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Abstract

In this thesis we focus on prototype-based learning techniques, namely three unsuper-
vised techniques: generative topographic mapping (GTM), neural gas (NG) and affinity
propagation (AP), and two supervised techniques: generalized learning vector quantiza-
tion (GLVQ) and robust soft learning vector quantization (RSLVQ). We extend their
abilities with respect to the following central aspects:

• Applicability on dissimilarity data: Due to the increased complexity of data,
in many cases data are only available in form of (dis)similarities which describe the
relations between objects. Classical methods can not directly deal with this kind
of data. For unsupervised methods this problem has been studied, here we transfer
the same idea to the two supervised prototype-based techniques such that they can
directly deal with dissimilarities without an explicit embedding into a vector space.

• Quadratic complexity issue: For dealing with dissimilarity data, due to the
need of the full dissimilarity matrix, the complexity becomes quadratic which is
infeasible for large data sets. In this thesis we investigate two linear approximation
techniques: Nyström approximation and patch processing, and integrate them into
unsupervised and supervised prototype-based techniques.

• Reliability of prototype-based classifiers: In practical applications, a relia-
bility measure is beneficial for evaluating the classification quality expected by
the end users. Here we adopt concepts from conformal prediction (CP), which
provides point-wise confidence measure of the prediction, and we combine those
with supervised prototype-based techniques.

• Model complexity: By means of the confidence values provided by CP, the model
complexity can be automatically adjusted by adding new prototypes to cover low
confidence data space.

• Extendability to semi-supervised problems: Besides its ability to evaluate a
classifier, conformal prediction can also be considered as a classifier. This opens a
way that supervised techniques can be easily extended for semi-supervised settings
by means of a self-training approach.
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Notations

n the size of the training data set
m the dimensionality of data space
Rm m−dimensional data space
xi ∈ Rm i-te data point in a m-dimensional data space Rm

wj ∈ Rm j-te prototype in a m-dimensional space Rm

R(wj) the receptive field of the prototype wj

L := {1, . . . , L} set of a finite number of different labels/classes
X training data set
W set of prototypes
K the number of prototypes
L the number of labels
M patch size
αji coefficient of the data point xi representing prototype wj in a linear combination
mi multiplicity of the data point xi

A non-conformity measure
ayi non-conformity value of data point xi with respect to label y
AL
T set of non-conformity values of elements in T for all labels in L
PL
T set of p-values of elements in T for all labels in L

cfi confidence value of xi
cri credibility value of xi
CFT set of confidence values of elements in T
CRT set of credibility values of elements in T

1 a vector of all ones
0 a vector of zeros or the origin in a space
I identity matrix

Abbreviations

i.i.d. independent and identically distributed
psd positive semi-definite
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Abbreviations of algorithms

GLVQ Generalized Learning Vector Quantization
RSLVQ Robust Soft Learning Vector Quantization
AP Affinity Propagation
GTM Generative Topographic Mapping
NG Neural Gas

RGLVQ Relational Generalized Learning Vector Quantization
RRSLVQ Relational Robust Soft Learning Vector Quantization
RGTM Relational Generative Topographic Mapping
RNG Relational Neural Gas

PRGLVQ Patch Relational GLVQ
PRGTM Patch Relational GTM
PRNG Patch Relational NG
PAP Patch Affinity Propagation

AC-RGLVQ Adaptive Conformal RGLVQ
S3-C-RGLVQ Secure Semi-Supervised Conformal RGLVQ
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Chapter 1

Introduction

In almost every field from industry to academia the size of data is continuously increasing.
Machine learning techniques are playing a very important and irreplaceable role, in this
context: they revolutionized the possibility to deal with large and complex data sets
by offering powerful tools to automatically extract a regularity from given data. Albeit
techniques such as the support vector machine (SVM) or Gaussian processes provide
efficient state-of-the-art techniques with excellent classification ability, it is often not
easy to manually inspect the way in which decisions are taken by the model. Hence, it
is hardly possible to visualize its decisions to domain experts in such a way that the
results can be interpreted, and relevant information can be inferred based thereon. In
contrast, prototype-based methods provide an intuitive working style and interpretability
of the final model in the sense that they represent their decisions in terms of typical
representatives contained in the input space. Since prototypes can be directly inspected
by humans in the same way as data points, an intuitive access to the decision becomes
possible: the responsible prototype and its (dis)similarities to the given data determine
the output.

There are different ways to learn prototypes from the data: Unsupervised techniques
such as k-means [43], neural gas [63], or self organizing map [53] and its statistical
counterparts such as generative topographic mapping [9] infer prototypes based on input
data only. Supervised techniques take also class label information into account and find
decision boundaries according to the label information. Learning vector quantization
(LVQ) [53] and its cost function based variants [81, 90] constitute popular techniques in
this context. In this thesis we will address several prototype-based techniques: neural
gas (NG) [63], generative topographic mapping (GTM) [9] and affinity propagation (AP)
[24] for the unsupervised case, and generalized LVQ (GLVQ) [81] and robust soft LVQ
(RSLVQ) [90] for supervised problems.

Besides the size of data continuously getting larger, rapid developments in modern
sensor technologies, dedicated data formats, and data storage continue to pose new
challenges to this field: Data are often not given as vectors for which the features
are determined by domain experts and coded as numerical values, rather, they are
characterized by more complex structures and a problem-specific (dis)similarity measure
for which only the relations between data points are defined. Examples include biological
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14 CHAPTER 1. INTRODUCTION

sequences alignment techniques such as FASTA [59], BLAST [2], mass spectra, metabolic
networks, where, e.g. complex alignment techniques, background information or general
information theoretical principles drive the comparison of data points [74, 61, 49]. Some
other (dis-)similarity measures are, for example, the travel time from one place to another,
edit distances, tangent distance as popular in computer vision [19], shape matching
distance [6], etc. or the widely used cosine similarity between term frequency-inverse
document frequency (tf-idf) in document classification. In such cases, the data are
only characterized by means of pairwise (dis)similarities without an explicit vectorial
representation.

To deal with this kind of data, dissimilarity- or similarity-based machine learning
techniques have been proposed, such as nearest neighbor classifiers which rely on distances
of given data to known labeled data points. Hence it is usually very easy to visualize
their decision: the closest data point or a small set of closest points can account for
the decision, and this set can directly be inspected by experts in the same way as any
data point. Because of this simplicity, (dis)similarity techniques enjoy a large popularity
in application domains, whereby the methods range from simple k-nearest neighbor
classifiers up to advanced techniques such as affinity propagation which represents a
clustering in terms of typical exemplars [53, 24]. With respect to kernel methods such
as SVM, similarity-based learning has been deeply investigated such as [12]. This work
makes a comprehensive study in terms of different preprocessing techniques to turn an
arbitrary similarity matrix to a valid kernel matrix and vectorial representation together
with linear and Gaussian kernel, respectively, used in conjunction with a standard SVM.

(Dis-)similarity-based techniques can be distinguished according to different criteria:
(i) The number of data points used to represent the classifier ranging from dense models
such as k-nearest neighbor to sparse representations such as prototype-based methods. To
arrive at easily interpretable models, a sparse representation in terms of few data points is
necessary. (ii) The degree of supervision ranging from clustering techniques such as AP up
to supervised learning. In this thesis, we will deal with both, supervised and unsupervised
techniques for dissimilarity data. (iii) The complexity of the dissimilarity measure the
methods can deal with ranging from vectorial techniques restricted to Euclidean spaces,
adaptive techniques which learn the underlying metrics, up to tools which can deal with
arbitrary (dis)similarities [86, 77]. Typically, Euclidean techniques are well suited for
simple classification scenarios, but they fail if high-dimensionality or complex structures
are encountered. For unsupervised cases, the approaches [38, 29] have investigated how
to deal with arbitrary (probably non-Euclidean) dissimilarity data by means of prototype-
based clustering techniques. In this thesis we follow the concept of these approaches, and
extend it to supervised prototype-based learning methods, especially two cost function
based LVQs, generalized LVQ (GLVQ) and the statistical counterpart, robust soft LVQ
(RSLVQ).

The extensions of prototype-based learning techniques for dissimilarity data open a
way to more broadly apply prototype-based methods on modern applications such as the
bioinformatics domain where sometimes only the relations between objects, e.g. protein
sequences, can be obtained by some sophisticated measuring techniques. However, one
main drawback of dissimilarity learning is its quadratic complexity due to the dependency
on the dissimilarity matrix, the computation of the dissimilarity often constituting the
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bottleneck in real-life applications. By integrating approximation techniques such as
Nyström approximation [106] the effort can be reduced to linear time. In this thesis
except Nyström approximation we also investigate another intuitive approach, namely
patch processing, which process the data iteratively instead of taking the whole data
matrix, to achieve linear complexity, and we investigate both techniques based on non-
Euclidean data sets from the bioinformatics domain.

Although prototype-based learning techniques have many advantages in terms of
interpretability and its intuitive work style, they have generally two limitations. First,
the complexity of the model, i.e. the number of prototypes, has to be defined in advance.
This is impossible if the prior knowledge of the data is unknown. Some approaches have
been published to automatically adjust the model complexity [14, 94, 52], but most of
them are heuristic based and not in a statistical sense. Besides, in many practical appli-
cations, especially for life science, medical applications, not only the learning accuracy
is important, but also some kind of reliability measure, similar to p- or q-value from
statistics. This would provide more information about the prediction besides the pre-
dicted class label. Only few attempts exist to enhance prototype methods by reliability
estimates or rejection options based thereon [14, 94, 23]. In this thesis we adopt the
concept of conformal prediction (CP) [105] which has a solid statistical foundation and
provides confidence value about the classification. It can be considered as a reliability
measure and integrated into prototype-based classifiers. By means of the confidence
values we can identify situations when the model complexity is not sufficiently large
to describe the data. In this case, a more complex model is expected and the model
will be adjusted accordingly, resulting a self-adaptive version thereof while providing a
confidence value for each prediction.

The reliability measure should give more insides about the resulting predictions to
find where the predictions have to be paid more attention due to the lower reliability
level. By means of the confidence value of conformal prediction we can not only adjust
the model complexity on the one hand, but on the other hand, we can easily extend
prototype-based classifiers to semi-supervised tasks which will also discussed in this
thesis.

Table 1.1 summarizes the main contributions of this thesis (marked by
√

): In Chap-
ter 2 we will briefly review five prototype-based methods, namely, three unsupervised
methods: Neural Gas (NG), Generative Topographical Mapping (GTM) and Affinity
Propagation (AP), and two supervised techniques, Generalized Learning Vector Quanti-
zation (GLVQ) and Robust Soft LVQ (RSLVQ). In Chapter 3 we discuss the theoretical
background of a dissimilarity representation of data highlighting their properties, i.e.
metric and Euclidean, correction techniques making them Euclidean and the ways to
deal with dissimilarities. After this foundational part, we will move to the parts of
the thesis which present novel algorithmic approaches as extensions of prototype tech-
niques for non-vectorial data, its efficiency and reliability. In Chapter 4 we introduce
extensions of prototype-based classifiers to deal with dissimilarity data in a implicit way
without explicit embedding into some vector space. Due to the quadratic complexity
for dissimilarity-based learning, in Chapter 5 we propose a very intuitive method, i.e.
patch processing, for large scale problems and compare it with the Nyström approxi-
mation technique. Chapter 6 mainly focuses on introducing the concept of conformal



Chapter
Supervised Unsupervised

GLVQ RSLVQ NG AP GTM

2

cost function margin likelihood
ratio

topographical
QE

QE log-
likelihood

complexity O(n) O(n) online: O(n) O(n2) O(n)batch: O(n)
data type vectorial vectorial vectorial vectorial vectorial
working style online online batch/online online batch

4 relational data
√ √

[37] similarity [29]

5
patch

√
analog [37]

√ √

nyström
√

analog
√

- [28]
6 adaptive

√
analog - - -

7 semi-super.
√

analog - - -

Table 1.1: Tabular summary of this thesis

prediction and shows how to combine conformal prediction with relational GLVQ to get
a self-adaptive extension with respect to model complexity by means of point-wise confi-
dence values provided by conformal prediction. In Chapter 7 we will extend conformal
prediction to relational GLVQ for semi-supervised problems resulting in a self-adaptive
semi-supervised version thereof. In the last chapter we conclude this thesis and discuss
possible future work.
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Chapter 2

Prototype-based learning

Chapter overview

Prototype-based learning constitutes a very intuitive machine learning technique to help peo-
ple to analyze the data. In this chapter we shortly review five popular prototype-based learning
techniques, namely, two supervised methods: generalized learning vector quantization (GLVQ),
robust soft LVQ (RSLVQ), and three unsupervised methods: neural gas (NG), affinity propagation
(AP) and generative topographic mapping (GTM), which serve as basis methods in this thesis.

2.1 Introduction

Unlike many black-box algorithms in machine learning, prototype-based learning tech-
niques offer an intuitive interface to given data sets since prototypes can be directly
inspected by experts. The basic idea of prototype based learning is representing the
given data by prototypes in the same space. The number of prototypes is significantly
smaller than the size of data which results in a compact representation of the data but
while keeping the statistic of the data as much as possible.

There exist different possibilities to infer appropriate prototypes from data: Unsu-
pervised leaning techniques such as simple k-means [43], fuzzy-k-means [7], topographic
mapping, neural gas (NG)[63], or the self-organizing map (SOM) [53], and its statistical
counterparts such as the generative topographic mapping (GTM) [9] infer prototypes
based on input data only. Supervised techniques incorporate the information of class
labels and find decision boundaries which describe priorly known class labels, one of
the most popular learning algorithm in this context being learning vector quantization
(LVQ). Albeit original LVQ has been introduced on somewhat heuristics grounds [53],
extensions thereof are derived from explicit const functions or statistical models [81, 90].
In addition, recent developments of prototype-based models provide a solid mathemat-
ical derivation of generalization ability and learning dynamics: explicit large margin
generalization bounds of LVQ classifiers are available [16, 86]; further, the dynamics of
LVQ type algorithms can be derived from cost functions which model the classification
accuracy referring to the hypothesis margin or a statistical model, for example, [81, 90].
Interestingly, already the dynamics of simple LVQ as proposed by Kohonen provably
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leads to surprisingly good generalization curves when investigated in the framework of
the theory of online learning [8].

Besides these mathematical derivations, these learning algorithms share several fun-
damental aspects: they represent data in a sparse way by means of prototypes, they
form decisions based on the (dis)similarity of data to prototypes, and training is often
very intuitive based on Hebbian principles [45]. Further, prototypes offer a compact and
efficient representation of the important aspects of given data which very naturally allows
to extend the basic algorithms into an incremental life-long learning paradigm, treating
prototypes as a compact representation of all already seen data. This aspect has been
used in diverse scenarios which deal with incremental settings or very large data sets
[18, 52, 1].

In this chapter we review five prototype-based learning techniques, i.e. three unsuper-
vised techniques, namely Generative Topographic Mapping (GTM) [9] as a probabilistic
counterpart of self organizing maps (SOM), Neural Gas (NG) [63] which incorporates
neighborhood information to quantization error, and Affinity Propagation (AP) [24]
which directly optimizes the quantization error and in which prototypes are exemplars
from given data, and two supervised techniques, namely two cost function based LVQ
variants, Generalized LVQ [81], probably the most popular cost function based LVQ, and
Robust Soft LVQ [90], a probabilistic version by means of mixture of Gaussians.

2.2 Prototype-based clustering

The aim of clustering is to decompose data into subsets, such that the data within the
clusters are as similar as possible, while the different clusters are well separated. Generally,
for unsupervised learning, no additional class information of the data is available. The
unsupervised prototype-based methods aim to optimize the quantization error, which
results in prototype positions which are representative for the underlying data distribution.
Given a set of n data points {x1, · · · ,xn}, clustering divides this set into K groups.
Usually, the number of clusters K is fixed and predefined by the user. As an example
of prototype-based clustering, we consider k-means clustering, one of the most popular
clustering methods. It depends on the assumption that data are given in some Euclidean
space e.g. xi ∈ Rm, and it builds clusters represented by prototypes wj ∈ Rm which
define their receptive fields by

R(wj) := {xi ∈ Rm | d(xi,wj) ≤ d(xi,wk),∀k 6= j} .

That means, the receptive field of prototype wj consists of all data points xi which are
closest to wj as measured by the squared Euclidean distance d(xi,wj) = ‖xi − wj‖2,
breaking ties deterministically. This example explains the basic idea of prototype-based
learning which represent clusters in terms of prototypical representatives. The goal of
clustering can be formalized as minimizing the quantization error

EQE :=
∑

i,j:xi∈Rj

d(xi,wj)

to obtain prototypes which are as representative for their receptive field as possible.
There exist different classical methods which achieve this goal: a direct optimization by



means of a gradient descent as present in online vector quantization, or more advanced
methods which take a neighorhood structure into account or which rely on a probabilistic
interpretation of the model [53, 24, 9]. The latter techniques often yield much more
stable results. Further, they possibly provide additional information such as the ability to
visualize the prototypes such as in the generative topographic mapping or a neighborhood
structure of the clusters such as in neural gas. We will consider three typical clustering
techniques in this context:

(I) The generative topographic mapping (GTM) which constitutes a generative statis-
tical model. It models data by means of a constraint mixture of Gaussians induced
by a mapping from a low-dimensional latent space. In the latent space visualization
is possible.

(II) The neural gas (NG) which models data by means of representative prototypes
which represent data in relation to the rank of its distance. This way a very robust
algorithm is obtained which is widely independent from scaling issues.

(III) Affinity propagation (AP) which reformulates the quantization error as a likelihood
function. This can be decomposed as factor graph for which the max-sum algorithm
can be used [24].

We shortly describe these three models in the following. Thereby, we refer to distances
such as the Euclidean distance, or similarities such as the Euclidean dot product as
required. Similarities and dissimilarities can be transferred into each other using classical
double centering (see e.g. [70] or section 3).

2.2.1 Generative topographic mapping

The GTM has been proposed in [9] as a probabilistic counterpart to self-organizing maps
(SOM) [53]. It models given data x ∈ Rm by a constrained mixture of Gaussians induced
by a low dimensional latent space. More precisely, in GTM, lattice points uj ∈ Rd

(d � m) on a regular lattice in a low dimensional latent space are given. These are
mapped to prototypes in the data space

wj = Φ(uj) ·W (2.1)

by means of a generalized linear regression model. In principle, the base functions Φ
could be chosen as nonlinear functions such that their linear combination has sufficient
flexibility to map the low dimensional lattice to appropriate positions. At the same
time, the base functions control the degree of topology preservation by the stiffness of
(2.1). This is usually obtained by picking only a small number of base functions or by a
strong regularization of w. In practice, the base functions Φ are often chosen as equally
spaced Gaussian functions. W denotes the weight parameters of the mapping which are
determined during learning.

This mapping induces a constrained mixture of Gaussians in the data space in the
following way. Every prototype wj induces a Gaussian which variance is determined by



the parameter β

p(x|wj , β) =
(
β

2π

)m/2
· exp

(
−β

2
d(x,wj)2

)
. (2.2)

These Gaussians are combined in a mixture model with equal prior. Training optimizes
the data log-likelihood with respect to W and β. This way the parameters W and β
are determined. It is possible to derive an expectation maximization (EM) algorithm as
detailed in [9]. It in turn optimizes the responsibilities of component j for data point i

Rij(W,β) =
p(xi|wj , β)∑
j′ p(xi|wj′ , β)

, (2.3)

and the parameters W and β by solving the linear equations

ΦTGoldΦW T
new = ΦTRoldV , (2.4)

1
βnew

=
1
nm
·
∑
i,j

Rij(Wold, βold) · d(xi,Φ(uj) ·Wnew) . (2.5)

n denotes the number of data points, G is the diagonal matrix with entries Gii =∑
j Rij(W,β), R is the matrix of responsibilities, Φ is the matrix of base functions

evaluated at all lattice points, and V is the matrix of data points. GTM is initialized by
aligning the lattice and the first two data principal components.

2.2.2 Neural gas

Neural gas (NG) extends the quantization error to incorporate neighborhood cooperation:

ENG :=
∑
ij

hσ(kij)d(xi,wj) , (2.6)

where hσ(t) = exp(−t/σ) exponentially scales the neighborhood range. kij denotes the
rank of prototype wj with respect to xi, i.e. the number of prototypes wk with k 6= j
which are closer to xi as measured by the Euclidean distance d. Classical NG optimizes
this objective by means of a stochastic gradient descent. The neighborhood range σ
is annealed during training such that, in the limit, the standard quantization error is
approximated [63]. There exists a faster batch optimization scheme as introduced in [15]
which in turn optimizes prototype locations and assignments similar to an EM scheme:

determine kij based on d(xi,wj) , (2.7)

set wj :=
∑

i hσ(kij)xi∑
i hσ(kij)

. (2.8)

These steps are iterated until convergence.



2.2.3 Affinity propagation

Affinity propagation (AP) [24] constitutes an exemplar based clustering method, i.e.
prototype locations are restricted to data points wj ∈ {xi | i = 1, . . . , n}. Further, it
deals with similarities s(xi,wj) rather than dissimilarities such as the Euclidean dot
product, for example. Obviously, the quantization error can be formulated accordingly.

Since prototypes are located at discrete positions, the quantization error can no longer
be optimized by means of gradient techniques. Therefore, the quantization error is first
rephrased as

EQE AP :=
∑
i

s(xi,xI(i)) +
∑
i

δi(I) . (2.9)

Note that there is no longer a fixed number of clusters K given. Rather, cluster assign-
ments are defined by means of a function I : {1, . . . , n} → {1, . . . , n}. Every data point
picks a prototype by means of this function. Since prototypes are exemplars contained
in the data set itself, this can be written as xI(i) for data point xi. δi(I) punishes invalid
assignments, i.e.

δi(I) =
{
−∞ if ∃j I(j) = i, I(i) 6= i ,
0 otherwise.

During training, these assignments have to be adapted; basically the data points have
to negotiate to arrive at a valid assignment function which optimizes the cost function.

The number of clusters K is no longer specified a priori. A trivial valid solution of
the cost function would be given by the identity I(i) = i, i.e. every data point forms
an exemplar. To avoid this trivial solution, costs have to be introduced as soon as a
data point becomes an exemplar. This can be achieved by adjusting the self-similarities
s(xi,xi), indicating the preferences of data point xi becoming an exemplar. In the limit,
for low preferences, only one cluster will be found, and for high preferences, every data
point will be an exemplar. In between, different numbers of clusters can be reached.
Typically, there are two different strategies to set the self-similarities appropriately:
either they are set to a reasonable fixed value such as the median of the given similarities.
Alternatively, binary search can take place until a desired number of clusters is reached.
We will use the latter strategy in this thesis for fair comparisons with other methods.

To solve this novel optimization problem (Eq. 2.9), the function EEQ AP is modeled
as factor graph. This can be optimized by means of the max-sum algorithm. In turn, two
kinds of messages between the data points are exchanged during the training, namely
responsibilities

rij := s(xi,xj)−max
j′ 6=j
{aij′ + s(xi,xj′)}

and availabilities

aij := min{0, rjj +
∑
i′ 6=i,j

max{0, ri′j}} ,

aii :=
∑
i′ 6=i

max{0, ri′i}

which can be combined at any stage of the training to decide the assignments

I(i) = argmaxj(aij + rij)



as detailed in [24]. Since the factor graph is cyclic, there is no guarantee to obtain the
global optimum or even convergence. For this reason, small random values are added to
the similarities in every run to avoid cycles. This way, usually, convergence to a fixed
point is observed.

Note that AP does not rely on Euclidean similarities. Rather the cost function (2.9)
and the corresponding optimization is valid for every general similarity measure s due to
the restriction of prototypes to exemplars. In [24], this fact has been demonstrated by
various applications involving microarray data and text data, for example. AP has the
drawback that additional functionality such as neighborhood preservation of the clusters
is not available.

2.3 Prototype-based classification

For the supervised case, label information about the data is available. The goal of
prototype-based classification techniques is to find prototypes which represent a given
data set as accurately as possible by means of the label information. For supervised
learning, data xi are equipped with class labels c(xi) ∈ L = {1, . . . , L}. Similarly, every
prototype is equipped with a priorly fixed label c(wj). A data point is classified according
to the class of its closest prototype. The classification error of this mapping is given by
the term

K∑
j=1

∑
xi∈R(wj)

δ(c(xi) 6= c(wj))

with the Kronecker delta function δ. This cost function cannot easily be optimized
explicitly due to vanishing gradients and discontinuities. Therefore, different ways have
to be considered.

Learning vector quantization (LVQ) proposed by Kohonen constitutes a very popular
class of intuitive prototype-based learning algorithms with successful applications rang-
ing from telecommunications to robotics [53]. The idea is that iteratively positioning
prototypes in the data space during training such that the given data can be represented
as accurately as possible. In this way the prototypes can be considered as a sparse repre-
sentation of original data. To classify an unknown data point, the new sample is assigned
to the class label of the closest prototype, so called nearest prototype classification (NPC)
or winner takes all (WTA) in terms of prototypes.

Basic algorithms as proposed in [53] include LVQ1 which is directly based on Hebbian
learning [45] to learn a set of prototypes from training data: given x, its nearest prototype
is adapted only. The adaptation depends on the classification: If the prototype has the
same label as x, it will be attracted by x, otherwise it will be repelled. Some improvements
exist such as LVQ2.1, LVQ3, or OLVQ which aim at a higher convergence speed or better
approximation of the Bayesian borders. For example, LVQ2.1 introduces a “window”
condition which is defined around the midplane of two nearest prototypes according to
a data point x with different labels in the sense that one of them has the same label as
x and the anther has different label. If the data point x falls into the “window”, these
two nearest prototypes are updated by attractive (for the one with the same label) and



repulsive (for the other with different label) forces from this data point. The LVQ2.1
is based on the idea of shifting the decision boundaries toward the Bayes limits with
a attractive and repulsive forces from x. However, no attention is paid to what might
happen to the location of the prototype, so the prototypes diverge in the long run.
LVQ3 has been proposed to ensure that the prototypes continue approximating the class
distribution, but it must be noted that if only one reference vector is assigned to each
class, LVQ3 is the same as LVQ2.1, and the problem of divergence remains unsolved.

These types of LVQ schemes have in common that their learning rule is essentially
heuristically motivated and a valid cost function does not exist. One of the first attempts
to derive LVQ from a cost function can be found in [81] with an exact computation of
the validity at class boundaries in [87]. Later, a very elegant LVQ scheme [90] which is
based on a probabilistic model and can be seen as a more robust probabilistic extension
of LVQ2.1. We will briefly review these two cost function based LVQs.

2.3.1 Generalized learning vector quantization

Generalized LVQ [81] is one of the most popular cost function based LVQs which is
derived from a cost function which can be related to the generalization ability of LVQ
classifiers [86]:

EGLVQ =
n∑
i=1

Φ
(
d(xi,w+(xi))− d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

)
(2.10)

where Φ is a differentiable monotonic function such as the hyperbolic tangent, and w+(xi)
refers to the prototype closest to xi with the same label as xi, w−(xi) refers to the closest
prototype with a different label. This way, for every data point, its contribution to the
cost function is small if and only if the distance to the closest prototype with a correct
label is smaller than the distance to a wrongly labeled prototype, resulting in a correct
classification of the point.

A learning algorithm can be derived thereof by means of standard gradient techniques.
After presenting data point xi, its closest correct and wrong prototype, respectively, are
adapted according to the rules:

∆w+(xi) ∼ − Φ′(µ(xi)) · µ+(xi) · ∇w+(xi)d(xi,w+(xi))
∆w−(xi) ∼ Φ′(µ(xi)) · µ−(xi) · ∇w−(xi)d(xi,w−(xi))

where

µ(xi) =
d(xi,w+(xi))− d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

,

µ+(xi) =
2 · d(xi,w−(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
,

µ−(xi) =
2 · d(xi,w+(xi)

(d(xi,w+(xi)) + d(xi,w−(xi))2
.



For the squared Euclidean norm, the derivative yields

∇wjd(xi,wj) = −2(xi −wj),

leading to Hebbian update rules of the prototypes according to the class information, i.e.
they adapt the closest correct prototypes towards a given data point, while pushing the
closest incorrect prototype away from the data point.

A detailed derivation of the update rules can be found in [81] and as also pointed out
by Sato and Yamada GLVQ guarantees convergence. Classification of a novel data point
takes place by a WTA scheme or NPC as mentioned before:

x 7→ c(wj) where d(x,wj) is minimum (2.11)

with squared Euclidean distance. Next, we will introduce another version of LVQ which
is derived based on a labeled Gaussian mixture model.

2.3.2 Robust soft learning vector quantization

Although GLVQ is a popular cost function based LVQ variant, its cost function is still
somewhat heuristically motivated. Another cost function based LVQ was proposed by
[90], Robust Soft LVQ (RSLVQ), which is based on a statistical modeling of the data, i.e.
the probability density of unknown distribution of the data is described by a Gaussian
mixture model. The probability density of the data set is given by a mixture model

p(x|W) =
L∑
y=1

K∑
{j:c(wj)=y}

p(x|j)p(j) ,

where x ∈ Rm and W := {w1, . . . ,wK} is a set of labeled prototypes. p(j) is the prior
probability that data points are generated by a particular component j. p(x|j) is the
conditional probability that the component j generates data point x. It is a function of
prototype wj , which can be considered as the representative for all data points generated
by wj and later assigned to wj . It is chosen as Gaussian

p(x|j) = (2πσ2
j )
−m/2 · exp

(−d(x,wj)
σ2
j

)
.

Since classification depends on only the distances between data points and prototypes,
one often assumes every component has the same width and strength σ2

j = σ2 and prior
probability p(j) = 1

K .
For a data point x with true label y, the following probability densities are considered

p(x, y|W) =
∑

{j:c(wj)=y}

p(x|j)p(j)

p(x, ȳ|W) =
∑

{j:c(wj)6=y}

p(x|j)p(j)



p(x, y|W) is the probability density that a data point x is generated by a mixture model
for the “correct” label. p(x, ȳ|W) is the probability density that a data point x is
generated by a mixture model for the “incorrect” label. Therefore the likelihood ratio
Lr constitutes

Lr =
n∏
i=1

p(xi, yi|W)
p(xi, yi|W) + p(xi, ȳi|W)

=
n∏
i=1

p(xi, yi|W)
p(xi|W )

.

The RSLVQ aims at optimizing the logarithm of the likelihood ratio Lr

ERSLVQ = log(Lr) =
n∑
i=1

log
p(xi, yi|W )
p(xi|W )

(2.12)

Using stochastic gradient ascent, the learning rule can be obtained, given data point xi
with label yi

∆wj ∼

{
(Pyi(j|xi)− P (j|xi)) · ∂d(xi,wj)

∂wj
if c(wj) = yi

−P (j|xi) · ∂d(xi,wj)
∂wj

if c(wj) 6= yi
(2.13)

with the probabilities

Pyi(j|xi) =
exp(−d(xi,wj)

σ2 )∑
j:c(wj)=yi

exp(−d(xi,wj)
σ2 )

and

P (j|xi) =
exp(−d(xi,wj)

σ2 )∑
j exp(−d(xi,wj)

σ2 )

Notice that the parameter σ2, the variance of the Gaussians, is an additional hyperparam-
eter of the algorithm and it has a crucial influence on the learning ability. It needs to be
optimized, e.g. using cross-validation procedure. Further research about the parameter
has been investigated [88, 89]. In the situation of vanishing bandwidth σ → 0, RSLVQ
reduces to a crisp learning from mistake algorithm: in case of erroneous classification, the
two nearest prototypes are updated according to (2.13), which is a learning rule similar
to LVQ2.1.

Given a novel data point x, its class label can be determined by means of the most
likely label y corresponding to a maximum value p(y|x,W ) ∼ p(x, y|W ). For typical set-
tings, this rule can usually be approximated by a simple winner takes all rule as in GLVQ
Eq. (2.11). It has been shown in [90], for example, that RSLVQ often yields excellent
results while preserving interpretability of the model due to prototypical representatives
of the classes in terms of the parameters wj .

2.4 Advantages of prototype-based methods

The resulting model of prototype-based methods is represented by embedded prototypes
in the data space which can be inspected by humans in the same way as the input



data: prototypes show typical class or cluster representatives, and usually they are very
sparse which is more beneficial since a direct interpretation of big data is even impossible.
Relevance learning of prototype-based classifiers [42] reveals the importance of each input
dimension of data, furthermore, matrix learning [86, 87] reveals the correlations of the
input dimensions which contribute a better description of the data not only for single
classes but also for the global classification. Multi-class problems can be naturally treated
by LVQ without paying extra effort. Furthermore, unlike support vector machines or
other neural classification techniques which suffer from black box characteristic, prototype-
based classifiers offer a very intuitive way to understand the training process by means
of the update rules of prototypes.

2.5 Evaluation measures

For supervised learning, the classification accuracy constitutes a very important evalua-
tion measure about classification. It measures the ratio between the number of correctly
classified data and the total number of data points:

Acc :=
|{xi|li = yi, i = 1, . . . , n}|

n
(2.14)

li denotes the predicted label of data point xi, yi is the true label of xi and n denotes
the size of the data set.

For the unsupervised case, since label information is not available, some other evalu-
ation measures have been used for evaluating the quality of clusters. The quantization
error (QE) is the most common one,

EQE :=
∑

i,j:xi∈R(wj)

d(xi,wj) (2.15)

which measures in how far the prototypes can represent the given data as measured by
the averaged dissimilarity of prototypes to points in their receptive field. All clustering
methods reviewed in the previous section optimize a cost function which can be related
to the quantization error: GTM optimizes the data log-likelihood which, neglecting
topological constraints due to the restricted form of the topographic mapping, would
boil down to a mixture of Gaussians. Similarly, for a small neighborhood σ → 0, the cost
function of NG directly resembles the quantization error. AP optimizes the quantization
error under the restriction that prototypes are exemplars. Therefore, the evaluation of
the quantization error where the terms d(xi,wj) are taken as dissimilarities, allows to
directly evaluate the affect of the approximation techniques (this will be discussed in
chapter 5) on an underlying cost function.

Another adopted evaluation measure for prototype-based clustering techniques is the
dual quantization error given by

EdualQE =
n∑
i=1

1
4 · |R(wj)|

∑
i,i′ : xi∈R(wj),xi′∈R(wj)

d(xi,xi′) , (2.16)



Chapter
Supervised Unsupervised

GLVQ RSLVQ NG AP GTM

2

cost function margin likelihood
ratio

topographical
QE

QE log-
likelihood

complexity O(n) O(n) online: O(n) O(n2) O(n)batch: O(n)
data type vectorial vectorial vectorial vectorial vectorial
working style online online batch/online online batch

Table 2.1: Summary of chapter 2: Prototype-based learning methods

which evaluates the quality of the decomposition of data points into clusters rather
than the specific prototype locations. It is especially adopted to compare the quality
of the approximation techniques of the reviewed methods, which we will discuss in
chapter 5. It has been shown in [37], that the quantization error and its dual coincide
if the prototypes are located at the centers of the receptive fields in the data space
wj =

∑
i : xi∈R(wj)

xi/|R(wj)|. Notice that in contrast to quantization error, for the dual
quantization error it is not necessary to know the positions of prototypes, but only the
cluster assignments, therefore it can be applied for any clustering technique.

Often, clustering or, more precisely, a prototype-based representation of data serves as
a first step towards a classification of data in practical applications. If label information
is available for the given training samples, prototypes can easily be assigned a label by
means of a majority vote in its receptive field. In such cases, it is possible to evaluate
the classification error of a given clustering by posterior labeling. Obviously, however,
there is no reason to assume that the class boundaries of priorly known classes coincide
with cluster boundaries. Therefore, this evaluation technique can judge the underlying
clustering only to a limited degree.

2.6 Conclusions

We conclude this chapter by Table 2.1. In this chapter we gave an overview of five
popular supervised and unsupervised prototype-based techniques. Table 2.1 summarizes
the properties of the reviewed methods with respect to cost function, complexity, type of
data that the method can deal with and its working style. From the cost function point
of view we can see that GLVQ tries to maximize the margin between the two nearest
prototypes with respect to the observed data point, RSLVQ optimizes the likelihood ratio
between the class-specific probability density of data generated by the mixture model and
the probability density of the full data, NG is based on the quantization error which also
takes the local topology into account, AP reformulates the quantization error in another
way that it can be modeled as factor graph and solved by the max-sum algorithm, and
GTM, as a generative model, models data by a constrained mixture of Gaussians whose
parameters can be optimized by the EM algorithm.

All these reviewed methods except AP are online methods and have time complexity
O(n), n denotes the number of data points, and they can directly deal with vectorial



data. AP has the complexity O(n2) because of the need of pairwise similarities of the
data, and AP can indirectly deal with vectorial data by computing their pairwise negative
Euclidean distances as similarities. Moreover, kernel variants of these methods have been
proposed, for instances, kernel GLVQ [78, 84], kernel RSLVQ and sparse approximation
techniques [39, 47], and the kernel version of NG [77]. Since AP does not constrain the
similarities to be a valid kernel, kernel data can be directly dealt with by AP.

However, if data are inherently non-Euclidean, for example given in a form of a
dedicated non-Euclidean dissimilarity measure such as dynamic time warping for time
series, or alignment for symbolic strings [34], etc., they can not be applied. In the
next chapter we will discuss this kind of data and the challenges for machine learning
algorithms.



Chapter 3

Challenges of dissimilarity data

Chapter overview

Many classic machine learning techniques such as SVM are restricted to Euclidean vector spaces
such that their suitability for complex non-Euclidean data sets are highly limited, as well as
prototype-based techniques discussed before. In this chapter we focus on the dissimilarity repre-
sentation of data in the sense that data are only given by pairwise dissimilarities between objects
without an explicit vector representation. The properties of the dissimilarity representation of
data and techniques to deal with non-Euclidean dissimilarity data will be discussed.

3.1 Introduction

This chapter is not about the methods, it is about the data, or the representation of
data. In the classical machine learning approach, data are represented by features which
are determined based on domain knowledge and encoded as numerical variables. To-
gether, they constitutes a feature vector space, usually Euclidean, in which each object
is represented as a vector of feature values. Thus, learning is inherently restricted to
mathematical methods in this vector space, equipped with additional algebraic functions
such as inner product, norm or distance. However, in modern applications, data are
often no longer vectorial, rather, accompanied by more complex structures for which a
problem specific similarity or dissimilarity measure has been designed. A simple example
is the travel time from one place to another. Other examples include edit distances, in
computer vision the tangent distance [19] and shape matching distance [6], etc., in bioin-
formatic sequences alignment techniques such as FASTA [59], BLAST [2], mass spectra,
or metabolic networks, where complex alignment techniques, background information,
or general information theoretical principles, for example, drive the comparison of data
points [74, 61, 49], or in document classification the widely used cosine similarity between
term frequency-inverse document frequency (tf-idf). In this case, it is possible to compute
pairwise similarities or dissimilarities of the data rather than to arrive at an explicit vec-
torial representation. Classical methods such as SVM as well as prototype-based methods
can not directly deal with this kind of data. Although some kernel extensions thereof
have been proposed which can deal with valid kernels of the data, some preprocessing
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steps have to be done beforehand to transform arbitrary (dis-)similarities into a valid
kernel. Since similarity and dissimilarity can be faithfully transformed to each other [70],
we use the term ‘dissimilarity’ throughout this thesis.

Some specified dissimilarity measure, on which dissimilarities between objects are
obtained, is not necessarily a metric in the strict mathematical sense. It quantifies the
dissimilarity between two objects by taking small values for two similar objects and
large values for two different objects. As no vectorial representation of the objects is
provided, the challenge is how to use dissimilarities in a meaningful way. [70] gives a
comprehensive theoretical discussion about dissimilarity data. In this chapter we mainly
follow the concept of [70] and extract the most important parts for this thesis in the
following. First, we will discuss the two properties of dissimilarity data, metric and
Euclideaness. Then a general embedding technique of dissimilarity data into a so-called
pseudo-Euclidean space will be discussed. In the end we will discuss some correction
techniques to make dissimilarity data Euclidean and the ways to deal with dissimilarities.

3.2 Properties of dissimilarity data

In a dissimilarity representation of data, data are given as pairwise dissimilarities d(x,y)
between objects in some space. A dissimilarity measure d describes the commonality
between two objects, namely, a smaller value indicates that the objects are more similar,
a larger value indicates that the objects are more different. Before we go into the
techniques dealing with dissimilarity data, some properties will be discussed. First of
all, dissimilarity measures are usually defined on some space, for instance, the most
commonly used and well known dissimilarity measure is the Euclidean distance measure,

d(x,y) = ||x− y||2 =

√√√√ m∑
i=1

(xi − yi)2, x,y ∈ Rm (3.1)

based on a Euclidean space Rm. For the sake of simplicity, two most important properties
of dissimilarities are discussed in the following, namely metric and Euclideaness.

Definition 1 (Metric space). A metic space is a pair (X, d), X is a set and d is a metric,
i.e. a function on X, d : X × X → R0

+ which satisfies the following properties for all
x,y, z ∈ X

1. d(x,x) = 0 (Reflexivity)

2. d(x,y) = d(y,x) (symmetry)

3. d(x,y) = 0 iff x = y (definiteness)

4. d(x,y) + d(y, z) ≥ d(x, z) (triangle inequality)

An example of a metric space is the Euclidean space (Rm, d) with the 2-norm distance
d (3.1). X can also be Zm, [a, b]m, etc.. If X is a finite set, e.g. X = {x1, . . . ,xn}, then
d is specified by an n × n dissimilarity matrix D = (dij) = (d(xi,xj)), i, j = 1, . . . , n.
Consequently, the matrix D is nonnegative, symmetric and has a zero diagonal. Generally,



Figure 3.1: Generalized metric spaces (Source: [70])

a dissimilarity matrix usually satisfies reflexivity, often positivity, sometimes symmetry
and rarely the triangle inequality.

Depending on the satisfaction of different axioms above more general spaces can be
described as follows:

• hollow space: a space satisfying the reflexivity condition (1)

• premetric space: a hollow space satisfying the symmetry condition (1, 2)

• semimetric space: a premetric space satisfying the triangle inequality constrain (1,
2, 4)

• quasimetric space: a premetric space satisfying the definiteness constrain (1, 2, 3)

• generative metric space: a space satisfying 1 and 4 , see Figure 3.1.

Definition 2 (Metric for dissimilarity matrix D). Let D be a symmetric dissimilarity
matrix with positive off-diagonal elements. D is metric if the triangle inequality dij+djk ≥
dik holds for all triplets (i, j, k).

Note: If the triangle inequality does not hold, then the matrix D is called quasimetric.
In this case the matrix D can be corrected to be metric by adding a constant c to D:

D′ = D + c(11T − I), where c ≥ max
i,j,k
|dij + dik − djk|

1 denotes a vector of all ones, I is the identity matrix. More details about the proof can
be found in [70] (p. 106). c measures the ‘non-metricness’. If c is relatively small, the
matrix D is only slightly non-metric. If c is large, then its non-metric properties should
be considered. As mentioned by [70], in practice c is not the smallest value that can
make D metric. If c has been estimated, a smaller value can be found by the bisection
method.

Another important issue refers to transformations of a metric dissimilarity matrix
D such that the metric properties can be preserved. If D is metric, then for c > 0 the



following matrices are also metric: (cdij), (drij) with r ∈ (0, 1], (log(1 + dij)), etc. See
also [70] for more transformations and theoretical details. Besides the metric property
another important property of dissimilarity is the “Euclideaness”, both properties are
very correlated.

Definition 3 (Euclidean). An n × n dissimilarity matrix D = (dij) is Euclidean if it
can be embedded in a Euclidean space (Rm, d), where m < n, which means that a set
of vectors {x1, . . . ,xn} can be determined in Rm such that the dissimilarities can be
preserved by Euclidean distances in Rm, i.e. dij = d(xi,xj) = ||xi − xj ||2, ∀i, j.

There are several ways to check the Euclideaness of a given dissimilarities matrix.
The most common way is: First, transform the squared dissimilarities D∗2 = (d2

ij) to
similarities S by means of double centering

S = −1
2
JD∗2J, where J = I − 1

n
11t, (3.2)

then check whether the similarity matrix S is positive semidefinite (psd). If and only
if S is psd, then the corresponding dissimilarity matrix D is Euclidean, i.e. it can be
embedded into a Euclidean space. Note: If S is not psd, some correction techniques can
make it psd, such as clip, flip, shift, which we will discuss later on. In this case, S has
p positive eigenvalues, q negative eigenvalues, (p, q, n− p− q) is referred to as signature
which describes the non-Euclideaness of the corresponding dissimilarity data. Actually,
this way is a special case of the following theorem to check whether a dissimilarity matrix
is Euclidean:

Theorem 1. An n×n dissimilarity matrix D is Euclidean iff the matrix S = −1
2JD

∗2JT

with D∗2 = (d2
ij) and J = (I − 1sT ) is positive semidefinite (psd) for sT1 = 1.

J is known as the centering matrix. Double centering (Eq. (3.2)) is a special case for
s = 1

n . Another special case of theorem 1 is for s = ei, where ei ∈ Rn is a standard basis
vector. In [70] more theorems about checking the Euclidean behavior of matrix D are
reviewed. Most of them are very closely related to Theorem 1 or some variations theirof.

Furthermore, if the similarity matrix S in Theorem 1 is a matrix of inner products
(Gram matrix) of some vector representation X of n vectors {x1, . . . ,xn} in a Euclidean
space Rm, usually m ≤ n, i.e. XXT = S = −1

2JD
∗2JT , then X is a vector representation

of the corresponding dissimilarity D. More details will be discussed in the next section.

3.3 Linear embedding of dissimilarity data

Dissimilarity data can be embedded into a (pseudo-)Euclidean space in different ways.
Beside approximate embedding techniques, we are more interested in a faithful embedding
such that the distances are isometrically preserved. Since it is not alway possible to
isometrically embed dissimilarities into a Euclidean space, a pseudo-Euclidean embedding
will be discussed as well.



3.3.1 Euclidean embedding

For a Euclidean dissimilarity matrix D, to determine a vector representation (denoted
as X := {x1, · · · ,xn}), the relation between Euclidean distances and inner products are
used as mentioned before. The Gram matrix of X, G = XXT , can be expressed by
means of D, G = −1

2JD
∗2J , where J is the centering matrix J = I − 1

n11T ∈ Rn×n

(Theorem 1). The eigendecomposition of G is

G = QΛQT , (3.3)

where Λ is a diagonal matrix with nonnegative eigenvalues in descending order, and Q
is the orthonormal matrix of corresponding eigenvectors. Taking k (k ≤ n) non-zero
eigenvalues, a k-dimentional vector represention X of D can be found as

X = QkΛ
1
2
k , (3.4)

Λ
1
2
k ∈ Rk×k constains the square roots of the k largest eigenvalues and Qk ∈ Rn×k is the

matrix consisting of corresponding eigenvectors.

3.3.2 Pseudo-Euclidean embedding

If the dissimilarity matrix D is not Euclidean, the Euclidean space is not ‘large enough’
to reconstruct the dissimilarities, due to the negative eigenvalues of the corresponding
Gram matrix. In this case a so called pseudo-Euclidean space was proposed by [30, 31],
in which any premetric (only the reflexivity and symmetry properties are satisfied) finite
dissimilarities can be embedded.

Definition 4 (Pseudo-Euclidean space [70]). A pseudo-Euclidean space ξ = R(p,q) is
a real vector space equipped with a non-degenerate, indefinite inner product 〈., .〉ξ. ξ
admits a direct orthogonal decomposition ξ = ξ+ ⊕ ξ− where ξ+ = Rp and ξ− = Rq and
the inner product is positive definite on ξ+ and negative definite on ξ−. The space ξ is
therefore characterized by the signature (p, q).

Pseudo-Euclidean is a more general version of Euclidean space with correction of
non-Euclideaness: The first p components (Rp) can be considered as standard Euclidean
contribution whereas the next q components (Rq) serve as a correction. Therefore, the
inner product in this space becomes

〈x,y〉pq = x1y1 + . . .+ xpyp − xp+1yp+1 − . . .− xp+qyp+q. (3.5)

It can be negative definite due to the negative correction terms. If q = 0, the space is a
normal Euclidean space.

To find the embedding, the same principle as in the Euclidean space can be applied.
The difference is taking the negative inner product into account. Given a dissimilarity
matrix D, the corresponding Gram matrix G = −1

2JD
∗2J in pseudo-Euclidean space

becomes

G = XJpqXT , Jpq =
[
Ip 0
0 −Iq

]
(3.6)



where Jpq is a diagonal matrix with first p elements 1 and next q elements -1. Then the
proper eigendecomposition of G in a pseudo-Euclidean space becomes

XJpqXT = G = QΛQT = Q|Λ|
1
2

[
Jpq

0

]
|Λ|

1
2QT . (3.7)

Λ is a diagonal matrix with eigenvalues and the corresponding eigenvectors are in the

matrix Q. By multiplication of the term
[
Jpq

0

]
and sorting, the eigenvalues in Λ can

be presented in the following order: first the positive eigenvalue in deceasing order, then
the negative one with decreasing magnitudes followed by zeros.

Therefore, the vector representation X of D can be determined in a pseudo-Euclidean
space R(p,q) with characteristic signature (p, q)1 as

X = Qk|Λk|
1
2 (3.8)

where k = p+ q and only k non-zero eigenvalues in Λ and the corresponding eigenvectors
Qk are taken into account. Otherwise, additional zero eigenvalues would describe X in
a degenerate indefinite inner product space as explained in [70] (Sec. 2.7).

The square dissimilarities can be reconstructed by computing square distances in
a pseudo-Euclidean space R(p,q) which is realized by computing the square Euclidean
distance in the ’positive’ space Rp and subtracting the square Euclidean distance in the
’negative’ space Rq:

d2(x,y) = ||x−y||2p,q = (x1−y1)2 + . . .+(xp−yp)2−(xp+1−yp+1)2− . . .−(xp+q−yp+q)2.
(3.9)

In a sense the square distances in the ‘positive’ space are overestimated such that the
‘negative’ space is applied to correct them, i.e. to make them non-Euclidean. In this work,
we focus on non-negative dissimilarities which means in the resulting pseudo-Euclidean
space the positive contributions dominate over the negative contributions. In [70] some
examples have been mentioned that in practice many summation-based dissimilarity
measures are close to Euclidean, and measures based on minimum or maximum operations
may give rise to large (in magnitude) negative eigenvalues. Note that any symmetric
dissimilarity matrix can be embedded into a pseudo-Euclidean space. If the matrix is
asymmetric, it can be easily transformed into a symmetric one by

D′ =
1
2

(D +DT ). (3.10)

3.3.3 Correction of non-Euclidean dissimilarity data

The ‘negative’ space makes the dissimilarities non-Euclidean and the corresponding
Gram matrix G indefinite and not psd. Since G has negative eigenvalues, D can not
be isometrically embedded into a Euclidean space. In spite of the fact that in this
case a pseudo-Euclidean embedding can be found, some correction techniques have been

1 The signature can also be expressed as (p, q, n− p− q), where n− p− q denotes the number of zero
eigenvalues.



proposed such that the corresponding G becomes psd and an Euclidean embedding is
possible. This is especially useful when the negative eigenvalues are rather small meaning
that the dissimilarities are nearly Euclidean. In such cases, the negative eigenvalues can
be considered as noise or some error in the measurement. If the negative eigenvalues
are relatively large (in magnitude), by neglecting them important information might be
ignored, which can relegate the learning performance. Here we discuss some techniques.

Probably, the most widely used approaches are the clip-, flip- and shift-operation
which come from kernel-based learning in order to transform non-psd similarity matrix
into a valid kernel such that kernel-based learning methods, e.g. SVM, can be applied
, see e.g. [12]. The clip-operation sets all negative eigenvalues to zero, i.e. Λclip =
diag(max(λ1, 0), . . . ,max(λn, 0)). The approach can be considered as a denoising step
as mentioned in [12]. It is mathematically justified that the corrected psd matrix Gclip =
UTΛclipU is the nearest psd matrix to G in terms of Frobenius norm [46]. In contrast to
the consideration that the negative eigenvalues are caused by noise, some researchers show
that negative eigenvalues can contain useful information for learning tasks [57, 56, 32, 73].
In order to use the negative eigenvalues, the flip-operation takes the absolute values, i.e.
Λflip = diag(|λ1|, . . . , |λn|), and then the corrected psd matrix becomes Gflip = UTΛflipU .
Another approach is shift-operation which increases all eigenvalues by the absolute value
of the minimal eigenvalue, since G + λI = UT (Λ + λI)U , any indefinite matrix G can
be easily shifted by a given value λ. In this case λ is set to the absolute value of the
minimum eigenvalue |λmin| of G: Λshift = Λ + |λmin|I, and the corrected G turns to be
Gshift = UTΛshiftU . Compared with clip and flip, the shift-operation only increases the
‘self-similarities’ by the amount of |λmin| and the similarities between different objects are
changed. It can be shown that for specific clustering tasks the shift-operation preserves
the group structure [80]. In [12] an extensive comparison of these preprocessing methods
in connection to SVM is performed for a variety of benchmarks. Interestingly, some
operations such as shift do not affect the location of global optima of important cost
functions such as the quantization error [57], albeit the transformation can severely affect
other performance measures of different optimization algorithms [37]. The Euclidean
dissimilarity matrix D can be obtained by transformation of G∗

D∗2 = g1T + 1gT − 2G∗ (3.11)

G∗ is the corrected psd matrix by one of the above operations and g is the diagonal of
G∗.

Other techniques are reviewed in [70]. For example, taking only p positive eigenvalues
into account, i.e. X = QpΛ

1/2
p , results in a p-dimensional Euclidean vector representation.

This might be a reasonable approach if the negative eigenvalues are relatively small with
respect to positive ones or caused noise such as direct measurement of the dissimilarities.
The same as clip-operation, the noise can be ignored which might purify the data. Other
techniques are based on finding some extreme eigenvalue and add it to the original
dissimilarity matrix: For instance, find τ ≥ −λmin, where λmin is the smallest negative
eigenvalue of G, then by adding τ to D∗2 in such a way that D2τ = [D∗2 +2τ(11T −I)]∗

1
2

is Euclidean. More details and alternative approaches can be found in [70] (Theorem 3.9
and Theorem 3.19).



3.4 Ways to deal with dissimilarity data

As we have discussed a way to check the ‘Euclideaness’ of a given dissimilarity matrix D
is as follows: If the corresponding similarity matrix S obtained by double centering (Eq.
3.2) is psd, then the dissimilarity matrix is Euclidean. This gives us the first opportunity
to deal with dissimilarity data. If S is psd and it can be considered as a valid kernel
matrix K, then standard kernel-based methods, e.g. SVM, can be applied. However, the
cost of such transformation is O(n3). If S is not psd, correction techniques in Sec. 3.3.3
can be applied to make it to be a valid kernel. The cost of such corrections is O(n2).
The analysis in [71] indicates that for non-Euclidean dissimilarities corrections like above
should be avoided.

A further alternative is to embed the dissimilarity matrix into the so called dissimi-
larity space by taking all dissimilarities of a point xi to all other points or a subset only,
resulting in an at most n-dimensional vector representation of xi [21]. Similar approach
for similarities has been analyzed by [12]. However, this view is changing the original
data representation and leads to a finite data space, limited by the number of samples.

As shown in Sec. 3.3.2, given a symmetric dissimilarity matrix D with zero diagonal,
an embedding of D in a pseudo-Euclidean vector space determined by the eigenvector
decomposition of S is always possible. A symmetric bilinear form in this space is given
by 〈x,y〉p,q = xTJpqy where Jpq is a diagonal matrix with p entries 1 and q entries
−1. Taking the eigenvectors of the corresponding Gram matrix together with the square
root of the absolute value of the eigenvalues, we obtain vectors xi in pseudo-Euclidean
space such that d(xi,xj) = 〈xi − xj ,xi − xj〉p,q holds for every pair of data points. If
the number of data is not limited, a generalization of this concept to Krein spaces with
according decomposition is possible [70].

Vector operations can be directly transferred to the pseudo-Euclidean space, i.e.
standard methods can be applied. Hence we can use prototype-based learning explicitly
in pseudo-Euclidean space since it relies on vector operations only. One problem of this
explicit embedding is given by the computational complexity which is O(n3), and further,
by the fact that out-of-sample extensions to new data points characterized by pairwise
dissimilarities are not immediate. Because of this fact, we are more interested in efficient
techniques which implicitly refer to this embedding only, which is the topic of the next
chapter. As a side product, such algorithms are invariant to coordinate transforms in
pseudo-Euclidean space.

3.5 Data sets

In this thesis we will use the following data sets in our experiments. Table 3.1 gives a
summary of data sets with respect to size, number of labels, signature, source where the
data are taken from and in which chapter each data set is used in the experiment part.
The signature is reported for each data set whereby a cutoff at 0.0001 is made to account
for numerical errors of the eigenvalue solver. Since some of these matrices correspond
to similarities rather than dissimilarities, we use standard preprocessing as presented in
[70]. The detailed descriptions are in the following:



Data Size #Labels Signature Source Chapter
Amazon47 204 47 (192, 1, 11) [12] 4
Aural Sonar 100 2 (61, 38, 1) [12] 4
Face Rec. 945 139 (45, 0, 900) [12] 4
Patrol 241 7 (54, 66, 121) [12] 4
Protein 213 4 (169, 38, 6) [12] 4
Voting 435 2 (16, 1, 418) [12] 4
Cat Cortex 65 5 (41, 23, 1) [35] 4
Sonatas 1068 5 (966, 30, 72) [65] 7
Vibrio 1100 49 (499, 502, 99) Bruker 4, 5, 6, 7
Bacteria 2007 30 (930, 795, 282) Bruker 6
Zongker 2000 10 (647, 523, 830) [20] 6, 7
ProDom 2604 53 (1502, 682, 420) [20] 6
Chromosomes 4200 21 (1951, 2206, 43) [60] 4, 5, 7
SwissProt 10988 32 (2028, 2, 8958) [110] 5
SwissProt10 5791 10 (2043, 12, 3736) [10] 7

Table 3.1: A summary of data sets

• Amazon47 : This data set consists of 204 books written by 47 different authors.
The similarity is determined as the percentage of customers who purchase book j
after looking at book i. Class labeling of a book is given by the author.

• Aural Sonar : This data set consists of 100 wide band solar signals corresponding
to two classes, observations of interest versus clutter. Similarities are determined
based on human perception, averaging over 5 random probands for each signal pair.
Class labeling is given by the two classes: target of interest versus clutter.

• Face Recognition: 945 images of faces of 139 different persons are recorded. Images
are compared using the cosine-distance of integral invariant signatures based on
surface curves of the 3D faces. The labeling corresponds to the 139 different persons.

• Patrol : 241 samples representing persons in seven different patrol units are con-
tained in this data set. Similarities are based on responses of persons in the units
about other members of their groups. Class labeling corresponds to the seven patrol
units.

• Protein: 213 proteins are compared based on evolutionary distances comprising
four different classes according to different globin families. Labeling is given by
four classes corresponding to globin families.

• Voting : This data set contains 435 samples with categorical data compared by
means of the value difference metric. Class labeling into two classes is present.

• Cat Cortex : This data set consists of 65 data points from 5 classes. The data
originate from anatomic studies of cats’ brains. The dissimilarity matrix displays



the connection strength between 65 cortical areas. A preprocessed version as
presented in [35] was used.

• Sonatas: This data set contains complex symbolic data similar to [65]. It is
comprised of pairwise dissimilarities between 1,068 sonatas from the classical period
(by Beethoven, Mozart and Haydn) and the baroque era (by Scarlatti and Bach).
The musical pieces were given in the MIDI file format, taken from the online MIDI
collection Kunst der Fuge2. Their mutual dissimilarities were measured with the
normalized compression distance (NCD) [13], using a specific preprocessing, which
provides meaningful invariances for music information retrieval, such as invariance
to pitch translation (transposition) and time scaling. This method uses a graph-
based representation of the musical pieces to construct reasonable strings as input
for the NCD [65]. The musical pieces are classified according to their composer.

• Vibrio: This data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra.3 The spectra contain approx. 42,000 mass positions.
The full data set consists of 49 classes of vibrio-sub-species. The mass spectra
are preprocessed with a standard workflow using the BioTyper software [61]. As
usual, mass spectra display strong functional characteristics due to the dependency
of subsequent masses, such that problem adapted similarities such as described
in [5, 61] are beneficial. In our case, similarities are calculated using a specific
similarity measure as provided by the BioTyper software[61]. The Vibrio similarity
matrix S has a maximum score of 3. The corresponding dissimilarity matrix is
obtained as D = 3− S.

• Bacteria: This data set consists of 2007 samples of bacteria mass spec fingerprints
in 30 classes taken as a subset from a commercial database provided by [61]4. The
selected bacteria classes are the most prominent ones, consisting of 22 up-to 203
entries. The underlying similarity measure and data generation are discussed in [61].
Basically, the similarities are measures of the alignment of two different spectra
and the spectra encode a peptide snapshot of the considered bacterium.

• Zongker : The digit dissimilarity data (2000 samples in 10 classes) from [20] is
based on deformable template matching. The dissimilarity measure was computed
between 2000 handwritten NIST digits in 10 classes, with 200 entries each, as a
result of an iterative optimization of the non-linear deformation of the grid [50].

• ProDom: The ProDom data set consists of 2604 protein sequences with 53 labels.
It contains a comprehensive set of protein families and appeared first in the work
of [79]. The pairwise structural alignments are computed by [79]. Each sequence
belongs to a group labeled by experts, here we use the data as provided in [20].

2http://www.kunstderfuge.com
3We would like to thank Dr. Markus Kostrzewa, Dr. Karl-Otto Kräuter, Dr. Stephan Klebel and

Dr. Thomas Maier, all Bruker Daltonik GmbH, Germany, for providing the Vibrio data and support
regarding the analysis of the mass spectra with the BioTyper environment.

4The database is not public but part of the sold product the article references to, here we use the
version with 3034 bacteria groups. Details can be obtained by contacting the authors at Bruker.



• Chromosomes: The Copenhagen chromosomes data set has been introduced in
[60] as a benchmark for cytogenetics. 4,200 human chromosomes from 21 classes
(the autosomal chromosomes) are given by grey-valued images. The images can be
represented as strings measuring the thickness of the silhouettes of the chromosomes.
These strings are compared using edit distance with insertion/deletion costs 4.5
[66].

• SwissProt : The SwissProt data set consists of 10,988 samples of protein sequences in
32 classes taken as a subset from the SwissProt database [10]. The considered subset
of the SwissProt database refers to the release 37 mimicking the setting as proposed
in [55]. The full database consists of 77,977 protein sequences. A typical protein
sequence consists of a string of the form MSKAKEGDY GSIKKV SGPV V V . . .
where the letters refer to the amino acids, and the length of the full sequences
varies between 30 to more than 1000 amino acids depending on the sequence. The
32 most common classes such as Globin, Cytochrome a, Cytochrome b, Tubulin,
Protein kinase st, etc. provided by the Prosite labeling [25] where taken leading
to 10,988 sequences. Due to this choice, an associated classification problem maps
the sequences to their corresponding prosite labels. These sequences are compared
using Smith-Waterman which computes a local alignment of sequences [34]. Popular
alternatives could rely on global alignment as provided by Needleman-Wunsch, or
linear time heuristics such as BLAST or FASTA [34]. This database is the standard
source for identifying and analyzing protein sequences such that an automated
classification and processing technique would be very desirable.

• SwissProt10 : A small version of SwissProt which consists of 5, 791 samples of
protein sequences from 10 most common lasses (such as Globin, Cytochrome b,
etc.) from the original SwissProt data set described above.

3.6 Conclusions

In this chapter we discussed the dissimilarity representation of data, from the properties,
metric and Euclideaness, to how to deal with it. Actually, Euclideaness is a more strict
property beyond the metric property. If a given dissimilarity matrix is Euclidean, it can be
isometrically embedded into Euclidean space. If not, a pseudo-Euclidean embedding can
be found. Besides direct embedding, different ways to deal with dissimilarity data have
also been discussed: For Euclidean dissimilarity data, kernel methods can be adopted
on the corresponding kernel matrix. If the dissimilarity matrix is non-Euclidean, some
correction techniques can be applied first. In this case extra transformation steps have
to be paid. Otherwise, dissimilarities can also be considered as features resulting in a
dissimilarity-based vector representation of the data, on which standard vector-based
methods can be applied. One crucial problem of these approaches is that the out-of-
sample extensions for new data is not immediate and extra effort has to be paid. Thus,
we are interested in a more efficient way to deal with dissimilarity data and combine it
to prototype-based learning, which we will discuss in the next chapter.



Note that this chapter only gives a very brief review of dissimilarity data. For a more
comprehensive and theoretical view please refer to the book of Pekalska and Duin [70].



Chapter 4

Prototype-based learning for
dissimilarity data

Chapter overview

In this chapter we extend original prototype-based supervised methods such that they can di-
rectly deal with dissimilarity data by means of an implicit embedding in pseudo-Euclidean space.
The resulting methods give promising results on various benchmark data sets as shown in the
experiment part. Parts of this chapters are based on the publications [40, 39].

4.1 Introduction

Unlike Affinity Propagation (AP), Neural Gas (NG), Generalized Topographic Mapping
(GTM), as well as diverse LVQs are defined for the Euclidean setting only: they rely on
vector operations in the data space Rm. Thus, it is unsuitable for complex or heteroge-
neous data sets where input dimensions have different relevance or a high dimensionality
yields to accumulated noise which disrupts the classification. This problem can par-
tially be avoided by appropriate metric learning, see e.g. [86], or by kernel variants, see
e.g. [77]. However, if data are inherently non-Euclidean, these techniques cannot be
applied. For example, in modern applications, data are often addressed using dedicated
non-Euclidean dissimilarities such as dynamic time warping for time series, alignment for
symbolic strings, the compression distance to compare sequences based on an information
theoretic ground, and similar. These settings do not allow a Euclidean representation
of data at all, rather, data are given implicitly in terms of pairwise dissimilarities or
relations.

Several ways to deal with dissimilarity data have been discussed in the previous
chapter. Probably, the most obvious or popular way is using kernel variations such as
kernel GLVQ [78], kernel NG [77], or kernel GTM [68], just to name few. But an extra
preprocessing step has to be paid for, namely transforming dissimilarity to kernels, this
step can be very costly, i.e. O(n3), n denotes the size of the data set. On the other hand,
if the resulting kernel is not psd, there is no guarantee of learning performance. In this
case some correction techniques have to be applied to guarantee the psd characteristic
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of the kernel as described in the previous chapter.
In this chapter we introduce a technique to directly deal with dissimilarities without

extra preprocessing step to transform to a kernel or to embed into a vector space (i.e.
pseudo-Euclidean space, Section 3.3). This technique can be easily integrated to LVQs.
This way, LVQ techniques become directly applicable for relational data sets which are
characterized in terms of a symmetric dissimilarity matrix only. The key ingredient is
taken from recent approaches for relational data processing in the unsupervised domain
[37, 36] which will be also briefly reviewed first in this chapter: If prototypes are repre-
sented implicitly as linear combinations of data in the pseudo-Euclidean embedding, the
relevant distances of data and prototypes can be computed without an explicit reference
to a vectorial data representation. This principle holds for every symmetric dissimilar-
ity matrix and thus, allows us to formalize a valid objective of GLVQ and RSLVQ for
relational data. Based on this observation, optimization can take place using gradient
techniques.

4.2 A Review: relational prototype-based clustering

Recently, extensions of NG and GTM have been proposed which can take into account
a general dissimilarity matrix [37, 29]. The key observation is given by the fact that a
general dissimilarity matrix corresponds to vectorial data embedded in pseudo-Euclidean
space (Def. 4) which refers to a vector space equipped with a bilinear form which induces
the given dissimilarities. Unlike the standard Euclidean space, the form can be indefinite.
In this space, standard vectorial operations are possible. An implicit calculation of the
corresponding updates avoids an explicit computation of the embedding [44].

4.2.1 Relational neural gas

Relational neural gas (RNG) as introduced in [37] assumes that a symmetric dissimilarity
matrix D with entries dij , describing pairwise dissimilarities of data, is available. As
shown in Section 3.3, there exists a pseudo-Euclidean embedding of a given set of points
characterized by pairwise symmetric dissimilarities. That means, there exists a vector
space with a symmetric bilinear form 〈·, ·〉 and vectors xi such that dij = d(xi,xj) =
〈xi − xj ,xi − xj〉. Without loss of generality, we can restrict prototypes to the span of
the data points in this space:

wj =
n∑
l=1

αjlxl with
n∑
l=1

αjl = 1 . (4.1)

Under this constraint, dissimilarities can be computed by means of the formula

d(xi,wj) = [Dαj ]i −
1
2
· αTj Dαj (4.2)



where [·]i refers to component i of the vector. This allows a direct transfer of batch NG
[15] to general dissimilarities:

determine kij based on d(xi,wj) , (4.3)

set αjl :=
hσ(klj)∑
l hσ(klj)

. (4.4)

These steps are iterated until convergence. This algorithm can be interpreted as neural
gas in pseudo-Euclidean space for a given symmetric dissimilarity matrix D. It performs
the updates implicitly without referring to the vectorial notation xi in pseudo-Euclidean
space. This way the computational complexity is reduced to O(n2) instead of O(n3) for
a full embedding. If the bilinear form is indefinite, convergence is not guaranteed, albeit
it is usually observed in practice [37].

4.2.2 Relational generative topographic mapping

Relational GTM (RGTM) [29] relies on the same principle as RNG: prototypes are
restricted to linear combinations of data points

wj =
n∑
l=1

αjlxl with
n∑
l=1

αjl = 1 .

This way, vectorial operations become possible in the pseudo-Euclidean space, referring
only implicitly to the corresponding embedding. Again, distances are computed by means
of Eq. 4.2. Since prototypes are represented indirectly by means of weighting factors,
the generalized regression model maps from the latent space to the space of coefficients
αk = Φ(uk) ·W where the restriction

∑
l[Φ(uk) ·W ]l = 1 is enforced. Using Lagrange

optimization, it can be seen that this restriction is automatically fulfilled for the generic
optima obtained by means of EM optimization. Hence, the EM scheme of GTM can
directly be transferred to RGTM. The data matrix V is the identity in the space of
coefficients. Typically, GTM is initialized based on the first two eigenvectors of the
data. This can directly be extended to dissimilarity data by referring to MDS which
corresponds to a PCA in the space of similarities. Detailed formulas for the resulting
updates can be found in [29].

4.3 Relational prototype-based classification

This observation constitutes the key to transfer GLVQ and RSLVQ to relational data
without an explicit embedding in pseudo-Euclidean space. In the following, we introduce
and compare this novel technique. A Prototype wj is represented implicitly by means of
the coefficient vectors αj as in (4.1). Then, we can use the equivalent characterization
of distances in the GLVQ and RSLVQ cost function leading to the costs of relational
GLVQ (RGLVQ) and relational RSLVG (RSLVQ), respectively.



4.3.1 Relational GLVQ

Generalized LVQ (GLVQ) [81] has been introduced in Section 2.3.1. Here we recall the
cost function (2.10) based on distances between data points and prototypes:

EGLVQ =
n∑
i=1

Φ
(
d(xi,w+(xi))− d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

)
by substitute the distance calculation between data points and prototypes by Eq. (4.2),
we naturally get a variant of GLVQ for dissimilarity data in the pseudo-Euclidean space:

ERGLVQ =
∑
i

Φ

(
[Dα+]i − 1

2 · (α+)TDα+ − [Dα−]i + 1
2 · (α−)TDα−

[Dα+]i − 1
2 · (α+)TDα+ + [Dα−]i − 1

2 · (α−)TDα−

)
, (4.5)

where as before the closest correct and wrong prototype are referred to, corresponding to
the coefficients α+ and α−, respectively. A stochastic gradient descent leads to adaptation
rules for the coefficients α+ and α− in this version of GLVQ: component k of these vectors
is adapted as

∆α+k ∼ − Φ′(µ(xi)) · µ+(xi) ·
∂([Dα+]i− 1

2
·(α+)TDα+)

∂α+k

∆α−k ∼ + Φ′(µ(xi)) · µ−(xi) ·
∂([Dα−]i− 1

2
·(α−)TDα−)

∂α−k

where µ(xi), µ+(xi), and µ−(xi) are the same as in the original case but presented by
Eq. (4.2) in the following:

µ(xi) =
[Dα+]i − 1

2 · (α+)TDα+ − [Dα−]i + 1
2 · (α−)TDα−

[Dα+]i − 1
2 · (α+)TDα+ + [Dα−]i + 1

2 · (α−)TDα−
,

µ+(xi) =
2 · [Dα−]i + 1

2 · (α−)TDα−
([Dα+]i + 1

2 · (α+)TDα+ + [Dα−]i + 1
2 · (α−)TDα−)2

,

µ−(xi) =
2 · [Dα+]i + 1

2 · (α+)TDα+

([Dα+]i + 1
2 · (α+)TDα+ + [Dα−]i + 1

2 · (α−)TDα−)2
.

The partial derivative yields

∂
(

[Dαj ]i − 1
2 · α

T
j Dαj

)
∂αjk

= dik −
∑
l

dlkαjl (4.6)

We refer to this extension of GLVQ as Relational GLVQ (RGLVQ).

4.3.2 Relational RSLVQ

Similarly, the cost function of RSLVQ (2.12)

ERSLVQ = log(Lr) =
n∑
i=1

log
p(xi, yi|W )
p(xi|W )



can be presented:

ERRSLVQ =
∑
i

log

∑
αj :c(αj)=c(xi)

p(xi|αj)/K∑
αj
p(xi|αj)/K

(4.7)

where p(xi|αj) = const · exp
(
−
(

[Dαj ]i − 1
2 · α

T
j Dαj

)
/2σ2

)
, since every component has

the same width and prior probability. K is the number of prototypes. A stochastic
gradient descent leads to the adaptation rule

∆αjk ∼ − 1
2σ2 ·

(
p(xi|αj)P

j:c(αj)=c(xi)
p(xi|αj) −

p(xi|αj)P
j p(xi|αj)

)
· ∂([Dαj ]i− 1

2
αTj Dαj)

∂αjk
, if c(xi) = c(αj),

∆αjk ∼ 1
2σ2 ·

p(xi|αj)P
j p(xi|αj)

· ∂([Dαj ]i− 1
2
αTj Dαj)

∂αjk
, if c(xi) 6= c(αj).

This method is referred to as Relational RSLVQ (RRSLVQ).

For both extensions, after every adaptation step, normalization takes place to guar-
antee

∑
i αji = 1. The prototypes are initialized as random vectors, i.e we initialize

αij with small random values such that the sum is one. It is possible to take class
information into account by setting all αij to zero which do not correspond to the class
of the prototype. The prototype labels can then be determined based on their receptive
fields before adapting the initial decision boundaries by means of supervised learning
vector quantization.

Out-of-sample extension

Out-of-sample extension of the classification to new data is possible based on the following
observation [37]: for a novel data point x characterized by its pairwise dissimilarities
D(x) to the data used for training, the dissimilarity of x to a prototype modeled by αj
can be calculated by

d(x,wj) = D(x)T · αj −
1
2
· αTj Dαj (4.8)

Then by finding the closest/most similar prototype based on the distances/dissimilarities
to all prototypes calculated by (4.8) the new data point will be classified by the label of
the closest prototype.

Note that, for GLVQ, a kernelized version has been proposed in [77]. However,
this refers to a kernel matrix only, i.e. it requires Euclidean similarities instead of
general symmetric dissimilarities. In particular, it must be possible to embed data in a
possibly high dimensional Euclidean feature space. Here we extended GLVQ and RSLVQ
to relational data characterized by a general symmetric dissimilarities which might be
induced by strictly non-Euclidean data.

Interpretability: k-approximation of prototypes

As discussed before relational variants of LVQ represent prototypes indirectly by means
of coefficient vectors which are not directly interpretable since they correspond to typ-
ical positions in the pseudo-Euclidean space. However, because of their representative



RGLVQ RRSLVQ best SVM #Proto.
Amazon47 0.81(0.01) 0.83(0.02) 0.82* 94
Aural Sonar 0.88(0.02) 0.85(0.02) 0.87* 10
Face Rec. 0.96(0.00) 0.96(0.00) 0.96* 139
Patrol 0.84(0.01) 0.85(0.01) 0.88* 24
Protein 0.92(0.02) 0.94(0.06) 0.97* 20
Voting 0.95(0.01) 0.92(0.04) 0.95* 20
Cat Cortex 0.93(0.01) 0.94(0.01) 0.95 12
Vibrio 1.00(0.00) 0.94(0.08) 1.00 49
Chromosome 0.93(0.00) 0.80(0.01) 0.95 63

Table 4.1: Results of prototype based classification in comparison to SVM for diverse
dissimilarity data sets. The classification accuracy obtained in a repeated cross-validation
is reported, the standard deviation is given in parenthesis. SVM results marked with *
are taken from [12]. For Cat Cortex, Vibrio, Chromosome, the respective best SVM result
is reported by using different preprocessing mechanisms clip, flip, shift, and similarities
as features with linear and Gaussian kernel.

character, we can approximate these positions in pseudo-Euclidean space by its closest
exemplars, i.e. data points originally contained in the training set. Unlike prototypes,
these exemplars can be directly inspected in the same way as data. We refer to such an
approximation as k-approximation, if a prototype is substituted by its k closest exemplars,
the latter being directly accessible to humans. In the following chapters we will see its
usability in combination with patch processing to achieve linear time complexity for large
data sets and its capability to improve the interpretability of relational prototype-based
methods, e.g. on analyzing biomedical data. For other approximation possibilities, the
work [48] investigated various approximation techniques with respect to kernel robust
soft LVQ.

4.4 Experiments

We evaluate the algorithms RGLVQ and RRSLVQ for several benchmark data sets where
data are characterized by pairwise (dis)similarities. On the one hand, we consider six data
sets used in [12]: Amazon47, Aural-Sonar, Face Recognition, Patrol, Protein and Voting.
As point out in [12], these data sets cover a diverse range of different characteristics
such that they constitute well suited test benchmarks to evaluate the learning ability
of algorithms for (dis)similarity data. In additional we consider three data sets from
biomedical domain, the Cat Cortex from [35], the Copenhagen Chromosomes data [66]
and one own data set, the Vibrio data. They constitute interesting applications per se.
More details about the data sets can be found in Section 3.5. For each data set we also
report the number of prototypes which mirrors the number of classes, representing each
class by only few prototypes relating to the choices taken in [37].

Note that Amazon47, Face Rec. and Voting are almost Euclidean, while all other



Chapter
Supervised Unsupervised

GLVQ RSLVQ NG AP GTM

2

cost function margin likelihood
ratio

topographical
QE

QE dual like-
lihood

complexity O(n) O(n) online: O(n) O(n2) O(n)batch: O(n)
data type vectorial vectorial vectorial vectorial vectorial
working style online online batch/online online batch

4 relational data
√ √

[37] similarity [29]

Table 4.2: Summary of chapter 4: Relational extensions of GLVQ and RSLVQ

data sets are rather non-Euclidean. For relational RSLVQ, we adopted the bisection
method to find the appropriate σ of the range from 0.1 to 100. The evaluation of the
results is done by means of the classification accuracy as evaluated on the test set in
a ten fold repeated cross-validation (nine tenths of date set for training, one tenth for
testing) with ten repeats. The results are reported in Tab. 4.1.

In addition, we report the best results obtained by SVM after diverse preprocessing
techniques [12], which investigates the possibility to deal with similarity/dissimilarity
data which is non-Euclidean with the SVM. Since the corresponding Gram matrix is not
positive semidefinite, according preprocessing steps (such as clip, flip, shift, see Section
3.3.3) have to be done which make the SVM well defined. These steps can change the
spectrum of the Gram matrix or they can treat the dissimilarity values as feature vectors
which can be processed by means of a standard kernel.

Interestingly, in most cases, the results which are comparable to the best SVM as
reported in [12] can be found, whereby making preprocessing as done in [12] superfluous.
Further, unlike for SVM which is based on support vectors in the data set, solutions are
represented as typical prototypes.

4.5 Conclusions

In this chapter, as summarized in Table 4.2, we focus on supervised cases and have
presented extensions of supervised prototype-based techniques to general possibly non-
Euclidean data sets characterized by arbitrary symmetric dissimilarity matrices, by means
of an implicit embedding in pseudo-Euclidean space and the corresponding extensions
of the cost function of GLVQ and RSLVQ to this setting. As a result, a very powerful
learning algorithm can be derived which, in most cases, achieves results which are
comparable to SVM but without the necessity of according preprocessing, since relational
LVQ can directly deal with possibly non-Euclidean data whereas SVM requires a positive
semidefinite Gram matrix.

However, similar to SVM, relational LVQs have quadratic complexity due to the
dependency on the full dissimilarity matrix. This makes the methods infeasible for large
data sets. A speed-up to linear techniques e.g. by means of patch processing and Nyström
approximation for dissimilarity data is the focus of the next chapter.





Chapter 5

Speed-up techniques for large
scale problems

Chapter overview

Relational extensions of prototype-based learning techniques can directly deal with dissimilar-
ity data. However, they suffer from the quadratic complexity due to their dependence on the
full dissimilarity matrix. In this chapter, we investigate two different linear time approximation
techniques, patch processing and Nyström approximation. We apply these approximations to
prototype-based learning techniques for dissimilarities, where possible, and compare the results for
diverse data sets. Parts of this chapter are based on the publications [110, 112].

5.1 Introduction

Diverse high quality prototype-based learning techniques have been developed which can
directly deal with data sets given by general pairwise dissimilarities rather than standard
Euclidean vectors. Examples include affinity propagation (AP), relational neural gas
(RNG), or relational generative topographic mapping (RGTM) for the unsupervised case,
relational GLVQ and relational RSLVQ for the supervised learning. These algorithms
allow to generalize classical learning algorithms to general dissimilarities. However, a
principled drawback occurs: since the methods rely on the full similarity or dissimilarity
matrix, respectively, their effort is quadratic with respect to the number of data. Even
more severely, the full quadratic dissimilarity matrix has to be available to apply these
methods. Because of these facts, the techniques cannot be used for large data sets.

Diverse approximations to get around a squared complexity in similar settings are
available in the literature: Kernel approaches can be accelerated to linear techniques by
means of the Nyström approximation [106] which approximates the full Gram matrix by a
low rank approximation. By integrating this approximation into the learning algorithms,
an overall linear complexity results. We will show that the Nyström approximation can
be extended to dissimilarity data and an integration into RNG and RGTM is possible. A
linear time approximation results provided a fixed approximation quality of the matrix.
We will show that, depending on the nature of the dissimilarity matrix, reasonable results
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can be obtained this way.
The Nyström technique has two drawbacks: it requires a representative set of examples

for the low rank approximation, such that it cannot be used for online settings where data
display a clear trend. Further, in order to arrive at linear techniques, the approximation
has to be integrated into the learning algorithm. Hence this method does not constitute
an option for techniques where the entries of the dissimilarity matrix are used in a
distributed way such as AP.

Patch processing has been proposed as an alternative approximation scheme. It offers
a powerful linear time and limited memory approximation for streaming data sets [1].
In the article [37], it has been used to speed up RNG. The resulting technique, patch
RNG (PRNG) is linear time. It requires a direct access to the dissimilarities. In this
contribution, we transfer this technique to AP and RGTM, resulting in patch AP (PAP)
and patch RGTM (PRGTM). We show that, depending on the given setting, a good
approximation quality can be achieved. Patch processing can even deal with streaming
data which display a clear trend, unlike the Nyström approximation.

First, we introduce the basic idea behind patch processing and the Nyström technique,
and we show how these techniques can be applied to relational clustering techniques.
Then, we compare the techniques using three benchmarks from bioinformatics: image
data in the context of cytogenetics, mass spectra characterizing bacteria, and a part of the
classical SwissProt database of protein sequences. In all cases, we compare the behavior
of the techniques for data which are directly accessible form versus a presentation as
streaming data.

Finally, with the same principle, we transfer both techniques to a supervised technique,
relational GLVQ, and compare the results based on the benchmarks again.

5.2 Patch processing

Patch processing was first introduced to k-means in [22]. It is a simple and efficient
strategy for clustering with restricted buffer where data are processed consecutively in
patches of predefined size. It has been proposed in [1] in the context of the application of
NG to streaming data, and interestingly, it even gives good results in this setting. The
principled algorithm is depicted in Algorithm 1. A fixed size of the patches M is chosen.
Then patches of data are processed consecutively. Given a dissimilarity matrix, the patch
p corresponds to the values of the matrix describing the pairwise dissimilarities along
the diagonal: d(xi,xj) where i, j ∈ {p ·M + 1, . . . , (p+ 1) ·M}. In addition to this patch,
all previous patches are represented in compressed form by means of the prototypes
resulting from clustering the previous patches. For this purpose, the dissimilarities of
data and these prototypes need to be available. In patch processing, these are computed
or retrieved from the dissimilarity matrix on the fly.

Note that it is not clear how to compute these dissimilarities efficiently if prototypes
are of a general form, i.e. they correspond to arbitrary vectors in pseudo-Euclidean space
as for RNG and RGTM. For an implicit representation of prototypes by means of a linear
combination of data points such as (4.1), the dissimilarity computation would depend
on the full dissimilarity matrix. To avoid this problem, we assume that prototypes are



Algorithm 1 Principled algorithm for patch clustering
1: init: E := ∅; . exemplars
2: p := 0; . patch number
3: repeat
4: PM,M := {d(xi,xj)} | i, j ∈ {p ·M + 1, . . . , (p+ 1) ·M}}; . patch size M
5: PM,|E| := {d(xi,xj) | p ·M < i ≤ (p+ 1) ·M,xj ∈ E};
6: . dissimilarities of patch and exemplars
7: P|E|,|E| := {d(xi,xj) | xi,xj ∈ E}; . dissimilarities of exemplars

8: P :=
(
PM,M PM,|E|
P TM,|E| P|E|,|E|

)
; . full matrix for loop

9: change Pii for all i, if necessary; . diagonal entries of P
10: mi := 1 for xi in PM,M ; . standard points in this patch
11: perform Patch Clustering on P with multiplicities mi; . using RNG, RGTM or

AP
12: approximate prototypes by k closest exemplars (k-approximation), if necessary;
13: E := set of exemplars obtained this way; . new exemplars
14: mi := size of receptive field (or divided by k, if necessary) counted as multiplic-

ities for xi ∈ E; . new exemplars as multiple points for next
patch

15: p:=p+1; . next patch
16: until all dissimilarities are read

approximated by a small number of exemplars such as mentioned in previous chapter, the
k-approximation of prototypes. Under this assumption, the pairwise distances of these
exemplars as well as the distances of these exemplars and the new patch can be retrieved
from the dissimilarity matrix in constant time on the fly. This extended dissimilarity
matrix, representing patches and representative exemplars, serves as the input for the
clustering step of the next patch.

Exemplars which represent the previous clustering results represent a large set of data.
Thus, it is vital to weight their relevance correspondingly. In the patch algorithm, this
problem is solved by assigning a multiplicity to all exemplars which represent clusters of
points, which corresponds to the size of its receptive field. This means, we assume that
the corresponding exemplars are contained in the data set not only once but multiple
times.

Note that patch processing requires constant space, provided the patch size M and
the approximation quality of prototypes by k exemplars is fixed. Further, it requires
linear time, provided M is fixed and the corresponding metaparameters of the algorithm
such as the required number of epochs depend on the size of M only. Unlike the Nyström
approximation which we will discuss later, it is not clear a priori which linear part of the
dissimilarity matrix is used for training, since the relevant exemplars which represent
clusters become available during patch processing only. Thus, we need a way to compute
or retrieve the relevant entries of the dissimilarity matrix on the fly. This is easily
possible if the dissimilarity is characterized by an algorithmic function such as e.g. Smith-
Waterman to align biological sequences by means of a global alignment, or alternatives



such as local alignment by Needleman-Wunsch or approximations such as FASTA or
BLAST [34]. Because all relevant information is kept either directly or in compressed
form, patch processing can also deal with streaming data, as we will see in the experiments.

5.2.1 Patch relational neural gas and patch relational topographic map-
ping

Patch relational neural gas (PRNG) has been proposed in [37]. Here we extend RGTM
to patch processing, patch RGTM (PRGTM). The algorithmic steps which have to be
clarified are the rows 9, 11, and 12 in Algorithm 1.

For PRNG and PRGTM, the diagonal (row 9) is simply set to zero. It is easy to
extend RNG to multiplicities (row 11). Assume data point xi has multiplicity mi. Then
we exchange the update (4.4) by

αjl :=
ml · hσ(klj)∑
lml · hσ(klj)

.

RGTM can be extended to multiplicities by exchanging the update equations (2.4)
and (2.5) of original RGTM such that they are valid for multiple data points: In (2.4), the
matrices G and R which relate to responsibilities and sums of responsibilities, respectively,
weight these responsibilities Rij(W,β) with mi. In the update (2.5) for β, the summand
according to data point xi is weighted with mi, and n is the number of data counted
with multiplicities

∑
imi. Similarly, the MDS initialization can be extended to multiple

data points.
To account for row 12, we need to approximate the prototypes computed by RNG

and RGTM, since these entities refer to all given data points. As proposed in [37] we
use a simple approximation of the prototypes by means of a fixed number of exemplars
taken from the data processed in the current patch. The k-approximation wk

j of a
prototype wj based on a given set of points X corresponds to the closest k data points in
X: wk

j := {xi ∈ X | d(xi,wj) ≤ d(xi′ ,wj) for all but k indices i}. We simply substitute
every prototype by the k closest exemplars of the current patch as measured by the given
dissimilarity. These exemplars are counted with multiplicities according to the size of
their receptive fields divided by k.

5.2.2 Patch affinity propagation

Since AP constitutes an exemplar based clustering method, the transfer of the meta
algorithm is immediate: we just repeatedly apply AP to a given patch and the exemplars
as provided by the previous patch, counted with multiplicities. Thus, the row 12 of
Algorithm 1 is trivial since prototypes already correspond to exemplars with multiplicities
according to the size of their receptive fields.

To apply patch processing to AP obtaining patch AP (PAP), we need to extend AP
such that it can deal with multiple data points in row 11. One simple way to do so would
exist in a simulation of the update equations provided by standard AP. We can include
points according to their multiplicities to the data set. Since these points are exactly



identical, their responsibilities and availabilities can be shared. Thus, we only have to
compute the corresponding updates of responsibilities and availabilities once.

Unfortunately, this naive procedure is not possible: AP consists of the max-sum
algorithm applied to a cyclic factor graph, hence convergence is not guaranteed. In
particular, cycles occur if symmetries are present in the problem formulation. Symmetries
can be induced, for example, by exactly identical similarities. For this reason, slight
noise is added to the similarities in the original code for AP1. If multiple points are
present, as in our setting, however, symmetries necessarily occur. Since the updates
of these identical points are shared, there is no simple way to cure this problem: the
corresponding responsibilities and availabilities are exactly identical since there is only
one variable representing the values.

Therefore, we use a different approach to extend AP to multiple points. Assume data
point xi is contained in the data set with multiplicity mi. Then the quantization error
is given as follows

EQE AP =
∑

i,j:xi∈R(wj)

mi · s(xi,wj) . (5.1)

Obviously, we obtain the same costs if every point is contained only once in the data set,
but similarities are given by the values s̃(xi,xj) = mi · s(xi,xj).

Therefore, we can treat the problem to cluster the points xi with multiplicities mi

as a standard problem for standard AP with simple points xi where the similarities are
given as s̃(xi,xj). This way, the usual convergence of AP is observed using small random
values to avoid symmetries. The update for the responsibilities becomes

rik := mi · sik −max
k′ 6=k

{
aik′ +mi · sik′

}
, (5.2)

where sik = s(xi,xk) refers to the original similarities of data points. The update of the
availabilities is not changed.

The initialization of the diagonal terms, row 10 of the Algorithm 1, should also be
adapted accordingly, putting a bias towards points with large multiplicities. We achieve
this by a division of the preferences along the diagonal by the respective multiplicities
mi.

5.3 Nyström approximation

Beside patch processing, an alternative technique is the Nyström approximation as
presented in [106] which substitutes a given Gram matrix S by a low rank approximation
such that linear techniques result. As discussed in [28], this principle can be generalized
to dissimilarities. Here we briefly review this method, more technical details and an
application of Nyström for correcting of non-psd kernels can be found in [83].

By the Mercer theorem, one can find an expansion of the form

s(w,x) =
∞∑
i=1

λiΨi(w)Ψi(x)

1See http://www.psi.toronto.edu/index.php?q=affinity%20propagation

http://www.psi.toronto.edu/index.php?q=affinity%20propagation


for a given kernel s with eigenfunctions Ψi and eigenvalues λi. These values are solutions
of the equation ∫

s(w,x)Ψi(x)p(x)dx = λiΨi(w),

where p(x) is the probability density of x. In the Nyström approximation, this integral
is approximated by sampling xk i.i.d according to p(x):

1
M
·
∑
k

s(w,xk)Ψi(xk) ≈ λiΨi(w) ,

M is the sample size. Using the matrix eigenproblem S(M)U(M) = U(M)Λ(M) of the
M ×M Gram matrix S(M), we obtain

λi ≈ λ(M)
i /M ,

Ψi(w) ≈
√
M

λ
(M)
i

· (s(x1,w), . . . , s(xM ,w))u(M)
i ,

where u(M)
i is the ith column of U(M).

For a given n×n Gram matrix S we randomly choose M rows and respective columns.
The corresponding indices are also called landmarks. The corresponding rows are denoted
by SM,n and columns by Sn,M . Hence we obtain

S̃ =
M∑
i=1

1/λ(M)
i · Sn,M · u(M)

i (u(M)
i )TSM,n,

where λ(M)
i and u(M)

i correspond to the M ×M eigenproblem. Hence

S̃ = Sn,MS
−1
M,MSM,n (5.3)

where S−1
M,M denotes the Moore-Penrose pseudo inverse. This matrix S̃ offers a low rank

approximation of S.
We will see that the corresponding matrix S is used in algorithms such as RNG

and RGTM in the form STxi where xi is an n-dimensional vector. Then, performing
multiplication from right to left, the complexity O(M3 + nM +M2 +Mn) results when
computing S̃Txi. Hence the computation is of complexity O(M3n) instead of O(n2) for
the original matrix.

Similarly, dissimilarities D can be approximated if D is symmetric. Since D is
symmetric, it can be diagonalized. Hence it can be interpreted as operator d(x,w) =∑

i λiΨi(x)Ψi(w). Thus, the same mathematical treatment as before is possible, the
only difference being that eigenvalues are allowed to be negative.

Nyström RGTM and Nyström RNG

For RGTM, this yields an approximation of dissimilarities calculation (4.2)

d(xi,wj) ≈ [Dn,M (D−1
M,M (DM,n · αj))]i −

1
2
· (αTj Dn,M ) · (D−1

M,M (DM,n · αj)) (5.4)



which is O(M3n). Thereby, initialization of RGTM is done based on a corresponding
landmark MDS. Similarly, the Nyström approximation can be integrated into RNG
approximating the distance computation in the same way. In both cases, by evaluating
the matrix multiplications consecutively, a linear time algorithm results provided the
sample size M is fixed. Note that the same approximation does not lead to a reduction
of the computational complexity for AP since the similarity values are distributed in the
algorithmic computations rather than treated in matrix form.

The Nyström approximation is exact if the number of samples M is chosen according
to the rank of D. If a subsample is chosen, bounds on the quality of the Nyström
approximation can be derived as presented e.g. in [108]. Note that the quality of the
approximation depends on the rank of the approximation as compared to the original
matrix. Thus, it is vital that a representative subsample is chosen. We will see in
experiments, that the size M can often be chosen as a small set to arrive at good results.
The accuracy degrades severely, however, if streaming data are dealt with for which the
chosen subset is not representative, as we will show in experiments.

If we assume a fixed size M and a fixed complexity of the algorithm depending
on the rank of the approximation (i.e. a fixed number of epochs etc.), a linear time
approximation results. Note that the part of the dissimilarity matrix which is required
for the Nyström approximation is fixed as soon as the representative subsample is chosen.
Thus, the required dissimilarities can be precomputed before applying the algorithm.

5.4 Experiments on biomedical applications

We evaluate and compare the following algorithms:

• Affinity Propagation (AP) and the approximation Patch Affinity Propagation
(PAP),

• Relational Neural Gas (RNG) and the two approximations Patch Relational Neural
Gas (PRNG) and Nyström Relational Neural Gas (RNG (Ny)),

• Relational Generative Topographic Mapping (RGTM) and the two approximations
Patch RGTM (PRGTM) and Nyström RGTM (RGTM (Ny)).

on three data sets stemming from biomedical applications: Copenhagen Chromosomes,
Vibrio, and SwissProt as described in Section 3.5. These three data sets constitute
typical examples of non-Euclidean data which occur in biomedical domains. The dissim-
ilarity measures are inherently non-Euclidean and cannot be embedded isometrically in
a Euclidean vector space.

We evaluate the data sets using three different evaluation measures as introduced in
Section 2.5:

• The quantization error (QE) (2.15) which measures in how far the prototypes can
represent the given data as measured by the averaged dissimilarity of prototypes
to points in their receptive field. All methods optimize a cost function which
can be related to the quantization error as mentioned in Section 2.5. Therefore,



the evaluation of the quantization error where the terms d(xi,wj) are taken as
dissimilarities, allows to directly evaluate the affect of the approximation techniques
on an underlying cost function.

• The dual quantization error (dualQE) is given by (2.15). The quantization error
and its dual coincide if prototypes are located at centers of receptive fields in pseudo-
Euclidean space wj =

∑
i : xi∈Rj xi/|Rj |. Hence the quantization error and its dual

are identical for RNG. For RGTM, AP, or approximations of RNG, prototypes are
no longer located at the center of gravity due to restrictions of the prototypes or
approximations of the dissimilarities, respectively. In such cases, the quantization
error can be large, albeit the decomposition of data into receptive fields is hardly
affected. In these cases, the dual quantization error allows us to compare the
quality of the decomposition of data points into clusters rather than the specific
prototype locations.

• The classification accuracy is obtained by posterior labeling.

• For the settings, we also report the CPU time in seconds taken for one run on the
full data sets on a 12 Intel(R) Xeon X5690 machine with 3.47GHz processors and
48 GB DDR3 1333MHz memory.

The parameter choices are as follows:

• Repeats: Per default, we average every result over ten repeats, reporting the mean
value and standard deviation. Due to time issues, less repeats are taken in the
following settings: RGTM (only one repeat for the cross-validation), RGTM (Ny
with 10%) (only 4 repeats for the cross-validation).

• Cross-validation: The classification error is evaluated on the full data set, and in a
ten-fold repeated cross-validation.

• Patch sizes: For patch processing, ten patches are chosen, i.e. every patch is of the
size given by the number of data points / 10.

• k-approximation: The value k for the k-approximation for patch processing is taken
in {1, 3, 5}.

• Number of clusters: The number of clusters K is roughly chosen according to the
priorly known number of classes: For Chromosomes, we use 60 clusters for AP
and RNG and its approximations, and 20 × 20 lattice points for RGTM and its
approximations, to account for topological constraints of the latter. For the Vibrio
data set, we use 50 clusters for AP and RNG, and 20×20 lattice points for RGTM.
For SwissProt, we use 250 Prototypes for AP and RNG, and a 40×40 lattice for
RGTM.

• Nyström approximation: A fraction of 1%, 2%, and 10% of the data is used to
approximate the full matrix.



• RGTM : For RGTM and its approximations, we use the default initialization
with MDS (landmark MDS for the Nyström approximation). The number of base
functions F is picked according to the data set: We use 10×10 base functions with
bandwidth 1 for the chromosomes and vibrio data and bandwidth 0.2 for Swissprot.
50 epochs are used for EM training.

• RNG : For RNG and its approximations, we use an exponential annealing schedule
for the neighborhood range starting from K/2. 100 epochs are used for training.

• AP : For AP, self-similarities are set by binary search starting from the median in
repeated runs such that a fixed number of exemplars/prototypes as specified above
is obtained. We accept partial deviations thereof, an exact fit of a given number
of clusters often requiring additional trials. Usually, 1-8 repeats are necessary to
obtain the correct number of exemplars. The necessary number of repetitions is
included in the CPU time measurement. Adaptation is done until convergence is
observed.

We test the algorithms in two settings: On the one hand, we present the data in
epochs subject to random permutations (standard setting). This way, the approximation
techniques can access representative data for the approximation. In addition, we present
the data in a fixed permutation referred to as streaming data; for the latter, data are
sorted according to priorly given class labels and presented to the algorithm in this order
- this resembles the fact that, for large data sets, it is often not feasible to assume a truly
i.i.d. distribution of data; rather data can be addressed as they are stored in (probably
distributed) memory; they are often ordered according to specific criteria such as e.g. the
class labels. Therefore, it would be advantageous if algorithms could directly deal with
the data as stored in the memory and the ordering would not have much influence on
the outcome. For the Nyström approximation and patch processing, respectively, specific
ordering might have an influence since the approximation is based on the ordering of the
data: landmarks are taken from the first examples for the Nyström approximation, and,
similarly, the first patches are restricted to the first data points for patch processing. We
will test the feasibility of the approximation in such settings, referred to as ’streaming
data’.

Since AP, unlike GTM and NG, requires similarities, we use standard double centering
to transform similarities to dissimilarities and vice versa.

Results for the Chromosomes data

The results of the algorithms on the Chromosomes data set are displayed in Tab. 5.1
when referring to the full data set, and in Tab. 5.2 when referring to an evaluation of
the classification accuracy in a repeated cross-validation. For the latter setting, we also
report the results obtained for streaming data.

We can observe that the results are uniformly best for RGTM. As expected, the
quality of all evaluation measures drops down if approximations are used. The overall
trend, however, is diverse. This can be traced back to the following phenomena: on the
one hand, some approximation results display a uniform decrease in accuracy such as the



Chromosomes accuracy QE dualQE CPUtime
AP 0.899(0.001) 70902.250 47112.667 380(73)

(0.000) (9.406)
PAP 0.864(0.001) 76739.950 48518.834 2752(11)

(928.209) (412.783)
RNG 0.902(0.009) 45751.008 45751.008 148(3)

(81.324) (81.324)
RNG (Ny 10%) 0.759(0.132) 57620.918 51801.754 123(7)

(11936.192) (5479.342)
RNG (Ny 2%) 0.810(0.098) 52415.133 49776.813 49(2)

(6287.455) (4657.611)
RNG (Ny 1%) 0.884(0.006) 46580.623 46216.928 48(4)

(232.367) (104.868)
PRNG (k = 1) 0.858(0.007) 76761.575 49118.806 63(1)

(520.301) (318.913)
PRNG (k = 3) 0.879(0.008) 61582.019 47875.753 83(2)

(432.681) (248.223)
PRNG (k = 5) 0.884(0.008) 58155.238 47432.292 99(4)

(383.595) (148.811)
RGTM 0.941(0) 41407.211 37737.074 3262(49)

(0.000) (0.000)
RGTM (Ny 10%) 0.409(0.072) 428041.085 66159.509 512(113)

(1030835.396) (3041.827)
RGTM (Ny 2%) 0.689(0.190) 60274.937 50668.785 424(34)

(1449.945) (7935.304)
RGTM (Ny 1%) 0.885(0.012) 44763.112 41277.147 416(7)

(1929.780) (419.516)
PRGTM (k = 1) 0.856(0.010) 61176.709 43915.486 359(18)

(676.005) (723.462)
PRGTM (k = 3) 0.869(0.011) 51346.674 40622.258 620(25)

(197.432) (443.058)
PRGTM (k = 5) 0.886(0.006) 48464.344 39935.687 1089(63)

(308.555) (361.247)

Table 5.1: Results on the Chromosome data set: The different methods are trained for
the full data set and the classification accuracy (accuracy), the quantization error (QE),
and the dual quantization error (dual QE) are reported. In addition, we include the
CPU time. The standard deviation is given in parentheses.

Nyström approximation with 10% of the data. This can be explained by a bad quality
of the resulting dissimilarity matrix. We will specify this issue in a separate paragraph
shortly. Hence, in this setting, the Nyström approximation fails.

On the other hand, we can observe a drop down of the quantization error by more



than 20% as compared to the best result, but the dual quantization error and the
classification error do not follow the trend. This holds in particular for AP and for patch
approximations. The reason behind this effect is that prototypes are located at restricted
positions in such settings because they are represented by exemplars (a small number of
k exemplars for patch processing). This causes the quantization error to increase, albeit
the resulting cluster separation is still acceptable as measured by the dual quantization
error. For this reason, we suggest that the dual quantization error is more suited to
compare the results.

When focussing on the dual quantization error, we can observe that the approximation
techniques yield results which are mostly comparable to the original techniques for AP and
RNG. More precisely, the increase is less than 3% for PAP as compared to AP, less than
9% for PRNG and RNG (Ny) as compared to RNG except for Nyström approximation
using 10%. For RGTM, the increase is less than 8% for the Nyström approximation
using 1% of the data, and for patch processing with k ∈ {3, 5}. Thus, it seems that
the approximation techniques are well suited if appropriate parameters concerning the
approximation are taken.

This overall picture is confirmed if the generalization ability of a classifier by posterior
labeling is addressed as displayed in Tab. 5.2. Interestingly, the sensitivity of the approx-
imation techniques to the ordering of the data is quite diverse. While the classification
accuracy of patch processing is still more than 84% for streaming data, the Nyström
approximation cannot deal with such settings. The letter can be accounted for by the
fact that the approximate matrix has a small rank if only a subspace of the full data
space is isolated by means of a specific ordering.

Due to the comparably small size of the data set, the speed-up of the approximation
techniques is only partially observable. As displayed in Tab. 5.1, a speed-up up to 3 can
be gained for RNG, and more than 7 for RGTM. Surprisingly, PAP needs longer run
time than AP. This can be explained by the fact that we also include necessary restarts
to obtain a correct number of clusters by binary search.

In summary, RGTM and a patch approximation with sufficient k seems best suited
in this setting to arrive at a good cluster structure or classification. The Nyström
approximation seems problematic due to very different results for different parameter
choices in this setting.

The Chromosomes data set has also been addressed in the approach [51]. In this
approach, k-nearest neighbor classification is based on the edit distance to compare the
data. Results report a classification error of only about 5%, alternative classifiers such
as Hidden Markov Models or feedforward networks account for an error of about 9%.
Our experimental setting is slightly different. Still, the classification error is in the same
order of magnitude for RNG, albeit the latter does not take into account the class labels
during training.

Results for the Vibrio data

For the Vibrio data set, the overall picture is similar as summarized in Tab. 5.3 and
Tab. 5.4. RGTM displays the best quantization error and dual quantization error, while
AP leads to the best classification accuracy. This is an indicator that, in this setting, the



Chromosomes accuracy Streaming data
AP 0.895 (0.006)
PAP 0.838 (0.005) 0.783 (0.022)
RNG 0.902 (0.003)
RNG (Ny 10%) 0.497 (0.057) 0.101 (0.053)
RNG (Ny 2%) 0.700(0.039) 0.088(0.034)
RNG (Ny 1%) 0.871 (0.009) 0.088 (0.031)
PRNG (k = 1) 0.854 (0.006) 0.621 (0.021)
PRNG (k = 3) 0.877 (0.004) 0.747 (0.016)
PRNG (k = 5) 0.880 (0.006) 0.763 (0.012)
RGTM 0.881 (0.007)
RGTM (Ny 10%) 0.516 (0.066) 0.431 (0.082)
RGTM (Ny 2%) 0.638 (0.081) 0.582 (0.107)
RGTM (Ny 1%) 0.878 (0.027) 0.756 (0.099)
PRGTM (k = 1) 0.840 (0.005) 0.843 (0.007)
PRGTM (k = 3) 0.858 (0.007) 0.857 (0.006)
PRGTM (k = 5) 0.873 (0.005) 0.871 (0.005)

Table 5.2: Results on the Chromosomes data set in a repeated ten-fold cross-validation
evaluated by posterior labeling, the standard deviation is shown in parenthesis

priorly known class structures are only partially mirrored in the cluster structure found
in the data set. As for Chromosomes, exemplar based techniques lead to an increased
quantization error, while its dual is competitive to the results of RNG and RGTM. In
this setting, the approximation techniques are uniformly good, leading to an increase
of the dual quantization error of less than 6% in all settings but patch RGTM with
k = 1. In Tab. 5.4, the classification accuracy obtained for streaming data is displayed in
comparison to a random permutation. Again, the Nyström approximation cannot deal
with this setting in the same way as patch processing, the latter yielding an accuracy of
more than 80% for all but the 1-approximation.

Again, due to the size of the data set, the speed-up of the approximation techniques
is only partially visible. It accounts for a factor close to 4 for PAP as compared to AP, up
to 6 for approximations of RNG, and more than 3 for RGTM approximations. Generally,
the Nyström approximation seems more efficient with respect to the time complexity as
compared to patch processing due to the smaller overhead of the technique.

In summary, AP and PAP are preferred if the prior classification task is addressed this
way. If the dual quantization error is in the focus, all methods and their approximations
seem universally suited. For comparison, the result of an SVM classification (standard
Matlab implementation in the bioinformatics toolbox with default parameters, the SVM
directly works on the given Gram matrix) leads to 100% classification accuracy in a
cross-validation. As reported above, AP yields almost the same accuracy albeit not
taking class labels into account during training.



Vibrio accuracy QE dualQE CPUtime
AP 0.999(0.000) 594.480(0.000) 303.755(0.000) 136(1)
PAP 0.992(0.013) 604.993(2.546) 304.702(1.218) 35(3)
RNG 0.796(0.025) 327.899(4.332) 327.889(4.332) 18(1)
RNG (Ny 10%) 0.895(0.024) 316.945(2.464) 316.904(2.497) 13(1)
RNG (Ny 2%) 0.841(0.015) 333.296(3.892) 330.847(3.589) 3(0)
RNG (Ny 1%) 0.764(0.029) 358.924(8.236) 344.848(5.423) 3(0)
PRNG (k = 1) 0.732(0.034) 661.101(9.277) 343.007(7.624) 16(0)
PRNG (k = 3) 0.864(0.035) 422.829(8.383) 319.353(4.389) 23(0)
PRNG (k = 5) 0.859(0.019) 385.893(5.979) 321.858(2.501) 34(7)
RGTM 0.960(0.000) 305.637(0.000) 285.757(0.000) 111(9)
RGTM (Ny 10%) 0.925(0.022) 308.804(6.096) 301.493(5.427) 48(2)
RGTM (Ny 2%) 0.946(0.019) 309.885(5.501) 293.813(5.332) 38(1)
RGTM (Ny 1%) 0.806(0.025) 357.398(4.175) 296.326(8.282) 35(2)
PRGTM (k = 1) 0.702(0.103) 451.467(6.351) 328.479(20.430) 166(7)
PRGTM (k = 3) 0.876(0.027) 375.971(2.109) 293.201(2.491) 234(11)
PRGTM (k = 5) 0.897(0.030) 341.489(4.233) 291.986(3.756) 309(14)

Table 5.3: Results on the Vibrio data set when trained for the full data set. The standard
deviation is given in parentheses.

Results for the SwissProt data

For the SwissProt data set, results are reported in Tab. 5.5. The dual quantization error
is best for AP, but the dual quantization error for PAP and RNG and its approximation
uniformly less than 10% away. Thereby, no big difference can be observed for the
different approximation technique. The RGTM seems universally less suited for the
data set, probably because of too strong topological constraints which prevent a good
representation of the data in this case. Albeit the dual quantization error is competitive,
the classification accuracy varies in the diverse cases. It displays more than 90% accuracy
for AP and its approximation, but less than 70% for some of the approximations of RNG.
Thus, the link between the priorly given classes and the cluster structure is not clear.

Because of the size of the data set, the speed-up of the approximation techniques
can clearly be observed in all cases. It accounts for a factor 2.5 for PAP as compared
to AP, up to 6 for approximations of RNG, and up to 10 for approximations of RGTM.
The speed-up depends on the parameter choice, smaller values of k for patch processing
and a smaller percentage of data points for the Nyström approximation accounting for
considerably reduced CPU time.

In summary, any approximation of AP and RNG seems suited in this case if the goal
is a good clustering structure (as measured by the dual quantization error), while AP
and PAP lead to the best classification accuracy in this setting. For comparison, an SVM
has been trained in a 2-fold cross-validation for the given Gram matrix (standard Matlab
implementation in bioinformatics toolbox). It yields 98% classification accuracy. Hence
AP and PAP are in the same order of magnitude, albeit they do not take into account



Vibrio accuracy streaming data
AP 0.999 (0.000)
PAP 0.999 (0.000) 0.993 (0.004)
RNG 0.798(0.012)
RNG (Ny 10%) 0.885 (0.010) 0.392 (0.097)
RNG (Ny 2%) 0.823 (0.012) 0.179 (0.117)
RNG (Ny 1%) 0.715 (0.014) 0.052 (0.034)
PRNG (k = 1) 0.729 (0.011) 0.658 (0.022)
PRNG (k = 3) 0.842 (0.012) 0.819 (0.013)
PRNG (k = 5) 0.858 (0.005) 0.820 (0.014)
RGTM 0.947 (0.005)
RGTM (Ny 10%) 0.939 (0.007) 0.848 (0.023)
RGTM (Ny 2%) 0.781 (0.021) 0.697 (0.040)
RGTM (Ny 1%) 0.547 (0.031) 0.462 (0.058)
PRGTM (k = 1) 0.692 (0.029) 0.645 (0.034)
PRGTM (k = 3) 0.867 (0.013) 0.852 (0.017)
PRGTM (k = 5) 0.903 (0.011) 0.898 (0.011)

Table 5.4: Results on the Vibrio data set when evaluated in a repeated ten-fold cross-
validation for randomly permuted data sets (accuracy) and trained for the streaming
setting, i.e. data sets presented according to the class labels, the standard deviation is
shown in parenthesis

the class labels during training. Interestingly, SVM training is quite affected when taking
the Nyström approximation for speed-up. The classification accuracy drops down to
86% for 1% data for approximation, and to 63% for 10% data for approximation. These
results are in the same order of magnitude as the classification results of the Nyström
approximation of RNG.

5.4.1 Quality of the Nyström approximation

In the experiments, we generally observe the fact that patch processing leads to better
results the larger the approximation parameter k, which is expected. In contrast, the
Nyström approximation does not alway lead to better results if a larger fraction of the
data is used for the approximation. In this paragraph, we investigate in how far this
observation can be traced back to the quality of the Nyström approximation when using
different fractions of the data. For this purpose, we sample a fraction ranging from 1%
up to 50% (10% for SwissProt) of the data based on which the Nyström approximation
is computed. For the clustering techniques, the absolute value of the dissimilarities is
generally less relevant as compared to the induced order of the data. Therefore, we
compare the resulting Nyström approximation with the original dissimilarity matrix
taking Spearman correlation of the rows. We average over ten random selections of the
data.

The results are displayed in Fig. 5.1 and Fig. 5.2 for all three data sets. All values



SwissProt accuracy crossVal dualQE CPUtime
AP 0.931(0.001) 0.925 (0.001) 3370.656(0.000) 14162(37)
PAP 0.925(0.000) 0.919 (0.001) 3451.163(13.659) 5644(316)
RNG 0.883 (0.008) 0.873 (0.004) 3476.074(6.427) 2769(16)
RNG(Ny 10%) 0.639(0.168) 0.660(0.057) 3742.972(466.172) 2767(45)
RNG(Ny 2%) 0.781(0.010) 0.840(0.004) 3582.827(13.728) 801(22)
RNG(Ny 1%) 0.761(0.016) 0.825 (0.009) 3712.956(55.872) 437(27)
PRNG(k = 1) 0.857 (0.006) 0.858 (0.003) 3738.329(16.182) 863(5)
PRNG(k = 3) 0.628 (0.029) 0.633 (0.010) 3628.645(31.275) 1285(12)
PRNG(k = 5) 0.639 (0.018) 0.635 (0.010) 3588.068(17.277) 1712(16)
RGTM 0.700(0.000) 0.702 (0.015) 3943.099(0.000) 78518(635)
RGTM(Ny 10%) 0.579(0.172) 0.620 (0.076) 3937.313(454.717) 14582(160)
RGTM(Ny 2%) 0.841(0.035) 0.769 (0.010) 3582.751(89.055) 8045(57)
RGTM(Ny 1%) 0.831(0.041) 0.630 (0.017) 3651.053(89.256) 7247(171)
PRGTM(k = 1) 0.423(0.039) 0.398 (0.023) 4177.034(116.670) 5059(372)
PRGTM(k = 3) 0.451(0.034) 0.412 (0.016) 4069.374(45.699) 6755(289)
PRGTM(k = 5) 0.465(0.049) 0.388 (0.006) 4003.668(78.533) 8917(1852)

Table 5.5: Results on the SwissProt data set, the different methods are trained for the
full data set and evaluated with the classification accuracy (column accuracy) and the
dual quantization error (dualQE), and they are trained in a repeated cross-validation
and evaluated by the classification error (column crossVal). The CPU time is measured
for one run for the full data set.

are significant corresponding to p-values smaller than 0.1. Interestingly, the graphs are
not monotonously increasing. That means, the Nyström approximation in terms of the
induced ordering of data points does not necessarily become better the larger the fraction
of the data used for approximation. In particular for Chromosomes, approximations
with only 1% of the data yield an almost perfect correlation, while this drops down
for larger sizes. In contrast, the approximation quality of the Vibrio data set increases
for a percentage ≤ 15%. This observation can be one reason why the accuracy of the
clustering results is also not monotonic with respect to the percentage of data points as
detailed above. For SwissProt, the approximation quality seems universally good for a
range from 1% to 5% resulting in a high correlation.

5.4.2 Computational complexity

As already mentioned, the computational complexity of all clustering techniques AP,
RGTM, and RNG is O(n2). Further, the full dissimilarity matrix D has to be computed,
which also has time and space complexity O(n2). Where are the current limits for the
exact methods? Assuming double precision and standard memory of 12 Gigabytes, a
dissimilarity matrix of up to 30,000 objects would currently fit into main memory. Hence
the SwissProt data set is already in the order of data sets which only just fit into main
memory – it amounts to about 500 Megabytes. Probably the larger bottleneck is given by
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Figure 5.1: Quality of the Nyström approximation as evaluated by the Spearman corre-
lation of the rows of the approximated matrix and the original one. The approximation
is based on a different fraction of the data set as indicated by the x-achses. The graphs
show the result for the Chromosomes (top) and Vibrio (bottom).
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Figure 5.2: Quality of the Nyström approximation as evaluated by the Spearman corre-
lation for SwissProt.

the computation of the dissimilarity matrix. For the SwissProt data set, its computation
took about 8 days (using the Bioinformatics toolbox of Matlab for Smith Waterman).

If either approximation is used, the computational complexity as well as the size of
the matrix which is required reduces to a linear part with respect to n, assuming fixed
approximation parameters (i.e. a fixed percentage of data for the Nyström approximation
and a fixed patch size, respectively. Further, naturally, initialization of RGTM (Ny) has
to rely on landmark MDS to transfer this linear complexity to the initialization.) For an
approximation with 100 points for the Nyström technique or patch sizes of 100 points,
the required space would reduce to about 4.5 Megabytes and a computation time of less
than 2 hours for the required dissimilarities.

5.5 Patch and Nyström RGLVQ

In previous sections we have integrated two approximations techniques to relational
prototype-based clustering techniques. In the same way these techniques can be directly
transferred to supervised learning techniques introduced in Section 4.3, since they have
the same problem: for supervised techniques such as RGLVQ, RRSLVQ, they rely on the
full dissimilarity matrix D and represent prototypes implicitly by means of coefficients αji
(4.1) referring to the contribution of data point xi to prototype wj , i.e. the algorithm has
squared time complexity and linear space complexity. Here we extend patch processing
to RGLVQ as an example, extending it to relational RSLVQ is analog.



The workflow of patch processing for RGLVQ is the same as for clustering techniques
: A fixed size of the patches M is chosen, and data are separated into patches. Then
the patches of data are processed consecutively using RGLVQ. To apply RGLVQ, the
dissimilarities of data and these prototypes need to be available. In patch processing,
these are retrieved on the fly. To compute these dissimilarities efficiently, after processing
a patch, we approximate a prototype by its k-approximation for fixed k. This way, the
dissimilarity matrix considered in step p corresponds to a fixed size M + kK matrix, K
being the number of prototypes.

Exemplars/k-approximated prototypes representing the previous training results rep-
resent a subset of data. Thus, to weight their relevance correspondingly, we again assign
a multiplicity to these prototypes which corresponds to the size of its receptive field
divided by k. This means, we assume that the corresponding prototypes are contained in
the data set not only once but multiple times. Note that RGLVQ can easily be extended
to deal with sets where data points are equipped with multiplicities. For a points xi
with multiplicity mi its contribution to the costs is simply multiplied by mi. Hence the
corresponding step width of a gradient descent algorithm is simply multiplied with mi.
The resulting algorithm, Patch RGLVQ, is depicted in Algorithm 2.

Algorithm 2 Patch RGLVQ
1: init: E := ∅; . stores exemplars/k-approximated prototypes
2: p := 0; . patch number
3: repeat
4: PM,M := {d(xi,xj)} | i, j ∈ {p ·M + 1, . . . , (p+ 1) ·M}}; . patch size M
5: PM,|E| := {d(xi,xj) | p ·M < i ≤ (p+ 1) ·M,xj ∈ E};
6: . dissimilarities of patch and exemplars
7: P|E|,|E| := {d(xi,xj) | xi,xj ∈ E}; . dissimilarities of exemplars

8: P :=
(
PM,M PM,|E|
P TM,|E| P|E|,|E|

)
; . full matrix for loop

9: mi := 1 for xi in PM,M ; . standard points in this patch
10: perform RGLVQ for P
11: approximate prototypes by k closest exemplars; . k-approximation
12: E := set of exemplars obtained this way; . new exemplars
13: mi := size of receptive field/k counted as multiplicities for xi ∈ E;
14: p:=p+1; . next patch
15: until all dissimilarities are considered

Using (5.4) for distance calculation we can directly integrate the Nyström approxima-
tion in RGLVQ or RRSLVQ by taking a random subsample of M points to approximate
the dissimilarity matrix. The sample size M is differed during training showing the effect
of the approximation on the percentage used for the approximation.



RGLVQ RGLVQ PRGLVQ
(Ny 10%) k = 1 k = 3 k = 5

Vibrio 1.000(0.000) 0.992(0.001) 0.999(0.000) 1(0) 1(0)
Chromosomes 0.927(0.002) 0.782(0.004) 0.867(0.002) 0.840(0.006) 0.828(0.003)
SwissProt 0.823 (0.000) 0.834(0.002) 0.833(0.008) 0.824(0.007) 0.822(0.014)
speed-up factor 1 7.6 26.2 20 13.2

Table 5.6: Results on three data sets: RGLVQ, RGLVQ with Nyström, and Patch RGLVQ
(PRGLVQ) are evaluated in a repeated cross-validation. The classification accuracy, and
the speedup factor for SwissProt according to the CPU time are reported.

Experiments

We evaluate the Patch and Nystöm RGLVQ on the same benchmark data sets as used
for the unsupervised case in Section 5.4. We compare the results of RGLVQ for the full
dissimilarity matrix, patch processing and a Nyström approximation (10%). The setting
is as follows in the experiments:

• Evaluation: We evaluate the result by means of the classification accuracy obtained
in a ten-fold cross-validation with 10 repeats (Chromosomes, Vibrio), or a 2-fold
cross-validation with 10 repeats (SwissProt).

• RGLVQ: The prototypes are initialized randomly, and training takes place for 5
epochs. We use 49 (Vibrio), 63 (Chromosomes), and 64 (SwissProt) prototypes
evenly distributed among the classes.

• Patch processing : For patch processing, ten patches are chosen. The value k for
the k-approximation for patch processing is taken in {1, 3, 5}.

• Nyström approximation: A fraction of 10% of the data is used.

• Implementation: For all data sets, we use a 12 Intel(R) Xeon X5690 machine with
3.47GHz processors and 48 GB DDR3 1333MHz memory.

For Vibrio and SwissProt, the classification accuracy obtained with a linear time
approximation is the same as for full RGLVQ. For Chromosomes, it decreases by 6%
using patch approximation as compared to almost 25% for the Nystöm approximation.
Interestingly, all patch approximations already yield a high quality when approximating
the prototypes by its closest exemplar (k = 1). This approximation has the side effect that
classes can directly be inspected in terms of this representative exemplar, i.e. interpretable
models result. We measure the speed-up of the technique for the SwissProt data set
which deals with close to 11, 0002 entries. Original RGLVQ takes 24481 seconds CPU
time (i.e. almost seven hours), which can be accelerated by a factor 26 to 15 minutes
using patch processing – the Nyström approximation requires considerably more time.
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Supervised Unsupervised

GLVQ RSLVQ NG AP GTM

2

cost function margin likelihood
ratio

topographical
QE

QE dual like-
lihood

complexity O(n) O(n) online: O(n) O(n2) O(n)batch: O(1)
data type vectorial vectorial vectorial vectorial vectorial
working style online online batch/online online batch

4 relational data
√ √

[37] similarity [29]

5
patch

√
analog [37]

√ √

nyström
√

analog
√

- [28]

Table 5.7: Summary of chapter 5: Patch/Nyström relational prototype-based learning
methods

5.6 Conclusions

We have presented two different ways to speed-up prototype-based clustering and clas-
sification of dissimilarity data: the Nyström approximation and patch processing. We
showed whether and how these techniques can be included into three representative clus-
tering techniques, affinity propagation, relational neural gas, and relational generative
topographic mapping, respectively, and one supervised technique, relational generalized
learning vector quantization, summarized in Table 5.7. Assuming a fixed quality of the
approximation, this way, linear instead of squared complexity can be achieved. The
corresponding speed up has been presented in a large scale setting, a fraction of the
popular SwissProt data set.

As demonstrated in several experiments, the approximation techniques lead to a
decrease of accuracy which is, depending on the setting, only in the range of a few
percentage. However, the result depends on the chosen evaluation measure, the chosen
approximation technique, and the data set. It seems that patch approximation is often
suited if k is chosen sufficiently large. The Nyström approximation gives good results
if the quality of the approximation of the dissimilarity matrix is sufficient. This can
depend on the data set and, surprisingly, it is not necessarily monotonic with respect to
the fraction of the data taken into account.

Note that the two approximation techniques presented in this chapter are suited for
different settings. For the Nyström approximation, it can be specified a priori which
parts of the dissimilarity matrix are required for training. To be applicable, however, a
representative subsample of the data need to be available a priori, thus it is not suited if
streaming data are dealt with. Further, it can only be integrated into algorithms which
include the dissimilarity matrix in full matrix form. Affinity propagation, which deals
with these values in a distributed way, cannot be accelerated using this technique.

In contrast, patch processing requires a (right from the beginning fixed) linear part
of the dissimilarity matrix located along the diagonal, and, in addition, dissimilarities of
data and exemplars which are determined during training only. Hence it can be applied
only in settings where additional dissimilarities can be retrieved on demand. However,



due to its way in which information is compressed, it can also deal with streaming data.
Hence it seems particularly suited for life-long adaptation. Further, it constitutes a
very simple meta-heuristic which is directly applicable for every clustering scheme which
represents clusters in terms of exemplars, and which can deal with multiple data points
in an efficient way.

Since both techniques rely on a linear subpart of the full dissimilarity matrix, they
can lead to a severe information loss: in theory, it is possible that the most relevant
information is located at those parts of the dissimilarity matrix which are not even
computed in the approximations. Thus, there cannot exist a non-trivial upper bound on
the information loss if no further assumptions on the dissimilarity matrix are assumed.
However, in practice, it seems that the approximation schemes are well suited to preserve
the relevant information. This is mirrored in an information loss of only a few percentage
provided an appropriate approximation technique is chosen.

The best approximation technique as well as the meta-parameters such as the size
of the subsamples and the number of exemplars used to approximate the prototypes are
not clear a priori and the quality can differ a lot depending on the data setting. Hence it
would be desirable to derive characteristics of the dissimilarity matrix which guarantee
that a certain approximation technique is well suited in the given setting. This question
could be tackled empirically as well as from a theoretical side. It is the subject of ongoing
research.

Moreover, another more general drawback of prototype-based learning is the number
of prototypes, as in the experiments we have to specify the number of prototypes for each
data set beforehand. It crucially depends on the data, maybe one general rule for setting
the right number is that at least each class should have one prototype. But if the data
are multimodal, one prototype per class can not be sufficient. In the next chapter we will
tackle this problem: by means of a statistical measure, the sufficiency of prototypes can
be evaluated. If necessary, new prototypes can be added into the model so that sufficient
model complexity can be obtained to more appropriately represent the data distribution.





Chapter 6

Adaptive conformal learning
vector quantization

Chapter overview

Existing prototype-based algorithms have two general problems. The first one is the model com-
plexity, i.e. the number of prototypes, which has to be predefined before training. Although this
problem can be partially solved by cross-validation for an evaluation of different sizes of the model,
it is unfeasible for large data sets and not suitable for online learning. The second problem is
the lack of reliability about the classification decision. In this chapter using concepts from con-
formal prediction we tackle these two problems and propose an adaptive extension of Relational
GLVQ with point wise confidence values evaluating the corresponding predictions. This chapter
is partially based on the publication [85].

6.1 Introduction

Prototype-based learning enjoys a wide popularity due to its intuitive training process
and interpretable model inspecting the data. Extensions such as kernel variants [77, 78],
or metric learning [86] make classical methods also suitable for more complex or hetero-
geneous data sets. Furthermore, recent research on extending their ability to proximity
data even makes this possible that they can directly deal with arbitrary dissimilarity
data without necessity of an explicit embedding into some space. As elaborated in the
previous chapters, this opens a more broad application area for prototype-based learning,
especially in bioinformatics [39, 41, 37].

However, existing prototype-based algorithms have two general problems. The first
one is the model complexity, i.e. the number of prototypes which has to be defined in
advance. Second, most of them provide only crisp classification without any measure of
reliability, similar to p- or q-values from statistics, which is always expected and beneficial
especially in life sciences or medical applications. There are some extensions investigated
to automatically adjust the number of prototypes by adding new prototypes or deleting
redundant ones [33, 54, 52], but most of them are restricted to vector spaces and based on
heuristics, but not in a statistical sense. Especially, they can not be directly transferred
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to dissimilarity data. Also, only few attempts exist to give reliability estimates for these
techniques or reject options meaning that for a given reject level and a rejection measure
if the corresponding values for some data points are under this level, their predictions
will not be considered [94, 23, 100], most of them are cost function based or probabilistic,
not in a statistical sense.

In this chapter we keep the focus on classification tasks in the context of dissimilarity
learning and solve these two open problems together by using concepts from conformal
prediction (CP) [105] which is a statistically well founded theory and can be used for
evaluating classifiers, and it has been widely used in different areas [4]. In the end,
a relational prototype learner is proposed extended by conformal prediction concepts,
referred to as Adaptive Conformal Relational GLVQ (AC-RGLVQ). AC-RGLVQ can be
directly applied to dissimilarity data, providing sparse interpretable models where each
classification is supported by a measure of confidence. In addition, the confidence is used
for a dynamic adaptation of the model complexity during learning, growing the model
complexity as required by the resulting conformal regions.

First, we introduce the basic concepts of conformal prediction, then show how to
combine both together. Actually, this kind of combination can be considered as a
general framework which can be straightforwardly transferred to other prototype-based
supervised techniques.

6.2 Conformal prediction

Conformal prediction (CP) is a very general theory about prediction and also a new
approach to obtain confidence values. Conformal prediction can be built on top of
traditional algorithms, while besides predictions it also provides two measures “confidence”
and “credibility” which indicate how suitable are the training data for classification of
new examples. Conformal prediction has been widely used by combining with other
methods such as SVM, nearest-neighbor method, ridge regression, etc. [105], also in
many applications such as outlier detection, feature selection, quality assessment, etc.
[4]. Because of the theoretically proved validity of conformal prediction, it constitutes an
very attractive tool for many real-world problems such as face recognition, biomedical
applications, etc. More applications can be found in [4]. Originally, conformal prediction
is focused on online settings. For our purposes, we follow the batch version. In the
following we will outline the main idea of conformal prediction. A more comprehensive
treatment of this topic is provided in the book [105].

Generally, we follow the notation of conformal prediction as in [105, 91]. Denote
the labeled training data zi := (xi, yi) ∈ Z = X × L. Furthermore let xn+1 be a new
data point with unknown label yn+1, i.e. zn+1 := (xn+1, yn+1). For given training data
(zi)i=1,...,n, an observed data point xn+1, and a chosen significance level ε, the conformal
prediction (CP) computes an (1− ε)-prediction region

Γε(z1, . . . , zn,xn+1) ⊆ L

consisting of a number of possible label assignments with probability. It ensures that



if the data zi are exchangeable1, i.e. the distribution of a data sequence z1, . . . , zn is
invariant under permutations, then

P (yn+1 /∈ Γε(z1, . . . , zn,xn+1)) ≤ ε (6.1)

holds for each distribution of Z, which means that the set Γε that contains yn+1 with
probability at least 1− ε. One says that the predictor is valid. It is important to mention
that the probability is unconditional, such that if we repeat the process of drawing data
(z1, ..., zn,xn+1) and generating Γε a number of s times we will find that in at most ε · s
cases the real label yn+1 is not among the predicted labels of Γε, if statistical fluctuations
are ignored.

6.2.1 Prediction region and non-conformity measure

To compute the conformal prediction region Γε, a non-conformity measure A(D, z) is
fixed, where D={z1, . . . , zn} denotes the data set and z = (x, y) denotes an observation.
It is used to calculate a non-conformity value (denoted as ayx) that estimates how this
observation z fits to given representative data D. In theory, any measure could be used,
providing a nontrivial result for suitable choices only. It is the part of the method that
can incorporate detailed knowledge about the data distribution. In [105] a number of
non-conformity measures with respect to SVM, nearest neighbors, neural networks, etc.
has been discussed. Given a non-conformity measure A, a significance level ε, a set of
examples D, a new object xn+1 and a possible label y, it is decided whether y is contained
in Γε(z1, . . . , zn,xn+1) according to Algorithm 3.

As an example of non-conformity measure, since we focus on prototype-based methods,
for a given labeled data point z and a trained GLVQ model W based on the training data
D, we choose the following function based on the model W as non-conformity measure
throughout this thesis

A(D, z) := A(W, z) = ayx =
d+(x)
d−(x)

. (6.2)

with d+(x) being the distance between x and the closest prototype labeled y, and d−(x)
being the distance between x and the closest prototype labeled differently than y where
distances are computed according to Eq. (4.2) for relational setting. For vectorial setting,
the Euclidean distance can be directly used. This choice of non-conformity measure is
very similar to the case for nearest neighbors as in [91] in which the ratio of the distances
to two nearest neighbors with different labels (in the sense that one has the same label
as the data and another has a different one) is as non-conformity measure. We expect
that values ayx are small for data z for which the prediction has high confidence, but it
is large if the label does not comply with data.

Depend on the non-conformity values, the p-value for each possible label (row 8 in
Algorithm 3) can be used in two different ways: First, as shown in Algorithm 3 row 10,
for given significance level ε (typically a small constant, e.g. 0.05), the prediction region

1Exchangeability is a weaker condition than data being i.i.d. which is readily applicable to the online
setting as well, see [105] for more details.



Algorithm 3 Conformal Prediction (CP)
1: function cp(D, xn+1, ε)
2: for all y ∈ L do
3: zn+1 := (xn+1, y)
4: for i = 1, . . . , n+ 1 do
5: Di := {z1, . . . , zn, zn+1}\{zi}
6: ayi = A(Di, zi) . non conformity of zi against Di wrt. label y
7: end for
8: pyn+1 =

|{i=1,...,n+1 | ayi≥a
y
n+1}|

n+1 . p-value of label y
9: end for

10: return Γε := {y : pyn+1 > ε}
11: end function

can be obtained which contains the labels whose p-values are larger than ε such that one
can be 1− ε confidence that the true label will be included. Another way is that for each
new data point, the predicted label together with a confidence and a credibility measure
about this classification can be obtained, which we will discuss in the following.

6.2.2 Confidence and credibility

The prediction region Γε(z1, . . . , zn,xn+1) stands in the center of conformal prediction.
For a given significance level ε, it contains the possible labels of L that ensure (6.1). But
how can we use it for prediction?

Suppose we use a meaningful non conformity measure A such as (6.2). If the value ε
is approaching 0, a conformal prediction with almost no errors is required, which can only
be satisfied if the prediction region contains all possible labels. If we raise ε, we allow
errors to occur and as a benefit the conformal prediction algorithm excludes unlikely
labels from the prediction region, increasing its information content. In detail those
labels are discarded for which the p-values are less than or equal to ε. Hence only a
few zi are as non conformal as zn+1 = (xn+1, y). This is a strong indicator that zn+1

does not belong to the distribution Z and so y seems not to be the right label. If one
further raises ε, only those labels y remain in the conformal region that can produce a
high p-value meaning that the corresponding zn+1 is rated as very typical by A.

So one can trade significance level ε against information content. The most useful
prediction is those containing exactly one label. Therefore, given an input xi two error
rates are of particular interest, εi1 being the smallest ε and εi2 being the largest ε so that
|Γε| = 1. εi2 is the p-value of the best label (i.e. the largest p-value) and εi1 is the p-value
of the second best label (i.e. the second largest p-value). Thus, typically, a conformal
predictor outputs the label y which describes the prediction region for such choices ε, i.e.
Γε = {y}, and the classification is accompanied by the two measures

confidence : cfi = 1− εi1 = 1− py2nd (6.3)

credibility : cri = εi2 = py1st (6.4)



Confidence says something about being sure that the second best label and all worse
ones are wrong, i.e. the higher the confidence value for a label the less likely for any
other label being the true label. Credibility says something about to be sure that the
best label is right such that the data point is typical with respect to the given data and
not an outlier.

An example is shown in Figure 6.1: The data consist of two well-separated clusters.
The data points around the centers (in the dashed circles) have higher credibility and
higher confidence than the data farther from the centers. The data points that are a bit
farther from the centers but not outliers (in the dashed ellipses) have higher credibility
but lower confidence (because they are nearer to the other cluster than the data around
the centers). Furthermore there are two types of outliers: (i) the data points are far
away from the centers but nearer to the other cluster than other data points in the same
cluster, so they have lower credibility and lower confidence. (ii) the data points are far
away from the centers and even farther away from the other cluster than other data
points in the same cluster, so they have lower credibility and higher confidence.

The non-conformity measure has a direct impact on the efficiency of the prediction
region. A good, informative measure will exclude wrong labels for low significance levels
and will reject typical data only for high significance levels, meaning that εi2 − εi1 is large
for typical data xi. That means, that a good measure can give useful information already
for low significance level εi1 and on the other hand one would have to face up a high
average significance level εi2 to exclude the right label from the prediction region.

We would like to point out that the concept of conformal prediction permits pointwise
measures of confidence which change if the training data is adapted, also if the decision
boundaries remain the same. This means, that similar as in classical statistics, more
densely populated training regions permit a better confidence in a decision.

6.2.3 Inductive conformal prediction

Because the original conformal prediction has to be done for all leave-one-out multi-sets
for each of the test objects with all possible labels (xn+1, y) as shown in Algorithm 3,
it would entail high computational costs, especially for large data sets, To overcome
this problem, extensions of conformal prediction have been published, i.e. Inductive
Conformal Prediction (ICP) [105, 102] and Cross Conformal Prediction (CCP) [103].

Inductive conformal prediction (Algorithm 4) divides the training data into two
subsets: proper training set and calibration set. The model is trained on the proper
training set and then used to calculate the non-conformity values of the calibration set.
For new data points, classification takes place only based on the non-conformity of the
calibration set. In Algorithm 4, given a model trained using Dtr, for each entry in the
calibration set Dcal a non-conformity value is calculated (line 4-6). Based on these non-
conformity values a p-value is estimated for each possible label and a test point (line
7-10). For classification using the conformal classifier, the label of a test item will be
finally predicted as the label with the largest p-value. This refers to the label set provided
by the conformal predictor which contains only one label. More complex schemes, by
analyzing for example label sets with more than one label would be possible as well, but
are not further considered here. The confidence value (cf) is given as one minus the



Figure 6.1: An example about confidence and credibility: two Gaussians indicating two
clusters for two classes

second largest p-value (6.3) and the credibility (cr) is the largest p-value of this item
(6.4), as described in section 6.2.2. As pointed out by [102] the size of the calibration set
should be reasonably large to cover the data statistic.

Although ICP is computationally more efficient, since the training process only has
to be done once, it is predictively less efficient in comparison to the original conformal
prediction, in which the training set serves as proper training set and also as calibration set.
To avoid this problem another approach, cross-conformal prediction has been proposed,
which combines cross-validation with inductive conformal prediction. During the cross-
validation process (by taking one fold as calibration set and the remaining folds as proper
training set) the data statistic of the whole training set is accumulatively considered,
finally the non-conformity of each calibration is merged to classify new data, see [103]
for more details.

6.2.4 Validity of conformal predictors

It has been proved that conformal predictors are (unconditionally) valid (Proposition
4.1 in [105]) in the sense that in a long run the probability that an error occurs - the
underlying label is not in the prediction region (6.1) - dose not exceed ε at each chosen
confidence level 1−ε. Non-conformity measures do not effect the validity of the conformal
predictor, but its efficiency, in the sense that the prediction regions should be as small
as possible. This can be achieved only by choosing meaningful non-conformity measures
such as (6.2). Inductive conformal predictors as a computationally efficient version also
satisfy the same property of validity [105]. Additionally, the paper [102] studied various
versions of conditional validity of inductive conformal predictors and their modifications.



Algorithm 4 Inductive Conformal Prediction (ICP)
1: function icp(D, xn+1, ε)
2: Dtr ∪ Dcal := D . split D into proper training set Dtr and calibration set Dcal
3: W := the model trained on Dtr . train the model on Dtr
4: for all zi ∈ Dcal, i = 1, . . . , |Dcal| do
5: ayii = A(W, zi) . non conformity of the calibration set based on W : e.g. (6.2)
6: end for
7: for all y ∈ L do
8: zn+1 := (xn+1, y)
9: ayn+1 = A(W, zi) . non conformity of zn+1 based on W : e.g. (6.2)

10: pyn+1 :=
|{i=1,...,n | ayii ≥a

y
n+1}|

n+1 . p-value w.r.t label y using the non conformity
of Dcal

11: end for
12: return Γε := {y : pyn+1 > ε}
13: end function

A note on the literature of conformal prediction

The basic idea of conformal prediction was first published in [104, 82] in 1999. Later on,
this approach was compared to some similar frameworks such as Bayesian framework [64],
at that time it was called “typicalness framework”. Additionally, some applications for
classification and regression tasks in combinations with other learning methods such as
SVM were published, e.g. [67, 76]. At the same time, duo the computational inefficiency
of the original approach, inductive conformal prediction was proposed in [69]. Few years
later, in 2005, the first book of conformal prediction [105] came up, which constitutes
a comprehensive treatment of conformal prediction and summarizes previous published
work by the authors. It first explains conformal prediction under the assumption of i.i.d.
data, and then points out that this assumption can be relaxed to exchangeable data.
It discusses variants from online setting to offline setting and various non-conformity
measures in combination with a number of popular machine learning algorithms, and
focuses more on theoretical details and proofs such as the validity. In 2008, a tutorial [91]
about this topic was published, which emphasizes the validity of conformal prediction
for online setting, the meaning of exchangeability and the generalization of other online
compression models. Recently published work such as [103] proposed the cross conformal
prediction which tackles the predictive inefficiency issue of inductive CP, and the work
[102] discussed conditional validity of inductive CP. The most recently published book
[4] accumulated a broad range of applications of conformal prediction such as for feature
selection, outlier detection, etc., as well as for a number of real-world problems.

6.3 Adaptive conformal relational GLVQ

By traditional prototype methods the model complexity, i.e. number of prototypes, has
to be defined beforehand, and it highly depends on the data distribution. It is difficult



Algorithm 5 Adaptive conformal relational GLVQ
1: init: W := randomly initialized
2: Define a proper training set Dtr, a calibration set Dcal and a test set Tte
3: Ttr := randomly selected 80% of Dtr
4: Tcom := the remaining proper training data as complexity set
5: Wnew := ∅; Wbest := W ; B = ∅; itr = 0; itrbest = 0; maxitr = 100; winmax itr =

10; accbest = 0
6: repeat
7: W := W ∪ Wnew . retraining step
8: W := retrain W using RGLVQ on Ttr;
9: acc := evaluation of W on Ttr

10: if acc− accbest ≥ 1% then
11: Wbest = W ; accbest = acc; itrbest = 0;
12: else
13: itrbest = itrbest + 1;
14: end if
15: . adaptation of the model complexity step
16: ATtr := {ayii | i ∈ Ttr}, . non-conformities of Ttr
17: AL

Tcom
:= {ayi | i ∈ Tcom, y ∈ L} . non-conformity values of Tcom ∀y ∈ L

18: PL
Tcom

:= {pyi | i ∈ Tcom, y ∈ L} . p-values of Tcom for all possible labels based on
ATtr and AL

Tcom
19: CFTcom := {cfi | i ∈ Tcom}, CRTcom := {cri | i ∈ Tcom}
20: generate B
21: generate new prototypes Wnew from B
22: until itr = maxitr or itrbest = winmax itr or |B| < 1% · |Tcom|
23: ADcal := {ayii | i ∈ Dcal} . inductive conformal prediction process
24: AL

Tte
:= {ayi | i ∈ Tte, y ∈ L},

25: PL
Tte

:= {pyi | i ∈ Tte, y ∈ L} . p-values of Tte for all possible labels based on ADcal
and AL

Tte
26: return labels with largest pyi for each i ∈ Tte

to find the appropriate number of prototypes for different data sets.

Here, we use the additional information provided by conformal prediction to auto-
matically adapt the structural complexity of the model. We generally follow the concept
of inductive conformal prediction, but with a small modification for adaptation of the
model complexity. We split the data set into multiple subsets, where we assume that
each of them should be reasonably large to cover the data statistic. The proper training
set consists of two subsets, Dtr := Ttr ∪ Tcom, where Ttr is used to train the classifier
in a standard manner and Tcom, called complexity set, is used to adapt the complexity
of the trained model on Ttr. The calibration set is Dcal used during the prediction to
calibrate the p-values. Additionally, we will refer to the test set as Tte and assume that
the labels of Tte are unknown and have to be predicted by the classifier. In classical
inductive conformal prediction the model is trained only once based on Dtr, providing a



general classification rule, and the data of Dcal are used to calculate the p-values which
are taken to calculate the confidence and credibility measures for unknown data Tte. In
the original scheme Tcom does not exist and is subsumed by Dtr.

Algorithm 5 consists of three steps. Step one, covering lines 1-5, is the initialization
phase where the data are divided into four subsets as described before, Ttr, Tcom, Dcal
and Tte, and some basic variables are initialized. Step two (lines 6-22) covers the training
of RGLVQ, which is repeated each time the model complexity is adapted. First a RGLVQ
model is learned, based on the current prototype representations given in W and using
the training data Ttr. The optimized prototype representation is kept when there is a
substantial improvement in the prediction accuracy on the training data Ttr. Further we
test for data regions not well covered by the model using Ttr and Tcom, (lines 15-20). This
triggers a model complexity adaptation. The algorithm iterates until the stopping criteria
are met: line 22. The representation of the prototypes summarized in W is the matrix
of the α coefficients used in (4.2) and is based on Ttr and Tcom. The size of this matrix
(number of columns) is adapted in each complexity modeling step. Eventually, in step
three, the obtained optimized prototype representation Wbest is used to predict the label
and confidence or credibility values of the points from set Tte using Dcal in accordance
to the schema in Algorithm 4 and by using (6.2) as the non-conformity measure.

Depending on the size of available data we can either use a full inductive conformal
setting in the complexity adaptation and model prediction phase or limit inductive
conformal prediction only to the model prediction. The last one means that the relational
prototype classifier is not using inductive conformal prediction during the complexity
adaptation but only in the prediction of the items from test set Tte using the calibration
set Dcal. Accordingly, for model complexity adaptation based on the complexity set Tcom
we would not use a calibration set.

Alternatively we can use inductive conformal prediction also during the complexity
adaptation of the relational prototype classifier. This however requires an additional
calibration set in Algorithm 5, line 19. In the following we discuss the simplified case
where the model complexity adaptation is based on Ttr and Tcom only.

As discussed before the available data are divided into multiple subsets, for training
(Ttr), complexity (Tcom), calibration (Dcal) and test (Tte). We use 80% of the proper
training data Dtr as Ttr to train the model and 20% as Tcom to estimate the suitability
of the current model, or the model complexity, by means of conformal prediction. Note
that in this case we use a simplified version of conformal prediction in which we ignore
all leave-one-out multisets and train the model on the whole Ttr. That means training
only has to be performed once. The reasons thereof are: First, the locations of the
prototypes depend on the whole data distribution, and will not be widely affected by a
single data point. Secondly, the information loss will be minimal if the size of training
data is sufficiently large, in this case adding a data point but leaving out another data
point will not really affect the learning results. The calibration set Dcal and the test set
Tte are left out and used only in the prediction phase of the final trained model and not
during the model complexity adaptation.



Adaptation of model complexity

For Ttr and Tcom, we compute non-conformity values according to (6.2). These values
are used to calculate p-values for Tcom (here an alternative calibration set can be used
to get unbiased p-value estimates for Tcom given a large data set). This provides point
estimates for confidence and credibility of the classifier. We collect the set of points B
with low credibility and/or confidence.

A low confidence is given if (1 − εi1) ≤ ζ1, where ζ1 is a user defined threshold, for
example above the upper quartile of confidence values for the second best label. A
low credibility is observed for εi2 ≤ ζ2, where ζ2 is another threshold, e.g below the
first quartile of confidence values for the best label. Hence we define the so-called low
confidence/credibility region B

B = {xi : cfi ≤ ζ1 ∨ cri ≤ ζ2} (6.5)

If |B| is large (in our case we take a threshold of ≥ 1% · |T2|), the complexity of the
classifier is not yet sufficient. Hence, this parameter and ζ1, ζ2, control the sparsity of
the model. For the data considered in the experimental section the threshold of |B| is in
the range of 4 to 10. A new prototype is created and set to the representative data point
(median) of B. Here the notion “median” refers to the values cfi and cri in this context.
For both, we determine the (one dimensional) median cfm and crm′ , respectively, and
represent the set B by one (if m = m′) or two (if m 6= m′) exemplars which cause these
values. This step automatically adapts the model complexity. In the retraining step the
new prototype will be trained on Ttr. We refer to this method as Adaptive Conformal
Relational GLVQ (AC-RGLVQ).

Validity

The validity of inductive conformal prediction can be directly transferred to this approach,
since generally we follow the concept of inductive conformal prediction using the same
proper training set and calibration set as no such a modification was made. In this
approach we split an additional subset Tcom from the proper training set Dtr for adjusting
the model complexity, so our model is directly based on Ttr (for retraining) and indirectly
on Tcom (for finding new prototypes), in an iterative manner.

Sparse approximation of prototypes

Since relational LVQs represent prototypes indirectly by means of coefficients αij (4.1)
which depend on all data points in the pseudo-Euclidean space, they can not be directly
interpreted. In Section 4.3.2 and 5.2, an approximation technique called k-approximation
is discussed which approximates prototypes in pseudo-Euclidean space by its k closest
data points. Unlike prototypes, these data points can be directly inspected. We will
see in experiments that the resulting classification accuracy is still quite good for the
approximated models with k=1 and we present an example showing the interpretability
of the result.

Relational LVQ (just as SVM) depends on the full proximity matrix and thus displays
quadratic time and space complexity. Depending on the chosen dissimilarity, the main



computational bottleneck is given by the computation of the dissimilarity matrix itself.
Alignment of biological sequences, for example, is quadratic in the sequence length
(linear, if approximations such as FASTA are used), such that a computation of the full
dissimilarities for some thousand points as in the subsequent examples, would already
lead to a computation time of more than some days (Intel Xeon QuadCore 2.5 GHz,
alignment done by Smith-Waterman or FASTA) and a storage requirement of some
100 Megabyte. As mentioned in Sections 5.3 and 5.5 efficient approximation strategies
based on the Nyström approximation can be used. Here, we use the k-approximation
to obtain interpretable models and consider full similarity and dissimilarity matrices
during training. The k-approximation is also extremely helpful in the test case because
(dis-)similarities of the test point need only be calculated to very few training samples.

6.4 Experiments

We first evaluate AC-RGLVQ on a artificial data set checkerboard data, then on four
biomedical data sets: ProDom, Protein, SwissProt10 and Bacteria.

Checkerboard data

Initial experiments were done for the simulated checkerboard data, with known vector
representation. It consists of two classes with 1250 points, in two dimensions and 5× 5
clusters (Figure 6.2 (left)). The dissimilarity matrix D was obtained using the Euclidean
distance. RGLVQ can learn this data only if the prototypes are initialized near the
centers of the multi-modal distributions, provided a sufficient number of prototypes. The
AC-RGLVQ on the other hand automatically adapts its model complexity according to
the introduced schema, leading to an effective model with a minimum initialization of
one prototype per class only. We observe that the number of prototypes is slightly above
the true number of 25 clusters, but the clusters are slightly overlapping and a number of
34 prototypes is considered a good result. The runtime behavior of the confidence and
credibility measure during learning is shown in Figure 6.3.

We observe that at the initial point of learning, with only two prototypes, the number
of points with a low confidence is very high but the credibility is in average quite good.
This is an indicator that a large number of points is wrongly assigned, since the second
label maybe similar likely. Due to the small number of prototypes a reasonable number of
assignments are however considered to be correct, or the credibility is rather high, which
is a natural consequence, because by chance ≈ 50% got the correct label. To modify
the model complexity, AC-RGLVQ continuously analyzes the behavior of confidence and
credibility. If one or both measures drop below the threshold an adaptation of the model
complexity takes place. In the experiment above, the number of prototypes increased step
wise, leading to a higher confidence on average. The credibility on the other hand suffers,
because there are more similar prototypes (actually, those with the same label), which
are alternative clusters for the considered point. Figure 6.3 also shows that the approach
shows a convergent behavior which is also caused by limiting the minimal cluster size (
if |B|<1%·|Tcom| terminates the program (Algorithm 5 line 22)). As the final prediction
accuracy for AC-RGLVQ1 we get 96.48%± 3.56 which is a very good result.
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Figure 6.2: Typical result of the AC-RGLVQ for the two class checkerboard data, with
25 clusters. The initial model contained only one prototype per class, using the described
conformal prediction schema the number of prototypes are auto-adjusted to 34 with
almost perfect (96.48%(3.56)) separation of the true clusters evaluated on the test. A
standard RGLVQ model with the same number of prototypes, as finally obtained by
AC-RGLVQ, was not able to learn the data and we got 50.72%(2.59) accuracy on the
test data. The class labels are given in the circled numbers. Right: mean of credibility
values and confidence values of the prototypes in the final model. Left: the final model
of AC-RGLVQ.

Biomedical data sets

For further comparison, we test the algorithm on four biomedical data sets: ProDom,
Protein, SwissProt10 and Bacteria as described in Section 3.5. We compare our results
with the reference method for dissimilarity learning, the kNN-Dissimilarity classifier (kNN-
Diss) [72] (the kNN rule is applied to dissimilarities) and a support vector machine (SVM)
implementation [101]. For SVM results for different preprocessing of the similarity-matrix
are reported, as detailed in Section 3.3.3. The crossvalidation scheme, the kNN-Diss
algorithm and the SVM have been implemented using prtools and distools [20]. The
parameter C for the SVM was estimated in an internal cross validation on the training
data, with a grid search C ∈ [0.25, 2.5] with a step size of 0.25 using a linear kernel2.
The k in kNN-Diss was auto-optimized by the distools-Toolbox, typically resulting in
k = 5. The initial prototypes for RGLVQ and AC-RGLVQ were initialized within the
class centers using random samples from the classes and optimized in the pre-described
training procedure with up to 10 cycles (full training data sweeps). The initial number
of prototypes is chosen according to the priorly known number of classes. We used 53

2For the considered data we did not observe relevant improvements using an RBF kernel or similar,
in particular since, in most cases, the Gram matrix is dealt with directly.
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Figure 6.3: Change of the number of low confidence/credibility data points during learning
as well as the number of prototypes

for ProDom, 10 for SwissProt, 4 for Protein and 30 for Bacteria.
Experiments are done within a 10−fold cross validation and with 10 repeats. We

report the mean and standard deviation of the error on the test sets. For AC-RGLVQ label
prediction is based on the label with the highest p-value. Further we provide values for
the model complexity, by means of the number of points used to represent the prototypes
or, in case of SVM, the number of support vectors in the full-class model (see Table
6.1). For SVM we provide results where the proximity matrices have been processed as
mentioned before to obtain metric similarities using clipping or flipping. This procedure
has a complexity of O(n3) but is necessary for kernel machines. For comparison we also
tried to obtain models without a costly eigenvalue correction (indicated by no) but failed
for SVM due to convergence issues. Instead we provide some obtained results using
a core vector machine (CVM) [99]. Theoretically CVM also can be used only for psd
matrices but is less sensitive with respect to non psd matrices as long as the negative
eigenvalues are small or not so relevant. For the ProDom data the negative eigenvalues
are a substantial part of the data space, with a similar scale as the positive eigenvalues
and it was not possible to run a kernel machine on the unprocessed proximity data.

In Figure 6.4, as two examples, we show the important advantage of AC-RGLVQ by
providing the confidence measure. After the model adaptation process one can analyze
the test data with respect to their high/low confidence and credibility values. Instead
of providing only a predicted label the pointwise measures for confidence and credibility
also permit to identify the safety of this prediction and the consideration of alternative
class label prediction (for example if a larger predicted label set, not only containing a
single label, is similar likely). For the bacteria data set it is common see [61] to support



ProDom SwissProt10 Protein Bacteria

RGLVQ
95.00 93.33 97.91 91.96
(1.44-Full) (0.96 - Full) (2.83 - Full) (0.25 - Full)

RGLVQ 67.24 94.37 88.73 42.43
(k = 1) (4.73 - 53) (0.83 - 10) (3.22 - 4) (1.05 - 30)

AC-RGLVQ
86.65 93.74 98.18 88.71
(1.84 - Full) (0.98 -Full) (0.41 - Full) (0.38 - Full)

AC-RGLVQ 85.83 94.59 88.77 59.72
(k = 1) (2.31- 88) (1.12 -12) (1.14 - 4) (1.79 - 50)
kNN-Diss 99.44 98.08 79.48 91.85

(0.00 - Full) (0.10 - Full) (0.45—Full) (0.19 - Full)
CVM-no - 97.27 76.73 72.54

(0.74 - 33) (8.94 - 18.8) (2.24 - 67)
SVM-flip 97.73 99.43 98.10 90.48

(1.02 - 782) (0.36 - 712) (3.33 - 140) (2.24 - 1807)
SVM-clip 98.00 99.52 94.78 90.38

(1.05 - 779) (0.25 - 699) (5.70 - 165) (2.53 - 1807)

Table 6.1: Mean test set accuracies for different dissimilarity data using the kNN-
Dissimilarity classifier, SVM with clipping or flipping and AC-RGLVQ. The standard
deviations are given in parenthesis, together with the (mean) number of distinctive sam-
ple points or support vectors, rounded to whole numbers, used in the models. Full -
indicates that roughly all training points belong to the model.

the identification by a so called score measure. While this score is based on a simple
non-metric measure of the similarity between the test item and a reference sample a
conformal prediction is based on sound mathematical foundations. It would for example
possible to identify regions of weak support or strong overlap in such databases.

Considering the different experiments we could not identify one single best method,
with respect to the prediction accuracy. For Protein, AC-RGLVQ performed best with
20% better prediction compared to kNN-Diss and slightly better compared to SVM. For
the SwissProt data the best prediction result was obtained by SVM with 99.5% compared
to 94.37% using RGLVQ and 98.08% with kNN-Diss. The ProDom data have been best
predicted by kNN-Diss with 99.44% which is 1.5% better than with SVM and 4% better
compared with RGLVQ. As expected the Bacteria data are effectively modeled by all
methods. Using k-approximation the results remain often quite good. Considering only
k = 1 we obtain for AC-RGLVQ (k = 1) 86.65% (ProDom), 94.59% (SwissProt) and
88.77% (Protein) which is not as good as the best reported results, but with a significantly
less number of sample points in the model. For ProDom only 3% of the points build
the model, compared to ≈ 30% using SVM. This effect is even more pronounced for
SwissProt with 0.2% of the points used by AC-RGLVQ(k = 1) and 12% by SVM and
similar for Protein ≈ 2% with AC-RGLVQ and 65% using SVM. The kNN-Diss classifier
keeps roughly all points in the training data.

The reason why k-approximation for bacteria data set was found to be less effective
is mainly due to the intrinsic dimensionality of bacteria data, which is very high. The
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Figure 6.4: Confidence values after training for two exemplary data sets: (a) the con-
fidence values of the test data of protein (b) the confidence values of the test data of
bacteria. Point wise confidence and credibility values can be used to identify items which
are not well classified, although the proposed label is correct.

intrinsic dimensionality can be estimated by looking at the ratio of the number of absolute
eigenvalues of corresponding similarity matrix above a predefined threshold to the size
of the matrix. In this case we transformed the dissimilarity to similarity matrix by using
double centering and took 10% of the maximal eigenvalue as the threshold. For ProDom
we obtained an intrinsic dimensionality 14.59%, for SwissProt 4.35%, for Protein 7.47%,
and for Bacteria 90.43%. For high intrinsic dimensionality the prototypes can not be
approximated well by using small k, they may depend on all data points. But still
by means of conformal prediction we got some improvement compared to the standard
approach.

The number of sample points in the model is often very relevant for dissimilarity
data. As mentioned before the calculation of the scores, for example by the Smith-
Waterman algorithm, is very costly. To map a new training point into the models, the
(dis-)similarities to all points in the training data have to be calculated, hence a small
number of sample points or sparse model is very desirable.

Interpretation of AC-RGLVQ models

Considering the SwissProt data set and (AC-)RGLVQ and a k-approximation of k = 1
we obtain a prediction accuracy of ≈ 94%. This provides direct access to a very small
number of associated data points, for which meta-information can be inspected.

Selecting the point associated with the k=1 approximation of the Zinc-finger class we
can track back the original swiss/uniprot reference number. Here, we get the ID ’O13124’
as most representative for the group Zinc-finger. This leads directly to all associated
meta information in the swiss-prot database. The expert can now consider the items
represented by this prototype as very similar to the ’O13124’ entry, revealing potential
similar chemical properties within the group Zinc-finger modeled by (C)RGLVQ.

For some dissimilarity data like mass-spectrometry scores in the context of bacteria



identification [61] the k-approximated prototypes can be directly linked to median rep-
resentations of the underlying data, here spectra. These databases are quite new and
rapidly growing, requesting for inspection tools and interpretable classifiers to ensure
validity of the stored results and data.

In contrast, the kNN-Diss classifier model is quite complex and an inspection is
ineffective. In case of SVM the model parameters are the support vectors, which are
close to the decision boundary, and hence, in general, atypical – limiting their usefulness
for an interpretation.

For new points the model now also provides pointwise estimates of the confidence and
credibility of the classification according (6.2). The classification is therefore accompanied
by two values indicating the safety of the classification. Points which are probably
assigned to the wrong class can be identified by, most often low confidence and low
credibility values. But also cases where points are equally similar to two classes, for
example, can be detected and appropriate analysis of the meta-data, more specific sub-
models or reject operations can be applied.

Theoretical complexity analysis

With respect to the runtime complexity, kernel methods, for example SVM needs O(n2)−
O(n3) operations to transfer the (dis-)similarity matrix into a valid kernel, as discussed
before, and SVM training scales with ≈ O(n2) (using Sequential Minimal Optimization
(SMO) [75]). Taking both operations together we still have a runtime complexity of
O(n2), for non-psd matrices.

The size of the model, given by the number of support-vector depends on the data
sets. Often support vector models are large and may cover the whole training set. The
relational prototype method on the other hand is trained on non-psd matrices directly and
scales quadratic with the number of examples for the training and the size of prototype
representations is linear with respect to the number of examples.

For AC-RGLVQ, due to the model adaptation, it has to retrain the model several
times (denoted as s), normally s� n, so the retraining process of AC-RGLVQ remains
O(n2). Additionally, the complexity of conformal prediction can be considered as linear
O(n), since after each retraining the non-conformity values with respect to all possible
labels have to be calculated, i.e. O(s · n · |L|), and usually |L| � n, so the complexity of
conformal prediction step is O(n).

The training time of kNN-Diss is O(n2) with maximum model complexity. Again
we would like to point out that the transformation to a valid psd matrix is not only
costly, but also can degenerate the results as pointed out in [71]. The complexity of all
methods is at least O(n2), either due to the psd-correction or the training procedure.
Our objective is not to obtain a faster training time, nor to achieve higher prediction
accuracy. Instead we focus on sparse, interpretable models which can be trained in
reasonable time and keep good generalization and query time for the test set, permitting
pointwise measures of confidence.
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Table 6.2: Summary of chapter 6: Adaptive conformal RGLVQ

6.5 Conclusions

We have defined the sparse conformal relational prototype classifier, an efficient classi-
fier for dissimilarity data based on the relational prototype classifier RGLVQ and the
conformal prediction concept. In addition to the good prediction accuracy, AC-RGLVQ
automatically adapts the model complexity and outputs reliability measures of its accu-
racy by means of point wise confidence and credibility values, with a clear probabilistic
interpretation. The experimental results show good performance compared to standard
techniques but with easier access to much sparser models by means of k-approximation.
In future work we will in more detail address the interpretability of the obtained models
and how this can be linked to the supervised modeling of sequence databases and other
application fields.

To summarize, we update the Table 6.2 accordingly and denote this kind of extension
as adaptive variant of LVQs. Since conformal prediction can be considered as a wrapper
method beyond the regular LVQ methods, it can be easily integrated to other LVQ
methods, not only for relational data but also for vectorial setting. Because in conformal
prediction concept the label information is essential, it is impossible to directly transfer
this idea into unsupervised techniques.





Chapter 7

Adaptive conformal
semi-supervised LVQ

Chapter overview

Most of existing semi-supervised learning (SSL) algorithms focus on vectorial data given in
Euclidean space or representations by means of valid kernel matrices. A lot of real life data,
especially in bioinformatics domain, are non-vectorial and non-metric given in a form of (dis-
)similarities. Those data are not widely addressed in the SSL domain. In this chapter we extend
a prototype-based classifier for dissimilarity data to semi-supervised tasks employing conformal
prediction providing point-wise confidence measures about the classification. Parts of this chapter
are based on the publication [113].

7.1 Introduction

Big data is getting more and more challenging regarding storage and analysis require-
ments. Besides the amount of data, only few of these data are completely labeled, and
labeling of all these data is indeed very costly and time consuming. Accordingly many
data sets, in life sciences for example, are only partially labeled. Techniques of data
mining, visualization, and machine learning are necessary to help people to analyze those
data. Especially Semi-Supervised Learning (SSL) techniques are widely used for this set-
ting. The idea of semi-supervised learning is to learn the model not only from the labeled
training data, but also to incorporate structural and statistical information in addition-
ally available unlabeled data. A variety of SSL methods has been published [11, 111].
Most of them focus on vectorial data given in Euclidean space or representations by
means of positive semidefinite (psd) kernel matrices.

A lot of real world data, like biological sequences, are non-vectorial, often non-
Euclidean and given in the form of pairwise proximities, which are based on pairwise
comparisons of objects providing some score-value of the (dis-)similarity of the objects.
Those data are also referred to as proximity or relational data, for which a vector space is
not necessarily available and there is no guarantee of metric conditions (see also Section
3.2 for more details).
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Methods based on partially labelled similarity data, where the similarities are defined
on a metric space discussed in [70], can be effectively handled by the semi-supervised
extensions of kernel methods or other recently proposed, effective strategies [95]. How-
ever, in case of non-metric (dis-)similarity data without an explicit underlying vector
representation and without requesting a metric space only few methods have proposed so
far in the literature of SSL [98] and kernel techniques can be applied using some costly,
potentially degenerating, transformations on the proximity data only, as described in
Section 3.3.3 or [71]. In this chapter we also focus on this kind of partially labelled data.

First, let us take a glance at SSL methods. One way to categorize SSL methods is to
divide the field into generative models, low-density separation methods, and graph-based
techniques typically used for a classification objective. A recent introduction to SSL is
given in [111]. In generative models, the most basic technique is given by self-training
approach. A classifier is first trained on the labeled instances and is then applied to
unlabeled instances. Usually, some subset of those newly labeled instances are then used
together with the original labeled data, to retrain the model. The major advantages of
self-training are its simplicity and the fact that it is a wrapper method. It can ’wrap’
the learner without changing its inner workings. In this chapter we adopt this approach.

A more advanced approach employs expectation maximization (EM). It can be
used to support the supervised learning by estimating parameters also on unsupervised
data by EM [96]. In graph-based methods, the nodes of a graph represent labeled and
unlabeled data, while some weights are assigned to its edges, represent the similarities
of two nodes. Now one may assume that similar points share common labels, which can
be propagated according to some heuristics as shown in [109, 111]. Thus, in this way
labels are propagated from labeled data through the unlabeled data region. Different
variations of this principle has been proposed, recently also for prototype based learning
methods [17, 3] and on large scale problems [62].

Furthermore, probably the most popular semi-supervised learner in low-density sep-
aration methods is the Transductive Support Vector Machine (TSVM) or variants [11]
thereof as the recently proposed S4VM. The semi-supervised SVM (S3VM) aims at
approaching one optimal low-density separator employing unlabeled data, whereas Safe
S3VM (S4VM) [58] tries to exploit multiple candidate low-density separators simulta-
neously to reduce the risk of identifying a poor separator with unlabeled data. Besides
multi-kernel approaches have been recently analyzed for S3VM to incorporate additional
meta-knowledge in the semi-supervised optimization [97]. While most of these methods
are defined for two-class problems, employing e.g. one-vs-rest wrappers for the multi-
class case, native multi-class semi-supervised learning are analyzed less intensively. A
multi-class S3VM approach was proposed in [107], using a boosting strategy in [93] and
employing sparse Newton-optimization [27]. Moreover, probabilistic models for semi-
supervised learning based on nearest neighbor classifiers have been proposed recently
[26] which allow multi-class learning. Some of these approaches are transductive like [26]
and out of sample extensions are not naturally available limiting the applicability of the
approaches in practice for novel data.

In this chapter we extend RGLVQ, by a self-training approach for semi-supervised
tasks employing conformal prediction technique introduced in Section 6.2, which provides
a confidence measure of the classification. By means of the confidence values in the self-



training process a so-called secure region of unlabeled data can be identified and used
in the retraining, which can potentially enhance the performance of the training, and at
the same time conformal prediction estimates a so-called insecure region of labeled data
which helps to adapt the model complexity.

7.2 Semi-supervised conformal relational GLVQ

RGLVQ opens a way to directly deal with dissimilarity data [39, 41]. However, as
mentioned in Chapter 6 it has two major limitations: (i) It is a crisp classifier without
any additional information about the confidence of the prediction and (ii) the number of
prototypes has to be defined in advance. In supervised case, these problems have been
already addressed by transferring prototype-based classifier to a conformal predictor as
shown in Chapter 6. In this chapter we focus on the semi-supervised case by means
of self-training and propose a relational prototype-based conformal classifier with self-
adaptation of model complexity based on the data with low confidence and credibility
values provided by conformal prediction.

The concepts of conformal prediction has been introduced in the previous chapter,
see Section 6.2 for more technical details. Note that since in this work we focus on
semi-supervised problems, the size of the training set (i.e. labeled data) is normally not
quite large, we can not really use the idea of inductive conformal prediction (ICP) or cross
conformal prediction (CCP) as mentioned in Section 6.2.3 for our purpose. We decided
to modify the original conformal prediction (Algorithm 3) in our own way: we ignore
matching exactly against each data set Di := {z1, . . . , zn, zn+1}\{zi} but instead use the
whole training data ( i.e. D := {z1, . . . , zn}, excluding zn+1). In this way learning must be
performed only once on D. This procedure is motivated by two facts: (1) since we intend
to use prototype-based method to train the model, the positions of prototypes depend on
the whole data distribution and are in general not widely affected by a single data point,
(2) the information loss will be small if the number of training data is reasonably large,
so that adding zi but leaving out zN+1 will not affect the learning results. As in the
previous chapter we use again (6.2) as non-conformity measure throughout this chapter.

First, we denote Tlab as labeled data and Tunlab as unlabeled data. Generally, in
semi-supervised learning unlabeled data are used to improve the trained model based
on labeled data in some way. Self-training [111] is a very simple approach, which takes
iteratively a part of the unlabeled data with predicted labels as new training data into
the retraining process to optimize the model, as shown in Algorithm 6. After the first
training of model f on labeled data, the model f is then used to predict the labels of
unlabeled data. A subset S of the unlabeled data together their predicted labels are
selected and added to the labeled data, which builds a new larger set of labeled data.
The model f is retrained on the new unlabeled data, and the procedure repeats. As
pointed out by [111], the key assumption of self-training is that the predictions, at least
the high confidence ones, tend to be correct. S should consist of the few unlabeled data
with the most confident predictions.

In this work we combine conformal prediction with self-training to find the most
confidence unlabeled data (see Algorithm 7.2). We first train the model W on labeled



Algorithm 6 Self-training
1: Tlab:= labeled data, Tunlab:= unlabeled data
2: repeat
3: Train model f based on Tlab using supervised learning
4: Apply f to Tunlab

5: remove a subsect S from Tunlab and add {(x, f(x))|x ∈ S} to Tlab

data (Tlab) using RGLVQ, based on W we proceed then the conformal prediction step
(line 12-17): For Tlab and Tunlab, we compute non-conformity values according to (6.2)
(line 12, 13). Based on these non-conformity values a p-value is estimated for each
possible label and each unlabeled point from Tunlab (line 14,15). For classification using
the conformal classifier, the label of a unlabeled item will be finally predicted as the label
with the largest p-value. This refers to the label set provided by the conformal predictor
which contains only one label. More complex schemes, by analyzing for example label
sets with more than one label would be possible as well, but are not further considered
here. The confidence value (cfi) is given as one minus the second largest p-value (6.3)
and the credibility (cri) is the largest p-value of this item (6.4) (line 25-26) (for more
detail see Section 6.2.2).

Data used for self-training

In oder to identify unlabeled items with high confidence predictions we define a measure
cc as the product of confidence and credibility values: For a given data point xi ∈ Tunlab,

cci := cfi · cri (7.1)

Actually, any other reasonable indicator can be used here which can detect the high
confidence and high credibility values at the same time. In this case the sum of both
values is not appropriate, since one of them can dominate the sum. A high cc-value
of a unlabeled item indicates that with high probability its predicted label (that with
the highest p-value) is the true underlying label. That means for self-training only the
unlabeled data with predicted labels of high probability can be taken into the next
retraining. The region which consists of these unlabeled items is referred to as ‘secure
region’ (denoted as SR). To identify SR we take a fraction (prc) of the top cc-values of
the unlabeled data1.

Adaptation of model complexity

On the other hand we also collect a set of points of the ‘labeled’ data (i.e. original
labeled items and the items with high cc-values labeled by previous iterations) with low
credibility and confidence values, which builds a so-called ‘insecure region’ (ISR) of the
training data,

ISR := {xi ∈ Tlab : cfi ≤ ζ1 ∨ cri ≤ ζ2} . (7.2)

1prc is customizable and in our experiments we set prc = 5% which is a good compromise between
learning performance and efficiency.



Algorithm 7 Secure semi-supervised conformal RGLVQ
1: init: W : randomly initialized, Wnew := ∅, Wbest := W , ISR := ∅; SR := ∅;

EvalSet = Tlab; itrbest = 0; maxitr = 100; winmax itr = 10; accbest = 0
2: repeat . self-training process
3: W := W

⋃
Wnew

4: Tlab := Tlab ∪ SR, Tunlab := Tunlab\SR
5: W := train Tlab by RGLVQ given W
6: acc := evaluation of W on EvalSet;
7: if acc− accbest ≥ 1% then
8: Wbest = W , accbest = acc, itrbest = 0
9: else

10: itrbest = itrbest + 1
11: end if
12: ATlab

:= {ayii | i ∈ Tlab} . conformal prediction step
13: AL

Tunlab
:= {ayi | i ∈ Tunlab, y ∈ L}

14: PTlab
:= {pi | i ∈ Tlab}

15: PL
Tunlab

:= {pyi | i ∈ Tunlab, y ∈ L}
16: CFTlab

:= {cfi | i ∈ Tlab}; CRTlab
:= {cri | i ∈ Tlab};

17: CFTunlab
:= {cfi | i ∈ Tunlab}; CRTunlab

:= {cri | i ∈ Tunlab};
18: generate SR of Tunlab based on CFTunlab

and CRTunlab

19: generate ISR of Tlab based on CFTlab
and CRTlab

20: generate Wnew from ISR . new prototype(s)
21: itr = itr + 1
22: until itr = maxitr or itrbest = winmax itr or Tunlab = ∅ or |ISR| < 1% · |Tlab|
23: return Wbest;

A low confidence value is given if the confidence value cfi or the credibility cri below a
user defined threshold ζi or ζ2, respectively. Defined values for ζ1 or ζ2 can be derived
from the quantiles of confidence/credibilty values as observed in the data.

The ISR will be represented by a new prototype as the median of ISR which is the
same as finding new prototype(s) from B in Section 6.3. This step automatically adapts
the complexity of the model, i.e. the number of prototypes. In the retraining this new
prototype will be also trained on the new training data.

During the self-training process the training set Tlab is iteratively augmented by
adding the secure region of the unlabeled data SR to itself while the unlabeled data
Tunlab is shrunk by discarding the secure region. The performance of the retaining is
evaluated based on original labeled data only. The method terminates if the improvement
of the performance is not significant (less than 1%) after a certain number of iterations
(winmax itr) or the maximal number of iterations are reached (maxitr) or the insecure
region (ISR) is too small or the unlabeled set Tunlab is empty, i.e. all unlabeled data
have been considered in the retraining. Since the size of ISR (or ζ1 and ζ2) controls the
complexity of the model, if |ISR| is sufficient large, in our case we take the boundary
≥ 1% · |Tlab|, the complexity of the classifier is not yet sufficient. For the data considered
in the experimental section the boundary of ISR is in the range of 4 to 10. The proposed



method is referred to as Secure Semi-Supervised Conformal RGLVQ (S3-C-RGLVQ).

Validity

Theoretically, the validity of this approach can not be guaranteed, since we neither follow
the concept of original conformal prediction, nor the inductive conformal prediction. For
inductive conformal prediction, due to the limited size of labeled data, it is unreasonable
to divide the data into subsets whose sizes should be sufficiently large such that the data
statistic can be somehow covered as pointed out in [105]. For original conformal prediction,
we ignore all leave-one-out data sets and perform learning on the original training data
without the new example, so the theoretical validity of conformal prediction can not
be transferred to this approach. However, we empirically studied that no significant
difference can be observed, because of the nature of prototype-based learning that the
positions of prototypes in the data space are not sensitive to a tiny change of the training
data.

7.3 Experiments

We evaluate S3-C-RGLVQ on a large range of tasks. First, we demonstrate two artificial
data sets: checkerboard data and banana-shaped data, with known vector representation
to show the ability of dealing with partially labeled data, especially non i.i.d labeled data.
Then we compare S3-C-RGLVQ with state-of-the-art semi-supervised SVMs on SSL
binary-class benchmarks. For vectorial data the dissimilarity matrices D are obtained
using the squared Euclidean distance. Additionally, five real life non-vectorial multi-class
data sets from bioinformatic domain are used to compare with original RGLVQ (trained
only on labeled data). For all experiments, prototypes are randomly initialized based on
labeled data and one prototype per class.

Two artificial data sets

Checkboard data

The checkerboard data set consists of two classes with 1200 data points, in two dimensions
and 2 · 2 clusters. The clusters with different classes distribute along each axis. We
randomly select about 3% as labeled data and the remaining data as unlabeled data.
RGLVQ can learn this data only if the prototypes are initialized near the centers of the
multi-modal distributions, provided a sufficient number of prototypes. The S3-C-RGLVQ
on the other hand automatically adapts its model complexity according to introduced
schema, leading to an effective model with minimum initialization of one prototype per
class only. As an example, Figure 7.1 shows some intermediate results up to convergence.
We randomly initialized two prototypes only on labeled data. Figure 7.1(a) shows that
after the initial training two prototypes (marked by squares) are located in the center of
the labeled data. Obviously, in this case one prototype per each class is not sufficient to
model the whole data space. In Figure 7.1(b) after the conformal prediction process, the
secure region of unlabeled data (marked by stars) and the insecure region of labeled data
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Figure 7.1: Checkerboard data set consists of green/blue labeled data and gray unlabeled
data.

(marked by red circles) can be identified. To ’cover’ the insecure region a new prototype
(marked by red cross) is added right there.

Moreover, there are some unlabeled data misclassified by CP, which will be taken
into the current retraining process. The reason thereof is that duo to the smaller number
of prototypes at the early stage which are not well distributed into the multi-modal
clusters, a reasonable number of points with relatively lower confidence/credibility values
(i.e. lower cc-value) exists, which is a natural consequence, because by chance 50% got
the correct label. By a larger value of the parameter ‘prc’ some of these points might
be considered in the next training. In this case those points can also be considered as
outliers. Duo to the fact that the prototype-based method is very stable against outliers,
i.e. the positions of prototypes depend on the whole data distribution and are not widely
affected by a single point, the movement of the prototypes is mainly dominated by the
correctly classified points and the labeled data. As shown in Figure 7.1(c), once the
algorithm converges those points can be correctly assigned to their closest prototypes.

Banana-shaped data

Another simulated data set consists two banana-shaped data clouds indicating two classes.
Each banana consists of 300 two dimensional data points in Figure 7.2. We select
randomly non i.i.d. a small fraction (ca. 5%) of each banana as labeled data, the
remaining as unlabeled data. The dissimilarity matrix D thereof is obtained by Euclidean
distance again. With the same setting for checkerboard data we start with one prototype
per class and train the initial model on the labeled data as shown in Fig. 7.2(a). In
Fig. 7.2(b), the number of prototypes increased step-wise during the retraining process
by adding new prototype in the insecure region, while by means of secure region the
unlabeled data are iteratively considered. Thereby at the end the data manifold can
be well studied as shown in Fig. 7.2(c). RGLVQ is trained only on labeled data with
the same number of prototype for each class which S3-C-RGLVQ finally outcomes and
can not learn the whole data space very well (Fig. 7.2(d)). The average accuracy
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Figure 7.2: Banana-shaped data

(on unlabeled data) of 10 times randomly non i.i.d. selected labeled data is reported:
SSC-RPC: 94.55%(8.38), RPC: 77.29%(13.13).

UCI two-class data sets

Furthermore, we evaluate the proposed method on different widely used benchmarks
for semi-supervised learning from the UCI repository2 and compare it with the best
semi-supervised SVM with RBF-kernel taken from [58]3. To keep the same experimental
setting, we randomly select 100 examples of the data to be used as labeled examples, and
use the remaining data as unlabeled data. The experiments are repeated for 12 times
and the average test-set accuracy (on the unlabeled data), standard deviation and the
average number of prototypes of the final model are reported in Table 7.1. Except voting

2http://archive.ics.uci.edu/ml/datasets.html
3In this paper the authors made a comprehensive comparison between different semi-supervised SVMs,

e.g. TSVM, S3VM, S4SVM, etc. with linear and rbf kernels. For our experiments we pick the best result
of rbf-kernel among them as reference for each data.



Two-class UCI data S3-C-RLVQ #Protos. Semi-SVMbest(rbf)
diabetes 70.17 ± 2.32 2.3 ± 0.5 70.3 ± 2.1
german 71.61 ± 1.14 2.2 ± 0.4 71.0 ± 1.1
haberman 73.30 ± 5.02 3.8 ± 2.2 68.3 ± 2.8
voting 89.20 ± 0.89 2.2 ± 0.4 92.6 ± 1.6
wdbc 92.34 ± 1.19 2.2 ± 0.4 93.6 ± 1.7
austrailian 83.22 ± 1.51 2.1 ± 0.3 81.8 ± 1.9
breast-cancer 96.20 ± 0.51 2.0 ± 0.0 95.5 ± 1.0

Table 7.1: Classification accuracy (% ± std) of UCI Benchmarks for two classes problems
for SSL

data, the proposed method provides comparable results for all remaining data sets.

Real life multi-class data sets

Moreover, we also evaluate the methods on five real life relational data sets from bioin-
formatic domain, where no direct vector embedding exists and the data are given as
(dis-)similarities. They are SwissProt10, Chromosomes, Sonatas, zinger and Vibrio, see
Section 3.5 for more details. These data sets constitute typical examples of non-Euclidean
data which occur in complex systems, such as medical image analysis, mass spectrometry,
and symbolic domains. In all cases, dedicated preprocessing steps and dissimilarity mea-
sures for structures are used. The dissimilarity measures are inherently non-Euclidean
and cannot be embedded isometrically in a Euclidean vector space.

In general, we use the same experimental setting of UCI data, i.e. randomly select
100 examples as labeled data, the remaining as unlabeled data (with 10 repeats), proto-
types are randomly initialized based on labeled data and one prototype per class. For
comparison, we report the results of RGLVQ trained only on labeled data to investigate
another problem for SSL, i.e. the degeneration issue as discussed by [92, 111]. In order
to keep the comparisons fair the number of prototypes for each class for RGLVQ is set
to the number of prototypes for each class of the final S3-C-RGLVQ model. The mean
classification accuracies are reported in Table 7.3.

In all cases but one, a better classification accuracy can be obtained using conformal
prediction compared to original RGLVQ only based on labeled data without consideration
of additional information about unlabeled data. The chromosome is a perfectly balanced
data set, it leads to the fact that the initial model based only on the labeled data is almost
perfectly trained by RGLVQ, so that the potential to improve the model by considering
unlabeled information in this case is very limited.

In all cases, the incorporation of information about unlabeled data into the classifier
leads to an increased, at least equal, classification accuracy of the resulting model, since
the additional available information can better be taken into account to optimize the
class boundaries. Thus, S3-C-RGLVQ constitutes a very promising method to infer a
high quality semi-supervised prototype-based classifier for general dissimilarity data sets
which offers point-wise measures for confidence and credibility about the classification.



Data S3-C-RGLVQ RGLVQ
SwissProt 81.06 ± 5.53 79.37 ± 4.78
Chromosome 78.88 ± 3.28 78.78 ± 3.70
Sonatas 77.98 ± 3.94 71.99 ± 2.92
Zongker 87.93 ± 0.84 86.48 ± 1.50
Vibrio 98.76 ± 0.47 97.40 ± 0.84

Table 7.2: Classification accuracy (% ± std ) for real life data.

Chapter
Supervised Unsupervised

GLVQ RSLVQ NG AP GTM

2

cost function margin likelihood
ratio

topographical
QE

QE dual like-
lihood

complexity O(n) O(n) online: O(n) O(n2) O(n)batch: O(n)
data type vectorial vectorial vectorial vectorial vectorial
working style online online batch/online online batch

4 relational data
√ √

[37] similarity [29]

5 patch
√

analog [37]
√ √

nyström
√

analog
√

- [28]
6 adaptive

√
analog - - -

7 semi-super.
√

analog - - -

Table 7.3: Summary of chapter 7: Adaptive semi-supervised RGLVQ

7.4 Conclusions

In this chapter, we have developed an efficient semi-supervised classification technique for
general dissimilarity data, which represents the decisions in the form of prototypes, based
on conformal prediction concept and relational prototype-based classifier. It naturally
inherits the merits from both techniques. Due to prototypical representation, unlike
many alternative black-box techniques, it offers the possibility of a direct inspection of
the classifier by humans. This technique does not require that data are embeddable into
Euclidean space, rather, a general symmetric dissimilarity matrix is sufficient. Due to
the properties of conformal prediction, instead of providing only a predicted label, it
also permits to identify the safety of the prediction by means of point-wise measures
for confidence and credibility. Thereby the ‘secure’ unlabeled data can be exploited and
used to optimize the trained model, at the same time the ‘insecure’ training data can be
identified and accordingly the complexity of the model is adapted.

We demonstrated the quality of the technique on different SSL data sets. As a
result, a powerful semi-supervised learning algorithm can be derived, which in most cases
achieves comparable results to semi-supervised SVM and with direct interpretability of
the classification in term of the prototypes and works especially well for non i.i.d labeled
data. Due to the multi-class capability of prototype-based method, it can directly deal
with multi-class data sets. Furthermore, it does not degenerate the learning performance



by incorporating additional information of unlabeled data which is still a crucial issue in
the semi-supervised learning [92, 58, 111].

One central problem of this technique as introduced above has not yet been considered
in this chapter: we used a global prc to identify the secure region of the training data in
every iteration. It may cause some uncertainty issues at the earlier stages of retraining
as we have seen in the checkerboard data, if the number of prototypes is not sufficient
high and the prototypes are not well distributed in the data space. In spite of the fact
that this potential issue can be partially solved by the nature of prototype-based method,
i.e. its stability against outliers, it should be more seriously studied, e.g. using a local
prc for each iteration to more precisely identify the high confidence items which is a
matter of ongoing research. Future work will also address the model sparsity for large
scale problem and linear approximation techniques as introduced in [110].

Finally we update the Table 7.3 by adding a row representing the ’extendibility for
semi-supervised setting’ of the methods introduced in this thesis. For Relational RSLVQ
the corresponding extension is also analog as for RGLVQ.





Chapter 8

Conclusions

In this thesis we addressed some problems of prototype-based learning:

• the applicability for dissimilarity data,

• the quadratic complexity issue for dealing with dissimilarity data due to the need
of full dissimilarity matrix,

• the reliability of prototype-based classifiers,

• the predefined model complexity issue,

• the extendability of prototype-based classifiers for semi-supervised problems.

In Chapter 2 we briefly reviewed three unsupervised prototype-based techniques (NG,
GTM, and AP) and two supervised techniques (GLVQ and RSLVQ) which serve as
basic methods in this thesis. Those methods have some commonalities in some degree,
and they also have their own characteristics. To summarize, GLVQ tries to maximize
the margin between the two nearest prototypes with respect to observed data point,
RSLVQ optimizes the likelihood ratio between class-specific probability density of data
generated by the mixture model and probability density of the full data, NG is based
on quantization error while taking the local topology into account, AP reformulates the
quantization error in a another way that it can be modeled as factor graph and solved by
the max-sum algorithm, and GTM is based on constrained mixture of Gaussians whose
parameters can be trained by EM algorithm. Except AP, they are all online methods,
which means the time complexity scales with the number of data points. AP has a
quadratic complexity.

After introducing the basic methods, in Chapter 3 we talked about the data repre-
sentation. Except AP which is based on similarities, all other methods work on vectorial
data. Dissimilarity representation of data brings some challenges to those methods, for
which we shortly reviewed the meta properties of dissimilarity data and different ways to
deal with them. In Chapter 4, based on the idea of directly dealing with dissimilarities
without explicit embedding from the unsupervised case, we extended it to two supervised
methods, GLVQ and RSLVQ. However, the consequential problem appears in the fore-
ground, i.e. the quadratic complexity due to the need of the full dissimilarity matrix. It

103



makes these methods infeasible for large data sets. In Chapter 5 we tackled this problem
by means of two acceleration techniques: patch processing and Nyström approximation,
which turn the quadratic effort to linear problems.

Further, we focussed on the reliability of prototype-based classifiers in Chapter 6.
By means of combining the well-founded statistical concept, conformal prediction, we
proposed an extension of RGLVQ which inherits advantages from both sites: From
the prototype-based point of view, it can directly deal with any arbitrary symmetric
dissimilarity matrix by implicit embedding of the data into a pseudo-Euclidean space.
From the conformal prediction point of view, it provides also point wise confidence
measure about the prediction. This allow us to get more insights about the classification,
and depending on this additional information the model complexity can be accordingly
adjusted.

Moreover, by given a meaningful non-conformity measure, conformal prediction can
be also considered as a classifier by taking the label with largest p-value for each data
point as the prediction. It allows us to very easily extend prototype-based classifiers
to semi-supervised setting by using self-training approach: iteratively, a part of the
unlabeled data with high confidence predicted labels are taken for retraining. As an
example, we realized this approach with RGLVQ resulting in a prototype-based semi-
supervised learner which can directly with dissimilarity data, automatically adjust the
model complexity and enjoys a reliability measure for each prediction.

Altogether, these techniques offer a powerful framework to handle complex learning
tasks, including non-vectorial data, big data sets, and partial labeling. Still, it is some
way to go towards fully autonomous learning systems: as an example, all methods,
although automatically adjusting the number of prototypes, are still based on crucial
hyper-parameters, such as the parameter prc for growing strategy which defines the full
size of the resulting model. Further the techniques require a homogeneous task, such
as classification which extends to partial labeling, being only a first preliminary step
towards full model autonomy.
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