that
group different species that look similar in images. That way, species from
very distinct parts of the phylogenetic tree can be grouped that have little in
common apart from their visual appearance.
Further complication can arise if more information about the state of individ-
uals is required. To assess a habitat state, it would also be important to know
if individuals are juvenile or mature, healthy or dying.
In the case of resource exploration or habitat characterisation, abiotic classes
are required also / instead. These can relate to geological terminology or to
a previously defined catalogue, comparable to species morphotypes.
Defining a globally applicable catalogue that contains all known marine
species, all marine geological features as well as anthropogenic factors and
accounts for the state of individuals as well as uncertainty by allowing mor-
photypes is probably impossible. Standardisation efforts are currently made
by the marine imaging community for image based exploration projects but
focus on specific areas of the oceans and are not generally applicable. Meth-
ods how to react if new species are discovered or if morphotypes can after all
be split to different species are still required and have to be computer aided
by means of sophisticated annotation software.

4.1 annotation in image space

Annotating parts of an image means to assign one or more pixels p(x,y) with
a class label ω, thus the annotation space is two-dimensional. Depending on
the relative pixel size of the objects that are annotated, varying strategies can
be applied here. When more than one expert annotates the same data, it has
further to be specified when and how a set of annotations can be fused to
validate or invalidate the annotations of individual annotators.
Picking an appropriate annotation strategy is important and the targeted
scientific outcome has to be considered. In detection tasks, where object in-
stances are targeted, point annotations are sufficient (see Section 4.1.1). To
estimate biomass, more information is required (e.g. the extent of an ani-
mal, see Section 4.1.3) and this applies also in habitat characterisation where
information about larger parts of an image is needed (see Section 4.1.4).

4.1.1 Small object instances

When the object instances are small (i.e. 6 100 pixel in both x and y direc-
tion), point annotations are a suitable way of annotation as far as no further
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Figure 4.1: Two contrived examples of point annotations. In the left, three anemones
are annotated, in the right a sea cucumber. The annotations are given as crosshairs
where the colours stand for different experts and the symbol in the middle for dif-
ferent classes ω (triangle = sea cucumber, circle = anemone, square = sponge). It is
important to choose the correct εωκ for each class. For the sea cucumber it has to be
large as the annotations are distributed over the complete animal. For the anemones
it has to be small enough to discriminate the three individuals but large enough to
capture the small differences of pixel positions within one individual. The largest
anemone is further annotated with one erroneous class label (green square) thus ξω

for the annotations in this clique Ξ is not 3 (i.e. ξsponge = 1 and ξanemone = 2).

information is required than the location of the object (in those other cases
see Section 4.1.2). Thereby annotations aex,y = ω are created where x and y
define the pixel position of the annotation, e specifies the human expert and
ω is the annotated class label.
Annotating points requires a single mouse-click which is the most efficient
annotation strategy. Although the objects are deemed small, they will still
have some pixel extent and thus it is important that annotators use the same
annotation placement strategy.
Fusing point annotations of different experts is comparable to the match-
ing of gold standard and detected items for quality assessments (see Section
3.9.3). Thus the pair-wise distance κ between all point annotations within the
same image has to be assessed and all annotations that are in close vicinity
(κ 6 εκω) are assorted to a common clique Ξi. The value of εκω i) has to be
object-specific to cope with varying sizes of different morphotypes and ii)
can be project-specific as the objects can appear in close vicinity or sparsely
distributed depending on the camera and the geographical region that was
imaged.
The amount of items in the clique that have the same class labelω can be seen
as a confidence value ξωi for the individual class labels ω of the annotations
in Ξi:

ξωi = |{aex,y ∈ Ξi|aex,y = ω}|

A low confidence ξωi can arise due to a small amount of annotations in
close vicinity or when the annotators disagree on the class label. It is suitable
to neglect cliques completely (as well as all the contained aex,y) that have a
low confidence for all contained label classes (see Figure 4.1).
When the annotations of a clique shall be fused to a single meta-annotation
āx,y, a straightforward method is to locate it in the pixel centroid of the an-
notations in Ξi. The class label of āx,y should be chosen as the ω with the
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highest frequency in Ξi.

Random points [101] are a comparable strategy to point annotations, often
applied in ground truthing. Thereby annotation points are randomly dis-
tributed within an image by a computer and then a human expert annotates
all points regarding the object class they fell upon. This is an effective strategy
when information about a whole image or large subparts of images is / are
targeted. For detection scenarios though, where distinct object instances are
searched, large amounts of random points would be required. This is espe-
cially the case in biological habitat studies of the deep-sea where species
are rare and thus random points are ineffective as they mostly fall on the
sediment background.

4.1.2 Line annotations

In cases where objects are small but more information than the x,y position
is needed (e.g. for biomass estimation), at least one further quantity has to
be measurable by the annotation. This is mostly done by annotating a line
(defined by two points aex,y and aex ′,y ′) that represents either the main axis
(for elongated objects) or the radius (for circular objects). This annotation
strategy is simple and provides basic information about the object but the
possibility should be considered whether slightly more complicated strate-
gies can be applied instead (see Section 4.1.3). This would allow to estimate
biomass or resource quantities with more detail and can make automation
through PR approaches easier as more ground information is available that
can be learned by an ML algorithm.

4.1.3 Large object instances

Larger objects cannot be annotated by a singular point annotation aex,y effec-
tively and line annotations cover only one spatial extent of eventually irreg-
ular shaped objects. One annotation strategy for those objects that produces
an arbitrary degree of detail is to enclose each instance with a polygon (see
Figure 4.2, top left). This means to create a set of points Ae that mark the
shape of the instance and consists of several aex,y where the class label ω is
assigned to the complete set. The amount of vertices can be chosen, based on
the irregularity of the object’s shape and the applied annotation scheme.
For objects with low shape irregularity, basic geometrical shapes should be
used rather than polygons to speed-up the annotation process. For rounded
objects, a circular or ellipsoid annotation (defined through a central location
aex,y and one or two radii) is most suitable (see Figure 4.2, top right).
A efficient way of annotating objects of varying shape is to use rectangles.
These require three mouse clicks (two for opposing corners and one to spec-
ify a rotation) and can either be drawn as a rectangle that fully encloses the
complete object (outer bounding box) or as a rectangle that fully covers as
much of the object as possible and nothing else (inner bounding box). Both
strategies have their specific applications, for example when the ML algo-
rithm requires the absolute certainty that all training items belong to the
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Figure 4.2: Aerial annotation strategies. The first example in the top left shows a
polygonal annotation which provides a high amount of detail regarding the shape
but is effortful to obtain. The top right shows an elliptical annotation of the same
object which provides less detail but can be obtained for example by dragging two
lines (i.e. the main axes). The bottom left shows the strategy of using two rectangles
for annotation, one outer bounding box (dashed) that is as small as possible but
covers the complete object and one inner bounding box (dotted) that is as large as
possible but is made up entirely of the annotated object and contains no background
pixels. The bottom right shows the case of a tile annotation where the image patch
has been cut to nine rectangular tiles. Each tile has been annotated with a percent
value that represents the coverage of the tile by the object. The coverage values are
visualised here by the opacity of the tile borders.

object, the inner bounding box has to be used. A combination of inner and
outer bounding boxes is an effective way of annotation to obtain regions with
high certainty as well as regions with some boundary information (see Fig-
ure 4.2, bottom left).
Fusing aerial annotations of several experts can be done by calculating the
overlap of all annotations (i.e. logical AND of annotated pixels in close vicin-
ity κ in the same image) or the combination of all annotations to one (possi-
bly) larger meta-annotation (logical OR of annotated pixels in close vicinity
κ in the same image).
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4.1.4 Regular Tiles

In habitat mapping scenarios or resource exploration it is not the primary
interest to detect single object instances within the images. It is more impor-
tant to compute the percentage of the image that is covered with a specific
object type. This could be mineral resources lying on the seafloor, corals, al-
gae, litter, sediment types or else. As the detection is not necessarily targeted
at single instances, it is not necessary to annotate single instances. Instead it
is handy to split the image into rectangular subparts (or tiles T ) and annotate
these tiles with a class label ω (see Figure 4.2, bottom right).
The size of the tiles thereby depends on the desired degree of detail. In the
extreme cases this would be one rectangle (the image itself) or I(n,w) × I(n,h)

rectangles (the pixels) but somewhere in between lies the most efficient and
effective size for a specific scenario.
Fusing tiled annotations of different experts can be done similar to point an-
notations. Therefore it is suitable that all annotators use the same tile size,
otherwise overlaps of tiles have to be considered. When continuous values
are used for the annotation of tiles, it is also suitable to use the mean (or
median) of all annotation values as the meta-value for a tile.

4.2 annotation in other spaces

Apart from image annotation there are strategies that work in other data
domains like the feature space F, a subspace or projection of F, or else.

4.2.1 Feature Vectors

Annotating v(i) is different from image annotation as similarities in the fea-
ture space F are exploited. F is commonly of higher dimension than the 2D
images. Therefore a suitable visual representation of the v(i) is required to
make F browsable for humans. This can be a scatterplot when two selected
feature components (i.e. a 2D subspace) are sufficient to represent the data or
a higher-dimensional IV display like a parallel coordinates plot when more
information regarding F is required (see Figure 4.3). Annotating in F is suit-
able when groups of features (e.g. clusters) shall be assigned a common class
label ω. Therefore it is common to apply a link-and-brush strategy, where
the manual browsing through items in F highlights the according item they
were computed from (e.g. pixel positions in an image).
As v(i) can be seen as singular instances, the fusion of annotations is similar
to the fusion of point annotations. Further reasoning can be applied due to
the individual feature setup (e.g. omit feature vectors that are far away from
the centroid of a cluster).

4.2.2 Cluster prototypes

For uML approaches it is common to manually browse which feature vectors
were assigned to the same cluster prototype u(j) and to annotate each u(j)

(and eventually its assigned v(i)) with a class label ω (see Section B.4.2 and
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Figure 4.3: A made-up example of feature vector annotation. A meaningful visu-
alisation is necessary, in this case a Parallel Coordinates Plot with twelve feature
vectors for clarification. Three feature vectors (i.e. the green ones) were selected for
annotation.

Figure 4.4: Annotating cluster prototypes requires a meaningful visualisation (as
for feature vector annotation). In this case, the two-dimensional representation of
the HSOM topology is used. A group of prototypes at the top (green squares) was
selected for annotation.

Figure 4.4). The instances could be the positions of pixels p(x,y) within an
image, the feature representations of which were assigned to the same u(j).
A further method to add semantics to prototypes is by training the ML al-
gorithm with an annotated training set Γ . It is thus known for each v(i) to
which ω it belongs. From the class labels of all v(i), assigned to the same
u(j), a class label for the prototype itself can then be derived. There are sev-
eral existing strategies from which a fused class label can be derived. These
strategies are similar to the classification of an unknown sample with the
kNN (see Section 3.7.1).

4.3 re-evaluation

A reliable gold standard, where every item is assigned to a classωwith abso-
lute certainty, is almost impossible to obtain in real-world scenarios. Different
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experts can have different opinions about the true identity of the analysed
objects. To obtain a more reliable gold standard it is thus effective to show the
annotations to further experts to re-evaluate the reliability of the annotations
(and the experts) before performing the ML step. Also, as the generalisation
of a trained PR system to unseen data is a major challenge in real-world sce-
narios, it is expectable that the system’s quality can not reach 100 percent
accuracy. The (detection) results of an ML based system can thus also be re-
evaluated to iterate the training step with an improved Γ .
For both exploration and detection scenarios, it is suitable to present each
instance (annotated or detected) and the corresponding class label (obtained
by humans or a computer) to a further field expert. The instances could be
object instances or tiles of the images or else. The expert can then assign the
instance to the corresponding class by a single mouse click or move it to
another class if the corresponding class is deemed wrong (see Section B.4.5).
This re-evaluation is very time-efficient and can improve the quality of a
detection system 7.6.2.

4.4 annotation software

A range of softwares have so far been proposed for manually annotating ma-
rine visual imagery. Some of those softwares are streamlined for video anal-
ysis (NICAMS1, VARS2) and the earliest implementations were desktop soft-
ware (NICAMS, VARS, Adelie3) to be installed on single computers. In recent
years, most of the annotation software became web based (CATAMI4, squi-
dle5, JEDI6). Some of the tools have Crowd sourcing concepts implemented to
gather annotations by amateurs. The catalogues of classes to be annotated are
generally assembled for a specific project rather than applicable to a wider
field of research topics.
One further web-based annotation software that is designed for benthic im-
age analysis is BIIGLE7 (see Section 4.4.1) that was developed at the Bielefeld
University [102]. It has been used extensively for, and was also improved as
part of, this thesis.

4.4.1 BIIGLE

The Benthic Image Indexing and Graphical Labelling Environment has been de-
veloped since 2004 for the manual annotation of objects in benthic images.
It is a web application that runs in all modern web browsers with Adobe
Flash enabled. The server side is assembled of an Apache web server with
PHP modules and an AMFPHP interface for the client-server communication.
The images are stored on a web accessible file server and the annotations and
user- and meta-data are stored in a MySQL database. Benthic image transects

1 http://nzoss.org.nz/projects/nicams
2 http://www.mbari.org/vars/
3 http://flotte.ifremer.fr/fleet/Presentation-of-the-fleet/Underwater-systems/ADELIE
4 http://catami.org/
5 http://squidle.acfr.usyd.edu.au/
6 http://www.godac.jamstec.go.jp/jedi/e/about_site.html
7 http://www.biigle.de
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are organised by geographical area and by the station they were acquired at.
Meta-data like geo-references, acquisition time and pixel-to-centimetre ratio
can be stored alongside the images. A fine-scale digital rights management is
included to provide access to images and to allow annotation on a per-user
as well as per-transect basis.
Currently 216 transects with almost 200, 000 images are managed in BIIGLE.
More than 130 people have a BIIGLE account of which 42 are regularly
logged in. The regular users work with BIIGLE from Australia, Brazil, Ger-
many, Ireland, Norway, Russia, UK and the USA. All users together manually
annotated almost 850, 000 objects of 290 different class labels.
Image retrieval is possible in a per-area and per-transect way but also by
means of the added annotations. A group of dynamic, Link and brush visuali-
sations are available, called BIIGLE Tools [103]. The visualisations are a his-
togram, 2D scatterplot, nD scatterplot matrix, table lens, parallel coordinates
plot and Netmap display. In these visualisations, each data point represents
an image and that way, images can be selected that contain a selected amount
of annotations of different classes. A query for images as "show all images
that contain at least two cold water corals Lophelia pertusa, less than five sea
cucumbers Kolga hyalina and no burrow entrances" can be easily assembled
visually with the mouse cursor rather than through a query language string
(e.g. SQL).
BIIGLE was used here to acquire point annotations for the expert workshop
for Scenario (B) (see Section 7.1.2) and tile annotations for the resource cover-
age assessment in Scenario (C) (see Section 8.3.3.1). A set of add-on applica-
tions have been implemented on top of the BIIGLE server infrastructure that
solve some shortcomings of the BIIGLE interface and are presented in Sec-
tions 6.1, B.4.4 and B.4.5. BIIGLE itself includes no access to the automated
methods explained in the following. It solely serves the purpose of manual
image annotation and has been successfully applied in that regard over the
last ten years.

Chapter 4 concludes Part 1 with the means of adding semantics to data.
Now the relevant parts of data acquisition, data transformation and data
annotation regarding automated benthic image analysis are known. The
subsequent Part 2 contains the main part of the thesis and relies on the so
far presented techniques but shows specific CV challenges, the Scenarios
(A) - (C), and ways to approach them.





Part II

S C E N A R I O S A N D C O N T R I B U T I O N S

Algorithms are useless without data to feed them. Computer sci-
entists developing new software thus rely heavily on scientists
from other fields. The same is true the other way around, espe-
cially in ocean exploration, as little efforts in automation have
been made so far and novel methods are required to target the
specific needs in marine imaging. A few ideas were presented in
the essentials part, still a huge amount of challenges and data
waits to be solved and explored. Part II focuses on specific chal-
lenges and presents novel methods and constitutes the main part
of this thesis.
The primary data sets that served in the development of the pro-
posed algorithms were provided by the Alfred Wegener Institute
for Polar and Marine Research and the Federal Institute for Geo-
sciences and Natural Resources (BGR). Further data for validation
and improvement was provided by the National Oceanography
Centre (Southampton, UK). Many thanks to those institutions for
acquiring and providing the images as well as fruitful discussions
based upon them!
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C O L O U R N O R M A L I S AT I O N

Chapter 5 explains a colour normalisation that has shown to be benefi-
cial in many benthic imaging projects. It is a purely data-driven approach,
rather than (physical) model based. It was chronologically the first target
for an integrated parameter tuning without a PR expert in-the-loop.
Normalising the colour spectrum of benthic images is not mandatory for
all applications but it is beneficial for automated CV approaches. An ap-
propriate colour normalisation reduces variability of the appearance of
class instances and thus makes subsequent detection steps easier. It is not
given as a separate Scenario as it is a mere step of the Scenarios (A) to
(C). The initial draft for this colour normalisation was developed by Jörg
Ontrup.

In laboratory environments, a colour normalisation can be tuned by adding
a reference colour plate to the field of view [110]. The known colours of the
colour plate can then be used to map the colours occurring in the images to
a selected standard colour space (e.g. by an affine transformation to the RGB
cube). To capture the imaging conditions of the object of interest, the colour
plate has to be placed at the same distance to the camera as the object itself.
In deep sea environments it is complicated to add a colour plate to each
image. In moving camera scenarios (e.g. by OFOS, AUV) the plate would
have to be in place, presumably installed by an ROV, hence colour plates
are only useful for stationary observatories. A colour normalisation for im-
ages taken with a moving camera platform thus has to be purely data-driven.
This means to map the occurring colour values according to statistics of these
colours.
A variety of colour correction methods have been proposed [111, 112, 113]
and an overview of them is given in [114]. Several of the available methods
are designed to normalise images taken in shallow waters with an oblique
field of view where the imaging process is affected by the sunlight [115, 116,
117, 118, 119]. In those methods, a depth information is usually required that
is used to model the light paths through the water. Such a depth information
is not available in benthic imaging, as the seafloor is assumed to be flat and
the camera assumed to be positioned perpendicular to the seafloor. All parts
of the image thus have a similar distance to the camera. For some normalisa-
tion methods, special equipment is required to obtain improved images [117]
and often mathematical modelling methods are applied.
One approach, called ACE [120], that was not specifically designed for ma-
rine imaging has also been used to normalise underwater images with promis-
ing results [121]. It is based on the idea of Colour Constancy: the fact that
human visual perception is able to see the true colour of an object indepen-
dently of the colour of its illumination [122, 123, 124, 125].
In Section 5.2, a rather simple colour normalisation is proposed, that nor-
malises for two factors: irregular illumination within one image and irregular
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colour between different images. It does not require depth information and
contains no mathematical modelling of the scene or the colour space. Also,
according to remove the PR expert in-the-loop, its parameters can be tuned
automatically.
Apart from irregular colour, irregular sharpness is another problem in ben-
thic imaging (see Section 2.3.2). An approach to solve this issue is discussed
in Section 9.1.1.

5.1 artefact removal

Prior to a colour normalisation, small artefacts, caused by the marine envi-
ronment, should be removed from the images. In underwater imaging, small
particles in the water column can create backscatter in the form of very bright
patches in the images, similar to the salt part of salt-and-pepper noise. In case
of large amounts of those patches as well as in the case of large patches,
sophisticated methods for removal are required. Often though, only small
patches with a size of < 5 pixels occur in the images. In benthic imaging,
parts of the sediment can create additional backscatter when small, yet radi-
ant particles cause small bright pixels.
A common solution to remove salt-and-pepper noise from images are me-
dian filters [57, 5.3.2]. To prevent a blurring of the image, an adaptive me-
dian filter [57, 5.3.3] is used here. Therefore the original image I(n,orig) is
median-filtered with a filter size of 5× 5 pixels to create an image I(n,med).
The adaptiveness is achieved by comparing each pixel colour p(x,y,orig) in
I(n,orig) with the corresponding pixel in I(n,med):

εθx,y = |p(x,y,orig) − p(x,y,med)|

The filtered image I(n,fil) is then constructed pixel-wise:

p(x,y,fil) =

p(x,y,orig), εθx,y < ε
θ
max

p(x,y,med), else

where εθmax is a tuneable parameter that was set heuristically to 33. Smaller
values for εθmax add more pixel information from I(n,med) and thus blur I(n,fil).
Larger values for εθmax result in filtered images I(n,fil) where only very con-
spicuous salt pixels are removed.

5.2 data-driven colour normalisation fspice

The proposed colour normalisation, called fSpice (feature space based illu-
mination and colour enhancement) consists of two steps: 1) normalising an
irregular illumination within one image and 2) normalising a varying colour
spectrum between images of the same transect. Step 1) is necessary to re-
move the effect of an illumination cone induced by a light source that does
not lighten the complete field of view. Step 2) is necessary to remove differ-
ences in the colour spectrum induced by a varying camera-object distance
caused, for example, by a moving camera platform.
Step 1) begins with computing the grey value image I(n,G) for each image
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(a) Original image (b) Subtraction image

Figure 5.1: The original image is given in (a), while in (b) only Step 1) of fSpice has
been executed.

I(n) (or from I(n,fil)). Then, a radical smoothing of I(n,G) is carried out with
a large Gaussian kernel KGauss,σGF

to obtain I(n,GF):

I(n,GF) = KGauss,σGF ∗ I(n,G)

where ∗ denotes the folding operator. The size of the kernel mask K is deter-
mined by the Gaussian’s variance parameter σGF. By using a large Gaussian
with 15 < σGF < 0.1 ·max(I(n,w), I(n,h)), essentially a low-pass filtering is
conducted. As a result, only the illumination cone remains in the filtered im-
age I(n,GF). To remove the cone, I(n,GF) is subtracted pixel-wise from I(n,G)

to form the subtraction image I(n,sub):

p(x,y,sub) = p(x,y,G) − p(x,y,GF)

I(n,sub) is a single channel image as I(n,G) and the p(x,y,sub) can attain values
between −255 and 255 (I(n,sub,b) = 16). Figure 5.1 (b) shows the effect of Step
1) on an image.

Step 2) builds upon I(n,sub) and begins by computing the intensity his-
togram h(n,sub):

h
(n,sub)
i =

I(n,w)−1∑
x=0

I(n,h)−1∑
y=0

= δi,p(x,y,sub)

i ∈ [−255,−254, .., 254, 255]

Within h(n,sub), the peak intensity is determined:

Λ = arg max
i

{h
(n,sub)
i }

Starting at the peak, the first histogram bins containing less than 1/1000th of
the peak’s value (i.e. h(n,sub)

Λ ) are determined to the left (h(n,sub)
α ,α < Λ) and

to the right (h(n,sub)
β ,β > Λ):

α = arg max
i

{h
(n,sub)
i < 0.001 ∗ h(n,sub)

Λ , i < Λ}



62 colour normalisation

(a) fSpice with σGF = 0.4 (b) fSpice with σGF = 7.9

(c) fSpice with σGF = 23 (d) fSpice with σGF = 83

Figure 5.2: The images show results for the complete fSpice algorithm with increas-
ing σGF. All results appear greyish and show varying degrees of detail as well as
colour contrast. The original image is given in Figure 5.1 (a).

β = arg min
i

{h
(n,sub)
i < 0.001 ∗ h(n,sub)

Λ , i > Λ}

All bins in h(n,sub) below α and above β are discarded.
The colour value of a pixel p(x,y,fSpice) in the final, pre-processed image
I(n,fSpice) is then computed as:

p
(x,y,fSpice)
γ =

[(
p
(x,y,sub)
γ −α

)
· 255
β−α

]ν
where the index γ runs over the three colour channels of I(n) (γ ∈ {Red,
Green, Blue}) and:

ν =
log(128)

log
(
(Λ−α) · 255β−α

)
Step 2) thus maps the colour values to the range [0, .., 255] such that I(n,fSpice,c) =

8. The exponential factor ν shifts the histogram peak of I(n,fSpice) (i.e. h(n,fSpice)
Λ )

to 128 and thus equalises the intensities of a set of images. The effect is that
bright and overexposed images are darkened while the intensity values for
underexposed and dark images are increased. By shifting the histogram peak
to 128, the colour contrast is usually reduced and the images all appear grey-
ish and are thus visually more similar.
The effect for different values of σGF can be seen in Figure 5.2. Figure 5.3
shows the effect of the complete pre-processing for a range of different ben-
thic images (further examples are available in Section A).
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In an approach to further normalise the differences of the three colour chan-
nels γ, they were shifted independently. Therefore, a distinct Gaussian filter-
ing was applied to the three channels separately to obtain three histograms
h(n,sub,γ) and three sets of histogram scaling parameters (i.e. one for each
channel γ):

αγ,Λγ,βγ

Nevertheless, the detection results within those images showed inferior qual-
ity.
Other pre-processings like the Gray-World algorithm [124] also showed infe-
rior quality, probably due to the unusual colour characteristics of underwa-
ter images that do not fulfil the assumptions made. The method presented
in [115] tended to produce massive colour shifts that complicated a visual
interpretation.
The fSpice algorithm has been applied to a range of benthic images and has
been shown to be a beneficial part of an object detection system (see Section
7.2).

5.2.1 Parameter tuning

The tuning of σGF, the only parameter of fSpice, was the first target for re-
moving the PR expert in-the-loop who had to pick an appropriate value for
σGF manually. Therefore, a group of object classes ω has to be manually
annotated in a set of images (see Section 7.1.2). At these positions, high-
dimensional feature vectors v ∈ R393 are extracted. The applied feature de-
scriptors are: ∆CSD, ∆CLD, ∆DCD, ∆SCD and ∆EHD. The automated parameter
tuning is then achieved by picking that σGF which creates the best clustering
in the 393D feature space F.
The quality of the clustering is assessed by the known class labels of the an-
notations (i.e. all feature vectors annotated to belong to the same class should
be in the same cluster Ω and different classes split up to different clusters).
To quantify the clustering, CIs are used (see Section 3.9.1). Therefore, the CIs
χII, χDB and χCH are computed as well as the inter-class variance χIE and the
intra-class variance χIA.
To make the five cluster measures χγ,γ ∈ [II, DB, CH, IE, IA] comparable,
they have to be normalised and thus the minima and maxima of the occur-
ring values are determined:

χ
γ
min = min

i
χγ

χγmax = max
i
χγ

For those cluster measures that attain larger values for better clusterings (i.e.
χCH, χII and χIA) the normalised values χ̃γ were computed as:

χ̃γ =
χγ − χγmin
χ
γ
max − χ

γ
min

For χDB and χIA the normalised values were computed as:

χ̃γ = 1−
χγ − χγmin
χ
γ
max − χ

γ
min
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(a) Original image (b) fSpice with σGF = 53

(c) Original image (d) fSpice with σGF = 53

(e) Original image (f) fSpice with σGF = 53

Figure 5.3: Three examples of the colour pre-processing for different image sets. The
first and last row show images that were used for species detection (see Chapter 7),
the second row shows images that were used for resource exploration (see Chapter
8). Further examples are available in the Appendix.

A plot of those normalised cluster measures for a range of σGF is given in
Figure 5.4. These values originate from the detection scenario in Section 7.2.
A common pattern of all five cluster measures and a relatively stable plateau
between σGF = 4.2 and σGF = 83.0 is apparent. The black curve shows the
average of the five measures and has its (sample) maximum at σGF = 8.0.
This value was thus chosen as the pre-processing parameter for all further
images taken with the same camera and camera-object distance.
In a related approach, inspired by the Gray World assumption for colour con-
stancy [126, 10.1], a size of σGF = 24.8 is suggested, which falls into the
plateau but misses the absolute maximum at σGF = 8.0.
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Figure 5.4: Normalised cluster measures χ̃γ for a range of kernel sizes σGF. The
original, un-filtered images are represented by σGF = 0.The curves are: green - Davis
Boudlin; yellow - intra class variance; blue - inter class variance; red - Index-I; orange
- Calinski Harabasz; black - average of the five cluster measures. The maximum of
the black curve lies at σGF = 8.0 this value is hence picked as the pre-processing
parameter. Small values σGF < 4.2 as well as large values σGF > 83.0 lead to inferior
clustering quality.

With the fSpice approach, a generally applicable colour normalisation is
available that targets both the varying colour spectrum within a single
image and between multiple images. Its reliance on a set of annotations
with different class labels makes it especially suited for Scenario (B) where
this type of classification is targeted and annotations are required anyway.
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L A S E R P O I N T D E T E C T I O N

In this Chapter, the CV problem of LP detection is targeted that follows
the colour normalisation but precedes other CV or PR procedures. It is
Scenario (A) and was developed partly to benefit from an easy-to-use LP
detection for the other scenarios. More importantly it is a showcase of
how a fully integrated, web-based benthic CV solution could be designed,
that is applicable to large data volumes and incorporates complex PR
procedures without the need to manually tune any of the PR parameters.
It can be operated completely by someone without PR expertise and is
governed solely through manual annotations.

As described in Section 2.4.2, LPs are a useful tool to obtain a pixel-to-cm ra-
tio qwhere planar seafloor is imaged with a camera facing vertically towards
the seafloor. The relative positions (i.e. the spatial layout, see Figure 6.2) of the
LPs within each image, combined with the knowledge about the technical
setup that projects the LPs, allow quantification of the imaged objects. This
quantification can refer to biomass or to a resource haul estimation.
In most of the image sets, analysed in Scenarios (B) and (C), a three LP setup
is used. In one case (HG IV 2004, see Section 7.1), these LPs are arranged in
an isosceles triangle. In another case (SO_205/04, see Section 8) the three LPs
are arranged to fall on a line, when the camera is at a specific altitude above
the seafloor. Otherwise, the middle LP moves away from that line depending
on the changing camera altitude. That way, not only the pixel-to-centimetre
ratio can be obtained but also the camera-benthos distance. Examples of these
spatial layouts are available in Figure 6.2. Other LP designs are available, e.g.
for ROV applications [54].
Apart from the geometrical differences in the spatial layout, there are also
differences regarding the LP colour (see Figure 6.1). Because of the physi-
cal properties of the laser, the water and the seafloor, as well as the altitude
of the camera rig, the colour values that are recorded at the LP positions
do show considerable variation inside one image transect. Although the LPs
may be practically invisible to humans, for example when the altitude is too
high (see Figure 6.1, right column), they can still be visible to automated LP
detectors that analyse or modify the colour spectrum of an image.
A common approach to gather the LP positions is the incorporation of hu-
man experts to manually annotate the occurring LPs in each image so those
can be read out for a computation of q [54]. This is a time-consuming effort
and thinking of the ever-increasing data amounts thus calls for an automated
CV based solution. During manual annotation experiments, picking the right
pixel position for an LP proved to be a defective task, as LPs are usually small
(ca. 20 pixels in size) and are thus difficult to see / annotate (see Figure 6.2
(c)). A manual misplacement of the annotation marker of just a few pixels
can lead to the inclusion of background pixel information so the data-driven
estimation of the LPs average colour is spoiled.

67



68 laserpoint detection

Figure 6.1: Five examples of LP colours (columns) with two different LPs each (rows).
The sixth column shows an LP created by the same system as in the fifth column
where the upper patch shows the original image part and the lower patch shows the
same patch after applying the fSpice colour correction (see Section 5.2) where the
LP becomes more apparent.

6.1 delphi

This section is based on the publication:
"DELPHI - a fast, iteratively learning,
laser point detection web tool"
submitted to Computers and Geo-
sciences, 2014

To automatically detect the
LPs of different systems with
different spatial layouts, DeL-
PHI (Detection of Laser Points
in Huge image collections us-
ing Iterative learning) was de-
veloped.
DeLPHI is tightly coupled to the BIIGLE database [102] and builds upon
Hades, Demeter, Apollon and Ares (see Section B.3). It represents Scenario
(A) as explained in the introduction (see Section 1.5) and therefore serves as a
working example of a benthic CV system without a PR expert in-the-loop. The
computational detection part of DeLPHI consists of several PR steps but each
algorithmic parameter has been concealed from the user. DeLPHI is solely
operated by annotating LPs in a fraction of an image set. These annotations
are filtered to pick those that are most likely LPs. From these filtered annota-
tions, all the parameters of DeLPHI are tuned automatically to derive an LP
detection system customised to the specifics of the LP spatial layout of that
image set. This detection system can then be applied to find further LPs in
all the images of the image set. In case that the quality of the detection result
is deemed insufficiently, further annotations can be added to those images
where no LPs could be detected to allow for an iterative improvement of the
detection system. Currently DeLPHI is limited to spatial layouts with Nl = 3
LPs that can be arbitrarily arranged.

6.1.1 Web interface

DeLPHI is operated over a web interface1. Screenshots of the graphical user
interface (GUI) is shown in Figures 6.3 and 6.4. The implementation of the
interface is done in HTML, CSS and JavaScript so fundamental web devel-

1 https://ani.cebitec.uni-bielefeld.de/olymp/pan/delphi
login name: "test" password: "test"
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Figure 6.2: Four examples of different LP spatial layouts. The left column shows
the full images as they are acquired. The black box highlights the region within the
image in which the LPs are visible. Those parts are cropped out and magnified (right
column) and the occurring LPs are marked by red circles. The third row shows the
case of a two-LP layout.

opment techniques are used. DeLPHI is thus operable in all modern web
browsers. For runtime reasons, the training and detection parts are imple-
mented in a C++ backend. The image processing (e.g. morphological opera-
tion, blob detection) is done with OpenCV [127]. The training step requires
just one CPU core and is thus executed on a single node of the compute
server (i.e. CeBiTec compute cluster at the Bielefeld University). The detec-
tion step can efficiently be parallelised to several cores by chunking the data
image-wise. To keep the load on the server side low, LPs are detected in 50
images per core and thus a total runtime of about five minutes for an image
set of N = 1, 200 images (corresponding to 24 cores) is achieved.
To moderate the data flow between the user interface and the C++ backend,
an Apache web server is used (see Figure 6.5). This server runs PHP scripts
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Figure 6.3: Screenshot of the DELPHI web interface. The black top bar contains the
main navigation elements. The left part is magnified here for explanation. It contains
a drop-down menu to select the transect within which LPs will be detected (A). Next
to that, some information regarding the amount of LP annotations and the detection
performance are given (if available) (B). Directly below the top bar, a horizontal
visualisation of the complete transect is shown, spanning the whole width of the
interface. The transect visualisation is split to columns that represent individual
images. Red rectangles represent images where LPs were automatically detected,
blue rectangles represent images that have been annotated manually. A click on
one column, with or without such rectangles, loads the corresponding image for
inspection or annotation. The main part of the browser window is occupied by one
transect image, in this case with three correctly detected LPs (highlighted for the
figure with light blue circles). To the left / right of the image are arrows that allow
to step to the previous / next image of the transect. In the top left part of the image
are the buttons to zoom in and out of the image as well as move the image itself
to the top / bottom and left / right respectively to set the focus on the region of the
image where LPs occur.

to process data, for example to fetch all detections and send them to the
GUI. The communication step is enabled through JSON RPC (JavaScript Ob-
ject Notation - Remote Procedure Calls). For the communication with the
C++ backend, the Apache server uses a Python DRMAA interface. Final LP
detections are stored on the file server while manual LP annotations and con-
firmed detections are stored in the BIIGLE MySQL database.
Apart from the training and detection steps that were sped up in the C++
backend but could in principle also be implemented in PHP and be run on
the Apache server, DeLPHI is runnable on any typical W/M/XAMP server.
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Figure 6.4: Screenshot of the DeLPHI web interface. Here, the right part of the
navigation bar has been magnified. There, the amount of annotations is visualised
to show whether further annotations are required for a training step (C). Next to it is
a selection box containing already trained detectors for other transects (D). To the far
right, there are two buttons (E), one to train the detection system or start a detection
(depends on the selection in the drop down) and one to save the automatically
detected LPs as manually validated LPs.

6.1.2 Training step

Before DeLPHI can be applied to detect LPs in new camera footage, the
initial training step must be executed. In this phase, the system learns the
spatial layout and the colour features of the LPs.
Each pixel in an image I(i) is denoted by the three-dimensional colour vector
p(x,y). The index i = 0, ..,N− 1 runs over all N images of an image set and
the index n over the subset of N ′ < N training images where an expert
manually annotated the LPs to train DeLPHI. In practice, this represents a
rather low percentage of the image set (i.e. 1-5 %).
The Nl manually annotated LP positions p(n,l), l = 0, ..,Nl − 1 within one
image I(n) of the chosen training images are also denoted through colour
vectors p(n,l) and the x,y positions of those LPs form an LP spatial layout
L(n) which is kept as a reference for the detection step. In case of Nl = 3, the
spatial layout is a triangle.

L
(n)
l = p(n,l)

LP spatial alyout modelling
To learn the spatial layout, a binary mask image I(n,M) is created for each
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Figure 6.5: The DeLPHI detection framework. On the left is the graphical web in-
terface that the field expert sees in a web browser. The training annotations are
transferred via JSON RPC to a web server (using Hermes, see Section B.3.5). This
server then collects the required data from three different sources: the image server
containing the plain images, the BIIGLE database containing annotations and image
meta-information and the file server on which the automated detections are stored.
While the access to the image server is possible through URLs, calls to the database
and the file server require authentication and the access to those sources is mediated
through the Apollon and Demeter libraries (see Section B.3.2). Afterwards, the train-
ing process is started through a call to a Python DRMAA interface to the compute
cluster. That training step takes ca. 2 minutes. Afterwards (or in case an already
trained detection system is applied), the web server schedules a detection process
on the compute server. Executing the LP detection on that compute cluster allows
to detect LPs for a whole transect in < 5 minutes. The job execution and monitoring
is mediated through the PHP (orange) and C++ (purple) implementations of the
Hades library (see Section B.3.1). The field expert can poll for the detection results,
which are transferred back to the DeLPHI GUI through Hermes in case the detection
is completed. The web interface is then updated based on those results. A further
iteration of LP annotation / correction with subsequent training and detection can
follow if the detection result is seen as improvable.

training image I(n), where each binary pixel value I(n,M)(x,y) is computed
by

I(n,M)(x,y) =

1 |{p(x,y), min
l

d(p(l),p(x,y)) < θ1}| > 0

0 else

The final master mask image IM is fused from all I(n,M) so it represents the
overlap of all manually annotated pixels plus their θ1 neighbourhoods:

I(M)(x,y) =

1
N ′∑
n=0

I(n,M)(x,y) > 1

0 else

LP colour feature learning
To learn the LP colours, a set S+ of colour values p(n,l) is assembled from all
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Figure 6.6: Mask images I(M) for four LP spatial layouts. The I(M) are white in regions
where LPs will be detected and black otherwise. The masks are show opaque on top
of one example image of the corresponding image set. The LPs of that image are
highlighted with green circles. The order of the columns is the same as the order of
the rows in Figure 6.2. In the first and last example, the three LPs move on three
narrow lines. In the second and third case, the LPs appear in three / two distinct
regions.

the colour vectors of pixels located in a circular neighbourhood with radius
θ2 around the annotated LPs in the training images I(n):

S+ = {p(x,y), min
l

d(p(x,y), p(l)) < θ2}

Also, a set S− of colour values further away of each LP is constructed to
represent the colour values of pixels that are not LPs:

S− = {p(x,y), min
l

d(p(x,y), p(l)) = θ1}

The parameters θ were heuristically tuned to θ1 = 25 and θ2 = 3. The same
values are used for all detection systems with different LP colours and spa-
tial layouts.
The colour vector sets are then combined to the set S = S+ ∪ S−. S is used
to filter the manual annotations to determine the ones with the highest like-
liness of being LPs. To this end, the kMeans clustering algorithm is applied
to S with J = 7 cluster centroids u(j) (j = 0, .., 6). The u(j) again correspond
to RGB colour vectors.
To identify that u(j) with the highest LP likeliness, a set of colour vectors S+j
is assembled for each u(j). The elements in S+j are those p(x,y) that are closer
to u(j) than to any other u(k),k = 0, .., 6, k 6= j (i.e. that are inside the Voronoi
cell of u(j)):

S+j = {p(x,y) ∈ S+, argmin6k=0d(p(x,y), u(k)) = j}

and likewise for S. Then:

γ = argmax6j=0
|S+j |

|Sj|
,γ ∈ [0..6]

and u(γ) is selected as the kMeans centroid with the highest LP likeliness.
The set of LP colour vectors assigned to this centroid is Sγ where each ele-
ment will be denoted as pγα (α = 0..|Sγ|− 1) for clarification. Not all p(n,l)

are part of Sγ as the ones with low LP likeliness have now been filtered out.
Finally, the mean colour distance εγ of all pγα to u(γ) is computed:

εγ =
1

|Sγ|
·
∑

pγα∈Sγ

d(pγα, u(γ))

which is used as a threshold in the detection step for non-training data.
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6.1.3 Detection step

Similar to the training step, the detection step also consists of two parts, one
for the colour matching and one for the spatial layout matching. Now, all N
images in the transect of the image set are processed, rather than only the N ′

annotated ones.

LP colour
All colour vectors pγα are used as pattern-matching candidates for a kNN
classifier in the following way: for each image I(i), a grey value image I(i,G)

is computed, which represents for each pixel x,y its weighted distance to the
reference colour vectors pγα. I(i,G) is computed pixel-wise by

I(i,G)(x,y) = max(0,
1

ε2γ
∗ (εγ − min

pγα∈Sγ
d(p(x,y), pγα)))

Next, from I(i,G) a binary image I(i,B) is computed pixel-wise as

I(i,B)(x,y) =

1 I(i,G)(x,y) > 0 and I(M)(x,y) > 0

0 else

and an opening with a 3× 3 pixel morphological kernel Kdil,3 is applied to
I(i,B) to remove isolated pixels.

LP spatial layout
Within I(i,B), connected regions Rβ (β = 0, ..,Ni,β − 1) are determined. The
value of Ni,β denotes the amount of connected regions found in I(i,B) and
changes from image to image. The grey values I(i,G)(x,y) for each pixel, be-
longing to one connected region Rβ, are integrated, to obtain a weight wβ for
the region. From all regions of an image, the βmax = 5with the largestwβ are
selected and their pixel mass centre p(i,m) is computed (m = 0, ..,βmax − 1).
The p(i,m) are again two-dimensional position vectors (like the p(x,y)) and
constitute the candidate detections. From the p(i,m), all possible LP mor-
phologies L̂(i,τ) (τ = 0, .., βmax!

(βmax−Nl)! − 1) are constructed and matched to all

the annotated morphologies L(n). The amount of βmax!
(βmax−Nl)! = 60 constructed

candidate triangles (for Nl = 3) results from the fact that for each τ, three
of the five candidate points are picked in a partial permutation as the order of
picking points matters.
As for the annotated morphologies L(n), L̂(i,τ)l denotes the pixel coordinate
of the l-th of the three detected LPs. The best-matching triangle for an image
I(i) is then determined by first finding the best-matching annotated triangle
for all the candidate triangles. Second, that candidate triangle is picked for
which the matching distance is the smallest:

τ̂(i) = argminτminn
Nl−1∑
l=0

d(L(n)l , L̂(i,τ)l )

The finally detected triangle for image I(i) is then L̂(i,τ̂
(i)).
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Figure 6.7: An example of an LP detection. The mask I(M) is shown as an overlay.
Only within the bright regions are LPs detected. The five candidates are marked
by green and blue circles. At the candidate positions, the weights wβ are given.
From those five candidates, all possible LP morphologies L̂(i,τ) (white lines) are
constructed and matched to the annotated L(n). The best-matching L(n) has been
highlighted with green lines and green circles. In this case, the three LP candidates
with the highest wβ create the detected spatial layout L̂(i,τ̂

(i)).

6.1.4 Application

The only input to the detection process are the manual LP annotations. By in-
specting the results of a detection run, the training set size can be increased
by including those annotations that were correctly detected and correcting
those, that were misplaced by DeLPHI. That way, the detection process can
be iterated with a bigger training set of improved quality to obtain an im-
proved detection result.
DeLPHI was applied to two image sets: T1 (transect SO_205/04, see Chapter
8) and T2 (HG IV 2004, see Section 7.1). T1 and T2 were chosen as they show
different LP spatial layouts and colours (see Figure 6.2, (a) and (b)). For both
image sets, manual annotations are available for more than 99% of the im-
ages in the set. These annotations were used to compute classifier statistics
(Qpre, Qrec and Qf) to evaluate the detection performance regarding the LP
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Figure 6.8: Two examples for the detection quality versus the amount of images that
were manually annotated (N ′). The quality was computed by comparing an exhaus-
tive manual annotation of the LPs with the detections made by DeLPHI. The blue
curves show the detection quality for T1, the orange curves for T2. The detection
quality does not chance a lot after ca. thirteen annotated images. This corresponds
to one (two) percent of the total amount of images in transect T1 (T2). The dashed
curves show Qpre (icon: diamonds) and Qrec (icon: circles). The bold lines show Qf

(icon: squares).

candidates detected by DeLPHI. This performance evaluation was done iter-
atively with increasing training set size (N ′ = 1, 2, 3, ..., 10, 13, 16, ..., 25, 27, 30).
The manual annotation of one image with DeLPHI requires about ten sec-
onds. The whole annotation process for the largest training set (N ′ = 30)
thus took ca. five minutes.
Figure 6.8 shows the detection quality for T1 and T2.Qpre,Qrec andQf at first
rise with increasing training set sizeN ′ but settle subsequently. After thirteen
annotated images (i.e. 39 LP annotations or about two minutes effort), the de-
tection quality lies ca. eight percent-points below (above) the average of the
qualities for larger training sets (i.e. N ′ > 13). The average Qf after thirteen
annotated images is 0.86 for T1 and 0.58 for T2.

DeLPHI was designed to detect LP spatial layouts with three LPs. It can be
extended to detect two or more than three LPs. Therefore, only the LP spa-
tial layout part of the training and detection steps have to be adapted. From
the amount of annotations made in an image, the number of LPs per image
would be determined automatically. Still, the part of DeLPHI to learn and
detect the spatial layout is not bound to any geometrical structure (e.g. side
lengths, angles), it is rather kept very general. By adding a fourth LP (Nl = 4),
βmax should be increased to 6 thus t = 0, .., 359, making the detection process
more time-consuming. Still, three LPs provide usually enough information
for quantification of the image content in benthic images of Abyssal Plains.
More LPs are only needed in areas of higher structural complexity where
thus finer-scale information is required.
As stated earlier, the LPs can become practically invisible to the human eye,
for example when the altitude becomes too large. In those cases, an fSpice
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pre-processing (see Chapter 5) of the images can be useful. Possible pre-
processings were so far not incorporated in DeLPHI as each pre-processing
takes time and would thus slow down the detection process.

With DeLPHI, LP detection can be incorporated into an integrated benthic
CV system. It is web-based, applicable to large data volumes and, most
importably, it is fully automated regarding the tuning of parameters of a
complex PR system and thus fulfils all Scopes (1)-(4).





7
M E G A FA U N A D E T E C T I O N

This Chapter contains one major part of this thesis (the other part follows
in Chapter 8). It addresses the automated detection of benthic megafauna
in digital images and represents Scenario (B). Multiple approaches have
been made to solve this challenge and it emerged, that it is not primarily
a classifier-problem rather than a feature-problem. Despite initial accomplish-
ments is a fully automated detection system for arbitrary marine objects
years away. Still, the application to different datasets with varying spatial
resolutions and targeted degrees of detail have shown a general applica-
bility of the proposed method as well as its limitations. In terms of an
integrated solution, without a PR expert in-the-loop, the described software
is still prototypal. No installer exists rather than a volume of routines in
different programming languages that are in principle tuned automati-
cally but still kept together by an operator with PR expertise.
Parts of the following chapter have been published in similar form [128]
or have been presented at conferences or workshops.

Megafauna play an important role in benthic ecosystem function and are
sensitive indicators of environmental change. Deep benthic communities are
characterised by a high species diversity, which reflects a much larger re-
gional pool of species than in shallow waters [129], constituting a pool of
transient potential immigrants to other areas [130]. Megafauna play an im-
portant role in benthic ecosystems and contribute significantly to benthic
biomass [131, 132, 133], particularly in the Arctic [134].
While time series data on megafaunal dynamics over longer scales are still
scarce [135, 136, 137, 138, 139], multi-year time-series studies from the Por-
cupine Abyssal Plain and the northeast Pacific have attributed megafaunal
changes to environmental and climate variation [140, 141].
Conventionally, megafaunal assemblages are investigated by bottom trawls
[142, 143]. However, such gears have low and / or variable catch efficiencies
for different organisms [144, 145] and are invasive. In recent years, towed
camera systems have become a key method to determine the density and dis-
tribution of deep-sea megafauna [146, 147, 137, 148, 149, 150, 151]. Although
visual surveys are limited to species that are large, epibenthic and non-
evasive, they enable the study of the seafloor on a range of scales from cen-
timetres to kilometres with little or no disturbance of the habitats [152, 153].
Large range analysis is important, as deep-sea megafauna species are often
characterised by rare or aggregated occurrence [154, 155]. Furthermore, this
method allows repeated observations of defined tracks, minimising the noise
produced by spatial variation and allowing time series analysis. Inevitably,
the application of imaging techniques generates large quantities of digital
image material. However, manual detection and quantification of megafauna
in images is error-prone [156] and labor-intensive. Therefore, this organism
size class is often neglected in ecosystem studies. Automated image analysis
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has been proposed as a possible approach to such analysis, but the hetero-
geneity of megafaunal communities poses a non-trivial challenge for such
automated techniques.
In this chapter, a generalised object detection architecture for the quantifica-
tion of a heterogenous group of megafauna is introduced. This represents
Scenario (B) as described in the Introduction (see Section 1.5). The system is
referred to as iSIS (intelligent Screening of underwater Image Sequences)
and is tuned for an image set using a small subset of images, in which
megafauna taxa positions are annotated by a field expert. A detection system
is designed as an integrated tool that can be operated without PR expertise
(much like DELPHI but with far higher complexity).

7.1 initial dataset

To develop iSIS, investigate its potential and compare its results with those
obtained from human experts, a group of eight different morphotypes is
considered. One OFOS transect (see Section 2.2.1) of seafloor images, taken
at the Arctic deep-sea observatory HAUSGARTEN (HG) is used in which
these morphotypes occur. iSIS was later applied to other datasets as well
(see Section 7.7).

7.1.1 HAUSGARTEN observatory

The deep-sea observatory HG [157] is located in the eastern Fram Strait, west
of Svalbard, being the only deep-water connection between the Atlantic and
Arctic Ocean (Figure 7.2). HG, established in 1999, represents an important
step forward in temporal investigation of the polar region. It provides large
volumes of data collected from the observatory on a regular basis, consist-
ing of both oceanographic data and repeated video and still image collec-
tion from a number of survey stations. HG comprises nine sampling stations
along a bathymetric gradient (1200-5500m). A latitudinal transect crosses at
the central HG station IV, which serves as an experimental area for long-term
experiments and measurements [158, 159, 160, 161, 162, 163, 164, 165, 166].
In 2002, the Alfred Wegener Institute for Polar and Marine Research started
regular towed camera observations of the HG stations during expeditions of
the research icebreaker RV Polarstern. To capture images from the seafloor,
an OFOS was deployed at different stations [155].
For the developments of iSIS, one transect of intermediate water depth was
chosen (HG IV, 2500m [139]), which has been successfully visited five times
by Polarstern to date (2002, 2004, 2007, 2011, 2013). During each campaign,
some 700 images were taken. The focus of Scenario (A) lies on the transect
taken in 2004 (referred to as T1 throughout this thesis). Some example images
of this image set are shown in Figure 7.1.
In all images of T1, a region of interest (ROI) of 1500× 1800 pixels size at
position x = 1800, y = 300 was selected, to exclude the image region covered
by the OFOS forerunner weight and the camera time stamp.
The OFOS operator steered the OFOS at about 1.5m height above the seafloor,
resulting in a real-world footprint of 1.2 - 8.5m2 per image with an average
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Figure 7.1: Nine sample images taken at the HG observatory in different years, at
different stations with different cameras. The second row shows three images that
were all taken in 2004 at HG station IV and are part of the image set used to develop
iSIS (i.e. T1). The region highlighted with the white box corresponds to the ROI.

of 3.77m2 across the entire transect. The OFOS altitude varied throughout
the entire transect as the winch operator adapted to bottom topography and
sea state resulting in variable lighting conditions, with overexposed images
produced when the OFOS was too close to the seafloor, and almost black,
poorly illuminated images produced when the OFOS was too distant from
the seafloor. Ca. 10% of the images of a transect showed no signal contrast
and were excluded from this study. The remaining images showed a decrease
in lighting and contrast towards the image corners which is due to the vi-
gnette effect.

7.1.2 Expert workshop

Scope (3), to create general PR based systems with automatically tuned pa-
rameters, is most challenging in Scenario (B). Here, an object detection sys-
tem is targeted that acquires the knowledge of the structural features of ob-
jects of interest (here morphotypes), as well as the non-interesting patterns
(here sediment), from a set of image patches (or points of interest (POIs)).
This set of image patches shows representative examples of all morphotypes
and is gathered for iSIS from manual point annotations (see Section 4.1.1).
Since there exists an inter- and intra-observer agreement (OA) problem in
human expert annotation tasks, an expert workshop was conducted for an
annotation study with five human experts. This workshop had two aims:
firstly, to assess the morphotype-specific human experts’ inter- and intra-
OAs across a range of images. The second aim was to allow the collection of
human expert position annotations for use in generating a gold standard for
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Figure 7.2: Map of the HG observatory (as published in [157]). The main sampling
station (HG IV) is located at the intersection of the red lines.

the automated morphotype detection with iSIS. This gold standard is neces-
sary to train iSIS: i) as it incorporates sML in the form of SVMs (see 3.7.2)
and ii) to asses the quality of the detection results with classifier statistics
(see Section 3.9.2).
To conduct the annotation workshop, a subset of 10% of the 707 images of the
HG IV transect taken in 2004 (i.e. N = 70 images) were shown to five experts.
These 70 images have been randomly selected from those with a footprint of
3.5− 4.5m2 (i.e. 226 images) and each expert annotated each of the N images.
The experts were given the task of annotating the positions of all individuals
in these images belonging to a set of 14 morphotypes / seabed classes (the
sponges Cladorhiza gelida, Caulophacus arcticus, Caulophacus debris, a small
white sponge, the soft coral Gersemia fruticosa, a small white sea anemone, a
purple anemone, the whelk Mohnia spp., the isopod Saduria megalura, the sea
cucumbers Kolga hyalina and Elpidia heckeri, the sea lily Bathycrinus carpenterii,
Bathycrinus stalks and the Lebensspur "burrow hole"). Classes that gathered
< 150 annotations across the 70 images were excluded from further analysis.
Samples of the eight remaining classes (ωm,m ∈ {0, .., 7}) are given in Figure
7.3.
Transect T1 was chosen as it had already been extensively annotated by two
of the experts and it was evident that different species, characterised by a
variety of structure and colour features, occurred in this image series. This
morphotype heterogeneity was important to investigate the general applica-
bility of the iSIS system.
The position annotation results of the five experts were compared by deter-
mining inter-OAs [167]. OAs Ψ were computed for all pairwise combinations



7.1 initial dataset 83

Figure 7.3: Three samples of each of the eight taxa used for the initial detection
with iSIS. From left to right: small white sponge, Kolga hyalina, Elpidia heckeri, Bathy-
crinus carpenterii, burrow hole, purple anemone, Bathycrinus stalk, small white sea
anemone.

of two experts ei and ej and their corresponding sets of manual annotations
Aei and Aej in a class-specific way by:

Ψ
ei,ej
ωk =

|A
+,ei,ej
ωk |

|A
+,ei,ej
ωk |+ |A−,ei

ωk |+ |A
−,ej
ωk |

(1)

where A+,ei,ej
ωk is the set of annotations of class label ωk contained in both

Aeiωk and Aejωk :
A

+,ei,ej
ωk = Aeiωk ∩A

ej
ωk

and A−,ei
ωk as the set of annotations of type ωk contained in Aeiωk only:

A−,ei
ωk

= Aeiωk \A
+,ei,ej
ωk

and analogous for A−,ej
ωk . To measure intra-OAs, each expert re-annotated

half of the images (i.e. N ′ = 35) after 14 days. The intra-OAs Ψei,eiωk were
computed for each expert ei and her / his manual annotations created be-
fore (Aeiωl) and after the 14 day break (i.e. Aejωk = A

ei,+14d
ωk ) with Equation 1.

The amount of morphotype annotations are given in Table 2. It was apparent,
that the position of an object within an image had an effect on its probability
to be annotated (see Figure 7.4).

The human experts showed varying degrees of inter-OA across different
taxa, which is a phenomenon well-known from similar visual diagnosis and
assessment tasks. An agreement of 97% was found only for the conspicuous
sea cucumber Kolga hyalina whereas the inter-OA was only 70% for a small
white sea anemone and even 35% for the sea cucumber Elpidia heckeri and
32% for a small white sponge (see Table 2 and Figure 7.5).
These results show, that human "experts" have to re-consider their exper-
tise regarding such annotation tasks. By filtering those annotations and re-
evaluating them at least once (e.g. through a tool like Ate, see Section B.4.5)
a better quality can be achieved (see Section 7.7.2).



84 megafauna detection

Figure 7.4: Each image was split up to nine regions. These regions are located cir-
cularly around the lightness peak of the image and are equally wide. Within each
region, the occurrence of annotations was counted to obtain density values for each
region. The density values (y-axis) were normalised according to the image-specific
area size of the regions. The highest density does not occur in region 1, where the
lightness peak of the image resides. The density is instead rather constant for a range
of regions (1 - 6) and drops towards the corners. The lowest annotation density is
found in regions the farthest away from the lightness peak which means, that less
objects are annotated towards the image corners.

7.2 semi-automatic detection of megafauna

This section is based on the publication:
"Semi-Automated Image Analysis for the
Assessment of Megafaunal Densities at
the Arctic Deep-Sea Observatory HAUS-
GARTEN"
PLoS ONE, 2012, [128]

To quantify a heterogenous
group of megafauna success-
fully with one system, a
flexible software approach is
needed, which can be applied
to taxa exhibiting a variety
of features, such as differing
morphologies or colours. The
iSIS system was developed to address this need, utilising a generalised PR
approach for the semi-automated quantification of megafauna in transect
data collected at HG. The approach is referred to as being general, since no
explicit heuristics are used to design and tune the algorithmic detection of in-
dividual morphotypes. The classification scope of the system is set to a user-
defined group of morphotypes. These morphotypes are defined in the sys-
tem by a manually annotated training set of images with marked positions
for the morphotypes. In this way, the user (e.g. a marine biologist) can use
her / his primary visual expertise to tune and extend the system without a
deeper knowledge of the IP / PR algorithms being required. So although the
pre-processing and the morphotype detection in iSIS runs fully automated,
the system is characterised as semi-automatic as the system is trained using
these manually identified morphotypes from within a small image subset of
the full transect.
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Table 2: The morphotypes with their cumulated amount in T1. The background
annotations were distributed randomly and automatically. Additionally, the inter-
and intra-OAs are given by average (Avg.) and standard deviation (Std-Dev.) for the
five experts.

Observer Agreement Ψ

inter- intra-

Morphotypes Amount Avg. Std-Dev. Avg. Std-Dev.

Background 4764 - - - -

Bathycrinus carp. 2524 0.67 0.08 0.80 0.06

Bathycrinus stalks 1729 0.36 0.08 0.55 0.14

Burrow 5701 0.65 0.04 0.72 0.08

Caulophacus arcticus 48 0.55 0.15 0.78 0.27

Caulophacus debris 131 0.44 0.13 0.54 0.24

Cladorhiza gelida 59 0.43 0.19 0.80 0.21

Purple anemone 498 0.68 0.05 0.72 0.07

Elpidia heckeri 551 0.35 0.09 0.52 0.11

Gersemia fructicosa 78 0.56 0.17 0.62 0.18

Kolga hyalina 172 0.97 0.09 0.93 0.07

Saduria megalura 67 0.53 0.10 0.72 0.14

Mohnia spp. 31 0.00 0.00 0.10 0.21

Sm. white anemone 2438 0.70 0.06 0.79 0.08

Sm. white sponge 637 0.32 0.09 0.55 0.08

Total: 19428

The individual steps of iSIS are:

1. Manual annotation of POIs with BIIGLE

2. Creation of annotations cliques Ξ

3. Colour pre-processing with fSpice

4. Feature extraction at POIs

5. Feature extraction in a ROI

6. Feature normalisation

7. Training set generation from cliques

8. Multiple SVM trainings and parameter tunings

9. Classification of ROI features with SVMs

10. Post-processing to derive detection positions

The description of these steps will follow the order of their appearance in
iSIS. A schematic overview of the iSIS system is given in Figure 7.6.
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Figure 7.5: OAs of the expert workshop, ordered by the average inter-OA (blue
columns). The red columns show the intra-OAs. While the intra-OA is generally
larger than the inter-OA, both measures are usually below 0.8 showing the com-
plexity of the detection and classification task. The error bars show the standard
deviation over the five experts.

7.2.1 Manual annotation of POIs with BIIGLE

In principle, a selected set of images has to be exhaustively annotated with
all morphotypes to be detected. For the initial development of iSIS, the an-
notations obtained in the expert workshop were used for this step. Although
the set of 70 images had been exhaustively annotated by five experts, the
OAs showed that it was a far from perfect reference gold standard.

7.2.2 Creation of annotations cliques

To collect a more reliable gold standard for the morphotype detection, the
annotation sets Ae of all five experts (e = 0, .., 4) are fused to one large anno-
tation set:

A∗ = A0 ∪A1 ∪ ...∪A4

From A∗, annotation cliques Ξj are created to derive confidence estimates
for each annotation. In each Ξj, annotations are grouped together that can
have a different type ωi but are in close vicinity κ within the same image
(see Section 4.1.1). The morphotype-specific maximum distances εωiκ , as well
as the amounts of gold standard items are given in Table 3. As five experts
annotated the images, the confidence values ξωij of a clique Ξj range from
ξωij = 1, where only one expert (i.e. supporter) found the item, to ξωij = 5,
where all experts agree on the occurrence of this item. The distribution of ξωi

per amount of supporters is shown in Figure 7.7 for a selection of classes. For
each clique, a gold standard annotation āx,y = ωi is created, positioned at
the centroid of the x,y positions of the annotations supporting this clique
that have the class label ωi. The class ωi of ā is set to be the class label in Ξj
with the highest support.
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To allow to obtain a training set with high confidence, all gold standard an-
notations with ξωij < 3 are neglected. The other āx,y, together with their
supporting annotations with the same class label ωi are used as POIs for fea-
ture extraction. Additionally, the four von-Neumann neighbouring pixels in
two pixels distance of the gold standard and manual annotations are added
to the set of POIs as well. The inclusion of the neighbours allows for some
small-scale variation in the features and helps to obtain a larger training set
for scarce classes. The amount of POIs per āx,y is then 5 · (ξωij + 1).

Figure 7.7: Relative distributions of ξωi for a selection of morphotypes. Blue (ξωi =
1) and light blue (ξωi = 2) represent gold standard annotations with low confidence.
Light green (ξωi = 3), medium green (ξωi = 4) and dark green (ξωi = 5) represent
gold standard annotations with higher confidence. For the conspicuous Kolga hyalina,
almost 80% of the annotations are of high confidence, whereas for Bathycrinus stalk
and Elpidia heckeri less than 50% are.

Table 3: Gold standard amounts of morphotypes and the individual distances εωiκ
to fuse annotations to cliques.

Morphotypes Amount εωiκ [pixel]

Background 4764 -

Bathycrinus carpenterii 502 40

Bathycrinus stalks 341 50

Burrow hole 1112 40

Purple burrowing anemone 97 20

Elpidia heckeri 87 20

Kolga hyalina 30 70

Small white anemone 457 30

Small white sponge 94 20

Total: 7485 -

7.2.3 Colour pre-processing with fSpice

All images are pre-processed with fSpice to obtain standardised colour spec-
tra across the transect and to remove the illumination cone. This step is done
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Figure 7.8: To pick an appropriate patch size for the MPEG-7 descriptors, different
sizes were evaluated in steps of 2i, i ∈ [3, .., 7]. The quality was measured as the
average of the individual SVM test errors (i.e.

∑13
i=0(1−Q

acc,ωi)) for the 14 species
in the expert workshop.

subsequently to the POI annotation as a set of annotation positions is re-
quired. Looking into the effect of annotating pre-processed images is an in-
teresting topic for further studies.
After processing each image with different values of σGF, the MPEG-7 de-
scriptors ∆CSD, ∆CLD, ∆DCD, ∆EHD, ∆SCD (see Section 3.2.4) are computed
in a 32× 32 neighbourhood around the POIs to describe the morphotypes
in a high-dimensional feature space. The results of various parameter set-
tings for σGF are shown in Figure 5.2 in the description of the fSpice algo-
rithm. As a plateau existed that shows similar clustering quality for values
of 4.2 6 σGF 6 83, σGF was set to 4.2 to allow for a faster computation of the
pre-processing. The results of the pre-processing with fSpice and σGF = 4.2
are then used as the data basis for the following feature extraction.
Examples of the fSpice results are shown in Figure A.1.

7.2.4 Feature extraction at POIs

Similar to the feature extraction to derive the best setting for σGF in fSpice,
high-dimensional feature vectors v(i) are extracted at the POI positions again
after the tuned colour pre-processing. In this case, the dimensionality of the
v(i) is even larger as, apart from the ∆MPEG-7, also the blob descriptor ∆blob

and the Gabor descriptor ∆Gabor are used. In total, this results in v(i) ∈ R424.
To allow for a system that is morphotype-independent, different settings for
the extraction size for the ∆MPEG-7 were tested. In case of T1, a size of 32× 32
pixels provided the best training results (see Figure 7.8).

7.2.5 Feature extraction in a ROI

The same feature vectors that are used to describe the POIs are extracted in
the ROI as well. For computational speedup, only every 4th pixel is consid-
ered. In case of the HG IV transect, this creates a set of 1500× 1800× 1/4
feature vectors per image (i.e. a file of ca. 150MB). This feature computation
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step is one of the two computationally intense parts of iSIS (the other is the
feature vector classification).

7.2.6 Feature normalisation

Both the POI and ROI feature vectors are normalised group-wise to standard
score (see Section 3.4.3). Therefore the mean of each individual feature as
well as the variance of feature blocks of the ROI feature vectors is determined.
Those mean and variance values of the ROI features are then used to shift
and scale both the ROI and POI features to standard score.

7.2.7 Training set generation from cliques

For each morphotype class, an individual annotated set Γωi is constructed.
The composition of those Γωi was tuned heuristically to find a grouping
of POI feature vectors that provides the highest detection quality regarding
Qrec andQpre for the test set Γωi,test. The composition that yielded the highest
Qrec with acceptableQpre > 0.9 thereby consists of 75% negative samples and
25% positive samples. The positive samples (Γωi,pos) are feature vectors that
correspond to POIs annotated with ωi. Two thirds of the negative samples
are feature vectors of POIs that are annotated to be the background class ω0
(Γωi,0). The other third of the negatives Γωi,neg (i.e. the last quarter of Γωi)
consists in equal parts of samples of all other classes ωj, j = 1, .., 7, i 6= j.
The size of Γωi is governed by the amount of available POI feature vectors
and varies for different ωi. A limit of at most 2, 500 feature vectors is set
for the size of the positive class. The amount of feature vectors of the other
classes is reduced accordingly. In case that one class has not enough feature
vectors annotated, the amounts of all feature vectors in all parts of Γωi are
reduced accordingly to preserve the 25/25/50 percent distribution.

7.2.8 SVM trainings and parameter tunings

iSIS uses sML in the form of SVMs with a Gaussian kernel φGauss. SVMs
are widely used, because of their generalisation ability in non-trivial, high-
dimensional feature spaces, that is their ability to correctly classify previ-
ously unseen data. Further advantages are the absence of local minima in
their training errors during optimisation [168] and the low number of pa-
rameters (i.e. two in this case) that have to be tuned. To train the nine SVMs
(one for each morphotype and one for the background), an implementation
of SVMlight is used [169], wrapped by our own C / C++ ML library (see
Section B.5). A single-class SVM implementation is applied that provides a
confidence value ρ ∈ [0..1] for each feature vector that is classified. The value
of ρ determines whether a v(i) is part of the negative class ρ < ερ or part of
the positive class ρ > ερ. Feature vectors that yield a value of ρ = ερ lie on
the high-dimensional separation plane. The common value for ερ is 0.5 but
other thresholds are possible as well.
The SVMs are trained with the training sets Γωi . To tune the values for the
slack variable s and the kernel parameter σ, four-fold cross-validation is con-
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Figure 7.9: Each coloured block stands for a set of feature vectors. All blocks together
make up Γωi that consists of three parts: positive samples Γωi,pos (green), negative
samples Γωi,neg (blue) and background samples Γωi,0 (yellow, also negative). Dur-
ing four-fold cross-validation, this set is split up (horizontally) to four folds that
each serve as the test set Γωi,test once (here Fold 4), while the remaining three sets
are fused to constitute Γωi,train (here Folds 1 - 3).

ducted. Therefore the Γωi are split to four parts (see Figure 7.9). The split-
ting is done image-wise to make sure, that all feature vectors of the POIs
around one āx,y are in the same data fold. Then a fixed parameter set (s,σ)
is evaluated four times by fusing three of the folds to Γωi,train and using the
remaining fold as Γωi,test. The quality of the tested parameter set is then de-
termined by the averages of the classifier statistics Qrec and Qpre over all four
data folds.
The values of s and σ are both tested logarithmically in [10−1,100,101,102].
For nine morphotypes, four parameter values for each a and σ, and the four-
fold cross-validation, this results in 9× 4× 4× 4 = 576 SVM trainings and
quality evaluations. This step can efficiently be parallelised on a compute
cluster. Picking the best parameter values is currently done by manually ex-
ploring the results in web-based visualisations. The nine final SVMs are then
created in a following re-training with the picked parameter values and the
complete annotated sets Γωi as the training set.

7.2.9 Classification of ROI features with SVMs

The final SVMs are then applied to classify all the feature vectors in the ROIs.
Each 424D feature set of a ROI is thus transformed into nine images I(ωi,ρ),
the confidence maps (I(ωi,ρ,c) = 1). Each pixel in I(ωi,ρ) takes values ∈ [0..1]
and represents the probability, that this pixel belongs to class ωi (see Figure
7.10). This step is the computationally most expensive part of iSIS.

7.2.10 Post-processing to derive detection positions

From the I(ωi,ρ), detection positions have to be derived. This process is done
image-wise in a pipeline by inspecting the I(ωi,ρ) of one image one after
the other. The detection positions of the preceding ωi are used as a mask
I(M) where no further detections are allowed. That way, FP detections are re-
duced. Each I(ωi,ρ) is binarised with a morphotype-specific threshold εωiρ
to obtain a binary image I(ωi,B) where positive pixels take a value of 1 and
negative pixels a value of 0 (see Figure 7.11). From I(M) and the I(ωi,B), a
detection map I(D) is iteratively created.
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Figure 7.10: In the first row, three example images after applying the fSpice pre-
processing are shown. Added to the images are coloured marks for manual anno-
tations (red - Kolga hyalina, blue - Bathycrinus carpenterii, yellow - Bathycrinus stalk,
dark green - Burrow, pink - small white anemone, turquoise - background, dark
blue - small white sponge, light green - Elpidia heckeri, dark red - purple burrow-
ing anemone). The images below show confidence maps I(ωi,ρ) of the images on
top where the first shows I(Kolga,ρ), the second I(Bathycrinus,ρ) and the third I(Burrow,ρ).
White stands for ρ = 1 and black for ρ = 0.

Figure 7.11: The binary images I(ωi,B) for the confidence maps shown in Figure 7.10.
The threshold εωiρ was set to 0.9 in all three cases.

The detection process begins with the binary image of the background
I(ω0,B) to initially remove a large part of the ROI. To further reduce the
amount of FPs, a margin is added around the positive pixels in I(ω0,B) by
a dilation with a 15× 15 kernel K(dil,15):

I(ω0,B) = K(dil,15) ? I(ω0,B)
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The mask I(M) is then the same as I(ω0,B):

I(M) = I(ω0,B)

The detection map I(D) is initially set to be −1 at each pixel and the back-
ground map is added to it:

I(D) = I(D) + I(ω0,B)

The procedure described in the following then applies to all other I(ωi,B)

apart from the background.
At first, the current mask I(M) is subtracted from the current I(ωi,B):

I(ωi,B) = I(ωi,B) − I(M)

Within I(ωi,B) connected pixel regions Rj are then determined. The maximum
value for j depends on the amount of connected regions found in I(ωi,B). To
adapt the detection process to the varying sizes of morphotypes, only Rj in
a morphotype-specific size range εωiR− < |Rj| < ε

ωi
R+ are retained. Therefore,

a temporary mask image I(M,R) is constructed, where all pixels are set to 0.
Only the pixels in I(ωi,B) that belong to connected pixel regions with a size
outside the size range are set to 1 in I(M,R). Then

I(ωi,B) = I(ωi,B) − I(M,R)

is the reduced binary map for ωi. With that binary map, first the detection
map I(D) is updated:

I(D) = I(D) + (i+ 1) · I(ωi)

then the margin is added to I(ωi,B):

I(ωi,B) = K(dil,15) ? I(ωi,B)

and this map is finally added to the mask:

I(M) = I(M) + I(ωi,B)

The detection then proceeds with the same operations for the next class (see
Figure 7.12).

In the end, not all pixels in I(D) have to be taken by either of the ωi. These
pixels represent positions at which no SVM classified the corresponding fea-
ture vector with a confidence large enough for any of the ωi. All those pixels
can be added to a separate rejection class ωrej or be fused with the back-
ground class ω0 as is done here.
Some of the detection maps I(D) are shown in Figures 7.13 and 7.14.

Finally, the detected positions âx,y = ωi are determined in I(D) from con-
nected regions of pixels with the same pixel value i > 0. The x,y centroid
of one of these pixel regions is taken as the position of the detection and the
class is set to the class label ωi corresponding to the regions’s pixel label i.
The morphotype-specific thresholds εωiρ , εωiC− and εωiC+ are picked by an au-
tomated, brute-force parameter tuning:

εωiρ ∈ {0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95, 0.99}
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12: Visualisation of the post-processing steps. (a) shows part of an image
that contains one Bathycrinus carpenterii (blue and yellow square) and one Kolga
hyalina (red square); (b) shows I(Bathycrinus carpenterii,B) where the pixels that are finally
detected are highlighted in blue, all other white pixels are discarded due to the post-
processing process; (c) shows the same for I(Bathycrinus stalk,B) with yellow instead of
blue pixels. (d - h) show the post-processing of consecutive detections as in (d) only
background pixels have been classified (turquoise pixels). In (e), a Kolga hyalina (red)
has correctly been identified whereas in (f) an FP for a small white anemone was
detected (pink pixels). (g) and (h) add the Bathycrinus stalk and carpenterii detections
from (b) and (c) where two TPs and one FP are created; (h) shows the final detection
map that is also shown as an overlay to (a) in (i). The orange dot in the bottom right
corner is an LP and has been rejected by each of the SVMs as are several other pixels
that remain black.

εωiC− ∈ {0, 50, 100, 200, 500, 1000, 3000}

εωiC+ ∈ {50, 100, 200, 500, 1000, 3000,∞}

This parameter tuning corresponds in computational effort to the SVM train-
ing as 8(morphotypes) × 8(ρ) × 7(C−) × 3(C+) = 1, 344 parameter combi-
nations have to be tested. Apart from those parameters, also the order of
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Figure 7.13: Two images of T1 and the corresponding detection maps I(D). The
colours are: turquoise: background, red: Kolga hyalina, yellow: Bathycrinus stalk, blue:
Bathycrinus carpenterii, pink: small white anemone, green: burrow, black: rejection
class / background.

the SVMs can be tuned automatically. This is a very time-consuming com-
putation as 8! = 40, 320 arrangements have to be tested, eventually with all
the different parameter values to allow for a combined brute-force tuning
of all post-processing parameters. This would result in more than 54 million
tuning steps which is currently infeasible.

7.3 results

The quality of the complete detection process is again assessed through the
classifier statistics Qpre and Qrec (see Section 3.9.2). Therefore the gold stan-
dard annotations āx,y are matched to the detections âx,y according to the
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Figure 7.14: Two images of T1 and the corresponding detection maps I(D). The
colours are the same as in Figure 7.13.

εωiλ . In case an âx,y = ωi is in close vicinity λ < εωiλ to an āx,y = ωi within
the same image, a TP is counted for class ωi. In case, no āx,y is in close vicin-
ity (either because no annotation is there at all or because it is annotated with
a different ωj) an FP is counted. Similarly, all āx,y around which no âx,y was
detected are counted as FNs (again, either because no detection was there at
all or because the class label did not match).
The final, tuned detection results for T1 are given in Table 5. By looking at
the detection rates for the different supporter counts ξ, an interesting pattern
was observed: that Qrec increases with increasing ξ (see Figure 7.15).
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Table 4: Values for the post-processing parameters (εωiρ , εωiC− and εωiC+) obtained for
transect T1 by the brute-force parameter tuning.

Morphotype εωiρ εωiC− εωiC+

Bathycrinus carpenterii 0.9 0 1000

Bathycrinus stalks 0.95 0 1000

Burrow 0.95 0 1000

Purple anemone 0.6 100 1000

Elpidia heckeri 0.5 0 500

Kolga hyalina 0.9 0 300

Small white sea anemone 0.5 0 1000

Small white sponge 0.9 0 300

Figure 7.15: The detection Qrec for the gold standard annotations ā with regard
to the supporter counts ξ of the annotations. Annotations with a higher supporter
count ξ are more likely to be detected by iSIS. Items with 1 and 2 supporters were
thought of as untrustworthy and not used for the system parameter tuning. Nonethe-
less, 16% (one supporter) and 40% (two supporters) of these items are discovered
by iSIS.

7.4 re-evaluation

The final detection results, as given in Table 5, look unsatisfying at first sight,
especially the Qpre values for the detection process. A closer look at single
FPs lead to the assumption that the FP counts based on the reference gold
standard were partly incorrect, which means that positives were found by
iSIS, which were not included in the gold standard and were actually TPs.
All FPs were thus re-evaluated by two experts (with a predecessor of Ate,
see Section B.4.5) to determine, what kind of mistakes happened during the
detection. The results of this re-evaluation are given in Table 6. The last row
of Table 5 incorporates these numbers and indicates a much better quality
(Qrec = 0.87, Qpre = 0.67). Approximately one third of the FPs were indeed
TPs that were not annotated by the experts at all (ξωij = 0) or were not in-
cluded in the gold standard due to a low supporter count (ξωij < 3).

One particular species (i.e. Elpidia heckeri) could not be detected reliably
since its features (colour and morphology) could not sufficiently be discerned
from the sediment background. Samples of this species cover only a small
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Table 5: Given are the training, test and detection quality as measured by Qpre and
Qrec. The training and test qualities are computed with a 4-fold cross validation on
the training set. In the detection step, iSIS is applied to the entire images for mor-
photype detection and classification and the detection results are compared to the
gold standard annotations āx,y by computing Qpre and Qrec. The quality decreases
significantly from the test data to the detection due to an increase in FPs. The last
row shows Qpre and Qrec results after a careful re-evaluation of the FP (see text for
details) yielding the final estimates for iSIS’ Qpre and Qrec.

Training Test Detection

Morphotype Qrec Qpre Qrec Qpre Qrec Qpre

Background 0.95 0.97 0.91 0.93 - -

Bathycrinus carpenterii 1.00 1.00 0.92 0.97 0.74 0.61

Bathycrinus stalks 1.00 1.00 0.86 0.98 0.63 0.38

Burrow 1.00 1.00 0.98 0.97 0.93 0.50

Purple anemone 1.00 1.00 0.87 0.98 0.69 0.28

Elpidia heckeri 1.00 1.00 0.82 0.98 0.91 0.04

Kolga hyalina 1.00 1.00 0.53 1.00 1.00 0.88

Small white sea anemone 1.00 1.00 0.92 0.97 0.86 0.60

Small white sponge 1.00 1.00 0.73 0.98 0.89 0.43

Total 0.99 1.00 0.84 0.97 0.84 0.34

Total w / o Elpidia heckeri 0.83 0.50

Total after re-evaluation 0.87 0.67

Table 6: Re-evaluation results of the detected FPs by two experts.

Expert 1 Expert 2

True positives 26 % 35 %

Misclassification 9 % 12 %

Untrained taxa 17 % 38 %

Background 32 % 11 %

Unknown 16 % 4 %

amount of pixels (< 50) and resemble stones in their structural appearance.
While Qrec = 0.91 is satisfying, Qpre = 0.04 shows, that a vast amount of FPs
are detected by the SVM trained for this species. The challenges in detecting
Elpidia heckeri with iSIS reflect the low inter- and intra-OAs for this species.
Omission of Elpidia heckeri from the detection process led to a removal of
about half of the total FPs (see second last row in Table 5).
The case of Elpidia heckeri shows one of the limits of iSIS: camouflaged biota
which evolved in a way that their visual appearance resembles the appear-
ance of their habitat. These species do not want to be detected visually and a
detection system motivated by visual perception as iSIS thus should also be
distracted. Other gears like multi-spectral cameras [170] have been proposed
to solve this problem but studies are still in preparation.
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Figure 7.16: Samples of Kolga hyalina from different years and stations: HG IV (2002),
HG IV (2004), HG N3 (2010), HG IV (2011), HG N3 (2011), Arctic (2012, cruise IceArc
ARK27-3, PS80_0327), Arctic (2012, cruise IceArc ARK27-3, PS80_0340)

7.5 multi-year assessment

The initial goal for the iSIS system was to be trained once for a species / morphotype
and then be applicable to the same species in other data sets as well. This
goal has not been reached so far. In a multi-year assessment, it was evident,
that the same SVMs that yielded promising qualities in T1 were hardly able
to detect the same species in other years. As a reference, the 2007 and 2011
transects were used. In terms of Qrec, the results were slightly inferior but in
terms of Qpre, the results were unacceptable. Far more FPs occurred than in
T1.
One reason for the quality drop was the usage of a different camera plat-
form in later years. Thereby a better camera with higher resolution was used
to acquire image data (see Figure 7.16). Also the illumination pattern was
different and so the shadows that were cast around objects appeared in dis-
similar locations. Finally this new camera had a different shutter speed which
introduced motion blur to some of the images.

Apart from the technological differences, another problem could be seen
from the morphotypes themselves. While mobile species like Kolga hyalina
occurred in various possible orientations in T1, the sea lily Bathycrinus car-
penterii was always oriented into the same direction, possibly due to currents.
The SVMs were thus specialised to detect Bathycrinus carpenterii in a similar
orientation and failed to detect differently oriented ones.
One method to solve the orientation problem is making the training set rota-
tion invariant. One possibility is to make the feature descriptors mathemat-
ically rotation invariant but that would have gone beyond the scope of this
thesis. Therefore, instead of "rotating the feature vectors", the image patches
were rotated from which the feature vectors were computed. The rotation
was conducted in steps of ninety degrees such that for each POI, three fur-
ther samples are created that represent the same object but in further orien-
tations. This method improved the detection rates for some morphotypes in
unseen image sets.
One approach for the dissimilar image sets (due to the technical changes)
is to re-train iSIS for novel images sets. Therefore another training set is re-
quired for these images. This annotation set could only recently be obtained
and the analysis of those transects is still in preparation. Similar to the expert
workshop for T1, the annotations in these further images have shown to be
erroneous and improvable by a re-evaluation.



100 megafauna detection

Table 7: Given are the training and detection quality as measured by Qpre and Qrec

for the detection with RFs instead of SVMs. In the detection step, the RFs are applied
to the entire images for morphotype detection and classification and the detection
results are compared to the gold standard āx,y by computing Qpre and Qrec.

Training Detection

Morphotype Qrec Qpre Qrec Qpre

Bathycrinus carpenterii 0.62 0.05 0.50 0.06

Bathycrinus stalks 0.72 0.10 0.86 0.25

Burrow 0.94 0.15 0.90 0.13

Purple anemone 0.28 0.50 0.33 0.50

Elpidia heckeri 0.89 0.02 0.50 0.02

Kolga hyalina 0.67 0.29 0.25 0.50

Small white sponge 0.48 0.26 0.29 0.17

Small white sea anemone 0.48 0.26 0.29 0.17

Total 0.81 0.10 0.75 0.12

7.6 other methods

To challenge the results of the iSIS system, other approaches were tested
where either a different classifier or different features were used. These other
approaches include two initial case studies for SparseCoding [171] and Deep
Learning [172] which will not be described here further. The results of these
studies are not yet comparable to iSIS and the other approaches explained
in the following. With Deep Learning for example, only the small white
anemone was tried to be detected.

7.6.1 Random Forests (RFs)

In one approach, RFs [173] were used instead of SVMs [174]. One benefit of
RFs is their computational speed that would allow to accelerate the detection
process (i.e. the creation of the I(ωi,B)). RFs are popular in benthic habitat
classification from acoustics data [175, 176, 177].
In this study, the same feature descriptors were used as for the iSIS system
(i.e. ∆MPEG-7, ∆blob, ∆Gabor). The same POI sets were used for the training of
the RFs and the same ROIs were used for the following classification. Similar
to iSIS, the RFs were trained for individual morphotypes and arranged in a
pipeline during the detection to determine the locations of one morphotype
after the other. The morphotype-specific detection rates are given in Table 7.

After a re-evaluation, similar to the inspection following the iSIS detection,
the overall results could be improved (see Table 8). While the Qrec was even
better than with iSIS, the Qpre remained closely below 50 percent.
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Figure 7.17: The effect of the tuneable threshold parameter of the SURF key point
descriptor. The key points are seen as detections, the manual annotations as the
gold standard. Thereby, detection rates Qpre and Qrec can be computed. Here, the
threshold is given on the x-axis and the quality measures on the y-axis. The red
curve represents Qrec, the blue curve Qpre and the green curve Qf. By using a low
threshold of 10, all annotated positions are found (Qrec = 1) but a large number of
FPs is also detected (Qpre = 0). Increasing the threshold, Qrec decreases, while Qpre

increases. The F-score Qf attains values up to 0.66 but the corresponding Qrec = 0.55
is unfavourable for a detection scenario.

7.6.2 SIFT and SURF features

One popular descriptor for visual pattern matching is the SIFT descriptor
and the accelerated version SURF (see Section 3.2.6). These feature vectors
have also been applied to the images to evaluate their applicability in the
underwater environment. Rather than computing feature vectors for all pix-
els of the ROI, the SIFT algorithm includes methods to find interesting key
points. Unfortunately, these key points are located at corner points and thus
especially at positions next to the morphotypes where sharp edges occur
due to shadows. Thus not all morphotypes are seen as "interesting". The
SIFT / SURF algorithm contains a tuneable threshold parameter that defines
how many key points will be detected. Allowing a large amount of key
points, Qrec increases on the cost of Qpre and vice-versa (see Figure 7.17).
Using a kNN to classify the SIFT and SURF features, detection rates of
Qrec = 0.85 could be achieved (see Table 8).
Contrary to the common SURF approach, those features were thus computed
in a regular grid, similar to the iSIS approach. From these features, SVMs
were trained and used to create confidence maps of the complete ROIs. In
this case, a high Qrec = 0.99 could be achieved but with a low Qpre = 0.02.
To overcome this FP problem, a bootstrapping technique was implemented:
to iteratively add the erroneous FPs to the training set. After each detection
step t, an improved training set Γt+1 is constructed that is used to train a new
set of SVMs. This strategy is comparable to the training set improvement in
DeLPHI. Bootstrapping is computationally expensive but beneficial, as after
five bootstrap iterations an improvement to Qpre = 0.15 could be achieved
with a minor impairment of the recall to Qrec = 0.96 (see Table 8).
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7.6.3 Feature selection

Including all feature descriptors (∆MPEG-7, ∆blob, ∆Gabor) in iSIS is motivated
by the targeted generalisation (Scope (3)). It is however obvious that some of
the feature descriptors are more suited for a specific morphotype than others.
Picking those descriptors (or individual features) has been tried by feature
selection.
Three different approaches were used:

1. SVM-based wrapper
SVMs were trained with the full set of features and single features were
heuristically removed in a Greedy optimisation strategy. That feature
that resulted in the smallest deviation from the full set was removed as
it was seen as insignificant. This procedure was iterated until a thresh-
old quality was reached.

2. RF inherent feature importance
RFs have an inherent measure for the importance of individual features
that is computed by default during the creation of the trees.

3. Variance-based pruning
In this approach, all the individual features with a variance below a
chosen threshold were removed and the remainder of the features used
for an SVM training.

While some more important descriptors were observed, some inconsistencies
make the feature selection results disputable. The inherent RF feature impor-
tance voted the ∆SCD, ∆CLD and ∆EHD as the three most important descrip-
tors. In contrast to that, the variance based pruning voted the ∆EHD as the
least important while ∆CSD, ∆CLD and ∆blob were the three most important
descriptors. The SVM based wrapper also put ∆CSD as the most important
descriptor, followed by ∆SCD and ∆CLD. This leaves the three MPEG-7 colour
descriptors ∆CSD, ∆SCD and ∆CLD as the most important descriptors for T1
but further investigations of other datasets are required to implement an
automated feature-selection method to iSIS.

Table 8: This table contains the results of multiple approaches to Scenario (B). Given
are the initial training qualities and / or the final detection and classification quali-
ties.

Training Detection

System Features Qrec Qpre Qrec Qpre Qf

iSIS (SVMs) MPEG-7, Blob, Gabor 0.99 0.99 0.87 0.67 0.76

RF MPEG-7, Blob, Gabor 0.98 0.99 0.89 0.49 0.63

kNN SIFT - - 0.85 - -

kNN SURF - - 0.91 - -

SVM SURF - - 0.99 0.02 0.04

SVM (iterated) SURF - - 0.96 0.15 0.26



7.7 other data sets 103

Figure 7.18: iSIS applied to a different dataset with only two classes (sponge and
background). The first row shows two example images in which manual annotations
are highlighted: turquoise squares stand for the background class, white squares for
sponges. The middle row shows the confidence maps I(Sponge,ρ). While the yellow
sponge yields high confidences (white patches), fish and the white sponges yield
similar confidences around ρ = 0.6 percent. The last row shows the binarised maps
I(sponge,B) with εsponge

ρ = 0.9 where primarily the yellow sponge is detected.

7.7 other data sets

After iSIS had been applied to T1 (see Section 7.2) as well as to other HG
stations and years (see Section 7.5) it was also applied to datasets obtained
at other stations by other institutions and with different gear.

7.7.1 Sponge assessment

At first, iSIS was used to assess benthic biomass of sponges in a habitat in
Norway. Two different image acquisition techniques were used: an oblique
camera attached to an ROV and a downward-looking drop camera. Due to
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the oblique angle, combined with missing scaling information, the ROV im-
ages could not be analysed with iSIS. Although it might have been possible
to detect pixels belonging to sponges, it would not have been possible to de-
termine the targeted biomass from this data (see Section 2.4).
The study therefore focused on the N ′ = 240 downward-looking images. In
N = 29 of those images, sponges were annotated with point annotations by
one expert. Thereby 924 POI positions of sponges were obtained. Addition-
ally, 10 background POIs were randomly distributed within each image to
represent ω0. The training and detection followed the same procedure as for
the HG images but this time only two SVMs were used as only the sponge
and background classes were targeted. The training qualities for the sponge
SVM were Qrec = 0.94 and Qpre = 0.82.
The resulting confidence maps (see Figure 7.18) showed that iSIS detected
one type of sponge but confused a different type of sponges with other ob-
jects in the images, especially fish. It would thus be beneficial to annotate fur-
ther classes and create more than two SVMs (i.e. at least two sponge classes,
a fish class and possibly else). Also, point annotations are not suitable in this
case, as the sponges extend over larger regions of the image. Therefore aerial
annotations (see Section 4.1.3) would have been beneficial to create a more
reliable training set Γ .

7.7.2 Porcupine Abyssal Plain

Similarly to HG, the Porcupine Abyssal Plain (PAP) is a research area that is
regularly studied for time-series analysis [136]. iSIS was applied to images
collected on the RRS Discovery research cruise 377 in July 2012 [178] using an
AUV. Images were captured at altitudes of two to four meters and annotated
with ImagePro (see Section 4.4). An expert workshop was conducted with
three experts that annotated 30 morphotype classes in N = 1, 340 images
(see Figure 7.19). The 30 morphotypes ranged in size from 15 to 437 pixels,
and in colour from translucent / white to purple to red. Table 9 gives an
overview of the morphotypes, their frequencies and the inter-OAs.

The training and detection followed the same procedure as for the HG
images but this time 30 SVMs were trained. Training and test qualities are
given in Table 9. The large amount of classes did not allow to automatically
tune the order of the SVMs in the detection pipeline and thus an order was
picked manually.
The resulting detection qualities showed poor Qf for most morphotypes. Al-
though theQrec was above 0.8 for 19morphotypes, theQpre was never bigger
than 0.25 (see Figures 7.22, 7.20 and 7.21). This relates to a large amount of
FPs and a re-evaluation strategy will be applied in the future to iterate the
training process with an improved Γ . Similar to the sponge dataset, point
annotations are not suitable for some morphotypes and similarly, aerial an-
notations could have been beneficial for the detection of these classes.
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Figure 7.19: Image samples of the morphotypes in the PAP dataset. Row 1: Amper-
ima, Asteroid4, Cnidaria10, Cnidaria11, Cnidaria12, Cnidaria13; Row 2: Cnidaria15,
Cnidaria2, Cnidaria5, Cnidaria7, Cnidaria8, Cnidaria9; Row 3: Crinoid2, Echiura,
Foraminifera, Holothurid5, Macrourids, Oneirophanta; Row 4: Ophiuroidea, Peni-
agones, Polychaeta1, Porifera2, Porifera3, Pseudostichopusaemulatus; Row 5: Pseu-
dostichopusvillosus, Psychropoteslongicauda, Rayedmound, Stalkedtunicate, Track-
ingworm, Umbellula1

Figure 7.20: Samples of FP detections by iSIS in the PAP image set.



106 megafauna detection

Table 9: Amount of annotations that were used to train iSIS for the PAP transect.
Also, the inter-OA are given. These inter-OA were computed for a similar set of
images showing the same morphotypes.

Morphotypes Amount inter-OA Qpre Qrec

Amperima 39 37.45 0.02 1.00

Asteroid4 7 100.00 0.01 1.00

Cnidaria10 7 84.26 0.01 1.00

Cnidaria11 2 100.00 0.00 0.00

Cnidaria12 13 84.92 0.01 0.33

Cnidaria13 7 100.00 0.01 1.00

Cnidaria15 1 33.33 0.00 1.00

Cnidaria2 347 82.08 0.16 0.61

Cnidaria5 3 0.00 0.02 1.00

Cnidaria7 8 100.00 0.00 0.00

Cnidaria8 6 100.00 0.02 1.00

Cnidaria9 27 57.33 0.00 0.46

Crinoid2 5 84.92 0.03 1.00

Echiura 16 63.89 0.00 0.83

Foraminifera 53 46.35 0.03 0.54

Holothuroid5 7 0.00 0.01 1.00

Macrourids 9 16.67 0.12 1.00

Oneirophanta 10 85.83 0.00 0.00

OphiuroideaR 68 54.76 0.01 0.72

Peniagonesp1 5 100.00 0.00 0.00

Polycheata1 17 76.72 0.01 0.88

Porifera2 4 22.22 0.01 1.00

Porifera3 9 77.78 0.00 0.50

Pseudostichopusaemulatus 9 100.00 0.00 1.00

Pseudostichopusvillosus 6 100.00 0.05 1.00

Psychropoteslongicauda 5 100.00 0.25 1.00

Rayedmound 21 21.45 0.01 1.00

Stalkedtunicate 18 80.16 0.01 0.83

Trackingworm 7 42.72 0.00 0.00

Umbellula1 1 47.22 0.00 1.00



7.7 other data sets 107

Figure 7.21: Samples of FN detections by iSIS in the PAP image set.

Figure 7.22: Samples of TP detections by iSIS in the PAP image set.
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Scenario (B), the automated detection of benthic megafauna, has shown
to be a diverse topic. Here, initial steps could be done on a long way to
develop a market-ready detection software that can be tuned automati-
cally from annotations without the need for a PR expert. Open questions,
that could not be addressed here, include how the very high training
and test qualities can be transformed to equally high detection qualities.
Further, more effort can be invested to conduct more standardised an-
notation workshops. This could provide insights which help in gaining
high-quality annotation sets as well as understanding the link between
inter-OAs and automated detection qualities.



8
B E N T H I C R E S O U R C E E X P L O R AT I O N

After Scenario (B) addressed Scopes (1), (2) and (3) for the detection of
megafauna and Scenario (A) addressed all Scopes (1), (2), (3) and (4),
now follows Scenario (C): the detection of marine mineral resources in
the form of poly-metallic nodules. A Scenario that has not only scientific
potential to develop new PR methods but also has a strong economical
component. It is somewhat simpler than Scenario (B) as only one class is
to be detected yet that detection has to be quantified to assess resource
deposits rather than occurrences. This would correspond to an additional
biomass quantification in case of the megafauna detection of the previous
Chapter.
To target Scenario (C), a different set of PR methods was applied than for
iSIS. The selection of methods aimed to approach Scopes (1) to (3) more
effectively while also being more computationally efficient.

8.1 poly-metallic nodules

The growing demand for mineral resources, for both high-tech products
and / or mass production, necessitates to prospect further reserves for fu-
ture mining. Benthic mineral resources have thus been a target for explo-
ration and exploitation for decades [179, 180]. Those marine reserves include
Cobalt-rich crusts at seamounts [181, 182], massive sulphide deposits at hy-
drothermal vent sites, methane-hydrates at continental margins [183] and
poly-metallic crusts and nodules [184]. While crusts and sulphides can be
visible at the ocean floor, they can reach thicknesses of several meters and to-
gether with often buried methane-hydrates these resources are thus usually
explored by other techniques than imaging.
Poly-metallic nodules (PMNs) though are located at the sediment-water inter-
face. The reason why they do not sink into the sediment or become covered
is yet unknown but may be attributed to motile biota [185]. On a large scale,
PMN exploration is conducted by hydro-acoustic measurements as well but
due to the large ocean depths at which nodules occur, those methods provide
only a low resolution picture of the resource distribution. One method to ex-
plore PMN amounts with high degree of detail is thus imaging with gears
as described in Section 2.2 [39, 186, 187]. Due to the vastness of the areas in
which nodules occur, automated methods consequentially are one method to
determine the PMN amounts with sufficient detail over large areas.
PMNs are mineral resources that develop based on different processes at the
sediment water interface in deep ocean basins. The formation of the nodules
is thought to be one of the slowest processes on earth. Hence nodules can
only form in deep ocean areas where the continental plates are either large
enough or move slow enough to not be destroyed before the nodules are cre-
ated. PMNs occur in all major oceans (Indian, Atlantic, Pacific) and consist
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of a mixture of different minerals. The composition of elements depends on
the geographic location and varies even over the range of kilometres [185].
Currently the most explored PMN deposit is located in the Pacific Ocean
between the Clarion and Clipperton Fracture Zones, often referred to as the
CCFZ. The deposits lie in international water and the resource exploration
and exploitation is thus governed by the international seabed authority (ISA),
a United Nations organisation. Like several other countries, Germany holds
an exploration license for parts of the CCFZ and the Federal Institute for Geo-
sciences and Natural Resources (BGR) conducts studies in these areas. Their
target is to determine locations within the German claim with high nodule
abundance to pinpoint promising exploitation sites.
By traditional hydro-acoustic exploration, combined with box-sampling for
ground-truthing, resource amounts are estimated as the percentage of the
seafloor that is covered by PMNs. Due to varying sizes and quantities of
PMNs, these coverages can not directly be related to resource haul and are
thus inefficient for detailed exploration.
To provide a more precise measurement of the nodule coverage (by higher-
resolution sampling) as well as to determine individual nodule sizes and
quantities, benthic imaging was conducted in the german claims and the
methods presented in this section were developed with images taken in those
areas (see Section 8.3.1). The development of CV methods for image-based
PMN exploration represents Scenario (C) and can be seen to be simpler than
Scenario (B) as only one type of object (i.e. the nodules) has to be discrim-
inated from everything else. Yet in this case, not only have the PMNs to
be detected and classified correctly, but also an additional precise measure-
ment of the resource haul per square meter is targeted. In initial trials, the
iSIS methodology from Scenario (B) was applied to the PMN images as well.
Although the results were promising, a different, problem-specific method
was developed to follow a more fitted approach that allows to detect PMNs
more rapidly. The developed PMN detection systems themselves are more
light-weighted than iSIS and for one case, a substantial speedup could be
achieved through optimisation efforts (see Section 8.7.1).
To achieve Scope (3), two different approaches were developed, one sML
method that includes manual image annotation (see Section 8.4) and one
data-driven uML approach that initially included a prototype annotation (see
Section 8.5) but could finally be automated completely (see Section 8.6). This
final approach thus fulfils Scopes (1), (2) and (3) and all software components
to fulfil Scope (4) are also available yet have so far not been integrated into a
single software program.

8.2 motivation of the applied algorithms

The motivation for both developed approaches is as follows: In PR, the basic
task is to find a mapping f that takes an entities’ feature representation v(i)

and maps it to an output ω∗:

f(v(i)) 7→ ω∗

where ω∗ can be a distinct class label (classification) or a quantitative output
(regression). The feature vector v(i) describes (the neighbourhood of) a pixel.
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The function f can for instance be approximated with sML methods like RFs
or SVMs.
Due to the undesirable efforts required to obtain reliable annotations, sML
algorithms that learn f directly from the training data should not be applied
for the PMN case. This leaves uML approaches like learning VQ [188] (e.g.
the H2SOM). The final mapping is thereby achieved using prototype vectors
u(j) estimating the data distribution of all v(i) in the feature space F:

v(i) 7→ u(j) 7→ ω∗ (2)

In well-separable cases, both these mappings (in Equation 2) can be done un-
ambiguously. But in real-world data, such as benthic images, this is usually
not the case. To adapt the approach, the two mappings in Equation 2 can be
interpreted less deterministic. Either i) the mapping of a feature vector v(i)

to a prototype u(j):

P(v(i), u(j)) ∈ [0..1] with
∑
j

P(v(i), u(j)) = 1

which is often referred to as the fuzzy method, or ii) a non-deterministic
association of each prototype to a class:

P(u(j),ω∗) ∈ [0..1]

In case of the PMNs it was observed, that the objects of interest do not show
the tendency to distribute their features in a small set of cluster prototypes
u(j). They rather display specific heterogeneous combinations of a large num-
ber of matching prototypes which is often the case in underwater imaging
due to coverage with sediments, coral rubble etc. While some u(j) were very
specific to PMNs (P(u(j),ωnod) > 0.95) and others were very specific to the
sediment background (P(u(k),ωsed) > 0.95), still sediment prototypes were
located at nodule positions and vice-versa. More complication arose due to
other prototypes where no clear class assignment to eitherωnod orωsed could
be observed. This led to the development of the first algorithmic approach:
the Bag-of-Prototypes (BoP) feature representation (see Section 8.4).
The BoP feature representation is based on the Bag-of-Words (BoW) model
[189] which is applied in a tile-wise regression concept to estimate the de-
gree of PMN coverage. The BoW method is referred to as BoP, as low-level
feature representations of image pixels are mapped to cluster prototypes.
This mapping is done with an H2SOM to allow for a more complex tessella-
tion of the feature space F than the classical kMeans method in BoW could
provide. Additionally, the term BoW is sometimes used for a different type
of image representation with visual patches rather than low-level features.
To overcome this ambiguity, combined with the modifications regarding the
clustering algorithm and the tile-wise annotation it will be called BoP here.
The BoP approach targets a region-based classification of sub-parts of the
image and is thus less detailed than a pixel-based method. Anyhow, the
BoP provides PMN coverage estimates based mostly on uML with one sML
method that requires a field expert annotation step (Scope (3)). It is appli-
cable to large data volumes (Scope (2)) and is applicable to a large range
of binary image segmentation problems, including, but not restricted to, the
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marine environment (Scope (1)).
Building on top of the insights provided by the BoP approach and Scenario
(B), a different method was developed, called Pixel Classification by Prototype
Annotation (PCPA), that creates a pixel-wise binary classification to be able to
obtain more detailed information regarding single nodule sizes and amounts
(see Section 8.5). From the individual nodules sizes and the PMN amounts,
coverages can then be back-calculated if required.
In this approach, both mappings in Equation 2 are done deterministically,
although it is evident, that the second mapping can not be done unambigu-
ously. Anyhow, each of the u(j) is assigned to one of the two classes nodule
ωnod or sediment ωsed either manually (Section 8.5) or automatically with
the proposed ES4C algorithm (Evolutionary tuned Segmentation using Clus-
ter Co-occurrence and a Compactness Criterion, see Section 8.6). To solve the
problems with heterogeneous combinations of matching prototypes, the fi-
nal post-processing step of iSIS is applied here as well in the form of a Single
Nodule Delineation (SND, see Section 8.7). This post-processing is a unique
feature of image based classification as regional properties can be evaluated
after a u(j) has ben mapped to a class which is not possible for all types of
data classification. For an overview of the different methods, see Figure 8.1.
As the manual prototype assignment requires an annotation step, Scope (3) is
fulfilled only by the automated prototype assignment. Scope (2) is fulfilled by
both methods and, similar to BoP, Scope (1) is fulfilled as PCPA is applicable
to arbitrary binary segmentation problems and ES4C to problems where a
binary segmentation of convex objects in images is targeted.

8.3 data and data preparation

The same images and annotation were used to develop the following meth-
ods. Also the feature representations and prototype mappings were the same
for both the BoP approach as well as the PCPA /ES4C + SND approaches.

8.3.1 PMN images

All of the methods in this chapter were developed with one set of images,
called T2 here, that were acquired in 2010 during a cruise of RV Sonne
(SO_205/04). The images were taken in ca. 5, 500m depth in the CCFZ and
show a top-down view of the seafloor which is covered with PMNs (see Fig-
ure 8.2).
Image acquisition was conducted with an OFOS that was steered to hover
about three meters above the seafloor. Over the past years, several research
cruises have been conducted to the CCFZ with different camera platforms
and thus image sets with different colour, resolution and illumination char-
acteristics have been recorded (see Figure 8.2). All images were thus colour-
corrected with fSpice (see Section 5.2) to make the transects comparable (see
Figure 8.3). The tuning of σGF was omitted, as no point annotations were
available for multiple classes. As the images were of about the same size as
the images in T1, the same σGF = 4.2 was used here.
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Figure 8.1: Four concepts to detect PMNs with varying degree of detail and varying
degree of expert annotation effort. Green arrows stand for fully-automated steps,
blue arrows represent steps that require expert annotation.
Prior to the development of automated methods, the images were manually thresh-
olded (A). This allows to determine individual PMN sizes but is infeasible as an
individual threshold has to be picked for each image. To reduce expert annotation
effort, the BoP approach was implement that requires an annotation of image tiles
with a PMN coverage estimate (B). Such an annotation is much easier to obtain as
only a set of training images has to be annotated rather than every image. This
concept came with the drawback of loosing detail as the coverage estimate does
not allow to determine single PMN sizes. Thus a different approach was developed
(PCPA) that required annotation of cluster prototypes by a PR expert (C). This ap-
proach is feasible regarding annotation effort and provides a high degree of detail
although the annotation has to be done by a PR expert in-the-loop. To overcome this
disadvantage, the ES4C algorithm was developed that allowed to fully automate the
PMN detection with this detailed approach.

8.3.2 Feature computation and H2SOM projection

Histogram feature vectors v(x,y,hist) are computed for each pixel p(x,y) by
∆hist. The neighbourhood region is set to be a square of 7× 7 pixels, and the
2I

(n,b)
= 256 intensity bins are mapped to 16 equally sized bins for each of

the three RGB channels individually. This results in a 48-dimensional feature
vector v(x,y,hist).
These v(x,y,hist) are then clustered with the uML H2SOM algorithm (see Sec-
tion 3.6.4) with three rings and a neighbourhood size of eight. The H2SOM
topology O thus consisted of 161 neurones, corresponding to J = 161 pro-
totypes u(j), j = 0..J− 1. The H2SOM was chosen as it has a good learning-
performance, as well as a fast way of finding the BMU for a new data sample
(beam search). A BMU or index image I(n,U) is created for each I(n) (see Fig-
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(a) (b)

(c) (d)

Figure 8.2: Sample images showing PMNs. Transect T2, for which (a) and (b) are
samples, was recorded in 2010 by an OFOS system at two different locations within
the CCFZ. Images (c) and (d) were taken by two further OFOS systems in 2012 and
2013.

ure 8.4). Therefore each pixel p(x,y,U) of I(n,U) is set to the prototype index
of the pixel’s feature vector’s (i.e. v(x,y,hist)) BMU prototype of the H2SOM:

p(x,y,U) = j, BMU(v(x,y,hist)) = u(j)

Manual inspections of the I(n,U) show, that about twenty percent of the
prototypes can mostly be assigned to either the sediment or nodule class
(P(u(j),ωnod) > 0.95 or P(u(k),ωsed) > 0.95), while the others can not reli-
ably be assigned to one of those classes. First, there are several "transitional"
prototypes at the nodule margins. Second, and more challenging, some pro-
totypes occur at various singular locations within the background, object and
transitional regions.

8.3.3 Annotations

8.3.3.1 Tile annotation

The first set of annotations was obtained through BIIGLE by a tile-based
annotation. Therefore NI = 9 images were selected from T2 to cover all
types of PMN distributions (large and small PMNs as well as few, average
and abundant nodules). The images were split up to NT = 10 × 6 virtual
annotation tiles Ti, i = 0, ..,NT − 1. An expert in visual nodule exploration
annotated each Ti, within those NI sample images I(m,T),m = 0..NI− 1, with
a coverage estimate ηtile

i,m in steps of ten percent: i.e. ηtile
i,m ∈ {0, 10, 20, ..., 100}.
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(a) (b)

(c) (d)

Figure 8.3: The images in Figure 8.2 pre-processed with fSpice and σGF = 4.2.

8.3.3.2 Pixel annotation

For transect T2, a hand tuned binary segmentation mask for each individ-
ual image I(n),n = 0, ..,N − 1 was provided by the BGR. The creation of
those binary mask images I(n,M) was very time consuming, as a distinct grey
value threshold had to be picked manually for each image. This annotation
strategy is not only time-consuming yet also error-prone as illumination vari-
ations within the image were not considered (i.e. the illumination cone). This
strategy anyhow provides a pixel-level annotation and is thus very detailed.
To make the binary mask images I(n,M) for the nine selected images compa-
rable to the ηtile

i,m, the masks were similarly cut to tiles of the same size and
the amount of nodule-positive pixels counted within each tile. This led to a
coverage estimate ηmask

i,m for each tile Ti in image I(m,T).
A comparison of the frequencies of ηtile

i,m and ηmask
i,m shows an interesting pat-

tern (see Figure 8.5). In each coverage bin (0,10,...) there are less ηtile
i,m than

ηmask
i,m ) apart from the 20 percent bin where there are a lot more ηtile

i,m than
ηmask
i,m . This effect might be caused by the expectation / knowledge of the ex-

pert which PMN coverages occur in this transect. The created annotation bias
again shows the need to thoroughly train an annotator to be able to obtain a
reliable gold standard.
A manual re-evaluation of the annotations by a pixel-wise comparison showed
that both the mask-based and the tile-based annotations over-estimate the
PMN coverage.

8.4 bag of prototypes (bop)
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(a) (b)

(c) (d)

(e) (f)

Figure 8.4: Three examples of PMN images and their index image I(n,U). The images
were taken with three different OFOSs and the index images correspond to three
different H2SOM clustering results. From those different clusterings result different
colour mappings: while the PMNs appear red in (b), they are purple in (d) and blue
in (f).

Figure 8.5: The frequencies of ηtile
i,m (red) and ηmask

i,m (blue) in a set of nine images
with 60 tiles each. All coverage bins are less frequently annotated with the tile-
based annotation than with the pixel-based annotation. The only exception is the 20
percent bin that is far more frequent for the tile-based annotation.
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This section is based on the publication:
"Seabed classification using a bag-of-
prototypes feature representation"
CVAUI @ ICPR, 2014

The BoP approach is based
on the BoW [85] or BoF [190]
methods and the central idea
is to integrate the BMU distri-
bution in a neighbourhood of
a pixel p(x,y) to the mapping
in Equation 2 by means of an additional feature vector v(x,y,BoP):

{v(x,y,hist)} 7→ {u(j)} 7→ v(x,y,BoP) 7→ ω∗

The mapping from v(x,y,hist) to u(j) is done deterministically, in this case with
the H2SOM. A set of prototypes {u(j)} is then grouped to the feature represen-
tation v(x,y,BoP) as follows: The basis is I(n,U) in which the BMU frequencies
v
(x,y,BoP)
j within a neighbourhood around a pixel p(x,y) are computed:

v
(x,y,BoP)
j = |{p(x

′,y ′)|θd < |x− x ′|, θd < |y− y ′|, BMU(v(x ′,y ′,hist)) = u(j)}|

This means that the v(x,y,BoP), belonging to pixel p(x,y), contains a frequency
count of all prototype indices j occurring in the neighbourhood of p(x,y) in
I(n,U). That way, local distributions of prototypes are characterised that only
together represent the setup of a visual pattern like the PMNs (see Figure
8.6).
The distance threshold θd is one tuneable parameter of the BoP approach
that was set to θd = 7.

The final mapping (v(x,y,BoP) 7→ ω∗) still requires semantic input in form
of expert annotations. To test the BoP representation v(x,y,BoP), the kNN
algorithm was used as a straightforward reference classifier to estimate tile
coverages η̃ based on different gold standards. Of course the application
of more advanced learners (e.g. RFs, SVMs) can be considered to further
improve the classification quality.
The quality of the BoP approach was quantified by an average per-image
error measure:

Q(ηα,ηβ) =
1

NI

NI−1∑
m=0

NT−1∑
i=0

|ηαi,m − ηβi,m|

where ηα,ηβ are two coverage estimates derived either from an annotation
or the BoP approach. The error Q(ηα,ηβ) compares two coverage estimates
and thus gives the deviation in percentage points per image.

8.5 pixel classification by prototype annotation

For the manual prototype annotation, the link-and-brush visualisation tool
Atlas (see Section B.4.2) was implemented. With Atlas, the I(n,U) can be
browsed and the pixel-wise distributions of u(j) be inspected (see Figure
B.6).
From the HSV colour mapping, it can initially be estimated which colours
the PMN prototypes attain. A user can then manually inspect the prototypes
with those colours (and further) and annotate single prototypes u(j) with
the PMN class ωnod (see Section 4.2.2). She / he can highlight the position of
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Figure 8.6: Four pixel neighbourhoods or patches have been highlighted that stand
for the square pixel neighbourhoods. For visualisation purposes θd was set to 36.
The first three patches show PMNs, the last a pure sediment patch. Below, the cor-
responding v(x,y,BoP) are shown as colour coded histograms. Shown are only J = 9
prototypes and all occurring v(x,y,BoP)

j are mapped to the closest of these, regarding
the HSV colour. Nodules appear "blueish / turquoise", but an unambiguous assign-
ment of p(x,y) to ω∗ is not possible as all u(j) occur in all four patches. Also, around
the nodules exist further "greenish / blueish" regions, that lie within the sediment
region of the image.

(a) (b) (c)

Figure 8.7: Distribution of three u(j) within one image, shown by red pixels. The pro-
totype highlighted in (a) corresponds to ωsed while the u(j) in (b) corresponds to
ωnod. The prototype highlighted in (c) represents regions that correspond to bound-
ary parts of the PMNs and can thus be assigned to either ωsed or ωnod.

single prototypes within the image I(n) to see whether the prototypes are lo-
cated at PMN positions (see Figure 8.7). An assignment vector b(man) ∈ R161

can then be constructed where the j-th component is set to 1 if the prototype
u(j) is thought to belong to ωnod and set to 0 otherwise.
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Figure 8.8: Visual comparison between b(con), b(med) and b(lib) for one sample image.

By looking at different I(n), it becomes evident, that some u(j) represent
PMNs in one image and do not in others although the same H2SOM was
used to create the I(n,U). In those cases the user has to carefully decide
whether to include the prototype u(j) to the PMN class (b(man)

j = 1) or not

(b(man)
j = 0).

When all prototypes are assigned to either of the groups, the assignment
vector b(man) and the index image I(n,U) are then combined to transform the
I(n,U) to binary images I(n,B) by:

I(n,B)(x,y) =

1, b
(man)
BMU(v(x,y))

= 1

0, otherwise

These binary images I(n,B) are then further processed with SND to estimate
the resource haul (see Section 8.7).
As there are 2J possibilities to assign the u(j) to one of the classes it is almost
impossible to find the optimum assignment (see Section 8.6). This assignment
is subjective and thus three different binary assignments b(man) were created
manually, with varying degrees of confidence in the prototypes (see Figure
8.8):

• a conservative assignment b(con) with 22 u(j) assigned to ωnod

• a medium assignment b(med) with 31 u(j) assigned to ωnod

• a liberal assignment b(lib) with 37 u(j) assigned to ωnod

To make the prototype assignments comparable to the ηtile, the resulting
binary images I(n,B) are similarly cut to tiles (as for the ηmask). Thereby three
further coverage references ηcon, ηmed and ηlib are created.

8.6 evolutionary tuned segmentation

Since a ground truth segmentation by manually annotating prototypes is dif-
ficult to collect and requires a PR expert in-the-loop, a new algorithm called
ES4C was developed to automate the prototype assignment. It is based on
the index images I(n,U) and heuristically determines a binary prototype as-
signment vector b(heur). The heuristic is implemented by an evolutionary tun-
ing of a compactness-criterion of the pixel-distribution in the resulting binary
images.
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This section is based on the publication:
"Fully automated segmentation of com-
pact multi-component objects in under-
water images with the ES4C algorithm"
submitted to Pattern Recognition Letters,
2014

The idea behind ES4C is
to implement a fully auto-
mated segmentation for the
case of a binary segmentation
into background (ωsed) and
objects (ωnod). It is thus appli-
cable to other than benthic CV
scenarios as well.
The assumptions behind the ES4C approach are:

• the objects are compact regions of connected components

• the objects in the image are allowed to consist of different components

• pixels of similar components have similar features

By utilising a uML algorithm (i.e. the H2SOM), the creation of an annotated
gold standard is avoided since the compactness heuristic is applied to assign
class labels to prototypes. This assignment is tuned towards a good segmen-
tation result using the GA [75].

The ES4C method works as follows: From the I(n,U), prototype co-occurrence
counts ck,l are computed, where k and l are prototype indices (k, l = 0..J− 1).
The ck,l are accumulated from all pairs of Moore-neighbouring pixels to as-
sess the frequency at which two prototypes k and l occur next to each other
within all images I(n,U):

ck,l = |{BMU(v(x,y)) = k∧ BMU(v(x ′,y ′)) = l}|

with:
d(p(x,y),p(x

′,y ′)) < 2

This essentially creates a J× J matrix C of prototype co-occurrences ck,l.

The binary pixel segmentation is based on an appropriate binary assignment
of prototypes to class labelsωsed andωnod. In order to determine the optimal
assignment (i.e the optimal segmentation), all 2J possible assignments have
in principle to be evaluated in a brute force approach. To evaluate the quality
of an assignments b(i) (i = 0, .., 2J − 1), those b(i) are represented as binary
vectors ∈ [0, 1]J. This representation is the same as the manual assignment
b(man) in PCPA:

b
(i)
j =

1, u(j) 7→ ωnod

0, otherwise

for the i-th prototype assignment.
The compactness of one assignment b(i) is then assessed through three in-
dices:

• The homogeneity index z(i)hom accumulates all ck,l that are assigned to
equal classes for the assignment b(i) (b(i)k = b

(i)
l be it 0 or 1):

z
(i)
hom =

J−1∑
k=0

J−1∑
l=0

δ
b
(i)
k ,b(i)

l

· ck,l
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Figure 8.9: Three different assignments, applied to the same image. The assignments
were tested during the progression of the ES4C algorithm and show some compact-
ness but have π(b(i)) < πheur..

This index attains larger values if the b(i)k of neighbouring pixels in
the spatial domain are the same and thus accounts for homogeneous
regions.

• The edge index z(i)edge accumulates the co-occurrences between prototypes

that are assigned to different classes (b(i)k 6= b
(i)
l ):

z
(i)
edge =

J−1∑
k=0

J−1∑
l=0

δ
b
(i)
k ,1−b(i)

l

· ck,l

This index attains larger values if the b(i)k of neighbouring pixels in the
spatial domain are different and thus accounts for edges between ho-
mogeneous regions.

• The object mass index z(i)mass that accumulates the amount of prototypes
that are assigned to ωnod:

z
(i)
mass =

J−1∑
j=0

b
(i)
j

The compactness π(b(i)) ∈ [0; 1] of an assignment b(i) is then computed as:

π(b(i)) =
J

2 ∗max(J− z(i)mass, z
(i)
mass)

·
z
(i)
hom

z
(i)
hom + z

(i)
edge

(3)

The first fraction in Equation 3 is included to prevent assignments where
most b(i)k attain the same value as such a b(i) would produce a mostly ho-
mogeneous and thus very compact segmentation.
Larger values of π(b(i)) correspond to higher compactness and thus point to-
ward better segmentation. The assignment with the maximum compactness
is thus:

b(α),α = argmaxiπ(b
(i))

and will be referred to as b(max). The resulting binary maps for three possible
assignments are given in Figure 8.9.

For small values of J, all possible b(i) can be evaluated using the brute
force approach to find b(max). For most real-world scenarios though, the
exponentially growing amount of assignments for growing J constitutes a
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bottleneck for the approach and makes an exhaustive search for the best as-
signment infeasible. To solve this problem, the GA is applied here which
performs a heuristic search for the b(heur) with the highest π(b(i)) [75]. The
b(i) provide a well-suited set of possible individuals with the simplest possi-
ble genome, as each "base-pair" (i.e. the b(i)j ) can attain only two values (0 or
1). Also, there is a well-suited fitness function provided for each b(i) through
the π(b(i)).
The development of the individuals is constituted with a straightforward
evolutionary progression with niching. Therefore, a set of binary assignment
populations B(m),m = 0, .., θ0 − 1 are constructed. Each B(m) evolves in par-
allel. B(m)

t denotes population B(m) after t time steps and the initial B(m)
0

are filled with θ1 randomly picked b(i) each.
In each time step t, an intermediate child set B(m,child)

t is constructed for
each B(m) independently, through crossover of the individuals. Each individ-
ual in B(m)

t is picked and fused with another partner individual from B
(m)
t .

The partners are picked with higher probability for fitter individuals rather
than totally at random and the genomes are fused with multi-point cross-
over. B(m,child)

t then also contains θ1 individuals.
From B

(m)
t and B(m,child)

t , the 0.1 · θ1 fittest individuals are then moved to
B
(m)
t+1. Also, for each of these individuals, another, copied individual is added

to B(m)
t+1 with some randomly flipped genes to simulate mutation. This mu-

tation rate is decreased for increasing t and B(m)
t+1 now contains 0.4 · θ1 indi-

viduals. Finally, B(m)
t+1 is filled up to θ1 individuals with the fittest remaining

individuals from B
(m)
t ∪B(m,child)

t without mutation.
To allow for niching, every θ2 time steps a population wandering is per-
formed. Therefore, each population B(m) receives a copy of θ3 < θ1 random
individuals from all other populations. The (θ0 − 1) · θ3 individuals with the
lowest fitness are then immediately removed from B

(m)
t to reduce the popu-

lation size to θ1 again.
At each time step, the current b(heur) regarding the compactness heuristic is
determined. The evolution process is terminated when there exists an indi-
vidual b(i) in any population B(m) with π(b(i)) = 1 or when the maximum
amount of evolution steps tmax is reached.
The parameters were set to θ0 = 10 populations with θ1 = 50 individuals
each. Niching was performed every θ2 = 50 steps with θ3 = 2.
Upon termination, the individual b(heur) with the highest π(b(heur)) is picked
as the most suitable prototype assignment. The I(n,B) are then constructed,
similarly to the manual detection in PCPA, from I(n,U) and b(heur). The fol-
lowing PMN detection is described in Section 8.7.

The application of a heuristic is a requirement to explore the possible as-
signments, nevertheless this naturally means that the optimal assignment
will not necessarily be found. By utilising the pixel-position-independent co-
occurrence counts ck,l, the evaluation of individual b(i) represents a substan-
tial speed up. The alternative would be an analysis of the resulting binary
images I(n,B) regarding the amount and morphology of segments R. This
would be computationally infeasible but could be used in a regular manner,
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comparable to the population wandering, to evaluate the produced segments
in more detail, for example as a further termination criterion.
As there is no inherent semantics regarding the binary classes ωnod and ωsed

the ES4C algorithm can not discriminate between these. Thus the obtained
segmentation can attain two different but equivalent results where either the
objects (e.g. the nodules) or the background (e.g. the sediment) are assigned
to ωnod. A histogram of the segment sizes |R| could be used to discriminate
these results as the background class would ideally produce only one large
segment where the object class would ideally be made up of several elements
of roughly the same size.
In general, the ES4C algorithm forces convex segments and can thus close
gaps in the segments. This could be the case if parts of the segments are
covered (e.g. by sediments). The size of the gaps that can be closed is never-
theless dependent on the size of the segments.
A problem of the approach lies in the first part of the formula for π(b(i)).
There, the amount of prototypes is divided by the maximum amount of pro-
totypes that are assigned to the same class and thus the approach is biased
towards segmentations where half of the prototypes are assigned to one class.
Given, for the individual problem at hand, only a few prototypes make up
one class, this would lead to an erroneous segmentation. An initial knowl-
edge about the size of the segments could be used to adapt the compactness
criterion and overcome this drawback.
In the straightforward approach shown here, the b(i) in the B(m)

0 are ini-
tialised at random. Initial attempts in intelligent initialisation were performed
but showed to be ineffective so far. Ripley’s-L statistics [191, 192] were com-
puted from the ck,l and co-occurrences at larger pixel distances. The idea
was to assign all prototypes that showed a clustering (in the image) at small
pixel distances to one class (e.g. ωnod). All other prototypes, i.e. those with
a clustering at larger distances or that showed no clustering were assigned
to the other (e.g. ωsed). Still the prototypes in the background class (here
ωsed) can also show clustering at small distances. Sophisticated analysis of
the Ripley’s-L, or better O-ring [193], statistics would be beneficial in the fu-
ture.
An additional strategy to alter the B(m) as the evolution progresses could
incorporate knowledge about the H2SOM topology O. Thereby not only the
neighbourhood in the image would be exploited but also the neighbourhood
in O. Further strategies could be based on an inspection and understanding
of the choices that human experts make during PCPA.

8.7 single nodule delineaton

With the Single Nodule Delineation (SND), PMNs are delineated from the
background using the I(n,B). Additionally, the pixel-to-centimetre ratios qn
are required for each image. These can be determined from an automated
LP detection like DeLPHI (see Section 6.1). The complete delineation process
consists of eleven steps:

1. Dilation: each I(n,B) is dilated with a 3× 3 kernel K(dil,3):

I(n,B) = K(dil,3) ? I(n,B)
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(a) (b)

(c) (d)

Figure 8.10: In the first row, two cuts from images in transect T2 are shown. In the
second row, the result of steps 1 to 5 of the SND process is shown for those sample
images.

2. Scaling: each I(n,B) is scaled by a factor q̂n = q2/q2n such that the
pixel-to-centimetre ratio becomes the same (i.e. q) for each image of
the image set.

Î(n,B,w) = q̂n · I(n,B,w)

Î(n,B,h) = q̂n · I(n,B,h)

Thereby, the effects of a varying camera-seafloor distance on the relative
nodule sizes shall be reduced.

3. Opening: an erosion (K(ero,3)) and a dilation (K(dil,3)), each with a 3× 3
kernel, are applied to remove singular PMN-positive pixels:

Î(n,B)
= K(dil,3) ?K(ero,3) ? Î(n,B)

4. Re-scaling: the images are scaled back to their original pixel sizes:

I(n,B,w) =
1

q̂n
· Î(n,B,w)

I(n,B,h) =
1

q̂n
· Î(n,B,h)

5. Median filter: the images are smoothed with a 3× 3 median filter to
remove outliers of both classes.
The effect of steps 1-5 on an I(n,B) is shown in Figure 8.10.

6. Distance transform: a second image I(n,dist) is constructed in which
each p(x,y,dist) is set to 0 that attains the value 0 in I(n,B). In case the
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(a) (b)

(c) (d)

Figure 8.11: The first row shows the removed peak positions Λ ′n (blue) and the
filtered peak positions Λn,i (green) that are derived from steps 6 to 9 of the SND.
The second row shows the final detection result as an overlay of the original images.
The colours of the outlines correspond to PMN size classes as defined in step 11.

pixel in I(n,B) is 1, it is set to the minimum distance to the closest pixel
in I(n,B) with a value of 0:

p(x,y,dist) =


min
x ′,y ′

d(p(x,y,B), p(x ′,y ′,B))|p(x ′,y ′,B) = 0, p(x,y,B) = 1

0, otherwise

7. Peak detection: interpreting the distance image I(n,dist) as a landscape,
now the peaks of the mountains are determined. Therefore all pixel
positions that have a larger distance value p(x,y,dist) than any of their
neighbours are fused to the peak pixel set Λ ′n.

Λ ′n = {p(x,y,dist)|p(x,y,dist) > px
′,y ′,dist, 0 < d(p(x,y),p(x

′,y ′)) < 2}

8. Peak filtering: depending on the shape of the connected regions R in
I(n,B), multiple peaks can occur in close distance. Those multiple peaks
are filtered out from Λ ′n in an iterative strategy that takes the the size |R|

of the region into account to allow more peaks for large blobs. Thereby
larger R can be split up to different PMNs while smaller R remain con-
nected. The filtered set of peaks is denoted as Λn.

9. PMN formation: all pixels p(x,y,B) = 1 are assorted to their closest peak
Λn,i. The combination of all the |Rn,i| pixels that are assorted to the
same Λn,i is seen as one PMN detection. The size |Rn,i| of the detected
PMN is defined by the amount of assorted pixels.
The effect of steps 6-9 is shown in Figure 8.11.
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Figure 8.12: Screenshot taken from the Plutos nodule browser (see Section B.4.3).
The images are arranged along the x-axis chronologically in the order they were
captured along the transect. The grey curve shows the image size in square meters,
the black curve the coverage of the seafloor with PMNs. The area below the black
curve is split up to coloured bins that correspond to PMN size groups as described
in step 11 of then SND. The colours are the same as the outlines of the PMNs in
Figure 8.11.

10. Size computation: from the pixel region sizes |Rn,i| and qn, the size of
the nodules is determined in square centimetres

R̃n,i = qn · |Rn,i|

11. Visualisation: the PMNs are assorted to selected size bins to fuse nod-
ules of similar size to a group. These amounts can then be visualised
(e.g. in a histogram) to find parts of a transects with an interesting nod-
ule distribution (see Figure 8.12). The PMN coverage of the seafloor
can be back-calculated from the amount of nodules and their individ-
ual sizes, if required.

8.7.1 Speedup

This section refers to the publication:
"Ultra-fast segmentation and quantifica-
tion of poly-metallic nodule coverage in
high-resolution digital images"
Underwater Mining Insititute, 2013

In collaboration with the soft-
ware company Saltation, the
PCPA+SND approach was
improved regarding compu-
tational efficiency. Therefore
GPUs were used as well as
CPUs depending on computa-
tional steps that benefit from
either of these. Also the C++ program code was optimised regarding cache
efficiency. Both these strategies allowed to reduce the computation time for
one image from 53 seconds to less than 0.5 seconds. This performance was
further improved in unpublished experiments by utilising improved GPU
hardware.
The same efficiency improvements can be applied to the ES4C+SND ap-
proach as well. Given that the H2SOM training is ready (and the determi-
nation of b(heur) in ES4C) further images can then be assessed for PMNs in
real-time.
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Figure 8.13: Average per-image error for six settings. The first five columns are all
obtained with the ηtile

i,m as the reference gold standard. The first three columns show

Q(ηtile,ηcon), Q(ηtile,ηmed) and Q(ηtile,ηlib) for the manually selected assignments b(con),
b(med) and b(lib). The fourth column shows the BoP result Q(ηtile,η̃tile) and the fifth
the mask annotation Q(ηtile,ηmask). Here it can be seen, that the mask coverages ηmask

i,m

differ from the tile annotations. The sixth column shows the BoP resultQ(ηmask,η̃mask)

with the ηmask
i,m as the gold standard. From the columns four and six it can be seen,

that the BoP feature representation can describe the tile’s feature setup qualitatively
and is able to match similar tiles (i.e. tiles with similar nodule coverage). Although
ηtile
i,m differs from ηmask

i,m , the errors for both BoP trials are low. It is however not clear,
which annotation gold standard is better.

8.8 results

8.8.1 BoP

The ηtile
i,m and ηmask

i,m serve as the gold standard in a leave-one-out strategy

and yield coverage estimates η̃tile
i,m and η̃mask

i,m . Figure 8.13 shows Q(ηα,ηβ)

for six different experiments (see caption for details). By hand tuning the
prototype selection (see Section 8.5), an assignment b(lib) was obtained that
outperformed the BoP approach (Q(ηtile,η(lib)) = 3.72 vs Q(ηtile,η̃tile) = 4.12).
Anyway the creation of each b(man) is time-consuming and subjectively while
the BoP approach does not require any prototype specific assumptions. The
medium set b(med) produces a slightly higher error than the BoP approach
(Q(ηtile,ηmed) = 4.93) while the conservative set b(con) produces the highest
error (Q(ηtile,ηmed) = 9.68).

Two parameters control the BoP approach: θd and the tile size θT . The
evaluation of different θT shows lower errors Q(ηα,ηβ) for larger θT (see Fig-
ure 8.14). This reflects the effect, that for larger tiles, the BoP features become
less variable for single coverage classes. As the resource mining, if ever, will
take place on a scale larger than the images, this is beneficial, especially as
larger θT lead to shorter computation time.

Looking at the mismatch of the BoP estimates η̃ to the gold standards
ηmask and ηtile shows the ability of BoP features to qualitatively describe the
nodule coverage of squared tiles (see Figure 8.13). The problem lies within
the semantic annotation which any classification relies upon. After seeing
the mismatch between ηtile and ηmask, the individual tile coverages were com-
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Figure 8.14: Average image-wise error Q(ηα,ηβ) vs. tile size θT . Increasing θT leads
to smaller per-image errors Q(ηα,ηβ). The colours of the curves are as in Fig. 8.13.

pared and it is noticeable that while the ηmask overestimates the nodule cov-
erage, the ηtile estimates are even larger. This again shows the difficulties in
manual annotation without previous training (in case of the ηtile) but also
the subjectivity of any annotation process. As both annotations tend to over-
estimate the nodule coverage, the coverages determined by BoP will also
overestimate the true amount.

8.8.2 PCPA

Comparing the manual prototype annotations b(man) to the tile and mask
annotations shows that Q(ηα,ηβ) ∈ [8..13]. In case of the tile annotations, b(lib)

gives the lowest error (Q(ηtile,ηlib) = 4.9) while for the mask annotations, b(con)

results in the lowest error of Q(ηmask,ηcon) = 9.2.
This again shows the difficulty in selecting an appropriate gold standard to
evaluate the proposed PMN detection methods. A visual comparison of the
three annotation methods is given in Figure 8.20.

8.8.3 ES4C

A subset of ten images of T2 is used, where three images constitute the train-
ing set and seven images are used for validation. The allocation of images
to Γ train and Γval is done in twenty training runs with different selections to
cross-validate the computed results. The v(i) of the seven images in Γ train are
used to train the H2SOM and the v(l) of the three images in Γval as well as
the v(i) are then projected to their BMU (see Sections 8.3.1 and 8.3.2).
In the case of J = 161, the set of assignments B contains 2.93× 1048 elements.
Assuming the evaluation of each b(i) takes one floating point operation, the
search for the optimal assignment would still take far longer than the uni-
verse exists on all currently existing computer systems together showing the
necessity of a heuristic approach. Here, the evaluation of one evolution step
(i.e. computing the fitness function for 5, 000 b(i)) takes about one second.
Until termination, the average runtime over all runs is about 66 minutes.
The manually annotated assignment b(lib) is used as the gold standard. b(lib)

has a compactness π(blib) = 0.53. Figure 8.17 shows a visual comparison be-
tween b(heur) and b(lib).
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Figure 8.15: Three example images that are binarised according to the evolutionary
tuned b(heur).

Figure 8.16: The class assignment for b(heur), applied to three further images that
were not used during the H2SOM training, co-occurrence measurement or class
assignment search with ES4C. Two large structures appear, caused by the shadow
of a weight hanging down from the OFOS.

The mask annotation has a compactness of 0.47 but is not used for further
comparison to ES4C.
The results of one of the training runs are given as an example: after random
initialisation of the B(m)

0 , an initial value of π(b(heur)) = 0.58 was achieved.
The progression of π(b(heur)) over time for this run is shown in Figure 8.18.
A compactness of π(b(heur)) = 1 could not be achieved and thus the search
terminated after tmax = 5, 000 evolution steps with π(b(heur)) = 0.78. The bi-
nary segmentation regarding this final b(heur) is shown in Figure 8.15. Apply-
ing b(heur) to three images from the validation set yielded the segmentations
shown in Figure 8.16.
A numerical comparison is done for all twenty training runs with classi-
fier statistics, where b(lib) serves as the gold standard (see Figure 8.19). This
means that each pixel assigned to the nodule class, by both the manual and
the ES4C prototype assignments, is counted as a TP. The recall for the train-
ing images thus isQrec = 0.88which can also be seen in Figure 8.17 as almost
no blue pixels (i.e. FNs) appear. TheQpre is 0.47, visible through the red parts
(i.e. FPs) in the image. For the images in Γval, these quantities drop slightly.
Still, given by Qacc of Γval, 69% of the pixels of the images are assigned to
the correct classes without any manual parameter tuning at all. In the PMN
scenario, Qacc is a valid quality measure as ωnod and ωsed occur in similar
quantities. The average compactness π̄(b(heur)) of all twenty training runs is
0.82.

It was evident that the manual assignment b(lib) is less compact than the
automatically derived assignment. This was due to the assignment of some
prototypes to ωnod that were also widely distributed across the sediment
parts of the images. The automatically derived assignment mainly assigns
these prototypes to the background class (see Figure 8.17, red pixels). It is
discussable whether the manual assignment is better or actually too many
undecidable prototypes are assigned to the nodules rather than the sediment
class.
A major problem arises for some of the images where two large structures
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Figure 8.17: Visual comparison between b(heur) and b(lib). Green pixels belong to pro-
totypes assigned to ωnod in both assignments, black pixel’s prototypes are assigned
to ωsed in b(heur) and b(lib). Blue represents FNs (assigned to ωnod in b(lib) only) but
appears only scarce in these images, red stands for FPs (assigned to ωnod in b(heur)

only).

Figure 8.18: The progression of πheur during the evolution of one training run of
the GA. A major improvement was found after about 1, 750 steps. The highest value
obtained before reaching the maximum amount of evolution steps (tmax = 5, 000) is
π(b(heur)) = 0.78.

are visible: shadows of a pilot weight, used as a scale for the video system
(see Figure 8.16). These shadows account for a major part of the FPs that
result in Qpre = 0.34. An important advice is hence to use images with a
homogeneous content. In case of the PMN images this means to move the
pilot weight in future expeditions so that no shadow is cast in the visual
field.

8.9 summary

The results of the PCPA and ES4C approaches show the complicacy of the
task and the fundamental challenge to train an automated detection system
based on an unreliable gold standard annotation. The different prototype
selections in the PCPA result in coverage estimates that fall in the range of
the mask and tile based coverage annotations (see Figure 8.20, (b) - (d)). Al-
though the segmentation results obtained by ES4C tend to overestimate the
coverage, the resulting binary images show valid segmentations to nodules
and sediment. After a subsequent SND step, the coverages obtained by ES4C
are reduced and attain values similar to the mask and tile annotations (see
Figure 8.20, (h)).
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Figure 8.19: Segmentation quality for all training runs where the manual prototype
assignment b(lib) serves as the gold standard and is compared pixel-wise to the final
b(heur) of each run (see Figure 8.17). The first three bars show the average Qrec, Qpre

and Qacc over the training runs for the three images in Γ train, the last three bars show
the average Qrec, Qpre and Qacc over the training runs for the seven images in Γval.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.20: A comparison of pixel segmentations and tile coverages. In (a), the
considered patch of the original image is shown as a reference. (b) - (d) show the
prototype assignments bcon - blib with coverages ηcon = 0.13, ηmed = 0.21 and ηlib =

0.26. In (e), a hypothetical patch corresponding to the manual tile annotation of
ηtile = 0.20 is visualised. (f) shows the mask annotation and has a coverage ηmask =

0.19. In (g) the ES4C results is shown with ηES4C = 0.32. The last patch in (h) shows
the final detection result after ES4C and SND and has a coverage of ηES4C+SND =

0.24.

Scenario (C) concludes the Contribution part of this thesis. The devel-
oped methods are not perfect solutions to the general problems they shall
solve yet they are especially suitable to solve Scope (3) and thereby rep-
resent a major improvement to previous benthic CV methods. In case of
the PMN detection, automated methods are still scarce and thus no ref-
erence datasets or benchmarks exist to compare the developed methods
with others. Seeing the proposed methods as a starting point for further
improvements opens a wide field future developments and some ideas to
proceed from the current state are given in the next Chapter.





Part III

O U T L O O K

Applying automated methods in benthic imaging requires to de-
velop new, and adapt existing, algorithms and practices as shown
in the first two parts. It also means that pattern recognition ex-
perts and marine scientists have to adapt to those new ways of
interacting with the data to extract further knowledge.
Adding to the existing systems in part two, the following chapters
concern ideas and prototypes for future developments regarding
algorithms and data handling as well as discussions about limita-
tions and opportunities.





9
I D E A S F O R T H E F U T U R E

The final part of this thesis proposes improvements of, and extensions to,
the presented methods. Their applicability is discussed and future applica-
tion scenarios are described that can be targeted with the same (extended)
approaches.

9.1 further methods

9.1.1 Image normalisation

The colour pre-processing fSpice only targets the normalisation of the colour
spectrum of an image. Additional differences within and between images are
based on sharpness. Due to the effects of water on the imaging process (see
Section 2.3.2), the images tend to become blurry towards the corners. This
is similar to the illumination cone within one image. The sharpness is also
dependent on the camera-seafloor distance and different blurriness can thus
occur due to the movement of the camera platform. This effect is similar to
the altered colour changes induced by the same reason.
Although the causes and effects are somewhat comparable, there exists a
large difference as colour is a pixel property while sharpness refers to larger
regions like edges. Any sharpness normalisation strategy thus has to be fun-
damentally different from fSpice.
Currently one such method is being developed that uses the Brenner gradi-
ent [194] to assess the sharpness within subparts of an image. This gradient
is then used to adaptively apply a normalisation strategy based on a Laplace
pyramid of the image [57, 7.1.1] and a hierarchical non-local means filter
[195, 196].

9.1.2 Feature Descriptors

The different approaches to megafauna detection with SVMs and RFs as well
as kNN and H2SOM showed that similar detection qualities can be obtained
for the same set of features and a sufficiently exhaustive parameter tuning.
Therefore, megafauna detection is not so much a classifier problem rather than
a feature problem. The applied MPEG-7 and Gabor features were the best pos-
sible choice for the evaluated feature descriptors but there are more possible
feature descriptors that should be evaluated in the future (e.g. Zernike mo-
ments [197] or Local Binary Patterns [198]).
It could be seen, that SIFT and SURF features alone were not useful but they
might be a useful starting point in a detection system that is tuned to com-
putational efficiency. Such a system could use the SURF approach to detect
key points, which are then further described with more sophisticated feature

135
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descriptors to allow for a better classification.
The MPEG-7 features were particularly chosen since they consist of differ-
ent descriptors that should be able to cover a range of visual features. One
drawback of those features is that an extraction window has to be defined.
The size of this window governs the detection outcome (see Section 7.2.4)
and should thus be adapted to the individual sizes of the morphotypes to be
detected.
Currently, all feature sizes are the same to allow for maximum generalisabil-
ity as well as computational efficiency. Extracting features at different sizes
might be possible in the future when more powerful computer nodes are
available and species-specific feature sets can automatically be selected.
In recent work on marine image classification [199], super-pixels were used
as a low level feature to group similar local regions of images and only after-
wards compute a high-dimensional feature descriptor for that region. Such
an approach might be useful in the PMN detection as PMNs appear as ob-
jects that consist of one to many similar regions (see Section 8.1). In case of
the megafauna detection, a super-pixel based approach would be more chal-
lenging as benthic species either hide by appearing sediment coloured (thus
the objects are similar to almost everything else) or are very conspicuous yet
consist of several different sections (like translucent Holothurians).

9.1.3 Post-processing

9.1.3.1 Megafauna detection

In the current form, the tuning of the iSIS post-processing is computationally
expensive, and limited to a defined set of feature descriptors. If additional
feature descriptors or classifiers are added in the future, the complete tuning
of the feature normalisation, the SVM parameters and the post-processing
has to be redone.
By separating the detection process to different classifiers, the tuning process
would become easier to parallelise. Instead of a pipeline of SVMs then an
ensemble of different classifiers could be fused in a hybrid architecture. This
classifier model is somewhat similar to the idea of RFs but instead of single
classifier trees, multiple different classifiers like SMVs, kNN, RFs could be
used that each create an individual confidence map. Also, VQ approaches
could be used where prototypes u(j) would have to be annotated regarding
a class probability. A feature vector v(i) would then be assorted to its BMU
and the pixel confidence be set to the class probability of u(j). An additional
confidence map could be assembled from a saliency based approach [200].
All classifier results would be fused to a virtual stack of confidence maps. For
each pixel in this stack, a multi-dimensional feature vector v(x,y,conf) can be
created. This v(x,y,conf) encodes the probability of the occurrence of an object
regarding different classifiers and feature descriptors (see Figure 9.1).

The dimensionality of v(x,y,conf) depends on the amount of classifier - de-
scriptor combinations that are evaluated. In case an additional classifier or
descriptor is added to the detection process (e.g. because now the search pro-
cess targets an airplane’s black box, an object that no classifier before was
trained to detect), an additional layer would be added to the confidence map
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Figure 9.1: A schematic overview of the current iSIS system and a possible future en-
semble approach. Both systems are explained for one image only although of course
multiple images are part of the tuning and detection process. Green arrows stand
for (semi-)automated steps whereas blue arrows represent steps that require expert
annotations. The first row depicts the presented iSIS approach. Here, in the begin-
ning, a wide range of feature vectors are computed at once and normalised together,
resulting in 424 feature maps for the ROI of one image. From annotated POI posi-
tions and those feature vectors, SVM classifiers are trained and applied to the ROI
to create 9 confidence maps. In a post-processing step, each pixel is assigned with
a class label from which the positions of objects are computed in the final detection
step.
To allow for more flexibility and extendability, both the feature computation and
classifier steps could be broken up. The amount of feature maps N could thereby
be the same as for iSIS but be increased upon inclusion of further descriptors in the
future. From single feature maps or combinations of these, different classifiers can
then be trained with either supervised or unsupervised methods as long as confi-
dence maps can be derived from the classification process. Thereby a stack of N ′

confidence maps is created from which in a final step detection positions and classi-
fications have to be derived. This step would require a similar classification process
as in the step before and would also be based on expert annotations. In this final
step, confidence maps could be neglected based on a selection process similar to
feature selection methods.

stack and an additional dimension would be added to v(x,y,conf).
The final classification of a pixel would have to be determined by an ad-
ditional subsequent classifier that could follow the BoP idea where distri-
butions of probabilities, rather than prototype indices, are accumulated in
feature vectors v(x,y,BoP,conf). As adding a further dimension only adds a fur-
ther bin to the v(x,y,BoP,conf) the BoP approach would be computationally
beneficial.

9.1.3.2 PMN detection

The SND step of the PMN detection is solely pixel-based and does not incor-
porate regional information in terms of edges or shapes. One improvement to
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Figure 9.2: To the left, a PMN image, in the middle the result of the current SND and
to the right the result of an improved SND+. In a future SND+ approach, nodule
shapes are modelled by ellipsoids rather than pixel classifications. Thereby parts of
the nodules that are covered by sediment could be detected as well to allow for a
more accurate weight estimate.

make the delineation, that is the discrimination between two nodules, more
precise would be to incorporate knowledge about the shape of nodules (i.e.
SND+). Thereby the outline of individual nodules can be modelled includ-
ing parts that may be submerged in the sediment (see Figure 9.2). That way,
the SND+ step would become more computationally intense, yet it could
yield a volumetric information rather than only a 2D extent. Thereby the 2D
size information could be transformed to a weight estimate, the final target
of the resource exploration to pinpoint mineable locations.

9.1.4 Black boxes

All methods that were used in this thesis were chosen to prevent black boxes.
This is similarly true for the methods that were developed to address the
Scenarios (A) to (C). All intermediate results of the methods are in principle
accessible and can be traced back to make the computed results comprehensi-
ble. In other scientific fields like medical CV, this is an important prerequisite
to allow physicians to draw conclusions based on credible test results. As a
drawback, this limits the amount of applicable algorithms and prevents to
apply for example deep learning networks. These are currently in fashion
in other fields like face detection where a comprehension is not necessarily
required.
In benthic CV, there has not been a thorough discussion whether a full com-
prehension of intermediate algorithmic results is necessary to use the com-
puted results for further analysis.
In the case of megafauna detection for example, it is rather unimportant to
know how an object was detected and classified rather than having a high
quality of both steps. A small step towards such learning architectures has
been taken as mentioned in Section 7.6.
In the case of resource exploration though, it might be important to have
access to intermediate results. For a credible decision regarding resource
mining sites, not only the detection results will be considered but a wider
range of other parameters (e.g. bathymetric data, currents, distance to shore).
Intermediate results of the automated detection could add to this decision-
making process.
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9.1.5 Imaging hardware

Apart from improved software methods, it can also be considered to alter
the imaging hardware. Approaches exists that incorporate 3D information
from two 2D cameras (Stereo-3D) or one 2D camera that captures one object
from different angles (structure-from-motion). In other exemplary settings,
the imaging device records further parts of the visual electro-magnetic wave
spectrum and / or separates that spectrum (spectral imaging) to defined bins
for the assessment of light intensities at individual wavelength.
Those novel devices create data that is similar to the 2D image data yet fun-
damentally different in terms of interpretation possibilities. Incorporating
3D information to the species identification with iSIS could allow to reduce
misclassifications as it would be possible to measure the extent at which ob-
jects protrude from the seafloor. Incorporating multi-dimensional informa-
tion from multi-spectral cameras to the PMN detection might make the first
parts of the SND obsolete, as nodules might show a characteristic spectrum
that would render the feature based approach unnecessary.
Both approaches are yet in an Alpha- or at best Beta- state and have not
been been applied to large seafloor areas. Still images and video cuts cur-
rently constitute the most useful approach to large-scale seafloor mapping
with high resolution and relative cost efficiency.

9.2 further annotation ideas

9.2.1 Annotation morphologies

For the presented methods, different annotation morphologies were required:
i) point annotations for iSIS ii) tile annotations for BoP and iii) prototype an-
notations for PCPA. As explained (e.g. in 7.7.2) point annotations are often
not suitable for object instances, especially if further size information is re-
quired. Apart from rectangles / circles for the annotations, another strategy
thereby is to make use of the increasing availability of tablet computers. Their
intuitive user interface allows sketching the outline of an object with a digital
brush (i.e. draw the rough outline with a finger, see Figure 9.3). A computer
mouse is less efficient for such a task. The digital brush could also be used to
annotate a complete area rather than only the outline of an irregular shape.
Fusing brush annotations is similar to fusing other aerial annotations.

9.2.2 Annotation strategies

In case of manual point annotation, at first a point is selected in the detec-
tion step and afterwards it is assigned with a class label in the classification
step. Two different strategies could be applied to improve the quality of the
automated detection with iSIS:

• To mark POIs manually without a class label:
Thereby the detection step would be carried out manually and only the
classification step would be carried out automatically. The quality results
of iSIS indicate that such a strategy could be useful, as the training and
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Figure 9.3: An example of how a brush annotation could work. The objects of interest
are sea lilies that appear as elongated stalks eventually with a feathery crown at one
end. Annotation of such slim, long objects by points or polygons is inefficient but by
brushing the outline, the individual orientation can efficiently be captured.

test errors are low while the automated detection is the more compli-
cated step (i.e. lowQpre). Additionally, such a strategy could be applied
in a public science project, where the current (disputable [201]) hot-topic
of crowd sourcing is applied to let novices mark interesting points with-
out a class label and only afterwards apply an iSIS-like system to assign
a class label ω to each of the marked positions.
Such a strategy has been used in some of the benthic CV methods
given in the Introduction but none of these was as generally applicable
as iSIS.

• To detect POIs and manually assign a class label:
Based on the detection qualities of iSIS, detecting POIs and manually
assigning a class label looks unfavourable. Anyway, other detection
strategies, like saliency- of SURF-based methods, might be able to find
a small set of POIs per image without assigning a class label automat-
ically. This step would again be carried out manually in a subsequent
step, where experts are required. This scenario has the benefit, that ex-
perts worldwide could be specifically enquired to classify only the ob-
jects they are very knowledgeable of rather than examining complete
images. That way, a more precise classification could be achieved as
species-level annotations might be obtainable rather than lower-level
or morphotype annotations.
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9.3 marine applications

9.3.1 Other marine resources

Apart from PMNs, further resources reside in the benthic parts of the oceans.
As discussed in Section 8.1 those resources include massive sulphide deposits
at hydrothermal vent sites, Cobalt-rich crusts at seamounts and methane-
hydrates. To allow for a rapid yet detailed assessment of these deposits,
imaging can be applied there as well. To allow for a visual assessment, the
resources would ideally be visible on the seafloor. In other cases, visual as-
sessment might still be possible due to changes of the seafloor appearance,
caused by the resources occurring below. Two examples are a locally altered
species composition that is assessed by iSIS and a specifically altered sed-
iment composition that could be assessed by a detection system similar to
PCPA+SND (or ES4C if the assumptions made for this algorithm hold).

9.3.2 Integrated environmental monitoring (IEM)

Constantly monitoring a habitat or environment is an upcoming topic in ma-
rine exploration for both scientifically and economical topics. Watching over
a habitat constantly allows biologist to perceive changes immediately (e.g.
large additions of biomass that bait predators), to follow individuals over
longer timescales (e.g. to assess individual behaviour) and else. In economi-
cal scenarios, like PMN mining or deep sea drilling it is essential to be able to
monitor: i) the magnitude of inevitable impacts like sediment plumes and ii)
the occurrence of known events that are targeted to be avoided (e.g. accidents
like pipeline leaks) and iii) the occurrence of unexpected events (i.e. Nov-
elty detection) [202]. Monitoring solutions are required to assess (predicted)
changes of habitats [203, 204, 205], allowing to plan conservation strategies
[206] and to monitor the effect of conservation [207].
The term IEM thereby refers to the combination of different sensors includ-
ing, but not limited to, image based analysis. Imaging is one powerful tool
as it allows to visually inspect the raw data in a comprehensible manner. Un-
expected events can hence by assessed and interpreted by human experts in
case the automated system is not capable of doing so.
The presented methods (iSIS, SND) are examples of systems that do not in-
clude any means of detecting such events. They rely on a set of completely
known classes and fit everything they "see" into one of these classes. By
including a class ωUnknown iSIS could be extended to cover such scenarios
although the SVM for that class would probably result in several misclassifi-
cations. Assessing the impacts of mining requires the acquisition of images
prior, ideally during, and after the mining happens [137]. Therefore each area
has to be inspected in detail several times, creating massive data amounts.
Transferring those data amounts from the acquisition area to decision mak-
ers is a large effort. Due to the internationality of mining efforts (research
institution in countries all around the world, research and mining vessels
in international water, government supervision both nationally and by the
ISA) measures have to be taken to allow to access that data by contractors



142 ideas for the future

as well as the public to make the monitoring process as well as the mining
transparent.

9.4 integrated visual programming

The central vision for the development of future marine CV methods tar-
gets two user groups. The first group are the end users that are field experts,
usually with a background in biology or geology. This group requires sophis-
ticated PR tools, that involve complicated methods, which they are usually
not used to operate. Second are the PR experts that can design tools that are
operable without primary expertise in PR. This aim has been referred to as
Scope (3) and the methods presented in this thesis approach this scope but
will only answer some of the wide range of open questions in image based
marine research.
To allow for the development of further methods, an integrated framework
could be considered, where PR experts can easily develop individual process-
ing nodes. Such nodes could be generally applicable to a range of problems
and would be available to many users. That way, processing networks of in-
dividual nodes could be rapidly assembled. An example for a node could
be a kMeans clustering algorithm. This node could then be used as part of a
network to assemble the DeLPHI framework.
As not only the individual nodes could be made available to other scientists
but also the complete processing networks, solutions to a problem could effi-
ciently be shared amongst colleagues to allow for a more open but also more
standardised access to PR methods.
The sharing of PR methods is thereby similar to the sharing of image data.
One idea to implement a framework that allows large-scale data storage as
well as sharing of data and PR methods is given in Figure 9.4.
Such data processing for large image stacks by individual nodes is an obvi-
ous target for parallelisation on desktop computers, in local compute clusters
or in the Cloud. Control of the computation networks can be deployed as a
(desktop) client software or web application and a network would be de-
fined by a settings file that can easily be transferred to a powerful compute
cluster for processing. That way, the development of PR tools can be done
on smaller machines and thus be decoupled from larger compute hardware.
Rather than bringing the huge amounts of data to the software, the software
can then access data transparently on a server somewhere in the world. This
would allow PR experts to design sophisticated software that can either be
black-boxed or open for edits by the field experts if desired.
By allowing the PR experts access to the data both user groups gain most of
the cooperation, as the PR experts are interested in developing new methods
and doing PR research while the field experts usually target different ques-
tions by using the developed methods. The exchange is thus methods for data.
By developing tools in an integrated system, both sides can benefit the most.
A high effectivity can be achieved by being able to use existing tools (field ex-
perts) and being able to test new tools on a range of data (PR experts). High
efficiency can be achieved through the underlying compute power (field ex-
perts) and the node / network design framework (PR experts).
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Figure 9.4: A proposed, integrated framework where the interchange of data and
methods among field experts as well as between field experts and PR experts can
be streamlined. The data, be it images, annotations, meta-data or processing nodes
and tools is thereby split up to different repositories. These distributed repositories
take care of data backups but also allow that each institute keeps its data in-house.
Upon request, the data can either be made accessible over the Internet or be copied
to a different repository which allows for a faster data access at clients attached to
that repository. Derived data which is created for such copied datasets can then be
synchronised with the source repository to let data creators keep track of results
based on their work. This synchronisation is also beneficial in case an access over
the Internet is not possible, for example during research cruises.
Apart from copying and synchronising between institutional repositories it would
also be possible to create smaller repositories on individual client computers to make
data analysis less time-consuming.
Additional to the images and meta-data, the framework would allow for the inte-
gration of PR expertise as simple processing nodes, as well as networks and fully
fledged tools would be available. These are implemented by PR experts who are
kept in-the-loop of developing and designing tools but are not necessarily required
to apply those tools to data.
To approach large data volumes, one or more of the repositories can be located at
high-performance compute facilities of marine research institutions or be temporar-
ily moved to a commercial high-performance computing infrastructure.
To allow for a streamlined and transparent access to the data, a Central Access Point
would be required that keeps track of all the data locations and access rights but
stores no actual data. An interface would be available there that allows to retrieve
required data and request access to further data or tools. Adding data to a repository
would be done through one of the tools (e.g. BIIGLE to add annotations.)
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At this point, the developed methods to Scenarios (A) - (C) were pre-
sented, discussed and compared. Open questions, targets for improve-
ments and other applicability were reviewed.
The following (last) chapter of this thesis concludes the whole document
with a summary of the discussed topics and is followed by the Appendix
that includes some further example images and short depictions of devel-
oped processing nodes, networks and software tools.



10
C O N C L U S I O N

Defining scopes for benthic CV methods is a subjective task. In this thesis,
the selection of Scopes (1) - (4) was made to address fundamental challenges
of benthic image analysis. These fundamental challenges are part of the Sce-
narios (A) - (C) and the developed approaches present methods to bypass
and solve them.
For the large amounts of data that are recorded with different camera plat-
forms, the fSpice method is a helpful tool to obtain comparable data for both
manual analysis as well as automated CV systems. This method is the main
contribution in terms of Scope (1) and addresses the peculiarities of the
benthic imaging process. The distinctiveness of marine imaging compared to
other image understanding domains is thereby moderated and the applica-
tion of common PR algorithms to benthic images enabled.
The problem concerning the immense scale of the data volume is addressed
by the computational efficiency, that is required by Scope (2) and was accom-
plished in all three Scenarios (A) - (C) as well as the colour correction. By
implementing algorithms in C++ for use on large-scale compute infrastruc-
ture, a high efficiency is achieved. By designing tools as part of an integrated
method, a high effectivity can additionally be achieved. This effectivity pri-
marily refers to the implementation of further DM tools for the PR scientists,
but DeLPHI shows how such a high effectivity can be achieved for the field
experts as well.
In the current design of the algorithms, Scope (3) is always fulfilled, which
is the most important scope to make the tools available for the field experts.
One principal idea, to remove the PR expert in-the-loop, was implemented in
all scenarios. From that achievement, the creation of integrated tools (Scope
(4)) is a mere software engineering task. Such a software will allow stream-
lining the scientific process in the future: from data storage to data analysis
and finally data understanding. The extendability of existing tools as well as
the creation of novel software has been discussed to move further regarding
Scope (4).
For iSIS several starting points for further developments are available: an
application to further transects is needed to assess its quality for a broader
range of data sets; the classifier quality drop from the SVM tuning to the
detection has to be explained; species specific flexibility of system compo-
nents can be considered. Although iSIS has some limitations, it is the first,
general-purpose detection system for benthic images. It is by design appli-
cable to arbitrary objects, and thus not limited to benthic imaging use cases.
By incorporating field expert knowledge for the tuning of parameters, iSIS
allows to create specific PR systems for novel datasets.
The case of PMN exploration is of growing concern for policy makers, min-
ing companies and other stakeholders - detailed deposit assessment is only
one part of it. The methods described in Chapter 8 are an initial step in ben-
thic imaging based exploration. From the varying degrees of detail of the
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proposed methods, different questions can be answered. With the BoP rep-
resentation, coverage estimates can be computed. More detailed information
is available with the PCPA or ES4C methods combined with the subsequent
SND step. The dispassionate evaluation of all proposed methods for Scenario
(C) is not a given as the occurrence of errors is expectable due to the annota-
tion complicacy.
All proposed methods bypass the fundamental challenge of obtaining a reli-
able gold standard. By making the algorithms stable according to annotation
errors (by using SVMs in iSIS or filtering annotations in DeLPHI) or by re-
moving the annotation step completely (in ES4C), the tuning of the methods
becomes possible in the first place. The remaining task is to assess the quality
of the applied PR methods. As the annotations have shown to be erroneous
for all of the annotation strategies, a re-evaluation of classifier results is neces-
sary. Different quality quantifications could be developed in the future, that
are more stable according to annotation errors.
The challenges in adding semantics to benthic images, be it due to diverging
mental models of field experts or by quantifying automated CV methods,
create several unanswered research questions. These questions are primarily
methodological but targeted at the understanding of biological, geological or
anthropogenic processes in the benthic environment. Understanding those
processes and incorporating that understanding in evolved benthic CV sys-
tems is a way to bootstrap automation. Solving discordance of expert opin-
ions, making PR methods more easily useable and available, and providing
data archives to the public, are accompanying necessities to exploit benthic
imaging.
Automating semantic annotation of large benthic image archives is and will
be a challenging and rewarding scientific field. Creating detection systems
for this environment involves to address novel PR problems and every pur-
poseful method allows to answer questions about one of the last uncharted
territories on Earth, to "explore strange new worlds".
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A
F U RT H E R I M A G E S A N D V I S U A L I S AT I O N S

(a) Original image (b) fSpice with σGF = 53

(c) Original image (d) fSpice with σGF = 53

(e) Original image (f) fSpice with σGF = 53

(g) Original image (h) fSpice with σGF = 53

Figure A.1: fSpice pre-processing applied to four HG images taken in 2004 (a,c) and
2011 (e,g)).
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150 further images and visualisations

(a) Original image (b) fSpice with σGF = 53

(c) Original image (d) fSpice with σGF = 53

(e) Original image (f) fSpice with σGF = 53

(g) Original image (h) fSpice with σGF = 53

Figure A.2: fSpice pre-processing applied to four CCFZ images taken in 2010 (a,c)
and 2013 (e,g).
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(a) Original image (b) fSpice with σGF = 53

(c) Original image (d) fSpice with σGF = 53

(e) Original image (f) fSpice with σGF = 53

(g) Original image (h) fSpice with σGF = 53

Figure A.3: fSpice pre-processing applied to PAP (a), DNV (c,e) and Campod images
(g).





B
R A P I D D E V E L O P M E N T O F H I G H - T H R O U G H P U T
M E T H O D S

Developing sophisticated ML systems is a dynamic process driven mainly by
the data to be analysed and partly by the applied methods. As benthic images
are a novel image domain for CV methods and as the PR expert usually
has no expertise about the imaged objects, efficient collaboration between
field experts and PR experts is important. This directly leads to web-enabled
data exploration as intermediate results can effectively be discussed by both
experts independent of their individual location in the world.
Here, an overview is given of the developed tools and the used technologies.
Where appropriate, the tools are linked to the specific ML target as described
in the main text. The software described in this Chapter are examples for
tools that can be used in an integrated framework (see Section 9.4).

b.1 the idea behind olymp

To allow for the rapid computation of results and the rapid development
of visualisations for these, a combination of high-throughput C++ routines
and rapidly prototyped PHP scripts was targeted. The C++ routines perform
the computation intense tasks like image processing (e.g. pre-processing, see
Section 5.2.1) or ML (e.g. PMN detection, see Chapter 8). The computation
of results is thereby executed on a high-performance compute cluster (see
Section B.2), parallelised usually per image or per parameter if a parame-
ter space is explored for the best setting. The execution of jobs is initiated
through a PHP web-interface.
The individual nodes are linked together to a network where each individ-
ual node (e.g. pre-processing, feature extraction, fusion of a training set, ML,
classification, ...) is determined through three standardised files:

• a JSON file that contains all parameters governing the execution step
as well as dependencies between these parameters

• a PHP script that contains methods to collect the data described in the
JSON file as well as to validate the inputs given by a user

• a C++ file that contains the executable source code and accesses the
parameter data from the JSON file and the user input

The standardisation makes the implementation of new nodes efficient as the
scheduling on the cluster is already governed through the web interface as
is the job monitoring and the management of the computed results.
Further PHP scripts (and tools, see Section B.4) are available to process the
data and to create web-based visualisations that can then be assessed by the
field experts.
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Figure B.1: Setup of the infrastructure of the web-based data exploration tools. The
ground data is on the left as the CeBiTec FileServer to store for example raw image
data as well as the BIIGLE database. Further databases like COMVOI are required
by some tools. A set of libraries is used to ease the access to the data (e.g. Apollon
contains convenience functions to fetch MySQL data, Demeter and Hades include
functions to access the file server). The libraries are included in the backend part of
the tools. Communication of the backend with the front-end is governed through the
JSON-RPC interface Hermes for which PHP and JavaScript implementations exist.

b.2 infrastructure

The web environment is based on standard technology: an Apache 2.2 web
server is mostly running PHP 5.3 scripts (and some Python). MySQL 5 databases
are used where required. On the client side, HTML5, CSS3 and JavaScript (in
combination with jQuery 1.7 and Bootstrap) are used to implement the GUIs
(see Figure B.1). This environment allows to run all the tools, as explained in
the following, in common web browsers (e.g. Chrome, Firefox, Safari).
To send data from the GUI to the web server, RPCs were enabled through a
novel implementation of the JSON-RPC standard that is aimed at simplicity
(see Section B.3.5).
The compute cluster of the CeBiTec1 is governed through the Sun Grid En-
gine and was accessed through Python scripts with a DRMAA interface (see
Figure B.2).

1 https://www.cebitec.uni-bielefeld.de
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Figure B.2: Setup of the cluster job execution and monitoring. Through the Ares web
GUI, jobs are defined and executed. A job is an execution of a node and could e.g. be
a feature extraction. Some header information is then stored in the BIIGLE database
for later retrieval of the job. The Hades library then takes care of the creation of
JSON control files for each single job such that the cluster computers do not have to
access the MySQL database. With Athene, all jobs in the database can be listed and
access is provided to the job parameters, the computed results and the execution
status of recently started jobs.

b.3 basic libraries and tools

To allow for the standardisation of the node development, some libraries
were implement in C++ as well as PHP. Additionally the job execution and
monitoring was implemented in PHP and based on these libraries.

b.3.1 Hades

Hades is the name of the set of PHP and C++ functions to allow for stan-
dardisation. Each node that is handled through Olymp has to conform to a
common naming and identification scheme for the input locations, interme-
diate job-control files and output locations. Hades then takes care of:

• the creation of the following execution requirements

– a record in the job database with a unique job-id

– the output folders named with the job-id

– the batch job specific configuration file (JSON)

– the configuration files for the individual jobs (JSON)

• monitoring job progress
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• cleanup and user notification on successful job completion

The web-based job execution and monitoring tools utilise the PHP version of
Hades whereas the compute apps rely on the C++ version.

b.3.2 Apollon

Apollon refers to a set of higher-level PHP functions that were regularly re-
quired for various tools. The functions are split to different modules and
contain (amongst others):

• ArrayProcessing: transformation of arrays, key-value analysis, array
arithmetic

• ArrayStatistic: minimum / maximum / mean / variance value determi-
nation, outlier detection, value distributions

• Cumulation: binning, summation

• Filter: removal of small / large values, search for strings

• HSV: colour space conversion

• ImageProcessing: creation of images, colour allocation, morphology op-
erations, cropping, scaling

• ImageStatistics: histogram computation, histogram statistics

• InputOutput: reading images and text files

• MachineLearning: classifier statistics

• SQL: efficient database access, querying single values, key-value pairs
or complete rows

• Visualisation: scatter plot, Tukey plot, parallel coordinates plot, box
plot, line charts, histograms

A small set of very basic utility functions is further transferred to the mini-
malistic Demeter library that contains functions to check files, fetch and en-
code / decode JSON files, extract values from different types of arrays, count
files, fetch files in a folder, transform file paths from / to URLs and else.
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b.3.3 Ares

The job preparation and execution is performed through Ares which relies
on Hades, Apollon and Demeter. Ares is a web-application where a user can
select one out of the set of available, standardised nodes. For this node, the
possible input parameters are presented in a GUI, eventually together with
default values (see Figure B.3). The user can then modify the parameters and,
based on the inputs, further derived data can be gathered (e.g. a transect is
given and the associated images are loaded from the database). When all
parameter inputs are valid, the user can specify a queue of the compute
cluster, the amount of parallel jobs and finally start the job execution.

Figure B.3: An example of a job execution with Ares. The node gauss_preprocesing
has been selected that applies a colour normalisation to images (see Chapter 5). A
Job info can be attached to name the job. Below that, all header parameters are given
(transect_id, kernel_size, etc.) that are the same for each single job of a batch job.
Parameters that are given in bold face have to be specified, those that are given in
cursive and grey can not be specified by the user but are derived from other param-
eters (e.g. in this case the image_path that corresponds to the selected transect_id).
The detail parameters (e.g. here image_ids) follow the header parameters and vary for
each single job. The amount of values given for all detail parameters has to be the
same and defines how many parallel jobs will be executed on the compute cluster.
The bottom of the page contains execution flags to run the jobs in a specific queue of
the compute cluster, to limit the job amount to prevent cluster overload and finally
the execution button. The first click on this button starts a validation process of all
the given parameters and only when this validation succeeds, a further click on the
button will then start the batch job execution.
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b.3.4 Athene

The job monitoring is performed through Athene which relies on Hades,
Apollon and Demeter. Athene is also a web-application where a user can
browse all the cluster jobs she / he executed. Information regarding the job-
specific parameters, the execution state and the log files of the individual
jobs are accessible (see Figure B.4). In case a job failed, it can be efficiently
explored what caused the crash and it is possible to restart the execution
of the failed jobs only. Currently running jobs can be terminated and the
(intermediate) results of crashed or finished jobs can be deleted from the file
system as well as the database.

Figure B.4: A screenshot of the job monitoring tool Athene. In this case, all executed
batch jobs of the node nodule_detection are shown. Each batch job is defined by a
uid that is a key to the job database. The following two columns contain the SGE
job id (sge) and the time of the execution (date). The column with the fire on top
shows the amount of failed jobs (i.e. here none for all batch jobs), the next column
gives the number of single jobs that were started (only for the first four jobs is that
information still available). The next column contains a link to the header parameters
JSON file. The column with four zeros for the first four jobs would contain links to
the JSON files of the single jobs (i.e. the detail parameters), but as all jobs succeeded,
the files were automatically deleted, thus zero files remain. The next column gives
the amount of result files that were created by the complete batch job. The info
column gives an overview of the most important parameters for this job to get a
rapid overview of the different job executions. The next three columns contain links
to delete i) the complete job, ii) the job results and iii) the log files. There is a last
column (that is also empty here for all jobs), where a job that is still running on the
compute cluster can be terminated or a failed job can be restarted.
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b.3.5 Hermes

To enable the communication between the web GUIs and the PHP scripts
on the Apache web server, Hermes was implemented as an alternative to es-
tablished JSON-RPC libraries. Hermes dynamically searches for the queried
remote procedure rather than maintaining a static repository of available pro-
cedures. This allows for the rapid development of new functionality as new
repositories are defined solely by creating a new folder and new procedures
are defined through the creation of PHP files and the implemented functions
within these.
JSON-RPC requires that each query contains a method tag which specifies the
remote procedure, for example a call to Atlas.IndexImage.showHighlightImage

will make Hermes include the file IndexImage.php in the folder Atlas. Within
this PHP file, a class IndexImage has to exist that has a member function
showHighlightImage implemented. Further, each JSON-RPC contains a set
of JSON encoded parameters params and an id to identify the returned re-
sult on the client side. The result is thereby also encoded as JSON.
On the client side exists a further minimalistic Hermes JavaScript library to
simplify the querying and error handling.

b.4 pan

Apart from the cluster job applications Ares and Athene, a set of further
web-applications was developed based on Demeter, Apollon and Hermes.
These applications were implemented for a broad range of distinct tasks:
DM (Atlas), data browsing (Poseidon), detection result visualisation (Nodule
Browser) and else and could be implemented rapidly due to the Olymp li-
braries and standardisations. To keep an overview of the increase of applica-
tions, they where fused in a repository called Pan.

b.4.1 Zeus

The most important web-application for the rapid exploration of results and
the preparation of intermediate visualisations is Zeus. It came into existence
due to laziness, i.e. to remove the change between the text editor within
which a code snippet is edited and the web browser within which the snip-
pet is executed (i.e. save file, change from editor to browser, reload page).
Zeus thus is a web-application that is split in two parts: the top is occu-
pied by a browser-based PHP text editor and the bottom is occupied by an
iFrame within which the PHP code snippet is executed (see Figure B.5). The
code execution is triggered by clicking on the "Run" button or, even faster,
by pressing the "escape" key. Zeus is user-specific and code snippets of a
user can be stored and loaded as well as exchanged between users. As all
the convenience functions of Demeter and Apollon are available for the snip-
pet writer, new code can be written effectively and efficiently be debugged
and improved. The written code is thus also more compact than native PHP
code.
The distribution of browser window space for the editor and the iFrame
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Figure B.5: A screenshot of Zeus. The top part contains the control section: a button
to run the code snippet that is edited in the text editor, a combined input and search
field to load saved snippets or define the name of a new one, the load / save button,
two links to open a new editor and to open a version of Zeus with the same snippet
loaded but without the text editor. The buttons on the right adjust the size of the
text editor part and the iFrame. Finally the search field at the far right can be used
to search for convenience functions defined in Demeter, Apollon and Hades. Below
the control section follows the text editor with PHP syntax highlighting. Finally
at the bottom is the iFrame that contains the result of the execution of the PHP
code snippet. In this example, confidence maps I(ρ,ω) of iSIS are explored. The
automatically created GUI elements allow to test different parameter settings for
ε
ωi
ρ , εωiC− and εωiC+.

can be adjusted, for example when the development of the script is mostly
finished, it is suitable to enlarge the iFrame to have more space for the visu-
alisation.
When the code snippet is dependent on input parameters, these can be spec-
ified in a special variable at the top of the snippet. Zeus then automatically
creates GUI elements to let the user click through the given values for multi-
ple parameters without editing the source code. This also allows to hand over
the visualisation to field experts by presenting them only the iFrame with the
executed snippet without the possibility to edit the source code. The expert
can then click through the specified parameter options and determine the
setting that is deemed most suitable
There are currently 190 scripts available in Zeus. These scripts primarily han-
dle result aggregation and visualisation purposes.

b.4.2 Atlas

Atlas is a DM application initially developed to explore the results of an
HSOM (or H2SOM) clustering of an image. To investigate such a clustering,
it is of interest which pixels of the image were mapped to which HSOM pro-
totypes. This is enabled through a link and brush interface where on the left
of the GUI an image is shown and on the right the HSV disc representation of
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Figure B.6: Atlas is a visualisation tool to explore H2SOM clusterings. This screen-
shot shows Atlas after an image and a clustering have been selected and some DM
has been performed. The largest part of the GUI is occupied by the sample image
from which feature vectors were extracted and clustered. This means, that for each
pixel in the image a cluster prototype is available that can be colour coded. In the
top right, the H2SOM neurone topology, as projected to the 2D hue disc of the HSV
colour space, is shown. A further visualisation is given at the bottom left of the GUI
as a histogram of the amount of pixels of the sample image that were assigned to
each neurone. The aim in this exploration scenario was to manually pick neurones
that represent PMNs in the image. Picking neurones is done through mouse clicks
either on a pixel in the image, on a node in the topology visualisation or on a bar
in the histogram. Selected neurones are highlighted in green. The most recently se-
lected neurone is given in red. On the bottom right, some visualisation parameters
can be adjusted (e.g. display and opaqueness of overlays), the image can be changed
and the selection of neurones stored to re-use it for the selection of neurones in an
other image.

the HSOM topology. A mouse-based user interaction then provides the con-
joining information: a click on a pixel highlights the neurone and all pixels
in the image that were assigned to this neurone, hovering the mouse cursor
over the neurone respectively highlights the pixels in the image. Below the
image, a histogram representation is displayed, that visualises the amount of
pixels assigned to each neurone.
It is then possible to manually select a group of neurones that are deemed
to represent a specific class (e.g. PMN) and store this selection as a manually
annotated gold standard of arbitrary semantics (see Section 4.2.2). The com-
bined set of selected neurones can be shown as an image overlay as well as
the combined set of gold standard neurones. Gold standard sets that were
created for one image and have been stored, can be loaded and applied to
other images to see wether the selection of neurones is generalised enough
to be applied to other images.
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b.4.3 Plutos nodule browser

One end-user targeted web-application is the Plutos nodule browser that
was implemented to visualise the transect-specific results of a nodule de-
tection (see Chapter 8). It was developed on top of Demeter, Apollon and
Hermes. The expert user can select a transect for which at least one detection
is available. The visualisation then consists of a histogram where each bar
corresponds to one image of the transect. The bars are further split to bins
where each bin is colour coded and stands for a nodule size group occurring
in the image (see Figure B.7). This allows to rapidly get an overview of the
size distribution of nodules in a transect. Additionally, the seafloor coverage
is given in percent as well as the camera-seafloor distance for each image.
Following the IV mantra, this overview visualisation allows to access further
details by a mouse click on a histogram bar. The image corresponding to
the bar is then shown together with a colour-coded outline of each detected
nodule.

Figure B.7: With the Plutos nodule browser, detection results are visualised. In the
top left, a transect and detection system can be selected. For that detection, a his-
togram is plotted where each vertical bar corresponds to a single image of the tran-
sect. Each bar is split into colour-coded bins describing the size of the detected
nodules. Additional to the nodule counts, the area of the image is given (the grey
curve) as well as the coverage of the image in percent (black curve). A mouse click
on a histogram bar then loads the corresponding image which is displayed in the
bottom (left). Next to it on the right, a copy of the image with the detection result
as an overlay is shown. Here, the same colours are used as for the histogram bars to
visualise the size of the individual nodules.
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b.4.4 Poseidon

Initially, the underwater images were stored in the Flash-based web-application
BIIGLE (see Section 4.4.1). It is still used to browse transects and manually
annotate objects but is difficult to extend to new tasks as Flash develop-
ment requires special software development pre-requisites as well as browser
plugins. Therefore, Poseidon is a first approach in the development of an
HTML / JavaScript-based web-application for the management of large im-
age volumes. An important feature is the overview of complete transects
regarding annotation status of each individual image. Further, the different
pre-processings (see Section 5.2.1) that were computed for a transect can be
accessed, which was not possible in BIIGLE at all (see Figure B.8).
Annotation is not a part of Poseidon yet, but the fundamental techniques
were implemented in Delphi (see Section 6.1) and can be added to Poseidon
as well. An important task for the future is to allow for the efficient inclusion
of large images. As camera resolution increases, it becomes infeasible to trans-
fer complete images over the Internet, rather subsampled versions should be
assessed and only on request the high-resolution data be presented.

Figure B.8: A screenshot of Poseidon after a transect has been selected. At the top,
the image position within the transect is given as a red bar. Below that, a selection
of eight thumbnails is given that show images in the transect directly before and
after the image that is currently displayed. The buttons to the left / right change the
displayed thumbnails and move the selection to the beginning / end of the transect
or move in smaller steps towards the beginning / end of the transect. The thumbnail
view is only displayed upon request, i.e. when the mouse cursor is moved towards
the top of the GUI. The main part of the browser window is occupied by the cur-
rently displayed image. At the bottom is a further bar that is currently invisible
that displays information about the current transect and image as well as to switch
between differently processed versions of the transects images (e.g. computed by a
gauss_preprocessing).
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b.4.5 Ate

With Ate, automated detections and expert annotations can be re-evaluated
(see Section 4.3). The detections are defined by point annotations and small
patches of the image, corresponding to the detection positions, are shown to
the expert. The top of the GUI is occupied by a selection of morphotypes
(e.g. species, abiotic classes) that are re-evaluated where for each morpho-
type some manually validated example patches are shown for comparison
(see Figure B.9).
The user then selects one of the morphotypes and starts exploring the de-
tections that are given below. The detections are eventually already assorted
to candidate classes. A single click on the candidate patch then assorts the
corresponding detection to the class of the selected morphotypes. Therefore
the label_id is changed in the database and the image patch is removed from
the GUI. The user can thus rapidly assess the detections and assort each de-
tection that is deemed to be unambiguous to the assumed class. Ambiguous
candidates can then be assessed by other experts or be assorted to less dis-
tinct classes that are also selectable in the morphotype set (e.g. higher levels
in the phylogenetic tree).

Figure B.9: Screenshot of Ate after a transect and detection system have been se-
lected. At the top, some information about the detection system are given. Below
that, a selection of twelve morphotypes is given together with the nine most recent
annotations of these as a reference. The remainder of the GUI contains patches that
correspond to detections that shall be re-evaluated. The expert thus selects one of
the morphotypes at the top and then clicks on each patch that is deemed to belong
to the selected class. The detection is then assigned to that class in the database and
the patch is removed from the GUI.
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b.4.6 tinySQL

Accessing the fundamental MySQL database that is used for BIIGLE, Posei-
don, Ares and else can be done in many ways: through PHP snippets in Zeus,
through a command line application or through a sophisticated MySQL man-
agement software like PHPMyAdmin. Mostly, a small subset of the MySQL
functionality is required (e.g. selecting and filtering data). Therefore tinySQL
was implemented that is comparable to Zeus: a text editor in the top part to
write SQL commands and an iFrame below to show the results of the query
(see Figure B.10). One of the available databases can be selected and the con-
tained tables are shown where the table content or the table setup can be
browsed through a single mouse click. SQL commands can be edited in a
small text-editor with SQL syntax highlighting. Queries are executed as in
Zeus through a button click or by pressing "escape". The query results are
displayed in tabular form and the recently executed queries are shown at the
bottom of the GUI and can be re-executed by a single mouse click as well.
The SQL commands are transferred with Hermes and executed through the
PHP interface thus the whole range of SQL commands can be executed.
tinySQL is thus very flexible and still very fast and thus allows to rapidly
develop a novel SQL query as well as to access the database as such.

Figure B.10: Screenshot of tinySQL after the BIIGLE MySQL database has been
selected. At the top, all the tables in the selected database are given (blurred here
for safety reasons). Below the tables is a text editor with SQL syntax highlighting
to edit SQL commands. A click on the button to the right of the editor executes the
command. In the iFrame below, the result of the command execution is displayed.
At the very bottom is a list of the recently executed commands together with the
time they were executed (also blurred for safety reasons).
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b.4.7 Spectra

Spectra allows a very detailed view on image-processing and (intermediate)
ML results. This can e.g. be feature maps or confidence maps for different
classifiers. The maps are not presented as such (i.e. as images) but are cut
to one-dimensional "spectrums" that represent a single row (column) of the
map. The user can select an arbitrary group of spectra to browse, e.g. a com-
bination of feature maps and classifier results. Then, by moving the mouse
cursor over the original image, the spectrum that corresponds to the row
and column of the current mouse position is dynamically shown (see Figure
B.11).
Thereby cluster maps are colour coded to represent the confidence values of
different classifiers (e.g. in megafauna detection, see Chapter 7, each morpho-
type is classified with an individual classifier). Feature maps usually consist
of high-dimensional representations for each pixel and each dimension is
thus visualised by an intensity value.
A mouse click on a pixel location keeps a copy of the spectra at the clicked
location fixed and allows to move the mouse to another point in the image
for comparison of the spectra at two different pixel positions.

Figure B.11: A screenshot of Spectra after an image has been selected that is dis-
played in the top left part of the GUI. To the bottom right of the image, buttons
are available to move to the previous / next image in the transect. In the drop down
menu to the right of these buttons are all (intermediate) PR results, that were com-
puted for this image. By selecting one, the corresponding data is dynamically loaded
(through Hermes) and the spectra are shown: all column-wise results to the right of
the image and one row-wise below the image (this is due to the limited monitor
space). Moving the mouse cursor within the image, the spectra change all the time
according to the current mouse position. Here, one position was fixed (the right of
the two spectra) while the cursor was moved to another position (the left spectrum).
In this case, the spectra correspond to SVM confidence values and are colour coded
for SVMs of different morphotypes.
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b.4.8 Delphi

Delphi targets the manual annotation of LPs to train an efficient automated
detection of LPs. The principles are explained in Chapter 6. Delphi is imple-
mented based on Hades, Demeter, Apollon and Hermes.

b.5 high-throughput

On the C++ side, computational speedup was partly achieved by using the
CeBiTec compute cluster. Here, the jobs were usually split image-wise such
that for a transect of N images N independent jobs were started. For data-
intense tasks, e.g. feature extraction, where the data does not fit in current
RAM (i.e. > 4GB) the tasks were further split up to subparts of images.
Further speedup was achieved by using the open-source IP library OpenCV2.
For the ML part, two related C++ libraries, developed in the Biodata Mining
Group were used. The first was the MLlib, of which the second, mali3, is a
successor. The MLlib was developed with other data than benthic images in
mind but was mostly suitable therefore as well. To incorporate advances in
compiler technology (e.g. vector expressions) and programming paradigms
(e.g. lambda-functions), the core module of mali was developed as a deriva-
tive of the MLlib by Daniel Langenkämper, Jonas Osterloff and Timm Schoen-
ing. The development of mali had improved computational performance in
mind as well as ease of use to let new users (e.g. students) get started quickly
with the library.
The MLlib and mali both have various modules, e.g. for IP (based on OpenCV),
feature computation, DM and ML.

b.6 outlook

Storing large volumes of image data (i.e. transect images) together with
even larger volumes of derived data (e.g. pre-processed images, classifica-
tion maps) is a task that is not exclusive to benthic imaging. The BIIGLE sys-
tem is specialised for, and solely targeted at, this image domain. Within the
Biodata Mining Group a further image data storage and exploration system
was developed for microscopy image based research. The system is called
COMVOI (Collaborative Mining and Visualisation of Ordered Image sets)
and can handle a broad range of image types (i.e. the ordered image sets:
single channel, multi-channel, time-series or spectral images as produced
by Raman- or MALDI-imaging). As transects are a further type of ordered
image set, COMVOI was developed in 2012 with the possibility to include
benthic images as well. This allows to apply the variety of exploration tools
available in COMVOI to these images as well. So far, not all methods cur-
rently available in BIIGLE were made available in COMVOI so the fusion
process is still ongoing.
One central part of COMVOI is the possibility to model data transforma-
tions with various tools. Therefore arbitrary mappings of data (e.g. feature

2 http://opencv.org/
3 https://ani.cebitec.uni-bielefeld.de/mali
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Figure B.12: A preliminary screenshot of the experimental data-flow tool Gaia. In
the control section on the right, the user can select a session that corresponds to an
execution network. Those sessions can be started upon request as a C++ application
on the compute server. Below the currently running sessions, different data flow
networks (here called pipes) are available. The main part of the GUI contains a
visualisation of the network with processing nodes as squares, connection pins as
green squares and connections between nodes as blue lines. Nodes can be moved
around by the user with the mouse and connections are also drawn with the mouse.
In this simple example, an image is loaded from the file server, it is converted to
grey scale and the frequencies of grey values are computed in a histogram that is
then dumped to a file.

extraction, HSOM training) can be stored in the database. Through several
mappings, combined with source and intermediate data, a network of data
processing nodes is constructed with data (e.g. image sets) flowing through
the network. Such data flows can efficiently be implemented and controlled
through graphical programming interfaces as proposed in Section 9.4. First
steps in this direction were made with the prototype web-application Gaia
(see Figure B.12) that allows to start a C++ session server on the compute
cluster, to load a node network, to visually represent it in the browser and
execute it in a single thread on the compute cluster. The web backend of Gaia
is also based on Demeter, Apollon and Hades while the processing nodes can
be implemented with arbitrary C++ libraries (e.g. OpenCV, mali).
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