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Abstract

A core issue in machine learning is the classification of data. However, for
data structures that can not easily be summarized in a feature representation,
standard vectorial approaches are not suitable. An alternative approach is to
represent the data not by features, but by their similarities or disimilarities
to each other. In the case of sequential data, dissimilarities can be efficiently
calculated by well-established alignment distances. Recently, techniques have
been put forward to adapt the parameters of such alignment distances to the
specific data set at hand, e.g. using gradient descent on a cost function.

In this thesis we provide a comprehensive theory for gradient descent on
alignment distance based on Algebraic Dynamic Programming, enabling us to
adapt even sophisticated alignment distances. We focus on Affine Sequence
Alignment, which we optimize by gradient descent on the Large Margin Near-
est Neighbor cost function. Thereby we directly optimize the classification
accuracy of the popular k-Nearest Neighbor classifier.

We present a free software implementation of this theory, the TCS Align-
ment Toolbox, which we use for the subsequent experiments. Our experiments
entail alignment distance learning on three diverse data sets (two artificial ones
and one real-world example), yielding not only an increase in classification ac-
curacy but also interpretable resulting parameter settings.
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Chapter 1

Introduction

A core issue in machine learning is the classification of data: Given some
examples for which the correct class is known, a machine learning algorithm
should provide the correct class for every new data point.

Classically in machine learning, one solves this problem by describing the
data points with a vector of features and letting a machine learning algorithm
detect correlations between features, such as: If feature xi has a high value this
suggests that the data point belongs to class y. An abundance of such methods
can be found in the book by Bishop [6], for example. A vectorial description
becomes difficult, however, if one deals with rich data structures, like long
texts, audio streams or gene sequences. In fact, important information might
be lost in the process of describing rich structures in terms of a few features
[1, 32].

In this thesis we consider sequential data, where feature-like representations
include term frequencies [35, 36] and string kernels [25], which both abstract
from the order of elements in the sequence.

An alternative perspective on sequences is offered by sequence alignment
algorithms like the classic String Edit Distance [11, 22]. These algorithms
do not describe the input sequences in terms of features, but rather by their
similarity or dissimilarity to each other and fully account for the order of the
sequence elements.

Fortunately, this similarity representation can still be used to solve a clas-
sification task, as similarity-based classification methods are well-investigated
and one can rely on established and popular methods such as k-Nearest Neigh-
bor (k-NN) and k-means classification [9, 24].

However, classification schemes based on rich structure similarity measures,
are bound to fail if the parameters of said measures are not suited for the given
task. But what are the right parameters? Ideally, a machine learning algorithm
would answer this question autonomously. More formally: One would like
to construct a machine learning algorithm that does not only optimize the
parameters of a classifier with respect to classification accuracy, but also the
parameters of the underlying distance function.

This is the topic of structure metric learning1, which has been identified

1It should be noted that the literature does not consistently use the terms “metric” or

9



10 CHAPTER 1. INTRODUCTION

as a novel, challenging area of research with high relevance, preceeded by the
well-invastigated and very successful field of vectorial metric learning in pat-
tern recognition [1]. Bellet, Habrard, and Sebban [1] report that only a few
approaches exist particularly in the context of alignment distances. Conse-
quently, this is the focus of our work: The adaptation of alignment distances
in order to optimize classification performance, which we call alignment dis-
tance learning in the following.

In previous work we have investigated alignment distance learning within
the framework of Relational Generalized Learning Vector Quantization (RGLVQ)
[17]. We have demonstrated that alignment distance learning is a powerful
method to discriminate gene sequences in the biological domain and program-
ming strategies in the educational domain [27, 28, 29, 31]. In particular we
have investigated possible approximations [29] and extensions towards more
sophisticated alignment techniques [31].

In this thesis we further extend this work in two ways:

1. Based on the general framework of Algebraic Dynamic Programming
(ADP) [12] for dynamic programming on sequential data we provide a
powerful theory for alignment distance learning.

2. We extend the learning scheme beyond the Relational Generalized Learn-
ing Vector Quantization (RGLVQ) framework towards structure metric
learning for k-Nearest Neighbor (k-NN) classifiers.

Thereby we demonstrate the broad applicability of alignment distance learning.

1.1 Related Work

1.1.1 Sequence Alignment Algorithms

Sequence alignment algorithms are ubiquitous tools in domains such as bioin-
formatics (e.g. [30], [38] or [14]), text processing (e.g. Edit- or Levenshtein-
distance [11, 22]) and audio processing (e.g. Dynamic Time Warping [41]).
The aim of all these algorithms is to extend two input sequences x̄ and ȳ over
some common alphabet Σ×, such that matching elements of both sequences
are aligned.

An extension of some sequence x̄ is some longer sequence x̄∗, probably
over a larger alphabet, that contains all elements of x̄ in the same order.
Alignment schemes now introduce a cost function d on the alphabet Σ×, such
that d(x̄i, ȳj) is minimal if and only if x̄i = ȳj. An alignment algorithm then
constructs extensions x̄∗ and ȳ∗ of the input sequences with equal length and
minimal cost

|x̄∗|∑
o=1

d(x̄∗o, ȳ
∗
o) (1.1)

“distance” in their mathematically strict sense. This leads to a somewhat blurry use of the
terms within this thesis as well. We investigate the metric properties of alignment distances
in more detail in Section 2.5 on page 32.
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This minimal cost is the alignment distance.
As an example, consider the simple String Edit Distance[11, 22], where the

input sequences consist of characters (i.e. Σ× := {’A’, . . . , ’z’}. The String
Edit Distance allows to extend the input sequences by introducing gaps, which
we denote as “−”. d is defined as

d(a, b) :=

{
0 if a = b

1 if a 6= b

The optimal alignment of two input sequences x̄ and ȳ with lengthsM and
N can be calculated using a simple dynamic programming scheme:

D(0, 0) = 0,

D(0, j) = j,

D(i, 0) = i,

D(i+ 1, j) = min{D(i, j) + d(xi+1, yj+1),

D(i+ 1, j) + 1,

D(i, j + 1) + 1}

where D(M,N) is the String Edit Distance between the input sequence x̄ and
ȳ.

However, as described by Gotoh [14], such a simple alignment measure is
susceptible to length differences of the input sequences: If one input sequence
is much longer than the other, many gaps have to be introduced, which might
limit the interpretability of the output alignment. In such situations it is often
desirable to encourage the alignment algorithm to skip consecutive parts of the
longer input sequence and thus identify regions of interest that can properly
be aligned with the shorter input sequence. Consider the example of the two
text sequences

The fairy went home.

versus

After thirty adventures the fairy, overwrought but happy with
her achievements, went back to her nearly forgotten homestead.

According to the String Edit Distance, the cheapest extensions of these
sequences might look like this:

--T----h--------e------ ----fairy- ----w---------------------
After thirty adventures the fairy, overwrought but happy with

--e-----------nt------------ ---h-----------o----------me-----.
her achievements, went back to her nearly forgotten homestead.

However, it would be desirable to produce an alignment like this:
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----------------------- The fairy----------------------------
After thirty adventures the fairy, overwrought but happy with

------------------ went----------------------------- home-----.
her achievements, went back to her nearly forgotten homestead.

In the literature, several approaches have been presented to encourage
alignment algorithms to generate consecutive gaps: Smith and Waterman [38]
have suggested an extended algorithm that can skip prefixes and suffixes of
both input sequences for a fixed cost, independent of the lengths of these pre-
und suffixes. In other words: If the String Edit Distance of the prefixes or
suffixes becomes too high, they are skipped/ignored. This way the algorithm
can identify the mid parts of both sequences, which allow a relatively cheap
alignment (so-called Local Alignment).

Building upon this approach Gotoh [14] suggested an affine scoring scheme
for gaps, where the first gap that is used is quite expensive while every consec-
utive gap afterwards has a discounted cost. This approach encourages long gap
regions to justify the “initial investment” of the gap opening cost. The affine
alignment algorithm presented in this work is based on Gotohs approach.

1.1.2 Algebraic Dynamic Programming

Algebraic Dynamic Programming (ADP) has been introduced by Giegerich,
Meyer, and Steffen [12] as “a discipline of dynamic programming over sequence
data”. It expresses possible alignments between input sequences as trees, which
are produced by an underlying regular tree grammar. The alignment distance
is determined by selecting the cheapest tree according to an objective function
defined on those trees. Thereby they distinguish between the general alignment
scheme (grammar) and the objective function (algebra) in a clean way and
allow for simple combinations of alignment schemes with different objective
functions and even coupling of different objective criteria (so-called algebra
products).

Algebraic Dynamic Programming (ADP) is accompanied by powerful the-
oretic work, such as an algebra-based formulation of Bellman’s principle of
optimality [3]. More recently, Sauthoff [37] provided an ADP programming
language and compiler, enabling rapid prototyping of sequence alignment al-
gorithms.

It should be noted that ADP applications are much broader than mere se-
quence alignment and include sophisticated biological tasks, such as abstract
shape analysis [20] and pseudoknot folding [33]. For reasons of simplicity,
though, we exclusively focus on sequence alignment restrict the broad defini-
tions of ADP to optimally match this setting.
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1.1.3 Similarity-Based Classification

Classifying data based on similarities or dissimilarities is a common technique
in machine learning, applied in popular methods like k-Nearest Neighbor (k-
NN) or k-means classification [9, 24]. In the past decades the topic has recieved
heightened attention in the form of kernel methods [19], most notably the sup-
port vector machine [40]. Kernels apply more restrictions on the dissimilarity
function, which an alignment distance does not satisfy2. Other modern ap-
proaches do not require these additional restrictions, such as Relational Gen-
eralized Learning Vector Quantization (RGLVQ) [17]. In this work we focus
on the well-established k-NN method.

1.1.4 Representation Learning

As Pękalska [32] points out, considering distances or similarities between data
points rather than explicit feature vectors, is equivalent to an alternative data
representation. From that perspective metric learning is a form of representa-
tion learning, as changes of metric parameters induce changes in the implicit
representation of the data. Still, representation learning in the strict sense
focuses on learning explicit features, as is the case in auto-encoders and deep
networks. An overview of techniques for representation learning has been pro-
vided by Bengio, Courville, and Vincent [4].

1.1.5 Vectorial Metric Learning

If the data is given in the form of feature vectors, several approaches are
available to learn a suitable metric. Recent overview papers on this topic have
been provided by Bellet, Habrard, and Sebban [1] and Kulis [21]. Usually such
metric learning schemes extend the notion of the euclidian distance metric
towards a more general quadratic form:

D(~x, ~y) :=
√

(~x− ~y)TM(~x− ~y) (1.2)

The learning process then has the aim to adapt the (symmetric, positive-
semidefinite) matrix M in order to optimize some objective function. An
example for such a learning scheme is the work of Weinberger and Saul [43],
which provides the cost function we use in this thesis.

1.1.6 Sequence Alignment Distance Learning

Bellet, Habrard, and Sebban [1] list several methods that are more specifically
geared towards parameter learning for alignment distances. Interestingly, these
methods mostly rely on a stochastic definition of alignment algorithms and
expectation maximization schemes (e.g. Habrard et al. [16], Takasu, Fukagawa,
and Akutsu [39], and Bernard et al. [5]). While such approaches can be applied

2However, there are approaches to derive kernels based on alignment distances, such as
[34, 10].
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to classification tasks by demanding high intra-class similarity and low inter-
class similarity between datapoints, they do not provide a gradient of the
alignment distance which could be plugged into other cost functions.

Saigo, Vert, and Akutsu [34] do calculate a gradient over a Local Alignment
Kernel, which makes their work quite similar to the one presented within
this thesis. However, they do not use the gradient to optimize classification
performance and lack the more general framework of ADP.

Bellet, Habrard, and Sebban [2] introduce a gradient-based approach to
learn String Edit Distance parameters, which they accompany with strong
theoretical results and directly connect to classification performance. Unfor-
tunately they do not support more refined alignment algorithms like local or
affine ones.

1.2 Scientific Contribution and Overview
The key contributions of this thesis are

1. extending the theory of alignment distance learning towards a general
class of alignment algorithms using ADP,

2. applying this learning scheme on the sophisticated method of Affine
Alignment,

3. providing a fast and very flexible implementation of various alignment
algorithms and their gradients in form of the TCS Alignment Toolbox 3

and

4. extending the approach towards k-NN classification.

We proceed as follows: In Chapter 2 we introduce a simplified version of ADP
first and use it to define the subclass of alignment algorithms considered within
this thesis. To optimize the parameters of the alignment distance for classifica-
tion we calculate the gradient of the Large Margin Nearest Neighbor (LMNN)
cost function [43]. We achieve a differentiable alignment distance using the soft
minimum approximation. The implementation of the TCS Alignment Toolbox
is described in Chapter 3. Using this implementation we proceed to exper-
iments on three diverse datasets in Chapter 4, after which we conclude the
thesis in Chapter 5.

3http://openresearch.cit-ec.de/projects/tcs

http://openresearch.cit-ec.de/projects/tcs


Chapter 2

Theory

Within this work we do not only investigate the specific case of Affine Se-
quence Alignment (see Section 2.3 on page 25), but rather a more general
class of sequence alignment schemes, which can be expressed in Algebraic Dy-
namic Programming (ADP). For such alignment schemes we provide a generic
dynamic programming algorithm to calculate them efficiently (see Section 2.4
on page 28), generic results on metric properties (see Section 2.5 on page 32)
and an efficient gradient calculation method (see Section 2.7 on page 42), which
enables machine learning on parameters of the alignment scheme.

We begin with a fairly general definition of “sequence” in Section 2.1, which
form the input for our alignment algorithms.

Section 2.2 is devoted to Algebraic Dynamic Programming. The theory
of ADP has been thoroughly investigated by Giegerich, Meyer, and Steffen
[12]. It provides a powerful framework to develop and implement dynamic
programming algorithms on sequential data. Due to the scope of this thesis,
however, we will not address the full expressive power of ADP, but rather a
simplified version of it.

Building upon these definitions we systematically develop Affine Sequence
Alignment in Section 2.3. In Section 2.4 we describe how alignment schemes
expressed in the ADP framework can be translated to efficient dynamic pro-
gramming algorithms. We investigate the (metric) properties of the alignment
distance extensively in Section 2.5.

Proceeding to the actual adaption of alignment algorithms we further pro-
vide a simple cost function for our further experiments (Section 2.6), which
we optimize by gradient descent. We calculate the gradient in Section 2.7 and
achieve a differentiable alignment distance using the soft minimum approxi-
mation described in Section 2.8.

2.1 Sequences

Our input sequences are defined as follows:

Definition 1. An alphabet Σ is some arbitrary set. Elements a, b ∈ Σ are
called values.

15
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α β γ Phase Comment
30 10 10 pause Begin of pause before first movement.
30 10 10 pause
40 10 10 movement Begin of movement. Quite rapidly at the start.
45 10 10 movement
50 10 10 movement
50 10 10 pause End of movement.

Table 2.1: Some toy data describing the movement of a very simple robotic
arm with three joints. The joint angles α, β, γ at a given point in time are
listed in the first three columns. The fourth column describes qualitatively
whether the arm is moving or not. The last column contains a comment as it
might be given by some robotics researcher.

Definition 2. The keyword set is an arbitrary, finite set. Every element κ ∈ K
is called a keyword κ is some arbitrary set.

During our theoretical considerations here a keyword has the function of
an index and can be seen as a natural number. In practical applications a
string captures the meaning of the respective alphabet better. Each keyword
references one alphabet. We denote the alphabet corresponding to keyword κ
as Σκ.

Definition 3. The node set is defined as the Cartesian product of all alpha-
bets:

Σ× =×
κ∈K

Σκ (2.1)

Each element x ∈ Σ× is called a node. Each entry in such a vector of values is
denoted as xκ.

Definition 4. A sequence x̄ is a succession (or a vector) of nodes x̄ = (x1, . . . , xM)
with M ≥ 0. We call M the length of x̄.

In that sense a sequence can be written as a matrix, where each row is a
node. Note that the order of columns in that matrix does not matter, while
the order of rows is important.

As an example consider movement data from a robotic arm: We might have
real numbers for the joint angles of the robotic arm, which might be accom-
panied by a semantic labeling of the movement phase as well as comments of
the robotic researcher. Some toy data for this example is shown in Table 2.1.

2.2 Algebraic Dynamic Programming
Algebraic Dynamic Programming neatly separates concepts, which facilitates
loose coupling in implementations and high compatibility. The concepts are:

• The signature (Section 2.2.1 on the facing page) defines function tem-
plates and serves as an interface between the algebra and grammar.
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• The algebra (see Section 2.2.2 on the next page) implements the functions
specified by the signature.

• The grammar (see Section 2.2.4 on page 20) specifies which function can
be applied in which situation and thereby provides the search space of
possible alignments.

When we combine all these ingredients, we can define the corresponding align-
ment distance and ADP problem (see Section 2.2.5 on page 24 and 2.2.6 on
page 24 respectively).

2.2.1 Signature

Definition 5. We define an arity as a tuple

(A,A′) ∈ N2 (2.2)

This definition implicitly specifies the input set for a function, as can be
seen in the Definitions 8 and 9 on page 19.

Definition 6. The alignment end nil or terminating template is defined as the
tuple

(nil, (0, 0)) (2.3)

Definition 7. A signature T is a set of function templates t, which we define
as a tuple of a name and an arity (A,A′). Furthermore we require for the
aritys of function templates:

A,A′ ∈ {0, 1} (2.4)
A+A′ > 0 (2.5)

For the purpose of this thesis we mostly use a fixed signature, which we
will re-use in the course of this thesis:

• rep (replacement) with the arity (1, 1)

• del (deletion) with the arity (1, 0)

• ins (insertion) with the arity (0, 1)

• skip_del (skip-deletion) with the arity (1, 0)

• skip_ins (skip-insertion) with the arity (0, 1)

We will refer to this particular signature as T ∗ or sig_alignment.
Even though it is not directly expressed in the definition, the function

template names already hint at the semantics of these function templates.
They relate to a different understanding of the general sequence alignment
problem: Given two input sequences x̄ and ȳ, how can the first sequence
be transformed to the second sequence by applying a succession of discrete
transformation operations, such that the sum of all operation costs is as low
as possible. Taking this point of view the different function templates (or
operators as they are called by Giegerich, Meyer, and Steffen [12]) have the
following semantics:
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• An alignment end obviously just ends the alignment.

• A replacement means replacing one node in the first sequence by one
node of the second sequence.

• A deletion means deleting one node in the first sequence (denoted as a
− in the second sequence).

• An insertion means inserting one node from the second sequence into
the first sequence (denoted as a − in the first sequence).

• A skip-deletion means skipping an irrelevant node in the first sequence
(denoted as a _ in the second sequence).

• A skip-insertion means skipping an irrelevant node in the second se-
quence (denoted as a _ in the first sequence).

Consider the example of the String Edit Distance of the two input strings
abc and acd. On optimal alignment looks like this:

abc-
a-cd

This is equivalent to saying that we

• replaced a with a,

• deleted b,

• replaced c with c and

• inserted d into the first sequence.

Algorithms, that explicitly construct such transformation or edit scripts
are called edit distance algorithms. Note that we do not formally proof the
equivalence of edit distance algorithms and the alignment schemes discussed
in this thesis. However, we find this alternative perspective helpful to better
understand the concepts of ADP and occasionally refer to an edit distance
interpretation.

2.2.2 Algebra

Let T be a signature and (At,A′t) be the arity of function template t. Let K
be the keyword set and κ a keyword with the associated alphabets Σκ.

Definition 8. We define the algebra function input set I(t) as:

I(t) :=
At×
α=1

Σ× × R+ ×
A′t×
α′=1

Σ× (2.6)
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Definition 9. We further define the comparator function input set Iκc (t) as:

Iκc (t) :=
At×
α=1

Σκ ×
A′t×
α′=1

Σκ (2.7)

Definition 10. Accordingly a comparator function cκt is some function

cκt : Iκc (t)→ [0, 1] (2.8)

Definition 11. We define an algebra F(T ) as a set of comparator functions
cκt , one for each tuple (t, κ) ∈ T ×K.

Definition 12. This in turn gives rise to algebra functions (one for each func-
tion template) as follows:

dt : I(t)→ R+ (2.9)

dt(◦, s, ◦) := s+
∑
κ∈K

gκc
κ
t (◦, ◦) (2.10)

where ◦ is a placeholder for the remaining input arguments at that position
and (gκ)κ∈K are keyword weights, one for each keyword κ. Further we restrict
keyword weights with the following conditions:

∀κ ∈ K : gκ ∈ [0, 1] (2.11)∑
κ∈K

gκ = 1 (2.12)

These definitions yield an intuitive interpretation: d calculates the accumu-
lation of all previous alignment operations plus the cost of the current align-
ment operation t. The cost of the current operation in turn is calculated as
the weighted sum of all comparator function outputs with the keyword weights
(gκ)κ∈K . Finally, we can interpret the comparator function output as the cost
for applying the current alignment operation t on the current values in both
sequences.

Again, this is a strong restriction of the algebra definition given by Giegerich,
Meyer, and Steffen [12]: They permit arbitrary output sets for algebras, which
enables them to frame e.g. printouts of optimal alignments as a special kind of
algebra. For the purposes of this thesis, however, the restriction to (positive)
real numbers is sufficient, though.

2.2.3 Choice Function

Definition 13. Let P(R+) be the set of all possible multisets of non-negative
real numbers. Then we define a choice function as a function:

h : P(R+)→ R+ (2.13)
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This definition makes the name choice function quite intuitive: It chooses
one value from a multiset of values.1 It restricts the definitions given by
Giegerich, Meyer, and Steffen [12] once more: They consider functions which
return more than one value as well (especially the identity function). However,
as we have already fixed the output of an algebra to a real number our intent
with the choice function is quite clear: We would like to find the cheapest
possible alignment. Therefore, the ideal choice function is:

h[θ1, . . . , θL] := min[θ1, . . . , θL] (2.14)

Note that the definition of h over a multiset2 of values also makes it invari-
ant regarding changes of order within the input arguments.

2.2.4 Grammar

An ADP grammar is a regular tree grammar, which expresses the language
of all possible alignments. According to Giegerich, Meyer, and Steffen [12]
the original definition of such regular tree grammars has been introduced by
Brainerd [7] and Giegerich and Schmal [13] have applied some modifications
to make such languages specify valid terms.

Definition 14. Very similar to Giegerich, Meyer, and Steffen [12] we define
an ADP grammar as a tuple

G = (Φ,A∗, K, {(κ,Σκ)}κ∈K , T ,∆) (2.15)

where

• Φ is a set of nonterminal symbols,

• A∗ ∈ Φ is the axiom or start nonterminal symbol,

• K is a keyword set,

• (κ,Σκ)κ∈K are tuples mapping the keywords to respective alphabets, thus
defining the node set Σ×,

• T is a signature and

• ∆ are production rules.

To denote these production rules we use the Bellman’s Gap Language
(GAP-L) as introduced in Chapter 4 of the PhD thesis by Sauthoff [37]. As in
GAP-L we do not regard terminal symbols as part of the grammar but use a
fixed global set of terminal symbols, namely:

• NODE which is some node from the node set.
1Note that we do not require the output value to be part of the input multiset, though.

h[θ1, . . . , θL] = 0 is a valid choice function as well.
2In the course of this thesis we will denote multisets with square brackets [. . . ] to avoid

confusion with simple sets.
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• EMPTY which is the empty word.

Each production rule is denoted as
A = t(<TL , TR>, B) ;

or
A = B;

or
A = n i l (<EMPTY , EMPTY>) ;

where A and B are nonterminal symbols and TL and TR are terminal symbols.
As before, t refers to some function template in the signature T . The < >
syntax means that the left terminal symbol in the enclosed tuple will be applied
to the left input sequence, while the right terminal symbol in the enclosed tuple
will be applied to the right input sequence3. Obviously, the tuple has to match
the arity of the enclosing t, so
de l (<EMPTY , EMPTY>, B) ;

is not valid, because it forwards no input argument to the left side of the del
function template.

We introduce two further definitions on grammars for our subsequent the-
oretical work:

Definition 15. A nonterminal symbol A in grammar G is called accepting if
a production rule of the form
A = n i l (<EMPTY , EMPTY>) ;

exists in ∆.

Definition 16. Let G be a grammar. A loop is defined as a succession of
nonterminal symbols A1, . . . ,AR ∈ Φ with R ≥ 1, such that A1 = AR and for
every 1 ≤ r < R there is a production rule of the form

Ar = Ar+1 (2.16)

in ∆.

In this thesis we will assume that all grammars do not contain loops, as
they make the calculation of an alignment distance impossible. The existence
of loops can be checked efficiently by Algorithm 6 on page 60.

For convenience reasons GAP-L also introduces the | symbol as a shorthand
for multiple rules, so
A = t(<TL , TR>, B) | t2(<TL2 , TR2>, B2) ;

is just a shorthand for
A = t(<TL , TR>, B) ;
A = t2(<TL2 , TR2>, B2) ;

3This is called Multi-Track by Sauthoff [37], as two input sequences are parsed at the
same time.
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Grammar 2.1: An ADP Grammar GGlob for Global Sequence Alignment or
String Edit Distance.
grammar Glob uses s ig_al ignment (axiom = ALI) {
ALI = rep(<NODE , NODE>, ALI) |

de l (<NODE , EMPTY>, ALI) |
i n s (<EMPTY , NODE>, ALI) |
n i l (<EMPTY , EMPTY>) ;

}

rep

’a’ nil ’b’

del

’a’ ins

nil ’b’

ins

del

’a’ nil

’b’

Figure 2.1: Some example trees that can be constructed using the grammar
GGlob.

Note that GAP-L also requires users to explicitly indicate whether a choice
function should be applied for the current rule or not. We omit this particular
language concept and assume that the choice function should be applied every
time. The application of the choice function is discussed in more detail in
Sections 2.2.6 on page 24 and 2.4 on page 28

As a first example of such a grammar consider the very simple example of
Global Sequence Alignment as introduced by Needleman and Wunsch [30]. In
the abstract ADP representation this is equivalent to the String Edit Distance
or Levenshtein-distance [22]. The production rules are shown in Grammar 2.1.

Lets construct some example trees with these production rules. To make
the examples more palpable we assume for the moment only having one key-
word κ. As the respective alphabet we define a set of discrete characters:

Σκ := {’a’, ’b’} (2.17)

Accordingly, our example grammar is defined as

GGlob = ({ALI}, ALI, {κ}, (κ, {’a’, ’b’}), T ∗,∆Glob) (2.18)

The resulting trees are shown in Figure 2.1. Each of these trees is an
element of the language L(GGlob).

Definition 17. We define a language L over some grammar G as the set of all
trees (without nonterminal symbols) that can be constructed starting at the
axiom A∗ and iteratively applying production roles from ∆.

This language does not yet depend on any specific input. Each of the trees
in L(G) can be interpreted as some alignment, but the connection to input
sequences and an algebra has yet to be made. In the course of this thesis we
will call the trees alignments as well.

We furthermore want to define a particular set of alignments, which will
come in handy later on:
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Definition 18. Let x, y ∈ Σ×. An alignment T is called trivial replacement
alignment if it is of the form:

T = rep(x, T ′, y) (2.19)
T = nil() (2.20)

where T ′ is a trivial replacement alignment itself.

Regarding this class we can conclude:

Lemma 1. Every alignment that only consists of rep and/or nil operations is
a trivial replacement alignment (independent of the grammar that produced it).

Proof. Our claim follows from the grammar rules that are possible. Let T be
some alignment only consisting of rep and/or nil operations. Now first assume
that it does not contain a nil operation. In that case the tree was produced
only by rules of the form

A = rep(<NODE , NODE>, B) ;

As can be seen this rule necessarily contains a nonterminal symbol on the right-
hand side such that only applying these rules never leads to a valid alignment
as defined in Definition 17 on the preceding page.

Thus the alignment contains at least one nil operation. Now consider the
first nil. As defined above the only production rules producing nil are of the
form:

A = n i l (<EMPTY , EMPTY>) ;

Apparently, there is no nonterminal symbol left on the right hand side. There-
fore, no other content can be produced anymore. Thus we can conclude that
T contains a succession of rep operations follows by exactly one nil at the end,
which makes T a trivial replacement alignment.

Dynamic Time Warping

Note that our current notion of grammar and algebra does not permit a
straightforward definition of Dynamic Time Warping (DTW). It is possible
to express Dynamic Time Warping (DTW) in ADP terms, though, if one ap-
plies a little trick: If the algebra has access to the input sequences we can
define the following algebra FDTW:

cκdel(xi) := cκrep(xi, yj) (2.21)
cκins(yj) := cκrep(xi, yj) (2.22)

(2.23)

Then DTW can be expressed using grammar 2.1 on the facing page (GGlob).
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2.2.5 Alignment Distance

Let G = (Φ,A∗, K, {(κ,Σκ)}κ∈K , T ,∆) be some grammar.

Definition 19. We define the yield Y(T ) of some tree T ∈ L(G) as the two
sequences that emerge as the concatenation of all terminal leafs on the left side
(left sequence) and the right side (right sequence) of the tree. More formally
we can define the yield recursively as follows:

Y(nil) := (ε, ε) (2.24)
Y(t(◦, T ′, ◦)) := (◦, ◦) ++ Y(T ′) (2.25)

where ++ means concatenating the entries in the left-hand tuple to the se-
quences in the right-hand tuple.

Consider the example trees in Figure 2.1 on page 22. All of them have the
yield

(’a’, ’b’) (2.26)

Definition 20. Let F(T ) be some algebra over the signature T . Similarly to
the yield we can define the application of F on T as follows:

F(nil()) := 0 (2.27)
F(t(◦, T ′, ◦)) := dt(◦,F(T ′), ◦) (2.28)

Definition 21. Let F(T ) be some algebra over the signature T and let h be
a choice function. Further let x̄, ȳ be some input sequences of nodes from the
node set Σ× =×κ∈K Σκ. Then the alignment distance D is defined as

D(x̄, ȳ) := h[F(T )|T ∈ L(G),Y(T ) = (x̄, ȳ)] (2.29)

In other words: The alignment distance is the algebra application of the
best (according to the choice function h) alignment T that can be produced
by the grammar, such that T has the input sequences as its yield.

2.2.6 Algebraic Dynamic Programming Problems

Definition 22. Let x̄, ȳ be some input sequences. Then the Algebraic Dynamic
Programming problem is defined as calculating the alignment distance between
x̄ and ȳ in polynomial time with respect to the input sequence lengths M and
N .

A naive algorithm to compute the alignment distance is Algorithm 1 on
the facing page.

As an example consider the single-keyword setting from above with Σκ :=
{’a’, ’b’} and the grammar GGlob. Additionally we define the trivial algebra:

cκrep(a, b) :=

{
0 if a = b

1 if a 6= b
(2.30)

cκdel(a) = cκskip_del(a) := 1 (2.31)

cκins(b) = cκskip_ins(b) := 1 (2.32)
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Algorithm 1 A naive algorithm to calculate the alignment distance, which
does not run in polynomial time.
Let G be our input grammar oder signature T , F be our algebra over T , h
our choice function and x̄ and ȳ our input sequences.
Calculate L(G).
Initialize Θ as an empty multiset.
for T ∈ L(G) do

if Y(T ) = (x̄, ȳ) then
Add F(T ) to Θ.

end if
end for
return h(Θ).

where a, b ∈ Σκ. As choice function we use min and as input sequences we
consider x̄ = ’a’ and ȳ = ’b’. Figure 2.1 on page 22 shows all trees from L(G)
that have (x̄, ȳ) as their yield. The algebra results for the trees are (from left
to right) 1, 2 and 2. Thus the choice function returns:

h[1, 2, 2] = min[1, 2, 2] = 1 (2.33)

This is the optimum alignment distance between both input sequences. Obvi-
ously, this naive approach does not solve the ADP problem: It does not finish
in polynomial time (with respect to the lengths of the input sequences). As
the name of ADP suggests, the key to efficiency is decomposing the problem
in a dynamic programming fashion. We consider the decomposition in more
detail in Section 2.4 on page 28 and the matter of efficiency in Section 2.4.2
on page 32.

2.3 Affine Sequence Alignment

Now lets systematically extend the example grammar GGlob to a grammar for
Affine Sequence Alignment, which we can use for the experiments later on.
The first extension is based on a simple observation: Consider the middle and
the right tree shown in Figure 2.1 on page 22. Both trees have the same yield
as well as the same algebra result. This is necessarily the case, as can be shown
easily:

Y(del(a, ins(T ′, b))) = (a, ε) ++ (ε, b) ++ Y(T ′) (2.34)
= (a, b) ++ Y(T ′) (2.35)
= (ε, b) ++ (a, ε) ++ Y(T ′) (2.36)
= Y(ins(del(a, T ′), b)) (2.37)



26 CHAPTER 2. THEORY

Grammar 2.2: A refined version of Grammar 2.1 on page 22 GGlob2 enforcing
that deletions happen in front of insertions.
grammar Glob2 uses s ig_al ignment (axiom = ALI) {
ALI = rep(<NODE , NODE>, ALI) |

de l (<NODE , EMPTY>, ALI) |
i n s (<EMPTY , NODE>, INS) |
n i l (<EMPTY , EMPTY>) ;

INS = in s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) |
n i l (<EMPTY , EMPTY>) ;

}

and

F(del(a, ins(T ′, b))) = ddel(a, dins(F(T ′), b)) (2.38)

=
∑
κ∈K

gκc
κ
del(a

κ) +
∑
κ∈K

gκc
κ
ins(b

κ) + F(T ′) (2.39)

= dins(ddel(a,F(T ′)), b) (2.40)
= F(ins(del(a, T ′), b)) (2.41)

So adjacent deletion and insertion operations can be reversed without
changing the ADP problem result (independent of the algebra). Given that
observation we can reduce the search space by enforcing that deletions happen
in front of insertions. The resulting grammar GGlob2 is shown in Grammar 2.2.
Applied on the example, this grammar does not produce the rightmost tree in
Figure 2.1 on page 22 anymore.

Smith and Waterman [38] suggested a Local Sequence Alignment in the
sense that the beginning and the end of both input sequences can be skipped
at low costs such that the algorithm identifies those subsequences of the input
sequences that match best and ignores the rest. Grammar 2.3 on the next
page is inspired by that approach: It allows to skip the beginning of both
sequences (but enforces that skip-deletions happen before skip-insertions) until
a first replacement occurs. After a first replacement the grammar is essentially
equivalent to GGlob2 with the sole exception that from the nonterminal symbol
ALI we are allowed to switch to SKIPDEL_END. After that switch only skip-
deletions and skip-insertions may occur. If the algebra ensures that skip-
deletions and skip-insertions are cheap the grammar will lead to the desired
behavior. Figure 2.2 on page 28 shows an example tree for this grammar.

Our final extension is motivated by the Affine Alignment algorithm by
Gotoh [14]. Here we allow skips in the middle of the alignment as well, if
the skip-regions have non-trivial lengths. In Grammar 2.4 on page 29 we
expect at least three skip-deletions or skip-insertions. In effect this grammar
tries to find those subsequences of both input sequences that match best. To
keep the number of such subsequences small, Gotoh [14] introduced the idea
of a skip opening cost: If opening skip-regions is relatively expensive it is
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Grammar 2.3: An ADP Grammar GLocal for Local Sequence Alignment as
suggested by Smith and Waterman [38].
grammar l o c a l uses s ig_al ignment (axiom = SKIPDEL_START){
// s k i p the s t a r t
SKIPDEL_START = skip_del(<NODE , EMPTY>, SKIPDEL_START) |

SKIPINS_START;

SKIPINS_START = skip_ins(<EMPTY , NODE>, SKIPINS_START) |
rep(<NODE , NODE>, ALI) |
n i l (<EMPTY , EMPTY>) ;

// a l i g n in the middle
ALI = de l (<NODE , EMPTY>, DEL) |

i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) |

// s t a r t s k i pp in g the end
SKIPDEL_END;

DEL = de l (<NODE , EMPTY>, DEL) |
i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) ;

INS = in s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) ;

// s k i p the end
SKIPDEL_END = skip_del (<NODE , EMPTY>, SKIPDEL_END) |

SKIPINS_END;

SKIPINS_END = skip_ins(<EMPTY , NODE>, SKIPINS_END) |
// here ends the a l ignment

n i l (<EMPTY , EMPTY>) ;
}
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skip_ins

skip_ins

rep

’h’ ins

rep

’o’ del

’l’ rep

’d’ nil ’d’

’ö’

’n’

’h’

’c’

’s’

Figure 2.2: An example tree with the yield (hold, schnöd) using the grammar
GLocal.

better to continue an existing region than to open another one somewhere
else. We incorporate this idea by enforcing a regular deletion or insertion
operation before the production is allowed to continue with skip-deletions or
skip-insertions.

2.4 Translation to Dynamic Programming

Our aim is to generically solve the ADP problem for some given grammar, al-
gebra, choice function and input sequences. Fortunately this is quite straight-
forward given the theory we have introduced so far. Let

G = (Φ,A∗, K, {(κ,Σκ)}κ∈K , T ∗,∆)

be some grammar over the restricted signature T ∗. Let further x̄ and ȳ be our
input sequences with lengths M and N . The key points are:

1. Every nonterminal symbol A ∈ Φ is translated to a dynamic program-
ming table A of size (M + 1) · (N + 1).

2. All tables corresponding to accepting nonterminal symbols A (see Defi-
nition 15 on page 21) get initialized with

A(M + 1, N + 1)← 0 (2.42)

3. All production rules in ∆ that do not contain nil can be translated ac-
cording to Table 2.2 on page 31.
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Grammar 2.4: The ADP Grammar GAffine for the Affine Sequence Alignment
algorithm used in this thesis.
grammar a f f i n e uses s ig_al ignment (axiom = SKIPDEL_START){
// s k i p the s t a r t
SKIPDEL_START = skip_del(<NODE , EMPTY>, SKIPDEL_START) |

SKIPINS_START;

SKIPINS_START = skip_ins(<EMPTY , NODE>, SKIPINS_START) |
rep(<NODE , NODE>, ALI) |
n i l (<EMPTY , EMPTY>) ;

// a l i g n in the middle
ALI = de l (<NODE , EMPTY>, DEL) |

i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) |

// s k i p to the next i n t e r e s t i n g reg ion wi th at l e a s t 3 s k i p s
de l (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
SKIPDEL_MID) ) ) |

// s k i p to the next i n t e r e s t i n g reg ion wi th at l e a s t 3 s k i p s
i n s (<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
SKIPINS_MID) ) ) )

// s t a r t s k i pp in g the end
SKIPDEL_END;

DEL = de l (<NODE , EMPTY>, DEL) |
i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) ;

INS = in s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) ;

// cont inue s k i pp in g to an i n t e r e s t i n g reg ion
SKIPDEL_MID = skip_del (<NODE , EMPTY>, SKIPDEL_MID) |

rep(<NODE , NODE>,ALI) ;

SKIPINS_MID = skip_ins(<EMPTY , NODE>, SKIPINS_MID) |
rep(<NODE , NODE>,ALI) ;

// s k i p the end
SKIPDEL_END = skip_del (<NODE , EMPTY>, SKIPDEL_END) |

SKIPINS_END;

SKIPINS_END = skip_ins(<EMPTY , NODE>, SKIPINS_END) |
// here ends the a l ignment

n i l (<EMPTY , EMPTY>) ;
}
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4. The value of a cell A(i, j) is calculated as the application of the choice
function on the translation of all production rules with the corresponding
nonterminal symbol A on the left side.

5. We fill the dynamic programming tables by starting with the indices
i = M + 1 and j = N + 1 for all nonterminal symbols and decreasing i
and j iteratively until cell (1, 1) is calculated for all tables.

6. The result can be found in cell (1, 1) of the dynamic programming table
representing the axiom.

A formal version is shown in Algorithm 2.

Algorithm 2 A generic dynamic programming algorithm that solves the al-
gebraic dynamic programming problem (see Section 2.2.6 on page 24) corre-
sponding to some given ADP grammar G, algebra F , choice function h and
input sequences x̄ and ȳ.

Let G = (Φ,A∗, K, {(κ,Σκ)}κ∈K , T ∗,∆) be an ADP grammar over signature
T ∗ and F be an algebra over the same signature and Σ×. Further let h be
a choice function.
Let x̄, ȳ be our input sequences over Σ× with lengths M and N .
for A ∈ Φ do

Initialize A as a table of size (M + 1)× (N + 1).
if A is accepting then

A(M + 1, N + 1)← 0.
end if

end for
for i ∈ (M + 1, . . . , 1) do

for j ∈ (N + 1, . . . , 1) do
for A ∈ Φ do

Let A be the dynamic programming table corresponding to A.
Retrieve all applicable production rules from G that have A on

the left-hand side. Let L be the number of such rules. We associate each of
these rules with an arbitrary index l ∈ {1, . . . , L}.

for l ∈ {1, . . . , L} do
Calculate θl as the translation of the production rule with

index l as described in Table 2.2 on the next page.
end for
A(i, j)← h[θ1, . . . , θL]

end for
end for

end for
return A∗(1, 1)

There are two main technicalities that we have glossed over in Algorithm 2:

1. We are not allowed to iterate over the nonterminal symbols in arbitrary
order in the inner loop, as rules of the form
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Production Rule Translation
B B(i, j)
del(<NODE,EMPTY>, B) ddel(xi, B(i+ 1, j))
skip_del(<NODE,EMPTY>, B) dskip_del(xi, B(i+ 1, j))
ins(<EMPTY,NODE>, B) dins(B(i, j + 1), yj)
skip_ins(<EMPTY,NODE>, B) dskip_ins(B(i, j + 1), yj)
rep(<NODE,NODE>, B) drep(xi, B(i+ 1, j + 1), yj)

Table 2.2: The translation of a right side of a production rule to a term θl.

A = B;

imply a dependency of A(i, j) on B(i, j). Therefore, we have to calcu-
late the latter one first. Fortunately we can detect those dependencies
systematically in a simple preprocessing step that only depends on the
production rules of the grammar. We provide pseudocode for this pre-
processing in Algortihm 6 on page 60. Note that this pseudocode also
prevents dependency loops (see Definition 16 on page 21).

2. More critical is the notion of “applicable production rules”. Consider the
example of Global Sequence Alignment as described in Grammar 2.1 on
page 22. Which production rules can be applied depends on the available
subsequence: If i = M (that is: there is nothing left of the left input
sequence) we can neither apply a replacement nor a deletion because we
can not read from the left input sequence anymore. There is no trivial
way to determine the applicable production rules in general, given some
grammar. We provide rather inefficient pseudocode in Algorithm 3 on
page 33. As the applicable production rules have to be retrieved in every
calculation step, the efficient retrieval of applicable production rules is
critical to the overall efficiency of the algorithm. In Section 3.3 on page 58
we discuss our implementation with respect to this problem.

To provide some more insight to this generic translation algorithm we pro-
vide an example calculation for the grammar GAffine in Appendix B.

2.4.1 Bellman’s Principle of Optimality

We still need to show is that our generic translation algorithm (see Algorithm 2
on the facing page) does indeed compute the alignment distance. Formally, we
need to show that for any two sequences x̄, ȳ:

A∗(1, 1)
!

= D(x̄, ȳ) (2.43)

That is to say: We need to prove that our problem can be decomposed; that we
do not need to construct all possible trees and then find the optimum but can
construct an optimal tree for a part of the overall problem and merge it with
other optimal subtrees to an overall optimal solution. Giegerich, Meyer, and
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Steffen [12] have done extensive work on this topic and found that the decom-
positionality depends on the combination of algebra F and choice function h.
In reference to the work of Bellman [3] they coined the term “Algebraic Version
of Bellman’s Principle of Optimality”, which a certain tuple (F , h) must fulfill
to be decomposable. In the “standard case” of h = min, Giegerich, Meyer, and
Steffen [12] found that algebras just need to adhere to a monotonicity con-
straint. As we have defined our algebras in such a way that every application
of the algebra functions only adds some non-negative term in the interval [0, 1]
(see Section 2.2.2 on page 18) this condition is met by definition.

2.4.2 Computational Complexity

Finally, our definition of an ADP problem as stated in 2.2.6 on page 24 requires
efficiency, that is: We need Algorithm 2 on page 30 to run in polynomial time
with respect to the lengths M and N of the input sequences x̄ and ȳ.

Theorem 2. Algorithm 2 on page 30 has an asymptotic efficiency of

O(M ·N) (2.44)

Proof. As the algorithm creates dynamic programming tables of size (M +
1)× (N + 1) and fills them iteratively using for-loops it remains to show that
the calculation of each entry in these tables can be done in constant time with
respect to M and N .

We assume that

• accessing entries of dynamic programming tables,

• calculating algebra functions d and

• calculating the choice function h

is possible in constant time with respect to M and N . Further we assume
that the number of nonterminal symbols is (much) smaller than M and N
and constant. The only critical operation left is the selection of applicable
production rules. Assume that we have already sorted the nonterminal symbols
in Φ according to their dependencies. Then we can pre-compute the applicable
production rules for every entry A(i, j) in O(M ·N) using Algorithm 3 on the
next page. For specific grammars, more efficient calculation schemes can be
applied. We discuss this issue in more depth in Section 3.3 on page 58.

With this pre-computation the applicable production rules can be retrieved
in constant time as well, proving our claim.

2.5 Distance Properties
In this section we investigate different properties of the alignment distance D.
In particular we are interested in how far D fulfills the properties of a metric.
As a reminder:



2.5. DISTANCE PROPERTIES 33

Algorithm 3 A generic dynamic programming algorithm that calculates the
available production rules of a given grammar and input sequences x̄ and ȳ for
every possible situation in Algorithm 2 on page 30.
for A ∈ Φ do

Initialize A as a table of size (M+1)× (N+1). Every entry is initialized
with an empty set.

if A is accepting then
Add the production rule A = nil(<EMPTY,EMPTY>) to A(M + 1, N + 1).

end if
end for
for i ∈ (M + 1, . . . , 1) do

for j ∈ (N + 1, . . . , 1) do
for A ∈ Φ do

Let A be the dynamic programming table corresponding to A.
for production rules of the form A = B in ∆ do

Let B be the dynamic programming table corresponding to B.
if B(i, j) 6= ∅ then

Add A = B; to A(i, j).
end if

end for
for production rules of the form A = t(<TL,TR>, B) in ∆ do

Let B be the dynamic programming table corresponding to B.
Let (A,A′) be the arity of function template t.
if M + 1− i ≥ A and N + 1− j ≥ A′ and B(i+A, j+A′) 6= ∅

then
Add A = t(<TL,TR>, B) to A(i, j).

end if
end for

end for
end for

end for
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Definition 23. Let X be some arbitrary set and x̄, ȳ, z̄ ∈ X. A metric is some
function

d : X ×X → R (2.45)
such that:

d(x̄, ȳ) ≥ 0 (non-negativity) (2.46)
d(x̄, ȳ) = 0⇔ x̄ = ȳ (identity of indiscernibles) (2.47)
d(x̄, ȳ) = d(ȳ, x̄) (symmetry) (2.48)
d(x̄, z̄) ≤ d(x̄, ȳ) + d(ȳ, z̄) (triangular inequality) (2.49)

We will investigate the conditions for the former three conditions in the fol-
lowing sections. Under these constraints one can embed the data in a pseudo-
euclidian space [32], which is an important precondition for many learning
techniques, such as Relational Generalized Learning Vector Quantization [29].
In addition we will provide some notes on scale-invariance in Section 2.5.4 on
page 39 and on the interpretation of keyword weights as relevance terms in
Section 2.5.5 on page 40.

We can not investigate the triangular inequality in depth due to the scope
of this thesis, but rather provide pointers to existing work on the topic: The
triangular inequality has been shown to hold for some alignment algorithms by
Waterman, Smith, and Beyer [42]. Chen and Ng [8] notes that this does not
hold for every alignment algorithm (most notably it does not hold for Dynamic
Time Warping). In general the proof is easy for edit distances: If sequence x̄
can be transformed to ȳ and ȳ to z̄ using edit operations, then one can also
transform x̄ to z̄ using the concatenation of the edit scripts. If the underlying
algebra fulfills the triangular inequality then this holds for the edit distance
as well (see e.g. Heun [18]). However, within the scope of this thesis we can
not provide a comprehensive equivalence proof between alignments and edit
scripts.

2.5.1 Non-Negativity

Theorem 3. Let F be some algebra, h be some choice function and G some
grammar. Then for all possible sequences x̄, ȳ, all nonterminal symbols A ∈ Φ
and all i ∈ {1, . . . ,M + 1}, j ∈ {1, . . . , N + 1} it holds:

A(i, j) ≥ 0 (2.50)

Proof. Consider Algorithm 2 on page 30. For the entries of A we find:

A(i, j) = h[θl]l=1...L (2.51)

This already implies non-negativity as h has a non-negative result per definition
(see Section 2.2.3 on page 19). Further we also know that no term θl can be
negative as per definition all algebra functions add a non-negative term to the
input argument (see Section 2.2.2 on page 18). Via induction it follows that
no negative term occurs ever in the dynamic programming scheme.

Note that this directly implies the non-negativity of D, if Bellman’s Prin-
ciple of Optimality holds for the choice function.
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2.5.2 Identity of Indiscernibles

Theorem 4. Let G be a grammar over the signature T ∗ such that trivial
replacement alignments are part of its language. Let F be an algebra such that
for all κ ∈ K and for all a, b ∈ Σκ:

a = b⇒ cκrep(a, b) = 0 (2.52)

Using min as choice function we obtain for all possible sequences x̄, ȳ:

x̄ = ȳ ⇒ D(x̄, ȳ) = 0 (2.53)

Proof. Let x̄ = ȳ. Consider the trivial replacement alignment T ∗, which has
the yield Y(T ∗) = (x̄, ȳ). Then we obtain:

F(T ∗) =
M∑
i=1

∑
κ∈K

cκrep(xκi , y
κ
i ) + 0 = 0 (2.54)

Thus we can conclude using Equation 2.29 on page 24:

D(x̄, ȳ) := h[F(T )|T ∈ L(G),Y(T ) = (x̄, ȳ)] ≤ 0 (2.55)

As the alignment distance is non-negative according to Theorem 3 on the
preceding page, we obtain:

D(x̄, ȳ) = 0 (2.56)

Theorem 5. We use the definitions from Theorem 4, except for the algebra.
Instead let F be an algebra such that for all κ ∈ K and for all a, b ∈ Σκ:

a 6= b⇒ cκrep(a, b) > 0 (2.57)
cκdel(a) > 0 (2.58)

cκskip_del(a) > 0 (2.59)

cκins(b) > 0 (2.60)
cκskip_ins(b) > 0 (2.61)

Using min as choice function we obtain for all possible sequences x̄, ȳ:

x̄ 6= ȳ ⇒ D(x̄, ȳ) > 0 (2.62)

Proof. Consider the definition of D in Equation 2.29 on page 24. As D is
non-negative we can conclude that the only way to construct an alignment T ,
such that

F(T ) ≤ 0⇒ D(x̄, ȳ) ≤ 0 (2.63)

is a tree with F(T ) = 0. As our F implies that all operations other than rep
and nil have costs larger than 0 we can infer that T only contains rep and nil
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operations. Due to Theorem 1 on page 23 we know that T has to be a trivial
replacement alignment. Finally our restrictions to F imply:

rep(a, b) = 0⇒ a = b (2.64)

Therefore, we can infer x̄ = ȳ, which in turn implies:

D(x̄, ȳ) = 0⇒ x̄ = ȳ (2.65)

As we know that D is non-negative due to Theorem 3 on page 34 we can
conclude:

x̄ 6= ȳ ⇒ D(x̄, ȳ) 6= 0⇒ D(x̄, ȳ) > 0 (2.66)

We observe that all introduced grammars allow for trivial replacement
alignments, such that these theorems can be applied. Further we note that
the combination of both theorems implies the identity of indiscernibles.

2.5.3 Symmetry

We investigate the symmetry of the alignment distance by first introducing
the concepts of symmetric algebras and grammars and then proving that com-
bining a symmetric algebra with a symmetric grammar leads to a symmetric
alignment distance.

Definition 24. An algebra F over the signature T ∗ is called symmetric if and
only if for all nodes x, y ∈ Σ× and all s ∈ R+:

drep(x, s, y) = drep(y, s, x) (2.67)
ddel(x, s) = dins(s, x) (2.68)

Lemma 6. An algebra F over the signature T ∗ is symmetric if for all keywords
κ ∈ K and all values a, b ∈ Σκ:

cκrep(a, b) = cκrep(b, a) (2.69)
cκdel(a) = cκins(a) (2.70)

(2.71)

Proof. The proof follows from the definition of an algebra function in Equa-
tion 2.10 on page 19:

drep(x, s, y) = s+
∑
κ∈K

gκc
κ
rep(xκ, yκ) (2.72)

= s+
∑
κ∈K

gκc
κ
rep(yκ, xκ) (2.73)

= drep(y, s, x) (2.74)
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and

ddel(x, s) = s+
∑
κ∈K

gκc
κ
del(x

κ) (2.75)

= s+
∑
κ∈K

gκc
κ
ins(x

κ) (2.76)

= dins(s, x) (2.77)

Definition 25. A grammar G over the signature T ∗ is called strongly sym-
metric if for each production rule in ∆ of the form
A = de l (<NODE , EMPTY>, B) ;

there exists a production rule
A = in s (<EMPTY , NODE>, B) ;

Also for each rule of the form
A = skip_del(<NODE , EMPTY>, B) ;

there has to be a production rule
A = skip_ins(<EMPTY , NODE>, B) ;

This also has to be the case in the other direction (for each insertion rule
there is a corresponding deletion rule and for each skip-insertion rule there is
a corresponding skip-deletion rule).

We observe that GGlob is obviously strongly symmetric, while all subse-
quently introduced grammars are not strongly symmetric.

Theorem 7. A strongly symmetric grammar G in combination with a sym-
metric algebra F over the signature T ∗ implies symmetric dynamic program-
ming tables independent of the choice function h. In other words: Given two
sequences x̄, ȳ we can conclude for all nonterminal symbols A ∈ Φ and all
i ∈ {1, . . . ,M + 1}, j ∈ {1, . . . , N + 1}:

Ax̄,ȳ(i, j) = Aȳ,x̄(j, i) (2.78)

where Ax̄,ȳ is the dynamic programming table corresponding to the nonterminal
symbol A and given the input (x̄, ȳ).

Proof. See Appendix A.1.1 on page 99.

Note that we can directly infer a symmetric alignment distance D if the
choice function adheres to Bellman’s Principle of Optimality, because:

D(x̄, ȳ) = A∗x̄,ȳ(1, 1) = A∗ȳ,x̄(1, 1) = D(ȳ, x̄) (2.79)

Strong grammar symmetry is usually undesirable because it unnecessarily
expands the search space (see Section 2.3 on page 25). However, we can define
a weaker form of grammar symmetry, which is much easier to achieve and
implies alignment distance symmetry as well:
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Definition 26. A grammar G over the signature T ∗ is called weakly symmetric
if for all sequences and all trees T ∈ L(G) with yield Y(T ) = (x̄, ȳ) there exists
at least one alignment T ′ ∈ L(G) with yield Y(T ) = (ȳ, x̄) such that:

1. If T contains the operation del(xi), T ′ contains ins(xi).

2. If T contains the operation skip_del(xi), T ′ contains skip_ins(xi).

3. If T contains the operation ins(yj), T ′ contains del(yj).

4. If T contains the operation skip_ins(yj), T ′ contains skip_del(yj).

5. If T contains the operation rep(xi, yj), T ′ contains rep(yj, xi).

Note that both alignments necessarily contain the operation nil exactly
once, as they would not be finite otherwise (see also Theorem 1 on page 23).

We observe that strong grammar symmetry implies weak grammar sym-
metry. We do not proof weak symmetry for every grammar introduced in this
thesis. Rather, we do it exemplarily for GAffine. The technique employed in
that proof can be transferred to the other grammars as well.

Theorem 8. GAffine is weakly symmetric.

Proof. See Appendix A.1.2 on page 101.

Theorem 9. A weakly symmetric grammar G in combination with a symmetric
algebra Fover the signature T ∗ and min as choice function implies a symmetric
alignment distance, that means for all possible sequences x̄, ȳ:

D(x̄, ȳ) = D(ȳ, x̄) (2.80)

Proof. Consider the definition of D in Equation 2.29 on page 24. Now assume

D(x̄, ȳ) 6= D(ȳ, x̄) (2.81)

Then one of these statements has to be true:

D(x̄, ȳ) < D(ȳ, x̄) (2.82)
D(x̄, ȳ) > D(ȳ, x̄) (2.83)

Without loss of generality we assume the former case. Let T be an alignment
for which

T ∈ L(G) ∧ Y(T ) = (x̄, ȳ) ∧ F(T ) = D(x̄, ȳ) (2.84)

Because G is weakly symmetric there exists a corresponding alignment T ′ ∈
L(G) with yield Y(T ′) = (ȳ, x̄) that fulfills the conditions listed in Definition 26.
Due to algebra symmetry it follows that F(T ) = F(T ′), which in turn implies
that:

D(ȳ, x̄) ≤ F(T ′) = F(T ) = D(x̄, ȳ) < D(ȳ, x̄) (2.85)

This is a contradiction, thus proving our claim.
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2.5.4 Scale-Invariance

Theorem 10. Let F be some algebra and G some grammar, both over the
signature T ∗. Let further α ∈ R and let h be a choice function such that

h[α · θl]l=1...L = α · h[θl]l=1...L (2.86)

Finally we define an algebra F ′ as follows:

∀κ ∈ K : cκt
′(◦, ◦) := α · cκt (◦, ◦) (2.87)

Given two sequences x̄, ȳ we can conclude for all nonterminal symbols A ∈ Φ
and all i ∈ {1, . . . ,M + 1}, j ∈ {1, . . . , N + 1}:

A′(i, j) = α · A(i, j) (2.88)

where A is the dynamic programming table corresponding to the nonterminal
symbol A given the input (x̄, ȳ) and using the algebra F , while A′ is the dynamic
programming table corresponging to the same nonterminal symbol and given the
same input, but using the algebra F ′.

In other words: If we scale the algebra, all dynamic programming table
entries scale accordingly.

Proof. We can proof the theorem by structural induction. Consider Algo-
rithm 2 on page 30 again. The initial cells in the dynamic programming tables
have the form

A(M + 1, N + 1) = 0 = α · 0 (2.89)

which is the grounding for our induction.
Now let A be a nonterminal symbol from Φ and i ∈ {1, . . . ,M + 1}, j ∈

{1, . . . , N + 1}. Our induction hypothesis is that our claim holds for all en-
tries of the dynamic programming tables, which we need to calculate A(i, j),
according to Algorithm 2. Now we need to show that the calculation of A(i, j)
is scale-invariant.

Consider algebra functions:

d′t(◦, α · s, ◦) = α · s+
∑
κ∈K

gκ · cκt
′(◦, ◦) (2.90)

= α · s+
∑
κ∈K

gκ · α · cκt (◦, ◦) (2.91)

= α · dt(◦, s, ◦) (2.92)

Consider the choice function:

A(i, j) = h[α · θl]l=1...L (2.93)
= α · h[θl]l=1...L (2.94)

Thus we have shown that

A′(i, j) = α · A(i, j) (2.95)

which proofs our claim by structural induction.
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Note that min obviously fulfills the condition imposed by Theorem 10, such
that scale-invariance holds for each grammar and algebra that is combined
with min. Also note that this implies a scale-invariant alignment distance if
the choice function adheres to Bellman’s Principle of Optimality, because:

D′(x̄, ȳ) = A∗′(1, 1) = α · A∗(1, 1) = α ·D(x̄, ȳ) (2.96)

The scale-invariance post-hoc legitimizes our restrictive definition of com-
parator functions to the output interval [0, 1]. As the alignment distance is
scale-invariant one can just scale any desired comparator function output down
to that interval without changing the alignment behavior.

2.5.5 Relevance Interpretation

It should be noted that, albeit comparator functions are restricted to the inter-
val [0, 1], their values do not have to be distributed equally across that range.
In fact it might very well be the case that for some keywords the compara-
tor function values are always more prominent than for others. This can be
counteracted by adjusting the keyword weights, e.g. by the inverse average
output value of the respective comparator functions. However, such adjust-
ments make it harder to interpret keyword weights in terms of relevance: If a
keyword weight is smaller that does not imply a small relevance. In fact the
opposite might be the case if the output of the respective comparator function
tends to be very large. In our third experiment in Section 4.3 on page 77 we
discuss a normalization scheme to still retrieve a meaningful interpretation of
keyword weights.

2.6 Cost Function
We optimize the parameters of sequence alignment algorithms by gradient de-
scent on the Large Margin Nearest Neighbor (LMNN) cost function, suggested
by Weinberger and Saul [43]. We can intuitively describe this cost function as
follows: Try to pull data points closer to their neighbors in the same class and
push them away from neighbors from another class.

As with the k-Nearest Neighbor (k-NN) approach [9] we need to set the
number of neighbors we want to consider. Based on that k we can formally
define what we mean by neighbors from the same class and neighbors from
another class.

Definition 27. Let X be our data set and d be some metric on X. Let C ⊂ X
be the class of x̄, that is: x̄ ∈ C. The k target neighbors N of x̄ are defined as

N0(x̄) := ∅ (2.97)
Nk(x̄) := Nk−1(x̄) ∪ { argmin

ȳ∈C\(Nk−1(x̄)∪{x̄})
d(x̄, ȳ)} (2.98)

In other words: N1(x̄) contains the closest other data point in the same
class, N2(x̄) the closest and the second-closest and so on. Algorithmically
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one can calculate Nk(x̄) more efficiently by making use of a sorted list, which
allows for insertion in O(log(k)) time if k is the length of the list. We provide
pseudocode for this in Algorithm 4. As the maximum element of a sorted list
can be retrieved in O(1) this algorithm has an overall asymptotic efficiency of
O(|X| · log(k)).

Algorithm 4 An algorithm to calculate Nk(x̄) given some k ∈ N, k > 0,
x̄ ∈ X and some metric d on X.
Let x̄ ∈ C with C ⊂ X.
Initialize N as an empty ascendingly sorted list over tuples from R+ ×X.
for ȳ ∈ C \ {x̄} do

Initialize d← d(x̄, ȳ)
if |N| < k then

Insert (d, ȳ) into N.
else if d < max(d′,z̄)∈N d

′ then
Remove the last element from N.
Insert (d, ȳ) into N.

end if
end for
return N

Definition 28. Let X be our data set and d be some metric on X. Let x̄
and ȳ be data points from the same class, that is: x̄, ȳ ∈ C and C ⊂ X. Let
further γ be a positive real number which we call the margin. Then we define
the imposters of x̄ with respect to ȳ as follows:

Iγ(x̄, ȳ) := {z̄|z̄ ∈ X \ C, d(x̄, z̄) < d(x̄, ȳ) + γ} (2.99)

In other words: Iγ(x̄, ȳ) contains all data points from another class that
are closer to x̄ than the neighbor from the same class ȳ, including a margin of
safety. To calculate the imposters one just needs to iterate over all z̄ ∈ X \ C
and check the distance criterion, which is done in O(|X|).

Definition 29. Let X be our data set and d be some metric on X. Let further
γ be our margin. The LMNN cost function is defined as:

E :=
∑
x̄

 ∑
ȳ∈Nk(x̄)

(d(x̄, ȳ))2 +
∑

z̄∈Iγ(x̄,ȳ)

γ2 + (d(x̄, ȳ))2 − (d(x̄, z̄))2

 (2.100)

Note that in the original definition, Weinberger and Saul [43] define the
target neighbors and imposters implicitly using the class label and the hinge
loss. As being part of the imposters is equivalent to the hinge loss being bigger
than (or equal to) zero, our formulation is equivalent to the original one. We
just find a set-based definition to be better understandable.

The LMNN cost function punishes distances between data points and their
target neighbors (pull force) and punishes the distance of imposters to the
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x̄

ȳ ∈ Nk(x̄)d(x̄, ȳ)

γ

z̄ ∈ Iγ(x̄, ȳ)

d(x̄, z̄)

Figure 2.3: An illustration of the LMNN cost function: The data point x̄ is
shown in the middle in gray. One of its target neighbors ȳ is shown in green.
The distance between x̄ and ȳ is also drawn as green, dashed circle around x̄.
By adding the margin γ to the radius one gets a bigger circle, shown in blue.
All points of another class inside this larger circle are the imposters z̄ of x̄ with
respect to ȳ. The idea of the LMNN cost function is to pull ȳ closer to x̄ (that
is: make the inner circle smaller) and to push away z̄ from x̄ (that is: push z̄
outside of the outer circle).

margin (seen from the inside; push force). The cost function is also illustrated
in Figure 2.3. As Weinberger and Saul [43] explain, this approach has at least
two advantages:

1. It directly optimizes the k-NN classification accuracy, as a k-NN classifier
will choose the correct classification if the majority of the k-Nearest
Neighbors are in the correct class.

2. It optimizes local distances between neighbors instead of global distances
between all data points of the same class. This makes the LMNN cost
function more robust against non-convex class borders or very cluttered
data sets.

2.7 Alignment Gradient
As we intend to learn the parameters of an alignment distance, we require the
derivative of the LMNN cost function with respect to some parameter λ of the
underlying metric d:

∂

∂λ
E = 2 ·

∑
x̄

( ∑
ȳ∈Nk(x̄)

d(x̄, ȳ) ·
(
∂

∂λ
d(x̄, ȳ)

)
+ (2.101)

∑
z̄∈Iγ(x̄,ȳ)

d(x̄, ȳ) ·
(
∂

∂λ
d(x̄, ȳ)

)
− d(x̄, z̄) ·

(
∂

∂λ
d(x̄, z̄)

))
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Note that this requires the assumption that Nk(x̄) and Iγ(x̄, ȳ) are static,
at least for one gradient step. As they depend on d and we change d using
gradient descent this is not necessarily the case. With respect to this problem,
Weinberger and Saul [43] note that convergence can still be achieved if the
step-size is sufficiently small.

We provide pseudocode for the gradient calculation in Algorithm 5. Note
that the same algorithm (with small changes) can be applied to calculate the
error itself as well. We obtain an asymptotic efficiency of:

O
(
|X| ·

(
|X| · log(k) + k · (|X|+ |X|)

))
= O(|X|2 · k) (2.102)

Algorithm 5 An algorithm to calculate the gradient ∂
∂λ
E given some k ∈

N, k > 0, the data set X, some metric d on X and a partition of X into
disjoint sets (classes) C.
Initialize G← 0.
for x̄ ∈ X do

Let C be the subset for which x̄ ∈ C.
Calculate Nk(x̄).
for ȳ ∈ Nk(x̄) do

Calculate ∂
∂λ
d(x̄, ȳ).

G← G+ d(x̄, ȳ) · ∂
∂λ
d(x̄, ȳ).

Calculate Iγ(x̄, ȳ).
for z̄ ∈ Iγ(x̄, ȳ) do

Calculate ∂
∂λ
d(x̄, z̄).

G← G+ d(x̄, ȳ) · ∂
∂λ
d(x̄, ȳ).

G← G− d(x̄, z̄) · ∂
∂λ
d(x̄, z̄).

end for
end for

end for
return G.

Apparently, the gradient of the LMNN cost function depends on the gradi-
ent of the metric. If we want to use the alignment distance D as the underlying
(pseudo-)metric we have to calculate the gradient of the alignment distance:

Theorem 11. Let G be some grammar and F be an algebra. Further, let λ be
some parameter of the comparator functions cκ∗ for keyword κ∗ of F . Finally,
let h be a choice function for which Bellman’s Principle of Optimality holds.

We define the alternative algebra F ′ as

cκt
′(◦, ◦) :=

{
∂
∂λ
cκt (◦, ◦) , if κ = κ∗

0 otherwise
(2.103)

and the alternative choice function h′ as

h′[θ1, . . . , θL] :=
L∑
l=1

(
∂

∂θl
h[θ1, . . . , θL]

)
· θl (2.104)
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Then the result of Algorithm 2 on page 30 on the same input and grammar,
but with the alternative algebra and choice function is the derivative of D with
respect to λ. That is to say:

∂

∂λ
D(x̄, ȳ) = A∗(1, 1) (2.105)

if A∗ is the dynamic programming table corresponding to the axiom of G for
this calculation.

Proof. Consider the derivative of dynamic programming table entries:

∂

∂λ
A(i, j) =

∂

∂λ
h[θ1, . . . , θL] (2.106)

=
L∑
l=1

(
∂

∂θl
h[θ1, . . . , θL]

)
·
(
∂

∂λ
θl

)
(2.107)

= h′
[
∂

∂λ
θ1, . . . ,

∂

∂λ
θL

]
(2.108)

Now consider the inner derivative. Let t be the referenced function template
and B be the referenced nonterminal in the respective production rule. Further
let B be the dynamic programming table corresponding to B. Then we obtain:

∂

∂λ
θl =

∂

∂λ
dt(◦, B(◦, ◦), ◦) (2.109)

=
∂

∂λ
B(◦, ◦) +

∂

∂λ

∑
κ∈K

gκ · cκt (◦, ◦) (2.110)

=
∂

∂λ
B(◦, ◦) +

∑
κ∈K

gκ ·
(
∂

∂λ
cκt (◦, ◦)

)
(2.111)

=
∂

∂λ
B(◦, ◦) + gκ∗ ·

(
∂

∂λ
cκ
∗

t (◦, ◦)
)

(2.112)

=
∂

∂λ
B(◦, ◦) +

∑
κ∈K

gκ · cκt
′(◦, ◦) (2.113)

(2.114)

Theorem 12. Let G be some grammar and F be an algebra. Let gκ∗ be the
keyword weight for keyword κ∗. Finally let h be a choice function for which
Bellman’s Principle of Optimality holds.

We define the alternative algebra F ′ with

cκt
′(◦, ◦) :=

{
1
gκ∗
· cκ∗t (◦, ◦) , if κ = κ∗

0 otherwise
(2.115)

and the alternative choice function h′ as above. Then the result of Algorithm 2
on page 30 on the same input and grammar, but with the alternative algebra
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and choice function is the derivative of D with respect to gκ∗. That is to say:

∂

∂gκ∗
D(x̄, ȳ) = A∗(1, 1) (2.116)

if A∗ is the dynamic programming table corresponding to the axiom of G for
this calculation.

Proof. Consider the derivative of dynamic programming table entries:

∂

∂gκ∗
A(i, j) =

∂

∂gκ∗
h[θ1, . . . , θL] (2.117)

=
L∑
l=1

(
∂

∂θl
h[θ1, . . . , θL]

)
·
(

∂

∂gκ∗
θl

)
(2.118)

= h′
[
∂

∂gκ∗
θ1, . . . ,

∂

∂gκ∗
θL

]
(2.119)

Now consider the inner derivative. Let t be the referenced function template
and B be the referenced nonterminal in the respective production rule. Further
let B be the dynamic programming table corresponding to B. Then we obtain:

∂

∂gκ∗
θl =

∂

∂gκ∗
dt(◦, B(◦, ◦), ◦) (2.120)

=
∂

∂gκ∗
B(◦, ◦) +

∂

∂gκ∗

∑
κ∈K

gκ · cκt (◦, ◦) (2.121)

=
∂

∂gκ∗
B(◦, ◦) + cκ

∗

t (◦, ◦) (2.122)

=
∂

∂gκ∗
B(◦, ◦) +

∑
κ∈K

gκ · cκt
′(◦, ◦) (2.123)

Thus we can directly apply Algorithm 2 on page 30 to calculate the deriva-
tive. It should be noted, though, that for comparator functions with many
parameters, it can be more efficient not to calculate the gradient for each pa-
rameter separately, but rather in parallel. This particular topic, as well as
approximations for faster gradient calculation, are discussed in more detail
by Mokbel et al. [29]. Similarly it makes more sense to calculate the gradient
with respect to all keyword weights at once, instead of applying the calculation
scheme for each keyword weight separately.

Disregarding these optimizations, we obtain an overall asymptotic efficiency
for one gradient step of

O(|X|2 · k ·M ·N) (2.124)

where M and N are the lengths of the respective sequences.
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2.8 Softmin

To solve the problem of a non-differentiable choice function, we introduce
an exponential-based approximation of the strict minimum, namely the soft
minimum. Such soft approximations of the strict minimum/maximum are well-
established in the literature. They are the inspiration for Global Alignment
Kernels, as introduced by Cuturi et al. [10], but are also used in many other
domains of machine learning: The book by Bishop [6], for example, lists 6 index
entries for the soft maximum. Interestingly, to our knowledge the literature
does not contain rigorous investigations regarding the approximation quality
and some other properties of the soft minimum, which is why we provide some
more details in the course of this section.

Definition 30. Let θ1, . . . , θL be real numbers. The soft minimum is defined
as:

softmin[θ1, . . . , θL] :=
1

Z

L∑
l=1

el · θl (2.125)

where

el := exp(−β · θl) (2.126)

Z :=
L∑
l=1

el (2.127)

β is called crispness-Parameter and regulates the approximation quality,
as shown in Theorem 15 on the facing page.

2.8.1 Derivative

Lemma 13. Let θ1, . . . , θL be real numbers. Then the soft minimum derivative
with respect to some parameter λ is given as:

∂

∂λ
softmin[θ1, . . . , θL]

=
L∑
l=1

el
Z
·
(
∂

∂λ
θl

)
·
(

1− β · (θl − softmin[θ1, . . . , θL])
)

(2.128)

Proof. See Appendix A.2.1 on page 107.

2.8.2 Approximation Error

Definition 31. Let θ1, . . . , θL be real numbers. We define the soft minimum
approximation error E as follows:

E := |softmin[θ1, . . . , θL]−min[θ1, . . . , θL]| (2.129)
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Figure 2.4: The behavior of the soft minimum approximation error.

Theorem 14. Let θ1, . . . , θL be real numbers. We further define:

θmin := min[θ1, . . . , θL] (2.130)
Θmin := {l | θl = θmin} (2.131)

εl := θl − θmin (2.132)

Then the soft minimum approximation error is given as:

E = softmin[ε1, . . . , εL] =

∑
l /∈Θmin

exp(−β · εl) · εl
|Θmin|+

∑
l /∈Θmin

exp(−β · εl)
(2.133)

Proof. See Appendix A.2.2 on page 108

From that we can draw a direct conclusion regarding the convergence of
the soft minimum approximation error with respect to β:

Theorem 15. For a fixed input [θ1, . . . , θL] the soft minimum approximation
error E is limited by:

E <
∑
l /∈Θmin

exp(−β · εl) · εl (2.134)

Proof. Given that Θmin has by definition at least one element we can conclude
that

|Θmin|+
∑
l /∈Θmin

exp(−β · εl) > 1 (2.135)

Thus the limit follows directly from Theorem 14.

The soft minimum behavior is quite satisfying: Large deviations εl have
small influence on the result because they get suppressed by the exponential
term exp(−β · θl) (see Figure 2.4a). Smaller deviations are not suppressed as
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much but can not push the result into the wrong direction too much either.
For practical purposes even moderate values of β ≈ 10 should be enough to
suppress errors sufficiently (see Figure 2.4b on the preceding page).

We can also derive an upper bound for the approximation error with respect
to the worst case input:

Theorem 16. The soft minimum approximation error for some given β and
number of inputs L is limited by:

max
[θ1,...,θL]

E <
L− 1

β · e
(2.136)

Proof. See Appendix A.2.3 on page 109.

It is important to note that these worst case inputs have to be close to
the minimum input and have to be closer to it for higher values of β. This
behavior of the worst case error contribution can also be seen in Figure 2.4a
on the preceding page.

2.8.3 Zero Crispness

Another interesting property of the soft minimum is the border case for β = 0:

⇒ ∀l ∈ {1, . . . , L} : el = exp(−0 · θl) = 1 (2.137)

⇒ Z =
L∑
l=1

el =
L∑
l=1

1 = L (2.138)

⇒ softmin[θ1, . . . , θL] =
1

Z

L∑
l=1

el · θl =
1

L

L∑
l=1

θl (2.139)

In this case softmin is apparently equal to the arithmetic average of all input
values.

2.8.4 Scale-Invariance

The soft minimum is scale-invariant if β can be tuned accordingly, that is to
say: If we know the scaling factor α we can set β′ := β

α
and obtain:

softminβ′ [α · θ1, . . . , α · θL] =

∑L
l=1 exp(α · β′ · θl) · α · θl∑L

l=1 exp(α · β′ · θl)
(2.140)

= α ·
∑L

l=1 exp(β · θl) · θl∑L
l=1 exp(β · θl)

(2.141)

= α · softminβ(θ1, . . . , θL) (2.142)
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Figure 2.5: All (five) trees in L(GGlob) that have the yield (a, ab).

x̄\ȳ a b -

a 1.46 1.42 1
- 2 1 0

Table 2.3: The translated dynamic programming matrix for the nonterminal
symbol ALI from GGlob for the example input x̄ = a and ȳ = ab and the choice
function softmin.

2.8.5 Relation to Physics

Interestingly, the soft minimum can be interpreted in terms of physics. So-
called Maxwell-Boltzmann statistics describe the expected number of particles
Ni with energy Ei within a gas of non-interacting material particles in thermal
equilibrium [44]:

Ni = N ·
gi · exp(− Ei

kT
)∑

j gj · exp(−Ej
kT

)
(2.143)

where k is the Boltzmann constant, T the temperature of the system and gi the
so called degeneracy of energy level Ei. The formula expresses the insight that
one expects less particles with high energies, but that high energetic particles
are more probable at higher temperatures.

This bears striking resemblance to the soft minimum approximation: softmin
can be interpreted as the expected energy of the system given some tempera-
ture T . We can interpret β as the inverse system temperature: β = 0 means
an infinite temperature where each state is equally probable independent of its
energy, while β →∞ maps to absolute zero, where we only find particles with
minimum energy.

2.8.6 Choice Function Properties

While the soft minimum obviously satisfies the definition of a choice function
as given in Equation 2.13 on page 19 it does not satisfy Bellman’s Principle
of Optimality, as phrased in Section 2.4.1 on page 31. As proof consider the
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simple example of grammar GGlob, the trivial algebra in Equations 2.30 to 2.32
on page 24 and the input sequences x̄ = a and ȳ = ab. All possible trees
T ∈ L(GGlob) with Y(T ) = (a, ab) are shown in Figure 2.5. The results of
F(T ) are (from left to right and top to bottom) 3, 3, 3, 2 and 1. Therefore,
the softmin-result for β = 1 would be:

3 · (3 · e−β·3) + 2 · e−β·2 + 1 · e−β·1

3 · e−β·3 + e−β·2 + e−β·1
=

9 · e−2 + 2 · e−1 + 1

3 · e−2 + e−1 + 1
≈ 1.67 (2.144)

Apparently, this is not equal to the result of our ADP algorithm, which is
illustrated in Table 2.3. As we have shown in Theorem 15 on page 47, how-
ever, the soft minimum converges towards the true minimum with exponential
speed with respect to β. Furthermore we are not interested in the “real” value
of softmin anyways, as we use it as an approximation of the strict minimum.
However, we need to be sure that the decomposition does not uncontrollably
increase the approximation error with respect to the strict minimum. In other
words: If softmin is applied multiple times instead of only once, the approxima-
tion error should not increase dramatically. This is guaranteed by Theorem 15
on page 47 and Theorem 16 on page 48. Interestingly, the decomposition might
actually reduce the original approximation error, if the ε terms are sufficiently
large compared to β.
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Implementation

Our implementation is the TCS Alignment Toolbox 1, a highly flexible Matlab-
compatible Java library, which we have released as free software under the
AGPLv32.

In Section 3.1 on the next page we describe the sequence datastructure,
which serves as our input. To process the input we need implementation
counterparts of key concepts of Algebraic Dynamic Programming (ADP), as
described in Chapter 2, namely signature, algebra, choice function and gram-
mar: The signature is an Enum listing the operations of T ∗. Algebras take
the form of AlignmentSpecifications, which we describe in Section 3.2 on
page 55. Users can encode grammars by implementing the Grammar inter-
face, which we discuss in more detail in Section 3.3 on page 58. These objects
then are plugged into an AlignmentAlgorithm for calculation. The different
AlignmentAlgorithms are child-classes of the AbstractADPAlgorithm, which
implements the generic dynamic programming algorithm shown in Algorithm 2
on page 30. They are different in terms of their implemented choice function
and return value. Choice functions had to be hard-coded in the algorithm
implementation, because the calculation of the output depends on the specific
choice function. For example: An algorithm can only reconstruct an optimal
alignment via backtracing if the choice function is the strict minimum rather

1http://opensource.cit-ec.de/projects/tcs
2http://www.gnu.org/licenses/agpl-3.0.de.html

Concept Implementation
node set Σ× NodeSpecification
sequence x̄ Sequence
signature T ∗ OperationType
algebra F AlignmentSpecification
choice function h AlignmentAlgorithm
grammar G Grammar or AlignmentAlgorithm
Algorithm 2 AbstractADPAlgorithm

Table 3.1: The correspondence of theoretical concepts from Chapter 2 with
Java classes in the TCS Alignment Toolbox described in this chapter.
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than the soft minimum. Furthermore, optimization techniques in gradient
calculation depend on the choice function as well. We describe Alignmen-
tAlgorithms in more detail in Section 3.4 on page 62. The correspondence
between concepts from Chapter 2 and Java classes in the implementation is
also outlined in Table 3.1 on the preceding page.

The flexibility of the AbstractADPAlgorithm comes at the cost of over-
head, slowing down the computation. Therefore, we provide hard-coded com-
binations of choice function and grammar for some standard cases (Global
Alignment, Dynamic Time Warping and a variation of Affine Alignment) as
AlignmentAlgorithms. For each case we also provide a version of the Align-
mentAlgorithm that is able to calculate the gradient with respect to compara-
tor function parameters or keyword weights, as we describe in Section 3.5 on
page 64. We close this chapter with some short notes on parallel processing in
Section 3.6 on page 66.

3.1 Node Specification and Sequences
The package de.citec.tcs.alignment.sequence contains datastructures for the
specification of the algebra function input set as well as the sequence datas-
tructure itself. When using the toolbox, one starts by listing the keywords
with the respective alphabets. Currently we support three different types of
alphabet:

• Discrete alphabets, defined by a user-specified list of strings (Symbol-
icKeywordSpecification).

• Rn for some dim ∈ N chosen by the user (VectorialKeywordSpecifica-
tion).

• The set of all possible strings (StringKeywordSpecification).

A tuple of a keyword and a alphabet is called a KeywordSpecification. An
array of such specifications is a NodeSpecification.

Lets consider the example of robotic movement data from Section 2.1 again.
As before, we have three joint angles of the robots arm movement, which
can be described as vectorial data. The qualitative descriptor (moving or not
moving) is best captured as a discrete/symbolic alphabet, while the researchers
comment is a string. The java code for specifying this node set looks like this:
// F i r s t we s p e c i f y the t h r ee j o i n t ang l e s .
// The f i r s t argument o f the cons t ruc t o r i s the d imens i ona l i t y .
// The second argument i s the keyword
Vecto r i a lKeywordSpec i f i c a t i on alpha = new

Vecto r i a lKeywordSpec i f i c a t i on (1 , "alpha" ) ;
Vec to r i a lKeywordSpec i f i c a t i on beta = new

Vecto r i a lKeywordSpec i f i c a t i on (1 , "beta" ) ;
Vec to r i a lKeywordSpec i f i c a t i on gamma = new

Vecto r i a lKeywordSpec i f i c a t i on (1 , "gamma" ) ;
// Now we s p e c i f y the q u a l i t a t i v e phase d e s c r i p t o r .
Alphabet phases = new Alphabet ( new St r ing [ ] { "pause" , "movement"}) ;
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Symbol icKeywordSpec i f i cat ion phase = new
Symbol icKeywordSpec i f i cat ion ( phases , "phase" ) ;

// F ina l l y we s p e c i f y the comment .
Str ingKeywordSpec i f i ca t i on comment = new

Str ingKeywordSpec i f i ca t i on ("comment" ) ;

// The s e t o f t h e s e s p e c i f i c a t i o n s makes up the input s e t .
NodeSpec i f i c a t i on nodeSpec = new NodeSpec i f i c a t i on ( new

KeywordSpec i f i cat ion [ ] {
alpha , beta , gamma, phase , comment

}) ;

The NodeSpecification defines our node set. We can now build sequences
over this node set. Remember that a sequence is defined as a succession of
nodes, which in turn is defined as a vector of values. This conceptualization is
directly implemented in the Java datastructures.

For the example data from Table 2.1 on page 16, the corresponding Java
code would look like this:
// we s t a r t by c r ea t i n g the sequence o b j e c t i t s e l f .
final Sequence seq = new Sequence ( nodeSpec ) ;

// then we s u c c e s s i v e l y add nodes .
Node n = new Node ( seq ) ;
n . setValue ("alpha" , new Vector ia lVa lue (30) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "pause" ) ) ;
n . setValue ("comment" , new Str ingValue ("Begin of pause before first

movement" ) ) ;
seq . getNodes ( ) . add (n) ;

n = new Node ( seq ) ;
n . setValue ("alpha" , new Vector ia lVa lue (30) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "pause" ) ) ;
seq . getNodes ( ) . add (n) ;

n = new Node ( seq ) ;
n . setValue ("alpha" , new Vector ia lVa lue (40) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "movement" ) ) ;
n . setValue ("comment" , new Str ingValue ("Begin of movement. Quite

rapidly at the start." ) ) ;
seq . getNodes ( ) . add (n) ;

n = new Node ( seq ) ;
n . setValue ("alpha" , new Vector ia lVa lue (45) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "movement" ) ) ;
seq . getNodes ( ) . add (n) ;

n = new Node ( seq ) ;
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Name Data Type Description
L1Norm vectorial σ(|~a−~b|)
Euclidian vectorial σ(‖a− b‖)

TrivialEdit symbolic Returns a constant value for match, mis-
match, deletion, insertion, skip-deletion und
skip-insertion.

Replacement symbolic Specifies an explicit cost matrix with constant
return values for each combination (a, b) ∈
(Σ ∪ {−,_})2.

CharStat string Calculates character occurences for letters
and numbers in both sequences, subtracts
those feature vectors and returns the L1 norm
of it divided by the added lengths of both se-
quences.

NCD string Calculates the Normalized Compression Dis-
tance (NCD) of both strings as described by
Li et al. [23]. In essence, one calculates the
compressed size of both concatenated strings
minus the minimum of the compressed sizes of
the separate strings and divides by the max-
imum of the compressed sizes of the separate
strings. Speed and precise return values de-
pend on the compressor.

Table 3.2: The different comparator functions available in the TCS Alignment
Toolbox. Note that both vectorial comparator functions require a squashing
function σ to ensure that their results stay in the range [0, 1].

n . setValue ("alpha" , new Vector ia lVa lue (50) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "movement" ) ) ;
n . setValue ("comment" , new Str ingValue ("End of movement." ) ) ;
seq . getNodes ( ) . add (n) ;

n = new Node ( seq ) ;
n . setValue ("alpha" , new Vector ia lVa lue (50) ) ;
n . setValue ("beta" , new Vector ia lVa lue (10) ) ;
n . setValue ("gamma" , new Vector ia lVa lue (10) ) ;
n . setValue ("phase" , new SymbolicValue ( phases , "pause" ) ) ;
seq . getNodes ( ) . add (n) ;

Note that we did not set values for the comment every time. If values are
not set they remain null.
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3.2 Alignment Specification
Next we specify the algebra in terms of the comparator functions we intend to
use. We provide a standard library of comparator function implementations
in the de.citec.tcs.alignment.comparators package, which we have listed in
Table 3.2 on the facing page. Note that a comparator function in this definition
is actually a vector of comparator functions, one for each function template in
T ∗ as described in Section 2.2.1 on page 17.

Of course, it is possible to plug in custom comparator functions. For that
purpose the package contains interfaces in order to generically declare the
alphabet of the comparator function as well as the function templates it im-
plements. These interfaces are namely:
public interface Comparator<X extends Value> {

public ValueType getType ( ) ;

public double compare (X a , X b) ;
}

public interface GapComparator<X extends Value> extends Comparator
<X> {

public double de l e t e (X a ) ;

public double i n s e r t (X b) ;
}

public interface SkipComparator<X extends Value> extends
GapComparator<X> {

public double sk ipDe l e t e (X a ) ;

public double s k i p I n s e r t (X b) ;
}

By implementing the first interface, a Java class identifies itself as a comparator
function that is able to handle replacements. The second interface additionally
guarantees deletions and insertions. The last one guarantees skip-deletions and
skip-insertions.

Many methods to define a distance between two values do not account for
other operations like deletions. Take the Euclidian distance for example: What
should we define as the result of cκdel(a)? The best definitions might very well
depend on the data that is handled. We provide the means for two different
definitions:

cκdel(a) := λdel (3.1)
cκdel(a) := cκrep(a, φdel) (3.2)

where λdel is some constant in the interval [0, 1] and φdel ∈ Σκ is some constant
value. In the former case we apply a constant deletion cost λdel every time
a value is deleted, no matter the input. The latter case introduces a more
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dynamic deletion cost by comparing a to some constant other value. For the
Euclidian distance one could define:

cκdel(a) := 1 (3.3)

cκdel(a) := cκrep(~a,~0) = ‖~a‖ (3.4)

The same method can be applied for insertions, skip-deletions and skip-insertions
as well, of course. We have implemented these methods to handle other op-
erations than replacements in the abstract classes SkipExtendedComparator
for the former case and ComparisonBasedSkipExtendedComparator for the
latter case.

Another issue is that both vectorial comparator functions, the L1-distance
and the Euclidian distance, do not necessarily return output in the range [0, 1].
Therefore, we need to apply some kind of squashing function, which we define
as some function of the form

σ : R+ → [0, 1] (3.5)

In the comparators package we provide three different squashing (or normal-
izer) functions:

• If the Comparator (maybe due to the nature of the data at hand) just
projects to a larger range [min,max], one can apply the AffineNormal-
izer, which is defined as:

σaff(s) :=
s−min

max−min
(3.6)

• A modest squashing behaviour is provided by the HyperbolicNormal-
izer, which is defined as:

σhyper(s) := 1− 1

1 + α · s
(3.7)

For s = 0 it returns 0 as well and it goes towards 1 for s → ∞. α
manipulates the convergence speed and is a hyper-parameter. It should
be set according to the scaling of the underlying data set. A natural
choice is the inverse of the mean for s.

• Much faster convergence is achieved by the ExponentialNormalizer,
which is defined as:

σexp(s) := 1− exp(−β · s) (3.8)

As the symbol suggests, β has the same function as the crispness param-
eter in the soft minimum: It regulates the convergence speed.

We provide an interface in order to allow users to program their own squash-
ing/normalizer functions. The interface is very straightforward:
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public interface Normal izer {

public double normal ize ( final double d i s t ance ) ;
}

In our example the joint angles can be compared using a L1NormCompara-
tor. As angles necessarily are in the range [0◦, 360◦] we can apply an AffineNor-
malizer. For the qualitative descriptor we can use a ReplacementComparator.
The default scoring scheme for such a comparator function is:

cκrep(a, b) :=

{
0 if a = b

1 if a 6= b
(3.9)

cκdel(a) = cκins(b) := 1 (3.10)
cκskip_del(a) = cκskip_ins(b) := 1 (3.11)

for all a, b ∈ Σκ. We do not want to consider the comment keyword in the
alignment distance, which is why we do not define a comparator function for
it.

The algebra in combination with keyword weights forms anAlignmentSpec-
ification. For our example data set, we want to put emphasis on the qualitative
descriptor. Furthermore, changes in the first joint might have stronger effect
on the final position of the robot arm than changes in the second or third joint.
So a good weighting might look like this:

gα := 0.3 (3.12)
gβ := 0.2 (3.13)
gγ := 0.1 (3.14)

gphase := 0.4 (3.15)

The corresponding Java code is as follows:

// We s t a r t by con s t ru c t i n g the normal i zer o b j e c t .
Af f ineNormal i ze r angleSquash = new Af f ineNormal i ze r (0 , 360) ;
// The comparator func t i on i s de f ined by the d imens iona l i y
// and the normal i zer .
L1NormComparator angleComp = new L1NormComparator (1 , angleSquash ) ;
// Further we cons t ruc t the ReplacementComparator
// We s p e c i f y the co s t matrix f i r s t and use d e f a u l t v a l u e s .
ReplacementCosts costMatr ix = new ReplacementCosts ( phases , true ,

true ) ;
ReplacementComparator phaseComp = new ReplacementComparator (

costMatr ix ) ;

// F ina l l y we c rea t e the A l i gnmen tSpec i f i ca t i on o b j e c t
Al ignmentSpec i f i c a t i on a l i gnSpec = new Al ignmentSpec i f i c a t i on (

nodeSpec , new St r ing [ ] { "alpha" , "beta" , "gamma" , "phase"} ,
new Comparator [ ] { angleComp , angleComp , angleComp , phaseComp} ,
new double [ ] { 0 . 3 , 0 . 2 , 0 . 1 , 0 . 4} ) ;
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3.3 Grammar

The third key ingredient to specify an alignment algorithm is an ADP gram-
mar. In the TCS Alignment Toolbox, a grammar is some Java object im-
plementing the Grammar interface, which can be found in the de.citec.tcs.
alignment.adp package:
public interface Grammar<N extends Enum<N>> {

public Class<N> getNonterminalClass ( ) ;

public N[ ] dependencySort ( ) ;

public N getAxiom ( ) ;

public EnumSet<N> getAccept ing ( ) ;

public List<ProductionRule<N>> getPos s i b l eRu l e s (N nonterminal ,
int l e f t S i z e , int r i g h t S i z e ) ;

public boolean containsGaps ( ) ;

public boolean conta in sSk ip s ( ) ;
}

Note that N is a Java generic class, where implementing classes can spec-
ify an Enum that lists the nonterminal symbols of the respective grammar.
Further note that ProductionRule is a Java class describing production rules
in terms of the operations they apply and the nonterminal symbol they pro-
duce. Given these basics, most of the methods of the Grammar interface
are straightforward and easy to implement. Consider the example of Affine
Alignment (Grammar 2.4 on page 29). The implementation might look like
this:
public class AffineGrammar implements Grammar<Nonterminal> {

public Nonterminal [ ] dependencySort ( ) {
. . .

}

public List<ProductionRule<Nonterminal>> ge tPos s i b l eRu l e s (N
nonterminal , int l e f t S i z e , int r i g h t S i z e ) {
. . .

}

public boolean containsGaps ( ) {
return true ;

}

public boolean conta in sSk ip s ( ) {
return true ;

}

public Class<Nonterminal> getNonterminalClass ( ) {
return Nonterminal . class ;
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}

public Nonterminal getAxiom ( ) {
return Nonterminal .SKIPDEL_START;

}

private final EnumSet<Nonterminal> accept ing = EnumSet . o f (
Nonterminal .SKIPINS_START, Nonterminal .SKIPINS_END) ;

public EnumSet<Nonterminal> getAccept ing ( ) {
return accept ing ;

}

/∗∗
∗ These are the nonterminal symbols f o r the a f f i n e grammar .
∗/

public static enum Nonterminal {
SKIPINS_END, SKIPDEL_END,
ALI , DEL, INS ,
SKIPDEL_MID, SKIPINS_MID,
SKIPINS_START, SKIPDEL_START,

}
}

We want to talk in more detail about two more difficult methods already
mentioned in Section 2.4 on page 28: dependencySort and getPossibleRules:

dependencySort is supposed to return the nonterminal symbols of the
grammar as an array that is sorted according to the following order: If a
production rule in ∆ exists that has the form

A = B;

then B is in front of A in the array. Ideally, users sort the nonterminal symbols
in the Enum directly in a way that respects this order. Then the implemen-
tation is just

public Nonterminal [ ] dependencySort ( ) {
return Nonterminal . va lue s ( ) ;

}

A generic way to determine a proper ordering of nonterminal symbols is de-
picted in Algorithm 6 on the following page. The basic idea is to just serialize
the dependency trees in an inverse depth-first-search manner, that is: For some
given nonterminal symbol A, we first add the nonterminal symbols it depends
on and then A itself.

getPossibleRules is also fairly simple to implement for any specific given
grammar. As an example consider GGlob:

private final ProductionRule<Nonterminal> de l = new ProductionRule
<>(OperationType .DELETION, Nonterminal . ALI) ;

private final ProductionRule<Nonterminal> in s = new ProductionRule
<>(OperationType . INSERTION, Nonterminal . ALI) ;

private final ProductionRule<Nonterminal> rep = new ProductionRule
<>(OperationType .REPLACEMENT, Nonterminal . ALI) ;



60 CHAPTER 3. IMPLEMENTATION

Algorithm 6 A generic implementation for the dependencySort function of
the Grammar interface. Given the production rules ∆ of some grammar G we
can sort the nonterminal symbols of G in such a way that a production rule of
the form A = B; implies that B is before A in the output.

Let G = (Φ,A∗, K, {(κ,Σκ)}κ∈K , T ∗,∆) be an ADP grammar.
Initialize V ← ∅, which is the set of nonterminal symbols that we have
already processed.
Initialize L as an empty list, which will be our output.
for A ∈ Φ do

if A ∈ V then
Continue with the next nonterminal symbol.

end if
serialize(A, V , L)

end for
return L.

function serialize(A, V , L)
if A ∈ V then

∆ contains loops (see Definition 16 on page 21).
end if
Add A to V .
for production rules of the form A = B; in ∆ do

serialize(B, V , L)
end for
Append A to L.

end function
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public List<ProductionRule<Nonterminal>> ge tPos s i b l eRu l e s (
Nonterminal nonterminal , int l e f t S i z e , int r i g h t S i z e ) {
final ArrayList<ProductionRule<Nonterminal>> ru l e s = new

ArrayList <>() ;
if ( l e f t S i z e > 0) {

r u l e s . add ( de l ) ;
}
if ( r i g h t S i z e > 0) {

r u l e s . add ( i n s ) ;
}
if ( l e f t S i z e > 0 && r i g h t S i z e > 0) {

r u l e s . add ( rep ) ;
}
return r u l e s ;

}

This expresses very simple rules: If there is something left in the left input
sequence, we can apply a deletion. If there is something left in the right input
sequence, we can apply an insertion. If both is the case, we can apply either a
deletion, an insertion or a replacement. While this seems very straightforward,
there is no trivial algorithm to generically determine the implementation of
this function given some arbitrary grammar. This is due to the fact that
the production rules we can apply depend on the nonterminal symbol this
production rule produces. Consider the example of GAffine (Grammar 2.4 on
page 29). More specifically, consider the production rule
INS = in s (<EMPTY , NODE>, INS) ;

Naively one would argue that this has to be applicable if at least one node is
available in the right input sequence. But assume we consume the last node in
the right input sequence with an insertion. Then we have no production rules
left to apply, because both
INS = in s (<EMPTY , NODE>, INS) |

rep(<NODE , NODE>, ALI) ;

require another node in the right input sequence. Applying this rule leads us
to a dead end. Even worse: Even if the nonterminal symbol we obtain after
applying a production rule is no dead end in itself, it becomes a dead end if all
of its production rules lead to a dead end, and so forth. Due to this recursive
problem structure, one essentially needs a dynamic programming algorithm in
itself to generically determine the applicable production rules (see Algorithm 3
on page 33), which produces considerable overhead.

However, we still implemented both generic algorithms in the Flexible-
Grammar class, which allows users to define new grammars at runtime by
just instantiating a new FlexibleGrammar object and adding Production-
Rule objects to it. The code to create the global alignment grammar GGlob,
for example, looks like this:
FlexibleGrammar g l oba l = new FlexibleGrammar<>(GlobalNonterminals .

class , GlobalNonterminals . ALI) ;
g l oba l . getAccept ing ( ) . add ( GlobalNonterminals . ALI) ;
g l oba l . addRule ( GlobalNonterminals . ALI , new ProductionRule<>(

OperationType .REPLACEMENT, GlobalNonterminals . ALI) ) ;
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g l oba l . addRule ( GlobalNonterminals . ALI , new ProductionRule<>(
OperationType .DELETION, GlobalNonterminals . ALI) ) ;

g l oba l . addRule ( GlobalNonterminals . ALI , new ProductionRule<>(
OperationType . INSERTION, GlobalNonterminals . ALI) ) ;

Note that this still requires an Enum listing all nonterminal symbols.

3.4 Alignment Algorithms
The generic dynamic programming algorithm for the alignment distance (Al-
gorithm 2 on page 30) is implemented in the class AbstractADPAlgorithm,
independent of the choice function. It does, however, require of subclasses to
provide a choice function implementation as well as an implementation of the
transformation to the desired output format:
public abstract class AbstractADPAlgorithm<R, N extends Enum<N>>

implements SkipAlignmentAlgorithm<R> {

. . .

public abstract double cho i c e ( double [ ] c ho i c e s ) ;

public abstract R transformToResult ( . . . ) ;
}

Note that the subclasses are also required to implement the AlignmentAl-
gorithm interface, which is very basic:
public interface AlignmentAlgorithm<R> {

public Al ignmentSpec i f i c a t i on g e t S p e c i f i c a t i o n ( ) ;

public R ca lcu la teAl ignment ( Sequence a , Sequence b) ;

public Class<R> getResu l tC la s s ( ) ;
}

The former two methods are actually already implemented by the Abstrac-
tADPAlgorithm. Still, the AlignmentAlgorithm is expected to take care
of the choice function h and the output. We distinguish four main types,
which correspond to subclasses of AbstractADPAlgorithm provided in the
de.citec.tcs.alignment.adp package:

• h = min and the output is just the alignment distance itself. This is
implemented in the StrictADPScoreAlgorithm.

• h = min and the output is an optimal alignment, retrieved via backtrac-
ing. This is implemented in the StrictADPFullAlgorithm.

• h = softmin and the output is just the alignment distance itself. This is
implemented in the SoftADPScoreAlgorithm.

• h = softmin and the output are all dynamic programming tables as basis
for further gradient calculation. We call this return value a SoftPath-
Model. This is implemented in the SoftADPFullAlgorithm.
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Choice Grammar Return Value Name
min GGlob D(x̄, ȳ) StrictAlignmentScore
min GGlob argminT F(T ) StrictAlignmentFull
min GGlob {argminT F(T )} StrictAlignmentAllOptimal
min GGlob {argminK

T F(T )} StrictAlignmentKPath
softmin GGlob D(x̄, ȳ) SoftAlignmentScore
softmin GGlob A,B, . . . SoftAlignmentFull
softmin GGlob T ∼ Psoftmin(T ) StrictAlignmentSampling

min GGlob D(x̄, ȳ) StrictDTWScore
min GGlob argminT F(T ) StrictDTWFull

min G ′Affine D(x̄, ȳ) StrictAffineAlignmentScore
min G ′Affine argminT F(T ) StrictAffineAlignmentFull
softmin G ′Affine D(x̄, ȳ) SoftAffineAlignmentScore
softmin G ′Affine A,B, . . . SoftAffineAlignmentFull

Table 3.3: The different hard-coded AlignmentAlgorithms available in the
TCS Alignment Toolbox. The name of the corresponding Java class is generated
as choice function + grammar + return value + Algorithm. So the Java class
implementing the strict minimum as choice function, using GGlob and returning
just the score is called StrictAlignmentScoreAlgorithm. Note that the G ′Affine

is not exactly the same as Grammar 2.4 on page 29, as it does not use a proper
gap opening cost but allows for skips directly.

Each of those subclasses takes an AlignmentSpecification and a Grammar as
arguments in the constructor and can subsequently return the output for any
two given input sequences. The alignment distance itself is normalized to be in
the range [0, 1] by dividing the output by the added length of both sequences,
M +N .

As an example imagine we want to use the previously created grammar
GGlob to align two sequences of robot movement data. The Java code for that
would look like this:
// We crea t e the a l gor i thm ob j e c t .
SoftADPFullAlgorithm algo = new SoftADPFullAlgorithm ( a l i gnSpec ) ;
// We s e t the c r i s pn e s s va lue .
a lgo . setBeta (5 ) ;
// We c a l c u l a t e the Alignment .
SoftADPPathModel dpTables = a lgo . ca l cu la teAl ignment ( seq , seq2 ) ;

Unfortunately, the generic implementation in the AbstractADPAlgorithm
comes at the cost of producing some overhead (e.g. due to the getPossibleRules
function). Therefore, we also provide some hard-coded AlignmentAlgorithms
for some standard grammars in the de.citec.tcs.alignment package, which are
listed in Table 3.3. We have named them according to their properties:

• The prefix Strict marks algorithms with the choice function being the
strict minimum, while the prefix Soft marks algorithms with softmin as
the choice function.
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• The mid part of the name marks the grammar: Either Alignment for
GGlob (Global Sequence Alignment, see Grammar 2.1 on page 22), DTW
for GGlob with a tweaked algebra (Dynamic Time Warping, see Sec-
tion 2.2.4 on page 23) or AffineAlignment for GAffine (Affine Sequence
Alignment, see Grammar 2.4 on page 29).

• The suffix denotes the return value of the algorithm. Score means that
the algorithm just computes the alignment distance itself. Full means
that either one optimal alignment is returned using backtracing (in case
of Strict algorithms) or the dynamic programming tables themselves to
facilitate gradient calculation.

Note that the backtracing is somewhat problematic as multiple optimal
alignments may exist. Formally, the following set might have more than
one element:

{T |T ∈ L(G),Y(T ) = (x̄, ȳ),F(T ) = D(x̄, ȳ)} (3.16)

A Full algorithm actually draws one (random) alignment from that set.
For the case of GGlob we also provide an AllOptimal version returning
this whole set, a KPath version returning the K best alignment trees and
a Sampling version which samples K alignments from L(GGlob) according
to their softmin probability. The softmin probability is given as

Psoftmin(T ) :=
exp(−β · F(T )) · F(T )∑

T ′:T ′∈L(G),Y(T ′)=(x̄,ȳ) exp(−β · F(T ′)) · F(T ′)
(3.17)

One exception to that scheme is the KernelDTWFullAlgorithm programmed
by Georg Zentgraf, which calculates a kernel rather than a distance and returns
the dynamic programming tables for it.

3.5 Gradient Calculation
The return values of Full, KPath, AllOptimal and Sampling algorithms imple-
ment a common interface, which provides the means to calculate the gradient:
public interface AlignmentDerivat iveAlgor ithm {

public <X extends Value , Y> double [ ]
ca lcu lateRawParameterDer ivat ive ( DerivableComparator<X, Y>
comp , St r ing keyword ) ;

public <X extends Value , Y> Y ca l cu la t eParamete rDer iva t i v e (
DerivableComparator<X, Y> comp , St r ing keyword ) ;

public double [ ] c a l cu l a t eWe ightDer iva t ive ( ) ;
}

The first two functions require an implementation of the gradient calculation
as shown in Theorem 11 on page 43, while the last one refers to Theorem 12
on page 44. Note that the interface requires us to provide the keyword κ as
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well as the comparator function cκ for which all parameter gradients shall be
calculated. Comparators that have parameters for which a gradient can be
calculated are required to implement the DerivableComparator interface:
public interface DerivableComparator<X extends Value , Y> {

public double c a l c u l a t eLo c a lDe r i v a t i v e ( int paramIdx , X a , X b ,
OperationType type ) ;

public Y transformToResult ( double [ ] d e r i v a t i v e s ) ;

public int getNumberOfParameters ( ) ;

public Class<Y> getResu l tC la s s ( ) ;
}

The indexing scheme for the parameters is determined by the Comparator.
The method calculateLocalDerivative is supposed to return the value of

∂

∂λp
ct(a, b) (3.18)

where type specifies the function template from T ∗ in Section 2.2.1 on page 17.
transformToResult is supposed to transform the finished vector of parame-
ter gradients to some user-readable format that depends on the comparator
function. For the ReplacementComparator, for example, it is intuitive to re-
turn the cost parameters as a matrix, while other comparator function just
return the input vector as it is. Using this interface the implementation of cal-
culateParameterDerivative of the AlignmentDerivativeAlgorithm becomes
trivial:
@Override
public <X extends Value , Y> Y ca l cu la t eParamete rDer iva t i v e (

DerivableComparator<X, Y> comp , St r ing keyword ) {
return comp . transformToResult ( ca lcu lateRawParameterDer ivat ive (

comp , keyword ) ) ;
}

Note that these interfaces permit users to calculate gradients for their own
comparator functions as long as they provide the necessary interface imple-
mentations.

If the algorithm returns an alignment T the gradient is not calculated
exactly but rather by an approximation described by Mokbel et al. [29]: We
count the operations used within the alignment and calculate the alignment
based on those operations.

If dynamic programming tables are returned the gradient calculation is
done as described in Theorem 11 and 12 on page 44. However, we do em-
ploy heuristics to limit the search space somewhat more. These heuristics are
described by Mokbel et al. [29].

In our example (and within Chapter 4) the only two gradients that matter
are the gradient with respect to the parameters of the ReplacementCompara-
tor as well as the gradient with respect to the keyword weights. The respective
Java code looks like this:
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// c a l c u l a t e the g rad i en t f o r the co s t matrix o f phaseComp .
double [ ] [ ] phaseGradient = dpTables . ca l cu l a t eParamete rDer iva t i ve (

phaseComp , "phase" ) ;
// c a l c u l a t e the g rad i en t f o r the we i gh t s .
double [ ] weightGradient = dpTables . ca l cu l a t eWe ightDer iva t ive ( ) ;

3.6 Parallel Processing
In order to make the most of modern mutli-CPU hardware the TCS Align-
ment Toolbox also has the capacity to calculate the alignment distance and
the gradient thereof in parallel. The respective Java classes are ParallelPro-
cessingEngine and ParallelDerivativeEngine. The parallel computing is im-
plemented in a straightforward way: Given a data set X all terms:

D(x̄, ȳ), x̄, ȳ ∈ X (3.19)

are computed in parallel. This does apply to all possible return values of
course, not only to the plain distance. In Java terms, we have the following
setup:
// We assume to a l r eady have s e t up our sequences .
Sequence [ ] s eqs = . . . ;
// As we l l as our AlignmentAlgorithm .
AlignmentAlgorithm<R> algo = . . . ;
// Now we s e t up the Para l l e lProce s s ingEng ine .
Para l l e lProce s s ingEng ine<R> engine = new Para l l e lP ro c e s s i ngEng ine (

algo , s eqs ) ;
// We can s e t a d d i t i o n a l parameters l i k e the number o f th reads .
eng ine . setNumberOfThreads (64) ;
// F ina l l y we g i v e the c a l c u l a t i o n command .
eng ine . c a l c u l a t e ( ) ;
// And we r e t r i e v e the r e s u l t .
R [ ] [ ] r e s u l t = engine . getResul tMatr ix ( ) ;

The ParallelDerivativeEngine expects instances of theAlignmentDerivativeAl-
gorithm interface as input and calculates either a parameter or keyword weight
gradient for them in parallel. The setup is quite similar:
// We assume to a l r eady have a vec to r ( or matrix ) o f
// Al ignmentDer iva t i veAlgor i thms .
AlignmentDerivat iveAlgor ithm [ ] f u l l R e s u l t s = . . . ;
// And a DerivableComparator
DerivableComparator<X,Y> comp = . . . ;
// Then we s e t up the Para l l e lDe r i v a t i v eEng in e .
Para l l e lDe r i va t i v eEng in e eng ine = new Para l l e lDe r i va t i v eEng in e (

f u l l R e s u l t s ) ;
// We can s e t a d d i t i o n a l parameters l i k e the number o f th reads .
eng ine . setNumberOfThreads (64) ;
// F ina l l y we can c a l c u l a t e the g r ad i en t s in p a r a l l e l
double [ ] [ ] we ightGradients = engine . ca l cu l a t eWe ightDer i va t i v e s ( ) ;
Y [ ] paramGradients = engine . ca l cu l a t eParamete rDer i va t i v e s (comp ,

keyword ) ;



Chapter 4

Experiments

In this chapter we apply our learning approach in experimental setups. In
all experiments we try to optimize the classification accuracy of a k-Nearest
Neighbor (k-NN) classifier by performing a gradient descent on the LMNN
cost function as described in Section 2.6 on page 40. The alignment distances
itself, as well as the gradient calculation on them, is implemented in the TCS
Alignment Toolbox described in Chapter 3. More specifically, we use the Soft-
AlignmentFullAlgorithm as implementation of Global Alignment (see Gram-
mar 2.1 on page 22) and the SoftADPFullAlgorithm with the AffineGrammar
as implementation of Affine Alignment (see Grammar 2.4 on page 29). In the
experiments we compare the performance of both algorithms.

We experiment on three different data sets, the first two being artificically
constructed, while the latter one stems from a practical domain.

1. In the string data set described in Section 4.1 on the following page, we
learn the optimal parameter matrix of a ReplacementComparator to
obtain an alignment distance that can distinguish between two classes of
strings under conditions of noise.

2. In the time series data set described in Section 4.2 on page 73, we iden-
tify the data dimension that helps to distinguish two classes of multi-
dimensional time series and to ignore all other dimensions only contain-
ing noise.

3. The last data set described in Section 4.3 on page 77 consists of mul-
timodal sequences that model Java programs. We train an alignment
distance in order to distinguish between implementations of the algo-
rithms InsertionSort and BubbleSort.

All sections have a common structure: We first describe the data set itself,
then our experimental hypotheses, our parameters and further methods and
finally the results of the experiment as well as a discussion of these results.

67
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4.1 String Data

4.1.1 Data Set Description

The data set is inspired by the replacement data set used in [27, 29]: We use
only one keyword κ with the discrete alphabet

Σκ := {a,b, c,d, z} (4.1)

Thus our sequences are essentially strings of characters.
We created 30 strings of 24 characters each for both classes, using the

following creation procedure:

1. We start with a section of length 10, consisting of as and bs chosen at
random.

2. For the first class, two more random characters from the set {a,b} follow,
while in the second class we add two randomly chosen characters from
the set {c,d}.

3. Then we switch around: For the first class we add two randomly chosen
characters from the set {c,d}, while for the second class we add two
randomly chosen characters from the set {a,b}.

4. Finally there is another section of 10 as or bs for both classes.

Due to this creation process, we ensure that the created strings adhere to one
of these regular expressions:

first class : (a|b)10(a|b)2(c|d)2(a|b)10 (4.2)
second class : (a|b)10(c|d)2(a|b)2(a|b)10 (4.3)

Apparently, the significant difference between both classes lies in the position
of the c|d section in the strings. The frequency of characters is equal for both
classes. In order to distinguish between the classes we need to take the order
of characters into account, which is why sequence alignment algorithms are a
natural choice to analyze the data.

As comparator function we use a ReplacementComparator. Thus we can
describe the parameters of our alignment distance as a matrix λ with one
entry for each pair a, b ∈ Σκ ∪ {−,_}, which we denote as λ(a, b). The initial
parameters are:

λ(a, b) := λ(b, a) :=


0 , if a = b

1 , if a ∈ Σκ ∧ b ∈ (Σκ ∪ {−}) \ {a}
0.7 , if a ∈ Σκ ∧ b = _

(4.4)

A visualization of the parameter matrix is shown in Figure 4.1a on the next
page. These initial parameters are the typical choice for a String Edit Distance:
replacements cost nothing if the two characters match, but they have maximum
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(a) The initial parameter matrix λ
for a ReplacementComparator. The
diagonal is zero, which means that
self-replacements do not cost anything.
Skip-deletions and skip-insertions cost
0.7 and all other operations cost 1. This
is a classic String Edit Distance cost
scheme.
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(b) One possible parameter matrix λ for
a ReplacementComparator to achieve
perfect class separation on the string
data set. The replacement costs be-
tween a and b, as well as between c
and d are zero. To counteract noise,
the costs of skip-insertions and skip-
deletions of zs are zero as well.

Figure 4.1: The initial (left) and optimal (right) parameters for a Replace-
mentComparator in the string data set. Dark colors in the matrix cell indicate
low values, while bright colors indicate high values.

cost (1) if the characters do not match. The same cost applies for deletions
and insertions, while skip-deletions and skip-insertions are cheaper with a cost
of 0.7.

The alignment distance induced by this initial setting, however, is not help-
ful in distinguishing between both classes: As the characters at each position
in the strings are randomly chosen from two possible characters, the align-
ment distance with default parameters overestimates the dissimilarity inside
the classes, such that strings from the same class and from different classes are
about equally far away.

In order to obtain better classification performance, one has to acknowledge
that as and bs, as well as cs and ds are essentially the same. What really
matters is the difference between these two pairs of characters. Therefore, an
optimal parameter matrix would look like this:

λ(a, b) := λ(b, a) :=

{
0 , if a, b ∈ {a,b} ∨ a, b ∈ {c,d}
1 , if a ∈ {a,b} ∧ b ∈ {c,d}

(4.5)

The costs for deletion, insertion, skip-deletion and skip-insertion have to be
set to some value other than 0. The alignment distance induced by these
parameters collapses all data points in the same class to a single point while
the inter-class distances remain positive. In previous work, we could show that
these parameters can indeed be found using a similar learning approach in the
Relational Generalized Learning Vector Quantization framework [27, 29].

As we want to analyze the performance of Affine Alignment versus Global
Alignment, we need to add one further twist: We added noise to the strings
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in both classes. After creating the strings in the aforementioned fashion, we
inserted a substrings of length 40, consisting only of zs, at a random position
in 10% of the strings, independent of the class. As these noisy substrings are
longer than the original string, a alignment distance with default parameters
would deem them very dissimilar from the other strings in the same class. In
order to counteract the noise, the costs for skip-deletions and skip-insertions
of the letter z must be low or zero. The optimal parameter matrix for this
noisy setting is shown in Figure 4.1b on the preceding page.

4.1.2 Hypotheses

Regarding this data set we have the following predictions:

Hypothesis 1. Due to the construction of the data set with a high level of
noise, we expect a bad initial classification accuracy of about 50% (random
classifier) on the test set.

Hypothesis 2. The classification accuracy should increase for both algo-
rithms.

Hypothesis 3. Over time both alignment algorithms should find the correct
replacement cost settings as specified in Equation 4.5 on the previous page.

Hypothesis 4. We expect Affine Alignment to lower the cost for skip-deletions
and skip-insertions of zs.

Hypothesis 5. As Global Alignment can not employ skip-deletions or skip-
insertions, we expect a different learning behavior to counteract the z-noise.

Hypothesis 6. As the skip-deletion and skip-insertion operations in Affine
Alignment are geared towards noise, we expect that it performs better than
Global Alignment regarding classification accuracy.

4.1.3 Methods

We applied gradient descent as discussed in Chapter 2. However, we needed
to apply several normalization techniques to ensure a well-formed alignment
distance: Let ∇λ be the matrix of derivatives of the LMNN cost function with
respect to the parameter matrix of the ReplacementComparator, that is:

∇λ :=

(
∂

∂λ
E
)
a,b∈Σκ∪{−,_}

(4.6)

1. We enforced a symmetric alignment distance by preprocessing ∇λ as
follows:

∇λ ← ∇λ +∇T
λ (4.7)

2. We set the diagonal of ∇λ to 0, in order to enforce zero self-distance.
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3. Then we applied the gradient step

λ← λ− η · ∇λ (4.8)

4. We enforced non-negativity by setting

λ← λ− min
a,b∈Σκ∪{−,_}

λ(a, b) (4.9)

5. We enforced that the comparator function output does not exceed 1 by
setting

λ← λ

maxa,b∈Σκ∪{−,_} λ(a, b)
(4.10)

As described in the previous section, we have |X| = 60 input sequences of
length M = 24 for 90% of the strings. With probability pNoise = 0.1 a noisy
substring of length N = 40 was added. We set the k-parameter for LMNN as
well as the k-NN classifier to 5. As learning rate we chose

η :=
10

|X| · k · (M + pNoise ·N)
≈ 0.0012 (4.11)

We set the crispness to a moderate value of β = 10. We trained using 5
gradient steps. Results were obtained in a crossvalidation with 3 folds that
we repeated 5 times to gather some statistics. We tracked the accuracy of the
k-NN classifier on the test set as well as the L1 norm of the gradient

|∇λ| =
∑

a∈Σκ∪{−,_}

∑
b∈Σκ∪{−,_}

∣∣∣∣ ∂∂λE
∣∣∣∣ (4.12)

to assess convergence.

4.1.4 Results

Both alignment algorithms start out with a bad classification accuracy, with
Affine Alignment around 55% and Global Alignment around 70% on average.
This at least partly confirms H1. Both algorithms achieved 100% classification
accuracy after the 5 training epochs in all repeats (see Figure 4.2a on the
following page). This confirms H2. However, our experimental data is contrary
to our expectations with respect to H6: Global alignment seems to show faster
learning behavior and has a better initial classification performance. Note that
the L1 norm of the gradient drops after the first learning epoch, suggesting
convergence, but does not decay to zero (see Figure 4.2b on the next page).

The learned matrices for both algorithms are visualized in Figure 4.3 on
the following page. In both cases the costs for replacements of as and bs
have become low, while the costs for replacements of cs and ds remain fairly
high. The other replacement costs remain unchanged. This behavior is mostly
consistent with our expectations in H3.
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(a) The mean classification accuracy of
a k-NN classifier with k = 5 on the
test set plotted over the training epochs.
The 0th training epoch is the initial test
accuracy before any training was ap-
plied. The error bars show the stan-
dard deviation between the crossvalida-
tion repeats.
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(b) The mean L1 norm of the gradient
plotted over the training epochs. The
error bars show the standard deviation
between the crossvalidation repeats.

Figure 4.2: The results of the string data experiment.
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Figure 4.3: The mean parameter matrix λ after training. Dark colors in the
matrix cell indicate low values, while bright colors indicate high values. The
parameter matrix for Global Alignment is shown on the left side, the parameter
matrix for Affine Alignment on the right. In both cases the replacement costs
of a versus b have been reduced to near zero. Global alignment has reduced the
deletion and insertion costs for z while Affine Alignment has reduced the skip-
deletion and skip-insertion costs. The standard deviation of the parameter
matrix between the crossvalidation repeats was below 0.1.
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Even though both algorithms achieve the same classification accuracy in
the end, they do so by different means: In Global Alignment the noise by z-
substrings is counteracted by low deletion and insertion costs for z, while Affine
Alignment uses low skip-deletion and skip-insertion and does not change the
costs for deletions and insertions. This confirms our hypotheses 4 and 5.

4.1.5 Discussion

Both algorithms perform very well on the string data set, with a consistent
100% classification accuracy after training, while the initial accuracy is close
to a random classifier. However, we underestimated the capabilities of Global
Alignment: Making use of deletions and insertions, Global Alignment is ca-
pable to counteract noise sufficiently. Despite the high noise level it even
shows better initial classification performance and faster learning behavior
than Affine Alignment. We can explain this by the additional degrees of
freedom that come with Affine Alignment: These make the behavior of the
algorithm more difficult to predict and require longer learning times.

Furthermore, the replacement costs between cs and ds did not decay to zero.
However, as this was apparently not necessary to achieve perfect classification,
no imposters are left to drive the LMNN cost function. Thus, the gradient
gets much weaker and learning this additional detail would require significantly
longer learning time.

4.2 Time Series Data

4.2.1 Data Set Description

The purpose of the time series data set is to test learning of keyword weight
under conditions of noise. The task for the learning scheme is to identify one
dimension of the multidimensional sequences that actually helps to distinguish
between the classes, while all other dimensions do not help to do that. To that
end we constructed 60 sequences (30 per class) of length 40 with 10 keywords
according to the following scheme:

1. The first keyword contains the amplitude of a sine wave in the range
[0, 1]. The frequency of the wave depends on the class. Therefore, this
is the dimension that helps to distinguish between the classes. For the
first class we used a period length of 13 nodes and for the second one
a period length of 17 nodes. To make the task harder we introduced a
random phase shift for each sequence.

2. With a probability pNoise = 0.3 we additionally introduced noise in the
first dimension by inserting a subsequence of length 40 of uniform random
noise at a uniform random position of the sequence. The first dimension
of two such sequences are shown in Figure 4.4 on the next page.

3. The remaining nine dimensions only contain uniform random noise in
the range [0, 1] independent of the class.
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Figure 4.4: The values for the first keyword for two example sequences. The
left figure shows a sequence from the first class, while the right figure shows a
sequence from the second class. The values are the amplitude of a randomly
phase-shifted sine wave. The frequency/period length is different depending
on the class (a period length of 13 nodes for the first class and 17 nodes for
the second class). Regularly these sequences have length 40. In 30% of the
cases, however, we also insert 40 nodes of uniform random noise at a random
position in the sequence. This is also the case in both sequences shown here.

4.2.2 Hypotheses

Regarding this data set we have the following predictions:

Hypothesis 1. Due to the very high noise level, we expect a bad initial
classification accuracy of about 50% (random classifier) on the test set.

Hypothesis 2. The classification accuracy should increase for both algo-
rithms.

Hypothesis 3. We predict that both algorithms should be able to increase
the keyword weight for the first keyword to 1 while all other keyword weights
decay to 0.

Hypothesis 4. Due to the noise in the first dimension, we expect Affine
Alignment to perform better than Global Alignment, because it can skip the
noisy sequence parts.

4.2.3 Methods

As comparator function we used an L1NormComparator for every keyword
without applying extra normalization, as our data ensures that all comparator
function distances stay in the range [0, 1]. We initialized the keyword weights
as

∀κ ∈ K : gκ ←
1

|K|
(4.13)

As in the string data set, we had to apply normalization measures in the
learning scheme:
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(a) The mean classification accuracy of
a k-NN classifier with k = 5 on the
test set plotted over the training epochs.
The 0th training epoch is the initial test
accuracy before any training was ap-
plied. The error bars show the stan-
dard deviation between the crossvalida-
tion repeats.
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(b) The mean L1 norm of the gradient
plotted over the training epochs. The
error bars show the standard deviation
between the crossvalidation repeats.

Figure 4.5: The results of the time series data experiment.

1. After applying the gradient step, we enforced non-negative keyword weights
by setting negative keyword weights to zero.

2. After that, we ensured that all keyword weights sum up to 1 by setting

~g ← ~g∑
κ∈K gκ

(4.14)

where ~g is the vector of all keyword weights.

We have |X| = 60 input sequences of length M = 24 for 70% of the strings.
With probability pNoise = 0.3 we added a noisy substring of length N = 40. We
set the k-parameter for LMNN as well as the k-NN classifier to 5. As learning
rate we chose

η :=
2

|X| · k · (M + pNoise ·N)
≈ 1.28 · 10−4 (4.15)

We set the crispness to a moderate value of β = 10. We trained using 5
gradient steps. Results were obtained in a crossvalidation with 3 folds that
we repeated 5 times to obtain some statistics. We tracked the classification
accuracy on the test set of the k-NN classifier as well as the L1 norm of the
gradient to assess convergence.

4.2.4 Results

Apparently, we once again underestimated the capabilities of alignment algo-
rithms: Despite the high noise level, the initial classification accuracy on the
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Figure 4.6: The average keyword weights after training for Global Alignment
(left) and for Affine Alignment (right) respectively. The first dimension con-
tains the sine waves of different frequencies while all other dimensions contain
only random noise. Error bars mark the standard deviation between the cross-
validation repititions.

test set was around 78% in both cases, contrary to H1. Our expectations were
met during training, though: While training increased classification accuracy
for both algorithms, confirming H2, the performance is vastly better for Affine
Alignment: After two learning steps Affine Alignment achieves 100% classifi-
cation accuracy consistently, while Global Alignment only arrives at 95% with
4% standard deviation (see Figure 4.5a on the preceding page), which confirms
H4.

The advantage of Affine Alignment is also reflected in the dynamics of
the gradient: The L1 norm of the gradient decreases fast for Affine Sequence
Alignment and then stays at a low level. It does not decay entirely, because
it tries to decrease the keyword weights for the noisy dimensions even further
beyond zero. The L1 norm of the gradient for Global Alignment, however,
shows no decreasing tendency (see Figure 4.5b on the previous page).

Finally our hypothesis 3 is confirmed as well: In both settings the first
dimension was identified as the most important one by the learning procedure.
However, Affine Alignment achieved absolute dominance of the first keyword
weight consistently while residual keyword weights for the noisy dimensions
can be observed in Global Alignment (see Figure 4.6).

4.2.5 Discussion

In this data set, Affine Alignment vastly outperforms Global Alignment, which
is most likely due to the high noise level, which can not entirely be counteracted
by the parameters we learn: Even with the optimal keyword weights, significant
noise remains in the first dimension, which has to be skipped.
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4.3 Java Programs

4.3.1 Data Set Description

Our final data set is motivated by intelligent tutoring systems (ITSs): Assume
we had asked students to write a Java program that sorts an array of integers
in ascending order, using either the BubbleSort or the InsertionSort algorithm.
We provide pseudocode in Algorithm 7 for BubbleSort and in Algorithm 8 on
the following page for InsertionSort respectively. Both algorithms are concep-
tionally similar, as they sort in place and start with a trivial sorted list that is
iteratively extended, until the whole input list is sorted. The only difference is
that BubbleSort takes the next element from the unsorted area and appends it
to the sorted list, while InsertionSort takes the first unsorted element after the
sorted list and inserts it at its right place in the sorted list. Both algorithms
have a worst case runtime of O(N2), with N being the length of the input
array, and a best case runtime of Ω(N), if the input list is already sorted.1

Algorithm 7 A pseudocode illustration of the BubbleSort algorithm. The
conceptual idea is to ensure that the list is sorted from index n to the end of
the list. We achieve this by letting the largest element in the list from 1 . . . , n
“bubble up” to index n. If one starts with n = M and iteratively decreases n
to 1, one achieves a sorted list. Note that we can stop the sorting process if
one “bubbling” run does not change the list anymore.
Let L be some (unsorted) list of integers.
Let N be the length of L.
for n← N, . . . , 2 do

sorted← true
for j ← 1, . . . , n− 1 do

if L[j] > L[j + 1] then
Swap L[j] and L[j + 1].
sortiert← false

end if
end for
if sorted then

return L.
end if

end for
return L.

Our aim in this fictional setting is to provide automated, example-based
feedback to the students: If a student hands in a (probably erroneous) program,
we would like to select an example from a database of existing programs for
the same task, such that the sorting algorithm is the same, but the remaining
dissimilarities between the programs might provide valuable information to the

1This statement about the best case runtime only holds, if the algorithms are conceptu-
alized in the way we present them here. The easiest version of BubbleSort has Ω(N2).
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Algorithm 8 A pseudocode illustration of the InsertionSort algorithm. As
with BubbleSort, the conceptual idea is to ensure that the list is sorted from
index n to the end. But the perspective is somewhat reversed: If we start with
a one-element sorted list (n = N), this list is sorted by definition. Then we
take the element at position n−1 and insert it in the sorted list from n, . . . , N
at its right position. We can then iteratively decrease n until the whole list is
sorted.
Let L be some (unsorted) list of integers.
Let N be the length of L.
for n← N, . . . , 2 do

for j ← n− 1, . . . , N − 1 do
if L[j] > L[j + 1] then

Swap L[j] and L[j + 1].
else

Leave the inner loop directly.
end if

end for
end for
return L.

student to improve her own program. In this regard we follow the approaches
suggested by Mokbel et al. [26] and Gross et al. [15].

Similarly to [29, 31], however, we focus on one more specific subquestion:
Is it possible to distinguish between implementations of the two sorting algo-
rithms using an alignment distance on the Java programs and a k-NN classifier?
This can be seen as a necessary precondition for successful feedback provision,
as feedback based on an example from a different solution strategy might be
unhelpful.

This is a challenging task, considering the strong structural similarity be-
tween both algorithms. It is made even harder by the fact that programs
within the same cluster might be quite dissimilar on a superficial level:

• One can implement BubbleSort without exploiting the fact that a sorted
input list does not need to be sorted anymore.

• One can implement the algorithms in a recursive rather than iterative
fashion.

• One can use sub-routines for the “bubbling” or inserting.

• One can store intermediate results or go for a compact solution with the
least lines.

• One can switch the order of some statements, especially in the swapping.

• One can change the direction of the for-loops.

• One can use while-loops instead of for-loops.
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All these differences, which we would regard as differences in programming
style rather than differences in the overall solution strategy, can lead to errors
in classification. In fact, all of them occur in our data set.

As a data set we used only correct implementations of both algorithms,
which we took from 37 different web sites. We gathered 35 BubbleSort imple-
mentations and 29 InsertionSort implementations. 4 of the BubbleSorts and 2
of the InsertionSorts were recursive versions.

We considered the abstract abstract syntax trees (ASTs) of the programs,
the nodes of which represent syntactic building blocks. The ASTs were ex-
tracted using the Oracle Java Compiler API. For each of those building blocks
we considered nine features, which form our alphabets for the alignment:

1. The overall type of the node, e.g. a variable declaration or a for-loop.
Overall there are 24 discrete types given by Java Compiler API in this
data set.

2. The scope of the node, which consisted of a path-specification along the
AST: If the node is at the root level of the program file, the scope would
be empty ("[]"). If it is inside the second method of the class declared
within this program file, the scope would be "[0, 1]". The term scope
is taken from the Java structure itself: Scopes are regions of visibility.
Objects declared in a child scope are not visible in parent scopes. Also
one does not have access the objects declared in siblings in the scope
hierarchy. Note that the scope hierarchy also has a tree structure, which
is an abstraction of the full-fleshed ASTs.

3. The parent, referring to the index of the parent node in the AST.

4. The codePosition, meaning the location of the code this node represents
in the original Java code file. The position is encoded as a 4-tuple with
the entries:

(a) line index of the start position,
(b) column index of the start position,
(c) line index of the end position and
(d) column index of the end position.

5. The name of the variable, method or class declared by this node. If the
node is neither of those declarations, the value is null.

6. The className, which is only set for variable declarations and refers to
the name of the class of that variable. Consider the following variable
declaration:
int i = 4 ;

Then the className would be int.

7. The returnType, which is only set for method declarations. It refers to
the class of the object returned by the method.
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keyword value
type variable
scope "[0, 1]"
parent 16
codePosition [12, 38, 12, 45]
name "x"
className "int[]"
numberOfEdges 4

Table 4.1: An example for a node in the AST of a BubbleSort program. This
node represents a variable declaration in the second method of a class (the
scope is "[0, 1]"). The index of the parent node is 16, which is the node
representing the method declaration. The variable declaration can be found at
line 12 from column 38− 45 in the code. The name of the declared variable is
x and it is of class int[]. It has four edges to other nodes, one representing its
array type, the other three representing assignments, where entries in the array
get set to another value. Note that the other keywords, namely returnType
and externalDependencies, have no value.

8. The externalDependencies of the node, which means a list of named en-
tities that were referenced but could not be resolved within the program.
A typical example for our sample programs is the length property of an
array: It is declared in the Java standard library but can not be resolved
to a node within the program itself.

9. The numberOfEdges, which refers to the number of children of this node
in the AST, as well as additional connections it might have within the
AST. For example, we enrich the AST by additional references encoding
the usage of variables. Consider the following code snippet:

int i ;
i = 4 ;

Then the node representing the variable declaration of i has a connec-
tion to the node representing the assignment of 4 to i and the other
way around. Thus the numberOfEdges feature represents the degree of
connectedness of this node in the program.

We show an example for such a node from one BubbleSort program in Table 4.1.

4.3.2 Hypotheses

The aim of this experiment is to learn the keyword weights of the nine features
presented above. Regarding this data set we have the following hypotheses:

Hypothesis 1. We expect an overall positive effect of learning regarding test
classification accuracy for both algorithms.
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Hypothesis 2. We expect that our experiment roughly reproduces the weight-
ing achieved in [29, 31], that is: We expect zero keyword weights for codePo-
sition, parent and numberOfEdges, high keyword weights for type and scope
and intermediate keyword weights for the remaining keywords.

Hypothesis 3. We expect that, similar to the findings in [31], Affine Align-
ment outperforms Global Alignment with respect to classification accuracy.

4.3.3 Methods

In order to transform the AST into a sequence we used prefix notation as in
[29, 31]. Further, we used the same comparator functions as in [31], namely:

1. For type we used a ReplacementComparator with the default parame-
ters as in the string experiment (see Section 4.1 on page 68).

2. For scope we used a custom comparator function that returns 1 minus
the relative length of the longest shared prefix of both input strings. For
example, consider the two scope descriptors "[0, 1, 0]" and "[0, 1, 2,
0]". They have the common prefix "[0, 1, ", which is 7 characters long.
The longer input string is "[0, 1, 2, 0]" with a length of 12 characters.
So the returned value is

cscope
rep ("[0, 1, 0]", "[0, 1, 2, 0]")

:= 1− |"[0, 1, "|
max{|"[0, 1, 0]"|, |"[0, 1, 2, 0]"|}

= 1− 7

12
≈ 0, 583 (4.16)

3. For parent and numberOfEdges we applied a L1NormComparator with
a HyperbolicNormalizer with α = 1.

4. For codePosition we estimated the distance of two code positions as
the character distance between both start positions. We estimated the
average line length by 80. Consider the two codePosition descriptors
[12, 35, 12, 38] and [15, 2, 17, 6]. Then the character distance would be

|12 · 80 + 35− (15 · 80 + 2)| = 207 (4.17)

We apply a HyperbolicNormalizer afterwards with α = 880, meaning
that a moderate code distance of about 10 lines leads to a cost of 0.5.

5. For the remaining keywords we applied a plain CharStatComparator.

As normalization of the gradient we applied the same techniques as in the time
series data set. We also used the same initial keyword weights, namely:

∀κ ∈ K : gκ ←
1

|K|
(4.18)
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We have |X| = 64 input sequences with an average length of M̂ = 95. We
set the k-parameter for LMNN as well as the k-NN classifier to 5. For the
learning rate we chose

η :=
1

|X| · k · M̂
≈ 3.29 · 10−5 (4.19)

Similar to our previous work, we set the crispness to a higher value of β =
100 to boost performance. We trained using 5 gradient steps. Results were
obtained in a crossvalidation with 4 folds that we repeated 5 times to obtain
some statistics. We tracked the classification accuracy on the test set of the
k-NN classifier as well as the L1 norm of the gradient to assess convergence.

We note that the scaling of the different comparator functions is not equal,
that is: The average returned values for this data set were not equal. This re-
lates to the interpretation problem described in Section 2.5.5 on page 40: The
learning has to counteract the scaling effects as well as emphasize discrim-
inative dimensions using the keyword weights. What we want to interpret,
however, is only the emphasis the learning puts on the single dimensions with
respect to class discrimination. In order to do that, we apply a post-processing
step after learning: We multiply the keyword weights with the average value
returned by the respective comparator function. To obtain this average, we
calculate the optimal alignments for all pairs of sequences in the data set af-
ter training, add all contributions by the respective comparator function in
all alignments, and divide by the respective alignment length as well as the
number of alignments. After that, we renormalize the postprocessed keyword
weights to a sum of 1.

4.3.4 Results

For both algorithms the test classification accuracy starts at a fairly high level
(82.5% for Global and 90% for Affine Alignment). While we can observe an
increase for Global Alignment during training, this is not the case for Affine
Alignment, only partly confirming H1. In our experimental data we do not
see any significant difference between Global and Affine Alignment regarding
the classification accuracy after training, which speaks against hypothesis 3.
We do find a consistently lower L1 norm of the gradient for Affine Alignment,
however, suggesting less need for learning (see Figure 4.7b on the facing page).

However, we do see the expected keyword weight profile of hypothesis 2: For
both algorithms the learning puts special emphasis on type and scope while the
keyword weights for codePosition and parent decay to zero. Interestingly, our
prediction for numberOfEdges was incorrect: Contrary to our expectations
the learning rather emphasized this keyword.

4.3.5 Discussion

We were not able to reproduce the results of Paaßen, Mokbel, and Hammer
[31] stating that Affine Alignment outperforms Global Alignment on this data
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(a) The mean classification accuracy of
a k-NN classifier with k = 5 on the
test set plotted over the training epochs.
The 0th training epoch is the initial test
accuracy before any training was ap-
plied. The error bars show the stan-
dard deviation between the crossvalida-
tion repeats.
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(b) The mean L1 norm of the gradient
plotted over the training epochs. The
error bars show the standard deviation
between the crossvalidation repeats.

Figure 4.7: The results of the Java program experiment.
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Figure 4.8: The average keyword weights after training for Global Alignment
(left) and for Affine Alignment (right) respectively. Error bars mark the stan-
dard deviation between the crossvalidation repititions. Note that these key-
word weights have been postprocessed to be interpretable as relevance terms
(see Section 4.3.3 on page 81).
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set, which might be connected to the fact that we also find a slightly differ-
ent keyword weight profile: In particular our learning scheme in this thesis
emphasized the numberOfEdges keyword, while the very same keyword was
suppressed when learning with the RGLVQ framework. From a semantic per-
spective we are inclined to agree with the former strategy, as this particular
feature does highlight nodes with many connections, which is an important
structural cue. However, this feature is certainly highly correlated with other
features (e.g. the type: variable declarations are much more likely to be highly
connected than if statements), which is why it is plausible that the remaining
keywords are sufficient to properly distinguish between the two classes.

Still, the classification accuracy on this challenging task is impressive and
outperforms even RGLVQ. Also, we could reproduce most of the keyword
weight profile, which still remains semantically sound.



Chapter 5

Conclusion

Our work in Chapter 2 provides a theoretical framework for alignment dis-
tance learning based on Algebraic Dynamic Programming (ADP). We have
shown that alignments can be viewed as trees in the language of a regular tree
grammar and that the alignment distance is just the application of an algebra
and a choice function on this language. Furthermore, we have shown how one
can compute the alignment distance generically in O(M · N) using dynamic
programming, given some grammar, algebra, choice function and two input
sequences. These are all direct conclusions from the brilliant work on ADP by
Giegerich, Meyer, and Steffen [12].

We have shown that, by enforcing certain conditions on grammar, algebra
and choice function, the resulting alignment distance fulfills most conditions
of a metric (see Section 2.5 on page 32), which enables a pseudo-euclidian
embedding of the data set [32].

We have further extended the work on ADP by calculating a gradient on the
alignment distance, which is equivalent to applying an alternative algebra and
choice function on the same grammar (see Section 2.7 on page 42). To make
the alignment distance differentiable we used the soft minimum approximation,
for which we also have provided estimations of the approximation error (see
Section 2.8 on page 46).

We provide an extensible Java implementation of this work under a free
software license in form of the TCS Alignment Toolbox 1 (see Chapter 3). This
implementation also comes with means for parallel computation of alignment
distances and gradients thereof.

After first work on gradient-based alignment distance learning based on
the Relational Generalized Learning Vector Quantization (RGLVQ) framework
[27, 28, 29, 31], we have extended this approach to the realm of the popular k-
Nearest Neighbor (k-NN) classifier by plugging the alignment distance gradient
into the Large Margin Nearest Neighbor (LMNN) cost function introduced by
Weinberger and Saul [43].

In our experiments in Chapter 4 we have shown that, using Affine Sequence
Alignment, we can infer a helpful scoring scheme for the alignment distance
even under conditions of heavy noise, which a global alignment algorithm can

1http://openresearch.cit-ec.de/projects/tcs
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not achieve to the same degree. This is not only the case for artificial data
sets but for a real-world example of Java programs as well.

Overall we have demonstrated that gradient-based alignment distance learn-
ing is an effective tool from multiple perspectives:

• Using the theory presented in this work one can easily extend the learning
techniques to other alignment schemes, by plugging in other grammars.

• As we have shown in the Java programming experiment, the approach
works even for very rich sequential datasets, wich are not only multidi-
mensional but also multimodal, by defining proper comparator functions
over the single alphabets.

• For many (if not all) sequential data sets the definition of comparator
functions over the features contained in single nodes is more intuitive
and straightforward than trying to find a feature representation of the
sequence as a whole. Even more, one does not have to abstract from the
structural richness of the underlying data. Here we follow the argument
of Pękalska [32]: Viewing data points in terms of their relations to each
other opens up a valuable new perspective.

• As we have shown, the gradient over the alignment distance can be ef-
fectively calculated with the same asymptotic efficiency as the alignment
distance itself. Furthermore, it can be understood as just an applica-
tion of a different choice function and algebra on the same grammar.
This also provides a nice guideline for implementations. Further work
on approximations and speedup techniques is provided in [29].

• The gradient of the alignment distance can be plugged into arbitrary
cost functions, and indeed we have shown that the approach does work
not only in the RGLVQ framework but for k-NN classifiers as well.

• Using the right cost function, one can directly optimize the underlying
alignment distance for better classification performance, as we have done
here and in our previous work.

• Even though the cost function we used in this work is only partly differ-
entiable and non-convex, such that local optima instead of global ones
are probable, we achieved consistent and satisfying learning results2.

Further work in the area is of course possible, for example:

• It could be possible to describe existing kernel approaches like the ones
presented by Saigo, Vert, and Akutsu [34] and Cuturi et al. [10] in terms
of ADP algebras and choice functions. Based on that one could easily
construct kernels for more complex alignment approaches, like Affine
Alignment, and extend the gradient-based learning approach to them.

2some further notes on that topic in the context of the RGLVQ framework are provided
in [29]
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• One could extend the learning scheme to other cost functions, e.g. to
optimize other classifiers, or to an unsupervised learning task like clus-
tering.

• One could apply more sophisticated nonlinear optimization techniques
than a simple gradient-descend.

• We have omitted a proof for the triangular inequality of the alignment
distance. It should be possible to provide this proof if one is able to
connect the class of ADP grammars we presented here to edit distances
(see e.g. Heun [18]).

However, even without these further extensions, we have provided strong
arguments for an extended use of gradient-based alignment distance learning
in the research community and in broader application domains.
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DTW Dynamic Time Warping. 10, 23, 34, 52, 64
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ITS intelligent tutoring system. 77
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NCD Normalized Compression Distance. 54

RGLVQ Relational Generalized Learning Vector Quantization. 10, 13, 34, 69,
84–86
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Glossary

algebra (F) a set of comparator functions, one for each keyword and one
for each alignment operation in the respective signature; see Definition 11 on
page 19. 12, 16, 17, 19, 20, 22–26, 28, 30, 32, 34–40, 43, 44, 50, 51, 55, 57, 64,
85, 86, 100, 101, 113
algebra function (d) a function calculating the cost for one alignment oper-
ation; see Definition 12 on page 19. 19, 32, 34, 36, 39, 95
algebra function input set (I(t)) the input set for an algebra function
according to function template t; see Definition 8 on page 18. 18, 52
alignment distance (D) the alignment distance between two input sequences
x̄ and ȳ; see Definition 21 on page 24. 3, 10–15, 17, 21, 24, 25, 31, 32, 35–38,
40, 42, 43, 57, 62–64, 66–70, 78, 85–87
alignment end (nil) empty end operator. 17, 18
alphabet (Σκ) the set of possible values for keyword κ; see Definition 1 on
page 15. 15, 16, 18, 20, 22, 52, 55, 68, 79, 86, 95–97, 113
arity ((A,A′)) a tuple of two natural numbers specifying the number of input
arguments of an algebra function or a comparator function on the left and on
the right side. Within this thesis the arity just specifies whether some function
template takes inputs from the left sequence only, the right sequence only or
both sequences; see Definition 5 on page 17. 17, 18, 21, 33, 96
axiom (A∗) the start nonterminal symbol (or axiom) of a grammar. 20, 22,
30, 44, 45

choice function (h) a function calculating one (optimum) value from a set of
input values; also called objective function; see Definition 13 on page 19. 19,
20, 22, 24, 25, 28, 30, 32, 34, 35, 37–40, 43–46, 49, 51, 52, 62, 63, 85, 86, 113,
124
comparator function (cκ) a function calculating the distance between two
values from the alphabet for keyword κ; see Definition 10 on page 19. 19, 40,
43, 45, 52, 54–57, 65, 68, 71, 74, 81, 82, 86, 95, 96, 124
comparator function input set (Ic(t)) the input set for a comparator func-
tion according to function template t; see Definition 9 on page 19. 19
crispness (β) A parameter to tune the soft minimum approximation: For a β
of 0 softmin is equal to the arithmetic average. For β →∞ softmin approaches
min. 46, 56, 71, 75, 82

data set (X) the set of all sequences. 66, 82, 85
deletion (del) deleting one node in the first sequence. 17, 18, 26, 28, 31, 37,
54–56, 61, 69, 72, 73, 116

95



96 Glossary

function template (t) a tuple of a name and an arity; see Definition 7 on
page 17. 16–19, 21, 33, 44, 45, 55, 65, 95

grammar (G) a regular tree grammar that expresses the language of all pos-
sible alignments; see Definition 14 on page 20. 12, 16, 17, 20–26, 28, 30–40,
43, 44, 50–52, 58–61, 63, 64, 85–87, 95, 96, 100, 105, 113

imposters (I(x̄, ȳ)) The set of data points from the other class, which are
closer to x̄ than ȳ; see Definition 28 on page 41. 41, 42, 73
insertion (ins) inserting one node from the second sequence into the first
sequence. 17, 18, 26, 28, 37, 54–56, 61, 69, 72, 73, 116

keyword (κ) a keyword; see Definition 2 on page 16. 16, 18–20, 22, 24, 36,
40, 43, 44, 52, 57, 64, 68, 73, 74, 80–84, 95–97, 113
keyword set (K) the set of all keywords; see Definition 2 on page 16. 16, 18,
20
keyword weight (gκ) the weight (or relevance) of keyword κ; see Definition 12
on page 19. 19, 34, 40, 44, 45, 52, 57, 65, 66, 73–76, 80–84, 96

language (L(G)) the language defined by the grammar G which means the
set of all trees that can be constructed using the grammar G. 22, 35, 85
length (M , N) the number of nodes in sequence x̄ and ȳ respectively (M :=
|x̄|, N := |ȳ|). 11, 16, 24, 25, 28, 30, 32, 45
LMNN cost function (E) The Large Margin Nearest Neighbor cost function;
see Definition 29 on page 41. 41–43, 67, 70, 73

margin (γ) The minimum margin we enforce between data points from dif-
ferent classes in the Large Margin Nearest Neighbor metric learning scheme.
41, 42

node (xi, yj) the ith node in sequence x̄ or the jth node in sequence ȳ , in
general a (multimodal) vector; see Definition 3 on page 16. 16, 20, 24, 36, 53,
61, 73, 74, 79, 80, 84, 86, 96, 97
node set (Σ×) the set of possible nodes, equivalent to the Cartesian product
of all alphabets; see Definition 3 on page 16. 16, 20, 24, 51–53
nonterminal symbol (A, B) nonterminal symbol in a grammar. 20–23, 26,
28, 30, 32, 34, 37, 39, 49, 58–62, 99, 102–104, 113–116, 118–122
number of neighbors (k) The number of neighbors in a k-NN algorithm. 40

parameter (λ) some parameter of the the metric that shall be optimized. In
the context of this work either a specific comparator function result for two
input values a and b denoted as λ(a, b) or some keyword weight g. 3, 9, 13–15,
40, 42, 43, 45, 46, 65–70, 72, 76, 81

replacement (rep) replacing one node in the first sequence by one node of
the second sequence. 17, 18, 23, 26, 31, 35, 36, 55, 56, 61, 68–73, 116, 119

sequence (x̄, ȳ) a sequence of nodes; see Definition 4 on page 16. 9–12, 15–19,
21–26, 28, 30–35, 37–40, 45, 50–54, 61, 63, 67, 68, 71, 73–75, 81, 82, 85, 86,
95–97, 113, 124
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signature (T ) a set of permitted alignment operations; see Definition 7 on
page 17. 16–18, 20, 21, 24, 25, 28, 30, 35–39, 51, 95
skip-deletion (skip_del) skipping an irrelevant node in the first sequence.
17, 18, 26, 28, 37, 54–56, 69, 70, 72, 73, 117
skip-insertion (skip_ins) skipping an irrelevant node in the second sequence.
17, 18, 26, 28, 37, 54–56, 69, 70, 72, 73
soft minimum (softmin) the soft approximation of the strict minimum func-
tion; see Definition 30 on page 46. 14, 15, 46–50, 52, 56, 85, 95, 109, 110

target neighbors (Nk(x̄)) The k-NNs of x̄ in the same class; see Definition 27
on page 40. 40–42

value (xκ, a, b) the value for keyword κ in node x or some arbitrary value
from the alphabet Σκ; see Definition 1 on page 15. 15, 16, 19, 36, 53, 55, 56,
74, 79, 80, 96, 97

yield (Y(T )) the concatenation of all terminal symbols that are leafs of tree
T ; see Definition 19 on page 24. 24, 25, 28, 35, 38, 49
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Appendix A

Proofs

A.1 Grammar Symmetry

A.1.1 Strong Symmetry

Have a look at Theorem 7 on page 37 for definitions and claim. We do a proof
by structural induction. Our base case are all nonterminal symbols A ∈ Φ for
which at least one production rule of the following form exists:
A = n i l (<EMPTY , EMPTY>) ;

For those we obtain:

Ax̄,ȳ(M + 1, N + 1) = 0 = Aȳ,x̄(N + 1,M + 1) (A.1)

Now let A be a nonterminal symbol from Φ and i ∈ {1, . . . ,M + 1}, j ∈
{1, . . . , N + 1}. Our induction hypothesis is that our claim holds for all en-
tries of the dynamic programming tables, which we need to calculate A(i, j),
according to Algorithm 2. In other words: For every entry B(i′, j′), that is
required to calculate Ax̄,ȳ(M + 1, N + 1), it holds:

Bx̄,ȳ(i
′, j′) = Bȳ,x̄(j

′, i′) (A.2)

Using the equation for dynamic programming table entries shown in Algo-
rithm 2 on page 30, we obtain:

Ax̄,ȳ(i, j) = h[θx̄,ȳl ]l=1...L (A.3)
Aȳ,x̄(j, i) = h[θȳ,x̄l ]l=1...L (A.4)

Obviously, the result of h has to be equal if the multiset of input arguments is
equal. Now consider the different possible production rules that might corre-
spond to θx̄,ȳl :

1. A = B;

This production rule can be applied for Aȳ,x̄(j, i) as well. Due to our
induction hypothesis, we further know that

Bx̄,ȳ(i, j) = Bȳ,x̄(j, i) (A.5)

Thus an equal term θȳ,x̄l′ has to exist for some l′.
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2. A = de l (<NODE , EMPTY>, B) ;

Due to strong grammar symmetry, we know that a production rule of
the form

A = in s (<EMPTY , NODE>, B) ;

exists as well. Due to our induction hypothesis, we know that

Bx̄,ȳ(i+ 1, j) = Bȳ,x̄(j, i+ 1) (A.6)

Finally, we can infer using algebra symmetry:

ddel(xi, Bx̄,ȳ(i+ 1, j)) = dins(Bȳ,x̄(j, i+ 1), xi) (A.7)

Thus an equal term θȳ,x̄l′ has to exist for some l′.

3. A = skip_del(<NODE , EMPTY>, B) ;

Due to strong grammar symmetry, we know that a production rule of
the form

A = skip_ins(<EMPTY , NODE>, B) ;

exists as well. Due to our induction hypothesis, we know that

Bx̄,ȳ(i+ 1, j) = Bȳ,x̄(j, i+ 1) (A.8)

Finally, we can infer using algebra symmetry:

dskip_del(xi, Bx̄,ȳ(i+ 1, j)) = dskip_ins(Bȳ,x̄(j, i+ 1), xi) (A.9)

Thus an equal term θȳ,x̄l′ has to exist for some l′.

4. A = in s (<EMPTY , NODE>, B) ;

Due to strong grammar symmetry, we know that a production rule of
the form

A = de l (<NODE , EMPTY>, B) ;

exists as well. Due to our induction hypothesis, we know that

Bx̄,ȳ(i, j + 1) = Bȳ,x̄(j + 1, i) (A.10)

Finally, we can infer using algebra symmetry:

dins(Bx̄,ȳ(i, j + 1), yj) = ddel(yj, Bȳ,x̄(j + 1, i)) (A.11)

Thus an equal term θȳ,x̄l′ has to exist for some l′.

5. A = skip_ins(<EMPTY , NODE>, B) ;

Due to strong grammar symmetry, we know that a production rule of
the form
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A = skip_del(<NODE , EMPTY>, B) ;

exists as well. Due to our induction hypothesis, we know that

Bx̄,ȳ(i, j + 1) = Bȳ,x̄(j + 1, i) (A.12)

Finally, we can infer using algebra symmetry:

dskip_ins(Bx̄,ȳ(i, j + 1), yj) = dskip_del(yj, Bȳ,x̄(j + 1, i)) (A.13)

Thus an equal term θȳ,x̄l′ has to exist for some l′.

6. A = rep(<NODE , NODE>, B) ;

In that case the same production can be applied for Aȳ,x̄(j, i). Due to
our induction hypothesis, we further know that

Bx̄,ȳ(i+ 1, j + 1) = Bȳ,x̄(j + 1, i+ 1) (A.14)

Finally, we can infer using algebra symmetry:

drep(xi, Bx̄,ȳ(i+ 1, j + 1), yj) = drep(yj, Bȳ,x̄(i+ 1, j + 1), xi) (A.15)

Thus an equal term θȳ,x̄l′ has to exist for some l′.

Altogether, this proofs that for each θx̄,ȳl there is a θȳ,x̄l′ , such that

θx̄,ȳl = θȳ,x̄l′ (A.16)

As multisets are order-invariant, this implies that the input for h is equal in
both cases, which in turn implies that

Ax̄,ȳ(i, j) = Aȳ,x̄(j, i) (A.17)

This concludes the proof by structural induction.

A.1.2 Weak Symmetry of GAffine

Have a look at Theorem 8 on page 38 for definitions and claim. We proof
our claim by simply looking at all possible productions that are permitted by
GAffine (see Grammar 2.4 on page 29). In particular we are concerned with the
subtree T that is constructed in the production so far and whether a symmetric
subtree T ′ according to Definition 26 on page 38 can be constructed for it.

We differentiate between several types of subtrees.

Front: This kind of subtree is constructed using the production rule
SKIPDEL_START = skip_del(<NODE , EMPTY>, SKIPDEL_START) ;

m times, then the rule
SKIPDEL_START = SKIPINS_START;
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skip_del

x1 . . .

skip_del

xm skip_ins

. . .

skip_ins

SKIPINS_START yn

y1

skip_del

y1 . . .

skip_del

yn skip_ins

. . .

skip_ins

SKIPINS_START xm

x1

Figure A.1: A front-type subtree (left) and its symmetric counterpart (right).

and finally the production rule
SKIPINS_START = skip_ins(<EMPTY , NODE>, SKIPINS_START) ;

n times (see Figure A.1). The symmetric production for this type of subtree
is very straightforward: Just apply the first rule n times, then the second one
and the third one m times (see Figure A.1). Note that we end up not only
with a symmetric subtree, but also with the same nonterminal symbol, namely
SKIPINS_START.

If the next production rule is
SKIPINS_START = n i l (<EMPTY , EMPTY>) ;

we can apply it for the symmetric tree as well and obtain a full T ∈ L(GAffine),
as well as its symmetric counterpart T ′ ∈ L(GAffine).

If we have a front-subtree and apply the production rule
SKIPINS_START = rep(<NODE , NODE>, ALI) ;

we do not get back to the nonterminal symbols SKIPDEL_START or SKIPINS
_START. However, we arive at the nonterminal symbol ALI. Now we consider
the different productions that might follow from here.

Rep: Consider only the production rule:
ALI = rep(<NODE , NODE>, ALI) ;

Here the symmetric production is obvious: We just apply the same production
rule.

Del: Now we consider productions that start with an application of the rule
ALI = de l (<NODE , EMPTY>, DEL) ;

then apply
DEL = de l (<NODE , EMPTY>, DEL) ;

m− 1 times, then apply either directly
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del

xi . . .

del

xi+m ins

. . .

ins

rep

xi+m+1 ALI yj+n+1

yj+n

yj

del

yj . . .

del

yj+n ins

. . .

ins

rep

yj+n+1 ALI xi+m+1

xi+m

xi

Figure A.2: A del-type subtree (left) and its symmetric counterpart (right).

DEL = rep(<NODE , NODE>, ALI) ;

or apply
DEL = in s (<EMPTY , NODE>, INS) ;

and thereafter
INS = in s (<EMPTY , NODE>, INS) ;

n− 1 times until finally the rule
INS = rep(<NODE , NODE>, ALI) ;

is applied. A subtree created in this way is visualized in Figure A.2. The
symmetric construction is basically the same: If n > 0 we apply
ALI = de l (<NODE , EMPTY>, DEL) ;

Then we apply
DEL = de l (<NODE , EMPTY>, DEL) ;

n− 1 times. If m = 0 we directly apply
DEL = rep(<NODE , NODE>, ALI) ;

Otherwise we first apply
DEL = in s (<EMPTY , NODE>, INS) ;

and then
INS = in s (<EMPTY , NODE>, INS) ;

m− 1 times. Finally we apply
INS = rep(<NODE , NODE>, ALI) ;

The corresponding symmetric subtree is visualized in Figure A.2. Note that
we arrive at the same nonterminal symbol ALI.
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Ins: Now we consider the subtrees constructed if we first apply the produc-
tion rule

ALI = in s (<EMPTY , NODE>, INS) ;

then apply

INS = in s (<EMPTY , NODE>, INS) ;

n− 1 times and finally apply

INS = rep(<NODE , NODE>, ALI) ;

Obviously we can apply the same strategy here as for del type subtrees to
construct the symmetric version: If n > 0 we apply the rule

ALI = de l (<NODE , EMPTY>, DEL) ;

Then we apply

DEL = de l (<NODE , EMPTY>, DEL) ;

n− 1 times and finally we apply

DEL = rep(<NODE , NODE>, ALI) ;

Once again note that we arrive at the nonterminal symbol ALI.

Skipdel-Mid: Consider the subtrees constructed like this: Starting at ALI
we first apply the production rule

ALI = de l (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
SKIPDEL_MID) ) ) ;

Then we apply

SKIPDEL_MID = skip_del (<NODE , EMPTY>, SKIPDEL_MID) ;

m times and finally we apply

SKIPDEL_MID = rep(<NODE , NODE>, ALI) ;

The symmetric subtree can be constructed accordingly by first applying

ALI = in s (<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
SKIPINS_MID) ) ) ) ;

Then

SKIPINS_MID = skip_ins(<EMPTY , NODE>, SKIPINS_MID) ;

m times and finally

SKIPINS_MID = rep(<NODE , NODE>,ALI) ;

Skipins-Mid: This is just the inverse case of the previous one.
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Tail: At last we consider subtrees starting at ALI where we first apply
ALI = SKIPDEL_END;

Then we apply
SKIPDEL_END = skip_del(<NODE , EMPTY>, SKIPDEL_END) ;

m times. Further we apply
SKIPDEL_END = SKIPINS_END;

We proceed by using
SKIPINS_END = skip_ins(<EMPTY , NODE>, SKIPINS_END) ;

n times and end by applying
SKIPINS_END = n i l (<EMPTY , EMPTY>) ;

As with the front-type subtrees we construct the symmetric subtree by first
applying
ALI = SKIPDEL_END;

Then n times
SKIPDEL_END = skip_del(<NODE , EMPTY>, SKIPDEL_END) ;

Then
SKIPDEL_END = SKIPINS_END;

Then m times
SKIPINS_END = skip_ins(<EMPTY , NODE>, SKIPINS_END) ;

And finally
SKIPINS_END = n i l (<EMPTY , EMPTY>) ;

One can also imagine the grammar GAffine in a quasi-automaton/dependency
graph format, like depicted in Figure A.3 on the next page. Then the meaning
of the different subtrees becomes quite clear: They form different paths within
the graph, such that every possible production permitted by GAffine can be
seen as composed of these paths. Using our definitions, we can now apply a
simple induction argument over the size of some tree T ∈ L(GAffine): If it just
consists of one nil operation it is obviously symmetric. If it is larger than that,
look at the last subtree before the nil operation was used. For the remainder
of the tree the induction hypothesis applies. For the subtree itself apply the
construction of the symmetric subtree as stated above.
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skip_del

skip_ins

rep

nil

rep

del

ins

del
ins

rep

ins

rep

del, skip_del, skip_del

skip_del

rep

ins, skip_ins, skip_ins

skip_ins

rep

skip_del

skip_ins

nil

SKIPDEL_STARTstart

SKIPINS_START

ALI

DELSKIPDEL_MID INS SKIPINS_MID

SKIPDEL_END

SKIPINS_END

Figure A.3: An automaton-style dependency graph representation of GAffine,
visualizing the different productions for subtrees of the different types discussed
in Section A.1.2 on page 101. Black stands for the front-type subtree, blue for
the rep-type, red for del- and ins-type subtrees, orange for skipdel-mid, green
for skipins-mid and yellow for tail. Shortcuts are displayed with dashed lines.
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A.2 Softmin

A.2.1 Derivative

Have a look at Theorem 13 on page 46 for definitions and claim. This derivation
is taken from Mokbel et al. [29]:

∂

∂λ
softmin[θ1, . . . , θL]

=
∂

∂λ

1

Z

L∑
l=1

el · θl (A.18)

=
1

Z2

(
Z ·

L∑
l=1

∂

∂λ
(el · θl)−

(
L∑
l=1

el · θl

)
· ∂
∂λ
Z

)
(A.19)

=
1

Z

(
L∑
l=1

∂

∂λ
(el · θl)− softmin[θ1, . . . , θL] · ∂

∂λ
Z

)
(A.20)

For the derivative of el · θl we obtain:

∂

∂λ
(el · θl) =

(
∂

∂λ
el

)
· θl + el ·

(
∂

∂λ
θl

)
(A.21)

= −β · el ·
(
∂

∂λ
θl

)
· θl + el ·

(
∂

∂λ
θl

)
(A.22)

= el ·
(
∂

∂λ
θl

)
· (−β · θl + 1) (A.23)

And for the derivative of Z:

∂

∂λ
Z =

L∑
l=1

∂

∂λ
el (A.24)

= −β ·
L∑
l=1

el ·
(
∂

∂λ
θl

)
(A.25)
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If we plug that into Equation A.20 we obtain:

∂

∂λ
softmin[θ1, . . . , θL]

=
1

Z

(
L∑
l=1

el ·
(
∂

∂λ
θl

)
· (−β · θl + 1)

− softmin[θ1, . . . , θL] · (−β) · el ·
(
∂

∂λ
θl

))
(A.26)

=
1

Z

(
L∑
l=1

el ·
(
∂

∂λ
θl

)
· (−β · θl + 1 + β · softmin[θ1, . . . , θL])

)
(A.27)

=
L∑
l=1

el
Z
·
(
∂

∂λ
θl

)
·
(

1− β · (θl − softmin[θ1, . . . , θL])
)

(A.28)

A.2.2 Approximation Error

Have a look at Theorem 14 on page 47 for definitions and claim. The proof
works as follows:

E = softmin[θ1, . . . , θL]− θmin (A.29)

=

∑L
l=1 el · θl∑L
l=1 el

− θmin (A.30)

=

∑L
l=1 el · exp(−β · θmin) · θl∑L
l=1 el · exp(−β · θmin)

− θmin (A.31)

=

∑L
l=1 exp(−β · εl) · θl∑L
l=1 exp(−β · εl)

− θmin (A.32)

=

∑L
l=1 exp(−β · εl) · θl − θmin ·

(∑L
l=1 exp(−β · εl)

)
∑L

l=1 exp(−β · εl)
(A.33)

=

∑L
l=1 exp(−β · εl) · θl − exp(−β · εl) · θmin∑L

l=1 exp(−β · εl)
(A.34)

=

∑L
l=1 exp(−β · εl) · εl∑L
l=1 exp(−β · εl)

(A.35)

= softmin[ε1, . . . , εL] (A.36)
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The second part of the proof is similarly simple:

E =

∑L
l=1 exp(−β · εl) · εl∑L
l=1 exp(−β · εl)

(A.37)

=

∑
l∈Θmin

exp(−β · εl) · εl +
∑

l /∈Θmin
exp(−β · εl) · εl∑

l∈Θmin
exp(−β · εl) +

∑
l /∈Θmin

exp(−β · εl)
(A.38)

=

∑
l∈Θmin

exp(−β · 0) · 0 +
∑

l /∈Θmin
exp(−β · εl) · εl∑

l∈Θmin
exp(−β · 0) +

∑
l /∈Θmin

exp(−β · εl)
(A.39)

=

∑
l /∈Θmin

exp(−β · εl) · εl
|Θmin|+

∑
l /∈Θmin

exp(−β · εl)
(A.40)

A.2.3 Error Limit

Have a look at Theorem 16 on page 48 for definitions and claim. First we intend
to fix the form of the worst case softmin inputs. Consider Equation 2.133 on
page 47 from Theorem 14:

E =

∑
l /∈Θmin

exp(−β · εl) · εl
|Θmin|+

∑
l /∈Θmin

exp(−β · εl)
(A.41)

If we reduce the number of minimum elements, that is the size of Θmin, the
numerator increases and the denominator decreases. Therefore, the error E
increases and we can conclude that the worst-case ε-terms are of the form
[0, ε2, . . . , εL] with

∀l ∈ {2, . . . , L} : εl > 0 (A.42)

Let [0, ε2, . . . , εL] be such a multiset. Now we proof that there is some (unique)
ε∗ ∈ R+ such that:

ε∗ = argmax
εl

softmin[0, ε2, ε3, . . . , εL] = argmax
εl

E (A.43)

Consider the soft minimum derivative specified in Equation 2.128 on page 46:

∂

∂εl
softmin[0, ε2, . . . , εL]

=
L∑
l′=2

el′

Z
·
(
∂

∂εl
εl′

)
·
(

1− β · (εl′ − softmin[0, ε2, . . . , εL])
)

(A.44)

=
el
Z
·
(

1− β · (εl − softmin[0, ε2, . . . , εL])
)

!
= 0 (A.45)

⇔ 0
!

= 1− β · (εl − softmin[0, ε2, . . . , εL]) (A.46)

⇔ εl
!

= softmin[0, ε2, . . . , εL] +
1

β
(A.47)

This equation has no closed-form solution, but it certainly has some (unique)
solution. We call the εl, for which that equation is fulfilled, ε∗. It remains to be
shown that the approximation error has a maximum (and not a minimum) at
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Figure A.4: The soft minimum approximation error E for β = 5 plotted
versus the error contributions ε2, ε3 with ε1 = 0. As shown in Theorem 14 on
page 47 this is equivalent to softmin[0, ε2, ε3]. As can be seen the worst case
approximation error can be found on the diagonal with ε2 = ε3.

ε∗. We check this, by inspecting the behavior of the derivative in a δ-interval
around ε∗:

(
∂

∂εl
softmin[0, ε2, . . . , εL]

)
(ε∗ + δ)

=
el
Z
·
(

1− β · (ε∗ − softmin[0, ε2, . . . , εL])
)

(A.48)

=
el
Z
·
(

1− β · ( 1

β
+ δ)

)
(A.49)

=
el
Z
·
(

1− 1− β · δ
)

(A.50)

=− el
Z
· β · δ (A.51)

As el > 0, Z > 0 and β ≥ 0, we can conclude that the derivative is positive
for a small δ < 0 and negative for a small δ > 0, which in turn implies a
maximum.

Due to the order-invariance of multisets, we can transfer this result to the
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other variables as well. We obtain:

argmax
[ε2,...,εL]

softmin[0, ε2, . . . , εL] = [ε∗, . . . , ε∗] (A.52)

A visualization of the maximum for a simple two-dimensional case is shown in
Figure A.4 on the preceding page.

Now we apply Equation 2.133 on page 47:

max
[θ1,...,θL]

E =

∑L
l=2 exp(−β · ε∗) · ε∗

1 +
∑L

l=2 exp(−β · ε∗)
(A.53)

=
(L− 1) · exp(−β · ε∗) · ε∗

1 + (L− 1) · exp(−β · ε∗)
(A.54)

=
(L− 1) · ε∗

exp(β · ε∗) + (L− 1)
(A.55)

≤ (L− 1) · ε∗

exp(β · ε∗)
(A.56)

We can obtain an upper bound for this formula by finding a maximum of this
new function:

∂

∂ε̂∗
(L− 1) · ε̂∗

exp(β · ε̂∗)
!

= 0 (A.57)

⇔ exp(β · ε̂∗)− ε̂∗ · β · exp(β · ε̂∗)
exp(β · ε̂∗)2

!
= 0 (A.58)

⇔ 1− ε̂∗ · β
exp(β · ε̂∗)

!
= 0 (A.59)

⇔ 1− ε̂∗ · β !
= 0 (A.60)

⇔ ε̂∗
!

=
1

β
(A.61)

To proof that this extremum is indeed a maximum we once again inspect a
δ-interval around 1

β
:

(
∂

∂ε̂∗
(L− 1) · ε̂∗

exp(β · ε̂∗)

)
(
1

β
+ δ) (A.62)

=
1− ( 1

β
+ δ) · β

exp
(
β · ( 1

β
+ δ)

) (A.63)

=
1− 1− δ · β
exp(1 + β · δ)

(A.64)

=− δ · β
exp(1 + β · δ)

(A.65)

(A.66)

As β ≥ 0 and exp(1 +β · δ) > 0 we can conclude that the derivative is positive
for a small δ < 0 and negative for a small δ > 0, which in turn implies a
maximum.
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We plug this result into Equation A.56 on the previous page:

max
[θ1,...,θL]

E ≤
(L− 1) · 1

β

exp(β · 1
β
)

=
L− 1

β · e
(A.67)

This concludes our proof.



Appendix B

Affine grammar translation

To illustrate the translation process, we consider the example of grammar
GAffine in more detail in this section. We use only one keyword κ and define
the respective alphabet as:

Σκ := {’a’, ’b’, ’c’, ’d’, ’e’, ’y’, ’z’} (B.1)

As example input sequences we use:

x̄ = cazzzaad (M = 8) (B.2)
ȳ = baayyyae (N = 8) (B.3)

As algebra we define:

cκnil() := 0 (B.4)

cκrep(a, b) :=

{
0 if a = b

1 if a 6= b
(B.5)

cκdel(a) := 0.7 (B.6)
cκskip_del(a) := 0.4 (B.7)

cκins(b) := 0.7 (B.8)
cκskip_ins(b) := 0.4 (B.9)

As choice function we use the strict minimum.

B.1 SKIPINS_END
The production rules for SKIPINS_END are:
SKIPINS_END = skip_ins(<EMPTY , NODE>, SKIPINS_END) |

n i l (<EMPTY , EMPTY>) ;

As SKIPINS_END is a nonterminal symbol with a nil production rule we
can initialize

SKIPINS_END(M + 1, N + 1) = 0 (B.10)

113
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x̄\ȳ b a a y y y a e -

c
a
z
z
z
z
a
a
d
- 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

Table B.1: The dynamic programming table for the nonterminal symbol SKIP-
INS_END. Cells that are part of the optimal path are highlighted.

As only one rule remains the rest of the cell filling for this table is trivial:

SKIPINS_END(M + 1, j)

= min{dskip_ins(SKIPINS_END(M + 1, j + 1), yj)} (B.11)
= SKIPINS_END(M + 1, j + 1) + cκskip_ins(y

κ
j ) (B.12)

=
N∑
j′=j

cκskip_ins(y
κ
j′) (B.13)

All other rows of this table remain empty. The table for our example input is
shown in Table B.1.

B.2 SKIPDEL_END

The production rules for SKIPDEL_END are:

SKIPDEL_END = skip_del(<NODE , EMPTY>, SKIPDEL_END) |
SKIPINS_END;

In the last row of this table we can not yet apply the translation of the first
production rule. Thus we just copy the value of SKIPINS_END there. As
mentioned before, however, all rows but the last one remain empty for SKIPINS
_END such that we can not apply the translation of the second production
rule there. Thus the translation becomes fairly easy:
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x̄\ȳ b a a y y y a e -

c 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2
a 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8
z 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4
z 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0
z 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6
a 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2
a 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8
d 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4

- 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

Table B.2: The dynamic programming table for the nonterminal symbol
SKIPDEL_END. Cells that are part of the optimal path are highlighted. We
separated parts of the table with extra spacing that are calculated using dif-
ferent equations. The equations are listed in the text.

SKIPDEL_END(M + 1, j)

= SKIPINS_END(M + 1, j) (B.14)
SKIPDEL_END(i, j)

= dskip_del(xi, SKIPDEL_END(i+ 1, j)) (B.15)
= SKIPDEL_END(i+ 1, j) + cκskip_del(x

κ
i ) (B.16)

= SKIPINS_END(M + 1, j) +
M∑
i′=i

cκskip_del(x
κ
i′) (B.17)

=
N∑
j′=j

cκskip_ins(y
κ
j′) +

M∑
i′=i

cκskip_del(x
κ
i′) (B.18)

The table for our example input is shown in Table B.2.

B.3 ALI
ALI is by far the most complicated nonterminal symbol. Its production rules
are:
ALI = de l (<NODE , EMPTY>, DEL) |

i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) |
de l (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
SKIPDEL_MID) ) ) |
i n s (<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
sk ip_ins(<EMPTY , NODE>,
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x̄\ȳ b a a y y y a e -

c 4.8 4.5 4.6 5.2 4.5 3.8 3.5 3.6 3.2
a 4.5 3.8 4.2 4.3 4.2 3.5 2.8 3.2 2.8
z 4.8 3.9 3.8 4.2 3.9 3.3 2.7 2.8 2.4
z 4.1 3.8 3.7 3.8 3.2 2.9 2.3 2.4 2.0
z 3.4 3.1 3.0 3.5 2.8 2.2 1.9 2.0 1.6

a 3.1 2.4 2.3 2.7 2.5 1.8 1.2 1.6 1.2
a 3.5 2.8 2.4 2.3 2.2 1.5 .8 1.2 0.8

d 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4

- 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

Table B.3: The dynamic programming table for the nonterminal symbol ALI.
Cells that are part of the optimal path are highlighted. We separated parts of
the table with extra spacing that are calculated using different equations. The
equations are listed in the text.

SKIPINS_MID) ) )
SKIPDEL_END;

We did not discuss the proper translation of nested operations yet, but it
is fairly straightforward:
de l (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
skip_del (<NODE , EMPTY>,
SKIPDEL_MID) ) )

becomes:

del(xi, skip_del(xi+1, skip_del(xi+2, SKIPDEL_START(i+ 3, j)))) (B.19)

In the last column and last row we can not apply any operations yet, thus
the content of SKIPDEL_END at that point is copied:

ALI(M + 1, j) = SKIPDEL_END(M + 1, j) (B.20)
ALI(i, N + 1) = SKIPDEL_END(i, N + 1) (B.21)

In the cell (M,N) we can only apply replacements. Thus we calculate:

ALI(M,N) = min{ALI(M + 1, N + 1) + cκrep(xκM , y
κ
N), (B.22)

SKIPDEL_END(M,N)}

The 2 cells above it additionally allow deletions and the 2 cells left of it
additionally allow insertions. Thus we obtain for M − 3 < i < M :

ALI(i, N) = min{ALI(i+ 1, N + 1) + cκrep(xκi , y
κ
N), (B.23)

DEL(i+ 1, N) + cκdel(x
κ
i ),

SKIPDEL_END(i, N)}
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and for N − 3 < j < N :

ALI(M, j) = min{ALI(M + 1, j + 1) + cκrep(xκM , y
κ
j ), (B.24)

INS(M, j + 1) + cκins(y
κ
j ),

SKIPDEL_END(M, j)}
Both of these obviously depend on DEL and INS being partly filled already.

We introduce further dependencies in the rest of the last row and column:
For i ≤ M − 3 the cells (i, N) allow skip-deletions in the middle as well. We
obtain:

ALI(i, N) = min{ALI(i+ 1, N + 1) + cκrep(xκi , y
κ
N), (B.25)

DEL(i+ 1, N) + cκdel(x
κ
i ),

SKIPDEL_MID(i+ 3, N)

+ cκdel(x
κ
i ) + cκskip_del(x

κ
i+1) + cκskip_del(x

κ
i+2),

SKIPDEL_END(i, N)}
Accordingly we obtain a similar equation for j ≤ N − 3:

ALI(M, j) = min{ALI(M + 1, j + 1) + cκrep(xκM , y
κ
j ), (B.26)

INS(M, j + 1) + cκins(y
κ
j ),

SKIPINS_MID(M, j + 3)

+ cκins(y
κ
j ) + cκskip_ins(y

κ
j+1) + cκskip_ins(y

κ
j+2),

SKIPDEL_END(M, j)}
The cells {(i, j)|M − 3 < i < M ∧ N − 3 < j < N} allow the following

operations:
ALI = de l (<NODE , EMPTY>, DEL) |

i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) |
SKIPDEL_END;

The translation is:

ALI(i, j) = min{ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j ), (B.27)

DEL(i+ 1, j) + cκdel(x
κ
i ),

INS(i, j + 1) + cκins(y
κ
j ),

SKIPDEL_END(i, j)}
The cells {(i, j)|i ≤ M − 3 ∧ N − 3 < j < N} allow skip-deletions in the

middle as well:

ALI(i, j) = min{ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j ), (B.28)

DEL(i+ 1, j) + cκdel(x
κ
i ),

INS(i, j + 1) + cκins(y
κ
j ),

SKIPDEL_MID(i+ 3, j)

+ cκdel(x
κ
i ) + cκskip_del(x

κ
i+1) + cκskip_del(x

κ
i+2),

SKIPDEL_END(i, j)}
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x̄\ȳ b a a y y y a e

c 4.8 5.2 5.3 5.2 4.5 3.8 4.2 3.8
a 4.5 3.8 4.2 4.9 4.2 3.5 2.8 3.4
z 4.8 4.7 4.8 4.2 3.9 3.3 3.4 3.0
z 4.1 4.0 4.5 3.8 3.2 2.9 3.0 2.6
z 3.4 3.3 3.7 3.5 2.8 2.2 2.6 2.2
a 3.1 2.4 2.3 3.2 2.5 1.8 1.2 1.8
a 3.5 2.8 2.4 2.9 2.2 1.5 0.8 1.4
d 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0

Table B.4: The dynamic programming table for the nonterminal symbol INS.
Cells that are part of the optimal path are highlighted. We separated parts of
the table with extra spacing that are calculated using different equations. The
equations are listed in the text.

The equation for the cells {(i, j)|M − 3 < i < M ∧ j ≤ N − 3} can be
translated accordingly:

ALI(i, j) = min{ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j ), (B.29)

DEL(i+ 1, j) + cκdel(x
κ
i ),

INS(i, j + 1) + cκins(y
κ
j ),

SKIPINS_MID(i, j + 3)

+ cκins(y
κ
j ) + cκskip_ins(y

κ
j+1) + cκskip_ins(y

κ
j+2),

SKIPDEL_END(i, j)}

Finally we can calculate the last region of the table, namely the cells
{(i, j)|i ≤M − 3 ∧ j ≤ N − 3} where all operations are allowed:

ALI(i, j) = min{ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j ), (B.30)

DEL(i+ 1, j) + cκdel(x
κ
i ),

INS(i, j + 1) + cκins(y
κ
j ),

SKIPDEL_MID(i+ 3, j)

+ cκdel(x
κ
i ) + cκskip_del(x

κ
i+1) + cκskip_del(x

κ
i+2),

SKIPINS_MID(i, j + 3)

+ cκins(y
κ
j ) + cκskip_ins(y

κ
j+1) + cκskip_ins(y

κ
j+2),

SKIPDEL_END(i, j)}

The table for our example input is shown in Table B.3 on page 116.

B.4 INS
The production rules for INS are:
INS = in s (<EMPTY , NODE>, INS) |

rep(<NODE , NODE>, ALI) ;
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x̄\ȳ b a a y y y a e

c 4.8 4.5 4.9 5.2 4.5 3.8 3.5 3.8
a 4.5 3.8 4.2 4.9 4.2 3.5 2.8 3.4
z 4.8 4.5 4.4 4.2 3.9 3.3 3.3 3.0
z 4.1 3.8 3.7 3.8 3.2 2.9 2.6 2.6
z 3.4 3.1 3.0 3.5 2.8 2.2 1.9 2.2
a 3.1 2.4 2.3 3.2 2.5 1.8 1.2 1.8
a 3.5 2.8 2.4 2.9 2.2 1.5 0.8 1.4

d 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0

Table B.5: The dynamic programming table for the nonterminal symbol DEL.
Cells that are part of the optimal path are highlighted. We separated parts of
the table with extra spacing that are calculated using different equations. The
equations are listed in the text.

As no operations are possible in the last row and column, these cells remain
unused. In the next column replacements are possible. For all i < M all
operations in the production rules are possible. Thus we obtain:

INS(M, j) =ALI(M + 1, j + 1) + cκrep(xκM , y
κ
j ) (B.31)

INS(i, j) = min{INS(i, j + 1) + cκins(y
κ
j ), (B.32)

ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j )}

The table for our example input is shown in Table B.4 on the preceding page.

B.5 DEL
The production rules for DEL are:
DEL = de l (<NODE , EMPTY>, DEL) |

i n s (<EMPTY , NODE>, INS) |
rep(<NODE , NODE>, ALI) ;

Taking possible operations into account we obtain the following equations:

DEL(M,N) =ALI(M + 1, N + 1) + cκrep(xκM , y
κ
N) (B.33)

DEL(M, j) = min{INS(M, j + 1) + cκins(y
κ
j ), (B.34)

ALI(M + 1, j + 1) + cκrep(xκM , y
κ
j )}

DEL(i, N) = min{DEL(i+ 1, N) + cκdel(x
κ
i ), (B.35)

ALI(i+ 1, N + 1) + cκrep(xκi , y
κ
N)}

DEL(i, j) = min{DEL(i+ 1, j) + cκdel(x
κ
i ), (B.36)

INS(i, j + 1) + cκins(y
κ
j ),

ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j )}

The latter equation holds for all cells in {(i, j)|i < M ∧ j < N}. The table for
our example input is shown in Table B.5.
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x̄\ȳ b a a y y y a e

c 4.8 5.2 5.0 4.6 4.2 3.8 4.2 3.8
a 4.2 3.8 4.2 4.0 3.6 3.2 2.8 3.4
z 4.8 4.7 4.5 4.1 3.7 3.3 3.4 3.0
z 4.1 4.0 4.0 3.6 3.2 2.9 3.0 2.6
z 3.4 3.3 3.4 3.0 2.6 2.2 2.6 2.2
a 2.8 2.4 2.3 2.4 2.0 1.6 1.2 1.8
a 3.2 2.8 2.4 2.0 1.6 1.2 0.8 1.4
d 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0

Table B.6: The dynamic programming table for the nonterminal symbol SKIP-
INS_MID. Cells that are part of the optimal path are highlighted. We sepa-
rated parts of the table with extra spacing that are calculated using different
equations. The equations are listed in the text.

B.6 SKIPINS_MID
The production rules for SKIPINS_MID are:
SKIPINS_MID = skip_ins(<EMPTY , NODE>, SKIPINS_MID) |

rep(<NODE , NODE>,ALI) ;

Taking possible operations into account we obtain the following equations:

SKIPINS_MID(i, N) = (B.37)
ALI(i+ 1, N + 1) + cκrep(xκi , y

κ
N)

SKIPINS_MID(i, j) = min{ (B.38)
SKIPINS_MID(i, j + 1) + cκskip_ins(y

κ
j ),

ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j )}

The latter equation holds for all cells in {(i, j)|i ≤M ∧ j < N}. The table for
our example input is shown in Table B.6.

B.7 SKIPDEL_MID
The production rules for SKIPDEL_MID are:
SKIPDEL_MID = skip_del (<NODE , EMPTY>, SKIPDEL_MID) |

rep(<NODE , NODE>,ALI) ;

Taking possible operations into account we obtain the following equations:

SKIPDEL_MID(M, j) = (B.39)
ALI(M + 1, j + 1) + cκrep(xκM , y

κ
j )

SKIPDEL_MID(i, j) = min{ (B.40)
SKIPDEL_MID(i+ 1, j) + cκskip_del(x

κ
i ),

ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j )}
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x̄\ȳ b a a y y y a e

c 4.8 4.2 4.3 5.0 4.4 3.8 3.2 3.8
a 4.6 3.8 3.9 4.6 4.0 3.4 2.8 3.4
z 4.2 3.6 3.5 4.2 3.6 3.0 2.4 3.0
z 3.8 3.2 3.1 3.8 3.2 2.6 2.0 2.6
z 3.4 2.8 2.7 3.5 2.8 2.2 1.6 2.2
a 3.8 2.4 2.3 3.2 2.5 1.8 1.2 1.8
a 4.2 2.8 2.4 3.0 2.6 2.2 0.8 1.4

d 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0

Table B.7: The dynamic programming table for the nonterminal symbol
SKIPDEL_MID. Cells that are part of the optimal path are highlighted. We
separated parts of the table with extra spacing that are calculated using dif-
ferent equations. The equations are listed in the text.

x̄\ȳ b a a y y y a e -

c 4.8 5.2 5.0 4.6 4.2 3.8 4.2 3.8
a 4.2 3.8 4.2 4.0 3.6 3.2 2.8 3.4
z 4.8 4.7 4.5 4.1 3.7 3.3 3.4 3.0
z 4.1 4.0 4.1 3.7 3.3 2.9 3.0 2.6
z 4.2 3.8 3.4 3.0 2.6 2.2 2.6 2.2
a 2.8 2.4 2.3 2.4 2.0 1.6 1.2 1.8
a 3.2 2.8 2.4 2.0 1.6 1.2 0.8 1.4
d 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0

- 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

Table B.8: The dynamic programming table for the nonterminal symbol SKIP-
INS_START. Cells that are part of the optimal path are highlighted. We sep-
arated parts of the table with extra spacing that are calculated using different
equations. The equations are listed in the text.

The latter equation holds for all cells in {(i, j)|i < M ∧ j ≤ N}. The table for
our example input is shown in Table B.7.

B.8 SKIPINS_START

The production rules for SKIPINS_START are:

SKIPINS_START = skip_ins(<EMPTY , NODE>, SKIPINS_START) |
rep(<NODE , NODE>, ALI) |
n i l (<EMPTY , EMPTY>) ;
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x̄\ȳ b a a y y y a e -

c 4.6 4.2 4.3 4.4 4.0 3.6 3.2 3.6 3.2
a 4.2 3.8 3.9 4.0 3.6 3.2 2.8 3.2 2.8
z 4.0 3.6 3.5 3.6 3.2 2.8 2.4 2.8 2.4
z 3.6 3.2 3.1 3.2 2.8 2.4 2.0 2.4 2.0
z 3.2 2.8 2.7 2.8 2.4 2.0 1.6 2.0 1.6
a 2.8 2.4 2.3 2.4 2.0 1.6 1.2 1.6 1.2
a 3.2 2.8 2.4 2.0 1.6 1.2 0.8 1.2 0.8
d 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4

- 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0

Table B.9: The dynamic programming table for the nonterminal symbol
SKIPDEL_START. Cells that are part of the optimal path are highlighted.
We separated parts of the table with extra spacing that are calculated using
different equations. The equations are listed in the text.

Taking possible operations into account we obtain the following equations:

SKIPINS_START(M + 1, N + 1) = 0 (B.41)
SKIPINS_START(M + 1, j) = (B.42)

SKIPINS_START(M + 1, j + 1) + cκskip_ins(y
κ
j )

SKIPINS_START(i, N) = (B.43)
ALI(i+ 1, N + 1) + cκrep(xκi , y

κ
N)}

SKIPINS_START(i, j) = min{ (B.44)
SKIPINS_START(i, j + 1) + cκskip_ins(y

κ
j ),

ALI(i+ 1, j + 1) + cκrep(xκi , y
κ
j )}

where

• Equation B.42 holds for all cells in {(M + 1, j)|j ≤ N},

• Equation B.43 holds for all cells in {(i, N)|i ≤M} and

• Equation B.44 holds for all cells in {((i, j)|i ≤M ∧ j < N},

The table for our example input is shown in Table B.8 on the previous page.

B.9 SKIPDEL_START

The production rules for SKIPDEL_START are:

SKIPDEL_START = skip_del(<NODE , EMPTY>, SKIPDEL_START) |
SKIPINS_START;
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SKIPDEL_START(M + 1, j) = (B.45)
SKIPINS_START(M + 1, j)

SKIPDEL_START(i, N + 1) = (B.46)
SKIPDEL_START(i+ 1, N + 1) + cκskip_del(x

κ
i )

SKIPDEL_START(i, j) = min{ (B.47)
SKIPDEL_START(i+ 1, j) + cκskip_del(x

κ
i ),

SKIPINS_START(i, j)}

where

• Equation B.45 holds for all cells in {(M + 1, j)|j ≤ N + 1},

• Equation B.46 holds for all cells in {(i, N + 1)|i ≤M} and

• Equation B.47 holds for all cells in {((i, j)|i ≤M ∧ j ≤ N},

The table for our example input is shown in Table B.9 on the facing page.

Example Result

We find the optimum alignment distance according to GAffine in the cell

SKIPDEL_START(1, 1) = 4.6

The optimum tree can be constructed via backtracing. We highlighted the
optimum backtrace in all previous tables. The tree is visualized in Figure B.1
on the next page.
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skip_del

’c’ skip_ins

rep

’a’ del

’z’ skip_del

’z’ skip_del

’z’ rep

’a’ ins

skip_ins

skip_ins

rep

’a’ skip_del

’d’ skip_ins

nil ’e’

’a’

’y’

’y’

’y’

’a’

’a’

’b’

Figure B.1: The optimum tree for an Affine Alignment of the input se-
quences x̄ = cazzzaad and ȳ = baayyyae using the comparator function
cκskip_ins(b) = cκskip_del(a) = 0.4, cκins(b) = cκdel(a) = 0.7, cκrep(a, b) = 1 (for
a 6= b) and cκrep(a, b) = 0 (for a = b). As choice function we used min.
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