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Preface 

 “The linguist Noam Chomsky once suggested that our ignorance 

can be divided into problems and mysteries. When we face a prob-

lem, we may not know its solution, but we have insight, increasing 

knowledge, and an inkling of what we are looking for. When we face 

a mystery, however, we can only stare in wonder and bewilder-

ment, not knowing what an explanation would even look like” 

(Pinker, 1997, p. ix). Chomsky’s idea of mysteries and problems 

reflects a conceptual distinction between both. A problem inter-

preted as a kind of a conceptual image of the environment seems to 

be understandable. A concept interpreted as a fixed cognitive struc-

ture has a scope and has limits. Mysteries, in contrast to problems, 

seem to lie beyond individual limits. Thus, problems are a matter of 

individual conceptual interpretation, whereas mysteries cannot be 

solved in that same way. The overarching idea is to break mysteries 

down into problems, and try to solve existing problems. The current 

thesis faces problems in the area of cognitive representations and 

their impact on motor actions. Surely, the presented results will 

introduce new problems and at best foster the progress in that re-

search area.  

Following Chomsky’s approach that problems are a matter of indi-

vidual conceptual interpretation, it seems apparent that the estab-

lishment of cognitive representations evolves based on cognitive 

sorting and categorization processes. Thoughts are one way to de-

scribe and understand cognitive representations, because they part-

ly take place in a linguistic medium (Fodor, 1987; Fodor & Pylyshyn, 

1988). However, a linguistic medium by itself is productive, and it is 

necessary attributing not to many properties to a representation 

that are normally used to talk about that representation (e.g., the 
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temperature of things is finite, whereas the scheme to describe 

temperature, the real numbers, is infinite). Thus, words describing 

a representation do not deliver insight into the structure of a cogni-

tive representation (Egan, 2012). 

Gibson (1966, 1979) held the claim that cognitive representations 

integrate, for instance, certain affordances of objects. Thus, consis-

tent higher order object properties that are invariant through 

movement and object orientation are encoded, for example, in the 

wavelength and intensity of visual information absorbed at the reti-

na. These affordances are significant functional aspects of an object 

(i.e., a scissor as an object useful for cutting and pricking) which 

rely on individuals’ experiences. Clark (1998) described cognitive 

representations as “action-oriented”, because they define a situa-

tion in combination with an appropriate behavior to the situation. 

Consequently, the idea has grown that cognition is embodied, re-

spectively embedded. Moreover, cognition is not only embodied, 

cognition is also responsible for voluntary movement execution, and 

human memory is able to distinguish between different movements 

categories (e.g., manual actions, complex actions, and interac-

tions). This arbitrary classification of movements allows studying 

the responsible memory structures for the executed movements in 

different environmental settings.  

In the current thesis,  an overarching cognitive architecture of 

movement organization is able to describe cognitive building blocks 

of motor behavior with certain functions. It will deliver evidence 

that cognitive building blocks of movement organization possess 

comparable functions in the movement organization in different 

environmental settings. However, the main attention is on the prob-

lem of structure and dimensions of cognitive building blocks of ac-
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tion within movement organization. Thus, this thesis will elucidate 

the granularity of cognitive representations in movement organiza-

tion. Therefore, the following sections present recent knowledge of 

movement organization for three movement-related complexity 

levels: manual actions, complex actions, and interactions. Subse-

quently, the findings shed light on the problem of categorization 

and architectural models of movement organization, before ending 

with the formulation of corresponding hypotheses.  

 

Manual Actions 

Manual actions are able to describe manifold facets of human be-

ings, because they show an “impressive integration of capabilities to 

shape physical interaction, comprising all levels” (Schack & Ritter, 

2009, p.242).It begins on a local level with the regulation of certain 

finger movements to manipulate objects (e.g., using a pinch grip) 

evolving to more complex grasp patterns to learn about object 

properties (e.g., shapes, weight etc.)and ends with the estimation 

of certain action affordances. At a more global level, hand-eye or 

bimanual coordination ending in goal-directed action sequences 

characterize manual actions. Thus, higher order conceptualization is 

necessary to characterize manual actions touching the area of social 

science in terms of action semantics, intentionality, and communi-

cation (Schack & Ritter, 2009). Still, the control of degrees of free-

dom (DoF) and the coordination of different muscles innervating 

fingers and hands are complex cognitive tasks, which the motor 

systems needs to solve. One possibility to describe how cognitive 

control mechanisms in the field of manual actions work, is the in-

vestigation of the human adaptation behavior. Cognitive mechan-

isms play a multifaceted role in sensorimotor adaptation behavior 
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(Creem-Regehr, 2009; Mazzoni & Krakauer, 2006). Evidence comes 

from studies in which another task withdrew necessary cognitive 

resources (Eversheim & Bock, 2001; Taylor & Thoroughman, 2008), 

or when participants scored low on cognitive tests (Bock & Girge-

nrath, 2006).  

The current thesis aligns manual actions primarily to adaptation 

processes. Various environmental conditions are able to disturb the 

motor execution of goal directed movements. To overcome such 

disturbances humans are able to adapt to certain environmental 

conditions and adjust their motor behavior appropriately. Thus, 

sensorimotor adaptation is an active learning process activated 

when motor actions differ from sensory consequences. This learning 

process lasts until the produced action effect and its perception will 

fit consistently together (Bock, 2001).Various implicit and explicit 

learning processes activated during the sensorimotor adaptation 

trigger such behavior (Mazzoni & Krakauer, 2006). Adaptation be-

havior in an ever-changing environment requires substantial modifi-

cation capabilities of the human brain. The term “internal model” 

summarizes such modification capabilities. The recalibration of sen-

sorimotor pathways and the use of strategies (i.e., anticipation, 

changes in attitude etc.) establish an appropriate internal model. 

Internal models are not located at a certain brain area. Instead, 

they are one of many functions of a distributed neuronal system 

responsible for motor control. An internal model describes spatial 

and dynamic features of the human environment (including the own 

body), updates itself constantly through multisensory inputs, and 

provides this information to the motor system for an adequate 

movement organization (Bock, 2001). Changes in the internal mod-

el are difficult to manage for the human brain. The managing 
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process in the human brain varies qualitatively and quantitatively. 

Principles of internal model adaptivity will shed light on these facts.  

Acquired adaptive changes remain in the human brain for a task-

dependent length of time. Humans who adapted towards a defined 

distortion were able to start nearly at the same level where they 

stopped the last time (Krakauer, Ghilardi, & Ghez, 1999; Shadmehr 

& Holcomb, 1997), even when there is one month between test and 

retention test (Bock, Schneider, & Bloomberg, 2001). The authors 

concluded that the learned internal model persists over time, and 

will be retrieved if necessary. In addition, an already learned distor-

tion is able to generalize to untrained, but similar distortions. This 

generalization affects untrained movement amplitudes (Bock & 

Burghoff, 1997), untrained directions (Krakauer, Ghilardi, & Ghez, 

1999), and untrained areas of the work space (Shadmehr & Mous-

savi, 2000). However, the power of the generalizability is strongly 

dependent on the bandwidth of training (Bock, 2001). Moreover, an 

internal model adjusts gradually towards similar distortions. The 

adaptation towards a distortion of the visual feedback in terms of 

90° rotation revealed a smaller error for a 60° pre-adaptation as 

compared to a 45° pre-adaptation or no pre-adaptation at all (Ab-

eele & Bock, 2001). These results suggest that humans possess the 

ability to retrieve information from former settings and adjust them 

to a recent movement problem. Additionally, internal models exhibit 

a modular structure. The adaptation towards a combined visual-

proprioceptive distortion is faster for participants who adapted to-

wards both distortions separately (Flanagan, Nakano, Imamizu, 

Osu, Yoshioka, & Kawato, 1999).Internal models need a certain 

amount of time (i.e., a number of repetitions) to adapt towards un-

known distortions. Rest breaks between trials need to last at mini-
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mum 5 s. Shorter rest breaks have a negative impact on the time 

needed for proper adaptation towards a distortion. It seems as if 

humans need some time to reflect what they actually did to cogni-

tively process behavioral changes (Bock, Thomas, & Grigorova, 

2005).  

The mentioned studies suggest that sensorimotor adaptation is con-

trolled based on cognitive mechanisms. The internal model hypo-

thesis is one attempt to describe sensorimotor adaptation behavior 

in sense of cognitive functionality. However, the functional role of 

cognitive aspects of movement organization in sensorimotor adap-

tation is still an open issue. More precisely, the investigation of re-

levant cognitive representation structures in manual actions is going 

to convey the knowledge in the area of sensorimotor adaptation. 

However, humans are able to express intentionality and action-

semantics by manual actions. Thus, manual actions are often an 

integral component of complex actions.  

 

Complex Actions 

The volitional structuring of complex actions with regard to goal 

orientation is a crucial dimension of complex actions. A correspond-

ing psychological unit that orientates itself at the realization of such 

action goals describes complex actions(Müsseler, Aschersleben & 

Prinz, 1996; Nitsch, 2000). The reference framework for the defini-

tion of action complexity contains of goal-orientation and connection 

to different levels of action control. Schack (2010) suggests two 

representation levels for action control, where both are capable to 

organize action execution by itself. The level of sensorimotor control 

executes more or less autonomous processes. The level of mental 
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control connects the anticipated goal of a movement with produced 

action effects. Manual actions, like pointing movements in a two-

dimensional space (see Chapter 2 & 3), are learned very quickly, 

because only a few DoF need to be controlled. This movement gets 

a status of automation within a few repetitions. Thus, the level of 

sensorimotor control executes the movement with only a temporal 

involvement of mental control. However, the proper execution of an 

instep kick in soccer demands the motor systems to control several 

movement problems (e.g., generation of speed, approaching to the 

ball, kicking the ball with the instep, preparation for subsequent 

actions). Therefore, a goal-oriented and volitional coordination of 

single movement sequences is necessary to manipulate the ball. 

Thus, the motor system needs to control several DoF in complex 

actions (Schack, 2010). 

The investigation of cognitive representations of complex actions 

has two approaches. The first approach includes a phenomenologi-

cal perspective, and the second approach a functional-analytic 

perspective. Both approaches use different techniques to describe 

cognitive processes responsible for movement organization. The 

phenomenological approach uses less standardized empirical tech-

niques (e.g., interviews, questionnaires, ordering techniques). 

These techniques have the major problems to assure objectivity, 

reliability, and validity in the test settings (Thomas & Thomas, 

1994). Especially, interviews (Miles & Hubermann, 1994) and order-

ing techniques (Scheele & Groeben, 1988) depend heavily on the 

experimenter who is interpreting participants’ answers. The func-

tional-analytic approach assumes that participants are unable to 

explain their representation of complex actions explicitly. Thus, 

qualitative research methods are able to complement quantitative 
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research methods. An example for these relatively “new” methods 

are neuroscience techniques. Under the scope of neural science, 

different techniques, like functional magnetic resonance imaging 

(FMRI), electroencephalography (EEG), or near-infrared spectrosco-

py(NIRS) investigate mechanisms of the neural system (Kandel, 

Schwartz, Jesell, Siegelbaum, & Hudspeth, 2012). A distinct re-

search area focuses on the link between cognition and movement 

execution. Cross, Hamilton, and Grafton (2006) showed that, when 

“dancers observed and simulated another dancer's movements, 

brain regions classically associated with both action simulation and 

action observation were active” (p. 1259). This finding suggests 

that a five-week intensive training program helps to establish a new 

complex motor representation. Hauk, Johnsrude, & Pulvermüller 

(2004) showed via neuroscience techniques that the reading of ac-

tion words (i.e., verbs like lick, pick, and kick) already activates 

brain regions associated with the corresponding organ (e.g., face, 

arm, and leg). Additionally, EEG-techniques investigated the neural 

activity during goal-oriented power grips. The results suggested a 

similar parieto-frontal network activation pattern as for precision 

grips except a distinct temporal pattern (Westerholz, Schack, & 

Koester, 2013; Westerholz, Schack, Schütz, & Koester, 2014). Con-

sequently, a similar activation pattern for power and precision grips 

delivers evidence for a comparable representation network in the 

human brain. 

A theoretical perspective of movement organization in memory de-

scribes two major directions: sensorimotor frameworks and ideomo-

tor frameworks. Sensorimotor approaches consider stimulation as 

the starting point for actions. “Actions are considered responses to 

stimuli that precede them” (Prinz, 2005, p.141). The ideomotor ap-
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proach postulates that intentions are the starting point for actions. 

“Actions come into being as the means for realizing those inten-

tions” (Prinz, 2005, p.141). The ideomotor approach grounds on 

ideas of voluntary action execution (Lotze, 1852; James, 1890). 

Two conditions characterize the ideomotor approach: (1) there ex-

ists an idea (i.e., representation) of a volitionally executed action, 

and (2) conflicting ideas (i.e., representations) are inhibited. “When 

these two conditions are fulfilled, the representations of the in-

tended goal states have the power of generating the action directly” 

(Prinz, 2005, p.142). The ideomotor principle bases on such repre-

sentations.  

The investigation of anticipatory behavior seems to be a promising 

approach in bridging the gap between situated action and cognitive 

representation (Pezzulo, Hoffmann, & Falcone, 2007). Anticipation 

allows a stabilization of perception and a goal-oriented behavior 

with the aim to improve adaptivity of humans to environmental 

conditions. Thus, perceiving as well as acting refers to external 

events and relies on the same representations, which are 

represented by common codes (Schütz-Bosbach & Prinz, 2007). A 

study investigating basketball free throws found evidence for the 

link between action observation and action execution (Aglioti, Cesa-

ri, Romani, & Urgesi, 2008). Basketball experts (possessing high 

visual and motor experience) predicted the outcome free throws in 

basketball earlier compared to journalists (possessing only visual 

expertise)and novices (possessing no expertise). Thus, within a field 

of expertise a functionally organized representation structure facili-

tates movement execution, and supports movement perception and 

anticipation of movement effects. That holds true for representa-

tions in the own field of expertise, and is not transferable to other 
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(biomechanically) similar domains (Calvo-Merino, Glaser, Grezes, 

Passingham, & Haggard, 2005; Calvo-Merino, Grezes, Glaser, Pas-

singham,& Haggard, 2006). The results of these studies deliver evi-

dence for two conclusions: First, the observation of movement pat-

terns similar to the own field of expertise activates similar neural 

structures. Second, the activation is higher when a movement pat-

tern identical to the own field of expertise is presented. 

However, a detailed description of how cognitive representation are 

stored in memory seems to be necessary for a further understand-

ing. Therefore, research focused on the storage of information in 

human LTM (Janelle & Hillman, 2003; Munzert, 1995, Starkes & 

Allard, 1993; Starkes & Ericsson, 2003; Starkes, Helsen, & Jack, 

2001). The used methods were assigned to qualitative research 

(e.g., interview, questionnaires, and categorization tasks) including 

the described problems with reliability and objectivity (Thomas & 

Thomas, 1994). Therefore, a new line of empirical research focusing 

on the functional link between performance outcome and LTM struc-

tures needed to be established. A research method called structural 

dimensional analysis of mental representations (SDA-M; Schack, 

2002, 2012; Schack & Ritter, 2009) allows the investigation of cog-

nitive representations of complex actions in LTM. This method re-

vealed differences between expert and novice cognitive representa-

tion structures of the tennis serve in their LTM. There were only 

small differences between the representational frameworks (i.e., 

cognitive representation structure) within each expertise level. The 

cognitive representation of the tennis experts, as compared to ten-

nis novices, reflected the biomechanical and functional demands of 

the task (Schack & Mechsner, 2006). Other studies replicated the 

results in domains of dancing (Bläsing, Tenenbaum, & Schack, 
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2009), judo (Weigelt, Ahlmeyer, Lex, & Schack, 2011), and health 

sciences (Braun, Beurskens, Schack, Marcellis, Oti, Schols, & Wade, 

2007; Wollesen, Lex, & Mattes, 2012). The cited research studies 

used basic action concepts (BAC) as conceptual representation 

units, which corresponded to “functionally meaningful submove-

ments” (Schack & Mechsner, 2006, p.77). BACs are cognitive clus-

ters of movement impulses with their corresponding sensorial ef-

fects in terms of a functional equivalence during the solution of a 

movement problem. BACs combine functional movement features. 

BACs are describable through various surface structures (in form of 

labels). These labels are, for instance, verbal, acoustic, kinesthetic, 

and visual labels. Therefore, BACs are describable through verbal 

expressions, optical depictions, muscle senses, and hearable 

movement by-products. Thus, every label refers to the identical 

cognitive unit within each BAC (Schack, Stöckel, & Weigelt, 2008). 

It seems appropriate for the proper execution of complex actions to 

coordinate all DoF of the whole body in a functional way. Studies 

revealed that a functional cognitive movement organization facili-

tates such a coordination process (Bläsing, Tenenbaum, & Schack, 

2009; Schack & Hackfort, 2007; Weigelt, Ahlmeyer, Lex, & Schack, 

2011). Because complex movements require exactly definable and 

biomechanically describable affordances, the amount of functional 

relevant BACs is narrow. Furthermore, previous motor experiences 

facilitate an appropriate movement execution, because BACs includ-

ing the corresponding sensorial experiences are already established 

(Schack, Stöckel, & Weigelt, 2008). Thus, a kind of “movement li-

brary” filled with BACs exists in human LTM. Assuming that such a 

storage unit is located in human LTM, existing representation struc-

tures facilitate the learning process of new similar movements. 
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Interactions 

Movements are the way in which humans interact with each other. 

Regardless, if we are attempting to catch a cab drivers attention in 

a crowded street, if we speak to a colleague, or if we smile at our 

partner. The motor system mediates such processes through arm 

gestures, speech, and facial expressions to provide a common code 

for communication (Wolpert, Doya, & Kawato, 2003). A recent 

theory describes a mechanism, which maps perceived motor actions 

onto observers’ motor experiences to decode the information. Re-

search in the field of neuroscience delivers empirical support for 

such a hypothesis with the finding of “mirror neurons”. These mirror 

neurons are activated in both action execution and action observa-

tion (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti & Arbib, 

1998; Gallese, 2003). Even the reading of action words (i.e., verbs) 

activates the pre-motor system (Hauk, Johnsrude, & Pulvermüller, 

2004). Moreover, the naming of tools activates brain regions that 

are associated with the corresponding imagined hand movements 

and the corresponding action words (Martin, Wiggs, Ungerleider, & 

Haxby, 1996). Such empirical data makes the motor system to an 

object of research for action interpretation and social interaction. 

There are parallels between the mechanisms that occur in motor 

control, action observation, imitation, and social interaction (Wol-

pert, Doya, Kawato, 2003). The basic motor control process de-

scribes a feedback loop between motor commands including muscle 

contractions that change the body state and a steady sensory feed-

back that influences following motor commands. However, an iden-

tical motor command is able to trigger different consequences (e.g., 

if the muscles are fatigue depending on pre-exercises). The sensory 
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feedback of a motor action enables the central nervous system 

(CNS) to estimate a correction function for the next motor com-

mand (Wolpert, Doya, Kawato, 2003). Supposedly, a similar feed-

back loop characterizes social interactions. A communicative action 

(e.g., speech, gesture, facial expression, or other body language) 

substitutes the motor command. The interaction partner provides 

feedback about the communicative action, which humans interpret 

to change their mental state (Wolpert, Doya, Kawato, 2003). At the 

end, we are able to adjust our next motor action. In a word, the 

way humans thinks about others’ actions to engage in social inte-

ractions, depends on the way in which humans activate and simu-

late their own motor actions (Jeannerod, 2001). Thus, motor cogni-

tion includes processes involved in human’s motor execution (e.g., 

planning, preparation, and production),and motor cognition includes 

processes involved in anticipation, prediction, and understanding of 

other humans’ actions. These processes work predominantly at an 

automatic, covert, and unconscious level (Sommerville & Decety, 

2006).  

Shepard (1984) claimed that perceived patterns resonate in ob-

server’s memory. Thus, the resonance mechanism describes the 

decoding of perceived triggers in observer’s memory to understand 

environmental conditions. The resonance mechanism and the cogni-

tive representation work consistently together. The perceived pat-

terns are deeply internalized(i.e., as representations) and can be 

activated without any environmental information (e.g., mental im-

agery). Thus, cognitive representations of motor actions refer to 

both (1) the action goal or action effect and (2) to operations prior 

to motor execution. “There are no ontological reasons to consider 
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these two levels of description as separate or, least of all, indepen-

dent from one another" (Sommerville & Decety, 2006, p.180). 

However, the ability to represent single motor actions of our own 

and others does not necessarily mean that they are limited to the 

next upcoming effect in a constraint chain of events. Rather, hu-

mans possess the ability to build cognitive representations of ac-

tions that are interrelated. These related actions form event repre-

sentations to share common features and characteristics (Zacks & 

Tversky, 2001). To some degree, event representations are similar 

to object representations (Mervis & Rosch, 1981).Humans tend to 

organize motor actions with regard to the context in which it is ap-

plied. Humans can construe a simple motor action (e.g., grasping 

the lock of a bike) at various stages of analysis: in terms of unlock-

ing the bike, in terms of riding to the grocery, or in terms of orga-

nizing a party. Adults incorporate such hierarchical analysis level in 

their action representations (Zacks, Tversky, & Iyer, 2001).  

Acquired memory structures representing hierarchical action se-

quences depend highly on the level of expertise. The quantitative 

degree of the hierarchical problem-solving process, for instance in 

chess (in terms of number or speed of pre-calculated moves) meas-

ured by think-aloud protocols, did not differ significantly between 

chess experts and average players. However, the recall of shortly 

presented chess constellations was an indicator for the level of ex-

pertise (De Groot, 1978/2008). Chase and Simon (1973) presented 

chess constellations with randomly assigned figures or really played 

chess constellations. In the played constellations, experts accessed 

their chess-specific expertise, and outperformed average chess 

players. Thus, chess experts are able to memorize chess constella-

tions better than average chess players are (Gobet & Simon, 2000). 
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Chess experts represent the context hierarchically (i.e., the evolu-

tion of certain moves in chess) in terms of tactical constrains.  

In the context of sport games, such hierarchical action representa-

tions can describe, for instance, chains of dependent motor actions 

in terms of tactical behavior at an individual, group, and team level. 

For example, a soccer player comes in possession of the ball 

through a team-specific behavior (e.g., change sides). After that 

successful change of sides, a defender wants to get the ball and 

tries to tackle the player. The player perceives one teammate in a 

favorable position. At group-specific level, the player decides to play 

a give-and-go pass with his teammate to overcome the defender’s 

action. Therefore, the player decides to use an inside kick as a situ-

ation-adequate complex action at individual level. Thus, tactical 

behavior integrates the activation of various representations at dif-

ferent stages (individual, group, and team level). As a logical con-

sequence, the structure of consecutive following motor actions 

forms the representations of tactics. It seems plausible that a re-

presentation of team-specific tactics form the basis for strategic 

concepts. In consequence, this hierarchical order formation empha-

sizes a semantic structure of action sequences to tactics and strate-

gies, which allows humans to access situation-adequate action se-

quences.  

The choice for an adequate tactical behavior in sports bases on the 

perception of the intentions of other players (Nitsch, 2004). Players 

need to be able to anticipate the possible outcome of opponents 

and teammates intentions in advance (Aglioti, Cesari, Romani, & 

Urgesi, 2008). Thus, all relevant sensory information need to be 

available to choose for an adequate motor action (Bosbach, Prinz, & 

Kerzel, 2004). As described earlier, the structure of cognitive repre-
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sentations constrains the perception and evaluation of relevant sen-

sory information. Therefore, tactic-specific action knowledge is of 

central importance for the playing competence of each player with 

an increasing level of expertise (Höner, 2005), and hence, might be 

organized in conceptual units in player’s LTM as tactical skills 

(Hodges, Huys, & Starkes, 2007; McPherson & Kernodle, 2003). 

Evidence for an advanced tactical skill comes from studies at a be-

havioral level. Adolescent soccer experts and novices judged real-

time soccer scenes in a temporal occlusion paradigm regarding 

possible passing options. The authors concluded that soccer experts 

evaluate and prioritize the possible offensive tactical behavior better 

as soccer novices. In other words, soccer experts recognize the rel-

ative importance of single player positions on the pitch, and they 

are able to represent purposeful actions better as novices (Ward & 

Williams, 2003). However, this valuable research does not explain 

which cognitive mechanisms allow experts to act in a purposeful 

way. Thus, the relevant cognitive units stored in LTM are objects of 

research at the level of cognitive representations in interactions in 

the current thesis.  

 

Categorization  

Up to here, the current thesis described the role of cognitive memo-

ry units (i.e., representations) as an important factor in the organi-

zation and execution of motor actions. The structure of cognitive 

memory units characterizes different performance levels in the ex-

ecution of manual actions, the performance of complex actions, and 

the creation of interactions. However, various theoretical models 

and methodological approaches describe and explain the investi-

gated settings. This thesis works on the description of possible inva-
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riances and common features of representation units of manual ac-

tions, complex actions, and interactions.  

The ability to form categories is an indispensable prerequisite for 

humans and animals. Imagine the incorrect assignment of a visually 

perceived part of an animal’s fur to the category predator or to the 

category herbivore. Such an incorrect assignment can become cru-

cial for the live of that individual. Thus, all organisms need to be 

able to assign environmental conditions to categories (Ashby & Lee, 

1993).Many neural structures are involved in category learning 

processes in humans that depend only to some degree on the exist-

ing structure of categories within individuals. For example, the cog-

nitive processing of learning new categories is different as com-

pared to the processing of already learned categories (i.e., exper-

tise). Evidence steams from studies on frontal lobe patients (e.g., 

Parkinson’s disease), which are impaired in learning new categories, 

but are able to access the already learned ones, such as categories 

of fruits or tools (Ashby &Ell, 2001).  

Therefore, an interesting question is which cognitive principles 

guide the categorization process. Two major principles exist: The 

first relates to the function of a category system. This function re-

duces the DoF of environmental conditions in the real world, and 

still provides a maximum of information. The second relates to the 

information structure and builds upon the first principle. The infor-

mation structure turns unpredictable and arbitrary attributes of 

things in the real world into structured information in the observer’s 

memory. Then, the retrieval of structured information is easy. Fol-

lowing these principles, the categories map the perceived world 

structure as closely as possible. Thus, cognitively meaningful and 

usable proportions reduce the infinite number of differences among 
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stimuli in the environment. It is obvious that categorization 

processes are triggered based on consciously perceived stimuli 

(Rosch, 1978). For example, a dog smells things humans cannot, 

and the movement experience of the own motor system influences 

the way, in which movements of others will be interpreted. Thus, 

the number of actions treated as functionally equivalent in the mo-

tor system form a category of the reality in memory (Rosch, Mervis, 

Gray, Johnson, & Boyes-Braem, 1976).  

Two dimensions of categories define the category formation within 

humans, a vertical and a horizontal dimension. The level of inclu-

siveness defines the vertical dimension of categories. For example, 

the dimension at which the terms field mouse, mouse, mammal, 

animal, and living organism vary. In that, the broadest level will be 

the most inclusive (i.e., living organisms). The segmentation of cat-

egories at the identical level of inclusiveness defines the horizontal 

dimension of categorization. For example, the dimension at which 

the terms mouse, cat, fox, and elephant vary (i.e., mammals). The 

horizontal dimension ensures the distinctiveness between category 

elements. These category elements tend to become prototypes that 

contain attributes, which are most representative for the items in-

side and least representative for items outside that category 

(Rosch, 1978). Categories have the most attributes in common with 

members of the same category, and the least attributes shared with 

members of other categories (Rosch, Mervis, Gray, Johnson, & 

Boyes-Braem, 1976).  

In conclusion, conceptual domains of not arbitrary semantic catego-

ries develop around perceptually salient natural prototypes (Rosch, 

1973). Humans are able to judge which case (i.e., in form of a pro-

totype) is representative for a category even when they disagree 
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about the boundaries of the same category (Rosch, 1975). There-

fore, prototypes constrain a category, but they do not reduce a cat-

egory to only one prototype (Rosch, 1978, p.200), and they are not 

equivalent to cognitive representations. Moreover, cognitive repre-

sentations organize prototypes. An example is the representation of 

objects. Basic objects are the easiest to imagine, and the first 

named by small children. The representation of objects happens 

predominantly as members of their basic object category(Petersen 

& Graham, 1974; Rosch, Mervis, Gray, Johnson, & Boyes-Bream, 

1976; Smith, Balzano, & Walker, 1978). The following statement 

sums up the aforementioned descriptions: “categorization is not the 

product of historical accident …but rather the result of psychological 

principles of categorization” (Rosch, 1978, p.27).  

The relation between representation units determines the cognitive 

categorization (i.e., structure formation) of representations. The 

relation between different representation units bases on feature 

dimensions of these units. Schack (2010) labeled the assignment of 

features to representation units as dimensioning. The goal-oriented 

action effects including their reafferent sensory patterns form the 

dimensions of representation units. Thus, the representation struc-

ture expresses an internal grouping of representation units sharing 

common features into subgroups (Schack, 2010). The feature di-

mensions of representation units are responsible for the evolution of 

a network integrating action-relevant representation units. Such a 

network is the result of an effort-reducing structure formation in 

LTM. Additionally, for the reason that each representation unit inte-

grates afferent sensory features and reafferent features these re-

presentation units are nodes in a network that spans a multidimen-

sional space (Schack, 2010). As a converse argument, the repre-
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sentation structure allows the inference to feature dimensions of 

representation units in that network. The recent thesis elucidates 

such processes for three movement-related complexity levels (i.e., 

manual actions, complex actions, and interactions). 

 

 

The Cognitive Representation 

The reduction of the number of DoF to a system-specific and con-

trollable amount by the establishment of functional cognitive repre-

sentations is a prerequisite for motor action execution. To achieve 

the described functionality of cognitive representations the classical 

view makes five assumptions. (1) Cognitive representations de-

scribe mediating states of intelligent systems that carry information. 

Tverskys’ contrast model of similarity describes object representa-

tions as sets of features. These features treated as symbols stand 

for distinguished object properties. Thus, the comparison of two 

objects leads to the definition of two sets of object properties. Fea-

tures within the intersection of both sets of object properties de-

scribe similarities, and features outside the intersection describe 

variations of the two objects. Both entities compare the information 

of both objects in the representing world with each other (Tversky, 

1977).(2) Cognitive systems require some enduring representa-

tions, because individual experience guides the representation sys-

tem. Evidence for this assumption delivers the fact that some inter-

nal representation in the representing world endures longer as the 

counterpart in the represented world. For example, the representa-

tion of the color as an object feature(e.g., the color of a friend’s 

car) is still present, even when the object color has already changed 
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in the represented world (e.g., the friend bought a new car of dif-

ferent color). (3) Cognitive systems use symbols. Symbols are dis-

crete packages of information, which are able to serve as features 

(e.g., a certain song serves as a symbol to remember an old 

friend). (4) Some cognitive representations align to specific percep-

tual systems, whereas other are amodal. Perceptually aligned re-

presentation relate to perceptual experience (e.g., taste of food). 

Amodal representations consist of complex interpretations(e.g., the 

representation of truth or justice). (5) Cognitive representations 

belong with no regard to a particular effector system. Moreover, the 

representations and the particular effector are partially decoupled. 

For example, writing letters is possible with the hand, but also with 

the foot or with a pen attached to another effector. The written let-

ters remain recognizable. Thus, there seems to be no necessary 

connection between features that describe an object and the ob-

served perceptual information.  

However, additional theories enlarge the classical view of cognitive 

representation. An alternative approach is embodied cognition. This 

approach extended the classical view by the interdependence of the 

perceptual and the motor system. Pfeifer and Scheier (1999), for 

instance, built a wheeled robot without vision and only simple motor 

routines. This robot was able to generate a representation of the 

size of an object by measuring the speed ratio between the inner 

and the outer wheel while circling around that object. Nevertheless, 

in the embodied cognition approach exist limitations in modeling 

higher order representations. Alternative approaches to the classical 

view of cognitive representations, like embodied cognition, intert-

wine the perceptual and the effector system with each other. How-

ever, the embodied cognition approach still focuses on low-level 



GENERAL INTRODUCTION 

23 
 

perceptional and motor processes with limited success in modeling 

higher-order cognitive representations. This alternative approach 

combines the idea that cognitive processing involves mediating 

states that carry information, and adds something to the particular 

properties of the mediating states (Markman & Dietrich, 2000a). 

The limitations of the embodied cognition approach initiated a 

change of the classical perspective. An adequate cognitive model 

should be sensitive to perceptual representation and address the 

problem of the integration of low-level percepts and high-level 

thoughts. Boundaries between different representation levels are 

hard to distinguish and cognitive science should strive for a diversi-

ty of research methodologies that examine explanatory useful prop-

erties of cognitive representations. Such research should focus on 

cognitive representations and the integration of low-level perception 

and high-level thought in the development of human concepts 

(Markman & Dietrich, 2000b). The representation of such high-

dimensional data causes the problems of dimensionality and struc-

turing. It seems to be an unrealizable task for the central nervous 

system (CNS) to represent all possible configurations without using 

simplifying rules for motor control (Wolpert, Doya, & Kawato, 

2003). However, in advance to the discussion of the problems of 

structure and dimensionality of representation units, it is necessary 

to introduce selected theoretical models of a cognitive architecture 

of actions.  

 

The Cognitive Architecture 

Herbart (1825) inferred from observation that only a certain area in 

the retina (i.e., the fovea centralis) is capable to extract reliable 

information from the environment, because humans see things 
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clearly only in the fovea. Lotze (1846, 1852) and Volkmann (1846) 

rejected Herbart’s theory based on the observation that it is possi-

ble to perceive things also in areas outside the fovea (i.e., peri-

phery). Their theories base upon visual local signs. The first source 

of information is the pure qualitative system of visual sensations. 

The second source of information is a system of muscular sensa-

tions accompanying the eye movements. Environmental movements 

perceived in the periphery induce an eye movement of the fovea to 

that attractive point (i.e., the attention is shifted). The combination 

of the movement perceived in the periphery (visual sensation) in 

combination with the actual eye movement (muscular sensation) 

builds a spatial relation. Thus, visual local signs consist of the esti-

mation of a spatial location from the linkage of the perceptual sen-

sation of an interesting object and the muscular sensation of the 

corresponding eye movement. A genetic approach extended the 

idea of visual local signs (Wundt, 1898). That means that visual 

local signs result from a slowly evolving adaptation process, which 

facilitates the spatial experience of the observer. Since that period, 

actions are interpreted as reactions. Therefore, the prominent ap-

proach of schema theory including generalized motor pro-

grams(GMP) was postulated (Schmidt, 1975; Schmidt & Lee, 1998). 

However, GMPs differ from cognitive representations. For example, 

the description of features is less detailed, and the functional signi-

ficance as a representation unit in the memory is more or less im-

plausible (Konczak, 1996, 2002). There is a functional aspect in 

movement organization, which needs further attention. Learning a 

new movement requires to control all relevant DoF, and eliminate 

(i.e., keep constant) all irrelevant DoF. The cognitive system needs 

reduced and particularly useful proportions of the DoF(Bernstein, 

1971). Thus, GMPs described in the schema theory are not an 
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equivalent for motor action relevant cognitive representations, be-

cause they do not reduce the DoF (Bernstein, 1967).A more sophis-

ticated approach named ideomotor theory assumed that move-

ments are the result of goal states subtracted by current states 

(Prinz, 1987). Supposedly, if that is the case, only final configura-

tions (i.e., action goals) are stored in the human memory (Jeanne-

rod, 1997; Mechsner, Kerzel, Knoblich, & Prinz, 2001). Koch, Keller, 

and Prinz (2011) made a detailed description of the assumptions in 

the ideomotor theory and their impact on sport expertise. These 

and other recent ideas of the cognitive architecture of motor actions 

focused on the interdependency between cognition and action 

(Prinz, 1990, 1997, 2000). The common coding approach, for in-

stance, described shared codes of motor actions and action-

independent events by one specific representation (Hommel, 

Müsseler, Aschersleben, & Prinz, 2001). A fundamental approach 

termed cognitive architecture of complex motor actions, postulates 

the incorporation of intentionally guided representations in a cogni-

tive framework (Schack, 2004b, 2010). The determining question 

focused on the integration of action related memory structures into 

a theory of behavioral control. The theory assumes that the cogni-

tive system initiates the execution of new unknown movements, 

because sensory information about the unknown movement is not 

available. In the course of practice of the new movement, more and 

more sensory perceptions will be stored as sensorimotor represen-

tations. Therefore, different representational levels store different 

information of movement problem, and distinct representation level 

originate in the memory. Finally, the type of representations memo-

rized at the corresponding level (i.e., mental or sensorimotor repre-

sentation)specify the function of each level (Schack, 

2010).Representation units possess an essential function within the 
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memorization processes (Hoffmann, 1998; Munzert, 1997). More 

precisely, representation structures describe cognitive groupings 

(i.e., a network) of representation units with regard to the realiza-

tion of action goals(Hoffmann, 1986). Schack (2004a, 2010) rec-

ommended BACs as functional representation units, because they 

integrate sensory and functional properties of complex motor ac-

tions. Table 1.1 presents the four hierarchical and functionally inde-

pendent levels of action organization in the cognitive architecture of 

complex motor actions. 

Table 1.1   

Levels of action organization (adapted from Schack, 2004a, p.42) 

Code Level Main function Subfunction Means 

IV Mental con-

trol 

Regulation Volitional control 

strategies 

Symbols, strat-

egies 

III Mental re-

presentation 

Representation Effect-oriented 

adjustment 

Basic Action 

Concepts 

II Sensorimo-

tor repre-

sentation 

Representation Spatio-temporal 

adjustment 

Perceptual effect 

representations 

I Sensorimo-

tor control 

Regulation Automatization Functional sys-

tems, basic ref-

lexes 

 

The first level is the level of sensorimotor control. The main function 

is the movement execution of highly automated movements and 

their spatiotemporal orientation. The main instruments are fixed 

functional movement systems and basal reflexes of the human or-

ganism. The second level describes sensorimotor representations. It 

is a representation level mainly concerned with the storage of sen-

sorial characteristics of executed movements. The main instruments 
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used at that level are perceptual codes. The third level describes 

mental representations, and forms another representation level. 

This level stores action-relevant BACs. The fourth level is the level 

of mental control. This level also represents a movement execution 

level, and implements both movement strategies and voluntary ex-

ecuted actions. The major instruments at this level are symbols and 

strategies (Schack, 2010). In general, this model seems to be high-

ly dominated by the distal effects produced by voluntary executed 

motor actions. It describes the transfer from the intention-

dominated cognitive system to the executing motor system for 

highly automated movements on the one hand, and guided volunta-

ry movements based on environmental effects on the other hand.  

 

The Problem of Granularity 

The aforementioned insights into the cognitive architecture of com-

plex motor actions (Schack, 2004b; 2010)pointed at an important 

issue. That is, how the proposed model deals with the problem of 

structuring and dimensioning of cognitive representation units. The 

cognitive architecture of complex motor actions consists of four 

functionally autonomous levels with particular regulation or repre-

sentation functions. These levels interact with each other. Thus, 

relevant movement knowledge generates from existing representa-

tions and recent information of environmental conditions. The cog-

nitive action representation forms a reference, which structures 

received information and activates mental representations in the 

memory (Schack, Stöckel, & Weigelt, 2008). The authors assume a 

functional autonomy between the different levels. Therefore, it 

seems plausible that functional variations at each level should have 

consequences for the whole system. Thus, cognitive representation 
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units at the level of mental representation should exhibit qualitative 

differences (Schack, 2010).  

Evidence for such an assumptions deliver the categorization 

processes in early infancy. The corresponding representations differ 

in kind with respect to the mental representation and the processes 

that operate on these representations (Eimas, 1995). Vygotsky 

(1934/1962) postulated that the earliest representations by children 

are idiosyncratic associations among things in their environment. 

Early infants build “cognitive heaps” from which meaningful and 

structured conceptual representations emerge during puberty. Pia-

get (1952) found that the earliest representations are sensorimotor 

representations. There is some evidence that the level of mental 

representation settles upon the level of sensorimotor representation 

(Klix, 1971). The level of mental control uses the functionality of 

the level of sensorimotor representation (Schack, 2010), and links 

the representations to selected terms (Prinz, 1983; MacKay, 1985). 

Terms are cognitive bundles of objector action features concerning 

the realization of actions (Hoffmann, 1986). The cognitive storage 

units at the representation levels are BACs (level of mental repre-

sentation) and sensations (level of sensorimotor representation). 

BACs are responsible to transfer the anticipated action effect into an 

executable motor program (i.e., in terms of a spatio-temporal 

alignment). The dimensioning of BACs depends on the cognitive 

structures at the level of sensorimotor representations (Schack, 

2010).  

The level of sensorimotor representation stores modality-specific 

(re-)afferent information – information about perceivable sensations 

from sensory receptors (e.g., tactile, acoustic, visual, kinesthetic, 

proprioceptive, etc.) that accompany and/or follow movement ex-
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ecution. The stage of learning (i.e., level of expertise) influences the 

choice for the adequate sensory receptor (Meinel & Schnabel, 

2007). Munzert (1989; 1992) described sensorimotor representa-

tions as motoric schemes in the form of sensorial effects. That re-

search depended heavily on the schema theory postulated by 

Schmidt (1975). In summary, BACs as representation units are the 

representation unit, which integrates functional as well as sensorial 

features of action organization. Thus, the sensorial expertise at the 

level of sensorimotor representations determines the dimensions of 

BACs. In the progress of motor learning such sensorimotor repre-

sentations shift from effector-dependent (categorial) to functional 

(appropriate for a task) dimensions (Schack, 2010). The mentioned 

approach describes representation units (BACs) as feature-oriented. 

Although it seems appropriate that BACs span a multi-dimensional 

space, which is constrained by the amount of functional, sensorial, 

and spatio-temporal features of complex actions. This approach is in 

line to the approaches formulated in the classification of objects by 

Mervis and Rosch (1981) and the world of concepts by Hoffmann 

(1986).  

However, an open issue is the interdependency between two BACs 

(i.e., the internal structure), and how these are linked to each other 

during action execution. An example from BMX cycling will illustrate 

this. Two BACs from the main movement phase (“start rotation” 

and “head towards the front wheel”) serve as an example. There is 

a connection between BACs (e.g., start rotation)and the corres-

ponding sensorial features (e.g., muscle tenses, turns and twists, 

velocity of limbs, bike, head, etc.). The BAC “start rotation” ends 

with the preparation of all muscles in the back and the belly to low-

er the hip angle. The sensorial impression of the readiness of mus-
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cles forms the first sensorimotor representation of the BAC “head 

towards the front wheel”. Thus, the sensorial features at the spatio-

temporal ending of the first BAC forms the input features of the 

subsequent BAC. Such a network is the result of a cost-reducing 

structure formation in the LTM (Schack, 2010). The cost-reducing 

structure formation works also in self-organizing maps (SOM; Ko-

honen, 1997) and recurrent neural networks with parametric bias 

(RNNPB; Tani, Itob, & Sugitaa, 2004). These approaches are suited 

to map human motor behavior on technical platforms (Krause, 

Bläsing, & Schack, 2009). 

In conclusion, BACs consist of the aggregation of sensorial feature 

dimensions. Therefore, new sensorial features modify existing BACs 

or evolve new BACs that are more useful in terms of functionality. 

That causes a change in structure formation in LTM. However, it is 

not clear yet, which parameters influence the formation of adequate 

BACs. As well, the schema (Schmidt, 1975) and the GMP-theory 

(Schmidt and Lee, 1998) did not have satisfactory answers to such 

questions. 

The cognitive architecture of complex motor actions suggests the 

organization of regulation and representation levels with regard to 

the functional demands of the tasks. A corresponding goal state 

defines the functional demands of a task. The goal is a proper solu-

tion to the challenging movement problem. The instrument to 

achieve the goal is the functional cognitive representation (Schack, 

2010).A functionally organized cognitive representation structure 

consists of groups of BAC aligned with functional movement phases. 

Göhner (1979) specified main phases and supporting phases (first 

and second order). This phase structure is linked to the solution of 

certain parts of the movement problem. For example, the front-loop 
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of BMX cycling consists of a main phase (rotation), two first order 

supporting phases(pre-rotation and landing), and a second order 

supporting phase (drive-off). With regard to structure formation, 

the hierarchical alignment of BACs into groups (i.e., movement 

phases)is as well as the model of Rosenbaum (1983) interpreted as 

a tree-traversal model. Such a model consists of single nodes 

(BACs) which form the basic level of understanding. Single nodes 

connect to higher-level nodes describing certain parts of the move-

ment problem. The next higher level connects these parts of the 

movement problem via a phase integration to the global movement 

problem. Thus, single BACs can be retrieved consciously from the 

memory, but the topology (i.e., the cognitive structure) of BACs 

not. 

The described cognitive architecture of complex motor actions 

(Schack, 2004b; 2010) delivered insights in the structure formation 

of cognitive representations that solve complex movement prob-

lems. Global goals at the level of mental control (e.g., solving a 

movement problem) and related BACs at the level of mental repre-

sentations are now directly connected to sensorial effects at the 

level of sensorimotor representation. This structure-formation 

process allows a direct communication with the environment. Thus, 

this model assumes that mental representations follow the principle 

of common coding (Prinz, 1990) between perception and action.  

Up to now, BACs are the relevant representation unit at the level of 

mental representations, which describe the cognitive representation 

of complex motor actions. However, how are cognitive representa-

tion units organized at other movement-related complexity levels 

like manual actions, complex actions, and interactions? Assuming 

that representation units integrate sensory and goal-oriented fea-
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ture dimensions, similar research methods should uncover them. To 

investigate such an assumption about the cognitive movement or-

ganization of mental control experiments need to be performed at 

all three movement-related complexity levels (i.e., manual actions, 

complex actions, and interactions). 

The current thesis uses that approach of a cognitive architecture 

and connects it to different environmental settings in the fields of 

manual action, complex action, and interaction. Therefore, experi-

ments are conducted that will expand the existing knowledge of 

mechanisms in the organization of representation units. If such a 

mechanism is present, it must be verifiable under all three move-

ment-related complexity levels (i.e., manual actions, complex ac-

tions, and interactions). Therefore, the experiments try to locate 

Basic Movement Concepts (BMC) at the level of sensorimotor repre-

sentation, Basic Action Concepts (BAC) at the level of mental repre-

sentation, and Basic Interaction Concepts (BIC) at the level of men-

tal control.  

 

Research questions and hypotheses 

Manual actions 

In the daily life, humans are able to adapt to new environmental 

conditions and learn new relationships between sensory input and 

motor output. For example, a car driver has to register all percep-

tive inputs from his car in order to transfer adequate commands to 

his muscles, especially if he changes the car model (e.g., from a 

Chevrolet to a BMW). That example illustrates that, sensorimotor 

adaptation is a learning process, which is active when actual sen-

sory consequences differ from expected sensory consequences of 
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motor actions (Kelso, 1995). The question is which cognitive para-

meters influence the sensorimotor adaptation behavior? Numerous 

studies have addressed that phenomenon, called sensorimotor 

adaptation, in laboratory settings. Rest breaks in between trials, for 

instance, have a beneficial effect on the sensorimotor adaptation 

when they last at minimum five seconds. These rest breaks in be-

tween trials consolidate previously acquired sensorimotor recalibra-

tion rules (Bock, Thomas, & Grigorova, 2005). In addition, different 

adaptation tasks use similar already acquired recalibration rules. For 

example, a recalibration rule (e.g., visuomotor distortion of a 

clockwise rotation of 60°) delivers transfer effects from a pointing 

to a tracking task (Abeele & Bock, 2003). The described phenomena 

addresses an internal model, which possesses various properties, 

like gradual adjustability. Usually an increased visual distortion 

(e.g., 0°, 45°, 60°, and 90°) will lead to an increased error in adap-

tation behavior in a comparable period. However, the pre-exposure 

to a distortion similar to the recent distortion (e.g., from 60° rota-

tion in the pre-adaptation task to 90° in the adaptation task) will 

lead to a smaller error. Thus, humans are able to adjust their beha-

vior gradually (Abeele & Bock, 2001). These experiments aimed at 

the investigation of sensorimotor adaptation behavior to learn about 

a potential cognitive reference structures that might have an impact 

on adaptation behavior. The application of a pointing task (i.e., ex-

ecution of pointing movements in certain directions) implied that 

cognitive representations of movement directions might have an 

impact on the performance. Studies investigating goal-oriented 

grasping behavior of rhesus monkeys (Georgopoulos, Kalaska, & 

Massey, 1981; Georgopoulos, Schwartz, & Kettner, 1986) delivered 

neurophysiologic evidence for the existence of representations 

movement directions. These authors monitored the population vec-
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tor of activated motor cortical neurons during goal-oriented grasp-

ing movements. The observation verified the prediction of move-

ment directions inferred from the activation of direction sensitive 

neurons. Thus, the actual movement vector of goal-oriented grasp-

ing movements lies within a 95% confidence interval cone around 

the population vector of activated neurons of the arm area. If there 

is neurophysiologic evidence for the existence of representations of 

movement directions, then there should also be a cognitive repre-

sentation of movement directions accessible. Therefore, the aim of 

CHAPTER 2 and CHAPTER 3 is to determine the organizational struc-

ture of cognitive representations of movement directions in relation 

to individual’s sensorimotor adaptation performance.  

Moreover, the optimal integration model (van Beers, Wolpert, & 

Haggard, 2002) suggests a weighting of information from different 

input modalities (e.g., visual or proprioceptive input).For sensori-

motor adaptations in depth (e.g., mirroring along the horizontal 

axis) participants would rely more on vision, as compared to senso-

rimotor adaptations in azimuth (e.g., mirroring along the sagittal 

axis) where participants rely more on proprioception. Such an adap-

tation behavior probably influences the cognitive representation of 

movement directions. Therefore, the measurement of the cognitive 

representation of movement directions was adjusted to visual 

(CHAPTER 2) and visual-proprioceptive stimuli (CHAPTER 3) in the 

experiments.  

 

Complex actions 

Different variables describe motor expertise (e.g., field of expertise, 

higher performance than usual, number of years of practice, etc.). 
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Different structures of a complex motor action established in the 

LTM determine motor expertise (Schack & Mechsner, 2006). Moreo-

ver, the direct matching hypotheses delivered evidence for a com-

parable neurophysiologic activation in the brain of rhesus monkeys 

during the execution and the observation of motor actions. This 

mechanism enables organisms to interpret other organisms’ actions 

by mapping the observed actions onto existing representations 

(Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). In general, the gaze 

behavior of humans is predictive, i.e., the gaze shifts to certain 

points of interest before the movement executing end-effector 

(e.g., the hand) reaches that location. Such a gaze behavior is ob-

servable, when humans execute a movement and when humans 

observe the movement execution. Thus, cognitive representations 

control the gaze behavior in both cases (i.e., movement observation 

and movement execution; Flanagan & Johansson, 2003). However, 

these finding do not distinguish motor and perceptual expertise. 

Therefore, a study investigated the action anticipation and motor 

resonance in elite basketball players (Aglioti, Cesari, Romani, & Ur-

gesi, 2008). The task for the observers (basketball experts, novices, 

and watchers) was to state within a temporal occlusion paradigm 

whether a player scores, or not, in basketball free throws. The find-

ings expose differences between groups observed for movement 

phases even before the ball left the hand, suggesting that experts 

can interpret body kinematics more accurately and more easily as 

compared to novices. Experts are able to predict other player’s be-

havior ahead of their realization, because they possess a functional-

ly organized cognitive representation structure. It seems that ex-

perts use their representation of motor actions and the correspond-

ing sensorial movement feedback (Aglioti, Cesari, Romani, & Urgesi, 

2008). Thus, elaborated cognitive representation structures are an 
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indicator for motor expertise. However, how do experts process 

movements, which are not identical but similar to their motor ex-

pertise?  

Neurophysiologic evidence delivered that a network of activations in 

the motor cortex is involved in execution and observation of com-

plex motor actions. This activation is stronger when humans pos-

sess a specific cognitive representation of that motor action. The 

brain activation is less strong if similar movements (i.e., matched 

with regard to the kinematics of a movement) from different fields 

of expertise (i.e., classical ballet and Capoeira) are perceived. This 

finding signifies the transfer of visual inputs onto specific motor 

skills of the observer. Thus, parietal and premotor areas in the hu-

man brain do not just simply react on the kinematics of a move-

ment (Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 

2005). CHAPTER4 has two goals. (1) The study delivers insights in 

the organization of cognitive representation of experts and novices 

for the instep kick in soccer. (2) The goal is to investigate whether, 

or not, the cognitive representation is different for the comparable 

movements executed by a human and a humanoid robot. If humans 

possess an expertise for a specific motor action, the transfer onto a 

new and unknown motor system (i.e., humanoid robot) seems 

plausible. 

 

Interactions 

Interaction-relevant cognitive units stored in the LTM are objects of 

research at the level of cognitive representations in CHAPTER 5. 

Therefore, the cognitive representation of team-specific tactics in 

soccer is investigated. Usually, a post-hoc video analysis describes 
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team specific tactics by focusing on different tactical performance 

indicators and latent variables (Garganta, 2009). This kind of re-

search grounds on the decomposition of the game, the detection of 

static patterns, and the analysis of discrete variables that inform 

about some characteristics of a soccer match. It seems plausible 

that higher order cognitive parameters of movement organization 

are an integral component in the realization of stipulated tactics. 

Compared to technical and physical performance parameters the 

research regarding tactics in sport games and the analysis of the 

relevant cognitive variables stands right at the beginning of a 

broader development. The current thesis do not follow this reduc-

tionist approach. Instead, it studies aspects of the complexity of 

interactions (i.e., team-specific tactics) in soccer. Appropriate cog-

nitive reference structures of complex motor actions (i.e. BACs) 

should provide a basis for action control in skilled voluntary ex-

ecuted movements (Schack & Mechsner, 2006). These BACs are 

activated in movement execution based on tactical decisions.  

The tactical understanding is of central relevance for the playing 

competence of each player, especially at a higher expertise level 

(Höner, 2005). Social interactions in sports (like tactical decisions 

on the soccer pitch) base on the perception of the intentions of oth-

er players (Nitsch, 2004) and the useful classification of perceived 

interactions. Therefore, soccer players must be able to anticipate 

opponents and teammates intentions in advance to process per-

ceived interactions (Meinel & Schnabel, 2007). Cognitive skills and 

abilities of an individual influence the cognitive processing of rele-

vant sensory information. Adequate motor processes rely on the 

results of the cognitive processing (Bosbach, Prinz, & Kerzel, 2004). 

Thus, the selection of action-relevant perceptual features influences 
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the choice for an adequate tactical behavior. Numerous studies in-

vestigated the tactical behavior of players. For example, soccer ex-

perts are better in prioritizing and evaluating a possible tactical be-

havior. Experts are better able to make exact judgments about 

possible passing options as compared to novices when both groups 

judge identical match situations (Ward & Williams, 2003). Novices 

in soccer showed a greater recall error as experts when players’ 

positions on the pitch needed to be recognized (Williams, Davids, 

Burwitz, Williams, 1993). Additionally, the investigation of explica-

ble tactical knowledge of soccer experts and novices showed advan-

tages for the soccer experts. Experts were able to state verbally 

more relevant information in the description of a scene as compared 

to novices. That helped the experts to make appropriate task-

specific judgments (den Hartigh, van der Steen, de Meij, van Ype-

ren, & Gernigon, 2014; Roca, Ford, McRobert, & Williams, 2011). 

Thus, it can be assumed that tactic-specific knowledge is organized 

in conceptual units in the human LTM as tactical skills (Hodges, 

Huys, & Starkes, 2007; McPherson & Kernodle, 2003). The main 

purpose of the CHAPTER5 is to identify cognitive representations of 

team-specific tactics in soccer. If soccer experts possess functional-

ly aligned cognitive representations of team-specific tactics in soc-

cer, it will have an impact on the cognitive processing of identical 

match situations. Two additional methods (i.e., a reaction time pa-

radigm and a measurement of gaze behavior) test the hypothesis 

regarding the decision-making process in team-specific tactics. 

 

  



GENERAL INTRODUCTION 

39 
 

References 

Abeele, S., & Bock, O. (2001). Sensorimotor adaptation to rotated 

visual input: Different mechanisms for small versus large ro-

tations. Experimental Brain Research, 140(4), 407-410. 

Abeele, S., & Bock, O. (2003). Transfer of sensorimotor adaptation 

between different movement categories. Experimental Brain 

Research, 148(1), 128-132. 

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action 

anticipation and motor resonance in elite basketball players. 

Nature Neuroscience, 11(9), 1109-1116. 

Ashby, F. G., & Lee, W. W. (1993). Perceptual variability as a fun-

damental axiom of perceptual science. In S. C. Masin (Ed.), 

Foundations of Perceptual Theory (pp. 369-399). Amster-

dam: North Holland. 

Ashby, F. G., &Ell, S. W. (2001). The neurobiology of human cate-

gory learning. Trends in Cognitive Science, 5(5), 204-210. 

Bernstein, N. A. (1967). The co-ordination and regulation of move-

ments. Oxford: Pergamon Press. 

Bernstein, N. A. (1971). Bewegungskontrolle (transl. Motor Cont-

rol). In T. Kussmann & H. Kölling (Eds.), Biologie und Verhal-

ten (pp. 146-171). Bern: Huber. 

Bläsing, B., Tenenbaum, G., & Schack, T. (2009). The cognitive 

structure of movements in classical dance. Psychology of 

Sport and Exercise, 10(3), 350-360. 

 



CHAPTER 1 

 

40 
 

Bock, O. (2001). Mechanismen der sensomotorischen Adaptation 

beim Menschen (transl. Mechanisms of human sensorimotor 

adaptation). Deutsche Zeitschrift für Sportmedizin, 52(12), 

338-342. 

Bock, O., & Burghoff, M. (1997). Visuo-motor adaptation: Evidence 

for a distributed amplitude control system. Behavioral Brain 

Research, 89(1-2), 267-273. 

Bock, O., & Girgenrath, M. (2006). Relationship between sensori-

motor adaptation and cognitive functions in younger and 

older subjects. Experimental Brain Research, 169(3), 400-

406. 

Bock, O., Schneider, S., & Bloomberg, J. (2001). Conditions for in-

terference versus facilitation during sequential sensorimotor 

adaptation. Experimental Brain Research, 138(3), 359-365. 

Bock, O., Thomas, M., & Grigorova, V. (2005). The effect of rest 

breaks on human sensorimotor adaptation. Experimental 

Brain Research, 163(2), 258-260. 

Bosbach, S., Prinz, W., & Kerzel, D. (2004). A Simon Effect With 

Stationary Moving Stimuli. Journal of Experimental Psycholo-

gy: Human Perception and Performance, 30(1), 39-55. 

Braun, S. M., Beurskens, A. J., Schack, T., Marcellis, R. G., Oti, K. 

C., Schols, J. M., et al. (2007). Is it possible to use the 

Structural Dimension Analysis of Motor Memory (SDA-M) to 

investigate representations of motor actions in stroke pa-

tients? Clinical Rehabilitation, 21(9), 822-832. 

 

 



GENERAL INTRODUCTION 

41 
 

Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & 

Haggard, P. (2005). Action observation and acquired motor 

skills: An fMRI study with expert dancers. Cerebral Cortex, 

15(8), 1243-1249. 

Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & 

Haggard, P. (2006). Seeing or doing? Influence of visual and 

motor familiarity in action observation. Current Biology, 

16(22), 1905-1910. 

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive 

Psychology, 4(1), 55-81. 

Clark, A. (1998). Being There: Putting Brain, Body, and World To-

gether Again. Cambridge: MIT Press. 

Creem-Regehr, S. H. (2009). Sensory-motor and cognitive functions 

of the human posterior parietal cortex involved in manual ac-

tions. Neurobiology of Learning and Memory, 91, 166-171. 

Cross, E. S., Hamilton, A. F. d. C., & Grafton, S. T. (2006). Building 

a motor simulation de novo: Observation of dance by danc-

ers. NeuroImage, 31(3), 1257-1267. 

de Groot, A. D. (1978/2008). Thought and Choice in Chess. The 

Hague: Mouton Publishers. 

den Hartigh, R. J. R., van der Steen, S., de Meij, M., van Yperen, N. 

W., & Gernigon, C. (2014). Characterising expert representa-

tions during real-time action: A Skill Theory application to 

soccer. Journal of Cognitive Psychology, 

26(7).doi:10.1080/20445911.2014.955028 



CHAPTER 1 

 

42 
 

Egan, F. (2012). Representationalism. In E. Margolis, R. Samuels & 

S. P. Stich (Eds.), The Oxford Handbook of Philosophy of 

Cognitive Science. Oxford: Oxford University Press. 

Eimas, P. D. (1995). Categorization in early infancy and the conti-

nuity of development. In J. Mehler & S. Franck (Eds.), Cogni-

tion on Cognition (pp. 289-300). Cambridge: MIT Press. 

Eversheim, U., & Bock, O. (2001). Evidence for processing stages in 

skill acquisition: A dual-task study. Learning & Memory, 

8(4), 183-189. 

Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in 

action observation. Nature, 424(6950), 769-771. 

Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & 

Kawato, M. (1999). Composition and decomposition of inter-

nal models in motor learning under altered kinematic and 

dynamic environments. The Journal of Neuroscience, 19(20). 

Fodor, J. A. (1987). Psychosemantics: The problem of meaning in 

the philosophy of mind. Oxford: MIT Press. 

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive 

architecture: a critical analysis. Cognition, 28(1-2), 3-71 

Gallese, V. (2003). A neuroscientific grasp of concepts: from control 

to representation. Philosophical Transactions of the Royal 

Society of London. Series B: Biological Sciences, 358(1435), 

1231-1240. 

 

 



GENERAL INTRODUCTION 

43 
 

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action 

recognition in the premotor cortex. Brain, 119(2), 593-609. 

Garganta, J. (2009). Trends of tactical performance analysis in 

team sports: bridging the gap between research, training 

and competition. Revista Portuguesa de Ciências do Despor-

to, 9(1), 81-89. 

Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spatial 

trajectories and reaction-times of aimed movements - effects 

of practice, uncertainty, and change in target location. Jour-

nal of Neurophysiology, 46(4), 725-743. 

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neu-

ronal population coding of movement direction. Science, 

233(4771), 1416-1419. 

Gibson, J. (1966). The Senses Considered as Perceptual Systems. 

Oxford: Houghton Mifflin. 

Gibson, J. (1979). The Ecological Approach to Visual Perception. 

Oxford: Houghton Mifflin. 

Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presenta-

tion time in expert memory. Cognitive Science, 24(4), 651-

682. 

Göhner, U. (1979). Bewegungsanalyse im Sport (transl. Movement 

analysis in sports). Schorndorf: Hofmann. 

Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic 

representation of action words in human motor and premotor 

cortex. Neuron, 41(2), 301-307. 



CHAPTER 1 

 

44 
 

Herbart, J. F. (1825). Psychologie als Wissenschaft, neu gegründet 

auf Erfahrung, Metaphysik und Mathematik (Vol. 2) (transl. 

Psychology as Science). Königsberg: Unzer. 

Hodges, N. J., Huys, R., & Starkes, J. L. (2007). Methodological 

review and evaluation of research in expert performance in 

sport. In G. Tenenbaum & R. C. Eklund (Eds.), Handbook of 

Sport Psychology. Hoboken (NJ): John Wiley & Sons. 

Hoffmann, J. (1986). Die Welt der Begriffe (transl. The world of 

concepts). Berlin: Verlag der Wissenschaften. 

Hoffmann, J. (1998). Kognition im Dienste der Handlungssteuerung 

(transl. Cognition at service of motor control). Psychologi-

sche Rundschau, 49(1), 21-30. 

Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The 

Theory of Event Coding (TEC): A framework for perception 

and action planning. Behavioral and Brain Sciences, 24(5), 

849 - 878. 

Höner, O. (2005). Entscheidungshandeln im Sportspiel Fußball – 

Eine Analyse im Lichte der Rubikontheorie (transl. Decision-

making in sport game soccer - An analysis in terms of Rubi-

con-Theory). Schorndorf: Hofmann. 

James, W. (1890). The principles of psychology (Vol. 1). New York: 

Holt. 

Janelle, C. M., & Hillman, C. H. (2003). Expert performance in 

sport: Current perspectives and critical issues. In J. L. 

Starkes & K. A. Ericsson (Eds.), Expert Performance in 

Sports - Advances in Research on Sport Expertise (pp. 19-

47). Champaign (IL): Human Kinetics. 



GENERAL INTRODUCTION 

45 
 

Jeannerod, M. (1997). The cognitive neuroscience of action. Mal-

den: Blackwell Publishing.  

Jeannerod, M. (2001). Neural simulation of action: a unifying me-

chanism for motor cognition. Neuroimage, 14(1), 103-109. 

Kandel, E. R., Schwartz, J. H., Jesell, T. M., Siegelbaum, S. A., & 

Hudspeth, A. J. (2012). Principles of Neuroscience (5th ed.). 

New York: McGraw-Hill. 

Kelso, J. A. S. (1995). Dynamic patterns - The self-organization of 

brain and behavior. Cambridge: MIT Press. 

Klix, F. (1971). Information und Verhalten (transl. Information and 

Behavior). Bern: Huber. 

Koch, I., Keller, P.,& Prinz, W. (2011). The ideomotor approach to 

action control: Implications for skilled performance. Interna-

tional Journal of Sport and Exercise Psychology, 2(4), 362-

375. 

Kohonen, T. (1997). Self-organizing Maps. Berlin: Springer. 

Konczak, J. (1996). Benutzt das Gehirn "motorische Programme" 

zur Steuerung von Bewegungen? (transl. Does the brain use 

motor programs for movement coordination?). In R. Daugs & 

K. Blischke (Eds.), Kognition und Motorik (pp. 41-58). Ham-

burg: Czwalina. 

Konczak, J. (2002). Internal motor models: A conceptual framework 

for motor control, learning, and development. Journal of 

Sport & Exercise Psychology, 24(Supplement), 7-8. 

Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent 

learning of internal models for kinematic and dynamic con-

trol of reaching. Nature Neuroscience, 2(11), 1026-1031. 



CHAPTER 1 

 

46 
 

Krause, A. F., Bläsing, B., & Schack, T. (2009). Modellierung kogni-

tiver Strukturen mit hierarchischen selbstorganisierenden 

Karten (transl. Modelling of cognitive structures by self-

organizing maps). In S. D. Baumgärtner, F. Hänsel & J. 

Wiemeyer (Eds.), Informations- und Kommunikationstechno-

logien in der Sportmotorik (pp. 171-173). Hamburg: TK. 

Lotze, R. H. (1846). Seele und Seelenleben (transl. Mind and Inner-

life). In R. Wagner (Ed.), Handwörterbuch der Physiologie 

(transl. Dictionary of Physiology). Braunschweig: Vieweg. 

Lotze, R. H. (1852). Medicinische Psychologie oder Physiologie der 

Seele (transl. Medical psychology or physiology of the mind). 

Leipzig: Weidmann. 

MacKay, D. G. (1985). A theory of representation, organization, and 

timing of action with implications for sequencing disorder. In 

E. A. Roy (Ed.), Advances in Psychology: Neuropsychological 

Studies of Apraxia (Vol. 23, pp. 267-308). Amsterdam: El-

sevier. 

Markman, A. B., & Dietrich, E. (2000a). Extending the classical view 

of representation. Trends in Cognitive Science, 4(12), 470-

475. 

Markman, A. B., & Dietrich, E. (2000b). In defense of representa-

tion. Cognitive Psychology, 40(2), 138-171. 

Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, j. V. (1996). 

Neural correlates of category-specific knowledge. Nature, 

379(6566), 649-652. 



GENERAL INTRODUCTION 

47 
 

Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an 

explicit strategy during visuomotor adaptation. The Journal 

of Neuroscience, 26(14), 3642-3645. 

McPherson, S. L., & Kernodle, M. W. (2003). Tactics, the neglected 

attribute of expertise. In J. L. Starkes & K. A. Ericsson 

(Eds.), Expert Performance in Sports - Advances on Re-

search in Sport Expertise. Champaign (Il): Human Kinetics. 

Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Percep-

tual basis of bimanual coordination. Nature, 414(6859), 69-

73.  

Meinel, K., & Schnabel, G. (2007). Bewegungslehre Sportmotorik 

(transl. Kinematics Motor Action). Aachen: Meyer & Meyer. 

Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. 

Annual Review of Psychology, 32, 89-115. 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: 

an expanded sourcebook. Thousand Oaks: Sage Publications. 

Munzert, J. (1989). Flexibilität des Handelns: theoretische Überle-

gungen und experimentelle Untersuchungen zum Konzept 

des Motorikschemas (transl. Flexibility of Acting). Köln: bps. 

Munzert, J. (1992). Motorik-Repräsentation, Bewegungswissen und 

Bewegungshandeln (transl. Motor representation, movement 

knowledge, and movement execution). Sportwissenschaft, 

22(3), 344-356. 

Munzert, J. (1995). Expertise im Sport (transl. Expertise in Sport). 

Psychologie und Sport, 2, 122-131. 

Munzert, J. (1997). Sprache und Bewegungsteuerung (transl. Lan-

guage and motor control). Schorndorf: Hofmann. 



CHAPTER 1 

 

48 
 

Müsseler, J., Aschersleben, G., & Prinz, W. (1996). Die Steuerung 

von Handlungen (transl. The control of actions). In G. Roth & 

W. Prinz (Eds.), Kopf-Arbeit: Gehirnfunktionen und kognitive 

Leistungen (pp. 309-358). Heidelberg: Spektrum. 

Nitsch, J. R. (2000). Handlungstheoretische Grundlagen der Sport-

psychologie (transl. Action-theory basics of sportpsycholo-

gy). In H. Gabler, J. R. Nitsch & R. Singer (Eds.), Einführung 

in die Sportpsychologie. Teil 1: Grundlagen (Vol. 2, pp. 43-

164). Schorndorf: Hofmann. 

Nitsch, J. R. (2004). Die handlungstheoretische Perspektive: ein 

Rahmenkonzept für die sportpsychologische Forschung und 

Intervention (transl. The action-oriented perspective: A 

framework for research in sport psychology and interven-

tion). Zeitschrift für Sportpsychologie, 11(1), 10-23. 

Petersen, M. J., & Graham, S. E. (1974). Visual detection and visual 

imagery. Journal of Experimental Psychology, 103(3), 509-

514. 

Pezzulo, G., Hoffmann, J., & Falcone, R. (2007). Anticipation and 

anticipatory behavior. Cognitive Processing, 8(2), 67-70. 

Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cam-

bridge: MIT Press. 

Piaget, J. (1952). The Origins of Intelligence in Children. New York: 

Norton & Co. 

Pinker, S. (1997). How the mind works. New York: W.W. Norton & 

Company. 

Prinz, W. (1983). Wahrnehmung und Tätigkeitssteuerung (transl. 

Perception and Motor Control). Berlin: Springer. 



GENERAL INTRODUCTION 

49 
 

Prinz, W. (1987). Ideo-motor action. In H. Heuer & A. F. Sanders 

(Eds.), Perspectives on Perception and Action (pp. 47-76). 

Hillsdale: Lawrence Erlbaum Associates. 

Prinz, W. (1990). A common coding approach to perception and 

action. In W. Prinz & O. Neumann (Eds.), Relationships be-

tween perception and action, Current approaches (pp. 167-

201). Berlin: Springer. 

Prinz, W. (1997). Perception and action planning. European Journal 

of Cognitive Psychology, 9(2), 129-154. 

Prinz, W. (2000). Kognitionspsychologische Handlungsforschung 

(transl. Cognitive and psychological research of human ac-

tions). Zeitschrift für Psychologie, 208(1-2), 32-54. 

Prinz, W. (2005). An ideomotor approach to imitation. In S. Hurley 

& N. Chater (Eds.), Perspectives on imitation: From neuros-

cience to social science - Volume 1: Mechanisms of imitation 

and imitation in animals. Cambridge: MIT Press. 

Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. 

Trends in Neuroscience, 21(5), 188-194. 

Roca, A., Ford, P. R., McRobert, A. P., & Williams, A. M. (2011). 

Identifying the processes underpinning anticipation and deci-

sion-making in a dynamic time-constrained task. Cognitive 

Processing, 12(3), 301-310. 

Rosch, E. (1973). Natural categories. Cognitive Psychology, 4(3), 

328-350. 

Rosch, E. (1975). The nature of mental codes for color categories. 

Journal of Experimental Psychology, 1(4), 303-322. 



CHAPTER 1 

 

50 
 

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. 

LLoyd (Eds.), Cognition and Categorization. Hillsdale: Law-

rence Erlbaum Associates. 

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-

Braem, P. (1976). Basic objects and natural categories. Cog-

nitive Psychology, 8, 382-439. 

Rosenbaum, D. E. (1983). The movement precuing technique: As-

sumptions, applications, and extensions. In R. A. Magill 

(Ed.), Advances in Psychology: Memory and Control of Action 

(Vol. 12, pp. 231-274). North-Holland: Elsevier. 

Schack, T. (2002). Die kognitive Architektur komplexer Bewegun-

gen - modelltheoretische und experimentelle Zugänge zu ei-

ner integrativen Bewegungswissenschaft (transl. The Cogni-

tive Architecture of Complex Motor Actions). [Habilitation 

treatise]. Cologne: German Sports University. 

Schack, T. (2004a). Knowledge and performance in action. Journal 

of Knowledge Management, 8(4), 38-53. 

Schack, T. (2004b). The cognitive architecture of complex move-

ment. International Journal of Sport and Exercise Psycholo-

gy, 2(4), 403-438. 

Schack, T. (2010). Die kognitive Architektur menschlicher Bewe-

gungen – Innovative Zugänge für Psychologie, Sportwissen-

schaft und Robotik (transl. The cognitive architecture of hu-

man movements - innovative approaches to psychology, 

sport science, and robotic). Aachen: Meyer & Meyer. 

 



GENERAL INTRODUCTION 

51 
 

Schack, T., & Hackfort, D. (2007). Action-theory approach to ap-

plied sport psychology. In G. Tenenbaum & R. C. Eklund 

(Eds.), Handbook of Sport Psychology (3rd ed., pp. 332-

351). Hoboken, NJ: John Wiley & Sons. 

Schack, T., & Mechsner, F. (2006). Representation of motor skills in 

human long-term memory. Neuroscience Letters, 391(3), 

77-81. 

Schack, T., & Ritter, H. (2009). The cognitive nature of action - 

Functional links between cognitive psychology, movement 

science, and robotics. Progress in Brain Research, 174, 231-

250. 

Schack, T., Stöckel, T., & Weigelt, M. (2008). Kognition und Emoti-

on - Bausteine einer Bewegungsarchitektur (transl. Cognition 

and emotion - Building blocks of a movement architecture). 

Leipziger Sportwissenschaftliche Beiträge, 49(1), 104-124. 

Scheele, B., & Groeben, N. (1988). Dialog-Konsens-Methoden zur 

Rekonstruktion subjektiver Theorien (transl. Dialog-

Consensus-Method for the reconstruction of subjective theo-

ries). Tübingen: Francke. 

Scheerer, E. (1984). Motor theories of cognitive structure. In W. 

Prinz & A. F. Sanders (Eds.), Cognition and motor processes. 

Berlin: Springer. 

Schmidt, R. A. (1975). A schema theory of discrete motor skill 

learning. Psychological Review, 82(4), 225-260. 

Schmidt, R. A., & Lee, T. D. (1998). Motor control and learning: A 

behavioral emphasis. Champaign: Human Kinetics. 



CHAPTER 1 

 

52 
 

Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event 

representation. Cognitive Processing, 8(2), 93-102. 

Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor 

memory consolidation. Science, 277, 821-825. 

Shadmehr, R., & Moussavi, Z. M. K. (2000). Spatial generalization 

from learning dynamics of reaching movements. The Journal 

of Neuroscience, 20(20), 7807-7815. 

Shepard, R. N. (1984). Ecological constraints on internal represen-

tation: Resonant kinematics of perceiving, imagining, think-

ing, and dreaming. Psychological Review, 91(4), 417-

447.Shiffrin, R. M. (1970). Forgetting: Trace erosion or re-

trieval failure? Science, 168(3939), 1601-1603. 

Smith, E. E., Balzano, G. J., & Walker, J. H. (1978). Nominal, per-

ceptual, and semantic codes in picture categorization. In J. 

Cotton & R. Klatzky (Eds.), Semantic factors in cognition. 

Hillsdale: Lawrence Erlbaum Associates. 

Sommerville, J. A., & Decety, J. (2006). Weaving the fabric of social 

interaction: Articulating developmental psychology and cog-

nitive neuroscience in the domain of motor cognition. Psy-

chonomic Bulletin & Review, 13(2), 179-200. 

Starkes, J. L., & Allard, F. (1993). Cognitive Issues in Motor Exper-

tise. Amsterdam: North-Holland. 

Starkes, J. L., & Ericsson, K. A. (2003). Expert Performance in 

Sports: Advances in Research on Sport Expertise. Cham-

paign: Human Kinetics. 

Starkes, J. L., Helsen, W. F., & Jack, R. (2001). Expert performance 

in sport and dance. In R. N. Singer, H. A. Hausenblas & C. M. 



GENERAL INTRODUCTION 

53 
 

Janelle (Eds.), Handbook of Sport Psychology (pp. 174-201). 

New York: Wiley. 

Tani, J., Itob, M., & Sugita, Y. (2004). Self-organization of distribu-

tedly represented multiple behavior schemata in a mirror 

system: reviews of robot experiments using RNNPB. Neural 

Networks, 17(8-9), 1273-1289. 

Taylor, J. A., & Thoroughman, K. A. (2008). Motor adaptation 

scaled by the difficulty of a secondary cognitive task. PLoS 

ONE, 3(6), 1-11. 

Thomas, K. T., & Thomas, J. R. (1994). Developing expertise in 

sport: The relation of knowledge and performance. Interna-

tional Journal of Sport Psychology, 25(3), 295-312. 

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 

327-352. 

van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feel-

ing is more important than seeing in sensorimotor adapta-

tion. Current Biology, 12(10), 834-837. 

Volkmann, A. W. (1846). Sehen. In R. Wagner (Ed.), Handwörter-

buch der Physiologie (transl. Dictionary of Physiology) (pp. 

264 - 351). Braunschweig: Vieweg. 

Vygotsky, L. S. (1934/1962). Thought and Language (Original work 

published 1934). Cambridge: MIT Press. 

Ward, P., & Williams, A. M. (2003). Perceptual and cognitive skill 

development in soccer: The multidimensional nature of ex-

pert performance. Journal of Sport & Exercise Psychology, 

25(1), 93-111. 

 



CHAPTER 1 

 

54 
 

Weigelt, M., Ahlmeyer, T., Lex, H., & Schack, T. (2011). The cogni-

tive representation of a throwing technique in judo experts - 

Technological ways for individual skill diagnostics in high-

performance sports. Psychology of Sport and Exercise, 

12(3), 231 - 235. 

Westerholz, J., Schack, T., & Koester, D. (2013). Event-related 

brain potentials for goal-related power grips. PLoS ONE, 

8(7), e68501. 

Westerholz, J., Schack, T., Schütz, C., & Koester, D. (2014). Habi-

tual vs non-habitual manual actions: An ERP study on overt 

movement execution. PLoS ONE, 9(4), e93116. 

Williams, A. M., Davids, K., Burwitz, L., & Williams, J. (1993). Cog-

nitive knowledge and soccer performance. Perceptual and 

Motor Skills, 76(2), 579-593. 

Wollesen, B., Lex, H., & Mattes, K. (2012). BASE als Programm zur 

Prävention von (Rücken-)Beschwerden in der betrieblichen 

Gesundheitsförderung (transl. BASE a program for the pre-

vention of backache in industrial health promotion). Grup-

pendynamik und Organisationsberatung, 43, 389-411. 

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computa-

tional framework for motor control and social interaction. 

Philosophical Transactions of the Royal Society of London. 

Series B: Biological Sciences, 358(1431), 593-602. 

Wundt, W. (1898). Zur Theorie der räumlichen Gesichtswahrneh-

mung (transl. Theory of spatial facial perception). Philoso-

phische Studien, 14, 1-118. 



GENERAL INTRODUCTION 

55 
 

Zacks, J. M., & Tversky, B. (2001). Event structure in perception 

and conception. Psychological Bulletin, 127(1), 3-21. 

Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remember-

ing, and communicating structure in events. Journal of Expe-

rimental Psychology, 130(1), 29-58. 



 

 

Representation in Manual Actions – I 

CHAPTER 2 

 

Abstract The current study investigated the effects of 

cognitive representations of movement directions on sen-

sorimotor adaptation performance. Adaptation performance 

was measured via a pointing experiment in which participants 

were provided with visual feedback that was distorted along 

the midsagittal plane (i.e., left-right reversal). Performance 

was analyzed relative to participants’ individual adaptation 

gains and three groups were subsequently defined (i.e. skilled, 

average, and poor adapters). The group separation was kept 

for the Cognitive Measurement of Represented Directions (C-

MRD), which was used to analyze participants’ cognitive rep-

resentation of movement directions. The results showed that 

skilled adapters, in contrast to poor adapters, possess a global 

representation of movement directions aligned to the cardinal 

axes. The cognitive representation structure hence supports 

the sensorimotor adaptation performance. 

 

 

 

 

 

This chapter is a revised version of Lex, H., Weigelt, M., Knoblauch, 

A., & Schack, T. (2014). The functional role of cognitive frameworks 

on visuomotor adaptation performance. Journal of Motor Behavior, 

46(6), 389-396. 
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Introduction 

Sensorimotor adaptation can be characterized as a learning process, 

which is driven by the formation of new links between motor output 

and sensory feedback (Ferrel, Bard, & Fleury, 2001). The current sci-

entific research on the cognitive principles responsible for sensorimo-

tor adaptation focuses on the modification characteristics of an inter-

nal model as one kind of internal representation of environmental 

properties (Wolpert, Ghahramani, & Jordan, 1995). Modifications of 

an existing internal model towards visual disturbances can be stored 

in memory, something that, among other things, can be seen in a 

reduced error when adapting to a similar disturbance for the second 

time (Abeele & Bock, 2001). Previous research demonstrated that 

such a modified internal model persists over time and can be retained 

for more than a month (Bock, Schneider, & Bloomberg, 2001).  

To overcome the initial performance disruption at the beginning of 

distorted trials, other processes than transformations of the internal 

model must be activated (Bock, 2005; Redding & Wallace, 1996). 

These processes can be described as a gradual adaptation to new 

environmental conditions as strategic control, which relies on cogni-

tive representations (Mazzoni & Krakauer, 2006). Evidence for this 

assumption was previously provided by a study that investigated the 

adaptation performance of a deafferent patient (i.e., a patient with a 

neurological disorder blocking sensory feedback from the neck on 

downwards). A further decrease in the adaptation performance was 

found when the patient was engaged in an additional cognitive task 

(e.g., counting task), compared to a healthy control group (Ingram, 

van Donkelaar, Cole, Vercher, Gauthier, & Miall, 2000). This finding 

provided evidence that cognitive processes are involved in sen-
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sorimotor adaptation, but it remains unclear, however, which strate-

gic cognitive processes are responsible for the sensorimotor adapta-

tion performance.  

Within the classical research paradigm of goal-directed pointing ex-

periments, the cognitive representation of movement directions has 

previously been found as one functional indicator to measure sen-

sorimotor adaptation performance (Lex, Weigelt, Knoblauch, & 

Schack, 2012). Lex and colleagues (2012) provided evidence for the 

existence and specifics of cognitive representations of movements 

directions, when the movement directions are presented in a propri-

oceptive-visual mode. According to their results, differences in sen-

sorimotor adaptation behavior between different groups of partici-

pants are caused by different cognitive representations of movement 

directions (i.e., global and local representations). Global representa-

tions of movement directions are aligned to the cardinal axes in the 

sagittal and horizontal plane. In contrast, local representations of 

movement directions are aligned to neighboring movement directions 

(i.e., 30° apart from each other). Global cognitive representations of 

movement directions have been found to lead to a better adaptation 

performance in a task, in which visual feedback was distorted via a 

left-right reversal (i.e., a mirroring along the sagittal axis). The ter-

mini global and local are used herein with emphasis to the organiza-

tion of corresponding movement directions.  

Sensory motor adaptation performance has also been shown to be 

influenced by different sensory input modalities (e.g., visual, kines-

thetic, or proprioceptive feedback) in accordance with the adjusted 

distortion (van Beers, Wolpert, & Haggard, 2002). For example, in a 

sensorimotor adaptation towards a distortion of the visual feedback 
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in terms of a sagittal displacement humans tend to rely more on pro-

prioceptive movement feedback. Whereas, during the adaptation to-

wards a distortion in terms of a horizontal displacement humans rely 

more on visual movement feedback.  

The aim of the present study was to investigate sensorimotor adap-

tation performance with a distortion of the visual feedback in terms 

of a left-right reversal (i.e., horizontal displacement), and to measure 

the corresponding cognitive representations of movement directions 

when presented only in a visual mode. Thus, the study builds on the 

earlier investigation of Lex et al. (2012) in which the movement di-

rections were presented in a proprioceptive-visual mode and aimed 

to examine the functional relationship between the cognitive repre-

sentation and the adaptation behavior to visually presented move-

ment directions.  

 

Methods 

Two experiments were conducted to investigate the functional rela-

tionship between cognitive representations of movement directions 

and subsequent sensorimotor adaptation behavior. Experiment 1 

measured the cognitive representation of movement directions under 

the visual input modality. Experiment 2 assessed sensorimotor adap-

tation using a pointing task similar to the one previously used by Bock 

and Girgenrath (2006) integrating a different distortion of the visual 

feedback.  
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Participants 

Forty-seven adults (mean age = 25.4 years, SD = 2.8, 24 females) 

participated in the current study, with the majority of them being 

students at Bielefeld University. All participants declared themselves 

as right-handed, they were naïve to the purpose of the experiment, 

and had normal or corrected-to-normal vision. The experiment con-

sisted of a single session (starting with the measurement of the cog-

nitive representation of movement directions), and experimental pro-

cedures were conducted in accordance with the 1964 Declaration of 

Helsinki. Participants signed an informed consent form prior to the 

experiment and received course credit for their research participa-

tion. All data was collected in a single session starting with the data 

acquisition of the measurement of cognitive representation of move-

ment directions.  

 

Sensorimotor adaptation task 

Performance in the sensorimotor adaptation task was measured us-

ing a standard pointing experiment (Bock 2005; Miall, Jenkinson, & 

Kulkarni, 2004). Participants were asked to execute center-out 

movements towards eight randomly appearing targets on a digitizer 

tablet. Movements were always performed from the center to the pe-

riphery of the screen and participants’ hand locations on the digitizer 

tablet were displayed via a red cursor on the screen. After baseline 

recordings, visual feedback was distorted in terms of a left-right re-

versal in order to manipulate the normal relationship between sen-

sory input and motor output.  
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Apparatus & Task 

The apparatus and task used in the current experiment were identical 

to the sensorimotor adaptation task of Lex and colleagues (2012). 

Participants were seated in front of a monitor facing downwards. The 

screen was visible through a tilted mirror which prevented vision of 

the own hands. Participants` right hand executed center-out move-

ments from a center position to eight peripheral, equidistant target 

positions, randomly appearing on a digitizer tablet. To provide par-

ticipants with real-time visual feedback of their hand movements, the 

hand position was displayed via a red cursor cross (8mm in length 

and width) on the screen (similar to Miall, Jenkinson, & Kulkarni, 

2004). Participants were asked to perform the movements with their 

right hand using an electronic pen, while the left hand was positioned 

and kept still beside the digitizer tablet. Movements were performed 

in episodes of 30 s, with a five seconds rest in between episodes 

(Bock, 2005; Bock & Girgenrath, 2006). The experiment started with 

three familiarization episodes, which were followed by two un-

distorted baseline conditions consisting of five episodes each. Base-

line condition 1 (BL1) recorded participants’ performance with verid-

ical visual feedback of their movements. Baseline condition 2 (BL2) 

recorded the same movements than BL1, but without real-time visual 

feedback of the actual hand position. Instead, feedback of the cursor 

position was only provided when the cursor was within an arc radius 

of 10 mm around the center position of the screen to ensure partici-

pants were able to return to the starting position. The two BL condi-

tions were followed by an adaptation phase (AP), in which partici-

pants were asked to perform the same movement task, but were 

presented with visual feedback that was distorted via a left-right re-

versal (i.e., mirrored along the midsagittal plane). The AP consisted 
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of 30 episodes to ensure there was enough time to initiate a sen-

sorimotor adaptation process. Subsequent to the AP participants 

were offered a 5 minute break in which they were allowed to move 

around and relax. They continued with five episodes in the phase of 

persistence (PP) under distorted condition, but without real-time vis-

ual feedback of the movements.   

 

Data analysis 

An initial angular error (IAE) was measured to determine participants’ 

pointing performance. The IAE was computed between the direct tar-

get direction and initial hand direction for each pointing movement. 

The direct target direction was defined by the hand position at move-

ment onset (i.e., center position) and the target location. The initial 

hand direction in contrast was defined by the hand position at move-

ment onset (i.e., center position) and the hand position at first peak 

velocity with a minimum velocity of 30 mm/s. The minimum velocity 

threshold at movement onset was defined to ensure that initial small 

corrective adjustments (i.e., directly around the center position) were 

not considered within data analysis. Overall, the IAE measure is 

largely unaffected by feedback-based corrective adjustments that oc-

cur during later stages of the pointing movement, in which partici-

pants slow down their movements and perform a winding path to-

wards the target to ensure for successive movement performance. 

The mean IAE was calculated for all pointing movements within each 

episode. The mean adaptation performance of each episode was av-

eraged into blocks of five episodes to judge participants’ pointing per-

formance (Bock & Girgenrath, 2006). Therefore, the blocks measur-

ing pointing performance were constituted as BL1, BL2, AP1 to AP6, 

and PP representing the mean pointing performance of five episodes 
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each. An analysis of variance (ANOVA) with repeated measures and 

a simple contrast analysis were conducted to examine differences 

within the adaptation phase. Baseline performances were examined 

by a two-tailed t-test.  

 

Cognitive representation of movement directions 

The representation of movement directions was measured using the 

Cognitive Measurement of Represented Directions (C-MRD), an ex-

perimental set-up used by Lex and colleagues (2012), and based on 

the methodological background of the Structural Dimensional Analy-

sis of Motor Representations (SDA-M; Schack & Mechsner, 2006).  

 

Apparatus and task 

The C-MRD was performed at the same table as the sensorimotor 

task. A standard monitor was placed in front of the participants used 

to provide normal vision on the screen. Following the sensorimotor 

adaptation task, we used animated red fading movement dots (with 

a center-out movement direction) to measure cognitive representa-

tions of movement directions. The moving dots were depicted as an-

imated gif-files on the computer screen (see Figure 2.1), and moved 

into twelve different directions, spread evenly on a full circle every 

30°. One of the twelve movement directions was presented in the 

upper part of the (horizontally split) screen in an anchoring position, 

and the remaining eleven movement conditions were successively 

and randomly presented in the lower part of the screen in a signifier 

position. The movement direction in the anchoring position remained 

repetitive on the screen, until it was compared with every other 
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movement direction. Subsequent to that, the next movement direc-

tion was displayed as well in the anchoring position, and compared 

with the remaining eleven movement directions. The procedure was 

repeated until each movement direction had been presented once in 

the anchoring position. Twelve movement directions were compared 

with each other, thus asking participants to make twelve times eleven 

decisions in total, as the anchoring position was predefined as most 

similar to itself.  

The task for the participants was to compare the movement direction 

in the anchoring position with that in the signifier position concerning 

their similarity. More specifically participants were asked to decide 

whether the two presented movement directions seemed similar to 

them. Participants were instructed to make their decisions spontane-

ously, which was facilitated through a singular stimuli presentation, 

but no given time restrictions. Decisions were made by either press-

ing a plus button (similarity) on the left or a minus button (no simi-

larity) on the right side of the screen. Participants’ judgment was 

entirely based on a self-defined similarity criterion, and made with 

regard to their own representation of movement directions. 
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Figure 2.1 C-MRD reveals data of cognitive representation of 

movement directions. When the splitting procedure started, the dot 

(colored in red) in the upper screen (anchoring position) moved into 

one movement direction (e.g. direction 4 = 90° straight to the right). 

After this one faded out, the dot in the lower screen (signifier posi-

tion) moved into one of the other residual eleven movement direc-

tions (e.g. direction 11 = 300° to the upper left). When the partici-

pants decided for similarity they pressed the plus button (on the left), 

and for dissimilarity the minus button (on the right). The next move-

ment direction appeared immediately the decisions. When the move-

ment direction in anchoring position was compared with every other 

direction, the next button (in the center) was enabled, and the split-

ting procedure started again with a new direction in the anchoring 

position. 
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Data analysis 

The data analysis of participants’ decisions in the C-MRD consisted of 

three steps (for more details on the method see Lex, et al., 2012). 

The first step consisted of the splitting procedure to log participants’ 

decisions. Their decisions were transformed into an Euclidian distance 

matrix which represents the distances between the twelve movement 

directions. This matrix forms the basis for the second step. The sec-

ond step used the Euclidian distance matrix to perform an unweighted 

average-linkage cluster analysis to elicit the cognitive representation 

of movement directions in the form of dendrograms. In the third step, 

the generated representation structures have been tested for struc-

tural homogeneity by an invariance measure between groups. The 

statistically suggested threshold for accepting invariance is set to λcrit 

= .68 (Lander & Huth, 1999; Schack, 2011). 

 

Representation of movement directions by sensorimotor ad-

aptation performance level  

The last analytic step combined the results of the sensorimotor ad-

aptation task in dependence on the representation of movement di-

rections. Therefore, the individual adaptation performance of each 

participant was quantified by an adaptation index Ak (identical to Lex, 

et al., 2012). The adaptation index is described by the following equa-

tion, 

 

�� =
��� − ���

��� − �	�

 

 



REPRESENTATION IN MANUAL ACTIONS – I 

67 

 

The index k represented the participant’s indicator. Ak = 100 % 

means a perfect adaptation back onto baseline level by the partici-

pant, whereas Ak = 0 % indicates no adaptation at all (i.e., no 

changes in direction of distortion compared to undistorted baseline 

performance). Subsequently, all participants were sorted in descend-

ing order according to their adaptation index, and separated into 

three groups. The first one-third represented the skilled adapters (n 

= 16), the second one-third the medium adapters (n =15), and the 

last one-third the poor adapters (n = 16). The group separation of 

the sensorimotor adaptation task (skilled, medium, and poor adapt-

ers) was retained for the representation of movement directions. 

Therefore, participants mean group dendrograms were calculated to 

reflect the corresponding cognitive representation of movement di-

rections. The emerged group dendrograms were then tested for in-

variance.  

 

Results  

The IAE measured participant’s performance in the sensorimotor ad-

aptation task. The results of all participants showed a mean IAE for 

BL1 of 3.17° (SD = 1.7) and for BL2 of 3.20° (SD = 1.4). A t-test 

(two-tailed) revealed no differences between the baselines under dif-

ferent feedback conditions, t(45) = -0.143, p =.887. The mean IAE 

for the adaptation phases 1 to 6 have been, 33.42° (SD = 10.5), 

23.14° (SD = 9.4), 17.62° (SD = 8.9), 15.01° (SD = 7.2), 14.38° 

(SD = 8.6), and 12.89° (SD = 7.4). An analysis of variance (ANOVA) 

for the adaptation phase revealed a main effect for adaptation phase, 

F(4.006, 172.279) = 49.249, p < .001, η2 = .534. Mauchly’s Test 

revealed that the sphericity assumption was violated, Χ2(14) = 

38.417, p < .001. Therefore, the degrees of freedom were corrected 
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by estimation of sphericity according to Greenhouse-Geisser (ε = 

.801). Accordingly, all participants adapted to the visual disturbance 

over the adaptation phase. A simple contrast analysis revealed suc-

cessful adaptation to all phases against the first phase (all p < .001), 

but adaptation gains decreased over time. The non-significant differ-

ence between the last adaptation phase (AP6) and the phase of per-

sistence (PP), t(45) = .938, p =.353 , revealed that participants’ ad-

aptation performance persisted over time for at least five minutes.  

The individual adaptation performance of the whole adaptation pro-

cess was defined by an adaptation index for each participant. All par-

ticipants adapted to 66.17% (SD = 26.36) towards the visual distor-

tion. The skilled adapters (GA) showed a mean adaptation index of 

89.23% (SD = 8.94), the average adapters (AA) of 71.41% (SD = 

4.53), and the poor adapters (PA) of 37.51% (SD = 25.50). Figure 

2.2 shows the performance curves of the skilled, the average, and 

the poor adapters in the sensorimotor adaptation task (a) and the 

mean adaptation index of all groups. 

 

Figure 2.2 (a) Pointing performance over the phases of the skilled, 

average, and poor adapters in the sensorimotor adaptation task with 

a distortion of the visual feedback in terms of a left-right reversal. 
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Recorded are two different baseline phases. Baseline 1 (BL1) included 

visual movement feedback, and in BL2 visual movement feedback 

was occluded. During the adaptation phases (AP 1 to 6) and the 

phase of persistence (PP) visual feedback was distorted by a left-right 

reversal. In the PP visual feedback was occluded as in BL2. The y-

axis represents the initial angular error α between the direct target 

direction and initial hand direction in angular degrees. The error bars 

indicate the 95% confidence interval. (b) The adaptation index of the 

sensorimotor adaptation task. The vertical bars show mean adapta-

tion index for all three groups. The error bars represent 95% confi-

dence interval. 

 

In a last step, the results of the sensorimotor adaptation task have 

been applied onto the results of the representation of movement di-

rections. Therefore, the group separation generated from the adap-

tation index was used to define the groups of skilled, average, and 

poor adapters and their corresponding cognitive representation of 

movement directions. Figure 2.3 shows the evolved cluster structures 

from the C-MRD of all groups. Skilled adapters’ cognitive representa-

tion of movement directions included between two and three neigh-

boring movement directions in each cluster. The evolved clusters in-

tegrated the cardinal axes in the horizontal and sagittal plane (i.e., 

the movement directions 1, 4, 7, and 10). Average adapters cognitive 

representation of movement directions showed four distinct clusters, 

but the movement directions 1, 7, and 8 are singled out. The cogni-

tive representation of movement directions of the poor adapters in-

cluded two neighboring movement directions per cluster. Neverthe-

less, all cardinal movement directions representing the main axes in 

the horizontal and sagittal plane (i.e. 1, 4, 7, and 10) are singled out 

in their respective cognitive representation of movement directions.  



CHAPTER 2 

 

70 

 

 

Figure 2.3 The dendrogram in the upper part show the average 

cluster structure of all three groups. The numbers at the bottom of 

each dendrogram reflect the corresponding movement direction in 

clockwise order starting with one in the straight upright position. The 

numbers at y-axis reflect the corresponding Euclidian distances for 

the conjunctions in the dendrogram. The grey dashed line indicates 

an estimated critical Euclidian distance (dcrit = 3.987) at which all 

branches of the dendrogram were cut off. The critical Euclidian dis-

tance is estimated by the application of an error probability of p = 

.025. All movement directions connected below that critical distance 

can be considered as integrated in one cluster. On the contrary, the 

movement directions connected above the critical distance are not 

integrated into a distinct cluster. Solid grey bars at the bottom indi-

cate the evolved clusters. The bottom of Figure 2.3 displays the re-

sulting cluster structures depicted as directional arrows. Arrows de-

picted in the identical manner (i.e. solid, dotted or dashed) represent 

a corresponding cluster in the dendrograms. 

 

The evolved mean cluster structures of all three groups have been 

further analyzed to compare the resultant cognitive representation of 

movement directions of both groups for structural homogeneity with 
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each other. The results of the invariance measure for the cognitive 

representations of movement directions showed no invariance be-

tween the groups (i.e. skilled to average adapters λ = .40, average 

to poor adapters λ = .53, and skilled to poor adapters λ = .38). 

Therefore, all groups exhibited a completely distinct cognitive repre-

sentation of movement directions measured under visual stimulus 

presentation with regard to the sensorimotor adaptation perfor-

mance. Skilled adapters possessed a global representation of move-

ment directions (integrating the movement directions of the cardinal 

axes), whereas poor adapters possessed a local representation of 

movement directions (separating the movement directions of the car-

dinal axes).  

An interesting side effect is observable in the cognitive representation 

of movement directions in skilled and poor adapters. Without regard 

to the statistical suggested threshold (dcrit), the cluster analysis con-

nects all movement directions with each other. Two major direction-

sensitive blocks were identified for all groups. Hence, the skilled 

adapters differentiated between movement directions on the left (8 

to 10) and the right hand side (1 to 7). The average adapters’ pos-

sessed a comparable representation structure (2 to 7, and 8 to 1) 

separating left and right. However, the poor adapters’ representation 

indicated two direction-sensitive blocks connecting up- (10 to 3) and 

downward (4 to 9) directions. 

 

Discussion 

The results of the experiments provided further evidence for the im-

pact of cognitive representations of movement directions on sen-

sorimotor adaptation performance. Our results suggested that a 
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global cognitive representation of movement directions is advanta-

geous in adaptation tasks with a distortion of the visual feedback in 

terms of a left-right reversal. Thus, it is disadvantageous in such an 

adaptation task when humans possess a local representation of 

movement directions. Identically to a previous study conducted by 

Lex and colleagues (2012), the local representation of movement di-

rections of poor adapters assembled neighboring movement direc-

tions. The peculiarity in the representation of movement directions of 

poor adapters was the extinction of the cardinal axes. This extinction 

led to a performance decrease in the sensorimotor adaptation with a 

distortion of the visual feedback. In contrast, the global representa-

tion of movement directions within skilled adapters led to a better 

performance in an adaptation task with a distortion of the visual feed-

back along the sagittal axis. It seems that comparable mechanisms 

are triggered in the activation of responsible cognitive representa-

tions of movement directions and in sensorimotor adaptation tasks. 

For example, the proportion of the impact of representations of 

movement directions on sensorimotor adaptation performance relies 

on the specificities of the distortion in the adaptation task. Van Beers 

and colleagues (2002) found evidence that the adaptation perfor-

mance is dominated by proprioceptive movement feedback for azi-

muthally distortion (leftward), and dominated by visual movement 

feedback for distortions in depth (forward). Subsidiary to previous 

experiments conducted by Lex and colleagues (2012) it was found 

that adaptation performance depends on whether cognitive represen-

tations are triggered by visual or visual-proprioceptive presented 

movement directions. The sensory input modalities (i.e. propriocep-

tive-visual or visual only) of presented movement directions influ-

enced the cognitive representation, and a main tendency was re-
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vealed. This suggests that humans possess a general cognitive rep-

resentation of movement directions aligned to global (i.e. cardinal 

directions) or local (i.e. neighboring directions) representations of 

movement directions. 

The adaptation towards rotated visual movement feedback can be 

described as direction sensitive. The direction sensitivity towards dif-

ferent target position has been explained by different functional mod-

ules, each pertinent to a narrow range of the response direction (Wer-

ner & Bock, 2010). In addition, a separate processing of extent and 

directional errors in reaching movements has been suggested, which 

might be planned as hand-centered vectors, whose extent and direc-

tion are established via learning a scaling factor and a reference axes 

(Krakauer, Pine, Ghilardi, & Ghez, 2000). Furthermore, Werner and 

Bock (2010) indicated that cognitive processes allowing adaptation 

towards reversed feedback are similar to rotated visual feedback. It 

has been predicted that these processes are able to change a global 

internal representation of space or rather multiple directions-specific 

modules. Based on the results of the present study, however, we 

provide a different argument. Our data suggests that the cognitive 

representation of movement directions (measured before the sen-

sorimotor adaptation) can be interpreted as a reference frame within 

human motor memory. Such a cognitive reference frame influences 

the whole adaptation performance towards reversed visual feedback. 

Hence, it can be interpreted as a direction-specific and overarching 

module in human motor memory (comparable to Tanaka, Worring-

ham, & Kerr, 2009). However, further research is needed to investi-

gate the influence of the cognitive representation of movement di-

rections on adaptation towards rotated visual feedback to strengthen 

such an argument. 
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Further evidence is provided by experiments where the participants 

adapted towards different distortions (i.e. visual and mechanical) 

with normal or impaired proprioceptive feedback. The results showed 

that intact proprioception is needed for adaptation towards a me-

chanical distortion, but not towards a visual distortion. Both sensory 

modalities seemed to be independent from each other (Pipereit, 

Bock, & Vercher, 2006). In accordance to the present study, it can 

be assumed that cognitive structures, like representations of move-

ment directions, are involved in adaptation tasks. Moreover, there is 

additional neurophysiologic evidence for the existence of a movement 

related system, which encodes movement directions in the motor 

cortex. Comparable neuronal activity was measured in the motor cor-

tex, when reaching movements were executed in specific movement 

directions (Georgopoulos, 2000; Georgopoulos, Caminiti, Kalaska & 

Massey, 1983; Georgopoulos, Kalaska, Caminiti & Massey, 1982; 

Georgopoulos, Schwartz & Kettner, 1986). Thus, the cognitive repre-

sentation of movement directions can be considered as a cognitive 

structure, which is relevant in direction sensitive sensorimotor adap-

tation tasks. It remains speculative that cognitive representations of 

movement directions will be activated during other direction sensitive 

complex motor actions. More research needs to be conducted to ver-

ify such a bold idea. 

Altogether, it can be proposed that the cognitive representation of 

movement directions may be considered as an indicator for measur-

ing adaptation performance in pointing tasks with a visual disturb-

ance in terms of a left-right reversal. Moreover, it can be concluded 

that the representation structure seems to be a valid predictor for 

sensorimotor adaptation performance. 
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Representation in Manual Actions – II 

CHAPTER 3 

 

Abstract The aim of our study was to explore whether or 

not different types of learners in a sensorimotor task possess 

characteristically different cognitive representations. Partici-

pants’ sensorimotor adaptation performance was measured 

with a pointing paradigm, which used a distortion of the visual 

feedback in terms of a left–right reversal. The structure of 

cognitive representations was assessed using a newly estab-

lished experimental method, the Cognitive Measurement of 

Represented Directions. A post hoc analysis revealed inter-in-

dividual differences in participants’ adaptation performance, 

and three different skill levels (skilled, average, and poor 

adapters) have been defined. These differences in perfor-

mance were correlated with the structure of participants’ cog-

nitive representations of movement directions. Analysis of 

these cognitive representations revealed performance ad-

vantages for participants possessing a global cognitive repre-

sentation of movement directions (aligned to cardinal move-

ment axes), rather than a local representation (aligned to 

each neighboring direction). Our findings are evidence that 

cognitive representation structures play a functional role in 

adaptation performance. 

 

 

This chapter is a revised version of Lex, H., Weigelt, M., Knoblauch, 

A., & Schack, T. (2012). Functional relationship between cognitive 

representations of movement directions and visuomotor adaptation 

performance. Experimental Brain Research, 223(4), 457-467. 
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Introduction 

In daily life, humans must constantly adapt to the incongruencies 

between the expected and perceived effects of our goal-directed or 

automated actions on the environment. Such surprising incongruen-

cies drive the establishment of new links between sensory input and 

motor output and allow humans to adapt to changes in environmental 

conditions. Many laboratory studies have investigated adaptation 

processes by conducting experiments in which participants execute 

straight ballistic pointing movements toward targets (e.g., Georgop-

oulos, Caminiti, Kalaska, & Massey, 1983; Georgopoulos, Kalaska, & 

Massey, 1981), or track a moving target on a screen (e.g., Abeele & 

Bock, 2003). The adaptation paradigm can be described as follows: 

After participants are familiarized with the setup, they are introduced 

to a distortion and their task performance is measured over a number 

of trials. Usually, performance errors peak immediately after distor-

tion onset and normalize again with extended practice. This sen-

sorimotor adaptation phenomenon has been studied in the context of 

different distortions, such as visual (Bock & Girgenrath, 2006) and 

mechanical (Pipereit, Bock, & Vercher, 2006) distortions. It is well 

accepted that sensorimotor adaptation, as signified by specific per-

formance improvements, is initiated by two different types of pro-

cesses: The first process involves the gradual recalibration of the sen-

sorimotor system, while the second process involves strategic control 

(Bock, 2005). Essentially, this recalibration process brings sensory 

input and motor output in accordance with each other to control for 

the distortion. This adaptive behavior is initiated by the transfor-

mation of an internal model (Wolpert, Ghahramani, & Jordan, 1995) 

or a ‘spatial realignment’ (Redding & Wallace, 1996) and can be de-
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scribed as a stepwise approximation to new environmental condi-

tions. The strategic control process is grounded in cognitive schemes 

and representations, which are activated to overcome, for example, 

the performance disruption at the beginning of trials (Redding & Wal-

lace, 1996). Therefore, visual feedback-based movement adjust-

ments and anticipatory mechanisms control the movement’s execu-

tion. These processes are active when, for instance, closed boxes are 

lifted without any knowledge about their weight. After the first box 

was carried, it is possible to anticipate the weight of the second box 

in a better way, and the grip force will be immediately adjusted in 

advance.  

Functional links between sensorimotor adaptation and cognitive func-

tions, which are potentially the basis of this link, are often discussed. 

For example, when performing a sensorimotor task requiring some 

sort of adaption, participants’ adaptive performance is better when 

attention is distributed between the target and cursor, rather than 

focusing mainly on the target or spreading attention across the whole 

scenario (Grigorova, Petkova, & Bock, 2006). Decreased adaptive 

performance in sensorimotor adaptation tasks is found among the 

elderly and might be caused by changes to the cognitive structures 

involved in decision-making and basic response speed (Bock & 

Girgenrath, 2006).  

A study highlighting not only the role of cognition in sensorimotor 

performance but also the necessity of possessing stored mental rep-

resentations comes from Ingram, van Donkelaar, Cole, Vercher, 

Gauthier, and Miall (2000). These authors showed that a deafferent 

patient (i.e. a neurological disorder, where the patient has no sensory 

input from his neck downwards) is able to adapt toward visual dis-

tortions (e.g. immediate and gradual gain change) in a goal-directed 
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arm movement task when a distortion (e.g. 1.5 times gain change) 

was applied. However, an additional cognitive task (e.g. counting 

task) impaired his adaptation performance severely for more than a 

60 % change. In comparison, the adaptation performance gain of the 

control group was also impaired, but only less than 10 %. It is im-

portant to note that in order to adapt in this task, the deafferent 

patient had to rely predominantly on his cognitive structures, without 

receiving any proprioceptive feedback from his arm movements. In-

gram and colleagues (2000) concluded that proprioception is not an 

absolute requirement for adaptation. Rather proprioception is only 

one relevant part in the ability to adapt for visuomotor distortions.  

Each of these studies mentioned so far (Bock & Girgenrath 2006; 

Grigorova, Petkova, & Bock, 2006; Ingram et al., 2000) underlines 

the important role of cognition in sensorimotor adaptation. Their re-

sults support the viewpoint that the storage of information about 

movements and their interaction with the environment form the basis 

of learning processes. Still, these studies have merely speculated 

about the structure of cognitive representations. The present study 

takes a more direct attempt to measure the link between sensorimo-

tor adaptation performance and cognitive representations.  

Researchers from fields such as cognitive psychology and cognitive 

robotics (Maycock, Dornbusch, Elbrechter, Haschke, Schack, & Ritter, 

2010; Schack, 2004; Schack & Mechsner, 2006; Schack & Ritter, 

2009; Stöckel, Hughes, & Schack, 2011) have provided evidence for 

the functional role of cognitive representations in the control of hu-

man movements. According to these studies, structured cognitive 

representations of motor actions base on so-called basic action con-

cepts (BACs). Analogous to the well-established notion of basic con-

cepts in the world of objects (Mervis & Rosch, 1981), BACs can be 
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viewed as the mental counterparts of functionally relevant elemen-

tary components or transitional states (body postures) of complex 

movements (Bläsing, Tenenbaum, & Schack, 2009; Schack & Ritter, 

2009; Weigelt, Ahlmeyer, Lex, & Schack, 2011). They base on the 

cognitive ‘chunking’ of body postures and movement events, which 

possess common functions involved in the realization of action goals. 

Unlike object concepts, BACs do not refer to behavior-related invari-

ance properties of objects, but rather to perception-linked invariance 

properties of movements.  

For example, Schack and Mechsner (2006) studied the tennis serve 

to investigate the nature and role of long-term memory in skilled 

athletic performance. Using the Structural Dimensional Analysis of 

Mental Representations (Schack, 2004; 2011), the authors analyzed 

high-level experts and found that the structures of their representa-

tions were organized in a distinctive tree-like hierarchy, were remark-

ably similar between individuals, and were well-matched with the 

functional and biomechanical demands of the task. In comparison, 

the structures of action representations in low-level players and non-

players were organized less hierarchically, were more variable be-

tween persons, and were not as well matched with the functional and 

biomechanical demands of the task. The results of related studies 

from a variety of disciplines (e.g. manual action, judo, wind surfing, 

dancing) have further demonstrated that cognitive representation 

structures in long-term memory are functionally related to perfor-

mance (Bläsing, 2010; Bläsing, Tenenbaum, & Schack, 2009; Schack 

& Hackfort, 2007; Stöckel, Hughes, & Schack, 2011; Weigelt, 

Ahlmeyer, Lex, & Schack, 2011).  

It can be inferred from these studies that these cognitive represen-

tation structures consisting of cognitive units (such as basic action 
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concepts in complex motor actions) are also involved in smaller motor 

actions (such as pointing movements in a sensorimotor task). One 

functionally relevant basic cognitive unit in goal-directed pointing 

movements might be a representation of a movement direction.  

Research in neurophysiology has provided convincing evidence for 

the existence of such cognitive representations of movement direc-

tions (Georgopoulos, Schwartz, & Kettner, 1986). Cognitive spatial-

motor processes were investigated by the application of setups indi-

cating movement directions by center-out movements toward flashed 

up lights. One of the earliest studies measured a significant linear 

increase in reaction time, when the rotation angle between a defined 

stimulus direction and the required movement direction increased 

(Georgopoulos & Massey, 1987). From this finding, it was derived 

that performing such tasks involves a mental rotation of an imagined 

movement vector about its origin. Additionally, neurophysiological 

correlates sensitive to movement directions were found in the brains 

of monkeys (Georgopoulos, Caminiti, Kalaska, & Massey, 1983). A 

first process in the brain indicates that directional information about 

visually cued arm movements (i.e. indicated by turned on peripheral 

lights) is encoded and can be visualized by the analysis of the neu-

ronal population vector. A second process indicates that representa-

tions of movement directions are related to retention mechanisms in 

long-term memory. This is because in the absence, rather than in the 

presence, of a visual target, the neurophysiological signals become 

significantly stronger (Smyrnis, Taira, Ashe, & Georgopoulos, 1992). 

Caminiti, Johnson, and Urbano (1990) found that neuronal population 

responses are more related to movement trajectories than to end-

points of movements, which highlights the relevance of directions in 
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goal-oriented pointing movements. Thus, a direction sensitive neu-

ronal population vector can serve as a predictor for the directions in 

which goal-oriented pointing movements are executed (Caminiti et 

al., 1991). In contrast, to findings of directional sensitive neurons in 

frontal areas, there is evidence that neurons in parietal lobe Brod-

mann area 5 are tuned positionally during movement and stationary 

posture. Spatial coordinates defining the azimuth, elevation, and dis-

tance during reaching movements characterize this positional tuning. 

Each of the spatial coordinates might be encoded discretely in distinct 

subpopulations of neurons. These neurons form classes described by 

a fixed tuning function. ‘Initial position’ neurons movement activity 

does not change in relation to the starting point of the movement. 

‘Variational’ neurons are related to the difference vector between fi-

nal and initial position, which is responsible for the encoding of move-

ment direction (Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti, 

1995). Thus, in parietal lobe area 5, movement directions are en-

coded in populations of neurons. Additionally, a subset of neurons 

found to be sensitive to preset distortion change their activity during 

sensorimotor adaptation. These neurons acquire directional sensitiv-

ity to the adapted direction, but this sensitivity has a limited gener-

alization ability for all other directions (Paz & Vaadia, 2009). This ex-

perimental evidence highlights the functional relevance of movement 

direction in goal-directed movements on a neurophysiological level.  

From our point of view, sensorimotor adaptation of manual actions 

has to be planned and represented in terms of intended perceptual 

effects and future task demands. Therefore, individuals are develop-

ing structured cognitive representation of movement directions in or-

der for the movement to be carried out and adapted successfully. 
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Neurophysiologic evidence supports the notion that movement direc-

tions are represented in long-term memory. Therefore, it can be as-

sumed that the sensorimotor adaptation performance in goal-di-

rected pointing movements is fundamentally influenced by the struc-

ture of cognitive representations of movement directions.  

The present study investigates individuals’ cognitive representations 

of movement directions from long-term memory and evaluates their 

influence on sensorimotor adaptation performance. With this study, 

we attempt to examine the functional relationship between cognitive 

representations and sensorimotor adaptation, and the extent to 

which the variation in individual adaptive ability correlates with the 

variation in representation structures in long-term memory. From 

that point of view, this will be the first study to examine individual 

differences in adaptive ability and its underlying cognitive sources. 

 

Methods 

Data were collected from students at Bielefeld University (26 women 

and 19 men; mean age 23.7 years, standard deviation 4.7 years). 

The participants provided written consent prior to the experiments 

and did not receive any financial compensation. The research study 

was approved by the local ethics committee and conducted in accord-

ance with the 1964 Declaration of Helsinki. All participants completed 

two experiments. First, they performed a standard sensorimotor ad-

aptation task, which required center-out pointing movements to dif-

ferent target locations regularly distributed on a circle. Second, they 

judged visual and proprioceptive movement directions using the Cog-

nitive Measurement of Represented Directions (C-MRD).  
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Sensorimotor adaptation task  

The sensorimotor adaptation task was executed by all participants to 

measure their adaptive performance before and after the left–right 

reversal distortion of visual feedback. 

 

Apparatus and task 

Adaptive performance was assessed using a standard pointing exper-

iment, in which pointing movements are executed on a digitizer tablet 

(Genius NewSketch 1812HR). Participants sat in front of a 15-inch 

standard monitor facing downwards (see Figure 3.1). To ensure a 

stable and constant position throughout the whole experiment, par-

ticipants leaned their head against a foam cushion fixed to the mon-

itor at a height of 130 cm. Visual real-time feedback of hand move-

ments was provided by a red cursor cross (8 mm in length and width) 

displayed on the screen. Vision of the screen was available indirectly, 

through a tilted mirror. The mirror occluded vision of the individual’s 

own hand in order to prevent the use of visual control strategies on 

the hand movements. Screen-to-mirror and mirror-to-digitizer tablet 

distance was adjusted to 21.5 cm each. Hence, all projected images 

of target dots, center location, and the red cursor-cross appeared in 

the same plane of working space. A height-adjustable chair assured 

a comfortable position and permanent visibility of the complete 

screen.  

The participants’ task was to execute straight and ballistic (i.e. open 

loop) center-out movements toward one of eight randomly appear-

ing, equidistant, peripheral target locations as accurately as possible. 

Similar to previous studies that used this standard sensorimotor ad-
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aptation task (cf. Bock, 2005; Bock & Girgenrath, 2006; Miall, Jen-

kinson, & Kulkarni, 2004), the center location always served as the 

start position for the next movement. The target locations were yel-

low dots sized 8 mm in diameter, displayed on a black background in 

an arc radius of 10 cm. The target dots stayed on the screen until 

they were reached by the cursor cross or for a maximum of 700 ms. 

If participants failed to reach the target location, a new target auto-

matically appeared on the screen after five seconds. Within each 30 

s trial, as many pointing movements as possible were executed. The 

intertrial interval was set to five seconds.  

The experiment started with three practice trials, to familiarize par-

ticipants with the setup. Afterward, baseline data were collected for 

five undistorted trials with normal vision in Baseline 1 (BL1), followed 

by five undistorted trials without vision of the red cursor cross in 

Baseline 2 (BL2).  

During BL2 trials, participants were forced to execute the pointing 

movements more intuitively, because the red cursor cross disap-

peared when participants moved more than 10 mm away from the 

center position, and appeared again when they re-entered this area. 

Participants still needed the cursor cross to find their way back to the 

center position and move on to the next movement target. During 

the adaptation phase (AP), the (normal) visual feedback relationship 

between sensory input and motor output was distorted by a left–right 

reversal mirrored along the sagittal axis (i.e. 180_ rotation). For ex-

ample, in this condition, participants would need to execute a point-

ing movement toward the upper right corner if they wanted to reach 

the upper left corner. Full visual feedback of the cursor cross was 

provided in the adaptation phase, which consisted of 30 trials. After 

a five minutes break, five distorted trials without full visual feedback 



REPRESENTATIONS IN MANUAL ACTIONS – II 

89 

 

were performed in the phase of persistence (PP) to test for the per-

sistence of adaptive behavior over time.  

 

 

Figure 3.1 Experimental setup of sensorimotor adaptation task. 

Participants moved an electronic pen in one of eight movement di-

rections indicated by yellow dots on a black background. The projec-

tion of the screen was provided by a tilted mirror, which occluded 

vision of the participant’s own hand as they executed the task. Target 

dots appeared in the working plane. Participants leaned their head 

against a foam cushion to ensure a stable, constant position  

 

Data analysis 

To quantify participants’ pointing performance, the initial angular er-

ror (IAE) was measured for each pointing movement. The IAE was 

defined as the difference between the straight target direction and 

the initial hand movement direction. Thereby, the straight target di-

rection was defined as the direct line between the hand position at 
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movement onset (the start position) and the target location. The in-

itial hand movement direction was defined as the line between the 

hand position at movement onset and the location of the hand when 

the first peak velocity was reached. To exclude small corrective ad-

justments, the critical minimal cursor velocity was set to 30 mm/s. 

This error detection mechanism was used because it is largely unaf-

fected by the visual feedback-based corrective modifications which 

occur during the later phases of a single pointing movement. The IAE 

was averaged over all executed pointing movements and then aggre-

gated into phases. To compare phases of identical length, each phase 

consisted of the average IAE of five consecutive trials. An analysis of 

variance (ANOVA) with repeated measures was conducted to verify 

differences between the adaptation phases. 

 

Cognitive representation of movement directions 

For use in this study, the C-MRD was developed to be specifically 

applicable to the assessment of the cognitive representations of 

movement directions. The applied sensorimotor task consisted of 

pointing movements in distinct directions. Thus, movement directions 

are the physically relevant features for the sensorimotor adaptation 

task. The C-MRD method investigates the cognitive representations 

of movement directions as relevant features. Participants experi-

enced all movement directions (i.e. cognitive units) used in this 

method both visually and proprioceptively. Van Beers, Wolpert, and 

Haggard (2002) gave the reason that the movement directions have 

to be experienced by the described input modalities. They showed 

evidence that sensorimotor adaptation performance relies on the 

contribution of proprioceptive feedback as well as on the contribution 

of visual feedback when adapting toward a visual distortion in terms 
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of sagittal displacement (van Beers et al., 2002). The present study 

is planned to learn about the relationship between adaptation behav-

ior and cognitive representations. Thus, the measurement of cogni-

tive representations of movement directions must integrate proprio-

ceptive features as well as the visual feedback of executed movement 

directions as two integral components of the cognitive representa-

tions. For this reason, both input modalities were integrated in the 

measurement of the cognitive representations of movement direc-

tions. Consequently, the conditions of the sensorimotor adaptation 

task and the C-MRD task were matched as much as possible. 

 

Apparatus and task  

Participants sat in front of an apparatus, which was on a table (see 

Figure 3.2). Participants’ cognitive representation of movement di-

rections was assessed using a splitting procedure, that is, a compar-

ison of each movement direction with every other direction, but not 

with itself. In this splitting procedure, participants were asked to 

grasp a wooden stick in the center position of the apparatus and 

move it once to the lit up target direction. The twelve target directions 

were distributed at equidistant intervals around a circle. For each di-

rection, there was a slot in the wooden platform to guide the wooden 

stick outward from the center. As soon as stick reached the end of 

the slot, the movement was redirected to the center position. There 

was a brief rest break before the experimenter lighted up the next 

target direction. After two consecutively executed movements into 

different slots, participants were asked to judge based on their own 

subjective criterion whether the two executed movement directions 

appeared similar to them, or different. They did not state verbally 
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whether the two executed movement directions are the same, or dif-

ferent. Furthermore, decisions were allocated to a positive (i.e. if 

movement directions were judged as similar) or a negative (i.e. if 

movement directions were judged as dissimilar) subset and logged 

on a standard personal computer by the experimenter immediately 

after participants’ answered verbally. Decisions were made without 

any time limits. One randomly chosen movement direction remained 

in the reference position (first of the two movements performed) until 

it was compared with every other movement direction (second move-

ment performed). Once all decisions for the reference direction were 

completed, another movement direction became the reference posi-

tion. This process lasted until all possible combinations of movement 

directions had been compared. The splitting procedure revealed in-

sight into the general formation of cognitive units (i.e. movement 

directions).  
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Figure 3.2 Experimental setup to measure the cognitive represen-

tation of movement directions. The apparatus consisted of twelve 

movement directions indicated by 12 slots in a wooden plate. All 

movement directions were spread equally around a circle, starting 

with the first slot in the straight upward position and another slot at 

each 30° rotation. Participants received visual and proprioceptive 

feedback from their movements as they moved a wooden pen in the 

direction of a lit up target. After two executed movements, partici-

pants made subjective judgments about similarity 

 

Data analysis 

The data analysis of participants’ decisions consisted of three steps. 

First, for each reference direction, the described splitting procedure 

created a positive and a negative subset of movement directions. 

Movement directions in each subset were assigned a score reflecting 
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their similarity to the reference direction. The score was based on the 

number of elements in the subset and the sign of the subset (posi-

tive/ negative). This procedure resulted in a score vector for each 

reference direction. The score vectors of all reference directions were 

concatenated into a score matrix. Each row of the score matrix cor-

responded to one reference direction. Rows were transformed by a 

z-normalization, and converted to a relative position of each refer-

ence direction in a multidimensional direction space. This normalized 

position matrix was then used to calculate the Euclidian distances 

between all reference directions, resulting in a distance matrix. Sec-

ond, the representations of movement directions were calculated us-

ing an unweighted average-linkage hierarchical cluster analysis ap-

plied to the Euclidian distances matrix. The numbers at the conjunc-

tions within each dendrogram (i.e. cluster structure) reflect the dis-

tance between a given pair of directions. The smaller the Euclidian 

distance between two directions, the more similarly the two direc-

tions were subjectively perceived, and the closer they are repre-

sented together in human long-term memory. The critical Euclidian 

distance is statistically estimated as the value dcrit = 4.552 for a sig-

nificant alpha-level of p = .01. All connected structures below the 

critical value form distinct clusters. Conversely, all movement direc-

tions with a Euclidian distance above the critical value are not inte-

grated into distinct clusters. Third, the generated representations of 

movement directions were tested for structural homogeneity using a 

within- and between-groups invariance measure. In the present anal-

ysis, the statistical threshold for accepting invariance between two 

structures is set to k = .68 (Schack, 2004).  
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Representation of movement directions by adaptive perfor-

mance level 

Finally, participants’ cognitive representations of movement direc-

tions were assessed with regard to their sensorimotor adaptation per-

formance. This analysis connected the results of the sensorimotor 

adaptation task with participants’ cognitive representation structures. 

Therefore, individual sensorimotor adaptation performance was 

quantified by an adaptation index (Ak, Bock & Girgenrath, 2006). This 

index (Ak) compares the IAE at distortion onset (AP1), subtracted by 

the error in the last adaptation phase (AP6), in relation to the error 

at distortion onset (AP1), subtracted by baseline error (BL1). The ad-

aptation index is calculated as  

 

�� =
��� − ���

��� − �	�

 

 

where k is the participant’s indicator. An Ak of 1.0 indicates perfect 

adaptation back to the baseline performance level, whereas an Ak of 

zero indicates no adaptation at all, that is, no performance improve-

ment compared with baseline level. The adaptation index is used as 

a criterion to quantify participant’s adaptation performance by a 

semi-quantitative analysis (Abeele & Bock, 2003; Bock & Girgenrath, 

2006). After the calculation of the adaptation index for each partici-

pant, they were sorted according to their adaptation index, and 

ranked in a descending order. The whole list of participants was then 

split into three equal thirds. The top third of participants were classi-

fied as skilled adapters, the middle-third as average adapters, and 
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the lower third as poor adapters. Depending on the individual adap-

tation performance indicated by the adaptation index within each 

sub-group (i.e. skilled, average, and poor adapters), the cognitive 

representations were analyzed by calculating the mean cluster solu-

tions for the three categories of adapters. 

The resulting subgroup dendrograms were tested for structural ho-

mogeneity (i.e. invariance measure between evolved cluster solu-

tions) to verify skill-related differences based on the cognitive repre-

sentation structure. 

 

Results  

Figure 3.3a illustrates the time course of the IAE in the sensorimotor 

adaptation experiment for each group. For all participants, the results 

of the ANOVA with repeated measures showed a main effect for the 

factor phase, F(3.4, 147.6) = 30.358, p < .001. Mauchly‘s test re-

vealed that the sphericity assumption was violated, Χ2(14) = 53.379, 

p < .01. Therefore, the degrees of freedom were corrected by esti-

mation of sphericity according to Greenhouse–Geisser (ε = .671). A 

simple contrast analysis of all adaptation phases revealed successful 

adaptation during all phases in contrast to the first phase (p < .001). 

A non-significant difference between adaptation phase six and the 

phase of persistence, t(44) = .850, p = .40 (2-tailed), indicated that 

participants’ adaptation behavior persisted over time.  

The adaptation index quantified participants’ adaptation performance 

in comparison with the undistorted baseline condition. Participants 

adapted to 61 % toward the distortion of the visual feedback in terms 

of a left–right reversal, indicated by Ak = 0.61 (SD = 0.28). Figure 

3.3b shows the results of the third split, after sorting participants in 
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a descending order according to their adaptation index, starting with 

the best adapters. In contrast to average (Ak = 0.66; SD = 0.08) and 

poor adapters (Ak = 0.28; SD = 0.14), skilled adapters (Ak = 0.90; 

SD = 0.06) nearly reached their baseline performance again.  

 

 

Figure 3.3 (a) Adaptive behavior toward a distortion of visual 

feedback, including undistorted baseline conditions. The data points 

show the mean IAE (the difference between initial hand direction and 

target direction) as a function of trials in the study for each group. 

Five consecutive trials are aggregated into each phase. The phases 

represent the baseline (BL) phases one and two, the adaptation 

phases (AP) one to six, and the phase of persistence (PP). The error 

bars represent a 95 % confidence interval. (b) Adaptation index of 

visuomotor adaptation task. Vertical bars show mean adaptation in-

dex of the skilled (SA), average (AA), and poor adapters (PA). Error 

bars represent a 95 % confidence interval. Adaptation index of Ak = 

1.0 represents adaptation performance back on baseline level. Adap-

tation index of Ak = 0.0 represents no adaptation toward the visual 

distortion 

 

To link the groups formed by the adaptation index to the cognitive 

representation structures, the mean cluster solutions of the cognitive 

representations were calculated in the last analytic step. Figure 3.4 
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illustrates the dendrograms (i.e., cluster structures) which resulted 

from the cluster analysis, including an illustration of the cluster struc-

tures depicted as directional arrows. The cluster structures display 

the mean cognitive representation structure of movement directions 

for each adaptation group. The dashed gray horizontal line indicates 

the critical value dcrit = 4.552 for a significant alpha-level of p = .01. 

The numbers at the bottom indicate the movement directions, start-

ing with one in the straight upward position and continuing at each 

30° interval. 

The mean representation structure of the skilled adapters group con-

sists of three clusters. Not all movement directions are integrated in 

the evolved cluster structures. It is also interesting that one cluster 

consists exclusively of two cardinal movement directions (10 and 4), 

indicating the importance of these directions in the cognitive repre-

sentation structure. The representation of movement directions for 

this group is strongly aligned to the cardinal axes (i.e. the sagittal 

and horizontal axis). Average adapters’ mean representation struc-

ture shows the integration of all movement directions and the for-

mation of four cluster structures. The resulting dendrograms inte-

grate movement directions along the cardinal axes, but not as prom-

inently, as is seen in the skilled adapters group. The mean cognitive 

representation structure for poor adapters forms six clusters integrat-

ing two movement directions each. Thereby, every two neighboring 

movement directions form a coherent cluster structure. The move-

ment directions in the cardinal axes did not show a greater promi-

nence than other movement directions for this group, in contrast to 

the other two groups.  

The evolved cluster structures were tested for structural homogeneity 

(i.e. invariance) between all three groups. The suggested statistical 
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threshold for accepting invariance between different cluster solutions 

is defined as λ = .68. The comparison between cluster solutions of all 

groups with each other showed no invariance between groups: λSA to 

AA = .41, λAA to PA = .37, and λSA to PA = .30. Skilled adapters’ global 

representation of movement directions (aligned to cardinal axes) is 

advantageous compared with poor adapters’ local representations of 

movement directions (not aligned to cardinal axes, but rather aligned 

to neighboring directions) with regard to the sensorimotor adaptation 

task. Having a global representation of movement directions is ad-

vantageous in the herein applied sensorimotor adaptation task be-

cause of the functional relation to the used visual distortion. 
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Figure 3.4  Cognitive representation of movement directions. Den-

drograms (left) show the results of the three groups. The numbers at 

the bottom show the movement directions continuously increasing 

every 30° starting with 1 in the straight upward position. To reflect 
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remoteness between a given pair of directions, the numbers at the 

conjunctions indicate corresponding Euclidian distances. The result-

ing cluster structures (indicated by solid gray bars at the bottom) are 

revealed by a critical value dcrit = 4.552 for a significant alpha-level 

of p = .01 marked by the horizontal gray dashed line. On the right-

hand side of each dendrogram, directional arrows pointing into the 

corresponding movement directions illustrate identical cluster solu-

tion. Arrows depicted in identical manner (dashed, dotted, or solid) 

represent the clusters in the dendrograms 

 

Discussion 

The results of these experiments present evidence for a link between 

cognitive representations of movement directions and sensorimotor 

adaptation performance. It was found that having a global cognitive 

representation of movement directions aligned to the cardinal move-

ment axes in the sagittal and horizontal planes is beneficial in an 

adaptation task, which has a mirroring of visual feedback along the 

sagittal axis. On the contrary, having a local cognitive representation 

of movement directions diminishes adaption performance in the same 

sensorimotor task.  

These experiments enable us to give the first insights into how move-

ment directions are stored in human long-term memory on a cogni-

tive level. This information allows us to expand already existing find-

ings about the memory related neurophysiologic mechanisms, which 

underlie the execution of goal-directed pointing movements in dis-

tinct movement directions (cf. Georgopoulos, Schwartz, & Kettner, 

1986; Wu & Hatsopoulos, 2006; 2007).  

Interestingly, the present results relate well to findings from neuro-

psychological research on patients. In an early study, Bálint (1909) 

investigated a patient with a bilateral parietal lesion having difficulties 
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in executing accurate reaching movements. Usually, parietal patients 

are unable to match information about target location, eye and hand 

position, and movement direction. Moreover, neurons in the superior 

parietal lobe can be regarded as directionally sensitive (Battaglia-

Mayer & Caminiti, 2002). Within parietal patients, it can be distin-

guished, for instance, between two different cognitive-motor disor-

ders: optic ataxia and directional hypokinesia. Optic ataxia is charac-

terized by a disordered composition and control of directional hand 

movements (i.e. end-point errors of hand movements) in the absence 

of visual feedback (Caminiti et al. 2010). However, proprioceptive 

and tactile information can help to execute directional hand move-

ments more accurately (Kolb & Whishaw, 1996). Directional hypoki-

nesia is characterized as an impaired representation of action space. 

This lesion prohibits normal movement execution toward targets in 

the contralesional part of egocentric space. This is preferentially de-

scribed by a prolonged reaction and movement time (Caminiti, 

Chafee, Battaglia-Meyer, Averbeck, Crowe, & Georgopoulos, 2010). 

This means that patients with optic ataxia performing with impaired 

components (e.g. general motor programs) are responsible for motor 

execution. The representation of space is not impaired, because other 

movement feature dimensions (i.e. proprioceptive or tactile move-

ment feedback) can help to reach the target appropriately (Kolb & 

Whishaw, 1996). People with directional hypokinesia possess an ex-

act movement execution, but they refer to impaired, respectively, 

wrong space representations. Finally, the reaching disorder in optic 

ataxia does not show the strict directional polarity (i.e. or hemispher-

ical effects), as has been described for directional hypokinesia 

(Battaglia-Mayer, Mascaro, Brunamonti, & Caminiti, 2005). The ex-

periment found advanced adaptation behavior for participants who 
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possess a cognitive representation of movement directions function-

ally related to the visual distortion in the adaptation task. Thus, it 

could be speculated that people with optic ataxia possess functionally 

organized representations of movement directions, whereas people 

with directional hypokinesia do not possess such representation 

structures. Although, now, this is mere speculation about the cogni-

tive representation of movement directions in these patients and 

more research on this topic is necessary. In the future, it therefore 

seems interesting to investigate patients with these disorders in order 

to learn more about their representations of movement directions. 

Another interpretation could lead to a speculation about the applica-

tion of functional reference axes. It is possible that patients with such 

disorders (i.e. directional hypokinesia or optic ataxia) possess differ-

ent abilities in the recognition of inconsistencies between a reference 

axis and afforded movement directions.  

Previous work on sensorimotor adaptation mechanisms has demon-

strated that it is necessary to compute implicitly a directional error 

by recognizing inconsistency between a reference axis in the applied 

coordinate system and the actual movement direction in pointing. A 

successful adaptation will be achieved by a reduction of the direc-

tional error through a realignment of the reference axis. Thus, the 

behavior will be adjusted progressively 

(Krakauer, Pine, Ghilardi, & Ghez, 2000). For example, the diamet-

rical cluster (i.e. direction 4 and 10) might form a kind of reference 

axis within skilled adapters’ cognitive representation of movement 

directions connecting left- and the rightward directions or left and 

right hemispheres, which makes it easier to adapt to a distortion in 

terms of a left–right reversal. The results of the experiments pre-

sented here demonstrate that matching the demands required in the 
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adaptation task (i.e. mirroring along the sagittal axis) and the func-

tionally related cognitive representations of movement directions 

(i.e. a global representation which is aligned to cardinal axes) is ad-

vantageous to adaptation performance.  

Moreover, past research has shown that interference between differ-

ent sensory distortions in adaptation tasks (i.e. force field and visuo-

motor rotation adaptation) led to observable performance errors if 

they address the same kinematic parameter (Tong, Wolpert, & Flana-

gan, 2002). These errors may be due to a representation of both 

distortions in one unique coordinate system. Our findings support the 

theory that a task-dependent cognitive representation can be ac-

cessed from memory, and therefore, a direction-sensitive cognitive 

representation will be applied in directional tasks. Thus, the structure 

of cognitive representations determines the performance level in sen-

sorimotor adaptation tasks with similar kinematic distortions. If two 

different kinematic parameters want to access the identical cognitive 

representation structure (i.e. the representation of movement direc-

tions) to execute goal-directed movements in distinct directions, they 

will compete for the identical resource, which will lead to a decrease 

in actual performance.  

It can be assumed from our findings that movement directions are 

represented in human memory in a distinct and individual manner, 

but the way the cognitive representation structure is applied under 

diverse conditions might vary. The cognitive representation of move-

ment directions will be developed, activated, and applied in accord-

ance with the executed motor task. Aside from the relevance of the 

accordance between the executed motor task and the relevant cog-

nitive representation, it might be a chunking mechanism underlying 
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the performance advantages in skilled adapters. Experiments inves-

tigating the learning of movement sequences (e.g. Panzer, Wilde, & 

Shea, 2006; Braden, Panzer, & Shea, 2008) showed that there is a 

decrease in response time when a movement sequence is repro-

duced. A reduction in response time found in trained experts (inter-

vention group) is explained by the decreased duration of some, but 

not all elements being produced in the movement sequence. Thus, 

two or more elements of the movement sequence are chunked and 

allow the motor system to respond faster, because they are treated 

as relatively independent subsequences. A similar mechanism is de-

tected in the current study. Expert performance in sensorimotor ad-

aptation might rely on advantages achieved by a chunking of cardinal 

movement directions in the cognitive representation structure. These 

chunks allow a faster (i.e. in fewer trials) adaptation toward a distor-

tion which is functionally similar according to their representation 

structure than is seen in a person whose structure does not classify 

the distortion as similar. For this reason, it may be easier for skilled 

adapters to develop necessary and adequate motor commands and 

achieve results, which are more similar to undistorted trials.  

A global cognitive representation of movement directions appears to 

be advantageous to performance in the utilized adaptation task, 

whereas a local cognitive representation leads to a disadvantage in 

the same task. Theoretically, it can be hypothesized from our findings 

that having a local representation of movement directions (i.e. the 

clustering of neighboring movement directions without the prominent 

role of cardinal axes) may be beneficial in a sensorimotor adaptation 

task in which visual feedback is only rotated a few degrees (e.g. 30° 

clockwise or counterclockwise rotation). Still, further research is nec-

essary to test this assumption, because it is also conceivable that a 
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global representation of movement directions (i.e. clustering around 

the cardinal axes) generally facilitates sensorimotor adaptation and 

may still be more beneficial than a local representation, even under 

the aforementioned conditions.  

The approach used in this study overcomes the traditional perspec-

tive of studying cognition and action separately. Our approach inte-

grates the measurement of cognitive representations of movement 

directions in the research of sensorimotor control performance and 

helps to understand the involved cognitive mechanisms as suggested 

by Georgopoulos (2000). It can be summarized that the structure of 

cognitive representations concerning movement directions (the indi-

vidualized cognitive categorization of movement directions) plays a 

critical role in sensorimotor adaptation tasks. This supports not only 

the argument that learning is mostly related to the development and 

change of cognitive structures in memory but, furthermore, that mo-

tor performance is based on an interaction between sensorimotor and 

cognitive systems (Schack & Ritter, 2009).  

In summary, the present findings confirm the notion that sensorimo-

tor adaptation performance is influenced by the structure of cognitive 

representations of movement directions, as a strategic control mech-

anism (see Redding & Wallace, 1996). If a global cognitive represen-

tation of movement directions is functionally related to the demands 

of a sensorimotor adaptation task (i.e. visuomotor distortion in terms 

of a mirroring along the sagittal axis), the adaptation performance 

will be facilitated. It is concluded that the structure of cognitive rep-

resentations of movement directions can be seen as an indicator and 

a predictor for adaptation performance. 
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Representations in Complex Actions 

CHAPTER 4 

 

Abstract The present study evaluates the cognitive rep-

resentation of a kicking movement performed by a human and 

a humanoid robot, and how they are represented in experts 

and novices of soccer and robotics, respectively. To learn 

about the expertise-dependent development of memory struc-

tures, we compared the representation structures of soccer 

experts and robot experts concerning a human and humanoid 

robot kicking movement. We found different cognitive repre-

sentation structures for both expertise groups under two dif-

ferent motor performance conditions (human vs. humanoid 

robot). In general, the expertise relies on the perceptual-mo-

tor knowledge of the human motor system. Thus, the soccer 

experts’ cognitive representation of the humanoid robot 

movement is dominated by their representation of the corre-

sponding human movement. Additionally, our results suggest 

that robot experts, in contrast to soccer experts, access func-

tional features of the technical system of the humanoid robot 

in addition to their perceptual-motor knowledge about the hu-

man motor system. Thus, their perceptual-motor and neuro-

functional machine representation are integrated into a cogni-

tive representation of the humanoid robot movement. 

 

 

This chapter is a revised version of Lex, H., Schütz, C., Knoblauch, 

A., & Schack, T. (2014). Cognitive Representation of a Complex Mo-

tor Action Executed by Different Motor Systems. Minds & Machines, 

24(3). 
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Introduction 

For social interaction in general, one needs to single out relevant in-

formation from the steady stream of information influx to infer others' 

intentions and mental states and to coordinate one’s own action with 

the actions of other people based on specific representations 

(Knoblich & Jordan, 2003; Schack & Ritter, 2009). When humans 

have task-related interactions with one another (e.g., driving instruc-

tors teaching their students how to drive) both agents develop rep-

resentations of the specific situations, the partner, and the task to be 

solved. However, it is yet to be studied how individual and shared 

mental models of environmental settings, motor actions, or task con-

texts are established in task-related interactions (Sebanz, Bekkering 

&, Knoblich 2006).  The current study is designed to shed light on the 

question of how people engage in collaborative interactions with 

other humans and/or with robots, by investigating the underlying 

mental representations and how these can facilitate human-human 

and human-robot-interaction (HRI).  

To gain a better understanding of representation and categorization 

in action and interaction, it is fundamental that researchers under-

stand how movements are represented in long-term memory. It is 

hypothesed that human motor control requires that actions are 

planned and represented in terms of intended perceptual effects and 

that experts require a well-structured mental representation of the 

task in order to carry out their movements successfully (Jeannerod, 

2001; Pulvermüller, 2005). A number of studies provided evidence 

that motor representations in humans not only integrate perceptual 

effects but furthermore encode biomechanical information (e.g., 

speed and velocity) of human motion (Knoblich & Prinz, 2001; Flach, 

Knoblich & Prinz, 2004; Schack, 2003).  
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Due to current advances in robotic technology, highly developed hu-

manoid robots are able to perform manual and complex motor actions 

similar to humans. However, current robot control is largely focused 

on a very low level of abstraction that is closely focused on sensors 

and actuators. In contrast, human actions are strongly influenced by 

the knowledge about the characteristics of the manipulated objects, 

about action goals, and about disturbances and mishaps that usually 

occur during even moderately complex movements. Therefore, shap-

ing the movements of advanced humanoid robots, or more ambi-

tiously, shaping their interaction in the complex real-world environ-

ment, raises a substantial number of non-trivial research questions 

(Pfeiffer & Bongard, 2007; Schack & Ritter, 2009, 2013). One of 

these questions is concerned with humans’ cognitive representations 

of humanoid robot movements. Because of the significant differences 

in sensory and biomechanical organization between humans and hu-

manoid robots, humans cannot represent the perceptual and biome-

chanical movement effects of the robots. Thus, it is unclear whether 

humans simulate robotic movements based on their own motor rep-

resentation, or based on a technical understanding of humanoid robot 

movement production. In the first simulation, they preferably use 

their representation of the own motor system. In the second simula-

tion, they preferably generate and use a neuro-functional machine 

representation. Until now, there is no trivial answer to that question.  

It has been demonstrated that the motor execution of a simple arm 

movement is impaired while observing another human executing an 

incongruent arm movement. This is not the case when a humanoid 

robot motor system is executing the same incongruent arm move-

ment instead (Kilner, Paulignan, & Blakemore, 2003). This finding 

indicates that the observation of a humanoid robot movement and 
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the observation of a human movement are based on different repre-

sentation structures. Thus, it can be speculated that interfering cog-

nitive processes are influencing the perception and simulation of hu-

man and humanoid robot movements. Some of these mechanisms 

are simultaneously involved in the perception, simulation and execu-

tion of motor actions. The mechanism to observe movement inten-

tions of other humans is based upon the functional equivalence of the 

cognitive representations involved in action execution, motor simu-

lation, and action observation (Blakemore & Decety, 2001; Grezès & 

Decety, 2001). Thus, expert sport performance can be characterized 

by the advanced abilities and skills of athletes, in particular by the 

ability to predict other players’ behavior (Ward & Williams, 2003).  

Advanced basketball players, for instance, are able to predict the suc-

cess of free throws earlier and more accurately than novices, and 

more accurately than people with comparable visual expertise (e.g., 

sports journalists). These differences are already observed for move-

ment phases before the ball left the hand. Experts are able to inter-

pret body kinematics more accurately and more easily. To this end, 

they develop sport-specific anticipatory mechanisms (i.e., perceptual 

resonance) that enables them to predict others’ actions ahead of their 

realization (Aglioti, Cesari, Romani, & Urgesi, 2008). Hence, the un-

derstanding of observed actions results from a mechanism that maps 

an observed action onto existing representations of that action in ob-

servers’ long-term memory (Gallese, Fadiga, Fogassi, & Rizzolatti, 

1996). Supporting evidence for this ‘direct matching hypothesis’ is 

provided by a study involving participants in a block stacking task 

under two different conditions. In the first condition, the participants 

only observed the blocks getting stacked, while in the second condi-

tion they executed the task by themselves. Interestingly, the eye 
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movements were identical under both conditions. The authors con-

cluded that the eye movements are controlled based on motor rep-

resentations of the corresponding actions (Flanagan & Johansson, 

2003). Thus, perception is controlled by motor representations even 

when a task is observed and not executed. Moreover, when athletes 

were shown similar movement patterns from classical ballet and 

Capoeira, activation in premotor and parietal areas was higher while 

observing the movements that corresponded to their area of exper-

tise (i.e., classical ballet or Capoeira). Vice versa, the effect was much 

smaller when the perceived motor action did not belong to their area 

of expertise. This finding indicates that the observation of a move-

ment initiates a covert simulation of the corresponding action (Calvo-

Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Calvo-Me-

rino, Grezes, Glaser, Passingham, & Haggard, 2006).  

In general, it can be stated that humans are able to perceive the 

effects of motor actions executed by other humans based on their 

cognitive representation of that motor action. These cognitive repre-

sentations help humans to interact in a proper way with other hu-

mans. The present study tries to elucidate the influence of the exe-

cuting motor system (e.g., human or humanoid robot) on the corre-

sponding cognitive representation. Specifically, we ask whether such 

cognitive representations are sensitive to the executing motor sys-

tem, i.e., when a humanoid robot executes a comparable motor ac-

tion instead of a human motor system. It is hypothesed that humans, 

when perceiving a humanoid robot movement, activate cognitive rep-

resentation structures of the corresponding human movement re-

lated to their motor-system-specific expertise. Furthermore, we hy-

pothesize that humans with a particular knowledge about either the 

motor system or the movement will activate all accessible knowledge. 
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Methods 

Participants 

Thirty-five participants (male, mean age 26.4 years, SD = 4.56) gave 

informed consent to participate in this study. The study was per-

formed in accordance with the ethical standards described in the 

1964 Declaration of Helsinki. Additionally, one high level expert (29 

years old) from the field of soccer was investigated. This high-level 

expert was a former member of the German A - National Team. 

The participants (N = 35) were subdivided in two groups according 

to their soccer-specific expertise. The first group (n = 18) consisted 

of experienced soccer players and served as experts for the human 

movement. They had on average a soccer experience of 17.53 years 

(SD = 3.12) with 9.31 hours (SD = 2.99) of organized training per 

week, and played in the fourth league (i.e., highest amateur level) in 

Germany. These participants had no experience in handling with a 

humanoid robot. The second group (n = 17) consisted of humans 

experienced in handling a humanoid robot platform. They worked 

with humanoid robots on average for 4.63 years (SD = 2.57) in a full 

time job at a scientific research institute. This group served as ex-

perts for the movement executed by humanoid robot model. They 

had on average a soccer experience of 2.12 years (SD = 2.49) re-

ceived at non-organized leisure time activities or at school.  

 

Stimuli 

An instep kick from soccer was investigated in this study. This move-

ment was chosen because both motor systems (human and human-

oid robot) were able to execute it in a comparable manner. For ex-

ample, the kicking movement of the humanoid robot is extensively 
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used at soccer RoboCup competitions. The investigated humanoid ro-

bot platform was the NAO robot. The NAO robot is a humanoid robot 

platform built by Aldebaran Robotics. It has a 52 cm tall body inte-

grating electric motors and actuators with 25 degrees of freedom. 

This humanoid robot is used at the RoboCup World Cup as the state-

of-the-art technical platform. The human model was a soccer expert, 

and former player in the first Bundesliga (i.e., highest soccer division 

in Germany). He possessed a very good soccer specific demonstra-

tion technique.   

To study the cognitive representation, the investigated movements 

were broken down into relevant Basic Action Concepts (BAC). BACs 

were defined in correspondence to the well-known conception of basic 

concepts in the field of object categorization described by Mervis & 

Rosch (1981). Recognizable movement features characterized BACs, 

and BACs were treated as functionally essential components of com-

plex motor actions (Schack, 2011; Schack & Mechsner, 2006). Before 

the study commenced, an evaluation study was conducted to verify 

the relevant BACs. The pre-defined BACs for an instep kick in soccer 

were judged by experienced coaches (N = 5, holding at minimum an 

A-license from the Deutscher Fußball-Bund or the Union des Associ-

ations Européennes de Football). These coaches were asked to state 

how relevant all the described BACs were for an appropriate move-

ment execution (in a percentage between 0 and 100, N = 25). The 

final set of most important BACs (n = 12) were defined based on an 

item fit analysis integrating the coefficient of variation. An overview 

of the used BACs and the item fit analysis is provided in Table 4.1. 
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Table 4.1  

Overview of used BACs.  

Short phrases characterize the nature of the cognitive units used in 

the experiment. The calculation of an item fit for each stimulus 

based on coaches’ decisions and formed the basis to choose for the 

12 most relevant out of 25 adequate BACs for the instep kick in soc-

cer applied in the experiment. BACs 1 to 4 describe the assisting 

phase (preparation), BACs 5 – 9 describe the main phase (kicking), 

and BACs 10 – 12 the assisting phase (follow through). 

No Description of BAC Mean SD Item fit 

1 look to the ball 88.00 21.68 63.36 

2 upper body leans forward 86.00 15.17 68.37 

3 bend knee of the supporting leg 72.00 20.49 43.54 

4 foot of the supporting leg points to-

wards kicking direction 

82.00 10.95 68.64 

5 Kicking leg swings in kicking direction 90.00 10.00 78.89 

6 acceleration of the lower leg 87.00 12.04 73.16 

7 toehold points straight downward 94.00 08.94 84.48 

8 knee of the kicking leg is above the 

ball 

72.00 16.43 49.18 

9 meet the ball with instep at the center 94.00 08.94 84.48 

10 no hyperextension of the knee 72.00 23.87 38.84 

11 gaze follows the ball trajectory 66.00 31.30 18.57 

12 kicking leg swings through 62.00 16.43 35.50 

 

The BACs were depicted as static images. Thus, the images served 

as stimuli in the experiment. Figure 4.1 presents the static images of 

BAC 9 for the human and the humanoid robot movement. 
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Figure 4.1 BAC 9 describing the most important BACs in the exe-

cution of the instep kick in soccer for humans (left) and humanoid 

robots (NAO, right). Participants were confronted with similar static 

pictures taken out of the identical movement. All stimuli were 

matched regarding their visual appearance of both models (i.e., both 

models were dressed in white in front of a dark same-colored back-

ground). Both stimulus sets were aligned to match the models in size. 

 

Task & Procedure 

To analyze the cognitive representation of the participants for both 

movements, the Structural-Dimensional Analysis of Mental Repre-

sentations (SDA-M; Schack, 2004, 2011) was applied. The SDA-M 

measured the cognitive representation of the movement (executed 

once by the human and once by the humanoid motor system) with 

the corresponding BACs described in Table 4.1 in two separate ex-

periments. The order of both experiments was counter-balanced 

across participants in each group.  

Both experiments were conducted in the identical manner except the 

stimuli were aligned to the corresponding movement. Participants 

had to perform a splitting procedure. Two BACs were presented on 
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the screen simultaneously. The BAC presented in the upper position 

was in an anchoring position. Participants were asked: Please decide 

whether the BAC presented in the lower position is similar to the BAC 

in the anchoring position during movement execution. To answer that 

question the participants were implicitly requested to determine a 

similarity criterion from their own memory (i.e., referring to their own 

knowledge base about that movement). If both BACs were related to 

each other during movement execution, participants sorted the BAC 

in the lower position into a positive subset. If not, they sorted it into 

a negative subset. Afterwards, the next BAC was presented in the 

lower position and again compared to the BAC in the anchoring posi-

tion. When all decisions related to the BAC in the anchoring position 

were made, the next randomly chosen BAC was presented in the an-

choring position. This process was repeated until every BAC was once 

in the anchoring position and, thus, had been compared with every 

other BAC. 

 

Data analysis 

The SDA-M consists of three analysis steps: In the first step, the de-

scribed splitting procedure reveals the proximity between the BACs 

for each movement separately. The splitting procedure results in a 

positive and a negative subset for each BAC in the anchoring position. 

The BACs sorted into the subsets are assigned a score, which reflects 

their similarity to the BAC in the anchoring position. The sign of the 

subset (positive/negative) and the number of elements within each 

subset form the basis for that score. This procedure results in a score 

vector for each BAC in the anchoring position. The concatenation of 

all score vectors creates a matrix in which each row corresponds to 

one BAC. The rows are then converted to a relative position of each 
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BAC in multidimensional space by a z-normalization. From this nor-

malized position matrix, a Euclidian distance matrix is calculated.  

In the second step, the cognitive representations of the kicking 

movements (i.e., executed by the human and humanoid motor sys-

tem) are calculated by applying an unweighted average-linkage hier-

archical cluster analysis to the Euclidean distance matrix. The cluster 

analysis results in a dendrogram (e.g., Figure 4.2). The Euclidean 

distance between a given pair of BACs can be read as the height of 

each conjunction on the y-axis. The smaller the Euclidean distance 

between BACs, the more similar the participants perceive the BACs, 

and the closer they are represented in the participants’ long-term 

memory. Based on an error probability of p = .01, a critical Euclidean 

distance with a value of dcrit = 4.55 was calculated. All BACs con-

nected below this critical value belong to a common cluster. By con-

trast, BACs connected above the critical value belong to statistically 

distinct clusters.  

In the third step, the measure of invariance λ is calculated between 

dendrograms in order to test the generated representation structures 

for structural homogeneity. The measure of invariance value λ ranges 

between 0 and 1, whereas 1 indicates the highest accordance be-

tween two structures. The statistical threshold for accepting invari-

ance between two structures is set to λ = .68 (Lex, Weigelt, 

Knoblauch, & Schack, 2012; Schack, 2004). 

 

Results  

Figure 4.2 illustrates the cognitive representation of the high-level 

soccer player. The cognitive representation of this expert for the hu-

man movement is comparable to the phase description of the instep 
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kick in soccer (Lees & Nolan, 1998). The cognitive representation 

consists of three distinct clusters. The first cluster (1 - 4) indicates 

an assisting phase (the preparation). The second cluster (5 - 9) indi-

cates the main phase (kicking the ball), and the third cluster (10 - 

12) is an additional assisting phase (follow trough). The single soccer 

experts’ cognitive representation of the human movement is func-

tionally aligned to relevant phases of the movement execution. That 

representation structure reveals a highly automated and internalized 

cognitive representation of the human kick movement. 

 

 

Figure 4.2 The cognitive representation of the high level expert in 

soccer for the human movement. The numbers at the bottom refer 

to the BACs of the movement. The numbers at the y-axis refer to the 

Euclidian distances between the connected BACs. The grey dashed 

line signifies the critical Euclidean distance (dcrit) where all branches 

of the dendrogram were cut off. Everything connected to one branch 

below this value forms a common cluster. The solid grey bars at the 

bottom of the dendrogram indicate the emerged clusters. 

 

The average cognitive representation, split by expertise (robot/soc-

cer experts) and model (human/humanoid robot) are illustrated in 
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Figure 4.3. The soccer experts’ cognitive representation of the human 

movement (Figure 4.3a) is structurally identical to the cognitive rep-

resentation of the single high-level expert (Figure 4.2), λ = 1.0. This 

representation structure is aligned to the functional demands of the 

movement execution for a kicking movement in soccer. The robot 

experts’ cognitive representation of the human movement (Figure 

4.3c) is structurally dissimilar to the high-level expert (Figure 4.2, λ 

= 0.57), and consists of four particular clusters. The preparation 

phase of the movement is divided into two separate subphases. The 

robot experts’ representation of the human movement shows an 

alignment towards the ball as a separate phase (1 - 2), and a sepa-

rate cluster for the definition of the kicking direction combined with 

the shooting power (3 - 4). Nevertheless, the third cluster (5 - 9) as 

well as the fourth cluster (10 - 12) indicate a functional organization 

of the human movement. The soccer experts’ cognitive representa-

tion of the humanoid robot movement (Figure 4.3b) consists of three 

clusters and one singled BAC (8). A first assisting movement phase 

indicates the alignment to the ball (1 – 2). A second assisting phase 

(3 – 7) describes the movement preparation. One specificity is the 

singled BAC 8 (i.e., knee of the kicking leg is above the ball). The last 

cluster (9 – 12) indicates the main movement phase (kicking the ball) 

together with the follow through phase within the humanoid robot 

movement. This representation structure is statistically different 

compared to the soccer experts’ representation of the human move-

ment, λ = 0.57. The robot experts’ cognitive representation of the 

humanoid robot movement (Figure 4.3d) is statistically different to 

their representation of the human movement (λ = 0.55), and to the 

soccer experts’ cognitive representation of the humanoid robot 

movement (λ = 0.51). Four clusters designate the robot experts’ cog-

nitive representation of the humanoid robot movement. The first 
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cluster (1 - 2) describes an assisting movement phase (alignment to 

the ball). The second cluster (3 - 6) indicates the movement prepa-

ration with the shifting of the weight towards the supporting leg. 

Cluster three (7 - 8) consists of the movement components which are 

related to the movement execution of the kicking leg. The fourth clus-

ter (9 - 12) is integrating all movement components from the first 

contact with the ball until the end of the movement, including the 

follow through. Table 4.2 summarizes the results of the comparison 

of evolved cluster structures.  

 

Table 4.2 

Comparison of similarity between the groups (soccer/robot ex-

perts) for both motor systems (human/ humanoid robot model). 

The λ value is supposed to be between 0 (no similarity between 

the cluster structures) and 1.0 (identical cluster structures). Two 

cluster structures are regarded as similar to each other when λ > 

0.68. 

Group 1 Group 2 λ value 

high level expert –  

human model 

soccer experts –  

human model 

 

1.00 

high level expert –  

human model 

robot experts –  

human model 

 

0.57 

soccer experts –  

human model 

soccer experts –  

humanoid robot model 

 

0.57 

robot experts –  

human model 

robot experts –  

humanoid robot model 

 

0.55 

robot experts –  

humanoid robot model 

soccer experts –  

humanoid robot model 

 

0.51 
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A last analytic step investigated the average cognitive representation 

over all participants for both movements. Figure 4.4a illustrates the 

average cognitive representation of the human movement over all 

participants, which shows three distinct clusters. Cluster one (1 - 4) 

indicates the assisting phase (preparation). The second cluster (5 - 

9) indicates the main phase (kicking the ball), and the third cluster 

(10 - 12) the assisting phase (follow trough). 

 

 

Figure 4.3 Cognitive representation structures for the soccer ex-

perts of the human (a) and the humanoid robot (b) movement, as 

well as the cognitive representation structures for the robot experts 

of the human (c) and the humanoid robot (d) movement. The num-

bers at the bottom and at the y-axes are identical to Figure 4.2. 

 

This representation structure is identical (λ = 1.0) to the cognitive 

representation of the soccer experts (Figure 4.3a) and the single soc-

cer experts’ cognitive representation (Figure 4.2) of the human 
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movement. Figure 4.4b illustrates all participants’ cognitive repre-

sentation of the humanoid robot movement indicating four distinct 

clusters. Cluster one (1 – 2) is representing the alignment of the hu-

manoid robot towards the ball. The second cluster (3 – 6) is best be 

described by the backward movement of the kicking leg. The third 

cluster (7 – 8) focuses on the movement features of the kicking leg 

and their relevance for the movement execution. The main phase (9 

– 12) combines the kicking of the ball with the movement parameters 

of the follow through (assisting phase). All participants' cognitive rep-

resentation of the humanoid movement is statistically different to all 

participants’ cognitive representation of the human movement, λ = 

0.47. Further, all participants’ cognitive representation of the human 

movement is identical to the soccer experts’ cognitive representation 

of the human movement, λ = 1.0. Additionally, all participants’ cog-

nitive representation of the humanoid robot movement is identical to 

the robot experts’ cognitive representation of the humanoid robot 

movement, λ = 1.0. 

 

 

Figure 4.4 All participants’ cognitive representation of the human 

(a) and the humanoid robot (b) movement. 
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Discussion  

The present study was designed to investigate the cognitive repre-

sentation of a kicking movement executed by a human and a human-

oid robot. The comparative performance of two groups was examined 

– a group of soccer experts and a group of humanoid robot experts. 

The implications of the results of the experiments are discussed with 

regard to certain fields of expertise of both groups, and with regard 

to a global perspective involving implications regarding cognitive rep-

resentations in humans.  

We asked whether humans would activate their own, movement-spe-

cific knowledge structures to understand the intended goals of an ac-

tion while perceiving a humanoid robot performing a movement. The 

data of the current study supports this hypothesis. However, the ac-

tivated representation structures are shaped differently based on the 

knowledge background of the observer. Three observations in this 

study support this assumption. First, the results showed a function-

ally organized cognitive representation of the human movement for 

the single high-level expert in soccer. In comparison to studies from 

tennis (Schack & Mechsner, 2006), dancing (Bläsing, Tenenbaum, & 

Schack, 2006), or judo (Weigelt, Ahlmeyer, Lex, & Schack, 2011), 

additional evidence was delivered that the memory structure of a 

high-level expert is functionally organized. As well as the level of ex-

pertise (i.e., a certain league), the domain-specific experience (i.e., 

years of practice) contributes to an establishment of functionally or-

ganized cognitive representations (Ericsson, Krampe, & Tesch-

Römer, 1993). Thus, the representation structures between the sin-

gle soccer expert and the group of soccer experts were statistically 

identical.  
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In contrast, robot experts’ cognitive representation of the human 

movement was statistically different to the soccer experts. This dif-

ference is mostly related to the “preparation phase” of the kicking 

movement. The robot experts split the assisting phase into two sub-

phases, which is dysfunctional with regard to the execution of the 

kicking movement. Remarkably, a comparable splitting of the “prep-

aration phase” is found in robot experts’ cognitive representation of 

the humanoid robot movement. This result indicates that the initia-

tion of the kicking movement might be impaired in the robot experts. 

Nevertheless, their representation structure showed similarities re-

garding the main movement phases of "kicking the ball" and "follow 

through". This might be explained by the fact that the robot experts 

possess an extensive movement relevant experience with their own 

human motor system. It can be assumed that such a simple kicking 

movement is executed and experienced by almost every human. In-

terestingly, the cognitive representation of the humanoid robot 

movement shares common features between both expertise groups 

(e.g., the movement organization of the kicking phase for the BACs 

9 – 12). This finding supports the idea that both groups try to access 

their knowledge about their own human motor system. They apply 

their perceptual-motor knowledge about the human movement (i.e., 

arm position, hip angle, etc.) to the humanoid robot movement, and 

therefore to the humanoid robot motor system. However, statistical 

differences have been observed (e.g., regarding the movement or-

ganization for the assisting phases for the BACs 3 – 8) between the 

cognitive representations of the human and the humanoid robot 

movement within both groups. The soccer experts’ cognitive repre-

sentations of the human and humanoid robot movement showed a 

difference regarding BAC 8, which was singled out. BAC 8 (knee of 

the kicking leg is above the ball) is responsible for a steady and flat 
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ball trajectory within a human kicking movement. One may speculate 

that, to soccer experts, it seems impossible that a humanoid robot 

can execute this movement in a comparable fashion and play, for 

instance, a long ball in the air. Therefore, soccer experts might not 

have integrated such a BAC into the movement phases of the hu-

manoid robot movement. In addition, the assisting phase, “move-

ment preparation,” was subdivided into two phases: BACs 1 – 2 and 

BACs 3 – 7. BAC 1 – 2 represented an assisting phase, which seems 

typical for humanoid robot movements. Thus, humans are unable to 

represent perceptual effects of humanoid robot movements. The 

movement phase (BACs 1 – 2) is observable within the robot experts’ 

representation of the humanoid robot movement. The movement 

phase integrating the BACs 3 – 7 can be interpreted as directly asso-

ciated with the preparation of the movement itself. Thus, movement 

phase one (BAC 1 – 2) represents the alignment of the body (i.e., 

meaning to be at the right place), and movement phase two (BACs 3 

– 7) represents the specification of the lower limbs directly responsi-

ble for movement execution.  

The robot experts’ cognitive representations of the human and hu-

manoid robot movement showed the largest differences regarding 

the representation of the BACs 3 – 8. The assisting phase (BACs 1 – 

2, alignment of the body) is identical in the representation structure 

of both movements. It seems that robot experts start both move-

ments with the alignment of the executing body towards the ball. 

However, they then separated the movement preparation into two 

phases. Phase one (BACs 3 – 6) seems to be representing the prep-

aration of the essential movement-relevant specifications for the mo-

tor execution. In contrast, the BACs 7 – 8 seemed to be of marginal 

relevance for the movement execution. It can be speculated that the 



REPRESENTATIONS IN COMPLEX ACTIONS  

131 

 

BAC 7 and BAC 8 are controlled passively during the motor execution 

of the NAO robot. 

The present data supports the hypothesis that humans activate cog-

nitive representation structures if they perceive a humanoid robot 

movement. Both expertise groups (i.e., soccer and robot experts) try 

to apply their existing knowledge to different motor systems. The 

data suggests that the transferable knowledge differs between both 

groups. It can be assumed that soccer experts refer to their percep-

tual-motor knowledge about the execution of the human movement, 

and transfer their motor system representation onto the humanoid 

robot. Additionally, it can be assumed that robot experts activate 

their perceptual-motor knowledge of the human movement as well. 

However, they also access their representation of functional features 

of the humanoid technical system (i.e., functioning of the actuators 

within that humanoid robot). Their memory structure can be de-

scribed as a neuro-functional machine representation. Of course, 

some researcher’s state that perceptual-motor skills and intellectual 

skills are "... as far apart, one might say, as gym lockers and libraries 

in a typical university" (Rosenbaum, Carlson, & Gilmore, 2001, p. 

456). However, intellectual skills like the visual-spatial representation 

of a movement output (e.g., writing a word) can be generalized to 

untrained body parts such as writing with a foot (Meulenbroek, Ros-

enbaum, Thomassen, Loukopoulos, & Vaughan, 1996). The general 

adjustability (Abeele & Bock, 2003) between different sensorimotor 

adaptation tasks (i.e., transfer of intellectual knowledge about a dis-

tortion of the visual feedback from a pointing to a tracking task) de-

livers additional evidence that knowledge about task-specific features 

is combined with perceptual-motor knowledge. Thus, the robot ex-

perts’ cognitive representation of the humanoid movement indicated 
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how functional features of technical systems (i.e., knowledge about 

the operation mode of a humanoid robot) are involved in the struc-

ture formation of cognitive representations. Additional evidence is 

delivered by the mean representation structure of all participants for 

the human and the humanoid movement. Humans tend to integrate 

all knowledge resources about the humanoid motor system that are 

accessible. Thus, perceptual-motor knowledge about the own motor 

system and functional features of the technical system are merged 

to create a cognitive representation of a humanoid robot movement. 

Furthermore, it can be speculated with regard to the described find-

ings of Kilner, Paulignan, and Blakemore (2003) that this kind of cog-

nitive representation might influence the corresponding motor be-

havior. In contrast to the described findings of Calvo-Merino, Glaser, 

Grezes, Passingham, & Haggard (2005), the perceptual-motor 

knowledge of the human motor system is to some extent transferable 

onto a humanoid robot motor system. However, knowledge about the 

functional features of the technical system complement the percep-

tual-motor knowledge of the human motor system.  

Despite the fact that the dynamic systems approach (Gibson, 1977) 

and the motor approach (Schmidt & Lee, 2005) are fundamental re-

search areas in motor control, the cognitive architecture of complex 

motor action also plays an important role in the understanding of 

movement organization (Schack & Ritter, 2013). Our results deliver 

further evidence in how far intellectual and motor-perceptual 

knowledge are integrated into the memory structure of a movement, 

and that both information resources have an impact on the integral 

cognitive structure formation. Thus, multiplexed experience in exe-

cuting a specific motor action and in handling a humanoid agent 
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might help humans to predict, interpret, and understand an observed 

motor action of a humanoid robot.  

Finally, we would like to speculate about the integration of intellectual 

knowledge into a complex architecture of motor actions. This inte-

gration seems possible when a minimal perceptual-motor knowledge 

of the motor action is already established. We believe that further 

intellectual knowledge about actuators of a humanoid robot settles 

on an information base of the actual motor behavior. Such an infor-

mation base is established as a cognitive representation integrating 

sensory potentials and produced environmental effects (Schack, 

2004). An effect-oriented storage of complex motor actions is as-

sumed to consist of different sensory input signals (kinesthetic, vis-

ual, auditory, etc.) which are aligned to Basic Action Concepts. The 

corresponding internal model stores and combines all possible redun-

dant multisensory information (Schack, Bläsing, Hughes, Flash, & 

Schilling, 2014). Our results suggest that the intellectual knowledge 

about a motor system seems to be integrated into the corresponding 

internal model of a complex motor action as well. Thus, if humans 

have already built up a meaningful cognitive representation, they are 

able to integrate additional intellectual knowledge on subsequent or-

ganizational levels.  

Presumably, a more intuitive interaction with humanoid robots would 

require the user to possess intellectual knowledge about their func-

tionalities. Once this knowledge is acquired, the handling might be-

come easier because the humanoid behavior becomes predictable 

and the understanding of a humanoid movement becomes more in-

tuitive. However, such intellectual knowledge would not activate the 

specific action representations for human movements while perceiv-
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ing a robot action. To this end, the robot would have to produce per-

ceptual and biomechanical effects identical to the effects produced by 

humans (Press, 2011). In addition to Press (2011), it can be stated 

that the produced environmental effects and the intellectual 

knowledge about an observed agent mainly influence the tuning of 

an action observation network. Thus, street performers showing a 

Robo-Dance routine can be sure to catch the attention of the crowd, 

simply by pointing at the mismatch between the performed motor 

actions and the motor potential of the performing motor system. To 

overcome such mismatches in humanoid robot design we need to 

engineer bio-inspired machines making it easier for humans to un-

derstand the intended action goals of such machines. However, 

Pfeifer, Lungarella, and Iida (2007) pointed out, it is still a long way 

to go to engineer bio-inspired machines for the real world, and a lot 

research is necessary to strengthen such bold claims. 
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Representations in Interactions 

CHAPTER 5 

 

Abstract Two core elements for the coordination of dif-

ferent actions in sport are tactical information and knowledge 

about tactical situations. In the present research, two experi-

ments were conducted to learn about the memory structure 

and the cognitive processing of tactical information. Experi-

ment 1 investigated the storage and structuring of team-spe-

cific tactics in humans’ long-term memory with regard to dif-

ferent expertise levels. Experiment 2, in presenting partici-

pants the identical match situations in a reaction time task, 

was designed to investigate tactical decision-making skills and 

the corresponding gaze behavior. The results showed that 

more experienced soccer players, in contrast to less experi-

enced soccer players, possess a functionally organized cogni-

tive representation of team-specific tactics in soccer. Moreo-

ver, the more experienced soccer players reacted faster in tac-

tical decisions, because they needed less fixations of similar 

duration as compared to less experienced soccer players. 

Combined, these experiments offer evidence that a function-

ally organized memory structure leads to a reaction time and 

a perceptual advantage in tactical decision-making in soccer. 

The results are discussed with regard to theoretical and prac-

tical implications. 

 

 

This chapter is a revised version of Lex, H., Essig, K., Knoblauch, A., 

& Schack, T. (under revision). Cognitive Representations and Cogni-

tive Processing of Team-Specific Tactics in Soccer. PLoS ONE. 
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Introduction 

Skilled soccer players should be able to recognize and evaluate the 

potential opportunities and risks of actions quickly to react properly 

(Wein, 2007). In other words, if a soccer player employs an elaborate 

technique in controlling the ball (i.e., he possesses a proper action 

pattern), but is not able to apply this technical skill in an appropriate 

way, he becomes an almost "useless player" (Knapp, 1977). 

Therefore, tactical skills can be described as the ability of certain 

players to judge and decide for upcoming game situations 

appropriately (Gréhaigne & Godbout, 1995), and cognitive abilities, 

like the knowledge about different passing options or other tactical 

features of the game are a fundamental element of soccer playing 

competence. Moreover, tactical knowledge does not just facilitate 

information processing, but also more generally permits a target-

related and purposeful adaptation of behavioral potentials to 

conditions in the environment (Ali, 2011). Therefore, it is necessary 

to access and store all relevant information and outcomes of the 

learning processes in tactical team cooperation as information in 

long-term memory (Williams & Reilly, 2000). Thus, an athlete’s 

performance on the pitch not only involves knowledge about task-

specific information, but also a learning-dependent modification of 

information. The present study was designed to investigate 

differences in the cognitive representation structures and in the 

cognitive processing of team-specific tactics in soccer.  

Despite the fact that tactical skills related to sports performance in 

ball sports are difficult to access, they have become a fundamental 

research area. Different tests from psychological research have been 

applied in soccer to enhance knowledge about selected cognitive abil-

ities of soccer-experienced individuals. For instance, the influence of 
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a soccer skill test (Loughborough Intermittent Shuttle Test) on the 

mental concentration of soccer players has been investigated. The 

mental concentration task contained the identification of numbers be-

tween 1 and 100 in an ascending order from a randomized grid. The 

authors found that the mental concentration test performance itself 

did not differ between pre- and post-exercise trials (McGregor, Nich-

olas, Lakomy, & Williams, 1999). Thus, this kind of mental test has 

been applied with moderate success to investigate soccer-specific 

cognitive skills and athlete abilities, although these authors focused 

more on the effects of fluid consumption during soccer.  

Additionally, Stroop Color and Word Tests were used to access team 

sport players’ cognitive functions by evaluating an interference score 

which reflected participants’ abilities to resist cognitive interference 

induced by the name of a color (e.g., “blue”) and the visual color of 

a word (e.g., blue text). In this study, both the color and word scores 

of team sport players were higher during halftime in comparison to 

the identical pre-competition test. This elevated halftime score re-

mained constant until the end of the match (Winnick et al, 2005). 

Thus, there is evidence that a demanding physical activity leads to a 

decrease in performance of the cognitive system. This test delivers 

insights into people’s inhibitory control, which might be relevant to 

individual decision-making tactics in soccer. Importantly, the transfer 

of such abilities to team-specific tactics needs to be further investi-

gated, because the ecological validity of this test as it relates to the 

structure of team-specific tactics in one’s long-term memory can be 

questioned, but remains a fruitful research path.  

Another tool with a better ecological validity is the observation and 

evaluation of soccer matches by video analysis. Early attempts to 
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evaluate tactical behavior in soccer were conducted through obser-

vation of structured video scenes in which the position of team mem-

bers on the pitch had to be recalled once the match situation was 

stopped and the screen was occluded. It was found that less experi-

enced soccer players showed greater recall error of player positions 

in structured video scenes than more experienced soccer players 

(Williams, Davids, Burwitz, & Williams, 1993). The authors assumed 

that more experienced soccer players would be able to build up 

meaningful associations of the perceived player positions on the pitch 

in terms of their tactical goal. Thus, it was expected that the more 

experienced players benefitted from their ability to build up chunks 

of corresponding information. In line with these findings, it was spec-

ulated that passing options in soccer could be detected and evaluated 

better by more experienced soccer players. They are able to antici-

pate subsequent match options. Results revealed that soccer experts 

are more successful at anticipating possible passing destinations, be-

cause they access contextual information about what happens next 

and integrate that knowledge already stored in their memory (Ward 

& Williams, 2003). Moreover, video analysis techniques applied to 

soccer are often related to questions regarding the tactical behavior 

and performance-relevant indicators of the own and the opposing 

team (Carling, Williams, & Reilly, 2005; Memmert, 2004, 2006) aim-

ing at the adjustment of the own team’s behavior. It makes the own 

team aware of repeating game openings, patterns to create shots on 

goal, or key players in opponent’s playmaking. Importantly, however, 

the results of such applied video analysis systems fail to deliver useful 

information about the cognitive representation structure, the cogni-

tive processing, and the visual information processing of tactics in 

soccer (Garganta,2009). 
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A preferable approach to the investigation of cognitive structures of 

team-specific tactics is conducted by verbal protocol analysis during 

recall and recognition tests. Specifically, the evaluation of the verbal 

reports of thinking (i.e., non-structured protocols expressed verbally 

after the observation of match situations) indicate that more ad-

vanced cognitive representations enable more experienced players to 

retrieve relevant information in order to make appropriate task-spe-

cific judgments (Roca, Ford, McRobert, & Williams, 2011). There is 

evidence that expert sport performance is mediated by different 

structure formations in experts’ long-term memory. A drawback of 

methods like the verbal protocol analysis is the uncertainty about 

what is exactly measured in the demanding environment in sport 

competition. Verbal protocols often refer to self-analyses, judgments, 

or wishes, rather than explicit knowledge or cognitive representations 

in long-term memory (Hodges, Huys, & Starkes, 2007).  

Additionally, one can speculate about the organization of long-term 

memory structures, emphasizing the run of play in sport competi-

tions. One reasonable hypothesis considered a conceptual organiza-

tion of such run of play structures in the long-term memory in terms 

of ‘tactical skills’ (McPherson & Kernodle, 2003). These tactical skills 

were closely related to representations of tactical problems occurring 

during sport competitions. It was found that experts, when compared 

to novice athletes, possess “… more sophisticated conceptual net-

works of declarative and procedural knowledge (both tactical and mo-

tor skill related); procedures for response selection and execution; 

and specific memory adaptations and structures (e.g., sport specific 

strategies, situation profiles) that were stored and accessible from 

LTM” (McPherson & Vickers, 2004, p.277).  
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Furthermore, an approach called Tactical Skills Inventory for Sports 

assessed selected cognitive skills, like positioning and deciding, 

knowing about ball actions, etc. (Elferink-Gemser, Visscher, Richart, 

& Lemmink, 2004). That inventory (i.e., in form of a questionnaire) 

delivered insights regarding the cognitive processing of a few tactical 

parameters in soccer, which were not related to match strategy. The 

internal consistency, test-retest reliability, and construct validity was 

within an acceptable range; however, the integration of the observed 

tactical parameters towards the choice of players for a particular tac-

tic was missing. Additionally, some authors verified a relation be-

tween executive functions and the tactical behavior of Under-15 soc-

cer players Gonzaga, Albuquerque, Malloy-Diniz, Greco, and da Costa 

(2014). They found differences between low and high performers 

with regard to the tactical behavior in relation to their affective deci-

sion-making skills. The remaining question focusses on the factors 

responsible for such behavioral differences.  

In answering such a question, it seems promising to investigate soc-

cer players gaze behavior to learn about their observational strate-

gies. An approach to investigate the cognitive processing of tactical 

skills in sports is the observation of humans gaze behavior. There-

fore, the number of fixations in a perceived scene quantifies the gaze 

control and attention behavior in soccer games. The more fixations 

are executed on an object in a scene, the more object properties are 

perceived, and the better object functionality will be detected (Land 

& Tatler, 2009). Thus, the number of fixations can be an indicator for 

attention towards an object. Roca and colleagues (2011) found that 

soccer experienced players executed more fixations of shorter 

duration during the decision for an appropriate motor reaction of 

defense-oriented individual tactics in soccer. Williams, Davids, 
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Burwitz, and Williams (1994) found in their study that experienced 

soccer players responded quicker to open play situations in soccer 

than inexperienced soccer players. Main difference in gaze behavior 

was that inexperienced players fixated more on the ball, and 

experienced soccer players more on peripheral aspects of the display. 

At least similar results were found by Williams and Davids (1998) for 

1-on-1 soccer simulations, but not for 3-on-3 simulations. In this 

case the experienced players fixated longer on the hip region of the 

players in the simulation as compared to inexperienced players. Vae-

yens, Lenoir, Williams, and Philippaerts (2007) investigated adoles-

cent soccer players and their gaze behavior while passing a ball to 

one of the teammates. Their elite and sub-elite players were better 

than regional players were, but novice players showed a few parallels 

in their gaze behavior. The authors Vaeyens, Lenoir, Williams, Mazyn 

and Philippaerts (2007) demonstrated for offense plays that the eval-

uation of more complex scenarios (e.g., 5 vs 3 or 4 vs. 3 in compar-

ison to 2 vs. 1 or 3 vs. 1) discriminated better between the different 

expertise levels of the participants. More experienced soccer players 

shifted their gaze between the player in possession of the ball and 

other areas as compared to less experienced soccer players. Thus, 

studies of gaze control in sport tactics revealed that experienced soc-

cer players are usually faster, and their decisions are of higher quality 

than those of inexperienced soccer players. However, it remains un-

clear whether superior decision-making skills base on expert’s early 

detection of relevant cues or on their ability to process the fixated 

information more effectively.  

Overall, differences in gaze behavior may be due to different task 

constraints (Vickers, 2009). However, differences in the cognitive 

representation structures, for instance, of the instep kick in soccer 
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(Essig, Weigelt, Berger, Thieschäfer, & Schack, 2009) lead to differ-

ent gaze patterns during a decision-making process. Experts, for in-

stance, focused more on the relevant information of the task, which 

can be described as a more functional attention (Raab & Johnson, 

2007). It seems that tactic-related structures in long-term memory 

evolve with an increasing level of expertise. Sport and cognitive sci-

ence researchers recommend that research questions should be fo-

cused directly on structure formation in the long-term memory at a 

tactical level which influences the performance (Carling, Reilly, & 

Williams, 2009; Carling, Williams, & Reilly 2005; Hughes & Bartlett, 

2002). The present study is designed to investigate the cognitive rep-

resentation and the visual attention of team-specific tactics in soccer 

by the application of different match situations that afford a particular 

tactic. The significance of this study is evident in two perspectives. 

First, from a theoretical point of view, the cognitive representation 

and cognitive processing of team-specific tactics can be considered a 

crucial ability within the performance determining skills in soccer. 

Second, from an applied point of view, the knowledge about the in-

dividual cognitive representation of team-specific tactics in soccer has 

the potential to plan specially designed training sessions for athletes, 

and facilitates the individual learning processes. Therefore, this study 

investigates individual cognitive representations and the cognitive 

processing of team-specific tactics in soccer with regard to different 

levels of expertise. It was hypothesized that the cognitive represen-

tation of team-specific tactics of more experienced soccer players, in 

contrast to less experienced soccer players, will be aligned to the 

functional demands of the afforded tactic in soccer (Experiment 1). 

Additionally, this study examined the influence of soccer-specific ex-

pertise on the cognitive processing of team-specific tactics on a tem-
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poral level (Experiment 2). It was hypothesized that more experi-

enced soccer players would determine an appropriate tactical behav-

ior faster than less experienced soccer players. The remaining ques-

tion is which group characteristics are responsible for possible reac-

tion time advantages of more experienced soccer players. It can be 

speculated that this group used a different gaze behavior as com-

pared to the less experienced soccer players. In relation to the results 

of Essig and colleagues (2009), the formulated hypothesis states that 

more experienced soccer players should execute more fixations of 

shorter durations than less experienced soccer players while deciding 

for the correct tactical behavior. Overall, it seems reasonable; if the 

cognitive representation structure is functionally organized, it should 

influence the cognitive processing of team-specific tactics in soccer. 

 

Methods 

Two experiments were conducted in order to investigate soccer play-

ers’ cognitive representation, the cognitive processing, and the visual 

attention patterns of team-specific tactics in soccer. Both experi-

mental setups used the identical stimulus material.   

 

Stimulus Material 

Within both experimental setups, four different team-specific tactics 

in soccer were investigated. These team-specific tactics were (1) 

counter-attack, (2) change sides, (3) back to defense, and (4) press-

ing. Thus, the match situations were designed in correspondence to 

the description of fundamental team-specific tactics (Lucchesi, 

2008a, 2008b; Marzialli & Mora, 2009). Every stimulus depicted a 
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match situation displayed on a coach’s board from a birds-eye per-

spective. All players on the pitch were depicted as equilateral trian-

gles. The orientation of the board was kept constant, whereby the 

participant’s team moved offensively in an upward direction indicated 

by blue triangles, and the opponent’s team moved downward indi-

cated by orange triangles. Figure 5.1 presents exemplarily the stim-

ulus design. The letters “TW” (the German abbreviation for the word 

goalkeeper) highlighted the goalkeepers. A black vertex within each 

triangle indicated the viewing direction of each player. Additional in-

formation was provided in the stimulus material by usage of generally 

accepted signs and symbols (e.g., solid lines indicated passing direc-

tions and dashed lines running paths). This kind of stimulus presen-

tation was employed to avoid conflicting cognitive processes involved 

in the perception of body postures (like the perceptual and motor 

resonance phenomena described by Schütz-Bosbach & Prinz (2007) 

with the goal to focus solely on the cognitive structure formation of 

tactics.    

Before the study commenced, an evaluation study was conducted to 

assess the relevant match situations and define an appropriate stim-

ulus material. The designed match situations (N = 28) were judged 

by experienced coaches (N = 8, holding at minimum an A-license 

from the Deutscher Fußball-Bund and the Union of European Football 

Associations). These coaches were asked to how much percent (be-

tween 0 and 100) the depicted match situation is typical for the af-

forded team-specific tactic. Coaches’ judgments were inhomogene-

ous according to the Fleiss Kappa statistic for all raters (κ = 0.263; 

Landis & Koch, 1977). Due to this inhomogeneity, an item fit (IF) was 

calculated. This item fit was calculated by the subtraction of the co-

efficient of variation multiplied with 100 from the mean. Via this item 
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fit, the final stimulus set was defined (n = 12).  Table 5.1 provides 

an overview of the Kappa statistics and item fit statistics.  

 

Experiment 1 

Experiment 1 used a method called Structural Dimension Analysis of 

Mental Representations (SDA-M), which has been used to implicitly 

access cognitive representation of complex motor actions in the hu-

man long-term memory (Schack, 2012; Schack & Mechsner, 2006). 

These authors offer evidence of a functional organization of cognitive 

representations in the control of complex human movements. By this 

method, the strong relationship between the performance outcome 

of complex motor actions and the cognitive representation structure 

is revealed. The biomechanical demands of successful movement ex-

ecution are reflected within the cognitive representation structure. 

However, not only complex human movements were investigated. 

Additionally, differences in the memory structure of children regard-

ing the evaluation of comfortable and uncomfortable grasp postures 

have been revealed by this method (Stöckel, Hughes, & Schack, 

2012).  
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Table 5.1     

Overview of used Stimuli. 

The stimuli are assigned to the team-specific tactics from partici-
pants’ team perspective including a brief description of the scenario. 
The short description defines broadly the used match situation. The 
calculation of an item fit based on coaches’ decisions for each stimu-
lus formed the basis to choose three out of seven adequate stimuli 
for the team-specific tactics applied in the Experiments 1 and 2. 

No Playing 
direc-
tion 

Team-
specific 
tactic 

Description of match situ-
ation 

 

Mean SD Item 
fit 

1 Offense Counter-
attack 

Steal on the right side in 
the midfield  

80.63 11.48 66.39 

2 Offense Counter-
attack 

Steal after an opposing 
corner kick 

86.25 23.87 58.58 

3 Offense Counter-
attack 

Steal in the center of the 
midfield   

75.63 29.45 36.68 

4 Defense Pressing On the left side in the at-
tack zone 

88.38 08.85 78.36 

5 Defense Pressing On the right side in the 
midfield zone 

76.13 17.57 53.04 

6 Defense Pressing On the right side in the 
attack zone 

77.00 21.02 49.70 

7 Offense Change 
sides 

Shift game play via the 
goalkeeper  

91.88 12.52 78.25 

8 Offense Change 
sides 

Shift game play to the left 
side in the midfield 

90.00 10.69 78.12 

9 Offense Change 
sides 

Shift game play to the 
right side in the midfield 

89.00 11.25 76.36 

10 Defense Back to 
defense  

After turnover on the left 
side in the midfield 

83.13 23.14 55.29 

11 Defense Back to 
defense  

After turnover in the cen-
ter in the attack zone 

75.00 18.52 50.31 

12 Defense Back to 
defense  

After turnover on the right 
side in the midfield 

78.13 25.35 45.68 
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Furthermore, the memory structure of general skills such as move-

ment directions was found to have an important impact on motor 

performance (Lex, Weigelt, Knoblauch, & Schack, 2012). The applied 

stimuli in these studies (i.e., grasp postures or movement directions) 

can be compared to the cognitive equivalents of the basic concepts 

in object categorization described by Mervis and Rosch (1981). Ex-

periment 1 used the match situations described before which afford 

a particular team-specific tactic.  

 

Participants 

Participants (N = 38) provided written consent prior to the experi-

ment, and received no financial compensation for their participation. 

The study was conducted in accordance with the ethical principles 

stated within the declaration of Helsinki (1964), and met the criteria 

of the ethical guideline from the local university. Both groups of par-

ticipants had soccer experience with the more experienced players 

performing on a higher competitive level than players of the other 

group do. The group of less experienced soccer players (n = 20) were 

on average 26.2 (SD = 4.2) years old. These players had on average 

a soccer-specific experience of 3.2 (SD = 4.2) years, acquired during 

(a) club soccer training up to 8th league, (b) university courses, or (c) 

during non-organized leisure time activities. The group of more ex-

perienced soccer players (n = 18) were on average 21.8 (SD = 2.7) 

years old. These players had on average a soccer specific experience 

of 17.3 (SD = 3.3) years, acquired during specific soccer training. 

The more experienced players were members of an U23-team com-

peting in a professional German second league club. The U23-team 

played in the fourth German league while this study was conducted.  
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Task & Procedure 

Three match situations for each team-specific tactic were used to 

measure the cognitive representation of team-specific tactics in soc-

cer with the SDA-M. Each level of expertise was tested within a single 

session. Before the experiment commenced, all participants were in-

formed about each stimulus in the tactic board design, given an ex-

planation of the symbols, and the teams’ playing directions. They 

were not informed about the intended team-specific tactics. The 

match situations were displayed on a white wall (projection size 2 x 

2.5 m) to ensure perfect sight for every participant. The projection 

was split into two equally sized parts (see Figure 5.1). At the center 

of the left part of the screen, one randomly chosen stimulus was pre-

sented in an anchoring position. The stimulus in the anchoring posi-

tion was compared with every other randomly chosen stimulus ap-

pearing at the center of the right part of the screen. For every stim-

ulus pair (i.e., presented stimulus on the left and on the right part of 

the screen), participants indicated whether or not their team had to 

react with the identical team-specific tactic. Participants did not ex-

plicitly label or name the underlying team-specific tactics. This is an 

obvious difference between the current task and a simple sorting or 

rating task. The split procedure was designed to probe participant’s 

implicit knowledge about tactics. Participants needed to understand 

implicitly the underlying tactic and did not need to provide explicit 

terms and specifications for that tactic. The decisions were made 

without time limit, entered into a form, and later transferred by the 

experimenter into the software. 
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Figure 5.1 Setup for the Cognitive Measurement of Tactics in Soc-

cer. The colored stimuli were projected on a white wall by a beamer. 

The stimulus on the left side was in anchoring position and compared 

to every other stimulus. After this procedure, the anchoring position 

was taken by the next randomly chosen stimulus, and again com-

pared with every other stimulus. 

 

Data analysis 

The acquisition of participants’ decisions on the comparison of the 

twelve different match situations with each other consisted of three 

steps. First, the split procedure allows for a distance scaling between 

the different match situations. This reveals proximity data between 

the different match situations. The proximity data between match 

situations was transformed by z-normalization and converted into a 
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Euclidean distance matrix. This matrix contained the Euclidean dis-

tances between each pair of match situations. The Euclidean dis-

tances were the basis for a hierarchical cluster analysis aimed at 

grouping the match situations. In the second step, the cognitive rep-

resentation of team-specific tactics in soccer was calculated using an 

unweighted average-linkage hierarchical cluster analysis. This analy-

sis is based on the Euclidean distances between the match situations. 

The numbers at the conjunctions within each resulting dendrogram 

reports the Euclidean distances between a given pair of match situa-

tions. Each dendrogram reflects the cognitive representation of team-

specific tactics in soccer within a specific group of participants. A crit-

ical Euclidean distance is statistically estimated as the value dcrit = 

4.552 for a significant alpha-level of p = .01. All connected match 

situations below the critical value form distinct clusters. Conversely, 

all match situations above the critical value are treated as non-dis-

tinct clusters. In the third step, these generated cognitive represen-

tations of team-specific tactics in soccer were tested for structural 

homogeneity using a between-groups invariance measure. The invar-

iance measure compared resulting dendrograms between groups 

based on the common number of shared clusters, the common num-

ber of match situations within each cluster, and the average quanti-

ties of evolved clusters. In the present experiment, the statistical 

threshold for accepting invariance between representation structures 

is set to λ = .68 as an empirically estimated value. Schack (2012) 

provides further details of the described procedure.  
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Experiment 2 

Participants 

Participants (N = 20) provided written consent prior to the experi-

ment, and received no financial compensation for their participation. 

The study was conducted in accordance with the ethical principles 

stated within the declaration of Helsinki (1964), and met the criteria 

of the ethical guideline from the local university. Both groups of par-

ticipants had soccer experience with the more experienced players 

performing on a higher competitive level than the players of the other 

group do. The group of less experienced soccer players (n = 10) were 

on average 22.7 (SD = 2.0) years old. These players had on average 

a soccer-specific experience of 0.4 (SD = 1.0) years, acquired during 

(a) club soccer training up to 7th league, (b) university courses, or (c) 

during non-organized leisure time activities. The group of more ex-

perienced soccer players (n = 10) were on average 25.0 (SD = 3.8) 

years old. These players had on average a soccer specific experience 

of 19.8 (SD = 4.4) years, acquired during specific soccer training. 

The more experienced players received the soccer experience as 

adults in the first and up to the fourth league in Germany.  

 

Task & Procedure 

Experiment 2 measured participants’ decisions on team-specific tac-

tics within a two-choice reaction time task. The used match situations 

were explained to participants in terms of the symbols and abbrevi-

ations prior to the experiment. Subsequently, participants were in-

formed about the four team-specific tactics used in this study. The 
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experimental procedures were conducted to deliver additional in-

sights about the cognitive processing of team-specific tactics in soc-

cer.  

The task was for the participants to make a decision between two 

pre-defined team-specific tactics in the context of one match situa-

tion as accurately and as quickly as possible (see drawing in Figure 

5.2a). Each reaction button was constrained to one team-specific tac-

tic, and the participants were provided with verbal instructions before 

every practice and test block. The task was to decide whether the 

presented stimulus belonged to one team-specific tactic or the other. 

To ensure that participants understood the team-specific tactics, and 

to make them familiar with the configuration of buttons, a short prac-

tice block (i.e., six trials) was conducted before every test block. 

Overall, Experiment 2 was conducted in six blocks (i.e., including one 

practice and one test block each) to cover all potential button config-

urations: pressing vs. back to defense, counter-attack vs. change 

sides, pressing vs. counter-attack, pressing vs. change sides, back to 

defense vs. counter-attack, and back to defense vs. change sides. 

The order of the presented stimuli was randomized across trials, and 

the locations of the respective reaction buttons were balanced across 

participants. The experiment was designed with the VDesigner, a vis-

ual programming environment for eye-tracking experiments (Koes-

ling & Ritter, 2001). 

At the beginning of each block, the word “Achtung” (German for “at-

tention”) was displayed for 1500 ms to draw participants’ attention 

towards the monitor and inform them that the test would start im-

mediately. Stimuli were presented within the procedure depicted in 

Figure 5.2b. First, a fixation cross was shown at the center of the 
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screen for 250 ms before each stimulus. Second, the presented stim-

ulus remained on the screen until participants pressed one of the two 

reaction buttons. Immediately after a correct decision, a blank screen 

was shown for 500 ms and the next fixation-cross appeared. If the 

decision was incorrect, an error message (i.e., “Fehler”; German for 

“error”) was displayed for 500 ms before the next fixation cross. The 

error message provided feedback about participants’ accuracy to re-

mind them of the task.  

While participants made their decisions on the presented stimuli (i.e., 

between stimulus onset and button press) their eye movements were 

recorded using the SR Research Eye-Tracker. This system employs a 

headset with two cameras to enable binocular eye-movement record-

ing. Further features of the EyeLink II system are a high sampling 

rate up to 500 Hz and an average on-screen gaze position error be-

tween 0.5° and 1.0°. The whole system was calibrated for drift cor-

rection every five trials within each block, to minimize the measure-

ment error as much as possible, and to keep the experiment as com-

fortable as possible for the participants.  
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Figure 5.2 A schematic drawing of the used setup. One stimulus 

was presented on the screen. Participants logged their decisions by 

usage of two reaction buttons (each indicating a certain tactical be-

havior) on a keyboard, which was centered in front of the screen. The 

respective button configurations were introduced and tested by each 

participants before the test sessions. (b) Trial sequence of the reac-

tion time task.  

 

Data analysis 

The number of errors and the corresponding reaction times were rec-

orded and analyzed. From eye-tracking data the parameters number 

of fixations and fixation duration were extracted. The spatial resolu-

tion of eye movements was analyzed by the evaluation of the number 
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of observed pixels within each trial extracted from corresponding at-

tention maps. An attention map shows the activation of each pixel in 

the observed stimulus with regard to the total time an observer spent 

on these locations.  Attention maps are used to highlight areas within 

a stimulus receiving high attention by the observer. On the opposite 

areas that were observed sparsely are blurred (Essig, Pomplun, & 

Ritter, 2006). The attention map pixel values are ranging between 

0.0 (i.e., no attention) to 1.0 (i.e., high attention). 

A two-way (tactic x group) ANOVA were used to evaluate the results 

of both experiments in terms of reaction times, number of fixations, 

fixation duration, and observed pixels. The within factor tactic con-

sisted of four levels (i.e., counter-attack, change sides, pressing, and 

back to defense), and the between factor group consisted of two lev-

els (i.e., more experienced and less experienced soccer players). If 

Mauchly’s test revealed that the sphericity assumption was violated 

in the ANOVA, the degrees of freedom were corrected by estimation 

of sphericity according to the Greenhouse–Geisser correction. 

 

Results  

Experiment 1 

Figure 5.3a illustrates the mean cognitive representation structure of 

the group of less experienced soccer players. Their representation 

shows two distinct clusters. Cluster 1 (combining the match situations 

12, 10, 6, 5, 11, 4) integrates all match situations aligned to defen-

sive tactics, in which the opposing team is in possession of the ball. 

Cluster 2 (combining the match situations 3, 1, 9, 7, 8, 2) integrates 

all match situations aligned to offensive tactics, in which the target 
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team is in possession of the ball. There is no further functional clus-

tering in the cognitive representation of team-specific tactics in less 

experienced soccer players. 

Figure 5.3b illustrates the mean cognitive representation structure of 

the group of the more experienced soccer players. Their representa-

tion shows a separation of the match situations in four distinct clus-

ters. Cluster 1 (combining the match situations 9, 8, 7) integrates all 

match situation related to the team-specific tactic ‘change sides’, and 

Cluster 2 (combining the match situations 2, 3, 1) all situations of 

‘counter-attack’. Above the critical Euclidean distance (dcrit = 4.552) 

these two clusters are merged into the offensive tactics. Cluster 3 

(combining the match situations 6, 5, 4) integrates the match situa-

tions related to team-specific tactic of ‘pressing’, and Cluster 4 (com-

bining the match situations 11, 12, 10) integrates all match situations 

related to ‘back to defense’ tactics. The clusters ‘pressing’ and ‘back 

to defense’ are connected with each other above the critical Euclidean 

distance (dcrit = 4.552), pointing at the existence of a representation 

level integrating all defense strategies.  
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Figure 5.3 Cognitive representation of team-specific tactics in soc-

cer for soccer novices (a) and soccer experts (b). The number at the 

bottom represents the different match situations. The height at each 

conjunction represents the Euclidian distance between match situa-

tions. The lower the conjunction, the closer the connection between 

the match situations. The dashed line represents the critical Euclidian 

distance where the branches were cut off. The cognitive representa-

tion structures show that experts, in contrast to novices, possess a 

functional representation of team-specific tactics in soccer.  

 

The invariance measure examining for homogeneity between evolved 

representation structures revealed invariance (λmore_exp = 1.0) of the 

cognitive representation of team-specific tactics for more experi-

enced soccer players in comparison to an ideal structure. Thus, more 

experienced soccer players’ cognitive representation can be inter-

preted as identical to an ideal structure. The cognitive representation 

of team-specific tactics in soccer for less experienced soccer players 

revealed no invariance (λless_exp = 0.42) in comparison to an ideal 

structure. Both structures share less common features, and thus, 

they cannot be interpreted as similar to each other.  
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Experiment 2 

Overall, in 15.3 % of all trials, the participants decided incorrectly or 

data was classified as outlier when decisions were longer than two 

standard deviations from the mean. ANOVA results for the measured 

reaction times of the participants correct answers revealed a signifi-

cant main effect for the factor group, F(1,18) = 5.486, p < .05, η2 = 

.234. The experienced soccer players (M = 1488.2 ms, SD = 562.2) 

decided faster in comparison to the less experienced soccer players 

(M = 2258.9 ms, SD = 1121.0). In addition, a significant main effect 

was observed for the factor tactic, F(3,54) = 7.694, p < .01, η2 = 

.299. The participants decided faster for the tactic ‘counter attack’ (M 

= 1533.2 ms, SD = 733.2), as for ‘change sides’ (M = 1558.7 ms, 

SD = 910.4), as for ‘pressing’ (M = 2181.8 ms, SD = 1059.7), and 

as for the tactic ‘back to defense’ (M = 2220.5 ms, SD = 1120.9). No 

significant interaction between the factors was observed.  

ANOVA results for the average fixation duration of the participants 

correct answers revealed no significant main effect for the factor 

group, F(1,18) = 0.019, p = .89, η2 = .001. As well the experienced 

soccer players (M = 378.9, SD = 75.0) as the less experienced soccer 

players (M = 383.4, SD = 104.7) had a similar average fixation du-

ration. But, a significant main effect was observed for the factor tac-

tic, F(3,54) = 4.170, p < .05, η2 = .188. The participants had a 

smaller average fixation duration for the tactic ‘pressing’ (M = 335.8 

ms, SD = 48.5), as for ‘back to defense’ (M = 382.5 ms, SD = 81.1), 

as for ‘counter attack’ (M = 400.4 ms, SD = 104.7), and as for the 

tactic ‘change sides’ (M = 406.0 ms, SD = 122.2). No significant in-

teraction between the factors was observed.  

ANOVA results for the measured number of fixations of the partici-

pants correct answers revealed a significant main effect for the factor 
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group, F(1,18) = 5.031, p < .05, η2 = .218. The experienced soccer 

players (M = 4.4, SD = 2.0) needed less fixations in comparison to 

the less experienced soccer players (M = 6.8, SD = 3.6). In addition, 

a significant main effect was observed for the factor tactic, F(3,54) = 

4.543, p < .05, η2 = .202. The participants needed less fixations for 

the tactic ‘counter attack’ (M = 4.7 ms, SD = 2.1), as for ‘change 

sides’ (M = 4.9 ms, SD = 3.1), as for ‘back to defense’ (M = 6.3 ms, 

SD = 3.8), and as for the tactic ‘pressing’ (M = 6.6 ms, SD = 3.4). 

No significant interaction between the factors was observed. The re-

sults are summarized as bar plots in Figure 5.4.  

Moreover, the areas observed by the participants have been analyzed 

for each match situation. The corresponding attention maps of the 

correct answers delivered insights regarding the amount and the fre-

quency of observed pixels between stimulus onset and participants 

reaction. ANOVA results for the number of observed pixel within each 

match situation revealed a significant main effect for the factor group, 

F(1,18) = 17.837, p < .01, η2 = .498. The experienced soccer players 

(M = 25944.8 px, SD = 6057.0) observed less pixels within each 

match situation than the less experienced soccer players (M = 

37123.6 px, SD = 9603.7). Additionally, a significant main effect was 

observed for the factor tactic, F(3,54) = 6.568, p < .01, η2 = .267. 

The participants observed less pixels in the match situations of the 

tactic ‘back to defense’ (M = 27954.8 px, SD = 10088.2), as for 

‘counter attack’ (M = 29167.6 px, SD = 8477.3), as for ‘change sides’ 

(M = 34490.3 px, SD = 10798.3), and as for the tactic ‘pressing’ (M 

= 34524.1 px, SD = 9093.4). No significant interaction between the 

factors was observed.  
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Figure 5.4 The bar plots show mean results and the error bars 

(95% confidence interval) of the less and more experienced soccer 

players. Figure 4a shows the reaction times, where the more experi-

enced soccer players needed significantly less time to make a correct 

judgment of the match situation with regard to the appropriate team-

specific tactic. Figure 4b displays the mean fixation duration of the 

correct decisions. There is no difference between less and more ex-

perienced soccer players. Figure 4c shows the mean number of fixa-

tions made between stimulus onset and reaction. The more experi-

enced soccer players needed significantly less fixations as compared 

to the less experienced soccer players. Figure 4d indicates the mean 

number of pixels observed during the decision-making process. The 

more experienced soccer players observed significantly less pixels 

within the stimulus material as compared to the less experienced soc-

cer players.  

 

In addition, attention maps visualize the observation strategies. Fig-

ure 5.5 shows the attention maps of one match situation for each 
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team-specific tactic of both groups. Areas highlighted in red indicate 

areas, which received high attention. Areas highlighted in yellow, 

green, and blue indicated areas sparsely observed. Blurred areas 

where not observed at all during the decision-making. The attention 

maps visualize the amount of observed pixels for selected match sit-

uations.  

 

Figure 5.5 The attention maps for one match situation of each 

team-specific tactic for the more (upper row) and the less (lower row) 

experienced soccer players. The match situations represent from left 

to right: back to defense, pressing, counter-attack, and change sides 

match situations. Areas highly observed are indicated by red color, 

whereas areas of less attention are indicated in decreasing order by 

yellow, green, light green, and blue color. The blurred areas are not 

attended. Experts’ attention is not as distributed as novices are. It 

seems that they are more focused on certain areas of the stimuli. 
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Discussion 

This study was designed to examine the cognitive representation of 

team-specific tactics in soccer. The comparative performance of two 

different groups was examined – a group of more experienced soccer 

players and a group of less experienced soccer players. The storage 

and the cognitive processing of information regarding team-specific 

tactics in soccer were measured in participants’ memory in an exper-

iment via the cognitive representation structure and a reaction time 

task. Data supports the hypothesis that more experienced soccer 

players’ memory structure of team-specific tactics is hierarchically 

organized as compared to less experienced soccer players.  Less ex-

perienced soccer players’ cognitive representation of team-specific 

tactics in soccer showed a clear separation of tactics related to the 

playing direction (i.e., offense or defense). No additional parameters 

constitute the cognitive representation structure of team-specific tac-

tics of less skilled soccer players. In contrast, the more experienced 

soccer players showed a functional organization of team-specific tac-

tics in soccer that are aligned with the four soccer-specific tactical 

concepts (counter-attack, pressing, change sides, and back to de-

fense) investigated in this study. Additionally, these four tactical con-

cepts form separate clusters in the long-term memory of more expe-

rienced soccer players. It can be assumed that these team-specific 

tactics are represented as independent units within the memory 

structure. Moreover, the two defense and two offense team-specific 

tactics are connected at a higher level in more experienced soccer 

players. According to these findings, it can be proposed that this ap-

proach is able to indicate relevant cognitive representations of team-

specific tactics in soccer. This extends sport science research by not 

only documenting specific performance statistics (as an example see 
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Lago-Ballesteros & Lago-Peñas, 2010), but also by moving beyond 

such documentation (Vilar, Araújo, Davids, & Button, 2012). The pre-

sent research offers insights into the cognitive representation of 

team-specific tactics in soccer usually difficult to explicitly address by 

the players themselves. Moreover, this parameter is difficult to ob-

serve during a soccer match because the observer cannot definitively 

know whether an observable behavior base on improved perception, 

on enhanced physical skills, or on cognitive representation struc-

tures. Therefore, all performance-influencing factors need to be ex-

tracted and analyzed to draw an extensive picture of the soccer per-

formance of athletes. The cognitive representation of team-specific 

tactics possess the potential to characterize soccer performance of 

athletes, which can lead to individual success. Hughes and Bartlett 

(2002) stated that, performance indicators like the cognitive repre-

sentation should form an individual profile that constitutes ideal ath-

letic performance in comparison to recent performance.  

Experiment 2 used participants comparable to Experiment 1 (i.e., in 

terms of age and soccer experience), and was designed to examine 

the cognitive and perceptual processing of team-specific tactics in 

soccer. Differences in behavioral response and observation strategies 

were observed between less and more experienced soccer players. 

Experiment 2 provides evidence that more experienced soccer play-

ers needed less time as compared to less experienced soccer players 

to judge match situations in correspondence to a certain team-spe-

cific tactic. The observation strategies during the decision-making 

process of both groups delivered evidence that mainly the number of 

fixations necessary to evaluate a match situation is an influencing 

variable on the reaction time. The mean fixation duration were the 

same for both groups. Thus, the less experienced soccer players 
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needed more fixations at more locations for each match situation, 

which led to longer reaction times. The hypothesis that more experi-

enced soccer players determine an appropriate tactical behavior 

faster than less experienced soccer players can be assumed. The data 

from Experiment 2 provide evidence that more experienced soccer 

players are able to classify domain-specific patterns of play faster 

than less experienced soccer players are. Previous expertise studies 

have also offered evidence for an advanced classification of domain-

specific patterns of play (i.e., in terms of recalling more patterns) by 

experts (Abernethy, Baker, & Côté, 2005). Importantly, this has been 

shown in domains like chess (Kiesel, Kunde, Pohl, Berner, & 

Hoffmann, 2009; Simon & Chase, 1973), as well as within the sports 

domain (Helsen & Starkes, 1999; Ward & Williams, 2003; Williams, 

Davids, Burwitz & Williams, 1993). A likely explanation for this effect 

is that, more experienced players may possess a larger database of 

chunks, which allows them the faster cognitive processing of such 

match situations (Williams, Hodges, North, & Barton, 2006). So, the 

present study adds to the knowledge about parameters in decision-

making of team-specific tactics in soccer.  

Experiment 2 delivered evidence that the observation strategies were 

different between the two expertise levels. However, the hypothesis 

that more experienced soccer players make more fixations of shorter 

duration must be rejected. The more experienced players needed less 

fixations of same fixation duration while observing less pixels in the 

match situations as compared to less experienced soccer players.  

This finding contradicts the finding of Roca and colleagues (2011). 

Potential reason for this discrepancy could be the application of a 

different stimulus material. Roca and colleagues (2011) used video 

sequences and the present study used static images of coach board 



CHAPTER 5 

 

170 

 

designs to indicate the corresponding match situations. The video 

material contained information about the tactical behavior, but also 

information about the motor behavior of the involved players. If par-

ticipants observe the motor behavior, which corresponds to their field 

of expertise (i.e., soccer), they activate corresponding cognitive rep-

resentations. Thus, the brain activity of participants observing an ex-

perienced motor action reveals the influence of motor expertise on 

action observation (Calvo-Merino, Glaser, Grèzes, Passingham, & 

Haggard, 2005; Schütz-Bosbach & Prinz, 2007). Additionally, Wil-

liams and Davids (1998) already found that more experienced soccer 

players pay more attention to body postures than less experienced 

soccer players do. Therefore, the present study used static pictures 

to focus on the tactical information. In addition, the eye-tracking data 

of the present study emphasizes the findings of Williams, Davids, 

Burwitz, and Williams (1994) that experienced soccer players show a 

different pattern of attention distribution (i.e., the more experienced 

soccer players fixated peripheral targets) during their decision-

making as compared to less experienced soccer players. Vaeyens, 

Lenoir, Williams, and Philippaerts (2007) showed that successful de-

cision-makers in soccer spent more time in fixating the player in pos-

session of the ball and shifted their gaze more frequently between 

that player and other areas of the stimulus. This finding is contradic-

tory to Roca and colleagues (2011) and the results of the present 

study. The reason can be that Vaeyens, Lenoir, Williams, and Philip-

paerts (2007) used only group specific tactics involving not more than 

eight players. In addition, the viewing angle was from a central mid-

fielder in only offense plays. It can be assumed that the restrictions 

triggered a special gaze behavior, especially when the participants 

had to imagine themselves as the midfielder indicated in the video 
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sequences. The data of Vaeyens, Lenoir, Williams, Mazyn and col-

leagues (2007) delivered evidence that with an increasing complexity 

of the stimulus material (i.e., in their study involvement of players 

from 3 up to 8) the number of fixations increased. The present study 

used the highest level of complexity, because all players were in-

volved. That is the reason for the higher amount of fixations found in 

the participants of the present study. The drawback of the studies of 

Vaeyens, Lenoir, Williams, and Philippaerts (2007) and Vaeyens, Le-

noir, Williams, Mazyn and colleagues (2007) is that, both were con-

ducted with only adolescent players. With regard to the curricula of 

the soccer teaching programs, it is obvious that adolescents cannot 

be developed as adults in terms of tactics.  

It can be assumed that the gaze behavior is controlled based on cog-

nitive representations of team-specific tactics in soccer in a compa-

rable manner to the gaze behavior in the perception of complex mo-

tor actions (Flanagan & Johansson, 2003). The present results sug-

gest that the cognitive representation of team-specific tactics in soc-

cer are responsible for the gaze behavior in the perception of such 

tactics in a comparable manner as for cognitive representations of 

complex motor actions. It can be assumed that more experienced 

soccer players needed less fixations to evaluate the underlying tactics 

because they possess a functional knowledge of the team-specific 

tactics. Thus, they were able to react faster, because they identified 

the most informative locations for their decisions.  

The main effect for tactic in Experiment 2 can be explained by the 

different structure of the used match situations. However, interest-

ingly the reaction times were fastest for the offense tactics where 

participants needed as well less fixations to judge them in comparison 

to the defense tactics. Moreover, the fixation duration was shorter for 
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the defense tactics as compared to the offense tactics. These effects 

lead to the assumption that offense tactics were processed differently 

than defense tactics. The reason therefore might be that, offense tac-

tics afford an action and defense tactics afford a reaction. The appro-

priate defense reaction on the possibilities in opponents’ offensive 

team-specific tactics afforded more fixations of shorter duration to 

evaluate all possibilities of the opponent. That means, in defense play 

the attention is directed between opponents and own team members. 

Whereas, the production of a successful offense play affords less fix-

ations of longer duration, because the attention might be focused 

towards the own players. 

The attention maps visualize the spatial distribution of attention 

across the different match situations. It is observable that more ex-

perienced soccer players attention seems to be more focused on se-

lected spots within each match situation, because the inspected areas 

are smaller as compared to less experienced soccer players. Taken 

more experienced soccer players number of fixations and the fixation 

duration into account it seems that they exactly know where relevant 

cues are in the match situations for a proper decision-making. More 

experienced soccer players seem to be able to detect relevant cues 

of match situations and analyze their impact on the decision-making 

process. That enables more experienced soccer players to decide 

faster. These findings add to the existing knowledge that experienced 

soccer players are better able to evaluate and prioritize a possible 

individual tactical behavior (e.g., passing options) than novices 

(Ward & Williams, 2003).  

From an applied perspective, practical training implications can be 

derived from the results of the present study. It can be reasoned that 
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more experienced soccer players possess a functional cognitive rep-

resentation of team-specific tactics in soccer, and their cognitive pro-

cessing of such tactics differs from less experienced soccer players. 

Specifically, if an athlete’s memory structure has an influence on the 

time it takes to decide for an appropriate tactic, then coaches should 

address players’ cognitive representation explicitly within training 

sessions. That is what coaches are already attempting, albeit without 

verified knowledge about their athletes’ memory structures. Thus, 

the measurement of cognitive representations of team-specific tac-

tics in soccer has the potential to meet the criteria of a diagnostic 

tool, which is able to predict future sporting behavior (see Jones, 

Mellalieu, & James, 2004; O'Donoghue, 2005). Importantly, the 

measurement of cognitive representations has already been success-

fully implemented into a training scenario in Judo (e.g., a Judo throw-

ing technique called Uchi-Mata). Therefore, high-level experts pos-

sess inter-individual differences, which are addressed in practical 

training implications (Weigelt, Ahlmeyer, Lex, & Schack, 2011). It 

seems possible, then, to convey specific, individually adjusted train-

ing instructions from the cognitive representation in long-term 

memory.  

Moreover, the proposed methods in the present paper investigated 

soccer players’ cognitive representations and the cognitive pro-

cessing of team-specific tactics in soccer. The results of the studies 

facilitate the understanding of soccer experts’ tactical decision-mak-

ing as proposed similarly by Vestberg, Gustafson, Maurex, Ingvar, 

and Petrovic (2012). In addition, the knowledge about the most in-

formative locations during the decision-making process may also fa-

cilitate the learning. There are hints that the superior decision-mak-

ing skill of experts may be related to an early cue perception and not 



CHAPTER 5 

 

174 

 

to an advanced processing of fixated information. Thus, the evalua-

tion of cognitive representations of team-specific tactics in soccer in 

combination with the measurement of gaze behavior has the poten-

tial to form the basis for the diagnostics in and the development of 

functional tactics training. Especially, the visual perception can be 

assessed easily during soccer games (i.e., by the usage of new eye-

tracker hardware) to evolve visual and mental guided training tech-

niques.  
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The line of research in the current thesis focused on the investiga-

tion of cognitive representation units responsible for the execution 

of manual actions, complex actions, and interactions. The aim was 

to provide further insights in the cognitive architecture of motor 

actions. The results of the experiments suggested a further concep-

tualization of representation units. Thus, the thesis focused on a 

description of the granularity of cognitive representation units in 

humans LTM. Three movement-related representation units ex-

panded the model of Schack (2010): Basic Interaction Concepts 

(BICs), Basic Action Concepts (BACs), and Basic Movement Con-

cepts (BMCs).The three movement-related representation units are 

subject to the similar structuring and dimensioning processes as 

representation units of complex actions (Schack, 2010). Therefore, 

the representation units (BICs, BACs, and BMCs) depend on similar 

functional principles of movement organization. The complex 

process of action organization aligns such representation units in a 

hierarchical order, from sensory surface features to functional fea-

tures in terms of movement organization. In consequence, the re-

presentation units can be accessed on an average availability for 

action execution. 

In correspondence to Bernstein's systems theory (1967) and 

Schack’s cognitive architecture of complex actions, which suggested 

a hierarchical control in movement organization, the current ap-

proach postulated in this thesis, addresses also the DoF problem. A 

movement is a function of the systems self-organization of the 

available DoF into a single functional unit, which is responsible for a 

specific task. Therefore, higher levels of the nervous system acti-

vate lower levels. Lower levels activate synergies described exem-

plarily as groups of muscles, which execute the movement task 
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(Bernstein, 1967). An example from the field of linguistics presents 

a vivid illustration of the mentioned hierarchical control. That illu-

stration puts letters on a level with synergies described in 

Bernstein’s approach. Letters assemble to a word, which represents 

the lower architectural level. In turn, words assemble to a sentence, 

which represents the higher architectural level. According to 

Bernstein’s systems theory of motor control, Schack (2002, 2010) 

developed the cognitive architecture of complex motor actions, 

where four hierarchically structured levels (two representation and 

two control levels) are responsible for the movement organization 

and the control of the DoF. These control and representation levels 

possess different functions and interact with each other.  

The following sections discuss the main findings of the current the-

sis with regard to the cognitive representation units at the three 

movement-related complexity levels of manual actions, complex 

actions, interactions. These findings emphasize a hierarchical 

movement organization. At the end, implications of such findings 

are discussed with regard to an advanced theory of the cognitive 

architecture of movement organization.  

 

Cognitive Representations in Manual Actions 

Up to now, it seems clear that cognitive mechanisms play a multifa-

ceted functional role in the organization of adaptation processes in 

humans. Internal models are capable to adjust behavior appro-

priately to new environmental conditions. However, neurophysiolog-

ic studies suggested that other cognitive processes like representa-

tions of movement directions are also involved in goal-oriented 

grasping movements (Georgopoulos, Caminiti, Kalaska, & Massey, 
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1983). If there is neurophysiologic evidence for the activation of 

direction-sensitive neurons during grasping movements, then there 

might be a cognitive representation of movement directions. This 

cognitive representation of movement directions relates to a certain 

reference frame (Frank, 1992; 1994). The research question of the 

experiments described in CHAPTER2 and 3focused on the influence 

of cognitive representations of movement directions on the adapta-

tion behavior in goal-oriented pointing movement including a distor-

tion of the visual feedback in terms of a left-right reversal. The re-

sults delivered evidence for the existence of a cognitive representa-

tion of movement directions within human memory. However, there 

are differences between humans regarding their representation 

structure of movement directions. There exist two types of cognitive 

representation of movement directions, global and local cognitive 

representation of movement directions. Global cognitive representa-

tions signalize an alignment of movement directions towards the 

cardinal movement directions along the sagittal and horizontal axis. 

Local cognitive representations of movement directions signalize an 

alignment of movement directions towards neighboring directions 

describing differences of 30° between each other. In conclusion, it 

turns out that a global representation of movement directions leads 

to functional advantages in adapting towards a distortion of the vis-

ual feedback in terms of a left-right reversal (i.e., mirroring along 

the sagittal axis). The local representation of movement directions 

seems to be disadvantageous in such a task. Presently it remains 

speculative whether the reason for the advantage of the global re-

presentation schema will be a functional similarity between both 

(i.e., the representation and the distortion). However, if this were 

the case, a local representation might facilitate distortions of the 

visual feedback in terms of small rotations (i.e., 30 or 45° rotation). 
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Further research needs to clarify this possibility. Nevertheless, the 

different presentation conditions (i.e., visual or visual-

proprioceptive) in the measurement of the cognitive representation 

of movement directions described in CHAPTER 2 and 3 had an im-

pact on the representation structure. The local representation struc-

ture of poor adapters measured in the visual presentation condition 

excludes the movement directions in the cardinal axes. The mea-

surement of cognitive representation of movement directions in the 

visual-proprioceptive presentation condition leads to an integration 

of the cardinal movement directions, but neighboring movement 

directions joined the cardinal axes. However, both representations 

were dysfunctional with regard to the selected distortion. Thus, the 

presentation mode has an impact on the cognitive structure of 

movement directions. The adaptive variability of movement skills 

increases in correspondence to the functional organization of cogni-

tive representations of movement directions, which leads to a more 

elaborated movement execution.  

 

Cognitive Representations in Complex Actions 

Various studies investigated the cognitive representations of com-

plex motor actions (e.g., Bläsing, Tenenbaum, & Schack, 2009; 

Schack & Mechsner, 2006; Weigelt, Ahlmeyer, Lex, & Schack, 

2012). The results of such studies showed that a functionally orga-

nized memory structure of a certain technique defines the level of 

expertise of an athlete. This functional organization corresponds to 

kinematic and dynamic movement features (Heinen & Schack, 

2003; Schack, 2003; Schütz, Klein-Soetebier, & Schack, 2009). 

However, the presented kinematically matched action sequences 

were in part not from the field of expertise of the observers (i.e., 
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from humanoid robot and a human motor system). The results sug-

gested that the action specific knowledge is not transferable to such 

a related movement (Calvo-Merino, Glaser, Grezes, Passingham, & 

Haggard, 2005).This open issue formulates the question, how 

movement expertise relates to the executing motor system.  

The current thesis provided evidence in line with the hypothesis 

formulated in CHAPTER 4 that humans are able to transfer their 

action-specific knowledge onto a comparable motor system (i.e., 

humanoid robot). The results suggest such a transfer of action-

specific knowledge from the known human motor system onto an 

unknown artificial, but comparable (in terms of appearance) motor 

system by the movement experts. 

However, robot experts incorporate knowledge about the artificial 

motor system at an intellectual level (i.e., knowledge about the ac-

tuators, DoF of the system, software architecture etc.) into their 

cognitive representation of the humanoid robot movement. Robot 

experts integrate their perceptual-motor and their neuro-functional 

machine representation into a complex representation of the huma-

noid robot movement. Therefore, cognitive representations of com-

plex actions are composed of all accessible knowledge fragments 

accessible for a proper action representation. These fragments refer 

to intellectual and perceptual-motor knowledge, and cumulate in a 

complex representation of a motor action with regard to the execut-

ing motor system.  
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Cognitive Representations in Interactions 

Interactions in sport games are a characteristic and performance-

relevant parameter in sport games. Especially, in a soccer-specific 

environment many interactions involving up to 22 players happen 

on the pitch. The interactions between players are of relevance for 

tactical decisions of single players (Höner, 2005). To make proper 

tactical decisions it seems adequate that players possess functional-

ly organized memory structures about tactical strategies in their 

LTM. The results of the studies described in CHAPTER 5 delivered 

evidence that more experienced players possess a functionally or-

ganized memory structure of team-specific tactics. Less experienced 

soccer players do not. In addition, the experiments regarding deci-

sion-making and gaze behavior delivered evidence that a functional 

representation of team-specific tactics enables more experienced 

soccer players to shift their attention to decision-relevant points of 

interests. Such a gaze behavior allows them to retrieve the neces-

sary decision-relevant information. That means that the evaluation 

of the perceived information can start earlier. Thus, a functional 

memory structure of team-specific tactics facilitates the decision-

making process, which leads to an advantage on the pitch in the 

initiation of adequate complex actions (e.g., sprinting, tackling, 

passing etc.).  

The results presented in CHAPTER 5 delivered evidence for the fact 

that team-specific tactics are stored in human LTM as functionally 

organized entities (i.e., afforded tactical behavior of certain match 

situations). Team-specific tactics in soccer determine the choice for 

an adequate complex action. The experiments suggest that the way 

in which LTM organizes team-specific tactics seems to be analogous 

to the organization of complex actions and movement directions. It 
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seems trivial, but a functional cognitive representation facilitates 

the hierarchical organization of the decision-making process from 

perception to action. These experiments delivered first evidence 

that such a representation level exists in human LTM.  

 

Advances to the Cognitive Architecture of Actions 

In general, the essence of such research is not only the effect-

oriented vivid description of cognitive representations, but also the 

necessity to integrate such findings in a complex and descriptive 

model (Bernstein, 1988). Architectural models describe the process 

of movement organization based on movement-related and know-

ledge-based systems. Merely, a few models combine the perspec-

tives of cognitive and movement science with each other in an 

overarching theory. The cognitive architecture of complex motor 

actions (Schack, 2002), for instance, is a recent approach to de-

scribe the processes of movement organization. This theoretical 

approach emerges from the perspective of the executive function of 

the motor system. This proposition of the executive function is al-

ready a subject matter of the action theory (Nitsch, 2004).One pre-

requisite for the movement organization is the anticipation of future 

movement effects (Bernstein, 1967), which implies the understand-

ing of the movement problem. Thus, humans have to understand 

the movement tasks and solve the movement problems in a goal-

oriented manner (Schack, 2012). One of the main problems is the 

overcoming of the DoF problem. Therefore, the cognitive system 

must be able to use the DoF in an optimal way to solve a current 

movement problem. That is the transformation of the DoF from a 

manifold system into a controllable system (Bernstein, 1971). How-

ever, how is a motor system responsible for the transfer of antic-
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ipated movement effects into precise motor actions functioning? 

Schack (2002, 2012) recommended the separation of different re-

presentation levels from each other according to different functional 

aspects within movement organization, the level of mental repre-

sentation and the level of sensorimotor representation. Elementary 

functions (e.g., reflexes) directly connected to reactions on stimulus 

configurations dominate the level of sensorimotor representation. In 

contrast, signs and symbols (i.e., mental representations) mediate 

the movement organization of intentionally guided movements. 

Schack (2002, 2010) used BACs as a cognitive representation unit 

(i.e., nodes) of the functional movement organization on the level 

of mental representation. These building blocks of motor actions 

complement the functional units on the level of sensorimotor repre-

sentation. Both representation levels, the effect-oriented goal antic-

ipation of mental representations and the perceptually driven sen-

sorimotor representations constitute the process of movement ex-

ecution. The representation units at the level of sensorimotor con-

trol are not in the focus of the current thesis. It is of mere specula-

tion if GMPs (Schmidt, 1975) or other representation units are 

stored at such a level. Sensorimotor representations are responsible 

for the muscle innervation. They possess a direct connection to the 

representation units at the level of mental representation (i.e., 

BACs).  

In addition to Schack (2002, 2010) the recent thesis discusses two 

dimensions with regard to mental representations. The vertical di-

mension of representation units is constrained by their linkage to-

wards the corresponding feature dimensions of the movement. 

Thus, goal-oriented action effects including their reafferent sensory 

patterns form the vertical dimension of representation units. The 
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evolved network of action nodes (i.e., representation structure) 

allows the deduction to feature dimensions of representation units 

in all three movement categories investigated in this thesis. The 

focus of the current thesis is on the horizontal dimension of mental 

representations. The experiments described in the CHAPTERS 2 to 5 

highlighted the relevance of cognitive representations for the 

movement organization of manual actions, complex actions, and 

interactions. These different movement categories vary on the level 

of complexity in terms of the integration of more DoF, which leads 

to different organizational stages. The finding of identical measure-

ment of cognitive representations in all experiments of the current 

thesis at the different organizational levels of manual actions 

(movement directions), complex actions (instep kick in soccer), and 

interactions (team-specific tactics) by selected mental representa-

tion units points implicitly at the existence of a horizontal dimension 

of representation units at the level of mental representation.  

A practical example elucidates the problem. Imagine a handball 

player involved in an offensive situation. That player has to make 

various decisions in attempting to score. Thus, scoring a goal is the 

overarching effect, which drives the player’s effort and influences 

the cognitive processes involved in movement organization. That 

player tries to control all necessary DoF in a functional manner. 

First, a tactical decision based on information about teammates and 

opponents positions drives the activation of tactical concepts, and 

results in the choice for a shot at the goal. Second, a technical deci-

sion based on the defensive action of the direct opponent drives the 

activation of an adequate technique, and results in a jump shot or a 

straight shot at the goal. Third, an additional technical decision 

drives the execution of the chosen technique, and results in direc-
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tion sensitive hand movement to control the flight path of the ball 

to overcome the goalkeeper’s defense actions. This practical exam-

ple illustrates the different complexity levels in the decision-making 

process.  

The data presented in the current thesis supports the hypothesis 

that selective hierarchical processes constrain the cognitive move-

ment organization of cognitive units at the level of mental represen-

tation. The cognitive movement organization bases on a hierarchical 

organization of representation units corresponding to different or-

ganizational levels of movement complexity (i.e., in terms of 

DoF)along a horizontal dimension. Up to now, the cognitive units at 

the level of mental representation were labeled as BACs (Schack, 

2002; 2010), as they focused on the organization of complex ac-

tions. Representation units (i.e., concepts) are cognitive groupings 

of objects and events in terms of the anticipation and realization of 

action goals (Hoffmann, 1993; Schack, 2010).Cognitive representa-

tion units constitute the mediating steps between the anticipated 

action goal and the solution of a movement problem. In addition to 

Schack (2002, 2010), cognitive representation units located at the 

level of mental control and the level of sensorimotor representa-

tion(BICs and BMCs) emphasize the broader nature of representa-

tion units at the level of mental representation. Of course, repre-

sentation levels connect the concepts with each other, because they 

integrate the feature dimensions of the next level. Thus, the net-

work of representation units across organizational levels in the cog-

nitive architecture spans the horizontal dimension(presented in Ta-

ble 6.1).  
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Table 6.1  

Hierarchical action organization across the levels of mental repre-

sentation in the cognitive architecture of movements 

Level Mean Stage Example 

Mental control Symbols, 

Strategies 

Action organization 

Overarching movement 

features 

Basic Inte-

raction Con-

cepts (BIC) 

 

Mental repre-

sentation 

Representa-

tion of com-

plex actions 

Action control 

Effect-oriented units in 

motor action organiza-

tion 

Basic Action 

Concepts 

(BAC) 

 

 

Sensorimotor 

representation 

Perceptual 

effect repre-

sentations 

Action implementation 

Movement adjusting        

features 

Basic 

Movement 

Concepts 

(BMC) 

 

Sensorimotor 

control 

Functional 

systems, ba-

sic reflexes 

  

 

The involvement of different organizational levels (different task 

complexity) in motor actions is best described by a hierarchical re-

presentation schema at the level of mental representation. The dif-

ferent task complexity of the represented world maps on the differ-

ent representation complexities in the representing world. Thus, the 

successful participation in complex sport games requires learning 

things about the represented world. First, a learner needs to estab-

lish new sensorial effects about the movement execution. Second, a 
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learner needs to organize these new sensorial effects and acquire 

new skills. Third, these new skills are context-dependent (i.e., a 

tactical behavior at various levels). In argumentum e contrario, this 

means that tactical concepts (e.g., team-specific tactics)determine 

the choice for an adequate technical behavior (i.e., motor skill), and 

that the preferred motor skill (e.g., instep kick in soccer)requires a 

substantial representation of adjustable components (e.g., move-

ment directions) of movement organization. The representation 

units at different movement-related categories describe hierarchical 

stages along the horizontal dimension of cognitive representation 

units. Thereby, the output of the higher-level stages (top-down) is 

the set of probabilities of the subordinate stages, which are respon-

sible for the selection of effect-appropriate lower-level stages repre-

sentations (comparable to the MOSAIC model of Wolpert, Doya, & 

Kawato, 2003). For example, the overarching action effect triggers 

representations (i.e., tactics, shot, direction) that influence the de-

cision-making process in handball (e.g., shooting at the goal). 

Moreover, the different representation stages cause each other in a 

way that one might be an integral component of the other: from the 

representation of movement directions, via the representation of 

complex actions to the representation of tactics. The representation 

units are responsible for action organization (e.g., tactics), action 

control (e.g., instep kick), and action implementation (e.g., move-

ment directions). The different organizational level provide evidence 

for a granularity of mental representations in relation to movement-

related categories. Figure 6.1 illustrates the aforementioned hierar-

chical composition of representation units. 
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tence).The apparent discontinuities throughout this development 

differ in respect to the mental representations and the processes 

that operate on these representations (Piaget, 1952). In a broader 

sense, because humans tend to recycle previously acquired know-

ledge and strategies rather than starting new planning activities 

(Eisenstadt & Kareev, 1975), new representations evolve from the 

modification of existing ones.  

The current thesis examined the existence of representation units at 

different representation levels. However, there are also arguments, 

which emphasize an integration of these representation units into a 

single representation of a movement representation. Therefore, it is 

necessary to investigate BICs, BACs, and BMCs at an intrapersonal 

level. Studies from classical ballet showed that the representation of 

feature dimension such as movement directions constitute complex 

movements like “petit pas assemble” and “pirouette en dehors” 

(Bläsing & Schack, 2012). Moreover, it is interesting for future re-

search projects to investigate certain movements (e.g., a shot at 

the goal in soccer) by an integration of BICs, BACs, and BMCs. 

Therefore, a measurement of the cognitive representation should 

integrate all action relevant movement parameters in terms of 

complex feature dimensions. 

The modeling of expertise is also an issue in the research of artifi-

cial intelligence. Kelso (1995) proposed that the dynamic systems 

theory subsumes aspects of the motor program theory. Similarities 

in the theoretical approaches assume that inverse and forward 

models (Wolpert & Kawato, 1998) are able to solve the DoF prob-

lem. Similar as in the GMP theory (Schmidt, 1975) a knowledge 

center is responsible for such processes. The solution for the DoF 

problem should integrate fixed (invariant parameters like relative 
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timing, relative force, and sequence of action) and flexible (envi-

ronmental parameters) elements. A schema or equation (i.e., a set 

of rules) guides the decision process and updates or revises the 

corresponding motor system. All information relevant for movement 

execution exists in the environment, and a movement pattern 

emerges as a function of the ever-changing constraints placed upon 

it. However, the results of the current thesis deliver evidence that 

human memory processes states of environmental conditions and 

integrates these as sensory features in distinct representation units. 

The structure of representation units develops throughout sustained 

learning phases, and represents a hierarchical organization in terms 

of functional movement features. This result exhibits parallels to 

systems engineering. System engineering uses intermediate repre-

sentations for the implementation of concepts and strategies (Ford, 

Bradshaw, Adams-Webber, & Agnew, 1993). The proposed ap-

proach of BICs, BACs, and BMCs deliver evidence for a hierarchical, 

context-related implementation of such representations. It might be 

interesting to investigate such an idea for systems engineering in 

more detail by further purposeful research in that area. The focus 

should be on the involvement of the widely separated neural struc-

tures and their participation in category learning, which depends to 

varying degrees on the category structure itself (Ashby & Ell, 2001). 

The data presented in the current thesis delivered hints for the 

identification of the structure of an action-relevant category. At 

present, it remains speculative that humans might use different 

neural circuits to establish different types of representation units 

(Ashby & Ell, 2001, p.209). 
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The perspectives described in the current thesis are restricted to con-

siderations about the control of voluntary movements at the level of 

mental representation. Every detailed and structured introspection or 

self-monitoring is unable to reflect the adequate choice of innervated 

muscles, the power of needed force, and the temporal dynamics to 

execute a task. The question is which cognitive mechanisms enable 

humans to execute voluntary movements and how they are accessed. 

Several scientific theories and models described the cognitive organ-

ization of voluntary movements starting approx. 150 years ago. 

Hereafter, it seemed obvious that the representation of only muscle 

forces or joint velocities is not a feasible representation format for 

the control of voluntarily executed movements. In fact, a promising 

approach postulates the existence of cognitive representations. Cog-

nitive representations might constitute a plausible connection be-

tween the to-be-produced environmental effects and the actual 

(muscular managed) control of the own body. The current thesis de-

scribes research results delivered from experiments, which investi-

gated cognitive representations at three different movement-related 

complexity levels: manual actions (1), complex actions (2), and in-

teractions (3).  

The aim of CHAPTERS 2 and 3 was to determine whether relevant 

cognitive representation structures (i.e., Basic Movement Concepts) 

influence a sensorimotor adaptation process in manual actions. To 

this end, participants were confronted with a pointing task including 

a sensorimotor adaptation towards a visual distortion in terms of a 

left-right reversal. In addition, the experiments investigated partici-

pant’s representation of movement directions. The results revealed 

that skilled adapter’s representation of movement directions differs 

from poor adapters. The differences between the representation 
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structures elucidated the qualitative differences between the sen-

sorimotor adaptation abilities of the participants. Thus, the cognitive 

representation structure facilitates or impedes the sensorimotor ad-

aptation towards a certain distortion. This result delivered evidence 

for the existence of Basic Movement Concepts responsible for the 

voluntary movement execution at the level manual actions.  

The aim of CHAPTER 4 was to verify whether relevant cognitive rep-

resentation structures control a complex motor action, and which in-

formation is accessed in such a representation (i.e., Basic Action Con-

cepts). The hypothesis was that a cognitive representation structures 

are active during the observation of an unknown motor system (i.e., 

humanoid robot). To this end, participant’s representation of the in-

step kick in soccer was measured by the presentation of BACs of ei-

ther a human or a humanoid robot movement. The results delivered 

evidence for an expertise-dependent representation structure of 

complex actions. Furthermore, the results revealed a domination of 

the perceptual-motor knowledge of the human motor system by soc-

cer experts. In contrast, humanoid robot experts accessed functional 

features of the technical system in addition to their perceptual-motor 

knowledge about the movement. Thus, their perceptual-motor and 

neuro-functional machine representation is integrated into a cogni-

tive representation of the humanoid robot movement. Accordingly, 

BACs control the movement execution of complex actions, and inte-

grate information from all accessible knowledge sources.  

The aim of CHAPTER 5 was to determine the core elements for the 

coordination of interactions (i.e., team-specific tactics) in sport 

games. For this purpose, the cognitive representation of team-spe-

cific tactics was measured for different expertise levels by the presen-

tation of twelve diverse match situations. The results showed that 
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soccer experts, in contrast to soccer novices, possess a functional 

representation of team-specific soccer tactics. Moreover, this func-

tional representation structure enabled soccer experts to shift their 

attention precisely to the relevant points of attraction in a match sit-

uation. Thus, soccer experts are able to decide faster for an adequate 

team-specific tactic in soccer. The results delivered evidence for the 

existence of cognitive representations at the level of interactions, 

which have a direct influence on performance relevant parameters.  

The work presented in this thesis investigated cognitive representa-

tions responsible for the execution of movements at the level of man-

ual actions, complex actions, and interactions. The representation 

structures at all the levels of different complexity revealed similarities 

regarding the organization of the corresponding representation units. 

The data of the current thesis proposes a hierarchical order formation 

at the level of mental representations in the cognitive architecture of 

complex actions. This order formation distinguishes the stages of ac-

tion organization (e.g., Basic Interaction Concepts), action control 

(e.g., Basic Action Concepts), and action implementation (e.g., Basic 

Movement Concepts) from each other. CHAPTER 6 discusses the find-

ings, and expands the approach of the cognitive architecture of com-

plex actions with regard to the granularity of cognitive representa-

tions in actions.  
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