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Abstract
The eigenstate thermalization hypothesis postulates that the energy eigenstates of an isolatedmany-
body system are thermal, i.e., each of them already yields practically the same expectation values as the
microcanonical ensemble at the same energy. Here, we review, compare, and extend some recent
approaches to corroborate this hypothesis and discuss the implications for the system’s equilibration
and thermalization.

1. Introduction

The relaxation of amacroscopicmany-body system towards thermal equilibrium is a very common
phenomenon, but has still not been satisfactorily understood theoretically [1, 2]. In particular, isolated systems
and their text book description at equilibriumby amicrocanonical ensemble [3] have recently regained
considerable attention [4–6]. An immediate first puzzle is themere fact that the system apparently approaches a
steady long time limit though the quantummechanical time evolution of a non-equilibrium initial state is well-
known not to become asymptotically time-independent (see e.g. section 2 below). As one possible way out, one
could, for instance, try to show that after a sufficiently long ‘equilibration time’, the expectation values of
pertinent observables become ‘practically constant’ (fluctuations remain below any reasonable resolution limit)
for ‘practically all’ later times (exceptions do exists—e.g. due to quantum revivals—but are exceedingly rare).
Indeed, results of this type have been established under fairly weak and plausible assumptions about the initial
state, theHamiltonian, and the observables of the considered system [2, 7–12]. As an natural next step,
quantitative estimates of the abovementioned equilibration times are currently attracting increasing interest
[10, 13–16]. This is a very important but also quite difficult issue in its own right, which goes beyond the scope of
our present paper.

Here, we rather will focus on another natural next issue, named thermalization: given that the expectation
value of an observable equilibrates in the above sense, howwell does this long-time limit agree with the
correspondingmicrocanonical expectation value, as predicted by equilibrium statisticalmechanics? A sufficient
condition for a good such agreement is the so-called eigenstate thermalization hypothesis (ETH), essentially
postulating that the expectation values of pertinent observables exhibit negligible variations for all energy
eigenstates with sufficiently close energy eigenvalues. This hypothesis has its roots in closely related conjectures
by Berry andVoros about the energy eigenstates of (fully) chaotic systems in the semiclassical limit, see e.g.
equation (9) in [17] and equation (6.17) in [18]. Their implications for the (diagonal as well as off-diagonal)
matrix elements in energy representation for observables with awell-behaved classical limit were further
explored by Feingold and coauthors [19–21]. The key role of ETH for thermalization in high dimensional
chaotic systems in the semiclassical regimewasfirst recognized by Srednicki1 [22–24]. Even earlier, its actual
validity was numerically (and implicitly) exemplified and adopted as an explanation for the observed
thermalization in a spin-chainmodel by Jensen and Shankar [25].More recently, the seminal paper byRigol et al
[26] introduced the termETH, pinpointed its importance for thermalization, and stimulated numerous,
predominantly numerical studies on the validity of ETH for a large variety of specificmodels (mostly spin-
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1
Itmay beworth noting that in those semiclassical studies [17–24] the term ‘microcanonical ensemble’ is used quite differently than in the

present paper (see section 3), namely referring to classical phase space averages over an infinitely thin energy surface.
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chain- orHubbard-like), initial conditions (often involving some quantumquench), and observables (mainly
few-body or local), see e.g. [27–40].

Mathematically, the validity of ETH could be demonstrated so far only in special cases, namely for the
eigenfunctions of the Laplace operator on an arbitrary dimensional compact Riemannianmanifoldwhose
geodesicflow is ergodic. If also the considered observables are sufficiently well-behaving, then ETHcan be
proven to hold for the vastmajority of all eigenfunctions with asymptotically large eigenvalues [41–43].

Another analytical keywork is due toDeutsch, implicitly verifying ETH for the vastmajority of systems,
whoseHamiltonians have been sampled according to a certain randommatrix ensemble [44–46].Here, we
generalize this approach byDeutsch and unravel its close connectionwith other recent explorations of
thermalization, especially byGoldstein and coworkers [5, 13, 16, 47–49].

2. Equilibration

Weconsider a large (macroscopic butfinite), isolated system,modelled in terms of aHamiltonianHwith
eigenvaluesEn and eigenvectors ∣ 〉n , where ∈ n and ⩾+E En n1 . System states—either pure ormixed—are

described by density operators ρ t( ), evolving according to ρ ρ=t U U( ) (0)t t
† with propagator

≔ −U Htexp{ i }t and  = 1. It follows that ρ ρ≔ 〈 ∣ ∣ 〉t m t n( ) ( )mn is given by ρ − −E E t(0)exp[ i( ) ]mn m n , i.e.,
unless the systemwas already in a steady state initially, it remains time-dependent forever. In other words, non-
equilibrium initial states do not seem to ‘equilibrate’ towards a steady long-time limit in an obviousway.

Observables are represented by self-adjoint operatorsAwith expectation values ρ t ATr{ ( ) }. In order to
model real experimentalmeasurements it is, however, not necessary to admit any arbitrary self-adjoint operator
[50–57]. Rather, it is sufficient to focus on experimentally realistic observables in the following sense [7, 58]: any
observableAmust represent an experimental device with a finite range of possible outcomes of ameasurement,

Δ ≔ −a a , (1)A max min

where amax and amin are the largest and smallest eigenvalues ofA.Moreover, this working range ΔA of the device
must be limited to experimentally reasonable values compared to its resolution limit δA. Indeed, real
measurements usually yield atmost 10–20 relevant digits, i.e. it is sufficient to consider range-to-resolution
ratios Δ δ ⩽A 10A

20.
Next we define for any given δ >A 0 and >T 0 the quantity

ρ ρ δ≔ ⩽ ⩽ − ⩾δ { }{ }T t T t A A A0 : Tr{ ( ) } Tr , (2)A eq

where ∣ ∣{...} denotes the size (Lebesguemeasure) of the set {...} andwhere the time-independent, so-called
equilibriumor diagonal ensemble ρeq is defined as the diagonal part of ρ (0), i.e. ρ δ ρ≔( ) (0)mn mn nneq . As detailed

e.g. in [11, 12], one then can show that

Δ
δ

ρ⩽δ { }
T

T A
2 max (0) (3)A A

n
nn

2⎛
⎝⎜

⎞
⎠⎟

for all sufficiently largeT. For the sake of simplicity, we also have taken here for granted that the energy gaps
−E Em n are finite andmutually different for all pairs =m n. Generalizations have beenworked out e.g. in

[9–12].
According to (2), the left-hand side of (3) represents the fraction of all times ∈t T[0, ], for which there is an

experimentally resolvable difference between the true expectation value ρ t ATr{ ( ) } and the time-independent
equilibrium expectation value ρ ATr{ }eq . On the right-hand side, Δ δAA is the abovementioned range-to-

resolution ratio and ρmax { (0)}n nn represents the largest occupation probability of an energy eigenstate (note
that the ρ t( )nn are conserved quantities).

For amacroscopicN-body system there are roughly 10 NO( ) energy eigenstates with eigenvalues in every
interval of 1J beyond the ground state energy [3]. Since =N O(10 )23 , the energy levels are thus unimaginably
dense and even themost careful experimentalist will not be able to populate only a few of themwith significant
probabilities ρ (0)nn . In the generic case we thus expect [7, 58] that—even if the system’s energy is fixed up to an
extremely small experimental uncertainty, and even if the energy levels are populated extremely unequally—the
largest population ρ (0)nn will still be extremely small (compared to ρ∑ =(0) 1n nn ), overwhelming by far the

factor Δ δA( )A
2 on the right-hand side of (3).

Since the level populations ρ (0)nn are the result of the systempreparation, amore detailed understanding
and quantification of those terms necessarily requires themodelling of such a preparation procedure.We come
back to this point in section 7, where arguments will be provided that

2
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ρ = −{ }max (0) 10 (4)
n

nn
NO( )

can be expected inmany cases.
From (3) together with (4)we can conclude that the system generically equilibrates in the sense that it

behaves in every possible experimentalmeasurement exactly as if it were in the equilibrium state ρeq for the

overwhelmingmajority of timeswithin any sufficiently large time interval T[0, ].

3. Thermalization

Nextwe address the question of whether, and towhat extent, the above discussed equilibrium expectation value
ρ ATr{ }eq is in agreement with the correspondingmicrocanonical expectation value, as predicted by the

textbooks on equilibrium statisticalmechanics for our isolatedN-body system at hand [3].
To beginwith, Δ≔ −I E E E[ , ]mic denotes the usualmicrocanonical energywindow about the

(approximately known and thus preset) system energyE, whosewidth ΔE ismacroscopically small (below the
experimental resolution limit) butmicroscopically large (much larger than the typical energy level spacing

−+E En n1 ). The number of energy eigenvalues En contained in Imic is denoted asD and is typically very large.
The correspondingmicrocanonical ensemble is given by

∑ρ ≔
D

n n
1

, (5)mic
mic

where the sum ∑mic runs over all nwith ∈E In mic. In other words, ρ = D1nn
mic if ∈E In mic and ρ = 0nn

mic

otherwise. Hence, the expectation value ofA in themicrocanonical ensemble takes the form

∑ ∑ρ ρ= ={ }A A
D

ATr
1

. (6)
n

nn nn nnmic
mic

mic

On the other hand, recalling that ρ δ ρ≔( ) (0)mn mn nneq implies

∑ρ ρ={ }A ATr (0) . (7)
n

nn nneq

As usual, we henceforth assume that the system is experimentally prepared at the presetmacroscopic energy E,
i.e. also the ρ (0)nn ʼs are negligibly small for energies En outside Imic. However, within Imic the actual populations
ρ (0)nn are still largely unknown and cannot be controlled by the experimentalist. In general we therefore have to
admit the possibility that they considerably vary in a largely unknown (pseudo-random) fashion even between
neighbouring nʼs.

The problemof thermalization thus amounts to showing that the difference between (6) and (7) is negligible
in spite of the lack of knowledge about the ρ (0)nn ʼs.

4. Eigenstate thermalization hypothesis (ETH)

Asmentioned in the introduction, the ETH consists in the surmise that the expectation valuesAnn of an
observableA hardly differ for eigenstates ∣ 〉n of amany-bodyHamiltonianHwith sufficiently close energy
eigenvaluesEn [22–24, 26, 44, 45]. In particular, if the variations of theAnnʼs are negligible over the entire
microcanonical energywindow Imic, then the (approximate) equality of (6) and (7) follows immediately. In this
sense, ETH is a sufficient (but not necessary) condition for thermalization.

Similarly as for themicrocanonical ensemble in (6), ETH also implies the equivalence of ρeq in (7)with a

large variety of other pure ormixed steady states, whose level populations aremainly concentratedwithin the
energywindow Imic. On the one hand, this includes other equilibrium ensembles such as the canonical
ensemble, provided the considered energy interval ΔE is large enough to accommodate all notably populated
energy levels. (Aswewill see later, the latter requirement is in fact quite problematic.) On the other hand, even a
single energy eigenstate ∣ 〉n with ∈E In mic will do. In otherwords [26], such an energy eigenstate encapsulates all
properties of the consideredmany-body system at thermal equilibrium!

Two rather delicate problems, which any ‘validation’ of ETHhas to resolve, are as follows: (i) for any given
HamiltonianH, one can readily construct (a posteriori) observablesAwhich violate ETH, e.g. = −A ( 1)nn

n and
arbitraryAmn for =m n. (In contrast towhat [39]might suggest, an ETH-violating observable thus needs not be a
conserved quantity.) In particular, this example implies that ETH cannot be satisfied simultaneously for all
observables, and in fact not even for all experimentally realistic observables as specified below equation (1). (ii)
While ETH claims that expectation valuesAnn are (practically) equal for sufficiently close energy eigenvalues En,
generically there are—of course—notable differences −A Amm nn when −E Em n is not small. But how can the
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observableA ‘feel’whether the two eigenstates ∣ 〉m and ∣ 〉n ofH belong to similar energies or not, without any
a priori knowledge about theHamiltonianH?

Atfirst glance, it thusmight seemunavoidable to somehow restrict the set of admissible observables. Indeed,
the early explorations of ETH [17–24] solely had inmind semiclassical (smallℏ) systems, which are classically
chaotic, in conjunctionwith observables, which areℏ-independent and derive from smooth classical phase
space functions (see section 1). In contrast, themore recent, predominantly numerical studies weremainly
focused on spin-chain- andHubbard-likemodels [27–40] (i.e. without an obvious classical limit), and on few-
body or local observables. Yet another optionwould be to only admitmacroscopic observables, see section 8
below. In either case, it is still not obvious whether andwhy such a restricted class of observablesmay get around
the abovementioned problems (i) and (ii). The solution of those problemswithin our present approachwill be
discussed in section 9.

5. The approach byDeutsch

In this section, we reconsider the approach byDeutsch, originally published in [44]. For the detailed
calculations, announced as [6] therein, see [45]. For an updated summary, see also [46].

5.1. Randommatrixmodel
FollowingDeutsch [44]we considerHamiltoniansH of the form

= +H H V , (8)0

consisting of an ‘unperturbed’ partH0 and a ‘perturbation’V. As before, eigenvectors and eigenvalues ofH are
denoted as ∣ 〉n andEnwith ⩾+E En n1 . Likewise, those ofH0 are denoted as ∣ 〉n 0 andEn

0 with ⩾+E En n1
0 0.

Typical examples one has inmind [44] areH0 which describe a non-interactingmany-body system, e.g. an
ideal gas in a box, whileV accounts for the particle–particle interactions. Further examples are so-called
quantumquenches:H0 describes the system for times <t 0, whileH applies to ⩾t 0. In other words, some
external condition or some systemproperty suddenly changes at time t=0.

In various such examples, the perturbationmatrix

≔V m V n (9)mn
0

0 0

is often expected or numerically found to be a bandedmatrix [21, 44, 59, 60], i.e., the typicalmagnitude ofV0
mn

decreases with increasing ∣ − ∣m n towards zero. Furthermore, in the abovementioned examplewhereH0

describes a non-interactingmany-body system, the perturbationmatrixV0
mn is usually very sparse, i.e., only a

small fraction of allmatrix elements is non-zero [60–62].
In any case, the perturbationV is required to be sufficiently weak so that the two systemsH andH0 still

exhibit similar thermodynamic properties at the considered system energyE, in particular similar densities of
the energy levels, see above equation (4).

As a next step, the common lore of randommatrix theory is adopted [44, 47, 61]: one samplesmatricesV0
mn

from a certain randommatrix ensemblewith statistical properties which imitate reasonably well themain
features of the ‘true’ perturbationV (band structure, sparsity etc), and it is assumed that if a certain property can
be shown to apply to the overwhelmingmajority of such randomly sampledV-matrices, then it will also apply to
the actual (non-random)V in (8).Apriori, such a randommatrix approachmay appear ‘unreasonable’ since
most of those randomly sampled perturbationsV amount to systemswhich are physically very different from the
one actuallymodelled in (8). Yet, in practice such a randommatrix approach turned out to be surprisingly
successful in a large variety of specific examples [61], and hence, as inDeutsch’s work [44], will be tacitly taken
for granted fromnowon.

5.2. General framework
The randomness ofV entails via in (8) a randomization of the eigenstates ∣ 〉n ofH and hence of the basis-
transformationmatrix

≔U m n . (10)mn 0

Likewise, any given observableA and itsmatrix elements in the unperturbed basis

≔A m A n (11)mn
0

0 0

are non-randomquantities, while

≔A m A n (12)mn

4
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will be the elements of a randommatrix, inheriting the randomness of theU-matrix via

∑=A U A U . (13)mn

jk

mj jk nk
0 *

Demonstrating ETH thus amounts to showing that −A Amm nn is small formostVʼs and sufficiently closem
and n. Formally, this will be achieved by considering the variances

σ ≔ − = −( )A A A A( ) , (14)n nn nn V
V

nn V nn V
2 2 2 2

where 〈 〉... V indicates the average over the randomperturbationsV. In a first step (section 5.4), wewill show that
themean values 〈 〉Ann V for sufficiently close nʼs differ very little in comparison to the experimental resolution
limit δA introduced in section 2. In a second step (section 5.5), wewill show that σ δ≪ An , implying thatAnn

differs very little from 〈 〉Ann V formostV. Altogether, this will imply the desired result that formostVʼs theAnnʼs
change very little upon changing n (section 5.6).

To simplify the algebra, we henceforth assume that the largest and smallest eigenvalues ofA in (1) satisfy

= −a a . (15)min max

As a consequence, Δ=a 2Amax according to (1). Note that the assumption (15) does not imply any loss of
generality, since adding an arbitrary constant (times the identity operator) to the observableA, and hence to all
its eigenvalues, does not entail any non-trivial physical consequences. In particular, the above-mentioned
changes of 〈 〉Ann V upon variation of n and the variances (14) remain exactly the same. For later use, we thus can
conclude that

ψ ψ Δ⩽ν νA ( 2) (16)A

for any ν ∈ .
For the sake of simplicity, we furthermore assume that allmatrix elementsV0

mn from (9) andUmn from (10)
are real numbers. For example, for systemswithout spins andmagnetic fields,H0 andV in (8) are both purely
real operators in position representation and hence the eigenstates ∣ 〉n 0 and ∣ 〉n can be chosen so that allV0

mn and
Umn become real. So, it is natural to assume that also the corresponding randommatrix ensembles only involve
realmatrix elements. In particular, this implies with equations (13) and (14) that

∑=A A U U (17)nn V
jk

jk nj nk
V

0

∑σ = −A A U U U U A . (18)n

ijkl

ij kl ni nj nk nl
V

nn V
2 0 0 2

Itmaywell be that our subsequent calculations can be readily extended to systems forwhich such a
transformation to purely realmatricesV0

mn andUmn is no longer possible. However, the so far available
knowledge, e.g. from randommatrix theory or numerical investigations, regarding the statistical properties of
theUmnʼs is only sufficient for our purposes for realmatrices (see next section). Since the subject of our paper is
not the exploration of such statistical randommatrix properties but rather their implications with respect to
ETH,we confine ourselves to the case of realmatrices.

5.3. Properties ofUmn

In view of (17), (18), some basic statistical properties of thematrix elementsUmn are needed in order tomake
any further progress.

At this point it is crucial to note that theHamiltonianH in (8) gives rise to a very special type of random
matrix. Namely, thematrix 〈 ∣ ∣ 〉m H n0 0 is the sumof the above discussed randomperturbationV0

mn and of the

non-randomdiagonalmatrix δ〈 ∣ ∣ 〉 =m H n Emn n0 0 0
0, whose diagonal elements En

0 grow approximately linearly
with n (at least within a sufficiently small vicinity of the preset system energyE, ontowhichwe tacitly restrict
ourselves, see also sections 3 and 5.6). Out of the huge literature on randommatrix theory, only a relatively small
number of works pertains to this special case, see e.g. [46, 60, 62, 63] and further references therein. Strictly
speaking, they are obtained for infinitely largematricesV0

mn, whose statistical properties do not depend onm and
n separately, but only on the difference −m n. Likewise, the unperturbedmatrix 〈 ∣ ∣ 〉m H n0 0 0 is assumed to be

infinitely large and of the form δ Emn n
0 with equally spaced energy gaps −+E En n1

0 0. Intuitively, these seemquite
plausible approximations, at least for not too strong perturbationsV in (8). They can be readily justified by
numerical examples, but somewhatmore rigorous analytical results do not seem to exist. Here, we adopt the
widely accepted viewpoint that, for out present purposes, they can be taken for granted [44, 60, 61].

As a consequence, also the statistical properties of theUmn only depend on −m n, e.g. the νthmoments are
of the form

5
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= −ν
νU u m n( ) ( ), (19)mn V

where the νu n( ) are real (but not necessarily even [63]) functions of n, and are furthermore non-negative for
even ν.

Known analytical resultsmainly concern the secondmoment u n( )2 for various ensembles of possibly
banded and/or sparse randomV-matrices, see e.g. [46, 60, 62, 63] and references therein. In all cases, it is found
that u n( )2 ismonotonically decreasing for ⩾n 0 andmonotonically increasing for ⩽n 0, hence exhibiting a
globalmaximumat n=0:

=u n umax{ ( )} (0). (20)
n

2 2

Since δ∑ =U Uk mk nk mn we can conclude that

∑ =u n( ) 1, (21)
n

2

implying that u n( )2 must approach zero for large ∣ ∣n .

In all those analytical results, themean values 〈 〉Vmn V
0 are tacitly assumed to vanish and it is found that u n( )2

then only depends on the secondmoments 〈 〉V( )mn V
0 2 . Sincewe are not aware of any justification for this

assumption 〈 〉 =V 0mn V
0 , we have numerically investigated various examples and found that, indeed, the

statistical properties of theUmnʼs seem to be independent of thefirstmoments 〈 〉Vmn V
0 (while keeping all other

cumulantsfixed). Furthermore, a simple physical argument is as follows: replacing an eigenstate ∣ 〉n 0 ofH0 by
−∣ 〉n 0 is supposed not to change any physically relevant properties of the given (non-random)model in (8). Note
that this argument applies separately to any single n. Hence, it is quite plausible that upon randomly flipping the
signs for half of all nʼs, the resulting ‘new’V0

mnʼs will be ‘unbiased’ for =m n. (More precisely: if a randommatrix
descriptionworks at all, then an ensemblewith 〈 〉 =V 0mn V

0 seemsmost appropriate). Finally, a possibly
remaining systematic ‘bias’ of the diagonal elementsV0

nn can be removed by adding an irrelevant constant toV.
(The typicalmagnitude of theV0

mnʼs is also estimated inAppendix B of [45], however, not taking into account
the possibility that their averagemay be zero.)

For the rest, the detailed properties of u n( )2 are found—as expected—to still depend on the quantitative

details of 〈 〉V( )mn V
0 2 . Since no general statement about the latter seems possible for the general class of systems

we have inmindwith (8), wewill focus on conclusionswhich do not depend on the corresponding details of
u n( )2 . Rather, wewill only exploit the following very crude commondenominator of all so far explored
particular classes of randommatricesVmn, see e.g. [46, 60, 62, 63] and further references therein:

= −u (0) 10 . (22)N
2

O( )

The basic physical reason is that exceedingly ‘weak’ perturbationsV in (8) are tacitly ignored so that the smallest
relevant energy scale is themean level spacing −+E En n1 , being of the order of −10 NO( ) J according to section 2.
Moreover, the ratio between this energy scale and any other relevant energy scale of the system can be very
roughly estimated by −10 NO( ), independently of any further details of the specificmodel system in (8). As a
consequence, the very crude estimate (22) is also independent of these details.

Further statistical properties of theUmn, whichwewill, similarly as in [44, 45, 60, 62, 63], take for granted
later on, are:

(i) Their average is zero, i.e.

=u n n( ) 0 for all . (23)1

(ii) They are statistically independent of each other, i.e.

= =U U m j n kis independent of if or . (24)mn jk

(iii) Their distribution does not exhibit long tails, i.e.

⩽u n c u n u n( ) ( ) (0) for all (25)4 2 2

with an n-independent constant c, whichmay possibly be very large butwhich is required not to be so large that it
can compete in order ofmagnitudewith u1 (0)2 from (22). For instance for a systemwith =N 1023 particles, it

would be sufficient that ⩽c 101022
. In other words, we adopt the veryweak assumption

= −c u (0) 10 . (26)N
2

O( )

6
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For example, for aGaussian distribution (with zeromean, cf (23)) onefinds that =u n u n( ) 3 ( )4 2
2 and hence

(25) is satisfied for c= 3. Though aGaussian distribution is often taken for granted [22, 44, 45], non-Gaussian
distributions have been actually observed e.g. in [59] and also in our ownnumerical explorations (unpublished),
but themore general condition (25)was still satisfied in all cases.We also note that since u n u( ) (0)2 2 approaches
zero for large ∣ ∣n , the condition in (25) becomesweaker andweaker with increasing ∣ ∣n .

5.4.Mean values
Evaluating (17) bymeans of (19), (23), and (24) yields

∑ ∑

∑

= +

= −
=

A A U U A U U

A u n j( ). (27)

nn V
j

jj nj nj
V

j k

jk nj
V

nk V

j

jj

0 0

0
2

It follows that

∑
Δ ≔ −

= + − − −

+ +A A

A u n j u n j[ ( 1 ) ( )] (28)

n n n V nn V

j

jj

1, 1

0
2 2

and hence that

∑

∑

Δ ⩽ + − − −

⩽ + −

A u n j u n j

A u k u k

( 1 ) ( )

max ( 1) ( ) . (29)

n

j

jj

j
jj

k

0
2 2

0
2 2

Themaximumover j can be estimated from above by Δ 2A according to (16). Recalling that u k( )2 is
monotonically decreasing for ⩾k 0 andmonotonically increasing for ⩽k 0 (see above (20)), the sumover k
amounts to u2 (0)2 (more generally, this sum amounts to the total variation of u k( )2 ; hence, if u k( )2 exhibitsM
localmaxima, it can be estimated from above by M u k2 max ( )k 2 ). Altogether, we thus can conclude that

Δ− ⩽+ +A A u (0). (30)n n V nn V A1, 1 2

This upper bound is tight: one can readilyfind examplesA for which (30) becomes an equality.Moreover, it
follows that

Δ− ⩽ −A A m n u (0). (31)mm V nn V A 2

By generalizing the line of reasoning in (29), (30) one can also show that

∑Δ− ⩽
κ

κ

=−

A A u k( ) (32)mm V nn V A

k

2

with κ ≔ ∣ − ∣ −m n 1. Under certain conditions, the bound (31)may be better than (32), but never bymore
than a factor of 2. For sufficiently large ∣ − ∣m n , (32) is always better since the sumon the right-hand side is
bounded by unity (see (21)), while the right-hand side of (31) is unbounded. (The relevance of large ∣ − ∣m n
-valueswill become apparent in section 5.6 below). In any case, (32) is a rather tight bound in the sense that one
canfind examples for Ajj

0 so that the left-hand side is larger than the right-hand side divided by 2 for a set of
suitably chosen pairs m n( , ) so that the differences −m n may still take any integer value.

5.5. Variances
We rewrite the variance from (18) as

∑σ + =A A A U U U U (33)n nn V
ijkl

ij kl ni nj nk nl
V

2 2 0 0

and evaluate the four-fold sumby distinguishing four possible cases. Case 1: =i k and i= j. In this case, we only
have to keep summandswith l= k: otherwise the factorUnk on the right-hand side of (33)would be independent
of the remaining three factors according to (24), and the corresponding summandwould vanish according to
(19) and (23). Case 2: =i k and =i j. As before, we can conclude that only summandswith l= i and j= k give rise
to non-vanishing terms. Case 3: i= k and =i l, implying, as before, that only j= l contribute. Case 4: i= k and i= l,
implying j= i. Consequently, we can rewrite (33) as

σ Σ Σ Σ Σ+ = + + +A , (34)n nn V
2 2

1 2 3 4
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where the four summands correspond to the above four cases and can be rewritten as:

∑Σ =
=

A A U U U U , (35)
i k

ii kk ni ni nk nk V1
0 0

∑Σ =
=

A A U U U U , (36)
i k

ik ki ni nk nk ni V2
0 0

∑Σ =
=

A A U U U U , (37)
i l

il il ni nl ni nl V3
0 0

∑Σ = A A U U U U . (38)
i

ii ii ni ni ni ni V4
0 0

With the help of (24) and (19)we can rewrite (35) as

∑

∑ ∑

∑

Σ = − −

= − − − −

= − −

=

A A u n i u n k

A A u n i u n k A u n i

A A u n i

( ) ( )

( ) ( ) ( ) ( )

( ) ( ), (39)

i k

ii kk

ik

ii kk

i

ii

nn V
i

ii

1
0 0

2 2

0 0
2 2

0 2
2
2

2 0 2
2
2

wherewe exploited (27) in the last equation. Likewise, onefinds that

∑ ∑Σ = − − − −A u n i u n k A u n i( ) ( ) ( ) ( ), (40)
ik

ik

i

ii2
0 2

2 2
0 2

2
2

∑ ∑Σ = − − − −A u n i u n l A u n i( ) ( ) ( ) ( ) ( ), (41)
il

il

i

ii3
0 2

2 2
0 2

2
2

∑Σ = −A u n i( ) ( ). (42)
i

ii4
0 2

4

Introducing these results into (34) thus yields

σ = + +S S S , (43)n
2

1 2 3

∑≔ − −S A u n i u n k( ) ( ), (44)
ik

ik1
0 2

2 2

∑≔ − −S A u n i u n l( ) ( ) ( ), (45)
il

il2
0 2

2 2

∑≔ − − −S A u n i u n i( ) [ ( ) 3 ( )]. (46)
i

ii3
0 2

4 2
2

The three factors on the right-hand side of (44) are all non-negative and hence

∑ ∑= ⩽ −S S u k u n i A Amax{ ( )} ( ) . (47)
k

i k

ik ki1 1 2 2
0 0

With (11) one readily sees that the last sumover k amounts to 〈 ∣ ∣ 〉 ≕i A i A( )ii0
2

0
2 0 . Exploiting (20)we thus obtain

∑⩽ −S u A u n i(0) ( ) ( ). (48)
i

ii1 2
2 0

2

Likewise, since ⩾u i( ) 02 for all i, themodulus of (45) can be estimated as

∑⩽ − − =S A u n i u n l S( ) ( ) . (49)
il

il2
0 2

2 2 1

Turning to (46), wefirst note that the last factor κ ≔ − − −u n i u n i( ) 3 ( )4 4 2
2 represents the 4th cumulant of

the randomvariableUni. For aGaussian distribution (the case considered byDeutsch [44, 45]), this cumulant
vanishes, but formore general distributions itmay befinite and of either sign.We thus estimate κ∣ ∣4 from above
by − + −u n i u n i( ) 3 ( )4 2

2 . Observing (26) and − ⩽ −u n i u u n i( ) (0) ( )2
2

2 2 (see (20)), we thus can bound
(46) by

∑⩽ + −S u c A u n i(0)( 3) ( ) ( ). (50)
i

ii3 2
0 2

2

Next, we invoke theCauchy–Schwarz inequality to conclude

ψ ψ ψ ψ ψ ψ⩽B B (51)2 2

for arbitraryHermitian operatorsB and vectors ψ∣ 〉. In particular, it follows that ⩽A A( ) ( )ii ii
0 2 2 0 . Altogether, we

thus arrive at
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∑σ ⩽ + −c u A u n i( 5) (0) ( ) ( ). (52)n

i

ii
2

2
2 0

2

Finally, we exploit (16) and (21), resulting in

σ Δ Δ⩽ + = −c u( 5) (0) ( 2) 10 , (53)n A
N

A
2

2
2 O( ) 2

wherewe used (26) in the last step.

5.6.Discussion
From (14), (53), andMarkov’s inequality it follows that

ϵ Δ ϵ− ⩾ ⩽ −( )A AProb ( ) 10 (54)nn nn V A
N2 O( )

for any ϵ > 0, where Prob X( ) denotes the probability that a randomly sampledV in (8) entails propertyX. For

instance, if in the last term =NO( ) 1023 and ϵ Δ= −10A
1022

then the right-hand side of (54) is still −10 O(10 )23
.

Consequently, the joint probability that everyAnn is practically indistinguishable from 〈 〉Ann V simultaneously

for all Δ∈ +n n n n{ ,.., }0 0 still remains negligibly small if Δ⩽ ≪n0 10 NO( ).
On the other hand, (22) and (31) imply that the difference 〈 〉 − 〈 〉A Amm V nn V remains below the

experimental resolution limit δA ofA (cf section 2) even for quite large range-to-resolution ratios Δ δAA ,

provided ∣ − ∣m n remainsmuch smaller than of the order of 10 NO( ). In other words, the variations of the 〈 〉Ann V

also remain negligibly small within the ‘window’ of n-values Δ+n n n{ ,.., }0 0 if Δ⩽ ≪n0 10 NO( ).
Altogether, we thus arrive at the conclusion that for the vastmajority of randomly sampled perturbationsV

in (8), theAnnʼs remain practically constant (below the experimental resolution limit) as long as n varies by
much less than 10 NO( ).

The latter property is sometimes referred to as the strong ETH [33, 38]. It immediately implies the practical
indistinguishability of the two expectation values (6) and (7), and hence thermalization, provided both the
ρ (0)nn and the ρnn

mic are negligibly small outside awindow of n-valuesmuch smaller than 10 NO( ), but otherwise
without any further restriction on the initial condition ρ (0).

If the range Δn of admitted n-values is not anymoremuch smaller than 10 NO( ), thenwe can no longer
conclude from (53) thatwith high probability all theAnnʼs remain simultaneously close to the 〈 〉Ann V ʼs.
However, we still can conclude that for the vastmajority of nʼs, those differences remain negligibly small2. If, in
addition, the variations of the 〈 〉Ann V ʼs would remain small, we still could conclude that ‘most’Annʼs are
practically equal (for the overwhelmingmajority ofVʼs), i.e. the so-calledweak ETH is satisfied [33, 38]. As a
consequence, the expectation values (6) and (7)would again be practically equal under certain additional
conditions on the initial condition ρ (0). For instance, the total weight of all ρ ′s(0)nn corresponding to
exceptionally large differences − 〈 〉A Ann nn V should remain sufficiently small. For example (4)would obviously
be a sufficient condition.

However, this line of reasoning contains a problem: if the variations Δn of n are not anymoremuch smaller
than10 NO( ), then equations (31) and (22) no longer imply that the variations of 〈 〉Ann V remain negligible. The
same conclusion follows from the bound (32). Since the latter bound is already rather tight (see below (32)), we
can conclude that the restriction towindows of n-valuesmuch smaller than 10 NO( ) is notmerely a technical
problembut rather an indispensable prerequisite of the randommatrixmodel from section 5.1. In particular,
this restriction also concerns the originalfindings byDeutsch [44].

Note that Δn from above is identical to the numberD of energy eigenvalues En contained in the
microcanonical energywindow Δ≔ −I E E E[ , ]mic from section 3. The above discussed restriction thus
amounts to

≪D 10 (55)NO( )

and implies that ΔE must remain verymuch smaller than anymacroscopically resolvable energy difference.
(This follows from the fact that the energy eigenstates are exponentially dense in the system sizeN, see section 2).

6. Srednicki’s ETH for the off-diagonalmatrix elements

In [23, 24], Srednicki formulated, besides the so far considered ETH for the diagonalmatrix elementsAnn, also a
corresponding ETH for the off-diagonal elementsAmnwith =m n. This hypothesis can also be readily confirmed
within our present framework:

2
With ≔ ∣ − 〈 〉 ∣x A An nn nn V and δ Δ ϵ≔ −( ) 10A

N2 O( ), equation (54) can be rewritten as Θ ϵ δ〈 − 〉 ⩽x( )n V , where Θ x( ) is theHeaviside
step function. Furthermore, Θ ϵ≔ ∑ −ϵ =Z x( )n

D
n1 counts howmany of the xnʼs exceed ϵ. It follows that δ〈 〉 ⩽ϵZ DV andwithMarkov’s

inequality that δ⩾ ⩽ϵZ qD qProb( ) , where ⩾ϵZ qDProb( ) is the probability thatmore than a fraction q of all xnʼs exceed ϵ.
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similarly as in (17), wefind from (13) that

∑=A A U U . (56)mn V
jk

jk mj nk
V

0

For =m n, the last factor 〈 〉U Umj nk V equals 〈 〉 〈 〉U Umj V nk V according to (24), and hence vanishes according to
(19) and (23). In conclusion

=A 0 (57)mn V

for all =m n.
Turning to the secondmoment (variance), onefinds similarly as in (14), (18) that

∑= =A A A A A U U U U . (58)mn V mn nm V
ijkl

ij kl mi nj nk ml
V

2 0 0

According to (24), for =m n the last term 〈 〉U U U Umi nj nk ml V now factorizes into 〈 〉 〈 〉U U U Umi ml V nj nk V .

Exploiting (24) oncemore implies δ〈 〉 = 〈 〉U U Umi ml V il mi V
2 and δ〈 〉 = 〈 〉U U Unj nk V jk nk V

2 .With (19)we thus
obtain

∑= − −A A u m i u n k( ) ( ). (59)mn V
ik

ik
2 0 2

2 2

Step by step as in (44), (47), (48), (53) it follows that

Δ⩽A u (0)( 2) (60)mn V A
2

2
2

for all =m n. In view of (22) we see that the off-diagonals ∣ ∣Amn are typically exponentially small in the system
sizeN, in agreement with Srednicki’s prediction in [23, 24].

The overall conclusion applying to any givenHermitian operatorA offinite range ΔA is: the representation
ofA in the eigenbasis ofH is, for the overwhelmingmajority of randomly sampled perturbationsV in (8), very
close to a diagonalmatrix, whose diagonal elementsAnn change very slowlywith n.

7. Implications for the level populations ρ (0)nn

Throughout this section, we consider the density operator ρ (0) (pure ormixed state) from section 2 and
abbreviate it as ρ.

Since ρ is aHermitian operator, all results so far for general observablesA are immediately applicable to ρ.
However, this particular observable ρ=A also exhibits some subtle special features. Therefore, wefirst focus on
a simple example.

7.1. Simple example
Weconsider a pure energy eigenstate of the unperturbedHamiltonianH0 in (8), i.e.

ρ = m m (61)0 0

with an arbitrary butfixedm. Its eigenvalues are either zero or one, hence the range from (1) is Δ =ρ 1.

Observing that ρ δ δ=ik im km
0 it follows from (13) and (17) to (19) that

ρ = U , (62)nn mn
2

ρ = −u n m( ), (63)nn V 2

σ = − − −u n m u n m( ) ( ), (64)n
2

4 2
2

where the variance from (14) is given for ρ=A by

σ ρ ρ≔ −( ) . (65)n nn V nn V

2 2 2

As a concrete example, wemay focus onGaussian distributedUmnʼs (see below equation (26)), so that
=u n u n( ) 3 ( )4 2

2 and hence

σ = −u n m2 ( ). (66)n
2

2
2

Altogether, the standard deviation σn of the randomvariable ρnn from (62) is thus comparable to itsmean
value ρ〈 〉nn V , and both are, according to (20) and (22), extremely small compared to the range Δ =ρ 1of the
considered observable ρ.Within any reasonable resolution limit δρ of this observable we thus can conclude that,
for the vastmajority of randomperturbationsV in (8), all ρnnʼs are practically equal (namely zero), in agreement
with the general validation of ETH from section 5. But for our present purposes, this usual resolution limit δρ is
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still way too large. On the actual scale of interest, the ρnnʼs from (62) are not at all a slowly varying function of n,
but rather exhibit very significant randomfluctuations (see also (24)). In particular, it would bewrong to argue
that the ρ (0)nn ʼs in (7) are nowpractically constant and hence, upon comparisonwith (6), thermalization
follows.

7.2. General case
We return to general density operators ρ, i.e., we only assume that ρ is aHermitian, non-negative operator of
unit trace and purity

ρ ⩽Tr{ } 1. (67)2

In the following, wewill exploit these properties of ρ, which, however, would be lost after adding a constant to ρ
so that (15) is satisfied.Hencewe only can employ those previous results whichwere obtainedwithout the help
of (15). Along these lines, onefinds exactly as in (27) and (52) that

∑ρ ρ= −u n j( ), (68)nn V
j

jj
0

2

∑σ ρ⩽ + −c u u n i( 5) (0) ( ) ( ), (69)n

i

ii
2

2
2 0

2

where σn
2 is defined in (65) and ρ ρ≔ 〈 ∣ ∣ 〉i i( )ii

2 0
0

2
0. Likewise, (57) and (59) yield

ρ = 0, (70)mn V

∑ρ ρ= − −u m i u n k( ) ( ) (71)mn
V

ik
ik

2 0 2
2 2

for all =m n.
Introducing (20) into (68) implies

∑ρ ρ⩽ =u j umax{ ( )} (0), (72)nn V j
j

jj2
0

2

wherewe exploited that the sumover j equals ρ =Tr 1. Likewise, (69) yields

σ ρ⩽ +c u( 5) (0) Tr{ }. (73)n
2

2
2 2

Rewriting the definition from (28) as

Δ ρ ρ≔ −+ + (74)n n n V nn V1, 1

wefind along similar lines of reasoning that

∑Δ ρ⩽ + − − −

⩽ + −

u n j u n j

u n u n

( 1 ) ( )

max ( 1) ( ) . (75)

n

j
jj

n

0
2 2

2 2

Moreover, we can conclude that

∑ ∑ ∑Δ ρ⩽ + − − −u n j u n j( 1 ) ( ) . (76)
n

n

j
jj

n

0
2 2

Similarly as in (30), the last sum is seen to be equal to u2 (0)2 . The remaining sumover j equals ρ =Tr 1and
hence

∑ Δ ⩽ u2 (0). (77)
n

n 2

Equations (72), (73) indicate that, in contrast to pure states in (61), formixed states of small purity ρTr{ }2 ,
the randomfluctuations of the ρnnʼs about theirmean valuesmay become negligible.Moreover, the right-hand

side of (75) usually turns out [44, 45, 60, 62, 63] to be of the order of u (0)2
2 . The same conclusion is also

suggested by (77). Consequently, also the variations of ρ〈 〉nn V as a function of n become small. Unlike for pure
states we thus can now conclude that (6) and (7) are approximately equal, implying thermalization. However,
assuming a small purity of ρ represents a quite strong restriction in the first place.
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Returning to general ρ, we can deduce from (20) and (68) that

∑ ∑ ∑ ∑

∑ ∑ ∑

ρ ρ ρ

ρ ρ

⩽ −

⩽ −

u j u n k

u u n k

max{ ( )} ( )

(0) ( ). (78)

n
nn V

n
j

j
jj

k
kk

j
jj

k
kk

n

2
2

0 0
2

2
0 0

2

The sumover n equals one according to (21) and the two remaining sums are equal to ρ =Tr 1, i.e.

∑ ρ ⩽ u (0). (79)
n

nn V

2
2

Likewise, equations (67) and (69) imply

∑ ∑ ∑σ ρ

ρ

⩽ + −

= + ⩽ +

c u u n i

c u c u

( 5) (0) ( ) ( )

( 5) (0)Tr{ } ( 5) (0). (80)

n

i

ii

n

2
2

2 0
2

2
2

2

Altogether, this yields

∑ ρ ⩽ +c u( ) ( 6) (0) (81)
n

nn V
2

2

andwith (25)

∑ ρ ⩽ −( ) 10 . (82)
n

nn

V

N2 O( )

Since ρ ρ ρ= ⩽ ∑(max ) max ( ) ( )n nn n nn n nn
2 2 2 it follows that

ρ ⩽ −( )max{ } 10 (83)
n

nn
V

N
2

O( )

and hence byMarkov’s inequality that

ρ ϵ ϵ⩾ ⩽ − −( )Prob max{ } 10 , (84)
n

nn
N2 O( )

see also the explanations below (54).

7.3.Off-diagonals
We focus on the off-diagonalmatrix elements ρmn with =m n. Theirmean values are zero according to (70).
Their variance can be readily bounded by theCauchy–Schwarz inequality

ρ ρ ρ⩽ . (85)mn mm nn
2

Likewise, introducing ρ ρ ρ∣ ∣ ⩽ik ii kk
0 2 0 0 into (71) yields with (68) the estimate

ρ ρ ρ⩽ . (86)mn
V

mm V nn V

2

Similarly as below (47) one sees that ρ ρ∑ ∣ ∣ = Tr{ }mn mn
2 2 and hence

∑ ∑ρ ρ ρ ρ= − ⩽
=

Tr{ } Tr{ }. (87)
m n

mn
V

n
nn

V

2 2 2 2

According to (82), the last inequality in (87) is in fact a very tight upper bound. The same estimate follows by
summing in (71) overm and n. Neither of these results indicate that the off-diagonalmatrix elements are
typicallymuch smaller than the diagonal elements.We thus conjecture that typical off-diagonalmatrix elements
will in fact not be small compared to the diagonal elements. Trivial exceptions are pure states (61). Non-trivial
exceptionsmay bemixed states of low purity, similarly as below (77).

7.4.Discussion
Themain result of this section is (84): it implies that for the overwhelmingmajority of randomly sampled
perturbationsV in (8) the last term in (3) is unimaginably small (essentially in agreement with (4)). In other
words, equilibration in the sense of section 2 is verified.We emphasize that all these conclusions do not depend
an any further details of the actual initial condition ρ (0), except that it is assumed to befixed, i.e. independent of
the randomly sampledV.
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The physical interpretation is as follows: one specific, usually not verywell known, but nevertheless well-
defined initial state ρ (0) (pure ormixed) is ‘given’ to us, and then evolves further in time according to one
particular, randomly picked systemHamiltonian (8). Our results guarantee that the vastmajority of those
randomly sampledHamiltonians gives rise to equilibration in the sense of equation (3). As the only unproven
part remains the assumption that the actual (in detail not exactly known) systemdoes not correspond to one of
the rare, untypicalHamiltonians of the considered random ensemble.

Since ρ ρ= ∑ =Tr{ } 1n nn we can conclude from (84) that, formostVʼs, the number of non-negligible ρnnʼs

cannot bemuch smaller than 10 NO( ). As a consequence, the strong ETH scenario from section 5.6 does not apply.
In turn, to apply this scenario, a different physical set up is required, with a different physical view of how the
initial condition ρ arises. Namely, one particular, but ‘typical’V in (8) is considered to have been randomly
sampled but now is heldfixed. Sincewe assumed the system is typical, strong ETHas specified in section 5.6 can
andwill be taken for granted. In a next step, the initial state ρ ρ= (0) for this particular system is specified,
arising, e.g., as the result of an experimental preparation procedure for this very system (with respect to other
systemsH of the ensemble, this preparation proceduremay not be physicallymeaningful or not evenwell
defined). Finally, theremust be good reasons (e.g. a very careful experimentalist) to assume that this preparation
process yields level populations ρnn which are negligible outside awindowof n-valuesmuch smaller than 10 NO( ),
see equation (55).

In conclusion, our present formalism is able to validate either equilibration or thermalization, but not both
of them simultaneously for one and the same physicalmodel system.

8. Comparisonwith the approach byGoldstein and coworkers

In a series of works [5, 13, 16, 47, 48]Goldstein and coauthors addressed the problemof thermalization by
means of an approachwhich, atfirst glance, seems to be entirely different fromour present one. In particular, the
‘intermediate’ problemof equilibration (see section 2) apparently can be entirely circumvented. One key point
of their approach is the restriction to so-calledmacroscopic observables, i.e. observables whose statistical
fluctuations are negligibly small formacroscopic systems at thermal equilibrium. In this section, wewill show
that the latter defining property of amacroscopic observable implies that it satisfies (weak) ETH. In otherwords,
the restriction to such observables is essentially equivalent to assuming ETH.

Wedefine themicrocanonicalmean and variance of any given observableA as

ρ≔ { }A ATr , (88)mic

Δ ρ≔ −{ }A A ATr ( ) , (89)2
mic

2

where ρmic is themicrocanonical ensemble from (5). By definition, an observableA is called amacroscopic
observable, if itsfluctuations ΔA are negligibly small. Amore precise formal requirement would be vanishing
fluctuations in the thermodynamic limit. Amore appropriate real world (experimentally useful) versionwould
be to require that thefluctuations are smaller than the experimental resolution limit δA, with, e.g.
δ Δ= −A 10 A

10 , where ΔA is themeasurement range of the experimental instrumentmodelled byA, see section 2.
The above requirement represents aminimal condition: whatever alternative definition of amacroscopic

observablemay be proposed, if it admits non-small fluctuations in themicrocanonical ensemble then it would
not seemwell-defined to us. Indeed, the definitions employed in [5, 13, 16] are quite similar but not exactly
identical to ours.We also note that themicrocanonical ensemble itself is only used here as a formal device to
define the notion of amacroscopic observable. It does not in anyway anticipate that the actual systemof interest
should exhibit thermalization.

Introducing (5) into (88) and (89) implies

∑=A
D

A
1

, (90)nn

mic

∑Δ = −A
D

A A
1

( ) ( ) , (91)nn
2

mic

2 2

where ≔ 〈 ∣ ∣ 〉A n A n( )nn
2 2 . In otherwords, (90) represents the average over thoseAnnʼs, whose energies En are

contained in themicrocanonical energy window. Their typical deviation from this average is quantified by the
variance

∑ ∑Δ ≔ − = −A
D

A A
D

A A
1

( )
1

( ) ( ) . (92)nn nnETH
2

mic

2

mic

2 2
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From (51)we can conclude that ⩽A A( ) ( )nn nn
2 2 and hence that Δ Δ⩽A AETH . Assuming thatA is amacroscopic

observable thus implies that ΔAETH is small [33]. According to the definition in (92) it follows thatmostAnnʼs
must be close to A , i.e. weak ETH is satisfied (see section 5.6).

Closely related considerations are originally due to [33], however focusing on so-called intensive local few-
body operators rather than onmacroscopic observables.

Restricting oneself tomacroscopic observables clearly has a long andwell founded tradition, especially with
respect to the thermodynamic roots of statistical physics. On the other hand, statistical physics itself is by no
means restricted to such observables. Rather, it is understood and experimentally (and numerically) seen that
also ‘microscopic’ observables are perfectly well described by this theory. Such observables exhibit non-
negligible fluctuations about theirmean values and as such are hardly encountered in our everydaymacroscopic
world (exceptionsmay arise near critical points). But alreadywith the help of an opticalmicroscope, interesting
observables exhibiting non-negligible thermalfluctuations (e.g. Brownianmotion) become accessible. Even
more so, within the rapidly developing fields of nanotechnology and singlemolecule experiments, such
microscopic observables become of increasing practical relevance.

Wefinally remark that Goldstein and coworkers conceive their own approach [5, 13, 16, 47, 48] as a
continuation of vonNeumann’s ground-breakingwork [49].Other relations between such an approach and
ETH than the one discussed above have also been pointed out in [36, 48]. Furthermore, the concept of
randomizedHamiltonians (or randommatrices) also plays a key role in the approach by vonNeumann and by
Goldstein and coworkers [47].However, rather than introducing this randomness directly into theHamiltonian
H itself—as done in the approach byDeutsch via equation (8)—the randomness is now introduced by
prescribing the statistical properties of the randomly sampled eigenbases ∣ 〉n ofH, see section 5.2, while keeping
the spectrumofHfixed. In spite of these technical differences, the two approaches are thus in fact very close in
spirit (see, e.g. section 6 in [47]).

9. Summary and conclusions

In afirst step, we reconsidered the randommatrixmodel ofDeutsch [44–46] andworked out amore detailed
and slightlymore general demonstration that it validates ETH: for the overwhelmingmajority of the
corresponding random ensemble ofHamiltoniansH, any given observableA is represented in the eigenbasis of
H by an almost diagonalmatrix with very slowly varying diagonal elements.More precisely: apart from a fraction
of exceptionalHʼs which is exponentially small in the system sizeN, the off-diagonalmatrix elementsAmn are
exponentially small inN and the changes of the diagonal elementsAnn as a function of n are also exponentially
small inN. This implies the following solution of problem (i) from section 4: for any givenH, one can readily
construct (a posteriori) an ETH-violatingA (see section 4), but any suchA still continues to satisfy ETH formost
otherHʼs. In turn, ifH is not known in all details with extremely high precision, then a given observable is
exceedingly likely to exhibit ETH.

The generalization formore than one observable is straightforward: given every single observable is
exponentially unlikely to violate ETH, it is still extremely likely that all of themwill simultaneously exhibit ETH,
as long as their number is not exponentially large, i.e. remainswithin the limits of what is feasible in any real (or
numerical) experiment.

In a second step, we have shownbymeans of a further generalization ofDeutsch’s approach that also an
essential prerequisite for equilibration, namely equation (4), will be satisfied for the overwhelmingmajority of
HamiltoniansH. In doing so, an arbitrary (pure ormixed) state ρ (0) is admitted as initial condition. But this
initial state ρ (0)must then remain always the same for the entire ensemble of randomHamiltoniansH.

We also identified a not yet satisfactorily solved aspect ofDeutsch’s original approach and our present
generalization: on the one hand, the changes of the diagonalmatrix elementsAnn as a function of n are
exponentially small in the system sizeNup to exponentially rare exceptions. On the other hand, the typical
difference between neighbouring energy levelsEn is also exponentially small inN (cf section 2), i.e. the number
of energy eigenvalues contained in an energy intervals Δ−E E E[ , ] is exponentially large inN for the usual ΔEʼs
of interest. Hence, the variations ofAnnwithin the entire energy intervalmay no longer be negligible. As a
consequence, thermalization, i.e., the practical indistinguishability of (6) and (7), can only be proven under the
extra condition that the interval of relevant n-values, which notably contribute to those sums in (6) and (7), is
not too large, namelymuch smaller than 10 NO( ) (cf (55)). In otherwords, only exceedingly small ΔEʼs are
admitted. In the following four paragraphs, we concludewith four noteworthy remarks and implications.

In spite of this restriction, the admitted range of n-values is still huge, and likewise for the admitted energy
intervals ΔE in comparisonwith the energy level spacings. In particular, they are still of physical interest: for
instance, onemay imagine that the experimentalist has prepared the systemwith a sufficiently small uncertainty
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in the total system energyE so that the corresponding condition can be safely taken for granted for the ρnnʼs
appearing in (6) and (7).

Asmentioned already in in section 4, ourfindings imply the equivalence of ρeq in (7) not only with the

microcanonical ensemble ρmic in (6) but alsowith any other equilibrium (i.e. steady state) ensemble, provided
that its level populations aremainly concentratedwithin a sufficiently small energywindow as specified above.
Unfortunately, this condition is not satisfied e.g. for the canonical ensemble.

The other,more fortunate side of the coin is that within our present approach the diagonalmatrix elements
Ann are indeed not forbidden to exhibit non-negligible variations for sufficiently large changes of n, or,
equivalently, formacroscopically notable changes ofEn. This solves problem (ii) from section 4.

Assuming one and the same initial state ρ (0) for the entire ensemble of randomHamiltoniansH, as done in
our above discussion of equilibration, implies that the number of ρnnʼs which notably contribute in (7) is not

much smaller than10 NO( ) formostHʼs. In conclusion, our present generalization ofDeutsch’s approach allows
us to corroborate either equilibration or thermalization, but not both of them simultaneously for one and the
same physicalmodel system. The root of the problem is as before: whether andwhy the dependence of the
diagonalmatrix elementsAnn on n is neither too strong nor tooweak is not yet fully satisfactorily understood. A
solution of this problem is currently beingworked out.
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