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Abstract

We prove a lifting theorem, in the sense of Robinsonian nonstan-
dard analysis, for the G-expectation. Herein, we use an existing
discretization theorem for the G-expectation by T. Fadina and F.
Herzberg (Bielefeld University, Center for Mathematical Economics
in its series Working Papers, 503, (2014)).
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1 Introduction

The hyperfinite G-expectation is a nonstandard discrete analogue of G-
expectation (in the sense of Robinsonian nonstandard analysis) which is
infinitely close to the continuous time G-expectation. We develop the basic
theory for the hyperfinite G-expectation. We prove a lifting theorem for
the G-expectation. For the proof of the lifting theorem, we use an exist-
ing discretization theorem for the G-expectation from Fadina and Herzberg
[8, Theorem 6]. Very roughly speaking, we extend the discrete time ana-
logue of the G-expectation to a hyperfinite time analogue. Then, we use the
characterization of convergence in nonstandard analysis to prove that the
hyperfinite discrete-time analogue of the G-expectation is infinitely close to
the (standard) G-expectation.

Nonstandard analysis makes consistent use of infinitesimals in mathe-
matical analysis based on techniques from mathematical logic. This ap-
proach is very promising because it also allows, for instance, to study
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continuous-time stochastic processes as formally finite objects. Many au-
thors have applied nonstandard analysis to problems in measure theory,
probability theory and mathematical economics (see for example, Anderson
and Raimondo [3] and the references therein or the contribution in Berg and
Neves []), especially after Loeb [I2] converted nonstandard measures (i.e.
the images of standard measures under the nonstandard embedding *) into
real-valued, countably additive measures, by means of the standard part op-
erator and Caratheodory’s extension theorem. One of the main ideas behind
these applications is the extension of the notion of a finite set known as hy-
perfinite set or more causally, a formally finite set. Very roughly speaking,
hyperfinite sets are sets that can be formally enumerated with both stan-
dard and nonstandard natural numbers up to a (standard or nonstandard,
i.e. unlimited) natural number.

Anderson [2], Hoover and Perkins [9], Keisler [10], Lindstrgm [I1], a few
to mention, used Loeb’s [12] approach to develop basic nonstandard stochas-
tic analysis and in particular, the nonstandard It6 calculus. Loeb [12] also
presents the construction of a Poisson processes using nonstandard analysis.
Anderson [2] showed that Brownian motion can be constructed from a hy-
perfinite number of coin tosses, and provides a detailed proof using a special
case of Donsker’s theorem. Anderson [2] also gave a nonstandard construc-
tion of stochastic integration with respect to his construction of Brownian
motion. Keisler [10] uses Anderson’s [2] result to obtain some results on
stochastic differential equations. Lindstrgm [11] gave the hyperfinite con-
struction (lifting) of L? standard martingales. Using nonstandard stochastic
analysis, Perkins [I5] proved a global characterization of (standard) Brow-
nian local time. In this paper, we do not work on the Loeb space because
the G-expectation and its corresponding G-Brownian motion are not based
on a classical probability measure, but on a set of martingale laws.

Dolinsky et al. [7] and Fadina and Herzberg [8] showed the (standard)
weak approximation of the G-expectation. Dolinsky et al. [7] introduced a
notion of volatility uncertainty in discrete time and defined a discrete version
of Peng’s G-expectation. In the continuous-time limit, it turns out that
the resulting sublinear expectation converges weakly to the G-expectation.
To allow for the hyperfinite construction of G-expectation which require a
discretization of the state space, in Fadina and Herzberg [8, Theorem 6] we
refine the discretization by Dolinsky et al. [7] and obtain a discretization
where the martingale laws are defined on a finite lattice rather than the
whole set of reals.

The aim of this paper is to give an alternative, combinatorially inspired
construction of the G-expectation based on the aforementioned Theorem
6. We hope that this result may eventually become useful for applications
in financial economics (especially existence of equilibrium on continuous-
time financial markets with volatility uncertainty) and provides additional
intuition for Peng’s G-stochastic calculus. We begin the nonstandard treat-



ment of the G-expectation by defining a notion of S-continuity, a standard
part operator, and proving a corresponding lifting (and pushing down) theo-
rem. Thereby, we show that our hyperfinite construction is the appropriate
nonstandard analogue of the G-expectation. For details on nonstandard
analysis, we refer the reader to Albeverio et al. [I], Cutland [5], Loeb and
Wolff [13] and Stroyan and Luxemburg [16].

The rest of this paper is organised as follows: in Section [2, we introduce
the G-expectation, the continuous-time setting of the sublinear expectation
and the hyperfinite-time setting needed for our construction. In Section
we introduce the notion of S-continuity and also define the appropriate lift-
ing notion needed for our construction. Finally, we prove that the hyperfinite
G-expectation is infinitely close to the (standard) G-expectation.

2 Framework

The G-expectation ¢ — £F(€) is a sublinear function that takes random
variables on the canonical space ) to the real numbers. The symbol G is a
function G : R — R of the form

G() = g swper, )
ceD
where D = [rp,Rp] and 0 < rp < Rp < oco. Let PY be the set of
probabilities on Q such that for any P € P“, B is a martingale with volatility
d(B),/dt € D in P ® dt a.e. Then, the dual view of the G-expectation via
volatility uncertainty (cf. Denis et al. [6]) can be denoted as

£9(¢€) = sup EP[¢.
PepC

The canonical process B under the G-expectation £F(€) is called G-
Brownian motion (cf. Peng [14]).

2.1 Continuous-time construction of sublinear expectation

Let Q = {w € C([0,T];R) : wp = 0} be the canonical space of continuous
paths on [0,7] endowed with the maximum norm ||w|lcc = Supg<;<7 |wel,
where | - | is the Euclidean norm on R. B is the canonical process defined
by Bi(w) = wy and Fy = 0(Bs,0 < s < t) is the filtration generated by
B. Pp is the set of all martingale laws on €2 such that under any P € Pp,
the coordinate process B is a martingale with respect to F; with volatility
d(B), /dt taking values in D, P ® dt a.e., for D = [rp, Rp] and 0 < rp <
Rp < 0.

Pp = {P martingale law on Q; d(B), /dt € D, P ® dt a.e.}.



Thus, the sublinear expectation is given by

&p(€) = sup EF[E], (2)
PePp

for any ¢ : Q@ — R, ¢ is Fpr-measurable and integrable for all P € Pp.
EP denotes the expectation under P. It is important to note that the
continuous-time sublinear expectation can be considered as the classical

G-expectation (for every € € L}, where L}, is defined as the E[| - []—norm
completion of Cy(£2; R)) provided (1)) is satisfied (cf. Dolinsky et al. [7]).

2.2 Hyperfinite-time setting

Here we present the nonstandard version of the discrete-time setting of the
sublinear expectation and the strong formulation of volatility uncertainty on
the hyperfinite timeline. For the (standard) strong formulation of volatility
uncertainty in the discrete-time see Fadina and Herzberg [8], and for the
continuous-time see Dolinsky et al. [7] and Fadina and Herzberg [8].

Definition 2.1. *Q is the *-image of Q endowed with the *-extension of the
mazimum norm *|| - |-

*D = *[rp, Rp| is the *-image of D, and as such it is internal.
It is important to note that st : *Q) — € is the standard part map, and

o

st(w) will be referred to as the standard part of w, for every w € *Q. °z
denotes the standard part of a hyperreal z.

Definition 2.2. For every w € Q, if there exists w € *Q such that
| —*w|lec =~ 0, then @ is a nearstandard point in *Q. This will be denoted
as ns(w) € *Q.

For all hypernatural N, let

K
Ly ={ ——, —N?\/Rp <K < N?*\/Rp, Ke%} 3
N {Nm P="= P )
and the hyperfinite timelime
T T
T=:0~—,,——+T,T. 4
{’N” Nt } (4)

We consider ,C}TV as the canonical space of paths on the hyperfinite timeline,
and XV = (X,iv)évzo as the canonical process denoted by XN (w) = wy
for w € £}, FV is the internal filtration generated by X*. The linear
interpolation operator can be written as

) for £}, C*Q,

4



where
&(t) := (INt/T| + 1~ Nt/T)w niyr) + (Nt/T — [Nt/T )| Ntj7| 415

for w € LN and for all ¢ € *[0,7]. |y] denotes the greatest integer less
than or equal to y and ¢ : T — {0,--- , N} for ¢ : t — Nt/T.

For the hyperfinite strong formulation of the volatility uncertainty, fix

T
N € *N'\ N. Consider {:l:ﬁ} , and let Py be the uniform counting mea-

1 T
sure on {:I:\/—N} . Py can also be seen as a measure on Ly;, concentrated on

{i\/iﬁ}’ﬂ‘. Let Qn = {w = (v, ,wy);w; = {£1},i=1,--- | N}, and let
E1, -+ ,=n be a *-independent sequence of {£1}-valued random variables
on Qu and the components of = are orthonormal in L?(Py). We denote
the hyperfinite random walk by

Nt/T

1
> 5 forallteT.
=1

Xi=—=
t \/N

The hyperfinite-time stochastic integral of some F : T x E}r\, — *R with
respect to the hyperfinite random walk is given by

t t
Y F(s,X)AX 1 Qy =R, weQy = Y F(s, X(w)AX(w).
5=0 s=0

Thus, the hyperfinite set of martingale laws can be defined by
Op,, =1{ Pvo(MP¥) ™ F:Tx Ll — /Dy }
where . )
Dy =*Dn (N*N>
and

MPE = (zt: F(s,X)AXS>
s=0

Remark 2.3. Up to scaling, Qg, = O -
N n

teT

3 Results and proofs

Definition 3.1 (Uniform lifting of ¢). Let = : L} — *R be an internal
function, and let £ : Q@ — R be a continuous function. = is said to be a
uniform lifting of £ if and only if

Vo € Ly (& €ns(*Q) = °E(w) = f(st@))),
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where st(@) is defined with respect to the topology of uniform convergence
on €.

In order to construct the hyperfinite version of the G-expectation, we
need to show that the *-image of &, *¢, with respect to w € ns(*Q), is the
canonical lifting of ¢ with respect to st(@) € Q. i.e., for every @ € ns(*Q),
° (*¢(@)) = &(st(@)). To do this, we need to show that *¢ is S-continuous in
every nearstandard point w.

It is easy to prove that there are two equivalent characterizations of
S-continuity on *(.

Remark 3.2. The following are equivalent for an internal function
P *Q — *R:

(1) Vw' €*Q (*Hw e 0 = | B(w) — B(w)| = o) .

(2) Ve 0,30 > 0: Vo' € *Q (*Hw e < 0= D) — B(w)] < 5) .

(The case of Remark where 2 = R is well known and proved in
Stroyan and Luxemburg [16, Theorem 5.1.1])

Definition 3.3. Let @ : *QQ — *R be an internal function. We say ® is S-
continuous in w € *Q, if and only if it satisfies one of the two equivalent
conditions of Remark[3.2.

Proposition 3.4. If £:Q —R is a continuous function satisfying
1€E(W)] < a(1 4 ||w]ls)b, for a,b > 0, then, & = *¢ o~ is a uniform lifting
of €.

Proof. Fix w € Q. By definition, £ is continuous on €. i.e., for all w € €,
and for every € > 0, there is a 0 > 0, such that for every w e, if

lw = w'llos < 8, then [¢(w) — E(w)] < e. (5)

By the Transfer Principle: For all w € 2, and for every € > 0, there is a
0 > 0, such that for every W € *Q, becomes,

'w = wloo < 6, and *[*¢(*w) = *E(w)] <. (6)

So, *¢ is S-continuous in *w for all w € Q. Applying the equivalent charac-
terization of S-continuity, Remark @ can be written as

**w — wl|oe = 0, and *[*¢(*w) — *¢(w')| ~ 0.
We assume @ to be a nearstandard point. By Definition this simply

implies, _ N
Vo € ns(*Q), Jw e Q:¥||w — "w|leo ~ 0. (7)



Thus, by S-continuity of *£ in *w,
(@) = "¢("w)| ~ 0.
Using the triangle inequality, if w' € *Q with *||& — w'[|oe ~ 0,
P =0 lloo < *'w = Blloo +*[1& = wfloo = 0

and therefore again by the S-continuity of *¢ in *w,
" (fw) = "¢(w )| = 0.
And so,

!

TE@) — *Ew)] < [PE@) = *E(w)| + (W) — *E(w )] ~ 0.
Thus, for all & € ns(*Q) and W' € *Q, if *[|& — w'[|oo =~ 0, then,
TE@) — *E(w)| = 0.

Hence, *¢ is S-continuous in @. Equation also implies
w € m(w) (m(w) = ﬂ{*(’); O is an open neighbourhood of w})

such that w is unique, and in this case st(@) = w.
Therefore,

(@) = elst@)).
O

Definition 3.5. Let £ : *REN — *R. We say that € lifts ¢ if and only if
for every & : Q — R that satisfies |€(w)| < a(l + ||w||eo)? for some a,b > 0,

E(*E07) ~ E9(¢).

Theorem 3.6. ~
_max E9[] lifts £9(¢). (8)
Qng&

Proof. From the standard approximation in Fadina and Herzberg [8, Theo-

rem 6], ~
max EQ[¢(X™)] = £9(€), asn — oo. 9)
QeQp,
For all N € *N\ N, we know that (9 holds if and only if

max E9[e(XM)] ~£%¢), (10)
QE*QgGV



(see Albeverio et al. [I], Proposition 1.3.1). Now, we want to express
in term of QX, . i.e., to show that
N

max EQ[*¢07] ~ £9(¢).
Qng§v

To do this, use
EQ[*f o' = EQ[*§ 001 o]
and
EQ[*f oo o | = EQ[*fofo (]
= / *€o0701d@, (transforming measure)
*RN+1
- / "€ omd(Q o),
*RT
=E["¢ o]

for j : *RT — *RN*L (zt)ser — (%Nt)
Thus,

teRN+1L -

AN .. * AN
QD/N—{QO]-QE QD?V}
This implies,

‘max E@ [*¢0] = max ECP[*¢o?].
QeQy, Qe*Qp,
N N
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Appendix

Proof of Remark[3.3. Let ® be an internal function such that condition (1)
holds. To show that (1) = (2), fix € > 0. We shall show there exists a § for
this € as in condition (2). Since ® is internal, the set

= {5 € Rug: Yo € ("flw—w]loo < 6 = *[®(w) — ®(w)] < e)},
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is internal by the Internal Definition Principle and also contains every posi-
tive infinitesimal. By Overspill (cf. Albeverio et al. [1, Proposition 1.27]) I
must then contain some positive § € R.

Conversely, suppose condition (1) does not hold, that is, there exists some
w' € *Q such that

*|lw — w'[|oe ~ 0 and *|®(w) — ®(w')| is not infinitesimal.

If ¢ = min(1,*|®(w) — ®(w')|/2), we know that for each standard § > 0,
there is a point w within & of w at which ®(w") is farther than e from ®(w).
This shows that condition (2) cannot hold either. O
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