ELUCIDATION IN THE GARDEN OF EDEN

by Ipke Wachsmuth

We presuppose the terminology of Amoroso and Cooper [17.

The restriction of an array configuration ¢ to a finite
subset 3 of 72 will be called a pattern in the present paper.
A pattern may alternatively be defined as a partial function
from Z2 into A. Note that what we call patterns are "confi-
gurations" in the sense of Moore [2] anrd Myhill [3,47.

An array configuration ¢ is called completion of a pattern
(C)S iff (C)S = (C)S.

A pattern (c)S is said to be a Garden-of-Eden (GOE) patiern
iff there is no pattern (d)T (S < T) such that the states of
the cells of S are the regult of mapping the states of the
cells of T by the local transition function O (see [21).
(T has to be at leazst N{(3) because J refers to the neigh-
hors of each cell of S.)

What Moore [2]1 and Myhill [3) show is the following:

With respect to a given tesselation struciure, the existence
of mutually erasable patterns implies the existence of GOE
patterns (Moore); and the existence of GOE patterns implies
the existence of indistinguishable patterans (Myhill).

(The existence of mutually erasable patterns is equivalent

to the existence of indistinguishable patterns.)

Qur question is if it is possible to have a "global®'" Garden-—

of-Eden theorem stated in terms of (array) configurations

as claimed by Amoroso and Cooper [1]1, where an array configu-
ration ¢ is called a GOE configuration iff no array configu-

ration c! exists such that T(c') = c¢. (T is the global

trangition function determined by ©.)




In their paper [1], Amoroso and Cooper state a Garden-of-
Eden theorem for finmite configurations of which the converse
is not true. This is not an equivalent global theorem
corresponding to the (local) theorem stated in terms of
patterns as we will see later, yet 1% is possible to have

an equivalent global theorem stated in terms of finite

configurations.

In [5], Myhill claims that the Garden-of-Eden definition
appearing in his paper [3] is different to the definition
appearing in [23, and further he claims that in neither
interpretation, both Moore's theorem and its converse are
true. These statements are not correct. The following
discussion will elucidate the coanfusion that has arisen

in the Garden of ¥den.

Moore [1] requires the tesselation to be such that a
quiescent gymbol ig specified, but the prcof of his Garden-
of-Eden theorem ig independent of such an assumption as well
as the proof of the converse (see [41); that is because these
proofs depend on combinabtorial considerations, and nowhere

a special property of states is referred 1o 1).

Lemma 1 : A pattern is GOE iff for all configurations d :

(T(a))g # (c)g

Proof: Suppose (C)S is a GOE pattern and there is a con-
figuration d such that (Tj(d))s = (o)S .

Then obviously (O)S is obtained by mapping the states
of the cells of (d)N(S) by © . Hence (C)S is not GOE

which is a contradiction.

?) 30 for the Garden-of-Bden theorem it is not a necessary
assumption to have at time t=0 all but a finite number of

cells in the guiescent state.



On the other hand, suppose (“CK@))S # (O)S for all 4
and (c)S not GOE. That means, there exzists a pattern
(d)T {(S<C T) which gives rise to (c)S. Define a con-

figuration d such that ' ,
1(8) = {dm) BeN(S) (3 e2°)
e(B) otherwise
where e is any configuration. Then (Tf(ﬁ))g = {e)g

which gives & contradiction.

In the following, the set of all configurations of a
tesselation shall be denoted by fi.

Lemma 2 : A configuration c is an element of T(¥) iff
for all finite subsets T of 72 there exigls a

configuration d such that (?f(d))T = (c)T.

Proof: Let ¢ be an element of "C((ﬂ). That means, there
exists a configuration 4 such that T(4) = ¢ and thus
(ﬁ?(d))T = (c)T for all subsets T of %°.

Conversely we define subsetbs Tn of Z2:
T ;= {B,] for some B,e Z°

0 ' oy ! o

nel O N(Tn)

The T, (n<¢N) are well-ordered on 72 with respect to

the inclusion. We suppose without loss of generality 2)
3D
i - , . 2
kJ in = I
n= o0

We wish to show that there axists & simulfanecoug d

 oh .
for whic ( L(d))T - (C)T
n n

nolds for all (finite) sets T,, and T (d) = c.

2) There are neighborhood templates which are not subject to
this assumption. In this case, we define dummy neighbors in
the way that the completed local transition function aciually
depends on the original neighbors. So the same proof holds

for more general neighborhoods.



0.  The assignment of states fto the finite number of cells
of TO at time t+ 1 is deterained by the assignment to

the cells of N(TO) = T, atb time t.

T1 ig finite, and so is the alphabet of available states,

A, From this it follows that there are only finitely

many patterns (d)T such that for any completion d
il

(T{a)) = (c)
T, Ty
holds, in the maximum case as many as there are different
cassignments to T1, and at least one according to the

assumpiion.

1. TFor each of these finitely many patterns there are only

finitely many continuing patterns (3')T such that for any

L = p

completion d , — iy - -
{ k(d))T1 = (C)T1

because of the above-mentioned argument.

This argument can be given for all n. In this way, an
infinite but locally finite tree is obtained. By the
Infinity lemma of Kinig (see [71), there exists an
infinite path in this tree, i.e. a simultaneous d

such that T(d) = ¢,

Using Lemma 2 we derive the following theorems:

Theorenm 1 :

With respect to a given tesselation siructure,
there exist GOE patterns iff ©NT(€) # .
Proof: (the contrapositions are proved)
—1:3(C)S GOE pattern
is equivalient to
Vs rinite V(c)y da (ael & (T(a))g = (c)g)

This follows from Lemna i and is because of Lemma 2

equivalent to
Ve (ce€ => Hda (aet & T(A) = ¢))
which means ﬁf\?f(fi) = Q6



For tesselations with a guiescent symbol O specified,
the set of all finite configurations shall be denoted by ..

Theorem 2 :

With respect to an arbitrary tesselation structure

for which a guiescent symbhol is specified:
Cat) # @ i (o T(O 4 @
Proof: Tet c &_tﬁ‘(ﬂ(tﬁ). Then from Lemna 2 follows:
AT finite Vael (T(a))g # (e)y
Define ¢ such that (c(p) B eN(T)

8(8) = | (8 e7)
6] otherwise

Then ¢C &\tf and (E)T = (C)T. Hence ¢ ¢ ﬁ&?\’f(fi).

The converse 1lg obhvious.

Because of Theorem i and Theorem 2 we can say:

An array configuration is GOE in the sense of Moore and
Myh1ll if it has no predecessor, whether finite or not.

We can transmit the term "mutually erasable" to configu-
rations in a canonical matter:

; . . . , £

Two distinct configurations ¢, d«( are called mutually
erasable configurations 1ff there is a finite sunhset T of 72
such that

2

(e)y2 wanes)) = (g2 wen(s))

and (C)N(N(S)), (d)N(N(S)) are mutually erasable.

Lemma 3 : The following statements are egquivalent:

There exist mutually erasable patterns,
There exist mutually erasable configurations.
There exist mutually erasable finite configurations.

Proof: Let (C)N(N(S)), <d)N(N(S)) be two mutually erasable



patterns. We define configurations ¢, d such that

fe(B) Beu(N(s)) I(g) = [4(8) Ben(s))

c{3)
te(B) otherwise e{B) otherwise

where e is an arbitrary (finite or infinite) configuration.
From this construction it immediately follows that ¢, d
are mutually erasable configurations; they are finite if

e is finite.

The existence of (finite or infinite) mutually erasable
configurations implies the existence of mutually erasable
paﬁterns, as follows from the definition.

It is easy to see that mutually erasable configurations
exist iff T., the restriction of T %o Lf

is not injective.

Now we are able to formulate a "global" Garden-of-Eden

theorem:

Tneorem 3 :
in & given tesselation structure there exist (finite
. Lo e T i
or infinite) GOE configurations, i.e. O ~C(C) # v
iff (finite or infinite) mutually erasable

configurations exist.

Corollary:

In a given tesselation structure the existence of

(finite) mutually erasable configurations implies:
CoNTe(le) £ @

{The proof follows from Theorem 3, Theorem 2, and the fact
that TNt (0) € CpNTe(Tp) )

The converse of this theorem is not true as shown by

Amoroso and Cooper [11. 5o this theorem is not an equivalent

Tformulation of the Garden-~-of-Eden theoremn.



We now proceed to establish an equivalent Garden-of-Eden

theorem stated in terms of finite configurations.

A finite configuration is called strongly GOE iff
2

45 ¢72% such that

(i) o finite

(11) supple) ¢S
] fc{r) Bes

i e ¥ . et - ( ; s Gla) =
(111? Vele Cvf' c‘.CLf \k_f(ﬁ,f) where C{3) 10'(8) othen_
wise
Let GS ne the set of all strongly GOE configurations

of a tesselation structure (see [6]1).

The set G ' shall be defined just like G, but the condition
(iii) shall be substituted by
c{B) 8e8S

!

(iii) t/c‘e{%ff: chfff \Tf(fi) where E(B)::{C (8) oftherwise
Lemma 4 : (C)S pattern:

Va (aely=> (Tpa))g # (o)g) «=

Va (@ =5 (T(a))g # (e)g)

Proof: Suppose
Define d such that ‘ .
T(p) = {d(ﬁ) Be N(S)

0 otherwise

Then we have
= e o e (T e (T (T = (= =
Tet€,a (T.@)g = (T@)g = (T(@)g = (e)g
which gives a2 contradiction.

The converse is obhvious.

'
5]

Lemma 5 : GS = G

Proof: (GSgLGS') Let ¢ be an element of G, . That means,

there exists a subset 5 of %° such that (i), (:1), (ii1i) holds.



Let (c)S be the regtriction of ¢ to 5. The condition (iii)
1is then equivalent to:

V¢ (¢ finite completion of (C)S = Ecifif \Tff fif))
This implies

Va (@ e, = (Told))g # (e)g)

and 5
Va (g et == (Tf(d))s # (C)S)

This follcows from Lemma 4 and implies

Ve (G finite completion of (C)S =7 Eérc'f\'tj(%i))

Vere Cpr 3eC AT (€) wnere
S(8) = {C(B) pen (111)

c'(B) otherwise

We conclude

c(B) Bes
] ] 1 = =
cqw.GS where 01(5) 0 otherwise
suppflc) < S (ii) and thus ¢, = ¢. Hence ceGy".

Gyt Gyt obvious.

Lemma 6 : G,' = C;f\ ()

Proof: It is obvious that Gs'g;fff“\tj(ﬁi).

On the other hand, let o«iﬂ:f \‘E(%f). From Lemma 2 follows:

772, T finite :

vael 4 Be T T (a)(By) # o(B,)

Choose S« %° such that T¢ 3 and N(supple))« 5.
We infer immediately:
_je(B) BéS

'VC'ngif: Ee:ﬁff‘\"f(ff) where c{) =
- c'(B) otherwise

Hence ¢ GS'.

We conclude:
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Theorem 4 : (Garden-of-TBden theorem for finite configurations)

For a given tesselation structure, the existence of
finite mutually erasable configurations is necessary
and sufficient for the existence of strongly GOE

configurations.
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