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Abstract The sense of touch allows humans and higher animals to perform
coordinated and efficient interactions within their environment. Recently, tactile sen-
sor arrays providing high force, spatial, and temporal resolution became available
for robotics, which allows us to consider new control strategies to exploit this impor-
tant and valuable sensory channel for grasping and manipulation tasks. Successful
dexterous manipulation strongly depends on tight feedback loops integrating propri-
oceptive, visual, and tactile feedback. We introduce a framework for tactile servoing
that can realize specific tactile interaction patterns, for example to establish andmain-
tain contact (grasping) or to explore and manipulate objects. We demonstrate and
evaluate the capabilities of the proposed control framework in a series of preliminary
experiments employing a 16 × 16 tactile sensor array attached to a Kuka LWR arm
as a large fingertip.
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1 Introduction

The sense of touch allows humans to perform coordinated and efficient interactions
within their environment.Without the sense of touch, subjects have severe difficulties
maintaining a stable grasp or performing a complex action such as lightning matches
[1, 2]. Also in robot applications, lacking tactile feedback results in loosing an ini-
tially grasped object or failing to robustly carry out manipulation tasks [3]. In recent
years, the resolution and sensitivity of tactile sensors only sufficed for basic force
feedback during blind grasping [4]. However, tactile sensor arrays providing high
spatial and temporal resolution as well as high sensitivity [5, 6] emerged recently,
allowing for more advanced control methods involving tactile feedback too.
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Such control approaches—which we denote as tactile servoing in accordance
to corresponding control approaches involving direct visual feedback—require
advanced tactile perception methods and their integration into control programs for
direct robot control. Tactile servoing includes important tasks like sliding a finger tip
along an object’s surface, tracking specific surface structures like ridges, searching
for distinctive tactile patterns, or exploring the object shape by groping. Most of
these tasks are essential for both in-hand object manipulation [7], and haptic object
identification [8].

Drawing on ideas for visual servoing and applying image processing algorithms
to the tactile force image provided by modern tactile sensor arrays, it is possible to
extract basic tactile features in real time and employ them for robot control. The
challenging mission is to find generic features, which not only work in specific hard-
coded control scenarios on a specific type of tactile sensor, but that generalize to a
rich set of control tasks and sensor types.

We argue for a unified and open control framework that can cover many grasping
and manipulation tasks including tactile exploration. The proposed control approach
facilitates the exploitation of task symmetries to unleash redundancies which can be
efficiently utilized by subordinated tasks. Different, challenging tasks can be eas-
ily composed from a set of basic control primitives without the need for a detailed
situation modeling (object and hand shape, friction properties, etc.), thus providing
the foundation to yield robust manipulation skills also in unknown and unstructured
environments.

The remaining chapter is organized as follows: In the next section we introduce
the general concept of the control basis framework and discuss how efficient local
motion generation methods can reduce the need for explicit planning in grasping of
unknown objects. The subsequent Sect. 3 will introduce some recent tactile sensor
developments and vision-based feature extraction methods to yield tactile features,
which are at the basis of four tactile servoing control primitives. Finally, in Sect. 4 we
describe and evaluate some tactile exploration tasks that impressively demonstrate
the power of the proposed control framework.

2 Planning-Less Grasping in the Control Basis Framework

Grupen et al. first developed the idea of the control basis framework (CBF), which
allows to realize complex tasks by composition of several basic controllers [9, 10].
Each of those controllers realizes resolved motion rate control, mapping updates
of task control variables Δx to joint angle updates Δq of the robot. An important
key idea was to stack controllers by priority allowing a subordinate controller to
operate in the null-space of a higher-priority controller only, which can be easily
achieved using appropriate null-space projections. Given any nonlinear relationship
x(q) between joint and task-space variables, the relation of their velocities at any
point t in time is linear and given as

ẋ(t) = J (q(t)) · q̇(t), (1)
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where Jij(q) = ∂xi/∂q j is the task Jacobian at time t . Then, the solution to realize
three priority-ordered task space motions ẋ1, ẋ2, ẋ3 looks like this:

q̇ = q̇1 + N1 (q̇2 + N2q̇3) (2)

= J+
1 (q)ẋ1 + N1

(
J+
2 (q)ẋ2 + N2 J+

3 (q)ẋ3
)
, (3)

where J+
i denotes theMoore-Penrose pseudoinverse of Ji and Ni = 1−J+ J denotes

the corresponding null-space projector of task i = 1, 2, 3.
Towork in practice, it’s important, that every controller’s null-space is rich enough

to accommodate lower-priority motions, i.e. that there is enough redundancy. How-
ever, classicalmotion planning approaches attempt to control the end-effectormotion
in all six degrees of freedom (dof) and thus do not leave the necessary redundancy.
But, exploiting the inherent symmetry of many everyday tasks, we can restrict our-
selves to a few task-relevant dofs and thus gain the required redundancy.

As a prominent example, consider the grasping of a spherical object. Nowadays
grasp planning approaches attempt to generate and evaluate grasps that approach the
sphere from all possible directions [11]. However, in this particular task, it’s only
important to drive the hand towards the sphere—no matter from which direction.
This reduced task description only consumes a single dof, namely the hand-object-
distance, and frees up all other dofs. The resulting task-space motion ẋ is a straight-
line towards the goal,much like in classicalCartesian control.However, the redundant
space at a given goal distance is the complete sphere around the target and any null
spacemotion is automatically projected onto this sphere. In thismanner,we can easily
approach spherical objects for grasping from any direction, without the need to pre-
compute a multitude of feasible grasps in advance. The corresponding task Jacobian
J‖·‖ can be easily computed from the Jacobian J of the standard forward transform:

J‖·‖ = (x − xgoal)t · J (4)

Similarly, grasping a cylindrical object, like a bottle, only requires to align the hand
axis with the object axis—the orientation angle around this axis can freely be chosen
[12]. To allow even more flexibility, one may specify a task-space interval instead
of a unique target value [13]. Within the original control basis framework, Platt et
al. also propose more abstract controllers, e.g. to maintain force closure, to optimize
grasp quality, manipulability, or visibility [14].

2.1 Collision Avoidance

In the context of motion planning, an important subordinate control task is collision
and joint-limit avoidance. Joint limits can be easily avoided minimizing a quadratic
or higher-order polynomial function [12, 15]:

Hq =
∑

wi (qi − qref
i )p wi = (qmax

i − qmin
i )−1, (5)



94 R. Haschke

where qref defines a reference pose, e.g. in the middle of the joint range, and the wi ’s
weight the contribution of individual joints according to their overall motion range.

Local collision avoidance is achieved by a repelling force field originating from
each object. To this end, Sugiura [16] proposed to minimize a quadratic cost function
defined on the distance dp = ‖p1 − p2‖ between the two closest points p1 and p2 on
the robot and the obstacle:

Hca(p1, p2) =
{

η (dp − dB)2 dp < dB

0 otherwise
(6)

Here, dB acts as a distance threshold below which the force field becomes active and
η is a gain parameter. The gradient of this cost function directly serves as a joint-level
control target and can be easily computed in terms of the body point Jacobians Jpi

by applying the chain rule:

q̇ca = −∇ t
q Hca = −2η (1 − dB/dp)(Jp1 − Jp2)

t (p1 − p2). (7)

Thus we yield straight-line task-space motions (e.g. of the end-effector in Cartesian
space), while the redundancy is exploited to circumvent obstacles as schematically
shown in Fig. 1, left. To allow more flexible obstacle avoidance, Behnisch [17] pro-
posed a relaxed motion control scheme, which allows deviations from straight-line
motions, if the robot gets too close to obstacles:

q̇ = J+(ẋ − β ẋca) − N (∇Hca + ∇Hq). (8)

Here, additionally to the null-space motion, which minimizes a superposition of both
cost functions Hq and Hca , an obstacle avoidance motion ẋca is directly allowed in
task-space as well. This contribution is determined by projecting the cost gradient
(7) to the task space:

ẋca = J ∇ t
q Hca . (9)
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Fig. 1 Goal-directed task-spacemotionwith collision avoidance.Left restricting avoidancemotions
to redundant space yields a straight line motion of the end-effector. Middle using relaxed motion
control (8), the trajectory more strongly avoids the obstacle for larger weights β, but does not
converge to the target anymore. Right dynamic adaption of β achieves both goals, target reaching
and obstacle avoidance
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Choosing different values of the weight β, we can smoothly adjust the importance
of collision avoidance and target reaching as shown in Fig. 1, middle. However,
because both contributions might be conflicting, the target is not always reached.
To prevent this, we can ensure, that the goal-directed motion always dominates the
collision avoidance motion with a margin ε by dynamically adapting β, such that the
following condition is fulfilled:

‖ẋ‖ − ε ≥ β‖ẋca‖. (10)

The resulting motion is shown in Fig. 1, right. Please note, that this approach—as
a local method—is prone to get stuck in local minima, if a straight target-reaching
motion is not collision-free. To avoid this failure, a deliberative planning method
at a global level is required. To this end, Behnisch [17] proposed to augment the
local motion generation with a globally acting, sampling-based planning method,
that, however, searches within the low-dimensional task-space instead of the full
joint space. This sharing of workload between a local, reactive planner and a global,
deliberative planner turned out to be very successful and computationally efficient.

2.2 Vision-Based Grasp Selection

Employing the outlined control basis framework to realize approaching motions for
grasping and exploiting the passive compliance ofmodern, often underactuated hands
[18, 19], grasp planning is extremely simplified: The fingers will automatically wrap
around the object due to the inherent compliance of the hand. Thus, the only task for
grasp planning is to choose a suitable grasp prototype and to align the hand to the
object during the approach phase.

As already observed by Cutkosky, humans employ only a very small number
of grasp postures that can be roughly separated into power and precision grasps.
Cutkosky’s taxonomy then further subdivides grasps by the shape of the object [20].
From our experience it suffices to use the three basic grasp prototypes shown in
Fig. 2 (power, precision, and pincer grasp). To chose an appropriate grasp for a given

power grasp
precision

grasp pincer grasp

Fig. 2 Three basic grasp prototypes used for the Shadow Dexterous Hand. Depending on object
size, estimated weight, and envisionedmanipulation task we choose from a power grasp, a precision
grasp, and a pincer grasp (left to right)
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object, we employ a real-time, model-free scene segmentation method [21], which
yields individual point clouds for all objects within the scene. Into each point cloud,
a superquadrics model is fitted that captures the coarse shape of the object, smoothly
varying between sphere, ellipsoid, cylinder, and box [22]. This model provides an
estimation of the position and orientation as well as the coarse size and shape of
the object. This information is utilized on the one hand to chose the grasp prototype
and on the other hand to setup an appropriate approaching controller, utilizing the
symmetries inherent to all recognized object shapes. A video illustrating the seg-
mentation capabilities and the achieved grasping skills is available at youtube [22].

3 Tactile Servoing

In order to extend traditional grasp and manipulation planning approaches beyond a
mere trajectory-centric view towards robust closed-loop controllers also integrating
multi-modal feedback from proprioception, vision, and tactile sensing, in the follow-
ing we discuss how the control basis framework (CBF) can be augmented by tactile
servoing controllers. The main idea of these controllers is to define an inverted task
Jacobian J−1

s that directly maps errors in the tactile feature vector onto a suitable
Cartesian velocity twist Vs of the sensor frame. Subsequently we employ the power
of CBF [23] to realize the computed sensor frame motion with appropriate joint
motions. However, before looking into the details of these control primitives, we
first review some recent developments in tactile sensing and discuss, which tactile
features can be extracted from latest tactile sensing arrays.

3.1 High Resolution Tactile Sensing

In the past decades tactile sensors were developed exploiting a variety of physical
principles—ranging from piezo-resistive or capacitive to optical or ultrasonic effects
(cf. Dahiya et al. [24] for a compact review). The BioTac® sensor can be considered a
breakthrough in tactile sensing, integrating high-frequency temperature and pressure
sensing with a grid of electrodes to resolve the point of contact as well as normal
and shear forces [25]. Analyzing high-frequency vibrations induced by slip-stick
transitions, the sensor is able to detect incipient slippage and to distinguish various
materials showing characteristic vibration patterns [26, 27].

Independently, Schürmann et al. developed a modular sensor design tailored
towards high-frequency sensing for slip detection too, but also providing a high
spatial resolution for normal force sensing (on an array of 16 × 16 tactels spaced
at 5mm) at the high frame rate of 1.9kHz. Employing a multilayer perceptron net-
work, trained to predict slip velocities from Fourier coefficients of the tactile time
series, they were able to adjust the required grasping force to stably hold an object
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without knowledge about its weight or friction properties: Every time, when incipient
slippage is detected, the grasping force is increased by a fixed amount. Otherwise, it
is exponentially decaying to minimize the applied contact forces [28].

While these two sensors provide excellent sensitivity to high-frequency, small
amplitude vibrations, they are both rather bulky and not suited to be integrated into
human-sized robotic fingertips. Although there exists an adaptation of the BioTac®

sensor to the anthropomorphic Shadow Dexterous Hand™ [29], this integration
design removes the distal finger joint, which is important in various manipulation
tasks. Utilizing a new technology to realize 3D-shaped PCBs, Zenker et al. [30]
miniaturized the tactile sensor array, integrating 12 tactels and the measurement
electronics within a fingertip-shaped sensor-electrode that exactly matches the size
of the robotic fingertip (cf. Fig. 3).

All these sensors are rather rigid and thus not suitable to be worn by a human.
In order to measure interaction forces between the human hand and a manipulated
object too, a more flexible sensor hardware is required. A first approach into this
direction is the tactile glove developed by Büscher et al. [31] which is composed
from conductive and piezo-resistive fabrics layers. In contrast to previous attempts
to measure interaction forces, utilizing instrumented objects [32, 33], the sensorized
glove allows to measure tactile interaction patterns with arbitrary objects. Its low
construction height as well as the flexibility and stretchability of the fabrics, make
this sensor concept well suited to cover larger parts of robots too, e.g. to yield a
tactile-sensitive skin.

Given their high data frame rates, all sensor designs open up the opportunity to
be employed for closed-loop robot control, thus for the first time offering large-scale
reactivity to touch comparable to human sensitivity. Looking into the literature, only
a very few approaches exist that directly utilize tactile sensor information for control,
e.g. a very early [34] or amore recent one [35] on tactile contour tracking. However, a
generic tactile servoing framework allowing to achieve a multitude of tasks from the
composition of simple, basic controllers ismissing so far. In the following sectionswe
will get a glimpse on the enormous potential that can be unleashed when combining
concepts from the control basis framework with tactile sensor information, thus
lifting grasping and manipulation skills for robots to the next level of robustness and
dexterity.

Fig. 3 Recent tactile sensors from Bielefeld University. From left to right a modular, flat 16 × 16
tactile sensor array, a 3D shaped tactile fingertip suitable for the Shadow Robot Hand, and a flexible
tactile glove manufactured from conductive fabrics
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Fig. 4 Sensor characteristics
of all 256 tactels (and an
individual one—red solid
line) as acquired on a
calibration bench

3.2 Feature Extraction from Tactile Images

Many tactile sensor designs propose an array of tactile sensing elements (tactels)
providing normal force information [6, 36, 37] for each element. Sometimes it is
also possible to compute contact force directions from this information [37]. Most
array structures also have a reasonable spatial resolution to allow for an explicit
control of the tactile force pattern sensed in a contact region. As a consequence, in
our control framework, we assume the availability of a tactile sensor array providing
a tactile image of normal force values measured by individual tactels.

Particularly, the device employed in our experiments is the 16 × 16 sensor array
depicted in Fig. 3, left. This sensor exploits the piezo-resistive sensing principle,mea-
suring changes in resistance of a conductive foam due to an applied force. The analog
measurement of each individual tactel is converted to a 12bit digital value covering
a pressure range of 0.1–10kPa.1 Due to varying local conductive properties of the
foam, every tactel has a distinguished, squashed and noisy sensor characteristics as
shown in Fig. 4. To obtain a coarse force calibration, the characteristic measurement
function of each individual tactel is inverted in its linear range.

The intended tactile servoing tasks aim for controlling (a) the contact position on
the fingertip, (b) the contact force, and (c) the orientation of an object edge relative
to the sensor array. Hence, we propose feature extraction methods to provide the
current values of these control variables.

As a first processing step, the contact region on the sensor is identified, which
typically extends over several tactels due to the softness of the sensor foam. To
this end, we employ connected component analysis [38], well known from image
processing, to extract all connected regions in the binarized tactile image and choose
the largest one as the considered contact region R—neglecting all smaller regions
as originating from noise or spurious contacts. The binarization threshold is chosen
rather small, just above the noise level, to consider as much tactile information as

1 The sensor’s sensitivity and force range can be adjusted to the task. Here, we have chosen the
characteristics to provide a linear range from 0.1–1kPa.
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Fig. 5 Estimated (red) and
expected (green) contact
position (COP) of a
2mm-diameter probe tip

possible. Subsequently, the overall contact (normal) force f is determined as the sum
of forces fij within the contact region and the contact position c as the force-weighted
center of pressure (COP) of R:

f =
∑

ij∈R

fij c = f −1
∑

ij∈R

fij cij, (11)

where cij are the discrete coordinates of the tactels on the sensor surface. Due to the
averaging effect from multiple tactels composing a contact region, we obtain a sub-
tactel resolution for the contact position as illustrated in Fig. 5. In this experiment a
probe tip, 2mm in diameter, was moved across the sensor from one tactel to another,
i.e. about a distance of 5mm. At every point, the estimated and real probe position
(obtained from the robot’s end-effector pose) are compared.

Usually, we want to control the contact pressure instead of the overall contact
force. Considering manipulation of fragile objects, like an egg, it is the local pressure
that should be limited to not damage the object. To obtain a pressure value, we
normalize the overall measured force by the size of the contact region (measured as
the number of pixels in R):

p = f

|R| (12)

To extract the orientation of an object edge that maps onto a line-shaped contact
region, we utilize the Hough transform, also well known from image processing [39].

3.3 Tactile Control Primitives

The proposed tactile servoing controller aims at realizing sliding and rolling motions
about the contact point while maintaining a specified normal contact force during
manipulation. Dependent on the actual task at hand, specific control primitives can
be selectively turned on or off. Additionally to this purely tactile-driven motion,
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an external task planner can provide a motion component Vext
s , which is a twist

expressed in terms of the sensor frame Os . This motion component allows to realize
externally controlled tactile object exploration, e.g. to follow an object edge or to
run the sensor over the whole object surface as detailed in the experimental Sect. 4.

The general control scheme of our proposed controller is depicted in Fig. 6. The
control cycle starts by computing the deviation of the current tactile feature vector
f from the targeted one. This error is fed into PID-type controllers, acting inde-
pendently on all feature-error components. The resulting control variable u is a
linearly transformed version of Δf . Please notice, that for effective force control a
non-zero integral component is required to compensate for static errors caused by
a pure P-controller. Additionally, the derivative component is necessary to suppress
undesired oscillations.

Subsequently,we compute a sensormotionVtact
s aiming to reduce the feature error.

This is realized with a fixed, task-independent, inverted Jacobian matrix J−1
s . Both

entities are expressed in terms of the sensor coordinate frame Os , which is located
in the center of the sensor surface and aligned with the sensor such that the z-axis
equals the surface normal. This choice tremendously facilitates the determination of
J−1

s , which maps feature errors onto sensor motions.
The subsequent application of a task-dependent projector matrix P selecting cer-

tain twist-components for control and neglecting others, allows to selectively switch
on or off specific motion components. To this end, P is a simple 6 × 6 diagonal
matrix, where ones and zeros indicate, that the corresponding twist component is
or is not used for control. Summarizing, the feedback-part of the tactile servoing
controller is determined by the following equation:

Vtact
s = P · J−1

s ·
(

K P ·Δf(t)+ K I ·
∫

Δf(t)dt + K D · (Δf(t)−Δf(t −1))
)
. (13)

Here Vs = [vs,ωs] denotes the 6-dimensional twist vector composed of linear
and angular velocity components vs , ωs . K P,I,D denote diagonal matrices of PID-
controller gains andΔf(t) = [Δxs,Δys,Δ f,Δα]denotes the deviationof the feature
vector composed of the positional errorΔxs,Δys , the normal force errorΔ f , and the

task planner PID
 controller

projector 
matrix

robot

feature 
extraction

+

CBF
IK

tactile imagetactile feature

++ -

ftgt Δ f u
J−1
s

Vtact
s

Vext
s

Vs AdTgs
Vg q̇

f

Fig. 6 Control scheme for tactile servoing: the core feedback part computes a sensor motion Vtact
s

from tactile-feature deviations Δf , which is superimposed with an external motion signal Vext
s and

subsequently fed into CBF’s inverse kinematics
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angular errorΔα of the line orientation. Note, that the latter one is measured modulo
π in order to obtain angular errors in the range (−π

2 , π
2 ] and thus circumventing

singularities due to their circular nature. The rotational symmetry allows to restrict
the errors to this range instead of (−π, π ].

Finally, the twists originating from the tactile feedback-loop and the external task
planner are superimposed and fed to the inverse kinematics module of the control
basis framework. To this end, the twist Vs expressed in terms of the sensor frame
Os needs to be transformed to the global frame Og , which is realized by the adjoint
matrix derived from the forward kinematics Tgs = (Rgs, pgs):

AdTgs =
(

Rgs p̂gs Rgs

0 Rgs

)
(14)

At the core of the tactile-feedback controller is the inverse Jacobian that maps
feature deviations onto a motion twist of the tactile sensor array:

Vtact
s = J−1

s · Δf =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

·

⎛

⎜
⎜
⎝

Δxs

Δys

Δ f
Δα

⎞

⎟
⎟
⎠ (15)

This matrix can be easily determined in the sensor coordinate frame Os : Positional
deviations are simply mapped onto corrective tangential motions in the x-y-plane of
the sensor. Normal force errors are mapped onto a corrective translational motion
along the z-axis of the sensor frame, which is normal to the sensor plane, pointing
towards the object. These linear motion components are determined by the first three
rows of J−1

s . The rotational errorΔα is mapped onto a rotational velocity around the
z-axis (last row). The motion components corresponding to the fourth and fifth row
of the inverted Jacobian realize a rolling motion of the sensor. These are triggered by
positional deviations again. Thus, an errorΔxs is not only reduced by an appropriate
tangential linear motion of the sensor, but also by a rolling motion around the y-axis
of the sensor, that also moves the COP of the contact region closer towards its target
location.

The task-dependent projector matrices P can be used to toggle these individual
twist components on and off. For example, if contact position control is desired, one
will choose P = diag(1, 1, 0, 0, 0, 0). When additionally force control is required,
the third diagonal entry should be set to 1 too. In order to enable or disable the
orientation tracking of an object edge, you will set the last diagonal entry to 1 or
0 respectively. Finally, the fourth and fifth entries in the diagonal projector matrix
determine, whether rolling is enabled or not. In the following section, we will discuss
several application scenarios of the proposed tactile-servoing framework.
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4 Experimental Evaluation

As shown in Fig. 7, we mounted the tactile sensor pad as a large fingertip to a 7-dof
Kuka lightweight robot arm operated in joint-space compliance mode. The control
basis framework maps Cartesian-space twists into joint-angle velocities, thus chang-
ing the equilibrium posture of the robot controller. The tactile sensor pad provides
an array of 16 × 16 tactels measuring contact forces with 12bits resolution [6]. The
sampling frequency of the tactile sensor as well as the control cycle frequency of the
robot arm are set to 250Hz. We use manually tuned PID parameters for the tactile
servoing controller.

All the experiments discussed in the following are also shown in a youtube video
[40] and follow the same course: Initially the robot is moved to its working area,
holding this posture until object contact is established.As soon as a pressure threshold
is exceeded, the robot switches to a specific, previously determined tactile servoing
task.

In order to reduce the noisiness of the feature signals, we apply a smoothing filter
to both the force/pressure feature and the line orientation feature α. To this end,
we average the ten most recent measurements, i.e. in a time window of 40ms. The
position feature is smooth enough due to the averaging of Eq. (11).

4.1 Tracking Contact Points

Contact point tracking has an important application for multi-finger grasping and
manipulation. In both cases, fingers need to maintain object contact with a given
contact force and they should ensure, that the contact location remains on the fin-
gertip area—optimally in its center—to avoid slipping off. Consequently, the task-
dependent projector matrix has the form P = diag(1, 1, 1, 0, 0, 0) enabling contact
position and force control.

Fig. 7 Experimental setup:
tactile sensor mounted on
Kuka LWR
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Table 1 Statistical tracking results for force and position control

Object Steady state error Standard deviation Response time

Rigid pen 0.0032 0.039 2.5 s

Toy box 0.0026 0.039 2.0 s

Soft ball 0.0010 0.043 2.0 s

X 0.0041 pixel 0.1146 pixel 1.8 s

Y 0.0082 pixel 0.1158 pixel 1.8 s
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Fig. 8 Tracking results for combined position and force control

Please notice, that the quality of force control depends on the stiffness of objects
(softer objects allow for a largermotion range given afixed force range).We evaluated
the control performance on various objects of different stiffnesses: a rigid pen, a toy
box fromstiff foam, and a soft ball. The results formaintaining adesired pressure level
of p = 1 are shown in Table1. As expected, stiffer objects take longer to converge to
a stable tracking result (response time) and exhibit stronger force oscillations given
similar deflections. However, in all cases the desired force level will eventually be
well maintained with a small steady state error2

For contact position tracking, the goal is to maintain the COP of the contact
region at the center of the tactile sensor frame. The evolution of the errors in contact
position and force are shown in Fig. 8. As can be seen from the top sub-figure an
initial position offset is corrected within half a second. The steady state error and

2 The steady state errors and standard deviations are computed from a time series of 20 s duration
starting after convergence (response time). All values are obtained by averaging over 20 trials.
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response time are summarized in Table1. As can be seen from bottom sub-figure the
normal force applied in this experiment evolves randomly as it is not controlled. Note,
that a large normal force—due to friction—will also cause large tangential forces,
rendering the sliding motion more difficult. Hence, normal force control should be
generally enabled.

4.2 Track Contact Point and Increase Contact Area by Rolling

The fourth and fifth row of the task Jacobian (Eq.13) provide another mode of oper-
ation to compensate for positional errors of the COP: Instead of realizing a transla-
tional sliding motion, this control behavior realizes a rolling motion, thus changing
the contact point both on the tactile sensor and the object’s surface. While previous
approaches to realize rolling employed complex algorithms to determine the point
of revolution and a corresponding joint-space robot motion [41], the tactile servoing
approachproposedhere, is conceptuallymucheasier: a deviation in contact position is
simplymapped to a rotational twist within the tangential plane of the sensor. Because
we do not explicitly compute the point of revolution and do not know the shape of
the object, the normal force will probably be disturbed due to this motion. However,
the normal force controller, running in parallel, will counteract and maintain a pre-
defined force level. The employed projector matrix equals P = diag(1, 1, 1, 1, 1, 0),
i.e. simultaneously realizing sliding and rolling as well as force control.

The resulting rolling motion is visualized in Fig. 9. An initial positional off-
set along the y-axis is compensated by a rolling motion about the sensor’s x-axis

Fig. 9 Orientation control of surface normals by rolling



Grasping and Manipulation of Unknown Objects … 105

(stage S1). When the contact point error decays, the rolling motion ceases as well
(stage S2). After 4 s the object was displaced yielding a negative position offset that
was compensated by a rolling motion into the opposite direction (stage S3). This
behavior can nicely be seen in the video [40] as well.

The rolling behavior has the beneficial side-effect of increasing the area of contact
between the finger tip and the object. This is an important capability for grasp sta-
bilization. Although classical grasp planning considers point contacts only, a large
contact area naturally increases the grasp wrench space and thus increases the ability
to resist to external disturbances. Furthermore, a prerequisite for successful tactile
object exploration will be to maintain a large contact area during exploration in order
to collect as much shape information about the object as possible.

How this side effect is achieved? Assuming large object and sensor surfaces, a
small contact area typically results from a badly tilted sensor w.r.t. the object surface.
In this situation the sensor only touches an object edge instead of the whole surface.
This contact is often located off-center on the sensor array. The corrective rolling
motion to move the COP into the sensor’s center will also reduce the tilting and
eventually result in the desired surface contact. This state also constitutes a fixed
point of the controller dynamics, because the COP will be in the center of the tactile
array in this case.

4.3 Tracking an Object Edge on the Sensor Surface

The orientation around the normal axis is controlled using the orientation angle α of
a line in the tactile image emerging from an object edge on the sensor. For this control
task the last row of the Jacobian matrix is important, resulting in a projector matrix
P = diag(0, 0, 1, 0, 0, 1). The tracking result for this experiment is qualitatively
shown in the video [40] only. However, the next experiment also employs this control
primitive and provides an evaluation in Fig. 10.

Fig. 10 Tracking of a cable of unknown shape: tracking result is superimposed onto a scene photo
as a blue trajectory
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4.4 Tracking of an Unknown Object Edge

The previous experiments illustrated the performance of the proposed tactile ser-
voing controllers in various scenarios, neglecting external motion commands Vext

s .
However, the aim of the following two tasks is to illustrate, that complex explo-
ration behavior emerges if the tactile servoing motion and some externally provided
guidance motion are combined.

In the first experiment, we consider the task of tracking the unknown shape of a
cable lying flat on the table. To this end, the sensor should (i) be aligned to the local
orientation of the cable, (ii) maintain the tactile imprint within its sensor boundaries
(optimally in the center), and (iii) actively control the contact force. Accordingly
we choose a projector matrix P = diag(1, 1, 1, 0, 0, 1) selecting those subtasks. In
order to follow the cable in space, we additionally impose an external tangential
motion onto the sensor along its y-axis, which coincides with the desired orientation
of the cable. Thus Vext

s = [0, 1, 0, 0, 0, 0]t .
Figure10 shows a photo of the tracked cable superimposed with the object shape

(blue line) estimated from the forward kinematics of the robot arm when tracking
the cable with tactile servoing. After some initial oscillations, the robot manages to
align the cable imprint on the sensor with its y-axis.

4.5 Exploring the Shape of an Unknown Object

The second experiment illustrating the power of the proposed tactile servoing frame-
work, aims at tactile object exploration: The sensor should slide over the unknown
surface of the object in order to accumulate a dense shapemodel. Lacking an appropri-
ate control framework, previous work acquired the corresponding tactile information
by repeated establishment and breaking of object contact [42].

To realize this complex task,wedecompose it into several phases: after establishing
contact to the object, the robotmaximizes the sensed contact area and aligns its y-axis
with the major axis of the contact region applying the control schemes of Sects. 4.2
and 4.3 simultaneously.

Subsequently, by imposing a tangentialmotion along the sensor’s x-axis (orthogo-
nal to the major axis of contact region), we induce the exploratory motion. The tactile
servoing controllermaintains the optimal orientation and position of the tactile sensor
on the object’s surface by generating appropriate sliding and rolling motions. This
task exploits all tactile servoing behaviors employing the projector matrix P = 1.
As a result the object exploration behavior emerges automatically.

Similarly we can explore the object along the other direction, if we follow the
contact’s major axis instead (cf. previous task in Sect. 4.4). Please notice, that in the
accompanying video [40] we change the direction of the external guidance motion
Vext

s in order to realize a scanning of the object into both directions. Figure11 shows,
how this exploration behavior can be utilized to construct an object shape estimation
by touch.
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Fig. 11 Tactile object exploration using two tactile sensor arrays mounted onto Kuka LWR arms
(left) and the resulting tactile point cloud as a local estimation of object shape (right)

5 Conclusion

The introduced tactile servoing control framework allows to realize a large range of
tactile tracking and exploration tasks. To this end, it’s only necessary to choose the
task-specific projector matrix P choosing which tactile servoing primitives (sliding,
rolling, turning, force control) should be applied.

The integration of an externally driven guidance motion Vext
s allows to realize

complex exploratory behavior. In the shown example tasks, we only used very sim-
ple, static guidance motions. However, if those guidance motions are computed from
tactile feedback aswell, one can easily realize evenmore complex exploration behav-
ior, e.g. to drive the tactile sensor towards interesting spots on the object’s surface,
like ridges, edges or corners.

As you have seen, the formulation of tasks as a clever chosen set of primitive
controllers relaxes the need for explicit planning and modeling to a large extend,
such that both grasping and manipulation tasks become feasible also for unknown
objects. Such situations frequently occur in unstructured human environments, like
homes or hospitals, which are natural environments for service robots.
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