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1 Introduction

In the early Universe all charges which are violated at a rate smaller than the Hubble ex-
pansion rate can be considered conserved. For instance, in the minimal Standard Model
(with zero neutrino masses) baryon number B and the nf = 3 flavor lepton numbers Li
are conserved below the electroweak scale, while at higher temperatures only the differences
Xi ≡ B/nf−Li are conserved. All equilibrium properties are determined by the temperature
T together with the values of all conserved charges Qi or equivalently by the correspond-
ing chemical potentials µi. These properties are encoded in the grand canonical partition
function

exp(−Ω/T ) = tr exp
[
(µiQi −H)/T

]
, (1.1)

where H is the Hamiltonian.

It is rather plausible that initially the values of conserved charges were practically zero,
for example if one assumes that the Universe underwent an early period of inflation. Since
there is something rather than nothing, some processes must have created at least the charge
that we know is non-vanishing at present, i.e., the baryon number, or baryon asymmetry of
the Universe. Such a process, called baryogenesis, must proceed out of thermal equilibrium.
For example, in leptogenesis [1] a non-vanishing value of some Xi is generated. Afterwards
this quantity is conserved and its value determines the equilibrium properties, such as the
expectation values of baryon number B or lepton number L.

The values of the charges and thus of the chemical potentials are usually small, so that
the grand canonical potential is only needed to lowest non-trivial order, which is O(µ2).1

1We assume that the charges Qi are odd under CPT. Then their expectation values vanish when µ = 0,
and Ω contains no terms linear in µ.
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Then the µ-dependence is fully determined by the second derivatives at zero µ, the so-called
susceptibilities

χij ≡ −
1

V

∂2Ω

∂µi∂µj

∣∣∣∣
µ=0

. (1.2)

One important use of the grand canonical potential is to determine the relation between
B or L and the Qi. Strictly speaking one cannot introduce a chemical potential for B + L
in the symmetric phase where electroweak sphalerons rapidly violate B + L. Nevertheless,
one can formally introduce a chemical potential for B + L as long as one computes only
the expectation value of B+L and not higher moments. The reason is that for the resulting
partition function

exp(−Ω′/T ) = tr exp
{[
µB+L(B + L) + µiQi −H

]
/T
}

(1.3)

one only needs the expansion to first order in µB+L. Then, even though B+L does not com-
mute with H, the operator ordering does not matter because of the trace. The expectation
value can then be written as

〈B + L〉 = − ∂Ω′

∂µB+L

∣∣∣∣
µB+L=0

. (1.4)

This relation can be used to determine B + L and thus B from the value of B − L before
the electroweak crossover, neglecting possible effects of the non-equilibrium epoch when the
electroweak sphaleron transitions are shut off.

Another use of the susceptibilities (1.2) has been pointed out recently [2] in the context
of leptogenesis. There the asymmetry can be obtained from a set of kinetic equations. One
coefficient in these equations quantifies the amount of washout of the asymmetry. It was
found that at leading order in the right handed neutrino Yukawa couplings the washout rate
can be factorized into a product of a spectral function which contains dynamical information,
and the inverse of a matrix of susceptibilities. The spectral function has been computed at
next-to-leading order which is O(g2) in the Standard Model couplings g.2 It turned out that
deep in the symmetric phase the NLO corrections to the susceptibilities already start at order
g. The O(g) contribution computed in [2] is an infrared effect caused by the exchange of a
soft Higgs boson. Close to the electroweak crossover the effective thermal Higgs mass can
become very small. If it becomes of the order of the magnetic screening scale, the perturbative
expansion for the susceptibilities can be expected to break down.

In this paper we compute the complete O(g2) corrections to the susceptibilities, thereby
completing the O(g2) result for the washout rate. We obtain contributions both from hard
(∼ T ) and smaller momenta, which, depending on the value of the thermal Higgs mass, can be
soft (∼ gT ) or even smaller (‘ultrasoft’). We use dimensional reduction, a framework which
allows us to systematically treat the contributions at the different scales and the required
resummations.

Part of the O(g2) susceptibilities have already been computed in [2]. Dimensional
reduction in the presence of chemical potentials has been considered in [3], where the focus
was on a electroweak phase transition. Therefore only those terms which depend on the
Higgs field were computed.

2For our power counting we make no distinction between the different Standard Model couplings. In this
respect we differ from [3].
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This paper is organized as follows. In section 2 we recall the role of gauge charges and
gauge fields in the presence of chemical potentials for global charges. Section 3 outlines our
use of dimensional reduction. The hard Higgs contribution is obtained in section 4, and
the dimensionally reduced theory is described in section 5. Depending on the value of the
effective Higgs mass we obtain either soft (section 6) or both soft and ultrasoft contributions
(section 7). Finally, in section 8 we illustrate our results by computing the relation of B and
B − L near the electroweak crossover.

2 Chemical potentials and gauge charges

We write the partition function (1.1) as a path integral with imaginary time t = −iτ ,

exp(−Ω/T ) =

∫
DΦ exp

{∫ 1/T

0
dτ

[
µiQi +

∫
d3xL

]}
, (2.1)

where Φ stands for all fields in our theory with the Lagrangian L. The temporal component
of the gauge fields act as Lagrange multipliers which enforce Gauss’ law. We work in a finite
volume and take the volume to infinity in the end. Then, with spatial periodic boundary
conditions, the total gauge charges vanish. These conditions are enforced by the constant
modes of the temporal component of the gauge fields.

In the presence of chemical potentials for global charges the temporal components of the
gauge fields can develop constant expectation values which act like chemical potentials for the
corresponding gauge charges. We will only consider the symmetric phase of the electroweak
theory, where only the weak hypercharge gauge field Bµ can develop an expectation value.

It is convenient to perform the path integral (2.1) in two steps [4]. First one integrates
over all fields except over the constant mode of B0 which we denote by B̄0. We denote
the result of this integration by exp(−Ω̃/T ). In the presence of chemical potentials Ω̃ may
contain terms linear in B̄0. The linear terms can arise when some of the global charges are
correlated with the hypercharge. Then the integral over B̄0

exp(−Ω/T ) =

∫
dB̄0 exp

(
−Ω̃/T

)
(2.2)

can lead to µ-dependent contributions.
Here we are interested in small values of the conserved charges which corresponds to

small values of the chemical potentials. Therefore we need to keep only those terms in Ω̃
which are at most quadratic in the chemical potentials. Then (2.2) can be evaluated in the
saddle point approximation,

exp(−Ω/T ) = const× exp
[
−Ω̃(saddle point)/T

]
. (2.3)

Here Ω̃ is evaluated at the saddle point

∂Ω̃

∂B̄0
= 0, (2.4)

and the constant in (2.3) is independent of the chemical potentials. The relation (2.4) deter-
mines the expectation value of B̄0 and is usually referred to as ‘equilibrium condition’. Note
that it follows from the saddle point approximation to (2.2).
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Our convention is such that the hypercharge gauge field enters the covariant time deriva-
tive for species α with hypercharge yα as follows,

D0 = ∂t + iyαg1B0 + · · · = i(∂τ + yαg1B0) + · · · , (2.5)

where yϕ = 1/2 for the Higgs field, and g1 is the weak hypercharge gauge coupling. Note
that B0 is purely imaginary. The constant mode acts like a chemical potential µα = yαµY
for each species α with the ‘hypercharge chemical potential’

µY ≡ g1B̄0. (2.6)

It is, like B̄0, purely imaginary.

3 Dimensional reduction

A useful tool for consistently treating the contributions from the different momentum scales
at high temperature is dimensional reduction [5–8]. The constant gauge field modes (see
section 2) can also be conveniently treated within this framework. Thus the computation
of the grand canonical partition function is conveniently done as follows: in a first step one
integrates out hard field modes with momenta of order T . This includes all fermion fields
because in the imaginary time formalism their (Matsubara-) frequencies cannot vanish and
are always of order T . The result is an effective action containing Ω̃hard, which aside from the
zero modes is field independent, and an effective Lagrangian Lsoft for a 3-dimensional field
theory, and momenta of order gT or less. In a second step one integrates over soft modes
which are the zero frequency modes with spatial momenta of order gT . This yields Ω̃soft plus
an effective Lagrangian for the ultrasoft (p � gT ) fields Lultrasoft. When the Higgs mass
in Lsoft is small compared to gT , there are also important contributions from an ultrasoft
spatial momentum scale smaller than gT , as will be discussed below. After these steps one
obtains Ω̃ and from that Ω using (2.3). In this way we obtain the grand canonical potential
as a sum of three parts,

Ω̃ = Ω̃hard + Ω̃soft + Ω̃ultrasoft. (3.1)

In principle it would be possible to treat the constant mode of the gauge fields as part of
the 3-dimensional gauge field, without introducing the notion of a gauge charge chemical
potential. Then the distinction between constant and non-constant gauge fields would have
to be made only when integrating out the soft fields. In such an approach the mass term for
B0 would not only contain the Debye mass for the soft field, but also a linear and a quadratic
term in the constant mode. This point of view was taken in [4]. For a next-to-leading order
calculation it is more convenient to distinguish the two as in [2], because the masses for the
non-constant modes are only needed at order g2T 2, while g2T 2µ2ϕ ∼ g4T 2B̄2

0 . Furthermore,

in this way we can easily read off the fermionic contributions to Ω̃ from [2].

4 Hard contributions

We compute Ω̃hard in the Standard Model in 4 dimensions. We need the terms of the La-
grangian which contain the Higgs field ϕ,

Lϕ =− ϕ†D2ϕ −m2
0ϕ
†ϕ− λ

(
ϕ†ϕ

)2
−
[
(he)ab l̄a,Lϕeb,R + (hu)ab q̄a,Lϕ̃ub,R + (hd)ab q̄a,Lϕdb,R + h.c.

]
. (4.1)
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We treat all particles as massless and perform a perturbative expansion in the parameters
m2

0, λ, hi, and gi, where g2 and g3 are the weak SU(2) and color SU(3) gauge couplings,
respectively. We treat all couplings as being of order g, and m2

0 ∼ g2T 2. We use dimensional
regularization by working in d = 3−2ε spatial dimensions. Then infrared divergences coming
from massless propagators vanish automatically. The Higgs chemical potential (see (2.6))
introduces the following additional terms:

δL = µϕ

[
ϕ† (∂τϕ)−

(
∂τϕ

†
)
ϕ
]

+ µ2ϕϕ
†ϕ+ 2g1µϕB0ϕ

†ϕ+ 2g2µϕϕ
†A0ϕ. (4.2)

Even though we only need an expansion up to order µ2ϕ, we find it convenient to include the
quadratic term in (4.2) in the Higgs propagator and later expand the loop integrals. Note
that there are also µϕ-dependent vertices whose effects cannot be covered by a frequency
shift in the propagator. We will see that the diagrams containing these vertices vanish at
order µ2 because the sum integral (4.5) is zero.

In the calculation for the hard contributions the following 1-loop sum-integrals
∑∫
p ≡

T
∑

p0

∫
p with

∫
p ≡ (2π)−d

∫
ddp appear:

J0(µϕ) ≡
∑∫
p

ln(−p2) = −π
2T 4

45
− µ2ϕ

T 2

6
+O(µ4ϕ), (4.3)

J1(µϕ) ≡
∑∫
p

1

−p2
=
T 2

12
−
µ2ϕ
8π2

+O(µ4ϕ). (4.4)

Here and below we denote p2 = p20−p2, and p0 = in2πT+µϕ with summation over all integer
n. The only 2-loop sum-integral which cannot be reduced to products of 1-loop integrals is
only needed at zero chemical potential, where it vanishes exactly,

J2 ≡
∑∫
p,q

1

p2q2(p+ q)2

∣∣∣∣∣
µ=0

= 0. (4.5)

This result has been found to order O(ε) in [9, 10], and to all orders in [11].
We then obtain the following contributions to −Ω̃hard/V : the leading order is given by

the 1-loop diagram

= −2J0(µϕ) = 2

(
π2T 4

45
+ µ2ϕ

T 2

6
+O(µ4ϕ)

)
. (4.6)

There is also one 1-loop diagram with a Higgs mass insertion

= −2J1(µϕ) = −2m2
0

(
T 2

12
−
µ2ϕ
8π2

+O(µ4ϕ)

)
. (4.7)

At 2 loops we have the Higgs self interaction,

1

2
= −6λJ2

1 (µϕ)

= −λT
2

2

(
T 2

12
−
µ2ϕ
4π2

)
+O(µ4ϕ). (4.8)
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The results for the individual diagrams are in Feynman gauge, and we have checked that
their sum is gauge fixing independent. The gauge fields carry zero chemical potentials, and
we denote their momenta by q. Their interaction with the Higgs field gives

1

2
= −d+ 1

2

(
g21 + 3g22

)
J1(µϕ)J1(0)

= −d+ 1

2

(
g21 + 3g22

) T 2

12

(
T 2

12
−
µ2ϕ
8π2

+O(µ4ϕ)

)
, (4.9)

1

2
=

1

4
(g21 + 3g22)

∑∫
p,q

(2p+ q)2

p2q2(p+ q)2

=
1

4
(g21 + 3g22)

[
4J1(µϕ)J1(0)− J2

1 (µϕ) +O(µ4ϕ)
]

=
1

4
(g21 + 3g22)

T 2

12

(
3
T 2

12
− 2

µ2ϕ
8π2

+O(µ4ϕ)

)
. (4.10)

Finally, the diagram

1

2
× × = −1

4
µ2ϕ(g21 + 3g22)J2 +O(µ4ϕ) = O(µ4ϕ), (4.11)

contains the 3-vertices in (4.2) which are proportional to µϕ. Thus at second order in µϕ we
can evaluate the sum-integral with zero chemical potential in which case it vanishes, see (4.5).
The 2-loop contributions above contain symmetry factors 1/2 which we have displayed as
explicit prefactors of the diagrams.

All terms of the contributions to Ω̃ computed in [2] containing fermionic chemical po-
tentials or Yukawa couplings are hard.3 Therefore by combining the hard purely bosonic
contributions computed above with the ones containing fermions from [2] we obtain the
complete hard contribution as

− 12

V T 2

[
Ω̃− Ω̃(µ = 0)

]
hard

= 6

[
1− 3

8π2

(
g21
36

+
3g22
4

+
4g23
3

)]
tr(µ2q)

+ 3

[
1− 3

8π2

(
4g21
9

+
4g23
3

)]
tr(µ2u)

+ 3

[
1− 3

8π2

(
g21
9

+
4g23
3

)]
tr(µ2d)

+ 2

[
1− 3

8π2

(
g21
4

+
3g22
4

)]
tr(µ2` )

+

[
1− 3

8π2
g21

]
tr(µ2e)

+ 4

[
1 +

3

4π2

(
1

2
λ+

g21 + 3g22
8

+
m2

0

T 2

)]
µ2ϕ

3This is easy to see since the integrals for diagrams with fermions can be written as products of 1-loop
integrals.
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+ 3

[
1

4π2
tr(huh

†
u)µ2ϕ −

3

8π2
tr
(
h†uhuµ

2
q + huh

†
uµ

2
u

)]
+ 3

[
1

4π2
tr(hdh

†
d)µ

2
ϕ −

3

8π2
tr
(
h†dhdµ

2
q + hdh

†
dµ

2
d

)]
+

[
1

4π2
tr(heh

†
e)µ

2
ϕ −

3

8π2
tr
(
h†eheµ

2
` + heh

†
eµ

2
e

)]
+O(µ4) .

(4.12)

Here the hi, are the Yukawa coupling matrices (see (4.1)). The chemical potential matrices
are matrices in family space. They are determined by the zero mode B̄0, or hypercharge
chemical potential, and by the chemical potentials in (1.1),

µα = yαµY +
∑
i

µiTi,α. (4.13)

The matrices Ti,α are the generators of the symmetry transformation corresponding to the
charge Qi, acting on fermion type α with α ∈ {q, u, d, `, e}. For example, the generator
matrices of B−L are proportional to the unit matrix, with TB−L,q = TB−L,u = TB−L,d = 1/3
and TB−L,` = TB−L,e = −1.

5 The dimensionally reduced theory

Aside from the hard contribution Ω̃hard the hard modes also determine the effective La-
grangian for the bosonic modes with zero Matsubara frequency, and with soft or ultrasoft
momenta. The derivation of an effective three-dimensional theory of the Standard Model has
been done in [8] at zero µ. At order g2 we need the following µ-independent terms:4

−Lsoft, µϕ=0 =
1

4
FijFij +

1

4
WijWij

+ϕ†D2ϕ+m2
3ϕ
†ϕ+ λ3

(
ϕ†ϕ

)2
−1

2
(∂iB0)

2 − 1

2
m2
D,1B

2
0 −

1

2
(DiA0)

2 − 1

2
m2
D,2 Tr

(
A2

0

)
−h1ϕ†ϕB2

0 − h2ϕ†ϕTr
(
A2

0

)
. (5.1)

For the finite density effects we also need to include

− δLsoft = −µ2ϕϕ†ϕ− ρ1ϕ†B0ϕ− ρ2ϕ†A0ϕ. (5.2)

The quadratic scalar operators can be combined, yielding a µϕ dependent mass [6, 8]

m2
3,µϕ ≡ −µ

2
ϕ +m2

3

= m2
0 − µ2ϕ + T 2

(
1

2
λ+

3

16
g22 +

1

16
g21 +

1

4
h2t

)
, (5.3)

4The term ϕ†A0B0ϕ term does not contribute at O(g2).
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where ht is the (real) top Yukawa coupling. As discussed at the end of section 3, the Debye
masses for A0, B0 are only needed at order g2T 2 [8],

m2
D,1 =

(
Ns

6
+

5nf
9

)
g21T

2, (5.4)

m2
D,2 =

(
2

3
+
Ns

6
+

5nf
9

)
g22T

2, (5.5)

where Ns = 1 is the number of Higgs doublets and nf = 3 is the number of families. The
couplings are only needed at tree level,

g2i,3 = g2i T (i = 1, 2, 3), λ3 = λT, h1 = g21y
2
ϕT, h2 =

1

4
g22T (5.6)

and also the new parameters in δLsoft,

ρ1 = 2µϕyϕg1, ρ2 = 2µϕg2. (5.7)

In our calculation for the soft contributions we encounter the standard 1-loop integrals

I0(m) =

∫
k

ln(k2 +m2) =
2md

d

Γ(1− d
2)

(4π)d/2
= −m

3

6π
+O(ε) , (5.8)

I1(m) =

∫
k

1

(k2 +m2)
= md−2Γ(1− d

2)

(4π)d/2
= −m

4π
+O(ε) . (5.9)

In the case m = m3,µϕ we expand in powers of µ2ϕ,

I0(m3,µϕ) = −m
3
3

6π
+
µ2ϕm3

4π
+O(µ4ϕ), (5.10)

I1(m3,µϕ) = −m3

4π
+

µ2ϕ
8πm3

+O(µ4ϕ). (5.11)

The only 2-loop integral we need is [6, 9]

I(ma,mb,mc) =

∫
k1,k2

1(
k2
1 +m2

a

) (
k2
2 +m2

b

)
[(k1 + k2)2 +m2

c ]

=
1

16π2

[
1

4ε
+ ln

(
µ̄

ma +mb +mc

)
+

1

2

]
+O(ε). (5.12)

where µ̄ is the MS scale parameter. In the special case ma=m3,µϕ , mb=m ∈ {0,mD,1,mD,2}
and mc = m3,µϕ it is useful to expand in µ2ϕ,

I(m3,µϕ ,m,m3,µϕ) =
1

16π2

[
1

4ε
+ ln

(
µ̄

2m3,µϕ +m

)
+

1

2

]
(5.13)

=
1

16π2

[
1

4ε
+ ln

(
µ̄

2m3 +m

)
+

1

2
+

µ2ϕ
m3(2m3 +m)

]
+O(µ4ϕ).
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6 Soft contributions for soft Higgs mass

In this section we consider temperatures high enough so thatm2
3 is of order (gT )2 and positive.

At lower temperatures, close to the electroweak crossover, the thermal mass squared can be
almost canceled by the negative zero temperature m2

0, making m2
3 smaller than O(g2T 2).

This case will be discussed in section 7.
At 1 loop we have

=− 2TI0(m3,µϕ) = 2T

(
m3

3

6π
−
µ2ϕm3

4π
+O(µ4ϕ)

)
. (6.1)

At 2 loops the Higgs self-interaction gives

1

2
= −6λT 2

[
I1(m3,µϕ)

]2
= −3λT 2

8π2
(
m2

3 − µ2ϕ
)

+O(µ4ϕ). (6.2)

Note that the µ2ϕ-term has the same parametric form as the one in (4.8). The sum of (6.2)
and (4.8) yields the O(λ) correction, that has been computed in [2] by a Higgs mass resum-
mation. The interaction between Higgs and the gauge fields gives

1

2
=
T 2

4
(g21 + 3g22)

∫
k1,k2

(2k1 + k2)
2

(k2
1 +m2

3,µϕ
)k2

2[(k1 + k2)2 +m2
3,µϕ

]

= −T
2

4
(g21 + 3g22)

{[
I1(m3,µϕ)

]2
+ 4m2

3,µϕI(m3,µϕ , 0,m3,µϕ)
}

=
µ2ϕT

2

32π2
(g21 + 3g22)

[
1

2ε
+

1

2
+ 2 ln

(
µ̄

2m3

)]
+ · · · (6.3)

1

2
= −µ2ϕT 2

[
g21I(m3,µϕ ,mD,1,m3,µϕ) + 3g22I(m3,µϕ ,mD,2,m3,µϕ)

]
= −

µ2ϕT
2

32π2

{
y2ϕg

2
1

[
1

2ε
+ 1 + 2 ln

(
µ̄

2m3 +mD,1

)]
+3g22

[
1

2ε
+ 1 + 2 ln

(
µ̄

2m3 +mD,2

)]}
+ · · · , (6.4)

1

2
= −1

2
g21T

2I1(m3,µϕ)I1(mD,1)−
3

2
g22T

2I1(m3,µϕ)I1(mD,2)

= − T 2

32π2
(
g21m3,µϕmD,1 + 3g22m3,µϕmD,2

)
=
µ2ϕT

2

32π2
1

2m3

(
g21mD,1 + 3g22mD,2

)
+ · · · (6.5)

where we omitted terms of orders other than µ2ϕ. Adding up all contributions we obtain the
finite result

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
soft

= 2µ2ϕ

{
−3m3

πT
+

9λ

4π2
+

3

32π2
[
g21C1 + 3g22C2

]}
+O(µ4ϕ) (6.6)
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with

Ci ≡
mD,i

m3
− 1− 4 ln

(
2m3

2m3 +mD,i

)
. (6.7)

After integrating out the soft fields we are left with an effective theory for the ultrasoft
ones. For soft m3 the ultrasoft sector contains only the spatial gauge fields. At the order we
are considering the effective Lagrangian is independent of µϕ, so that this sector does not

contribute to the susceptibilities, and Ω̃ultrasoft = 0.

7 Ultrasoft Higgs mass

When m2
3 in (5.1) becomes small, the perturbative expansion used in section 6 can break

down, which can be seen in (6.5) where m3 appears in the denominator. This term is of the
same order as the soft 1-loop Higgs contribution if |m2

3| . g2TmD ∼ g3T 2. For such small
m3 it is necessary to include the Higgs field in an effective theory for momenta � gT , which
is obtained by integrating out the temporal components of the gauge fields.

First consider Ω̃soft. Since m3 � gT we have to put m3 = 0 in the diagrams in section 6.
Then the only non-vanishing contribution comes from the diagram (6.4) with m3 → 0. The
other diagrams in section 6 vanish in dimensional regularization. Then Ω̃soft contains an
infrared divergence which will cancel against an ultraviolet divergence in Ω̃ultrasoft, leaving
an order g2 ln(1/g)T 2µ2ϕ contribution to Ω̃.

The effective Lagrangian for the ultrasoft fields now reads

−Lultrasoft =
1

4
FijFij +

1

4
WijWij − ϕ†D2ϕ+m2

3,µϕϕ
†ϕ+ λ̄3

(
ϕ†ϕ

)2
(7.1)

with the parameters [8]

m2
3 = m2

3 −
1

4π
(3h2mD,2 + yϕh1mD,1) (7.2)

λ̄3 = λ3. (7.3)

The negative O(g3T 2) contribution to m2
3 results from integrating out the temporal compo-

nents of the gauge fields. It leads to interesting effects depending on how soft m3 is.

Here we have to distinguish several cases. Consider first m2
3 ∼ g3T 2 and positive. Then

we are still in the symmetric phase. The loop expansion parameter is now g1/2. The next-
to-leading order (NLO) starts only at O(g3/2) coming from the 1-loop diagram (6.1), and
the 2-loop diagrams (6.2) and (6.3) contribute at order g2. Combining this with the soft
contribution we find

− 12

V T 2

[
Ω̃(µ)− Ω̃(0)

]
soft+ultrasoft

= 2µ2ϕ

[
−3m̄3

πT
+

9λ

4π2
+

3

32π2
(
g21C̄1 + 3g22C̄2

)]
. (7.4)

with

C̄i ≡ −1− 4 ln

(
2m3

mD,i

)
. (7.5)

Note that in this expression we have parametrically ln(mDi/m3) ∼ ln(1/g).
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There is another way to obtain (7.4). Since we are only interested in the O(µ2ϕ) terms
we can expand the path integral

exp(−Ω̃ultrasoft/T ) =

∫
DΦultrasoft exp

{∫
d3xLultrasoft

}
(7.6)

to second order in µϕ. In (7.1) µϕ only appears in the effective Higgs mass so that[
Ω̃(µ)− Ω̃(0)

]
ultrasoft

= −V Tµ2ϕ
〈
ϕ†ϕ

〉
+O(µ4ϕ). (7.7)

The expectation value of ϕ†ϕ has been extracted from the 2-loop effective potential [6, 8, 13],

〈ϕ†ϕ〉2−loop = − m3T

2π
+

T 2

16π2

{
6λ+

(
g21 + 3g22

) [ 1

4ε
+ ln

(
µ̄

2m3

)
+

1

4

]}
, (7.8)

which again leads to (7.4).
However, (7.7) is also valid when m3 becomes as small as the magnetic screening scale

g2T of the electroweak theory. In this case the only momentum scale left is g2T . In a non-
abelian gauge theory the physics at this scale is non-perturbative, and the loop expansion can
no longer be applied, which is the so called Linde problem [12]. Nevertheless, the expansion
in g (modulo logarithms) still exists, only the numerical coefficients in the series cannot be
computed by summing diagrams.

Since the 3-dimensional fields have mass dimension 1/2, and since the only mass scale
in the ultrasoft theory is g2T , we have 〈ϕ†ϕ〉 ∼ g2T . Thus the ultrasoft fields contribute to Ω̃
at order g2. A reliable determination of 〈ϕ†ϕ〉 can only be done by lattice simulation of the
3-dimensional gauge plus Higgs system. A recent lattice study with mH = (125–126) GeV
for a SU(2) + Higgs theory can be found in [16]. An older but more comprehensive study of
the SU(2) theory can be found in [17] and a study including the U(1) gauge fields has been
performed in [18]. Near the electroweak crossover 〈ϕ†ϕ〉 turned out to be a rather smooth
function of the temperature.

Finally, for negative m2
3 the Higgs field develops an expectation value, which in presence

of chemical potentials for global charges also leads to a non-zero expectation value of the
temporal component of the SU(2)-gauge field [4]. We have not studied this case.

8 Relation between B and B − L

To illustrate the use of our results for Ω̃ we compute the relation between the baryon number
B and B−L in the symmetric phase, which was done in [4] at leading order. For this purpose
we introduce chemical potentials for B−L, and formally (cf. the discussion in section 1) also
for B + L. We use equation (2.6), and express all chemical potentials (4.13) appearing in Ω̃
in terms of µB−L, µB+L, and µY. All chemical potential matrices are proportional to the
unit matrix in family space and are given by

µq =
µY
6

+
µB−L + µB+L

3
,

µu =
2µY

3
+
µB−L + µB+L

3
,

µd = −µY
3

+
µB−L + µB+L

3
,
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µ` = −µY
2

+ µB+L − µB−L,

µe = −µY + µB+L − µB−L,

µϕ =
µY
2
. (8.1)

Then we enforce the saddle point condition (2.4) in order to express µY in terms of µB−L and
µB+L, which gives Ω′ as defined in (1.3). Then (1.4) yields a linear relation between 〈B+L〉
and µB−L. Thus the expectation values of all asymmetries are proportional to µB−L, which
determines the baryon number in terms of 〈B − L〉,

〈B〉 = κ〈B − L〉. (8.2)

For m3 of order gT we obtain using (6.6)

κ =
4(2nf +Ns)

22nf + 13Ns
+
m3

πT

24nfNs

(22nf + 13Ns)2

+
g21

16π2
236n2f − (12C1 − 212)nfNs + 75N2

s

(22nf + 13Ns)2

+
g22

16π2
9(12n2f − 4(C2 − 1)nfNs + 3N2

s )

(22nf + 13Ns)2

− g23
16π2

96(8n2f + 11nfNs + 3N2
s )

(22nf + 13Ns)2

+
h2t

16π2
6(6n2f − 41nfNs − 18N2

s )

(22nf + 13Ns)2

− λ

16π2
384nfNs

(22nf + 13Ns)2

− m2
0

(πT )2
12nfNs

(22nf + 13Ns)2
, (8.3)

with the same definitions as in (5.5) and (6.7). When m2
3 ∼ g3T 2 the result for κ can be

obtained from (8.3) by replacing m3 by m3 and Ci by C̄i defined in (7.2) and (7.5).
The size of the corrections to κ are shown in figure 1 over a wide range of temperatures.

The next-to-leading (NLO) corrections in Standard Model couplings are entirely due to the
Higgs, and they are quite small. The next-to-next-to-leading order (NNLO) is significantly
larger. This is caused by the relatively large QCD corrections. When the QCD corrections
are left out, the remaining NNLO corrections are even smaller than the NLO, indicating that
the perturbation series is well behaved. We also find that the NNLO Higgs correction has
about the same size as the electroweak corrections coming from other chemical potentials.

Figure 2 shows a closer look at the most interesting region near the electroweak crossover
at T ∼ 160 GeV. When m3 is treated as soft, the NNLO corrections diverge like 1/m3 when
m3 approaches zero. The perturbation series should be improved at small m3 by assuming
m3 ∼ g3/2T and using (7.4). It then diverges logarithmically when m3 vanishes. Clearly, the
loop expansion breaks down here. However, since 〈ϕ†ϕ〉 is rather smooth when computed
non-perturbatively on the lattice, we expect that the result for κ using (7.7) with the non-
perturbative 〈ϕ†ϕ〉 [16–18] should be rather smooth as well. It should be given by a smooth
extrapolation of the NNLO for ultrasoft m3 in figure 2 from higher to lower temperatures,
without the sharp falloff.
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Figure 1. Size of the radiative corrections to κ defined in (8.2) relative to the leading order result
with mH = 126 GeV. The electroweak corrections are rather small, and the perturbation series is
well behaved. The complete NNLO is dominated by the QCD corrections except at the highest
temperatures.
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Figure 2. The ratio of B and B − L at low temperatures with mH = 126 GeV. Shown are the LO,
NLO and the NNLO result with soft and ultrasoft effective Higgs masses.
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9 Conclusions

We have computed the O(g2) Higgs contribution to the susceptibilities in the symmetric
phase of the Standard Model, thus completing the O(g2) calculation of [2]. Close to the elec-
troweak crossover the loop expansion breaks down, and the infrared Higgs contributions are
determined by the non-perturbative electroweak magnetic screening scale g2T . Nevertheless,
the corrections are parametrically of order g2. We have obtained a relation which can be
used to determine its coefficient by a lattice simulation of the 3-dimensional gauge field plus
Higgs theory. We have applied our result to compute the relation of B and B − L. The cor-
rections are small in the regime where perturbation theory is valid. Our results indicate that
this holds even when perturbation theory breaks down. We find that the QCD corrections
dominate except at the highest temperatures, and that the corrections are below 5%.

For leptogenesis our result completes the O(g2) computation of the washout rate [2].
Now two out of three rates5 entering leptogenesis computations have been obtained at this
order, the only missing piece being the CP -asymmetry.
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[13] M. Laine and Y. Schröder, Thermal right-handed neutrino production rate in the
non-relativistic regime, JHEP 02 (2012) 068 [arXiv:1112.1205] [INSPIRE].

[14] A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino
interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [INSPIRE].

[15] M. Laine, Thermal right-handed neutrino production rate in the relativistic regime, JHEP 08
(2013) 138 [arXiv:1307.4909] [INSPIRE].

[16] M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard
Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

[17] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The Electroweak phase
transition: A Nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020]
[INSPIRE].

[18] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative analysis
of the finite T phase transition in SU(2)×U(1) electroweak theory, Nucl. Phys. B 493 (1997)
413 [hep-lat/9612006] [INSPIRE].

[19] B. Garbrecht, F. Glowna and M. Herranen, Right-Handed Neutrino Production at Finite
Temperature: Radiative Corrections, Soft and Collinear Divergences, JHEP 04 (2013) 099
[arXiv:1302.0743] [INSPIRE].

– 15 –

http://dx.doi.org/10.1007/JHEP09(2012)051
http://arxiv.org/abs/1207.4042
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4042
http://dx.doi.org/10.1016/0370-2693(80)90769-8
http://dx.doi.org/10.1016/0370-2693(80)90769-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B96,289
http://dx.doi.org/10.1007/JHEP02(2012)068
http://arxiv.org/abs/1112.1205
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1205
http://dx.doi.org/10.1007/JHEP08(2011)116
http://arxiv.org/abs/1106.2814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2814
http://dx.doi.org/10.1007/JHEP08(2013)138
http://dx.doi.org/10.1007/JHEP08(2013)138
http://arxiv.org/abs/1307.4909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4909
http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://arxiv.org/abs/1404.3565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3565
http://dx.doi.org/10.1016/0550-3213(96)00052-1
http://arxiv.org/abs/hep-lat/9510020
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9510020
http://dx.doi.org/10.1016/S0550-3213(97)00164-8
http://dx.doi.org/10.1016/S0550-3213(97)00164-8
http://arxiv.org/abs/hep-lat/9612006
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9612006
http://dx.doi.org/10.1007/JHEP04(2013)099
http://arxiv.org/abs/1302.0743
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0743

	Introduction
	Chemical potentials and gauge charges
	Dimensional reduction
	Hard contributions
	The dimensionally reduced theory
	Soft contributions for soft Higgs mass
	Ultrasoft Higgs mass
	Relation between B and B-L
	Conclusions

