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1 Introduction

Guhr, Müller-Groeling, and Weidenmüller wrote once in a very nice review [1]: “The
enormous development of RMT [random matrix theory] during the last decade signals
the birth of a new kind of statistical mechanics." They were right and since their
review much more applications have been found and new mathematical developments
have taken place. RMT can be indeed understood as a part of statistical physics. It
embodies the fundamental idea of reducing a vast amount of informations to only a
few observables which cannot only be measured but also analytically predicted.

What is the focus of RMT? In classical statistical mechanics we have the phase space
distribution as the fundamental object from which we can derive the average position
of particles or their average momenta as well as global observables like temperature and
pressure. In quantum mechanics the fundamental object is the density operator which
also encodes the statistics of quantum states. In RMT we make predictions about
spectra and their corresponding eigenvector statistics. Those spectra can be found in
physical systems like the spectrum of the Hamilton operator in quantum mechanics, of
the Dirac operator in QCD, or of the d’Alembert operator with boundary conditions
for classical wave equations. Yet, spectra can be found in other sciences as well, e.g.
in mathematics, sociology, or economics. The observables which were formerly the
pressure, the chemical potential, and the temperature in thermodynamics are now
replaced by the level spacing distribution, the local and the global macroscopic level
density, and the inverse participation ratio of eigenvectors. RMT can make predictions
about these observables and many experiments confirm that this approach is ideal to
understand generic spectral statistics of systems.

Chiral random matrix theory (�RMT) is the field of RMT where one studies random
matrices which have a chiral symmetry like the one of the Dirac operator, see [2]. Due
to new applications, e.g. in lattice QCD, time series analysis and telecommunications,
generalizations of this particular kind of random matrices were recently considered.
Those generalization may involve a weak breaking of chiral symmetry [3, 4, A], the
breaking of rotation invariance of the matrices [5, 6, G], or the generalization to
products and sums of matrices [7, 8, L]. Breakthroughs in the analytical computations
of those random matrix ensembles made it possible to deduce new predictions and
discover new kinds of spectral statistics.

In section 2, a brief historical overview about RMT, especially �RMT, is given.
In particular, the various motivations and goals of some of the topics in RMT are
explained. The main ideas of a statistical theory of spectra are outlined, especially
how RMT has historically arisen from experimental and empirical observations and
why the state of the art of RMT is as it is now. Thereby the section starts with the
statistics of covariance matrices which were the first matrices modelled by RMT, see
subsection 2.1. Then the importance and the richness of the local statistics in general
systems will be explained in subsection 2.2. In particular the local statistics at critical
points of spectra, see subsection 2.3, invite to classify systems. Those points are very
sensitive with respect to the global symmetries of systems such that they seem to be
universal and apply to large classes of spectra. One particular way to express these
universal spectral statistics is in terms of non-linear �-models, see subsection 2.4. Those
non-linear �-models are also the link between quantum field theory and RMT. Due to
this link it is well understood why RMT, particularly �RMT, applies so well to QCD
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and condensed matter physics.
Connections to my works, which are attached in the three appendices A, B and C

and summarized in section 3, are only roughly sketched in section 2. They are dis-
cussed in more detail in section 3. My works are presented in three separate parts.
The main topics of these parts are about applications of RMT to lattice QCD (subsec-
tion 3.1), about Wishart random matrix models 3.2, and about product matrices 3.3.
The particular motivations and applications of the specific random matrix ensembles
are explained in section 3. Moreover the main ideas of the calculations performed in
the works attached are outlined and a brief overview and discussion of the results is
given.

The three big parts of my works slightly overlap in their context due to universal-
ity of the statistics and the similar techniques in deriving the results. Therefore the
different topics should not be understood as parallel studies but as different pieces of
a big mosaic. To underline this impression a short outlook is given in section 4.

Finally, I want to point out one particularity of the citation system in this thesis.
The works attached in the appendices are denoted by capital Latin letters while all
other citations are given in Arabic numbers.
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2 From Experiments to RMT

Before we come to the particular applications of RMT let us consider some historical
problems which were encountered on the way to the current state of the art of RMT.
Then we will understand that completely different systems regardless whether they
are found in physics, mathematics, engineering, economics, sociology or other types
of sciences may share common statistical features. This fact is on the hand quite
surprising since the mechanisms working in these particular systems are certainly com-
pletely different. Yet, it is a common experience that, on the other hand, the statistical
fluctuations in a chaotic or disordered system, which might be even open or in a non-
equilibrium, can be quite dominating such that almost all system specific details are
washed out.

This behavior is from a mathematical point of view quite natural due to the central
limit theorem. You require only very weak conditions on the fluctuations and the
system tends to a class of systems sharing the same universal properties. In the case
of the original central limit theorem you only need to assume that all moments of a
real random variable have to exist and it is immediate that the limiting distribution,
after infinitely many convolutions of the random variable with itself, yields a Gaussian
[9, 10]. Even when such conditions are not fulfilled the central limit theorem still
applies. However the system may approach another attractor which is not a Gaussian
but as universal as the Gaussian [11, 12]. These attractors are called stable distributions
and exhibit Lévy tails which algebraically drop off at infinity. Such distributions are
usually found in open, non-equilibrium systems like financial markets and biology. We
come to this point again in subsection 3.3.

2.1 The Problem of big Covariance Matrices

In the middle of the 20s of the last century statisticians became aware of the problem
that the amount of data becomes bigger and bigger. At some point one will not be
able to see which correlations are system specific and relevant and which are generic
not to mention the problem to find any correlations at all.

Let us assume we have measured p time series v1, . . . , vp at n times implying that
each time series v

j

= (v
j1, . . . , vjn) can be interpreted as an n-dimensional vector. Such

time series can be either climate data like pressure, temperature, and humidity [13],
they can result from financial markets like the prices of stocks [14], they can be signals
measured at different positions in wave guides [15, 16], they can be EEG data [17],
etc. In the next step we normalize all vectors such that their mean vanishes and their
variance is unity,

bv
j

=
n(v

j1, . . . , vjn)�
P

n

l=1 vjl(1, . . . , 1)q
n2
P

n

l=1 |vjl|2 � n |Pn

l=1 vjl|2
. (2.1)

Then the covariances of the times series can be arranged in a p⇥ p matrix

C
ji

= bv
j

bv†
i

=
nX

l=1

bv
jp

bv⇤
ip

(2.2)

with “†” the Hermitian adjoint. One can interpret the normalized time series bv
j

as a
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Figure 1: Visualization of the 50⇥ 50 covariance matrices C and C 0 corresponding to
the time series V in Eq. (2.4) and to W = OV , respectively, with O an orthogonal
matrix randomly chosen. Their matrix entries vary between [�1, 1] and are encoded
with a color code. Although both matrices differ only via an orthogonal rotation of the
time series the obvious separation of the correlations of C (left plot) are completely
obscured for C 0. Those correlations are still present in the eigenvalues of both matrices.
For both C and C 0 we find five eigenvalues of about � ⇡ 10 reflecting the size of the
strongly correlated subsystems while the other eigenvalues almost vanish.

row vector of a p⇥ n matrix bV . Then the matrix C is the matrix product

C = bV bV † (2.3)

which has the unity on the diagonal and the off-diagonal elements are either inside the
complex unit disc or in the interval [�1, 1] depending on whether we have complex or
real time series. The task is to extract system specific correlations from C and interpret
them. For a small number of time series this can be readily done. But what is when
p is large? The situation in the 20s has been not that drastic as it is the case today
in the time of “big data" where p can easily reach the values of p / 102 and upwards.
Nowadays it is almost impossible to identify correlations by only looking at the matrix
C.

To illustrate this problem we construct an example. We choose fifty real time series
as follows

v
ij

=

8
>>>><

>>>>:

sin j, i = 1, . . . , 10,
sin 2j, i = 11, . . . , 20,
sin 3j, i = 21, . . . , 30,
sin 4j, i = 31, . . . , 40,
sin 5j, i = 41, . . . , 50,

with j = 1, . . . , 200. (2.4)

The corresponding covariance matrix is visualized in the left plot of Fig. 1. The separa-
tion into five strongly correlated sub-blocks are clearly visible. This separation has to
be expected since we made ten copies of five time series with a specific frequency in the
sine function and the sum

P
n

j=1 sin(aj) sin(bj) tends to zero if |a| 6= |b| and n ! 1.
Now we multiply a generic orthogonal matrix O 2 O(50) to the matrix V =

(v1, . . . , v50)T containing the non-normalized times series, i.e. we obtain a new ma-
trix W = OV which mixes the time series. Indeed the rows of the new matrix W can
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be also understood as time series such that we can perform the same construction (2.1)
to find a new matrix fW of normalized time series. The matrix entries of its correspond-
ing covariance matrix C 0 = fWfW T does not reflect the separation into five sub-blocks
anymore, cf. right plot of Fig. 1. Does this mean that we have lost the splitting into
strongly correlated subsystems? This cannot be true otherwise the experimentalist has
a problem because he does not know in which basis of his time series he will see the
correlations he is looking for. Usually he does not have the simple situation as we
have with our artificial problem where we constructed the correlation in a given basis.
He gets some time series which when they are plotted match more the right plot of
Fig. 1 than the left one. Therefore the correlations are hidden. We emphasize that
we have not introduced any fluctuations, yet. The problem of identifying correlations
with statistical fluctuations, which is more realistic, is even more involved and is briefly
discussed below.

Assuming that we have not lost the separation into subsystems by a simple change of
basis in the time series, where are they? Considering the eigenvalue spectrum of C and
C 0 we immediately notice where they can be still found. For both covariance matrices
we find five large eigenvalues which are about � ⇡ 10 while all other eigenvalues
are almost zero. Those largest eigenvalues are also called outliers since they can be
separately studied from the gross of the spectrum.

How can we interpret the spectra of C and C 0? For a perfectly correlated system,
i.e. C

ij

= 1 for all i, j = 1, . . . , p, the covariance matrix C has one eigenvalue which is
equal to p and all other eigenvalues vanish. In the opposite case where all time series
are uncorrelated, C

ij

= �
ij

for all i, j = 1, . . . , p, all eigenvalues of C are equal to � = 1.
In the mixed case where we have perfectly correlated subsystems and each subsystem
is uncorrelated to the other the eigenvalues of the covariance matrix C either match
the size of the subsystems or they vanish. The conclusion of this gedankenexperiment
is that the largest eigenvalues of C can be understood as the effective dimension of
the strongly correlated subsystems and the corresponding eigenvectors point out which
time series are involved in this subsystem. In the case of our artificial example (2.4) this
means that we always find five strongly correlated subsystems of dimension 10 which
barely interact with each other. This conclusion can be found regardless what basis of
the time series is chosen. Hence the matrix elements of C can look quite inconclusive
as in the right plot of Fig. 1 while the spectrum of C still exhibits the correlations.

The question how statistical fluctuations affect the spectrum of covariance matrices
was first studied by Wishart [18] with the help of RMT in the 20s when he consid-
ered biological systems. He introduced a random matrix model consisting of a p ⇥ n
rectangular real matrix W which is distributed via the Gaussian

P (W ) =
exp[�trWW T ]

⇡np/2
=

pY

j=1

nY

l=1

exp[�W 2
jl

]p
⇡

. (2.5)

This model is also known as the real Laguerre ensemble [19] or the chiral Gaussian
orthogonal ensemble (�GOE) [20]. Forty years later Marčenko and Pastur [21] com-
puted the macroscopic level density of WW † in the limit of large matrix dimensions
n, p ! 1 with n/p = const. The result of their calculation is

⇢MP(�) =
2
p
(�max � �)(�� �min)

⇡(
p
�max �

p
�min)2�

⇥[(�max � �)(�� �
min

)], (2.6)

5



!1.0

!0.5

0.0

0.5

1.0

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Λ

Ρ

Figure 2: Visualization of the structure of the covariance matrix C 00 by color encoding
its matrix elements (left plot) and its level density (histogram in the right plot). The
covariance matrix C 00 corresponds to the times series V , see Eq. (2.4), which are per-
turbed by independent, identical Gaussian fluctuations �v

ij

of each matrix entry v
ij

.
The strong correlations are almost washed out. The former almost zero eigenvalues
are broadened to a spectrum which is on the same scale as the outliers which are still
manifested in a separate spectrum. Both parts of the spectrum can be independently
approximated by the Marčenko-Pastur distribution (2.6) (solid curves in the right plot).

which is a distribution on the finite interval [�min,�max] reflected by the Heaviside step
function ⇥. Since Marčenko’s and Pastur’s derivation Wishart random matrices serve
as benchmark models for almost any covariance matrices, e.g. see [13, 14, 16, 22, 23].
In particular the application of the distribution ⇢MP(�) is great success in time series
analysis.

Let us consider our example again to understand why RMT is helping in time series
analysis. We add to the time series (2.4) white noise with a variance which is of the
order of the data. Then the strong correlations in the five subsystems are extremely
weakened, see left plot of Fig. 2. However the reminiscent correlations still survive.
Despite the fact that almost all eigenvalues which were formerly almost zero are now
of the order O(1) the five outliers are still visible, see right plot of Fig. 2. They are the
deviations of the level spacing distribution of the empirical data from the Marčenko-
Pastur distribution (2.6). The gross of the spectrum is indeed approximately described
by ⇢MP(�) but the remaining part is not. Since the five outliers were almost the same
they separately follow an own Marčenko-Pastur distribution. This is rarely the case in
a realistic situation. Usually the outliers are so far apart such that they cannot affect
each other, e.g. see [13, 14, 22, 23].

This simple example shows the power of RMT as a tool to separate the system
specific correlations and the generic influence of statistical fluctuations on the data.
Indeed in realistic situations this procedure is not always that simple. Some of the
eigenvalues which belong to the system specific correlations may touch or even enter
the gross of eigenvalues which represent the fluctuations, cf. the right plot of Fig. 2.
This may influence and deform the Marčenko Pastur distribution. To understand and
model this situation the Wishart random matrix model is modified to [5]

P (W ) =
exp[�trWW TC�1]

⇡np/2 detn/2 C
(2.7)
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Figure 3: Unfolded spectra of various systems comprising each 100 levels. From left to
right: quantum harmonic oscillator; randomly and independently chosen levels; har-
monic oscillator with small white noise fluctuations; resonance levels of erbium 166
with same spin and parity excited by neutrons; 100 eigenvalues around the origin of
a 300 ⇥ 300 real symmetric Gaussian random matrix; positions of the 1023, . . . , 1122
zero of the Riemann zeta function ⇣(z) =

P1
j=1 j

�z along the line Re z = 1/2; the
103 613, . . . , 103 712 prime numbers; locations of the 100 northernmost overpasses and
underpasses along Interstate 85; positions of cross ties near a railroad siding; growth
rings from 1884 through 1983 in a fir tree on Mount Saint Helens (Washington); tem-
poral occurrence of earthquakes in California with a Richter magnitude larger or equal
to 5.0 (from 1969 to 2001); lengths of 100 consecutive bike rides. Arrows assign two or
more levels which are very close to each other. Taken from [24].

with C the empirical covariance matrix. This model is briefly reviewed in subsection 3.2
together with some results on the distribution of the smallest and largest eigenvalue.
The latter two distributions are also sensitive to the situation if an outlier touches the
generic part of the spectrum given by ⇢MP. Both distributions are given for an uncorre-
lated Wishart matrix by the Tracy-Widom distribution [25] when in the double scaling
limit the ratio n/p is fixed. This behavior drastically changes when the difference n�p
is fixed instead of the ratio. This situation becomes important in QCD [2, 20]. We
discuss these critical points in more detail in subsection 2.3.

2.2 Local Spectral Statistics in various Systems

In the previous subsection we have seen that the spectra of covariance matrices crucially
encode the correlations between their corresponding time series. This is not the only
way how spectral statistics appear to be important. Indeed spectra surround us any
time and everywhere even when we do not recognize them as such. In Fig. 3 we enlist
such examples which range from physical systems and models to number theoretical
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observations and everyday phenomena.
When looking at the spectra shown in Fig. 3 we may ask what do they have in

common. Some may share the same law of their distributions others obviously do not.
For example the levels of the quantum harmonic oscillator are equidistant which are
adequately shared by railroad cross ties while the resonance spectrum of erbium and
the zeros of the Riemann zeta function are alike since their levels slightly repel each
other, cf. Fig. 3.

We have two choices to judge whether two spectra are alike or not. In the first
choice, we can consider the macroscopic spectrum as it is done with the Marčenko-
Pastur distribution (2.6) which is compared to real data to separate the statistical
fluctuations and the system specific correlations. However on the macroscopic scale
the level spacing may vary over many scales. Then we cannot accurately compare
two different spectra with their local spectral statistics. For example the distance
of two consecutive tree rings is about 1mm while the distance of two neighboring
resonance levels of Erbium is about 0.1keV. How do we compare these two different
units of observables completely differently measured? Even the comparison of the
statistics at two different positions of a single spectrum is not possible on a macroscopic
scale. For example the spectrum of a d-dimensional QCD Dirac operator or a quantum
harmonic oscillator exhibits an eigenvalue density ⇢(�) which behaves as �d�1 while it
is ⇢(�) / �d/2�1 for a free particle in a d-dimensional box. Then the spacing between
two consecutive level has certainly to change, too. Thus we come to the second choice
that we compare spectra on the local scale.

The problem discussed above already appeared in the beginning of the early 50s
when experimentalists started to catalog nuclear resonance spectra of heavy nuclei.
They solved the problem in the following way. First we have to take an arbitrary
spectrum of some measurements. Before analyzing this spectrum we have to split it
into sub-spectra which correspond to exact discrete symmetries of the system. For
the nuclei these sub-spectra are characterized by their spin and their parity which
are both conserved. We have to split the full spectrum since the sub-spectra can be
identified with subsystems which do not interact with each other and have thus their
own independent spectrum.

Choosing one of the sub-spectra, say {�1  . . .  �
N

}, we have to zoom onto the
scale of the local mean level spacing in the next step. For this purpose we define the
counting function

N(E) =
NX

j=1

⇥(E � �
j

) =

Z
E

�1
d�

NX

j=1

�(�� �
j

). (2.8)

This counting function has to be approximated by a monotonously increasing, differ-
entiable function Nsmooth(E). Then the unfolded level density,

⇢unfolded(�) =
NX

j=1

�(��Nsmooth(�j)), (2.9)

is in average constant implying that the unfolded level spacing distribution,

punfolded(s) =
1

N � 1

N�1X

j=1

�(s�Nsmooth(�j+1) +Nsmooth(�j)), (2.10)
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Figure 4: Counting function N(E) of a free quantum particle without spin in a box
of size [�1, 1] ⇥ [�p

⇡,
p
⇡] ⇥ [�⇡, ⇡] and Dirichlet boundary conditions. The system

is invariant under each of the reflections x ! �x, y ! �y, and z ! �z such that
its energy spectrum splits into 23 = 8 sub-spectra. We have chosen the subspace
of wave functions  (x, y, z) / sin (⇡n

x

x) sin (
p
⇡n

y

y) sin (n
z

z) with the energies E =
(⇡2n2

x

+ ⇡n2
y

+ n2
z

)/2, n
x

, n
y

, n
z

= 1, 2, . . . The left plot shows the counting function
(histogram) before unfolding up to the eigenvalue E = 45000. The black solid curve
is a fit for the smooth part of the counting function which is Nsmooth(E) = 0.265E3/2.
The right plot is the counting function after unfolding with respect to the described
procedure. The unfolded counting function is linear by construction.

is not only normalized but also its first moment is unity, i.e.
R
dsspunfolded(s) = 1. Apart

from the level spacing distribution punfolded(s) one can also consider other correlation
functions. The most prominent one is the k-point correlation function [19, 26, 27],

R(k)
unfolded(x1, . . . , xk

) =
(N � k)!

N !

NX

j

1

6=j

2

6=... 6=jk=1

kY

l=1

�(x
l

�Nsmooth(�jl)), (2.11)

which is the density of the probability that we find one eigenvalue in each of the
intervals [x

j

, x
j

+ dx
j

] for j = 1, . . . , k. The case k = 1 yields the normalized level
density R(1)

unfolded(�) = ⇢unfolded(�)/N . The normalization of R
k

is chosen such thatR
dx

k

R(k)
unfolded(x1, . . . , xk

) = R(k�1)
unfolded(x1, . . . , xk�1).

The procedure described above is called unfolding [1]. It is demonstrated with the
help of the spectrum of a free particle in a three dimensional box in Fig. 4. This
example is a very simple system compared to heavy nuclei. The unfolding of most
spectra is quite non-trivial in practise. For example spectra may statistically behave
completely different at two different positions in the spectra, e.g. see QCD [28]. The
spectrum can also comprise more than only the macroscopic scale and the scale of the
local mean level spacing. For example in [29] the authors found three different statistics
due to a separation of four scales in their spectra (the forth is the macroscopic scale).

The spectral statistics of simple systems like a quantum particle in a box were
studied since the 70s. The reason of such a development in studying spectra was
the empirical observation that the level spacing distribution of heavy nuclei follow the
distributions calculated by very simple random matrices. Already a 2⇥2 real symmetric
random matrix H whose entries are distributed by exp[�trH2] yields a level spacing
distribution pGOE(s) = ⇡se�⇡s

2

/4/2 which accurately agrees with many spectra, see
Fig. 5. This distribution is known as the Wigner surmise [30]. The random matrix
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Figure 5: Level spacing distributions of various systems. Upper left plot: Level
spacing distribution of resonance spectra of heavy nuclei (histogram) compared with
pGOE(s) of GOE (solid curve). Taken from [31]. Upper right plot: The level spacing
distribution extracted from the spectrum of a hydrogen atom in a strong magnetic field
(histogram) compared to pGOE(s). Taken from [32]. Lower left plot: Distribution of
temporal intervals between buses of the city line No. 4 in Cuernavaca (Mexico) (crosses)
compared to the Wigner surmise pGUE(s) = 32s2e�4s2/⇡/⇡2 of GUE. The histogram
corresponds to the Wigner surmise where 0.8% of the generated random matrices are
neglected. Taken from [33]. Lower right plot: Level spacing distribution of a billion
zeros of the Riemann zeta function along the line Re z = 1/2 starting from the 1023rd
zero (red dots). The blue curve is pGUE(s). Taken from [24].

ensemble where H is drawn from is the Gaussian orthogonal ensemble (GOE) [34].
When the random matrix H is only Hermitian but not real the ensemble is called
Gaussian unitary ensemble (GUE).

First it was thought that the agreement between RMT and spectra is due to the size
of the system because heavy nuclei are many body systems and thus many individual
properties are washed out. However in the early 70’s it was discovered that the non-
trivial zeros of the Riemann zeta function ⇣(z) =

P1
j=1 j

�z along the line Re z = 1/2
satisfies the same spectral statistics [35] as a GUE, cf. lower right plot of Fig. 5. Since
this accidental observation it was clear that the statistics of spectra for completely
different systems can agree although the systems seem to have nothing in common.

Let us get some idea why at least physical operators like the Hamilton operator H or
the Dirac operator D exhibit generic spectral properties. For this purpose we consider
integrable systems of the type of a one-dimensional quantum harmonic oscillator which
can be very briefly proven. The energies E

n

= f(n) of such a system are given by a
strictly increasing, differentiable function f which depends on a single quantum number

10



0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

s

p

pPoisson!s"!"#sunfolded data

raw data

Figure 6: The level spacing distribution of the raw (blue histogram) and the unfolded
(red histogram) data of the quantum system in Fig. 4. Both distributions are compared
with pPoisson(s) (black curve). We considered the eigenvalues for 104 < N(E) < 2.5 ⇥
106. The raw data is only rescaled by a global prefactor such that the mean level spacing
is unity. Though the deviations between the raw data and the Poisson distribution are
only small it is nonetheless clearly visible that unfolding of the data increases the
agreement with the theory. The reason for the small size of the deviations of the raw
data is the scaling behaviour Nunfolded(E) / E3/2 which is near to the linear behavior.

n = 1, 2, 3 . . .. The d-dimensional quantum harmonic oscillator with the same frequency
in each direction is of such a kind as well as the non-relativistic hydrogen atom and any
local one-dimensional system (including the one-dimensional quantum particle in a box
while its higher dimensional counterpart is not). Then the smooth counting function
is given by N(E) = f�1(E) such that the unfolded spectrum is indeed equidistant,
i.e. E(unfolded)

n

= f�1(E
n

) = n. In particular the level spacing distribution is given by
a Dirac delta function pharm(s) = �(s) which is also the result of a one-dimensional
quantum harmonic oscillator.

Another class of spectral statistics corresponding to quantum systems is covered
by the Berry-Tabor conjecture [36]. This conjecture claims that generic integrable
systems exhibit the Poisson statistics, in particular the level spacing distribution is
pPoisson(s) = e�s. Indeed not all integrable systems can follow this conjecture since
some integrable systems may share the statistics of a harmonic oscillator, see above.
Rigorous proofs of this conjecture were performed for some classes of integrable systems,
see references in the review [37]. For example a free particle in a (d > 1)-dimensional
box follows the Berry-tabor conjecture. In Fig. 6 we compare the raw spectrum of a
free particle in a three dimensional box without unfolding and the Poisson distribution
and find slight deviations as expected. These deviations become even stronger when
the smooth counting function Nsmooth differs much stronger from a linear behavior as it
is the case for a free particle in a higher dimensional box. Yet, the unfolded spectrum
perfectly agrees with pPoisson(s) as predicted by the Berry-Tabor conjecture.

To get an idea what the mechanism of the Poisson statistics is let us consider N
randomly chosen levels x1, . . . , xN

which are independently drawn from the probability
densities p1(x1), . . . , pN(xN

). The number of levels N will be eventually sent to infinity.
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The level spacing distribution p(s) can be calculated via the gap probability,

P (a, b) =
Y

j

⇥[(E 0
j

�b)(E 0
j

�a)] = lim
N!1

NY

j=1

✓Z 1

�1
�
Z

b

a

◆
dx

j

R(N)(x1, . . . , xN

), (2.12)

which is the probability that all energies lie outside the interval [a, b]. We assume that
the limit lim

N!1
P

N

j=1 pj(x)/N = p̄(x) exists. Then the distribution p(s) is explicitly
given by

p(s) =
@2

@s2
lim
L!1

1

2L

Z
L

�L

ds0P

✓
s0 � s

2Np̄(s0)
, s0 +

s

2Np̄(s0)

◆
(2.13)

after unfolding b� a ! (b� a)/p̄[(b+ a)/2N ] = s. Since the gap probability P (a, b) =
lim

N!1
Q

N

j=1 Pj

(a, b) of the full spectrum is the product of the gap probabilities
P
j

(a, b) of each single eigenvalue we have

lim
N!1

P

✓
s0 � s

2Np̄(s0)
, s0 +

s

2Np̄(s0)

◆
= lim

N!1

NY

j=1

2

41�
sZ

�s

dx
j

2Np̄(s0)
p
j

✓
x
j

2Np̄(s0)
+ s0

◆3

5

= exp [�s] , (2.14)

which is indeed the Poisson distribution. Note that the Poisson statistics relies on two
facts. First, we have infinitely many levels and, second, the levels are independently
distributed. In a real system we do not have these requirements since the levels are
fixed such that we have to replace the infinite number of levels by an infinite number
of subsequences (each having infinitely many levels itself) of the spectra which are
pairwise uncorrelated. Thereby we notice that the splitting of spectra into sub-spectra
due to a finite symmetry group is highly important. Those finite symmetry groups like
the spin or the parity usually yield correlated series. This is also the reason why we
have chosen incommensurate lengths in our example in Fig. 4.

There are not only integrable quantum systems but also chaotic systems. Bohigas,
Giannoni and Schmidt conjectured [38]: “Spectra of time-reversal-invariant systems
whose classical analogs are K systems show the same fluctuation properties as predicted
by GOE.” Here “K systems" are the kind of classical chaotic systems which are the
strongest mixing. In [39, 40, 41, 42] arguments are given why this conjecture should
be true. The time reversal invariance in the conjecture is important otherwise we
would find other statistics like GUE or something which interpolates between GUE
and GOE, see [34]. The time reversal symmetry is a global symmetry of a system as
it is also parity or chirality. Such global symmetries which are related to RMT were
classified by Dyson [34, 43], Verbaarschot [20], and Altland and Zirnbauer [44], see also
subsection 2.4. They were found in many other systems, too, and served as a basis of
classifying these systems as well, for example see [45, 46, F].

2.3 Critical Points in Spectra

Let us come back to the example of a quantum particle in a three dimensional box.
When extracting the unfolded level spacing distribution, see Fig. 6, we had to omit the
first 104 eigenvalues to get a perfect agreement with the Poisson distribution. Why did
we do this? When considering the smallest eigenvalues it becomes immediate that there
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is a minimal distance between consecutive energies such that the density is less than the
smooth fit ⇢(E) ⇡ 0.398

p
E. Such a minimal distance also exists for larger energies.

However it is much smaller and becomes even smaller for increasing eigenvalues. Hence
its influence is negligible in this regime. Indeed we could also sum over the first 104

eigenvalues in the spectral average (2.10), too. The influence would be a slight dip
around the origin of the level spacing distribution. This dip eventually vanishes when
taken more and more eigenvalues into account. But for smaller data sets it becomes
crucial to exclude the smallest eigenvalues.

Excluding levels at the edges of the spectrum is a common procedure. For example
also the non-trivial zeros of the Riemann zeta function, see lower right plot of Fig. 5,
near the real axis are usually excluded in the level statistics. The reason of their
exclusion is again their different statistical behavior. Hence one can ask two questions.
First, is this mechanism generic? And second, are the spectral statistics at these edges
also as universal as the bulk statistics?

To get an idea what statistics may usually appear we consider the particular exam-
ple of a two-dimensional QCD Dirac operator on a 10⇥10 lattice with three colors and
the fermions in the fundamental representation. Since we want to keep the example
as simple as possible, the Dirac operator shall be given in the naive discretization and
the gauge action is set to zero such that we are in the strong coupling limit, see [E] for
the details of constructing this operator. Moreover we rotate the spectrum of D by the
imaginary unit ı since D = �D† is anti-Hermitian. We show the structure of this Dirac
operator in the left plot of Fig. 7 for a generic gauge field configuration. Although the
structure of the Dirac operator looks quite simple the system is nonetheless strongly
mixing as can be seen in the inverse participation ratios of its eigenvectors, see also the
right plot of Fig. 7. It shows that the eigenvectors are delocalized which usually results
in a generic non-Poissonian spectrum. The corresponding averaged level density of its
positive eigenvalues is shown in the upper left plot of Fig. 8. Note that any positive
eigenvalue � of D has a negative counterpart �� which is also an eigenvalue of D due
to chiral symmetry.

The averaged level density exhibits three scaling regimes where the spectral statis-
tics are completely different. In the bulk of the spectrum (plot (II) of Fig. 8) we obtain
the level statistics of the Wigner surmise for GUE [30]. It is also known as the sine
kernel [34, 19]. The unfolded level density is constant while its fluctuations are given
by oscillations, in particular the two point correlation function behaves as [34, 19]

R(2)
sine(x1, x2) = 1�

✓
sin ⇡(x1 � x2)

⇡(x1 � x2)

◆2

. (2.15)

The behavior R(2)
sine(x1, x2) / (x1 � x2)

2 for small distances |x1 � x2| ⌧ 1 reflects the
level repulsion which is quadratic for the corresponding Wigner surmise pGUE(s).

Note that the bulk statistics (2.15) is translation invariant, i.e. x1 ! x1 + a and
x2 ! x2 + a for all a 2 R. This property is found in all bulk statistics including the
spectral statics of real and quaternion matrices and the statistics of complex eigenvalues
for non-Hermitian matrices, see [47].

The translation invariance is broken at the upper edge (plot (III) of Fig. 8) where
the largest eigenvalue has only on one side a neighbouring level. Thus the largest
eigenvalues can develop exponential tails outside the support of the macroscopic level
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Figure 7: A realization of the naive Dirac operator D for a 10 ⇥ 10 two-dimensional
lattice which simulates QCD with three colors (gauge group is SU(3)) and the fermions
in the fundamental representation of the gauge group (left plot). The absolute values
of the matrix entries are color encoded. The Dirac operator has a chiral structure
which yields the splitting into two blocks. Moreover this kind of Dirac operator is
doubly degenerated, see the classification in [F]. Despite the simple lattice structure,
see left plot, the system is still strongly mixing which is reflected in the contribution
of the largest singular value �max > 0 to D (right plot), which is the product of
the singular value �max (the largest eigenvalue of

p
DD†) and the projector Pmax to

its four dimensional eigenspace. Note the different scaling of the color code. The
inverse participation ratio of an arbitrary eigenvector v of D is IPR(v) =

P
j

|v
j

|4 ⇡
0.003� 0.017. Since the inverse participation ratio is approximately the inverse of the
effective size in the Hilbert space, the eigenvectors occupy approximately 10� 54% of
the lattice and are thus delocalized.

density. This tail lies on a different scale than the bulk statistics. In the case of
our example the largest eigenvalues are described by the Airy kernel [25]. The two
point-correlation is

R(2)
Airy(x1, x2) = R(1)

Airy(x1)R
(1)
Airy(x2)� [Ai(x1)Ai

0(x2)� Ai0(x1)Ai(x2)]
2

(x1 � x2)2
(2.16)

and the microscopic level density is

R(1)
Airy(x) = [Ai0(x)]2 � x[Ai(x)]2. (2.17)

The function Ai(x) is the Airy function and is the Fourier transform of the exponential
eıx

3

/3, see [48]. This scaling regime is known as the soft edge because of the freedom
of the eigenvalues to invade the region outside the support of the macroscopic level
density though it is exponentially suppressed.

Also at the lower bound of the spectrum (plot (I) of Fig. 8) we have a particular
scaling which differs from the bulk. One could think that this scaling is of the same
kind as the one found in the upper bound. This is however not the case as long as the
smallest eigenvalues are close to the origin and the macroscopic level density has no
spectral gap. Then the positive eigenvalues feel their negative counterpart. Therefore
their is no exponential tail into the negative real axis but a repulsion such that the
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Figure 8: The spectrum of the two-dimensional lattice Dirac operator shown in Fig. 7.
The axes are given in arbitrary units. We generated 105 gauge field configurations via
Monte Carlo simulation (symbols) and compared those with fits of RMT predictions
(solid curve). The level density (upper left plot) comprises three different scaling
regimes. The eigenvalues close to the origin are in the hard edge scaling regime (I)
and are described by the Bessel kernel, i.e. microscopic level density is R(1)

Bessel(x) =
|x|[J2

0 (x) + J2
1 (x)]. In the bulk of the spectrum (II) the unfolded level density is in

average a constant and the two-point correlation function oscillates about this constant
yielding the sine kernel. The distribution of the largest eigenvalues (III) follows the
Airy kernel, i.e. the microscopic level density is R(1)

Airy(x) = [Ai0(x)]2 � x[Ai(x)]2. The
latter scaling limit is known as the soft edge and is due to the finite size of the lattice
which is not physical, i.e. continuum QCD has no upper bound of the spectrum.

origin effectively acts as a negatively charged hard wall on electrons (the eigenvalues
of D). The corresponding spectral statistics are given by the Bessel kernel [49],

R(2)
Bessel(x1, x2) = R(1)

Bessel(x1)R
(1)
Bessel(x2)� 1

4

[x1J 0
0(x1)J0(x2)� x2J0(x1)J 0

0(x2)]
2

(x2
1 � x2

2)
2

(2.18)

for the two-point correlation function and

R(1)
Bessel(x) =

|x|
2

�
J2
0 (x) + J2

1 (x)
�

(2.19)

for the microscopic level density with J
⌫

(x) the Bessel function of the first kind [48].
The strong oscillations of the Bessel function are the reason for the strong fluctuations
of the macroscopic level density near the origin, cf. Fig. 8. Someone who does not
know anything about the local spectral statistics could think that these fluctuations
are due to statistical or systematic errors. But the statistical errors are about 1% and
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Figure 9: Various examples of level densities with different critical points. (a)
Marčenko-Pastur distribution 2.6 with two soft edges at � = 0.05 and � = 1.2. (b)
The distribution ⇢(�) / 1/

p
1� �2 which naturally appears for the real eigenvalues

of the Wilson Dirac operator [E] and for signal transmissions where the size of the
environment is approximately the same size as the one of the receiving and emitting
channels. This distribution has two hard edges at � = 0 and � = 1. (c) A generic
density with three disjoint supports. Two supports merge at � = 1 yielding a criti-
cal point in the interior of the spectrum. The edges at � = 0.1, 0.7, 0.85, 1.1 are soft
edges. The soft edge at � = 0.1 is a multi-critical point where the density behaves as
⇢(�) / (�� 0.1)5/2 instead of a square root.

in the continuum limit the fluctuations still remain though its scale may change, see
the discussion of [F].

The three spectral statistics found in our example are not the only ones which
exist. First of all, the global symmetries of the operator may change from one system
to another such that the level repulsion can be different [34, 44]. But even when keeping
the symmetries the spectrum may develop non-trivial structures. The macroscopic level
density may exhibit two soft edges as it is the case for most of the covariance matrices
which are described by the Marcenko-Pastur distribution (2.6), see plot (a) of Fig. 9.
A very large difference between the number of time series and the number of time
steps is the reason for the spectral gap between the origin and the smallest eigenvalue.
Instead of two soft edges we may have also two hard edges, see plot (b) of Fig. 9. Such
a behavior was found for the real eigenvalues of the Wilson Dirac operators for large
lattice spacings in [E]. But we expect that it can be also found when transmitting a
signal through a chaotic and open cavity. The number of channels to the environment
has to be comparable to the number of channels in the transmitter and the receiver.

When considering a general spectrum we may see more than one connected spec-
trum also referred as cuts [50, 51], see plot (c) of Fig. 9 which is an example. Indeed
this can be the case in condensed matter systems where the spectrum may exhibit a
gap between different bands. Then we may have more than two soft edges. It can also
happen that two cuts are starting to merge and touch each other at one point. One
particular kernel corresponding to such a scenario is known as Pearcey kernel [50] which
depends on the Fourier transform of the exponential e�x

4

/4 named after Pearcey [52].
Additionally the soft edges may develop multi-critical behaviors, e.g. see [53, 54],

meaning that the macroscopic level density does not vanish with a square root but
with another critical exponent. For example for one-matrix models the multi-critical
exponent can be any positive half-integer [51, 54]. Quite recently also new kernels
for the hard edges were derived for product matrices [55, 56, 57, 58, 59, O, T] and
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other ensembles [60, R] which we review in subsection 3.3. The corresponding kernel
is known as Meijer-G kernel, see the review [61], because it essentially depends on
Meijer-G functions [48]. This kernel is a generalization of the Bessel kernel (2.18).
Like multi-critical points, the level density at hard edges belonging to Meijer-G kernels
have a different algebraic power than the square root singularity of the Marčenko
Pastur distribution. However, the density has a pole at these points instead of a zero,
see [55, L, M].

2.4 Symmetries, Universalities and Non-linear �-Models

The universality of the local spectral statistics is based on two crucial ingredients. First,
the scales of different spectral statistics have to separate, meaning the macroscopic level
statistics does not know anything of the local spectral statistics. If there are mesoscopic
scales as found in [29] also those scales have to split from the other scales. If this
separation does not happen the universality of spectral statistics may be destroyed.

The second ingredient concerns the global symmetries which classify the systems in
certain universality classes. Those global symmetries are usually a product of discrete
and continuous symmetry groups. A particular kind of the discrete symmetries is
based on anti-unitary operators T satisfying T 4 = 11. They can be always written as
a unitary operator times the complex conjugation, i.e. T = UK with U unitary and
K the complex conjugation operator. If the considered system does not have such an
anti-unitary symmetry the representation of the Hilbert space is generically complex.
However if the system satisfies a symmetry under an operator T then the system can
be expressed either in a real basis for T 2 = +11 or in a quaternion basis for T 2 = �11.
Dyson discovered that the agreement of RMT with physical systems relies on exact
global symmetries like anti-unitary symmetries as time reversion for particle systems
with integer spins or half-integer spins [34]. This classification became famous under
the name Dyson’s three-fold way.

Verbaarschot extended the classification by Dyson to chiral systems [20] where he
had in mind RMT applications to QCD. Only two years later, Altland and Zirnbauer
found all in all ten symmetry classes to cover normal-superconducting hybrid systems
in condensed matter theory [44]. All these symmetry classes correspond to particular
universality classes exhibiting unique spectral statistical properties. The classification
of random matrix models did not only help in classifying chaotic quantum systems [34,
38, 1], but also in classifying topological insulators [46] and the classification of two-
dimensional lattice QCD with naive fermions [62, F], see for the latter application also
subsection 3.1.

All those classifications only consider Hermitian operators. Thereby the classifica-
tion by Altland and Zirnbauer is complete in the sense that there is no other symmetry
class than these ten classes which correspond to Hermitian random matrix ensembles.
We underline that this does not imply that all Hermitian ensembles of the same sym-
metry class have always the same kernels and thus the same universality. In particular
the statistics at the critical points may change from one ensemble to another, e.g.
see [53, 51, 54] for one matrix models with different multi-criticality at the edges but
the same global symmetries. Yet, the global symmetries exclude certain universality
classes. For example a generic Hermitian operator without any symmetries can never
show a linear or quartic level repulsion.
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Non-Hermitian operators and their corresponding complex eigenvalues and real
positive singular values have also many applications. For example let us consider the
real matrix W drawn from the Wishart random matrix ensemble (2.5) and setting
n = p. Then W is a square matrix. The statistics of its singular values (eigenvalues of
WW †) are considered in QCD and in time series analysis. Applications of the statistics
of its complex eigenvalues which are given by the roots of det(W�z11

n

) can be found in
quantum chaos [63], neural networks [64], and financial markets [65]. When studying
the eigenvalues of W the ensemble distributed by Eq. (2.5) is usually called real Ginibre
ensemble. The eigenvalue statistics of complex square matrices, the complex Ginibre
ensemble, was applied in dissipative quantum maps [66, 67], superconductors [68, 63],
and scattering matrices of open chaotic systems [69]. Ginibre was the first who tried to
carry over Dyson’s three-fold way [34] to non-Hermitian ensembles [47] already in 1965
shortly after Dyson’s works. Much later in the beginning of the 2000s the chiral version
of Ginibre’s ensembles were applied to QCD with non-zero chemical potential [70, 71,
72, 73]. These kinds of random matrices helped to study the famous sign problem
which is the problem that complex or even indefinite real statistical weights cannot be
interpreted as probabilistic weights such that Monte Carlo simulations fail.

Bernard and LeClair [74] were the first who made an attempt to extend Ginibre’s
classification of non-Hermitian ensembles to a classification which can be considered
complete similar to the classification by Altland and Zirnbauer for the Hermitian en-
sembles [44]. However they missed a few ensembles and Magnea completed the picture
of such a classification [75]. This classification is based on the following four symmetries
an operator H can fulfill,

H = ±U
�

HU�1
�

, H = ±U
T

HTU
T

, H = ±U†H
†U�1

† , H = ±U⇤H
⇤U�1

⇤ (2.20)

with the four fixed unitary operators

U
�

U †
�

= U
T

U †
T

= U†U
†
† = U⇤U

†
⇤ = 11. (2.21)

All four symmetries can exist either with + or � or they are not present at all. The
symmetries (2.20) can be easily interpreted as a kind of chirality (“�") or a factorization
into sub-systems (“+"), of (anti-)symmetry under transposition, of (anti-)Hermiticity,
and of a reality condition, respectively. For the classification by Altland and Zirn-
bauer [44] we have H = H†.

Not only discrete symmetries are important for the classification of the local spectral
statistics. Also the continuous symmetries play a crucial role. In QCD of the standard
model this continuous symmetry is SU(Nf)⇥SU(Nf)⇥U(1) where Nf is the number of
the flavors of quarks (in the standard model: Nf = 6). As pointed out by Zirnbauer [76]
the good agreement of RMT with many physical systems, especially with quantum field
theories, relies on the same symmetry breaking pattern under spontaneous symmetry
breaking of these continuous groups. This was already found by Verbaarschot for
four-dimensional QCD [20] and three-dimensional QCD [45].

Spontaneous breaking of global symmetries can occur in various ways. For example
continuous symmetries can be spontaneously broken when taking the thermodynamical
limit V ! 1 in three and more dimensions as long as the long ranged fluctuations
are sufficiently suppressed. Another example is the ’t Hooft limit where the number
of colors Nc in a QCD-like theory goes to infinity [77]. We underline that the latter
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limit is very close to random matrix theory. A common property of these limits are
a large parameter, e.g. the volume V or the number of colors Nc, and a sufficiently
mixing system (mixing in the Hilbert space of wave functions) such that long ranged
fluctuations can be neglected. The large parameter in RMT is the matrix size.

The Goldstone theorem [78, 79] tells us that when a continuous symmetry, say a
d-dimensional Lie group G, is spontaneously broken to a d0-dimensional subgroup H
then the system exhibits d� d0 Goldstone bosons which are massless excitations of the
ground state. In particular the Goldstone boson fields U are elements of the local coset
(G/H)loc where local means that one considers a fiber bundle over the space time with
the coset G/H as a fiber. The fields are distributed by its unique Haar measure dµ(U)
times the exponential of an effective action. In particular the partition function reads

Z =

Z

(G/H)
loc

dµ(U) exp[�Se↵(U)], (2.22)

which is called non-linear �-model [80, 81]. Unfortunately, a direct derivation of the
effective action Se↵(U) starting from the full quantum field theory is only possible for
very few systems like random matrix models. Usually one has to expand the action in
its global symmetries, i.e. Se↵(U) = S0(U) + S1(U) + S2(U) + . . .

In QCD this approach is called chiral perturbation theory, see [82]. The spontaneous
symmetry breaking pattern is SU(Nf)⇥SU(Nf)⇥U(1) ! SU(Nf)⇥U(1) such that the
Goldstone manifold is SU(Nf). In the p-regime the leading order term of the effective
action is [83, 84]

S0(U) =

Z

V

d4x

✓
F 2
⇡

4
tr @

µ

U@µU † � ⌃

2
trM(U + U�1)

◆
(2.23)

with M = diag (m1, . . . ,mN

f

) the quark masses. The low energy constants F
⇡

and ⌃
are the pion decay constant and the chiral condensate, respectively. The goal is to
fix these constants. Then one can derive and predict non-perturbative effects of QCD
at small energies. The task is to circumvent the problem of directly calculating the
low energy constants from the full theory. This can be achieved when another, much
simpler theory is found yielding exactly the same effective action where observables can
be calculated in a closed form. Then the comparison with lattice QCD yields the low
energy constants, e.g. see [85, 86, 87, 88] for such comparisons. In realistic situations
one has more than the two low energies F

⇡

and ⌃ and thus the whole programme is
more involved. For example non-zero chemical potentials are introduced or the lattice
artefacts shall be understood, see also subsection 3.1.

The solution of this problem can be found by using the fact that the space-time vol-
ume V should be large. Then one can expand the Goldstone fields U = U0 exp[ı⇧/F⇡

]
around the saddlepoint U0. In the p-regime the quark masses M , the momenta p

k

,
energies E and the amplitudes |⇧| of the Goldstone fields are of order

|p
k

|4 / E4 / |⇧|4 / m2 / 1/V. (2.24)

Then the effective action reads

S0(U) ⇡
X

p,E

tr


V (p2 � E2)

4
11
N

f

+
V ⌃

4F 2
⇡

(MU0 + U †
0M)

�
⇧(p, E)⇧†(p, E)

�ı
V ⌃

2F
⇡

tr⇧(p = 0, E = 0)(MU0 + U�1
0 M)� V ⌃

2
trM(U0 + U�1

0 ) (2.25)

19



in the first three orders. Note that the meson fields ⇧ are in the momentum space not
Hermitian but fulfill the condition ⇧†(p, E) = ⇧(�p,�E). The second to last and the
last term are of order O(V 1/2) and O(V ), respectively, while the sum is of order O(1).

From the expression (2.25) we can read off three facts. First, the masses of the
lightest pseudo-scalar mesons M

⇡

is given by the celebrated Gell-Mann-Oakes-Renner
relation [89]

M2
⇡

/ ⌃|M |
F 2
⇡

. (2.26)

Second, the saddle point is only determined by the modes with vanishing momentum.
Hence we only need to find an effective theory which reproduces the last term S0(U0)
which is a zero-dimensional effective theory. This leads us to the third point, namely
�RMT solves this problem. To see this we have to slightly prepare the partition
function. We recall that we originally integrate over SU(Nf). However any integral
over SU(Nf) can be traced back by the relation,
Z

SU(N
f

)

dµ(U0) exp [�S0(U0)] =
1

2⇡

1X

⌫=�1

Z

U(N
f

)

dµ(U) exp [�S0(U0)] det
⌫U0. (2.27)

The summation index ⌫ can be identified with the topological charge which is the
difference of the right handed and left handed zero modes and is gauge independent.
The integral over U(Nf) is the integral which is shared with RMT. This observation
was first made by Verbaarschot [2, 20].

The infra-red limit of QCD performed above is nothing else than an unfolding at
the hard edge of the spectrum of the Dirac operator D. This hard edge is at the origin.
The corresponding k-point correlation function is given by [71]

R(k)
Bessel(x) / �2

k

(x2)

Z

U(2k)

dµ(U) exp


�ı

V ⌃

2
tr (diag (x1, . . . , xk

)⌦ 112)(U + U�1)

�
det⌫U

(2.28)
and agrees with the Bessel kernel, i.e. Eqs. (2.18) and (2.19) for ⌫ = 0 and k =
2 and k = 1, respectively. We employed the Vandermonde determinant �

k

(x2) =Q
1a<bk

(x2
a

� x2
b

).
One can also ask if other kernels have a representation in terms of non-linear �-

models. Indeed such an effective theory was found for the sine kernel, too, i.e.

R(k)
sine(x) / �2

k

(x)

Z

U(2k)/U2(k)

dµ(U) exp
⇥�ıtr (diag (x1, . . . , xk

)⌦ 112)Udiag (11
k

,�11
k

)U�1
⇤
.

(2.29)
For example three dimensional QCD with three colors and the fermions in the fun-
damental representation share this effective theory [45] since they have the symmetry
breaking pattern U(2k) ! U(k) ⇥ U(k). Also for other kernels such non-linear �-
models can be found, for example the one for the Meijer G-kernel is briefly reviewed
in subsection 3.3. Even the Airy kernel satisfies a non-linear �-model,

R(k)
Airy(x) / �2

k

(x)

Z

u(2k)

dµ(U) exp


tr (diag (x1, . . . , xk

)⌦ 112)U +
1

3
trU3

�
. (2.30)

Here, the set u(2k) is the Lie algebra of the unitary group U(2k) such that U is anti-
Hermitian. The induced group action on the Lie algebra from the group U(2k) is the
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addition. Hence the Haar measure dµ(U) is flat in this case meaning it is the product
of all independent differentials of U . But we have to be careful to interpret U as
Goldstone bosons since they are the massive particles for the Airy kernel which do not
factorize with the saddlepoint manifold anymore. Note, that we have no spontaneous
breaking of symmetry at the soft edge of the spectrum, in particular the pattern is
U(2k) ! U(2k) implying that the Goldstone manifold has to be a point set.

Two questions regarding the relationship of non-linear �-models and local spec-
tral statistics are still open. First, do all kernels correspond to non-linear �-models?
We would expect such a one-to-one correspondence on the level of the effective po-
tentials (zero-dimensional theories). This is confirmed for many examples, e.g. see
[44, 76, P, S] and subsections 3.1 and 3.3. The co-sets can be generated in one way
or another. Furthermore, the potentials can be arbitrarily “engineered” with RMT
weights. We underline that the question whether the random matrix model can be
analytically computed in the end is a completely different issue, e.g. see [90] for the
quite complicated random matrix model for the staggered Dirac operator in lattice
QCD.

The second point is about the interpretation of the non-linear �-models. For ex-
ample the sine-kernel can be easily interpreted with Goldstone modes if we consider
the Dirac spectra of three dimensional QCD at the origin [45]. However the sine kernel
also applies to the bulk of the Dirac spectrum of four-dimensional QCD where it is
not as easy to understand the spectral statistics from this point of view. What are the
Goldstone bosons corresponding to this part of the spectrum? It becomes even more
complicated when considering non-quantum field systems like the spectrum of covari-
ance matrices or the non-trivial zeros of the Riemann zeta function. Then we have to
be careful with such an interpretation and understand non-linear �-models as another
representation of the spectral statistics. Not more and not less. Especially we suggest
to use this representation for proving universality of random matrix ensembles where
the spectral statistics at finite matrix dimension are not that easy to compute, e.g. the
singular value statistics of a product of real or quaternion matrices, see subsection 3.3.
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3 Applications and Generalizations of �RMT
Here we summarize the ideas and results of the works collected in the appendices. In
subsection 3.1 we discuss some random matrix models and their relations to lattice
QCD, see the works in appendix A. In particular we consider the lattice realizations of
naive and Wilson fermions. Subsection 3.2 deals with the works in appendix B which
are about the uncorrelated and the correlated real Wishart random matrix ensemble,
see Eqs. (2.5) and (2.7). In particular we briefly explain the idea of the supersymmetry
method which was applied in this topic. The supersymmetry method was also applied
to the Meijer G-ensembles discussed in subsection 3.3 and studied in the works collected
in appendix C. Those Meijer G-ensembles are products of a certain class of random
matrices.

3.1 RMT Models in Lattice QCD

Some generalizations of �RMT also apply to lattice QCD at finite lattice spacing
a. Thereby we recall that many discretizations of QCD exist. The most prominent
discretizations are with staggered fermions, Wilson fermions, overlap fermions, and
domain wall fermions, see [91, 92] for some introductions. Each of these fermions try
to cure the doubler problem which exists for the naive Dirac operator. But what is
the doubler problem? To answer this question we consider the naive Dirac operator.
In this operator the covariant derivatives D

µ

= @
µ

+ ıA
µ

are simply replaced by the
differences of the transfer matrices and their adjoint, (T

µ

� T †
µ

)/a with gauge group
elements U 2 SU(Nc) on links connecting neighbouring sites and zero else. Recall that
such a transfer matrix is unitary, T�1

µ

= T †
µ

, as long as the number of sites is in each
direction at least three.

The doubler problem can be briefly explained when considering the situations where
all gauge group elements are equal to the identity matrix 11. Then the system is
integrable and the Dirac operator can be diagonalized by plane waves. Let ~k = {k

µ

}
be a wave vector. Then the Dirac operator reads in terms of this wave

Dnaive|~ki =
dX

µ=1

2ı�
µ

sin ak
µ

a
|~ki. (3.1)

We recall that the first Brillouin zone is the set ~k 2 [�⇡/a, ⇡/a]d with d the dimension
of the lattice. Therefore we find for a fixed sin ak

µ

two wave vectors, namely k
µ

and
⇡/a�k

µ

, with the same eigenvalue for each direction. This implies 24 = 16 eigenmodes
in four dimensions although only one of these eigenmodes is physical namely the one in
the vicinity of the origin. All other modes are called doublers. They are not physical
and have to be excluded. However the selection of the physical modes is even more
difficult when switching on the gauge group elements since they may mix with the
physical ones.

In [F] we studied the global symmetries of the naive Dirac operator for two-
dimensional QCD-like theories, including QCD with two and more colors, Nc � 2,
and the fermions in the fundamental and in the adjoint represention of the gauge
group SU(Nc). Thereby we varied the size L

x

⇥ L
y

of the two dimensional lattice to
classify the exact global symmetries of the naive Dirac operator. We underline that
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additionally to the doubler problem one can also change the global symmetries of the
Dirac operator only by discretizing the lattice as described above only by switching L

x

and/or L
y

from odd to even. Say L
x

is even, then the corresponding transfer matrix
T
x

anti-commutes with the constant matrix �
x

which assigns to an odd lattice site a
plus sign and to an even lattice site a minus sign. This symmetry carries over to the
Dirac operator which now does not only anti-commute with �3 but also with T

x

�1.
Recall that the Dirac matrices are given by the Pauli matrices in two dimensions. The
understanding of the mechanism of this change of symmetries was the goal in [F].

As briefly discussed in section 2 any additional symmetry may influence the local
spectrum which is indeed the case for the classification of the naive Dirac operator.
We found eight of the ten symmetry classes enlisted by Altland and Zirnbauer [44]
by varying the number of colors, the gauge group representations of the fermions, and
the lattice size, see table II of [F]. This shows how severe a disretization affects the
theory since almost always the discrete symmetries did not agree with the continuum
symmetry. Only the choice L

x

and L
y

even for the fundamental representation of
SU(Nc � 3) as well as the choice L

x

and L
y

odd with SU(Nc � 2) fundamental
or adjoint have the correct discrete symmetries. These symmetries are particularly
important in the infra-red limit of QCD. Then the physics is governed by the lightest
pseudo-scalar mesons. With the wrong discrete symmetries we do not only obtain the
wrong number of particles in the continuum limit via the doubler problem but also the
Goldstone manifold is completely different. This effect was also found for staggered
fermions in three- [93] and four-dimensional [85] QCD-like theories, cf. Fig. 10. The
spectrum of the naive Dirac operator and the staggered Dirac operator is up to a
trivial degeneracy exactly the same in the quenched (no dynamical quarks) theory.
Fortunately naive and staggered fermions in four-dimensional QCD of the standard
model do not exhibit this problem [94]. The reason is the same as in two dimensions
for QCD with the gauge group SU(Nc � 3) and the fermions in the fundamental
representation. Then the microscopic spectra of the Dirac operator for lattices where
both sizes, L

x

and L
y

, are either even or odd agree up to a degeneracy of two.
Another kind of solving the doubler problem is via Wilson fermions. The corre-

sponding spectrum of the Wilson Dirac operator at the hard edge is discussed in a
series of works [A, B, C, D, E] attached in appendix A. Wilson’s idea of curing the
problem was by adding the Laplacian � =

P
µ

D2
µ

! 4
P

µ

(T
µ

+ T †
µ

� 211)/a2 to the
Dirac operator [95]. Then the counterpart of Eq. (3.1) reads

DW|~ki = (Dnaive � a�)|~ki =
dX

µ=1

✓
2ı�

µ

sin ak
µ

a
+

16 sin2(ak
µ

/2)

a

◆
|~ki. (3.2)

Thus the Wilson term makes the doublers at the boundary of the first Brillouin zone
infinitely heavy in the continuum limit a ! 0 while the Laplacian for the modes at the
origin have a vanishing contribution. Therefore the doublers become too inertial and
decouple from the rest of the system.

The advantage of the Wilson Dirac operator DW is that it does not change the
Goldstone manifold such that we have from the start the correct lightest pseudo-scalar
mesons. Therefore the physics is preserved from this point of view. Yet, there is a
price to pay. The chiral symmetry is explicitly broken by the Laplacian. This breaking
is weak because it is of the order O(a) and is thus similar to the study of weak non-
Hermiticity introduced by Fyodorov, Khoruzhenko, and Sommers [96]. Nevertheless the
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Figure 10: Local spectrum at the hard edge of the quenched staggered Dirac operator
for an SU(3) gauge theory and the fermions in the fundamental representation (left col-
umn) for different lattice spacing and of a random matrix model interpolating between
�GUE and GUE (right column) for different coupling parameter. The change of the
spectrum is due to a slight breaking of chiral symmetry. Note that in the continuum
theory three color QCD in three dimensions has a flat spectrum around the origin [93]
(lowest plot). However the naive and the staggered Dirac operator exhibit a spectrum
of QCD in four dimensions in the strong coupling limit (upper plot). Taken from [93].

physics is still strongly effected. The spectrum of the Dirac operator becomes complex
which was formerly imaginary. Moreover the phase diagram exhibits new artificial
phases. In the case were the squared lattice spacing is of the order of the quark mass,
a2 / m, we may have two situations in the thermodynamical limit V ! 1. Either the
mass dependent chiral condensate,

⌃(m) / Re
1

V

⌧
tr

1

DW �m11

�
(3.3)

with h.i the average over all configurations, jumps from a positive to a negative value
when the quark mass m crosses the origin implying a first order phase transition.
Then the system is in the Sharpe-Singleton scenario where the pions are massive even
in the chiral limit [97]. It may also happen that the chiral condensate (3.3) changes its
constant behavior to a linear slope at a second order phase transition. Then all pions
become massless at the transition point. The massive chiral condensate ⌃(m) does not
jump anymore since the origin is in the Aoki phase [98] where the flavour symmetry
and the parity are spontaneously broken.
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All these lattice artefacts of the Wilson Dirac operator are non-physical and have to
be understood. Interestingly the smallest eigenvalues of the Dirac operator encode the
major part of these effects. Therefore understanding the smallest eigenvalues helps in
measuring the quality of lattice simulations, especially to judge how far away continuum
QCD is.

In the works [A, B, C, D, E] we used the idea sketched in subsection 2.4 and started
with the potential of Wilson chiral perturbation theory, e.g. see [97, 99, 100],

S0(U) = �V ⌃

2
trM(U + U�1) (3.4)

+VW6a
2tr 2(U + U�1) + VW7a

2tr 2(U � U�1) + VW8a
2tr (U2 + U�2).

The corrections of a finite lattice spacing a enter via the last three terms at leading
order. Each term comes with a low energy constant, W6, W7, and W8. These low
energy constants fulfill some conditions. For example the �5-Hermiticity of DW, i.e.
D†

W = �5DW�5, allows to consider the Hermitian Wilson Dirac operator D5 = �5DW.
Then we can conclude from the positivity of the partition function of D5,

ZN

f

N

f

=
⌦
detNf (D5 �m�5 � �11)

↵
> 0, for Nf even, (3.5)

and from the integrability of the partially quenched partition function

ZN

f

+1|1
N

f

=

⌧
detNf (D5 �m�5 � �11)

det(D5 �m2�5 � �211)
det(D5 �m1�5 � �111)

�
, (3.6)

that the inequalities W8 � W6 � W7 > 0 and W8 > 0 hold, see [4, 101, 102, C]. In
[C] we also argued that W6,W7 < 0. The reason for the latter inequalities is the
interpretation of the low energy constants W6 and W7 as collective motions of the
eigenvalues of DW and D5. Both terms represent the squared traces in the action and
can be linearized by Gaussian convolutions in the quark mass m and the axial mass
�. In the case that one of the low energy constants W6 and W7 is positive we have a
convolution with an imaginary variable, for example an imaginary mass when W6 > 0.
This is an average over non-physical configurations which can be excluded because
their contribution enters via the Laplacian whose eigenvalues are real.

The random matrix model corresponding to the Wilson Dirac operator is given by

DW =

✓
a(A+ [m6 + �7]11) W

�W † a(B + [m6 � �7]11)

◆
, (3.7)

where all matrix entries of the two Hermitian matrices A and B, of the complex rectan-
gular matrix W , and the two scalar variables m6 and �7 are independently distributed
by Gaussians, see [3, 4, 103, 104, 105, 106, 107, A, E] for details. In the limit of a large
matrix dimension we find at the hard edge around the origin the effective action (3.4).
The diagonal blocks model the Laplacian of DW and the off-diagonal blocks already
appeared in �RMT for continuum QCD [2, 20]. The Hermitian matrices A and B
generate the W8-term while the scalar random variables m6 and �7 correspond to the
low energy constants W6 and W7, respectively.

The joint probability density of the real eigenvalues of the Hermitian Wilson Dirac
random matrix D5 = �5DW was solved by Akemann and Nagao [108]. In [E] we derived
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the joint probability density of all eigenvalues of DW which is mathematically more
involved. Note that the model (3.7) is in the class 6Q of the symmetry classification
by Magnea [75]. Hence the non-compact unitary group U(n, n+ ⌫) keeps the random
matrix DW form invariant and can be used to quasi-diagonalize the matrix but is also
the reason for the difficulty in the computation. We emphasize that DW cannot be
always diagonalized while keeping the �5-Hermiticity intact. An eigenvalue of DW is
either real or has a complex conjugate partner. Thus when assuming that DW has l
complex conjugate pairs X(2)± ıY (2) = diag (x(2)

1 ± ıy(2)1 , . . . , x(2)
l

± ıy(2)
l

) and 2n+ ⌫� l

real eigenvalues X(1) = diag (x(1)
1 , . . . , x(1)

n�l

) and X(3) = diag (x(3)
1 , . . . , x(3)

n+⌫�l

), the
Wilson Dirac matrix can brought into the form

DW = U

0

BB@

X(1) 0 0

0
X(2) Y (2)

�Y (2) X(2) 0

0 0 X(3)

1

CCAU † with U 2 U(n, n+ ⌫). (3.8)

When calculating the joint probability density of the eigenvalues of DW one has to
perform the integral over U eventually. This integral is the crucial, non-trivial step
since it is an Itzykson-Zuber-Harish-Chandra-like integral of the form

�
l,l

0(X,K) =

Z

Ml,l0

dµ(U) exp[trUXU †K], (3.9)

where M
l,l

0 is a coset of U(n, n+ ⌫) depending on the number of complex pairs of the
two matrices X and K. The coset might be non-compact, too, such that one needs
a mixture of group theory, saddlepoint analysis, and partial differential equations to
compute this integral, see appendix A in [E]. It is a generalization of a derivation by
Fyodorov and Strahov [109] of the integral for the case l = l0 = 0 which is essentially
based on the idea of the Duistermaat-Heckman localization theorem [110]. However
the situation is not exactly as in the localization theorem where the stationary phase
approximation is exact. Only the algebraic structure is exact in the saddle point
approximation for the integral (3.8) while the functions in the resulting determinant
are not.

Despite the complicated structure of such a quasi-diagonalization it allows us some
insight into the eigenvector statistics. In particular we can say that an eigenmode
| (1)i corresponding to the eigenvalue x(1)

j

is right-handed, i.e. h (1)|�5| (1)i > 0, and
the real eigenvalues x(3)

j

have left-handed eigenmodes (negative chirality). Hence we
were able to study different level densities introduced in [A, D, E]. The distributions
are the ones of the left- and the right-handed modes over the real eigenvalues, ⇢r and
⇢l, respectively, and of the complex eigenvalues ⇢c. This completely stands in contrast
to the level statistics of D5 whose level density is given by only a single distribution
⇢5. The two distributions of the real eigenvalues of DW can be combined to two
other distributions proposed in [4] which are the level density over all real eigenvalues
⇢real = ⇢r + ⇢l and the distribution of chirality over the real eigenvalues ⇢

�

= ⇢r � ⇢l.
In the case of a small lattice spacing ⇢

�

is equal to the broadening of the former zero
modes of the continuum Dirac operator into the real axis. If we also assume ⌫ > 0
then ⇢r is equal to the distribution of the additional real modes which enter the real
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axis. In particular its integral yields the average number of additional real modes
Nadd = 2

R
dx⇢r(x) which is a good measure of the strength of the lattice artefacts.

The quantities introduced above were calculated in a series of works. In [D] we
traced back both level statistics of D5 and DW to partition functions which are an
average over two characteristic polynomials of DW and of D5, only. Thereby we cal-
culated the orthogonal polynomials corresponding to this ensemble. Interestingly the
polynomials are neither completely orthogonal nor skew-orthogonal to each other as
it is usually the case, e.g. see [19, 27, 26] and references therein. The polynomials of
order 0, . . . , ⌫ � 1 are orthogonal to each other while the polynomials of order l > ⌫
are skew-orthogonal. This observation was found for the Hermitian as well as for the
non-Hermitian Wilson Dirac operator. Such a mixture is quite unique and is expected
to be found for other ensembles, as well, if their joint probability densities are either
of the form

p5(x) = �2n+⌫

(x)Pf


g5(xa

, x
b

) p
c

(x
a

)
�p

d

(x
b

) 0

�

1a,b2n+⌫

1c,d⌫

(3.10)

or of the form

pW(z) = �2n+⌫

(z(r), z(l)) det
h
gW(z(l)

a

, z(r)
b

) p
c

(z(l)
a

)
i
1an+⌫

1bn

1c⌫

, (3.11)

where g5(xa

, x
b

), gW(z(l)
a

, z(r)
b

), and p
b

(z
a

) are certain functions. We used the Pfaffian
Pf[.] which is essentially the square root of a determinant of an even dimensional,
antisymmetric matrix. Indeed the joint probability density functions of D5 and DW

are of the form p5 and pW, see [108, D, E] for the explicit expressions.
The point process corresponding to the joint probability densities p5 and pW is

Pfaffian [D]. This is quite puzzling since the continuum limit a ! 0 should yield
a determinantal point process [111, 112]. This apparent contradiction was resolved
in [B] where we have shown that any determinantal point process can be written as a
Pfaffian one whose structure resembles exactly the one of GOE and GSE, see [113, 114]
for general derivations of Pfaffian point processes. This was up to this work a missing
piece in the understanding that all point processes can be dealt on equal footing. With
respect to the problem of the Wilson Dirac operator it has shown how the continuum
limit has to be interpreted after the kernels of the Pfaffian point process were calculated
in [D].

With the help of the analytical results of the spectrum of DW we could solve a
puzzle in [C]. Namely in the quenched theory only the Aoki scenario was observed in
lattice simulations [115, 116] while the unquenched theory exhibits the Aoki phase and
the Sharpe singleton scenario [117, 118]. The additional determinants are the reason for
this observation, cf. Eq. (3.5), when dynamical quarks are present. These determinants
strongly repel the smallest eigenvalues from the quark mass and can push the strip of
the complex eigenvalues of DW away if W8 < �2W6, see Fig. 2 in [C]. When the quark
mass crosses the origin this strip rips apart and collectively jumps onto the other side
of the complex plane which is manifested in a first order phase transition, cf. Fig. 3 in
[C].

In [A, E] we presented all exact results for arbitrary lattice spacing and quark mass
in the quenched theory and discuss their implications. Let us start summarizing these
results with explaining the effect of the low energy constants W6 < 0 and W7 < 0. The
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low energy constant W6 is introduced via a Gaussian convolution in the quark mass.
Thus the full spectrum of the continuum Dirac operator is broadened parallel to the
real axis into the complex plane with a width proportional to

p
VW6a, cf. left plot

of Fig. 1 in [E]. Thus the whole continuum spectrum can be completely regained by
projecting all eigenvalues onto the real axis.

The pure effect of W7 is more involved. Then the spectrum does not broaden into
the complex plane. It pushes the eigenvalues along the imaginary axis to the origin.
When an eigenvalue pair reaches the origin it enters the real axis and a new pair of
additional real eigenvalues corresponding to one right-handed and to one left-handed
mode is created. Thus the spectrum is still real and imaginary but not complex if
only W7 is non-zero. The width of the distribution of the real modes is of the orderp
VW7a, cf. right plot of Fig. 1 in [E]. Interestingly the distribution ⇢

�

is a pure
Gaussian despite the completely non-trivial effect on ⇢real and ⇢c.

The effect of the low energy constant W8 is completely non-trivial. It is somehow
a mixture of the broadening of the spectrum into the complex plane and pushing
the complex conjugate pairs into the real axis. It has also a crucial effect on the
thermodynamical limit V ! 1. While at W8 = 0 the width of the strip of the complex
eigenvalues along the imaginary axis is of order O(a) and the shape is Gaussian, we
have at W8 > 0 a flat strip with a width of the order O(a2). The same statement about
the width (not the shape) holds for the distributions of the real eigenvalues, ⇢r and ⇢l,
too.

As already pointed out, the average number of the additional real modes Nadd is a
good quantity for measuring the strength of lattice artefacts. In [A, E] we found that
its behavior drastically changes when tuning the lattice spacing a. For large lattice
spacing (the case which should be avoided) Nadd is of the order a and thus indepen-
dent of the index ⌫. In contrast, at small a ⌧ 1 the number Nadd is of order a2⌫+1.
Therefore additional real modes and, hence, lattice artefacts are strongly suppressed
for configurations with a non-trivial topological charge. This is a good message for lat-
tice simulations since the massive Wilson Dirac operator, DW+m11, has to be inverted
yielding the matrix Green function. Such an inversion fails if the quark mass is in the
cloud of real eigenvalues of DW.

In [E] we also suggested quantities which can be measured in lattice simulations
to fix the low energy constants. At small lattice spacing the dependence of these
observables on the low energy constants is particularly simple because it is affine linear.
For example the average number of the additional real eigenvalues is Nadd ⇡ 2V a2(W8�
2W7) or the width of the strip of the complex eigenvalues is �2/�2 ⇡ 4V a2(W8 �
2W6)/⇡2 with� the mean level spacing at the hard edge of the spectrum. Furthermore,
the number of relations derived by us is larger than the constants to be fixed. Hence
our results also offer a possibility to estimate the quality of the approximation of chiral
perturbation theory by its leading order and measure some bounds of the strength of
higher order terms. We underline that the approximation of the suggested observables
is accurately fulfilled for |VW

i

a2| < 0.1 for all i = 6, 7, 8. This is indeed accessible with
lattice simulations, see [88].

In the work by Damgaard, Heller, and Splittorff [87] one obviously notices the limit
of applicability of chiral perturbation theory in its lowest order. The asymmetry in the
spectrum, cf. Fig. 11, is quite persistent though the trend to a symmetric level density
of the real eigenvalues in the continuum limit is correct. This asymmetry results from
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Figure 11: Fit of lattice data with analytical results of the level density ⇢real of all real
eigenvalues of DW when setting the low energy constants W8 = W7 = 0. The lattice
simulations are for the quenched Wilson Dirac operator with clover improvement. Our
critique in [E] of this fit was that additional real modes can only be created if at least
one of the two low energy constants W7 and W8 does not vanish. Unfortunately the
authors of [88] set a priori W7 = 0 such that it might be possible to find a better fit
for this data with W7,W8 6= 0. The persistent asymmetry results from the positivity
of the Wilson term and is not covered by chiral perturbation theory. Taken from [88].

the fact that the Wilson term (minus the Laplacian) is positive definite. In private
communications with Splittorff it was mentioned that the modes corresponding to this
asymmetry seem to be localized. Hence it is possible that the asymmetry cannot be
covered with chiral perturbation theory.

3.2 Uncorrelated and Correlated Wishart Random Matrices

When looking at real time series we notice that they often deviate from the predictions
of the Marčenko-Pastur distribution (2.6). For example data of financial markets,
see Fig. 12, exhibit a very pronounced tail. There are many ways to interpret such
deviations with Wishart RMT, see subsection 2.1. One interpretation is that the
deviations correspond to system specific correlations, see our example in Fig. 2. Then
we do not only interpret the largest outlier at about � ⇡ 58 as the effective size of a
strongly correlated subsystem but also the outliers which are slightly above the largest
eigenvalue described by the Marčenko-Pastur distribution (2.6). A second possible
interpretation is that the system specific correlations mix with the bulk of eigenvalues
distributed by the Marčenko-Pastur distribution. Then the bulk is deformed due to
level repulsion and we should fit the data with a level density of the correlated Wishart
random matrix model (2.7). The level density as well as the distribution of the largest
and the smallest eigenvalue of correlated real Wishart matrices were computed in [119,
120, 121, 122, G, H, J]. There is also a third possibility. Maybe the assumption of
a Gaussian distribution was wrong and we have to choose a heavy-tailed distribution
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Figure 12: The empirical level density of a covariance matrix constructed from financial
market data of 406 stocks from the S&P 500 (red curve) is compared with a fit of the
Marčenko-Pastur distribution (2.6) (blue curve). The largest outlier is shown in the
inset and is called the market mode. Taken from [14].

like the Cauchy-Lorentz distribution [P],

P (W ) / 1

det�(�211
p

+WW †)
(3.12)

with � large enough to guarantee the integrability. The latter possibility was discussed
in [123] because financial data indeed exhibit Levy-tails.

Before we come to the results for some observables of the correlated real Wishart
random matrix model let us briefly explain the mathematical problem involved in this
topic which makes analytical computations so difficult even for RMT. We start with
the distribution (2.6) with ⌫ = n � p > 0 meaning that we have less time series than
time steps. The index ⌫ also agrees with the one employed in the context of QCD,
see subsection 3.1, because it is the generic number of zero modes of the matrix W .
To derive the joint probability distribution of the eigenvalues of WW † we have to
perform a singular value decomposition of W = U⇤V with U 2 O(p), V 2 O(n),
and ⇤ a rectangular p ⇥ n matrix which has on one of its main diagonals positive
real numbers and zero everywhere else. Then the distribution of the eigenvalues S =
⇤⇤T = diag (s1, . . . , sp) is,

p(S) / �2
p

(S)det(⌫�1)/2S

Z

O(p)

dµ(U) exp[�trUSUTC�1]. (3.13)

The integral over V drops out while the integral over U has to be done. The latter
is a group integral over the orthogonal group and is called the real Itzykson-Zuber
integral [124]. The complex version (an integral over the unitary group instead over
the orthogonal) is equal to a Harish-Chandra integral [125] and thus the Duistermaat-
Heckman localization theorem [110] applies. However the real version does not corre-
spond to a Harish-Chandra integral because the matrices S and C�1 are not elements
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of the Lie algebra of O(p). The applicability of the localization theorem relies on such
a property of the matrices.

The Itzykson-Zuber integral in Eq. (3.13) is one of the hardest problems in RMT.
Many experts tried to solve this problem but were only partially successful for small
dimensions p [126, 127, 128]. In its full generality the Itzykson-Zuber integral is still
unsolved. Thus one has to go new ways to circumvent this group integral.

Exactly this was done with the help of the supersymmetry technique, see [129, 130].
We emphasize that in RMT supersymmetry does not appear as a physical theory
like in particle physics or quantum gravity. Supersymmetry is purely employed as
a mathematical tool to encode complicated differential operators as simple integrals
over anti-commuting variables. See [131] for an introduction to superanalysis and
superalgebra.

Let us briefly present the main definitions and introduce our notations. A su-
peralgebra consists of commuting variables x1, x2, . . . (x

i

x
j

= x
j

x
i

) like the real and
complex numbers and of anti-commuting variables ⌘1, ⌘2, . . . (⌘

i

⌘
j

= �⌘
j

⌘
i

) which are
called Grassmann variables. Due to the anti-commutation relations of the Grassmann
variables each ⌘

j

is nilpotent (⌘2
j

= 0) such that a function f depending on a Grass-
mann variable is defined by a finite Taylor series (f(⌘) = f(0) + f 0(0)⌘). An integral
over a Grassmann variable is then given by the derivative with respect to this Grass-
mann variable (

R
f(⌘)d⌘ = f 0(0)). One can also introduce a complex conjugation of

the Grassmann variables where one has the choice of a conjugation of the first kind
((⌘⇤)⇤ = ⌘ and (⌘1⌘2)⇤ = ⌘⇤2⌘

⇤
1) and a conjugation of the second kind ((⌘⇤)⇤ = �⌘ and

(⌘1⌘2)⇤ = ⌘⇤1⌘
⇤
2). It does not matter which one is chosen as long as one sticks to one of

the two possibilities during the whole calculation. We employ the conjugation of the
second kind in the following.

Now we come to supermatrices which have an important role in the supersymmetry
method of RMT. A supermatrix � can be arranged in such a way that it has the block
structure

� =

✓
�BB �

BF

�FB �
FF

◆
, (3.14)

where �BB and �FF only comprise commuting variables which may also include an
even product of Grassmann variables because such a product is commuting, too. The
matrix elements of the off-diagonal blocks �BF and �FB only consist of anti-commuting
variables which can be any product of an odd number of Grassmann variables. The
adjoint of such a supermatrix � is then given via the formula

�† =

✓
�†
BB �†

FB

��†
BF �†

FF

◆
. (3.15)

Thus the adjoint is up to the switch of the sign in the block ��†
BF the same as for

ordinary matrices. When assuming a supermatrix � where �BB and �FF are square
matrices we can define the supertrace and the superdeterminant,

Str� = tr �BB � tr �FF and Sdet� =
det(�BB � �BF�

�1
FF�FB)

det �FF
. (3.16)

For the definition of the superdeterminant we have also to assume that �FF is invert-
ible. The definition of the supertrace and the superdeterminant are chosen in such a
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way that the circularity property (Str�1�2 = Str�2�1), the factorization (Sdet�1�2 =
Sdet �1Sdet �2), and the relation between both functions (ln Sdet� = Str ln�) are nat-
ural generalizations from ordinary matrices.

Let us come back to the supersymmetry method in RMT. The main idea of applying
supersymmetry is to rewrite the partition function

Z
k|l(,�) =

Z

⌃
ord

d[H]P (H)

Q
l

j=1 det(H � �
j

11
N

)
Q

k

j=1 det(H � 
j

11
N

)
, (3.17)

which is an average over an ordinary N ⇥ N random matrix H 2 ⌃ord, as an integral
over a supermatrix � 2 ⌃SUSY

Z
k|l(,�) =

Z

⌃
SUSY

d[�]Q(�)Sdet��(� �M). (3.18)

The matrix M is a fixed supermatrix depending on  and � and � is an exponent
depending on N and on the symmetry class of H. The dimensions of � only depend
on the numbers of determinants, k and l, we originally average over. The goal of the
map from Eq. (3.17) to Eq. (3.18) is to drastically reduce the number of integrations.
In full generality the weight P can be arbitrary. Its counterpart Q in superspace
crucially depends on P and on the original set of random matrices ⌃ord, see [132, P] as
well as subsection 3.3 for an explicit dependence for certain classes of random matrix
ensembles. Also the set of supermatrices ⌃SUSY depends on both quantities, see [76]
for a rough classification of the superspaces.

In the case of the correlated real Wishart random matrix model we have H = WW T

and ⌃ord = Rp⇥n, and the probability weight P is given by Eq. (2.7). Then the level
density can be calculated via the relation

⇢(x) =
1

⇡p
lim
"!0

Im
@

@J
Z1|1(x+ ı", x� J)

����
J=0

. (3.19)

In [G, H] we derived the supersymmetric integral for Z1|1(x+ ı", x� J) which is

Z1|1(x+ ı", x� J) =

Z
d[⇢]

Z
d[�]eıStr⇢�Sdet�n/2(112|2 + ı�)

pY

j=1

Sdet�1/2

✓
M � ⇤

j

2
⇢

◆

(3.20)
with M = diag (x + ı", x + ı", x � J, x � J) and ⇤

j

the eigenvalues of the empirical
covariance matrix C. Both supermatrices ⇢ and � are of size (2|2)⇥ (2|2) and satisfy
the symmetries

� = �† = diag (112, ⌧2)�Tdiag (112, ⌧2) and ⇢ = ⇢† = diag (112, ⌧2)⇢Tdiag (112, ⌧2)
(3.21)

with ⌧2 the second Pauli matrix. The integral over � yields Dirac delta functions for
⇢FF and a restriction of ⇢BB to positive definite matrices. After integrating over the
four Grassmann variables of ⇢ and diagonalizing ⇢BB we end up with an integral over
three ordinary variables. Those three integrals can be reduced to a finite sum where
each summand is a product of three decoupled integrals when taking the derivative
and the imaginary part in Eq. (3.19). See [G, H] for the details of the calculation and
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the results. As a comparison we also considered the result where W is complex since
the results for this case are well-known [6, 133]. We underline that our derivation has
been only possible because of the simplicity of the supersymmetric integral. We had
not to perform any complicated group integrals as it would be the case in the ordinary
matrix space, cf. Eq. (3.13).

This idea of circumventing the group integral (3.13) can be applied to other observ-
ables, as well, like the largest and the smallest eigenvalues. The smallest eigenvalues
are of particular interest in QCD since they are responsible for the spontaneous break-
ing of chiral symmetry and are quite suitable for fitting lattice data [71, 86]. Also
when studying topological superconductors they become important [134]. In numerics
the condition number c = |�max/�min| > 1 (the ration of the largest and the smallest
eigenvalue) is a measure of stability of the solution x of a linear equation Ax = y with
respect to the source y, see [135]. When the condition number is large the solution
x is very sensitive with respect to small changes in y while it is very hard to change
the solution if c ⇡ 1. The distributions of the largest eigenvalues also find applications
in time series analysis. They can be used to reduce the dimensionality of the system
via projection onto the principal components of the empirical covariance matrix C cor-
responding to its largest eigenvalues [136]. This approach is one way to extract the
system specific correlations. However it does not always cover all important informa-
tions. One can find many more applications of the smallest and largest eigenvalues in
other fields, too, see [137, 138, 139] for some examples.

The distribution of the smallest and the largest eigenvalue are related to the gap
probability that no eigenvalue of WW † is inside the interval [a, b],

E(a, b) = h⇥[(WW † � b11
p

)(WW † � a11
p

)]i, (3.22)

where we have employed the Heaviside step function for matrix arguments meaning
that it is unity if its argument is positive definite and otherwise zero. The brackets
h.i are the average with respect to the weight (2.7) of W in the case of correlated
real Wishart random matrices. Then the distributions of the smallest and the largest
eigenvalue are

pmin(s) = �@
s

E(0, s), pmax(s) = @
s

E(s,1), (3.23)

respectively. In the case of an uncorrelated Wishart random ensemble, i.e. C = 11
p

,
and p/n > 0 fixed we find the Tracy-Widom distribution [25] in the large n limit,

F2(s) = exp


�
Z 1

s

dx(x� s)2q2(x)dx

�
with q00(s) = sq(s) + q3(s) and q(s)

s!1! Ai(s)

(3.24)
for complex matrices and

F1(s) = exp


�1

2

Z 1

s

dx(x� s)2q2(x)dx� 1

2

Z 1

s

dxq(x)dx

�
(3.25)

for real matrices with the same solution q(s).
When considering the correlated Wishart random matrix ensemble (2.7) we again

encounter the same problem of the Itzykson-Zuber integral (3.13). In the complex case
this integral can be easily performed and results for the extreme eigenvalues can be
derived [140, 141]. For real matrices the whole situation is different because of the
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unkown group integral. Thus we look again for a dual integral where the final matrix
decouples from the empirical correlation matrix. This was done for the gap probability
E(s,1) in [J]. Thereby we interpret the Heaviside step function ⇥(s11

p

� WW †) =
⇥(s11

n

�W †W ) as the result of an Ingham-Siegel integral [142, 143], e.g.
Z

Sym(n)

d[H]
exp[tr (11

n

� ıH)K]

det�(11
n

� ıH)
/ det��(n+1)/2K⇥(K) with � >

n+ 1

2
(3.26)

for real matrices. Ingham-Siegel integrals regularly appear in RMT, e.g. see [144, 145,
146, P], and can be understood as a multidimensional residue theorem in the n ⇥ n
dimensional real symmetric matrix H = HT = H⇤ 2 Sym(n). In our case we have to
set � = (n+ 1)/2 and K = s11

n

�W †W . After integrating over W we found

E(s,1) /
Z

Sym(n)

d[H]
exp[str (11

n

� ıH)]

det�(n+1)/2(11
n

� ıH)

pY

j=1

det�1/2((1 + ⇤
j

)11
n

+ ıH), (3.27)

see [J], and similarly for the smallest eigenvalue. This integral can be rewritten as
a Pfaffian of double integrals when diagonalizing the real symmetric matrix H and
integrating over its eigenvalues. Although the resulting integral (3.27) is not very
suitable for the large n limit it is at least an explicit analytical result at finite n. Such
a result was not accessible before due to the Itzykson-Zuber integral (3.13).

With the help of the result (3.27) we were able to show in [J] that the Tracy-Widom
distribution still remains when the empirical eigenvalues ⇤

j

of the covariance matrix
C have a macroscopic distance to the soft edges. This is not very surprising since the
universality of the local statistics rely on the separation of scales such that the local
statistics does not know anything of the macroscopic one.

We also applied the idea of looking for dual integrals to the uncorrelated real
Wishart random matrix ensemble in [I, K]. We solved in this way a long standing
problem which even existed for the case C = 11

p

where we have no problems with
group integrals. Let us briefly explain this problem. The distribution of the smallest
eigenvalue and its corresponding gap probability can be written as an average over
characteristic polynomials in WW †, i.e.

E(s,1) / e�pshdet(⌫�1)/2(WW † + s11
p

)i
W2Rp⇥(p+1)

,

pmin(s) / s(⌫�1)/2e�pshdet(⌫�1)/2(WW † + s11
p�1)i

W2R(p�1)⇥(p+2)

. (3.28)

Note that the dimensions of W are different in both expressions and differ from the
original dimension p⇥n with ⌫ = n�p � 0. In the case of an odd index ⌫ 2 2N0+1 the
exponent of the determinant is an integer and the averages can be readily performed
in various ways without any problems [147, 148]. We obtain Pfaffians with the kernel
in terms of Laguerre polynomials. So far everything is simple.

The problem arises when the exponent of the determinant is a half-integer, i.e.
⌫ 2 2N0. Problems involving averages over square roots of determinants were recently
enlisted in [149] and can be found for example in the study of quantum chaotic systems.
Such an average for real Wishart random matrices was only available in form of a
recursion derived by Edelman [150]. This recursion is highly non-trivial and not very
practical. Only for small ⌫ = 0, 2 this recursion could be explicitly solved, see [49, 150,
151].
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We closed this gap in [I, K] by applying a mixture of orthogonal polynomial the-
ory [19, 27] and the supersymmetry method [129, 130]. When diagonalizing WW † the
one-point weight in the joint probability density is w(x) = x⌫

0
e�x with ⌫ 0 an effective

index which is ⌫ 0 = 1 for the gap probability and ⌫ 0 = 3 for the distribution of the
smallest eigenvalue, cf. Eq. (3.28). Since we average over a half-integer the method of
skew-orthogonal polynomials breaks down according to the weight w(x). This can be
cured by pushing a square root of the determinant to the weight. Therefore we con-
sidered the new weight w0(x) = x⌫

0
e�x/

p
x+ s and constructed the skew-orthogonal

polynomials according to this weight. The polynomials and the kernels were calculated
by the supersymmetry method.

The results were surprisingly simple. The gap probability as well as the distribution
of the smallest eigenvalue can be expressed in terms of Pfaffians as in the case of odd
⌫. Yet, the kernel of these Pfaffians are linear combinations of Laguerre polynomials
with s-dependent coefficients resulting from the additional square root in the weight.
These coefficients are Tricomi’s confluent hypergeometric functions [48] for even ⌫ while
they are only Laguerre polynomials for odd ⌫. The hypergeometric functions were also
found by Edelman [150] such that it could be expected that they play an important role
for even ⌫. But the complicated recursions made it impossible to deduce the simple
structure in terms of a Pfaffian.

Since the Pfaffians are taken of matrices of dimensions proportional to ⌫ this expres-
sion is not suitable for the large n limit with p/n fixed. Then the smallest eigenvalue
is at a soft edge and the spectrum detaches from the origin. The situation looks com-
pletely different in the hard edge scaling limit with ⌫ = n � p � 0 fixed. Then the
distribution can be written in terms of Bessel functions and can be applied in QCD
and the study of topological insulators. The results for this limit can be found in sec-
tion 5 in [K]. They are completely new. The distributions of the smallest eigenvalues
at the hard edge were only explicitly known for ⌫ odd and ⌫ = 0, 2 before our work,
see [147, 148].

In principal one can also deduce from our results in [K] the distributions of the
second to smallest eigenvalue, of the third to smallest eigenvalue etc. They are given
by the average

p
k

(s) / s(⌫�1)/2e�(p�k+1)s

Z

[0,s]k�1

d[x]|�
k

(x,�s)|det(⌫�1)/2x exp[trx] (3.29)

⇥
*
det(⌫�1)/2(WW † + s11

p�k

)
k�1Y

j=1

det(WW † + (s� x
j

)11
p�k

+

W2R(p�k)⇥(p�k+3)

for the distribution of the kth smallest eigenvalue. Thus we have only to average over
additional characteristic polynomials. With the help of the structure of the Pfaffian
point process we derived it is no problem to extend our result to these averages, too.

3.3 Product Matrices and Meijer G-kernels

Products of matrices are encountered when studying various problems. To name only
a few, evolution operators in quantum systems, transfer matrices in condensed matter
theory, the Polyakov loop in QCD, or scattering matrices in progressive scattering pro-
cesses. Also the spectral statistics of products of random matrices are an old problem
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which ranges back into the 50s and 60s [152, 153]. Applications of random matrices
can be found for example in QCD at finite chemical potential [72], image process-
ing [154], disordered systems (see [155] and references therein), and wireless telecom-
munication [8]. Exactly the latter application is the reason how we came to consider
a particular class of products of random matrices which were fortunately analytically
feasible, see [L].

The idea of applying RMT to wireless telecommunications is to describe the infor-
mation channel between two antenna ensembles called multiple-input-multiple-output
array via a random matrix [16], i.e.

vout = Avin (3.30)

with vin the emitting signal, vout the receiving signal and A the random matrix. The
reason for such a strong simplification is that in realistic situations the transmitting
channel is highly chaotic and mixes the signals of each single emitting antenna as
long as the receiver is not in sight of the emitter. Nowadays the situation is slightly
more complicated. A mobile phone user does not directly send his signal to the user he
called. Between the emitter and the final receiver are many arrays of antenna such that
Eq. (3.30) has to be recursively applied with independently chosen random matrices
A

j

. Then the relation between the input and output signal is

vout = A
M

· · ·A1vin = X(M)vin. (3.31)

The matrices A
j

can be generically anything even rectangular when the numbers of
emitting and receiving antennas are different. Therefore the simplest random matrix
model is by choosing A

j

as complex Wishart random matrices which was considered in
[L] for square matrices and in [16, 8, M] for rectangular ones. The random matrices A

j

are chosen complex since a signal consists of a phase and an amplitude. Products of
real and quaternion Wishart matrices were considered in [56, 156, N]. The case M = 2
appears in the Osborn model [72] for QCD at finite chemical potential though in this
model the matrices A1 and A2 are statically correlated via the chemical potential.

To analyze the spectral statistics of product matrices we have two choices. Either
one considers the generically complex eigenvalues of X(M) assuming that X(M) is a
square matrix or one studies the singular values of the product matrix X(M) which are
the square roots of the eigenvalues of X(M)X(M) †. The eigenvector statistics is always
the same since the ensembles are invariant under unitary transformations.

The macroscopic level densities of X(M) as well as of X(M)X(M) † can be calculated
with the help of free probability [8, 157, 158, 159] in the limit of large matrix dimensions
which is essentially the restriction to planar Feynman diagrams. The level densities
exhibit a different singular behavior at the origin compared to a single Wishart matrix
(M = 1), see [157]. Despite this different behavior the macroscopic level densities are
not that enlightening since they can be always transformed by a simple substitution
to the results of a single Wishart random matrix, which are the Marčenko-Pastur
distribution (2.6) for the singular values and the uniform complex disk centered at the
origin for the complex eigenvalues [160, 161]. Thus one has to zoom onto the scale of
the local mean level spacing to see essential differences between the level statistics of
X(M) for different M .
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Before studying the local spectral statistics we have to calculate analytical feasible
expressions for the k-point correlation functions,

R(k,M)(x) =

*
kY

j=1

�(x
j

� �
j

)

+

X

(M)

, (3.32)

with x = (x1, . . . , xM

) and �
j

the eigenvalues or singular values of the random matrix
X(M). We did this calculation in [L] and in [M] for the singular values of a product of
square and rectangular Wishart matrices, respectively. The result is very simple and
can be expressed in terms of Meijer G-functions [48],

R(k,M)(x) = det

"
N�1X

n=0

G1,0
1,M+1

✓
n+ 1

0;�⌫1, . . . ,�⌫M

���� xa

◆
GM,1

1,M+1

✓ �n
⌫1, . . . , ⌫M ; 0

���� xb

◆#
,

(3.33)
where N is the number of generic non-zero eigenvalues of X(M) and ⌫

j

is the rectan-
gularity (difference of the two matrix dimensions) of the matrix A

j

.
Due to the symmetry of the Meijer G-functions in its indices, in particular ⌫

j

$ ⌫
i

,
we notice a symmetry in reordering the matrices in the product X(M). This symmetry
can be also found for the complex eigenvalues [55, 162, O, N] and holds in a more general
framework. In [N] we showed that one does not really need that the weights of the
random matrices A

j

are Gaussian to find this symmetry under reordering. We proved
a weak-commutation relation which means the following. Assume two square matrices
A1 and A2 drawn from the probability weights P1(A1) and P2(A2) which are invariant
under P1(A1) = P1(V1A1U1) and P2(A2) = P2(V2A2U2) for all A1, A2 2 CN⇥N and
V1, V2, U1, U2 2 U(N). Then the average of an arbitrary matrix-dependent observable
F satisfies hF (A1A2)i = hF (A2A1)i. Such an observable has not to be necessarily
invariant under unitary transformations, too. Hence this weak-commutation relation
can be embedded in a product of square matrices such that it also holds for the average
hF (BA1A2C)i = hF (BA2A1C)i with two other matrices B and C which can be random
as well as fixed. Additionally our weak-commutation relation applies to products of real
and quaternion matrices. One has only to replace the unitary group by the orthogonal
and the unitary symplectic group, respectively.

The restriction of the weak-commutation relation to square matrices is only appar-
ent. In [N] we also showed that an arbitrary product of rectangular matrices can be
essentially traced back to a product of square matrices. The cost to pay for such a
change from rectangular to square matrices, A

j

! A0
j

, is a change of the probability
weights, P

j

(A
j

) ! P 0
j

(A0
j

). For Gaussian weights, see Eq. (2.5) for real Wishart ma-
trices, the new weight is P 0(A0) = det�A0A0† exp[�trA0A0†] with a certain exponent �
depending on the rectangularity ⌫ of A and whether A is real, complex, or quaternion.
The symmetry in the indices ⌫

j

of the k-point correlation function is immediate when
considering these new weights in combination with the weak-commutation relation.

In [N] we did not only consider products of random matrices drawn from Wishart
ensembles to illustrate the weak-commutation relations but we also considered Ja-
cobi random matrix ensembles. The latter random matrices are truncated orthogonal,
unitary or unitary symplectic matrices drawn from the Haar-measure [27, 163, 164].
Applications of such matrices can be found in scattering processes where one is only
interested in the transmitting channels such that one considers only sub-matrices of
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the S-matrix [155]. The k-point correlation function of the singular values of such ma-
trices for the complex case was calculated in [T] and looks very similar to Eq. (3.33).
In [O, N] we studied the complex eigenvalues. The corresponding k-point correlation
function is

R(k,M)
complex(z) = det

"
GM,0

M,M

✓
µ1, . . . , µM

⌫1, . . . , ⌫M

���� |za|2
◆

N�1X

n=0

"
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j

+ n
⌫
j

+ n

◆#
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z⇤
b

)n

#
,

(3.34)
where z = (z1, . . . , zk) and µ

j

is related to the size of the truncation of the unitary
matrix U

j

to A
j

.
In [O] we also investigated the local statistics in the limit N ! 1 for the case

of identically distributed square matrices (⌫1 = . . . = ⌫
M

= 0, µ1 = . . . = µ
M

= µ).
Thereby we studied two situations, the strong non-unitarity limit where µ is of the order
N and the weak non-unitarity limit where µ is fixed and the truncation of the unitary
matrices is macroscopically not visible. In the weak non-unitarity the whole spectrum
is concentrated in the vicinity of the complex unit circle. Only via an exponential
suppressed tail eigenvalues enter the interior of the complex unit disc.

In the strong non-unitarity limit the macroscopic level density of the complex eigen-
values is angular independent and takes a finite support inside the unit disc with a
singularity at the origin. We found the Ginibre kernel [165] in the bulk of the complex
eigenvalue density and the error-function kernel [166] at the soft edge. Both kernels
can be also found for the case M = 1 (the complex Ginibre ensemble) and confirm
their universality. However at the origin where the singularity is sitting we found an-
other kernel. This kernel is given in terms of Meijer G-functions and is thus called
Meijer G-kernel [55, 162, O]. This kernel has analogues for products of real [156, N]
and quaternion matrices [56, N] and it was also derived for the singular value statistics,
see [58, 57, 59, T]. They can be understood as a generalization of the Bessel kernel,
see (2.18) for the two-point function. Indeed the Bessel kernel has also a representation
in terms of Meijer G-functions because Bessel functions are a particular kind of Meijer
G-functions [48].

Recall that the Bessel kernel can be characterized by the index ⌫. This index ⌫ is
now extended to a whole set of indices, e.g. ⌫1, . . . , ⌫M

1

and µ1, . . . , µM

2

(M1,M2 
M) in the case of truncated unitary matrices where ⌫

j

and µ
i

are fixed for all j =
1, . . . ,M1 and j = 1, . . . ,M2. Since Meijer G-functions have all in all four sets of
indices, there is a rich classification of hard edge kernels which are all inequivalent.
These kernels have only one property in common and this is the fact that they can
be always written as double Taylor series in the levels x and their logarithm ln x. In
particular this logarithmic behavior of spectral observables is well-known in the infra-
red regime of QCD. The modified Bessel functions of the second kind, usually denoted
as K

⌫

, have also a logarithmic part and they appear when considering averages of
the Green function. These logarithmic contributions are the reason why QCD has
to be non-perturbatively dealt at small energies. The physical explanation are the
Goldstone bosons which result from the spontaneous breaking of chiral symmetry. This
interpretation can be carried over to the general case of the Meijer G-kernels but then
two questions arise. What is the corresponding spontaneous breaking of symmetry for
such a Meijer G-kernel and what is the non-linear �-model?

The first question can be easily answered. For this purpose we recall how we obtain
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the symmetry breaking pattern of QCD in four dimensions. The Dirac operator has a
chiral structure, in particular its characteristic polynomial is

det(D ⌦ 11
N

f

+ 11 ⌦M) = det

✓
11 ⌦Mlr W ⌦ 11

N

f

�W † ⌦ 11
N

f

11 ⌦Mrl

◆

= det⌫Mrl det(WW † ⌦ 11
N

f

+ 11 ⌦MlrMrl), (3.35)

such that the quark-dependent part of the Lagrangian can be written as

Lquark = tr †
rW r � tr †

lW
† l + trMlr 

†
r l + trMrl 

†
l r. (3.36)

The Nf quark fields are arranged as columns in the right-handed,  r, and left-handed,
 l, components of the spinors. The quark masses are comprised in the mass matrices
Mlr and Mrl which are sometimes also chosen non-diagonal and unequal to generate
some observables, e.g. see [167]. When the mass matrices are set to zero, the La-
grangian is invariant under  r !  rUr and  l !  lUl with Ur, Ul 2 U(Nf). Thus the
symmetry group is U(Nf)⇥U(Nf). For topological sectors with a non-trivial index ⌫ 6= 0
the axial group U(1) is anomalously broken because of the integration measure. The or-
der parameter of the spontaneous breaking of chiral symmetry is the chiral condensate
which is proportional to the average of tr ( †

r l + 
†
l r). Hence the mass is the gener-

ating source and the mass term is only invariant under the subgroup SU(Nf) ⇥ U(1).
This yields the well-known pattern SU(Nf)⇥ SU(Nf)⇥ U(1) ! SU(Nf)⇥ U(1).

Let us come back to the product matrix X(M). The analogues of Eqs. (3.35) and
(3.36) are
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(3.38)
respectively. The exponents �

j

depend on the rectangularities ⌫
j

of the matrices A
j

and the matrices Y
j

play the role of the mass matrices in QCD. From this expression
it is obvious that we have the symmetry group U2M(Nf) for Y1 · · ·Y2M = 0. Again we
might have an anomalous symmetry breaking of the group U(1) due to the measure if it
is not a product of square matrices. When assuming a spontaneous symmetry breaking
similar to QCD such that the order parameter is given by the Y

j

-dependent terms we
find the symmetry breaking pattern SU2M(Nf)⇥U2M�1(1) ! SUM(Nf)⇥UM(1) which
was discovered in [S]. In this way we come to the second question what the non-linear
�-model for the Goldstone manifold SUM(Nf)⇥ UM�1(1) is.
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To answer the second question we were fortunate that parallel to the study of
product matrices we looked for a way to generalize the supersymmetric projection
formula developed in [132] to chiral ensembles, see [P, S]. The projection formula
directly relates the superfunction Q(�) in Eq. (3.18) with the original weight P (H)
in Eq. (3.17). Therefore it provides a short cut in the calculation. In the case of
an n ⇥ (n + ⌫) dimensional complex matrix W which is drawn from P (WW †) =
P (UWW †U †) for all U 2 U(n), the projection formula yields

Z(Y ) =

Z
d[W ]P (WW †) det(WW † ⌦ 11

N

f

+ Y ) (3.39)

=
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U(N
f
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for the partition function with
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✓
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p
Up

U�† U

◆�
, (3.40)

see [P] for the derivation and the general result for averages over products and ratios of
characteristic polynomials. The (n+Nf)⇥(n+⌫+Nf) dimensional complex matrix W 0

only depends on ordinary variables while the matrix entries of the (n+Nf)⇥Nf dimen-
sional matrix � are independent Grassmann variables. The source Y is (nNf)⇥ (nNf)
dimensional and can be any matrix. Therefore one can readily apply the projection
formula to product matrices, too, via a recursion. This was done in [S] for a product of
rectangular complex Wishart random matrices. In the hard edge scaling we found the
potential of the non-linear �-model, the partition function (3.39) for Y = 11

n

⌦ Y 0/nM

becomes in the limit n ! 1
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MY
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. (3.41)

For M = 1 we obtain the potential (2.28). Hence, Eq. (3.41) is the non-linear �-model
we were looking for.

In [S] we proposed to prove universality of local spectral statistics via the supersym-
metric projection formula and non-linear �-models as Eq. (3.41). Indeed we showed
that the integral (3.40) can be readily performed to obtain Q not only for Gaussian
ensembles but also for Cauchy-Lorentz ensembles, see Eq. (3.12), and for Jacobi en-
sembles [27]. The combination of the projection formula with product matrices extends
the supersymmetry approach to a whole class of non-Gaussian random matrices. This
result is completely new and a breakthrough in the supersymmetry method which could
up to our work [S] only be rigorously done for very few ensembles, e.g. norm-dependent
ensembles [19, 168]. Hence also distributions with Levy-tails are now accessible, e.g. it
is well-known that the Cauchy-Lorentz ensemble relates to one of the stable distribu-
tions, see [123]. We expect that a large class of stable heavy-tailed distributions can be
generated with products of random matrices. Coming back to the foreword of section 2,
we can say that we are now able to analyze heavy tailed random matrices. In this way
we can study also the other possibility mentioned in the beginning of subsection 3.2
where also heavy tails can be the reason for the strong deviations of the financial data
shown in Fig. 12 from the Marčenko-Pastur law (2.6).
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Furthermore our approach also applies to products of real and quaternion matrices.
This is especially advantageous since the derivation of the joint probability density
of the singular values for such products needs the knowledge of the Itzykson-Zuber
integral similar to Eq. (3.13) which is not known in the real and quaternion case. For
the complex case this integral is known and in [T] we derived an analogous integral for
Jacobi ensembles. We underline that this kind of integral is not needed for computing
the joint probability density of the complex eigenvalues. The derivation for the complex
eigenvalues is based on a generalized Schur decomposition where all group integrals
factorize, see [55, 56, 156, N, O]. Therefore our results in [S] are the only existing ones
for the singular value statistics of products of real and quaternion matrices at finite
and infinite matrix dimension N .

The limit N ! 1 is not the only one which can be considered. First results
for the singular values of a product matrix consisting of infinitely many matrices, i.e.
M ! 1, were already derived in the late 80s [169]. Instead of directly considering
the singular values �

j

one considers the normalized logarithm 
j

= M�1ln�
j

which
are called Lyapunov exponent. The reason for this name comes from the study of dy-
namical, chaotic systems [67]. As in the physical systems the Lyapunov exponents are
considered as a measure for the stability of the system under time evolution where the
number M of matrices multiplied is interpreted as a time. Already Newman discovered
that when keeping the matrix size fixed in the limit M ! 1 all eigenvalues become
deterministic meaning that their distribution is given by Dirac delta functions at spe-
cific positions [169]. In [170] it was conjectured that the next order correction of the
Lyapunov exponents is Gaussian with a variance of the order O(M�1/2) such that the
singular values are given by log-normal distributions. In [Q] we extended these results
to a full asymptotic expansions and to the complex eigenvalues for a product of com-
plex Ginibre matrices via the explicit analytical results of the joint probability densities
in terms of Meijer G-functions. Due to rotation invariance of the eigenvalue spectrum
only the radial parts of the complex eigenvalues become deterministic. Surprisingly,
the Dirac delta functions of the radii are at the same positions as for the singular values
and also the variances of the log-normal distributions are exactly the same. Hence it
seems that product matrices might become normal in the limit M ! 1. However the
opposite is the case. The off-diagonal matrix entries may become exponentially large
like the diagonal terms but their contribution to the singular values is logarithmically
suppressed in M compared to the diagonal entries. We explicitly proved this conjecture
for 2⇥2 matrices distributed with almost arbitrary weight (we only need the invariance
under the group U(2)⇥ U(2)) in [Q].

Since the individual eigenvalue as well as the individual singular value distributions
do not overlap in the large M limit their statistics become independent and the de-
terminantal point process reduces to a permanental point process, see [Q]. This was
also found for a product of real and quaternion Ginibre matrices in [171] where our
conjecture for these two kinds of product matrices (see [Q]) was proven. The results
for these two matrices are qualitatively the same as for an infinite product of complex
matrices. The positions of the Dirac delta function are only shifted and the angular
dependence of the complex eigenvalues reduces to a Dirac delta function on the real
line for real matrices [156, 171] and to sin2 � for quaternion ones [171].

Finally, let us come back to the Meijer G-kernel. We emphasize that those kernels
were found for other random matrix ensembles, as well, see [60, R]. For example we
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recently studied a random matrix ensemble which is equivalent to the Bures measure in
quantum information theory, see [R]. The Bures metric is a distinguished metric on the
manifold of density operators and satisfies certain properties, see [172] for a complete
list of these properties and their physical meaning. The property which is important
to apply RMT is that the Bures metric is Riemannian. Hence we can explicitly write
the corresponding joint probability density of the N eigenvalues �

j

> 0 of a density
operator [173],

pBures(�) / �

 
1�

NX

j=1

�
j

! 
NY

j=1

�a
j

!
Y

1a<bN

(�
a

� �
b

)2
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b

. (3.42)

The Dirac delta function only reflects the property that the trace of a density operator
is normalized to unity. As in the case of other fixed trace ensembles [174, F], it can be
replaced by a Fourier-Laplace transformation such that one can calculate the eigenvalue
statistics with the help of orthogonal polynomials. We did this computation in [R].
Thereby we used a duality between partition functions of the Bures measure and of the
complex Cauchy two-matrix model. The latter matrix model consists of two rectangular
matrices W1 and W2 which are jointly distributed by [175]

P (W1,W2) / exp[�trW1W
†
1 � trW2W

†
2 ]

detN(W1W
†
1 +W2W

†
2 )

. (3.43)

The spectral statistics of the Cauchy two-matrix model was derived in [175, 176, 60]
which is a determinantal point process.

How does this help us since the spectral statistics of the Bures measure is a Pfaffian
point process? In [175] it was shown that the normalization constant of the Cauchy
two-matrix model is essentially the square of the Bures measure. We extended this
relation in [R] to any average of products and ratios of characteristic polynomials of a
Bures distributed density operator and could also invert this relation. Therefore the
full statistics of the Bures measure is given by the statistics of the Cauchy two-matrix
model. Interestingly the spectral statistics of the Cauchy two-matrix model is given in
terms of Meijer G-function, see [60], as we know it from product matrices. Indeed one
can rewrite the statistics of the matrix W1 as the statistics of a product of a complex
Ginibre random matrix times a truncated unitary matrix such that the result of [60]
are not very surprising from the point of view of product matrices. Surprisingly a
Pfaffian point process as the Bures measure exhibits reminiscent statistics. This is up
to now unique for the singular value statistics.
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4 Outlook
In the past years there was a rapid development in RMT of new and ground breaking
results. On the one hand the spectral statistics could be computed for random matrices
whose group invariance is broken including non-Hermitian random matrices. On the
other hand a new class of ensembles were discovered whose products are analytically
feasible. Both developments open the possibility to improve random matrix models and
make them more realistic. We already mentioned some possible directions of future
research. We can look at particular lattice discretizations in QCD which also includes
the discretization with overlap and domain wall fermions or even study the joined
effect of a finite chemical potential and a finite lattice spacing. Also new models for
Majorana fermions in disordered systems are possible since the symmetry structure is
reminiscent of the one for Wilson fermions. With product matrices one can also try to
model the Polyakov loop in QCD. Thereby one needs to draw statistically dependent
random matrices which are then multiplied.

Especially the study of heavy tailed random matrices might be very fruitful. Prod-
uct matrices may serve as “standard candles” in RMT which are analytical feasible as
it was the case for the Wishart random matrix ensemble in the last century. From
a mathematical point of view these random matrix models are perfect for studying
stability and divisibility in the context of free probability. From a statistical point
of view one can mix heavy tails and empirical correlation matrices which breaks the
invariance under the unitary or orthogonal group. In this way one can study the com-
bined effects which may explain the strong deviations in the tails between real data
and the Marčenko-Pastur distribution, cf. Fig. 12. For this purpose the distributions
of the individual singular values can be very helpful and have to be calculated. Here
the supersymmetry method and in particular the projection formula might be very
helpful.

The supersymmetric projection formula has also the potential that one can study
the combination of sums and products of random matrices. This includes products
of random matrices which are shifted by constant matrices, e.g. A

j

= 11 + H
j

. This
opens a way to investigate the local spectral statistics of such ensembles in the limit
of large matrix dimensions although the analytical results for finite matrix dimensions
are still out of reach. Up to now such studies were only possible for the macroscopic
level statistics with the help of free probability. In a next step products and sums of
statistically dependent matrices should be the goal. Then random matrix ensembles
are very near to physical systems.

Summarizing this development, although the complexity of the random matrix
models increases the new techniques still allow analytical results. Those results were
in the last century only computable for ideal systems. Nowadays the results are much
more realistic and they certainly become even better in future. They yield insights
of complex systems which have been never found when considering all the details
of physical systems. Therefore the reduction to particular spectral observables is as
effective as the reduction of classical systems to macroscopic observables like pressure
and temperature.
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On the Eigenvalue Density of the non-Hermitian Wilson Dirac Operator

Mario Kieburg, Jacobus J.M. Verbaarschot, and Savvas Zafeiropoulos
Department of Physics and Astronomy, State University of New York at Stony Brook, NY 11794-3800, USA

(Dated: February 9, 2012)

We find the lattice spacing dependence of the eigenvalue density of the non-Hermitian Wilson
Dirac operator in the ε-domain. The starting point is the joint probability density of the corre-
sponding random matrix theory. In addition to the density of the complex eigenvalues we also
obtain the density of the real eigenvalues separately for positive and negative chiralities as well as
an explicit analytical expression for the number of additional real modes.
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Introduction. In the past two decades, there has been
an increasing interest in non-Hermitian random matrix
theory (RMT) [1]. To name a few applications, quantum
chaos in open systems [2], dissipative systems [3] and
QCD at finite chemical potential [4]. Some features of
the model we are considering also occur in the condensed
matter system analyzed in Ref. [5].
The connection between the infrared limit of QCD and

RMT has been well understood in the continuum limit
since the early 90’s [6]. It is based on the universality
of chiral RMT in the microscopic limit (or ε domain) [7]
with chiral RMT described by the same chiral Lagrangian
as QCD. The main advantage of RMT is the availability
of powerful methods to derive analytical results, and re-
cently this approach was applied to QCD at finite lattice
spacing [8–11]. It was shown that the ε limit of the chiral
Lagrangian for the Wilson Dirac operator DW [13, 14]
can be obtained from an equivalent RMT. Discretization
effects of the spectrum of DW have been studied directly
by means of chiral Lagrangians [9–11, 15, 16], but using
RMT methods will enable us to obtain results that were
not accessible previously.
The aim of this paper is to obtain analytical results

for the eigenvalue density of DW for the RMT model
proposed in Ref. [9]. We consider the quenched case.
RMT. We consider the random matrix theory [9],

DW =

(
aA W
−W † aB

)
(1)

distributed by

P (DW) ∝ exp
[
−
n

2
(trA2 + trB2)− ntrWW †

]
. (2)

The matrices A and B are Hermitian n × n and (n +
ν)× (n+ ν) matrices, respectively, and the entries of W
are complex and independent. In the microscopic limit,
with n → ∞ at fixed rescaled eigenvalues ẑ = 2nz and
lattice spacing â2 = na2/2, the spectral properties of
this RMT become universal and agree with Wilson chiral
perturbation theory in the same limit (with n identified
as the volume of space-time) apart from the squared trace
terms [14, 15]. The finite integer |ν| ≤ n is the index of
the Dirac operator and is kept fixed.

The matrix DW is γ5 = diag(11n,−11n+ν)-Hermitian,
i.e. D†

W = γ5DWγ5. Therefore its eigenvalues are either
real or come in complex conjugate pairs. The ν generic
zero modes at a = 0 become the generic real modes of
DW at finite lattice spacing. Furthermore, DW may have
2n− 2l additional real eigenvalues which appear when a
pair of complex eigenvalues collides with the real axis.
In Refs. [9–12] the technically simpler case of the Her-

mitian Wilson Dirac operator D5 = γ5DW was studied.
Although spectra of D5 have been studied in the lattice
literature [17], only the eigenvalues of DW are directly
related to chiral symmetry breaking which is our main
motivation to study its spectral properties.
The joint probability distribution (jpd). To preserve

the γ5-Hermiticity of DW we can only quasi-diagonalize
DW by a non-compact unitary matrix U ∈ U(n, n+ ν),

DW = UXU−1 and X =





x1 0 0 0
0 x2 y2 0
0 −y2 x2 0
0 0 0 x3



 . (3)

In contrast to the diagonalization of a Hermitian matrix
such as D5, the matrix X may only be quasi-diagonal
where x1, x2, y2 and x3 are diagonal matrices of di-
mension n − l, l, l and n − l + ν with 0 ≤ l ≤ n the
number of complex conjugate pairs. The complex eigen-
values are given by (z, z∗) = (x2 + ıy2, x2 − ıy2). The
ensembleDW decomposes into n+1 disjoint sets of quasi-
diagonal matrices (3) with a fixed number of real eigen-
values. The joint probability density of the 2n+ ν eigen-
values Z = (z1r, . . . , znr, z1l, . . . , zn+ν,l) ∈ C2n+ν can be
obtained by integrating over U . This calculation will be
discussed in detail elsewhere. We only give the result for
ν ≥ 0 which is not a restriction because of the symmetry
ν → −ν. The jpd is given by

p(Z) ∝ ∆2n+ν(Z) det





{g2(zar, zbl)}
1≤a≤n

1≤b≤n+ν{
za−1
bl g1(zbl)

}
1≤a≤ν

1≤b≤n+ν



 ,

g1(z) =

√
n

2πa2
exp

[
−

n

2a2
x2

]
δ(y), (4)

http://arxiv.org/abs/1109.0656v4


2

g2(z1, z2) =

√
n3

4πa2(1 + a2)

z∗1 − z∗2
|z1 − z2|

×
[
exp

[
−
n(x1 + x2)2

4a2
−

n(y1 − y2)2

4

]
δ(2)(z1 − z∗2)

+
1

2
exp

[
−

n

4a2
(x1 + x2)

2 +
n

4
(x1 − x2)

2
]

× erfc

[√
n(1 + a2)

2a
|x1 − x2|

]

δ(y1)δ(y2)

]

,

≡ g2 c(z1)δ
(2)(z1 − z∗2) + g2 r(x1, x2)δ(y1)δ(y2),
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FIG. 1: The projection of ρc onto the imaginary axis for ν =
1 and â = 1/

√
8. The Monte Carlo simulation (histogram,

bin size=0.4) contains 200000 matrices with n = 50. This
simulation nicely confirms our analytical result (blue curve)
and shows the deviations from the â = 0 result (red curve).

where erfc is the complementary error function and
δ(2)(x+ıy) = δ(x)δ(y). Due to γ5 the permutation group
S(2n + ν) is broken to S(n) × S(n + ν) which reflects
itself in the product of the Vandermonde determinant
∆2n+ν(Z) and the other determinant in Eq. (4). The ex-
pansion of the delta functions yields the jpd for each of
the n+ 1 subsets with a fixed number of complex eigen-
value pairs. The two-point distribution g2 splits into one
term for the real eigenvalues g2r and one for the com-
plex conjugated pairs g2c as it is also known for the real
Ginibre ensemble and its chiral counterpart [18].

The eigenvalue densities for the real and complex
eigenvalues can be obtained by integrating over all eigen-
values except one. The spectral density can be de-
composed into the density of real modes, ρr for posi-
tive chirality (〈ψ|γ5|ψ〉 > 0), ρl for negative chirality
(〈ψ|γ5|ψ〉 < 0), and the density of complex pairs, ρc,

∫
p(Z)

∏

zj "=z1r

d[zj ] = ρr(x1r)δ(y1r) +
ρc(z1r)

2
, (5)

∫
p(Z)

∏

zj "=z1l

d[zj ] = ρl(x1l)δ(y1l) +
ρc(z1l)

2
. (6)

Note that the chirality reflects the conventions of the
RMT. By expanding the first row of the determinant
in Eq. (4) and re-expressing the additional factors from
∆2n+ν(Z) as Nf = 2 partition functions we obtain

ρc(z) = g2c(z)(z − z∗)Zν
Nf=2(z, z

∗; a), (7)

ρr(x) =

∫

R

g2r(x, x
′)(x− x′)Zν

Nf=2(x, x
′; a)dx′. (8)

A similar factorized structure was found in Ref. [19].

Expanding the first column of the determinant and in-
tegrating over all eigenvalues except z1l, we find the same
expression for ρc and the density ρl of the real modes
originating from g2 (using Eq. (6)). However, there is an
additional contribution to ρr due to the last ν rows which
gives the distribution of chirality over the real eigenvalues

ρχ = ρl − ρr. (9)

Additional rows of some of the determinants have to be
expanded to express them into known partition functions.
We have checked for ν = 1 and ν = 2 that the result
agrees with previously derived expressions [9, 11].

In the microscopic limit, the partition functions in
Eqs. (7) and (8) can be expressed in terms of integrals
over U(2). They can be simplified using the eigenvalues
of the U(2)-matrices as integration variables resulting in

ρc
( z

2n

)
=

e−x2/8â2 |y|
(2π)5/22â

∫

[0,2π]2
ex(cosϕ1+cosϕ2)−4â2(cos2 ϕ1+cos2 ϕ2)sinc[y(cosϕ1 − cosϕ2)] cos ν(ϕ1 + ϕ2)Dϕk, (10)

ρr
( x

2n

)
=

1

16π2

∫

[0,2π]2

exp[∆2
1 −∆2

2]erf
[
∆1,

√
2∆1

]
− exp[∆2

2 −∆2
1]erf

[
∆2,

√
2∆2

]

cosϕ1 − cosϕ2
cos ν(ϕ1 + ϕ2)Dϕk, (11)

ρχ
( x

2n

)
=

(−1)ν

16πâ2

∫

R2

e−((s1−x)2+(s2+ix)2)/16â2

s1 − ıs2
sν1 [s1Kν+1(s1)Iν(ıs2) + ıs2Kν(s1)Iν+1(ıs2)]

δ(ν−1)(s1)

(ν − 1)!
ds1ds2.(12)

The functions sinc, erf, Il, Kl and δ(l) are the sinus car- dinalis, the generalized incomplete error function
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FIG. 2: Along the imaginary axis the difference of ρc for
different ν is much clearer at small â (solid curves) than at
large â (dashed curves) where they are almost the same.

(erf(b, c) = erf(c) − erf(b)), modified Bessel function of
the first and second kind and the l-th derivative of the
Dirac delta function, respectively. The integration mea-
sure is induced by the invariant U(2) measure, Dϕk =
sin2((ϕ1 − ϕ2)/2)dϕ1dϕ2 and ∆j = 2â

(
cosϕj − x/8â2

)
.

Because of the δ-function only the algebraic singular part
of the Kν contributes to ρχ (which was already obtained
in Refs. [9, 11]). The distribution ρχ vanishes for ν = 0
and can be obtained from the generating function for the
eigenvalue density of γ5(DW +m). [9] Comparisons of the
analytical results with simulations of the random matrix
model (1) are shown in Figs. 1 and 4. The normalizations
are chosen such that the integral over ρχ is equal to ν.
The other constants are already fixed by this choice.
For small increasing â the complex eigenvalues move

parallel to the real axis according to a Gaussian distribu-
tion with a width of 2â (See Fig. 3). Therefore the density
of the projection of these eigenvalues on the imaginary
axis is very close to the â = 0 result. For large â the dis-
tribution of the real parts of the complex eigenvalues de-
velops a box-like shape from−8â2 to 8â2 which can be de-
rived from a saddle point approximation of Eq. (10) (See
Fig. 3) and the oscillations disappear (See Fig. 2). Along
the imaginary axis ρc(â " 1) becomes â−2erf(y/4â).

Near the real axis ρc behaves as yν+1 for small â but
is linear in y for â large enough (See Fig. 2). In the
continuum limit it peaks around the imaginary axis and
eventually gets the form of the continuum microscopic
eigenvalue density.
Real modes. For a Wilson Dirac operator with index

ν there are at least ν real modes. The additional real
modes result when complex conjugate eigenvalue pairs
enter the real axis. The average number of these modes
follows from the integral

Nadd = 2

∫

R

ρr
( x

2n

)
dx (13)

=

∫

[0,2π]2

1− e−2â2(cosϕ1−cosϕ2)
2

8π2 sin2((ϕ1 + ϕ2)/2)
cos ν(ϕ1 + ϕ2)dϕ1dϕ2.
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FIG. 3: The distribution ρc along a parallel axis to the
x-axis (here at y = 40â2) is Gaussian shaped for small â
(solid curves) and develops a plateau for large lattice spacing
(dashed curves).

In the limits for small and large lattice spacing we find

Nadd ∝
{

â2(ν+1), â $ 1,
â, â " 1.

(14)

This is shown in Fig. 4. For large lattice spacing the
contribution to Nadd becomes independent of the index
ν whereas for sufficiently small lattice spacing only ν = 0
contributes significantly.
For small lattice spacing, the distribution ρr has a

Gaussian shape with a width of 2â, and for â " 1, it
develops a plateau with sharp edges at ±8â2, cf. Fig. 6.
The height of ρr at the origin scales like â2ν+1 for small
lattice spacing and like â−1 for large â.
The distribution of chirality over the real eigenvalues

ρχ is shown in Fig. 5. For small â we observe the spec-
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FIG. 4: Log-log-plot of the additional real eigenvalues versus
â for various ν. The number of matrices and its size vary
in this plot for the Monte Carlo simulations (symbols). The
statistical error of the numerics varies between 0.1% and 10%
around the analytic result (solid curves).
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FIG. 5: For small lattice spacing (solid curves) the distribu-
tion ρχ is given by the GUE (See the legend for the values
of the index and the lattice spacing). For â ! 1 (dashed
curves) the shape becomes ν-independent with two peaks at
±8â2 that behave as 1/

√
(8â2)2 − x2 for â ! 1.
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FIG. 6: The eigenvalue distribution ρr has a Gaussian shape
for small â (solid lines) but becomes box like with increasing
lattice spacing (dashed curves). Notice that ρr for ((ν, â) =
(0, 0.1)) and ((ν, â) = (1, 0.1)) is one order larger and one
order smaller than shown in the diagram.

tral density of the ν-dimensional Gaussian unitary en-
semble. For large lattice spacing it deforms into a curve
with two peaks at ±8â2 that up to an overall normaliza-
tion is independent of ν and evolves into inverse square
root singularities for â → ∞.

Conclusions. Discretization effects become strong for
â ≈ 0.5. The oscillations of the spectral density in the
continuum limit are no longer visible while the density of
the complex eigenvalues develops a plateau with a width
of 16â2. In terms of physical parameters, â = ã

√
W8V ,

with W8 a low energy constant [10] and V the volume of
space time, we have the condition that ã % 1/

√
W8V to

be close to the continuum limit.

In the regime of small lattice spacing, â ≈ 0.1, the
width of the distribution of the complex eigenvalues is
given by σ = 2ã

√
W8/V /Σ whereas the spacing of the

projection of these eigenvalues onto the imaginary axis is
equal to ∆λ = π/ΣV . We thus have that σ/∆λ = 2â/π,
which allows us to extract a numerical value for W8 from
lattice simulations.
An important result is that the number of additional

real modes is strongly suppressed for large ν. This im-
plies that for large volumes when most configurations
have an index |ν| > 0, additional real modes are not
much of a problem for lattice QCD simulations with Wil-
son fermions provided that W8a2V % 1.
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Surprising Pfaffian factorizations in Random Matrix

Theory with Dyson index β = 2

Mario Kieburg

Department of Physics and Astronomy, State University of New York at Stony
Brook, NY 11794-3800, USA

E-mail: mario.kieburg@stonybrook.edu

Abstract. In the past decades, determinants and Pfaffians were found for eigenvalue
correlations of various random matrix ensembles. These structures simplify the average
over a large number of ratios of characteristic polynomials to integrations over one and
two characteristic polynomials only. Up to now it was thought that determinants
occur for ensembles with Dyson index β = 2 whereas Pfaffians only for ensembles
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1. Introduction

Random matrix ensembles serve as simple models in a wide range of applications

[1, 2, 3, 4, 5] which can be found in number theory [6, 7], disordered systems [1], quantum
chaos [8], empirical data analysis [9, 10, 11], information theory [12], and quantum

chromodynamics (QCD) [13]. The complexity of most systems prevents derivations

of correlation functions whereas analytic results are accessible for the corresponding

random matrix model. The reason for the applicability of random matrix theory lies in

the universality of spectral statistics on certain scales like the local mean level spacing

[14, 15, 16] or on the global scale [17, 18, 19, 20]. If the Lagrangian of the physical
system drastically simplifies such that it is effectively described by global symmetries

there might be a random matrix model fulfilling the same symmetries.

Already in the 60’s and 70’s [21, 22, 23, 24, 25], the k-point correlation functions

of the Gaussian and circular ensembles for the three symmetries of orthogonal (β = 1;

GOE/COE), unitary (β = 2; GUE/CUE) and unitary-symplectic (β = 4; GSE/CSE)

http://arxiv.org/abs/1109.5109v3
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invariance were derived. They can be expressed as a single determinant for the unitary

case and a single Pfaffian for β ∈ {1, 4} where the integrals are pulled inside of these

structures. Their matrix elements only depend on two eigenvalues which is a drastic

simplification of the integrand. Since then many other random matrix ensembles were

studied, e.g. the Ginibre ensembles [26, 27, 28, 29] and the the other two rotation groups

O(N) and USp (2N) [30]. The k-point correlation functions as well as the averages
over ratios of characteristic polynomials for many of these ensembles are determinants

and Pfaffians with relatively simple entries only depending on one or two eigenvalues

[31, 32, 33]. For a long time it was thought that determinants appear for ensembles with

β = 2 and Pfaffians for the other two cases. In Refs. [34, 35] the general conditions where

derived to find these structures. Thus all these particular random matrix ensembles were

unified in one procedure to derive these structures.
Very recently a random matrix model for the Wilson Dirac operator was introduced

[36] in lattice QCD. It generalizes the chiral GUE which was studied in a Hermitian

version [36, 37, 38, 39] and a non-Hermitian one [40]. The eigenvalue correlations exhibit

Pfaffians for the Hermitian [39] as well as for the non-Hermitian case [41] reflecting the

structure found in Ref. [35]. This structure has to be also valid in the continuum limit

which is the chiral GUE. Hence the question arises if the Pfaffian determinants obtained
for the k-point correlation functions and thus for the averages over ratios of characteristic

polynomials are much more general than conjectured in the broad literature.

Also in other intermediate random matrix ensembles Pfaffians were found. For

example a similar situation arises in the transition from GUE to GOE or GSE [42, 34].

If the ensemble is purely a GUE then then the eigenvalue correlations can be cast into

determinants whereas the smallest interaction with a GOE or a GSE yields a Pfaffian. It

would be of theoretical, technical and numerical interest if all ensembles corresponding to
β = 2 exhibit this phenomenon when coupling it to another random matrix ensemble.

Such a property simplifies the spectral statistics of intermediate ensembles onto the

behavior of the entries of the Pfaffian which are averages of one or two characteristic

polynomials only.

Recently, Forrester and Sinclair introduced Pfaffians at β = 2. In Ref. [43] Sinclair

extends the Pfaffian found for the partition function with β = 1, 4 to Hyperpfaffians
with β = L2, L2 + 1 (L ∈ N) which also comprises the β = 2 case. With help of these

results the authors of Ref. [44] studied a log-gas on a ring with two interacting species.

One component of this gas is described by a β = 4 log gas and the other one by a

β = 1, 2 log gas. The Pfaffian determinants found in Refs. [43, 44] are similar to but

not the same as the one derived in Sec. 4.

We derive Pfaffian determinants for averages over ratios of characteristic
polynomials weighted by a joint probability density function factorizing in weights of

the single eigenvalues apart from a squared Vandermonde determinant. This squared

Vandermonde determinant can be cast into one determinant similar to the β = 4 case.

Thus it fulfills the same condition as presented in Ref. [35] which implies a Pfaffian.

This unifies all ten symmetry classes in the Cartan classification [45, 46] and exhibits a
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hidden universal algebraic property in all of these ensembles.

An introduction of the main idea and of the important functions for the technique

used here is given in Sec. 2. In Sec. 3, we recall some basics known about the

determinantal structure obtained for averages over ratios of characteristic polynomials

with respect to chiral unitary random matrix ensembles. In contrast to this structure

we derive Pfaffians for the same correlation functions in Sec. 4. Thereby we discuss
the Wilson-Dirac random matrix ensemble as a neat application and a good motivation

of the derived Pfaffian determinant at the end of this section. The skew-orthogonal

polynomials corresponding to the Pfaffian determinants are indeed closely related to the

orthogonal polynomials which are found in the determinantal structures. This relation

is shown in Sec. 5. In Sec. 6, we discuss the generalization of these results for chiral

unitary ensembles to other random matrix ensembles like GUE and CUE.

2. Preliminaries

Structures found in supersymmetry are the key ingredient for the technique used in the

ensuing sections. These structures allow to derive determinants as well as Pfaffians of

averaged ratios of characteristic polynomials and, thus, k-point correlation functions for

a large class of random matrix ensembles in a direct way. The main idea is to recognize
that these structures are a pure algebraic property of the random matrix ensemble

and not an analytic one. By an algebraic rearrangement of the integrand one gets the

determinants and Pfaffians without explicitly calculating any integrals. This idea was

first proposed in Refs. [34, 35].

The requirements to obtain determinants was traced back to a factorization of

the probability density of the random matrix ensemble into densities for the single
eigenvalues times two Vandermonde determinants (see Ref. [34]), i.e. the measure for

the single eigenvalues has to be

dµ(z) =
N∏

j=1

g1(zj)d[zj]|∆N (z)|2 (2.1)

with the Vandermonde determinant

∆N(z) =
∏

1≤a<b≤N

(za − zb) = (−1)N(N−1)/2 det
[
zb−1
a

]
1≤a,b≤N

. (2.2)

The variables z can be complex which correspond to ensembles related to biorthogonal

polynomials [47]. For Pfaffians this requirement changes to a weight for pairs of
eigenvalues and a single Vandermonde determinant [35], i.e.

dµ(z) =
N∏

j=1

g2(z2j−1, z2j)d[z2j−1]d[z2j ]∆2N (z). (2.3)

If one of these two conditions are fulfilled then the technique presented in Refs. [34, 35]

circumvents the integration theorem by Dyson and Metha [24, 25, 4, 48]. Moreover the

approach of Refs. [34, 35] makes an integration theorem unnecessary at the end since it
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is automatically fulfilled for random matrix ensembles traced back to measures of the

form (2.1) or (2.3). This can be readily seen by the combination of the determinantal

and Pfaffian factorization for averages over ratios of characteristic polynomials [34, 35],

the representation of the orthogonal and skew-orthogonal polynomials as averages of the

corresponding ensemble [49, 50, 47, 4, 48, 51] and the expressions of the kernels of the

determinants and Pfaffians in orthogonal and skew-orthogonal polynomials [4, 48]. In
Sections 3 and 4 we derive the k-point correlation function without using the integration

theorem by Dyson and Metha.

Although, we do not explicitly need supersymmetry, in particular a superspace,

some functions are quite useful to write the algebraic expressions of the calculations in

a very compact, constructive and intuitive way. These functions have their origin in the

theory of supermatrices. For the interested reader, good introductions in supersymmetry
are given in Ref. [52] and in the appendix of Ref. [53]. Here we only recall some of these

useful algebraic functions and notions.

A diagonal (p/q) × (p/q) supermatrix x consists of two blocks, x = diag (x1, x2).

The p× p matrix x1 and the q × q matrix x2 are indeed diagonal, too. The supertrace

“Str ” and the superdeterminant “Sdet ” of s is then defined by

Strx = tr x1 − tr x2 =
p∑

j=1

xj1 −
q∑

i=1

xi2, (2.4)

Sdet x =
det x1

det x2
=

∏p
j=1 xj1∏q
i=1 xi2

.

The crucial function of the method used here is

B p/q(x) =
∆p(x1)∆q(x2)∏
a,b
(xa1 − xb2)

(2.5)

= (−1)q(q−1)/2+(q+1)p det





{
1

xa1 − xb2

}

1≤a≤p
1≤b≤q{

xa−1
b2

}
1≤a≤q−p
1≤b≤q





for p ≤ q. It is the square root of a Berezinian,

B 2
p/q(x) = Ber (2)

p/q(x), (2.6)

which is the Jacobian in superspace when diagonalizing a Hermitian (p/q) × (p/q)

supermatrix. The notation on the right hand side of Eq. (2.6) refers to the one used in
Refs. [34, 35].

Everything we need for the method of Refs. [34, 35] are the functions “Sdet ” and

“B” embedded in an ordinary space like Rp+q or Cp+q. Hence those readers who are

not accustomed to supersymmetry may consider these functions as ordinary, rational

functions.
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3. Review of chiral unitary random matrices

We consider the anti-Hermitian random matrix

D =

[
0 W

−W † 0

]

(3.1)

which is distributed by the density

P (D)d[D] = exp[−α tr V (WW †)]
∏

a,b

d ReWab d ImWab (3.2)

with a non-zero normalization constant. In particular it serves as a model for the Dirac
operator in QCD [13]. The constant α is proportional to n. The matrixW is a n×(n+ν)

rectangular matrix. Each of the n(n+ν) entries of W is a complex number which might

be statistically coupled by the arbitrary density P . The parameter ν with 0 ≤ ν ≤ n is

the topological charge or also known as index of the Dirac operator such that D has ν

generic zero eigenmodes. The potential V is invariant under the group U (n), i.e.

V (UWW †U †) = UV (WW †)U †, (3.3)

and is chosen such that all moments of the ensemble over Cn×(n+ν) exist. In the simplest

case P is Gaussian. Nevertheless the arguments given here are also true for an arbitrary

potential. We only need the property

P








0 Λ 0

−Λ 0 0

0 0 0







 = exp[−α trV (Λ2)] =
n∏

j=1

exp[−αV (λ2
j)] (3.4)

for the matrix Λ = diag (λ1, . . . ,λn) with the singular values 0 ≤ λ1 ≤ . . . ≤ λn of W ,
i.e. there are U ∈ U (n) and V ∈ U(n + ν) with

D = diag (U, V )




0 Λ 0

−Λ 0 0

0 0 0



 diag (U †, V †). (3.5)

In this basis the measure (3.2) can be written as

P (D)d[D] =
Vol nVol n+ν

Vol n1Vol ν
∆2

n(Λ
2)

n∏

j=1

exp[−αV (λ2
j)]λ

2ν+1
j dλj (3.6)

× dµU(n)/U n(1)(U)dµU (n+ν)/U (ν)(V ).

The abbreviation of the constant

Vol l =
l∏

j=1

2πj

(j − 1)!
(3.7)

refers to the volume of the unitary group U (l). Thus, the prefactor in Eq. (3.6) is

the volume of the coset [U (n) × U (n + ν)]/[U n(1) × U (ν)]. The measure dµG is the

normalized Haar measure of the coset G.
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An important quantity to analyze the eigenvalue statistics of this ensemble is the

average over ratios of characteristic polynomials with respect to D, i.e.

Z(n,ν)
k1/k2

(κ) =

∫

Cn×(n+ν)

k2∏
j=1

det(D − ıκj2112n+ν)

k1∏
j=1

det(D − ıκj1112n+ν)

P (D)d[D] (3.8)

with the diagonal, non-degenerate (k1/k2) × (k1/k2) supermatrix κ = diag (κ1, κ2) =

diag (κ11, . . . , κk11, κ12, . . . , κk22) and the 2n + ν dimensional unit matrix 112n+ν . This

average is also known as the partition function with k1 bosonic and k2 fermionic flavors

in QCD [54, 55, 15]. The variables κj1 are complex numbers with a non-vanishing

imaginary part such that the integral is well defined. The partition function (3.8)
is simply related to the matrix Green function and, thus, to the k-point correlation

function by derivatives with respect to κ.

The joint probability density (3.6) is of the class studied in Ref. [34] and

can, therefore, be written as a determinant. This was derived in many articles

before [56, 54, 55]. The crucial idea presented in Ref. [34] is the combination of the

ratio of characteristic polynomials (3.8) with the two Vandermonde determinants (3.6)
to square roots of Berezinians (2.5), i.e.

∆2
n(Λ

2)

k2∏
j=1

det(Λ2 − κ2
j211n)

k1∏
j=1

det(Λ2 − κ2
j111n)

=
B l11/l21+n(κ̃2

1,Λ
2)B l12/l22+n(κ̃2

2,Λ
2)

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
1)

(3.9)

for any choice of natural numbers l11 + l12 = k1 and l21 + l22 = k2.
In Eq. (3.9), we split the supermatrix κ into the two sets κ̃1 =

diag (κ̃11, κ̃21) = diag (κ11, . . . , κl111, κ12, . . . , κl212) and κ̃2 = diag (κ̃12, κ̃22) =

diag (κl11+1,1, . . . , κk11, κl21+1,2, . . . , κk22). The choice how we split this set is arbitrary

and, thus, we get equivalent but not trivially related results. This was already rec-

ognized by the authors of Ref. [57] for products of characteristic polynomials. Let

d1 = n + l21 − l11 and d2 = n + l22 − l12. The interesting case is d1, d2 ≥ 0 because we
want to discuss the limit n → ∞ and k1, k2 fixed, at the end of this section. The other

cases are discussed in Ref. [34].

Without loss of generality we assume d1 ≤ d2. We rearrange the integrand (3.8)

with the help of Eq. (3.9) which yields

Z(n,ν)
k1/k2

(κ) ∝ Sdet −νκ

∫
B l11/l21+n(κ̃2

1,Λ
2)B l12/l22+n(κ̃2

2,Λ
2)

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
1)

n∏

j=1

exp[−αV (λ2
j)]λ

2ν+1
j dλj

∝ Sdet −νκ

∫
n∏

j=1
exp[−αV (λ2

j)]λ
2ν+1
j dλj

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
1)
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× det





{
1

κ2
a1 − κ2

b2

}

1≤a≤l11
1≤b≤l21

{
1

κ2
a1 − λ2

b2

}

1≤a≤l11
1≤b≤n{

κ2(a−1)
b2

}

1≤a≤d1
1≤b≤l21

{
λ2(a−1)
b2

}

1≤a≤d1
1≤b≤n





× det





{
1

κ2
a1 − κ2

b2

}

l11+1≤a≤k1
l21+1≤b≤k2

{
1

κ2
a1 − λ2

b2

}

l11+1≤a≤k1
1≤b≤n{

κ2(a−1)
b2

}

1≤a≤d2
l21+1≤b≤k2

{
λ2(a−1)
b2

}

1≤a≤d2
1≤b≤n




. (3.10)

Applying the generalized Andréief integration theorem [58, 34] we obtain

Z(n,ν)
k1/k2

(κ) ∝
Sdet −νκ

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
1)

(3.11)

× det





0

{
1

κ2
b1 − κ2

a2

}

l21+1≤a≤k2
l11+1≤b≤k1

{
κ2(b−1)
a2

}

l21+1≤a≤k2
1≤b≤d2{

1

κ2
a1 − κ2

b2

}

1≤a≤l11
1≤b≤l21

{F (κa1, κb1)}
1≤a≤l11

l11+1≤b≤k1

{Fb(κa1)}
1≤a≤l11
1≤b≤d2{

κ2(a−1)
b2

}

1≤a≤d1
1≤b≤l21

{Fa(κb1)}
1≤a≤d1

l11+1≤b≤k1

{Mab}
1≤a≤d1
1≤b≤d2





Notice that Andréief’s integration theorem as well as its generalization is only an

algebraic rearrangement of the integrals without explicitly calculating any integral. The

functions F and Fa are one dimensional integrals and their explicit expressions are

not so important as we will see in the discussion after Eq. (3.15). For the interested

reader we refer to Ref. [34] where the explicit integrals are given for general random
matrix ensembles corresponding to determinants (β = 2). The constant d1 × d2 matrix

M = [Mab] is given by

Mab =

∫

R

λ2(a+b−2) exp[−αV (λ2)]λ2ν+1dλ (3.12)

and thus generates the moments of the measure.
In the next step we use the identity

det

[
A B
C D

]

= detD det[A−BD−1C] (3.13)

for arbitrary matrices A, B and C and an invertible matrix D. For the matrix D we

choose the d1 × d1 matrix

D = [Mab]
1≤a,b≤d1

(3.14)

which is only a part of the full rectangular matrix M appearing in Eq. (3.11). The

determinant of D is proportional to the normalization constant of the ensemble (4.2)
and M is therefore invertible. Employing Eq. (3.13) we find

Z(n,ν)
k1/k2

(κ) =
1

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
2)

(3.15)
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× det





{
G(d1)

1 (κa2, κb2)
}

1≤a≤l21
l21+1≤b≤k2

{
G(d1)

2 (κb1, κa2)
}

1≤a≤l21
1≤b≤l11{

G(d1)
2 (κa1, κb2)

}

l11+1≤a≤k1
l21+1≤b≤k2

{
G(d1)

3 (κa1, κb1)
}

l11+1≤a≤k1
1≤b≤l11{

H(a)
1 (κb2)

}

d1+1≤a≤d2
l21+1≤b≤k2

{
H(a)

2 (κb1)
}

d1+1≤a≤d2
1≤b≤l11





.

In the last step we identify the functions G(d1)
1 , G(d1)

2 , G(d1)
3 , H(a)

1 and H(a)
2 by considering

the particular choices (l11, l12, l21, l22) ∈ {(0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0), (0, 0, 0, 1),
(1, 0, 0, 0)}. In all of these cases the determinant reduces to one of the entries. Then we

obtain

Z(n,ν)
k1/k2

(κ)

Z(n,ν)
0/0

=
(−1)k1(k1−1)/2+(l21+1)(k1+1)+(l11+1)(k2+1)

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
2)

d1−1∏
j=0

h(ν)
j

n−1∏
j=0

h(ν)
j

(3.16)

× det





{

−
Z(d1−1,ν)

0/2 (κa2, κb2)

h(ν)
d1−1Z

(d1−1,ν)
0/0

}

1≤a≤l21
l21+1≤b≤k2

{
1

Z(d1,ν)
0/0

Z(d1,ν)
1/1 (κb1, κa2)

(κ2
b1 − κ2

a2)

}

1≤a≤l21
1≤b≤l11{

1

Z(d1,ν)
0/0

Z(d1,ν)
1/1 (κa1, κb2)

(κ2
a1 − κ2

b2)

}

l11+1≤a≤k1
l21+1≤b≤k2

{
h(ν)
d1

Z(d1+1,ν)
0/0

Z(d1+1,ν)
2/0 (κa1, κb1)

}

l11+1≤a≤k1
1≤b≤l11{

Z(a−1,ν)
0/1 (κb2)

Z(a−1,ν)
0/0

}

d1+1≤a≤d2
l21+1≤b≤k2

{
h(ν)
a−1

Z(a,ν)
0/0

Z(a,ν)
1/0 (κb1)

}

d1+1≤a≤d2
1≤b≤l11





for the partition function (3.8) which is a particular result of the general one derived in
Ref. [34].

The determinant (3.16) interpolates between one-point and two-point kernels as the

entries of the determinant. We emphasize again the choice of the numbers 0 ≤ l11 ≤ k1
and 0 ≤ l21 ≤ k1 and the splitting of κ are arbitrary. The particular choice l11 = k1 and

l21 = 0 yields the k1 + k2 dimensional determinant with one-point kernels considered

in Refs. [54, 15]. This choice is suitable for the microscopic limit in chiral random
matrix theory. For bulk and soft edge correlations [15] the representation in two point

correlations are the better choice to make contact with other random matrix ensembles

[17, 18, 19, 16]. This case relates to the choice l11 = k1 and l21 = k2 for k2 ≤ k1 and

l11 = 0 and l21 = 0 for k2 ≥ k1.

The k-point correlation function at the k variables x = diag (x1, . . . , xk) is given by

R(n,ν)
k (x) ∝

∫

R
n−k
+

∆2
n(diag (x

2,Λ2)) exp[−α trV (x2)− α trV (Λ2)]det2ν+1x
n−k∏

j=1

λ2ν+1
j dλj

∝ ∆2
k(x

2)det x exp[−α tr V (x2)]Z(n−k,ν)
0/2k (diag (x,−x)). (3.17)

Now we employ the formula (3.16) for (l11, l12, l21, l22) = (0, 0, k, k) and find the result

R(n,ν)
k (x) ∝ det

[√
xaxb exp[−α(V (x2

a) + V (x2
b))/2]Z

(n−1,ν)
0/2 (xa,−xb)

]

1≤a,b≤k
. (3.18)
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Since Z(n−1,ν)
0/2 (xa,−xb) = (−1)νZ(n−1,ν)

0/2 (xa, xb) this agrees with the general formula for
β = 2 ensembles [4]. Please notice that we derived this formula without using the

integration theorem by Dyson and Mehta [24, 25, 4, 48].

The constant h(ν)
j in Eq. (3.16) is the normalization constant of the orthogonal

polynomial

p(ν)j (x2) =
(−1)j

(−ıx)ν
Z(j,ν)

0/1 (x)

Z(j,ν)
0/0

. (3.19)

These polynomials solve the orthogonality relation
∞∫

0

p(ν)j (x2)p(ν)i (x2)x2ν+1 exp[−αV (x2)]dx = h(ν)
j δji. (3.20)

The authors of Ref. [59] have shown that these polynomials fulfill a recursion relation

with respect to the topological charge ν by

p(ν+1)
j (x)

p(ν+1)
j (0)

=
1

x

p(ν)j (0)p(ν)j+1(x)− p(ν)j+1(0)p
(ν)
j (x)

p(ν)j (0)p(ν)′j+1(0)− p(ν)j+1(0)p
(ν)′
j (0)

(3.21)

which is quite useful by taking the limit n → ∞. This relation follows when setting

m = 0 in Eq. (12) of Ref. [59]. One can readily prove identity (3.21) by showing the

orthogonality relation (3.20) for the right hand side with respect to the ν + 1 measure,
i.e.

∞∫

0

p(ν)j (0)p(ν)j+1(x
2)− p(ν)j+1(0)p

(ν)
j (x2)

x2

p(ν)l (0)p(ν)l+1(x
2)− p(ν)l+1(0)p

(ν)
l (x2)

x2
x2ν+3e−αV (x2)dx

∝
∞∫

0

j∑

a=0

p(ν)a (0)p(ν)a (x2)

h(ν)
a

(p(ν)l (0)p(ν)l+1(x
2)− p(ν)l+1(0)p

(ν)
l (x2))x2ν+1e−αV (x2)dx

∝ δjl, (3.22)

where we used the Christoffel-Darboux formula. The monic normalization of p(ν)j (x) =
xj + . . . for all j and ν explains the choice of the constants.

The Cauchy transform of p(ν)j is related to the partition function with one bosonic

flavor by

p̂(ν)j (x2) =

∞∫

0

p(ν)j (λ2)

λ2 − x2
λ2ν+1 exp[−αV (λ2)]dλ (3.23)

= (−1)j(−ıx)ν
h(ν)
j

Z(j+1,ν)
0/0

Z(j+1,ν)
1/0 (x).

In the result (3.16) we recognize that the choices (l11, l12, l21, l22) = (0, 0, 1, 1), (1, 0, 1, 0),

(1, 1, 0, 0) yield the same partition functions as the choices (l11, l12, l21, l22) =

(0, 0, 0, 2), (1, 0, 0, 1), (2, 0, 0, 0), respectively. Therefore the two-flavor partition
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functions in Eq. (3.16) can also be expressed in the orthogonal polynomials (3.19) and

their Cauchy transforms (3.23), i.e.

Z(d1−1,ν)
0/2 (κa2, κb2)

Z(d1−1,ν)
0/0

= −
(−κa2κb2)ν

κ2
a2 − κ2

b2

det

[
p(ν)d1−1(κ

2
a2) p(ν)d1−1(κ

2
b2)

p(ν)d1
(κ2

a2) p(ν)d1
(κ2

b2)

]

, (3.24)

Z(d1+1,ν)
2/0 (κa1, κb1)

Z(d1+1,ν)
0/0

=
1

h(ν)
d1
h(ν)
d1−1

1

(−κa1κb1)ν(κ2
a1 − κ2

b1)
det

[
p̂(ν)d1−1(κ

2
a1) p̂(ν)d1−1(κ

2
b1)

p̂(ν)d1
(κ2

a1) p̂(ν)d1
(κ2

b1)

]

,

(3.25)

Z(d1,ν)
1/1 (κa1, κb2)

Z(d1,ν)
0/0

=
1

h(ν)
d1−1

(
κb2

κa1

)ν

det

[
p̂(ν)d1−1(κ

2
a1) p(ν)d1−1(κ

2
b2)

p̂(ν)d1
(κ2

a1) p(ν)d1
(κ2

b2)

]

. (3.26)

These three relations are already well known [4, 48]. They can also be derived with help

of the Christoffel-Darboux formula.
The structure (3.16) is a general property of ensembles with a joint probability

density including a squared Vandermonde determinant as considered in Sec. 4.2 of

Ref. [34] whereas the relations (3.24)-(3.26) have to be slightly modified for other

ensembles.

In the microscopic limit the authors of Refs. [14, 15] have shown that for a generic

potential V the orthogonal polynomials and their Cauchy transforms become

p(ν)n

(
x2

(cn)2

)
n"1∝

Jν(x)

xν
, (3.27)

p̂(ν)n

(
x2

(cn)2

)
n"1∝ xνKν(x), (3.28)

where c is a constant depending on the potential V . The functions Jν and Kν are the
Bessel function of the first kind and the modified one of the second kind, respectively.

Hence in the microscopic limit the partition function (3.8) is

Z(n,ν)
k1/k2

( κ

cn

)
n"1∝

1

B l11/l21(κ̃
2
1)B l12/l22(κ̃

2
2)

(3.29)

× det





{
I(1)ν (κa2, κb2)

}
1≤a≤l21

l21+1≤b≤k2

{
I(2)ν (κb1, κa2)

}
1≤a≤l21
1≤b≤l11{

I(2)ν (κa1, κb2)
}

l11+1≤a≤k1
l21+1≤b≤k2

{
I(3)ν (κa1, κb1)

}
l11+1≤a≤k1

1≤b≤l11

{κa
b2Jν+a(κb2)}

0≤a≤d2−d1−1
l21+1≤b≤k2

{κa
b1Kν+a(κb1)}

0≤a≤d2−d1−1
1≤b≤l11





,

where

I(1)ν (κa2, κb2) =






κa2Jν−1(κa2)Jν(κb2)− κb2Jν(κa2)Jν−1(κb2)

κ2
a2 − κ2

b2

, a $= b,

Jν+1(κa2)Jν−1(κa2)− J2
ν (κa2)

2
, a = b,

(3.30)

I(2)ν (κa1, κb2) =
κa1Kν−1(κa1)Jν(κb2)− κb2Kν(κa1)Jν−1(κb2)

κ2
a1 − κ2

b2

, (3.31)
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I(3)ν (κa1, κb1) =






κa1Kν−1(κa1)Kν(κb1)− κb1Kν(κa1)Kν−1(κb1)

κ2
a1 − κ2

b1

, a "= b,

Kν+1(κa1)Kν−1(κa1)−K2
ν(κa1)

2
, a = b.

(3.32)

This is the well known result found in the literature [56, 54, 55].

4. Derivation of the Pfaffian determinant

In subsection 4.1 we derive a Pfaffian determinant for the same class of chiral random

matrix ensembles discussed in Sec. 3. A neat application of this Pfaffian is presented in

subsection 4.2. This example is the random matrix model for the Wilson-Dirac operator

in lattice QCD [36, 37, 38, 39, 40].

4.1. Pfaffian determinants in chiral random matrix theory

We show that the representations in determinants (3.16) are not the only existing ones

for chiral unitary ensembles. A non-trivial Pfaffian can be derived for the partition

function by noticing that the square of the Vandermonde in the measure (3.6) can be
rewritten as one Vandermonde determinant of the variables ±λj, i.e.

∆2
n(Λ

2) = (−1)n(n−1)/2∆2n(Λ,−Λ)

2n detΛ
. (4.1)

The determinant of Λ will be put into the weight later on, cf. Eqs. (4.2) and (4.3) below.

Considering the Wilson random matrix theory [36, 37, 38, 39, 40] such a splitting arises
in a natural way for finite lattice spacing. Then an eigenvalue pair ±ıλj becomes either

a complex conjugated pair or two independent real eigenvalues corresponding to a pair

of eigenvectors with positive and negative chirality. Hence, the Pfaffian resulting from

the single Vandermonde determinant (4.1) is the one which is generalized to non-zero

lattice spacing and not the determinant [39, 41].

This allows us to define an anti-symmetric two-point measure on R2

g(x1, x2) =
|x1x2|ν

4
exp

[
−α

V (x2
1) + V (x2

2)

2

]
δ(x1 + x2)[Θ(x1)−Θ(x2)], (4.2)

where Θ is the Heaviside distribution. Then we consider the measure

D[λ] =
Vol nVol n+ν

Vol n1Vol ν
∆2n(λ)

n∏

j=1

g(λ2j−1,λ2j)dλ2jdλ2j−1 (4.3)

over 2n independent eigenvalues instead of the measure (3.6). This measure fulfills the
general condition for finding a Pfaffian, cf. Ref. [35] and see also Eq. (2.3).

The partition function (3.8) can be expressed in terms of this new measure,

Z(n,ν)
k1/k2

(κ) =
(−1)n(k1+k2)

n!
Sdet −ν(−ıκ)

∫

R2n

2n∏

a=1

k2∏
j=1

(κj2 − λa)

k1∏
j=1

(κj1 − λa)

D[λ]. (4.4)
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In the first step we extend the Vandermonde determinant (4.1) with the characteristic

polynomials,

Z(n,ν)
k1/k2

(κ) = (−1)n(k1+k2)Vol nVol n+ν

n!Vol n1Vol ν
Sdet −ν(−ıκ) (4.5)

×
∫

R2n

B k1/k2+2n(κ,λ)

B k1/k2(κ)

n∏

j=1

g(λ2j,λ2j−1)dλ2jdλ2j−1.

This representation is apart from the z2N+1-integral of the form as in Eq. (3.3) in

Ref. [35]. Notice that in this extension we do not have the same freedom as in

the determinantal case (3.9) since there is only one Vandermonde determinant in the
integrand (4.3). Let d = 2n + k2 − k1 ≥ 0. Then we employ the representation of the

function “B ” as a determinant, see Eq. (2.5),

Z(n,ν)
k1/k2

(κ) ∝
Sdet −νκ

B k1/k2(κ)

∫

R2n

n∏

j=1

g(λ2j,λ2j−1)dλ2jdλ2j−1 (4.6)

× det





{
1

κa1 − κb2

}

1≤a≤k1
1≤b≤k2

{
1

κa1 − λb2

}

1≤a≤k1
1≤b≤2n{

κa−1
b2

}
1≤a≤d
1≤b≤k2

{
λa−1
b2

}
1≤a≤d
1≤b≤2n




.

The generalized de Bruijn integration theorem [60, 34] can be applied now which yields

Z(n,ν)
k1/k2

(κ) ∝
Sdet −νκ

B k1/k2(κ)
(4.7)

× Pf





0

{
1

κb1 − κa2

}

1≤a≤k2
1≤b≤k1

{
κb−1
a2

}
1≤a≤k2
1≤b≤d{

−
1

κa1 − κb2

}

1≤a≤k1
1≤b≤k2

{
F̃ (κa1, κb1)

}

1≤a,b≤k1

{
F̃b(κa1)

}

1≤a≤k1
1≤b≤d{

−κa−1
b2

}
1≤a≤d
1≤b≤k2

{
−F̃a(κb1)

}

1≤a≤d
1≤b≤k1

{
M̃ab

}

1≤a,b≤d





.

As Andréief’s integration theorem the generalized de Bruijn integration theorem is

only an algebraic rearrangement of the integrals without calculating any of them. The

functions F̃ and F̃a are two-fold integrals and are again not much of importance, see the
discussion after Eq. (4.10). Explicit expressions of them are given in Ref. [35] for general

random matrix ensembles corresponding to Pfaffians comprising the measure (4.3), too.

The d× d anti-symmetric matrix M̃ = [M̃ab] consists of the moments

M̃ab =

∫

R2

(λa−1
1 λb−1

2 − λb−1
1 λa−1

2 )g(λ1,λ2)dλ1dλ2. (4.8)

Analogously to Eq. (3.13), we employ the identity

Pf

[
A B

−BT C

]

= Pf C Pf [A +BC−1BT ] (4.9)
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with an arbitrary matrix B, an arbitrary antisymmetric matrix A and an arbitrary even

dimensional, antisymmetric matrix C which has to be invertible. Let k1 + k2 be even.

Then d is also even and the Pfaffian of the matrix M̃ is proportional to the normalization

constant of the ensemble (3.2). Hence the choice C = M̃ is well-defined. This yields

Z(n,ν)
k1/k2

(κ) ∝
1

B k1/k2(κ)
(4.10)

× Pf





{
G̃(d)

1 (κa2, κb2)
}

1≤a,b≤k2

{
G̃(d)

2 (κb1, κa2)
}

1≤a≤k2
1≤b≤k1{

−G̃(d)
2 (κa1, κb2)

}

1≤a≤k1
1≤b≤k2

{
G̃(d)

3 (κa1, κb1)
}

1≤a,b≤k1




.

The functions G̃(d)
1 , G̃(d)

2 and G̃(d)
3 can be obtained by considering the cases (k1/k2) =

(0/2), (1/1), (2/0), respectively. In each of these cases the Pfaffian (4.10) reduces to a

single term. This leads to a particular case of the general result derived in Ref. [35]. We

find our main result of this article

Z(n,ν)
k1/k2

(κ)

Z(n,ν)
0/0

=
(−1)k2(k2+1)/2

B k1/k2(κ)

d−1∏
j=0

h(ν)
j

n−1∏
j=0

h(ν)
j

(4.11)

× Pf





κb2 − κa2

h(ν)
d/2−1Z

(d/2−1,ν)
0/0

Z(d/2−1,ν)
0/2 (κa2, κb2)

1

Z(d/2,ν)
0/0

Z(d/2,ν)
1/1 (κb1, κa2)

(κa2 − κb1)

1

Z(d/2,ν)
0/0

Z(d/2,ν)
1/1 (κa1, κb2)

(κa1 − κb2)

h(ν)
d/2(κa1 − κb1)

Z(d/2+1,ν)
0/0

Z(d/2+1,ν)
2/0 (κa1, κb1)





for even k1 + k2. The indices a and b run from 1 to k2 in the first columns and the first
rows and from 1 to k1 in the last ones. The result for odd k2+k1 can be readily obtained

by introducing an additional fermionic flavor and sending it to infinity. This shifts the

parameter d to d+ 1 and adds a row and a column to the matrix in the Pfaffian (4.11)

with the partition functions Z((d−1)/2,ν)
0/1 (κb2) and Z((d+1)/2,ν)

1/0 (κb1) which are apart from

a factor κν an orthogonal polynomial and its Cauchy-transform, cf. Eqs. (3.19) and

(3.23). Notice that the matrix in the Pfaffian (4.11) is indeed antisymmetric because
Z(d/2−1,ν)

0/2 and Z(d/2+1,ν)
2/0 are symmetric under a permutation of the entries.

Indeed, Eq. (4.11) cannot be traced back to the identity

Pf

[
0 X

−XT 0

]

= (−1)p(p−1)/2 detX (4.12)

with an arbitrary p × p matrix X . We refer to the relation (4.12) as a trivial Pfaffian
extension of a determinant. The Pfaffian (4.11) seems to be the result of recursion

relations of the orthogonal polynomials (3.19). It is difficult to see how these recursions

have to be performed to map the Pfaffian (4.11) to the determinant (3.16). However the

construction of this structure seems to be the same for a broad class of ensembles. This is
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confirmed by the fact that the result (4.11) can be extended to all factorizing ensembles

with a squared Vandermonde determinant in the joint probability density (2.1). This

will be shown in Sec. 6.

Again one can consider the k-point correlation function (3.17) and what it looks like

with the Pfaffian determinant. Using the result (4.11) we find for the k-point correlation

function

R(n,ν)
k (x) ∝ exp[−α tr V (x)]

× Pf

[
(xa − xb)Z

(n−1,ν)
0/2 (xa, xb) (xa + xb)Z

(n−1,ν)
0/2 (xa,−xb)

−(xa + xb)Z
(n−1,ν)
0/2 (−xa, xb) −(xa − xb)Z

(n−1,ν)
0/2 (−xa,−xb)

]

1≤a,b≤k

∝ exp[−α tr V (x)]

× Pf

[
(xa − xb)Z

(n−1,ν)
0/2 (xa, xb) (xa + xb)Z

(n−1,ν)
0/2 (xa, xb)

−(xa + xb)Z
(n−1,ν)
0/2 (xa, xb) −(xa − xb)Z

(n−1,ν)
0/2 (xa, xb)

]

1≤a,b≤k

. (4.13)

Again we have not employed the integration theorem by Dyson and Mehta [24, 25, 4, 48].

To see that Eq. (4.13) indeed agrees with the determinant (3.18) one can consider the

square of the Pfaffian,

Pf 2

[
(xa − xb)Z

(n−1,ν)
0/2 (xa, xb) (xa + xb)Z

(n−1,ν)
0/2 (xa, xb)

−(xa + xb)Z
(n−1,ν)
0/2 (xa, xb) −(xa − xb)Z

(n−1,ν)
0/2 (xa, xb)

]

1≤a,b≤k

= det

[
(xa − xb)Z

(n−1,ν)
0/2 (xa, xb) (xa + xb)Z

(n−1,ν)
0/2 (xa, xb)

−(xa + xb)Z
(n−1,ν)
0/2 (xa, xb) −(xa − xb)Z

(n−1,ν)
0/2 (xa, xb)

]

1≤a,b≤k

= 2k det

[
−xbZ

(n−1,ν)
0/2 (xa, xb) xbZ

(n−1,ν)
0/2 (xa, xb)

−(xa + xb)Z
(n−1,ν)
0/2 (xa, xb) −(xa − xb)Z

(n−1,ν)
0/2 (xa, xb)

]

1≤a,b≤k

= 22k det

[
−xbZ

(n−1,ν)
0/2 (xa, xb) 0

−(xa + xb)Z
(n−1,ν)
0/2 (xa, xb) −xaZ

(n−1,ν)
0/2 (xa, xb)

]

1≤a,b≤k

= 22kdet2x det2
[
Z(n−1,ν)

0/2 (xa, xb)
]

1≤a,b≤k
. (4.14)

The square root of Eq. (4.14) yields Eq. (3.18).

In the large n limit, we employ Eqs. (3.24-3.28) and (3.30-3.32) and obtain

Z(n,ν)
k1/k2

( κ

cn

)
n#1∝

1

B k1/k2(κ)
(4.15)

× Pf




(κa2 − κb2)I

(1)
ν (κa2, κb2) (κb1 + κa2)I

(2)
ν (κb1, κa2)

−(κa1 + κb2)I
(2)
ν (κa1, κb2) (κa1 − κb1)I

(3)
ν (κa1, κb1)





for even k1 + k2 and

Z(n,ν)
k1/k2

( κ

cn

)
n#1∝

1

B k1/k2(κ)
(4.16)
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× Pf





0 Jν(κb2) Kν(κb1)

−Jν(κa2) (κa2 − κb2)I
(1)
ν (κa2, κb2) (κb1 + κa2)I

(2)
ν (κb1, κa2)

−Kν(κa1) −(κa1 + κb2)I
(2)
ν (κa1, κb2) (κa1 − κb1)I

(3)
ν (κa1, κb1)





for odd k1 + k2. These Pfaffians carry over to the Wilson Dirac random matrix
model [39, 41]. For small numbers of bosonic and fermionic flavors these results were

checked by the recursion relations of the Bessel functions [61].

Please notice the difference in the prefactor of Eqs. (3.29), (4.15) and (4.16).

The entries of the Berezinian are the squares of the variables κ for the determinantal

structure (3.29) whereas it is only κ for the Pfaffian. This yields a technical advantage

when calculating eigenvalue correlations of the random matrix models for the Wilson
Dirac operator.

4.2. An application: Wilson-Dirac random matrix

The Wilson-Dirac operator is a modified Dirac operator on a lattice. In the infrared

limit this operator can be modeled by the Wilson-Dirac random matrix [36, 37, 38, 40]

which is a (2n + ν)× (2n+ ν) Hermitian matrix

DW =

[
aA W

−W † aB

]

(4.17)

distributed by the Gaussian

P (DW) = exp
[
−
n

2
(trA2 + trB2)− n trWW †

]
. (4.18)

The variable a plays the role of the lattice spacing. The chiral symmetry is explicitly

broken by the Hermitian matrices A and B, i.e.

γ5 DW|m=0 γ5 #= − DW|m=0 with γ5 = diag (11n,−11n+ν), (4.19)

which have the dimensions n × n and (n + ν)× (n + ν), respectively. Hence, A and B
model the Wilson-term.

We consider the partition function with Nf fermionic flavors,

Z(n,ν)
Nf

(m, a) =

∫ Nf∏

j=1

det(DW +mj112n+ν)P (DW)d[DW]. (4.20)

The external variables m = diag (m1, . . . , mNf
) play the role of the quark masses. Indeed

one can also consider bosonic flavors. However, we restrict ourself to fermionic flavors

to keep the example as simple as possible
In the microscopic limit (n → ∞), m̂ = 2nm, â =

√
na/2 and ν are kept fixed.

This yields the integral

Z(n,ν)
Nf

(m̂, â)
n!1
=

∫

U (Nf )

exp

[
1

2
tr m̂(U + U−1)− â2 tr

(
U2 + U−2

)]
detνUdµ(U). (4.21)
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For a derivation of this result we refer to Refs. [36, 37]. Exactly the integral (4.21)

makes contact with lattice QCD [62, 63, 64, 65].

At zero lattice spacing (â = 0) this partition function can be identified with the

one considered in Sec. 3,

Z(n,ν)
Nf

(m, a = 0) ∝ Z(n,ν)
0/Nf

(ım). (4.22)

Considering again the microscopic limit (4.21), we trace the integral back to the a = 0

result by introducing a Nf × Nf Hermitian random matrix σ similar to the calculation

in Ref. [38, 66],

Z(n,ν)
Nf

(m̂, â)
n!1∝

∫
exp

[
−

1

4â2
tr(σ − ım̂)2 − 2(âNf)

2

]

×
∫

U (Nf )

exp
[
−ı tr σ(U + U−1)

]
detνUdµ(U)d[σ]

∝
∫

exp

[
−

1

4â2
tr(σ + ım̂)2 − 2(âNf)

2

]
Z(n,ν)

0/Nf
(σ)d[σ]. (4.23)

Notice that σ is an ordinary matrix and not a supermatrix because we consider fermionic

flavors, only. The constant exp[−2(âNf)2] can be shifted into the normalization constant

and can, thus, be omitted in the ensuing calculations.

A diagonalization of σ = V sV † with V ∈ U (Nf) yields a Harish-Chandra-Itzykson-

Zuber-integral [67, 68] in the Gaussian term. The partition function Z(n,ν)
0/Nf

is invariant

under U (Nf). We find

Z(n,ν)
Nf

(m̂, â) ∝
∫ det [exp [−(sj − ım̂i)2/4â2]]1≤j,i≤Nf

∆Nf
(m̂)

Z(n,ν)
0/Nf

(s)∆Nf
(s)d[s]. (4.24)

Employing the result as a determinant of the microscopic limit of â = 0 partition

function, cf. Eq. (3.29), we end up with a complicated expression,

Z(n,ν)
Nf

(m̂, â)
n!1∝

∫ det [exp [−(sj − ım̂i)2/4â2]]1≤j,i≤Nf

∆Nf
(m̂)

× det
[
sj−1
i Jν−1+j(s)

]
1≤j,i≤Nf

∆Nf
(s)

∆Nf
(s2)

d[s]. (4.25)

There is no obvious way to further simplify the integral (4.25) due to the factor

∆Nf
(s)/∆Nf

(s2). This was not much of a problem for the authors of Refs. [38, 66]
because they only considered a small numbers of flavors. However the problem is highly

non-trivial for an arbitrary number of flavors.

This problem can be solved by using the Pfaffian expressions (4.15) and (4.16)

instead of the determinant. Let Nf be even to keep the expressions as simple as possible.

Then we have for the microscopic limit (4.21)

Z(n,ν)
Nf

(m̂, â)
n!1∝

∫ det [exp [−(sj − ım̂i)2/4â2]]1≤j,i≤Nf

∆Nf
(m̂)

(4.26)

× Pf

[
sjJν−1(sj)Jν(si)− siJν(sj)Jν−1(si)

sj + si

]

1≤j,i≤Nf

d[s].
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After expanding the determinant no term hinders us to pull the integrals into the

Pfaffian. We obtain the compact result

Z(n,ν)
Nf

(m̂, â) ∝
1

∆Nf
(m̂)

Pf
[
(m̂j − m̂i)Z

(n,ν)
2 (m̂j , m̂i, â)

]

1≤j,i≤Nf

with

Z(n,ν)
2 (m̂1, m̂2, â) ∝

1

m̂1 − m̂2

∫

R2

exp

[
−
(s1 − ım̂1)2 + (s2 − ım̂2)2

4â2

]
(4.27)

×
s1Jν−1(s1)Jν(s2)− s2Jν(s1)Jν−1(s2)

s1 + s2
ds1ds2.

This is a drastic simplification of the problem compared to Eq. (4.25).

5. Skew-orthogonal polynomials

What are the skew-orthogonal polynomials which correspond to the Pfaffian (4.11)?

In order to solve this problem we consider the two-point measure (4.2). The skew
orthogonal polynomials qj are defined by

∫

R2

det

[
q2j−1(x1) q2j−1(x2)

q2i−1(x1) q2i−1(x2)

]

g(x1, x2)dx1dx2

=

∫

R2

det

[
q2j(x1) q2j(x2)

q2i(x1) q2i(x2)

]

g(x1, x2)dx1dx2 = 0, (5.1)

and
∫

R2

det

[
q2j+1(x1) q2j+1(x2)

q2i(x1) q2i(x2)

]

g(x1, x2)dx1dx2 = ĥ(ν)
i δij. (5.2)

Moreover one has to assume that ql is a polynomial of order l.

The integral over the measure (4.2) for two arbitrary and conveniently integrable

functions f1 and f2 can be simplified to
∫

R2

det

[
f1(x1) f1(x2)

f2(x1) f2(x2)

]

g(x1, x2)dx1dx2

=
1

2

∞∫

0

det

[
f1(x) f1(−x)

f2(x) f2(−x)

]

x2ν exp
[
−nV (x2)

]
dx. (5.3)

Due to this identity the skew-orthogonal polynomials q(ν)l are related by the orthogonal

polynomials pl in the following way

q(ν)2l (x) = p(ν)l (x2) (5.4)

for the even polynomials and

q(ν)2l+1(x) = xp(ν)l (x2) + const. p(ν)l (x2) (5.5)
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for the odd polynomials. Notice that these skew-orthogonal polynomials for V (x) = x

(the Laguerre ensemble) are similar to but not completely the same as the one for β = 1

and β = 4 shown in Ref. [4, 48] for the Laguerre ensemble. The reason is the two point

weight which is

gchGOE(x1, x2) = (x1x2)
ν exp

[
−α(x2

1 + x2
2)
] x1 − x2

|x1 − x2|
, (5.6)

gchGSE(x1, x2) = (x1x2)
2ν+3/2 exp

[
−α(x2

1 + x2
2)
]
δ′(x1 − x2), (5.7)

in comparison see Eq. (4.2) for β = 2. The labels “chGOE” and “chGSE” refer to

the chiral Gaussian orthogonal ensemble (β = 1) and to the chiral Gaussian symplectic
ensemble (β = 4), respectively. The sign function (x1 − x2)/|x1 − x2| generate the

modulus of the Vandermonde determinant for β = 1. The distribution δ′ is the first

derivative of the Dirac delta function and cancels with these terms of the Vandermonde

determinant which are zero at the support of the Dirac delta functions. This generates

Cramers degeneracy in the quaternion case (β = 4).

The solution of Eqs. (5.1) and (5.2) is not unique which is reflected by the arbitrary
constant in the odd polynomials (5.5). One can readily confirm that this choice of

the polynomials solves the conditions (5.1) and (5.2) by recognizing the symmetry

qj(−x) = (−1)jqj(x) and the orthogonality relation (3.20) for pj. The normalization

constant is

ĥ(ν)
i = h(ν)

i . (5.8)

This relation between orthogonal and skew-orthogonal polynomials seems so trivial

because of the particular and simple structure of the two-point weight (4.2).

6. A few more ensembles with Dyson index β = 2 and Pfaffians

The algebraic rearrangement for chiral unitary ensembles described in Sec. 4 can

be extended to other random matrix ensembles which have a squared Vandermonde

determinant in the joint probability density function. By the same trick as in Eq. (4.1)

we write

∆2
N(z) = (−1)N(N−1)/2∆2N (

√
z,−

√
z)

2N
√
det z

, (6.1)

where the variables z = diag (z1, . . . , zN) might be complex. The square root is the

positive one but this is without loss of generality since the right hand side of Eq. (6.1)

comprises both roots. Again the determinant of z will be put to the measure dµ for a

single eigenvalue.
We consider an average over ratios of characteristic polynomials for random

ensembles like GUE and CUE, i.e.

Z̃(N)
k1/k2

(κ) =

∫

CN

∆2
N (z)

N∏

i=1

k2∏
j=1

(zi − κj2)

k1∏
j=1

(zi − κj1)

dµ(zi), (6.2)



Pfaffians in β = 2 ensembles 19

where dµ is a measure on C and κ is chosen such that the integrals exist. Notice that

there is no modulus of the Vandermonde determinant which is a necessary property of

the following discussion. A modulus of the Vandermonde is an obstacle to map Eq. (6.2)

to the general joint probability density corresponding to the Pfaffian, see Ref. [35], which

we have not managed yet. A modulus corresponds to the biorthogonal polynomials [47]

whereas the choice without the modulus corresponds to the orthogonal polynomials,
only. Apart from the modulus of the Vandermonde it is exactly the correlation function

discussed in Sec. 4.2 of Ref. [34].

With the help of the derivation in Sec. 4 the integral (6.2) can be written as

Z̃(N)
k1/k2

(κ) ∝
1

B k1/k2(
√
κ)

(6.3)

× Pf





d̃(
√
κb2 −

√
κa2)

Z̃(d̃)
0/0

Z̃(d̃−1)
0/2 (κa2, κb2)

1

Z̃(d̃)
0/0

Z̃(d̃)
1/1(κb1, κa2)

(
√
κa2 −

√
κb1)

1

Z̃(d̃)
0/0

Z̃(d̃)
1/1(κa1, κb2)

(
√
κa1 −

√
κb2)

√
κa1 −

√
κb1

(d̃+ 1)Z̃(d̃)
0/0

Z̃(d̃+1)
2/0 (κa1, κb1)





for k1 + k2 even and

Z̃(N)
k1/k2

(κ) ∝
1

B k1/k2(
√
κ)

(6.4)

× Pf





0 −
d̃

Z̃(d̃)
0/0

Z̃(d̃−1)
0/1 (κb2)

1

Z̃(d̃)
0/0

Z̃(d̃)
1/0(κb1)

d̃

Z̃(d̃)
0/0

Z̃(d̃−1)
0/1 (κa2)

d̃(
√
κb2 −

√
κa2)

Z̃(d̃)
0/0

Z̃(d̃−1)
0/2 (κa2, κb2)

1

Z̃(d̃)
0/0

Z̃(d̃)
1/1(κb1, κa2)

(
√
κa2 −

√
κb1)

−
1

Z̃(d̃)
0/0

Z̃(d̃)
1/0(κa1)

1

Z̃(d̃)
0/0

Z̃(d̃)
1/1(κa1, κb2)

(
√
κa1 −

√
κb2)

√
κa1 −

√
κb1

(d̃+ 1)Z̃(d̃)
0/0

Z̃(d̃+1)
2/0 (κa1, κb1)





for k1 + k2 odd. The variable d̃ is

d̃ =

{
N + (k2 − k1)/2, k2 + k1 ∈ 2N,

N + (k2 − k1 + 1)/2, k2 + k1 + 1 ∈ 2N.
(6.5)

The indices a and b run from 1 to k1 for κ1 and from 1 to k2 for κ2. Apart from the

square roots of the variables κ these structures are exactly the same as those of random

matrix ensembles with Dyson index β ∈ {1, 4}. Hence, it seems to be that the Pfaffian

determinants (6.3) and (6.4) for the average over characteristic polynomials are more
general than the determinant derived in Ref. [34].

Random matrix ensembles whose generating functions can be cast into the

form (6.2) have this non-trivial expression as a Pfaffian. The Hermitian Gaussian

unitary ensemble as well as its generalization with other potentials fulfill a priori this
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requirement since the joint probability density has a squared Vandermonde determinant

without the modulus. More generally our derivation applies to each ensemble with

a real spectrum, a squared Vandermonde determinant and a factorizing probability

distribution, cf. Eq. (3.4). Also the CUE (unitary group) can be cast into the form (6.2).

More ensembles can be found in the tables 1 and 2 of Ref. [34]. The Ginibre ensemble

as well as its chiral counterpart are not in this class. Their joint probability density
incorporates a modulus of the Vandermonde determinant and is, thus, in the class for

the bi-orthogonal polynomials. Therefore it is possible that their eigenvalue correlation

functions cannot be expressed in Pfaffians like Eq. (6.3) and (6.4).

The skew-orthogonal polynomials corresponding to the Pfaffians (6.3) and (6.4)

have the same relation to the orthogonal polynomials as chiral unitary ensembles, see

Eqs. (5.4-5.8). By construction this relation is so simple.

7. Remarks and conclusions

We derived a non-trivial Pfaffian determinant for the average over ratios of characteristic

polynomials of a large class of random matrix ensembles with Dyson index β = 2. This

structure is similar to the one for β ∈ {1, 4}, cf. Ref. [35]. Hence, it is universal

and unifies most of the symmetry classes known in the literature, particularly the
Cartan classification [45, 46]. It is unclear how far beyond this classification [69] this

structure is applicable. It is only known that there are some of them which share the

identity (4.11). For example the real and quaternion Ginibre ensembles as well as there

chiral counterpart fulfill an identity similar to Eq. (4.11).

For many random matrix ensembles like the GUE it seems an academical question

if one can derive a Pfaffian or not since there are no applications, yet. However, for the
chiral GUE it is important to know this due to the new results obtained for the Wilson

Dirac random matrix ensemble discussed in Refs. [36, 37, 38, 39, 40, 41, 66]. Pfaffians

were found there for finite lattice spacing. On the level of the joint probability density

the authors of Ref. [39] checked that the ensemble is the chiral GUE as well as the GUE

at certain values of the lattice spacing. However for the eigenvalue correlation functions

the continuum limit has not yielded the known determinant (3.29). With this work we
clarified this puzzle.

For intermediate ensembles in general our result might be helpful to understand the

structure appearing by switching the interaction between the two ensembles on. It is

numerically advantageous to think about spectral correlations of intermediate ensembles

as kernels of Pfaffians since the integrand drastically simplifies. In combination with

the supersymmetry method [70, 71, 72, 73] also the number of integrals reduces a lot.
Moreover, we derived the relation between the orthogonal polynomials and the

skew-orthogonal polynomials corresponding to the determinants and the Pfaffians,

respectively. This relation, see Eqs. (5.4-5.8), is not only quite simple but also universal

since it applies to all random matrix ensembles discussed in this work. The relation

between the orthogonal and skew-orthogonal polynomials for β = 2 slightly differs to
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those found in Ref. [48] for the cases β = 1 and β = 4. The difference in the two-point

weight is the reason for this. Based on the representations (3.16), (6.3) and (6.4) shared

by all random matrix ensembles with β = 2 as well as checks of these representations

[61], we conjecture that the recursion relation of the orthogonal polynomials connects

the determinant and the Pfaffian and this has to be done in a general way.

The Pfaffian found for the average over characteristic polynomials carries over to
the k-point correlation functions. This structure is valid in the large matrix limit, too.

It should not depend on which scaling limit is chosen since the Pfaffian is independent

of the matrix size. Hence, the correlation functions appearing as kernels of this Pfaffian

have non-trivial recursion relations mapping the determinant to the Pfaffian.
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Abstract

The microscopic spectral density of the Wilson Dirac operator for two flavor lattice QCD is

analyzed. The computation includes the leading order a2 corrections of the chiral Lagrangian in

the microscopic limit. The result is used to demonstrate how the Sharpe-Singleton first order

scenario is realized in terms of the eigenvalues of the Wilson Dirac operator. We show that the

Sharpe-Singleton scenario only takes place in the theory with dynamical fermions whereas the

Aoki phase can be realized in the quenched as well as the unquenched theory. Moreover, we give

constraints imposed by γ5-Hermiticity on the additional low energy constants of Wilson chiral

perturbation theory.
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I. INTRODUCTION

In the deep chiral limit, with almost massless quarks, lattice QCD with Wilson fermions

has a highly nontrivial phase structure. As in continuum QCD, it is the deep chiral limit

which reveals the spontaneous breaking of chiral symmetry on the lattice. In addition, the

interplay between the continuum and the chiral limit in lattice QCD with Wilson fermions

leads to new phase structures known as the Aoki phase [1] and the Sharpe-Singleton scenario

[2]. These phases have no direct analogues in the continuum theory, and dominate if the

chiral limit is performed prior to the continuum limit. While this at first may seem like a

highly undesirable artifact of Wilson fermions it can in fact be turned to our advantage:

The Aoki phase is reached through a second order phase transition and at the boundary of

this transition the pions are massless. This opens the possibility to study nonperturbative

QCD at extremely small pion masses even at a nonzero lattice spacing. On the contrary the

Sharpe-Singleton scenario is a first order phase transition in which the pions are massive

even in the chiral limit at nonzero lattice spacing.

These phase structures of lattice QCD with Wilson fermions can be described within

the framework of Wilson chiral perturbation theory [2–8]. This low energy effective theory

of lattice QCD with Wilson fermions describes discretization effects by means of additional

terms in the chiral Lagrangian (see [9, 10] for reviews). Each of these new terms come with a

new low energy constant. The sign and magnitude of these constants reflect whether lattice

QCD with Wilson fermions will enter the Aoki phase or the Sharpe-Singleton scenario.

Considerable progress, both analytically [11–16] and numerically [17–23], has been made

recently in the determination of these constants. However, a complete picture has not

yet emerged. For example, the observation that quenched lattice simulations consistently

observe the Aoki phase [24–27], while in unquenched simulations both the Aoki and the

Sharpe-Singleton scenario [20, 23, 28–37] has been observed, remains a puzzle.

The spontaneous breaking of chiral symmetry is tightly connected to the smallest eigen-

values of the Dirac operator [38, 39]. Moreover, the Aoki phase manifests itself in the

smallest eigenvalues of the Wilson Dirac operator [11, 40]. Here we show that the behav-

ior of the smallest eigenvalues of the Wilson Dirac operator is also directly related to the

Sharpe-Singleton scenario. In particular, we explain that in the Sharpe-Singleton scenario

the Wilson Dirac eigenvalues undergo a collective macroscopic jump as the quark mass
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changes sign. Moreover, we show that this collective jump only occurs in the presence of

dynamical fermions. The quenched theory has no analogue of this and hence the Sharpe-

Singleton scenario is not possible in the quenched theory. This conclusion is verified by a

direct computation of the microscopic quenched and unquenched chiral condensate.

In order to establish these results we explicitly derive the unquenched microscopic spectral

density of the Wilson Dirac operator. This calculation makes use of both Wilson random

matrix theory as well as Wilson chiral perturbation theory. By means of an underlying

Pfaffian structure we uncover a compact factorized form of the exact unquenched microscopic

eigenvalue density. This form makes it possible to understand the full dependence of the

eigenvalue density on the low energy constants. We analyze this dependence in the mean

field limit which can also be directly derived from Wilson chiral perturbation theory.

The mean field limit of the microscopic spectral density corresponds to the leading order

result of Wilson chiral perturbation theory in the p-regime. This will allow us to close the

circle by explaining the original p-regime results of Sharpe and Singleton in terms of the

behavior of the Wilson Dirac eigenvalues. In particular, we will explain how the nonzero

minimal value of the pion mass in the Sharpe-Singleton scenario is connected to the collective

jump of the Wilson Dirac eigenvalues.

The approach to the Wilson Dirac spectrum followed in this paper has been applied

previously in Refs. [11, 12, 15–17, 41–46] and results from these studies will be used.

The study of the smallest eigenvalues of the Wilson Dirac eigenvalues not only explains

the way in which the Aoki phase and the Sharpe-Singleton scenarios are realized, it also

gives direct information on the sign and magnitude of the low energy constants of Wilson

chiral perturbation theory. We will show that the spectral properties of the Wilson Dirac

operator determine the sign of all three additional low energy constants of the leading order

chiral Lagrangian of Wilson chiral perturbation theory in the microscopic limit.

The results for the unquenched spectral density of the Wilson Dirac operator presented

here also offer a direct way to measure the low energy constants of Wilson chiral perturbation

theory by matching the predictions against results from lattice QCD. The first quenched

studies of this nature appeared recently [21, 22].

This paper is organized as follows. After a brief presentation of the properties of the

Wilson Dirac operator in Section II we recall the basics of Wilson chiral perturbation theory

in section III. In section IV we determine constraints on the additional low energy parameters
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of Wilson chiral perturbation theory in terms of the spectral properties of the Wilson Dirac

operator. The unquenched microscopic spectrum of the Wilson Dirac operator is analyzed

in section V. Finally, the realization of the Sharpe-Singleton scenario is the topic of section

VI. Section VII contains our summary and conclusions. Wilson random matrix theory, the

factorization properties of the spectral density and the details of the mean field calculation

are discussed in Appendix A, Appendix B and Appendix C, respectively.

II. THE WILSON DIRAC OPERATOR

Here we recall a few basic properties of the Wilson Dirac operator. The Wilson term in

the lattice discretized covariant derivative

DW =
1

2
γµ(∇µ +∇∗

µ)−
ar

2
∇µ∇∗

µ (1)

breaks the anti-Hermiticity as well as the axial symmetry of the continuum Dirac operator.

However, DW is γ5-Hermitian

γ5DWγ5 = D†
W (2)

and the product with γ5, D5(m) ≡ γ5(DW +m) is therefore Hermitian.

The eigenvalues, zk, of DW consists of complex conjugated pairs as well as exactly real

eigenvalues [47]. Only the real eigenmodes have nonzero chirality and determine the index,

ν, of the Wilson Dirac operator

ν =
∑

k

sign(〈k|γ5|k〉). (3)

Here |k〉 denotes the k’th eigenstate of DW . The eigenvalues, λ5, of D5(m) are unpaired

when a &= 0.

In section IV below we will use these properties to constrain the parameters of Wilson

chiral perturbation theory.

III. WILSON CHIRAL PERTURBATION THEORY

In the microscopic limit at nonzero lattice spacing where (m is the quark mass, ζ the

axial quark mass, z an eigenvalue of DW , and a is the lattice spacing)

mV, ζV, zV and a2V (4)
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are kept fixed as V → ∞, the microscopic partition function of [48] extends to [11]

Zν
Nf
(m, ζ ; a) =

∫

U(Nf )

dU detνU eS[U ], (5)

where the action S[U ] for degenerate quark masses is given by [2–4]

S =
m

2
ΣV Tr(U + U †) +

ζ

2
ΣV Tr(U − U †) (6)

−a2VW6[Tr
(
U + U †

)
]2 − a2VW7[Tr

(
U − U †

)
]2 − a2VW8Tr(U

2 + U †2).

In addition to the chiral condensate, Σ, the action also contains the low energy constants

W6, W7 and W8 as parameters [55].

In order to lighten the notation we introduce the rescaled, dimensionless variables

â2i = a2VWi, m̂ = mV Σ, ẑ = zV Σ and ζ̂ = ζV Σ. (7)

The generating functional for the eigenvalue density of DW in the complex plane is the

graded extension of Eq. (5). Because of the non-Hermiticity of DW , the graded extension

Zν
Nf+2|2(ẑ, ẑ

∗, ẑ′, ẑ′∗, m̂; âi) (8)

requires an extra pair of conjugate quarks with masses ẑ and ẑ∗, as well as a conjugate pair

of bosonic quarks, with masses ẑ′ and ẑ′∗ [49]. The graded mass term becomes

Trg
(
MU +MU−1

)
with M = diag(m̂1, . . . , m̂Nf

, ẑ, ẑ∗, ẑ′, ẑ′∗), (9)

where Trg denotes the graded trace TrgA = Tr(Af)− Tr(Ab), with Af the fermion-fermion

block of A and Ab its boson-boson block. The eigenvalue density of DW in the complex

plane is

ρνc,Nf
(ẑ, ẑ∗, m̂; âi) = ∂ẑ∗ lim

ẑ′→ẑ
∂ẑ logZ

ν
Nf+2|2(ẑ, ẑ

∗, ẑ′, ẑ′∗, m̂; âi). (10)

The sign and magnitude of W6, W7 and W8 determine the phase structure at small mass

[2]: for W8 + 2W6 > 0 the Aoki phase dominates if |m|Σ < 8(W8 + 2W6)a2 while for

W8 + 2W6 < 0 the Sharpe-Singleton scenario takes place. It is therefore of considerable

interest to understand if it is possible to determine the signs of the additional low energy

constants. In the next section we show how these signs follow from the γ5-Hermiticity of

the Wilson Dirac operator.

5



IV. CONSTRAINTS ON W6, W7 AND W8 DUE TO γ5-HERMITICITY

In Refs. [12, 13, 16] it was shown that properties of the partition function and the cor-

relation functions due to γ5-Hermiticity lead to bounds on W6, W7 and W8. The bounds

that where found are [12, 13] W8 > 0 (independent of the value of W6 and W7 [13]) and

[12, 16] W8 −W6 −W7 > 0. In addition it was argued in [16] that W8 + 2W6 > 0 provided

that disconnected diagrams are suppressed. Note that lattice studies [18] have found that

disconnected diagrams can have a significant contribution.

Here we show that the signs of W6 and W7 can be determined from γ5-Hermiticity if

we consider the spectral properties of the Wilson Dirac operator. There are two implicit

assumptions that have been well established in the study of Dirac spectra. First, that for a

given value of the low-energy constants the chiral Lagrangian can be extended to partially

quenched QCD with the same low-energy constants. Second, there is a one-to-one relation

between spectral properties in the microscopic domain and the partially quenched chiral

Lagrangian.

Let us first recall why γ5-Hermiticity implies that W8 > 0 when W6 = W7 = 0 [12]. As

shown by explicit calculations in [11, 12, 42, 43] the microscopic graded generating functional

corresponding to

L(U) =
1

2
mΣTr(U + U †) +

1

2
ζΣTr(U − U †)− a2W8Tr(U

2 + U †2) (11)

with W8 > 0 gives predictions for the spectrum of the γ5-Hermitian DW and the Hermitian

D5. This was further confirmed by its equivalence to a γ5-Hermitian Wilson Random Matrix

Theory.

On the contrary if W8 < 0, it was explicitly shown in [12] that the graded generating

functional corresponding to Eq. (11) is the generating functional for the spectral fluctuations

in a lattice theory with iWilson fermions defined as

DiW =
1

2
γµ(∇µ +∇∗

µ)− i
ar

2
∇µ∇∗

µ, (12)

which is anti-Hermitian rather than γ5-Hermitian. This conclusion was again confirmed by

the equivalence to an anti-Hermitian iWilson Random Matrix Theory. Note that DW and

DiW only differ by a factor of i in the Wilson term, and that DiW is not γ5-Hermitian.

Therefore we understand the effective theory, Eq. (11), for both signs of W8 and that

the Hermiticity properties of the Wilson Dirac operator determine this sign. For Wilson
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FIG. 1: Illustration of the fluctuations of the Dirac eigenvalues. Left: A negative value of W6

corresponds to a γ5-Hermitian Wilson Dirac operator, i.e. with eigenvalues that are either real or

come in complex conjugate pairs. Right: The Dirac operator corresponding to W6 > 0 is in the

Hermiticity class of DiW with purely imaginary eigenvalues.

fermions we have W8 > 0, whereas for iWilson fermions the constraint is W8 < 0. This is

fully consistent with the results from QCD inequalities [12, 13].

Let us now extend the argument to also include W6 and W7. We will show that Wilson

chiral perturbation theory with W6 < 0, W7 < 0 and W8 > 0 gives predictions for the

spectrum of a γ5-Hermitian DW . On the contrary Wilson chiral perturbation theory with

W6 > 0, W7 > 0 and W8 < 0 gives predictions for the spectrum of DiW .

The fact that all three signs are reversed when changing between Wilson and iWilson

fermions is not accidental. Since the Wilson term and the iWilson term break chiral symme-

try in exactly the same way, the respective low energy effective theories, must have the same

symmetry breaking terms in the chiral Lagrangian. Moreover, since the explicit symmetry

breaking terms at order a2 have their origin in the Wilson term, the two effective fermionic

Lagrangians are related by a combined change of sign of W6, W7 and W8 [56].

In order to see which sign of W6 and W7 corresponds to Wilson fermions let us rewrite
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the trace squared terms in Wilson chiral perturbation theory as

Zν
Nf
(m̂, ζ̂; â6, â7, â8) =

1

16π|â6â7|

∫ ∞

−∞

dy6dy7 exp

[
−

y26
16|â26|

−
y27

16|â27|

]

×Zν
Nf

(m̂− y6, ζ̂ − y7; â6 = 0, â7 = 0, â8), (13)

valid for W6 < 0 and W7 < 0 and

Zν
Nf
(m̂, ζ̂; â6, â7, â8) =

1

16π|â6â7|

∫ ∞

−∞

dy6dy7 exp

[
−

y26
16|â26|

−
y27

16|â27|

]

×Zν
Nf

(m̂− iy6, ζ̂ − iy7; â6 = 0, â7 = 0, â8), (14)

valid for W6 > 0 and W7 > 0.

Let us first consider the case W7 = 0. A negative value of W6 corresponds to a Dirac

operator that is compatible with the γ5-Hermiticity of the Wilson Dirac operator. The

additional fluctuations can be interpreted as collective fluctuations of the eigenvalues, zk,

of DW parallel to the real z-axis. To see this, extend Eq. (13) to the graded generating

functional, Eq. (8), and include y6 in the graded mass matrix

M− y6 = diag(m̂1 − y6, . . . , m̂Nf
− y6, ẑ − y6, ẑ

∗ − y6, ẑ
′ − y6, ẑ

′∗ − y6) (15)

(see Eq. (21) below for further details). Such fluctuations are allowed for Wilson fermions

since the eigenvalues of DW come in pairs (z, z∗) or are strictly real. This is illustrated in

the left hand panel of figure 1.

For a positive value of W6 the corresponding Dirac operator is in a different Hermiticity

class than the Wilson Dirac operator and will have different spectral properties. Therefore,

we necessarily have W6 < 0 for the Wilson Dirac operator. For the iWilson-lattice theory on

the other hand, we have that D†
iW = −DiW and consequently purely imaginary eigenvalues.

Moreover, since the eigenvalues are not paired with equal and opposite sign (for a #= 0) the

spectrum of iDW can fluctuate along the imaginary axis, see the right hand panel of figure 1

for an illustration. The Dirac operator corresponding to W6 > 0 is hence in the Hermiticity

class of DiW . In perfect agreement with the above conclusion for Wilson fermions and the

fact that the two effective theories should have opposite signs for all three Wi’s.

The story for W7 is analogous: A negative value of W7 corresponds to real fluctuations

of the axial quark mass, which are compatible with the Hermiticity properties of the Wilson

Dirac operator. These fluctuations can be interpreted as collective fluctuations of the eigen-

values, λ5, of D5 ≡ γ5(DW +m) parallel to the real λ5-axis. Such fluctuations are allowed for

Wilson fermions since D5 is Hermitian and the symmetry (λ5,−λ5) is violated when a #= 0.
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For iWilson fermions the product γ5DiW has complex eigenvalues which come in pairs

with opposite real part (or are strictly imaginary), hence their fluctuations can only take

part in the imaginary direction. This is consistent with W7 > 0 in the chiral Lagrangian for

iWilson fermions and in perfect agreement with the fact that this sign should be opposite

to that of the chiral Lagrangian for Wilson fermions.

Finally, when W6 and W7 have opposite signs the Hermiticity properties of the shifted

Dirac operator always differ from the one realized at W6 = W7 = 0. The corresponding

Dirac operator therefore is neither γ5-Hermitian nor anti-Hermitian. The same is true if all

Wi have the same sign.

In conclusion, we explained that the signs of the low energy constants of Wilson chiral

perturbation theory follow from the γ5-Hermiticity of the Wilson Dirac operator. We have,

W6 < 0, W7 < 0 and W8 > 0. Note that both the Aoki phase with W8 + 2W6 > 0 and the

Sharpe-Singleton scenario with W8 + 2W6 < 0 are allowed by γ5-Hermiticity.

In the reminder of this paper we will work with W6 < 0, W7 < 0 and W8 > 0. Moreover,

since the low energy constant W7 does not affect the competition between the Aoki phase

and the Sharpe-Singleton scenario we will set W7 = 0.

In section VI below we show how a collective effect on the eigenvalues of DW induced by

W6 < 0 leads to a shift between the Aoki and the Sharpe-Singleton scenario. To establish

this result we will first derive the unquenched microscopic eigenvalue density of DW .

V. THE UNQUENCHED SPECTRUM OF DW

In this section we calculate the microscopic spectral density of the Wilson Dirac operator,

DW , in the presence of two dynamical flavors. We first carry through the calculation with

W6 = W7 = 0 and subsequently introduce the effects of W6. In order to derive the micro-

scopic spectral density of DW it is convenient to use Wilson chiral random matrix theory

introduced in [11], which is reviewed in Appendix A for completeness.

We start from the joint eigenvalue probability distribution of the random matrix partition

function Eq. (42). To obtain the eigenvalue density in the complex plane we integrate over

all but a complex pair of eigenvalues. Using the properties of the Vandermonde determinant
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we obtain (ẑ = x̂+ iŷ)

ρνc,Nf=2(ẑ, ẑ
∗, m̂; â8) = e−x̂2/(8â2

8
) |ŷ|e−4â2

8

16(2π)5/22â8
(ẑ − m̂)2(ẑ∗ − m̂)2

Zν
4 (ẑ, ẑ

∗, m̂, m̂; â8)

Zν
2 (m̂, m̂; â8)

.

(16)

This amazingly compact form can be simplified further. In [46] it was shown that the four

flavor partition function Zν
4 can be expressed in terms of two flavor partition functions. A

proof in terms of chiral Lagrangians is given in Appendix B. This leads to the final form for

the microscopic spectral density of DW with two dynamical flavors

ρνc,Nf=2(ẑ, ẑ
∗, m̂; â8) = e−x̂2/(8â2

8
) |ŷ|e−4â2

8

16(2π)5/22â8
Zν

2 (ẑ, ẑ
∗; â8) (17)

×
(
1−

1

2iŷ

∂m̂[Ẑν
2 (ẑ, m̂; â8)]Ẑν

2 (ẑ
∗, m̂; â8)− Ẑν

2 (ẑ, m̂; â8)∂m̂[Ẑν
2 (ẑ

∗, m̂; â8)]

Zν
2 (m̂, m̂; â8)Zν

2 (ẑ, ẑ∗; â8)

)
,

where the two flavor partition function is given by [43]

Zν
Nf=2(m̂1, m̂2; â8) =

e4â
2
8

π8â28

∫ ∞

−∞

∫ ∞

−∞

ds1ds2
(is1 − is2)

m̂1 − m̂2
(is1)

ν(is2)
νZ̃ν

2 (is1, is2; â8 = 0)

× exp

[
−

1

16â28
[(s1 + im̂1)

2 + (s2 + im̂2)
2]

]
, (18)

with

Z̃ν
2 (x1, x2; â8 = 0) =

2

xν
1x

ν
2(x

2
2 − x2

1)
det

∣∣∣∣∣∣

Iν(x1) x1Iν+1(x1)

Iν(x2) x2Iν+1(x2)

∣∣∣∣∣∣
, (19)

and we have introduced the notation Ẑν
2 (m̂1, m̂2; â8) ≡ (m̂1 − m̂2)Zν

2 (m̂1, m̂2; â8).

The expression in the first line of Eq. (17) is the quenched eigenvalue density of DW [44].

The correction factor in the second line is responsible for the eigenvalue repulsion from the

quark mass. A plot of the eigenvalue density of the Wilson Dirac operator in the complex

plane for two dynamical flavors is given in figure 2.

Note the strong similarity with the result for the eigenvalue density of the continuum

Dirac operator at nonzero chemical potential in phase quenched QCD [50]. In that case the

eigenvalue density follows from the integrable Toda lattice hierarchy [51]. The analytical

form of the eigenvalue density of the Wilson Dirac operator, Eq. (16), strongly suggests

that a similar integrable structure is present in the microscopic limit of the Wilson lattice

QCD partition function.
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FIG. 2: The microscopic spectral density of the Wilson Dirac operator for Nf = 2 flavors of equal

mass m̂ = 2 and â8 = 0.8 (â6 = â7 = 0) in the sector ν = 0. The eigenvalues form a strip centered

on the imaginary axis. Note the repulsion of the eigenvalues from the quark mass.

A. Including the effect of W6

As pointed out in [12] the graded generating function for the eigenvalue density can be

extended to include the effect of W6 and W7 by a Gaussian integral as in Eq. (13). Since

this works for the graded generating functional it also works for the spectral density itself

[12]. In the unquenched case, however, one must be careful with the normalization factor

1/Zν
Nf
(m̂; â8).

Let us start with the case where W6 = W7 = 0. Then the density of DW in the complex

plane is obtained from the graded generating function as follows

ρνc,Nf
(ẑ, ẑ∗, m̂; â8) = ∂ẑ∗Σ

ν
Nf+2|2(ẑ, ẑ

∗, m̂; â8)

= ∂ẑ∗ lim
ẑ′→ẑ

∂ẑ logZ
ν
Nf+2|2(ẑ, ẑ

∗, ẑ′, ẑ′∗, m̂; â8) , (20)

where the graded generating functional, ZNf+2|2, was introduced in Eq. (8).

To extend this to W6 < 0 we first note that the Gaussian trick, Eq. (13), also works for
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the graded generating functional. Using this we find

ρνc,Nf
(ẑ, ẑ∗, m̂; â6, â8) = ∂ẑ∗ lim

ẑ′→ẑ
∂ẑ logZ

ν
Nf+2|2(ẑ, ẑ

∗, ẑ′, ẑ′∗, m̂; â6, â8) (21)

= ∂ẑ∗ lim
ẑ′→ẑ

∂ẑ log

∫
[dy]Zν

Nf+2|2(ẑ − y, ẑ∗ − y, ẑ′ − y, ẑ′∗ − y, m̂− y; â8)

=
1

Zν
Nf

(m̂; â6, â8)

∫
[dy] Zν

Nf
(m̂− y; â8) ∂ẑ∗Σ

ν
Nf+2|2(ẑ − y, ẑ∗ − y, m̂− y; â8)

=
1

Zν
Nf

(m̂; â6, â8)

∫
[dy] Zν

Nf
(m̂− y; â8)ρ

ν
c,Nf

(ẑ − y, ẑ∗ − y, m̂− y; â8),

where we will recall the notation: [dy] = dy/(4
√
π|â6|) exp(−y2/(16|â26|)).

In order to understand the effect of W6 on the unquenched spectral density of DW we

will analyze the mean field limit of Eq. (21). As is shown in the next section the factor of

Zν
Nf

in the integrand, is essential for the realization of the Sharpe-Singleton scenario.

VI. THE SHARPE-SINGLETON SCENARIO IN THE SPECTRUM OF DW

Here we show that the Sharpe-Singleton scenario can be understood in terms of a col-

lective effect of the eigenvalues of DW induced by W6 < 0 when the quark mass changes

sign. The Sharpe-Singleton scenario is therefore not realized in the quenched theory even if

W8 + 2W6 < 0.

Before we give the proof let us first consider an electrostatic analogy which can help set

the stage. The quenched chiral condensate

∫
d2z

ρNf=0(z, z∗; a)

z −m
(22)

can be thought of as the electric field (in two dimensions) created by positive charges located

at the positions of the eigenvalues z of DW and measured at the position m (which can be

thought of as a test charge). At the point where the quark mass hits the strip of eigenvalues

ofDW centered on the imaginary axis, the mass dependence of the chiral condensate (electric

field) shows a kink. As the quark mass is lowered further (the test charge passes through

the strip of eigenvalues) the condensate (electric field) drops linearly to zero at m = 0. The

drop is linear because the eigenvalue density is uniform.

For the unquenched chiral condensate we reach an identical conclusion provided that

the quark mass (test charge) only has a local effect on the eigenvalues, i.e. it only affects
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eigenvalues close to the quark mass. This is the case for the Aoki phase when the quark

mass is inside the strip of eigenvalues of DW .

On the contrary, in order to realize the first order Sharpe-Singleton scenario the quark

mass must have a collective effect on the eigenvalues of DW such that the strip of eigenvalues

is entirely to the left of the quark mass for small positive values of m and then at m = 0

the strip collectively jumps to the opposite side of the origin such that for small negative

values of the quark mass the strip of eigenvalues is to the right of m. The collective jump of

the eigenvalues at m = 0 flips the sign of the chiral condensate (electric field) in agreement

with the Sharpe-Singleton scenario.

In order to show that the Sharpe-Singleton scenario is indeed realized in terms of the

eigenvalues of DW in the manner described above let us analyze the effect of W6 < 0 on the

eigenvalues of DW .

A. The mean field eigenvalue density of DW

In the mean field limit the density of eigenvalues of DW at â6 = 0 is simply given by a

uniform strip of half width 8â28/Σ centered on the imaginary axis (the deriviation of this

result is analogous to the one for nonzero chemical potential, see [49, 52])

ρMF
c,Nf=2(x̂, m̂; â8) = θ(8â28 − |x̂|). (23)

This result is identical to the quenched mean field spectral density since the correction factor

in the second line of Eq. (17) only has an effect on the microscopic scale (the direct repulsion

of the eigenvalues from the quark mass has a microscopic range).

To include the effect of â6 we use the Gaussian trick discussed in Eq. (21). The simplest

way to proceed is to take the mean field limit before the y6-integration, we find

ρMF
c,Nf=2(x̂, m̂; â6, â8) =

1

ZMF
2 (m̂; â6, â8)

∫
dy6 e−y2

6
/16|â2

6
|ZMF

2 (m̂− y6; â8)θ(8â
2
8 − |x̂− y6|).

(24)

Note the essential way in which the two flavor partition function enters both in numerator

and the denominator. This is what separates the mean field calculation with dynamical

fermions from the quenched analogue.

The mean field result for the two flavor partition function with â6 = 0 is given by

ZMF
2 (m̂; â8) = e2m̂−4â2

8 + e−2m̂−4â2
8 + θ(8â28 − |m̂|)em̂2/8â2

8
+4â2

8 . (25)
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The â6 dependence can again be restored by means of introducing an additional Gaussian

integral. In the mean field limit this results in

ZMF
2 (m̂; â6, â8) = e2m̂+16|â2

6
|−4â2

8 + e−2m̂+16|â2
6
|−4â2

8 (26)

+θ(8(â28 + 2â26)− |m̂|)em̂2/8(â2
8
−2|â2

6
|)+4â2

8 .

Note that when 2â26 + â28 < 0 the term in the second line of this equation is absent. The

final result for the mean field two flavor eigenvalue density of DW is

ρMF
c,Nf=2(x̂, m̂; â6, â8) =

1

ZMF
2 (m̂; â6, â8)

(27)

×
{
e2m̂+16|â2

6
|−4â2

8θ(8â28 − |x̂+ 16|â6|2|)

+e−2m̂+16|â2
6
|−4â2

8θ(8â28 − |x̂− 16|â6|2|)

+θ(8(â28 + 2â26)− |m̂|)θ
(
8â28 −

∣∣∣∣x̂+
2|â6|2m̂

(â28 − 2|â6|2)

∣∣∣∣

)
em̂

2/8(â2
8
−2|â2

6
|)+4â2

8

}
.

A derivation of this result which includes the fluctuations around the saddle points is given

in Appendix C.

In order to access the Sharpe-Singleton scenario let us consider the case where m̂ is small

compared to 16|â26|− 8â28 which is taken large and positive.

The terms in the second line of Eq. (27) give rise to a strip of eigenvalues of half width

8â28/Σ centered at -16|â26|/Σ while the term in the third line gives rise to a strip of eigenvalues

of half width 8â28/Σ centered at 16|â26|/Σ. The relative height of the two strips is exp(4m̂).

Therefore even though the magnitude of m̂ is relatively small it has a dramatic effect:

As the sign of m̂ changes from positive to negative values the entire strip of eigenvalues

jumps from its position around -16|â26|/Σ to the new position around 16|â26|/Σ. For a plot

see figure 3. Because of the exponential suppression of one of the strips, the jump of the

support of the spectrum occurs on a scale of m̂ ∼ O(1) or m ∼ 1/V Σ and leads to the first

order discontinuity of the chiral condensate at m = 0 as predicted by the Sharpe-Singleton

scenario.

In the continuum limit the chiral condensate also jumps from Σ to −Σ on a scale of

m̂ ∼ O(1) or m ∼ 1/V Σ, but in this case the difference in the potential between the two

minima is of O(m̂) as opposed to O(â26) for the Sharpe-Singleton scenario.

14
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FIG. 3: The Wilson Dirac spectrum for the Sharpe-Singleton scenario: Shown is the mean field

spectral density of the Wilson Dirac operator for Nf = 2 with â6 = 3i and â8 = 3 (â7 = 0) as a

function of x̂ = Re[ẑ] (the mean field density is independent of ŷ = Im[ẑ]). The choice of â6 and

â8 corresponds to a negative value of W8 + 2W6 and hence the Sharpe-Singleton scenario. The

two flavors have equal mass m̂ = 5 (top) and m̂ = −5 (bottom). Even though the quark mass,

marked by x on the x-axis, only changes by a small amount compared to the size of the gap the

entire strip of eigenvalues jumps to the opposite side of the origin. This leads to the first order

jump of the chiral condensate at m = 0.

The terms in the mean field two flavor partition function, see Eq. (25), are directly

responsible for the jump of the eigenvalue density at m̂ = 0 in the theory with dynamical

quarks. In the corresponding quenched computation we simply have

ρMF
c,Nf=0(x̂; â6, â8) =

∫
dy6 e−y2

6
/16|â2

6
|θ(8â28 − |x̂− y6|), (28)

which leads to a single strip of eigenvalues centered at the imaginary axis independent of
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the value of W6

ρMF
c,Nf=0(x̂; â6, â8) = θ(8â28 − |x̂|). (29)

B. The connection to the mean field results of Sharpe and Singleton

From the results of the previous subsection we see that the gap from the quark mass to

the edge of the strip of eigenvalues of DW is given by

|m|− 8(W8 + 2W6)a
2/Σ. (30)

In [2] it was found that the pion masses for |m|Σ > 8(W8 + 2W6)a2 are given by

m2
πF

2
π

2
= |m|Σ− 8(W8 + 2W6)a

2. (31)

Hence the gap from the quark mass to the edge of the strip of eigenvalues of DW can be

thought of as the effective quark mass that enters the standard form of the GOR-relation.

In particular, note that for W8 + 2W6 < 0 the mass never reaches the strip of eigenvalues.

Correspondingly, the minimal value of the pion mass is given by

m2
πF

2
π

2
= −8(W8 + 2W6)a

2, (32)

again in perfect agreement with the leading order p-regime computation of [2].

C. Direct computation of the quenched and unquenched condensate

From the essential part played by the dynamical fermion determinant in the realization

of the Sharpe-Singleton scenario in terms of the eigenvalues of the Wilson Dirac operator we

conclude that the Sharpe-Singleton first order scenario only takes place in the theory with

dynamical quarks. Here we explicitly compute the quenched and unquenched microscopic

chiral condensate and directly verify that the first order jump of the chiral condensate at

m = 0 only takes place in the theory with dynamical quarks.
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FIG. 4: The Sharpe-Singleton first order phase transition is due to dynamical quarks and is not

present in the quenched case even if W8 + 2W6 < 0. Shown is the microscopic chiral condensate

as a function of the quark mass for â8 = 1 and â6 = 0, 0.5i and i corresponding to W8 + 2W6 > 0,

W8+2W6 = 0 and W8+2W6 < 0, respectively. Left Nf = 0: In the quenched case there is hardly

any effect of W6 < 0. Right Nf = 2: For two flavors the increasingly negative W6 drives the

system from the Aoki phase to the Sharpe-Singleton scenario as can be seen by the formation of

the discontinuity of the chiral condensate on a scale of m ∼ 1/V .

The unquenched microscopic chiral condensate is obtained from the microscopic partition

function by

Σν
Nf

(m̂; âi) =
1

Nf

1

Zν
Nf

d

dm̂
Zν

Nf
(m̂; âi). (33)

Specifically, for two mass degenerate flavors we have [11]

Σν
Nf=2(m̂, m̂; âi) =

1

2

1

Zν
Nf=2(m̂; âi)

(34)

×
∫ π

−π

dθ1dθ2|eiθ1 − eiθ2 |2eiν(θ1+θ2)(cos θ1 + cos θ2)

× exp
[
m̂(cos θ1 + cos θ2)− 4â26(cos θ1 + cos θ2)

2 − 2â28(cos(2θ1) + cos(2θ2))
]

with

Zν
Nf=2(m̂; âi) =

∫ π

−π

dθ1dθ2|eiθ1 − eiθ2 |2eiν(θ1+θ2) (35)

× exp
[
m̂(cos θ1 + cos θ2)− 4â26(cos θ1 + cos θ2)

2 − 2â28(cos(2θ1) + cos(2θ2))
]
.
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The quenched condensate was derived in [12, 22]

Σν
Nf=0(m̂; âi) =

∫ ∞

−∞

ds

∫ π

−π

dθ

2π
sin(θ)e(iθ−s)ν exp[−m̂ sin(θ)− im̂ sinh(s)− ε cosh s

+4â26(−i sin(θ) + sinh(s))2 + 4â27(cos(θ)− cosh(s))2 + 2â28(cos(2θ)− cosh(2s))]

×
(
−

m̂

2
sin(θ) + i

m̂

2
sinh(s)− 4(â26 + â27)(sin

2(θ) + sinh2(s))

+2â28(cos(2θ) + cosh(2s) + eiθ+s + e−iθ−s) +
1

2

)
. (36)

In Refs. [12, 22], its imaginary part was studied since it is directly related to the real

eigenvalues of DW . Here we are after the quenched condensate itself which is given by its

real part. Figure 4 compares the behavior of the quenched chiral condensate and the chiral

condensate for Nf = 2 for three sets of values of W6 and W8. While the first order jump

forms in the thermodynamic limit for the condensate with dynamical quarks when W8+2W6

turns negative the kink in the mass dependence of the quenched condensate remains. This

directly verifies that the Sharpe-Singleton scenario is absent in quenched theory independent

of the value of W6.

Note that the authors of [6] concluded that both the Aoki phase and the Sharpe-Singleton

scenario are possible in the quenched theory. They reached this conclusion because they

worked in the large Nc limit in which W6 and W7 vanish, and because the constraint on the

sign of W8 was not known at the time.

VII. CONCLUSIONS

The first order scenario of Sharpe and Singleton for lattice QCD with Wilson fermions

has been studied from the perspective of the eigenvalues of the Wilson Dirac operator. The

behavior of the Wilson Dirac eigenvalues not only gives constraints on the additional low

energy parameters of Wilson chiral perturbation theory (W6 < 0, W7 < 0 and W8 > 0),

it also allows us to explain the way in which the first order discontinuity of the chiral

condensate is realized. In particular, we have shown that the associated collective jump of

the spectrum of the Wilson Dirac operator only occurs in the theory with dynamical quarks.

The Sharpe-Singleton scenario is therefore not realized in the quenched theory which enters

in the Aoki phase at sufficiently small quark mass. By a direct computation of the quenched

microscopic chiral condensate we verified that the second order phase transition occurs in

the quenched theory even if W8 + 2W6 < 0. This explains the puzzle why the Aoki phase
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dominates in the chiral limit of quenched lattice simulations while both the Aoki phase and

the Sharpe-Singleton scenario have been observed in lattice QCD with dynamical Wilson

fermions.

The above conclusion was made possible by the computation of the exact analytical result

for the microscopic spectral density of the Wilson Dirac operator in lattice QCD with two

dynamical flavors. The explicit form of the microscopic expression allowed us to compute

the mean field eigenvalue density and in turn make a direct connection to the original leading

order p-regime results of Sharpe and Singleton.

It would be most interesting to test the predictions presented in this paper against dy-

namical lattice QCD simulations. Since the effects of W6 and W8 on the spectrum of DW

in the unquenched theory are drastically different this offers a direct way to determine the

values of these low energy constants. An early lattice study of the Wilson Dirac eigenvalues

in dynamical simulations with light quarks appeared in [53].

Finally, since the additional low energy constants of Wilson chiral perturbation theory

parameterize the discretization errors, it is also most interesting to consider the effects of

improvements of the lattice action on the unquenched spectrum of the Wilson Dirac operator

[54].
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Appendix A. WILSON RANDOM MATRIX THEORY

In order to derive the microscopic spectral density of DW it is convenient to use Wilson

chiral random matrix theory introduced in [11].

The partition function of Wilson chiral random matrix theory is defined as

Z̃ν
Nf

=

∫
dAdBdW

Nf∏

f=1

det(D̃W + m̃f) P(A,B,W ). (37)

The matrix integrals are over the complex Haar measure.
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The random matrix analogue of the Wilson Dirac operator is

D̃W =



 ãA iW

iW † ãB



 , (38)

where

A = A† and B† = B (39)

are (n+ν)×(n+ν) and n×n complex matrices, respectively, and W is an arbitrary complex

(n+ ν)× n matrix. Finally, the weight is

P(A,B,W ) ≡ exp

[
−
N

4
Tr[A2 +B2]−

N

2
Tr[WW †]

]
, (40)

where N = 2n+ ν.

As was shown in Ref. [12], the Wilson random matrix partition function matches the

microscopic partition function of Wilson chiral perturbation theory in the limit N → ∞

with Nm̃ and Nã2 fixed provided that we identify

Nm̃ = mΣV ,
Nã2

4
= a2W8V. (41)

An eigenvalue representation of the partition function was derived in [44]

Z̃ν
Nf

=

∫
dZ ∆2n+ν(Z)

n∏

a=1

(zar −m)Nf

n+ν∏

b=1

(zbl −m)Nf

n∏

a=1

g2(zal, zar)
ν∏

b=1

zb−1
bl g1(zbl)(42)

where Z = (z1r . . . , znr, z1l, . . . , zn+ν,l) are the 2n+ ν eigenvalues of DW and

g1(z) =

√
n

2πã2
exp

[
−

n

2ã2
x2
]
δ(y), (43)

and

g2(z1, z2) =

√
n3

4πã2(1 + a2)

z∗1 − z∗2
|z1 − z2|

×
[
exp

[
−
n(x1 + x2)2

4ã2
−

n(y1 − y2)2

4

]
δ(2)(z1 − z∗2)

+
1

2
exp

[
−

n

4ã2
(x1 + x2)

2 +
n

4
(x1 − x2)

2
]

× erfc

[√
n(1 + ã2)

2ã
|x1 − x2|

]

δ(y1)δ(y2)

]

. (44)

Finally, ∆(Z) is the Vandermonde determinant of the 2n+ ν eigenvalues.

In section V we use this eigenvalue representation to derive the general form of the

unquenched spectral density of DW .
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Appendix B. SIMPLIFICATION OF THE PARTITION FUNCTION

In this appendix we express the general partition function with even Nf in terms of a

Pfaffian of two flavor partition functions. This Pfaffian form was first given in [46]. Here

we give a proof in terms of chiral Lagrangians rather than random matrix theories. In

particular, we explicitly express the four flavor partition function entering Eq. (16) in terms

of two flavor partition functions.

We start from the general Nf microscopic partition function, Eq. (5), with â6 = â7 = 0

and make use of the identity

exp
[
â28Tr(U

2 + U−2)
]
= exp

[
2Nf â

2
8 + â28Tr(U − U−1)2

]
,

= ce2Nf â28

∫
dσ exp

[
Trσ2

16â28
+

i

2
Trσ(U − U−1)

]
, (45)

where σ is an Nf ×Nf anti-Hermitian matrix and c a normalization constant. After a shift

of σ by M we obtain

Zν
Nf
(M; â8) = ce2Nf â28

∫
dσ

∫
dU detν(iU) exp

[
Tr(σ −M)2

16â28
+

i

2
Tr σ(U − U−1)

]
. (46)

The next step is to decompose σ = uSu−1 with S a diagonal matrix and perform the

integration over u by the Itzykson-Zuber integral. We find

Zν
Nf
(M; â8) =

e2Nf â28

(16πâ28)
Nf/2

∫
ds

∆(S)

∆(M)
exp

[
Tr(S −M)2

16â28

]

×
∏

k

(isk)
νZ̃ν

Nf

({
isk
}
; â8 = 0

)
. (47)

The Vandermonde determinant is defined by

∆(x1, · · · , xp) =
p∏

k>l

(xk − xl), (48)

and an explicit expression for the partition function at â8 = 0 is given by

Z̃ν
Nf

(x1, · · · , xNf
; â8 = 0) (49)

= c

(
1

∏Nf

k=1 xk

)ν
det[(xk)l−1Iν+l−1(xk)]

∆(x2
1, · · · , x2

Nf
)

.

We have that

∆(xk)
∏

k

(xk)
νZ̃ν

Nf
(xk; â8 = 0) =

∆(xk)

∆(x2
k)

det xl−1
k Iν+l−1(xk), (50)
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which we will denote by the symbol D. We now express D as a Pfaffian.

By using recursion relations for Bessel functions, D can be rewritten as

D ≡
∆(xk)

∆(x2
k)

det xl−1
k Iν+P (l−1)(xk), (51)

where P (k) = (1 − (−1)k)/2. Writing the determinant as a sum over permutations and

splitting the permutations into permutations of odd integers, πo, even integers, πe, and the

mixed permutations of even and odd integers, πeo, we obtain

D ≡
∆(xk)

∆(x2
k)

∑

πeo

(−1)σ
eo
∑

πe

∑

πo

(−1)σ
e+σo

n−1∏

l=0 odd

x2l
πo(l)Iν(xπo(l))

n−1∏

l=0 even

x2l+1
πe(l)Iν+1(xπe(l)). (52)

The permutation over the even and odd integers can be resummed into a Vandermonde

determinant

∑

πo

n−1∏

l=0 odd

(−1)σ
o

x2l
πo(l)Iν(xπo(l)) = ∆(x2

ko)
∏

ko odd

Iν(xko)

∑

πe

n−1∏

l=0 even

(−1)σ
e

x2l+1
πe(l)Iν+1(xπe(l)) = ∆(x2

ke)
∏

ke even

Iν+1(xke). (53)

Next we combine the Vandermonde determinants as

∆(x2
ko)∆(x2

ke)∆(xk)

∆(x2
k)

=
∆(xke)∆(xko)Γ(xko , xke)

Γ(x2
ko , x

2
ke)

=
∆(xke)∆(xko)

Γ(xko,−xke)

= det
1

xko + xle
(54)

with

Γ(xk, yk) =
∏

k,l

(xk − yl). (55)

The combination D can thus be written as

D =
∑

πeo

(−1)σ
eo

det
Iν(xko)xleIν+1(xle)

xko + xle
. (56)

The determinant is a sum over permutations of even and odd integers which together with

πeo can be combined into a sum over all permutations

D =
∑

π

(−1)σ
Iν(xπ(k))xπ(l)Iν+1(xπ(l))

xπ(k) + xπ(l)
, (57)
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which is equal to the Pfaffian

D = Pf

[
Iν(xk)xlIν+1(xl)− Iν(xl)xkIν+1(xk)

xk + xl

]
, (58)

where we have recovered the Pfaffian structure of [46]. This leads to [46]

Zν
Nf
(M; â8) =

1

∆(M)
Pf[(m̂j − m̂i)Z

ν
Nf=2(m̂j , m̂i; â8)]j,i=1,...,Nf

. (59)

The alternative proof given here shows that the result is manifestly universal.

A. The four flavor partition function

For the four flavor partition function entering Eq. (16) the Pfaffian structure yields

Zν
Nf=4(ẑ, ẑ

∗, m̂3, m̂4; â8) =
Zν

2 (ẑ, ẑ
∗; â8)Zν

2 (m̂3, m̂4; â8)

(ẑ − m̂3)(ẑ − m̂4)(ẑ∗ − m̂3)(ẑ∗ − m̂4)
(60)

−
Zν

2 (ẑ, m̂3; â8)Zν
2 (ẑ

∗, m̂4; â8)

(ẑ − ẑ∗)(ẑ − m̂4)(ẑ∗ − m̂3)(m̂3 − m̂4)

+
Zν

2 (ẑ
∗, m̂3; â8)Zν

2 (ẑ, m̂4; â8)

(ẑ − ẑ∗)(ẑ − m̂3)(ẑ∗ − m̂4)(m̂3 − m̂4)
.

The latter two terms form a derivative in the limit m̂3 → m̂4 = m̂

Zν
4 (ẑ, ẑ

∗, m̂, m̂; â8) =
Zν

2 (ẑ, ẑ
∗; â8)Zν

2 (m̂, m̂; â8)

(ẑ − m̂)2(ẑ∗ − m̂)2
(61)

−
∂m̂[Ẑν

2 (ẑ, m̂; â8)]Ẑν
2 (ẑ

∗, m̂; â8)− Ẑν
2 (ẑ, m̂; â8)∂m̂[Ẑν

2 (ẑ
∗, m̂; â8)]

(ẑ − ẑ∗)(ẑ − m̂)2(ẑ∗ − m̂)2
.

With this we have succeeded in expressing the four flavor partition function in terms of the

two flavor partition function. This form inserted in Eq. (16) leads to Eq. (17).

Appendix C. MEAN FIELD INCLUDING FLUCTUATIONS

Here we compute the mean field eigenvalue density of DW including the fluctuations

about the saddle points. In Appendix CA we derive the mean field limit of the two flavor

partition function. A mean field approximation for the four flavor partition function that

enters in the spectral density, (21), is given in Appendix CB, and the mean field result

for the spectral density is derived in Appendix CC. We discuss the explicit dependence on

the low energy constants W6 and W8 and give the result both for the Aoki phase and the

Sharpe-Singleton scenario. As explained in section IV we have W6 < 0 and W8 > 0.
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A. The two flavor partition function

We consider the two-flavor partition function

Zν
2 (m̂; â6, â8) =

∫

U(2)

exp

[
m̂

2
Tr(U + U−1) + |â6|2[Tr(U + U−1)]2 − â28Tr(U

2 + U−2)

]
(62)

× detνUdµ(U)

=
1

2π2

∫

[0,2π]2

exp
[
m̂(cosϕ1 + cosϕ2) + 4|â6|2(cosϕ1 + cosϕ2)

2
]

× exp
[
−4â28(cos

2 ϕ1 + cos2 ϕ2) + 4â28
]
eıν(ϕ1+ϕ2) sin2

(
ϕ1 − ϕ2

2

)
d[ϕ]

=
1

2π2

∫

[0,2π]2

exp

[

−2(â28 − 2|â6|2)
(
cosϕ1 + cosϕ2 −

m̂

4(â28 − 2|â6|2)

)2
]

eıν(ϕ1+ϕ2)

× exp

[
−2â28(cosϕ1 − cosϕ2)

2 + 4â28 +
m̂2

8(â28 − 2|â6|2)

]
sin2

(
ϕ1 − ϕ2

2

)
d[ϕ].

From the exponent we recognize that in the mean field limit we always have

cosϕ1 = cosϕ2. (63)

For â28 + 2â26 < 0 the solution of

cosϕ1 + cosϕ2 =
m̂

4(â28 − 2|â6|2)
(64)

is a minimum and does not contribute in the mean field limit (this is the case of the Sharpe-

Singleton scenario). Therefore the maxima can only come from

sinϕ1 = sinϕ2 = 0. (65)

In combination with Eq. (63) this yields the two solutions cosϕ1 = cosϕ2 = ±1.

We make the following expansion

ϕ(+)
1/2 = δϕ1/2, cosϕ(+)

1/2 = 1−
1

2
δϕ2

1/2,

ϕ(−)
1/2 = π + δϕ1/2, cosϕ(−)

1/2 = −1 +
1

2
δϕ2

1/2. (66)

The maximum of the two points is at cosϕ1/2 = sign m̂. Thus we obtain the two flavor
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partition function

ZMF
2 (m̂; â6, â8) =

1

8π2
exp

[
2|m̂|+ 16|â6|2 − 4â28

]
(67)

×
∫

R2

exp

[
−
(
|m̂|
2

+ 8|â6|2 − 4â28

)
(δϕ2

1 + δϕ2
2)

]
(δϕ1 − δϕ2)

2d[δϕ]

=
exp [2|m̂|+ 16|â6|2 − 4â28]

2π(|m̂|+ 16|â6|2 − 8â28)2

for â28 + 2â26 < 0.

For â28+2â26 > 0 (i.e. in the Aoki phase) the saddlepoint given in Eq. (64), is a maximum.

Hence we have to take it into account in the saddlepoint analysis if the right hand side

of Eq. (64) is in the interval [−2, 2]. Thereby we recognize that there are actually four

saddlepoints fulfilling both conditions (63) and (64). The two angles may have the same

sign or the opposite one. Those with the same sign are algebraically suppressed by the sin2

in the measure.

Let ϕ0 = arcos(m̂/(8â28 − 16|â6|2)). The expansion about ±ϕ0 is given by

ϕ(+)
1/2 = ±ϕ0 + δϕ1/2, cosϕ(+)

1/2 =
m̂

8â28 − 16|â6|2
∓ sinϕ0δϕ1/2,

ϕ(−)
1/2 = ∓ϕ0 + δϕ1/2, cosϕ(−)

1/2 =
m̂

8â28 − 16|â6|2
± sinϕ0δϕ1/2. (68)

The simplified integral which we have to solve is

1

2π2

∫

R2

exp
[
−2(â28 − 2|â6|2) sin2 ϕ0 (δϕ1 − δϕ2)

2] eıν(ϕ1+ϕ2) (69)

× exp

[
−2â28 sin

2 ϕ0(δϕ1 + δϕ2)
2 + 4â28 +

m̂2

8(â28 − 2|â6|2)

]
sin2 ϕ0d[δϕ]

=
1

8π
√

â28(â
2
8 − 2|â6|2)

exp

[
4â28 +

m̂2

8(â28 − 2|â6|2)

]
.

Hence the two flavor partion function is given by

ZMF
2 (m̂; â6, â8) =

exp [2|m̂|+ 16|â6|2 − 4â28]

2π(|m̂|+ 16|â6|2 − 8â28)
2

(70)

+
1

4π
√
â28(â

2
8 − 2|â6|2)

exp

[
4â28 +

m̂2

8(â28 − 2|â6|2)

]
θ(8â28 − 16|â6|2 − |m̂|)

for â28 + 2â26 > 0. Please notice that the second term results from two saddlepoints at ±ϕ0

and only appears in a certain range of the quark mass. Moreover the result (70) is also valid

for â28 + 2â26 < 0 since the Heavyside distribution vanishes in this regime.
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B. The modified four flavor partition function

We consider the four flavor partition function which for W6 < 0 can be written as

Z̃ν
4 (ẑ, ẑ

∗, m̂; â6, â8) =

√
â28 + 2|â6|2

4
√
π|â6|â8

|ŷ||ẑ − m̂|4
∫

R

dy6 exp

[
−

y26
16|â6|2

−
(x̂− y6)2

8â28
− 4â28

]

× Zν
4 (ẑ − y6, ẑ

∗ − y6, m̂− y6; â8) (71)

= |ŷ||ẑ − m̂|4
∫

U(4)

exp

[
1

2
Tr diag(m̂, m̂, ẑ, ẑ∗)(U + U−1)− â28Tr(U

2 + U−2)

]

× exp

[
4|â6|2â28

â28 + 2|â6|2

(
1

2
Tr(U + U−1)−

x̂

4â28

)2

−
x̂2

8â28
− 4â28

]

detνUdµ(U)

= ı
64

π4
sign(ŷ)

∫

[0,2π]4

d[ϕ]
∏

1≤i<j≤4

sin2

(
ϕi − ϕj

2

)
exp

[

−4â28

4∑

j=1

cos2 ϕj + 8â28

]

× exp



 4|â6|2â28
â28 + 2|â6|2

(
4∑

j=1

cosϕj −
x

4â28

)2

−
x̂2

8â28
− 4â28 + ıν

4∑

j=1

ϕj





×
det [exp[m̂ cosϕj ], cosϕj exp[m̂ cosϕj ], exp[ẑ cosϕj ], exp[ẑ∗ cosϕj ]]∏

1≤i<j≤4
(cosϕi − cosϕj)

=
32

π4
exp[4â28]

∫

[0,2π]4

d[ϕ]
∏

1≤i<j≤4

sin2

(
ϕi − ϕj

2

)
eıν(ϕ1+ϕ2+ϕ3+ϕ4)

∑

ω∈S(4)

×
exp

[
−2â28(cosϕω(1) − cosϕω(2))2 − 2â28(cosϕω(3) − cosϕω(4))2

]

(cosϕω(1) − cosϕω(3))(cosϕω(1) − cosϕω(4))(cosϕω(2) − cosϕω(3))(cosϕω(2) − cosϕω(4))

×
sin
[
|ŷ|(cosϕω(3) − cosϕω(4))

]

cosϕω(3) − cosϕω(4)

× exp
[
(4|â6|2 − 2â28)(cosϕω(1) + cosϕω(2))

2 + m̂(cosϕω(1) + cosϕω(2))
]

× exp

[
−

1

8(â28 + 2|â6|2)
[x̂+ 8|â6|2(cosϕω(1) + cosϕω(2))− 4â28(cosϕω(3) + cosϕω(4))]

2

]
.

The permutation group of four elements is denoted by S(4).

In the mean field limit we have to expand the partition function about the maxima of

the exponent. Omitting the permutations we identify two imediate conditions,

cosϕ(0)
1 = cosϕ(0)

2 and cosϕ(0)
3 = cosϕ(0)

4 . (72)

This is solved by

ϕ(0)
1 = −ϕ(0)

2 and ϕ(0)
3 = −ϕ(0)

4 . (73)
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Other choices are supressed by the Vandermonde determinant. Hence we have to maximize

the function

f(x,ϕ1) = exp
[
8(2|â6|2 − â28) cos

2 ϕ1 + 2m̂ cosϕ1

]

× exp

[
−

1

8(â28 + 2|â6|2)
[x̂+ 16|â6|2 cosϕ1 − 8â28 cosϕ3]

2

]
. (74)

We consider the case â28 + 2â26 < 0 (the Sharpe-Singleton scenario). Therefore the ex-

tremum for cosϕ1 is a minimum and not a maximum. The situation would be completely

different for â28 + 2â26 > 0, see discussion after Eq. (83).

The maximum of f(x,ϕ1) for all x is given by

max
x∈R

f(x,ϕ1) = exp
[
8(2|â6|2 − â28) cos

2 ϕ1 + 2m̂ cosϕ1

]
. (75)

This result takes its maximum at cosϕ(0)
1 = signm yielding

max
x∈R,ϕ1∈[0,2π]

f(x,ϕ1) = exp
[
16|â6|2 − 8â28 + 2|m̂|

]
. (76)

In the integral (71) this maximum should be inside the interval

x̂ ∈
[
−8â28 − 16|â6|2sign m̂, 8â28 − 16|â6|2sign m̂

]
. (77)

The condition for the second integral is then

cosϕ(0)
3 =

x̂+ 16|â6|2sign m̂
8â28

. (78)

We make the following expansion

ϕ1 =
1− sign m̂

2
π + δϕ1, cosϕ1 = sign m̂−

sign m̂

2
δϕ2

1, (79)

ϕ2 = −
1 − sign m̂

2
π + δϕ2, cosϕ2 = sign m̂−

sign m̂

2
δϕ2

2,

ϕ3 = ϕ(0)
3 + δϕ3, cosϕ3 = cosϕ(0)

3 − sinϕ(0)
3 δϕ3,

ϕ4 = −ϕ(0)
3 + δϕ4, cosϕ4 = cosϕ(0)

3 + sinϕ(0)
3 δϕ4.

This expansion is substituted into Eq. (71) and we omit the sum since each term gives the
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same contribution and the degeneracy of the maximum,

Z̃MF
4 (ẑ, ẑ∗, m̂; â6, â8) = 24

(
2

π

)4

exp[4â28]

∫

R4

d[δϕ] sin2 ϕ(0)
3 sin8

(
1− sign m̂

4
π −

ϕ(0)
3

2

)

× (δϕ1 − δϕ2)
2

exp
[
−2â28 sin

2 ϕ(0)
3 (δϕ3 + δϕ4)2

]

(sign m̂− (x̂+ 16|â6|2sign m̂)/8â28)4

sin
[
|ŷ| sinϕ(0)

3 (δϕ3 + δϕ4)
]

sinϕ(0)
3 (δϕ3 + δϕ4)

(80)

× exp

[
−
(
|m̂|
2

+ 8|â6|2 − 4â28

)
(δϕ2

1 + δϕ2
2) + 2|m̂|+ 16|â6|2 − 8â28

]

× exp

[
−

2â48
(â28 + 2|â6|2)

sin2 ϕ(0)
3 [δϕ3 − δϕ4]

2

]
θ(8â28 − |x̂+ 16|â6|2sign m̂|).

This integral decouples into two two-fold integrals. We need the following integral for large

|y|,
∫

R

exp[−2â28λ
2]
sin(|ŷ|λ)

λ
dλ = πerf

[
|ŷ|√
8â8

]
|ŷ|"1
= π, (81)

where erf is the error function and use the identity

sin8

(
1− sign m̂

4
π −

ϕ(0)
3

2

)

=
1

2

(
1− cos

(
1− sign m̂

2
π − ϕ(0)

3

))4

=
1

16

(
1− sign m̂ cosϕ(0)

3

)4

=
1

16
(sign m̂− (x̂+ 16|â6|2sign m̂)/8â28)

4. (82)

Then the final result for the partition function is given by

Z̃MF
4 (ẑ, ẑ∗, m̂; â6, â8) = 3

(
2

π

)3/2
√

â28 + 2|â6|2
â28

exp [2|m̂|+ 16|â6|2 − 4â28]

(|m̂|/2 + 8|â6|2 − 4â28)
2

× θ(8â28 − |x̂+ 16|â6|2sign m̂|) (83)

for â28 + 2â26 < 0 (in the Sharpe Singleton scenario).

In the Aoki phase, â28 + 2â26 > 0, the extremum for cosϕ1 is a maximum, cf. Eq. (74).

However it will only contribute if

|m̂| ≤ 8â28 − 16|â6|2 (84)

and
∣∣∣∣x̂+

2|â6|2m̂
â28 − 2|â6|2

∣∣∣∣ ≤ 8â28. (85)
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Then the saddlepoint changes to

cosϕ(0)
1 =

m̂

8â28 − 16|â6|2
, (86)

cosϕ(0)
3 =

x̂

8â28
+

|â6|2m̂
4â28(â

2
8 − 2|â6|2)

.

Hence the expansion about the saddle points is given by

ϕ1 = ϕ(0)
1 + δϕ1, cosϕ1 = cosϕ(0)

1 − sinϕ(0)
1 δϕ2, (87)

ϕ2 = −ϕ(0)
1 + δϕ2, cosϕ2 = cosϕ(0)

1 + sinϕ(0)
1 δϕ2,

ϕ3 = ϕ(0)
3 + δϕ3, cosϕ3 = cosϕ(0)

3 − sinϕ(0)
3 δϕ3,

ϕ4 = −ϕ(0)
3 + δϕ4, cosϕ4 = cosϕ(0)

3 + sinϕ(0)
3 δϕ4.

The degeneracy of this maximum is four which results in the integral

3
210

π4
exp[4â28]

∫

R4

d[δϕ] sin2 ϕ(0)
1 sin2 ϕ(0)

3 sin4

(
ϕ(0)
1 − ϕ(0)

3

2

)

sin4

(
ϕ(0)
1 + ϕ(0)

3

2

)

×
exp

[
−2â28 sin

2 ϕ(0)
1 (δϕ1 + δϕ2)2 − 2â28 sin

2 ϕ(0)
3 (δϕ3 + δϕ4)2

]

(cosϕ(0)
1 − cosϕ(0)

3 )4

×
sin
[
|ŷ| sinϕ(0)

3 (δϕ3 + δϕ4)
]

sinϕ(0)
3 (δϕ3 + δϕ4)

× exp

[
(4|â6|2 − 2â28) sin

2 ϕ(0)
1 (δϕ1 + δϕ2)

2 +
m̂2

8â28 − 16|â6|2

]

× exp

[
−

2

â28 + 2|â6|2
[
2|â6|2 sinϕ(0)

1 (δϕ1 − δϕ2)− â28 sinϕ
(0)
3 (δϕ3 − δϕ4)

]2]

= 6

(
2

π

)3/2 1

â28

√
â28 + 2|â6|2
â28 − 2|â6|2

exp

[
m̂2

8â28 − 16|â6|2
+ 4â28

]
. (88)

Combining this with the result (83) for â28 + 2â26 < 0 we find

Z̃MF
4 (ẑ, ẑ∗, m̂; â6, â8) = 3

(
2

π

)3/2
√
â28 + 2|â6|2

â28

exp [2|m̂|+ 16|â6|2 − 4â28]

(|m̂|/2 + 8|â6|2 − 4â28)2

× θ(8â28 − |x̂+ 16|â6|2sign m̂|) + 6

(
2

π

)3/2 1

â38

√
â28 + 2|â6|2
â28 − 2|â6|2

× exp

[
m̂2

8â28 − 16|â6|2
+ 4â28

]
θ(8â28 − 16|â6|2 − |m̂|)θ

(
8â28 −

∣∣∣∣x̂+
2|â6|2m̂

(â28 − 2|â6|2)

∣∣∣∣

)
.(89)

This formula applies to both scenarios since the Heavyside distribution puts the second term

to zero in the Sharpe-Singleton scenario.
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C. The unquenched level density

Combining the mean field limit of the numerator and denominator of Eq. (21) given by

Eq. (70) and Eq. (89), respectively, we obtain

ρMF
c,Nf=2(x̂, m̂; â6, â8) =

1

32(2π)5/2
√

â28 + 2|â6|2
Z̃MF

4 (ẑ, ẑ∗, m̂; â6, â8)

ZMF
2 (m̂; â6, â8)

(90)

=
3

(2π)3
1

â28

[
θ(2|â6|2 − â28)θ(8â

2
8 − |x̂+ 16|â6|2sign m̂|)

+ θ(8â28 − 16|â6|2 − |m̂|)θ
(
8â28 −

∣∣∣∣x̂+
2|â6|2m̂

(â28 − 2|â6|2)

∣∣∣∣

)]

independent of the value of W6. The first term will drop out if we are in the Aoki phase

whereas the second term vanishes in the Sharpe-Singleton scenario. However the reason for

this mechanism is quite different in the two cases. In the Aoki phase the first term is expo-

nentially supressed in comparison to the second one which results from the extremum (86).

In the Sharpe-Singleton scenario the saddlepoint is a minimum and enters a priori not in

the saddlepoint analysis. Hence we have to look at the boundaries of the four dimensional

box spanned by the four cosinus, see the discussion in Appendix CB.

This mechanism explains why we find a second order transition in the Aoki phase and a

first order transition in the Sharpe-Singleton scenario. The extremum (86) can cross the four

dimensional box with varying quark mass m̂ and eigenvalue x̂. Hence we have a continuous

process from one boundary to the other in the Aoki scenario. When this extremum is

excluded as in the Sharpe-Singleton scenario, the maximum has to jump from one boundary

to the other. This manifests itself in the sign of the mass in the Heavyside distribution of

the first term and the mass itself in the other one.
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1. Introduction

In the microscopic limit chiral random matrix theory (χRMT) can be directly mapped

to the ε-regime of quantum chromodynamics (QCD) and is successfully applied to it

since the 90’s [1, 2]. Both theories share the same universality class which is the reason

for the existence of this equivalence. χRMT was also extended to a non-zero chemical

potential by adding a scalar proportional to γ0 [3, 4, 5, 6, 7]. In the last decade a second
approach was pursued. A second chiral random matrix was introduced yielding the

chiral analogue of the Ginibre ensembles [8, 9, 10, 11, 12, 13, 14, 15]. A quantitative

analysis of the sign problem in Monte-Carlo simulations was quite elusive until it was

http://arxiv.org/abs/1202.1768v3
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solved in χRMT [6, 7, 16, 17]. The hope is now to extend these new insights to QCD

at non-zero lattice spacing.

Recently, random matrix theories for lattice QCD became the focus of interest.

The idea is to derive analytical results of lattice artefacts in the data. One important

realization of lattice QCD is by means of staggered fermions. In Refs. [18, 19], a χRMT

was considered which is equivalent to the ε-regime of these fermions. Unfortunately, this
model is highly involved due to the high number of low energy constants and, hence, of

the coupling constants in the random matrix model.

The Wilson Dirac operator is another realization of lattice QCD. It proved that the

corresponding random matrix model [20, 21, 22, 23, 19, 24] is much better accessible

for analytical calculations than the one of the staggered fermions. The Wilson term

which is given by a Laplace operator [25, 26] explicitly breaks chiral symmetry and is
Hermitian. Thus the main idea was to add on the diagonal of χRMT two Hermitian

matrices to simulate the same effect [20] and it proved to be in the same universality

class as the Wilson Dirac operator in the ε-regime [27, 28, 29, 30]. Actually one can

consider a Hermitian version [20, 21, 22, 23, 31, 32] of this random matrix ensemble

which is numerically cheaper in lattice simulations. However only the non-Hermitian

version [19, 24, 32] is directly related to the chiral symmetry breaking by a finite lattice
spacing. The Hermitian version can also be considered as an interpolation between a

chiral Gaussian unitary ensemble (χGUE) and a Gaussian unitary ensemble (GUE).

The coupling constant is then the lattice spacing.

Quite recently this new kind of random matrix model has given new insights on the

signs of the low energy constants in the chiral Lagrangian of the Wilson Dirac operator

[21, 33, 34]. These signs are controversial since they are crucial to decide if an Aoki

phase [35] exists or not. Such a phase is a pure lattice artefact and has no analogue
in continuum QCD. Therefore a large analytical [27, 36, 33, 34] as well as numerical

[37, 38, 39, 31, 32] effort was made to determine the low energy constants.

Orthogonal polynomial theory [40, 41, 42, 43, 44, 45, 46, 47] was as successfully

applied to RMT as the supersymmetry method [48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. In

particular the combination of both methods with the recently developed method of an

algebraical rearrangement of the joint probability density with quotients of characteristic
polynomials [58] are quite efficient to find compact and simple analytical results of the

spectral correlations of random matrix ensembles. In this work we address the k-point

correlation functions of the Hermitian as well as the non-Hermitian version and make

use of such a combination.

An interesting point of view of Wilson RMT appears when we study it with help

of orthogonal polynomial theory. In Ref. [23] the authors considered the Hermitian
Wilson RMT and found that the construction of the skew-orthogonal polynomials

strongly depend on the index ν of the random matrix which is the number of zero

modes in the continuum limit. They only explicitly constructed these polynomials

for ν = 0, 1. In this article we construct these polynomials for an arbitrary index

and for both version of Wilson RMT in a unifying way. We also successfully look for
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a recursion relation, Christoffel Darboux-like formulas, Rodrigues formulas and their

explicit expression as random matrix integrals. By this study we get a complete picture

what these orthogonal and skew-orthogonal polynomials are and how they are related

to the orthogonal polynomials of some limits, in particular the continuum limit and the

limit of a large lattice spacing.

First we specify what are the conditions the orthogonal and skew-orthogonal
polynomials have to fulfill. Thereby we recognize that the corresponding weight has

to satisfy a particular property, too. Luckily we are able to modify the weight in

the joint probability densities without changing the partition functions and the k-

point correlation functions such that this property can be achieved. In the second

step we construct the polynomials with help of Pfaffians whose anti-symmetry under

permutations of rows and columns proves quite useful.
After we show some useful properties of the orthogonal and skew-orthogonal

polynomials we derive a Pfaffian factorization of the k-point correlation functions.

This factorization is for numerical evaluations advantageous because it reduces the

complexity of the integrand to an average over two characteristic polynomials. In

combination with the supersymmetry method [52, 54, 55, 57] one may simplify the

whole problem to two-fold integrals. Factorizations to determinants and Pfaffians
were found for many random matrix ensembles of completely different symmetries

[40, 41, 42, 59, 60, 61, 62, 44, 46, 63, 58]. A Pfaffian for the eigenvalue correlations of the

Hermitian Wilson random matrix ensemble was already shown in Ref. [23]. We prove the

existence of such a structure for the non-Hermitian version, too. Furthermore we identify

the kernels of both Pfaffians with two-flavor partition functions. The identification as

well as the structure carry over to the microscopic limit which makes them also applicable

to the chiral Lagrangian of the Wilson-Dirac operator.
We consider unquenched Wilson RMT, i.e. a finite number of fermionic flavors.

Recently, the partition function with one fermionic flavor and the corresponding

microscopic level density was studied in Ref. [64]. In our calculations the number of

fermions may be arbitrary. Nevertheless all eigenvalue correlations, also the one of the

unquenched theory, can be expressed by two-flavor partition functions because of the

Pfaffian factorization.
Moreover such a Pfaffian determinant of the k-point correlation functions comes in

handy when calculating the individual eigenvalue distributions. The authors of Ref. [65]

were able to express the gap probability of the eigenvalues of the Hermitian Wilson

random matrix ensemble as a Fredholm-Pfaffian only due to this structure. Hence a

similar simplification is highly desirable for the non-Hermitian Wilson random matrix

ensemble.
The outline of this article is as follows. In Sec. 2 we briefly introduce the Wilson

random matrix model and its two kinds of joint probability densities corresponding to

the Hermitian and the non-Hermitian version. With help of the k-point correlation

function we propose the problem. In particular we will list the conditions the

polynomials have to fulfill. In Sec. 3 we construct the orthogonal and skew-
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orthogonal polynomials. Thereby we derive a recursion relation which is helpful to

proof a Christoffel Darboux-like formula. Moreover we show a representation of the

polynomials and the Christoffel Darboux-like formula as random matrix averages. Such

a representation is useful to study the microscopic limit of the random matrix ensemble

by means of the supersymmetry method. Hence we calculate the asymptotics of the

polynomials and the Christoffel Darboux-like formula. In Sec. 4 we apply the derived
results to the k-point correlation functions of the Hermitian and the non-Hermitian

version of Wilson RMT and identify the kernels of the Pfaffian with two-flavor partition

functions. Readers only interested in the k-point correlation functions of the Wilson

random matrix ensemble can jump to this section because it contains the main results

which can be mostly understood without the technical details in Sec. 3 due to the

identification of the kernels with two-flavor partition functions. The conclusions are
made in Sec. 5 and the details of the calculations are given in the appendices.

2. Two joint probability densities for one random matrix theory

The models we want to consider are motivated by the Wilson Dirac operator in lattice

QCD [20]. The corresponding random matrix theory consists of the matrix

DW =

(
A W

−W † B

)

(2.1)

distributed by the Gaussian

P (DW ) =
( n

2πa2

)[n2+(n+ν)2]/2 (
−

n

2π

)n(n+ν)
exp

[
−
a2

2

(
µ2
r +

n + ν

n
µ2
l

)]
(2.2)

× exp
[
−

n

2a2
(trA2 + trB2)− n trWW † + µr trA + µl trB

]
.

The Hermitian matrices A and B have the dimensions n× n and (n+ ν)× (n+ ν) and

explicitly break chiral symmetry,

γ5 DW|m=0 γ5 #= − DW|m=0 with γ5 = diag (11n,−11n+ν). (2.3)

The matrix W is a n× (n+ ν) complex matrix with independent entries. The variable
a plays the role of the lattice spacing and the Gaussian of A and B yields one low

energy constant known as W8 [20, 21, 22, 19, 24, 34]. The variables µr /l might be

also considered as Gaussian distributed random variables and generate two additional

low energy constants, W6 and W7 [21, 22, 34], in chiral perturbation theory of the

Wilson Dirac operator [27, 28, 29, 30]. Here we consider them as fixed constants to

keep the calculation as simple as possible but the model is general enough to introduce
also the Gaussian integrals for µr /l at the end of the day. They originate from a shift

of the matrices A and B by mass terms. The case when we do not integrate over

µr /l by Gaussians and keep them as constants corresponds to the low energy constants

W6 = W7 = 0.
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The parameter ν is called the index of the Dirac operator and is the number of the

generic real modes of DW . Since DW is γ5-Hermitian, i.e. D†
W = γ5DW γ5, the matrix

D5 = γ5DW (2.4)

is Hermitian. Moreover the complex eigenvalues of DW come in complex conjugated
pairs only. The number of these pairs, l, varies from 0 to n.

The matrix D5 = V xV −1 can be diagonalized by a unitary matrix V ∈ U (2n+ ν)

whereas the matrix DW = UZlU−1 can only be quasi diagonalized by a matrix in the

non-compact unitary group U ∈ U (n, n + ν), i.e. U−1 = γ5U †γ5. The diagonal matrix

x = diag (x1, . . . , x2n+ν) consists of real eigenvalues, only. The quasi-diagonal matrix

Zl =





x(1) 0 0 0

0 x(2) y(2) 0

0 −y(2) x(2) 0

0 0 0 x(3)




, (2.5)

depends on the real diagonal matrices x(1) = diag (x(1)
1 , . . . , x(1)

n−l), x
(2) = diag (x(2)

1 , . . . ,

x(2)
l ), y(2) = diag (y(2)1 , . . . , y(2)l ) and x(3) = diag (x(3)

1 , . . . , x(3)
n+ν−l) with the dimensions

n− l, l, l and n+ ν − l, respectively. Then the complex conjugated eigenvalue pairs of

DW are (z(2), z∗(2)) = (x(2) + ıy(2), x(2) − ıy(2)). The n + 1 different sectors of different

numbers of the complex conjugated pairs are labelled by l.

The joint probability density is one of the best quantities for analyzing the

eigenvalue correlations of random matrices. It is also the starting point of our discussions
in the ensuing sections. The Hermitian, D5, and the non-Hermitian, DW , Wilson

random matrix have different joint probability densities. Though these densities have

a completely different form, we will see that their orthogonal and skew-orthogonal

polynomials have much in common, see Sec. 3.

The joint probability density of D5 is [23]

p5(x)d[x] = c−(1− a2)−n(n+ν−1/2)a−n−ν2 exp

[
−
a2

2

(
µ2
r +

(
1 +

ν

n

)
µ2
l

)
+

nm̂2
6−

8â2−

]
∆2n+ν(x)

× Pf





{
g(−)
2 (xi, xj)

}

1≤i,j≤2n+ν
{xj−1

i g(−)
1 (xi)}

1≤i≤2n+ν
1≤j≤ν

{−xi−1
j g(−)

1 (xj)}
1≤i≤ν

1≤j≤2n+ν

0





2n+ν∏

j=1

dxj, (2.6)

where

g(−)
2 (x1, x2) = exp

[

−
n

4a2
(x1 + x2)

2 −
n

4
(x1 − x2)

2 +
nλ̂7−
4â2−

(x1 + x2)

]

(2.7)

× erf

[
1√
8â−

(n(x2 − x1)− m̂6−) ,
1√
8â−

(n(x1 − x2)− m̂6−)

]
,

g(±)
1 (x) = exp

[
−

n

2a2
x2 ± µlx

]
. (2.8)
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We define the constants

â± =

√
na2

2(1± a2)
, (2.9)

m̂6± =
2â2±
n

(µr + µl ), (2.10)

λ̂7± =
2â2±
n

(µr − µl ), (2.11)

1

c−
=

(
16π

n

)n/2

(2π)ν/2n−ν2/2−n(n+ν)(2n+ ν)!
n−1∏

j=0

j!
n+ν−1∏

j=0

j! . (2.12)

The notation of m̂6± and λ̂7± reflects the nature of their symmetries. The constant

m̂6± acts as an effective mass and λ̂7± as an effective axial mass, i.e. a source term

proportional to γ5. They refer to the low-energy constants W6 and W7 which are found

in the microscopic limit [20, 21, 22, 19, 24, 34], i.e. n → ∞, â =
√
na/

√
2 = â± = const.,

m̂6 = m̂6± = const., λ̂7 = λ̂7± = const. and ẑ = 2nz = const. We emphasize that
we have to integrate over m̂6 and λ̂7 to obtain the low energy constants W6 and W7,

respectively. Please notice that our notation differs from the one in Refs. [20, 21] where

the source terms proportional to γ5 are denoted by z. To avoid confusion with the

complex eigenvalues of DW we denote these variables by λ in the present article.

Furthermore we renamed the variables y6 and y7 to m̂6 and λ̂7, respectively, since

the former notation can create a confusion with the imaginary parts of the complex
eigenvalues of DW .

The Vandermonde determinant is given by

∆2n+ν(x) =
∏

1≤i<j≤2n+ν

(xi − xj) = (−1)(2n+ν)(2n+ν−1)/2 det
[
xj−1
i

]
1≤i,j≤2n+ν

. (2.13)

The function erf(x1, x2) = erf(x2)− erf(x1) is the generalized error function.

The Pfaffian in p5, see Eq. (2.6), is due to the symmetrization of the eigenvalues.

The two-point weight g(−)
2 is anti-symmetric and is a strong interaction of two different

eigenvalues. In the continuum limit, a → 0, g(−)
2 generates a Dirac delta function

enforcing that we have always an eigenvalue pair (λ,−λ) of the Dirac operator if λ %= 0.

The two off-diagonal blocks are reminiscent of Vandermonde determinants and are

artefacts of the zero modes at a = 0.
The joint probability density of DW is

pW (Z)d[Z] =c+(1 + a2)−n(n+ν−1/2)a−n−ν2exp

[

−
a2

2

(
µ2
r +

(
1 +

ν

n

)
µ2
l

)
+

nλ̂27+
8â2+

]

∆2n+ν(Z)

× det





{g(+)
2 (z(r )i , z(l )j )}

1≤i≤n
1≤j≤n+ν

{(x(l )
j )i−1g(+)

1 (x(l )
j )δ(y(l )j )}

1≤i≤ν
1≤j≤n+ν





n∏

j=1

dx(r )
j dy(r )j

n+ν∏

j=1

dx(l )
j dy(l )j ,

(2.14)
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where

g(+)
2 (z1, z2) = gr(x1, x2)δ(y1)δ(y2) + gc(z1)δ(x1 − x2)δ(y1 + y2), (2.15)

gr(x1, x2) = exp

[
−

n

4a2
(x1 + x2)

2 +
n

4
(x1 − x1)

2 +
nm̂6+

4â2+
(x1 + x2)

]

×
(

x1 − x2

|x1 − x2|
− erf

[
1√
8â+

(
n(x1 − x2)− λ̂7+

)])
, (2.16)

gc(z) = − 2ı
y

|y|
exp

[
−

n

a2
x2 − ny2 +

nm̂6+

2â2+
x

]
, (2.17)

1

c+
= (−1)ν(ν−1)/2+n(n−1)/2

(
16π

n

)n/2

(2π)ν/2n−ν2/2−n(n+ν)
n∏

j=0

j!
n+ν∏

j=0

j!. (2.18)

Note that the one point weight g(±)
1 of D5 and of DW is apart from the sign of the linear

shift in the exponent the same. Also the other distributions show similarities with each

other.

Comparing pW with p5 we recognize the major difference is the determinant which

replaces the Pfaffian. The reason is a broken permutation symmetry in the eigenvalues
of DW . We have to symmetrize over the eigenvalues z(r ) and z(l ) separately. Since

the two-point weight g(+)
2 only couples z(r ) with z(l ) but not two eigenvalues of one

and the same set the symmetrization yields a determinant. Another crucial difference

of pW to p5 is the distinction of real and complex eigenvalues reflecting the non-

Hermiticity of DW . Interestingly the complex conjugated pairs only enter the two-point

weight g(+)
2 . In the continuum limit the interaction of a pair of real eigenvalues, gr, is

suppressed and the term for the complex eigenvalues, gc, enforces the pairing of non-

zero eigenvalues, (ıλ,−ıλ), along the imaginary axis. Again a block resembling the

Vandermonde determinant appears and is again a relict of the former zero modes.

In the next two subsection we motivate the polynomials constructed in Sec. 3. For

this we consider the k-point correlation functions of DW and D5.

2.1. The k-point correlation function of D5

First, we consider the fermionic partition function of D5 with Nf axial masses

(characteristic polynomials of D5), λ = diag (λ1, . . . ,λNf
),

Z(n,ν,−)
Nf

(λ) ∝
∫

d[DW ]P (DW )
Nf∏

j=1

det(D5 + λj112n+ν). (2.19)

The unit matrix of dimension 2n+ ν is denoted by 112n+ν . In the microscopic limit this

partition function corresponds to the integral [20, 21]

Z(n,ν,−)
Nf

(
λ

2n

)
n"1∝

∫

U(Nf )

dµ(U)detνU (2.20)

× exp

[
m̂6

2
tr(U + U−1) +

1

2
tr(λ̂711Nf

+ λ̂)(U − U−1)− â2 tr(U2 + U−2)

]
.
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This is the effective Lagrangian of the Wilson-Dirac operator of the partition function

withNf fermionic quarks with a degenerate quark mass m̂6 andNf source terms λ̂711Nf
+λ̂

proportional to γ5, cf. Refs. [27, 28, 29, 30]. An integration over the variables m̂6 and

λ̂7 weighted by two additional Gaussian will yield the two low energy constants W6 and

W7 proportional to two squared trace terms [20, 21, 34]. Here we will not consider these

integrals.
Employing the joint probability density p5, see Eq. (2.6), we combine the

Vandermonde determinant and the characteristic polynomials to a quotient of two

Vandermonde determinants. Then we rewrite the finite n partition function (2.19)

as

Z(n,ν,−)
Nf

(λ) ∝
∫

R2n+ν

d[x]
∆2n+ν+Nf

(x,−λ)
∆Nf

(λ)
(2.21)

× Pf





{
g(−)
2 (xi, xj)

}

1≤i,j≤2n+ν
{xj−1

i g(−)
1 (xi)}

1≤i≤2n+ν
1≤j≤ν

{−xi−1
j g(−)

1 (xj)}
1≤i≤ν

1≤j≤2n+ν

0




.

We want to consider a little bit more than the partition function namely the k-point

correlation function. For this purpose we only integrate over 2n + ν − k variables,
x̃ = diag (xk+1, . . . , x2n+ν). The remaining variables x′ = diag (x1, . . . , xk) are the k

levels we look at, i.e.

R(n,ν,−)
Nf ,k

(x′,λ) ∝
∫

R2n+ν−k

2n+ν∏

j=k+1

dxj
∆2n+ν+Nf

(x,−λ)
∆Nf

(λ)
(2.22)

× Pf





{
g(−)
2 (xi, xj)

}

1≤i,j≤2n+ν
{xj−1

i g(−)
1 (xi)}

1≤i≤2n+ν
1≤j≤ν

{−xi−1
j g(−)

1 (xj)}
1≤i≤ν

1≤j≤2n+ν

0




.

The idea is the following. In the Vandermonde determinant of the numerator we

can build an arbitrary basis of polynomials from order 0 to order 2n+ ν +Nf − 1,

∆2n+ν+Nf
(x,−λ) = (−1)(2n+ν+Nf )(2n+ν+Nf−1)/2

× det





{
p(−)
j (xi)

}

1≤i≤2n+ν
0≤j≤ν−1

{
q(−)
ν+j(xi)

}

1≤i≤2n+ν
0≤j≤2n+Nf−1{

p(−)
j (−λi)

}

1≤i≤Nf

0≤j≤ν−1

{
q(−)
ν+j(−λi)

}

1≤i≤Nf

0≤j≤2n+Nf−1




. (2.23)

Also the entries of the Pfaffian can be transformed by adding rows and columns with

each other,

Pf





{
g(−)
2 (xi, xj)

}

1≤i,j≤2n+ν
{xj−1

i g(−)
1 (xi)}

1≤i≤2n+ν
1≤j≤ν

{−xi−1
j g(−)

1 (xj)}
1≤i≤ν

1≤j≤2n+ν

0
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= Pf





{
G(−)

2 (xi, xj)
}

1≤i,j≤2n+ν
{p(−)

j (xi)g
(−)
1 (xi)}

1≤i≤2n+ν
0≤j≤ν−1

{−p(−)
i (xj)g

(−)
1 (xj)}

0≤i≤ν−1
1≤j≤2n+ν

0




, (2.24)

where we change the basis of the monomials to the polynomials p(−)
j and the two-point

weight g(−)
2 to G(−)

2 .

To shorten the notation we define the scalar product of two integrable functions f1
and f2 with the one-point weight g(±)

1

〈f1|f2〉g(±)
1

=

∫

C

d[z]f1(z)f2(z)g
(±)
1 (x)δ(y) (2.25)

with d[z] = dxdy. The same can be done for the two-point weight G(−)
2 . We define the

anti-symmetric product

(f1|f2)G(−)
2

=
1

2

∫

C2

d[z1]d[z2] det

[
f1(z1) f2(z1)

f1(z2) f2(z2)

]

G(−)
2 (z1, z2)δ(y1)δ(y2). (2.26)

Both definitions are extended to the complex plane by Dirac delta functions because we

want to discuss the situation for both random matrices D5 and DW in a unifying way.

In the next step we employ the de Bruijn-like integration theorem derived in

Appendix A.1 which yields

R(n,ν,−)
Nf ,k

(x′,λ) ∝
1

∆Nf
(λ)

Pf

[
M (11)

− M (12)
−

−(M (12)
− )T M (22)

−

]

(2.27)

for the k-point correlation function. The matrices in the Pfaffian determinant are

M (11)
− =





(
p(−)
i |p(−)

j

)

G(−)
2

(
p(−)
i |q(−)

ν+j

)

G(−)
2

〈p(−)
i |p(−)

j 〉
g
(−)
1(

q(−)
ν+i|p

(−)
j

)

G(−)
2

(
q(−)
ν+i|q

(−)
ν+j

)

G(−)
2

〈q(−)
ν+i|p

(−)
j 〉

g
(−)
1

−〈p(−)
i |p(−)

j 〉
g(−)
1

−〈p(−)
i |q(−)

ν+j〉g(−)
1

0




, (2.28)

M (12)
− =





∫

R

dx̃p(−)
i (x̃)G(−)

2 (x̃, xj) p(−)
i (xj) p(−)

i (−λj)
∫

R

dx̃q(−)
ν+i(x̃)G

(−)
2 (x̃, xj) q(−)

ν+i(xj) q(−)
ν+i(−λj)

−p(−)
i (xj)g

(−)
1 (xj) 0 0




, (2.29)

M (22)
− =




G(−)

2 (xi, xj) 0 0

0 0 0

0 0 0



 . (2.30)

In the Pfaffian (2.27) the indices i and j of the rows and columns are (0 . . . ν−1, 0 . . . 2n+

Nf − 1, 0 . . . ν − 1, 1 . . . k, 1 . . . k, 1 . . .Nf) from top to bottom and left to right. Please
notice that regardless what the polynomials p(−)

l and q(−)
ν+l and the modified two-point

weight G(−)
2 are Eq. (2.27) tells us that the joint probability density p5 can also be written

as a single Pfaffian. We have only to choose k = 2n + ν to see that this statement is
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true. However the representation (2.27) is quite cumbersome. A more compact one is

given in subsection 4.1.

The aim is now to choose q(−)
ν+i, p

(−)
i and G(−)

2 such that the matrix M (11)
− becomes

quasi-diagonal since we want to invert this matrix. A quasi-diagonal structure is

equivalent to the conditions

〈p(−)
i |p(−)

j 〉
g
(−)
1

= h(−)
j δij , for 0 ≤ i, j ≤ ν − 1, (2.31)

〈p(−)
i |q(−)

ν+j〉g(−)
1

= 0, for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ 2n+Nf − 1, (2.32)
(
p(−)
i |p(−)

j

)

G(−)
2

= 0, for 0 ≤ i, j ≤ ν − 1, (2.33)
(
p(−)
i |q(−)

ν+j

)

G(−)
2

= 0, for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ 2n+Nf − 1, (2.34)
(
q(−)
ν+2i+1|q

(−)
ν+2j+1

)

G(−)
2

= 0, for 0 ≤ i, j ≤ 2n+Nf − 1, (2.35)
(
q(−)
ν+2i|q

(−)
ν+2j

)

G
(−)
2

= 0, for 0 ≤ i, j ≤ 2n+Nf − 1, (2.36)
(
q(−)
ν+2i|q

(−)
ν+2j+1

)

G
(−)
2

= o(−)
j δij , for 0 ≤ i, j ≤ 2n+Nf − 1. (2.37)

The constants h(−)
j and o(−)

j are the normalization constants of the polynomials. In

Sec. 3 we will see that this system of equations have indeed a solution. We will give an
explicit construction of them.

Please note that the solution of the odd skew-orthogonal polynomials, q(−)
ν+2j+1,

exhibits an ambiguity. The polynomials q(−)
ν+2j+1 + cjq

(−)
ν+2j are also a solution of the

Eqs. (2.31-2.37) with arbitrary constants cj ∈ C as it was already found in Ref. [66] for
pure skew-orthogonal polynomials.

2.2. The (kr , kl )-point correlation function of DW

The next case we want to consider is the fermionic partition function of DW with Nf

quark masses, m = diag (m1, . . . , mNf
),

Z(n,ν,+)
Nf

(m) ∝
∫

d[DW ]P (DW )
Nf∏

j=1

det(DW +mj112n+ν). (2.38)

In the microscopic limit it corresponds to [20, 21]

Z(n,ν,+)
Nf

(m
2n

)
n"1∝

∫

U (Nf )

dµ(U)detνU (2.39)

× exp

[
1

2
tr(m̂611Nf

+ m̂)(U + U−1) +
λ̂7
2
tr(U − U−1)− â2 tr(U2 + U−2)

]

.

This is the effective Lagrangian of the Wilson-Dirac operator of the partition function

with Nf fermionic quarks with non-degenerate quark masses m̂611Nf
+ m̂ and one source

term λ̂7 proportional to γ5 [27, 28, 29, 30]. Again one can integrate over the two variables
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m̂6 and λ̂7 weighted by Gaussians to obtain the two low energy constants W6 and W7

but we will consider Z(n,ν,+)
Nf

without these integrals.

The partition function with the joint probability density pW reads

Z(n,ν,+)
Nf

(m) ∝
∫

C2n+ν

d[Z]
∆2n+ν+Nf

(Z,−m)

∆Nf
(m)

(2.40)

× det





{g(+)
2 (z(r )i , z(l )j )}

1≤i≤n
1≤j≤n+ν

{(x(l )
j )i−1g(+)

1 (x(l )
j )δ(y(l )j )}

1≤i≤ν
1≤j≤n+ν




.

Since the permutation symmetry in the eigenvalues of DW is broken we have to

consider a two parameter set of eigenvalue correlation functions. The number of

eigenvalues z(r ) is independent of the number for the eigenvalues z(l ). Let Z ′ =
diag (z(r )1 , . . . , z(r )kr

, z(l )1 , . . . , z(l )kl
). Hence we define the (kr , kl )-point correlation function,

R(n,ν,+)
Nf ,kr ,kl

(Z ′, m) ∝
∫

C2n+ν−kr −kl

n∏

j=kr+1

d[z(r )j ]
n+ν∏

j=kl+1

d[z(l )j ]
∆2n+ν+Nf

(Z,−m)

∆Nf
(m)

(2.41)

× det





{g(+)
2 (z(r )i , z(l )j )}

1≤i≤n
1≤j≤n+ν

{(x(l )
j )i−1g(+)

1 (x(l )
j )δ(y(l )j )}

1≤i≤ν
1≤j≤n+ν




.

As in subsection 2.1 we construct an arbitrary basis of polynomials in the

Vandermonde determinant to inflict some conditions on them later on,

∆2n+ν+Nf
(Z,−m) = (−1)(2n+ν+Nf )(2n+ν+Nf−1)/2

× det





{
p(+)
j (z(r )i )

}

1≤i≤n
0≤j≤ν−1

{
q(+)
ν+j(z

(r )
i )
}

1≤i≤n
0≤j≤2n+Nf−1{

p(+)
j (z(l )i )

}

1≤i≤n+ν
0≤j≤ν−1

{
q(+)
ν+j(z

(l )
i )
}

1≤i≤n+ν
0≤j≤2n+Nf−1{

p(+)
j (−mi)

}

1≤i≤Nf

0≤j≤ν−1

{
q(+)
ν+j(−mi)

}

1≤i≤Nf

0≤j≤2n+Nf−1





. (2.42)

Also the other determinant in the numerator can be transformed,

det





{g(+)
2 (z(r )i , z(l )j )}

1≤i≤n
1≤j≤n+ν

{(x(l )
j )i−1g(+)

1 (x(l )
j )δ(y(l )j )}

1≤i≤ν
1≤j≤n+ν




= det





{G(+)
2 (z(r )i , z(l )j )}

1≤i≤n
1≤j≤n+ν

{p(+)
i (x(l )

j )g(+)
1 (x(l )

j )δ(y(l )j )}
0≤i≤ν−1
1≤j≤n+ν




.

(2.43)

The whole procedure works analogous to the one for D5, cf. subsection 2.1.

Let

(f1|f2)G(+)
2

=
1

2

∫

C2

d[z(r )]d[z(l )] det

[
f1(z(r )) f2(z(r ))
f1(z(l )) f2(z(l ))

]
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×
(
G(+)

2 (z(r ), z(l ))−G(+)
2 (z(l ), z(r ))

)
(2.44)

be the anti-symmetric scalar product of two integrable functions f1 and f2 with respect to

the two-point weight G(+)
2 . Notice that G(+)

2 as well as g(+)
2 are not anti-symmetric under

a permutation of their entries whereas the two-point weight G(−)
2 is anti-symmetric. The

reason for this is again the breaking of the permutation symmetry in the eigenvalues of

DW .

Considering the (kr , kl )-point correlation function we apply the de Bruijn-like
integration theorem derived in Appendix A.2 to the partition function (2.40) and find

R(n,ν,+)
Nf ,kr ,kl

(Z ′, m) ∝
1

∆Nf
(m)

Pf

[
M (11)

+ M (12)
+

−(M (12)
+ )T M (22)

+

]

, (2.45)

where the three matrices are

M (11)
+ =





(
p(+)
i |p(+)

j

)

G(+)
2

(
p(+)
i |q(+)

ν+j

)

G(+)
2

〈p(+)
i |p(+)

j 〉
g
(+)
1(

q(+)
ν+i|p

(+)
j

)

G(+)
2

(
q(+)
ν+i|q

(+)
ν+j

)

G(+)
2

〈q(+)
ν+i|p

(+)
j 〉

g
(+)
1

−〈p(+)
i |p(+)

j 〉
g(+)
1

−〈p(+)
i |q(+)

ν+j〉g(+)
1

0




, (2.46)

(M (12)
+ )T=





∫

C

d[z̃]p(+)
i (z̃)G(+)

2 (z(r )j , z̃)
∫

C

d[z̃]q(+)
ν+i(z̃)G

(+)
2 (z(r )j , z̃) 0

∫

C

d[z̃]p(+)
i (z̃)G(+)

2 (z̃, z(l )j )
∫

C

d[z̃]q(+)
ν+i(z̃)G

(+)
2 (z̃, z(l )j )−p(+)

i (x(l )
j )g(+)

1 (x(l )
j )δ(y(l )j )

p(+)
i (z(r )j ) q(+)

ν+i(z
(r )
j ) 0

p(+)
i (z(l )j ) q(+)

ν+i(z
(l )
j ) 0

p(+)
i (−λj) q(+)

ν+i(−λj) 0





,

(2.47)

M (22)
+ =





0 −G(+)
2 (z(r )i , z(l )j ) 0 0 0

G(+)
2 (z(r )j , z(l )i ) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (2.48)

In the Pfaffian (2.45) the indices i and j are in the range (0 . . . ν − 1, 0 . . . 2n + Nf −
1, 0 . . . ν − 1, 1 . . . kr , 1 . . . kl , 1 . . . kr , 1 . . . kl , 1 . . .Nf) from top to bottom and from left

to right.

Please notice the similarity of Eq. (2.45) with Eq. (2.27). If kr = n and kl = n+ ν
the correlation function is equal to the joint probability density pW . Hence pW can

also be written as a single Pfaffian which can be cast into a more compact form, see

subsection 4.2.

As in subsection 2.1 we want to invert and, thus, quasi-diagonalize the matrix

M (11)
+ . This yields the following system of equations

〈p(+)
i |p(+)

j 〉
g
(+)
1

= h(+)
i δij , for 0 ≤ i, j ≤ ν − 1, (2.49)

〈p(+)
i |q(+)

ν+j〉g(+)
1

= 0, for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ 2n+Nf − 1, (2.50)
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(
p(+)
i |p(+)

j

)

G(+)
2

= 0, for 0 ≤ i, j ≤ ν − 1, (2.51)
(
p(+)
i |q(+)

ν+j

)

G(+)
2

= 0, for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ 2n+Nf − 1, (2.52)
(
q(+)
ν+2i+1|q

(+)
ν+2j+1

)

G(+)
2

= 0, for 0 ≤ i, j ≤ 2n+Nf − 1, (2.53)
(
q(+)
ν+2i|q

(+)
ν+2j

)

G(+)
2

= 0, for 0 ≤ i, j ≤ 2n+Nf − 1, (2.54)
(
q(+)
ν+2i|q

(+)
ν+2j+1

)

G
(+)
2

= o(+)
i δij , for 0 ≤ i, j ≤ 2n+Nf − 1 (2.55)

with the normalization constants h(+)
j and o(+)

j . Comparing this system of equations

with the one of D5 we recognize that they are of the same form. Hence, if we solve them
in a general setting we solve them for both random matrices, D5 and DW .

As for D5 the odd skew-orthogonal polynomials, q(−)
ν+2j+1, can be added by the

polynomials cjq
(−)
ν+2j with arbitrary constants cj ∈ C. They solve the same set of

equations.

3. Construction of the polynomials and some of their properties

In subsection 3.1 we construct the orthogonal polynomials as well as the skew-orthogonal

ones starting from the conditions (2.31-2.37) and (2.49-2.55). Furthermore we give

explicit expressions of the modified two-point weights, G(±)
2 , and specify the constants

hl and o(±)
ν+2l. Recursion relations of the polynomials are shown in subsection 3.2. With

aid of these relations we derive the Christoffel Darboux-like formula, in subsection 3.3. In

subsection 3.4, we rewrite the polynomials as well as the Christoffel Darboux-like formula

to random matrix averages and take the microscopic limit of them in subsection 3.5.

3.1. The polynomials

The starting point of the construction are the monomials

mj(z) = zj with j ∈ N0. (3.1)

With help of the general formula for the orthogonal polynomials of the one-point weight

g(±)
1 [44] as a quotient of determinants we find

p(±)
l (z) = det−1

[
〈mi|mj〉g(±)

1

]

1≤i,j≤l−1
det





{
〈mi|mj〉g(±)

1

}

0≤i≤l−1
0≤j≤l

{mj(z)}
0≤j≤l



 (3.2)

in monic normalization, i.e. p(±)
l (z) = zl + . . . Since g1 is a shifted Gaussian the

polynomials p(±)
l are shifted Hermite polynomials, Hl, in monic normalization,

p(±)
l (z) =

(
a2

n

)l/2

Hl

(√
n

a2
z ∓

√
a2

n
µl

)

. (3.3)
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This agrees with Refs. [20, 21, 22, 23] where a mixing of the eigenvalue statistics with

a finite dimensional GUE was found. The normalization constant is

h(±)
l = hl =

√
2π

(
a2

n

)l+1/2

l! exp

[
a2µ2

l

2n

]
. (3.4)

Thus the normalization constants of the orthogonal polynomials are the same for DW

and for D5.

Starting from the orthogonal polynomials p(±)
l we want to construct the polynomials

q(−)
ν+l and q(+)

ν+l fulfilling the orthogonality conditions (2.32) and (2.50), respectively. Let

Nf be even for simplicity. If it is odd the anti-symmetric matrices M (11)
± are never

invertible because their dimensions are odd. In such a case we extend the partition

function by one fermionic flavor and remove it at the end of the day by sending its mass

to infinity.

As for the orthogonal polynomials we begin with an intuitive definition,

q(±)
ν+2l(z) = Pf −1

[(
p(±)
i |p(±)

j

)

g
(±)
2

]

ν≤i,j≤ν+2l−1

(3.5)

× Pf





{(
p(±)
i |p(±)

j

)

g(±)
2

}

ν≤i,j≤ν+2l

{
p(±)
i (z)

}

ν≤i≤ν+2l{
−p(±)

j (z)
}

ν≤j≤ν+2l
0



 ,

q(±)
ν+2l+1(z) = Pf −1

[(
p(±)
i |p(±)

j

)

g
(±)
2

]

ν≤i,j≤ν+2l−1

(3.6)

×Pf





{(
p(±)
i |p(±)

j

)

g(±)
2

}

ν≤i,j≤ν+2l−1

{(
p(±)
i |p(±)

ν+2l+1

)

g(±)
2

}

ν≤i≤ν+2l−1

{
p(±)
i (z)

}

ν≤i≤ν+2l−1{(
p(±)
ν+2l+1|p

(±)
j

)

g(±)
2

}

ν≤j≤ν+2l−1
0 p(±)

ν+2l+1(z)
{
−p(±)

j (z)
}

ν≤j≤ν+2l−1
−p(±)

ν+2l+1(z) 0




,

which is similar to the ansatz of the skew-orthogonal polynomials in χRMT with non-

zero chemical potential and Dyson index β = 1, 4, see Ref. [15]. The anti-symmetric

products of g(−)
2 and g(+)

2 are defined similar to Eqs. (2.26) and (2.44), respectively.

One can readily prove that the orthogonality conditions (2.32) and (2.50) are fulfilled.

The multi-linearity of the Pfaffian allows us to pull the scalar product into the Pfaffian.
Then one row and one column is zero. For example, let l ∈ {0, 1, . . . , ν − 1}. Then the

orthogonality of the polynomials p(±)
l yields

〈p(±)
l |q(±)

ν+2b〉g(±)
1

=

Pf





{(
p(±)
i |p(±)

j

)

g(±)
2

}

ν≤i,j≤ν+2b

{
〈p(±)

l |p(±)
i 〉

g(±)
1

}

ν≤i≤ν+2b{
−〈p(±)

l |p(±)
j 〉

g(±)
1

}

ν≤j≤ν+2b
0





Pf

[(
p(±)
i |p(±)

j

)

g
(±)
2

]

ν≤i,j≤ν+2b−1
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=

Pf





{(
p(±)
i |p(±)

j

)

g
(±)
2

}

ν≤i,j≤ν+2b
{0}

ν≤i≤ν+2b

{0}
ν≤j≤ν+2b

0





Pf

[(
p(±)
i |p(±)

j

)

g
(±)
2

]

ν≤i,j≤ν+2b−1

= 0. (3.7)

In a similar way one can prove the other relations.

We underline that the odd skew-orthogonal polynomials (3.6) can be gauged by

the even ones (3.5), i.e. q(±)
ν+2l+1(z) → q(±)

ν+2l+1(z) + clq
(±)
ν+2l(z) with cl ∈ C arbitrary. This

gauge symmetry is similar to the one found for pure skew-orthogonal polynomials [66].
The fundamental reason is the anti-symmetry of the two-point weight g(±)

2 which has

always a non-trivial kernel.

The normalization constants in Eqs. (3.5) and (3.6) are finite since they are

proportional to the constants in Eqs. (2.12) and (2.18), i.e.

Pf

[(
p(±)
i |p(±)

j

)

g
(±)
2

]

ν≤i,j≤ν+2l−1

∝
1

c±
. (3.8)

It can be easily shown that the polynomials q(±)
ν+l are in monic normalization, too. The

constants (3.8) are related to the ones in Eqs. (2.37) and (2.55) by

o(±)
l =

Pf

[(
p(±)
i |p(±)

j

)

g(±)
2

]

ν≤i,j≤ν+2l+1

Pf

[(
p(±)
i |p(±)

j

)

g(±)
2

]

ν≤i,j≤ν+2l−1

. (3.9)

Combining this identity with relation (3.8) the constants o(±)
l are mostly the quotient

of two normalization constants of the joint probability density functions. Hence, the

constants o(±)
l can be directly calculated by the two identities

(−1)n(2n+ ν)!
ν−1∏

j=0

hj

n−1∏

j=0

o(−)
j (3.10)

=
1

c−
(1− a2)n(n+ν−1/2)an+ν2 exp

[
a2

2

(
µ2
r +

n+ ν

n
µ2
l

)
−

nm̂2
6−

8â2−

]

and

(−1)ν(ν−1)/2+n(n+1)/2n!(n + ν)!
ν−1∏

j=0

hj

n−1∏

j=0

o(+)
j (3.11)

=
1

c+
(1 + a2)n(n+ν−1/2)an+ν2 exp

[
a2

2

(
µ2
r +

n + ν

n
µ2
l

)
−

nλ̂27+
8â2+

]

.

These identities can be derived with aid of the de Bruijn-like integration theorems in

Appendix A. With help of Eqs. (3.10) and (3.11) we conclude

o(±)
l = −4 l!(l + ν)!

√
π

n(1± a2)

(
1± a2

n

)2l+ν+1

a exp

[
a2

4n
(µr ± µl )

2 ±
a4

4n(1± a2)
(µr ∓ µl )

2

]
.(3.12)
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Hence the normalization constant is linear in a for small lattice spacing and is

proportional to n−2l−ν−2l!(l + ν)! in the microscopic limit.

The polynomials q(±)
ν+2b and q(±)

ν+2b+1 are also orthogonal to p(±)
ν+l , l ∈ {0, . . . , 2b} and

l ∈ {0, . . . , 2b−1, 2b+1}, respectively, corresponding to the two-point weight g(±)
2 since

the rows and columns are not linearly independent anymore. For example

(
p(±)
ν+l|q

(±)
ν+2b

)

g
(±)
2

=

Pf





{(
p(±)
ν+i|p

(±)
ν+j

)

g(±)
2

}

0≤i,j≤2b

{(
p(±)
ν+l|p

(±)
ν+i

)

g(±)
2

}

0≤i≤2b{
−
(
p(±)
ν+l|p

(±)
ν+j

)

g(±)
2

}

0≤j≤2b
0





Pf

[(
p(±)
ν+i|p

(±)
ν+j

)

g(±)
2

]

0≤i,j≤2b−1

= 0, (3.13)

the lth row and column and the last ones are the same. In the same way one can

prove the skew-orthogonality of p(±)
ν+l , l ∈ {0, . . . , 2b − 1, 2b + 1}, with q(±)

ν+2b+1. Due

to the definitions (3.5) and (3.6) the polynomials q(±)
ν+l are a linear combination of p(±)

ν+l

with 0 ≤ l ≤ 2n +Nf − 1. Therefore the polynomials are indeed skew-orthogonal with

respect to g(±)
2 . In particular they fulfill the conditions similar to the relations (2.35-

2.37) and (2.53-2.55) by exchanging G(±)
2 → g(±)

2 . However the remaining conditions

(2.33), (2.34), (2.51) and (2.52) are not fulfilled. This is the reason for modifying the

two-point weights.
The simplest way to enforce the remaining conditions is the projection of the

measures g(±)
2 onto the polynomials q(±)

ν+l only. This means the polynomials p(±)
l ,

0 ≤ l ≤ ν − 1, have to be in the kernel of G(±)
2 . We make the ansatz

(f1, f2)G(±)
2

= (f1, f2)g(±)
2

−
ν−1∑

j=0

1

hj

(
〈f1|p(±)

j 〉
g
(±)
1

(p(±)
j , f2)g(±)

2
+ (f1, p

(±)
j )

g
(±)
2

〈p(±)
j |f2〉g(±)

1

)

+
ν−1∑

i,j=0

1

hjhi
〈f1|p(±)

i 〉
g(±)
1

(p(±)
i , p(±)

j )
g(±)
2

〈p(±)
j |f2〉g(±)

1
. (3.14)

Indeed we have(
p(±)
l , f

)

G(−)
2

= (p(±)
l , f)

G(+)
2

= 0, for all functions f and 0 ≤ l ≤ ν − 1, (3.15)
(
q(±)
i , q(±)

j

)

G
(±)
2

=
(
q(±)
i , q(±)

j

)

g
(±)
2

. (3.16)

Thus all orthogonality conditions are fulfilled.

The explicit expressions of G(−)
2 and G(+)

2 are

G(−)
2 (x1, x2) = g(−)

2 (x1, x2) (3.17)

−
ν−1∑

j=0

1

hj




∫

R

dx′p(−)
j (x′)g(−)

2 (x′, x2)p
(−)
j (x1)g

(−)
1 (x1)

+

∫

R

dx′p(−)
j (x′)g(−)

2 (x1, x
′)p(−)

j (x2)g
(−)
1 (x2)



+
ν−1∑

i,j=0
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×
1

hjhi

∫

R2

d[x′]p(−)
i (x′

1)p
(−)
j (x′

2)g
(−)
2 (x′

1, x
′
2)p

(−)
i (x1)p

(−)
j (x2)g

(−)
1 (x1)g

(−)
1 (x2),

G(+)
2 (z1, z2) = g(+)

2 (z1, z2) (3.18)

−
ν−1∑

j=0

1

hj

∫

C

d[z′]p(+)
j (z′)

(
g(+)
2 (z1, z

′)− g(+)
2 (z′, z1)

)
p(+)
j (z2)g

(+)
1 (z2)

+
ν−1∑

i,j=0

1

2hjhi

∫

C2

d[z′1]d[z
′
2]p

(+)
i (z′1)p

(+)
j (z′2)

(
g(+)
2 (z′1, z

′
2)− g(+)

2 (z′2, z
′
1)
)

× p(+)
i (z1)p

(+)
j (z2)g

(+)
1 (z1)g

(+)
1 (z2).

The change of the two-point measures is restricted by linear combinations with other

rows and columns in the Pfaffian (2.24) and the determinant (2.42). Essentially we

add the orthogonal polynomials p(±)
l to the weight. Thereby we have to recall that

everything which is done with the rows has to be done with the columns in the Pfaffian.

This is the reason why G(−)
2 stays anti-symmetric whereas G(+)

2 is asymmetric in the
entries.

3.2. Recursion relations

The recursion relations of the orthogonal polynomials are

∂p(±)
l

∂x
(x) = lp(±)

l−1(x), (3.19)

xp(±)
l (x) = p(±)

l+1(x)±
a2µl

n
p(±)
l (x) +

la2

n
p(±)
l−1(x). (3.20)

They result from the orthogonality relation (2.31) and the two identities

〈D(±)f1|f2〉g(±)
1

= − 〈f1|D(±)f2〉g(±)
1

, (3.21)

〈m1f1|f2〉g(±)
1

= 〈f1|m1f2〉g(±)
1

(3.22)

for two arbitrary integrable functions f1 and f2. The function m1 is the monomial of

order one and the differential operator D(±) is the creation operator of the harmonic
oscillator corresponding to the measure g(±)

1 ,

D(±) =
∂

∂x
−

n

2a2
x±

µl

2
. (3.23)

Identity (3.22) cannot be extended to the measures G(−)
2 and G(+)

2 or equivalently g(−)
2

and g(+)
2 , i.e.

(m1f1|f2)g(±)
2

%= (f1|m1f2)g(±)
2

. (3.24)

However Eq. (3.21) has an analogue. Defining the differential operator

D̃(±) =
∂

∂z
−

n

a2
z +

µr ± µl

2
(3.25)

one can readily verify
(
D̃(±)f1|f2

)

g
(±)
2

= −
(
f1|D̃(±)f2

)

g
(±)
2

. (3.26)
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The starting point of such a proof is the differential equation
[
∂

∂z1
+

∂

∂z2
+

n

a2
(z1 + z2)− (µr ± µl )

]
g(±)
2 (z1, z2) = 0. (3.27)

Notice that the differential operator is restricted to the real eigenvalues of D5 and DW

and to the real part of the complex conjugated pair of z = z1 = z∗2 of DW due to the

Dirac delta-functions.

Both operators D̃(±) and D(±) are closely related with each other which is quite

advantageous. For example the action of D̃(±) in the scalar product (2.25) is

〈D̃(±)f1|f2〉g(±)
1

= − 〈f1|f ′
2〉g(±)

1
+

µr ∓ µl

2
〈f1|f2〉g(±)

1
, (3.28)

where f ′
2 is the first derivative of f2.

We consider the action of D̃(±) on the polynomials p(±)
l and q(±)

ν+l. The recursion
relations (3.19) and (3.20) yield

D̃(±)p(±)
l (z) = −

n

a2
p(±)
l+1(z) +

µr ∓ µl

2
p(±)
l (z). (3.29)

The polynomial D̃(±)q(±)
ν+l can be expanded in the polynomials {p(±)

j , q(±)
ν+j}, i.e.

D̃(±)q(±)
ν+l(z) =

l+1∑

j=0

α(±)
lj q(±)

ν+j(z) +
ν−1∑

j=0

β(±)
lj p(±)

j (z), (3.30)

where α(±)
lj and β(±)

lj are the coefficients which have to be found.

In Appendix B we derive the recursions

D̃q(±)
ν+2l(z) = −

n

a2
q(±)
ν+2l+1(z) + ε̃(±)

l q(±)
ν+2l(z), (3.31)

D̃q(±)
ν+2l+1(z) = −

n

a2
q(±)
ν+2l+2(z)− ε̃(±)

l q(±)
ν+2l+1(z) + ε(±)

l q(±)
ν+2l(z)−

n

a2
o(±)
l

o(±)
l−1

q(±)
ν+2l−2(z), (3.32)

with the coefficients

ε̃(±)
l = (2l + 1)

µr ∓ µl

2
, (3.33)

ε(±)
l =

n

a2

(
〈q(±)

ν+2l+3|pν+2l+1〉g1
hν+2l+1

−
〈q(±)

ν+2l+1|pν+2l−1〉g1
hν+2l−1

)

−
(l + 1)2(µr ∓ µl )2a2

n
. (3.34)

The recursion formula for q(±)
ν+2l+1, see Eq. (3.32), is restricted to l ≥ 1. For l = 0 we

have to omit the last term, i.e. the constant 1/o(±)
−1 is zero, see Eq. (3.12) when replacing

the factorial by Euler’s Gamma-function. This formula is quite useful to find Christoffel

Darboux-like formulas, see subsection 3.3.

3.3. A Christoffel Darboux-like formula

For the calculation of spectral correlations the Christoffel Darboux formula is quite

useful. However searching for such a formula of skew-orthogonal polynomials proved as
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a difficult task [69]. The same is true for the polynomials q(±)
ν+l for which we want to

simplify the sum

Σ(±)
n−1(z1, z2) =

n−1∑

l=0

1

o(±)
l

det

[
q(±)
ν+2l(z1) q(±)

ν+2l+1(z1)

q(±)
ν+2l(z2) q(±)

ν+2l+1(z2)

]

. (3.35)

For the orthogonal polynomials p(±)
l we already know such a result,

ν−1∑

l=0

1

hl
p(±)
l (z1)p

(±)
l (z2) =

1

hν−1

p(±)
ν (z1)p

(±)
ν−1(z2)− p(±)

ν (z2)p
(±)
ν−1(z1)

z1 − z2
. (3.36)

Identity (3.36) is a direct consequence of the three term recursion relation (3.20). Hence

we pursue the same idea for Eq. (3.35) which is done in Appendix C. The Christoffel

Darboux-like formula for the skew-orthogonal polynomials is

Σ(±)
n−1(z1, z2) =

n

a2o(±)
n−1

∞∫

0

dx̃ exp
[
−

n

a2
x̃2 +

(
µr ± µl −

n

a2
(z1 + z2)

)
x̃
]

(3.37)

× det

[
q(±)
ν+2n−2(z1 + x̃) q(±)

ν+2n(z1 + x̃)

q(±)
ν+2n−2(z2 + x̃) q(±)

ν+2n(z2 + x̃)

]

.

This result only depends on a few polynomials as it is already well known for the original

Christoffel Darboux formula, cf. Eq. (3.36).

3.4. Representation as random matrix averages

As we have already seen in subsection 3.2 all skew-orthogonal polynomials q(±)
ν+l are easy

to derive if we know a compact expression for l even. For this purpose we want to derive

a representation as an integral over a random matrix. For the orthogonal polynomials

the well known expression of this kind is

p(±)
l (z) =

(
2πa2

n

)l2 ∫
d[H ] det(z11l −H) exp

[

−
n

2a2
tr

(
H ∓

a2

n
µl

)2
]

, (3.38)

where H is a l × l Hermitian random matrix with the measure

d[H ] =
l∏

i=1

dHii

∏

1≤i<j≤l

2dRe HijdIm Hij. (3.39)

This random matrix integral can be drastically reduced to a small number of integration

variables by the supersymmetry method [52, 54, 55, 57]. A famous representation of the

Hermite polynomials can be derived in this way,

p(±)
l (z) =

l!

2π

2π∫

0

dϕ exp

[
−
a2

2n
eı2ϕ +

(
z ∓

a2

n
µl

)
eıϕ
]
e−ılϕ. (3.40)

The corresponding Rodrigues-formula for the Hermite polynomials is a simple lemma
from this, i.e.

p(±)
l (z) =

(
−
a2

n

)l

exp
[ n

2a2
z2 ∓ µl z

] ∂l

∂zl
exp

[
−

n

2a2
z2 ± µl z

]
(3.41)
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=

(
a2

n

)l/2

Hl

(√
n

a2
z ∓

√
a2

n
µl

)

.

The aim is to find the formulas analogous to Eqs. (3.38), (3.40) and (3.41) for q(±)
ν+2l.

We compare the definition (3.5) with Eqs. (2.27) and (2.45) for k = kr = kl = 0,

n = l and Nf = 1. Since we were free of choosing the two-point weight G(±)
2 and the

polynomials q(±)
ν+l at this step of the calculation, Eqs. (2.27) and (2.45) are also valid

when replacing G(±)
2 by g(±)

2 and q(±)
ν+l by p(±)

ν+l. Moreover, q(±)
ν+2l is also equal to

q(±)
ν+2l(z) =

(−1)ν(ν+1)/2

Pf

[(
p(±)
i |p(±)

j

)

g(±)
2

]

ν≤i,j≤ν+2l−1

ν−1∏
j=0

hj

(3.42)

×Pf





{(
p(±)
i |p(±)

j

)

g(±)
2

}

0≤i,j≤ν+2l

{
〈p(±)

i |p(±)
j 〉

g
(±)
1

}

0≤i≤ν+2l
0≤j≤ν−1

{
p(±)
i (z)

}

0≤i≤ν+2l

{
−〈p(±)

i |p(±)
j 〉

g(±)
1

}

0≤i≤ν−1
0≤j≤ν+2l

0 0

{
−pj(z)(±)

}
0≤j≤ν+2l

0 0





.

Indeed this equation coincides with the ansatz (3.5) since the scalar products in the

second row and column are either zero or equal to the normalization constants hj . An
expansion in these rows and columns yields Eq. (3.5).

The polynomials q(±)
ν+2l are the partition functions with one fermionic flavor,

q(±)
ν+2l(z) = (−1)ν

Z(l,ν,±)
1 (−z)

Z(l,ν,±)
0

. (3.43)

By means of the supersymmetry technique [52, 54, 55, 57] we find the result

q(±)
ν+2l(z) =

(±1)l+νl!(l + ν)!

(2π)2

∫

[0,2π]2

dϕr dϕl exp

[
−
a2

2n
(eı2ϕr + eı2ϕl ) +

1

n
eı(ϕr +ϕl )

]
(3.44)

× exp

[
−
(
a2µr

n
− z

)
eıϕr −

(
a2µl

n
∓ z

)
eıϕl

]
e−ılϕr e−ı(l+ν)ϕl

in Appendix D. Notice the similarity with Eq. (3.40).

Again we can ask for a Rodrigues formula and indeed it is a direct consequence of

Eq. (3.44). We find

q(±)
ν+2l(z) = (±1)l+ν

(
a2

n

)(l+ν)/2

exp

[
a2

2n

(
µr −

n

a2
z
)2]

(3.45)

×
∂l

∂x̃l

∣∣∣∣
x̃=0

exp

[
a2

2n

(
x̃+ µr −

n

a2
z
)2]

Hl+ν

(

±
√

n

a2
z −

√
a2

n
µl +

x̃√
na2

)

.

Performing the derivatives we find an explicit expression in terms of Hermite polynomials

for the skew-orthogonal polynomials q(±)
ν+2l,

q(±)
ν+2l(z) = (±1)l+ν

(
1√
na2

)l(a2

n

)(l+ν)/2 l∑

j=0

l!(l + ν)!

j!(l − j)!(ν + j)!
a2j (3.46)
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× Hν+j

(

±
√

n

a2
z −

√
a2

n
µl

)

Hj

(√
n

a2
z −

√
a2

n
µr

)

.

The polynomials for q(±)
ν+2l+1 can be readily obtained with help of relation (3.31).

Remarkably the prefactors of the single summands are exactly the same as the ones

of the modified Laguerre polynomials, L(ν)
l , when replacing the Hermite polynomials by

monomials.

The limit a → 0 yields the generalized Laguerre polynomials,

q(±)
ν+2l(z)

a→0
=

(
±
1

n

)l

zνL(ν)
l (∓nz2), (3.47)

q(±)
ν+2l+1(z) =

(
a2ε̃(±)

n
−

a2

n
D̃

)
q(±)
ν+2l(z)

a→0
=

(
±
1

n

)l

zν+1L(ν)
l (∓nz2),

which is in agreement with Ref. [67]. The large a limit with fixed variables
√

n/a2z and√
a2/nµl /r is a product of two Hermite polynomials

q(±)
ν+2l(z)

a"1
=

(
a2

n

)(2l+ν)/2

Hν+l

(√
n

a2
z ∓

√
a2

n
µl

)

Hl

(√
n

a2
z −

√
a2

n
µr

)

. (3.48)

Both limits can already be directly derived from the random matrix model, cf. Eqs. (2.1)
and (2.2). For a = 0 we have a χGUE whose orthogonal polynomials are the Laguerre

polynomials. Recently it was shown that the χGUE has also a non-trivial Pfaffian

factorization whose skew-orthogonal polynomials of even order are the orthogonal

polynomials itself. Hence the limit (3.47) agrees with the observation in Ref. [67].

In the large a limit the off-diagonal blocks W and W †, see (2.1), are suppressed.

Therefore we end up with two decoupled GUE’s. One is of dimension l and the other
one of dimension l + ν. This indeed yields a product of two Hermite polynomials, cf.

Eq. (3.48).

A particular case of the polynomials can be obtained for the random matrix D5.

Let µr = −µl = µ and a = 1. Then we have a 2n + ν dimensional GUE, cf. Eq. (2.2).

Indeed we also get the corresponding Hermite polynomials. Equation (3.44) simplifies

to

q(−)
ν+2l(z) =

(±1)l+νl!(l + ν)!

(2π)2

∫

[0,2π]2

dϕr dϕl exp

[
−

1

2n
(eıϕr − eıϕl )2

]
(3.49)

× exp
[(

z −
µ

n

)
(eıϕr − eıϕl )

]
e−ılϕr e−ı(l+ν)ϕl

= n−(ν+2l)/2Hν+2l

(√
nz −

µ√
n

)

for the even polynomials and

q(−)
ν+2l+1(z) =

(
−
µ

n
+ z −

1

n

∂

∂z

)
q(−)
ν+2l(z) (3.50)

= n−(ν+2l+1)/2Hν+2l+1

(√
nz −

µ√
n

)
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for the odd ones. Therefore all polynomials are given by Hermite polynomials

corresponding to the same Gaussian distribution.

Another useful random matrix integral representation would be the one for the

Christoffel Darboux-like formula (3.37). For the orthogonal polynomials p(±)
l such a

representation is well known,

p(±)
ν (z1)p

(±)
ν−1(z2)− p(±)

ν (z2)p
(±)
ν−1(z1)

z1 − z2
(3.51)

=

(
2πa2

n

)(ν−1)2∫
d[H ] det(z111ν−1 −H) det(z211ν−1 −H) exp

[

−
n

2a2
tr

(
H ∓

a2

n
µl

)2
]

with a (ν − 1) × (ν − 1) Hermitian matrix H . With the supersymmetry method

[52, 54, 55, 57] one can also find the representation

p(±)
ν (z1)p

(±)
ν−1(z2)− p(±)

ν (z2)p
(±)
ν−1(z1)

z1 − z2
(3.52)

= ν!(ν − 1)!

∫

U (2)

dµ(U) exp

[
−
a2

2n
trU2 + tr

(
diag (z1, z2)∓

a2µl

n
112

)
U

]
det−ν+1U,

where dµ(U) is the normalized Haar measure of the unitary group U (2).

In Appendix E we show that the Christoffel Darboux-like formula (3.37) is

essentially the partition function with two fermionic flavors, i.e.

Σ(±)
n (z1, z2) = (z1 − z2)

Z(n,ν,±)
2 (−z1,−z2)

o(±)
n Z(n,ν,±)

0

. (3.53)

Also the two-flavor partition function can be mapped to an integral over unitary groups

by performing the same calculation as for the one-flavor partition function, see the
discussion in Appendix D. Therefore Σ(±)

n is an integral over a compact set,

Σ(±)
n (z1, z2) = −

(n + 1)!(n+ ν + 1)!

4

√
n(1± a2)

π

(
n

1± a2

)2n+ν+1 1

a
(3.54)

× exp

[
−
a2

4n
(µr ± µl )

2 ∓
a4

4n(1± a2)
(µr ∓ µl )

2

]
(z1 − z2)

×
∫

U (2)×U (2)

dµ(Ur )dµ(Ul ) exp

[
−
a2

2n
(trU2

r + trU2
l ) +

1

n
trUrUl

]

× exp

[
− tr

(
a2µr

n
112 − diag (z1, z2)

)
Ur

]
det−nUr

× exp

[
− tr

(
a2µl

n
112 ∓ diag (z1, z2)

)
Ul

]
det−n−νUl .

Equations (3.44) and (3.54) are suitable for discussing the asymptotic behavior as it is

done in subsection 3.5.
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3.5. Asymptotics

The microscopic limit (n → ∞, see discussion after Eq. (2.12)) directly relates chiral
random matrix theory with QCD in the ε-regime. Hence we want to know the

expressions of the polynomials q(±)
ν+2l as well as the one of the Christoffel Darboux-like

formula Σ(±)
n−1 in this limit.

For an arbitrary function f which is n-independent and smooth on the group

U (k)×U (k) the following asymptotic result exists
∫

U (k)×U (k)

dµ(Ur )dµ(Ul )f(Ur , Ul ) exp [n trUrUl − n tr lnUrUl ] (3.55)

n#1
= (2π)−k/2n−k2/2enk

k−1∏

j=0

j!

∫

U (k)

dµ(U)f(U, U−1).

This identity can be readily proven by a shift of the unitary matrix Ul → U−1
r Ul . Then

the exponent only depends on Ul . The saddlepoint approximation yields an expansion
of Ul about the unit matrix yielding Eq. (3.55).

Equations (3.44) and (3.54) are particular cases of identity (3.55). Hence we have

q(±)
ν+2n

(
ẑ

2n

)
n#1
=

(−1)ν(±1)n+ν
√
ne−n

√
2π

∫

[0,2π]

dϕ exp
[
−â2(eı2ϕ + e−ı2ϕ)

]
(3.56)

× exp

[
1

2

(
m̂6 + λ̂7 − ẑ

)
eıϕ +

1

2

(
m̂6 − λ̂7 ∓ ẑ

)
e−ıϕ

]
eıνϕ.

for the polynomials which is the one-flavor partition function derived in Refs. [20] and

Σ(±)
n

(
ẑ1
2n

,
ẑ2
2n

)
n#1
= −

1

8
√
2π

n2

â
exp

[
−

â2

2n2
(µr ± µl )

2 ∓ 4â2
]
(ẑ1 − ẑ2) (3.57)

×
∫

U (2)

dµ(U) exp

[
1

2
tr
(
(m̂6 − λ̂7)112 ∓ diag (ẑ1, ẑ2)

)
U−1

]
detνU

× exp

[
−â2 tr(U2 + U−2) +

1

2
tr
(
(m̂6 + λ̂7)112 − diag (ẑ1, ẑ2)

)
U

]

for the Christoffel Darboux-like formula, cf. Eqs. (2.20) and (2.39). In both equation

we applied Stirling’s formula to the factorials.

In the case of the polynomials q(±)
ν+2n(z) we are able to integrate over the domain,

q(±)
ν+2n(z)

n#1
=

(−1)ν(±1)n+ν
√
ne−n−ν

(2π)3/2

∞∑

j=−∞

∫

[0,2π]2

dϕ1dϕ2 exp
[
−â2(eıϕ1 + e−ıϕ1)

]
(3.58)

× exp

[
1

2

(
m̂6 + λ̂7 − ẑ

)
eıϕ2 +

1

2

(
m̂6 − λ̂7 ∓ ẑ

)
e−ıϕ2

]
eıνϕ2eıj(ϕ1−2ϕ2)

= (−1)ν(±1)n+ν
√
2πne−n−ν

∞∑

j=−∞

(
m̂6 − λ̂7 ∓ ẑ

m̂6 + λ̂7 − ẑ

)ν/2+j
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× Iν+2j

(√
(m̂6 + λ̂7 − ẑ)(m̂6 − λ̂7 ∓ ẑ)

)
Ij(−â2).

Due to the modified Bessel functions of the second kind Il(z) ∝ (ze/2|l|)|l|/
√
2π|l| ∝

(z/2)|l|/|l|!, for |l| % 1, the series rapidly converges and is numerically more stable than

the integral (3.56) in simulations.

Unfortunately it is much harder to find such a sum for the Christoffel Darboux-like

formula. However we can diagonalize the unitary matrix U and find

Σ(+)
n

(
ẑ1
2n

,
ẑ2
2n

)
n!1
= −

n2

4(2π)5/2â

∫

[0,2π]2

dϕ1dϕ2 sin
2

[
ϕ1 − ϕ2

2

]
(3.59)

× exp

[
2∑

j=1

(

−
(
2â cosϕj +

m̂6

4â

)2

+ ıνϕj − ıλ̂7 sinϕj

)]

×
exp [ẑ1 cosϕ1 + ẑ2 cosϕ2]− exp [ẑ2 cosϕ1 + ẑ1 cosϕ2]

cosϕ1 − cosϕ2

for DW and

Σ(−)
n

(
ẑ1
2n

,
ẑ2
2n

)
n!1
=

ın2

4(2π)5/2â

∫

[0,2π]2

dϕ1dϕ2 sin
2

[
ϕ1 − ϕ2

2

]
(3.60)

× exp




2∑

j=1




(

2â sinϕj −
ıλ̂7
4â

)2

+ ıνϕj − ım̂6 cosϕj









×
exp [ıẑ1 sinϕ1 + ıẑ2 sinϕ2]− exp [ıẑ2 sinϕ1 + ıẑ1 sinϕ2]

sinϕ1 − sinϕ2

for D5. These two formulas are quite suitable for the applications discussed in Sec. 4.

Both Christoffel-Darboux formulas are mostly two-flavor partition functions. In Ref. [22]

these functions are expressed as non-compact integrals over Bessel functions.

4. Application to Wilson RMT

The results of the previous sections are helpful to simplify the k-point functions of D5 as

well as of DW . A Pfaffian factorization of the eigenvalue correlations of D5 was already

given in Ref. [23]. We obtain this structure in Sec. 4.1, too. Moreover we express

the kernels of the Pfaffian in terms of two-flavor partition functions which has proven
fruitful in other random matrix ensembles, see Ref. [58] and the references therein. The

unquenched (kr , kl )-point correlation function of DW is shown in Sec. 4.2 which is a

completely new result. Also this result displays a Pfaffian factorization whose entries

are two-flavor partition functions.

4.1. The Hermitian Wilson random matrix ensemble

In the k-point correlation function (2.27) we encounter an integral transform of the

orthogonal and skew-orthogonal polynomials, cf. Eq. (2.29). Thus we define the integral
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transform of the skew-orthogonal polynomials,

q̃(−)
ν+l(x) =

∫

R

dx̃q(−)
ν+l(x̃)G

(−)
2 (x̃, x) (4.1)

=

∫

R

dx̃q(−)
ν+l(x̃)g

(−)
2 (x̃, x)−

ν−1∑

j=0

(q(−)
ν+l|p

(−)
j )

g(−)
2

hj
p(−)
j (x)g(−)

1 (x)

= −
∫

R

dx̃q(−)
ν+l(x̃)G

(−)
2 (x, x̃).

The same integral transform for the orthogonal polynomials p(−)
l , 0 ≤ l ≤ ν−1, vanishes,

i.e. ∫

R

dx̃p(−)
l (x̃)G(−)

2 (x̃, x) = 0, (4.2)

cf. Eq. (3.17).

Using the identity

Pf

[
A B

−BT C

]

= Pf APf [C +BTA−1B], (4.3)

where B and C are arbitrary and A is invertible, the k-point correlation function with

an even number of fermionic flavors Nf = 2nf , see Eq. (2.27), is

R(n,ν,−)
2nf ,k

(x′) =
(−1)k(k+1)/2

Pf [K(−,n+nf)
3 (−λi,−λj)]1≤i,j≤2nf

(4.4)

× Pf




K(−,n+nf)

1 (xi, xj) −K(−,n+nf)
2 (xj , xi) −K(−,n+nf)

2 (−λj, xi)

K(−,n+nf)
2 (xi, xj) K(−)

3 (xi, xj) K(−,n+nf)
3 (xi,−λj)

K(−,n+nf)
2 (−λi, xj) K(−)

3 (−λi, xj) K(−,n+nf)
3 (−λi,−λj)





which is the main result for the Hermitian Wilson random matrix D5. The indices i

and j of the Pfaffian in the denominator take the values (1, . . . , k, 1, . . . , k, 1, . . . , 2nf).
The functions in the entries are

K(−,n+nf)
1 (x1, x2) = G(−)

2 (x1, x2) +
n+nf−1∑

l=0

1

o(−)
l

det

[
q̃(−)
ν+2l+1(x1) q̃(−)

ν+2l(x1)

q̃(−)
ν+2l+1(x2) q̃(−)

ν+2l(x2)

]

, (4.5)

K(−,n+nf)
2 (x1, x2) =

ν−1∑

l=0

1

hl
p(−)
l (x1)p

(−)
l (x2)g

(−)
1 (x2)

+
n+nf−1∑

l=0

1

o(−)
l

det

[
q(−)
ν+2l+1(x1) q(−)

ν+2l(x1)

q̃(−)
ν+2l+1(x2) q̃(−)

ν+2l(x2)

]

,

(4.6)

K(−,n+nf)
3 (x1, x2) =

n+nf−1∑

l=0

1

o(−)
l

det

[
q(−)
ν+2l+1(x1) q(−)

ν+2l(x1)

q(−)
ν+2l+1(x2) q(−)

ν+2l(x2)

]

= − Σ(−)
n+nf−1(x1, x2). (4.7)
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The k-point correlation function for an odd number of flavors can be derived by shifting

one of the axial masses λ to infinity. Then we get the skew-orthogonal polynomial

q(−)
ν+2(n+nf−1) and its integral transform q̃(−)

ν+2(n+nf−1) in one row and one column of the

numerator and the denominator of Eq. (4.4).

The case k = 0 is the normalization. For k = 2n + ν we have a compact

representation of the joint probability density p5 as a single Pfaffian determinant.
The representation (4.5-4.7) in terms of the Hermite polynomials p(−)

l and the skew-

orthogonal polynomials q(−)
ν+l can be easily interpreted. The ν former zero modes are

broadened by a GUE of dimension ν. The skew-orthogonal polynomials can be identified

with the remaining modes and describe the spectral density thereof. Both spectra, the

one of the GUE and the one of the remaining modes, are coupled by the sum in Eq. (4.1).

They manifest the repulsion of the former zero modes with the remaining modes which
is given by the Vandermonde determinant in the joint probability density (2.6).

Not only the kernel K(−,n+nf)
3 can be expressed in terms of two-flavor partition

functions, note that the Christoffel-Darboux-like formula, Σ(−)
n+nf−1, is mostly such a

partition function. Also the kernels K(−,n+nf)
1 and K(−,n+nf)

2 can be traced back to

partition functions. In Appendix F we derive the following results

K(−,n)
1 (x1, x2) =

o(−)
n

π2
(x1 − x2) Im

ε1→0
ε2→0

(4.8)

×
〈

1

det(D5 − (x1 + ıε1)112n+ν+2) det(D5 − (x2 + ıε2)112n+ν+2)

〉

n+1,ν

,

K(−,n)
2 (x1, x2) =

1

π

1

x2 − x1
Im
ε→0

〈
det(D5 − x1112n+ν)

det(D5 − (x2 + ıε)112n+ν)

〉

n,ν

. (4.9)

We employ the notations

Im
ε→0

∫
dx

f(x)

x− ıε
= lim

ε→0

∫
dx

εf(x)

x2 + ε2
= πf(0) (4.10)

and

〈F (DW )〉N,ν = 〈F (γ5D5)〉N,ν =

∫
d[DW ]F (DW )P (DW ) (4.11)

for two arbitrary sufficiently integrable functions f and F and the definition of the

probability density P in Eq. (2.2). The random matrix on the right hand side of

Eq. (4.11) has the dimension (2N + ν) × (2N + ν) with index ν. Hence we have to

take the averages (4.8) and (4.9) over a Wilson random matrix with N = n+ nf .

Considering Eqs. (3.53), (4.7), (4.8) and (4.9) we traced the unquenched k-point
correlation functions of D5 back to partition functions with two fermionic, two bosonic

and one fermionic and one bosonic determinant. Hence the structure of the eigenvalue

correlations of D5 is in the same class of matrix ensembles as the β = 1 and β = 4

standard ensembles, e.g. GOE, GSE, the real and quaternion Ginibre ensemble, the

chiral GOE and the chiral GSE, see Ref. [58] and the references therein. When taking

the continuum limit, a → 0, the Pfaffian determinant will persist though we have then
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chiral GUE. This observation agrees with the result found in Ref. [67]. Therein a non-

trivial Pfaffian was derived for all random matrix ensembles corresponding to orthogonal

polynomials. Exactly this structure carries over to the finite lattice spacing result (4.4).

The kernel K(−,n)
2 (x, x) is equal to the quenched one point function of D5, denoted

by ρ5(x) in Refs. [20, 21]. Due to the prefactor 1/(x1 − x2), see Eq. (4.9), we have to

apply l’Hospital’s rule which exactly agrees with the common definition of ρ5.
The Pfaffian factorization (4.4) was already discovered in Ref. [23] but we made

the connection to two-flavor partition functions. Furthermore the structure as well

as the expression in two-flavor partition functions carry over to the microscopic limit.

In this limit Wilson random matrix theory is directly related to the ε-regime of Wilson

fermions in lattice QCD [27, 28, 29, 30, 39]. Hence we found a neat representation which

drastically simplifies the numerical realization of the k-point correlation functions.
The microscopic limit of the kernel K(−,n)

3 is shown in Sec. 3.5, see Eq. (3.60). A

derivation of the other kernels as well as a qualitative discussion of the results will be

done elsewhere [68].

In the notation of Refs. [20, 21, 22] the kernels are proportional to the two-flavor

partition functions of the chiral Lagrangian,

K(−,∞)
1 (x1, x2) ∝ (x̂1 − x̂2) Im

ε1→0
ε2→0

Zν
0/2(m̂6, m̂6; λ̂7 − x̂1, λ̂7 − x̂2; â8, â6/7 = 0), (4.12)

K(−,∞)
2 (x1, x2) ∝ Im

ε→0

Zν
1/1(m̂6, m̂6; λ̂7 − x̂1, λ̂7 − x̂2; â8, â6/7 = 0)

x̂2 − x̂1
, (4.13)

K(−,∞)
3 (x1, x2) ∝ (x̂1 − x̂2)Z

ν
2/0(m̂6, m̂6; λ̂7 − x̂1, λ̂7 − x̂2; â8, â6/7 = 0), (4.14)

in the microscopic limit. Please recall that x̂ = 2nx is fixed. The constants âi
are essentially the product of the lattice spacing a times the square roots of the low
energy constants,

√
Wi, [20, 21, 22]. We get the case â6/7 $= 0 when we multiply the

expression (4.4) with the partition function ofNf fermionic flavors cancelling the Pfaffian

in the denominator. Then we have to integrate over Gaussian distributions of m̂6 and

λ̂7. Finally we divide the result by the partition function of Nf fermionic flavors with

â6/7 $= 0 which is also the two Gaussian integrals over m̂6 and λ̂7 of the partition function

with â6/7 = 0, cf. Ref. [34]. Please notice that we will lose the Pfaffian factorization
when going from â6/7 = 0 to â6/7 $= 0.

4.2. The non-Hermitian Wilson random matrix ensemble

As in the Hermitian version we define the integral transform of the skew-orthogonal

polynomials q(+)
ν+l. However we have to distinguish between left and right transformation

because G(+)
2 is not anti-symmetric anymore,

q̃(l ,+)
ν+l (z) =

∫

C

d[z̃]q(+)
ν+l(z̃)G

(+)
2 (z̃, z) (4.15)
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=

∫

C

d[z̃]q(+)
ν+l(z̃)g

(+)
2 (z̃, z)−

ν−1∑

j=0

(q(+)
ν+l|p

(+)
j )

g(+)
2

hj
p(+)
j (z)g1(z),

q̃(r ,+)
ν+l (z) =

∫

C

d[z̃]q(+)
ν+l(z̃)G

(+)
2 (z, z̃) (4.16)

=

∫

C

d[z̃]q(+)
ν+l(z̃)g

(+)
2 (z, z̃).

Another difference to the Hermitian case is a non-vanishing integral transform of the

orthogonal polynomials

p̃l(z) =

∫

C

d[z̃]p(+)
l (z̃)G(+)

2 (z̃, z) =

∫

C

d[z̃]p(+)
l (z̃)G(+)

2 (z, z̃) (4.17)

for 0 ≤ l ≤ ν − 1 due to Eq. (3.18).

Again we consider an even number of fermionic flavors. Then we arrive at our

main result for the non-Hermitian Wilson random matrix which is the (kr , kl )-point

correlation function (2.45),

R(n,ν,+)
2nf ,kr ,kl

(Z ′,−m) =
1

Pf [K(+,n+nf)
6 (mi, mj)]1≤i,j≤2nf

(4.18)

× Pf





K̂(+,n+nf)
1 (z(r )i , z(r )j ) K̂(+,n+nf)

3 (z(l )j , z(r )i ) K̂(+,n+nf)
4 (mj , z

(r )
i )

−K̂(+,n+nf)T
3 (z(l )i , z(r )j ) K̂(+,n+nf)

2 (z(l )i , z(l )j ) K̂(+,n+nf)
5 (mj , z

(l )
i )

−K̂(+,n+nf )T
4 (mi, z

(r )
j ) −K̂(+,n+nf)T

5 (mi, z
(l )
j ) K(+,n+nf)

6 (mi, mj)




,

with

K̂(+,n+nf)
1 (z(r )i , z(r )j ) =

[
K(+,n+nf)

1 (z(r )i , z(r )j ) −K(+,n+nf)
3 (z(r )j , z(r )i )

K(+,n+nf)
3 (z(r )i , z(r )j ) K(+,n+nf)

6 (z(r )i , z(r )j )

]

, (4.19)

K̂(+,n+nf)
2 (z(l )i , z(l )j ) =

[
K(+,n+nf)

4 (z(l )i , z(l )j ) K(+,n+nf)
5 (z(l )j , z(l )i )

−K(+,n+nf)
5 (z(l )i , z(l )j ) K(+,n+nf)

6 (z(l )i , z(l )j )

]

, (4.20)

K̂(+,n+nf)
3 (z(l )j , z(r )i ) =

[
K(+,n+nf)

2 (z(l )j , z(r )i ) −K(+,n+nf )
3 (z(l )j , z(r )i )

−K(+,n+nf)
5 (z(r )i , z(l )j ) K(+,n+nf)

6 (z(r )i , z(l )j )

]

, (4.21)

K̂(+,n+nf)
4 (mj, z

(r )
i ) =

[
−K(+,n+nf)

3 (mj, z
(r )
i )

K(+,n+nf)
6 (z(r )i , mj)

]

, (4.22)

K̂(+,n+nf)
5 (mj, z

(l )
i ) =

[
K(+,n+nf)

5 (mj , z
(l )
i )

K(+,n+nf)
6 (z(l )i , mj)

]

, (4.23)

where the indices i and j take the values (1, . . . , kr , 1, . . . , kl , 1, . . . , 2nf) from left to

right and top to bottom. The functions are given by

K(+,n+nf)
1 (z1, z2) =

n+nf−1∑

l=0

1

o(+)
l

det

[
q̃(r ,+)
ν+2l+1(z1) q̃(r ,+)

ν+2l (z1)

q̃(r ,+)
ν+2l+1(z2) q̃(r ,+)

ν+2l (z2)

]
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= −
∫

C2

d[z̃1]d[z̃2]Σ
(+)
n+nf−1(z̃1, z̃2)g

(+)
2 (z1, z̃1)g

(+)
2 (z2, z̃2), (4.24)

K(+,n+nf)
2 (z1, z2) = G(+)

2 (z2, z1) +
n+nf−1∑

l=0

1

o(+)
l

det

[
q̃(l ,+)
ν+2l+1(z1) q̃(l ,+)

ν+2l (z1)

q̃(r ,+)
ν+2l+1(z2) q̃(r ,+)

ν+2l (z2)

]

−
ν−1∑

l=0

1

hl
p(+)
l (x1)p̃l(z2)g

(+)
1 (x1)δ(y1), (4.25)

K(+,n+nf)
3 (z1, z2) =

n+nf−1∑

l=0

1

o(+)
l

det

[
q(+)
ν+2l+1(z1) q(+)

ν+2l(z1)

q̃(r ,+)
ν+2l+1(z2) q̃(r ,+)

ν+2l (z2)

]

= −
∫

C

d[z̃]Σ(+)
n+nf−1(z1, z̃)g

(+)
2 (z2, z̃), (4.26)

K(+,n+nf)
4 (z1, z2) =

n+nf−1∑

l=0

1

o(+)
l

det

[
q̃(l ,+)
ν+2l+1(z1) q̃(l ,+)

ν+2l (z1)

q̃(l ,+)
ν+2l+1(z2) q̃(l ,+)

ν+2l (z2)

]

+
ν−1∑

l=0

1

hl
det

[
p̃l(z1) p(+)

l (x1)g
(+)
1 (x1)δ(y1)

p̃l(z2) p(+)
l (x2)g

(+)
1 (x2)δ(y2)

]

, (4.27)

K(+,n+nf)
5 (z1, z2) =

ν−1∑

l=0

1

hl
p(+)
l (z1)p

(+)
l (x2)g

(+)
1 (x2)δ(y2)

+
n+nf−1∑

l=0

1

o(+)
l

det

[
q(+)
ν+2l+1(z1) q(+)

ν+2l(z1)

q̃(l ,+)
ν+2l+1(z2) q̃(l ,+)

ν+2l (z2)

]

, (4.28)

K(+,n+nf)
6 (z1, z2) =

n+nf−1∑

l=0

1

o(+)
l

det

[
q(+)
ν+2l+1(z1) q(+)

ν+2l(z1)

q(+)
ν+2l+1(z2) q(+)

ν+2l(z2)

]

= − Σ(+)
n+nf−1(z1, z2). (4.29)

Note that although some of the sums seem to look identical they slightly differ by the
integral transforms which have to be taken.

The result for an odd number of flavors can again be obtained by taking the limit of

one mass to infinity. Then one row and one column only depend on the skew-orthogonal

polynomial q(+)
ν+2(n+nf−1) and its two integral transforms q̃(l ,+)

ν+2(n+nf−1) and q̃(r ,+)
ν+2(n+nf−1).

For kr = kl = 0 we find the normalization and in the case (kr , kl ) = (n, n + ν)

we have a representation of joint probability density pW as a Pfaffian similar to the
one of p5. Additionally, we can consider the particular cases (kr , kl ) = (n, 0) and

(kr , kl ) = (0, n+ ν) which are the joint probability densities for the eigenvalues z(r ) and

z(l ) separately. These two joint probability densities are the ones for the right handed

and the half of the complex modes, namely z(r ), and for the left handed and the other

half of the complex modes, which is z(l ).

Again we recognize a natural splitting of the spectral properties. There are those
terms, the sums with Hermite polynomials p(+)

l , which describe the broadening of the

former zero modes. They are again manifested by the same GUE which we found when
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discussing D5 and are located on the real axis only, notice the Dirac delta functions.

Moreover we have the terms for the remaining modes given by the skew-orthogonal

polynomials, q(+)
ν+l. The corresponding eigenvalues to these modes do not necessarily lie

on the real axis. On the contrary most eigenvalues are distributed in the complex plane,

see Ref. [19, 24, 34].

There is an interaction between these two kinds of spectra in the integral transform,
cf. Eqs. (4.15) and (4.17). This interaction directly follows from the Vandermonde

determinant in the joint probability density (2.14). The repulsion obtained by this

coupling effects the spectrum located on the real axis as well as the complex one.

As for D5 all kernels of the result (4.18) can be traced back to two-flavor partition

functions. For the kernels K(+,n+nf)
1 , Eq. (4.24), K(+,n+nf)

3 , Eq. (4.26), and K(+,n+nf)
6 ,

Eq. (4.29), we know already appropriate expressions. In Appendix F we derive the
results for the other kernels,

∆K(+,n)
2 (z1, z2) = K(+,n)

2 (z1, z2) +K(+,n)
1 (z1, z2) (4.30)

= g(+)
2 (z2, z1) +

1

π

∫

C

d[z̃]
g(+)
2 (z2, z̃)

x1 − z̃

× Im
ε→0

〈
det(DW − z̃112n+ν)

det(DW − x1112n+ν − ıεγ5)

〉

n,ν

δ(y1),

∆K(+,n)
4 (z1, z2) = K(+,n)

4 (z1, z2)−∆K(+,n)
2 (z1, z2) +∆K(+,n)

2 (z2, z1)−K(+,n)
1 (z1, z2)

=
o(+)
n

π2
(x1 − x2)δ(y1)δ(y2) Im

ε1→0
ε2→0

(4.31)

×
〈

1

det(DW − x1112n+ν+2 − ıε1γ5) det(DW − x2112n+ν+2 − ıε2γ5)

〉

n+1,ν

,

∆K(+,n)
5 (z1, z2) = K(+,n)

5 (z1, z2) +K(+,n)
3 (z1, z2) (4.32)

=
1

π

1

z1 − x2
Im
ε→0

〈
det(DW − z1112n+ν)

det(DW − x2112n+ν − ıεγ5)

〉

n,ν

δ(y2).

The kernel ∆K(+,n+nf)
4 describes the correlation of the chiral distribution over the real

eigenvalues with itself. This can be seen by the γ5 weight of the imaginary increments

in the denominators and the Dirac delta functions, cf. Refs. [22]. The other two

kernels (4.30) and (4.32) represent the interaction of the chiral distribution over the

real eigenvalues with the remaining spectrum describing the additional real modes and

the complex ones.
The quenched one point functions presented in Refs. [22, 19, 24] are given by

the kernels K(+,n)
3 (z, z) and K(+,n)

5 (z, z). The kernel K(+,n)
3 (z, z) was denoted by

ρr(x)δ(y) + ρc(z)/2 in Refs. [19, 24] which is the sum of the distribution of the right

handed modes and the half of the distribution of the complex eigenvalues. Then the

kernel ∆K(+,n+nf)
5 (x, x) is equal to the chirality distribution over the real eigenvalues

ρχ(x), see Refs. [22, 19, 24].
Again the Pfaffian determinant as well as the identification with two-flavor partition
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functions of DW carry over to the microscopic limit and, thus, to eigenvalue correlations

of the Wilson-Dirac operator in the ε-regime. The microscopic limit of the three kernels

K(+,n)
1 , K(+,n)

3 and K(+,n)
6 are trivial corollaries of Eq. (3.59). The derivation of this

limit for the other three kernels will be made elsewhere [68]. Also the discussion of the

results will not be done here.

Again we can look what our results mean in the notation of Refs. [20, 21, 22]. In
the microscopic limit the following kernels are proportional to the two-flavor partition

functions of the chiral Lagrangian

∆K(+,∞)
4 (z1, z2) ∝ (x̂1 − x̂2) Im

ε1→0
ε2→0

Zν
0/2(m̂6 − x̂1, m̂6 − x̂2; λ̂7, λ̂7; â8, â6/7 = 0)δ(ŷ1)δ(ŷ2),

(4.33)

∆K(+,∞)
5 (z1, z2) ∝ Im

ε→0

Zν
1/1(m̂6 − ẑ1, m̂6 − x̂2; λ̂7, λ̂7; â8, â6/7 = 0)

x̂2 − ẑ1
δ(ŷ2), (4.34)

K(+,∞)
6 (z1, z2) ∝ (ẑ1 − ẑ2)Z

ν
2/0(m̂6 − ẑ1, m̂6 − ẑ2; λ̂7, λ̂7; â8, â6/7 = 0). (4.35)

The other kernels are only integral transforms of these three partition functions. As

for D5 we can create the case â6/7 #= 0 by multiplying the expression (4.18) with the

partition function of Nf fermionic flavors and integrating over Gaussian distributions of

m̂6 and λ̂7. At the end we divide the resulting expression by the partition function with
Nf fermionic flavor and with â6/7 #= 0.

5. Conclusions

We derived the orthogonal and skew-orthogonal polynomials corresponding to the

Hermitian as well as the non-Hermitian Wilson random matrix ensemble. The

orthogonal polynomials are the Hermite polynomials from order 0 to ν − 1 in both
cases. They result from the ν-dimensional GUE describing the broadening of the ν

generic real modes which are at zero lattice spacing the zero modes. Such a GUE was

already discovered in the chirality distribution over the real eigenvalues [22, 19, 24] as

well as in the level density of the Hermitian Wilson random matrix ensemble and, thus,

the Wilson Dirac operator [20, 21, 32]. Surprisingly this GUE is already the universal

result and is a dominant part in the eigenvalue correlations at small lattice spacing
since it forms the Dirac delta functions at zero with weight ν in the continuum limit,

see Refs. [21, 23].

The remaining spectrum is described by skew-orthogonal polynomials starting from

order ν. They describe the remaining spectrum apart from the ν generic real modes.

In a unifying way we constructed these polynomials and derived recursion relations

which enable us to obtain the odd polynomials by simply acting with a derivative
operator on the even ones, cf. Eq. (3.31). This derivative operator can be identified by a

creation operator of a harmonic oscillator. Moreover we derived a Christoffel Darboux-

like formula (3.37) which is equivalent to the partition function of two fermionic flavors,

see Eq. (3.53). The even skew-orthogonal polynomials are equal to one-flavor partition
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functions, see Eq. (3.43). With help of this knowledge we were able to derive the

Rodrigues formula (3.45) interpolating between the one of the Laguerre polynomials

and the one of the Hermite polynomials.

As an application we considered the unquenched k-point correlation functions of

the Hermitian and non-Hermitian Wilson random matrix ensemble. We derived a

Pfaffian factorization in both cases. The one of the Hermitian matrix was already
known before [23] but we traced the entries back to the two-flavor partition functions,

see subsection 4.1, which is a better expression for numerical evaluations. The Pfaffian of

the non-Hermitian random matrix is a completely new result. We identified its kernels

as two-flavor partition functions, too, see subsection 4.2. These partition functions

can be readily interpreted as correlations of the complex conjugated pairs, the real

eigenvalues corresponding to the right handed modes and the average chirality over the
real eigenvalues.

Although the random matrix DW is non-Hermitian we did not need a Hermitization

as it was introduced in Ref. [70]. We circumvented this approach by splitting the kernels

with bosonic flavors into two kinds of terms. One kind corresponds to the chirality over

the real eigenvalues which exhibits no singularities in the bosonic determinants. The

other term are integral transforms of partition functions with fermionic flavors instead of
bosonic ones. Hence there are no problems of integrability anymore. Especially we have

not to double the number of the bosonic dimensions in the superspace when applying

the supersymmetry method.

The Pfaffian factorization as well as the identification with two-flavor partition

functions carry over to the microscopic limit and, thus, to the spectral properties of

the Wilson-Dirac operator in the ε-regime [27, 28, 29, 30]. Hence the results shown

in Sec. 4 are a good starting point for an analytical study of the Hermitian and
non-Hermitian Wilson-Dirac operator. In particular the calculation of the individual

eigenvalue distributions will benefit of the structure since a representation as Fredholm

Pfaffians are possible, see Ref. [65]. Fredholm determinants and Pfaffians are compact

expressions simplifying the perturbative expansion of the gap probability in the k-point

correlations function to obtain the individual eigenvalue distributions.

Moreover, the skew-orthogonal polynomials and the Christoffel Darboux-like
formula also appearing as kernels of the Pfaffian determinants reduce to a quickly

converging sum, see Eq. (3.58), and two-fold integrals over phases, see Eqs. (3.59) and

(3.60), respectively.

The Pfaffian of the k-point correlation function will persist in the continuum limit.

It is in agreement with Ref. [67] where a non-trivial Pfaffian determinant was derived

for β = 2 random matrix ensembles. A similar but not completely equivalent structure
was derived in Refs. [71, 72] for β = 2 ensembles, too. Hence Pfaffians seem to be more

universal than the determinantal structures in the eigenvalues statistics of RMT.

The Pfaffian determinants we found reflect the breaking of the generic pairing of

eigenvalues in the continuum limit to no reflection symmetry at all in the Hermitian

case and the reflection symmetry at the real axis in the non-Hermitian one. For example
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at a = 0 and fixed matrix D5 we can say if λ is an eigenvalue of D5 then −λ is also one.

This is not anymore true at finite a.
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Appendix A. De Bruijn-like integration theorems

We generalize the de Bruijn-like integration theorem [73] to an integrand which

is a product of one determinant and one Pfaffian, see Appendix A.1, and of two

determinants, see Appendix A.2.

Appendix A.1. With a Pfaffian integrand

Let N1, N2 and N3 be three positive integers fulfilling the condition 2N3, N2 ≥ N1 > 0.

We consider the following integral

I1 =

∫ N1∏

j=1

d[zj ] det





{Ac(zb)}
1≤b≤N1

1≤c≤N2

{Bbc}
1≤b≤N2−N1

1≤c≤N2





× Pf





{C(zb, zc)}
1≤b,c≤N1

{Dc(zb)}
1≤b≤N1

1≤c≤2N3−N1

{−Db(zc)}
1≤b≤2N3−N1

1≤c≤N1

{Ebc}
1≤b,c≤2N3−N1




.

(A.1)

The matrix B is an arbitrary constant matrix whereas E is an anti-symmetric constant

matrix. The matrix valued functions A, C and D are sufficiently integrable and C is

anti-symmetric in its entries.

After an expansion of the first determinant in Eq. (A.1) in the entries Ac(zb) we
can integrate over the variables z [58], i.e.

I1 =
1

(N2 −N1)!

∑

ω∈S̃(N2)

signω det[Bbω(c)]
1≤b≤N2−N1

N1+1≤c≤N2

(A.2)

×Pf





{∫
d[z]Aω(b)(z1)Aω(c)(z2)C(z1, z2)

}

1≤b,c≤N1

{∫
d[z]Aω(b)(z)Dc(z)

}

1≤b≤N1

1≤c≤2N3−N1{
−
∫

d[z]Aω(c)(z)Db(z)

}

1≤b≤2N3−N1

1≤c≤N1

{Ebc}
1≤b,c≤2N3−N1




.
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The remaining determinant can be combined with the Pfaffian by the sum. Thereby we

use the identity

det[Bbω(c)]
1≤b≤N2−N1

N1+1≤c≤N2

= (−1)(N2−N1)(N2−N1−1)/2 (A.3)

× Pf





0
{
Bcω(b)

}
N1+1≤b≤N2

1≤c≤N2−N1{
−Bbω(c)

}
1≤b≤N2−N1

N1+1≤c≤N2

0




.

This yields the result

I1 = (−1)(N2−N1)(N1+N2−1)/2N1!

× Pf





∫
d[z]Ab(z1)Ac(z2)C(z1, z2)

∫
d[z]Ab(z)Dc(z) Bcb

−
∫

d[z]Ac(z)Db(z) Ebc 0

−Bbc 0 0




. (A.4)

The number of the first set of columns and rows is N2, the one of the second set is

2N3 − N1 and the one of the third part N2 − N1. Hence, we take the Pfaffian of a

2(N2 +N3 −N1)× 2(N2 +N3 −N1) anti-symmetric matrix.

Appendix A.2. With a determinantal integrand

Now we study the integral with a determinant instead of a Pfaffian, cf. Eq. (A.1), i.e.

I2 =

∫ NR∏

j=1

d[zjR]
NL∏

j=1

d[zjL] det





{Ac(zbR)}
1≤b≤NR

1≤c≤N1

{Bc(zbL)}
1≤b≤NL

1≤c≤N1

{Cbc}
1≤b≤N1−NR−NL

1≤c≤N1





× det





{D(zbR, zcL)}
1≤b≤NR

1≤c≤NL

{Ec(zbR)}
1≤b≤NR

1≤c≤N2−NL

{Fb(zcL)}
1≤b≤N2−NR

1≤c≤NL

{Hbc}
1≤b≤N2−NR

1≤c≤N2−NL




. (A.5)

The matrices C and H are arbitrary constant matrices and the matrix valued functions

A, B, D, E and F are chosen such that the integrals exist. The positive integers N1,

N2, NR and NL have the relations N1 ≥ NR + NL and N2 ≥ NR, NL. Without loss of

generality we can assume NL ≥ NR ≥ 0.

In the first step we split both matrices F and H into two blocks, i.e.

[Fb(zcL)]
1≤b≤N2−NR

1≤c≤NL

=





{Fb1(zcL)}
1≤b≤NL−NR

1≤c≤NL

{Fb2(zcL)}
1≤b≤N2−NL

1≤c≤NL




, (A.6)
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[Hbc]
1≤b≤N2−NR

1≤c≤N2−NL

=




{Hbc1}

1≤b≤NL−NR

1≤c≤N2−NL

{Hbc2}
1≤b,c≤N2−NL



 , (A.7)

where we assume that H2 is invertible. Later on we will relax this restriction since

I2 is a polynomial in the constant matrices C and H . We pull H2 out of the second
determinant and have

I2 = detH2

∫ NR∏

j=1

d[zjR]
NL∏

j=1

d[zjL] det





{Ac(zbR)}
1≤b≤NR

1≤c≤N1

{Bc(zbL)}
1≤b≤NL

1≤c≤N1

{Cbc}
1≤b≤N1−NR−NL

1≤c≤N1





(A.8)

× det





{

D(zbR, zcL)−
∑

1≤i,j≤N2−NL

Ei(zbR)
(
H−1

2

)
ij
Fj2(zcL)

}

1≤b≤NR

1≤c≤NL{

Fb1(zcL)−
∑

1≤i,j≤N2−NL

Hbi1

(
H−1

2

)
ij
Fj2(zcL)

}

1≤b≤NL−NR

1≤c≤NL




.

After an expansion in both determinants we obtain

I2 = NL! detH2

∑

ω∈S̃(N1)

signω
NR∏

b=1

∫
d[zR]d[zL]Aω(b)(zR)Bω(b+NR)(zL) (A.9)

×

[

D(zR, zL)−
∑

1≤i,j≤N2−NL

Ei(zR)
(
H−1

2

)
ij
Fj2(zL)

]

×
NL−NR∏

b=1

∫
d[zL]Bω(b+2NR)(zL)

[

Fb1(zL)−
∑

1≤i,j≤N2−NL

Hbi1

(
H−1

2

)
ij
Fj2(zL)

]

×
N1−NR−NL∏

b=1

Cbω(b+NR+NL) .

Notice that the sum over the permutation of the second determinant can be absorbed

into the first one which gives NL! .

To shorten the notation we define the following matrices which are integrals over

one or two variables

Obc =

∫
d[zR]d[zL] (Ab(zR)Bc(zL)− Ac(zR)Bb(zL))D(zR, zL) , (A.10)

Pbc =

∫
d[zR]Ab(zR)Ec(zR) , (A.11)

Qbcα =

∫
d[zL]Fbα(zL)Bc(zL) , α ∈ {1, 2} . (A.12)

Then the integral (A.9) reads

I2 = NL!2
−NR detH2

∑

ω∈S̃(N1)

signω (A.13)
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×
NR∏

b=1

[

Oω(b)ω(b+NR) −
∑

1≤i,j≤N2−NL

(
Pω(b)iQjω(b+NR)2 − Pω(b+NR)iQjω(b)2

) (
H−1

2

)
ij

]

×
NL−NR∏

b=1

[

Qbω(b+2NR)1 −
∑

1≤i,j≤N2−NL

Hbi1

(
H−1

2

)
ij
Qjω(b+2NR)2

]
N1−NR−NL∏

b=1

Cbω(b+NR+NL) .

This sum can be represented as a Pfaffian, i.e.

I2 = (−1)N1(N1−1)/2+NR(NR+1)/2NL!NR! detH2 Pf




Rbc

Ccb

0

−Cbc 0 0



 (A.14)

with

[Rbc] =

(
Obc Qcb1

−Qbc1 0

)

(A.15)

+
∑

1≤i,j≤N2−NL

(
Qib2 Pbi

0 −Hbi1

)(
0

(
H−1

2

)
ji

−
(
H−1

2

)
ij

0

)(
Qjc2 0

Pcj −Hcj1

)

.

Pushing the determinant of H2 into the Pfaffian we have the final result

I2 = (−1)N1(N1−1)/2+NR(NR+1)/2+(N2−NL)(N2−NL+1)/2NL!NR! (A.16)

× Pf





Obc Qcb1 Ccb Qcb2 Pbc

−Qbc1 0 0 0 −Hbc1

−Cbc 0 0 0 0

−Qbc2 0 0 0 −Hbc2

−Pcb Hcb1 0 Hcb2 0





= (−1)N1(N1−1)/2+NR(NR+1)/2+(N2−NL)(N2−NL+1)/2NL!NR!

× Pf





Obc Qcb Pbc Ccb

−Qbc 0 −Hbc 0

−Pcb Hcb 0 0

−Cbc 0 0 0





The dimensions of rows and columns are from top to bottom and left to right

(N1, N2 − NR, N2 − NL, N1 − NR − NL). In Eq. (A.16) we drop the invertibility of

the matrix H2 because I2 is a polynomial of this matrix.

Appendix B. Derivation of the coefficients in the recursion relation

In Appendix B.1 we show that the recursion relations of the polynomials q(±)
ν+l take the

form (3.31) and (3.32). The coefficients ε(±)
l and ε̃(±)

l are derived in Appendix B.2.

Appendix B.1. The general form

In the first step we take the scalar product (2.25) of Eq. (3.30) with p(±)
k , 0 ≤ k ≤ ν−1.

We find

β(±)
lk =

1

hk
〈D̃(±)q(±)

ν+l|p
(±)
k 〉

g
(±)
1

= −
1

hk
〈q(±)

ν+l|p
(±) ′
k 〉

g
(±)
1

+
µr ∓ µl

2hk
〈q(±)

ν+l|p
(±)
k 〉

g
(±)
1

= 0, (B.1)
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Thereby we used the fact that q(±)
ν+l and p(±)

k , 0 ≤ k ≤ ν − 1, are orthogonal to each
other.

The monic normalization of the polynomials enforces the condition

α(±)
l,l+1 = −

n

a2
. (B.2)

For the other conditions we take the anti-symmetric product of Eq. (3.30) with q(±)
ν+l′ .

Let l = 2i and l′ = 2i′ we have
(
D̃(±)q(±)

ν+2i|q
(±)
ν+2i′

)

g
(±)
2

= −
(
q(±)
ν+2i|D̃(±)q(±)

ν+2i′

)

g
(±)
2

−o(±)
i′ α(±)

2i,2i′+1Θi−i′ = − o(±)
i α(±)

2i′,2i+1Θi′−i, (B.3)

where the integrated Kronecker delta is

Θl =

{
1, l ∈ N0,

0, else.
(B.4)

Combining Eqs. (B.2) and (B.3) we find

α(±)
2i,2i′+1 = α(±)

2i′,2i+1 = −
n

a2
δii′ . (B.5)

With l = 2i+ 1 and l′ = 2i′ + 1 we get another relation
(
D̃(±)q(±)

ν+2i+1|q
(±)
ν+2i′+1

)

g(±)
2

= −
(
q(±)
ν+2i+1|D̃

(±)q(±)
ν+2i′+1

)

g(±)
2

o(±)
i′ α(±)

2i+1,2i′Θi−i′+1 = o(±)
i α(±)

2i′+1,2iΘi′−i+1, (B.6)

With this we conclude

α(±)
2i+1,2i′ =






−
n

a2
o(±)
i

o(±)
i−1

, i′ = i− 1,

ε(±)
i , i′ = i,

−
n

a2
, i′ = i+ 1,

0, else.

(B.7)

The constants ε(±)
i cannot be specified by Eq. (B.6).

The last relation which we get by the skew-orthogonality of the polynomials is the

one for the choice l = 2i and l′ = 2i′ + 1, i.e.
(
D̃(±)q(±)

ν+2i|q
(±)
ν+2i′+1

)

g
(±)
2

= −
(
q(±)
ν+2i|D̃(±)q(±)

ν+2i′+1

)

g
(±)
2

o(±)
i′ α(±)

2i,2i′Θi−i′ = − o(±)
i α(±)

2i′+1,2i+1Θi′−i, (B.8)

The identity yields

α(±)
2i,2i′ = −α(±)

2i+1,2i′+1 = ε̃(±)
i δii′ . (B.9)

Again the constants ε̃(±)
i have to be determined.

Collecting the intermediate results (B.1), (B.5), (B.7) and (B.9) the expan-

sion (3.30) reduces to the results (3.31) and (3.32). The derivation of the constants

ε(±)
l and ε̃(±)

l remains.
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Appendix B.2. The coefficients ε(±)
l and ε̃(±)

l

Considering the anti-symmetric product of Eq. (3.31) with p(±)
ν+2l+1 we find

(
D̃(±)q(±)

ν+2l|p
(±)
ν+2l+1

)

g(±)
2

=
(
−

n

a2
q(±)
ν+2l+1 + ε̃(±)

l q(±)
ν+2l

∣∣∣ p(±)
ν+2l+1

)

g
(±)
2

−
(
q(±)
ν+2l|D̃

(±)p(±)
ν+2l+1

)

g
(±)
2

= o(±)
l ε̃(±)

l

(
q(±)
ν+2l

∣∣∣∣
n

a2
p(±)
ν+2l+2 −

µr ∓ µl

2
p(±)
ν+2l+1

)

g(±)
2

= o(±)
l ε̃(±)

l

n

a2

(
q(±)
ν+2l|p

(±)
ν+2l+2

)

g(±)
2

− o(±)
l

µr ∓ µl

2
= o(±)

l ε̃(±)
l . (B.10)

A similar calculation can be done with the scalar product of Eq. (3.31) with p(±)
ν+2l

〈D̃(±)q(±)
ν+2l|p

(±)
ν+2l〉g(±)

1
= 〈−

n

a2
q(±)
ν+2l+1 + ε̃(±)

l q(±)
ν+2l

∣∣∣ p(±)
ν+2l〉g(±)

1

−〈q(±)
ν+2l|p

(±) ′
ν+2l〉g(±)

1
+

µr ∓ µl

2
〈q(±)

ν+2l|p
(±)
ν+2l〉g(±)

1
= hν+2lε̃

(±)
l

−(ν + 2l)〈q(±)
ν+2l|p

(±)
ν+2l−1〉g(±)

1
+ hν+2l

µr ∓ µl

2
= hν+2lε̃

(±)
l

(ν + 2l)hν+2l−1

o(±)
l−1

(
q(±)
ν+2l−2|p

(±)
ν+2l

)

g
(±)
2

+ hν+2l
µr ∓ µl

2
= hν+2lε̃

(±)
l . (B.11)

In both calculations we employed the definition (3.5), the orthogonality of the

polynomials p(±)
l and Eqs. (3.19), (3.26), (3.28) and (3.29). The combination of both

results yields the recursion relation(
q(±)
ν+2l|p

(±)
ν+2l+2

)

g(±)
2

o(±)
l

=
a2

n
(µr ∓ µl ) +

(
q(±)
ν+2l−2|p

(±)
ν+2l

)

g(±)
2

o(±)
l−1

. (B.12)

The starting point of this recursion is l = 0. Due to the definition (3.5) we know that

q(±)
ν = p(±)

ν and q(±)
ν+1 = p(±)

ν+1. We conclude
(
q(±)
ν |p(±)

ν+2

)

g
(±)
2

=
(
p(±)
ν |p(±)

ν+2

)

g
(±)
2

=

(
p(±)
ν

∣∣∣∣

(
−
a2

n
D̃(±) +

a2(µr ∓ µl )

2n

)
p(±)
ν+1

)

g(±)
2

=

((
a2

n
D̃(±) +

a2(µr ∓ µl )

2n

)
p(±)
ν

∣∣∣∣ p
(±)
ν+1

)

g
(±)
2

=

(
−p(±)

ν+1 +
a2

n
(µr ∓ µl )p

(±)
ν |p(±)

ν+1

)

g(±)
2

=
a2o(±)

0

n
(µr ∓ µl ). (B.13)

Hence, we can solve the recursion and find
(
q(±)
ν+2l|p

(±)
ν+2l+2

)

g(±)
2

=
(l + 1)a2o(±)

l

n
(µr ∓ µl ), (B.14)

ε̃(±)
l = (2l + 1)

µr ∓ µl

2
. (B.15)
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In a similar way we derive an identity for the constants ε(±)
l . We take the scalar product

of Eq. (3.32) with p(±)
ν+2l and obtain

ε(±)
l =

1

hν+2l

(
〈D̃(±)q(±)

ν+2l+1|p
(±)
ν+2l〉g(±)

1
+

n

a2
〈q(±)

ν+2l+2|p
(±)
ν+2l〉g(±)

1

)
(B.16)

=
1

hν+2l

(
−〈q(±)

ν+2l+1|p
(±) ′
ν+2l〉g(±)

1
+

µr ∓ µl

2
〈q(±)

ν+2l+1|p
(±)
ν+2l〉g(±)

1

+
n

(ν + 2l + 1)a2
〈q(±)

ν+2l+2|p
(±) ′
ν+2l〉g(±)

1

)

=
1

hν+2l

(
−(ν + 2l)〈q(±)

ν+2l+1|p
(±)
ν+2l−1〉g(±)

1
−

n

(ν + 2l + 1)a2
〈D̃(±)q(±)

ν+2l+2|p
(±)
ν+2l〉g(±)

1

−
n

(ν + 2l + 1)a2
µr ∓ µl

2
〈q(±)

ν+2l+2|p
(±)
ν+2l+1〉g(±)

1

)

=
n

a2




〈q(±)

ν+2l+3|p
(±)
ν+2l+1〉g(±)

1

hν+2l+1
−

〈q(±)
ν+2l+1|p

(±)
ν+2l−1〉g(±)

1

hν+2l−1





−
(l + 1)(µr ∓ µl )

hν+2l+1
〈q(±)

ν+2l+2|p
(±)
ν+2l+1〉g(±)

1

=
n

a2




〈q(±)

ν+2l+3|p
(±)
ν+2l+1〉g(±)

1

hν+2l+1
−

〈q(±)
ν+2l+1|p

(±)
ν+2l−1〉g(±)

1

hν+2l−1





−
(l + 1)(µr ∓ µl )

o(±)
l

(
q(±)
ν+2l|p

(±)
ν+2l+2

)

g
(±)
2

=
n

a2




〈q(±)

ν+2l+3|p
(±)
ν+2l+1〉g(±)

1

hν+2l+1
−

〈q(±)
ν+2l+1|p

(±)
ν+2l−1〉g(±)

1

hν+2l−1



−
(l + 1)2(µr ∓ µl )2a2

n

For a further simplification we need more information, i.e. we have to perform the
integral 〈q(±)

ν+2l+1|p
(±)
ν+2l−1〉g(±)

1
for all l ∈ N0.

Appendix C. Derivation of the Christoffel Darboux-like formula

Let z1 and z2 be restricted to the real axis, i.e. z1/2 = x1/2. The action of the sum of

the two differential operators D̃(±) with respect to x1 and x2 on Σ(±)
n−1 is

(
∂

∂x1
+

∂

∂x2
−

n

a2
(x1 + x2) + (µr ± µl )

)
Σ(±)

n−1(x1, x2)

=
n−1∑

l=0

1

o(±)
l

(

ε̃(±)
l det

[
q(±)
ν+2l(x1) q(±)

ν+2l+1(x1)

q(±)
ν+2l(x2) q(±)

ν+2l+1(x2)

]

+
n

a2
det

[
q(±)
ν+2l+2(x1) q(±)

ν+2l(x1)

q(±)
ν+2l+2(x2) q(±)

ν+2l(x2)

]

+ ε̃(±)
l det

[
q(±)
ν+2l+1(x1) q(±)

ν+2l(x1)

q(±)
ν+2l+1(x2) q(±)

ν+2l(x2)

]

+
no(±)

l

a2o(±)
l−1

det

[
q(±)
ν+2l−2(x1) q(±)

ν+2l(x1)

q(±)
ν+2l−2(x2) q(±)

ν+2l(x2)

])

= −
n

a2o(±)
n−1

det

[
q(±)
ν+2n−2(x1) q(±)

ν+2n(x1)

q(±)
ν+2n−2(x2) q(±)

ν+2n(x2)

]

. (C.1)
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Let X = (x1 + x2)/2 and ∆x = (x1 − x2)/2. Then we rewrite the differential equation

to
∂

∂X
exp

[
−

n

a2
X2 + (µr ± µl )X

]
Σ(±)

n−1(X +∆x,X −∆x) (C.2)

= −
n

a2o(±)
n−1

exp
[
−

n

a2
X2 + (µr ± µl )X

]
det

[
q(±)
ν+2n−2(X +∆x) q(±)

ν+2n(X +∆x)

q(±)
ν+2n−2(X −∆x) q(±)

ν+2n(X −∆x)

]

.

In the next step we integrate this equation from X to ∞ and take into account that the

upper boundary vanishes due to the Gaussian. This yields Eq. (3.37) for real entries. The

restriction to real z1 and z2 can be relaxed since the integrand is absolutely integrable.

Appendix D. Derivation of Eq. (3.44)

We consider Eq. (3.43). The characteristic polynomial in Z(l,ν,±)
1 can be raised into the

exponent by a Gaussian integral over a complex vector of Grassmann (anti-commuting)

variables,

ξ =

[
ξr
ξl

]

=





ξ1r
...

ξlr
ξ1l
...

ξl+ν,l





, ξ† =
[
ξ†r , ξ†l

]
=
[
ξ∗1r , · · · , ξ∗lr , ξ

∗
1l , · · · , ξ∗l+ν,l

]
. (D.1)

The integration is defined by
∫
ξidξj =

∫
ξ∗i dξ

∗
j =

1√
2π

and

∫
dξj =

∫
dξ∗j = 0. (D.2)

Moreover we employ the conjugation of the second kind, i.e.

(ξ∗i )
∗ = −ξi and (ξiξj)

∗ = ξ∗i ξ
∗
j . (D.3)

Good introductions in the standard techniques of supersymmetry can be found in

Refs. [49, 74].

We find

q(±)
ν+2l(z) ∝

∫
d[H ]d[ξ] exp

[
−

n

2a2
(trA2 + trB2)− n trWW † + trA(µr + ξr ξ

†
r )
]

(D.4)

× exp
[
trB(µl + ξl ξ

†
l ) + trW ξl ξ

†
r − trW †ξr ξ

†
l + z(ξ†r ξr ± ξ†l ξl )

]

∝
∫

d[ξ] exp

[
a2

2n
(tr(µr + ξr ξ

†
r )

2 + tr(µl + ξl ξ
†
l )

2)−
1

n
tr ξr ξ

†
l ξl ξ

†
r

]

× exp
[
z(ξ†r ξr ± ξ†l ξl )

]

∝
∫

d[ξ] exp

[
−
a2

2n
((ξ†r ξr )

2 + (ξ†l ξl )
2) +

1

n
ξ†r ξr ξ

†
l ξl

]

× exp

[
−
(
a2µr

n
− z

)
ξ†r ξr −

(
a2µl

n
∓ z

)
ξ†l ξl

]
.
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With help of the superbosonization formula [53, 54] we express the integral over ξ by a

two-fold integral over two phases (3.44).

Appendix E. Derivation of Eq. (3.53)

Equations (2.27) and (2.45) with the parameters k = kr = kl = 0 and Nf = 2 read

Z(n,ν,±)
2 (−z1,−z2) ∝

1

z1 − z2
(E.1)

× Pf





0 0 hiδij p(±)
i (z1) p(±)

i (z2)

0
0 o(±)

i δij
−o(±)

i δij 0
0

q(±)
ν+2i(z1)

q(±)
ν+2i+1(z1)

q(±)
ν+2i(z2)

q(±)
ν+2i+1(z2)

−hiδij 0 0 0 0

−p(±)
j (z1) −q(±)

ν+2j(z1), −q(±)
ν+2j+1(z1) 0 0 0

−p(±)
j (z2) −q(±)

ν+2j(z2), −q(±)
ν+2j+1(z2) 0 0 0





combined with the derived knowledge in subsection 3.1. This Pfaffian can be expanded

in the normalization constants hj . Then the polynomials p(±)
l , 0 ≤ l < ν − 1, drop out.

Furthermore, we make use of identity (4.3) and get

Z(n,ν,±)
2 (−z1,−z2) ∝

1

z1 − z2

× Pf

[
n∑

j=0

1

o(±)
j

(
q(±)
ν+2j(z1) q(±)

ν+2j+1(z1)

q(±)
ν+2j(z2) q(±)

ν+2j+1(z2)

)(
0 −1
1 0

)(
q(±)
ν+2j(z1) q(±)

ν+2j(z2)

q(±)
ν+2j+1(z1) q(±)

ν+2j+1(z2)

)]

∝
1

z1 − z2

n∑

j=0

1

o(±)
j

(
q(±)
ν+2j(z1)q

(±)
ν+2j+1(z2)− q(±)

ν+2j+1(z1)q
(±)
ν+2j(z2)

)
. (E.2)

This result is proportional to the sum Σ(±)
n , cf. (3.35).

Appendix F. Simplification of the kernels

In Appendix F.1 and Appendix F.2 we simplify the kernels of D5. Derivations of the

kernels of DW are given in Appendix F.3, Appendix F.4 and Appendix F.5.

Appendix F.1. The kernel K(−,n)
1

With help of Eqs. (2.27-2.30) it can be readily shown that

K(−,n)
1 (x1, x2) =

1

(2n+ ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

−
1

o(−)
j

∫

R2n+ν

d[x̃]∆2n+ν(x̃) (F.1)

× Pf





g(−)
2 (x̃i, x̃j) g(−)

2 (x̃i, x1) g(−)
2 (x̃i, x2) x̃j−1

i g(−)
1 (x̃i)

g(−)
2 (x1, x̃j) 0 g(−)

2 (x1, x2) xj−1
1 g(−)

1 (x1)

g(−)
2 (x2, x̃j) g(−)

2 (x2, x1) 0 xj−1
2 g(−)

1 (x2)

−x̃i−1
j g(−)

1 (x̃j) −xi−1
1 g(−)

1 (x1) −xi−1
2 g(−)

1 (x2) 0




.
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The indices i and j run from 1 to 2n + ν in the first row and column and 1 to ν in the

last ones.

In the next step we extend the Vandermonde determinant by two Dirac delta

functions such that the integration is over 2n+ ν + 2 variables,

K(−,n)
1 (x1, x2) =

(−1)(2n+ν)(2n+ν−1)/2

(2n+ ν + 2)!

ν−1∏

j=0

1

hj

n−1∏

j=0

−
1

o(−)
j

∫

R2n+ν+2

d[x̃] (F.2)

× det




x̃i−1
j

δ(x̃j − x1)

δ(x̃j − x2)



Pf

[
g(−)
2 (x̃i, x̃j) x̃j−1

i g(−)
1 (x̃i)

−x̃i−1
j g(−)

1 (x̃j) 0

]

.

The two Dirac delta functions can be expressed by the imaginary parts of the Cauchy

transforms in two variables. Using the identity [58]

det





x̃i−1
j
1

x̃j − x1 − ıε1
1

x̃j − x2 − ıε2




= (−1)(2n+ν+2)(2n+ν+1)/2 (x1 + ıε1 − x2 − ıε2)∆2n+ν+2(x̃)

2n+ν+2∏
j=1

(x̃j − x1 − ıε1)(x̃j − x2 − ıε2)

(F.3)

we find the expression

K(−,n)
1 (x1, x2) =

1

(2n+ ν + 2)!

ν−1∏

j=0

1

hj

n−1∏

j=0

−
1

o(−)
j

x2 − x1

π2
Im
ε1→0
ε2→0

∫

R2n+ν+2

d[x̃] (F.4)

×
∆2n+ν+2(x̃)

2n+ν+2∏
j=1

(x̃j − x1 − ıε1)(x̃j − x2 − ıε2)

Pf

[
g(−)
2 (x̃i, x̃j) x̃j−1

i g(−)
1 (x̃i)

−x̃i−1
j g(−)

1 (x̃j) 0

]

.

This result is the partition function of D5 with two bosonic flavors, see Eq. (4.8).

Appendix F.2. The kernel K(−,n)
2

Again we start from an identity between the kernel and an integral weighted by the

joint probability density p5, see Eq. (2.6), i.e.

K(−,n)
2 (x1, x2) =

1

(2n+ ν − 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

−
1

o(−)
j

∫

R2n+ν−1

d[x̃]∆2n+ν(x̃, x1) (F.5)

× Pf




g(−)
2 (x̃i, x̃j) g(−)

2 (x̃i, x2) x̃j−1
i g(−)

1 (x̃i)

g(−)
2 (x2, x̃j) 0 xj−1

2 g(−)
1 (x2)

−x̃i−1
j g(−)

1 (x̃j) −xi−1
2 g(−)

1 (x2) 0



 .

Notice that we integrate this time over 2n + ν − 1 variables. Hence the range of the

indices i and j is from 1 to 2n + ν − 1 in the first row and column and from 1 to ν in

the last ones.



Mixing in orthogonal polynomial theory 43

The integral is extended to 2n+ ν variables by introducing a Dirac delta function,

K(−,n)
1 (x1, x2) =

(−1)(2n+ν−1)(2n+ν−2)/2

(2n+ ν + 2)!

ν−1∏

j=0

1

hj

n−1∏

j=0

−
1

o(−)
j

∫

R2n+ν

d[x̃]

2n+ν∏
j=1

(x̃j − x1)

x2 − x1
(F.6)

× det

[
x̃i−1
j

δ(x̃j − x2)

]

Pf

[
g(−)
2 (x̃i, x̃j) x̃j−1

i g(−)
1 (x̃i)

−x̃i−1
j g(−)

1 (x̃j) 0

]

.

We employ again the Cauchy integral as a representation of the Dirac delta function

and an equation similar to Eq. (F.3). This yields the result (4.9) which is the partition

function of D5 with one fermionic flavor and one bosonic one.

Appendix F.3. The kernel K(+,n)
2

Also for DW the kernels have a representation as an integral over the eigenvalues

weighted by the joint probability density pW (2.14),

K(+,n)
2 (z1, z2) =

(−1)n(n+1)/2+ν(ν+1)/2

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]∆2n+ν(z̃) (F.7)

× det




g(+)
2 (z̃(r )i , z̃(l )j ) g(+)

2 (z̃(r )i , z1)

g(+)
2 (z2, z̃

(l )
j ) g(+)

2 (z2, z1)

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j ) −xi−1

1 g(+)
1 (x1)δ(y1)



 .

The index j in the first column takes the values 1 to n + ν while i goes from 1 to n in

the first row and from 1 to ν in the last one.

We expand the determinant in the row with the variable z2 and have

K(+,n)
2 (z1, z2) = g(+)

2 (z2, z1) (F.8)

+
(−1)n(n+1)/2+(ν+2)(ν+1)/2

n!(n+ ν − 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]d[ẑ]g(+)
2 (z2, ẑ)

× ∆2n+ν(z̃, ẑ) det

[
g(+)
2 (z̃(r )i , z̃(l )j ) g(+)

2 (z̃(r )i , z1)

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j ) −xi−1

1 g(+)
1 (x1)δ(y1)

]

.

The integration of the second term is extended by a Dirac delta function. However this

distribution can only be symmetrized with respect to the z̃(l ) integration in contrast to
the calculation in Appendix F.1 and Appendix F.2. We add and subtract a Dirac delta

function for the integration over z̃(r ). Collecting these steps we find

K(+,n)
2 (z1, z2) = g(+)

2 (z2, z1) (F.9)

+
(−1)n(n+1)/2+ν(ν+1)/2

(n− 1)!(n+ ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]d[ẑ]g(+)
2 (z2, ẑ)

× ∆2n+ν(z̃, ẑ) det




g(+)
2 (z1, z̃

(l )
j )

g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )
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+
(−1)n(n−1)/2+ν

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν+1

d[z̃]d[ẑ]
g(+)
2 (z2, ẑ)

z1 − ẑ
det(z̃ − ẑ112n+ν)

× det

[
(z̃(r )i )j−1 −δ(2)(z̃(r )i − z1)

(z̃(l )i )j−1 δ(2)(z̃(l )i − z1)

]

det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

with δ(2)(z) = δ(x)δ(y).

The minus sign in front of δ(2)(z̃(r )i − z1) is needful to construct the chirality
distribution over the real eigenvalues. Thereby we need the following relation [22]

between the real eigenvalues ofDW +m112n+ν , λ
(W )
i +m, and the eigenvalues ofD5+mγ5,

λ(5)i (m),

∂λ(5)i

∂m

∣∣∣∣∣
λ
(5)
i =λ

(W )
i +m=0

= 〈ψi|γ5|ψi〉, (F.10)

λ(5)i (m) = 〈ψi|γ5|ψi〉(λ(W )
i +m) + o(λ(W )

i +m), (F.11)

where ψi is the eigenvector to the eigenvalue λ(W )
i of DW . The right hand side of

Eq. (F.10) is the chirality of the corresponding eigenvector. Since the eigenvectors of

the complex eigenvalues have vanishing chirality, Eq. (F.10) is only applicable to the

real modes of DW . The following short calculation will show the connection between

the chiral distribution over the real eigenvalues and the third term in Eq. (F.9),

1

π
Im
ε→0

δ(y)

det(DW − x112n+ν − ıεγ5)
=

1

π
Im
ε→0

δ(y)
2n+ν∏
j=1

(λ(5)j (−x)− ıε)

(F.12)

=
δ(y)

2n+ν∏
j=1

λ(5)j (−x)

2n+ν∑

j=1

λ(5)j (−x)δ(λ(5)j (−x))

=
∑

λ(W )
j is real

λ(W )
j − x

2n+ν∏
i=1

(λ(W )
i − x)

δ(λ(W )
j − x)δ(y)sign〈ψj |γ5|ψj〉

=
∑

z̃(r )j is real

z̃(r )j − z

det(DW − z112n+ν)
δ(2)(z̃(r )j − z)

−
∑

z̃(l )j is real

z̃(l )j − z

det(DW − z112n+ν)
δ(2)(z̃(l )j − z)

Hereby we have to understand the whole calculation, in particular the limit of the

imaginary increment ıε, in a weak sense. The complex conjugated pairs of the integration

variables in the third term of Eq. (F.9) do not contribute. We recognize this by

expanding the second determinant in the two-point weights and the first determinant
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in the Dirac delta distribution such that we consider the integral

I =

∫

C2n+ν

d[z̃] det(z̃ − ẑ112n+ν)
n∏

j=1

g(+)
2 (z̃(r )j , z̃(l )j )

n+ν∏

j=n+1

g(+)
1 (x̃(l )

j )δ(ỹ(l )j )∆ν(z̃
(l )
>n) (F.13)

× det





(z̃(r )1 )j−1 −δ(2)(z̃(r )1 − z1)

(z̃(r )i )j−1 0

(z̃(l )1 )j−1 δ(2)(z̃(l )1 − z1)

(z̃(l )i )j−1 0





If z̃(l )1 = z̃(r ) ∗1 = z the integrand is anti-symmetric under the complex conjugation of z,

i.e. z ↔ z∗. The determinant is symmetric under z ↔ z∗ while g(+)
2 (z, z∗) ∼ gc(z) =

−gc(z∗), see Eq. (2.17). Thus the integral over the imaginary part of z vanishes. The

same discussion can be made for all complex conjugated pairs.

Expanding the determinant in the Dirac delta function and using the
calculation (F.12) we find

K(+,n)
2 (z1, z2) = g(+)

2 (z2, z1)−
(−1)n(n−1)/2+ν(ν−1)/2

(n− 1)!(n+ ν − 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

(F.14)

×
∫

C2

d[ẑ]g(+)
2 (z1, ẑ1)g

(+)
2 (z2, ẑ2)(ẑ1 − ẑ2)

∫

C2n+ν−2

d[z̃]∆2n+ν−2(z̃)

× det(z̃ − ẑ1112n+ν−2) det(z̃ − ẑ2112n+ν−2) det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

+
(−1)n(n+1)/2+ν(ν−1)/2

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

δ(y1)

π

∫

C

d[ẑ]
g(+)
2 (z2, ẑ)

x1 − ẑ
Im
ε→0

∫

C2n+ν

d[z̃]

× ∆2n+ν(z̃)
det(DW − ẑ112n+ν)

det(DW − x1112n+ν − ıεγ5)
det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

The second term is an integral transform of the partition of DW with two fermionic
flavors and the last term is an integral over the partition function with one bosonic and

one fermionic flavor. Notice that the integral over ẑ does not commute with the limit

ε → 0 because of the singularity at x1. This singularity cancels with a term after we

take the limit. Hence, the expression (F.14) is equal to the result (4.30).

Appendix F.4. The kernel K(+,n)
4

The starting point for this kernel is the identity

K(+,n)
4 (z1, z2) =

(−1)n(n−1)/2+ν(ν−1)/2

(n+ 1)!(n+ ν − 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]∆2n+ν(z̃) (F.15)

× det

[
g(+)
2 (z̃(r )i , z̃(l )j ) g(+)

2 (z̃(r )i , z1) g(+)
2 (z̃(r )i , z2)

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j ) −xi−1

1 g(+)
1 (x1)δ(y1) −xi−1

2 g(+)
1 (x2)δ(y2)

]

.
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The index j runs from 1 to n+ ν − 1 and the index i takes the values 1 to n+ 1 in the

upper row and from 1 to ν in the lower one. We introduce two Dirac delta functions

and, thus, extend the integral by two additional z̃(l )j variables,

K(+,n)
4 (z1, z2) =

(−1)n(n+1)/2

(n+ 1)!(n+ ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν+2

d[z̃] (F.16)

× det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

det

[
(z̃(r )i )j−1 0 0

(z̃(l )i )j−1 δ(2)(z̃(l )i − z1) δ(2)(z̃(l )i − z2)

]

.

We extend the determinant by Dirac delta functions of z̃(r )i similar to the calculation in

Appendix F.3,

K(+,n)
4 (z1, z2) =

(−1)n(n+1)/2

(n+ 1)!(n+ ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν+2

d[z̃] (F.17)

× det

[
(z̃(r )i )j−1 −δ(2)(z̃(r )i − z1) −δ(2)(z̃(r )i − z2)

(z̃(l )i )j−1 δ(2)(z̃(l )i − z1) δ(2)(z̃(l )i − z2)

]

× det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

−
(−1)n(n+1)/2+ν

n!(n + ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

×
∫

C2n+ν+1

d[z̃] det




g(+)
2 (z2, z̃

(l )
j )

g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )



 det

[
(z̃(r )i )j−1 −δ(2)(z̃(r )i − z1)

(z̃(l )i )j−1 δ(2)(z̃(l )i − z1)

]

+
(−1)n(n+1)/2+ν

n!(n+ ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

×
∫

C2n+ν+1

d[z̃] det




g(+)
2 (z1, z̃

(l )
j )

g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )



 det

[
(z̃(r )i )j−1 −δ(2)(z̃(r )i − z2)

(z̃(l )i )j−1 δ(2)(z̃(l )i − z2)

]

+
(−1)n(n−1)/2+ν(ν−1)/2

(n− 1)!(n + ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]∆2n+ν(z̃) det





g(+)
2 (z1, z̃

(l )
j )

g(+)
2 (z2, z̃

(l )
j )

g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )




.

In the final step we expand the last three terms in g(+)
2 (zj , z̃

(l )
j ). The Dirac delta functions

can be rewritten as limits of Cauchy transforms, see Eq. (F.12),

K(+,n)
4 (z1, z2) =

(−1)n(n−1)/2+ν(ν−1)/2

(n+ 1)!(n + ν + 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

x2 − x1

π2
δ(y1)δ(y2) Im

ε1→0
ε2→0

(F.18)

×
∫

C2n+ν+2

d[z̃]∆2n+ν+2(z̃)

det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

det(DW − x1112n+ν+2 − ıε1γ5) det(DW − x2112n+ν+2 − ıε2γ5)
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− g2(z2, z1)−
(−1)n(n+1)/2+ν(ν−1)/2

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

δ(y1)

π

∫

C

d[ẑ]
g(+)
2 (z2, ẑ)

x1 − ẑ
Im
ε→0

×
∫

C2n+ν

d[z̃]∆2n+ν(z̃)
det(DW − ẑ112n+ν)

det(DW − x1112n+ν − ıεγ5)
det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

+ g2(z1, z2) +
(−1)n(n+1)/2+ν(ν−1)/2

n!(n+ ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

δ(y2)

π

∫

C

d[ẑ]
g(+)
2 (z1, ẑ)

x2 − ẑ
Im
ε→0

×
∫

C2n+ν

d[z̃]∆2n+ν(z̃)
det(DW − ẑ112n+ν)

det(DW − x1112n+ν − ıεγ5)
det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

+

∫

C2

d[ẑ]g(+)
2 (z1, ẑ1)g

(+)
2 (z2, ẑ2)(ẑ1 − ẑ2)Σ

(+)
n−1(ẑ1, ẑ2).

Only the first term is new in comparison to the kernel K(+,n)
2 . It is the partition function

of DW with two bosonic flavors which agrees with the result (4.31).

Appendix F.5. The kernel K(+,n)
5

Also for this kernel we start with

K(+,n)
5 (z1, z2) =

(−1)n(n+1)/2+ν(ν−1)/2

n!(n + ν − 1)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν−1

d[z̃]∆2n+ν(z̃, z1) (F.19)

× det

[
g(+)
2 (z̃(r )i , z̃(l )j ) g(+)

2 (z̃(r )i , z2)

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j ) −xi−1

2 g(+)
1 (x2)δ(y2)

]

,

where the indices of the determinant are j ∈ {1, . . . , n + ν − 1}, i ∈ {1, . . . , n} in the

first row and i ∈ {1, . . . , ν} in the last one. The extension with a Dirac delta function

yields

K(+,n)
5 (z1, z2) =

(−1)n(n−1)/2+ν

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

∫

C2n+ν

d[z̃]
det(z̃ − z1112n+ν)

z1 − z2
(F.20)

× det

[
(z̃(r )i )j−1 0

(z̃(l )i )j−1 δ(2)(z̃(l )i − z2)

]

det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

.

We proceed in the same way as in Appendix F.3 by extending the first determinant by
−δ(2)(z̃(l )i − z2) and expanding the resulting correction in g(+)

2 (z2, z̃
(l )
i ). Then we find

K(+,n)
5 (z1, z2) =

(−1)n(n+1)/2+ν(ν−1)/2

n!(n + ν)!

ν−1∏

j=0

1

hj

n−1∏

j=0

1

o(+)
j

1

π

δ(y2)

z1 − x2
Im
ε→0

∫

C2n+ν

d[z̃] (F.21)

× ∆2n+ν(z̃)
det(DW − z1112n+ν)

det(DW − x2112n+ν − ıεγ5)
det

[
g(+)
2 (z̃(r )i , z̃(l )j )

−(x̃(l )
j )i−1g(+)

1 (x̃(l )
j )δ(ỹ(l )j )

]

+

∫

C

d[ẑ]g(+)
2 (z2, ẑ)(ẑ − z1)Σ

(+)
n−1(ẑ, z1).
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The first term is the partition function of DW with one bosonic and one fermionic flavor

and the second term is the kernel K(+,n)
3 . Therefore Eq. (F.21) is the result (4.32).
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Random Matrix Theory has been successfully applied to lattice Quantum Chromodynamics. In
particular, a great deal of progress has been made on the understanding, numerically as well as
analytically, of the spectral properties of the Wilson Dirac operator. In this paper, we study the
infra-red spectrum of the Wilson Dirac operator via Random Matrix Theory including the three
leading order a2 correction terms that appear in the corresponding chiral Lagrangian. A derivation
of the joint probability density of the eigenvalues is presented. This result is used to calculate the
density of the complex eigenvalues, the density of the real eigenvalues and the distribution of the
chiralities over the real eigenvalues. A detailed discussion of these quantities shows how each low
energy constant a↵ects the spectrum. Especially we consider the limit of small and large (which
is almost the mean field limit) lattice spacing. Comparisons with Monte Carlo simulations of the
Random Matrix Theory show a perfect agreement with the analytical predictions. Furthermore we
present some quantities which can be easily used for comparison of lattice data and the analytical
results.
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I. INTRODUCTION

The drastically increasing computational power as well as algorithmic improvements over the last decades provide
us with deep insights in non-perturbative e↵ects of Quantum Chromodynamics (QCD). However, the artefacts of the
discretization, i.e. a finite lattice spacing, are not yet completely under control. In particular, in the past few years a
large numerical [1–7] and analytical [8–14] e↵ort was undertaken to determine the low energy constants of the terms
in the chiral Lagrangian that describe the discretization errors. It is well known that new phase structures arise such
as the Aoki phase [15] and the Sharpe-Singleton scenario [16]. A direct analytical understanding of lattice QCD seems
to be out of reach. Fortunately, as was already realized two decades ago, the low lying spectrum of the continuum
QCD Dirac operator can be described in terms of Random Matrix Theories (RMTs) [17, 18].

Recently, RMTs were formulated to describe discretization e↵ects for staggered [19] as well as Wilson [9, 10]
fermions. Although these RMTs are more complicated than the chiral Random Matrix Theory formulated in [17, 18],
in the case of Wilson fermions a complete analytical solution of the RMT has been achieved [9–11, 13, 20–23]. Since
the Wilson RMT shares the global symmetries of the Wilson Dirac operator it will be equivalent to the corresponding
(partially quenched) chiral Lagrangian in the microscopic domain (also known as the ✏-domain) [24–29].

Quite recently, there has been a breakthrough in deriving eigenvalue statistics of the infra-red spectrum of the
Hermitian [20] as well as the non-Hermitian [21–23] Wilson Dirac operator. These results explain [13] why the
Sharpe-Singleton scenario is only observed for the case of dynamical fermions [1, 5, 30–36] and not in the quenched
theory [37, 38] while the Aoki phase has been seen in both cases. First comparisons of the analytical predictions
with lattice data show a promising agreement [4, 6, 7]. Good fits of the low energy constants are expected for the
distributions of individual eigenvalues [9, 10, 39].

Up to now, mostly the e↵ects of W
8

[10, 20, 23], and quite recently also of W
6

[12, 13, 40], on the Dirac spectrum
were studied in detail. In this article, we will discuss the e↵ect of all three low energy constants. Thereby we start
from the Wilson RMT for the non-Hermitian Wilson Dirac operator proposed in Refs. [9]. In Sec. II we recall this
Random Matrix Theory and its properties. Furthermore we derive the joint probability density of the eigenvalues
which so far was only stated without proof in Refs. [13, 22]. We also discuss the approach to the continuum limit in
terms of the Dirac spectrum.

In Sec. III, we derive the level densities of D
W

starting from the joint probability density. Note that due to its
�
5

-Hermiticity D
W

has complex eigenvalues as well as exactly real eigenvalues. Moreover, the real modes split into
those corresponding to eigenvectors with positive and negative chirality. In Sec. IV, we discuss the spectrum of the
quenched non-Hermitian Wilson Dirac operator in the microscopic limit in detail. In particular the asymptotics at
small and large lattice spacing is studied. The latter limit is equal to a mean field limit for some quantities which can
be trivially read o↵.

In Sec. V we summarize our results. In particular we present easily measurable quantities which can be used for
fitting the three low energy constants W

6/7/8

and the chiral condensate ⌃. Detailed derivations are given in several
appendices. The joint probability density is derived in Appendix A. Some useful integral identities are given in
Appendix B and in Appendix C we perform the microscopic limit of the graded partition function that enters in
the distribution of the chiralities over the real eigenvalues of D

W

. Finally, some asymptotic results are derived in
Appendix D.

II. WILSON RANDOM MATRIX THEORY AND ITS JOINT PROBABILITY DENSITY

In Sec. II A we introduce the Random Matrix Theory for the infra-red spectrum of the Wilson Dirac operator and
recall its most important properties. Its joint probability density is given in Sec. II B, and the continuum limit is
derived in Sec. II C.

A. The random matrix ensemble

We consider the random matrix ensemble [9, 10]

D
W

=

✓

A W
�W † B

◆

(1)



3

distributed by the probability density

P (D
W

) =
⇣ n

2⇡a2

⌘

[n

2
+(n+⌫)

2
]/2

⇣

� n

2⇡

⌘

n(n+⌫)

exp



�a2

2

✓

µ2

r

+
n+ ⌫

n
µ2

l

◆�

⇥ exp
h

� n

2a2
(trA2 + trB2)� ntrWW † + µ

r

trA+ µ
l

trB
i

. (2)

The Hermitian matrices A and B break chiral symmetry and their dimensions are n ⇥ n and (n + ⌫) ⇥ (n + ⌫),
respectively, where ⌫ is the index of the Dirac operator. Both µ

r

and µ
l

are one dimensional real variables. The chiral
RMT describing continuum QCD [17] is given by the ensemble (1) with A and B replaced by zero. The N

f

flavor
RMT partition function is defined by

Z⌫

Nf
(m) =

Z

D[D
W

]P (D
W

)detNf (D
W

+m). (3)

Without loss of generality we can assume ⌫ � 0 since the results are symmetric under ⌫ ! �⌫ together with µ
r

$ µ
l

.
The Gaussian integrals over the two variables µ

r

and µ
l

yield the two low energy constants W
6

and W
7

[9, 10].
The reason is that the integrated probability density

P (D
W

,W
6/7

6= 0) =

Z 1

�1
P (D

W

) exp



�a2(µ
r

+ µ
l

)2

16V |W
6

| � a2(µ
r

� µ
l

)2

16V |W
7

|

�

a2dµ
r

dµ
l

8⇡V
p
W

6

W
7

generates the terms (trA+trB)2 and (trA�trB)2 which correspond to the squares of traces in the chiral Lagrangian
[24–27]. In the microscopic domain the corresponding partition function for N

f

fermionic flavors is then given by

Z⌫

Nf
(em) =

Z

U (Nf )

dµ(U) exp



⌃V

2
tr em(U + U�1)� ea2VW

6

tr 2(U + U�1)

�

⇥ exp
⇥

�ea2VW
7

tr 2(U � U�1)� ea2VW
8

tr (U2 + U�2)
⇤

det⌫U (4)

with the physical quark masses em = diag (em
1

, . . . , em
Nf ), the space-time volume V , the physical lattice spacing ea and

the chiral condensate ⌃. The low energy constant W
8

is generated by the term trA2 +trB2 in Eq. (2) and is a priori

positive. We include the lattice spacing a in the standard deviation of A and B, cf. Eq. (2), out of convenience for
deriving the joint probability density. We employ the sign convention of Refs. [9, 10] for the low energy constants.

The microscopic limit (n ! 1) is performed in Sec. III. In this limit the rescaled lattice spacing ba2
8

= na2/2 =

ea2VW
8

, the rescaled parameters bm
6

= a2(µ
r

+ µ
l

) and b�
7

= a2(µ
r

� µ
l

), and the rescaled eigenvalues bZ = 2nZ =

diag (2nz
1

, . . . , 2nz
2n+⌫

) of D
W

are kept fixed for n ! 1. The mass bm
6

and axial mass b�
7

are distributed with
respect to Gaussians with variance 8ba2

6

= �8ea2VW
6

and 8ba2
7

= �8ea2VW
7

, respectively. Note the minus sign in front
of W

6/7

. As was shown in Ref. [13] the opposite sign is inconsistent with the symmetries of the Wilson Dirac operator.
The notation is slightly di↵erent from what is used in the literature to get rid of the imaginary unit in ba

6

and ba
7

.
The joint probability density p(Z) of the eigenvalues Z = diag (z

1

, . . . , z
2n+⌫

) of D
W

can be defined by

I[f ] =

Z

C(2n+⌫)⇥(2n+⌫)

f(D
W

)P (D
W

)d[D
W

] =

Z

C(2n+⌫)

f(Z)p(Z)d[Z], (5)

where f is an arbitrary U (n, n+ ⌫) invariant function. The random matrix D
W

is �
5

= diag (11
n

,�11
n+⌫

) Hermitian,
i.e.

D†
W

= �
5

D
W

�
5

. (6)

Hence, the eigenvalues z come in complex conjugate pairs or are exactly real. The matrix D
W

has ⌫ generic real
modes and 2(n� l) additional real eigenvalues (0  l  n). The index l decreases by one when a complex conjugate
pair enters the real axis.

B. The joint probability density of DW

Let D
l

be D
W

if it can be quasi-diagonalized by a non-compact unitary rotation U 2 U(n, n+⌫), i.e. U�
5

U † = �
5

,
to

D
l

= UZ
l

U�1 = U

0

B

B

@

x
1

0 0 0
0 x

2

y
2

0

0 �y
2

x
2

0

0 0 0 x
3

1

C

C

A

U�1, (7)
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where the real diagonal matrices x
1

= diag (x(1)

1

, . . . , x
(1)

n�l

), x
2

= diag (x(2)

1

, . . . , x
(2)

l

), y
2

= diag (y(2)
1

, . . . , y
(2)

l

) and

x
3

= diag (x(3)

1

, . . . , x
(3)

n+⌫�l

) have the dimension n� l, l, l and n+⌫� l, respectively. The matrices x
1

and x
3

comprise
all real eigenvalues of D

l

corresponding to the right-handed and left-handed modes, respectively. We refer to an
eigenvector  of D

W

as right-handed if the chirality is positive definite, i.e.

h |�
5

| i > 0, (8)

and as left-handed if the chirality is negative definite. The eigenvectors corresponding to complex eigenvalues have
vanishing chirality. The complex conjugate pairs are (z

2

= x
2

+ ıy
2

, z⇤
2

= x
2

� ıy
2

). Note that it is not possible to
diagonalize D

W

with a U(n, n+ ⌫) transformation with complex conjugate eigenvalues. Moreover we emphasize that
almost all �

5

-Hermitian matrices can be brought to the form (7) excluding a set of measure zero.
The quasi-diagonalization D

l

= UZ
l

U�1 determines U up to a U 2n+⌫�l(1) ⇥ O l(1, 1) transformation while the
set of eigenvalues Z

l

can be permuted in l!(n � l)!(n + ⌫ � l)!2l di↵erent ways. The factor 2l is due to the complex
conjugation of each single complex pair. The Jacobian of the transformation to eigenvalues and the coset G

l

=
U(n, n+ ⌫)/[U 2n+⌫�l(1)⇥O l(1, 1)] is given by

|�
2n+⌫

(Z
l

)|2, (9)

where the Vandermonde determinant is defined as

�
2n+⌫

(Z) =
Y

1i<j2n+⌫

(z
i

� z
j

) = (�1)n+⌫(⌫�1)/2 det
h

zj�1

i

i

1i,j2n+⌫

. (10)

The functional I[f ] in Eq. (5) is a sum over n+ 1 integrations on disjoint sets, i.e.

I[f ] =
n

X

l=0

1

2l(n� l)!l!(n+ ⌫ � l)!

Z

R⌫+2(n�l)⇥Cl

f(Z
l

)

2

4

Z

Gl

P (UZ
l

U�1)dµGl(U)

3

5 |�
2n+⌫

(Z
l

)|2d[Z
l

], (11)

where we have normalized the terms with respect to the number of possible permutations of the eigenvalues in Z
l

.
Thus we have for the joint probability density over all sectors of eigenvalues

p(Z)d[Z] =
n

X

l=0

p
l

(Z
l

)d[Z
l

]
n

X

l=0

|�
2n+⌫

(Z
l

)|2d[Z
l

]

2l(n� l)!l!(n+ ⌫ � l)!

Z

Gl

P (UZ
l

U�1)dµGl(U). (12)

Here p
l

(Z
l

) is the joint probability density for a fixed number of complex conjugate eigenvalue pairs, namely l. The
integration over U is non-trivial and will be worked out in detail in Appendix A.

In a more mathematical language the normalization factor in Eq. (12) can be understood as follows. If the permu-
tation group of N elements is denoted by S(N) while the group describing the reflection y ! �y is Z

2

, the factor
2l(n� l)!l!(n+ ⌫ � l)! is the volume of the finite subgroup S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥ Zl

2

of U (n, n+ ⌫) which
correctly normalizes each summand. Originally we had to divide U (n, n + ⌫) by the set U 2n+⌫�l(1) ⇥ O l(1, 1) ⇥
S(n � l) ⇥ S(l) ⇥ S(n + ⌫ � l) ⇥ Zl

2

because it is the maximal subgroup whose image of the adjoint mapping com-
mutes with Z

l

. The reasoning is as follows. Let ⌃[Z
l

] = {UZ
l

U�1|U 2 U(n, n + ⌫)} be the orbit of Z
l

and
⌃

c

[Z
l

] = { bZ
l

2 ⌃[Z
l

]|[ bZ
l

, Z
l

]� = bZ
l

Z
l

� Z
l

bZ
l

= 0} a subset of this orbit. Then all orderings in each of the three sets

of eigenvalues x
1

, (z
2

, z⇤
2

) and x
3

as well as the reflections y(2)
j

! �y
(2)

j

are in ⌃
c

[Z
l

]. This subset ⌃
c

[Z
l

] ⇢ ⌃[Z
l

] can

be represented by the finite group S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥ Zl

2

. This group is called the Weyl group in group
theory. The Lie group U 2n+⌫�l(1) ⇥ O l(1, 1) acts on ⌃

c

[Z
l

] as the identity since it commutes with Z
l

. The group
U 2n+⌫�l(1) represents 2n+⌫� l complex phases along the diagonal commuting with the set which consists of Z

l

with
a fixed l. Each non-compact orthogonal group O (1, 1) reflects the invariance of a single complex conjugate eigenvalue
pair under a hyperbolic transformation which is equal to a Lorentz-transformation in a 1+1 dimensional space-time.

There are two ways to deal with the invariance under U 2n+⌫�l(1)⇥O l(1, 1)⇥ S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥ Zl

2

in an integral such that we correctly weigh all points. We have either to divide U (n, n+ ⌫) by the whole subgroup or
we integrate over a larger coset and reweight the measure by the volume of the subgroups not excluded. The ordering
enforced by S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥Zl

2

is di�cult to handle in calculations. Therefore, we have decided for a
reweighting of the integration measure by 1/[(n� l)!(n+ ⌫ � l)!l!2l]. However the Lie group U 2n+⌫�l(1)⇥O l(1, 1),
in particular the hyperbolic subgroups, has to be excluded since its volume is infinite.

In this section as well as in Appendix A, we use the non-normalized Haar-measures induced by the pseudo metric

tr dD2

W

= tr dA2 + tr dB2 � 2tr dWdW †. (13)
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Therefore the measures for D
W

and Z
l

are

d[D
W

] =
n

Y

j=1

dA
jj

Y

1i<jn

2 dReA
ij

d ImA
ij

n+⌫

Y

j=1

dB
jj

(14)

⇥
Y

1i<jn+⌫

2 dReB
ij

d ImB
ij

Y

1in

1jn+⌫

(�2) dReW
ij

d ImW
ij

,

d[Z
l

] =
n�l

Y

j=1

dx
(1)

j

l

Y

j=1

2ı dx(2)

j

dy
(2)

j

n+⌫�l

Y

j=1

dx
(3)

j

. (15)

The Haar measure dµGl for the coset G
l

is also induced by d[D
W

] and results from the pseudo metric, i.e.

tr dD2

W

= tr dZ2

l

+ tr [U�1dU,Z
l

]2�. (16)

The reason for this unconventional definition is the non-normalizability of the measure dµGl because Gl

is non-compact
for l > 0. Hence the normalization resulting from definition (16) seems to be the most natural one, and it helps in
keeping track of the normalizations.

In Appendix A we solve the coset integral (12). The first step is to linearize the quadratic terms in UZ
l

U�1 by
introducing auxiliary Gaussian integrals over additional matrices which is along the idea presented in Ref. [20]. In this
way we split the integrand in a part invariant under U (n, n+ ⌫) and a non-invariant part resulting from an external
source. The group integrals appearing in this calculations are reminiscent of the Itsykson-Zuber integral. However
they are over non-compact groups and, thus, much more involved than in Ref. [20]. Because of the U (n)⇥U(n+ ⌫)
invariance of the probability density of D

W

, the joint eigenvalue distribution is a symmetric function of n eigenvalues
which we label by “r” and n + ⌫ eigenvalues labelled by “l”. The �

5

-Hermiticity imposes reality constraints on the
eigenvalues resulting in Dirac delta-functions in the joint probability density. Similarly to the usual Itzykson-Zuber
integral, the symmetric function of the eigenvalues turns out to be particularly simple (see Appendix A)

p(Z)d[Z] = c(1 + a2)�n(n+⌫�1/2)a�n�⌫

2

exp
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�
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j
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i
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j
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j

)dx(l )

j
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(l )

j

�

1i⌫
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3

7

7

7

7

5

.

The last ⌫ rows become zero in the continuum limit resulting in ⌫ exact zero modes (see subsection IIC). At finite a
they can be interpreted as broadened “zero modes”. The functions in the determinant are given by

g
2

(z
1

, z
2

) = g
r

(x
1

, x
2

)�(y
1

)�(y
2

) + g
c

(z
1

)�(x
1

� x
2

)�(y
1

+ y
2

), (18)

g
r

(x
1

, x
2

) = exp

"

� n

4a2

✓

x
1

+ x
2

� a2(µ
r

+ µ
l

)

n

◆

2

+
n

4
(x

1

� x
2

)2
#

(19)

⇥
"

sign (x
1

� x
2

)� erf

"

r

n(1 + a2)

4a2
(x

1

� x
2

)�

s

a2

4n(1 + a2)
(µ

r

� µ
l

)

##

,

g
c

(z) = �2ı sign (y) exp

"

� n

a2

✓

x� a2(µ
r

+ µ
l

)

2n

◆

2

� ny2

#

, (20)

g
1

(x) = exp

"

� n

2a2

✓

x� a2µ
l

n

◆

2

#

. (21)

We employ the error function “erf” and the function “sign” which yields the sign of the argument. The constant is
equal to

1

c
= (�1)⌫(⌫�1)/2+n(n�1)/2

✓

16⇡

n

◆

n/2

(2⇡)⌫/2n�⌫

2
/2�n(n+⌫)

n

Y

j=0

j!
n+⌫

Y

j=0

j!, (22)
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and is essentially the volume of the coset [U (n)⇥U(n+ ⌫)]/[S(n)⇥ S(n+ ⌫)].
The two-point weight g

2

consists of two parts. The first term, g
r

, represents a pair of real modes where one
eigenvalue corresponds to a right-handed eigenvector and the other one to a left-handed one. The second term, g

c

,
enforces that a complex eigenvalue comes with its complex conjugate, only. The function g

1

is purely Gaussian. As
we will see in the next subsection, in the small a limit this will result in a distribution of the former zero modes that
is broadened to the Gaussian Unitary Ensemble (GUE) [4, 6, 7, 10, 20, 23].

For N
f

dynamical quarks with quark mass m
f

the joint probability density is simply given by [13]

p(Nf )(z) =
Nf
Y

f=1

2n+⌫

Y

k=1

(z
k

+m
f

)p(Z). (23)

The expansion in g
c

yields the joint probability density for a fixed number of complex conjugate pairs,

p
l

(Z
l

)d[Z
l

] =
(�1)(n�l)lc(1 + a2)�n(n+⌫�1/2)a�n�⌫

2
n!(n+ ⌫)!

(n� l)!l!(n+ ⌫ � l)!
exp



� a4

4(1 + a2)
(µ

r

� µ
l

)2
�

(24)

⇥�
2n+⌫

(Z) det

2

6

6

6

4

{g
r

(x(1)

i

, x
(3)

j

)dx(1)

i

dx
(3)

j

}
1in�l

1jn+⌫�l

{(x(3)

j

)i�1g
1

(x(3)

j

)dx(3)

j

}
1i⌫

1jn+⌫�l

3

7

7

7

5

l

Y

j=1

g
c

(z(2)
j

)dx(2)

j

dy
(2)

j

.

The factorials in the prefactor are the combinatorial factor which results from the expansion of the determinant in
co-factors with l columns and l rows less. Note that they correspond to the coset of finite groups, [S(n) ⇥ S(n +
⌫)]/[S(n� l)⇥S(l)⇥S(n+⌫� l)], which naturally occurs when diagonalizing D

W

in a fixed sector, see the discussion
after Eq. (12).

C. The continuum limit

In this section, we take the continuum limit of the joint probability density p, i.e. a ! 0 at fixed z, µ
r

and µ
l

. In
this limit the probability density (2) of D

W

trivially becomes the one of chiral RMT which is equivalent to continuum
QCD in the ✏-regime [17]. We expect that this is also the case for the joint probability density.

The small a limit of the two point weight (18) is given by

g
2

(z
1

, z
2

)
a⌧1

= �2ı sign (y
1

)

r

a2⇡

n
exp

⇥

�ny2
1

⇤

�(x
1

)�(x
2

)�(y
1

+ y
2

). (25)

The function g
r

vanishes due to the error function which cancels with the sign function. The expansion of the
determinant (17) yields (n+ ⌫)!/⌫! terms which are all the same. Thus, we have

lim
a!0

p(Z)d[Z] = c(�1)⌫(⌫�1)/2

(n+ ⌫)!

⌫!

✓

�2ı

r

⇡

n

◆

n

(26)

⇥ lim
a!0

a�⌫

2

�
2n+⌫

(ıy,�ıy, x)�
⌫

(x)
n

Y

j=1

sign (y
j

) exp
⇥

�ny2
j

⇤

dy
j

⌫

Y

j=1

exp
h

� n

2a2
x2

j

i

dx
j

.

Thereby we have already evaluated the Dirac delta-functions. The real part of the complex eigenvalues z
(r /l )

j

,

1  j  n, and the imaginary part of z(l )
j

, n+ 1  j  n+ ⌫, vanish and they become the variables ±ıy
j

, 1  j  n,
and x

j

, 1  j  ⌫, respectively. Note, that the random variables x scale with a while y is of order 1. Therefore
the distribution of the two sets of eigenvalues factorizes into a product that can be identified as the joint probability
density of a ⌫ ⇥ ⌫ dimensional GUE on the scale of a and the chiral Unitary Ensemble on the scale 1,

lim
a!0

p(Z)d[Z] =
1

(2⇡)⌫/2

⇣ n

a2

⌘

⌫

2
/2

⌫

Y

j=0

1

j!
�2

⌫

(x)
⌫

Y

j=1

exp
h

� n

2a2
x2

j

i

dx
j

⇥nn

2
+⌫n

n!

n�1

Y

j=0

1

(j + ⌫)!j!
�2

n

(y2)
n

Y

j=1

2⇥(y
j

)y2⌫+1

j

exp
⇥

�ny2
j

⇤

dy
j

, (27)

where ⇥ is the Heaviside distribution.
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III. FROM THE JOINT PROBABILITY DENSITY TO THE LEVEL DENSITIES

The level density is obtained by integrating the joint probability density (17) over all eigenvalues of D
W

except

one. We can choose to exclude an eigenvalue of z(r ) or one of the z(l )’s. When we exclude z
(r )

1

we have to expand
the determinant (17) with respect to the first row. All resulting terms are the same and consist of a term for which

z
(r )

1

is complex and a term for which z
(r )

1

is real. We thus have [23]
Z

p(Z)
Y

zj 6=z

(r )
1

d[z
j

] = ⇢
r

(x(r )

1

)�(y(r )
1

) +
1

2
⇢
c

(z(r )
1

). (28)

When excluding z
(l )

1

and expanding the determinant (17) with respect to the first column we notice that the first n
terms are the same while the remaining ⌫ terms have to be treated separately. Again the spectral density is the sum
of the density of the real modes, which are left-handed in this case, and the density of the complex modes [23]

Z

p(Z)
Y

zj 6=z

(l )
1

d[z
j

] = ⇢
l

(x(l )

1

)�(y(l )
1

) +
1

2
⇢
c

(z(l )
1

). (29)

The level densities ⇢
r

and ⇢
l

are the densities of the real right- and left-handed modes, respectively. Interestingly the
level density of the complex modes appears symmetrically in both equations. The reason is the vanishing chirality of
eigenvectors corresponding to the complex eigenvalues.

Let us consider the case when excluding z(r )
1

. The Vandermonde determinant without a factor (z(r )
1

�z
(l )

1

)
Q

n

k=2

(z(r )
1

�
z
(r )

k

)(z(l )
1

� z
(r )

k

)
Q

n+⌫

j=2

(z(r )
1

� z
(l )

j

)(z(l )
1

� z
(l )

j

) and the cofactor from expanding the first row of the determinant is

equal to the joint probability density with one pair (z(r ), z(l )) less. The z
(l )

1

-integral over this distribution together

with the factor
Q

n

k=2

(z(r )
1

� z
(r )

k

)(z(l )
1

� z
(r )

k

)
Q

n+⌫

j=2

(z(r )
1

� z
(l )

j

)(z(l )
1

� z
(l )

j

) can be identified as the partition function
with two additional flavors. We thus find

⇢
r

(x) /
1
Z

�1

g
r

(x, x0)(x� x0)Zn�1,⌫

Nf+2

(x, x0,m
k

)dx0, (30)

⇢
c

(z) / g
c

(z)(z � z⇤)Zn�1,⌫

Nf+2

(z, z⇤,m
k

). (31)

The fermionic partition function is given by

Zn�1,⌫

Nf+2

(z
1

, z
2

,m
k

) =

Z

det(D
W

� z
1

11
2n+⌫�2

) det(D
W

� z
2

11
2n+⌫�2

)
Nf
Y

k=1

(D
W

+m
k

11
2n+⌫�2

)P (D
W

)d[D
W

], (32)

where D
W

is given as in Eq. (1) only that n is replaced by n � 1. In the microscopic limit this is simply a unitary
matrix integral which can be easily numerically evaluated. Note that the integral over the variables µ

r /l

which
introduces the low energy constants W

6/7

can already be performed at this step.

Considering the exclusion of z(l )
1

we have to expand the determinant in the joint probability density with respect
to the first column resulting in a much more complicated expression

⇢
l

(x) / n

Z

C

d[ez](x� ez)g
2

(x, ez)Zn�1,⌫

Nf=2

(x, ez) + ↵�(y)
⌫

X

p=1

(�1)⌫�p

⇥
 

n+ ⌫ � 1

⌫ � p

!

xp�1g
1

(x)

Z

R⌫�p

⌫�p

Y

j=1

dx
j

xp

j

g
1

(x
j

)�
⌫�p

(x
1

, · · · , x
⌫�p

)

⇥�
⌫�p+1

(x, x
1

, · · · , x
⌫�p

)Zn, p

Nf=⌫�p+1

(x, x
1

, · · · , x
⌫�p

) (33)

with a certain constant ↵ which we will specify in the microscopic limit. The global proportionality constant is up
to a factor n the same as the one in Eqs. (30) and (31). Again g

2

(z, z
r

) is the sum of a term comprising the density
of the complex eigenvalues and a term giving the real eigenvalue density. For the complex eigenvalue density we find

the same expression as obtained by integration over z(l )
1

.
For ⌫ = 1, the density of the real eigenvalues simplifies to

⇢
l

(x)|
⌫=1

/ n

1
Z

�1

dx
r

(x
r

� x)g
r

(x
r

, x)Zn�1,1

Nf=2

(x
r

, x) + ↵g
1

(x)Zn, 0

Nf=1

(x) (34)



8

since there is no integration in the term proportional to ↵, cf. Eq. (33). The distribution of chirality over the real
modes is the di↵erence

⇢
�

(x) = ⇢
l

(x)� ⇢
r

(x), (35)

resulting in

⇢
�

|
⌫=1

⇠ ↵g
1

(x)Zn, 0

Nf=1

(x) + n

1
Z

�1

dx0(x0 � x)(g
r

(x0, x) + g
r

(x, x0))Zn�1,1

Nf=2

(x0, x), (36)

where we used that the two-flavor partition function is symmetric in x and x0. For µ
r

= µ
l

, the last two terms cancel
resulting in a very simple expression for ⇢

�

(x). Note that the integral over the second term always vanishes such that
it does not contribute to the normalization of the distribution of chirality over the real modes

Z

dx⇢
�

(x) = ⌫ (37)

which is 1 for ⌫ = 1. For ⌫ = 2 we find

⇢
�

(x)|
⌫=2

⇠ ↵xg
1

(x)Zn,1

Nf=1

(x)� ↵(n+ 1)g
1

(x)

1
Z

�1

dx0x0(x� x0)g
1

(x0)Zn,0

Nf=2

(x, x0)

+n

1
Z

�1

dx0(x0 � x)(g
r

(x0, x) + g
r

(x, x0))Zn�1,2

Nf=2

(x0, x). (38)

In the microscopic limit the two-flavor partition functions can be replaced by a unitary matrix integral which still can
be easily numerically evaluated including the integrals over bm

6

and b�
7

.
For large values of ⌫ the expression of the distribution of chirality over the real modes obtained from expanding the

determinant gets increasingly complicated. However, there is an alternative expression in terms of a supersymmetric
partition function [23, 42],

⇢
�

(x) / lim
"!0

Im
@

@J

�

�

�

�

J=0

Z

det(D
W

� (x+ J)11
2n+⌫

)

det(D
W

� x11
2n+⌫

� ı"�
5

)
P (D

W

)d[D
W

]. (39)

In the ensuing sections we will use this expression to calculate the microscopic limit of the distribution of chirality
over the real modes.

A. Microscopic Limit of the Eigenvalue Densities

The goal of this section is to derive the microscopic limit of ⇢
r

, ⇢
�

, and ⇢
c

including those terms involving non-zero
values of W

6

and W
7

in the chiral Lagrangian. We only give results for the quenched case. It is straightforward to
include dynamical quarks but this will be worked out in a forthcoming publication. The result for the distribution
of chirality over the real modes with dynamical quarks for W

6

= W
7

= 0 was already given in [42], and an explicit
expression for the density of the complex eigenvalues in the presence of dynamical quarks and non-zero values W

6

,
W

7

and W
8

was derived in [13].
The microscopic limit of the spectral densities is obtained from the microscopic limit of the partition functions and

the functions appearing in the joint probability density. We remind the reader that the microscopic parameters which
are kept fixed for V ! 1, are defined by

ba2
6

= �ea2VW
6

, ba2
7

= �ea2VW
7

, ba2
8

= na2/2 = ea2VW
8

, (40)

bm
6

= a2(µ
r

+ µ
l

), b�
7

= a2(µ
r

� µ
l

), bx = 2nx.

The microscopic limit of the probability density of bm
6

and b�
7

is given by

p(bm
6

, b�
7

) =
1

16⇡ba
6

ba
7

exp

"

� bm2

6

16ba2
6

�
b�2

7

16ba2
7

#

, (41)
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and the functions that appear in the joint probability density simplify to

bg
r

(bx, bx0, bm
6

, b�
7

) = exp



� (bx+ bx0 � 2bm
6

)2

32ba2
8

�

"

sign (bx� bx0)� erf

"

(bx� bx0)/2� b�
7p

8ba
8

##

, (42)

bg
c

(bz) = �2ı sign (by) exp



� (bx� bm
6

)2

8ba2
8

�

, (43)

bg
1

(bx) = exp

"

� (bx� bm
6

+ b�
7

)2

16ba2
8

#

. (44)

The microscopic limit of the spectral densities obtained in Eqs. (30), (31) and (39) is given by

⇢
r

(bx) =
1

32
p
2⇡ba

8

Z

R3

dbm
6

db�
7

dbx0p(bm
6

, b�
7

)(bx� bx0)bg
r

(bx, bx0, bm
6

, b�
7

)

⇥Z⌫

2/0

(bx+ bm
6

, bx0 + bm
6

, b�
7

,ba
8

), (45)

⇢
c

(bz) =
ıby

32
p
2⇡ba

8

Z

R2

dbm
6

db�
7

p(bm
6

, b�
7

)bg
c

(bz, bz⇤, bm
6

)

⇥Z⌫

2/0

(bz + bm
6

, bz⇤ + bm
6

, b�
7

,ba
8

), (46)

⇢
�

(bx) =
1

⇡
lim
"!0

Im

Z

dbm
6

db�
7

p(bm
6

, b�
7

)G
1/1

(bx+ bm
6

, b�
7

+ ı",ba
8

). (47)

The resolvent G
1/1

follows from the graded partition function

G
1/1

(bx+ bm
6

, b�
7

+ ı",ba
8

) =
d

dbx0Z
⌫

1/1

(bx+ bm
6

, bx0 + bm
6

, b�
7

+ ı",ba
8

)

�

�

�

�

bx0
=bx

(48)

= lim
n!1

1

2n

Z

tr
1

D
W

� 2nbx11
2n+⌫

� ı"�
5

P (D
W

)d[D
W

].

The two-flavor partition function is up to a constant defined by

Z⌫

2/0

(z
1

+m
6

, z
2

+m
6

,�
7

, a) /
Z

det(z
1

11
2n+⌫�2

�D
W

) det(z
2

11
2n+⌫�2

�D
W

)P (D
W

)d[D
W

].

(49)

The microscopic limit of the two-flavor partition function follows from the chiral Lagrangian (4). In the diagonal
representation of the unitary 2 ⇥ 2 matrix, it can be simplified by means of an Itzykson-Zuber integral and is given
by

Z⌫

2/0

(bz
1

, bz
2

, b�
7

,ba
8

) =
1

2⇡2

Z

d'
1

d'
2

sin2(('
1

� '
2

)/2)eı⌫('1+'2) exp
h

ıb�
7

(sin'
1

+ sin'
2

)� 4ba2
8

(cos2 '
1

+ cos2 '
2

)
i

⇥exp [bz
1

cos'
1

+ bz
2

cos'
2

]� exp [bz
2

cos'
1

+ bz
1

cos'
2

]

(cos'
1

� cos'
2

)(bz
1

� bz
2

)
. (50)

The normalization is chosen such that we find the well known result [41],

Z⌫

2/0

(bz
1

, bz
2

, b�
7

= 0,ba
8

= 0) =
bz
1

I
⌫+1

(bz
1

)I
⌫

(bz
2

)� bz
2

I
⌫+1

(bz
2

)I
⌫

(bz
1

)

bz2
1

� bz2
2

, (51)

at vanishing lattice spacing, where I
⌫

is the modified Bessel function of the first kind.
The microscopic limit of the graded partition function follows from the chiral Lagrangian [9] which can be written

as an integral over a (1/1)⇥ (1/1) supermatrix [42]

U =

"

e# ⌘⇤

⌘ eı'

#

, # 2 R, ' 2 [0, 2⇡], (52)

with ⌘ and ⌘⇤ two independent Grassmann variables, see Refs. [50–54] for the supersymmetry method in random
matrix theory. Let the normalization of the integration over the Grassmann variables be

Z

⌘⇤⌘d⌘d⌘⇤ =
1

2⇡
. (53)
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Then the graded partition function is

Z⌫

1/1

(bz
1

, bz
2

, b�
7

± ı",ba
8

) =

Z

ıdeı'

2⇡
de#d⌘d⌘⇤Sdet ⌫U exp[�ba2

8

Str (U2 + U�2)] (54)

⇥ exp

"

± ı

2
Str bZ(U � U�1)�

 

"± ıb�
7

2

!

Str (U + U�1)

#

,

where bZ = diag(bz
1

, bz
2

) and the normalization adjusted by the continuum limit [55, 56]

Z⌫

1/1

(bz
1

, bz
2

, b�
7

= 0,ba
8

= 0) = bz
1

K
⌫+1

(bz
1

)I
⌫

(bz
2

)� bz
2

I
⌫+1

(bz
2

)K
⌫

(bz
1

). (55)

The function K
⌫

is the modified Bessel function of the second kind.
There are various ways to calculate the integral (54). One possibility is a brute force evaluation of the Grassmann

integrals as in [9, 40]. Then the Gaussian integrals over bm
6

and b�
7

can be performed analytically leaving us with a
non-singular two-dimensional integral. A second possibility would be to rewrite the integrals as in [42]. Then we end
up with a two dimensional singular integral (see Appendix C) which can be evaluated numerically with some e↵ort.
The third way to evaluate the integral, is a variation of the method in [42] and results in a one dimensional integral
and a sum over Bessel functions that can be easily numerically evaluated (see section IVC).

IV. THE EIGENVALUE DENSITIES AND THEIR PROPERTIES

To illustrate the e↵ect of non-zero ba
6

and ba
7

we first discuss the case ba
8

= 0. For the general case, with ba
8

also
non-zero, we will discuss the density of the additional real eigenvalues, the density of the complex eigenvalues, and
finally the distribution of chirality over the real eigenvalues of D

W

.

A. Spectrum of DW for ba8 = 0

.
The low-energy constants ba

6

and ba
7

are introduced through the addition of the Gaussian stochastic variables
bm

6

+ b�
7

�
5

to D
W

|
a=0

resulting in the massive Dirac operator [60]

D = D
W

|
a=0

+ (bm+ bm
6

)11 + b�
7

�
5

. (56)

For ba
8

= 0 the Dirac operator D
W

|
a=0

is anti-Hermitian, and the eigenvalues of D
W

(b�
7

, bm
6

) = D � bm are given by

bz± = bm
6

± ı

q

�2

W

� b�2

7

, (57)

where ı�
W

is an eigenvalue of D
W

|
a=0

. The density of the eigenvalues of D is obtained after integrating over the

Gaussian distribution of bm
6

and b�
7

.
As can be seen from Eq. (57), in case ba

6

= ba
8

= 0 and ba
7

6= 0, the eigenvalues of D are either purely imaginary

or purely real depending on whether b�
7

is smaller or larger than �
W

, respectively. Paired imaginary eigenvalues
penetrate the real axis only through the origin when varying b�

7

, see Fig. 1. Introducing a non-zero W
6

, broadens the
spectrum by a Gaussian parallel to the real axis but nothing crucial happens because bm

6

is just an additive constant
to the eigenvalues, cf. Fig. 1.

In the continuum the low lying spectral density of the quenched Dirac operator is given by [17]

⇢
cont.

(bz) = �(bx)



⌫�(by) +
|by|
2
(J2

⌫

(by)� J
⌫�1

(by)J
⌫+1

(by))

�

= �(bx) [⌫�(by) + ⇢
NZ

(by)] . (58)

The function J
⌫

is the Bessel function of the first kind. The level density ⇢
NZ

describes the density of the generic
non-zero eigenvalues, only.

For non-zero W
6/7

the distribution of the zero modes represented by the Dirac delta-functions in Eq. (58) is
broadened by a Gaussian, i.e.

⇢
�

(bz,ba
8

= 0) =
⌫

p

16⇡(ba2
6

+ ba2
7

)
exp



� bx2

16(ba2
6

+ ba2
7

)

�

. (59)
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Complex modes have vanishing chirality and do not contribute to the distribution of chirality over the real modes.
Additional pairs of real modes also do not contribute to ⇢

�

. The reason is the symmetric integration of b�
7

over the

real axis. The eigenvalues remain the same under the change b�
7

! �b�
7

, see Eq. (57). However the corresponding
eigenvectors interchange the sign of the chirality which can be seen by the symmetry relation

D
W

(b�
7

, bm
6

) = ��
5

D
W

(�b�
7

,�bm
6

)�
5

. (60)

Thus the normalized eigenfunctions (h ±| ±i = 1) corresponding to the eigenvalues bz±, i.e.

D
W

(b�
7

, bm
6

)| ±i = bz±| ±i, (61)

also fulfills the identity

D
W

(�b�
7

,�bm
6

)�
5

| ±i = �bz±�5| ±i. (62)

Since the quark mass bm
6

enters with unity we have also

D
W

(�b�
7

, bm
6

)�
5

| ±i = bz⌥�5| ±i. (63)

The wave-functions �
5

| ±i share the same chirality with | ±i. Moreover | 
+

i and | �i have opposite chirality
because the pair of eigenvalues bz± is assumed to be real and their di↵erence |bz

+

� bz�| non-zero. This can be seen by
the eigenvalue equations

D
W

(b�
7

, bm
6

= 0)| ±i = ±
q

b�2
7

� �2
W

| ±i, (64)

h ±|DW

(�b�
7

, bm
6

= 0) = h�
5

D
W

(�b�
7

, bm
6

= 0)�
5

 ±| = ⌥
q

b�2
7

� �2
W

h ±|.

In the second equation we used the �
5

-Hermiticity of D
W

. We multiply the first equation with h ±| and the second
with | ±i and employ the normalization of the eigenmodes such that we find

h ±|DW

(b�
7

, bm
6

= 0)| ±i = ±
q

b�2
7

� �2
W

, (65)

h ±|DW

(�b�
7

, bm
6

= 0)| ±i = ⌥
q

b�2
7

� �2
W

.

We subtract the second line from the first and use the identity D
W

(b�
7

, bm
6

= 0)�D
W

(�b�
7

, bm
6

= 0) = 2b�
7

�
5

, i.e.

b�
7

h ±|�5| ±i = ±
q

b�2
7

� �2
W

, (66)

which indeed shows the opposite chirality of | 
+

i and | �i. Thus | 
+

i and �
5

| �i have opposite sign of chirality
but their corresponding eigenvalues are the same. Therefore the average of their chiralities at a specific eigenvalue
vanishes.

The density of the complex eigenvalues can be obtained by integrating over those �
W

fulfilling the condition
|�

W

| > |b�
7

|. After averaging over bm
6

and b�
7

we find

⇢
c

(bz = bx+ iby,ba
8

= 0) =
exp

⇥

�bx2/(16ba2
6

)
⇤

16⇡|ba
6

ba
7

|

Z

R2

⇢
NZ

(�
W

) exp

"

�
b�2
7

16ba2
7

#

�

✓

q

�2
W

� b�2
7

� |by|
◆

⇥(|�
W

|� |b�
7

|)d�
W

db�
7

=
exp

⇥

�bx2/(16ba2
6

)
⇤

4⇡|ba
6

ba
7

|

1
Z

|by|

|by|⇢
NZ

(�
W

)d�
W

p

�2
W

� by2
exp



�2
W

� by2

16ba2
7

�

. (67)

The original continuum result is smoothened by a distribution with a Gaussian tail. The oscillations in the microscopic
spectral density dampen due to a non-zero W

7

similar to the e↵ect of a non-zero value W
8

, cf. Ref. [23]. We also
expect a loss of the height of the first eigenvalue distributions around the origin. Pairs of eigenvalues are moving from
the imaginary axis into the real axis and thus lowering their probability density on the imaginary axis. The density
⇢
c

for non-zero ba
8

will be discussed in full detail in Sec. IVB2.
The density of the additional real modes can be obtained by integrating the continuum distribution, ⇢

NZ

over
|�

W

| < |�
7

| analogous to the complex case. We find

⇢
r

(bx,W
8

= 0) =
1

16⇡|ba
6

ba
7

|

Z

R3

⇢
NZ

(�
W

) exp

"

� bm2

6

16ba2
6

�
b�2
7

16ba2
7

#

�

✓

q

b�2
7

� �2
W

� |bm
6

� bx|
◆

⇥(|b�
7

|� |�
W

|)d�
W

db�
7

dbm
6

=

Z

R2

|bm
6

|dbm
6

d�
W

8⇡|ba
6

ba
7

|
p

�2
W

+ bm2

6

⇢
NZ

(�
W

) exp



��
2

W

+ bm2

6

16ba2
7

� (bm
6

+ bx)2

16ba2
6

�

. (68)
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FIG. 1. Schematic plots of the e↵ects of W6 (left plot) and of W7 (right plot). The low energy constant W6 broadens the
spectrum parallel to the real axis according to a Gaussian with width 4ba6 = 4

p
�VW6ã

2, but does not change the continuum
spectrum in a significant way. WhenW7 is switched on andW6 = 0 the purely imaginary eigenvalues invade the real axis through
the origin and only the real (green crosses along the real axis) are broadened by a Gaussian with width 4ba7 = 4

p
�VW7ea2.

The number of additional real modes given by the integral of ⇢
r

(bx) over bx only depends on ba
7

, as it should be since
bm

6

is just an additive constant to the eigenvalues. Moreover ⇢
r

will inherit the oscillatory behavior of ⇢
NZ

although
most of it will be damped by the Gaussian cut-o↵. The mixture of this e↵ect with the e↵ect of a non-zero W

8

is
highly non-trivial, but we expect that, at small lattice spacings, we can separate both contributions. For a su�ciently
small value of ba

6

the behavior of ⇢
r

(bx) for bx ! 0 is given by ⇢
r

(bx) = ec|bx| + . . . with ec > 0 for vanishing W
8

and,
thus, ⇢

r

(bx) = c
0

+ c
1

bx2+ . . . with c
0

, c
1

> 0 for non-zero W
8

. Hence, we will see a soft repulsion of the additional real
eigenvalues from the origin which still allows real eigenvalues to be zero.

The discussion of the real modes for non-zero ba
8

as well is given in Sec. IVB1.

B. Eigenvalue densities for non-zero values of W6, W7 and W8

In this subsection all three low-energy constants are non-zero. As in the previous subsection, we will consider the
density of the real eigenvalues of D

W

, the density of the complex eigenvalues of D
W

, and the distribution of the
chiralities over the real eigenvalues of D

W

. The expressions for these distributions were already given in section III,
but in this section we further simplify them and calculate the asymptotic expressions for large and small values of ba.

1. Density of the additional real modes

The quenched eigenvalue density of the additional real modes is given by Eq. (45). The Gaussian average over the

variables bm
6

and b�
7

can be worked out analytically. The result is given by (see Appendix B for integrals that were
used to obtain this result)

⇢
r

(bx) =
1

16⇡2

Z

[0,2⇡]

2

d'
1

d'
2

sin2


'
1

� '
2

2

�

eı⌫('1+'2)
ek(bx,'

1

,'
2

)� ek(bx,'
2

,'
1

)

cos'
2

� cos'
1

(69)

with

ek(bx,'
1

,'
2

) = exp

"

4ba2
6

(cos'
1

� cos'
2

)2 � 4ba2
7

(sin'
1

+ sin'
2

)2 + 4ba2
8

✓

cos'
1

� bx

8ba2
8

◆

2

� 4ba2
8

✓

cos'
2

� bx

8ba2
8

◆

2

#

⇥
"

erf

"

bx� 8(ba2
6

+ ba2
8

) cos'
1

+ 8ba2
6

cos'
2

p

8(ba2
8

+ 2ba2
6

)

#

+ erf

"

8(ba2
6

+ ba2
8

) cos'
1

� 8ba2
6

cos'
2

� 8ıba2
7

sin'
1

� 8ıba2
7

sin'
2

� bx
p

16(ba2
8

+ ba2
6

+ ba2
7

)

##

.

(70)

The e↵ect of each low energy constant on ⇢
r

is shown in Fig. 2.
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FIG. 2. The density of additional real modes is shown for various parameters ba6/7/8. The analytical results (solid curves) agree
with the Monte Carlo simulations of the Random Matrix Theory (histogram [MC] with bin size 0.5 and with di↵erent ensemble
and matrix sizes such that statistics are about 1-5%) for ⌫ = 1. We plot only the positive real axis since ⇢r is symmetric. Notice
that the height of the two curves for ba7 = ba8 = 0.1 (right plot) are two orders smaller than the height of the other curves (left
plot) and because of bad statistics we have not performed simulations for this case. Notice the soft repulsion of the additional
real modes from the origin at large ba7 =

p
�VW7ea as discussed in the introductory section. The parameter ba6 =

p
�VW6ea

smoothens the distribution.

At small lattice spacing, ba ⌧ 1, the density ⇢
r

has support on the scale of ba. In particular it is given by derivatives
of a specific function, i.e.

⇢
r

(bx)
ba⌧1

=
1

4

✓

1

(⌫!)2
@2⌫

@t⌫
1

@t⌫
2

� 1

(⌫ � 1)!(⌫ + 1)!

@2⌫

@t⌫�1

1

@t⌫+1

2

◆

�

�

�

�

t1=t2=0

bk(bx, t
1

, t
2

)� bk(bx, t
2

, t
1

)

t
2

� t
1

, (71)

where

bk(bx, t
1

, t
2

) = exp

"

ba2
6

(t
1

� t
2

)2 + ba2
7

(t
1

+ t
2

)2 + ba2
8

✓

t
1

� bx

4ba2
8

◆

2

� ba2
8

✓

t
2

� bx

4ba2
8

◆

2

#

⇥
"

erf

"

bx� 4(ba2
6

+ ba2
8

)t
1

+ 4ba2
6

t
2

p

8(ba2
8

+ 2ba2
6

)

#

+ erf

"

4(ba2
6

+ ba2
7

+ ba2
8

)t
1

� 4(ba2
6

� ba2
7

)t
2

� bx
p

16(ba2
8

+ ba2
6

+ ba2
7

)

##

. (72)

The error functions guarantee a Gaussian tail on the scale of ba. Furthermore, the height of the density is of order
ba2⌫+1. Hence, additional real modes are strongly suppressed for ⌫ > 0 and the important contributions only result
from ⌫ = 0. This behavior becomes clearer for the expression of the average number of the additional real modes.
This quantity directly follows from the result (70),

N
add

= 2

1
Z

�1

⇢
r

(bx)dbx (73)

=

2⇡

Z

0

d�

4⇡
cos[2⌫�]

1� exp
⇥

�(4ba2
8

+ 8ba2
7

) sin2 �
⇤

I
0

⇥

(4ba2
8

� 8ba2
7

) sin2 �
⇤

sin2 �

=
1
X

n=⌫+1

bn/2c
X

j=0

(�1)⌫�1+n

(2n� 2)!
�

ba2
8

� 2ba2
7

�

2j

(ba2
8

+ 2ba2
7

)n�2j

22j�1�(n� ⌫)�(n+ ⌫)�(n� 2j + 1)(j!)2
,

where the symbol bn/2c denotes the largest integer smaller than or equal to n/2.
The average number of the real modes does not depend on the low energy constant W

6

= �ba2
6

/(ea2V ) because this
constant induces overall fluctuations of the Dirac spectrum parallel to the bx-axis.
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FIG. 3. Log-log plots of Nadd as a function of ba8 =
p
VW8ea2 for ⌫ = 0 (left plot) and ⌫ = 2 (right plot). The analytical

results (solid curves) are compared to Monte Carlo simulations of RMT (symbols; ensemble and matrix size varies such that
the statical error is about 1-5%). Notice that W6 has no e↵ect on Nadd. The saturation around zero is due to a non-zero value
of ba7 =

p
�VW7ea2. For ba7 = 0 (lowest curves) the average number of additional real modes behaves like ba2⌫+2

8 , see Ref. [23].

The asymptotics of N
add

at small and large lattice spacing is given by

N
add

=

8

>

>

>

>

>

<

>

>

>

>

>

:

b⌫/2c
X

j=0

�

ba2
8

� 2ba2
7

�

2j

(ba2
8

+ 2ba2
7

)⌫�2j+1

22j�1�(⌫ � 2j + 2)(j!)2
/ ba2⌫+2, ba ⌧ 1,

r

64ba2
7

⇡3

E

 

s

1� ba2
8

2ba2
7

!

/ ba, ba � 1,

(74)

see Appendix D 1 for a derivation. The function E is the elliptic integral of the second kind, i.e

E(x) =

⇡/2

Z

0

q

1� x2 sin2 'd'. (75)

In Ref. [23] this result was derived for ba
6

= ba
7

= 0. Notice that for large lattice spacings the number of additional
real modes increases linearly with ba and is independent of ⌫.

The average number of additional real modes can be used to fix the low energy constants from lattice simulations.
For ⌫ = 0, a su�cient number of eigenvalues [61] can be generated to keep the statistical error small. For ⌫ = 0 and
⌫ = 1 the average number of additional real modes is given by

N⌫=0

add

ba⌧1

= 2(ba2
8

+ 2ba2
7

) = 2V ea2(W
8

� 2W
7

), (76)

N⌫=1

add

ba⌧1

= (ba2
8

+ 2ba2
7

)2 +
1

2
(ba2

8

� 2ba2
7

)2 = V 2

ea4


(W
8

� 2W
7

)2 +
1

2
(W

8

+ 2W
7

)2
�

. (77)

These simple relations can be used to fit lattice data at small lattice spacing. In Fig. 3 we illustrate the behavior of
N

add

by a log-log plot.

The density ⇢
r

takes a much simpler form at large lattice spacing. Then, the integrals can be evaluated by a saddle



15

250 500 750 1000 x!0

0.01

0.02

0.03

!r

a!7"12, a!8"10, Ν"1, MC
a!7"12, a!8"10, Ν"0, MC
a!7"12, a!8"10
a!7"8, a!8"10, Ν"1, MC
a!7"8, a!8"10, Ν"0, MC
a!7"8, a!8"10

FIG. 4. At large lattice spacing the density of additional real modes develops square root singularities at the boundaries.
The analytical results at ba ! 1 (solid curves) are compared to Monte Carlo simulations at non-zero, but large lattice spacing
(histogram [MC], with bin size 50, ba6 =

p
�VW6ea2 = 0.01 and n = 2000 for an ensemble of 1000 matrices). Due to the finite

matrix size and the finite lattice spacing, ⇢r has a tail which drops o↵ much faster than the size of the support. The low energy
constant ba8 =

p
VW8ea2 is chosen equal to 10. Therefore the boundary is at bx = 800 which is confirmed by the Monte Carlo

simulations. The dependence on W6 and ⌫ is completely lost.

point approximation resulting in the expression (see Appendix D 2)
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7
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7
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(8ba2
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)2 � bx2
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8
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(78)

Notice that we have square root singularities at the two edges of the support if both ba
7

6= 0 and ba
8

6= 0, cf. Fig. 4.
So the e↵ect of the low energy constant W

7

is di↵erent than what we would have expected naively.

2. Density of the complex eigenvalues

The expression for the density of the complex eigenvalues given in Eq. (46) can be simplified by performing the

integral of bm
6

and b�
7

resulting in

⇢
c

(bz) =
|by|

2(2⇡)5/2
p

ba2
8

+ 2ba2
6

Z
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'
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2

2

�
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1
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2

)]sinc [by(cos'
1
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2

)] (79)
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.

The function sinc(x) = sinx/x is the sinus cardinalis. This result reduces to the expressions obtained in Ref. [23] for
ba
6

= ba
7

= 0.
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FIG. 5. Comparison of the analytical result (solid curves) and Monte Carlo simulations of the Random Matrix Theory
(histogram [MC] with bin size equal to 0.4 and varying ensemble size and matrix size such that the statistical error is about
1-5%) for the density of the complex eigenvalues projected onto the imaginary axis. The index of the Wilson Dirac operator
is ⌫ = 1 for all curves. Notice that ba6 =

p
�VW6ea does not a↵ect this density. The comparison of ba7 = ba8 = 0.1 with the

continuum result (black, thick curve) shows that ⇢cp is still a good quantity to extract the chiral condensate ⌃ at small lattice
spacing.

To compare to numerical simulations it is useful to consider the projection of the complex modes onto the imaginary
axis. The result for the projected eigenvalue density can be simplified to

⇢
cp

(by) =

1
Z

�1

⇢
c

(bx+ ıby)dbx (80)

=
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Again this function is independent of W
6

as was the case for N
add

. The reason is that the Gaussian broadening with
respect to the mass bm

6

is absorbed by the integral over the real axis. At small lattice spacing ⇢
cp

approaches the
continuum result ⇢

NZ

given in Eq. (58) (see Fig. 5). Therefore it is still a good quantity to determine the chiral
condensate ⌃ from lattice simulations. In Fig. 5, we compare the projected spectral density (solid curves) with
numerical results from an ensemble of random matrices (histograms). The spectral density at a couple of lattice
spacings away from the origin can be used to determine the chiral condensate according to the Banks-Casher formula.

At small lattice spacing, ⇢
c

factorizes into a Gaussian distribution of the real part of the eigenvalues and of the
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level density of the continuum limit,

⇢
c

(bz)
ba⌧1

=
|by|

2(2⇡)5/2
p

ba2
8

+ 2ba2
6

exp



� bx2

8(ba2
8

+ 2ba2
6

)

�

Z

[0,2⇡]

2

d'
1

d'
2

sin2


'
1

� '
2

2

�

cos[⌫('
1

+ '
2

)]sinc [by(cos'
1

� cos'
2

)]

=
1

p

8⇡(ba2
8

+ 2ba2
6

)
exp



� bx2

8(ba2
8

+ 2ba2
6

)

�

⇢
NZ

(by). (81)

Therefore the support of ⇢
c

along the real axis is on the scale ba while it is of order 1 along the imaginary axis. It
also follows from perturbation theory in the non-Hermitian part of the Dirac operator that the first order correction
to the continuum result is a Gaussian broadening perpendicular to the imaginary axis. The width of the Gaussian
can be used to determine the combination ba2

8

+ 2ba2
6

= V ea2(W
8

� 2W
6

) from fitting the results to lattice simulations.
Since most of the eigenvalues of D

W

occur in complex conjugate pairs at small lattice spacing, it is expected to have a
relatively small statistical error in this limit. A further reduction of the statistical error can be achieved by integrating
the spectral density over by up to the Thouless energy (see Ref. [59] for a definition of the Thouless energy in QCD).

The behavior drastically changes in the limit of large lattice spacing. Then the density reads (see Appendix D3)
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(82)

There is no dependence on ⌫, and in the case of ba
8

> 0, the result does not depend on ba
6

as well and becomes a
strip of width 16ba2

8

along the imaginary axis. To have any structure, the imaginary part of the eigenvalues has to be
of order ba. In the mean field limit, where |by|/

p

8ba2
8

� 1, ⇢
c

is equal to 1/(16⇡ba2
8

) on a strip of width 16ba2
8

. Hence,
the low energy constants W

6/7

, do not alter the mean field limit of ⇢
c

, cf. Ref. [23]. This was already observed in
Ref. [13].

The e↵ect of ba
6

is an overall Gaussian fluctuation perpendicular to the strip of the eigenvalues, and for ba
8

= 0,
when there is no strip, only the Gaussian fluctuations remain. The second case of Eq. (82) can also be obtained from
Eq. (67) since for large by, ⇢

NZ

is equal to 1/⇡.

C. The distribution of chirality over the real eigenvalues

The distribution of chirality over the real eigenvalues given in Eq. (47) is an expression in terms of the graded
partition function Z⌫

1/1

and the partition function of two fermionic flavors, Z⌫

2/0

, which is evaluated in Appendix C.

Including the integrals over bm
6

and b�
7

we obtain from Eq. (C7)
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We recognize the two terms that were obtained in Eqs. (36) and (38) from the expansion in the first column of the
determinant in the joint probability density.

Equation (83) is a complicated expression which is quite hard to numerically evaluate. However, it is possible to
derive an alternative expression in terms of an integral over the supersymmetric coset manifold U 2 Gl(1/1)/U(1/1).
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FIG. 6. The analytical result (solid curves) for ⇢� is compared to Monte Carlo simulations of RMT (histogram [MC] with
bin size 0.6 and varying ensemble and matrix size such that the statistical error is about 1-5%) for ⌫ = 1. We plotted only
the positive real axis since the distribution is symmetric around the origin. At small ba8 =

p
VW8ea2 the distributions for

(ba6,ba7) = (
p
�VW6ea2

,

p
�VW7ea2) = (1, 0.1), (0.1, 1) are almost the same Gaussian as the analytical result predicts. At

large ba8 the maximum reflects the predicted square root singularity which starts to build up. We have not included the case
ba6/7/8 = 0.1 since it exceeds the other curves by a factor of 10 to 100.

We start from the equality
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based on an identity for the Gl(1/1)/U(1/1) graded unitary matrices,

Str2(U + U�1) = 8� 4(SdetU + SdetU�1) + Str2(U � U�1), (85)

and the expansion of the generating function for the modified Bessel functions of the first kind, I
j

,

exp
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=
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(2x)tj . (86)

This allows us to absorb bm
6

and b�
7

by a shift of the eigenvalues of the auxiliary supermatrix � introduced to linearize
the terms quadratic in U . The integral over U can now be identified as a graded 1/1 partition function at ba = 0 and
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FIG. 7. We compare the analytical result of ⇢� (solid curves) with Monte Carlo simulations of RMT (histogram [MC] with
bin size 0.6 and with varying ensemble and matrix size such that the statistical error is about 1-5%) for ⌫ = 2. Again we only
plotted the positive real-axis because ⇢� is symmetric in the quenched theory. Two curves with W6/7 = 0 and W8 = 0.1, 0.5 (
highest, purple and thick, black curve) are added to emphasize that the two peaks (⇢� has to be reflected at the origin) can be
strongly suppressed by non-zero W6/7 although they are only of the same order as W8. Recall that the two peaks are relics of
a 2⇥ 2 GUE which is formed by W8.

we obtain the result
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Notice that the j = 0 term does not contribute to the distribution of chirality over the real modes because of the
symmetry of the modified Bessel function I

⌫

= I�⌫

. The derivatives of Dirac delta-function originate from the
Im[1/(s

1

� ı✏)j ]-term.
The representation (87) is e↵ectively a one-dimensional integral due to the Dirac delta-function. Please notice that

Eq. (87) reduces to Eq. (59) for ba
8

= 0. Two plots, Fig. 6 (⌫ = 1) and Fig. 7, (⌫ = 2) illustrate the e↵ect of each
low-energy constant ba

6/7/8

on the distribution ⇢
�

.
For ba

7

= 0 and ⌫ = 1 one can derive a more compact result in a straightforward way starting from the expression (36).
In this case the two-point weight for two real eigenvalues g

r

(x
1

, x
2

) is anti-symmetric in its two arguments, see Eq. (19).
Then the integral in Eq. (36) involving Z1

2/0

is absent. Employing the representation of the one-flavor partition function

as a unitary integral, see Eq. (4), we perform the integral over bm
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. Thus, ⇢
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Let us come back to the general result (87). At small lattice spacing, 0 < ba ⌧ 1, the distribution ⇢
�

as well as the
integration variables s

1/2

are of order ba. Since I
j

(8ba2
7

) / ba2j
7

, the leading order term is given by j = ⌫ in the sum over
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j. Thus we have
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In the small ba limit we can replace Z⌫
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). Notice that the polynomial is not the one of a GUE anymore as in the case of
ba
6

= ba
7
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is a pure Gaussian,
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and for ⌫ = 2 it is given by
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At small lattice spacing, ⇢
�

only depends on the combinations ba2
8

and (ba2
6

+ba2
7

). Therefore it is in principle possible to
determine the two following combinations of low energy constants, W

8

and W
6

+W
7

, by fitting ⇢
�

to lattice results.
For example the second moment (variance) of ⇢
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given by
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at small lattice spacing can be used to fit the combinations ⌫W
8

� W
6

� W
7

. The statistical error in this quantity
scales with the inverse square root of the number of configurations with the index ⌫. The ensemble of configurations
generated in Ref. [7] yields a statistical error of about two to three percent. The statistics can be drastically increased
by performing a fit of the variance of ⇢

�

to a linear function in the index ⌫, cf. Eq. (92). The slope is then determined
by W

8

and the o↵-set by W
6

+W
7

yielding two important quantities.
In Appendix D 4 we calculate ⇢

�

in the limit of large lattice spacing. Then the distribution of chirality over the
real eigenvalues has a support on the scale of ba2. The function ⇢
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reads
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Interestingly, the low energy constants W
6/7

have no e↵ect on the behavior of ⇢
�

in this limit if ba
8

6= 0 which is
completely di↵erent in comparison to ⇢

r

and ⇢
c

. The square root singularities at the boundary of the support are
unexpected and were already mentioned in Ref. [23].

V. CONCLUSIONS

Starting from RMT for the Wilson Dirac operator, we have derived the microscopic limit of the spectral density
and the distribution of the chiralities over the Dirac spectrum. We have focused on the quenched theory, but all
arguments can be simply extended to dynamical Wilson fermions. Wilson RMT is equivalent to the ✏-limit of the
Wilson chiral Lagrangian and describes the Wilson QCD partition function and Dirac spectra in this limit. The
starting point of our analytical calculations is the joint probability density of the random matrix ensemble for the
non-Hermitian Wilson-Dirac operator D

W

. This density was first obtained in Ref. [23], but a detailed derivation is
given in this paper, see Appendix A.

More importantly, we studied in detail the e↵ect of the three low energy constants, W
6/7/8

, on the quenched
microscopic level density of the complex eigenvalues, the additional real eigenvalues and the distribution of chirality
over the real eigenvalues. In terms of the e↵ect on the spectrum of D

W

, the low energy constants W
6

and W
7

are
structurally di↵erent from W

8

. The first two can be interpreted in terms of “collective” fluctuations of the eigenvalues,
whereas a non-zero W

8

induces stochastic interactions between all modes, particularly those with di↵erent chiralities.
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Therefore, the e↵ect of a non-zero W
6

and W
7

at W
8

= 0 is just a Gaussian broadening of the Dirac spectrum on
the scale of ba. When a2VW

8

� 1 the interactions between the modes result in a strip of Dirac eigenvalues in the
complex plane with real part inside the interval [�8VW

8

ea2, 8VW
8

ea2]. The structure along the imaginary axis is on
the scale ba. As was already discussed in Ref. [13], in the mean field limit, the lattice spacing ea2V and the eigenvalues
V ez fixed, this structure becomes a box-like strip with hard edges at the boundary of the support and with height
1/(16⇡VW

8

ea2).
We also discussed the limit of small lattice spacing, i.e. the limit |VW

6/7/8

|ea2 ⌧ 1. In practice, this limit is already
reached when |VW

6/7/8

|ea2  0.1. Such values can be indeed achieved via clover improvement as discussed in Ref. [7].
In the small ba limit we have identified several quantities that are suitable to fit the four low energy constants, W

6/7/8

and ⌃, to lattice simulations and our analytical results.
Several promising quantities are (applicable only at small lattice spacing):

• According to the Banks-Casher formula we have

�
ba⌧1

=
⇡

⌃V
. (94)

for the average spacing � of the imaginary part of the eigenvalues several eigenvalue spacings from the origin.

• The average number of the additional real modes for ⌫ = 0:
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• The width of the Gaussian shaped strip of complex eigenvalues:
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• The variance of the distribution of chirality over the real eigenvalues:
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These quantities are easily accessible in lattice simulations. We believe they will lead to an improvement of the fits
performed in Refs. [4, 6, 7]. Note that ⇢

�

is close to the density of the real eigenvalues in the limit of small lattice
spacing (again we mean by this |VW

6/7/8

|ea ⇡ 0.1 and smaller). This statement is not true in the limit of large lattice
spacing where the density of the additional real modes dominates the density of the real eigenvalues.

The relations (94-97) are an over-determined set for the low energy constants W
6/7/8

and ⌃2 and are only consistent
if we have relations between these quantities. This can be seen by writing the relations as
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The first three relations are linearly dependent, but none of the other triplets are. We thus have the consistency
relation

hex2i⌫=1

⇢�

�2

=
�2

�2

+
2

⇡2

N⌫=0

add

. (99)

There are more relations like Eqs. (94-97) which can be derived from our analytical results. The only assumption is
a su�ciently small lattice spacing.

The value of W
8

follows immediately from the ⌫ dependence of hex2i
⇢� . If there are additional real modes, it cannot

be that W
7

and W
8

are both equal to zero. In Ref. [7] it was found W
8

= 0 (with clover improvement) and results
were fitted as a function of W

6

with W
7

= 0. Our prediction is that the number of additional real modes is zero and
it would be interesting if the authors of Ref. [7] could confirm that.

The non-trivial e↵ect of W
7

on the quenched spectrum was a surprise for us. In Ref. [13] it was argued that W
7

does not a↵ect the phase structure of the Dirac spectrum. Indeed, we found that the complex eigenvalue density only
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shows a weak dependence on W
7

, and actually becomes W
7

independent in the small ea2V -limit. Such a dependence on
W

7

can be found in the large ea2V -limit but vanishes again in the thermodynamic limit. Since in the thermodynamic
limit the number of real eigenvalues is suppressed as 1/

p
V with respect to the number of complex eigenvalues, W

7

will not a↵ect the phase structure of the partition function. However, a non-zero value of W
7

significantly changes
the density of the real eigenvalues. In particular, in the large ea2V -limit, we find a square root singularity at the
boundary of the support of the additional real eigenvalues if W

7

6= 0, while it is a uniform density for W
7

= 0, see
Ref. [23]. Nevertheless, we expect in the case of dynamical fermions that the discussion of Ref. [13] also applies to
the real spectrum of D

W

.
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Appendix A: Derivation of the Joint Probability Density

In this appendix, we derive the joint probability density in three steps. In Appendix A 1, following the derivation for
the joint probability density of the Hermitian Dirac operator [20] we introduce an auxiliary Gaussian integral such that
we obtain a Harish-Chandra-Itzykson-Zuber like integral that mixes two di↵erent types of variables. In Appendix A 2
this problem is reduced to a Harish-Chandra-Itzykson-Zuber like integral considered in a bigger framework. We derive
an educated guess which fulfills a set of di↵erential equations and a boundary value problem. The asymptotics of the
integral for large arguments serves as the boundary. In Appendix A 2b we perform a stationary phase approximation
which already yields the full solution implying that the semi-classical approach is exact and the Duistermaat-Heckman
localization theorem [45] applies. In the last step we plug the result of Appendix A2 into the original problem, see
Appendix A 2 c, and integrate over the remaining variables to arrive at the result for the joint probability density
given in the main text.

1. Introducing auxiliary Gaussian integrals

We consider the functional I[f ], see Eq. (11), with an integrable test-function f invariant under U (n, n+ ⌫). The
idea is to rewrite the exponent of the probability density P (D

W

) as the sum of a U (n, n+ ⌫) invariant term TrD2

W

and a symmetry breaking term which is linear in D
W

. This is achieved by introducing two Gaussian distributed
Hermitian matrices S

r

and S
l

with dimensions n⇥ n and (n+ ⌫)⇥ (n+ ⌫), respectively, i.e.
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The matrix diag(S
r

, S
l

) is a block-diagonal matrix with S
r

and S
l

on the diagonal blocks. The measure for S
r /l

is
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Then the non-compact unitary matrix diagonalizing D
W

only appears quadratically in the exponent. Notice that
we have to integrate first over the Hermitian matrices S

r /l

and have to be careful when interchanging integrals with
integrals over D

W

. Obviously the integrations over the eigenvalues of D
W

are divergent without performing the
S
r /l

integrals first and cannot be interchanged with these integrals. Also the coset integrals over G
l

= U(n, n +

⌫)/[U 2n+⌫�l(1)⇥O l(1, 1)], cf. Eq. (11), are not absolutely convergent. However we can understand them in a weak
way and, below, we will find Dirac delta functions resulting from the non-compact integrals.

Diagonalizing the matrices D
l

= UZ
l

U�1 and S
r /l

= V
r /l

s
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V †
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with s
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) and s
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n+⌫

) we can absorb the integrals over V
r

and V
l

in the U 2 G
l

integral. Then we end up with
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the integral
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See Sec. II B for a discussion of the prefactors in the sum.

2. The Harish-Chandra-Itzykson-Zuber integral over the non-compact coset Gl

In the next step we calculate the integral

I
l

(Z
l

, s) =

Z

Gl

exp
⇥

ıtrUZ
l

U�1s
⇤

dµGl(U). (A5)

with s = diag (s
r

, s
l

). For l = 0 this integral was derived in Ref. [46].
We calculate this integral by determining a complete set of functions and expanding the integral for asymptotically

large s in this set. In this limit it can be calculated by a stationary phase approximation. It turns out that this
integral, as is the case with the usual Harish-Chandra-Itzykson-Zuber integral, is semi-classically exact.

a. Non-compact Harish-Chandra-Itzykson-Zuber Integral

Let us consider the non-compact integral

I
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0
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in a bigger framework where Z 0
l

0 is a quasi-diagonal matrix with l0 complex conjugate eigenvalue pairs. The integral
is invariant under the Weyl group S(n� l)⇥S(l)⇥S(n+ ⌫� l)⇥Zl

2

in Z
l

. To make the integral well-defined we have
to assume that l � l0 otherwise the integral is divergent since the non-compact subgroup Ol

0�l(1, 1) ⇢ G
l

commutes
with Z 0

l

0 .
The integral (A6) should be contrasted with the well-known compact Harish-Chandra-Itzykson-Zuber integral [43,

44]
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with Weyl group S(2n+ ⌫). Moreover the compact case is symmetric when interchanging X with X 0. This symmetry
is broken in Z

l

and Z 0
l

0 due to the coset G
l

.
For a �

5

-Hermitian matrix V with eigenvalues Z
l

, we can rewrite the integral (A6) as
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This trivially satisfies the Sekigushi-like di↵erential equation [47, 48]
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This equation is written in terms of the independent matrix elements of V and, hence, is independent of the fact to
which sector l the matrix V can be quasi-diagonalized.

We would like to rewrite Eq. (A9) in terms of derivatives with respect to the eigenvalues [62]. Because of the
coe�cients that enter after applying the chain rule when changing coordinates, the derivatives do not commute and
a direct evaluation of the determinant is cumbersome. Therefore we will calculate I

l

(Z
l

, Z 0
l

0) in an indirect way. We
will do this by constructing a complete set of S(n � l) ⇥ S(l) ⇥ S(n + ⌫ � l) ⇥ Zl

2

symmetric functions in the space
of the {Z
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} with the {Z 0
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2

symmetric.
Then we expand I
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, Z 0
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0) in this set of functions and determine the coe�cients for asymptotic large {Z
l

} where the
integral can be evaluated by a stationary phase approximation.

To determine the complete set of functions, we start from the usual Harish-Chandra-Itzykson-Zuber integral over
the compact group U (2n+⌫). This integral is well-known and satisfies the Sekigushi-like di↵erential equation [47, 48]
with
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in terms of the (2n+ ⌫) real eigenvalues X = diag (x
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The expansion in powers of u gives the complete set of 2n+ ⌫ independent Casimir operators on the Cartan subspace
of U (2n+ ⌫), so that the Sekigushi equation determines a complete set of functions I

l

(Z
l

, Z 0
l

0) up to the Weyl group.
Since the non-compact group U (n+⌫, n) shares the same complexified Lie algebra as U (2n+⌫) the Casimir operators
are the same, i.e. the corresponding operator for U (n+ ⌫, n) to the one in Eq. (A10) is
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In the compact case, the Sekigushi-like equation (A10) follows from Eq. (A9) by transforming the equation in terms
of the eigenvalues and eigenvectors of V = UXU�1, see Ref. [48]. The only di↵erence in the non-compact case is that
the parameters of U as well as some of the eigenvalues x become complex, but the algebraic manipulations to obtain
the Sekigushi-like di↵erential equation in terms of eigenvalues remain the same. Let f be an integrable test-function
on the Cartan-subset R2n+⌫�2l

0 ⇥Cl

0
. Then the non-compact integral (A6) satisfies the weak Sekigushi-like equation
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and solutions of this equation yield a complete set of functions for the non-compact case as well. The only di↵erence
is the corresponding Weyl group. The completeness can be seen because we can generate any polynomial of order
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Therefore if we found a solution for Eq. (A14) for an arbitrary test-function f we found I
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0) up to the normal-

ization which can be fixed in the large trZ
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-limit.
Some important remarks about Eq. (A14) are in order. The Vandermonde determinant �
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where the coe�cients c(ll
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where we employ the abbreviation
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The sign of elements in the group Z
2

generating the complex conjugation of single complex conjugated pairs is always
+1. Moreover, any element in the permutation group S(l) is an even permutation since it interchanges a complex
conjugate pair with another one and, thus, always yields a positive sign. Hence the sign of the permutation ! is the
product of the sign of the permutations in S(n� l) and in S(n+ ⌫ � l).

Solving the weak Sekigushi-like equation (A14) for the general case l 6= l0 is quite complicated but as we will show
below for l = l0 the ansatz
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is defined analogously to the determinant but without the sign-function in the sum over the permutations. It arises
because the Vandermonde determinants are even under the interchange of a complex pair with another one, i.e. it is
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Therefore, for given l0 = l and Z 0
l

0 the ansatz (A19) for I
l

(Z
l

, Z 0
l

) is the unique solution of the Sekiguchi-like equation
(A14). One has only to show that the global prefactor is correct, see A 2 b.

What happens in the general case l 6= l0? The ansatz (A17) can only fulfill the Sekigushi-like di↵erential equa-
tion (A14) if we assume that the coe�cient c(ll
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The reason for this originates in the fact that not all complex pairs of Z
l

can couple with a complex eigenvalue pair in
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0 and, hence, trZ
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. Therefore we would miss it in
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the determinant det(Z 0
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the promising ansatz

I
l

(Z
l

, Z 0
l

0) =
c(ll

0
)

�
2n+⌫

(Z
l

)�
2n+⌫

(Z 0
l

0)

l

Y

j=1

y
(2)

j

|y(2)
j

|

l

0
Y

j=1

y0
(2)

j

|y0(2)
j

|
(A22)

⇥
X

!2S(n�l)⇥S(l)⇥S(n+⌫�l)⇥Zl
2

!

02S(n�l

0
)⇥S(l0)⇥S(n+⌫�l

0
)⇥Zl0

2

sign!!0 exp (ıtrZ
l!

Z 0
l

0
!

0)

|l�l

0|
Y

j=1

⇣

x0(1)
!

0
(n�l+j)

� x0(3)
!

0
(j)

⌘

�
⇣

x0(1)
!

0
(n�l+j)

� x0(3)
!

0
(j)

⌘

is indeed the correct result.
Note that the ansatz (A22) agrees with the solution (A19) for the case l = l0. Furthermore one can easily verify

that it also solves the weak Sekiguchi-like di↵erential equation (A14). Indeed, the ansatz is trivially invariant under
the two Weyl groups S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥ Zl
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due to the sum.

The global prefactor 1/�
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0) reflects the singularities when an eigenvalue in x0(1) agrees with one in x0(3) as

well as a complex eigenvalue pair in x0(2) degenerates with another eigenvalue in Z 0
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0 , namely then Z 0
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0 commutes with
some non-compact subgroups in G
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. Hereby the eigenvalues which have to degenerate via the Dirac delta functions
are excluded.
In the next section we calculate the global coe�cients in Eq. (A22). For this we consider the stationary phase

approximation which fixes this coe�cient.
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If l 6= l0 this equation cannot be satisfied in all directions. The reason is that the quasi-diagonal matrix Z 0
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l

(A24)

where the permutations are

⇧ 2 S(n� l)⇥ [S(l)/[S(l0)⇥ S(l � l0)]]⇥ S(n+ ⌫ � l),

⇧0 2 [S(n� l0)/S(n� l)]⇥ S(l0)⇥ [S(n+ ⌫ � l0)/S(n+ ⌫ � l)]⇥ Zl

0
, (A25)

and a block-diagonal matrix

� =
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where the diagonal matrix of angles is b� = diag ('
1

, . . . ,'
l�l

0) 2 [0,⇡]l�l

0
. The matrix � describes the set U l�l

0
(1)

(l� l0 unit circles in the complex plane) which commutes with Z 0
l

0 and is a subgroup of G
l

. Note that other rotations
commuting with Z 0

l

0 are already divided out in G
l

. The matrix of phases already comprises the complex conjugation

of the complex eigenvalues represented by the finite group Zl�l

0

2

, choosing '
j

= ⇡/2 switches the sign of the imaginary
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part y0
j

. However we have to introduce the complex conjugation for those complex conjugated pairs in Z 0
l

0 which

couple with pairs in Z
l

, cf. the group Zl

0
in ⇧0.

The expansion of U reads

U = ⇧0�
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We employ the notation (A18) for the action of ! 2 S(n� l)⇥ S(l)⇥ S(n+ ⌫ � l)⇥ Zl and !0 2 S(n� l0)⇥ S(l0)⇥
S(n+⌫� l0)⇥Zl

0
on the matrices Z

l!

and Z 0
l

0
!

0 , respectively. Note that the matrix � commutes with Z 0
l

0
!

0 for any !0

and, hence, only yields an overall prefactor ⇡l�l

0
. The matrix H

1

spans the Lie algebra ol�l

0
(1, 1) and is embedded as

H
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0
. (A28)

The matrix H
2

is in the tangent space of the coset G
l

/[U l�l

0
(1) ⇥ Ol�l

0
(1, 1)] = U (n, n + ⌫)/[U 2n+⌫�2l+l

0
(1) ⇥

Ol

0
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0
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where H
11

, H
22

, H
55

, and H
66

are anti-Hermitian matrices without diagonal elements since they are divided out in
the coset G

l

or are lost to �. The two matrices H
33

and H
44

are anti-Hermitian matrices whose diagonal elements
are the same with opposite sign which is also because of the subgroup we divide out in G

l

. The matrices H
12

, H
13

,
H

14

, H
15

, H
16

, H
23

, H
24

, H
26

, H
35

, H
36

, H
45

, H
46

, and H
56

are arbitrary complex matrices. Since we have to remove
the degrees of freedom already included in H

1

and in the subgroups quotient out in G
l

the matrix H
25

is a complex
matrix with all l � l0 diagonal elements removed and H

34

is a complex matrix whose diagonal entries are real. The
sizes of the blocks of H

1

and H
2

correspond to the sizes shown in the diagonal matrix of phases �, see Eq. (A26).
The double lines in the matrix (A29) shall show the decomposition of Z

l

in its real and complex eigenvalues whereas
the single lines represent the decomposition for Z 0

l

0 .
The exponent in the coset integral (A6) takes the form

trUZ
l

U�1Z 0
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0 = trZ
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The measure for H
1

and H
2

is the induced Haar measure, i.e.

tr [U�1dU,Z
l!

]2� = tr [�†d�, Z
l!

]2� + t2tr [dH
1

, Z
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]2� + ttr [dH
2

, Z
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]2� (A31)

which gives

dµG(U) = t(2n+⌫)(2n+⌫�1)/2d[H
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]d[�]d[H
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The product over the two indices i and j is over all independent matrix elements of H
2

.
We emphasize again that the integrand in I

l

(t�1Z
l

, Z 0
l

0) does not depend on � making this integration trivial and
yielding the prefactor ⇡l�l

0
. The integral over H

1

yields the l � l0 Dirac delta functions mentioned in Eq. (A21), i.e.
it yields
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Notice that the other term in the expansion of the Dirac delta function does not contribute because of the order of
the integrations [63].

The integrals over H
2

are simple Gaussian integrals resulting in the main result of this section,

I
l
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0) =
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The overall coe�cient c(ll
0
) in Eq. (A22) can be easily read o↵. Thereby the numerator of the first factor results from

the integral over H
1

and is related to the l � l0 Dirac delta functions. The denominator is the volume of the finite
group S(n � l) ⇥ S(l0) ⇥ S(l � l0) ⇥ S(n + ⌫ � l) ⇥ Zl which we extend to summing over the full Weyl groups for Z

l

and Z 0
l

0 . We recall that the sum over permutations in S(l) and S(l0) describe the interchange of complex pairs which
are even permutations because we interchange both z

k

and z⇤
k

with another pair. The numerator of the term with
the Vandermonde determinants essentially result from the Gaussian integrals and always appears independent of how
many complex pairs Z

l

and Z 0
l

0 have. The factors of t�1 appear as prefactors of Z
l

and can be omitted again since
they have done their job as bookkeeping device.

Let us summarize what we have found. Comparing the result (A34) with the Z
l

dependence of the ansatz I(Z
l

, Z 0
l

)
given in Eq. (A22), we observe that they are exactly the same. This implies that the asymptotic large Z

l

result for the
integral (A6) is actually equal to the exact result. We conclude that the non-compact Harish-Chandra-Itzykson-Zuber
integral is semi-classically exact and seems to fulfill the conditions of the Duistermaat-Heckman theorem [45].

Let us consider two particular cases. For l = l0 we sum over all permutations in S(l) which yields the permanent
in Eq. (A20), whereas the sum over permutations in S(n+ ⌫ � l) and S(n� l) gives determinants and, thus, agrees.
The special case n = 0 yields the original Harish-Chandra-Itzykson-Zuber integral [43, 44], see Eq. (A7).

c. The joint probability density

We explicitly write out Z
l

and apply Eq. (A34) for Z 0
l

0 = s. Then, we find for our original non-compact group
integral
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Now we are ready to integrate over s.

We plug Eq. (A35) into the integral (A3). The sum over the permutations can be absorbed by the integral due to
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relabelling resulting in
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The quotient of the Vandermonde determinants is
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This determinant also appears in the supersymmetry method of RMT [48, 49] and is a square root of a Berezinian
(the supersymmetric analogue of the Jacobian).

Expanding the determinant (A37) in the first l columns not all terms will survive. Only those terms which cancel

the prefactor of the Dirac delta functions do not vanish. The integration over diag (s(r )
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The other exponential functions as well as the remaining integrations over s
r

and s
l

can be pulled into the determinant.
The integrals in the ⌫ bottom rows yield harmonic oscillator wave function. These can be reordered into monomials
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times a Gaussian. This results in
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What remains is to simplify the function
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Plugging this result into Eq. (A39) we get the joint probability density for a fixed number of real eigenvalues given
in Eq. (24). Moreover one can perform the sum over l to find the joint probability density of all eigenvalues given in
Eq. (17).

Appendix B: Two useful Integral Identities

In this appendix we evaluate two integrals that have been used to simplify the expression for ⇢
r

and ⇢
c

.

1. Convolution of a Gaussian with an error function

Let Re �2 > �1. We consider the integral

I(↵, �) =

Z

R

exp[�(x+ ↵)2]erf(�x)dx. (B1)
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The solution can be obtained by constructing an initial value problem. Since the Gaussian is symmetric and the error
function anti-symmetric around the origin we have

I(0, �) = 0. (B2)

The derivative is
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Integrating the derivative from 0 to ↵ we find the desired result

Z

R

exp[�(x+ ↵)2]erf(�x)dx = �
p
⇡ erf

 

�↵
p

�2 + 1

!

. (B4)

This integral is needed to simplify the term (42).
Another integral identity which is used for the derivation of the level density of the real eigenvalues with positive

chirality is given by
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This identity is a direct consequence of the identity (B4). The constants ↵
i

(with Re↵
i

> 0), �
i

, � 6= 0, � and ✏ are
arbitrary.

2. Convolution of a Gaussian with a sinus cardinalis

The second integral enters in the simplification of the asymptotic behavior of ⇢
c

. It is the convolution integral

eI(↵, �) =

Z

R

dx exp[�(x+ ↵)2]sinc(�x). (B6)

To evaluate this integral we introduce an auxiliary integral to obtain a Fourier transform of a Gaussian, i.e.

eI(↵, �) =
1

�

�

Z
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First we integrate over x and then over e� to obtain an expression in terms of error functions,
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⇡

�
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Appendix C: The Z

⌫
1/1–Partition Function

In this appendix we evaluate the partition function Z⌫

1/1

which enters in the expression for the distribution of the

chiralities over the real eigenvalues of D
W

. The derivation below is along the lines given in Ref. [42].
We employ the parametrization (52) to evaluate
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We employ the same trick as in Ref. [42] to linearize the exponent in U and U�1 by introducing an auxiliary Gaussian
integral over a supermatrix, i.e.

exp[�ba2
8

Str (U2 + U�2)] =
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After plugging Eq. (C2) in Eq. (C1) we diagonalize � = V diag (s
1

, s
2

)V † and integrate over V 2 U(1/1). We obtain
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which expresses the partition function at non-zero lattice spacing in terms of an integral over the partition function
with one bosonic and one fermionic flavor at zero lattice spacing (55).

The resolvent G
1/1

is given by the derivative with respect to bz
1

, see Eq. (48). To obtain a non-zero result we
necessarily have to di↵erentiate the prefactor (bz

1

� bx
2

). The distribution of the chiralities of the real eigenvalues of
D

W

follows from the imaginary part of the resolvent. The Efetov-Wegner term [57, 58] appearing after diagonalizing
� is the normalization Z⌫
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(1, 1) = 1 and vanishes when taking the imaginary part.

Two terms contribute to the imaginary part of the resolvent. First, the imaginary part of
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is the ⌫-th derivative of the Dirac delta-function. Second, when |s
1

| < |b�
7

|, the imaginary part arising from the
logarithmic contribution of K
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(z), i.e.
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also contributes to the imaginary part of the resolvent. The Bessel functions of the imaginary part of Z⌫

1/1

(x
1

, x
2

,ba = 0)

combine into the two-flavor partition function Z⌫
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, x
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,ba = 0). Adding both contributions we arrive at the result
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yielding Eq. (83).
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Appendix D: Derivations of the Asymptotic Results given in Sec. IV

The derivation of asymptotic limits of the spectral density can be quite non-trivial because of cancellations of the
leading contributions so that a naive saddle point approximation cannot be used. In the subsections below, we derive
asymptotic expressions for the average number of additional real modes (Appendix D1), the level density of the right
handed modes (Appendix D2) and the level density of the complex modes (Appendix D3). In Appendix D 4 we
consider the distribution of chirality over the real modes.

1. The average number of additional real modes

The limit of small lattice spacing is obvious and will not be discussed here. At large lattice spacing we rewrite
Eq. (73) as

N
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Since ba
7/8

are large we expand the angle � around the origin, in particular
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⌧ 1. (D2)

Note that we have two equivalent saddlepoints at 0 and at ⇡. We thus have
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The integral over �� is equal to
p
32⇡, and the integral over ' is the elliptic integral of the second kind. Hence we

obtain the result (74).

2. The density of the additional real modes

We have two di↵erent cases for the behavior of ⇢
r

at large lattice spacing. To derive the large ba asymptotics in the
case ba2
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= 0 we rewrite Eq. (69) as a group integral, i.e.
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For ba2
8

= 0 Eq. (D4) simplifies to
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For the second equality we substituted ex ! 2ex+ bx and replaced the sign functions by the integration domains of b�
7

.

Moreover we used the fact that the group integral only depends on
q

b�2

7

� ex2.

The saddlepoint equation of the U integral in Eq. (D5) gives four saddle points,

U = ±ı11
2

, and U = ±ıdiag (1,�1). (D6)

The saddlepoints which are proportional to unity are algebraically suppressed while the contribution of the other two
saddle points is the same. We thus find
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After substituting b�
7

! ex cosh# the integral over # yields the first case of Eq. (78).
For ba

8

6= 0 we again start with Eq. (69). The integration over the two error functions, see Eq. (70), makes it
di�cult to evaluate the result directly, particularly when ba

7

6= 0. As long as ba
7

is finite, the second error function does
not yield anything apart from giving a Gaussian cut-o↵ to the integral. The imaginary part of the argument of the
second error function shows strong oscillations resulting in cancellations. These oscillations also impede a numerical
evaluation of the integrals for large lattice spacing.

Let ba
6

= 0 to begin with. A non-zero value of ba
6

can be introduced later by a convolution with a Gaussian in bx.
To obtain the correct contribution from the first term we consider a slight modification of ⇢
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The variable X plays the role of bx/(8ba2
8

). The error function with the constant ↵ replaces the second error function
in Eq. (70) and is of order one in the limit ba ! 1. It regularizes the integral and its contribution will be removed at
the end. However it has to fulfill some constraints to guarantee the existence of the saddlepoints
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Nevertheless these saddlepoints are independent of ↵. The saddle point '
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is algebraically suppressed in
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with
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In the next step we change the coordinates to center-of-mass-relative coordinates, i.e. � = �'
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We perform an integration by parts in �' yielding Gaussian integrals in �' which evaluate to
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The 1/�2 term can be exponentiated by introducing an auxiliary integral and the resulting Gaussian over � can be
performed. We obtain
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The contribution of the artificial term depending on ↵ can be readily read o↵, but it fixes the integral only up to an
additive constant. This constant can be determined by integrating the result over bx which has to agree with the large
ba limit of N

add

, cf. Eq. (74). It turns out that this constant is equal to zero. The overall constant is also obtained by
comparing to N

add

.
The convolution with the Gaussian distribution generating ba

6

does not give something new in the limit of large
lattice spacing. The width of this Gaussian scales with ba while the density ⇢

r

has support on ba2, so that it becomes
a Dirac delta-function in the large ba limit.

3. The density of the complex eigenvalues

Let ba
8

> 0 and ba � 1. Then we perform a saddlepoint approximation of Eq. (79) in the integration variables '
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.
The saddlepoints are given by
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We have also the saddlepoints '
(0)

1

= '
(0)

2

if ba
7

= 0. However they are algebraically suppressed due to the Haar
measure. Notice the two saddlepoints in Eq. (D16) yield the same contribution. After the integration over the
massive modes about the saddlepoint we find the first case of Eq. (82). In the calculation we used the convolution
integral derived in Appendix B 2.

Let us now look at the case with ba
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= 0. Then we have
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The integrals over the angles can be rewritten as a group integral over U (2),
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with ⇤ = diag (b�
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+ ıby, b�
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� ıby). This integral only depends on the quantity
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The variable by as well as the integration variable b�
7

are of the order ba. Therefore we can perform a saddlepoint
approximation and end up with
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resulting in the second case of Eq. (82).

4. The distribution of chirality over the real eigenvalues

In this Appendix we derive the large ba limit of ⇢
�

(bx) for ba
8

> 0 given in Eq. (93). The case ba
8

= 0 reduces ⇢
�

(bx) to
the result (59) and will not be discussed in this section. We set ba
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= 0 to begin with and introduce them later on.

The best way to obtain the asymptotics for large lattice spacing is to start with Eq. (C1) with bm
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= " = 0.
The integral does not need a regularization since the ba
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-term guarantees the convergence. We also omit the sign in
front of the linear trace terms in the Lagrangian because we can change U ! �U .
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There are two saddlepoints in the variables # and ', i.e.
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with L = ±1. Moreover, the variables bz
1

, bx
2

have to be in the interval [�8ba2
8

, 8ba2
8

] else the contributions will be
exponentially suppressed. We have no second saddlepoint for the variable # since the real part of the exponential
has to be positive definite. Other saddlepoints which can be reached by shifting ' and # by 2⇡ı independently are
forbidden since they are not accessible in the limit ba
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! 1 . Notice that the saddlepoint solutions (D22) are phases,
i.e. |e#0 | = |eı'0 | = 1.

In the second step we expand the integration variables

e# = e#0

 

1 +
�#

p

(8ba2
8

)2 � bx2

2

!

, eı' = eı'0

 

1 +
ı�'

p

(8ba2
8

)2 � bz2
1

!

. (D23)
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All terms in front of the exponential as well as of the Grassmann variables are replaced by the saddlepoint solutions
#
0

and '
0

. The resulting Gaussian integrals over the variables �# and �' yield

Im

Z

dµ(U)Sdet ⌫U exp
h

�ba2
8

Str (U � U�1)2 +
ı

2
Str diag (bx

2

, bz
1
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i

/
X

L2{±1}

Im
exp[⌫(#

0

� ı'
0

)]
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(8ba2
8
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2

p

(8ba2
8

)2 � bz2
1

exp



�bx
2

2

� bz2
1

16ba2
8

�

⇥
Z

d⌘d⌘⇤(1� ⌘⇤⌘)⌫ exp[�2ba2
8

(e#0 + e�ı'0)(e�#0 + eı'0)⌘⇤⌘]. (D24)

After the integration over the Grassmann variables we have two terms, one is of order one, and the other one of order
ba2
8

which exceeds the first term for ba
8

� 1. Hence we end up with

Im

Z

dµ(U)Sdet ⌫U exp
h

�ba2
8

Str (U � U�1)2 +
ı

2
Str diag (bx
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Im
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⇥
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Notice that both saddlepoints, L 2 {±1}, give a contribution for independent variables bz
1

and bx
2

. To obtain the
resolvent we di↵erentiate this expression with respect to bz

1

and put bz
1

= bx
1

afterwards. The first term between the
large brackets and the second term for L = �1 are quadratic in bz

1

� bx
2

and do not contribute to the resolvent. For
L = +1 we obtain

Im @bz1 |bz1=bx2
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This limit yields the square root singularity. The normalization of ⇢
�

to ⌫ yields an overall normalization constant of
2ba2

8

/⇡.
The e↵ect of ba

6

is introduced by the integral
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=
1
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In the large ba limit this evaluates to
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which is exactly the same Heaviside distribution with the square root singularities in the interval [�8ba2
8

, 8ba2
8

] of
Eq. (D26). The introduction of ba

7

follows from Eq. (87). We have to replace ba2
6

! ba2
6

+ ba2
7

and sum the result over
the index j with the prefactor exp(�8ba2

7

)[I
j�⌫

(8ba2
7

)� I
j�⌫

(8ba2
7

)]. The intermediate result (D28) is independent of ba
7

and linear in the index, in the sum this index is j. The sum over j can be performed according to

1
X

j=1

j
�

I
j�⌫

(8ba2
7

)� I
j+⌫

(8ba2
7

)
�

= ⌫ exp(8ba2
7

) (D29)

resulting in the asymptotic result (93).
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We analyze Dirac spectra of two-dimensional QCD like theories both in the continuum and on the
lattice and classify them according to random matrix theories sharing the same global symmetries.
The classification is different from QCD in four dimensions because the anti-unitary symmetries do
not commute with γ5. Therefore in a chiral basis, the number of degrees of freedom per matrix
element are not given by the Dyson index. Our predictions are confirmed by Dirac spectra from
quenched lattice simulations for QCD with two or three colors with quarks in the fundamental
representation as well as in the adjoint representation. The universality class of the spectra depends
on the parity of the number of lattice points in each direction. Our results show an agreement
with random matrix theory that is qualitatively similar to the agreement found for QCD in four
dimensions. We discuss the implications for the Mermin-Wagner-Coleman theorem and put our
results in the context of two-dimensional disordered systems.

I. INTRODUCTION

It has been well established that chiral symmetry is spontaneously broken in strongly interacting systems of quarks
and gluons for a wide range of parameters such as the temperature, the chemical potential, the number of colors, the
number of flavors, the representation of the gauge group. In the broken phase the corresponding low energy effective
theory is given by a weakly interacting system of pseudo-Goldstone bosons with a Lagrangian that is determined by
the pattern of chiral symmetry breaking. In lattice QCD the spontaneous breaking of chiral symmetry is studied by
evaluating the Euclidean partition function which is the average of the determinant of the Euclidean Dirac operator
weighted by the Euclidean Yang-Mills action. Its low energy limit is given by the partition function of the Euclidean
chiral Lagrangian. This theory simplifies drastically [1, 2] in the limit that the pion Compton wave-length is much
larger than the size of the box. Then the partition function factorizes into a part comprising the modes with zero
momentum and a part describing the modes with non-zero momentum. It turns out that the zero momentum part is
equivalent to a random matrix theory with the same global symmetries of QCD [3].
A particular useful way to study chiral symmetry breaking is to analyze the properties of the eigenvalues of the

Dirac operator. Because of the Banks-Casher formula [4] the chiral condensate Σ = |〈ψ̄ψ〉|, the order parameter for
the spontaneous breaking of chiral symmetry, is given by the average spectral density (denoted by ρ(λ)) near zero of
the Dirac operator per unit of the space-time volume V ,

Σ ≡ |〈ψ̄ψ〉| = lim
a→0

lim
m→0

lim
V→∞

1

V

∫ ∞

−∞

2mρ(λ)dλ

λ2 +m2
= lim

a→0
lim
λ→0

lim
V→∞

π

V
ρ(λ). (1)

Here, a is the lattice spacing which provides the ultraviolet cut-off. The order of the limits is critical and a different
order gives a different result. A better understanding of these limits can be obtained from the behavior of the
eigenvalue density of the Dirac operator on the scale of the smallest eigenvalues which according to the Banks-Casher
formula is given by

∆λ =
1

ρ(0)
=

π

ΣV
. (2)

The so called microscopic spectral density is defined by [5]

ρs(x) = lim
V→∞

1

ΣV
ρ
( x

ΣV

)
. (3)
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If the Compton wavelength associated with the Dirac eigenvalues, λ, is much larger than the size of the box, L,
then the partition function that generates the Dirac spectrum factorizes into a zero momentum part and a nonzero
momentum part. The zero momentum part is completely determined by the global symmetries of the QCD-(like)
partition function and is equivalent to a random matrix theory with the same global symmetries. The Compton wave
length associated with the Dirac eigenvalues is the Compton wave-length of the corresponding pseudo-Goldstone
modes and is given by

2π

mπ
=

2πFπ√
2λΣ

, (4)

where Fπ is the pion decay constant. The condition 1/mπ " L implies

λ#
F 2
π

2L2Σ
= λL, (5)

meaning that λL is the characteristic eigenvalue scale corresponding to the size of the box. In d dimensions the
Euclidean volume is V = Ld so that the average number of eigenvalues in the universal domain scales as

ETh ∝
λL
∆λ

= 2πF 2
πL

d−2. (6)

This scale is also known as the Thouless energy ETh. In two dimensions, the number of eigenvalues in the universal
domain remains of O(1) in the thermodynamic limit.
Arguments have been made that in one dimensional systems all states become localized for an arbitrary small

amount of disorder. The two dimensional case is marginal. For site disorder all states are exponentially localized
whereas for link disorder the situation is less clear [6]. For systems that are both rotational invariant and time reversal
invariant (denoted by the Dyson index βD = 1) all states seem to be localized. In the case of rotational invariant
systems with broken time reversal invariance (denoted by the Dyson index βD = 2) states in the center of the band
seem to be delocalized and the localization length may be very large in a region around the band center. For non-
rotational invariant spin 1/2 systems (denoted by the Dyson index βD = 4) states are delocalized for a substantial
range of disorder and energies [7–9].
The connection between localization and Goldstone bosons was most clearly formulated by McKane and Stone

[10]. They argued that a nonzero density of states around the origin for a disordered system may either indicate the
presence of Goldstone bosons or may be due to a nonzero density of the localized states. For dynamical quarks the
second alternative is not possible. The reason is that the eigenvalues of localized states are uncorrelated so that the
partition function

Z(m) =

〈
∏

k

(iλk +m)

〉
(7)

factorizes into single eigenvalue partition functions resulting in a vanishing chiral condensate [11].
If we take the results from the condensed matter literature at face value, also in two dimensional systems, there may

be a finite region of extended states around zero with correlations that are described by chiral random matrix theory or
alternatively a partition function with spontaneously broken chiral symmetry. In more than two dimensions we expect
that these correlations will remain in the presence of a fermion determinant and the corresponding partition function
will be the zero momentum part of a chiral Lagrangian. In two dimensions, the presence of a fermion determinant may
push these states beyond the Thouless energy so that all states become localized. This would reconcile the numerical
results for βD = 4 with the Mermin-Wagner-Coleman theorem which states that a continuous symmetry cannot be
broken spontaneously in two or less dimensions in systems with sufficiently short-range interactions. In terms of the
supersymmetric formulation of the quenched limit, the Mermin-Wagner-Coleman theorem could be evaded because
the symmetry group is non-compact. This has been shown for hyperbolic spin models [12, 13]. This opens the
possibility to have extended states and universal spectral correlations also in two dimensions.
Another interpretation is possible if the localization length ξ is large so that we can consider the limiting case

1 # L # ξ. (8)

Then the states behave as extended states with eigenvalues that are described by random matrix theory up to the
Thouless energy. In this case the problems with the Mermin-Wagner-Coleman theorem can be avoided and a transition
to a localized phase only takes place when L ∼ ξ. In such scenario the scalar correlation function may drop off at a
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similar rate, so that chiral symmetry appears to be broken in the regime (8). This correlation function was studied
for the Nc-color Thirring model [14] with a drop-off of 1/x1/Nc .
A two-dimensional model for which Dirac spectra have been studied in great detail, both analytically and numer-

ically, is the Schwinger model. The eigenvalue correlations of the one-flavor Schwinger model are given by random
matrix theory as was shown numerically [15, 16] and analytically by calculating the Leutwyler-Smilga sum rules [17].
The two flavor Schwinger model was analyzed in great detail in [18], and after rescaling the eigenvalues by the average
level spacing excellent agreement with chiral random matrix theory is observed. No agreement with chiral random
matrix theory is found for the quenched Schwinger model [16], while the spectral density seems to diverge for λ→ 0.
The repulsion between the eigenvalues seems to be greatly suppressed indicating that the states are localized.
Let us consider a theory where the mass dependent chiral condensate scales with the quark mass as

Σ(m) ∼ mα. (9)

In the Schwinger model we have that [19]

α =
Nf − 1

Nf + 1
, (10)

but the argument given in this paragraph is more general. According to the Gell-Mann-Oakes-Rennner relation the
mass of the ”pions” associated with this condensate is given by

m2
π ∼ mα+1. (11)

Using the relation (1) between the spectral density and the chiral condensate we find that the eigenvalue density
behaves as

ρ(λ) ∼ V Σ(λ) ∼ V λα. (12)

The Thouless energy is given by the scale for which the pion Compton wavelength is equal to the size of the box, i.e.
mπ ∝ 1/L. Employing the relation (11) we find the mass associated to the Thouless energy,

mth ∼ L−2/(α+1). (13)

The integrated spectral density is given by

N(λ) =

∫ λ

−λ
ρ(λ′)dλ′ ∼ V λα+1, (14)

so that the average number of eigenvalues below the Thouless energy is proportional to

Nth = N(mth) ∼ Ld−2. (15)

due to combination of Eqs. (13) and (14). Remarkably, the number of eigenvalues described by random matrix theory
does not depend on α. In two dimensions this number is constant in the thermodynamic limit but the agreement
with chiral random matrix theory seems to improve with larger volumes for the Schwinger model [16]. The corollary
of this argument is that correlations of low-lying Dirac eigenvalues in conformal QCD-like theories are given by chiral
random matrix theory after unfolding the eigenvalues, i.e. λ′k = λα+1

k .
The eigenvalues scale with the volume as

λ ∼ V −1/(α+1) (16)

via the relation (14) when keeping the average number of eigenvalues fixed. This scaling was studied in [18] where a
volume scaling of V −5/8 is observed for two almost massless flavors, c.f. Eq. (10). This would correspond to Nf = 4,
cf. Eq. (10). This is actually correct because the lattice Dirac operator couples only even and odd sites doubling the
number of flavors. Apparently, we need exact massless quarks to push the states in the localized domain.
Another important difference between QCD in four dimensions and QCD in lower dimensions is the index of the

Dirac operator. In four dimensions the index is equal to the topological charge of the gauge field configurations.
In three dimensions the index is not defined. In two dimensions topology is defined for U (1) and can for example
be studied for the Schwinger model [17, 20]. However, for higher dimensional gauge groups the index of the Dirac
operator is zero [19, 21, 22] although unstable instantons do exist [23, 24].
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In this paper we consider the quenched two-dimensional QCD Dirac operator in the strong coupling limit with
the gauge fields distributed according to the Haar measure. Both the continuum limit and the lattice QCD Dirac
operator will be discussed. For the lattice Dirac operator we employ naive fermions. Our original motivation for this
choice was to understand the transition between different symmetry classes when taking the continuum limit which
was observed for staggered fermions in three [25] as well as in four [26] dimensions, but this issue is not addressed in
this paper.
The strong coupling lattice model is expected to be equivalent to an interacting theory of mesons and/or baryons.

For U(1) gauge theories in two dimensions this has been shown explicitly [27] by means of a color-flavor transformation
[28–30], where a gradient expansion generates the various terms of a chiral Lagrangian. In this paper, we do not
perform the continuum limit, so that the lattice theory is equivalent to an unrenormalized chiral Lagragian, and the
usual arguments, that the states below the Thouless energy are correlated according to random matrix theory, apply.
In the continuum limit and two dimensions, the fluctuations of the hadronic fields will dominate the chiral condensate
and the theory renormalizes to a trivial phase without Goldstone bosons. In other words, the theory renormalizes to
a localized phase.
The symmetry breaking pattern for the continuum limit in any dimension was discussed in [31] and in the context

of topological insulators in [32] and goes back to what is known as Bott-periodicity. The dimensional dependence of
the symmetry breaking pattern (see Table I) has its origins in the structure of Clifford algebras. The four dimensional
symmetry breaking pattern and its description in terms of random matrix theory has been known for a long time
[33–35]. Because of the absence of the γ5 Dirac matrix in three dimensions the symmetry breaking pattern is different
[36–38]. In two dimensions, the γ5 matrix is replaced by the third Pauli matrix, σ3. This matrix also anticommutes
with the Dirac operator, but it does not commute with the charge conjugation matrix given by σ2, which leads to a
different symmetry breaking pattern [31].
The symmetries of the Dirac operator also depend on the parity of the lattice. If the lattice size is even in both

directions, even lattice sites are only coupled to odd lattice sites resulting in a “lattice chiral symmetry”. Having
a lattice that is odd in one direction and even in the other one also puts global constraints on the Dirac operator
resulting in different symmetry properties. In this paper we classify lattice theories in terms of random matrix theory.
In total we can distinguish 9 classes. First of all they differ in their anti-unitary symmetries, namely with no anti-
unitary symmetry, with an anti-unitary symmetry that squares to 1, and with an anti-unitary symmetry that squares
to -1. Moreover for each of these three classes we can have an even-even, an even-odd or an odd-odd lattice. For all
nine classes we give the spectral properties in the microscopic domain and compare them with lattice simulations of
the corresponding lattice theory in the strong coupling limit.
In Section 2 we discuss the microscopic Dirac spectrum and chiral symmetry breaking pattern for the continuum

limit of two-dimensional QCD. The two dimensional lattice gauge theory for three different values of the Dyson index
is analyzed in section 3, and concluding remarks are made in Section 4. In the appendices we derive several random
matrix results that have been used in the main text.

II. CONTINUUM DIRAC OPERATOR

The Euclidean Dirac operator of QCD-like theories is given by

D = γµ(∂µ + iAa
µλa), (17)

where Aa
µ are the gauge fields, γµ are the Euclidean γ-matrices and λa are the generators of the gauge group. For an

even number of dimensions the Dirac operator in a chiral basis reduces to a 2× 2 block structure

D(2/4) =

[
0 W(2/4)

−W(2/4) † 0

]
, (18)

where in two dimensions the operator W(2) is given by

W(2) = ∂1 + i∂2 + (iAa
1 −Aa

2)λa, (19)

and in four dimensions the operator W(4) can be written as

W(4) = iσµ(∂µ + iAa
µλa) (20)

employing the standard chiral representation of Euclidean γ-matrices with σµ = (σk,−i114) and σk the Pauli matrices.
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d Gauge theory βD αD Symmetry Breaking Pattern RMT

2 Nc = 2, fund. 1 1 USp (2Nf)× USp (2Nf) → USp (2Nf) (CI)

2 Nc ≥ 3, fund. 2 1 U (Nf)× U(Nf) → U (Nf) chGUE (AIII)

2 Nc ≥ 2, adj. 4 1, 5 O (2Nf)×O(2Nf) → O(2Nf) (DIII)

3 Nc = 2, fund. 1 0 USp (4Nf) → USp (2Nf)× USp (2Nf) GOE (AI)

3 Nc ≥ 3, fund. 2 0 U (2Nf) → U(Nf)×U (Nf) GUE (A)

3 Nc ≥ 2, adj. 4 0 O (2Nf) → O(Nf)×O(Nf) GSE (AII)

4 Nc = 2, fund. 1 ν U(2Nf) → USp (2Nf) chGOE (BDI)

4 Nc ≥ 3, fund. 2 2ν + 1 U (Nf)× U(Nf) → U (Nf) chGUE (AIII)

4 Nc ≥ 2, adj. 4 4ν + 3 U (2Nf) → O(2Nf) chGSE (CII)

TABLE I: Symmetry breaking patterns in two (d = 2), three (d = 3), and four (d = 4) dimensions for different gauge theories
and their associated Dyson index βD which is equal to the level repulsion. The corresponding random matrix theory sharing
the same symmetry breaking pattern and its classificatrion according to symmetric spaces is indicated in the last column. The
repulsion of the levels from the origin, λαD , depends on the topological charge ν for QCD-like theories in four dimensions. The
case of the two-dimensional SU (Nc) theory with the fermions in the adjoint representation is particular since the index of the
Dirac operator is either 0 or 1 depending on the parity of the dimensions of the Dirac matrix. This results in a repulsion that
is either λ or λ5. The corresponding random matrix theory consists of anti-symmetric off-diagonal blocks so that depending
on the dimensionality we have either no or one pair of generic zero modes, respectively. For a discussion of the classification of
random matrix theories in terms of symmetric spaces we refer to Refs. [39, 40]. In this table we do not include the breaking of
the axial symmetry.

In three dimensions, the Dirac operator is given by

D =
3∑

k=1

σk(∂k + iAa
kλa). (21)

There is no involution that anti-commutes with the Dirac operator so that there is no chiral block structure. This is
the crucial difference with even dimensional theories and was already studied in Ref. [41].
In addition to chiral symmetry the Dirac operator has other symmetries depending on the representation of the

gauge group which is discussed in the ensuing subsections. In subsection IIA we recall the discussion of the global
symmetries of the QCD Dirac operator in three and four dimensions and extend it to the two dimensional theory as
well. This symmetry classification is summarized in table I. In subsection II B we discuss the corresponding random
matrix theories. Thereby we summarize the classification of the randommatrix theories for three- and four-dimensional
continuum QCD and supplement this with the random matrix theories for two-dimensional QCD. In subsection II C
we recall the symmetry breaking patterns.

A. Anti-unitary symmetries of the QCD Dirac operator

The anti-unitary symmetries of the Dirac operator depend on the representation of the generators λa of the gauge
group SU (Nc). We consider three different gauge theories, namely with the gauge group SU (Nc = 2) and fermions in
the fundamental representation denoted by the Dyson index βD = 1, with the gauge group SU (Nc > 2) and fermions
in the fundamental representation which is βD = 2, and with the gauge group SU (Nc ≥ 2) and fermions in the adjoint
representation labelled by βD = 4.

1. βD = 1

Let us consider the first case which is QCD with two colors (Nc = 2) and fermions in the fundamental representation.
Then the λa are given by the three Pauli matrices τa acting in color space. Hence each covariant derivative

Dµ = ∂µ + iAa
µτa (22)

is pseudo-real (quaternion) and anti-Hermitian, i.e.

D†
µ = −Dµ and [Dµ, τ2K]− = Dµτ2K − τ2KDµ = 0 (23)
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with K the complex conjugation operator. The corresponding Dirac operator has the anti-unitary symmetry

[iD(d), τ2CK]− = 0, (24)

where C is the charge conjugation matrix. In four dimensions the charge conjugation matrix reads C ≡ γ2γ4 and in
two and three dimensions it is given by C = σ2.
A crucial point is that the anti-unitary operator satisfies

(Cτ2K)2 = 1. (25)

Therefore one can always find a gauge field independent basis for which the Dirac operator is real [35, 39]. This is the
reason why this case is denoted by the Dyson index βD = 1 (one degree of freedom per matrix element). Collecting
everything, the continuum Euclidean QCD Dirac operator for QCD with two fundamental fermions fulfills three global
symmetries in four and two dimensions namely anti-Hermiticity, chiral symmetry, and a reality condition, i.e.

D(4) † = −D(4), [D(4), γ5]+ = 0, and [iD(4), τ2γ2γ4K]− = 0 (26)

for four dimensions, see Ref. [35], and

D(2) † = −D(2), [D(2),σ3]+ = 0, and [iD(2), τ2σ2K]− = 0 (27)

for two dimensions. For three dimensions there is no chiral symmetry but the rest remains the same as in the even
dimensional case

D(3) † = −D(3) and [iD(3), τ2σ2K]− = 0, (28)

see Ref. [41]. Next we discuss the implications of these symmetries.
In four dimensions, Eq. (26) implies that we can construct a gauge field independent basis for which the Dirac

operator decomposes into a chiral block structure or a basis for which the Dirac operator becomes real. This can be
done at the same time if the projection onto a chiral basis commutes with the anti-unitary symmetry. This is the
case in four dimensions where

[
1± γ5

2
, τ2γ2γ4K

]

−

= 0. (29)

The corresponding random matrix ensemble is the chiral Gaussian orthogonal ensemble (chGOE), see Refs. [35].
Equation (29) does not carry over to the two-dimensional theory. In this case the projectors onto a chiral basis

are given by (1 ± σ3)/2, playing the role of (1 ± γ5)/2, but the commutator with the anti-unitary operator does not
vanish,

[
1± σ3

2
, τ2σ2K

]

−

#= 0. (30)

Therefore, one cannot find a basis for which the two-dimensional Dirac operator decomposes into real chiral blocks.
Choosing the chiral basis for D(2) the anti-unitary symmetry yields a different condition

[(
0 iτ2K

−iτ2K 0

)
,

(
0 iW(2)

−iW(2) † 0

)]

−

= 0, (31)

which is equivalent to

W(2) = −τ2W(2)T τ2. (32)

Thus the operator is anti-self-dual and complex since we have no additional symmetries. After a unitary transforma-
tion one obtains an equivalent Dirac operator with an off-diagonal block τ2W(2) which is complex symmetric. The
corresponding random matrix is known as the first Bogolyubov-de Gennes ensemble denoted by the Cartan symbol
CI, see Ref. [40], and has been applied to the normal-superconducting transitions in mesoscopic physics [42].
In three dimensions we can construct a gauge field independent basis for which the matrix elements of the operator

iD(3) become real symmetric. The corresponding random matrix ensemble is the Gaussian orthogonal ensemble
(GOE), see Refs. [41].
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2. βD = 2

In the case of three or more colors (Nc ≥ 3) with the fermions in the fundamental representation the symmetry
under complex conjugation (23) is lost. Only anti-Hermiticity and, for even dimensions, chiral symmetry survive.
The global symmetries of the Dirac operator are

D(2) † = −D(2) and [D(2),σ3]+ = 0 (33)

in two dimensions and

D(4) † = −D(4) and [D(4), γ5]+ = 0 (34)

in four dimensions. Since there are no anti-unitary symmetries the operator W(2/4) is generically complex both in two
and four dimensions. This is the reason why we denote this case by the Dyson index βD = 2. Therefore the random
matrix ensemble corresponding to the Dirac operator D(2) as well as D(4) is given by an ensemble of chiral, complex,
anti-Hermitian random matrices which can be chosen with Gaussian weights. This ensemble is known as the chiral
Gaussian Unitary Ensemble (chGUE), see Refs. [35].
In three dimensions we only have the anti-Hermiticity condition,

D(3) † = −D(3). (35)

Hence the operator iD(3) is Hermitian and its analogue in random matrix theory is the Gaussian Unitary Ensemble
(GUE). The three dimensional case was discussed in Ref. [41] and its predictions for the microscopic Dirac spectrum
have been confirmed by various lattice simulations [25].

3. βD = 4

The third case is for fermions in the adjoint representation with two or more colors (Nc ≥ 2). In this case the
generators of the gauge group are anti-symmetric and purely imaginary. This results in two symmetry relations for
the covariant derivatives

D†
µ = −Dµ and [K, iDµ]− = 0. (36)

The corresponding Dirac operator fulfills the anti-unitary symmetry

[iD(d), CK]− = 0, (37)

where the anti-unitary operator satisfies

(CK)2 = −1 (38)

for all dimensions. This allows us to construct a gauge field independent basis for which the matrix elements of the
Dirac operator can be grouped into real quaternions. This case is denoted by the Dyson index βD = 4.
Collecting all global symmetries of the Dirac operator we have

D(4) † = −D(4), [D(4), γ5]+ = 0, and [iD(4), γ2γ4K]− = 0 (39)

for four dimensions,

D(2) † = −D(2), [D(2),σ3]+ = 0, and [iD(2),σ2K]− = 0 (40)

for two dimensions, and

D(3) † = −D(3) and [iD(3),σ2K]− = 0 (41)

for three dimensions. The last case is the simplest. There is no chiral symmetry, but we can construct a basis for
which the matrix elements of the Hermitian operator iD(3) can be grouped into real quaternions. The associated
random matrix ensemble is the Gaussian Symplectic Ensemble (GSE) pointed out for the first time in Ref. [41].
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In two and four dimensions we have again to consider the commutator of the projection operators onto the
eigenspaces of γ5 and the anti-unitary operator. As is the case for βD = 1, the commuator vanishes in four di-
mensions,

[
11± γ5

2
, γ2γ4K

]

−

= 0. (42)

Therefore we can construct a basis for which D(4) decomposes into chiral blocks with quaternion real elements.
Therefore, such Dirac operators are in the universality class of the chiral Gaussian Symplectic Ensemble (chGSE), see
Refs. [35].
In two dimensions the commutator of the anti-unitary symmetry and the chiral projector does not vanish, i.e.

[
11 ± σ3

2
,σ2K

]

−

!= 0. (43)

Therefore, there is no gauge field independent basis for which D(2) decomposes into quaternion real chiral blocks. Nev-
ertheless, we can find a basis for which one of these properties holds. In a chiral basis the anti-unitary symmetry (37)
reads

[(
0 iK

−iK 0

)
,

(
0 iW(2)

−iW(2) † 0

)]

−

= 0 (44)

and results into

W(2) T = −W(2). (45)

Thus the operator W(2), see Eq. (19), is complex anti-symmetric. In random matrix theory this symmetry class is
known as the second Bogolyubov-de Gennes ensemble denoted by the Cartan symbol DIII [40]. This ensemble also
plays an important role in mesoscopic physics [42].

B. Random Matrix Theory for continuum QCD

As was outlined in Refs. [5, 35] a random matrix theory for the Dirac operator is obtained by replacing its matrix
elements by random numbers while maintaining the global unitary and anti-unitary symmetries of the QCD(-like)
theory. Within a wide class, the distribution of the eigenvalues on the scale of the average level spacing does not
depend on the probability distribution of the matrix elements. This allows us to choose the probability distribution
to be Gaussian. The random matrix partition function is thus given by

Zν
Nf

=

∫
d[D] exp

[
−
nβD
2

trD†D

] Nf∏

k=1

det(D +mk11). (46)

In even dimensions, in particular for d = 2, 4, the Dirac operator has the chiral block structure

D =

(
0 iW

iW † 0

)
, (47)

while in three dimensions the Dirac operator is still anti-Hermitian but the block structure is absent. The mass matrix
for the Nf quarks is given by M = diag (m1, . . . ,mNf

). The measure d[D] is the product of all real independent
differentials of the matrix elements of D.
In three dimensions, the random matrix ensemble is n × n dimensional for βD = 1, 2 and 2n × 2n dimensional

for βD = 4. The random matrix iD is either real symmetric (βD = 1), Hermitian (βD = 2), or Hermitian self-dual
(βD = 4). From the corresponding joint probability density of the eigenvalues [43],

pd=3(Λ)
∏

1≤j≤n

dλj ∝ |∆n(Λ)|βD

∏

1≤j≤n

exp

[
−
nβD
2
λ2j

]
dλj , (48)
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one can already read off many important spectral properties of the QCD-Dirac operator D(3) in the microscopic limit,
cf. table I. Recall the Vandermonde determinant

∆n(Λ) =
∏

1≤a<b≤n

(λa − λb) = (−1)n(n−1)/2 det
[
λb−1
a

]
1≤a,b≤n

. (49)

Thus, in three dimensions the eigenvalues are not degenerate apart from the Kramers degeneracy of QCD with adjoint
fermions. Moreover, the eigenvalues of D(3) repel each other like |λa−λb|βD and have no repulsion from the origin [41].
In four dimensions, the operator W(4) is replaced by an n × (n + ν) real (βD = 1) or complex (βD = 2) random

matrix W or a 2n× 2(n+ ν) quaternion matrix for βD = 4. Then the Dirac operator has exactly ν and 2ν zero modes
for βD = 1, 2 and βD = 4, respectively. Therefore, ν is identified as the index of the Dirac operator. Due to the
axial symmetry the nonzero eigenvalues always come in pairs ±iλ. Moreover, because of the quaternion structure,
the eigenvalues of D(4) as well as of the corresponding random matrix Dirac operator are degenerate for QCD with
adjoint fermions. The joint probability density of the eigenvalues of the random matrix D reads [35]

pχ(Λ)
∏

1≤j≤2n

dλj ∝ |∆2n(Λ
2)|βD

∏

1≤j≤2n

exp

[
−
nβD
2
λ2j

]
λαD

j dλj , (50)

cf. table I. Again we can read off the behavior of the eigenvalues of D which, in the microscopic limit, are shared
with the behavior of the low-lying eigenvalues of the QCD Dirac operator. The eigenvalues again repel each other as

|λa − λb|βD . The difference with the three dimensional case is the level repulsion from the origin λαD
a = λβD(ν+1)−1

a

which results from the generic zero modes and the chiral structure of the Dirac operator. The global symmetries of the
four-dimensional QCD Dirac operator and their impact on the microscopic spectrum were discussed in Refs. [5, 35].
In two dimensions, rather than choosing a basis for which the Dirac operator becomes real or quaternion real for

βD = 1 and βD = 4, respectively, we insist on a chiral basis that preserves the chiral block structure of the Dirac
operator. This results in a random matrix theory for which the matrix τ2W is complex symmetric for βD = 1,
τ2W = (τ2W )T ∈ C2n×2n and complex anti-symmetric for βD = 4, W = −WT ∈ Cn×n, cf. Eqs. (32) and (45),
respectively. For QCD with three or more colors and the fermions in the fundamental representation (βD = 2), the
two-dimensional Dirac operator has the same symmetries as the four-dimensional theory resulting in the same random
matrix theory.
Another important difference between two and four dimensions is the topology of the gauge field configurations.

For QCD with fundamental fermions the homotopy class is Π1(SU (2)) = 0. Hence, no stable instanton solutions exist
[22, 45] (unstable instanton solutions are still possible [23, 24, 44]). Also the index of the Dirac operator is necessarily
zero. Suppose that the two-dimensional Dirac operator has an exact zero mode

D(2)φ = 0 (51)

with definite chirality

σ3φ = ±φ. (52)

Then, because of the anti-unitary symmetry, we also have that

D(2)σ2τ2Kφ = 0, (53)

which generates another zero mode unless σ2τ2Kφ and φ are linearly dependent. This exactly happens in the four-
dimensional theory. However in two dimensions φ and σ2τ2Kφ have opposite chiralities

σ3σ2τ2Kφ = −σ2τ2Kσ3φ = ∓σ2τ2Kφ (54)

implying that they have to be linearly independent states. We conclude that the index of the Dirac operator is zero
for two-dimensional QCD in the fundamental representation and with two colors.
Although the index is trivial we still have a linear repulsion of the spectrum from the origin resulting from the

chiral structure of D. The joint probability density of the corresponding random matrix ensemble was first derived in
the context of mesoscopic phyiscs [42] and is given by Eq. (50). For completeness we give a derivation of this result
in appendix A1. Since we have a linear repulsion from the origin we have αD = 1. The level repulsion is also linear,
i.e. ∼ |λa − λb|, and the eigenvalues show no generic degeneracy.
For quarks in the adjoint representation the gauge group is given by SU (Nc)/ZNc

with the homotopy group
Π1(SU (Nc)/ZNc

) = ZNc
[45]. If φ is a zero mode with positive chirality, then σ2Kφ is a zero mode with negative

chirality. Therefore, the index of the Dirac operator is zero. Using a bosonization approach it can be shown that
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the chiral condensate is nonzero for all Nc [46], which is consistent with having at most one pair of zero modes.
Indeed, in a chiral basis, the nonzero off-diagonal block of the Dirac matrix is a square anti-symmetric matrix, and
generically has one zero mode if the matrix is odd-dimensional and no zero modes if the matrix is even dimensional.
In Ref. [45], in the sector of topological charge k = 0, . . . , Nc − 1, a total of 2k(Nc − k) zero modes are found, half of
them right-handed and the other half left-handed. However, these zero modes are only obtained after complexifying
the SU (Nc) algebra and are irrelevant in the present context. The corresponding random matrix theory for this
universality class also has an anti-symmetric off-diagonal block with no zero modes or one zero mode.
The joint probability density of the eigenvalues is given by the form (50) where the level repulsion is |λa − λb|4

since all eigenvalues are Kramers degenerate (because the anti-unitary symmetry operator satisfies (σ2K)2 = −1).
We rederive this joint probability density in appendix A 2 and relate it to the QCD Dirac operator in the microscopic
limit. The repulsion of the eigenvalues from the origin is either linear (αD = 1) for an even dimensional W or quintic
(αD = 5) for an odd-dimensional W . We emphasize that the pair of zero modes for odd-dimensional matrices is not
related to topology.

C. Symmetry Breaking Pattern

In table I, we also summarize the symmetry breaking patterns for continuum QCD in two, three, and four dimensions
(see [31] for a discussion of general dimensions). We recall the results for the cases considered in our work and show
that they also apply to the random matrix ensembles introduced in the previous subsection. We restrict ourselves to
the two-dimensional case with the Dyson index βD = 1, 4. The other symmetry breaking patterns and their relation
to random matrix theory were extensively discussed in Refs. [35, 41].
For βD = 1, the off-diagonal block is symmetric after a unitary transformation, (τ2W(2))T = τ2W(2) . Then we

have

ψ̄Rτ2W(2)ψR =
1

2

(
ψ̄T
R

ψR

)T (
0 τ2W(2)

−τ2W(2) 0

)(
ψ̄T
R

ψR

)
, (55)

where ψR = (11 + σ3)ψ/2 is the right handed component of a quark field ψ. We obtain a similar expression for the
other off-diagonal block, W(2) †, of the Dirac operator D(2) with ψR → ψL = (11 − σ3)ψ/2, i.e.

ψ̄L(τ2W(2))†ψL =
1

2

(
ψ̄T
L

ψL

)T (
0 (τ2W(2))†

−(τ2W(2))† 0

)(
ψ̄T
L

ψL

)
, (56)

Therefore, the chiral symmetry is USp (2Nf)×USp (2Nf) and acts on the doublets via the transformation (ψ̄R,ψT
R) →

(ψ̄R,ψT
R)UR and (ψ̄L,ψT

L ) → (ψ̄L,ψL)TUL with UR/L ∈ USp (2Nf). In terms of these doublets the chiral condensate
can be written as

ψ̄RψL + ψ̄LψR =

(
ψ̄T
R

ψR

)T (
0 11

−11 0

)(
ψ̄T
L

ψL

)
. (57)

A non-zero expectation value of the chiral condensate requires that the unitary symplectic matrices fulfill the constraint

UR

(
0 11

−11 0

)
UT
L =

(
0 11

−11 0

)
, (58)

so that the chiral symmetry is broken to USp (2Nf).
This result can be derived by an explicit calculation for the corresponding random matrix model, see appendix A 1b,

and was also found in Ref. [31] for general QCD-like theories and in Ref. [40] for random matrix theories.
For two dimensional QCD with adjoint fermions (βD = 4) we have that W(2)T = −W (2) is anti-symmetric so that

the coupling of the gauge fields and the quarks can be rewritten as

ψ̄RW(2)ψR =
1

2

(
ψ̄T
R

ψR

)T (
0 W(2)

W(2) 0

)(
ψ̄T
R

ψR

)
, (59)

and

ψ̄LW(2) †ψL =
1

2

(
ψ̄T
L

ψL

)T (
0 W(2) †

W(2) † 0

)(
ψ̄T
L

ψL

)
. (60)
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The corresponding chiral symmetry is O(2Nf)× O(2Nf) with the transformation (ψ̄R,ψT
R) → (ψ̄R,ψT

R)AORA−1 and
(ψ̄L,ψT

L ) → (ψ̄L,ψT
L )AOLA−1 with OR/L ∈ O(2Nf) and

AT

(
0 11

11 0

)
A =

(
11 0

0 11

)
. (61)

Invariance of the non-zero chiral condensate,

ψ̄RψL + ψ̄LψR =

(
ψ̄T
R

ψR

)T (
0 11

−11 0

)(
ψ̄T
L

ψL

)
, (62)

requires

OR =

(
0 11

−11 0

)
OL

(
0 11

−11 0

)
, (63)

such that the symmetry is broken to O(2Nf). Also this case agrees with results of Refs. [31, 40].

III. TWO DIMENSIONAL LATTICE QCD WITH NAIVE FERMIONS AT STRONG COUPLING

In this section we consider the microscopic limit of naive fermions in the strong coupling limit and the corresponding
random matrix theories. Thus the links, the gauge group elements on the lattice, are distributed according to the
Haar-measure of the gauge group. In Secs. III A we discuss the general effect of the parity of the lattice on the
global symmetries of the Dirac operator. This discussion is combined with the specific anti-unitary symmetries of
the QCD-like theories in Secs. III B, III C, and IIID. In particular, we classify each lattice Dirac operator according
to a random matrix ensemble, which is summarize in table II together with some spectral properties. These random
matrix theory predictions are compared with 2-dim lattice simulations confirming that the parity of the lattice has
an important effect on the properties of the smallest eigenvalues. This was observed before in the condensed matter
literature [6].

A. General lattice model

The covariant derivatives that enter in the lattice QCD Dirac operator can be readily constructed via the translation
matrices. Before doing so we introduce the lattice. Let |j〉 be the j’th site in one direction of a lattice written in
Dirac’s bra-ket notation. Then the dual vector is 〈j|. The translation matrices of an L1 ×L2 lattice in the directions
µ = 1, 2 are given by

Tµ =






∑

1≤i≤L1

1≤j≤L2

U1ij ⊗ |i〉〈i+ 1|⊗ |j〉〈j|, µ = 1,

∑

1≤i≤L1

1≤j≤L2

U2ij ⊗ |i〉〈i|⊗ |j〉〈j + 1|, µ = 2.
(64)

The matrices Uµij are given in some representation of the special unitary group SU(Nc) and are weighted with the
Haar-measure of SU(Nc). Hence, the translation matrices Tµ are unitary.
Note that our lattices have a toroidal geometry. We have numerically looked at the effect of periodic and anti-

periodic fermionic boundary conditions on the spectrum of the Dirac operator. Indeed, the universality class re-
mains unaffected since the global symmetries are independent of the boundary conditions. Only the Thouless energy
marginally changes.
The Dirac operator on a two dimensional lattice is given by

D = σµ(Tµ − T †
µ)

=

[
0 W

−W † 0

]
=

[
0 Tx − T †

x + i(Ty − T †
y )

Tx − T †
x − i(Ty − T †

y ) 0

]
. (65)
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Due to the lattice structure, an additional symmetry can exist in each direction if the number of sites in a direction is
even. Then the matrix elements of the Dirac operator between even and odd sites are non-vanishing while there is no
direct coupling between an even and an even lattice site and between an odd and an odd site. For a two dimensional
lattice we can distinguish three cases. First, the number of lattice sites L1 and L2 are both odd. Then, there are no
additional symmetries such that the lattice Dirac operator is in the same symmetry class as the continuum theory.
The other two cases are, second, L1 even and L2 odd or the reverse, and third, both L1 and L2 are even. We analyze
these two cases in detail for each anti-unitary symmetry class separately. Thereby we assume that both L1 and L2

are larger than 2 because only then the low-lying eigenvalues of the Dirac operator show a generic behavior.
Let us define the operators

Γ(µ)
5 =






∑

1≤i≤L1

1≤j≤L2

(−1)i11Nc
⊗ |i〉〈i|⊗ |j〉〈j|, µ = 1,

∑

1≤i≤L1

1≤j≤L2

(−1)j11Nc
⊗ |i〉〈i|⊗ |j〉〈j|, µ = 2.

(66)

Then one can show that the operator Γ(µ)
5 fulfills the relation

Γ(µ)
5 TωΓ

(µ)
5 = (−1)δµωTω (67)

if Lµ is even. Hereby we employ the Kronecker symbol δµω in the exponent of the sign.
Let us consider the simplest case where L1 and L2 are odd. Then W has no additional symmetries resulting from

the lattice structure. Therefore, the Dirac operator will have the same unitary and anti-unitary symmetries as in the
continuum limit discussed in section II, in particular it is anti-Hermitian and chirally symmetric,

D = −D† and [σ3, D]+ = 0. (68)

Therefore the Dirac operator has the structure

D =

(
0 W

−W † 0

)
, (69)

where W may fulfill some additional anti-unitary symmetries because of the representation of the gauge theory.
In the second case, we have in one direction an even number of lattice sites and in the other direction an odd

number of lattice sites. Let us assume that without loss of generality L1 ∈ 2N and L2 ∈ 2N + 1. Then the lattice
Dirac operator fulfills the global symmetries

D = −D†, [σ3, D]+ = 0, and [Γ(1)
5 σ2, D]− = 0 (70)

plus possible anti-unitary symmetries depending on the representation of the gauge group. From the first two sym-
metries it follows that the Dirac operator has the chiral structure (69). The last symmetry relation of Eq. (70) tells

us hat the matrix W is Γ(1)
5 -Hermitian, i.e.

W † = Γ(1)
5 WΓ(1)

5 . (71)

Hence the Dirac operator for this kind of lattices takes the form

D =

(
0 Γ(1)

5 H

−HΓ(1)
5 0

)
= diag (Γ(1)

5 , 11)

(
0 H

−H 0

)
diag (Γ(1)

5 , 11), (72)

with H a Hermitian matrix. This matrix H may be restricted to a subspace of the Hermitian matrices if we take
into account the anti-unitary symmetries resulting from the representation of the gauge theory. The unitary matrix

diag (Γ(1)
5 , 11) does not change the eigenvalue spectrum of D and can be omitted.

One can also derive the structure (72) by employing the projection operators (1±Γ(1)
5 )/2. They project the lattice

onto sub-lattices associated to the even and odd lattice sites in the direction µ = 1. In such a basis, the translation
matrix T1 maps the even lattice sites to the odd ones and vice versa while the translation matrix T2 maps the two
sub-lattices onto themselves.
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Gauge theory βD Lat. Sym. Class β(eff)
D αeff Deg ZM Symmetry Breaking Pattern

Nc = 2, fund. 1 ee CII 4 3 4 0 U (4Nf) → O(4Nf)

Nc = 2, fund. 1 eo C 2 2 2 0 USp (4Nf) → U(2Nf)

Nc = 2, fund. 1 oo CI 1 1 1 0 USp (2Nf)×USp (2Nf) → USp (2Nf)

Nc > 2, fund. 2 ee AIII 2 1 2 0 U (2Nf)× U(2Nf) → U(2Nf)

Nc > 2, fund. 2 eo A 2 0 1 0 U (2Nf) → U(Nf)× U(Nf)

Nc > 2, fund. 2 oo AIII 2 1 1 0 U (Nf)×U (Nf) → U(Nf)

Nc ≥ 2, adj. 4 ee BDI 1 0 2 0 U (4Nf) → USp (4Nf)

Nc ≥ 2, adj. 4 eo D 2 0 2 0 O (4Nf) → U (2Nf)

Nc ∈ 2N+ 1, adj. 4 oo DIII (even-dim) 4 1 2 0 O (2Nf)×O(2Nf) → O(2Nf)

Nc ∈ 2N, adj. 4 oo DIII (odd-dim) 4 5 2 2 O (2Nf)×O(2Nf) → O(2Nf)

TABLE II: Random matrix theories for the two-dimensional naive lattice QCD Dirac operator with gauge group listed in the
first column. The Dyson index βD refers to the anti-unitary symmetry of the Dirac operator in the continuum. Because of
additional symmetries the power of the Vandermonde determinant, β(eff)

D , is generally different from the continuum theory and
thus, the level repulsion as well. Moreover the repulsion of the levels from the origin, namely λαeff , the generic degeneracy of the
eigenvalues (third to last column, “Deg”), and the number of generic zero modes (second to last column, “ZM”) generally change
as well. The third column refers to whether L1 or L2 are even (e) or odd (o). All discretizations are classified according to the
ten-fold classification of random matrix theories (fourth column) which share the same pattern of chiral symmetry breaking
with the lattice QCD Dirac operator (we do not consider axial symmetry breaking). Notice that the symmetry breaking pattern
and, therefore, the global symmetries of the lattices where L1 and L2 are both odd is the same with the two-dimensional QCD
Dirac operator in continuum, cf. table I.

In the third case the lattice has an even number of lattice sites in both directions. This is exactly the situation of
staggered fermions. The corresponding Dirac operator for naive fermions has the symmetries

D = −D†, [σ3, D]+ = 0, [Γ(1)
5 σ2, D]− = 0, and [Γ(2)

5 σ1, D]− = 0. (73)

Again the Dirac operator has the chiral structure (69), but the symmetry relation of the matrix W is given by

W † = Γ(1)
5 WΓ(1)

5 and [Γ(1)
5 Γ(2)

5 ,W ]+ = 0. (74)

The first symmetry restrictsW to a Γ(1)
5 -Hermitian matrix whereas the second relation reflects the even-odd symmetry

of the Dirac operator. Therefore the lattice Dirac operator has the structure

D = diag (Γ(1)
5 , 11)





0
0 X

X† 0

0 −X

−X† 0
0




diag (Γ(1)

5 , 11), (75)

where X is a complex matrix that may fulfill anti-unitary symmetries depending on the representation of the gauge
fields. The double degeneracy is immediate and is eliminated for staggered fermions.
Again one can also explicitly construct the form of the lattice Dirac operator (75) by employing the four projection

operators (1±Γ(1)
5 )/2 and (1±Γ(2)

5 )/2. They split the lattice into four sub-lattices which are coupled via the translation
matrices T1/2.
Adding the anti-unitary symmetries to the symmetries (68), (70), and (73) will give rise to further constraints on

W . In table II we summarize these cases for each anti-unitary symmetry class. In general, the symmetry class will
differ from the symmetry class in continuum. Therefore the corresponding random matrix ensemble and the symmetry
breaking pattern will also change. In particular, one has to replace the indices βD (Dyson index = level repulsion)
and αD (=repulsion of the levels from the origin) in the joint probability densities of the eigenvalues of the random
matrix model, cf. Eqs. (48) and (50), by effective values,

βD → β(eff)
D and αD → α(eff)

D . (76)

This impacts the spectral properties of the Dirac operator in the microscopic limit.
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There are additional conditions on the off-diagonal block W of the lattice Dirac operator D which are independent
of the gauge configurations. For example the traces of W satisfy the relations

trW 2 = trW 2l+1 = 0 and trWW † =

{
2NcL1L2, fundamental fermions,

2(N2
c − 1)L1L2, adjoint fermions

(77)

with l = 0, 1, 2, . . . such that l ≤ min{L1, L2}/2 − 1. They result from the fact that the translation matrices (64)
are unitary and have no diagonal elements. The conditions of the kind (77) are expected to have no influence on
the microscopic spectrum in the limit of large matrices. Nevertheless, they may give rise to finite volume corrections
which turn out to be particularly large for the simulations of SU (3) gauge theory with fermions in the fundamental
representation and choosing L1 even and L2 odd, see subsection IIID 2. The effect of such conditions can also be
studied with random matrix theory and we do this for the simplest condition, namely that W is traceless, i.e. trW = 0.

B. SU (2) and fermions in the fundamental representation

When studying the two-color theory in its fundamental representation the translation matrix fulfills exactly the
same anti-unitary symmetry as the covariant derivative in the continuum theory,

[iTµ, τ2K]− = 0, (78)

cf. Eq. (23). This symmetry carries over to the symmetry

[iD, τ2σ2K]− = 0, (79)

for the lattice Dirac operator meaning that there is always a gauge field independent basis where the Dirac operator
appears real. However, as is the case in the continnuum theory, the symmetry (79) may not commute with the
symmetries (68), (70), and (73). In the continuum theory we showed that the anti-unitary symmetry resuts in a
symmetry of the off-diagonal block W ,

W = −τ2WT τ2. (80)

cf. Eq. (32). This carries over to the lattice theory as well and together with the symmetries (68), (70), and (73)
yields the symmetry classification given in Table 2. This is worked out in detail in the subsections III B 1, III B 2, and
III B 3 for (L1, L2) odd-odd, even-odd, and even-even, respectively.

1. The Odd-Odd Case

As already discussed before, this case does not have any additional symmetries and the pattern of chiral symmetry
breaking as well as the distribution of the eigenvalues in the microscopic domain has to be the same as in the continuum
limit which was discussed in section III A. The symmetries of the Dirac operator are summarized in Eq. (27) which
translates in terms of the lattice Dirac operator as in Eqs. (68) and (80). That corresponds to a chiral random matrix
theory with symmetric complex off-diagonal blocks. In the Cartan classification of symmetric spaces, this is denoted
by the symbol CI. The corresponding microscopic level density is given by (x = λV Σ) [48]

ρ(x) =
x

2

[
J2
1 (x)− J0(x)J2(x)

]
+

1

2
J0(x)J1(x). (81)

The symmetry breaking pattern is therefore the same as in the continuum, namely U (2Nf) → O(2Nf).
In Fig. 1a we compare the prediction (81) for the low-lying Dirac spectrum with lattice QCD data at strong coupling.

The size of the lattices is quite small. Nevertheless the agreement of the analytical prediction for the microscopic level
density and the simulations around the origin is good. In particular, the linear repulsion of the eigenvalues from the
origin is confirmed. Also the degree of degeneracy and the number of generic zero modes, which are in this case one
and zero, respectively, are confirmed. The lattice results are obtained from an ensemble of about 105 independent
configurations with the links generated by the Haar measure of the gauge group SU (2).
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FIG. 1: Comparison of the microscopic level densities of lattice QCD data in the strong coupling limit at various lattice sizes
(stars) and the analytical results given by the corresponding random matrix theories (solid curves). The plotted lattice gauge
theories are: a) SU (2) fundamental and L1, L2 odd, b) SU (2) fundamental and L1 + L2 odd, and c) SU (2) fundamental and
L1, L2 even.

2. The Even-Odd Case

For definiteness we choose L1 even and L2 odd. Then, the Dirac operator is of the form (72). We combine the

intermediate resultW = Γ(1)
5 H with a Hermitian matrix H and the anti-unitary symmetry (80). Therefore we can find

a gauge field independent rotation, namely U (1)
5 = exp[πi(Γ(1)

5 − 11NcL1L2
)/4], where H̃ = U (1)

5 HU (1)−1
5 becomes an

anti-self-dual Hermitian matrix (H̃ = H̃† = −τ2H̃T τ2 = −τ2H̃∗τ2). This is the class C of the tenfold classification [40]
and H̃ is an element in the Lie-algebra of the group USp (NcL1L2). In this basis, the Dirac operator reads

D = diag (U (1)
5 , U (1)−1

5 )

(
0 H̃

−H̃ 0

)
diag (U (1)−1

5 , U (1)
5 ). (82)

Note that Γ(1)
5 = U (1) 2

5 .
What does this imply for the spectrum of the Dirac operator? The anti-unitary symmetry leads to a pair of

eigenvalues ±λ of the Hermitian matrix H̃ . Indeed, if λ is an eigenvalue of H̃ with the eigenvector |φ〉,

H̃ |φ〉 = λ|φ〉, (83)

then the state τ2|φ∗〉 is an eigenvector with eigenvalue −λ,

H̃τ2|φ∗〉 = −λτ2|φ∗〉. (84)

Therefore the Dirac operator (82) has the eigenvalues ±iλ which are doubly degenerate. This leads to a doubling of
the number of flavors and the spectrum of D is twice the spectrum of iH̃. In addition, because of

ψ̄T H̃ψ =
1

2
(ψ̄T H̃ψ − (τ2ψ)

T H̃τ2ψ̄), (85)
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the flavor symmetry is enhanced to USp (4Nf), cf. Eq. (55). Because

det(D +m11) = det(H̃2 +m211) = det(H̃ + im11) det(H̃ − im11), (86)

a nonzero eigenvalues density of H̃ leads to a nonzero eigenvalue density of the Dirac operator, D. The symmetry
USp (4Nf) is thus spontaneously broken by the formation of a condensate with m as source term. However this
condensate is still invariant under a U (2Nf) subgroup of USp (4Nf)

[diag (U,U∗)]T
(

0 m112Nf

−m112Nf
0

)
diag (U,U∗) =

(
0 m112Nf

−m112Nf
0

)
. (87)

Thus the symmetry breaking pattern is USp (4Nf) → U(2Nf) in agreement with the symmetry breaking pattern of
the corresponding random matrix ensemble [40].
The joint probability distribution of the symmetry class C coincides with the distribution of the non-zero eigenvalues

of chGUE for ν = 1/2. The microscopic level density is thus given by [42, 48, 49]

ρ(x) =
1

π
−

sin(2x)

2πx
. (88)

In Fig. 1b we compare this result to lattice simulations. We find only good agreement to about one eigenvalue spacing.
The reason for the strong disagreement above the average position of the first eigenvalue is not clear. Nevertheless,
the quadratic repulsion of the eigenvalues from the origin, the double degeneracy of the eigenvalues, and the fact that
there are no generic zero modes are confirmed by the lattice simulations.

3. The Even-Even Case

Finally, we consider the case with both L1 and L2 even. Then the Dirac operator has the structure given in Eq. (75).
After combining the chiral structure of W with the anti-unitary symmetry (80) the Dirac operator takes the form

D = diag (U (1)
5 , U (1)−1

5 )





0
0 W̃

W̃ † 0

0 −W̃

−W̃ † 0
0




diag (U (1)−1

5 , U (1)
5 ) (89)

with W̃ ∗ = τ2W̃ τ2 a quaternion matrix without any further symmetries. The unitary transformation

diag (U (1)−1
5 , U (1)

5 ) is exactly the same as in the previous subsection and keeps the spectrum invariant such that
the global symmetries of the lattice Dirac operator D essentially coincide with the continuum Dirac operator in four
dimensions with the fermions in the adjoint representation. Therefore, the random matrix ensemble corresponding to
this type of lattice theory is the chGSE with the chiral symmetry breaking pattern U (4Nf) → O(4Nf). The degen-
eracy of the eigenvalues is four because of Kramers degeneracy and the doubling of flavors. In table II we summarize
the main properties of this ensemble.
The microscopic level density of the lattice QCD Dirac operator in this class is given by the ν = 0 result of chGSE

[47, 48] (note that W̃ is a square matrix),

ρ(x) = x
[
J2
0 (2x) + J2

1 (2x)
]
−

1

2
J0(2x)

2x∫

0

J0(x̃)dx̃. (90)

There are no generic zero modes and the levels show a cubic repulsion from the origin.
In Fig. 1c we compare the result (90) to lattice simulations of the two-dimensional Dirac operator for QCD with

two colors. There is an excellent agreement for the first few eigenvalues confirming our predictions.

C. SU(Nc) and fermions in the adjoint representation.

For the fermions in the adjoint representation of the gauge group SU (Nc ≥ 2) the translation matrices are real and,
hence, satisfy the anti-unitary symmetry

[K,Tµ]− = Tµ. (91)
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On a L1 × L2 lattice, the translation matrices are represented by a subset of matrices in the orthogonal group
O((N2

c − 1)L1L2). The symmetry (91) carries over to the two-dimensional lattice Dirac operator

[iD,σ2K]− = 0, (92)

and its off-diagonal block matrix

W = −WT . (93)

We combine this symmetry with the symmetries (68), (70), and (73) along the same lines as shown in subsection III C.
Thereby we discuss the odd-odd, even-odd, and even-even lattices in subsections III C 1, III C 2, and III C 3 , respec-
tively.

1. The Odd-Odd Case

In the case where both the number of lattice sites L1 and L2 are odd, the Dirac operator has the same symmetries
as in the continuum limit resulting in the same pattern of chiral symmetry breaking (O (2Nf)× O(2Nf) → O(2Nf))
and the same microscopic spectral properties (see table II). Depending on the number of colors the off-diagonal block
W of the lattice Dirac operator is either even or odd dimensional and the corresponding symmetry class is given by
the second Bogolyubov-de Gennes ensemble DIII, see Ref. [40, 42], which can be also either even or odd, respectively.
The microscopic level density was obtained in Ref. [48] and is given by

ρ(x) =
x

2

[
2J2

1 (2x) + J2
0 (2x)− J0(2x)J2(2x)

]
+

1

2
J1(2x) (94)

for Nc odd and

ρ(x) = 2δ(x) +
x

2

[
2J2

1 (2x) + J2
0 (2x)− J0(2x)J2(2x)

]
−

1

2
J1(2x) (95)

for Nc even. Notice that the lattice Dirac operator has one additional pair of generic zero-modes if the number of
colors is even otherwise there are no generic zero modes. Therefore the repulsion of the eigenvalues from the origin
is stronger. However, the level repulsion is always quartic, see table II. Moreover, the full spectrum is Kramers
degenerate. This is a characteristic for ensembles associated to the Dyson index βD = 4.
In Figs. 2a and 2b we compare the low lying lattice Dirac spectra and the analytical results of (94) and (95) for two

and three colors, respectively. The agreement is good for the first few eigenvalues and becomes better when increasing
the number of colors.

2. The Even-Odd Case

Next we consider the mixed situation where the lattice has an even L1 and an odd L2. The combination of the
symmetries (70) and (93) can be again simplified via the same unitary transformation diag (U (1)−1

5 , U (1)
5 ) as introduced

in subsection III B 2. Then the lattice Dirac operator can be written as

D = diag (U (1)
5 , U (1)−1

5 )

(
0 H̃

−H̃ 0

)
diag (U (1)−1

5 , U (1)
5 ), (96)

where H̃ is purely imaginary and anti-symmetric. Thus the symmetry class is equivalent to a random matrix ensemble
with the matrices in the Lie-algebra of the orthogonal group O (L1L2(N2

c −1)) which is denoted by the Cartan symbol
D [40]. Although for this ensemble one also has to distinguish between even and odd matrix size N because of an
additional pair of generic zero modes, the lattice Dirac operator always yields an even sized matrix H̃ . The reason
is that H̃ is L1L2(N2

c − 1) × L1L2(N2
c − 1) dimensional where L1 is even. Therefore we expect a quadratic level

repulsion, no repulsion of the levels of D from the origin and no generic zero modes, cf. table II. The number of
flavors is doubled because of the particular block structure (96).
The quark bilinear can be written as

ψ̄T H̃ψ =
1

2
(ψ̄H̃ψ + ψH̃ψ̄), (97)
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FIG. 2: Comparison of the microscopic level densities of the lattice QCD Dirac operator in the strong coupling limit at various
lattice sizes (stars) and the analytical results derived from the corresponding random matrix theories (solid curves). Results
are shown for the lattice theories: a) SU (2) adjoint and L1, L2 odd, b) SU (3) adjoint and L1, L2 odd, c) SU (3) adjoint and
L1 odd and L2 even, and d) SU (3) adjoint and L1, L2 even.

so that the symmetry group is O (4Nf). As was shown in the case βD = 1, see subsection III B 2, a nonzero eigenvalue
density of H̃ results in a nonzero eigenvalues density of the Dirac operator resulting in a chiral condensate with source
term m. This condensate breaks the O (4Nf) symmetry group to the subgroup satisfying

OT

(
0 m112Nf

−m112Nf
0

)
O =

(
0 m112Nf

−m112Nf
0

)
(98)

This equation enforces the matrix O to a block structure

O =

(
O1 O2

−O2 O1

)
. (99)

The orthogonality of O requires that

(O1 + iO2)
†(O1 + iO2) = 11 (100)

so that O is equivalent to a unitary transformation. Moreover each unitary matrix U ∈ U (2Nf) can be decomposed
into the real matrices O1 = 1

2 (U + U∗) and O2 = −i(U − U∗). Hence the remaining group invariance is equal to
U (2Nf) yielding the symmetry breaking pattern O (4Nf) → U(2Nf).
The microscopic level density can be calculated from the corresponding random matrix ensemble in class D and is

given by [42, 48]

ρ(x) =
1

π
+

sin(2x)

2πx
. (101)

In Fig. 2c we compare this analytical result to strong coupling lattice simulations for naive quarks in the adjoint
representation of SU (3). The lattice data show excellent agreement for the low-lying Dirac spectrum. Moreover the
simulations confirm the double degeneracy of the Dirac operator (eigenvalues have also the degeneracy two) and the
fact that there are no generic zero modes.
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3. The Even-Even Case

Let L1 and L2 be even. This is the case related to the staggered Dirac operator. With help of the symmetries (73)
and (93) the lattice Dirac operator can, by choosing a particular gauge field independent basis, be brought to the
form

D = diag (U (1)
5 , U (1)−1

5 )





0
0 W̃

W̃ † 0

0 −W̃

−W̃ † 0
0




diag (U (1)−1

5 , U (1)
5 ), (102)

where W̃ is a real L1L2(N2
c −1)/2×L1L2(N2

c −1)/2 matrix without any additional restrictions. The additional chiral
structure is related to the parity of the lattice sites.

The unitary transformation diag (U (1)−1
5 , U (1)

5 ) does not change the spectrum. Therefore the naive lattice Dirac

operator (102) is in the class of chGOE with index ν = 0 (because W̃ is a square matrix). The Dirac spectrum is
doubly degenerate which is taken care of when constructing the staggered Dirac operator. The symmetry breaking
pattern is U (4Nf) → USp (4Nf) [35] and the microscopic spectral density is given by the ν = 0 result of the chGOE
[50]

ρ(x) =
x

2

[
J2
0 (x) − J2

1 (x)
]
+

1

2
J0(x)



1−
x∫

0

J0(x̃)dx̃



 , (103)

Therefore the level repulsion is linear, the levels have no repulsion from the origin and there are no generic zero modes.
The analytical result (103) is compared with lattice data in Fig. 2d showing a perfect agreement.

D. QCD with more than Two Colors and Fermions in the Fundamental Representation

In this case there are no anti-unitary symmetries. The structure and the symmetry class of the Dirac operator are
only related to the parity of the lattice. Hence, we have to take the structure of the naive lattice Dirac operator as
shown in Eqs. (68), (70), and (73).
The odd-odd and even-even lattices are in the same universality class and are both discussed in subsection IIID 1.

The case of one even number of lattice sites and one odd number is considered in subsection IIID 2.

1. The Odd-Odd and Even-Even Case

If the parity of both directions is odd, there are no additional symmetries and we are in the universality class of
chGUE with the symmetry breaking pattern U (Nf) ×U(Nf) → U(Nf). The Dirac operator has the form (69). The
eigenvalues of D show no degeneracies and the microscopic spectral density is given by the ν = 0 result of chGUE [41]

ρ(x) =
x

2

[
J2
0 (x) + J2

1 (x)
]
. (104)

Note that the two-dimensional Dirac operator has no zero modes. Therefore the level repulsion is quadratic and the
repulsion from the origin is linear.
If both numbers of lattice sites, L1 and L2, are even, the off-diagonal block W becomes itself chiral and the Dirac-

operator takes the form (75). Since we have no additional symmetries the symmetry class is again the one of chGUE.
The only difference with the odd-odd case is a doubling of the number of flavors with the chiral symmetry breaking
pattern U (2Nf) × U(2Nf) → U (2Nf). Apart from an additional degeneracy from the doubling of the flavors, the
spectral properties remain the same. In particular, the microscopic spectral density has index ν = 0 and is given by
Eq. (104).
In Fig. 3a we show lattice data for the spectral density of the Dirac operator in the case that both L1 and L2 are

either odd or even. There is an excellent agreement with the analytical random matrix result (104). Also the degree
of degeneracy and the fact that there are no zero modes is confirmed by the lattice simulations.



20

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

ρ

 

 

analytical
numerical Lx=Ly=5
numerical Lx=Ly=6
numerical Lx=Ly=7
numerical Lx=Ly=8
numerical Lx=5 Ly=7
numerical Lx=6 Ly=8

a)

SU(3) fundamental

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

ρ

 

 

analytical
numerical Lx=5 Ly=6
numerical Lx=5 Ly=8
numerical Lx=7 Ly=6
numerical Lx=7 Ly=8
numerical Lx=6 Ly=9

b)

SU(3) fundamental

FIG. 3: Comparison of the microscopic level density of lattice QCD data in the strong coupling limit at various lattice sizes
(stars) and the analytical results predicted by the corresponding random matrix theories (solid curves). The presented lattice
gauge theories are: a) SU (3) fundamental with L1 + L2 = even and b) SU (3) fundamental with L1 + L2 = odd. Note that in
figure b) we have a strong oscillation on top of the universal result which is a constant equal to 1/π. Therefore we plotted the
GUE result with its first correction in a 1/n expansion in its matrix size n. Astoundingly also this non-universal term seems
to fit the lattice data quite well.

2. The Even-Odd Case

The situation changes if L1+L2 is odd. Then the Dirac operator D follows the structure (72) where the L1L2Nc×
L1L2Nc matrix H is Hermitian. The corresponding symmetry class is represented by the GUE and denoted by the
Cartan symbol A [40]. Due to the structure (72) and the Hermiticity of H , the flavor symmetry is doubled to U (2Nf).
However the eigenvalues of D are not doubly degenerate but come in complex conjugate pairs ±iλ because H appears
in the off-diagonal blocks.
The lattice Dirac operator is in the same universality class as the three dimensional continuum theory. Hence the

symmetry breaking pattern for this case is already known from QCD in three dimensions [36]. A nonzero spectral
density of H results in a nonzero spectral density of the Dirac operator (see the discussion in subsection III B 2)
resulting in a chiral condensate with source term m. The chiral condensate is invariant under a transformation with
the unitary matrix U ∈ U(2Nf) if it fulfills

U †

(
0 m11Nf

−m11Nf
0

)
U =

(
0 m11Nf

−m11Nf
0

)
. (105)

This breaks chiral symmetry according to the pattern U (2Nf) → U(Nf)×U(Nf).
The microscopic level density including the O(1/n) corrections of a 2n× 2n GUE is given by

ρ(x) =
1

π

[
1 +

cos 2x

8n

]
. (106)

In order to obtain a better fit of the analytical result to the lattice data, we have included the correction term
multiplied by a fitting parameter. In Fig. 3b we compare the microscopic level density of GUE and lattice results.
The lattice data exhibit much larger oscillations than the ones given by the O(1/n) correction in Eq. (106). One
possible mechanism that may contribute to this enhancement is the condition that the off-diagonal block H of D is
traceless, trH = 0, since the translation matrices (64) have no diagonal elements. In appendix B we evaluate the
spectral density for the random matrix ensemble that interpolates between the GUE and the traceless GUE. The
result is given by

ρt(x) =
1

π

(
1 +

1

8n
exp

[
2t

t+ 1

]
cos [2x]

)
, (107)

which shows oscillations that are enhanced by a factor of e2 ≈ 7.4 for a traceless random matrix (t → ∞) in comparison
to the original GUE (t = 0). Because the lattice Dirac operator is sparse the effective value of n is expected much less
than the size of the matrix. Nevertheless we would also expect that n still increases with the lattice size. However
when using n in Eq. (107) as a fitting parameter we find that n ≈ 7 for almost all simulations. It is not clear why
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the amplitude of the oscillations does not depend on the lattice size which should be analyzed in more detail. Also
other conditions such as the fixed Euclidean norm of H , i.e. trH2 = 4NcL1L2, may contribute to the amplitude of
the oscillations.

IV. CONCLUSIONS

We have analyzed quenched two-dimensional lattice QCD Dirac spectra at strong coupling. The main differences
with QCD in four dimensions are the absence of Goldstone bosons, the absence of topology corresponding to the
Atiyah-Singer index theorem, and the non-commutativity of the anti-unitary symmetries and the axial symmetry.
As is the case in four dimensions, the symmetries of the Dirac operator depend on the parity of the number of
lattice points in each direction. However in two dimensions we find a much richer classification of symmetry breaking
patterns. As is the case in four dimensions, the corresponding random matrix class is determined by the anti-unitary
and the involutive symmetries. This is consistent with the maximum spontaneous breaking of chiral symmetry.
The simulations were performed with periodic boundary conditions in both directions even though we have also

checked the effect of anti-periodicity in one direction. Our results remain unaffected in terms of the identifications of
the universality class. Only a marginal increase of the Thouless energy was observed by this modification.
Notwithstanding the Mermin-Wagner-Coleman theorem, we find that the agreement with random matrix theory

is qualitatively the same in two and four dimensions. The agreement is particularly good if the Goldstone manifold
contains a U (1) or O (1) ! Z2 group (i.e for the classes D, DII, BDI, CII and AIII). This raises the possibility
that the long range correlations that give rise to random matrix statistics are related to the topological properties of
the Goldstone manifold [51].
In this paper all numerical results are at nonzero lattice spacing. We did not attempt to perform an extrapolation

to the continuum limit. Based on a bosonized form of the QCD partition function in terms of hadronic fields, one
would expect a domain of low-lying eigenvalues that is dominated by the fluctuations of the zero momentum modes
so that they are correlated according to random matrix theory. In the continuum limit the two dimensional theory is
expected to renormalize to a theory without spontaneous symmetry breaking. What is disturbing is that we do not
observe a qualitative different behavior between QCD in two and four dimensions.
Since quenched spectra are obtained by a supersymmetric extension of the partition function, our results seem to

favor the suggestion by Niedermaier and Seiler that noncompact symmetries can be broken spontaneously in two
dimensions. One of the signatures of this type of spontaneous symmetry breaking is an order parameter that wanders
off to infinity. Indeed, in [16] it was found that the chiral condensate of the quenched Schwinger model seems to
diverge in the thermodynamic limit. On the other hand, the Dirac spectrum of the Nf = 1 Schwinger model behaves
as predicted by random matrix theory. It is clear that the chiral condensate is determined by the anomaly and does
not involve any noncompact symmetries. Because of the absence of massless excitations the partition function of the
one flavor Schwinger model must be smooth as a function of the quark mass. This implies that the condensate due
to the nonzero Dirac eigenvalues must be the same as the condensate from the one-instanton configurations in the
massless limit. This suggests that the eigenfunctions of the low-lying nonzero mode states must be delocalized and
that the eigenvalue fluctuations are described by random matrix theory, so that the supersymmetric partition function
that generates the Dirac spectrum looks like it has spontaneous symmetry breaking.
An alternative scenario arises because of the finiteness of the Thouless energy in units of the average level spacing.

The fermion determinant due to massless quarks may push all eigenvalues beyond the Thouless energy into the
localized domain resulting in a partition function with no spontaneous breaking of chiral symmetry. To find out if this
is the case we would have to study two-dimensional lattice QCD with dynamical quarks. This scenario is not favored
by simulations of the Schwinger model. Both the one- and two-flavor Schwinger model show excellent agreement with
random matrix statistics and the agreement improves with increasing volumes which also excludes the possibility that
the localization length is larger than the size of the box.
Our study raises many questions. The most fundamental issue is the reconciliation of the agreement with random

matrix theory and the implied spontaneous breaking of chiral symmetry with the Mermin-Wagner-Coleman theorem.
In particular, can the noncompact symmetry of the supersymmetric generating function for the Dirac spectrum of
two-dimensional QCD-like theories be spontaneously broken? To address this we have to analyze the approach to the
thermodynamic limit and the continuum limit. Such studies could also settle whether or not the localization length
of the low-lying states exceeds the size of the box used in the present work. This is supported by Dirac spectra of the
quenched Schwinger model which deviate more from random matrix theory with increasing volume [16], but there is
no hint of this in our results. Another intriguing question is the possibility that all states become localized beyond
a critical number of flavors. A final issue concerns the number of generic zero modes of the QCD Dirac operator for
fermions in the adjoint representation. With chiral perturbation theory and random matrix theory we predict that
the Dirac operator may have no or only two generic zero modes of opposite chirality. In future work we hope to
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address the nature of these zero modes and the possible relation with the complexified zero modes found in Ref. [45].
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Appendix A: Random matrix theories of two-dimensional continuum QCD

In this appendix we evaluate the joint probability density of the eigenvalues and the pattern of chiral symmetry
breaking of random matrix theory corresponding to the continuum limit of two dimensional QCD. The case of two
colors with fundamental fermions is worked out in the subsection A1 and the case with two or more colors with
fermions in the adjoint representation is discussed in the subsection A2. The case with three or more colors with
fermions in the fundamental representation follows the same pattern in two and four dimensions and is not discussed
here. Although the results of this appendix are known, discussing them in the present framework will add to the
readability of this paper.

1. Random Matrix Theory for Two-Dimensional QCD with Two Colors in the Fundamental Representation

For two colors with the quarks in the fundamental representation we can find a gauge field independent basis
for which the Dirac operator becomes real. In two dimensions this transformation does not commute with the
transformation to a block structure reflecting its chiral symmetry, see section II A. We choose to preserve the chiral
structure of the Dirac operator. Then the consequence of the anti-unitary symmetry is that the off-diagonal block
of the Dirac operator is complex anti-self-dual which is unitarily equivalent to a random matrix theory with an
off-diagonal block that is complex symmetric. The corresponding chiral random matrix theory is given by

D =

[
0 W

−W † 0

]
, W = −τ2WT τ2 ∈ C

2n×2n, (A1)

or equivalently by

D′ =

[
0 W τ2

−W †τ2 0

]
, (W τ2)

T = W τ2 ∈ C
2n×2n. (A2)

The probability distribution is taken to be Gaussian

P (W )d[W ] ∝ exp
[
−ntrWW †

] ∏

1≤i≤j≤2n

dRe Wijd Im Wij . (A3)

In the subsection A1 a we calculate the joint eigenvalue probability density of this theory (see Ref. [42]). In the
subsection A1 b we rederive its partition function which was already summarized for all chiral ensembles in Ref. [40, 48].

a. Joint Probability Density

The joint probability density of the eigenvalues of the random matrix D denoted by p(Λ) is defined by

∫

C2n×2n

f(D)P (W )d[W ] =

∫

R2n
+

f(±iΛ)p(Λ)
∏

1≤j≤2n

dλj (A4)

for any function f invariant under

f(D) = f(V DV †) (A5)
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for all V = diag (Ṽ , τ2Ṽ ∗τ2) or W → Ṽ W τ2Ṽ T τ2 with Ṽ ∈ U(2n).
The characteristic polynomial of D can be rewritten as

det(D − iλ114n) = det(WW † − λ2112n) = det(W †W − λ2112n). (A6)

Let U ∈ U(2n)/U 2n(1) be the matrix diagonalizing WW †, i.e. WW † = UΛ2U † with the positive definite, diagonal
matrix Λ2 ∈ R2n

+ . Then we can relate the eigenvectors of WW † to those of W †W . Let

WW †U = (W τ2)(W τ2)
† = UΛ2, (A7)

then complex conjugation results in

(W τ2)
∗(W τ2)

TU∗ = U∗Λ2, (A8)

and because of the symmetry of W τ2, we also have

(W τ2)
†W τ2U

∗ = U∗Λ2. (A9)

Hence the eigenvalue decomposition of W †W reads

(W τ2)
†(W τ2) = U∗Λ2UT . (A10)

The combination of this decomposition with WW † = UΛ2U † yields a singular value decomposition of W ,

W τ2 = UZUT (A11)

with the complex, diagonal matrix Z ∈ C2n such that |Z| = Λ and U ∈ U(2n)/U 2n(1). The number of degrees
of freedom is 2n(2n + 1) on both sides of Eq. (A11). Hence, the right hand side of Eq. (A11) can be used as a
parameterization of W . The phases of Z can be absorbed in U so that W can be parameterized as

W τ2 = UΛUT (A12)

with the positive definite, diagonal matrix Λ ∈ R2n
+ and U ∈ U(2n).

In the next step we calculate the invariant length element which directly yields the Haar measure of W in the
coordinates (A12),

tr dWdW † = tr d(W τ2)d(W τ2)
† (A13)

= tr dΛ2 + tr
(
U †dUΛ+ Λ(U †dU)T

) (
U †dUΛ+ Λ(U †dU)T

)†

=
∑

1≤i≤2n

(dλ2i + 4λ2i (U
†dU)2ii)

+
∑

1≤i<j≤2n

[
(U †dU)ij , (U †dU)∗ij

]



λiλj −

λ2i + λ2j
2

−
λ2i + λ2j

2
λiλj





[
(U †dU)ij ,

(U †dU)∗ij

]
.

Note that the Pauli matrix τ2 drops out. Moreover we have used the anti-Hermiticity of U †dU . From the invariant
length (A13) we find the joint probability density

p(Λ)
∏

1≤j≤2n

dλj ∝ |∆2n(Λ
2)|

∏

1≤j≤2n

exp
[
−nλ2j

]
λjdλj , (A14)

cf. Ref. [42, 48]. This coincides with the joint probability density of the nonzero eigenvalues of the chiral GOE with
ν = 1, which has one zero mode while the present model has no zero modes at all. Its microscopic spectral density
has a linear slope at the origin and the level repulsion is also linear at small distances, cf. Fig 1a.

b. Partition Function

The partition function with Nf flavors is defined by

Z(Nf) =

∫
d[W ]

Nf∏

k=1

det(D +mk114n)P (W ). (A15)
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Due to the decomposition (A12) we multiply D by the unitary matrix diag (112n, τ2) from the left and from the right
which keeps the spectrum invariant. To evaluate the average (A15) we first rewrite the determinants as Gaussians
over Grassmann variables

Z(M) ∝
∫

d[W,V ] exp
[
−ntrW τ2(W τ2)

†
]

(A16)

× exp
[
tr V †

RW τ2VL − tr V †
L(W τ2)

†VR + trM(V †
RVR + V †

LVL)
]

with the mass matrix M = diag (m1, . . . ,mNf
). The matrices VR and VL are both 2n × Nf rectangular matrices

comprising independent Grassmann variables as matrix elements. Because W τ2 is symmetric we have to symmetrize
the matrices VLV

†
R and VRV

†
L . After integrating over W we obtain

Z(M) ∝
∫

d[V ] exp

[
−

1

4n
tr (VLV

†
R − V ∗

RV
T
L )(VRV

†
L − V ∗

LV
T
R ) + trM(V †

RVR + V †
LVL)

]

∝
∫

d[V ] exp

[
1

4n
tr (τ̃2 ⊗ 11Nf

)σ(τ̃2 ⊗ 11Nf
)σT + tr (112 ⊗M)σ

]
, (A17)

where τ2 completely drops out. The second Pauli matrix τ̃2 acts on flavor space and should not be confused with τ2
which acts on color space for QCD and its analogue in random matrix theory. The dyadic super matrix

σ =

[
V †
R

−V T
L

] [
VR, V ∗

L

]
. (A18)

is nilpotent and can be replaced by a unitary matrix U ∈ U(2Nf) via the superbosonization formula [52–54]. By

rescaling U → 2nU and introducing the rescaled mass matrix M̂ = 2nM , we arrive at

Z(M̂) ∝
∫

U (2Nf)

exp
[
ntr (τ̃2 ⊗ 11Nf

)U(τ̃2 ⊗ 11Nf
)UT + tr (112 ⊗ M̂)U

]
det−2nUdµ(U), (A19)

where dµ is the normalized Haar-measure.
In the microscopic limit (n → ∞ and M̂ fixed) we can apply the saddlepoint approximation. The saddlepoint

equation is given by

U−1 = (τ̃2 ⊗ 11Nf
)UT (τ̃2 ⊗ 11Nf

). (A20)

Since U ∈ U(2Nf) Eq. (A20) implies U ∈ USp (2Nf). The final result is given by

Z(M̂) =

∫

USp (2Nf)

exp
[
tr (112 ⊗ M̂)U

]
dµ(U) (A21)

=

∫

USp (2Nf)

exp

[
1

2
tr (112 ⊗ M̂)(U + U−1)

]
dµ(U).

Although the joint probability density of the eigenvalues coincides with chGOE, the chiral symmetry breaking pattern
(USp (2Nf)×USp (2Nf) → USp (2Nf)) turns out to be different and agrees with Ref. [31, 40]. Especially there are no
zero modes such that the partition function does not vanish at M = 0 which would be the case for chGOE with the
index ν = 1, see Ref. [35].

2. Two Dimensional QCD in the Adjoint Representation

For two dimensional QCD with quarks in the adjoint representation the anti-unitary symmetry of the Dirac operator
allows us to choose a gauge field independent basis for which the Dirac operator becomes quaternion real. However,
when performing this transformation we will lose the chiral block structure. We choose to preserve this structure.
Then the anti-unitary symmetry requires that the off-diagonal block of the Dirac operator becomes anti-symmetric.
The corresponding random matrix theory is given by

D =

[
0 W

−W † 0

]
, W = −WT ∈ C

(2n+ν)×(2n+ν). (A22)
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with the probability distribution

P (W )d[W ] ∝ exp
[
−ntrWW †

] ∏

1≤i<j≤(2n+ν)

dRe Wijd Im Wij . (A23)

Because odd-dimensional anti-symmetric matrices have one generic zero eigenvalue we have to distinguish the even
and odd dimensional case (denoted by ν = 0 and ν = 1 respectively).
In subsection A2 a we evaluate the joint probability density of the eigenvalues and in subsection A2b we discuss

the corresponding partition function for ν = 0, 1. These results were obtained previously in Refs. [31, 40, 42, 48].

a. Joint Probability Distribution

The joint probability density p(Λ) is defined as in Eq. (A4) while the arbitrary function f has the invariance

f(D) = f(V DV †), ∀V = diag (Ṽ , Ṽ ∗) with Ṽ ∈ U(2n+ ν). (A24)

Let ν = 0, i.e. W is even dimensional. Analogous to the discussion in subsection A1 a we can quasi-diagonalize W ,
i.e.

W = U(τ2 ⊗ Λ)UT (A25)

with a positive definite, diagonal matrix Λ ∈ Rn
+ and unitary matrix U ∈ U(2n)/SUn(2). The division with the

subgroup SUn(2) is the result of the identity Ũτ2ŨT = τ2 for all Ũ ∈ SU(2).
The matrix τ2 ⊗ Λ has ±λj as eigenvalues. We can use the result (A14) by replacing diag (λ1, . . . ,λ2n) →

diag (λ1, . . . ,λn,−λ1, . . . ,−λn) and taking care of the fact that some degrees of freedom of U (2n) are missing. We
can apply the result (A14) because the invariant length element is calculated similar to the (βD = 1, d = 2)-case.
Hence, we find the joint probability density

p(Λ)
∏

1≤j≤2n

dλj ∝ ∆4
n(Λ

2)
∏

1≤j≤n

exp
[
−nλ2j

]
λjdλj , (A26)

cf. Ref. [42, 48]. This density coincides with the chGSE for ν = −1/2.
Let us consider the case with an odd dimension, W = −WT ∈ C(2n+1)×(2n+1). Since an odd dimensional anti-

symmetric matrix has one generic zero mode we have to modify the decomposition (A25) according to

W = Udiag (τ2 ⊗ Λ, 0)UT , (A27)

where Λ ∈ Rn
+ and U ∈ U(2n+ 1)/[SUn(2)×U(1)]. Hence, the joint probability density (A26) becomes [42, 48]

p(Λ)
∏

1≤j≤2n

dλj ∝ ∆4
n(Λ

2)
∏

1≤j≤n

exp
[
−nλ2j

]
λ5jdλj (A28)

by employing the result (A14) with the replacement diag (λ1, . . . ,λ2n) → diag (λ1, . . . ,λn,−λ1, . . . ,−λn, 0) and taking
care of the subgroup SUn(2)×U (1) that is divided out. This coincides with the joint probability density of the non-zero
eigenvalues of chGSE with ν = 1/2.

b. Partition Function

The partition function with Nf fermionic flavors (A15) can be again mapped to flavor space via the rectangular
(2n+ ν)×Nf matrices VR and VL comprising Grassmann variables only. The analogue of Eq. (A17) is given by

Z(M) ∝
∫

d[V ] exp

[
−

1

4n
tr (VLV

†
R + V ∗

RV
T
L )(VRV

†
L + V ∗

LV
T
R ) + trM(V †

RVR + V †
LVL)

]

∝
∫

exp

[
1

4n
tr σσT + tr (τ̃1 ⊗M)σ

]
d[V ] (A29)
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with the dyadic supermatrix

σ =

[
−V T

L

V †
R

] [
VR, V ∗

L

]
. (A30)

The first Pauli matrix τ̃1 acts on flavor space. The superbosonization formula [52–54] yields

Z(M̂) ∝
∫

U(2Nf )

exp
[
ntrUUT + tr (τ̃1 ⊗ M̂)U

]
det−2n−νUdµ(U). (A31)

In the microscopic limit by taking n to infinity we have to solve the saddlepoint equation

U−1 = UT . (A32)

Therefore we end up with an integral over the group O(2Nf), i.e.

Z(M̂) =

∫

O(2Nf)

exp
[
tr (τ̃1 ⊗ M̂)U

]
detνUdµ(U), (A33)

=

∫

O(2Nf)

exp
[
tr (112 ⊗ M̂)U

]
detνUdµ(U),

=

∫

O(2Nf)

exp

[
1

2
tr (112 ⊗ M̂)(U + U−1)

]
detνUdµ(U)

with M̂ = 2nM . For ν = 0 the partition function is of order one for M̂ $ 1 while for ν = 1, the sum over two
disconnected components of O (2Nf), results in a partition function Z(M̂) ∝ M̂2 for M̂ $ 1. This property as
well as the symmetry breaking pattern O(2Nf) × O(2Nf) → O(2Nf) underlines the difference of the random matrix
ensemble (A22) with chGSE, see Refs. [35, 40]. The sum over ν = 0 and ν = 1 gives an integral over SO (2Nf)
corresponding to the symmetry breaking pattern of the full partition function [31].
As was shown in Ref. [45] gauge fields with nonzero topology exist for two-dimensional QCD with adjoint fermions

and both partition functions for ν = 0 and ν = 1 are realized. The argument of Ref. [45] predicting additional values
of ν for Nc > 2 seems to be in conflict with chiral perturbation theory [31] and random matrix theory, but we hope
to address this puzzle in future work. In lattice QCD at strong coupling in the case of an odd-odd lattice only ν = 0
and ν = 1 are realized for Nc odd and Nc even, respectively. Our simulations confirm this prediction, see Fig. 2.

Appendix B: Corrections to the Traceless Ensemble

In this appendix we calculate the eigenvalue density including 1/n corrections for an even-dimensional GUE with
the additional condition that the trace of the matrices may vanish. This condition is implemented via a Lagrange
multiplier. The level density is thus given by the random matrix integral,

ρ(n)t (x) =

∫
Herm (2n) d[H ] exp

[
−trH2/(4n)− ttr 2H/(8n2)

]
tr δ(H − x112n)

∫
Herm (2n) d[H ] exp

[
−trH2/(4n)− ttr 2H/(8n2)

] . (B1)

The parameter t interpolates between the traceless condition (t → ∞) and the ordinary GUE (t → 0). The square
of the trace in H can be linearized by a Gaussian integral over an auxiliary scalar variable λ, meaning that we can
trace back the whole problem to ordinary GUE

ρ(n)t (x) =

∞∫

−∞

√
1 + t

2tπ
dλ exp

[
−
1 + t

2t
λ2
]
ρ(n)0 (x+ iλ). (B2)

The level density of GUE is given in terms of Hermite polynomials, Hj(x) = xj + . . ., in the following formula [43]

ρ(n)0 (x) =
(2n)!√
4πn

exp

[
−
x2

4n

]
(B3)

×
(

(2n)2n−1

((2n− 1)!)2
H2

2n−1

(
x√
2n

)
−

(2n)2n−1

(2n)!(2n− 2)!
H2n

(
x√
2n

)
H2n−2

(
x√
2n

))
.
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The large n asymptotics of H2n(x/
√
2n) where x is fixed can be obtained by the relation between Hermite polynomials

with an even order and the associated Laguerre polynomials, L(−1/2)
n (x) = xn + . . .,

H2n

(
x√
2n

)
= 2nL(−1/2)

n

(
x2

2n

)
. (B4)

Note that we employ for both polynomials the monic normalization. The associated Laguerre polynomials L(ν)
n with

a positive integer index ν have a simple representation as a contour integral,

L(ν)
n

(
x2

2n

)
=

n!

(2n)n

2π∫

0

dϕ

2π
eiνϕ

(
1−

e−iϕ

2n

)n+ν

exp[x2eiϕ], (B5)

which can be expanded asymptotically

L(ν)
n

(
x2

2n

)
n"1
≈

1

(2n)n

2π∫

0

dϕ

2π
eiνϕ exp

[
x2eiϕ − (n+ ν)

(
e−iϕ

2n
+

e−2iϕ

8n2

)]
(B6)

≈
1

(2n)n

(
J−ν(x)

xν
−
νJ1−ν(x)

2nxν−1
−

J2−ν(x)

8nxν−2

)
.

The functions Jj are the Bessel functions of the first kind and can be analytically continued in their index j. For
ν = −1/2 the expansion for the Hermite polynomials reads

1

n!
H2n

(
x√
2n

)
n"1
≈

1

nn

(
√
xJ1/2(x) +

x3/2J3/2(x)

4n
−

x5/2J5/2(x)

8n

)
(B7)

=
1

nn

√
2

π

(
sinx+

1

8n

(
(x2 − 1) sinx+ x cosx

))
.

From this asymptotic expansion it also follows

1

(n− 1)!
H2n−1

(
x√
2n

)
=

√
n

2

∂

∂x

1

n!
H2n

(
x√
2n

)
(B8)

n"1
≈

1

nn

√
n

π

(
cosx+

1

8n

(
x sinx+ x2 cosx

))
.

and

1

(n− 2)!
H2n−2

(
x√
2n

)
=

√
2n(n− 1)

2n− 1

∂

∂x

1

(n− 1)!
H2n−1

(
x√
2n

)
(B9)

n"1
≈

n− 1

(2n− 1)nn−1

√
2

π

(
− sinx+

1

8n

(
(1− x2) sinx+ 3x cosx

))
,

with help of the recurrence relation of the Hermite polynomials and the Stirling formula including subleading correc-
tions

n!
n"1
≈

√
2πnnne−n

(
1 +

1

12n

)
. (B10)

Summarizing all these asymptotic expansions and plugging everything into the level density (B3) we find the first
correction to the GUE asymptotics

ρ(n)0 (x)
n"1
≈

1

π

(
1−

x2

4n

)(
1 +

1

8n

)(
cos2 x+

1

4n
cosx

(
x sinx+ x2 cosx

)
(B11)

−
(
− sin2 x+

1

4n
sinx

(
(1 − x2) sinx+ x cos x

)))

≈
1

π

(
1 +

cos 2x

8n

)
.
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One can now perform the integral (B2) which yields the result (107).
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[6] P.Markoš and L. Schweitzer, Phys. B 407, 4016 (2012) [arXiv:1208.3934].
[7] S.N. Evangelou, Phys. Rev. Lett. 75, 2550 (1995).
[8] A. Furusaki, Phys. Rev. Lett. 82, 604 (1999) [arXiv:cond-mat/9808059].
[9] Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. Lett. 89, 256601 (2002) [arXiv: cond-mat/0204544].

[10] A. McKane and M. Stone, Ann. Phys. 131, 36 (1981).
[11] J. J. M. Verbaarschot, In *Zakopane 1997, New developments in quantum field theory* 187-216 [arXiv:hep-th/9709032].
[12] A. Duncan, M. Niedermaier, and E. Seiler, Nucl. Phys. B 720, 235 (2005) [Erratum-ibid. B 758, 330 (2006)] [arXiv:hep-

th/0405163].
[13] M. Niedermaier and E. Seiler, Commun. Math. Phys. 270, 373 (2007) [arXiv:math-ph/0601049].
[14] E. Witten, Nucl. Phys. B 145, 110 (1978).
[15] F. Farchioni, I. Hip, C. B. Lang, and M. Wohlgenannt, Nucl. Phys. B 549, 364 (1999) [arXiv:hep-lat/9812018].
[16] P. H. Damgaard, U. M. Heller, R. Narayanan, and B. Svetitsky, Phys. Rev. D 71, 114503 (2005) [arXiv:hep-lat/0504012].
[17] L. Shifrin and J. J. M. Verbaarschot, Phys. Rev. D 73, 074008 (2006) [arXiv:hep-th/0507220].
[18] W. Bietenholz, I. Hip, S. Shcheredin, and J. Volkholz, Eur. Phys. J. C 72, 1938 (2012) [arXiv:1109.2649 [hep-lat]].
[19] A. V. Smilga, Phys. Lett. B 278, 371 (1992).
[20] A. V. Smilga, Phys. Rev. D 46, 5598 (1992).
[21] H. R. Christiansen, Int. J. Mod. Phys. A 14, 1379 (1999) [arXiv:hep-th/9806219].
[22] H. R. Christiansen, (1997) hep-th/9704020.
[23] D. J. Gross and A. Matytsin, Nucl. Phys. B 429, 50 (1994) [arXiv:hep-th/9404004].
[24] E. Witten, J. Geom. Phys. 9, 303 (1992).
[25] P. Bialas, Z. Burda and B. Petersson, Phys. Rev. D 83, 014507 (2011) [arXiv:1006.0360 [hep-lat]].
[26] F. Bruckmann, S. Keppeler, M. Panero and T. Wettig, Phys. Rev. D 78, 034503 (2008) [arXiv:0804.3929 [hep-lat]].
[27] A. Altland and B. D. Simons, Nucl. Phys. B 562, 445 (1999) [cond-mat/9909152].
[28] M.R. Zirnbauer, J.Phys. A29, 19 (1996).
[29] Y. Wei and T. Wettig, J. Math. Phys. 46, 072306 (2005) [hep-lat/0411038].
[30] B. Schlittgen and T. Wettig, Nucl. Phys. B 632, 155 (2002) [hep-lat/0111039].
[31] R. DeJonghe, K. Frey and T. Imbo, Phys. Lett. B 718, 603 (2012) [arXiv:1207.6547 [hep-th]].
[32] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78 , 195125 (2008) [arXiv:0803.2786].
[33] M. Vysotskii, Y. Kogan, and M. Shifman, Sov. J. Nucl. Phys. 42 (1985) 318.
[34] M. Peskin, Nucl. Phys. B175 (1980) 197; S. Dimopoulos, Nucl. Phys. B168 (1980) 69.
[35] J. J. M. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994) [arXiv:hep-th/9401059].
[36] J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 73, 2288 (1994) [arXiv:hep-th/9405005].
[37] U. Magnea, Phys. Rev. D 61, 056005 (2000) [arXiv:hep-th/9907096].
[38] U. Magnea, Phys. Rev. D 62, 016005 (2000) [arXiv:hep-th/9912207].
[39] F.J. Dyson, J. Math. Phys. 3, 1199 (1962).
[40] M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996). [arXiv:math-ph/9808012].
[41] J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 70, 3852 (1993) [arXiv:hep-th/9303012].
[42] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997). [arXiv:cond-mat/9602137].
[43] M. L. Mehta, Random Matrices (Academic Press Inc., New York, 3rd ed., 2004).
[44] E. Witten, Commun. Math. Phys. 141, 153 (1991).
[45] A. V. Smilga, Phys. Rev. D 54, 7757 (1996) [arXiv:hep-th/9607007].
[46] A. V. Smilga, Phys. Rev. D 49, 6836 (1994) [hep-th/9402066].
[47] T. Nagao and P. J. Forrester, Nucl. Phys. B 435, 401 (1995).
[48] D. Ivanov, J. Math. Phys. 43, 126 (2002) [arXiv:cond-mat/0103137].
[49] G. Akemann, D. Dalmazi, P. H. Damgaard and J. J. M. Verbaarschot, Nucl. Phys. B 601, 77 (2001) [arXiv:hep-th/0011072].
[50] J. J. M. Verbaarschot, Nucl. Phys. B 426, 559 (1994) [arXiv:hep-th/9401092].
[51] I. A. Gruzberg, A. D. Mirlin, and M. R. Zirnbauer, Phys. Rev. B 87, 125144 (2013) [arXiv:1210.6726 [cond-mat.dis-nn]].
[52] H.-J. Sommers, Act. Phys. Pol. B 38, 1001 (2007) [arXiv:0710.5375].
[53] P, Littelmann, H.-J. Sommers, and M.R. Zirnbauer, Math. Phys. 283, 343 (2008) [arXiv:0707.2929].
[54] M. Kieburg and T. Guhr, J. Phys. A: Math. Theor. 42, 275205 (2009) [arXiv:0905.3253].







B Articles summarized in Subsection 3.2





ar
X

iv
:1

00
6.

08
12

v2
  [

m
at

h-
ph

]  
8 

O
ct

 2
01

0
On the Eigenvalue Density of Real and Complex Wishart Correlation Matrices
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Wishart correlation matrices are the standard model for the statistical analysis of time series.
The ensemble averaged eigenvalue density is of considerable practical and theoretical interest. For
complex time series and correlation matrices, the eigenvalue density is known exactly. In the real
case, however, a fundamental mathematical obstacle made it forbidingly complicated to obtain exact
results. We use the supersymmetry method to fully circumvent this problem. We present an exact
formula for the eigenvalue density in the real case in terms of twofold integrals and finite sums.

PACS numbers: 05.45.Tp,02.50.-r,02.20.-a
Keywords: Wishart correlation matrices, eigenvalue density, supersymmetry

Time series analysis is an indispensable tool in the
study of complex systems with numerous applications in
physics, climate research, medicine, signal transmission,
finance and many other fields [1–3]. A time series is an
observable such as the water level of a river, the tem-
perature, the intensity of transmitted radiation, the neu-
ron activity in electroencephalography (EEG), the price
of a stock, etc., measured at usually equidistant times
k = 1, . . . , n. Suppose we measure p such time series
Mj , j = 1, . . . , p, for example, in the case of EEG, at p
electrodes placed on the scalp or, in the case of tempera-
tures, at p different locations. Our data set then consists
of the p×n rectangular matrix M with entries Mjk. The
time series Mj are usually real (labeled β = 1), but in
some applications they can be complex (β = 2). Often,
one is interested in the correlations between the time se-
ries. To estimate them, one normalizes the time series
Mj to zero mean and unit variance. The correlation co-
efficient between the time series Mj and Ml is then given
as the sample average

Cjl =
1

n

n
∑

k=1

MjkM
∗
lk and C =

1

n
MM † (1)

is the correlation matrix. For real time series (β = 1),
the complex conjugation is not needed and the adjoint
is simply the transpose. We notice that C is a p × p
real–symmetric (β = 1) or Hermitean (β = 2) matrix.
The eigenvalues of C provide important information,

see recent examples in Refs. [4, 5]. As the empirical infor-
mation is limited, it is desirable to compare the measured
eigenvalue density with a “null hypothesis” that results
from a statistical ensemble. The ensemble is defined [6]
by synthetic real or complex time series Wj , j = 1, . . . , p
which yield the empirical correlation matrix C upon av-
eraging over the probability density function

Pβ(W,C) ∼ exp

(

−
β

2
trW †C−1W

)

, (2)

that is, we have by construction
∫

d[W ]Pβ(W,C)
1

n
WW † = C , (3)

where the measure d[W ] is the product of the differentials
of all independent elements in W . To ensure that C is in-
vertible, we always assume n ≥ p. When going to higher
order statistics, the Gaussian assumption (2) is not nec-
essarily justified, but it often is a good approximation.
This multivariate statistical approach is closely related
to Random Matrix Theory [7], and the matrices WW †

are referred to as Wishart correlation matrices. One is
interested in the ensemble averaged eigenvalue density of
these matrices. In terms of the resolvent, it reads

Sβ(x) = −
1

pπ
Im

∫

d[W ]Pβ(W,C)tr
11p

x+11p −WW †
, (4)

where 11p is the p×p unit matrix. The argument x carries
a small positive imaginary increment ε > 0, indicated by
the notation x+ = x + iε. The limit ε → 0 is implicit
in our notation. Due to the invariance of the trace and
the measure, the ensemble averaged eigenvalue density
Sβ(x) only depends on the eigenvalues Λj , j = 1, . . . , p
of C. Hence we may replace C in Eq. (4) by the p × p
diagonal matrix Λ = diag(Λ1, . . . ,Λp). We notice that
the eigenvalues are positive definite, Λj > 0.
A large body of literature is devoted to the eigenvalue

density (4). Its asymptotic form for large n and p has
been studied in great detail, see Refs. [8, 9]. However, an
exact closed–form result for finite n and p is only avail-
able in the complex case [10, 11]. Unfortunately, a deep,
structural mathematical reason made it up to now impos-
sible to derive such a closed–form result in the real case
which is the more relevant one for applications. We have
three goals: We, first, introduce the powerful supersym-
metry method [12–14] to Wishart correlation matrices for
arbitrary C. This has, to the best of our knowledge, not
been done before. We, second, use the thereby achieved
unique structural clearness to derive a new and exact
closed–form result for the eigenvalue density in the real
case for finite n and p. We, third, show that our results
are easily numerically tractable and compare them with
Monte Carlo simulations.
Why does the real case pose such a substantial prob-

lem? — This is best seen by going to the polar decom-

http://arxiv.org/abs/1006.0812v2
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position W = UwV , where U ∈ O(p), V ∈ O(n) for
β = 1 and U ∈ U(p), V ∈ U(n) for β = 2 and where
w is the p × n matrix containing the singular values or
radial coordinates wj , j = 1, . . . , p. In particular, one
has WW † = Uw2U †, with w2 = ww†. When inserting
into (4), one sees that the non–trival group integral

Φβ(Λ, w
2) =

∫

exp

(

−
β

2
trU †Λ−1Uw2

)

dµ(U) (5)

has to be done to obtain the joint probability density
function of the radial coordinates wj . Here, dµ(U) is
the invariant Haar measure. For β = 2, this integral
is the celebrated Harish-Chandra–Itzykson–Zuber inte-
gral and known explicitly [15, 16]. For β = 1, however,
Φ1(Λ, w2), is not a Harish-Chandra spherical function, it
rather belongs to the Gelfand class [17] and a closed–form
expression is lacking. The only explicit form known is a
cumbersome, multiple infinite series expansion in terms
of zonal or Jack polynomials [6, 18]. This inconvenient
feature then carries over to the eigenvalue density (4),
but we will arrive at a finite series over twofold integrals.
The supersymmetry method is based on writing

Sβ(x) = −
1

πp
Im

∂Zβ(J)

∂J

∣

∣

∣

∣

∣

J=0

(6)

as the derivative of the generating function

Zβ(J) =

∫

d[W ]Pβ(W,Λ)
det(x+11p + J11p −WW †)

det(x+11p −WW †)
(7)

with respect to the source variable J at J = 0. One has
the normaliziation Zβ(0) = 1 at J = 0. We consider
the real and the complex case and use the latter as test.
We map Zβ(J) onto superspace using steps which are by
now standard, see Refs. [13, 14]. A particularly handy
approach for applications such as the present one is given
in Ref. [19], we use the same conventions and find

Zβ(J) =

∫

d[ρ]Iβ(ρ)

×
p
∏

j=1

sdet−β/2

(

x+114/β − Jγ −
β

2
Λjρ

)

.(8)

The merit of this transformation is the drastic reduc-
tion in the number of degrees of freedom, because the
variables to be intergrated over form the 4/β× 4/β Her-
mitean supermatrix

ρ =

[

ρ11 ρ†12
ρ12 iρ22

]

. (9)

For β = 2, ρ11 and ρ22 are scalar, real commuting vari-
ables and ρ12 is a complex anticommuting scalar variable.
For β = 1, ρ11 is a 2 × 2 real symmetric matrix, ρ22 has
to be multiplied with 112 and we have

ρ12 =

[

χ χ∗

ξ ξ∗

]

, (10)

where χ, ξ and χ∗, ξ∗ denote anticommuting variables
and their complex conjugates, respectively. We also in-
troduced the matrix γ = diag(02/β ,−112/β) and the su-
persymmetric Ingham–Siegel integral

Iβ(ρ) =

∫

d[σ]sdet−nβ/2(114/β + iσ) exp(istrσρ) , (11)

where σ has the same form as ρ. The supertrace and
superdeterminant [20] are denoted by str and sdet.
Starting from the generating function (8) we first con-

sider the complex case β = 2. By introducing eigenvalue–
angle coordinates for the supermatrix ρ, we rederive in a
straightforward calculation the eigenvalue density S2(x)
as found in Ref. [10]. In the real case β = 1, the
analogous approach leads to inconvenient Efetov–Wegner
terms [14], and we thus proceed differently. Since the gen-
erating function remains invariant under rotations of the
matrix ρ11, we introduce its eigenvalues R1 = diag(r1, r2)
and the diagonalizing angle as new coordiantes. This
yields the Jacobian |∆2(R1)| = |r1 − r2|. The next step
is to evaluate the Ingham–Siegel integral I1(ρ). The su-
permatrix σ in Eq. (11) has the same form as ρ in Eq. (9).
Doing the integral over σ followed by an expansion in the
anticommuting variables of ρ according to Eq. (10) gives

I1(ρ) ∼ det(n−1)/2R1 exp (−strρ)Θ(R1)
(

(

∂

i∂ρ22

)n−2

−

(

χχ∗

r1
+

ξξ∗

r2

)(

∂

i∂ρ22

)n−1

+
1

r1r2
χχ∗ξξ∗

(

∂

i∂ρ22

)n
)

δ(ρ22) . (12)

In a simple, direct calculation, we also expand the prod-
uct of the superdeterminats in Eq. (8) in the anticom-
muting variables of ρ. We collect everything and do the
integration over the anticommuting variables. With the
notation Qj = x+ − 2Λjiρ22, we obtain

Z1(J) ∼

∫

d[R1]

∫

dρ22|∆2(R1)|det
(n−1)/2R1Θ(R1)

exp(−(r1 + r2 − 2iρ22))
p
∏

j=1

(J +Qj)

det1/2(x+112 − 2Λjr1)
(

det−1R1

(

∂

i∂ρ22

)n

+
p
∑

j=1

(2Λj)2

(J +Qj)

(

1

(x+ − 2Λjr1)r2

+
1

(x+ − 2Λjr2)r1

)(

∂

i∂ρ22

)n−1

+
p
∑

j #=k

(

(2Λj)2

(J +Qj)(x+ − 2Λjr1)

×
(2Λk)2

(J +Qk)(x+ − 2Λkr2)

(

∂

i∂ρ22

)n−2
))

δ(ρ22) . (13)

According to Eq. (6) we have to take the derivative with
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FIG. 1: Eigenvalue density for p = 5 and n = 200: analytical formula (solid lines) and Monte Carlo simulations (histogram
with bin width 3).

respect to J . This leads to the three relations

∂

∂J

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−1(Q) (14)

∂

∂J

1

J +Qj

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−2;j(Q)

∂

∂J

1

J +Qj

1

J +Qk

p
∏

l=1

(J +Ql)

∣

∣

∣

∣

∣

J=0

= Ep−3;j,k(Q) ,

where Em;i,k(Q) denotes the elementary symmetric poly-
nomial of order m in the variables Qj, j = 1, . . . , p != i, k
with Qi and Qk omitted,

Em;i,k(Q) =
∑

1≤i1<···<im≤p
!=i!=k

Qi1 . . . Qim . (15)

We finally arrive at

S1(x) = c Im

∫

d[R1]

∫

dρ22
|∆2(R1)|det

(n−1)/2R1
∏p

j=1 det
1/2(x+112 − 2ΛjR1)

Θ(R1)e
−(r1+r2−2iρ22)

(

det−1R1Ep−1(Q)

(

∂

i∂ρ22

)n

+
p
∑

j=1

(2Λj)
2

(

1

(x+ − 2Λjr2)r1
(16)

+
1

(x+ − 2Λjr1)r2

)

Ep;j(Q)

(

∂

i∂ρ22

)n−1

+
p
∑

j #=k

(2Λj)2(2Λk)2Ep−3,j,k(Q)

(x+ − 2Λjr1)(x+ − 2Λkr2)

(

∂

i∂ρ22

)n−2
)

δ(ρ22) ,

where the constant reads c = (−1)n+1/(4πp(n − 2)!).
Due to the δ–distribution, the integral over ρ22 are el-
ementary. Hence we end up with an expression for the
eigenvalue density S1(x) which essentially is a twofold
integral.

The integrals in Eq. (16) can be numerically evaluated
by using a regularisation technique of the type

Im

∞
∫

0

dr1

∞
∫

0

dr2
f(r1, r2)

p
∏

l=1

√

r1 − Λ−1
l

√

r2 − Λ−1
l

=

=
∑

0≤i,j≤p
(i+j)∈2N+1

Λ−1
i
∫

Λ−1
i+1

dr1

Λ−1
j
∫

Λ−1
j+1

dr2f(r1, r2)

1
p
∏

l=1

√

r1 − Λ−1
l

√

r2 − Λ−1
l

. (17)

Here we assume an ordering of the eigenvalues such that
Λ0 > Λ1 > . . . > Λp > Λp+1 with Λ−1

0 = 0 and
Λ−1
p+1 = ∞. The real function f(r1, r2) is independent

of ε and has no singularities. The singularties at the
boundaries of the domain are integrable. Using the com-
mercial software Mathematica

R© [21], we evaluate our
formula (17) numerically. For independent comparison,
we also carry out Monte Carlo simulations with ensem-
bles of 105 matrices. In Figs. 1 and 2, we show the
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FIG. 2: Eigenvalue density for p = 10 and n = 200: analytical formula (solid lines) and Monte Carlo simulations (histogram
with bin width 3).

results for p = 5 and p = 10 and n = 200 with
the chosen empirical eigenvalues Λj , j = 1, . . . , 5
of {1.44, 0.64, 0.49, 0.25, 0.16} and Λj , j = 1, . . . , 10 of
{1, 0.81, 0.7225, 0.64, 0.45, 0.36, 0.25, 0.2025, 0.1225, 0.03},
respectively. The agreement is perfect.
In conclusion, we introduced the supersymmetry

method for the first time to Wishart correlation matrices.
We thereby derived exact expressions for the eigenvalue
density in terms of low–dimensional integrals. This is a
drastic reduction, as the original order of integrals is np.
Our approach solves a serious mathematical obstacle in
the real case. A presentation for a mathematics audience
will be given elsewhere [22]. Here, we derived and dis-
cussed the formulae needed for applications. In the real
case (β = 1), we obtained the previously unknown exact
solution in terms of a finite sum of twofold integrals. We
evaluated our formula numerically and confirmed it by
comparing to Monte Carlo simulations.
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1 Introduction

Complex systems of many di↵erent kinds are in the focus of modern research
[1,2,3,4]. Correlation matrices obtained from data sampling are a key tool
to study such systems [5,6]. A standard approach in multivariate statistics is
to use random matrix theory (RMT) to model the correlation matrices [7].
Adopting the framework of RMT, we will calculate the marginal probability
density function for any single eigenvalue to take a given value x (referred
to as the one-point function S

�

(x) for short) for the case of real (� = 1)
and complex (� = 2) correlation matrices. In the complex case, an explicit
expression is known [8]. Real correlation matrices are encountered more fre-
quently, but unfortunately, closed expressions for their one-point functions
and related quantities have not been obtained so far. This is because a certain
integral over the orthogonal group is not available in explicit form. Sophis-
ticated power series techniques have been developed in order to tackle this
problem [7]. However, the resulting expressions su↵er from the drawback
that a resummation of the infinite series has not been possible so far. For
correlation matrices of large dimension, asymptotic results were derived in
[9]. Recently some new results for the one-point function and the two-point
correlation function in the asymptotic regime have been found [10].

Here we provide exact results for the one-point functions of real and
complex correlation matrices. We use an alternative approach to circumvent
the problems mentioned above. Our approach relies on the supersymmetry
method [11] – nowadays a standard tool for RMT applications in physics [12].
We derive an exact expression for the one-point function of real correlation
matrices as a twofold integral. We also rederive the known result for the one-
point function of complex correlation matrices. In Ref. [13], we presented our
main results to make them available for applications. Here, we give the full
derivation of our results in a form that addresses not only physicists and
practitioners, but also the mathematics and statistics community.

The article is organized as follows. We formulate the problem and intro-
duce our notation in Sec. 2. In Sec. 3 we apply the supersymmetry technique,
pursuing in parallel two di↵erent approaches put forward in the literature,
namely the generalized Hubbard-Stratonovich transformation [14,15] and the
superbosonization formula [16,17]. These two approaches are equivalent [18],
but they yield di↵erent forms of the final expressions, each having their own
advantages and disadvantages. We explicitly calculate the one-point function
in Sec. 4. In Sec. 5 we numerically integrate our formula to compare with
Monte-Carlo simulations. We summarize and conclude in Sec. 6.

2 Formulating the Problem

In Sec. 2.1 we define the ensemble of random matrices to be considered in
this paper. In Sec. 2.2 we introduce a generating function for the one-point
function. This generating function will serve as the starting point for the
supersymmetry method.
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2.1 Ensemble of Wishart correlation matrices and one-point function

We briefly sketch the RMT approach to correlation matrices as set up in
Ref. [7]. We consider real and complex Wishart correlation matrices. The
building block for these are rectangular p ⇥ n matrices which we denote by
W = [W

jk

], with j = 1, . . . , p and k = 1, . . . , n. The p rows can be viewed
as the model time series of length n. The p ⇥ p matrix WW

† is the model
correlation matrix, also referred to as the Wishart correlation matrix. We
always assume p  n. The entries of W are either real or complex random
variables. These two cases are labeled by the Dyson index � taking the value
� = 1 for real entries (W

jk

2 R) and � = 2 for complex entries (W
jk

2 C).
For the joint probability distribution of the entries of W one chooses the
multivariate Gaussian distribution

P

�

(W,C) = D

�

exp

✓
��

2
trW †

C

�1

W

◆
, (1)

where C is the empirical, i.e. given correlation matrix. By construction, the
ensemble-averaged Wishart correlation matrix WW

†
/n equals C, the empir-

ical one. The Gaussian assumption (1) is justified in most if not all situations
of interest. The full measure is P

�

(W,C)d[W ] where

d[W ] =

8
>>>><

>>>>:

pY

j=1

nY

k=1

dW

jk

for � = 1,

pY

j=1

nY

k=1

dReW
jk

dImW

jk

for � = 2,

(2)

is the corresponding volume element. This measure fulfills the invariance
condition

P

�

(W,C)d[W ] = P

�

(UW,UCU

†)d[UW ] (3)

for an arbitrary orthogonal (� = 1) or unitary (� = 2) p ⇥ p matrix U .
Since the domain of W (Rp⇥n for � = 1, Cp⇥n for � = 2) is invariant under
the transformation W 7! UW , we may replace C by the diagonal matrix of
its eigenvalues as long as invariant quantities such as the one-point function
(see below) are studied. Thus, we set C ⌘ ⇤ where ⇤ = diag(⇤

1

, . . . ,⇤

p

) is
the diagonal matrix containing the eigenvalues. By the definition of C as a
correlation matrix we have ⇤

j

> 0. The constant D
�

in Eq. (1) ensures the
normalization of P

�

(W,C)d[W ] to unity and is given by

D

�

=
�
(2⇡/�)p det⇤

��n�/2

. (4)

The set of random matricesWW

† with the entries ofW distributed according
to Eq. (1) is referred to as the ensemble of Wishart correlation matrices
(sometimes also as the correlated Wishart ensemble). We mention in passing
that for the choice ⇤ = 11

p

, where 11
p

denotes the p ⇥ p unit matrix, the
ensemble defined by Eq. (1) is equivalent to the so-called Gaussian chiral
random matrix ensemble, which serves as a model for the universal eigenvalue
statistics of the Dirac operator in Quantum Chromodynamics [19].
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The one-point function for the eigenvalues �
j

of WW

† is defined by

S

�

(x) :=

Z
d[W ]P

�

(W,⇤)
1

p

pX

j=1

�(x� �

j

)

=
1

⇡p

lim
"!0+

Im

Z
d[W ]P

�

(W,⇤) tr
11
p

(x� i")11
p

�WW

† , (5)

where in the second line we have passed to an expression involving the resol-
vent. By the definition (5), the one-point function is a function of x which
parametrically depends on the empirical eigenvalues ⇤

1

, . . . ,⇤

p

. We drop the
dependence on ⇤ in writing S

�

(x).
Having defined the object of interest, we briefly comment on why it is di�-

cult to handle the real case � = 1 by the traditional techniques of multivariate
analysis. In the standard approach to calculating the one-point function (5)
one makes a singular-value decomposition

W = UwV, (6)

where U 2 O(p), V 2 O(n) for � = 1 and U 2 U(p), V 2 U(n) for � = 2.
The p⇥ n matrix w contains the singular values w

j

2 R (j = 1, . . . , p) of W .
For the matrix WW

† this decomposition yields

WW

† = Uw

2

U

† with w

2 = diag(w2

1

, . . . , w

2

p

). (7)

While the substitution W 7! UW leaves the resolvent in Eq. (5) invariant,
the diagonalizing matrix U does not drop out of the probability distribution
function P

�

(W,⇤) containing the matrix ⇤ 6= 11
p

. The decomposition thus
leads to the group integral

�

�

(⇤, w2) =

Z
exp

⇣
� �

2
trU†

⇤

�1

Uw

2

⌘
dµ(U). (8)

For � = 2 this is the celebrated Harish–Chandra-Itzykson-Zuber integral [20,
21] for which there exists an explicit expression. On the other hand, for � = 1
no simple expression is known. The only expression available [7] is an infinite
series in terms of zonal polynomials or equivalently, Jack polynomials, which
in turn are only known recursively. A resummation of the infinite series has
not been possible so far. In the present work we circumvent this problem by
using a supersymmetry approach. This allows us to derive an expression for
the one-point function as a twofold integral.

2.2 Generating function

The starting point for the supersymmetry approach is the generating function

Z

�

(x
0

, x

1

) =

Z
d[W ]P

�

(W,⇤)
det(x

1

11
p

�WW

†)

det(x
0

11
p

�WW

†)
, (9)
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where x

0

, x

1

are complex variables, x
0

/2 R
+

. The one-point function can be
computed from it by taking a derivative:

S

�

(x) = (2⇡ip)�1

@

@x

1

����
x1=x

lim
"!0+

�
Z

�

(x� i", x
1

)� Z

�

(x+ i", x
1

)
�
. (10)

Note that the generating function Z

�

(x
0

, x

1

) equals unity at x
0

= x

1

. In the
following we derive simple and computationally useful expressions for it by
applying the supersymmetry technique.

3 Passing to superspace

There are several ways to express the generating function as an integral
over a suitable superspace. Of particular prominence are the generalized
Hubbard-Stratonovich transformation put forward in Ref. [14,15] and the
superbosonization formula derived in Ref. [17]. Superbosonization [22] was
first proposed in a field theoretical context. It was then explored how the su-
persymmetry method can be extended to arbitrary invariant random matrix
ensembles. In the unitary case, this problem was solved [14] by introducing
the generalized Hubbard-Stratonovich transformation. In Ref. [17], rigorous
superbosonization was developed for all classical Lie symmetries (unitary,
orthogonal, symplectic). The approach of Ref. [14] was then completed by
transcribing it to the orthogonal and symplectic cases [15]. The equivalence of
the superbosonization of Ref. [17] and the generalized Hubbard-Stratonovich
transformation of Refs. [14,15] was demonstrated in [18].

In Sec. 3.1, we write the ratio of determinants in the generating func-
tion as a Gaussian integral over a rectangular supermatrix. Then we carry
out the ensemble average. To the reader not experienced with anticommut-
ing variables, we recommend the introductory parts of Refs. [11,23,24] and
the book by Berezin [25]. In Sec. 3.2, we use a duality between dyadic ordi-
nary matrices and dyadic supermatrices to express the result of the ensem-
ble average as a supermatrix integral. After analyzing certain symmetries of
this dyadic supermatrix we replace it by a supermatrix of the same symme-
tries but independent matrix elements by means of the generalized Hubbard-
Stratonovich transformation (Sec. 3.3), and alternatively with the help of the
superbosonization formula (Sec. 3.4).

3.1 Ensemble average

The determinant in the denominator of Eq. (9) can be expressed as a Gaus-
sian integral over a vector comprising ordinary commuting variables. The
determinant in the numerator can be expressed as a Gaussian integral over a
vector with anticommuting entries [23,11]. By combining both expressions we
obtain a representation for the ratio of determinants in Eq. (9) as a Gaussian
integral over a rectangular supermatrix A comprising both vectors:

det
�
x

1

11
p

�WW

†�

det (x
0

11
p

�WW

†)
=

Z
d[A] exp

✓
i�

2
str (XA

†
A�A

†
WW

†
A)

◆
, (11)
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where the diagonal matrix X is given by X = diag(x
0

, x

0

, x

1

, x

1

) for � = 1
and X = diag(x

0

, x

1

) for � = 2. We take Imx

0

> 0 in order for the Gaussian
integral to converge. The rectangular supermatrix

A =
⇥
u

a

, v

a

, ⇣

⇤
a

, ⇣

a

⇤
1ap

, A

† =

2

64

u

b

v

b

⇣

b

�⇣

⇤
b

3

75

1bp

for � = 1,

A =
⇥
z

⇤
a

⇣

⇤
a

⇤
1ap

, A

† =


z

b

⇣

b

�

1bp

for � = 2,

(12)

is p ⇥ (2/�|2/�) dimensional. Here u

j

, v

j

2 R and z

j

2 C are ordinary real
or complex variables while ⇣

j

, ⇣

⇤
j

are anticommuting variables, also referred
to as Grassmann variables. We denote by z

⇤
j

the complex conjugate of z
j

. In
Eq. (11), d[A] denotes the following product:

d[A] =

8
>><

>>:

(2⇡)�p

pQ
j=1

du

j

dv

j

@

⇣

⇤
j
@

⇣j for � = 1 ,

⇡

�p

pQ
j=1

dRe z
j

dIm z

j

@

⇣

⇤
j
@

⇣j for � = 2 .
(13)

It should be mentioned that, in this context, one often writes d⇣ ⌘ @

⇣

for
a Grassmann variable ⇣. However, the transformation law d(t⇣) = t

�1

d⇣ for
t 2 C shows that d⇣ = @/@⇣ really is a partial derivative, not a di↵erential!

By inserting the representation (11) into the generating function (9) and
changing the order of doing the integrals we find

Z

�

(x
0

, x

1

) =

Z
d[A] exp

✓
i�

2
strXA

†
A

◆

⇥D

�

Z
d[W ] exp

✓
��

2
trW †(⇤�1 + iAA

†)W

◆

=

Z
d[A] exp

✓
i�

2
strXA

†
A

◆
det�n�/2

�
11
p

+ iAA

†
⇤

�
. (14)

In the last step, we performed the Gaussian integral over W .

3.2 Duality between ordinary and superspace

We now rewrite the determinant in Eq. (14) as a superdeterminant. This is
possible due to duality relations between ordinary spaces and superspaces, see
Refs. [26,14,15]. In the present context the duality amounts to the relation
[14,15]

det
�
11
p

+ iAA

†
⇤

�
= sdet

�
11
4/�

+ iA†
⇤A

�
. (15)

We notice that the determinant is a polynomial while the superdeterminant
is in principle a rational function. The relation originates from the identity
tr (AA†

⇤) = str (A†
⇤A) and a Taylor expansion in the Grassmann variables,
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which is always a finite sum. The supermatrix A

†
⇤A has dimension 4 ⇥ 4

and 2⇥ 2 for � = 1 and � = 2, respectively. On the other hand, the original
matrix AA

† is p ⇥ p dimensional. This dimensional reduction is the crucial
advantage of the supersymmetry method.

For present use, we take a look at the symmetry properties of the super-
matrix A

†
⇤A. We see that in both cases (� = 1, 2) the left upper block (a.k.a.

the boson-boson block) of A†
⇤A is a Hermitian matrix. This observation will

constrain some of the matrix blocks appearing below. What about the com-
plex linear symmetries (i.e. those not involving complex conjugation)? For
� = 2 there are no such symmetries, but for � = 1 we have

(A†
⇤A)T = S

T

A

†
⇤AS with S =

2

64

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

3

75 , (16)

reflecting the fact that the related p⇥ p matrix ⇤

1/2

AA

†
⇤

1/2 is symmetric.
Our aim now is to replace the supermatrix A

†
⇤A by a supermatrix �

with independent matrix elements. We have two approaches at our disposal:
the generalized Hubbard-Stratonovich transformation [14,15], and the super-
bosonization formula derived in Refs. [16,17].

3.3 Generalized Hubbard-Stratonovich transformation

We proceed by introducing a (super-)Fourier representation of the required
power of the superdeterminant function on the right-hand side of Eq. (15):

sdet�n�/2(11
4/�

+ iA†
⇤A) =

Z
d[%]I

�

(%) exp

✓
� i�

2
strA†

⇤A%

◆
. (17)

The Fourier transform I

�

(%) is

I

�

(%) =

Z
d[�] sdet�n�/2(11

4/�

+ i�) exp

✓
i�

2
str�%

◆
. (18)

In order for this integral representation to be formally consistent, the two
supermatrices � and % have to share the complex linear symmetries of A†

⇤A.
Hence � and % are supermatrices of dimension 4⇥4 for � = 1 and 2⇥2 for
� = 2, and for � = 1 the complex linear constraint (16) is imposed.

We write the supermatrix � as

� =


�

0

�

�̃ i�
1

11
2/�

�
, (19)

where the entries are 2/� dimensional square matrices. The matrix �

0

(akin
to the boson-boson block of A

†
⇤A) is Hermitian, and �

1

is a real scalar.
(The reason for putting the imaginary unit in front of �

1

will become clear
presently.) The o↵-diagonal blocks � and �̃ contain all anticommuting vari-
ables of �. For � = 2 the diagonal block �

0

is simply a real number whereas
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� and �̃ ⌘ �

⇤ are two Grassmann variables. For � = 1 the diagonal blocks
�

0

and �

1

11
2

are real symmetric 2 ⇥ 2 matrices. The o↵-diagonal blocks for
� = 1 have the following structure:

� =


⌘ ⌘

⇤

⇠ ⇠

⇤

�
, �̃ =


⌘

⇤
⇠

⇤

�⌘ �⇠

�
, (20)

where ⌘ and ⇠ denote Grassmann variables. With this choice � satisfies the
constraint (16). The supermatrix %, similar to �, is chosen as

% =


%

0

!

!̃ i%
1

11
2/�

�
. (21)

In a self-evident way, % is divided into blocks having the same symmetries as
the blocks of � in Eq. (19).

The super-integration measure for � in Eq. (17) is flat and reads

d[�] =

(
(2⇡)�2

d�

0aa

d�

0ab

d�

0bb

d�

1

@

⌘

@

⌘

⇤
@

⇠

@

⇠

⇤ for � = 1,

(2⇡)�1

d�

0

d�

1

@

�

@

�

⇤ for � = 2,
(22)

where �

0aa

and �

0bb

are the diagonal elements and �

0ab

is the o↵-diagonal
element of the real symmetric matrix �

0

for � = 1. The measure d[%] is
defined by an identical expression.

We now insert the representation (17) into Eq. (14). Our ensemble-averaged
generating function then becomes a supermatrix integral:

Z

�

(x
0

, x

1

) =

Z
d[%]I

�

(⇢)

Z
d[A] exp

✓
i�

2
str (XA

†
A�A

†
⇤A%)

◆

=

Z
d[%]I

�

(%)
pY

j=1

sdet��/2 (X � %⇤

j

) , (23)

where in the last step we performed the integrals over A. Eq. (23) is the
desired superspace representation of the generating function. Originally, the
generating function was an integral over ordinary p ⇥ n matrices W . The
representation (23) is an integral over supermatrices % of dimension 4⇥4 for
� = 1 and 2 ⇥ 2 for � = 2. This drastically reduces the number of integrals
to be calculated.

To complete the description of our result (23), we must discuss the func-
tion I

�

(%). This is a super-version of what has come to be called the Ingham-
Siegel integral [14,15]. (The name is due to Fyodorov [27] who introduced
such an integral in a related, non-super context.) An important point to ap-
preciate is that the superdeterminant under the integral sign of (18) depends
polynomially on the variable �

1

. Therefore the Fourier transform (18) does
not converge in that variable and the supersymmetric Ingham-Siegel integral
I

�

(%) cannot exist as a regular function of %. Nevertheless, we can make sense
of I

�

(%) as a distribution in %, as follows. (In the next subsection, we will
reproduce the same result (23) by employing convergent integrals only.)

The Ingham-Siegel integral is invariant under conjugation of � by ele-
ments of the supergroups UOSp(2|2) or U(1|1) for � = 1, 2, respectively.
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This is not automatic, but does hold true once the integral is properly regu-
larized by an invariant cuto↵ function. Thus, choosing an invariant cuto↵ of
Gaussian form, we define the supersymmetric Ingham-Siegel integral by

I

�

(%) := lim
"!0+

Z
d[�] sdet�n�/2(11

4/�

+ i�) exp

✓
i�

2
str�%

◆
e�" str�

2

. (24)

Here we see the reason why the block �

1

11
2

is multiplied by i =
p
�1: this fac-

tor cancels the minus sign from the supertrace, thereby making the Gaussian
cuto↵ function decrease with increasing real integration variable �

1

.
By construction, the invariantly regularized Fourier transform (24) is in-

variant and thus the distribution I

�

(%) depends only on the eigenvalues of
% = URU

�1 = Udiag(R
0

, R

1

11
2/�

)U�1. We note that the diagonal matrix
R

0

has the dimension 2/� while R

1

is a scalar. An explicit formula for the
Ingham-Siegel distribution I

�

(%) was derived in Refs. [14,15]. The result is

I

�

(%) = K

�

⇥(R
0

) det(n+1)�/2�1(R
0

)

⇥ exp

✓
��

2
strR

◆✓
i

@

@R

1

◆
n�2/�

�(R
1

), (25)

with the constants

K

1

=
⇡

(n� 2)!
, K

2

=
2⇡

(n� 1)!
, (26)

and the Heaviside distribution

⇥(R
0

) =

(
1 if R

0

is a positive definite matrix,

0 else.
(27)

This completes our description of the result (23).

3.4 Approach using superbosonization

We now rederive the result (23) (or, more precisely, an equivalent formula)
by a di↵erent approach, avoiding the use of super-distributions. This will be
mathematically clean in every respect. The price to pay is that we rely on a
“black box”, namely the superbosonization formula proved in [17].

We start over from the very beginning, Eq. (11). Motivated by the fact
that our probability measure P

�

(W,⇤)d[W ] for W 2 Cp⇥n (resp. W 2 Rp⇥n)
is right-invariant but not left-invariant, we first pass from determinants on
the left space Cp (Rp) to determinants on the right space Cn (Rn), and only
afterwards introduce the standard Gaussian integral representation:

✓
x

0

x

1

◆
p�n det

�
x

1

11
p

�WW

†�

det (x
0

11
p

�WW

†)
=

det
�
x

1

11
n

�W

†
W

�

det (x
0

11
n

�W

†
W )

= sdet��/2

�
X ⌦ 11

n

� 11
4/�

⌦W

†
W

�

=

Z
d[A] exp

✓
i�

2
str (XA

†
A�A

†
W

†
WA)

◆
. (28)
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X is the same diagonal matrix as before, and we still take Imx

0

> 0 in order
for the Gaussian integral to converge. The rectangular supermatrix A is the
same as before except for the change in dimension p ! n.

Next we take the expectation with respect to the probability measure
P

�

(W,⇤)d[W ] of the W -dependent factor under the integral sign:
Z

d[W ]P
�

(W,⇤) exp

✓
� i�

2
trWAA

†
W

†
◆

= det��/2

�
11
n

⌦ 11
p

+ iAA

† ⌦ ⇤

�

= sdet��/2

�
11
4/�

⌦ 11
p

+ iA†
A⌦ ⇤

�
. (29)

In the last step we invoked the duality of Sec. 3.2. For the generating function
(9) we then get the formula

Z

�

(x
0

, x

1

) = (x
0

/x

1

)n�p

Z
d[A] exp

✓
i�

2
strXA

†
A

◆

⇥
pY

j=1

sdet��/2

�
11
4/�

+ iA†
A⇤

j

�
. (30)

Now a beautiful feature of the integrand in (30) is that it depends only
on the product A

†
A which is invariant under left translations A 7! UA by

U 2 O(n) (resp. U(n)) for � = 1 (� = 2). This means that we are exactly in
the situation where the superbosonization formula of [16,17] applies.

In a nutshell, superbosonization lets us switch from our A-integral to the
same integral over a supermatrix Q replacing A

†
A. The result is

Z

�

(x
0

, x

1

) = (x
0

/x

1

)n�p

Z
DQF

�

(Q), (31)

F

�

(Q) = sdetn�/2(Q) exp

✓
i�

2
strXQ

◆
pY

j=1

sdet��/2

�
11
4/�

+ iQ⇤

j

�
.

Q is formally identical to the supermatrix % of Sec. 3.3. The only di↵erence
is in the domain of integration: the present Q-integral is over a Riemannian
symmetric superspace (of Cartan type A) with invariant (or Berezin-Haar)
measure DQ. This is to say that Q runs over the positive matrices in the
left upper (or boson-boson) block and the unitary matrices in the right lower
(or fermion-fermion) block. For � = 2 the measure DQ is the flat measure
d[Q] ⌘ d[�] of (22) (up to a normalization factor), for � = 1 it is the flat one
times an extra factor of sdet�1/2(Q).

Our two expressions (23) and (31) become identical upon making the
substitution Q ! iQ/X. In fact, the Heaviside distribution in R

0

of (25)
restricts the integration over all Hermitian matrices %

0

to the positive ones,
and the derivatives of the �-distribution in R

1

of (25) have exactly the same
e↵ect as doing the integral over the unitary variable in the fermion-fermion
block of Q by the residue theorem. Thus the %-integral in (23) is e↵ectively
over the Riemannian symmetric superspace parameterized by Q; see [18] for
more discussion of how the two approaches are related.
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4 Explicit expressions for the one-point function

We consider in Sec. 4.1 the complex case (� = 2) and rederive the result found
in Ref. [8]. In Sec. 4.2 we study the real case (� = 1) and derive an expression
as a twofold integral. In both cases we have a choice between the methods of
superbosonization and generalized Hubbard-Stratonovich transformation.

4.1 Complex case

We show how to reproduce in a few more steps the known result [8] for the
one-point function for � = 2. The supermatrix Q in this case is of size 2⇥ 2.
We begin by introducing its eigen-representation:

Q = URU

�1

, U =

p
1� ↵↵

⇤ �↵

↵

⇤ p
1� ↵

⇤
↵

�
, R =


r 0
0 s

�
, (32)

with eigenvalues r, s and two Grassmann variables ↵,↵

⇤. This parametriza-
tion is singular (more precisely, degenerate in the Grassmann variables) at
r = s. To suppress any e↵ects of the singularity, we are going to utilize the
scale invariance of DQ to change the integration radius |s| = 1 to |s| = q with
q ! 1. By the change-of-variables formula for superintegrals, our invariant
integral (31) for the choice of parametrization (32) then takes the form

Z
DQF

2

(Q) = (2⇡i)�1 lim
q!1

qZ

0

dr

I

|s|=q

ds (r � s)�2

@

↵

@

↵

⇤
F

2

, (33)

provided that F
2

(Q) vanishes on the locus of the coordinate singularity r =
s = q ! 1. (Otherwise, so-called Efetov-Wegner boundary terms appear.)
To arrange for this vanishing property to hold, notice that for large values
of r = s = q the function F

2

(q11
2

) behaves as eiq(x0�x1). If Im(x
0

� x

1

) > 0
then this exponential factor makes F

2

(q11
2

) vanish on the singular locus for
q ! +1. We therefore assume the inequality Imx

0

> Imx

1

.
Since the two superdeterminants in F

2

(Q) are functions of the eigenvalues
r and s only, all of the dependence on ↵,↵

⇤ resides in the factor ei strXQ and
the process of integrating (actually, di↵erentiating) w.r.t. the Grassmann
variables is simply done by

@

↵

@

↵

⇤ ei strXQ = ei(x0r�x1s)i(x
0

� x

1

)(r � s). (34)

By using (33) and (34) in (31) we obtain

Z

2

(x
0

, x

1

) = (x
0

/x

1

)n�p lim
q!1

qZ

0

dr

I

|s|=q

ds

2⇡

r

n(x
0

� x

1

) g
⇤

(x
1

; s)

s

n(r � s) g
⇤

(x
0

; r)
, (35)

where g

⇤

(x; s) is the function

g

⇤

(x; s) = e�ixs

pY

j=1

(1 + is⇤
j

). (36)
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Our next step is to perform the inner integral over the circle variable s.
This is done by invoking Cauchy’s integral theorem to show that for any
complex-analytic function f(s) one has

1

2⇡i

I

|s|=q

f(s) ds

s

n(r � s)
=

⇢
�r

�n

f

[�n](r), q > r,

+r

�n

f

[<n](r), q < r,

(37)

where f

[�n](r) stands for the Taylor series of f(r) in r with all terms up
to order n � 1 deleted, and f

[<n](r) = f(r) � f

[�n](r). Application of this
formula to (35) yields the result

Z

2

(x
0

, x

1

) = �i (x
0

� x

1

)(x
0

/x

1

)n�p

1Z

0

dr

g

[�n]

⇤

(x
1

; r)

g

⇤

(x
0

; r)
. (38)

Recall that Imx

0

> Imx

1

is required in order for this to hold. The correct
expression for the opposite case of Imx

0

< Imx

1

is obtained by replacing in
(38) every occurrence of i by �i or, equivalently, by sending r ! �r.

We now turn to the calculation of the one-point function S

2

(x). We recall
the expression (10) involving Z

2

(x± i", x
1

) and apply our result (38) to the
case of x

0

= x ± i" with real parameters x, x

1

and " > 0. Our integral
representations of Z

2

(x± i", x
1

) then combine to a single integral:

lim
"!0+

�
Z

2

(x� i", x
1

)� Z

2

(x+ i", x
1

)
�

= i (x� x

1

)(x/x
1

)n�p lim
"!0+

1Z

�1

dr e�"|r| g
[�n]

⇤

(x
1

; r)

g

⇤

(x; r)
. (39)

If we re-express the numerator of the integrand as g[�n]

⇤

⌘ g

⇤

�g

[<n]

⇤

then the
term g

⇤

contributes (x� x

1

)�(x� x

1

) = 0. Hence we replace this numerator

by �g

[<n]

⇤

(x
1

; r), which is a polynomial in r of degree n� 1.
Now for x < 0 we may close the integration contour around the lower half

of the complex r-plane. From (36) one sees that the integrand is holomorphic
in r for Im r < 0. We therefore get S

2

(x) = 0 for x < 0. On the other hand,
for x > 0 the contour has to be closed around the upper half-plane. Again,
recall Eq. (10). Because the r-integral is now manifestly finite for all values
of x

1

, we may safely take the x

1

-derivative at x

1

= x by simply removing
the prefactor x

1

� x and replacing x

1

by x under the integral sign. (Please
be warned that in (38) the r-integral has to diverge at x

1

= x

0

to arrange
for Z

2

(x
0

, x

0

) = 1 in spite of the factor x
0

� x

1

.) The result for x > 0 is

S

2

(x) =
1

2⇡p

I
dr

g

[<n]

⇤

(x; r)

g

⇤

(x; r)
= �1

p

pX

j=1

(ir + 1/⇤
j

)
g

[�n]

⇤

(x; r)

g

⇤

(x; r)

����
r!i/⇤j

, (40)

where the integration contour in the first expression encloses the poles of
1/g

⇤

(x; r) at r = i/⇤
j

(j = 1, . . . , p). To get the second expression, we

switched from g

[<n]

⇤

back to �g

[�n]

⇤

and applied the residue theorem.
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The residues are best computed by re-inserting the integral representation

(37) for g[�n]

⇤

, which gives

�g

[�n]

⇤

(x; i/⇤
j

) = (i/⇤
j

)n�1

I
ds

2⇡i
s

�ne�ixs

Y

l( 6=j)

(1 + is⇤
l

) . (41)

We now use the expansion

Y

l( 6=j)

(1 + is⇤
l

) =
pX

k=1

(is)k�1

E

k�1

(⇤
b
j) (42)

where E

k

are the elementary symmetric functions

E

k

(⇤) :=
X

1j1<j2<...<jkp

⇤

j1⇤j2 · · ·⇤jk . (43)

The notation ⇤

b
j means that the eigenvalue ⇤

j

is to be dropped from the
diagonal matrix ⇤. Now, inserting the expansion (42) into (41) we carry out
the s-integral. Our final result for the one-point function then reads

S

2

(x) =
⇥(x)

p

pX

j=1

e�x/⇤j (1/⇤
j

)nQ
l( 6=j)

(1� ⇤

l

/⇤

j

)

pX

k=1

x

n�k

(n� k)!
E

k�1

(�⇤

b
j). (44)

To conclude this subsection, we present an alternative expression for the
result (44) as a ratio of determinants:

S

2

(x) =
⇥(x)

p

det


0 B

⇤

(x)
C(x) D

⇤

�
/ detD

⇤

, (45)

where D

⇤

is the p ⇥ p matrix with matrix elements (D
⇤

)
k,j

= ⇤

�k+1

j

, and
B

⇤

(x) and C(x) are row and column vectors with entries

B

⇤

(x)
j

= e�x/⇤j (1/⇤
j

)n, C(x)
k

= � x

n�k

(n� k)!
. (46)

The denominator detD
⇤

=
Q

j>j

0(⇤
�1

j

�⇤

�1

j

0 ) is essentially the Vandermonde
determinant associated with the numbers ⇤

1

, . . . ,⇤

p

.
To verify the expression (45) one expands the (p+1)⇥(p+1) determinant

with respect to the first row and first column and then uses a standard
identity [29] for the elementary symmetric functions:

detD(kj)

⇤

detD
⇤

=
(�1)j�1

E

k�1

(⇤b
j)Q

l( 6=j)

(1� ⇤

l

/⇤

j

)
, (47)

where D

(kj)

�

is D

⇤

with the k

th row and j

th column removed. In this way
one immediately retrieves (44) from (45).

The expression (45) may be useful for certain applications. Also, it is
easily seen to be directly equivalent to the expression given in [8].
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4.2 Real case

4.2.1 Approach using the eigenvalues of Q

The main trick in deriving the explicit result for � = 2 was to use the eigen-
representation (32) for the supermatrix Q. We are now going to carry out an
analogous derivation for � = 1. The outcome will be somewhat di↵erent in
that the integrand is no longer meromorphic but has square-root singularities
in the radial variables of the boson-boson block.

We use the parametrization

Q = k


Q

0

0
0 s11

2

�
k

�1

, k =


k

0

0
0 11

2

� p
1� ↵↵̃ �↵

↵̃

p
1� ↵̃↵

�
, (48)

k

0

=


cos� � sin�
sin� cos�

�
, ↵ =


⌘ ⌘

⇤

⇠ ⇠

⇤

�
, ↵̃ =


⌘

⇤
⇠

⇤

�⌘ �⇠

�
, Q

0

=


r

a

0
0 r

b

�
,

which has coordinate singularities at r

a

= s and r

b

= s. As before, we will
suppress their e↵ects by using the scale invariance ofDQ to place the singular
locus of the coordinate system on the zero locus of the integrand.

In the coordinates given by (48) our invariant integral (31) takes the form

Z
DQF

1

(Q) = lim
q!1

ZZ

[0,q)

2

dr

a

dr

b

I

|s|=q

ds

16⇡i

|r
a

� r

b

|
(r

a

� s)2(r
b

� s)2
(49)

⇥ s

p
r

a

r

b

2⇡Z

0

d�

2⇡
@

⇠

@

⇠

⇤
@

⌘

@

⌘

⇤(1 + ⇠

⇤
⇠ + ⌘

⇤
⌘)F

1

,

where F

1

is the function

F

1

(Q) = sdetn/2(Q) exp

✓
i

2
strXQ

◆
pY

j=1

sdet�1/2 (11
4

+ iQ⇤

j

) . (50)

The expression (49) holds if F
1

(Q) and its derivatives vanish on the singular
locus r

a

= s = q ! 1 and r

b

= s = q ! 1. Observing that our integrand
F

1

(Q) for r

a/b

= s = q contains the exponential eiq(
1
2x0�x1), we see that F

1

has the required property if the parameter range is restricted by 1

2

Imx

0

>

Imx

1

. We thus impose this restriction.
It is clear that the integrand (50) does not depend on the angle �, and

all of the dependence on the Grassmann variables is in the factor ei strXQ/2.
Hence the result of doing the Grassmann integral is given by

@

⇠

@

⇠

⇤
@

⌘

@

⌘

⇤(1 + ⇠

⇤
⇠ + ⌘

⇤
⌘) ei strXQ/2 = eix0(ra+rb)/2�ix1s

⇥
�
i(x

0

� x

1

)(r
a

+ r

b

� 2s)� (x
0

� x

1

)2(r
a

� s)(r
b

� s)
�
. (51)
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A slight reorganization of the integrand then leads to the following expression
for the generating function:

Z

1

(x
0

, x

1

) =

✓
x

0

x

1

◆
n�p

lim
q!1

ZZ

[0,q)

2

dr

a

dr

b

|r
a

� r

b

|
I

|s|=q

ds

16⇡i

✓p
r

a

r

b

s

◆
n�1

(52)

⇥
✓
i(x

0

� x

1

)(r
a

+ r

b

� 2s)

(r
a

� s)2(r
b

� s)2
� (x

0

� x

1

)2

(r
a

� s)(r
b

� s)

◆
g

⇤

(x
1

; s)p
g

⇤

(x
0

; r
a

)g
⇤

(x
0

; r
b

)
,

where g

⇤

was defined in (36).
As before, it is possible to carry out the complex contour integral over

the variable s. By making partial fraction decompositions to express the
integrand in (52) by isolated poles (r

a

�s)�` and (r
b

�s)�` of degrees ` = 1, 2,
and then applying the identity (37), we obtain

Z

1

(x
0

, x

1

) =
1

8

✓
x

0

x

1

◆
n�p

ZZ

R2
+

dr

a

dr

b

|r
a

� r

b

|pr

a

r

b

n�1

p
g

⇤

(x
0

; r
a

)g
⇤

(x
0

; r
b

)

⇥
2X

⌫=1

(x
0

� x

1

)⌫F (⌫)

⇤

(x
1

; r
a

, r

b

), (53)

where we have taken the upper limits of the r-integrals to infinity, and

F

(⌫)

⇤

(x; r
a

, r

b

) =
G

(⌫)

⇤

(x; r
a

)�G

(⌫)

⇤

(x; r
b

)

r

a

� r

b

, (54)

G

(1)

⇤

(x; r) = i
@

@r

G

(2)

⇤

(x; r), G

(2)

⇤

(x; r) = �
g

[�n�1]

⇤

(x; r)

r

n�1

. (55)

The result (53) is the analog for � = 1 of the earlier formula (38) for � = 2.
By recalling the formula (10) we can again deduce an expression for the

one-point function, S
1

(x). (This requires a process of analytic continuation
to remove the restriction Imx

0

> 2 Imx

1

.) The result involves only the ⌫ = 1
term from (53) and holds for all n > p+3. Unfortunately, we do not know how
to do the final two integrals over r

a

and r

b

in closed form, and an attempt to
compute these integrals numerically met with the following complications.

The first complication is that we do not know how to pass from the ex-
pression (53–55) involving g

> to an analog of Eq. (40) involving g

<. Working
directly with g

> is numerically expensive because many terms in the Taylor
series have to be summed when r

a

or r

b

are large. On the other hand, if
we use the identity g

> = g � g

< then we incur cancelations, with ensuing
rounding errors, due to taking the di↵erence of two large numbers.

The second di�culty is that the exponential part of the integrand os-
cillates. For the most part, these oscillations can be cured by rotating the
integration contours for r

a

, r
b

to the positive imaginary axis. Ultimately,
however, these variables still have to go to infinity in the direction of the
real axis to retain convergence of the integral. The contribution from this
ultimate part of the integration contour converges rather slowly.
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These problems notwithstanding, we are still able to verify our formula
for S

1

(x). However, by numerical integration using Wolfram-Mathematical
we are not able to produce stable results in a wide range of parameters. We
therefore refrain from even writing down that formula, and abandon now the
eigen-representation (48). Instead, we pursue another approach, exploiting
the original coordinate system for Q described in Secs. 3.3 and 3.4.

4.2.2 Direct approach

Below, we give two further expressions for the generating function. Their
logical order of presentation depends on which of our two formalisms is used.

Adopting the generalized Hubbard-Stratonovich transformation, we start
from the integral representation (23) and evaluate the delta-distributions
featured in (24–25). We then carry out the Grassmann integrals (or rather,
derivatives) according to the flat measure specified in (22) to obtain

Z

1

(x
0

, x

1

) =
1

8

ZZ

R2
+

dr

a

dr

b

|r
a

� r

b

|pr

a

r

b

n�3e�(ra+rb)/2

Q
p

i=1

p
(x

0

� ⇤

i

r

a

)(x
0

� ⇤

i

r

b

)

⇥
pX

k=0

(�1)kxp�k
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where E
k

, defined in (43), is understood to vanish when k < 0. The notation

⇤

b
jl means that both ⇤

j

and ⇤

l

are removed from the set {⇤
i

}
i=1,...,p

.
Alternatively, we can take the formula (31) from superbosonization and

make the substitution Q 7! iQ/X. Then, by carrying out the Grassmann
integrals in the original parametrization specified in Sec. 3.4 we obtain
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If we go on to carry out the s-integral, we again arrive at (56) above. Note that
(56) and (57) make immediate sense as convergent integrals for all x

1

2 C
and x

0

2 C \ R
+

. A non-trivial check is Z
1

(x
0

, x

0

) = 1.
From the expression (57) it is easy to verify the large-n behavior pre-

dicted by the central limit theorem (CLT). Indeed, for large n our integrand
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develops a saddle point at r

a

= r

b

= s ' n due to the presence of the fac-
tor (

p
r

a

r

b

/s)ne�(ra+rb)/2+s. By steepest descent evaluation of the integral
around this saddle point one finds

lim
n!1
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which is the result expected from CLT for the random matrix (WW

T )
ij

=P
n

k=1

W

ik

W

jk

with independent identically distributed matrix elementsW
jk

.

5 Numerical computation of S1(x)

On recalling the basic identity (10), one immediately produces an expression
for the one-point function S

1

(x); see below. The result looks more involved
than the one obtained from the eigen-representation of Q, and the reciprocal
square roots visible in Eqs. (56, 57) remain serious obstacles for further ana-
lytical calculations. From a numerical perspective, however, the new formula
has two clear advantages over the previous one: its integrand is free of oscil-
latory exponentials, and high powers of the integration variables r

a

and r

b

occur only through the factor e�(ra+rb)/2, which is numerically inexpensive to
compute. Thus numerical evaluation of the integral (61) for S

1

(x) is straight-
forward, provided that the singularities at r

a

, r

b

= x/⇤

j

(j = 1, . . . , p) are
treated with care. We now discuss how to organize this computation.

To prepare our final formula for S
1

(x), we observe that the discontinuity
Z(x� i", x

1

)�Z(x+i", x
1

) for " ! 0 arises solely from the product of factors

1/
p

(x� ⇤

i

r

a

)(x� ⇤

i

r

b

), (59)

since all other terms in (56) are single-valued across the real x-axis. By the
derivation of the result (56), the reciprocal square root (59) has the real value
(x � ⇤

i

r)�1 for r

a

= r

b

= r. Its values away from the diagonal r
a

= r

b

are
defined by the process of analytic continuation.

For definiteness, let the ⇤-values be ordered by

0 < ⇤

1

< ⇤

2

< . . . < ⇤

p

.

Fixing any x > 0, we partition (a dense open subset of) the domain R
+

for
r

a

and r

b

into p+ 1 intervals U
0

(x) := (0, x/⇤
p

), U
p

(x) := (x/⇤
1

,1), and

U

p�l

(x) := (x/⇤
l+1

, x/⇤

l

) (l = 1, . . . , p� 1). (60)

The product over i = 1, . . . , p of the square roots in (59) is then discontinuous
across the x-axis only for (r

a

, r

b

) 2 U

l

(x)⇥U

l

0(x) with l+ l

0 an odd number.
Thus we arrive at an integral representation for S
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(x) of the form
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The outer sum is over the pairs (l, l0) 2 {0, 1, . . . , p}2 with odd sum l + l

0,

and the f

(..)

x,⇤

(r
a

, r

b

) are certain real-valued analytic functions, which do not
need to be written down as they are easy to read o↵ from (56) using (10).

What we do need is some further discussion of the precise meaning of the
integral (61). There is no problem with the first summand (containing f

x,⇤

),
as the square root singularities from (59) are integrable. However, in the
second and third summand of (61) the order of the singularity is enhanced
from (x � ⇤

j

r)�1/2 to (x � ⇤

j

r)�3/2 for one (j) or two (j 6= j

0) factors of
the product over i = 1, . . . , p. These terms have to be properly understood
as principal-value integrals by their definition as a limit " ! 0. To render
them suitable for numerical evaluation, we use a partial integration identity
of the sort

1

2
lim
"!0

�+Z

���

g(r) dr

(r � i")3/2
= �g(r)

r

1/2

�����

r=�+

r=���

+

�+Z

���

@

r

g(r) dr

r

1/2

, (62)

which holds for any smooth function g(r). We apply this identity to the
present situation with r ⌘ r

a

� ⇤

j

/x and/or r ⌘ r

b

� ⇤

j

0
/x (and suitable

values for �±), and thereby regularize the integral around the 3/2 singulari-
ties. In order for this regularization to be well-defined, we need the diagonal
r

a

= r

b

to lie (as it does) outside the domain of integration, so that our
integrand g(r) containing the factor |r

a

� r

b

| is in fact smooth.

Fig. 1 One-point function S1(x) for the parameter values p = 10 and n = 50. The
set of {⇤j}j=1,...,10 is {1, 0.49, 0.4225, 0.36, 0.25, 0.09, 0.0729, 0.0529, 0.04, 0.0225}.
The solid line is the result obtained by numerical integration of the analytical
formula (61). The bin size of the histogram is 0.7 for the large figure and 0.1 for
the inset. The inset magnifies S1(x) near the origin.
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Fig. 2 S1(x) for the same values of p and {⇤j} but a larger parameter n = 200.
The solid line is again the result obtained from Eq. (61). The bin size is 2 for the
large figure and 0.3 for the inset. Note that because of the bigger value of n the
peaks are more pronounced (than those in Fig. 1) around the CLT-values n⇤j .

By using the commercial software Mathematica R� [28] we now numer-
ically evaluate the integrals in Eq. (61). In Figs. 1 and 2 we show examples
for (p, n) = (10, 50) and (10, 200), respectively. Our result (solid line) is com-
pared with a Monte-Carlo simulation (histogram) using an ensemble of 105

random matrices. We see that the agreement between the Monte-Carlo sim-
ulation and our result from (61) is perfect.

We observe that the last peak, centered around x = 50 in Fig. 1 and
x = 200 in Fig. 2, lies near n⇤

p

= n, in agreement with what is expected by
the central limit theorem (CLT). The other peaks are slightly shifted from
their asymptotic CLT-positions n⇤

j

. With increasing n these shifts become
smaller and the peaks become more pronounced, as it should be.

6 Summary

We have developed a supersymmetry approach to derive exact expressions
for the one-point function of real and complex Wishart correlation matri-
ces. Supersymmetry got us around a di�cult group integral which arises in
the traditional approach for the real case. The crucial advantage of the su-
persymmetry approach is the drastic reduction of the number of integrals.
For both cases, complex and real, we showed how to express the one-point
function as an eigenvalue integral. In the complex case the supermatrix has
dimension 2⇥ 2 and thus two eigenvalues. We carried out both integrals and
demonstrated the equivalence of our result to that of Ref. [8].

In the more demanding real case (� = 1), the supermatrix has dimension
4 ⇥ 4 and 3 distinct eigenvalues. While the Efetov-Wegner boundary terms
due to diagonalization for � = 1 have never been given in explicit form,



20

we showed how to suppress them by a variable substitution that pushes
the coordinate singularities outside the domain of integration. One of the
three eigenvalue integrals is easily done by residue calculus. We do not know
how to calculate the remaining twofold integral by analytical means, and
an attempt to compute it numerically met with some complications. We
therefore abandoned the coordinate system given by the eigenvalues and
turned to a direct approach using standard coordinates. Thus we produced
a second formula for S

1

(x), still as a twofold integral, which we were able
to compute numerically in a stable and e�cient way. We also illustrated our
result by comparison with a Monte-Carlo simulation.

Previous approaches to the real case had resulted in slowly converging
series of Jack or zonal polynomials. We believe that our formula represents
a considerable improvement over these previous results. From a conceptual
viewpoint, one might say that our result re-sums a multiple infinite series of
Jack polynomials (and integrals thereof) in a non-trivial real case.

Thus we hope that we have demonstrated that the supersymmetry method
is a powerful tool to tackle problems in multivariate statistics.
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Completing the picture for the smallest eigenvalue of real Wishart matrices
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Rectangular real N ⇥ (N + ⌫) matrices W with a Gaussian distribution appear very frequently in
data analysis, condensed matter physics and quantum field theory. A central question concerns the
correlations encoded in the spectral statistics of WW

T . The extreme eigenvalues of WW

T are of
particular interest. We explicitly compute the distribution and the gap probability of the smallest
non-zero eigenvalue in this ensemble, both for arbitrary fixed N and ⌫, and in the universal large
N limit with ⌫ fixed. We uncover an integrable Pfa�an structure valid for all even values of ⌫ � 0.
This extends previous results for odd ⌫ at infinite N and recursive results for finite N and for all
⌫. Our mathematical results include the computation of expectation values of half integer powers
of characteristic polynomials.

PACS numbers: 02.10 YN, 05.45TP, 11.15Ha, 02.50-r

Introduction. To study generic statistical features of
spectra, various kinds of random matrices are used. Fol-
lowing Wigner and Dyson [1], Hamiltonians of dynami-
cal systems are modelled by real–symmetric, Hermitian
or self-dual matrices in quantum chaos, many-body and
mesoscopic physics. Due to universality, cf. [2, 3] and
references therein, Gaussian probability densities su�ce,
leading to the Gaussian Orthogonal, Unitary and Sym-
plectic Ensemble (GOE, GUE, GSE) [4]. This concept
was extended to Dirac spectra [5] by imposing chiral sym-
metry as an additional constraint, resulting in the chiral
ensembles chGOE, chGUE, chGSE [6]. Wishart [7] put
forward random matrices to model spectra of correlation
matrices in a quite di↵erent context. There are many ap-
plications in time series analysis [8–10] (including chaotic
dynamics [11]), in a wide range of fields in physics [2, 3],
biology [12], wireless communication [13] and finance [14].
In the most relevant case, N ⇥ (N + ⌫) real matrices W
model time series such that WWT is the random cor-
relation matrix. If it fluctuates around a given average
correlation matrix C, the distribution reads

P
N,⌫

(W |C) ⇠ exp
⇥

�TrWWTC�1/2
⇤

. (1)

For C = 11
N

, this happens to coincide with the chGOE,
where W and WT model the non–zero blocks of the
Dirac operator. Closing the circle, one can also extend
Wishart’s model by using non-Gaussian weights. Here
and in the sequel, we focus on Eq. (1) with C = 11

N

. Since
WWT has positive eigenvalues, the spectrum is bounded
from below. Naturally, the distribution of the smallest
(non–zero) eigenvalue is of particular importance.

Much interest in the chGOE was sparked by the ob-
servation [15] that in the limit N ! 1 its spectral cor-
relators describe the Dirac spectrum in quantum field
theories with real Fermions and broken chiral symmetry,
see [16] for a review. Based on earlier works for finite N
[17, 18], the spectral density [15] and all higher density
correlation functions [19] were computed in terms of a

Pfa�an determinant of a matrix kernel for all ⌫. These
quantities were shown later to be universal [20] for non-
Gaussian potentials, and most recently for fixed trace
ensembles in the context of quantum entanglement, see
[21] and references therein. Further applications of the
chGOE can be found in the recent review [22] on Majo-
rana Fermions and topological superconductors.

In an influential paper [23] the condition number of a
Wishart random matrix WWT was investigated, that is
the root of the ratio of the largest over the smallest non-
zero eigenvalue of WWT . This quantity is important for
a generic matrix as it quantifies the di�culty of comput-
ing its inverse. In [24] the distribution of the smallest
eigenvalue was calculated recursively in N for arbitrary
rectangular chGOE matrices. Closed expressions were
given for quadratic matrices ⌫ = 0 [23] (cf. [25]) and for
⌫ = 1, 2, 3 [24]. Later Pfa�an expressions were found
in [26] for arbitrary odd ⌫ valid for fixed and asymptot-
ically large N . A more general consideration, including
correlations with C 6= 11

N

, of the smallest eigenvalue for
⌫ odd was given in [27]. The limiting distributions of the
k-th smallest eigenvalue were computed in [28], again for
⌫ odd. These quantities are an e�cient tool to test algo-
rithms with exact chiral symmetry in lattice gauge theo-
ries [29], distinguishing clearly between di↵erent topolo-
gies labelled by ⌫. In [30] the distributions for higher even
⌫ > 0 were obtained from numerical chGOE simulations.
Most recently e�cient numerical algorithms have been
applied, see e.g. [31], in order to compute smallest eigen-
value distributions for arbitrary ⌫ using known analytic
Fredholm determinant expressions [32].

It is our goal to complete the picture for the smallest
chGOE eigenvalue distribution and its integral by find-
ing explicit Pfa�an expressions for finite and infinite N
valid for all even ⌫. Together with previous results this
completes the integrability of this classical ensemble. A
presentation with further results and more mathematical
details will be given elsewhere [33].
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Smallest eigenvalue and gap probability. First
we define the quantities of interest and state the prob-
lem. In the analytic calculations below we set C = 11

N

in Eq. (1), and later we compare our universal large
N results to numerical simulations with C 6= 11

N

. Be-
cause we are only interested in correlations of the pos-
itive eigenvalues of WWT = OXOT contained in X =
diag(x1, . . . , xN

), we drop all normalisation constants de-
pending on the orthogonal matrix O. Integrating the dis-
tribution (1) over all independent matrix elements with
respect to flat Lebesgue measure we obtain the partition
function expressed in terms of the eigenvalues as

Z
N,�

=
N

Y

i=1

Z 1

0
dx

i

w
�

(x
i

) |�
N

(X)| , (2)

up to a known constant. Here we introduce the weight
function w

�

(x) and Vandermonde determinant �
N

(X)
stemming from the Jacobian of the diagonalisation,

w
�

(x) ⌘ x� exp[�x/2] , � ⌘ (⌫ � 1)/2 , (3)

�
N

(X) ⌘
Y

1i<jN

(x
j

� x
i

) = det
1i,jN

h

xj�1
i

i

. (4)

We note that � alternates between integer and half-
integer values. The expectation value of an observable
f only depending on X is defined as

hf(X) i
N,�

⌘
Q

N

i=1

R1
0 dx

i

w
�

(x
i

) f(X)|�
N

(X)|
Z

N,�

. (5)

Thus the gap probability that no eigenvalue occupies the
interval [0, t] is given by

E
N,�

(t) ⌘ 1

Z
N,�

N

Y

i=1

Z 1

t

dx
i

w
�

(x
i

) |�
N

(X)|

= e�Nt/2ZN,0

Z
N,�

hdet� [X + t11
N

]i
N,0 . (6)

It is expressed as an expectation value of a characteris-
tic polynomial to the power � with respect to the weight
function (3) without the pre-exponential factor, w0(x).
This crucial identity follows from the translation invari-
ance of the Vandermonde determinant (4).

The normalised distribution of the smallest non-zero
eigenvalue, P

N,�

(t), is obtained by di↵erentiating Eq. (6)

P
N,�

(t) ⌘ �@E
N,�

(t)

@t
(7)

= t�e�Nt/2NZ
N�1,1

Z
N,�

hdet� [X + t11
N�1]i

N�1,1 ,

where the second line follows along the same steps as
in Eq. (6). This relation is well known [26, 28], with
the di�culty to compute the average (also called massive
partition function) for � half-integer, which is our main
task.

To compute Eqs. (6) and (7) we need to know the
normalising partition functions, which are given for arbi-
trary real ⌫ > �1 in terms of the Selberg integral, see also
[34, 35], and the expectation values. For integer � = k
corresponding to odd ⌫ = 2k+1 closed expressions of (7)
exist [26], given in terms of Laguerre polynomials skew-
orthogonal with respect to the weight (3). Therefore we
concentrate on the case ⌫ = 2k even.
Pfa�an structure and finite N results. To show

that the gap probability (6) has a Pfa�an structure when
� is half-integer let us define the following parameter de-
pendent weight function

w(x; t) ⌘ exp[�⌘x/2]/
p
x+ t . (8)

It absorbs the half-integer part in the expectation value
(6) when ⌫ = 2k is even. We set ⌘ = 1 unless otherwise
stated. The monic polynomials R

k

(x; t) = xk+. . . are de-
fined to be skew-orthogonal with respect to the following
skew-symmetric scalar product

hf, gi
t

⌘
1
Z

0

dy

y

Z

0

dxw(x; t)w(y; t)[f(x)g(y)� f(y)g(x)]

(9)
by satisfying for all i, j = 0, 1, . . . [36] the conditions

hR2j , R2ii
t

= 0 = hR2j+1, R2i+1i
t

hR2j+1, R2ii
t

= r
j

(t) �
ij

. (10)

Their normalisations r
j

(t) depend on t. The partition
function Z

N

(t) of this new weight (8) is defined by

Z
N

(t) ⌘
N

Y

i=1

Z 1

0
dx

i

w(x
i

; t)|�
N

(X)| = N !

N
2 �1
Y

i=0

r
i

(t).

(11)
The last step holds for N even [4]. Likewise we define
expectation values hf(X)it

N

, following Eq. (5). Thus for
even ⌫ = 2k, k 2 N, Eq. (6) reduces to

E
N,k� 1

2
(t) = e�Nt/2 Z

N

(t)

Z
N,k� 1

2

D

detk[X + t11
N

]
E

t

N

, (12)

given in terms of an integer power of a characteristic poly-
nomial. While the skew-orthogonal polynomials with re-
spect to the weight (3) are know in terms of Laguerre
polynomials [26], the di�culty here is to determine the
t-dependent polynomials and normalisation constants for
the non-standard weight (8). They can be computed fol-
lowing the observation [37]

R2j(y, t) = hdet[X � y112j ]it2j , (13)

R2j+1(y, t) = h(y + c+TrX)det[X � y112j ]it2j

= (y + c)R2j(y, t)� 2
@

@⌘
R2j(y, t)

�

�

�

�

⌘=1

. (14)

The odd polynomials are obtained by di↵erentiation of
the weight (8), generating TrX in the average. Note that
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the R2j+1(y, t) are not unique [37], we set c = 0 in the
following. The even polynomials (13) can be calculated
by mapping them back to a proper matrix integral over
an auxiliary 2j ⇥ (2j + 1) matrix W (corresponding to
� = 0),

R2j(y, t) = C2j(t)

Z

dW
det[WW

T � y112j ]

det
1
2 [WW

T

+ t112j ]
e�

⌘
2TrWW

T

,

(15)
cf. [27]. The known normalisation constant C2j(t) fol-
lows from the fact that the polynomial is monic. Without
giving details Eq. (15) can be computed exactly, repre-
senting the determinants by Gaussian integrals over com-
muting and anti-commuting variables and by using stan-
dard bosonisation techniques [38]. We arrive at

Ra

2j(y, t) =
(2j)!

⇣

U
j

(t)L(a+1)
2j�a

(y)�U0
j

(t)L(a)
2j�a

(y)
⌘

(2j � a)!U
� 2j+1

2 , 3
2 ,

t

2

�

(16)
for the a-th derivatives of the polynomials, @

a

@y

aRj

(y, t) ⌘
Ra

j

(y, t), a = 0, 1, . . . needed later. Here U
j

(t) ⌘
U
� 2j+1

2 , 1
2 ,

t

2

�

denotes the Tricomi confluent hypergeo-
metric function, satisfying U0(a, b, t) = �aU(a+1, b+1, t)
[39]. The derivative in Eq. (16) acts only on the gen-
eralised Laguerre polynomials used in monic normal-

isation L
(a)
j

(y) = yj + . . . They satisfy @

a

@y

aL
(b)
n

(y) =
n!

(n�a)!L
(b+a)
n�a

(y), where we set L
(b)
n

(y) ⌘ 0 for n < 0.
For the odd polynomials we obtain

Ra

2j+1(y, t) =
�

4j2 + 4j + y
�

Ra

2j(y, t) + aRa�1
2j (y, t)

+
(2j)!/(2j � a)!

U
�

2N+1
2 , 3

2 ,
t

2

�

n

tU00
j

(t)L(a)
2j�a

(y) + 2U0
j

(t)

⇥
h

aL
(a)
2j�a

(y) + (2j � a)yL(a+1)
2j�a�1(y) +

t

2L
(a+1)
2j�a

(y)
i

�2U
j

(t)
h

aL
(a+1)
2j�a

(y) + (2j � a)yL(a+2)
2j�a�1(y)

io

, (17)

and the normalisation constants in Eq. (10) read

r
j

(t) = 2(2j)!(2j + 1)!
U
� 2j+3

2 , 3
2 ,

t

2

�

U
� 2j+1

2 , 3
2 ,

t

2

� . (18)

Following [26] with their Laguerre weight w0(x) in Eq. (3)
replaced by our weight (8), we express the gap probability
(12) as a Pfa�an determinant with our kernel consisting
of the skew-orthogonal polynomials (16) and (17). In a
more general setting averages of characteristic polynomi-
als such as Eq. (12) were considered in Refs. [40, 41] for
arbitrary but unspecified weights. For finite even N and
⌫ = 2k with k = 2m even we obtain

E
N,k� 1

2
(t) = C

N,⌫

p
t e�Nt/2U

✓

N + 2m+ 1

2
,
3

2
,
t

2

◆

⇥Pf

2

4

N
2 +m�1
X

j=0

Ra

2j+1 (�t, t)Rb

2j (�t, t)� (a $ b)

r
j

(t)

3

5

k�1

a,b=0

(19)

FIG. 1. The gap probability EN,(⌫�1)/2(t) (straight lines)
for finite N = 10 and ⌫ = 0, 2, 4, 6, 8 (from left to right)
vs. numerical simulations (symbols) of 40000 realisations of
Wishart matrices, with C = 11N .

For k=2m� 1 odd the last row (and column) inside the

Pfa�an is replaced by (�)Rb(a)
N+k�2(�t, t)/r

N/2+m�1(t),
respectively (for N odd cf. [33]). The known t-
independent constant C

N,⌫

is suppressed for simplicity,
it ensures E

N,k� 1
2
(t = 0) = 1.

Eq. (19) is our first main result. A similar answer
can be obtained for P

N,�

(t) for even ⌫, given in terms of
skew-orthogonal polynomials with respect to the weight
xw(x; t). This provides an explicit integrable Pfa�an
structure for both E

N,�

(t) and P
N,�

(t). It extends the
odd ⌫ result for P

N,�

(t) in [26] which is given by a Pfa�an
determinant as well, but with a di↵erent kernel.
For illustration we give two examples. For ⌫ = 0 the

Pfa�an in Eq. (19) is absent,

E
N,� 1

2
(t) =

(N � 1)!
p
t e�Nt/2

2N�1/2�(N/2)
U

✓

N + 1

2
,
3

2
,
t

2

◆

, (20)

whereas for ⌫ = 2 the kernel is absent, and only the
polynomial (16) with a = 0 contributes,

E
N,+ 1

2
(t) =

�
�

N+1
2

�p
t e�Nt/2

(�1)N
p
2⇡N !

(21)

⇥
h

U
N

(t)L(1)
N

(�t)�U0
N

(t)L(0)
N

(�t)
i

.

Eqs. (20) and (21) are compared to numerical simulations
in Fig. 1. They can be matched with the finite N results
of [24] for ⌫ = 0, 2, after di↵erentiating them and using
identities for the Tricomi function [39].
Microscopic large N limit. We turn to the large N

limit keeping ⌫ fixed, referred to as hard edge limit. It is
particularly important as the limiting density correlation
functions are universal for non-Gaussian weight functions
for any integer ⌫ [20]. Because the gap probability can
be expressed in terms of the limiting universal kernel [32]
(see Eq. (30) for the corresponding density), its universal-
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FIG. 2. The microscopic density ⇢(u) (30) (dashed lines)
vs. the corresponding smallest eigenvalue distribution
P(⌫�1)/2(u) (straight lines) for ⌫ = 2, 4, 6 (from left to right).
The smallest eigenvalue nicely follows the density for all ⌫.

ity carries over to the distribution of the smallest eigen-
value. Moreover, in [27] it was shown for both ⌫ even and
odd, without explicitly calculating the distributions, that
the presence of a nontrivial correlation matrix in Eq. (1)
does not change the limiting smallest eigenvalue distri-
bution when the spectrum of C has a finite distance to
the origin.

The limiting gap probability and smallest eigenvalue
distribution are defined as

E
�

(u) ⌘ lim
N!1

E
N,�

⇣

t =
u

4N

⌘

,
@

@u
E
�

(u) = �P
�

(u) .

(22)
In view of Eq. (19) we need the following asymptotic limit
of the hypergeometric function,

U
⇣

aN + c, b,
u

8N

⌘

⇡
2
�

N28a/u
�(b�1)/2

� (aN + c)
K

b�1

✓

r

au

4

◆

.

(23)
For half integer index the modified Bessel function of
second kind simplifies, e.g. for b = 1/2, 3/2, 5/2

K± 1
2
(z) =

r

⇡

2z
e�z, K 3

2
(z) = (1� z�1)K 1

2
(z) . (24)

Inside the Pfa�an (19) the sum is replaced by an in-

tegral,
P

j

! N

2

R 1
0 dx, with j = Nx/2. The limiting

skew-orthogonal polynomials follow from Eq. (23) to-
gether with the standard Laguerre asymptotic in terms
of modified Bessel functions of the first kind, see e.g.
[39]. This leads to the following limiting kernel inside
the Pfa�an (19), independently of N being even or odd,


ab

(u) ⌘
Z

u

0

dz

u
z(a+b)/2

⇥

2(b� a)I
a

(
p
z)I

b

(
p
z) (25)

+(2b+ 1)I
a+1(

p
z)I

b

(
p
z)� (2a+ 1)I

b+1(
p
z)I

a

(
p
z)
⇤

.

The final answer for the limiting gap probability reads

E
k�1/2(u) = C

e

e�
p
u/2�u/8Pf [

ab

(u)]k�1
a,b=0 (26)

FIG. 3. The microscopic smallest eigenvalue distribution
P(⌫�1)/2(u) (straight lines) for ⌫ = 0, 2, 4 (from left to right)
vs. numerical simulations (symbols) of 10000 realisations of
matrices with N = 200 and correlation matrix C 6= 11N as
indicated in the inset.

for ⌫ = 2k with k = 2m even and

E
k�1/2(u) = C

o

e�
p
u/2�u/8 (27)

⇥Pf




ab

(u) � ua/2 [I
a+1 (

p
u) + I

a

(
p
u)]

ub/2 [I
b+1 (

p
u) + I

b

(
p
u)] 0

�

k�1

a,b=0

for k = 2m � 1 odd. We suppress the known u-
independent normalisation constants C

e/o

. The corre-
sponding limiting result for the smallest eigenvalue dis-
tribution is

P
k�1/2(u) = bC

e

uk(1 + 2/
p
u) e�

p
u/2�u/8Pf [b

ab

(u)]k�1
a,b=0
(28)

for ⌫ = 2k with k = 2m even, and

P
k�1/2(u) = bC

o

uk(1 + 2/
p
u) e�

p
u/2�u/8 (29)

⇥Pf

2

4

b
ab

(u) �
Ia+2(

p
u)+

p
u

2+
p

u
Ia+3(

p
u)

u

(a+2)/2

Ib+2(
p
u)+

p
u

2+
p

u
Ib+3(

p
u)

u

(b+2)/2 0

3

5

k�1

a,b=0

for k = 2m�1 odd, suppressing again the u-independent
normalisation constants bC

e/o

. Here b
ab

(u) is the limiting
kernel for the skew-orthogonal polynomials with respect
to xw(x; t) which is of a similar structure as Eq. (25).
For ⌫ = 0, 2 the results (28) and (29) were known from
[25], [21], respectively.
Eqs. (26) - (29) constitute our second main result and

are universal. In Fig. 2 they are compared to the uni-
versal microscopic density [15, 42] valid for all ⌫-values

⇢
⌫

(u) =
1

4

�

J
⌫

(
p
u)2 � J

⌫�1(
p
u)J

⌫+1(
p
u)
�

+
1

4
p
u
J
⌫

(
p
u)

 

1�
Z

p
u

0
dsJ

⌫

(s)

!

. (30)

We further illustrate the universality of our results by
comparing to numerical simulations with a nontrivial cor-
relation matrix C for large N , see Fig. 3.
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Conclusions and outlook. We have computed
closed expressions for the distribution of the smallest
non-zero eigenvalue and its integral, the gap probability,
for rectangular N ⇥ (N + ⌫) real Wishart matrices
with ⌫ even, both for finite N and in the universal
microscopic large N limit. They only depend on a
single kernel instead of three di↵erent ones for the
density correlation functions and are thus much simpler
than these known results. We confirm our findings
by numerical simulations even including a nontrivial
correlation matrix C. This completes the calculation
of all eigenvalue correlation functions in this classical
ensemble of random matrices and shows its integrable
structure. Furthermore, our finite N results allow to
analyse deviations from the universal large N limit, as
was very recently proposed in [43] for the chGUE.
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[38] L. Schäfer, F.Wegner, Z. Phys. B 38 (1980) 113.
[39] NIST Handbook of Mathematical Functions,

F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark
(Eds.), Cambridge Univ. Press, Cambridge 2010.

[40] A. Borodin, E. Strahov, Comm. Pure Appl. Math. 59
(2006) 161.

[41] M. Kieburg, T. Guhr, J. Phys. A43 (2010) 135204.
[42] P.J. Forrester, T. Nagao, G. Honner, Nucl. Phys. B553

(1999) 601.
[43] A. Edelman, A. Guionnet, S. Péché, arXiv:1405.7590.
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The correlated Wishart model provides a standard tool for the analysis of correlations in a rich
variety of systems. Although much is known for complex correlation matrices, the empirically much
more important real case still poses substantial challenges. We put forward a new approach, which
maps arbitrary statistical quantities, depending on invariants only, to invariant Hermitian matrix
models. For completeness we also include the quaternion case and deal with all three cases in a
unified way. As an important application, we study the statistics of the largest eigenvalue and its
limiting distributions in the correlated Wishart model, because they help to estimate the behavior
of large complex systems. We show that even for fully correlated Wishart ensembles, the Tracy-
Widom distribution can be the limiting distribution of the largest as well as the smallest eigenvalue,
provided that a certain scaling of the empirical eigenvalues holds.

PACS numbers: 05.45.Tp, 02.50.-r, 02.20.-a

Time series analysis yields rich information about
the dynamics but also about the correlations in nu-
merous systems in physics, climate research, biology,
medicine, wireless communication, finance and many
other fields [1–12]. Suppose we have a set of p time series
Mj , j = 1, . . . , p of n (n � p) time steps each, which are
normalized to zero mean and unit variance. The entries
are real, complex, quaternion, i.e. Mj(t) 2 R,C,H, for
� = 1, 2, 4 and t = 1, . . . , n. We arrange the time series
as rows into a rectangular data matrix M of size p ⇥ n.
The empirical correlation matrix of these data,

C =
1

n
MM† , (1)

with † the Hermitian conjugation, is positive definite and
either real symmetric, Hermitian, or Hermitian self-dual
for � = 1, 2, 4 and measures the linear correlations be-
tween the time series.

The largest and the smallest eigenvalue of a correla-
tion matrix are highly relevant in many fields. In a sim-
ple, interacting dynamical system [13, 14], occurring in
physics [15], biology [16], chemistry [17], ecology [18],
etc., the cumulative distribution function of the largest
eigenvalue estimates the probability to find the system in
a stable regime [15]. In high dimensional statistical infer-
ence, linear principal component analysis is a method to
reduce the dimension of the observations to “significant
directions” [19]. Especially, the largest eigenvalue corre-
sponds to the most “significant” component [19–22]. An-
other example is factor analysis, where the largest eigen-
value can be used to study common properties [19]. The
ratio of largest and smallest eigenvalue is important for
the statistics of the condition number [23, 24], in numer-
ical analysis including large random matrices. In wire-
less communication, eigenvalue based detection [25–27] is
a promising technique for spectrum sensing in cognitive
radio. It utilize the statistics of the ratio of largest and

smallest eigenvalue to estimate certain statistical tests
[28–30]. The smallest eigenvalue is important for esti-
mates of the error of a received signal [31–33] in wireless
communication, for estimates in linear discriminant [34]
as well as in principal component analysis [4], it is most
sensitive to noise in the data [4] and crucial for the iden-
tification of single statistical outliers [5]. In finance, it is
related to the optimal portfolio [35].

These examples show the considerable theoretical and

practical relevance to study the distributions P(�)
max

(t),

P(�)
min

(s) of the largest, respectively, smallest eigenvalue.
Both quantities can be traced back to gap probabilities,
namely

P(�)
max

(t) =
d

dt
E(�)

p ([0, t]; p) , (2)

P(�)
min

(s) = � d

ds
E(�)

p ([0, s]; 0) , (3)

where E(�)
p ([a, b];m) is the probability to find m out of p

eigenvalues in the interval [a, b].

This article has three major goals: First, we provide
for the first time a framework to map a large class of
invariant observables in correlated Wishart ensembles to
invariant matrix models. Second, we explicitly apply this
framework to the cumulative distribution function (2)
of the largest eigenvalue and find an invariant matrix
model. Third, we show that for a certain class of C’s, p/n
fixed and n, p tending to infinity the largest, respectively,
smallest eigenvalue are Tracy-Widom distributed.

The ensemble of random Wishart correlation matrices
WW †/n [19, 20] consists of p ⇥ n model data matrices
W 2 Matp⇥n(K), where K = R,C or H for � = 1, 2, 4,
such that upon average hWW †/ni = C. Data analysis
strongly corroborate, see e.g. Refs. [3, 7–11, 36], the
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Gaussian Wishart model [19, 20],

P (W |C) ⇠ exp

✓
��

2
tr WW †C�1

◆
. (4)

The matrix WW †/n is known as Wishart correlation
matrix. The corresponding measure d[W ] and all other
measures d[·] occurring later on are flat, i.e., the prod-
ucts of the independent di↵erentials. Due to the invari-
ance of d[W ], invariant observables depend on average
solely on the distinct, always non–negative eigenvalues
⇤j , j = 1, . . . , p of C which are referred to as the em-
pirical ones. We arrange them in the diagonal matrix
⇤̂ = ⇤⌦ 1�2 and introduce �

2

= 1 if � = 1, 2 and �
2

= 2
if � = 4 and for later purpose �

1

= 2�
2

/�, where 1N is
the unity matrix in N dimensions.

We consider an observable O(WW †) which is invari-
ant under an arbitrary change of basis and O(WW †) =
O(W †W ). This is a very weak assumption when study-
ing the eigenvalue statistics of WW †. We are interested
in the average

⌦O �
WW †�↵ = K

Z
d[W ]O �

WW †�P (W |⇤̂) , (5)

where the integration domain is Matp⇥n(K) and K is a
normalization constant. The non-triviality of the inte-
gral (5) is due to a group integral of the form

��(X, ⇤̂�1) =
Z

dµ(V ) exp

✓
��

2
trV (X ⌦ 1�2)V

†⇤̂�1

◆
,

(6)

where 1N is N dimensional unit matrix, the integration
domain is O(p),U(p) or USp(2p) for � = 1, 2, 4, respec-
tively, and X = diag(x

1

, . . . , xp) are the distinct eigen-
values of WW † = V (X ⌦ 1�2)V

†. It is known as the or-
thogonal, unitary or unitary-symplectic Itzykson-Zuber
integral [37]. For the unitary case only, it can be com-
puted analytically and is given in a closed form [37–39].

We replace the invariants of WW † in Eq. (5) by those
of the n ⇥ n matrix W †W . Thus, after introducing a
�-function and replacing W †W by a matrix in the same
symmetry class, say Q, we find

⌦O �
WW †�↵ = K

Z
d[H,Q]O (Q) exp (ıtrHQ)

⇥
Z

d[W ] exp
��ıtrHW †W

�
P (W |⇤̂) ,

(7)

where the integral of Q and H is over the set of real
symmetric, Hermitian, Hermitian self-dual matrices of
dimension n ⇥ n for � = 1, 2, 4, respectively. The H
integral is the Fourier representation of the delta func-
tion. A detailed mathematical discussion will be given
elsewhere [40]. The advantage of this approach is that H
couples to W †W while ⇤�1 to WW †, see Eq. (4). Hence
the integral over H is invariant under H ! UHU�1

with U orthogonal, unitary, and unitary symplectic for
� = 1, 2, 4 respectively. The remaining W integral be-
comes a Gaussian integral over an np-dimensional vector
with entries in K, yielding

⌦O �
WW †�↵ =

Z
d[H]

Fn [O] (H)

det1/�1

⇣
1np�2 + ıH ⌦ 2

�⇤
⌘ .

(8)

In the expression (8), we introduce the Fourier transform
of the observable O

Fn [O] (H) =
1

(2⇡)µ

Z
d[Q]O (Q) exp (ıtrHQ) (9)

where µ = n(n + 1)/2, n2, n(2n � 1) is the number of
real degrees of freedom of Q for � = 1, 2, 4, respectively.
If we know Fn [O](H), we can express the average (5)
as an invariant matrix integral. Thereby we completely
outmaneuver the Itzykson-Zuber integral (6).
We exploit this general observation to the statistics

of the extreme eigenvalues. The gap probabilities in
Eqs. (2) and (3) can be written as an ensemble aver-
aged observable. We carry it out for Eq. (2) only, since
for Eq. (3) it works analogously. The joint eigenvalue
distribution function derived from Eq. (4) is

P (X|⇤) = Kp⇥n |�p(X)|� det�X ��(X, ⇤̂�1) , (10)

with normalization constant Kp⇥n, Vandermonde deter-
minant �p(X) =

Q
i<j(xj � xi) and � = �(n � p + 1 �

2/�)/2, see Ref. [41, 42]. As �
2

is known, in the complex
case the joint probability distribution function provides
a representation that can be handled analytically [39].
The highly non–trivial part is the group integral Eq. (6).
The gap probability to find all eigenvalues below t can
then be cast into the form

E(�)
p ([0, t]; p) = Kp⇥n

Z
d[X] |�p(X)|� det�X

⇥
pY

i=1

⇥ (t1p � xi) ��(X, ⇤̂�1) ,
(11)

where ⇥(xi) is the Heaviside ⇥-function of scalar ar-
gument. The Heaviside function of matrix argument is
known in terms of an Ingham-Siegel integral, see Ref. [43]
and references therein. It is unity if its argument is posi-
tive definite and vanishes otherwise. Positive definiteness
is an invariant property implying that the ⇥-function de-
pends on the eigenvalues ai of A only,

⇥ (A) = ⇥ (a) =
NY

i=1

⇥ (ai) . (12)

Since the integral (11) is over the whole spectrum of
WW †, we express the gap probability as averaged ⇥-
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function,

E(�)
p ([0, t]; p) = Kp⇥nt

np�/2

Z
d[W ]P (W |pt⇤̂)

⇥⇥
�
1�2p �WW †� ,

(13)

where W 2 Matp⇥n(K). Analogously, the gap probabil-
ity (3) is given by

E(�)
p ([0, s]; 0) = Kp⇥ns

np�/2

Z
d[cW ]P (cW |ps⇤̂)

⇥⇥
⇣
cWcW † � 1�2p

⌘
det(n�p)/�1cWcW † ,

(14)

with cW is a square p⇥ p matrix .
To employ our approach to the gap probability (13), we

choose the observable to be O(WW †) = ⇥(1�2p�WW †).
The matrix 1�2n �W †W has p distinct eigenvalues that
coincide with those of 1�2p � WW † and n � p distinct
eigenvalues that are exactly one. Hence, using Eq. (12)
it is evident that O(WW †) = O(W †W ). To exchange
the Q, H and the W integral, we shift the contour of H
by �ı1�2n and find the inverse Fourier-Laplace transform
in Eq. (8)

Fn [⇥] (H � ı1�2n) ⇠
exp (tr (ıH + 1�2n))

det↵/�1 (ıH + 1�2n)
, (15)

where ↵ = n � 1 + 2/�. If we diagonalize H =
U (Y ⌦ 1�2)U

†, where U is in one of the three groups
and Y = diag(y

1

, . . . , yn) is the matrix of distinct eigen-
values of H, we arrive at a remarkable, new expression
for the gap probability (11)

E(�)
p ([0, t]; p) = Kp⇥n

Z

Rn

d[Y ] |�n(Y )|�
det↵��/2 (ıY + 1n)

⇥ exp (�
2

tr (ıY + 1n))Qp
k=1

det�/2 (1n + (ıY + 1n) 2⇤k/t�)
.

(16)

Likewise, we derive an invariant matrix model for the gap
probability (13)

E(�)
p ([0, s]; 0) = Kp⇥n

Z

Rp

d[Y ] |�p(Y )|�

⇥
Fp

h
⇥ (Q� 1�2p) det

(n�p)/�1Q
i
(Y )

Qp
k=1

det�/2 (1p + ı2⇤kY/s�)
.

(17)

The Fourier integral can be done using the di↵erential op-
erator constructed in appendix B of Ref. [44], but the ex-
pression becomes cumbersome and we do not need these
details for the following discussion.

Both results (16) and (17) have a p-fold product of
determinants in the denominator in common. Due to the
exponent �/2, this eigenvalue integral can be studied, at
least for � = 2, 4, using standard techniques of random

l

FIG. 1. Comparison of analytic results for the largest eigen-
value distribution (straight lines) with numerical simulations
(symbols) for � = 1, 2, 4. We consider 80000 realizations of
100⇥ 300 rectangular matrices, according to the distribution
Eq. (4).

matrix theory. For � = 1 standard methods do not apply
as square roots of characteristic polynomials appear. We
further evaluate the exact expression (16) elsewhere [40].
Here we focus on the limiting behavior which is more
relevant in applications. To this end, we assume that the
empirical eigenvalues are random variables according to
the distribution ⇢

emp

(⇤) and t = µ(⇤) + �(⇤)�, where
the centering and scaling parameters µ(⇤) and �(⇤) are
assumed to be large. We will show that this is a justified
assumption.
For the uncorrelated Wishart ensemble, i.e. ⇤ = 1p,

previous works [22, 23, 45–58] focus on the exact as well
as the limiting distribution of the largest eigenvalue x

max

and the smallest eigenvalue x
min

of WW †. For n, p tend-
ing to infinity, while p/n = �2 is fixed, it was proved that
the limiting distribution of �

max

= (x
max

� µ
+

)��1

+

and
�
min

= (x
min

� µ�)�
�1

� is the Tracy-Widom law f�(�)
[59–61], where

�± = ± (1± �)4/3

�1/3
n1/3 and µ± = (1± �)2n (18)

⌫ = n � p = (1 � �2)n and � fixed for p ! 1 [22].
Moreover, if n, p tend to infinity, while n�p is fixed it was
shown that the limiting largest eigenvalue distribution is
still Tracy-Widom [22, 47, 49].
For the correlated Wishart ensemble, the limiting

largest eigenvalue distribution is known for � = 2 in gen-
eral [62, 63] and for � = 1, 4 solely when ⇤ is a rank
one perturbation of the identity matrix [55, 64, 65]. The
smallest eigenvalue distribution was already studied in
great detail in the microscopic limit, i.e. n, p ! 1 while
n � p = ⌫ fixed in Refs. [41, 42], whereas for n, p ! 1
with p/n fixed no results are available yet.
Similar to Refs. [41, 42], we assume that the empiri-
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cal eigenvalues ⇤k are of order O(1) for n, p tending to
infinity. It turns out that only the rescaled trace, h·i

s

=
p�1tr (·), of ⇤m, where m = 1, does not tend to zero.
Moreover, another simple estimate shows h⇤mi

s

⇠ O(1)
such that we cannot determine the exact leading order of
the empirical eigenvalue variance Vars(⇤). Consequently,
we impose another requirement on the empirical eigen-
value distribution, namely Var

s

(⇤) ⇠ O(1/p↵), where
↵ > 0 is a free parameter which we fix later. As a conse-
quence of the Tschebysche↵ inequality,

P(|⇤� h⇤i
s

| � x)  Var
s

(⇤)

x2

⇠ O(1/p↵) , (19)

we make the following ansatz for the empirical eigenval-
ues by

⇤k = ⇤̄+ p�↵⇤(1)

k , (20)

where ⇤̄ = h⇤i
s

and ⇤(1)

k ⇠ O(1). If C is a properly
normalized correlation matrix, then ⇤̄ = h⇤i

s

= 1.
Substituting Eq. (20) into Eq. (16), and expanding the

p-fold product to leading order, under the assumption
that t is large, we find for each integration variable yi

pY

k=1

1
⇣
1 + (ıyi + 1) 2

t�

⇣
⇤̄+ p�↵⇤(1)

k

⌘⌘�/2

=

✓
1 +

ttr⇤(1)

p↵p⇤̄

d

dt
+ . . .

◆
1

⇣
1 + (ıyi + 1) 2

¯

⇤

t�

⌘p�/2
,

(21)

where i = 1, . . . , n. The dots correspond to higher powers
of p�↵ times the derivative td/dt. If we insert this expan-
sion back into the cumulative distribution function (16)
and keep only the leading terms in n, p we find

E(�)
p ([0, t]; p) = E(�)

p ([0, t]; p)
���
⇤=

¯

⇤1p

� tr⇤(1)

p↵p⇤̄
t
d

dt
E(�)

p ([0, t]; p)
���
⇤=

¯

⇤1p

+ . . . .

(22)

The first term on the right hand side of Eq. (22) is
Eq. (11) for an uncorrelated Wishart ensemble with vari-
ance ⇤̄. From the discussion above Eq. (18), we con-
clude that if we center and rescale appropriately, the first
term in Eq. (22) converges to the integrated distribution
function F�(�) =

R �
�1 f�(�0)d�0, found by Tracy and

Widom. Therefore, we focus our discussion on the sec-
ond term in Eq. (22).

For the centered and rescaled threshold parameter
t = µ

+

⇤̄ + �
+

⇤̄�, we take t times the derivative with
respect to t of a function, which in the limit n, p ! 1
and either n/p or n � p fixed converges to F�(�). Due
to p�1tr⇤(1) ! const. for p ! 1, the prefactor is of or-
der O(p�↵). Solely the rescaling of the derivative td/dt

FIG. 2. Comparison of analytic results for the smallest eigen-
value distribution (straight lines) with the same numerical
simulations (symbols) as in Fig. 1 for � = 1, 2, 4.

can influence this order. A careful analysis shows if ↵ is
chosen such that for n ! 1

1

p↵
µ
+

�
+

= �2↵�1(1 + �)2/3n2/3�↵ ! 0 , (23)

the second term in Eq. (22) goes to zero as well. Thus,
we require that ↵ > 2/3 so that a macroscopic distance
between the largest eigenvalue and the empirical eigen-
values is guaranteed only if the fluctuations of the empir-
ical eigenvalues do not overlap with those of the largest
eigenvalue.
Like the cumulative distribution function of the largest

eigenvalue (16), the dependence of the smallest eigen-
value gap probability (17) on the empirical eigenvalues
⇤ solely enter in the determinant in the denominator.
Hence, we can apply the analysis done for the gap prob-
ability corresponding to the largest eigenvalue to that of
the smallest one. Eventually, after centering and rescal-
ing the threshold parameter, s = µ̃�⇤̄+ �̃�⇤̄�, where µ̃�
and �̃� are as in Eq. (18) and assuming the same restric-
tions on the empirical eigenvalue distribution as above,
we obtain that cumulative distribution function is F�(�).
To illustrate our findings, we compare our analytical

results with Monte Carlo simulations for � ⇡ 0.33. The
empirical eigenvalues are random variables with respect
to a uniform distribution such that Vars (⇤) = p�7/4,
h⇤is = 1 = ⇤̄ and n2/3Vars (⇤) ⇡ 0.013 ⌧ 1. The Com-
parison for the largest and the smallest eigenvalue dis-
tribution is shown in Fig. 1 and Fig. 2, respectively. To
demonstrate the agreement with the numerical simula-
tions, we properly adjust the centering without changing
the limit behavior. For the smallest eigenvalue we even
properly adjust the scaling by a constant shift of the order
O(1/n). This is because the smallest eigenvalue always
“feels” the presents of a hard wall at zero, whereas the
largest eigenvalue does not see any barrier such that the
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1/n correction is stronger for the smallest eigenvalue.
In conclusion, we presented a new approach to map

observables depending on the eigenvalues of a Wishart
matrix only, to an invariant Hermitian matrix model.
We demonstrated the concept by applying it to the gap
probabilities corresponding to the largest and smallest
eigenvalue distributions. Utilizing these invariant ma-
trix model, we showed that for special empirical eigen-
value spectra, the Tracy-Widom distribution persist for
the smallest and the largest eigenvalue if n, p tend to in-
finity while p/n = �2 is fixed. We confirmed our findings
by numerical simulations.

A simultaneous but independent study on related is-
sues was very recently put forward in Ref. [66].
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Abstract. We consider rectangular random matrices of size p× n belonging to
the real Wishart-Laguerre ensemble also known as the chiral Gaussian orthogo-
nal ensemble. This ensemble appears in many applications like QCD, mesoscopic
physics, and time series analysis. We are particularly interested in the distribution
of the smallest non-zero eigenvalue and the gap probability to find no eigenvalue
in an interval [0, t]. While for odd topology ν = n − p explicit closed results are
known for finite and infinite matrix size, for even ν > 2 only recursive expres-
sions in p are available. The smallest eigenvalue distribution as well as the gap
probability for general even ν is equivalent to expectation values of characteristic
polynomials raised to a half-integer power. The computation of such averages is
done via a combination of skew-orthogonal polynomials and bosonisation meth-
ods. The results are given in terms of Pfaffian determinants both at finite p and
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1. Introduction

The ensemble of real rectangular p×n matrices W with independent Gaussian entries
is the oldest example of random matrix theory, introduced by Wishart in the context
of multivariate statistics [1]. Since then more general ensembles built of complex
and quaternionic matrix elements have found a wide area of applications, ranging
from physics and mathematics to biology and engineering, e.g. see Refs. [2, 3] for
reviews and references. These ensembles got several names and are widely known as
Wishart ensembles because of its inventor, Laguerre ensembles because of its relation
to the Laguerre polynomials, and chiral Gaussian orthogonal, unitary, or symplectic
ensembles hinting to their transformation properties. They are concerned with the
singular value statistics of W while in the case of the complex eigenvalue statistics the
name Ginibre ensemble is more common.

Despite the fact that the real ensembles are more versatile than their complex
and especially their quaternion counterpart, those ensembles are at the same time
technically challenging. This is particularly true when correlations among the matrix
elements are introduced. The introduction of correlations can be done in three ways,
either by a correlation matrix resulting in the correlated Wishart ensemble as it is the
case in the analysis of real time series [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], by
extending to non-Gaussian probability distributions of the matrix elements [19, 20, 21]
or by adding constraints [22, 23, 24].

When analysing the spectral statistics of the positive definite matrix WWT

one has to distinguish between two kinds of correlations. The first kind involves
density correlation functions which can be considered on a global or local scale. The
second kind comprises correlations only involving individual eigenvalues such as their
distribution or spacing. These correlations are by definition local objects since on a
large scale individual eigenvalues with a global separation are usually screened and
thus uncorrelated. An efficient tool to compute the second kind of correlations are
gap probabilities, meaning that a certain interval is void of eigenvalues.

To emphasize the importance of the distribution of individual eigenvalues we
summarise a few applications: The condition number of a matrix A is the ratio of the
root of the largest over the smallest non-zero eigenvalues of AAT , which was analysed
in a random matrix setting in [25]. The smallest eigenvalues are responsible for
chiral symmetry breaking in quantum field theory where real matrices correspond to
Quantum Chromodynamics with two colours [26]. Those eigenvalues are very sensitive
for fitting lattice QCD data to random matrix results, see [27, 28, 30, 32, 33, 34, 35, 36]
and in particular [29, 31] for our symmetry class, for the discussion of the importance
of individual eigenvalues in fitting lattice data. In this context, the number of
zero-eigenvalues n − p ≡ ν ≥ 0 corresponds to the gauge field topology, see [37]
for a review on this topic. A further application of these quantities can be found
in studying topological insulators, see [38] for a recent review. In multivariate
statistics the smallest eigenvalue plays an important role in high dimensional inference
[39, 40, 41, 42].

In the uncorrelated Gaussian case all density correlation functions are known
most explicitly. For finite p and arbitrary ν the k-point correlation functions of
the real Wishart-Laguerre ensemble are given by a Pfaffian determinant of a kernel
involving skew-orthogonal polynomials [26, 43]. These are expressed in terms of
Laguerre polynomials. In the limit p → ∞ the local kernels are universal and are
given by the corresponding Bessel-, sine- or Airy-kernel, for the hard-edge, bulk or
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soft-edge scaling limit, see [44] for the corresponding expressions and references. We
are particularly interested in the Bessel kernel in the microscopic origin limit (hard
edge). The universality of this kernel was shown for non-Gaussian ensembles in [45]
and for the some kinds of correlated Wishart ensembles in [14, 18].

Because the individual, e.g. smallest eigenvalue distribution, can be in principle
expressed through a Fredholm Pfaffian [46] (see also [27]) of the very same kernel this
universality is inherited by the individual eigenvalue distributions. Due to this fact we
can restrict ourselves to the Gaussian case. Apart from this relation the universality of
the smallest eigenvalue at the soft edge has been proved explicitly [47]. Furthermore,
it was shown in [23] that the known expressions for the smallest eigenvalue in the
Gaussian ensemble and the one with a fixed trace constraint [22] agree hinting to
stronger universal with respect to non-differentiable deformation.

What is know more explicitly about the distribution of the smallest eigenvalue?
Closed expressions in the quadratic case ν = 0 were derived in [48] (c.f. [49]). In [25]
an exact recursive scheme in the matrix size p was set up, leading to closed results
for arbitrary p for ν = 0, 1, 2, 3 only. A distinct structure including both polynomials
and Tricomi’s confluent hypergeometric functions was observed to hold for ν even and
odd, respectively. Exact results for finite p and in the hard-edge scaling limit were
derived in [50] for all odd ν fixed and extended to the k-th smallest eigenvalue in [30].
Both results are represented as a Pfaffian determinant, a structure that was unnoticed
in the recursion of [25]. Simple approximations following the idea of a Wigner surmise
were tested in [51]. An efficient numerical algorithm was used to directly compute the
Fredholm Pfaffian expression in [36], and most recently an extension to the correlated
Wishart case was presented in [14].

The goal of the present article is the derivation of a Pfaffian representation for the
case of even ν at finite and infinite p announced in [52]. Thus we aim at completing the
picture of the smallest eigenvalue distribution in the real Wishart-Laguerre ensemble.
The idea in [50, 30] that we will use is to represent the smallest eigenvalue and the gap
probability as an expectation value of powers of characteristic polynomials. For odd
ν half integer powers appear, which is the technical problem we have to solve. The
tool we apply are skew-orthogonal polynomials with a non-standard weight function
containing a square root. The determination of these polynomials is then based on
the method of Grassmann variables and bosonisation [53, 54, 55], a particular case of
the supersymmetry method, see [56, 57] and references therein.

The relevance of such expectation values of characteristic polynomials including
half integer powers has been advocated independently and solved in a few special
cases in [58], motivated mainly from applications to Quantum Chaos. There, the
Gaussian orthogonal ensemble is considered. We present results for the chiral Gaussian
orthogonal ensemble (chGOE) for characteristic polynomials raised to an arbitrary
half-integer power.

The outline of the work is as follows: In section 2, we formulate the problem
in terms of expectation values of characteristic polynomials. These can be computed
by introducing non-standard polynomials that are skew-orthogonal with respect to a
weight function containing a square root, see section 3. When expressed in terms of
these polynomials both the gap probability and the smallest eigenvalue distribution
exhibit a Pfaffian structure. The building blocks appearing in these expressions, the
partition function, the polynomials and their kernel are computed in section 4. Here
we also summarise our exact results for arbitrary p and odd ν. In section 5 we take the
microscopic origin limit (p → ∞ and ν fixed and even). Furthermore, we illustrate
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our findings by numerical simulations, including the correlated Wishart case which
follows the same universal predictions, see section 6. Our conclusions and discussion
of open problems are presented in section 7.

2. Formulation of the Problem

We consider the singular value statistics close to the origin of the real Wishart-Laguerre
ensemble. To this end, we take W to be a rectangular matrix of size p × n with
“rectangularity” ν = n−p ≥ 0 and real entries Wij ∈ R. In QCD the “rectangularity”
ν is identified with the index of the Dirac-operator and, thus, with the topological
charge of the gauge field configuration, c.f. [37]. The entries of W are drawn from a
Gaussian distribution with row-wise correlations [5],

P (W |C) ∼ exp

(
−
1

2
trWWTC−1

)
. (2.1)

Sometimes also doubly correlated Wishart random matrices are considered to model
spatio-temporal correlations, e.g. see [8, 9, 11, 17]. The singular value statistics of
W are completely determined by the eigenvalue statistics of the matrix WW † which
is called the Wishart correlation matrix. The measure on the space of rectangular
matrices d[W ] is the flat measure, the product of all independent differentials. In
all of our analytic computations we take C = 1p, i.e. we consider the uncorrelated
Wishart model. Only in section 6 we argue that generically also the smallest eigenvalue
of the correlated model follows the universal distribution derived in section 5.

In order to consider the statistics of the eigenvalues of the Wishart matrix we
diagonalize WWT = OXOT , where X = diag(x1, . . . , xp) > 0 and O ∈ O(p) is an
orthogonal matrix. This leads to the following normalised joint probability distribution
function (jpdf) of the eigenvalues, e.g. see [59, 44]

P (X) ≡
1

Zp,ν
|∆p(X)|

p∏

i=1

x(ν−1)/2
i exp (−xi/2) . (2.2)

The constant Zp,ν is the partition function and, hence, the inverse of the normalisation
constant. It is a Selberg integral [59] and explicitly reads

Zp,ν ≡
p∏

i=1

∞∫

0

dxix
(ν−1)/2
i e−xi/2 |∆p(X)| = 2p(p+ν)/2

p−1∏

j=0

Γ [(j + 3)/2]Γ [(j + ν + 1)/2]

Γ [3/2]

(2.3)

for arbitrary ν ≥ −1. The term ∆p(X) =
∏p

i>j(xi − xj) denotes the Vandermonde
determinant. The variables xi coincide with the squares of the singular values of W
and typically describe the low lying eigenvalues ±i

√
xi of the QCD-Dirac operator

[26, 37].
For the smallest non-zero eigenvalues two kinds of large-p limits have to be

distinguished. If we take n and p to infinity while c ≡ p/n, c ∈ (0, 1], is kept fixed, the
macroscopic density of Marchenko-Pastur detaches from the origin. The level density
vanishes with a square root behaviour at both endpoints which are called soft edge. In
this situation both, the largest [49, 60] and the smallest eigenvalue, are Tracy-Widom
distributed [47].

In contrast to this soft edge scaling we can fix the index ν = n− p when taking n
and p to infinity. Then the macroscopic density behaves as an inverse square root at the
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origin, also known as the hard edge. The corresponding scaling is called microscopic
origin limit. This limit will be considered in section 5. The microscopic level density
[26, 37] and all k-point correlation functions are given by the Bessel-kernel [43] which
is universal [45]. In principle all individual eigenvalue distributions including the
smallest follow from these density correlations for arbitrary fixed ν. They are given by
the Fredholm Pfaffian of the Bessel kernel [46]. In particular the limiting distribution
of the smallest eigenvalue, Pν(x), follows the microscopic spectral density, ρν(x), for
small x, in particular Pν(x) ≈ ρν(x). The level density of the matrix WW † is [61]

ρν(u) =
1

4

(
Jν(

√
u)2 − Jν−1(

√
u)Jν+1(

√
u)
)
+

1

4
√
u
Jν(

√
u)



1−

√
u∫

0

dsJν(s)



 (2.4)

with Jν the Bessel function of the first kind.
At finite p and ν the distribution of the smallest eigenvalue, Pp,ν(t), can be

derived via the gap probability Ep,ν(t). This gap probability is the probability to find
no eigenvalue in the interval [0, t]. Starting from the jpdf (2.2) we immediately have

Ep,ν(t) =
1

Zp,ν

p∏

i=1

∞∫

t

dxix
(ν−1)/2
i e−xi/2 |∆p(X)| (2.5)

=
1

Zp,ν
e−pt/2

p∏

i=1

∞∫

0

dxi(xi + t)(ν−1)/2e−xi/2 |∆p(X)| . (2.6)

In the second line we have shifted xi → xi + t for all i = 1, . . . , p leaving the
Vandermonde determinant invariant.

Let us define the expectation value for any integrable quantity f(X) that only
depends on the eigenvalues,

〈f(X)〉p,ν ≡
1

Zp,ν

p∏

i=1

∞∫

0

dxix
(ν−1)/2
i e−xi/2 f(X) |∆p(X)| . (2.7)

Then the gap probability (2.6) can be written as an expectation value of a
characteristic polynomial to a certain power with respect to a different partition
function with fixed index ν = 1,

Ep,ν(t) = e−pt/2Zp,1

Zp,ν

〈
det(ν−1)/2 (X + t1p)

〉

p,1
. (2.8)

For ν = 2k+ 1 odd the determinant is raised to an integer power γ ≡ (ν − 1)/2 = 2k.
Such expectation values have been computed for finite dimension [50] as well as in
the microscopic origin limit [30]. For ν = 2k even the expectation value is taken of
a half integer power of a determinant. This average was up to now an open problem
and is computed in the present work. The special cases with ν = 0 [49] and ν = 2
[23] were computed in the microscopic limit using a different route, where the latter
result is based on the recursive construction of Ref. [25] that only yields closed form
expressions for finite p at ν = 0 and ν = 2 even.

Next we turn to the distribution of the smallest eigenvalue. This distribution
follows from the gap probability by setting the smallest eigenvalue equal to t, say
x1 = t. Hence it is the first derivative in t of the gap probability (2.5),

Pp,ν(t) = −
d

dt
Ep,ν(t) ⇔ Ep,ν(t) = 1−

t∫

0

dt′Pp,ν(t
′), (2.9)
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where the second relation fixes the normalisation. Rather than first computing Ep,ν(t)
and then differentiating with respect to t we can directly start with Pp,ν(t),

Pp,ν(t) =
p

Zp,ν
t(ν−1)/2e−t/2

p∏

i=2

∞∫

t

dxix
(ν−1)/2
i e−xi/2(xi − t)|∆p−1(xj≥2)| (2.10)

=
p

Zp,ν
t(ν−1)/2e−pt/2

p∏

i=2

∞∫

0

dxixi(xi + t)(ν−1)/2e−xi/2|∆p−1(xj≥2)|, (2.11)

where ∆p−1(xj≥2) does not contain x1. We recall that the smallest eigenvalue is
chosen as x1 = t. Therefore the absolute value of these terms can be dropped. In the
second line we have again shifted xi → xi + t for all i = 2, . . . , p. Consequently also
Pp,ν(t) can be written as an expectation value,

Pp,ν(t) = p t(ν−1)/2e−pt/2Zp−1,3

Zp,ν

〈
det(ν−1)/2 (X + t1p−1)

〉

p−1,3
. (2.12)

Here the expectation value is with respect to a partition function of p− 1 eigenvalues
with ν = 3 fixed, accounting for the extra factor xi in Eq. (2.11).

Once again for ν = 2k + 1 the expectation value of determinants to an integer
power k is known. Our task reduces to the computation the half integer case ν = 2k.
Summarising the problem we consider the following type of expectation values

〈
det−1/2 (X + t1p)

k∏

l=1

det (X + tl1p)

〉

p,ν

. (2.13)

Such problems were advocated independently in Ref. [58] for the Gaussian orthogonal
ensemble also including more than one square root in the denominator. While special
cases have been computed in Ref. [58], having different applications in mind, we
determine Eq. (2.13), leading us to the gap probability and the smallest eigenvalue
distribution at finite matrix dimension and in the microscopic limit.

As a final remark the gap probability (2.5) has been studied in more detail
for even rectangularity ν = 2k in [14], where a dual supermatrix model was
found. Although the supermatrix model is invariant under the action of a particular
supergroup, it was not solved in [14], because of non-trivial subtleties related to the
necessary diagonalisation. We circumvent these subtleties by combining the method
of Grassmann variables with the theory of orthogonal polynomials.

3. Pfaffian Structure and Non-Standard Skew-Orthogonal Polynomials

We tackle the expectation value (2.13) by including the unwanted inverse half-integer
power of the characteristic polynomial into the weight function. The remaining
integer powers can be expressed in terms of skew orthogonal polynomials (SOP) using
standard techniques. The difficulty is thus shifted into finding the SOP with respect
to the t-dependent weight

wγ(x, t) =
xγ

√
x+ t

e−ηx/2. (3.1)

The exponent γ is equal to γ = 0 for the gap probability and to γ = 1 for the smallest
eigenvalue. Thus we calculate the SOP in a unifying way for both quantities. The
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auxiliary parameter η is set to unity unless otherwise stated. It is needed to generate
the polynomials of an odd order.

We seek monic, parameter dependent polynomials R(γ)
j (y, t) = yj + . . . that are

skew-orthogonal with respect to the anti-symmetric product

〈f, g〉t =

∞∫

0

dy

∞∫

0

dx
y − x

|y − x|
wγ(x, t)wγ(y, t)f(x)g(y)

=

∞∫

0

dy

y∫

0

dxwγ(x, t)wγ(y, t) (f(x)g(y)− f(y)g(x)) (3.2)

for two arbitrary integrable functions f and g. In particular the polynomials have to
fulfill the relations〈

R(γ)
2j+1, R

(γ)
2i

〉

t
= r(γ)j (t)δij ,

〈
R(γ)

2j , R(γ)
2i

〉

t
=
〈
R(γ)

2j+1, R
(γ)
2i+1

〉

t
= 0 (3.3)

for p = 2L even. The parameter dependent constants r(γ)i (t) are their normalization
constants. In the case p = 2L + 1 odd the polynomials have to satisfy an additional
condition [59]

〈
R̂(γ)

2j+1, R̂
(γ)
2i

〉

t
= r(γ)j (t)δij ,

〈
R̂(γ)

2j , R̂(γ)
2i

〉

t
=
〈
R̂(γ)

2j+1, R̂
(γ)
2i+1

〉

t
= 0,

∞∫

0

dxR̂(γ)
i (x, t)wγ(t;x) = δi,2K , (3.4)

which fixes the normalization of the polynomial of highest order R̂(γ)
2K(x, t) withK ≥ L.

Note that the normalization constants r(γ)j (t) are the same as for the case p = 2L.
The reason is the following relation between the two different kinds of the polynomials

R̂(γ)
j (y, t) = R(γ)

j (y, t)−
∫∞
0 dxwγ(x, t)R

(γ)
j (x, t)

∫∞
0 dxwγ(x, t)R

(γ)
2K(x, t)

R(γ)
2K(y, t) (3.5)

for j < 2K and R̂(γ)
2K(y, t) = R(γ)

2K(y, t)/
∫∞
0 dxwγ(x, t)R

(γ)
2K(x, t). Therefore

we concentrate on the polynomials R(γ)
j (y, t) only. We emphasize that the

additional condition
∫∞
0 dxR̂(γ)

i (x, t)wγ(t;x) = δi,2K can be also replaced by other
conditions. For example in the framework of [62] the condition would read∫∞
0 dxR̂(γ)

i (x, t)wγ(t;x) = δi,0 for all i > 0 which has other advantages in the
calculation.

We define a new partition function

Zp,γ(t) ≡
p∏

i=1

∞∫

0

dxiwγ(xi; t) |∆p(X)|

= p!

"p/2#−1∏

j=0

r(γ)j (t)






∫ ∞

0
dxwγ(x, t)R

(γ)
2L (x, t), p = 2L+ 1,

1, p = 2L

= Zp,2γ+1

〈
det−1/2(X + t1p)

〉

p,2γ+1
, (3.6)

where the second line is a general relation between the normalization constants of the
SOP and the partition function [59]. The floor function &p/2' yields the largest integer
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smaller than or equal to p/2. Employing this partition function we introduce a new
parameter dependent expectation value of an integrable observable f ,

〈f(X)〉tp,γ ≡
1

Zp,γ(t)

p∏

i=1

∞∫

0

dxiwγ(xi; t) f(X) |∆p(X)| . (3.7)

The parametric dependence on t is indicated through the superscript.
In this framework the gap probability (2.8) and the distribution of the smallest

eigenvalue (2.12) (both for ν = 2k) read

Ep,2k(t) = e−pt/2Zp,0(t)

Zp,2k

〈
detk (X + t1p)

〉t
p,0

, (3.8)

Pp,2k(t) = p t(2k−1)/2e−pt/2Zp−1,1(t)

Zp,2k

〈
detk (X + t1p−1)

〉t
p−1,1

. (3.9)

It is worth emphasizing that now only integer powers appear in both expressions.
Thus, we can apply the results from the literature for general weight functions, c.f.
[50, 63, 64]. For k = 2m even, we obtain the following Pfaffian expression with a
2m× 2m dimensional kernel, Kp+k(κa,κb),
〈

k∏

a=1

det(X − κa1p)

〉t

p,γ

=
p!Zp+k,γ(t)

(p+ k)!Zp,γ(t)

1

∆k(κ)
pf1≤a,b≤k [Kp+k(κa,κb, t)] , (3.10)

while for k = 2m+ 1 we have
〈

k∏

a=1

det(X − κa1p)

〉t

p,γ

=
p!Zp+k+1,γ(t)

(p+ k + 1)!Zp,γ(t)

1

∆k(κ)

× pf1≤a,b≤k

[
Kp+k+1(κa,κb) Fp+k+1(κa, t)
−Fp+k+1(κa, t) 0

]
.

(3.11)

The kernels inside the Pfaffians are given by

Kl(κa,κb, t) =






(l−2)/2∑

j=0

R(γ)
2j+1 (κa, t)R

(γ)
2j (κb, t)−R(γ)

2j+1 (κb, t)R
(γ)
2j (κa, t)

r(γ)j (t)
,

l ∈ 2N,
(l−3)/2∑

j=0

R̂(γ)
2j+1 (κa, t) R̂

(γ)
2j (κb, t)− R̂(γ)

2j+1 (κb, t) R̂
(γ)
2j (κa, t)

r(γ)j (t)
,

l ∈ 2N+ 1.

(3.12)

The case of k = 2m + 1 odd is obtained here from the case k = 2m + 2 even
by introducing an additional determinant in the average depending on the dummy
variable κ2m+2. This variable is sent to infinity such that the additional row and
column in Eq. (3.11) reads

Fl(κa, t) = − lim
κ2m+2→∞

Kl(κa,κ2m+2, t)

κl−1
2m+2

. (3.13)

This limit is independent of l being even or odd.
Once we have determined the SOP and their kernel we have to take the limit,

κa → −t for all κa. This yields derivatives of the polynomials R(γ)
i (κb, t) because
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of l’Hospital’s rule. Moreover we could also just take part of the κa → −t which
is needed to calculate the distributions of the second smallest eigenvalue, the third
smallest eigenvalue etc., see Ref. [30]. The distributions of the smallest eigenvalue for
QCD with dynamical quarks can be found in this way, too, cf. Refs. [30].

In the next section we explicitly compute the SOP. For this computation it is
helpful to understand also these polynomials as expectation values [65, 66],

R(γ)
2j (y, t) = 〈det (y12j −X)〉t2j,γ , (3.14)

R(γ)
2j (y, t) = 〈det (y12j+1 −X) (y + cj(t) + TrX)〉t2j+1,γ

=

(
y + c′j(t)− 2

∂

∂η

)
R(γ)

2j (y, t)

∣∣∣∣
η=1

=

(
y + ĉj(t)− 2y

∂

∂y
− 2t

∂

∂t

)
R(γ)

2j (y, t). (3.15)

These two last relations also hold in a much more general framework where
wγ(x, t)wγ(y, t)(y − x)/|y − x| is replaced by an arbitrary anti-symmetric two-point
weight g(x, y) = −g(y, x) [67].

The odd polynomials are not unique [65, 59] which is reflected in an ambiguous
constant cj(t). This constant can depend on t and the index j but is independent of y.
This dependence is the reason why one could absorb the derivative of the normalization
into c′j(t) and rephrase the derivative in η as a derivative in t and y, yielding a new
constant in ĉj(t). We will stick to the derivative in η here.

The kernel can be directly expressed as an expectation value, too. Rather than
computing the individual polynomials (3.14) and (3.15) and performing the sum (3.12)
one can consider the average

Kl(κa,κb, t) =
l(l − 1)Zl−2,γ(t)

Zl,γ(t)
(κa − κb) 〈det (X − κa1l−2) det (X − κb1l−2)〉tl−2,γ ,

(3.16)

e.g see [68] in the hermitian limit or [64] in the general framework of anti-symmetric
two-point weights. This representation is also useful when proving that the large-p
limit for even and odd p yields the same answer. The additional row and column in
eq. (3.11) is then

Fl(κa, t) =
l(l − 1)Zl−2,γ(t)

Zl,γ(t)
〈det (X − κa1l−2)〉tl−2,γ . (3.17)

We emphasize that for l even this function is equal to the polynomial R(γ)
l−2(κa), up to

a constant.

4. Calculation of the Finite p Results

We start our calculation by considering the expectation value

Il(κ) =

〈
k∏

a=1

det(X − κa1l)

〉t

l,γ

. (4.1)

This quantity is a polynomial in the variables κa. The highest power in these variables
determines its normalization, Il(κ) = (−1)lkκl

1 · · ·κl
k + . . ., such that we can omit the
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normalization constants in the intermediate steps of our calculation. The overall
constant can be fixed at the end of the calculation.

In the first step we rewrite Eq. (4.1) as an integral over a rectangular real matrix

Ŵ of dimension l× (l+ 2γ + 1), where in this and the next subsection 2γ + 1 can be
any integer,

Il(κ) ∝
∫

d[Ŵ ]
k∏

a=1

det(κa1l − ŴŴT )
exp

(
− tr ŴŴT /2

)

√
det
(
ŴŴT + t1l

)

∝
∫

d[Ŵ ]
k∏

a=1

det(κa1l − ŴŴT )
exp

(
− tr ŴŴT /2

)

√
det
(
ŴT Ŵ + t1l+2γ+1

) . (4.2)

We emphasize that the normalization constants in each of the steps may dependent on
t. In the second line of Eq. (4.2) we replaced ŴŴT → ŴT Ŵ because of the relation
between the determinant and the trace, i.e. ln detA = tr lnA, and the invariance
of the trace under circular permutations. The switching of the order of Ŵ and ŴT

allows us to avoid the Efetov-Wegner terms appearing in the superspace dual to this
average, see for details Refs. [56, 10, 7, 69].

We introduce a real (l + 2γ + 1)-dimensional vector v to rewrite the single
determinant in the denominator as a Gaussian integral. Additionally we express the
product of determinants in the numerator as a Gaussian integral over a rectangular
matrix V of dimension l × 2k whose entries are independent Grassmann variables
(anti-commuting variables). For an introduction in supersymmetry we refer to
Refs. [70, 56, 57] and for the supersymmetry method with general weight to
Refs. [71, 53, 54, 69, 55]. Particularly the bosonisation is described in Refs. [53, 54, 55].
The matrix V satisfies the following symmetry under complex conjugation and under
Hermitian conjugation,

V ∗ = V

[
0 1k

−1k 0

]
and (V †)† = −V, respectively. (4.3)

Then, the average reads

Il(κ) ∝
∫

d[Ŵ ]

∫
d[V ]

∫
d[v] exp

(
−
1

2

[
tr ŴŴT + tr ŴŴTV V † + tr ŴvvT ŴT

])

× exp

(
−
1

2

[
tr V †V κ+ tvT v

])
(4.4)

with κ = diag(κ1, . . . ,κk)⊗12. Because of the symmetry (4.3) the dyadic matrix V V †

behaves like a real symmetric matrix such that we can integrate over the matrix Ŵ
without symmetrizing the other terms. This integration yields

Il(κ) ∝
∫

d[V ]

∫
d[v]det−1/2 (1l ⊗ 1l+2γ+1 + V V † ⊗ 1l+2γ+1 + 1l ⊗ vvT

)

× exp

(
−
1

2

[
tr V †V κ+ tvT v

])

∝
∫

d[V ]

∫
d[v]det−1/2 ([1 + vT v]1l + V V †)

× det−(l+2γ)/2 (1l + V V †) exp
(
−
1

2

[
tr V †V κ+ tvT v

])
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∝
∫

d[V ]

∫
d[v][1 + vT v]−(l+2k)/2det1/2

(
[1 + vT v]12k + V †V

)

× det(l+2γ)/2 (12k + V †V
)
exp

(
−
1

2

[
trV †V κ+ tvT v

])
. (4.5)

Again we have used the relation between the determinant and the trace and
the invariance of the trace under circular permutations. However we have to
remind ourselves that anti-commuting variables are involved such that tr(V V †)m =
− tr(V †V )m for any m ∈ N. This explains the change from negative to positive powers
of the determinant in V V †.

In the last step we can choose between two approaches, the generalized Hubbard-
Stratonovich transformation [71, 69] and the superbosonization formula [53, 54].
Both approaches are equivalent [55]. We choose the superbosonization formula
since it directly leads to a compact expression. Since no supermatrices comprising
both, bosonic and fermionic, blocks are involved the superbosonization reduces to
bosonisation, only. This means that the norm vT v is replaced by a positive variable r
(the square of the radial part of an ordinary real vector) and the dyadic matrix V †V
is replaced by a self-dual, unitary matrix,

U =

[
0 −1k

1k 0

]
UT

[
0 1k

−1k 0

]
∈ U(2k), (4.6)

because V †V is itself self-dual. The set of matrices defined via Eq. (4.6) is the
circular symplectic ensemble first studied by Dyson [72]. This set is the coset
CSE(2k) = U(2k)/USp(2k) and has a uniquely induced Haar measure dµ(U) from
the unique, normalized Haar measure of the unitary group U(2k). In particular up
to a normalization constant it is given by dµ(U) ∝ d[U ]/detk−1/2U , with d[U ] the
product of differentials of all independent matrix entries of U . The superbosonization
formula yields

Il(κ) = C−1
l

∫

CSE(2k)

dµ(U)det−l/2Udet(l+2γ)/2 (12k + U)

∫ ∞

0
dr

r(l+2γ−1)/2

(1 + r)(l+2k)/2

× det1/2 ([1 + r]12k + U) exp

(
−
1

2
[trUκ+ t r]

)
, (4.7)

with the normalization constant

Cl =

∫

CSE(2k)

dµ(U)det−l/2UetrU/2

∫ ∞

0
dr

r(l+2γ−1)/2

(1 + r)l/2
e−t r/2. (4.8)

The constant follows from the asymptotics for κ → ∞. The powers of the additional
terms det−l/2U and r(l+2γ−1)/2 only reflect the nature of the variables from where U
and r originate. We underline that the half-integer of the determinants do not cause
any problems since the matrices are Kramers degenerate. Therefore the determinants
of them are exact squares and the square root is taken such that the result is still a
polynomial in the matrix entries.

Starting from expression (4.7) we calculate the partition function Zp,γ(t) in

subsection 4.1, the polynomials R(γ)
j (y, t) and the function Fl(κa) in subsection 4.2,

and the kernel Kl(κa,κb) in subsection 4.3. In subsection 4.4 we collect everything and
give explicit expressions for the gap probability and the distribution of the smallest
eigenvalue.
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4.1. Normalization Constants

The partition function Zp,γ(t) is equal to the case l → p and k → 0 in the integral (4.7).
Therefore we have no integral over a circular unitary ensemble and only the integral
over r remains, i.e.

Zp,γ(t) =
Zp,2γ+1

2(p+2γ+1)/2Γ[(p+ 2γ + 1)/2]
tγ+1/2

∫ ∞

0
dr

r(p+2γ−1)/2

(1 + r)p/2
e−t r/2. (4.9)

The constant is fixed by the asymptotic behaviour Zp,γ(t) = Zp,2γ+1t−p/2 + o(t−p/2)
for t → ∞. The remaining integral is a Tricomi confluent hypergeometric function [73],

U(a, b, t) =
1

Γ[a]

∫ ∞

0
dzza−1(1 + z)b−a−1e−tz, with Re a, Re t > 0 and a, b, t ∈ C.

(4.10)

This hypergeometric function was already found in the work by Edelman [25] and is
a crucial ingredient in his recursive formula. The partition function reads

Zp,γ(t) = 2(p−1)(p+2γ+1)/2




p−1∏

j=0

Γ[(j + 3)/2]Γ[(j + 2γ + 2)/2]

Γ[3/2]





× tγ+1/2U

(
p+ 2γ + 1

2
,
2γ + 3

2
,
t

2

)
(4.11)

= 2p(p+2γ)/2




p−1∏

j=0

Γ[(j + 3)/2]Γ[(j + 2γ + 2)/2]

Γ[3/2]



U

(
p

2
,
1− 2γ

2
,
t

2

)
.

The second equality follows from the Kummer identity of Tricomi’s confluent
hypergeometric function [74], U(a, b, t) = t1−bU(a + 1 − b, 2 − b, t). Combining (2.3)
and (3.6) we have thus obtained the first building block for the Paffian structure,

〈
det−1/2(X + t1p)

〉

p,ν
= 2−p/2U

(
p

2
,
2− ν

2
,
t

2

)
, (4.12)

which is even valid for any ν ∈ N0.
In the particular case of the gap probability the constant is

Zp,0(t) = 2(p−1)/2




p∏

j=1

j!



 t1/2U

(
p+ 1

2
,
3

2
,
t

2

)
= 2p/2




p∏

j=1

j!



U

(
p

2
,−

1

2
,
t

2

)
.

(4.13)

We have used the duplication formula of the Gamma function, Γ[z]Γ[z + 1/2] =
21−2z√πΓ[2z], to simplify the expression. Also the partition function needed for the
distribution of the smallest eigenvalue the partition function takes a simple form,

Zp−1,1(t) = 2(p−4)/2




p∏

j=1

j!



 t3/2U

(
p+ 2

2
,
5

2
,
t

2

)

= 2(p−1)/2




p∏

j=1

j!



U

(
p− 1

2
,−

1

2
,
t

2

)
.

(4.14)
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The second expression of Tricomi’s confluent hypergeometric function is employed in
Edelman’s work [25].

The normalizations r(γ)j (t) of the SOP can be deduced by combining Eqs. (3.6)
and (4.11),

r(γ)j (t) =
Z2j+2,γ(t)

(2j + 2)(2j + 1)Z2j,γ(t)
(4.15)

= 2(2j)!Γ[2j + 2γ + 2]
U (j + γ + 3/2, γ + 3/2, t/2)

U (j + γ + 1/2, γ + 3/2, t/2)

= 2(2j)!Γ[2j + 2γ + 2]
U (j + 1,−γ + 1/2, t/2)

U (j,−γ + 1/2, t/2)
.

This term becomes important in the sum in the kernel.

4.2. Skew-Orthogonal Polynomials

First we concentrate on the function Fl(κa, t), see Eq. (3.17). For this case we set
l → l−2, k → 1, and κ → κa12. The 2×2 dimensional unitary matrix U only consists
of one phase eiϕ on the diagonal due to its self-duality. Thus we have to calculate the
double integral

Fl(κa, t) ∝
2π∫

0

dϕ

(
1 + eiϕ

)l+2γ−2

ei(l−2)ϕ
e−κae

iϕ
∫ ∞

0
dr

r(l+2γ−3)/2

(1 + r)l/2
e−t r/2 (1 + r + eiϕ

)
.

(4.16)

The term (η+ r+eiϕ) is the only coupling between the two integrals and yields a sum
of two terms, of which each is a product of two functions. The integrals over r are
equal to Tricomi confluent hypergeometric functions (4.10) while the integrals over ϕ
are modified Laguerre polynomials in monic normalization,

L(µ)
a (y) = (−1)aa!

2π∫

0

dϕ

2π
e−aiϕ(1 + eiϕ)µ+ae−yeiϕ = ya + . . . (4.17)

Then the function appearing in the additional row and column for odd k, cf. Eq. (3.11),
is

Fl(κa, t) = (−1)l
l(l − 1)Zl−2,γ(t)

Zl,γ(t)

(
L(2γ)
l−2 (κa) (4.18)

− (l − 2)
U[γ + (l − 1)/2, γ + 1/2, t/2]

U[γ + (l − 1)/2, γ + 3/2, t/2]
L(2γ+1)
l−3 (κa)

)
.

The function was normalized via the known expansion to leading order in κa

Fl(κa, t) = (−1)ll(l − 1)Zl−2,γ(t)κ
l−2
a /Zl,γ(t) + . . . (4.19)

From the expression (4.18) we can readily read off the polynomials of even order
(l → 2j + 2),

R(γ)
2j (y, t) = L(2γ)

2j (y)− 2j
U[j + γ + 1/2, γ + 1/2, t/2]

U[j + γ + 1/2, γ + 3/2, t/2]
L(2γ+1)
2j−1 (y)

=
U[j + γ + 1/2, γ + 1/2, t/2]

U[j + γ + 1/2, γ + 3/2, t/2]
L(2γ+1)
2j (y)

+
2j + 2γ + 1

2

U[j + γ + 3/2, γ + 3/2, t/2]

U[j + γ + 1/2, γ + 3/2, t/2]
L(2γ)
2j (y), (4.20)
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for any integer j ≥ 1 and R(γ)
0 (y, t) = 1. The second expression is the one presented

in Ref. [52] and can be found by splitting the term (1 + r + eiϕ) in (1 + eiϕ) and r
instead off eiϕ and (1 + r).

The odd polynomials are determined by their relation (3.15) to the polynomials of
even order. For this purpose we recall some recurrence relations of the monic Laguerre
polynomials and the Tricomi confluent hypergeometric functions,

(
y − 2y

∂

∂y

)
L(µ)
a (y) = L(µ)

a+1(y) + (µ+ 1)L(µ)
a (y)− a(µ+ a)L(µ)

a−1(y), (4.21)

t
∂

∂t
U

(
a, b,

t

2

)
= (1− b)U

(
a, b,

t

2

)
+ (b − a− 1)U

(
a, b− 1,

t

2

)
. (4.22)

These relations yield

R(γ)
2j+1(y, t) = L(2γ)

2j+1(y) + (2γ + 1+ ĉj(t))L
(2γ)
2j (y)− 4j(γ + j)L(2γ)

2j−1(y)

+ d(1)j (t)L(2γ+1)
2j (y) + d(2)j (t)L(2γ+1)

2j−1 (y) + d(3)j (t)L(2γ+1)
2j−2 (y) (4.23)

with the coefficients

d(1)j (t) = − 2j
U[j + γ + 1/2, γ + 1/2, t/2]

U[j + γ + 1/2, γ + 3/2, t/2]
,

d(2)j (t) = (2γ + ĉj(t))d
(1)
j (t) +

(
d(1)j (t)

)2
− 4j(j + 1)

U[j + γ + 1/2, γ − 1/2, t/2]

U[j + γ + 1/2, γ + 3/2, t/2]
,

d(3)j (t) = − 2(2j − 1)(γ + j)d(1)j (t). (4.24)

We have already identified part of the terms in d(2)j (t) and d(3)j (t) with the coefficient

d(1)j (t).
We underline that the ambiguous constant cj(t) for the odd polynomials, cf.

Eq. (3.15), is not fixed, yet. Thus we are free to choose the coefficient cj(t) = −2γ− 1
such that one of the polynomials drops out in (4.23). Then the polynomials of odd
order are a linear combination of only five Laguerre polynomials. This simplifies
the result presented in Ref. [52]. Nevertheless we emphasize that both results are
correct due to the various relations satisfied by the modified Laguerre polynomials
and Tricomi’s confluent hypergeometric functions, and the ambiguity in the constant
cj(t) which was chosen differently in Ref. [52] compared to the simpler choice here. In
the microscopic origin limit performed in section 5 we choose another constant cj(t)
to simplify the asymptotic result.

The polynomials R̂(γ)
j (y, t), needed for the case p = 2L+ 1 odd, can be obtained

from the polynomials R(γ)
j (y, t) with the help of the relations (3.5). Therefore the

polynomials of even order, R̂(γ)
2j (y, t), are a linear combination of four Laguerre

polynomials and the polynomials of odd order, R̂(γ)
2j+1(y, t), can be expressed as a

sum of six Laguerre polynomials with a suitable choice of the constant cj(t).

4.3. Kernel

The kernel Kl(κa,κb, t) can be first of all understood as a sum over the SOP, see
Eq. (3.12). Plugging the results of subsection 4.2 into this sum we are done. However
we can also start from the representation (3.16) and take the general result (4.7) for
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l → l − 2, k → 2, and κ → diag(κa,κb)⊗ 12. Then we find

Kl(κa,κb, t)

(κa − κb)
∝

∫

CSE(4)

dµ(U)det−(l−2)/2Udet(l+2γ−2)/2 (14 + U) (4.25)

×
∫ ∞

0
dr

r(l+2γ−3)/2

(1 + r)(l+2)/2
det1/2 ([1 + r]14 + U) exp

(
−
1

2
[trUκ+ t r]

)
.

To evaluate the integrals we first expand the determinant coupling U and r, i.e.

det1/2 ([1 + r]14 + U) = (1 + r)2 + (1 + r) trU/2 + det1/2U , (4.26)

and arrive at
Kl(κa,κb, t)

(κa − κb)
(4.27)

∝
[∫ ∞

0
dr

r(l+2γ−3)/2e−t r/2

(1 + r)(l−2)/2
−
∫ ∞

0
dr

r(l+2γ−3)/2e−t r/2

(1 + r)l/2

(
∂

∂κa
+

∂

∂κb

)]

×
∫

CSE(4)

dµ(U)det−(l−2)/2Udet(l+2γ−2)/2 (14 + U) e− trUκ/2

+

∫ ∞

0
dr

r(l+2γ−3)/2e−t r/2

(1 + r)(l+2)/2

∫

CSE(4)

dµ(U)det−(l−3)/2Udet(l+2γ−2)/2 (14 + U) e− trUκ/2.

The derivatives in κa and κb generate the trace of U .
Next we diagonalize the matrix U = V diag(eiϕ1 , eiϕ2) ⊗ 12V † = V ΦV † with

V ∈ USp(4)/USp2(2). The normalized measure becomes

dµ(U) = |eiϕ1 − eiϕ2 |4dϕ1dϕ2dµHaar(V )/(6(2π)2) (4.28)

with dµHaar(V ) the normalized Haar measure on USp(4)/USp2(2). The integral over
V is an Itzykson-Zuber integral which is well-known [75],
∫

USp(4)/USp2(2)
dµHaar(V ) exp

[
−
1

2
tr V ΦV †κ

]
(4.29)

= 6

[
(κa − κb)(eiϕ1 − eiϕ2) + 2

(κa − κb)3(eiϕ1 − eiϕ2)3
e−κae

iϕ1−κbe
iϕ2

+ {ϕ1 ↔ ϕ2}
]
.

We plug this result into the integral over U and have for two arbitrary p, q ∈ N∫

CSE(4)

dµ(U)det−p/2Udet(p+q)/2 (14 + U) e− trUκ/2

=
2

(κa − κb)3

∫ 2π

0

dϕ1

2π

∫ 2π

0

dϕ2

2π
e−i(p+2)(ϕ1+ϕ2)(1 + eiϕ1)p+q(1 + eiϕ2)p+q

×
[
(κa − κb)(e

iϕ1 − eiϕ2)2 + 2(eiϕ1 − eiϕ2)
]
e−κae

iϕ1−κbe
iϕ2

=
2

(p+ 1)!(p+ 2)!

1

(κa − κb)3

×
[
(κa − κb)

(
(p+ 1)L(q)

p (κa)L
(q−2)
p+2 (κb)− 2(p+ 2)L(q−1)

p+1 (κa)L
(q−1)
p+1 (κb)

+(p+ 1)L(q−2)
p+2 (κa)L

(q)
p (κb)

)
− 2L(q−1)

p+1 (κa)L
(q−2)
p+2 (κb) + 2L(q−2)

p+2 (κa)L
(q−1)
p+1 (κb)

]

=
2

([p+ 2]!)2

[
1

κa − κb

(
∂

∂κa
−

∂

∂κb

)]2
L(q−2)
p+2 (κa)L

(q−2)
p+2 (κb). (4.30)
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The second equality results from an expansion of the polynomials in the bracket in
the phases eiϕ1 and eiϕ2 . The third equality is a compact representation by rewriting
the polynomial in the brackets as derivatives in κa and κb. We remark that Eq. (4.30)
is normalized to the leading order term 2(κaκb)p/[p!(p+ 2)!].

We combine the intermediate result (4.30), the definition of Tricomi’s confluent
hypergeometric function (4.10), and the derivative of monic Laguerre polynomials

∂yL
(µ)
a (y) = aL(µ+1)

a−1 (y). Then we find for the kernel

Kl(κa,κb, t) =
Zl−2,γ(t)

Zl,γ(t)
(κa − κb)

[
1

κa − κb

(
∂

∂κa
−

∂

∂κb

)]2
(4.31)

×
[
1−

U(γ + (l − 1)/2, γ + 1/2, t/2)

U (γ + (l − 1)/2, γ + 3/2, t/2)

(
∂

∂κa
+

∂

∂κb

)

+
U(γ + (l − 1)/2, γ − 1/2, t/2)

U (γ + (l − 1)/2, γ + 3/2, t/2)

∂2

∂κa∂κb

]
L(2γ−2)
l (κa)L

(2γ−2)
l (κb).

Although we have not identified the recurrence relation of the skew-orthogonal
polynomials we have been able to derive the Christoffel-Darboux formula
corresponding to the sum (3.12). It expresses the whole sum as a finite small number
of terms. Each term is a product of two Laguerre polynomials. The total number of
these terms is twelve after differentiating and ordering the Laguerre polynomials with
respect to there index. This is a fixed number of terms which shows that this expression
of the kernel is ideal to study the large l behaviour including the asymptotic behaviour
in the bulk and the soft edge scaling limit. Nonetheless we employ the expression as
a sum over the skew-orthogonal polynomials, see Eq. (3.12), in the derivation of the
gap probability and the distribution of the smallest eigenvalue in the microscopic
limit. The reasons are the additional derivatives we have to perform resulting from
degeneracy of the variables κj → −t, see subsection 4.4. Then the result (4.31)
becomes quite nasty due to a 1/(κa − κb) term in the differential operator in front of
the product of the two Laguerre polynomials.

4.4. Gap Probability and Distribution of the Smallest Eigenvalue

To obtain the gap probability or the distribution of the smallest eigenvalue itself we
have to set all variables equal, κ1 = . . . = κk = −t. Hence we have to apply l’Hôpital’s
rule in Eqs. (3.10) and (3.11) yielding
〈
detk(X + t1p)

〉t
p,γ

=
(−1)k(k−1)/2p!Zp+k,γ(t)

(p+ k)!Zp,γ(t)
∏k−1

j=0 j!
(4.32)

× pf1≤a,b≤k

[
∂a−1
κ1

∂b−1
κ2

Kp+k(κ1,κ2, t)|κ1=κ2=−t

]

for k = 2m even and
〈
detk(X + t1p)

〉t
p,γ

=
(−1)k(k−1)/2p!Zp+k+1,γ(t)

(p+ k + 1)!Zp,γ(t)
∏k−1

j=0 j!
(4.33)

× pf1≤a,b≤k

[
∂a−1
κ1

∂b−1
κ2

Kp+k+1(κ1,κ2, t)|κ1=κ2=−t ∂a−1
κ Fp+k+1(κ, t)|κ=−t

−∂b−1
κ Fp+k+1(κ, t)|κ=−t 0

]

for k = 2m+1 odd. The additional sign and the product of inverse factorials in front
of the Pfaffians result from differentiating the Vandermonde determinant ∆k(κ), cf.
Eqs. (3.10) and (3.11).
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The prefactor in front of the averages for the kernels Kp+k(κ1,κ2, t) and
polynomials Fp+k+1(κ, t), have to be considered together with the prefactors in
Eqs. (3.16) and (3.17). Hence we can normalize the two kernels such that the
microscopic origin limit of these kernels is finite in preparation of section 5. We
find the result for arbitrary γ,
〈
detk(X + t1p)

〉t
p,γ

= C(γ)
pk (t)pf0≤a,b≤k−1

[
Ξ(γ,p+k)
ab (t)

]
(4.34)

for k = 2m even and
〈
detk(X + t1p)

〉t
p,γ

= C(γ)
pk (t)pf0≤a,b≤k−1

[
Ξ(γ,p+k+1)
ab (t) ξ(γ,p+k+1)

a (t)

−ξ(γ,p+k+1)
b (t) 0

]
(4.35)

for k = 2m+ 1 odd. The functions serving as the kernels are

Ξ(γ,l)
ab (t) =

(−1)a+bt2γ+a+b+1l(l − 1)Zl−2,γ(t)

Zl,γ(t)
∂a
κ1
∂b
κ2
(κ1 − κ2) (4.36)

× 〈det (X − κ11l−2) det (X − κ21l−2)〉tl−2,γ |κ1=κ2=−t

= (−1)a+bt2γ+a+b+1

×






(l−2)/2∑

j=0

∂a
κ1
R(γ)

2j+1 (κ1, t) ∂b
κ2
R(γ)

2j (κ2, t)− ∂b
κ2
R(γ)

2j+1 (κ2, t) ∂a
κ1
R(γ)

2j (κ1, t)

r(γ)j (t)
,

l ∈ 2N,
(l−3)/2∑

j=0

∂a
κ1
R̂(γ)

2j+1 (κ1, t) ∂b
κ2
R̂(γ)

2j (κ2, t)− ∂b
κ2
R̂(γ)

2j+1 (κ2, t) ∂a
κ1
R̂(γ)

2j (κ1, t)

r(γ)j (t)
,

l ∈ 2N+ 1,

and

ξ(γ,l)a (t) =
(−1)at2γ+a

(l − 2)!
∂a
κ 〈det (X − κ1l−2)〉tl−2,γ |κ=−t (4.37)

= (−1)a+lt2γ+a

(
L(2γ+a)
l−a−2 (−t)

(l − a− 2)!
−

U[γ + (l − 1)/2, γ + 1/2, t/2]

U[γ + (l − 1)/2, γ + 3/2, t/2]

L(2γ+a+1)
l−a−3 (−t)

(l − a− 3)!

)
.

Due to this particular normalization we have the overall constant

C(γ)
pk (t) =






p!

(p+ k)!
∏k−1

j=0 j!

Zp+k,γ(t)

tk(k+2γ)/2Zp,γ(t)
, k ∈ 2N0,

p!
∏k−1

j=0 j!

Zp+k−1,γ(t)

tk(k+2γ)/2+(2γ−1)/2Zp,γ(t)
, k ∈ 2N0 + 1.

(4.38)

Note that we have not included the prefactors shown in Eqs. (3.8) and (3.9) for the
full expressions of the gap probability and the distribution of the smallest eigenvalue.
For the definition of the limiting quantities see Eqs. (5.1) and (5.2) where all factors
in p are accounted for.

First we show the explicit expression of the gap probability at finite N . We
multiply the results (4.34) and (4.35) for γ = 0 with the factor e−pt/2Zp,0(t)/Zp,2k.
Then we find the first of our main results,

Ep,2k(t) = C(0)
p,k(4pt)

−k2/2+1/2e−pt/2Γ[(p+ k + 1)/2]U ((p+ k + 1)/2, 3/2; t/2)

2
√
2p

× pf0≤a,b≤k−1

[
Ξ(0,p+k)
ab (t)

]
(4.39)



Smallest eigenvalue distribution in the chGOE with even topology 18

!

!

!

!

!

!

!

!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"

"

"

"

"

"

"

"

"

"

"

"

"

"
"
"
"
"
""""""""""""""""""""""""""""""""""""

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#
#
#
#
#########################

$ $
$

$

$

$

$

$

$

$

$

$

$
$
$
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $

% % %
%
%

%

%

%

%

%

%

%

%

%

%

%

%

%
%
%
% % % % % % % % % % %

! k!0
" k!1
# k!2
$ k!3
% k!4

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

t

E 1
0,
2
k!
t"

p!19 ; k!3
p!15 ; k!2
p!10 ; k!1

p!21 ; k!4

0 1 2 3
0.0

0.5

1.0

1.5

t

P p
,2
k!
t"

Figure 1. Visualization of our analytical results (4.39), (4.40), (4.42), and (4.43)
for finite p = 10 (solid curves) compared to Monte Carlo simulations (symbols,
histogram) for the gap probability (left plot) and the distribution of the smallest
eigenvalue (right plot). For the gap probability we generated 10000 real Wishart
matrices of size 10 × (10 + ν) with an index ν = 2k = 0, 2, 4, 6, 8. For the
distribution of the smallest eigenvalue we simulated 20000 random matrices with
various dimensions p shown in the inset corresponding to ν = 2k = 2, 4, 6, 8.

for even k and

Ep,2k(t) = C(0)
p,k(4pt)

−k2/2+1e−pt/2Γ[(p+ k)/2]U ((p+ k)/2, 3/2; t/2)

2
√
2p

× pf0≤a,b≤k−1

[
Ξ(0,p+k+1)
ab (t) ξ(0,p+k+1)

a (t)

−ξ(0,p+k+1)
b (t) 0

]
(4.40)

for odd k, where we introduce the global normalization constant

C(0)
p,k =

k−1∏

l=0

4l+1(2l)!Γ[p+ l + 2]pl−1

l!Γ[p+ 2l + 1]

×






1√
π

2−k/2p!p3k/2Γ[(p+ 1)/2]

(p+ k)!Γ[(p+ k + 1)/2]
, k ∈ 2N,

1√
π

2−(k+3)/2p!p(3k−1)/2Γ[(p+ 1)/2]

(p+ k)!Γ[(p+ k)/2]
, k ∈ 2N+ 1

(4.41)

which is also ideal to take the limit p → ∞.

The explicit expression of the kernels Ξ(0,p+k)
ab (t) and ξ(0,p+k+1)

b (t) are not much
more enlightening at finite p than the expressions (4.36) and (4.37) for general γ.
Therefore we skip their expressions here and show them explicitly for the particular
case γ = 0 and γ = 1 in the microscopic limit in section 5. For finite p we visualize
the gap probability in Fig. 1.

We skip the explicit kernels for the distribution of the smallest eigenvalue, too,
and only explicitly show the Pfaffian structure with its normalization constant. For
this reason we multiply the results (4.34) and (4.35) for γ = 1 and p → p− 1 with the
factor pt(2k−1)/2e−pt/2Zp−1,1(t)/Zp,2k from Eq. (3.9)

Pp,2k(t)dt = C(1)
p,k(4pt)

−k2/2+1e−pt/2Γ[(p+ k + 2)/2]U ((p+ k + 2)/2, 5/2; t/2)

2(2p)3/2

× pf0≤a,b≤k−1

[
Ξ(1,p+k−1)
ab (t)

]
d(4pt) (4.42)
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for even k and

Pp,2k(t)dt = C(1)
p,k(4pt)

−k2/2+1/2e−pt/2Γ[(p+ k + 1)/2]U ((p+ k + 1)/2, 5/2; t/2)

2(2p)3/2

× pf0≤a,b≤k−1

[
Ξ(1,p+k)
ab (t) ξ(1,p+k)

a (t)

−ξ(1,p+k)
b (t) 0

]
d(4pt) (4.43)

for odd k. We multiplied the differential dt to emphasize that this quantity is a density
and transforms as a pseudo scalar under changes of coordinates. The constant

C(1)
p,k =

k−1∏

l=0

4l+1(2l)!Γ[p+ l + 2]pl−1

l!Γ[p+ 2l + 1]

×






1√
π

2−(k+5)/2p!p(3k−1)/2Γ[(p+ 1)/2]

(p+ k)!Γ[(p+ k)/2]
, k ∈ 2N

1√
π

2−(k+6)/2p!p3k/2Γ[(p+ 1)/2]

(p+ k)!Γ[(p+ k + 1)/2]
, k ∈ 2N+ 1

(4.44)

it is t independent and converges to a finite number in the limit p → ∞.
Equations (4.42) and (4.43) are our second main result. The distributions at finite

p are visualized in Fig. 1. The two simplest cases for k = 0,

Pp,0(t) =
p!

2p−1/2Γ[p/2]

1√
t
e−pt/2U

(
p− 1

2
,−

1

2
,
t

2

)
, (4.45)

and k = 1

Pp,2(t) =
Γ[(p+ 1)/2]√

2π

√
te−pt/2 (4.46)

×

[
U

(
p− 1

2
,−

1

2
,
t

2

)
(−1)p−1L(2)

p−1(−t)

(p− 1)!
+ U

(
p+ 1

2
,
1

2
,
t

2

)
(−1)p−2L(3)

p−2(−t)

(p− 2)!

]
,

obviously agree with the results by Edelman [25]. We underline that he has employed
the standard normalization of the Laguerre polynomials while we have chosen the
monic normalization. Moreover we have used Kummer’s identity of Tricomi’s confluent
hypergeometric function and the duplication formula of the Gamma function to obtain
Eqs. (4.45) and (4.46) from Eqs. (4.42) and (4.43), respectively.

5. Microscopic Origin Limit

In the microscopic origin limit of the gap probability (2.5) we have to perform the
limit p → ∞ while keeping 2k = ν = n − p and t = u/4p fixed. Hence we zoom into
a region of scale 1/p around the origin. In this region chiral random matrix theory is
identical with physical theories like QCD below the critical temperature [26, 37] and
condensed matter theory of disordered system for particular topological insulators and
superconductors [38]. In this regime the limiting gap probability and distribution of
the first eigenvalue are defined as follows:

Eν(u) := lim
p→∞

Ep,ν

(
u

4p

)
(5.1)

and

Pν(u)du := lim
p→∞

Pp,ν

(
u

4p

)
d

(
u

4p

)
. (5.2)
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We underline that the scaling factor resulting from the differential in the second
definition is crucial to obtain a finite limit.

The first question we have to address is the dependence of the limit on the parity
of p (if p is even or odd) because the skew-orthogonal polynomials crucially depend
on it, cf. Eqs. (3.3) and (3.4). We can circumvent this problem by the fact that all
important quantities can be written in terms of averages of characteristic polynomials
to some powers, in particular the normalization (3.6) and the kernels (3.16) and (3.17).
Therefore it is sufficient to show that the limit of the average (4.1) is independent of the
parity of p. For this reason we consider the intermediate result (4.7). The microscopic
limit can be readily performed by rescaling the integral U → 2pU and r → 2pr yielding

lim
p→∞

Ip

(
κ

4p

)
∝

∫

CSE(2k)

dµ(U)detγU

∫ ∞

0
drr(2γ−2k−1)/2det1/2 (r12k + U)

× exp

(
−
1

4

[
trUκ− trU−1 + t r + r−1

])
, (5.3)

up to a p independent normalization constant. In particular this result is independent
if the limit has been approached by an even p or an odd one. Therefore we do the
asymptotic analysis for even p, only.

The behaviour of the Laguerre polynomials and Tricomi’s confluent hypergeomet-
ric function in the microscopic limit determines the whole asymptotics. The asymp-
totics of both kinds of functions are given by

lim
p→∞

(−1)ap+cp−b

Γ (ap+ c+ 1)
L(b)
ap+c

(
−

u

4p

)
=

(
4a

u

)b/2

Ib
(√

au
)
, (5.4)

and

lim
p→∞

Γ (ap+ c)

pb−1
U

(
ap+ c, b;

u

8p

)
= 2

(
8a

u

)(b−1)/2

Kb−1

(√
au

2

)
, (5.5)

respectively. Here we employ the modified Bessel functions of the first and second
kind, Ia and Ka, respectively. The auxiliary parameters a, b, c take certain values in
the particular limits below.

The limits (5.4) and (5.5) imply the following asymptotics of the derivatives of
the polynomials for even order

ξ(γ,∞)
a (xu) := lim

p→∞
ξ(γ,xp)a

(
u

4p

)
= lim

p→∞

(−1)xp−a

Γ[xp+ 1]

(
u

4p

)2γ+a

∂a
κR

(γ)
xp

(
κ,

u

4p

)∣∣∣∣∣
κ=−u/(4p)

=
(xu

4

)(2γ+a)/2
[
I2γ+a(

√
xu) +

Kγ−1/2(
√
xu/4)

Kγ+1/2(
√
xu/4)

I2γ+a+1(
√
xu)

]
(5.6)

and for odd order

lim
p→∞

(−1)xp−a

Γ[xp+ 1]

(
u

4p

)2γ+a

∂a
κR

(γ)
xp+1

(
κ,

u

4p

)∣∣∣∣∣
κ=−u/(4p)

= lim
p→∞

(−1)xp−a

Γ[xp+ 1]

(
u

4p

)2γ+a

× ∂a
κ

(
κ+ ĉpx/2

(
u

4p

)
− 2κ∂κ − 2u∂u

)
Rxp

(
κ,

u

4p

)∣∣∣∣
κ=−u/(4p)
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= [C(xu)− 2a− 2u∂u] lim
p→∞

ξ(γ,xp)a

(
u

4p

)

=
(xu

4

)(2γ+a)/2
[
I2γ+a(

√
xu)

(
C(xu) − 2a−

√
xu

Kγ−1/2(
√
xu/4)

Kγ+1/2(
√

xu/4)

)
+ I2γ+a+1(

√
xu)

×

([
C(xu) + 2γ + 1−

√
xu

4

Kγ−1/2(
√

xu/4)

Kγ+1/2(
√
xu/4)

]
Kγ−1/2(

√
xu/4)

Kγ+1/2(
√
xu/4)

−
√

xu

4

)]
. (5.7)

Here we have used the rescaled function (4.37) which is one of the polynomials for
k = 2m + 1 odd. The shift in the order of the polynomial from l − 2 to xp, cf.
Eqs. (4.37) and (5.6), has no effect on the limit since it can be absorbed in the limit
p → ∞. Furthermore we used the recurrence relation between the polynomials of
even order and the polynomials of odd order, see Eq. (3.15), to derive the limit for
the latter. The ambiguous function ĉpx/2(u/(4p)) is chosen such that its limit exists
and converges to C(xu). Indeed this function only depends on the combination xu
because a scaling in x yields an inverse scaling in u by absorbing the scaling factor
in the p limit. We underline that also the constant C(xu) is ambiguous and we may
choose it in such a way that the prefactor in front of the Bessel function I2γ+a+1(

√
xu)

vanishes, i.e.

lim
p→∞

(−1)xp−a

Γ[xp+ 1]

(
u

4p

)2γ+a

∂a
κR

(γ)
xp+1

(
κ,

u

4p

)∣∣∣∣∣
κ=−u/(4p)

=
(xu

4

)(2γ+a)/2
I2γ+a(

√
xu)

×

[√
xu

4

(
Kγ+1/2(

√
xu/4)

Kγ−1/2(
√
xu/4)

−
Kγ−1/2(

√
xu/4)

Kγ+1/2(
√
xu/4)

)
− 2γ − 1− 2a

]
. (5.8)

This expression is more compact than the one in Eq. (5.7) such that we stick with this
intermediate result (which is again simpler than in [52]).

The normalization constants of the polynomials, see Eq. (4.15), have the limit

lim
p→∞

1

Γ2[xp+ 1](xp)2γ
r(γ)xp/2

(
u

4p

)
= 4. (5.9)

Moreover we need to express the limit of the sum of p terms in order to deal
with the two-point kernel (3.12). Let us consider a function fj where the limit
limp→∞ fpx = f(x) exists for all x ∈ [0, 1]. Then the sum becomes

lim
p→∞

1

p

$(p+k−1)/2%∑

j=0

fj =
1

2

1∫

0

dxf(x). (5.10)

Combining this limit with Eqs. (5.6), (5.8), and (5.9) we find the asymptotics of the
kernel

Ξ(γ,∞)
ab (u) = lim

p→∞
Ξ(γ,p)
ab

(
κ,

u

4p

)
(5.11)

= lim
p→∞

(−1)a+b

(
u

4p

)2γ+a+b+1

∂a
κ1
∂b
κ2
Kp

(
κ1,κ2,

u

4p

)∣∣∣∣∣
κ1=κ2=−u/(4p)

=
1

4

√
u/2∫

0

dxxa+b+1

[
2(b− a)I2γ+a(2x)I2γ+b(2x)
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+
Kγ−1/2(x)

Kγ+1/2(x)

[
x

(
Kγ+1/2(x)

Kγ−1/2(x)
−

Kγ−1/2(x)

Kγ+1/2(x)

)
− 2γ − 1

]

× (I2γ+a(2x)I2γ+b+1(2x)− I2γ+a+1(2x)I2γ+b(2x))

+
Kγ−1/2(x)

Kγ+1/2(x)
(2bI2γ+a+1(2x)I2γ+b(2x)− 2aI2γ+a(2x)I2γ+b+1(2x))

]
.

Recall that the asymptotics for even and odd p yields the same answer, and so we
have obtained this limit by choosing p = 2L even.

When considering the particular cases of the gap probability (γ = 0) and the
distribution of the smallest eigenvalue (γ = 1) it is more enlightening to express the
Bessel functions involved in terms of more explicit functions,

K1/2(z) = K−1/2(z) =

√
π

2

1√
z
e−z, (5.12)

K3/2(z) =

(
1 +

1

z

)
K1/2(z) =

√
π

2

(
1

z1/2
+

1

z3/2

)
e−z. (5.13)

Then the gap probability reads

E2k(u) =

(
k−1∏

l=0

4l+1(2l)!

l!

)
u−k2/2e−u/8−

√
u/4

×






pf0≤a,b≤k−1

[
Ξ(0,∞)
ab (u)

]
, k ∈ 2N0,

√
u

4
pf0≤a,b≤k−1

[
Ξ(0,∞)
ab (u) ξ(0,∞)

a (u)

−ξ(0,∞)
b (u) 0

]
, k ∈ 2N0 + 1

(5.14)

with

ξ(0,∞)
a (u) =

(u
4

)a/2 [
Ia(

√
u) + Ia+1(

√
u)
]
, (5.15)

Ξ(0,∞)
ab (u) =

1

4

√
u/2∫

0

dxxa+b+1

[
2(b− a)Ia(2x)Ib(2x) (5.16)

+ (2b+ 1)Ia+1(2x)Ib(2x)− (2a+ 1)Ia(2x)Ib+1(2x)

]
.

The results in Ref. [52], have three typos. First, the factor xa+b+1 (z(a+b)/2 in the
notation therein) is missing in the integral for the two-point kernel see Eqs. (25)
therein. Second, the indices of the Pfaffian in the case of odd k should go from 0 to
k − 1, see Eqs. (27) and (29) therein.

The gap probability seems to diverge at u → 0 due to the terms u−k2/2 and

u−(k2−1)/2. However the kernels vanish as Ξ(0,∞)
ab (u) ∝ ua+b+1 and ξ(0,∞)

a (u) ∝ ua for
u ' 1 such that both terms cancel and the gap probability behaves as a constant,
especially it is normalized to E2k(0) = 1.

The distribution of the first eigenvalue is

P2k(u) =
1

8

(
k−1∏

l=0

4l+1(2l)!

l!

)
(
√
u+ 2)u−(k2+1)/2e−u/8−

√
u/4

×






pf0≤a,b≤k−1

[
Ξ(1,∞)
ab (u)

]
, k ∈ 2N0,

1√
u
pf0≤a,b≤k−1

[
Ξ(1,∞)
ab (u) ξ(1,∞)

a (u)

−ξ(1,∞)
b (u) 0

]
, k ∈ 2N0 + 1.

(5.17)
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Figure 2. The distribution of the smallest eigenvalue (5.17) (solid curves)
smoothly fits with the microscopic level density (2.4) (dotted curves) around the
origin. Only for larger values of u deviations due to the contribution of the second
and larger eigenvalues become visible. A similar plot can be made for ν = 0 which
we have omitted for a better readability of the figure.

The behaviour of the distribution at the origin can be read off from the kernels which
are

ξ(1,∞)
a (u) =

(u
4

)a/2+1
[
Ia+2(

√
u) +

√
u√

u+ 2
Ia+3(

√
u)

]
, (5.18)

Ξ(1,∞)
ab (u) =

1

4

√
u/2∫

0

dxxa+b+1

[
2(b− a)Ia+2(2x)Ib+2(2x) (5.19)

+
x

x+ 1

((
2b+

x+ 2

x+ 1

)
Ia+3(2x)Ib+2(2x)−

(
2a+

x+ 2

x+ 1

)
Ia+2(2x)Ib+3(2x)

)]
.

Since Ξ(1,∞)
ab (u) ∝ ua+b+3 and ξ(1,∞)

a (u) ∝ ua+2 for |u| $ 1 we have P2k(u) ∝ uk−1/2

agreeing with the behaviour of the microscopic level density (2.4). We remark that
the term Jν(

√
u)/

√
16u ∼ u(ν−1)/2 in the expression (2.4) is the dominant term in the

limit u → 0. The same behaviour of both distributions around the origin is inherent
because the level density is governed by the smallest eigenvalue in this regime. Only
for larger argument u the other eigenvalues start to contribute to the level density, cf.
Fig. 2.

The results (5.14) and (5.17) are our third main result. We emphasize that these
results do not only describe the smallest eigenvalue of an artificial system, namely
real chiral Gaussian random matrices with an even index ν = 2k, but also of physical
systems. Due to universality not only the level density (2.4) has to agree with those
from physical systems like QCD or mesoscopic systems. Also the distributions of the
smallest eigenvalues of those physical systems have to follow the same distributions of
random matrix theory in the limit of its applicability, e.g. see [37, 38, 3] and references
therein. This agreement should already happen at moderate system sizes. In Fig. 3
we compare the analytic results (4.42) and (4.43) of the distribution of the smallest
eigenvalue at finite p with the microscopic limit (5.17). This comparison underlines
how fast the convergence to the universal result happens. Although this comparison
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Figure 3. Illustration of the rate of convergence by comparing the finite p
result (4.42) for p = 11, 51, 131 with the universal limit p → ∞ (5.17) for the
distribution of the smallest eigenvalue. The index of the Wishart matrix is chosen
ν = 2k = 4 as an example.

is done for random matrices which have particular advantages in comparison to real
systems we expect that also physical systems should display a rapid convergence to
the universal result.

6. The Correlated Wishart-Laguerre Ensemble

We are now interested in the effects of a fixed, non-trivial correlation matrix C not
proportional to the identity matrix on the distribution of the smallest eigenvalue, see
Eq. (2.1). Such a correlation matrix can naturally encode system specific information.
In time series analysis such a correlation may encode correlations between companies
in finance [11], seasonal effects in climate research [8] or organized crime in criminal
defence [9]. However usually such correlation matrices have no microscopic limit in
time series. But also in QCD and mesoscopic systems which exhibit such a microscopic
limit correlations may appear. These correlations encode the structure of space-time
and the choice of the gauge theory for example. They are system specific informations
and may have an influence on the smallest eigenvalues.

We expect that the correlation matrix has no influence on the smallest eigenvalues
as long as its eigenvalues have a finite distance to the origin. Then the screening of the
infinitely many eigenvalues between the smallest eigenvalue of W and the eigenvalues
of C is strong enough. This was also shown in [14]. For this purpose we choose
a non-trivial empirical correlation matrix C != 1p. In Fig. 3 we compare Monte-
Carlo simulations with such an empirical correlation matrix C and the universal
result (5.17). The matrix size is chosen such that (n − p)/p = ν/p # 1 where
p = 200 and ν = 2k = 0, 2, 4. The perfect agreement underlines that correlations
in the Wishart matrix have a very weak effect on the spectral statistics of the smallest
eigenvalue.

Again we emphasize that we have not looked at the situation where C develops
a spectrum where some eigenvalues lie on the scale 1/p. Nor have we looked at the
situation of doubly correlated Wishart-Laguerre ensembles. However for the latter
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Figure 4. Comparison of Monte Carlo simulations (symbols) with a non-trivial
empirical correlation matrix C at finite p = 200, and the microscopic limit p → ∞

of the distribution of the smallest eigenvalue (5.17) (solid lines). The empirical
correlation matrix is shown in the inset. We have generated 10000 correlated
Wishart random matrices of sizes 200 × (200 + ν) with ν = 2k = 0, 2, 4.

kind of ensembles we expect a similar if not exactly the same behaviour like one-sided
correlated Wishart-Laguerre ensembles as considered here.

7. Conclusion

We have addressed and solved an open problem in the real Wishart-Laguerre ensemble
also known as the chiral Gaussian orthogonal ensemble of rectangular p × n random
matrices. We computed the distribution of the smallest eigenvalue and its integral,
the gap probability that the vicinity of the origin is empty of eigenvalues. To this aim
we have established that an integrable Pfaffian structure holds also when p − n = ν
measuring the rectangularity (or topology in the field theory application) is even. Such
a Pfaffian structure was previously only known when ν = 2k + 1 is odd. So far for
an even rectangularity a recursive construction in p led to closed form expressions
for ν = 0, 2 only. In view of the various applications it would be unnatural to
restrict oneself to odd ν, and not to expect for such an integrable structure to exist.
However, the recursive construction (and closed results for ν = 0, 2) already revealed
the appearance of special functions for finite p which are absent for ν odd, namely
Tricomi’s confluent hypergeometric functions. From our construction we now better
understand why they appear through the expectation value of the square root of
characteristic polynomials which are among the building blocks for the quantities in
question.

On a technical level our computation was possible due to the combination of the
method of skew-orthogonal polynomials, though with a non standard weight, and the
map of our building blocks onto invariant co-set integrals derived by bosonisation.
In an initial step the computation of the the gap probability and the distribution of
the smallest eigenvalue requires the evaluation of expectation values of characteristic
polynomials raised to integer/half-integer powers for ν odd/even, respectively. Hence
the problem exhibits an increased level of difficulty in computing these objects for
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even ν. By including the square root for even ν into the weight function we were back
to expectation values of integer powers, which are known to be expressible through
Pfaffian determinants of kernels and skew-orthogonal polynomials. The price we had
to pay was to compute the latter for a non-standard weight including the square
root. This was done by expressing the polynomials and kernel themselves through
expectation values, mapping these back to matrix integrals and computing them via
bosonisation.

Indeed one can also consider the distribution and the cumulative distribution of
the second to smallest eigenvalue, third to smallest eigenvalue etc. These quantities
can be simply deduced from our results, too, because we calculated a quite explicit
expression of the kernel at finite p. In particular we found a Christoffel-Darboux-like
formula which expresses the sum over (p+ k) terms in a sum over twelve terms, only.

The Pfaffian structure enabled us to take the microscopic large-p limit at the
origin, while keeping ν = 2k fixed. In this limit we could show that the distinction
between even and odd p for finite p becomes immaterial. We found results in terms
of a Pfaffian comprising the limiting kernel for even k, plus an additional column and
row for k odd, both for the gap probability and the smallest eigenvalue.

Our results are universal for non-Gaussian potentials, as inherited from the
universality of the known density correlation functions. We have checked that our
findings follow the microscopic density for small argument, and that our finite-p
results, which we have confirmed through numerical simulations, converge towards
the universal limit. Furthermore, we have also studied numerically the distribution
of the smallest eigenvalue in an example of a correlated Wishart-Laguerre ensemble.
We found that for moderate p it already follows the universal limiting distribution for
several values of ν.

The computation of products of ratios of characteristic polynomials that also
include square roots is in general an open question in random matrix theory. The
structure of the results we obtained on a subset of such correlators should be relatively
easy to translate to the Gaussian orthogonal ensemble, where such correlation
functions enjoy further applications, e.g. in Quantum Chaos. It is very plausible
that our universal result will also apply when introducing a fixed trace constraint, as
it is known for odd ν. What is less clear is whether a corresponding representation in
terms of hypergeometric functions of matrix arguments exist, having the advantage
that they can be continued to real β > 0. It would also be very interesting to see,
if and when the universality at the origin breaks down for the correlated Wishart-
Laguerre ensemble. A further open question is the computation of the gap probability
and smallest eigenvalue distribution in the chiral Gaussian symplectic ensemble with
β = 4. Apart from ν = 0 only Taylor expansions exist so far. However, following
similar ideas as in the present work, Pfaffian structures for these quantities exist and
should be universal. Work in this direction is currently under way.
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1 Introduction

Random matrix theory (RMT) remains a very active field of research, after many decades of work.
While originally being conceived in the area of mathematical statistics and nuclear physics, today’s
applications of RMT extend beyond the mathematical and physical sciences even in a broad sense,
and we refer to [1] for a recent overview.

One of the topics in RMT that has caught recent attention is that of products of random matrices.
Having one of its original motivations in statistical physics in the description of chaotic and disordered
systems [2], among more recent applications are combinatorics [3] and telecommunications [4], which
has also been one of our motivations. In particular, we consider MIMO (multiple-input and multiple-
output) communication networks, where multi-antenna transceivers are utilised to improve the system
capacity in a rich scattering environment.

Products of matrices loose much of the symmetry of the individual matrices and are generically
complex. For simplicity we will consider the individual matrices to be complex, too, with independent
Gaussian distributions. The spectral properties of matrix ensembles carry important information. It
is encoded in the eigenvalue decomposition as well as in the singular value decomposition. We will
focus on the latter here.

A striking property of RMT is its universality, that is the independence of the underlying dis-
tribution of the individual matrix elements. It is usually manifest in the limit of large matrix size.
However, if we study the local, microscopic behaviour of the spectrum on the scale of the mean level
spacing between singular values, it is often vital to have a detailed knowledge of the joint distribution
of singular values (or eigenvalues) at hand for finite matrix size. In particular to derive a determi-
nantal or Pfaffian structure of the correlation functions of the random matrix ensemble has proven
very useful for universality studies. Some of the most powerful proofs of universality start from the
knowledge of orthogonal polynomials of these determinantal or Pfaffian point processes, in order to
perform the asymptotic analysis. We refer to [5] for a standard reference.

The aim of this work is to provide such a starting point, by deriving the joint probability density
function (jpdf) of the singular values of the product matrix at finite matrix size N , for a finite product
of M matrices. We consider the simplest case of M quadratic N × N matrices of Wishart type,
independently and identically distributed by Gaussians with unit variance. In telecommunications
this is also the setting often encountered, with both N and M finite. The singular value distribution
of products of complex Wishart matrices is then the setup for the calculation of several information-
theoretic quantities.

In previous works the spectral density of singular values as well as the moments of such product
matrices were derived in the macroscopic large-N limit. They use probabilistic methods such as free
random variables [6, 7, 8], field theoretic methods such as planar diagrams [9], and inverse Mellin
transforms [3]. The limit of infinitely many matrices in a product were studied in other works, either
for finite-size [10, 11, 12, 13] or for infinitely large matrices [14, 15], where the problem was mapped
to a differential equation.

Very recently the jpdf and its correlation functions of the complex eigenvalues of the matrix
ensemble we are considering has been derived for finiteN andM [16, 17, 18]. Also here the macroscopic
large-N density in the complex plane was known previously, see [19, 20, 9] for a collection of works.
However the corresponding question about the singular value correlation functions for finite N and
M was still open and is addressed in our work.

This article is organised as follows. In section 2 we determine the jpdf of singular values, using
two different ways. Section 3 is devoted to the computation of the correlation functions, by first
determining the biorthogonal polynomials associated to this problem in subsection 3.1, and then the
kernel(s) leading to all k-point correlators in subsection 3.2. The spectral density itself is discussed
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in more detail in subsection 3.3, where we compute all its moments and identify the correct rescaling
for the macroscopic large-N limit of our results. In particular we compare our results to the known
large-N asymptotic spectral density e.g. from [9]. Section 4 illustrates how our results can help in
applications in telecommunications, by computing the ergodic mutual information and comparing it
to numerical simulations. After presenting our concluding remarks and open questions in section 5 we
collect some technical tools in two appendices.

2 Joint probability distribution of singular values

We are interested in the singular values of the product PM of M independent matrices with complex
matrix elements of size N ×N , Xj ∈ Gl(N,C) for all j = 1, . . . ,M :

PM ≡ XMXM−1 . . . X1 . (2.1)

Furthermore the matrices Xj are distributed by identical, independent Gaussians,

P(Xj) = exp
[

−TrX†
jXj

]

. (2.2)

The partition function Z(M)
N is then defined as

Z(M)
N = C

∫ M
∏

j=1

d[Xj ]P (Xj) , (2.3)

where d[Xj ] =
∏N

α,β=1 d(Xj)αβd(X∗
j )αβ denotes the flat measure over all independent matrix elements.

In this section we compute the jpdf of the singular values of PM . For M = 1 this is the well known
Wishart-Laguerre (also called chiral Gaussian) Unitary Ensemble, and for most of the following we
will thus restrict ourselves to M > 1. We will not keep track of the normalisation constant C here,
and will only specify it later, once we have changed to singular values.

In the first step we perform the following successive change of variables from Xj to Yj:

Y1 ≡ X1 , and Yj ≡ XjYj−1 for j = 2, . . . ,M , (2.4)

e.g. Y2 = X2X1, Y3 = X3X2X1 etc. In the new variables YM = PM is the product matrix we are aiming
at. While the first one, Y1 = X1, is a trivial relabelling, each subsequent change of variables carries a
non-trivial Jacobian given by 1/det[Y †

j−1Yj−1]N for j = 2, . . . ,M . This can be seen as follows. Due to

d(Yj)αβ =
∑N

γ=1 d(Xj)αγ(Yj−1)γβ every column vector of the matrix Yj acquires a factor 1/det[Yj−1]
from the change of variables, and likewise its complex conjugate. Taking into account all N column
vectors and their complex conjugates we find the given Jacobian for each j = 2, . . . ,M , and we arrive
at

Z(M)
N = C

∫ M
∏

i=1

d[Yi] exp
[

−TrY †
1 Y1

]

M
∏

j=2

1

det[Y †
j−1Yj−1]N

exp
[

−TrY †
j Yj(Y

†
j−1Yj−1)

−1
]

. (2.5)

In writing this we assume that the matricesXj and thus their products Yj are invertible1. In the second
step we decompose each matrix Yj = VjΛjUj , j = 1, . . . ,M in its angles and singular values, where

Λj = diag(λ(j)1 , . . . ,λ(j)N ) contains the positive singular values λ(j)a ∈ R+, a = 1, . . . , N , and Uj ∈ U(N)

1Our restriction from general complex N ×N matrices to Gl(N,C) removes only a set of measure zero.
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and Vj ∈ U(N)/U(1)N are unitary. The Jacobian resulting from the singular value decomposition of
each matrix Yj is well known and is given in terms of the Vandermonde determinant,

∆N (Λj) ≡
∏

N≥a>b≥1

(λ(j)a − λ(j)b ) = det
1≤a,b≤N

[

(λ(j)a )b−1
]

. (2.6)

Since we encounter the matrices Yj in the combination Y †
j Yj , only, the unitary matrices Vj completely

drop out which leads to

Z(M)
N = C ′

∫ M
∏

i=1

{

d[Vi]d[Ui]
N
∏

a=1

dλ(i)a λ(i)a

}

exp
[

−TrΛ2
1

]

∆N (Λ2
1)

2

×
M
∏

j=2

1

det[Λ2
j−1]

N
exp

[

−TrUj−1U
†
j Λ2

jUjU
†
j−1Λ

−2
j−1

]

∆N (Λ2
j )

2

= C ′

∫ M
∏

i=1

{

d[Vi]d[Ui]
N
∏

a=1

dλ(i)a λ(i)a

}

exp
[

−TrΛ2
1

]

∆N (Λ2
1)

2

×
M
∏

j=2

1

det[Λ2
j−1]

N
exp

[

−TrU †
j Λ2

jUjΛ
−2
j−1

]

∆N (Λ2
j )

2 . (2.7)

In the second step we employed the invariance of the Haar measure d[Uj ] under Uj → UjUj−1, which
leads to the decoupling of the integrations over d[U1] and all the d[Vj ] from the rest of the integrals.
The remaining unitary integrations in the last line of eq. (2.7) can be performed using the so-called
Harish-Chandra–Itzykson-Zuber (HCIZ) integral [21, 22]2

∫

d[Uj ] exp
[

−Tr
(

U †
j Λ2

jUjΛ
−2
j−1

)]

=
1

∆N (Λ2
j )∆N (Λ−2

j−1)
det

1≤a,b≤N

[

exp

(

−
(λ(j)a )2

(λ(j−1)
b )2

)]

. (2.8)

The Vandermonde determinant of inverse powers is proportional to the ordinary one with positive
powers due to the following identity:

∆N (Λ−2
j ) = det

1≤a,b≤N

[

1

(λ(j)a )2b−2

]

= (−1)N(N−1)/2
∆N (Λ2

j )

det[Λ2
j ]
N−1

. (2.9)

This leads to many cancellations in eq. (2.7), in particular of almost all Vandermonde determinants:

Z(M)
N = C”

∫ ∞

0

N
∏

a=1







dλ(M)
a λ(M)

a

M−1
∏

j=1

dλ(j)a

λ(j)a







exp

[

−
N
∑

b=1

(λ(1)b )2
]

∆N (Λ2
1)∆N (Λ2

M )

×
M
∏

i=2

det
1≤c,d≤N

[

exp

(

−
(λ(i)c )2

(λ(i−1)
d )2

)]

. (2.10)

We expand the determinant comprising λ(1)d and λ(2)c in N ! terms. Each of these terms yields the same
contribution since the permutation involved in the definition of the determinant can be absorbed in the

determinant comprising λ(2)d and λ(3)c due to the antisymmetry of determinants, and a relabelling of the

integration variables. Next we expand the determinant comprising λ(2)d and λ(3)c whose permutations

2The Haar measure is normalised such that there is no further proportionality constant on the right hand side.
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can be absorbed in the determinant comprising λ(3)d and λ(4)c , and so on. This interplay of expansion
and absorption of the permutations of the determinants can be continued untill all determinants
stemming from the HCIZ integral are replaced by their diagonal part. Note that we do not require

any symmetrisation in the variables λ(M)
a here. Hence our argument applies to correlation functions

of the λ(M)
a in the next section 3, too, where we integrate the joint probability distribution function

(jpdf) only over a subset of these singular values.
Almost all remaining multiple integrals can be simplified as follows:

N
∏

a=1







∫ ∞

0

dλ(1)a

λ(1)a

exp
[

−(λ(1)a )2
]





M−1
∏

j=2

∫ ∞

0

dλ(j)a

λ(j)a

exp

[

−
(λ(j)a )2

(λ(j−1)
a )2

]



 exp

[

−
(λ(M)

a )2

(λ(M−1)
a )2

]







× det
1≤c,d≤N

[

(λ(1)c )2d−2
]

= det
1≤c,d≤N





∫ ∞

0

dλ(1)c

(λ(1)c )3−2d
exp

[

−(λ(1)c )2
]





M−1
∏

j=2

∫ ∞

0

dλ(j)c

λ(j)c

exp

[

−
(λ(j)c )2

(λ(j−1)
c )2

]



 exp

[

−
(λ(M)

c )2

(λ(M−1)
c )2

]





= det
1≤c,d≤N

[

1

2M−1
GM, 0

0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

(λ(M)
c )2

)]

. (2.11)

Notice that we have left out the integration over the variables λ(M)
a . In the second line of eq. (2.11) we

have pulled all the integrations into the corresponding rows of the determinants, and in the third line
we have used the integral identity (A.10) in the squared singular values, that is derived in appendix A.
The special function appearing here is the so-called Meijer G-function, see eq. (A.1) for its definition
[23]. The number of zeros in the bottom line of the Meijer G-function is M − 1. Our first main result
is thus the following singular value representation of the partition function, after changing to squared

singular values sa ≡ (λ(M)
a )2 with dsa = 2λ(M)

a dλ(M)
a , a = 1, . . . , N , in eq. (2.10):

Z(M)
N = C(M)

N

∫ ∞

0

N
∏

a=1

dsa ∆N(s) det
1≤c,d≤N

[

GM, 0
0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

sc

)]

=

∫ ∞

0

N
∏

a=1

dsaPjpdf(s) , (2.12)

Pjpdf(s) ≡ C(M)
N ∆N (s) det

1≤c,d≤N

[

GM, 0
0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

sc

)]

, (2.13)

where Pjpdf is the jpdf. We will show later that it corresponds to a determinantal point process. The
constant in front of eq. (2.13),

(C(M)
N )−1 ≡ N !

N
∏

a=1

Γ(a)M+1 , (2.14)

has been chosen such that the partition function is normalised to unity. This can be seen as follows.
Applying the Andréief integral identity,

∫ N
∏

a=1

dsa det
1≤c,d≤N

[φc(sd)] det
1≤c,d≤N

[ψc(sd)] = N ! det
1≤c,d≤N

[
∫

dsφc(s)ψd(s)

]

, (2.15)

which applies to any two sets of functions φc and ψc such that all integrals exist, we obtain for the
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partition function

Z(M)
N = C(M)

N N ! det
1≤c,d≤N

[∫ ∞

0
dssc−1GM, 0

0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

s

)]

= C(M)
N N ! det

1≤c,d≤N

[

Γ(c)M−1Γ(c+ d− 1)
]

= C(M)
N N !

N
∏

c=1

Γ(c)M−1
N
∏

b=1

Γ(b)2 = 1 . (2.16)

Here we have used another integral identity from the appendix, eq. (A.7), and pulled out factors of
Gamma-functions from the rows of the determinant. The remaining determinant is nothing but the
normalisation of the Wishart-Laguerre ensemble (at M = 1) which is well-known [24].

We refer to the result (2.12) as a “one-matrix” singular value model because it is of the form
that would result from the singular value decomposition of a single random matrix, however with a
non-standard Jacobian "= ∆N (s)2. As an easy check we can see that due to

G1, 0
0, 1

(

−
d−1

∣

∣

∣

∣

sc

)

= sd−1
c exp[−sc] , (2.17)

the expression in eq. (2.12) reduces to the standard Wishart-Laguerre ensemble when setting M = 1,
and taking the exponentials out of the second determinant.

In principle we could now try to compute all singular value k-point correlation functions defined
as

R(M)
k (s1, . . . , sk) ≡

N !

(N − k)!

∫ ∞

0

N
∏

a=k+1

dsa Pjpdf(s) . (2.18)

For example for k = 1 this gives the spectral density which is normalised to N in our convention
following [24],

N =

∫

ds1R
(M)
k=1(s1) , (2.19)

whereas for k = N we have the jpdf itself, R(M)
N (s1, . . . , sN ) = N !Pjpdf(s). However, due to the matrix

inside the second determinant in eq. (2.12) being labelled by indices of the Meijer G-function, the

computation of the R(M)
k is a highly nontrivial task. We postpone this computation to section 3 using

a second ”two-matrix” formulation, that is introduced in the next subsection.

2.1 An alternative jpdf with auxiliary variables

We introduce a formalism that is more convenient to handle when computing correlation functions.
Let us step back by considering eq. (2.10), taking for simplicity M = 2:

Z(M=2)
N = C ′

∫ ∞

0

N
∏

a=1

dλ(2)a λ(2)a

N
∏

b=1

dλ(1)b

λ(1)b

exp
[

−(λ(1)b )2
]

∆N (Λ2
1)∆N (Λ2

2)

× det
1≤c,d≤N

[

exp

(

−
(λ(2)c )2

(λ(1)d )2

)]

. (2.20)

This is precisely of the form of a ”two-matrix” singular value model (2mm) that results from the
singular value decomposition of a two-matrix model, see e.g. in [25]. The advantage is that now
we have the standard form of the Jacobian given by one Vandermonde per set of variables and an
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additional determinant of a function that couples the two sets of variables. Such a setting can be
tackled using the known biorthogonal polynomial technique, as reviewed in [26]. In order to apply
this technique we have to bring eq. (2.10) into such a form, but for arbitrary values of M ≥ 2. This
can be readily achieved by taking the same steps as from eq. (2.10) to eq. (2.11), but this time

excluding both sets of integrations over the variables λ(M)
a and λ(1)a .

The symmetry argument goes along the same lines replacing determinants by their diagonal parts,
see the discussion after eq. (2.10), but this time we keep the determinant containing the exponential

with λ(1)d and λ(M)
d . The integrations are:

N
∏

a=1

M−1
∏

j=2

{

∫ ∞

0

dλ(j)a

λ(j)a

exp

[

−
(λ(j+1)

a )2

(λ(j)a )2

]}

det
1≤c,d≤N

[

exp

(

−
(λ(2)c )2

(λ(1)d )2

)]

= det
1≤c,d≤N





M−1
∏

j=2

{

∫ ∞

0

dλ(j)c

λ(j)c

exp

[

−
(λ(j+1)

c )2

(λ(j)c )2

]}

exp

(

−
(λ(2)c )2

(λ(1)d )2

)





= det
1≤c,d≤N

[

1

2M−2
GM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

(λ(M)
c )2

(λ(1)d )2

)]

, (2.21)

where we have used again the identity (A.10) from appendix A, see also [16] for a related recurrence
relation. We therefore arrive at our second main result, the following 2mm representation for the jpdf,

after changing again to squared singular values sa ≡ (λ(M)
a )2, ta ≡ (λ(1)a )2, a = 1, . . . , N :

Z(M)
N =

C(M)
N

N !

∫ ∞

0

N
∏

a=1

dsa
dta
ta

e−ta ∆N (s)∆N (t) det
1≤c,d≤N

[

GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sc
td

)]

=

∫ ∞

0

N
∏

a=1

dsa dtaP2mm
jpdf (s, t) ,

P2mm
jpdf (s, t) ≡

C(M)
N

N !

N
∏

a=1

t−1
a e−ta ∆N (s)∆N (t) det

1≤c,d≤N

[

GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sc
td

)]

. (2.22)

It is normalised to unity as we will check below.
The crucial advantage in comparison to Pjpdf is the matrix inside the determinant which has indices

that label the integration variables, and not the indices of the Meijer G-function as in eq. (2.12). This

2mm describes the correlations among the singular values λ(1)a of a single matrix X1 and the singular

values λ(M)
a of the entire product matrix PM , to be computed in the next section 3.

As a check for M = 2 we get back to eq. (2.20), using

G1, 0
0, 1

(

−
0

∣

∣

∣

∣

(λ(2)c )2

(λ(1)d )2

)

= exp

[

−
(λ(2)c )2

(λ(1)d )2

]

. (2.23)

Confirming the normalisation in eq. (2.22) is at the same time a check that this representation can
be mapped back to eq. (2.12) in a different way. Applying once again the Andréief formula (2.15) to
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eq. (2.22), but this time only to the t-integration, we obtain the following:

∫ ∞

0

N
∏

a=1

dta
ta

e−ta ∆N (t) det
1≤c,d≤N

[

GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sc
td

)]

= N ! det
1≤c,d≤N

[
∫ ∞

0
dt td−2e−tGM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

sc
t

)]

= N ! det
1≤c,d≤N

[

GM, 0
0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

sc

)]

, (2.24)

upon using the identity (A.9) with m = M − 1 from appendix A. This brings us back to the ”one-
matrix” model representation eq. (2.12) in terms of a single set of singular values, with the proper
normalisation.

3 Singular value correlation functions

We are now prepared to compute arbitrary k-point correlation functions of the singular values. Rather
than using the definition (2.18) we will consider the more general correlation functions of the jpdf in
the 2mm representation (2.22):

R(M)
k,l (s1, . . . , sk; t1, . . . , tl) ≡

N !2

(N − k)!(N − l)!

∫ ∞

0

N
∏

a=k+1

dsa

N
∏

b=l+1

dtb P2mm
jpdf (s, t) . (3.1)

The k-point functions of the singular values of the product matrix PM in eq. (2.18) can be obtained

by integrating out all auxiliary variables, or by setting l = 0: R(M)
k,0 (s1, . . . , sk;−) = R(M)

k (s1, . . . , sk).
Let us introduce the following set of biorthogonal polynomials (bOP) in monic normalisation,

pi(x) = xi + . . . and qj(x) = xj + . . .,
∫ ∞

0
ds dtw(M)(s, t) p(M)

i (s)q(M)
j (t) = δijh

(M)
j , (3.2)

with squared norms h(M)
j and the weight function defined as

w(M)(s, t) ≡ t−1e−tGM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

, (3.3)

for M > 1. These polynomials are guaranteed to exist following the general theory of bOP that was
very recently further developed [27], see also [26] for a recent review. We will explicitly construct the
bOP for general M > 1. The general (k, l)-point correlation functions eq. (3.1) are given in terms of
four kernels that are constructed from the kernel of bOP [28, 29, 30]:

R(M)
k,l (s1, . . . , sk; t1, . . . , tl) = det

















H01(sa, sb)
1≤a,b≤k

H00(sa, tj)
1≤a≤k
1≤j≤l

H11(ti, sb)
1≤b≤k
1≤i≤l

H10(ti, tj)
1≤i,j≤l

















. (3.4)

The kernel of bOP is defined as

KN (s, t) ≡
N−1
∑

j=0

p(M)
j (s)q(M)

j (t)

h(M)
j

. (3.5)
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All four kernels Hab are based on this relation,

H01(sa, sb) ≡
∫ ∞

0
dt KN (sa, t)t

−1e−tGM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sb
t

)

, (3.6)

H00(sa, tj) ≡ t−1
j e−tjKN (sa, tj) , (3.7)

H11(ti, sb) ≡
∫ ∞

0
ds

∫ ∞

0
dtKN (s, t)t−1e−tGM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

ti

)

GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sb
t

)

− GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sb
ti

)

, (3.8)

H10(ti, tj) ≡ t−1
j e−tj

∫ ∞

0
dsKN (s, tj)G

M−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

ti

)

. (3.9)

Note that eq. (3.4) implies that both the one- and two-matrix model jpdf represent determinantal
point processes, i.e. for the former eq. (2.13) becomes

Pjpdf(s) =
1

N !
det

1≤a,b≤N
[H01(sa, sb)] . (3.10)

3.1 The biorthogonal polynomials

In order to compute the bOP let us first determine the bimoment matrix

Iij ≡
∫ ∞

0
ds

∫ ∞

0
dtw(M)(s, t)sitj

=

∫ ∞

0
dttje−t

∫ ∞

0

ds

t
siGM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

=

∫ ∞

0
dt tj+ie−t(i!)M−1

= (i+ j)!(i!)M−1 , (3.11)

which follows again from an identity for Meijer G-functions, see eq. (A.7) appendix A. The bOP as
well as their norms are determined by this bimoment matrix (see e.g. [27]):

p(M)
n (s) =

1

D(M)
n

det















I00 I10 . . . In0
I01 I11 . . . In1
...

...
...

...
I0n−1 I1n−1 . . . Inn−1

1 s . . . sn















, (3.12)

q(M)
n (t) =

1

D(M)
n

det











I00 I10 . . . In−10 1
I01 I11 . . . In−11 t
...

...
...

...
...

I0n I1n . . . In−1n tn











, (3.13)

where

D(M)
n ≡ det

0≤i,j≤n−1
[Iij] =

n−1
∏

i=0

(i!)M−1 det
0≤i,j≤n−1

[(i + j)!] , (3.14)

h(M)
n = D(M)

n+1/D
(M)
n . (3.15)
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In order to have more explicit expressions it is instructive to compare these equations with the standard
Laguerre polynomials Ln(x). We need them in monic normalisation denoted by L̃n(x):

L̃n(x) ≡ (−1)nn!Ln(x) =
n
∑

k=0

(−1)n−k

(n− k)!

(

n!

k!

)2

xk , (3.16)

with squared norms
∫ ∞

0
dx e−xL̃n(x)L̃m(x) = δnm(n!)2 ≡ δnm h(M=1)

n , (3.17)

and a symmetric bimoment matrix

Iij
∣

∣

M=1
≡
∫ ∞

0
dt ti+j e−t = (i+ j)! , L̃n(x) =

1

D(M=1)
n

det











I00
∣

∣

M=1
. . . I0n

∣

∣

M=1
...

...
...

I0n−1

∣

∣

M=1 . . . Inn−1

∣

∣

M=1
1 . . . xn











. (3.18)

The former equals eqs. (3.11) with M = 1. As can be seen the monic Laguerre polynomials also
have a determinant representation from the Gram-Schmidt procedure, which is exactly the one in eq.
(3.12) at M = 1 (or eq. (3.13) as they become equal then).

From the comparison of eqs. (3.12) and (3.13) to eq. (3.18) we can read off the following. For
the qn(t) we take out the common factors (i!)M−1 from the first n columns of the determinant,
i = 0, 1, . . . , n − 1, with the remaining determinant being identical to that of the monic Laguerre
polynomials. The determinant of the bimoment matrix (3.14) is already written to be proportional to
the corresponding one of the Laguerre ensemble. We thus have

q(M)
n (t) =

∏n−1
i=0 (i!)

M−1

∏n−1
i=0 (i!)

M−1
L̃n(t) = L̃n(t) , (3.19)

for all values of M . Likewise we can read off the squared norms by comparing them to the Laguerre
case eq. (3.17):

h(M)
n =

∏n
i=0(i!)

M−1

∏n−1
i=0 (i!)

M−1
h(M=1)
n = (n!)M+1 . (3.20)

This equation is formally redundant for M = 1.
For the polynomials pn(s) the case is slightly more complicated. Also for these polynomials we

can take out common factors from all n + 1 columns, however this will modify the arguments in the
last row of the determinant in the numerator: si → si/(i!)M−1. Expanding with respect to the last
row we get a polynomial with the same coefficients as the monic Laguerre polynomials, but now with
si/(i!)M−1 instead of the monomial si alone, resulting into

p(M)
n (s) =

∏n
i=0(i!)

M−1

∏n−1
i=0 (i!)

M−1

n
∑

k=0

(−1)n−k

(n− k)!

(

n!

k!

)2 sk

(k!)M−1

=
n
∑

k=0

(−1)n−k

(n− k)!

(

n!

k!

)M+1

sk

= (−1)n(n!)M 1FM (−n; 1, . . . , 1; s). (3.21)

This function can be interpreted as a generalisation of the monic Laguerre polynomials reobtained
when setting M = 1, see eq. (3.16). Moreover we could express it in terms of the generalised
hypergeometric function 1FM which has M arguments equal to 1 in the second set of its indices.

The kernel (3.5) is now completely determined. We proceed by computing the various kernels (3.6),
(3.8) and (3.9) by integrating the kernel of bOP.
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3.2 The kernels and all correlation functions

We start with the kernel H01 that is relevant for the correlation functions of all singular values

sa = (λ(M)
a )2. We have

H01(sa, sb) =
N−1
∑

j=0

1

h(M)
j

p(M)
j (sa)

∫ ∞

0
dt′L̃j(t

′)t′
−1

e−t′GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

sb
t′

)

≡
N−1
∑

j=0

1

h(M)
j

p(M)
j (sa)χ

(M)
j (sb) , (3.22)

where we introduce the following integral transform

χ(M)
j (sb) ≡

∫ ∞

0
dt′L̃j(t

′)t′−1e−t′GM−1, 0
0, M−1

(

−
0,...,0

∣

∣

∣

∣

sb
t′

)

=
j
∑

i=0

(−1)j−i

(j − i)!

(

j!

i!

)2 ∫ ∞

0
dt′(t′)i−1 e−t′GM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

sb
t′

)

=
j
∑

i=0

(−1)j−i

(j − i)!

(

j!

i!

)2

GM, 0
0,M

(

−
0,...,0,i

∣

∣

∣

∣

sb

)

, (3.23)

upon using the identity eq. (A.9) for d− 1 = i and m = M − 1. A more compact expression of χj can
be found by combining the Rodrigues formula

L̃j(t
′) = et

′

(

−
d

dt′

)j (

t′je−t′
)

, (3.24)

and the identity (A.13). We substitute t′ → sb/t′ in eq. (3.23) and express the derivative in eq. (3.24)
as a derivative in sb. The integration over t′ yields

χ(M)
j (sb) =

(

−
d

dsb

)j (

sjbG
M, 0
0, M

(

−
0,...,0

∣

∣

∣

∣

sb

))

= (−1)jGM, 1
1,M+1

(

−j
0,...,0

∣

∣

∣

∣

sb

)

. (3.25)

The second equality can be obtained by applying the definition (A.1) of Meijer’s G-function. We can
thus write down the full answer for all k-point correlation functions of the singular values:

R(M)
k (s1, . . . , sk) = R(M)

k,0 (s1, . . . , sk;−) = det
1≤a,b≤k

[H01(sa, sb)]

= det
1≤a,b≤k





N−1
∑

j=0

1

j! 1FM (−j; 1, . . . , 1; sa)G
M, 1
1,M+1

(

−j
0,...,0

∣

∣

∣

∣

sb

)



 . (3.26)

The simplest example is the density or 1-point correlation function of singular values which is given
by

R(M)
1 (s) = H01(s, s) =

N−1
∑

j=0

1

j! 1FM (−j; 1, . . . , 1; s)GM, 1
1, M+1

(

−j
0,...,0

∣

∣

∣

∣

s

)

. (3.27)

This example will be further discussed in the next subsection 3.3.
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The next kernel H00 is readily given from its definition eq. (3.7) together with eqs. (3.21), (3.19)
and (3.20). We therefore turn to H10 from eq. (3.9)

H10(ti, tj) = tj
−1e−tj

N−1
∑

l=0

1

h(M)
l

(
∫ ∞

0
ds p(M)

l (s)GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

ti

))

L̃l(tj)

≡ tj
−1e−tj

N−1
∑

l=0

1

h(M)
l

ψ(M)
l (ti)L̃l(tj) , (3.28)

where we define the following integral transform

ψ(M)
l (t) ≡

∫ ∞

0
ds p(M)

l (s)GM−1, 0
0, M−1

(

−
0,...,0

∣

∣

∣

∣

s

ti

)

=
l
∑

i=0

(−1)l−i

(l − i)!

(

l!

i!

)M+1 ∫ ∞

0
ds siGM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

=
l
∑

i=0

(−1)l−i

(l − i)!

(

l!

i!

)M+1

ti+1(i!)M−1

= (l!)M−1tL̃l(t) . (3.29)

In the second step we have used the identity (A.7), which leads us back to the standard Laguerre
polynomials. Taking into account the normalisation (3.20) we arrive at the following final result,

H10(ti, tj) =
ti
tj
e−tj

N−1
∑

l=0

1

(l!)2
L̃l(ti)L̃l(tj) , (3.30)

which is proportional to the kernel of ordinary Laguerre polynomials (3.17). The remaining kernel
H11 can be expressed in terms of the two integral transforms which we have already computed,

H11(t, s) =
N−1
∑

l=0

1

h(M)
l

ψ(M)
l (t)χ(M)

l (s)− GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

. (3.31)

This completes the computation of all (k, l)-point correlation functions in the 2mm, together with eq.
(3.4).

Although we will postpone the detailed analysis of the large-N limit to future work let us mention
the following nontrivial identity with respect to the kernel H11:

∞
∑

l=0

1

(l!)2
tL̃l(t)χ

(M)
l (s) = GM−1, 0

0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

, (3.32)

implying that limN→∞H11(t, s) = 0. Assuming that the sum converges and can be integrated piecewise

this can be shown as follows. In appendix B we verify that p(M)
j (s) and χ(M)

l (s) form a set of orthogonal
functions with respect to the flat measure, see eq. (3.34). After multiplying both sides of eq. (3.32)

with p(M)
j (s) and integrating s over R+ we obtain

(j!)M−1tL̃j(t) =

∫ ∞

0
ds p(M)

j (s)GM−1, 0
0,M−1

(

−
0,...,0

∣

∣

∣

∣

s

t

)

= ψ(M)
j (t) , (3.33)

which is consistent with eq. (3.29).
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The identity (3.32) most likely implies that in the naive large-N limit, meaning s, t and M fixed,

the correlation function R(M)
k,l factorises into s- and t-dependent parts regardless if H00 vanishes or

not since the determinant (3.4) factorises into a k × k determinant incorporating H01 and a l × l
determinant comprising the block H10. Therefore the correlation functions of the singular values tj of
the matrix X1 decouple and become the ones of the standard Wishart-Laguerre type. There may be
other ways to obtain a nontrivial coupling between singular values sa and tj in a more sophisticated
large-N limit (like in the so-called weak limit in [25]).

We finally make contact again to the one-matrix model formulation (2.12). The following ortho-
gonality relation which follows from eq. (3.2) is explicitly verified in appendix B

∫ ∞

0
ds p(M)

i (s)χ(M)
j (s) = (i!)M+1δij , (3.34)

in other words p(M)
n (s) and χ(M)

l (s) constitute a set of biorthogonal functions with respect to a single
variable with flat measure. In particular this relation results into the following property of the kernel
H01, see eq. (3.22), that contains the two:

∫ ∞

0
ds′H01(s, s

′)H01(s
′, s′′) = H01(s, s

′′) . (3.35)

We have thus closed the circle back to the jpdf (2.13) where we could directly replace

∆N (s) det
1≤c,d≤N

[

GM, 0
0,M

(

−
0,...,0,d−1

∣

∣

∣

∣

sc

)]

= det
1≤a,b≤N

[p(M)
a−1(sb)] det

1≤c,d≤N
[χ(M)

c−1 (sd)]

=
N−1
∏

j=0

h(M)
j det

1≤a,b≤N
[H01(sa, sb)] . (3.36)

This uses the invariance property of determinants under addition of columns, and then proceeds
with standard techniques to deduce the correlation functions. This directly leads from eq. (2.13) to
eq. (3.10) for the jpdf. With the property (3.35) of the kernel we deduce eq. (3.26) from Dyson’s
theorem [24].

3.3 Spectral density, its moments and large-N scaling

In this subsection we discuss in more detail the implications of our results for the spectral density of
singular values. Starting from the expression eq. (3.27) which we repeat here in two equivalent forms,

R(M)
1 (s) =

N−1
∑

l=0

l
∑

i,j=0

(−1)j+i(l!)2

(l − j)!(l − i)!(i!)2(j!)M+1
GM, 0

0,M

(

−
j,...,j,i+j

∣

∣

∣

∣

s

)

=
N−1
∑

j=0

1

j! 1FM (−j; 1, . . . , 1; s)GM, 1
1, M+1

(

−j
0,...,0

∣

∣

∣

∣

s

)

,

we can explicitly compute expectation values for the moments for finite-N . Starting from the first
expression we obtain

E[sk] ≡
1

N

∫ ∞

0
ds skR(M)

1 (s) (3.37)

=
1

N

N−1
∑

l=0

l
∑

i,j=0

(−1)j+i(l!)2(i+ j + k)!((j + k)!)M−1

(l − j)!(l − i)!(i!)2(j!)M+1
. (3.38)
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Here we have normalised by eq. (2.19) and we have used again the identity eq. (A.7) for moments

of the Meijer G-function. On the other hand using the compact expression for χ(M)
j (s) in the second

formulation of the density we can obtain a more concise result in the following way:

E[sk] =
1

N

N−1
∑

j=0

1

h(M)
j

j
∑

l=0

(−1)j−l

(j − l)!

(

j!

l!

)M+1 ∫ ∞

0
ds sl+k(−1)jGM, 1

1,M+1

(

−j
0,...,0

∣

∣

∣

∣

s

)

=
1

N

N−1
∑

j=0

j
∑

l=0

(−1)j−l

(j − l)!(k + l − j)!

(

(k + l)!

l!

)M+1

=
1

N

N−1
∑

l=0

(

(k + l)!

l!

)M+1 N−1−l
∑

j=0

(−1)j

j!(k − j)!

=
1

N

N−1
∑

l=0

(

(k + l)!

l!

)M+1 ∫ 2π

0

dϕ

2π

1

k!
(1− eıϕ)k

1− e−ı(N−l)ϕ

1− e−ıϕ

=
1

N

N−1
∑

l=0

(−1)N−l−1

k!

(

(k + l)!

l!

)M+1(
k − 1

N − l − 1

)

. (3.39)

We use the convention that inverse powers of factorials of negative integers give zero, rather than
using the Gamma-function everywhere. In the first step we have employed eq. (A.8). Interestingly,
the remaining sum can be further expressed in terms of a hypergeometric function if k ≥ N ,

E[sk] = (−1)N−1 (k!)
M−1(k − 1)!

N !Γ(k −N + 1) M+2FM+1(k + 1, . . . , k + 1, 1−N ; 1, . . . , 1, k −N + 1; 1) , (3.40)

by extending the sum to infinity and comparing their Taylor series. Indeed this relation can be
generalised to k < N . Notice that in this case the singular contributions in the hypergeometric
function cancel with those in the Gamma-function in the denominator.

In the ensuing discussion we will need in particular the first moment F (M)
N for k = 1 when rescaling

the density, which can be readily read off

E[s] ≡ F (M)
N = NM . (3.41)

It agrees with the known case for M = 1. An alternative short derivation for the first moment is
sketched in appendix B. Higher moments easily follow from eq. (3.39), e.g. for the second moment we
have

E[s2] =
1

2
NM

(

(N + 1)M+1 − (N − 1)M+1
)

. (3.42)

We illustrate our results for the density (3.27) by plotting it for various values of N and M . As
a first example in fig. 1 the density is shown for M = 1, 2, 3 at fixed N = 4. Clearly it is mandatory
to know the right scale dependence of the correlation functions on N and M . This means that after
properly rescaling the bulk of the singular values is of order one, in order to be able to compare
the density for finite N at different values of N . In particular it is important to check the finite
N -results against the limiting large-N behaviour for different M , which has been derived for products
of quadratic [6, 7] and rectangular matrices [8, 9].

Let us explain our procedure. First we normalise our density to unity, using eq. (2.19). Then we
rescale the density by its first moment,

R̂(M)
1 (x) ≡

1

N
F (M)
N R(M)

1

(

F (M)
N x

)

, (3.43)
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Figure 1: Comparison of the density eq. (3.27) R(M)
1 (s) for fixed N = 4 without rescaling. The values

M = 1, 2, 3 correspond to the top (blue), middle (red) and bottom (black) curve, respectively.

so that the new density R̂(M)
1 (x) has norm and first moment equal to unity3. Notice that this rescaling

is an alternative to the unfolding procedure onto the scale of the local mean level spacing. Instead
of fixing the mean distance between two successive singular values, we fix here the singular values
themselves, such that they are always of order one. This is exactly the macroscopic limit.

Inserting eq. (3.41) we thus obtain a limiting density, which we denote by,

ρ̂(M)(x) ≡ lim
N→∞

R̂(M)
1 (x) = lim

N→∞
NM−1R(M)

1

(

NMx
)

, (3.44)

that also has norm and first moment unity. Note that the known limiting density from the literature

may still have to be rescaled accordingly. We can then compare ρ̂(M)(x) and R̂(M)
1 (x) for different

values of N at fixed M .
This procedure can be illustrated with the simplest case M = 1, the well known Wishart Laguerre

ensemble. At large-N we have

lim
N$1

R(M=1)
1 (s) ≈

1

2π

√

4N − s

s
Θ(4N − s), (3.45)

which is the N -dependent Marchenko-Pastur density, and Θ(x) denotes the Heaviside function. With

the first moment being given by F (M=1)
N = N we thus have

ρ̂(M=1)(x) = lim
N→∞

N0R(M=1)
1 (Nx) =

1

2π

√

4− x

x
Θ(4− x) , (3.46)

for the rescaled and normalised density. This is the Marchenko-Pastur density with compact support

on (0, 4]. A comparison between ρ̂(M=1)(x) and R̂(M=1)
1 (x) for various values of N = 3, 4, 5 and 10 is

given in fig. 2 (left figure).
For M > 1 the limiting expression for the density is not as explicit as in eq. (3.46). Here we will

follow the notation of [9] where a polynomial equation for the resolvent G(z) was derived, which we
display for the case of quadratic matrices only:

(

zG(M)(z)
)M+1

= z
(

zG(M)(z)− 1
)

. (3.47)

3All densities satisfying this property will be denotes with a hat “̂”.
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Figure 2: Left plot: the rescaled density R(M=1)
1 (Nx) eq. (3.27) for M = 1 and N = 3, 4, 5, 10

(corresponding to red, black, cyan, and magenta, respectively) versus the limiting Marchenko-Pastur

density eq. (3.46) (thick line). Right plot: the density eq. (3.27) forM = 2 rescaled as NR(M=2)
1 (N2s),

for N = 3, 4, 5, 10 compared to the limiting density ρ̂(M=2)(x) (thick line).

The resolvent is related to the limiting spectral density by

G(M)(z) ≡
∫ ∞

0
dλ
ρ(M)(λ)

z − λ
, (3.48)

where z is outside the support of the spectral density. This relation can be inverted as follows:

ρ(M)(λ) = −
1

π
lim
ε→0+

#m
(

G(M)(λ+ iε)
)

. (3.49)

For M = 1 eq. (3.47) reduces to a quadratic equation, which after taking the discontinuity along the
support eq. (3.49) leads to eq. (3.46), without further rescaling.

Increasing to M = 2 the equation becomes cubic and we can still write out its solution, which is
chosen subject to boundary conditions and to yield a real density on the support (0, 33/22]:4

G(M=2)(z) =
1√
3z

(

A−1/3
− (z) +A1/3

− (z)
)

=
1√
3z

(

(−A+(z))
1/3 +A1/3

− (z)
)

,

A±(z) ≡
√

27

4z
− 1±

√

27

4z
. (3.50)

The density ρ̂(M=2)(s) that is obtained from eq. (3.50) by taking the discontinuity according to eq.
(3.49) (which happens to have the first moment equal to unity without further rescaling) is shown in

fig. 2 (right figure) in comparison to our rescaled finite-N result R̂(M=2)
1 (s) for various values of N .

As in the known case M = 1 we obtain a nice agreement for M = 2. An alternative derivation of
ρ̂(M=2)(s) via multiple orthogonal polynomials was recently presented in Refs. [3, 31], with which our
density agrees.

As a final remark for larger M it might be useful to resolve the singularity of the density at the
origin [9], lims→0 ρ̂(M)(s) ∼ s−M/(M+1), by changing variables, just as it is well known that for M = 1
a change to squared variables maps the Marchenko-Pastur density eq. (3.46) to the semi-circle. A
more detailed comparison to existing large-N results for the density, its moments and support would
require a careful asymptotic analysis of the special functions constituting our finite-N density, and is
postponed to future work.

4We thank Z. Burda for indicating how to determine the limiting support.
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Figure 3: The ergodic mutual information of multi-layered scattering MIMO channels with a fixed
number of 2 clusters (M = 3) with a different number of scatters N = 2, 4, 8.

4 Application to telecommunication

Consider a MIMO network with a single source and destination, both equipped with N antennas.
Information transmitted by the source is conveyed to the destination via M − 1 successive clusters of
scatterers, where each cluster (layer) is assumed to have N scattering objects. Such a channel model
proposed in [8] is typical in modelling the indoor propagation of information between different floors
[32].

We assume that the vector-valued transmitted signal propagates from the transmitter array to the
first cluster, from the first to the second cluster, and so on, until it is received from the (M − 1)-st
cluster by the receiver antenna array. Each communication channel is described by a random complex
Gaussian matrix, and as a result the effective channel of this multi-layered model equals the product
matrix PM , see eq. (2.1).

For the described communication channels, the mutual information measured in units of the natural
logarithm (nats) per second per Hertz is defined as

I(γ) ≡ ln det
(

IN +
γ

NM
PMP †

M

)

=
N
∑

a=1

ln
(

1 +
γ

NM
sa
)

, (4.1)

where γ defines the average received signal-to-noise ratio per antenna which is a constant. We employ
the distribution (3.27) of squared singular values to compute its average. The quantity of interest
is called the ergodic mutual information of such channels. It is given by the expectation value of the
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random variable I(γ). Using the analogue of the expression (3.37) from the previous section we have

E [I(γ)] = NE

[

ln
(

1 +
γ

NM
s
)]

=
N−1
∑

l=0

l
∑

i,j=0

(−1)i+j(l!)2

(l − j)!(l − i)!(i!)2(j!)M+1

∫ ∞

0
ds GM, 0

0,M

(

−
j, . . . , j, i + j

∣

∣

∣

∣

s

)

ln
(

1 +
γ

NM
s
)

=
N−1
∑

l=0

l
∑

i,j=0

(−1)i+j(l!)2

(l − j)!(l − i)!(i!)2(j!)M+1
GM+2, 1

2,M+2

(

0, 1
0, 0, j + 1, . . . , j + 1, i+ j + 1

∣

∣

∣

∣

NM

γ

)

.(4.2)

The last step is obtained by first replacing the logarithm by a Meijer G-function, eq. (A.5), and then
applying the integral identity (A.14) from the appendix. Note that the corresponding ergodic mutual
information for the traditional MIMO channel model, i.e. M = 1, was derived in [33].

In order to get an independent confirmation of our analytical result (4.2) we compare it to numerical
simulations as follows. We plot the ergodic mutual information (4.2) in fig. 3 against Monte-Carlo
simulations as a function of γ in decibel (dB) for a given number of clusters, M − 1, as an example,
with different numbers of scatters per cluster, N . Each simulated curve is obtained by averaging
over 106 independent realisations of PM . The statistical error bar is smaller than the symbol for the
simulation in our plots. The comparison in fig. 3 shows a 2-layered scattering channel, i.e. M = 3,
with the number of scatters per layer varying from N = 2, 4, to 8. We have also compared our results
to simulations for other values of N and M .

5 Conclusions and open questions

In this paper we have derived the joint probability distribution function (jpdf) of singular values
for any finite product of M quadratic random matrices of finite size N × N , with complex elements
distributed according to a Gaussian distribution. This generalises the Wishart-Laguerre (also called
chiral Gaussian) Unitary Ensemble which we recover for M = 1. Starting from the jpdf we have
computed all k-point density correlation functions of the singular values, by taking a detour over a
two-matrix model like representation of the same model. In that way we showed that the jpdf being
proportional to a Vandermonde times the determinant of Meijer G-functions represents a determinantal
point process. Its kernel of orthogonal functions generates all k-point functions in the standard way
using Dyson’s theorem. We also solved the auxiliary two-matrix model that couples a single matrix
to the product of M matrices, by constructing the biorthogonal polynomials explicitly, as well as
the corresponding four kernels with their integral transforms. On the way we found some nontrivial
identities and integral representations of the Meijer G-function.

The density of the singular values are discussed in more detail at finite N and M , including all
its moments. We identified the macroscopic scaling to match the density with the known large-N
results for the macroscopic density of singular values. As a further application we have computed the
averaged mutual information for multi-layered scattering of MIMO channels and have compared them
to Monte-Carlo simulations for small M and N .

Previous results for the macroscopic large-N density of the singular values of quadratic or rect-
angular matrices and its expectation values of traces have mainly been obtained from probabilistic
methods, in particular using free random variables. The explicit results that we have obtained for
the jpdf and all correlation functions thereof open up the possibility of another direction. One can
now investigate the microscopic scaling limits zooming into various parts of the spectrum, by per-
forming the asymptotic analysis of the orthogonal polynomials and their integral transforms that we
computed. Since the ensemble represents a determinantal point process one can also investigate the
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limiting distribution of individual eigenvalues, e.g. by considering their Fredholm determinant repre-
sentation. Moreover, one can now study the distributions of linear statistics such as the trace of the
derived ensemble as well.

Based on known results for the universality of the spectrum of random matrices we expect the
following outcome of such an analysis. The bulk and the soft edge behaviour of the spectrum should be
governed by the universal Sine- and Airy-kernel, respectively, after unfolding and scaling appropriately.
This includes that at the soft edge we expect to find the Tracy-Widom distribution, and it will be very
interesting to identify the right scaling for that. In contrast at the hard edge we expect to find new
universality classes labelled by M . Already the way the macroscopic density diverges at the origin
depends on it. This would fit into what was found recently for the complex eigenvalue spectrum of
products of independent Ginibre matrices.

Other open problems include a generalisation of our construction to products of rectangular matri-
ces, which seems quite feasible. Also the inclusion of determinants (or characteristic polynomials) into
the weight, which should be related to rectangular matrices, seems within reach. On the other hand
going to non-Gaussian weight functions or investigating other symmetry classes with real or quater-
nion real matrix elements are very challenging problems. The reason is that our method depends
crucially on the Harish-Chandra–Itzykson-Zuber group integral to eliminate the angular variables.
For the other symmetry classes no such explicit tool is presently at hand.

Acknowledgments: We would like to thank Zdzis!law Burda and Ralf Müller for useful discus-
sions and correspondence. The Laboratori Nazionali di Frascati are thanked (G.A.) for their hospitality
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A Some integral identities for Meijer G-functions

In this appendix we collect a few integral representations and identities for the so-called Meijer G-
function. It is defined as [23]

Gm,n
p,q

(

a1, a2, . . . , ap
b1, b2, . . . , bq

∣

∣

∣

∣

z

)

=
1

2πi

∫

C

du

∏m
j=1 Γ(bj − u)

∏n
j=1 Γ(1− aj + u)

∏q
j=m+1 Γ(1− bj + u)

∏p
j=n+1 Γ(aj − u)

zu . (A.1)

The contour of integration C goes from −i∞ to +i∞ such that all poles of the Gamma functions
related to the bj lie to the right of the path, and all poles related to the aj to the left of the path. We
are in particular interested in the case

Gm, 0
0, m

(

−
b1,...,bm

∣

∣

∣

∣

z

)

=
1

2πi

∫

C

du zu
m
∏

j=1

Γ(bj − u) . (A.2)

Note that the function is symmetric in all its indices b1, . . . , bm. Special cases for small m are given
by [23]

G1, 0
0, 1

(

−
b1

∣

∣

∣

∣

z

)

= zb1e−z , (A.3)

G2, 0
0, 2

(

−
b1,b2

∣

∣

∣

∣

z

)

= 2z(b1+b2)/2Kb1−b2(2
√
z) , (A.4)
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and [34]

G1, 2
2, 2

(

1 1
1 0

∣

∣

∣

∣

z

)

= ln(1 + z) , (A.5)

where K is the modified Bessel function of the second kind equivalently known as the Macdonald
function. It is possible to absorb powers of the argument of the Meijer G-function, due to the following
shift [23]

zkGm,n
p,q

(

a1, . . . , ap
b1, . . . , bq

∣

∣

∣

∣

z

)

= Gm,n
p,q

(

a1 + k, . . . , ap + k
b1 + k, . . . , bq + k

∣

∣

∣

∣

z

)

. (A.6)

The integral identities we collect here are for the moments of the Meijer G-function:

∫ ∞

0
dt tn−1Gm, 0

0, m

(

−
b1,...,bm

∣

∣

∣

∣

t

)

=
m
∏

j=1

Γ(bj + n) , (A.7)

∫ ∞

0
ds snGM, 1

1,M+1

(

−j
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∣

∣

∣

∣

s

)
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ε→0

(n!)MΓ(j − n+ ε)

Γ(−n+ ε)
= (−1)j

(n!)M+1

Γ(n− j + 1)
. (A.8)

We only state two particular cases, for the most general setting see e.g. [34]. In the last step of the
second identity we have employed the recursion of the Gamma-function, Γ(j − n+ ε) =
Γ(−n+ ε)

∏j−1
l=0 (l − n+ ε).

The second integral identity needed in section 2 follows easily from the representation eq. (A.2):

∫ ∞

0
dt td−2e−tGm, 0
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∣
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∣

s

)

. (A.9)

In the first line we simply substituted t → v = s/t to obtain a second version of the identity. The
rest follows from the definition of the Meijer G- and the Gamma-function. Notice that for d = 1 and
b1 = . . . = bm = 0 this recursion for the Meijer G-function was already derived in [16].

We are now prepared to show the multiple integral representation of the Meijer G-function that
we need in the derivation of the jpdf in section 2. It slightly generalises the representation found in
[16]. The statement is that

Gm, 0
0, m

(

−
0,...,0,b

∣

∣

∣

∣

xm
x0

)

=

∫ ∞

0

dx1
x1

(

x1
x0

)b ∫ ∞

0

dx2
x2

. . .

∫ ∞

0

dxm−1

xm−1

m
∏

j=1

e−xj/xj−1 , (A.10)

for m > 1. Comparing this equation to eq. (2.11) with b = d − 1, we work with m = M squared

singular values, xj = (λ(j)c )2, where we introduce a dummy variable x0. The variable x0 will be set to
unity for our original purposes. However, it will be useful when applying the identity to eq. (2.21).
Our proof goes by induction in m. For m = 2 [23] we have

∫ ∞

0

dx1
x1

(

x1
x0

)b

e
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x1
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−
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(
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)

, (A.11)
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where the last step is due to eq. (A.4). This leads to
∫ ∞

0

dx2
x2

G2, 0
0, 2

(

−
0,b

∣

∣

∣
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x2
x0

)

e−x3/x2 = G3, 0
0, 3

(

−
0,b,0
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∣

∣

x3
x0

)

, (A.12)

for m = 3, where we have applied the identity eq. (A.9) in its second form shown in the first line,
with d = 1 and v = x2/x0. For the induction step m − 1 → m we simply have to repeat the same
procedure, which follows easily from the very same identity

∫ ∞

0

dxm
xm

Gm, 0
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∣

xm+1

x0

)

, (A.13)

which completes the proof.
Note that the same identity (A.10) can be used to provide the second step in eq. (2.21), when

setting b = 0, m = M − 1 and shifting the indices of the variables xj−1 = (λ(j)c )2 for j = 1, . . . ,M .
This is the reason why x0 is useful.

Finally we state an integral identity needed in section 4, concerning the integral of two Meijer
G-functions,
∫ ∞

0
ds G1, 2

2, 2
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1 1
1 0
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s
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∣

∣

N

γ

)

.

(A.14)
Notice that it is a particular choice of a general formula [34]. In order to arrive at eq. (4.2) we apply
the shift (A.6).

B Orthogonality check and first moment

In this appendix we explicitly confirm both the orthogonality (3.2) of the bOP p(M)
n (s) and q(M)

l (t)

with respect to two variables, as well as the fact that p(M)
n (s) and χ(M)

l (s) constitute a set of biorthog-
onal functions with respect to one variable with flat measure, eq. (3.34). Although being true by
construction we will see the orthogonality ultimately boils down to the standard orthogonality of
Laguerre polynomials.

The biorthogonal polynomials that were constructed in subsection 3.1 using the bimoment matrix
must automatically satisfy the orthogonality relation (3.2). We will check this here independently,
which implies at the same time that one of the polynomials and the integral transform (3.23) of the
other are orthogonal functions (as they should be, in order to constitute proper kernels):
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=
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tk(k!)M−1 = (i!)M−1
∫ ∞

0
dt e−tL̃j(t)L̃i(t)

= (i!)M+1δij . (B.1)

Here we have used the identity (A.7) for moments of the Meijer G-function, which cancels the extra

factorials in the generalised Laguerre polynomials p(M)
i (s), see eq. (3.21) after the first integration

over s′ = s/t. The last step follows from the known orthogonality of Laguerre type.
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In the second part of this appendix we provide a much simpler, probabilistic argument that leads
to the first moment eq. (3.41). Noting that

E

[

XjX
†
j

]

= NIN , for j = 1, . . . , L (B.2)

we have that

E[s] =
1

N
E

[

N
∑

a=1

sa

]

=
1

N
E

[

Tr (PMP †
M )
]

=
1

N
Tr





M
∏

j=1

E

[

XjX
†
j

]



 =
1

N
NMTr (IN ) = NM , (B.3)

where we have reordered successively the Xj under the trace in the first line.
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We discuss the product of M rectangular random matrices with independent Gaussian entries,
which have several applications including wireless telecommunication and econophysics. For complex
matrices an explicit expression for the joint probability density function is obtained using the Harish-
Chandra–Itzykson–Zuber integration formula. Explicit expressions for all correlation functions and
moments for finite matrix sizes are obtained using a two-matrix model and the method of bi-
orthogonal polynomials. This generalises the classical result for the so-called Wishart–Laguerre
Gaussian unitary ensemble (or chiral unitary ensemble) at M = 1, and previous results for the
product of square matrices. The correlation functions are given by a determinantal point process,
where the kernel can be expressed in terms of Meijer G-functions. We compare the results with
numerical simulations and known results for the macroscopic level density in the limit of large
matrices. The location of the endpoints of support for the latter are analysed in detail for general
M . Finally, we consider the so-called ergodic mutual information, which gives an upper bound for
the spectral efficiency of a MIMO communication channel with multi-fold scattering.

I. INTRODUCTION

Random Matrix Theory has existed for more than half
a century, and its success is undeniable. A vast number
of applications is known within the mathematical and
physical sciences, and beyond; we refer to [1] for a recent
overview. A direction within Random Matrix Theory,
which has recently caught renewed attention is the study
of products of random matrices. Among others, products
of matrices have been applied to disordered and chaotic
systems [2], matrix-valued diffusions [3, 4], quantum
chromodynamics at finite chemical potential [5, 6], Yang–
Mills theory [7–9], finance [10] and wireless telecommuni-
cation [11]. In this paper, our attention will be directed
towards the latter.

When considering products of matrices we are faced
with the fact that the product often possesses less sym-
metries than the individual matrices. For example a
product of symmetric matrices will not be symmetric in
general. For simplicity, we will look at matrices with
a minimum of symmetry. Our discussion will concern
products of matrices drawn from the Wishart ensemble.
Thus the matrices have independently, identically dis-
tributed Gaussian entries. Also other proposals exist,
e.g. by multiplying matrices that are chosen from a set
of fixed matrices with a given probability. This prob-
lem has applications in percolation as was pointed out in
[12]. However it considerably differs from our approach,
notably due to the lack of invariance.

The statistical properties of the complex eigenvalues
and real singular values of a product of matrices from
the Wishart ensemble have been discussed in several pa-
pers (in the former case they are usually called Ginibre

⇤
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†
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‡
mkieburg@physik.uni-bielefeld.de

matrices). Macroscopic properties for eigenvalues of com-
plex (� = 2) matrices have been discussed in the limit of
large matrices using diagrammatic methods [4, 13, 14],
while proofs are given in [15, 16]. The macroscopic be-
haviour of the singular values and their moments have
also been discussed in the literature using probabilistic
methods [17–19] as well as diagrammatic methods [14].

Recently, the discussion of products of matrices from
Wishart ensembles has been extended to matrices of fi-
nite size [20–23], but this discussion has so far been lim-
ited to the case of square matrices. We want to extend
this discussion to include products of rectangular matri-
ces. In particular, we consider the product matrix

YM = XMXM�1

· · ·X
1

, (1)

where Xm are Nm⇥Nm�1

real (� = 1), complex (� = 2)
or quaternion (� = 4) matrices from the Wishart ensem-
ble. This paper is concerned with the singular values
of such matrices, and the spectral correlation functions
of YMY†

M . A discussion of the complex eigenvalues is
postponed to a future publication [24].

Matrix products like YM have direct applications in
finance [10] , wireless telecommunication [17] and quan-
tum entanglement [25, 26]. The importance of the gen-
eralisation from square to rectangular matrices is evi-
dent from its applications to e.g. wireless telecommunica-
tion. Let us consider a MIMO (Multiple–Input Multiple–
Output) communication channel from a single source to
a single destination via M � 1 clusters of scatterers.
The source and destination are assumed to be equipped
with N

0

transmitting and NM receiving antennas, re-
spectively. Each cluster of scatterers is assumed to have
Nm (1  m  M �1) scattering objects. Such a commu-
nication link is canonically described by a channel ma-
trix identical to the complex version of the product ma-
trix (1). Here the Gaussian nature of the matrix entries
models a Rayleigh fading environment. This model was
proposed in [17], while the single channel model (M = 1)
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2

goes back to [27–29]. There is no reason to assume that
the number of scattering object at each cluster in such a
communication channel should be identical, which illus-
trates the importance of the generalisation to rectangular
matrices.

This paper will be organised as follows: In section II
we will find the joint probability density function for the
singular values of the product matrix (1) in the com-
plex case. Starting with general � = 1, 2, 4 it turns
out that the restriction to complex (� = 2) matri-
ces is necessary, since our method relies on the Harish-
Chandra–Itzykson–Zuber integration formula for the uni-
tary group [30, 31]. An explicit expression for all k-point
correlation functions for the singular values will be de-
rived in section III using a two-matrix model and the
method of bi-orthogonal polynomials. The spectral den-
sity and its moments will be discussed further in sec-
tion IV, while we return to the above mentioned com-
munication channel in section V. Section VI is devoted
to conclusions and outlook. Some properties and identi-
ties for the special functions we encounter are collected
in appendix A.

II. JOINT PROBABILITY DISTRIBUTION OF
SINGULAR VALUES

As mentioned in the introduction we are interested
in the statistical properties of the singular values of the
product matrix (1), which is governed by the following
partition function,

Z

M
� =

MY

m=1

Z
|DXm| exp[�TrXmX†

m]. (2)

Here DXm denotes the Euclidean volume, i.e. the exte-
rior product of all independent one-forms, while |DXm|
is the corresponding unoriented volume element.

Let us assume that the smallest dimension is N

0

=
N

min

. We stress that the properties of the non-zero
singular values of YM are completely independent of
this choice, see [24]. Thus, the product matrix, YM =
XM · · ·X

1

, has maximally rank N

0

. It follows that the
product matrix can be parameterised as [24]

YM = UM

✓
YM

0

◆
, (3)

where YM is a square N

0

⇥ N

0

matrix with real, com-
plex or quaternion entries, while UM is an orthogonal, a
unitary or a unitary symplectic matrix for � = 1, 2, 4,
respectively. From equation (3) it is immediate that the
non-zero singular values of the rectangular matrix YM

are identical to the singular values of the square matrix
YM . The ultimate goal is to derive the joint probabil-
ity density function for these singular values. In [24] the
invariance of the matrix measure for YM under permu-
tations of the matrix dimensions, Nm, was shown This

invariance carries over to the joint probability density
function of the singular values as we will see.

The parametrisation (3) follows directly from a
parametrisation of each individual matrix,

Xm = Um

✓
Xm Am

0 Bm

◆
U�1

m�1

, (4)

where U
0

= 11N0 . The matrices Xm, Am and Bm have the
dimensions N

0

⇥N

0

, N
0

⇥(Nm�1

�N

0

) and (Nm�N

0

)⇥
(Nm�1

�N

0

), respectively. The entries of these matrices
are real for � = 1, complex for � = 2 and quaternion for
� = 4. Accordingly, we have

Um 2

8
><

>:

O(Nm)/[O(N
0

)⇥O(Nm �N

0

)],

U(Nm)/[U(N
0

)⇥U(Nm �N

0

)],

USp(2Nm)/[USp(2N
0

)⇥USp(2(Nm �N

0

))],

(5)
for � = 1, 2, 4, respectively. The non-zero singular val-
ues of the rectangular product matrix (1) are identi-
cal to the singular values of the square product matrix
YM = XMXM�1

· · ·X
1

with YM and Xm, m = 1, . . . ,M ,
defined above. For this reason, we can safely replace the
random matrix model containing rectangular matrices
with a random matrix model containing square matri-
ces, only. In terms of the new variables we get for the
partition function, in analogy to [32] for M = 1,

Z

M
� /

MY

m=1

Z
|DXm| det�⌫m/2(XmX

†
m) exp[�TrXmX

†
m],

(6)
where ⌫m ⌘ Nm�N

0

� 0. A more general version of this
result will be derived in [24]. In the partition function (6)
and in most of this section we neglect an overall normali-
sation constant, which is irrelevant for the computations.
We reintroduce the normalisation in equation (16) and
give the explicit value in equation (21).

The Gaussian weight times a determinantal prefactor is
sometimes referred to as the induced weight. For M = 1
its complex eigenvalues have been studied in [32].

In order to derive the joint probability density func-
tion for the singular values of the product matrix YM

and thereby of equation (1), we follow the idea in [23],
and reformulate the partition function (6) in terms of
the product matrices Ym = XmYm�1

= XmXm�1

· · ·X
1

,
for m = 1, . . . ,M . In the following we assume that the
product matrices, Ym, are invertible (note that this re-
striction only removes a set of measure zero). We then
know that [23]

MY

m=1

|DXm| = |DY

1

|
MY

m=2

|DYm| det��N0/2(Ym�1

Y

†
m�1

).

(7)
Changing variables from Xm to Ym in the partition func-
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tion equation (6) results in

Z

M
� /

h MY

m=1

Z
|DYm|

i
det�⌫M/2(YMY

†
M ) exp

h
�TrY

1

Y

†
1

i

⇥
"

MY

i=2

det�(⌫i�1�⌫i�N0)/2(Yi�1

Y

†
i�1

)

⇥ exp
h
�TrYiY

†
i (Yi�1

Y

†
i�1

)�1

ii
. (8)

With this expression for the partition function we can
express everything in terms of the singular values and a
family of unitary matrices. We employ for each matrix Yi

a singular value decomposition [23] to write the product
matrices as

Yi = Ui⌃iV
�1

i , (9)

where ⌃i = diag{�i
1

,�

i
2

, . . . ,�

i
N0

} are positive definite
diagonal matrices; the diagonal elements are the singular
values of Yi (for � = 4 the singular values show Kramer’s
degeneracy). The unitary matrices, Ui and Vi, belong to

Ui 2

8
><

>:

O(N
0

),

U(N
0

),

USp(2N
0

),

Vi 2

8
><

>:

O(N
0

),

U(N
0

)/U(1)N0
,

USp(2N
0

)/U(1)N0
,

(10)
for � = 1, 2, 4, respectively. It is well-known that this
change of variables yields the new measure

|DYi| = |DUi||DVi|
N0Y

k=1

d�

i
k(�

i
k)

��1|�N0((�
i)2)|� , (11)

where |DUi| and |DVi| are the Haar measures for their
corresponding groups and

�N (x) =
Y

1a<bN

(xa � xb) = det
1a,bN

[xN�b
a ] (12)

denotes the Vandermonde determinant. Inserting this
parametrisation into the partition function (8) and per-
forming the shift U

�1

`�1

U` ! U` for ` = 2, . . . ,M , we
obtain

Z

M
� /

"
N0Y

k=1

 MY

m=1

Z 1

0

d�

m
k

�
(�M

k )�(⌫M+1)�1

e

�(�1
k)

2

⇥
MY

i=2

(�i�1

k )�(⌫i�1�⌫i�N0+1)�1

#
MY

j=1

|�N0((�
j)2)|�

⇥
MY

`=2

Z
|DU`||DV`| exp

h
� TrU`⌃

2

`U
�1

` ⌃�2

`�1

i
.

(13)

The integrations over V` are trivial and only contribute
to the normalisation constant; the integration over U` is
however more complicated. For � = 2, the integrals over

U` are Harish-Chandra–Itzykson–Zuber integrals [30, 31],
while the integrals for � = 1 and � = 4 are still unknown
in closed form. For this reason, we will restrict ourselves
to the complex case (� = 2), where we can carry out all
integrals explicitly, and obtain an analytical expression
for the joint probability density function. Recall that
the complex (� = 2) product matrix is exactly the chan-
nel matrix used in wireless telecommunication to model
MIMO channels with multiple scattering.

With the restriction to the � = 2 case, U` should be
integrated over the unitary group, which yields [30, 31]

Z

U(N0)

|DU`| exp
h
� TrU`⌃

2

`U
�1

` ⌃�2

`�1

i
/

QN0

k=1

(�`�1

k )2(N0�1)

�N0((�
`)2)�N0((�

`�1)2)
det

1a,bN0

h
e

�(�`
a)

2/(�`�1
b )

2
i
,

(14)

for ` = 2, . . . ,M . Inserting this into the partition func-
tion (13) with � = 2 gives an expression for the partition
function solely in terms of the singular values of the prod-
uct matrices Yi,

Z

M ⌘ Z

M
�=2

/
"

N0Y

k=1

Z 1

0

d�

M
k (�M

k )2⌫M+1

#
�N0((�

M )2)

⇥
"
M�1Y

i=1

 N0Y

`=1

Z 1

0

d�

i
`(�

i
`)

2(⌫i�⌫i+1)�1

�

⇥ det
1a,bN0

h
e

�(�i+1
a )

2/(�i
b)

2
i� " N0Y

k=1

e

�(�1
k)

2

#

⇥�N0((�
1)2). (15)

For notational simplicity we will change variables from
the singular values to s

i
a = (�i

a)
2, i.e. the singular

values (and eigenvalues) of the Wishart matrices YiY
†
i

(the singular values of YMY

†
M will simply be denoted by

sa = s

M
a ). Furthermore, due to symmetrisation we can

replace the determinants of the exponentials by their di-
agonals, which will only change the partition function by
a factor (N

0

!)M�1. Exploiting this, the partition function
becomes

Z

M = C

�1

M

"
N0Y

b=1

Z 1

0

dsb (sb)
⌫M

#
�N0(s)

⇥
"

N0Y

a=1

M�1Y

i=1

Z 1

0

ds

i
a

s

i
a

(sia)
⌫i�⌫i+1

e

�si+1
a /sia

�
e

�s1a

#

⇥�N0(s
1), (16)

where CM is a normalisation constant.
The integrations over s

1

a, . . . , s
M�1

a have a similar
structure. Hence, we can perform all these integrals in a
similar fashion. We write the first exponential containing
s

1

a as a Meijer G-function using equation (A10), i.e.

�N0(s
1)

N0Y

a=1

e

�s1a = det
1a,bN0

h
G

1, 0
0, 1

⇣
�

b�1

��� s1a
⌘i

. (17)
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After a change of variables all the integrals can be per-
formed inductively using the identities (A7) and (A5).
These integrations finally give the joint probability den-
sity function, Pjpdf, for the singular values s

1

, . . . , sN0 of
the Wishart matrix YMY

†
M ,

PM
jpdf(s1, . . . , sN0) = C

�1

M �N0(s)

⇥ det
1a,bN0

h
G

M, 0
0,M

⇣
�

⌫M , ⌫M�1, ... , ⌫2, ⌫1+b�1

��� sa
⌘i

. (18)

The partition function is thus given by

Z

M =

N0Y

a=1

Z 1

0

dsa PM
jpdf(s1, . . . , sN0). (19)

This generalises the joint probability density function for
the product of square matrices from the Wishart ensem-
ble given in [23] to the case of rectangular matrices. In
principle all k-point correlation functions for the singular
values, RM

k (s
1

, . . . , sk), can be calculated from the joint
probability density function (18) as

R

M
k (s

1

, . . . , sk) =

N

0

!

(N
0

� k)!

N0Y

a=k+1

Z 1

0

dsa PM
jpdf(s1, . . . , sN0). (20)

Due to the Meijer G-function inside the determinant (18)
this is a non-trivial computation for M � 2. In complete
analogy to the square case [23], it turns out that the
correlation functions are more easily obtained using a
two-matrix model and the method of bi-orthogonal poly-
nomials. We will discuss this in section III, including
other methods of derivation.

The normalisation constant in equations (15) and (18)
is

CM = N

0

!

N0Y

n=1

MY

m=0

�[n+ ⌫m], (21)

such that the partition function is equal to unity, which
is straightforward to check using the Andréief integration
formula. The one-point correlation function (or density)
is normalised to the number of singular values,

Z 1

0

dsR

M
1

(s) = N

0

, (22)

which becomes evident in the following section.

III. TWO-MATRIX MODEL AND
BI-ORTHOGONAL POLYNOMIALS

The purpose of this section is to find an explicit ex-
pression for the k-point correlation functions (20). We
will follow the idea in [23] and rewrite our problem as a
two-matrix model by keeping the integrals over the s

1

a’s

and s

M
a ’s in Eq. (16) while integrating over the remaining

variables. Within this model we will exploit the method
of bi-orthogonal polynomials to achieve our goal. First,
we use the identity (A5) for the Meijer G-function to
write the partition function (19) with M � 2 as

Z

M =

N0Y

a=1

Z 1

0

dsa

N0Y

i=1

Z 1

0

dti
e
P

M
jpdf(s ; t ), (23)

where the joint probability density function is given by

e
P

M
jpdf(s ; t ) = CM�N0(s)�N0(t) det

1k,`,N0

⇥
w

M
⌫ (sk, t`)

⇤
,

(24)
sa ⌘ s

M
a and ta ⌘ s

1

a, and the weight function depending
on all indices ⌫m collectively denoted by ⌫ reads

w

M
⌫ (s, t) = t

⌫1�1

e

�t
G

M�1, 0
0,M�1

⇣
�

⌫M , ⌫M�1, ... , ⌫2

���
s

t

⌘
. (25)

The structure of the joint probability density func-
tion (24) is similar to that of the two-matrix model dis-
cussed in [33]. Although the focus in [33] is on a multi-
matrix model with an Itzykson–Zuber interaction, the
argument given is completely general and applies to our
situation as well. The (k, `)-point correlation functions
for this two-matrix model are defined as

R

M
k,`(s ; t ) =

(N
0

!)2

(N
0

� k)!(N
0

� `)!

⇥
N0Y

a=k+1

Z 1

0

dsa

N0Y

i=`+1

Z 1

0

dti
e
P

M
jpdf(s; t). (26)

Obviously, we can obtain the k-point correlation func-
tions (20) by integrating out all ti’s, i.e. setting ` = 0.

The benefit of the two-matrix model is that we can ex-
ploit the method of bi-orthogonal polynomials as in [33].
We choose a family of monic polynomials qMj (t) = t

j+· · ·
and p

M
j (s) = s

j + · · · , which are bi-orthogonal with re-
spect to the weight (25),

Z 1

0

ds

Z 1

0

dtw

M
⌫ (s, t)qMi (t)pMj (s) = h

M
j �ij , (27)

where h

M
j are constants. Furthermore, we introduce the

functions  

M
j (t) and '

M
j (s) defined as integral trans-

forms of the bi-orthogonal polynomials,

 

M
j (t) ⌘

Z 1

0

dsw

M
⌫ (s, t)pMj (s), (28)

'

M
j (s) ⌘

Z 1

0

dtw

M
⌫ (s, t)qMj (t). (29)

Note that  M
j (t) and '

M
j (s) are not necessarily polyno-

mials. It is evident from the bi-orthogonality of the poly-
nomials (27) that we have the orthogonality relations

Z 1

0

dt q

M
i (t) M

j (t) =

Z 1

0

ds p

M
i (s)'M

j (s) = h

M
j �ij .

(30)
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Moreover, it follows from the discussion in [33] that the
(k, `)-point correlation functions are given by a determi-
nantal point process

R

M
k,`(s ; t ) = det

1a,bk
1i,j`


K

M
11

(sa, sb) K

M
12

(sa, tj)
K

M
21

(ti, sb) K

M
22

(ti, tj)

�
, (31)

where the four sub-kernels are defined in terms of the
bi-orthogonal polynomials and the weight function as

K

M
11

(sa, sb) =

N0�1X

n=0

p

M
n (sa)'

M
n (sb)

h

M
n

,

K

M
12

(sa, tj) =

N0�1X

n=0

p

M
n (sa)q

M
n (tj)

h

M
n

,

K

M
21

(ti, sb) =

N0�1X

n=0

 

M
n (ti)'

M
n (sb)

h

M
n

� w

M
⌫ (sb, ti),

K

M
22

(ti, tj) =

N0�1X

n=0

 

M
n (ti)q

M
n (tj)

h

M
n

. (32)

In particular we have that the k-point correlation func-
tions (20) for the singular values of the product matrix
YMY

†
M are given by

R

M
k (s

1

, . . . , sk) = det
1a,bk

⇥
K

M
11

(sa, sb)
⇤
. (33)

The goal is to find the bi-orthogonal polynomials, qMj (t)

and p

M
j (s), and the norms, h

M
j , and thereby all corre-

lation functions for the singular values of the product
matrix, YM . Note that we use a slightly different nota-
tion for the sub-kernels than in [23]; the notation in this
paper is chosen to emphasise the fact that all the sta-
tistical properties of the singular values are determined
by the bi-orthogonal polynomials, qMj (t) and p

M
j (s), and

the weight function, wM
⌫ (s, t).

In order to find the bi-orthogonal polynomials we fol-
low the approach in [23] and start by computing the bi-
moments

I

M
ij ⌘

Z 1

0

ds

Z 1

0

dtw

M
⌫ (s, t)si tj = (i+j+⌫

1

)!

MY

m=2

(i+⌫m)!

(34)
for M � 2. Here the integration has been performed
using integral identities for the Meijer G-function, see
equations (A4) and (A5). Using Cramer’s rule, the bi-
orthogonal polynomials as well as the norms can be ex-

pressed in terms of the bimoments as [34, 35],

q

M
n (t) =

1

D

M
n�1

det

2

6664

I

M
00

I

M
10

· · · I

M
(n�1)0

1

I

M
01

I

M
11

· · · I

M
(n�1)1

t

...
...

...
...

I

M
0n I

M
1n · · · I

M
(n�1)n t

n

3

7775
,

p

M
n (s) =

1

D

M
n�1

det

2

6664

I

M
00

I

M
01

· · · I

M
0(n�1)

1

I

M
10

I

M
11

· · · I

M
1(n�1)

s

...
...

...
...

I

M
n0 I

M
n1 · · · I

M
n(n�1)

s

n

3

7775
, (35)

where

D

M
n ⌘ det

0i,jn
[IMij ] =

nY

i=0

MY

m=0

(i+ ⌫m)!. (36)

The norms can be expressed as

h

M
n = D

M
n /D

M
n�1

=

MY

m=0

(n+ ⌫m)!. (37)

Recall that ⌫i ⌘ Ni � N

0

� 0 are non-negative integers
by definition (⌫

0

= 0).
In order to get more explicit expressions for the bi-

orthogonal polynomials, we define the bimoment ma-
trix (34) for M = 1 as the bimoments with respect to
the Laguerre weight,

I

M=1

ij ⌘
Z 1

0

ds e

�s
s

⌫1+i+j = (i+ j + ⌫

1

)!. (38)

It follows that the polynomials (35) for M = 1 are the
Laguerre polynomials in monic normalisation,

p

M=1

n (s) = q

M=1

n (s) = e
L

⌫1
n (s) ⌘ (�1)nn!L⌫1

n (s), (39)

where L

⌫1
n (s) are the associated Laguerre polynomials.

We recall that the Laguerre polynomials are defined as

e
L

⌫1
n (s) =

nX

k=0

(�1)n+k

(n� k)!

(n+ ⌫

1

)!

(k + ⌫

1

)!

n!

k!
s

k (40)

and satisfy the orthogonality relation
Z 1

0

ds e

�s
s

⌫1 e
L

⌫1
k (s)eL⌫1

` (s) = h

M=1

k �k` (41)

with h

M=1

k = k!(k + ⌫

1

)!.
The bimoment matrix, [IMij ]0i,jn, with M � 2

given by equation (34) differs from the bimoment matrix,
[I1ij ]0i,jn, given by equation (38) by multiplication of
a diagonal matrix. It directly follows from this fact that
the polynomials q

M
n (t) are related to the Laguerre poly-

nomials as

q

M
n (t) =

n�1Y

i=0

MY

m=2

(i+ ⌫m)!
D

1

n�1

D

M
n�1

e
L

⌫1
n (t) = e

L

⌫1
n (t). (42)
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The evaluation of the polynomials p

M
n (s) is slightly

more complicated. For the polynomials q

M
n (t), the fac-

torisation is the same for all powers of t, but for the poly-
nomials pMn (s) we have to treat the powers differently; in
particular we substitute s

k ! s

k
/

QM
m=2

(k+⌫m)!. Using
the explicit expression for the Laguerre polynomials (40)
we find

p

M
n (s) =

nX

k=0

(�1)n+k
n!

(n� k)!

 
MY

m=1

(n+ ⌫m)!

(k + ⌫m)!

!
s

k

k!
, (43)

which is a generalised hypergeometric polynomial (see
equation (A2) in appendix A)

p

M
n (s) = (�1)n

MY

m=1

(n+ ⌫m)!

⌫m!
1

FM

⇣
�n

1+⌫M , ... , 1+⌫1

��� s
⌘
.

(44)
For ⌫M = · · · = ⌫

1

= 0 this polynomial reduces to the
result presented in [23], while the monic Laguerre poly-
nomials are reobtained by setting M = 1. Alternatively
we may write p

M
n (s) as a Meijer G-function,

p

M
n (s) = (�1)n

MY

m=0

(n+ ⌫m)!G1, 0
1,M+1

⇣
n+1

0,�⌫M , ... ,�⌫1

��� s
⌘
.

(45)
This expression will be particularly useful in section IV,
where we discuss the asymptotic behaviour of the end-
points of support of the spectral density. In equation (45)
we have used the relation (A9) between generalised hy-
pergeometric polynomials and Meijer G-functions. It
might not be immediately clear that the Meijer G-
function in (45) is a polynomial. To see this, one writes
the Meijer G-function as a contour integral using its def-
inition (A3). The integrand has exactly n simple poles
and the contour is closed such that these poles are encir-
cled. The residue for each pole gives a monomial, such
that the complete contour integral yields a polynomial.

With the explicit expressions for the bi-orthogonal
polynomials (42) and (44), we are ready to compute the
functions  M

n (t) and 'M
n (s) defined in equation (29), and

thereby implicitly find all the sub-kernels (32). The func-
tions  M

n (t) turn out to be polynomials, too,

 

M
n (t) =

MY

m=2

(n+ ⌫m)! teL⌫1
n (t), (46)

which can be directly obtained from the definition (29)
using the integral identity (A4).

Likewise, we can obtain an explicit expression for the
functions 'M

n (s) by inserting the polynomial (42) into the
definition (29). It follows from the integral identity (A5)
that

'

M
n (s) =

nX

k=0

(�1)n+k

(n� k)!

(n+ ⌫

1

)!

(k + ⌫

1

)!

n!

k!

⇥G

M, 0
0,M

⇣
�

⌫M , ... , ⌫2,⌫1+k

��� s
⌘
. (47)

However, it is possible to get a more compact expression.
Recall that the Laguerre polynomials can be expressed
using Rodrigues’ formula,

e
L

⌫1
n (t) = (�1)nt�⌫1

e

t d
n

dt

n

�
t

n+⌫1
e

�t
�
. (48)

We insert Rodrigues’ formula into the definition for
'

M
n (s), see equation (29). The differentiation in equa-

tion (48) can easily be changed to a differentiation of the
Meijer G-function (stemming from the weight function)
using integration by parts, since all boundary terms are
zero. Then the differentiation can be computed using
equation (A8), while the final integration over t can be
performed using the identity (A5). This finally leads to

'

M
n (s) = (�1)nGM, 1

1,M+1

⇣
�n

⌫M , ⌫M�1, ... , ⌫1,0

��� s
⌘
. (49)

In addition to the fact that equation (49) is a more com-
pact expression than the representation (47), we is also
immediate that 'M

n (s) is symmetric in all the indices ⌫m,
which is far from obvious in equation (47).

Now we have explicit expressions for all components
contained in the formula for the (k, `)-point correlation
functions (31), which completes the derivation. In par-
ticular combining equations (37), (44), and (49) the sub-
kernel KM

11

(sa, sb) is given by

K

M
11

(sa, sb) =

N0�1X

n=0

1

n!

MY

m=1

1

⌫m!
1

FM

⇣
�n

1+⌫M , ... , 1+⌫1

��� sa
⌘

⇥G

M, 1
1,M+1

⇣
�n

⌫M , ... , ⌫1,0

��� sb
⌘
. (50)

It provides a direct generalisation of the formula given
in [23] for square matrices to the case of rectangular ma-
trices. If we use the alternative formula (45) for p

M
n (s)

we obtain

K

M
11

(sa, sb) =

N0�1X

n=0

G

1, 0
1,M+1

⇣
n+1

0,�⌫M , ... ,�⌫1

��� sa
⌘

⇥G

M, 1
1,M+1

⇣
�n

⌫M , ... , ⌫1,0

��� sb
⌘
. (51)

The k-point correlation functions for the singular values
are immediately found from equation (33). Note that the
kernel and thereby all k-point correlation functions are
symmetric in all the indices ⌫m. This symmetry reflects
the invariance of the singular values of the product ma-
trix, YM = XM · · ·X

1

, under reordering of the matrices
Xm which we prove in a more general setting in [24]. The
normalisation of the spectral density (22) is immediately
clear from the orthogonality relation (30).

Finally we would like to mention an alternative deriva-
tion for the correlation functions (20) in terms of the
kernel KM

11

. Given the orthogonality relation (30) of the
polynomials p

M
i (43) and the functions 'M

j (47) we can
generate these by adding columns in the two determi-
nants in the joint probability density function (18) and
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then proceed with the standard Dyson theorem. This is
in complete analogy as described in [23]. Alternatively,
the kernel can be derived by using bi-orthogonal func-
tions and explicitly inverting the bimoment matrix [36].
Furthermore, a construction using multiple orthogonal
polynomials exist [37, 38], too.

IV. MOMENTS AND ASYMPTOTICS

In this section we take a closer look at the spectral
density. First we will use the density to find an explicit
expression for the moments. Second we will discuss the
macroscopic large-N

0

limit of the density.
We know from the previous section that the density,

or one-point correlation function, is given as a sum over
Meijer G-functions,

R

M
1

(s) =

N0�1X

n=0

G

1, 0
1,M+1

⇣
n+1

0,�⌫M , ... ,�⌫1

��� s
⌘

⇥G

M, 1
1,M+1

⇣
�n

⌫M , ... , ⌫1,0

��� s
⌘
, (52)

which is normalised to the number of singular values,
N

0

. Figure 1 shows a comparison between the analyti-
cal expression and numerical simulations for an example.
The expectation value for the singular values is defined
in terms of the density (52) as

E{f(s)} ⌘ 1

N

0

Z 1

0

dsR

M
1

(s) f(s), (53)

where the factor 1/N
0

is included since the density (52)
is normalised to the number of singular values.

We will first look at the moments, E{s`}. Note that
we do not assume that ` is an integer, and that the half-
integer values of ` are interesting, too, since the singular
values, �a, of the product matrix, YM , are given by the
square roots of the eigenvalues of the Wishart matrix, i.e.
�a =

p
sa. In order to calculate the moments, we explic-

itly write the first Meijer G-function in equation (52) as
a polynomial, see equations (43) and (45), and rewrite
the moments as

N

0

E{s`} =

N0�1X

n=0

nX

k=0

(�1)k

(n� k)!

MY

m=0

1

(k + ⌫m)!

⇥
Z 1

0

ds s

`+k
G

M, 1
1,M+1

⇣
�n

⌫M , ... , ⌫1,0

��� s
⌘
. (54)

The integral over s can be performed using an identity for
the Meijer G-function (A4). After reordering the sums
and applying Euler’s reflection formula for the gamma-
function we get

N

0

E{s`} =

N0�1X

k=0

MY

m=0

�[`+ k + ⌫m + 1]

(k + ⌫m)!

⇥
N0�k�1X

n=0

(�1)n

n!�[`� n+ 1]
, (55)
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⇢
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Figure 1. The histograms (bin width is 0.05) show the dis-
tributions of singular values (top) and squared singular val-
ues (bottom) for 50 000 realisations of the product matrix
Y3 = X3X2X1 for M = 3, with ⌫1 = 5, ⌫2 = 10, ⌫3 = 15
and N0 = 5. The solid curves are the analytical predictions
for the rescaled densities of singular values, 2�⇢31(�̂2), and of
squared singular values, ⇢31(ŝ), respectively, cf. equation (61).

where ` may also take non-integer values. For integer
values of ` some of the terms will vanish due to the
poles of the gamma-function. Note that the moments
are divergent whenever `  �⌫min � 1 is an integer
(⌫min ⌘ min{⌫

1

, . . . , ⌫M}), but well-defined for all other
values of `. The second sum in equation (55) can be eval-
uated by a relation for the (generalised) binomial series

NX

n=0

(�1)n
✓
z

n

◆
= (�1)N

✓
z � 1
N

◆
, z 2 C. (56)

We write the first sum in equation (55) in reverse order
(k ! N

0

� k� 1) and perform the second sum using the
identity (56) yielding

N

0

E{s`} =

N0�1X

k=0

(�1)k

k!�[`� k]`

MY

m=0

�[`+Nm � k]

�[Nm � k]
.(57)
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Alternatively, the moments can be written as

N

0

E{s`} =

N0�1X

k=0

(�1)1+k
QN0�1

j=0

(j � `� k)

k!(N
0

� 1� k)!`
(58)

⇥
MY

m=1

�[`+ ⌫m + k + 1]

�[⌫m + k + 1]

which is useful when considering the limit of negative
integer `. Recall that Nm are the different matrix di-
mensions of the original product (1) and ⌫m = Nm�N

0

.
For ` ! 0 all terms in the sum are equal to one and

we recover the normalisation. Simplifications also occur
when ` is an integer; here most of the terms in the sum
vanish, due to the gamma-function in the denominator.
In particular, the first positive moment and the first neg-
ative moment are given by

E{s} ⌘ NM =

MY

m=1

Nm and E{s�1} =

MY

m=1

1

⌫m
. (59)

The second moment is slightly more complicated,

E{s2} =
1

2

MY

m=1

Nm

 MY

m=0

(Nm+1)�
MY

m=0

(Nm�1)

�
. (60)

When M = 1 these formulae reduce to the well-known
results for the Wishart–Laguerre ensemble (e.g. see [11]),
while we get the result [23] for square matrices by setting
N

0

= · · · = NM . Note that any negative moment is
divergent if ⌫m = 0 for any 1  m  M .

The first moment, NM , provides us with a natural scal-
ing of the spectral density,

⇢

M
1

(ŝ) ⌘ NM

N

0

R

M
1

(ŝNM ), (61)

such that the rescaled density has a finite first moment of
unity also in the large-N

0

limit. In equation (61) and the
following, we use a hat ‘b’ to denote rescaled variables.

The expectation value with respect to the rescaled den-
sity (61) is related to the definition (53) by a simple scal-
ing of the variable,

Ê{f(ŝ)} ⌘
Z 1

0

dŝ ⇢

M
1

(ŝ)f(ŝ) = E
⇢
f

✓
ŝ

NM

◆�
, (62)

for any observable f(ŝ). The rescaling ensures that we
have a well-defined probability density with compact sup-
port in the large-N

0

limit; in particular the density ⇢

1

1

(ŝ)
for a single matrix M = 1 reduces to the celebrated
Marčenko–Pastur density for N

0

! 1.
An algebraic way to obtain the macroscopic behaviour

of the spectral density (61) for arbitrary M was provided
in [14], using the resolvent also known as the Stieltjes
transform, GM (ẑ), defined as

G

M (ẑ) ⌘
Z 1

0

dŝ lim
N0!1

⇢

M
1

(ŝ)

ẑ � ŝ

, (63)

with ẑ outside the limiting support of ⇢M
1

. It was shown
that in the large-N

0

limit the resolvent satisfies a poly-
nomial equation [14],

ẑ G

M (ẑ)

MY

m=1

ẑ G

M (ẑ) + ⌫̂m

⌫̂m + 1
= ẑ(ẑ GM (ẑ)� 1), (64)

where ẑ lies outside the support of the singular values and
⌫̂m denotes the rescaled differences in matrix dimensions,
i.e. ⌫̂m ⌘ ⌫m/N

0

for m = 1, . . . ,M . In general one needs
to solve an (M +1)-st order equation in order to find the
resolvent, GM (ẑ). It is clear, that such an equation can
generically only be solved analytically for M  3 (see
also the discussions in [37, 39]).
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Figure 2. The solid lines show the M = 3 rescaled spectral
densities for the singular values for N0 = 5 (top) and N0 = 10
(bottom) both with ⌫̂1 = 1, ⌫̂2 = 2, ⌫̂3 = 3. The dashed curves
indicate the corresponding macroscopic limit [14].

The correct resolvent is chosen by its asymptotic be-
haviour, ẑGM (ẑ) ! 1 for ẑ ! 1. When an expression
for the resolvent is known, then the spectral density can
be directly obtained from the resolvent using

⇢

M,1
1

(ŝ) ⌘ lim
N0!1

⇢

M
1

(ŝ) =
1

⇡

lim
"!0

+
ImG

M (ŝ� ı"). (65)

In figure 2 we compare this macroscopic limit with the
rescaled density (52) at finite Nm.

For the case M = 1 one can readily derive the well-
known Marčenko–Pastur law. Another particular case
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in which the spectral density ⇢

M,1
1

can be directly cal-
culated is M = 2 with ⌫̂

1

and ⌫̂

2

arbitrary. This case
plays an important role when studying cross correlation
matrices of two different sets of time series as it appears
in forecasting models [10, 40] where time-lagged corre-
lation matrices are non-symmetric. Our random matrix
model then corresponds to the case of two time series
which are uncorrelated. Despite the independence of the
distribution of the matrix elements correlations among
the singular values of the cross correlation matrix follow.
The solution of equation (64) yields the level density

⇢

M,1
1

(ŝ) =

p
3(⌫̂

1

+ 1)(⌫̂
2

+ 1)ŝ+ ⌫̂

2

1

� ⌫̂

1

⌫̂

2

+ ⌫̂

2

2

3⇡ŝ

⇥ Im
h
A

�1/3(f(ŝ)) +A

1/3(f(ŝ))
i

(66)

with

f

✓
z

(⌫̂
1

+ 1)(⌫̂
2

+ 1)

◆
(67)

= 3

⇥
3z + ⌫̂

2

1

� ⌫̂

1

⌫̂

2

+ ⌫̂

2

2

⇤
3

[3(3 + ⌫̂

1

+ ⌫̂

2

)z + ⌫̂

3

1

� (⌫̂
1

+ ⌫̂

2

)3/3 + ⌫̂

3

2

]
2

and

A(z) =

r
27

4z
� 1�

r
27

4z
. (68)

Indeed the special case ⌫̂
1

= ⌫̂

2

= 0 agrees with the result
derived in [23, 26, 37] because f(ŝ)|⌫̂1=⌫̂2=0

= ŝ.
It is also desirable to know where the endpoints of sup-

port of the macroscopic spectrum are located. These
edges can be found from the algebraic formula for the
resolvent (64) using a simple trick. We assume that the
resolvent behaves as |GM (ẑ)| ⇠ |ẑ � ŝ±|↵± with ↵± < 1
and ↵± 6= 0 in the vicinity of the edges, ŝ±. This edge
behaviour of the resolvent is known to hold in certain
cases, e.g. M = 1 yields ↵± = 1/2 < 1 (except when the
inner edge is zero, ŝ� = 0, then ↵� = �1/2 < 1). Due
to known universality results for random matrices, it is
expected that ↵± < 1 and ↵± 6= 0 in general. With this
particular edge behaviour, it is clear that |dGM

/dẑ| ! 1
for ẑ ! ŝ±, or equivalently dẑ/dG

M ! 0 for ẑ ! ŝ±.
Differentiating both sides of equation (64) with respect
to G

M and evaluating them at dẑ/dG

M = 0 yields an
equation for the extrema of ẑ,

ẑ

0

=

✓
1 +

MX

j=1

ẑ

0

G

M (ẑ
0

)

ẑ

0

G

M (ẑ
0

) + ⌫̂j

◆ MY

m=1

ẑ

0

G

M (ẑ
0

) + ⌫̂m

⌫̂m + 1
.

(69)
Two of these extrema are the inner edge, ẑ

0

= ŝ�, and
the outer edge, ẑ

0

= ŝ

+

. The edges, ŝ±, also satisfy
equation (64). Combining both equations, we get an ex-
pression for the edges

ŝ± =
û

0

1 + û

0

MY

m=1

⌫̂m � û

0

⌫̂m + 1
, (70)

in terms of û
0

⌘ �ẑ

0

G

M (ẑ
0

) which is given by
MX

m=1

û

0

(û
0

+ 1)

⌫̂m � û

0

= 1. (71)

This equation is equivalent to a polynomial equation of
(M + 1)’st order as it is the case for the resolvent, see
equation (64). However, in certain cases equation (71)
simplifies. In particular, equation (71) reduces to an M -
th order equation if ⌫̂i = ⌫̂j for i 6= j, if ⌫̂i ! 0 or if
⌫̂i ! 1. The latter means that Ni � N

0

meaning that
the matrix dimension Ni decouples from the macroscopic
theory.

In general the set of equations (70) and (71) yields
(M + 1) solutions of which two correspond to the inner
and outer edge of the spectral density. In the special case
where ⌫̂ ⌘ ⌫̂

1

= · · · = ⌫̂M , there are only two solutions
(see figure 3)

ŝ±(⌫̂) =
M + 1 + 2⌫̂ ±

p
(M + 1)2 + 4M ⌫̂

2(⌫̂ + 1)

⇥
 
M + 1 + 2M ⌫̂ ±

p
(M + 1)2 + 4M ⌫̂

2M + 2M ⌫̂

!M

.

(72)

Note that for M = 1 this result reduces to the known
values for the edges of the Marčenko–Pastur density (e.g.
see [11]), while the limit ŝ±(⌫̂ ! 0) reproduces the result
for the product of square matrices, see [23, 26, 37]. It is
easy to numerically verify that the result holds in general.

Looking at the equations (70) and (71), an obvious
question is: Which solutions correspond to the edges of
the spectrum? In order to answer this question, we will
derive the same equations through a different route. The
rescaled spectral density (61) serves as the starting point,
and the locations of the edges are determined using a
saddle point approximation for large N

0

. This also illus-
trates the point that the finite Nm expression discussed
in this paper is equivalent to the result presented in [14]
in the macroscopic limit.

In the large-N
0

limit we may approximate the sum
over n, see equation (52), by an integral. Moreover, we
write the Meijer G-functions as contour integrals (A3)
and approximate the gamma-functions using Stirling’s
formula. The rescaled density (61) becomes

⇢

M
1

(ŝ) ⇡ NM

N

0

Z
1

0

dn̂

N

0

2⇡ı

Z

L1

dv̂ e

�N0S(�v̂,n̂)

⇥N

0

2⇡ı

Z

L2

dû e

N0S(û,n̂)
, (73)

where the action, S, is given by

S(û, n̂) = ûlnNM ŝ+

MX

m=1

(⌫̂m � û)(lnN
0

(⌫̂m � û)� 1)

+ (n̂+ û)(lnN
0

(n̂+ û)� 1)

� û (lnN
0

û� 1) (74)
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with n̂ = n/N

0

, û = u/N

0

and ⌫̂m = ⌫m/N

0

. It is im-
portant to note that the integrand in the definition of
the Meijer G-function (A3) contains poles which lie on
the real axis. The contours L

1

and L

2

encircle the poles
of the original Meijer G-functions in accordance to defi-
nition (A3). In the large-N

0

limit these poles condense
into cuts, such that the complex û-plane has a cut on the
interval (⌫̂min,1) and the complex (�v̂)-plane has a cut
on the interval (�1, 0). The contours L

1

and L

2

encircle
these cuts in the v̂-plane and the û-plane, respectively.
Both contour integrals can be evaluated by a saddle point
approximation. Furthermore, variation with respect to n̂

yields û = �v̂ at the saddle point and due to the sym-
metry between the two saddle point equations we can
restrict our attention to one of them. The saddle point
equation for û yields

ŝ =
û

0

n̂+ û

0

MY

m=1

⌫̂m � û

0

⌫̂m + 1
, 0  n̂  1. (75)

Equation (75) gives the saddle points, û
0

, for any given
ŝ. In order to find the saddle points for the edges of the
spectrum, we have to find the values of n̂ and û

0

which
give the extremal values of ŝ.

Optimising with respect to n̂, we see that n̂ has no
optimal value within the interval (0, 1), hence n̂ must lie
on the boundary due to the Laplace approximation (sad-
dle point approximation on a real support). The only
non-trivial result comes from n̂ = 1. Inserting this con-
dition into the saddle point equation (75) we reproduce
formula (70). The condition for û

0

is given by differenti-
ating the left hand side of the saddle point equation (75)
and setting this result equal to zero,

d

dû

0

"
û

0

1 + û

0

MY

m=1

⌫̂m � û

0

⌫̂m + 1

#
= 0. (76)

This condition is identical to formula (71). Hence the
saddle point method reproduces the result obtained from
the algebraic equation (64) for the resolvent.

The saddle points, which satisfy equation (76), are the
extrema of the function within the square brackets. This
function has a pole at �1 and goes to +1 for û

0

! �1
such that there is exactly one minimum to the left of the
pole, see figure 3. On the right of the pole the function
oscillates such that it has zeros at 0, ⌫̂

1

, . . . , ⌫̂M . Since the
rational function on the right hand side of equation (75)
is continuous it has extrema between neighbouring zeros,
see figure 3, yielding M additional extrema. It follows
that the optimisation problem (76) has M + 1 solutions
for û

0

, which are all real: One solution û

+

0

< �1 which
gives the outer edge of the spectrum ŝ

+

, one solution 0 
û

�
0

 ⌫̂min which gives the inner edge of the spectrum ŝ�,
and M�1 solutions û

0

� ⌫min which must be disregarded
due to the cut in the complex û-plane mentioned above.
It is clear that equation (76) cannot have more than M+1
solutions implying that we have found all solutions. With
this result we know how to choose the correct solution of
equation (71), which was what we wanted to establish.

ŝ(û)

1

�1 ⌫̂min

û

0

ŝ+

û+
0

extremum

ŝ�

û�
0

extremum

û0

inaccessible

extremum

ŝ(û) =
û

1 + û

MQ
m=1

⌫̂m � û

⌫̂m + 1

Figure 3. Illustration of the optimisation problem given by
equation (76). Extrema within the intervals (�1, 0) and
(⌫̂min,1) must be disregarded due to the cuts in the complex
(�v̂)-plane and complex û-plane, respectively. This leaves
only two valid extrema which correspond to the inner edge
and the outer edge, respectively. Note that the solutions for
the inner edge and the outer edge are separated by the pole
at �1.

Before ending the discussion about the edges of the
spectral density, it is worth noting that equation (71) is
an (M + 1)-st order equation, and the general case can
for this reason not be solved analytically. However, it is
possible to set up some analytical bounds for the edges.
The starting point are the conditions 0  û

�
0

 ⌫̂min and
�1 < û

+

0

< �1 for the saddle points. We will analyse
step by step first the bounds on the inner edge, ŝ�, and
then on the outer edge, ŝ

+

.
Let us consider the inner edge, ŝ�. Since 0  ⌫̂

min


⌫̂m, m = 1, . . . ,M , we can readily estimate

min

⇢
⌫̂m

⌫̂m + 1
,

⌫̂

max

� û

0

⌫̂

max

+ 1

�
� ⌫̂m � û

0

⌫̂m + 1
� ⌫̂

min

� û

0

⌫̂

min

+ 1
(77)

for any û

0

� 0. Note that these bounds hold since
the rational function, (⌫̂m � û

0

)/(⌫̂m + 1), is strictly
monotonously increasing in ⌫̂m for û

0

� 0. We plug
equation (77) into equation (70) and extremise the lower
and upper bound which yields

0  ŝ�(⌫̂min

)  ŝ�  min

(
MY

m=1

⌫̂m

⌫̂m + 1
, ŝ�(⌫̂max

)

)
< 1,

(78)
where we made use of the result (72) for the case when all
⌫̂ are equal to ⌫̂

min

or to ⌫̂

max

. The bounds (78) are not
at all optimal. However they immediately reflect the fact
that the inner edge vanishes if and only if ⌫̂

min

vanishes.
For the outer edge we have to employ the condition

û

0

< �1 which yields the estimates

⌫̂

min

� û

0

⌫̂

min

+ 1
� ⌫̂m � û

0

⌫̂m + 1
� ⌫̂

max

� û

0

⌫̂

max

+ 1
. (79)

Hereby we used the fact that the rational function, (⌫̂m�
û

0

)/(⌫̂m + 1), is monotonously decreasing in ⌫̂m in the
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considered regime. Employing the result (72) we find the
bounds

1 < ŝ

+

(⌫̂
max

)  ŝ

+

 ŝ

+

(⌫̂
min

)  (M + 1)M+1

M

M
< 1.

(80)
Again the bounds can certainly be improved but they
give a good picture what the relation is between the case
of degenerate ⌫̂, cf. equation (72), and the general case,
⌫̂j 6= ⌫̂i for j 6= i.

V. MUTUAL INFORMATION FOR
PROGRESSIVE SCATTERING

We will now turn to a brief discussion of the mutual
information, which is an important quantity in wireless
telecommunication. We look at a MIMO communication
channel with multi-fold scattering as mentioned in sec-
tion I. The communication link is described by a channel
matrix given by a product of complex (� = 2) matri-
ces from the Wishart ensemble as in equation (1). The
mutual information is defined as

I(�, s) = log
2

det
h
1N0 + �

YMY†
M

NM

i

=

N0X

a=1

log
2

⇣
1 + �

sa

NM

⌘
, (81)

where � is the constant signal-to-noise ratio at the trans-
mitter and sa are the singular values distributed accord-
ing to the density (52). The mutual information mea-
sures an upper bound for the spectral efficiency in bits
per time per bandwidth (bit/s/Hz).

In order to evaluate the expectation value of the mu-
tual information, the so-called ergodic mutual informa-
tion, we rewrite the logarithm as a Meijer G-function,
see equation (A10). We use the expression (47) for the
functions '

M
n (s), while we write p

M
n (s) in polynomial

form (43). The integration over the product of two Mei-
jer G-functions can be performed using equation (A6),
which finally yields

Ê{I(�, ŝ)} =
1

ln2

N0�1X

n=0

nX

k,`=0

(�1)k+`

(n� k)!(n� `)!

⇥ n!

k!`!

(n+ ⌫

1

)!

(`+ ⌫

1

)!

MY

m=1

1

(k + ⌫m)!

⇥G

M+2, 1
2,M+2

⇣
0, 1

k+1+⌫M , ... , k+`+1+⌫1, 0, 0

��� ��1

⌘

(82)

For square matrices, i.e. ⌫i = 0 for all i = 1 . . .M , this
triple sum was derived in [23]. Although it is not obvi-
ous from this formulation, the mutual information is also
independent of the ordering of ⌫m. This is reflected after

simplifying the expression (82) with help of a combina-
tion of the equations (40), (48), (A5), and (A8) to

Ê{I(�, ŝ)} =
1

ln2

N0�1X

n=0

nX

k=0

(�1)k

(n� k)!k!

MY

m=1

1

(k + ⌫m)!

⇥G

M+2, 2
3,M+3

⇣
k�n+1, 0, 1

k+1+⌫M , ... , k+1+⌫1, 0, 0, k+1

��� ��1

⌘

(83)

Hence, the channel matrix does not depend on the order-
ing of the scattering objects as long as the signal passes
through all scatterers.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have studied the correlations of the
singular values of the product of M rectangular com-
plex matrices from independent Wishart ensembles. This
generalises the classical result for the so-called Wishart–
Laguerre unitary ensemble (or chiral unitary ensemble)
at M = 1, and is a direct extension of a recent result for
the product of square matrices [23]. We have seen that
the problem of determining the statistical properties of
the product of rectangular matrices can be equivalently
formulated as a problem with the product of quadratic
matrices and a modified, also called induced measure, see
[24] for a general derivation. The expense of this refor-
mulation of the problem is the introduction of additional
determinants in the partition function.

We have shown that the joint probability density func-
tion for the singular values can be expressed in terms of
Meijer-G functions. The approach which we have used
relies on an integration formula for the Meijer-G func-
tion as well as on the Harish-Chandra–Itzykson–Zuber
integration formula. Due to the latter this method is
limited to the complex case (� = 2). Furthermore, it has
been shown, using a two-matrix model and the method
of bi-orthogonal polynomials, that all correlation func-
tions can be expressed as a determinantal point process
containing Meijer-G functions. From the explicit expres-
sions we derived it follows that all correlation functions
are independent of the ordering of the matrix dimensions.

The level density (or one-point correlation function)
was discussed in detail. We used the spectral density to
calculate all moments and derived its macroscopic limit.
In particular, we analysed the location of the end points
of the spectrum in the macroscopic limit for arbitrary M

and derived some narrow bounds for the location of these
edges.

As an application we briefly discussed the ergodic mu-
tual information, and how the singular values of products
of random matrices are related to progressive scattering
in MIMO communication channels.

The results presented in this work concern matrices
of finite size, while previous results for the product of
rectangular random matrices were only derived in the
macroscopic large-N

0

limit. The explicit expressions for
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all correlation functions at finite size make it possible to
also discuss microscopic properties, such as the local cor-
relations in the bulk and at the edges. Due to known
universality results for random matrices it is expected
that such an analysis should reproduce the universal sine
and Airy kernel in the bulk and at the soft edge(s), re-
spectively, after an appropriate unfolding. Close to the
origin the level statistics will crucially depend on whether
or not the difference of the individual matrix dimensions
to the smallest one, ⌫m = Nm � N

0

, scales with N

0

. If
it does this will lead to a soft edge. Else it is expected,
that the microscopic behaviour at the origin will be sen-
sitive to M and ⌫m. For a single matrix with M = 1
(the Wishart–Laguerre ensemble), it is already known
that this limit yields different Bessel universality classes
labelled by ⌫

1

.
Furthermore, the determinantal structure of the corre-

lation functions make it possible to study the distribution
of individual singular values, which is an intriguing prob-
lem in its own right.

It has been pointed out in [37], that for the prod-
uct of two square matrices, M = 2 and ⌫

1

= 0, the
bi-orthogonal polynomials in question are special cases
of multiple orthogonal polynomials associated with the
modified Bessel function of the second kind. It is an
intriguing task to see whether this approach can be ex-
tended to the more general case with M � 2 and rect-
angular matrices. Progress in this direction has already
been made [38].
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Appendix A: Special Functions and some of their
Identities

In this appendix we collect some definitions and iden-
tities for the generalised hypergeometric function and for
the Meijer G-function, which are used in this paper.

The generalised hypergeometric function is defined by
a power series in its region of convergence [41],

pFq

⇣
a1, ... , ap

b1, ... , bq

��� z
⌘
⌘

1X

k=0

Qp
i=1

(ai)kQq
i=1

(bi)k

z

k

k!
, (A1)

where the Pochhammer symbol is defined by (a)
0

= 1
and (a)n ⌘ (a + n � 1)(a)n�1

= a(a + 1) · · · (a + n � 1)
for n � 1. It is clear that the hypergeometric series (A1)
terminates if any of the ai’s is a negative integer. In

particular, if n is a positive integer then

p+1

Fq

⇣
�n,a1, ... , ap

b1, ... , bq

��� z
⌘
=

nX

k=0

(�1)kn!

(n� k)!

Qp
i=1

(ai)kQq
i=1

(bi)k

z

k

k!
,

(A2)
which is a polynomial of degree n or less.

The Meijer G-function can be considered as a gener-
alisation of the generalised hypergeometric function. It
is usually defined by a contour integral in the complex
plane [41],

G

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

��� z
⌘
⌘

1

2⇡ı

Z

L
du z

u

Qm
i=1

�[bi � u]
Qn

i=1

�[1� ai + u]Qp
i=n+1

�[ai � u]
Qq

i=m+1

�[1� bi + u]
.

(A3)

The contour runs from �ı1 to +ı1 and is chosen such
that it separates the poles stemming from �[bi � u] and
the poles stemming from �[1� ai + u]. Furthermore this
contour can be considered as an inverse Mellin transform.
For an extensive discussion of the integration path L and
the requirements for convergence see [42].

It follows that the Mellin transform of a Meijer G-
function is given by [41]

Z 1

0

ds s

u�1

G

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

��� sz
⌘
=

z

�u

Qm
i=1

�[bi + u]
Qn

i=1

�[1� ai � u]Qp
i=n+1

�[ai + u]
Qq

i=m+1

�[1� bi � u]
, (A4)

which is results from the definition of the Meijer G-
function (A3). In combination with the definition of the
gamma-function we have another identity

Z 1

0

dt e

�t
t

b0�1

G

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

���
s

t

⌘
=

G

m+1, n
p, q+1

⇣
a1, ... , ap

b0, ... , bq

��� s
⌘
. (A5)

Both of these integral identities are used throughout this
paper. Another integral identity, which is used in sec-
tion V, allows us to integrate over the product of two
Meijer G-functions [43],

Z 1

0

dsG

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

��� ⌘s
⌘
G

µ, ⌫
�, ⌧

⇣
c1, ... , c�
d1, ... , d⌧

���!s
⌘
=

1

!

G

m+⌫, n+µ
p+⌧ , q+�

⇣
a1, ... , an,�d1, ... ,�d⌧ , an+1, ... , ap

b1, ... , bm,�c1, ... ,�c�, bm+1, ... , bq

���
⌘

!

⌘
.

(A6)

The full set of restrictions on the indices for this integra-
tion formula can be found in [43].

In addition to the integral identities given above, we
need some other identities for the Meijer G-function. We
employ several times that it is possible to absorb powers
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of the argument into the Meijer G-function, by making a
shift in the arguments [41],

z

⇢
G

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

��� z
⌘
= G

m,n
p, q

⇣
a1+⇢, ... , ap+⇢
b1+⇢, ... , bq+⇢

��� z
⌘
. (A7)

For computing the function '

M
n (s) in section III, we need

the differential identity [43]

z

n d

n

dz

n
G

m,n
p, q

⇣
a1, ... , ap

b1, ... , bq

���
1

z

⌘
=

(�1)nGm,n+1

p+1, q+1

⇣
1�n, a1, ... , ap

b1, ... , bq, 1

���
1

z

⌘
. (A8)

We also use that the generalised hypergeometric polyno-
mial is related to the Meijer G-function by

1

Fq

⇣
�n

b1, ... , bq

��� z
⌘
=

n!

qY

i=1

�[bi]G
1, 0
1,M+1

⇣
n+1

0, 1�b1, ... , 1�bq

��� z
⌘
, (A9)

in order to write the polynomial pMn (s) as a Meijer G-
function in section III.

As a last remark of this appendix, it should be men-
tioned that the Meijer G-function contains a vast number
of elementary and special functions as special cases (e.g.
see [44]). We mention that

G

1, 0
0, 1

⇣
�
b

��� z
⌘
= z

b
e

�z and G

1, 2
2, 2

⇣
1, 1
1, 0

��� z
⌘
= ln(1 + z),

(A10)
which becomes useful in sections II and V, respectively.

[1] G. Akemann, J. Baik, and P. Di Francesco, The Oxford
Handbook of Random Matrix Theory (Oxford University
Press, Oxford, 2011).

[2] A. Crisanti, G. Paladin, and A. Vulpiani, Products of
random matrices in statistical physics (Springer,
Heidelberg, 1993).

[3] A. D. Jackson, B. Lautrup, P. Johansen, and
M. Nielsen, Phys. Rev. E 66, 066124 (2002).

[4] E. Gudowska-Nowak, R. A. Janik, J. Jurkiewicz, and
M. A. Nowak, Nucl. Phys. B 670, 479 (2003),
arXiv:math-ph/0304032.

[5] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004),
arXiv:hep-th/0403131.

[6] G. Akemann, Int. J. Mod. Phys. A 22, 1077 (2007),
arXiv:hep-th/0701175 [hep-th].

[7] A. M. Brzoska, F. Lenz, J. W. Negele, and M. Thies,
Phys. Rev. D 71, 034008 (2005), arXiv:hep-th/0412003.

[8] R. Narayanan and H. Neuberger, JHEP 0712, 066
(2007), arXiv:0711.4551.

[9] J. Blaizot and M. A. Nowak, Phys. Rev. Lett. 101,
102001 (2008), arXiv:0801.1859.

[10] J.-P. Bouchaud, L. Laloux, M. A. Miceli, and
M. Potters, Eur. Phys. J. B 55, 201 (2007).

[11] A. Tulino and S. Verdú, Random Matrix Theory And
Wireless Communications (Now Publishers, Hanover,
MA, 2004).

[12] M. L. Mehta, Random Matrices (Academic Press Inc.,
New York, 3rd edition, 2004).

[13] Z. Burda, R. A. Janik, and B. Waclaw, Phys. Rev. E
81, 041132 (2010), arXiv:0912.3422.

[14] Z. Burda, A. Jarosz, G. Livan, M. A. Nowak, and
A. Swiech, Phys. Rev. E 82, 061114 (2010),
arXiv:1007.3594.

[15] F. Götze and A. Tikhomirov, arXiv:1012.2710.
[16] S. O’Rourke and A. Soshnikov, Electron. J. Probab. 16,

2219 (2011), arXiv:1012.4497.

[17] R. R. Müller, IEEE Trans. Inf. Theor. 48, 2086 (2002).
[18] T. Banica, S. Belinschi, M. Capitaine, and B. Collins,

Canad. J. Math. 63, 3 (2011), arXiv:0710.5931.
[19] F. Benaych-Georges, Ann. Inst. Henri Poincaré Probab.

Stat. 46, 644 (2010), arXiv:0808.3938.
[20] G. Akemann and Z. Burda, J. Phys. A 45, 465201

(2012), arXiv:1208.0187.
[21] G. Akemann and E. Strahov, J. Stat. Phys. 151, 987

(2013), arXiv:1211.1576.
[22] J. R. Ipsen, J. Phys. A 46, 265201 (2013),

arXiv:1301.3343.
[23] G. Akemann, M. Kieburg, and L. Wei, J. Phys. A 46,

275205 (2013), arXiv:1303.5694.
[24] J. R. Ipsen and M. Kieburg, arXiv:1310.4154.
[25] B. Collins, I. Nechita, and K. Życzkowski, J. Phys. A

43, A265303 (2010), arXiv:1003.3075.
[26] K. Życzkowski, K. A. Penson, I. Nechita, and

B. Collins, J. Math. Phys. 52, 062201 (2011),
arXiv:1010.3570.

[27] G. J. Foschini, Bell Labs Tech. Jour. 1, 41 (1996).
[28] G. J. Foschini and M. J. Gans, Wireless Pers. Com. 6,

311 (1998).
[29] E. Telatar, Euro. Trans. Telecom. 10, 585 (1999).
[30] Harish-Chandra, Amer. J. Math. 79, 87 (1957).
[31] C. Itzykson and J. B. Zuber, J. Math. Phys. 21, 411

(1980).
[32] J. Fischmann, W. Bruzda, B. A. Khoruzhenko, H.-J.

Sommers, and K. Życzkowski, J. Phys. A 45, 075203
(2012), arXiv:1107.5019.

[33] B. Eynard and M. L. Mehta, J. Phys. A 31, 4449
(1998), arXiv:cond-mat/9710230.

[34] M. Bertola, M. Gekhtman, and J. Szmigielski, Comm.
Math. Phys. 287, 983 (2009), arXiv:0804.0873.

[35] M. Bertola, M. Gekhtman, and J. Szmigielski, J.
Approx. Theory 162, 832 (2010), arXiv:0904.2602.

[36] E. Strahov, Private communication (2013).

http://arxiv.org/abs/arXiv:math-ph/0304032
http://arxiv.org/abs/hep-th/0403131
http://arxiv.org/abs/hep-th/0701175
http://arxiv.org/abs/hep-th/0412003
http://arxiv.org/abs/0711.4551
http://arxiv.org/abs/0801.1859
http://arxiv.org/abs/0912.3422
http://arxiv.org/abs/1007.3594
http://arxiv.org/abs/1012.2710
http://arxiv.org/abs/1012.4497
http://arxiv.org/abs/0710.5931
http://arxiv.org/abs/0808.3938
http://arxiv.org/abs/1208.0187
http://arxiv.org/abs/1211.1576
http://arxiv.org/abs/1301.3343
http://arxiv.org/abs/1303.5694
http://arxiv.org/abs/1310.4154
http://arxiv.org/abs/1003.3075
http://arxiv.org/abs/1010.3570
http://arxiv.org/abs/1107.5019
http://arxiv.org/abs/arXiv:cond-mat/9710230
http://arxiv.org/abs/0804.0873
http://arxiv.org/abs/0904.2602


14

[37] L. Zhang, J. Math. Phys. 54, 083303 (2013),
arXiv:1305.0726.

[38] A. Kuijlaars and L. Zhang, arXiv:1308.1003 (2013).
[39] K. A. Penson and K. Życzkowski, Phys. Rev. E 83,

061118 (2011), arXiv:1103.3453.
[40] Vinayak, Phys. Rev. E 88, 042130 (2013),

arXiv:1306.2242.
[41] I. I. S. Gradshtein, I. I. M. Ryzhik, and A. Jeffrey,

Table on Integrals, Series, and Products (Academic
Press, San Diego, CA, 2000).

[42] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.
Clark, NIST Handbook of Mathematical Functions
(Cambridge University Press, New York, NY, 2010).

[43] A. A. P. Prudnikov, Y. A. Brychkov, I. U. A. Brychkov,
and O. I. Maričev, Integrals and Series, Vol. 3: More
special functions (Gordon and Breach Science
Publishers, London, 1990).

[44] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi, Higher transcendental functions (McGraw-Hill,
London, 1953).

http://arxiv.org/abs/1305.0726
http://arxiv.org/abs/1308.1003
http://arxiv.org/abs/1103.3453
http://arxiv.org/abs/1306.2242






ar
X

iv
:1

31
0.

41
54

v2
  [

m
at

h-
ph

]  
13

 M
ar

 2
01

4
Weak Commutation Relations

and Eigenvalue Statistics for Products of Rectangular Random Matrices

Jesper R. Ipsen∗ and Mario Kieburg†

Department of Physics, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
(Dated: March 17, 2014)

We study the joint probability density of the eigenvalues of a product of rectangular real, complex
or quaternion random matrices in a unified way. The random matrices are distributed according to
arbitrary probability densities, whose only restriction is the invariance under left and right multipli-
cation by orthogonal, unitary or unitary symplectic matrices, respectively. We show that a product
of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove
a weak commutation relation of the random matrices at finite matrix sizes, which previously have
been discussed for infinite matrix size. Moreover we derive the joint probability densities of the
eigenvalues. To illustrate our results we apply them to a product of random matrices drawn from
Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights we
show that the product of complex random matrices yield a determinantal point process, while the
real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visu-
alized by numerical simulations. Furthermore, we present an application to a transport on a closed,
disordered chain coupled to a particle bath.

I. INTRODUCTION

Recently, products of random matrices have experi-
enced a revival due to new mathematical insights about
the statistics of the eigen- and singular values for finite
as well as infinite matrix dimensions. Recent progress in
the field has made it possible to study a product of an
arbitrary number of random matrices of arbitrary size for
certain matrix ensembles. The fact that the number of
matrices and their size can be chosen freely, allows dis-
cussions of various limits. This includes macroscopic as
well as microscopic structures for infinite matrix dimen-
sion, but also the limit where the number of matrices
goes to infinite is available. Analogous to the study of
individual random matrices, products of random matri-
ces show a rich mathematical structure and various limits
have revealed new universality classes, which are impor-
tant in the physical sciences as well as in mathematics
and beyond.
Products of random matrices have been applied to a

broad spectrum of the physical sciences. To name only
a few of them: Transport in disordered and chaotic sys-
tems [1], matrix-valued diffusions [2, 3], quantum chro-
modynamics at finite chemical potential [4, 5], Yang–
Mills theory [6], and percolation theory (introduction of
[7]). Furthermore, results about products of random ma-
trices have been applied to fields beyond physics, such
as the study of wireless telecommunication [8] and fi-
nance [9] as well as directions within mathematics, e.g.
free probability [10]. In this work an example of chaotic
transport (cf. sec. II) will be our main motivation, but we
discuss the mathematical structure in a completely gen-
eral setting. Hence the results presented in this paper
can be directly applied to other situations as well.

∗ jipsen@physik.uni-bielefeld.de
† mario.kieburg@uni-bielefeld.de

Note that, even though certain symmetries of random
matrices might be conserved under matrix multiplication
(such as unitarity), in general a product matrix possesses
less symmetry than the individual matrices. In particu-
lar, a product of Hermitian matrices will not generally
be Hermitian itself, and the eigenvalues will spread into
the complex plane. This loss of symmetry has let to a
particular interest in products of non-Hermitian matri-
ces, especially drawn from Gaussian ensembles [11–15].
These random matrix ensembles are also known as Gini-
bre ensembles or Wishart ensembles. The discussion of
products of Ginibre matrices at finite matrix dimension
can be considered as an extension of previous results re-
lated to the product of two matrices motivated by appli-
cations to quantum chromodynamics at finite chemical
potential [4, 16, 17]. In our work we will go beyond the
restriction to Ginibre ensembles and study a set of gen-
eral weights only restricted by the invariance under left-
and right-multiplication of unitary matrices. Further-
more, we will discuss all three Dyson classes in a unified
way. We illustrate the underlying structure with the two
particular ensembles of Ginibre and Jacobi (truncated
unitary) matrices. These matrices are directly related to
a transport on a closed one-dimensional chaotic chain in
an environment as it is shown in Sec. II.

In Sec. III we will show that products of random
matrices invariant under left- and right-multiplication
of unitary matrices satisfy a weak commutation rela-
tion. This commutation relation holds even for finite
matrix dimension and not only for infinite dimension
as discussed in [18]. Moreover it has important phys-
ical consequences. In the specific example of a closed
one-dimensional chaotic chain in an environment it re-
flects the invariance under reordering of potential wells as
long as we do not consider cross correlations. Note that
the weak commutation relation presented here is com-
pletely general and represents a general physical property
of reordering invariance. For instance the same mecha-

http://arxiv.org/abs/1310.4154v2
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nism implies that communication channels with progres-
sive scattering in wireless telecommunication are invari-
ant under reordering of the clusters of scatterers [15].
A similar commutation relation has previously been dis-
cussed in the context of disordered wires with obsta-
cles citeBM:1994.
In Secs. IV and V we explicitly discuss two explicit real-

izations of matrix ensembles, namely products of Ginibre
and Jacobi matrices, as well as an intermix of these and
apply this result to derive an expression of the Lyapunov
exponent for the disordered chain proposed in Sec. II.
Section VI is devoted to conclusions and outlook, while
some technical details are presented in the appendix.

II. MOTIVATION:
CLOSED ONE-DIMENSIONAL CHAOTIC CHAIN

In this section we consider a model of a unitary evo-
lution. It differs from a similar quantum evolution dis-
cussed in Ref. [2, 20] by the idea that there is a cou-
pling to an environment. Thus it is more in the spirit of
one-dimensional quantum transport in a disordered sys-
tem [21–23]. The unitary evolution matrix is taken to
be time independent, hence we do not model a diffusive
system but a chaotic quantum system, which scatters the
particles into an environment. Here the environment is
also modelled as a chaotic quantum system. Due to the
coupling to the environment the evolution operator acts
non-unitarily on the studied subsystem.
We consider a chain of M Hilbert-spaces of dimension

N1, . . . , NM arranged along a ring. The Hilbert-spaces
can be constructed by isolated potential wells. The par-
ticles in these wells can jump from one well to a consec-
utive one only in one direction and cannot stay in a well.
Thus we have a totally asymmetric quantum transport.
The system is constructed such that each well is coupled
to a joint particle bath (environment) which can absorb
the particles while the total amount of particles (on the
chain and in the bath) is fixed. Moreover the Hamil-
tonian shall be time independent such that the transfer
matrix is given by the unitary matrix

U =

(
XT̂ V1

V2 V3

)
. (1)

The translation matrix, T̂ , is defined as

T̂ =





0 NM
0 · · · 0

0 N1 0 · · · 0
...

. . .
. . .

...

0 · · · 0 NM−2

NM−1 0 · · · 0




, (2)

such that particles can jump between consecutive wells
in one direction only. The transport along the chain is
determined by the block diagonal matrix

X = diag(X1, . . . , XM ) (3)

where the block matrices, Xm, are rectangular matrices
with real (β = 1), complex (β = 2) or quaternion (β = 4)
entries chosen according to Dyson’s three-fold way [7, 24],

Xj ∈ glβ(Nj , Nj−1) ≡






RNj×Nj−1 , β = 1,
CNj×Nj−1 , β = 2,
HNj×Nj−1 , β = 4.

(4)

We set N0 = NM , since we consider a closed chain. The
other three block matrices, Vi, in Eq. (1) are chosen such
that U is orthogonal (β = 1), unitary (β = 2), or unitary
symplectic (β = 4), respectively.
Throughout this paper we will use the standard 2× 2

matrix representation for the quaternion number field,
H, see e.g. [7].
Let Nbath be the dimension of the Hilbert space of the

bath and Nchain =
∑M

j=1 Nj be the one of the chain.
We assume that the jumping as well as the coupling to
the bath is a stochastic process. Since we do not as-
sume any additional symmetry breaking condition apart
from the Dyson classification [7, 24] and the totally asym-
metric process, the measure for U is given by the Haar-
measure of O(Nchain + Nbath), U(Nchain + Nbath) and
USp(2Nchain + 2Nbath) for β = 1, 2, 4, respectively.
For this purpose we briefly rederive the measure for a

rectangular, truncated unitary matrix X ∈ glβ(N1, N2)
resulting from

U =

[
X V1

V2 V3

]
∈






O(L), β = 1,
U(L), β = 2,

USp(2L), β = 4,
(5)

with N1, N2 < L. In order to deal with all three Dyson
classes in a unified way, we introduce the variable

γ =

{
1, β = 1, 2,
2, β = 4.

(6)

The measure for the truncated matrix X is given by [34]

dν(J)(X) ∝ d[X ]

∫
d[V1]d[V2]d[V3] δ(UU † − γL), (7)

where d[X ] and d[Vj ] denote the product of all indepen-
dent differentials (there are β real independent degrees
of freedom per matrix entry). The Dirac δ-function for
matrices is defined by the product of all Dirac δ-functions
of all independent real entries. The Dirac δ-function en-
sures that U is orthogonal, unitary or unitary symplectic,
respectively. It is straightforward to integrate out the ir-
relevant degrees of of freedom, Vi, which yields [34, 36]

dν(J)(X) ∝ d[X ]Θ( γN1 −XX†) detκ( γN1 −XX†),
(8)

which is known as the Jacobi ensemble [7, 25, 26] and is
labelled by a superscript (J). The Heaviside Θ-function
for matrices is equal to unity for positive definite matrices
and zero otherwise; and the power of the determinant, κ,
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is a constant given by κ = β(L−N1−N2+1−2/β)/(2γ).
The measure (8) plays an important role in rest of this
paper.
The discussion of the truncated unitary matrix, dis-

cussed in precious paragraph, can immediately be applied
to the case described by Eq. (1). Integrating over Vi in
Eq. (1), we find

dν(X) ∝ d[X ]Θ( γNchain −XX†) detκ( γNchain −XX†)
(9)

with κ = β(Nbath −Nchain + 1 − 2/β)/(2γ). The size of
the bath, Nbath, and the size of the chain, Nchain, are
independent quantities and one might be interested in
the limit where the size of the bath goes to infinite while
the size of the chain is kept fixed. The matrixX will be of
order 1/

√
Nbath, hence we rescaleX → X/

√
Nbath. Thus

for Nbath % Nchain the measure of X equals a Gaussian
distribution,

dν

(
X√
Nbath

)
∝ exp

[
−

β

2γ
TrXX†

]
, (10)

which follows from taking the limit in Eq. (9) without
further restrictions. In particular, we do not need the
central limit theorem, since the degrees of freedom are in-
dependent of Nbath. As a consequence the sub-matrices,
see Eq. (3), are also Gaussian distributed,

dν(G)(Xj) ∝ exp

[
− β

2γ
TrXjX

†
j

]
. (11)

This is also known as the Ginibre ensemble [7, 25, 26] and
is denoted by a superscript (G). Depending on how large
each well is, compared to the environment, one can also
consider a mixed product of Ginibre and Jacobi matrices.
The distributions (9) and (10) enable us to calcu-

late the spectral statistics of U in the sector of the
Hilbert-space representing the chain. In particular,
we can consider the spectral statistics of XT̂ . Note
that the eigenvalues of XT̂ are intimately related to
(XT̂ )M or, equivalently, to the product matrix X(M) ≡
XMXM−1 · · ·X2X1. Also the Lyapunov exponents de-
fined as the logarithm of either the eigenvalues of X(M)

or of the singular values (eigenvalues of X(M)X(M) †) are
widely used, see for example Refs. [22, 23, 27]. They mea-
sure the difference of a vector transported once around
the chain by the non-unitary evolution

III. EQUIVALENCE OF DIFFERENT
PRODUCTS OF RANDOM MATRICES

An important property of products of rectangular ran-
dom matrices is their relation to products of identically
sized square matrices with deformed weights. The defor-
mations are essentially prefactors of determinants of the
random matrices and induce a repulsion from the origin,
see Refs. [12, 15, 28–30] for particular examples of Gaus-
sian weights. In this section we study this relation for all

three Dyson classes in a unified way. We emphasize that
we do not specify a particular probability density for the
random matrices in this section. The only assumption
we enforce on the independent weights is invariance un-
der one of the three groups O(N), U(N), and USp(2N)
for β = 1, 2, 4, respectively.
We consider the product of M rectangular matrices,

X(M) = XMXM−1 · · ·X2X1, (12)

where the individual matrices Xj ∈ glβ(Nj , Nj−1) have
real, complex or quaternion entries according to the
Dyson index, β. The rank of the product matrix is equal
to Nmin ≡ minj=0,...,M Nj . The product matrix is dis-
tributed according to the independent weights of the in-
dividual matrices,

dνP1,P2,...,PM
(X(M)) =

M∏

j=1

Pj(Xj)d[Xj ], (13)

d[Xj ] ≡
Nj∏

a=1

Nj−1∏

b=1

β∏

α=1

dX(j,α)
ab ,

where the product over α runs over all real degrees of
freedom of a single matrix entry. The only assumptions
about the weights, Pj , is the invariance under left and
right rotations,

Pj(Xj) = Pj(V XjU), (14)

for all transformations V ⊗ U in

Uβ(Nj , Nj−1) ≡






O(Nj)⊗O(Nj−1), β = 1,

U(Nj)⊗U(Nj−1), β = 2,

USp(2Nj)⊗USp(2Nj−1), β = 4.
(15)

These probability densities were referred to as isotropic
weights in Ref. [31]. Particular examples are: Gaussian
weights (Ginibre ensembles) [11, 12, 14, 15, 27, 28, 30,
32, 33],

dν(G)(X(M)) =
M∏

j=1

P (G)(Xj) ∝
M∏

j=1

exp
[
−TrXjX

†
j

]
,

(16)
and weights which are the induced Haar measure of trun-
cated unitary matrices (Jacobi ensembles) [30, 34–36]

dν(J)κ (X(M)) =
M∏

j=1

P (J)
κj

(Xj) (17)

∝
M∏

j=1

detκj ( γNj
−XjX

†
j )Θ( γNj

−XjX
†
j )d[Xj ],

where κj + βmin{Nj, Nj−1}/2+ (β− 2)/2 > 0, compare
with Eq. (8). Note that we deal with all three Dyson
indices in a unified way. Hence the number of real in-
dependent degrees of freedom of a single matrix entry,

X(j)
ab , is equal to the Dyson index, β.
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As will be discussed in detail below, a product of rect-
angular random matrices, X(M), can be expressed in
terms of a product of square γNmin×γNmin random ma-
trices and two truncated unitary matrices,

X(M) = ULX̃
(M)UR = ULX̃M X̃M−1 · · · X̃2X̃1UR. (18)

Here X̃j ∈ glβ(Nmin, Nmin) are square matrices, while
the γNM × γNmin matrix UL consists of the first γNmin

columns of an element in the coset

Gβ(NM , Nmin) ≡




O(NM )/[O(Nmin)×O(νM )], β = 1,

U(NM )/[U(Nmin)×U(νM )], β = 2,

USp(2NM )/[USp(2Nmin)×USp(2νM )], β = 4.

(19)

Likewise, the γNmin × γN0 matrix UR is equal to the
first γNmin rows of an element in the coset Gβ(N0, Nmin).
In (19) we have introduced the notation νj ≡ Nj −Nmin.

Note that the product matrix X̃(M) is a square matrix.
It is immediate from Eq. (18) that the nonzero singular
values of X̃(M) is identical to those of the original product
matrix, X(M). Furthermore, if X(M) is a square matrix,
then it turns out that also the eigenvalues will agree,
except for N0 − Nmin additional eigenvalues, which are
all equal to zero. We will refer to the square product
matrix, X̃(M), as the induced product matrix and it can
be considered as a generalization of the induced ensemble
discussed in Ref. [29].
Our main goal in this section is to derive the measure

for the random matrix X(M) or equivalently the induced
measures for the matrices X̃j and UL and UR. Further-
more, we establish a weak commutation relation for the
square matrices, X̃j .
In subsection III A, we present the two simplest cases,

namely when one of the “end-points” of the chain of di-
mensions encountered in the product matrix, X(M), is
equal to γNmin, i.e. N0 = Nmin or NM = Nmin. In
these cases the resulting measure for X(M) can be read-
ily derived. There seems to be an ambiguity of the re-
sulting measure on the level of the individual random
matrix measures. However, we show that commutativity
of square random matrices does not only hold in the large
N -limit, see Ref. [18], but also at finite matrix size, see
Sec. III B. See also Ref. [19] In Sec. III C we also derive a
weak commutation relation between Jacobi matrices and
an arbitrary isotropic random matrix which marginally
changes the original weights. In subsection III D, we dis-
cuss the general setting of arbitrary dimensions Nj of the
rectangular matrices in an arbitrary order.

A. Two simple cases

We will first consider the case where N0 = Nmin, which
implies that UR is equal to unity. The matrix X1 can

easily be rotated to the γNmin × γNmin matrix X̃1 by a
unitary transformation U1 ∈ Gβ(N1, Nmin) from the left,
which gives a block structure

X1 = U1

[
X̃1

0

]
. (20)

Here 0 represents a γν1 × γNmin matrix with all entries
equal to zero (recall that νj = Nj − Nmin). The uni-
tary matrix U1 can be absorbed due to the Uβ(N2, N1)
invariance of the measure P2, cf. (14). Since the matrix
U1 is distributed according to the Haar measure on the
coset Gβ(N1, Nmin), the integral over U1 completely fac-
torizes from the rest and yields a constant. The change
of coordinates (20) yields the measure

P̃ (L)
1 (X̃1) ∝ detβν1/(2γ)(X̃1X̃

†
1)P1

([
X̃1

0

])
(21)

for X̃1. The superscript (L) denotes that we decompose
X1 via a left block QR-decomposition, see Eq. (20). The
determinantal prefactor comes from the change of coor-
dinates and enforces an additional repulsion of the sin-
gular values as well as eigenvalues from the origin, cf.
Refs. [12, 15, 28–30].

The smaller dimension of X̃1 projects the dimension
on the right side of X2 down to γNmin in the product
matrix X(M). Hence, we can again perform the same
procedure as before for X1. We bring X2 into a block
structure using a left block QR-decomposition

X2 = U2

[
X̃2

0
X ′

2

]
, (22)

hence X2 is decomposed into a unitary matrix times a
block matrix consisting of two rectangular blocks. The
unitary matrix U2 ∈ Gβ(N2, Nmin) is absorbed in the
measure P3. The integration over the rectangular matrix
X ′

2 ∈ glβ(N2, ν1) is comprised in the definition of the
reduced measure

P̃ (L)
2 (X̃2) ∝ detβν2/(2γ)(X̃2X̃

†
2)

∫
d[X ′

2]P2

([
X̃2

0
X ′

2

])
.

(23)
Again the determinantal prefactor is the result of the
degrees of freedom decoupling via the unitary matrix U2.
We repeat the same procedure forX3, X4 . . . XM , and the
new measures for the matrices X̃j , 2 ≤ j ≤ M , defined
by the choice of coordinates

Xj = Uj

[
X̃j

0
X ′

j

]
(24)

are up to normalization constants

P̃ (L)
j (X̃j) ∝ detβνj/(2γ)(X̃jX̃

†
j )

∫
d[X ′

j ]Pj

([
X̃j

0
X ′

j

])
,

(25)
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where we integrate over the rectangular matrix X ′
j ∈

glβ(Nj , νj−1). Apart from UM ∈ Gβ(NM , Nmin) all uni-
tary matrices can be absorbed in the measures Pj be-
cause of their group invariance. Due to projection, UL is
a matrix consisting of the first γNmin rows of the unitary
matrix UM . Thus the measure of the product matrix,
X(M) is given by

dν
P̃

(L)
1 ···P̃

(L)
M

(X(M)) = dµ(UL)
M∏

j=1

P̃ (L)
j (X̃j)d[X̃j ]. (26)

Here dµ(U) denotes the Haar measure on Gβ(NM , Nmin).

Note that also the new weights, P̃ (L)
j , are invariant un-

der left and right multiplication of group elements in
O(Nmin), U(Nmin), and USp(2Nmin) for β = 1, 2, 4, re-
spectively.
Let us state the Ginibre and Jacobi ensemble as ex-

plicit examples of the new measure. In the Gaussian
case, the integrals over X ′

j factorize and we find

dν(G,L)
IL

(X(M)) ∝ (27)

dµ(UL)
M∏

j=1

exp
[
−Tr X̃jX̃

†
j

]
detβνj/(2γ)(X̃jX̃

†
j )d[X̃j ],

where the multi-index IL = (ν1, . . . , νM ) encodes the or-
dering of the exponents. Recall that νj = Nj − Nmin.
This measure was studied in Ref. [15, 30] for complex
matrices (β = 2) and in Ref. [12] for quaternion matrices
(β = 4).
For the Jacobi ensemble the integral (25) is more in-

volved. The Wishart matrix of the matrix Xj has the
form

XjX
†
j = Uj

([
X̃jX̃

†
j 0

0 0

]
+X ′

jX
′ †
j

)
U †
j (28)

The matrix ( γNmin − X̃jX̃
†
j ) has to be positive definite,

too. Therefore the transformation

X ′
j →

[
( γNmin − X̃jX̃

†
j )

1/2 0
0 γ(Nj−Nmin)

]
X ′

j (29)

is well-defined via the spectral decomposition theorem.
Now, the integration over the rectangular matrices X ′

j ∈
glβ(Nj , νj−1) factorizes, and we end up with the new
measure for the truncated unitary matrices

dν(J,L)κ,IL
(X(M)) ∝ dµ(UL) (30)

×
M∏

j=1

[
detκj+βνj−1/(2γ)( γNmin − X̃jX̃

†
j )

× detβνj/(2γ)(X̃jX̃
†
j )Θ( γNmin − X̃jX̃

†
j )d[X̃j ]

]
.

Again, the subscripts denote κ = (κ1, . . . ,κM ) and
IL = (ν1, . . . , νM ), respectively. Notice that the new

measure has a different exponent of the determinant
det( γNmin − X̃jX̃

†
j ) due to the integration over the

rectangular matrices X ′
j. This measure was studied in

Ref. [36] for complex matrices.
Let us return to general weights but now we con-

sider the case NM = Nmin. The matrix UL is equal to
unity. This time we start with XM and rotate it to the
γNmin × γNmin matrix X̃M . Again we get a determi-
nantal prefactor, which is now detβνM−1/(2γ)(X̃MX̃†

M ).
We repeat the same procedure as described in the para-
graphs above only starting from the left and ending at
the right. We use a right block QR-decomposition (RQ-
decomposition)

Xj =

[
X̃j 0

X ′
j

]

Uj. (31)

The resulting measure is

dν
P̃

(R)
1 ···P̃

(R)
M

(X(M)) = dµ(UR)
M∏

j=1

P̃ (R)
j (X̃j)d[X̃j ]. (32)

with the individual weights given by

P̃ (R)
j (X̃j) ∝ detβνj−1/(2γ)(X̃jX̃

†
j )

∫
d[X ′

j ]Pj

([
X̃j 0

X ′
j

])

.

(33)
Here we integrate over the rectangular matrix X ′

j ∈
glβ(νj , Nj−1) and the superscript (R) refers to the right
block QR-decomposition (31). In particular, we have

dν(G,R)
IR

(X(M)) ∝ (34)

dµ(UR)
M∏

j=1

exp
[
−Tr X̃jX̃

†
j

]
detβνj−1/(2γ)(X̃jX̃

†
j )d[X̃j ],

for the Ginibre ensemble and

dν(J,R)
κ,IR

(X(M)) ∝ dµ(UR) (35)

×
M∏

j=1

[
detκj+βνj/(2γ)( γNmin − X̃jX̃

†
j )

× detβνj−1/(2γ)(X̃jX̃
†
j )Θ( γNmin −XjX

†
j )d[X̃j ]

]
.

for the Jacobi ensemble, where the multi-index IR =
(ν0, . . . , νM−1) encodes the order of the exponents.
Note that the “left” and “right” measures (23) and (33)

and therefore also Eqs. (26) and (32) differs by a replace-
ment νj ↔ νj−1. How can we explain this discrepancy?
And more importantly, does the case NM = N0 = Nmin

yields a conflict, since both measures apply in this case?
This problem can be easily resolved for Gaussian weights,
see subsection III B. In subsection III C, we show a neat
weak commutation relation between an induced weight of
one random matrix reduced to a square matrix and the
weight of a truncated unitary matrix (drawn from one of
the three Jacobi ensembles). These two weak commuta-
tion relations are everything we need to understand the
discrepancy between the measures (26) and (32).
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B. A weak commutation relation of square random
matrices of finite size

In this section we show that any ordering of the ex-
ponents of the determinantal prefactors in the Gaussian
case yields the same statistics for the product matrix
X(M). We also make this statement stronger and show
that any square random matrices distributed by proba-
bility densities invariant under the corresponding group
commute inside the average. This weak commutation re-
lation was already proven for matrices with infinite large
matrix size [18], but is also exact at finite matrix size
as we will show. Moreover it holds for all three Dyson
classes. A weak commutation relation has also been dis-
cussed in the context of disordered wires with obsta-
cles [19].
Let f be an integrable test function for the random

matrix Y = Y2Y1 given as the product of two square
random matrices Y1,2 ∈ glβ(Nmin, Nmin) and distributed
according to

dν(Y ) = p1(Y1)d[Y1]p2(Y2)d[Y2] (36)

where the pj are probability densities invariant under
Uβ(Nmin, Nmin), i.e.
∫

pj(Yj)d[Yj ] = 1 and pj(UYjV ) = pj(Yj). (37)

for all U ⊗ V ∈ Uβ(Nmin, Nmin). It follows that the inte-
gral over f is invariant under Uβ(Nmin, Nmin).

∫
f(Y )dν(Y ) =

∫
f(U1Y U2)dν(Y ), (38)

for all U1 ⊗ U2 ∈ Uβ(Nmin, Nmin). This is clear, since
we can absorb U1 and U2 in the measures for Y2 and
Y1, respectively. Integrating over U1 and U2 with respect
to the normalized Haar measure on Uβ(Nmin, Nmin), we
define the function

g(Y ) =

∫
f(U1Y U2)dµ(U1)dµ(U2). (39)

Indeed this auxiliary function only depends on the
singular values of Y due to the invariance under
Uβ(Nmin, Nmin). Additionally Y and Y † share the same
singular values and lie in the same matrix space, namely
glβ(Nmin, Nmin). Hence, g has the same functional de-
pendence on Y as on Y †. Thus the following relation
holds
∫

f(Y1Y2)dν(Y ) =

∫
g(Y )dν(Y ) =

∫
g(Y †)dν(Y )

=

∫
f(Y †

2 Y
†
1 )dν(Y ). (40)

Finally we use the invariance of the measure dν under
the interchange Yj ↔ Y †

j , which yields the main result of
this section,

∫
f(Y1Y2)dν(Y ) =

∫
f(Y2Y1)dν(Y ). (41)

Thus the two random matrices commute in a weak sense.
For example, let the measures be deformed Gaussians,

Pj(Yj) =
1

Zj
detνj (YjY

†
j ) exp[−TrYjY

†
j ], (42)

where Zj is a normalization constant. Then the measure
of Y = Y1Y2 is invariant under the interchange of the
two exponents ν1 and ν2 in the measure of Y1 and Y2.
Applying this knowledge to the measure (27) we can show
that any two neighbouring matrices can be interchanged.
These interchanges are the generators of the permutation
group S(M) of M elements. It follows that
∫

f(X(M))dν(G)
IL

(X(M)) =

∫
f(X(M))dν(G)

ω(IL)
(X(M)),

(43)
for all ω ∈ S(M) and any integrable test-function f of
the random matrix X(M). Therefore the ordering of the
multi-index IL is irrelevant. The equivalence relation will
be indeed reflected in the discussion of the eigenvalue
statistics in Sec. IVB.
A näıve generalization of the weak commutation rela-

tion (41) to any two rectangular random matrices does
not work since in general the matrix dimensions does not
close, meaning that two matrices might be multipliable
like Y1Y2 but not like Y2Y1.

C. A weak commutation relation of square random
matrices with an induced measure

Let us consider a second weak commutation relation
since the former commutation relation only solves the
problem of an ambiguity of the resulting weight of X(M)

when the integrals over X ′
j factorize from the rest, as for

Gaussian weights. What happens with other random ma-
trix ensembles? To answer this question we consider the
rectangular random matrix Y ∈ glβ(N1, N0) distributed
by the weight P . Furthermore, we assume that f is an
arbitrary integrable function on the set glβ(Nmin, Nmin)
with N0, N1 ≥ Nmin.
We consider the integral

I[f ] =

∫
f (XLYL)PL(YL)d[YL]dν

(J)
κ1

(XL), (44)

where κ1 = β(N1 − 2Nmin + 1 − 2/β)/2γ, cf. Eq. (8).
The truncated unitary matrix XL ∈ glβ(Nmin, Nmin) is
distributed according to the Jacobi measure

dν(J)κ1
(XL) ∝ Θ( γNmin −XLX

†
L)

× detκ1( γNmin −XLX
†
L)d[XL], (45)

cf. Eq. (8). The measure PL is the induced measure

PL(YL) ∝ detβν1/(2γ)(YLY
†
L )

∫
d[Y ′]P

([
YL

0
Y ′

])

,

(46)
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for the sub-block YL ∈ glβ(Nmin, Nmin), where we inte-
grate over the rectangular matrix Y ′ ∈ glβ(N1, ν0), cf.
Eq. (25).
The random matrix XL can be written as a product

of three matrices. Two of them are projections which
restrict the group element UL ∈ Gβ(N1, Nmin) to its first
γNmin rows and columns,

XL =
[

γNmin 0
]
UL

[
γNmin

0

]

, (47)

where UL is weighted with respect to the Haar measure
on Gβ(N1, Nmin). Employing the inverse decomposition,
see Eq. (24),

Y = UL

[
YL

0
Y ′

]

. (48)

We can rewrite the integral (44) in terms of an integral
over Y distributed according to the density P ,

I[f ] =

∫
f

([
γNmin 0

]
UL

[
YL

0

])

PL(YL)d[YL]dµ(UL)

=

∫
f

([
γNmin 0

]
Y

[
γNmin

0

])

P (Y )d[Y ].

(49)

This procedure can be inverted only with the difference
that we do it to the right, i.e. we consider the decompo-
sition

Y =

[
YR 0

Y ′′

]

UR. (50)

with YR ∈ glβ(Nmin, Nmin) and the truncated matrix

XR =
[

γNmin 0
]
UR

[
γNmin

0

]

∈ glβ(Nmin, Nmin),

(51)
which induces the measures

dν(J)κ0
(XR) ∝ Θ( γNmin −XRX

†
R)

× detκ0( γNmin −XRX
†
R)d[XR] (52)

with κ0 = β(N0 − 2Nmin + 1− 2/β)/2γ and

PR(YR) ∝ detβν0/(2γ)(YRY
†
R)

∫
d[Y ′′]P

([
YR 0

Y ′′

])

,

(53)
where we integrate over the rectangular matrix Y ′′ ∈
glβ(ν1, N0). Thus we find the following identity

I[f ] =

∫
f (XLYL)PL(YL)d[YL]dν

(J)
κ1

(XL)

=

∫
f (YRXR)PR(YR)d[YR]dν

(J)
κ0

(XR) (54)

which is the main result of this section. This identity can
be considered as some kind of weak commutation relation
for induced square matrices with truncated unitary ran-
dom matrices. It is the missing link between the effective
weights (26) and (32).

D. The general case

Let us consider the general product matrix, X(M) =
XM · · ·X1 where NJ = Nmin for some J ∈ {0 . . .M}. It
is irrelevant whether J is unique or not, due to the weak
commutation relations discussed in subsections III B and
III C. If there is more than one J such that NJ = Nmin,
then one can take any of these. In particular the iden-
tity (54) allows us to transform the resulting measure for
X(M) to equivalent weights.
We define the sub-product matrices

X(M,L) = XMXM−1 · · ·XJ+2XJ+1 ∈ glβ(NM , Nmin),

X(M,R) = XJXJ−1 · · ·X2X1 ∈ glβ(Nmin, N0), (55)

such that X(M) = X(M,L)X(M,R). We apply the proce-
dure for deriving the measure (26) on the matrix X(M,L)

and the procedure for the measure (32) on the matrix
X(M,R). Then we obtain the measure and the main re-
sult of this section

dνP̃1...P̃M
(X(M)) = dµ(UL)dµ(UR)

M∏

j=1

P̃j(X̃j)d[X̃j ],

(56)
where P̃j and X̃j are given by Eqs. (25) and (24) for
j > J and by Eqs. (33) and (31) for j ≤ J .
For the Gaussian case we obtain

dν(G)
I (X(M)) (57)

∝ dµ(UL)
M∏

j=J+1

exp
[
−Tr X̃jX̃

†
j

]
detβνj/(2γ)(X̃jX̃

†
j )d[X̃j ]

× dµ(UR)
J∏

j=1

exp
[
−Tr X̃jX̃

†
j

]
detβνj−1/(2γ)(X̃jX̃

†
j )d[X̃j ]

with the multi index I = (ν0, . . . , νJ−1, νJ+1, . . . , νM ).
Indeed we can again apply the weak commutation rela-
tion (43) to the product matrix X(M) which tells us that
we can take any permutation of the multi-index I and,
hence, of the exponents of the determinantal prefactors.
The effective measure for a product of matrices drawn

from Jacobi ensembles yields a result similar to Eq. (57).
We have only to plug in the measures (30) for X(M,L)

and (35) for X(M,R) instead of the deformed Gaussians.
We emphasize that the effective measure (56) does not

only apply for the discussion of the eigenvalue or sin-
gular value statistics. One can also apply this reduc-
tion to a product of square matrices to correlations of
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the eigenvectors as well as to cross-correlations of eigen-
vectors and eigenvalues. Moreover the permutation in-
variance due to the commutation relation (41) and the
choice of J , if more than one Nj is equal to the min-
imal dimension Nmin, has to be obviously reflected in
the statistics of the eigenvalues and singular values (c.f.
Ref. [15]) of X̃(M) and, thus, of X(M). This has crucial
physical implications. Consider the chaotic quantum sys-
tem from Sec. II, the permutation symmetry tells us that
the order of the potential wells is completely irrelevant,
if we consider only the statistics of the product matrix
X(M) involved in these problems. Note that the cross-
correlations between particular positions of the chain are
still affected by the order of the potential wells.

IV. EIGENVALUE STATISTICS FOR
PRODUCTS OF MATRICES

In this section we will discuss the eigenvalues of
X(M) = XM · · ·X1, which are of general interest in a
broad spectrum of applications. Due to the discussion
of Sec. III we can restrict ourselves to the case of square
matrices, N0 = . . . = NM = Nmin = N , without loss of
generality. The matrices Xj are square matrices with dif-
ferent weights, which can be chosen to imitate a product
of rectangular matrices. We are interested in the statis-
tical properties of the eigenvalues of the product matrix
X(M) ∈ glβ(N,N), see Eq. (12). Thus we are looking for
the zeros of the characteristic polynomial

det(X(M) − z γN) = det(XM · · ·X2X1 − z γN) = 0.
(58)

In subsection IVA we perform an eigenvalue decompo-
sition for arbitrary weights of the matrices Xj . We spec-
ify this decomposition for the Gaussian case in subsec-
tion IVB and for the Jacobi ensemble in subsection IVC
and calculate an explicit expression for the joint proba-
bility density function for both ensembles.

A. The eigenvalue decomposition

We pursue the idea of the Ginibre ensembles for the
Dyson indices β = 2, 4 employed by the authors of
Refs. [11, 12] and perform a generalized Schur decom-
position. Let

B = XT̂ (59)

and X = diag(X1, . . . , XM ) a block-diagonal matrix and
T̂ the constant matrix as in Eq. (2). Then BM has the
same eigenvalues as X(M) only that they are M times
degenerate.

1. β = 2

We first consider the simplest case β = 2. In the first
step we perform a simultaneous decomposition of B in
a diagonal matrix Z = diag(Z1, . . . , ZM ) with complex

eigenvalues Zj = diag(z(j)1 , . . . , z(j)N ), an upper triangular
matrix ∆ = diag(∆1, . . . ,∆M ) and a unitary matrix U =
diag(U1, . . . , UM ). We have

B = XT̂ = U(Z +∆)T̂ U †. (60)

The differential of B is given by

dB = dXT̂ = U
(
(dZ + d∆)T̂ + [dA, (Z +∆)T̂ ]−

)
U †,

(61)
where dA = U †dU . The differentials of Z and ∆ com-
pletely factorize from the rest. Only the Z-dependent
part in the commutator, [ · , · ]−, contributes to the Ja-
cobian. The upper triangular matrix ∆ incorporates a
recursive shift of dA which results in a upper triangular

part of the Jacobian, as well. The variable dA(j)
ab denotes

a matrix element of the j-th matrix dAj = U †
j dUj which

is a complex variable. Moreover dA(j)
aa = 0 since these

degrees of freedom are incorporated in Z, hence

{[dA,ZT̂ ]−T̂
†}(j)ab = dA(j)

ab z
(j)
b − z(j)a dA(j+1)

ab . (62)

The Jacobian resulting from this transformation is a de-
terminant with a diagonal part corresponding to dZ and
d∆ and a part proportional to T̂ resulting from dA. Then
we arrive at

M∏

j=1

d[Xj ] ∝ |∆N (ZM · · ·Z1)|2
M∏

j=1

dµ(Uj)d[Zj ]d[∆j ].

(63)

The differential for Zj is d[Zj ] =
∏N

a=1 dRe z(j)a d Im z(j)a ,
while ∆N (Z) denotes the Vandermonde determinant.
Let us return to the full measure where each matrix

Xj is distributed via the probability density Pj . Due to
the factorization of the differentials d[∆j ] we define the
reduced weights

P̂j(Zj) ≡
∫

Pj(Zj +∆(j))d[∆(j)]. (64)

The joint probability density of the eigenvalues of the
product matrix X(M) reads in these new weights

p(β=2)(Z(M)) ∝ |∆N (Z(M))|2

×
M∏

j=1

∫
d[Zj ]P̂j(Zj)

N∏

a=1

δ(2)(za − z(M)
a · · · z(1)a ) (65)

where we use the Dirac δ-function for complex variables,
δ(2)(z) = δ(Re z)δ(Im z), and define the diagonal prod-
uct matrix Z(M) = Z1 · · ·ZM . Expression (65) is the
farthest one can calculate for an arbitrary weight. If
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one wants to have a more concrete result one has to
specify the measures P̂j . We will do this for the Gaus-
sian measure in subsection IVB and for the Jacobi mea-
sure in subsection IVC and recover the results derived in
Refs. [11, 30, 36].

2. β = 4

The next case we consider is β = 4. In this case we can
again decompose B in an upper triangular matrix ∆, a
unitary symplectic matrix U ∈ USp(2N) and a 2N × 2N
matrix Ẑ = diag(Z,Z∗) where Z is the same complex,
diagonal N × N matrix as in the case β = 2. We re-
place Z → Ẑ in Eqs. (61 - 64). Moreover the complex

matrix elements in the case β = 2, {∆j}ab and dA(j)
ab

with a $= b, are now 2× 2 quaternion matrix blocks with
four real independent elements. Each of the diagonal

2× 2 blocks dA(j)
aa only contain one off-diagonal complex

variable. Hence the analogue to Eq. (62) is

{[dA,ZT̂ ]−T̂
†}(j)ab =

dA(j)
ab

(
z(j)b 0

0 z(j)∗b

)

−
(
z(j)a 0

0 z(j)∗a

)

dA(j+1)
ab (66)

The computation of the Jacobian works exactly the same
as in the case β = 2 and we find the joint probability
density of the eigenvalues

p(β=4)(Z(M)) ∝ ∆2N (Z(M), Z(M)∗)
N∏

a=1

(za − z∗a)

×
M∏

j=1

∫
d[Zj ]P̂j(Zj)

N∏

b=1

δ(2)(zb − z(M)
b · · · z(1)b ) (67)

with

P̂j(Zj) ∝
∫

Pj(diag(Zj , Z
∗
j ) +∆(j))d[∆(j)]. (68)

Again one needs specific weights Pj to calculate further.
For the Gaussian case the resulting measure was studied
by one of the authors in Ref. [12].

3. β = 1

Finally let us consider the case β = 1. We have
to distinguish between odd and even matrix dimen-
sions. For this reason we introduce the notation N =
2Ñ + χ with χ = 0 or χ = 1. Unlike the complex
Schur decomposition, the real Schur decomposition will
not generally trace B back to a triangular form; in-
stead similarity transformations with orthogonal matri-
ces U ∈ O(2Ñ + χ) bring B to a block diagonal ma-

trix Ẑ = diag(Ẑ(1)
1 , Ẑ(1)

2 , . . . , Ẑ(1)

Ñ+χ
, Ẑ(2)

1 , . . . , Ẑ(M)

Ñ+χ
) and

an upper block triangular matrix ∆ [49]. The blocks

Ẑ(1)
1 , . . . , Ẑ(M)

Ñ
are 2 × 2 real matrices and Ẑ(j)

Ñ+1
(only

for χ = 1) is a real number. Thus the matrix elements of

∆ and dA(j)
ab , a $= b and a, b $= Ñ+1, in the case β = 2 are

again replaced by 2 × 2 matrix blocks with four real in-

dependent variables. The block diagonal elements dA(j)
aa

are zero. For χ = 1 we have two additional real vari-

ables arranged in a two dimensional vector dA(j)

a,Ñ+1
for

each a = 1 . . . Ñ and j = 1 . . .M . In the case of an even
dimensional matrix (χ = 0) the differentials are

{[dA,ZT̂ ]−T̂
†}(j)ab = dA(j)

ab Ẑ
(j)
b − Ẑ(j)

a dA(j+1)
ab (69)

as in Eq. (62) but with 2 × 2 real matrices. For odd
dimensional matrices (χ = 1) one needs to treat the case
where a or b are equal to Ñ + 1 separately, then the

2× 2 real matrices dA(j)
ab in Eq. (69) have to be replaced

by a chain of two dimensional real vectors, dA(j)

a,Ñ+1
or

dA(j)

Ñ+1,b
, which is in the spirit of Ref. [37].

Let Z̃(M)
a = Ẑ(M)

a · · · Ẑ(1)
a and Z̃(M) = Ẑ(M) · · · Ẑ(1). Then the resulting joint probability density of the matrix

blocks Z̃(M)
a is

p̂(β=1)(Z̃(M)) ∝
∏

1≤a<b≤Ñ

∣∣∣det
[
Z̃(M)
a ⊗ 2 − 2 ⊗ Z̃(M)

b

]∣∣∣
M∏

j=1

∫
d[Ẑ(j)]P̂j(Ẑ

(j))
Ñ∏

a=1

δ(4)
(
Z̃(M)
a − Ẑ(M)

a · · · Ẑ(1)
a

)
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for an even dimension N and

p̂(β=1)(Z̃(M)) ∝
∏

1≤a<b≤Ñ

∣∣∣det
[
Z̃(M)
a ⊗ 2 − 2 ⊗ Z̃(M)

b

]∣∣∣
Ñ∏

j=1

∣∣∣det
[
Z̃(M)
j − Z̃(M)

Ñ+1 2

]∣∣∣

×
M∏

j=1

∫
d[Ẑ(j)]P̂j(Ẑ

(j))δ(2)
(
Z̃Ñ+1 − Ẑ(M)

Ñ+1
· · · Ẑ(1)

Ñ+1

) Ñ∏

a=1

δ(4)
(
Z(M)
a − Ẑ(M)

a · · · Ẑ(1)
a

)
(70)

for an odd one. The first product of determinants incorporates the differences of pairs of 2 × 2 matrices. Therefore
those determinants are over 4× 4 matrices and are reminiscent of a Vandermonde determinant. The Dirac δ-function
over a 2 × 2 real matrix is the product of the Dirac δ-functions of all four real independent variables. The reduced
probability densities are defined as always,

P̂j(Ẑ
(j)) ≡

∫
Pj(Ẑ

(j) +∆(j))d[∆(j)]. (71)

The only difference of this definition to Eqs. (64) and (68) is that we remain with a distribution for block diagonal
matrices, Ẑ(j), instead with diagonal ones.

The eigenvalues of the 2 × 2 real matrices Z̃(M)
a are either a complex conjugate pair or two independent real

eigenvalues. Since the probability densities P̂j are invariant under left and right multiplication of O(N) we can

replace the argument Z̃(M) of the recursive integral (for simplicity only shown for even dimension, χ = 0)

I(Z̃(M)) =
M∏

j=1

∫
d[Ẑ(j)]P̂j(Ẑ

(j))
Ñ∏

a=1

δ(4)(Z̃(M)
a − Ẑ(M)

a · · · Ẑ(1)
a ) (72)

by the positive definite matrix
√
Z̃(M)Z̃(M) †. This matrix is a block diagonal matrix which can be readily expressed

by a singular value decomposition Z̃(M) = ULΛ(M)UR with UL, UR ∈ O(2)Ñ and Λ a positive diagonal matrix. The
idea is to calculate an integral representation of the joint probability distribution of the eigenvalues of Z̃(M) in terms
of the singular values in Λ(M). For this purpose it is quite helpful that we could reduce the whole problem to a 2× 2
matrix problem.
In appendix A we derived a general relation between the eigenvalues and the singular values of a 2 × 2 real

matrix. Employing the result of the calculations (A6 -A8) we find the joint probability density of the eigenvalues
Z(M) = diag(z1, . . . , zN) of X(M),

p(1)(Z(M)) ∝ |∆2Ñ (Z(M))|
M∏

j=1

∫
d[Ẑ(j)]P̂j(Ẑ

(j))

[ Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)

×
∫ ∞

α
dαaδ

(4)(Λ(z2a−1, z2a,αa)− Ẑ(M)
a · · · Ẑ(1)

a )

]
(73)

for even dimension and

p(1)(Z(M)) ∝ |∆2Ñ+1(Z
(M))|

M∏

j=1

∫
d[Ẑ(j)]P̂j(Ẑ

(j))δ
(
Im z2Ñ+1

)
δ
(
Re z2Ñ+1 − Ẑ(M)

2Ñ+1
· · · Ẑ(1)

2Ñ+1

)

×
[ Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)∫ ∞

α
dαaδ

(4)(Λ(z2a−1, z2a,αa)− Ẑ(M)
a · · · Ẑ(1)

a )

]
(74)

for odd dimension, where α = | Im(z2a−1 − z2a)|/2. In both cases we employed the functional dependence of the
singular values on the eigenvalues, i.e.

Λ(z2a−1, z2a,αa) =

[
λ+(z2a−1, z2a,αa) 0

0 λ−(z2a−1, z2a,αa)

]

=

√
α2
a +

(z2a−1 + z2a)2

4
2 +

√
α2
a +

(z2a−1 − z2a)2

4
σ3

(75)
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cf. Eq. (A9). The 2 × 2 matrix σ3 is the third Pauli matrix. The integrals over αa are reminiscent to the integrals
found in the real Ginibre ensemble (equal to the case M = 1) generating the error function [37] and in the real
chiral Ginibre ensemble (equal to the case M = 2) yielding an integral over a Bessel function [38]. Also the prefactor
consisting of the Dirac δ-function is the same in both cases and is a universal factor reflecting the nature of the
eigenvalues of arbitrary real matrices.
An important remark is in order. Assuming one of the pairs of eigenvalues is real, say (z2N−1, z2N ), one can also

approach an eigenvalue decomposition of the product of 2 × 2 matrices by a generalized Schur decomposition. Thus

the following integral over Ẑ(j)
N is equivalent

δ(Im z2N−1)δ(Im z2N )
M∏

j=1

∫
d[Ẑ(j)

N ]P̂j








Ẑ(j)
1 0

. . .

0 Ẑ(j)
N








∫ ∞

0
dαNδ(4)

(
Λ(z2N−1, z2N ,αN )− Ẑ(M)

N · · · Ẑ(1)
N

)

∝ δ(Im z2N−1)δ(Im z2N)
M∏

j=1

∫
dx(j)

1 dx(j)
2 dx(j)

3 P̂j









Ẑ(j)
1 0

. . . 0

0 Ẑ(j)
N−1

0
x(j)
1 x(j)

2

0 x(j)
3









× δ
(
Re z2N−1 − x(M)

1 · · ·x(1)
1

)
δ
(
Re z2N − x(M)

3 · · ·x(1)
3

)
. (76)

The integral on the right hand side was used quite recently in Ref. [33] to calculate the probability of a fixed number
of real eigenvalues for a product of Ginibre matrices. Notice that the integral identity (76) is not at all trivial and we
know only that it has to be in general true since both approaches are legitimized.
Also in the case of real matrices we need a specific measure to calculate any further. This is exactly what we

do in the next two subsections and restrict our discussion to the Ginibre and Jacobi ensemble. We emphasize that
the discussion so far have been for completely arbitrary probability weights and can be applied to a broad class of
ensembles.

B. Products of Ginibre matrices

As discussed in Sec. III, a product of rectangular Gini-
bre matrices, X(M) = XM · · ·X1, is closely related to
a product of square matrices, see Eq. (27). Applying
a Schur decomposition, the rotations are trivially inte-
grated out and they contribute only to the normaliza-
tion. Likewise, the triangular matrices from the Schur
decomposition completely drops out in the determinan-
tal prefactor and factorizes in the Gaussian part, such
that also these integrals result in a constant.
Let us again restrict ourselves to complex matrices

(β = 2) first. Starting from Eqs. (65) and (27), the joint
probability density is

p(G,β=2)
ν (Z(M)) ∝ |∆Nmin(Z

(M))|2
Nmin∏

a=1

g(G,M)
ν (za) (77)

with the one-point weight

g(G,M)
ν (z) =

M∏

j=1

∫

C

d2z(j)|z(j)|2νj e−|z(j)|2

× δ(2)(z − z(M) · · · z(1)). (78)

We employ the abbreviation ν = (ν1, ν2, . . . , νM ). The

integral is equal to a representation of a Meijer G-
function [39]

g(G,M)
ν (z) = G0,M

M, 0

(
−

ν1, . . . , νM

∣∣∣∣ |z|
2
)

(79)

=

∫

C

du

2πı
|z|2u

M∏

j=1

Γ(νj − u)

The second line is a quite useful integral representation of
the Meijer G-function, where the contour C runs around
the poles of the gamma functions. Recall that the invari-
ance under permutations of the indices, νj = Nj −Nmin

reflects the weak commutation relation of probability
densities, see Sec. III B. The result (77) agrees with the
results derived in Refs. [11, 30].
For quaternion matrices (β = 4) everything works

along the same lines as for β = 2. We combine Eqs. (67)
and (27) and find

p(G,β=4)
ν (Z(M)) ∝ ∆2N (Z(M), Z(M)∗)

×
Nmin∏

a=1

(za − z∗a)g
(G,M)
2ν (2M/2za). (80)

The one-point weight g(G,M)
2ν is apart from a replacement

ν → 2ν exactly the same weight as for complex matrices,
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see Eq. (79). This joint probability density was studied
in Ref. [12].

Let Nmin = 2Ñ + χ. The joint probability density for
the real matrices is much more involved. Again the mea-
sures P̂j are deformed Gaussians, see Eq. (27), but their
arguments are now 2× 2 real random matrices instead of
complex random variables, cf. Eqs. (73) and (74). Thus
the joint probability density is

p(G,β=1)
ν (Z(M)) ∝ |∆2Ñ (Z(M))|

×
Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)

× h(G,M)
ν (z2a−1, z2a) (81)

for even matrix dimension and

p(G,β=1)
ν (Z(M)) ∝ |∆2Ñ+1(Z

(M))|

× g(G,M)
ν/2 (Re z2Ñ+1)δ(Im z2Ñ+1)

×
Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)

× h(G,M)
ν (z2a−1, z2a) (82)

for odd dimension. The one-point weight, g(M)
(ν−1)/2, is

again the Meijer G-function (79) but now with the in-
dices ν/2 = (ν1/2, . . . , νM/2). It becomes a Gaussian in
the Ginibre case (M = 1, see Ref. [37]) and the Bessel
function of the second kind in the chiral Ginibre case
(M = 2, see Ref. [38]). The two point weight is

h(G,M)
ν (z1, z2) = (83)
∫ ∞

| Im(z1−z2)|/2
dα δ(4)(Λ(z1, z2,α)− Ẑ(M) · · · Ẑ(1))

×
M∏

j=1

∫
d[Ẑ(j)] |detẐ(j)|νj exp[−Tr Ẑ(j)Ẑ(j) T ].

This integral can be partially performed by first substituting Y1 = Ẑ(1) and Yj = Ẑ(j)Yj−1 and then evaluating the
four dimensional Dirac δ-function such that

h(G,M)
ν (z1, z2) = |z1z2|νM

∫ ∞

| Im(z1−z2)|/2
dα




M−1∏

j=1

∫
d[Y (j)]|detY (j)|νj−νj+1−2





× exp

[

−TrΛ2(z1, z2,α)(Y
T
M−1YM−1)

−1 −
M−1∑

i=2

Tr Y T
i Yi(Y

T
i−1Yi−1)

−1 − Tr Y T
1 Y1

]

. (84)

Performing singular value decompositions for each of the matrices Yj and integrating over the corresponding groups
yields

h(G,M)
ν (z1, z2) ∝ |z1z2|νM

∫ ∞

| Im(z1−z2)|/2
dα

(M−1∏

j=1

∫ ∞

0
dy1j

∫ ∞

0
dy2j |y21j − y22j ||y1jy2j |νj−νj+1−2

)

× exp

[

−
(4α2 + z21 + z22)(y

2
1M−1 + y22M−1)

2y21M−1y
2
2M−1

−
M−1∑

i=2

(y21i + y22i)(y
2
1i−1 + y22i−1)

2y21i−1y
2
2i−1

− y211 − y221

]

× I0

(√
4α2 + (z1 + z2)2

√
4α2 + (z1 − z2)2(y22M−1 − y21M−1)

2y21M−1y
2
2M−1

)
M−1∏

i=2

I0

(
(y21i − y22i)(y

2
2i−1 − y21i−1)

2y21i−1y
2
2i−1

)
, (85)

where I0 is the modified Bessel function of the first kind. For the Ginibre ensemble, i.e. M = 1 and ν1 = 0, we can
easily deduce the error function in the imaginary part of the complex eigenvalue pair as it was found in Ref. [37]. The
case M = 2, ν1 = 0 and ν2 = ν arbitrary is the chiral Ginibre ensemble discussed in Refs. [38]. For arbitrary M the
integral (85) is a generalization of these two particular cases.

Notice that in the case of a real pair of eigenvalues
the two-point weight reduces to a product of one point

weights,

h(G,M)
ν (Re z1,Re z2) ∝ g(G,M)

ν/2 (Re z1)g
(G,M)
ν/2 (Re z2).

(86)
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Although this is not immediately clear from the inte-
gral (85) it can be derived by a generalized Schur decom-
position of the 2× 2 blocks, see Ref. [33].

C. Products of Jacobi matrices

Here we consider random matrices drawn from Jacobi
ensembles, where the integrals over the strictly upper
triangular matrices ∆(j) are more involved than in the
Gaussian case. Let us briefly discuss how to perform
these integrations for β = 2. The derivation for β = 1, 4
works in a similar way. Starting with the Jacobi mea-
sure (30), we perform a generalized Schur decomposition
decomposition for the individual matrices,

X̃j = U−1
j S(j)Uj−1 with S(j) = Zj +∆(j). (87)

As usual the Zj ’s denote the diagonal matrices, while
∆(j) are strictly upper triangular matrices. The unitary
matrices, Uk, are trivially absorbed due to the invari-
ance of the measures. We want to integrate over ∆(j) in
Eq. (64),

P̂j(Zj) ∝
∫

detκj+νj−1 ( Nmin − S(j)S(j) †)

× detνj (S(j)S(j) †)Θ( Nmin − S(j)S(j) †)d[∆(j)]. (88)

Notice that the second determinant can be pushed out
the integral since it only depends on Zj . In the first step
we split the Nmin × Nmin upper triangular matrix S(j)

like

S(j) =

[
S′(j) v(j)

0 z(j)Nmin

]

, (89)

where S′(j) is a (Nmin− 1)× (Nmin− 1) upper triangular
matrix and v(j) a (Nmin − 1)-dimensional vector. Thus
we have

det( Nmin − S(j)S(j) †) =

det

[
1− |z(j)Nmin

|2 − v(j) †
(

Nmin−1 − S′(j)S′(j) †
)−1

v(j)
]

× det
(

Nmin−1 − S′(j)S′(j) †
)
. (90)

Rescaling

v(j) →
√
(1− |z(j)Nmin

|2)
(

Nmin−1 − S′(j)S′(j) †
)
v(j)

(91)
the integral over v(j) factorizes and yields a constant such
that we get

P̂j(Zj) ∝ (1− |z(j)Nmin
|2)κj+Nj−1−1Θ(1− |z(j)Nmin

|2)

× |detZ(j)|2νj
∫

d[∆′(j)]Θ( Nmin−1 − S′(j)S′(j) †)

× detκj+νj−1+1( Nmin−1 − S′(j)S′(j) †), (92)

where ∆′(j) is the strictly upper triangular part of S′(j).
This procedure can be iterated and we find the well-
known induced probability density [25, 30, 35, 36]

P̂j(Zj) ∝ |detZ(j)|2νjdetκj+Nj−1−1( Nmin − |Z(j)|2)
×Θ( Nmin − |Z(j)|2) (93)

for β = 2. In the real and quaternion case one can readily
extend this procedure and finds the induced probability
densities

P̂j(Zj) ∝ |detZ(j)|4νjdet2(κj+Nj−1−1)( Nmin − |Z(j)|2)
×Θ( Nmin − |Z(j)|2) (94)

for β = 4 and

P̂j(Ẑj) ∝ |detẐ(j)|νjdetκj+Nj−1/2−1( Nmin−Ẑ(j)Ẑ(j) T )

×Θ( Nmin − Ẑ(j)Ẑ(j) T ) (95)

for β = 1 and even Nmin and

P̂j(Ẑj) ∝ |detẐ(j)|νjdetκj+Nj−1/2−1( Nmin−Ẑ(j)Ẑ(j) T )

×
√
1− ẑ(j)Nmin

Θ( Nmin − Ẑ(j)Ẑ(j) T ) (96)

for odd Nmin. Recall that we have a block diagonal struc-
ture of Ẑ consisting of 2× 2 blocks in the real case.
The joint probability density of the product matrix

X(M) can be readily read off for β = 2, 4 and is

p(J,β=2)
ν,µ (Z(M)) ∝ |∆Nmin(Z

(M))|2
Nmin∏

a=1

g(J,M)
ν,µ (za) (97)

for β = 2, cf. Refs. [30, 36], and

p(J,β=4)
ν,µ (Z(M)) ∝ ∆2Nmin(Z

(M), Z(M) ∗)

×
Nmin∏

a=1

(za − z∗a)g
(J,M)
2ν,2µ−1(za) (98)

for β = 4. The one-point weight is this time

g(J,M)
ν,µ (z) =

M∏

j=1

∫

|z(j)|=1
d2z(j)

|z(j)|2νj (1− |z(j)|2)µj−νj−1

Γ(µj − νj)

× δ(2)(z − z(M) · · · z(1)), (99)

where ν and µ collectively denote the constants νi =
Ni −Nmin and µi = κi + νi +Ni−1, respectively. Recall
that the ordering of the indices is irrelevant due to the
weak communication relation. The one point weight can
be again expressed as a Meijer G-function [39],

g(J,M)
ν,µ (z) = GM, 0

M,M

(
µ1, . . . , µM

ν1, . . . , νM

∣∣∣∣ |z|
2

)
(100)

=

∫

C

du

2πı
|z|2u

M∏

j=1

Γ(νj − u)

Γ(µj − u)
.
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The analogue of the joint probability densities (81) and
(82) for a product of truncated orthogonal matrices is

p(J,β=1)
ν (Z(M)) ∝ |∆2Ñ (Z(M))|

×
Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)

× h(J,M)
ν (z2a−1, z2a) (101)

for an even matrix dimension and

p(J,β=1)
ν (Z(M)) ∝ |∆2Ñ+1(Z

(M))|

× g(J,M)
ν/2,µ̃ (Re z2Ñ+1)δ(Im z2Ñ+1)

×
Ñ∏

a=1

(
δ(Im z2a−1)δ(Im z2a) + 2δ(2)(z2a−1 − z∗2a)

)

× h(J,M)
ν (z2a−1, z2a) (102)

for an odd dimension. Here µ̃ collectively denotes the
constants µ̃i = κi+(νi+Ni+1)/2. The two-point weight
is in this case

h(J,M)
ν,µ̃ (z1, z2) =
∫ ∞

| Im(z1−z2)|/2
dα δ(4)(Λ(z1, z2,α)− Ẑ(M) · · · Ẑ(1))

×
[ M∏

j=1

∫
d[Ẑ(j)] |detẐ(j)|νjΘ( Nmin − Ẑ(j)Ẑ(j) T )

× detµ̃j−(νj+3)/2( Nmin − Ẑ(j)Ẑ(j) T )

]
. (103)

This weight can be also rephrased to something like
Eq. (85) which we omit here since it looks quite com-
plicated and does not yield new insights. Let us state, at
least, what the weight for a real eigenvalue pair is

h(J,M)
ν,µ̃ (Re z1,Re z2) ∝ g(J,M)

ν/2,µ̃ (Re z1)g
(J,M)
ν/2,µ̃ (Re z2).

(104)

Again this can be derived by performing a generalized
Schur decomposition of the 2× 2 blocks along the idea of
Ref. [33].

V. EIGENVALUE CORRELATION FUNCTIONS
AND THE LYAPUNOV EXPONENT OF THE

OPEN, CHAOTIC CHAIN

In this section we derive the eigenvalue correlation
functions of products of Ginibre matrices, Jacobi ma-
trices and an intermix of both kinds. Furthermore, we
discuss the Lyapunov exponents of the eigenvalues of
the product matrices. From the structure of the joint
probability densities discussed in the previous section,
we can immediately conclude that all eigenvalue correla-
tions can be reduced to averages over one and two char-
acteristic polynomials, which are thus the fundamental

objects and determine the whole eigenvalue statistics.
Moreover we can conclude that the k-point correlation
functions as well as the averages over an arbitrary num-
ber of ratios of characteristic polynomials follow deter-
minantal (β = 2) and Pfaffian (β = 1, 4) point processes.
The reason is that the joint probability densities only
depend on a product of a squared Vandermonde deter-
minant and one-point weights (β = 2) corresponding to
bi-orthogonal polynomials or on a Vandermonde deter-
minant and a product of two-point weights (β = 1, 4)
corresponding to skew-orthogonal polynomials. There is
a whole scope of literature discussing such ensembles, see
Refs. [7, 25, 26, 40–43] and references therein.
Indeed the determinantal and Pfaffian point processes

carry over to a mixed product of Ginibre and Jacobi ma-
trices due to the simple structure of both kinds of en-
sembles. This can be easily seen when considering the
joint probability density of the eigenvalues of a prod-
uct matrix X(M1+M2) = XMXM−1 · · ·X1, where Xj ,
j ∈ I1 = {j1, . . . , jM1}, are complex Ginibre matrices
and Xi, i ∈ I2 = {i1, . . . , iM2}, are truncated unitary
matrices. The index sets I1 and I2 have an empty sec-
tion, i.e. I1 ∩ I2 = ∅, and a union equal to I1 ∪ I2 =
{1, . . . ,M1 +M2 = M}.
One can consider eigenvalues (in a generalized sense)

of rectangular matrices [45, 46], but here we restrict our-
selves to square matrices, hence we choose N0 = NM .
Equivalently one can consider the induced product ma-
trix X̃(M), cf. Eq. (18), which is a square matrix by def-
inition. Then one can trivially combine the results (77)
and (97) and finds

p(β=2)
ν,µ (Z(M)) ∝ |∆Nmin(Z

(M))|2
Nmin∏

a=1

g(M1,M2)
ν,µ (za)

(105)
with the one point weight

g(M1,M2)
ν,µ (z) ∝

∏

j∈I1

∫

C

d2z(j)|z(j)|2νj exp[−|z(j)|2]

×
∏

j∈I2

∫

|z(j)|=1
d2z(j)

|z(j)|2νj (1− |z(j)|2)µj−νj−1

Γ(µj − νj)

× δ(2)(z − z(M) · · · z(1)), (106)

where ν and µ collectively denote the constants νi =
Ni −Nmin and µik = κik + νik +Nik−1. Again, the one-
point weight can be expressed as a MeijerG-function [39],

g(M1,M2)
ν,µ (z) = GM1+M2, 0

M2,M1+M2

(
µi1 , . . . , µiM2

ν1, . . . , νM1+M2

∣∣∣∣ |z|
2

)

=

∫

C

du

2πı
|z|2u

∏M1+M2

j=1 Γ(νj − u)
∏

i∈I2
Γ(µi − u)

. (107)

Note that the weak commutation relation manifests it-
self in the weight through the invariance under permuta-
tions of the indices. The special cases where the product
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consists solely of Ginibre or Jacobi matrices are deduced
from this result by setting either M1 or M2 equal to zero.
Similar results can be obtained for the case of real and

quaternion matrices. Here we will only state the quater-
nion case (β = 4),

p(β=4)
ν,µ (Z(M)) ∝ ∆2Nmin(Z

(M), Z(M) ∗)

×
Nmin∏

a=1

(za − z∗a)g
(M1,M2)
2ν,2µ−1 (2

M1/2za), (108)

which have a structure closely related to the complex
case (105).
In the ensuing two subsections we derive the eigen-

value densities of the complex and quaternion case. The
discussion of the real case (β = 1) will be postponed to
forthcoming publications. Moreover we will consider the
more general case (105) and (108) of a mixed product of
Ginibre and Jacobi matrices.

A. Complex matrices (β = 2)

Looking at the joint probability density (105) it is im-
mediately clear that the corresponding orthogonal poly-
nomials are the monomials za and z∗ b, since the one-
point weight is invariant under rotation in the complex
phase. These monomials have the normalization [39]
∫

C

|z|2ag(M1,M2)
ν,µ (z)d2z

= π

∫ ∞

0
ra+1GM1+M2, 0

M2,M1+M2

(
µi1 , . . . , µiM2

ν1, . . . , νM1+M2

∣∣∣∣ r
)
dr

r

= π

∏M1+M2

j=1 Γ(νj + a+ 1)
∏

i∈I2
Γ(µi + a+ 1)

(109)

with respect to the weight g(M1,M2)
ν,µ (z). Hence the joint

probability density can be rewritten into the following
determinantal structure,

p(β=2)
ν,µ (Z(M)) =

1

Nmin!
det

1≤a,b≤Nmin

[
K(Nmin)(za, z

∗
b )
]
,

(110)
see Refs. [7, 26, 40, 42] and references therein. The kernel
is given by

K(Nmin)(za, z
∗
b ) =

1

π

√
g(M1,M2)
ν,µ (za)g

(M1,M2)
ν,µ (zb)

×
Nmin−1∑

l=0

∏
i∈I2

Γ(µi + l + 1)
∏M1+M2

j=1 Γ(νj + l+ 1)
zlaz

∗ l
b . (111)

It follows immediately that the level density is given by

ρ(Nmin)(z) =
1

π
g(M1,M2)
ν,µ (z)

×
Nmin−1∑

l=0

∏
i∈I2

Γ(µi + l + 1)
∏M1+M2

j=1 Γ(νj + l+ 1)
|z|2l, (112)

where the density inherits the isotropic structure from
the one-point weight. The normalization is chosen such
that the integration over the density yields the generic
number of non-zero eigenvalues, i.e.

∫
ρ(Nmin)(z)d2z =

Nmin. If N0 = NM > Nmin > 0 then there areNM−Nmin

generic zero modes. They will be reflected as additional
Dirac δ-functions in the density (112).
The macroscopic limit, Nmin → ∞ and µ̂i = µi/Nmin

and ν̂i = νi/Nmin fixed, of the level density (112) can be

obtained by the scaling ẑ = NM1/2
min z. Notice that we do

not scale with N (M1+M2)/2
min since the spectrum of those

matrices drawn from a truncation of unitary matrices is
of order one while the spectrum of the Ginibre matrices
is of order

√
Nmin. Then the macroscopic level density is

ρ(ẑ) = lim
Nmin→∞

1

NM1+1
min

ρ(Nmin)

(
ẑ

NM1/2
min

)

. (113)

The easiest way to derive this level density is via the
moments of this density

〈|z|2k〉ρ(Nmin) =
1

Nmin

∫

C

|z|2kρ(Nmin)(z)dRe zd Im z

=
1

Nmin

Nmin−1∑

l=0

∏

i∈I2

Γ(µi + l + 1)

Γ(µi + l + k + 1)

×
M1+M2∏

j=1

Γ(νj + l + k + 1)

Γ(νj + l + 1)
. (114)

Employing the Stirling formula and approximating the
sum by an integral we obtain

〈|ẑ|2k〉ρ = lim
Nmin→∞

1

NM1k
min

〈|z|2k〉ρ(Nmin) (115)

=

∫ 1

0

(∏M1+M2

j=1 (ν̂j + y)
∏

i∈I2
(µ̂i + y)

)k

dy.

The macroscopic level density can be read off and it is

ρ(ẑ) =
1

π

∫ 1

0
δ
(
R(y)− |ẑ|2

)
dy (116)

with the rational function

R(y) =

∏M1+M2

j=1 (ν̂j + y)
∏

i∈I2
(µ̂i + y)

≥ 0, ∀ y ∈ [0, 1]. (117)

Usually the domain of the level density ρ(ẑ) is a cen-
tred annulus in the complex plane [47, 48]. To determine
the inner and outer radius of the annulus it is quite con-
venient that R(y) is strictly monotonous increasing on
the interval ]0, 1], i.e.

∂

∂y
lnR(y) =

∑

j∈I1

1

ν̂j + y
+
∑

i∈I2

µ̂i − ν̂i
(ν̂j + y)(µ̂i + y)

> 0.
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FIG. 1. Example of an induced product matrix, X̃(M), with complex eigenvalues distributed within an annulus. The histogram
depicted on the left panel shows the distribution of the absolute value of the eigenvalues for 500 realizations of a product
matrix with Nmin = 100, M1 = 3, M2 = 0 and ν̂ = {1, 2, 3}; the solid curve shows the corresponding analytical prediction,
while the dotted curve indicate the macroscopic limit. The right panel shows a scatter plot of 50 out of the 500 realizations
generating the histogram on the left panel. Note that the fact that ν̂j > 0 for all j implies that the original product matrix,
X(M) = XM · · ·X1 = ULX̃(M)UR, is a rectangular matrix.

Notice that µ̂i > ν̂i ≥ 0 for all i ∈ I2; compare κi with
the exponent of the determinant in Eq. (8). Therefore
the inner and outer radius for the domain of ρ(ẑ) is

rmin = R(0) =

∏M1+M2

j=1 ν̂j∏
i∈I2

µ̂i
and (118)

rmax = R(1) =

∏M1+M2

j=1 (ν̂j + 1)
∏

i∈I2
(µ̂i + 1)

, (119)

respectively. Hence the inner radius vanishes if and only
if one or more ν̂i vanish. If the inner radius vanishes
the behaviour of the level density around the origin is
|ẑ|−2(λ−1)/λ where λ is the number of indices with ν̂i = 0.
Note that if we are looking at a square product matrix
X(M) = XM · · ·X1, i.e. N0 = NM , then it immedi-
ately follows that at least one ν̂j is equal to zero, and
therefore that the inner radius vanishes such that the
eigenvalues are located within a disk rather than an an-
nulus. When starting from the induced product matrix,
X̃(M) = X̃M · · · X̃1, the level density can be still located
within an annulus, see Fig. 1. This mechanism is equiv-
alent to that of induced Ginibre matrices [29].
For the Ginibre ensemble (M1 = 1 and M2 = 0) the

density, ρ(ẑ), is the well-known complex unit disc with
constant density [7]. For general M1 and M2 = 0 the
macroscopic level density was indirectly given by a poly-
nomial equation of the Green function,

G(z) =

∫

C

ρ(z̃′)d2z̃

ẑ − z̃
⇔ ρ(z) =

1

π

∂

∂ẑ∗
G(z), (120)

in Ref. [31]. Due to the isotropy of the level density the
result of Ref. [31] can be readily deduced by the relation

G(ẑ) =
1

ẑ

∫ 1

0
Θ
(
|ẑ|2 −R(y)

)
dy =

R−1(|ẑ|2)
ẑ

(121)

(|ẑ| ≤ R(1)) yielding the polynomial equation (M2 = 0)

R(ẑG(ẑ)) = |ẑ|2. (122)

The case of a truncated unitary matrix (M1 = 0 and
M2 = 1) was discussed in Ref. [34].
The macroscopic level density (116) can be easily nu-

merically evaluated. The simplest way is to employ one
of the many representations of the Dirac δ-function as a
limiting function. In Figs. 1 and 2 we show the compar-
ison of the macroscopic limit with numerical simulations
for certain ensembles.
Let us return to the transport on the closed chain cou-

pled to a particle bath, see Sec. II, one can easily calculate
the average Lyapunov exponent Lya = ln z = ln r + ıϕ,
where we write the complex eigenvalues in polar coordi-
nates, z = reıϕ. Potential wells with a size comparable
to the bath are modelled by Jacobi ensembles, while po-
tential wells with a size much smaller than the bath are
modelled by Ginibre ensembles.
Since the level density is isotropic the angular part

vanishes while the radial part yields the mean Lyapunov
exponent

〈Lya〉 = 2π

∫ ∞

0
ρ(Nmin)(r) r ln r dr (123)
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FIG. 2. Each histogram shows the distribution of the absolute value of the eigenvalues for 500 realizations of a product of three
independent complex (β = 2) Ginibre and/or Jacobi random matrices with the smallest matrix dimension Nmin = 100. The
top left histogram has M1 = 3, M2 = 0 and ν̂ = {0, 1/10, 2/10}, the top right histogram has M1 = 2, M2 = 1, µ̂ = {3/10} and
ν̂ = {0, 1/10, 2/10}, the bottom left histogram has M1 = 1, M2 = 2, µ̂ = {3/10, 3/10} and ν̂ = {0, 1/10, 2/10}, and the bottom
right histogram has M1 = 0, M2 = 3, µ̂ = {3/10, 3/10, 3/10} and ν̂ = {0, 1/10, 2/10}. The solid lines show the corresponding
macroscopic limits, cf. (116). Note that the axes on the four plots have different scales.

at finite matrix dimension. This integral simplifies in the
large Nmin limit and we find

〈Lya〉 = 1

2

∫ 1

0
lnR(y) dy − M1

2
lnNmin. (124)

Interestingly the leading term, lnNmin, vanishes if the
size of all potential wells is comparable to the bath, mean-
ing that we have no random matrices drawn from the
Ginibre ensemble. Any coupling of a Ginibre matrix with
the bath implies that all particles will be sucked away af-
ter one round on the closed chain.

B. Quaternion matrices (β = 4)

We start from the joint probability density (108) with
the one-point weight (107). Pursuing the calculation
of the corresponding skew-orthogonal polynomials pj in

Ref. [12], i.e.

〈pa|pb〉 =
∫

C

d2z(z∗ − z)g(M1,M2)
2ν,2µ−1 (2

M1/2z)

× (pa(z)pb(z
∗)− pb(z)pa(z

∗))

=






hl, a = 2l+ 1, b = 2l,

−hl, a = 2l, b = 2l+ 1,

0, otherwise,

(125)

we find the polynomials

p2l(z) =
l∑

k=0

(
l∏

n=k+1

2−M1

∏M1+M2

j=1 (2νj + 2n)
∏

i∈I2
(2µi + 2n− 1)

)

z2k,

p2l+1(z) = z2l+1 (126)

and the normalization

hl = 2π 2−2M1(l+1)

∏M1+M2

j=1 Γ(2νj + 2l + 2)
∏

i∈I2
Γ(2µi + 2l+ 1)

(127)
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in agreement with Ref. [12] which was for M2 = 0 and
νj = ν for all j = 1 . . .M1. This result directly follows
from the isotropy of the one-point weight and the mo-
ments of this weight [39],

∫ ∞

0
GM1+M2, 0

M2,M1+M2

(
2µi1 − 1, . . . , 2µiM2

− 1

2ν1, . . . , 2νM1+M2

∣∣∣∣ 2
M1r

)
rl
dr

r

= 2−M1l

∏M1+M2

j=1 Γ(2νj + l)
∏

i∈I2
Γ(2µi + l− 1)

. (128)

Thus the joint probability density can be written as a
Pfaffian, see Refs. [7, 26, 43] and references therein,

p(β=4)
ν,µ (Z(M)) =

1

Nmin!
Pf

1≤a,b≤Nmin

[
K̂(Nmin)(za, zb) K̂(Nmin)(za, z∗b )

K̂(Nmin)(z∗a, zb) K̂(Nmin)(z∗a, z
∗
b )

]

×
Nmin∏

j=1

(z∗j − zj)g
(M1,M2)
2ν,2µ−1 (2

M1/2zj) (129)

with the pre-kernel

K̂(Nmin)(za, zb) =
Nmin−1∑

l=0

p2l+1(za)p2l(zb)− p2l(za)p2l+1(zb)

hl
.

(130)
From Eq. (129) one can easily read off the level density
which is

ρ(Nmin,β=4)(z) = (z∗− z)g(M1,M2)
2ν,2µ−1 (2

M1/2z)K̂(Nmin)(z, z∗).
(131)

We have normalized the density to Nmin again. Note
that, despite the isotropic one-point weight, the level den-
sity (131) is not rotational symmetric. The reason is that
the eigenvalues come in complex conjugate pairs, which
results in a repulsion from the real axis.
The radial projection of the level density,

ρ(Nmin,β=4)
proj (r) = r

∫ π

−π
ρ(Nmin,β=4)(reıϕ)dϕ, (132)

is an interesting quantity in many situations. For in-
stance, hole probabilities and overcrowding at the origin
only depend on the radial distribution. Moreover, the ra-
dial distribution is often useful for comparisons with nu-
merical simulations because of the drastically improved
statistics. The integral (132) yields

ρ(Nmin,β=4)
proj (r) = 2M1/2+1g(M1,M2)

2ν,2µ−1 (2
M1/2r)

×
Nmin−1∑

l=0

∏
i∈I2

Γ(2µi + 2l + 1)
∏M1+M2

j=1 Γ(2νj + 2l+ 2)
(2M1/2r)4l+3 (133)

and looks quite similar to the level density of β = 2, cf.
Eq. (112). Actually, it yields the same macroscopic limit,

lim
Nmin→∞

1

NM1/2+1
min

ρ(Nmin,β=4)
proj

(
r̂

NM1/2
min

)

= 2πr̂ρ(r̂),

(134)

cf. Eq. (116). Thus the real part of the Lyapunov ex-
ponent of the transport model discussed in Sec. II has
to be the same as for the symmetry class β = 2 in this
particular limit. We emphasize that this is not true for
finite Nmin.

VI. CONCLUSIONS

We studied some general properties of a product of M
independent rectangular random matrices for all three
Dyson classes in a unifying way. The only assumption
on the weights of the individual matrices are their invari-
ance under left- and right-multiplication of orthogonal,
unitary and unitary symplectic matrices, respectively.
These weights are also known as isotropic weights [18]. In
this general context, we showed that a product of rect-
angular random matrices is equivalent to a product of
square matrices with modified weights. More strikingly
we proved that the individual matrices in the product
matrix satisfy a weak commutation relation. This weak
commutation relation tells us that a product of indepen-
dently distributed square random matrices (they can also
result from rectangular matrices) is independent of the
order of the product when averaging over them. Note
that this weak commutation relation has immediate con-
sequences in physical systems. For the considered ex-
ample of a closed one- dimensional chaotic chain in an
environment, the ordering of the potential wells is irrele-
vant as long as we do not consider cross correlations. The
same applies to telecommunications where the permuta-
tion of consecutive scatterers does not change the spec-
trum of the channel matrix, see [14, 15]. We underline
that the weak commutation relation holds at finite matrix
dimension and, thus, generalizes a known result for the
macroscopic limit of the product of isotropic distributed
matrices [18]. A weak commutation relation for products
of random matrices has previously been discussed in the
context of disordered wires with obstacles [19].
The weak commutation relation holds on the level of

matrices and affects therefore many quantities of physical
interest, such as eigen- and singular values, but also the
eigenvectors. We focused on the spectral properties; es-
pecially the eigenvalue correlations. We derived the joint
probability density functions for all three Dyson classes
and for general weights. In particular, we showed that
a product of Ginibre matrices, a product of Jacobi ma-
trices or an intermix of both kinds of matrices yields a
determinantal (for β = 2) or Pfaffian (for β = 1, 4) point
process as it is well-known for many other ensembles, see
[7, 26, 40, 42, 43] and references therein. We derived a
representation of the one- and two-point weights in terms
of a product of random variables for β = 2, 4 and in terms
of a product of 2× 2 random matrices for β = 1. For the
one-point weight we explicitly integrated over the random
variables and showed that they are equal to Meijer G-
functions which were already shown for particular cases
in [11, 12, 30, 36]. The numerical simulations performed
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for the product matrices are in complete agreement with
the analytical results.

We also considered the macroscopic limit of such an
intermixing product of Ginibre and Jacobi matrices and
derived an explicit representation of the level density in
terms of a one-fold integral. This result agrees with the
implicit polynomial equation derived for the correspond-
ing Green function in [31]. We saw that the macroscopic
level density either lives on an annulus or a complex disc
centered around the origin, which is in agreement with
the single ring theorem [47, 48]. After proper unfolding,
universality should hold on a local scale as have been
partially discussed in [11, 12, 36].

Finally, we briefly discussed the relation between ma-

trix products and a closed one-dimensional chaotic chain
in an environment. In particular, we calculate the Lya-
punov exponents. We concluded that the ordering of the
potential wells is irrelevant as long as we do not consider
cross correlations, which directly follows from the weak
commutation relation. Furthermore, we showed that if at
least one potential well on the chain is small compared
to the bath, then all particles disappear from the chain
after a single revolution.
Acknowledgements: We acknowledge support by the
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Appendix A: Distributional relation of eigenvalues and singular values of a 2× 2 real matrix

The given problem is the following. We have a joint probability distribution of the singular values Λ = diag(λ1,λ2)
of a 2× 2 real matrix Z = VLΛVR with λ1 ≥ λ2, Q(λ1 + λ2,λ1λ2)|λ2

1 − λ2
2|, and VL/R ∈ O(2) distributed by the Haar

measure. Notice that we assume Q as a function of the trace and the modulus of the determinant of Z. What is the
joint probability density of the eigenvalues of Z? To solve this question we pursue an idea similar to the calculations
done in Refs. [37, 38].

We start from the zeros of the characteristic polynomials

det(VLΛVR − z 2) = 0. (A1)

From this equation we notice that only one rotation angle (from now on denoted by ϕ ∈ [0,π[) parametrizing VL and
VR plays a role. The other one cancels out. Let the sign of the determinant of Z be

s = sign(detZ) = sign(detVLΛVR) = sign(detVL)sign(det VR). (A2)

Then Eq. (A1) can be rewritten to

0 = det

(
λ1 − sλ2

2

[
1 0

0 −1

]

+
λ1 + sλ2

2

[
cosϕ sinϕ

− sinϕ cosϕ

]

− z 2

)

= z2 − (λ1 + sλ2) cosϕ z + sλ1λ2. (A3)

Thus the eigenvalues are

z± =
λ1 + sλ2

2
cosϕ±

√
(λ1 + sλ2)2

4
cos2 ϕ− sλ1λ2 =

λ1 + sλ2

2
cosϕ±

√
(λ1 − sλ2)2

4
− (λ1 + sλ2)2

4
sin2 ϕ. (A4)

We can only find a complex conjugate pair if s = +1 meaning detZ > 0.
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Let λ± = (λ1 ± λ2)/2. The joint probability density of the eigenvalues of Z is given by

Q̂(z1, z2) =
8

π

∫ ∞

0
dλ+

∫ λ+

0
dλ−

∫ π

0
dϕQ(2λ+,λ

2
+ − λ2

−)λ+λ−δ
(2)(z1 − z+)δ

(2)(z2 − z−). (A5)

=
2

π

∑

s=±

∫ ∞

0
dλ+

∫ λ+

0
dλ−

∫ π

0
dϕQ(2λ+,λ

2
+ − λ2

−)λ+λ−

× δ(2)
(
λs cosϕ− z1 + z2

2

)
δ(2)

(√
λ2
−s − λ2

s sin
2 ϕ− z1 − z2

2

)

=
4

π
δ (Im (z1 + z2))

∑

s=±

Θ(sz1z2)

∫ ∞

0
dλ2

+

∫ λ2
+

0
dλ2

−Q(2λ+,λ
2
+ − λ2

−)

× Θ (λs − |Re (z1 + z2)| /2)√
λ2
s − Re2(z1 + z2)/4

δ(2)





√

λ2
−s − λ2

s +
Re2(z1 + z2)

4
− z1 − z2

2





= Q̂r,−(z1, z2) + Q̂r,+(z1, z2) + Q̂c(z1, z2).

This distribution splits into three terms. For s = −1 we have a distribution, Q̂r,−, of two real eigenvalues where one

is positive and the other one negative. For s = +1 we find a distribution, Q̂r,+, of two real eigenvalues which are

both positive or both negative (when λ2
− − λ2

+ + Re2(z1 + z2)/4 > 0) as well as one distribution, Q̂c, of a complex
conjugate pair (only when λ2

− − λ2
+ +Re2(z1 + z2)/4 < 0).

First we concentrate on the case s = −1. We calculate

Q̂r,−(z1, z2) =
4

π
δ (Im z1) δ (Im z2)Θ(−Re z1 Re z2)

∫ ∞

0
dλ2

+

∫ λ2
+

0
dλ2

−Q(2λ+,λ
2
+ − λ2

−) (A6)

× Θ (λ− − |Re (z1 + z2)| /2)√
λ2
− − Re2(z1 + z2)/4

δ





√

λ2
+ − λ2

− +
Re2(z1 + z2)

4
− Re (z1 − z2)

2





(1)
=

4|Re (z1 − z2)|
π

δ (Im z1) δ (Im z2)Θ(−Re z1Re z2)

∫ ∞

0
dλ2

+

∫ 1

0
dα̂Q(2λ+,λ

2
+(1− α̂))

× λ2
+

Θ
(
λ2
+α̂− Re2(z1 + z2)/4

)
√
λ2
+α̂− Re2(z1 + z2)/4

δ
(
λ2
+(1− α̂) + Re z1 Re z2

)
δ
(
λ2
+(α̂− 1) + Re z1Re z2

)

(2)
=

4|Re (z1 − z2)|
π

δ (Im z1) δ (Im z2)Θ(−Re z1Re z2)

∫ ∞

Re2(z1−z2)/4
dλ2

+
Q (2λ+,−Re z1 Re z2)√
λ2
+ − Re2(z1 − z2)/4

(3)
=

8|z1 − z2|
π

δ (Im z1) δ (Im z2)Θ(−Re z1 Re z2)

∫ ∞

0
dαQ

(√
Re2(z1 − z2) + 4α2,−Re z1Re z2

)

We made the substitutions λ− = λ+

√
α̂ in line (1) and α =

√
λ2
+ − Re2(z1 − z2)/4 in line (3). In line (2) we integrated
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over α̂ . A similar calculation can be also performed in the case of real eigenvalues with s = +1,

Q̂r,+(z1, z2) =
4

π
δ (Im z1) δ (Im z2)Θ(Re z1 Re z2)

∫ ∞

0
dλ2

+

∫ λ2
+

0
dλ2

−Q(2λ+,λ
2
+ − λ2

−) (A7)

× Θ (λ+ − |Re (z1 + z2)| /2)√
λ2
+ − Re2(z1 + z2)/4

Θ

(
λ2
− − λ2

+ +
Re2(z1 + z2)

4

)
δ





√

λ2
− − λ2

+ +
Re2(z1 + z2)

4
− Re (z1 − z2)

2





(1)
=

4|Re (z1 − z2)|
π

δ (Im z1) δ (Im z2)Θ(Re z1 Re z2)

×
∫ ∞

0
dλ2

+

∫ 1

0
dα̂Q(2λ+,λ

2
+(1− α̂))λ2

+
Θ (λ+ − |Re(z1 + z2)|/2)√

λ2
+ − Re2(z1 + z2)/4

δ
(
λ2
+(α̂− 1) + Re z1 Re z2

)

(2)
=

4|Re (z1 − z2)|
π

δ (Im z1) δ (Im z2)Θ(Re z1 Re z2)×
∫ ∞

Re2(z1+z2)/4
dλ2

+
Q (2λ+,Re z1 Re z2)√
λ2
+ − Re2(z1 + z2)/4

(3)
=

8|z1 − z2|
π

δ (Im z1) δ (Im z2)Θ(Re z1 Re z2)

∫ ∞

0
dαQ

(√
Re2(z1 + z2) + 4α2,Re z1 Re z2

)

Again we made some substitutions namely λ− = λ+

√
α̂ in line (1) and α =

√
λ2
+ − Re2(z1 + z2)/4 in line (3). Step

(2) is the same as in Eq. (A6). Please notice that this result is almost the same as in the case s = −1.
For the complex conjugated pair we have

Q̂c(z1, z2) =
8

π
δ(2) (z1 − z∗2)

∫ ∞

0
dλ2

+

∫ λ2
+

0
dλ2

−Q(2λ+,λ
2
+ − λ2

−) (A8)

× Θ (λ+ − |Re z1|)√
λ2
+ − Re2 z1

Θ
(
λ2
+ − λ2

− − Re2 z1
)
δ

(√
λ2
+ − λ2

− − Re2 z1 − Im z1

)

(1)
=

16| Im z1|
π

δ(2) (z1 − z∗2)

∫ ∞

0
dλ2

+

∫ 1

0
dα̂Q(2λ+,λ

2
+(1− α̂))λ2

+

Θ
(
λ2
+ − Re2 z1

)
√
λ2
+ − Re2 z1

δ
(
λ2
+(1− α̂)− |z1|2

)

(2)
=

16| Im z1|
π

δ(2) (z1 − z∗2)

∫ ∞

|z1|2
dλ2

+
Q(2λ+, |z1|2)√
λ2
+ − Re2 z1

(3)
=

16|z1 − z2|
π

δ(2) (z1 − z∗2)

∫ ∞

| Im z1|
dαQ(2

√
Re2 z1 + α2, |z1|2)

The steps (1) and (3) are the same as in Eq. (A7). In the step (2) we recognize the fact that the Dirac δ-function
yields only something non-vanishing if λ+ ≥ |z1| ≥ |Re z1| ≥ 0.
Comparing the results of Eqs. (A6-A8) we notice that the function Q always depends on

√
(z1 + sign(z1z2)z2)2 + 4α

which is the argument for the trace of the original 2× 2 matrix Z and on sign(z1z2)z1z2 which is the determinant of
Z. If we want to rewrite the function Q as a function of its singular values λ1/2 we need the functional dependence
of those variables on z1/2 and α. This dependence is

λ1/2 =

∣∣∣∣∣

√
(z1 + z2)2

4
+ α2 ±

√
(z1 − z2)2

4
+ α2

∣∣∣∣∣ . (A9)

This relation readily follows from the system of equations,

λ1 + λ2 =
√
(z1 + sign(z1z2)z2)2 + 4α and λ1λ2 = sign(z1z2)z1z2, (A10)

representing the trace and the determinant of Z, respectively. Again we emphasize that z1 and z2 are either real or
complex conjugate.
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Abstract

We investigate the spectral properties of the product of M complex non-Hermitian random
matrices that are obtained by removing L rows and columns of larger unitary random matrices
uniformly distributed on the group U (N +L). Such matrices are called truncated unitary matrices
or random contractions. We first derive the joint probability distribution for the complex eigenval-
ues of the product matrix for fixedN, L, andM , given by a standard determinantal point process in
the complex plane. The weight however is non-standard and can be expressed in terms of the Meijer
G-function. The explicit knowledge of all eigenvalue correlation functions and the corresponding
kernel allows us to take various large N (and L) limits at fixed M . At strong non-unitarity, with
L/N finite, the eigenvalues condense on a domain inside the unit circle. At the edge and in the
bulk we find the same universal microscopic kernel as for a single complex non-Hermitian matrix
from the Ginibre ensemble. At the origin we find the same new universality classes labelled by M
as for the product of M matrices from the Ginibre ensemble. Keeping a fixed size of truncation, L,
when N goes to infinity leads to weak non-unitarity, with most eigenvalues on the unit circle as for
unitary matrices. Here we find a new microscopic edge kernel that generalizes the known results
for M = 1. We briefly comment on the case when each product matrix results from a truncation
of different size Lj.
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1 Introduction

The topic of products of random matrices first introduced in [1] has seen a certain renaissance in
recent years. Such products have been applied in a variety of disciplines ranging from the problem
of entanglement in quantum mechanics [2, 3], quantum chromodynamics with chemical potential [4],
combinatorics [5] to finance [6], wireless telecommunications [7] and image processing [8]. See Ref. [9]
and references therein for a general and recent overview of random matrix theory (RMT).

In this work we are interested in products of random matrices which are related to the unitary
group, namely truncations thereof also called sub-unitary or random contractions. In general, unitary
matrices play an important role in time evolution in quantum mechanics or matrix valued diffusion
[10]. Another classical problem where (sub-) unitary random matrices have been extensively used is
that of chaotic scattering on mesoscopic devices, as reviewed e.g. in [11]. Typically the scattering
process is represented by a unitary S-matrix, and the reflection or transmission between the leads of
such a device are sub-matrices of the S-matrix. We refer to [12] for a recent review on scattering in
chaotic systems using RMT. It is therefore very interesting to study also the spectral properties of
such sub-unitary matrices obtained from truncating the full S-matrix, and such an analysis has been
already made for a single random matrix in [13]. Subunitary matrices have also been considered in the
context of many-body quantum states and a one-component plasma of charges on the pseudo-sphere
[14]. Previously an alternative representation of subunitary matrices was constructed in [15]. Here
the concept of weak non-unitarity was introduced by adding an imaginary finite rank perturbation
to the Gaussian Unitary Ensemble, leading to the same correlations as in [13] for truncated unitary
matrices, in the limit where the size of truncation is kept fixed while the matrix size goes to infinity.
Truncations of orthogonal matrices have also been considered, see [13, 16], which are used when the
system fulfills additional symmetries (e.g. time reversal invariance).

Very recently the joint probability distribution and spectral properties of the complex eigenvalues
[17, 18, 19, 20, 21, 22] and the real singular values [23, 24, 25, 26] of products of M random matrices
of size N ×N have been computed for finite N and M . The matrices that were multiplied were drawn
from the Ginibre ensemble [27] of non-Hermitian matrices with a Gaussian probability distribution.
Such exact results open up the possibility of a rigorous asymptotic large N analysis. First steps
in that direction have already been taken in these works. Prior to these finite-N results it had
already been observed, that when multiplying random matrices from different ensembles a large degree
of universality can be seen [28], at least regarding the limiting mean density that was derived in
[7, 22, 29, 30].

It is the purpose of this paper to extend this approach to the product of several truncated unitary
random matrices. Several questions may serve as a further motivation. Can the aforementioned ana-
lytic solution for finite N be extended to such ensembles of matrices, and what are the corresponding
universality classes in the large N limit? Second, in [13] the truncation of a unitary matrix was viewed
as a mean to introduce decoherence in a quantum system. How does such a system evolve in several
steps?

In order to partly answer some of these questions we consider the product of M truncated (or sub-)
unitary matrices Xj , with j = 1, . . . ,M , which originate each from truncating a unitary matrix of size
N +Lj distributed with respect to the Haar measure of the unitary group U (N +Lj) by removing Lj

rows and columns. Obviously the resulting product matrix is non-unitary and its complex eigenvalues
lie inside the unit disk. We want to study the spectral properties of the product matrix, first at
fixed N, Lj, and M , and then in various large N limits, always keeping M fixed in this work. When
writing up this paper a related paper [20] appeared, where among other results the same product of
truncated unitary matrices is considered, for fixed N, Lj , and M , only. Whenever we can compare the
results from the first part of our paper they agree with their findings. Moreover very recently another
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work [22] co-authored by one of the authors was published as a preprint discussing the general case
of products of rectangular matrices. Those products also comprise truncated unitary matrices which
were given as an example. However the derivation for those matrices was not as thoroughly discussed
as it is done here. In [22] only the macroscopic limit with Lj ∝ N → ∞ and fixed M was presented.
Neither a discussion of local fluctuations nor an analysis of universality were given in [22] or in [20] as
it will be considered here. The focus of [22] lied on weak commutation relations of random matrices
and general algebraical structures of them which were derived for all three Dyson indices (β = 1, 2, 4)
in a unifying way.

The remainder of this paper is organized as follows. In section 2 we calculate the joint probability
density of the product matrix as well as of its complex eigenvalues in subsection 2.1. Because it leads to
a standard determinantal point process, with the eigenvalues repelling each other through the modulus
square of the Vandermonde determinant, all k-point density correlation functions immediately follow,
once the weight function is determined in subsection 2.2. In appendix C we also consider a more
general setting, when the individual factors Xj result from truncations of random unitary matrices
of different sizes, N + Lj, down to the dimension N . Section 3 is devoted to various large N limits
starting with the strong non-unitary limit in subsection 3.1. Here L/N remains fixed and positive, and
various universal results are recovered for the eigenvalue correlation functions, depending on whether
the fluctuations at the edge, in the bulk or at the origin are considered. The weak non-unitarity
large N limit when keeping L fixed is performed in subsection 3.2. Here we find a new class of
correlation functions for M > 1 at the edge of the unit circle. We conclude in section 4. Some further
technical details about the measure and the joint probability distribution are collected in two further
appendices A and B, respectively.

2 The solution for finite N

We consider the product of M random matrices X(M) = XMXM−1 · · ·X1. Each of these random
matrices Xj has the size N ×N and is truncated from a larger (N +L)× (N +L) unitary matrix Uj .
The unitary matrices Uj are identically, independently distributed via the normalized Haar-measure
on U (N + L). We recall the measure of the product matrix X(M) in subsection 2.1 and derive the
joint probability density of its complex eigenvalues as well as all k-point density correlation functions.
In subsection 2.2 the weight function is determined in terms of the Meijer G-function, giving several
examples. In appendix C we generalize this result to different truncations of the individual Xj ,
resulting from unitary matrices of different sizes N + Lj truncated to N , i.e. Lj %= Li.

2.1 Probability measure and joint probability density

Consider a square N ×N sub-block X of a single unitary random matrix U distributed according to
the Haar-measure on the unitary group U (N + L) [13]

U =

(
X W
V Y

)
∈ U(N + L) . (2.1)

This block is a random matrix which is usually referred to as truncated unitary random matrix, or
random contraction, cf. [13, 14, 31]. The probability measure for truncated matrices with L ≥ 0 is

dµ(X) ∝ d[X]

∫
det−L[ıH − 11N ] exp[tr (XX† − 11N )(ıH − 11N )] d[H], (2.2)

where we integrate over a N × N Hermitian matrix H. Let L ≥ 1 in the following, since L = 0
corresponds to the full Haar measure of U (N) defined by a Dirac delta function, see eq. A.3. In the
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case L ≥ N this integral can be readily performed,

dµ(X) ∝ detL−N (11N −XX†)Θ(11N −X†X)d[X]. (2.3)

This measure is also known as Jacobi measure [32]. The symbol Θ denotes the matrix Heaviside
function which is equal to one for positive definite matrices and zero otherwise; d[X] is a shorthand
notation for the flat measure d[X] =

∏
ij d$eXijd%mXij . In appendix A we briefly recall the derivation

of eq. (2.2) and of the Jacobi measure (2.3) for truncated matrices.
We are interested in the product X ≡ X(M) = XM · · ·X1 of M independent truncated matrices

Xj , for j = 1, . . . ,M . The probability measure for such a product is

dν(X) = d[X]

∫
δ(X −XM · · ·X1)

M∏

j=1

dµ(Xj) , (2.4)

with dµ(Xj) given by eq. (2.2). The Dirac delta function of a complex matrix A is defined as the
product of the Dirac delta functions of its real independent variables, i.e. δ(A) =

∏
i,j δ

(2)(Aij),

where the two-dimensional Dirac delta function for a complex variable z is given as δ(2)(z) ≡ δ($e(z))
δ(%m(z)).

We are going to derive the joint probability density function for the eigenvalues of the product
matrix X. To this end we parameterize the measure (2.4) using the generalized Schur decomposition

[17, 33] Xj = U †
j (Zj + Tj)Uj−1 for j = 1, . . . ,M with Uj ∈ U(N), U0 = UM , Zj being complex

diagonal Zj = diag(zj1, . . . , zjN ), and Tj complex strictly upper triangular. In this parametrization

the matrix X takes the form X = U †
M (Z + T )UM , where Z = ZM · · ·Z1 is diagonal and T is upper

triangular, i.e. Z+T = (ZM +TM ) · · · (Z1+T1). The diagonal elements of the Z-matrix play the role
of the complex eigenvalues of X. In other words the eigenvalues of X can be calculated as products of
diagonal elements of the diagonal matrices Zj as zn =

∏M
j=1 zjn, for n = 1, . . . , N . Note that although

the zn’s are the eigenvalues of X, the zjn’s are not the eigenvalues of Xj . In this parametrization the
measure dν(X), see eq. (2.4), yields

dν({Zi, Ti, Ui}) ∝

∣∣∣∣∣∆

(
M∏

k=1

Zk

)∣∣∣∣∣

2

×
M∏

i=1

(∫
det−L[ıHi − 11N ] exp[tr (U †

i (Zi + Ti)(Zi + Ti)
†Ui − 11N )(ıHi − 11N )] d[Hi]

)
d[Zi]d[Ti]dχ(Ui) ,

(2.5)

where

∆(Z) =
∏

1≤a<b≤N

(za − zb) (2.6)

is the Vandermonde determinant for Z = diag(z1, . . . , zN ), dχ(Ui) is the Haar measure for the unitary
group U (N), and d[Zi], d[Ti] and d[Hi] are flat measures for Zi, Ti and the N ×N Hermitian matrix

Hi = H†
i . The square of the Vandermonde determinant arises as a Jacobian for this parametrization

[17].
The joint probability density function for the eigenvalues of the product matrixX can be calculated

by integrating out all degrees of freedom but Z in the measure (2.5),

P (N,L,M)(z1, . . . , zN ) =

∫
δ(Z − ZM · · ·Z1)dν({Zi, Ti, Ui}). (2.7)
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The integration over the Ui’s completely factorizes in eq. (2.7) since they can be absorbed in the
Hermitian matrices Hi’s. Then the integration over the Ti’s and Ui’s (2.7) reads

P (N,L,M)(z1, . . . , zN ) ∝
∫

δ(Z − ZM · · ·Z1)

∣∣∣∣∣∆

(
M∏

k=1

Zk

)∣∣∣∣∣

2 M∏

i=1

W (L)
1 (Zi)d[Zi], (2.8)

where

W (L)
1 (Zi) ∝

∫
det−L[ıHi − 11N ] exp[tr ((Zi + Ti)(Zi + Ti)

† − 11N )(ıHi − 11N )] d[Hi]d[Ti] (2.9)

for i = 1, . . . ,M . The integration over each Ti and Hi can be done explicitly [13],

W (L)
1 (Zi) ∝

N∏

n=1

w(L)
1 (zin) =

N∏

n=1

L

π
(1− |zin|2)L−1Θ(1− |zin|). (2.10)

Note that this result is true for any L > 0 independently of whether or not the condition L ≥ N is
fulfilled. We briefly recall the calculation of this integral in appendix B. The constant L/π is added

for convenience in order to ensure the normalization
∫
w(L)
1 (z)d2z = 1. Inserting this result into (2.8)

we obtain

P (N,L,M)(z1, . . . , zN ) ∝ |∆N (Z)|2W (L)
M (Z) , (2.11)

with a weight W (L)
M (Z) which factorizes into a product over one-point weights for the diagonal elements

of Z = diag(z1, . . . , zn),

W (L)
M (Z) =

N∏

n=1

w(L)
M (zn) . (2.12)

The individual one-point weights are given by

w(L)
M (zn) =

∫

CM

δ(2)



zn −
M∏

j=1

zjn




M∏

i=1

w(L)
1 (zin)d

2zin. (2.13)

The weight w(L)
M to be computed in the next subsection 2.2 only depends on the modulus of the

argument w(L)
M (z) = w(L)

M (|z|). The one-point weights w(L)
M for the product of M matrices are con-

structed from the one-point weights for the single matrices, see w(L)
1 in eq. (2.13). Their definition is

equivalent to the one of the probability density function for a random variable being the product of
M independently, identically distributed complex random numbers. The integral equation (2.13) can
be transformed into a factorized form via the Mellin transform as we shall see in the next subsection.
The joint probability density function (2.11) with the overall normalization factor can be written in
the standard form [34]

P (N,L,M)(z1, . . . , zN ) =
1

N !
∏N−1

j=0 hj

N∏

n=1

w(L)
M (zn)

N∏

a<b

|zb − za|2 (2.14)

with

hj =

∫
w(L)
M (z)|z|2jd2z =

(∫
w(L)
1 (z)|z|2jd2z

)M

=

(
L+ j

L

)−M

. (2.15)
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This normalization can be deduced by applying the orthogonal polynomial method in the complex

plane [31, 34] to the weight w(L)
M (z). Since the weight only depends on the modulus of z, the cor-

responding orthogonal polynomials pj(z), defined through
∫
w(L)
M (z)pi(z)p∗j (z)d

2z = hiδij , are monic,

pj(z) = zj . The joint probability density function (2.14) can then be written in a determinantal form

P (N,L,M)(z1, . . . , zN ) =
1

N !
det

1≤a,b≤N

[
K(N,L,M)(za, zb)

]
, (2.16)

with the kernel

K(N,L,M)(u, v) =

√
w(L)
M (u)w(L)

M (v) T (N−1,L,M)(uv∗) (2.17)

which is given in terms of the following truncated series

T (N−1,L,M)(x) =
N−1∑

j=0

(
L+ j

j

)M

xj . (2.18)

The upper limit of the sum corresponds to the value of the first superscript of T (N−1,L,M), in this case
N − 1. The determinantal form (2.16) is particularly helpful when one wants to calculate the k-point
correlation function [34]

R(N,L,M)
k (z1, . . . , zk) ≡

N !

(N − k)!

∫

CN−k

P (N,L,M)(z1, . . . , zN ) d2zk+1 . . . d
2zN = det

1≤a,b≤k

[
K(N,L,M)(za, zb)

]
.

(2.19)
The eigenvalue density can be readily read off from Eq. (2.19) as

R(N,L,M)
1 (z) = K(N,L,M)(z, z) = w(L)

M (|z|)T (N−1,L,M)(|z|2). (2.20)

In Sec. 3 we study the asymptotic behavior of the kernel (2.17) and of the eigenvalue density (2.20)
in various limits. To this end we need to independently calculate the asymptotic behavior of the

one-point weight functions w(L)
M (z), eq. (2.13), and of the truncated series T (N−1,L,M)(z) in eq. (2.18).

In the ensuing subsections we discuss the one-point weight function and then the truncated series.
For the joint probability density function and the kernel in the more general case of truncations

resulting from matrices of different sizes N + Lj we refer the reader to appendix C.

2.2 One-point weight functions

We will now determine the family of one-point weights (2.13) w(L)
M (z) recursively, which only depend

on the modulus |z|. For M = 1 the weight is given by w(L)
1 (z) = (L/π)(1 − |z|2)L−1Θ(1 − |z|), see

eq. (2.10). For M ≥ 2 we proceed as follows. Using polar coordinates zi = rieıϕi one can represent
the integral (2.13) as an M -fold Mellin-convolution

w(L)
M (z) =

(2L)M

2π

∫

[0,1]M

δ

(

|z|−
M∏

m=1

rm

)
M∏

i=1

(
1− r2i

)L−1
dri , (2.21)

which can be turned into the standard M -fold convolution by a further substitution, ri = e−ϑi/2. This
changes the multiplicative constraint in the Dirac delta function to an additive one

w(L)
M (z) =

LM

π

∫

RM
+

δ

(

2ln|z|+
M∑

m=1

ϑm

)
M∏

i=1

(
1− e−ϑi

)L−1
dϑi . (2.22)
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These expressions will be helpful in the following sections to derive the asymptotic behavior of the
weight for large argument. Alternatively one can take advantage of the following recursion relations
in order to determine the weight,

w(L)
M+1(z) = 2π

1∫

0

w(L)
1 (r)w(L)

M

(z
r

) dr

r
= 2π

1∫

0

w(L)
1

(z
r

)
w(L)
M (r)

dr

r
. (2.23)

They directly follow from eq. (2.13). As we show below these relations are especially helpful when one
wants to explicitly determine the form of weights for given L and M in terms of elementary functions.
Note that for weights with the support |z| ≤ 1 the integrand in the last equation is non-zero only for
r ∈ [|z|, 1], so one can, in this case, replace the lower integration limit by |z|.

Since the weight function w(L)
M (z) depends on its argument z only through the modulus |z|, it is

convenient to introduce an auxiliary function Ω(L)
M (x) with a real positive argument

w(L)
M (z) ≡

1

π
Ω(L)
M (|z|2) . (2.24)

The support of Ω(L)
M is [0, 1]. The factor 1/π ensures its normalization,

∫ 1

0
Ω(L)
M (x)dx =

∫ 1

0
Ω(L)
M

(
|z|2
)
d|z|2 =

∫

|z|≤1
w(L)
M (z)d2z = 1 , (2.25)

and keeps the recurrence relation simple,

Ω(L)
M+1(x) =

∫ 1

0
Ω(L)
1 (y)Ω(L)

M

(
x

y

)
dy

y
=

∫ 1

0
Ω(L)
1

(
x

y

)
Ω(L)
M (y)

dy

y
. (2.26)

The lower integration limit for this particular combination of weights can be replaced by x since the
integrand is zero for y < x. The Mellin transform

MM (s) =

∫ 1

0
Ω(L)
M (x)xs−1dx (2.27)

is the key to solve the recursion (2.26). The recursion (2.26) assumes the form

MM+1(s) = MM (s)M1(s) = (M1(s))
M+1. (2.28)

The simplicity of this relation uncovers the importance of the Mellin transform for product matrices.
The inverse Mellin transform1 yields the following one-point weight function

w(L)
M (z) =

1

π
Ω(L)
M

(
|z|2
)
=

1

π

1

2πi

∫ c+i∞

c−i∞
(M1(s))

M |z|−2sds . (2.29)

It remains to calculate the Mellin transform of the weight function for M = 1, w(L)
1 (z). It reads

M1(s) = π

∫ 1

0
w(L)
1 (

√
x)xs−1dx = L

∫ 1

0
(1− x)L−1xs−1dx =

Γ(s)Γ(L+ 1)

Γ(s+ L)
=

(
s+ L− 1

s− 1

)−1

. (2.30)

1The constant in the contour is chosen as c > k + 1, such that the k-th moment of the weight is bounded.
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Employing Eq. (2.29), we see that the one-point weight is

w(L)
M (z) =

(L!)M

π

∫

C

(
Γ(−u)

Γ(L− u)

)M

|z|2u
du

2πı
Θ(1− |z|)

=
(L!)M

π
GM, 0

M,M

(
L,...,L
0,...,0

∣∣∣∣ |z|
2

)
Θ(1− |z|)

=
(L!)M

π
|z|2LGM, 0

M,M

(
0,...,0
−L,...,−L

∣∣∣∣ |z|
2

)
Θ(1− |z|) . (2.31)

The expression involves a Meijer G-function, see [35], for which we have used an identity in the last line.
The contour C goes from −ı∞ to +ı∞ and leaves the poles of the Gamma functions in the numerator
to the right of the contour line. For different truncations N + Lj → N of the single matrices in the
product matrix this weight can be trivially generalized by replacing the prefactor (L!)M by L1! · · ·LM !
and the indices L in the upper row of the Meijer G-function by the Lj ’s, see appendix C.

For small M and L the formulae (2.31) can be expressed in terms of elementary functions. Let us

first illustrate this for L = 1. In this case Ω(1)
1 (x) = 1 for x ∈ [0, 1] and 0 otherwise. The function

Ω(1)
M (x) vanishes for x /∈ [0, 1], too. In particular we have

w(1)
2 (z) =

1

π

∫ 1

0
Ω(1)
1 (y)Ω(1)

1

(
|z|2

y

)
dy

y
=

1

π

∫ 1

|z|2

dy

y
Θ(1− |z|) =

ln
(
|z|−2

)

π
Θ(1− |z|) , (2.32)

and generally

w(1)
M+1(z) =

1

π

∫ 1

|z|2
Ω(1)
M

(
|z|2

y

)
dy

y
Θ(1− |z|) =

lnM
(
|z|−2

)

πM !
Θ(1− |z|) , (2.33)

as can be easily seen by induction. Similarly one can find the consecutive Ω(2)
M ’s for L = 2

Ω(2)
1 (x) = 2(1 − x) Θ(1− x) ,

Ω(2)
2 (x) =

(
− 8(1− x)− 4(1 + x)ln(x)

)
Θ(1− x) ,

Ω(2)
3 (x) =

(
48(1 − x) + 24(1 + x)ln(x) + 4(1− x)ln2(x)

)
Θ(1− x) , etc.

(2.34)

or do the same for larger L. The function Ω(L)
M always takes the form of a polynomial of order L− 1

in x and of order M − 1 in ln(x) because of the general relation

Ω(L)
M (x) = (L!)M

∫

C

xu
∏L−1

l=0 (l − u)M
du

2πı
Θ(1− x) (2.35)

=
(L!)M

(M − 1)!

L−1∑

l=0

∂M−1

∂µM−1



 xl−µ
∏

1≤j≤L
j #=l

(j − l + µ)M





∣∣∣∣∣∣
µ=0

Θ(1− x) ,

where we have employed the residue theorem. In general the term Ω(L)
M+1(x) ∼ lnM (1/x) dominates

the region around the origin which is exactly the same as for L = 1. For L = 1 we obtain eq. (2.33),
and for L = 2 we have

Ω(2)
M (x) =

2M

(M − 1)!

∂M−1

∂µM−1

(
x−µ

(µ+ 1)M
+

x1−µ

(µ− 1)M

)∣∣∣∣
µ=0

Θ(1− x) (2.36)

=
2M

(M − 1)!

M−1∑

m=0

(−1)M+m (2M − 2−m)!

(M − 1−m)!m!

(
x+ (−1)m+1

)
lnm(x) Θ(1− x) ,

agreeing with the special cases in eqs. (2.34).
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2.3 Truncated series

In this subsection we list some useful representations of the truncated series (2.18) which is simply
the kernel (2.17) at finite-N without the weight functions,

T (N,L,M)(x) =
N∑

j=0

(
L+ j

j

)M

xj (2.37)

=
1

(L!)M




M∏

j=1

∂L

∂yLj




(
1− (y1 · · · yM)N+L+1

1− y1 · · · yM

)∣∣∣∣∣∣
yj=x1/M

(2.38)

=

∫ 2π

0

dϕ

2π MFM−1

(
L+1,...,L+1

1,...,1

∣∣∣∣ e
−ıϕ

)
1− (xeıϕ)(N+1)

1− xeıϕ
(2.39)

= N

1∫

0

(
L+Nξ

Nξ

)M

xNξ
N∑

j=0

δ(j −Nξ)dξ. (2.40)

Each representation will become useful when deriving specific asymptotic expansions.
Note that apart from the representation (2.38) all representations of the truncated series T (N,L,M)(x)

can be easily generalized to a product of matrices with different truncations as it is discussed in ap-
pendix C. In the representations (2.37) and (2.40) one has only to replace the exponentiated binomials
by a product of binomials with different Lj’s and in the representation (2.39) one has to replace the
indices L+1 in the upper row of the hypergeometric function MFM−1 by Lj+1. This generalization is
not that simple for the representation (2.38) as can be easily checked by writing the rational function
as a geometric sum.

3 Asymptotic behavior for large N

In this section we consider the asymptotic behavior of the model for large N → ∞ and for fixed M .
Other important limits are postponed to forthcoming publications. We distinguish two cases: (1) an
extensive truncation where the number of truncated columns and rows, L, is of order N , and (2) a
weak truncation where L is constant. The former one corresponds to an ensemble of matrices that
strongly breaks the unitarity of the matrices drawn from the original ensemble while the latter one
corresponds to an ensemble of weakly non-unitary matrices.

3.1 Strong non-unitarity: N,L → ∞ and α = L/N fixed

Let us denote the ratio of the size N of the truncated matrices and the size N + L of the original
unitary matrices before truncation by

µ ≡
N

N + L
=

1

1 + α
< 1 and 0 < α ≡

L

N
. (3.1)

We keep µ < 1 fixed while taking the limit N → ∞.
First we study the macroscopic behavior in subsection 3.1.1 and derive the limiting eigenvalue

density. In particular we show that the limiting eigenvalue density covers a disk centered at the origin
of the complex plane with radius µM/2 < 1. This is very different from the eigenvalues of a unitary
matrix distributed on the unit circle. We call this limit with such an extensive truncation, L ∼ N ,
the strong non-unitarity regime.
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In subsections 3.1.2 and 3.1.3 we turn to the microscopic limit, showing that the eigenvalue fluctu-
ations in the bulk and at the edge of the support of the macroscopic eigenvalue density have the same
local universal behavior as the Ginibre ensemble. Finally in subsection 3.1.4 we discuss the behavior
of the kernel at the origin and show that it falls into the same universal classes labeled by M as the
product of Ginibre matrices [17].

3.1.1 Macroscopic regime

Here we calculate the mean limiting eigenvalue density for N → ∞. We first derive the asymptotic
behavior of the truncated series (2.18) and, then, of the one-point weights (2.31) in the large N limit
while keeping the eigenvalues of order unity, 0 < |z| < 1. These two results constitute the eigenvalue
density (2.20).

For the truncated series we employ the representation (2.40). The sum of Dirac delta-functions
can be omitted to leading order in the 1/N -expansion. This amounts to substituting the sum over j
by an integral over ξ = j/N running from zero to one and normalized to unity. The binomial symbol
containing ξ in the remaining integral is approximated by Stirling’s formula, i.e.

(
L+Nξ

Nξ

)
≈

√
α+ ξ

2πξL
α−L exp [N ((α+ ξ) ln (α+ ξ)− ξlnξ)] , (3.2)

so we have (2.40)

T (N,L,M)(|z|2) ≈

√
N2

(2πL)M
α−ML

1∫

0

(
α+ ξ

ξ

)M/2

exp [Nf(ξ)] dξ (3.3)

with the real function

f(ξ) = M
(
(α+ ξ) ln (α+ ξ)− ξlnξ + ξln|z|2/M

)
. (3.4)

The large N behavior of this integral can be found by employing Laplace’ method (saddle point
method for a real function in the exponent). The idea is to replace the exponential function of the
integrand by a Gaussian with the width of order 1/

√
N and the maximum located at ξ0 given by the

saddle point equation

ln

(
α+ ξ0
ξ0

)
+ ln

(
|z|2/M

)
= 0 . (3.5)

This yields for the saddle point

ξ0 =
α

|z|−2/M − 1
=

µ−1 − 1

|z|−2/M − 1
. (3.6)

In case of varying truncations, Lj &= Li for j &= i, (see appendix C) the corresponding saddle point
equation would be more involved. The saddle point equation (3.5) is generically equivalent to a
polynomial equation of order M .

For |z| < µM/2 the maximum of f(ξ) is located inside the integration range [0, 1] of the integral
(3.3). When |z| is close to µM/2, or more precisely when |z| − µM/2 is of order 1/

√
N , a part of the

Gaussian lies inside the integration range and a considerable part outside, while when |z| − µM/2 '
1/
√
N the whole Gaussian lies outside the integration range. This means that in this approximation

the integral (3.3) is given by the integral over the Gaussian times a factor corresponding to the fraction
of the Gaussian that lies inside the integration range. This factor is approximated by a complementary
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error function, erfc
(
a
√
N(|z| − µM/2)

)
, with some positive constant a. This function changes its value

from one to zero for |z| in a narrow interval whose width is of order 1/
√
N . The width tends to zero

for N → ∞ and the function reduces to the Heaviside step function

T (N,L,M)(|z|2) ≈

√
1

M(2πL)M−1
|z|(1−M)/M

(
1− |z|2/M

)−LM−1
Θ(µM/2 − |z|). (3.7)

One should remember that for large but finite N the Heaviside step function in the last equation
should be rather replaced by the complementary error function. We will come back to this point in
subsection 3.1.3 when discussing the fluctuations in the microscopic limit at the edge of the spectrum.

To complete the derivation of the large N limit for the kernel (2.17) we also need to calculate the

limiting weight w(L)
M (z), eq. (2.13). We determine it using eq. (2.22). By integrating out ϑM we

obtain an integral representation

w(L)
M (z) =

LM

π
Θ(1− |z|)

∫

R
M−1
+

(

1− |z|2 exp

[
M−1∑

m=1

ϑm

])L−1 M−1∏

i=1

(
1− e−ϑi

)L−1
dϑi , (3.8)

which is well suited for a saddle point analysis for large L and fixed |z|. The maximum of the (M −1)-

dimensional integrand is located at the point (ϑ(0)
1 , . . . ,ϑ(0)

M−1) given by the following M −1 equations:

1

1− eϑ
(0)
j

=
|z|2

|z|2 − exp[−
∑M−1

m=1 ϑ(0)
m ]

, ∀j ∈ 1, . . . ,M − 1 . (3.9)

They have a unique symmetric solution ϑ(0)
1 = . . . = ϑ(0)

M−1 = −(2ln|z|)/M . When expanding around
this saddle point we have to calculate the determinant of the (M − 1) × (M − 1) Hessian matrix at
the saddle point, i.e.

det

[
|z|−2/M

(1− |z|−2/M )2
(1 + δab)

]

1≤a,b≤M−1

=
M |z|2(M−1)/M

(1− |z|2/M )2(M−1)
. (3.10)

Summarizing the steps we find the asymptotic formula for N → ∞

w(L)
M (z) ≈

√
(2πL)M−1

M

L

π
|z|(1−M)/M

(
1− |z|2/M

)ML−1
Θ(1− |z|) (3.11)

for the one-point weights. One should note that the corresponding expression for the one-point weights
would be more complicated for varying truncations Lj since in that case the saddle point equation for
the counterpart of the integral (3.8) would have generically a non-symmetric solution. The symmetric
solution is particular and does not apply to the general case of different truncations proposed in
appendix C.

Inserting the eq. (3.7) and eq. (3.11) in eq. (2.20) we obtain the normalized level density

ρ(µ,M)(z) ≡ lim
N,L→∞

1

N
R(N,L,M)

1 (z) =
α

πM

|z|2(1−M)/M

(1− |z|2/M )2
Θ(µM/2 − |z|). (3.12)

It agrees with the result derived in Ref. [13, 36] for M = 1 and [37] for general M . We see that the
support of this function is a disk of radius µM/2 which is smaller than the radius

√
µ of a single matrix
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(M = 1) in the product since µ ≤ 1. Note that by changing variables, z = |z|eıφ → v = |z|1/M eıφ, one
obtains

d2zρ(µ,M)(z) = d2vρ(µ,1)(v) , (3.13)

which means that the product of M independent truncated matrices has the same limiting density as
the M -th power of a single random matrix drawn from the same ensemble for N → ∞. This is due
to the self-averaging property of isotropic matrices [37]. This also agrees with what was found for the
product of M Ginibre matrices [7, 17, 22, 29, 30]. One should also note that the density can be made
globally flat on its support by the following reparameterization z → ẑ =

√
(1− µ)/(1− |z|2/M )eıφ

that gives

ρ̂(µ,M)(ẑ) =






1

πµ
,

√
1− µ ≤ |ẑ| ≤ 1,

0 , otherwise .
(3.14)

This is the well-known limiting ring distribution of the Ginibre ensemble of rectangular matrices of
dimensions N × (N+L) whose ratio µ = N/(N +L) is kept constant in the large N limit, see ref. [38].

We conclude this subsection by considering truncations much larger than the remaining matrix,
L ' N . Here the parameter µ becomes very small, being approximately equal to µ ≈ N/L ) 1. In this
case the radius of the support of the eigenvalue density of the product X(M) is of order (N/L)M/2 ) 1.
This can be fixed by rescaling all matrices in the product by a factor (N/L)1/2, Xj = (N/L)1/2Yj, and
we obtain a product matrix Y ≡ Y (M) = YM · · ·Y1 whose eigenvalue density has a support of radius
one. Moreover the probability measure for individual matrices Yj in the product becomes Gaussian
in this limit, as follows from eq. (2.3)

dµ

(√
N

L
Y

)

∝ detL−N

(
11N −

N

L
Y †Y

)
Θ

(
11N −

N

L
Y †Y

)
d[Y ]

≈ exp
[
−NTrY †Y

]
d[Y ] .

(3.15)

In the second step of the calculation we assumed that N/L ) 1 and used the following approximation
det(11 − α−1A) = exp(Tr ln(11 − α−1A)) ≈ exp(−α−1TrA) that holds for |α−1| ) 1. We also omitted
the Heaviside function because the matrix in its argument becomes automatically positive definite
in the limit α−1 = N/L → 0. In other words in the regime L ' N the behavior of the product of
independent truncated unitary matrices is equivalent to the product of independent Ginibre matrices.

3.1.2 Bulk fluctuations

In the previous subsection we determined the large N asymptotic behavior of the truncated series (3.7),

T (N,L,M)(uv∗) ≈
1√

M(2πL)M−1
(uv∗)(1−M)/(2M)

(
1− (uv∗)1/M

)−LM−1
Θ(µM/2 − |z|) , (3.16)

and of the one-point weight (3.11),

w(L)
M (u) ≈

√
(2πL)M−1

M

L

π
|u|(1−M)/M

(
1− |u|2/M

)ML−1
Θ(1− |z|) , (3.17)

which we repeat here for completeness. Together they build up the kernel (2.17) which is given by

K(N,L,M)(u, v) =

√
w(L)
M (u)w(L)

M (v) T (N−1,L,M)(uv∗) . (3.18)
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Note that with complex arguments the truncated series contains a phase, whereas the weights only
depending on the modulus do not. These formulae hold inside the disk of radius µM/2. The kernel
vanishes when either u or v lie outside the disk.

In this subsection we determine the microscopic large N limit in the bulk of the spectrum. This
can be analyzed by studying the kernel (3.18) for two neighboring points,

u = z +
1√
N

δu and v = z +
1√
N

δv, (3.19)

both located in the vicinity of the point z in the bulk, i.e. 0 < |z| < µM/2, with |z|, |δu| and |δv|
of order unity. The calculation is carried out as a 1/

√
N -expansion up to second order, by inserting

(3.19) into the expressions for the limiting truncated series (3.16) and weights (3.17). Technically it is
easier when the u- and v-dependent factors are first exponentiated and then Taylor expanded in the
two variables in the standard way,

exp[g(u, v∗)] ≈ exp

[
g(z, z∗) +

1√
N

(δu, δv∗)(∂ug, ∂v∗g)
T

+
1

2N
(δu, δv∗)

(
∂u∂ug ∂u∂v∗g
∂v∗∂ug ∂v∗∂v∗g

)
(δu, δv∗)T

]
(3.20)

up to higher order terms, where g is a general action. In the limit of large N and L only the factors
with an exponent proportional to L will contribute. We obtain the following result for the truncated
series

T (N,L,M)(uv∗) ≈
1√

M(2πL)M−1
|z|(1−M)/(M)

(
1− |z|2/M

)−LM−1

× exp

[
L|z|2(1−M)/M

√
N(1− |z|2/M )

(δuz∗ + δv∗z) +
L|z|2(1−M)/M

NM(1− |z|2/M )2
δuδv∗

]

× exp

[

−
L|z|2(1−2M)/M

2N(1− |z|2/M )

(
1−

1

M(1− |z|2/M )

)
(δu2z∗ 2 + δv∗ 2z2)

]

, (3.21)

and for the weight at argument u

w(L)
M (u) ≈

√
(2πL)M−1

M

L

π
|z|(1−M)/M

(
1− |z|2/M

)ML−1

× exp

[

−
L|z|2(1−M)/M

√
N(1− |z|2/M )

(δuz∗ + δu∗z)−
L|z|2(1−M)/M

NM(1− |z|2/M )2
δuδu∗

]

× exp

[
L|z|2(1−2M)/M

2N(1− |z|2/M )

(
1−

1

M(1− |z|2/M )

)
(δu2z∗ 2 + δu∗ 2z2)

]

. (3.22)

Inserting these two asymptotic results into eq. (3.18) we obtain the following expression for the limiting
microscopic kernel in the bulk of the spectrum,

K(µ,M)
bulk (δu, δv) ≡ lim

N,L→∞

1

N
K(N,L,M)(u, v)

= ρ(µ,M)(z)eıΦ(δu,δv) exp

[
−2πρ(µ,M)(z)

(
1

2
|δu|2 +

1

2
|δv|2 − δuδv∗

)]
(3.23)
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where we have introduced the phase

Φ(δu, δv) ≡
L|z|2(1−M)/M

√
N(1− |z|2/M )

$m((δu− δv)z∗)

−
L|z|2(1−2M)/M

2N(1− |z|2/M )

(
1−

1

M(1− |z|2/M )

)
$m

(
(δu2 − δv2)z∗ 2

)
. (3.24)

It is a real function which is antisymmetric Φ(δu, δv) = −Φ(δv, δu) under exchanging its arguments.
Thus the phase factor cancels out in the expression for the k-point correlation functions given by the
determinants of the kernel (2.19). The remaining part of the expression (3.23) contains the macroscopic
density (3.12) at the point z where we zoom in. It is equivalent to the Ginibre kernel [27] which is
universal [39, 40, 41]. When changing variables to

δû =
√

2πρ(µ,M)(z) δu , δv̂ =
√

2πρ(µ,M)(z) δv (3.25)

we obtain the identical expression for the microscopic bulk kernel as in the Ginibre ensemble [27].
As a last remark, note that in the previous subsection 3.1.1 on the macroscopic behavior we found

in the limit µ → 0 the product of Ginibre matrices. In this limit, the universal microscopic bulk kernel
of a product of Ginibre matrices was already found [17]. Additionally universality in the bulk holds
for all values of 1 > µ ≥ 0 including the limit µ → 0.

3.1.3 Edge fluctuations

We are going to derive the asymptotic behavior of the kernel (2.17) in the large N limit for fixed
α = N/L, for u, v lying close to each other and close to the edge. More precisely, we consider

u = µM/2eıϕ +
1√
N

δu and v = µM/2eıϕ +
1√
N

δv (3.26)

in the vicinity of a point z = µM/2eıϕ on the edge of the support of the distribution (3.12), and |δu|
and |δv| are both of order unity. Since the level density is rotationally invariant we assume that ϕ = 0
without loss of generality.

As before we begin with calculating the truncated series (3.3) using the saddle point method,
except that now we do this for the sum T (N,L,M)(uv∗) of a complex argument uv∗. We obtain an
analogous expression as (3.3) except that ln |z|2 is replaced by the principal value of ln(uv∗)

ln(uv∗) ≈ M ln(µ) +
µ−M/2

√
N

(δu+ δv∗)−
µ−M

2N
(δu2 + δv∗ 2) ≡ M ln(µ) +A+B . (3.27)

Here we define the terms A and B of order 1/
√
N and 1/N , respectively, while neglecting higher order

terms in the expansion. The saddle point ξ0 fulfils an equation analogous to (3.5), except that |z|−2/M

is replaced by (uv∗)−1/M , and is expanded as in eq. (3.27),

0 = f ′(ξ0) = M ln

(
α+ ξ0
ξ0

)
+M ln(µ) +A+B. (3.28)

Recall the definition of the action f in eq. (3.4). This leads to the following expression for the solution
ξ0 of the saddle point equation, expanded up to leading order:

ξ0 ≈ 1 +
µ−M/2

√
N M(1− µ)

(δu + δv∗) ≡ 1 +
A

M(1− µ)
. (3.29)
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This expansion can be also directly obtained from eq. (3.6). The saddle point |ξ0| ≤ 1 is located in
the vicinity of the upper integration interval at ξ = 1. Therefore we can no longer replace the integral
by a Gaussian integration over the whole real axis when expanding ξ = ξ0 − δξ/

√
N . Instead we

have to set a lower bound of the integral over δξ at A/(M(1 − µ)). Integrating over δξ we obtain a
complementary error function,

T (N,L,M)(u, v∗) ≈

√
N2

(2πL)M
α−ML exp[Nf(ξ0)]

√
π

−2Nf ′′(ξ0)
erfc

[
A

M(1− µ)

√
−
Nf ′′(ξ0)

2

]

,

(3.30)
given in terms of the notation from eqs. (3.28) and (3.29) above, cf. eq. (3.3). While in the last
two terms the limiting value −f ′′(ξ0 = 1) = M(1 − µ) is legitimate, we still need to expand the first
exponential factor exp[Nf(ξ0)] up to second order in 1/

√
N using eqs. (3.27) and (3.29). Collecting

all terms to that order we finally arrive at

T (N,L,M)(uv∗) ≈
(1− µ)−LM−1µ−(M−1)/2

(2πL)(M−1)/2
√
M

exp
[√

Nµ−M/2(δu+ δv∗)
]

(3.31)

× exp

[
−
µ−M

2
(δu2 + δv∗ 2) +

µ−M

2M(1 − µ)
(δu+ δv∗)2

]
erfc

[
µ−M/2

√
2M(1 − µ)

(δu+ δv∗)

]

.

Let us come to the calculation of the asymptotic behavior of the one-point weight for large N and
L. Applying the result (3.11) to u and v in our edge scaling regime, see eq. (3.26), the two leading
terms of the 1/

√
N expansion yield

w(L)
M (u) ≈

√
(2πL)M−1

M

L

π
µ−(M−1)/2 (1− µ)ML−1 exp

[
−
√
Nµ−M/2(δu + δu∗)

]

× exp

[
µ−M

2

(
1−

1

M(1− µ)

)
(δu2 + δu∗ 2)−

µ−M

M(1− µ)
δuδu∗

] (3.32)

and analogously for w(L)
M (v). Summarizing the results (3.32) and (3.31) the microscopic limit of the

kernel at the edge is

K(µ,M)
edge (δu, δv) ≡ lim

N,L→∞

1

N
K(N,L,M)(u, v)

=
µ−M

πM(1− µ)
exp [ıΦ(δu, δv)] exp

[
−

µ−M

2M(1− µ)

(
|δu|2 + |δv|2 − 2δuδv∗

)]

× erfc

[
µ−M/2

√
2M(1 − µ)

(δu+ δv∗)

]

, (3.33)

where Φ(δu, δv) = −Φ(δv, δu) is a real phase,

Φ(δu, δv) =
√
Nµ−M/2'm(δu− δv) +

µ−M(1−M + µM)

2M(1 − µ)
'm(δu2 − δv2) . (3.34)

The phase factors exp[ıΦ] cancel out in the determinantal structure of the k-point correlation func-
tion (2.19) and, thus, are irrelevant in the spectral statistics. What remains is the universal error
function kernel that agrees with that of the Ginibre ensemble [34, 42, 43] after changing to new
variables

δû ≡
µ−M/2

√
M(1− µ)

δu. (3.35)
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In particular the microscopic density at the edge is then given by

ρ(µ,M)
edge (δu) = K(µ,M)

edge (δu, δu) =
µ−M

πM(1− µ)
erfc

[√
2µ−M

M(1− µ)
|δu|

]

, (3.36)

which is the universal result [34, 42, 43].
We expect that the universal results (3.33) and (3.36) also hold in the general setting with different

truncations, see appendix C. Since the saddle point equations are highly complicated in this case we
have not proven it here.

3.1.4 Fluctuations at the origin

While studying the asymptotic behavior of the kernel in the vicinity of the origin for N → ∞ it is
convenient to introduce a rescaled variable δz with |δz| of order one,

z = L−M/2δz , (3.37)

and express results in δz. One could alternatively use a variable δz′ in the scaling formula z =
N−M/2δz′ but since α = L/N is kept fixed in the limit N → ∞, δz and δz′ differ by an inessential
constant δz = αM/2δz′ which does not affect the N -dependence of the scaling.

For N → ∞ the truncated series asymptotically behaves like

T (N,L,M)(|z|2) ≈
∞∑

j=0

|δz|2j

[j!]M
= 0FM−1

(
−
1,...,1

∣∣∣∣ |δz|
2

)
(3.38)

resulting from (2.37). Note that this asymptotic result does not change at all when choosing different
truncations of the matrices in the product matrix X(M), see appendix C.

The asymptotic behavior of the one-point weights (2.13) can be derived from the first line of the
integral representation (2.31) using the following asymptotic behavior of the Gamma function:

lim
L→∞

Γ(L− u)

Γ(L)
eu ln(L) = 1 . (3.39)

This directly leads to

w(L)
M (z) ≈

LM

π
GM, 0

0,M

(
−
0,...,0

∣∣∣∣ |δz|
2

)
. (3.40)

Also this result can be readily generalized to the situation of different truncations N +Lj → N of the
matrices in the product matrix, see appendix C, by replacing the prefactor LM by L1 · · ·LM .

Now we have all constituents needed for the microscopic limit of the kernel (2.17) at the origin.
Combining eqs. (3.38) and (3.40) we obtain

K(µ,M)
origin (δu, δv) ≡ lim

N,L→∞
L−MK(N,L,M)(u+ L−M/2δu, v + L−M/2δv)

=
1

π

√

GM, 0
0,M

(
−
0,...,0

∣∣∣∣ |δu|2
)
GM, 0

0,M

(
−
0,...,0

∣∣∣∣ |δv|2
)

0FM−1

(
−
1,...,1

∣∣∣∣ δuδv
∗

)
. (3.41)

The kernel agrees with the microscopic kernel at the origin for the complex eigenvalues of products
of Ginibre matrices [17] hinting to a universal property of product matrices. The same result follows
for the model with different truncations described in appendix C, whenever all Lj → ∞. Only the

rescaling has to be changed from L−M/2 to
∏M

j=1 L
−1/2
j .
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As a check, one can regain the Ginibre kernel [27] from eq. (3.41) for M = 1,

K(µ,M=1)(u, v) =
1

π
exp

[
−
|δu|2

2
−

|δv|2

2
+ δuδv∗

]
. (3.42)

Indeed it is identical with the kernel (3.23) in the bulk of the spectrum since the origin is not a
distinguished point for M = 1. For M = 2 the Meijer G-function and hypergeometric function reduce
to a K-Bessel and I-Bessel function respectively, which agree with the kernel found previously in a
two-matrix model describing the low-energy limit of QCD [4], with large chemical potential, see e.g.
[44] as well as [45].

Using the expression (3.41) the microscopic level density at the origin is given by

ρ(µ,M)
origin (δz) = K(µ,M)

origin (δz, δz) =
1

π
GM, 0

0,M

(
−
0,...,0

∣∣∣∣ |δz|
2

)
0FM−1

(
−
1,...,1

∣∣∣∣ |δz|
2

)
. (3.43)

Note that this rescaled density has a logarithmic singularity

lim
|δz|→0

ρ(µ,M)
origin (δz) ≈ lnM−1|δz| (3.44)

at the origin for M > 1. Indeed the following two limits hold:

lim
|δz|→0

0FM−1

(
−
1,...,1

∣∣∣∣ |δz|
2

)
→ 1 ,

lim
|δz|→0

GM, 0
0,M

(
−
0,...,0

∣∣∣∣ |δz|
2

)
≈ (lnM−1|δz|2)/(M − 1)! . (3.45)

For M = 1 however this singularity is absent, as can be seen from eq. (3.42). Thus the level density
takes a constant value at the origin, ρ(µ,M=1)(δz) = 1/π, as in [13] and the Ginibre ensemble [27].

We emphasize and briefly comment on the case of more general truncations Lj from appendix C.
Due to the lack of the corresponding large N expressions for the truncated series (3.7) and one-point
weight (3.8) an expansion is non-trivial. However, from universality arguments we expect that both
bulk and edge fluctuations should also match with the universal Ginibre results in this case as it is
the case for the fluctuations at the origin.

3.2 Weak non-unitarity: N → ∞ and L fixed

In this section we consider a limit called weak non-unitarity limit introduced and studied for M = 1
in [13], where N is taken to infinity while L is kept fixed. For fixed L many things simplify since the
matrices Xj and their product X(M) are almost unitary in the limit N → ∞. Indeed we shall see that
almost the whole eigenvalue spectrum of X(M) is concentrated in the vicinity of the unit circle in the
complex plane. The macroscopic density becomes a delta function of the modulus as shown in the
next subsection, whereas nontrivial universal correlations will be found when studying the inner edge
of the unit circle in subsection 3.2.2.

3.2.1 Macroscopic regime

The macroscopic level density can be readily derived via its moments

〈zaz∗ b〉 =
1

N

∫

C

zaz∗ bR(N,L,M)
1 (z)d2z =

δab
N

N−1∑

j=0

(
L+ j

j

)M(L+ j + a

j + a

)−M

, (3.46)
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see Eqs. (2.18), (2.31), (2.20), and (2.15). The large N asymptotics (L is fixed) of these moments is
given by

〈zaz∗ b〉 ≈ δab

1∫

0

[
Γ(L+Ny + 1)Γ(Ny + a+ 1)

Γ(Ny + 1)Γ(L +Ny + a+ 1)

]M
dy ≈ δab. (3.47)

These moments correspond to a level density uniformly distributed on the complex unit circle,

ρ(L,M)(z) =
1

π
δ(1 − |z|2). (3.48)

This result is indeed also true for the general case of a product of random matrices originating from
different truncations, see appendix C.

Let us visualize what the meaning of the quite straightforward result (3.48) is. For |z| of order
unity and for large N,L the density can be well approximated by the expression

ρ(N,L,M)(z) =
1

N
K(N,L,M)(z, z) ≈

L

πNM

|z|2/M−2

(1− |z|2/M )2
ΘN

((
N

N + L

)M/2

− |z|

)

, (3.49)

which can be obtained from (3.12) by replacing α by L/N and µ by N/(N + L). Here ΘN (x) is a
sigmoidal function that changes between zero and one in a narrow crossover region of width ∼ 1/

√
N .

In the limit N → ∞ it approaches the step function Θ(x). The exact form of this function depends
on N,L,M but it is not essential for the argument that we are going to give below. In the first
order approximation one can think of ΘN (x) as of the step function Θ(x). For fixed L,M the limit
N → ∞ is non-uniform and has to be taken carefully. If one takes the limit point-wise one obtains
limN→∞ ρ(N,L,M)(z) = 0 which is of course wrong since the integral of the eigenvalue density has to
be normalized. In fact the formula (3.49) gives the correct normalization

∫
ρ(N,L,M)(z)d2z ≈

L

πNM

∫ ( N
N+L )

M/2

0

r2/M−2

(1− r2/M )2
2πrdr = 1 . (3.50)

To resolve this discrepancy it is instructive to calculate the integral of the density ρ(N,L,M)(z) over
a disk with radius slightly smaller than one, for example r = (1 − cN−1/2)M/2 where c is a positive
constant. When N is large enough this radius is smaller than the cut-off R = (N/(N + L))M/2 in
the Heaviside-distribution in eq. (3.49) so the disk lies entirely inside the support of the eigenvalue
density. While choosing the constant c one should also take into account that the function ΘN in
(3.49) does not have a sharp threshold at R, but rather a sigmoidal one that extends on an interval
[R− σN−1/2, R + σN−1/2], which represents a smeared cut-off. One should choose c > σ to keep the
disk radius smaller than the lower value of the smeared cut-off to avoid interference with the finite N
boundary effects. For all points inside such a disk ΘN in equation (3.49) can be replaced by one and
the fraction of eigenvalues inside the disk is given for large N by the following integral

p ≈
L

πNM

∫

|z|≤(1−cN−1/2)M/2
ρ(N,L,M)(z)d2z =

L

πNM

∫ (1−cN−1/2)M/2

0

r2/M−2

(1− r2/M )2
2πrdr . (3.51)

Changing the integration variable to x = r2/M we find that for N → ∞

p ≈
L

N

∫ 1−cN−1/2

0

dx

(1− x)2
=

L

N

(
c−1N1/2 − 1

)
−→ 0 . (3.52)
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The fraction of eigenvalues inside the disk of radius r = (1− cN−1/2)M/2 ≈ 1− (cM/2)/N1/2 tends to
zero as 1/N for N → ∞ and the disk radius becomes one. This means that the whole interior of the
disk contains almost no eigenvalues and all of them are squeezed in a narrow strip around the unit
circle. In the limit N → ∞ the disk becomes an open disk. It contains no eigenvalues as shown above
(3.52) while the integral over the whole disk of radius one contains all eigenvalues (3.50). This means
that all eigenvalues condense on the unit circle for N → ∞ and hence

lim
N→∞

1

N
K(N,L,M)(z, z) = ρ(L,M)(z) =

1

π
δ(1− |z|2), (3.53)

cf. the result (3.48). For this reason we will only zoom into the vicinity of the unit circle in the next
subsection. In the microscopic limit it can be shown that the correlations in the bulk and at the origin
of the complex unit disk are highly suppressed, too.

3.2.2 Edge fluctuations

Consider a point on a unit circle z = eıφ. Due to the rotational symmetry we can choose z = 1 (φ = 0)
without loss of generality. We are interested in eigenvalue correlations measured at two points in the
vicinity of z = 1

u = 1−
δu

N
, and v = 1−

δv

N
, (3.54)

where |δu| and |δv| are of order unity. As usual, the first step of the calculation is to determine the
large N behavior of the truncated series (2.18) with argument

uv∗ = 1−
1

N
(δu+ δv∗) +

1

N2
δuδv∗ . (3.55)

We employ the representation (2.38). Changing variables in eq. (2.38) yi = 1 − ti/N , where the ti’s
are of order one, leads to the following asymptotic expression:

T (N,L,M)(uv∗) ≈
(−N)MLN

(L!)M




M∏

j=1

∂

∂tj




L(

1− exp [−(t1 + · · ·+ tM )]

t1 + · · ·+ tM

)
∣∣∣∣∣∣∣
tj=(δu+δv∗)/M

. (3.56)

Hereby we used the following approximation formulae for large N : y1 · · · yM ≈ 1− (t1 + . . .+ tN )/N ,

yN+L+1
i = (1− ti/N)N+L+1 ≈ e−ti , and (uv∗)1/M ≈ 1− (δu+ δv∗) /(NM) neglecting O(N−2) terms.
The differential operator in eq. (3.56) acts on the function which is effectively a function of t =
t1 + . . . + tM . Changing the derivatives in this operator to ∂/∂ti = (∂t/∂ti)∂/∂t = ∂/∂t we obtain

T (N,L,M)(uv∗) ≈
NML+1

(L!)M

(
−

∂

∂t

)ML(1− e−t

t

)∣∣∣∣∣
t=(δu+δv∗)/M

. (3.57)

This formula cannot be easily extended to a general truncation of the matrices in the product, see
appendix C, because of the reason discussed in the paragraph after eq. (2.40). Nevertheless we expect
that the simple replacement ML → L1 + . . .+ LM and (L!)M → L1! · · ·LM ! should do the job.

Let us again switch to the calculation of the one-point weight. Starting from eq. (2.22) the weight
reads

w(L)
M (u) ≈

LM

π

∫

RM
+

δ

(
M∑

m=1

ϑm −
1

N
δRu

)
M∏

i=1

(
1− e−ϑi

)L−1
dϑi (3.58)
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in the weak non-unitarity regime, where we introduced an abbreviation δRu = δu+ δu∗ = 2!eδu. We
change the integration variables to θi given by ϑi =

1
N δRu θi. For large N the expansion

e−ϑi = 1− δRu θi/N is sufficient up to O(1/N2) corrections. We obtain

w(L)
M (u) ≈

LM

π
Θ(δRu)

(
1

N
δRu

)ML−1 ∫

[0,1]M

δ

(
M∑

m=1

θm − 1

)
M∏

i=1

θL−1
i dθi

=
LMN1−ML

π
Θ(δRu) (δRu)

ML−1
M−1∏

j=1




1∫

0

θL−1(1− θ)jL−1dθ



 , (3.59)

and finally

w(L)
M (u) ≈

(L!)MN1−ML

(ML− 1)!π
(δRu)

ML−1Θ(δRu) . (3.60)

This result can indeed be readily extended to a product of random matrices originating from different
truncations N+Lj → N , see appendix C, by replacing ML → L1+ . . .+LM and (L!)M → L1! · · ·LM !.
This is the reason why we expect the same generalization of the asymptotic result (3.57) for the
truncated series T (N,L,M)(uv∗).

Collecting both asymptotic formulae (3.57) and (3.60) we find

K(L,M)
weak (δu, δv) ≡ lim

N→∞

1

N2
K(N,L,M) (u, v)

=
Θ(!eδu)Θ(!eδv)

π(ML− 1)!

(
4(!eδu)(!eδv)

)(ML−1)/2
(
−

∂

∂t

)ML(1− e−t

t

)∣∣∣∣∣
t=(δu+δv∗)/M

.

(3.61)

The factor 1/N2 results from the change of variables in the microscopic limit (3.54) which introduces
N−2 to the Jacobian d2δud2δv = N−4d2ud2v. Note that u and v are complex variables. The limiting
eigenvalue density (2.20) is

ρ(L,M)
weak (δu) = K(L,M)

weak (δu, δu) =
Θ(!eδu) (2!eδu)ML−1

π(ML− 1)!

(
−

∂

∂t

)ML(1− e−t

t

)∣∣∣∣∣
t=2(%eδu)/M

. (3.62)

This result agrees with the one found in Ref. [13] for M = 1. Note that the correlation functions
that follow from eq. (3.61) also agree for M = 1 with the correlation functions found in [15] for
non-Hermitian finite rank perturbations of rank L of GUE matrices.

As a check one can show that the bulk fluctuations in the strong non-unitarity limit can be
recovered from those of the weak non-unitarity regime by applying the following rescaling

δu → Lr0 +
√
Lδû and δv → Lr0 +

√
Lδv̂ , r0 ∈ R (3.63)

to eq. (3.61) and taking the limit of large L. In more detail, the exponential factor can be dropped in
the t-derivatives of eq. (3.57) since it is highly suppressed. We obtain

(
−

∂

∂t

)ML(1− exp [−t]

t

)∣∣∣∣∣
t=(δu+δv∗)/M

≈ (ML)!
1

tML+1

∣∣∣∣
t=(δu+δv∗)/M

. (3.64)
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The expansion of the ML-th power in the weight (3.60) is straightforward. Retaining terms up to
second order in 1/

√
L we arrive at

lim
L→∞

K(L,M)
weak (δu, δv) ≈

M

4πLr20
exp

[
−

M

8r20
(|δû|2 + |δv̂|2 − 2δûδv̂∗)

]

× exp

[

−ı
M

√
L

2r0
%m(δû− δv̂) + ı

M

8r20
%m((δû)2 − (δv̂)2)

]

. (3.65)

The phase factor in the last line cancels in the correlation functions. What remains is the Ginibre
kernel with some scale factor. This factor is proportional to the macroscopic level density

ρ(µ,M)(z = 1− r0) ≈
M

4πr20
, (3.66)

that is obtained from eq. (3.12) by expanding it in r0 for α = 1. The reason for α = 1 lies in the fact
that the ratio L/N , cf. its definition (3.1), does not make any sense in the scaling limit N & L & 1.
Thus one has to omit this term.

4 Conclusions

We have studied the complex eigenvalues of products of truncated unitary random matrices. These are
obtained by removing rows and columns from larger unitary matrices of the same size or of different
sizes. Our investigations generalize previous works on spectral properties of a single truncated unitary
matrix [13] as well as of products of random matrices taken from the Ginibre ensemble [17]. We mainly
concentrated on the question, whether in the large matrix size limit the local spectral fluctuations
also called microscopic limit lead to the same universal correlations know from non-Hermitian random
matrix theory, namely the Ginibre ensemble, or if they give rise to new universality classes. This study
adds an important part to the full picture of the spectral properties of product matrices consisting of
a finite number of matrices recently discussed in several works [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Our strategy was to first derive exact results for products of M matrices of size N , resulting from
truncations of unitary matrices of size(s) N + L (or N + Lj) by L (or Lj, with j = 1, . . . ,M), for
all parameters finite. Those results are in agreement with the very recently published works [20, 22].
In the next step two large N limits were identified, namely when both N and L become large with
L/N finite, named strong non-unitarity, and when L remains finite at large N , named weak non-
unitarity. We emphasize that the large N limits were not done before and are the main focus of our
investigations.

In the strong non-unitarity limit, the complex eigenvalues become concentrated in a supporting
disk inside the unit circle (the support for unitary matrices). Three regimes were separately analyzed.
At the edge and in the bulk of the support we found the same universal spectral correlations as for the
Ginibre ensemble (equivalent to a single truncated unitary matrix at M = 1) [39, 40, 41, 34, 42, 43].
The same feature was previously found for products of M matrices of the Ginibre ensemble [17]. At
the origin the same microscopic correlation functions as for M products of Ginibre matrices [17] were
derived. Therefore these classes labelled by M are also universal. Note that for a single Ginibre matrix
with M = 1 the origin is not special and displays the same local spectral statistics as in the bulk.

At weak non-unitarity the majority of complex eigenvalues condense on the unit circle, just as for
unitary matrices. Nevertheless, microscopically they still spread out inside the complex unit disk, with
a width of the order 1/

√
N . Zooming into these edge fluctuations a new class of correlations labelled

again by M were found, generalizing previous results for a single truncated unitary matrix [13].
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It remains to be shown how much of this picture changes when considering different truncations
Lj in the large N limit. Only at strong non-unitarity at the origin and in the weak non-unitarity
limit we could show that the same class of universal correlations persists compared to using the same
truncation L for all matrices. Such investigations are currently under way. It would also be very
interesting to try to use our findings in various applications mentioned in the introduction.
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A The measure for truncated unitary matrices

We briefly derive the measure for the ensemble of N ×N matrices obtained by truncation of a single
unitary matrix U distributed with respect to the Haar measure dχ(U) of U (N + L). The truncation
selects the upper left block X which we choose for simplicity to be quadratic2 of size N × N from a
unitary matrix of size (N + L)× (N + L)

U =

(
X W
V Y

)
. (A.1)

The probability measure forX is obtained by integrating over the remaining blocks: V of size L×N , W
of size N×L and Y of size L×L. It is convenient to represent the Haar measure for U as a flat measure
with a matrix Dirac delta function which selects unitary matrices dχ(U) = δ(11N+L − UU †)d[U ]. We
have

UU † =

(
XX† +WW † XV † +WY †

Y X† + YW † V V † + Y Y †

)
(A.2)

and d[U ] = d[X]d[Y ]d[W ]d[V ], to be inserted in

dχ(X) =

∫
δ
(
11N+L − UU †

)
d[U ] . (A.3)

This result is equivalent with lemma 7 in [20] proven by a QR-decomposition.
The integration over Y , W and V is performed in two steps. First we integrate out V and Y , by

introducing an integral representation of the Dirac delta function for (N + L) × (N + L) Hermitian
matrices

δ(A) =
1

πN22N

∫
exp [ıtrAH] d[H] =

1

πN22N

∫
exp [trA(ıH − 11N+L)] d[H] , (A.4)

where H = H† and A = A†. The shift introduced in the second expression is useful for ensuring the
absolute convergence over the integrals in V and Y , see the calculation below. After subdividing H

2The more general result readily follows and is quoted at the end of this section.
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in appropriate subblocks Hj, j = 1, 2, 3, where H1, H3 are Hermitian, we have

dµ(X) ∝ d[X]

∫
exp

[
tr
(
UU † − 11N+L

)(
ı

(
H1 H2

H†
2 H3

)
− 11N+L

)]
d[H1]d[H2]d[H3]d[V ]d[W ]d[Y ]

∝ d[X]

∫
det−L−N [ıH3 − 11L] exp

[
tr (XX† +WW † − 11N )(ıH1 − 11N )

]

× exp
[
trH†

2(XX† +WW †)H2(ıH3 − 11L)
−1 − tr (ıH3 − 11L)

]
d[H1]d[H2]d[H3]d[W ]

∝ d[X]

∫
δ(XX† +WW † − 11N ) det−L−N [ıH3 − 11L]

× exp
[
trH†

2H2(ıH3 − 11L)
−1 − tr (ıH3 − 11L)

]
d[H2]d[H3]d[W ]

∝ d[X]

∫
δ(XX† +WW † − 11N ) d[W ] . (A.5)

In the first step we have integrated out V and Y which are Gaussian, leading to determinants with
powers −N and −L, respectively. In the second step we have rewritten the integral over H1 as a
Dirac delta function of the invariant XX†+WW † = 11N . The Gaussian integral over H2 results in an
additional power of +L of the same determinant and finally the integral over H3 decouples and merely
contributes to the global normalization constant. The only nontrivial contribution to the measure of
X comes from the remaining constraint of the upper left corner in eq. (A.2).

The remaining integral can be computed by writing the Dirac delta function as an integral em-
ploying eq. (A.4) and finally integrating over W , i.e.

dµ(X) ∝ d[X]

∫
exp[tr (XX† +WW † − 11N )(ıH1 − 11N )] d[H1]d[W ]

∝ d[X]

∫
det−L[ıH1 − 11N ] exp[tr (XX† − 11N )(ıH1 − 11N )] d[H1]

= d[X]

∫
det−L[ıH1 − 11N ] exp[tr (X†X − 11N )(ıH1 − 11N )] d[H1]. (A.6)

The last two integrals over H1 are versions of the Ingham-Siegel integral as discussed in [46]. However
we have to distinguish two cases. For the case L ≥ N we find

dµ(X) ∝ d[X]detL−N [11N −XX†]Θ(11N −XX†) (A.7)

yielding the result given at the beginning of the paper (2.3). Note that one can equivalently derive

the result (A.7) from eq. (A.5) by the following change of variables W →
√

11N −XX†W . Exactly in
this kind of derivation the condition L ≥ N becomes immediate. The matrix WW † has N − L zero
modes in the case N > L such that the remaining Dirac delta function δ(WW † − 11N ) can never be
satisfied. Thus for the case N > L we have to remain with the integral representation (A.6).

For completeness we mention that repeating all the steps given above one obtains exactly the
same result for a rectangular truncation, that is when the block X is an N1 ×N2 rectangular matrix.
Denoting the complementary dimensions of truncated blocks by L1 and L2 fulfilling the condition
L1 −N2 = L2 −N1 ≥ 0 where N1 + L1 = N2 + L2 is the dimension of the original Haar distributed
unitary matrix, the result reads

dµ(X) ∝ d[X] detL1−N2(11N2 −X†X) Θ(11N2 −X†X)

∝ d[X] detL2−N1(11N1 −XX†) Θ(11N1 −XX†).
(A.8)
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B Joint probability density of the eigenvalues

In this appendix we briefly recall how to integrate out the strictly upper triangular matrix Ti in the
integral (2.9). We are looking for an explicit expression only depending on the elements of the diagonal
matrix Zi as given in eq. (2.10). Such an expression can be derived using a Schur decomposition (we
pursue this idea, too) in [13, 20, 22], see also [14] for the case L ≥ N . Here we repeat the derivation
for the sake of self-consistency and completeness.

For simplicity we will drop the index i in this appendix. Let us only recall that T is strictly upper
triangular, that is Tab = 0 for N ≥ a ≥ b ≥ 1 on the diagonal and below. Furthermore we introduce a
matrix S = Z+T which is (not-strictly) upper triangular and becomes quite convenient in the ensuing
discussion. Our goal is to calculate the following integral

IN =

∫
det−L[ıH − 11N ] exp[tr (S†S − 11N )(ıH − 11N )] d[H]d[T ] (B.1)

which is equivalent to eq. (2.9) up to a constant. We keep an explicit index N on the left hand side
since we are going to do this integral recursively in the matrix size N . In the calculations below
we will also use reduced matrices of size N − 1. They will be denoted by 11N−1, H ′, T ′, and S′,
respectively. They are obtained from 11N , H, T , and S by removing the N -th column and the N -th
row. In particular we split the matrices S and H in four blocks

S =

(
S′ !v
!0T zN

)
and H =

(
H ′ !w
!w† hN

)
(B.2)

built of (N − 1)× (N − 1) blocks S′ and H ′ and 1× 1 blocks consisting of single elements zN ∈ C and
hN ∈ R. Additionally the off-diagonal blocks correspond to vertical and horizontal vectors consisting
of N − 1 elements. The elements of the vertical vectors !v and !w are equal to vj = SjN and wj = HjN ,
j = 1, . . . , N − 1, respectively. All elements of the horizontal vector !0T are equal to zero. Using these
conventions we can reduce the matrix dimension from N to N − 1 in the integral (B.1)

IN =

∫
det−L

[
ıH ′ − 11N−1 +

!w !w†

ıhN − 1

]
(ıhN − 1)−L (B.3)

× exp[tr (S′ †S′ − 11N−1)(ıH
′ − 11N−1) + (!v†!v + |zN |2 − 1)(ıhN − 1)]

× exp[ı!w†S′ †!v + ı!v†S′ !w]d[H ′]d[T ′]d[w]d[v]dhN

Here we applied the following identity

det

[
A B
C D

]
= det (D) det

(
A−BD−1C

)
, (B.4)

where in our case the first factor is the determinant of a 1 × 1 matrix. In the first step we integrate
over !v such that we have

IN ∝
∫

det−L

[
ıH ′ − 11N−1 +

!w !w†

ıhN − 1

]
(ıhN − 1)−L−N+1 exp[(|zN |2 − 1)(ıhN − 1)] (B.5)

× exp

[
tr (S′ †S′ − 11N−1)(ıH

′ − 11N−1)−
!w†S′ †S′ !w

1− ıhN

]
d[H ′]d[T ′]d[w]dhN .

In the next step one can shift H ′ → H ′ − ı!w !w†/(1 − ıhN ) which is legitimate since we do not cross
any pole of the determinant. Then we end up with a Gaussian integral in !w which can be done,

IN ∝
∫

det−L
[
ıH ′ − 11N−1

]
(ıhN − 1)−L exp[(|zN |2 − 1)(ıhN − 1)] (B.6)

× exp
[
tr (S′ †S′ − 11N−1)(ıH

′ − 11N−1)
]
d[H ′]d[T ′]dhN .
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The integral over hN can be performed via the residue theorem and we find the recursion

IN ∝ w(L)
1 (zN )IN−1 (B.7)

with
w(L)
1 (zN ) ∝

(
1− |zN |2

)L−1
Θ(1− |zN |2) . (B.8)

Note that the function on the right hand side is independent of N . The only part that depends on N
is the coefficient which was skipped. Inserting this result into eq. (B.7) we eventually obtain

IN ∝
N∏

n=1

w(L)
1 (zn) ∝

N∏

n=1

(
1− |zn|2

)L−1
Θ(1− |zn|2) , (B.9)

in agreement with eq. (2.10) and [13, 14, 20, 22].

C The model with different truncations

Let us consider a neat generalization where the matrices Xj have still the same size N × N but
they were truncated from unitary matrices of different size, Uj ∈ U(N + Lj), with Lj > 0 for all
j = 1, . . . ,M . Then the measure of the product matrix X reads

dν(X) = d[X]

∫
det−Lj [ıH1 − 11N ] exp[tr (X†X − 11N )(ıH1 − 11N )] d[H1] (C.1)

=
M∏

j=1

detLj−N (11N −X†
jXj)Θ(11N −X†

jXj)d[Xj ],

where the second line only applies in the case Lj ≥ N . The question is what the one-point weight
function will look like. To reach this goal we go along the same lines as in the previous subsections.

Notice that the Vandermonde determinant in the joint probability density (2.14) remains un-
changed since the generalized Schur decomposition still applies, such that we have

P (N,L1,...,LM ,M)(Z) =
1

N !

M∏

j=0

N−1∏

l=0

(
Lj + l

l

)−1 N∏

a<b

|za − zb|2
N∏

n=1

w(L1,...,LM )
M (zn) , (C.2)

with the normalized one point weight function

w(L1,...,LM )
M (zn) =

∫

CM

δ(2)



zn −
M∏

j=1

zjn




M∏

i=1

Lj

π
(1− |zin|2)Lj−1Θ(1− |zin|2)d2zin . (C.3)

It is obviously symmetric in the indices Lj. For L1 = . . . = LM = L we have w(L,...,L)
M = w(L)

M in
comparison to the former sections.

Again the one-point weight satisfies a recurrence relation

w(L1,...,LM )
M (z) = 2π

∫ 1

0
w(LM )
1 (r′)w

(L1,...,LM−1)
M−1

( z
r′

) dr′

r′
, (C.4)

as well as with other permutations of the indices Lj on the right hand side which is very similar to
the one in Eq. (2.23). The recurrence relation in terms of the Mellin transform

M (L1,...,LM )
M (s) =

1∫

0

Ω(L1,...,LM )
M (s)xs−1dx, with Ω(L1,...,LM )

M (|z|2) =
1

π
w(L1,...,LM )
M (z) (C.5)
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reads

M (L1,...,LM )
M (s) = M

(L1,...,LM−1)
M−1 (s)M (LM )

1 (s) =
M∏

m=1

M (Lm)
1 (s) . (C.6)

The inverse Mellin transform yields the one-point weight w(L1,...,LM )
M . Hereby we can benefit from the

known result of the Mellin transform M
(Lj)
1 , cf. eq. (2.30). Thus the one-point weight is

w(L1,...,LM )
M (z) =

1

π

∫

C

M∏

l=1

Ll!
Γ(−u)

Γ(Ll − u)
|z|2u

du

2πı
Θ(1− |z|) (C.7)

=
1

π

M∏

l=1

Ll! G
M, 0
M,M

(
L1,...,LM
0,...,0

∣∣∣∣ |z|
2

)
Θ(1− |z|) .

Indeed our former result (2.31) can be easily retained by setting L1 = . . . = LM = L. Also the
moments of this weight can be easily computed and we find

∫

C

w(L1,...,LM )
M (z)|z|kd2z =

M∏

m=1

(
Lm + k/2

k/2

)−1

, (C.8)

which is a generalization of Eq. (2.15). The corresponding kernel from which the k-point correlation
functions are built up reads

K(N,L1,...,LM ,M)(u, v) =

√
w(L1,...,LM )
M (u)w(L1,...,LM )

M (v)
N−1∑

j=0

M∏

m=1

(
Lm + j

j

)
(uv∗)j , (C.9)

cf. eq. (2.19). The joint probability density, weight function and kernel agrees with the results from
[20, 22].

Note that most of the discussion of the asymptotics and the universality of the kernel (2.17) carries
over or can be trivially generalized to the kernel (C.9). Only the large N -asymptotics in the strong
non-unitarity regime where one has to zoom into the local scale of the bulk and of the soft edge is quite
involved due to the non-trivial saddle point equations arising from the choice L1 "= L2 "= . . . "= LM .
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1. Introduction

Chiral random matrix theory is the oldest of all random matrix ensembles. It was
introduced by Wishart [1] in the 1920’s to model generic properties of correlation
matrices. Since then chiral random matrix theory was applied to many other fields of
physics and beyond because of its versatility. One important application is the study
of correlation matrices in time series analysis [2, 3, 4, 10, 11, 12, 13, 14]. Chiral random
matrix theory serves as a benchmark model for empirical correlation matrices and is
used to extract the system specific correlations from the generic statistical fluctuations.
Another famous development is the introduction of chiral random matrix theory to
QCD by Shuryak and Verbaarschot [15, 16, 17]. They showed the equivalence of the
microscopic limit of the QCD-Dirac operator with chiral random matrix theory. In
particular chiral random matrix theory explained the statistical fluctuations of the
smallest eigenvalues of the Dirac operator and predicted relations between low energy
constants and observables which are confirmed by lattice QCD data [18, 19]. Recent
applications of chiral random matrix theory can be also found in condensed matter
theory [20], telecommunication [21, 22, 23], and quantum information theory [24] but
its range is by far not restricted to those examples.

For the sake of simplicity, a Gaussian function is often used within the context
of random matrix theory. Due to universality [25, 26, 27, 28], this choice is quite
often legitimized as long as the interest lies in correlations on the local scale of the
mean level spacing. To prove universality as well as to modify random matrix theory
to describe particular systems many technical tool were developed. For example, the
supersymmetry method, originally introduced for Gaussian weights [29, 30, 31, 32],
is established as a versatile tool in the field of random matrix theory because of its
broad applicability to non-Gaussian ensembles. For the history of the supersymmetry
method and its variants, we refer the reader to Ref. [32]. Moreover, one is not always
interested in the local scale, e.g. see the analysis of universality on macroscopic
scales as it is discussed with free probability [33, 34]. Insofar a generalization to
arbitrary statistical weights is of particular interest. Other important techniques are
the orthogonal polynomial method [6], Toda lattice structures [7], free probability
theory [35] and maps to Hamiltonian systems [8, 9]. For a comprehensive overview
see [5, 64, 51] and references therein.

Here, we focus on the supersymmetry method, not on aspects related to other
methods such as orthogonal polynomials. We start from a close connection between
matrix invariants in ordinary and superspace which was first observed in Ref. [36]. In
particular for chiral random matrix models we investigate how probability densities
which only depend on matrix invariants (but are otherwise arbitrary) are uniquely
mapped from ordinary to superspace. This is the issue at stake.

An exact map from ordinary space to superspace for arbitrary isotropic ensembles
for real symmetric, Hermitean and Hermitean self-dual matrices was provided in
two different but related approaches, a few years ago. Isotropy is the invariance
under the orthogonal, unitary or unitary symplectic group, respectively, see Ref. [35].
One approach pursues the idea to generalize the original Hubbard-Stratonovich
transformation in superspace for Gaussian weights [29, 30, 31, 32] to arbitrary
weights [36, 37]. In another approach one tries to find a direct, exact identity between
integrals over dyadic supermatrices and integrals over cosets. This second approach
is known as the superbosonization formula [38, 39]. Both approaches are completely
equivalent [40] and both have their advantages as well as disadvantages. One crucial
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disadvantage they both share is that they do not directly relate the probability density
in ordinary space with the one in superspace. They only become explicit when the
characteristic function (Fourier transform of the probability density) is known in a
closed form. Hence one has to calculate the statistical weight for each random matrix
ensemble, separately. This is exactly the problem we want to address.

The extension of the generalized Hubbard-Stratonovich transformation as well as
the superbosonization formula to the other seven classes in the tenfold classification
via the Cartan scheme [41, 42] is still unsolved. We address three of these seven
classes in a unifying way, namely chiral random matrices generated by non-Gaussian
probability densities. In particular we derive a projection formula explicitly relating
the probability density in ordinary space with the one in superspace. Thus we present
a solution to the disadvantage of the generalized Hubbard-Stratonovich transformation
and the superbosonization formula where one has to study each ensemble separately.
Such a projection formula was already accomplished for real symmetric, Hermitean,
and Hermitean self-dual matrices, see Ref. [43]. In Sec. 2, we briefly summarize the
idea behind such a projection formula for ensembles in the original classification by
Dyson [41] and put it into contrast with the well established generalized Hubbard-
Stratonovich transformation and the superbosonization formula. In Sec. 3, we
generalize this approach to the three chiral random matrix theories of real, complex
and quaternion rectangular matrices in a unifying way.

To underline that the projection formula is a powerful tool we apply it to a
selection of ensembles encountered in different fields of random matrix theory, in
Sec. 4. Some of these ensembles, as the Lorentz (Cauchy)-like ensembles and the
ensemble with a quartic potential, are not at all trivial and it is not immediately
clear what their supersymmetric counterpart will look like. The other examples
are the norm-dependent ensembles without and with empirical correlations and the
unquenched chiral Gaussian random matrix ensembles modelling QCD with quarks.
In particular for the partially quenched partition function we derive a representation
whose microscopic limit agrees with QCD and shows a natural splitting into physical
mesons and those corresponding to the source term generating the observables like
the level density or higher order correlations. The explicit calculation of this result is
presented in Appendix A. The article is concluded with a summary in Sec. 5.

2. Main idea of a projection formula

The supersymmetry method is essentially a general relation between partition
functions in ordinary space,

Z(κ) =

∫
d[H ]P (H)

k2∏
j=1

det(H − κ(2)
j 1N )

k1∏
j=1

det(H − κ(1)
j 1N )

, (2.1)

and partition functions in superspace, which we expect to be of the form

Z(κ) =

∫
d[σ]Q(σ)sdet µ(N)(σ − κ). (2.2)

The N × N matrix H is distributed by P and drawn from one of the Hermitean
ensembles classified in the ten-fold way via the Cartan classification scheme [41, 42].
The exponent µ is some affine linear function in the former ordinary dimension N .
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The supermatrix σ has a dimension related to the number of determinants in Eq. (2.1).
It fulfills certain symmetries depending on the ones of the ordinary matrix H , and is
drawn from a probability density Q in superspace. The source variables

κ :=

{
diag(κ1,κ2), β = 2,

diag(κ1,κ1,κ2,κ2), β = 1, 4,
(2.3)

with

κ1 := diag(κ(1)
1 , . . . ,κ(1)

k1
), κ2 := diag(κ(2)

1 , . . . ,κ(2)
k2

), (2.4)

are distinguished by the Dyson index β = 1, 2, 4. We notice that κ is always a
supermatrix. In the context of QCD, it comprises masses of the physical fermions
as well as masses of the valence fermions usually denoted by mj [17]. The masses
of the valence fermions consist of source variables for differentiation to generate the
matrix Green functions often denoted by Jj and markers for the eigenvalues of H

which are usually denoted by xj [32]. Additionally we have to assume that κ(1)
j has a

non-zero imaginary part, since the spectrum of H lies on the real axis.
The main task is to derive two things. First of all, the corresponding supermatrix

space, σ ∈ MSUSY, has to be identified which is independent of the probability density
P . This identification was already done in Ref. [42]. Second, one has to calculate
the probability distribution Q which crucially depends on the ordinary matrix space,
H ∈ Mord, and on the probability density P . Exactly the second task is the hardest
one and is up to now only known in a closed form whenH is real symmetric, Hermitean,
or Hermitean self-dual [43].

After recalling the standard supersymmetry method in subsection 2.1, we briefly
rederive a projection formula for ensembles of real symmetric, Hermitean, and
Hermitean self-dual matrices in subsection 2.2 to point out the main idea of such
a projection formula.

2.1. Standard supersymmetry approach

Let us introduce three abbreviations,

U(β)(n) :=






O(n), β = 1,
U(n), β = 2,

USp(2n), β = 4,
(2.5)

Herm(β)(n) :=






Gl(n,R)/O(n) ∼= U(n)/O(n), β = 1,
Gl(n,C)/U(n), β = 2,

Gl(n,H)/USp(2n) ∼= U(2n)/USp(2n), β = 4,
(2.6)

and

γ :=

{
1, β = 1, 2,
2, β = 4,

and γ̃ :=

{
2, β = 1,
1, β = 2, 4,

(2.7)

such that we can deal with all three Dyson indices β = 1, 2, 4 in a unifying way.
Equation (2.6) is an abbreviation for the set of real symmetric, Hermitean, and
Hermitean self-dual matrices, respectively. Here, H is the quaternion number field
which we represent via the Pauli matrices and the two-dimensional unit matrix 12

throughout the work.
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The aim is to identify a partition function in superspace starting from a partition
function in ordinary space,

Z(κ) :=

∫
d[H ]P (H)

k2∏
j=1

det(H − κ(2)
j 1γn)

k1∏
j=1

det(H − κ(1)
j 1γn)

(2.8)

=

∫
d[H ]P (H)sdet−1/(γγ̃)(H ⊗ 1γγ̃k1|γγ̃k2

− 1γn ⊗ κ),

with H ∈ Herm(β)(n) and P fulfilling the rotation invariance (also known as isotropy
[35])

P (H) = P (UHU−1), ∀ U ∈ U(β)(n). (2.9)

Let for simplicity Imκ1 > 0 in this subsection. We will weaken this condition later
on.

In the original supersymmetry method one introduces a rectangular complex
supermatrix V [32] of dimension (γn)× (γγ̃k1|γγ̃k2) and uses the crucial identity

sdet−1/(γγ̃)(H ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ) =

∫
d[V ] exp[ıstrV †V κ− ıstr V †HV ]

ıγn(k2−k1)
∫
d[V ] exp[−strV †V ]

. (2.10)

Recall the definition of κ in Eq. (2.3) and of γ and γ̃ in Eq. (2.7). The rescaling by
the imaginary unit ı is needed to ensure the convergence of the integral over V . The
supermatrix V consists of independent complex random variables as well as complex
Grassmann variables (anti-commuting variables) and fulfills some symmetries under
complex conjugation if the Dyson index is β = 1, 4, i.e. the complex conjugate of V is

V ∗ =

{
V diag (12k1

, ıτ2 ⊗ 1k2
), β = 1,

(−ıτ2 ⊗ 1n)V diag (ıτ2 ⊗ 1k1
,12k2

), β = 4,
(2.11)

where τ2 is the second Pauli matrix. The case β = 1 is some kind of reality condition
and for β = 4 it is some kind of generalization of quaternions.

When plugging Eq. (2.10) into the partition function (2.8) the integration over
H reduces to a Fourier transform of the probability density P . We assume that the
Fourier transform,

Φ(A) :=

∫
d[H ]P (H) exp[−ı trHA], (2.12)

exists for any (γn) × (γn) matrix A sharing the same symmetries as H apart from
relations involving complex conjugations. The invariance property (2.9) of P carries
over to one of Φ, i.e.

Φ(A) = Φ(UAU−1) ∀ U ∈ U(β)(n) (2.13)

meaning that the function Φ can be written as a function of the traces of A. Identifying
the matrix A = V V †, one can show that there is a superfunction Φ̃, which is by far
not unique (see Ref. [37]), such that another essential identity of the supersymmetry
method holds [32],

Φ(V V †) = Φ̃(V †V ). (2.14)

Note that the tilde emphasizes that Φ̃ is not the same as but related to the function
Φ. The partition function reads

Z(κ) =

∫
d[V ] exp[ıstrV †V κ]Φ̃(V †V )

ıγn(k2−k1)
∫
d[V ] exp[−strV †V ]

(2.15)
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which is already a representation in superspace.
Two different ways can be pursued from this point. One approach is the

superbosonization formula [38, 39]. With help of the superbosonization formula
the integral over V †V is replaced by an integral over a (γγ̃k1|γγ̃k2) × (γγ̃k1|γγ̃k2)
supermatrix U fulfilling some symmetries under the transposition if β = 1, 4, i.e.

UT =

{
diag (12k1

,−ıτ2 ⊗ 1k2
)Udiag (12k1

, ıτ2 ⊗ 1k2
), β = 1,

diag (−ıτ2 ⊗ 1k1
,12k2

)Udiag (ıτ2 ⊗ 1k1
,12k2

), β = 4,
(2.16)

which means that UBB is symmetric (self-dual) and UFF is self-dual (symmetric) for
β = 1 (β = 4). Additionally, the matrix U consists of four blocks,

U =

[
UBB η†

η UFF

]
, (2.17)

whose off-diagonal blocks η and η† contain independent Grassmann variables apart
from the condition (2.16), the boson-boson block is positive definite, UBB > 0, and
Hermitean, U †

BB = UBB, and the fermion-fermion block is unitary, U †
FF = U−1

FF . Hence
the supermatrix U is in one of the three cosets [38, 39, 40]

Herm (β)
" (γ̃k1|γk2) :=






U(2k1|2k2)/UOSp (+)(2k1|2k2), β = 1,
Gl (k1|k2)/U(k1|k2), β = 2,

U (2k1|2k2)/UOSp (−)(2k1|2k2), β = 4,
(2.18)

where U (p|q) is the unitary supergroup and Gl (p|q) is the general linear, complex
supergroup. The two supergroups UOSp (±)(2k1|2k2) for β = 1, 4 are the
two independent matrix-representations of the unitary ortho-symplectic supergroup
UOSp (2k1|2k2). Matrices in this group are real in the boson-boson block and
quaternion in the fermion-fermion block for β = 1 denoted by the superscript “(+)”
and vice versa for β = 4 denoted by the superscript “(−)”, see Ref. [37]. The subscript
“$” refers to the kind of embedding of the coset which is a contour-integral around the
origin for the fermion-fermion block UFF in the case of the superbosonization formula.

The superbosonization formula can be summarized to the following simple
equation,

Z(κ) =

∫
dµ(U)sdet n/γ̃U exp[ıstrUκ]Φ̃(U)

ıγn(k2−k1)
∫
dµ(U)sdet n/γ̃U exp[−strU ]

, (2.19)

see Refs. [38, 39]. The measure dµ(U) is the Haar measure of the corresponding coset.
The second supersymmetric approach is the generalized Hubbard-Stratonovich

transformation [36, 37]. Instead of replacing V †V by a supermatrix one assumes that
the superfunction Φ̃ is a Fourier transform of another superfunction Q as well, i.e.

Φ̃(B) =

∫
d[σ]Q(B) exp[−ıstrσB], (2.20)

for some supermatrix B. The integration domain of σ is very important. First of
all it fulfills the same symmetries under transposition as U in the superbosonization
formula, see Eq. (2.16), i.e.

σT =

{
diag (12k1

,−ıτ2 ⊗ 1k2
)σdiag (12k1

, ıτ2 ⊗ 1k2
), β = 1,

diag (−ıτ2 ⊗ 1k1
,12k2

)σdiag (ıτ2 ⊗ 1k1
,12k2

), β = 4,
(2.21)

which is again equivalent that σBB is symmetric (self-dual) and σFF is self-dual
(symmetric) for β = 1 (β = 4). However the blocks of

σ =

[
σBB η†

η σFF

]
(2.22)
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are drawn from different supports as for U . The off-diagonal blocks η and η† are again
independent Grassmann variables apart from the condition (2.21) while the boson-
boson block is now only Hermitean, σ†

BB = σBB. The fermion-fermion block can be

diagonalized by Û ∈ U (4/β)(γk2), i.e. σFF = ÛsFFÛ †. The eigenvalues {sFF}j live
on contours such that the integral over them converges. For a Gaussian ensemble
the standard Wick-rotation, i.e. {sFF}j ∈ ıR, does the job. For other polynomial
potentials one has to choose other Wick-rotations, e.g. for P (H) ∝ exp[− trH2m]
it is {sFF}j ∈ eıπ/(2m)R. Therefore the supermatrix σ lies also in an embedding of

the cosets (2.18) but the set will be now denoted by Herm (β)
Wick(γ̃k1|γk2) where the

subscript “Wick” reflects the nature of the integration domain.
Reading off B = V †V and integrating over V one obtains the final result for the

generalized Hubbard-Stratonovich transformation,

Z(κ) =

∫
d[σ]Q(σ)sdet −n/γ̃(σ − κ), (2.23)

see Refs. [36, 37]. The measure d[σ] is the flat one, i.e. the product of the differential
of all independent matrix elements.

Both approaches, the superbosonization formula as well as the generalized
Hubbard-Stratonovich transformation, have a crucial weakness. Without an explicit
knowledge of the Fourier transform Φ no direct functional relation between the
probability density P , the superfunction Φ̃, and the superfunction Q is known. The
reason is the duality relation (2.13) between ordinary and superspace. Particularly
for the generalized Hubbard-Stratonovich transformation, the dyadic matrices V V †

and V †V are in different matrix spaces. Hence, one cannot expect that the Fourier
transforms (2.12) and (2.20) yield the same functional dependence of P and Q. The
projection formula [43] briefly rederived in subsection 2.2 circumvents this problem.

2.2. Projection formula for Dyson’s threefold way

The key idea to find a direct relation between P and Q is to extend the original
matrix set H ∈ Herm(β)(n) to a larger matrix set also comprising the target set

σ ∈ Herm (β)
Wick(γ̃k1|γk2). Let γ̃k1 ≤ γ̃k2 + n to keep the calculation as simple as

possible otherwise we have to do a case discussion. This condition is usually the case
when applying supersymmetry to random matrix theory. Nevertheless we underline
that this condition is not at all a restriction since the other case can be taken care by
slightly modifying the ensuing discussion, see Ref. [43].

The idea of our approach is based on a Cauchy-like integration formula for

supermatrices in the coset Herm (β)
Wick(p|q) with p, q ∈ N0 which was first derived

by Wegner [44], see also Refs. [45, 46, 47] for slightly modified versions. Let l ∈ N

be a positive integer and f be an integrable and smooth superfunction on the set of

supermatrices Herm (β)
Wick(p+ γ̃l|q + γl) and invariant under

f(ŨΣŨ−1) = f(Σ) (2.24)

for all Σ ∈ Herm (β)
Wick(p+ γ̃l|q + γl) and

Ũ ∈ U (β)(p+ γ̃l|q + γl) :=






UOSp (+)(p+ 2l|2q + 2l), β = 1,
U(p+ l|q + l), β = 2,

UOSp (−)(2p+ 2l|q + 2l), β = 4.
(2.25)
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Employing the following splitting of

Σ =

[
Σ̃ 0
0 0

]
+ Σ̂ with Σ̂ =

[
0 V̂

V̂ † σ

]
(2.26)

such that Σ̃ ∈ Herm (β)
Wick(p|q) and σ ∈ Herm (β)

Wick(γ̃l|γl), the Cauchy-like integral
identity [44, 45, 46, 47] reads

∫
d[Σ̂]f(Σ)

∫
d[Σ̂] exp[−str Σ̂2]

= f

([
Σ̃ 0
0 0

])
(2.27)

reducing a large supermatrix, Σ, to a smaller one, Σ̃, independent of the concrete form
of the superfunction f . The notation Σ, Σ̃ and Σ̂ has no deeper meaning. It only
underlines that all three matrices are essentially of the same form apart from their
different dimensions.

Equation (2.27) is at the heart of our approach. Let us consider the partition
function (2.8) in ordinary space. From now on, we lift the condition Imκ1 > 0 to
emphasize that our idea works in general and define L = sign Imκ. We assume that
the probability density P is rotation invariant, see Eq. (2.9). Moreover we assume
that a contour like the Wick-rotation and an extension of P , denoted by P̃ , from the

ordinary matrix set Herm (β)(n) to the supermatrix set Herm (β)
Wick(n+ γ̃k2|γk2) exists

such that the superfunction P̃ is integrable and smooth on Herm (β)
Wick(n + γ̃k2|γk2).

Then we can extend the integral (2.8) to an integral in superspace, i.e.

Z(κ) =

∫
d[Σ]P̃ (Σ)sdet−1/(γγ̃)(H ⊗ 1γγ̃k1|γγ̃k2

− 1γn ⊗ κ)
∫
d[Σ̂] exp[−str Σ̂2]

, (2.28)

where we employ a splitting similar to Eq. (2.26), i.e.

Σ =

[
H 0
0 0

]
+ Σ̂ =

[
0 0
0 σ

]
+ Σ′ with Σ̂ =

[
0 V̂

V̂ † σ̂

]
and Σ′ =

[
H ′ V ′

V ′ † 0

]

(2.29)

with H ∈ Herm (β)
Wick(n|0) = Herm (β)(n), H ′ ∈ Herm (β)

Wick(n + γ̃(k2 − k1)|0) =

Herm (β)(n+ γ̃(k2 − k1)), σ̂ ∈ Herm (β)
Wick(γ̃k2|γk2), and σ ∈ Herm (β)

Wick(γ̃k1|γk2). The
second splitting becomes more important later on. Notice that we extended H → Σ
in the probability density P̃ , only.

From now on we pursue the ideas of the standard supersymmetry method, see
subsection 2.1. We introduce the same rectangular supermatrix V as in Eq. (2.10),
i.e.

sdet−1/(γγ̃)(H ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ) =

∫
d[V ] exp[ıstrV †V Lκ− ıstrV †HV L]

ıγn(k2−k1)sdet−n/γ̃L
∫
d[V ] exp[−strV †V ]

.

(2.30)

In terms of Σ the partition function reads

Z(κ) =

∫
d[Σ]P̃ (Σ)

∫
d[V ] exp[ıstr V †V Lκ− ıstrΣÂ]

ıγn(k2−k1)sdet−n/γ̃L
∫
d[V ] exp[−strV †V ]

∫
d[Σ̂] exp[−str Σ̂2]

(2.31)

with

Â =

[
V LV † 0

0 0

]
=

[
0 V

√
L

0 0

] [
0 0√
LV † 0

]
(2.32)
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and
√
L the positive root of the diagonal elements of L. The block structure of Â

corresponds to the first splitting of Σ in Eq. (2.29). The Fourier-Laplace transform

Φ̂(Â) =

∫
d[Σ]P̃ (Σ) exp[−ıstrΣÂ] (2.33)

is assumed to exist such that we can interchange the integrals overΣ and V . Employing
the same symmetry arguments as in Eq. (2.13) we have

Φ̂(Â) = Φ̂(B̂) with B̂ =

[
0 0√
LV † 0

] [
0 V

√
L

0 0

]
=

[
0 0
0

√
LV †V

√
L

]
.(2.34)

The block structure of B̂ is the one of the second splitting of Σ in Eq. (2.29). The
advantage of Eq. (2.34) in contrast to Eq. (2.14) is that the superfunction Φ̂ is still
the same since Â and B̂ are in the same supermatrix set. Hence the inverse Fourier
transform is still P̃ and not some new superfunction.

The only technical difficulty grows from a non-trivial L because we cannot
simply exchange the integrations over Σ and V again. To overcome this problem we
introduce an auxiliary supermatrix σaux ∈ Herm (β)

ı (γ̃k1|γk2) drawn from a Gaussian
distribution where the subscript “ı” denotes the standardWick-rotation [29, 30, 31, 32]
by the imaginary unit. This Gaussian models some kind of Dirac δ-function, i.e. we
can “simplify”

exp[−ıstr
√
Lσ

√
LV †V ] = lim

t→0

∫
d[σaux] exp[−str (σaux −

√
Lσ

√
L)2/t− ıstr σauxV †V ]∫

d[σaux] exp[−strσ2
aux/t]

,

(2.35)

where t/2 is the variance of the Gaussian distribution. Assuming that the integral of
P̃ multiplied with exp[|strσ2|] exists, we are allowed to interchange the integrations
over Σ, V , and σaux. We underline that the integrability of P̃ with exp[|strσ2|] is a
weak restriction which can be lifted at the end of the day; for example a modification
of P (H) to P (H) exp[−δ trH4] (δ > 0) does the job and we can take δ → 0 in the
end.

After introducing σaux we interchange the integrals and integrate over V first.
Shifting σaux by

√
Lσ

√
L we can take the limit t → 0. Finally the partition function

takes the simple form

Z(κ) =

∫
d[Σ]P̃ (Σ)sdet−n/γ̃(σ − κ)
∫
d[Σ̂] exp[−str Σ̂2]

. (2.36)

Notice that the superdeterminant only depends on σ and not anymore on the ordinary
matrix H .

In the last step we identify the superfunction Q by comparing the result (2.36)
with the result of the generalized Hubbard-Stratonovich transformation (2.23) yielding
the final result of this section which is the projection formula

Q(σ) =

∫
d[Σ′]P̃

([
0 0
0 σ

]
+ Σ′

)

∫
d[Σ̂] exp[−str Σ̂2]

. (2.37)

We integrate over different splittings of Σ in the numerator and the denominator.
Recall the definition (2.29) of the matrices Σ̂ and Σ′. The superfunction Φ̃ in the
superbosonization formula (2.19) can be obtained by the Fourier transformation (2.20)
of Q.
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We underline that the projection formula also holds if the source κ is chosen
non-diagonal as it sometime happens in QCD [48] or if we add an external operator
H0 to the original random matrix H often consider in transition ensembles [49, 50].
In both cases the integral (2.36) is slightly modified but the fundamental functional
relation (2.37) still remains the same.

The projection formula (2.37) has one big advantage which the results of
the superbosonization formula (2.19) and of the generalized Hubbard-Stratonovich
transformation (2.23) are lacking. With the aid of the projection formula one can
study deformations of the probability weight in a quite elegant way. Exactly such an
advantage we want to achieve for the chiral ensembles, too.

Finally, we emphasize that the projection formula (2.37), after extending P to
P̃ , yields one of infinitely many probability weights in superspace corresponding to
the same partition function in ordinary space (2.8). This ambiguity of the weight
in superspace is well known [37]. Moreover other extensions of P to superspace
certainly result into other superfunctions Q. Thus an interesting mathematical
question is: When varying over all possible extensions P̃ of P , do we get all possible
probability weightsQ in superspace obtained by the generalized Hubbard-Stratonovich
transformation, agreeing with exactly the same partition functions in ordinary space?

3. Projection formula for chiral ensembles

The aim is to generalize the projection formula (2.37) to chiral ensembles. We
introduce the chiral matrix

Hχ =

[
0 W
W † 0

]
, (3.1)

where the matrix entries of W are either real, complex, or quaternion independent
random variables for β = 1, 2, 4, respectively. The chiral matrix Hχ is related to the
anti-Hermitean, chiral random matrix

D −→ D =

[
0 W

−W † 0

]
= γ5Hχ, with γ5 = (1n,−1n+ν) (3.2)

modelling the Euclidean Dirac operatorD in four dimensions [15, 16, 17]. The modulus
of the index ν ∈ {−n, 1− n, 2 − n, . . .} is equal to the number of generic zeros of Hχ

which can be identified with the topological charge in continuum theory. The random
matrix W is drawn from the coset

Gl (β)(n;n+ ν) := U (β)(2n+ ν)/[U (β)(n)×U (β)(n+ ν)] (3.3)

distributed by Pχ such thatHχ ∈ Herm (β)(2n+ν). The probability density is assumed
to be invariant under

Pχ(W ) = Pχ(UW ), ∀ U ∈ U (β)(n). (3.4)

Notice that we do not assume invariance under right transformations as well which is
usually the case [51, 17]. The reason is that we also want to study correlated random
matrix ensembles as they naturally appear in the analysis of one-sided correlated
Wishart ensembles where the invariance is broken by an empirical correlation matrix,
see Refs. [2, 3, 4, 11, 12, 13, 14].

Due to the invariance (3.4) we can reduce the functional dependence of Pχ on W
to one of WW †. Thus there is a function P such that

Pχ(W ) = P (W †W ). (3.5)
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Moreover we assume that the chiral partition function,

Zχ(κ) :=

∫
d[W ]Pχ(Hχ)

k2∏
j=1

det(Hχ − κ(2)
j 1γ(2n+ν))

k1∏
j=1

det(Hχ − κ(1)
j 1γ(2n+ν))

(3.6)

=

∫
d[W ]Pχ(Hχ)sdet

−1/(γγ̃)(Hχ ⊗ 1γγ̃k1|γγ̃k2
− 1γ(2n+ν) ⊗ κ),

can be reduced to one for WW † or/and W †W ,

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (3.7)

×
∫

d[W ]P (W †W )sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ2),

= (−1)γ(n+ν)(k2−k1)sdet ν/γ̃κ

×
∫

d[W ]P (W †W )sdet−1/(γγ̃)(W †W ⊗ 1γγ̃k1|γγ̃k2
− 1γ(n+ν) ⊗ κ2).

One has to understand that those partition functions do not cover all interesting
spectral correlation functions. For example QCD with finite chemical potential or/and
finite temperature cannot be modelled with this restriction, cf. Refs. [52, 53, 54, 17].
For those partition functions the approach of a projection formula can be modified.
Unluckily this modified approach only works for the case β = 2. We will elaborate
more on this problem in a forthcoming publication [55].

To make contact with the projection formula (2.37) for the original ensembles
in Dyson’s threefold way, we notice that the second representation of the partition
function in Eq. (3.7) can be expressed in terms of an integral over H ∈ Herm (β)(n) if
ν ≤ 0,

Zχ(κ) ∝ sdet ν/γ̃κ

∫
d[H ]Θ(H)det|ν|/γ̃+(γ−γ̃)/2HP (H) (3.8)

× sdet−1/(γγ̃)(H ⊗ 1γγ̃k1|γγ̃k2
− 1γ(n+ν) ⊗ κ2),

with the matrix version of the Heaviside Θ function. It is unity if H is positive
definite and otherwise vanishes. Apart from the similarity of Eq. (3.8) with Eq. (2.8)
by identifying Θ(H)det|ν|/γ̃+(γ−γ̃)/2HP (H) as the new probability density, the crucial
differences are the non-isotropy of P , i.e. Eq. (2.9) does not necessarily apply, and
the Heaviside Θ function which is by far not smooth. Thus the original projection
formula (2.37) is not applicable anymore.

In subsection 3.1, we pursue a similar idea as presented in subsection 2.2 to find a
projection formula for partition functions of the form (3.7). This formula is simplified
via a combination with the superbosonization formula in subsection 3.2.

3.1. Projection formula

The key idea to derive a projection formula is again to apply one of the Cauchy-
like integration theorems for supermatrices first derived by Wegner [44], see also
Refs. [45, 46, 47]. This time we need a Cauchy-like integration theorem for extending
the set of rectangular matrices Gl (β)(n;n+ν) to a space of rectangular supermatrices
which is the coset

Gl (β)(n+ γ̃l|γl;n+ ν) := U (β)(2n+ ν + γ̃l|γl)/[U (β)(n+ γ̃l|γl)×U (β)(n+ ν)] (3.9)
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with l ∈ N.
Let p1, p2, q, l ∈ N0. We split a rectangular (p1 + γ̃l|q+ γl)× p2 supermatrix Ω in

the following way

Ω =

[
Ω̃

Ω̂

]
∈ Gl (β)(p1 + γ̃l|q + γl; p2) (3.10)

with Ω̃ ∈ Gl (β)(p1|q; p2) and Ω̂ ∈ Gl (β)(γ̃l|γl; p2). Assuming a smooth superfunction
f integrable on the set Gl (β)(p1 + γ̃l|q + γl; p2) and invariant under

f(Ω) = f(ŨΩ), ∀ Ũ ∈ U (β)(p1 + γ̃l|q + γl) and Ω ∈ Gl (β)(p1 + γ̃l|q + γl; p2), (3.11)

the Cauchy-like integration theorem for rectangular supermatrices [44, 45, 46, 47]
reads

∫
d[Ω̂]f(Ω)

∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

= f

([
Ω̃
0

])
. (3.12)

We notice that no Wick-rotation is needed for this theorem in contrast to Eq. (2.27),
simplifying the derivation by getting rid of one technical detail.

We apply the identity (3.12) to the partition function

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (3.13)

×
∫

d[W ]P (W †W )sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ2).

We have chosen the first version of Eq. (3.7), the reason for this choice becomes
clearer later on. The product W †W and, hence, the function P (W †W ) are obviously
invariant under left multiplication ofW with unitary matrices and can, thus, generally
be extended to Ω†Ω and P (Ω†Ω) by the integration theorem (3.12), respectively.
The only thing we assume is that P (Ω†Ω) has to be smooth and integrable on
Gl (β)(n + γ̃k2|γk2;n+ ν) where we again restrict ourself to the case γ̃k1 ≤ γ̃k2 + n.
The other, usually less interesting case γ̃k1 ≥ γ̃k2 + n can be derived in a slightly
modified discussion.

In the first step we apply the Cauchy-like integration theorem to the partition
function to extend the integral over the ordinary space Gl (β)(n;n+ ν) to an integral
over the superspace Gl (β)(n+ γ̃k2|γk2;n+ ν), i.e.

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (3.14)

×
∫
d[Ω]P (Ω†Ω)sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2

− 1γn ⊗ κ2)
∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

,

where we employ the following splitting of the rectangular supermatrix,

Ω =

[
W

Ω̂

]
=

[
W ′

Ω′

]
(3.15)

with W ∈ Gl (β)(n|0;n+ ν) = Gl (β)(n;n+ ν), W ′ ∈ Gl (β)(n+ γ̃(k2 − k1)|0;n+ ν) =
Gl (β)(n+ γ̃(k2−k1);n+ν), Ω̂ ∈ Gl (β)(γ̃k2|γk2;n+ν), and Ω′ ∈ Gl (β)(γ̃k1|γk2;n+ν).
The second splitting corresponds to the embedding of the superspace we aim at.

Let L̃ = sign Imκ2 be the sign of the squared source variables arrayed on a
diagonal matrix. In the next step of our approach we introduce Gaussian integrals
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over exactly the same rectangular supermatrix V as in Eq. (2.10) yielding

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (3.16)

×
∫
d[Ω]P (Ω†Ω)

∫
d[V ] exp[ıstrV †V L̃κ2 − ıstrΩΩ†Ã]

ıγn(k2−k1)sdet−n/γ̃L̃
∫
d[V ] exp[−strV †V ]

∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

with

Ã =

[
V L̃V † 0

0 0

]
=

[
0 V

√
L̃

0 0

][
0 0√
L̃V † 0

]
(3.17)

cf. Eqs. (2.31) and (2.32). The dyadic matrix Ã has again a dual matrix

B̃ =

[
0 0√
L̃V † 0

][
0 V

√
L̃

0 0

]
=

[
0 0

0
√
L̃V †V

√
L̃

]
, (3.18)

cf. Eq. (2.34). Interchanging the integrals over Ω and V in Eq. (3.16) we arrive at the
following integral transform of P ,

Ψ(Ã) =

∫
d[Ω]P (Ω†Ω) exp[−ıstrΩΩ†Ã], (3.19)

which plays the role of the Fourier-Laplace transform (2.33) in the case of Dyson’s
threefold way. Now the invariance of Ω under multiplication from the left with unitary
supermatrices enters, implying

Ψ(Ũ ÃŨ−1) = Ψ(Ã), ∀ Ũ ∈ U (β)(n+ γ̃k2|γk2). (3.20)

Hence, the following identity is true

Ψ(Ã) = Ψ(B̃), (3.21)

connecting the ordinary matrix space with the superspace. This identity is remarkable,
as it relates both spaces with one and the same superfunction Ψ. We notice that the
supermatrices Ã and B̃ are of the same size corresponding to the first and second
splitting of Eq. (3.15), respectively, while their non-zero blocks are not.

The duality relation (3.21) can be plugged into the partition function which reads

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (3.22)

×
∫
d[V ]

∫
d[Ω]P (Ω†Ω) exp[ıstrV †V L̃κ2 − ıstrΩΩ†B̃]

ıγn(k2−k1)sdet−n/γ̃L̃
∫
d[V ] exp[−strV †V ]

∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

.

Due to convergence of the integrals we can again not easily switch the integration of
Ω and V unless the boson-boson block of L̃ is proportional to the identity. However
this problem can be circumvented as it was discussed in subsection 2.2 by introducing
an auxiliary Hermitean supermatrix. We skip this here because it is exactly the same
procedure explained in subsection 2.2. Hence we end up with the partition function

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ

∫
d[Ω]P (Ω†Ω)sdet−n/γ̃(Ω′Ω

′ † − κ2)
∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

, (3.23)

which is one of the main results of this section. We emphasize a few things about
this formula. The supermatrices Ω′ in the numerator and Ω̂ in the denominator have
different sizes, see the splittings (3.15). Moreover the index ν can take negative values
as well since we have not at all used an assumption like WW † is smaller than W †W .
Equation (3.23) can be slightly modified such that the supermatrix κ can be easily
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assumed to be non-diagonal, e.g. in QCD you need a non-diagonal κ to generate
mixed pion condensates [48], or we can think of a symmetry breaking term in the
determinant of Eq. (3.14) which may happen by circumventing the problem of a two-
sided correlated Wishart ensemble as it appears for modelling spatial-time correlation
matrices [56, 57, 58], see subsection 4.1.

The superdeterminant in Eq. (3.23) only depends on the the product Ω′Ω
′ †.

Therefore the integral over W ′ defines a new probability distribution Q̂ on the
superspace Gl (β)(γ̃k1|γk2;n+ ν), i.e.

Q̂(Ω′ †Ω′) =

∫
d[W ′]P (Ω†Ω)

∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

=

∫
d[W ′]P (W ′ †W ′ + Ω′ †Ω′)
∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

. (3.24)

Notice that there is one crucial disadvantage of this projection formula to the one
of Dyson’s threefold way, cf. Eq. (2.37). The superfunction Q̂ is still a function
depending on a matrix Ω′ †Ω′ with ordinary dimensions. It is easy to get rid of this
flaw if the original probability density P is also invariant under right multiplication of
W . Such a restriction becomes a problem for two-sided correlated Wishart matrices.
For one-sided correlated Wishart matrix ensemble we can circumvent this problem,
see subsection 4.1.

3.2. Rotation invariant probability densities

In this subsection we further simplify the projection formula by assuming that the
probability density P is rotation invariant, i.e.

P (W †W ) = P (ŨW †WŨ−1), ∀ Ũ ∈ U(β)(n+ ν) and W ∈ Gl (β)(n;n+ ν). (3.25)

Then this invariance is obviously true by replacing W → Ω, too. Therefore there is
certainly a supersymmtric extension of P denoted by P̃ with

P (W ′ †W ′ + Ω′ †Ω′) = P̃

([
W ′W ′ † W ′Ω′ †

Ω′W ′ † Ω′Ω′ †

])
. (3.26)

The reason is that we can write P in terms of matrix invariants like traces which is
also a source of ambiguity when extending P to superspace [37].

For further calculations we assume ν ≥ 0 which becomes important for
convergence of some integrals. Because of the invariance under independent left and
right multiplication of W with unitary matrices this is not a restriction at all. One
can simply choose W such that it has the smaller dimension n on its left side.

Since the integral (3.24) is invariant under the transformation Ω′ †Ω′ →
ŨΩ′ †Ω′Ũ−1 for all Ũ ∈ U(β)(n), too, we can define a probability density on superspace

Q(Ω′Ω′ †) =

∫
d[W ′]P̃

([
W ′W ′ † W ′Ω′ †

Ω′W ′ † Ω′Ω′ †

])

∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

. (3.27)

The crucial difference of Eqs. (3.24) and (3.27) is that Q in contrast to Q̂ depends
on a (γγ̃k1|γγ̃k2) × (γγ̃k1|γγ̃k2) supermatrix. Thus, there is a chance to get rid of
a number of integration variables which scales with n. This is quite important when
taking the limit of large matrices as it is the case when deriving the universal behavior
of the spectrum of Hχ.

The aim is to express the integral (3.27) in terms of the combination Ω′Ω′ † and
some integration variables. For this purpose we introduce Dirac δ-functions for the
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blocks depending on W ′,

Q(Ω′Ω′ †) ∝
∫

d[W ′]

∫
d[H1]

∫
d[H2]

∫
d[W1]

∫
d[W2]P̃

([
H1 W1

W †
1 Ω′Ω′ †

])
(3.28)

× exp
[
tr(H1 −W ′W ′ †)(ıH2 + 1γ(n+γ̃(k2−k1)))

]

× exp
[
ı tr(W1 −W ′Ω′ †)W †

2 + ı trW2(W
†
1 − Ω′W ′ †)

]
.

We drop the normalization constant right now and introduce it later on by fixing it with
the Gaussian case. The matrices are drawn from H1, H2 ∈ Herm (β)(n + γ̃(k2 − k1))
and W †

1 ,W
†
2 ∈ Gl (β)(γ̃k1|γk2;n + γ̃(k2 − k1)). Recall the definition of the cosets

and the splitting of Ω in Eqs. (2.6), (3.9) and (3.15), respectively. The shift in H2

guarantees the convergence of the integral over W ′ which is the first one we perform
yielding

Q(Ω′Ω′ †) ∝ lim
δ→0

∫
d[H1]

∫
d[H2]

∫
d[W1]

∫
d[W2]P̃

([
H1 W1

W †
1 Ω′Ω′ †

])
(3.29)

× exp
[
trH1(ıH2 + 1γ(n+γ̃(k2−k1))) + ı trW1W

†
2 + ı trW2W

†
1

]

× exp
[
− tr(ıH2 + 1γ(n+γ̃(k2−k1)))

−1W2(Ω
′Ω′ † + δ1γγ̃k1|γγ̃k2

)W †
2

]

× det−(n+ν)/γ̃(ıH2 + 1γ(n+γ̃(k2−k1))).

The variable δ is a regularization guaranteeing us the convergence of the integrals
since Ω′Ω′ † is not invertible if it contains a fermion-fermion block, i.e. k2 %= 0. We

rescale W1 → W1

√
Ω′Ω′ † + δ1γγ̃k1|γγ̃k2

and W2 → W2/
√
Ω′Ω′ † + δ1γγ̃k1|γγ̃k2

. The

Jacobian of the transformation W1 and W2 cancel out and the limit of the regulator
δ → 0 can be made exact. The next integral we perform is over W2 and we find

Q(Ω′Ω′ †) ∝
∫

d[H1]

∫
d[H2]

∫
d[W1]P̃

([
H1 W1

√
Ω′Ω′ †

√
Ω′Ω′ †W †

1 Ω′Ω′ †

])
(3.30)

× exp
[
tr(H1 −W1W

†
1 )(ıH2 + 1γ(n+γ̃(k2−k1)))

]

× det−(n+ν)/γ̃+(k1−k2)(ıH2 + 1γ(n+γ̃(k2−k1))).

We notice that P̃ depends on invariants only. Hence in an explicit representation of
P̃ we do not encounter the ill-defined matrix

√
Ω′Ω′ † but only the supermatrix Ω′Ω′ †.

The remaining integral overH2 is an ordinary Ingham-Siegel integral [59, 60]. Shifting
H1 → H1+W1W

†
1 the Ingham-Siegel integral tells us thatH1 has to be positive definite

and yields a determinant of H1 to the power ν/γ̃ + (γ − γ̃)/2 (exactly here we need
ν ≥ 0). The positivity constraint of H1 is quite often hard to handle such that we

replace H1 by a rectangular matrix Ŵ1 ∈ Gl (β)(n + γ̃(k2 − k1);n + ν + γ̃(k2 − k1)).
Finally, we arrive at the main result of this section and the projection formula for
rotation invariant chiral ensembles,

Q(Ω′Ω′ †) = C

∫
d[Ŵ1]

∫
d[W1]P̃

([
Ŵ1Ŵ

†
1 +W1W

†
1 W1

√
Ω′Ω′ †

√
Ω′Ω′ †W †

1 Ω′Ω′ †

])
(3.31)

with the normalization constant

C =

∫
d[W ′] exp[− trW ′W ′ †]

∫
d[Ŵ1] exp[− tr Ŵ1Ŵ

†
1 ]
∫
d[W1] exp[− trW1W

†
1 ]
∫
d[Ω̂] exp[− tr Ω̂†Ω̂]

. (3.32)
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The reason for fixing the normalization with Gaussian weights lies in the universality of
the projection formula (3.31). The projection formula is true for almost all ensembles
depending on invariants of the rectangular matrix W . Due to this broad applicability
Eq. (3.31) is a powerful tool. In Sec. 4, we will present some examples, often
encountered in different fields of random matrix theory.

Additionally one can apply the superbosonization formula to the partition
function

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ

∫
d[Ω′]Q(Ω′Ω′ †)sdet−n/γ̃(Ω′Ω

′ † − κ2), (3.33)

which is justified since the whole integral depends on the dyadic supermatrix Ω′Ω′ †.

Thus we replace Ω′Ω′ † by the supermatrix Û ∈ Herm (β)
# (γ̃k1|γk2) which has the same

structure as the supermatrix U in the original approach of the superbosonization
formula (2.19). The partition function reads

Zχ(κ) =
(−1)γ(n+ν)(k2−k1)

∫
d[Ω′] exp[−strΩ′Ω′ †]

∫
dµ(Û ) exp[−str Û ]sdet (n+ν)/γ̃Û

sdet−ν/γ̃κ

×
∫

dµ(Û)Q(Û)sdet−n/γ̃(Û − κ2)sdet (n+ν)/γ̃Û (3.34)

with the superfunction

Q(Û) = C

∫
d[Ŵ1]

∫
d[W1]P̃

([
Ŵ1Ŵ

†
1 +W1W

†
1 W1

√
Û√

ÛW †
1 Û

])
. (3.35)

Importantly, one should not confuse the superfunction Φ̃ of Eq. (2.19) with the
superfunction Q, we mention the different terms in the integrands. The prefactor in
Eq. (3.34) is the global normalization constant resulting from the superbosonization
formula and strongly depends on the normalization of the Haar-measure dµ(Û) of the

supersymmetric coset Herm (β)
# (γ̃k1|γk2).

4. Some examples

We apply the projection formula (3.35) to four non-trivial examples to illustrate
how our approach works. Especially it becomes clear what the advantages of the
projection formula (3.35) are in comparison to the standard approaches with the
generalized Hubbard-Stratonovich transformation [36, 37] and the superbosonization
formula [38, 39].

In particular we discuss norm-dependent ensembles and correlated Wishart
ensembles in subsection 4.1, Lorentz-like (Cauchy) ensembles in subsection 4.2, the
three unquenched chiral Gaussian ensembles in subsection 4.3, and a probability
density with a quartic potential in subsection 4.4. The norm-dependent ensembles
serve as a check since they can readily be calculated with the previous variants of
the supersymmetry method. With help of the correlated Wishart ensembles we show
that the projection formula can easily be extended to include a symmetry breaking
constant term in the determinants, cf. Eq. (3.7). The Lorentz-like (Cauchy) weight
is another standard probability density as the Gaussian weight. It has a particular
property namely it exhibits heavy tails and thus not all moments exist. For the
unquenched chiral Gaussian ensemble we derive an alternative representation of the
chiral Lagrangian, see Refs! . [15, 16, 17] for the common representation. In this
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representation the physical mesons are split off from the artificial ones which result
from introducing source terms to generate the desired observables. With help of the
quartic potential we want to show that one can also study non-trivial potentials via
the projection formula (3.35).

4.1. Norm-dependent ensembles and correlated Wishart ensembles

The first class of ensembles we want to look at are the norm-dependent chiral ensembles
[51, 61], i.e.

P (W †W ) = p(trW †W ) (4.1)

with an integrable function p. A particular choice is a fixed trace ensemble, namely
p(trW †W ) ∝ δ(trW †W − cn) with a constant c > 0. Such an ensemble naturally
appears when modelling lattice QCD [62]. The lattice QCD Dirac operator is build
up of unitary matrices and fulfills a fixed-trace condition. However one can readily
show that this condition has only a minor effect on the microscopic regime of the
Dirac spectrum and is completely suppressed in the exact limit [62]. The choice
p ∝ δ(trW †W − cn) only enhances the 1/n correction. Also in quantum information
it plays an important role [63] since the density operator is normalized.

The corresponding superfunction of the probability density P for an arbitrary p
can be simply read off from the projection formula (3.35) and is up to a constant

Q(Û) ∝
∫ ∞

0
drp(r2 + str Û)rβ(n+γ̃(k2−k1))(n+ν). (4.2)

The exponent of the integration variable r is the difference of the number of commuting
real variables and anti-commuting Grassmann variables in the rectangular matrices
W1 and Ŵ1. Those matrices are of dimension (γγ̃k1|γγ̃k2) × (γn+ γγ̃(k2 − k1)) and
(γn+γγ̃(k2−k1))×(γ(n+ν)+γγ̃(k2−k1)), respectively, and fulfil certain symmetries
similar to Eq. (2.11).

A natural representative of a norm-dependent ensemble is the Gaussian one, i.e.
p(trW †W ) ∝ exp[−n trW †W ]. Then the integral over r factorizes in Eq. (4.2). This
apparently yields again a Gaussian

Q(Ω′Ω′†) ∝ exp

(
−
n

γ̃
strΩ′Ω′†

)
(4.3)

in terms of the dyadic supermatrix Ω′Ω′† and reads in terms of the supermatrix

Û ∈ Herm (β)
$ (γ̃k1|γk2)

Q(Û) ∝ exp

(
−
n

γ̃
strÛ

)
. (4.4)

For a Gaussian weight this result is not surprising but it serves as a simple check for the
projection formula (3.35). When plugging Eq. (4.4) into the partition function (3.34),
we arrive at

Zχ(κ) ∝ sdet−ν/γ̃κ

∫
dµ(Û) exp

(
−n strÛ

)
sdet−n/γ̃(Û − κ2)sdet (n+ν)/γ̃Û . (4.5)

The microscopic limit (n → ∞ while ν and nκ fixed) connects chiral random
matrix theory with QCD [17] and is obtained from our expression by rescaling



Supersymmetry for Chiral Random Matrix Theory 18

Û → −ıκÛ . After taking the limit n → ∞ we find the well-known chiral Lagrangian
[17]

Zχ(κ)
n!1∝

∫
dµ(Û) exp

(
ı
n

γ̃
strκ(Û + U−1)

)
sdet ν/γ̃Û . (4.6)

Surprisingly, we had not to take any saddlepoint approximation with our approach
which is usually the case in the other approaches of the supersymmetry method [15,
16]. The reason is that the projection formula already mapped the ordinary space to
the correct coset describing the mesons of the chiral Lagrangian in QCD.

Another application of norm-dependent ensembles are correlated Wishart
matrices with a non-Gaussian weight. In Sec. 3 we claimed that we can also study one-
sided correlated Wishart ensembles with arbitrary weight. Those ensembles appear
in many situations where one encounters time series analysis like in finance [11, 12],
telecommunication [21], etc. Thus we consider the following partition function

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ (4.7)

×
∫

d[W ]p(trW †C−1W )sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ2),

where the function p is as before arbitrary and C is an empirical correlation matrix
and thus positive definite. In the first step we rescale W →

√
CW and have

Zχ(κ) = (−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κdet(n+ν)/γ̃+(k2−k1)C (4.8)

×
∫

d[W ]p(trW †W )sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2
− C−1 ⊗ κ2).

In the second step we apply the projection formula (3.35) in combination with a
slightly modified version of Eq. (3.34) and find

Zχ(κ) ∝ sdet−ν/γ̃κdet(n+ν)/γ̃+(k2−k1)C (4.9)

×
∫

dµ(Û)Q(Û)sdet−1/(γγ̃)(1γn ⊗ Û − C−1 ⊗ κ2)sdet (n+ν)/γ̃Û .

The superfunction Q is the one from the onefold integral (4.2). In the case of a
Gaussian weight the one-point correlation function was already studied with help of
supersymmetry for β = 1, 2, see Refs. [13, 14]. Equation (4.9) is an alternative compact
representation of this partition function.

4.2. Lorentz (Cauchy)-like ensembles

Another kind of probability density serving as a ‘standard candle’ in statistical physics
is the Lorentz weight. In contrast to the Gaussian weight, almost all moments of the
matrix W do not exist for the Lorentzian. In random matrix theory one introduces
this weight with a constant Γ ∈ R+ determining the width of the distribution and an
exponent µ ∈ N indicating how rapid the tails fall off, i.e. the Lorentzian ensemble is
given by

P (W †W ) ∝ det−µ (Γ2
1n+ν +W †W

)
. (4.10)

The exponent µ has to be large enough to guarantee the normalizability of the
probability density. This ensemble is also known as Cauchy ensemble [64, 65]. Of
particular interest is its heavy-tailed behavior which has not been studied in such detail
as the exponential cut-off from ensembles with polynomial potentials. Importantly,
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one can expect that the universal results may break down. Recent works on heavy
tails of random matrices are Refs. [66, 67, 68] and references therein.

Again we are interested in the supersymmtric analogue of P which is given via
the projection formula (3.35),

Q(Û) ∝
∫

d[Ŵ1]

∫
d[W1]sdet

−µ

(
Γ2

1γn+γγ̃k2|γγ̃k2
+

[
Ŵ1Ŵ

†
1 +W1W

†
1 W1

√
Û√

ÛW †
1 Û

])

= sdet−µ
(
Γ2

1γγ̃k1|γγ̃k2
+ Û

)∫
d[Ŵ1]

∫
d[W1] (4.11)

× sdet−µ
(
Γ2

1γn+γγ̃(k2−k1) + Ŵ1Ŵ
†
1 + Γ2W1(Γ

2
1γγ̃k1|γγ̃k2

+ Û)−1W †
1

)
.

In the second line we pulled out the lower right block of the superdeterminant. Here,
we once more observe that one can often calculate with the superdeterminant as it
would be a determinant, see Refs. [69]. After rescaling W1 → W1(Γ21γγ̃k1|γγ̃k2

+Û)1/2

the integrals over Ŵ1 and W1 factorize and yield a constant. The projection formula
leads to the superfunction (up to a normalization constant)

Q(Û) ∝ sdet n/γ̃+(k2−k1)−µ
(
Γ2

1γγ̃k1|γγ̃k2
+ Û

)
. (4.12)

Thus the counterpart of the Lorentzian weight (4.10) is also Lorentzian in superspace.
Only the exponent changes. Notice that the fermion-fermion block of Û is a compact
integral such that we do not have any problems of convergence if n/γ̃+(k2−k1)−µ ≤ 0.
The exponent µ has only to be large enough such that the corresponding partition
function,

Zχ(κ) ∝ sdet−ν/γ̃κ

∫
dµ(Û)sdet n/γ̃+(k2−k1)−µ

(
Γ2

1γγ̃k1|γγ̃k2
+ Û

)
(4.13)

× sdet−n/γ̃(Û − κ2)sdet (n+ν)/γ̃Û ,

exists, namely it has to be larger than µ > (n + ν)/γ̃ for this integral. To guarantee
the integral of the partition function in ordinary space the exponent has to fulfill
µ > (n+ν)/γ̃+k2−k1. Therefore one has only to take µ > (n+ν)/γ̃+max{0, k2−k1}
to guarantee the convergence of both integrals.

Interestingly, from Eq. (4.13) immediately follows that in the microscopic limit
n → ∞ (ν, nΓ2 and nκ fixed) for µ = n/γ̃ + µ̃ with µ̃ fixed we do not find the
universal result (4.6). We already expected that something may change, i.e. the
partition function becomes

Zχ(κ) ∝
∫

dµ(Û )sdet (k2−k1)−µ̃
(
nΓ2

1γγ̃k1|γγ̃k2
+ nκÛ

)
sdet ν/γ̃Û exp

[
n

γ̃
str κÛ−1

]
.

(4.14)

However one can find the universal result at the hard edge of the spectrum, as the
microscopic limit is also known, if µ̃/n and Γ2 is fixed instead.

4.3. Unquenched chiral Gaussian ensemble

The unquenched partition function is in QCD a statistical weight where additionally
to the gauge action we have an interaction with fermionic quarks [17]. They are
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equivalent with additional characteristic polynomials in the numerator in the partition
function. Hence, the random matrix model is

P (WW †) =

exp
(
−n trW †W/γ̃

) Nf∏
j=1

det(W †W +m2
j1γ(n+ν))

∫
d[W ] exp (−n trW †W/γ̃)

Nf∏
j=1

det(W †W +m2
j1γ(n+ν))

(4.15)

with the quark masses m = diag (m11γγ̃ , . . . ,mNf
1γγ̃) of the Nf flavors. This time we

explicitly wrote the normalization constant, since it is mass dependent and is, thus,
quite essential.

The partition function (3.7) with the probability density (4.15), i.e. the partially
quenched partition function

Zχ(κ,m) =
(−1)γ(n+ν)(k2−k1)sdet−ν/γ̃κ

∫
d[W ] exp (−n trW †W/γ̃)

Nf∏
j=1

det(W †W +m2
j1γ(n+ν))

(4.16)

×
∫

d[W ] exp

(
−
n

γ̃
trW †W

) Nf∏

j=1

det(W †W +m2
j1γ(n+ν))

× sdet−1/(γγ̃)(WW † ⊗ 1γγ̃k1|γγ̃k2
− 1γn ⊗ κ2),

can be dealt with in two different ways. Either the additional determinants and the
determinants generating the correlation functions are computed on equal footing or
one can consider the additional determinants as part of the probability density P . We
decide for the latter choice since we aim at a separation of the physical quarks from
the artificial ones which are also known as valence quarks.

In Appendix A we calculate the partially quenched partition function at finite n.

It is a double integral over an ordinary matrix Uπ ∈ Herm (β)
" (0|γNf) = U (4/β)(γNf)

and the supermatrix Û ∈ Herm (β)
" (γ̃k1|γk2),

Zχ(κ,m) ∝ sdet−ν/γ̃κ

[∫
dµ(Û)

∫
dµ(Uπ) exp

(
−
n

γ̃
(str Û − trUπ)

)

× sdet ν/γ̃Ûsdet−n/γ̃(1γγ̃k1|γγ̃k2
− κ2Û−1)

× detν/γ̃Uπdet
(n+ν)/γ̃+k2−k1(1Nf

+m2U−1
π )

× sdet 1/(γγ̃)
(
Û ⊗ 1γγ̃Nf

+ 1γγ̃k1|γγ̃k2
⊗ (Uπ +m2)

) ]/
(4.17)

[∫
dµ(Uπ) exp

(
n

γ̃
trUπ

)
det(n+ν)/γ̃(Uπ +m2)det−n/γ̃Uπ

]
.

We take the microscopic limit n → ∞ with nκ and nm fixed. The partially quenched
partition function becomes

Zχ(κ,m) ∝
[∫

dµ(Û)

∫
dµ(Uπ)sdet

ν/γ̃Ûdetν/γ̃Uπ

× exp

(
n

γ̃
trm(Uπ + U−1

π )−
n

γ̃
strκ(Û − Û−1)

)

× sdet 1/(γγ̃)
(
nκÛ ⊗ 1γγ̃Nf

+ 1γγ̃k1|γγ̃k2
⊗ nmUπ

)]/
(4.18)
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[∫

dµ(Uπ) exp

(
n

γ̃
trm(Uπ + U−1

π )

)
detν/γ̃Uπ

]
.

This partition function has to agree with the well-known results for the three chiral
ensembles, see Refs. [15, 16, 17]. It is equal to Eq. (4.6) when the variables κ also
comprise the quark masses m. For β = 2 this can be readily checked due to the
knowledge of the Harish-Chandra-Itzykson-Zuber integral [70, 71]. In the real and
quaternion case this is not as easy since the corresponding group integrals are not
known.

What is the benefit of the representation (4.18) of the partially quenched partition
function? The physical quarks are completely separated from the auxiliary particles,
i.e. the chiral Lagrangian for the physical mesons can be read off

L(Uπ ,κ,m) =
n

γ̃
trm(Uπ + U−1

π ) + ln

[∫
dµ(Û) exp

(
−
n

γ̃
strκ(Û − Û−1)

)
sdet ν/γ̃Û

× sdet 1/(γγ̃)
(
nκÛ ⊗ 1γγ̃Nf

+ 1γγ̃k1|γγ̃k2
⊗ nmUπ

) ]
. (4.19)

The first part of the Lagrangian is the leading order of the unquenched partition
function with Nf flavors [17]. The second term is the operator corresponding to the
generating function for some observables like the level density. Therefore we could split
the observable from the physical system, Uπ, in the chiral Lagrangian with help of the
projection formula. Since random matrix theory only describes the Goldstone bosons
with zero momentum a good question is if one can achieve such a splitting (4.19) for
the kinetic modes, too.

4.4. Probability density with quartic potential

In the last example we want to consider the probability density with quartic potential

P (WW †) ∝ exp[−α tr(WW †)2 − α̂ trWW †], (4.20)

α > 0 and α̂ ∈ R. This probability density is the standard one for the analysis of
multicritical behavior [72, 73, 74, 75]. Depending on the relation of the two constants
α and α̂ the macroscopic level density of WW † can exhibit a one-cut or two-cut
solution which also influences the universality on the local scale of the mean level
density where the two cuts are merging to one. We are aiming at a supersymmetric
representation of the partition function with the probability density (4.20).

The superfunction Q corresponding to the probability density (4.20) is via the
projection formula (3.35)

Q(Û) ∝
∫

d[Ŵ1]

∫
d[W1] exp

[
−α

(
tr(Ŵ1Ŵ

†
1 +W1W

†
1 )

2 + trW1ÛW †
1 + str Û2

)]

× exp
[
−α̂

(
tr Ŵ1Ŵ

†
1 + trW1W

†
1 + str Û

)]
. (4.21)

The quartic term tr(Ŵ1Ŵ
†
1 +W1W

†
1 )

2 can be traced back to a quadratic structure by
introducing a Gaussian over an auxiliary matrix H ∈ Herm (β)(n+ γ̃(k2 − k1)). Then

the integrals over Ŵ1 and W1 are purely Gaussian and can be performed without any
problem, leading to

Q(Û) ∝ exp
[
−αstr Û2 − α̂str Û

] ∫
d[H ] exp

[
−

1

4α
tr(H − ı(α̂− 1)1γn+γγ̃(k2−k1))

2

]

× det−(n+ν)/γ+k1−k2(ıH − 1γn+γγ̃(k2−k1))
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× sdet−1/(γγ̃)(ıH ⊗ 1γγ̃k1|γγ̃k2
− 1γn+γγ̃(k2−k1) ⊗ (αÛ + 1γγ̃k1|γγ̃k2

)).

(4.22)

The determinant results from the integral over Ŵ1 ∈ Gl (β)(n + γ̃(k2 − k1);n +
ν + γ̃(k2 − k1)) while the superdeterminant results from the integral over W †

1 ∈
Gl (β)(γ̃k1|γk2;n + γ̃(k2 − k1)). We recall the definition of the cosets in Eqs. (2.6),
(3.3), and (3.9). The shift in the Gaussian of the auxiliary ordinary matrix H also

guarantees the convergence of the integrals over Ŵ1 and W1 for negative α̂.
For β = 2 the integral (4.22) can be further simplified via various techniques

in random matrix theory [51, 76, 77, 78]. In one of these techniques [51, 78]
one constructs the orthogonal polynomials of the weight g(E) = exp[−(E − ı(α̂ −
1))2/(4α)]/(ıE − 1)n+ν+k1−k2 . Then one obtains a quotient of two determinants of
max{k1, k2}×max{k1, k2} matrices where the determinant in the numerator depends
on the orthogonal polynomials and their Cauchy transform with respect to the weight
g(E) whose arguments are the eigenvalues of the supermatrix (αÛ + 1γγ̃k1|γγ̃k2

).
The determinant in the denominator is the square root of the Berezinian (Jacobian
in superanalysis) resulting from a diagonalization of the supermatrix Û [77]. See
Refs. [51, 78] and references therein for an intro! duction in the application of
orthogonal polynomials.

For β = 1, 4 the situation is not as simple. Though the ordinary matrix H
is decoupled from the supermatrix Û and no unknown group integrals make the
calculation insurmountable, the square root of the superdeterminant hinders the
application of orthogonal polynomial theory. The obvious way out of this dilemma is
the expansion of the integral (4.22) in the matrix Û . Then one can calculate each of
the expansion coefficients. Since H and Û are decoupled such an expansion is trivial.
The non-trivial task is to perform the integral over H to find the coefficients. We
emphasize that such an expansion is finite if k1 = 0 because the superdeterminant
becomes a determinant in the numerator and, thus, a polynomial in Û .

What is the benefit of Q, see Eq. (4.22), in particular when there is no explicit,
simple expression? The advantage of the result (4.22) with the corresponding partition
function in superspace is revealed when considering the correlated situation, meaning
that we destroy the invariance of W under the multiplication from the right (or left)
with unitary matrices by an external correlation matrix C. In contrast to the partition
function in ordinary space with the probability weight (4.20) we do not encounter
large group integrals (if k1 and k2 are small) when diagonalizing H . The resulting
partition function is Eq. (4.9) where we replace the norm-dependent superfunction by
the superfunction (4.22). Particularly the calculation of the level density is capable in
this way for all three Dyson indices, see Refs. [13, 14] for the Gaussian ensemble.

5. Summary and Conclusions

We presented a new variant of the supersymmetry method which directly relates the
probability density in ordinary space with the one in superspace via a projection
formula. Thereby we briefly rederived this formula, see Eq. (2.37), for the ensembles
originally included in Dyson’s threefold way [41], namely real symmetric, Hermitean,
and Hermitean self-dual matrices, which was first done in Ref. [43]. In a second step
we extended the idea behind such a projection formula to the three chiral ensembles.
Hereby we found a formula for ensembles whose invariance of the rectangular matrices
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under multiplication from the right (or left) is broken, see Eq. (3.24). This formula is
quite convenient for those situations when introducing empirical correlation matrices
on both sides of the rectangular random matrix as it is the case in spacial-temporal
correlations [56, 57, 58].

The result (3.24) is not as compact as the further simplified formula (3.35) which
is only possible if we ensure the invariance of the probability density under left and
right multiplication of the rectangular random matrix with unitary matrices. The
supersymmetric integral in the partition function is over one of the three coset integrals
depending on the Dyson index β which already play a crucial role in the standard
approach with the superbosonization formula [38, 39]. Nevertheless one should not
confuse our approach with the one in Refs. [38, 39].

The projection formula (2.37) for the three non-chiral ensembles agrees with
the result of the generalized Hubbard-Stratonovich transformation [36, 37] in the
integration domain as well as in the form of the integrand. This is not the case for
the chiral ensembles where the projection formula shares the integration domain with
the original superbosonization formula [38, 39] while the integrand is of a completely
different form and resembles more the one of the generalized Hubbard-Stratonovich
transformation [36, 37]. Therefore the projection formulas (3.24) and (3.35) for chiral
ensembles represent an alternative approach to the standard supersymmetry methods
in random matrix theory.

We applied the projection formula (3.35) to the relatively simple example of
norm-dependent ensembles and found a quite compact and explicit dependence of
the probability density in superspace on the one in ordinary space which reduces to
a onefold integral (4.2). For the Gaussian case we recovered the well known chiral
Lagrangian of QCD [15, 16, 17] in the microscopic limit, see Eq. (4.6). Furthermore
we showed how to generalize the projection formula in the case of one-sided correlated
random matrices, see Eq. (4.9). This underlines that the projection formula (3.35) is
not at all restricted to rotation invariant (‘isotropic’ [35]) ensembles but can also cover
a simple, but also the most popular kind of symmetry breaking.

Another ensemble to which we applied the projection formula (3.35) is of Lorentz
(Cauchy) type. Surprisingly not only the Gaussian weight is form-invariant under
mapping the probability density in ordinary space to one in superspace but also the
Lorentz weight. Only the exponent of the determinant changes and has to be taken
care of. With help of the representation in superspace we showed that depending
on the exponent of the determinant the Lorentzian shows universal behavior in the
microscopic limit or not. Hence the projection formula (3.35) provides a new tool to
investigate universality issues in chiral random matrix theory, as well.

Moreover, we considered the standard application of chiral random matrix theory
to QCD. With help of the projection formula (3.35) we split the chiral Lagrangian of
the partially quenched theory in QCD into two parts, see Eq. (4.19). One part consists
of the lowest order of the unquenched theory in the physical mesons (the pions for
two flavors) which is the well-known linear term in the quark masses [15, 16, 17]. We
refer to the expansion scheme of the microscopic limit (the limit of large space-time
volume, V → ∞, with fixed rescaled quark masses, Vm = const.), see Refs. [17], which
is one kind of a low energy expansion. The other part represents the interaction with
the source terms which are artificially introduced to generate the observables. This
is some kind of a natural splitting into the physical system and the measurement. It
would be quite interesting if such a splitting is also applicable to the kinetic modes of
the mesons which are not included in the lowest order description by random matrix
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theory. Maybe chiral perturbation theory can shed light to this.
In a fourth example we considered a probability density with a quartic potential

emphasizing that the projection formula (3.35) can also deal with more complicated
situations. We derived a representation of the probability density in superspace which
is still an integral over a Hermitian matrix H , see Eq. (4.22). However the coupling
of the ordinary matrix H with the supermatrix Û is in an invariant way, meaning
that H and Û are independently invariant under unitary transformations. In the
case of the Dyson index β = 2 this allows to apply the machinery of orthogonal
polynomials [51, 78] and other techniques [76, 77] (whereby Ref. [76] is not limited to
β = 2) to calculate an explicit expression of the probability density Q, see Eq. (4.22).
For an elaborate presentation of the calculation methods we refer to Ref. [5]. In the
other two cases β = 1, 4 the situation is not as simple. Nevertheless we showed
how to circumvent unknown group integrals via the projection formula (3.35) in
the supersymmetry method if one considers one-sided correlated rectangular random
matrices drawn from an ensemble with a quartic potential. For the Gaussian case
two of the authors already applied the supersymmetry method to correlated Wishart
ensemble and derived a compact expression for the level density, see Refs. [13, 14]. The
projection formula (3.35) opens a way to perform this calculation for other probability
densities as well.
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Appendix A. The derivation of Eq. (4.17)

Considering the partially quenched partition function (4.16) with the probability
density (4.15), the integral that has to be performed via the projection formula (3.35)
is

Q(Û) ∝
1

∫
d[W ] exp (−n trW †W/γ̃)

Nf∏
j=1

det(WW † +m2
j1γn)

×
∫

d[Ŵ1]

∫
d[W1] exp

(
−
n

γ̃
[tr Ŵ1Ŵ

†
1 + trW1W

†
1 + str Û ]

)

×
Nf∏

j=1

sdet

([
Ŵ1Ŵ

†
1 +W1W

†
1 W1

√
Û√

ÛW †
1 Û

]
+m2

j1γn+γγ̃k2|γγ̃k2

)

=

exp
[
−nstr Û/γ̃

] Nf∏
j=1

sdet
(
Û +m2

j1γγ̃k1|γγ̃k2

)

∫
d[W ] exp (−n trW †W/γ̃)

Nf∏
j=1

det(WW † +m2
j1γn)

(A.1)

×
∫

d[Ŵ1]

∫
d[W1] exp

(
−
n

γ̃
[tr Ŵ1Ŵ

†
1 + trW1W

†
1 ]

)
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×
Nf∏

j=1

det
(
Ŵ1Ŵ

†
1 +m2

jW1(Û +m2
j1γγ̃k1|γγ̃k2

)−1W †
1 +m2

j1γn+γγ̃(k2−k1)

)
.

In the second step we pushed out the block matrices Û +m2
j1γγ̃k1|γγ̃k2

for each mass
mj . The product of determinants can be rewritten as

det
(
Ŵ1Ŵ

†
1 +m2

jW1(Û +m2
j1γγ̃k1|γγ̃k2

)−1W †
1 +m2

j1γn+γγ̃(k2−k1)

)
(A.2)

= m−2γν
j sdet−1(Û +m2

j1γγ̃k1|γγ̃k2
) sdet

(
W̃ †

1 W̃1 + Û ′ +m2
j1γ(n+ν)+γγ̃k2|γγ̃k2

)

with

W̃1 =
[
Ŵ1 W1

]
(A.3)

such that W̃ †
1 ∈ Gl (β)(n+ ν + γ̃k2|γ̃k2;n+ γ̃(k2 − k1)) and with the supermatrix

Û ′ =

[
0 0

0 Û

]
. (A.4)

The superfunction Q reads

Q(Û) ∝
exp

[
−nstr Û/γ̃

]

∫
d[W ] exp (−n trW †W/γ̃)

Nf∏
j=1

det(W †W +m2
j1γ(n+ν))

∫
d[Ŵ1] (A.5)

× exp

(
−
n

γ̃
str W̃ †

1 W̃1

)
sdet 1/(γγ̃)

(
[W̃ †

1 W̃1 + Û ′]⊗ 1γγ̃Nf
+ 1γ(n+ν)+γγ̃k2|γγ̃k2

⊗m2
)
.

The integral over the supermatrix W̃1 resembles the partition function (4.8) with
an external matrix Û ′. One can easily show that the projection formula (3.35) can
be generalized to a partition function with rotation invariant probability density in
superspace. Thus we apply the projection formula for norm-dependent ensembles, see
Eq. (4.9), to replace the dyadic supermatrix W̃ †

1 W̃1 with a γγ̃Nf × γγ̃Nf unitary

matrix Uπ ∈ Herm (β)
# (0|γNf) = U (4/β)(γNf) in the second tensor space in the

superdeterminant (A.5). We recall the definitions (2.5) and (2.18). The subscript
“π” of the unitary matrix U refers to physical mesons as they indeed agree with the
mesons (Goldstone bosons) in the microscopic limit. For Nf = 2 ! the mesons are the
pions which are usually denoted by π.

Employing the projection formula (3.35) to the expression (A.5) the superfunction
Q takes the form

Q(Û) ∝
exp

[
−nstr Û/γ̃

]

∫
dµ(Uπ) exp (n trUπ/γ̃) det

(n+ν)/γ̃(Uπ +m2) det−n/γ̃ Uπ

×
∫

dµ(Uπ) exp

(
−
n

γ̃
trUπ

)
det−n/γ̃−k2+k1Uπ

× sdet 1/(γγ̃)
(
Û ′ ⊗ 1γγ̃Nf

+ 1γ(n+ν)+γγ̃k2|γγ̃k2
⊗ (Uπ +m2)

)

=
exp

[
−nstr Û/γ̃

]

∫
dµ(Uπ) exp (n trUπ/γ̃) det

(n+ν)/γ̃(Uπ +m2) det−n/γ̃ Uπ

×
∫

dµ(Uπ) exp

(
n

γ̃
trUπ

)
detν/γ̃Uπdet

(n+ν)/γ̃+k2−k1(1Nf
+m2U−1

π )

× sdet 1/(γγ̃)
(
Û ⊗ 1γγ̃Nf

+ 1γγ̃k1|γγ̃k2
⊗ (Uπ +m2)

)
. (A.6)
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We also replaced the integral in the denominator via the projection formula. The
superfunction Q can be plugged into the partition function (4.16) and we find
Eq. (4.17).
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Abstract. Starting from exact analytical results on singular values and complex
eigenvalues of products of independent Gaussian complex random N ⇥ N matrices
also called Ginibre ensemble we rederive the Lyapunov exponents for an infinite
product. We show that for a large number t of product matrices the distribution
of each Lyapunov exponent is normal and compute its t-dependent variance as well as
corrections in a large-t expansion. Originally Lyapunov exponents are defined for
the singular values of the product matrix that represents a linear time evolution.
Surprisingly a similar construction for the moduli of the complex eigenvalues yields
the very same exponents and normal distributions to leading order. We discuss a
general mechanism for 2⇥ 2 matrices why the singular values and the radii of complex
eigenvalues collapse onto the same value in the large-t limit. Thereby we rederive
Newman’s triangular law which has a simple interpretation as the radial density of
complex eigenvalues in the circular law and study the commutativity of the two limits
t ! 1 and N ! 1 on the global and the local scale. As a mathematical byproduct we
show that a particular asymptotic expansion of a Meijer G-function with large index
leads to a Gaussian.

1. Introduction

Lyapunov exponents are useful to study the stability of dynamical systems, but they

also play an important role in statistical mechanics of disordered systems, localization

theory, hidden Markov models and many others areas of physics and engineering.

The problem of the determination of Lyapunov exponents is intimately related

to the asymptotic properties of products of random matrices in the limit when the

number of factors tends to infinity. The randomness encoded in these matrices depends

on the details of the problem in question and it is usually very di�cult to find the

exact values of the exponents. There are however some general theorems that guide

the calculations. For example it is known that the largest Lyapunov exponent of the

product of a random sequence of matrices generated by a stochastic process converges
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almost surely to a limiting deterministic value in the limit of infinite sequence length.

For large but finite sequences the largest Lyapunov exponent is a normally distributed

random variable with the variance inversely proportional to the sequence length [1].

The relevance of products of random matrices to dynamical systems and ergodic

theory was realized in the sixties [2] and since then the study of matrix products has

been an active field of research in probability theory [3], condensed matter physics, and

statistical mechanics [4, 5, 6].

It was noticed long time ago [7, 8] that products of random matrices naturally

arise in the analysis of disordered systems in statistical mechanics. As an example

one can think of the transfer matrix formulation of random Ising chains [9, 10]. In

this case the transfer matrices are random matrices. In the thermodynamic limit

the free energy density is given by the largest Lyapunov exponent of the product of

transfer matrices. Another important physical example is the localization phenomenon

in electronic systems [11]. In this case the leading Lyapunov exponent is related to the

inverse localization length [12, 13, 14]. Other solvable physical models can be found in

Yang-Mills theories [16]. In this field unitary transfer matrices in the group U(N) find

applications in calculations of the Wilson loop operator for N ! 1 [15].

Products of random matrices have many practical applications in other fields as

well. For instance they arise in calculations of the capacity of a sequence of multiple-

input-multiple-output arrays in wireless telecommunication [17, 18, 19] and in hidden

Markov models applied in stochastic inference [20], in time series analysis, speech

recognition, biological sequence analysis. In hidden Markov models the Lyapunov

exponents correspond to the entropy rates [21, 22]. Also in image processing [23] product

matrices play an important role.

The spectrum of Lyapunov exponents gives important information on the stability

and the complexity of dynamical systems [2] and their e↵ective information dimension

[24]. For this reason a great e↵ort has been made to develop computational methods to

determine Lyapunov exponents for given theoretical models or to estimate them from

experimental data. Numerical methods are directly based on the analysis of the equation

of motion or measurements of the expansion rates of phase space [25, 26]. Algorithms

have been developed for the Lyapunov spectrum from sample time series [27]. Also

analytical approximations include methods based on the weak disorder expansion [28]

or properties of determinants associated with transfer matrices [29, 30].

There are only a few models where Lyapunov exponents can be calculated

exactly. They usually involve products of 2 ⇥ 2 matrices with randomness controlled

by a single random parameter where the exact expressions result from some model

specific simplifications which occur during calculations. The examples include classical

disordered harmonic chains [7, 31], the tight-binding Anderson model [32, 33], quantum

spin chains [34, 35, 36] and random Schrödinger operators [37], see also [4, 5, 6] for

reviews. Recently a general method has been worked out to derive a scaling form for

the Lyapunov exponents in the continuum limit for products of 2⇥ 2 matrices close to

the identity [38] based on the Iwasawa decomposition of SL(2,R) [39].
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An important solvable case where one can calculate the Lyapunov exponents exactly

is the product of identically distributed Gaussian random matrices with independent,

identically distributed (i.i.d.) centered real entries [40]. Such matrices are usually called

real Ginibre matrices. This is a special case, first of all because one can analytically

derive the whole spectrum of Lyapunov exponents {µ̂1, . . . , µ̂N

} for any system size N .

Second, the calculation uncovers a deep connection between the spectrum and the law

of large numbers [40]. The exponents are exclusively shaped by the statistics of matrix

elements and not by the matrix structure. In other words the two e↵ects do not mix. A

second much more recent example where all Lyapunov exponents have been calculated

are products of independent Ginibre matrices, where each factor is multiplied by a fixed

positive definite matrix [41, 42]. When these constant matrices are equal to the identity

the results for the real, complex, and quaternion Ginibre ensembles agree up to a scaling

factor �/2 where � = 1, 2, 4 is the Dyson index.

The fact that one can derive the whole spectrum is very useful for practical purposes

since the spectrum can be used to test numerical algorithms [25, 26, 27]. Moreover one

can analytically calculate the limiting law for the distribution of Lyapunov exponents in

the limit N ! 1. For the numbers constructed from Lyapunov exponents, that we call

in this paper incremental singular values, �̂
n

= exp[µ̂
n

], n = 1, . . . , N , the distribution

is given by the triangular law [40].

In the present work we further elaborate on the Lyapunov spectrum for the

product of complex Ginibre matrices. We consider complex Ginibre matrices that are

Gaussian matrices with i.i.d. complex elements. We derive an exact form of finite

t corrections to the Lyapunov spectrum, where t is the number of matrices in the

product. For finite t the Lyapunov exponents are random variables. We calculate

the joint probability distribution for these variables. For large t it is asymptotically

given by a permanent of the product of independent Gaussian functions centered at

the limiting values. Thereby we determine the widths of the distributions. We also

improve this Gaussian approximation by considering another approximation based on

the saddle point approximation. The latter approach works even better for a product of

a small number of matrices since it still incorporates asymmetric parts of the individual

eigenvalue distributions and to a small extent the original level repulsion.

In addition to the Lyapunov exponents µ̂
n

, which are related to the singular values

of the product matrix, one can define the corresponding exponents ⌫̂
n

for the moduli of

the complex eigenvalues. The complex eigenvalue distribution of the product of Ginibre

matrices is rotationally invariant in the complex plane [43, 44]. We find that the moduli

of the eigenvalues become uncorrelated random variables in the large-t limit and we

determine the form of their joint probability distribution. Surprisingly, the spectrum

and the joint probability distribution of these exponents is identical to that of the

Lyapunov exponents, ⌫̂
n

= µ̂
n

for n = 1, . . . , N .

A further consequence of this observation is discussed in Section 5. The triangular

law for Lyapunov exponents corresponding to the singular values found by Isopi and

Newman [45] can be understood as the radial distribution of eigenvalues of the Ginibre
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matrix. The fundamental reason behind this interpretation is twofold. First, our insight

says that the Lyapunov exponents constructed from the singular values and from the

moduli of the eigenvalues agree with each other. Second, Ginibre ensembles belong to the

class of isotropic random matrix ensembles. For those ensembles the sometimes called

self-averaging property of the product of isotropic matrices [46, 47] and the Haagerup-

Larsen theorem [48] are known. These two properties imply that the spectral statistics

of a product of independent random matrices is equal to the statistics of the power of a

single matrix in the limit of large matrix dimension N ! 1. After taking the root of

the product matrix the level density is the one of an ordinary Ginibre matrix which is

the circular law for the complex eigenvalues and is equal to the triangular law for the

moduli of the eigenvalues.

The paper is organized as follows. In Section 2 we define the linear evolution given

by the product of Ginibre matrices and define the corresponding Lyapunov exponents. In

Section 3 we derive their joint probability density based on the singular value distribution

of the product matrix for finite and large t, keeping N finite. In Section 4 we compute

the joint probability density for exponents based on the moduli of complex eigenvalues

for finite and large t. In Section 5 we discuss the limit N ! 1 for Lyapunov exponents

and show that this limit commutes with the limit t ! 1 on the global scale while it does

not commute on the local scale of the mean level spacing. In Section 6 we conjecture

the collapse of singular and eigenvalues for general isotropic ensembles and exemplify

this for N = 2. We conclude the paper in Section 7. In the appendices we recall some

identities of Meijer G-functions, compute a particular kind of a Hankel determinant and

present some further details of our calculations.

2. Linear time evolution with Ginibre matrices

Let us consider a linear discrete-time evolution of an N -dimensional system described

by N complex degrees of freedom. The state of the system at time t is given by an

N -dimensional vector ~x
t

. The state at t + 1 is related to the state at time t by the

following linear equation

~x
t+1 = X

t+1~xt

, (2.1)

with the evolution operator X
t+1 represented by an N ⇥N matrix. The total evolution

from the initial state

~x
t

= ⇧(t)~x0 (2.2)

is e↵ectively driven by the product matrix

⇧(t) ⌘ X
t

X
t�1 · · ·X1. (2.3)

Here we are interested in X
j

’s being i.i.d. complex non-Hermitian random matrices.

In particular we consider the case of Ginibre matrices which centered and Gaussian

distributed,

dµ(X
j

) = dX
j

exp
h
�TrX†

j

X
j

i
(2.4)
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for all j = 1, . . . , t. The di↵erential dX
j

denotes the product of the di↵erential of

all independent matrix elements. Towards the end of the paper we comment on the

evolution for general isotropic random matrices which are defined by the invariance of

the probability measure dµ(X
j

) = dµ(UX
j

V ) where U, V 2 U(N) are arbitrary unitary

matrices. Isotropic matrices are sometimes called bi-unitarily invariant or rotational

invariant. Ginibre matrices belong to this class.

We are interested in the large t behavior of the system, approximating a continuous

time evolution. This behavior is controlled by the Lyapunov exponents which are related

to the singular values of ⇧(t). Let us denote the real eigenvalues of the positive matrix

S(t) ⌘ ⇧†(t)⇧(t) (2.5)

by {s
n

(t) 2 R+, n = 1, . . . , N}. Their square roots
p

s
n

(t) correspond to singular values

of ⇧(t). Then the Lyapunov exponents are defined as

µ̂
n

= lim
t!1

ln ŝ
n

(t)

2t
, (2.6)

where ŝ
n

(t) are the ordered eigenvalues of S(t): ŝ1(t)  ŝ2(t)  . . .  ŝ
N

(t). Throughout

this paper we denote ordered (increasing) sequences like ŝ
n

or µ̂
n

by a hat.

In many physical situations the number of time steps in the evolution is large but

finite. Hence it is interesting to study finite size corrections to the limiting values, and

the rate of convergence to these values. Thus we want to address the question how this

limit is realized when t tends to infinity (t � 1). Our focus lies on the corresponding

quantities for finite t

µ
n

(t) ⌘ ln s
n

(t)

2t
, (2.7)

which we call finite t Lyapunov exponents, µ
n

(t) 2 R for n = 1, . . . , N . In the limit t !
1, after ordering, they become the standard Lyapunov exponents: µ̂

n

= lim
t!1 µ̂

n

(t).

We look for a probabilistic law that governs the distribution of the finite t Lyapunov

exponents, or equivalently their joint probability density P
(t)
N

(µ1, . . . , µN

) for finite t and

N . Given the recent progress on the joint distribution of singular values (and complex

eigenvalues) for a finite product of N ⇥N Ginibre matrices for finite t and N this can

be easily calculated, and the limits t ! 1 and subsequently N ! 1 can be taken.

3. Lyapunov exponents from singular values

The initial point of our calculations is an exact expression for the joint probability

distribution of real eigenvalues of the matrix S(t) (2.5) at finite N and t [18, 19],

P
(t)
N

(s1, . . . , sN)ds1 · · · dsN =
ds1 · · · dsN

N !
Q

N

a=1 �
t+1(a)

�
N

(s) det
⇥
Gt, 0

0, t

��
0,...,0,a�1

�� s
b

�⇤
1a,bN

,

(3.1)

where �
N

(s) is the Vandermonde determinant

�
N

(s) = det
⇥
sb�1
a

⇤
1a,bN

=
Y

1a<bN

(s
b

� s
a

). (3.2)
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The function Gt, 0
0, t

��
0,...,0,a�1

�� s
�
is a particular case of the Meijer G-function (A.1) whose

properties and definition are recalled in Appendix A. As any special function, it possesses

many helpful properties which facilitate calculations. For simplicity we drop the explicit

t-dependence of the singular values and of the Lyapunov exponents in the ensuing

discussions as it will be clear from the context if t is finite or infinite.

The road map to find the large t asymptotics is the following. In subsection 3.1

we find a determinantal representation of the joint probability distribution of Lyapunov

exponents made of one-point probability distributions. We calculate the moments of

these one-point distributions. The cumulant expansion yields an asymptotic expansion

to any order in 1/t. This result is discussed in detail for large t, in subsection 3.2.

Moreover, we compare the cumulant expansion with a saddle point approximation

which also incorporates a residual level repulsion as well as an asymmetric part of

the distributions of the individual Lyapunov exponents. In subsection 3.3 we come back

to the discussion of the corresponding singular values exp[µ
j

] which we call incremental

singular values since they are the average contribution to the total singular value of each

single random matrix in the product ⇧(t).

3.1. Reduction to “decoupled” random variables

The joint probability distribution P
(t)
N

(µ1, . . . , µN

) for Lyapunov exponents can be

directly read o↵ from eq. (3.1) by the change of variables s
n

⌘ exp(2tµ
n

),

P
(t)
N

(µ1, . . . , µN

)dµ1 · · · dµN

=
(2t)Ndµ1 · · · dµN

N !
Q

N

a=1 �
t+1(a)

det
1a,bN

[exp(2tbµ
a

)] (3.3)

⇥ det
1a,bN

⇥
Gt, 0

0, t

��
0,...,0,a�1

�� exp(2tµ
b

)
�⇤

.

The change of variables introduces a Jacobian which yields for each variable µ
n

the

exponential factor ds
n

= 2tetµndµ
n

. These factors have been absorbed in the last

equation in the Vandermonde determinant det [exp((b� 1)2tµ
a

)] by replacing (b�1) !
b. The first determinant in eq. (3.3) can be expanded as

(2t)N det
1a,bN

[exp(2tbµ
a

)] =
X

!2SN

sign(!)
NY

b=1

2t exp(2t!(b)µ
b

), (3.4)

where S
N

denotes the group of permutations of N elements and “sign” is the sign

function which is +1 for even permutations and �1 for odd ones. The factors

2t exp[2t!(b)µ
b

] can be absorbed into the second determinant

P
(t)
N

(µ1, . . . , µN

) =
1

N !
Q

N

a=1 �
t+1(a)

(3.5)

⇥
X

!2SN

sign(!) det
1a,bN

⇥
2t exp(2t!(b)µ

b

)Gt, 0
0, t

��
0,...,0,a�1

�� exp(2tµ
b

)
�⇤

.

By virtue of eq. (A.3) the last expression can be cast into the form

P
(t)
N

(µ1, . . . , µN

) =
1

N !
Q

N

a=1 �
t+1(a)

(3.6)
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⇥
X

!2SN

sign(!) det
1a,bN

h
2tGt, 0

0, t

⇣
�
!(b),...,!(b),a+!(b)�1

��� exp(2tµ
b

)
⌘i

.

The skew-symmetry of the determinant under permutations of its rows and columns

allows us to absorb the prefactor sign(!) into the determinant via rearranging the rows.

Hence we end up with

P
(t)
N

(µ1, . . . , µN

) =
1

N !
Q

N

a=1 �
t+1(a)

X

!2SN

det
1a,bN

⇥
F
ab

�
µ
!(b)

�⇤
, (3.7)

where

F
ab

(µ) ⌘ 2tGt, 0
0, t

��
b,...,b,a+b�1

�� e2tµ
�
. (3.8)

Thus the problem is reduced to the analysis of the function F
ab

(µ). By construction

this function is positive semi-definite. With help of the integral identity (A.2), F
ab

can

be normalized such that the function

f
ab

(µ) ⌘ F
ab

(µ)R
F
ab

(µ0)dµ0 =
F
ab

(µ)

�t�1 (b)� (a+ b� 1)
(3.9)

can be interpreted as a probability density for a single random variable. Replacing

F
ab

(µ) with its normalized version f
ab

(µ) the joint probability distribution reads

P
(t)
N

(µ1, . . . , µN

) =
1

N !
Q

N

a=1 �
2(a)

X

!2SN

det
1a,bN

⇥
�(a+ b� 1)f

ab

(µ
!(b))

⇤
. (3.10)

In passing from eq. (3.7) to eq. (3.10) we have pulled the factor
Q

N

a=1 �
t�1(a) out of

the determinant. This factor cancels the corresponding prefactor in eq. (3.7) leaving the

product of the second powers in front of the determinant in eq. (3.10).

Using the cumulant expansion we argue in the next subsection that the probability

densities f
ab

(µ) can be approximated by Gaussian functions in the limit t ! 1.

Therefore let us define the moment generating function

M
ab

(#) ⌘
Z +1

�1
dµ exp(µ#)f

ab

(µ) =
1X

n=0

#n

n!
hµni

ab

. (3.11)

where hµni
ab

⌘
R +1
�1 dµf

ab

(µ)µn are the moments. This moment generating function

can be calculated with help of eq. (A.2),

M
ab

(#) =
�t�1 (b+ #/(2t))� (a+ b� 1 + #/(2t))

�t�1 (b)� (a+ b� 1)
. (3.12)

The expansion in # at # = 0 yields the moments hµni
ab

. The logarithm of the moment

generating function is the cumulant generating function

g
ab

(#) ⌘ ln (M
ab

(#)) = (t� 1) ln

✓
� (b+ #/(2t))

� (b)

◆
+ln

✓
� (a+ b� 1 + #/(2t))

� (a+ b� 1)

◆
.(3.13)

The coe�cients of the corresponding Taylor series of g
ab

(#) at # = 0 are the cumulants


(n)
ab

,

g
ab

(#) ⌘
1X

n=1

#n

n!

(n)
ab

=
1X

n=1

#n

(2t)n�1n!

✓
 (n�1)(b)

2
+
 (n�1)(a+ b� 1)�  (n�1)(b)

2t

◆
.(3.14)



Lyapunov exponents for products of Ginibre matrices 8

Hereby we employed the definition of the digamma function and its derivatives,

 (x) =
d

dx
ln�(x),  (n)(x) =

dn

dxn

 (x)
�
 (0)(x) ⌘  (x),  (1)(x) ⌘  0(x)

�
. (3.15)

The first cumulant (=first moment) corresponds to the mean value (1)
ab

= hµi
ab

=R
dµf

ab

(µ)µ and is equal to

m
ab

⌘ 
(1)
ab

=
 (b)

2
+
 (a+ b� 1)�  (b)

2t
. (3.16)

The second cumulant corresponds to the variance (2)
ab

=
R
dµf

ab

(µ) (µ�m
ab

)2 and takes

the value

(�
ab

)2 ⌘ 
(2)
ab

=
1

2t

✓
 0(b)

2
+
 0(a+ b� 1)�  0(b)

2t

◆
. (3.17)

We emphasize that so far all results are exact for finite t.

3.2. Large t limit

We apply the standard argument based on the analysis of the large-t behavior of

cumulants to show that f
ab

(µ) can be approximated by a Gaussian function for large t.

Thereby we have first to center the distribution f
ab

(µ) and normalize its second moment.

The exact limit t ! 1 will yield a Gaussian. This limit justifies to replace f
ab

(µ) by a

Gaussian centered at m
ab

and with the standard deviation �
ab

.

For this purpose we define the standardized random variable µ⇤ ⌘ (µ �m
ab

)/�
ab

.

Thereby we denote standardized quantities by ⇤ in this and the next section. The

random variable µ⇤ is distributed as f⇤ab(µ⇤) ⌘ �
ab

f(µ⇤�ab +m
ab

). The same notation

is applied for cumulants. By construction, the standardized mean is m⇤ab = 0 and the

standardized variance is �⇤ab = 1. The higher standardized cumulants are


(n)
⇤ab ⌘


(n)
ab

(�
ab

)n
⇠ t1�n/2 �! 0 , n = 3, 4, . . . (3.18)

They tend to zero when t goes to infinity. Therefore the standardized cumulant

generating function is in the limit t ! 1,

lim
t!1

g⇤ab(#) =
1

2
#2. (3.19)

By analytic continuation to imaginary values # = ı! we get lim
t!1 g⇤ab(ı!) = �!2/2

and hence lim
t!1 M⇤ab(ı!) = exp(�!2/2). The inverse Fourier transform for the

moment generating function yields the limit

lim
t!1

f⇤ab(µ) =
1p
2⇡

exp


�µ2

2

�
. (3.20)

Inverting the process of standardization f
ab

(µ) = ��1
ab

f⇤ab ((µ�m
ab

)/�
ab

) we get the

following asymptotic expansion

f
ab

(µ) =
2t Gt, 0

0, t

��
b,...,b,a+b�1

�� exp(2tµ)
�

�t�1 (b)� (a+ b� 1)

t�1⇡ 1p
2⇡(�

ab

)2
exp

✓
�(µ�m

ab

)2

2(�
ab

)2

◆
, (3.21)
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with m
ab

and �
ab

given by eqs. (3.16) and (3.17). In other words, for large t we can

replace f
ab

(µ) in (3.10) by the Gaussian function eq. (3.21). Here we have also reinserted

the definition of f
ab

(µ) from eqs. (3.9) and (3.8) in order to stress that this is the first

main result of this section, namely the asymptotic expansion of a Meijer G-function in

the double scaling limit of large argument and large index. We are not aware of such a

result in the literature. In particular it is di↵erent from the well-known large argument

expansion, cf. [49].

The expression (3.10) can be further simplified for large t � 1 since the mean

value m
ab

�! m
b

, cf. eq. (3.16), and the variance (�
ab

)2 �! (�
b

)2, cf. eq. (3.17),

asymptotically depend on a single index

m
b

⌘  (b)

2
, �2

b

⌘  0(b)

4t
(3.22)

and hence f
ab

(µ) �! f
b

(µ) with

f
b

(µ) ⌘ 1p
2⇡�2

b

exp

✓
�(µ�m

b

)2

2�2
b

◆
, (3.23)

which was known for b = N [3]. Since these functions are independent of the index a,

after replacing f
ab

(µ
"(b)) by f

b

(µ
"(b)) we can pull the factors f

b

(µ
"(b)) out the determinant

in eq. (3.10). This yields

P
(t)
N

(µ1, . . . , µN

)
t�1⇡ det1a,bN

[�(a+ b� 1)]

N !
Q

N

a=1 �
2(a)

X

"2SN

NY

b=1

f
b

�
µ
"(b)

�

=
1

N !
per1a,bN

[f
b

(µ
a

)] . (3.24)

Here the sum over permutations without signs is equal to the definition of the permanent,

per1a,bN

[f
b

(µ
a

)]. The prefactor simplifies to 1/N ! since

det
1a,bN

[�(a+ b� 1)] =
NY

a=1

�2(a) , (3.25)

as recalled in Appendix B.

Let us state the main result of this section in its explicit form which is the joint

probability distribution for large t,

P
(t)
N

(µ1, . . . , µN

)
t�1⇡ 1

N !
per1a,bN

"s
2t

⇡ 0(b)
exp

✓
�t

(2µ
a

�  (b))2

2 0(b)

◆#

⌘ P
N

(µ1, . . . , µN

). (3.26)

The limiting joint probability distribution sustains its invariance under permutations

of the indices, P
N

(µ1, . . . , µN

) = P
N

(µ
!(1), . . . , µ!(N)). More explicitly, the joint

probability density is a symmetrized product of one-point functions or densities, which

means in physical language that it describes a system of N independent, non-interacting,

indistinguishable bosons. Starting from the determinantal process of the singular values

the appearance of a permanent is somewhat surprising, whereas it quite naturally arises
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for complex eigenvalues after integrating over the angles, see e.g. in [50, 51]. We will

come back to this point at the end of section 4.

Note that the dependence of P
(t)
N

on t appears only through the widths of the

Gaussian peaks. Their positions are independent of t in this approximation.

The density defined as

⇢
N

(µ) ⌘
Z

dµ2 . . . dµN

P
N

(µ, µ2, . . . , µN

) (3.27)

is in our case

⇢
N

(µ) =
1

N

NX

b=1

f
b

(µ) =
1

N

NX

b=1

1p
2⇡�2

b

exp

✓
�(µ�m

b

)2

2�2
b

◆
. (3.28)

When t increases the peaks become more narrow and, eventually in the limit t ! 1,

the Gaussian peaks turn into Dirac delta functions and we recover the deterministic

laws [40, 41] for the Lyapunov exponents µ̂
b

=  (b)/2,

lim
t!1

⇢
N

(µ) =
1

N

NX

b=1

�

✓
µ�  (b)

2

◆
. (3.29)

Employing Newman’s argument [40] one can show that the positions of the peaks for

general Dyson index � = 1, 2, 4 are given by  (�b/2)/2 with b 2 N. Thus the positions

we calculated fit into the results obtained for products of real Ginibre matrices by

Newman [40] and agree with the more general recent result by Forrester [41] who

considered complex Ginibre matrices multiplied by a fixed positive definitive matrix.

Forrester’s work was extended by Kargin [42] to � = 1, 4. Let us emphasize that our

result (3.28) gives finite-t corrections to this deterministic law. Moreover we stress

that the same limit has a corresponding consequence for the Meijer G-functions for the

individual peaks, when taking the limit t ! 1,

lim
t!1

2tGt, 0
0, t

��
b,...,b,a+b�1

�� exp(2tµ)
�

�t�1 (b)� (a+ b� 1)
= �

✓
µ�  (b)

2

◆
(3.30)

and

lim
t!1

2t�
ab

Gt, 0
0, t

��
b,...,b,a+b�1

�� exp(2t(�
ab

µ⇤ +m
ab

)
�

�t�1 (b)� (a+ b� 1)
=

1p
2⇡

exp


�µ2

2

�
. (3.31)

Already for finite but su�ciently large t when the peaks cease to overlap, each

Gaussian peak f
b

(µ), see eq. (3.23), can be identified as a finite size distribution of the

(N�b+1)-th largest Lyapunov exponent µ̂
b

. Due to the recursion  (b+1) =  (b)+1/b

the distance between neighboring peaks is m
b+1 � m

b

= 1/(2b) and the sum of their

widths is �
b+1 + �

b

⇡ 1/
p
bt. So the peaks separate when (m

b+1 �m
b

) � (�
b+1 + �

b

)

implying t � 4b. Thus, for the system with N degrees of freedom all peaks get separated

for t � 4N . Note that the positions m
b

and the widths �
b

are independent of N . When

N increases, just new peaks appear in the distribution while the old ones neither change

in shape nor shift their positions.

Let us study the quality of the approximation that has led us to eq. (3.26). In the

derivation of the asymptotic form (3.26) for large t we used the fact that the functions
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t=30 t=200

-0.5 0 0.5

2

4

6

m

r N
=
3HmL

-0.5 0 0.5

1

2

m

r N
=
3HmL

Limit tÆ•

Gaussian

Saddle point

Monte Carlo

Figure 1. Comparison of the density of Lyapunov exponents ⇢N=3(µ) given in the
Gaussian approximation (3.28) (blue curve), in the saddle point approximation (3.34)
(red curve) and generated by Monte Carlo simulations (red histogram, ensemble size
= 10000 product matrices). We consider products of t = 30 (left plot) and of t = 200
(right plot) matrices. The peaks (black vertical lines) are located at µ =  (b)/2
for b = 1, 2, 3, which are approximately equal to {�0.29, 0.21, 0.46}. Note that the
Gaussian approximation yields a good agreement only if t is large enough. But even
then the deviations become visible for larger Lyapunov exponents. The saddle point
approximation works better since it incorporates lower order corrections. Nevertheless
also the saddle point approximation has its limits explaining the small, but remaining
deviations from the numerics.

f
ab

(µ) can be approximated by Gaussian functions (3.21) and that their mean valuesm
ab

and their variances (�
ab

)2 asymptotically only depend on a single index b, see eq. (3.22),

if one neglects 1/t terms. The 1/t terms have a twofold e↵ect on the shape of the

density. First, the positions and widths of the peaks solely resulting from the single

random variable distributions f
b

(µ) weakly dependent on t. Second a repulsion between

peaks is introduced due to the determinant in eq. (3.7). We illustrate these two e↵ects

in Fig. 1 for the level density where we compare the asymptotic formula (3.28) and a

saddle point approximation of f
ab

(µ) for the inverse Fourier transform of the moment

generating function (3.11),

f
ab

(µ)
t�1⇡

s
2t

⇡ 0(#0(µ))

�t�1(#0(µ))�(a� 1 + #0(µ))

�t�1(b)�(a+ b� 1)
exp[�2tµ(#0(µ)� b)]

⌘ h
ab

(µ)

�(a+ b� 1)
, (3.32)

with

#0(µ) =

Z 1

0

dy⇥(2µ�  (y)) (3.33)

and ⇥ being the Heaviside function. This approximation is derived in Appendix C.

Note that in the large t limit the distribution h
ab

indeed becomes the Gaussian (3.23)

and independent of the index a. The level density in the approximation (3.32) is

⇢
(t,Saddle)
N

(µ) ⌘ 1

N
Q

N

a=1 �(a)

NX

j,l=1

(�1)l+j det
1a,bN

a 6=j,b 6=l

[�(a+ b� 1)]h
jl

(µ)
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=
1

N

NX

j,l=1

(�1)l+j

 
N�1X

k=0

(k!)2

�(k � j + 2)�(k � l + 2)

!
h
jl

(µ)

[(j � 1)!(l � 1)!]2
. (3.34)

Hereby we integrated over all but one Lyapunov exponents, µ1, . . . , µN�1, and we

expanded the determinant (3.10) in the columns and rows where the remaining

distribution f
ab

(µ) ⇡ h
ab

(µ) stands. Note that f
ab

as well as h
ab

are normalized. The

cofactor of the Hankel determinant (3.25) is calculated in Appendix B.

The main conclusion from the comparison in Fig. 1 is that the corrections do

not have any significant e↵ect on the shape of the distribution when the peaks are

separated. In particular for the smallest singular values this requirement is often

satisfied. Nevertheless the corrections can become quite important for t ⇡ N up to

10N in which case the saddle point approximation (3.32) is better suited. For the

largest eigenvalues the e↵ect of these corrections is the strongest.

In Fig. 1 we compare our analytical results with Monte-Carlo simulations for 3⇥ 3

product matrices, too. Within the numerical accuracy the agreement is quite good for

the Gaussian approximation (3.28) for t = 200 and becomes better for the saddle point

approximation (3.34) already at t = 30.

3.3. Incremental singular values

We close this section by going back to the singular values because in some physical

situations it is more convenient to use them rather than Lyapunov exponents. Consider

the t-th root of the matrix S(t),

⇤(t) =
�
⇧†(t)⇧(t)

�1/(2t)
, (3.35)

in contrast to eq. (2.5). We define incremental singular values as

�
n

(t) ⌘ exp(µ
n

(t)) = s1/(2t)
n

(t) , (3.36)

which correspond to the real positive eigenvalues of the matrix ⇤(t). Intuitively, the

incremental singular values �
n

(t) give the typical incremental contraction or expansion

factors for the configuration space under a single average time step of the evolution. Of

course they contain exactly the same information as the Lyapunov exponents. Their

joint probability distribution is obtained from that for the Lyapunov exponents by the

simple change of variables in eq. (3.36) inserted in eq. (3.3). Using eq. (3.10) this gives

P
(t)
N

(�1, . . . ,�N

)d�1 · · · d�N

= ��1
1 · · ·��1

N

P
(t)
N

(µ1 = ln�1, . . . , µn

= ln�
N

) dµ1 · · · dµN

=
1

N !
Q

N

a=1 �
2(a)

X

"2SN

det
1a,bN

⇥
�(a+ b� 1)�

ab

(�
"(b))d�"(b)

⇤
,

(3.37)

where

�
ab

(�) =
1

�
f
ab

(ln�) . (3.38)

For large t when f
ab

(µ) is approximated by normal distributions, �
ab

(�) can be

approximated by log-normal distributions. Otherwise everything works exactly in the
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l

r N
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10
HlL

Limit tÆ•
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Figure 2. Shown is the comparison of the analytical prediction (3.41) (blue curve)
and Monte-Carlo simulations (red dashed histogram, ensemble size = 1000 product
matrices) of the density of incremental singular values ⇢N=10(�). The number of
matrices multiplied is t = 200. The sharp peaks appearing for t ! 1 are shown by
black vertical lines at the positions exp[ (b)/2], b = 1, . . . , 10. The deviation increases
for larger singular values as expected since the overlap of the peaks becomes stronger.

same way as for Lyapunov exponents. In particular, when t is large enough to neglect

the 1/t corrections, we obtain the counterpart of eq. (3.26)

P
(t)
N

(�1, . . . ,�N)
t�1⇡ 1

N !
per1a,bN

[�
b

(µ
a

)] (3.39)

with

�
b

(�) ⌘ 1p
2⇡�2

b

�
exp

✓
�(ln��m

b

)2

2�2
b

◆
(3.40)

and m
b

, �2
b

are given by eq. (3.22). The functions �
b

(�) have maxima at exp[ (b)/2].

The density of incremental singular values is given by the normalized sum

⇢
N

(�) = ��1⇢
N

(µ = ln(�)) =
1

N

NX

b=1

�
b

(�) =
1

N

NX

b=1

1p
2⇡�2

b

�
exp

✓
�(ln��m

b

)2

2�2
b

◆
,

(3.41)

in analogy to eq. (3.28). Again this turns into a sum of delta functions in the limit

t ! 1,

lim
t!1

⇢
N

(�) =
1

N

NX

b=1

�
�
�� e (b)/2

�
. (3.42)

We have tested this prediction against Monte-Carlo simulations for finite size systems.

In Fig. 2 we show histograms of incremental singular values calculated analytically and

numerically. We see that the log-normal functions provide a very good approximation

to the actual shapes.
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4. Lyapunov exponents from the moduli of complex eigenvalues

Rather than using singular values, the complex eigenvalues, Z
n

(t) = R
n

(t)eı'n(t),

n = 1, . . . , N , are an alternative way to characterize the spectral properties of the matrix

⇧(t), see eq. (2.3). In general the singular values and the moduli of complex eigenvalues

are unrelated, apart from their product which is equal to | det⇧(t)| and bounds on their

Euclidean norm which result from the trace Tr⇧†(t)⇧(t) (see eq. (6.23)), respectively.

However in the large t limit, the moduli R
n

(t) of the complex eigenvalues will behave

exactly in the same way as the singular values
p

s
n

(t). In fact repeating the same

construction as in section 3, taking the t-th root of R
n

(t) will lead to the very same

normal distribution, frozen at identical positions as the limiting singular values. For

that reason we will use the same term Lyapunov exponent which is otherwise reserved

for the singular values, only.

We pursue a calculation similar to section 3. Thereby we first show that all complex

eigenvalues Z
n

(t) can be traced back to decoupled random variables apart from a trivial

determinantal coupling, see subsection 4.1. In the second step we employ the cumulant

expansion to find Dirac delta functions in the leading order and Gaussian (for the

corresponding Lyapunov exponents) and log-normal (for the moduli of eigenvalues)

distributions in the next-to-leading order, see subsection 4.2. In subsection 4.3, we

present an alternative approach by first integrating over the angles '
n

(t) and then

taking the limit t ! 1. This alternative construction is also applied to the case � = 4

since the analytical result for the joint probability density of the complex eigenvalues is

known [53, 54, 51] for this case as well.

4.1. Reduction to “decoupled” random variables

The definition (2.6) of Lyapunov exponents requires to take the t-th root and the

logarithm of the positive singular values. However, for complex variables this is not

a unique procedure. If one takes for example the root Z1/t, the question arises which

of the t roots we have to take. When choosing the primary root the resulting spectrum

will be mapped onto a circular sector of the angle 2⇡/t which eventually shrinks to the

positive semi-axis in the limit t ! 1. Another alternative choice is to take the root of

the moduli of the eigenvalues only, i.e.

Z
n

(t) = R
n

(t)eı'n(t) �! R1/t
n

(t)eı'n(t). (4.1)

Indeed this choice seems to be a more natural construction. When multiplying the

product ⇧(t) by new matrices, the angular parts '
n

(t) of the eigenvalues will run around

on circles while the radial part R
n

(t) will either exponentially contract or expand. Thus

it is not the angular part we have to worry about in the large t limit since it stays in a

compact set. It is the radial part of the eigenvalues which has to be rescaled such that the

support stays fixed. Therefore we decide for the rooting (4.1). We emphasize that the

kind of rooting is crucial to find our results which may change for other constructions.
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The definition of the Lyapunov exponents at finite and infinite t starting from the

moduli of complex eigenvalues are

⌫
n

(t) ⌘ lnR
n

(t)

t
(4.2)

and

⌫
n

⌘ lim
t!1

lnR
n

(t)

t
. (4.3)

These definitions are the analog of those for the Lyapunov exponents corresponding to

the singular values, see Eqs. (2.6) and (2.7). Hereby recall that the variables s
n

(t) are

the squared singular values which results in an additional prefactor 1/2.

The initial point of our calculation is an exact expression for the joint probability

distribution of the complex eigenvalues of the product matrix ⇧(t) eq. (2.3) at finite N

and t, see [55, 56],

P
(t)
N

(Z1, . . . , ZN

)d2Z1 · · · d2ZN

=
d2Z1 · · · d2ZN

N !⇡N

Q
N

a=1 �
t(a)

|�
N

(Z)|2
NY

b=1

Gt, 0
0, t

��
0,...,0

�� |Z
b

|2
�
, (4.4)

where d2Z
n

is the flat measure in the complex plane. As in the previous section we

again drop the explicit t-dependence of all quantities. We change to polar coordinates

and employ the variables (4.2) such that the joint-probability distribution reads

P
(t)
N

(⌫1,'1, . . . , ⌫N ,'N

)
NY

n=1

d⌫
n

d'
n

(4.5)

=
tN
Q

N

a=1 exp[2t⌫a]

N !⇡N

Q
N

a=1 �
t(a)

|�
N

(exp[t⌫ + ı'])|2
NY

b=1

Gt, 0
0, t

��
0,...,0

�� exp[2t⌫
b

]
�
d⌫

b

d'
b

.

We extend the first product by the identity 1 = eı'ae�ı'a . With help of the identity⇣Q
N

a=1 xa

⌘
�

N

(x) = det1a,bN

[xb

a

] we get
 

NY

a=1

exp[2t⌫
a

+ ı'
a

� ı'
a

]

!
|�

N

(exp[t⌫ + ı'])|2 (4.6)

= det
1a,bN

h
exp[b(t⌫

a

+ ı'
a

)]
i

det
1a,bN

h
exp[b(t⌫

a

� ı'
a

)]
i
. (4.7)

We expand one of these determinants and repeat all steps which have led us from

eq. (3.3) to eq. (3.7). Thus we end up with

P
(t)
N

(⌫1,'1, . . . , ⌫N ,'N

) =
1

N !(2⇡)N

X

"2SN

det
1a,bN

"
eı(a�b)'"(b)

[�(a)�(b)]t/2
F̃
ab

(⌫
"(b))

#
, (4.8)

where

F̃
ab

(⌫) = 2tGt, 0
0, t

⇣
�
(a+b)/2,...,(a+b)/2

��� exp[2t⌫]
⌘
. (4.9)

This function is angle-independent and positive semi-definite. It is the counterpart of

F
ab

(µ), cf. eq. (3.8). This function can be normalized with help of eq. (A.2),

f̃
ab

(⌫) ⌘ F̃
ab

(⌫)R
F̃
ab

(⌫ 0)d⌫ 0
=

F̃
ab

(⌫)

�t [(a+ b)/2]
, (4.10)
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which has again the interpretation of a probability density function. Then the joint

probability density takes the form

P
(t)
N

(⌫1,'1, . . . , ⌫N ,'N

) =
1

N !(2⇡)N

X

"2SN

det
1a,bN

" 
� ((a+ b)/2)p

�(a)�(b)

!
t

eı(a�b)'"(b) f̃
ab

(⌫
"(b))

#
.

(4.11)

This is an exact expression for the joint probability distribution of the Lyapunov

exponents constructed from the moduli of the complex eigenvalues for any t 2 N.
Skipping the definition of the moment generating function we directly turn to the

cumulant generating function,

g̃
ab

(#) ⌘ ln

✓Z +1

�1
d⌫f̃

ab

(⌫) exp(⌫#)

◆
= t ln

✓
� [(a+ b)/2 + #/(2t)]

� [(a+ b)/2]

◆
, (4.12)

in analogy to eq. (3.13). The Taylor series of g̃
ab

at # = 0 is

g̃
ab

(#) ⌘
1X

n=1

#n

n!
̃
(n)
ab

=
1X

n=1

#n

n!

1

2(2t)n�1
 (n�1)

✓
a+ b

2

◆
. (4.13)

The cumulants can be simply read o↵. In particular, the first two are equal to

m̃
ab

⌘
Z

d⌫f̃
ab

(⌫)⌫ = ̃
(1)
ab

=
1

2
 

✓
a+ b

2

◆
(4.14)

and

�̃2
ab

⌘
Z

d⌫f̃
ab

(⌫) (⌫ � m̃
ab

)2 = ̃
(2)
ab

=
1

4t
 0
✓
a+ b

2

◆
. (4.15)

Again we underline that these results are exact for any t 2 N.

4.2. Large t limit

The cumulant expansion (4.13) determines the asymptotic large t behavior of f̃
ab

(⌫).

Therefore we pursue the same idea as in subsection 3.2 and center the single-variable

distribution f̃
ab

(⌫) and normalize its variance. After finding the Gaussian behavior in

the large t limit we go back to the non-standardized variables in the original problem.

We standardize the random variable ⌫ by subtracting the mean and normalizing

the variance to unity, which is again denoted by an asterisk. Consequently the higher

order standardized cumulants scale as ̃(n)⇤ab = ̃
(n)
ab

/(�̃
ab

)n ⇠ t1�n/2 for large t and

n � 2. Eventually they vanish in the limit t ! 1 and as a consequence, following

the same argument as leading to eq. (3.21), the distributions f̃
ab

(⌫) asymptotically

become normal, i.e.

f̃
ab

(⌫)
t�1⇡ 1p

2⇡�̃2
ab

exp

✓
�(⌫ � m̃

ab

)2

2�̃2
ab

◆
(4.16)

with m̃
ab

from eq. (4.14) and �̃
ab

from eq. (4.15). This function is identical to the

distribution of Lyapunov exponents corresponding to the singular values (3.21), with

the di↵erence that the mean and the variance still depend on both matrix indices a and
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b in the leading order of the 1/t expansion. Note, that for the diagonal elements a = b

and for large t the functions f̃
bb

(⌫) are identical to f
b

(⌫), i.e. f̃
bb

(⌫) ⇡ f
b

(⌫) for t � 1.

Especially we have m̃
bb

= m
b

and �̃
bb

= �
b

, cf. eqs. (3.22), (4.14), and (4.15).

Let us discuss the prefactors in the determinant (4.11),

D
ab

(t) ⌘
 
� [(a+ b)/2]p

�(a)�(b)

!
t

(4.17)

which become Kronecker symbols. For a = b � 1 these prefactors are indeed equal to

unity. For a 6= b � 1 we use the fact that the geometric average is larger than the

arithmetic one, [(a+ b+ 2j)/
p

4(a+ j)(b+ j)]t > 1 for all j = 0, 1, . . . We have

D
ab

(t) <

 
� [(a+ b)/2]p

�(a)�(b)

!
t✓

a+ bp
4ab

◆
t

=

 
� [(a+ b+ 2)/2]p
�(a+ 1)�(b+ 1)

!
t

(4.18)

< . . . < lim
j!1

 
� [(a+ b+ 2j)/2]p
�(a+ j)�(b+ j)

!
t

= 1.

The limit can be done via Stirling’s formula. Therefore the determinant eq. (4.11)

reduces to the product of diagonal elements in the large t limit. As a consequence the

dependence on the angles '
n

completely disappears. Therefore we arrive at

P
(t)
N

(⌫1,�1, . . . , ⌫N ,�N

)
t�1⇡ 1

N !(2⇡)N

X

"2SN

NY

b=1

f̃
bb

�
⌫
"(b)

�
=

1

N !(2⇡)N
per1a,bN

[f
b

(⌫
a

)] .

(4.19)

Note that we employed the Gaussian approximation f
b

(⌫), see eq. (3.23), since the

means, m̃
bb

, and the variances, �̃
bb

, agree with those for the Lyapunov exponents

constructed from the singular values. This is in hindsight our justification for giving

them the same names.

Because the result (4.19) is independent of the angles '
n

, integrating over them

yields a trivial factor (2⇡)N ,
Z 2⇡

0

. . .

Z 2⇡

0

d'1 . . . d'N

P
(t)
N

(⌫1,'1, . . . , ⌫N ,'N

)
t�1⇡ P

N

(⌫1, . . . , ⌫N)

=
1

N !
per1a,bN

[f
b

(⌫
a

)] . (4.20)

The resulting distribution is identical to the distribution for the Lyapunov exponents

corresponding to the singular values, see eq. (3.26). Consequently the same results apply

to the density of the Lyapunov exponents obtained from the moduli of the complex

eigenvalues, eq. (3.28) and its limit as a sum of delta functions eq. (3.29).

It is straightforward to transform the joint probability density eq. (4.19) back to

the incremental radii r
n

⌘ e⌫n ,

P
N

(⌫1 = ln r1, . . . , ⌫N = ln r
N

) =
1

N !
per1a,bN

"
1p

2⇡�2
b

r
exp

✓
�(ln r �m

b

)2

2�2
b

◆#
.(4.21)
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Figure 3. Scatter plot of the complex eigenvalues of the product matrices ⇧(N =
3, t = 300) (green crosses) and ⇧(N = 5, t = 500) (blue dots) derived by the rooting
procedure (4.1). The plot was generated by Monte-Carlo simulations of 1000 product
matrices for each setting. The solid red lines represent rings with radii exp[ (b)/2],
b = 1, . . . , 5, given by the analytical result in the limit t ! 1.

Their joint probability density is a combination of log-normal distributions with exactly

the same parameters as for the singular values (3.39). The result (4.21) implies that

for large t the radii r
b

describe narrow rings centered around the origin with their

maxima at exp[ (b)/2], b = 1, . . . , N , cf. Fig. 3. In particular the moduli r
b

have log-

normal distributions and the phases '
b

are independent and uniformly distributed. The

determinantal repulsion between complex eigenvalues is completely lost since they are

radially separated. As a consequence the angular degrees of freedom cease to interact

and become independent of each other in the limit t ! 1.

Indeed also for the results (4.19) and (4.21) we can investigate the 1/t correction,

in particular we can apply a saddle point approximation similar to eq. (3.34). However

the Monte Carlo simulations performed show already a perfect agreement with the

Gaussian approximation, see Fig. 4. The reason is the prefactor (4.17) in front of the

single variable distributions f̃
ab

(⌫) which additionally suppresses the level repulsion.

This behavior is much stronger than for the incremental singular values. Nevertheless,

both distributions, the one for the radii and the singular values, will eventually agree,

as it can be seen for the smallest radii and singular values in Fig. 4.

4.3. An alternative approach

We close this section by o↵ering a short-cut from the joint density eq. (4.5) to the

final result eq. (4.19). Once all angles are integrated out the moduli of the complex

eigenvalues Z
n

of the product of Ginibre matrices immediately become independent
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Figure 4. The histograms show the distribution of the incremental singular values
(red dashed histogram) and of the incremental radii of the complex eigenvalues (blue
dashed histogram) of products of t = 100 5⇥5 complex Ginibre matrices generated by
Monte Carlo simulations (ensemble size = 10000 product matrices). The distribution
of the radii are well approximated by the analytical result (4.21) (blue curve) while the
corresponding saddle point approximation (3.34) for the incremental singular values
(red curve) is needed for a better agreement for higher singular values. For the smallest
radii and singular values all distributions perfectly agree. The positions of the limiting
result exp[ (b)/2], b = 1, . . . , 5, are shown by vertical lines.

random variables, see Refs. [50, 51] and for a general discussion Ref. [52]. These

integrations can be already performed for the distribution (4.5) such that we immediately

arrive at
Z 2⇡

0

NY

n=1

d�
n

P
(t)
N

(⌫1,�1, . . . , ⌫N ,�N

) =
1

N !
per1a,bN

"
2tGt, 0

0, t

��
a,...,a

�� exp[2t⌫
b

]
�

�t(b)

#
. (4.22)

This result is still exact for finite t. The application of the asymptotic limit of the Meijer

G-function (3.21) immediately leads to the following answer
Z 2⇡

0

NY

n=1

d�
n

P
(t)
N

(⌫1,�1, . . . , ⌫N ,�N

)
t�1⇡ 1

N !
per1a,bN

"
1p
2⇡�2

b

exp

✓
�(⌫

a

�m
b

)2

2�2
b

◆#
,

(4.23)

which is identical to eq. (4.20). The parameters for the mean and variance are given

in eq. (3.22). Let us emphasize again that the loss of angular dependence also directly

results from the large t limit.

Let us ask at this point about the situation for general Dyson index � = 1, 2, 4.

The integration over all angles is a non-trivial task in the case � = 1 though it was

shown in Ref. [57] that in the large t limit all eigenvalues become real with probability

+1, and in Ref. [54] an expression for the joint probability density was derived for an

arbitrary isotropic weight.
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For � = 4 the situation is much easier. Not only explicit expressions for the

joint probability densities of quaternionic Ginibre matrices [53] and of general isotropic

weight [54] were derived, also the integral over the angles was done [51]. Performing

these integrals also leads to a permanent, which reads for Ginibre matrices
Z 2⇡

0

NY

n=1

d�
n

P
(t, �=4)
N

(⌫1,�1, . . . , ⌫N ,�N

) =
1

N !
per1c,dN

"
2tGt, 0

0, t

��
2c,...,2c

�� exp[2t⌫
d

]
�

�t(2b)

#
.(4.24)

The asymptotic limit (3.21) of the Meijer G-function still applies, one has to set a = 1,

d = b and b = 2c in eq. (3.21). This yields for the Lyapunov exponents constructed

from the moduli of the complex eigenvalues
Z 2⇡

0

NY

n=1

d�
n

P
(t, �=4)
N

(⌫1,�1, . . . , ⌫N ,�N

)

t�1⇡ 1

N !
per1c,dN

"
1p
2⇡�2

2c

exp

✓
�(⌫

d

�m2c)2

2�2
2c

◆#
. (4.25)

Note the similarity to eq. (4.20) although the product now consists of quaternion

matrices, only. Nevertheless, we have to be careful when interpreting this result as a

hint that the final level statistics for � = 4 become, apart from a factor 2 in the indices,

identical to the ones for � = 2. The scatter plots in Fig. 6 show that the eigenvalues

are by far not uniformly distributed along the rings. Thus the angular distribution will

be non-trivial for � = 4.

When taking the exact limit t ! 1 of eq. (4.25) the Gaussian functions convert to

into Dirac delta functions at the positions ⌫ =  (2c)/2, c = 1, . . . , N . These positions

were already found by Kargin [42] for the Lyapunov exponents from singular values for

the product of quaternionic Ginibre matrices.

Indeed it would be nice to find also the finite t corrections to this limit for the

singular values for � = 1, 4. However the group integrals involved in this problem prevent

an explicit expression for the joint probability density, see [18, 19] for comparison to

the approach applied to the case � = 2. Nonetheless we conjecture that the Lyapunov

exponents from singular values and moduli of complex eigenvalues should again coincide

as for � = 2. This conjecture is at least confirmed by Monte Carlo simulations, see Fig. 6,

as well as by a direct analysis of 2⇥ 2 matrices, see subsection 6.2.

5. Large N limit

Let us take the limit N ! 1, too. In particular, we ask the question whether the limits

t ! 1 and N ! 1 commute. This question is at the heart of understanding both

kinds of limits. In particular one can consider the local spectral statistics as well as the

global one.

Let us stick first to the global statistics and the situation where we take t ! 1 first.

For this purpose two important remarks concerning the limit N ! 1 are in order. The

complex eigenvalues of an N ⇥ N Ginibre matrix X
j

are scattered on a disk of radius
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which grows approximately as
p
N . Therefore we have to fix the support by rescaling

the matrices,

X⇤j =
X

jp
N
, j = 1, . . . , t, (5.1)

to find a proper limit for the macroscopic level density in the limit N ! 1. Then the

spacing between the complex eigenvalues as well as between the singular values tends

to zero and the spectral distributions become continuous functions for N ! 1. In

particular, the limiting eigenvalue distribution of rescaled Ginibre matrices is given by

a uniform density on the unit disk centered at the origin of the complex plane which

is the so-called circular law. Exactly this circular law is also found for a product of

complex Ginibre matrices after taking the root of the radii for t fixed and N ! 1, cf.

Refs. [42, 43].

After rescaling the moduli of the complex eigenvalues are on average smaller or

equal to unity. Thereby the corresponding evolution ~x
t+1 = X⇤t~xt

is contractive and

hence the Lyapunov exponents are expected to be non-positive. Because the evolution

is linear the incremental singular values (or radii) rescale as �⇤n = �
n

/
p
N . Quantities

corresponding to this normalization are denoted by an asterisk in this section.

The rescaling results in a trivial shift for the Lyapunov exponents, i.e.

µ̂⇤b =
1

2
( (b)� lnN) , b = 1, . . . , N. (5.2)

The smallest Lyapunov exponent is approximately equal to µ̂⇤1 ⇡ �1/2 lnN for N � 1

and the largest one is

µ̂⇤N =
1

2
( (N)� lnN)

N�1⇡ � 1

4N
. (5.3)

Therefore all Lyapunov exponents are negative and for N ! 1 the spectrum extends

from �1 to 0. The probability that a randomly chosen exponent µ0
⇤ is less or equal to

µ̂⇤b is

Prob(µ0
⇤  µ̂⇤b) =

b

N
. (5.4)

Choosing the rescaled variable x = b/N 2]0, 1] this probability reads

Prob

✓
µ0
⇤ 

1

2
( (Nx)� lnN)

◆
= x. (5.5)

In the limit N ! 1 this variable becomes a continuous variable x 2]0, 1]. Moreover,

for any fixed µ⇤ we can approximate  (Nx) ⇡ ln(Nx) +O(1/N) such that we have

Prob

✓
µ0
⇤ 

ln(x)

2

◆
N�1⇡

Z ln(x)/2

�1
⇢⇤(µ

0
⇤)dµ

0
⇤ = x. (5.6)

Here

⇢⇤(µ⇤) ⌘ lim
N!1

⇢⇤N(µ⇤) (5.7)

is the limiting density of Lyapunov exponents for the product of independent normalized

Ginibre matrices X⇤j from eq. (3.29). The last equation can be easily solved for ⇢⇤(µ⇤),

⇢
µ⇤(µ⇤) = 2e2µ⇤ , µ⇤  0. (5.8)
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Figure 5. The analytical results (solid curves) for the cumulative distribution for the
incremental singular values F⇤(�⇤) are compared to Monte Carlo simulations (dashed
histograms) for varying matrix dimension N and varying numbers of matrices t in the
product ⇧(t). The black solid curve is the N, t ! 1 result.

Changing from Lyapunov exponents to incremental singular values �⇤b = eµ⇤b , we obtain

⇢⇤(µ⇤)dµ⇤ = ⇢⇤(�⇤)d�⇤ = 2�⇤d�⇤, �⇤ 2 [0, 1]. (5.9)

This is the celebrated triangular law first derived by Newman [40, 45].

Obviously one can repeat exactly the same calculations starting from the moduli of

complex eigenvalues and obtains the same results, replacing µ⇤ ! ⌫⇤ and �⇤ ! r⇤. We

note in passing that the triangular distribution of incremental radii is identical to the

limiting radial distribution of the complex eigenvalues of normalized Ginibre matrices

X⇤/
p
N , N ! 1, which is given by the uniform distribution on the complex unit disk.

Here the linear behavior is nothing more than the Jacobian resulting from the choice of

polar coordinates.

It is instructive to examine the convergence of the finite N distribution to the

limiting triangular law. The cumulative distribution for the triangular law defined as

F⇤(�⇤) =

( R
�⇤
0 d�0⇤⇢⇤(�

0
⇤) = �2⇤ , �⇤ 2 [0, 1],

1 , �⇤ � 1
(5.10)

is trivially obtained. It is the probability to find a singular value smaller than �⇤. For

finite N (and t ! 1) the cumulative distribution is just the counting function

F⇤N(�⇤) =
1

N

NX

n=1

⇥

✓
�⇤ �

exp[ (n)/2]p
N

◆
, (5.11)

with lim
N!1 F⇤N(x) = F⇤(x). We show the evolution of the shape of this staircase

function in N and t in Fig. 5.
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Let us study if the limits t ! 1 and N ! 1 commute. Therefore we consider the

moments of the density of the singular values which are for the triangular law

lim
N!1

lim
t!1

h�n⇤ i⇤ =
Z 1

0

d�⇤⇢⇤(�⇤)�
n

⇤ =
2

n+ 2
for all n > �1. (5.12)

Recall that this law is obtained by taking first the limit t ! 1 and then N ! 1. Let

us invert this order. The moments of the singular value distribution of the product of t

normalized Ginibre for N ! 1 is equal to the Fuss-Catalan numbers [58]

lim
N!1

hsk⇤(t)i⇤ =
1

tk + 1

 
(t+ 1)k

k

!
for all k > � 1

t+ 1
. (5.13)

We choose k = n/(2t) while keeping n fixed and sending t to infinity. Changing the

integration variable from singular values to their roots, � = s
1/(2t)
⇤ , we get sk⇤(t) = �n⇤ (t).

The binomial symbol on the right hand side tends to unity for t ! 1, and the prefactor

to 2/(n+ 2). Combining everything we have

lim
t!1

lim
N!1

h�n⇤ (t)i⇤ = lim
t!1

lim
N!1

hsk⇤(t)i⇤ =
2

n+ 2
= lim

N!1
lim
t!1

h�n⇤ i⇤. (5.14)

We see that indeed the limits t ! 1 and N ! 1 commute. To have an idea how the

limiting shape of the distribution is approached when t and N increase we plot in Fig.

5 the cumulative distribution for a collection of systems with finite t and N , showing

both analytic and Monte-Carlo results.

To conclude this section we can ask if the commutativity of the two limits carries

over to the local statistics as well. When taking first the limit N ! 1 it was shown [55]

that the level statistics in the bulk and at the soft edge follow the universal results [61]

for complex Ginibre matrices. Especially the level spacing distribution in the bulk

behaves for small spacing �r as P (�r)dr ⇡ �r3d�r / �r2d�r2, see Refs. [59, 60].

These results are independent of t and, hence, will also not change when taking the

limit t ! 1 afterwards. When reversing the two limits, in particular when first taking

the limit t ! 1 and then the limit N ! 1, we will find the statistics of the harmonic

oscillator. This can be realized after unfolding the level spacing distribution of the

incremental radii, i.e. r⇤ ! r2⇤, the level spacing distribution at finite N but t = 1 is

P
N

(�r2⇤) =
1

N � 1

N�1X

j=1

�
�
�r2⇤ � exp [ (j + 1)] + exp [ (j)]

�
(5.15)

=
1

N � 1

N�1X

j=1

�

✓
�r2⇤ � exp [ (j)]

✓
exp


1

j

�
� 1

◆◆
.

In the limit N ! 1 the variable x = j/N becomes continuous and the sum can be

approximated by an integral such that

P (�r2⇤) ⌘ lim
N!1

P
N

(�r2⇤) (5.16)

= lim
N!1

Z 1

0

dx�

✓
�r2⇤ � exp [ (Nx)]

✓
exp


1

Nx

�
� 1

◆◆
= �(�r2⇤ � 1)
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which is the one of an harmonic oscillator. This result is far away from the unfolded

level spacing distribution of the Ginibre ensemble which has a linear slope in �r2,

P (�r)dr ⌘ P (�r2)d�r2 ⇡ �r2d�r2, for small spacing �r ⌧ 1, see Refs. [59, 60].

Therefore on the local scale the two limits do not commute in contrast to the global

scale, cf. eq. (5.14). The same argument is expected to be true for the local statistics

of the incremental singular values.

Since the two limits commute on the global scale while they do not commute on

the local one, we claim that there should be a non-trivial double scaling limit where

new results should show up. In particular we expect a mesoscopic scale of the spectrum

which may also show a new kind of universal statistics.

6. Isotropic evolution with arbitrary weights

So far we have discussed the evolution (2.1) driven by independent Ginibre matrices.

An important property of this random matrix ensemble is its isotropic nature, meaning

that it is invariant under bi-unitary transformations, dµ(X⇤) = dµ(UX⇤V
�1), with

respect to the right and left multiplication of any unitary matrices U, V 2 U(N).

We want to generalize our discussion to more general isotropic random matrix

ensembles, particularly to non-Gaussian weights. For this purpose we recall Newman’s

argument [40] to find the Lyapunov exponents constructed from the singular values in

subsection 6.1. In subsection 6.2 we discuss why the Lyapunov exponents corresponding

to the radii of the complex eigenvalues agree with those of the singular values for

products of 2⇥2 complex matrices identically drawn from an arbitrary isotropic weight.

Moreover we briefly discuss the extension of this argument to arbitrary dimension N

and arbitrary Dyson index � = 1, 2, 4.

6.1. Newman’s argument for the singular values

Let us recall a general argument given by Newman [40], which can be applied to an

arbitrary isotropic evolution. It says that in the large t limit the Lyapunov exponents

become deterministic. This behavior is related to some kind of self-averaging di↵erent

from the one discussed in [46, 47].

Newman’s argument is based on a particular definition of the Lyapunov exponents

constructed from the singular values. The sum of k largest Lyapunov exponents is given

by

⌃
k

(t) ⌘ µ̂
N

(t) + . . .+ µ̂
N�k+1(t) = max

A2CN⇥k

1

2t
ln

detA†⇧†(t)⇧(t)A

detA†A
, (6.1)

where the maximum is taken over all complex N ⇥ k matrices A whose singular values

do not vanish, i.e. detA†A 6= 0. We denote the average of an observable O(⇧(t)) by

hO(⇧(t))i
t

=

Z
dµ(X1) · · · dµ(Xt

)O(⇧(t)). (6.2)
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Then Newman’s argument is equivalent to the fact that for any integrable test function

f depending on the vector ⌃(t) = (⌃1(t), . . . ,⌃N

(t)) we have

lim
t!1

hf(⌃(t))i
t

= f(h⌃(1)i1), (6.3)

where on the right hand side we average over a single matrix (t = 1), only.

The idea to prove the claim (6.3) is to introduce a telescopic product in the

definition (6.1),

⌃
k

(t) = max
A2CN⇥k

(
1

2t
ln

 
tY

j=1

detA†⇧†(j)⇧(j)A

detA†⇧†(j � 1)⇧(j � 1)A

!)
(6.4)

= max
A2CN⇥k

(
1

2t

tX

j=1

ln

 
detA†

j

X†
j

X
j

A
j

detA†
j

A
j

!)

with A
j

= ⇧(j � 1)A and ⇧(0) the N -dimensional identity matrix. Note that the

sum cannot be simply pushed through the operation “max” since the matrices A
j

,

j = 1, . . . , N , depend on each other. Exactly at this point the isotropy of the weight

becomes important. With the help of the average one can show that

hf(⌃(t))i
t

=

Z
dµ(X1) · · · dµ(Xt

)f

 
max

A2CN⇥k

(
1

2t

tX

j=1

ln

 
detA†

j

X†
j

X
j

A
j

detA†
j

A
j

!)!
(6.5)

=

Z
dµ(X1) · · · dµ(Xt

)f

 
1

2t

tX

j=1

ln
⇣
detP †

k

X†
j

X
j

P
k

⌘!
(6.6)

=

Z
dµ(X1) · · · dµ(Xt

)f

 
1

2t

tX

j=1

max
A2CN⇥k

(
ln

 
detA†X†

j

X
j

A

detA†A

!)!
.

The reason is that A
j

has the singular value decomposition A
j

= U
j

P
k

⇤
j

V
j

, with

U
j

2 U(N), V
j

2 U(k), ⇤
j

= diag(�1j, . . . ,�kj) 2 Rk

+, and P
k

the matrix mapping

k-dimensional vectors as v = (v1, . . . , vk) 2 Ck to the trivially embedded N -dimensional

vectors (v1, . . . , vk, 0, 0, . . . , 0) 2 CN . The matrix V
j

as well as the diagonal matrix ⇤
j

trivially drop out of the ratios of determinants. The matrix U
j

can be readily absorbed in

the measure of X
j

due to the substitution X
j

! X
j

U †
j

and the isotropy of the measure

dµ(X
j

). Thus everything only depends on the matrices X
j

and on the embedding

(projection) matrix P
k

which is independent of A
j

. Therefore we can completely omit

taking the maximum of A = U1⇤1V1, cf. the second line of eq. (6.5), and exchange the

sum with the maximum. To restore the dependence on A
j

we substitute X
j

! X
j

U1

anew. Hence we find the identity (6.5).

In the limit t ! 1 the sum is equal to the average of a single random matrix

because of the law of large numbers. In particular we have

µ̂
N

+ . . .+ µ̂
N�k+1 =

⌧
max

A2CN⇥k

1

2
ln

detA†⇧†(1)⇧(1)A

detA†A

�

1

(6.7)

From this equation one can also simply determine the incremental singular values

�̂
n

= exp[µ̂
n

]. In the case of complex Ginibre ensembles the result (6.7) yields

µ̂
n

=  (n)/2. In Ref. [40] this proof was given for � = 1, only.
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We stress that the whole line of argument also applies in the case of general Dyson

index � = 1, 2, 4. One only has to assume that the weight is invariant under right

multiplication with the groups O(N), U(N) and USp(2N), respectively, and that the

first moment of the Lyapunov exponents exists. Note that we only need the invariance

under right multiplication. This is the reason why introducing fixed covariance matrices

in the product of matrices did not cause any problems as it was considered in Ref. [41]

for � = 2 and in Ref. [42] for � = 1, 2, 4.

6.2. Lyapunov exponents of general isotropic 2⇥ 2 random matrices

The question arises if products of random matrices drawn from any isotropic ensemble

lead to a collapse of the Lyapunov exponents from the singular values and from the

moduli of the complex eigenvalues to one and the same distribution as it was shown in

sections 3 and 4. For a product of 2⇥ 2 random matrices this question can be answered

positively. For this purpose we consider the product matrix

⇧(t) =

"
x11 x12

x21 x22

#
= X

t

X
t�1 . . . X1 with X

j

=

"
x
(j)
11 x

(j)
12

x
(j)
21 x

(j)
22

#
2 C2⇥2, (6.8)

whose random matrices are drawn from the same isotropic weight P (X)dX = dµ(X) =

dµ(UXV �1) with U, V 2 U(2).

Let us denote the two t-dependent Lyapunov exponents of the singular values by

µ1(t) and µ2(t) as defined in eq. (2.7). Then Newman’s argument tells us that for any

integrable test function f depending on µ̂2(t) = max{µ1(t), µ2(t)} and (ln| det⇧(t)|)/t =
µ1(t) + µ2(t) we have

lim
t!1

hf(µ̂2(t), µ1(t) + µ2(t))it = f(hµ̂2(1)i1, hµ1(1) + µ2(1)i1). (6.9)

Note that on the right hand side the average is only over a single random matrix,

⇧(1) = X1.

The aim is to show that the Lyapunov exponents of the moduli of the eigenvalues

⌫1(t) and ⌫2(t) agree with µ1(t) and µ2(t) in the large t-limit, i.e.

lim
t!1

hf(µ̂2(t), µ1(t) + µ2(t))it = f(h⌫̂2(1)i1, h⌫1(1) + ⌫2(1)i1) (6.10)

with ⌫̂2(t) = max{⌫1(t), ⌫2(t)} for all integrable test functions. For this purpose we first

construct an analytical relation between ⌫1,2(t) and µ1,2(t).

The isotropy allows us to absorb the unitary matrices U
j

resulting from the

generalized Schur decomposition [54, 55, 56],

⇧(t) = U
t

"
z1 �

0 z2

#
U †
t

with X
j

= U
j

"
z1j �

j

0 z2j

#
U †
j�1 and U0 = U

t

. (6.11)

The variables z1, z2,� 2 C depend on z1j, z2j,�j

2 C via the relations

z1 =
tY

j=1

z1j, z2 =
tY

j=1

z2j, � =
tX

j=1

 
j�1Y

l=1

z1l

!
�

j

 
tY

l=j+1

z2l

!
. (6.12)
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The quantities µ̂2(t) and µ1(t) + µ2(t) read in terms of the variables z1/2 and � as

µ̂2(t) =
1

2t
ln

 
|z1|2 + |z2|2 + |�|2 +

p
(|z1|2 + |z2|2 + |�|2)2 � 4|z1z2|2

2

!
, (6.13)

µ1(t) + µ2(t) =
1

t
ln|z1z2| =

1

t

tX

j=1

(ln|z1j|+ ln|z2j|) = ⌫1(t) + ⌫2(t). (6.14)

Note that these quantities only depend on |z1,2| and |�|. After plugging these relations

into the finite t average over the test function f and decomposing the variables

z1j = R1je
ı'1j and z2j = R2je

ı'2j into radial and angular parts we obtain

hf(µ̂2 (t) , µ1(t) + µ2(t))it

=
tY

j=1

✓
4

Z 1

0

dR1jdR2j

Z 2⇡

0

d'1jd'2j

Z

C
d2�

j

Z

U(2)/U2(1)

d�(U
j

)R1jR2jP (|z1j|, |z2j|,�j

)

◆

⇥

���
Q

t

j=1 z1j �
Q

t

j=1 z2j

���
2

2
f

 
µ̂2(t),

1

t

tX

j=1

(ln|z1j|+ ln|z2j|)
!
, (6.15)

see Ref. [54]. The factor 1/2 results from the ordering of z1 and z2 which is originally

included in the generalized Schur decomposition and can be lifted by taking this factor

into account. The Haar measure of the co-set U(2)/U2(1) is denoted as d�(U
j

),

j = 1, . . . , N . Let us stress that the isotropy of the probability density P indeed allows

us to absorb the dependence of P on the angles of the two eigenvalues z1 and z2 in the

integral over �.

The integration over the phases eı'1j and eı'2j simplifies the integral (6.15) to

hf(µ̂2 (t) , µ1(t) + µ2(t))it

=
tY

j=1

✓
4

Z 1

0

dR1jdR2j

Z 2⇡

0

d'1jd'2j

Z

C
d2�

j

Z

U(2)/U2(1)

d�(U
j

)R3
1jR2jP (|z1j|, |z2j|,�j

)

◆

⇥ f

 
µ̂2(t),

1

t

tX

j=1

(ln|z1j|+ ln|z2j|)
!
, (6.16)

The collective permutation z1j $ z2j employed here is legitimate. Therefore the

single probability densities of the set of variables {z1j, z2j,�j

} factorize and become

statistically independent. Interestingly the average over a single set of variables

{z1j, z2j,�j

} with a fixed index j is equal to the original integral over a single matrix

X
j

, i.e. eq. (6.16) also holds for t = 1, which is quite important to find the right hand

side of eq. (6.10).

In the next step we calculate upper and lower bounds for the maximal Lyapunov

exponent µ̂2 (t). Looking at the relation (6.13) it is immediate that µ̂2 (t) is

monotonously increasing in |�|. Hence it is certainly true that

µ̂2 (t) � 1

2t
ln

 
|z1|2 + |z2|2 +

p
(|z1|2 + |z2|2)2 � 4|z1z2|2

2

!
(6.17)
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=
1

t
lnmax{|z1|, |z2|} = max

(
1

t

tX

j=1

ln|z1j|,
1

t

tX

j=1

ln|z2j|
)
.

Note that the sum cannot be pushed through the operation “max”. The upper bound

can be found by estimating |�|, i.e.

|�| 
tX

j=1

 
j�1Y

l=1

|z1l|
!
|�

j

|
 

tY

l=j+1

|z2l|
!

 max
k=1,...,t

( 
k�1Y

l=1

|z1l|
! 

tY

l=k+1

|z2l|
!)

tX

j=1

|�
j

|.

(6.18)

Because of the statistical independence of the matrices with a fixed j this inequality

becomes

1

t
ln|�|  max

k=1,...,t

(
1

t

 
k�1X

l=1

ln|z1l|+
tX

l=k+1

ln|z2l|
!)

+
1

t
ln

 
tX

j=1

|�
j

|
!

(6.19)

t�1⇡ sup
p2]0,1[

{phln|z11|i1 + (1� p)hln|z21|i1}+
1

t
ln (th|�1|i1)

= h⌫̂1(1)i1 +
1

t
ln (th|�1|i1)

in the large t-limit. The latter equation results from the fact that the supremum is

reached at the boundary of the interval p 2]0, 1[ and that the moment of |�1| is bounded.
Therefore there is a constant 0 < c < 1 such that

|�|  ct exp[th⌫̂1(1)i1] (6.20)

for all t 2 N. This inequality together with 0  |z1,2|  ec exp[th⌫̂1(1)i1], where

0 < ec < 1 is a second constant, yields the upper bound

µ̂1 
1

2t
ln
�
2ec2 + c2t2

�
+ h⌫̂1(1)i1 (6.21)

for all t 2 N.
Collecting everything the bounds tell us that the large t limit is

lim
t!1

1

t
µ̂1 = h⌫̂1(1)i1. (6.22)

Equation (6.22) together with eq. (6.14) prove that eq. (6.10) is indeed true. In particular

it shows two things. First, the two Lyapunov exponents constructed from the moduli of

the complex eigenvalues of a product of 2⇥ 2 matrices independently and isotropically

distributed take deterministic values in the large t limit. Second, the deterministic

values of those Lyapunov exponents agree with those constructed from the singular

values. Both properties are true for quite general random matrix ensembles. The only

additional condition apart from the isotropy is the existence of the first moments of the

random variables |�
j

| and ln|z1j,2j|. The existence of these moments guarantees the

existence of the limits and the correctness of the calculation presented above.

Note that despite the general inequality

Tr⇧(t)⇧†(t) =
NX

j=1

s
j

(t) =
NX

j=1

R2
j

(t) +
X

1l<kN

|�
lk

|2 �
NX

j=1

R2
j

(t) (6.23)
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Figure 6. Scatter plots for product matrices of all three Dyson indices � = 1 (a),
� = 2 (b), and � = 4 (c). The large red crosses are the positions (± exp[ (�n/2)/2]
with n = 1, 2) of the incremental singular values at t ! 1. All three plots were
generated by Monte Carlo simulations of products of Ginibre matrices for N = 2 at
t = 5 (dark blue dots) and t = 500 (light green triangles) drawn from an ensemble size
1000. Note that only the case � = 2 develops an angular independent spectral density
while for � = 1 all eigenvalues will be eventually real as proved by Forrester [57]. For
� = 4 the dependence on the angle becomes non-trivial which we conjecture to be
sin2 '.

(which is equal if and only if the matrix is normal) the agreement of both kinds of

Lyapunov exponents does not immediately result in the statement that the matrix ⇧(t)

becomes normal in the large t limit. Considering the bound (6.20) we notice that the o↵-

diagonal element |�| may become exponentially large. Indeed one can easily construct

such a situation by setting |z1j|, |z2i| > 1 for all i, j. Therefore the way how we root the

matrices is crucial in the large t limit.

Two questions arise from our result. First, can we generalize our argument to

arbitrary matrix dimension N? To answer this we emphasize that our calculation

relies on the explicit, known relation between singular values and the components of

the generalized Schur decomposition, see eqs. (6.13) and (6.14), which can be indeed

extended to the cases N = 3, 4. Nevertheless we expect that there is a general argument.

Therefore we conjecture that the Lyapunov exponents of the moduli of the complex

eigenvalues and of the singular values are deterministic and agree with each other for

general isotropic ensembles.

Second, can we generalize our argument to the Dyson indices � = 1, 4, i.e. to the

product of real and quaternion Ginibre matrices? In the case � = 4 and N = 2 one can

show that we find a factorization of the probability densities similar to eq. (6.16) and

the same calculation can be done analogously. Therefore one can answer the question

positively in this case. The situation for general N is much more involved but we expect

that also there the Lyapunov exponents qualitatively behave the same as in the case

� = 2, only their positions may change and the angles of the complex eigenvalues will

not be uniformly distributed, see Fig. 6.c. Regarding the distribution of the angles we

expect that the density behaves as sin2 '. The reason is the macroscopic distance of the



Lyapunov exponents for products of Ginibre matrices 30

complex eigenvalues in the large t limit such that the repulsion between the eigenvalues

is suppressed. Only the repulsion of a complex conjugate pair will survive since the two

eigenvalues lie on the same circle.

The case � = 1 is as usual non-trivial. The matrices may have real eigenvalues

as well as complex conjugate pairs, see [54]. In the case N = 2 the situation with

a complex conjugate pair immediately yields that the eigenvalues condense on a fixed

ring equal to the square root of the determinant of the product matrix. Newman’s

argument for the singular values applies to all three Dyson indices � = 1, 2, 4 such

that the modulus of the determinant becomes deterministic (it is the product of the

singular values) and thus also the the moduli of the complex eigenvalue pairs. However

Forrester already showed [57] that in the large t limit almost all eigenvalues will be

real. The statistics of these real eigenvalues is still unclear because of the modulus of

the Vandermonde determinant. Hence, the probability densities of the single matrices

always remain coupled. Therefore we can conclude that the case � = 1 will not yield

the same result as � = 2 in the angular part of the distribution. But Fig. 6.a shows

that the radii still seem to condense at the positions of the singular values.

7. Conclusions

We presented a solvable case of an isotropic time evolution with evolution operators

being independent complex N ⇥N Ginibre matrices. The entire spectrum of Lyapunov

exponents, traditionally defined in terms of the singular values, was computed including

their positions (which are in agreement with [40, 41, 62, 42]), individual and the joint

probability distributions with their 1/t corrections in the large t limit. Surprisingly

the Lyapunov exponents which can analogously be constructed for the moduli of the

complex eigenvalues show exactly the same large t behavior. Thereby they do not only

condense on the same values as the Lyapunov exponents for the singular values but

also share the same variance and normal distribution around this value. Therefore we

understand this behavior as a universal property which is also expected for general

isotropic weights and general Dyson index � = 1, 2, 4.

The normal distributions with means  (n)/2 and variances  0(n)/(4t) are the

non-perturbative leading order correction to the deterministic values of the Lyapunov

exponents for t ! 1. They agree very well with finite t ⇡ 10N Monte Carlo

simulation for the moduli of the complex eigenvalues while for the singular values we

showed that the saddle point approximation of the inverse Fourier transform of the

moment generating function yields a better agreement for finite t. The reason is the

underlying structure involved in this problem. The joint probability distributions of

the singular values and of the complex eigenvalues are given by determinantal point

processes reflecting the level repulsion. In the large t limit this repulsion is suppressed

and a permanent remains in both cases. The convergence to this result is enhanced for

the eigenvalues by prefactors which are absent for the singular values. This shows that

the mechanism how the singular values and the eigenvalues approach their deterministic
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values  (n)/2 is di↵erent. Nonetheless they share a particular asymptotic expansion of

the Meijer G-function with large index and argument which is still at the heart of taking

the limit t ! 1.

The limiting angular dependence is uniform for � = 2. This behavior is in contrast

to the case for the product of real and quaternion Ginibre matrices. In the real case all

eigenvalues become real [57] while in the quaternion case the level density exhibits a

non-trivial angular dependence. Nevertheless we claim that the radii of the eigenvalues

will approach the same values as the singular values for all three Dyson indices and

general isotropic random matrix ensembles in the limit t ! 1. This is supported

by our numerical simulations as well as by a discussion of the case N = 2. We also

considered the case � = 4 for Ginibre matrices and found that the Lyapunov exponents

constructed from the moduli of the complex eigenvalues indeed take the limit  (2n)/2

derived for the Lyapunov exponents corresponding to the singular values [42].

Moreover, we showed that the triangular law for N ! 1 can be simply interpreted

as the radial distribution of the Ginibre ensemble of the limiting circular law. Thereby

we proved that the two limits t ! 1 and N ! 1 commute on the global scale of the

spectrum of the product matrix. This commutativity is not valid anymore on the local

scale. On the scale of the mean level spacing of the complex eigenvalues the limits by

taking N ! 1 first and then t ! 1 yield a level repulsion as found for a complex

Ginibre ensemble, i.e. P (�r)d�r ⇡ �r3d�r for �r ⌧ 1, see Refs. [59, 60]. Reversing

this order we find the level statistics of the harmonic oscillator for the radii squared.

Therefore one has to be careful on which scale of the spectrum one takes both limits.

We conjecture the existence of a non-trivial scale of a double scaling limit due to this

insight.
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Appendix A. Some identities for Meijer G-functions

Meijer G-functions are a broad class of special functions comprising most of the known

special functions. They are defined as the inverse Mellin transform of certain quotients

of products of gamma functions. We do not give their general definition, but we restrict

ourselves to a small subclass of Meijer G-functions which are used in our calculations.
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We consider Meijer G-functions of the following form given by an integral [63]

Gt, 0
0, t

��
a1,...,at

�� s
�
=

Z

C
�(a1 � u) . . .�(a

t

� u)su
du

2⇡ı
, (A.1)

over a contour C that goes from �ı1 to +ı1 leaving all poles of the Gamma functions

on the right hand side. The Mellin transform of this function is
Z 1

0

dssu�1Gt, 0
0, t

��
a1,...,at

�� s
�
= �(a1 � u) . . .�(a

k

� u) . (A.2)

Moreover Meijer G-functions fulfill the simple but useful identity

sbGt, 0
0, t

��
a1,...,at

�� s
�
= Gt, 0

0, t

��
b+a1,...,b+at

�� s
�
. (A.3)

which is needed several times in our calculations. This identity is a consequence of the

shift su ! su+b in the power in the integrand (A.3) which can be compensated by the

substitution u ! u� b.

Appendix B. Computation of the normalizing Hankel determinant

In order to be self contained we calculate the Hankel determinant appearing in eq.

(3.25),

det
1a,bN

[�(a+ b� 1)] =
NY

a=1

�2(a), (B.1)

which is a special case of a results by Normand [64]. We do this by applying Andreief’s

formula [65]

det
1a,bN

Z
dx�

a

(x) 
b

(x)

�
=

1

N !

Z
dx1 . . . dxN

det
1a,bN

[�
a

(x
b

)] det
1a,bN

[ 
a

(x
b

)] . (B.2)

Here {�
a

(x)} and { 
a

(x)}, a = 1, . . . , N are two sets of integrable functions of a real

variable.

The Gamma functions on the left hand side of (B.1) can be written as

�(a+ b� 1) =

Z 1

0

dx xa+b�2 exp(�x) =

Z 1

0

dx�
a

(x) 
b

(x), (B.3)

such that we identify �
a

(x) =  
a

(x) = xa�1 exp(�x/2) for x � 0, a = 1, . . . , N .

Andréief’s formula then yields

det
1a,bN

[�(a+ b� 1)] =
1

N !

Z
dx1 . . . dxN

✓
det

1a,bN

h
xa�1
b

exp
⇣
�x

b

2

⌘i◆2

. (B.4)

Due to the skew-symmetry of the determinant under permutations as well as its multi-

linearity the rows can be linearly combined without changing its value. The idea is to

combine them in such a way that after applying the Andréief integral again we have

to take a determinant of diagonal elements, only. The Laguerre polynomials in monic

normalization, denoted by

L
n

(x) =
nX

j=0

 
n

j

!
(�1)n�jn!

j!
xj, (B.5)
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will do the job. They are orthogonal with respect to the weight exp[�x]dx, i.e.
Z 1

0

dx exp[�x]L
a

(x)L
b

(x) = (a!)2�
ab

. (B.6)

Therefore we have

det
1a,bN

[�(a+ b� 1)] =
1

N !

Z
dx1 . . . dxN

✓
det

1a,bN

h
L
a�1(xb

) exp
⇣
�x

b

2

⌘i◆2

(B.7)

= det
1a,bN

Z 1

0

L
a�1(x)Lb�1(x) exp (�x)

�

=
N�1Y

a=0

(a!)2.

In the second line we employed eq. (B.2) and in the third line eq. (B.6). The last line

is nothing else than the claim (B.1).

In a similar way we want to calculate the cofactor of the Hankel determinant (3.25),

C
jl

= (�1)j+l det
1a,bN

a 6=j,b 6=l

[�(a+ b� 1)] , (B.8)

which appears in eq. (3.34). Also this determinant can be calculated via the Andréief

integral. For this purpose we introduce two integrals over the angles '1 and '2,

C
jl

= �
Z 2⇡

0

d'1

2⇡

Z 2⇡

0

d'2

2⇡
det

2

64

⇢Z 1

0

dx xa+b�2 exp(�x)

�

1a,bN

�
eı(a�j)'1

 
1aN�

eı(b�l)'2
 

1bN

0

3

75 .

(B.9)

We use the same trick again by rearranging the columns and rows such that we have

in the upper left block integrals over two Laguerre polynomials and thus a diagonal

matrix. An expansion in this diagonal matrix yields

C
jl

=
N�1Y

a=0

(a!)2
Z 2⇡

0

d'1

2⇡

Z 2⇡

0

d'2

2⇡
exp[ı([1� j]'1 + [1� l]'2)]

N�1X

k=0

L
k

(eı'1)L
k

(eı'2)

(k!)2
.

(B.10)

In the last step the two integrals, which factorize, can be performed and we find

C
jl

= (�1)j+l

N�1Y

a=0

(a!)2
N�1X

k=0

✓
k!

(j � 1)!(l � 1)!

◆2 1

�(k � j + 2)�(k � l + 2)
. (B.11)

Note that the function 1/�(z) is an entire function which is zero for negative semi-

definite integers. Therefore the sum is usually smaller than the boundary shown here,

i.e. its range is k = max{j, l}� 1, . . . , N � 1.
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Appendix C. Saddle point approximation of f
ab

(µ)

We consider the saddle point approximation of the inverse Fourier transform of the

moment generating function (3.11),

f
ab

(µ) =

Z +ı1

�ı1

d#

2⇡ı
exp[�µ#]M

ab

(#) (C.1)

=

Z +ı1

�ı1

d#

2⇡ı
exp[�µ#]

�t�1(b+ #/(2t))�(a+ b� 1 + #/(2t))

�t�1(b)�(a+ b� 1)
.

After rescaling #! 2t# the saddle point equation and its solution are

 (b+ #
b

(µ)) = 2µ ) #
b

(µ) =

Z 1

0

dy⇥(2µ�  (y))� b = #0(µ)� b, (C.2)

where ⇥ is the Heaviside function. In fact there are also other saddle points. However

only the solution #
b

(µ) = #0(µ)� b can be reached in the limit t ! 1. We perform the

saddle point expansion # = #0(µ)� b+ ı�#/
p
t and find

f
ab

(µ)
t�1⇡ 2

p
t�t�1(#0(µ))�(a� 1 + #0(µ)) exp[�2tµ(#0(µ)� b)]

�t�1(b)�(a+ b� 1)

⇥
Z +1

�1

d�#

2⇡
exp


� 

0(#0(µ))�#2

2

�

=

s
2t

⇡ 0(#0(µ))

�t�1(#0(µ))�(a� 1 + #0(µ))

�t�1(b)�(a+ b� 1)
exp[�2tµ(#0(µ)� b)]. (C.3)

This expression seems to factorize in a b and an a dependent part apart from the

constant prefactor 1/�(a + b � 1) but this is a misleading conclusion. The argument

µ also depends on the index b in the determinant (3.10). Therefore the level repulsion

corresponding to the determinant is still present in this particular approximation.
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RELATING THE BURES MEASURE TO THE CAUCHY

TWO-MATRIX MODEL

PETER J. FORRESTER AND MARIO KIEBURG

Abstract. The Bures metric is a natural choice in measuring the distance
of density operators representing states in quantum mechanics. In the past
few years a random matrix ensemble and the corresponding joint probability
density function of its eigenvalues was identified. Moreover a relation with the
Cauchy two-matrix model was discovered but never thoroughly investigated,
leaving open in particular the following question: How are the kernels of the
Pfaffian point process of the Bures random matrix ensemble related to the
ones of the determinantal point process of the Cauchy two-matrix model and
moreover, how can it be possible that a Pfaffian point process derives from a
determinantal point process? We give a very explicit answer to this question.
The aim of our work has a quite practical origin since the calculation of the
level statistics of the Bures ensemble is highly mathematically involved while
we know the statistics of the Cauchy two-matrix ensemble. Therefore we solve
the whole level statistics of a density operator drawn from the Bures prior.

MSC 2010: 33-XX, 60B20
Keywords: randommatrix theory, skew-orthogonal polynomials, Meijer G-function,
Bures measure, Cauchy two-matrix model, determinantal point process, Pfaffian
point process

1. Introduction

The measuring and estimation of the distance between a density operator ρexp
assumed after a finite number of experiments and the true quantum state ρtrue
is an intrinsically hard task [63]. It becomes even harder since the metric on the
set of quantum states is not uniquely determined by the standard conditions that
a density operator ρ has to be positive definite, Hermitian and the trace is equal
to one (tr ρ = 1). Imposing additional conditions onto the metric restricts this
ambiguity. The Bures metric [27],

D(ρ1, ρ2) =

√
2− 2tr

√√
ρ1ρ2

√
ρ1 =

√
2− 2tr

√√
ρ2ρ1

√
ρ2, (1.1)

plays a distinguished role since it is the only metric which is also monotone, Fisher-
adjusted, Fubini-Study-adjusted, and Riemannian, see Ref. [67] for a clear explana-
tion of these notions. One important application of the Bures metric is to define a
geometric quantum discord measuring the strength of quantum correlations. Some
recent works on this topic are Refs. [1, 21, 28, 36, 38, 56, 58, 62, 69].

The property that the Bures metric is Riemannian is particularly important
for the application of random matrix theory. The Riemannian length element can
be obtained by considering the distance between an N × N dimensional density
operator ρ with eigenvalues z = diag(z1, . . . , zN) ∈ [0, 1]N and its infinitesimal

1
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neighbour ρ+ dρ yielding [39, 40]

ds2 = [D(ρ, ρ+ dρ)]2 =
1

2

N∑

i,j=1

dρ2ij
zi + zj

. (1.2)

The joint probability density of the eigenvalues of ρ is then [37]

p(N,a,fixed)(z) ∝ δ



1−
N∑

j=1

zj




N∏

j=1

zaj
∏

1≤i<j≤N

(zj − zi)2

zj + zi
, (1.3)

where the case a = −1/2 corresponds to a full rank. When considering density
operators of rank M ≤ N the exponent is a = −1/2 + N −M , see Ref. [67]. The
latter case becomes important when measuring the separability of qubits and qutrits
(systems of two and three quantum states) on hyperareas in the set of quantum
states [64, 65].

We remark that the joint probability density (1.3) can be interpreted as a log-
gas with the pair-interaction exp[2ln|zi − zj| − ln|zi + zj|]. This interpretation
has been successfully applied in [19] to calculate the distribution of the purity

Σ2 = tr ρ2 =
∑N

j=1 z
2
j in the limit of large N .

The authors of Ref. [57] showed that the ensemble of density operators of dimen-
sion N ×N with rank M ≤ N distributed via the Bures measure can be generated
by the random matrix1

ρ =
A(1 + U)(1 + U †)A†

tr(1 + U)AA†(1 + U †)
, (1.4)

where the complex N × M matrix A is distributed by a Gaussian and the uni-
tary M × M matrix U by the Haar-measure on the unitary group U(M) with
the prefactor |det(1 + U)|2(N−M). This approach connects the Bures measure
with another topic in random matrix theory, namely product matrices. Quite
recently there is a revival of interest in product matrices due to breakthroughs
in the approach of asymptotic freeness and of integrable structures, with the lat-
ter applying at finite matrix dimension N and finite number of matrices multi-
plied. This allowed the study of the singular values and the eigenvalues for fi-
nite matrix size as well as in particular limits for all three Dyson indices β =
1, 2, 4 corresponding to real, complex and quaternion matrices, respectively, see
Refs. [8, 5, 32, 33, 48, 49, 55, 4, 42, 72, 70, 22, 25, 3, 26, 24, 23, 41, 6, 59, 54]. Even
the convergence properties of Lyapunov exponents for a product of infinitely many
matrices can now be studied in detail exhibiting interesting scaling limits [31, 9].
Additionally, interesting relations to the distributions which have the combinatorial
series of the Fuß-Catalan numbers, the Raney numbers and their generalizations as
their moments [68, 59, 34, 9, 54] have arisen. Exactly this relation was recently em-
ployed to calculate the level density for a generalized version of the Bures measure
[53].

One particular limit is on the local scale of the mean level spacing at the hard
edge, which is also known as the microscopic limit since it is the scale of the smallest
eigenvalues around the origin. It was shown that product matrices show a different

1Note that in Ref. [57] the order of the product is the other way around since the non-zero
eigenvalues do not depend on this order. However in their order the density operator has full rank
because the generic zero modes are chopped off.
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universal behaviour than the chiral Gaussian random matrix ensembles. The eigen-
values and singular values are no longer described by the Bessel kernel but by Meijer
G-functions which seem to also hold for a larger class of random matrix ensembles
[3, 4, 33, 48, 49, 55]. Exactly the same questions about the level statistics can be
asked for density operators distributed via the Bures measure. Are those operators
also in the universality class given by Meijer G-functions? Indeed this question is
legitimate since another random matrix ensemble, namely the Cauchy two-matrix
model [14], also exhibits a Meijer G-kernel at the hard edge [16], and is also known
to involve products of random matrices [33]. Interestingly, [14] contains a relation
between a particular kind of a Cauchy two-matrix model and the Bures ensemble.
This relation was not worked out in detail since only the normalization constants
of both ensembles were considered. Thus the question is if the Cauchy two-matrix
model and the Bures prior have more in common than the normalization. This was
raised in [14]: “The relationship between the two model does not seem to go much
further in the sense that there is no direct and simple relationship between the corre-
lation functions of the two models. It seems, however, that some connection should
be present and is worth exploring. We leave it as an open problem to establish a
connection between these two models on the level of the correlation functions.” Here
we solve this open problem by expressing the correlation kernels for Bures measure
in terms of those for the Cauchy two-matrix model. Thus we have an analytical for-
mula for all eigenvalue statistics, and in particular for the eigenvalue density of the
density operators at finite matrix dimension N . One consequence, to be explored
in a subsequent work, is thus corresponding analytical formulae for moments of the
eigenvalue density. Existing studies relating to this topic are restricted to numerical
computations in the N = 3 case [66], with a number of exact results conjectured.

The joint probability distribution of the eigenvalues we are considering is not
exactly the one of the Bures measure (1.3) but the Fourier-Laplace transform of it,

p(N,a,B)(z) ∝
N∏

j=1

zaj e
−zj

∏

1≤i<j≤N

(zj − zi)2

zj + zi
, (1.5)

where a > −1 and each zν ≥ 0. Despite this fact we call the random matrix en-
semble corresponding to this distribution the Bures ensemble, too. It is exactly
the distribution (1.5) which is directly related to the Cauchy two-matrix ensemble.
This relation is remarkable since the Cauchy two-matrix model is a determinantal
point process corresponding to bi-orthogonal polynomials [15] (all important facts
will be recall in section 2) while the joint probability distribution (1.5) forms a Pfaf-
fian point process (see e.g. [30, Ch. 6]) due to Schur Pfaffian identity (see e.g. [43]).
As is well known from the study of the Hilbert-Schmidt measure in the context of
quantum density matrices, the imposition of the Dirac delta function in mapping
from the correlations for Eq. (1.5) to those for the original Bures measure (1.3) re-
quires coupling of the Pfaffian structure at finite N to an auxiliary scaling variable
multiplying each eigenvalue, which in turn is subject to a Fourier-Laplace transform
(see e.g. [50, Eq. (2.28)]). Although not pursued in the present work, again results
for the Hilbert-Schmidt measure [50] lead us to expect that the local spectral sta-
tistics should be the same due to universality. Furthermore, the joint probability
density (1.5) is interesting on its own since it can be also found in a completely
different topic. In two-dimensional quantum gravity p(N,a,B)(z) is related to the
O(N) vector model, see [47].
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The determinantal point process of the Cauchy two-matrix model is recalled in
section 2. Thereby we also calculate the average of ratios and products of charac-
teristic polynomials of the two matrices which was not done before. This derivation
is analogous to the computations in [11, 18, 45, 71]. On first sight it seems to be
impossible to marry the kernels of the Bures ensemble with the Cauchy two-matrix
model. We show in section 3 that this is nonetheless possible because of the par-
ticular form of the joint probability density. Pursing this approach we are able to
express all kernels of the Bures ensemble in terms of the kernels for the Cauchy
two-matrix model which were already derived in Refs. [14, 15, 16].

In section 5 we summarize and briefly discuss our results. In the appendices we
present the details of our proofs.

2. Recalling the Cauchy two-matrix model

Since the Cauchy two-matrix model, introduced in Ref. [14], plays a crucial role
we want to recall relevant known facts. The general Cauchy two-matrix ensemble
is a measure on two N×N positive definite Hermitian matrices M1,M2 distributed
by

P (C)(M1,M2) =
exp[−N(V1(M1) + V2(M2) + tr ln(M1 +M2))]∫

d[M1]
∫
d[M2] exp[−N(V1(M1) + V2(M2))−Ntr ln(M1 +M2)]

,

(2.1)

where d[M1] and d[M2] are the products of differentials of the real independent
matrix entries of M1 and M2, respectively. The functions V1, V2 are referred
to as potentials. For the special choice exp[−NV1(M)] = deta M exp[−trM ],
exp[−NV2(M)] = detb M exp[−trM ], the corresponding joint probability density
of the eigenvalues of M1 and M2 takes the form

p(N,a,b,C)(x, y) ∝
∏N

j=1 x
a
j e

−xjybje
−yj

∏
1≤j<k≤N (xk − xj)2(yk − yj)2

∏N
j=1

∏N
k=1(xj + yk)

. (2.2)

It enjoys a number of special integrability properties [16], culminating in the explicit
evaluation of the joint hard edge correlation function.

In subsection 2.1, we introduce general partition functions for the Cauchy two-
matrix ensemble as the integral over products and ratios of characteristic polyno-
mials weighted by the joint probability density (2.2). Starting from these partition
functions we recall the bi-orthogonal polynomials, their Cauchy transforms, and
some other transforms employed in Ref. [14, 15, 16], in subsection 2.2. These
polynomials together with partition functions comprising of only two characteristic
polynomials (presented in subsection 2.3) build the kernels of the determinantal
point process which the Cauchy two-matrix model obeys. Eventually we exhibit
the explicit form of the (k, l)-point correlation function of the joint probability den-
sity (2.2) in subsection 2.4. When presenting these known results we briefly sketch
their derivation to make our work self-contained, particularly introducing our no-
tation and the normalization which slightly differs from the one in Ref. [14, 15, 16].

2.1. Setting of the Cauchy two-matrix model. Generalised partition functions
with ratios of characteristic polynomials play a crucial role when analyzing spectral
statistics, see [11, 18, 44, 45, 46, 71] for the computations of those averages for some
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ensembles. This is also true for the Cauchy two-matrix ensemble whose partition
function may consist of four sets of characteristic polynomials

Z(N,a,b,C)
k1|l1;k2|l2

(κ1,λ1;κ2,λ2) :=
1

(N !)2

∫

R2N
+

∆2
N (x)∆2

N (y) d[x]d[y]
∏N

i,j=1(xi + yj)

×
N∏

j=1

(
xa
j y

b
je

−xj−yj

∏l1
i=1(xj − λ1,i)

∏l2
i=1(yj − λ2,i)∏k1

i=1(xj − κ1,i)
∏k2

i=1(yj − κ2,i)

)
.

(2.3)

Here the variables κ1 = diag(κ1,1, . . . ,κ1,k1
) and κ2 = diag(κ2,1, . . . ,κ2,k2

) do not
lie on the positive real line while λ1 = diag(λ1,1, . . . ,λ1,l1) and λ2 = diag(λ2,1, . . . ,λ2,l2)
can be arbitrary complex numbers. Moreover we have used the Vandermonde de-
terminant

∆N (u) =
∏

1≤i<j≤N

(uj − ui) = det[ub−1
a ]1≤a,b,≤N (2.4)

which is one part of the Jacobian from diagonalizing the matrices M1 and M2.
The notation of the indices of the partition function (2.3) is reminiscent of the one
used in the supersymmetry approach applied to random matrix theory, see Ref. [13,
45], namely this kind of partition function is intimately related to supersymmetry.
Moreover the prefactor 1/(N !)2 normalizes the partition function such that it is
equivalent to one for an ordered set of variables x1 ≤ x2 ≤ . . . ≤ xN and y1 ≤ y2 ≤
. . . ≤ yN . However such an ordering is often quite inconvenient for calculations so
we consider the integral without an ordering. The measures d[x] = dx1dx2 · · · dxN

and d[y] = dy1dy2 · · · dyN are the products of the differentials of the variables x
and y.

Let us consider some particular cases of these partition functions. The case
k1 = k2 = l1 = l2 = 0 yields the normalization constant of the joint probability
density (2.2),

Z(N,a,b,C)
0|0;0|0 = det

[∫

R2
+

dxdy
xa+i−1yb+j−1e−x−y

x+ y

]

1≤i,j≤N

=
N∏

j=1

[(j − 1)!]2Γ[a+ j]Γ[b+ j]Γ[a+ b+ j]

Γ[a+ b+N + j]
, (2.5)

see Ref. [14]. This result can be obtained by applying Andréief’s integration theo-
rem [10] and evaluating the determinant.

2.2. Bi-orthogonal polynomials of the Cauchy two-matrix model. The two
kinds of bi-orthogonal polynomials can be calculated with the help of these par-
tition functions, since they correspond to the averaged characteristic polynomials
for the variables {xi} and {yj}. These are the cases (k1|l1; k2|l2) = (0|1; 0|0) and
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(k1|l1; k2|l2) = (0|0; 0|1) and yield the polynomials in monic normalization [17]

p(a,b)n (x) = (−1)n
Z(n,a,b,C)
0|1;0|0 (x)

Z(n,a,b,C)
0|0;0|0

=

det

[ ∫

R2
+

dx′dy
x′a+i−1yb+j−1e−x′−y

x′ + y
xi−1

]

1≤i≤n+1
1≤j≤n

det

[∫

R2
+

dxdy
xa+i−1yb+j−1e−x−y

x+ y

]

1≤i,j≤n

=
n∑

j=0

(−1)n−j

(
n
j

)
Γ(a+ b+ n+ j + 1)Γ(a+ b+ n+ 1)Γ(a+ n+ 1)

Γ(a+ b+ 2n+ 1)Γ(a+ b+ j + 1)Γ(a+ j + 1)
xj

= (−1)n
(a+ b + 1)n(a+ 1)n
(a+ b+ n+ 1)n

2F2

(
−n, a+ b+ n+ 1

a+ b+ 1, a+ 1

∣∣∣∣x
)
,

(2.6)

and

p̃(a,b)n (y) = (−1)n
Z(n,a,b,C)
0|0;0|1 (y)

Z(n,a,b,C)
0|0;0|0

= (−1)n
(a+ b+ 1)n(b + 1)n
(a+ b+ n+ 1)n

2F2

(
−n, a+ b+ n+ 1

a+ b+ 1, b+ 1

∣∣∣∣ y
)
.

(2.7)

Both polynomials can be derived by applying a generalized version of Andréief’s
integration theorem [45, 10] and then expanding and evaluating the determinant.
These steps are illustrated in lines two and three of (2.6). This calculation was per-
formed in Ref. [16]. The functions pFq are the generalized hypergeometric functions
given by [35]

pFq

(
a1, · · · , ap
b1, · · · , bq

∣∣∣∣ z
)

=
∞∑

j=0

∏p
l=1(al)j∏q
l=1(bl)j

zj

j!
(2.8)

with

(a)j =
j−1∏

l=0

(a+ l) =
Γ(a+ j)

Γ(a)
(2.9)

the Pochhammer symbol. The polynomials (2.6) and (2.7) are bi-orthogonal with
respect to the weight g(a,b,C)(x, y) = xayb exp[−x− y]/(x+ y),

∫

R2
+

dxdy g(a,b,C)(x, y)p(a,b)n (x)p̃(a,b)l (y) =
Z(n+1,a,b,C)
0|0;0|0

Z(n,a,b,C)
0|0;0|0

δnl

=
[n!]2Γ[a+ n+ 1]Γ[b+ n+ 1](Γ[a+ b+ n+ 1])2

Γ[a+ b+ 2n+ 2]Γ[a+ b + 2n+ 1]
δnl.

(2.10)
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Another particularly helpful representation of the bi-orthogonal polynomials is in
terms of Meijer G-functions [35],

Gm,n
p,q

(
a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

∣∣∣∣ z
)
=

∫

C

ds

2πı

zs
m∏
j=1

Γ(bj − s)
n∏

j=1
Γ(1 − aj + s)

q∏
j=m+1

Γ(1− bj + s)
p∏

j=n+1
Γ(aj − s)

,

(2.11)

where the contour C goes from −ı∞ to +ı∞ and lets the poles of Γ(bj − s) on the
right side of the path while the poles of Γ(1−aj+s) are on the left side. Since each
generalized hypergeometric function is a Meijer G-function the polynomials (2.6)
and (2.7) are

p(a,b)n (x) = (−1)n
n!Γ(a+ b+ n+ 1)Γ(a+ n+ 1)

Γ(a+ b+ 2n+ 1)
G1,1

2,3

(
−a− b− n;n+ 1

0;−a,−a− b

∣∣∣∣ x
)
,

p̃(a,b)n (y) = (−1)n
n!Γ(a+ b+ n+ 1)Γ(b+ n+ 1)

Γ(a+ b+ 2n+ 1)
G1,1

2,3

(
−a− b− n;n+ 1

0;−b,−a− b

∣∣∣∣ y
)
,

(2.12)

cf. Ref. [16].
The Cauchy-transform of these polynomials frequently appear, too. They are

proportional to the partition functions with the indices (k1|l1; k2|l2) = (1|0; 0|0)
and (k1|l1; k2|l2) = (0|0; 1|0),

C[p̃](a,b)n (x) = (−1)n
Z(n,a,b,C)
1|0;0|0 (x)

Z(n,a,b,C)
0|0;0|0

=

det

[ ∫

R2
+

dx′dy′
x′a+j−1y′b+i−1e−x′−y′

x′ + y′

∫

R2
+

dx′dy′
x′ay′b+i−1e−x′−y′

(x− x′)(x′ + y′)

]

1≤i≤n
1≤j≤n−1

det

[∫

R2
+

dx′dy′
x′a+i−1y′b+j−1e−x′−y′

x′ + y′

]

1≤i,j≤n

=
Γ[a+ b+ 2n]

[(n− 1)!]2Γ[a+ n]Γ[b+ n]Γ[a+ b + n]

∫

R2
+

dx′dy′
x′ay′be−x′−y′

(x− x′)(x′ + y′)
p̃(a,b)n−1 (y

′),

(2.13)

and

C[p](a,b)n (y) = (−1)n
Z(n,a,b,C)
0|0;1|0 (y)

Z(n,a,b,C)
0|0;0|0

=
Γ[a+ b+ 2n]

[(n− 1)!]2Γ[a+ n]Γ[b+ n]Γ[a+ b+ n]

∫

R2
+

dx′dy′
x′ay′be−x′−y′

(y − y′)(x′ + y′)
p(a,b)n−1 (x

′),

(2.14)
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with x, y /∈ R+. In Ref. [16] it was shown that the integral over y′ for C[p̃](a,b)n and

x′ for C[p](a,b)n is equal to a Meijer G-function, too, such that

C[p̃](a,b)n (x) =
(−1)n(a+ b+ 2n− 1)

(n− 1)!Γ[a+ n]

∫

R+

dx′ x′a

x′ − x
G2,1

2,3

(
−a− n+ 1;n+ b

0, b;−a

∣∣∣∣x
′

)
,

C[p](a,b)n (y) =
(−1)n(a+ b+ 2n− 1)

(n− 1)!Γ[b+ n]

∫

R+

dy′
y′b

y′ − y
G2,1

2,3

(
−b− n+ 1;n+ a

0, a;−b

∣∣∣∣ y
′

)
.

(2.15)

Also the remaining integrals can be performed by using the following four remark-
able properties of Meijer G-functions [60]

zγGm,n
p,q

(

a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣

∣

∣

∣

z

)

= Gm,n
p,q

(

a1 + γ, . . . , an + γ; an+1 + γ, . . . , ap + γ

b1 + γ, . . . , bm + γ; bm+1 + γ, . . . , bq + γ

∣

∣

∣

∣

z

)

,

Gm,n
p,q

(

a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣

∣

∣

∣

z

)

= Gn,m
q,p

(

1− b1, . . . , 1− bm; 1− bm+1, . . . , 1− bq
1− a1, . . . , 1− an; 1− an+1, . . . , 1− ap

∣

∣

∣

∣

1
z

)

,

∫

∞

0

dz′

z′
Gm,n

p,q

(

a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣

∣

∣

∣

z

z′

)

Gm′,n′

p′,q′

(

a′

1, . . . , a
′

n′ ; a′

n′+1, . . . , a
′

p′

b′1, . . . , b
′

m′ ; b′m′+1
, . . . , b′q′

∣

∣

∣

∣

∣

z′

)

= Gm+m′ ,n+n′

p+p′,q+q′

(

a1, . . . , an, a
′

1, . . . , a
′

n′ ; an+1, . . . , ap, a
′

n′+1, . . . , a
′

p′

b1, . . . , bm, b′1, . . . , b
′

m′ ; bm+1, . . . , bq, b′m′+1
, . . . , b′q′

∣

∣

∣

∣

∣

z

)

,

Gm,n+1

p+1,q+1

(

a1, . . . , an, c; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq, c

∣

∣

∣

∣

z

)

= Gm,n
p,q

(

a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣

∣

∣

∣

z

)

(2.16)

and the identification for a special case of a Meijer G-function

G1,1
1,1

(
0

0

∣∣∣∣ z
)

=
1

1 + z
. (2.17)

Then the Cauchy transforms of the polynomials are also Meijer G-functions

C[p̃](a,b)n (x) =
(−1)n+1(a+ b+ 2n− 1)

(n− 1)!Γ[a+ n]
G3,1

2,3

(
−n;n+ a+ b− 1

−1, a− 1, a+ b− 1

∣∣∣∣− x

)
,

C[p](a,b)n (y) =
(−1)n+1(a+ b+ 2n− 1)

(n− 1)!Γ[b+ n]
G3,1

2,3

(
−n;n+ a+ b− 1

−1, b− 1, a+ b− 1

∣∣∣∣− y

)
.

(2.18)

When replacing x → x + ıε and y → y + ıε with x, y ∈ R+ and taking the
imaginary part of the Cauchy transform in the limit ε → 0 we recover the result of
Ref. [16],

1

π
lim
ε→0

Im C[p̃](a,b)n (x+ ıε)

= −
Γ[a+ b+ 2n]

[(n− 1)!]2Γ[a+ n]Γ[b+ n]Γ[a+ b+ n]

∫

R+

dy′
xay′be−x−y′

x+ y′
p̃(a,b)n−1 (y

′)

=
(−1)n(a+ b+ 2n− 1)

(n− 1)!Γ[a+ n]
xaG2,1

2,3

(
−a− n+ 1;n+ b

0, b;−a

∣∣∣∣ x
)
,
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1

π
lim
ε→0

Im C[p](a,b)n (y + ıε)

= −
Γ[a+ b+ 2n]

[(n− 1)!]2Γ[a+ n]Γ[b+ n]Γ[a+ b+ n]

∫

R+

dx′ x
′aybe−x′−y

x′ + y
p(a,b)n−1 (x

′)

=
(−1)n(a+ b+ 2n− 1)

(n− 1)!Γ[b+ n]
ybG2,1

2,3

(
−b− n+ 1;n+ a

0, a;−b

∣∣∣∣ y
)
.

(2.19)

We show in subsection 3.2 that the expressions in terms of Meijer G-functions will
carry over to the Bures ensemble as well.

2.3. Determinantal point process of the Cauchy two-matrix model. In
general the partition function (2.3) gives rise to a determinantal point process (see
Refs. [17, 45] for general ensembles corresponding to bi-orthogonal polynomials) and
can be expressed in terms of partition functions with one and two characteristic
polynomials only. Assuming that N + l1 − k1 = N + l2 − k2 = Ñ > 1, and
κ1,κ2,λ1,λ2 pairwise different then we have

Z(N,a,b,C)
k1|l1;k2|l2

(κ1,λ1;κ2,λ2) =
(−1)k1(k1−1)/2+k2(k2−1)/2+l1l2Z(Ñ,a,b,C)

0|0;0|0

Bk1|l1(κ1;λ1)Bk2|l2(κ2;λ2)
(2.20)

× det





Z(Ñ+1,a,b,C)
1|0;1|0 (κ1,i;κ2,j)

Z(Ñ,a,b,C)
0|0;0|0

1

κ1,i − λ1,j

Z(Ñ,a,b,C)
1|1;0|0 (κ1,i,λ1,j)

Z(Ñ,a,b,C)
0|0;0|0

1

κ2,j − λ2,i

Z(Ñ,a,b,C)
0|0;1|1 (κ2,j ,λ2,i)

Z(Ñ,a,b,C)
0|0;0|0

−
Z(Ñ−1,a,b,C)
0|1;0|1 (λ1,j ;λ2,i)

Z(Ñ,a,b,C)
0|0;0|0





,

where the indices are 1 ≤ i ≤ k1 in the first rows and 1 ≤ i ≤ l2 in the last
rows and 1 ≤ j ≤ k2 in the first columns and 1 ≤ j ≤ l1 in the last ones. Recall
that κ1,j,κ2,j ∈ C \ R+ for each j = 1, 2, . . . We employed the mixed Cauchy-
Vandermonde determinant [12, 45]

Bk|l(κ;λ) =
∆k(κ)∆l(λ)∏k

i=1

∏l
j=1(κi − λj)

=






(−1)l(l−1)/2 det

[ {
1

κa − λb

}

1≤a≤k
1≤b≤l

{
κb−1
a

}
1≤a≤k

1≤b≤k−l

]
, k ≥ l,

(−1)k(k−1)/2 det

[ {
λb−1
a

}
1≤a≤l

1≤b≤l−k

{
1

κb − λa

}

1≤a≤l
1≤b≤k

]
, k ≤ l.

(2.21)

This determinant plays a crucial role in the theory of supermatrices [13].
We underline that the case k1 = l1 = k and k2 = l2 = l is important when

calculating the (k, l)-point correlation function of the Cauchy two-matrix model,
see subsection 2.4. Another important case of the partition function is when k1 =
k2 = k and l1 = l2 = l which is needed in subsection 3.2 to invert the relation
between the Bures ensemble and the Cauchy two-matrix ensemble.

The general case of k1, k2, l1 and l2 arbitrary can be obtained by sending some
of the variables κ1,κ2,λ1,λ2 to infinity. Then one also finds the bi-orthogonal
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polynomials (2.6) and (2.7) and their Cauchy transform (2.13) and (2.14) in the
determinant after applying l’Hospital’s rule and making use of the skew-symmetry
of the determinant under permutation of rows and columns.

Let us look at the two-point partition functions in the kernels of the determi-
nant (2.20) in detail. All four kernels can be expressed in terms of integrals over the
bi-orthogonal polynomials and their Cauchy-transform and thus in terms of Meijer
G-functions,

Z(N−1,a,b,C)
0|1;0|1 (λ1;λ2)

Z(N,a,b,C)
0|0;0|0

= −

det





∫

R2
+

dxdy
xa+i−1yb+j−1e−x−y

x+ y
λi−1
1

λj−1
2 0





1≤i,j≤N

det
[∫

R2
+

dxdy xa+i−1yb+j−1e−x−y

x+y

]

1≤i,j≤N

=
N−1∑

i,j=0

Γ[a+ b + i+N + 1](−λ1)i

i!(N − i− 1)!Γ[a+ b+ i+ 1]Γ[a+ i+ 1]

×
Γ[a+ b+ j +N + 1](−λ2)j

j!(N − j − 1)!Γ[a+ b+ j + 1]Γ[b+ j + 1]

1

a+ b+ j + i+ 1

=

∫ 1

0
dtta+bG1,1

2,3

(
−N − a− b;N

0;−a,−a− b

∣∣∣∣ tλ1

)
G1,1

2,3

(
−N − a− b;N

0;−b,−a− b

∣∣∣∣ tλ2

)

(2.22)

for the average of two characteristic polynomials in the numerator (cf. Ref. [16]),

1

κ− λ

Z(N,a,b,C)
1|1;0|0 (κ,λ)

Z(N,a,b,C)
0|0;0|0

=

det





∫

R2
+

dxdy
xa+i−1yb+j−1e−x−y

x+ y
λi−1

∫

R2
+

dxdy
xayb+j−1e−x−y

(κ− x)(x+ y)
1

κ− λ





1≤i,j≤N

det
[∫

R2
+

dxdy xa+i−1yb+j−1e−x−y

x+y

]

1≤i,j≤N

=
1

κ− λ
−
∫

R2
+

dxdy
xaybe−x−y

(κ− x)(x + y)

Z(N−1,a,b,C)
0|1;0|1 (λ; y)

Z(N,a,b,C)
0|0;0|0

=
1

κ− λ
+

∫ 1

0
dtG1,1

2,3

(
−N − a− b;N

0;−a,−a− b

∣∣∣∣ tλ
)
G3,1

2,3

(
−N ;N + a+ b

0, a, a+ b

∣∣∣∣− tκ

)

(2.23)

and analogously

1

κ− λ

Z(N,a,b,C)
0|0;1|1 (κ,λ)

Z(N,a,b,C)
0|0;0|0

=
1

κ− λ
+

∫ 1

0
dtG3,1

2,3

(
−N ;N + a+ b

0, b, a+ b

∣∣∣∣− tκ

)
G1,1

2,3

(
−N − a− b;N

0;−b,−a− b

∣∣∣∣ tλ
)

(2.24)
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for the partition function with one characteristic polynomial in the numerator and
one in the denominator, and

Z(N+1,a,b,C)
1|0;1|0 (κ1;κ2)

Z(N,a,b,C)
0|0;0|0

=

det





∫

R2
+

dxdy
xa+i−1yb+j−1e−x−y

x+ y

∫

R2
+

dxdy
xa+i−1ybe−x−y

(κ2 − y)(x+ y)
∫

R2
+

dxdy
xayb+j−1e−x−y

(κ1 − x)(x+ y)

∫

R2
+

dxdy
xaybe−x−y

(κ1 − x)(κ2 − y)(x+ y)





1≤i,j≤N

det
[∫

R2
+

dxdy xa+i−1yb+j−1e−x−y

x+y

]

1≤i,j≤N

=

∫

R2
+

dxdy
xaybe−x−y

(κ1 − x)(κ2 − y)(x+ y)
−

N−1∑

j=0

(a+ b+ 2j + 1)

×G3,1
2,3

(
−j − 1; j + a+ b

−1, a− 1, a+ b− 1

∣∣∣∣− κ1

)
G3,1

2,3

(
−j − 1; j + a+ b− 1

−1, b− 1, a+ b− 1

∣∣∣∣− κ2

)

=

∫

R2
+

dxdy
xaybe−x−y

(κ1 − x)(κ2 − y)(x+ y)
− (−1)a+bκa

1κ
b
2

×
∫ 1

0
dt

[
G3,1

2,3

(
−a−N ;N + b

0,−a, b

∣∣∣∣− tκ1

)
G3,1

2,3

(
−b−N ;N + a

0,−b, a

∣∣∣∣− tκ2

)

−G3,1
2,3

(
−a; b

0,−a, b

∣∣∣∣− tκ1

)
G3,1

2,3

(
−b; a

0,−b, a

∣∣∣∣− tκ2

)]

(2.25)

for two characteristic polynomials in the denominator. The last term can be derived
by writing the Meijer G-function as contour integrals, see Eq. (2.11), and employing
the identity

N−1∑

j=0

(a+ b+ 2j + 1)
Γ[j + u+ 2]Γ[j + v + 2]

Γ[j + a+ b− u]Γ[j + a+ b− v]
=

1

3− a− b + u+ v

×
[

Γ[N + u+ 2]Γ[N + v + 2]

Γ[N + a+ b− u− 1]Γ[N + a+ b− v − 1]
−

Γ[u+ 2]Γ[v + 2]

Γ[a+ b− u− 1]Γ[a+ b− v − 1]

]
,

(2.26)

which is based on Lemma 4.1 of Ref. [16] and can be proven by taking the difference
of the sum for N = k and N = k−1 and showing that both sides are the same. For
the other results we used the same integral identities (2.16) as for the polynomials.

We emphasize that the results (2.22-2.25) are similar to but not exactly the
same as the ones in Ref. [16] where the Cauchy-transforms were not calculated.
The transforms presented in Ref. [16] can be found by choosing κj → κj + Ljıε
(j = 1, 2) in the limit ε → 0 with κj ∈ R+ and Lj = ±1. Taking the differences of
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the results for L1 = +1 and L1 = −1 and the same for for L2 we find

−
1

2πı

∑

L1=±1

L1

κ1 + L1ıε− λ

Z(N,a,b,C)
1|1;0|0 (κ1 + L1ıε,λ)

Z(N,a,b,C)
0|0;0|0

= δ(κ1 − λ)− κa+b
1

∫ 1

0
dtta+bG1,1

2,3

(
−N − a− b;N

0;−a,−a− b

∣∣∣∣ tλ
)

×G3,1
2,2

(
−N − a− b;N

0,−b;−a− b

∣∣∣∣ tκ1

)
, (2.27)

and

−
1

2πı

∑

L2=±1

L1

κ2 + L2ıε− λ

Z(N,a,b,C)
0|0;1|1 (κ2 + L2ıε,λ)

Z(N,a,b,C)
0|0;0|0

= δ(κ2 − λ)− κa+b
2

∫ 1

0
dtta+bG3,1

2,2

(
−N − a− b;N

0,−a;−a− b

∣∣∣∣ tκ2

)

×G1,1
2,3

(
−N − a− b;N

0;−b,−a− b

∣∣∣∣ tλ
)
, (2.28)

for the two kernels of the off-diagonal blocks and

−
1

(2π)2

∑

L1,L2=±1

L1L2

Z(N+1,a,b,C)
1|0;1|0 (κ1 + L1ıε;κ2 + L2ıε)

Z(N,a,b,C)
0|0;0|0

=
κa
1κ

b
2e

−κ1−κ2

κ1 + κ2
− κa

1κ
b
2

N−1∑

j=0

(a+ b+ 2j + 1)

×G2,1
2,3

(
−a− j; j + b+ 1

0, b;−a

∣∣∣∣ κ1

)
G2,1

2,3

(
−b− j; j + a+ 1

0, a;−b

∣∣∣∣κ2

)

=
κa
1κ

b
2

κ1 + κ2
− κa

1κ
b
2

×
∫ 1

0
dtG2,1

2,3

(
−a−N ;N + b

0, b;−a

∣∣∣∣ tκ1

)
G2,1

2,3

(
−b−N ;N + a

0, a;−b

∣∣∣∣ tκ2

)

(2.29)

which is up to the prefactor −κa
1κ

b
2 the kernel K(N)

11 in Ref. [16]. To obtain the
equality of Eq. (2.29) we have to notice that the second term of Eq. (2.26) yields

the Meijer G-function G1,0
0,1

(
−
0;−

∣∣∣κ1t
)
= e−κ1t and the same for κ2. The integral

over t yields two terms such that it is correct that the first term of the second
equality in Eq. (2.29) does not contain an exponential function.

2.4. Correlation functions of the Cauchy two-matrix model. We now come
to the eigenvalue correlation functions of the Cauchy two-matrix model after having
recalled the results for the partition functions. Here, we emphasize that there
are two definitions of the (k, l)-point correlation function at the positions x =
(x1, . . . , xk) ∈ Rk

+ and y = (y1, . . . , yl) ∈ Rl
+, namely (see Refs. [51, 30, 2] and
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references therein)

R̂(N,a,b,C)
k,l (x; y) :=

1

Z(N,a,b,C)
0|0;0|0

1

(N !)2

∫

R2N
+

∆2
N (x′)∆2

N (y′) d[x′]d[y′]
∏N

i,j=1(x
′
i + y′j)

×
N∏

j=1

(
x′
j
a
y′j

b
e−x′

j−y′

j

) k∏

j=1

(
1

N

N∑

i=1

δ(xj − x′
i)

)
l∏

j=1

(
1

N

N∑

i=1

δ(yj − y′i)

)

=
1

Z(N,a,b,C)
0|0;0|0

lim
ε→0

∑

Lj ,L′

i=±

k∏

j=1

(
Lj

2πıN

∂

∂x̃j

) l∏

i=1

(
Li

2πıN

∂

∂ỹi

)

×Z(N,a,b,C)
k|k;l|l (x̃ + ıLε, x; ỹ + ıL′ε, y)

∣∣∣∣
x̃=x,ỹ=y

,

(2.30)

where L = (L1, . . . , Lk) and L′ = (L′
1, . . . , L

′
l) and

R(N,a,b,C)
k,l (x; y) :=

1

Z(N,a,b,C)
0|0;0|0

1

(N !)2

∫

R
2N−k−l
+

N∏

j=k+1

dxj

N∏

j=l+1

dyj
∆2

N (x)∆2
N (y)

∏N
i,j=1(xi + yj)

×
N∏

j=1

(
xa
j y

b
je

−xj−yj
)
. (2.31)

These two definitions are not equivalent. Nonetheless they are related in a simple

way. The correlation function R̂(N,a,b,C)
k,l (x; y) consists not only of the correlation

function R(N,a,b,C)
k,l (x; y) but also of the lower order terms like R(N,a,b,C)

k−1,l (x1, . . . ,

xk−1; y) or R
(N,a,b,C)
k,l−1 (x; y1, . . . , yl−1). The reason is that R̂(N,a,b,C)

k,l (x; y) comprises
“self-energy” terms proportional to Dirac delta-functions as δ(xi − xj) with i #= j.

Omitting these “self-energy” terms we find R(N,a,b,C)
k,l (x; y), i.e.

R̂(N,a,b,C)
k,l (x; y) =

(N !)2

(N − k)!(N − l)!Nk+l
R(N,a,b,C)

k,l (x; y) + lower order terms.

(2.32)

We remark that the definition for R̂(N,a,b,C)
k,l is based on the partition func-

tion (2.20) with k1 = l1 = k and k2 = l2 = l for which we already calculated
a simplified determinantal expression in terms of two-point partition functions. In
this expression we can easily perform the differentiations in x and y which essen-
tially acts on the prefactor in front of the determinant only, since it vanishes at
x̃ + ıLε = x and ỹ + ıL′ε = y. Only for the diagonal elements do we have to
differentiate the kernel which yields one point functions. Therefore the result is

R̂(N,a,b,C)
k,l (x; y)

= det

[
K(N,a,b,C)

01 (xi, xj) K(N,a,b,C)
11 (xi; yj)

K(N,a,b,C)
00 (xj ; yi) K(N,a,b,C)

10 (yi, yj)

]
+ lower order terms,

(2.33)
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where the indices take the same values as in Eq. (2.20). The kernels are

K(N,a,b,C)
11 (xi; yj) = −

xa
i y

b
j

xi + yj
+ xa

i y
b
j

∫ 1

0
dtG2,1

2,3

(
−a−N ;N + b

0, b;−a

∣∣∣∣ txi

)

×G2,1
2,3

(
−b−N ;N + a

0, a;−b

∣∣∣∣ tyj
)
,

K(N,a,b,C)
01 (xi, xj) = xa+b

i

∫ 1

0
dtta+bG1,1

2,3

(
−N − a− b;N

0;−a,−a− b

∣∣∣∣ txj

)

×G2,1
2,3

(
−N − a− b;N

0,−b;−a− b

∣∣∣∣ txi

)
,

K(N,a,b,C)
10 (yi, yj) = ya+b

j

∫ 1

0
dtta+bG2,1

2,3

(
−N − a− b;N

0,−a;−a− b

∣∣∣∣ tyj
)

×G1,1
2,3

(
−N − a− b;N

0;−b,−a− b

∣∣∣∣ tyi
)
,

K(N,a,b,C)
00 (xj ; yi) =

∫ 1

0
dtta+bG1,1

2,3

(
−N − a− b;N

0;−a,−a− b

∣∣∣∣ txj

)

×G1,1
2,3

(
−N − a− b;N

0;−b,−a− b

∣∣∣∣ tyi
)
.

(2.34)

From this result one can read off the (k, l)-point correlation function without “self-
energy” terms,

R(N,a,b,C)
k,l (x; y) =

(N − k)!(N − l)!Nk+l

(N !)2
det

[
K(N,a,b,C)

01 (xi, xj) K(N,a,b,C)
11 (xi; yj)

K(N,a,b,C)
00 (xj ; yi) K(N,a,b,C)

10 (yi, yj)

]
,

(2.35)

which is the result of Ref. [16]. Note that our k-point functions are normalized,

i.e.
∫
d[x]d[y]R(N,a,b,C)

k,l (x; y) = 1. In the particular case of the two kinds of level
densities this result reads

R(N,a,b,C)
1,0 (x) = K(N,a,b,C)

01 (x, x) (2.36)

=

∫ 1

0
dtG1,1

2,3

(
−N ;N + a+ b

a+ b; 0, b

∣∣∣∣ tx
)
G2,1

2,3

(
−N − a− b;N

0,−b;−a− b

∣∣∣∣ tx
)

and

R(N,a,b,C)
0,1 (y) = K(N,a,b,C)

10 (y, y) (2.37)

=

∫ 1

0
dtG1,1

2,3

(
−N ;N + a+ b

a+ b; 0, a

∣∣∣∣ ty
)
G2,1

2,3

(
−N − a− b;N

0,−a;−a− b

∣∣∣∣ ty
)
,

which shall conclude this section. Due to the symmetry of the joint probability
density (2.2) the spectral statistics is invariant by exchanging {xi} ↔ {yi} and

a ↔ b which in particular is reflected in the level densities R(N,a,b,C)
1,0 and R(N,a,b,C)

0,1 .
Now we are well-prepared for calculating the eigenvalue statistics of the Bures
ensemble.
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3. Relationship between Bures and Cauchy two-matrix ensemble

We aim at two things in this section. First we want to work along the same
ideas and calculations as we have done it for the Cauchy two-matrix ensemble in
section 2. Hence we start with the partition function

Z(N,a,B)
k|l (κ,λ) =

1

N !

∫

RN
+

d[z]
∆2

N (z)∏
1≤i<j≤N (zi + zj)

N∏

j=1

zaj e
−zj

∏l
i=1(zj − λi)∏k
i=1(zj − κi)

(3.1)

and express every other quantity in terms of this including the normalization
constant, the skew-orthogonal polynomials, and the k-point correlation function.
Thereby for the latter we again choose the definition

R̂(N,a,B)
k (z) :=

1

Z(N,a,B)
0|0

1

N !

∫

RN
+

d[z′]
∆2

N (z′)
∏N

j=1 z
′
j
ae−z′

j

∏
1≤i<j≤N (z′i + z′j)

k∏

j=1

(
1

N

N∑

i=1

δ(zj − z′i)

)

=
1

Z(N,a,B)
0|0

lim
ε→0

∑

Lj=±

k∏

j=1

(
Lj

2πıN

∂

∂z̃j

)
Z(N,a,B)
k|k (z̃ + ıLε, z)

∣∣∣∣
z̃=z

,

(3.2)

where x = (x1, . . . , xk), and L = (L1, . . . , Lk), including the “self-energy” terms.
From this quantity we can easily read off the correlation function without the “self-
energy” terms

R(N,a,B)
k (z) :=

1

Z(N,a,B)
0|0

1

N !

∫

R
N−k
+

N∏

j=k+1

dzj
∆2

N (z′)
∏N

j=1 z
′
j
ae−z′

j

∏
1≤i<j≤N (z′i + z′j)

. (3.3)

Also these two eigenvalue correlation functions are related via

R̂(N,a,B)
k (z) =

N !

(N − k)!Nk
R(N,a,B)

k (z) + lower order terms, (3.4)

where the lower order terms comprise the correlation functions R(N,a,B)
k−1 ,

R(N,a,B)
k−2 , . . . which are all proportional to some Dirac delta-functions like δ(zi− zj)

with i "= j.
Our second aim is to establish a relation between the Bures and the Cauchy two-

matrix model. Thereby we show in subsection 3.1 that each square of the partition
function (3.1) for the Bures measure can be expressed as a partition function (2.3)
for the Cauchy two-matrix model. However to make sense of this relation it has
to be inverted. This means we have to take the square root correctly such that
we do not lose any algebraical structure which we had for the Cauchy two-matrix
ensemble. For the Cauchy two-matrix ensemble we have recalled in subsection 2.3
that it corresponds to a determinantal point process. In subsection 3.2 we show that
this determinantal point process carries over to a Pfaffian point process for the Bures
ensemble. In this way we calculate the skew-orthogonal polynomials, the kernels
for the partition function (3.1) (both in subsection 3.2), and the kernels for the
k-point correlation function (3.3) without “self-energy” terms (in subsection 3.3).

3.1. Going from Bures to Cauchy. Some statements we make in subsections 3.1
and 3.2 can be applied to more general weights than the one of the joint probability
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density (1.5). Therefore let us define the partition functions

Z(N,C)
k1|l1;k2|l2

[α](κ1,λ1;κ2,λ2) :=
1

(N !)2

∫

R2N
+

d[x]d[y]
∆2

N (x)∆2
N (y)

∏N
i,j=1(xi + yj)

×
N∏

j=1

(
α(xj)α(yj)yj

∏l1
i=1(xj − λ1,i)

∏l2
i=1(yj − λ2,i)∏k1

i=1(xj − κ1,i)
∏k2

i=1(yj − κ2,i)

)

(3.5)

for a Cauchy-like two-matrix model and

Z(N,B)
k|l [α](κ,λ) :=

1

N

∫

RN
+

d[z]
∆2

N (z)∏
1≤i<j≤N (zi + zj)

N∏

j=1

α(zj)

∏l
i=1(zj − λi)∏k
i=1(zj − κi)

(3.6)

for a Bures-like ensemble. The weight α(z) is a one point weight and is in the case
of the original Bures ensemble α(z) = zae−z such that we have

Z(N,C)
k1|l1;k2|l2

[zae−z] = Z(N,a,a+1C)
k1|l1;k2|l2

and Z(N,B)
k|l [zae−z] = Z(N,a,B)

k|l . (3.7)

With these definitions we prove the following proposition in appendix A.

Proposition 3.1. For an arbitrary, suitable integrable scalar function α(x) and
two sets of variables λ1, . . . ,λl ∈ C and κ1, . . . ,κk ∈ C \R+

0 pairwise different, and

N ∈ N the partition functions of the Bures-like ensemble, Z(N,B)
k|l [α](κ,λ), and of

the Cauchy-like two-matrix ensemble, Z(N,C)
k|l;k|l [α](κ,λ;κ,λ), are related as

(
Z(N,B)
k|l [α](κ,λ)

)2
= 2NZ(N,C)

k|l;k|l [α](κ,λ;κ,λ). (3.8)

We remark that the derivation of Eq. (3.8) makes use of a rewrite of the Cauchy-
Vandermonde determinant (2.21) as well as the Schur Pfaffian identity [43]

∆N (z)∏
1≤i<j≤N (zi + zj)

=
∏

1≤i<j≤N

zj − zi
zj + zi

(3.9)

=






Pf

[
za − zb
za + zb

]

1≤a,b≤N

, N even,

Pf





0 −1 · · · −1
1
...
1

{
za − zb
za + zb

}

1≤a,b≤N




, N odd.

As a simple corollary the normalization constants of the Bures ensemble and the
Cauchy two-matrix ensemble are directly related, see Ref. [14] where it was first
proven.

Corollary 3.2. The case k = l = 0 of proposition 3.1 yields the normalization
constant and explicitly reads

(
1

N !

∫

RN
+

d[z]
∆2

N (z)
∏N

j=1 α(zj)∏
1≤i<j≤N (zi + zj)

)2

=
2N

(N !)2

∫

R2N
+

d[x]d[y]

∏N
j=1 α(xj)α(yj)yj ∆2

N (x)∆2
N (y)

∏N
i,j=1(xi + yj)

. (3.10)
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Our proportionality constants in (3.10) are different to those in Ref. [14]. In fact
a check can be made on this latter point, by making the choice α(x) = xae−x. The
LHS of (3.10) can then be evaluated using matrix integral methods [67],

Z(N,a,B)
0|0 =

1

N !

∫

RN
+

d[z]
N∏

j=1

zaj e
−zj

∏

1≤i<j≤N

(zj − zi)2

zj + zi

= πN/22−N2−2Na
N−1∏

j=0

Γ(1 + j)Γ(2a+ 2 + j)

Γ(j + a+ 3/2)
. (3.11)

while from [14, Eq. (2-6)] (note that Eq. (2-7) of [14], obtained from Eq. (2-6) using
the duplication formula for the Gamma function, contains a typo) we deduce that

Z(N,a,a+1,C)
0|0;0|0 =

1

(N !)2

∫

R2N
+

d[x]d[y]

∏N
j=1 x

a
j e

−xjya+1
j e−yj ∆2(x)∆2(y)

∏N
i,j=1(xi + yj)

=
N−1∏

j=0

(Γ(1 + j)Γ(2a+ 2 + j)

Γ(j + a+ 3/2)

)2 π

24j+4a+3
, (3.12)

cf. Eq. (2.5). Using these in Eq. (3.10) the claimed proportionality of the identity
is verified.

3.2. Going from Cauchy to Bures. Looking at the established relationship be-
tween the Bures ensemble and the Cauchy two matrix model one can ask if one can
invert the result of Proposition 3.1 and derive all correlation functions for the Bu-
res ensemble from the Cauchy two-matrix model. Indeed one can readily take the

square root of the partition functions Z(N,a,C)
k|l;k|l to find Z(N,a,B)

k|l . However when doing
so we may loose the algebraic structure which is a determinantal point process for
the Cauchy two-matrix ensemble, see Eq. (2.20) for k1 = k2 = k and l1 = l2 = l. We
would expect a Pfaffian expression for the Bures ensemble when taking the square
root of Eq. (2.20). Indeed this is the case due to the Schur Pfaffian identity (3.9).
Then the joint probability density has the form of the class of ensembles discussed in
[46] with the two-point weight g(z1, z2) = za1z

a
2e

−z1−z2(z1−z2)/(z1+z2). Therefore
the partition function (3.6) has the representation (Ñ = N + l − k > 1)

Z(N,B)
k|l [α](κ,λ) = (−1)k(k−1)/2+l(l−1)/2

Z(Ñ,B)
0|0 [α]

Bk|l(κ;λ)

×Pf





(κi − κj)
Z(Ñ+2,B)
2|0 [α](κi,κj)

Z(Ñ,B)
0|0 [α]

1

κi − λj

Z(Ñ,B)
1|1 [α](κi,λj)

Z(Ñ,B)
0|0 [α]

1

λi − κj

Z(Ñ,B)
1|1 [α](κi,λj)

Z(Ñ,B)
0|0 [α]

(λi − λj)
Z(Ñ−2,B)
0|2 [α](λi,λj)

Z(Ñ,B)
0|0 [α]





(3.13)
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for k + l even and

Z(N,B)
k|l [α](κ,λ) = (−1)k(k−1)/2+l(l−1)/2

Z(Ñ+1,B)
0|0 [α]

Bk|l(κ;λ)

×Pf





(κi − κj)
Z(Ñ+3,B)
2|0 [α](κi,κj)

Z(Ñ+1,B)
0|0 [α]

1

κi − λj

Z(Ñ+1,B)
1|1 [α](κi,λj)

Z(Ñ+1,B)
0|0 [α]

Z(Ñ+1,B)
1|0 [α](κi)

Z(Ñ+1,B)
0|0 [α]

1

λi − κj

Z(Ñ+1,B)
1|1 [α](κi,λj)

Z(Ñ+1,B)
0|0 [α]

(λi − λj)
Z(Ñ−1,B)
0|2 [α](λi,λj)

Z(Ñ+1,B)
0|0 [α]

Z(Ñ−1,B)
0|1 [α](λi)

Z(Ñ+1,B)
0|0 [α]

−
Z(Ñ+1,B)
1|0 [α](κj)

Z(Ñ+1,B)
0|0 [α]

−
Z(Ñ−1,B)
0|1 [α](λj)

Z(Ñ+1,B)
0|0 [α]

0





(3.14)

for k + l odd. The indices take the values 1 ≤ i, j ≤ k in the first few rows
and columns and 1 ≤ i, j ≤ l in the second set of rows and columns in both
equations. See Ref. [61], Appendix C of Ref. [45] or [30, §6.3.2&§6.3.3] for a general
calculation of integrals over a product of a Pfaffian and a determinant. After having
this Pfaffian the kernels can be identified by choosing particular values of k and l.

The results (3.13) and (3.14) cannot be obtained in a trivial way by only taking
the square root of the partition functions of the Cauchy two-matrix model since
the determinant (2.20) is not over an anti-symmetric matrix and the fact that it
is an exact square is obscured. To uncover this fact one needs relations between
the two-point partition functions (2.22-2.25) of the Cauchy two-matrix model. We
underline that those relations as well as the determinantal structure with its kernels
in terms of these two-point partition functions also hold for general weight α. We
derive these relations in the proof given in appendix B, of the following proposition.

Proposition 3.3. With the requirements of proposition 3.1 and N + l− k > 1 the
partition function of the Cauchy-like two-matrix model can be rewritten as

Z(N,C)
k|l;k|l [α](κ,λ;κ,λ)

=
Z(N+l−k,C)
0|0;0|0 [α]

B2
k|l(κ;λ)

det

[
K̂(N+l−k+1)

11 (κi,κj) −K̂(N+l−k)
01 (κi,λj)

K̂(N+l−k)
01 (κj ,λi) K̂(N+l−k−1)

00 (λi,λj)

]
(3.15)

for k+ l even with 1 ≤ i, j ≤ k in the first rows and columns and 1 ≤ i, j ≤ l in the
last ones and

Z(N,C)
k|l;k|l [α](κ,λ;κ,λ) =

Z(N+l−k+1,C)
0|0;0|0 [α]

B2
k|l(κ;λ)

× det




K̂(N+l−k+2)

11 (κi,κj) −K̂(N+l−k+1)
01 (κi,λj) −K̂(N+l−k+1)

1 (κi)

K̂(N+l−k+1)
01 (κj ,λi) K̂(N+l−k)

00 (λi,λj) K̂(N+l−k)
0 (λi)

K̂(N+l−k+1)
1 (κj) −K̂(N+l−k)

0 (λj) 0





(3.16)

for k+ l odd with 1 ≤ i, j ≤ k in the first set of rows and columns and 1 ≤ i, j ≤ l in
the second set of rows and columns, cf. eq. (3.15). The kernels of these determinants
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read

K̂(L)
11 (κ1,κ2) =

Z(L,C)
1|0;1|0[α](κ1;κ2)− Z(L,C)

1|0;1|0[α](κ2;κ1)

2Z(L−1,C)
0|0;0|0 [α]

,

K̂(L)
01 (κ,λ) =

Z(L,C)
0|0;1|1[α](κ,λ) + Z(L,C)

1|1;0|0[α](κ,λ)

2Z(L,C)
0|0;0|0[α](κ− λ)

,

K̂(L)
00 (λ1,λ2) =

Z(L,C)
0|1;0|1[α](λ2;λ1)− Z(L,C)

0|1;0|1[α](λ1;λ2)

2Z(L+1,C)
0|0;0|0 [α]

,

K̂(L)
1 (κ) = −

Z(L,C)
0|0;1|0[α](κ) + Z(L,C)

1|0;0|0[α](κ)

2Z(L,C)
0|0;0|0[α]

,

K̂(L)
0 (λ) =

Z(L,C)
0|0;0|1[α](λ) − Z(L,C)

0|1;0|0[α](λ)

2Z(L+1,C)
0|0;0|0 [α]

(3.17)

for L ∈ N and L > 1.

Now we can take the square root and find the following corollary and one of our
main results.

Corollary 3.4. With the requirements of proposition 3.1 the partition function of
the Bures-like ensemble can be expressed in terms of two- and one-point partition
functions of the Cauchy-like two-matrix ensemble according to

Z(N,B)
k|l [α](κ,λ) = (−1)k(k−1)/2+l(l−1)/22N/2

√
Z(N+l−k,C)
0|0;0|0 [α]

Bk|l(κ;λ)
(3.18)

×Pf

[
−sK̂(N+l−k+1)

11 (κi,κj) −K̂(N+l−k)
01 (κi,λj)

K̂(N+l−k)
01 (κj ,λi) −sK̂(N+l−k−1)

00 (λi,λj)

]

for k + l even and

Z(N,B)
k|l [α](κ,λ) = (−1)k(k−1)/2+l(l−1)/22N/2

√
Z(N+l−k+1,C)
0|0;0|0 [α]

Bk|l(κ;λ)
(3.19)

×Pf




−sK̂(N+l−k+2)

11 (κi,κj) −K̂(N+l−k+1)
01 (κi,λj) −K̂(N+l−k+1)

1 (κi)

K̂(N+l−k+1)
01 (κj ,λi) −sK̂(N+l−k)

00 (λi,λj) −sK̂(N+l−k)
0 (λi)

K̂(N+l−k+1)
1 (κj) sK̂(N+l−k)

0 (λj) 0





for k+ l odd. The indices i and j take the same values as in Eqs. (3.15) and (3.16),
respectively. The variable s is the sign of the mean value of the difference of the
two variable sets of the Cauchy-like two-matrix ensemble

Ẑ(L,C)[α] =
1

(L!)2

∫

R2L
+

d[x]d[y]
∆2

L(x)∆
2
L(y)∏L

i,j=1(xi + yj)




L∏

j=1

α(xj)yjα(yj)




L∑

j=1

(xj − yj)

(3.20)

and
s = sign Ẑ(L,C)[α]. (3.21)
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Additionally, in Eqs. (3.18) and (3.19) the kernels can be identified with parti-
tion functions of the Bures-like ensemble as well as with partition functions of the
Cauchy-like two-matrix ensemble,

Z(N,B)
2|0 [α](κ1,κ2)

Z(N,B)
0|0 [α]

=
1

κ2 − κ1

Z(N−1,C)
1|0;1|0 [α](κ1;κ2)− Z(N−1,C)

1|0;1|0 [α](κ2;κ1)

Ẑ(N−1,C)[α]
,

Z(N,B)
1|1 [α](κ,λ)

Z(N,B)
0|0 [α]

=
Z(N,C)
0|0;1|1[α](κ,λ) + Z(N,C)

1|1;0|0[α](κ,λ)

2Z(N,C)
0|0;0|0[α]

,

Z(N,B)
0|2 [α](λ1,λ2)

Z(N,B)
0|0 [α]

=
1

λ1 − λ2

Z(N+1,C)
0|1;0|1 [α](λ1;λ2)− Z(N+1,C)

0|1;0|1 [α](λ2;λ1)

Ẑ(N+1,C)[α]
,

Z(N,B)
1|0 [α](κ)

Z(N,B)
0|0 [α]

=
Z(N,C)
0|0;1|0[α](κ) + Z(N,C)

1|0;0|0[α](κ)

2Z(N,C)
0|0;0|0[α]

,

Z(N,B)
0|1 [α](λ)

Z(N,B)
0|0 [α]

=
Z(N+1,C)
0|1;0|0 [α](λ) − Z(N+1,C)

0|0;0|1 [α](λ)

Ẑ(N+1,C)[α]
.

(3.22)

We emphasize that the normalization in the relations (3.22) agree with the for-
merly chosen one but in the way given in Eq. (3.22) they can be easily checked. The
overall sign can be identified with the one in Eqs. (3.13) and (3.14). Moreover we
underline that corollary 3.4 provides only a way to derive all spectral correlations
of the Bures measure with the help of the Cauchy two-matrix model. In contrast,
proposition 3.1 does not imply that the correlations of all Cauchy two-matrix mod-
els are determined by the Bures measure since the weights for the two sets {xi}
and {yj} have to be the same up to a factor yj.

Thus let us come back to the original problem where α(z) = zae−z. For this

measure we know already the normalization constants Z(L,a,B)
0|0 and Z(L,a,a+1,C)

0|0;0|0 , see

Eqs. (3.11) and (3.12), respectively. The third normalization constant appearing in
Eq. (3.22) is

Ẑ(L,a,a+1,C) =

∫ 2π

0

dϕ

2π
e−ı(2n−1)ϕ(p̃(a,a+1)

2n (eıϕ)− p(a,a+1)
2n (eıϕ))

= −L
2a+ L+ 1

2a+ 2L+ 1
Z(L,a,a+1,C)
0|0;0|0 , (3.23)

which is essentially the (2L−1)st coefficient of the difference of the two bi-orthogonal
polynomials of order 2n for the Cauchy two-matrix model, see
Eqs. (2.6) and (2.7).

What can be said about the skew-orthogonal polynomials q(a)n of the Bures en-
semble, in particular those polynomials which are skew orthogonal with respect to
the two-point weight g(a)(z1, z2) = (z1z2)ae−z1−z2(z1 − z2)/(z1 + z2)? First of all
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they have to satisfy the relations
∫

R2
+

dz1dz2g
(a)(z1, z2)q

(a)
2n (z1)q

(a)
2m(z1) =

∫

R2
+

dz1dz2g
(a)(z1, z2)q

(a)
2n+1(z1)q

(a)
2m+1(z1) = 0,

∫

R2
+

dz1dz2g
(a)(z1, z2)q

(a)
2n (z1)q

(a)
2m+1(z1) =

Z(2n+2,a,B)
0|0

Z(2n,a,B)
0|0

δmn

=
π

162n+a+1

(2n+ 1)!(2n)!Γ(2n+ 2a+ 3)Γ(2n+ 2a+ 2)

Γ(2n+ a+ 5/2)Γ(2n+ a+ 3/2)
δmn

(3.24)

for all m,n ∈ N. For the polynomials of even order it is well known [29, 7] that
it is simply the average of one characteristic polynomial. It takes the following
form shown in different representations, i.e. in terms of a partition function, the
bi-orthogonal polynomials (2.6) and (2.7), a finite explicit sum, a generalized hy-
pergeometric function, and a Meijer G-function, respectively,

q(a)2n (x) =
Z(2n,a,B)
0|1 (x)

Z(2n,a,B)
0|0

= lim
y→∞

y2n

p(a,b)2n+1(y)− p̃(a,b)2n+1(y)

(
p(a,b)2n+1(x)− p̃(a,b)2n+1(x)

)

=
2n∑

j=0

(−1)j
(

2n
j

)
Γ(2a+ 2n+ j + 3)Γ(2a+ 2n+ 2)Γ(a+ 2n+ 2)

Γ(2a+ 4n+ 3)Γ(2a+ j + 2)Γ(a+ j + 2)
xj

=
(2a+ 2)2n(a+ 2)2n
(2a+ 2n+ 3)2n

2F2

(
−2n, 2a+ 2n+ 3

a+ 2, 2a+ 2

∣∣∣∣x
)

=
(2n)!Γ(2a+ 2n+ 2)Γ(a+ 2n+ 2)

Γ(2a+ 4n+ 3)
G1,1

2,3

(
−2a− 2n− 2; 2n+ 1

0;−2a− 1,−a− 1

∣∣∣∣ x
)
.

(3.25)

It is also well-known [7] what the odd polynomials look like in terms of partition
functions, namely

q(a)2n+1(x) =
1

Z(2n,a,B)
0|0

1

(2n)!

∫

R2n
+

d[z]
∆2

2n(z)
∏2n

j=1 z
a
j (x − zj)e−zj

∏
1≤i<j≤2n(zi + zj)



x+
2n∑

j=1

zj + c



 ,

(3.26)

where c is an arbitrary constant and reflects the ambiguity of the solution of the
skew-orthogonality relations (3.24). We make use of fixing this constant later on
to simply our results.

The constant c as well as the variable x can be pulled out the integral (3.26)

leaving the polynomial q(a)2n as a factor. The trace can be written as a derivative
of an auxiliary parameter t which is introduced in the exponent, in particular we

replace the two point weight g(a)(z1, z2) → g(a)t (z1, z2) = (z1z2)ae−t(z1+z2)(z1 −
z2)/(z1 + z2). Then the integration variables z can be rescaled, z → z/t such that



22 PETER J. FORRESTER AND MARIO KIEBURG

we find the identity

q(a)2n+1(x) = (x+ c)q(a)2n (x) −
∂

∂t
t−n(2n+3+2a)q(a)2n (tx)

∣∣∣∣
t=1

. (3.27)

Fixing now the constant c = −n(2n+ 3 + 2a) we find the simple result

q(a)2n+1(x) = x

(
1−

∂

∂x

)
q(a)2n (x)

=
(2n)!Γ(2a+ 2n+ 2)Γ(a+ 2n+ 2)

Γ(2a+ 4n+ 3)

(
G1,1

2,3

(
−2a− 2n− 1; 2n+ 2

1;−2a,−a

∣∣∣∣ x
)

−G1,2
3,4

(
0,−2a− 2n− 2; 2n+ 1

0; 1,−2a− 1,−a− 1

∣∣∣∣x
))

.

(3.28)

Note that we do not need the polynomials of odd order in our approach. We only
show them for the sake of completeness.

Also the kernels of the Pfaffians (3.13) and (3.14) can be read off yielding the
following corollary.

Corollary 3.5. With the requirements of proposition 3.1 and Ñ = N+l−k the ker-
nels of the Pfaffian representations (3.13) and (3.14) for the partition function (3.1)
of the original Bures ensemble (α(z) = zae−z) are

(λ1 − λ2)
Z(Ñ−2,a,B)
0|2 (λ1,λ2)

Z(Ñ,a,B)
0|0

= −
1

4

∫ 1

0
dt

[
G1,1

2,3

(
−2a− Ñ − 1; Ñ

0;−a,−2a− 1

∣∣∣∣∣ tλ1

)
G1,1

2,3

(
−2a− Ñ − 1; Ñ

0;−a− 1,−2a− 1

∣∣∣∣∣ tλ2

)

−G1,1
2,3

(
−2a− Ñ − 1; Ñ

0;−a,−2a− 1

∣∣∣∣∣ tλ2

)
G1,1

2,3

(
−2a− Ñ − 1; Ñ

0;−a− 1,−2a− 1

∣∣∣∣∣ tλ1

)]
,

(3.29)

1

κ− λ

Z(Ñ,a,B)
1|1 (κ,λ)

Z(Ñ,a,B)
0|0

=
1

κ− λ

+
1

2

∫ 1

0
dt

[
G1,1

2,3

(
−2a− Ñ − 1; Ñ

0;−a,−2a− 1

∣∣∣∣∣ tλ
)
G3,1

2,3

(
−Ñ ; Ñ + 2a+ 1

0, a, 2a+ 1

∣∣∣∣∣− tκ

)

+G1,1
2,3

(
−2a− Ñ − 1; Ñ

0;−a− 1,−2a− 1

∣∣∣∣∣ tλ
)
G3,1

2,3

(
−Ñ ; Ñ + 2a+ 1

0, a+ 1, 2a+ 1

∣∣∣∣∣− tκ

)]
,

(3.30)
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(κ1 − κ2)
Z(Ñ+2,a,B)
2|0 (κ1,κ2)

Z(Ñ,a,B)
0|0

=

∫

R2
+

dxdy
(xy)a(y − x)e−x−y

(κ1 − x)(κ2 − y)(x+ y)

+(κ1κ2)
a

∫ 1

0
dt

[
κ2G

3,1
2,3

(
−Ñ − a; Ñ + a+ 1

0,−a, a+ 1

∣∣∣∣∣ − tκ1

)
G3,1

2,3

(
−Ñ − a− 1; Ñ + a

0,−a− 1, a

∣∣∣∣∣− tκ2

)

−κ1G
3,1
2,3

(
−Ñ − a; Ñ + a+ 1

0,−a, a+ 1

∣∣∣∣∣− tκ2

)
G3,1

2,3

(
−Ñ − a− 1; Ñ + a

0,−a− 1, a

∣∣∣∣∣− tκ1

)

−κ2G
3,1
2,3

(
−a; a+ 1

0,−a, a+ 1

∣∣∣∣− tκ1

)
G3,1

2,3

(
−a− 1; a

0,−a− 1, a

∣∣∣∣− tκ2

)

+κ1G
3,1
2,3

(
−a; a+ 1

0,−a, a+ 1

∣∣∣∣− tκ2

)
G3,1

2,3

(
−a− 1; a

0,−a− 1, a

∣∣∣∣− tκ1

)]
(3.31)

for the two-point kernels and

Z(Ñ−1,a,B)
0|1 (λ)

Z(Ñ+1,a,B)
0|0

=
22(Ñ+a)Γ[Ñ + a+ 3/2]

Ñ !Γ[Ñ + 2a+ 2]
G1,1

2,3

(
−Ñ − 2a− 1; Ñ

0;−2a− 1,−a− 1

∣∣∣∣∣λ
)
,

(3.32)

and

Z(Ñ+1,a,B)
1|0 (κ)

Z(Ñ+1,a,B)
0|0

= −
1

Ñ !Γ[Ñ + a+ 1]
G3,1

2,3

(
−Ñ − 1; Ñ + 2a

−1, a− 1, 2a

∣∣∣∣∣− κ

)

(3.33)

for the partition functions with only one characteristic polynomial.

With the help of this corollary we are now ready to find all k-point correlation
functions of the Bures ensemble.

3.3. Correlation functions of the Bures ensemble. Proposition 3.1 relates
the partition functions of the Bures ensemble with those of the Cauchy two-matrix
model. Thereby the individual level density of a random matrix has to be exchanged
in the following way

N∑

j=1

δ(z − zj) →
N∑

j=1

[δ(z − xj) + δ(z − yj)
]

(3.34)

for the three species {xj}, {yj}, and {zj} in Eqs. (2.3) and (3.1), respectively. On
the other hand, Eq. (2.35), in particular Eqs. (2.36) and (2.37) for the densities,
gives the correlations relating to the averaged level densities of the two species
regarded as separate entities. Thus knowledge of the eigenvalue correlations of
the Cauchy two-matrix model implies the correlations of the Bures ensemble. In
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particular, we have for the level densities

R(N,a,B)
1 (z) = lim

ε→0

∑

L=±1

L

2πıN

∂

∂z̃
lnZ(N,a,B)

1|1 (z̃ + ıLε, z)

∣∣∣∣
z̃=z

=
1

2
lim
ε→0

∑

L=±1

L

2πıN

∂

∂z̃
lnZ(N,a,a+1C)

1|1;1|1 (z̃ + ıLε, z; z̃ + ıLε, z)

∣∣∣∣
z̃=z

=
1

2

(
R(N,a,a+1,C)

1,0 (z) +R(N,a,a+1,C)
0,1 (z)

)
. (3.35)

The same calculation can be done for the two-point correlation function with “self-
energy” terms,

R̂(N,a,B)
2 (z1, z2) = lim

ε→0

∑

L1,L2=±1

L1L2

(2πıN)2
∂2

∂z̃1∂z̃2

[
lnZ(N,a,B)

2|2 (z̃ + ıLε, z)

+lnZ(N,a,B)
1|1 (z̃1 + ıL1ε, z1)lnZ

(N,a,B)
1|1 (z̃2 + ıL1ε, z2)

]∣∣∣∣
z̃=z

.

(3.36)

The first term is the connected correlation function and is the analogue to the
cumulant for ordinary random variables. Employing relation (2.35) we have

R̂(N,a,B)
2 (z1, z2)

=
1

2

[
R̂(N,a,a+1,C)

2,0 (z1, z2) + R̂(N,a,a+1,C)
1,1 (z1, z2) + R̂(N,a,a+1,C)

1,1 (z2, z1)

+R̂(N,a,a+1,C)
0,2 (z1, z2)

−
1

2

(
R(N,a,a+1,C)

1,0 (z1) +R(N,a,a+1,C)
0,1 (z1)

)(
R(N,a,a+1,C)

1,0 (z2) +R(N,a,a+1,C)
0,1 (z2)

) ]

=
1

2

[
1

2

(
K(N,a,a+1,C)

01 (z1, z1) +K(N,a,a+1,C)
10 (z1, z1)

)

×
(
K(N,a,a+1,C)

01 (z2, z2) +K(N,a,a+1,C)
10 (z2, z2)

)

−K(N,a,a+1,C)
01 (z1, z2)K

(N,a,a+1,C)
01 (z2, z1)−K(N,a,a+1,C)

10 (z1, z2)K
(N,a,a+1,C)
10 (z2, z1)

−K(N,a,a+1,C)
11 (z1, z2)K

(N,a,a+1,C)
00 (z1, z2)−K(N,a,a+1,C)

11 (z2, z1)K
(N,a,a+1,C)
00 (z2, z1)

+
1

N
δ(z1 − z2)

(
K(N,a,a+1,C)

01 (z1, z1) +K(N,a,a+1,C)
10 (z1, z1)

) ]
.

(3.37)

The term proportional to the Dirac delta-function is the “self-energy” term and
will be omitted in the following. The kernels satisfy the relations

K(N,a,a+1,C)
00 (z1; z2) +K(N,a,a+1,C)

00 (z1; z2) = w(z1)w(z2),

K(N,a,a+1,C)
01 (z1, z2)−K(N,a,a+1,C)

10 (z1, z2) = v(z1)w(z2),

K(N,a,a+1,C)
11 (z1; z2) +K(N,a,a+1,C)

11 (z1; z2) = −v(z1)v(z2),

(3.38)

where the functions w and v can be read off from the relations satisfied by the two-
point partition functions derived in appendix B. With the help of these relations one
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can show that the two-point correlation function without the “self-energy” terms
is equal to the Pfaffian

R(N,a,B)
2 (z1, z2) = −

N − 1

4N

×Pf

[
∆K(N,a,a+1,C)

11 (zi; zj) ΣK(N,a,a+1,C)
01 (zi; zj)

−ΣK(N,a,a+1,C)
01 (zi; zj) ∆K(N,a,a+1,C)

00 (zj ; zi)

]

1≤i,j≤2

(3.39)

with the abbreviations

∆K(N,a,a+1,C)
11 (zi; zj) = K(N,a,a+1,C)

11 (zi; zj)−K(N,a,a+1,C)
11 (zj ; zi),

ΣK(N,a,a+1,C)
01 (zi; zj) = K(N,a,a+1,C)

01 (zi, zj) +K(N,a,a+1,C)
10 (zi, zj),

∆K(N,a,a+1,C)
00 (zj ; zi) = K(N,a,a+1,C)

00 (zj ; zi)−K(N,a,a+1,C)
00 (zi; zj). (3.40)

Indeed we can also find the results (3.35) and (3.39) via the relation of the partition
functions derived in subsection 3.2.

Let us employ the definition (3.2) to the result (3.18) with k = l. Then the
only important contribution is the action of the derivatives in z̃ on the prefactor
1/Bk|k(z̃+ ıLε, z) in front of the Pfaffian. Almost all other terms vanish under the
sum of the signs Lj = ±1 and in the limit z̃ = z and ε → 0. Indeed there are also
contributions from the derivatives in the diagonal entries of the off-diagonal blocks
in the Pfaffian. However they yield the same kernel as the other matrix entries in
the off-diagonal blocks apart from the Dirac delta-functions δ(zi − zj) which result
from the first term 1/(κ− λ) of the two-point partition function (3.30). Omitting
these Dirac delta-functions we find the k-point correlation function summarized in
the following corollary.

Corollary 3.6. Let z1, . . . , zk ∈ R+ be pairwise different. Then the k-point corre-
lation function without the “self-energy” terms of the Bures ensemble is

R(N,a,B)
k (z) = (−1)k(k−1)/2 N !

(2N)k(N − k)!

×Pf

[
∆K(N,a,a+1,C)

11 (zi; zj) ΣK(N,a,a+1,C)
01 (zi; zj)

−ΣK(N,a,a+1,C)
01 (zi; zj) ∆K(N,a,a+1,C)

00 (zj ; zi)

]

1≤i,j≤k

,

(3.41)

where we used the abbreviations (3.40) and the kernels (2.34) of the Cauchy two-
matrix model.

Thus we have traced all k-point correlation functions for the Bures ensemble
back to the kernels of the (k, l)-point correlation functions (2.35) for the Cauchy
two-matrix model. In particular the case k = N yields the joint probability density
in terms of a Pfaffian. This shows that the process given by Eq. (1.5) is a Pfaffian
point process.

4. Hard Edge Scaling Limit

Finally we consider the hard edge scaling limit which is the double scaling limit
N → ∞ with N2xj and a fixed. This limit is a direct corollary of our result in
combination with [16, Theorem 2.2].
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Corollary 4.1. Let z1, . . . , zk ∈ R+ be pairwise different. Then the hard edge
scaling limit of the k-point correlation function of the Bures ensemble is

R(∞,a,B)
k (z) = lim

N→∞
N−2kR(N,a,B)

k

( z

N2

)
(4.1)

=
(−1)k(k−1)/2

2k
Pf

[
∆K(∞,a)

11 (zi; zj) ΣK(∞,a)
01 (zi; zj)

−ΣK(∞,a)
01 (zi; zj) ∆K(∞,a)

00 (zj ; zi)

]

1≤i,j≤k

.

The kernels are given by

∆K(∞,a)
11 (zi; zj) = lim

N→∞
N4a∆K(N,a,a+1,C)

11

( zi
N2

;
zj
N2

)

= zai z
a
j

(
zi − zj
zi + zj

+

∫ 1

0
dt

[
zjG

2,0
0,3

(
−

0, a+ 1;−a

∣∣∣∣ tzi
)
G2,0

0,3

(
−

0, a;−a− 1

∣∣∣∣ tzj
)

−ziG
2,0
0,3

(
−

0, a;−a− 1

∣∣∣∣ tzi
)
G2,0

0,3

(
−

0, a+ 1;−a

∣∣∣∣ tzj
)])

,

ΣK(∞,a)
01 (zi; zj) = lim

N→∞
N−2ΣK(N,a,a+1,C)

01

( zi
N2

;
zj
N2

)

=

∫ 1

0
dt

[
G1,0

0,3

(
−

0;−a,−2a− 1

∣∣∣∣ tzj
)
G2,0

0,3

(
−

a, 2a+ 1; 0

∣∣∣∣ tzi
)

+G2,0
0,3

(
−

a+ 1, 2a+ 1; 0

∣∣∣∣ tzj
)
G1,0

0,3

(
−

0;−a− 1,−2a− 1

∣∣∣∣ tzi
)]

,

∆K(∞,a)
00 (zj ; zi) = lim

N→∞
N−4a−4∆K(N,a,a+1,C)

00

( zj
N2

;
zi
N2

)

=

∫ 1

0
dtt2a+1

[
G1,0

0,3

(
−

0;−a,−2a− 1

∣∣∣∣ tzj
)
G1,0

0,3

(
−

0;−a− 1,−2a− 1

∣∣∣∣ tzi
)

−G1,0
0,3

(
−

0;−a− 1,−2a− 1

∣∣∣∣ tzj
)
G1,0

0,3

(
−

0;−a,−2a− 1

∣∣∣∣ tzi
)]

.

(4.2)

The proof of this corollary is straightforward and will be skipped. One has simply
to combine [16, Theorem 2.2] with Eq. (3.40). There is also no problem with the
different scalings of the three kernels due to multilinearity of the Pfaffian. Then
the factors N4a, N−2, and N−4a−4 can be pulled into the corresponding rows and
columns and the total factor of N can be counted in the overall factor.

The Meijer G-kernel in the Pfaffian is up to now unique. It would be interesting
if this kernel can be found for other random matrix ensembles as well. This spectral
behavior would be quite natural as long as the pair interaction of the eigenvalues
near the origin, zi, zj # 1, behave like exp[2ln|zi−zj|− ln|zi+zj|]. Working in [34]
tells us that this functional form gives the equilibrium problem for the Raney density
indexed by (3/2, 1/2), the significance of this being that the evidence is that it is
the Raney parameters (p, r) which determine the hard edge universality class; see
again [34]. It is to be expected that this hard edge scaling limit is independent of
the confining potential exp[−V (zj)] implying that the a condition like

∑
j zj = 1

does not affect this behavior because it can be rewritten in term of such a potential
via a Fourier-Laplace transform, see e.g. [50]. The reason why we expect this result
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also for a general class of ensembles is the separation of scales which is the origin
of universality of spectral statistics.

5. Discussion and Outlook

We established a relationship between the kernels of the Pfaffian point process
of the Bures ensemble and the kernels of the determinantal point process of the
Cauchy two-matrix model. Thereby we started from the partially known fact [14]
that the square of any partition function of the Bures ensemble is equal to a partition
function of a Cauchy two-matrix model, see proposition 3.1. Since the kernels of
the Pfaffian point process can be also identified as partition functions we had to
invert this relation. Surprisingly, the square root can be made exact such that
we end up with precisely the same one-fold integrals over Meijer G-functions as
were found for the Cauchy two-matrix model [16], see corollaries 3.5 and 3.6. In
particular, each of the kernels of the Bures ensemble is only a linear combination
of two kernels of the Cauchy two-matrix model. Additionally the skew-orthogonal
polynomials corresponding to the Bures ensemble are expressed in the bi-orthogonal
polynomials of the Cauchy two-matrix model. All these relations together represent
a complete exact solution of the Bures ensemble.

Two problems can now be studied. First, as already begun we can study any large
N asymptotics of the level statistics including the macroscopic and microscopic level
densities, the hard edge and the soft edge correlation functions, and the correlation
functions in the bulk. Here we expect the sine-kernel for the Dyson index β = 2 in
the bulk of the spectrum since the level repulsion is (λ1 −λ2)2 which should be the
only relevant input on the scale of the mean level spacing. Also at the soft edge we
expect the standard Airy kernel behaviour for the joint probability density (1.5) and
for the fixed trace ensemble (1.3) as known for the Laguerre ensemble and its fixed
trace counterpart [50]. The latter corresponds to the case of the Hilbert-Schmidt
measure on the set of density matrices.

At the hard edge we derived that the Bures ensemble lies in a universality class
which is described by Meijer G-functions and is reminiscent to those already found
for product matrices, see Refs. [3, 4, 33, 48, 49, 55]. Thus the Bures ensemble is the
first ensemble of such a class for which the singular values exhibit a Pfaffian point
process. We expect that the Bures ensemble with the fixed trace condition (1.3)
shares the same behaviour at the hard edge since the condition should only effect
the upper bound on the local scale of the mean level spacing. The macroscopic
level density for the Bures ensemble with an infinite rank N −M fixed was already
calculated in Ref. [68]. However, neither the level density at finite N nor when
N/(N −M) is fixed were considered. The first case is important when small quan-
tum systems as qubits and qutrits are studied [64, 65, 66, 63]. The second case
with N/(N − M) fixed for N → ∞ is the quite natural case for any experiment
which considers a prepared quantum state which is almost pure.

In the second problem, one can go back to the original Bures measure where
we have to include the fixed trace condition which results in a joint probability
density (1.3). As previously remarked, the Pfaffian based correlations found for
Eq. (1.5) now involve an auxiliary scaling parameter, and a Fourier-Laplace trans-
form must be taken with respect to this parameter. Although there is good reason
to think that this has no effect on scaling limits [50], the details of the calculation
remain. The additional integral from the Fourier-Laplace transformation destroys
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the algebraic structure of the partition functions and the k-point correlation func-
tions in terms of Pfaffians. This additional integral will have a crucial influence on
the macroscopic level density and the edge behaviour at the upper bound because
the support of the eigenvalues is squeezed to the allowed interval [0, 1].
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Appendix A. Proof of proposition 3.1

Let k = l without loss of generality since we can take the limits |λj | → ∞ or
|κj| → ∞ for some j which reduces the partition function for k = l to the general
case where k and l are different.

The proof starts with two identities, namely the Schur Pfaffian (3.9) and the
extension

∆N (z)
N∏

j=1

∏k
i=1(zj − λi)∏k
i=1(zj − κi)

=
Bk|N+k(κ; z,λ)

Bk|k(κ;λ)
(A.1)

of the Cauchy-Vandermonde determinant [12, 45]

Bk|N+k(κ; z,λ) =
∆N (z)∆k(κ)∆k(λ)∏k

i,j=1(κi − λj)

N∏

j=1

∏k
i=1(zj − λi)∏k
i=1(zj − κi)

(A.2)

= (−1)k(k−1)/2 det





{
zb−1
a

}
1≤a,b≤N

{
1

κb − za

}

1≤a≤N
1≤b≤k

{
λb−1
a

}
1≤a≤k
1≤b≤N

{
1

κb − λa

}

1≤a,b≤k




,

Bk|k(κ;λ) =
∆k(κ)∆k(λ)∏k
i,j=1(κi − λj)

= (−1)k(k−1)/2 det

[
1

κa − λb

]

1≤a,b≤k

.

which is equivalent to (2.21). The two identities (3.9) and (A.1) can be plugged

into the partition function Z(N,B)
k|k [α](κ,λ) for the Bures-like measure. Applying a

modified version of de Bruijn’s integral identity [20, 45] we find

Z(N,B)
k|k [α](κ,λ) = ±

1

Bk|k(κ;λ)
Pf [Meven] (A.3)

= ±
1

Bk|k(κ;λ)
Pf





{Mab}
1≤a,b≤N

{Fa(κb)}
1≤a≤N
1≤b≤k

{
λa−1
b

}
1≤a≤N
1≤b≤k

{−Fb(κa)}
1≤a≤k
1≤b≤N

{G(κa,κb)}
1≤a,b≤k

{
1

κa − λb

}

1≤a,b≤k

{
−λb−1

a

}
1≤a≤k
1≤b≤N

{
1

λa − κb

}

1≤a,b≤k
0
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for even N and

Z(N,B)
k|k [α](κ,λ) = ±

1

Bk|k(κ;λ)
Pf [Modd] (A.4)

= ±
1

Bk|k(κ;λ)
Pf





0 {mb}
1≤b≤N

{f(κb)}
1≤b≤k

0

{−ma}
1≤a≤N

{−f(κa)}
1≤a≤k

0

Meven





for odd N with the abbreviations

Mab =

∫ ∞

0
dz1dz2α(z1)α(z2)z

a−1
1 zb−1

2

z1 − z2
z1 + z2

, (A.5)

Fa(κb) =

∫ ∞

0
dz1dz2

α(z1)α(z2)z
a−1
1

κb − z2

z1 − z2
z1 + z2

,

G(κa,κb) =

∫ ∞

0
dz1dz2

α(z1)α(z2)

(κa − z1)(κb − z2)

z1 − z2
z1 + z2

,

mb =

∫ ∞

0
dzα(z)zb−1,

f(κb) =

∫ ∞

0

dzα(z)

κb − z
.

Note that the global sign is not important for the proof since we square the Pfaffian
which yields determinants, i.e.

(
Z(N,B)
k|k [α](κ,λ)

)2
=

(
1

Bk|k(κ;λ)

)2{
detMeven, N even,
detModd, N odd.

(A.6)

In the next step we apply the simple relation

z1 − z2
z1 + z2

=
2z1

z1 + z2
− 1 (A.7)

and define the vectors

$xT
even =

[
{mb}

1≤b≤N
{f(κb)}

1≤b≤k
0 . . . 0

]
(A.8)

of dimension N + 2k and

$xT
odd =

[
−1 {mb}

1≤b≤N
{f(κb)}

1≤b≤k
0 . . . 0

]
(A.9)

of dimension N + 2k + 1. Then we can use the following algebraic manipulation

detMeven = detMeven(1 + $xT
evenM

−1
even$xeven) (A.10)

= detMeven det(IN+2k +M−1
even$xeven$x

T
even)

= det(Meven + $xeven$x
T
even)

for even N and similarly for odd N ,

detModd = det(Modd + $xodd$x
T
odd). (A.11)

Both relations are based on the fact that Meven as well as Modd are antisymmetric,
namely for any antisymmetric matrix A and any vector $v the expectation value
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!vTA!v vanishes. Defining the abbreviations

M̂ab =

∫ ∞

0
dz1dz2α(z1)α(z2)z

a
1z

b−1
2

1

z1 + z2
, (A.12)

F̂ (1)
a (κb) =

∫ ∞

0
dz1dz2

α(z1)α(z2)za1
κb − z2

1

z1 + z2
,

F̂ (2)
b (κa) =

∫ ∞

0
dz1dz2

α(z1)α(z2)z1z
b−1
2

κa − z1

1

z1 + z2
,

Ĝ(κa,κb) =

∫ ∞

0
dz1dz2

α(z1)α(z2)z1
(κa − z1)(κb − z2)

1

z1 + z2
.

we use the identities (A.10) and (A.11) such that

(
Z(N,B)
k|k [α](κ,λ)

)2
= 2N

(
1

Bk|k(κ;λ)

)2

det M̂even (A.13)

= 2N
(

1

Bk|k(κ;λ)

)2

× det





{
M̂ab

}

1≤a,b≤N

{
F̂ (1)
a (κb)

}

1≤a≤N
1≤b≤k

{
λa−1
b

}
1≤a≤N
1≤b≤k{

F̂ (2)
b (κa)

}

1≤a≤k
1≤b≤N

{
Ĝ(κa,κb)

}

1≤a,b≤k

{
1

κa − λb

}

1≤a,b≤k

{
−λb−1

a

}
1≤a≤k
1≤b≤N

{
1

λa − κb

}

1≤a,b≤k
0





for even N and

(
Z(N,B)
k|k [α](κ,λ)

)2
= 2N

(
1

Bk|k(κ;λ)

)2

det M̂odd (A.14)

= 2N
(

1

Bk|k(κ;λ)

)2

det





1 0
{−2ma}

1≤a≤N

{−2f(κa)}
1≤a≤k

0

M̂even





= 2N
(

1

Bk|k(κ;λ)

)2

det M̂even

for odd N .
Now we can identify the integration variable z1 in the kernels of the determi-

nant (A.13) with the integration variables yj in the proposition and the variable
z2 with the variables xj . Then we can apply a generalized version of Andréief’s
integration theorem [10, 45] backwards and find

(
Z(N,B)
k|k [α](κ,λ)

)2
= (−1)N(N−1)/22N

∫

R2N
+

N∏

j=1

α(xj)α(yj)yj BN |N(x;−y)

×
Bk|N+k(κ;x,λ)

Bk|k(κ;λ)

Bk|N+k(κ; y,λ)

Bk|k(κ;λ)
(dx)(dy) (A.15)
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independent of the fact whether N is even or odd. In the last step we employ the
definitions of the Cauchy-Vandermonde determinants (A.2) and find the proposition
for the case l = k. We can lift this restriction by extending the original integral
for k != l to the case k = l and then taking the limit κj → ∞ or λj → ∞ for
j = min{k, l}+ 1, . . . ,max{k, l}.

Appendix B. Proof of proposition 3.3

Choosing L ∈ N we define the matrix

∆ML =

[
∆Mij =

1

2
(M̂ij − M̂ji)

]

1≤i,j≤L

, (B.1)

the vectors

#mT
L = (m1, . . . ,mL),

∆#FL(κ) =

(
F̂ (1)
1 (κ)− F̂ (2)

1 (κ)

2
, . . . ,

F̂ (1)
L (κ)− F̂ (2)

L (κ)

2

)
,

#λT
L =

(
1,λ, . . . ,λL−1

)
,

#eTL+1 = (

L︷ ︸︸ ︷
0, . . . , 0, 1), (B.2)

and the scalar function

∆G(κ1,κ2) =
1

2

(
Ĝ(κ1,κ2)− Ĝ(κ2,κ1)

)
. (B.3)

Then we can split the functions (A.12) in symmetric and anti-symmetric parts,

M̂ij = ∆Mij +
mimj

2
, (B.4)

F̂ (1)
j (κ) = ∆Fj(κ) +

f(κ)mj

2
,

F̂ (2)
j (κ) = −∆Fj(κ) +

f(κ)mj

2
,

Ĝ(κ1,κ2) = ∆Ĝ(κ1,κ2) +
f(κ1)f(κ2)

2
.

These relations follow from the particular form of the integrands, see Eqs. (A.5) and
(A.12). We employ this splitting after we apply a generalized version of Andréief’s
integration theorem [10, 45] to the four partition functions in the kernels of the
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determinant (2.20),

Z(L+1,C)
1|0;1|0 [α](κ1;κ2) = det





{
M̂ij

}

1≤i,j≤L

{
F̂ (1)
i (κ1)

}

1≤i≤L{
F̂ (2)
j (κ2)

}

1≤j≤L
Ĝ(κ1,κ2)





= det




∆ML +

#mL #mT
L

2
∆#FL(κ1) +

f(κ1)#mL

2

−∆#FT
L (κ2) +

f(κ2)#mT
L

2
∆Ĝ(κ1,κ2) +

f(κ1)f(κ2)

2



 ,

Z(L,C)
0|0;1|1[α](κ,λ)

κ− λ
= det





{
M̂ij

}

1≤i,j≤L

{
λi−1

}
1≤i≤L{

F̂ (2)
j (κ)

}

1≤j≤L

1

κ− λ





= det




∆ML +

#mL #mT
L

2
#λL

−∆#FT
L (κ) +

f(κ)#mT
L

2

1

κ− λ



 ,

Z(L,C)
1|1;0|0[α](κ,λ)

κ− λ
= det





{
M̂ij

}

1≤i,j≤L

{
F̂ (1)
i (κ)

}

1≤i≤L
{
λj−1

}
1≤j≤L

1

κ− λ





= det




∆ML +

#mL #mT
L

2
∆#FL(κ) +

f(κ)#mL

2
#λT
L

1

κ− λ



 ,

Z(L−1,C)
0|1;0|1 [α](λ1;λ2) = det





{
M̂ij

}

1≤i,j≤L

{
λi−1
b

}
1≤i≤L{

λj−1
a

}
1≤j≤L

0





= det



 ∆ML +
#mL #mT

L

2
#λL,2

#λT
L,1 0



 . (B.5)

The next steps only apply for the case L ∈ 2N even since the antisymmetric matrix
∆ML is only invertible in this case. For the case L odd we have to modify this
procedure. Exactly for this case we need the constant vector #eL+1.

Let L be even. Then the inverse of the matrix consisting of the moments of the
Cauchy two-matrix ensemble reads

(
∆ML +

#mL #mT
L

2

)−1

= ∆M−1
L −

1

2
∆M−1

L #mL #m
T
L∆M−1

L (B.6)

since we can perform a Taylor expansion in the dyadic matrix #mL #mT
L. This Taylor

expansion is finite because #mT
L∆M−1

L #mL = 0 resulting from the asymmetry of



BURES MEASURE AND CAUCHY TWO-MATRIX MODEL 33

∆ML which carries over to its inverse. Therefore we find

Z(L+1,C)
1|0;1|0 [α](κ1;κ2)

Z(L,C)
0|0;0|0[α]

= ∆Ĝ(κ1,κ2) +
f(κ1)f(κ2)

2
+

(
∆#FT

L (κ2)−
f(κ2)#mT

L

2

)

×
(
∆M−1

L −
1

2
∆M−1

L #mL #m
T
L∆M−1

L

)(
∆#FL(κ1) +

f(κ1)#mL

2

)

= −
Z(L+1,C)
1|0;1|0 [α](κ2;κ1)

Z(L,C)
0|0;0|0[α]

+(f(κ1)− #mT
L∆M−1

L ∆#FL(κ1))(f(κ2)− #mT
L∆M−1

L ∆#FL(κ2)),

Z(L,C)
0|0;1|1[α](κ,λ)

Z(L,C)
0|0;0|0[α](κ− λ)

=
1

κ− λ
+

(
∆#FT

L (κ)−
f(κ)#mT

L

2

)

×
(
∆M−1

L −
1

2
∆M−1

L #mL #m
T
L∆M−1

L

)
#λL

=
Z(L,C)
1|1;0|0[α](κ,λ)

Z(L,C)
0|0;0|0[α](κ− λ)

+(f(κ)− #mT
L∆M−1

L ∆#FL(κ))#λ
T
L∆M−1

L #m,

Z(L−1,C)
0|1;0|1 [α](λ1;λ2)

Z(L,C)
0|0;0|0[α]

= −#λT
L,1∆M−1#λL,2 +

1

2
#mT

L∆M−1
L

#λL,1 #m
T
L∆M−1

L
#λL,2

= −
Z(L−1,C)
0|1;0|1 [α](λ2;λ1)

Z(L,C)
0|0;0|0[α]

+ #mT
L∆M−1

L
#λL,1 #m

T
L∆M−1

L
#λL,2.

(B.7)

These relations prove the proposition for the case L even and k+ l even. The reason
for this is that we can define the vector

#v =





{
f(κa)− #mT

L∆M−1
L ∆#FL(κj)

}

1≤j≤k{
#mT

L∆M−1
L

#λL,j

}

1≤j≤l



 (B.8)

such that the partition function is

Z(L−l+k,C)
k|l;k|l [α](κ,λ;κ,λ) =

Z(L,C)
0|0;0|0[α]

B2
k|l(κ;λ)

det

(
K +

1

2
#v#vT

)
=

Z(L,C)
0|0;0|0[α]

B2
k|l(κ;λ)

detK, (B.9)

where K is the remaining antisymmetric matrix in the determinant (3.15). We
extent this result to L even and k+ l odd by introducing an auxiliary variable λl+1

in the partition function

Z(L−l+k,C)
k|l;k|l [α](κ,λ;κ,λ) = lim

λl+1→∞

Z(L−l+k,C)
k|l+1;k|l+1[α](κ,λ;κ,λ)

λ2(L−l+k)
l+1

. (B.10)

Let us come to the other case where L ∈ 2N0 + 1 odd. Then the antisymmetric
matrix∆ML is not invertible anymore. Therefore we extend the determinants (B.5)
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by the vector !eL+1,

Z(L+1,C)
1|0;1|0 [α](κ1;κ2)

= − det





∆ML+1 +
!mL+1 !mT

L+1

2
∆!FL+1(κ1) +

f(κ1)!mL+1

2
!eL+1

−∆!FT
L+1(κ2) +

f(κ2)!mT
L+1

2
∆Ĝ(κ1,κ2) +

f(κ1)f(κ2)

2
0

!eTL+1 0 0




,

Z(L,C)
0|0;1|1[α](κ,λ)

κ− λ

= − det





∆ML+1 +
!mL+1 !mT

L+1

2
!λL+1 !eL+1

−∆!FT
L+1(κ) +

f(κ)!mT
L+1

2

1

κ− λ
0

!eTL+1 0 0




,

Z(L,C)
1|1;0|0[α](κ,λ)

κ− λ

= − det





∆ML+1 +
!mL+1 !mT

L+1

2
∆!FL+1(κ) +

f(κ)!mL+1

2
!eL+1

!λT
L+1

1

κ− λ
0

!eTL+1 0 0




,

Z(L−1,C)
0|1;0|1 [α](λ1;λ2)

= − det




∆ML+1 +

!mL+1 !mT
L

2
!λL+1,2 !eL+1

!λT
L+1,1 0 0
!eTL+1 0 0



 . (B.11)

Now the antisymmetric matrix ∆ML+1 is invertible and we can derive relations
analogous to those in Eq. (B.7),

Z(L+1,C)
1|0;1|0 [α](κ1;κ2)

Z(L,C)
0|0;0|0[α]

= −
Z(L+1,C)
1|0;1|0 [α](κ2;κ1)

Z(L,C)
0|0;0|0[α]

+2!eTL+1∆M−1
L+1∆

!FL+1(κ1)!e
T
L+1∆M−1

L+1∆
!FL+1(κ2)

Z(L,C)
0|0;1|1[α](κ,λ)

Z(L,C)
0|0;0|0[α](κ− λ)

=
Z(L,C)
1|1;0|0[α](κ,λ)

Z(L,C)
0|0;0|0[α](κ− λ)

+2!eTL+1∆M−1
L+1∆

!FL+1(κ)!eL+1∆M−1
L+1

!λL+1,

Z(L−1,C)
0|1;0|1 [α](λ1;λ2)

Z(L,C)
0|0;0|0[α]

= −
Z(L−1,C)
0|1;0|1 [α](λ2;λ1)

Z(L,C)
0|0;0|0[α]

+2!eL+1∆M−1
L+1

!λL+1,1!eL+1∆M−1
L+1

!λL+1,2. (B.12)
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Hence we have to define a new vector

!v =





{
!eTL+1∆M−1

L+1∆
!FL+1(κj)

}

1≤j≤k{
!eL+1∆M−1

L+1
!λL+1,j

}

1≤j≤l



 (B.13)

with which one can do a calculation similar to Eq. (B.9) and so proving the propo-
sition for the case L odd and k + l even. The case for k + l odd can be performed
exactly in the same way as for L even which finishes the proof.
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Supersymmetry for Products of Random Matrices ∗

Mario Kieburg

Faculty of Physics, Bielefeld University, Postfach 100131, D-33501 Bielefeld,
Germany, mkieburg@physik.uni-bielefeld.de

We consider the singular value statistics of products of independent
random matrices. In particular we compute the corresponding averages
of products of characteristic polynomials. To this aim we apply the pro-
jection formula recently introduced for chiral random matrix ensembles
which serves as a short cut of the supersymmetry method. The projection
formula enables us to study the local statistics where free probability cur-
rently fails. To illustrate the projection formula and underline the power
of our approach we calculate the hard edge scaling limit of the Meijer G-
ensembles comprising the Wishart-Laguerre (chiral Gaussian), the Jacobi
(truncated orthogonal, unitary or unitary symplectic) and the Cauchy-
Lorentz (heavy tail) random matrix ensembles. All calculations are done
for real, complex, and quaternion matrices in a unifying way. In the case
of real and quaternion matrices the results are completely new and point
to the universality of the hard edge scaling limit for a product of these ma-
trices, too. Moreover we identify the non-linear σ-models corresponding
to product matrices.

PACS numbers: 02.10.Yn, 02.50.Sk, 05.40.-a

1. Introduction

Sums and products of random matrices are the simplest generalization
of random matrix theory (RMT) to introduce some kind of dimension.
Sums of random matrices can be understood as a convolution and regu-
larly appear in the field of Dyson’s Brownian motion [1]. Product matrices
are versatile as well. Applications of them can be found in mesoscopic
physics [2, 3], QCD [4], and wireless telecommunication [5, 6]. In the past
years a lot of progress was made on products of random matrices, see the
new review [7] reporting on this progress. For example, free probability
has proven as an efficient tool for calculating the macroscopic level den-
sity [9]. With the help of orthogonal polynomials one could calculate alge-
braic structures like determinants and Pfaffians, their kernels, and certain
universal statistics on the local scale of the spectrum [6, 10, 11, 12, 13].
In particular products of random matrices drawn from Meijer G-ensembles

∗ Presented at “Random Matrix Theory: Foundations and Applications” in Cracow,
July 1-6 2014

(1)

http://arxiv.org/abs/1502.00550v1
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(the weight is essentially given by Meijer G-functions, see [14] for a defini-
tion of these functions) exhibit a new kind of universal kernel in the hard
scaling limit (microscopic limit around the origin). This limit is called
Meijer G-kernel. Its name is reminiscent to the fact that the kernel essen-
tially depends on Meijer G-functions. The “standard candles” of RMT,
the Wishart-Laguerre ensemble [15] (χGβE), the Cauchy-Lorentz ensem-
ble [16] (LβE), and the Jacobi ensemble [17] (JβE) are particular cases
of Meijer G-ensembles. Also products of matrices drawn from these three
ensembles are Meijer G-ensembles since this class of ensembles is expected
to be closed under matrix products.

Most results on the singular value statistics about product matrices
are known for complex matrices (β = 2), only. The only exception, the
macroscopic level density, can be computed for real (β = 1) and quaternion
(β = 4) matrices with free probability [9] because they share the level
density with β = 2. However the local statistics of the singular values
is still highly involved for β = 1, 4 due to unknown group integrals like
the Itzykson-Zuber integral [18] and its polynomial counterpart [19, 13].
The projection formula recently proposed [20] circumvents such problems.
This formula is a short cut of the supersymmetry method [21, 22] and
directly relates the original probability density with the weight in the dual
superspace.

After introducing the required notation in Sec. 2 we briefly review the
projection formula in Sec. 3. Thereby we only consider the average of a
product of characteristic polynomials to keep the calculation simple. We
emphasize that the projection formula holds for all three Dyson indices
β = 1, 2, 4 which is the strength of this approach.

In Sec. 4, we demonstrate via the three ensembles, χGβE, LβE, and
JβE, how the projection formula works. Thereby we explicitly compute the
well-known orthogonal polynomials for β = 2 and show that the average of
one characteristic polynomial for β = 1 and the square root of a character-
istic polynomial for β = 4 is apart from some shifts in the parameters the
same as in the case β = 2. Another example is presented in Sec. 5 where we
generalize the approach to a product of independently distributed matrices.
Also for product matrices we explicitly calculate the orthogonal polynomi-
als in the case β = 2. However the completely new results are the ones
for β = 1, 4 which are expressed in terms of integrals over Dyson’s circular
ensembles (CβE) [23]. In this way we show in Sec. 6 that the universality
in the hard edge scaling limit holds for real and quaternion product ma-
trices, too. We are also able to identify the non-linear σ-models which are
necessary when comparing the universal results with physical field theories.

2. Preliminaries

We consider rectangular random matrices which are either real (β = 1),
complex (β = 2), or quaternion (β = 4). We are particularly interested in



SUSY˙for˙Product˙Matrices-v2 printed on February 3, 2015 3

the singular value statistics of a random matrix

W ∈ gl(β)(n;n+ ν) =






Rn×(n+ν), β = 1,
Cn×(n+ν), β = 2,
Hn×(n+ν), β = 4

(1)

distributed by P (WW †). We assume ν = 0 in the following to keep
the computations simple such that we choose the abbreviation gl(β)(n) =
gl(β)(n;n). Nonetheless this restriction is not that strong since a product
of rectangular matrices can be always rephrased to a product of square ma-
trices [12]. Examples of such induced measures resulting from rectangular
matrices are given in Sec. 5.

Since we choose the complex representation of the quaternion numbers
H in terms of Pauli matrices we introduce the convenient parameters

β̃ =
4

β
, γ =

{
1, β = 1, 2,
2, β = 4,

γ̃ =

{
2, β = 1,
1, β = 2, 4.

(2)

For the sake of readability we restrict ourselves to partition functions of
the form

Z(M) =

∫
d[W ]P (WW †)det1/(γγ̃)(WW † ⊗ 1γ̃k −M). (3)

The fixed matrix M = {Mab,ij} has the dimension (γn× γn)⊗ (γ̃k× γ̃k) =
γγ̃nk × γγ̃nk. It has to satisfy the symmetry

MT =

{
1n ⊗ [τ2 ⊗ 1k]M 1n ⊗ [τ2 ⊗ 1k], β = 1,
[τ2 ⊗ 1n]⊗ 1k M [τ2 ⊗ 1n]⊗ 1k, β = 4,

(4)

where τ2 is the second Pauli matrix. Other properties ofM are not required.
The partition function (3) needs an explanation. The determinant acts

on the tensor space of (γn×γn) matrices containing the matrix WW † and a
space of dimension (γ̃k×γ̃k). In the case thatM = 1γn⊗diag (m1, . . . ,mγ̃k)
the determinant is a short hand notation for a product of characteristic
polynomials of WW † which is a well-known partition function in random
matrix theory [8]. The reason why we wrote this product in such an un-
common, compact form is the application we aim at, namely the singular
value statistics of matrix products. Then the matrix M does not take such
a simple form.

Another particularity of Eq. (3) which needs an explanation is the ex-
ponent of the determinant, −1/(γγ̃) and the matrix dimensions. In the
case of complex matrices (β = 2), the exponent and the dimensions be-
come self-explanatory since they become trivial, e.g. −1/(γγ̃)|β=2 = −1.
When W is real (β = 1) then WW † is real symmetric and n × n dimen-
sional. The space dual to the polynomials consists of self-dual matrices.
The resulting Kramers degeneracy cancels the exponent 1/2 and doubles
the dimension, k → 2k. Exactly the opposite happens in the case of a
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quaternion matrix W (β = 4). Due to its quaternion structure the dimen-
sion is doubled, n → 2n. However the dual space consists of symmetric
matrices. Since symmetric matrices may have also odd dimensions we do
not need a doubling of the dimension k. The corresponding square roots of
the characteristic polynomials are exact and, thus, a polynomial because
the spectrum of WW † is Kramers degenerate. Such a square root is known
as quaternion determinant and is equivalent to a Pfaffian determinant [24].

An important ingredient needed for the supersymmetry method is the
invariance of the probability density P under the transformation P (WW †) =
P (UWW †U †) for all U ∈ U(β)(n) where

U(β)(n) =






O(n), β = 1,
U(n), β = 2,

USp(2n), β = 4.
(5)

Only due to this invariance it is possible to find an integral over a super-
matrix whose dimension is independent of the ordinary dimension n and
which yields exactly the same partition function as Eq. (3). This can be
achieved in four steps which we briefly sketch in section 3.

For this purpose we have to introduce two supermatrix spaces and one
ordinary matrix space. Let p, q,N ∈ N, and U(p|q) and UOSp(p|2q) be
the unitary and the unitary ortho-symplectic supergroup, respectively, see
[25, 26, 27]. The space of rectangular supermatrices is defined by

gl(β)(p|q; p′|q′) = u(β)(p+ p′|q + q′)/[u(β)(p|q)× u(β)(p′|q′)], (6)

where u(β)(p|q) is the Lie superalgebra of the supergroup

U(β)(p|q) =






UOSp(+)(p|2q), β = 1,
U(p|q), β = 2,

UOSp(−)(2p|q), β = 4.
(7)

The coset is taken via the addition as a group action on the Lie superalge-
bra. Therefore a matrix ρ ∈ gl(β)(p|q;N) is (γp|γ̃q)× (γp|γ̃q) dimensional
and has the following form

ρ =

[
ρBB ρBF

ρFB ρFF

]
. (8)

The γp×γp dimensional boson-boson block ρBB and the γ̃q×γ̃q dimensional
fermion-fermion block ρFF comprise commuting variables while the other
two block contain anti-commuting ones.

We employ the same notation for the two inequivalent fundamental
representations of the supergroup UOSp(p|2q) as in [26, 27] where the su-
perscripts indicate the transformation property under the complex conju-
gation, i.e.

ρ∗ =

{
diag (1p,−ıτ2 ⊗ 1q) ρdiag (1p′ , ıτ2 ⊗ 1q′), β = 1,
diag (−ıτ2 ⊗ 1p,1q) ρdiag (ıτ2 ⊗ 1p′ ,1q′), β = 4

(9)



SUSY˙for˙Product˙Matrices-v2 printed on February 3, 2015 5

for ρ ∈ gl(β)(p|q; p′|q′) and

U∗ =

{
diag (1p,−ıτ2 ⊗ 1q)U diag (1p, ıτ2 ⊗ 1q), β = 1,
diag (−ıτ2 ⊗ 1p,1q)U diag (ıτ2 ⊗ 1p,1q), β = 4

(10)

for U ∈ U(β)(p|q) ⊂ U(γp|γ̃q). The two relations (9) and (10) are general-
ization of the definitions of real and quaternion matrices to superspace.

The ordinary matrix space announced is the coset

CβE(γk) =






U(k)/O(k), β = 1,
[U(k) ×U(k)]/U(k) & U(k), β = 2,

U(2k)/USp(2k), β = 4
(11)

equipped with a normalized Haar measure dµ(U) induced by the Haar mea-
sures on the defining groups. These three sets are the circular ensembles
first studied by Dyson [23]. These co-sets are also the fermionic part of
the supermatrices involved in the superbosonization formula [22]. Since
we only discuss the average of products of determinants and not ratios
superbosonization reduces to bosonization only involving the circular en-
sembles (11). Let us recall the properties of a matrix U ∈ CβE(γk). The
matrix U is unitary and satisfies the symmetries UT = U for β = 1 and
UT = (τ2 ⊗ 1k)U(τ2 ⊗ 1k) for β = 4.

Also the superdeterminant and the supertrace play an important role
in the ensuing calculations. They are defined via the ordinary determinant
and trace and explicitly read

Sdet ρ =
det(ρBB − ρBFρ

−1
FFρFB)

det ρFF
, Str ρ = tr ρBB − tr ρFF (12)

for an arbitrary square supermatrix ρ ∈ gl(β)(p|q; p|q) whose fermion-fermion
block ρFF is invertible. The definitions are chosen in such a way that
many properties of the trace and the determinant carry over to super-
space. For example the circularity StrAB = StrBA, the factorization
SdetAB = SdetASdetB, and the relation ln SdetA = Str lnA still hold
for two arbitrary invertible square supermatrices A and B. The circularity
property of the supertrace works for rectangular supermatrices, as well. A
more profound introduction in supersymmetric analysis and algebra can be
found in [28].

3. What is the Projection Formula?

The projection formula in its general form projects functions living on
a very large superspace to functions on a much smaller superspace [20].
In this way it directly relates the original weight P to a weight Q in the
smaller superspace. Hence the projection formula is a short cut of the su-
persymmetry method [20]. For our particular purposes the large superspace
is gl(β)(n + γ̃l|γl;n|0) with l being an integer larger than or equal to k/γ.
The enlargement of the dimensions k → 2l in the case k odd and β = 4
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is crucial. The reason is a Cauchy-like integration theorem [29, 27] first
derived in a general framework by Wegner [30] which only applies to an
even dimensional reduction of a matrix space in the case of β = 1, 4.

In the first step of deriving the projection formula we need the following
version of this Cauchy-like theorem [20]

P (WW †) =

∫
d[Ω̂]P (ΩΩ†)

∫
d[Ω̂] exp[−Str Ω̂Ω̂†]

(13)

with W ∈ gl(β)(n) = gl(β)(n|0;n|0) and Ω̂ ∈ gl(β)(γ̃l|γl;n|0). The matrices
are embedded as follows

Ω =

[
W
Ω̂

]
=

[
W ′

Ω′

]
∈ gl(β)(n+ γ̃l|γl;n). (14)

The second splitting in W ′ ∈ gl(β)(n+ γ̃l|γl−k;n|0) and Ω′ ∈ gl(β)(0|k;n|0)
becomes relevant in the third step of the derivation of the projection for-
mula. The measure d[Ω̂] is the product of all differentials of independent
matrix entries of Ω̂. The normalization with a Gaussian is true because the
proportionality constant is independent of P and thus can be fixed by any
weight.

In Eq. (13) we have chosen a supersymmetric extension of P to the
superspace gl(β)(n + γ̃l|γl;n|0) which is by far not unique. However the
final result is independent of this choice as already discussed in [12]. Such
an extension indeed exists for a smooth distribution P . Since P is invari-
ant under the group U(β)(n) we can apply the Cayley-Hamilton theorem
implying that P can be expressed in matrix invariants like traces and de-
terminants of WW †. Those invariants have invariant extensions, namely
the supertrace and the superdeterminant, cf. Eq. (12).

In the next step we rewrite the determinant in Eq. (3) as a Gaussian
integral over a matrix V = {Vaj} ∈ gl(β)(0|k;n|0) which only consists of
Grassmann (anti-commuting) variables [28],

det1/(γγ̃)(WW † ⊗ 1γ̃k −M) (15)

=

∫
d[V ] exp[trVWW †V † −

∑γ̃k
a,b=1

∑γn
i,j=1Mab,ijVaiV ∗

bj]∫
d[V ] exp[trV V †]

.

Then the partition function is up to a constant

Z(M) ∝
∫

d[Ω]d[V ]P (ΩΩ†) exp



−StrΩΩ†V̂ †V̂ −
γ̃k∑

a,b=1

γn∑

i,j=1

Mab,ijVaiV
∗
bj





(16)
with

V̂ =

[
0 0
V 0

]
, V̂ † =

[
0 V †

0 0

]
∈ gl(β)(n+ γ̃l|γl;n + γ̃l|γl). (17)
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The first (γn + 2γγ̃l − γ̃k) rows and the last 2γγ̃l columns of V̂ are equal
to 0. The change of the sign in front of the first term in the exponential
function relates to the fact that Grassmann variables are anti-commuting.

The integrals over V and Ω can be interchanged such that we find the
function

P̂ (V̂ †V̂ ) =

∫
d[Ω]P (ΩΩ†) exp[−StrΩΩ†V̂ †V̂ ]. (18)

The invariance of P (ΩΩ†) = P (UΩΩ†U †) for all U ∈ U(β)(n+ γ̃l|γl) carries
over to a symmetry for P̂ (V̂ †V̂ ) = P̂ (UV̂ †V̂ U †) for all U ∈ U(β)(n+ γ̃l|γl).
Therefore the following duality holds

P̂ (V̂ †V̂ ) = P̂ (V̂ V̂ †) (19)

which is the third important step of the derivation. Employing the defini-
tion (18) backwards the partition function is

Z(M) ∝
∫

d[Ω]d[V ]P (ΩΩ†) exp



trV †Ω′Ω′ †V −
γ̃k∑

a,b=1

γn∑

i,j=1

Mab,ijVaiV
∗
bj





∝
∫

d[Ω′]Q(Ω′Ω′ †)det1/(γγ̃)(1γn ⊗ Ω′Ω′ † −M). (20)

In the last step we integrated over the remaining degrees of freedom W ′,
cf. the splitting (14), which do not show up in the determinant. This
integration yields the function

Q(Ω′Ω′ †) ∝
∫

d[W ′]P

([
W ′W ′ † W ′Ω′ †

Ω′W ′ † Ω′Ω′ †

])
. (21)

This equation is the essence of the projection formula. The remaining
things to do is cosmetics.

We want to express the dyadic matrix Ω′Ω′ † as a single square matrix
U which is an element in Cβ̃E(γk). Note that the circular ensemble really

relates to the Dyson index β̃ = 4/β and not β which originates from the
symmetries fulfilled by V .

Exactly this is done in the last step. We apply the superbosonization
formula [22] which reduces to pure bosonization in our case. This yields
the partition function

Z(M) =

∫
dµ(U)Q(U)det1/(γγ̃)(1γn ⊗ U −M)det−n/γ̃U. (22)

with the normalized distribution

Q(U) =

∫
d[W1]d[W2]P

([
W1W

†
1 +W2W

†
2 W2U1/2

U1/2W †
2 U

])

∫
dµ(U)d[W1]d[W2] det

−n/γ̃ U exp[−Str (W1W
†
1 +W2W

†
2 ) + trU ]

.

(23)
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The reduction of the integral (21) to the final expression (23) as an integral
over the two matrices W1 ∈ gl(β)(n + γ̃l|γl − k;n + γ̃l|γl − k) and W2 ∈
gl(β)(n+ γ̃l|γl− k; 0|k) was done in [27] and is skipped here due to the lack
of space.

We remark that apart from the case k odd and β = 4 the auxiliary
parameter l can be chosen l = k/γ. Then the matrix W1 is an ordinary
square matrix and W2 is a rectangular matrix only consisting of Grassmann
variables.

4. Application to Standard Random Matrix Ensembles

Three particular cases of Meijer G-ensembles are the Gaussian χGβE,
the heavy-tailed LβE, and the compactly supported JβE. We discuss them
in subsections 4.1, 4.2, and 4.3, respectively. These ensembles play im-
portant roles in a vast of applications and cover a broad range of sys-
tems [15, 10, 11, 8, 17, 16].

4.1. Wishart-Laguerre (Gaussian) Ensemble

The first ensemble we consider is the χGβE,

PWL(WW †) ∝ detν/γ̃WW † exp[−trWW †/Γ2] (24)

with ν ∈ N0 and Γ > 0. It is the oldest random matrix ensemble first stud-
ied by Wishart [15]. The determinant in front of the Gaussian originates
from a transformation of a rectangular matrix W ′ ∈ gl(β)(n, n + ν) to the
square matrix W ∈ gl(β)(n). Therefore one can understand Eq. (24) as an
induced measure [12]. The corresponding weight QWL is given by Eq. (23),

QWL(U) ∝
∫

d[W1]d[W2]Sdet
ν/γ̃

[
W1W

†
1 +W2W

†
2 W2U1/2

U1/2W †
2 U

]

× exp[−Str (W1W
†
1 +W2W

†
2 ) + trU/Γ2]

∝ det−ν/γ̃UetrU/Γ2

. (25)

Therefore the partition function (3) for PWL(WW †) reads

ZWL(M) =

∫
dµ(U)det−(n+ν)/γ̃Udet1/(γγ̃)(1γn ⊗ U −M)etrU/Γ2

∫
dµ(U)det−(n+ν)/γ̃UetrU/Γ2

. (26)

This result agrees with the one derived in [27]. The normalization can be
fixed by considering the expansion of the partition function for large M .

The result (26) exhibits nice implications. For example the case k = γ
and M = m1γ2γ̃n is equal to the orthogonal polynomials for β = 2 and
to the skew-orthogonal polynomials of even order for β = 1, 4, see [24].
Hence the contour for β = 2 is a representation of the modified Laguerre
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polynomials L(ν)
n , see [14], i.e.

Z(β=2,k=1)
WL (m1n) ∝

∮
dzz−(n+ν+1)(z −m)nez/Γ

2

∝
n∑

j=0

1

j!(n − j)!(ν + j)!

(
−
m

Γ2

)j
∝ L(ν)

n

(m
Γ2

)
. (27)

These polynomials also appear for β = 1, 4 if we set k = 1. Only the
argument m is modified to γ̃m. Interestingly, the case β = 4 is an average
over a square root of a determinant which is equivalent to a Pfaffian.

For the case k = 2γ and M = 1γ2 γ̃n ⊗ diag (m1,m2) we find one of
the kernels corresponding to the χGβE [24]. When computing the contour
integral (26) we immediately find the corresponding Christoffel-Darboux
formulas.

4.2. Cauchy-Lorentz Ensemble

The LβE is the next case we want to study. It is defined by the proba-
bility density [16, 20]

PCL(WW †) ∝ detν/γ̃WW †det−µ(Γ21γn +WW †) (28)

with Γ > 1, ν ∈ N0 and µ > k/γ+(2n+ν)/γ̃− (γγ̃−1)/2 for guaranteeing
the convergence of the integral (3)1. It is a heavy-tailed distribution and
was employed for modelling financial correlations [16].

The choice Γ > 1 is convenient for the projection formula but is not a re-
striction at all because it only rescales the ensemble. The term detν/γ̃WW †

can be again understood as a remnant of a rectangular matrix W ′ ∈
gl(β)(n, n + ν). However we underline that such a transformation from
W ′ to W also changes the exponent µ.

The weight for the dual space is calculated by Eq. (23),

QCL(U) ∝
∫

d[W1]d[W2]Sdet
ν/γ̃

[
W1W

†
1 +W2W

†
2 W2U1/2

U1/2W †
2 U

]

×Sdet−µ

[
Γ21γn+γγ̃l|γγ̃l−γ̃k +W1W

†
1 +W2W

†
2 W2U1/2

U1/2W †
2 Γ21γ̃k + U

]

∝ det−ν/γ̃Udetµ(Γ21γ̃k + U)

∫
d[W1]d[W2]Sdet

ν/γ̃W1W
†
1

×Sdet−µ
[
Γ21γn+γγ̃l|γγ̃l−γ̃k +W1W

†
1 + Γ2W2(Γ

21γ̃k + U)−1W †
2

]

∝ det−ν/γ̃Udetµ−k/γ−n/γ̃(Γ21γ̃k + U) (29)

1 Note that the inequality satisfied by µ in [20] contains a mistake which we have
corrected here. The inequality can be found by performing a singular value decom-
position of W and then reading off the algebraic behaviour at infinity.
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In the last step we have rescaled W2 → W2(Γ21γ̃k + U)1/2 such that the
remaining integrals are independent of U . Thereby we recall that the
Berezinian (Jacobian in superspace) is det−k/γ−n/γ̃(Γ21γ̃k + U). Hence
we end up with the partition function

ZCL(M) =

∫
dµ(U)det−

n+ν
γ̃ Udetµ−

k
γ
−n

γ̃ (Γ21γ̃k + U)det
1
γγ̃ (1γn ⊗ U −M)

∫
dµ(U)det−(n+ν)/γ̃Udetµ−k/γ−n/γ̃(Γ21γ̃k + U)

.

(30)
Starting from this formula one can again easily deduce the orthogonal or
skew-orthogonal polynomials, the kernel involving two characteristic poly-
nomials, and the Christoffel-Darboux formula associated to this kernel.
For example the orthogonal polynomials corresponding to the complex
LβE = LUE is

Z(β=2,k=1)
CL (m1n) ∝

∮
dzz−(n+ν+1)(Γ2 + z)µ−n−1(z −m)n (31)

∝
n∑

j=0

1

j!(n − j)!(ν + j)!Γ[µ − n− ν − j]

(
−
m

Γ2

)j
.

This polynomial can be understood as a Jacobi polynomial when analyti-
cally continuing the parameters to negative values, cf. Eq. (37). The same
polynomials pop up for β = 1, 4 when setting k = 1. This time we have
only to change the exponent µ → γ̃µ− γ̃/γ + 1.

4.3. Jacobi (Truncated Unitary) Ensemble

The JβE is defined by [17]

PJ(WW †) ∝ detν/γ̃WW †detκ(Γ21γn −WW †)Θ(Γ21γn −WW †), (32)

where ν ∈ N0, κ > −1/(2γ). The Heaviside step function for matrices Θ
is unity if the matrix is positive definite and otherwise vanishes. Again
the scaling Γ > 1 is only introduced to avoid problems with the contour
integrals in the dual space. In the case γγ̃µ ∈ N0 the random matrix W
distributed by Eq. (32) can be understood as a truncation of an orthogonal
(β = 1), a unitary (β = 2), or a unitary symplectic (β = 4) matrix,
respectively, see [17, 12].

To apply the projection formula we have first to find the supersymmetric
generalization of the Heaviside step function. For this reason we write this
function as Θ(Γ21γn −W †W ). Then it is clear that this function reads in
terms of the supermatrix Ω as Θ(Γ21γn −Ω†Ω) because the dyadic matrix
Ω†Ω has still an ordinary dimension and can be embedded in the space of
γn × γn matrices by a Taylor expansion in the Grassmann valued matrix
entries. Such a Taylor expansion is always finite since Grassmann variables
are nilpotent. Hence we do not have to fear any problems of convergence.
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Let n, p, q ∈ N and V ∈ gl(β)(p|q;n|0). Then the extension of the
Heaviside step function is done by a limit,

Θ(1γn − V †V ) = lim
ε→∞

det−1(1γn + e−εeεV
†V )

= lim
ε→∞

exp




∞∑

j=1

(−1)je−jε

j
tr ejεV

†V



 . (33)

This limit vanishes if one or more eigenvalues of the numerical part of
the dyadic matrix V †V is larger than 1. We emphasize that indeed only
the numerical part matters and not the nilpotent terms because of the
Taylor expansion in the latter. In the next step we employ the duality
tr ejεV

†V = γ(n− p) + γ̃q + Str ejεV V †
. We have

Θ(1γn − V †V ) = lim
ε→∞

(1 + e−ε)γ(p−n)−γ̃qSdet−1(1γp|γ̃q + e−εeεV V †
)

= lim
ε→∞

det−1(1γp|γ̃q + e−ε{eεV V †
}BB)

= Θ(1γp − {V V †}numBB ). (34)

The Heaviside step function is only taken for the numerical part {V V †}numBB
of the boson-boson block of the dyadic matrix V V †. Any expansion in
the nilpotent terms yields a polynomial in ε which are suppressed by the
exponential e−ε. This implies that the other three blocks of the supermatrix
eεV V †

cannot contribute because they are polynomials in ε. The boson-
boson block is {eεV V †}BB = eε{V V †}num

BB (1+ f(ε)) with f a polynomial with
f(0) = 0. Therefore Eq. (34) is the correct generalization of the Heaviside
step function to the superspace. Interestingly the Taylor expansion in the
nilpotent terms have no influence on the Heaviside step function. But
this behaviour has to be expected because the Taylor expansion can only
have an effect on the boundary. Only there one or more eigenvalues of the
numerical part {V V †}numBB are equal to 1 where the value of the function may
change. However, the supersymmetric Heaviside step function vanishes at
the boundary, too, due to the expansion in the nilpotent terms yielding an

inverted polynomial in ε, e.g. det−1(1γp|γ̃q + e−ε{eεV V †}BB)
{V V †}BB→1γp−→

1/f(ε)
ε→∞→ 0 with f a polynomial.

We employ Eq. (34) in our setting and recognize that the matrix U
is not a part of the boson-boson block of the matrix argument of PJ in
Eq. (23). Hence, the function in the dual space is

QJ(U) ∝
∫

d[W1]d[W2]Sdet
ν/γ̃

[
W1W

†
1 +W2W

†
2 W2U1/2

U1/2W †
2 U

]

×Sdet κ
[

Γ21γn+γγ̃l|γγ̃l−γ̃k −W1W
†
1 −W2W

†
2 W2U1/2

U1/2W †
2 Γ21γ̃k − U

]

×Θ(Γ21γn+γγ̃l − {W1W
†
1 +W2W

†
2}

num
BB )

∝ det−ν/γ̃Udet−κ−k/γ−n/γ̃(Γ21γ̃k − U). (35)
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We underline that the boson-boson block ofW2W
†
2 only consists of nilpotent

parts such that it does not contribute to the Heaviside step function. The
corresponding partition function is

ZJ(M) =

∫
dµ(U)det−

n+ν
γ̃ Udet−κ− k

γ
−n

γ̃ (Γ21γ̃k − U)det
1
γγ̃ (1γn ⊗ U −M)

∫
dµ(U)det−(n+ν)/γ̃Udet−κ−k/γ−n/γ̃(Γ21γ̃k − U)

.

(36)
One can readily check the correctness of this result by calculating the or-
thogonal or skew-orthogonal polynomials and the kernel involving two char-
acteristic polynomials. For example, with the help of the residue theorem
we generate the polynomials,

Z(β=2,k=1)
J (m1n) ∝

∮
dzz−(n+ν+1)(Γ2 − z)−(n+κ+1)(z −m)n (37)

∝
n∑

j=0

Γ[n+ κ+ ν + j + 1]

j!(n − j)!(ν + j)!

(
−
m

Γ2

)j
∝ P (κ,ν)

n

(
2m

Γ2
− 1

)
,

where P (κ,ν)
n are the Jacobi polynomials with respect to the weight (1 −

x)κ(1 + x)νΘ(1 − x2), see [14]. As in the case of the LβE we find the
same polynomials for β = 1, 4 and k = 1 when replacing the exponent
κ → γ̃κ+ γ̃/γ − 1.

We also obtain the well-known Christoffel-Darboux formula of the Ja-
cobi polynomials by setting k = 2, β = 2, and M = 1n ⊗ diag (m1,m2).
Then the integral reduces to a double contour integral after diagonalizing
U .

5. Application to Product Matrices

The computation of the partition function for a product of L matri-
ces W → W (L) =

∏L
j=1Wj = W1 · · ·WL independently distributed by

P (WW †) →
∏L

j=1 Pj(WjW
†
j ) works in a similar way as for a single matrix.

Starting from the partition function

ZΠ(M) =

∫ 


L∏

j=1

d[Wj ]Pj(WjW
†
j )



 det1/(γγ̃)
[
W (L)

(
W (L)

)†
⊗ 1γ̃k −M

]

=

∫ 


L∏

j=1

d[Wj ]Pj(WjW
†
j )



 detk/γW (L−1)
(
W (L−1)

)†
(38)

×det1/(γγ̃)
[
WLW

†
L ⊗ 1γ̃k −X−1

L−1MY −1
L−1

]

with XL−1 = W (L−1) ⊗ 1γ̃k and YL−1 = (W (L−1))† ⊗ 1γ̃k, we apply the
projection formula for WL after replacing the matrix M → X−1

L−1MY −1
L−1.
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Then we obtain

ZΠ(M) =

∫ 


L−1∏

j=1

d[Wj ]Pj(WjW
†
j )



 dµ(UL)QL(UL)det
−n/γ̃UL

×det1/(γγ̃)
[
W (L−1)

(
W (L−1)

)†
⊗ UL −M

]

=

∫ 


L∏

j=1

d[Wj ]Pj(WjW
†
j )



 dµ(UL)QL(UL)det
k/γW (L−2)

(
W (L−2)

)†

×det
1
γγ̃

[
WL−1W

†
L−1 ⊗ 1γ̃k −X−1

L−2MY −1
L−2

]
(39)

where XL−2 = W (L−2) ⊗
√
UL, YL−2 = (W (L−2))† ⊗

√
UL, and QL is com-

puted as in the projection formula (23). This procedure yields a recursion
resulting in the following expression for the partition function,

ZΠ(M) =

∫ 


L∏

j=1

dµ(Uj)Qj(Uj)



 det−n/γ̃UL · · ·U1

×det1/(γγ̃)
[
1γn ⊗

√
UL · · ·

√
U2U1

√
U2 · · ·

√
UL −M

]
,(40)

where each matrix Uj is an element in the circular ensemble Cβ̃E(γ̃k).
In the final step we replace U ′

j =
√
UL · · ·

√
Uj+1Uj

√
Uj+1 · · ·

√
UL

which preserves the symmetries such that U ′
j ∈ Cβ̃E(γ̃k). For this pur-

pose we use two facts. First, the Haar measure is invariant under dµ(U) =
dµ(V UV T ) for all V ∈ U(γ̃k) resulting from the fact that the explicit
form of the Haar measure of Cβ̃E(γ̃k) is dµ(U) ∝ det−k/γ−(γ−γ̃)/2Ud[U ]
with d[U ] the product of the differentials of all independent matrix en-
tries [23, 22]. Second, the weights Qj are also invariant under Qj(U) =
Qj(V UV †) for all V ∈ U(β)(k). Hence these weights have an expression
in terms of functions of matrix invariants. With the help of a slight abuse
of notation one can say that the weights Qj satisfy a cyclic permutation
symmetry, Qj(AB) = Qj(BA) for any two matrices A,B ∈ U(γ̃k).

Finally, we find the result

ZΠ(M) =

∫ 


L∏

j=1

dµ(U ′
j)Qj(U

′
jU

′ −1
j+1 )



 det−n/γ̃U ′
1det

1/(γγ̃)
[
1γn ⊗ U ′

1 −M
]

(41)
with U ′

L+1 = 1γ̃k. This result is surprisingly compact. It also reflects the
nature of the original product of matrices which is equivalent to a Mellin-like
convolution in a matrix space. Also the dual space exhibits this structure
of a Mellin-like convolution.

As an example we calculate the orthogonal polynomials (k = 1) of a
product of LWL complex χGβE = χGUE, Eq. (24), LCL complex LβE =
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LUE, Eq. (24), and LJ complex JβE = JUE, (24). We assume this product
to be ordered, i.e. first the Wishart-Laguerre, then the Cauchy-Lorentz, and
finally the Jacobi matrices. The result does not depend on this ordering,
see the discussion in [12]. Then the orthogonal polynomials are

Z(β=2,k=1)
LWLLCLLJ

(m1n) ∝
∮

(1−mz−1
1 )n




LWL∏

j=1

dzj
zj

[
zj+1

zj

]νj
e

1

Γ2
j

zj
zj+1



 (42)

×




LWL+LCL∏

j=LWL+1

dzj
zj

[
zj+1

zj

]νj [
Γ2
j +

zj
zj+1

]µ′
j−1




×




LWL+LCL+LJ∏

j=LWL+LCL+1

dzj
zj

[
zj+1

zj

]νj [
Γ2
j −

zj
zj+1

]−κ′
j−1




∝
n∑

j=0

∏
a Γ[n+ κa + ν + j + 1]

j!(n − j)!(
∏

a(νa + j)!)(
∏

a Γ[µa − n− ν − j])

(
−
m

Γ2

)j
.

with zLWL+LCL+LJ+1 = 1, µ′
j = µj − n, κ′j = κj + n, and Γ2 =

∏
j Γ

2
j . The

product of the Gamma functions runs over the possible values for νa, κa,
and µa. The polynomial (42) is a hypergeometric function and, thus, a
Meijer G-function [14]. It agrees for certain values of the parameters LWL,
LCL, and LJ with known results [11, 13]. What is completely new are the
results for β = 1, 4 and k = 1 which are essentially the same polynomials.
Here the other approaches failed because of unknown group integrals.

6. Hard Edge Scaling limit of Product Matrices

Up to now every calculation was done for finite p such that we made
no approximation and the projection formula was exact. However to make
contact to physical systems and universality we have to zoom onto the local
scale somewhere of the spectrum. A very prominent scaling is the one to a
vicinity around the origin also known as the hard edge scaling limit.

As a simple but non-trivial example, we choose the matrix product of
the previous section with the source M = γ̃(

∏
j Γ

2
j)1γn ⊗ m̂/[n(

∏
a(µa −

n/γ̃))(
∏

a(κa + n/γ̃))]. In particular we consider the scaling limit n → ∞
and νj , µ̂j = (µj/n− 1/γ̃), κ̂j = (κj/n+ 1/γ̃), and m̂ fixed. Then one can
easily show that the asymptotics of each weight, regardless what kind of
random matrix we consider, is

Qj(αU)
n#1∝ detνj/γ̃UetrU (43)

with α = Γ2
j for χGβE, α = Γ2

j/(nµ̂j) for LβE, and α = Γ2
j/(nκ̂j) for LβE.

After a proper rescaling of the matrices Uj the partition function (41) takes
the asymptotic form

ZΠ(M)
n#1∝

∫ 


L∏

j=1

dµ(U ′
j)det

νj/γ̃Uj



 etrUL+
∑L−1

j=1 trUjU
−1
j+1−tr m̂U−1

1 (44)
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with L = LWL+LCL+LJ. We underline that no saddlepoint approximation
is needed for this limit. Hence the matrices Uj are still elements of the

circular ensemble Cβ̃E(γ̃k).
For β = 2 the partition function (44) yields the Meijer G-kernel of a

product of matrices drawn from χGβEs, cf. [11]. This can be seen by di-
agonalizing the unitary matrices, applying the Itzykson-Zuber integral [18]
and finally integrating over a determinantal point process. The entries of
the resulting determinant are Meijer G-functions. Our result emphasizes
the conjecture that also this kernel is universal. Indeed we could also have
chosen another scaling which still leads to a hard edge scaling limit. Then
we would get finite rank deformations of the result (44) which was recently
discovered for a product of truncated unitary matrices in [13]. Nevertheless
the limiting kernel is still a Meijer G-kernel but with other parameters.

From a physical point of view can one ask for the non-linear σ-model
corresponding to the partition function (44). In this framework the func-
tion in the exponential function is identified as the potential. The inte-
gration domain Cβ̃EL(γ̃k) is the coset of the “flavour” group which keeps
the “massless Lagrangian” (m̂ = 0) in the full theory at finite “volume”
n invariant divided by the group which keeps the ground state invariant.
As in the case L = 1 the theory is spontaneously broken. For a product
matrix the “flavour” symmetry at finite “volume” n is UL(γ̃k) for β = 1, 4
and [U(k) × U(k)]L for β = 2 which can be readily checked by linearising
the product W (L) in the matrices Wj. This group is spontaneously broken

to [U(β̃)(k)]L and the source term for its condensate is the “mass” m̂. This
non-linear σ model generalizes the one for the Wishart-Laguerre ensemble
which were found in QCD [31] and mesoscopic systems [25]. Especially the
coupling between different Uj is reminiscent but not completely the same
as the recently proposed chiral Lagrangian for high density QCD [32].

7. Conclusions

We briefly presented the projection formula [20] for averages over prod-
ucts of characteristic polynomials which is a short cut of the supersymmetry
method [21, 22]. The general results found by this approach were demon-
strated in the case of Wishart-Laguerre (χGβE), Cauchy-Lorentz (LβE),
and Jacobi (JβE) ensembles, in particular we rederived the corresponding
orthogonal polynomials for β = 2. These polynomials are essentially the
same when averaging over one characteristic polynomial for β = 1 and over
a square root of a characteristic polynomial for β = 4.

Moreover we generalized the projection formula to products of matrices.
Since the projection formula works in a unifying way for all three Dyson
indices β = 1, 2, 4 this approach is an ideal alternative compared to other
methods like orthogonal polynomials and free probability when studying
real or quaternion matrices. Note that up to now free probability only
applies to global spectral properties and to use orthogonal polynomials we
need to know group integrals like the Itzykson-Zuber integral [18] or its
polynomial counterpart [19, 13]. The projection formula circumvents this
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problem. In particular we were able to show that the spectral statistics
at the hard edge are the same for products of completely different random
matrices only depending on the number of matrices defined and their indices
ν1, . . . , νl encoding the rectangularity of the matrices. This was done for all
three cases β = 1, 2, 4 and underlines the strength of the projection formula
where other methods fail. In the complex case (β = 2) we easily deduce
from our results those for the Meijer G-ensembles studied in [11, 13].

The projection formula also enabled us to identify the non-linear σ-
models and the symmetry breaking pattern for product matrices and de-
rived the potential of the Goldstone manifold. This result is completely
new and shows what the effective theory associated to such a product ma-
trix would look like. In particular one can understand a product matrix by
itself as a discrete one-dimensional system. Therefore our results show one
way to generalize the zero-dimensional RMT to a one-dimensional theory.
Indeed via the DMPK equation such a link to a one-dimensional system
was established [3], though there a different limit is considered.
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Abstract

We prove that the squared singular values of a fixed matrix multiplied

with a truncation of a Haar distributed unitary matrix are distributed
by a polynomial ensemble. This result is applied to a multiplication of
a truncated unitary matrix with a random matrix. We show that the

structure of polynomial ensembles and of certain Pfaffian ensembles is
preserved. Furthermore we derive the joint singular value density of a
product of truncated unitary matrices and its corresponding correlation

kernel which can be written as a double contour integral. This leads to
hard edge scaling limits that also include new finite rank perturbations
of the Meijer G-kernels found for products of complex Ginibre random

matrices.

1 Introduction

The study of random matrices benefits greatly from explicit formulas of joint
eigenvalue densities that are known for large classes of randommatrix ensembles.
Quite a lot of these densities have the structure of a determinantal or Pfaffian
point process. Such structures are incredibly helpful to extract the spectral
statistics in the limit of large matrix dimension of such ensembles. Various
techniques as free probability [54], orthogonal polynomials [15, 52, 21, 45], and
supersymmetry [34] have been developed to derive these limits.

In an important recent development it was found that explicit formulas also
exist for the eigenvalue and singular value statistics of products of random ma-
trices. This was first established for the eigenvalues [3, 40, 41, 26] and singular
values [5, 6] of products of Ginibre matrices. Shortly after this development,
results were also derived for the eigenvalues of products of truncated unitary
matrices [1, 4, 41]. A common feature is that the joint probability densities are
expressed in terms of Meijer G-functions which were also found in other recent
works on random matrices [13, 27, 28, 29, 55].

Given the results of [1, 4, 41] on eigenvalues, it seems to be natural to expect
that also the singular values of products of truncated unitary matrices have

MK: Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Ger-
many, e-mail: mkieburg@physik.uni-bielefeld.de
AK and DS: KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, 3001
Leuven, Belgium, e-mails: arno.kuijlaars@wis.kuleuven.be and dries.stivigny@wis.kuleuven.be
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an explicit joint probability density. We aim at proving this statement. The
squared singular values x1, . . . , xn of such a product have the joint probability
density

1

Zn

∏

j<k

(xk − xj) det [wk(xj)]
n
j,k=1 , all xj > 0, (1.1)

for certain functions wk, see Corollary 2.6 below.
A joint probability density function of the form (1.1) is called a polynomial

ensemble in [47]. It is an example of a biorthogonal ensemble [15] whose corre-
lation kernel is built out of polynomials and certain dual functions. It reduces
to an orthogonal polynomial ensemble [45] in the case wk(x) = xk−1w(x) for
a certain weight function w. The results of [5, 6] for the singular values of
products of complex Ginibre matrices were interpreted in [47] in the sense of a
transformation of polynomial ensembles. Recall that a complex Ginibre matrix
is a random matrix whose entries are independent standard complex Gaussians.
The main result of [47] is the following.

Theorem 1.1 (Theorem 2.1 in [47]). Let n, l, ν be non-negative integers with
1 ≤ n ≤ l. Let G be an (n + ν) × l complex Ginibre matrix, and let X be a
random matrix of size l × n, independent of G, such that the squared singular
values x1, . . . , xn are a polynomial ensemble

∝
∏

j<k

(xk − xj) det [fk(xj)]
n
j,k=1 , all xj > 0, (1.2)

for certain functions f1, . . . , fn defined on [0,∞). Then the squared singular
values y1, . . . , yn of Y = GX are a polynomial ensemble

∝
∏

j<k

(yk − yj) det [gk(yj)]
n
j,k=1 , all xj > 0, (1.3)

where

gk(y) =

∫ ∞

0
xνe−xfk

( y
x

) dx

x
, y > 0. (1.4)

Note that gk is the Mellin convolution of fk with the “Gamma density” xνe−x.
We aim at an analogue of Theorem 1.1 for the product of X with a trun-

cated unitary matrix and find that the structure of a polynomial ensemble is
preserved. Instead of a Mellin convolution with a “Gamma density” we find
a Mellin convolution with a “Beta density” xν(1 − x)µ with certain variables
ν, µ ∈ N0 and defined on the interval [0, 1], see Corollary 2.4. This result is an
immediate consequence of a theorem on the transformation of squared singular
values of a fixed matrix X when multiplied by a truncated unitary matrix that
we present as our main theorem, see Theorem 2.1.

The spectral statistics of a generic truncation of a fixed matrix X is an old
question. Especially in random matrix theory such truncations quite often occur
because of its natural relation to the Jacobi ensemble [25] and a modification of
the supersymmetry method [17] to calculate the average of an arbitrary product
of characteristic polynomials where generic projections to lower dimensional ma-
trices are needed. Applications of truncated unitary matrices in physics can be
found in quantum mechanical evolution [33], chaotic scattering [30], mesoscopic
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physics [12] and quantum information [58]. We claim that even in telecom-
munications one can certainly apply truncations of unitary matrices. Usually
Ginibre matrices model the information channel between the transmitter and
the receiver [56, 57, 37, 6]. However if the number of channels to the environ-
ment is on the scale of the number of transmitting channels or even smaller
then deviations to the Gaussian assumption should be measurable. We guess
that those deviations result from the fact that no signal is lost. It can only be
absorbed by the environment. Therefore the evolution in all channels should be
unitary and, thus, in the channels between the receiver and the transmitter a
truncated unitary matrix.

Very recently it was shown by Ipsen and one of the authors [41] that trun-
cated unitary matrices are also generally involved in the spectral statistics of
products of rectangular random matrices, including products of matrices which
are not Ginibre matrices or truncated unitary matrices. Moreover the trunca-
tion of matrices are also important in representation theory. For example, let
H be an m × m Hermitian matrix and T an n × m complex matrix (m > n)
which is a truncation of a unitary matrix U ∈ U(m). Then the question for
the generic eigenvalues of a truncation THT ∗ (T ∗ is the Hermitian conjugate
of T ) is deeply related to the fact which representations of U(n) are contained
in a certain representation of U(m). In particular group integrals and coset
integrals like integrals over Stiefel manifolds are deeply related to representa-
tion theory, see [35, 9, 10, 38, 19]. Though our results are more general they
can be partially interpreted in this framework. The relation of truncated uni-
tary matrices and representation theory goes back to a parametrization of the
unitary group by Gelfand and Zeitlin1 [31]. They found that the eigenval-
ues of THT ∗ with n = m − 1 satisfies the so-called interlacing property, i.e.
x1 ≤ x′

1 ≤ x2 ≤ x′
2 ≤ · · · ≤ xm−1 ≤ x′

m−1 ≤ xm where x1 ≤ · · · ≤ xm are
the ordered eigenvalues of H and x′

1 ≤ · · · ≤ x′
m−1 are the ordered eigenvalues

of THT ∗. This interlacing is reflected in the “quantum numbers” labelling the
representations of U(n) and U(m).

As a consequence of our generalization of Theorem 1.1 to truncated unitary
matrices we derive the joint probability density function for the squared singular
values of an arbitrary product Y = Tr · · ·T1, where each Tj, j = 1, . . . , r is a
truncation of a unitary matrix. We find a polynomial ensemble with Meijer G-
functions which is similar to the case of products of complex Ginibre matrices [5,
48]. The polynomial ensemble is a determinantal point process with a correlation
kernel which is a double contour integral in products and ratios of Gamma
functions and can be equivalently rewritten as a onefold integral over a product
of two Meijer G-functions. Based on the double integral formula we are able to
obtain hard edge scaling limits as was done in [48] for the product of complex
Ginibre matrices. In addition to the Meijer G-kernels that are already in [48]
we also find certain finite rank perturbations.

All results are summarized in section 2. The proofs of these results are
contained in sections 3, 4, 5, and 6. In section 7 we briefly discuss open ques-
tions to this topic.

1We employ the transcription of Zeitlin used in [19].
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2 Statement of results

Let us start with some preliminaries. A k×l truncation T of a matrix U ∈ U(m)
(m > max(k, l)) is a submatrix of U . Note that in the case that k + l = m the
matrix T is equivalent with an element [T ] in the coset U(m)/[U(k)×U(m−k)]
due to the embedding

T ↪→ [T ] =

{
U

( √
Ik − TT ∗ T

T ∗
√
Im−k − T ∗T

)
∈ U(m)

∣∣∣∣U ∈ U(k)× U(m− k)

}
,

(2.1)
where Ik is the k× k identity matrix. If k+ l &= m such an interpretation is not
possible such that our studies are more general.

A natural measure for the truncated unitary matrix T is the induced Haar
measure of the unitary matrix U . Let dU be the normalized Haar measure.
Then the induced measure is

∫

U(n)

k∏

a=1

l∏

b=1

δ(2)(Tab − Uab)dU (2.2)

with δ(2)(x+ iy) = δ(x)δ(y) the Dirac delta function in the complex plane.
We are interested in the singular value statistics of the matrix Y = TX where

X ∈ Cl×n. Recall that the squared singular values y1, . . . , yn of the matrix Y are
the eigenvalues of Y ∗Y and analogously for the matrix X . The joint probability
density of these squared singular values involves the Vandermonde determinant
which is given by the product ∆(y) =

∏n
j<k(yk − yj).

We present in the following subsections five results. These results comprise
the joint probability distribution of the squared singular values of a product
TX of a fixed matrix X (subsection 2.1), of a random matrix X whose squared
singular values are taken from a polynomial ensemble (subsection 2.3) or from
a certain Pfaffian point process (subsection 2.4), and of a product of trun-
cated unitary matrices (subsection 2.5). Moreover we present a remarkable
group integral involved in one of our proofs which is the analogue to the Har-
ish Chandra/Itzykson-Zuber (HCIZ) integral [35, 42] for the Ginibre ensembles,
see subsection 2.2.

2.1 Main result

All corollaries we present in our work are based on the following theorem.

Theorem 2.1. Let n,m, l, ν be non-negative integers with 1 ≤ n ≤ l ≤ m and
m ≥ n+ ν +1. Let T be an (n+ ν)× l truncation of a Haar distributed unitary
matrix U of size m×m. Let X be a non-random matrix of size l× n with non-
zero squared singular values x1, . . . , xn, and we assume them to be all pairwise
distinct. Then the squared singular values y1, . . . , yn of Y = TX have a joint
probability density function on [0,∞)n

∝




n∏

j=1

x−m+n
j








n∏

j=1

yνj



det
[
(xk − yj)

m−n−ν−1
+

]n
j,k=1

∆(y)

∆(x)
, (2.3)

where (x− y)+ = max(0, x− y). The missing overall constant only depends on
n,m and ν, but is independent of X.
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We emphasize that this theorem can be easily generalized to a matrix X
where one or more of its squared singular values xj coincide. Then the result
remains valid if we replace (2.3) by an appropriate limit using L’Hôpital’s rule.

Remark 2.2. We can readily set l = n without loss of generality. The reason
for this is exactly the same one already discussed in [41]. We can perform a
singular value decomposition of X = ULX ′UR (UL ∈ U(l), UR ∈ U(n), and X ′

a rectangular matrix with only one of its main-diagonals non-zero) and absorb
the unitary matrix UL in T . Since l ≥ n the matrix X ′ has l − n rows equal to
zero. This structure projects the matrix T to an even smaller matrix T ′ of size
(n+ ν)× n. Let X̃ be the matrix X ′UR without these zero rows, in particular
X̃ is n × n dimensional. Then we can consider the product Y = TX = T ′X̃
and apply the Theorem 2.1 for the fixed matrix X̃ and the truncated unitary
matrix T ′. Note that X̃ and X have the same singular values.

2.2 An integral over the unitary group

We give two proofs of Theorem 2.1, the first one in section 4 and the second
one in section 5. The first proof only works in the case where m ≥ 2n+ ν. In
this case the truncation T does not have generic squared singular values which
are equal to 1. Then T is sufficiently small compared to the dimension of the
underlying larger unitary matrix U . In this case the set of all matrices T which
have a squared singular value equal to 1 is a set of measure zero.

The second proof works in all cases and is based on a calculation with test
functions. Nonetheless, we decide to keep the first proof, too, since it is based
on a remarkable integral over the unitary group that is of interest in its own
right. It replaces the HCIZ integral that was used in the proof of Theorem 1.1.
The HCIZ integral formula [35, 42] is the following well-known integral over the
unitary group U(n),

∫

U(n)
exp[tTrAUBU∗]dU =




n−1∏

j=1

j!




det [exp(tajbk)]

n
j,k=1

t(n2−n)/2∆(a)∆(b)
, (2.4)

whereA andB are Hermitian matrices with pairwise distinct eigenvalues a1, . . . , an,
and b1, . . . , bn, respectively, and t ∈ C \ {0}.

The new integral over the unitary group involves the Heaviside step function
of a matrix argument, defined on Hermitian matrices X as

θ(X) =

{
1, if X is positive definite,

0, otherwise.
(2.5)

Then the generalization of (2.4) for our purposes is the following theorem which
is proven in section 3.

Theorem 2.3. Let A and B be n×n Hermitian matrices with respective eigen-
values a1, . . . , an and b1, . . . , bn and pairwise distinct. Let dU be the normalized
Haar measure on the unitary group U(n). Then for every p ≥ 0,

∫

U(n)
det (A− UBU∗)p θ(A− UBU∗) dU = cn,p

det
[
(aj − bk)

p+n−1
+

]n
j,k=1

∆(a)∆(b)
.

(2.6)
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The constant cn,p in (2.6) is

cn,p =
n−1∏

j=0

(
p+ n− 1

j

)−1

(2.7)

and (aj − bk)+ is (aj − bk) if the difference is positive and otherwise vanishes.
If some of the aj and/or bj coincide we have to take the formula (2.6) in the
limiting sense using l’Hôpital’s rule.

Theorem 2.3 is known to hold when min ak ≥ max bj , see [32, formula (3.21)]
and also [36]. Then the Heaviside step function drops out. However if this con-
dition is not met it is even more surprising that the result still looks that simple,
especially that the result can be expressed in exactly the same determinantal
form as if the condition has been met. We emphasise that in the general case
we usually do not effectively integrate over the whole group U(n) but a smaller
subset. The contribution of the subset of U ∈ U(n) for which A−UBU∗ is not
positive definite vanishes due to the Heaviside step function.

What does really happen in the integral (2.6)? To understand this we may
choose A and B diagonal since their diagonalizing matrices can be absorbed in
the unitary group integral. Recall that Harish Chandra [35] traced the inte-
gral (2.4) back to a sum over the Weyl group acting on B. The Weyl group
of U(n) is the permutation group of n elements, Sn ⊂ U(n). This sum results
into the determinant in (2.4). Exactly such a thing also happens here. The
difference is that the action of ω ∈ Sn ⊂ U(n) to the matrix M = A − ωBω∗

sometimes yields no contribution to the integral because of the Heaviside step
function. Because M is also diagonal the Heaviside step function of M factor-
izes into Heaviside step functions of ak − bω(k) for k = 1, . . . , n telling us that
ak − bω(k) has to be positive definite. Despite the fact that some of the terms
in the sum over the Weyl group vanish we can extend the sum over the whole
group because they are zero without changing the result. This is the reason why
inside the determinant of (2.6) we have (aj − bk)

p+n−1
+ and not (aj − bk)

p+n−1.
Hence, one can indeed understand Theorem 2.3 by this intuition.

2.3 Transformation of polynomial ensemble

Our main application of Theorem 2.1 is to the situation where X is random and
statistically independent of T , in such a way that its squared singular values are
a polynomial ensemble on [0,∞). The proof relies on the well-known Andréief
formula [8, 22],

∫

Xn

det [ϕk(xj)]
n
j,k=1 det [ψj(xk)]

n
j,k=1 dµ(x1) · · · dµ(xn)

= n! det

[∫

X
ϕk(x)ψj(x)dµ(x)

]n

j,k=1

, (2.8)

that is valid for arbitrary functions ϕj and ψk on a measure space (X,µ) such
that the integrals exist. The integral (2.8) is used several times in our proofs.

With the help of Andréief’s formula one can readily deduce from Theorem 2.1
the following Corollary.
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Corollary 2.4. Let n,m, l, ν and T be as in Theorem 2.1. Let X be a random
matrix of size l × n, independent of T , such that the squared singular values
x1, . . . , xn of X have the joint probability density function

∝ ∆(x) det [fk(xj)]
n
j,k=1 , all xj > 0, (2.9)

for certain distributions f1, . . . , fn such that the moments
∫∞
0 f(x)xadx with

a = 0, . . . , n− 1 exist. Then the squared singular values y1, . . . , yn of Y = TX
have the joint probability density

∝ ∆(y) det [gk(yj)]
n
j,k=1 , all yj > 0, (2.10)

where

gk(y) =

∫ 1

0
xν(1− x)m−n−ν−1fk

( y
x

) dx

x
, y > 0, (2.11)

is the Mellin convolution of fk with the “Beta distribution” xν(1 − x)m−n−ν−1

on [0, 1].

We underline again that one can set l = n without loss of generality.

Proof. We average (2.3) over x1, . . . , xn with the joint probability density func-
tion (2.9). The n-fold integral is evaluated using (2.8) with dµ(x) = x−m+ndx
on X = [0,∞) and identifying the functions ϕk(x) = fk(x) and ψj(x) =
(x − yj)

m−n−ν−1
+ . Then we find that the squared singular values of Y have

a joint probability density

∝ n!∆(y)




n∏

j=1

yνj



det

[∫ ∞

0
x−m+nfk(x)(x − yj)

m−n−ν−1
+ dx

]n

j,k=1

, (2.12)

which is of the form (2.10) with functions

gk(y) = yν
∫ ∞

y
x−m+nfk(x)(x − y)m−n−ν−1dx

= yν
∫ 1

0

( y
x

)−m+n (y
x
− y
)m−n−ν−1

fk
( y
x

) ydx

x2
, (2.13)

Here, we applied the change of variables x %→ y/x. This is easily seen to reduce
to (2.11). !

Corollary 2.4 was obtained in the recent preprint [46] in a different way.
Corollary 2.4 is the analogue of Theorem 1.1 for the case of a multiplication

with truncated unitary matrix. It is interesting to note that Theorem 1.1 is
obtained from Corollary 2.4 in the limit when m → ∞ while keeping n, l, and
ν fixed, since

√
mT → G where G is a complex Ginibre matrix. Recall that m

is the dimension of the unitary matrix that T is a truncation of.
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2.4 Transformation of Pfaffian ensembles

Theorem 2.1 can also be applied in a Pfaffian context. Instead of (2.8) we now
use the de Bruijn formula [16], see [25, Proposition 6.3.5]

∫

Xn

det [ϕk(xj)]
n
j,k=1 Pf [f(xj , xk)]

n
j,k=1 dµ(x1) · · · dµ(xn)

= n! Pf

[∫

X

∫

X
ϕj(x)ϕk(y)f(x, y)dµ(x)dµ(y)

]n

j,k=1

, (2.14)

which is valid for n even and f an anti-symmetric function on X × X , i.e.,
f(y, x) = −f(x, y) for all x, y ∈ X , such that all integrals exist. Then the
following result is a consequence of Theorem 2.1 which can be deduced in a
similar way as we obtained Corollary 2.4. Therefore we skip the proof and only
state the Corollary.

Corollary 2.5. Let n,m, l, ν and T be as in Theorem 2.1 with n even. Let X
be independent of T such that the squared singular values of X have the joint
probability density function

∝ ∆(x) Pf [f(xj , xk)]
n
j,k=1 , all xj > 0, (2.15)

for a certain anti-symmetric distribution f on [0,∞)×[0,∞) such that the mixed
moments

∫∞
0

∫∞
0 xj

1x
k
2f(x1, x2)dx1dx2 exist for all j, k = 0, . . . , n− 1. Then the

squared singular values y1, . . . , yn of Y = TX have joint probability density

∝ ∆(y) Pf [g(yj , yk)]
n
j,k=1 , all yj > 0, (2.16)

where

g(y1, y2) =

∫ 1

0

∫ 1

0
xν
1(1− x1)

m−n−ν−1xν
2(1− x2)

m−n−ν−1f

(
y1
x1

,
y2
x2

)
dx1

x1

dx2

x2
.

(2.17)

This result can be combined with Corollary 2.4 for ensembles where we
have a mixture of orthogonal and skew-orthogonal polynomials, i.e., the joint
probability density of the squared singular values of X is given by

∝ ∆(x) Pf

[
f(xj , xk) f ′

i(xj)
−f ′

i(xj) 0

]

j,k=1,...,n
i=1,...,n′

, all xj > 0, (2.18)

where n + n′ is even and f ′
i is an additional set of distributions. Also this

structure carries over to the product TX as can be easily checked.
The structure (2.18) is not only academically. It appears if X is real and n

is odd (in this case we have n′ = 1), see for example the real Laguerre ensemble
[52] or the real Jacobi ensemble [25]. Also the case n′ > 1 appears naturally in
random matrix theory. For applications in QCD a random matrix model was
proposed which breaks the Gaussian unitary ensemble by the chiral Gaussian
unitary ensemble [20]. The joint probability density of this random matrix
ensemble has the form (2.18), see [7, 44].
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2.5 Products of truncated unitary matrices

Let us come to the product of a finite number of truncated unitary matrices.
The joint probability density of the squared singular values readily follows from
Corollary 2.4. As in the case of multiplying Ginibre matrices the Meijer G-
functions play a crucial role in the spectral statistics. Meijer G-functions are
defined via a contour integral

Gm,n
p,q

(
a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

∣∣∣∣ z
)

=
1

2πi

∫

C

m∏

j=1
Γ(bj + s)

n∏

j=1
Γ(1− aj − s)

q∏

j=m+1
Γ(1− bj − s)

p∏

j=n+1
Γ(aj + s)

z−sds, (2.19)

where the contour C separates the poles of
∏m

j=1 Γ(bj + s) from the poles of∏n
j=1 Γ(1− aj − s), see [11, 50] for more details.
We apply Corollary 2.4 to the product of r truncated unitary matrices. For

j = 1, . . . , r, let Tj be a matrix of size (n + νj) × (n + νj−1) where ν0 = 0
and ν1, . . . , νr are non-negative integers. Suppose Tj is the truncation of a Haar
distributed unitary matrix of sizemj×mj wherem1 ≥ 2n+ν1 andmj ≥ n+νj+1
for j = 2, . . . , r. The squared singular values of T1 have the joint probability
density (4.2) with parameters n1, m1 and ν1. This is a polynomial ensemble [25]

1

Zn
∆(x) det

[
w(1)

k (xj)
]n
j,k=1

(2.20)

with

w(1)
k (x) =

{
xν1+k−1(1− x)m1−2n−ν1 , if 0 < x < 1,

0, otherwise.
(2.21)

The constant Zn normalizes the joint probability density (2.20). Then we find
the following Corollary.

Corollary 2.6. Let Y = Tr · · ·T1 with truncated unitary matrices Tj as de-
scribed above. Then the squared singular values of Y have the joint probability
density

1

Z(r)
n

∏

j<k

(yk − yj) det
[
w(r)

k (yj)
]n
j,k=1

, (2.22)

where w(r)
k is given by (2.21) in the case r = 1 and by

w(j)
k (y) =

∫ 1

0
xνj (1− x)mj−n−νj−1w(j−1)

k

(y
x

) dx

x
(2.23)

for j = 2, . . . , r when r ≥ 2.

The weight functions w(r)
k are obtained as an (r − 1)-fold Mellin convolution

of the “Beta distribution”. The function w(1)
k can be written as a Meijer G-

function,

w(1)
k (x) = c1 G

1,0
1,1

(
m1 − 2n+ k
ν1 + k − 1

∣∣∣∣ x
)

(2.24)
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with c1 = Γ(m1 − 2n− ν1 + 1). Since the class of Meijer G-functions is closed
under the Mellin convolution, see [11, formula (5)], we find from (2.23) and
(2.24),

w(r)
k (y) = crG

r,0
r,r

(
mr − n, . . . ,m2 − n, . . . ,m1 − 2n+ k

νr, νr−1, . . . , ν2, ν1 + k − 1

∣∣∣∣ y
)

=
cr
2πi

∫

C

Γ(ν1 + k − 1 + s)
∏r

j=2 Γ(νj + s)

Γ(m1 − 2n+ k + s)
∏r

j=2 Γ(mj − n+ s)
y−sds, 0 < y < 1,

(2.25)

Here the contour C is a positively oriented curve in the complex s-plane that
starts and ends at −∞ and encircles the negative real axis. The constant cr in
(2.25) is

cr = Γ(m1 − 2n− ν1 + 1)
r∏

j=2

Γ(mj − n− νj). (2.26)

It can be checked from (2.25) that the linear span of w(r)
1 , . . . , w(r)

n consists
of all functions of the form

1

2πi

∫

C

q(s)
∏r

j=1 Γ(s+ νj)∏r
j=1 Γ(s+mj − n)

y−sds, 0 < y < 1, (2.27)

where q(s) is a polynomial of degree smaller than n. Remarkably enough, this
space does not depend on the ordering of the parametersm1, . . . ,mr and neither
on the ordering of the parameters ν1, . . . , νr.

The k-point correlation function of the joint probability density (2.22) satis-
fies a determinantal point process on [0, 1]. In the center of such a determinantal
point process stands a correlation kernel that can always be written as

Kn(x, y) =
n−1∑

k=0

Pk(x)Qk(y). (2.28)

For a polynomial ensemble, the function Pk is a polynomial of degree k and Qk

is in the linear span of w(r)
1 , . . . , w(r)

n satisfying the biorthogonality

∫ 1

0
Pj(x)Qk(x)dx = δj,k, (2.29)

see e.g. [15]. As in [48] we find integral representations for the biorthogonal
functions Pk and Qk and a double integral formula for Kn. In what follows we
use the Pochhammer symbol

(a)k = a(a+ 1) · · · (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (2.30)

Proposition 2.7. For every k = 0, . . . , n− 1, we have

Pk(x) =
1

2πi

∮

Σk

1

(t− k)k+1

r∏

j=1

Γ(t+ 1 +mj − n)

Γ(t+ 1 + νj)
xt dt

= G0,r+1
r+1,r+1

(
k + 1, n−m1, . . . , n−mr

0,−ν1, . . . ,−νr

∣∣∣∣ x
)
, (2.31)
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where Σk is a closed contour encircling the interval [0, k] once in positive di-
rection and is not encircling any pole of the integrand in (2.31) that is outside
[0, k]. Moreover we have

Qk(y) =






1

2πi

∫

C
(s− k)k

r∏

j=1

Γ(s+ νj)

Γ(s+mj − n)
y−sds, 0 < y < 1,

0, elsewhere

= Gr+1,0
r+1,r+1

(
−k,m1 − n, . . . ,mr − n

0, ν1, . . . , νr

∣∣∣∣ y
)

(2.32)

with the same contour C as in (2.25).
The kernel Kn from (2.28) is

Kn(x, y) =
1

(2πi)2

∫

C
ds

∮

Σn

dt
r∏

j=0

Γ(s+ 1 + νj)Γ(t+ 1 +mj − n)

Γ(t+ 1 + νj)Γ(s+ 1 +mj − n)

xty−s−1

s− t

= −
∫ 1

0
G0,r+1

r+1,r+1

(
n−m0, . . . , n−mr

−ν0, . . . ,−νr

∣∣∣∣ ux
)

×Gr+1,0
r+1,r+1

(
m0 − n, . . . ,mr − n

ν0, . . . , νr

∣∣∣∣uy
)
du (2.33)

which is valid if Σn and C do not intersect. In (2.33) it is understood that
m0 = ν0 = 0.

The proposition is proved in section 6.

2.6 Hard edge scaling limits

Based on the double integral representation (2.33) we analyze some scaling limits
of the correlation kernel as n → ∞. In a forthcoming publication we show that
the usual sine kernel limit can be found in the bulk and the Airy kernel limit at
the soft edges. These results will be reported elsewhere, see also [49].

Here we want to look at a more straightforward scaling limit, namely the
hard edge scaling at the origin in the following situation. Taking n → ∞, we
simultaneously have to let mj → ∞ for j = 1, . . . , r, since m1 ≥ 2n + ν1 and
mj ≥ n+ νj + 1 for j ≥ 2. We keep νj fixed for every j = 1, . . . , r. We choose
a subset J of indices

J = {j1, . . . , jq} ⊂ {2, . . . , r}, with 0 ≤ q = |J | < r (2.34)

and integers µ1, . . . , µq with µk ≥ νjk + 1, and we assume

mj − n → ∞ for j ∈ {1, . . . , r} \ J,
mjk − n = µk is constant for j = jk ∈ J.

This leads to our final result, which we also prove in section 6.

Theorem 2.8. In the above setting, we put

cn = n
∏

j "∈J

(mj − n). (2.35)
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Then the kernels Kn from (2.33) have the following hard edge scaling limit,

lim
n→∞

1

cn
Kn

(
x

cn
,
y

cn

)

=
1

(2πi)2

∫ − 1

2
+i∞

− 1

2
−i∞

ds

∫

Σ
dt

r∏

j=0

Γ(s+ 1 + νj)

Γ(t+ 1 + νj)

sinπs

sinπt

q∏

k=1

Γ(t+ 1 + µk)

Γ(s+ 1 + µk)

xty−s−1

s− t

= −
∫ 1

0
G1,q

q,r+1

(
−µ1, . . . ,−µq

0;−ν1, . . . ,−νr

∣∣∣∣ux
)
Gr,0

q,r+1

(
µ1, . . . , µq

ν1, . . . , νr; 0

∣∣∣∣ uy
)
du,

(2.36)

where Σ is a contour around the positive real axis in the half-plane Re t > − 1
2 .

The kernel (2.36) reduces to the Meijer G-kernel described in [48] in case
q = 0. These kernels appeared before for limits of products of Ginibre matrices
[48], products with inverses of Ginibre matrices [26], for biorthogonal ensembles
[47], and also as limits for Cauchy two matrix models [13, 14, 28]. According
to Theorem 2.8 we obtain the same limits for products of truncated unitary
matrices provided that the dimensions mj of the underlying unitary matrices
become large compared to n, in the sense that mj − n → +∞ for every j.

The kernels (2.36) are new for q ≥ 1, and these are finite rank perturbation
of the Meijer G-kernels from [48]. To see this, we recall that µk ≥ νjk + 1. Let
us assume, for notational simplicity, that jk = r − q + k in (2.34). Then

R(t) :=
q∏

k=1

Γ(t+ 1 + µk)

Γ(t+ 1 + νr−q+k)
(2.37)

is a polynomial of degree degR =
∑q

k=1(µk−νr−q+k), and (2.36) can be written
as

1

(2πi)2

∫ − 1

2
+i∞

− 1

2
−i∞

ds

∫

Σ
dt

r−q∏

j=0

Γ(s+ 1 + νj)

Γ(t+ 1 + νj)

sinπs

sinπt

R(t)

R(s)

xty−s−1

s− t
. (2.38)

This is indeed a finite rank perturbation of the Meijer G-kernel with parameters
ν1, . . . , νr−q, since R is a polynomial. In particular for q = r − 1, it is a finite
rank modification of the hard edge Bessel kernel. Such finite rank modifications
were also obtained in [23] in a somewhat different context.

In the ensuing sections we prove our statements. We start in section 3 with
the proof of Theorem 2.3 since it is used in the first proof of Theorem 2.1 that
we present in section 4. The second proof is in section 5. This proof is a rather
lenghty sequence of matrix integral evaluations and we have broken it up into
six steps. The proofs of Proposition 2.7 and Theorem 2.8 are shown in section 6.

3 Proof of Theorem 2.3

For the proof of Theorem 2.3, we need the Ingham-Siegel formula [39, 53]

∫

H(n)
exp[iTrHX ] det(H − zIn)

−n−pdH = c exp[izTrX ] detXp θ(X) (3.1)
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with a normalization constant c depending on p and n, only, which can be fixed
by the choice X = In and z = i. This integral is valid for Hermitian matrices
X ∈ H(n) and Im z > 0. The integral is over the space H(n) = gl(n)/u(n) of
n× n Hermitian matrices H with the flat Lebesgue measure,

dH =
n∏

j=1

dHjj

∏

j<k

dReHjk d ImHjk. (3.2)

Here gl(n) and u(n) are the Lie algebras of the general linear and the unitary
group, respectively. If p is not an integer then we define via the spectral repre-
sentation,

det(H − zIn)
−n−p =

n∏

j=1

(hj − z)−n−p, (3.3)

where h1, . . . , hn are the real eigenvalues of the Hermitian matrix H and (h −
z)−n−p is defined in the complex h-plane with a branch cut along {z+iy | y ≥ 0},
and with hn+p(h− z)−n−p → 1 as h → +∞.

For n = 1 the Ingham-Siegel formula (3.1) reduces to

∫ ∞

−∞

eixs

(s− z)1+p
ds =






2πieπip/2

Γ(p+ 1)
eizxxp, if x ≥ 0,

0, if x < 0,
(3.4)

which is valid for Im z > 0 and p ≥ 0. It can be verified by contour integration.

Proof of Theorem 2.3 We consider the integral

J(A,B) =

∫

U(n)
det (A− UBU∗)p θ(A− UBU∗) dU. (3.5)

The determinant can be rewritten via the Ingham-Siegel formula (3.1) identify-
ing X = A− UBU∗. We obtain

J(A,B) ∝ e−izTr(A−B)

∫

U(n)

∫

H(n)
eiTrH(A−UBU∗) det(H − zIn)

−n−pdHdU

(3.6)
Both integrals are absolutely integrable because the integral over U is over a
compact set with a continuous integrand and the integral over H is bounded by
|∆(h)

∏n
j=1(hj − z)−n−p/∆(a)| for

∑n
j=1 h

2
j → ∞. Recall that a1, . . . , an are

the real, pairwise distinct eigenvalues of A. Hence we can interchange the order
of integration.

The integral over the unitary group is evaluated with the HCIZ formula
(2.4). Then (3.6) is up to a constant

J(A,B) ∝ e−iz Tr(A−B)

∫

H(n)
eiTrHA det(H − zIn)

−n−p det
[
e−ihjbk

]

∆(h)∆(b)
dH. (3.7)

We write H = V hV ∗ for the eigenvalue decomposition of H where V ∈ U(n)
and h = diag(h1, . . . , hn). Moreover we use that dH ∝ ∆(h)2 dV dh1 . . . dhn, see
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e.g. [21]. Using this in (3.7) leads to

J(A,B) ∝
e−izTr(A−B)

∆(b)

∫

Rn

∫

U(n)
eiTrV hV ∗A

n∏

j=1

(hj − z)−n−p

×∆(h) det
[
e−ihjbk

]n
j,k=1

dV dh1 · · · dhn (3.8)

The integral over V ∈ U(n) is again a HCIZ integral (2.4),

J(A,B) ∝
e−iz Tr(A−B)

∆(a)∆(b)

∫

Rn

det
[
eihjak

]n
j,k=1

n∏

j=1

(λj − z)−n−p

× det
[
e−ihjbk

]n
j,k=1

dh1 · · · dhn. (3.9)

The factors in the product
∏n

j=1(λj − z)−n−p can be pulled into either one of
the two determinants. Then, Andréief’s identity (2.8) can be applied to find

J(A,B) ∝
e−iz Tr(A−B)

∆(a)∆(b)
det

[∫ ∞

−∞

eis(aj−bk)

(s− z)n+p
ds

]n

j,k=1

. (3.10)

The integral in the determinant is of the form (3.4) which is up to a constant
equal to eiz(aj−bk)(aj − bk)

n+p−1
+ . The exponential factors eiz(aj−bk) inside the

determinant cancel with those in front of the determinant. The resulting ex-
pression is

J(A,B) ∝
det
[
(aj − bk)

n+p−1
+

]

∆(a)∆(b)
, (3.11)

which is up to a constant indeed the right hand side of (2.6).
Whenever A−UBU∗ is positive definite for all U ∈ U(n), the formula (2.6)

reduces to

∫

U(n)
det (A− UBU∗)p dU = cn,p

det
[
(aj − bk)

p+n−1
]n
j,k=1

∆(a)∆(b)
. (3.12)

This is equivalent to an integral given by Gross and Richards in [32, formula
(3.21)], namely

det
[
(1− sjtk)

−a
]n
j,k=1

∆(s)∆(t)
= c̃n,a

∫

U(n)
det (In − SUTU∗)−(a+n−1) dU (3.13)

with c̃n,a =
∏n−1

j=0 (a)j/j!. The formula (3.13) is valid whenever S and T are
Hermitian matrices with eigenvalues s1, . . . , sn and t1, . . . , tn, respectively, sat-
isfying |sjtk| < 1 for all j, k = 1, . . . , n. The formulas (3.12) and (3.13) are
related if we take −a = p+ n− 1, S = A−1 and T = B. The constants are re-
lated by cn,p = 1/c̃n,a, and the formula (2.7) follows which completes the proof
of Theorem 2.3. !
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4 First proof of Theorem 2.1

As already said, our first proof of Theorem 2.1 only works if m ≥ 2n + ν. In
that case there is an explicit formula for the distribution of a truncation T of
size (n+ ν)× n, namely

c det(In − T ∗T )m−2n−νθ(In − T ∗T ) dT (4.1)

with dT =
∏n+ν

j=1

∏n
k=1 dReTjk d ImTjk the flat Lebesgue measure on the space

of (n+ ν) × n rectangular complex matrices and c is a constant. The function
θ is the Heaviside step function of a matrix argument defined in (2.5). The
(unordered) eigenvalues t1, . . . , tn of T ∗T are in the interval [0, 1] and have the
joint probability density

1

Zn

∏

j<k

(tk − tj)
2

n∏

j=1

tνj (1− tj)
m−2n−ν , 0 ≤ t1, . . . , tn ≤ 1. (4.2)

This is an example of a Jacobi ensemble [18]. When m < 2n+ ν, then T ∗T has
the eigenvalue 1 with multiplicity of at least 2n+ ν −m and the density (4.1)
is not valid anymore.

We follow the proof of Lemma 2.2 in [47] except that at a certain stage in
the proof the HCIZ integral (2.4) is replaced by the integral (2.6).

Proof of Theorem 2.1 in the case m ≥ 2n+ ν As already discussed in Re-
mark 2.2 we may restrict to the case l = n without loss of generality.

Consider a fixed square matrix X of size n × n which is assumed to be
invertible. The change of variables T %→ Y = TX has the Jacobian, see e.g. [51,
Theorem 3.2],

det(X∗X)−(n+ν) =
n∏

k=1

x−n−ν
k . (4.3)

The distribution (4.1) on T (where T has size (n+ ν)×n) then transforms into
the distribution

∝
n∏

k=1

x−n−ν
k det(In − (X−1)∗Y ∗Y X−1)m−2n−νθ(In − (X−1)∗Y ∗Y X−1) dY

=
n∏

k=1

x−m+n
k det(X∗X − Y ∗Y )m−2n−νθ(X∗X − Y ∗Y ) dY. (4.4)

In the next step we perform a singular value decomposition Y = V ΣU with
Jacobian [24]

dY ∝




n∏

j=1

yνj



∆(y)2dUdV dy1 . . . dyn (4.5)

written in terms of the squared singular values y1, . . . , yn of Y . The measure
dU is the Haar measure on U(n) and dV is the invariant measure on U(n+ ν)/
[Un(1) × U(ν)]. We use this fact in (4.4) to perform the integration of V ,
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which only contributes to the constant. This yields a probability measure on
U(n)× [0,∞)n proportional to

∝

(
n∏

k=1

x−m+n
k

)


n∏

j=1

yνj



 det(X∗X − U∗Σ2U)m−2n−ν

× θ(X∗X − U∗Σ2U)∆(y)2 dUdy1 · · · dyn. (4.6)

The integral over U in (4.6) can be done with the help of the integral (2.6)
with A = X∗X , B = Σ2, and p = m− 2n− ν. This leads to the density for the
squared singular values y1, . . . , yn of Y , given those of X , which is proportional
to (2.3) and Theorem 2.1 follows for m ≥ 2n+ ν. !

5 Second proof of Theorem 2.1

We underline that the second approach to prove Theorem 2.1 does not rely
on the restriction m ≥ 2n + ν. As before we denote the set of n × n unitary
matrices and of n× n Hermitian matrices by U(n) and H(n), respectively. We
also use M(m,n) for the space of m × n complex matrices and abbreviate
M(m) = M(m,m).

Also in the second approach we assume that l = n because it does not
restrict generality, see Remark 2.2. We assume X to be a fixed n × n matrix
with non-zero squared singular values.

5.1 Preliminaries

Let f be a symmetric function in n variables. We extend f to Hermitian matrices
A by defining f(A) = f(a1, . . . , an) if a1, . . . , an are the eigenvalues of A. With
a slight abuse of notation we also define f(B) for (n + ν) × (n + ν) matrices
B having ν eigenvalues equal to 0, by putting f(B) = f(b1, . . . , bn) if b1, . . . , bn
are the non-zero eigenvalues of B.

Then our aim is to prove that for all continuous symmetric functions f on
[0,∞)n, we have

E [f(Y ∗Y )] =

∫

[0,∞)n
f(y1, . . . , yn)pX,Y (x, y)dy1 . . . dyn (5.1)

where, for a given X , y &→ pX,Y (x, y) denotes the density from (2.3). It will be
enough to prove (5.1) for symmetric polynomial functions f , since the density
pX,Y has a compact support and the symmetric polynomials are then obviously
uniformly dense in the set of all continuous symmetric functions.

Note that, by our definition of f on matrices, we have f(Y ∗Y ) = f(Y Y ∗) =
f(TXX∗T ∗). Since T is the truncation of a Haar distributed unitary matrix U
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of size m×m, we have

E [f(Y Y ∗)] =

∫

U(m)
f

((
In+ν On+ν,m−n−ν

)
ŨXX∗Ũ∗

(
In+ν

Om−n−ν,n+ν

))
dU

∝
∫

M(m,n)
f

((
In+ν On+ν,m−n−ν

)
MXX∗M∗

(
In+ν

Om−n−ν,n+ν

))

×
∏

1≤j<k≤n

δ(2)({M∗M}jk)
n∏

j=1

δ({M∗M}jj − 1)dM, (5.2)

where dU is the normalized Haar measure on the unitary group U(m). The
matrix Op,q is the zero matrix of size p× q. The complex m× n matrix

Ũ = U

(
In

Om−n,n

)
(5.3)

is an element in the Stiefel manifold U(m)/U(m − n). The orthonormality of
the columns of Ũ can be enforced by n2 Dirac delta functions (recall that δ(2) is
the one for complex numbers). In this way we integrate in (5.2) over the larger
space M(m,n). See also the discussion in [19].

The complex matrix M can be partitioned into two blocks

M =

(
M1

M2

)
(5.4)

with M1 an (n + ν) × n complex matrix and M2 an (m − n− ν) × n complex
matrix. Then we have to calculate

E [f(Y Y ∗)] =

∫

M(n+ν,m)
f (M1XX∗M∗

1 )

×
∏

1≤j<k≤n+ν

δ(2)({M∗M}jk)
n+ν∏

j=1

δ({M∗M}jj − 1)dM.

(5.5)

5.2 Proof of Theorem 2.1

To establish (5.1) we proceed in six steps.

Step 1: Matrix delta function In the first step we rewrite the Dirac delta
functions in (5.2) as Fourier-Laplace transforms [19] where

∏

1≤j<k≤n

δ(2)({M∗M}jk)
n∏

j=1

δ({M∗M}jj − 1)

= lim
t→0

1

2nπn2

∫

H(n)
exp[Tr(In − iK)(In −M∗M)− tTrK2]dK (5.6)

with an integration over the space H(n) of Hermitian n × n matrices K. For
an integration over the whole group U(m), i.e. m = n, this integration is equal
to the one in [37, formula (13)]. The shift of the matrix K by iIn ensures the
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absolute integrability of the integral overM and the Gaussian incorporating the
limit in the auxiliary variable t guarantees the absolute integrability in K. Note
that the limit has to be understood as a limit in the weak topology meaning
that we have to integrate over M , first, and, then, take the limit t → 0. Hence
the integral (5.5) reads

E [f(Y Y ∗)] ∝ lim
t→0

∫

M(m,n)
f (M1XX∗M∗

1 )

×
∫

H(n)
exp[Tr(In − iK)(In −M∗

1M1 −M∗
2M2)− tTrK2]dKdM (5.7)

up to a constant only depending on m, n and ν.
Both integrals are absolutely integrable. Therefore we can interchange the

integrals. The integral over the matrix M2 is a Gaussian integral yielding

E [f(Y Y ∗)] ∝ lim
t→0

∫

H(n)

∫

M(n+ν,n)
f (M1XX∗M∗

1 ) det(In − iK)−m+n+ν

× exp[Tr(In − iK)(In −M∗
1M1)− tTrK2]dM1dK. (5.8)

Finally we take t → 0. This can be done because f is polynomial. In the case
f = 1 the integral overM1 yields an additional factor det(In+ν−iK)−n ensuring
the absolute integrability also at t = 0. Since the function f is polynomial we
know that f (M1XX∗M∗

1 ) is a polynomial in the matrix entries of M1. Thus
the Gaussian integral over M1 yields a polynomial in (In+ν − iK)−1 with the
lowest order to be det(In+ν − iK)−n. Therefore the integrand of the K-integral
after integrating over M1, first, is indeed absolutely integrable also at t = 0 such
that

E [f(Y Y ∗)] ∝
∫

H(n)

∫

M(n+ν,n)
f (M1XX∗M∗

1 ) det(In − iK)−m+n+ν

× exp[Tr(In − iK)(In −M∗
1M1)]dM1dK. (5.9)

We underline that now the order of the integrals is crucial and cannot be inter-
changed.

Step 2: Changes of variable The change of variables M1 %→ S = M1X has
the Jacobian

det(X∗X)−n−ν =
n∏

j=1

x−n−ν
j (5.10)

and the change of variables K %→ K̃ = X−1K(X−1)∗ on the space of Hermitian
matrices yields

det(X∗X)n =
n∏

j=1

xn
j . (5.11)
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Applying this to (5.9) (and dropping the tilde from K̃), we obtain

E [f(Y Y ∗)] ∝
n∏

j=1

x−ν
j

∫

H(n)
dK det(In − iXKX∗)−(m−n−ν)

×
∫

M(n+ν,n)
dSf(SS∗)eTr(In−iXKX∗)(In−(X−1)∗S∗SX−1)

=
n∏

j=1

x−m+n
j

∫

H(n)
dK det((X∗X)−1 − iK)−(m−n−ν)

×
∫

M(n+ν,n)
dSf(SS∗)eTr((X

∗X)−1−iK)(X∗X−S∗S)

=
n∏

j=1

x−m+n
j

∫

H(n)
Ψ(K + i(X∗X)−1 − iIn)dK, (5.12)

where Ψ is defined by

Ψ(K) := det(In − iK)−(m−n−ν)

∫

M(n+ν,n)
f(SS∗)eTr(In−iK)(X∗X−S∗S)dS.

(5.13)

Step 3: Shift in the matrix K In this step we prove the following Lemma.

Lemma 5.1. For any matrix A with ImA := (A−A∗)/2i > −In (which means
that In + ImA is a positive definite Hermitian matrix), we have

∫

H(n)
Ψ(K +A)dK =

∫

H(n)
Ψ(K)dK. (5.14)

Proof. If A is Hermitian then we can simply apply the linear change of variables
K + A $→ K to obtain (5.14). Therefore we may restrict to the case A = iB
with B Hermitian and B+ In positive definite. We may also restrict to the case
where B is a diagonal matrix. To see this we write ΨX to indicate that the
definition (5.13) depends on X . Then for a unitary matrix U one has

ΨX(UKU∗) = ΨU∗X(K), (5.15)

which follows from inserting UKU∗ into the definition (5.13) and changing vari-
ables S $→ SU∗. Recall that f(SS∗) = f(USS∗U∗) for all U ∈ U(n) because f
only depends on the squared singular values of S. The invariance (5.15) implies
by the unitary invariance of dK, see e.g. [21], that

∫

H(n)
ΨX(K + iB)dK =

∫

H(n)
ΨU∗X(K + iU∗BU)dK. (5.16)

and we may choose the unitary matrix U so that U∗BU is diagonal.
Let p = m − n − ν > 0 and A = iB = i diag(b1, . . . , bn) a diagonal matrix

with bj > −1, for j = 1, . . . , n. Note that for 0 ≤ t ≤ 1,

|Ψ(K + itB)| ≤ |det(In + tB − iK)|−p
∫

H(n)
|f(SS∗)| eTr(In+tB)(XX∗−S∗S)dS

≤ C0 |det(In + tB − iK)|−p . (5.17)
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The prefactor is a finite constant C0 > 0 depending on B and X but is inde-
pendent of t ∈ [0, 1]. Since all bj > −1, it is clear that In + tB is a positive
definite matrix. Hence there exists a constant C1 > 0, independent of t, such
that |det(In + tB)| > C1 resulting in

|det(In + tB − iK)| > C1 |det(In − iMt)| , (5.18)

where
Mt := (In + tB)−

1

2K(In + tB)−
1

2 (5.19)

is a Hermitian matrix. Let λ1(t), . . . ,λn(t) denote the eigenvalues of Mt. Then
it is easy to check that, since the eigenvalues λj(t) are real,

|det(In − iMt)| =
n∏

k=1

|1− iλk(t)| =
n∏

k=1

√
1 + λ2k(t)

≥ max
k=1,...,n

|λk(t)| = max
x∈Cn\{0}

|〈Mtx, x〉|
〈x, x〉

(5.20)

by the properties of Rayleigh quotients. Taking x = xj = (In+ tB)
1

2 ej in (5.20)
and noting that 〈Mtxj , xj〉 = Kjj , see (5.19), we obtain

|det(In − iMt)| ≥ max
j=1,...,n

|Kjj |
〈xj , xj〉

. (5.21)

The vectors xj depend on t, but their norms are uniformly bounded from below
〈xj , xj〉 ≥ 1+ tbmin > C > 0 for t ∈ [0, 1] where bmin = minj=1,...,n bj and C = 1
if bmin ≥ 0 or C = 1 − bmin if 0 ≥ bmin > −1. Then, combining (5.17), (5.18)
and (5.21), we obtain

|Φ(K + tiB)| ≤
C2

maxj=1,...,n |Kjj |p
, (5.22)

for some constant C2 > 0, independent of t.
In the integral

∫
H(n) Ψ(K)dK we first do the integration over the diagonal

elements Kjj for j = 1, . . . , n. The integrand is analytic in each of the Kjj .
Because of the estimate (5.22) with p ≥ 1, the integral can be deformed from
the real line to the horizontal line in the complex Kjj-plane with imaginary part
equal to bj. We do this for all diagonal entries resulting in (5.14). !

Lemma 5.1 can be applied to (5.12) because A = i(X∗X)−1 − iIn satisfies
ImA = (X∗X)−1 − In > −In. Hence we have

E [f(Y Y ∗)] ∝
n∏

j=1

x−m+n
j

∫

H(n)
dK det(In − iK)−(m−n−ν)

×
∫

M(n+ν,n)
dSf(SS∗)eTr(In−iK)(X∗X−S∗S). (5.23)

Step 4: Singular value decomposition of S We take the singular value
decomposition S = V1ΣV2 where V1 ∈ U(n + ν)/[Un(1) × U(ν)], V2 ∈ U(n),
and Σ is a diagonal matrix with the singular values of S. The Jacobian of this
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transformation is proportional to ∆(y)2
∏n

j=1 y
ν
j , see [24], where y1, . . . , yn are

the squared singular values. Recall that f is defined as a symmetric function
on the eigenvalues. Then (5.13) reads

Ψ(K) ∝
eTr(In−iK)(X∗X)

det(In − iK)m−n−ν

∫

[0,∞)n
f(y1, . . . , yn)

n∏

j=1

yνj∆(y)2dy1 . . . dyn

×
∫

U(n)
e−Tr(In−iK)V ∗

2
Σ2V2dV2 (5.24)

The integral over V2 ∈ U(n) is a HCIZ integral (2.4). Let λ1, . . . ,λn be the eigen-
values ofK, then the HCIZ integral yields a term proportional to det[e−(1−iλj)yk ]
/[∆(λ)∆(y)]. We end up with

Ψ(K) ∝
eTr(In−iK)(X∗X)

det(In − iK)m−n−ν∆(λ)

×
∫

[0,∞)n
f(y1, . . . , yn)

n∏

j=1

yνj∆(y) det
[
e−(1−iλj)yk

]n
j,k=1

dy1 . . . dyn. (5.25)

Step 5: Eigenvalue decomposition of K Next, we decompose K = V0ΛV ∗
0

in a unitary matrix V0 ∈ U(n)/Un(1) and its eigenvalues Λ = diag(λ1, . . . ,λn).
The Jacobian is proportional to ∆(λ)2, see e.g. [21], and by (5.23) and (5.25)
we have

E [f(Y Y ∗)] ∝
n∏

j=1

x−m+n
j

∫

Rn

n∏

j=1

(1 − iλj)
−m+n+ν∆(λ)dλ1 · · · dλn

×
∫

[0,∞)n
f(y1, . . . , yn)

n∏

j=1

yνj∆(y) det
[
e−(1−iλj)yk

]n
j,k=1

dy1 · · · dyn

×
∫

U(n)
eTr(In−iV0ΛV ∗

0
)(X∗X)dV0. (5.26)

The V0 integral is again a HCIZ integral (2.4), and it gives a contribution propor-
tional to det[e(1−iλj)xk ]/[∆(λ)∆(x)]. Plugging this term into (5.26) and noting
that we may change the order of integration at this stage, we find

E [f(Y Y ∗)] =

∫

[0,∞)n
f(y1, . . . , yn)pX,Y (x, y)dy1 · · · dyn (5.27)

where

pX,Y (x, y) ∝




n∏

j=1

x−m+n
j








n∏

j=1

yνj



 ∆(y)

∆(x)
×

∫

Rn

n∏

j=1

(1−iλj)
−(m−n−ν) det

[
e(1−iλj)xk

]n
j,k=1

det
[
e−(1−iλj)yk

]n
j,k=1

dλ1 · · · dλn.

(5.28)
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Step 6: Andréief formula We calculate the integral over λ1, . . . ,λn in (5.28)
via the Andréief formula (2.8). This gives the determinant

n! det

[∫ ∞

−∞

e(xk−yj)(1−iλ)

(1− iλ)m−n−ν
dλ

]n

j,k=1

(5.29)

with integrals of the form (3.4). The result is

∫ ∞

−∞

e(xk−yj)(1−iλ)

(1 − iλ)m−n−ν
dλ =

2π

(m− n− ν − 1)!
(xk − yj)

m−n−ν−1
+ . (5.30)

We use this in (5.27) and (5.28) and obtain (5.1). This concludes concludes the
proof of the Theorem 2.1. !

6 Proofs of Proposition 2.7 and Theorem 2.8

We first prove Proposition 2.7 and Theorem 2.8 afterwards.

Proof of Proposition 2.7 Recall that Pk and Qk are defined by (2.31) and
(2.32), respectively, for k = 0, . . . , n − 1. Then Qk is in the linear span of

w(r)
1 , . . . , w(r)

n since it is of the form (2.27) with q(s) = (s− k)k a polynomial of
degree k ≤ n−1. Also note that the integrand in (2.31) has poles at t = 0, . . . , k,
and no other poles inside Σk. Thus if we evaluate (2.31) by means of the residue
theorem and find contributions from t = 0, . . . , k, only. Hence the function Pk

is a polynomial of degree k. It remains to verify the biorthogonality (2.29).
Let l, k = 0, 1, . . . , n− 1. From (2.31) we have

∫ 1

0
Pl(x)Qk(x)dx

=
1

2πi

∮

Σl

1

(t− l)l+1

r∏

j=1

Γ(t+ 1 +mj − n)

Γ(t+ 1 + νj)

∫ 1

0
xtQk(x)dxdt. (6.1)

The moments of Qk are given by the general identity for the moments of the
Meijer G-function,

∫ 1

0
xs−1Qk(x)dx = (s− k)k

r∏

j=1

Γ(s+ νj)

Γ(s+mj − n)
. (6.2)

This identity can be plugged into (6.1) which cancels a lot of Γ-factors,

∫ 1

0
Pl(x)Qk(x)dx =

1

2πi

∮

Σl

(t+ 1− k)k
(t− l)l+1

dt =
1

2πi

∮

Σl

Γ[t− l]

Γ[t+ 1− k]
dt. (6.3)

For l < k, the integrand in (6.3) is a polynomial and the integral is zero by
Cauchy’s theorem. For l ≥ k, there are poles at t = k, . . . , l which are all inside
the contour Σl. The integrand is a rational function that behaves like O(tk−l−1)
as |t| → ∞. Therefore by simple residue calculation at infinity, the integral also
vanishes if l > k and it is equal to 1 if l = k. Thus (2.29) is satisfied.
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Inserting (2.31) and (2.32) into (2.28), and noting that we can take the same
contour Σn for every k in (2.31), we obtain a double integral for Kn,

Kn(x, y) =
1

(2πi)2

∫

C
ds

∮

Σn

dt
r∏

j=1

Γ(s+ νj)Γ(t+ 1 +mj − n)

Γ(s+mj − n)Γ(t+ 1 + νj)

n−1∑

k=0

(s− k)k
(t− k)k+1

xty−s

=
1

(2πi)2

∫

C
ds

∮

Σn

dt
r∏

j=1

Γ(s+ 1 + νj)Γ(t+ 1 +mj − n)

Γ(s+ 1 +mj − n)Γ(t+ 1 + νj)

n−1∑

k=0

(s+ 1− k)k
(t− k)k+1

xty−s−1,

(6.4)

where we made the change of variables s "→ s + 1. The summation can be
simplified, because of the telescoping sum

n−1∑

k=0

(s+ 1− k)k
(t− k)k+1

=
1

s− t

(
Γ(s+ 1)

Γ(t+ 1)

Γ(t+ 1− n)

Γ(s+ 1− n)
− 1

)
, (6.5)

which can be readily checked by complete induction. The contours Σn and C
do not intersect. Therefore the term t = s is not a pole inside the contour Σn.
The double integral (6.4) splits into two terms due to (6.5). For the second term
the contour integral over t does not encircle any pole because of mj − n > νj
and mj − n, νj ∈ N0. Thus this term vanishes. The remaining term is the one
shown in (2.33).

The expression (2.33) in terms of Meijer G-functions is obtained by noticing
that

1

s− t
= −

∫ 1

0
ut−s−1du. (6.6)

Interchanging the s and t integral with the u integral and using the definition of
the Meijer G-functions (2.19) the identity follows, see also the proof of Theorem
5.3 in [48]. This concludes the proof. !

Proof of Theorem 2.8 We employ the following asymptotic behavior of a ra-
tio of Gamma functions

Γ(t+ 1 +mj − n)

Γ(s+ 1 +mj − n)
=






sinπs

sin πt
nt−s

(
1 +O

(
1

n

))
, for j = 0,

(mj − n)t−s

(
1 +O

(
1

mj − n

))
, for j ∈ {1, . . . , r} \ J

(6.7)
as n → ∞. This follows as in the proof of Theorem 5.3 in [48], since m0 = 0
and mj − n → ∞ as n → ∞ for j ∈ {1, . . . , r} \ J .

In the double integral formula in (2.33) we deform the contour Σn to Σ, and
obtain

1

cn
Kn

(
x

cn
,
y

cn

)

=
cs−t
n

(2πi)2

∫

C
ds

∮

Σ
dt

r∏

j=0

Γ(s+ 1 + νj)

Γ(t+ 1 + νj)

r∏

j=0

Γ(t+ 1 +mj − n)

Γ(s+ 1 +mj − n)

xty−s−1

s− t
. (6.8)
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Because of definition (2.35) we have

cs−t
n

r∏

j=0

Γ(t+ 1 +mj − n)

Γ(s+ 1+mj − n)
=

(
ns−t Γ(t+ 1 +m0 − n)

Γ(s+ 1 +m0 − n)

)

×
∏

j "∈J

(
(mj − n)s−t Γ(t+ 1 +mj − n)

Γ(s+ 1 +mj − n)

)∏

j∈J

Γ(t+ 1 +mj − n)

Γ(s+ 1 +mj − n)
. (6.9)

Each of the factors in the product has a finite limit as n → ∞, cf. (6.7), and
the full product tends to

sinπs

sin πt

q∏

k=1

Γ(t+ 1 + µk)

Γ(s+ 1 + µk)
(6.10)

since mj − n = µk if j = jk ∈ J . It is then allowed to take the limit inside the
double integral in (6.8) and deform the contour C to the vertical line Re s =
−1/2 by analyticity and the decay of the integrand at infinity in the s-variable.
This leads to (2.36).

The expression in terms of Meijer G-functions is obtained by using the re-
flection formula of the Gamma function, sinπz = π/[Γ(1 − z)Γ(z)] together
with (6.6). The identity now follows along the same lines as in the proof of
Proposition 2.7. !

7 Conclusions and Outlook

We analyzed the singular value statistics of a matrix X (fixed as well as ran-
domly chosen) multiplied by a truncated unitary matrix T which is distributed
by the induced Haar measure. Though we only considered a multiplication from
the left side TX one can easily generalize the results to a multiplication from
both sides TLXTR where TL and TR are truncations of two independent unitary
matrices. The reason for such a simple generalization is the determinantal point
process fulfilled by the joint probability density of the singular values. We proved
that the joint probability density of the squared singular values of TX satisfies
a polynomial ensemble if the joint probability density of the squared singular
values of X does. In particular with the help of our results one can calculate
the squared singular value statistics of any product TL,1 · · ·TL,rLXTR,1 · · ·TR,rR

with rL, rR ∈ N0 and TL,j and TR,j truncations of independent unitary matrices
and X either fixed or another random matrix. Indeed one can also mix prod-
ucts of truncated unitary matrices with Ginibre matrices. The combination of
Theorem 1.1 and Corollary 2.4 yields a polynomial ensemble for the squared
singular values of such a mixed product. We expect that also for such a mixed
product the statistics are governed by Meijer G-functions since this particular
kind of functions is closed under Mellin convolution as it was shown here for a
pure product of truncated unitary matrices and studied in [5, 6] for a product
of Ginibre matrices.

Our study shows that the determinantal point process also applies to a prod-
uct with truncated unitary matrices. In particular one needs a group integral
replacing the Harish Chandra/ Itzykson-Zuber integral [35, 42] for which it is
not immediate that the result can be written in terms of determinants, cf. The-
orem 2.3. This particular result is even more astounding when noticing that
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one does not effectively integrate over the whole unitary group but only over a
subset. The reason for this is a Heaviside step function in the integrand. Har-
ish Chandra made contact between group integrals and representation theory
[35]. It would be interesting if also something like this exists for the integral
considered by us and can be explained by group theory.

Additionally we looked at the spectral statistics of a product of truncated
unitary matrices in detail. For this product we calculated the kernel of the cor-
responding polynomial ensemble of the squared singular values at finite matrix
size and in the hard edge limit at the origin. In a forthcoming publication we
also derive the bulk, the soft and the hard edge statistics as it was very recently
done for the Ginibre ensemble in [49]. The latter two statistics may appear
at the lower and the upper bound of the support because the squared singular
values of a product of truncated unitary matrices always live on the interval
[0, 1]. If the support touches either the origin or the upper bound 1 one would
expect hard edge statistics at these points.

Another generalization of our results refers to the restriction that the first
matrix in the product of truncated unitary matrices has to satisfy m1 > 2n+ν1,
see Corollary 2.4. This matrix has not generally to be the first matrix T1.
With the help of the discussion above it can be any matrix in the product.
Nevertheless we have to assume that at least one truncated unitary matrix
multiplied has to satisfy the condition to prove Corollary 2.4 in the way we
have done. An interesting question would be: What happens if this restriction
is not met? From the spectral statistics of one truncated unitary matrix, see e.g.
[58, 25], we know that some singular values are exactly located at 1. Numerical
simulations performed by us hint that this seems to be true also for a product
of truncated unitary matrices. In the case that this is indeed true, the question
arises about the algebraic structure. Does the determinantal point process carry
over to a product Tr · · ·T1 where the restriction mj > 2nj + νj is not met for
all j = 1, . . . , r?
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