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Abstract 

This paper describes an approach to predict non-verbal cues from 

speech-related features. Our previous investigations of 

audiovisual speech showed that there are strong correlations 

between the two modalities. In this work we developed two 

models using different kinds of Recurrent Artificial Neural 

Networks: Elman and NARX, to predict parameters of activity 

for head motion using linguistic and prosodic inputs, and 

compared their performance. Prosodic inputs included F0 and 

intensity, while linguistic parameters included the former plus 

additional information such as the type of syllables, phrases, and 

different relations between them. Using speaker specific models 

for six subjects, performance measures in terms of root mean 

square error (RMSE) showed that there are significant 

differences between the models with respect to the input 

parameters, and that NARX network outperformed the Elman 

network on the prediction task. 

Index Terms: predicting head motion, audiovisual speech, time-

delayed NARX, Elman NN, linguistic vs. prosodic features 

1. Introduction 

Today the use of talking heads has become more common, they 

can be found for example in advertising, computer games or 

systems for learning languages. However, the goal of developing 

a realistic-looking talking head is still a major challenge. 

Different areas of research have focused on the synthesis of 

visual speech, and several approaches to synthesize gestures, 

head or facial motion can be found. Busso & Deng used Hidden 

Markov Models (HMM) to synthesize head motion in which 

each model represents an emotional state [1]. Cosker, et.al. used 

HMMs to estimate lip motion directly from  the  acoustic 

waveform [2]. Massaro, et al. trained an artificial neural network 

to map the cepstral coefficients of natural speech to the control 

parameters of an animated synthetic talking head [7]. As in that 

case, most of the methods are based on acoustic parameters such 

as the MFCC. According to what we know there exist only 

several studies which use linguistic parameters such as the type 

of syllable, phrase boundaries or the position of the syllable to 

predict head and facial gestures. 

The ultimate goal of this work is to predict head motion during 

speech. In an earlier related study [9] authors analyzed the 

kinematic–acoustic relationship between head motion and 

fundamental frequency (F0) for two speakers, generating a 

regression model, used to animate a natural-looking talking head. 

Hofer, et al. proposed an HMM-based system to predict head 

motion from speech, and found a strong influence of F0 on the 

prediction model [3]. 

In previous work we analyzed audiovisual data to find significant 

parameters relating acoustic and linguistic information with head 

movements and facial gestures [5][6]. In the current study we 

apply some of the previous findings to develop a system 

predicting head motion from speech. 

The paper is structured as follows: Section 2 gives an overview 

of previous work on the analysis of an audiovisual speech corpus 

and presents major findings. Section 3 describes the proposed 

prediction models. Discussion and conclusion are found in 

section 4.  

2. Previous Work 

In previous work we presented the development of an 

audiovisual speech corpus of spontaneous speech produced by 

seven native speakers of German [5], and a data analysis of its 

contents [6]. The analysis was performed on acoustic and visual 

data separately before we looked at the relationship between 

them. For the visual channel we recorded the video and the 

motion of 43 facial markers captured with a Qualisys motion 

capture system.  

2.1. Acoustic Analysis 

The acoustic data for each speaker was segmented at the syllable 

level and the accented syllable, as well as phrases, and phrase 

boundaries were marked. We calculated the duration means and 

standard deviations for all types of syllables and phrases. The 

syllables were subdivided into different classes depending on 

their position and degree of prominence. We also extracted the 

F0 and intensity contours from the speech signal and segmented 

the utterances into so-called accented and unaccented sequences. 

Accented sequences contain accented syllables and their left and 

right neighbors, unaccented sequences the remaining syllables. 

The minimum, maximum, and range of F0 and intensity were 

then computed within these sequences. 

As expected the acoustic results showed that the syllable 

duration increases when speakers accent syllables. We also 

found that the proximity of an unaccented syllable to an accented 

syllable influences the duration of the former. It was also 

observed that the duration of a syllable is correlated with 

parameters such as the maximum, minimum, and range of F0 

and intensity.  



2.2. Visual Analysis 

Initially we classified the visual data by identifying perceptible 

motion in the video. We then computed the mean, standard 

deviation, and the frequencies of the different motion classes. 

The analysis of the motion capture data was done using principal 

component analysis (PCA), in which we concentrated on head 

motion. We calculated the three most relevant PCs representing 

rigid head motion for each speaker, with an explained variance 

between 86% - 95%. Furthermore, correlations between the PCs 

and the translational and rotational movements were determined. 

We then calculated the maximum, minimum, and range of the 

PCs. As with the acoustic analysis, we used the accented and 

unaccented sequences as references, thereby imposing the same 

conditions and allowing for an alignment between the prosodic 

and visual features.    

2.3. Audiovisual Results 

We noted that the syllable duration has a strong correlation with 

the maximum, minimum, and range of the PCs. The syllable 

duration therefore seems to be an indicator of perceptual 

prominence. The results of the acoustic analysis show that the 

syllable duration is dependent on the type of syllable. An 

accented syllable exhibits longer duration than an unaccented 

syllable. However, the position of a syllable is also important. 

Approximately 22% of all the motion begins during the 

unaccented syllable before an accented syllable, and 

approximately 29% of their movements end during the 

unaccented syllable following an accented syllable. These 

findings are very important and indicate that examining accented 

syllables only is insufficient. 

Using the ranges of F0 and intensity of the accented and 

unaccented sequences we were able to analyze the connection 

between these features and the visual cues within these 

sequences. Our results indicate that F0 is strongly correlated with 

the speaker’s degree of activity. It turns out that the ranges of the 

PCs for each speaker were significantly higher on accented than 

on unaccented sequences.    

We found strong correlations between the prosodic features of 

F0 and intensity and head movements. Therefore we can assume 

that there exists some kind of alignment between the two 

modalities which we aim to exploit in the development of the 

prediction model discussed in the remainder of this article. 

3. Model 

Due to the differences in the motion data as well as the use of 

prosody between speakers we developed specific prediction 

models for each one of them. Because of the dynamic nature of 

the acoustic data we used recurrent neural networks (NN) to take 

into account the temporal context during the prediction task. 

Furthermore, we aimed to examine the benefits of including 

linguistic parameters in the prediction model, given that the cost 

of hand-labeling the linguistic structure is very high. 

We therefore evaluated the predictions of head motion using two 

sets of inputs. The input of the first model includes both, 

segmentation-based linguistic and raw prosodic information, 

whereas the second model just contains frame-wise raw prosodic 

features. Then we compared the RMSE of the outputs and 

interpreted those errors to infer the relative influence of the input 

parameters on the prediction accuracy. Table 1 summarizes the 

parameters used as input for the artificial neural networks.  

The dataset of each speaker was split into three subsets: training 

(70%of data), validation (15% of data) and test. On average 

these are about 2490 training samples for training, 534 samples 

for validation, and 534 samples for testing for each speaker. The 

activity of the speaker movements was defined by the differences 

of the principal components calculated: ∆PC1, ∆PC2 and ∆PC3. 

These are the parameters to be predicted. The frame rate was set 

to 60Hz. 

Table 1: Input parameters of the network. 

raw prosodic input 

F0 normalized F0 

INT normalized intensity 

linguistic/segmentation-based input 

SD normalized syllable duration 

SP position of the syllable within a phrase 

4 = one word phrases e.g. breaks 

3 = last syllable 

2 = syllables between first and last 

1 = first syllable 

BND boundary of the phrase, only the last 

syllable is marked with a value 

4 = intonation phrase 

3 = intermediate phrase 

2 = breaks/hesitations 

0 = if the syllable is not the last one 

PH type of the phrase 

4 =continuous phrase 

3 = declarative phrase 

2 = breaks/hesitation 

1 = interrogative phrase 

ACC type of syllable 

1 = accented syllable 

0.5= unaccented before or after 

unaccented syllable 

0 = unaccented syllable 

 

In the preprocessing step we used min-max normalization on the 

input data. As mentioned, we used root mean square error 

(RMSE) to evaluate the network's performance [equation 1]: 
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Where o are the predicted outputs, and t the target values, N is 

the number of samples and M the number of components in the 

output and target vectors. 

3.1. Elman NN 

The first approach used Elman NN which were trained with 

linguistic and prosodic input parameters, generating two models: 

the Elman linguistic neural network (ELNN), and the Elman 

prosodic neural network (EPNN).ELNN uses seven input nodes, 

six hidden nodes in a single hidden layer, three output nodes and 

six context nodes belonging to each hidden node to map the 

previous output, as shown in Figure 1. 



The EPNN architecture differs from ELNN just in the number of 

inputs, in this case two instead of six. To train the network we 

used the standard backpropagation algorithm with a learning rate 

of 0.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ELNN architecture with seven input, six hidden, six 

context and three output units

 

The speaker-dependent trained network differs with respect to 

the threshold, that is, the upper fire threshold

context nodes was the maximum observed ∆PC

and for each output node we set the maximum value of their 

observed ∆PCs. The maximum of the ∆PC

for the ranges where we annotated head motion

outputs of the neural networks are limited to

Table 2 shows the resulting RMSE for the ELNNs and Table 3 

the resulting RMSE for EPNNs. The results 

average performance of the EPNN (RMSE 

better than of the ELNN (RMSE 0.1848). 

Table 2: Test RMSE of the three output units and average for the 

ELNN model 

Speaker ∆PC1 ∆PC2 ∆PC

1 0.0423 0.0654 0.0504

2 0.0716 0.1490 0.1348

4 0.1400 0.0933 0.1093

5 0.1087 0.1307 0.0775

6 0.1444 0.1643 0.0791

7 0.0851 0.1047 0.1107

 

Table 3: Test RMSE of the three output units and average for the 

EPNN model 

Speaker ∆PC1 ∆PC2 ∆PC

1 0.0428 0.0663 0.0488

2 0.0478 0.0471 0.0827

4 0.0392 0.0467 0.0607

5 0.0451 0.0486 0.0547

6 0.0393 0.0444 0.0422

7 0.0613 0.0561 0.0530

Figure 2 displays an example of prediction

our speakers. The solid line indicates the 

dotted line the estimation of the test data with a 

network and the dashed line a prediction of a

iffers from ELNN just in the number of 
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algorithm with a learning rate 
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Figure 2: Diagram with normalized ∆PC2 predicted output 

of the ELNN (dotted line) and EPNN (dashed line) networks 

with test data of one of our

the observed ∆PC2.

3.2. NARX NN 

We also trained speaker-dependent prediction models based on 

nonlinear autoregressive models with exogenous inputs (NARX) 

recurrent neural network[8].Unlike other recurrent neural 

network models, NARX architectures have limited feedback 

coming only from the output neuron rather than from hidden 

neurons. Figure 3 displays the architecture of a NARX ANN.

 

Figure 3: Architecture of a NARX Neural Networ

These networks have equal computing power than conventional 

recurrent networks, and in practice 

gradient-descent learning can be more effective in NARX 

networks than in other recurrent architectures with "hidden 

states" [4]. As for the Elman Networks

using linguistic information as inputs (NARXL) and 

just using raw prosodic feature

on average contained six hidden neurons for NARXL and 
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are sections of varying prediction 

Both networks show satisfactory 

between the time of 55.2 and 55.3 seconds, 

however, the prediction of the EPNN match more often with the 

data as can been seen between time 55.5 and 55.6 

Diagram with normalized ∆PC2 predicted output 

and EPNN (dashed line) networks 

one of our speaker. The solid line indicates 

the observed ∆PC2. 

dependent prediction models based on 

nonlinear autoregressive models with exogenous inputs (NARX) 

8].Unlike other recurrent neural 

network models, NARX architectures have limited feedback 

coming only from the output neuron rather than from hidden 

the architecture of a NARX ANN. 

 

Architecture of a NARX Neural Network. 

These networks have equal computing power than conventional 

recurrent networks, and in practice it has been reported that 

descent learning can be more effective in NARX 

networks than in other recurrent architectures with "hidden 

Elman Networks, we constructed a model 

linguistic information as inputs (NARXL) and another one 

features (NARXP). The best architecture 

hidden neurons for NARXL and five 

ARXP, with two delay units both for inputs 

Tables 4 and 5 summarize the results for the models 

constructed using NARX ANN.As with Elman Networks, on 

0.0523) outperforms NARXL (RMSE 

Time 



0.0531), but in this case the difference between the two is 

smaller. 

Table 4: Test RMSE of the three output units and average for the 

NARXL model 

Speaker ∆PC1 ∆PC2 ∆PC3 Mean 

1 0.0254 0.0325 0.0377 0.0559 

2 0.0203 0.0253 0.0460 0.0562 

4 0.0192 0.0355 0.0313 0.0510 

5 0.0123 0.0373 0.0476 0.0618 

6 0.0145 0.0214 0.0335 0.0423 

7 0.0356 0.0307 0.0221 0.0520 

 

Table 5: Test RMSE of the three output units and average for the 

NARXP model 

Speaker ∆PC1 ∆PC2 ∆PC3 Mean 

1 0.0228 0.0288 0.0371 0.0522 

2 0.0177 0.0216 0.0450 0.0530 

4 0.0190 0.0347 0.0293 0.0492 

5 0.0132 0.0387 0.0500 0.0646 

6 0.0142 0.0212 0.0330 0.0417 

7 0.0366 0.0311 0.0223 0.0530 

4. Discussion and Conclusions 

In this paper we evaluated two kinds of models to predict head 

motion from raw prosodic and segmentation-based features 

including linguistic information. The models were two types of 

recurrent artificial neural networks, Elman and NARX. 

Furthermore, we evaluated different input sets with each model, 

in one case we only used frame-wise F0 and intensity, and in the 

other case we added to these features hand-labeled linguistic 

features. 

We found that NARX networks outperformed Elman’s networks 

with the two types of input feature vectors. 

In addition we could not find benefits in terms of prediction 

accuracy using hand-labeled linguistic data. The mean RMSE of 

the ELNN networks was approximately twice as great as the 

mean RMSE of the EPNN networks, where as there was almost 

no difference in mean RMSE between the NARXL and NARXP. 

 

Given these results, there is obviously no reason to use linguistic 

features since their extraction requires a considerable amount of 

manual labeling. However, we argue that this is true when there 

is no silence during speech; however, during silent regions other 

types of information are required. In previous work we found 

that 5.4% of all head motion events occurred in pauses. With the 

prosodic inputs, the lack of F0 and intensity during pauses does 

not facilitate the prediction of motion. In those cases, some 

linguistic inputs like the type of the phrase boundary might be 

necessary to predict motion activity. One of the objectives of 

future work will be to solve the problem of motion prediction 

during silent intervals. 

Furthermore we plan to develop models from larger datasets, as 

well as construct speaker-independent models.  Finally, in the 

current study the outputs were given in terms of ∆PC, which 

represent a degree of activity in head motion. A further step will 

be the mapping from ∆PC to the type of annotated head motion. 
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