EVENT-BASED STREAM CLASSIFICATION
FRAMEWORK

A SUPERVISED CLUSTERING APPROACH FOR
SOCIAL MEDIA APPLICATIONS

DISSERTATION

by
Timo REUTER

on
4% February 2015

Gedruckt auf alterungshestandigem Papier nach 1SO 9706

Universitat Bielefeld

Technische Fakultat

Event-based Stream Classification Framework
A Supervised Clustering Approach for Social Media Applications

Dissertation

zur Erlangung des Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Timo REUTER

1. Gutachter Prof. Dr. Philipp CIMIANO

Technische Fakultat
Universitat Bielefeld

2. Gutachter ~ Prof. Dr. Dr. Lars SCHMIDT-THIEME

Wirtschaftsinformatik und Maschinelles Lernen
Universitat Hildesheim

PriifungsausschuB8 ~ Prof. Dr. Barbara HAMMER
Dr.-Ing. Sebastian WREDE

Bielefeld, Februar 2015

Dédié a mes grands-parents

Abstract

Events play a very prominent role in our lifes. Therefore many social media documents describe
or are related to some event. However, it is difficult for a human to gather relevant information
without any structure in these documents. The organization of social media documents with
respect to events thus seems to be a promising approach to better manage and organize the ever-
increasing amount of content that is shared using social media applications. It is a challenge
to automatize this process so that incoming documents can be assigned to their corresponding
event without any user intervention.

In this dissertation we present an event-based stream classification framework that is able to
classify a never-ending stream of social media data into a growing and evolving set of events.
By doing this, we successfully perform the assignment of a social media item newly uploaded
to some social media site to its corresponding event (if it already exists) or create a new event
to which future data items can be assigned. We refer to this problem as the event detection
problem and propose to use machine learning techniques to tackle it.

We successfully address several key challenges that arise in this context: i) handling the data in
a stream-based setting, i.e. addressing the challenges arising from the need to process a never-
ending stream of data, ii) scaling to the data sizes and rates usually encountered in social media
applications, and iii) tackling the new event detection problem, i.e. the problem of determining
whether an incoming data item belongs to a new or to an already known event.

We address these challenges through a classification approach allowing us to process the data in
one single pass. Furthermore, we include a suitable candidate event retrieval step which retrieves
a set of event candidates that the incoming data point is likely to belong to and we include a
function trained using machine learning techniques that determines whether the incoming data
point belongs to the top-scored candidate or rather to a new event. The performance of our
system is maximized using different optimization strategies so that it outperforms many other
state-of-the-art approaches.

Further, we extend our framework so that it can be used in a multi-pass setting. Using this
approach we show that we can improve the quality of the clustering significantly in comparison to
the single-pass approach, while also lowering the computational time by one order of magnitude.
We show that this extension can be used in a stream-based setting while reaching the quality
of a computationally very expensive offline clustering algorithm.

We prove that our highly efficient approach is capable of successfully clustering a real-world and
non-toy dataset by introducing a new dataset consisting of user-contributed images together
with associated metadata describing the events they depict. The dataset was already published

earlier and is well known in the community. Our single-pass and multi-pass strategies reach an
F-measure score of 88.6 % and 93.9 %, respectively. In conclusion, we show that our framework
is not only capable of addressing the above mentioned challenging issues but also outperforms
other state-of-the-art approaches in terms of quality and scalability.

Acknowledgments

The work presented in this thesis was carried out in the Semantic Computing group, headed by
Prof. Dr. Philipp Cimiano, at the Faculty of Technology, Universitit Bielefeld. It was partially
supported by the Deutsche Forschungsgemeinschaft (DFG), Excellence Cluster 277 “Cognitive
Interaction Technology” (CITEC).

During my PhD, there were numerous people that gave me helpful comments, remarks, crit-
icisms, and encouragement. All this support helped me a lot and improved this dissertation
further. Therefore I would like to thank every single person for their valuable input.

Especially, I would like to thank my supervisor Philipp Cimiano. It was him, who believed in
me and gave me the chance to do this PhD. He had always put a lot of effort guiding me, and I
am more than thankful for the chance to benefit from this. He not only knew exactly when it
was necessary to push me back on the right path, but always was available when I had questions
or needed advice.

I also want to say thank you to my first collaborators from Universitét Hildesheim, Lars Schmidt-
Thieme, Krisztian Buza, and Lucas Drumond. It was a pleasure to collaborate with you and
your ideas and opinions definitively gave me valuable hints to bring my research forward.

Furthermore, I would like to thank Shlomo Geva for the great support during my research stay
at the Queensland University of Technology, Australia. He and Chris de Vries helped me a lot
to organize the MediaEval Social Event Detection challenge and gave me further ideas on my
work.

Special thanks go to my colleagues Christina Unger and Cord Wiljes from my working group for
the numerous hours they have spent to proof-read this thesis. I also want to thank Sebastian
Walter, Maximilian Panzner, Oliver Beyer, and all the others of my colleagues; you made my
journey so enjoyable and provided me with more than professional advice.

I also want to thank my family, especially my mother an father, who always believe in me. They
made all the achievements of my life possible by their unlimited support.

Last but not least, I also have to say thank you to my wife Jenny. She gave me the strength
and has been on my side during all these years. She contributed a lot and gifted me with her
patience for the uncountable number of hours I had to spend making this work possible.

Contents

I. Introduction 1
1. Introduction 3
1.1. Motivating Use Cases it 4
1.2. Goal and Challenges e 5
1.2.1. Clustering of Large Datasets 7

1.2.2. Clustering of Continuous Data Streams 8

1.2.3. Classifying of Concept Drifting Time Series Data 10

1.2.4. Noisy Data e 10

1.3. Research Contributions of this Dissertation 11
1.4. Structure and Outline of this Thesis 12

2. Fundamentals of This Work 15
2.1. From the Categorization Idea to Event Clustering: Definition and Development . 15
2.1.1. Categorization in Philosophy — The Classical View 16

2.1.2. Categorization in Cognitive Psychology — The Prototype View 16

2.1.3. Event Clustering Characterization 18

2.2. Characterization of an Event o oo oo 18
2.2.1. Event Definition in Philosophy 20

2.2.2. Event Definition in Cognition and Psychology 22

2.2.3. Events in Recent Literature of Machine Learning and Information Retrieval 24

2.2.4. Discussion and Definitiono o000 27

3. Foundations and Related Work 29
3.1. Classification 31
3.2. Clustering 32
3.3. Distance Functions L L 34
3.4. Knowledge-based Clustering 36
3.5. Large-scale Processing and Scalability 37
3.5.1. Task-based Techniques 37

3.5.2. Data-based Techniques Lo 38

3.5.3. Candidate Retrieval o 39

3.5.4. Stream Data 40

Contents

3.6. New Event Detection 41
3.6.1. Statistical Approaches 42
3.6.2. Unsupervised Approaches 42
3.6.3. Supervised Approaches L 43

3.7. Event Identification and Detection 44

4. Event Clustering Dataset 49

4.1. Creation and Collection of the Dataset 50
4.1.1. Fetching of Metadata 51
4.1.2. Fetching of Uploader Information 51
4.1.3. Fetching of Picture Files 52

4.2. Labeling of the Data — Creation of the Gold Standard 53
4.2.1. Usage of Social Event Calendars for Data Labeling 53
4.2.2. Fetching of Event Information from Upcoming and Last.fm 54
4.2.3. Labeling Process 54

4.3. Dataset Statistics L 56
4.3.1. Data Quality 57
4.3.2. License Constraints e 58
4.3.3. Data Point Distribution o 0oL 58
4.3.4. Dataset Representation Format and Schema 59

4.4. Applications of the Dataset 61
4.4.1. MediaEval 2013 61
4.4.2. Further Applications 61
4.4.3. Evaluation Proposal for Comparability 62

Il. Supervised Single-Pass Clustering with the Event-based Stream Classification Frame-
work 65
5. System Description of the Stream Classification Framework for a Single-Pass Setting 67

5.1. Problem Statement Lo 68

5.2. Overview of the Clustering Framework 70

5.3. Candidate Retrieval Strategies 72
5.3.1. Measurements for Performance and Effectiveness 72
5.3.2. Candidate Retrieval Strategies 73

5.4. Pairwise Feature Extraction oo 74
5.4.1. Temporal Features L 74
5.4.2. Geographical Features 76
5.4.3. Textual Features 77
5.4.4. Document-Event Similarity Vector 78

5.5. Scoring and Ranking — Learning Similarity Functions 78
5.5.1. Problem Formulation using a Support Vector Machine 79
5.5.2. Problem Formulation as a Decision Tree Classification Problem 81

5.6. New Event Detection 83

Vi

Contents

6. Experimental Setup and Results of the Supervised Single-Pass Classification 85
6.1. Definition of Evaluation Measures 85
6.2. Optimizing Candidate Retrieval 87

6.2.1. Experimental Settings o 87
6.2.2. Results 88
6.2.3. Conclusion 91
6.3. Learning Similarity Functionso 0oL 92
6.3.1. Experimental Settings oo 92
6.3.2. Results e 94
6.3.3. Conclusion 98
6.4. New Event Detection 99
6.4.1. Experimental Settings oL 99
6.4.2. Results 101
6.4.3. Conclusion 103
6.5. Framework as a Whole — Results and Comparison 104
6.5.1. Training and Optimization of the System Parts 104
6.5.2. Baselines 108
6.5.3. Overall System Performance. 109
6.6. Conclusions L 110

lll. Multi-pass Stream Clustering 113

7. System Description of the Stream Classification Framework for a Multi-Pass Setting 115
7.1. Problem Statement L Lo 117
7.2. System Overview o 118
7.3. Multi-pass Requirements and Challenges 119

7.3.1. Number of Passes 120
7.3.2. Influence on Framework Settings 120
7.4. Multi-pass Strategies L 121

8. Experimental Setup and Results of Supervised Multi-Pass Clustering 123
8.1. Analysis of First-Pass Strategies o . 123
8.2. Gold Standard Preparation for the Second Pass 125

8.2.1. Quality Issues in the Preparation Process 125

8.2.2. Creation of the Gold Standard for the Second Pass 126

8.3. Optimization of the Classification Framework Steps for the Second Pass 127

8.3.1. Candidate Retrieval, 127

8.3.2. Features for Similarity Function Learning and New Event Detection . . . 129

8.4. Clustering Framework in Two-Pass Mode — Optimization 132
8.4.1. Exhaustive Search for Optimal Features in Scoring, Ranking, and New

Event Detection o 133

8.4.2. Results of the Exhaustive Search 134

8.4.3. Optimization of Candidate Retrieval Strategy 139

vii

Contents

8.5. Results of the Clustering Framework used in Two-Pass Mode
8.6. Conclusions e e

IV. Concluding Remarks

9. Remarks and Comparison of Clustering Approaches
9.1. Prerequisites for Event Clustering
9.2. Reflection on Multi-Pass Clustering in a Stream-based Setting
9.3. Comparison with Other Approaches

10. Conclusion

V. Appendix
Glossary
Acronyms

Bibliography

145

147
147
148
150

153

157
159
161

163

viii

List of Figures

3.1.

4.1.
4.2.
4.3.

5.1

6.1.
6.2.

6.3.

6.4.

6.5.

6.6.
6.7.

7.1

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.

8.7.

Difference between unsupervised and supervised learning strategies according to

Kuncheva [KunO4] 31
Example from last.fm oo o 54
Distribution of pictures per event 59
Database schema for the ReSEED dataset 60
Overview of the event clustering framework system 70
Effectiveness of different (single-strategy) candidate retrieval strategies 89
Retrieval time and effectiveness for the optimal combination of single candidate

retrieval strategies over & 90
Average processing time for one document over different k£ based on Upload Time

candidate retrieval strategy oL oo Lo 91
Feature analysis for computation of P(e|d) of accuracy using a standard SVM

with linear kernel L 97
Greedy search for optimal features for the new event detection task using a

standard SVM oL 103
Performance comparison for different candidate retrieval strategies over k 106
Computing time for document processing using candidate retrieval in comparison

to no candidate retrievalo 107
Overview of the event clustering framework system using multiple passes 118
Analysis of final event clusters contained in an intermediate cluster 126
Effectiveness of different candidate retrieval strategies used for a second pass . . 128
Heat map showing overall performance of the system using different similarity

and new event features using best threshold for new event detection (SVM) . . . 134

Heat map showing overall performance of the system using different similarity
and new event features using best threshold for new event detection (Decision

Tree) . . o oo 135
Learned decision boundary of SVM using combination of simy,gs or simgigle 137
Decision Tree of the similarity decision using tag feature only (best performing
onoverall task) L 138
Performance of the clustering framework in a two-pass paradigm using different
numbers of candidates retrieved (using train and test set) 140

List of Tables

4.1.
4.2.
4.3.
4.4.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

6.7.

8.1.
8.2.
8.3.
8.4.

8.5.

9.1.

Available information from two social event calendars, last.fm and Upcoming . . 55
Availability of features L 57
Useof license o e e 58
Distribution per year L Lo 58
Needed number of k to reach x% effectiveness 89
Average assignment rate using a standard SVMo 95
Average assignment rate using a ranking SVMo 95
Average assignment rate using a Decision Tree 96
Accuracy of new event detection for different number of training examples 102
Comparison of several candidate retrieval strategies with k = 18 to no candidate

retrieval L L e 105
Results of our approach in comparison with different baselines using the ReSEED

test set L e e 109
Results for intermediate clustering using different strategies for the first pass . . 124
Needed number of k to reach x% effectiveness 129
Best performance on overall task on training set using different similarity features

and similarity feature combinationso 0oL oL 136
Best performance on overall task on training set using different new event detec-

tion features L e e 139
Results for clustering using different strategies for the first pass and an optimized

SECONA PASS '« « « v v e e e e e e e e e e e 141

Comparison of different clustering strategies of MediaEval 2013 SED with our
classification approaches L L L L 150

Xi

PART |

Introduction

CHAPTER 1

Introduction

I claim not to have controlled events, but confess
plainly that they have controlled me.

— Abraham Lincoln
(President and Statesman)

Nowadays, we live in a world in which Internet and social media are taken for granted by a lot
of people, especially younger ones. It is well understood that using social media is a great way
of getting content published reaching a wider audience. There are many people who express
their feelings, share information and media about their lives using social media applications like
Facebook, Flickr, YouTube, etc. Young people publicly identify themselves around the content
they have posted on the Internet. Even companies are more and more using different types of
social media channels to communicate with their customers. The publishing of content has never
been easier than today with all the possibilities social media sites are offering on the Internet.
Therefore, the data produced using these applications is characterized by an ever-increasing
amount of content representing a continuous, never-ending data stream growing at very high
rates.

As of September 2014, around 350,000 messages per minute are for example posted via Twitter!,
a popular service for posting short text messages of at most 140 characters to following peers.
An image database by Yahoo Inc., Flickr?, where people are able to upload their pictures to,
counted an average of 2,500 pictures uploaded per minute in 2013. While this is already a high
value, on Facebook®, a popular social network site, even more pictures are uploaded: about
250,000 per minute. As people like to share what happens around them, it seems obvious
that more and more people are using their digital cameras to take pictures of important and
interesting happenings in their life which they regularly upload to social network applications
on the Internet. This does not only include happenings that concerns them personally but also
unplanned incidents they get involved in.

"Mttp://www.twitter.com—last accessed 2014-10-04
2http://www.flickr.com—last accessed 2014-10-04
Shttp://www.facebook.com—last accessed 2014-10-04

http://www.twitter.com
http://www.flickr.com
http://www.facebook.com

1.1

Chapter 1 Introduction

Many social media sites do not only provide the possibility to share media (e.g. pictures or
videos) but additionally enable people who are part of their online community to enrich media
items with textual descriptions like a title or comments. As a result, not only the amount of
media uploaded to these services is still increasing every year, but also their associated textual
metadata.

However, without any structure in these data collections it is difficult for a human to take out
relevant information. Another challenge is to combine all relevant information about a certain
event. For many people it is highly desirable to browse and search this content in a feasible and,
more importantly, in a natural way reflecting human cognitive perception. While social media
content still keeps proliferating, techniques for structuring this massive data become crucial.

As events play a prominent role in the world, and the life of a human being is characterized by
occurrences and events, many of the information and documents uploaded to social media sites
are related to some event. Research by psychologists has found out that the manner of being
event-driven is in the nature of humans [WCCO07|. Therefore, a categorization of social media
documents into events seems to be a promising approach to us for better organizing this huge
amount of user-generated content in social media applications.

Motivating Use Cases

Today, there is an incredible number of possibilities for leisure activities. Unfortunately, most
people’s spare time does not allow to try all of them; usually the activities have to be chosen
wisely in order to organize one’s leisure time effectively. As people are socially connected online,
the question arises why they should not make use of the event information provided by their
friends and others on these social media sites for their personal plannings. In what follows we
present three of these use cases. Therefore, let us imagine Alice and Simon, a younger couple.

Case 1—Rare Event Attending: Alice proposes to go out to a small event called “University
Dance Fever Night” which is taking place at the city university main hall. Her friend Simon
also likes to go out but, as neither Alice nor him did hear about the event before, he is not
willing to spend money and time for visiting an unknown niche event which is more than an
hour’s drive away. For that reason, he tries to search relevant information about the event on the
Internet. Contrary to well-known and large events like the Vienna Opera Ball or the Grammy
Awards ceremony, about which information and opinions from others are easy to find, it is more
difficult to find information about the small event. In this case, searching on a standard Internet
search engine for “University Dance Fever Night” will not reveal relevant details as information
is not aggregated on one single page but it is spread over several social media sites. It would
be desirable for Alice and Simon to find pictures, reviews, and opinions about the “University
Dance Fever Night” from the years before which were posted by participants on various social
media channels.

Case 2—Finding Event Material: Finally, our couple attended the “University Dance Fever
Night” event. They liked the event a lot and the next day Alice and Simon regret that they are

1.2

1.2 Goal and Challenges

not able to share pictures with their friends as Simon did not bring his digital camera because
of the fear that it could be stolen. Nevertheless, there were a lot of other people taking pictures
of the event and even Alice and Simon were photographed by some unknown persons. Many of
these pictures were uploaded and shared on some social media channel. However, as they do
not know any of the persons participating in the event, without an appropriate search function,
our couple does not find any of these images.

Case 3—Fwvent Summarization and Enrichment: At home, Simon maintains a photo collection
of all kinds of events our couple is experiencing. He searches relevant information about each
event so that he gets images and meta information from others that he can add to his collection
in order to get an event summarization. The intention is to find details which were not observed
by the couple but are nevertheless interesting in the future. Unfortunately, this process is not
automated. In addition to that, he does not know how certain content on social media channels
can be found.

For all previous cases a person desires a technique to find aggregated information from multiple
social media sources helping to get an opinion about rare events, to find material about it, and
to enrich existing collections. It is desirable to search for a specific event and this search returns
all relevant media like pictures and videos but also textual information like facts or opinions.
The creation of techniques supporting such a scenario is still challenging. But even though
many social media sites support tagging (adding keywords) to better organize the content, the
search for specific data items is still demanding. The requirement is not only to find all but,
more importantly, relevant information.

Therefore, it is an impending need to better organize and manage this information in a way so
that it is well-structured. The structured information then enables us to develop or use current
algorithms and methods which facilitate search and navigation of this huge amount of content.
This would not only facilitate to satisfy the information need of each individual but also allows
new insights for many researchers of how people plan their lives and what is trending.

Goal and Challenges

Photos. Life is full of special moments. So is
your photo library.

— Tim Cook
(CEO of Apple Inc.)

We cannot deny the truth about the quotation from Tim Cook. Since the invention of digital
cameras and cellphones with camera support, many people possess a personal photo library. We
regularly take photos of the moments and events in our life and add them to our photo library.
The organization of that library is usually done by hand using one’s preferred photo library
program. For avid photo shooters this can already be tough from time to time.

Chapter 1 Introduction

Recently, as we already discussed in the motivation, people do not only build and use a personal
photo library but desire to enrich it with more content rounding up their collection by adding
material from others who attended the same event. This includes also more detailed textual
information about the captured moments. For some people this even leads to an almost complete
life-log. Unfortunately, it is hardly possible to invest the needed time into the organization of
such an advanced type of photo library.

The goal is thus to automatize the generation of such a photo library. To this end, this disser-
tation presents an automatized approach that performs the assignment of a social media item
(newly uploaded to some social media site) to its corresponding event (if it already exists) or
creates a new event to which future data items can be assigned. We refer to this problem as the
event detection problem and propose to use machine learning techniques to tackle the challenge
of categorizing social media items. In this thesis, we apply our developed framework to captured
images with associated textual metadata. Nevertheless, the presented technique is not limited
to this kind of social media item but can be used with all kind of items (like videos or tweets)
as long as they can be represented in a textual way.

In order to create a suitable event clustering framework for that goal, we have identified different
subtasks to be tackled:

o Feature Selection: A document (e.g. image, video) is represented by one or more
features. These features might be for example time data, imagery data (e.g. pixel or
color information), titles, or keywords. It is crucial to get a deeper understanding of how
such a document can be efficiently represented by these features.

e Multi-feature Similarity Metrics: The representation of the features must allow us
to introduce similarity metrics allowing an automatic interpretation of similarity between
data items (event and document). To be used in a computer system, we prefer a numeric
representation with gradual scale. The chosen features and similarity metrics have to
allow us to apply learning algorithms and must also allow an identification of new events.

¢« New Event Detection: The task of new event detection is a classification task. We
have to introduce a classification approach allowing a decision if a new data item can be
found in the event database or if a new event should be created.

e Clustering: We have to introduce a streaming or online clustering approach. The task
of the algorithm here is to determine event boundaries and the assignment of new data
items to their corresponding event (the event to which this item naturally belongs).

In order to get a working system for event clustering, the above mentioned tasks have to be
combined. In addition, there are also several challenges which arise for such a framework as
a whole. As the system has to work with a special type of data, we have to tackle different
challenges. In detail, they are as follows:

e Clustering of Large Datasets: Usual applications in social media have very high upload
rates. The data items already available in most applications are often more than a billion
items with thousands added every minute. A thoroughly processing of all items is not

1.21

1.2 Goal and Challenges

possible with very limited resources. It is challenging to find algorithms which make a
processing of all data possible.

¢ Clustering of Continuous Data Streams: While in usual clustering tasks all data
is known beforehand and all data points in the dataset can always be accessed in the
preferred order, this is not the case when dealing with stream data. Therefore, the category
assignment needs to be fast and efficient. Furthermore, the data must be processed in
sequential order and usually in a very little number of passes, in the best case in one single
pass.

¢ Clustering of Concept Drifting and Changing Time Series Data: Creating events
from documents in a data stream does not end up in a fixed number of categories. Instead,
the number of categories is not pre-determinable. In addition, theoretically, there can be
an infinite number of categories. Furthermore, the category concepts and types evolve
over time; this is known as concept-drift. A model must adapt to these concept changes.

¢ Noisy Data: Social media channels are neither proof-read nor is there an instance check-
ing if the content itself is useful at all. In addition, taxonomies or predefined categories are
non-existent. It depends on each user how much information is provided, how well-edited
the content is, and how properly it is published at all. It is very challenging to distinguish
between noise and signal.

In the following sections, we are going to address the above identified challenges and provide
more details on all of them.

Clustering of Large Datasets

In machine learning, clustering approaches are often restricted to small datasets. The reason
for this usually lies in the processing time for each data item. In many cases the processing time
for one single item is already longer than single-figure milliseconds. As a result, the processing
of too many data items is thus not possible within a reasonable period of time, even though the
algorithm itself works quite effectively. As a result, the datasets used are adjusted to have only
a limited number of items. Often the number of clusters is limited, too.

Unfortunately, social media data is massive and the resulting dataset will be huge. In addition,
the number of categories created will also be very high. This has a huge impact on how the
data has to be processed, i.e., there are different requirements which play an important role.
Usually, if datasets are very large, algorithms which can process data in parallel are desirable
(see Zhang, Ramakrishnan, and Livny [ZRL96]). As the datasets here are not only large but
they are also represented by a continuous stream, using parallelism is not unrestrictedly possible.
Nevertheless, scalability is a crucial point and thus several restrictions apply when using such
datasets on state-of-the-art computing machines. Consequently, there are several requirements
having the large size of the dataset in mind:

¢ Memory Usage: The model as well as the data to be processed is assumed to fit into
main memory. Even though many servers include plenty of memory, the fitting of all data

Chapter 1 Introduction

into memory is often just impossible. The size of the dataset in a stream data scenario
is practically infinite. Thus, it is never possible to fit all data into memory. Relevant
data for processing must necessarily be loaded from disk. This process is computationally
expensive. Recent database technology can help to organize this more effectively. Indexing
of data and smart caching strategies allow a faster retrieval of relevant parts from the
dataset.

e Data Point Representation: The raw storage of documents and clusters is problem-
atic as searching in raw data is too time-expensive. Therefore, the representation of the
documents and event clusters have to be made up in a way supporting a fast retrieval and
processing. For example, there are two different ways how a cluster can be represented:
either by all the documents being part of that cluster, or by a calculated representative,
a so-called centroid. Using the latter, less information needs to be stored. The challenge
is to balance pros and cons of such a data compression.

e Candidate Retrieval: No current computational system is fast enough to compare a new
item against all other already seen items in a reasonable time. Fortunately, it is possible to
limit this comparison to only a few samples of candidates. This commonly used method is
called sampling. Sampling is a technique which selects only possible candidates where the
probability of a successful merging is above a threshold. This preselection of candidates
massively decreases the number of comparisons needed, lowering the time complexity. We
have to determine the impact on the performance of such a sampling step. It is challenging
to choose good candidates without loosing the true corresponding category.

e Processing of Each Data Point: Every document must be scanned and processed at
least once. In many clustering scenarios, data points are skipped if they do not fulfill
certain criteria. This is commonly known as shedding. Data shedding is indeed useful for
discarding data points not depicting an event. We concentrate on a system where this
distinction has been done beforehand. In our case, it is thus not desired to shed any data
item. The challenge is to get an overall system performance fast enough to cluster all data
points depicting an event in reasonable time.

1.2.2 Clustering of Continuous Data Streams

In contrast to a fixed set of data where all data is available instantly, a continuous data stream
has significantly different properties. To process such a data stream we require a setting that
is different to the usually off-line setting used for fixed data sets. In particular, we require
an on-line or streaming setting. In this case, each data point will be processed with a small,
constant number of passes. Usually, each data point is seen only once.

More formally, the continuous data stream can be imagined as a never-ending stream of data
points x1, T9,... processed by a clustering algorithm with k centers in the paradigm shown in
Algorithm 1.1.

A data stream can be characterized best as a time-ordered sequence of data items like documents,
images, etc. This ordering by time makes continuous data streams require a different treatment

1.2 Goal and Challenges

Algorithm 1.1: Stream-based clustering paradigm

Input : A never-ending stream of data points x1, xa, ...
Output : Clustering with k event clusters

set number of clusters for k;

while true do
get new data point z;
determine best k € C for x;
update all £ in current set C,
end

preventing us from using different traditional clustering approaches. Here, it is not possible
to retrieve data points of the future before they arrive and variations of the ordering are also
impossible. Gaber, Zaslavsky, and Krishnaswamy [GZKO05] give a brief overview about the
techniques and algorithms for fixed datasets that can be applied on data streams. Subsequently,
we have to consider some requirements when processing stream data:

e Number of Passes: In many clustering approaches, data is stored explicitly, which
makes it easy to access all parts of the data at any time, allowing a processing of the
data in multiple passes. For a lot of clustering techniques this is the only way to achieve
convergence [B+98]. In a setting with a data stream, using multiple passes is not impos-
sible, but the realization needs greater effort and causes some issues. One consequence of
a processing in multiple passes is a delay in cluster production; the data points are not
assigned immediately but are cached for a certain time. This requires temporal storage
of the data. Even though this is possible, there is no possibility at all to see data points
coming up in the future. These restrictions enforce an usage of algorithms which are
capable of clustering efficiently in already one single pass.

o Adapting Clustering Model: The clustering model is the essential part in the cluster-
ing process. It must be adapted to all varieties of stream data. One challenge is to be
able to detect new events by the current arriving data item. As there is no knowledge
about future data items, this decision has to be made instantly with only the data which
has been seen so far. The created clusters are of different size and nature. We aim to let
the model adapt itself to all kind of events.

o Efficiency of Clustering: Using data streams, a certain efficiency is required in order to
cluster in real-time. Throughout the clustering process, prediction times usually increase
because of an increasing number of target categories. It is challenging to apply appropriate
techniques which prevent the exponential growth of the search space so that the clustering
process can hold up with the incoming data stream.

1.23

1.2.4

Chapter 1 Introduction

Classifying of Concept Drifting Time Series Data

As defined in the paradigm in the last section (see Algorithm 1.1), classical clustering approaches
like k-Means require the number of categories to be defined beforehand. This limitation is not
acceptable if a full clustering of all documents in target categories is favored. In stream data
clustering, the number of categories k is unknown. It is even not possible to estimate the
number of categories over a period of time as the growth factor is also unknown. For such an
event clustering system, it is crucial to adapt quickly to a changing data distribution. If a new
data item arrives and a new concept is detected, another category has to be added to the set
of categories.

The distribution of event concepts is often fixed in classical settings. Either the type of events
is known or the description of the events to be found are given. If this is, like in our application,
not the case, the concepts of the categories are varying and can be of different kind. In time
series data, event concepts change quickly over time. Subsequently, new concepts emerge while
others fade away. We have no initial information about the concepts in future categories. Our
model thus needs to be capable of detecting this drift in concepts on the fly.

Noisy Data

When working with social media data, it is necessary to understand how the data is structured
and what kind of data we are facing. The data is coming from a multitude of sources and the
amount of data is overwhelming. A lot of this data might just be considered as noise. Lovett
[Lov11] distinguishes between noise and signal as follows:

e Signal is what we are looking for. This is the needed streamlined information which is
relevant to conduct the task.

o Noise is the matter which does not offer much payout and mainly wastes resources, time,
and energy.

The type of data used in a clustering task has different features specifying what is considered as
noise and what is not. Regarding the noisiness and its treatment, we clearly have to distinguish
between social media data and other data (e.g. news data).

Let us take a look at news article corpora. These articles conform with syntactical, stylistic, and
grammatical standards which are required for their publication. In this case, it is also possible
to use traditional natural language processing tools to extract or enhance information, as well
as for noise suppression as the distinguishability between signal and noise is often apparent.
Stop word lists can be applied to the text to filter out irrelevant words and are well-known to
reduce the noise. Or part-of-speech tagging can be used to identify certain word forms which
are then considered as signal or noise.

In contrast, by its nature, documents from social media do not necessarily conform to any of
these standards. Furthermore, they contain only little textual narrative and usually consist
only of some keywords, a title, and/or a very short description. This noisiness makes the use of

10

1.3

1.3 Research Contributions of this Dissertation

traditional natural language processing tools more difficult. The extraction of named entities
or the enhancement of the document’s representation with part-of-speech tags is rarely possible.
Thus, using social media data, the quality of the text itself is often not useable as an indicator
for the distinguishability between noise and signal.

Using traditional natural language tools with the intent to remove noise might not necessarily
solve the problem but can also worsen it. During the process of noise removal, valuable informa-
tion might be eliminated because things regarded as noise in usual news articles might provide
valuable information in social media. For example, smoothing a document by the replacement
of “noisy” words not appearing in dictionaries (e.g. “fYve” to “five”) often remove a special
meaning and maybe the only link between two documents.

Research Contributions of this Dissertation

In this thesis we introduce a framework for online stream clustering of social media documents
into their corresponding events. This framework tackles all the challenges described in Section
1.2 and describes effective techniques for new event detection and event clustering. The research
in this dissertation advances the understanding for evaluation, effectiveness, and behavior of a
classification and clustering problem in social media documents. Our main contribution can be
summarized as follows:

Contribution We introduce a complete online system that classifies an incoming stream of doc-
uments into the distinct events they describe or are related to. The document is either added
to an existing event or, if necessary, a new event is created. It will be shown that this system
successfully addresses all above mentioned challenges in an experimental demonstration. We
show that the problem is successfully solvable using a single- or two-pass approach. Both
approaches strictly adhere to the stream-based nature of the data.

Our online system as a whole combines techniques from different areas. These techniques
are interchangeable in the framework allowing a very high flexibility. In detail, we provide
contributions in the following areas.

Evaluation of Event Identification

e There is a high need for cluster validity. Therefore, we present a real-world dataset for
research in the area of social event identification which is suitable to be used in clustering
and classification tasks in that area. The dataset supports the training, testing, and
evaluation of such algorithms and frameworks. The usefulness of this publicly available
dataset was already shown in several challenges and publications.

1

14

Chapter 1 Introduction

o We compare our system to several state-of-the-art systems, showing that our system clearly
outperforms most algorithms for event clustering. We show that the here presented algo-
rithm reaches the highest score for streaming algorithms and can compete with results of
algorithms interpreting the task as a fixed clustering task.

New Event Detection

e We show that the decision whether a new data item belongs to one of the existing events
or to a new event can be taken with reasonable accuracy. This decision is made instantly
after seeing a single data item.

o We compare different decision models for new event detection and present suitable features
to be used in the context of a stream data setting.

Clustering

e The problem of assigning a new data item to its corresponding event can be modeled
successfully as a ranking problem where a preselected number of events is ranked according
to how likely the new data point belongs to them. By choosing the top-ranked event, we
show that the accuracy of assigning a new data item to its corresponding event is very
close to 100%. We discuss the impact of different features on this decision using machine
learning techniques.

e We show that the system can indeed scale to large numbers of events by using an appro-
priate candidate retrieval step which retrieves a set of candidates that the incoming data
point is likely to belong to. With this step we avoid scanning all events in the database
and thus allow our system to scale to very large numbers of events. We show in particular
that retrieving a very little number of candidates yields a reasonable trade-off between
scalability and clustering quality.

e Our system is much more efficient than comparable systems, showing a nearly constant
processing time independent of how many documents the system has processed so far, a
requirement for scaling to much larger number of documents.

Structure and Outline of this Thesis

In this section we give an overview on how this dissertation is structured. In Chapter 2, we start
with detailed information about fundamentals which are important and necessary to understand
this work. We explain the categorization idea and how this idea leads to event clustering. In
addition we also provide a characterization and definition of what we understand by the term
event.

In Chapter 3 we discuss foundations and related work. We give an overview of clustering and
classification algorithms and take a look at certain aspects which are relevant to use these

12

1.4 Structure and Outline of this Thesis

techniques for our task. We will also take a look at other work that investigated in the area of
social media data clustering.

After that, we introduce our event clustering dataset in Chapter 4. The aim of the creation of
that dataset is to develop a benchmark for real-world applications. We will present how the
dataset has been created and what it can be used for.

In Chapter 5, our framework for social event classification is introduced. We outline the archi-
tecture of our system and present the single parts of the framework in more detail. We also
introduce our problem of social event detection and classification in more detail and explain
how this system can tackle this problem.

Chapter 6 then continues with the experimental setup and results of the clustering of our real-
world dataset. We present a setup of the system working with one single-pass. We will show
that the system presented is indeed able to tackle the problem and present our results together
with several baselines.

We continue with the description of our framework to be used in a multi-pass setting in Chapter 7.
The adapted system architecture is shown and we discuss prerequisites which are important in
order to use the system in a multi-pass fashion. We show the differences to the single pass
system and discuss several strategies which can be used to stick with the stream paradigm.

In Chapter 8 we show the experimental setup and results of our multi-pass system. We not
only show how the passes may look but also show that the system scales even better than the
one using one single pass while ameliorating the overall performance significantly.

In Chapter 9 we provide additional remarks on our single-pass and multi-pass approaches. In a
discussion we will analyze advantages and disadvantages of both approaches, giving examples
for different scenarios that show how the different approaches can be used. In addition, we do
a comparison with other approaches.

Finally, we conclude this dissertation by a summary in Chapter 10. In an outlook we will
furthermore discuss possible extensions and modifications of our framework so that it can be
used with different data items and features.

13

CHAPTER 2

2.1

Fundamentals of This Work

This chapter introduces fundamentals which are necessary to understand this work. Notably, we
have to make clear what we understand by the terms clustering and event. First, we start with
giving a deeper understanding for the idea of categorization and clustering, what is understood
by this term in different disciplines, and why this idea is needed to cluster objects and events.
After that, we survey alternative definitions of the term event over a variety of domains and
finally give an extended definition of what we understand by an event.

From the Categorization Idea to Event Clustering: Definition and Development

Categorization can be described as a process of dividing up ideas and objects but also events
into parts which are as mutually exclusive as possible. This is a basic cognitive process for
humans and is part of our everyday lifes. Rosch and Lloyd [RL78, p. 28] write that, “[...] as an
organism, what one wishes to gain from one’s categories is a great deal of information about the
environment while conserving finite resources as much as possible”. We all tend to group objects
of the world which we see and capture into distinct categories with a specific purpose. Following
Harnad [Har05], categorization is the basis for the construction of our world knowledge. This
implies that objects and also events are grouped into distinct categories. These categories are
thus the result from a process to differentiate, recognize and understand objects and ideas in
the real world.

The comprehension of the concept of categorization is fundamental for an understanding of clas-
sification and clustering approaches in machine learning. We aim to categorize events according
to typical features of members of the event category in question. It is natural to use this idea
as a model for a categorization approach for events.

The idea of categorization has received attention in many academic fields. In the next sections
we take a deeper look into the development of the categorization idea. In Section 2.1.1, we start
with the philosophical or so-called classical view. We then elaborate on the modern view in
cognitive psychology, in 2.1.2. Finally, in Section 2.1.3 we build the bridge to our definition of
what constitutes the term clustering.

15

2.1.1

2.1.2

Chapter2 Fundamentals of This Work

Categorization in Philosophy - The Classical View

The categorization concept was discussed deeply in the field of philosophy. Many philosophers
tried to answer the question of what are necessary and sufficient conditions for a proper definition
of categories.

Already about two and a half millenia ago, the concept of categorization appeared in works
of Plato, a hugely important Greek philosopher and mathematician. In his theory of forms
and ideas, Plato believes that the material world is only a shadow or poor copy of concepts
from the real non-material world. The basis for this is Plato’s concept of hylomorphism, the
theory that substances are forms consisting of material. In his opinion, these forms are constant
abstract representations of the things around us and are actually the true basis of reality. This
theory is exemplified in the Allegory of the Cave, part of book VII from his work Politeia (The
Republic).

In contrast to Plato, one of his students, Aristotle disagreed with his teacher that ideal forms
exist separately from particular things. He argued that forms are merely generalizations. Aris-
totle developed the basic principles of categorical logic. Following this logic there exist discrete
entities which characterize categories by a set of properties. This approach has established the
basis for natural taxonomy.

However, it has become clear that categorizing is more complex and that Aristotle’s view does
not suit too well our understanding of how organisms actually categorize. Following Taylor
[MHP11, p. 643ff], the classical view mainly does not take into account what is the real reason
for organisms to categorize. They use categorization to manage the countless impressions of
the environment. Taylor writes that a categorization of entities per se, is not an useful purpose
for an organism. These categories would be too rigid and even if they are well-formed in theory
they would not suit human perception and action.

In more recent times, philosophers like Immanuel Kant and Ludwig Wittgenstein also investi-
gated categorization. In his theory of family resemblance, Wittgenstein [Sav11l, pp. 31ff] alleged
that not all objects falling under one category must share all features but they may be con-
nected by common similarities and/or relationships. As examples he used the terms “language”
and “game”. They are an example of groups that are connected by family resemblances. In

the category “games” there are e.g. “board games”, “card games”, “ball games”; Wittgenstein
challenged us by posing the question whether there is anything common to all.

In newer theories like prototype theory, mainly cognitive psychologists try to survey psychological
principles of categorizations, i.e. the way people really categorize. The prototype theory differs
a lot from the classical Aristotelian theory of categorization [Lak87, pp.2ff], [Lak82], and the
next section will outline its basic ideas.

Categorization in Cognitive Psychology - The Prototype View

In the previous section we presented the philosophical view of categorization. Psychologists do
not fully agree with the philosophers’ view as their understanding is not necessarily in accordance

16

2.1 From the Categorization Idea to Event Clustering: Definition and Development

with human behavior. Not only the limitation to fixed boundaries of the categories, which does
not hold true for a valid categorization method in human perception, is a reason to investigate
more in this area to overcome the limitations, but also the question why categorizations are
made at all is of interest.

Rosch and Lloyd [RL78], specialized in cognitive psychology, used Wittgenstein’s theories as a
basis to find out that humans use representative prototypes as an orientation for categorizing
objects instead of using abstract criteria and thus coined prototype theory. While Wittgenstein
did not propose that some objects are better examples for a prototype than other, Rosch argued
that the distance of a specific instance to the prototype varies.

Instead of an equal status within a category with clear boundaries, there are somewhat over-
lapping categories with better and less good examples. Following that theory, it is possible to
specify gradual membership to a category instead of a hard binary membership. In the cognitive
approach it is well-accepted that natural categories tend to be fuzzy at the boundaries. It is
more or less a matter of the point of view and experiences of a person to decide on the grade
of membership for an object [Ros75].

Taylor [MHP11, p.652] argued that categories are defined with respect to a “best example”.
Rosch strengthens that hypothesis as she states that “much actual learning of semantic refer-
ence [...] may occur through generalization from focal exemplars” [Hei71]. She also wrote that
“another way to achieve separateness and clarity of actually continuous categories is by con-
ceiving of each category in terms of its clear cases rather than its boundaries” [RL78, p. 35-36].
While Rosch and Lloyd [RL78] could be interpreted in a way that every category is represented
by exactly one best example, taking a look at work by Rosch and Mervis [RM75] clarifies that
the generalization from several good examples as a summary representation was meant.

The following quote from Rosch [RL78, p.30] leads Taylor [MHP11, p.653] understand a cate-
gory as a set of weighted attributes:

“[Clategories tend to become defined in terms of prototypes or prototypical in-
stances that contain the attributes most representative of items inside and least
representative of items outside the category.”

Following Taylor [MHP11], category members neither need to share all attributes, nor must
an attribute be shared by all category members. This follows Wittgenstein’s idea of family
resemblance [Sav1l] in which attributes intersect.

An alternative approach is to construct a category as a collection of instances. Smith and Medin
[SM81] call this the ezemplar view. They argue that there is no need to define properties if
different exemplars of a category do not need to share any of them. Actually, in this theory,
there is no generalization process, instead one memorizes a set of objects belonging to the meant
category. Looking up if something belongs to that category consists of consulting the memory
very quickly to see which things it is most similar to [Mur02, p. 49].

Independent of which view one adopts, Rosch and Lloyd [RL78] showed also that there are
varying levels of abstraction. Therefore, humans categorize in a hierarchical way. They argue

17

2.1.3

2.2

Chapter2 Fundamentals of This Work

that there exists a basic level that is privileged in perception; actually, this is the level with the
relatively greatest amount of information. These basic levels are preferred by adults in a neutral
setting clearly showing that these tend to be the concepts learned earliest by young children.

Event Clustering Characterization

While the theories described above are mainly about the categorization of things, humans also
categorize moments of their lives into events [ZT01; Nei86; BS98|. In artificial intelligence and
machine learning, there is the aim to imitate that natural cognitive process by constructing and
learning a model from data rather than rely only on programmed instructions.

The categorization theories presented earlier lead us to the task of clustering, defined as fol-
lows:

Definition 2.1.1 — Clustering Clustering is the task of categorizing information in a way so that
objects in the same cluster are more similar to each other than to those in all other clusters.
Clustering is not a special algorithm but a common technique used in various fields like machine
learning, pattern recognition, and information retrieval for solving the categorization task. The
goal of clustering can thus be accomplished using different algorithms. This implies also that

the data needed for the processing as well as the resulting clusters will be divergent depending
on the used methodology.

Looking back at two of the theories described above, the set of weighted attributes theory and
the exemplar view theory, we see that there are already two very different approaches which
can be mapped to different clustering strategies. According to the first theory, the clusters
are represented by only one, the best, representative, e.g. a centroid. This centroid might be
the mean of features from all objects inside the cluster or the object which has been identified
(in whatever way) to be the most centered. To query the distance to that cluster, only that
centroid is used. In contrast to that, according to the second theory, all clusters are represented
by all objects inside the cluster. If we want to get the distance of an object to that cluster, it is
necessary to calculate the distance to all objects inside it and then to aggregate over all those
distances.

Summarizing, we intend to develop an approach using machine learning methods for event
clustering which is capable of clustering documents in a way that resembles human cognitive
perception. The challenge is to automatize this process of event clustering so that incoming
documents can be assigned to their corresponding event without any user intervention.

Characterization of an Event

In the previous section we gave an overview of what we understand by the terms categorization
and clustering. In addition to that, it is also essential to comprehend what exactly can be

18

2.2 Characterization of an Event

understood by the term event before we can develop a system for clustering events. Taking a
look into a dictionary®, we find three main definitions. Accordingly, an event is:

1. “something that happens or is regarded as happening; an occurrence, especially one of
some importance”

2. “the outcome, issue, or result of anything”

3. “something that occurs in a certain place during a particular interval of time”

Looking up the etymology of the word also gives us a hint about the meaning of the word. Its
origins are found in the Latin language. The word event is derived from eéventus which has the
meaning of occurrence, accident, fortune, issue as well as the past particle stem of évenire with
its meaning to come out, to happen, and result.

As we see, neither the dictionary nor the etymology help us to find only one true definition
of what an event is. Instead, there are several alternative definitions. Similar to the debates
about the categorization idea, the characterization of the term event has received attention in
humanities like philosophy and psychology, too. While one might catch a basic idea of what an
event is by the definitions above, it is still interesting to take a deeper look into other fields to
get an idea about how humans perceive events. Not only researchers but also individuals will
disagree largely on what exactly constitutes an event. In 1963, researchers were already aware
of this kind of human behavior but did not have an understanding of the ongoing cognitive
processes:

“Temporal aspects of behavior are among the most compelling in experience and
among the most easily measured of all of behavior’s unnumbered characteristics.
Despite the saliency of the time dimension however, little is known about the actual
arrangement of behavior along its temporal axis.”—Barker [Bar63]

The group behind the ontology DOLCE [Gan+02] defines two disjoint classes after the idea
from Lewis [Lew86] where most phenomena of reality fall into endurants and perdurants. The
first, enduring particulars® are persisting entities existing in time which necessarily lack proper
temporal parts and are necessarily wholly present at all times of their existence. It is rather
easy to see that everything falling into the category of endurants can not be an event. There
are many examples: physical objects (e.g. stones, trees, humans) and psychological objects
like ideas, concepts and goals [SZ08, p.4]. They all have in common that there is no temporal
reference involved. The information we gain from this is that events have to include the time
factor. This leads us to the class of perdurants. Perduring particulars are persisting entities
that happen in time. They have proper temporal parts, and such a perdurant can happen at
some point in time. The duration of the happening does not matter and the temporal scales
may span from milliseconds to millenia. Examples are knocking on the door or the creation of
a canyon.

'http://dictionary.reference.com/browse/event—Ilast accessed 2014-09-16
2A particular is a concrete entity existing in space and time.

19

http://dictionary.reference.com/browse/event

2.2.1

Chapter2 Fundamentals of This Work

In contrast, in the field of physics, an event is simply defined as a physical occurrence located
at a specific point in space and time (e.g. a leaf falling down from a tree). Unfortunately, the
definition is more complicated in other fields. In the following sections we will discuss the views
of other fields like philosophy and psychology, but also in recent computer science, i. e. the areas
of machine learning and information retrieval, and try to give a survey over a variety of domains.
We finally connect these approaches and theories to our definition of an event adapted to our
problem definition.

Event Definition in Philosophy

Metaphysicians have a great desire to understand the basic nature of things that happen. More
generally they want to understand if events constitute a basic ontological category or if the
human concept of an event is only a way of organizing elements [Ben02].

Contemporary philosophers started with an analysis of actions. Actions, that can be said, are
actually atomic components of events. A definition of a basic action is provided by Danto
[Dan63]: “B is a basic action of a if and only if (i) B is an action and (ii) whenever a performs
B, there is no other action A performed by a such that B is caused by A”. Even if this leads
into the right direction of what an event could be, this is problematic in the way that an
action is not synonymous to an event. An example for a basic action is “moving one’s hand”,
a counterexample is “pointing with the hand”. These concepts of actions are only a foundation
for the larger construct event.

In philosophy, there exist also approaches to characterize not only actions but also events. Until
now, there has been no universal definition in that area, but there exist several more or less
concurring proposals. Most notably, there are the following four approaches to be mentioned:

1. Kim’s Property-Exemplification Account of Events [Kim69; Kim73]
2. Davidson’s and Lemmon’s Theory of Events [Lem67; Dav69; Dav80]
3. Lewis’ Theory [Lew86]
4. Quine’s Theory [Qui85]

In the following we describe these approaches in more detail, starting with Kim’s theory. All of
the theories have strengths and weaknesses with respect to our purpose.

Kim's Property-Exemplification Account of Events

Kim [Kim69] does not directly provide a definition of an event but provides a general and
fundamental basis for the creation of a definition. According to him, the term event implies
change of a substance—following Kim, a substance can be any kind of object with no particular
philosophical doctrine. This change requires the acquisition of a property which an object did
not have before [Kim76]. Kim sees events as structured and constituted by three elements: i)
an object or objects x, ii) a property P, and iii) a time point or range ¢. He defines an unique
event by an expression of the form [z, P,t] with two conditions:

20

2.2 Characterization of an Event

o [z, P, t] exists in case the substance x has the property P at time ¢ (existence condition)
o [z,Pt]=[y,Q,t']if x =y, P=Q,t =1t (identity condition)

“The theory states that just in case a substance x has property P at t, there
is an event whose constitutive object is x, whose constitutive property is P, and
whose time of occurrence is ¢ (the existence condition), and that events are identical
just in case they have the same constitutive property, object, and time (the identity
condition).”—[Kim76]

In addition, he theorized about events that a) they are non-repeatable and unchangeable par-
ticulars including not only changes and states but also conditions of the event, b) they have a
spatio-temporal location, and c) the constitutive property makes the event individual.

Davidson's and Lemmon's Theories of Events

Lemmon [Lem67] and Davidson [Dav69] agreed that events are understood as logical particulars,
i.e. non-repeatable occurrences. They are considered as constants which can be used in first-
order predicate logic. The difference between an event and an object is grounded by the view
that events are occurrences while objects are definitively not. Davidson explains that an object
remains the same through changes, but an event changes in an object or objects [Dav80].

Davidson and Lemmon have extended the theory of events by two conditions: i) the causal
criterion and ii) the spatio-temporal criterion. Both authors agree in the causal criterion on that
events are identical if they have the same cause and effect. For the spatio-temporal criterion
Lemmon proposed that events are also identical if they occur in the same space and time.
Davidson later rejected that criterion and gave the following example: “If a metal ball becomes
warmer during a certain minute, and during the same minute rotates through 35 degrees, must
we say that these are the same event?” [Dav80, p. 178].

Lewis' Theory

Lewis favors a more opportunistic theory telling us which entities are formally acceptable as
events. The essence of Lewis’ idea for the theory of events is that an event is a property of
spatio-temporal regions [Lew86]. In Lewis’ ontological scheme, properties (including events) are
not basic. Lewis states: “Events fall in with the properties; for I see no reason to distinguish
between an event and the property of being a spatio-temporal region, of this or another world,
wherein that event occurs. [...] An event that actually occurs, then, is a set that includes exactly
one this-worldly region.” [Lew86, p.95]. Lewis proposes the following condition for some entity
e to be an event:

“e is an event only if it is a class of spatio-temporal regions, both thisworldy
(assuming it occurs in the actual world) and otherworldly.”

In his understanding, any instance of that event class actually “occurs”, all others (including
the event itself) do not occur.

21

2.2.2

Chapter2 Fundamentals of This Work

Quine's Theory

In comparison to the other approaches, Quine [Qui85] made a very simple assumption of what
events are. He argued that events should be regarded as regions of space and time. He elaborated
further that objects are usually a family of bounded space-time regions, like events. Therefore,
as a consequence, following his theory, events could be simply regarded as objects. Thus, there
would not be the need to make any difference in the assumptions about both.

Event Definition in Cognition and Psychology

In psychology the assumption is that information about events is stored in a memory system that
consists of episodes collected during life, the so-called autobiographical memory. This memory
consists of a combination of episodic and semantic memory [WCCO07]. Following Tulving [Tul72]
and Williams, Conway, and Cohen [WCCO7], episodic memory stores information about episodes
and events of personal experiences that have been experienced at a certain time and place.
Semantic memory instead stores general knowledge about the world. In short, we can define an
event or episode in psychology as follows:

“An event is the empirical knowledge in a brain of an individual about happenings
of situations or an occurrence of a situation.”

or following Zacks and Tversky [ZTO01]:

“A event is a segment of time at a given location that is conceived by an observer
to have a beginning and an end.”

The in-depth discussions in psychology are on-going in the areas of cognition and development.
While the definitions of what constitutes an event and action in philosophy provides a basis,
psychologists aim to come to an understanding how humans perceive and think about anything
that happens [SZ08].

In the area of psychology, common questions concern the differences in categorization between
events and objects, how events are perceived and segmented, and how events are remembered
and thus represented. We address these questions in the following paragraphs.

Contrasting Juxtaposition of Events and Objects

In earlier research, it was not known if there is a great difference in categorization between
events and objects [Bar63]. Newtson et al. [New+87] and Zacks and Tversky [ZT01] used the
proposal of Quine [Qui85] as an opportunity to investigate in this direction.

Following Zacks and Tversky [ZT01], humans categorize events in the same way they categorize
objects (see also section 2.1.2). As proposed in the philosophical approach of Quine, psychol-
ogists like Newtson et al. [New+87] and Zacks and Tversky [ZT01] conducted studies that
support that approach. These studies finally led to the knowledge that events can be put at the

22

2.2 Characterization of an Event

same level as objects. For us, this is an indication that categorization methods used for object
categorization can be used without modification for event clustering.

Another analogy of events to objects is that they consist of parts. Zacks elaborates further
that these relations produce two forms of hierarchical organization: partonomies (also known as
meronomies) and taxonomies. The difference between both hierarchies is that the first one bases
its categorization on part-whole relationships and the latter on discrete sets. The interpretation
of edges in partonomies is “part of”; in taxonomies, it is “kind of”. Zacks and Tversky [ZT01]
even assume a combination of both organization forms in human perception. They found out
that events are characterized mostly at the basic level of the hierarchy.

In contrast to the positive analogies above, there is one substantial difference between events and
objects: events are necessarily ephemeral® which is not the case for objects [ZT01; McC93]. This
seems reasonable as it is indeed possible to recognize a particular object but it is impossible
to experience the same event more than once, e.g. every Christmas is celebrated only once.
Nevertheless, it might be perceptually categorized as a type of Christmas celebration. Events
can be perceptually categorized, but they cannot perceptually identified.

Segmentating and Perceiving Events

Newtson and Engquist [NE76] and Boltz [Bol92] showed in their experiments that people agree
largely on so-called breakpoints in short-range action and long-range events. They even show
that these breakpoints have a tendency to correlate with the moment when physical features
of actions are changing [NEB77]. Therefore, it is allowed to assume that people have a clear
foundation for event boundaries.

It can also be assumed that people actively modulate the event segmentation level. for example,
people are able to divide events at other levels if they are directly asked to do so [LSR88]. Zacks
and Tversky [ZT01] claim that the spontaneous variation in segmentation level is needed due to
the aim of the brain to minimize resource consumption. For a human being, it is important to
maintain a coherent understanding of the surrounding happenings. If the temporal piece is too
coarse, the brain shifts to a finer segmentation. Zacks and Tversky [ZT01] go further and allege
that if events are viewed on longer time-scales, they become less tied to physical activity.

While Newtson et al. [New+87| deny that humans encode activity in partonomic hierarchies,
Zacks, Tversky, and Iyer [ZTI01] more recently found in experiments that this is actually the
case.

For the segmentation and perception of events, Zacks and Tversky [ZT01] highlight three im-
portant points:

1. On-line segmentation techniques can be used to study temporal parts of events.

2. Events seem to be perceived in a partonomic structure.

3lasting only a period of time

23

2.2.3

Chapter2 Fundamentals of This Work

3. Events have a causal perceptual structure and a partonomic perceptual structure. Both
might be highly correlated.

Remembering and Representing Events - Autobiographical Knowledge Base

Perceptions, actions and events are structured by repeated exposures to event schemata collected
through experience. Following Zacks and Tversky [ZT01], the schemata provide for i) variable
binding (allows goals and roles), ii) embedding (allows partonomic structure), iii) varied levels
of abstraction (allows taxonomic structure), and iv) they represent knowledge (allows adaptive,
probabilistic perception). Recognizing an event as a certain type of event category is done by
matching it to schemata stored in memory. If information is missing in perception, it is filled
in by reference to retrieved schema (see also Brown and Schopflocher [BS98]).

Conway and Pleydell-Pearce [CP00] conclude from older research that the autobiographical
memory is structured into different areas: lifetime periods, general events, and event-specific
knowledge. Examples for lifetime periods are “When I was young” or “When I was at school”.
They represent general knowledge about several things like significant others, common locations,
actions, activities, plans, and goals. Contrary to lifetime periods, general events are more specific
and more heterogeneous. Both repeated and single events are included in this area [Bar88|. They
also can represent sets of associated events (a series of memories) [Rob92]. General events are
grouped into clusters and missing information is recalled from memory; this is in accordance
to Zacks and Tversky [ZT01]. Event-specific knowledge comprises high levels of detail about
certain events (like images). Following Conway [Con05b], the combination of these areas are
organized in a hierarchy within the autobiographical knowledge base and make up everyone’s
life story.

There is a differentiation between specific and generic memories in the literature [WCCO07].
This is reasonable as one might remember a specific, particular event like today’s interest group
meeting or just think about a generic group meeting.

It is important to recognize that memories fade. As a consequence, over time, events are
remembered in a less fine-grained fashion [KZ08|]. While one remembers every single day directly
after a holiday, this fine-granularity will be lost after some time.

Events in Recent Literature of Machine Learning and Information Retrieval

In various tasks in the area of machine learning and information retrieval, there are different
scenarios where definitions of the term event are necessary. Not only in the very common
task of event and topic detection in news feeds [All4-98], but also in several other domains like
videos, insider trading, surveillance and crime detection, remote sensors, as well as social media
platforms, there are some kind of events involved. It applies also to the extraction of events
from articles and documents. In this section we give a survey about the main tasks in the area
and show different characterizations and definition of what is understood by the term event
here.

24

2.2 Characterization of an Event

Event Detection in News and Stories

Talking about events in information retrieval, the area of event detection in news and stories
is one of the most prominent ones. This research area is commonly known as topic detection
and tracking (TDT). A lot of researchers have carried out experiments to detect events in news
stories. The main question which arises here is how an event can be characterized.

Beginning in 1996, the Defense Advanced Research Projects Agency (DARPA) pushed the
research in TDT a lot. In a pilot study, Allan et al. [All4+-98] surveyed the field of TDT.
Its purpose was to find and follow new events in streams of broadcast news stories. They
identified three major tasks: i) the segmentation of stream data into distinct news stories, ii)
the identification of new news stories when they first occur, and iii) finding following new stories
given a small number of examples of a certain event. The annotated corpus for the studies was
produced by the Journal of Graphics Institute with respect to 25 target events that have been
defined according to the TDT guidelines.

In the study of Allan et al. [All4+98], the notion of topic was made explicit by its interpretation
of event. Their original definition of the term event is as follows:

“[S]ome unique thing that happens at some point in time.”

It is notable that this first definition just includes a temporal reference. They elaborate further
that they differentiate between events (e.g. the eruption of a certain volcano) and classes of
events (e.g. volcanic eruptions). They also allow events to be unexpected as well as expected.

While Allan, Papka, and Lavrenko [APL98| and Yang, Pierce, and Carbonell [YPC98] already
altered the definition to include a spatio-temporal instead of only a temporal reference, the
TDT initiative [All02] went further and offered a more specific version of the definition in a
later publication:

“[A] specific thing that happens at a specific time and place along with all neces-
sary preconditions and unavoidable consequences.”

In addition, Allan [All02, p.42] define a topic as “an event or activity, along with all directly
related events and activities”. In TDT, these topics are predefined; for a full list refer to Allan
[All02, p.43]. Both above mentioned definitions clearly define the boundaries of events as used
in the TDT tasks. However, these definitions only cover event types used in news stories.
Furthermore, Makkonen [Mak03] has identified some flaws regarding necessary preconditions
and unavoidable consequences for events. Nevertheless, newer publications in new and popular
event detection and tracking still agree with that definition [ZZWO07; Lin+10].

Information Extraction

The aim in event extraction is to identify and extract events in text. One use case for this
method is in the area of biotechnology and health [Kim+09] where researchers want to detect
events from papers and literature to provide overviews of events together with entities and

25

Chapter2 Fundamentals of This Work

relations. Definitions of an event in these areas are very specific to each area and are not useful
to be considered in our context.

Event extraction has also been used on news sources. Gaizauskas and Humphreys [GH97] used
a semantic network for identifying events already in 1997. Later, as part of the Language Re-
sources and Evaluation Conference (LREC), the Automatic Content Extraction (ACE) program
has been introduced in 1999. The objective in ACE is to infer events, entities and relations
from human language, notably news. In the beginning, ACE just detected and tracked entities
and relations. Starting in 2004, events were added to the tasks, too [Dod+04].

Definitions about the term event do not vary over publications as the task defines it in the ACE
guidelines [Con0bal:

“An Event is a specific occurrence involving participants. An Event is something
that happens. An Event can frequently be described as a change of state.”

Event Detection in Multimedia

The approach in event detection in multimedia like video and audio clips is different from the
other approaches as there are no textual features involved. Lew et al. [Lew+06] report that
first tries for boundary detection of events in videos were already made in the 1990s. It became
more popular in recent years as machines became capable of handling video data. While first
research was already done in the TREC Video Retrieval Evaluation (TRECVID) in 2008, a
special task for event detection was introduced in 2010 with the TRECVID Multimedia Event
Detection (MED).

TRECVID MED wants to encourage researchers to develop techniques which allow a search of
user-defined events in multimedia collections via a metadata store. The definition of what is
understood by the term event according to the TRECVID MED 2014 evaluation plan [Tral4]
is as follows:

“An “event” is a complex activity occurring at a specific place and time involving
people interacting with other people and/or objects. An event consists of a number
of human actions, processes, and activities that are loosely or tightly organized and
that have temporal and semantic relationships to the overarching activity. All events
are directly observable.”

In these definitions the terms “actions” and “processes” are not well explained. But, as the
desired events are provided by the task maintainers, the definitions together with examples of
the desired events shall be enough to grasp the general idea.

Event Detection and Identification in Social Media

In this dissertation we are working with social media data. Therefore, it is obvious to take a
look at event definitions in similar work in this area. As we have already seen in other study
fields, there is no need to define an all-universal definition. In the style of philosophical thought

26

2.2.4

2.2 Characterization of an Event

experiment regarding observation and knowledge of reality, someone on the Internet came up
with the following quote:

“If a tree falls in the forest and nobody tweets about it, did the tree or the forest
ever exist, and did the event ever happen?”—Unknown

Rethinking of the quotation above, it is undeniable that at least one human individual has to
be involved in the event and furthermore someone has to talk about the happening. In early
publications, the definition from the TDT task has been adopted (see above) [BNGO09]. Later,
Becker et al. [Bec+12] refined their definition to be more specific:

“[Wle define an event as a real-world occurrence e with (1) an associated time
period T, and (2) a time-ordered stream of social media documents D, discussing
the occurrence and published during time T,.”

There has been also similar work done in the MediaEval Benchmark for Multimedia Evaluation
(MediaEval) Social Event Detection (SED) task [Lar+13]. In the task description of SED,
researchers are asked to discover and describe social events in a collection of social media
content. Over the years there were different tasks to be done [Pet+14]. While there was first
the aim to find just event categories (e. g. soccer matches), it evolved to the question if a certain
instance of an event (e.g. the soccer match between France and Spain in September 2014) can
be found. Here, the definition of the term event is as follows [Reu+13]:

“Social events are events that are planned by people, attended by people and for
which the social multimedia are also captured by people.”

Event though the definitions are somewhat different, we see nevertheless that they strongly
adhere to the social media aspect.

Discussion and Definition

In the preceding sections, we presented numerous approaches from different researchers of var-
ious fields of study who wrestled with definitions of the term event. Theories from philosophy
provide a very good grounding and set the minimal requirements for definitions in other disci-
plines. As an essence, we learn that the majority agrees upon the theory that an event consists
of some activity at some time and place which is conducted by some agent. This theory is also
valid for our understanding of an event.

Regarding the experiments and definition in the area of psychology, we agree that an event is
not some invented artificial construct but a fundamental concept which is part of every cognitive
system. It is thus obvious for us to build an event clustering system which strongly adheres
to that natural concept in human perception as the system shall categorize items to events
understood by the users. As a consequence, a definition must include the ideas and findings
from psychologists.

27

Chapter2 Fundamentals of This Work

Finally, in addition to the other arguments, we also like to include a hint to social media. When
working with social media, it is obvious that not all types of events are included but only the
ones people are talking about. This factor also brings out that it is necessary that persons are
involved.

In the following we thus present our definition for the term event. Furthermore, we define the
identity condition and the event granularity and hierarchy. All these definitions are in line with
the discussed premises.

Event Definition

Definition 2.2.1 — Event An event is an occurrence or happening at a segment of time at a given
(real-world) location that is conceived by several observers to have a beginning and an end,
and that is planned, carried out, and talked about by humans.

Event Identity Condition

Definition 2.2.2 — Event Identity Two events are the same only if they are the same occurrence or
happening at the same segment of time at the same location.

Event Granularity and Hierarchy

Definition 2.2.3 Events with the above definition can be of different granularity. Usually, there
is a hierarchy of events, meaning that there are higher level events that comprise lower level
events. The farther back an event is in time, the more important are the higher level events.

28

CHAPTER 3

Foundations and Related Work

In this chapter we review the literature related to this dissertation and describe foundations
that are directly relevant. As we have stated before, our problem of classifying documents from
social media applications into distinct events can be tackled using machine learning algorithms.
These algorithms play a key role in successfully designing appropriate learn functions for the
task. Therefore, the subject of this work is to explore machine learning methods for the creation
of an approach to classify stream data into event categories. Regarding the data to be processed
and the task, we mainly have to deal with two widely used methods in machine learning for the
analysis of data: classification and clustering [Mit99]. In the following we will discuss machine
learning in general and the application of machine learning techniques for stream classification
in particular.

Regarding machine learning, the term learning refers to systems that have the ability to learn
to solve a task by example or observation. In order to have such an ability, these systems need
an appropriate learning method. Cherkassky and Mulier [CMO07] define a learning method as
follows:

“A learning method is an algorithm [...] that estimates an unknown mapping
(dependency) between a system’s inputs and outputs from available data, namely
from known (input, output) samples. Once such a dependency has been accurately
estimated, it can be used for prediction of future system outputs from the known
input values”—[CMO07]

The mapping (or dependency) Cherkassky and Mulier [CM07] mention can be expressed as a
function h(z) : X — Y mapping an input space X to an output space Y. The function h(x)
as well as the input and output differ depending on the actual task. In machine learning, the
aim of the learning phase is to train or learn the function h(zx) so that it fits a training dataset
X that is represented by individual observations {z(1),...,2("™}. The final goal is to learn a
function h(z) which can be used for the successful mapping of yet unknown observations x to
accurate outputs y € Y, minimizing the risk of misclassifying.

29

Chapter 3 Foundations and Related Work

Traditionally, machine learning approaches can be categorized into two different groups: unsu-
pervised and supervised learning approaches. Unsupervised approaches are, for example, clus-
tering algorithms like k-Means or Expectation-Maximization (EM). Other examples are dimen-
sionality reduction algorithms like Linear Discriminant Analysis (LDA) or Principal Component
Analysis (PCA). To train an unsupervised model, only {z, ..., 2™} are used for the training
without any information about a designated outcome y®. Usually, these algorithms are used if
the designated outcome is not known or difficult to produce. If the designated outcome y® for
an observation (" is known, a supervised approach can be used. Supervised algorithms can be
learned using data tuples in the form (:c(i), y(i)).

The most relevant machine learning approaches for our task are:

e Classification: Classification aims at identifying which of a set of given categories a
yet unseen data point should be assigned to. This decision is made on the basis of past
observations where the category membership is known. This is a supervised strategy.

e Clustering: This approach aims at discovering clusters in a given set of data points ac-
cording to some cluster criterion. This criterion could be a similarity or distance. Usually,
this process is unsupervised.

The difference between these two methods is illustrated in Figure 3.1 based on an overview by
Kuncheva [Kun04].

An important question and a prerequisite to use any machine learning technique is which type
of data can be used and how it can be acquired. Typically, datasets consist of data points of
human-created or natural artifacts. This might be images, news articles, or sensor data. No
other information about the data points is included. For example, there is no further description
of how these data points are related, etc. Such a collection of data is called unlabeled.

If the unlabeled data is augmented with some information about relations between data points,
it is called labeled data. This information might be a classification, a distance between data
points, or a meaningful label of the class of category the data point is about. These labels are
often obtained by asking humans to judge and classify the data. For example, in the case of
image clustering, this is information about images forming a group or belonging to the same
category. If human assigned categories exist for a dataset, it is often referred to as a gold
standard. In our case, this gold standard includes example data where the similarity between
data points is known.

As such a gold standard (annotated data) exists for our problem, we are able to frame the task
as a classification or clustering problem. In the following, we will therefore discuss these two
related techniques. After that we discuss an extension of clustering algorithms incorporating
supervision by the use of background knowledge (Section 3.4). In Section 3.5 we discuss different
possibilities on how these techniques can be applied to large-scale datasets. Section 3.6 then
presents different approaches in the field of new event detection. Finally, we conclude the
chapter in Section 3.7 with an overview of directly related work surveying the field of social
media applications and social event detection.

30

3.1

3.1 Classification

Data Collection,
Feature Nomination

Unsupervised Supervised

Cmmmmmmmmaea s
Selection of a Clustering Feature Selection and
Method Extraction
GE, 5 SECEELEELERD ’U
3 < Selection of a Classifier
E : : Model
o- Clustering the Data >
% Training
= : : g
? Testing
© : :
D 5 B .
a= ResultOK? ~ ——--- feiecl— pesutoge

Clustering Solution
Figure 3.1.: Difference between unsupervised and supervised leaming strategies according to Kuncheva [Kun04]

Classification

Classification denotes a method to assign items to categories or classes. The problem is to
identify the correct category for a new data point that has not been seen so far. Typically, we
have the goal to learn a function f that maps an input vector X to an output vector Y:

f:X—=Y (3.1)

The function f can be learned using suitable training data in the form of pairs (:c(i),y(i)). If
we assume that this data is categorized according to a multi-dimensional feature vector so that
(™ € R?, the function to be learned is f : R* — Y.

The function learned from the training data is only an approximation of the function f that we
want to learn but do not know. Therefore, we denote the learned function as f . Our goal is
to minimize the error on the outcome when predicting unseen data items. In other words, we
aim to minimize the risk taking a wrong decision. This risk minimization can be achieved by
keeping the average error on the training data at a minimum.

31

3.2

Chapter 3 Foundations and Related Work

Therefore, a function is needed that quantifies the output error. Such a function err differs
depending on the output type and on whether the output is continuous. If the output is linear,
the mean squared error can be used:

If the output is discrete, the following binary error function can be used:

err(z) = {07 iff () = Jiw) (3.3)

1, otherwise

The learning algorithm tries to minimize the error while searching for a suitable function f .
The quality of the learned function depends on the ability of how well it can generalize to
unseen data points. There are numerous examples for actual algorithms that can be used for a
supervised classification: Decision Trees, Support Vector Machines, Perceptrons, etc. All these
algorithms are just different model classes providing a learning function. A frequent model is a
linear function:

fl@)=w a1 +ws zo+ .+ wyzy =w' (3.4)

The objective of the learning function is to parametrize the model class so that the error is
minimized. Thus, supervised classification can also be seen as a smart search within the space
of all possible functions.

Clustering

The field of clustering is broad and the number of different algorithms is high. In a position
paper by Estivill-Castro [Est02], the author argues that “clustering is in the eye of the be-
holder”. Following Estivill-Castro, any clustering of a dataset, whether produced by a human
or algorithm, is a hypothesis for data groupings which is selected among a set of possibilities
structured in some way. This becomes a data model which might potentially be a mechanism
to classify instances of that data. The preference of one hypothesis over another is done using
some clustering criterion. This criterion can be seen as the mathematical formulation of the
inductive principle [Est02; X+05; Nal+08]. Estivill-Castro [Est02] states that models are the
structures to represent clusters given a dataset, and the induction principle is selecting a “best
fit” model.

In contrast to the classification task, clustering is generally regarded as an unsupervised learning
problem [JMF99]. It is fundamental for the analysis of data of which the structure is not
known. The basic task is to discover similarities and structures within a collection of data points.

32

3.2 C(lustering

Clustering has been studied extensively in the literature and has important applications in many
areas. This includes data mining [HKO06], vector quantization [Ste56; Mac+67], statistical data
analysis [BR93|, and others. A lot of disciplines have introduced different kinds of clustering
methods and techniques to build classifications for structuring knowledge.

Based on work by Fayyad et al. [Fay+96] and Halkidi, Batistakis, and Vazirgiannis [HBV01],
the whole process of clustering can be summarized by the following steps:

1. Feature Selection: Selection of the features based on which the clustering is performed.
The data must be preprocessed so that as much information as possible is encoded to
reach the clustering goal.

2. Similarity Computation: Determines how similar or dissimilar data points are. It is
desired that all features contribute equally to the similarity measure, because features
dominating might produce an undesired clustering. This is described in more detail in
Section 3.3.

3. Clustering Criterion: A clustering criterion has to be defined in order to determine
how how good a clustering is. This is done by means of some rules or a cost function.

4. Clustering Algorithm: An appropriate clustering algorithm which can be used to op-
timize the clustering criterion has to be chosen or developed. It should fit the chosen
dataset.

5. Result Validation: The quality and the correctness of the resulting clustering have to
be evaluated. These results can then be used to refine the whole clustering process.

One of the simplest clustering algorithm is k-Means. This algorithm aims to partition n ob-
servations x1, ..., x, into k clusters C' = {C1,...,Cy}. As similarity measure it usually uses the
FEuclidian distance. The clustering criterion serves to minimize the squared distances within the
clusters. Therefore, the clustering criterion optimized by k-Means is:

k
argminz Z |2 — a2 (3.5)
¢ =1 ges;

Often, k-Means employs Lloyd’s algorithm. Given an initial (random) set of k centroids cy, ..., ¢k,
this algorithm alternates between two following steps until convergence is reached.

o Assignment: At each iteration ¢, each data point is assigned to the centroid whose sum
of squares (squared Euclidan distance) is minimal, such that:

S; = {1'p : H:cp — cl(-t)H2 < Hmp — cg»t)H2 Vi, 1 <5< k}, (3.6)

33

3.3

Chapter 3 Foundations and Related Work

e Update: The centroid is recomputed so that it represents the mean of all data points
belonging to the cluster:

ey _ 1 A
‘ i ’ ijS(t)

i

A convergence has been reached when the assignments no longer change, such that a (local)
optimum is found. A drawback is that there is no guarantee that this is also the global opti-
mum.

In general, clustering algorithms can be characterized as: connectivity-based, centroid-based,
distribution-based, and density-based. The clustering criterion as well as the algorithms are
different for each of them.

The core idea of connectivity-based clustering strategies is to regard objects as more related
if they are nearby. The clusters are thus formed based on the distance between data points.
Algorithms in that category are also known as hierarchical clustering algorithms, as a hierarchy
of clusters is provided that are merged when they are close enough. Examples are linkage
clustering algorithms.

In centroid-based clustering algorithms, a so-called centroid represents a cluster. This centroid
does not need to be a member of the dataset. An example for this type of algorithm is k-Means.
The objective of k-Means is to find k cluster centers and to assign the data points to the nearest
centroid in a way so that the squared distances within the cluster are minimized.

Distribution-based clustering algorithms use a clustering model that is based on distribution
models. The clusters are created from all data points that most likely belong to the same
distribution. An example is the Gaussian mizture model where the data is modeled as Gaussian
distributions.

The idea behind density-based clustering algorithms is that clusters are seen as areas where the
density is higher than in neighbored sparse areas. Data points outside these areas are considered
outliers and mostly regarded as noise. An example algorithm is DBSCAN (density-based spatial
clustering of applications with noise).

Distance Functions

Many clustering algorithms need a distance function for the successful clustering of data points
from a dataset. It is also known under the name of similarity measure. The assessment of
similarities between data points is absolutely necessary for many tasks like cluster analysis and
nearest-neighbor classification. Generally, the definition of such distance measures is a very
difficult task and requires good knowledge of the data, or of a distance function that has proven
to be suitable. Strehl, Ghosh, and Mooney [SGMO00] compared different distance measures like

34

3.3 Distance Functions

Euclidian, cosine, Pearson correlation, and extended Jaccard with respect to different clustering
techniques in the field of web-page clustering to find good manually chosen distance functions.

A alternative solution, which is widely applied in the literature, is to learn a distance function.
Often, a weighted linear combination of the single features is used. These weights are then
learned from positive and negative examples generated from the training data. The problem is
also typically addressed in the context of supervised clustering where we can infer constraints
so that data points belonging to the same category have a smaller distance to each other than
to other points not belonging to the same category.

Richter [Ric93| analyzes the learning of distance functions for the classification task using a
case-based scenario. He formulates the task as the one to find a distance function d such that
two data points a,b are in the same class if the distance d(a,b) between both is sufficiently
small. A different approach to find suitable distance functions and features is presented by Kira
and Rendell [KR92]. The authors use an interactive system allowing users to rate a similarity
prediction. The distance function is then enhanced using reinforcement learning. A similar
approach relying on the same technique can be found in the publication of Salzberg [Sal91].

Besides these early publications, the learning of distance functions has been widely used in
scenarios with different algorithms and techniques spread over different domains. Davis et al.
[Dav+07] present an information-theoretic approach for nearest-neighbor classification. Another
successful approach to distance function learning, using neural networks, has been presented
by Stein and Niggemann [SNO1]. Bar-Hillel et al. [Bar+03] and Eick et al. [Eic4+05] show that
the clustering performance can be massively improved by using Ring Clustering Algorithm
(RCA) and k-Means, respectively. Bilenko and Mooney [BMO03] present a classification-based
approach using a Support Vector Machine for learning similarity measures. In the social media
area, there is notable work from Becker, Naaman, and Gravano [BNG10]|, who compared an
ensemble-based approach to an SVM-based approach for a distance function learning, showing
that both approaches can be applied successfully. They further show that the SVM-based
approach is even more effective than the ensemble-based approach.

Joachims [Joa02] proposes to use a ranking SVM to learn a linear ranking model that can be
exploited to rank documents in information retrieval scenarios. Because the task of learning
a similarity function from training data is directly related to the task of learning a ranking
function in the area of Information Retrieval, in one of our published works we also presented
an approach for the social media field using different types of Support Vector Machines (ranking
and standard SVMs) [RC11]. This work follows approaches by Joachims [Joa02] and Fakeri-
Tabrizi et al. [Fak+10]. Fakeri-Tabrizi et al. [Fak+10] use SVMs for an imbalanced classification
problem with image annotation and compare a standard and a ranking SVM, showing that the
latter performs better. All approaches show that a ranking SVM can be more stable than a
standard SVM. A similar approach using a Perceptron to learn a ranking function has been
introduced by Gao et al. [Gao+05].

35

3.4

Chapter 3 Foundations and Related Work

Knowledge-based Clustering

We have briefly introduced the concepts of supervised classification and unsupervised clustering.
While it is possible to use knowledge that has been acquired in the past in the classification
task, it is totally ignored in unsupervised clustering approaches. In recent years, there has been
research on introducing another form of clustering which can be summarized under the term
knowledge-based clustering. In this area, ideas from supervised classification and unsupervised
clustering are combined.

The clustering task using labeled and unlabeled data has been dubbed semi-supervised [CCMO03;
B+499; BBMO02] clustering. If only labeled data is used for the creation of the model, like in
work from Eick, Zeidat, and Zhao [EZZ04], the term supervised clustering is used. The process
of clustering is significantly different if it is totally unsupervised (without labeled data) or done
with a least some kind of supervision (with labeled data).

In the following, we survey clustering approaches where background knowledge is incorporated
into the clustering task. The principle idea has already been used in 1996 by Bensaid et al.
[Ben+96] for the task of image segmentation. In this clustering setting, unlabeled and labeled
data are both used together. In particular, the known class labels or pairwise constraints
on several examples are used to aid an otherwise unsupervised clustering of unlabeled data.
Kononenko and Kukar [KKO07, p. 355] identify two different strategies to incorporate background
knowledge of knowledge-supervised clustering: constraint-based and metric-based.

Approaches falling in the constraint-based category are those where the clustering algorithm it-
self is changed to get a better and more appropriate clustering. These changes to the algorithm
are of different kind, but they all have in common that they change the objective function to
satisfy or enforce some constraints. Demiriz, Bennett, and Embrechts [DBE99] modify the algo-
rithm to include a satisfaction of constraints. Similar to that, Wagstaff et al. [Wag+01] add two
pairwise must-link constraints (condition that to two data points must be in the cluster) and
cannot-link constraints (two data points must not be in the same cluster) between data points
to the k-Means algorithm. A comparable pairwise-constrained approach has been considered by
Basu, Banerjee, and Mooney [BBM04a], who added an active learning strategy. As a good seed-
ing is important for a lot of clustering algorithms (like k-Means), there are also approaches where
the labeled examples are used to initialize the cluster centers (see Basu, Banerjee, and Mooney
[BBMO02]). Another supervised clustering algorithm has been introduced by Jirayusakul and
Auwatanamongkol [JA07], who use a prototype-based algorithm incorporating techniques from
unsupervised Growing Neural Gas algorithms. Rendle and Schmidt-Thieme [RS06] incorporate
supervision to guide the search for a clustering in the field of record linkage using a Hierarchical
Agglomerative Clustering (HAC) approach.

In metric-based approaches, the clustering distortion measure is adapted so that given con-
straints are satisfied. The clustering algorithm itself is not modified. The main idea is to learn
an optimized distance function with the help of labeled data. There are several approaches using
different distance metrics. Examples are works from Klein, Kamvar, and Manning [KKMO02],
who used an Euclidean distance metric which has been trained using a shortest-path algorithm,
and Cohn, Caruana, and McCallum [CCMO03|, who optimized a Kullbach-Leibler divergence

36

3.5

3.5.1

3.5 large-scale Processing and Scalability

using gradient descent. A lot of other researchers have employed approaches with different dis-
tance metrics and optimization algorithms (see e.g. Xing et al. [Xin+02] and De Bie, Momma,
and Cristianini [DMCO03]).

Bilenko, Basu, and Mooney [BBMO04c]| use a combination of a constraint-based and metric-based
clustering approach. They show that the results from their unified approach are better than
other approaches where labeled data is used only for one of the techniques individually. The
same authors also introduced a framework using Hidden Markov Random Fields where they
incorporated supervision. In addition, their framework allows for the optimization of different
distance metrics [BBMO04b]. Eick, Zeidat, and Zhao [EZZ04] compare different algorithms and
their performance with supervision identifying difficulties with many of them.

Large-scale Processing and Scalability

In many applications datasets are large, which makes processing expensive. This is indeed the
case when working with social media data. Following McCallum, Nigam, and Ungar [MNUO0],
datasets can be large in three different ways: i) the number of elements in the dataset is very
large, ii) the feature dimension is high, as every element may have a lot of features, and iii)
the number of clusters to be created is high. Social media datasets are to be regarded as large
in all of these ways. Therefore, the clustering of large-scale datasets has been identified as an
important challenge.

While there are many efficient naive implementations of clustering techniques, they all have
different reasons why they cannot be used if a dataset is large in more than one of the above
mentioned ways. Most machine learning algorithms are actually only useable in a setting where
the dataset is fixed and small. In the following we therefore consider algorithms and methods
which are capable of handling large-scale and stream-based data sets.

As we have already discussed before, scalability is crucial. It is an absolutely necessary require-
ment if the dataset is of large scale and if we are dealing with a stream data setting. We follow
Aggarwal [Agg07, p. 44] who provides an overview about methods making a clustering possible.
He differentiates two techniques enabling us to cluster large-scale stream data: task-based and
data-based. Techniques falling in the first category address computational challenges modifying
or inventing different algorithms, while the ones in the second category refer to a summary or
subset selection of the data [GZKO05]. In the following we will briefly go into more detail and
present some techniques for each category. We dedicate a special section to candidate retrieval
which is one form of a sampling strategy, a data-based technique.

Task-based Techniques

Task-based techniques can be summarized as the modification or invention of algorithms with
the goal to scale up the clustering process with a possible loss of precision and exactness. Follow-
ing Aggarwal [Agg07], some prototypical techniques falling in this category are: approzimation
algorithms, and algorithms using sliding windows and output granularity.

37

3.5.2

Chapter 3 Foundations and Related Work

Approximation algorithms are algorithms designed to solve NP-hard problems, as it is unlikely
that there are efficient polynomial-time exact algorithms solving these problems [Vaz01]. The
results from these algorithms are approximated solutions with error bounds. The aim is to find
at least one solution that comes close to the exact solution for problems that are otherwise not
solvable within a certain time frame. However, such algorithms still have problems to adapt
the resources to the data rate [Agg07], making them not suitable for our problem.

The sliding window techniques are only a range of data in a specific corridor. In this context
it means that only the most recent stream is used and analyzed. Dong et al. [Don+03] and
Babcock et al. [Bab+02] claim that older data (outside of the window) are summarized versions
while the detailed analysis is only done on the most recent data.

The algorithm output granularity has been proposed by Gaber and Yu [GY06] in a sensor data
stream setting. They claim that this is a fully resource-aware data analysis approach which
is capable to cope with fluctuating and high data rates. The algorithm measures how many
resources are available on the system doing a clustering and adapts the number of cluster centers.
If the resources are exhausted, a re-clustering is done so that the number of cluster centers is
lowered allowing for further clustering.

Data-based Techniques

Data-based techniques process data by summarizing or selecting data points, so that the cluster-
ing algorithm itself does not need to handle all data points but only a smaller preselected subset.
Common approaches are sampling, load shedding, sketching, and batch processing [Agg07].

Sampling is one of the most widely used technique for choosing a subset of data to be processed.
Many strategies are discussed by Sudman [Sud76]. In clustering tasks, random sampling ap-
proaches are often used, where a random choice is made to decide if a data point is processed or
not. In many approaches new data samples are retrieved until convergence is reached. However,
in our setting a random sampling strategy is not desirable as the selection of well-chosen samples
is crucial for our task. We will discuss a suitable sampling strategy—candidate retrieval—in
Section 3.5.3.

Using load shedding techniques, a sequence of data (usually yet unprocessed tuples) is dropped if
the system cannot fulfill the demand with its available resources. Babcock, Datar, and Motwani
[BDMO04] analyze when a controlled load shedding should be performed in a data stream setting,
helping to reduce resource consumption while ameliorating results. This raises the question
whether load shedding can be done not only randomly but guided by the importance of the
content. Tatbul et al. [Tat+03] provide a positive answer to that, showing that this leads to only
a minimal degradation in quality. Nevertheless, load shedding is not an option in our scenario
even if there are some guarantees. It is undesired to skip data points which are never processed
again, as the final result set will be incomplete.

Following Babcock et al. [Bab+02], sketching refers to a synopsis of the data which is held in
memory instead of an exact representation. This keeps the computational time to process a

38

3.5.3

3.5 large-scale Processing and Scalability

data item at a minimum. Such a sketch or synopsis can be seen as a summarization technique

[GZKO5).

Batch processing refers to a temporary caching of data points together with an aggregation. In
such a scenario, data is processed in two passes. In the first pass, data is preprocessed using
an aggregation step, producing a preliminary approximation of a clustering for the temporarily
cached items. In the second step, the data is processed in a batch mode resulting in the final
clustering. Urhan and Franklin [UF00] present XJoin where they use a mitigated version of the
technique solving the problem of a too high data point rate. He et al. [He+10] show a successful
integration of the batch process in a stream data processing. However, this technique can be
used only if the data can be processed in more than on pass.

It is obvious that all presented techniques are likely to produce a result that is approximative;
the precision of a clustering will thus not be of 100 % accuracy. While some approaches like
load shedding suffer more from this effect, for others the impact is lower (like batch processing
where an approximation can be avoided if an intermediate clustering is of 100 % accuracy).

Candidate Retrieval

Many works, for example Guha, Rastogi, and Shim [GRS98]|, show that one reason for scalability
issues is the number of comparisons to make. This has to be addressed using some way to limit
the total number of these comparisons.

Candidate retrieval—also known as blocking or candidate generation—is one possible sampling
technique to make standard machine learning approaches scalable. Its origins lie in the task of
record linkage, the task to link all data points in a database which share one or more entities
and thus should be merged. Nowadays, this technique is not limited to record linkage tasks,
but there are a lot of fields where it can be used to speed up retrieval processes. In general, this
method can be useful if the number of data points to be compared is too high. Even the best
algorithms have a maximum limit of possible comparisons; either this might be due to memory
or time constraints, or there will be a point where no more comparisons are computationally
feasible. Potentially, and this is the case in many tasks (including our approach), all data items
have to be compared to all other data items in the dataset. This means that the number of
comparisons grows quadratically with the number of items to be compared.

The idea of candidate retrieval is to restrict the number of comparisons by choosing a subset
for which the comparisons are conducted. Rendle and Schmidt-Thieme [RS08] show that us-
ing such a step indeed makes approaches more scalable. Using this technique, there are two
crucial points which are important: i) the subset must cover the correct matches as good as
possible, and ii) it is desirable to throw away as many non-matches as possible. In order to
gain performance, the candidates are retrieved at the beginning of each comparison step. This
enables us to do the rather computationally expensive comparison only on those data point
pairs for which the probability of a positive match is high. The overall goal here is to keep
the number of comparisons constant, even though the number of items to be compared grows
continuously. Another purpose of candidate retrieval is to improve the data quality itself. The

39

3.5.4

Chapter 3 Foundations and Related Work

candidate retrieval step is smoothing the dataset by removing unwanted noise and potential
false matches.

In order to measure the impact of candidate retrieval Elfeky, Verykios, and Elmagarmid [EVE02]
present several tools which allow to measure of the effectiveness and gain of a candidate retrieval
step. They provide definitions for the reduction ratio (percent of candidates which have been
removed), the pair completeness (how many relevant candidates are included) and overall accu-
racy (a ratio combining the two others). Having these measures in mind, we follow Michelson
and Knoblock [MKO06] who frame the goal of candidate retrieval more formally as a high reduc-
tion ratio together with a high pair completeness. In general, we desire to reach a high accuracy
while keeping the computational complexity low.

Taking a look to the field of record linkage, Baxter, Christen, and Churches [BCCO03| present
an overview of four different blocking strategies: bigram indexing, canopy clustering with TF-
IDF, sorted neighborhood blocking, and the so-called traditional blocking. While the last one
is only relevant for record linkage, the others are also useful in our scenario. In work from
McCallum, Nigam, and Ungar [MNUO0O], the number of candidates is limited using so-called
canopies. These canopies are overlapping subsets originating from an efficient division using a
cheap distance measure. Exact distances are then only calculated for the data points laying
within a canopy.

As our task is more complex because the data is orders of magnitude larger when using social
media data, we need particularly efficient techniques. We thus have to design a special candidate
retrieval technique for event identification.

Stream Data

As discussed in the previous sections, large-scale datasets are challenging to process. Stream
data is an ordered sequence of data which grows continuously; this type of data is thus to be
seen as large-scale. As the data points have a fixed chronological order, a free random access
to the data is not possible. The data size is unlimited and not all historical data might be
available.

Some authors like Vlachos et al. [V1a+04] and Becker, Naaman, and Gravano [BNG09] cache a
data stream to process it ignoring the timely-ordered manner of the data. This can be seen as
a shift of the problem to a normal large-scale clustering problem. While this allows for random
access to the data and the use of classical data mining algorithms, there is a big disadvantage:
the clustering is not available instantly and the latest data points are missing as new data
points arrive continuously. Depending on the intended purpose, this can be bothersome and
the clustering might be available too late. In addition, these approaches do not deal with the
problem of unlimited length of the stream and the memory fitting problem.

Papka and Allan [PA98] and Guha et al. [Guh+00] were one of the first to present clustering
algorithms to be applied directly on stream data. While Guha et al. [Guh+00] present an
algorithm which uses more than one single pass, Papka and Allan [PA9S8] strictly adhere to a
single pass clustering together with a classification decision for new events at the moment of

40

3.6

3.6 New Event Detection

their appearance. Aggarwal et al. [Agg+04] use a comparable approach where they create a
classification system in which an adaptation of the training model to the changes caused by
concept-evolution is possible. This is achieved by a regular and automatic retraining of the
model using newer data. More recent work from Masud et al. [Mas+11] goes into the same
direction. They present an algorithm which addresses the same issues. While Aggarwal et al.
[Agg+04] need a delay to identify the concept-evolution, this is working instantly in the more
recent work by Masud et al. [Mas+11].

New Event Detection

The new event detection problem consists of detecting the appearance of a new event in a
dataset of event-related data points. This means that data points which do not belong to any
event cluster seen so far have to be identified.

One of the first mentions of the new event detection problem in the literature was in the
topic detection and tracking (TDT) task [All4+98], where it was called first story detection. It
can be seen as the problem of detecting outliers or anomalies in the data stream. The aim
thus is to detect an abnormal behavior in the data, i.e. that the characteristics of the data
point deviates significantly from the regularities of all other data points. Outlier and anomaly
detection is important in the field of intrusion detection, fraud detection, robustness analysis
of network systems, as well as other data mining applications and has been studied widely.
Different approaches have been proposed to solve this problem, among them i) statistical, ii)
unsupervised or clustering-based, and iii) supervised or classification-based approaches.

In overview papers from Markou and Singh [MS03a] [MS03b], Chandola, Banerjee, and Ku-
mar [CBK09] and Hodge and Austin [HA04], different approaches and algorithms for novelty
detection and outlier/anomaly detection are discussed. The authors show that it is not a well-
formulated problem and many researchers tackle it with different approaches depending on the

type of data. The authors agree on three types of outlier detection problems (see especially
Hodge and Austin [HA04]):

e Type 1 is the task to determine outliers without prior knowledge of the data. This
corresponds to an unsupervised clustering.

o Type 2 models both normality and the outlier. This can be seen as supervised classifica-
tion.

e Type 3 just models normality. This is equal to a semi-supervised clustering.

In the following sections we survey different approaches for outlier detection according to these
three main types of approaches.

41

3.6.1

3.6.2

Chapter 3 Foundations and Related Work

Statistical Approaches

Initially, the outlier detection problem came up in statistics. The approaches here can be divided
into parametric and non-parametric ones. Parametric techniques rely on standard statistical
tests such as Grubb’s test, the t-test, and y?. Already in 1969, Grubbs [Gru69] reported
procedures for detecting outlying observations in samples. He also was the first to provide a
definition of an outlier which he formulated as follows: “An outlying observation, or outlier, is
one that appears to deviate markedly from other members of the sample in which it occurs”.
Aggarwal and Yu [AYO01] present an outlier detection method in high-dimensional data based
on Grubb’s procedures. While Surace, Worden, et al. [S+98] present work an novelty detection
using the t-test, Ye and Chen [YCO1] propose the usage of x? statistics to check whether a
new data point indeed stems from the training distribution or not. Non-parametric approaches
are, for example, histogram-based techniques. They do not make strong assumptions about the
distribution or density of the data. Examples for histogram-based techniques maintaining a
profile of the normal data have been applied in work by Eskin [Esk00] and Fawcett and Provost
[FP99].

Unsupervised Approaches

Outliers can also be found as a by-product of an unsupervised clustering algorithm. Here, it
is assumed that “normal” data points belong to a cluster while outliers are data points which
were not assigned to any of the clusters [GRS98; ZRL96; Est+96]. Usually, if the outliers are
not assigned to any cluster, they are considered as noise. However, in many tasks outliers are
valuable information, as it might indicate a change of concept such as the introduction of a new
event.

Many clustering-based approaches attempt to discover low-density regions in the data space,
assuming that outliers belong to a cluster with a density below a certain threshold. Such
approaches are typically called density-based. Work presented in this area is e. g. by Aggarwal
and Yu [AY08], who use a probability of presence of a uncertain data point in a sparse region
to determine outliers. A similar approach using a local outlier factor has been introduced by
Breunig et al. [Bre4+00]. Makkonen [Mak03] uses hierarchies to track event evolutions and if
the density is too low, the detection of a new event is assumed. Frequent item set mining has
also been applied to detect normal patterns in training data, regarding all those data points as
outliers that do not fit the frequent item set patterns [BLCO02].

Most of the cited works have in common that all outliers can be detected only after the whole
dataset has been seen; these are thus not applicable in a stream data setting. But, other
authors have proposed online methods and applied them to sequence data [BY01; Bud+06]. As
shown by Allan et al. [All4+98] for the topic detection and tracking task, new event detection is
particularly interesting in the scope of temporal stream data. We agree with Allan et al. that
the aim is to detect the first appearance of a new event in a data stream. In this context, the
arrival of a new event can be denoted as concept evolution, as the concept of the new data
point is different from the ones in the past. Commonly, the techniques used here work within
single-pass settings.

42

3.6.3

3.6 New Event Detection

Other approaches rely on distance-based criteria [KN98; RRS00; VGO04]. Papka and Allan
[PA98] propose to use a threshold model that incorporates time distances in order to decide
on a new event. Knorr and Ng [KN98|] define an outlier as follows: “[a] point p in a data set
is an outlier with respect to the parameters £ and A, if no more than k points in the data set
are at a distance A or less from p”. That this approach requires A to be chosen manually can
be problematic in the sense that if the value is chosen to large or small, too few or too many
data points are considered as an outlier. Newer approaches like the one from Kriegel, Schubert,
and Zimek [KSZ08] use a different strategy to overcome this problem, using an angle-based
approach with the side benefit of a better scalability and performance. Others propose different
solutions, for example, Aggarwal and Yu [AY05] use a lower-dimensional projection, while Gao
et al. [Gao+10] propose a generative mixture model. Masud et al. [Mas+10] investigated data
streams in a dynamic feature space, introducing DXMiner which uses a sliding window.

Supervised Approaches

Supervised or classification-based approaches use discriminative techniques to separate low-
density from high-density regions in the dataset. The approaches in this area have in common
that integrating a new event detection mechanism into traditional classifiers ends up in a super-
vised clustering setting. Examples in the field of news text classification can be widely found
in the literature. For example, there are approaches that apply SVMs, Neural Networks, and
Bayesian Networks in this context [CBKO09].

Ratsch et al. [Rat+02] consider the problem of outlier detection as a one-class learning problem.
They use radial basis function (RBF) kernels to define complex regions that contain the training
data instances. For each test data instance, it is determined if the instance falls into this region,
regarding it as an outlier if it does not. Work by Davy et al. [Dav+06] goes into the same
direction; they show a successful application of a Support Vector Machine to the problem of
detecting abnormal events. In contrast to Ratsch et al., they do not rely on only one class.

Other approaches for detecting novelties use Neural Networks. In order to determine whether a
data point is an outlier, they test whether the data point is accepted by the network as an input
or not. If it is not accepted, it is regarded as an outlier [MS03b]. An approach called Long-term
Depressant SOM! (LTD) was presented by Theofilou, Steuber, and Schutter [TSS03]. Here, the
weight vectors of the cells in the map become more and more dissimilar to the seen training
instance over time. The LTD-like SOM works differently from the classic Kohonen network.
Instead of a movement of the weight vectors closer to the input distribution, the weight moves
away from it. Newly arriving data points which are close to these weight vectors are regarded
as outliers in the LTD-like SOM.

Kumaran and Allan [KA04] as well as Zhang, Zi, and Wu [ZZW07] tackle the problem of new
event detection in the same context as proposed in the topic detection and tracking program
[All4+98]. Kumaran and Allan experiment with the representation of the data in the vector-
space model introducing named entities. The approach from Zhang, Zi, and Wu is also based

!Self-organizing map

43

3.7

Chapter 3 Foundations and Related Work

on named entities and similarly uses indexing-trees for a faster retrieval. This is the first
approach focusing on scalability.

Event Identification and Detection

In recent years, a lot of research has been conducted in the field of event identification and
detection using the techniques discussed in the previous sections. FEvent identification and
detection comprises several procedures with different objectives. We will discuss the different
objectives first:

(1) Event ldentification: Event identification is the process of identifying if an event occurs.
We use this term to denote the task of distinguishing documents representing an event
from those that do not.

(2) Event Category Detection: The aim of event category detection is to categorize documents
into general event categories, like “soccer match” or “festival”, which are part of a taxon-
omy.

(3) Event Detection: In event detection, documents identified to represent some event are to
be classified into specific events. The difference between event category detection and
event detection is that in the latter context the event instances are unique and specific
like “soccer match between Russia and Japan in March 2010” or “Great Ocean Festival
2013,

In the literature, the terms are often used interchangeably. To our knowledge, the term event
identification has also been used to describe the objective (1) and (3). In the following we
use the above defined notions to clearly distinguish between the approaches. The approach
presented in this dissertation aims to detect specific events and therefore clearly addresses the
third objective—event detection.

Earlier, event identification and detection has been done by hand or with very simple algorithms.
A system by Sarvas et al. [Sar+04] called MobShare allowed a manual assignment of image
folders from friends to one event, but the creation and identification of the events as well as
the merging process were completely manual. Many (semi-)automatic approaches use temporal
information for event detection, e. g. for clustering a digital photo collection [Coo+05; Gra+02].
The effort involved in these approaches is very different. One uses simple cuts through a
predefined time threshold, e. g. Apple iPhoto, a popular photo managing application, allows to
automatically cut photo collection into slices of 2, 8, 24 hours, or a week. The other uses different
kind of unsupervised and supervised clustering approaches (see Cooper et al. [Coo+05]). It has
been shown that the sole use of temporal information works quite well for single-user applications.
According to Cooper et al. [Coo+05], the F-measure for a Bayes information criterion-based
boundary selection is very high using two different datasets. They also show that the same
applies for a simple time threshold (being the best in one dataset). Arguably, the use of only
the temporal feature would not work sufficiently well using social media content shared by a lot

44

3.7 Eventldentification and Detection

of people. Nevertheless, these findings are a basis for our multi-pass clustering approach (see
Part III).

Social media content has received a lot of attention in the past years. Since many documents
in this area represent some type of event, it is especially interesting to do event identification
and detection with this type of data. Previous work has already been shown to bring order
to social media data. Since 2011, as part of the MediaEval benchmark, an initiative dedicated
to evaluating new algorithms for multimedia access and retrieval, there is a challenge called
Social Event Detection (SED) requiring participants to discover event-related multimedia. Over
the years, the challenges dealt with different kinds of event identification and detection tasks
[Pet+14]. While in 2011 and 2012 the focus was mainly on event category detection, it includes
different tasks for all three different event identification and detection objectives since 2013.

In the field of event identification, several attempts have been made to decide whether a social
media document is associated with an event or not. Research in this area is also known under
the name burst detection [HCLO7]. Chen and Roy [CRO09], for example, present an approach
which is able to distinguish between aperiodic and periodic events. In that sense, their work
is related to the one by Rattenbury, Good, and Naaman [RGNO7], who present a method
called “Scale-structure Identification (SSI)”. They are able to apply the method to identify tags
representing events as well as places. In more recent work, Rattenbury and Naaman [RN09]
present an attempt to learn a classifier that distinguishes not only events and places but also
social media documents from Flickr representing an event and documents that do not. Firan
et al. [Fir+10] use different Naive Bayes classifiers to decide whether an image is associated with
an event or not. Others proposed to use wavelet-based detection methods to identify events on
Twitter [WL11]. The results of all these approaches show that improvements are still necessary,
as the detection either works only for small domains or there is a large portion of misclassified
documents. In the SED 2013 challenge, there were better approaches using mainly Support
Vector Machines as classifier. One approach reached a decent result by employing a very rich
set of textual features together with a set of ontological features [Ngu+13].

A first approach to cluster documents from Flickr into event categories has been proposed
by Firan et al. [Fir+10], who use a Naive Bayes Multinomial classifier assigning images to
Wikipedia and WordNet categories. Barnard and Forsyth [BF01] use a generative hierarchical
model integrating semantic and visual information to create an image database browsing system.
In the second MediaEval SED 2013 challenge, participants were asked to cluster a set of images
into eight event categories. The participants adopted a direct classification procedure [BI13;
Ngu+13; SN13]. With respect to the results, all approaches still have severe problems to
determine the correct categories; the best only reached an F-measure of 44.9 %.

One of the first to tackle the problem of event detection in social media were Becker, Naaman,
and Gravano [BNG10], who presented an incremental clustering algorithm that clusters social
media documents into a growing set of events. The clustering algorithm used is similar to the
one used for detecting events in text documents streams (see Allan et al. [All4-98]). In this
approach, all documents have to be compared to each other before the assignment to the final
category can be made. This causes scalability issues as these comparisons grow linearly with
the data. There has also been other work on detecting and indexing events in social media

45

Chapter 3 Foundations and Related Work

streams like the one by Chen and Roy [CR09], who consider an approach for detecting events
exploiting the temporal and spatial distribution of keywords and tags.

More recently, we have proposed an event detection task on the image dataset described in
this dissertation to be used in the Social Event Detection task of MediaEval 2013 (see Reuter
et al. [Reu+13]). In addition, we provided an evaluation tool to make all results comparable.
There was a total of 11 participants in that task. Therefore, we are able to directly compare
our approach presented in this thesis to the approaches of the MediaEval participants. As the
task did not require to treat the data in a stream scenario, it was possible to use the dataset in
a fixed setting allowing a back and forth search with no limitation in the number of passes. In
the following we will briefly give an overview of the different approaches that were applied.

In general, it was possible to use two kinds of data for each document: metadata and the visual
image itself. The metadata included the capture time, upload time, geographic information, tags,
title, description, and information about the person (distinct identifier) who uploaded the image
and other data. It was possible to use any feature combination, and not all features had to be
used. While all approaches made use of the metadata, only some approaches additionally used
the image data, which they represented by SIFT or SURF features. All these approaches showed
that the use of visual information does either not ameliorate the overall quality of clustering
or, worse, even lowers the overall performance [Raf+13; BI13; Sch+13]. Some approaches
[ZZD13; WS13; SN13] heavily preprocessed the textual metadata by applying stop word removal,
stemming and/or non-ASCII character removal. Nevertheless, the results were not as good as
the ones from others who did not apply any text manipulating techniques. Others rounded the
timestamps to higher time spans, up to whole days. While the impact of a smaller rounding is

not measurable, the rounding to a full day may cause problems as the results were a lot worse
[GGC13].

All researchers were faced with the scalability issues caused by the number of data points in the
dataset. Some did not deal with the problem at all, resulting in a slow and not very scalable
approach. Others tackled the problem by using very different techniques. A few made use
of a candidate retrieval step, which has been proposed in earlier work by us [RC12] which
will be explained in more detail in Section 5.3. While some, like Schinas et al. [Sch+13] and
Manchon-Vinzuete and Giro-i-Nieto [MG13], directly adopt the candidate retrieval method we
have proposed, others used it as an inspiration for a variant using only the time factor [Ngu+13].
Another idea proposed was to use a search engine like Lucene or Sphinx to create the candidates
[Sam+13]. A different solution to tackle the scalability problem was to split the dataset into
batches in order to make processing possible for a computationally time expensive algorithm
[WS13].

Many of the approaches use algorithms which cannot be used in a stream setting as they are opt-
ing for a sequence of several clustering operations which cannot applied to data streams [ZZD13;
Raf+13; Ngu+13; MG13]. It is common to cluster by time and location first (e.g. Zeppelza-
uer, Zaharieva, and Del Fabro [ZZD13]| and Gupta, Gautam, and Chandramouli [GGC13]) and
then iteratively incorporate other features in one or more passes. There are also approaches
which initially consider a per time and user cluster, subsequently adding another merge al-
gorithm [MG13; Ngu+13]. The results in SED 2013 show that multi-pass algorithms seeing

46

3.7 Eventldentification and Detection

the whole data set (all data points) at once have a higher performance than algorithms with
limited passes for a stream setting. For example, Samangooei et al. [Sam+13] present a spec-
tral clustering algorithm with the density-based structural clustering algorithm for networks
(DBSCAN) with neighborhood selection clustering. They preprocess data in a sparse affinity
matrix, achieving a very good performance (reaching an F-measure of 94.6 %).The approach
by Wistuba and Schmidt-Thieme [WS13] uses a Quality Threshold clustering. Instead of using
a document-document based representation, they were inspired by earlier work of us, using
a document-centroid based representation. An approach applicable in a stream setting was
presented by Manchon-Vinzuete and Giro-i-Nieto [MG13]. They propose a two-pass approach
using Photo-TOC [PCF03] as a first step to cluster pictures by time for every user, and then
use a merge algorithm to produce the final clustering (F-measure: 88.3 %). Later, in Section 9.3,
we provide a direct comparison of performance with the most important approaches mentioned
in this section with our approach when presenting our results.

47

cHAPTER 4

Event Clustering Dataset

In order to create, test, and validate the social media clustering approach of this work, it
is necessary to have a suitable dataset. There are already many datasets published which
help researchers with developments in the area of classification and clustering to test their
approaches. Examples are the datasets from Chapelle, Scholkopf, Zien, et al. [C4+06] who
proposed three artificial and three real datasets for testing and validation of semi-supervised
clustering approaches. There are also several datasets published based on the Reuters news
corporation collection [San94]. One example for such a text collection is the Reuters-21578
dataset [Lew97]. There are at least two datasets in the social media field which we are aware
of. Over et al. [Ove+12] presented a dataset comprising videos as part of TRECVID MED.
Another dataset comprising images has been proposed by Papadopoulos et al. [Pap+13a] in
the MediaEval SED challenge. However, many of these datasets (including the ones mentioned
above) have several drawbacks that limit their use for our approach: either they are totally
artificial, not related to social media, or the number of documents/data points included is small.
For example, the dataset from Papadopoulos et al. [Pap+13a] only contains a little more than
100,000 images and they provide a classification only for a fraction of these. Furthermore, the
classification is based on event categories and is thus not suitable to evaluate an approach for
distinct event detection. We thus decided to create a new dataset. As the aim is to develop an
application for a real-world instead of an artificial application, the dataset should be non-toy
and reflect real-world data. Therefore, in the following we propose such a dataset which has
already been released in 2014 under the name “ReSEED — Social Event dEtection Dataset”
[Reu+-14].

Our dataset consists of pictures from the online photo sharing community platform Flickr!
which is operated by Yahoo Inc. All the pictures are assigned to individual and distinct social
events. These social events are of large variety and include concerts, festivals, sport events like
soccer matches, protest marches, debates, expositions, and others.

In addition to the pictures itself, Flickr provides so-called metadata for each picture. In our
case, we are talking about descriptive metadata. As its name already implies this data describes

"http://www.flickr.com—last accessed 2014-09-19

49

http://www.flickr.com

4.1

Chapter4 Event Clustering Dataset

the data file itself. More precisely, in this context metadata is textual data like a timestamp,
keywords, title, as well as a textual description of the image content.

The whole dataset including all pictures, together with their associated metadata, was down-
loaded from Flickr using their official API?> which provides a convenient way to access the official
data. Furthermore, we made sure that all pictures have been published under a Creative Com-
mons license. This type of license granted by the image uploaders allows a free distribution of
the pictures and the metadata even without the usage of Flickr.

In what follows we give information on how exactly the data was obtained. The creation
process of the event clusters themselves is then described in section 4.2. After that, we proceed
to describe the dataset in more detail and provide necessary figures and statistics. We conclude
with a description of the dataset format.

Creation and Collection of the Dataset

In order to collect the data material we relied on the official API from Flickr. Altogether, the
retrieval of the images and their accompanying metadata has been performed in four subsequent
steps:

1. All metadata available for every photo in the dataset was fetched using the function
flickr.photo.search of the Flickr API.

2. All available information about the photographer and uploader of the photos has been
fetched using the flickr.people.getInfo function.

3. The photos themselves were downloaded via standard HTTP requests using their ad-
dresses, which were fetched in the first step.

4. Additional information about the events has been fetched from the online event calendars
Upcoming® and last.fm?.

For the creation of the gold standard we have used an essential key function from Flickr. Every
user of the Flickr services has the possibility to assign so-called tags to the pictures which were
previously uploaded. These tags are meaningful keywords describing each image. Usually, the
tags contain human-readable textual information. This might be a single word, a short slogan
(multi-word), or just some character combination with up to 255 characters. In 2007, a special
type of tags which are meant to be consumed by machines was newly introduced by Flickr.
These special tags are called machine tags. Sometimes they are also known under the name
triple tags. Their main difference to the normal and user-centric keywords is that machine tags
are built up using a fixed schema. This schema uses a namespace, predicate, as well as a value.
Such a machine tag is denoted in the following form:

2http://wuw.flickr.com/services/api—Ilast accessed 2014-09-19
3http://upcoming.yahoo.com—last accessed 2013-03-10
“http://wuw.last.fm—last accessed 2014-10-03

50

http://www.flickr.com/services/api
http://upcoming.yahoo.com
http://www.last.fm

4.1.1

4.1.2

4.1 Creation and Collection of the Dataset

namespace:predicate=value

A namespace denotes a facet or a class which the tag belongs to. The predicate is used to name
the property for a namespace and the value is some value suitable for the property. How this
can be used for the creation of the dataset will be explained in more detail in Section 4.2.

Fetching of Metadata

Our first objective was to fetch the metadata for suitable images. We thus exploited an API
function as the first step which allows to search for images meeting certain criteria. A suitable
function was flickr.photo.search. The result of this API call is a set of textual metadata
about the photos. It also includes the address from where the image itself can be downloaded.
Our intent was to download all photos uploaded to Flickr between the 1st of January 2006
and the 31st of December 2012 fulfilling certain criteria: a) the photo has a special machine tag
assigned and the namespace of that tag is either upcoming:event= or lastfm:event=and b) the
license of the image is one of the following Creative Commons licenses: Attribution alone (CC
BY), Attribution and ShareAlike (CC BY-SA), Attribution and Noncommercial (CC BY-NC), or
Attribution, Noncommercial, and ShareAlike (CC BY-NC-SA). Other pictures are not included
in the final dataset. This applies especially for images under other licenses like the Creative
Commons ones not allowing derivatives (CC BY-ND and CC BY-NC-ND) which are excluded.
Limiting the selection of images to the ones under a Creative Commons license has several
advantages: a) we are allowed to freely distribute the dataset, b) the licenses are well-known
and c) their effectiveness has been already proven by some courts in different countries.

Using Flickr’s API there is a maximum of 500 results per call. Even though the number of
retrieved picture metadata is not officially limited using the flickr.photos.search function,
we were faced with the problem that, after a certain amount of picture data (about 5,000 to
10,000) retrieved, the API repeatedly returns the last 500 photos as duplicates. We therefore
changed the strategy to calling the API function to retrieve the pictures for one single day only,
successfully circumventing the faulty behavior of the API. The final API call thus uses three
constraints: a) the machine tag is in one of the following namespaces: upcoming:event= and
lastfm:event=, b) the photo has been taken on the day specified in the query, and c) the
pictures was published under a Creative Commons license allowing free redistribution. The
exact approach for the whole retrieval process is shown in algorithm 4.1

Fetching of Uploader Information

In step 2 we fetch information about the persons who uploaded the pictures to Flickr. Therefore,
we incorporate the API once again. This step is necessary as the Creative Commons licenses
used for the pictures request that the original author has to be credited. We thus employ the
following function of the Flickr API to obtain the information:

flickr.people.getInfo

51

Chapter4 Event Clustering Dataset

Algorithm 4.1: Metadata retrieval from Flickr
Input :Two namespaces: upcoming:event= and lastfm:event=
Output: Retrieved pictures and metadata matching query

Day < ’2006-01-01";
while Day < ’2012-12-31" do
foreach Namespace do
PageNumber <— flickr.search.photoSearch (Day, Namespace);
foreach PageNumber do
CurrentPicture <— flickr.search.photoSearch (Day, Namespace, PageNumber);
foreach CurrentPicture do
if CurrentPicture is new then
‘ Store metadata to local database;
else
‘ Discard picture information;
end

end

end

end

Day < Day + 1;
end

The uploader information is requested for each picture entry in our local database using the
unique user ID which has been provided by Flickr for each picture. As a result we get the
following information about the persons:

e Unique ID on Flickr

e Username chosen by the user

o The real name (if the user has provided that name)
e A link to the user profile on Flickr

o The location where the user is situated (if provided by the user)

At the end of this step, we have stored the uploader information together with the metadata
for 450,000 pictures.

4.1.3 Fetching of Picture Files

Using the addresses obtained in the first step and stored in our local database, all pictures are
downloaded via the GET function using a standard HTTP connection. During the download
phase we saw that around 15,000 of the pictures are not available for download for several
reasons. This was the case for some pictures due to unavailability of the Flickr servers. However,

52

4.2

4.2.1

4.2 Labeling of the Data — Creation of the Gold Standard

the largest portion was unavailable because of a removal by the uploader or copyright holder
or changed privacy settings preventing a download. This was the case as the API does not
necessarily deliver the latest information. Finally, the whole download process eventually led
to a total of 437,370 pictures downloaded.

Labeling of the Data - Creation of the Gold Standard

In this section we describe how exactly the gold standard was created. A manual labeling of data
for such a high amount of pictures by hand is a very time-consuming and expensive undertaking
and we came to the conclusion that this is not feasible. We therefore exploited existing manually
created and readily available social events which were already defined collaboratively by a
community of users. In fact, there exist websites on the Web that host social event calendars.

Usage of Social Event Calendars for Data Labeling

A so-called social event calendar is defined as a repository of social events which can be searched
and browsed by events. In such a social event calendar, humans create an entry for each distinct
event. Services offering this functionality are often managed professionally. The benefit here
is that only social events that have been validated by the community are added. Therefore,
all included events extracted in this way have a rather small level of noise. Furthermore, it is
notable that most of these sites provide more information about the social event than the plain
event name. It is very usual that the entries contain more detailed information about the event
type itself. This includes the time and date when the social event takes place, the location, a
detailed description, and a lot more. A full list of available information is provided in Table
4.1.

For the creation of the dataset presented here, we focused on two services providing a social event
calendar: i) Upcoming® and ii) last.fm®. The first service mentioned here, Upcoming, formerly
was a public Internet page operated by Yahoo Inc. It provided event calendar information since
2003. The site has been taken down unexpectedly on April 30, 2013 and the information from
the site is no longer available to the public. Fortunately, we still are in possession of a data
copy in a local database. Last.fm, the second service claiming to be the world’s largest online
music catalogue, provides an event calendar since 2007. While the calendar from last.fm targets
events related to music, Upcoming provided also entries for all other varieties of events; this
included sport events, conferences, protests, etc. The information of the events available from
both services is comparable.

An example for a social event presented on last.fm is shown in Figure 4.1.

Both services provide an API enabling us to easily download the event information together
with all details available. There is usually more information available using the API than what

Shttp://upcoming.yahoo.com—last accessed 2013-03-10
Shttp://wuw.last.fm—last accessed 2014-10-03

53

http://upcoming.yahoo.com
http://www.last.fm

4.2.2

4.2.3

Chapter4 Event Clustering Dataset

lC\St.fm Music search Listen Events Charts Originals Join Login
Xiu Xiu at GlaSSIandS Ga"ery Attendance Images Similar Reviews
With Yvette Are you going?

Saturday 18 October 2014 at 8:00pm I’'m going I’m interested
18| Add to a calendar

9 . land I 1 po 14 going:
Glasslands Ga ery Glasslands Gallery B Lanimilbusx hour_glass

= 289 Kent Ave Saturday 18 October ' '
Brooklyn, New York NY 11249 2014 § &]
United States X

Upload poster HerEverlong epic_rain

Show on Map

Web: www.theglasslands.com/

Figure 4.1.: Example from last.fm

is shown in Figure 4.1. For the creation of the labeled data, the most interesting and valuable
information is the unique event identifier (Event-ID) for each individual event entry; this is a
simple integer value but is the key used to uniquely identify an event. It thus can be used as
the basis for creating a gold standard (as originally proposed by Becker, Naaman, and Gravano
[BNG10]).

Fetching of Event Information from Upcoming and Last.fm

In addition to the data from Flickr, we obtained information about the events that these pictures
depict using the services of Upcoming and last.fm?. Both services offered an API which can
be employed for the task. Therefore, we used the Event.getInfo function form last.fm’s API
and the unfortunately no more existing equivalent from Upcoming to fetch several information
about the events. The features available from each service can be seen in table 4.1.

At a glance, we obtained detailed information for 5,236 out of 5,384 events from Upcoming and
15,043 out of 16,334 events from last.fm.

Labeling Process

The introduction of machine tags in Flickr enabled users to associate keywords with their photos.
Machine tags are automatically recognized as a special tag by Flickr when they are entered by
the user using the special schema for the triple tag namespace:predicate=value. It is possible
to use these machine tags in several ways. On the one hand, they can be used for an easier
search. On the other hand, machine tags can be used to link data, e. g. pictures or texts, across
sites. This is where the unique identifiers from Upcoming and last.fm come into place. The
users of both sites were attending several of these social events. At the event they were taking
pictures with their cameras and mobile devices which they afterwards upload to their Flickr

"http://www.lastfm.de/api—last accessed 2014-10-02

54

http://www.lastfm.de/api

4.2 Labeling of the Data — Creation of the Gold Standard

Table 4.1.: Available information from two social event calendars, last.fm and Upcoming

Information last.fm Upcoming

Unique ID v
Event title v
Event tags and keywords
Event description

Start time

End time

Number of attendees
Name of venue

Venue address

URL to venue

Exact geographic location

\
ASENENENENEN

ANENENENEIN
ESENENEN

photo album. Both social event calendar sites began to ask their users to add a well-formed
machine tag to the uploaded pictures on Flickr so that other people could use this unique ID
to find the pictures or to use the pictures on some other service. The machine tags for these
pictures are in the following form: upcoming:event=#eventid or lastfm:event=#eventid.
This provides important information about the pictures for us as we then know that the picture
with such a tag belongs to a social event in the database of the social event calendar provider.
Subsequently, we aim to obtain the corresponding unique Event-1D for this event. Therefore, we
can make the assumption that all pictures which were previously marked with the same Event-
ID in the machine tag belong to the same event [RC12] (see also Becker, Naaman, and Gravano
[BNG10] for a previous approach exploiting this same principle that inspired this approach).

Being in possession of that information, we went through each picture extracting the associated
machine tags. All machine tags being outside of the namespace we are looking for (“upcoming”
and “lastfm”) were discarded. Afterwards, the wvalue of each triple tag for the machine tags
upcoming:event=value and lastfm:event=value was extracted. The resulting values were then
stored together with each Flickr picture ID in our local database. We end up with three different
types of relations for the pictures:

1. Pictures having only a relation to the Upcoming event calendar
2. Pictures having only a relation to the last.fm event calendar

3. Pictures having a relation to both services

If an event was listed on both event calendar systems, the event in question was merged to one
distinct event. The information about these correspondence was used from pictures having a
relation to both services. In the case that a picture only had a relation to one event calendar
provider, the pictures were associated with the newly merged event. After that step, the final
number of events for the whole dataset is 21,169.

55

4.3

Chapter4 Event Clustering Dataset

Dataset Statistics

The dataset as a whole contains 437,370 pictures from the Flickr photo community site, which
are available under a Creative Commons license allowing derivatives and distribution with an
upload time to the Flickr site between January 2006 and December 2012. These pictures were
assigned to 21,169 events in total. All events in the dataset are heterogeneous with respect to
type and length. This means, it includes festivals which have a duration of several days as well
as soccer matches with only a few hours of duration.

The dataset includes the pictures themselves together with metadata about each image. The
data has not been post-processed in any fashion. There are some features in the metadata like
upload time and information about the person who uploaded the pictures which are available for
every picture without exception. However, as it is a real-world dataset, most of the associated
features are only available for a subset of the pictures. In particular, this applies to the following
metadata and information about the images that has been fetched directly from Flickr using
their API:

e Unique ID: This is a unique identifier for the picture assigned to it by Flickr after its
upload.

o Uploader Information: Information about the person who uploaded the picture to Flickr.
This includes a short ID as well as the real name, location, and other data about the
uploader.

e URL: Location on the Flickr servers where the picture can be downloaded from.

e Capture Timestamp: This denotes the date and time when the picture has been taken
with the camera device.

o Upload Timestamp: Timestamp (date and time) when the user has uploaded the picture
to the Flickr community platform.

e Geographic Location: Geographic location specified by longitude and latitude.

e Tags: All tags and keywords which are assigned to the photo. This also includes the
special machine tags.

o Title: The title of the picture as chosen by the uploader.

o Description: A description of the photo. This is a longer free text provided by the
uploader.

e Views: The number of persons who have viewed the picture from the upload date till
2013-03-30.

o License Type: Type of Creative Commons license (as indicated).

56

4.3.1

4.3 Dataset Statistics

Table 4.2.: Availability of features

Feature Availability
Upload time 100.0%
Capture time 98.3%
Geographic Information 45.9%
Tags 95.6%
Title 97.6%
Description 37.8%
Uploader Information 100.0%

Data Quality

In spite of the fact that many pictures in the dataset include EXIF data directly from the
camera, this data is not directly used in the creation process of the metadata. Nevertheless,
the EXIF information was used by Flickr previously to create the metadata—e. g. the upload
time is taken from the EXIF information. Even though the EXIF information was not used, it
is still associated with the images.

If no useful data is associated with the picture, i.e. if there is no information about when the
image has been captured, Flickr uses the upload timestamp also for the capture timestamp. In
the download of the metadata via the Flickr API, the capture timestamp is thus unreliable. In
order to ensure a good quality of the data, the capture time has been removed from the capture
timestamp field if it equaled the upload time.

The metadata about time information, geographic location, and tag information is usually of
good quality. However, as it is a real-world dataset this information may be incorrect and there
is no guarantee that the user took care of the correctness, e.g. if the time and date configured
in the user’s camera were wrong, the data will contain false time information. After a thorough
overlook of the dataset, we discovered that the title of the pictures very often contains the
filename; this is problematic in the sense that it is named by the camera, e.g. “DSCFxxxx”,
“IMGxxxx”, etc. This may mislead a learning algorithm. Also, the description field is used by
some uploaders to advertise themselves, to give additional copyright notes, and not to give a
description of the shown image.

As not all photo camera devices are equipped with an internal GPS and people do not neces-
sarily tag the geographic location afterwards, only about a little less than half of the dataset
has a geographic position assigned. The same applies for other features as only the uploader
information and time is a must on Flickr. Exact statistics for each metadata feature are given
in Table 4.2.

57

4.3.2

4.3.3

Chapter4 Event Clustering Dataset

Table 4.4.: Distribution per year

Table 4.3.: Use of license Year Fraction
License Fraction 2006 4.6%
CC BY 20.1% ;88; gégg
CC BY-SA 15.4% 5009 5 1’ 470
CC BY-NC 17.2% 5010 13’5(;
,07/0
CC BY-NC-SA 47.3% 92011 8.8%
2012 5,0%
License Constraints

As we already have mentioned above, all pictures are licensed under a Creative Commons license.
The exact figures of the distribution of the used licenses are given in Table 4.3. We only included
pictures in the dataset which allow for free distribution, remixing, and tweaking. Therefore, we
only used the subtypes of Creative Commons that allow to use the pictures along the lines
mentioned above as long as the owner is credited for his photograph; in particular these licenses
are:

Attribution (CC BY)

Attribution Share Alike (CC BY-SA)

Attribution Non-Commercial (CC BY-NC)

o Attribution Non-Commercial Share Alike (CC BY-NC-SA)

The two licenses Attribution No Derivatives (CC BY-ND) and Attribution Non-Commercial No
Derivatives (CC BY-NC-ND) were not used to ensure that the pictures and metadata can be
changed for research purposes. The same applies for all other license types which are available
on Flickr.

Data Point Distribution

The relative number of pictures per year is shown in Table 4.4. It is wroth noting that the
distribution over time is not constant. A reason for this is the decreased usage of the online
event calendars as the main communication and information sharing about social events has
been translocated to other social community sites.

The distribution of the pictures per event is also not uniform. In Figure 4.2 this distribution
is depicted for the events with up to 40 pictures per event, clearly showing that the size of the
events varies a lot. While 3,598 events include only one single image and 1,799 event include
just two pictures, there is only a very small number of events which comprise of over 40 pictures.

58

4.3.4

4.3 Dataset Statistics

4000

3000

2000

1000

Number of Events in ReSEED Dataset

AT S b T ¥ 9 A0 AN AL A AN AD Ab AT A% 49 90 9N\ 72 7D 1A 75 76 71 19 79 0 A\ 2L 2D A4k 25 26 AT R 29 10

Amount of Pictures per Event

Figure 4.2.: Distribution of pictures per event

This is very challenging as not only the number of clusters but also the cluster size is unknown
beforehand.

The 437,370 pictures were uploaded by 4,926 Flickr users, thus corresponding roughly to 90
images uploaded per person. We also observe that 2,418 users uploaded only one single event.

The total number of tags assigned to the images is 3,444,612. There are 91,219 unique tags.
About 32.7% of all tags only have one single occurrence in the whole dataset. This is not
surprising as the number of single picture events is also high. This leads to the assumption that
there is a high correlation between both.

Dataset Representation Format and Schema

The pictures included in the dataset are stored using the JPEG image format with a maximal
size of 1024 pixels for the longer and 768 pixels for the shorter side. The files were directly
downloaded from Flickr. The original EXIF information and other metadata incorporated in
the files by the uploader or the uploader’s camera are still intact and can be used in addition
to the already extracted metadata.

The extracted textual metadata of the pictures is stored using a database structure. The schema
with the corresponding database tables for this data is shown in Figure 4.3.

The table ReSEED_PICTURES is the main and most important table. All relevant picture meta-
data of the dataset is listed in this table using the unique Flickr ID of each picture as the primary

59

Chapter4 Event Clustering Dataset

ReSEED_EVENTS_UPCOMING

ReSEED PICTURES upcoming_event_id |NT(1 1) NOT NULL

— flickr_picture_id BIGINT(20) NOTNULL o— title VARCHAR(255) NOT NULL
url VARCHAR(255) ~ NOTNULL tags VARCHAR(255) NULL
username VARCHAR(100) ~ NOTNULL description VARCHAR(255) NULL
datetaken DATETIME NOT NULL venue_id INT(11) NULL
dateupload DATETIME NOT NULL venue_name VARCHAR(255) NULL
title TEXT NULL venue_street VARCHAR(255) NULL
description TEXT NULL venue_city VARCHAR(128) NULL
[atitude FLOAT NULL venue_postcode VARCHAR(16) NULL
longitude FLOAT NULL venue_country VARCHAR(100) NULL
s INT(11) NOT NULL venue_longitude FLOAT NULL
venue_latitude FLOAT NULL
venue_url VARCHAR(255) NULL

ReSEED_PICTURES_TAGS startdate INT(11) NOT NULL

-—e flickr_picture_id BIGINT(20) NOT NULL enddate INT(11) NOT NULL

tag VARCHAR(255) NOT NULL
ReSEED_EVENTS_LASTFM

b lastfm_id INT(11) NOT NULL

ReSEED_PICTURES_EVENTS title VARCHAR(255) NOT NULL
flickr_picture_id BIGINT(20) NOTNULL &— venue_id INT(11) NULL
event_id INT(11) NOT NULL venue_name VARCHAR(255) NULL
upcoming_event_id INT(11) NOT NULL venue_street VARCHAR(255) NULL
lastfm_event_id INT(11) NOTNULL ¢ venue_postcode VARCHAR(16) NULL
venue_city VARCHAR(128) NULL
venue_country VARCHAR(100) NULL
venue_longitude FLOAT NULL
venue_latitude FLOAT NULL

venue_url VARCHAR(255) NOTNULL

lastfm_url VARCHAR(255) NOTNULL
startdate INT(11) NULL

attendance INT(11) NOT NULL

reviews INT(11) NOT NULL

Figure 4.3.: Database schema for the ReSEED dataset

key flickr_picture id. The columns contain all textual and numerical data as described in de-
tail in Section 4.3 but with the exception of the tags. Table ReSEED_PICTURES_TAGS provides
an association between the pictures and all assigned tags. All machine tags have been removed
from the set of tags.

The associations between the picture documents and the corresponding events are stored in the
table ReSEED_PICTURES_EVENTS. In addition to the aggregated event ID as described in Section
4.2, the individual event IDs from the original online event calendar providers Upcoming and
last.fm are also stored. With the help of these references the original data from the calendar
providers can be retrieved.

An explanation of the data included in the event calendar data tables ReSEED_EVENT_UPCOMING
as well as ReSEED_EVENT_LASTFM is given in Table 4.1 together with more details in Section
4.2.2.

60

4.4

4.4.1

4.4.2

4.4 Applications of the Dataset

Applications of the Dataset

The ReSEED dataset has not only been created for the testing and evaluation of our event-based
clustering framework presented later in this work but also to support other researchers in the
field of social event detection with a freely available dataset allowing for a comparison of results
from different approaches. The dataset has already been used in the Social Event Detection
task, and due to its nature it is also useful for other research questions in the area of event
detection and searching.

MediaEval 2013

As already mentioned in Section 3.7, the dataset was already successfully used in the 2013
edition of the Social Event Detection (SED) task at MediaEval. There were eleven teams with
about 65 people participating in the task. The task description for the challenge involving the
dataset as proposed by us was to “produce a complete clustering of the image dataset according
to events”.

The task thus consisted in the automatic induction of event-related clusters for all pictures in
the dataset, determining the number of events in the dataset automatically. This is comparable
with the task explored in this thesis with the difference that the stream-based scenario was
optional.

The challenge had one required run which involved using only the metadata. We have forbidden
the use of additional data for this run (e.g. visual information from the images) making all
approaches comparable with each other. For the other runs it was allowed to use generic
external resources like Wikipedia, WordNet, or visual concept detectors trained on other data.
However, it was not allowed to use external data that was directly related to the individual
images included in the dataset, such as machine tags.

Further Applications

A different challenge of the MediaEval 2013 task was a combined event identification and event
category detection task. It consisted of the classification of pictures into one set of pictures
depicting an event and another set not depicting any event (non-event). The pictures in the
first set then should be classified again into a fixed set of eight event types: concert, conference,
exhibition, fashion, protest, sports, theater & dance, and others. This task thus represents
a standard classification task that can be addressed using standard supervised classification
approaches and exploiting both visual features and metadata making it interesting for the use
with ReSEED.

Another task consists of the enrichment of the dataset with other types of social media informa-
tion items coming from other sources than Flickr; this might be Twitter or other social network
sites like Facebook. The advantage here is that the search for additional material for the labeled
classes is less expensive than the creation of new labels of yet unknown classes.

61

4.4.3

Chapter4 Event Clustering Dataset

Without any modification, ReSEED can further be used in all kind of tasks related to the
semantic search and information retrieval of pictures and/or social media events.

Evaluation Proposal for Comparability

To make the approaches evaluated with the help of this dataset comparable, we have split the
dataset into a training and an evaluation part. We also propose certain evaluation measures to
ensure good comparability.

Dataset Splits for Training and Test

ReSEED has been split into two parts. We declared 70 % of the dataset to constitute the
training set; the rest is supposed to be used for evaluation purposes. The splits were made
without the overlap of any events. To ensure that both parts include similar data, i.e. in regard
to the number of events, the size of events, and the upload timestamps, the splits have been
created with the following steps:

1. All events of the dataset are ordered by their number of pictures included in the event.

2. Starting with the largest event, the events are assigned to split 1 through 10 in descending
order of their event size. E.g. the largest event is assigned to split 1, the second largest
to split 2, the tenth largest to split 10, the eleventh largest to split 1, and so on.

3. If a split is full, i.e. it contains exactly one tenth of the overall amount of pictures (which
is in our case 43,737), we skip that split. As the number of events including only two or
one picture is large, there are no problems with events not fitting into a split (see also
4.2).

4. The final 70/30 parts are then created by merging splits 4-10 as well as splits 1-3 to the
training and test set, respectively.

Evaluation Measures

For evaluation we propose to use different evaluation measures in order to compare the results
of the produced clustering to the ground truth information that has been compiled from the
event calendars. All evaluation measures return values in the range of [0..1] where higher values
indicate a better agreement with the gold standard. The three evaluation measures are the
following;:

e [y-Score: We propose Fi1-Score to be used as the main evaluation measure. In the eval-
uation script provided together with the dataset, the micro-averaged version was used to
calculate the harmonic mean of precision and recall. This measures the appropriateness
of the event clusters.

o NMI: Normalized Mutual Information (NMI) is used to compute the overlap between the
clusters.

62

4.4 Applications of the Dataset

o Divergence from a Random Baseline: This method indicates how much the results diverge
from a random baseline as described in Vries, Geva, and Trotman [VGT12]. This is
proposed to be used as a sanity check.

All the measurements are implemented in an evaluation script delivered together with the
dataset® so that algorithms can be compared easily to other results. An exact definition of each
of these measures is given in Section 6.1.

Shttp://doi.org/10.4119/unibi/citec.2014.10

63

PART |

Supervised Single-Pass Clustering
with the Event-based Stream
Classification Framework

65

CHAPTER 5

System Description of the Stream
Classification Framework for a
Single-Pass Setting

In the previous chapter, we presented a real-world and non-toy social media dataset with images.
We made sure that the documents included in the dataset belong to exactly one event. This
dataset is prototypical for a real-world application where the aim is to identify and detect
distinct events within the set. We conduct this process in order to prepare and organize the
social media documents—in our case pictures—in a way that enables people to better browse
and search the data more naturally.

Even though the dataset can be used as a fixed set where all items within the dataset are
accessible at every moment, our intent is to use it in a way where the data is arriving continuously.
This seems to be natural as in real-world applications the documents also arrive first after they
have been posted or uploaded to the social media site. This is in line with the perspective of the
organizations hosting a social media application from where the uploaded postings, messages,
pictures, etc. can be seen as an exponentially growing and never-ending stream of data. We
denote such a scenario as stream setting. In such a setting, it is not possible during the process
to know which document arrives next before it actually appears in the data stream. For that
reason, the documents in the dataset are ordered by the timestamp denoting the time when
they have been uploaded to the Flickr community site.

Given the above explanations, our aim is to develop a system allowing for an automated cluster-
ing of such a data stream of social media documents. Such clustering could serve as preparation
for a better organization of the data. It seems clear that there is an impending need for such an
automatic technique that performs the assignment of a social media document which has been
newly uploaded to some social media site like Flickr to its corresponding event or, if it does not
exist yet, creates a new event to which future data points can be assigned. In line with previous
work we refer to this problem as the social event detection problem. The problem statement of
this task is as follows:

67

5.1

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

Problem 5.1 Given a data stream of social media documents where each document is associated
to an unknown event, our goal is to discover these events and identify which documents are
associated to the same event. n

When considering the task of social event detection, we are thus faced with the challenge of
classifying a massive and never-ending stream of data into their corresponding events. We
therefore cast the problem as a classification problem. There are at least three challenges
involved in developing a system that can cluster data streams as originating in social media
applications into event categories. The first challenge is to deal with the massive amount
of data arriving per minute. The second challenge is to classify documents into potentially
millions of events. And the third challenge is to deal with the fact that the set of events to
which documents are assigned is constantly growing.

In an ideal case, each created event cluster corresponds to exactly one real-world social event.
In addition, such a cluster consists of all the social media documents which are related to that
event. The algorithm of choice should be scalable to deal with the vastness of social media
data and should be able to handle the massive amounts of data arriving in short time. Due
to the growing nature of the target categories—social media sites are constantly growing and
evolving—standard supervised learning techniques assuming the target categories are fixed are
less suited for the task. For example, more traditional clustering algorithms like K-Means or
Expectation—Maximization require knowledge about the number of categories beforehand. This
leads us to develop a framework overcoming these limitations and making a clustering of social
media documents possible.

Therefore, in this chapter, we introduce our Event-based Stream Classification Framework which
we developed for event clustering using a single-pass strategy. We will show that the system
presented in this dissertation is indeed capable of clustering a social media documents stream
into the corresponding events and is able to process the social media dataset presented before
addressing the above mentioned three challenges. We frame the problem as a stream data
classification problem leading to a supervised classification framework. Each new data point
uploaded to the system is either classified into one of the existing events or a new event is
created in the system.

Problem Statement

The problem of social event detection in social media can be formulated as a supervised clas-
sification problem. The underlying similarity function and other parameters of the clustering
algorithm are optimized using labeled data.

Let E be the set of all event clusters. In principle we need a function a; defined as follows:

at - D — Et (51)

68

5.1 Problem Statement

This function a; assigns a document d € D to some of the events E available at time ¢. In
our case the events E; are the clusters. As the number of documents and the number of event
clusters is unknown, we aim to depend on a similarity function sim for our decision. If a new
event detection function using a feature vector ¥,e, (d) does not decide on the creation of a new
event, this function sim assigns a document to the event cluster maximizing the similarity:

Definition 5.1.1 — Assignment function

at(d) = argmax sim(d, e) (5.2)
ecky

The desired similarity function to be learned thus has the following form:

sim: D x Ey — [0..1] (5.3)

A central question is which model to assume for such a function. In our approach we assume
a linear model. Therefore, we use features such as time, location, tags, titles, etc. The fea-
tures correspond essentially to simple similarity measures for different dimensions. The actual
similarity between a document and an event is calculated using the following linear model:

Definition 5.1.2 — Similarity function

sim(d, e) = 0 Tim(d, €) (5.4)

In Equation (5.4), W denotes a weight vector and ¥s;, is the feature vector of a document-event
pair. Therefore, the problem is to optimize the weight vector w—and thus the function sim—for
the task of assigning documents to the matching event.

In order to formalize the idea, let us introduce some terminology. Let d; be a data point to be
assigned to some cluster. Let event(d;) be the correct cluster for d; according to our labeled
training data. We define the following functions:

o A function centroid assigning each event a centroid vector averaging over all data items
belonging to this event: centroid : £ — R™.

¢ A function event assigning each document d; to its corresponding event: event : d; — E.
This function is only used for evaluation purposes.

o A function defining the extension ext of a certain event e € E consisting of all data items
belonging to this event: ext : E — P(D).

69

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

Event Database

Documents D
Events E
A .
Candidate Retrieval Centr0|d‘
(Re)calculation
B . .
| Pa'g’)"(ﬁae;?;:ure t Event Classification
new even
D
no new event

| Sclg:nnlgna;d New Event Decision

Figure 5.1.: Overview of the event clustering framework system

5.2 Overview of the Clustering Framework

In

the following we demonstrate how our framework can handle an incoming data stream of

documents D in order to cluster these documents into their corresponding events E. Our system
processes such an incoming stream of documents D in several steps. As also depicted graphically

in

Figure 5.1, for each incoming document d € D the following steps are conducted:

1. Candidate Retrieval: A set E of k events that d is likely to belong to are retrieved from
the event database (see also Section 3.5.3).

2. Scoring and Ranking: For each of these candidates e € E retrieved in the previous step,
we compute the probability P(e|d) of d belonging to E. All candidates are then ranked
according to that probability. Let e, or e; denote the top scoring candidate.

3. New Ewvent Decision Probability: Given the ranked list of candidates, the probability,
that d belongs to a new event, P, (d), or that it belongs to the first event in the list,
Prelongs to top cand(d), is computed. We assume that these are the only two options, i.e.

Pnew(d) + Pbelongsitoitopicand(d) =1

4. New Event Detection: If Pyey(e) > 6y, for a given threshold 6,,, a new event €’ is created
and d is assigned to this newly created event: e/ :=

70

5.2 Overview of the Clustering Framework

Algorithm 5.1: Stream-based clustering into events

Input : A stream of social media documents D
Output : Documents clustered by their event

foreach d € D do
Topy(d) + retrieve a ranked list of promising event candidates to which d could belong;
foreach e € Topy(d) do

‘ compute P(e|d); // the probability that d belongs to e
end

€maz 4 ATE MAX e eTop, (a) L (€']d);

compute Py (d); // the probability that d belongs to a new event

if Pew(d) > 6, then
create new event €/;
¢’ = {d};
o-d
else

€mazr = €maz Y {d}7
recompute €pqy;

end

end

5. Event Classification: Otherwise, d is assigned to €;4.; the centroid €4, is recomputed.

The above procedure is illustrated more formally by the pseudocode in Algorithm 5.1. There
are some crucial aspects of our approach which we describe in the following. We are pointing
to the relevant sections where the corresponding components are described in more detail.

e (A) The candidate retrieval step relies on a set of queries that build on appropriate
inverted indices (for text data like tags) as well as on timestamps to retrieve a set of
promising candidates. This step is crucial to keep the approach scalable and to avoid
having to process all events stored in the database. This step is described in more detail
in Section 5.3.

o (B) As feature representation, we compute a number of similarities between a document
d and each event e from the list of top-k retrieved events. This is described in more detail
in Section 5.4.

e (C) The above mentioned probabilities P(e|d) and Py (d) are computed using different
machine learning approaches like Support Vector Machines or Decision Trees trained on
an appropriate training dataset. Below, we describe in more detail how these approaches
are trained and how the probabilities are computed. Each model is trained on a separate
training data split. This is described in more detail in Section 5.5.

e (D) An important parameter is the hyperparameter 6,, which essentially determines
whether a new event is created or the new data item is assigned to an existing event in the

A

5.3

5.3.1

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

database. This hyperparameter is also tuned on the training data split. This important
step for the new event decision is described further in Section 5.6

The different steps mentioned above are all described in detail in the following sections.

Candidate Retrieval Strategies

In stream-based and large-scale clustering the most crucial point is scalability. However, it is
challenging to develop techniques which scale to the amounts of data available in social media
applications. Our goal is to support the classification of incoming documents into events in real
time.

A very effective technique to scale up and achieve real-time behavior is to use a suitable candidate
retrieval strategy. The idea is to reduce the set of events that are considered for every incoming
document. As there might be billions of events in the database, it is not feasible to scan all
these events to compute the likelihood that the incoming document belongs to it. For this
purpose, candidate retrieval or so-called blocking strategies are typically considered [BCCO03],
which massively reduce the amount of pairs (in our case these are pairs of document and event)
to be considered. The reason for us to reduce the number of candidates is that the predictions
of our classifier need to be calculated for each candidate event, i.e. the probability P(d|e) that
the documents belongs to this event. This computation is linear in the number of events, which
can be prohibitive if the number of events is large, for example in the region of millions or even
billions.

When using a candidate retrieval technique, a crucial issue that arises is to ensure that the
blocker is neither too strict, thus filtering too much, nor too lenient, possibly passing on too
much noise to the classification algorithm. A certain candidate retrieval strategy might thus be
efficient from a computational point of view but too strict, thus having an overall detrimental
effect on the overall performance of the main algorithm.

Therefore, we require an event candidate retrieval strategy ¢; that, ideally, i) retrieves the correct
event and minimizes the overall number of retrieved events and thus ii) filters out as many of
the irrelevant events as possible in order to reduce the computational cost of post-processing
the retrieved events.

Measurements for Performance and Effectiveness

In this section we define criteria on how we can assess different candidate retrieval strategies.
We are interested in especially two factors: i) effectiveness and ii) performance.

The effectiveness is used to analyze how many data points have to be retrieved in order to
include the required data points. We measure this effectiveness of a candidate retrieval strategy
¢; at a number k of retrieved events as in Equation (5.5):

72

5.3.2

5.3 Candidate Retrieval Strategies

Definition 5.3.1 — Effectiveness of a candidate retrieval strategy

d t(d) €t :
Effectiveness(c;, k) = [{d | even (|1))E op(ci) }

(5.5)

Where event(d) is the correct event for a document d according to the gold standard, and
topk(c;) is the set of top k events retrieved by the candidate retrieval strategy ¢;.

The performance measurement is used to get information about the retrieval time and thus the
computational cost. To make the values comparable we measure the time needed to retrieve all
events and set this to be the reference.

Candidate Retrieval Strategies

For our experiments, we take a look at several candidate retrieval strategies which we compare
to each other using the measurements defined above. In particular we compare the following
strategies.

1. k-nearest by capture time: By using this strategy, we retrieve those k events with the
lowest temporal distance to the document. For this, we order all events e; in the event
database by A(time(d), time(e;)) and then return the top k events in this ordered list.

2. k-nearest by upload time: We follow the same strategy as in k-nearest by capture time
but use the upload timestamps.

3. Geo-Blocker: We define a fixed window of 1.0° x 1.0° and select the top-k events out
of this window, i.e. we retrieve all events such that latitude(d) — 1° < latitude(e) <
latitude(d) + 1° and longitude(d) — 1° < longitude(e) < longitude(d) + 1°. This window
roughly corresponds to an area of 50-60 square kilometers in Europe and the U.S. and
to an area of 110 square kilometers in the vicinity of the equator. The candidates are
ordered by simple Euclidean distance using the longitude and latitude values.

4. Tag-TFIDF: We score each event by summing up the TF-IDF values of every tag which
the document and the event share and return k events having the highest scores.

5. Title-TFIDF': This is the same as Tag-TFIDF but using the tokens in the title instead
of tags.

6. Description-TFIDF': This is the same as Tag-TFIDF but using the tokens in the de-
scription.

7. Uniform Combination: We retrieve the same number of % (with £ mod 6 = 0) events
for each of the candidate retrieval strategies cy, - - - , cg described above.

73

5.4

5.4.1

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

8. Optimal Combination: We determine the optimal combination of the number of can-
didates to be retrieved by each candidate retrieval strategy empirically. We thus retrieve
a number k(c¢;) of events that is specific for each candidate retrieval strategy. The opti-
mal parameters are computed by exhaustive search on the training set with the goal of
maximizing the effectiveness (see above) of the candidate retrieval strategy.

Pairwise Feature Extraction

In this section we describe the specific features that are computed on the basis of the metadata
described above to represent an image. A pair of a document and a candidate event is described
in terms of a vector of several features that describe the match between the document and the
event. To create this vector we define similarity measures that are used to compare two pictures
along each of these feature dimensions.

In particular, we define nine similarity measures exploiting the information sources which we
present in the following. We also discuss alternatives and the advantages of the chosen mea-
surement.

Temporal Features

Temporal information refers to the time point the document was created (e.g. by taking a
picture with a camera), which is typically when the event took place or the time when the
user uploaded the document to a social media site. Each document as well as each event have
a timestamp assigned. Let time(d) denote a timestamp assigned to a document and time(e)
denote a timestamp assigned to an event.

To define a similarity measurement for temporal information, we start with some basic assump-
tions.

o It is possible to measure the distance between the two timestamps by calculating the delta:
Atime = |time(d) — time(e)|. This distance can then be interpreted in terms of similarity.

o The similarity of two data points is maximal if both timestamps are exactly similar (there-
fore, Atime = 0).

o The more apart the two timestamps are (the greater Atime), the less similar are the two
data points.

e Without the definition of any boundaries, a total dissimilarity would be only possible if
the distance Atime is infinite.

74

5.4 Pairwise Feature Extraction

These assumptions in mind leads us to a similarity measure simgime(d, €) defined as what fol-
lows:

Ati
, 1.0 — time it Atime < Ayear
Szmtime(d, 6) = Ayear (56)

0.0 else

In Equation (5.6), Ayear is defined as the distance between two timestamps which are exactly
one year apart. The similarity using this measurement is in the range of [0..1]. A similarity of 1.0
means that the timestamp of the two data points are the same. A value of 0.0 is interpreted as
totally dissimilar; this is the case if two timestamps are more apart than one year. The maximal
distance of one year has been chosen to ensure two things: a) we want to include events of all
kinds of length, and b) we do not want to include recurring events such as Christmas as they
are seen as distinct events by our definition of an event.

A disadvantage of the measure given in Equation (5.6) is its strict linearity, which does not reflect
that there are differences in the importance of relative distances depending on the absolute
distance. For example, it does not make a large difference if two data points have a distance of
300 or 301 days, but we care if two data points have a distance of 1 hour instead of 25 hours.
There is a difference of 24 hours in both cases but the latter case is of more interest than the first
one. Therefore the measure is changed to include a logarithmic operation. Our final similarity
measure thus looks as follows:

Definition 5.4.1 — Similarity of two timestamps

0— log(Atime) 10— log(|time(d) — time(e)|) if Atime < Ayear
SiMtime(d, €) = log(Ayear) log(y)

0.0 else

(5.7)

Using the ReSEED dataset, time(d) and time(e) are timestamps represented as integer values
denoting the number of minutes elapsed since the Unix epoch, and y is the number of minutes
of one year.

This yields two similarity measures:
o SiMcapture(d, €), calculated on the basis of capture time.

o SiMypload(d, €), calculated on the basis of upload time.

75

5.4.2

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

Geographical Features

The geographical information locates the place where the document was created; this is the
location of an event in terms of latitude and longitude. This information is typically added to
the image with the aid of a GPS device connected to the camera.

As with the time information, we have to determine the distance between two geographic lo-
cation points. Therefore, we incorporate the latitude and longitude of both points. Initially,
as we did not need to measure an exact distance between two points but only need a coarse
estimate to judge their similarity, we aimed to calculate the FEuclidean distance between two
latitude-longitude pairs in order to get a computationally cheap distance metric. Unfortunately,
the distance between two points varies a lot depending on the latitude; the real distance of two
points at the equator and two points in the polar region, each with 1° difference, are not compara-
ble. As a consequence, we use a distance function taking this characteristic of latitude /longitude
values into account. It is possible to use two different measures with no noteworthy difference
in computational complexity; the first uses the direct distance through Earth, the second uses
the correct distance along the surface.

In our approach we incorporate the haversine formula to determine the great-circle distance
H(Ly,Ly) between two locations L; and Le on Earth. Each location L,, is defined by its
coordinates denoted by latitude lat,, and longitude lon,,. The definition of the haversine formula
is given as follows:

Definition 5.4.2 — Haversine formula

H(Ly, Ly) = 2 - arctan®(y/¢, /1 — ¢) (5.8)

Alat Al
¢ = sin? <2a> + cos(laty) - cos(laty) - sin® (20n> (5.9)

Alat = |lata — lati|, Alon = |long — lon,| (5.10)

The distances returned by the above formula are in the range [0..1]. The multiplication with
the equatorial distance as in the original definition of the haversine formula is omitted, as a
distance factor between 0 and 1 is sufficient for our task.

Finally, the geographic similarity is defined as follows:

Definition 5.4.3 — Similarity of two geographic locations

Simgeo(d, €) = 1.0 — H(Ly, Ly) (5.11)

76

5.4 Pairwise Feature Extraction

5.4.3 Textual Features

Besides the time and geographic features, there is a lot of information manually added by users
in textual form. These are, for example, tags, a title, a description, etc.

To compare textual information, there are two kinds of distance metrics which can be used on
strings: term-based metrics and edit-distance metrics. Using the first, the distance depends on
a set of words which are contained in both documents to be compared. An example here is the
Jaccard distance or the cosine similarity of a TF-IDF vector. The latter method denotes the
distance by the shortest sequence of edit commands that is able to transform the text string
from document d into the one from document e. An example here is the Levenshtein distance.

In our scenario it seems to be natural to use a term-based metric. The idea behind this is
the assumption that two documents which do share the same terms (think about the assigned
keywords or tags) are more similar to each other than those documents which do not. However,
we do not only want to differentiate between the two cases has same terms and does not have
same terms, but we aim to use a linear metric.

Before we decide on a distance metric, we have to introduce an algebraic model capable of
representing textual information as a vector, the so-called Vector Space Model. Such a vector
could represent either the absence or presence of terms in a document, or the importance
of terms. For example because of stop words (words present in almost all documents), the
importance of the terms should be taken into account. Therefore, we use a weight function
D xT — R for each term ¢t in document d, namely TF-IDF.

The TF-IDF of each term in the document is defined as follows:

Definition 5.4.4 — TF-IDF
TF-IDF(t,d) = TF(t,d) x IDF(t) (5.12)

The term frequency TF(¢,d) is defined as the absolute number of appearances of term ¢ in
document d. The inverse document frequency IDF(t) is defined as follows:

Definition 5.4.5 — Inverse Document Frequency (IDF)

IDF(t) = log

BF (5.13)

Here, n denotes the overall number of documents in the corpus and DF(¢) is the document
frequency, which is the absolute number of documents where the term ¢ appears.

Having the weights for each term, a document can then be represented as a vector of term
weights. Now, it is possible to calculate the similarity between the two documents in the vector
space using cosine similarity. The cosine cos(6) of two vectors vz and v, is the similarity between
the two documents and can be derived using the scalar product between the vectors:

Vg - Ve = ||val| - ||ve]] - cos(0) (5.14)

77

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

From this it follows that cos(#) is defined as follows:

~mxﬁm
Ud Ue

[fvall - foel] ~ i
Zz 1) Zz 1 Ue

The final similarity measure for textual data simiags, siMtitle; and siMgescription With an output
between 0.0 and 1.0 is thus defined as follows:

cos(f) =

(5.15)

Definition 5.4.6 — Similarity of two documents regarding their text tokens

ZTF-IDF(t d) x TF-IDF (¢, e)
SiMgext (d, €) (5.16)

\/ZTF IDF (¢, d)? \/ZTF IDF(t,e)?

5.4.4 Document-Event Similarity Vector

5.5

Overall, using the features described above, a feature vector for a pair of document d and event
e looks as follows:

$iMypload (d, €)

Simcapture (d7 6)
51Mgeo(d, €)
51Mtags(d, €)
Simyite(d, €)

S’L'mdescription (da 6)

Tim (d, €) = (5.17)

In this vector, simypioad(d,€) and simcapture(d, €) denote the similarities between the upload
time and capture time of a document-event pair, simgeo(d, €) is the geographic similarity, and
SiMtags(d, €), stmyitie(d, €), and siMdescription (d; €) denote the similarities for the tokenized text
features tags, title, and description, respectively.

Scoring and Ranking - Learning Similarity Functions

For each incoming document d, we compute the likelihood P(e|d) that it belongs to a given event
e. We then order the events retrieved by the candidate retrieval step by decreasing probability.
The likelihood that document d belongs to event e is calculated using a classification algorithm.
In this thesis we use two different classifiers to learn the similarity function: Support Vector
Machines (SVM) and Decision Trees.

78

5.5.1

5.5 Scoring and Ranking — Learning Similarity Functions

To this end we rely on an appropriate training dataset to discriminate between pairs of document
and corresponding event and pairs of documents that do not belong to the given event. The first
are our positive examples while the latter are the negative ones. We use different numbers of
examples for each of these classes to train the classifiers and compute the probability P(e|d) as
the probability that the pair (d, e)—as described by the above mentioned vector of similarities—
belongs to the positive class, i.e. P(e|d) = P(positive|tgm (e, d)).

In the following we formulate the problem using a Support Vector Machine and a Decision Tree.
We take a look at “standard” SVMs as well as Ranking SVMs.

Problem Formulation using a Support Vector Machine

—

Using a SVM as a classifier, we aim to determine a hyperplane (&, sim(d,e)) +b = 0 which
separates two classes. This is done in a way so that the margin to this hyperplane is maximized.
The margin is the region enclosed by the two additional hyperplanes described by the following
equations:

(), Tim (d, €)) + b =1 (5.18)

(@, Goim(d, €)) + b= —1 (5.19)

It is rarely possible to achieve a perfect separation between the positive and negative examples.
As a consequence, a classification error must be allowed. Thus, the goal is to allow a soft margin
determining a hyperplane which minimizes errors and maximizes the margin that separates the
data. According to Cortes and Vapnik [CV95], this problem can be specified as in the following
equations:

0
1
miny, ¢ |wl[* +C)& (5.20)
=1

yi({w, @(z;)) +0) >1-&, & >0 (5.21)

As usual in classification, ®(z;) denotes some kernel, helping to avoid the explicit mapping
needed to learn a nonlinear decision boundary; this can be the dot product in the simplest case.
The variable C' is a constant defined by the user which allows to trade off the margin size against
the training error; &; are slack variables and y; € {—1, 1} is the class label.

In our scenario, the training examples x; are defined as follows:

[((diye),—1) if ¢/ & event(d;)
T { ((di,e),+1) else (5.22)

79

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

We assume a functional margin of 1 as typically used in Support Vector Machines. Therefore,
the weight vector w needs to fulfill the following conditions:

Vd;, (W, ®(d;,event(d;))) > 1(—&) (5.23)
Vd;Ve' # event(d;) (W, ®(d;, €)) < —1(+&) '
Such a function is applied to compare a new document to the centroid of every cluster con-
structed so far and retrieved by the candidate retrieval step. The new data point is assigned to
the cluster maximizing this similarity, provided it fulfills criteria being classified as belonging
to an existing cluster by the new event detection step (see next section). If a new cluster € is
created at time ¢, then E(t+ 1) = E(t) Ue'. Learning the similarity function is thus formulated
as a standard classification problem, separating those pairs of documents that belong to the
same event from those that do not.

Problem Formulation as a Ranking SVM Problem

According to the formulation of the problem to use the similarity function to determine the
cluster having the highest similarity to the given data point, we can see the problem in fact as
a ranking problem. In this case, the task is to rank all clusters according to their similarity to
the data point. This would provide us with an alternative formulation of the problem, i.e. the
one of learning a similarity function that always assigns a higher value to the correct cluster
compared to all other clusters.

Therefore, the task is to learn a similarity function that satisfies the condition in (5.24) or the
equivalent condition in (5.25).

Vd;Ve' & event(d;) sim(d;,event(d;)) > sim(d;,e’) (5.24)

Vd;Ve' & event(d;) sim(d;, event(d;)) — sim(d;,€') > 0 (5.25)

Assuming that we have a linear model for sim and the weight vector is denoted by W, we get
the following condition:

Vd; Ve ¢ 6(dz) w (ﬁsim(di,event(di)) — ﬁsim(dla 6,)) >0 (526)

Note that this problem is essentially equivalent to the optimization problem solved by the rank-
ing SVMs of Joachims [Joa02]. Assuming a margin of 1 we would get the following equivalent
formulation, which is the one used by Joachims:

Vd; Ve' & event(d;) (175im(di, event(d;)) — Usim/(di, e’)) >1-¢& (5.27)

80

5.5.2

5.5 Scoring and Ranking — Learning Similarity Functions

Given this formulation of the problem of learning an adequate similarity as a learning to rank
problem, we can apply the Ranking SVM of Joachims in an off-the-shelf manner directly to the
problem of learning a suitable similarity function for the event detection problem.

Clearly, learning a « that fulfills the condition in (5.27) also implies finding a @ that fulfills
the conditions (5.20) and (5.21). In some sense, the conditions in (5.21) might even be too
restrictive for the problem at hand. In this sense, we might be solving a more difficult problem
than the one we indeed have to solve when using the standard SVM criteria.

Calculation of Probabilities for Support Vector Machines

Usually, a Support Vector Machine calculates a decisions function f(z) in a way that the label
y; of any test example x can be predicted using the function sgn(f(z)). For our classification, we
aim to use a posterior class probability P(y = 1|x) instead of the direct prediction of the label.
A solution to achieve such an output has been proposed by Platt [P1a99] by approximating the
probability by a sigmoid function:

1

The maximum likelihood estimation from a training set (f;,y;) is used to fit the parameters
A, B. The best parameter setting can be determined solving the regularized maximum likelihood
problem:

min— Y (t;log(pi) + (1 — t;) log(1 — p;)) (5.29)

i
where p; = P4 p(fi) and t; depend on whether y; is positive or not:

po_ N1 1
z+_N++2az _N_—|-2

(5.30)

Using this in conjunction with a SVM therefore enables us to calculate the likelihood of whether
the document belongs to a certain class.

Problem Formulation as a Decision Tree Classification Problem

Using a Decision Tree, we aim to learn simple decision rules based on the features of each
document-event pair cascaded in a binary tree, deciding whether they belong to the same class
or not. The space is partitioned recursively in each node by the Decision Tree.

81

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

Let us represent the data at a Decision Tree node m by S. This data S is partitioned into Sief
and Syigh subsets for each candidate split ¢ = (sim;(d, e), ©p,) where sim;(d, e) is one feature
of the similarity vector U (d, e) and ©,, is a threshold:

Sleft(c) = ('Tvy)szimj(d,e) < @m) (531)

Sright(c) =S5 \ Sleft(c) = (LU, y)|(xsimj(d,e) > @m) (532)

We calculate the impurity of the subsets using the Gini index Ig(fn). The probabilities or
relative frequencies (fy,;) of items in each class ¢ at a node m are squared and summed up
resulting in the Gini index defined as follows:

Io(fm) =1—={ > (fm)’ (5.33)
ie(—1,1)

Given this impurity function, the information gain of a partitioning G(S,¢) can be computed
as follows:

G(S,¢) = Ig(S) — (7;\1[: I (Sies(€)) + ”Ni‘t g (sright(c))> (5.34)

In the above equation N, denotes the number of data point observations at node m. The
variables nje, and nyighe are the number of observations in the left or right subset.

Finally, the goal of the Decision Tree algorithm is to find the partitioning ¢ maximizing the
information gain within all created partitions:

¢ =argmax G(S,c) (5.35)

C

This is equal to minimize the impurity of the subsets:

. . n Nrigh
C = argmin <]\1;ft . IG (S]eft(C)) + 7;\15 ¢ : IG (Sright(c))> (5.36)
c m m

Using recursion the steps (5.31) through (5.36) have to be repeated for all subsets Sief(¢) and
Shight (¢) until we have reached the maximal allowed tree depth, N,, = 1 or N, < mingatapoints-

82

5.6

5.6 New Event Detection

New Event Detection

Once the candidates are ranked by the likelihood of whether d belongs to these candidates, we
are faced with the important question whether the document d belongs to the top-ranked event
or rather to a new event which has to be created. This is what we refer to as the new event
detection problem.

It is not clear if the top-scoring candidate belongs to a new event or not. It might actually
represent an event that d is not related to. Therefore, we need another decision function that
decides on the question whether the document d shall be assigned to the top-scoring candidate
or to a newly created event.

For this purpose we employ a different classifier trained on an appropriate training dataset. As
in the scoring and ranking problem we employ a standard Support Vector Machine as well as a
Decision Tree which we compare with each other. Both are trained with examples in which the
document belongs to the top-scoring event and examples in which the document belongs to a
new event; the first are our positive examples, the latter the negative ones.

We have taken the following features into account:

o Best score (max): This is P(e1|d), i.e. the probability that d belongs to the top-scoring
event.

o Worst score (min): The probability P(ej|d)—this is the probability that d belongs to
the k-th ranked event, where k is the number of candidates retrieved by the candidate
retrieval step.

o Average score (avg): This feature is the averaged probability of the top-k most likely
events: + Zle P(e;|d).

o Standard deviation of score (stddev): Here, we use the standard deviation of the top-k
most likely events.

o Maximum capture time (maxc,p): This is equal to the single similarity of capture time
for the document-event pair ranked first: simcapture(d, €1)

e Maximum upload time (max,p): This feature equals maxc,p but uses the upload time
instead of capture time: simypioad(d, €1)

This yields a feature vector #,e,(d) for each document d:

max
min
avg

stddev

maXcap

Tpew(d) = (5.37)

maXyp]

83

Chapter5 System Description of the Stream Classification Framework for a Single-Pass Setting

We use that vector to classify d into two classes: belongs to top scoring event (positive) or
belongs to a new event (negative). The classifiers are trained using an equal number of positive
and negative examples and, as in the above case, return a probability that the document belongs
to a new event:

Phew(d) = P (negative|Unew(d)) (5.38)

Having that probability, we use a threshold as a hyperparameter to be tuned. This threshold
decides whether the event is assigned to a new event or assigned to the top-ranked event. The
optimal threshold is determined empirically using a gradient descent technique on the training
data.

84

CHAPTER 6

6.1

Experimental Setup and Results of
the Supervised Single-Pass
Classification

After having presented the supervised single-pass classification system in the previous chapter,
we now present our experimental setup and the results of the supervised single-pass classification
approach. We first start with the description and definition of the measures used evaluation.
We then describe individual experiments for single steps of the clustering framework. After that,
we present the results of our experiments for the final system. This system is then compared to
several baselines.

As our approach consists of multiple steps (candidate retrieval, scoring and ranking, and new
event detection), interacting with each other but each tackling a different problem, we develop
experimental scenarios for each of these steps individually with the goal to find their optimal
setting. These experiments are described in Sections 6.2 to 6.4. The findings of these individ-
ual experiments are then taken into account when conducting experiments with the clustering
framework system as a whole, further analyzing the interactions between the individual steps.

In general, we use the dataset derived from Flickr which we already presented in detail in
Chapter 4 for all our experiments. In each section for the single steps optimization we describe
exactly what parts of the dataset were used. All optimization experiments only make use the
training set of ReSEED. This is done to avoid that any final results based on the test set
are influenced positively or negatively. For the evaluation of the results we use the evaluation
methods which we proposed for the dataset (see Section 4.4.3). In the following we start with
a definition of the measure used to evaluate the performance of our approach.

Definition of Evaluation Measures

In Section 4.4.3 we proposed different evaluation measures which are suitable to evaluate clus-
terings of the ReSEED dataset. The aim of these measures is to allow an easy comparison of

85

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

our results with the results of others. All proposed measures are common evaluation measures
from the text mining and machine learning literature which are typically employed to measure
the quality of a clustering. For our experiments, we employ the well-established F-measure.
Initial experiments with Normal Mutual Information showed very high results for many differ-
ent clusterings which, in our opinion, does not help to judge the real appropriateness of the
clustering as well as the comparison with other approaches. Therefore, we only make use of the
F-measure.

F-measure is the weighted harmonic mean of precision and recall. There are two different
variants: micro- and macro-averaged. In our case, we use the micro-averaged version with a
higher computational effort. In this variant, precision and recall are computed and averaged
document-wise. In general, precision P and recall R are defined as given in the following two
equations:

Definition 6.1.1 — Precision and Recall

1 |Cluster(d) N GoldStandard(d)|
P= — 6.1
% |D| |Cluster(d)| (6.1)
1 |Cluster(d) N GoldStandard(d)|
R = — (6.2)
s | D] |GoldStandard(d)|

The variable Cluster(d) denotes the clustering produced by the classification system to be
evaluated and GoldStandard(d) denotes the underlying gold standard to be evaluated against.
Having determined both precision and recall, the general F-measure Fj is calculated as follows:

Definition 6.1.2 — General F-Measure
(6+1)-P-R

RGOS

(6.3)

The variable 8 in the equation is a relative weight for precision and recall. In our clustering task
it might be desirable to weight the precision as more important. The reason for this is that from
the perspective of a user a purer clustering is favored, justifying a higher weight of precision
over recall. Nevertheless, for the sake of comparability with other approaches, we refrain from
setting B to a different value than 1.

Therefore, we measure the performance of our approach using the Fj-measure defined as fol-
lows:

Definition 6.1.3 — F4-Measure

(6.4)

86

6.2

6.2.1

6.2 Optimizing Candidate Retrieval

In the following, all indications of quality information are denoted in terms of F-measure, pre-
cision, and recall as defined above.

Optimizing Candidate Retrieval

In our framework, we propose to use a candidate retrieval step in order to make the overall
approach scalable. The main advantage of this step is that we need to compare only those
pairs which were proposed by the candidate retrieval approach instead of having to compare
the newly arriving document with all events in the current event set. Therefore, we are faced
with the problem of finding a minimal number of event candidates among which the correct
candidate is included.

In the following, we compare the different candidate retrieval strategies ¢; which we proposed
in Section 5.3. In the following, we present our method to compare the different candidate
retrieval strategies, and conclude with the presentation of our findings.

We follow two strategies to optimize the candidate retrieval step. In this section we present an
analysis of the effectiveness of the candidate retrieval itself. Later, we compare the influence of
the different candidate retrieval strategies in terms of overall classification performance; this is
described in Section 6.5.1.

Experimental Settings

To conduct our experiments, we use the training split of our dataset as a basis. The experiments
conducted for the optimization of the candidate retrieval make use of all 306,159 documents
included in the training split together with the corresponding gold standard information. The
data is not modified in any form.

In preparation for the evaluation, we adapt our framework in a way so that an optimal clustering
is simulated. It is our aim to build this clustering simulation approach allowing the clustering
to be an optimal iterative clustering process using the gold standard information to assign the
documents to their correct events. The new event creation and the assignment to an event
is done using the gold standard mapping. This simulation allows the analysis of all existing
events at the time of appearance for each document in the dataset and their distance regarding
different similarity measures.

In order to analyze the effectiveness of each clustering strategy c¢;, we need to determine the
number of events to be retrieved still ensuring that the corresponding correct event for the doc-
ument is included in the event candidate set. To this end, we employ the clustering simulation.
For each document in the iterative clustering process, we retrieve the ranks of its corresponding
correct event as returned by the different candidate retrieval strategies ¢;. This is shown more
formally in Algorithm 6.1.

After having determined the individual ranks for each document and candidate retrieval strategy,
we are able to count for each rank how often it appeared in the process. Each rank actually

87

6.2.2

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

Algorithm 6.1: Determination of ranks for the candidate retrieval strategies using an optimal
decision for event creation and assignment

Input :Training stream of ReSEED dataset with documents D and gold clustering F,
clustering strategies C
Output: Documents clustered by their event following the gold standard

foreach d € D do
foreach c € C' do
‘ Rank.(d) < rank of event to which d belongs or 0 if new event;
end
€gold < d(E)a
if d & e then
create new event €';
¢ = {d};
-
else
€gold = €gold U {d}v
recompute €goq4;

end

end

represents the number of needed candidates to be retrieved. If we now want to know for how
many documents we can get the correct candidate if a certain number of candidates is retrieved,
we simply have to sum up all number of appearances of each rank which is equal or smaller
than the number of candidates to be retrieved. Using this technique, we obtain k. This is done
for each candidate retrieval strategy c¢; individually. Having obtained these values, it is then
possible to compute the effectiveness Effectiveness(c;, k) as proposed in Equation (5.5) for each
candidate retrieval strategy c; and a certain number of candidates k.

Results

In this section we present the results of our optimization experiments regarding the candidate
retrieval strategies. We start with an analysis of the effectiveness followed by an examination
of the computational costs for each candidate retrieval strategy.

Effectiveness of Candidate Retrieval

We first examine the effectiveness of the single candidate retrieval strategies ci,...,cg. These
were: retrieval by upload and capture time, by geographic location, and by the three textual
features (tags, title, and description). The effectiveness of all these strategies depending on the
number k of events retrieved is depicted in Figure 6.1.

88

6.2 Optimizing Candidate Retrieval

08

0,6

— Upload Time
SO0 OO SO0 O OOROTORRY WP L LAy vhohd M S AR Capture Time
Description. .. veeee st - Geo

- - Tags
-+« Description
o ee-Title

Q
k &

Figure 6.1.: Effectiveness of different (single-strategy) candidate retrieval strategies

We can see that only the candidate retrieval strategies based on temporal features and on
TF-IDF values of the tags reach effectiveness scores higher than 80 %, and only the temporal
candidate retrieval strategies come close to an effectiveness of 100 %. However, this has the cost
of having to retrieve more than 400 to 500 events. It is interesting to see that the geographic
location-based strategy reaches a plateau at an effectiveness of about 45 %, but reaches its
maximal effectiveness very quickly for k = 6. Nevertheless, the effectiveness of the time-based
candidate retrieval strategies is always better.

In Table 6.1 we show the number of events that have to be retrieved by each candidate retrieval
strategy in order to reach an effectiveness of 30 %, 60 %, 80 %, 90 %, and 95 %, respectively. It
is remarkable that only four candidate retrieval strategies reach an effectiveness over 80 %, and
only three of the strategies reach more than 90 %, where the number of retrieved candidate
events k is still within an acceptable range regarding the scalability for the whole system (with
relation to the number of document-event comparisons for each document).

Table 6.1.: Needed number of k to reach x % effectiveness
Candidate Retrieval Strategy 95% 90% 80% 60% 30%

Upload Time 52 21 7 1 1
Capture Time 37 17 6 2 1
Geo - - - - 1
Tags 906 103 19 3 1
Title - - - 108 1
Description — — — — 183
Optimal Combination 5 3 2 1 1

89

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

Effectiveness

0,96 0,04

092 f AT S N S o Lo 0,03
g [e T Retrieval time @
5 £
50,88 002 E
& =

0,84 0,01

08

D N . A S U L\
k

Figure 6.2.: Retrieval time and effectiveness for the optimal combination of single candidate retrieval strategies over
k

An important observation regarding the effectiveness is that while the temporal candidate re-
trieval strategies achieve an effectiveness of 95 % for higher ks (52 and 37), the optimal com-
bination (see Section 5.3.2) reaches this effectiveness after only 6 events retrieved. This is
interesting as it suggests that this strategy has a much better cost-effectiveness ratio compared
to the timestamp-based strategies.

In Figure 6.2 we plot the effectiveness as well as the retrieval time for the optimal combination
strategy over different values of k. This strategy shows that the different strategies c¢; to
ce together are effective for the retrieval of different events; this means that each candidate
retrieval strategy retrieves non-overlapping events. The optimal combination strategy seems to
bring an advantages over all single strategies. The combination reaches an effectiveness of 98 %
at k = 10. Further, the diagram shows that the retrieval time remains fairly constant across
different values of retrieved candidates k. However, the retrieval time for any timestamp-based
strategy is up to 30 times lower, never exceeding a retrieval time of 0.003s.

It is important to note, however, that the above observations do not imply that the optimal
combination candidate retrieval strategy has the best cost vs. classification performance tradeoff
with respect to our classification task. Later, in Section 6.5, we turn to examine the cost-
performance ratio of the different strategies with respect to the overall classification performance
of the system in terms of F-measure.

Scalability and Processing Time

As can be seen in Figure 6.2, the time needed to retrieve the candidates is fairly constant across
different values of k. This is the case for all candidate retrieval strategies. However, the overall
processing time required clearly increases with the amount of k. The graph in Figure 6.3 depicts
the overall processing time of the system as a whole using upload time-based candidate retrieval
over the number k of event candidates considered.

90

6.2.3

6.2 Optimizing Candidate Retrieval

55

45

35

milliseconds

25

15

D i Dk

P T

S » - ® Y
— Average Processing Time per Document — Linear Correlation

Figure 6.3.: Average processing time for one document over different k based on Upload Time candidate retrieval
strategy

The retrieval times using the different strategies c; to cg are different. It is obvious that the
lowest retrieval time is achieved using the time-based strategies c; and co because a query
needing to compare one single integer value can be processed very efficiently using indexed
structures in the data storage. The text-based retrieval strategies are the most expensive as
many comparisons have to be made. Combining the single strategies as done in the uniform
or optimal clustering, the retrieval time is inherently bigger as for each query multiple single
queries have to be executed.

We can observe that the computation time per document increases if more candidates are
retrieved. This is indeed consistent as more comparisons have to be made. More importantly,
the increase in computational cost seems to be linear in k (see also the linear correlation in
Figure 6.3). As a consequence, we identify that minimizing k is the key issue towards scaling
up the system. Once k is fixed, the computation time for each document is constant regardless
of the event database size; this is an important requirement for scalability.

Conclusion

In this section we have been concerned with the question of how to scale up the classification
process so that it can be performed in real-time by optimizing the candidate retrieval step. Such
a step is crucial to reduce the total number of events that are considered as potential candidates
to which the incoming data point could belong to. This enables us to scale up to the data sizes
and data rates needed when dealing with social media applications data.

We have experimentally compared different candidate retrieval strategies with respect to their
effectiveness as well as computational cost. Using a candidate retrieval strategy, the average
processing time for one document has been fixed, thus allowing to process an unlimited number
of documents without an exponential growth of needed computation time. Therefore, the

Al

6.3

6.3.1

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

introduction of the candidate retrieval step makes it possible for us to cluster a large-scale
dataset within a feasible time period. In further experiments we will examine the influence of
the candidate retrieval strategies on the overall clustering process and the impact on the final
results in terms of quality.

Learning Similarity Functions

After the extraction of pairwise features for a combination of a document and event, we end up
with a feature vector of single similarities. We are faced with the challenge to find an appropriate
way on how to combine these single similarities to obtain an overall similarity value for this
combination.

We use the single similarity metrics proposed in Section 5.4 as a basis, asking how we can
learn an overall similarity function which combines these different measures with the result of
a satisfactory measure of overall similarity between a document and an event. Therefore, in
this section we experiment with the learning of such similarity functions. We employ different
classification algorithms to learn how to combine the single metrics in an optimized way. Having
such a metric, we will be able to score document-event pairs. This is the basis to rank document-
event pairs. This score is then needed for further classification decisions.

Experimental Settings

In this section we describe our experimental settings to learn similarity functions. First, we
describe the parts of the training dataset used for the conduction of the experiments. After
that, we describe the strategies for training the classification algorithms. In the last subsection
we then explain our leave-one-out strategy which is the basis for the determination of how well
a document can be assigned to an event using the decision of the classifier.

Data Splits and Sampling Strategies

We once again use the training split of our dataset for our experiments. This time, the 306,159
documents of the training split are partitioned into seven subsplits containing 43,737 training
documents each. Having these seven equal parts, we use them for cross-validation, allowing us
to train on one subsplit and to test the model on the six other subsplits.

We use three different strategies to construct the training dataset on the basis of the similarity
function learned. These strategies are used with all subsplits. Each data subsplit consists of a
subset of all the documents in question. For each document and each centroid representing an
event, the corresponding similarity vector Us;,(d, €) is computed. Pairs (d;, e(d;)) consisting of
a document d; and the corresponding event e(d;) are used as positive examples.

Independent of the used sampling strategy we make sure that the training data set is balanced,
generating a number of negative examples that matches exactly the number of positive examples.
In the following we describe how this is achieved for the three different strategies we consider:

92

6.3 Learning Similarity Functions

e Random: Using the random method, a subset of documents from the training set is
retrieved randomly. A negative example is created by computing the similarity vector of
the document and a randomly chosen centroid of an event which the document does not
belong to.

e Time-based: The documents of the events are uploaded to Flickr in a time-ordered
manner. Thus, it seems natural to choose n consecutive documents from the training set.
We use the first documents appearing in each split. To create the negative examples we
use the random strategy as described above.

e Nearest: Here, we also choose n consecutive documents from the training dataset as
we did in the time-based strategy. However, in this case, the negative examples are cho-
sen using the nearest event class where the document does not belong to neg(d?) =

maxdi_ Zext(e(d)) Z?:l sim (d;> e(d:r))

Finally, we end up with 21 training sets, one for each of the three strategies for every subsplit.

Training Examples for Classifier Training Strategies

Regarding the creation of the training examples, we consider each training data subsplit indi-
vidually. We choose m positive and m negative examples from each of these splits according to
three sampling strategies described in the previous section.

For m we consider the following values 100, 200, 300, 400, 500, 1000, 2000, 4000, 8000, 16000,
and 32000. As classifiers we decided to use a standard SVM, a ranking SVM, as well as a
Decision Tree. In order to be able to compare the results of these classifiers we use the same
training examples for all three of them.

For the standard SVM and the Decision Tree we use the class labels “1” for positive and “—1”
for negative examples. For the ranking SVM we have to group positive and negative examples
into a ranked group where the document-event pair (d;,e(d;)) gets a higher rank (label “2”)
than the pair (d;, e’) where the same document is compared to a centroid of an event cluster it
does not belong to (label “1”).

Classifier Settings

In our experiments we rely on three different classifiers. Therefore, in the following we describe
the settings and parameters which we have chosen for the different classifiers to be tested.
Additionally, we mention which implementation is used. We feed all classifiers with the same
training data for equal scenarios; both types of SVMs and the Decision Tree are trained using
the same positive and negative examples.

e Support Vector Machine: For the standard SVM we make use of the LibSVM imple-
mentation from Chang and Lin [CL11]. Ultimately, we use the C-SVC implementation
for support vector classification. The trade-off between training error and margin C' is set
to 1.0. In order to yield an actual similarity measure, the output of the SVM has to be

93

6.3.2

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

normalized into values in the interval [0..1]. For this purpose LibSVM provides probability
estimates on which we rely. These probability estimates are derived from the distance to
the decision boundary. For our experiments we experiment with two different kernels:

Definition 6.3.1 — Linear and Radial Basis Function (RBF) kernel

®(d,e) = (d,e) (Linear kernel) (6.5)

®(d,e) = exp(—v - ||d —e|[?), ~= (RBF kernel) (6.6)

D=

« Ranking Support Vector Machine: As ranking SVM we use SVM ** an implemen-
tation from Joachims [Joa02]. Instead of the standard C value of 0.01 we use a training
error and margin trade-off of 1.0 for comparability with the standard SVM. With this
classifier, we also use the above mentioned kernels.

o Decision Tree: For the Decision Tree we use the CART (Classification and Regression
Trees) implementation (see Breiman et al. [Bre+84]). The binary tree is built using the
feature and threshold which yield the maximal information gain at each node. We set the
tree to have a maximum depth of 5, the minimal samples per leaf is set to 1. The CART
implementation also returns normalized values in the interval [0..1].

Leave-One-Out Strategy

For conducting the experiments we use a leave-one-out strategy. In particular, we use our
test set (a subsplit of the training set) and choose k event clusters. We then take exactly one
document from these event clusters. The centroids of the event clusters are then recomputed as
if the document taken out was never part of it. This is done for each data split individually.

Actually, 1,000 event clusters (k = 1000) from each data split are selected and a random
document from each of them is taken out. We finally end up with 1,000 clusters and 1,000
documents. In our experiments we then compare every document to every centroid of the event
clusters. As we know the correct assignment for each document, it is possible to measure the
correct assignment rate for each method. This accuracy is averaged over all seven train-test
split pairs.

Results

In the following we present the results of the experiments regarding the similarity function
learning. In Table 6.2 we show the average accuracy for the standard Support Vector Machine
with the two different kernels together with the different sampling strategies and a different
number of training examples. Table 6.3 shows the average accuracy for the ranking Support
Vector Machine with the same settings as used for the standard SVM. The results for the

94

6.3 Learning Similarity Functions

Table 6.2.: Average assignment rate using a standard SVM

Training Linear Kernel RBF Kernel
examples Time-based Random Nearest | Time-based Random Nearest
200 98.0 % 97.3% 97.7% 98.1% 97.8% 97.7%
400 98.9% 97.5% 98.7% 98.6 % 97.6 % 98.8%
600 98.8% 97.4% 98.5% 98.4% 97.5% 98.9%
800 98.5% 97.4% 98.4% 98.4% 97.7% 98.7%
1000 98.6 % 97.7% 98.4% 98.6 % 98.0% 98.6 %
2000 98.3% 97.9% 97.7% 98.4% 98.0% 98.9%
4000 98.4% 98.0% 98.8% 98.3% 98.3% 99.1 %
8000 98.4% 98.1 % 98.9% 98.5% 98.4 % 99.1 %
16000 98.6 % 98.2% 99.1 % 98.7 % 98.5% 98.4%
32000 98.7% 98.4% 99.1 % 98.7% 98.6 % 98.1%
64000 98.7% 98.5% 99.0 % 98.9% 98.7% 96.9 %

Table 6.3.: Average assignment rate using a ranking SVM

Training Linear Kernel RBF Kernel
examples Time-based Random Nearest | Time-based Random Nearest
200 98.6 % 98.4% 98.9% 98.2% 97.8% 97.6 %
400 98.9% 98.4% 98.9% 98.4% 98.4% 98.1%
600 98.9% 98.5% 98.9% 98.4% 98.3% 98.2 %
800 98.8% 98.4% 98.8% 98.4% 98.2% 98.2%
1000 98.8% 98.4% 98.8 % 98.4% 98.3% 98.1%
2000 98.9% 98.5% 99.0 % 98.5% 98.4 % 99.0 %
4000 98.9% 98.5% 99.0 % 98.5% 98.7% 99.0 %
8000 98.6 % 98.5% 98.9% 98.5% 98.2% 99.1 %
16000 98.6 % 98.5% 99.0 % 98.5% 98.2% 99.0 %
32000 98.6 % 98.5% 99.0 % 98.5 % 98.3% 99.0 %
64000 98.7% 98.5% 99.0 % 98.5% 98.5% 98.9%

Decision Tree are shown in Table 6.4. The results are average over six subsplits not including
the subsplit used for the training of the classifier.

Overall, the problem is solvable using all three classifiers. However, we see that the performance
varies. Both the parameters and the type of classifier chosen have a huge impact on the accuracy
of the decisions.

Impact of Classifier and Kernel Influence

The results allow the conclusion that a Support Vector Machine suits better for solving the
problem. Even though the Decision Tree reaches over 95% of accuracy when trained with

95

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

Table 6.4.: Average assignment rate using a Decision Tree

Training examples Time-based Random Nearest

200 0.5% 4.0% 22.2%
400 6.8 % 1.2% 27.2%
600 0.1% 4.6 % 34.5%
800 3.5% 3.3% 42.5%
1000 0.2% 4.0% 33.8%
2000 3.1% 5.5% 55.9%
4000 3.9% 11.5% 63.8%
8000 13.1% 22.9% 90.2%
16000 37.4% 33.0% 93.2%
32000 42.0% 40.3 % 94.7%
64000 59.9 % 54.3 % 95.8 %

64,000 examples, both types of SVMs easily outperform the Decision Tree reaching over 99 %
accuracy.

One very surprising conclusion of the experiments is the fact that a good similarity function
can already be learned with very few examples when using a Support Vector Machine. Using a
ranking SVM, it is possible to already learn a model with nearly 98 % accuracy with only two
training examples—one positive and one negative. In contrast to that, a standard SVM needs
already more than 20 examples (10 positive and 10 negative) to learn a model with around 97 %
accuracy.

While the performance of the ranking SVM does not vary much using different amounts of
training data, the standard SVM clearly suffers from overfitting; this is shown by the drop of
performance from around 16,000 training examples onwards. The ranking SVM does not suffer
from such a performance drop, thus showing a more robust behavior.

There is not too much difference in the maximal performance regarding the kernel used. Both
types of SVMs reach 99.0 % to 99.1 % accuracy with either kernel, leading to the assumption
that both kernels can be used to tackle the problem. The usage of a linear kernel has advantages
over the RBF kernel regarding the computational time needed. As this has an impact on the
overall scalability of our system, the standard SVM using a linear kernel is the preferred method
to learn a similarity function.

Impact of Sampling

It can be easily observed from the results that the sampling strategy and thus the choice of how
many training examples are used for a certain classifier is crucial for the creation of a model
as the quality varies a lot. It is also notable that a Support Vector Machine needs a lot less
training examples than a Decision Tree to create a good classification model.

96

6.3

Learning Similarity Functions

0.978 0,982 0,982 [0,982 0,986 B 0,985 0,985 B 0,985
. 0.95 0,952 0,953
=
= 0,933 0,933
(a1
£ 0,912
= 09 0,903
®
>
S
<T
(VRIS 0,359 g 0,861
0l8 & & & & & & J g g g g & g g & &
C T TET T T EECECEEEE
S G I I VR > PR P RS O I
& IR N
SFFF
QQ,

Features

Figure 6.4.: Feature analysis for computation of P(e|d) of accuracy using a standard SVM with linear kernel

We see that using the random sampling strategy leads to the worst results. It may be possible
that a model created by a random selection of positive and negative examples gives acceptable
results but in general the results are worse and more unstable than using other methods. Overall,
more training examples are needed using this sampling strategy to get a reasonable accuracy
rate.

Both of the other sampling strategies work very well showing clearly that the search for the
nearest wrong pair helps to create a better model. Using the Support Vector Machines we
observe this effect using the time-based sampling strategy, too. This is not the case for the
Decision Tree which is the classifier most sensitive to the sampling strategy.

Feature Analysis

In Figure 6.4 we compare the accuracy rates used to calculate P(e|d) over the time features and
all possible combinations of other features together with the time features. The two time features
are always used because this type of data is available for each data point in the dataset. To
obtain these figures, we averaged over all accuracy rates for m € {1000, 2000, 4000, 8000, 16000}
using the nearest sampling strategy. As classifier we employed the standard SVM with a linear
kernel.

Usually, we expect the accuracy to be very low when using the time features only, but in our
experiments the use of these features yields an accuracy of about 85 %. We have two explanations
for this effect: i) the number of overlapping events regarding their time range is not very large
and ii) we do not use one single time feature but both timestamps together (upload an capture
time) so that a better classification is possible. In earlier work we showed that using only one
single feature results in very poor accuracy rates (see Reuter and Cimiano [RC11]). Regarding
the first reason, it nevertheless seems possible that the dataset is still sparse enough to achieve

97

6.3.3

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

a decent accuracy for the time feature. Even if this is the case, we are aware that if (a lot)
more data points are used, the results of a pure time-based clustering will be very poor as we
have shown in our work from 2011. Therefore, the usage of the timestamps as a single feature
is eventually not as good as implied by the numbers in the figure. Fortunately, about 99.9 % of
all documents in the dataset have at least one more feature associated in addition to the time
features, therefore allowing for a better decision.

It is remarkable that the additional use of the geographic location does not improve the results
much compared to the accuracy using timestamps only. We explain this with the enormous
lack of location information in the dataset. Therefore, the decision often depends only on the
timestamp-based comparison as no other feature is available; this explains the rather low score.
Luckily, more recent camera devices support the geographic tagging by GPS resulting in more
pictures including the geographic feature.

Mostly, the addition of a feature does not worsen the accuracy score. The only exception is the
usage of all features instead of the best combination (time, geographic information, tags, and
title). As the difference is only slight and could change if another data basis is used, we do not
see the need to introduce exceptions where features are excluded depending on the availability of
other features. Therefore, we always use as many features as are present for the document-event
pair.

It is interesting that all combinations of the time features and at least one other feature are
enough to produce reasonable results. As 99.9% of all documents have at least one feature
available in addition to the time features, we can conclude that the availability of all features
is not compulsory and the lack of features can be compensated for by other features. The
results license also the conclusion that the tag feature is one of the best features available as
any combination with the tag feature produces very good results. This is especially good as
this feature is available for more than 95 % of all documents.

Conclusion

In this section we addressed the question of how we can learn a suitable similarity function
from training data. We used different classifiers, a Decision Tree as well as two different types
of Support Vector Machines (ranking and standard) in order to train an appropriate similarity
function. Furthermore, we investigated the impact of the amount of training data and different
strategies for creating training data. As a result we have seen that it is possible to learn a
suitable similarity measure using all of these classifiers. When using Support Vector Machines
it is already sufficient to use only few examples to train a model.

We have shown that the use of well-chosen training examples improves the quality of the assign-
ment significantly. The sampling strategy is crucial for the success maximization of the training
process. It has been shown that the search for the nearest wrong document-event pair helps
creating a better decision model. In general, we need only few data points to be able to create
a good decision model. However, if too much data is used for training, at least the standard
SVM suffers from overfitting.

98

6.4

6.4.1

6.4 New Event Detection

In addition to the results above, our feature analysis leads to the conclusion that the lack of a
single feature has no great impact on the quality of the prediction. The accuracy rates are still
acceptable even if more than one feature is missing. As nearly 99.9% of all documents have
more than the time features assigned, the methods we proposed in this section are applicable
in a real-world scenario.

The results presented in this section are comparable to those from earlier work (see Reuter and
Cimiano [RC11]). The experiments were conducted using a different dataset and the setting
differed from the one used in this section. However, we came to the same conclusion that the
problem can be solved best using a standard SVM. We propose to use this classifier with a
linear kernel.

New Event Detection

After the successful scoring and ranking of the document-event pairs, we have to answer the
question whether the newly arrived document belongs to an existing event or if we have to create
a new event. To this end we have to decide if the newly arrived document is similar enough to
one of the events seen so far. From the scoring and ranking step we can deduce several features
(see also Section 5.6) to decide on this question. These features can be used to train a classifier
which then can be employed to predict whether a new event should be created or not.

Experimental Settings

In the following we describe the experimental setup to learn a classifier for the detection of
new events. As described in Section 5.6 we use the feature vector ¥,e, (d) with derived features
from the preceding step of the framework to learn a model for the prediction whether a new
document belongs to an already existing event or should be classified as a new event.

For the task of new event detection, we have to investigate which combination of features in the
feature vector ¥Uyey (d) should be considered in order to maximize the accuracy of the decision.

Data Creation for Classifier Training

For the training process of the new event classifier, we also use the training split of our dataset.
We make use of the seven subsplits with 43,737 documents each as proposed before. As the
number of positive examples for this classifier is limited by the number of real events in each
subsplit (around 2,000 events) following the gold standard, we have to merge some subsplits in
order to be able to feed the classifier with more than 2,000 training examples. Therefore, we
use subsplit 1 to 4 and merge these subsplits resulting in a split of 174,948 documents which
are spread over 9,046 events. This data is used for the training of the the classifier. The
optimization is then made on the merged subsplits 5, 6, and 7 resulting in 131,211 document
spread over 6,536 events.

99

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

In order to obtain the new event feature vector ¥pey(d), we employ an optimal clustering
simulation similar to the simulation proposed above. The calculation of the similarities between
the document-event pairs in the scoring and ranking step is done using the learned similarity
metric from the previous section. For this step we employ a standard SVM with a linear kernel
trained with 8,000 positive and negative examples as proposed. Nevertheless, the documents are
placed into their corresponding correct event cluster according to the gold standard independent
from the results of the classifier in the scoring and ranking step.

As we later want to use a candidate retrieval strategy in our final optimized clustering framework,
we also have to take this into account at this step. This is important as the calculation of the
average and standard deviation for the new event feature vector as well as the determination
of the minimum value heavily depends on this. Therefore, we use the clustering simulation
together with the candidate retrieval strategy retrieving the 100 nearest events based on their
upload timestamps.

Finally, the optimal clustering is executed using the merged subsplits 1 to 4. In each step of that
clustering process we calculate the similarities between the document-event pairs. In addition
to that we know if a new cluster has to be created or not, this gives us the possibility to know
whether the new event feature vector created is positive or negative. As a result of our optimal
cluster simulation, we get 9,045 positive (is a new event) and 165,902 negative (is not a new
event) examples for the feature vector Uy, (d) including all the feature described in Section
5.6.

We use the same clustering simulation with the 131,211 documents from subsplits 5, 6, and 7 to
obtain data for the evaluation of the trained new event detection classifier. This process yields
6,535 positive and 124,675 negative examples.

Classifier Training Strategy

The data in the feature vector ¥yeq,(d) is not ordered. Therefore, a nearest sampling strategy
as presented in the previous section is not possible to use as it is not clear how distant two
data points are. As a consequence, our strategy is to use the first m positive examples ap-
pearing together with m randomly chosen negative examples. For m we consider the values
2,10, 50, 100, 200, 300, 400, 500, 1000, 2000, 4000, and 8000.

As it has been shown that it is important that the training data set is balanced, we also make
sure that the number of negative and positive examples exactly match during the classifier
training. To train the classifier, we also use the class labels “1” for positive (is a new event) and
“—1” for negative (is not a new event) examples. The training of the Support Vector Machine
is done only using the merged subsplits 1 to 4.

Classifier Settings

For our experiments we have chosen a standard Support Vector Machine as classifier for the new
event detection. As for the SVM used in the scoring and ranking step, we again use the LibSVM
implementation from Chang and Lin [CL11]. Furthermore, we use the C-SVC implementation

100

6.4.2

6.4 New Event Detection

for support vector classification. We set the trade-off between training error and margin C' to
1.0. The classifier is used with a Radial Basis Function (RBF) kernel.

Even though a binary decision from the SVM is sufficient to decide whether a new event is
created or not, we prefer the output of the SVM to be normalized into values in the interval
[0..1]. We do this in order to further optimize the decision by empirically determining a suitable
threshold. For this, we use the probability estimates provided by LibSVM.

Evaluation Strategy

Our goal is to test how well the classifier predicts whether a new event should be created or not.
Therefore, for the evaluation of the classifier models, we use the data created by the optimal
clustering process on the merged subsplits 5, 6, and 7. As we know the correct assignment for
each data point in this test set, we can measure the correct assignment rate. The resulting
accuracy scores can then be used to determine the best parameters for the new event detection
classifier.

Results

In this section, we present our results of the optimization process of the new event detection
classifier starting with an analysis of the influence of the number of training examples. We then
present the results of our feature analysis before we end with a statement whether to use a
classifier ore a simple threshold for the detection of new events.

Influence of Training Examples

In our first experiment we take a look at the influence of the number of training examples used
to train the classifier. We aim to answer the question how many training examples are needed
in order to achieve the best assignment rate using all features of the new event feature vector.
To conduct the experiment, the Support Vector Machine has been trained with m positive and
m negative examples. The resulting models are then used to predict for each test vector ¥,ey (d)
included in the test set whether it constitutes a new event or not. The results are shown in
Table 6.5.

We can observe that the models created using 4,000 or 8,000 training examples give the best
results regarding accuracy. It is interesting that already few examples may be sufficient to
create a working model. However, if only few examples are used, the quality depends massively
on the examples used. Beginning with 100 examples, the quality starts to be stable.

Feature Analysis

To make sure we identify the optimal features to be used for the new event decision, we conduct
a feature analysis. The aim of this analysis is to find the optimal combination of features to be
used for a decision model. To this end we consider the accuracy of the decision of the model
with different combinations. We set the number of training examples m for the SVM classifier

101

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

Table 6.5.: Accuracy of new event detection for different number of training examples

Training examples (pos. 4+ neg.) Accuracy

4 75.2%
20 68.4%
100 82.5%
200 82.8%
400 84.8%
600 85.0%
800 84.8%
1000 84.4%
2000 85.2%
4000 85.7 %
8000 85.7 %
16000 84.6 %

to 2,000, i.e. the standard Support Vector Machine used is fed with 2,000 positive and negative
examples. This setting has been shown effective for creating a well-adapted decision model for
solving the new event decision problem.

For our investigation we conducted a greedy strategy to find the best feature combination. That
is, we add the next best feature to the feature set in each step as long as the accuracy of that
combination is increased. For the test, we use the six features described in Section 5.6. The
results of the greedy search are shown in Figure 6.5.

The graphic in Figure 6.5 depicts the steps of this greedy search strategy. It seems natural that
the best single feature is maz which is confirmed by the feature analysis. Nevertheless, we have
shown that a combination of four features yields the highest value with about 86.2 % accuracy.
These four features are: maz, stddev, maw,y;, and avg. We identified these features already in
previous work (see Reuter and Cimiano [RC12]) with the only difference that the order of the
feature was slightly different.

Classifier vs. Threshold

For the decision whether to create a new event or not, there is an alternative to using a classifier.
It is possible to use a simple threshold on a single feature. A predestined feature for this is the
usage of the max feature, the similarity of best ranked document-event combination. If this
similarity is higher than a certain threshold, a new event is created. Otherwise the document
is assigned to the top-ranked event.

This methodology has been proposed by others (e.g. Becker, Naaman, and Gravano [BNG10]).
Actually, the use of a simple threshold is equal to the use of a classifier with only one feature.
It differs in the process of how the threshold is learned during the training process. We have
seen in our feature analysis that the single feature maz can be used for the new event decision.

102

6.4.3

6.4 New Event Detection

min
80.942 il
avg 83.601
82.241 avg
max stddev 85.048
81.873 83.844 MaXap min
il Macp 84.030 85.258 TifiT
62.733 80.953 maX,p avg 86.006
avg Mayp 85.121 86.220 MaXep
69.182 82.937 MaXep 86.141
stddev 85.868
79.558
MaXcap
64.730
maXupl
74.724

Figure 6.5.: Greedy search for optimal features for the new event detection task using a standard SVM

However, the accuracy rate achieved is not as high as the best combination found (81.9% vs.
86.2%). Therefore, the usage of the feature combination together with a classifier yields a
higher precision at the cost of some additional computational time.

Our conclusion is thus that the usage of a classifier is the preferred method. The experiments
show clearly that the results are inferior when using a simple threshold.

Conclusion

In this section we have been concerned with the question of how we can decide efficiently whether
a newly incoming document constitutes a new event or not. We showed that the usage of a
classifier with multiple features is preferred over an approach using a simple threshold on one
feature for the new event decision.

In order to train an SVM, the number of training examples set to 2,000 positive and the
same number of negative examples fits best for a classification model maximizing the decision
performance. We also found out that a combination of four features, max, stddev, maz,y;, and
avg, yields the best performance with an accuracy rate of 86.2%. These features were selected
from a set of six features. These features were originally deduced as a result from an optimal
clustering.

To conclude, we have presented a working model for the new event detection decision using a
SVM as classifier reaching 86.2 % accuracy. We prefer this model over a simple threshold model
reaching only 81.9 % accuracy.

103

6.5

6.5.1

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

Framework as a Whole - Results and Comparison

Having examined all relevant parts of the clustering framework in detail, we now take a look
at our clustering framework as a whole and analyze its overall performance. In Section 6.5.1,
we start with a description of how the system parts are optimized in order to allow for a high
performance on the overall task. Then, we outline the baselines to which we compare our
approach. We conclude this section with the presentation of the results.

Training and Optimization of the System Parts

In the previous sections we took a look at the single steps of the framework and we evaluated
how they could be optimized best. While the results indeed optimize each single task, it does not
necessarily mean that the optimized single steps of the framework result in a system reaching
the best overall performance. Therefore, we now investigate which settings have to be chosen
for the single steps in order to achieve on optimal overall clustering.

We start to take a look at the candidate retrieval step again in order to determine an optimal
candidate retrieval for the overall task. After that, we explain how we trained the classifiers
of the scoring and ranking as well as the new event detection steps for our final clustering
framework.

Candidate Retrieval

In Section 6.2.1 we presented how the candidate retrieval strategies perform in terms of effec-
tiveness. We now evaluate how we can improve candidate retrieval further.

We have shown that an optimal combination of different single candidate retrieval strategies
maximizes the performance regarding the cost-effectiveness ratio. However, for practical reasons,
it is not possible to use the optimal combination in the final system because this strategy requires
additional knowledge which is not present in the system in a real-world setting. In particular,
we do not know which single strategy has to be used in order to retrieve only a minimal number
of events as candidates.

Therefore, a solution for the final approach is using the uniform candidate retrieval strategy
where an equal number of candidates from each single strategy has to be retrieved. As a
consequence, not only the number of candidates retrieved is a lot higher but also the costs
for the retrieval time are much higher. This increase of candidates also increases the overall
processing time for one document, making the uniform strategy more unattractive in comparison
to the optimal strategy.

Besides the two combination candidate retrieval strategies, we saw that only those candidate
retrieval strategies that incorporate timestamp features are capable of reaching an effectiveness
of almost 100 %. Other strategies do not reach a high enough effectiveness to be taken into
account for further examination.

104

6.5 Framework as a Whole - Results and Comparison

Given the importance of having a suitable candidate retrieval strategy that is tailored to the
domain in question, in this section we investigate different candidate retrieval or blocking strate-
gies in terms of their cost-effectiveness tradeoff with respect to the task of clustering a stream of
social media documents into an evolving set of events. We show that using a blocking strategy
fulfills all criteria demanded above.

In the following we thus compare the most effective candidate retrieval strategies and study
their influence on the overall task of classifying documents into their corresponding event with
respect to their precision, recall, and F-measure. In addition to that, as a baseline, we compare
how well the clustering process performs if no candidate retrieval is applied at all.

Classification Performance

In Figure 6.6 we have plotted the F-measure for the four most effective candidate retrieval strate-
gies: Capture Time, Upload Time, Uniform Combination, Optimal Combination. In summary,
the results are surprising. It is remarkable that the time-based candidate retrieval strategies
outperform both the uniform and optimal combination in terms of F-measure.

The Upload Time strategy performs best. We can see that this strategy already yields F-measure
values greater than 80% for a relatively low k. From the view of computational time needed
this is pleasing as the retrieval cost for this strategy is also the lowest of all strategies presented
as there is only one feature involved. In addition, the retrieval can be implemented by a single
query to a database or data storage.

Figure 6.6 also shows the precision and recall values over k for the mentioned strategies. In
general, the precision decreases while the recall increases with a growing k; this is as expected.
It is observable that the highest recall is achieved by the Upload Time strategy, which is to be
preferred if recall is important, i.e. if all documents which actually belong to one event should
be grouped together by the classifier. The Capture Time strategy, however, has the highest
precision compared to all other candidate retrieval strategies. Thus this is indeed the preferable
strategy if precision is important.

To tackle the question how the system performance is influenced by the candidate retrieval
strategy, we compare F-measure, precision, and recall values for different strategies and k& = 18
(most promising value) with a configuration of our clustering system that uses no candidate
retrieval strategy at all. The results are shown in Table 6.6.

Table 6.6.: Comparison of several candidate retrieval strategies with k = 18 to no candidate retrieval

Strategy Fi-Measure Precision Recall
Upload Time 0.876 0.937 0.823
Capture Time 0.864 0.926 0.810
Uniform Combination 0.849 0.829 0.839
Optimal Combination 0.856 0.847 0.851
No Candidate Retrieval 0.671 0.572 0.813

105

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

09 F-Measure

Upload Time

.....

0,85 & ______________________

?}\(;, ST
0,825 W
QQ 'l .
'l '.~
08 -
"~
it
0775 *
0,75
I T T R I (I R S\’
1 1 Recall
0,92 0,92 R DI P T P P R o oy
0,84 0,84 /«J/
076 076 i
1:::
0,68 0,68
0,6 0,6
I T S T I R N T T R S S SR R '
— Upload Time Capture Time «+ Uniform Combination = = Optimal Combination

Figure 6.6.: Performance comparison for different candidate retrieval strategies over k'

The results show that the Upload Time strategy provides the best results and outperforms all
other forms of candidate retrieval for k = 18 and with respect to F-measure. Another surprising
finding is that, in spite of considering only 18 events, all candidate retrieval strategies outperform
a configuration of our system where no candidate retrieval strategy is used at all. The reason
for this is that the candidate retrieval step eliminates noise that might confuse the classification
components.

Processing Time

In Figure 6.7 we plot the overall processing time for a full classification process of our framework.
In that graphic we compare the overall processing time for one document after a certain number
of documents processed. We see that the processing time for one document increases constantly
if no candidate retrieval strategy is used. Using such a strategy, the processing time is almost

Values for the uniform strategy are interpolated for all values not dividable by 6 as by definition, this strategy
allows only an increase of six candidates at once.

106

6.5 Framework as a Whole - Results and Comparison

700

milliseconds

Documents
— without Candidate Retrieval + -+ with Candidate Retrieval

Figure 6.7.: Computing time for document processing using candidate retrieval in comparison to no candidate
retrieval

constant over time. The small increase over time can be explained by longer retrieval times of
the candidates as the event set grows.

Summary

Overall, our findings and results allow for the following conclusions:

¢ Our candidate retrieval strategies clearly outperform an approach not using any of those
strategies at all.

o Candidate retrieval strategies with the highest cost-effectiveness ratio (e.g. Optimal Com-
bination, as presented in Section 6.2) are not the best ones with respect to the overall
classification performance. They are outperformed by simpler strategies that consider
only the timestamp (Capture Time and Upload Time), which moreover can be computed
efficiently by a single query, not requiring to combine results from multiple queries.

e Our system reaches its top performance of 87.6 % F-measure using the Upload Time
candidate retrieval strategy with only 18 events retrieved.

These results are very interesting as they have significant impact on the design of any system
attempting to classify social media documents into an evolving set of events.
Scoring and Ranking Step

Regarding the decision for assignment of data items to events we use the created training data
described in Section 6.3. This is a balanced training set with 8,000 positive and 8,000 negative

107

6.5.2

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

samples from the training split of our dataset which have been created using the nearest sampling
strategy.

The training data is used to train a standard Support Vector Machine (C-SVM) together with
a linear kernel. The hyper-parameter C' denoting the trade-off between the training error and
margin is set to 1.0.

In difference to the classifier used for optimization, the SVM classifier here has been extended so
that it can handle missing features instead of assuming that the similarity for a missing feature
(e.g. the geographic location) is 0.0. This enables the classifier to distinguish between the case
where the feature is missing and the case where the similarity is actually 0.0.

New Event Detection Step

We created 2,000 positive and 2,000 negative training examples as proposed in Section 6.4,
using the trained scoring and ranking classifier and the candidate retrieval method as described
above.

The SVM is trained using the same settings as the one for the scoring and ranking step with
the difference that we use an RBF kernel of the form ®(d,e) = e~ 7 1l4=¢l* with = 5.

We also optimized the value for the hyper-parameter 6,, which specifies whether the newly
arrived data point belongs to a new event or not. It has been determined by gradient descent
on the training set of ReSEED using F-measure as optimization criterion. We get an optimal
value of 0.63 for our approach, and a value of 0.48 for our re-implementation of the approach
by Becker, Naaman, and Gravano [BNG10].

Baselines
As baselines for compsarison we use the following ones:

PerDay: Simple day-wise clustering (upload and capture time)

PerUserDay: Clustering by day (upload and capture time) and uploader

Becker: CLASS-SVM method described in Becker, Naaman, and Gravano [BNG10]
BeckerCR: CLASS-SVM method with candidate retrieval

Using the simple day-wise clustering PerDay, we take the test split of our dataset and merge
all documents into one cluster day-wise. That is, all documents from one single day between
0:00:00 and 23:59:59 are clustered into one event. We do this both for the upload and capture
timestamp individually.

The baseline PerUserDay where the documents are merged by day and uploader is similar to
the previous one. It is different insofar that the uploader of the document is also taken into
account. Ergo, all documents of one uploader from one single day between 0:00:00 and 23:59:59
are put into one single event. The idea behind this baseline is the imitation of many single-user

108

6.5.3

6.5 Framework as a Whole - Results and Comparison

Table 6.7.: Results of our approach in comparison with different baselines using the ReSEED test set

Method Fi-measure Precision Recall
Our Method 0.886 0.951 0.830
Becker 0.660 0.558 0.806
BeckerCR 0.882 0.909 0.856
PerDaycap 0.596 0.491 0.758
PerDayp1 0.607 0.494 0.786
PerUserDaycap 0.841 0.980 0.736
PerUserDayp1 0.842 0.996 0.729

photo album systems (like Apple iPhoto or Adobe Lightroom) where photos are clustered into
events day-wise. This method is also applied using both timestamp types individually.

Becker, Naaman, and Gravano [BNG10] describe an incremental clustering approach which
also makes use of a Support Vector Machine in order to find the most likely event that a
document belongs to. There are two crucial differences to our approach. First, they do not use
a second decision model to detect new events, but a simple threshold based on the maximal
similarity. Second, they do not employ a candidate retrieval step; therefore, Becker, Naaman,
and Gravano [BNG10] have to scan all events in the database for each incoming document. We
have reimplemented their approach and tested it under the same conditions and on the same
dataset as our approach.

As another baseline, we use the re-implementation from the approach of Becker et al. and
add a candidate retrieval step. With this enhancement their approach can thus scale to larger
datasets. It is also tested under the same conditions as our approach.

Overall System Performance

In the following, we compare the overall system performance of our framework in terms of preci-
sion, recall, and F-measure to the performance of the baselines. In particular, the following sys-
tems are compared: Becker, BeckerCR, PerDaycqp, PerDayyy, PerUserDayc.,, PerUserDayyy,
as well as our method.

The results of the different approaches are reported in Table 6.7. All experiments have been
conducted on our ReSEED test set and can thus be compared to other approaches using this
dataset for clustering. The key observations are as follows:

e The PerUserDay baseline methods reach decent F-measures. Furthermore, the precision
is very high, clearly showing that the simple assumption of diverse single-user photo
collection applications that one user takes photographs from only one event per day is
acceptable. However, the recall is rather low; we conclude from this that many events are
spread over a longer period than 24 hours. It is obvious that they are not captured by
these baselines.

109

6.6

Chapter 6 Experimental Setup and Results of the Supervised Single-Pass Classification

e A suitable candidate retrieval step is very important. Comparing our approach or the one
from Becker to an approach with a candidate retrieval step, we can see that candidate
retrieval has a huge impact on the performance in terms of quality. The approach without
candidate retrieval is clearly outperformed by the other approaches incorporating such a
step.

e It is surprising that the candidate retrieval step not only increases the efficiency of the
system, but also increases the classification performance per se. This is due to an elim-
ination of noise that might confuse the classifiers in the scoring and ranking as well as
the new event detection steps. It also shows that the candidate retrieval indeed is able to
eliminate many events that the document is unlikely to belong to.

e In comparison to the approach of Becker with a candidate retrieval component, our method
has a much higher precision (0.951 vs. 0.909), which is an advantage in our general
clustering setting. Our assumption is that a user is interested in seeing pure clusters with
only few spurious examples. Having a high precision allows for using a post-processing
strategy that aims to increase the recall by merging clusters of similar events. As the
increase in recall always comes at the expense of reducing precision, a higher precision as
obtained by our approach in comparison to the one of Becker is beneficial.

Moreover, we observe that the performance of Becker is much lower than Becker, Naaman, and
Gravano [BNG10] report in their publication. This difference can be explained by the fact that
the number of documents to be clustered differs. While we tested our system with 131,211
samples, Becker et al. used a dataset consisting of only 27,000 documents. When using more
documents, there are also more events. As a consequence, the chance of assigning a document
to a wrong event is much higher. This explains the lower F-measures.

Conclusions

In this chapter we have presented our single-pass approach for clustering with the event-based
stream classification framework. We indeed have shown that our system is able to classify a
stream of social media data into a growing and evolving set of events. Our method has been
applied to our ReSEED dataset allowing for an easy comparison with other approaches.

In particular, we have shown that our framework with the single-pass approach is able to
successfully address the following key problems:

e We are able to tackle the new event detection problem, i.e. the problem of determining
whether an incoming data point belongs to a new event or not.

e We are able to scale to the data sizes and data rates which are encountered in social media
applications.

110

6.6 Conclusions

These problems were addressed successfully by including a candidate retrieval step retrieving a
set, of event candidates that the incoming data point is likely to belong to and by including a
function that was trained using machine learning techniques to determine whether the incoming
data point belongs to the top scoring candidate or rather to a new event.

We have directly compared our system to several baselines showing that it outperforms all of
them in terms of F-measure. Our approach also outperforms the approach from Becker et al.
in terms of efficiency. The benefit of our approach is that it has the capability to scale. The
processing time per document remains nearly constant with increasing documents, addressing
the scalability challenge mentioned before.

The result of our system with 88.6 % F-measure is already good, but nevertheless we acknowledge
that the UserDay baseline also reached a high value at very low computational cost. We see
that the baseline performs better in terms of precision leading us to investigate further into the
direction of increasing recall. We intend to examine whether the performance of our approach
can be increased by the use of a second pass which merges different events into one. This will
be investigated in the next part of the dissertation.

(RN

pART

Multi-pass Stream Clustering

CHAPTER 7/

System Description of the Stream
Classification Framework for a
Multi-Pass Setting

In the previous part of this dissertation, we presented and experimentally evaluated our stream
classification framework used with a single-pass strategy. We have shown that our framework
with the three components candidate retrieval, scoring and ranking, as well as new event de-
tection is indeed able to cluster a data stream of social media documents successfully. The
advantages of the system over other state-of-the-art approaches are that a) it is scalable to
the data sizes and rates needed in the area of social media applications, allowing even to scale
to data streams of infinite size—theoretically—, assuming that all events and documents can
be stored physically, and b) it has a very good overall performance which outperforms several
baselines and competing approaches on our real-world and non-toy ReSEED dataset.

Even though the performance and results of our single-pass approach are already very good,
we are aware of other approaches using our dataset in a non-stream context showing a better
performance (for more information see also Section 3.7). This proves that it is still possible to
reach better results. We discovered that not only our approach but also two simple baselines
are able to produce very high values for precision while keeping a high overall performance in
terms of F-measure. This is interesting for us in two ways.

First, we assume that users are interested in seeing very pure clusters with only few or in
best case no noisy elements. To clarify this, let us assume two different scenarios. In the first
scenario, a real event is split into three distinct events by an algorithm; in the second scenario,
all documents of this event are merged correctly into one single cluster but in addition other
documents are merged into that cluster that is not belonging there. In the first case, a user
can easily identify that the distinct events actually depict only one event and they are finally
merged resulting in a still pure and desired event cluster. Cleaning up the cluster produced in
the second case involves a lot more work as every element has to be checked if it belongs to the
cluster or not. We clearly see that the first case can be tackled easier.

115

Chapter7 System Description of the Stream Classification Framework for a Multi-Pass Setting

Second, more importantly, if it is possible for humans to merge the resulting event clusters to
reach a better overall clustering. This merging process is also possible for a machine learning
system. Therefore, our idea is to apply another classification process on top of the resulting
clustering. As our single-pass approach and the two baselines actually produce results similar
to the first case of our example above, we indeed have a very good starting position to merge
the produced clusters further. Practically, the strategy is to increase recall by merging clusters
depicting similar events. It might be possible that an increase of recall comes at the expense
of precision. Nevertheless, if the precision is lowered only slightly in turn of a large increase of
recall (with the result of a very good overall performance), this is an actual improvement from
the perspective of the end-user.

Therefore, in the following, we investigate how our approach can be improved by additional
classification passes so that the recall of the final clustering is increased. We thus aim at
refining our stream classification framework further with the goal of a better overall performance.
Therefore, in the following two sections of this part, we are concerned with the following problem
statement:

Problem 7.1 Given a highly precise pre-clustered data stream of social media document with
each source document assigned to one event cluster, we aim at finding a further clustering
identifying the final event clusters of the source documents.]

We are still faced with the challenge of classifying a never-ending stream of data into corre-
sponding events. Nevertheless, due to a preceding clustering step, the number of elements to be
clustered is a lot smaller. This has the advantage that less comparisons have to be made, thus
saving computational power. The pre-clustering of the data also has the benefit that features
which were missing for single documents might be available with the intermediate cluster to
which the document is associated. This might facilitate the assignment to the final cluster as
more features for the decision can be used. However, the number of the target event clusters is
still unknown and the determination of that number is still challenging. But, as we will show,
our framework is capable to address these challenges successfully.

In this chapter, we introduce a strategy to extend our Event-based Stream Classification Frame-
work to be used for an event classification using a multi-pass strategy. We will show that
the extended system is capable to handle the same document set which has been used for the
single-pass approach; the results of this approach are therefore fully comparable to those of the
single-pass strategy. In addition to that, we will show that the scalability and performance of
the classification system is better when using two passes. In general, a theoretically unlimited
number of passes is possible and we will present an overview on how this can be realized. Later,
we demonstrate this approach using the example of a two-pass strategy.

116

7.1

7.1 Problem Statement

Problem Statement

As already stated in Section 5.1, we view the problem of event detection in social media as a
supervised classification problem where the underlying similarity function and other clustering
algorithm parameters are optimized using labeled data. Doing a reclustering of an intermediate
clustering is actually not different to the task of clustering the original documents. The produced
set of intermediate clusters can be handled as if it were sets of documents. Consequently, the
problem we are facing in this chapter actually stays the same.

Instead of a set of documents D, the input of our framework is a pre-clustered set of D. We
call such a pre-clustered set an intermediate clustering and denote it by C,. In analogy to our
problem in the previous part, we still need a function a; which assigns the intermediate event
¢ € C, to one of the newly created event clusters F, at time t. This function is defined as
following:

a;: C, — Eut (71)

The new events F, are considered to be the resulting clusters. These clusters can then again
be used as starting point so that C, = E,,. Actually, the function a; can be executed recursively
until the desired granularity of clusters is reached. In each step the number of newly created
events is unknown, and we thus depend on a similarity function sim. We keep the similarity
function to be learned similar to the one used in the single-pass scenario (see Equation (5.3)):

sim: C, x E, — [0..1] (7.2)

Depending on the value sim and a therefrom deduced feature vector ¥,e(c), we decide whether
a new event is created or if the function sim assigns the intermediate event clusters to the event
cluster e, by maximizing the similarity:

Definition 7.1.1 — Assignment function

at(e,) = arg max sim(c, e,) (7.3)
evEE,(t)

The similarity between an event cluster ¢ of the intermediate set C, and a cluster e, of the new
event set F,u is calculated using the following linear model:

Definition 7.1.2 — Similarity function

sim(c, e,) = W - Usim(c, €,) (7.4)

117

7.2

Chapter7 System Description of the Stream Classification Framework for a Multi-Pass Setting

— >

Documents D Event Database

Event Clusters C, € £
Events £
>
Event Clusters C, € Ev,
: Event Database
Candidate Retrieval Centroid
(Re)calculation
Events £,
Pairwise Feature Event Classification
Extraction new event . . N
Candidate Retrieval Centroid
0 new event (Re)calculation
W ev
Scoring and New Event Decision
Ranking S
alexltsrgctie:r:ure new event Event Classification
no new event

Sc;:nnk%:gnd New Event Decision

Figure 7.1.: Overview of the event clustering framework system using multiple passes

Again, the already known features like time, location, tags, etc. are used with the same simple
similarity measures for the different dimensions of the vector ¥;,. As the task remains to
optimize the weight vector w, we see that the approach itself does not change and the only
difference is the initial item set C, to be used.

The main problem is shifted towards the question at what position in the classification process
we can start with the next pass. In a stream setting it is not possible to wait until the first
classification pass has been finished, as this will never be the case in a stream data setting.
Fortunately, it is not necessarily needed that the whole set has been clustered before the next
classification pass can be started. As the data is ordered by time, the intermediate event
set could be handed over to the next pass if the timestamp of the current data point in the
classification process has passed a certain point in time. An alternative to this is to allow
the shift of the intermediate event set to the next pass after a fixed number of data items
processed.

System Overview

In this section we describe how and in which ways our framework can be used in a multi-pass
setting. The first possibility is to use the framework in a cascaded mode as shown in Figure
7.1.

Our system processes an incoming data stream of documents D in several steps starting with the
process already described for the single-pass mode, with the difference that there is a time-based
constraint. In detail, such a cascaded system works as follows:

118

7.3

7.3 Multi-pass Requirements and Challenges

1. Each document d € D is processed using the candidate retrieval, scoring and ranking, new
event decision, as well as event classification steps. This process runs infinitely processing
the document in timely-ordered manner as provided by the data stream.

2. If a certain time-based criteria is fulfilled, a snapshot of the event database of the first
processing step is taken. All the events at a specific time t are added to the input cache
C, of the second process chain. The copied events C, € E; are then deleted in the first
event dataset so that £ = &.

3. The second clustering process starts when the first pre-clustered event sets are added to
the item queue C, of the second process. Each cluster ¢ € C, is then processed in timely
order using again the single steps of the process (candidate retrieval, scoring and ranking,
etc.).

4. As many clustering passes as desired can be added repeating steps 2 and 3.

An alternative setting is to use a different clustering strategy to produce the intermediate event
clusters. Any clustering strategy can be used to achieve this intermediate clustering as long as
it can be used in a stream data setting. For example, it would be possible to delay the data
stream by one day and cluster the documents within that day by user. Then this intermediate
clustering could be given to the classification system.

The adding of additional passes to the clustering process with our framework makes sense as
long as the precision of the resulting clustering is sufficiently high. This allows for an increase
in recall.

Multi-pass Requirements and Challenges

Using a multi-pass strategy, there are some requirements and challenges which we need to pay
attention to: i) achievement of a better overall performance, ii) keeping the system scalable,
and iii) sticking to a stream paradigm. Our goal is to find a suitable strategy which fulfills all
these criteria.

The challenge to achieve a better overall clustering performance in comparison to the single-
pass strategy depends on different factors. In general the features used for the classification
process must allow for a better clustering. Given that this is the case, a better performance
can be reached if the intermediate clustering of a previous pass is pure enough allowing for a
further merging of the intermediate event clusters without a too great error rate. Thus, we
mainly depend on the intermediate clustering created in a previous classification pass. If this
clustering does not provide a reasonable starting point, a better clustering is hard to achieve. In
general, a previous clustering enriches the newly created single data points with more condensed
information. Therefore, in our case, it shall be possible to reach a significantly better overall
result as the intermediate clusters produced by our single-pass strategy and several baseline are
of high precision.

119

7.3.1

7.3.2

Chapter7 System Description of the Stream Classification Framework for a Multi-Pass Setting

Scalability is still crucial for a system tackling the problem of clustering real-world social media
data. The use of multiple passes is insofar problematic as every pass needs computational power.
Consequently, the scalability is lower with each pass which is added to the clustering process. We
can cope with this issue by ensuring that the single passes can be done efficiently. Therefore,
one strategy to tackle the scalability challenge is to use classification techniques allowing to
produce a coarse clustering very quickly as a first pass. After that, another pass is used to
classify the intermediate event cluster set (which obviously is smaller) more thoroughly.

Sticking to the stream-based approach is a crucial aspect because of the stream-based nature of
the data. The usage of approaches for the clustering process is thus limited to techniques which
allow to process data in a stream-based manner. However, we are aware that a stream-based
classification in real-time is only possible using one single pass. Nevertheless, it is possible to
use more than one pass if data items are cached for a very short period of time. Which caching
time is acceptable depends on the intended purpose.

Ideally, a multi-pass strategy, i) uses as few passes as possible, ii) finds a way to increase recall
while keeping a high precision, iii) is faster than a single-pass strategy, and iv) finds a caching
strategy which is acceptable for the task.

Number of Passes

The number of passes does not only influence scalability, but also the way a multi-pass system
can be trained. Actually, the classifiers used in each pass have to be trained with a training
set adapted to that pass. The criteria based on which the data can be classified changes in
each pass. We thus need to train different models so that they suit the actual classification
situation.

Getting good and suitable training data gets more difficult with each pass. The reason for this
lies in the (unwanted) noise which occurs with every clustering pass. It has to be taken into
account that the noise produced in a previous step has also influence on the training of the
classification model in the current pass. It is not possible to use only clean training data for
every pass as this does not reflect the actual situation in the pass and eventually leads to a bad
quality of the overall classification process. Therefore, it is our aim to limit the total number
of passes to two.

Influence on Framework Settings

As we have discussed above, the training data for the classifiers in the different passes varies.
Also, the settings of different steps of our clustering framework have to be readjusted so that
they are optimized for each pass. So, we have to look again at all three steps of our framework:
candidate retrieval, scoring and ranking, and new event detection. It has to be determined
whether the settings chosen for the all of these in the single-pass strategy can be adopted or if
these setting have to be adjusted.

120

7.4

7.4 Multi-pass Strategies

Candidate Retrieval

As with the single strategy, we keep the candidate retrieval step to ensure a scalability of the
overall system. We take a look at the most promising candidate retrieval strategies and compare
them regarding their effectiveness as defined in equation (5.5). In particular, the strategies
compared are the following ones:

1. k-nearest by capture time: By using this strategy, we retrieve those k events with the
lowest temporal distance to the document. For this, we order all events e; in the event
database by A(time(d), time(e;)) and then return the top k events in this ordered list.

2. k-nearest by upload time: We follow the same strategy as in k-nearest by capture time
but use the upload timestamps.

3. Tag-TFIDF: We score each event by summing up the TF-IDF values of every tag which
the document and the event share and return k events having the highest scores.

Scoring and Ranking/New Event Detection

For the scoring and ranking step, we learn the likelihood P(e,|c) that an intermediate event
cluster ¢ belongs to a given final event cluster e,. This likelihood is computed using a classifi-
cation algorithm. As the different types of Support Vector Machines have been shown to work
quite similar, we only compare a standard SVM to Decision Trees. The probability is calculated
using the distance to the decision boundary when using a SVM. The decision tree probability
estimates are a calculation from the class frequencies at the leaves. The problem formulations
using both classifiers are the same as given in Section 5.5.

For the new event detection, we use a classifier for the decision whether an intermediate event
cluster belongs to an existing final event cluster or if a new final event has to be created. Here,
we also employ a standard Support Vector Machine. As we have discovered the best features for
such a decision in Section 6.4, we adopt these features for the decision model in the multi-pass
setting. Therefore, the feature vector Uy (c) used for the new event detection decision for each
intermediate event cluster ¢ looks as follows:

max
avg

stddev

maxypl

Unew (C) =

Multi-pass Strategies

In this section we discuss different strategies for extending our clustering framework to a multi-
pass setting. As we have described before, we limit the number of passes to two in order
to be able to produce training data for each pass which is still of good enough quality and

121

Chapter7 System Description of the Stream Classification Framework for a Multi-Pass Setting

thus acceptable for the training of a classifier. Thus, our process will consist of two passes.
Consequently, we have to examine which strategy works well for the two passes.

We take a look at several strategies altering the first pass, i.e. the pre-clustering step. In
principle, as we have shown in the previous section, the framework is capable to use any pre-
clustered item set as long as the data structure matches the one of the original document set.
In particular we examine the following strategies for the first pass in terms of quality and
performance:

1. NormalPreclustering: This strategy uses a single-pass pre-clustering as we have pre-
sented in Part II. The intermediate event cluster is moved to the second clustering if it
is not returned by the candidate retrieval step at the arrival of a new document. The
delay caused by this strategy is variable depending on the time-based density of the event
clusters. Therefore, the initial clustering quality in terms of F-measure is 0.886.

2. NormalPreclusteringByDay: In this strategy we essentially do the same as in the first
strategy with the difference that the clusters are moved to the second clustering process
day-wise. If a document arrives in the clustering process having a different upload day
than the previous documents, the event set is emptied for the first clustering pass and the
event cluster of the old day are passed to the second pass. This limits the event length in
the first pass clustering to 24 hours.

3. SimpleUserDayPreclustering: The dataset is clustered by user and day. This is a very
cheap operation which can be done very efficiently using an indexed structure. As in the
previous strategy, the clusters produced are then given to the second pass day-wise. The
event length is therefore also limited to 24 hours.

In every two-pass setting, the second pass always uses our original classification strategy as used
in the single-pass setting. But, the parameters of the single steps are adjusted. This second
pass is then fed with the clustering outcome of the before-mentioned strategies.

We are not only interested in the cluster quality but also want to know how scalable the approach
is. As a measure we use the time needed by the single-pass strategy as a baseline. We set this
time as a reference and report the difference for each of our two-pass strategies.

122

CHAPTER 8

8.1

Experimental Setup and Results of
Supervised Multi-Pass Clustering

In the previous chapter we have proposed different strategies on how our supervised classification
system can be used in a multi-pass setting. In this chapter we present the experimental setup
of the supervised multi-pass classification approaches and the optimization of the single steps
of the clustering framework. We conclude the chapter with the presentation of the multi-pass
clustering results.

Even though our classification framework can be used with a theoretically unlimited number
of passes, we have already decided on the number of passes after careful consideration to be
two. The main reason for this is the challenge to generate a suitable training set for each pass.
As the precision in each pass is unequal to 100 % and the precision will decrease with each
additional pass, it is unlikely that the training data generated for a third pass or more are still
good enough to increase the overall clustering quality significantly. As a consequence, all our
experiments presented in this section are conducted using two passes.

In general, our focus in this chapter is on the second pass. The results of the first pass have been
discussed in detail in Chapter 6. Nevertheless, we start this chapter with a discussion of the
different first-pass strategies proposed in Section 7.4, giving an overview of the initial situation
when starting with the second pass.

Analysis of First-Pass Strategies

Using two passes involves the uncertainty of which strategy to follow in order to gain the
maximum in terms of clustering quality and performance. The problem is to find a first-pass
strategy which is optimized in two ways: i) good basis for further merging, and ii) efficiency. A
good starting point for further merging is given if the intermediate clustering contains very pure
clusters, thus having the noise reduced to a minimum within all clusters. In addition to that,
there has to be at least one feature left which is still discriminative enough to allow a decision
during a further merging.

123

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

Table 8.1.: Results for intermediate clustering using different strategies for the first pass

Method Fi-Measure Precision Recall Time Consumption
NormalPreclustering 0.886 0.951 0.830 1.0000 (Baseline)
NormalPreclusteringByDay 0.811 0.991 0.686 0.6204 (—37,96 %)
SimpleUserDayPreclustering 0.842 0.996 0.729 0.0007 (—99.93 %)

Therefore, it is important for us to examine what will be the initial situation after the first
clustering pass, before taking a look at the two-pass clustering as a whole. This includes
how well the first pass performs in terms of quality and scalability. We take a look at all
strategies described before in Section 7.4 and analyze how suitable they appear for a multi-pass
clustering.

First, we use the different first-pass strategies and let them cluster the test set of our dataset
into an intermediate set of event clusters. The results of these clustering processes are shown in
Table 8.1. Besides of the quality in terms of F-measure, precision, and recall, we also report on
the time consumption of these first-pass strategies in relation to the total computational time
consumed by our single-pass classification strategy for a complete clustering of the test set of
our dataset; the latter we set to a value of 1.0. This serves as a baseline for the comparison
of the computational efforts needed for the intermediate clustering processes as well as the the
final two-pass clustering process. We remark that the NormalPreclustering strategy matches
exactly our single-pass strategy; therefore, the time consumption value for this strategy is also
1.0.

The measured results confirm that the NormalPreclustering is the best strategy to produce an
intermediate clustering in terms of F-measure. The two other strategies show less performance
in terms of F-measure, but both strategies still deliver a decent value. This allows the conclusion
that all strategies can solve the clustering task successfully. In addition to that, the results in
terms of precision are very high for all strategies. The values for the NormalPreclusteringBy-
Day and SimpleUserDayPreclustering are even higher than 99 %, confirming the high purity of
the intermediate event clusters produced. It is remarkable that the NormalPreclusteringByDay
strategy achieves the least performance being beaten regarding all measures. Therefore, we as-
sume that Simple UserDayPreclustering would be the better strategy to be used for pre-clustering
in the two-pass approach.

In contrast to the general performance, the differences between the strategies are very high
regarding the computational time consumption. Compared to the NormalPreclustering, our
baseline, both other strategies consume less time. This is a good initial situation which poten-
tially allows for further improvement of the overall scalability when using these two strategies
in conjunction with the second pass. It is remarkable that the SimpleUserDayPreclustering
strategy is several orders of magnitude faster than our standard clustering. Its absolute compu-
tational time is only a little greater time than one second!.

!The used system was a 2013 Intel Xeon 20-core system clocking at 2.9 GHz with 384 GiB of main memory.

124

8.2

8.2.1

8.2 Gold Standard Preparation for the Second Pass

Gold Standard Preparation for the Second Pass

For experiments we use the dataset presented in Chapter 4. For the first pass, as described in
the previous section, we used the dataset with its original gold standard to create the training
data. However, this is not possible for the second pass as we need to create a different gold
standard from which we can create the training data for the second pass. The creation process
of the newly needed gold standard depends on the clustering which was produced by the first
pass. One implication of that is that the quality of the new training data for the second pass
is influenced massively by the quality of the intermediate clustering in the first pass. In the
following we discuss this issue in more detail. After that, we describe how the new gold standard
is created. This gold standard is suitable for the creation of the training data that is needed for
the learning of the classifiers used in the second pass.

Quality Issues in the Preparation Process

As already stated above, the creation of the gold standard for the second pass differs from the
creation process of the one used in the first pass. The quality of the gold standard for the second
pass heavily depends on the precision of the intermediate clustering produced by the first-pass
strategy. If the precision of the resulting merge process of the intermediate clustering were 100 %
precise, the gold standard produced for the second pass would be of the same high quality as the
original gold standard. This implies that the precision of the intermediate clustering influences
the quality of the second pass gold standard. The reason for this lies in the amount of noise
within the clusters which eventually occurs during the first clustering process.

Let us consider a scenario where the first clustering pass produced intermediate event clusters
with very high precision—preferably pure clusters. Using the original gold standard, we know
without doubt to which final target event cluster these intermediate event clusters have to be
assigned to. If a purity of the intermediate clusters is not given and they include a lot of noise
instead (e.g. having documents in the intermediate clusters belonging to different correct final
event clusters), we have to answer which correct final event cluster the intermediate cluster
should be assigned to. If there is too much noise involved in the intermediate clustering, the
decision on the assignment to a correct final cluster is not possible without lowering the precision.
In that case, a creation of a good training set suitable for the classifiers is difficult.

Therefore, we aim to create the gold standard using data derived from an intermediate clustering
process which produced very pure clusters. Taking a look at the results for the intermediate
clustering methods in the previous section, the most promising strategy to be used for the gold
standard creation is the Simple UserDayPreclustering strategy. Even though the precision is not
100 %, we consider its 99.6 % precision to be high enough to reduce the noise to a minimum.
This is corroborated by an analysis of the intermediate cluster purity as shown in the right part
of Figure 8.1.

In Figure 8.1, we see that 97.6 % of the intermediate clusters produced are pure, i.e. these
clusters do not contain any noise at all. Only 0.4% of the clusters contain documents from
more than two correct final event clusters, but this number is low enough to not negatively

125

8.2.2

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

0.4%
2.0 % I—
24.4%
@ 1final event cluster
@ 2clusters are of equal size @ 2final event clusters
@ 1 cluster has majority) 3ormore clusters

Figure 8.1.: Analysis of final event clusters contained in an intermediate cluster

influence the task. About 2% of the intermediate clusters consist of exactly two final correct
event clusters. We have analyzed this further in the left part of Figure 8.1. About three forth
of the “two-event” clusters have one final event which appears more often than all the others.
In about 25% of the cases we are confronted with the situation that the intermediate cluster
contain exactly the same amount of documents from two different final cluster; this is mainly
the case for intermediate clusters where two single events have been merged mistakenly to one
intermediate event. From this analysis we learn that more than 99 % of the intermediate clusters
are clearly associable with one final correct event cluster. This licenses the conclusion that this
intermediate clustering approach is suitable for the creation of a new gold standard for the
second pass.

Another reason to choose the SimpleUserDayPreclustering as intermediate clustering strategy is
its very reasonable quality in terms of F-measure. Its F-measure does not differ significantly from
the ones of the other approaches proposed. We believe that the event clusters produced by all
first-pass clustering strategies are similar enough so that there will be no significant differences
with respect to the two-pass clustering process when using any of the other strategies in the
first pass, even though the classifiers of the second pass are trained using the gold standard
based on the SimpleUserDayPreclustering and not by another strategy.

Creation of the Gold Standard for the Second Pass

Initially, the training set of our ReSEED dataset is given to the SimpleUserDayPreclustering
strategy. The outcome of this process is a set of intermediate event clusters. These intermediate
event clusters are then used for further processing.

The first step after the production of the intermediate clustering is an assignment process
where all produced intermediate event clusters are assigned to one of the original event clusters
as defined in the original gold standard. This process is not exact as there is the possibility
that an intermediate cluster consists of documents that belong to two or more different original

126

8.3

8.3.1

8.3 Optimization of the Classification Framework Steps for the Second Pass

event clusters. In order to handle these cases, we use the following methodologies to create our
mapping of the intermediate event clusters to the final event clusters. For each intermediate
cluster in the resulting set we do the following:

o We associate a list to the intermediate event cluster in which we store possible candidates
of original event clusters to which it could by assigned.

o For each document in the cluster, we look up the original mapping to its original event
cluster. If a new original event cluster is found, we create a new entry for this event cluster
in the list. If the original event cluster is already on that list, we increment its count by
one. Eventually, we end up with a list of all possible original event clusters together with
the number of their appearances.

e The list with the possible original event cluster candidates is reordered in descending
order by the number of their appearance. If two or more original event cluster candidates
have an equal number of appearances, they are ordered in ascending order by their first
appearance in the original gold standard.

o We associate the intermediate event cluster to the original event cluster being on top of
the candidate list.

The created gold standard for the second pass finally includes 20,835 intermediate event clusters.
It can now be used for the creation of the training data for the different steps of the clustering
framework for the second pass. This will be described below.

Optimization of the Classification Framework Steps for the Second Pass

In this section we take a look at how the single steps of the classification framework can be
optimized in order to improve the overall classification process. While many aspects are adopted
from the settings used in the single-pass scenario, some settings have to be retuned in order to
accommodate the slightly different setting. Here we discuss the optimization experiments which
we conducted on each part for the clustering framework. Later, we incorporate an exhaustive
search to find the best overall settings optimized for the final task.

Candidate Retrieval

In Section 5.3 we described different strategies to retrieve candidates for the single-pass strategy.
This step is used to make the approach scalable as the newly arriving documents do not have
to be compared to every event in the event set but only to the ones proposed by the candidate
retrieval step. In contrast to the single-pass strategy, the number of items to be processed is
lower in the two-pass strategy, making the candidate retrieval step less crucial. However, since
we have shown that the overall classification performance is higher when a candidate retrieval
strategy is used, it is advisable to use such a strategy also in a two-pass approach.

127

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

So, as in the single-pass setting, we have to find the minimal number of candidates among
which the correct candidate is included. We therefore compare the different candidate retrieval
strategies defined in Section 5.3.2. We only choose strategies which have been shown effective
in the single-pass process. Before we present this comparison, we give an overview of the
experimental settings of this optimization step.

Experimental Settings

Our objective is to find out how effective each candidate retrieval strategy works. This is
similar to the analysis presented in Section 6.2.1. However, here we use the new gold standard
for the training set of our dataset as a basis again. We make use of our simulation of an
optimal clustering. This is an iterative classification process where we use the new gold standard
information to assign the intermediate clusters to the final correct event. For more details see
Algorithm 6.1 on page 88.

Using the clustering simulation we search for the rank of the correct event cluster for each
intermediate event cluster. As a result we get the number of events to be retrieved so that the
correct event for the document is included. Using these numbers, we obtain the effectiveness for
a certain number of candidates k as defined in Equation (5.5) in Section 5.3.1 for the different
candidate retrieval strategies.

Results

In the following, we report the results of the effectiveness for the single-strategy candidate
retrieval strategies. The candidate retrieval strategies considered are the retrieval by upload an
capture time. We present the effectiveness of these strategies over the number k of retrieved
events in Figure 8.2.

1

0,8
2 06
=
2
ks
&0,4
G Capture Time
= e B R Ll b L L SECEL EEE AL ELRL BT — Upload Time
------ Tags
TGS o emmmmmmmmmTTT - - Geo
0 * fnmmsmmmmpmmmmmmmm e m e e ; :
N '® QQ \@Q
k

Figure 8.2.: Effectiveness of different candidate retrieval strategies used for a second pass

128

8.3.2

8.3 Optimization of the Classification Framework Steps for the Second Pass

Table 8.2.: Needed number of k to reach x % effectiveness
Candidate Retrieval Strategy 90% 70% 50% 30% 20%

Upload Time 611 74 27 11 7
Capture Time 733 34 13 5 3
Geo - - - - -
Tags - - - 3673 2102

The graphs clearly show that only the candidate retrieval strategies based on the temporal
features are able to reach an effectiveness level exceeding 90 %. In fact, both candidate retrieval
strategies based on a temporal feature can reach an effectiveness close to 100 %. However, this is
only the case if a very high number of documents (over 1,000) is retrieved. This is undesireable
as the overall computational cost for further processing steps is too high for such an amount of
candidates.

On the other hand, the other two candidate retrieval strategies only reach a very low effective-
ness making their usefulness questionable. While at least the candidate retrieval strategy based
on the geographic location reaches its maximal effectiveness very quickly with only few candi-
dates retrieved, the candidate retrieval strategy using tags has serious problems to reach any
effectiveness at all for a low number of candidates. Therefore, we do not employ any strategies
combining those single feature retrieval strategies.

In Table 8.2 we outline the number of event candidates which have to be retrieved by the
candidate retrieval strategies in order to reach an effectiveness of 20 %, 30 %, 50 %, 70 %, and
90 %, respectively. In comparison to the candidate retrieval strategy effectiveness in the single-
pass strategy (see Table 6.1), more candidates have to be retrieved in order to reach the same
effectiveness level. For example, to reach an effectiveness of about 80 %, we needed to retrieve
only 6 or 7 candidates using the capture or upload time strategy, respectively. With the two-pass
strategy, reaching the same level implies to retrieve already more than 100 candidates.

We learned from the single-pass strategy that the impact of a candidate retrieval strategy on
the final performance of the system is different than it appears in the effectiveness analysis.
Therefore, we take a look at the retrieval strategies as well as the number of candidates to
be chosen once again later. As the retrieval strategies Geo and Tags have strong limitations
regarding their maximal effectiveness even for higher candidates k, we only consider the retrieval
strategies Upload Time and Capture Time for further experiments.

Features for Similarity Function Learning and New Event Detection

Having finished the candidate retrieval step and extracted the pairwise features for all relevant
combinations of an intermediate event cluster and a final event to which it corresponds to, we
end up with feature vectors of single similarities. Next we train a classifier which is capable to
use these feature vectors to provide us an overall similarity measure of candidate pairs. The

129

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

learning strategy and data used for this is discussed next. After that we also take a look at the
new event detection used in the two-pass approach.

Similarity Function Learning

In the following we discuss what techniques we use to learn a similarity function in the two-pass
strategy. In order to learn a similarity function we need suitable data. Therefore, we first discuss
the creation of suitable training data. After that, we describe how we conduct our experiments
to decide on the settings and options used for the used classifiers for the scoring and ranking as
well as the new event detection steps.

Creation of the Training Data

In order to create the training data we make use of the new gold standard for the second pass
described earlier in Section 8.2.2. The basis for the training data creation was the intermediate
clustering produced by the SimpleUserDayPreclustering strategy when applied on the training
set of our original dataset. We base our strategy on the findings during the training process
of the similarity functions used in the single-pass setting. In particular, we create the training
data using the following steps:

e For each intermediate event cluster ¢ and each centroid representing one final event e, we
compute the corresponding similarity vector ¥Us;n,(c,e). The pairs (¢;, e(c;)) consisting of
an intermediate event cluster ¢ and the corresponding final event e(c;) are used as positive
examples.

o For the positive examples, we choose n consecutive intermediate event clusters from the
training set (which is ordered by time). More specifically, we use the first documents
appearing in temporal order.

e Regarding the negative examples, we use the nearest sampling strategy as proposed in
Section 6.3. These examples are chosen using the final event cluster with the highest
similarity to which the intermediate event cluster does not belong:

6

neg(ch) = max S (simi(cy,e(d?))
c; Qezt(e(c?)) z_zl

o We take care that the number of positive and negative examples is equal so that the
training data set is balanced.

As we have already found the optimal number of training examples to be used for the training
of the classifiers (see Table 6.2 and Table 6.4 in Section 6.3.2), we make use of these values.
Therefore, for the training of the Support Vector Machine we can use all 4,550 positive together
with 4,550 negative examples. This is the maximum number of positive examples which can be
extracted including all single features used for the classification. For the training of the Decision
Tree we use as many training examples as for the SVM. Here, due to the limited number of

130

8.3 Optimization of the Classification Framework Steps for the Second Pass

training examples, we clearly see that a classifier needing less training examples is indeed an
advantage. If not all features are used, the number of training examples is higher, e.g. the
number of training examples when not using the geographical feature is 11,938.

Classifier Settings

The settings for the different classifiers are comparable to the settings used for the single-pass
strategy. We employ the following settings for the two classifiers SVM and Decision Tree:

e Support Vector Machine: We employ the C-SVC implementation for support vector
classification from LibSVM[CL11]. This is a standard SVM. We set the trade-off between
training error and margin C' to 1.0 and make the classifier output so-called probability
estimates. This provides a normalized probability value in the interval between 0 and 1
calculated from the distance of the data point in the vector space to the decision boundary.
We use this probability as our actual similarity measure. We experiment with a linear
and a RBF kernel.

o Decision Tree: We use the Classification and Regression Trees (CART) implementation
following Breiman et al. [Bre+84]. The maximum depth of the Decision Tree is set to 5
to avoid a possible overfitting. The minimal samples to be included in one leaf is set to 1.

New Event Detection

The goal here is to train a classifier model for the detection of new events. As we have described
earlier, we employ a feature vector ¥i,e,(c) including features that are derived from the ranking
and scoring step. In order to use these feature vectors for classification, we also need to choose
classification algorithms to induce a model. Therefore, the creation of the training vectors are
described next. After that, we describe the classifiers that are used. In addition to that, we
describe the settings and configuration used for the employed classifiers.

Creation of Training Data

In order to create the training data for the new event detection step in the second pass, we
use the intermediate clustering of the training split from our dataset. The total number of
intermediate clusters is 20,835. These intermediate clusters are spread over 14,882 final clusters.
As a consequence, the maximum number of training data vectors for the new event detection is
limited to 14,881 positive examples.

We use an oracle, a clustering simulation which produces an optimal clustering according to
the correct assignment of intermediate event clusters to final event clusters. In this process,
the similarities of the intermediate and final event clusters are calculated using the learned
similarity measure from the scoring and ranking step. For this we use different classifiers and
strategies regarding the kernel (in case that an SVM is used). The intermediate clusters are
assigned to the correct final event cluster independently of that decision.

131

8.4

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

The candidate retrieval strategy also needs to be involved as this is important for the calculation
of the average and standard deviation features of the new event feature vector. Therefore, we
use the most promising candidate retrieval strategy as found in the effectiveness experiments:
the Capture Time strategy. We configure this strategy using k& = 10. Thus, the 10 nearest
events based on their capture timestamps are retrieved for each intermediate event cluster.

After the process has finished, we end up with 12,690 positive training examples. We randomly
choose another 12,690 negative examples from the negative examples which were produced in
the optimal clustering process. These vectors can now be used to train our new event detection
classifiers.

Strategy for Classifier Training and Classifier Settings

In the single-pass strategy we only used a standard Support vector Machine as classifier for the
new event detection step. For our experiments in the multi-pass paradigm we not only use a
standard SVM but we also employ a Decision Tree to take a look at the impact of this classifier
on the new event detection step.

The actual implementations used for both classifiers are the ones used before (LibSVM and
CART). We employ a C-SVM that is used together with an RBF kernel. The parameter C' for
the trade-off between training error and margin is set to 1.0. The configuration of the Decision
Tree is set so that the maximum depth is limited to 5 and the minimum number of elements
per leaf is 1. The output of both classifiers is configured so that a linear value in the range [0..1]
is returned. The actual value denotes the probability with which the data point belongs to the
positive class.

The SVM is trained with 2,000 positive and 2,000 negative examples; these were the optimal
number of training examples in the training phase of the single-pass strategy. In contrast to
that, the Decision Tree is trained with the maximum number of training examples available
(12,690) as we are aware that many training examples are needed in order to obtain a good
decision model with this classifier.

Clustering Framework in Two-Pass Mode - Optimization

Previously we have discussed the methods and settings to be used to optimize each single step
of our clustering framework. Before we provide the final results, we need to discuss how the
single steps can be optimized globally so that the interaction between these steps results in an
optimal classification process.

We learned from the optimization of our system with one single pass that the usage of the best
settings for each single task of the overall system does not necessarily result in a system reaching
the best result on the overall clustering task. As a consequence, we here outline our findings for
the settings of the single system parts which lead to a system that suits best on the overall task
in two-pass mode. We start with the description of our exhaustive search allowing to find the
optimal parameters for the scoring and ranking as well as the new event detection step. After

132

8.4.1

8.4 Clustering Framework in Two-Pass Mode — Optimization

that, we optimize the candidate retrieval step. As already mentioned before, we always use the
SimpleUserDayPreclustering strategy for the first pass as a basis.

Exhaustive Search for Optimal Features in Scoring, Ranking, and New Event Detection

It is our goal to optimize all classifiers and their settings so that the overall performance is
optimized. Therefore, we do an exhaustive search using the training split to find the best
working configuration. Using the single-pass strategy we only compared system configurations
that were likely to show a good overall performance as the computational effort was too high for
an exhaustive feature search. In contrast to that, using the multi-pass strategy we are capable
of searching over many feature dimensions. This includes the scoring and ranking as well as
the new event detection step. Actually, we do the exhaustive search using all of the following
dimensions at the same time:

e Similarity Learning Classifier: We look for the best performing classifier. The classi-
fiers in question are a standard Support Vector Machine and a Decision Tree.

e Similarity Learning Features: By examination of this dimension we aim to identify the
best combination of single similarity features to be used for the training and prediction of
the overall similarity between an intermediate event cluster and a final event cluster. The
actual single similarity features included in the search are: simypload, SiMcaptures $iMgeo,
SiMtags, as well as simyige.

e New Event Detection Classifier: Using this dimension we aim to determine the best
performing classifier used for the prediction of new events. The classifiers being tested are
a standard SVM as well as a Decision Tree.

e New Event Detection Features: We analyze the features used for the new event
detection decision and search for the best combination to be used for the new event
decision. The features being examined are the following: max, min, avg, stddev, maxp,
and mazcap.

¢ New Event Detection Threshold: This dimension is used to find the optimal threshold
for the decision when a new event has to be created or not.

Using this exhaustive search we compare 2'3 different system configurations for the first four
dimensions. Every single configuration of the 23 configurations is analyzed individually to find
the best threshold for the new event detection decision. In order to find the best-performing
value, we employ a gradient descent strategy. As a result we get the optimal threshold for each
configuration. Overall, we computed values for over 80,000 individual configurations.

As the exhaustive search strategy uses the complete classification process to compute the final
values in terms of precision, recall, and F-measure, we have to provide a configuration for
the candidate retrieval step as well. Unfortunately, the candidate retrieval step could not be
integrated in the exhaustive search due to computational time restrictions. Therefore, in the
optimization step we specify the candidate retrieval strategy to be the Capture Time strategy

133

8.4.2

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

timecy timeypi geo tags title J| [l
timeypl geo tags title I I\
timecp geo tags title [

F-Measure

>0.91

timecsp timeyy tags title I
timeyp tags title I
timeg tags title I I

tags title I
timecp timeypl geo title
timegeotie il | [[NE NN _ 0 0 NEN CRED 0.899-0.904
timecp geo title
geo title
timecp timeyp title
timeyp title
timeg title 0.889-0.894

title

timecap timeupi geo tags I II
timeypi geo tags [
timecy geo tags

0.909-0.91

0.904-0.909

0.894-0.899

0.884-0.889

Similarity Features

0.879-0.884

0.874-0.879

tags || [l 0.869-0.874
timecap timeypl geo

tmepgeo || I A H 1 B E B B 0.864-0.869

timep geo
ol ENIIIN 'R 1R fANED I NEM
timecap timeypl
timeypl
timecap

<0.864

mins
max min s

max s

New Event Features

Figure 8.3.: Heat map showing overall performance of the system using different similarity and new event features
using best threshold for new event detection (SVM)

and set k = 10; thus, 10 final event candidates are retrieved for each intermediate event cluster.

We use this number of candidates to allow for an exhaustive search.

All experiments are conducted on the training set of our dataset. The exhaustive search is done
using the complete training set and each configuration clusters the whole set.

Results of the Exhaustive Search

In this section, we present our findings of the exhaustive search in the five dimensions mentioned
before. Therefore, we have plotted the results in two heat maps. They are shown in Figure 8.3
and 8.4.

134

8.4 Clustering Framework in Two-Pass Mode — Optimization

timegy timeyy geo tags title [
timeypl geo tags title [
timegp geo tags title I
geo tags title I

timecp timeypi tags title [
timeyp tags title I
timecp tags title I I I I

tags title I

timegp timeyy geo title |
timegugeotite [l 1 0 [
timegpgeotitle 1 | 1
geotite | || H PN

timegp timeyp title
timeyp title
timegyp title

title

F-Measure

>0.91

0.909-0.91

0.904-0.909

0.899-0.904

0.894-0.899

0.889-0.894

0.884-0.889

Similarity Features
5’2
L

S
2
&
@
o
2
=
=
—]
|

0.879-0.884
0.874-0.879
0.869-0.874

0.864-0.869

timecap timeyp! <0.864
timeypl
timeg,p

min
max min

max
min avg

max avg
max min avg

New Event Features

Figure 8.4.: Heat map showing overall performance of the system using different similarity and new event features
using best threshold for new event detection (Decision Tree)

In both heat maps, the individual points in the matrix represent the results for one final clus-
tering in terms of F-measure. On the z-axis, we plot the feature combinations which were used
for the new event detection classifier. On the y-axis, the single similarity features used for the
training and prediction of the overall similarity classifier are depicted. The individual values
for the overall performance shows the best results achieved using the best new event detection
threshold that has been determined for the feature combinations in question. The graphic in
Figure 8.3 plots the results when using a standard SVM as both classifiers. The graphic in
Figure 8.4 shows the results when using a Decision Tree as classifier for both classification
problems.

Overall, we see that both classifiers can be used to solve the problem. The best performing
settings for the Support Vector Machine result in an overall performance of 91.0 % in terms of F-

135

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

Table 8.3.: Best performance on overall task on training set using different similarity features and similarity feature
combinations

Similarity Features SVM Decision Tree

Timeyp 0.861 0.861
Timecap 0.862 0.863
Geo 0.882 0.881
Tags 0.908 0.909
Title 0.865 0.871
Tags + Title 0.91 0.907
All 0.907 0.902

measure. Using Decision Trees as classifiers results in a slightly lower performance (F-measure:
90.9%), but the differences are minimal. We did not plot the cases where one classification
decision is made using a Support Vector Machine and the second using a Decision Tree or
vice versa. The results of these combinations reach comparable results to the one using only
one classifier type for both decision problems (both combinations reach a F-measure of about
90.9%).

It is more interesting to take a look at the features to be used for the decisions, since they are
different depending on the used classifier. Regarding only the single similarity features used
as overall similarity measure, we observe that some of the single similarity features are indeed
better than others in helping to solve the problem. The values in terms of F-measure for the
single features in question as well as the best performing combination for both types of classifiers
are shown in Table 8.3. There we can observe that the usage of the time features similarities is
not very effective. The reason for this lies in how the intermediate clustering has been created;
here, the time information was used and it is thus less effective for further merging. As both
time features are no more effective for solving the overall problem, we conclude that there is
a direct statistical dependency between the two timestamps. Other features are more effective,
e.g. using the title information allows a slightly better performance. Nevertheless, this feature
only has very low impact if used alone and not in conjunction with other features.

The other two remaining features incorporating geographic information and tags look more
promising. Nevertheless, we also see great differences in the performance of both. We see that
the second-best similarity feature is geographic location. This feature has its limitations as
many intermediate event clusters (about 55 %) still lack this feature even if an intermediate
clustering has been created. This explains very well why the performance increase is limited
when using this feature.

Far and away the best single similarity feature is the one based on the tags assigned to the
data points. This feature has the greatest impact on the classification process. We see both
in Figure 8.3 and 8.4 that any combination of features which include the tag similarity reaches
good results. We would anticipate a better performance for the combination of the tag and
geographic location features. However, this is not the case. Therefore, we conclude that the use

136

8.4 Clustering Framework in Two-Pass Mode — Optimization

-

o @
(@]
o

\‘ O
03@0\‘ °® o
o ° OO
o.25§O o
] ! o
@ O\‘ (@) OO O
02 8 \ ©
g \ o
£ Q 5 ® Soo
015 § e @ o
: @)
@ © ve © D5 e
% °© @ \ _og® OO
0.1 o o B¥
. [\ OOO 8 O o
®
0.0
- e P 4@ ¢ , ®
0.0 o 1YY (8l SaEh & a6 Sdae) PY) Iy) a'e ae
Ne)) Ne)
N) Q2

Simtags

Figure 8.5.: Learned decision boundary of SVM using combination of simyags or simyye

of the tag feature already is sufficient enough to correctly classify the documents in question
where the geographic location would also be helpful for the decision. Overall, the final best
performing settings use either a combination of simyags or simyite (for the SVM) or simyags (for
the Decision Tree) as features.

In Figure 8.5 we have graphically shown the problem to be solved by the SVM. It depicts the
data points from the test set of the two classes as well as the decision boundary for the simyags
and simgjtle combination learned on the training set. We can see that a linear separation of the
two classes is possible and that the number of misclassifications is acceptable. We also depicted
the best performing Decision Tree using the simy.gs feature; this is shown in Figure 8.6. In
this tree, the number of samples and the impurity is given for each node. As the impurity is
based on the Gini impurity, it is denoted as Gini in the figure. We can see that the impurity
for many leafs including many samples is low, thus showing that the decision model can decide
well between the two classes.

Regarding the features for the new event detection we reach the same conclusion as regarding
the similarity features. The results for the single features and the best performing combinations
are shown in Table 8.4.

We can deduce from the heat maps and the Table 8.4 that the new event detection features

137

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering
simags > 0663 [Gini: 0,003
— Samples: 4|2346
oM Gini: 0.008 "
Sitags 7> Samples: 3602 [-1Mags < 0.663 T
ini: 0.
Gini: 0.016 Samples: 101242
Samples: 4978 '%% .
© S047 siug: > 041 Gini: 0.0
o . Samples: 1|0
i Gini: 0.036 s
S Samples: 1376 |- *Mags < 0.479 el
Samples: 24|1351
Gini: 0.029
Samples: 5707 | sy, 50206 Gini: 0.0
s S 0204 sifMss Samples: 2|0
Gini: 0.118 0141 .
S . iMiags ~ Gini: 0.084
$ Samples: 729 |-Simgg, < . >
N 95 < 0.20, B
; 6 Gini- 0114 Sv Samples: 19|414
& Samples: 727 |-51Mugs < 0.14
3 K =S Giniz0.156
Samples: 25/269
Gini: 0.042 . Gini: 0.0
Samples: 5887 Mage < 0 Sitfhag Samples: 1]0 i > 0082 Gini: 0.312
089 — — Samples: 625
Gini: 0.346 Q0% Gini: 0.082 ;
Samples: 180 [y, < 0,0g9 SO Samples: 44 |-S1Mugs < 0,08 Gin: 0.0
— Samples: 013
Gini: 0.341
Samples: 179 .
Mgy . s> 0928 [Giniz 0.498
~00s Samples: 8|9
Gini: 0.077 .
. Sli
§ Samples: 135 |-5Mugs < 0.924 TR
a Samples: 25(93
¥ Gini: 0.0 038
A : 0. -
7%93 Samples: 4]0 Simyags > 0! Gini: 0..499
s - Samples: 45]41
o Gini: 0.5 :
) @7“' Samples: 90 |51Migs < 0,038 Gini- 0.0
Gini: 0.5 Gini: 0.494) e Samm:-es:0|4
Samples: 12158 Samples: 114 |-5Myy, < 0 05, pes:
Gini: 0.497
Samples: 10 |, S0 simus> 0936 | Gini: 0.18
: Samples: 9|1
Gini:042 | amples: 9
. Samples: 20 |SIMugs < 0.0
% i w5003 Gini: 0.5
N Samples: 5|5
2, %
% N
a simggs > 0034 Gini: 0.0
5
.§ — Samples: 11|0
5 o SG|n|:|04312 sim
7> amples: 124 hags < 0.0,
e P =008 ™ Gini 0,335
Samples: 89|24
Gini: 0.096 Gini: 0.326
Samples: 6271 Samples: 127 i
amp v o | P ey, imgg:> 001 Gini: 0.5
7, B 00, Samples: 1|1
% 9, o 7 Gini: 0.444 -
& Samples: 3 |-SMug <0,
G : =009 ™ Gini-0.0
Gini: 0.083 Samples: 01
Samples: 6157
% simaes> 0000 | Gini: 0121
2, — Samples: 332|23
vy o Gini: 0.126 .
%, “\@7“ Samples: 356 |-SMigs < 0,001 T
G ini: 0.
Samples: 01
Gini: 0.076
Samples: 6030
h Moy <9) Gimggs > 0000 . Ginlizqgw
Gini: 0.073 - amples: 24|
Samples: 5674 [S1Mug; < 0,0
K w0000 G- 0.074
Samples: 5434(216]
Depth 1 2 3 4 5
Figure 8.6.: Decision Tree of the similarity decision using tag feature only (best performing on overall task)

138

8.4.3

8.4 Clustering Framework in Two-Pass Mode — Optimization

Table 8.4.: Best performance on overall task on training set using different new event detection features
New Event Detection Feature SVM Decision Tree

max 0.91 0.9089
min 0.8617 0.8619
avg 0.9034 0.8969
stddev 0.908 0.9045
maXcap 0.8614 0.8616
maxyp] 0.8619 0.8624
max + avg + maxXyp| 0.9101 0.9087
max + min + maxyp| 0.9097 0.9094
All 0.9098 0.9082

min, Mateyp, and mat,, are not good features for the training of a classifier model for the
correct prediction of whether to create a new event or not. These features show a very poor
performance when used without the combination with other features. But even in conjunction
with other better performing features, these features do not have a big impact on the overall
performance. A look at the values in the heat maps shows that other features suit a lot better
to solve the problem.

Even though a combination of three features (maz, avg, and maz,, using a SVM and maz,
min, and maz,y using a Decision Tree) results in the best overall performance, the distance to
the performance of the classifier trained only using the max feature is minimal. Therefore, we
can question the usage of several features for this classification task into question and favor the
usage of the single feature maxz over the combination of features.

Taking a look at the data points in Figure 8.5 shows that the usage of a linear kernel is suffi-
cient to solve the problem. The efficiency of the linear kernel can also be seen in Figure 8.5.
Experiments using both kernels show that the overall performance is comparable with either
kernel used. The decision boundaries found using both kernels are almost identical.

Overall, our findings are very interesting as the number of features that are discriminative
enough to ensure a further clustering is limited. Actually, the problems are solvable using
one feature per problem. As a consequence, we doubt that the addition of another clustering
pass can ameliorate the overall clustering further, unless other and new suitable features for
measuring similarity are used.

Optimization of Candidate Retrieval Strategy

In Section 8.3.1 we have shown that the candidate retrieval strategies involving time features are
the best working strategies. Taking a look at their efficiencies, the candidate retrieval strategy
incorporating capture time is the most promising strategy. Therefore, we especially use this
strategy for further optimization.

139

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

RN :

o FMeasure (Test)

0,9

-
e
-

0,85

0,75

A T T A N N T SN S T O B v S A T I R AR R
= = Precision (Train) = = Recall (Train) F-Measure (Train) F-Measure (Test)

Figure 8.7.: Performance of the clustering framework in a two-pass paradigm using different numbers of candidates
retrieved (using train and test set)

From our experiments in the previous section we have found the best settings for the other com-
ponents using an exhaustive search. Therefore, we use these settings for the final optimization
of the candidate retrieval step. For the scoring and ranking step we thus train a SVM classifier
using the features tags and title. For the new event detection step we also use a Support Vector
Machine. This classifier is trained with the best performing combination of features: maz, avg,
and maxyy;. The best working threshold for the new event decision found for this combination
is 0.18.

We employ our classification framework using the above mentioned settings. In a normal clas-
sification process, we let the system cluster the intermediate clustering produced by the Sim-
pleUserDayPreclustering method. We do this process for a different number of candidates k
to be retrieved by the candidate retrieval strategy. The results of these clustering processes
are depicted in Figure 8.7 showing precision, recall, and F-measure for the overall clustering
process with different numbers of candidates k. In addition to that, we show the F-measure
for a clustering on the final data (test set) to be clustered using the same settings as for the
training set.

We see that the highest value in terms of F-measure is reached when 30 candidates are retrieved
(k = 30); the F-measure value reached is 92.4 %. This is exactly the number of candidates where
the effectiveness for this candidate retrieval strategy has reached its maximal slope (see Figure
8.2).

It can be observed that the obtained value for k£ is not the optimal value when applied to
the final test set. However, the performance does not vary too much if a certain amount of
candidates is retrieved. Therefore, this difference of performance is acceptable.

140

8.5 Results of the Clustering Framework used in Two-Pass Mode

Table 8.5.: Results for clustering using different strategies for the first pass and an optimized second pass

Method F;-Measure Precision Recall Time Consumption
Our single-pass approach 0.886 0.951 0.83 1.000 (Baseline)
NormalPreclustering 0.932 0.92 0.945 1.102 (+10.2%)
NormalPreclusteringByDay 0.931 0.938 0.925 0.744 (—25.5%)
SimpleUserDayPreclustering 0.939 0.935 0.943 0.009 (—90.1 %)

Results of the Clustering Framework used in Two-Pass Mode

In this section, we compare the overall system performance of our framework in a multi-pass
setting. We have constructed the system to use a two-pass strategy and have chosen an overall
system setting where the second pass uses a fixed strategy in combination with different first-
pass strategies. The approach which is employed as second pass is described in more detail
in the previous sections. The first-pass strategies comprise one very costly as well as one very
cheap strategy. In the following we show the overall performance of all these combinations which
are measured in terms of precision, recall, and F-measure. In addition to that, we measure the
time consumption to get an idea for its computational effectiveness.

We present the combination of the second-pass strategy with the following three first-pass
strategies: NormalPreclustering, NormalPreclusteringByDay, and SimpleUserDayPreclustering.
As we have already stated in Section 8.1, the time consumed by our single-pass approach is
used as a reference (we set the time needed to 1.0). If a two-pass system consumes more
computational time, the value will thus be greater than 1.0. For the time consumption of the
first-pass strategies see Table 8.1.

The final results of all approaches are shown in Table 8.5. All experiments have been conducted
on the test set of our dataset. Therefore, all results are comparable with those presented using
the single-pass strategy as well as other approaches relying on this dataset for clustering.

As we can see in the table, the results are very surprising. The key observations of these results
are the following:

¢ Our initial intention to increase the recall using a second pass was successful. The addition
of that pass increases the overall performance of the system significantly, so that our best
performing strategy reaches almost 94 % in terms of F-measure. This is more than 5
percentage points better than the best performing single-pass strategy (93.9 % vs. 88.6 %).
Independent of the first-pass strategy the increase of the overall results in terms of F-
measure is very high and the results are appealing.

o If the intermediate clustering produced in the first pass is pure (has a high precision),
the system reaches a higher overall performance when using a two-pass strategy while
keeping the precision at a high level. In comparison to the single strategy we only lose
about 1 percentage point in terms of precision. We assume that this high precision is still
acceptable from an end user perspective.

141

8.6

Chapter 8 Experimental Setup and Results of Supervised Multi-Pass Clustering

o A first-pass strategy with a high precision is preferred over strategies not having such
a high precision. The SimpleUserDayPreclustering provides an intermediate clustering
with very high precision. In comparison to the NormalPreclustering strategy we see that
the precision of the final clustering is also higher. We can conclude that an intermediate
clustering having high precision is an optimal starting point for a two-pass strategy.

¢ Regarding the scalability of the overall system, a two-pass strategy is more effective than a
single-pass strategy. We could decrease the time consumption by one order of magnitude
in comparison to the best performing single-pass strategy. This is remarkable as this is
also the best performing two-pass strategy.

We are aware that we reach a higher performance in comparison to the runs on the training
set. We would expect this to be the opposite. This phenomenon has already been observed by
other researchers using this dataset during the MediaEval 2013 Social Event Detection challenge.
Indeed, the assembly of the test set seems to be easier to cluster than the training set.

Conclusions

In this chapter we have presented a multi-pass approach for clustering with our event-based
stream classification framework. We have shown that we are indeed able to classify a stream
of social media data into a growing and evolving set of events using a multi-pass strategy. The
methods used have been evaluated on our dataset. Therefore, the results can be easily compared
with other approaches working on this publicly available dataset.

Before starting the experiments with the multi-pass approach, we identified several key problems
which we can successfully address:

e We are able to tackle the overall clustering problem and achieve a better performance in
comparison with the single-pass approach, i.e. we reach an F-measure of about 93.9 %
instead of 88.6 %.

o« We are still able to scale to the data sizes and data rates which we encounter in social
media applications. We can even increase the computational efficiency by one order of
magnitude by using two appropriate classification passes.

e We are still able to stick to a stream paradigm which is needed to process data from
social media applications. We have found a first-pass strategy that allows to hand over
the data in a preprocessed way so that the general idea of the stream clustering stays
intact. Nevertheless, this has the cost of a short delay.

All these problem were addressed successfully by using a two-pass strategy where the first pass
uses a simple strategy of merging the data items by user and day. The second pass is then a
more thorough classification process using machine learning techniques.

142

8.6 Conclusions

We have compared different intermediate clusterings showing that an intermediate clustering
with high precision is a good starting point for further processing in a second pass. All ap-
proaches using the two-pass paradigm significantly outperform all approaches using one pass
while the processing time is even lower. The overall performance of almost 94 % F-measure is
very good. From an end user perspective and regarding the purity of the event clusters, the

clustering is also of very good quality. It is difficult to find better features to improve the
clustering furthermore.

143

PART 1V

Concluding Remarks

CHAPTER 9

9.1

Remarks and Comparison of
Clustering Approaches

In the first three parts of this dissertation we have presented our classification framework both
for single-pass and multi-pass settings. We have seen that both approaches are valid and effective
methods that can successfully address the challenge of discovering events and identifying which
documents are associated with the same event in a data stream of social media documents.
That is, both approaches can be used to cluster a real-world dataset comprised of social media
documents, such as images from Flickr together with their associated metadata.

In this chapter we provide additional remarks on our contribution. We will discuss prerequisites
for our approaches presented in Part II and III. Furthermore, we talk about their advantages
and disadvantages and discuss how usable these approaches are in a real-world setting.

After that, we take a look at several approaches which we already discussed as related work.
We especially consider the approaches which used our dataset and reported results on its test
set. We provide figures and perform a direct comparison between them and our system.

Prerequisites for Event Clustering

In order to cluster data from social media applications, we require some preparatory work
before our classification framework can be applied. More specifically, in order to cluster social
media data, the data itself has to be preprocessed so that only documents are passed to our
classification framework that represent an event. As a consequence, we need another step in
addition to our processing pipeline which is capable of filtering out all data points that do not
represent events.

In our scenario we have chosen a starting point where the data has already been filtered by
using data that has been constructed using an online event calendar. Even though this is an
optimal way to create, train, and evaluate an event detection system like our approach, such
type of data is not available when using raw data directly from a social media application.

147

9.2

Chapter9 Remarks and Comparison of Clustering Approaches

In order to preprocess raw data and produce suitable data for event detection, another approach
using machine learning techniques can provide a filtering by deciding whether a document
depicts an event or not. Such so-called event identification systems already exist (e.g. Chen
and Roy [CR09] and Liu, Troncy, and Huet [LTH11]). Therefore, an event identification system
has to be employed as an initial step before the resulting outcome can be fed to our classification
framework. In our scenario, one requirement for such a process is that it can deal with a stream
of data, that is the decision has to be made immediately after the data point has arrived.

An alternative solution is to integrate the event/no-event decision directly into our framework.
In that case, a preprocessing of the data is not necessary. This can be done by enhancing the
new event detection step. For this step we can introduce a different classifier that supports
a classifier into more than two classes, thus using a multi-class instead of a binary classifier.
As a result, we do not only use the new event detection step to decide whether the current
document depicts a new event or not, but we also decide if the data point represents an event
at all. Therefore, we end up with three target classes for the decision.

It is difficult to estimate how well these strategies perform; further research has to investi-
gate this issue. Another important challenge is to find possibilities to create appropriate data
including a gold standard making training of a suitable decision model possible.

Reflection on Multi-Pass Clustering in a Stream-based Setting

The classification of a never-ending stream of documents into classes in real time has certain
prerequisites in order to be feasible. One of these prerequisites is the limitation of the possible
number of passes. In this section we aim to analyze this further and reflect on the consequences
regarding our multi-pass approach.

Overall, we can assume that the following four challenges need to be addressed in order to
identify events in data from social media applications:

1. Approaches need to tackle the social media documents in a stream-based fashion. The
order of the data points is thus not changeable and each incoming data point has to be
processed immediately.

2. Approaches need to address the fact that the data stream is never-ending and of large
scale.

3. Approaches need to determine the number of target event classes which is unknown during
the whole clustering process.

4. Approaches need to do the classification in real time so that the clustering is available for
further processing (e.g. displaying) immediately.

Not all classification approaches meet all of these challenges. In the following we take a look at
the classification approaches presented in this work. The challenges 1 to 3 are fully addressed by
all of them, i. e. the problems described can be tackled by all our approaches regardless whether

148

9.2 Reflection on Multi-Pass Clustering in a Stream-based Setting

our single-pass or multi-pass approach is used. When using our single-pass strategy, challenge 4
is also fulfilled without restrictions. However, we confess that—strictly speaking—challenge 4 is
fulfilled only partially by the approaches using more than one single pass. Actually, when using
our two-pass approach, the final event clustering is not made available in real time but has a
delay of up to 24 hours. This time delay can be shortened if the first clustering pass uses smaller
windows, but, in general, a delay cannot be avoided. This is problematic for applications where
an immediate clustering is important.

As a consequence, if all of the above mentioned points have to be fully met, the classification
process is indeed limited to one single pass. In that case we are faced with a dilemma to decide
whether we need a finalized clustering in real time with the cost of a lower performance or if
a delay of some duration is acceptable. As both solutions are not fully satisfying, we want to
propose a solution to that issue. We propose the following strategies to tackle the problem of
fulfilling the real-time requirement in a multi-pass approach:

¢ An application initially invokes our single-pass strategy to achieve an initial clustering.
This initial clustering is used for the presentation of event clusters to the end user for
the most recent documents. Event clusters that are older than a certain time are then
classified again in a second pass refining the clustering. For this we propose to use our
second-pass approach as proposed in our two-pass setting. The application therefore is
able to show all event clusters immediately, where events that are older than the current
day have a higher quality than the clusters of the current day.

o Instead of using our single-pass strategy, the per day and user merging strategy is used
as an initial clustering. The application uses a clustering per user for the current day for
displaying. The second pass is used afterwards refining the clustering as proposed before,
reaching a significantly higher quality for days older than the current one.

Both approaches allow to present an immediate clustering but have different strengths. When
using the first strategy, the initial clustering is of higher quality than the second strategy (88.6 %
vs. 84.2% F-measure). In contrast, the second strategy has its advantages in the long term.
The overall clustering quality for the older documents and event clusters is a bit higher in terms
of F-measure: 93.9% vs. 93.2%. But more importantly, the precision is also higher using the
second strategy and therefore predicted to be better accepted from an end user’s perspective
(93,5% vs. 92.0%). Therefore, it depends on the need of the application to decide which
strategy suits better. If a good clustering is needed for documents that appeared recently, then
the first strategy is the preferred one. For an overall better quality, the second strategy is the
preferred one.

We can also think of a third strategy which combines the advantages of both approaches. The
best performing single-pass and the best performing multi-pass approaches are applied at the
same time. The event clusters with the data points from the current day are produced by our
single-pass strategy. On the other hand, the older event clusters are produced by the multi-pass
strategy. An application then uses the clustering from the single-pass strategy for the documents
of the current day and the multi-pass strategy for less recent documents. Using this strategy, it
is important to remark that it comes at the expense of the need of more computational time.

149

9.3

Chapter9 Remarks and Comparison of Clustering Approaches

Overall, we see that a multi-pass approach and a real-time classification are not necessarily
contradictions, rather the challenge can be tackled using one of the strategies proposed above.

Comparison with Other Approaches

In the results section of our approaches we only compared them to other work that can be used
in a stream-based setting. Nevertheless, there are several other approaches which not necessarily
use a stream-based setting but used our ReSEED dataset and provide results on a clustering
for the test set. In the following we compare our approach to their results. These approaches
have already been described in more detail earlier in this thesis (please refer to Section 3.7).

The results in terms of F-measure for a clustering on the test set of our dataset are shown in
Table 9.1. We only provide the F-measure values without precision and recall as these figures
were not reported in the original publications.

Table 9.1.: Comparison of different clustering strategies of MediaEval 2013 SED with our classification approaches

Reference Algorithm /Method F-measure
[GGC13] Location-Time Merging 0.143
[Pap+13b] Chinese Restaurant Process 0.236
[Raf+13] Hierarchical-like Merging 0.570
[Sch+13] Graph Clustering 0.704
[ZZD13] Meanshift Clustering + LDA 0.740
[BI13] SVM Classification 0.780
[SN13] Constrained Spherical K-Means 0.812
[WS13] Quality Threshold Clustering 0.878
IMG13] Photo-TOC 0.883
Chapter 6 Single-Pass SVM Classification 0.886
[Ngu+13] User-centric Split and Merge Clustering 0.932
Chapter 8 Multi-Pass SVM Classification 0.939
[Sam—+13] DBSCAN Clustering 0.946

The table contains the approaches presented at the Social Event Detection task organized as
part of MediaEval 2013 together with our two best-performing approaches. We see that there
are many approaches that can be used to produce a clustering on the dataset. However, almost
all of these approaches are based on classical clustering algorithms that cannot be used in a
stream-based setting. Nevertheless, the figures in the table give an overview of how well the
different approaches perform in comparison to our single- and multi-pass approach.

There is only one approach which is able to outperform our multi-pass approach in terms of
F-measure. This approach from Samangooei et al. [Sam+13] uses DBSCAN, a density-based
clustering algorithm. Together with the solution from Nguyen et al. [Ngu+13] and our multi-
pass strategy, these are the only approaches that reach a very good overall performance with

150

9.3 Comparison with Other Approaches

more than 90 % in terms of F-measure. Even though our system only outperforms one of them,
our overall results are competitive, as the difference between the results is minimal (difference
of 0.7 percentage points). But it is not neglectable that our classification-based approach has
several advantages (like working in a stream-based scenario) that may be more important than
the minimal gain in overall performance.

The next best approach which can be used in a stream-based setting is the one from Brenner
and Izquierdo [BI13] who also employ an SVM for classification. However, this approach only
reaches an F-measure of about 78 %, which is clearly outperformed by both of our strategies. It
is also remarkable that our single-pass strategy outperforms many approaches using clustering
algorithms. This is interesting as our approach only needs one single pass, thus sees the data
points only once. In addition, it is very effective regarding the computational effort needed. We
know from at least some of the other approaches that they are computationally challenging and
do not scale well to larger datasets.

Overall, this comparison clearly shows that our approaches are able to get the most out of the
data while having several advantages over other approaches regarding the efficiency and way
they handle the data. They are able to outperform several state-of-the-art approaches and are
promising for deployment in an actual real-world application.

151

cHartEr 10

Conclusion

In this thesis we have been concerned with the problem of event detection in social media. We
have addressed the challenge of classifying a massive, never-ending stream of data from a social
media application into corresponding events. This clustering task involved several challenges.
As a solution we have presented a framework tackling this task together with its challenges. We
were able to show that our event-based stream classification framework is capable of classifying
the social media data into a growing and evolving set of events. Furthermore, it successfully
addresses all challenges identified before. Overall, we provide several contributions which we
want to outline in the following.

We introduced a new dataset to support research in the area of social event detection. The
dataset was created using images from the Flickr photo community site and online event cal-
endars. Therefore, it contains user-contributed images together with associated metadata de-
scribing the events they depict. All data included in the dataset is licensed under a Creative
Commons license that allows for free distribution. The dataset was previously published and
is freely available to the public. Both the scale and complexity of the dataset make it more
challenging and more representative of real-world problems in comparison to other datasets in
the field, which are usually annotated explicitly and are much smaller. We see this dataset as an
important contribution to the advancement of the social event detection field. It supports the
development, evaluation, as well as the systematic comparison of different social event detection
approaches. Furthermore, it can be used for clustering and classification tasks in that area. As
it has been already used with the MediaEval Social Event Detection task in 2013, it is also
known in the community and facilitates the comparison of different approaches.

Having created a suitable dataset, we introduced a classification framework that is able to cluster
the documents into their appropriate event cluster using different machine learning techniques.
The system we have presented is able to classify a stream of social media data in one single pass.
In particular, we have shown that our approach successfully addresses several key problems:

o Handling the data in a stream-based paradigm, i.e. tackling the problem of a stream of
data that is never-ending.

e Scaling to the data sizes as well as data rates that are usually encountered in social media
applications.

153

Chapter 10 Conclusion

e Tackling the new event detection problem, i.e. the problem of determining whether an
incoming data point belongs to a new or to an already known event.

We successfully address these problems i) by employing a classification algorithm, therefore
allowing us to process the data in one pass, ii) by including a candidate event retrieval step
which retrieves a set of event candidates that the incoming data point is likely to belong to, and
iii) by including a function trained using machine learning techniques that determines whether
the incoming data point belongs to the top-scored candidate or rather to a new event.

To maximize the performance of our classification system, we have examined all different steps
of our classification framework thoroughly. In particular, we have shown that the use of a
suitable candidate retrieval step is crucial to reduce the number of events that are considered
as potential candidates to which the incoming data point could belong to. This is necessary
to scale up to the data sizes an data rates found in social media applications. Therefore, we
have not only examined and experimentally compared different candidate retrieval strategies
regarding their effectiveness and computational cost but also regarding their performance on
the overall classification task. A candidate retrieval strategy based on the timestamps selecting
the 18 closest events with respect to upload time delivers the best results. From a more general
perspective, the results found show that a suitable candidate retrieval strategy indeed does not
only have the potential to speed up the classification process per se, but also helps to filter
out false positives that could potentially confound the classifier. Thus, this step enables us to
increase the overall classification performance.

Furthermore, we have shown that both the decision finding the top scoring target event as well
as the new event detection decision can be taken with reasonable accuracy. For both decisions
we made use of different types of classifiers. We used different types of Support Vector Machines
(Standard and Ranking SVM) as well as Decision Trees in order to train appropriate models.
Furthermore, we investigated different strategies for creating appropriate training data, settings
for the classifiers, and the impact of the amount of training data on the performance.

We have shown that it is possible to learn a suitable similarity measure using all three types
of classifiers. Using an SVM, only a few training examples are sufficient, already allowing
the induction of an acceptable similarity measure with less than 20 training examples. The
performance of an SVM does not vary too much for different sizes of training data and the
number of training data needed is much less than with a Decision Tree. Thus we can regard
an SVM as more robust than to a Decision Tree. Besides, using an SVM we figured out that
a linear kernel performs as good as a RBF kernel regardless of which type of SVM is used,
making the use of a linear kernel the favored strategy mainly because it is computationally less
expensive. It has also been shown that the sampling strategy is crucial for the maximization
of the success of the training process. The use of well-chosen training examples improves the
quality of the created model. We have seen that the search for the nearest wrong pair helps to
train a good model.

For the new event decision model, we have seen that using 4,000 training examples together with
an SVM maximizes the decision performance. Here, the number of training examples chosen is

154

less crucial than in the creation of the similarity measure and the performance reached by the
different models is more robust.

We carried out detailed feature analyses for both decision problems. The aim in both cases
was to find an optimal combination of features to ensure the creation of an optimized decision
model. Many pictures in social media are missing some of the features as the user did not
provide them. But in the feature analysis for the learning of a similarity measure, we have
discovered that the lack of a single feature has no big impact on the quality of the system as a
whole. The results are still compelling even if only one feature is used in addition to the always
available time features. Therefore, our method is still applicable, as we can deduce from our
dataset that contains typical data of a social media application that about 99.8 % of the included
documents have at least one additional feature assigned in addition to the time features. We
thus could clearly show that we can deal with the lack of data which usually occurs in real-world
scenarios.

Our second feature analysis, carried out for the identification of the optimal combination of
features to be used for the new event detection decision, was a greedy strategy. We identified
that a combination of four out of six features—originally derived as a result from an optimal
clustering—yields the best performance. We also showed that a model using these features
outperforms a simple threshold model using only the maximum value of the top-scoring event.

The optimized system has been compared to several baselines showing that it outperforms
all of them in terms of F-measure with a value of 88.6%. The benefit of our approach is
that the processing time per document remains nearly constant with an increasing number
of documents, thus addressing the scalability challenge mentioned above. We found that the
resulting clustering was very pure (i.e. having a high precision) while having a lower recall.
Regarding the results, the question arose whether the recall can still be increased by using a
multi-pass strategy.

We therefore introduced an extension of the single-pass approach so that it could be used in
a multi-pass setting. We finally showed that the extended approach can increase the recall
significantly when using two passes. This also increased the overall results, now being signifi-
cantly better. In addition to that, we could also lower the computational time needed for the
processing by 90 % using the best performing two-pass strategy.

Creating the multi-pass system we analyzed several strategies in order to find a suitable strategy
to be used for each pass. We experimented with different first-pass strategies showing that all
two-pass strategies clearly outperform the single-pass strategy. We saw that a simple merging
by day and user used as a cheap first pass clustering—taking no more than two seconds for the
whole test set on a recent computer system—performs best in conjunction with our classification
framework as a second pass for the refinement of the intermediate clustering. This combination
reached an F-measure of almost 94 %.

We then looked at the single steps of our framework and re-optimized all needed steps of
our classification framework to the new situation using an intermediate clustering for further
merging. We found that the number of features needed for the similarity measure as well as the
new event detection decision almost shrunk to one single feature. Using the cosine similarity

155

Chapter 10 Conclusion

of the tag feature performs best for measuring similarity of an intermediate event cluster to a
final event cluster. The new event detection decision can be done using the maximum value of
the top-scoring event candidate. The optimization of the candidate retrieval step showed that a
strategy similar to the one used in the single-pass setting works well. The difference is that the
number of candidates has to be increased from 18 to 30 candidates to be retrieved with respect
to the capture time.

Summarizing, we presented an event-based stream classification framework that can be used ei-
ther in a single- or a multi-pass setting. We showed that this framework is capable of successfully
clustering a real-world and non-toy dataset. Our highly efficient single-pass strategy reached an
F-measure of 88.6 %, already outperforming several state-of-the-art approaches. Our two-pass
strategy reached an F-measure of 93.9 %, ameliorating the overall performance significantly. In
addition, the computational effort needed has been lowered by one order of magnitude in com-
parison to our single-pass strategy. In a comparison to other approaches applied to our dataset,
we have shown that our approach is one of the best performing ones. We also concluded that
our approach can indeed be used for a real-world application.

Outlook

We see possibilities to enhance our event-based stream classification framework to tackle the
shortcoming that it can only use data that has been filtered before, so that only documents are
fed that clearly constitute an event. We already proposed to change the new event detection
step so that it can also decide whether the document depicts an event or not. Approaches from
Chen and Roy [CR09] and Liu, Troncy, and Huet [LTH11] show that the problem can be tackled
with machine learning techniques. Therefore, we think that such an extension is possible and
will make the framework more versatile.

Moreover, it would be interesting to apply our framework to other datasets derived from other
social media applications. Our system could contribute to classifying events found on Twitter,
for example. Another very interesting application is to combine data from different social
media application sources. We are sure that our classification framework can help in finding
links between events that are spread over different social media channels, thus making a use of
data across sites possible in order to create a full event story.

However, the scenario presented in this work does not reflect the natural event constitution
which changes over time. It is therefore desirable to achieve a hierarchy of events so that the
end-user can explore the events through such a hierarchy. Using our multi-pass strategy together
with a suitable dataset which models a hierarchy can be used to identify event hierarchies and
make the exploration even more natural for the end user, e.g. by showing more sub-events for
recent activities and switch to a more coarse view for older events.

156

PART V

Appendix

Glossary

APl An Application Programming Interface (API) is a set of routines, protocols, and/or tools
which can be used to build applications using a third party service. They are independent
functionalities which are independent from the actual implementation of the third party
application. 50, 51, 53, 54, 56, 57

DARPA The Defense Advanced Research Projects Agency (DARPA) is an agency of the United
States Department of Defense responsible for the development of new technologies for use
by the military. 25

EXIF The exchangeable image file format (Exif) is a standard which specifies the format for
image information used by digital cameras to add image information to an image. 57, 59

Facebook Facebook is an online social networking service, a platform to build social networks
among people that share interests and want to connect with each other. 3, 61

Flickr Flickr is an online photo community by Yahoo Inc. It is an image hosting web service
enabling users to share personal photographs which can be enriched with metadata like
keywords. 3, 49-52, 54-59, 61, 67

GPS The Global Positioning System (GPS) is a satellite-based navigation system providing
location and time information anywhere on the earth. 57, 76, 98

HTTP The HyperText Transfer Protocol (HTTP) is an application protocol to exchange or
transfer hypertext. It is structured hypertext which uses links between single nodes con-
taining text. 50, 52

JPEG JPEG is a commonly used file format with a lossy compression method that is used for
the storage of digital images. 59

MediaEval MediaEval is a benchmarking initiative dedicated to evaluating new algorithms for
multimedia access and retrieval. 27

tweet A tweet is a message with 140 characters that is sent using the Twitter service. 6, 27

159

Glossary

Twitter Twitter is an online social networking service. It allows users to send 140-character
messages called tweets that others can follow. 3

YouTube YouTube is a video-sharing web site which allows users to upload, view, and share
videos. It also has the possible to annotate videos. 3

160

Acronyms

ACE Automatic Content Extraction. 26
DARPA Defense Advanced Research Projects Agency. 25, Glossary: DARPA
LREC Language Resources and Evaluation Conference. 26

MED Multimedia Event Detection. 26, 49
MediaEval MediaEval Benchmark for Multimedia Evaluation. 27, 49, 61, Glossary: MediaEval

SED Social Event Detection. 27, 49

TDT topic detection and tracking. 25, 27
TRECVID TREC Video Retrieval Evaluation. 26, 49

161

Bibliography

[Agg07] Charu C. Aggarwal. Data Streams: Models and Algorithms. Vol. 31. Springer, 2007.

[Agg+04] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. “On Demand
Classification of Data Streams”. In: Proceedings of the Tenth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. ACM. 2004,

pp. 503-508.

[AY05] Charu C. Aggarwal and Philip S. Yu. “An effective and efficient algorithm for
high-dimensional outlier detection”. In: The VLDB journal 14.2 (2005), pp. 211-
221.

[AYO01] Charu C. Aggarwal and Philip S. Yu. “Outlier Detection for High Dimensional
Data”. In: ACM Sigmod Record. Vol. 30. 2. ACM. 2001, pp. 37-46.

[AY08] Charu C. Aggarwal and Philip S. Yu. “Outlier Detection with Uncertain Data”. In:

Proceedings of the 2008 SIAM International Conference on Data Mining. STAM,
2008, pp. 483-493.

[A1102] James Allan. Topic Detection and Tracking — Event-based Information Organiza-
tion. Springer, 2002.

[All4+98] James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and
Yiming Yang. “Topic Detection and Tracking Pilot Study Final Report”. In: The
DARPA Broadcast News Transcription and Understanding Workshop. 1998.

[APL9S] James Allan, Ron Papka, and Victor Lavrenko. “On-line New Event Detection and
Tracking”. In: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR 98. Melbourne,
Australia: ACM, 1998, pp. 37—45. 1SBN: 1-58113-015-5. DOT: 10 . 1145/290941 .
290954.

[Bab+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
“Models and Issues in Data Stream Systems”. In: Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
PODS ’02. Madison, Wisconsin: ACM, 2002, pp. 1-16. 1SBN: 1-58113-507-6.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. “Load Shedding for Aggrega-
tion Queries over Data Streams”. In: Proceedings. 20th International Conference
on Data Engineering, 2004. IEEE. 2004, pp. 350-361.

[BR93] Jeffrey Banfield and Adrian Raftery. “Model-based Gaussian and Non-Gaussian
Clustering”. In: Biometrics (1993), pp. 803-821.

163

http://dx.doi.org/10.1145/290941.290954
http://dx.doi.org/10.1145/290941.290954

Bibliography

[BLC02]

[Bar-+03]

[Bar63]

[BFO1]

[Bar88]

[BBMO2]

[BBM04a

[BBMO4b)]

[BCCO3]

[Bec+12]

[BNGO09)]

[BNG10]

[BY01]

Daniel Barbard, Yi Li, and Julia Couto. “COOLCAT: An Entropy-based Algorithm
for Categorical Clustering”. In: Proceedings of the Eleventh International Confer-
ence on Information and Knowledge Management. ACM. 2002, pp. 582-589.

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. “Learning
Distance Functions Using Equivalence Relations”. In: ICML. Vol. 3. 2003, pp. 11—
18.

Roger G. Barker. “The Stream of Behavior as an Empirical Problem.” In: The
Stream of Behavior. Ed. by Roger G. Barker. Appleton-Century-Crofts, 1963, pp. 1—
22.

Kobus Barnard and David A. Forsyth. “Learning the Semantics of Words and
Pictures”. In: ICCV. 2001, pp. 408-415.

Lawrence W. Barsalou. “The Content and Organization of Autobiographical Mem-
ories”. In: Remembering Reconsidered: Ecological and Traditional Approaches to the
Study of Memory (1988), pp. 193-243.

Sugato Basu, Arindam Banerjee, and Raymond Mooney. “Semi-supervised Clus-
tering by Seeding”. In: In Proceedings of 19th International Conference on Machine
Learning (ICML-2002). Citeseer. 2002.

Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. “Active Semi-Supervis-
ion for Pairwise Constrained Clustering”. In: SDM. Vol. 4. STAM. 2004, pp. 333—
344.

Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. “A Probabilistic Frame-
work for Semi-supervised Clustering”. In: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’04.
Seattle, WA, USA: ACM, 2004, pp. 59-68. 1SBN: 1-58113-888-1. DOI: 10.1145/
1014052.1014062.

Rohan Baxter, Peter Christen, and Tim Churches. “A Comparison of Fast Blocking
Methods for Record Linkage”. In: ACM SIGKDD. Vol. 3. Citeseer. 2003, pp. 25-27.

Hila Becker, Dan Iter, Mor Naaman, and Luis Gravano. “Identifying Content for
Planned Events Across Social Media Sites” In: Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining. WSDM ’12. Seattle, Wash-
ington, USA: ACM, 2012, pp. 533-542. 1SBN: 978-1-4503-0747-5. DOI: 10.1145/
2124295.2124360.

Hila Becker, Mor Naaman, and Luis Gravano. “Event Identification in Social Me-
dia.” In: WebDB. 2009.

Hila Becker, Mor Naaman, and Luis Gravano. “Learning Similarity Metrics for
Event Identification in Social Media”. In: Proceedings of the Third ACM Interna-
tional Conference on Web Search and Data Mining. ACM. 2010, pp. 291-300.

Gill Bejerano and Golan Yona. “Variations on Probabilistic Suffix Trees: Statisti-
cal Modeling and Prediction of Protein Families”. In: Bioinformatics 17.1 (2001),
pp- 23-43.

164

http://dx.doi.org/10.1145/1014052.1014062
http://dx.doi.org/10.1145/1014052.1014062
http://dx.doi.org/10.1145/2124295.2124360
http://dx.doi.org/10.1145/2124295.2124360

Bibliography

[Ben02]
[B+99]

[Ben+96]

[BBMO4c]

[BMO3]

[Bol92]
[B+98]
[Bre-+84]

[BI13]

[Bre-++00]

[BSYg]

[Bud-+06]

[CBKO9]

[CL11]

Jonathan Bennett. “What Events Are”. In: The Blackwell Guide to Metaphysics.
Ed. by Richard M. Gale. Blackwell, 2002, pp. 43-65.

Kristin Bennett, Ayhan Demiriz, et al. “Semi-supervised Support Vector Machines”.
In: Advances in Neural Information processing systems (1999), pp. 368-374.

Amine M. Bensaid, Lawrence O. Hall, James C. Bezdek, and Laurence P. Clarke.
“Partially Supervised Clustering for Image Segmentation”. In: Pattern Recognition
29.5 (1996), pp. 859-871.

Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. “Integrating Constraints
and Metric Learning in Semi-supervised Clustering”. In: Proceedings of the Twenty-
first International Conference on Machine Learning. ICML ’04. Banff, Alberta,
Canada: ACM, 2004, pp. 11—. 1SBN: 1-58113-838-5. DOT: 10.1145/1015330.1015360.

Mikhail Bilenko and Raymond J. Mooney. “Adaptive Duplicate Detection Using
Learnable String Similarity Measures”. In: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Wachington,
DC, 2003.

Marilyn G. Boltz. “The Remembering of Auditory Event Durations”. In: Journal
of Experimental Psychology: Learning, Memory, and Cognition 18.5 (1992), p. 938.

Paul S. Bradley, Usama M. Fayyad, Cory Reina, et al. “Scaling Clustering Algo-
rithms to Large Databases”. In: KDD. 1998, pp. 9-15.

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classi-
fication and Regression Trees. CRC press, 1984.

Markus Brenner and Ebroul Izquierdo. “Mediakval 2013: Social Event Detection,
Retrieval and Classification in Collaborative Photo Collections”. In: MediaFEval
2013 Workshop. Spain, 2013.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. “LOF:
Identifying Density-based Local Outliers”. In: SIGMOD Rec. 29.2 (May 2000),
pp- 93-104. 1ssN: 0163-5808. DOI: 10.1145/335191.335388.

Norman R. Brown and Donald Schopflocher. “Event Clusters: An Organization of
Personal Events in Autobiographical Memory”. In: Psychological Science 9.6 (1998),
pp. 470-475.

Suratna Budalakoti, Ashok N. Srivastava, Ram Akella, and Eugene Turkov. Anomaly
Detection in Large Sets of High-dimensional Symbol Sequences. Tech. rep. NASA
ARC, 2006.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A
Survey”. In: ACM Comput. Surv. 41.3 (July 2009), 15:1-15:58. 18SN: 0360-0300.
DOI: 10.1145/1541880.1541882.

Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector
Machines”. In: ACM Transactions on Intelligent Systems and Technology (TIST)
2.3 (2011), p. 27.

165

http://dx.doi.org/10.1145/1015330.1015360
http://dx.doi.org/10.1145/335191.335388
http://dx.doi.org/10.1145/1541880.1541882

Bibliography

[C+-06] Olivier Chapelle, Bernhard Schélkopf, Alexander Zien, et al. Semi-supervised Lear-
ning. Vol. 2. MIT press Cambridge, 2006.
[CROY] Ling Chen and Abhishek Roy. “Event Detection from Flickr Data through Wavelet-

based Spatial Analysis”. In: Proceedings of the 18th ACM Conference on Informa-
tion and Knowledge Management. ACM. 2009, pp. 523-532.

[CMO7] Vladimir Cherkassky and Filip M. Mulier. Learning from Data: Concepts, Theory,
and Methods. John Wiley & Sons, 2007.

[CCMO03] David Cohn, Rich Caruana, and Andrew McCallum. “Semi-supervised Clustering
with User Feedback”. In: Constrained Clustering: Advances in Algorithms, Theory,
and Applications 4.1 (2003), pp. 17-32.

[Con0ba] Linguistic Data Consortium. ACE (Automatic Content Extraction) English Anno-
tion Guidelines for Events. 2005. URL: https://www.ldc.upenn.edu/sites/www.
ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf.

[Con05b] Martin A. Conway. “Memory and the Self”. In: Journal of Memory and Language
53.4 (2005), pp. 594-628.

[CP00] Martin A. Conway and Christopher W. Pleydell-Pearce. “The Construction of Au-
tobiographical Memories in the Self-memory System.” In: Psychological Review
107.2 (2000), p. 261.

[Coo+05] Matthew Cooper, Jonathan Foote, Andreas Girgensohn, and Lynn Wilcox. “Tem-
poral Event Clustering for Digital Photo Collections”. In: ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMCCAP) 1.3 (2005),
pp. 269-288.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Machine
Learning 20.3 (1995), pp. 273-297.

[Dan63| Arthur Danto. “What We Can Do”. In: The Journal of Philosophy 60.15 (1963),
pp- 435-445.

[Dav80] Donald Davidson. Essays on Actions and Events. New York: Oxford University
Press, 1980.

[Dav69] Donald Davidson. The Individuation of Fvents. Springer, 1969.

[Dav+07] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.
“Information-theoretic Metric Learning”. In: Proceedings of the 24th International
Conference on Machine Learning. ICML ’07. Corvalis, Oregon: ACM, 2007, pp. 209—
216. 1SBN: 978-1-59593-793-3. DOI: 10.1145/1273496.1273523.

[Dav+06] Manuel Davy, Frédéric Desobry, Arthur Gretton, and Christian Doncarli. “An On-
line Support Vector Machine for Abnormal Events Detection”. In: Signal Processing
86.8 (2006), pp. 2009-2025.

166

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf
http://dx.doi.org/10.1145/1273496.1273523

Bibliography

[DMCO03]

[DBE99)

[Dod+04]

[Don-+03]

[Eic+05]

[EZZ04]

[EVE02]

[Esk00]

[Est+96]

[Est02]

[Fak+10]

[FP99)

Tijl De Bie, Michinari Momma, and Nello Cristianini. “Efficiently Learning the
Metric with Side-Information”. In: Algorithmic Learning Theory. Ed. by Ricard
Gavalda, Klaus P. Jantke, and Eiji Takimoto. Vol. 2842. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, pp. 175-189. 1SBN: 978-3-540-20291-2.
DOI: 10.1007/978-3-540-39624-6_15.

Ayhan Demiriz, Kristin P. Bennett, and Mark J. Embrechts. “Semi-Supervised
Clustering Using Genetic Algorithms”. In: In Artificial Neural Networks in Engi-
neering. ASME Press, 1999, pp. 809-814.

George R. Doddington, Alexis Mitchell, Mark A. Przybocki, Lance A. Ramshaw,
Stephanie Strassel, and Ralph M. Weischedel. “The Automatic Content Extraction
(ACE) Program-Tasks, Data, and Evaluation.” In: LREC. 2004.

Guozhu Dong, Jiawei Han, Laks V. S. Lakshmanan, Jian Pei, Haixun Wang, and
Philip S. Yu. “Online Mining of Changes from Data Streams: Research Problems
and Preliminary Results”. In: Proceedings of the 2003 ACM SIGMOD Workshop
on Management and Processing of Data Streams. 2003.

Christoph F. Eick, Alain Rouhana, Abraham Bagherjeiran, and Ricardo Vilalta.
“Using Clustering to Learn Distance Functions for Supervised Similarity Assess-
ment.” In: MLDM. Ed. by Petra Perner and Atsushi Imiya. Vol. 3587. Lecture
Notes in Computer Science. Springer, 2005, pp. 120-131. 1SBN: 3-540-26923-1.

Christoph F. Eick, Nidal Zeidat, and Zhenghong Zhao. “Supervised Clustering —
Algorithms and Benefits”. In: ICTAI 2004. 16th IEEE International Conference on
Tools with Artificial Intelligence, 2004. IEEE. 2004, pp. 774-776.

Mohamed G. Elfeky, Vassilios S. Verykios, and Ahmed K. Elmagarmid. “TAILOR:
A Record Linkage Toolbox”. In: Proceedings of the 18th International Conference
on Data Engineering. IEEE. 2002, pp. 17-28.

Eleazar Eskin. “Anomaly Detection over Noisy Data using Learned Probability
Distributions”. In: Proceedings of ICML, 2000. 2000.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. “A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”. In:
Proceedings of KDD. Vol. 96. 1996, pp. 226—231.

Vladimir Estivill-Castro. “Why So Many Clustering Algorithms: A Position Paper”.
In: SIGKDD Explor. Newsl. 4.1 (June 2002), pp. 65-75. 1SsN: 1931-0145. pDOI: 10.
1145/568574.568575.

Ali Fakeri-Tabrizi, Sabrina Tollari, Nicolas Usunier, and Patrick Gallinari. “Im-
proving Image Annotation in Imbalanced Classification Problems with Ranking
SVM?”. In: Multilingual Information Access FEvaluation II. Multimedia Experiments.
Springer, 2010, pp. 291-294.

Tom Fawcett and Foster Provost. “Activity Monitoring: Noticing Interesting Chan-
ges in Behavior”. In: Proceedings of the Fifth ACM SIGKDD International Confer-
ence on Knowledge discovery and data mining. ACM. 1999, pp. 53-62.

167

http://dx.doi.org/10.1007/978-3-540-39624-6_15
http://dx.doi.org/10.1145/568574.568575
http://dx.doi.org/10.1145/568574.568575

Bibliography

[Fay-+96]

[Fir+10]

[GY06]

[GZKO5]

[GHO7]

[Gan+02]

[Gao+05]

[Gao+10]

[Gra+02]

[Gru69]

[Guh+00]

[GRSOS]

Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, eds. Advances in Knowledge Discovery and Data Mining. Menlo Park,
CA, USA: American Association for Artificial Intelligence, 1996. 1SBN: 0-262-56097-
6.

Claudiu S. Firan, Mihai Georgescu, Wolfgang Nejdl, and Raluca Paiu. “Bringing
Order to Your Photos: Event-driven Classification of Flickr Images Based on So-
cial Knowledge”. In: Proceedings of the 19th ACM International Conference on
Information and Knowledge Management. ACM. 2010, pp. 189-198.

Mohamed Medhat Gaber and Philip S. Yu. “A Holistic Approach for Resource-
Aware Adaptive Data Stream Mining”. In: New Generation Computing 25.1 (2006),
pp. 95-115.

Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. “Mining
Data Streams: A Review”. In: SIGMOD Rec. 34.2 (June 2005), pp. 18-26. 1SSN:
0163-5808. poI: 10.1145/1083784.1083789.

Robert Gaizauskas and Kevin Humphreys. “Using a Semantic Network for Infor-
mation Extraction”. In: Natural Language Engineering 3 (02 Sept. 1997), pp. 147—
169. 1ssN: 1469-8110.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc
Schneider. “Sweetening Ontologies with DOLCE”. In: Knowledge engineering and
knowledge management: Ontologies and the semantic Web. Springer, 2002, pp. 166—
181.

Jianfeng Gao, Haoliang Qi, Xinsong Xia, and Jian-Yun Nie. “Linear Discriminant
Model for Information Retrieval”. In: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM. 2005, pp. 290-297.

Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. “On
Community Outliers and their Efficient Detection in Information Networks”. In:
KDD. Ed. by Bharat Rao, Balaji Krishnapuram, Andrew Tomkins, and Yang Qiang.
ACM, 2010, pp. 813-822. 1SBN: 978-1-4503-0055-1.

Adrian Graham, Hector Garcia-Molina, Andreas Paepcke, and Terry Winograd.
“Time as Essence for Photo Browsing Through Personal Digital Libraries”. In: Pro-
ceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries. ACM.
2002, pp. 326-335.

Frank E. Grubbs. “Procedures for Detecting Outlying Observations in Samples”.
In: Technometrics 11.1 (1969), pp. 1-21.

Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. “Cluster-
ing Data Streams”. In: Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, 2000. IEEE. 2000, pp. 359-366.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. “CURE: An Efficient Clustering
Algorithm for Large Databases”. In: SIGMOD Conference. Ed. by Laura M. Haas
and Ashutosh Tiwary. ACM Press, 1998, pp. 73-84. 1SBN: 0-89791-995-5.

168

http://dx.doi.org/10.1145/1083784.1083789

Bibliography

[GGC13)

[HBVO01]

[HKO06]

[Har05]

[He+10]

[HCLO7]

[Hei71]
[HA04]

[IMF99]

[JAO7]

[Joa02]

[Kim73]

[Kim69]

[Kim76]

Itika Gupta, Kshitij Gautam, and Krishna Chandramouli. “VIT@Mediakval 2013
Social Event Detection Task: Semantic Structuring of Complementary Information
for Clustering Events”. In: MediaFval 2013 Workshop. Spain, 2013.

Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “On Clustering Val-
idation Techniques”. In: Journal of Intelligent Information Systems 17.2-3 (2001),
pp. 107-145.

Jiawei Han and Micheline Kamber. Data Mining, Southeast Asia Edition: Concepts
and Techniques. Morgan Kaufmann, 2006.

Stevan Harnad. “To Cognize is to Categorize: Cognition is Categorization”. In:
Handbook of Categorization in Cognitive Science. Ed. by Henri Cohen and Claire
Lefebvre. Elsevier, 2005.

Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen, Bing Su, Wei Lin, and Lidong
Zhou. “Comet: Batched Stream Processing for Data Intensive Distributed Comput-
ing”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM. 2010,
pp. 63-74.

Qi He, Kuiyu Chang, and Ee-Peng Lim. “Analyzing Feature Trajectories for Event
Detection”. In: SIGIR °07: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Ams-
terdam, The Netherlands: ACM, 2007, pp. 207-214. 1SBN: 978-1-59593-597-7.

Eleanor Heider. “”Focal” Color Areas and the Development of Color Names”. In:
Developmental Psychology 4.3 (1971), p. 447.

Victoria J. Hodge and Jim Austin. “A Survey of Outlier Detection Methodologies”.
In: Artificial Intelligence Review 22.2 (2004), pp. 85-126.

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. “Data Clustering: A
Review”. In: ACM Comput. Surv. 31.3 (Sept. 1999), pp. 264-323. 1sSN: 0360-0300.
DOI: 10.1145/331499.331504.

Apirak Jirayusakul and Surapong Auwatanamongkol. “A Supervised Growing Neu-
ral Gas Algorithm for Cluster Analysis”. In: International Journal of Hybrid Intel-
ligent Systems 4.2 (2007), pp. 129-141.

Thorsten Joachims. “Optimizing Search Engines using Clickthrough Data”. In: Pro-
ceedings of the Fighth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM. 2002, pp. 133-142.

Jaegwon Kim. “Causation, Nomic Subsumption, and the Concept of Event”. In:
The Journal of Philosophy (1973), pp. 217-236.

Jaegwon Kim. “Events and Their Descriptions: Some Considerations”. In: Essays
in Honor of Carl G. Hempel. Ed. by Nicholas Rescher. Vol. 24. Synthese Library.
Springer Netherlands, 1969, pp. 198-215. 1SBN: 978-90-481-8332-6. DOI: 10.1007/
978-94-017-1466-2_10.

Jaegwon Kim. Fvents as Property FExemplifications. Springer, 1976.

169

http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1007/978-94-017-1466-2_10
http://dx.doi.org/10.1007/978-94-017-1466-2_10

Bibliography

[Kim+-09]

[KR92]

[KKMO02]

[KNOS]

[KKO7]

[KSZ08]

[KAO4]

[Kun04]

[KZ08)

[Lak82]
[Lak87]

[Lar+13]

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano, and Jun’ichi Tsujii.
“Overview of BioNLP’09 Shared Task on Event Extraction”. In: Proceedings of the
Workshop on Current Trends in Biomedical Natural Language Processing: Shared
Task. Association for Computational Linguistics. 2009, pp. 1-9.

Kenji Kira and Larry A. Rendell. “A Practical Approach to Feature Selection”.
In: Proceedings of the Ninth International Workshop on Machine Learning. ML92.
Aberdeen, Scotland, United Kingdom: Morgan Kaufmann Publishers Inc., 1992,
pp- 249-256. 1SBN: 1-5586-247-X.

Dan Klein, Sepandar D. Kamvar, and Christopher D. Manning. “From Instance-
level Constraints to Space-level Constraints: Making the Most of Prior Knowledge
in Data Clustering”. In: (2002).

Edwin M. Knorr and Raymond T. Ng. “Algorithms for Mining Distance-Based
Outliers in Large Datasets™ In: VLDB ’98: Proceedings of the 24rd International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998, pp. 392-403. 1SBN: 1-55860-566-5.

Igor Kononenko and Matjaz Kukar. Machine Learning and Data Mining. Elsevier,
2007.

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. “Angle-Based Outlier
Detection in High-dimensional Data”. In: KDD. Ed. by Ying Li, Liu Bing, and
Sunita Sarawagi. ACM, 2008, pp. 444—452. 1SBN: 978-1-60558-193-4.

Giridhar Kumaran and James Allan. “Text Classification and Named Entities for
New Event Detection”. In: Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’04. Sheffield, United Kingdom: ACM, 2004, pp. 297-304. 1SBN: 1-58113-881-4. DOTI:
10.1145/1008992.1009044.

Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
John Wiley & Sons, 2004.

Christopher A. Kurby and Jeffrey M. Zacks. “Segmentation in the Perception and
Memory of Events”. In: Trends in Cognitive Sciences 12.2 (2008), pp. 72-79. ISSN:
1364-6613. por: 10.1016/j.tics.2007.11.004.

George Lakoff. “Categories: An Essay in Cognitive Linguistics”. In: Linguistics in
the Morning Calm (1982), pp. 139-193.

George Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about
the Mind. Chicago and London: The University of Chicago Press, 1987.

Martha A. Larson, Xavier Anguera, Timo Reuter, Gareth J. F. Jones, Bogdan
Tonescu, Markus Schedl, Tomas Piatrik, Claudia Hauff, and Mohammad Soley-
mani, eds. Proceedings of the MediaFval 2013 Multimedia Benchmark Workshop,
Barcelona, Spain, October 18-19, 2013. Vol. 1043. CEUR Workshop Proceedings.
CEUR-WS.org, 2013. URL: http://ceur-ws.org/Vol-1043.

170

http://dx.doi.org/10.1145/1008992.1009044
http://dx.doi.org/10.1016/j.tics.2007.11.004
http://ceur-ws.org/Vol-1043

Bibliography

[LSRSS]

[Lem67]

[Lew+06]

[Lew97]

[LewS86]
[Lin+10]

[LTH11]

[Lov11]
[Mac+67]

[MHP11]

[Mak03]

[MG13]
[MS03a]

IMS03b]

G. Daniel Lassiter, Julie I. Stone, and Scott L. Rogers. “Memorial Consequences of
Variation in Behavior Perception”. In: Journal of Fxperimental Social Psychology
24.3 (1988), pp. 222-239.

John Lemmon. “Comments on The Logical Form of Action Sentences by Donald
Davidson”. In: The Logic of Decision and Action. Ed. by Nicholas Rescher. Pitts-
burgh, 1967, pp. 96-103.

Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. “Content-based
Multimedia Information Retrieval: State of the Art and Challenges”. In: ACM

Transactions on Multimedia Computing, Communications, and Applications (TOM-
CCAP) 2.1 (2006), pp. 1-19.

David D. Lewis. Reuters-21578, distribution 1.0 (Corpus). 1997. URL: http://kdd.
ics.uci.edu/databases/reuters21578/reuters21578.html.

David K. Lewis. On the Plurality of Worlds. Vol. 322. Cambridge Univ Press, 1986.

Cindy Xide Lin, Bo Zhao, Qiaozhu Mei, and Jiawei Han. “PET: A Statistical
Model for Popular Events Tracking in Social Communities”. In: Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’10. Washington, DC, USA: ACM, 2010, pp. 929-938. 1SBN: 978-1-
4503-0055-1. DOI: 10.1145/1835804.1835922.

Xueliang Liu, Raphaél Troncy, and Benoit Huet. “Finding Media Illustrating Events”.
In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval.
ICMR ’11. Trento, Italy: ACM, 2011, 58:1-58:8. 1SBN: 978-1-4503-0336-1. DOI: 10.
1145/1991996.1992054.

John Lovett. Social Media Metrics Secrets. Vol. 159. John Wiley & Sons, 2011.

James MacQueen et al. “Some Methods for Classification and Analysis of Multivari-
ate Observations”. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. California, USA. 1967, pp. 281-297.

Claudia Maienborn, Klaus von Heusinger, and Paul Portner. Semantics: An In-
ternational Handbook of Natural Language Meaning. Vol. 33. Walter de Gruyter,
2011.

Juha Makkonen. “Investigations on Event Evolution in TDT”. In: Proceedings of the
2008 Conference of the North American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology: Proceedings of the HLT-NAACL
2003 Student Research Workshop-Volume 3. Association for Computational Linguis-
tics. 2003, pp. 43-48.

Daniel Manchon-Vinzuete and Xavier Giro-i-Nieto. “UPC at MediaEval 2013 Social
Event Detection Task”. In: MediaFEval 2018 Workshop. Spain, 2013.

Markos Markou and Sameer Singh. “Novelty Detection: A Review—Part 1: Statis-
tical Approaches”. In: Signal processing 83.12 (2003), pp. 2481-2497.

Markos Markou and Sameer Singh. “Novelty Detection: A Review—Part 2: Neural
Network Based Approaches”. In: Signal processing 83.12 (2003), pp. 2499-2521.

171

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://dx.doi.org/10.1145/1835804.1835922
http://dx.doi.org/10.1145/1991996.1992054
http://dx.doi.org/10.1145/1991996.1992054

Bibliography

[Mas+10]

[Mas+11]

[MNUO0]

[McC93]

[MKO6]

[Mit99]

[Mur02]
[Nal+08]

[Nei86]
[NET76]

[NEB77]

[New+87]

[Ngu+13]

Mohammad M. Masud, Qing Chen, Jing Gao, Latifur Khan, Jiawei Han, and Bha-
vani M. Thuraisingham. “Classification and Novel Class Detection of Data Streams
in a Dynamic Feature Space.” In: ECML/PKDD (2). Ed. by José L. Balcézar,
Francesco Bonchi, Aristides Gionis, and Michele Sebag. Vol. 6322. Lecture Notes
in Computer Science. Springer, 2010, pp. 337-352. ISBN: 978-3-642-15882-7.

Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thu-
raisingham. “Classification and Novel Class Detection in Concept-Drifting Data
Streams under Time Constraints”. In: Knowledge and Data Engineering, IEEE
Transactions on 23.6 (2011), pp. 859-874.

Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference Matching”. In: Proceed-
ings of the Sizth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM. 2000, pp. 169-178.

Scott McCloud. Understanding Comics: The Invisible Art. Ed. by Mark Martin.
Tundra Publishing, 1993.

Matthew Michelson and Craig A. Knoblock. “Learning Blocking Schemes for Record
Linkage”. In: Proceedings of the National Conference on Artificial Intelligence.
Vol. 21. 1. Menlo Park, CA; Cambridge, MA; London; AAATI Press; MIT Press;
1999. 2006, p. 440.

Tom M. Mitchell. “Machine Learning and Data Mining”. In: Commun. ACM 42.11
(Nov. 1999), pp. 30-36. 1sSN: 0001-0782. po1: 10.1145/319382.319388.

Gregory Leo Murphy. The Big Book of Concepts. MIT Press, 2002.

Murilo Coelho Naldi, AndréC.P.L.F. de Carvalho, RicardoJoséGabrielliBarreto
Campell, and eduardoRaul Hruschka. “Genetic Clustering for Data Mining”. In:
Soft Computing for Knowledge Discovery and Data Mining. Ed. by Oded Maimon
and Lior Rokach. Springer US, 2008, pp. 113-132. 1SBN: 978-0-387-69934-9. DOTI:
10.1007/978-0-387-69935-6_5.

Ulric Neisser. “Nested Structure in Autobiographical Memory”. In: Autobiographi-
cal Memory. Ed. by David Rubin. Wiley Online Library, 1986. Chap. 5.

Darren Newtson and Gretchen Engquist. “The Perceptual Organization of Ongoing
Behavior”. In: Journal of Experimental Social Psychology 12.5 (1976), pp. 436—450.

Darren Newtson, Gretchen A Engquist, and Joyce Bois. “The Objective Basis of
Behavior Units”. In: Journal of Personality and Social Psychology 35.12 (1977),
p. 847.

Darren Newtson, Joan Hairfield, John Bloomingdale, and Steven Cutino. “The
Structure of Action and Interaction”. In: Social Cognition 5.3 (1987), pp. 191-237.

Truc-Vien Nguyen, Minh-Son Dao, Riccardo Mattivi, Emanuele Sansone, Francesco
GB De Natale, and Giulia Boato. “Event Clustering and Classification from So-
cial Media: Watershed-based and Kernel Methods.” In: MediaFEval 2013 Workshop.
Spain, 2013.

172

http://dx.doi.org/10.1145/319382.319388
http://dx.doi.org/10.1007/978-0-387-69935-6_5

Bibliography

[Ove+12] Paul Over, George Awad, Jonathan Fiscus, Greg Sanders, Barbara Shaw, Mar-
tial Michel, Alan F. Smeaton, Wessel Kraaij, Georges Quénot, et al. “TRECVID
2012 An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics”.
In: Proceedings of TRECVID 2012. 2012.

[Pap+13a] Symeon Papadopoulos, Emmanouil Schinas, Vasileios Mezaris, Raphaél Troncy,
and Joannis Kompatsiaris. “The 2012 Social Event Detection Dataset”. In: Pro-
ceedings of the 4th ACM Multimedia Systems Conference. MMSys ’13. Oslo, Nor-
way: ACM, 2013, pp. 102-107. 1SBN: 978-1-4503-1894-5. DOI: 10.1145/2483977 .
2483989.

[Pap+13b] Athanasios Papaoikonomou, Konstantinos Tserpes, Magdalini Kardara, and Theodora
Varvarigou. “A similarity-based Chinese Restaurant Process for Social Event De-
tection”. In: MediaFEval 2013 Workshop. Spain, 2013.

[PA9S] R. Papka and J. Allan. On-Line New Fvent Detection using Single Pass Clustering.
Tech. rep. Amherst, MA, USA: University of Massachusetts, 1998.

[Pet+14] Georgios Petkos, Symeon Papadopoulos, Vasileios Mezaris, Raphael Troncy, Philipp
Cimiano, Timo Reuter, and Yiannis Kompatsiaris. “Social Event Detection at Me-
diaEval: A Three-year Retrospect of Tasks and Results”. In: Proc. ACM ICMR, 2014
Workshop on Social Events in Web Multimedia (SEWM). Glasgow, UK, April 2014,

2014.

[Pla99] John C. Platt. “Probabilistic Outputs for Support Vector Machines and Compar-
isons to Regularized Likelihood Methods”. In: Advances in Large Margin Classifiers.
1999.

[PCF03] John C. Platt, Mary Czerwinski, and Brent A. Field. “PhotoTOC: Automatic Clus-
tering for Browsing Personal Photographs”. In: Proceedings of the 2003 Joint Con-
ference of the Fourth International Conference on Information, Communications
and Signal Processing, 2003 and Fourth Pacific Rim Conference on Multimedia.
Vol. 1. IEEE. 2003, pp. 6-10.

[Qui85| Willard Van Orman Quine. “Events and Reification”. In: Actions and Events: Per-
spectives on the Philosophy of Donald Davidson (1985), pp. 162-171.

[Raf+13] Dimitros Rafailidis, Theodoros Semertzidis, Michalis Lazaridis, Michael G. Strintzis,
and Petros Daras. “A Data-Driven Approach for Social Event Detection”. In: Me-
diaEval 2013 Workshop. Spain, 2013.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient Algorithms for
Mining Outliers from Large Data Sets”. In: SIGMOD Conference. Ed. by Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein. SIGMOD Record 29(2), June
2000. ACM, 2000, pp. 427—-438. 1SBN: 1-58113-218-2.

[Rat+02] Gunnar Ratsch, Sebastian Mika, Bernhard Scholkopf, and K. Miiller. “Construct-
ing Boosting Algorithms from SVMs: An Application to One-class Classification”.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.9 (2002),
pp. 1184-1199.

173

http://dx.doi.org/10.1145/2483977.2483989
http://dx.doi.org/10.1145/2483977.2483989

Bibliography

[RGNO7]

[RN0Y]

[RS06]

[RSO08]

[RC12]

[RC11]

[Reu+14]

[Reu+13]

[Ric93]

[Rob92]

[RosT75]

[RL78]

Tye Rattenbury, Nathaniel Good, and Mor Naaman. “Towards Automatic Extrac-
tion of Event and Place Semantics from Flickr Tags”. In: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM. 2007, pp. 103-110.

Tye Rattenbury and Mor Naaman. “Methods for Extracting Place Semantics from
Flickr Tags”. In: ACM Transactions on the Web (TWEB) 3.1 (2009).

Steffen Rendle and Lars Schmidt-Thieme. “Object Identification with Constraints”.
In: Sizth International Conference on Data Mining, 2006. ICDM’06. IEEE. 2006,
pp- 1026-1031.

Steffen Rendle and Lars Schmidt-Thieme. “Scaling Record Linkage to Non-uniform
Distributed Class Sizes”. In: Advances in Knowledge Discovery and Data Mining.
Springer, 2008, pp. 308-319.

Timo Reuter and Philipp Cimiano. “Event-based Classification of Social Media
Streams”. In: Proceedings of the ACM International Conference on Multimedia
Retrieval (ICMR 2012). 2012.

Timo Reuter and Philipp Cimiano. “Learning Similarity Functions for Event Iden-
tification using Support Vector Machines.” In: KDIR. Ed. by Joaquim Filipe and
Ana L. N. Fred. SciTePress, 2011, pp. 208-215. 1SBN: 978-989-8425-79-9.

Timo Reuter, Symeon Papadopoulos, Vasilios Mezaris, and Philipp Cimiano. “Re-
SEED: Social Event dEtection Dataset”. In: Proceedings of the 5th ACM Multimedia
Systems Conference. ACM. 2014, pp. 35—40.

Timo Reuter, Symeon Papadopoulos, Giorgos Petkos, Vasileios Mezaris, Yiannis
Kompatsiaris, Philipp Cimiano, Christopher de Vries, and Shlomo Geva. “Social
Event Detection at MediaEval 2013: Challenges, Datasets, and Evaluation”. In:
Proceedings of the MediaFval 2013 Multimedia Benchmark Workshop. Proceedings
of the MediaEval Multimedia Benchmark Workshop. Barcelona, Spain, 2013.

Michael M. Richter. “Classification and Learning of Similarity Measures”. In: Infor-
mation and Classification. Ed. by Otto Opitz, Berthold Lausen, and Riidiger Klar.
Studies in Classification, Data Analysis and Knowledge Organization. Springer
Berlin Heidelberg, 1993, pp. 323—-334. 1SBN: 978-3-540-56736-3. DOI: 10.1007/978~
3-642-50974-2_33.

John A. Robinson. “First Experience Memories: Contexts and Functions in Per-
sonal Histories”. In: Theoretical Perspectives on Autobiographical Memory. Springer,
1992, pp. 223-239.

Eleanor Rosch. “Cognitive Representations of Semantic Categories”. In: Journal of
Ezperimental Psychology: General 104.3 (1975), p. 192.

Eleanor Rosch and Barbara B Lloyd. “Cognition and Categorization”. In: Hillsdale,
New Jersey (1978).

174

http://dx.doi.org/10.1007/978-3-642-50974-2_33
http://dx.doi.org/10.1007/978-3-642-50974-2_33

Bibliography

[RM75]

[Sal9l]

[Sam+13]

[San94]
[Sar+04]

[Sav11]

[Sch+13]

[SZ08]

[SM&1]

[SNO1]

[Ste56]

[SGMO0]

[Sud76]
[S+98]

[SN13]

Eleanor Rosch and Carolyn B. Mervis. “Family Resemblances: Studies in the In-
ternal Structure of Categories”. In: Cognitive Psychology 7.4 (1975), pp. 573-605.
ISSN: 0010-0285. DOI: 10.1016/0010-0285(75)90024-9.

Steven Salzberg. “A Nearest Hyperrectangle Learning Method”. In: Machine learn-
ing 6.3 (1991), pp. 251-276.

Sina Samangooei, Jonathan Hare, David Dupplaw, Mahesan Niranjan, Nicholas
Gibbins, and Paul Lewis. “Social Event Detection via Sparse Multi-modal Feature
Selection and Incremental Density based Clustering”. In: MediaFval 2013 Workshop.
Spain, 2013.

Mark Sanderson. “Reuters Test Collection”. In: BSC IRSG (1994).

Risto Sarvas, Mikko Viikari, Juha Pesonen, and Hanno Nevanlinna. “MobShare:
Controlled and Immediate Sharing of Mobile Images”. In: Proceedings of the 12th
Annual ACM International Conference on Multimedia. ACM. 2004, pp. 724-731.

Eike von Savigny. Ludwig Wittgenstein: Philosophische Untersuchungen. Vol. 13.
Walter de Gruyter, 2011.

Emmanouil Schinas, Eleni Mantziou, Symeon Papadopoulos, Georgios Petkos, and
Yiannis Kompatsiaris. “CERTH @ MediaEval 2013 Social Event Detection Task”.
In: MediaEval 2013 Workshop. Spain, 2013.

Thomas F. Shipley and Jeffrey M. Zacks. Understanding Events: From Perception
to Action. Oxford Series in Visual Cognition. Oxford University Press, USA, 2008.
ISBN: 9780198040705.

Edward E. Smith and Douglas L. Medin. Categories and Concepts. Harvard Uni-
versity Press Cambridge, MA, 1981.

Benno Stein and Oliver Niggemann. “Generation of Similarity Measures from Dif-
ferent Sources”. In: Engineering of Intelligent Systems. Springer, 2001, pp. 197—
206.

Hugo Steinhaus. “Sur la division des corps matériels en parties”. In: Bull. Acad.
Polon. Sci. Cl. III. 4 (1956), pp. 801-804.

Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. “Impact of Similarity
Measures on Web-page Clustering”. In: Workshop on Artificial Intelligence for Web
Search (AAAI 2000). 2000, pp. 58-64.

Seymour Sudman. Applied Sampling. Academic Press New York, 1976.

Cecilia Surace, K. Worden, et al. “A Novelty Detection Method to Diagnose Dam-
age in Structures: An Application to an Offshore Platform”. In: The FEighth In-

ternational Offshore and Polar Engineering Conference. International Society of
Offshore and Polar Engineers. 1998.

Taufik Sutano and Richi Nayak. “ADMRG @ MediaEval 2013 Social Event Detec-
tion”. In: MediaFval 2018 Workshop. Spain, 2013.

175

http://dx.doi.org/10.1016/0010-0285(75)90024-9

Bibliography

[Tat+03]

[TSS03]

[Trald]

[Tul72]

[UF00]

[Vaz01]
[VG04]

[Vla+04]

[VGT12]

[Wag+01]

[WL11]

[WCCO7]

[WS13]

[Xin+02]

Nesime Tatbul, Ugur Cetintemel, Stan Zdonik, Mitch Cherniack, and Michael
Stonebraker. “Load Shedding in a Data Stream Manager”. In: Proceedings of the
29th International Conference on Very Large Data Bases-Volume 29. VLDB En-
dowment. 2003, pp. 309-320.

Dionyssios Theofilou, Volker Steuber, and Erik De Schutter. “Novelty Detection in
a Kohonen-like Network with a Long-term Depression Learning Rule”. In: Neuro-
computing 52 (2003), pp. 411-417.

TRECVID Multimedia Event Detection Track. 2014 TRECVID Multimedia Event
Detection & Recounting Evaluation Plan. 2014. URL: http://nist.gov/itl/iad/
mig/upload/MED_MER14_Evaluation_Plan_2014-05-15.pdf.

Endel Tulving. “Episodic and Semantic Memory”. In: Organization of Memory. Ed.
by Endel Tulving and Wayne Donaldson. Oxford: Academic Press, 1972, pp. 382—
402.

Tolga Urhan and Michael J. Franklin. “XJoin: A Reactively-Scheduled Pipelined
Join Operator”. In: Bulletin of the Technical Committee on (2000), p. 27.

Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

Adam Vinueza and G. Grudic. Unsupervised Outlier Detection and Semi-supervised
Learning. Tech. rep. Technical Report CU-CS-976-04, University of Colorado at
Boulder, 2004.

Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios Gunopulos.
“Identifying Similarities, Periodicities and Bursts for Online Search Queries”. In:
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data. ACM. 2004, pp. 131-142.

Christopher M. De Vries, Shlomo Geva, and Andrew Trotman. “Document Clus-
tering Evaluation: Divergence from a Random Baseline”. In: CoRR abs/1208.5654
(2012).

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrodl, et al. “Constrained K-
Means Clustering with Background Knowledge”. In: ICML. Vol. 1. 2001, pp. 577—
584.

Jianshu Weng and Bu-Sung Lee. “Event Detection in Twitter”. In: ICWSM 11
(2011), pp. 401-408.

Helen L. Williams, Martin A. Conway, and Gillian Cohen. “Autobiographical Mem-
ory”. In: Memory in the Real World. Ed. by Gillian Cohen and Martin A. Conway.
3rd ed. East Sussex/New York: Psychology Press, 2007. Chap. 2, pp. 21-90. I1SBN:
978-1-84169-641-9.

Martin Wistuba and Lars Schmidt-Thieme. “Supervised Clustering of Social Media
Streams”. In: MediaEval 2013 Workshop. Spain, 2013.

Eric P. Xing, Michael I. Jordan, Stuart Russell, and Andrew Y. Ng. “Distance Met-
ric Learning with Application to Clustering with Side-information”. In: Advances
in Neural Information Processing Systems. 2002, pp. 505-512.

176

http://nist.gov/itl/iad/mig/upload/MED_MER14_Evaluation_Plan_2014-05-15.pdf
http://nist.gov/itl/iad/mig/upload/MED_MER14_Evaluation_Plan_2014-05-15.pdf

Bibliography

[X+05]

[YPCOg]

[YCO1]

[ZT01]

[ZT101]

[ZZD13)

[ZZWO07)

[ZRL9G6]

Rui Xu, Donald Wunsch, et al. “Survey of Clustering Algorithms”. In: Neural Net-
works, IEEE Transactions on 16.3 (2005), pp. 645-678.

Yiming Yang, Tom Pierce, and Jaime Carbonell. “A Study of Retrospective and
On-line Event Detection”. In: Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM.
1998, pp. 28-36.

Nong Ye and Qiang Chen. “An Anomaly Detection Technique Based on a Chi-
Square Statistic for Detecting Intrusions into Information Systems”. In: Quality
and Reliability Engineering International 17.2 (2001), pp. 105-112.

Jeffrey M. Zacks and Barbara Tversky. “Event Structure in Perception and Con-
ception”. In: Psychological Bulletin 127.1 (2001), p. 3.

Jeffrey M. Zacks, Barbara Tversky, and Gowri Iyer. “Perceiving, Remembering,
and Communicating Structure in Events”. In: Journal of Fxperimental Psychology:
General 130.1 (2001).

Matthias Zeppelzauer, Maia Zaharieva, and Manfred Del Fabro. “Unsupervised
Clustering of Social Events”. In: MediaFEval 2013 Workshop. Spain, 2013.

Kuo Zhang, Juan Zi, and Li Gang Wu. “New Event Detection Based on Indexing-
tree and Named Entity”. In: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
'07. Amsterdam, The Netherlands: ACM, 2007, pp. 215-222. 1SBN: 978-1-59593-
597-7. DOIL: 10.1145/1277741.1277780.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: An Efficient Data
Clustering Method for Very Large Databases”. In: ACM SIGMOD Record. Vol. 25.
2. ACM. 1996, pp. 103-114.

177

http://dx.doi.org/10.1145/1277741.1277780

	Titlepage
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Motivating Use Cases
	1.2 Goal and Challenges
	1.2.1 Clustering of Large Datasets
	1.2.2 Clustering of Continuous Data Streams
	1.2.3 Classifying of Concept Drifting Time Series Data
	1.2.4 Noisy Data

	1.3 Research Contributions of this Dissertation
	1.4 Structure and Outline of this Thesis

	2 Fundamentals of This Work
	2.1 From the Categorization Idea to Event Clustering: Definition and Development
	2.1.1 Categorization in Philosophy — The Classical View
	2.1.2 Categorization in Cognitive Psychology — The Prototype View
	2.1.3 Event Clustering Characterization

	2.2 Characterization of an Event
	2.2.1 Event Definition in Philosophy
	2.2.2 Event Definition in Cognition and Psychology
	2.2.3 Events in Recent Literature of Machine Learning and Information Retrieval
	2.2.4 Discussion and Definition

	3 Foundations and Related Work
	3.1 Classification
	3.2 Clustering
	3.3 Distance Functions
	3.4 Knowledge-based Clustering
	3.5 Large-scale Processing and Scalability
	3.5.1 Task-based Techniques
	3.5.2 Data-based Techniques
	3.5.3 Candidate Retrieval
	3.5.4 Stream Data

	3.6 New Event Detection
	3.6.1 Statistical Approaches
	3.6.2 Unsupervised Approaches
	3.6.3 Supervised Approaches

	3.7 Event Identification and Detection

	4 Event Clustering Dataset
	4.1 Creation and Collection of the Dataset
	4.1.1 Fetching of Metadata
	4.1.2 Fetching of Uploader Information
	4.1.3 Fetching of Picture Files

	4.2 Labeling of the Data — Creation of the Gold Standard
	4.2.1 Usage of Social Event Calendars for Data Labeling
	4.2.2 Fetching of Event Information from Upcoming and Last.fm
	4.2.3 Labeling Process

	4.3 Dataset Statistics
	4.3.1 Data Quality
	4.3.2 License Constraints
	4.3.3 Data Point Distribution
	4.3.4 Dataset Representation Format and Schema

	4.4 Applications of the Dataset
	4.4.1 MediaEval 2013
	4.4.2 Further Applications
	4.4.3 Evaluation Proposal for Comparability

	II Supervised Single-Pass Clustering with the Event-based Stream Classification Framework
	5 System Description of the Stream Classification Framework for a Single-Pass Setting
	5.1 Problem Statement
	5.2 Overview of the Clustering Framework
	5.3 Candidate Retrieval Strategies
	5.3.1 Measurements for Performance and Effectiveness
	5.3.2 Candidate Retrieval Strategies

	5.4 Pairwise Feature Extraction
	5.4.1 Temporal Features
	5.4.2 Geographical Features
	5.4.3 Textual Features
	5.4.4 Document-Event Similarity Vector

	5.5 Scoring and Ranking — Learning Similarity Functions
	5.5.1 Problem Formulation using a Support Vector Machine
	5.5.2 Problem Formulation as a Decision Tree Classification Problem

	5.6 New Event Detection

	6 Experimental Setup and Results of the Supervised Single-Pass Classification
	6.1 Definition of Evaluation Measures
	6.2 Optimizing Candidate Retrieval
	6.2.1 Experimental Settings
	6.2.2 Results
	6.2.3 Conclusion

	6.3 Learning Similarity Functions
	6.3.1 Experimental Settings
	6.3.2 Results
	6.3.3 Conclusion

	6.4 New Event Detection
	6.4.1 Experimental Settings
	6.4.2 Results
	6.4.3 Conclusion

	6.5 Framework as a Whole — Results and Comparison
	6.5.1 Training and Optimization of the System Parts
	6.5.2 Baselines
	6.5.3 Overall System Performance

	6.6 Conclusions

	III Multi-pass Stream Clustering
	7 System Description of the Stream Classification Framework for a Multi-Pass Setting
	7.1 Problem Statement
	7.2 System Overview
	7.3 Multi-pass Requirements and Challenges
	7.3.1 Number of Passes
	7.3.2 Influence on Framework Settings

	7.4 Multi-pass Strategies

	8 Experimental Setup and Results of Supervised Multi-Pass Clustering
	8.1 Analysis of First-Pass Strategies
	8.2 Gold Standard Preparation for the Second Pass
	8.2.1 Quality Issues in the Preparation Process
	8.2.2 Creation of the Gold Standard for the Second Pass

	8.3 Optimization of the Classification Framework Steps for the Second Pass
	8.3.1 Candidate Retrieval
	8.3.2 Features for Similarity Function Learning and New Event Detection

	8.4 Clustering Framework in Two-Pass Mode — Optimization
	8.4.1 Exhaustive Search for Optimal Features in Scoring, Ranking, and New Event Detection
	8.4.2 Results of the Exhaustive Search
	8.4.3 Optimization of Candidate Retrieval Strategy

	8.5 Results of the Clustering Framework used in Two-Pass Mode
	8.6 Conclusions

	IV Concluding Remarks
	9 Remarks and Comparison of Clustering Approaches
	9.1 Prerequisites for Event Clustering
	9.2 Reflection on Multi-Pass Clustering in a Stream-based Setting
	9.3 Comparison with Other Approaches

	10 Conclusion

	V Appendix
	Glossary
	Acronyms
	Bibliography

