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Abstract

The subject of the present thesis is the study of the interaction be-
tween a Bose-Einstein condensate (BEC) and a superconductor. The BEC
performs center-of-mass oscillations perpendicular to the superconducting
surface. Each atom in the BEC carries a magnetic dipole moment, which
induces eddy currents in the surface. These eddy currents are a source of
a magnetic field which modifies the potential in which the BEC is trapped.
This leads to a change of the dynamical behavior of the BEC. In particular
the BEC center-of-mass oscillation frequency is shifted compared to the
case without the surface interaction. Additionally, the potential generated
by the superconductor excites shape oscillations of the BEC.

To investigate these effects, the Gross-Pitaevskii equation for a dipo-
lar BEC close to a superconducting surface is solved numerically. Also
analytical approximations are presented and compared to the numerically
obtained results. It is shown that the interaction with the superconducting
surface generates a frequency shift, that is large enough to be detected in
an experiment. Furthermore, different methods to identify the eddy current
effect are presented.

It is also discussed how the effects on the BEC can be enhanced by
choosing the proper dipole orientation and by adjusting the geometry of
the setup. The BEC shape oscillations can be additionally enhanced by
making use of a resonance phenomenon.
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Introduction

In 1924 Satyendra Bose presented his theoretical work on the statistics
of photons [1]. In the same year Albert Einstein expanded this theory to
massive, non-interacting particles [2] and thus predicted the phenomenon
which is today called Bose-Einstein condensation (BEC). It describes the
macroscopic occupation of the ground state which occurs in a system of
Bose particles below a certain critical temperature Tc. From the theoretical
prediction to the first experimental realization of a BEC consisting of
atoms passed over seventy years. In 1995 Wolfgang Ketterle [3] as well
as Carl Wieman and Eric Cornell [4] were successful in the creation of
a BEC consisting of alkali atoms. For this accomplishment they received
the Noble Prize in 2001. Such a BEC is formed by a dilute gas (∼ 1013 −
1014 cm−3) of Bose atoms. These atoms are trapped in a potential which is
created by magnetic or optical fields. The gas is cooled below the transition
temperature Tc at which condensation occurs. Due to the low density of
the atoms and their high mass, the critical temperature Tc is rather low.
It ranges from a few ten nK to a few µK. A BEC consists typically of 104

to some few 105 atoms. In the case of alkali atoms, like for example 87Rb,
the interaction between the atoms at such low temperatures is described
using an isotropic contact interaction. The strength of this interaction is
expressed in a single parameter, the so-called s-wave scattering length. For
87Rb atoms the scattering length is as = 5.7 nm. While this is larger than
the actual size of a single atom, it is a lot smaller than the mean distance
between two atoms in such dilute gases. In this sense one speaks of a
weakly interacting gas. Depending on the number of atoms in the trap,
many properties of the gas are not too far off from the ideal case of a non-
interacting gas. A weakly interacting, dilute gas of bosons at a temperature
far below Tc is very accurately described using a mean field approach. This
leads to the so-called Gross-Pitaevskii equation (GPE). It is a non-linear
Schrödinger equation and describes the static and dynamical properties of
the BEC wave function. The solution of this equation, in particular the
numerical solution, is one of the main tasks of the present thesis.
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Alkali atoms are not the only atoms that are used to create dilute
gases of bosons. Atoms with large magnetic dipole moment present another
interesting option to create a BEC. The first BEC of this kind was realized
with 52Cr atoms [5]. While rubidium atoms carry a magnetic dipole moment
of 1µB, chromium atoms have a magnetic dipole moment of 6µB. For alkali
atoms the magnetic dipole-dipole interaction plays only a very minor role
and can be neglected. For chromium this is not the case, the dipole-dipole
interaction has a significant effect on the BEC. Such a BEC is usually
referred to as a dipolar BEC [6]. Besides chromium, dipolar BECs have so
far been created with erbium atoms [7] and also with dysprosium atoms [8].
Both have an even larger magnetic dipole moment than chromium. In order
to study the magnetic interaction with a superconductor, a large magnetic
dipole moment is of course advantageous. For the theoretical description
the dipole-dipole interaction has to be incorporated into the GPE.

Another important experimental accomplishment was the creation of
micro fabricated atom traps. For the present thesis, magnetic microtraps [9]
are of particular interest. The electronic structures necessary to generate
the magnetic field which traps the atoms is accommodated on a single chip.
The scaling down of the whole apparatus means that also the minimum
of the potential moves closer to the surface. If one is interested in the
interaction between a BEC and the surface, it is of course beneficial to
bring the BEC very close to the surface. However, there is also a downside
in bringing the BEC very close to the surface. The lifetime of a BEC is
drastically reduced if it is brought close to the surface of the conductor.
Responsible for the reduced lifetime is the so-called Johnson noise [10, 11].
A solution to this problem presents itself in the use of superconducting
microtraps.

The discovery of superconductivity goes back to the year 1911, when H.
Kamerlingh Onnes realized that below a certain temperature the electrical
resistance of some materials vanishes entirely [12]. In the subsequent years
more properties of superconducting materials were discovered. Besides the
fact that a superconductor is a perfect conductor, it turns out that it is also
a perfect diamagnet. It means that a magnetic field is completely expelled
from a superconductor, whether the magnetic field is applied while the
material is in the superconducting state or in the normal state. Once it
is in the superconducting state, the magnetic field gets expelled. This
is called the Meissner-Ochsenfeld effect [13]. A number of theories have
been developed which explain the occurrence of superconductivity. The
most prominent theory is the Bardeen-Cooper-Schrieffer (BCS) theory [14].
It explains superconductivity on a microscopic level. The electrons in a
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superconductor feel an attractive interaction which causes them to form
so-called Cooper pairs. The two electrons that constitute a Cooper pair
have opposite momentum and spin. Just like the alkali atoms in a dilute gas
BEC can be described with a single macroscopic wave function, the Cooper
pairs can also be described using a macroscopic wave function. Both are
macroscopic quantum phenomena, which makes it interesting to investigate
the interaction between those two systems. The critical temperature at
which superconductivity occurs in elementary superconductors is typically
of the order of a few Kelvin. For example, aluminum has a Tc of 1.2 K. The
elementary superconductor with the highest Tc is niobium with Tc = 9.2 K
[15]. Some materials have been discovered which have a critical temperature
of up to 135 K and under high pressure even more [16–24]. The reason why
these materials have such a high Tc is still under investigation.

In recent years, superconductors have been successfully used to build
magnetic microtraps [25–30]. An interesting aspect here is the possibility
to create a BEC close to a superconducting surface. This makes it possible
to investigate the interaction between BEC and superconductor.

The successful coupling of a BEC and a superconductor is also an
interesting endeavor in regard to quantum information processing. The
core of a quantum computer is the quantum bit, commonly known as qubit.
A classical bit is a system which has two distinct states. The system is either
in the one state or in the other state. A qubit is a quantum system which
also has two states, but in contrast to the classical system, the quantum
system can exist in superposition of those two states. So far a variety of
different sorts of qubits have been realized, some are based on solid state
devices [31,32], others are atomic systems [33] or trapped ions [34,35]. Every
system has its advantages and disadvantages. Good control of the system
is important in order to prepare and to measure the state of the system.
This requires a controlled coupling of the qubit to the environment. This
is a strength of devices based on solids. On the other hand, once the state
is prepared, it is desirable that the coherence of the state is preserved for
a long time. For this, the system should be very well isolated from the
environment. This is the case in atomic systems like for example BECs.
Hybrid quantum systems, consisting of atomic systems coupled to solid
state devices, are able to combine the strengths of both [36–45]. The idea
is, that once a certain state has been prepared, it is transferred to the other
system with the longer coherence time where it can be stored. Later it is
transferred back in order to be read out.

Such a hybrid system could for example consist of a BEC coupled to a
superconductor [46–51]. For a controlled coupling it is necessary to under-
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stand the interaction between the BEC and the superconductor.

The setup discussed in the present work consists of a dipolar BEC and
a superconducting surface. The BEC is placed close to the surface and
is excited in such a way that it starts to oscillate perpendicular to the
surface. The magnetic dipole moments of the atoms induce eddy currents
in the superconducting surface. Since this is a superconductor and not a
normal conductor, the induced currents are not damped. This means the
oscillation energy of the BEC is not transformed into thermal energy, thus
the motion of the BEC is not damped. However, the eddy currents do
have an effect on the oscillation of the BEC. The eddy currents generate
a magnetic field which alters the curvature of the trapping potential. This
has an effect on the oscillation frequency of the BEC. A central question is:
Does the eddy current effect generate a frequency shift that is large enough
to be detected in an experiment? If that is the case, then still the question
remains: How can the eddy current effect be identified and distinguished
from other effects that may have an impact on the oscillation frequency?
Close to the surface there can be a number of other effects which have an
impact on the BEC motion. A prominent example is the Casimir-Polder
force. The effect of the Casimir-Polder force on the oscillation frequency of a
BEC has been studied theoretically [52] and it has also been measured in an
experiment [53]. They were able to measure the frequency with a precision
of 10−5. For the following discussion in this work, this value represents
the threshold for what is considered detectable and what in considered
undetectable. In Refs. [54, 55] it was shown that a frequency shift of this
order is possible. However, if one is restricted to 87Rb BECs, 10−5 is more
or less the frequency shift that can be reached under optimal conditions. A
larger shift can be expected if the 87Rb BEC is replaced by a dipolar BEC.
In the case of a 52Cr BEC the frequency shift can be of order 10−3, which is
within experimental means to be detected. Furthermore, it was proposed to
use the distinct dependence of the frequency shift on the number of atoms
in the BEC as a fingerprint in order to distinguish the eddy current effect
from other surface effects. The results presented in Refs. [54,55] were based
on a rather simple model. However, the model is useful since it allows to
determine analytical approximations for the frequency shift. Furthermore it
reproduces the qualitative behavior and also the correct order of magnitude.

In the present work, in addition to the simple model from Refs. [54,55],
also more accurate methods are used. The effect of the superconducting
surface is included directly in the GPE for dipolar BECs. The resulting
equation for the BEC wave function is not analytically solvable. Thus it
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needs to be solved numerically. The numerical methods needed for this task
are presented and the numerically obtained results are used to study the
effect on the dynamics of the BEC. Particularly the center-of-mass motion
is analyzed and the results are compared to analytical approximations. The
analytical model is then also used to discuss the impact of different dipole
orientations on the frequency shift. Finally, shape oscillations of the BEC,
caused by the interaction with the surface, are investigated.

The eddy current effect does not only influence the dynamical properties
of the BEC but also the static properties. For example, the minimum of the
trapping potential gets shifted and thereby also the position of the BEC is
shifted. In principle, this shift might also be interesting to investigated more
closely. However, the shift is on a length scale of ∼ nm [54], which makes
the experimental detection impossible. Since frequencies can be measured
more accurately, the focus of this thesis is on the dynamical properties of
the BEC.

This work is structured as follows: Chapter 1 gives a basic overview of
the theoretical models used throughout the rest of this work. In Chapter
2 the numerical methods used to solve the GPE are presented and a few
examples of a BEC in a harmonic trap are discussed. Chapter 3 deals
with the interaction potential between the BEC and the surface. Different
models to calculate the potential are presented and it is shown how the
interaction potential is included in the GPE. In Chapter 4 the frequency
shift of the center-of-mass motion is discussed. Results for the frequency
shift based on numerical results as well as analytical approximations are
presented. Furthermore the impact of the dipole orientation of the atoms
in the BEC on the frequency shift is investigated. The effect of the surface
potential on the BEC shape fluctuations is presented in Chapter 5. Finally,
a conclusion is given at the end.

Part of the present thesis has been published beforehand in Refs. [55]
and [56]. The results that are presented and summarized in Appendix A
have been published in Ref. [57].
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Chapter 1

Basics

This chapter gives an overview over the basic theory that is used through-
out this thesis. Besides the theory also some experimental aspects are dis-
cussed. The theory is discussed thoroughly enough, so that it is possible to
read and understand this thesis without consulting any further literature.
However, the discussion of the topics presented in this chapter is neither
intended, nor is it in any way complete. For a more complete discussion,
the reader is advised to consult the appropriate literature. The references
to the relevant literature is given throughout the text.

1.1 Trapping neutral atoms
Trapping the atoms is a necessary prerequisite for the successful genera-

tion of a BEC. Since the atoms do not carry an electrical charge, one cannot
use static electric fields to create a trapping potential. One method to trap
neutral atoms is the use of time dependent electric fields, like for example
the electric field of a laser. These so-called optical dipole traps [58] rely on
the AC Stark effect [59], where one uses a laser which is red or blue detuned
in relation to an optical transition frequency of the atom. If the laser is red
detuned the atoms are drawn to regions of high field intensity and if the
laser is blue detuned the atoms feel an attractive force towards regions of
low intensity. This way the atoms are trapped either in a local minimum
or a local maximum of the laser field. Making use of the magnetic dipole
moment of the atoms, static magnetic fields can also be used to generate
a trap. Depending on its internal magnetic spin state, an atom is either
drawn to regions of high magnetic field strength or regions of low magnetic
field strength. Those internal spin states are often referred to as high field
seeker and low filed seeker, respectively. As it turns out, it is impossible to
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Figure 1.1: Schematic setup for a waveguide. The current I (orange) gener-
ates the magnetic field BI (blue), which is superposed by the homogenous
field Bc (green). They cancel each other on a line parallel to the wire. A cut
of the magnetic field distribution in the region of the minimum is presented
in the inset (red box). The black arrows indicate the magnetic field lines
and the color map shows the modulus of the magnetic field. Blue indicates
a weak field and red indicates a strong field.

generate a magnetic field maximum in a current free region [60, 61], thus
only a local field minimum comes into consideration to form a trap. This
implies that only low field seeker states can be trapped by static magnetic
fields.

1.1.1 Conventional magnetic microtraps
One of the simplest setups one can think of, in order to generate a

magnetic field trap, is a single long wire which generates a circular magnetic
field. A schematic depiction of the setup is presented in Fig. 1.1. The current
I (orange) flowing along the long wire, generates a circular magnetic field BI

(blue). The circular field BI is superposed by a homogenous field Bc (green),
which is oriented perpendicular to the wire. Bc is called the compression or
the bias field. BI and B0 cancel each other out along a line parallel to the
wire. The inset of Fig. 1.1 shows a cut of the magnet field distribution in the
region of the minimum. The color map represents |B|, where blue indicates a
weak magnetic field and red a strong magnetic field. A good approximation
of the field modulus close to the minimum is given by |B| = ar · r, where r
is the radial coordinate measured from the minimum of the potential and
ar = 2π

µ0

B2
c

I
[62]. In order to avoid a magnetic field zero at the minimum, as
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well as a cusp, a homogenous field B0 (not depicted in the figure) is applied
parallel to the wire. This yields a magnetic field distribution of the form
|B| ≈ B0 + 1

2
a2
r

B0
· r2. With that the atoms are confined in two dimensions

by a harmonic potential. A confinement in the axial direction is achieved
by additional wires perpendicular to the first one. For more details on the
discussed setup see Ref. [62]. A variety of different setups and geometries
is presented in the review articles [9, 63,64].

The electric circuits necessary to generate the magnetic field trap can
also be miniaturized and incorporated on a chip. Such a device is often called
an atom chip [65] or it is also referred to as a microtrap [9]. Atom chips are
not restricted to devices that are based on static magnetic fields, but also
integrated devices where the confining fields are optical or static electrical
fields. One motivation for the miniaturization of magnetic microtraps is
that the confinement of the atoms gets stronger, the closer one gets to
the field generating current. An even more interesting possibility that is
offered by integrated devices is the vast number of different and easily
realizable wire geometries on the chip. This makes it possible to create
interesting trapping potentials, like for example double well potentials or
lattice structures.

An interesting aspect is the possibility to generate traps close to the
surface of the chip. If the atoms can be positioned close enough to the sur-
face, the interaction of the atoms with the surface can be studied. Creating
a BEC in such a trap opens up the possibility to study the interaction
between the BEC and the surface.

If the BEC is brought close to the surface of a conventional conductor,
the lifetime of the BEC is reduced due to a significantly increased atom loss
rate from the trap. The reason for the increased loss rate are fluctuations
of the electrical current, the Johnson noise [10,11,66–68], which translates
to fluctuations of the magnetic field. These fluctuations drive transitions
between the spin states of the atom, so that an atom in a low field seeker
state can flip into a high field seeker state. If that happens, the atom gets
expelled from the trap. If the intensity of the field fluctuations at the
corresponding frequency is high enough, this mechanism leads to an atom
loss rate that drastically reduces the BEC lifetime [10,11].

1.1.2 Superconducting magnetic microtraps
In order to avoid the losses due to the Johnson noise, the use of super-

conducting microtraps is advantageous compared to conventional metallic
microtraps. In a superconductor the Johnson noise is drastically suppressed,
which leads to significantly lower spin-flip rates. Thus the lifetime of the
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BEC is considerably increased [69–72]. Despite the technical difficulties
posed by the combination of ultrahigh vacuum technology with cryostat
technology, in the recent years superconducting microtraps have been suc-
cessfully realized [25–30].

The goal is to bring the minimum of the harmonic trap as close as
possible to the superconducting surface. However, the Meissner effect poses
an obstacle. The expulsion of the magnetic field from the superconductor
lowers the trap depth close to the superconductor [27]. This effect limits
the minimal distance between the superconductor and the trap. The con-
sequences of the Meissner effect can be reduced by replacing the type-I
superconductor by a type-II superconductor [28,73]. In the so-called mixed
state or vortex state, the magnetic field is able to penetrate the supercon-
ductor in the form of vortices [74]. However, in the region where a vortex
forms, the superconductivity breaks down, which leads to an increase of
the spin-flip rate.

Despite the impact of the Meissner effect, it was shown that the forma-
tion of a trap close to the surface is still possible [49, 72, 75, 76]. So far a
trap distance of 14µm has been realized in an experiment [49]. Theoretical
calculations of the magnetic field distribution of a rectangular supercon-
ducting strip have shown that it is even possible to create a trap in a
distance below 1µm [75]. However, such a close approach is only possible
at the corners of the superconductor.

The close approach to the superconductor, combined with the increased
lifetime of the BEC, makes the superconducting microtrap the ideal tool
to study the interaction between a superconductor and a BEC.

1.2 Bose-Einstein condensation

The central object of this thesis is the Bose-Einstein condensate. A
cloud of Bose atoms is trapped by an appropriate potential and cooled
below the transition temperature Tc. The case of non-interacting particles
is standard textbook knowledge and therefore not covered in detail here (see
for example [59,77,78]). At the transition temperature Tc the occupation of
the ground state becomes macroscopic, meaning that it is of the order of the
total number of atomsN , while the occupation of the excited states becomes
of order 1. As the temperature is further reduced, more and more atoms
occupy the ground state, until at T = 0 all atoms are in the ground state.
The macroscopic occupation of the ground state is called Bose-Einstein
condensation.
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1.2.1 Stationary Gross-Pitaevskii equation for a dipo-
lar BEC

In the case that the bosons under consideration are atoms, like for ex-
ample 87Rb, the interaction between the atoms can not be neglected. For
example, the transition temperature is modified due to the interaction be-
tween the atoms. However, in this section, and also throughout the rest of
this thesis, the case T = 0 is discussed. This is an appropriate assumption
if the temperature of the system is far below the transition temperature.
Consider N interacting bosons trapped in a potential VT (r). Say the inter-
action potential between two atoms at the positions ri and rj is U (ri − rj).
The Hamiltonian for this system is given by

Ĥ =
N∑
i=1

[
p2
i

2m + VT (ri)
]

+ 1
2

N∑
i=1

N∑
j 6=i

U (ri − rj) , (1.1)

where pi is the momentum operator of the i-th atom. All atoms in the
trap are of the same kind and therefore have the same mass m. In order
to find an expression for the energy of the system, it is necessary to find
an appropriate many body wave function for the bosons. Within a mean
field approach the so-called Hartree ansatz is used for the wave function,
where the many body wave function ΨH is expressed as a product of all
single body wave functions of the individual atoms. At zero temperature all
atoms occupy the same single body state ψ. With that the Hartree ansatz
reads

ΨH (r1, r2, . . . , rN) =
N∏
i=1

ψ (ri) . (1.2)

Evidently, the wave function is already symmetric, so that there is no
need for symmetrization of the wave function. The energy of the system of
interacting bosons is calculated as the expectation value of the Hamiltonian
(1.1) with respect to the wave function (1.2), which yields the following
energy functional

E [ψ] =
〈
Ĥ
〉

=
ˆ

R3N

dr1dr2 . . . drN Ψ∗H (r1, r2, . . . , rN) ĤΨH (r1, r2, . . . , rN) .
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After evaluating this expression, the energy functional is found to be

E [ψ] = N

ˆ
dr

− ~2

2m |∇ψ (r)|2 + VT (r) |ψ (r)|2

+N − 1
2

ˆ
dr′ U (r− r′) |ψ (r)|2 |ψ (r′)|2

. (1.3)

In order to find the ground state of the system, the energy needs to be
minimized under the constraint that the number of atoms

N [ψ] =
ˆ
dr |ψ (r)|2

remains constant. This is most conveniently accomplished by the method of
Lagrange multipliers. It leads to the minimization of E [ψ]−µN [ψ], where
µ is the chemical potential. Here µ is introduced as Lagrange multiplier
and makes sure that the number of atoms remains constant. The result of
the minimization reads{
−~2∇2

2m + VT (r) + (N − 1)
ˆ

dr′ U (r− r′) |ψ (r′)|2
}
·ψ (r) = µ ·ψ (r) .

(1.4)
This is the so-called Gross-Pitaevskii equation (GPE) [59,78]. It is a non-
linear Schrödinger equation. Its eigenvalue is the chemical potential and
not the energy, as it is the case for the linear Schrödinger equation. The
non-linear term in the GPE appears due to the interaction between the
atoms. In the non-interacting case with U (r− r′) = 0, the GPE reduces to
the standard linear Schrödinger equation and the chemical potential gives
the energy per particle. The external potential VT (r) confines the atoms
and in the following it is referred to as trapping potential or simply as trap.
In principle the trapping potential can be arbitrary. However, usually a
harmonic potential is used. Therefore, for the remainder of this work, VT
is assumed to be a harmonic potential of the form

VT (r) = m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (1.5)

Obviously, the mass m of the atoms is a fixed parameter. The only tuneable
parameters are the trap frequencies ωx, ωy, and ωz.

The interaction potential U (r− r′) can have different kinds of con-
tributions. The dominant interaction at low temperatures is the s-wave
scattering [59, 78]. This interaction is modeled with the potential

Us (r− r′) = gsδ (r− r′) . (1.6)
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The parameter

gs = 4π~2

m
as (1.7)

gives the strength of this contact interaction, with as being the scattering
length. In the case of 87Rb the scattering length has been experimentally
determined to be as = 5.7 nm [4]. The atom density of a BEC is typically
of the order of 1013 cm−3. Thus, the mean distance between two atoms is
of the order of a few 100 nm. So that the distance is much larger than
the scattering length. In this sense the interaction between the atoms is
considered weak and is usually referred to as a weakly interacting Bose gas.

If the atoms carry a magnetic dipole moment, an additional contribution
to U (r− r′) needs to be considered. The magnetic interaction potential
between two dipoles is given by [79]

Umd (r− r′) = −µ0

4π
3 (µd · n̂) (µ′d · n̂)− µd ·µ′d

|r− r′|3
, (1.8)

where n̂ = (r− r′) / |r− r′| is the normalized distance vector between the
two magnetic dipole moments µd andµ′d, and µ0 is the vacuum permeability.
Applying an homogeneous external magnetic field leads to the polarization
of the BEC. In the following, the BEC is always considered to be completely
polarized. In the case that the atoms are not all in the same spin state,
the Hartree ansatz (1.2) is no longer applicable. It needs to be expanded
in order to describe the other involved spin states as well. This results in
a system of coupled GPEs rather than a single equation. Unless explicitly
stated otherwise, the direction in which the dipoles are oriented is always
the z-direction. Since all the atoms carry the same magnetic dipole moment
µd one can write that µd = µ′d = µd · êz. Thus the expression for the dipole-
dipole interaction potential simplifies to

Umd (r− r′) = −gD4π

(
3 (z − z′)2

|r− r′|5
− 1
|r− r′|3

)
. (1.9)

Here the parameter
gD = µ0µ

2
d, (1.10)

is introduced. It is a measure for the strength of the dipole-dipole interaction.
In contrast to the s-wave interaction, the dipole-dipole interaction is a long
ranged, anisotropic interaction. Depending on the relative position of the
two interacting dipoles the interaction sign may be negative or positive.
An attractive interaction between the atoms can cause an instability of the
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condensate. If the dipole-dipole interaction becomes too strong, the BEC
may become unstable [80]. Using the mathematical identities

3 (z − z′)2

|r− r′|5
− 1
|r− r′|3

= ∂2

∂z2
1

|r− r′|
− 1

3∇2
r

1
|r− r′|

,

and
−∇2

r
1

|r− r′|
= 4πδ (r− r′) ,

the expression for the dipole-dipole interaction is rewritten in the following
way [57]

Umd (r− r′) = −gs
gD
3gs︸︷︷︸
≡εD

(
3

4π
∂2

∂z2
1

|r− r′|
+ δ (r− r′)

)
. (1.11)

Here, yet another dimensionless interaction parameter is introduced:

εD ≡
gD
3gs

. (1.12)

It is a measure for the strength of the dipole-dipole interaction relative to the
strength of the contact interaction [6,80]. The stability of the condensate
is only guaranteed if −1/2 < εD < 1, which becomes apparent in the
next section. Beyond the bounds of this interval, the stability of the BEC
depends on the geometry of the trapping potential. The full interaction
potential is now written as

U (r− r′) = gs

[
(1− εD) δ (r− r′)− 3εD

1
4π

∂2

∂z2
1

|r− r′|

]
. (1.13)

This expression shows that the dipole-dipole interaction modifies the strength
of the contact interaction, and that it introduces a long ranged component
to the interaction potential. If |εD| � 1, the dipole-dipole interaction does
not play an important role and may be neglected. For example, 87Rb has a
value of εD ≈ 0.007, which means that only the contact interaction needs
to be considered. Since alkali atoms have only a single electron in the outer
shell, they have a magnetic dipole moment of 1µB, which is the reason for
this small value of εD. 52Cr has 6 electron in its outer shell, which leads
to a magnetic dipole moment of 6µB. The magnetic dipole moment en-
ters the parameter εD quadratically, so that for chromium the value of the
parameter is considerably larger. It was experimentally determined to be
εD ≈ 0.15 [5, 81]. Here the dipole-dipole interaction does have an substan-
tial influence on the BEC properties. A BEC where that is the case is called
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a dipolar BEC. Besides 52Cr there are other elements with large magnetic
dipole moments which have already been condensed. 168Er [7,82] which has
a magnetic dipole moment of 7µB, or 164Dy [8,83] with a magnetic dipole
moment of 10µB, promise to have very large εD values. However, the exact
values for εD have not yet been experimentally determined. In Ref. [8] it
was suggested that 164Dy may have an εD value larger than 1.

1.2.2 The Thomas-Fermi approximation
Solving the GPE is not an easy task. The main difficulties arise due to

the non-linear term. Of course the presence of the long ranged, anisotropic
dipole-dipole interaction does not simplify the matter. In general, for both
cases (εD = 0 and εD 6= 0), the stationary GPE needs to be solved numer-
ically. However, there is a useful approximation which can be applied in
case that there is a sufficiently large number of atoms in the condensate. If
this is the case, the shape of the ground state is determined between the
balance of the interaction term, which in the case of a repulsive interac-
tion potential drives the atoms apart, and the external trapping potential,
which keeps the atoms together. It turns out that the kinetic term becomes
more and more negligible. That this is actually the case can be seen by
appropriately scaling the GPE [84]. It is useful to split this discussion into
two parts: First the case without dipole-dipole interaction is discussed. The
effects of εD 6= 0 are discussed afterward.

It is known from the linear Schrödinger equation (see for example [85,86])
that the harmonic oscillator energy scale is given by εho = ~ω, where ω is
the geometric mean of the three trap frequencies: ω = (ωxωyωz)1/3. In the
following εho is used as energy scale. The length ξ is used as measure of
distance. Next, the GPE is scaled using the quantities r̃ = r/ξ, µ̃ = µ/εho,
and ω̃a = ωa/ω, with a ∈ {x, y, z}. The appropriate scaling of the wave
function is derived from the normalization condition

ˆ
dr |ψ (r)|2 = 1 !=

ˆ
dr̃

∣∣∣ψ̃ (r̃)
∣∣∣2 =
ˆ

dr

∣∣∣ψ̃ (r̃)
∣∣∣2

ξ3 ⇒ ψ (r) = ψ̃ (r̃)
ξ3/2 .

The scaled GPE reads

µ̃ · ψ̃ (r̃) =

− 1
ξ2

~
mω

1
2∇̃2 + 1

2
mω

~
ξ2
(
ω̃2
xx̃

2 + ω̃2
y ỹ

2 + ω̃2
z z̃

2
)

+4πNas~
mωξ3

∣∣∣ψ̃ (r̃)
∣∣∣2
 · ψ̃ (r̃) .
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Consider the case where the kinetic term and the harmonic potential term
are of the same order. Equating the coefficients of the two terms yields

1
ξ2

~
mω

= mω

~
ξ2 ⇒ ξ =

√
~
mω
≡ aω,

and the GPE takes the guise

µ̃ · ψ̃ (r̃) =
{
−1

2∇̃2 + 1
2
(
ω̃2
xx̃

2 + ω̃2
y ỹ

2 + ω̃2
z z̃

2
)

+ 4πNas
aω

∣∣∣ψ̃ (r̃)
∣∣∣2} · ψ̃ (r̃) .

The length scale associated with this case is found to be the harmonic
oscillator length aω. This is the length scale that is found for the harmonic
oscillator ground state from the linear Schrödinger equation. As long as
Nas � aω the interaction term can be neglected and the ground state is
dominated by the kinetic term and the external potential term. The result
is the linear Schrödinger equation for a harmonic oscillator.

Next, consider the case that the external potential term and the inter-
action term are of the same order. Again the coefficients of the respective
terms are equated in order to determine the associated length scale:

4πNas~
mωξ3 = 1

2
mω

~
ξ2 ⇒ ξ =

(
8πNas

aω

)1/5
aω ≡ ΛTF.

A convenient, dimensionless parameter which describes the strength of the
s-wave interaction is given by

GN = 8πNas
aω

. (1.14)

It sets the strength of the contact interaction in relation to the harmonic
trapping potential. With ξ = ΛTF = G

1/5
N aω the GPE reads

µ̃ · ψ̃ (r̃) =
(
−1

2
1

G
2/5
N

∇̃2 + 1
2G

2/5
N

(
ω̃2
xx̃

2 + ω̃2
y ỹ

2 + ω̃2
z z̃

2
)

+ 1
2G

2/5
N

∣∣∣ψ̃ (r̃)
∣∣∣2) · ψ̃ (r̃) .

This clearly shows that the kinetic term becomes more and more insignifi-
cant as the value of the parameter GN increases. As the number of atoms in
the BEC becomes larger, eventually the region is reached where Nas � aω,
and with that also GN � 1. In this limit the kinetic term in the GPE can
be neglected, which leads to the so-called Thomas-Fermi (TF) approxima-
tion. In this limit the GPE reduces to an algebraic equation where the
non-linear term is no longer an obstacle. The result is the TF equation,
which in the unscaled form reads
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VT (r) +Ngs |ψ (r)|2 = µ. (1.15)

Defining the atom density nTF (r) = N |ψ (r)|2, the above equation yields

nTF (r) = 1
gs

[
µ− m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)]

= n
(0)
0

1− x2[
λ

(0)
x

]2 − y2[
λ

(0)
y

]2 − z2[
λ

(0)
z

]2
 . (1.16)

Within the TF approximation, a BEC in an harmonic trap has an ellipsoidal
shape. The three TF semi axes of the BEC are given by

λ(0)
a =

√
2µ
mω2

a

, a ∈ {x, y, z} (1.17)

and the central atom density of the BEC is

n
(0)
0 = µ(0)

gs
. (1.18)

The superscript (0) indicates that these are the quantities for a non-dipolar
BEC with εD = 0. The chemical potential µ(0) is fixed by the normalization
condition ˆ

DTF

drnTF (r) = N, (1.19)

where the integration domain DTF is defined as the region where expression
(1.16) is positive

DTF =

r ∈ R3

∣∣∣∣∣∣∣
x2[
λ

(0)
x

]2 + y2[
λ

(0)
y

]2 + z2[
λ

(0)
z

]2 ≤ 1

 .
Integral (1.19) can be solved analytically, which yields the chemical poten-
tial

µ(0) = 152/5
(
Nas
aω

)2/5 ~ω
2 . (1.20)

This implies that the central density of the TF ellipsoid reads

n
(0)
0 = 15

8π
N

λ
(0)
x λ

(0)
y λ

(0)
z

. (1.21)
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The presence of the dipole-dipole interaction complicates the situation
considerably. Under the scaling transformation r → r̃ = r/ξ, the dipole-
dipole interaction potential Umd behaves identical to the s-wave scattering
potential Us. Thus the previously presented argument, which motivated
the Thomas-Fermi approximation, still holds [84]. However, the resulting
TF equation

(1− εD)nTF (r)− 3εD
1

4π
∂2

∂z2

ˆ

DTF

dr′
nTF (r)
|r− r′|

= µ− VT (r)
gs

(1.22)

can no longer be simply solved for the density distribution. The density
distribution nTF (r) is determined by this integral equation. The integra-
tion domain is again defined as the region where the density distribution
remains positive. It has been shown by Eberlein et al. [80] that the den-
sity distribution for the case εD 6= 0 remains ellipsoidal. The dipole-dipole
interaction only modifies the semi axes of the BEC, so that the density
distribution is still of the form

nTF (r) = n0

(
1− x2

λ2
x

− y2

λ2
y

− z2

λ2
z

)
. (1.23)

Indeed, with this ansatz for the density distribution the TF equation can
be solved self consistently. The first task is to find a solution to the inte-
gral that appears in (1.22). This integral has the same form as an integral
which describes the gravitational potential generated by an ellipsoidal mass
density distribution. Chandrasekhar encountered the same type of integral
during his study of rotating gas clouds. Due to the rotation the density
distribution of the gas clouds becomes ellipsoidal, just like the atom dis-
tribution in the BEC. Chandrasekhar shows in Ref. [87] that the three
dimensional integral over this ellipsoidal density distribution has an exact
one dimensional representation. With ρ (r) = nTF (r) /n0, the potential at
a point inside the ellipsoid r ∈ DTF is expressed as

φ (r) = 1
4π

ˆ

DTF

dr′
ρ (r′)
|r− r′|

= λxλyλz
8

∞̂

0

du

(
1− x2

λ2
x+u −

y2

λ2
y+u −

z2

λ2
z+u

)2

√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)
.

(1.24)
At a point r /∈ DTF outside the density distribution it is given by

φ (r) = λxλyλz
8

∞̂

W (r)

du

(
1− x2

λ2
x+u −

y2

λ2
y+u −

z2

λ2
z+u

)2

√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)
. (1.25)
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W (r) is the elliptic coordinate of the point r and is defined by

x2

λ2
x +W (r) + y2

λ2
y +W (r) + z2

λ2
z +W (r) = 1. (1.26)

Geometrically this equation defines an ellipsoid shell with semi axes λ̄a =√
λ2
a +W (r), which contains the point r. For the moment only the case

r ∈ DTF is required. In Chapter 3 also the case r /∈ DTF becomes important.
It is known that the solution to the potential problem posed by (1.24)

is given by the Poisson equation −∇2φ (r) = ρ (r). This equation is used
to replace the TF density distribution in equation (1.22), which then takes
the guise

− 1
n0

{
(1− εD)

(
∂2

∂x2 + ∂2

∂y2

)
+ (1 + 2εD) ∂2

∂z2

}
φ (r) = µ− VT (r)

gs
.

In order for the solution of this differential equation to be stable, the
differential operator needs to be positive definite [57], which is only the
case for

− 1
2 < εD < 1. (1.27)

This means that only in this interval the stability of the BEC is guaranteed.
Beyond this region the BEC might still be stable, depending in the trapping
potential VT.

What is actually needed to solve the TF equation is the derivative of
the potential given in (1.24). The derivative is easily calculated and reads

∂2

∂z2φ (r) = −λxλyλz2

∞̂

0

du

(
1− x2

λ2
x+u −

y2

λ2
y+u − 3 z2

λ2
z+u

)
1

λ2
z+u√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)
.

At this point it is convenient to define the so-called index integrals [57, 87]

Ia ≡ Ia (λx, λy, λz)

=
∞̂

0

du√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)

1
(λ2

a + u) (1.28)
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and

Iab ≡ Iab (λx, λy, λz) ,

=
∞̂

0

du√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)

1
(λ2

a + u) (λ2
b + u) (1.29)

with a, b ∈ {x, y, z}. In terms of the index integrals the expression for the
second derivative of the potential φ (r) is written as

ϕ (r) ≡ ∂2

∂z2φ (r)

= − λxλyλz2
(
Iz − Ixzx2 − Iyzy2 − 3Izzz2

)
. (1.30)

Inserting everything in the TF equation and solving it for zero yields

0 =
(

(1− εD)n0 + 3εD
2 n0λxλyλzIz −

µ

gs

)
· 1

+
(
−(1− εD)n0

λ2
x

− 3εD
2 n0λxλyλzIxz + mω2

x

2gs

)
·x2

+
(
−(1− εD)n0

λ2
y

− 3εD
2 n0λxλyλzIyz +

mω2
y

2gs

)
· y2

+
(
−(1− εD)n0

λ2
z

− 9εD
2 n0λxλyλzIzz + mω2

z

2gs

)
· z2. (1.31)

This gives a set of four equations for the five unknown quantities λx, λy,
λz, n0 and µ. The normalization condition adds the fifth equation n0 =
15
8π

N
λxλyλz

. In general this system of coupled equations needs to be solved
numerically. Compared to the case εD = 0, where everything is given
by analytical expressions, the case with dipole-dipole interaction is a lot
less convenient. For this reason, the typical approach used throughout the
present work, is to consider the case εD = 0 first in order to get some
analytical approximation. Afterward, the case εD 6= 0 is calculated in order
to quantify the error made by the previous simplification.

In Chapter 4, a more general case of the here presented equations is
needed. Namely the case that the dipoles are not oriented along one of the
directions defined by the harmonic trap, but are arbitrarily orientated in
one of the planes spanned by two of the trap axes. The self consistency
equations for that case are presented in Ref. [57], where also the effects
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on the BEC are discussed. For the convenience of the reader, the central
results of Ref. [57] that are relevant for this work are also presented in
Appendix A.

1.2.3 Dynamics of a BEC
The main focus of this work is on the dynamical behavior of the conden-

sate. In order to describe the time evolution, the time dependent GPE is a
suitable tool. Similar to the stationary GPE it can also be derived using a
variational argument. The ground state was determined by minimizing the
energy, the dynamics follows the principle of minimal action s. The action
is given by

s [ψ] =
t2ˆ
t1

dt
ˆ

drL,

where L is the Lagrange density [59]

L [ψ] = i~
2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− E [ψ] .

In the above expression E is the energy density, and one can see that for
a time independent ψ, the Lagrange density reduces to the energy density.
Minimizing the action s becomes equivalent to minimizing the energy E.
However, if ψ is time dependent, minimizing the action yields the time
dependent GPE [59,78]

i~
∂

∂t
ψ (r, t) =

− ~2

2m∇2 + VT (r) +

+N
ˆ

dr′ U (r− r′) |ψ (r′, t)|2
ψ (r, t) . (1.32)

This equation describes the time evolution of a BEC at zero temperature
within mean field approximation. An analytical solution of this equation is
in general not possible and the use of numerical tools becomes necessary.
This issue is addressed in the next chapter. However, there is a useful
approximation, similar to the TF approximation in the stationary case,
which provides some analytical insight. Especially in the case that VT
is a harmonic potential. The wave function ψ is in general a complex
number, therefore it can be expressed in terms of the phase S (r, t) and its
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modulus |ψ (r, t)|. The modulus is connected to the density distribution
via n (r, t) = N |ψ (r, t)|2, and with that the wave function reads

ψ (r, t) = 1√
N

√
n (r, t)eiS(r,t).

Inserting this in the time dependent GPE (1.32) yields the following set of
coupled differential equations

~
∂

∂t
S (r, t) = − ~

2m [∇S (r, t)]2−VT (r)−
ˆ

dr′ U (r− r′)n (r′, t) , (1.33)

and
∂

∂t
n (r, t) + ~

m
∇ · [n (r, t) ∇S (r, t)] = 0. (1.34)

These two equations describe the time evolution of the BEC phase and
the density. Equation (1.34) is the continuity equation. This becomes
more obvious if the gradient of the phase is replaced by the velocity field
v (r, t) via ∇S (r, t) = m

~ v (r, t). With that equation (1.34) takes the guise
∂
∂t
n (r, t) = −∇ · [n (r, t) v (r, t)].
Furthermore, it is important to mention that in order to arrive at equa-

tion (1.33), it is necessary to drop the so-called quantum pressure term
− ~2

2m
√
n(r,t)

∇2
√
n (r, t). This term describes the kinetic energy associated

with the spatial change of the wave function modulus. It is equivalent to
the TF approximation in the stationary case. This becomes evident by
inserting ψ (r, t) = e−i

µ
~ tψ (r) in the time dependent GPE, which yields

the stationary GPE (1.4). Equations (1.33) and (1.34) are often referred to
as hydrodynamic equations, and in the stationary case reduce to the TF
equation (1.22).

From the TF approximation the ground state density distribution of
the BEC is known to be an ellipsoid. As an ansatz for the time dependent
density distribution, an ellipsoid with time dependent semi axes, which can
also perform center-of-mass motions, seems a natural choice. The ansatz
reads

n (r, t) = n0 (t)
(

1− (x+ ηx (t))2

λ2
x (t) − (y + ηy (t))2

λ2
y (t) − (z + ηz (t))2

λ2
z (t)

)
.

(1.35)
The center-of-mass motion is described by η (t). Making a similar ansatz
for the phase S (r, t) and inserting both in the hydrodynamic equations
yields after some calculation the following set of equations:

0 = λ̈a
λa

+ω2
a−

2gs
m
n0

[
1− εD
λ2
a

+ CaεDλxλyλzIaz

]
, for a ∈ {x, y, z} (1.36)
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with
Cx = Cy = 3

2 , and Cz = 9
2 ,

and for the center-of-mass motion the equations read

η̈a = −ω2
aηa, a ∈ {x, y, z} .

This means that the time evolution of the semi axes is described by a
set of three coupled differential equations. The center-of-mass motion is
simply a harmonic oscillation with frequency ωa in the respective direction.
This result is important, since it shows that in a harmonic potential the
center-of-mass motion is decoupled from the ellipsoidal shape fluctuations
of the BEC. For the discussion presented in Chapter 5 this is a major issue.
The time evolution of the semi axes based on (1.36) was studied for the
non-dipolar case in Ref. [88] and for the dipolar case in Ref. [89].

Since the equations presented in (1.36) are still difficult to solve, one
can make some further simplifications. If only small amplitude oscillations
are of interest, it is sufficient to consider linear fluctuations, δs (r, t) and
δn (r, t), around the equilibrium quantities. The ansatz for the phase reads

S (r, t) = −µ
~
t+ δs (r, t)

and for the density

n (r, t) = nTF (r) + δn (r, t) .

The density fluctuation δn (r, t) needs to be chosen such that n (r, t) remains
an ellipsoid at all times. Additionally the density fluctuations must conform
with particle conservation. This leads to a set of three coupled ordinary
differential equations

2n0gs
m

 Cxx,xx Cxx,yy Cxx,zz
Cyy,xx Cyy,yy Cyy,zz
Czz,xx Czz,yy Czz,zz


 ρ̂xx
ρ̂yy
ρ̂zz

 = Ω2

 ρ̂xx
ρ̂yy
ρ̂zz

 . (1.37)

A detailed derivation and discussion of this result is given in Ref. [57]. The
shape fluctuation δn (r, t) of the density is connected to the coefficients ρ̂aa.
The definitions of ρ̂aa and the matrix elements Caa,bb are listed in Appendix
A. The eigenmodes of the system are given by the eigenvectors of (1.37).
The corresponding oscillation frequency Ω (more precisely the square of
the frequency) is the eigenvalue. The here described modes are called the
monopole-quadrupole modes of the BEC. There are three more eigenmodes
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t = 0

t = 1/4Ts

t = 1/2Ts

Ts =
2π
Ωs

x

y

x

z

Figure 1.2: Monopole mode density fluctuation ρ (t) = ρ̂s cos (Ωst) for a
BEC that is elongated in the z-direction. Depicted are the contour lines
n (r, t) = 0. The left panel shows the contour line in the x-y-plane and the
right panel in the x-z-plane. The lines are shown for three different times:
t = 0 (red), t = Ts/4 (purple), and t = Ts/2 (blue). The BEC performs a
periodic, isotropic contraction and expansion. Therefore the mode is often
called breather mode.
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of this type which were omitted here, the so-called scissor modes [90–92].
They are connected to coefficients ρ̂xy, ρ̂xz, and ρ̂yz (see Ref. [57] or Appendix
A). For the discussed setup, the scissor modes are not coupled to the other
three monopole-quadrupole modes. Since they do not play any role in the
following discussion it is not necessary to go into further details here. An
illustrative example is the case εD = 0 and an spherical trapping potential
with ωx = ωy = ωz = ω, the eigenvalue equation reads

ω2

 3 1 1
1 3 1
1 1 3


 ρ̂xx
ρ̂yy
ρ̂zz

 = Ω2

 ρ̂xx
ρ̂yy
ρ̂zz

 .
The mode with the highest eigenvalue is the s-wave symmetric ρ̂s =
[1, 1, 1]T with the corresponding eigenvalue Ω2

s = 5ω2. This mode is of-
ten referred to as breather mode, which becomes clear by the form of this
particular shape oscillation, depicted in Fig. 1.2. The eigenvector ρ̂s de-
scribes an isotropic expansion and compression of the BEC. It is interesting
to note, that in a spherical trap the eigenvalue of this mode does not depend
on the strength of the dipole-dipole interaction, even though the BEC itself
may no longer be a sphere. Also, the isotropy of the motion is not affected
by the value of εD [57]. If the trap is not isotropic this is no longer the case.
The remaining two modes are degenerate in a spherical trap. They have
similar shape oscillations, only in different directions. One of the two eigen-
vectors is given by ρ̂x2−y2 = [1,−1, 0]T with the eigenvalue Ω2

x2−y2 = 2ω2.
While the density distribution expands in the x-direction, it contracts in
the y-direction, and vice versa (see Fig. 1.3). The remaining mode reads
ρ̂z2 = [−1, 0, 1]T , and the eigenvalue is Ω2

z2 = 2ω2. The reason for the
different denotation of the modes is the fact that for an elongated trap with
ωz > ωx = ωy, this mode displays mainly a dz2 symmetry (see Fig. 1.4).
In elongated traps the frequency of ρ̂z2 goes down while the frequency of
ρ̂x2−y2 hardly changes at all, see Fig 1.5. It is also interesting to note that
ρ̂x2−y2 remains an exact eigenvalue independent of the dipole-dipole inter-
action parameter εD, provided the dipoles are oriented in the z-direction.
In Figs. 1.2 – 1.4 the three types of shape fluctuations are illustrated.
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t = 0

t = 1/4Tx2−y2

t = 1/2Tx2−y2

Tx2−y2 = 2π
Ωx2−y2

x
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z

Figure 1.3: dx2−y2-mode density fluctuation ρ (t) = ρ̂x2−y2 cos (Ωx2−y2t):
While the BEC contracts in the x-direction it expands in the y-direction.
No motion takes place in the z-direction.

t = 0

t = 1/4Tz2

t = 1/2Tz2

Tz2 = 2π
Ωz2

x

y

x

z

Figure 1.4: dz2-mode density fluctuation ρ (t) = ρ̂z2 cos (Ωz2t): While the
BEC contracts in the z-direction, it symmetrically expands in the x-y-plane.
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Figure 1.5: The mode frequencies Ωs, Ωx2−y2 , and Ωz2 as a function of the
trap aspect ratio ν = ωx/ωz. The other trap aspect ratio is κ = ωy/ωz = 1.
The solid curves are for a non-dipole BEC, i.e. εD = 0. The dashed curves
correspond to a dipolar BEC with εD = 0.8.

1.3 The superconductor as a magnetic mir-
ror

The magnetic field generated by a magnetic dipole in free space is
different than the magnetic field of a dipole close to an ideal conductor.
In this section the influence of a superconducting surface on the field of a
magnetic dipole is discussed.

1.3.1 Boundary condition for the magnetic field
First, it is necessary to discuss the boundary condition for a magnetic

field B at an ideal conducting surface. The magnetic induction field must
of course satisfy the Maxwell equations of electro-magnetism (see for exam-
ple [79]). Consider the following Maxwell equation ∇ ·B = 0, or, for the
intended purpose more useful, its integral form

‚
∂V

dS ·B = 0. This equa-
tion holds for any Volume V , so one may chose V such that it contains the
interface area of two different media. The size of the box can be arbitrary
small. One may shrink the height of the box so that the only contribution
into or out of the box comes from two the faces with area ∆A parallel to
the interface. Say n̂ is the normal vector of the interface plane, this means
that

‚
∂V

dS ·B = (B1 · n̂−B2 · n̂) ∆A = (Bn1 −Bn2) ∆A = 0, which is
equivalent to Bn1 = Bn2. Thus, the normal component of the magnetic field
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is continuous at the interface plane. Say one medium is a superconductor.
Due to the Meisner-Ochsenfeld effect the magnetic field inside a supercon-
ductor vanishes. This means of course that also the normal component is
zero, thus the boundary condition for the normal component of the field
reads

B · n̂ = 0. (1.38)

In order to derive the boundary condition for the tangential component
of the magnetic field, consider the following Maxwell equation: ∇×B =
µ0j− µ0ε0∂tE, where j is the electrical current density and E the electrical
field. In its integral form this equation reads

¸
∂A

dr ·B = µ0
´
A

df · j −
µ0ε0∂t

´
A

df ·E. Again this equation must hold for an arbitrary area A, so
one may chose it to be a rectangle situated perpendicular to the interface
of two media. The height of the rectangle may be reduced so that it only
encloses the interface. As the surface area A goes to zero, also the last term
in the Maxwell equation vanishes. However, the first term containing the
current does not necessarily vanish if there is a surface current js = js · t̂
flowing along the interface. After all that has been said one can write¸
∂A

dr ·B =
(
B1 · t̂−B2 · t̂

)
∆l = (Bt1 −Bt2) ∆l = µ0

´
A

df · j = µ0js∆l,
which yields Bt1−Bt2 = µ0js. This means that if there is a surface current
present, the tangential component makes a jump. So even though the
magnetic field may be zero inside the conductor, it may still have a finite
tangential component at the surface.

All that has been said is of course only true, if the magnetic field inside
the conductor actually vanishes completely. In case of a superconductor this
is not strictly true. As is well known (see for example [74]), the magnetic field
penetrates the superconductor within a thin surface layer. The thickness λL
of this layer is the so-called London penetration depth. If one is interested
in the magnetic field distribution on a length scale of the penetration depth,
the above given arguments no longer hold. If the length scale of interest
is much larger then the penetration depth, the above given argument is
a good approximation and boundary condition (1.38) remains valid. The
typical length scale for the penetration depth is λL ∼ 100 nm (for example
λ

(Nb)
L ≈ 40 nm). For the present work the relevant length scale is of the order

of ∼ 10µm. Thus, boundary condition (1.38) is a good approximation.

1.3.2 The superconducting surface as a magnetic mir-
ror

Now that the boundary condition is known, it is possible to investi-
gate what effect this has on the magnetic field of a nearby dipole µd =
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(µx, µy, µz)T . In free space the magnetic induction field generated by a
dipole reads [79]

Bd,free (r) = µ0

4π

[
3 (µd · r) r
|r|5

− µd

|r|3

]
.

The presence of the superconductor modifies the field in such a way that
the boundary condition at the surface is met. Say the superconducting
plane is located at x = 0 and the magnetic dipole moment at rd = xd · êx.
Now a second magnetic dipole µ(m)

d is introduced at the position r(m)
d =

−xd · êx. It is the mirror dipole of the original dipole and is given by µ(m)
d =

(−µx, µy, µy)T . The mirror dipole generates itself a magnetic field B(m)
d,free.

By adding up Bd,free and B(m)
d,free a magnetic field is constructed which

satisfies the boundary condition at the surface (see Fig. 1.6). While the
normal component of the field vanishes, the tangential component does
not. This is due to currents flowing at the surface of the superconductor.
These screening currents generate a magnetic field which compensates the
external field. Thus the interior of the superconductor remains field free.
For the remainder of this work, these screening currents are referred to
as eddy currents. Usually the term eddy current is used in the context of
time dependent magnetic fields. Since in the following oscillating dipoles
are considered, it seems appropriate to use the term eddy current rather
than screening current. However, the oscillation frequency of the considered
dipole motion ranges from a few Hz up to 1 kHz. A typical gap frequency
of a superconductor (for example Nb) is around ∼ 100 GHz. This is by far
larger then the oscillation frequencies of the dipole moments. This means
that the magnetic field of the oscillating dipoles can be regarded as quasi-
statical in the sense that it is not necessary to account for effects arising
due to dynamical electro-magnetic fields. For all means and purposes the
superconductor in the discussed setup can be regarded as a perfect magnetic
mirror.

For the study of the interaction between the superconductor and the
dipolar BEC, it is very convenient to replace the effect of the superconductor,
or rather the effect of the induced eddy currents in the surface, by the effect
of a magnetic mirror image of the dipolar BEC. It is equivalent to study the
interaction between the BEC and the mirror BEC. The interaction potential
between the two is given by the dipole-dipole interaction potential and is
of the same form as (1.8).
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Figure 1.6: The left panel depicts the magnetic field distribution generated
by a magnetic dipole in free space. Obviously, the boundary condition
B · n̂ = 0 is not satisfied at the surface of the superconductor. The right
panel depicts the field distribution for the case that the field of a mirror
dipole is superposed. The resulting field lines are distorted such that the
boundary condition is satisfied.



Chapter 2

Numerics

A central task of many quantum mechanical problems is the solution
of the Schrödinger equation (SE). For complex systems this can be a quite
difficult undertaking. In many cases an analytical solution is not possible.
There are basically two different approaches to deal with this problem.
The first one would be to simplify the problem so far, until an analytical
solution becomes possible. Of course the simplified problem still needs
to represent the physical system under consideration. Usually, with an
analytical approximation this is only the case for a certain parameter regime.
The second approach is to leave the original problem unaltered and to
search for a numerical solution. Both approaches have their advantages and
disadvantages. While an analytical approximation often grants more insight
into the problem by some functional relations, the numerical solution usually
yields results for a broader parameter range. In general it is reasonable to
use both approaches. This allows to compare the results and with that also
validate them. If the system becomes too complex to find a meaningful
analytical approximation, numerical solutions are often the only way to
gain some insight. In the previous chapter it was already established that a
weakly interacting Bose gas at T = 0 can be described with the GPE. It is
essentially a SE with a non-linear term. Not only does the non-linear term
in the GPE make the analytical solution more difficult, it also complicates
the numerical solution. The numerical methods, used to solve the SE, need
to be altered in order to be applicable to the GPE. Throughout the course
of this work, the stationary as well as the time dependent GPE need to be
solved. In this chapter a method for solving the time independent GPE (1.4)
is presented and one for solving the time dependent GPE (1.32). Further
complications in solving the GPE arise from the dipole-dipole interaction
between the atoms in the BEC. A way to deal with this issue is discussed
as well. The potential generated by the mirror BEC poses an additional
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issue which is discussed in the next chapter.
The mentioned complications, regarding the numerical solution of the

GPE, lead to an increased computational effort compared to the solution
of the linear SE. To reduce the time necessary to compute the solution,
many parts of the computations are moved from the central processing unit
(CPU) to the graphics processing unit (GPU). This allows a parallelization
of the computation. The numerical methods presented in this chapter were
all implemented using CUDA [93].

2.1 The GPE of a dipolar BEC
Before starting the discussion about the numerical solution of the GPE,

it is useful to rewrite the GPE using units that are more convenient for the
numerical calculation. The limit for large numbers of atoms N was already
discussed. The natural length scale of the BEC for this case is given by
ΛTF = G

1/5
N aω (see Section 1.2.2). Using ΛTF as unit of length leads to a

divergence of the kinetic energy term for the case GN = 0. To avoid this,
the oscillator length aω is used as a unit of length. An appropriate energy
scale is presented by ~ω. The time is measured in units Tx = 2π

ωx
. For the

dynamical simulations this is a convenient time unit, since center-of-mass
oscillations in the x-direction are at the core of the investigation. As unit for
the frequency, the geometric mean of the trap frequencies ω = (ωxωyωz)1/3

is an appropriate choice. Using this frequency unit, the harmonic trap
frequencies can be expressed using the trap frequency aspect ratios

ν = ωx
ωz

and κ = ωy
ωx
, (2.1)

thus the trap frequencies read

ωx
ω

=
(
ν

κ

)1/3
,

ωy
ω

=
(
κ2ν

)1/3
, and ωz

ω
=
( 1
ν2κ

)1/3
. (2.2)

Throughout the rest of this chapter the aforementioned units are used. The
time dependent GPE takes the guise

i
1

2π
ωx
ω

∂

∂t
ψ (r, t) = Ĥψ (r, t) , (2.3)

with

Ĥ =
(
−1

2∇2 + VT (r) +GN

[
1− εD

2 |ψ (r, t)|2 − 3εD
2
∂2φ (r, t)
∂z2

])
. (2.4)
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The function φ (r, t) represents the long range component of the dipole-
dipole interaction potential and is given by

φ (r, t) = 1
4π

ˆ
dr′
|ψ (r′, t)|2

|r− r′|
. (2.5)

Formally this is the same as a Coulomb potential generated by a charge
distribution |ψ (r′, t)|2. It is well known (see for example [79]) that such a
potential function needs to satisfy the Poisson equation

−∇2φ (r, t) = |ψ (r, t)|2 . (2.6)

The external trapping potential is given by a harmonic potential of the
form

VT (r) = 1
2

(
ω2
x

ω2x
2 +

ω2
y

ω2y
2 + ω2

z

ω2 z
2
)
. (2.7)

Note, that VT does not necessarily need to be a harmonic potential but
can in general be arbitrary. Of course, the units chosen here might not
be appropriate for a different kind of potential. However, as long as the
potential displays a mainly harmonic character, the units presented above
are still adequate. In this chapter a purely harmonic potential is assumed
in order to discuss and test the numerical methods.

In order to perform numerical calculations the solution of the problem
needs to be sought on an finite region of space G ⊂ R3 with G = [x1, x2]×
[y1, y2]× [z1, z2]. In this finite region a numerical lattice with n = nxnynz
discrete lattice points is defined. The lattice point distance between two
points in each spatial direction is ∆x = x2−x1

nx
, ∆y = y2−y1

ny
, and ∆z = z2−z1

nz
.

With that a set of lattice points is defined by

Ra,b,c = (x1 + a ·∆x) êx + (y1 + b ·∆y) êy + (z1 + c ·∆z) êz,

a ∈ {0, 1, . . . nx − 1} , b ∈ {0, 1, . . . ny − 1} , c ∈ {0, 1, . . . nz − 1} .

Besides the discretization of space, also a discrete lattice for the time
dimension is required. The time evolution is restricted to a finite interval
T = [tinit, tfinal] ⊂ R. Without loss if generality, the initial time coordinate
can be set to tinit = 0, so that T = [0, tfinal]. This continuous interval is
divided in nt + 1 discrete lattice points. The separation between two points
is given by ∆t = tfinal/nt. The set of lattice points reads

tj = j ·∆t, j ∈ {0, 1, . . . , nt} .
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On this lattice a discrete version of any continuous function f (r, t) is
defined via

f jabc ≡ f (Ra,b,c, tj) .
In particular a discrete version of the wave function ψjabc ≡ ψ (Ra,b,c, tj) is
defined on this lattice. In order to keep the amount of indices minimal, the
following abbreviation is used:

f j ≡
(
f j0,0,0, f

j
1,0,0, . . . , f

j
nx−1,nz−1,nz−1

)T
.

f j contains all n elements of f jabc. For the continuous version of the wave
function the norm is defined over the infinite region R3 via

‖ψ (r, t)‖2 ≡
ˆ

R3

dr |ψ (r, t)|2 .

For the discrete version, the integral needs to be replaced by a discrete sum
over the finite region G:

∥∥∥ψj
∥∥∥2
≡

nx−1∑
a=0

ny−1∑
b=0

nz−1∑
c=0

∣∣∣ψjabc∣∣∣2 ∆x∆y∆z.

In order to calculate expectation values, it is necessary to find a discretiza-
tion for the operators acting on the wave function. This is easily done for
observables where the operator is simply a number, like in the case of the
center-of-mass position:

〈x〉 ≡
nx−1∑
a=0

ny−1∑
b=0

nz−1∑
c=0

xa ·
∣∣∣ψjabc∣∣∣2 ∆x∆y∆z, with xa = x1 + a ·∆x. (2.8)

In the same way the coordinates of the y- and z-component of the center-
of-mass position are calculated. The situation becomes more difficult if the
observable contains a differential operator. There is a number of different
methods to calculate discrete spatial derivatives. The simplest, and probably
most intuitive, is the method of finite differences [94]. While this method has
the advantage that it requires only little computational effort, the problem
is that it is not very accurate. Especially if high accuracy is demanded for
long evolution times. Therefore a spectral method is more suited to the
task. In the case of periodic boundary conditions a Fourier transformation
needs to be used. In the continuous case the transformation is given by

f̂ (k) = 1
√

2π3

ˆ

R3

dr f (r) e−ik · r,
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and the inverse Fourier transformation reads

f (r) = 1
√

2π3

ˆ

R3

dk f̂ (k) eik · r.

A derivative in position space becomes a simple multiplication in momen-
tum space, as can be easily seen

∂n

∂xn
f (r) = 1

√
2π3

ˆ

R3

dk f̂ (k) ∂n

∂xn
eik · r

= 1
√

2π3

ˆ

R3

dk f̂ (k) (ikx)n eik · r, n ∈ N.

So what needs to be done is to find the Fourier transform of f (r), multiply
it by (ikx)n and then perform an inverse Fourier transformation of the
function f̂ (k) (ikx)n. For a discrete lattice with periodic boundary condi-
tions the discrete Fourier transformation needs to be used. To keep the
notation better readable, only one dimensional functions are discussed in
the following. The discrete Fourier transformation reads

f̂α = 1
nx

nx
2 −1∑

a=−nx2

fae
−iα 2π

nx
a, α ∈

{
−nx2 ,−

nx
2 + 1, . . . , nx2 − 1

}

and the inverse transformation is given by

fa =
nx
2 −1∑

α=−nx2

f̂αe
iα 2π
nx
a, a ∈

{
−nx2 ,−

nx
2 + 1, . . . , nx2 − 1

}
.

The extension to more dimensions is straightforward, each additional di-
mension adds one more sum to the formula. To distinguish the discrete
derivative from the continuous, the notation δnx is used instead of ∂n

∂xn
. So

the discrete derivative is written as

δnxfa ≡
nx
2 −1∑

α=−nx2

(
i

2π
nx∆x

α
)n 1

nx

nx
2 −1∑

a′=−nx2

fa′e−iα
2π
nx
a′

 eiα 2π
nx
a,

a ∈
{
−nx2 ,−

nx
2 + 1, . . . , nx2 − 1

}
.

As is evident, the computational effort to calculate the spatial derivative
for a set of nx numbers scales with O(n2

x). In the case of three spatial
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dimensions this can become a significant factor. A more sophisticated
method to calculate a discrete Fourier transformation is presented by the
Fast Fourier Transformation (FFT) [94,95], where the computational effort
scales with O(nx log2 nx). In all the numerical calculations presented in
this work, the Fourier transformations were calculated using the FFT. An
algorithm for the FFT is presented in Ref. [94]. In order for the algorithm
to work, the number of lattice points needs to be an integer power of 2:
nx = 2k, ny = 2l and nz = 2m with k, l,m ∈ N.

In the following the discrete Laplace operator is denoted by

D(s) ≡ δ2
x + δ2

y + δ2
z , (2.9)

where the superscript (s) indicates that this is a spectral operator. Note,
that in Fourier space the discrete spectral Laplace operator reads

D̂(s) = −
(
k2
x + k2

y + k2
z

)
, (2.10)

where

ka,α = 2π
na∆a

α, α ∈
{
−na2 ,−

na
2 + 1, . . . , na2 − 1

}
, and a ∈ {x, y, z} .

2.2 Determining the ground state of the BEC
Before the dynamical calculations can be performed, the ground state

of the system needs to be determined. This is accomplished by finding the
eigenfunction of the stationary GPE (1.4) with the lowest energy. In other
words: Which function ψg, minimizes the energy functional (1.3)? A basic
concept to accomplish this is given by the imaginary time method [96, 97].
The idea is to propagate the time coordinate t along the imaginary axis,
rather than the real axis. The time is given by t = iτ , where τ is a real
parameter which describes the propagation along the imaginary time axis.
In order to illustrate this concept, consider the following SE

i~
∂

∂t
|ψ (t)〉 = Ĥ |ψ (t)〉 . (2.11)

Applying the substitution τ = −it, yields the transformed SE

~
∂

∂τ
|ψ (τ)〉 = −Ĥ |ψ (τ)〉 . (2.12)

Obviously, it is possible to define a time evolution operator (see for example
[85])

Ût = e−i
Ĥ
~ t,
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so that if an initial state |ψ (t = 0)〉 is given at a time t0 = 0, the state at
time t1 = t is given by |ψ (t)〉 = Ût |ψ (t = 0)〉. That this is true can be
easily verified by inserting |ψ (t)〉 in the SE (2.11). Similarly, the operator

Ûτ = e−
Ĥ
~ τ

can be defined. Having the initial state |ψ (τ = 0)〉, the propagated state
|ψ (τ)〉 is constructed via |ψ (τ)〉 = Ûτ |ψ (τ = 0)〉. Again, the conformation
is easily obtained by inserting |ψ (τ)〉 in the transformed SE (2.12). In
contrast to the time evolution operator Ût, the operator Ûτ is not unitary
and does not conserve the norm. Say, Ûτ is applied to an arbitrary state
|ψ〉. Let {|φn〉} be the set of energy eigenstates with energies En of the
Hamiltonian Ĥ, so that one can write

Ûτ |ψ〉 = e−
Ĥ
~ τ
∑
n

|φn〉 〈φn|ψ〉︸ ︷︷ ︸
Cn

=
∑
n

Cne
− Ĥ~ τ |φn〉

=
∑
n

Cne
−En~ τ |φn〉 .

Since the ground state has the lowest energy, the terms in this expansion,
corresponding to excited states, are exponentially suppressed compared
to the term corresponding to the ground state. The larger the parameter
τ gets, the smaller get the terms of the excited states compared to the
ground state. In principle, the ground state can be determined to arbitrary
precision by applying Ûτ for sufficiently large τ . Since the norm is not
conserved, the resulting wave function needs to be normalized, and the
ground state is found to be

|ψg〉 = lim
τ→∞

Ûτ |ψ〉√
〈ψ| Û †τ Ûτ |ψ〉

.

The evolution of the system with the imaginary time parameter is similar to
a diffusion process, where the system relaxes into its ground state. Therefore
this process is referred to in the following as diffusion and Ûτ as diffusion
operator. In order to find a numerical approximation for the ground state,
the diffusion needs to be discretized.

2.2.1 Normalized gradient flow
The diffusion equation for a BEC is found by substituting t = −iτ in

the time dependent GPE (1.32). In order to determine the BEC ground
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state, this diffusion equation needs to be solved. A method to achieve that
was presented by Bao et al. [98–101]. In this section, the general principle
of this method is discussed and the central equations necessary for the
determination of the ground state are presented. Basically, the idea is to
apply the method of the steepest decent to the energy functional (1.3). In
order to satisfy the constraint of particle conservation the resulting wave
function needs to be normalized after each time step. The result is the
following gradient flow with discrete normalization (GFDN):

∂

∂τ
ψ (r, τ) =

∇2

2 − VT (r) (2.13)

−GN

[1− εD
2 |ψ (r, τ)|2 − 3εD

2 ϕ (r, τ)
]ψ (r, τ) ,

ϕ (r, τ) = ∂2φ (r, τ)
∂z2 , (2.14)

−∇2φ (r, τ) = |ψ (r, τ)|2 , r ∈ G, τj ≤ τ ≤ τj+1, j ≥ 1, (2.15)

ψ (r, τj+1) ≡ ψ
(
r, τ+

j+1

)
=

ψ
(
r, τ−j+1

)
∥∥∥ψ (r, τ−j+1

)∥∥∥ , (2.16)

ψ (r, 0) = ψ0 (r) , r ∈ G, with ‖ψ0 (r)‖2 = 1. (2.17)

The right hand side of equation (2.13) is proportional to the negative gra-
dient of the energy functional (1.3), which means that ∂

∂τ
ψ ∝ − δE[ψ]

δψ
. The

change of the wave function ψ with the imaginary time parameter τ , follows
the negative gradient of the energy functional E [ψ]. The gradient flow is de-
scribed by equations (2.13)-(2.15). The normalization of the wave function
after each time step is performed in (2.16). In order to save computation
time, the initial wave function ψ0 (r) should be chosen such that it repre-
sents already a fairly good approximation of the sought ground state. In
the case of a BEC with a sufficiently large number of atoms (i.e. GN � 1),
the Thomas-Fermi approximation can be used. Using periodic boundary
conditions

ψjabc = ψja+nx,b,c = ψja,b+ny ,c = ψja,b,c+nz ,

the spectral discretization (2.9) for the spatial derivative is applicable. For
the time discretization a backward Euler method, as was proposed by Bao
et al. [100], is applied. The spatial and time discretization of the GFDN
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reads:

ψ∗ −ψj

∆τ = D(s)ψ∗

2

−
(

VT +GN

[1− εD
2

∣∣∣ψj
∣∣∣2 + 3εD

2 ϕj
])
ψ∗, (2.18)

ϕj = δ2
zφ

j, (2.19)

−D(s)φj =
∣∣∣ψj

∣∣∣2 , (2.20)

ψj+1 = ψ∗

‖ψ∗‖
. (2.21)

This set of equations needs to be solved in every time step j. The (not
normalized) wave function ψ∗ at the end of the time step is implicitly
defined by (2.18). In order to obtain ψ∗, an iteration process is applied.
Bao et al. present an effective method to solve this implicit equation. They
introduce a stabilization parameter α so that the equation reads

ψ∗,m+1 −ψj

∆τ = D(s)ψ∗,m+1

2 − αψ∗,m+1 −Aj
m,

with
Aj
m =

(
VT − α +GN

[1− εD
2

∣∣∣ψj
∣∣∣2 + 3εD

2 ϕj
])
ψ∗,m,

where m is the index for the iteration step. A Fourier transformation of
the whole equation yields

ψ̂∗,m+1 − ψ̂j

∆τ = −
(
α + k2

2

)
ψ̂∗,m+1 + Âj

m.

The hat over the symbol denotes the Fourier transform of the respective
quantity. In Fourier space, the Laplace operator D(s) becomes D̂(s) =
−k2 = −

(
k2
x + k2

y + k2
z

)
, see (2.10). This equation is now easily solved for

ψ̂∗,m+1, which reads

ψ̂∗,m+1 =
2
(
ψ̂j + ∆τ · Âj

m

)
[2 + ∆τ (2α + k2)] .
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Applying a second Fourier transformation to ψ̂∗,m+1 yields the result for
the particular iteration step. The iteration is stopped when ψ∗,m+1 and
ψ∗,m differ only by a small amount, a suitable criterion is∥∥∥ψ∗,m+1 −ψ∗,m

∥∥∥ < ε. (2.22)

Bao et al. also show that there is an optimal value for α, so that the iteration
converges as fast as possible. It turns out to be

αopt = 1
2 (bmax + bmin) ,

with

bmax = max
abc

(
VT +GN

[1− εD
2

∣∣∣ψj
∣∣∣2 + 3εD

2 ϕj
])
,

bmin = min
abc

(
VT +GN

[1− εD
2

∣∣∣ψj
∣∣∣2 + 3εD

2 ϕj
])
.

The GFDN with backward Euler time discretization is unconditionally
stable for all time step sizes. Note, the iteration needs not necessarily be
done until it converges. For example one can make only one iteration step,
i.e. m = 1, which is equivalent to the so-called backward/forward Euler time
discretization. While this reduces the number of iterations, it sets limits
on the size of the time step ∆τ . This is also discussed in Refs. [98,99,101],
where the limit of the time step size is shown to be ∆τ < αopt for the case
α = αopt. For a more detailed discussion of this method see Ref. [98] for the
case of a non-dipolar BEC and Ref. [100] for a dipolar BEC. An overview
of a number of different numerical methods to solve the GPE are presented
in Ref. [101].

In every time step the Poisson equation (2.20) needs to be solved in
order to calculate the long range component of the dipole-dipole interac-
tion. Again, the discrete Fourier transformation is used for this task. The
transformed equation is easily solved for the potential function φj at the
given time step j. The result reads

φ̂j =

∣̂∣∣ψj
∣∣∣2

k2
x + k2

y + k2
z

.

A divergence occurs when the denominator on the right hand side becomes
zero, which is the case for a = nx

2 , b = ny
2 , and c = nz

2 . What is actually
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needed for the long range part of the dipole-dipole interaction potential is
the second spatial derivative of φj. In Fourier space it reads

−k2
zφ̂

j = −
k2
z

∣̂∣∣ψj
∣∣∣2

k2
x + k2

y + k2
z

.

To avoid the divergence, the right hand side is simply set to −|̂ψj|2 at the
point where the divergence occurs. An alternative method would be to
use fixed boundary conditions instead of periodic boundary conditions and
thereby to replace the complex Fourier transform by a real discrete sine
transform. This approach, as it was proposed by Bao et al. in [100], avoids
the occurrence of a divergence.

An inverse Fourier transform of−k2
zφ̂

j yields the sought data ϕj = δ2
zφ

j.
Note, that this does not need to be done in every iteration step m, due to
the backward Euler time discretization that was chosen in (2.18). The last
task that is left to do in order to finalize the time step, is to normalize the
wave function ψ∗, which yields the wave function ψj+1 at the time step
j + 1. The diffusion process can be stopped when an additional time step
does not significantly change the wave function. Again, this is checked by
the criterion ∥∥∥ψj+1 −ψj

∥∥∥ < ε. (2.23)

The threshold ε is set to be machine precision, i.e. ε = 10−15, so that
the determined ground state is as precise as possible. The necessity of
this precision is discussed later in this chapter in the context of the time
evolution of the BEC.

2.2.2 Ground state in a harmonic trap
For the examples in this section exclusively harmonic external potentials

are used. The results for harmonic potentials are well known, which allows
to test the numerical results. For GN = εD = 0 the GPE reduces to the
linear SE. The ground state density distribution takes a Gaussian shape

|ψHO (r)|2 = π−3/4 exp
[
−
(
ωx
ω
x2 + ωy

ω
y2 + ωz

ω
z2
)]
. (2.24)

For very large GN the TF approximation is applicable, which yields

|ψTF (r)|2 = 15
8π

1
λxλyλz

(
1− x2

λ2
x

− y2

λ2
y

− z2

λ2
z

)
. (2.25)
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Figure 2.1: Depicted are cuts of |ψ (r)|2 along the line y = z = 0 for various
interaction strengths GN . The top panel shows the results for εD = 0 and
the bottom panel for εD = 0.6. The cuts are only presented for x ≥ 0 since
the wave functions are symmetric. The data points show the results from the
numerical solution of the stationary GPE. The dashed line shows Gaussian
density (2.24) and the solid lines the TF density distribution (2.25). The
density distribution is divided by its central value |ψ (0)|2, which is why
all curves start at 1. Parameters: trap aspect ratios: ν = 2 and κ = 0.8,
diffusion time step size ∆τ = 10−3, size of numerical lattice: 64× 64× 64,
expansion of the lattice: 6λx × 6λy × 6λz.
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In order to get the atom density distribution n (r), these expressions need
to be multiplied by the number of atoms N .

Fig. 2.1 compares these analytical results to the numerical results for
different values of GN and εD. Depicted are cuts of the density distribution
along the line y = z = 0. To allow an easier comparison, the results are all
normalized to their central value. For GN = 0 the Gaussian density distri-
bution is exactly reproduced. As GN increases, the density approaches the
TF approximation. Furthermore, it becomes evident that the TF approxi-
mation reproduces the density best in the central regions of the BEC and
fails at the edges. As GN becomes larger, the region where the TF approxi-
mation fails becomes smaller. For εD = 0.6 the size of the BEC is modified.
Since the dipoles are oriented in the z-direction, the BEC becomes more
elongated in that direction and contracts in the x- and y-direction for larger
εD.

Besides the shape of the ground state, the energy is also an interesting
quantity to compare. The energy is in fact the energy per particle ε = E/N .
For the case GN = εD = 0, it is well known that the ground state energy
is the harmonic oscillator energy

εHO = 1
2

(
ωx
ω

+ ωy
ω

+ ωz
ω

)
. (2.26)

Within the TF approximation, the chemical potential for the case εD = 0
is given by

µ(0) = 1
2

( 15
8πGN

)2/5
.

Since µ ∝ N2/5 and µ = ∂E
∂N

it is immediately clear that

ε
(0)
TF = 5

7µ
(0) = 5

14

( 15
8πGN

)2/5
≈ 0.41 ·G2/5

N . (2.27)

In Ref. [59] an expression for ε is derived based on a variational calculation
with an Gaussian trial wave function. The result reads

εGauss = 5
4

( 2
π

)1/5 ( 1
8πGN

)2/5
≈ 0.44 ·G2/5

N . (2.28)

Similar to the TF approximation, this result was derived under the as-
sumption that the number of particles is large enough so that the kinetic
energy term can be neglected. One would expect that for small values of
GN the energy is close to εHO. As GN increases, the kinetic energy term
becomes more and more insignificant. As was presented in Fig. 2.1, the
actual shape of the wave function lays between a Gaussian wave function
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Figure 2.2: Energy per particle ε = E/N vs. interaction strength GN =
8πNas

aω
. The green line shows εGauss, the blue line the TF result ε(0)

TF. In both
cases the kinetic energy was neglected. The harmonic oscillator energy
εHO in a spherical trap is marked by a red line. The data points show
the results from the numerical calculation. Parameters: trap aspect ratios:
ν = κ = 1 (circles), ν = 2 and κ = 0.8 (triangles), dipole-dipole interaction
strength εD = 0, diffusion time step size ∆τ = 10−3, size of numerical
lattice: 64× 64× 64, expansion of the lattice: 6λx × 6λy × 6λz.

and a TF ellipsoid. Thus the energy should also lay between εGauss and ε(0)
TF.

Since for increasing GN the wave function approaches the TF ellipsoid, the
energy approaches ε(0)

TF. In Fig. 2.2 the numerical results of the energy are
compared to the analytical approximations. As expected the energy ε is
between εGauss and ε(0)

TF and approaches for large GN the curve for ε(0)
TF.

From the density distribution of the BEC, presented in Fig. 2.1, as well
as from the energy presented in Fig. 2.2, one can see that from roughly
GN = 1000 the TF approximation yields useful results.

2.3 Time dependent GPE
For the time evolution of the BEC, the time dependent GPE is solved

by a discretization of the time evolution operator. The discussion presented
in this chapter is limited to the case of static harmonic potentials. However,
the presented method is also applicable to other external potentials. In
particular, the potential generated by the mirror BEC is incorporated in
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the next chapter. Contrary to the method discussed for the stationary case,
the method for the dynamical case is an explicit method and does not
require an iteration in order to self consistently determine the resulting
wave function. This saves a lot of computational time and, as it turns out,
the time evolution is still precise enough for the intended purpose. Using
periodic boundary conditions, the spatial derivatives, as well as the Poisson
equation for the dipole-dipole interaction are again evaluated with Fourier
transformations. The essence of the following method is the splitting of the
time evolution operator into different parts. In particular, it is split into
a part which contains the kinetic term of the Hamiltonian and one part
which contains the rest.

2.3.1 Operator splitting

The time evolution operator, which propagates the wave function from
a time t0 to a time t0 + ∆t, can be written in general as an operator of the
form eÂ∆t. The idea of operator splitting is to write this operator in the
form eB̂∆teĈ∆t, with Â = B̂+ Ĉ. In case that the commutator of those two
operators vanishes,

[
B̂, Ĉ

]
= 0, the splitting simply reads eÂ∆t = eB̂∆teĈ∆t.

In the case of the time evolution operator, B̂ + Ĉ is mainly given by
the Hamiltonian of the system, and in general the terms constituting the
Hamiltonian do not commute. The error ε that is made by replacing the
time evolution operator by the splitting operator is given by

ε = eÂ∆t − eB̂∆teĈ∆t = 1
2
[
Ĉ, B̂

]
∆t2 +O

(
∆t3

)
.

This result is easily verified by making use of the exponential power series.
This shows that this sequential splitting is correct up to linear order in ∆t
and is actually exact for the case that B̂ and Ĉ commute. This approxima-
tion can be improved with different splitting schemes. The splitting scheme
used in this work is the Strang splitting [102], it reads

eÂ∆t = e
1
2 B̂∆teĈ∆te

1
2 B̂∆t + ε,

with

ε = 1
24
([
B̂,
[
B̂, Ĉ

]]
− 2

[
Ĉ,
[
Ĉ, B̂

]])
∆t3 +O

(
∆t4

)
.

This means that the Strang splitting is correct up to second order in ∆t.
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2.3.2 Time splitting spectral method
In order to adopt the Strang splitting scheme for the time evolution of

the BEC, the Hamiltonian is split into two parts:

Ĥ = K̂ + V̂ .

The operator K̂ represents the kinetic energy term and V̂ the rest con-
sisting of the external potential and the interaction potential. A single
time step of length ∆t is performed with either e− i

2
V̂
~ ∆te−i

K̂
~ ∆te−

i
2
V̂
~ ∆t or

e−
i
2
K̂
~ ∆te−i

V̂
~ ∆te−

i
2
K̂
~ ∆t. In principle both schemes are equivalent. In the fol-

lowing both Versions of the splitting are discussed. It is important to note
that the application of e−i V̂~ ∆t on a wave function ψ does not change the
modulus squared of the wave function. Applying the operator e−i V̂~ ∆t to ψ
is equivalent to solving

i~
∂

∂t
ψ = V̂ ψ.

Since the operator V̂ simply multiplies the real value V to ψ, the complex
conjugate of the equation reads

−i~ ∂
∂t
ψ∗ = V ψ∗.

The time derivative of |ψ|2 based on those two differential equations, is
found to be

∂

∂t
|ψ|2 = ψ

∂ψ∗

∂t
+ ψ∗

∂ψ

∂t

= i

~
V (ψψ∗ − ψ∗ψ) = 0.

Since |ψ|2 remains constant during this part of the time step, expectation
values, like for example the center of mass, remain constant as well. This
becomes an important point later on. As was already mentioned, applying
V̂ to ψ corresponds to a simple multiplication in position space. This means
that also the operator e−i V̂~ ∆t is applied by simply multiplying e−iV~ ∆t to
ψ. The value of V depends in the case that GN 6= 0 on |ψ|2 and for εD 6= 0
it also involves the solution of a Poisson equation. However, since |ψ|2 is
constant during this operation, it is not necessary to do any self consistent
calculation. In order to compute the part of the time step which involves
the kinetic energy term K̂, a Fourier Transformation is employed. Therefore
this method is referred to as time splitting spectral method (TSSP).
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The approach for a single time step is the following:

ψ̂j
1 = exp

{
−i∆t2

(
k2
x + k2

y + k2
z

)}
· ψ̂j,

ϕ̂j1 = −
k2
z

∣̂∣∣ψj
1

∣∣∣2
k2
x + k2

y + k2
z

, ϕ̂j1 = −
∣̂∣∣ψj1∣∣∣2 for kx = ky = kz = 0,

ψj
2 = exp

{
−i∆t

[
VT +GN

(1− εD
2

∣∣∣ψj
1

∣∣∣2 + 3εD
2 ϕj1

)]}
·ψj

1,

ψ̂j+1 = exp
{
−i∆t2

(
k2
x + k2

y + k2
z

)}
· ψ̂j

2,

where the hats indicate the Fourier transform of the respective quantity. In
order to calculate this time step, six Fourier transformations are required:

ψj → ψ̂j, ψ̂j
1 → ψj

1,
∣∣∣ψj

1

∣∣∣2 → ∣̂∣∣ψj
1

∣∣∣2, ϕ̂j1 → ϕj1, ψj
2 → ψ̂j

2, and ψ̂j+1 → ψj+1.
It seems that for consecutive time steps, the last and first Fourier transfor-
mation can be omitted. However, if one is interested in some expectation
values after the time step, the transformation of the wave function back to
position space is necessary. Consider the following scheme:

ϕ̂j = −
k2
z

∣̂∣∣ψj
∣∣∣2

k2
x + k2

y + k2
z

, ϕ̂j = 0 for kx = ky = kz = 0,

ψj
1 = exp

{
−i∆t2

[
VT +GN

(1− εD
2

∣∣∣ψj
∣∣∣2 + 3εD

2 ϕj
)]}

·ψj,

ψ̂j
2 = exp

{
−i∆t

(
k2
x + k2

y + k2
z

)}
· ψ̂j

1,

ϕ̂j2 = −
k2
z

∣̂∣∣ψj
2

∣∣∣2
k2
x + k2

y + k2
z

, ϕ̂j2 = −
∣̂∣∣ψj2∣∣∣2 for kx = ky = kz = 0,

ψj+1 = exp
{
−i∆t2

[
VT +GN

(1− εD
2

∣∣∣ψj
2

∣∣∣2 + 3εD
2 ϕj2

)]}
·ψj

2.

In order to complete the time step using this scheme, also six Fourier

transformations are needed:
∣∣∣ψj

∣∣∣2 → ∣̂∣∣ψj
∣∣∣2, ϕ̂j → ϕj, ψj

1 → ψ̂j
1, ψ̂j

2 → ψj
2,∣∣∣ψj

2

∣∣∣2 → ∣̂∣∣ψj
2

∣∣∣2, and ϕ̂j2 → ϕj2. The computational effort for both schemes
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is identical. Again it seems, that by a combination of subsequent time
steps the first and last Fourier transformation can be omitted. And indeed,
using the latter scheme it is possible. Since the application of e− i

2
V̂
~ ∆t does

not change the expectation values, they can be calculated with respect to
the wave function ψj

2, rather than with respect to the wave function ψj+1.
In fact the knowledge of ψj+1 is not needed at all. The time evolution
scheme is the following: First the operator e− i

2
V̂
~ ∆t is applied, then the

operator e−i K̂~ ∆t. Then the expectation values are calculated. What follows
is a sequence of e−i V̂~ ∆t and e−i K̂~ ∆t for every time step. In order to obtain
the final wave function, in the last step the operator e− i

2
V̂
~ ∆t is applied.

Excluding the first and last time step, the number of necessary Fourier
transformations per time step has reduced from six to four.

Note, the described method can also be applied using the previous
splitting scheme. However, the resulting time series is shifted by ∆t/2.
Therefore, the latter scheme is preferable.

2.3.3 Time evolution in a harmonic potential
To conclude this chapter, the time evolution of a BEC in a harmonic

trap is presented. The approach is the following: first the ground state is
determined in a harmonic trap, then the harmonic trap minimum is shifted
by xs in the x-direction. The time evolution is calculated in the shifted
potential.

The center of mass is expected to perform harmonic oscillations with
period T = 1. That this is actually the case is presented in Fig. 2.3. The
x-coordinate of the center-of-mass 〈x〉 is presented as a function of time.
The first ten periods of the time evolution are shown. Ideally, the norm
should be conserved during the time evolution. Due to numerical error this
is not the case. The deviation of the wave function norm is measured by
L =

∥∥∥ψj
∥∥∥− ∥∥∥ψ0

∥∥∥. The longer the time evolution, the greater the error gets.
The longest time evolutions presented in this work are up to 104 oscillation
periods. In this case the error L is of the order 10−9.

In a purely harmonic potential the center of mass oscillates in the
harmonic trap while the shape of the BEC remains unaffected. However,
this is only the case if the initial wave function is the exact (shifted) ground
state. As a measure for the shape oscillations of the BEC, the width

σa =
√〈

(a− 〈a〉)2
〉
, a ∈ {x, y, z}

of the wave function is an appropriate quantity. Fig. 2.4 shows the relative
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Figure 2.3: Center-of-mass 〈x〉 vs. time t. The blue circles show the results
of the numerical calculation, the green line shows cos (2πt). The energy
was conserved within an accuracy of 10−8 and the norm within 10−12. Pa-
rameters: trap aspect ratios: ν = κ = 1, dipole-dipole interaction strength
εD = 0, contact interaction strength GN = 1000, diffusion time step size
∆τ = 10−3, accuracy threshold ε = 10−15, time step size ∆t = 10−3, poten-
tial shift xs = 0.3, size of numerical lattice: 64× 64× 64, expansion of the
lattice: 6λx × 6λy × 6λz.
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σx(0) vs. time t. The

top panel shows the time evolution based on a ground state determined
with accuracy threshold ε = 10−5 and the bottom panel with ε = 10−15.
Parameters: same as in Fig. 2.3
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fluctuations [σa (t)− σa (0)] /σa (0) of the width as a function of time. As
it turns out, it is very important to determine the ground state with high
accuracy in order to reduce the shape fluctuations. To demonstrate this,
in Fig. 2.4 two different results for the shape fluctuations are presented.
In one example the threshold (2.23) for the ground state accuracy was
set to ε = 10−5 in the other the threshold was set to 10−15. One can see
that this reduces the fluctuations of σa by several orders of magnitude. In
Chapter 5 this high accuracy becomes important since the fluctuations of
σa due to anharmonic terms in the potential are investigated. Therefore
it is necessary that the fluctuations due to numerical errors are orders of
magnitude smaller then the fluctuations due to the anharmonic terms.

2.4 Other numerical methods
The discussion presented here is restricted to two numerical methods,

the GFDN for the determination of the ground state and the TSSP for
the time evolution of the BEC. The GFDN with backward euler time
discretization and spectral spatial accuracy is suited for tasks where the
ground state needs to be determined with high accuracy [101], as is the
case in the present work. The TSSP is an explicit method, which provides
a time evolution with sufficient accuracy while the computation effort is
relatively small, especially compared to implicit methods like for example
the Crank-Nicolson (CN) method, which is also a popular method in this
field [103, 104]. The CN requires the solution of a non-linear system of
equations in every time step, thus it requires a rather high computational
effort. There are a number of different numerical methods to solve a non-
linear SE, a comparison of some popular methods is presented in Ref. [105],
where also the advantages and disadvantages of each method are discussed.



Chapter 3

Modeling the system

In this chapter a model is presented which describes a dipolar BEC in
close proximity to a superconductor. The GPE for a dipolar BEC close to
a superconducting surface is derived by a variation of the energy functional.
The superconductor is assumed to be an infinite half-space, which allows to
calculate the surface potential with the method of magnetic mirror dipoles.

Two different methods for the calculation of the potential, generated
by the mirror BEC, are presented. For the first method the mirror BEC
is assumed to be a three dimensional TF ellipsoid. The second method
relies on a simplified version of the TF density distribution, where the
three dimensional ellipsoid is approximated by an one dimensional density
distribution.

3.1 The GPE of a dipolar BEC close to the
surface of a superconductor

The first task is to find the appropriate GPE for the system under
consideration. The following derivation of the GPE is also presented in
Ref. [56]. A starting point for this is the Hamiltonian for the atoms in the
BEC. In general it can be written as

Ĥ = Ĥ0 + Ĥmir, (3.1)

where Ĥ0 is the Hamiltonian for the system without the surface interaction

Ĥ0 =
N∑
i=1

[
p2
i

2m + VT (ri)
]

+ 1
2

N∑
i=1

N∑
j 6=i

U (ri, rj) , (3.2)
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and Ĥmir describes the interaction with the mirror atoms

Ĥmir =
N∑
i=1

N∑
k=1

Umd (ri, r′k) . (3.3)

In Hmir it is necessary to sum the interaction between all the atoms in
the BEC, denoted by the index i, with all the atoms in the mirror BEC,
denoted by the index k. In contrast to the interaction between the atoms in
the BEC, here the restriction i 6= k is not needed. The reason is of course
that an atom also interacts with its own mirror atom. Furthermore, the
factor of 1

2 is unnecessary. Every atom interacts with every mirror atom,
which gives a total of N2 interaction terms.

Next, the energy functional E = 〈ΨH| Ĥ |ΨH〉 needs to be minimized
under the constraint that the number of particles is fixed, which means
that the norm of the wave function must be fixed. The result for the case
Ĥmir = 0 was already presented in Section 1.2. This was done by using
the standard Hartree ansatz (1.2) for the many body wave function. In
the following a similar approach is used. However, instead of (1.2), the
appropriate ansatz here is the Hartree ansatz for a mixture consisting of
two different kinds of bosons

ΦH ≡ ΦH (r1, . . . , rN ; r′1, . . . , r′N) =
N∏
i=1

ψ (ri)
N∏
k=1

χ (r′k) . (3.4)

The first kind of bosons are the original atoms in the BEC. Their single
body wave function is denoted by ψ. The other kind of bosons are the
mirror atoms, their single body wave function is χ. Of course, the mirror
atoms are not real particles, but merely a way to emulate the effect of
the eddy currents in the superconducting surface. In the same way χ is
not an actual physical wave function. However, this description is valid as
long as the ψ and χ remain separate and have no significant overlap. Any
interference effects between ψ and χ would be unrealistic. The single body
wave functions are as usual normalized to unityˆ

dri |ψ (ri)|2 = 1, and
ˆ

dr′k |ψ (r′k)|
2 = 1.

The norm of the many body wave function readsˆ
dR dR′ |ΦH|2 = 1,

where the abbreviations

dR ≡ dr1 . . . drN , and dR′ ≡ dr′1 . . . dr′N
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are used. Furthermore it is convenient to introduce

ψi ≡ ψ (ri) , χk ≡ χ (r′k) , and Uik ≡ Umd (ri, r′k) .

For the energy functional two contributions need to be calculated. First, the
energy connected with Ĥ0, which is given by E0 = 〈ΦH| Ĥ0 |ΦH〉. Since Ĥ0
contains only operators which act on ψ and not on χ, E0 is equal to energy
functional (1.3), which was derived using the standard Hartree ansatz ΨH
given in (1.2). That this is actually true is easily verified:

〈ΦH| Ĥ0 |ΦH〉 =
ˆ

dR dR′Φ∗HĤ0ΦH

=
ˆ

dR dR′
N∏

i,k=1
ψ∗i χ

∗
kĤ0

N∏
l,m

ψlχm

=
ˆ

dR
N∏

i,m=1
ψ∗i Ĥ0ψl

N∏
k,m=1

ˆ
dR′χ∗kχm︸ ︷︷ ︸
=1

= 〈ΨH| Ĥ0 |ΨH〉 ,

where ΨH is the standard Hartree ansatz

ΨH (r1, . . . , rN) =
N∏
i=1

ψ (ri) . (3.5)

What is left to do is to calculate the contribution of the mirror potential
to the energy functional

Emir [ψ, χ] = 〈ΦH| Ĥmir |ΦH〉

=
ˆ

dR dR′
N∏

i,k=1
ψ∗i χ

∗
k

 N∑
α=1

N∑
β=1

Uαβ

 N∏
l,m

ψlχm

=
N∑
α=1

N∑
β=1

ˆ
dr1 |ψ1|2 . . .

ˆ
drN |ψN |2

ˆ
dr′1 |χ1|2 . . .

ˆ
dr′N |χN |

2

×
ˆ

drα
ˆ

drβ ψ∗αψαUαβχβχ∗β

= N2
ˆ

dr
ˆ

dr′ ψ∗ (r)ψ (r)Umd (r, r′)χ∗ (r′)χ (r′) .
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To get the expression in the last line, one needs to use the fact that the wave
functions are normalized. This makes every factor in the product equal to
1, except the factor with i = l = α and k = m = β. Since each term in the
sum is identical, it is sufficient to pick one and multiply it by the number of
terms, which finally yields the last line. Since E0 is the same as (1.3), the
result of the variation is the GPE presented in (1.4). Additional terms can
only arise by the variation of Emir. By doing that, it is important to bear
in mind that ψ and χ are not independent functions. Since χ describes the
mirror atoms, it is merely the shifted and mirrored version of ψ. If xd is
the distance between the atom and the surface, the atom and its mirror
are separated by 2xd. The relation between the wave functions reads

χ (x, y, z) = ψ (−x+ 2xd, y, z) .

The variation of ψ∗ by δψ∗, leads also to the variation of χ∗ by δχ∗. With
that, the variation of the mirror potential is found to be

Emir [ψ∗ + δψ∗, χ∗ + δχ∗]

= N2
ˆ

dr
ˆ

dr′ [ψ∗ + δψ∗] ·ψ ·Umd (r, r′) ·χ · [χ∗ + δχ∗]

= N2
ˆ

dr
ˆ

dr′ψ ·Umd (r, r′) ·χ · [ψ∗χ∗ + ψ∗δχ∗ + δψ∗χ∗ + δψ∗δχ∗]

≈ Emir [ψ, χ] + δEmir

δψ∗
,

with

δEmir

δψ∗
= N2

ˆ
dr
ˆ

dr′ψ ·Umd (r, r′) ·χ · [ψ∗δχ∗ + δψ∗χ∗] . (3.6)

In the above expression only the terms linear in the variation are kept, the
quadratic term is dropped. The first term in this expression describes the
change of the energy of a mirror atom in the potential generated by an
atom. The second term describes the change of the energy of an atom in
the potential generated by a mirror atom. Inverting the x-coordinate of the
second term and shifting it by 2xd, shows that both terms are equal. The
expression simplifies to

δEmir

δψ∗
= 2N2

ˆ
dr
ˆ

dr′Umd (r, r′) |χ (r′)|2 ψ (r) δψ∗. (3.7)
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The resulting stationary GPE reads

µψ (r) =
− ~2

2m∇2 + VT (r)

+N
ˆ

dr′ U (r, r′) |ψ (r′)|2 + 2Vmir (r)
ψ (r) , (3.8)

where Vmir (r) is the potential generated by the mirror BEC and reads

Vmir (r) = N ·
ˆ

dr′ Umd (r, r′) |χ (r′)|2 . (3.9)

3.2 The mirror potential
In this section the mirror potential (3.9) is discussed and different models

that are used to calculate it are presented.

3.2.1 Potential generated by a TF ellipsoid
In the following the mirror potential Vmir is calculated with the help

of the TF approximation. In Section 1.2.2 it was established that the TF
approximation provides a good method to find an accurate approximation
for the BEC density distribution. The TF approximation fails at the edges
of the BEC but provides an accurate description deeper inside the BEC (see
Fig. 2.1). Since the potential Vmir represents merely a small perturbation to
the harmonic trapping potential VT, such details of the density distribution
of the mirror BEC do not play an important role. Therefore, the TF density
distribution is a suitable model for the mirror BEC. To further simplify the
matter, the corrections to the density distribution due to the BEC-surface
interaction are neglected for the model of mirror BEC. Thus the mirror
BEC density distribution is that of a BEC in a harmonic trap

N |χ (r)|2 = nTF (r) = n0

(
1− x2

λ2
x

− y2

λ2
y

− z2

λ2
z

)
. (3.10)

The task of calculating the mirror potential is very similar to the task of
calculating the dipole-dipole interaction potential between the atoms in
the BEC, which was discussed in Section 1.2.2. It is again convenient to
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use expression (1.11) for the dipole-dipole interaction where the long range
and the short range component of the potential are separated

Umd (r− r′) = −gsε(m)
D

(
3

4π
∂2

∂z2
1

|r− r′|
+ δ (r− r′)

)
. (3.11)

Here the parameter ε(m)
D is introduced. Although it is actually the same

parameter as εD, which was defined in (1.12), it is still useful to make
this distinction. The parameter ε(m)

D describes the interaction between the
atoms and the superconductor, while εD describes the interaction between
the atoms in the BEC. It is often convenient to set εD = 0 and study the
interaction for the case of a non-dipolar BEC. However, in a real setup,
εD and ε(m)

D always have the same value. The delta function in the above
expression for the interaction potential never contributes, since a real atom
and a mirror atom can never be at the same position. As was stated in the
previous section, the case where wave function ψ and χ have a significant
overlap is not allowed. Only the long range component of Umd plays a role
for the mirror potential. With ρmir (r) = nTF (r) /n0, the mirror potential
reads

Vmir (r) = −3ε(m)
D gsn0

∂2

∂z2
1

4π

ˆ
dr′

ρmir (r′)
|r− r′|

= −3ε(m)
D gsn0

∂2

∂z2φmir (r) . (3.12)

The potential function φmir is evaluated in the same way as the potential
function φ presented in Section 1.2.2. The analogy to the gravitational
potential of an ellipsoidal still holds, only this time the potential needs to
be evaluated at a point outside of the density distribution ρmir. In this case
the one dimensional representation of the integral is given by (1.25) instead
of (1.24). The potential function reads

φmir (r) = λxλyλz
8

∞̂

W (r)

duα (r, u) , (3.13)

with

α (r, u) =

(
1− x2

λ2
x+u −

y2

λ2
y+u −

z2

λ2
z+u

)2

√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)
. (3.14)

The integration limit W (r) was already defined in (1.26) and reads
x2

λ2
x +W (r) + y2

λ2
y +W (r) + z2

λ2
z +W (r) = 1. (3.15)
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Next, the second derivative of φmir with respect to z needs to be determined.
By taking the derivative of this expression, one has to keep in mind that
the lower integration limit also depends on z. Applying the Leibniz rule,
the derivative is found to be

∂φmir (r)
∂z

= λxλyλz
8

∂

∂z

∞̂

W (r)

duα (r, u)

= λxλyλz
8

−α (r, W (r)) ∂W (r)
∂z

+
∞̂

W (r)

du ∂α (r, u)
∂z

 .
It is easy to see from definition (3.15) of the elliptic coordinate W (r) that
α (r, W (r)) = 0. Only the second term in the above given expression
remains, which yields

∂φmir (r)
∂z

= λxλyλz
8

∞̂

W (r)

du ∂α (r, u)
∂z

. (3.16)

In the same way the second derivative is calculated to be

∂2φmir (r)
∂z2 = λxλyλz

8
∂

∂z

∞̂

W (r)

du ∂

∂z
α (r, u)

= λxλyλz
8

− ∂α (r, u)
∂z

∣∣∣∣∣
u=W (r)

∂W (r)
∂z

+
∞̂

W (r)

du ∂
2α (r, u)
∂z2

 .
This time, the derivative of α (r, u) is needed. It is easily calculated, and
reads

∂α (r, u)
∂z

=
−4 z

λ2
z+u

(
1− x2

λ2
x+u −

y2

λ2
y+u −

z2

λ2
z+u

)
√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)
. (3.17)

From the definition ofW (r) it is obvious that also the derivate of α vanishes
at u = W (r)

∂α (r, u)
∂z

∣∣∣∣∣
u=W (r)

= 0,

which finally yields the following relation for the derivative

∂2φmir (r)
∂z2 = λxλyλz

8

∞̂

W (r)

du ∂
2α (r, u)
∂z2 . (3.18)
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With the second derivate of α

∂2α (r, u)
∂z2 = 4

2z2

(λ2
z+u) −

(
1− x2

λ2
x+u −

y2

λ2
y+u −

z2

λ2
z+u

)
(λ2

z + u)
√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)
, (3.19)

the final result is given by

∂2φmir (r)
∂z2 = −λxλyλz2

∞̂

W (r)

du

(
1− x2

λ2
x+u −

y2

λ2
y+u − 3 z2

λ2
z+u

)
(λ2

z + u)
√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)
.

(3.20)
Again, the use of index integrals is convenient:

Ja ≡ Ja (r;λx, λy, λz)

=
∞̂

W (r)

du√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)

1
(λ2

a + u) , (3.21)

and

Jab ≡ Ja (r;λx, λy, λz)

=
∞̂

W (r)

du√
(λ2

x + u)
(
λ2
y + u

)
(λ2

z + u)

1
(λ2

a + u) (λ2
b + u) , (3.22)

with a, b ∈ {x, y, z}. This allows to express the second derivative of φmir in
terms of the index integrals J , which reads

ϕmir (r) ≡ ∂2φmir (r)
∂z2

= − λxλyλz2
(
Jz − Jxzx2 − Jyzy2 − 3Jzzz2

)
. (3.23)

Note, that this expression is very similar to the expression of ϕ which was
given in Eq. (1.30). However, instead of the index integrals I, the index
integrals J appear. The reason for that is that all terms connected to the
derivatives of the lower integration limit vanished due to the definition of
W . This is not the case for higher derivatives of φmir. A crucial difference
between ϕmir and ϕ, is the fact that the index integrals J , contrary to the
index integrals I, depend on the position r. Thus, ϕmir is a rather compli-
cated function of the coordinates x, y and z and not simply a polynomial
of second order like ϕ.
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mirror BECBEC

SC surface

O′

ê′x

ê′y
O

êx

êy

〈x〉 xd xd 〈x〉

Figure 3.1: The minimum of the harmonic trap is positioned in a distance
xd from the surface. It coincides with the origin O of the stationary coor-
dinate system K. The BEC is oscillating and its center is shifted by 〈x〉
away from the origin O. The center of the mirror BEC coincides with the
origin O′ of the co-moving coordinate system K′. The mirror potential is
calculated within the coordinate System K′ and the numerical calculations
are preformed in K. The transformation between K′ and K is given by
x = x′ + 2xd + 〈x〉.

The above given expressions connected to Vmir are all valid in the frame
of reference where the center of the mirror BEC coincides with the origin.
For the numerical calculation it is preferable to use a coordinate system
where the origin coincides with the minimum of the harmonic trapping
potential VT. The transformation is simply a shift by 2xd in the x-direction,
where xd is the distance between the minimum of the harmonic trap and the
superconducting surface. However, this is only true if the BEC is stationary
and does not oscillate in the x-direction. For an oscillating BEC the position
of the center-of-mass 〈x〉 needs to be considered. The sought expression for
the mirror potential reads

Ṽmir (r; xd, 〈x〉) = −3ε(m)
D gsn0ϕmir (r− (2xd + 〈x〉) êx) . (3.24)

The situation is depicted in Fig 3.1.
Using the index integrals to determine the mirror potential has the

advantage that instead of a three-dimensional integral, four one-dimensional
integrals need to be solved. The numerical effort involved in solving four
one-dimensional integrals is far less than solving one three-dimensional
integral. In fact, it is possible to reduce the number of index integrals
which need to be calculated numerically, since there exist algebraic relations
between the different index integrals. If the BEC is spherical or uni-axial,
it is even possible to give analytical expressions for the index integrals.
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A more detailed discussion of the integrals is given in Chandrasekhar’s
book [87], as well as in Ref. [57] for the index integrals I. A summary of the
central properties, needed to calculate the mirror potential, is presented in
Appendix B.

3.2.2 The column density model
Using a three dimensional TF ellipsoid to model the mirror BEC has the

downside that in general the potential needs to be calculated numerically.
For the numerical solution of the GPE this is not a very important issue,
since it is only a minor numerical task to solve the index integrals, compared
to the numerical effort involved in solving the GPE itself. However, for
an analytical approximation of the problem, the model for the potential
generating mirror BEC needs to be further simplified. Therefore, the so-
called column density model [52] is presented in this section. Consider
a harmonic trap with ωx, ωy � ωz. The resulting TF ellipsoid is very
elongated in the z-direction, i.e. λx, λy � λz. The minimum of the trap
is located in a distance xd from the superconducting surface which lays
in the plane x = 0. Assume a situation where the distance xd is a lot
larger than the radial expansion of the BEC: xd � λx, λy. However, the
length 2λz of the BEC may be of the same order as xd, or even larger. In
such a situation, it is reasonable to assume that the details of the atom
distribution along the radial direction of the BEC are not very important
for the potential generated in a distance 2xd. Whereas the distribution of
the atoms along the z-direction does play a significant role. In such a case,
the three dimensional density distribution nTF (r) may be approximated by
a one-dimensional column density distribution n1D (z). The column density
is constructed from nTF (r) by integrating over the radial direction. In order
for this to work, the BEC may even be tri-axial with λx 6= λy 6= λz, as
long as both axes are small compared to λz and xd. The resulting column
density reads

n1D (z) = n0

ˆ
dx
ˆ

dy
(

1− x2

λ2
x

− y2

λ2
y

− z2

λ2
z

)

= n0
πλxλy

2

(
1− z2

λ2
z

)2

. (3.25)

By integrating n1D (z) along the length of the BEC one finds the number
of atoms in the BEC

λzˆ

−λz

dz′ n1D (z) = N.
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Figure 3.2: ϕmir vs. z. The blue lines show ϕmir and the red lines show
ϕ

(1D)
mir . The potential is shown along a line with x = 4λx and y = 0. The

mirror BEC generating the potential is uni-axial with λx = λy and in the
left panel has an aspect ratio of λz/λx = 2 and in the right panel λz/λx = 4.

Defining the following potential function along the axis of the column
density

ϕ
(1D)
mir (r) = 1

4π

ˆ
dz′ ρ1D (z′)

[
3 (z − z′)2

|r− z′êz|5
− 1
|r− z′êz|3

]
, (3.26)

with ρ1D (z) = n1D (z) /n0, the one dimensional mirror potential takes the
guise

V
(1D)

mir (r) = −3ε(m)
D gsn0ϕ

(1D)
mir (r) . (3.27)

Comparing this expression to (3.24) shows that ϕ(1D)
mir is the approximation

of (3.23). The integral that appears in ϕ
(1D)
mir can be solved analytically,

but since the result is a rather long expression it is not presented here. A
comparison of the potential function ϕmir and ϕ(1D)

mir is shown in Fig. 3.2.
One can see that even for a not very elongated BEC with λz/λx = 2 the
potential of the one dimensional and the three dimensional BEC are almost
identical. As the BEC becomes more elongated, the agreement becomes
even better. It is also clear that the farther away from the mirror BEC
one gets, the better the approximation with the one dimensional mirror
BEC gets. The distance presented in Fig. 3.2 is the relevant distance for
the calculations in the subsequent chapters.
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3.3 Numerical approach to solve the GPE
In Section 2.3.2 a numerical method for the time evolution of the GPE

was presented. In this section a way to incorporate the mirror potential into
this time evolution scheme is presented. As was discussed in the previous
section, the mirror potential depends on the center of mass of the BEC,
in particular its x-coordinate. For the determination of the ground state
this is not a problem, since the position only changes minimally during
the diffusion process and finally relaxes in a fixed position. For the time
evolution the situation is rather different. From the stationary GPE (3.8),
derived in Section 3.1, it is clear that the time dependent GPE takes the
guise

i~
∂

∂t
ψ (r, t) =

 − ~2

2m∇2 + m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+Ngs

 (1− εD) |ψ (r, t)|2 − 3εD
1

4π
∂2

∂z2

ˆ
dr′
|ψ (r′, t)|2

|r− r′|

−ε(m)
D

45
4πλxλyλz

ϕmir (r− (2xd + 〈x〉) êx)
. (3.28)

The mirror potential ϕmir is calculate via (3.23). 〈x〉 is the center of mass
of the BEC at the time t. Since the BEC oscillates, 〈x〉 is time dependent
quantity. Thus, in every time step the position of the center of mass needs
to be updated. During a single time step, the center of mass moves from
a position 〈x〉 = xj to a position 〈x〉 = xj+1. The question is: What
position 〈x〉 to use for the calculation of the mirror potential? If one would
simply use 〈x〉 = xj, a systematic error would be introduced into the time
evolution. What is actually needed is some kind of effective position for
the center of mass, which is more representative for the whole time step
than xj. The mean x̄ = 1

2 (xj + xj+1) would be such an representative value.
Unfortunately the position xj+1 is of course unknown before the time step
is completed. One possibility to deal with this would be to determine xj+1
by a self consistent calculation of every time step. This would lead to a
drastic increase of the computational effort involved in calculating a single
time step. To avoid this, the time splitting method offers a simple solution.
As was shown, the application of e−i V̂~ ∆t does not change |ψ|2 and with
that also the position 〈x〉 of the center of mass remains constant. Only
the application of e−i K̂~ ∆t

2 shifts the position of the center of mass. And
since only the operator for a half time step ∆t/2 is applied, it does not
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shift 〈x〉 to its final position xj+1, but rather to an intermediate position
x̃. Since the BEC does not move with a constant velocity, but performs an
oscillation, x̃ is not exactly equal to x̄. Nevertheless, x̃ is a adequate value
to represent the center-of-mass position for the whole time step. For the
first part of the time step the position of the center of mass is not important,
since K̂ does not depend on 〈x〉. Before the time step is continued, it is
necessary to calculate the mirror potential using 〈x〉 = x̃. Next, e−i V̂~ ∆t is
applied and finally e−i K̂~ ∆t

2 , which concludes the time step. It is clear that
the described method works for the splitting scheme e− i

2
K̂
~ ∆te−i

V̂
~ ∆te−

i
2
K̂
~ ∆t.

But what about the splitting scheme e− i
2
V̂
~ ∆te−i

K̂
~ ∆te−

i
2
V̂
~ ∆t ? As was shown

in Section 2.3.2 this splitting scheme is useful since it reduces the number
of necessary Fourier transformation per time step. The same arguments as
above also apply for this scheme. In terms of a single time step, the only
difference is: instead of a single center-of-mass position representing the
whole time step, one has two center-of-mass position in order to calculate
the mirror potential. For the first half of the time step the initial center-
of-mass position is used, and for the last half of the time step, the final
position is used.

The approach for the numerical calculations is the following: First the
ground state is determined by solving the stationary GPE (3.8), using the
GFDN with backward Euler time discretization presented in Section 2.2.1.
The distance between the superconducting surface and the harmonic trap
minimum is set to be xd − xs. Next, the time evolution is calculated by
solving the time dependent GPE (3.28) using the TSSP, presented in Section
2.3.2, with the above described scheme to deal with the mirror potential.
The distance between the superconducting surface and the minimum of
the harmonic trap is set to xd. In this shifted potential the previously
determined ground state becomes an excited state, which performs a center-
of-mass oscillation with the amplitude xs around its equilibrium position.
Note, that the presence of the mirror potential leads to a slight shift of the
minimum of the potential. This means that the equilibrium position of the
oscillation is not the minimum of the harmonic trap, but the new potential
minimum. The results from these numerical calculations are presented in
the next two chapters.

The computational time necessary to solve the GPE was reduced by per-
forming certain parts of the numerical calculation parallel rather than serial.
One such operation, that was parallelized, is the three-dimensional Fourier
transformation necessary to determine the spatial derivatives. It is com-
posed of one-dimensional Fourier transformations along one-dimensional
cuts of the three-dimensional lattice in each spatial direction. These one-
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dimensional Fourier transformations are independent operations and can
therefore be performed at the same time. Furthermore, since the application
of e−i V̂~ ∆t in position space and the application of e−i K̂~ ∆t in Fourier space
are merely multiplications, they can be evaluated independently at each
lattice point. The numerical code was implemented with CUDA and the
parallel computations were performed on the GPU. Compared to CPUs,
GPUs have a lot more computational cores, thus allow for a much higher
degree of parallelization. Besides the above mentioned operations, also the
calculation of expectation values, like for example the norm or the center
of mass, was parallelized. For this purpose the reduction algorithm form
Ref. [93] was used.



Chapter 4

Center-of-mass frequency shift

The mirror potential, which was discussed in the previous chapter, has
an influence on the dynamics of a dipolar BEC close to a superconducting
surface. In Refs. [54–56] this influence was discussed using the models
presented in the previous chapter. Some of the results presented here can
also be found in those references.

In this chapter the focus is on the center-of-mass motion of the BEC,
and in particular on its oscillation frequency. In a harmonic trap, the center
of mass performs a harmonic oscillation. The frequency of the oscillation is
determined by the harmonic trap frequency. The mirror potential, generated
by the superconducting surface, modifies the curvature of the potential and
thereby changes the oscillation frequency.

Since this effect is rather small, it is not clear if the magnitude of the
frequency shift is large enough to be detected in an experiment. As a
threshold serves a frequency shift of 10−5. In Ref. [53] such an accuracy
was demonstrated in an experiment, where the influence of the Casimir-
Polder force on the motion of a BEC was investigated. In Refs. [54] and [55]
the frequency shift due to the eddy current effect was discussed using the
column density model. It was found that if the BEC consists of 87Rb atoms,
the frequency shift is of the order of 10−5. This makes the detection of the
frequency shift difficult. Especially the measurement of the variation of the
frequency shift is rather difficult on this scale. Since a 87Rb atom has a
dipole moment of only 1µB, it is not a good choice for this kind of experiment.
A BEC consisting of atoms with larger magnetic dipole moments, like for
example 52Cr, which has a six times larger magnetic dipole moment than
87Rb, is preferable. In the case of 52Cr the frequency shift due to the eddy
current effect reaches up to an order of 10−3. A frequency shift of this
magnitude is well within experimental precision. Measuring the frequency
shift of this order, and variations of the frequency shift on this scale, does
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not pose a problem. Since those results are based on the column density
model, it is necessary to confirm them using more sophisticated models,
which was done in Ref. [56]. Those results, alongside with the results form
the column density model are presented here in Section 4.1 and Section
4.2.

The eddy current effect is not the only effect that has an influence on
the oscillation frequency close to a surface. For example, the Casimir-Polder
force, which was already mentioned above, has also an impact on the center-
of-mass motion. This makes it necessary to find some characteristic of the
eddy current effect, which clearly identifies it. One such characteristic is
the dependence of the frequency shift on the number of atoms in the BEC.
This was discussed in Refs. [54–56] and is also presented here. Another
characteristic is the dependence of the frequency shift on the orientation of
the dipoles relative to the surface and relative to the BEC. For dipole orien-
tations parallel to the surface, this was presented in Ref. [56]. Those results
are presented here in Section 4.3. Additionally, more general polarizations
are presented and discussed here.

As already mentioned, the frequency shift shows a characteristic de-
pendence on the number of atoms in the BEC. However, it is necessary
to specify which parameters remain constant while the number of atoms
changes. For example one could simply change the number of atoms in the
trap, while the trap frequencies remain constant. From the result of the TF
approximation for the chemical potential (1.20), it is clear that an increase
of the number of atoms leads to a larger chemical potential µ(0) ∝ N2/5,
and since n(0)

0 = µ(0)/gs, this means that also n(0)
0 ∝ N2/5. Increasing the

number of atoms leads to an increase of the BEC density, which means
that three body collisions become more probable. Contrary to two body
collisions, three body collisions can lead to the formation of molecules. Two
of the three atoms form the molecule and the third atom carries away
the binding energy. The binding energy is usually larger than the depth
of the trap, thus the atom escapes. All three atoms that were involved
in the collision are no longer part of the BEC. This mechanism leads to
an increased atom loss rate and reduces the life time of the BEC [106].
Therefore the central density shall remain constant rather than the trap
frequencies. In order to keep the central density constant while the number
of atoms changes, the trap frequencies need to be adjusted properly. The
goal is to have different BEC aspect ratios λz/λx for different numbers of
atoms. The BEC is supposed to become more elongated as the number of
atoms increases. This is accomplished by keeping the radial trap frequen-
cies constant and adjusting only the axial trap frequency. It is convenient
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to work with the ratios of the trap frequencies rather than the number of
atoms. That the trap aspect ratio ν = ωx/ωz is proportional to the number
of atoms is easily seen:

ν = ωx
ωz

= λ(0)
z

λ
(0)
x

= 15
8π

1[
λ

(0)
x

]2
λ

(0)
y

N

n
(0)
0

= 15
8π

κ[
λ

(0)
x

]3 N

n
(0)
0
, (4.1)

where only the fact was used that the ratio of the semi axes is equal to the
inverse ratio of the trap frequencies and expression (1.21) for the central
density was inserted. In the last step the semi-axes λ(0)

y was expressed with
the trap aspect ratio κ = ωy/ωx = λ(0)

x /λ(0)
y . Expression (4.1) shows that

calculating γ (N) is equivalent to calculating γ (ν). However, the latter is
preferable since it is a more general approach. The semi axes of the BEC
are calculated in units of ΛTF = (GN)1/5 aω, which yields

λ(0)
a

ΛTF
=
( 15

8π

)1/5 ω

ωa
, a ∈ {x, y, z}.

Since the frequency ω/ωa can be expressed using solely the trap aspect
ratios ν and κ (see (2.2)), the semi axes depend merely on the harmonic
trap frequency ratios. Of course, for a dipolar BEC they also depend on εD.
Measuring the distance to the surface xd as well as the oscillation amplitude
xs in units of λ(0)

x , eliminates almost completely the necessity to use absolute
units. For the TF calculations absolute values for the number of atoms or
semi axes are not needed at all. Only for the numerical calculations they
play a somewhat minor role. The only parameter that is influenced by
those absolute values is the contact interaction parameter GN . After some
algebra the interaction parameter is found to be

GN = 8π · N · as
aω

= (8π)9/4

15
(
asn

(0)
0

)5/4 [
λ(0)
x

]5/2 (ν
κ

)5/6
. (4.2)

To determine GN , the following parameters are used here: The semi axis
is set to λ(0)

x = 7µm. This value has no special significance, other than the
fact that in the following, the distance between BEC and surface is typically
set to xd = 2λ(0)

x , and a distance of 14µm between the superconductor and
the harmonic trap minimum is a realistic value, which was demonstrated
in Ref. [49]. For the central density a typical value used in the following is
n

(0)
0 = 2.5× 1013 cm−3. Using such a density, the three body loss rate in an

experiment should be small enough [106] to allow long enough measurement.
For the scattering length the value as = 5.7 nm is used. It is the value for
87Rb atoms and is used here as a typical value. For example, for 52Cr the
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scattering length is as = 5.1 nm, thus the above choice does not seem too
bad. However, for rare earth atoms like dysprosium or erbium this might
not be accurate at all. Nevertheless, it is still adequate to use 5.7 nm, since
it is not too important for the purpose of this work. As long as the value
of GN is large enough, so that the BEC is in the TF regime, the precise
value of GN is not important. The only two variable parameters left are
the aspect ratios of the harmonic trap frequencies. In the following the
trap is always cigar shaped with κ = 1, or at least almost cigar shaped
with κ ≈ 1. The second aspect ratio is typically varied from ν = 1 up to
about ν = 15. This corresponds to a variation of the interaction parameter
from GN ≈ 103 to GN ≈ 104. In any case, the interaction parameter is
sufficiently large. In the following the plots usually start at ν = 0, which
corresponds to N = 0. This means that there is no BEC, which renders
the point γ (0) = 0 meaningless and should be disregarded. Also points
very close to ν = 0 are questionable since in the case that there are only a
few atoms in the trap, the GPE as well as the TF approximation are not
applicable. But since those points are of no interest it is not necessary to
further discuss this.

4.1 Frequency shift within TF approxima-
tion

In Ref. [52] Antezza et al. presented a way to calculate the frequency
shift of a BEC caused by the interaction between the BEC and the surface
due to the Casimir-Polder force. For the density distribution of the BEC
they used the column density model which was discussed in the previous
chapter. However, the method is not restricted to this type of density. Here
their method is adopted for the purpose of calculating the frequency shift
due to the eddy current effect. In this section, the method of Antezza et al.
is recapitulated and it is shown how to adopt it for the eddy current effect.

Consider a BEC in a harmonic trap VT (r) close the the surface of the
superconductor. The potential generated by the superconductor is denoted
by Vmir (r). The total external potential is V (r) = VT (r) + Vmir (r). Say
the BEC consists of N atoms. The center of mass of each individual atom
is given by 〈xi〉, which means that the BEC center of mass is

xc.m. = 1
N

〈
N∑
i=1

xi

〉
. (4.3)

The total momentum of the BEC is the sum of the momenta px,i of each
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atom in the BEC
Px =

〈
N∑
i=1

px,i

〉
. (4.4)

The total momentum Px is connected to the velocity of the center of mass
via

dxc.m.

dt = Px
Nm

. (4.5)

Newtons second law states that the force F is given by the time derivative
of the momentum. On the other hand the force is also equal to the negative
gradient of the external potential. With that the time derivative of the
x-component of the total momentum reads

1
N

dPx
dt = − 1

N

〈
N∑
i=1

∂V (ri)
∂xi

〉

= −mω
2
x

N

〈
N∑
i=1

xi

〉
− 1
N

〈
N∑
i=1

∂Vmir (ri)
∂xi

〉

= −mω2
xxc.m. (t)−

1
N

ˆ
drn (r, t) ∂Vmir (r)

∂x
, (4.6)

where the expectation value 〈a〉 = N−1 ´ dr a ·n (r, t) was inserted. Since
the BEC performs a harmonic oscillation, its atom density distribution
n (r, t) is a time dependent quantity. The situation can be simplified by
the assumption that the shape of the BEC remains constant during the
oscillation. If that is the case, the time dependent density can be written
as n (r, t) = nTF (r− xc.m. (t) êx). Here it was already assumed that the
density distribution is a TF ellipsoid (1.23). Actually it is not true that the
shape of the BEC remains constant during the oscillation. In fact, the BEC
shape oscillations are in the focus of the next chapter. However, the shape
fluctuations of the BEC are too small to be of significance here. With all
that has been said, equation (4.6) takes the guise

d2xc.m.

dt2 = −ω2
xxc.m. −

1
mN

ˆ
drnTF (r− xc.m.êx)

∂Vmir (r)
∂x

. (4.7)

For the following it is more convenient to transform the integral in this
equation such that the density distribution becomes stationary and the
potential becomes a time-dependent quantity. In the center-of-mass frame
of the BEC the integral reads

Q (t) ≡
ˆ

drnTF (r) ∂

∂x
Vmir (r + xc.m.êx) . (4.8)
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Next, the time dependent part of the integrand is expanded into a Taylor
series in terms of xc.m. about xc.m. = 0:

∂

∂x
Vmir (r + xc.m.êx) = ∂Vmir (r)

∂x
+ ∂2Vmir (r)

∂x2 xc.m. (t)

+1
2
∂3Vmir (r)
∂x3 x2

c.m. (t) + 1
6
∂4Vmir (r)
∂x4 x3

c.m. (t)

+O
(
x4

c.m. (t)
)

≡ f (t) . (4.9)

Since the center of mass performs a harmonic oscillation, a suitable ansatz
for xc.m. is given by xc.m. (t) = xs cos (ω′t). Thus, a natural way to express
f (t) is a cosine series

f (t) = a0

2 +
∞∑
n=1

an cos
(2π
T
n · t

)
,

where the coefficients are given by

an = 2
T

T̂

0

dt f (t) cos
(2π
T
n · t

)
= ω′x

π

2π/ω′
xˆ

0

dt f (t) cos (n ·ω′xt) .

Evaluating this expression for n = 0 and n = 1 yields

a0 = 2∂Vmir (r)
∂x

+ x2
s

2
∂3Vmir (r)
∂x3 ,

and

a1 = xs
∂2Vmir (r)
∂x2 + x3

s

8
∂4Vmir (r)
∂x4 .

Since only the frequency shift of the harmonic oscillation is of interest, it
is unnecessary to consider higher frequency terms in the cosine series. This
result is now inserted back in expression (4.8) for Q (t), which then yields
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the following equation of motion:

d2xc.m.

dt2 = −ω2
xxc.m. −

1
mN

ˆ
drnTF (r) a0

2

− 1
mN

ˆ
drnTF (r)

{
∂2Vmir (r)
∂x2 + x2

s

8
∂4Vmir (r)
∂x4

}
xc.m.

= − 1
mN

ˆ
drnTF (r) a0

2︸ ︷︷ ︸
x0ω′2

x

−
[

1
mN

ˆ
drnTF (r)

{
∂2Vmir (r)
∂x2 + x2

s

8
∂4Vmir (r)
∂x4

}
+ ω2

x

]
︸ ︷︷ ︸

=ω′2
x

xc.m.

= −ω′2x (xc.m. − x0)

The solution to this equation is obviously given by xc.m. = xs cos (ω′xt) +x0,
where x0 is the new equilibrium position of the oscillation and ω′x the new
oscillation frequency. If the difference between the new oscillation frequency
and the harmonic trap frequency is small, one can write

ω′2x − ω2
x = (ω′x − ωx) (ω′x + ωx) ≈ (ω′x − ωx) 2ωx,

and with that the relative frequency shift reads

γ ≡ ω′x − ωx
ωx

≈ ω′2x − ω2
x

2ω2
x

= 1
2ω2

xmN

ˆ
drnTF (r)

{
∂2Vmir (r)
∂x2 + x2

s

8
∂4Vmir (r)
∂x4

}
. (4.10)

In the case that only small amplitude oscillations are considered, it is
sufficient to evaluate the first term in this expression. Oscillations where the
amplitude xs is a lot smaller than the expansion of the BEC are considered
small amplitude oscillations. For a TF ellipsoid a measure for the expansion
is given by the semi axes λx. Note, only the expansion of the BEC in
the direction of the motion is relevant for this comparison. As soon as
the oscillation amplitude becomes comparable to the BEC expansion, the
second term in the above expression becomes important as well. Since in
the following, the size of the amplitude of the oscillation is restricted by
the distance between the BEC and the surface, higher order corrections in
xs are not needed. That the quadratic term in xs is sufficient is shown in
the following sections.
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So far one important fact has been neglected. As the BEC moves, the
mirror BEC moves as well. To be more precise, the mirror BEC moves
in opposite phase to the original BEC. To account for this, the above
given expression for the relative frequency shift needs to be modified. The
derivatives of Vmir need to be taken with respect to x/2 rather than with
respect to x. This generates an extra factor of 4 in the term with the second
derivative, and an extra factor of 16 in the term with the fourth derivative.
The substitutions

∂2Vmir (r)
∂x2 → 4∂

2Vmir (r)
∂x2 , (4.11)

and
∂4Vmir (r)
∂x4 → 16∂

4Vmir (r)
∂x4 (4.12)

need to be performed.
Now, everything is set up to calculate the frequency shift. In Section

4.1.1 the frequency shift is calculated using a three dimensional TF ellipsoid.
In Section 4.1.2 the simpler column density model is used.

4.1.1 Frequency shift based on a Thomas-Fermi ellip-
soid

In order to calculate the frequency shift the derivatives of the mirror
potential Vmir are required. As shown in Section 3.2.1, in the case of a
three-dimensional Thomas-Fermi ellipsoid, the mirror potential is mainly
given by ϕmir (r) (see Eq. (3.24)). Now the task is to evaluate the first four
derivatives of ϕmir (r) with respect to x. The explicit calculation of these
derivatives is a rather cumbersome task. Therefore it is not presented here,
but in Appendix C instead. The resulting expression for the frequency shift
reads

γTF = −45ε(m)
D

8π

[
λ(0)
x

]3
λ(0)
y λ(0)

z

λxλyλz

ˆ

DTF

dr ρTF (r)
{
F (r) + x2

s

2
∂2F (r′)
∂x′2

∣∣∣∣∣
r′=r

}
,

(4.13)
with

ρTF (r) = nTF (r)
n0

=
(

1− (x− 2xd)2

λ2
x

− y2

λ2
y

− z2

λ2
z

)
(4.14)

and the integration domain

DTF =
{

r ∈ R3
∣∣∣∣∣(x− 2xd)2

λ2
x

+ y2

λ2
y

+ z2

λ2
z

≤ 1
}
. (4.15)
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The function F is defined in (C.9). Although it is a very complicated func-
tion of the position r, it is nevertheless possible to evaluate it analytically.
This is also true for the second derivative of F , which is given in (C.11).
Besides the position r, the function F also depends on the BEC semi axes.
F is evaluated in the frame of the mirror BEC, which is the reason why the
BEC density distribution is shifted by 2xdêx. Note, expression (4.13) only
depends on the BEC semi axes (dipolar and non-dipolar), the distance to
the surface xd, the oscillation amplitude xs, and of course the dipole-dipole
interaction strength ε(m)

D .
The integral in (4.13) needs to be solved numerically. Taking the sym-

metry of the problem into account, it is clear that it is not necessary to
integrate over the full ellipsoid. The integrand K (r) = F (r) + x2

s

2
∂2F (r)
∂x2 is

symmetric in y as well as in z. This means that it is sufficient to integrate
the quarter of the ellipsoid with y > and z > 0. The reduced integration
domain reads

D̄TF =
{
x ∈ R, {y, z} ∈ R2

+

∣∣∣∣∣(x− 2xd)2

λ2
x

+ y2

λ2
y

+ z2

λ2
z

≤ 1
}
. (4.16)

The integral over the full domain is connected to the integral over the
reduced domain by

1
4

ˆ

DTF

dr ρTF (r)K (r) =
ˆ

D̄TF

dr ρTF (r)K (r)

=
∞̂

−∞

dx
∞̂

0

dy
∞̂

0

dz ρTF (r) ·F (r) ·Θ (ρTF (r)) ,

where Θ (x) is the Heaviside theta-function

Θ (x) =

1, for x ≥ 0
0, for x < 0.

In order to solve this integral, the approach is to integrate slices parallel
to the plane y = 0. The integral in the plane y = yi reads

Ai ≡ A (yi) =
∞̂

−∞

dx
∞̂

0

dz ρTF (x, yi, z) ·K (x, yi, z) ·Θ (ρTF (x, yi, z))

=
λx+2xdˆ

−λx+2xd

dx
z0(x,yi)ˆ

0

dz ρTF (x, yi, z) ·K (x, yi, z) . (4.17)
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Figure 4.1: Frequency shift γ vs. trap aspect ratio ν = ωx/ωz. The frequency
shift is calculated for a dipolar BEC with εD = ε

(m)
D for two different dipole-

dipole interaction parameters ε(m)
D = 0.5 and ε(m)

D = 0.15 (52Cr) and three
different oscillation amplitudes xs = 0 (solid line), xs = 0.25λ(0)

x (dashed
line) and xs = 0.5λ(0)

x (dotted line). The distance between the harmonic
trap minimum and the superconductor is set to xd = 2λ(0)

x .

The upper limit of the z-integration is given by

z0 (x, yi) = λz

√√√√1− (x− 2xd)2

λ2
x

− y2
i

λ2
y

. (4.18)

The two dimensional integral (4.17) can be easily solved numerically using
software like for examplemathematica. For the y-integration one can use the
trapezoidal rule. Say the quarter ellipsoid is sliced into M slices, separated
by ∆y from each other. The numerical approximation for the integral reads

ˆ

DTF

dr ρTF (r)K (r) = 4 ·
(
A1

2 + AM
2 +

M−1∑
i=2

Ai

)
∆y.

Inserting this into (4.13) yields the frequency shift.
The results are presented in Fig. 4.1, where the frequency shift is shown

as a function of the trap aspect ratio ν for different dipole strengths ε(m)
D
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Figure 4.2: Schematic setup, where the dipoles are oriented in the z-
direction. Dipole A in the BEC and dipole B in the mirror BEC have
a repulsive interaction, since they are standing side by side. The interac-
tion between dipole A and C may have an attractive or repulsive interaction,
depending how far out (in z-direction) dipole C is positioned. The farther
they are apart, the more changes the character form side-by-side interaction
to head-to-tail interaction. This changes the interaction sign. If the BEC
is very long, contributions from the edges of the BEC cancel contributions
form the center of the BEC, which reduces the overall interaction. The
BEC has an optimal length when the interaction between the dipoles and
the mirror dipoles is mainly repulsive. This optimal length corresponds to
the maxima in the curves in Fig. 4.1.

and oscillation amplitudes xs. The frequency shift is maximal for an aspect
ratio of about ν = 2. The reason for this is discussed in Ref. [54] and
Ref. [55] and also depicted in Fig. 4.2, where it is discussed in the figure
caption. The large amplitude corrections become significant for oscillation
amplitudes that are of the order of the semi-axes λ(0)

x . For xs = 0.25λ(0)
x

the corrections are still minor and become clearly visible for xs = 0.5λ(0)
x .

A more thorough discussion of the results for the frequency shift follows
after the column density model is presented.
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4.1.2 Frequency shift based on the column density
model

Since the method presented in the previous section relies on numerical
methods to determine the frequency shift, there are still more simplifica-
tions necessary in order to get some analytical approximations. Such a
simplification represents the column density n1D (z) = n0

πλxλy
2

(
1− z2

λ2
z

)2
,

which was introduced in Sec. 3.2.2. In this section the column density is
used as a model for the mirror BEC which generates the potential. Two
different approaches are presented to calculate the frequency shift based on
that. In the first approach the BEC itself is also modeled using the column
density. The second approach represents a hybrid approach where the BEC
is modeled by a three-dimensional TF ellipsoid and the mirror BEC by a
column density model.

In both approaches the mirror potential V (1D)
mir , generated by the column

density and which is given in Eq. (3.27), needs to be integrated over the
BEC density distribution. In order to do that it is convenient to perform
the variable shift

z′′ = z − z′ ⇒ z′ = z − z′′.

In order to improve the readability, the double primed variable is renamed
to a single primed variable: z′′ → z′. Furthermore, the radial coordinate
r =
√
x2 + y2 is introduced. The expression for the mirror potential reads

V
(1D)

mir (r) = − gD4π

λz+zˆ

−λz+z

dz′ n1D (z′ − z)
(

3z′2

(r2 + z′2)5/2 −
1

(r2 + z′2)3/2

)
.

(4.19)
The shifted column density distribution is a fourth order polynomial in z′
which reads

n1D (z′ − z) = n0
πλxλy

2

4∑
k=0

Γk (z) · z′k, (4.20)
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where the coefficients Γk (z) are defined by

Γ0 (z) = 1− 2 z
2

λ2
z

+ z4

λ4
z

=
(

1− z2

λ2
z

)2

,

Γ1 (z) = 4 z
λ2
z

− 4 z
3

λ4
z

,

Γ2 (z) = 6 z
2

λ4
z

− 2
λ2
z

,

Γ3 (z) = −4 z
λ4
z

,

Γ4 (z) = 1
λ4
z

.

The integrals that need to be solved are all of the form

Ck (r) = 1
8λz

λz+zˆ

−λz+z

dz′
(

3z′2

(r2 + z′2)5/2 −
1

(r2 + z′2)3/2

)
z′k, (4.21)

with k ∈ {0, 1, 2, 3, 4}. This type of integral can be solved analytically. The
results are rather long and therefore omitted here.

Approach 1: Full column density model

Since in this approach it is assumed that the BEC density distribution
is also given by a column density model, the problem reduces to the plane
y = 0, where the column density resides. The radial coordinate becomes
r = x. In this case the frequency shift is given by

γ(z) = 1
2ω2

xmN

λzˆ

−λz

dz n1D (z) 4 ∂
2Vmir (x, z)
∂x2

∣∣∣∣∣
x=2xd

, (4.22)

where the correction term for large amplitudes from expression (4.10) was
dropped. The following discussion is restricted to the small amplitude case.
The extension to large amplitudes is straightforward. The superscript (z)
merely indicates the orientation of the dipoles. Using the integrals Ck given
in (4.21) and expression (4.20) for the column density, the mirror potential
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is written as

V
(1D)

mir (x, z) = −3ε(m)
D gsn0ϕ

(1D)
mir (r)

= −3ε(m)
D gsn0

1
4π

ˆ
dz′ ρ1D (z′ − z)

(
3z′2

(x2 + z′2)5/2 −
1

(x2 + z′2)3/2

)

= −3ε(m)
D gsn0λxλyλz

4∑
k=0

Γk (z)Ck (x, z) (4.23)

In the above expression the abbreviations Vmir (x, z) ≡ Vmir (x, y = 0, z)
and Ck (x, z) ≡ Ck (x, y = 0, z) were used. With that the frequency shift
reads

γ(z) = −45
16ε

(m)
D

[
λ(0)
x

]3
λ(0)
y

λ(0)
z

λz

4∑
k=0

H
(z)
k (xd, λz) , (4.24)

with

H
(z)
k (xd, λz) =

λzˆ

−λz

dz Γ0 (z) Γk (z) ∂
2Ck (x, z)
∂x2

∣∣∣∣∣
x=2xd

. (4.25)

Result (4.24) is reached by using the expression for the central density
(1.21), as well as TF semi axes (1.17). Furthermore the relation n1D (z) =
n0

πλxλy
2 Γ0 (z) was used. The derivatives of Ck (x, z) are very long expression

and therefore are not given here. Using software like mathematica, the
derivatives are easily determined. Within this approach, all integrals can
be solved analytically.

From the above given result one can see that the relative frequency shift
only depends on the geometry of the setup, namely the TF semi axes and
the distances to the surface. Besides that it also depends on the strength
of the dipole-dipole interaction via the parameter ε(m)

D . The parameter
εD plays also a role, however, it is only a minor role. Depending on εD
the length of the semi axis λz gets modified. This changes the value of
H

(z)
k (xd, λz) and also the value of of λ(0)

z /λz. Since λz as well as λ(0)
z go

from 0 to ∞ as ν goes from 0 to ∞ both functions, H(z)
k (xd, λz) as well as

H
(z)
k

(
xd, λ

(0)
z

)
, go through the same range of values. They are merely shifted

relative to each other. This means that the position of the maximum is
shifted. The strength of the frequency shift is modified via λ(0)

z /λz. For the
case that the dipoles are oriented in the z-direction the value of λ(0)

z /λz can
be determined analytically for the limit ν →∞, using the self-consistency
equations (1.31). It is found to be (1−εD)−1/5. However, given the fact that
the frequency shift goes rapidly down as the aspect ratio increases (see Fig.
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4.3), the precise value of λ(0)
z /λz is not very important. Using the column

density model, it is actually possible to show that the frequency shift goes
to zero for an infinitely elongated BEC. In the limit ν →∞ also the semi
axes λz goes to ∞. Using the analytical expressions for H(z)

k (xd, λz), one
finds the limit

lim
λz→∞

H
(z)
k (xd, λz) = 0 ∀k ∈ {0, 1, 2, 3, 4}.

Since λ(0)
z /λz goes to some finite value, the frequency shift vanishes.

Using the column density model also an estimate on the maximal possi-
ble frequency shift for a given distance xd can be determined [54,55]. To do
this, one first needs an estimate on the optimal length of the BEC. Consider
a dipole in the center of the BEC at z = 0. In order for the interaction
with all atoms in the mirror BEC to be repulsive, the semi axes λz of the
mirror BEC may not exceed

√
2xd, which in this case also determines the

optimal length of the BEC. The frequency shift of a single atom in the
center of the BEC is given by expression (4.24), where one simply drops
the integration over n1D and evaluates the expression at z = 0, which yields
for a non-dipolar BEC (εD = 0) with λ(0)

z =
√

2xd the frequency shift

γ(z)
max ≈ 0.11

[
λ(0)
x

]4
x4
d

ε
(m)
D . (4.26)

For the distance xd = 2λ(0)
x this yields γ(z)

max ≈ 0.007ε(m)
D , i.e. for ε(m)

D = 0.15
(52Cr) on gets γ(z)

max ≈ 10−3 and for ε(m)
D = 0.5 one gets γ(z)

max ≈ 3.5× 10−3.
Comparison with Fig. 4.5a shows that this estimate is a bit too high, but
is still gives a rough idea of the maximal frequency shift. Estimate (4.26)
furthermore shows that the frequency shift becomes rapidly smaller as the
ratio xd/λ(0)

x increases. This is partly due to the fact that λ(0)
x is connected

to the harmonic trap frequency. As λ(0)
x gets smaller, ωx gets larger, which

results in a smaller relative frequency shift. And if λ(0)
x remains constant

and xd is increased, the interaction gets simply weaker, which also reduces
the frequency shift.

Approach 2: Hybrid model

This approach is basically identical to the approach presented in Section
4.1.1 for the three dimensional mirror BEC. The only difference is, that in
expression (4.13), the mirror potential Vmir given in (3.24) is replaced by
V

(1D)
mir given in (4.19).
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Figure 4.3: Frequency shift γ vs. trap aspect ratio ν = ωx/ωz. The small
amplitude approximation (xs = 0) for a dipolar BEC with εD = ε

(m)
D = 0.5

is presented for three different distances xd = 1.5λ(0)
x , xd = 2λ(0)

x , and
xd = 2.5λ(0)

x . The three dimensional TF results are indicated by a solid
line, the full column density model (approach 1) by a dotted line, and the
hybrid model (approach 2) by a dashed line.

This approach seems to be somewhat inconsistent, since the BEC is
modeled by a TF ellipsoid and its mirror by a column density. However,
the difference between the potential generated by the three dimensional
mirror and the one dimensional mirror, at the position of the BEC, is only
minor (as was shown in Fig. 3.2). To replace the three dimensional mean
of the TF ellipsoid in (4.13) by a one dimensional integral along the axis
of the column density, is only a good approximation if the variation of the
potential (or to be more precise of its derivatives) over the extent of the
BEC can be neglected. As it turns out, this is not quite the case.

In Fig. 4.3 the results of both approaches are compared to the results
of the three dimensional TF model. As one would expect the results of the
hybrid approach lay between the results of the full three dimensional and
the full one-dimensional model. As the distance xd gets larger, the three
models converge. The three models also converge for very elongated BECs.
This behavior can be easily understood: The more elongated the BEC gets
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the better describes the column density model the actual three-dimensional
BEC. And the larger the distance between BEC and superconductor the
better is it possible to describe the interaction between mirror BEC and
BEC by using column density models. The biggest difference between the
three models appears around the position of the maximum, which lays
between ν = 1 and ν = 2. In this region the BEC is not very elongated and
has a more sphere like character, thus the column density is not a good
approximation.

While the hybrid model does yield more accurate results than the col-
umn density model, the increased computational effort still does not seem
justified. In order to get approximate analytical results the full one di-
mensional column density model is a very good tool. How well the three
dimensional TF model compares to the numerical results is presented in
the next section.

4.2 Numerical results for the frequency shift
In order to obtain the frequency shift from the numerical calculations,

the center-of-mass motion needs to be analyzed. The BEC does not move
in the y- and z-direction, so only the x-coordinate of the center of mass is
of interest. The numerical calculation yields time curves of the expectation
values, like for example the center-of-mass coordinate. A discrete Fourier
transformation of the time data provides the frequency spectra. Since the
frequency shift is expected to be rather small, it is necessary to perform
a rather long time evolution. In the presented calculations the length of
the time evolution is tend = 104 Tx, with Tx = 2π/ωx. This translates to a
frequency resolution of ∆ω/ωx = 10−4. In order to determine the center-of-
mass oscillation frequency, the mean frequency is calculated over a certain
interval in the spectrum. It is clear that the peak in the spectrum is very
close to ωx, as is shown in Fig. 4.4. Therefore it is sufficient to consider a
small interval I = [ωx − δ, ωx + δ]. Within this interval, all data points Ω̂i

are summed up and weighed by the respective frequency Ωi. Dividing the
result by the sum of all Ω̂i in this interval, yields the mean frequency

Ω̄ =
∑
i∈I Ω̂i ·Ωi∑
i∈I Ω̂i

. (4.27)

In Fig. 4.4 two example spectra are presented and the determined mean
frequencies are indicated by vertical lines. The Fourier coefficients Ω̂i are
normalized to the oscillation amplitude xs. In Fig. 4.4 one of the peaks
reaches roughly up to 1. The other peak is a bit smaller, since the actual
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Figure 4.4: The frequency spectra for the x-coordinate of the center-of-mass
motion. The GPE for a dipolar BEC with εD = ε

(m)
D = 0.5 was numerically

solved for two different trap aspect ratios: ν = 2 (blue) and ν = 12 (green).
The mean frequency Ω̄ given in (4.27) was calculated over an interval of
the size 2δ = 0.4ωx. The resulting frequencies are Ω̄ν=2 = 1.00265ωx and
Ω̄ν=12 = 1.0005ωx. The frequency shift γ corresponding to these results
is presented in Fig. 4.5b. Parameters: κ = ωy/ωx = 1, distance to surface
xd = 2λ(0)

x , oscillation amplitude xs = 0.25λ(0)
x , length of the time evolution

for the GPE: t = 104 Tx, ∆t = 10−3Tx, with Tx = 2π/ωx, size of numerical
lattice: 64 × 64 × 64, expansion of the lattice: 6λx × 6λy × 6λz, central
density: n(0)

0 = 2.5× 1013 cm−3.
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maximum position of the peak lays between two data points. The frequency
shift connected with the mean frequency is given by γ =

(
Ω̄− ωx

)
/ωx. Fig.

4.5 shows the results for the frequency shift for different dipole interaction
strengths and oscillation amplitudes. As a comparison, the results from
the TF approximation are presented. The results obtained by the three di-
mensional TF approximation show an excellent agreement with the results
from the GPE. Up to an amplitude of xs = 0.1λ(0)

x , shown in Fig. 4.5a, it is
not necessary to calculate the large amplitude corrections in (4.10). For the
larger amplitudes, presented in Fig. 4.5b, the correction term proportional
to x2

s reproduces the change of the frequency shift very well. This demon-
strates that the three dimensional TF model is an excellent tool to calculate
the frequency shift, for small as well as for large amplitudes, very accurately.
The column density model is useful for qualitative analysis of the behavior
of the frequency shift and also to determine analytical approximations.
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Figure 4.5: Frequency shift γ vs. trap aspect ratio ν = ωx/ωz. Results from
the numerical solution (data points) are compared to the results of the
three dimensional TF model (solid lines) and the TF column density model
(dashed lines). Parameters: κ = ωy/ωx = 1, distance to surface xd = 2λ(0)

x ,
length of the time evolution for the GPE: t = 104 Tx, ∆t = 10−3Tx, with
Tx = 2π/ωx, size of numerical lattice: 64× 64× 64, expansion of the lattice:
6λx × 6λy × 6λz, central density: n(0)

0 = 2.5× 1013 cm−3.
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4.3 Frequency shift for different polarizations
of the BEC

So far it was always assumed that the BEC is fully polarized in the
z-direction, which is the direction of the long axis of the ellipsoid. Of
course, the dipoles can be oriented in an arbitrary direction, given that it is
technically possibly to apply a magnetic field in this direction. The relative
orientation between the dipoles in the BEC and the mirror BEC affects
the strength and also the interaction sign of the dipole-dipole interaction.
Therefore, the polarization of the BEC also has an impact on the center-
of-mass motion of the BEC.

Instead of discussing the most general case where the orientation is
completely general, it is useful to investigate first the special cases. The first
case that is presented, is the situation where the dipoles are all oriented
in the y-direction. Meaning they remain parallel to the surface but are
no longer facing along the long axis of the ellipsoid but perpendicular to
it (see Fig. 4.6). Following that, the case that the dipoles are oriented
perpendicular to the surface (see Fig. 4.9) is investigated. And finally, more
general dipole orientations are discussed. It is always assumed that the
BEC is 100% polarized. Furthermore, only small amplitude oscillations are
considered. To account for corrections due to large amplitudes, one can
apply the same method as was presented in Section 4.1.

The discussion of the frequency shift for the different polarizations is
based completely on the column density model (approach 1 presented in
Section 4.1.2). While the results may not be as good as the results from
the three dimensional TF model, it is a good tool to investigate the general
behavior and to find characteristic features.

4.3.1 Polarization in the y-direction

Let the magnetic dipoles of the atoms in the BEC all be oriented in
the y-direction: µd = µd · êy. The long axis of the BEC is oriented in
the z-direction. This setup is depicted in Fig. 4.6. With that also the
direction of the column density distribution is along the z-axis. The dipole-
dipole interaction potential between two dipoles that are both oriented in
y-direction is given by

Umd (r− r′) = −gD4π

(
3 (y − y′)2

|r− r′|5
− 1
|r− r′|3

)
, (4.28)
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Figure 4.6: Schematic setup with the dipoles oriented in the y-direction. The
interaction between the dipole A and dipole B is repulsive. The interaction
between the dipole A and dipole C is also repulsive, independent of how far
away on the z-axis the dipole C is located. The character of the interaction
remains always side-by-side, thus the interaction sign does not change,
merely the interaction strength decreases the farther apart the dipoles are.

as can be easily verified by inserting µd = µ′d = µd · êy in (1.8). In the
chosen setup, the y-coordinate of the dipole position is always y = y′ = 0.
Furthermore it is convenient to chose the coordinate system such that
x′ = 0. This simplifies the dipole-dipole interaction potential considerably,
which reduces to

Umd (r− r′) = gD
4π

1[
x2 + (z − z′)2

]3/2 . (4.29)

From this already an important difference to the case where the dipoles
are oriented in the z-direction can be seen. In this setup the sign of the
dipole-dipole interaction potential does not change, no matter where the
two interacting dipoles are located on the z-axis. For µd = µd · êz the
dipole-dipole interaction sign changes as they move further apart on the
z-axis, which was explained and depicted in Fig. 4.2.

The potential generated by the mirror BEC is given by

V
(1D)

mir (x, z) = gD
4π

λzˆ

−λz

dz′ n1D (z′)[
x2 + (z − z′)2

]3/2 . (4.30)
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To calculate the frequency shift, the same approach as in Sec. 4.1.2 is
used: First the z-coordinate is shifted, then expression (4.20) is inserted
for n1D (z′ − z), which yields for the mirror potential

V
(1D)

mir (r) = 3ε(m)
D gsn0λxλyλz

4∑
k=0

Γk (z)Dk (x, z) , (4.31)

with

Dk (x, z) = 1
8λz

λz+zˆ

−λz+z

dz′ z′k

(x2 + z′2)3/2 . (4.32)

The expression for the frequency shift reads

γ(y) = 45
16ε

(m)
D

[
λ(0)
x

]3
λ(0)
y

λ(0)
z

λz

4∑
k=0

H
(y)
k (xd, λz) . (4.33)

with

H
(y)
k (xd, λz) =

λzˆ

−λz

dz Γ0 (z) Γk (z) ∂
2Dk (x, z)
∂x2

∣∣∣∣∣
x=2xd

. (4.34)

The case εD = 0

From (4.29) it is clear that the interaction sign between each dipole in
the BEC with each dipole in the mirror BEC has the same sign. This means
that the overall interaction becomes stronger as the number of atoms is
increased. Therefore γ(y) is expected to be a function that monotonically
increases with N . Just like before, the number of atoms is increased in
such a way that the central density n(0)

0 remains constant for all N . Again,
the aspect ratio ν is used rather then the number of atoms N . In Fig. 4.7,
the frequency shift γ(y) is presented as a function of the trap ratio ν. The
frequency shift rapidly increases for small values of ν and then quickly
saturates. To see if that is actually the case, the limit ν →∞ needs to be
determined. This means that λ(0)

z →∞, while n(0)
0 = const., λ(0)

x = const.,
and λ(0)

y = const.:

γ(y)
max = lim

λ
(0)
z →∞

γ(y) = 45ε(m)
D

16
[
λ(0)
x

]3
λ(0)
y

4∑
k=0

lim
λ

(0)
z →∞

H
(y)
k

(
xd, λ

(0)
z

)
, (4.35)

Although H(y)
k can be calculated analytically, here only the limiting value

of H(y)
k is presented:

lim
λ

(0)
z →∞

H
(y)
0

(
xd, λ

(0)
z

)
= 8

105
1
x4
d

, (4.36)



88 Center-of-mass frequency shift

and
lim

λ
(0)
z →∞

H
(y)
k

(
xd, λ

(0)
z

)
= 0, for k = {1, 2, 3, 4} . (4.37)

For a cylindrically symmetric trap with λ(0)
x = λ(0)

y , the expression for the
maximal frequency shift takes the guise

γ(y)
max = 3

14ε
(m)
D

[
λ(0)
x

xd

]4

. (4.38)

This value represents the largest possible frequency shift that can be
achieved for this dipole orientation. A comparison of the maximal value
for the case that the dipoles are oriented in the z-direction, given in (4.26),
shows that γ(y)

max is roughly by a factor of two larger. However, making this
comparison, one needs to bare in mind that γ(z)

max is merely an estimate,
while γ(y)

max is the exact limit of the column density model. Nevertheless, the
comparison is useful and shows that in terms of the strength of the effect,
a dipole orientation in the y-direction is advantageous.

The case εD 6= 0

For the case that εD 6= 0, the expression for the maximal frequency shift
reads

γ(y)
max = lim

ν→∞
γ(y) = 45ε(m)

D

16
[
λ(0)
x

]3
λ(0)
y

4∑
k=0

lim
ν→∞

λ(0)
z

λz
H

(y)
k (xd, λz) .

The limit of the function H(y)
k is given by limλz→∞H

(y)
k (xd, λz). The results

are the same as before and are given in (4.36) and (4.37). Assuming a
cylindrical symmetric trap, the maximal frequency shift reads

γ(y)
max = 3

14ε
(m)
D

[
λ(0)
x

xd

]4

lim
ν→∞

λ(0)
z

λz
. (4.39)

The modification of the frequency shift due to εD 6= 0 is given by the
factor limν→∞

λ
(0)
z

λz
. The value of this can be determined with the help of

the self-consistency equations (1.31) for the BEC semi axes. Unfortunately
it is not possible to give a closed expression for this factor. The reason
is that the BEC is a tri-axial ellipsoid with λx 6= λy 6= λz, even though
the trap is symmetrical and with that also λ(0)

x = λ(0)
y . But the symmetry

is broken since the dipoles are oriented in the y-direction and not in the
z-direction.
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Figure 4.7: Frequency shift γ vs. trap aspect ratio ν = ωx/ωz. The frequency
shift is calculated using the column density model for ε(m)

D = 0.5, for a non-
dipolar BEC with εD = 0 (dashed lines) and a dipolar BEC with εD =
ε

(m)
D (solid lines). Three different polarizations of the BEC are presented:
µd = µdêx (blue), µd = µdêy (red), and µd = µdêz (green). The distance
between harmonic trap minimum and surface is xd = 2λ(0)

x .
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Figure 4.9: Schematic depiction of the setup with the dipoles oriented in the
x-direction. The interaction between dipole A and dipole B is repulsive,
since they are facing each other tail-to-tail (or head-to-head if they are
oriented in the opposite direction). The interaction sign between A and
C depends on how far apart the two dipoles are. If they are close, the
interaction has mainly a tail-to-tail (or head-to-head) like character. The
further apart they are, the more changes the interaction to side-by-side
with opposite facing dipoles. This means the interaction gets attractive and
the interaction sign changes. If the BEC is long enough, contributions from
the edges cancel contributions from the center. Thus there is an optimal
length of the BEC, where the interaction is maximal.

In Fig. 4.8 the factor λ(0)
z /λz is presented as a function of ν. It shows

that the modification due to the shape deformation is not too drastic. Even
for large values of εD the corrections are below five percent. Also the curves
for γ(y) in Fig. 4.7 show that the results for εD = 0 and εD = ε

(m)
D are very

similar.

4.3.2 Polarization in the x-direction (perpendicular
to the surface)

Assume that the polarization of the BEC is along the x-axis, which is
perpendicular to the surface (see Fig. 4.9).

There are two possibilities to orient the dipoles: µd = ±µd · êx. The
magnetic mirror dipoles are oriented in the exact opposite direction µ′d =
∓µd · êx. Either way the interaction potential between the dipoles and the



92 Center-of-mass frequency shift

mirror dipoles is given by

Umd (r− r′) = gD
4π

(
3 (x− x′)2

|r− r′|5
− 1
|r− r′|3

)
. (4.40)

Using the column density model, only the potential within the plane y = 0
is of interest. Again, the mirror BEC is positioned at x′ = 0. The dipole-
dipole interaction potential reads

Umd (r− r′) = gD
4π

 3x2[
x2 + (z − z′)2

]5/2 − 1[
x2 + (z − z′)2

]3/2
 . (4.41)

This expression looks similar to potential (1.9), where the dipoles are ori-
ented in the z-direction. Depending in the relative position of the interacting
dipoles, this expression is either positive or negative. Within the column
density model the frequency shift reads

γ(x) = 45ε(m)
D

16
[
λ(0)
x

]3
λ(0)
y

λ(0)
z

λz

4∑
k=0

H
(x)
k (xd, λz) , (4.42)

with

H
(x)
k (xd, λz) =

λzˆ

−λz

dz Γ0 (z) Γk (z) ∂
2Gk (x, z)
∂x2

∣∣∣∣∣
x=2xd

(4.43)

and

Gk (x, z) = 1
8λz

λz+zˆ

−λz+z

dz′
(

3x2

[x2 + z′2]5/2
− 1

[x2 + z′2]3/2

)
z′k. (4.44)

Fig. 4.7 shows the frequency shift γ(x) as a function of the aspect ratio ν.
Similar to γ(z), the curve shows a maximum. However, this maximum is
not particularly pronounced. The frequency shift decreases only slightly
and does not drop to zero. Instead it appears to approach some finite value.
Similar as in the case where the dipoles are oriented in the z-direction,
dipoles A and B here also have a repulsive interaction (compare Fig. 4.9
and Fig. 4.2). However, an important difference is that the dipoles are facing
each other head to head (or tail to tail), which increases the interaction
strength by a factor of 2 compared to the side by side case. This is easily seen
from the dipole-dipole potential. In the head to head case with µd = µd · êx,
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µ′d = −µd · êx, and r− r′ = d · êx the potential reads Umd = gD
4π

2
d3 , while for

µd = µ′d = µd · êz and r− r′ = d · êx the potential reads Umd = gD
4π

1
d3 . The

potential is by a factor of 2 stronger so that also the scale of the frequency
shift should be increased by a factor of 2. Also, with the dipoles oriented in
the x-direction, the optimal length of the BEC is λz ≈ 2

√
2xd, which is twice

the optimal length for the case that they are oriented in the z-direction. In
Fig. 4.7 one can see that the linear increase for small ν of γ(x) is roughly
twice as large as γ(z). This is due to the increased interaction strength.
Furthermore, one can see that the maximum of γ(x) appears at a larger
trap aspect ratio compared to the maximum of γ(z). There are two reasons
why γ(x) does not drop to zero. First, the contributions from the edges of
the BEC have a mainly side-by-side character, which is weaker than the
contributions from the central region which have a head-to-head character.
Second, the optimal length of the BEC has increased compared to the
optimal length for γ(z). This means that the compensating contributions
from the edges are very weak due to the large distance. Using the analytical
results for H(x)

k , the limit ν →∞ is found to be

γ(x)
max = lim

ν→∞
γ(x) = 45ε(m)

D

16
[
λ(0)
x

]3
λ(0)
y lim

ν→∞

λ(0)
z

λz

4∑
k=0

H
(x)
k (xd, λz) .

In Fig. 4.8 the factor limν→∞
λ

(0)
z

λz
was already presented. This leaves the

function H(x)
k (xd, λz), where the limit reads

lim
ν→∞

H
(x)
0 (xd, λz) = lim

λz→∞
H

(x)
0 (λz, xd) = 8

105
1
x4
d

, (4.45)

and
lim
λz→∞

H
(x)
k (xd, λz) = 0, for k ∈ {1, 2, 3, 4} . (4.46)

It is interesting to note that γ(x)
max is equal to γ(y)

max.

4.3.3 Arbitrary polarization

Say the polarizing magnetic field is applied in an arbitrary direction so
that the magnetic dipoles are given by

µd = µd (µxêx + µyêy + µzêz) , (4.47)
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with µ2
x +µ2

y +µ2
z = 1. A possible parametrization is given by the standard

spherical coordinates

µx = sinϑB cosϕB,
µy = sinϑB sinϕB,
µz = cosϑB.

Next, the interaction potential between an atom in the BEC and an atom
in the mirror BEC is needed. If the dipole µd is given by (4.47), the mirror
dipole reads

µ′d = µd (−µxêx + µyêy + µzêz) . (4.48)
With y = y′ = 0 and x′ = 0, the interaction potential between those two
dipoles is given by

Umd (r− r′) = −gD4π

3 [µxx+ µz (z − z′)] [−µxx+ µz (z − z′)]
|r− r′|5

−

(
−µ2

x + µ2
y + µ2

z

)
|r− r′|3


= −gD4π

3
[
−µ2

xx
2 + µ2

z (z − z′)2
]

|r− r′|5
−

(
−µ2

x + µ2
y + µ2

z

)
|r− r′|3


= µ2

x

gD
4π

{
3x2

|r− r′|5
− 1
|r− r′|3

}

+µ2
y

gD
4π

1
|r− r′|3

−µ2
z

gD
4π

{
3 (z − z′)2

|r− r′|5
− 1
|r− r′|3

}
.

This shows that the potential is simply a superposition of the three spe-
cial cases that were already discussed. The resulting frequency shift is
immediately written down as

γ = µ2
xγ

(x) + µ2
yγ

(y) + µ2
zγ

(z)

= γ(x) sin2 ϑB cos2 ϕB + γ(y) sin2 ϑB sin2 ϕB + γ(z) cos2 ϑB. (4.49)

The angles ϕB and ϑB define the orientation of the external polarizing
magnetic field relative to the axes of the harmonic trap. Expression (4.49)
holds only for the case εD = 0. For εD = ε

(m)
D the situation becomes more

complicated. The modification of the BEC shape needs to be considered,
which was done for the special cases and shown that the influence on the
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frequency shift is moderate. For a more general orientation of the dipoles
there is another effect that also needs to be considered. The orientation of
the TF ellipsoid itself is modified. It is no longer true that the directions
defined by the harmonic trap coincide with directions of the semi axes of
the TF ellipsoid [57]. This tilt of the BEC has also an influence on the
frequency shift and needs to be discussed.

In the following, the dipole orientation is not completely arbitrary as
in (4.49). First an arbitrary dipole orientation parallel to the surface is
presented. Afterward the cases where the dipoles are oriented in the x-y-
and x-z-plane is presented.

Polarization in the y-z-plane (parallel to the surface)

The case εD = 0: If the dipoles are oriented parallel to the surface,
the orientation angle ϕB is fixed by ϕB = π/2. Expression (4.49) for the
frequency shift reduces to

γ(yz) = γ(y) sin2 ϑB + γ(z) cos2 ϑB. (4.50)

In Fig. 4.10 the frequency shift is presented for various orientation
angles ϑB as function of the trap ratio ν and in Fig. 4.11 the frequency
shift is given as a function of ϑB for various aspect ratios of the trap. In
both cases the trap is cylindrically symmetric with κ = ωy/ωx = 1. In the
limit λ(0)

z →∞ the frequency shift is given by

γ(yz)
∞ = 3

14ε
(m)
D

[
λ(0)
x

xd

]4

sin2 ϑB. (4.51)

This gives a characteristic dependence of the frequency shift on the ori-
entation angle ϑB. This characteristic serves as another fingerprint of the
eddy current effect, which can experimentally be used to distinguish it from
other possible influences of the surface on the center-of-mass motion.

The case εD = ε
(m)
D : The modification of the frequency shift due the

BEC shape is again given by the factor λ(0)
z /λz. Besides the trap aspect

ratios, the factor now also depends on the orientation angle ϑB (see Fig.
4.12). The reorientation of the TF ellipsoid is depicted in Fig. 4.13. The
frame of reference defined by the harmonic trap and the frame of reference
defined by the TF ellipsoid coincide for the case that ϑB = 0 or ϑB = π/2.
For 0 < ϑB < π/2, this is no longer the case. The BEC is tilted in the
y-z-plane. Say an external polarizing field is applied in a direction defined
by the angle ϑB between the field and the z-axis of the trap. The z-axis
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Figure 4.10: Frequency shift γ(yz) vs. trap aspect ratio ν = ωx/ωz. The
frequency shift is calculated using the column density model for ε(m)

D = 0.5,
for a non-dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with
εD = ε

(m)
D (dashed lines). The BEC polarization changes from ϑB = 0

(dipoles in z-direction) in steps of π/8 to ϑB = π/2 (dipoles in y-direction).
The second orientation angle is set to ϕB = π/2 and the distance to the
surface is xd = 2λ(0)

x .
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Figure 4.11: Frequency shift γ(yz) vs. orientation angle ϑB. The frequency
shift is calculated using the column density model for ε(m)

D = 0.5, for a non-
dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with εD = ε

(m)
D

(dashed lines). The results are shown for three different trap aspect ratios
ν = ωx/ωz. The black line shows approximation (4.51) for a non-dipolar
BEC with εD = 0. The second orientation angle is set to ϕB = π/2 and
the distance to the surface is xd = 2λ(0)

x .



98 Center-of-mass frequency shift

101 102 103
0.95

1

1.05

1.1

1.15 ϑB = 0

ϑB = π/8

ϑB = π/4

ϑB = 3π/8

ϑB = π/2

aspect ratio ν = ωx/ωz

λ
(0

)
z
/λ

z

Figure 4.12: The factor λ(0)
z /λz vs. the trap aspect ratio ν = ωx/ωz in a

uni-axial trap with κ = ωy/ωx = 1. The curves correspond to different
orientation angles ϑB: from ϑB = 0 (dipoles in z-direction) to ϑB = π/2
(dipoles in x-direction for ϕB = 0 or dipoles in y-direction for ϕB = π/2)
in steps of π/8. The dipole-dipole interaction parameter is fairly large:
εD = 0.5. The dipoles are rotated form the axial into the radial direction
of the BEC. The orientation angles are defined in Section 4.3.3



Different polarizations of the BEC 99
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Figure 4.13: Schematic depiction of the reorientation of the TF ellipsoid in
the y-z-plane. The left panel shows the situation for εD = 0. The dipoles
are oriented in the direction of the applied B-field. The orientation of the
ellipsoid is not affected. The angle ϑ between the dipoles and the ellipsoid
is equal to the angle ϑB between the B-field and the ellipsoid. The right
panel shows the situation for a BEC with εD = ε

(m)
D . The z-axis of the

TF ellipsoid (êz,TF) is rotated by an angle ϑTF away from the z-axis of
the trap (êz). The new angle between the dipoles and the TF ellipsoid is
ϑ = ϑB − ϑTF.
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of the BEC is oriented in a direction defined by the angle ϑTF and the
angle ϑ is given by ϑ = ϑTF − ϑB. It is clear that expression (4.49) for the
frequency shift needs to be replaced by

γ(yz) = γ(y) sin2 ϑ+ γ(z) cos2 ϑ. (4.52)

The angle ϑTF is determined by the set of self-consistency equations (1.31).
The dashed curves in Fig. 4.10 and Fig. 4.11 show the frequency shift for
εD = ε

(m)
D . One can see that the curves are somewhat distorted compared

to the case εD = 0. However, the basic shape of the curves is mainly the
same and the corrections due to εD = ε

(m)
D are only minor.

Polarization in the x-y-plane

The case εD = 0: The orientation angle ϑB is fixed by ϑB = π/2, which
yields the frequency shift

γ(xy) = γ(x) cos2 ϕB + γ(y) sin2 ϕB. (4.53)

As usual, the starting point is the case εD = 0. The results for the frequency
shift are presented in Fig. 4.14 and Fig. 4.15. The limit of an infinitely long
BEC in the z-direction is given by

γ(xy)
∞ = 3

14ε
(m)
D

[
λ(0)
x

xd

]4

. (4.54)

The case εD = ε
(m)
D : The effect of the dipole-dipole interaction in this

case is limited to the modification of the semi axes. At least for a cylindri-
cally symmetric trap with κ = ωy/ωx = 1. For a slightly asymmetric trap,
the tilt of the BEC in the x-y-plane can be neglected. Especially within
the column density model this does not affect the frequency shift. The
modified semi-axes lead again to the factor of limν→∞ λ

(0)
z /λz, which was

already discussed previously and the factor is given in Fig. 4.12. For κ = 1
and ϑB = π/2, the angle ϕB does not have an influence on limν→∞ λ

(0)
z /λz.

Polarization in the x-z-plane

The case εD = 0: The orientation angle ϕB is fixed by ϕB = 0 and the
frequency shift is given by

γ(xz) = γ(x) sin2 ϑB + γ(z) cos2 ϑB. (4.55)
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Figure 4.14: Frequency shift γ(xy) vs. trap aspect ratio ν = ωx/ωz. The
frequency shift is calculated using the column density model for ε(m)

D = 0.5,
for a non-dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with
εD = ε

(m)
D (dashed lines). The BEC polarization changes from ϕB = 0

(dipoles in x-direction) in steps of π/8 to ϕB = π/2 (dipoles in y-direction).
The second orientation angle is set to ϑB = π/2 and the distance to the
surface is xd = 2λ(0)

x .
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Figure 4.15: Frequency shift γ(xy) vs. orientation angle ϕB. The frequency
shift is calculated using the column density model for ε(m)

D = 0.5, for a non-
dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with εD = ε

(m)
D

(dashed lines). The results are shown for three different trap aspect ratios
ν = ωx/ωz. The black line shows approximation (4.54) for a non-dipolar
BEC with εD = 0. The second orientation angle is set to ϑB = π/2 and
the distance to the surface is xd = 2λ(0)

x .
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Figure 4.16: Frequency shift γ(xz) vs. trap aspect ratio ν = ωx/ωz. The
frequency shift is calculated using the column density model for ε(m)

D = 0.5,
for a non-dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with
εD = ε

(m)
D (dashed lines). The BEC polarization changes from ϑB = 0

(dipoles in z-direction) in steps of π/8 to ϑB = π/2 (dipoles in x-direction).
The second orientation angle is set to ϕB = 0 and the distance to the
surface is xd = 2λ(0)

x .
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Figure 4.17: Frequency shift γ(xz) vs. orientation angle ϑB. The frequency
shift is calculated using the column density model for ε(m)

D = 0.5, for a non-
dipolar BEC with εD = 0 (solid lines) and a dipolar BEC with εD = ε

(m)
D

(dashed lines). The results are shown for three different trap aspect ratios
ν = ωx/ωz. The black line shows approximation (4.51) for a non-dipolar
BEC with εD = 0. The second orientation angle is set to ϕB = π/2 and
the distance to the surface is xd = 2λ(0)

x .

In the limit of an infinitely elongated trap, the result reads

γ(xz)
∞ = − 3

14ε
(m)
D

[
λ(0)
x

xd

]4

sin2 ϑB. (4.56)

In Fig. 4.16 the frequency shift is presented as function of ν and in Fig.
4.17 as function of ϑB.

The case εD = ε
(m)
D : The dipole-dipole interaction has an interesting

effect in this configuration. As always, the dipole-dipole interaction modifies
the semi axes and tilts the BEC. The BEC is tilted by an angle ϑTF, which
is depicted in Fig. 4.18. The z-axis of the BEC is no longer parallel to the
superconducting plane. One side of the BEC is shifted towards the surface,
the other away from the surface. A constant distance xd to the surface can
no longer be assumed. The tip of the BEC has a distance d = xd−λz sinϑTF
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Figure 4.18: The dipoles in the BEC are oriented in the x-z-plane. This
causes a tilt of the BEC within this plane. The distance between the BEC
and the surface is no longer constant along the BEC axis. One tip of
the BEC is tilted towards the surface, and the distance has reduced to
d = xd − λz sinϑTF.

to the surface. Obviously, if d < xd, the BEC touches the surface. Fig. 4.19
shows d as a function of ϑB for different trap aspect ratios. Even for a
large value of εD, the distance d is large enough so that the BEC does
not touch the surface. Since the BEC is no longer parallel to the surface,
expressions (4.24) and (4.42) for the frequency shift need to be modified.
Say a dipole at position z in the BEC interacts with the mirror dipole at
position z′. Due to the tilt of the BEC the x- and z-coordinates of both
dipoles have changed. This means that also their distance has changed. In
order to account for this, the function H(x)

k becomes

H
(x)
k (xd, λz, ϑTF) =

λzˆ

−λz

dz Γ0 (z) Γk (z) ∂
2G̃k (x, z)
∂x2

∣∣∣∣∣
x=2xd+(2z−z′) sinϑTF

with

G̃k (x, z) = 1
8λz

λz+zˆ

−λz+z

dz′
(

3x2

[x2 + z′2 cos2 ϑTF]5/2
− 1

[x2 + z′2 cos2 ϑTF]3/2

)
z′k.

In the same way the functions H(z)
k and Dk need to be modified. Using

those functions, the frequency shift for the x-component γ(x)
ϑTF

as well as
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Figure 4.19: Distance d between the tip of the BEC and the surface vs. the
orientation angle ϑB for three different aspect ratios ν. Parameters: κ = 1,
εD = 0.5, xd = 2λ(0)

x , and ϕB = 0.

the frequency shift for the z-component γ(z)
ϑTF

are calculated. Finally, the
expression for the frequency shift reads

γ
(xz)
ϑTF

= γ
(x)
ϑTF

sin2 ϑ+ γ
(z)
ϑTF

cos2 ϑ.

The resulting frequency shift is plotted in Fig. 4.16 and Fig. 4.17 as dashed
lines. Once again, the corrections to the case εD = 0 are not too drastic.



Chapter 5

Resonant excitation of BEC
shape fluctuations

In this chapter shape fluctuations of the BEC are investigated. A particu-
lar kind of shape fluctuations is discussed, namely the monopole-quadrupole
modes, which were introduced in Section 1.3. In a harmonic potential
monopole-quadrupole modes and the center-of-mass motion are decoupled
(see Section 1.3). In an anharmonic potential this is not the case. Anhar-
monic terms create a cross-mode coupling, thus the center of mass can not be
excited without at the same time exciting shape fluctuation. This has been
studied previously for anharmonic terms of the form x3, x4, etc. [107–109].
In Ref. [55] the potential generated by the superconducting surface was
modeled using an effective potential of the form x2z2. With this term a
coupling of the center-of-mass motion with the breather mode ρ̂s was ob-
served. Here (and also presented in [56]) the full potential generated by the
surface is used, which yields more features in the excitation spectrum than
using the effective potential from Ref. [55].

Two different models are used to discuss the shape fluctuation: the GPE
(3.28) and the hydrodynamic equations (1.36). Both models are solved
numerically. In order to include the surface potential to the hydrodynamic
equations, a simplification is necessary. This approximation is the reason
that the results are not as precise as the results from the GPE. However,
the model is still useful since it offers more insight into the mechanism of
the mode excitation than the GPE does.

Throughout the whole chapter the dipoles are assumed to be oriented
in the z-direction.
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5.1 Numerical results for the shape fluctua-
tions

Besides the information of the center-of-mass motion, the numerical
results yield also information about the shape oscillations of the BEC. The
observable that is used for this is

σa (tj) =
√〈

(a− aj)2
〉
, a ∈ {x, y, z} . (5.1)

It represents a measure for the width of the BEC wave function. aj is the
center-of-mass coordinate at time tj. For a TF ellipsoid the width σa is
connected to the semi axes λa via

σa = λa√
7
, a ∈ {x, y, z} .

If monopole-quadrupole modes are excited, the width becomes time de-
pendent. The frequencies that constitute the width oscillation are the
monopole-quadrupole mode frequencies. A discrete Fourier transformation
of the data set obtained by the numerical calculation yields the excitation
spectrum. The peaks in the spectrum indicate which modes are excited
and the peak height is a measure of the strength of the excitation.

5.1.1 Harmonic trap
To illustrate how monopole-quadrupole modes can get excited, a few

examples are presented. For simplicity a non-dipolar BEC with εD = 0 in
a harmonic trap is used. For BECs with εD 6= 0 the principle is the same,
only the mode frequencies are different. In all examples the center of mass
remains at rest at all times. The presented two examples are intended to
illustrate how shape fluctuations can be excited. The peaks in the spectra
of σa correspond to certain modes of the BEC. The simplest way to identify
the correct mode, is to compare the frequency at which the peak appears
in the spectrum to the mode frequencies determined by the linearized
hydrodynamic equations presented in Section 1.2.3.

In a purely harmonic trap, a sudden change of the harmonic trap fre-
quencies leads to the excitation of monopole-quadrupole modes. In Fig. 5.1
the time curves of σx, σy and σz are presented, along with the associated
frequency spectra. For this example the GPE was solved for a non-dipolar
BEC (εD = 0) in a spherical trap with ωx = ωy = ωz = ω. For the time
evolution the trap frequencies were reduced by a factor of 0.9, compared to



Numerical results 109

0.3

0.35

σ
x

0.3

0.35

σ
y

20 21 22 23 24 25

0.4

0.5

t/Tx

σ
z

0

1

2

×10−2

Ωs

Ωs

Ωz2 σ̂
x

1

2

σ̂
y

0 0.5 1 1.5 2 2.5
0

1

2

Ω/ωx

σ̂
z

Figure 5.1: Left panel: width σa vs. time t. Right panel: Fourier transform
σ̂ vs. frequency Ω. The blue curves correspond to a non-dipolar BEC in a
spherical trap with ν = 1 and κ = 1 ⇒ ωx = ωy = ωz = ω. The ground
state was calculated in a trap with frequency ω̄ = 10/9ω. In the frequency
spectrum a peak at about Ω ≈ 2.23ω appears. This corresponds to the
breather mode frequency Ωs =

√
5ω. The green curves correspond to a

non-dipolar BEC in a uni-axial trap with ν = 2 and κ = 1. The ground
state was calculated in a trap with frequency ω̄x = 10/9ωx, ω̄y = 10/9ωy,
and ω̄z = 10/9ωz. Two peaks appear in the spectra. Since the trap is
uni-axial, the spectra for σx and σy are identical. They show strong peaks
at the position of the breather mode, with the TF frequency Ωs ≈ 2.036ωx
and the dz2-mode with the TF frequency Ωz2 ≈ 0.776ωx. The positions
of the TF frequencies are indicated by vertical dashed lines. Parameters:
length of the time evolution for the GPE: t = 100Tx, ∆t = 10−3Tx, with
Tx = 2π/ωx, size of numerical lattice: 64× 64× 64, expansion of the lattice:
6λx × 6λy × 6λz, central density: n(0)

0 = 2.5× 1013 cm−3.
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the trap frequencies used for the determination of the ground state. This
corresponds to a sudden change of the trap frequencies at a time t0 = 0.
The time curves of σx, σy, and σz show harmonic oscillation and in the
spectrum appears a strong peak at Ω ≈

√
5ω, where ω is the frequency

during the time evolution. Only one peak appears in the spectrum. The
reason is that in a spherical trap with an isotropic change of the trap fre-
quencies an exact eigenmode (the breather mode) of the BEC is excited.
In a uni-axial trap two modes are excited, which is also shown in Fig. 5.1.
For an non-isotropic trap frequency change, more peaks would appear in
the spectrum.

Another possibility to excite shape fluctuations is to use time dependent
trap frequencies. For the presented examples, the trap frequency in x-
direction is set to be of the form ωx (t) = ωx,0 +ax sin (ΩDt). The other two
frequencies ωy and ωz remain constant. The trap is uni-axial with ν = 2
and κ = 1. The drive frequency ΩD is chosen such that it is close to one
of the mode frequencies. The resulting spectra are presented in Fig. 5.2.
One can see that three modes are excited. This means that not an exact
eigenmode is excited but rather a combination of them. The mode which
has the frequency closest to the driving frequency ΩD is most strongly
excited.

5.1.2 Shape fluctuations due to the eddy current ef-
fect

Close to the superconducting surface, the trapping potential is no longer
purely harmonic. The potential generated by the mirror BEC superposes the
external trapping potential. The mirror potential is only a small perturba-
tion, thus the potential remains mainly harmonic. However, the anharmonic
perturbation creates a coupling between the center-of-mass motion and the
monopole-quadrupole modes.

In the following, uni-axial trap geometries with κ = 1 or almost uni-
axial trap geometries with κ ≈ 1 are considered. The reason why slightly
asymmetric traps with κ ≈ 1 are in some cases advantageous becomes
apparent below. In an uni-axial (or almost uni-axial) trap the time depen-
dence of σx is similar to the time dependence of σy. Therefore it is sufficient
to analyze only one of the two. Instead of analyzing σx and σz separately,
it is convenient to use the aspect ratio of the BEC

ζ (t) = σz (t)
σx (t) .

This quantity contains the information necessary to study the excitation
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Figure 5.2: σ̂a vs. frequency Ω. The curves correspond to a non-dipolar
BEC in an uni-axial trap with ν = 2 and κ = 1. The frequency in the
x-direction has a time-dependent component ωx (t) = ωx,0 + ax sin (ΩDt).
Three different driving frequencies ΩD were used. Using the driving fre-
quency ΩD = 2ωx, a strong excitation of the breather mode is observed
in all three spectra. Whereas for ΩD = 1.5ωx, the dx2−y2-mode is strongly
excited, which results in strong peaks in the σx and σy spectra. In the σz
spectrum only the peak of the driving frequency appears. For ΩD = 0.7ωx
a strong peak of the dz2-mode appears in the spectrum of σz. TF mode
frequencies: Ωs ≈ 2.036ωx, Ωx2−y2 ≈ 1.414ωx, and Ωz2 ≈ 0.776ωx. Param-
eters: length of the time evolution for the GPE: t = 100Tx, ∆t = 10−3Tx,
with Tx = 2π/ωx, size of numerical lattice: 64× 64× 64, expansion of the
lattice: 6λx × 6λy × 6λz, central density: n(0)

0 = 5× 1013 cm−3.
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Figure 5.3: Excitation spectrum ∆ζ̂(Ω) for various trap aspect ratios ν.
The trap ratio ranges from ν = 1 to ν = 4 in steps of ∆ν = 0.1. The
red lines show the monopole-quadrupole mode frequencies. Parameters:
εD = 0, ε(m)

D = 0.15, κ = ωy/ωx = 0.99, distance to surface xd = 2λ(0)
x ,

oscillation amplitude xs = 0.1λ(0)
x length of the time evolution for the

GPE: t = 100Tx, ∆t = 10−3Tx, with Tx = 2π/ωx, size of numerical lattice:
64 × 64 × 64, expansion of the lattice: 6λx × 6λy × 6λz, central density:
n

(0)
0 = 5× 1013 cm−3.

of the monopole-quadrupole modes. A discrete Fourier transformation of
the data set ζ(tj), yields the frequency data set ζ̂(Ωk). The quantity ζ̂(Ωk)
represents the amplitude of the frequency component Ωk.

As a first example, a non-dipolar BEC with εD = 0 and ε
(m)
D = 0.15

(52Cr) is presented. The aspect ratio κ is fixed to κ = 0.99 and the aspect
ratio ν is varied from ν = 1 to ν = 4.

In Fig. 5.3 the resulting frequency spectra of the relative fluctuations
∆ζ = ζ(0)−ζ(t)

ζ(0) are presented as a color map. The color map is plotted on
a logarithmic scale in order to better highlight the regions of strong exci-
tation. The blue regions correspond to no excitation and the red regions
to strong excitation. For comparison, the monopole-quadrupole mode fre-
quencies are plotted as dark-red lines. One can see that the regions close
to the monopole quadrupole-modes show a strong excitation. Furthermore,
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excitation appears at Ω ≈ ωx and also a little at Ω ≈ 2ωx. Those peaks
stem from the center-of-mass motion of the BEC. A very strong excitation
is observed at the crossing point of the single center-of-mass frequency ωx
with the dz2-mode. A strong excitation is also observed in the region where
the double center-of-mass frequency and the breather mode come close.

Those crossings correspond to resonant excitations of the monopole-
quadrupole modes. This is due to the mode coupling generated by the
anharmonic perturbation of the potential. If the center-of-mass frequency
or a multiple integer of it coincide with one of the mode frequencies, a
resonance significantly increases the mode excitation. The mechanism for
this is discussed in the next section. Those two resonance peaks are in the
following referred to as single and double center-of-mass peak, respectively.

It now becomes clear why the aspect ratio κ = 0.99 (Fig. 5.3) is prefer-
able over the aspect ratio κ = 1. As is presented in Fig. 5.4, for κ = 1
the double center-of-mass frequency and the breather mode do not cross.
Whereas for κ = 0.9 they do cross. For κ < 1, the breather mode frequency
approaches a value below 2ωx as ν → ∞. For larger dipole-dipole inter-
action strengths, like for example εD = 0.6, the mode frequency forms a
minimum below its limit value and then approaches the value from below
rather than from above. In this case there is a crossing point even for κ = 1.
The position of the crossing point is very sensitive to the aspect ratio κ
and also the dipole-dipole interaction strength. For κ = 0.9 the position of
the crossing point with the double oscillation frequency does not vary so
much for different εD as it does for κ = 1. The single oscillation frequency
has a crossing point with the dz2-mode. Here the crossing point is not very
sensitive to neither εD nor κ, as is presented in Fig. 5.4.

The strength of the resonance peak depends mainly on two parameters:
the dipole-dipole interaction parameter ε(m)

D and the oscillation amplitude
xs. Since the mirror potential is linear in ε(m)

D , it is natural to assume that
the peak height also scales linearly with ε(m)

D . That this is actually the case
is shown in Fig. 5.5. Two spectra are presented, one for ε(m)

D = 0.15 and one
for ε(m)

D = 0.3. In both calculations the dipole-dipole interaction parameter
in the GPE was set to εD = 0. This is done in order to avoid the influence
of εD on the excitation amplitude. The closer the calculation is performed
to the actual crossing point, the larger the amplitude of the excitation
gets. Changing the value of εD would shift the position of the crossing
point relative to position where the numerical calculation is preformed,
thus the amplitude of the excitation would be different. Of course, ε(m)

D

has an influence on the center-of-mass frequency, as was discussed in the
previous chapter. However, the shift of the crossing point due to that is
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Figure 5.4: Monopole-quadrupole mode frequencies vs. trap aspect ratio
ν = ωx/ωz. The mode frequencies were calculated with the linearized
hydrodynamic equations (1.37). The upper two plots show the breather
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0 = 5× 1013 cm−3.
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so small that it does not play an important role here. In order to avoid
the effect of a possible shift of the resonance position completely, the mode
present in Fig. 5.5 is the dx2−y2-mode, where no crossing resonance occurs.

In order to investigate the above mentioned resonance peaks more
closely, the spectra in Fig. 5.6 are presented. They correspond to a dipolar
BEC with εD = ε

(m)
D = 0.2. Only the sections of the spectrum are shown

where the cross-mode resonances occur. Again, the color map is plotted
on a logarithmic scale. Additionally, the individual spectra for each ν are
shown on a linear scale as black lines.

To study the scaling of the resonance peaks with the oscillation am-
plitude, the spectra are shown for two different oscillation amplitudes:
xs = 0.01λ(0)

x and xs = 0.1λ(0)
x . The single and the double center-of-mass

peaks exhibit clearly different scaling behaviors. The increase of the oscilla-
tion amplitude by one order of magnitude also increases the height of the
single center-of-mass peak by one order of magnitude. Whereas the height of
the double center-of-mass peak increases by two orders of magnitude. This
infers that the single center-of-mass peak scales linearly with the oscillation
amplitude and the double center-of-mass peak scales quadratically with
the oscillation amplitude. The reason for this scaling behavior is discussed
is the next section.

For an experiment the dependence of the peak height on the oscillation
amplitude is more interesting than the dependence on ε(m)

D . The value of
ε

(m)
D is fixed by the kind of atoms used in the experiment (excluding the
possibility of tuning as with Feshbach resonances, see for example [59]).
Whereas the oscillation amplitude can be easily manipulated.
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5.2 Shape fluctuations based on the hydro-
dynamic equations

In this section a simplified model of the BEC as well as the mirror po-
tential is presented. The goal is to get a better understanding of the results
obtained by numerically solving the GPE. In Chapter 1 the hydrodynamic
equations were presented as way to calculate the time evolution of a BEC
within the Thomas-Fermi regime by dropping the quantum pressure term.
In the previous chapter the parameters of the simulations were chosen such
that the BEC was well within the Thomas-Fermi regime. Therefore, the re-
sults from the hydrodynamic equations should not be significantly different
from the GPE results. For the case that the BEC is trapped in a harmonic
potential, the coupled equations of motion for the three semi axes of the
TF ellipsoid have already been presented in Section 1.2.3 and are given in
Eq. (1.36). In Ref. [107] Ott et al. discuss a method how the oscillation of a
BEC in an anharmonic potential can be viewed within the center-of-mass
frame as a stationary BEC in a harmonic potential with time dependent
trap frequencies. They accomplish this by a local harmonic approximation
of the potential. In the following the same kind of idea is used.

As demonstrated before, the column density model represents a tool
which allows to find analytic expressions for the mirror potential. The
column density potential is expanded in a Taylor series about the minimum
of the harmonic trap. This gives the explicit anharmonic terms of the
potential. Next, the anharmonic potential is transformed into the center-
of-mass frame, which is co-moving with the BEC. The BEC oscillates
with an amplitude xs and frequency ω′x around the potential minimum.
The transformation between the stationary and the co-moving frame of
reference is given by x = x′ + xs sin (ω′xt). Since the BEC only moves in
the x-direction the other two coordinates transform as y = y′ and z = z′.
Exemplary, the transformation of one term of the expansion is presented
here in order to demonstrate the main idea. The remaining terms are
discussed in Appendix D. The anharmonic term of the form xz2 transforms
as follows:

xz2 = x′z′2 + z′2xs sin (ω′xt) .

The goal is to collect all terms that are harmonic within the center-of-mass
frame. In the above example it is the term z′2xs sin (ω′xt). The anharmonic
term x′z′2 is dropped. Simply dropping this anharmonic term is not an
approximation in a strict sense, since there is no reason to assume that it is
small compared to the other term. Using this approach, some quantitative
differences to the results of the numerical calculations using the full poten-
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tial are to be expected. Nevertheless, the assumption is that this model is
still capable of reproducing the qualitative behavior. The term proportional
to z′2 modifies the trap frequency in the z-direction. In the above example
this term has a time dependent factor xs sin (ω′xt). This means that it will
generate a time dependent variation of the trap frequency. The evaluation
of the full expression generated by the Taylor series expansion yields the
time dependent harmonic potential

V (r′, t) = m

2
{

Ω2
x (t)x′2 + Ω2

y (t) y′2 + Ω2
z (t) z′2

}
,

where the trap frequencies are given by

Ω2
a (t) = ω2

a + ε
(m)
D

m
Vx,aaxs sin (ω′xt) + ε

(m)
D

2m Vxx,aax
2
s sin2 (ω′xt) , (5.2)

with a ∈ {x, y, z}. The derivation of this expression and the definitions of
the coefficients Vx,aa and Vxx,aa are presented in Appendix D. Previously, it
was shown that time dependent trap frequencies lead to the excitation of
collective modes. The above given expression has two terms that are time
dependent. The first term is proportional to sin (ω′xt), which generates a
modulation of the trap with the single oscillation frequency, the other term
is proportional to sin2 (ω′xt) and therefore leads to a modulation with the
double oscillation frequency.

The excitation mechanism in the anharmonic potential can be inter-
preted in such a way that the relative motion between the BEC and its
mirror is driving time dependent changes of the trap frequencies. The terms
with sin (ω′xt) drive the system with the single center-of-mass oscillation
frequency ω′x and the terms proportional to sin2 (ω′xt) drive the system with
the double oscillation frequency 2ω′x. If the eigenfrequencies of the BEC
come close to the driving frequencies, a resonance occurs. The excitation
spectra obtained by this method are presented in Fig. 5.7. All expected
resonance peaks are visible in the spectrum. Since the chosen values of ν
did not quite hit the crossing point of the single center-of-mass frequency
with the dz2-mode, an additional spectrum for ν = 1.575 was inserted. The
strength of the peaks show the same scaling with the oscillation amplitude
xs, as was observed in the results from the time dependent GPE. The rea-
son for this behavior can now be understood in terms of the time dependent
oscillation frequencies (5.2). The terms that generate the driving force with
the double oscillation frequency are quadratic in xs and the terms generat-
ing the single oscillation frequency driving force are linear in xs. The linear
scaling of the peak height with ε(m)

D (see Fig. 5.5) is also consistent with
this model, since the time dependent terms in (5.2) are all linear in ε(m)

D .
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Figure 5.7: Frequency spectrum of ∆ζ̂(ω) vs. trap ratio ν based on the
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as in Fig. 5.6.
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Figure 5.8: Frequency spectrum of ∆ζ̂(ω) vs. trap ratio ν based on the
solution of the GPE with time dependent trap frequencies (5.2). The pa-
rameters are the same as in Fig. 5.6.

This model shows a qualitative agreement with the numerical results
from the previous section. However, the absolute height of the peaks is not
the same. The reason for this is probably the way the mirror potential was
approximated. In order to reduce the result from the Taylor series to this
time dependent harmonic potential, the terms which did not fit into the
desired scheme had to be dropped (see Appendix D). But dropping these
terms is not a controlled approximation, since they are not necessarily small
compared to the terms that we keep. This is probably the main reason for
the observed deviations. Another reason might be that for large amplitudes
the series expansion about the harmonic trap minimum becomes inaccurate.
Furthermore, the one dimensional column density was used to calculate the
mirror potential. But, as can be seen from the results for the frequency shift,
the column density model yields quite accurate results. Thus, the observed
deviation in the spectra should not stem from that. Neglecting the quantum
pressure term in the equations of motion for the semi axes might also play
a role. That this is not the case is presented in Fig. 5.8. It shows the
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excitation spectra obtained by solving the GPE in a harmonic trap with
the time dependent trap frequencies 5.2. No center-of-mass oscillation was
excited for these calculations. The results show a fair agreement with the
results from the hydrodynamic equations.



Summary & Conclusion

The subject of this thesis was the study of the magnetic interaction
between a dipolar BEC and a superconductor. In order to study the in-
teraction, the GPE for a dipolar BEC close to a superconducting surface
was derived and then solved numerically. The computation time necessary
to solve the GPE was reduced by using CUDA to parallelize the computa-
tions and perform them partially on the GPU. These numerically obtained
results were compared to results based on analytical and semi-analytical
approximations.

It was shown that the interaction is strong enough, in order to generate
a frequency shift that can be measured in an experiment. Furthermore,
different fingerprints of the effect were presented. In particular the frequency
shift as a function of the number of atoms in the BEC presents a unique
signature of the effect. Also the dependence of the frequency shift on the
orientation of the magnetic dipoles can be used as an identifying criterion.

Different magnetic dipole orientations can also be used to enhance the
effect. It was shown that the orientation of the dipoles perpendicular to the
surface results in the strongest effect. In case that the dipoles are oriented
parallel to the surface, an orientation perpendicular to the long axis of the
BEC yields a roughly two times larger frequency shift than an orientation
parallel to the long axis.

Besides the center-of-mass motion of the BEC, the interaction with
the surface has also an effect on the internal dynamics of the BEC. It
was shown hat the anharmonic terms, introduced by the surface potential,
cause excitations of collective shape oscillations. The coupling between the
center-of-mass motion and the collective modes can be used to resonantly
enhance this effect. Adjusting the mode frequencies to match the single
or double center-of-mass oscillation frequency, generates resonance peaks
in the excitation spectrum. The scaling of those resonance peaks with the
center-of-mass oscillation amplitude can also be used as a signature for this
particular type of anharmonic potential.

In an experiment, the superconductor is of course not a half-space, but
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typically a rectangular superconducting strip. The size of this strip needs to
be large enough, in order for the half-space approximation to be applicable.
For practical purposes this means that the length and width of the strip
need to be at least of the size of the BEC expansion. They also need to be
larger than the distance between BEC and surface. If this is not the case,
the interaction gets modified, which changes the resulting frequency shift.
Since the magnetic field penetrates the surface of the superconductor, the
thickness of the strip should be at least twice the penetration depth. The
London penetration depth for elementary superconductors ranges typically
from a few 10 nm to about 100 nm. This means a thickness of ∼ 200 nm
is sufficient to meet that requirement. The assumed distance of 14µm
between harmonic trap minimum and surface is based on experimental
results and is therefore a realistic value. The polarization of the BEC
requires the application of an external magnetic field in the wanted direction.
Polarization parallel to the surface does not pose a problem. However,
polarizing the BEC perpendicular to the superconducting surface might
be difficult to achieve. The reason is that the normal component of the
polarizing B-field must vanish at the surface of the superconductor. This
distorts the magnetic field close to the surface and can thereby modify the
polarization of the BEC.

So far, experiments with superconducting microtraps have only been
implemented with 87Rb BECs. However, due to their very small dipole mo-
ments, 87Rb BECs are rather unsuited for the type of experiment described
in this thesis. The results presented here show that it is worthwhile to pur-
sue the combination of dipolar BECs with superconducting components. In
fact, any type of experiment, based on the magnetic interaction between a
BEC and a superconductor, benefits form a larger magnetic dipole moment.

The investigations presented in this thesis can be regarded as a pre-
cursor for further studies of this type of setup. Another interesting setup
consists of a superconducting loop and a BEC. The magnetic flux through a
superconducting loop is quantized in so-called flux quanta φ0 = h/(2e). The
field generated by the loop influences the statical and dynamical properties
of the BEC, like for example the transition temperature or the oscillation
frequency. Since the loop is not just a passive component, as was the case
for the superconducting surface discussed in this work, the effect on the
BEC is a lot larger. The situation becomes even more interesting, especially
in regard to quantum computing, if the loop is replaced by a superconduct-
ing quantum interference device (SQUID). The SQUID can be put in a
superposition of two different flux states and it would be interesting to
study the effects on a BEC, trapped nearby such a SQUID.



Appendix A

Dipolar BEC

Here a summary of the central results of Ref. [57], that are relevant for
the present work, is given. In the first section the self-consistency equations
are given for the TF ellipsoid for the case that the dipoles are not aligned
with one of the harmonic trap axes. In the second section the monopole-
quadrupole modes are discussed. In particular the parametrization of the
shape fluctuation is presented and the set of coupled equations determining
the eigenmodes and eigenfrequencies. For a derivation of these results and
a detailed discussion see Ref. [57].

A.1 TF self-consistency equations for a BEC
Consider a fully spin-polarized BEC. The dipoles are oriented in a plane

spanned by two of the three axes defined by the harmonic trap. Without
loss of generality the two axes are set to be êx and êz. The TF ellipsoid
is oriented in a direction which neither coincides with the direction of the
dipoles nor with the direction of the trap. The TF ellipsoid is defined by
the following set of coupled self-consistency equations:

1− εD + 3
2εDλxλyλz

[
sin2 (ϑ0) Ix + cos2 (ϑ0) Iz

]
= µ

n0gs
, (A.1)

1−εD
λ2
x

+ 3εD
2 λxλyλz [cos2 (ϑ0) Ixz + 3 sin2 (ϑ0) Ixx]

ω2
x cos2 (ϑT − ϑ0) + ω2

z sin2 (ϑT − ϑ0) = m

2gsn0
, (A.2)

1−εD
λ2
y

+ 3εD
2 λxλyλz [cos2 (ϑ0) Iyz + sin2 (ϑ0) Ixy]

ω2
y

= m

2gsn0
, (A.3)

1−εD
λ2
z

+ 3εD
2 λxλyλz [3 cos2 (ϑ0) Izz + sin2 (ϑ0) Ixz]

ω2
x sin2 (ϑT − ϑ0) + ω2

z cos2 (ϑT − ϑ0) = m

2gsn0
, (A.4)
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êz,TF Bêz

êx

ϑ0

ϑT − ϑ0

ϑT

êz

B

êz,TF

ϑ

ϑTF ϑB

Figure A.1: Left panel: The trap (black axes) is rotated away form the
B-field (red) by an angle ϑT . The z-axis of the resulting TF ellipsoid is
oriented in the direction of êz,TF (blue). Right panel: Same setup as in the
left panel, only the angles defined in Section 4.3.3 are used.

3εD
2 λxλyλz sin (2ϑ0) Ixz = m

2gsn0

ω2
x − ω2

z

2 sin (2ϑT − 2ϑ0) . (A.5)

There are six unknown quantities λx, λy, λz, n0, µ and ϑ0 and equations
(A.1)-(A.5) give a set of five equations in order to determine the unknowns.
The sixth equation is again given by the normalization condition n0 =
15
8π

N
λxλyλz

. The index integrals used in the above given equations are defined
in (1.28) and (1.29). The angle ϑT is the angle between z-direction of the
harmonic trap and the orientation of the dipoles. The angle ϑ0 is the angle
between the z-axis of the TF ellipsoid and the dipole orientation. In Fig.
A.1 the relative orientation of the three involved axes is depicted. It suffices
to consider the range 0 ≤ ϑT ≤ π/2. For the case that ϑT = 0 or ϑT = π/2
two angles are equal: ϑT = ϑ0. The equations reduce to the case presented
in Section 4.3.3. The connection to the angles used in Section 4.3.3 is
illustrated in Fig. A.1, it is given by:

ϑTF = ϑT − ϑ0

and
ϑB = ϑT .

In order to calculate dipole orientations in a different plane than the one
spanned by êx and êz, one simply needs to swap the according directions.
For example in order to calculate the polarization in the y-z-plane, the x-
and y-direction in the self-consistency equations need to be swapped.
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A.2 Monopole-quadrupole modes
In Ref. [57] the time dependent density distribution of the BEC is

written as
n (r, t) = nTF (r) + δn (r, t) , (A.6)

where nTF (r) is the TF ground state of the BEC. The fluctuation δn (r, t)
around the equilibrium must be such that particle conservation is guar-
anteed at all times. Furthermore, only density fluctuations are considered
where the BEC remains an ellipsoid. The parametrization of the ellipsoidal
density fluctuation is achieved by

δn (r, t) = nTF (r + η (r, t) ,λ+ ζ (t))− nTF (r,λ) , (A.7)

where ζ (t) describes the time depended dilatation of the semi axes and
η (r, t) is a displacement vector field. In order for the BEC to remain an
ellipsoid the displacement vector field must be of the form

ηa (r, t) = η(0)
a (t) +

∑
b∈{x,y,z}

η
(1)
ab (t) a, a ∈ {x, y, z} . (A.8)

The 0th order term η(0)
a (t) describes the center-of-mass motion of the

BEC. In a harmonic trap the center-of-mass motion is decoupled from
the other modes and η(0)

a (t) can therefore be disregarded here. It turns
out that particle conservation requires that ∇ ·η = 0. In Ref. [57] the
parametrization of the density fluctuation is given by

δn (r, t) = 2n0

 1
λ2
x

ρxx (t)x2 + 1
λ2
y

ρyy (t) y2 + 1
λ2
z

ρzz (t) z2

−1
2

(
1− x2

λ2
x

− y2

λ2
y

− z2

λ2
z

)
ρ00 (t)

+
∑
a<b

1
λaλb

ρab (t) a · b
, (A.9)

with a, b ∈ {x, y, z}. The coefficients ρab are connected to the displacement
vector field η (r, t) and the dilatation ζ (t) of the semi-axes via

ρab (t) = δab

[
ζa (t)
λa
− η(1)

aa (t)
]

− (1− δab)λaλb
[

1
λ2
a

η
(1)
ab (t) + 1

λ2
b

η
(1)
ba (t)

]
, (A.10)
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where δab is the Kronecker delta and

ρ00 (t) =
∑
a

ρaa (t) .

The linearized hydrodynamic equation yield a set of six coupled differential
equations for ρab (t). Using the ansatz

ρab (t) = ρ̂ab (Ω) cos (Ωt) , (A.11)

yields to the following set of equations

2n0gs
m



Cxx,xx Cxx,yy Cxx,zz 0 0 0
Cyy,xx Cyy,yy Cyy,zz 0 0 0
Czz,xx Czz,yy Czz,zz 0 0 0

0 0 0 Cxz,xz 0 0
0 0 0 0 Cyz,yz 0
0 0 0 0 0 Cxy,xy





ρ̂xx
ρ̂yy
ρ̂zz
ρ̂xz
ρ̂yz
ρ̂xy


= Ω2



ρ̂xx
ρ̂yy
ρ̂zz
ρ̂xz
ρ̂yz
ρ̂xy


.

The eigenvectors of this set of equations describe the shape fluctuation of
the BEC to the corresponding eigenmodes via Eq. (A.11) and Eq. (A.9).
The upper 3 × 3 block corresponds to the monopole-quadrupole modes
discussed in Section 1.2.3. The lower 3× 3 block corresponds to the scissor
modes, which in the symmetric case are decoupled from the other monopole-
quadrupole modes and also from each other. In the case that the dipole
orientation and the harmonic trap are not aligned, these modes are not
decoupled (see Ref. [57]). Ω is the eigenfrequency of the respective mode
and ρ̂ab (Ω) is the component of the eigenvector. The coefficients Cab,cd are
defined by:

2n0gs
m

Cxx,xx = ω2
y

λ2
y

λ2
x

3 (1− εD) + 9
2εD

λ4
x

λ4
z
Ixxz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cxx,yy = ω2
y

λ2
y

λ2
x

(1− εD) + 3
2εD

λ2
x

λ2
z

λ2
y

λ2
z
Ixyz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cxx,zz = ω2
y

λ2
y

λ2
x

(1− εD) + 9
2εD

λ2
x

λ2
z
Ixzz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,
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2n0gs
m

Cyy,xx = ω2
y

(1− εD) + 3
2εD

λ2
x

λ2
z

λ2
y

λ2
z
Ixyz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cyy,yy = ω2
y

3 (1− εD) + 9
2εD

λ4
y

λ4
z
Iyyz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cyy,zz = ω2
y

(1− εD) + 3
2εD

λ2
y

λ2
z
Iyzz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Czz,xx = ω2
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(1− εD) + 9
2εD

λ2
x

λ2
z
Ixzz

1− εD + 3εD
2
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y

λ2
z
Izy

,

2n0gs
m

Czz,yy = ω2
y
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2εD

λ2
y

λ2
z
Iyzz
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λ2
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2n0gs
m

Czz,zz = ω2
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z

3 (1− εD) + 45
2 εDIzzz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cxz,xz = ω2
y

(
λ2
y

λ2
x

+
λ2
y

λ2
z

) (1− εD) + 9
2εD

λ2
x

λ2
z
Ixzz

1− εD + 3εD
2

λ2
y

λ2
z
Izy

,

2n0gs
m

Cyz,yz = ω2
y

(
1 +

λ2
y

λ2
z

) (1− εD) + 9
2εD

λ2
y

λ2
z
Iyzz

1− εD + 3εD
2

λ2
y
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,

2n0gs
m
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2
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.

Note, the index integrals used in the above expression for Cab,cd are defined
slightly different than the index integrals defined in this thesis. The index
integrals Ī are defined as

Īab = λxλy
λ2
z

∞̂

0

du√(
λ2
x

λ2
z

+ u
) (

λ2
y

λ2
z

+ u
)

(1 + u)

1(
λ2
a

λ2
z

+ u
) 1(

λ2
b

λ2
z

+ u
)

and

Īabc = λxλy
λ2
z

∞̂

0

du√(
λ2
x

λ2
z

+ u
) (

λ2
y

λ2
z

+ u
)

(1 + u)

1(
λ2
a

λ2
z

+ u
) 1(

λ2
b

λ2
z

+ u
) 1(

λ2
c

λ2
z

+ u
) .
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Appendix B

The index integrals

Throughout this whole work, the index integrals I as well as J need to
be calculated. In Ref. [110] Carlson presents a method to numerically solve
this type of elliptic integrals. In Ref. [94] an algorithm is presented to solve
integrals of the form

F (x, y, z) =
∞̂

0

du 1
(x+ u)1/2

1
(y + u)1/2

1
(z + u)3/2 .

Obviously, the integral F is connected to the single index integrals Ia, which
were defined in (1.28) and (1.29). Permutation of the three arguments of
F gives the three different index integrals:

Ix
(
λ2
x, λ

2
y, λ

2
z

)
= F

(
λ2
y, λ

2
z, λ

2
x

)
,

Iy
(
λ2
x, λ

2
y, λ

2
z

)
= F

(
λ2
z, λ

2
x, λ

2
y

)
,

Iz
(
λ2
x, λ

2
y, λ

2
z

)
= F

(
λ2
x, λ

2
y, λ

2
z

)
.

Furthermore, there are algebraic relations between the index integrals,
that make it unnecessary to calculate all of them separately. The properties
that follow here, have been previously discussed in Refs. [56, 57, 87]. For
the single index integrals holds the relation

Ix + Iy + Iz = 2
λxλyλz

,

and for the double index integrals it reads

2Iaa + Iax + Iay + Iaz = 2
λxλyλz

1
λ2
a

.
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These sum rules immediately yield the result for the case that λx = λy = λz:

Ix = Iy = Iz = 2
3λ3

x

,

and
Ixx = Iyy = Izz = 2

5λ5
x

.

Considering an uni-axial BEC with λx = λy 6= λz, the index integrals can
still be solved analytically. The solutions are given by

Ix = Iy = −
λz
λx

√
1− λ2

z

λ2
x

+ arcsin
(
λz
λx

)
− π

2

(λ2
x − λ2

z)
3/2 ,

and

Iz = 2

√
λ2
x

λ2
z
− 1 + arcsin

(
λz
λx

)
− π

2

(λ2
x − λ2

z)
3/2 .

Consider next the index integrals J , defined in (3.21) and (3.22), which
are needed to calculate the mirror potential. Actually, I is merely a special
case of J , namely forW = 0. The integral F defined above can also be used
to calculate Ja. One simply needs to use the arguments λ2

a +W instead of
λ2
a:

Ja
(
λ2
x, λ

2
y, λ

2
z

)
= Ia

(
λ2
x +W,λ2

y +W,λ2
z +W

)
.

The sum rule for the single index integrals needs to be modified and reads

Jx + Jy + Jz = 2√
(λ2

x +W )
(
λ2
y +W

)
(λ2

z +W )
.

The double index integrals Jab, needed for the calculation of the mirror
potential, are constructed from single index integrals Ja. The connection
is given by

Jab = −Ja − Jb
λ2
a − λ2

b

.

This relation can of course only be used if λa 6= λb. For the case λa = λb 6= λc,
an analytical solution is given by

Jab =
−
√
λ2
c +W (5λ2

a − 2λ2
c + 3W )

4 (λ2
a +W )2 (λ2

a − λ2
c)

2 + 3
8

π − 2 arcsin
√

λ2
c+W
λ2
a+W

(λ2
a − λ2

c)
5/2 . (B.1)
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There exists also a sum rule for the double index integrals Jab, it reads

2√
(λ2

x +W )
(
λ2
y +W

)
(λ2

z +W )

1
(λ2

a +W )

= 2Jaa + Jax + Jay + Jaz,, a ∈ {x, y, z} ,

which yields for example

Jzz = 2

3
√

(λ2
x +W )

(
λ2
y +W

)
(λ2

z +W ) (λ2
z +W )

− Jxz + Jyz
3 .

Again, the sum rule is used to calculate Jaa for the case λx = λy = λz. The
result is given by

Jxx = Jyy = Jzz = 2
5 (λ2

x +W )5/2 .

For W = 0 the result for I is reproduced.
The here listed properties together with Carson’s method [110] are used

in the numerical solution of the GPE (3.28), in order to effectively calculate
the mirror potential.
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Appendix C

Frequency shift generated by a
three dimensional TF ellipsoid

In order to determine the center-of-mass frequency shift of the BEC,
caused by the interaction with the superconducting surface via the potential
Vmir, the second derivative of Vmir needs to be calculated. Furthermore, the
fourth derivative is also required if large amplitude corrections need to be
calculated. To simplify the matter, assume that the BEC is cylindrically
symmetric about the z-axis, meaning the semi axes in the x- and y-direction
are equal: λx = λy. As was shown in Chapter 3, the interaction potential
Vmir is proportional to ϕmir (r), which is given by

ϕmir (r) = ∂2φmir (r)
∂z2 = −1

2
(
Jz − Jxzx2 − Jyzy2 − 3Jzzz2

)

= λxλyλz
8

∞̂

W (r)

du ∂
2α (r, u)
∂z2 .

It is convenient to define

β (r, u) = ∂2α (r, u)
∂z2 = −4

(
1− x2

λ2
x+u −

y2

λ2
y+u − 3 z2

λ2
z+u

)
(λ2

z + u)
√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)
, (C.1)

which gives

ϕmir (r) = λxλyλz
8

∞̂

W (r)

du β (r, u) . (C.2)
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Omitting the factor before the integral, the Leibniz rule yields for the first
derivative

∂

∂x

∞̂

W (r)

du β (r, u) = −β (r, W (r)) ∂W (r)
∂x

+
∞̂

W (r)

du ∂β (r, u)
∂x

. (C.3)

To evaluate β (r, W (r)), definition (3.15) of W (r) is used:

β (r, W (r)) = 4
2z2

(λ2
z+W (r)) −

(
1− x2

(λ2
x+W (r)) −

y2

(λ2
y+W (r)) −

z2

(λ2
z+W (r))

)
(λ2

z +W (r))
√

(λ2
x +W (r))

(
λ2
y +W (r)

)
(λ2

z +W (r))

= 8z2

(λ2
z +W (r))5/2 (λ2

x +W (r))

= 8z2η (W (r)) .

The expression simplifies considerably, however, it does not vanish entirely
as it was the case for the function α (r, u) in Section 4.1.1. In the second
line the symmetry λx = λy was used to further simplify the expression.
And finally, in the last line the function

η (u) = 1
(λ2

x + u) (λ2
z + u)5/2 (C.4)

was introduced. For the second derivative the expression reads

∂2

∂x2

∞̂

W (r)

du β (r, u) = − ∂

∂x

(
8z2η (W (r)) ∂W (r)

∂x

)
+ ∂

∂x

∞̂

W (r)

du ∂β (r, u)
∂x

= −8z2∂η (W (r))
∂W (r)

(
∂W (r)
∂x

)2

−8z2η (W (r)) ∂
2W (r)
∂x2

− ∂

∂x
β (r, u)

∣∣∣∣∣
u=W (r)

∂W (r)
∂x

+
∞̂

W (r)

du ∂2

∂x2β (r, u) . (C.5)
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In this expression appears a number of terms which need to be evaluated.
The derivatives of β (r, u) are expressed as

∂β (r, u)
∂x

= −4 ∂

∂x

(
1− x2

λ2
x+u −

y2

λ2
y+u − 3 z2

λ2
z+u

)
(λ2

z + u)
√

(λ2
x + u)

(
λ2
y + u

)
(λ2

z + u)

= 8x
(λ2

x + u)2 (λ2
z + u)3/2

= 8x · ξ (u) (C.6)

and
∂2β (r, u)

∂x2 = 8 · ξ (u) . (C.7)

Again the symmetry λx = λy was used to simplify the expression. Further-
more the function

ξ (u) = 1
(λ2

x + u)2 (λ2
z + u)3/2 (C.8)

was introduced. Inserting everything back in expression (C.5) yields

∂2

∂x2

∞̂

W (r)

du β (r, u) = 8 ·F (r) ,

with

F (r) = −z2η (W (r))
∂η(W (r))

∂W (r)

(
∂W (r)
∂x

)2

+ ∂2W (r)
∂x2



−x · ξ (W (r)) ∂W (r)
∂x

+
∞̂

W (r)

du ξ (u) . (C.9)

The second derivative of ϕmir (r) is mainly given by the function F (r).
Although F is a very complicated function of the position r, it is still useful
to have it. In the case of an uni-axial ellipsoid, it is possible to calculate F
completely analytical. it is even possible to give a closed expression for the
elliptic coordinate

W (r) = 1
2

x2 + y2 + z2 − λ2
x − λ2

z

+
√

(x2 + y2 + z2 − λ2
x − λ2

z)
2 + 4 (z2λ2

x + x2λ2
z + y2λ2

z − λ2
xλ

2
z)
.
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It is very convenient to have an analytical expression for F , since in order
to determine the frequency shift it is necessary to integrate F over the BEC
density distribution. This integral can no longer be solved analytically and
also the reduction to one dimensional index integrals is not possible.

The large amplitude corrections in expression (4.10) require also the
derivatives of F . The first derivative of F reads

∂F (r)
∂x

=
− z2∂

2η (W )
∂W 2

(
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)3

− 3z2∂η (W )
∂W

∂W

∂x

∂2W

∂x2
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−xξ (W ) ∂
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∂x2 − ξ (W ) ∂W
∂x

, (C.10)

and the second derivative reads

∂2F (r)
∂x2 =
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∂W 3
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 (C.11)

In evaluating this expression one can make use of the fact that the deriva-
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tives of the functions η and ξ can be written as

∂η (u)
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With all that has been said, expression (4.10) for the frequency shift is
written as
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4∂

2Vmir (r)
∂x2 + 16x

2
s

8
∂4Vmir (r)
∂x4

}

= −3ε(m)
D gsn0

2ω2
xmN

ˆ
drnTF (r)

{
4∂

2ϕmir (r)
∂x2 + 2x2

s

∂4ϕmir (r)
∂x4

}

= −3ε(m)
D gsn0

2ω2
xmN

λ2
xλz
8

ˆ
drnTF (r)

4 ∂2

∂x2

∞̂

W (r)

du β (r, u) + 2x2
s

∂4

∂x4

∞̂

W (r)

du β (r, u)


= −43ε(m)

D gsn0

2ω2
xmN

λ2
xλz

ˆ
drnTF (r)

{
F (r) + x2

s

2
∂2F (r)
∂x2

}
. (C.12)

The factor before the integral is rewritten, so that it only contains the semi
axes, the parameter ε(m)

D and the the number of atoms N :

6ε(m)
D

gs
mω2

x

n0
λ2
xλz
N

= 3ε(m)
D

2gsn(0)
0

mω2
x︸ ︷︷ ︸

=
[
λ

(0)
x

]2

n0

n
(0)
0

λ2
xλz
N

= 3ε(m)
D

[
λ(0)
x

]4
λ(0)
z

1
N
.
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This gives the final result for the frequency shift

γ = −3ε(m)
D

[
λ(0)
x

]3
λ(0)
y λ(0)

z

1
N

ˆ
drnTF (r)

{
F (r) + x2

s

2
∂2F (r)
∂x2

}

= − 45
8πε

(m)
D

[
λ(0)
x

]3
λ(0)
y λ(0)

z

λxλyλz

ˆ
dr ρTF (r)

{
F (r) + x2

s

2
∂2F (r)
∂x2

}
,

with ρTF (r) = nTF (r) /n0. Note, the factors 4 and 16, discussed at the end
of Section 4.1, were already included in the above expression.



Appendix D

Derivation of the
time-dependent trap
frequencies

In the following it is shown how the time dependent harmonic trap
frequencies (5.2) can be derived. First a Taylor expansion of the potential
generated by the mirror BEC about the minimum of the harmonic trapping
potential is calculated. This expansion is performed in the laboratory frame,
where the BEC center-of-mass performs a harmonic oscillation. It is useful
to first discuss the different orders of the series expansion and the terms
that are important for the time dependent trap frequencies. The harmonic
trap frequencies are connected to the curvature of the potential. In order
to affect the frequency in a certain direction, say the z-direction, the term
needs to be proportional to z2, for example xz2. Now this term needs to be
transformed in the frame of reference where the center-of-mass is at rest.
In the following, the primed coordinates a′ denote the coordinates of the
co-moving frame and the plain coordinates a denote the coordinates of the
resting laboratory frame. From the transformation rule x = x′+xs sin (ω′xt),
one can see this term gets a time dependent component xs sin (ω′xt) · z2,
which varies with the single oscillation frequency ω′x. With that an effective,
time dependent trap frequency Ωz (t) is defined. Of course, this is not the
only term that contributes to the time dependent trap frequencies. In the
following, all the terms that contribute to the effective trap frequencies are
transformed and discussed. The first term reads

xa2 = x′a′2 + a′2xs sin (ω′xt) , a ∈ {y, z} ,
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which gives a term proportional to y′2 and z′2, containing a time dependent
factor. This means one can define effective, time dependent trap frequencies
Ωy (t) and Ωz (t) for the y- and z-direction. The time dependent factor
creates a modulation of Ωy (t) and Ωz (t) with the center-of-mass oscillation
frequency ω′x. The terms x′y′2 and x′z′2 are dropped, since they do not fit
in the scheme of time dependent trap frequencies. From the cubic term in
x one finds

x3 = x′3 + 3x′2xs sin (ω′xt) + 3x′x2
s sin2 (ω′xt) + x3

s sin3 (ω′xt) ,

which yields a quadratic term in x′ with a time dependent factor. This
term is connected to an effective trap frequency in the x-direction Ωx (t).
All the other terms in this expression are dropped. Finally, the terms of
fourth order need to be transformed. The first one reads

x2a2 = a′2x′2 + 2x′a′2xs sin (ω′xt) + a′2x2
s sin2 (ω′xt) , with a ∈ {y, z} .

This gives a term proportional to y′2 and z′2, with a time dependent factor
sin2 (ω′xt). This leads to an additional term in Ωy (t) and Ωz (t), which varies
with the double oscillation frequency 2ω′x. Again, all the other terms are
dropped in this expression which do not fit in the harmonic scheme. The
last term of interest is

x4 = x′4 + 4x′3xs sin (ω′xt) + 6x′2x2
s sin2 (ω′xt)

+4x′x3
s sin3 (ω′xt) + x4

s sin4 (ω′xt) .

Here a quadratic term in x′ is found, which generates a modulation of Ωx (t)
with 2ω′x, all other terms are dropped. Now that all important term have
been identified, the correct coefficients need to be determined. The terms
from the Taylor series expansion yield

1
2! · 1! 2∂

3Vmir (r′)
∂x′∂y′2

∣∣∣∣∣
r′=2xdêx

xy2 ≡ 1
2Vx,yyxy

2,

1
2! · 1! 2∂

3Vmir (r′)
∂x′∂z′2

∣∣∣∣∣
r′=2xdêx

xz2 ≡ 1
2Vx,zzxz

2,

1
3! 8∂

3Vmir (r′)
∂x′3

∣∣∣∣∣
r′=2xdêx

x3 ≡ 1
6Vx,xxx

3,

1
2! · 2! 4∂

4Vmir (r′)
∂x′2∂y′2

∣∣∣∣∣
r′=2xdêx

x2y2 ≡ 1
4Vxx,yyx

2y2,
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1
2! · 2! 4∂

4Vmir (r′)
∂x′2∂z′2

∣∣∣∣∣
r′=2xdêx

x2z2 ≡ 1
4Vxx,zzx

2z2,

and
1
4! 16∂

4Vmir (r′)
∂x′4

∣∣∣∣∣
r′=2xdêx

x4 ≡ 1
24Vxx,xxx

4.

Again, the factors 2, 4, 8, and 16 are due to the fact that the derivative
needs to be taken with respect to x/2 rather that to x. Those factors are
included into the definitions of Vx,aa and Vxx,aa. With that the expressions
for the effective frequencies can be given. In order to define an effective
frequency Ωa (t) one needs to collect all terms (in the co-moving frame)
that are proportional to a′2:

Ua (a′) = m

2

ω2
a + 1

m
Vx,aaxs sin (ω′xt)

+ 1
2mVxx,aax

2
s sin2 (ω′xt)

a′2
= m

2 Ω2
a (t) a′2, a′ ∈ {x′, y′, z′} .

The first term in this expression comes from the harmonic trap, the rest
from the series expansion of the mirror potential.
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