
Repeat- and Error-Aware Comparison of Deletions
–preprint–

Roland Wittler1,∗, Tobias Marschall2,∗, Alexander Schönhuth3,†, Veli
Mäkinen4,†

1Genome Informatics, Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University,
Germany,

2Center for Bioinformatics, Saarland University and Department of Computational Biology and Applied
Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany,

3Centrum Wiskunde & Informatica (CWI), Life Sciences Group, Amsterdam, The Netherlands,
4Helsinki Institute for Information Technology (HIIT), Department of Computer Science, University of

Helsinki, Finland

Abstract

Motivation: The number of reported genetic variants is rapidly growing, empow-
ered by ever faster accumulation of next-generation sequencing data. A major issue
is comparability. Standards that address the combined problem of inaccurately pre-
dicted breakpoints and repeat-induce ambiguities are missing. This decisively lowers
the quality of “consensus” callsets and hampers the removal of duplicate entries in
variant databases, which can have deleterious effects in downstream analyses.

Results: We introduce a sound framework for comparison of deletions that cap-
tures both tool-induced inaccuracies and repeat-induced ambiguities. We present a
maximum matching algorithm that outputs virtual duplicates among two sets of pre-
dictions/annotations. We demonstrate that our approach is clearly superior over ad hoc
criteria, like overlap, and that it can reduce the redundancy among callsets substan-
tially. We also identify large amounts of duplicate entries in the Database of Genomic
Variants, which points out the immediate relevance of our approach.

Availability: Implementation is open source and available from https://bitbucket.

org/readdi/readdi

Contact: roland.wittler@uni-bielefeld.de, t.marschall@mpi-inf.mpg.de

1 Introduction

Next-generation sequencing (NGS) technology has led to generation of “Big Data” also in
biology. The rapid accumulation of NGS data has triggered the development of an equally

∗to whom correspondence should be addressed, joint first authors
†joint last authors

1

overwhelming amount of tools for their exploration, including many tools for the prediction
of structural variants, see the reviews by Alkan et al. (2011) and Medvedev et al. (2009).
An immediately arising, pressing concern are cross-genome and cross-project comparability
of variant call sets (e.g. from The 1000 Genomes Project Consortium (2010); The Genome
of the Netherlands Consortium (2014)). While resolution of related issues is instrumental
for successful genetics research, there are only little statistically and algorithmically rigorous
approaches addressing this. Here we suggest a formal framework for identifying duplicate
deletion calls.

A major source of problems about NGS data formats and tool evaluation is the repeti-
tiveness inherent to the majority of genomes (Treangen and Salzberg, 2012). The resulting
read mapping ambiguity can decisively hamper the exact allocation of structural variations
(SVs) as well as insertions and deletions (indels) within a genome. On top of that, another
major source of prediction inaccuracies are the technical and theoretical, tool-specific limi-
tations. These are often well-known. For instance, sequencing errors, ambiguities during the
alignment of reads to a reference, or point mutations close to the breakpoints might cause
split-read approaches to be inaccurate by a few bases. Paired-end mapping approaches, on
the other hand, infer the deletion size according to the difference of the expected fragment
length and the resulting distance of the mapped reads. Since the original fragment length is
only known approximately, the deletion size predictions are less accurate than for split-read
aligners. In addition, the location of the deletion needs to be confined to the region between
the paired ends, which introduces further inaccuracies. See for example Alkan et al. (2011)
for details on the different kinds of approaches; popular split-read aligners are Pindel (Ye
et al., 2009) and Platypus (Rimmer et al., 2014), while Breakdancer (Chen et al., 2009a) and
Clever (Marschall et al., 2012) are paired-end mapping approaches.

As we will outline in the following, the simultaneous presence of repeats and (even slightly)
inaccurate breakpoint predictions makes it difficult to compare two deletion calls, as done
when merging call sets created by different tools (as e.g. in the recent consensus caller by Tru-
betskoy et al., 2014) or when searching variant databases (e.g. Sherry et al., 2001; Zhang et al.,
2006). Since indels and SVs play important roles in cancer and many other diseases (Raphael,
2012; Xi et al., 2010), and in general populations (Zhang et al., 2006), alleviating such issues
can make a highly beneficial contribution to the field.

1.1 Example

As a simple example for the issues to be discussed, consider the toy reference genome
ACTGCTGCA, which has CTG repeated two times. First, consider two tools one of which predicts
CTG at positions 2–4 to be deleted, while the second one predicts TGC at positions 6–8 to be
deleted. The two predictions are equivalent insofar as the resulting donor genome sequence
is, in both cases, ACTGCA. Let us assume that this is the correct donor genome sequence to
be predicted. The VCF format (Danecek et al., 2011) addresses this by “left-aligning” all
predictions, that is, by reporting the leftmost deletion which is equivalent to the prediction
made. Note that, after left-aligning, the calls of the two tools in our example are identical.

Now consider that the second tool errs, and mistakenly predicts that only nucleotides 7–8
are deleted. In this case, left-aligning the call of the second tool has no effect, because the
predicted deletion differs from the repeat unit. As a result, the two predictions, although

2

virtually identical, do not only deviate by 1 base pair in length, but also by 5 base pairs in
terms of their left breakpoint. In particular, the two predictions do not overlap. Overall,
induced by the combination of repeat structure and a (minor) misprediction, spotting their
similarity has become more difficult.

1.2 Our Contribution

We suggest a formal model for the identification of similar deletions, which takes both repeat
structure and prediction inaccuracies into account. Furthermore, we present an efficient
algorithm based on this model that allows for (i) pairwise comparison of all elements of a
set of deletions and (ii) comparison of all elements of one set of deletions to all elements of a
second set. The first mode of operation facilitates the identification of (clusters of) duplicate
entries in databases while the second mode allows comparing deletion calls made by different
tools.

In the latter case of comparing two call sets, one hopes to obtain a one-to-one mapping,
that is, each deletion from one set matches exactly one deletion from the other set. In
practice, however, several deletions in one set may match one or more deletions in the other,
or do not match any of the other deletions at all. Also, deletions within one set may already
be redundant, because they are similar or even equivalent to one another. To address this, we
introduce a maximal matching based framework to distinguish all relevant cases and compute
appropriate matching statistics.

As experiments, we first screen the DGV database (Zhang et al., 2006) for duplicates,
and reveal hundreds of clusters of similar deletions. We also run the four state-of-the-art
deletion prediction methods Breakdancer (Chen et al., 2009a), Clever (Marschall et al., 2012),
Pindel (Ye et al., 2009), and Platypus (Rimmer et al., 2014) on an approved benchmarking
dataset which reflects real human genome sequence context (Levy et al., 2007; Marschall
et al., 2013). Furthermore, we demonstrate that using our comparison procedure is superior
to using ad hoc criteria like 50 % reciprocal overlap, which has been popular both in evaluating
calls and merging independent callsets into a “consensus” callset.

The developed algorithms are implemented in the easy-to-use open source software pack-
age READDI (Repeat- and Error-Aware Detection of Duplicate Indels) to compare sets of
deletions given in VCF or BED format, facilitating its use in NGS data analysis pipelines
and for curating databases.

1.3 Related Work

Our approach on taking repeat structure into account is related to the problem of tandem
repeat finding, see e.g. Gusfield and Stoye (2004). We use the same machinery of Longest
Common Extension (LCE) queries (Landau and Vishkin, 1989), now for identifying leftmost
and rightmost shifts for each deletion. The fact that deletions and insertions can be shifted
without altering the resulting sequence has already been observed by Krawitz et al. (2010)
and Assmus et al. (2013), but the connection to LCEs has been missed there.

Assmus et al. (2013) conducted a study of indel equivalence classes based on the same
notion of equivalence as we study here for the case of deletions, i.e., taking repeat-induced

3

equivalence into account, but not the notion of similarity we propose for inaccurate predic-
tions. They call an indel ambiguous if it belongs to an equivalence class consisting of more
than one element. Then they analyse ambiguous indels in the Ensembl database (Hubbard
et al., 2002) and reveal that the exact position of such variants can affect the functional an-
notation; they show examples of ambiguous indels crossing transcript boundaries, affecting
start codons and splice sites, and being involved with triple-repeat diseases.

The study of Assmus et al. (2013) emphasizes the importance of robust methods to identify
potentially identical variations in databases. We complement their study by extending the
model of similarity to involve inaccurate predictions. From the algorithmic perspective, we
also give a faster routine to detect equivalent deletions with the connection to longest common
extension queries. We also complement the experimental analysis by screening a different
variant database, and by studying the hybrid effect of repeats and inaccurate predictions
with several existing deletion prediction tools on realistic ground-truth datasets.

Rather than comparing sets of deletions directly, there exists also a quite different ap-
proach based on alignments: Apply each set of deletions to the reference sequence and com-
pare the created sequences using optimal pairwise alignments. The alignment score gives a
ranking for deletion prediction in the case that one of the sets corresponds to the ground
truth. This approach was recently extended to the diploid ground-truth setting (Mäkinen
and Rahkola, 2013) with an O(dn) algorithm, where d is the unit cost edit distance between
predicted sequence and ground-truth, and n is the maximum sequence length. In practice,
this approach is not scalable to whole-genome comparisons (Mäkinen and Rahkola, 2013);
computation took 6 to 11.5 hours, depending on prediction accuracy, only for the 63 Mbp
long human chromosome 20.

Even if the alignment-based approach could be sped up with more algorithm engineering,
one should notice that extracting variants from the alignment result in a canonical manner
is a non-trivial problem. Placing gaps within alignments has remained one of the most
prevalent computational challenges in bioinformatics: See for example Lunter et al. (2008)
for an illustration of effects such as “gap wander” or “gap annihilation”, all of which, of course,
equally apply when aligning NGS reads. One can try to attach more biological semantics to
indels by modeling them as traces of recombination events (Giegerich et al., 1999), but the
optimal solution of such recurrence takes cubic time.

2 Methods

We first formalize the phenomenon that deleting two different intervals from a given reference
results in the same string. In the second section, we extend this concept to an error-tolerant
model of similarity. After that, we introduce an algorithm to find all pairs of similar deletions
from two given sets.

2.1 Model: Exact Case

In the following, let |S| be the length of a string S. We denote deletions by intervals [i, j],
where S\[i, j] denote the string that results from removing all characters from (and including)
position i to (and including) j from S.

4

As discussed in Section 1.1, deleting different segments of a given string can yield the
same result. We call two such deletions equivalent.

Definition 1. Deletions [i, j] and [i′, j′] are equivalent w.r.t. a reference sequence S, writ-
ten [i, j] ⇔ [i′, j′], if and only if S\[i, j] = S\[i′, j′]. We further define their shift being
s ([i, j], [i′, j′]) := |i′ − i|.

Out of a set of equivalent deletions, we are especially interested in the leftmost and
rightmost representative, formally defined as follows.

Definition 2 (rightmost and leftmost shift). Let S be a reference string. Then the leftmost
and rightmost shift of a deletion [i, j] are defined as: L([i, j]) := argmin { i′ | [i′, j′]⇔ [i, j]}
and R([i, j]) := argmax { i′ | [i′, j′]⇔ [i, j]}, respectively.

Property 1. Given two deletions d1 and d2 of the same length, the following statements are
equivalent:

(i) d1 ⇔ d2 (ii) L(d1) = L(d2) (iii) R(d1) = R(d2)

The left- or rightmost shift of a deletion [i, j] can be computed quickly in practice by
shifting the deletion one by one as long as S[i − 1] = S[j] or S[i] = S[j + 1], respectively.
They can even be computed in constant time after preprocessing the reference:

Lemma 1. The left- or rightmost shift of a deletion can be computed efficiently by prepro-
cessing the reference sequence to allow for constant time longest common extensions.

Proof. The longest common extension LCES(i, j) = l is such that S[i, i+l−1] = S[j, j+l−1]
and S[i+l] 6= S[j+l]. After linear time preprocessing of S, every LCES(i, j) can be computed
in constant time (Landau and Vishkin, 1989). The rightmost shift of a deletion [i, j] is
[i + l, j + l] where l = LCES(i, j + 1). The leftmost shift can be computed analogously.

Due to the repetitive structure of genome sequences, large shifts are possible—even larger
than the deletions, that is, there are deletions which are equivalent but not even overlapping.
When comparing two sets of deletions, e.g., in benchmarking different deletion prediction
tools, or searching for deletions in a database, the phenomenon of equivalent deletions has
to be kept in mind. Equivalency in the exact sense is not a matter of sequencing depth, read
quality or read length, but of the repeated nature of genome sequences. Additionally, since in
practice, both predictions and database entries do usually not come at base pair resolution,
some error-tolerance is necessary to account for equivalence.

2.2 Model: Similarity

Even a deviation of only a single base in deletion breakpoint predictions can implicate or
prevent that deletions are shiftable, which can lead to very large differences in the resulting
repeat-corrected breakpoints. To account for such breakpoint inaccuracies, we define the
distance

K
(
[i, j], [i′, j′]

)
:= |i− i′|+ |j − j′|,

which, like all following terms, takes both left and right breakpoint equally into account.
Based on this, we define neighborhoods around deletions as follows.

5

Definition 3 (k-neighborhood). The k-neighborhood of a deletion d = [i, j] comprises all
deletions with a distance of at most k:

Nk(d) :=
{
d′
∣∣ K(d, d′) ≤ k

}
The value k is called neighborhood size.

For comparing two predictions made by two different methods or called on different data,
we use separate neighborhood sizes k1 and k2 for each of the two data sets. That means,
when comparing predictions from a highly accurate method (or called from very accurate
data) with less accurate ones, we can set k1 to a smaller value than k2.

Note that the output of some deletion callers already explicitly includes tool-specific
neighborhoods (a.k.a. confidence intervals), for example, in form of windows for both position
and length, or both breakpoints.

We will, in the following, base all our considerations on the k-neighborhood model from
above. We do this for the sake of simplicity; our approach to similarity of deletions is generic
in the choice of neighborhood definition, such that also other definitions can be used.

We say that two deletions are similar if there are equivalent deletions within their neigh-
borhoods.

Definition 4 ((k1,k2)-similarity). Deletions d1 and d2 are (k1,k2)-similar, if and only if there
are deletions d′1 ∈ Nk1(d1) and d′2 ∈ Nk2(d2) such that d′1 and d′2 are equivalent according to
Definition 1.

For one pair of deletions d1 and d2, there might exist several choices of d′1 ∈ Nk1(d1) and
d′2 ∈ Nk2(d2) that establish (k1,k2)-similarity between d1 and d2. We summarize all such
choices as

Sk1,k2(d1, d2) := {(d′1, d′2) ∈ Nk1(d1)×Nk2(d2) | d′1 ⇔ d′2} .

To assess by how many base pairs the breakpoints of two deletions need to be corrected to
render them equivalent, we define

Kmin
k1,k2

(d1, d2) :=

min
{
K(d1, d

′
1) + K(d2, d

′
2) | (d′1, d′2) ∈ Sk1,k2(d1, d2)

}
.

This quantity is instrumental for distinguishing between two factors of similarity: The neigh-
borhood size that is required to overcome a possible inaccuracy of deletion predictions on
the one hand, and the actual shift due to a repetitive structure of the sequence on the other
hand. Motivated by maximum parsimony, we minimize the inaccuracy first and the shift
second, describing a scenario with as few errors as possible as well as a minimum shift.

Definition 5 (minimum shift). Given two (k1,k2)-similar deletions d1 and d2, their minimum
shift is defined as

smin
k1,k2

(d1, d2) := min
{
s(d′1, d

′
2) | (d′1, d′2) ∈ Sk1,k2(d1, d2)

∧ K(d1, d
′
1) + K(d2, d

′
2) = Kmin

k1,k2
(d1, d2)

}
.

6

FNFNTPSP SNTP FP FP

FNC FPC

FP

Figure 1: Visualization of maximum matching framework. Deletions are drawn as boxes on a line representing
the reference. The dashed lines indicate pairs of similar deletions.

2.3 Matching Sets of Deletions

By determining similar deletions within one dataset, we can identify duplicate calls and
merge them, e.g., by selecting one representative. To compare two datasets D1 and D2, we
compute the similarity relations between all deletions in D1 to all others in D2. This can
be modeled as a bipartite graph with node sets D1 and D2. Two nodes/deletions d1 ∈ D1

and d2 ∈ D2 are connected by an edge (d1, d2) if they are (k1, k2)-similar. Then, a maximum
cardinality matching allows to compare or merge the two datasets: Each deletion is related
to at most one in the other set. Matched deletions are in common, unmatched are unique.
However, we have to keep in mind that both D1 and D2 might contain duplicates, i.e., we
have to take (k1, k1)-similar deletions within D1 and (k2, k2)-similar deletions within D2 into
account. These can be taken care of either prior to building the graph or in a post-processing
step.

To evaluate a callset P against a given “truth” T , e.g. calls predicted by a different tool
or a collection of deletions in a database, the obtained bipartite matching can easily be
interpreted as follows. Matched (kp, kt)-similar deletions correspond to true positives (TPs),
and unmatched deletions in P and T correspond to false positives (FPs) and false negatives
(FNs), respectively. To account for duplicates within the two sets, after performing the
matching, we also determine all (kp, kp)-similar deletions in P and (kt, kt)-similar deletions
in T . If a deletion in P is unmatched but similar to a TP, it might be considered as being a
duplicate of a TP and should thus not be counted as a FP. We report those deletions as similar
positives (SPs) and do not count them as FPs. Vice versa, we report unmatched deletions in
D as similar negatives (SNs) and do not count them as FNs. Further, we do not count several
unmatched deletions as individual false positives (or negatives) if they are similar. Instead,
we report components of (kp, kp)-similar deletions in P as false positive components (FPCs)
and components of (kt, kt)-similar deletions in T as false negative components (FNCs), see
Figure 1. This allows us to define a duplicate-aware recall by TP

TP+FNC
and precision by

TP
TP+FPC

.

2.4 Algorithm

In the following, we describe an algorithm that, for two given lists of deletions, as specified
by reference coordinates, determines all pairs of similar deletions. We assume the lists being
sorted by deletion start coordinates. The algorithm outputs all pairs of deletions for which

7

the deletion in the first list is left of or at the same position as the one in the second list. To
obtain all pairs of similar deletions of two distinct lists, the algorithms is executed twice: to
get the pairs where the deletion from the first list is left and from the second list is right and
vice versa. To screen a single list for duplicates, the algorithm is called once by passing this
list twice as parameter. Pseudo code is given in Algorithm 1.

The for-loop in line 2 iterates over all deletions in the first list. For each considered
deletion d1, we aim at finding similar deletions d2 in the second list with a starting position
right of or at the same position as d1. How far a particular deletion can be shifted depends
on whether its length matches a repeat unit. Therefore, we enumerate all possible lengths
of deletions in the neighborhood of d1 (line 3); for a given length `, we compute where the
rightmost such deletion starts (line 4) and use an LCE query to determine how far it can be
shifted to the right (line 5). In line 6, we then iterate over all potentially similar deletions d2
in the second list, skipping those whose neighborhood does not contain deletions of length `
(lines 7 and 8). In case d2 is so far to the right that a shiftable deletion of length ` cannot
“mediate” a similarity relationship, we can stop and do not need to consider any deletions
further to the right in the second list (lines 9 and 10). For the remaining candidates d2,
we check in lines 11 and 12 whether there is a length-` deletion in its neighborhood that
can establish (k1, k2)-similarity (cf. Definition 4): Line 11 computes the leftmost length-`
deletion in the neighborhood of d2. Recall that the length-` deletion starting at start max1

is still in the neighborhood of d1 and that all length-` deletions starting between start max1

and shifted1 are equivalent. Therefore, testing for (k1, k2)-similarity (mediated by a length-`
deletion) of d1 and d2 boils down to a simple comparison in line 12.

The three nested loops in Algorithm 1 give rise to a worst-case runtime of O(|L1|·|L2|·k1),
where |L1| and |L2| are the lengths of the two deletion lists. In practice, however, the runtime
behaves linearly in |L1|+ |L2| (rather than being linear in |L1| · |L2|) since for each deletion
d1 ∈ L1, only a local neighborhood is considered for the search of candidates in L2: the loop
in line 6 only considers deletions d2 ∈ L2 that are right of d1 and the search is terminated
in line 10 as soon as d2 is too far right. This “locality” of the algorithm is achieved by
considering each candidate length ` separately (line 3) and was a major design goal. Since no
recursion stack or complex auxiliary data structures are required, the memory requirement
is mainly given by the input and output—in practice dominated by the size of the reference
sequence.

3 Results and Discussion

3.1 Datasets

Venter Predictions and Venter Truth. We use a benchmark dataset based on Craig
Venter’s genome (Levy et al., 2007) that was described in Marschall et al. (2013). It consists of
three human genomes that represent a mother-father-child trio and are realistic in particular
in terms of true sequence context and amounts of variants across the whole variant spectrum
(including also mixed events and inversions, for example). Here, we use the father genome.
By Venter Truth, we refer to the set of known true differences of this genome to the reference
genome. From this genome, we sample 2x100bp reads with HiSeq error profiles to 30x

8

Algorithm 1: Computation of (k1, k2)-similar deletions

Input: Two lists of deletions L1 and L2, sorted by deletion start positions; reference sequence S.
Output: Set Pairs of all pairs of indices of (k1, k2)-similar deletions for which the one in the first list

is left of or at the same position as the one in the second list.
1 Pairs ← ∅;
2 for each deletion d1 = [start(d1), end(d1)] in L1 do
3 for each possible deletion length ` of d1

(i.e., ` = length(d1)− k1, . . . , length(d1) + k1) do

4 start max1 ←
⌊
start(d1)+end(d1)−`+k1+1

2

⌋
;

5 shifted1 ← start max1

+LCES(start max1, start max1+`);
6 for each deletion d2 = [start(d2), end(d2)] in L2

with start(d1) ≤ start(d2) do
7 if ` < length(d2)− k2 or ` > length(d2) + k2 then
8 continue ; // lengths incompatible

9 if shifted1 < start(d2)− k2 then
10 break ; // no candidate in range

11 start min2 ←
⌈
start(d2)+end(d2)−`−k2+1

2

⌉
;

12 if shifted1 ≥ start min2 then
/* deletion of length ` can be shifted from k1-neighborhood of d1 to

k2-neighborhood of d2 */

13 Pairs ← Pairs ∪ {(d1, d2)};

14 return Pairs;

coverage using SimSeq (Earl et al., 2011) and run Breakdancer (Chen et al., 2009b, version
1.4.4), Clever (Marschall et al., 2012, version 2.0rc3), Pindel (Ye et al., 2009, version 0.2.4t),
and Platypus (Rimmer et al., 2014, version 0.7.9.1) to produce several call sets referred to
as Venter Predictions. While Breakdancer and Clever are internal-segment-size based tools
that yield rather inaccurate deletion calls, Pindel and Platypus, as split-read aligners, yield
calls that are often highly accurate. In our experiments, in particular the results for the
Platypus calls show a very similar behaviour to those for the Pindel set. These call sets
serve as examples to demonstrate the behavior of our similarity criterion on realistic datasets
produced by state-of-the-art tools. Here, we do not focus on comparing the tools’ performance
rates.

Database of Genomic Variants (DGV) (Zhang et al., 2006). The DGV contains
curated structural variations in human, detected in healthy control samples. It comprises
different types of structural variations, predictions from different studies found by different
techniques. We downloaded DGV variants mapped to GRCh 37 (release date 2014-10-16) and
extracted deletion predictions (varianttype “CNV” and variantsubtype “deletion” or “loss”).

Throughout our experiments, we focus on deletions between 20 and 10 000 bp. Note
that our tool is generic in deletion size. However, shorter deletions are still within reach
of standard read mappers, and therefore less prone to prediction inaccuracies. Removal of
duplicates among very long deletions is easy due to their size and because they are very few

9

Minimum shift (bp)

N
um

be
r

of
 n

on
−

un
iq

ue
 d

el
et

io
ns

0 20 40 60 80 100

0
10

10
0

10
00

10
00

0

total
shift required
detectable by 70% overl.

>100:
257
257
24

Figure 2: Non-unique deletions in the DGV dataset. Minimum deletion size was 48 bases. Identical
predictions and deletions larger than 10K bases have been filtered out (118 349 deletions of 159 136 were left).
Pairs of similar deletions with k=25 have been computed and these pairs involved 18 753 (15.8%) deletions,
the minimum shift to any similar deletion has been recorded. Gray bars indicate those deletions that are
similar with a shift required, i.e., the 25-neighborhoods of the two deletions are disjoint. The striped bars
indicate those deletions which are also non-unique according to 70%-overlap. (An overlap of gray and striped
areas does not imply an overlap of the underlying sets of deletions.) Note the logarithmic scale of the y-axis.

in number.

3.2 Removing Duplicates in Single Datasets

We determined all (k, k)-similar deletions in Venter Truth and in the DGV for k = 25, and
for each (k, k)-similar pair of deletions d1, d2 (excluding cases where d1 = d2), we computed
their minimum shift smin

k,k (d1, d2). In addition to about 60 seconds for reading the reference
sequence, this took about 8 seconds (Venter) and 95 seconds (DGV) on a standard laptop
without computing the minimum shift, and about 45 seconds (Venter) and 600 seconds
(DGV) including the computation of the minimum shift. The peak memory usage was
reached after reading the input files, where the reference sequence of about 3 GB clearly
dominated all other data structures since the given 10–20 thousand deletions are represented
by four integers each, i.e., only some kilobytes were used in total. A general observation is
that a small minimum shift often implies that the k-neighborhoods of d1, d2 overlap. For
increasing minimum shift, however, the amount of overlapping neighborhoods necessarily
decreases—for pairs with a minimum shift larger than k, by definition, a shift is required,
which translates into the fact that the k-neighborhoods are disjoint. Note that a shift might

10

not be required even if smin
k,k (d1, d2) is larger than zero, because the definition of smin

k,k prioritizes
minimizing k over minimizing the shift.

Venter Truth. This dataset is based on a de novo sequence assembly using Sanger se-
quencing (Levy et al., 2007). Therefore it is of very high quality and presumably contains
nearly no duplicates due to technical errors. Duplicates reported by our algorithm are thus
likely to be false positives, that is, cases where two deletions are indeed biologically different,
but are falsely assumed to be the same by our method. In total, we found 25 such pairs
of similar deletions involving 50 out of 10 001 deletions in the dataset (0.5%), 32 of which
(0.3%) required shifting. The fraction of 0.5% can be interpreted as an estimate of the false
positive rate of our method. When manually inspecting the reported pairs, however, one can
hypothesize that some of them are not wrongly called by our method but indeed represent
artifacts in the dataset, meaning that the false positive rate could be even lower. Some
such cases are listed in Section A of the Supplement. When choosing k larger than 25, the
resulting rates naturally increase. For k = 60 and k = 120, we obtain 190 and 464 deletions
involved in similar pairs, respectively. Depending on the application, the corresponding false
positive rates of 1.9 % and 4.6 % may still be acceptable.

DGV. Unlike the Venter dataset, the DGV contains massive amounts of virtual duplicates
(15.8%): See Figure 2 for a histogram of the number of similar deletions versus the minimum
shift observed. For about one third of the non-unique deletions, Kmin = 0; for larger values
of Kmin, about 70–500 deletions have been found each. (See Supplement B for a plot of the
distribution.) Since the DGV is a collection of deletions resulting from many, often large-
scale studies, and entries are merged per study only and not across studies, this high rate is
expected and reflects concordance of the contained studies. But it is noteworthy that there is
a large amount of deletion duplicates with large minimum shifts, which could not be detected
without shifting the calls, as indicated by the gray part of the bars in Figure 2. As shown
by the striped bars, about 7.3% of those deletions that we detected being non-unique cannot
be detected by the criterion used in DGV, i.e., 70% overlap. The experiment described in
the previous paragraph suggests that this discrepancy is unlikely caused by false positives
from our approach. To collect further evidence of a low false positive rate, we analyzed pairs
of matching deletions in DGV for which one deletion originated from Venter’s genome and
one deletion originated from the 1000 Genomes Project and observed that the 1000 Genomes
deletions that are part of such a pair are strongly enriched for events called in Caucasian
individuals, which is consistent with Craig Venter’s ancestry (see Section C in the Supplement
for details). We are thus confident that our false positive rate is low. Based on the evidence
presented in this section, we conclude that ad-hoc criteria alone are insufficient when it comes
to creating consensus call sets from multiple, individual call sets.

3.3 Pairwise Comparison of Call Sets

We evaluated our matching approach by identifying duplicates among the call sets from the
four tools mentioned above (Venter Predictions) and also by identifying duplicates among
the individual call sets and the true annotations.

11

0 50 100 150 200

0
5

10
15

20
25

k (k_T=10)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

● ●
● ●

● ● ●

●

Breakdancer
Clever
Pindel
Platypus

Figure 3: Running times on a standard laptop (2GHz, 8GB memory) for determining similarity and perform-
ing the matching for the Venter dataset, not including about 50 seconds for reading the reference sequence
once.

Tools vs. “Truth”. As outlined above, for each pair of sets of deletions, we consider a
graph where nodes are calls and edges are drawn if two deletions are (k, kT)-similar, where
k refers to the tool in use and kT refers to the “Truth”. Thereby, we fix kT to 10—since
the “Truth” has been determined experimentally, it may be prone to inaccuracies itself,
which justifies a choice of kT larger than zero. However, we vary k, so as to explore the
corresponding effects for the different tools. As shown in Figure 3, the running times for
determining similarity and performing the matching increase approximately linearly from
about 6 seconds for k = 0 for each dataset to, e.g., about 26 seconds for the Clever set of
size 7473 with k = 100, not including about 50 seconds for initial imports of the reference
sequence. Results are shown in Figure 4 and Supplement D. We observe that, first, both
precision and recall, and thus F-measure, approach a stable value for increasing k and,
second, the speed and the limit of this trend differ between the tools. The two insert size
based approaches, Clever and Breakdancer, reach their limits slower (in k) than Pindel and
Platypus, which are split-read aligners, hence are more accurate. The limits, in turn, give
evidence of the quality of the call sets.

For further analyses of the different datasets, we determined the minimum value of k (in
steps of 10) for which the F-measure exceeds 95 % of its limit. This method is also included in
our software package READDI. For the Clever data, we obtained k = 60 and for Breakdancer
k = 120. For Pindel and Platypus, the above procedure yielded k = 0. To nevertheless allow
for some minimum flexibility, we chose k = 10 for these data sets in all experiments reported
below.

Choice of criteria: (k1, k2)-similarity versus overlap. We ran our matching algorithm
both using similarity as edge criterion and defining similarity by 50% reciprocal overlap,
which reflects a naive, but popular criterion for comparing results and merging duplicate

12

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k (k_T=10)

F
−

m
ea

su
re

● ● ● ● ● ● ●

●

Breakdancer
Clever
Pindel
Platypus

Figure 4: F-measure for callsets of different tools compared to truth (Venter dataset). Predictions have
been compared with varying neighborhood sizes to the truth with a fixed neighborhood size of kT = 10.
Precision and recall have been determined by the matching approach described in Section 2.2 and are shown
in Section D in the Supplement.

5280 41692193

Clever Pindel

5280 41692193

Clever Pindel

4247 31233225

Clever

(k=60)
Pindel

(k=10)

4247 31233225

Clever

(k=60)
Pindel

(k=10)

(a) based on 50% overlap (b) based on similarity

Figure 5: Venn diagrams comparing deletion predictions on the Venter dataset by Clever and Pindel. The
numbers of common and unique deletions are determined by counting the components resulting from running
the matching algorithm (see Section 2.3). Diagram (a) is based on matchings of predictions where the edges
are defined by a reciprocal overlap of 50% and Diagram (b) is based on similarity, where we used = k10 for
Pindel and k = 60 for Clever. Note that, due to the abovementioned usage of components, the total number
of calls differs slightly between the diagrams.

13

Small deletions (20–40bp)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall = TP/(TP+FNC)

P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

C
)

●●

● ●

/
/
/
/

Breakdancer − overl. / k=120
Clever − overl. / k=60
Pindel − overl. / k=10
Platypus − overl. / k=10

Large deletions (41bp–10kbp)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall = TP/(TP+FNC)

P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

C
) ●●

● ●

/
/
/
/

Breakdancer − overl. / k=120
Clever − overl. / k=60
Pindel − overl. / k=10
Platypus − overl. / k=10

Figure 6: Effect of using our similarity criterion instead of 50 % reciprocal overlap for comparing precision and
recall of different tools with respect to Venter Truth (separated by deletion size). Lines connect corresponding
statistics for the two criteria. Recall has been determined by comparing all predictions to only small or large
true deletions, resp. Precision has been determined by comparing only small or large predictions, resp., to all
true deletions. The used definition of neighborhood for the tools is given in the legend. For “truth”, k = 10
has been chosen.

14

calls (Lam et al., 2012; The 1000 Genomes Project Consortium, 2010; Malhotra et al., 2013;
Teer et al., 2013).

Figure 5 shows Venn diagrams for Clever and Pindel predictions. The amount of du-
plicates identified varies drastically between the two different criteria, where the similarity
criterion detects substantially more duplicates than the overlap criterion, 3 225 common calls
compared to 2 193 (47.1 % more). When comparing Pindel to Breakdancer and Clever to
Breakdancer, we observe an increase in the number of common calls of 49.1 % and 60.0 %,
respectively (see Venn diagrams in Section E of the Supplement). As we demonstrated in
Section 3.2, the false discovery rate of our similarity criterion is rather negligible, which
points out that overlap leaves substantial amounts of common calls unidentified.

Figure 6 shows precision/recall plots for evaluating the tools relative to the two criteria.
The results demonstrate that the choice of criterion can distort qualitative statements about
the accuracy of call sets substantially. For example, Breakdancer and Clever perform worse
than Pindel under the overlap criterion, whereas they perform better than Pindel in the
length range 41–10K under the similarity model. These comparisons demonstrate that a
sound definition of two predictions “being the same” is crucial for the purposes of evaluating
SV discovery tools.

3.4 Model Accuracy

To gather additional evidence that our model is superior to the overlap criterion, we per-
formed the following experiment.

We computed all pairs of similar deletions within and between the call sets of the three
tools Breakdancer, Clever, and Pindel. For each connected component in the resulting graph
of deletions, we replaced all similar deletions by one representative, favoring predictions by
Pindel over those by Clever over those by Breakdancer and favoring left deletions over right.
In the end, 11 095 of 16 813 deletions were left in the consensus set. We repeated the above
steps defining edges by 50% reciprocal overlap instead of by our model of similarity and
obtained a consensus of 12 947 deletions.

To assess the two consensus sets by a method independent of the two criteria, we compare
them to the ground truth on single-nucleotide level. That is, for each nucleotide that is part
of a deletion in each consensus set, we determine whether it is also part of a deletion in
Venter Truth. Based on that, we compute recall and precision for the two consensus sets,
stratified by deletion length ranges. This stratification is important as not to skew statistics
towards longer deletions. Results are visualized in Figure 7.

Although the consensus set based on similarity was by 14.3 % smaller than the one based
on overlap (11 095 vs. 12 947 deletions), recall was virtually the same across all length ranges.
The precision of our model was higher across all size ranges and the difference is especially
large for medium size deletions (100–200 bases), where similarity outperforms overlap by
about 20 percentage points. We hypothesize that flexibility plays an important role especially
in this range, because split read approaches lose predictive power while deletions of a few
hundred bases are usually detected with some inaccuracy by paired-end mapping approaches.
Further, shifts can be large in this length range in comparison to the deletion size—covered
by (k, k)-similarity but not by the overlap criterion.

15

●

●

● ●

●

●
●

●
●

●

●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size range (bp)

P
re

ci
si

on
/R

ec
al

l

20
−

25

−
30

−
40

−
50

−
60

−
80

−
10

0

−
15

0

−
20

0

−
30

0

−
50

0

−
1K

−
10

K

0
50

0
10

00
20

00
30

00

N
um

be
r

of
 d

el
et

io
ns

 in
 r

an
ge

●

●

● ●

●

●
●

●
●

●

●
●

●●

●

● ●

●

● ●

●
●

●

● ●

●

●

●

●

Similarity − precision
Overlap − precision
Similarity − recall
Overlap − recall
number of deletions

Figure 7: Comparison of the consensus sets based on (k, k)-similarity and based on 50% reciprocal overlap
to the “truth”. Precision (TP/(TP+FP)) and recall (TP/(TP+FN)) are stated in terms of deleted bases.

4 Conclusions

The above analyses show that a mistaken ansatz to duplicate identification can have nega-
tive effects. We have pointed out that repeats lead to ambiguities that have the potential
to introduce errors. We have also pointed out that the quality of breakpoint predictions
can vary substantially among variant discovery tools, which can equally hamper the iden-
tification of duplicates among deletion calls. In the light of increasing amounts of projects
that aim at large-scale discovery of genetic variants in populations or in diseased cells, sound
standardization and consistency among calls reported is an urgent and vital issue.

To overcome this, we have presented a framework that is repeat-aware and error-tolerant,
hence soundly captures both error sources. We have devised a maximum matching algorithm
that can make use of this framework, and which one can employ to spot duplicates among
deletions. As we demonstrated, the algorithm operates at negligible false discovery rates.
Thereby, it outperforms ad-hoc criteria, such as 50% reciprocal overlap substantially.

As future work, we will invest in adjusting our framework, which is generic in its core
ideas, to other variant types. Including insertions, although being the reversal process of
deletions, is not straightforward. The complexity arises from the difference that a deletion is
uniquely described by its coordinates, but in contrast, an insertion prediction also includes
the inserted sequence. In particular, allowing for small errors in the predictions is not trivial.
Another interesting, and potentially promising line of research is to integrate allele frequency
related statistics, likely as a postprocessing step. Moreover, it may be interesting to study
selecting k not only conditioned on the method in use, but also on coverage and/or on locus,

16

and combinations thereof, in a sound machine learning framework.

5 Acknowledgments

R.W. is partially funded by the International DFG Research Training Group “Computational
Methods for the Analysis of the Diversity and Dynamics of Genomes”, GRK 1906/1. A.S. is
funded by the Dutch Scientific Organization (NWO) through Vidi grant 639.072.309. V.M.
is partially funded by the Finnish Centre of Excellence in Cancer Genetics Research (grant
250345) and the Finnish Cultural Foundation.

References

Alkan, C., Coe, B. P., and Eichler, E. E. (2011). Genome structural variation discovery and
genotyping. Nat Rev Genet , 12(5), 363–376.

Assmus, J., Kleffe, J., Schmitt, A. O., and Brockmann, G. A. (2013). Equivalent indels–
ambiguous functional classes and redundancy in databases. PLoS ONE , 8(5), e62803.

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., et al. (2009a).
Breakdancer: an algorithm for high-resolution mapping of genomic structural variation.
Nat Meth, 6(9), 677–681.

Chen, K., Wallis, J., McLellan, M., Larson, D., Kalicki, J., Pohl, C., McGrath, S., Wendl,
M., Zhang, Q., Locke, D., Shi, X., Fulton, R., Ley, T., Wilson, R., Ding, L., and Mardis,
E. (2009b). Breakdancer: an algorithm for high-resolution mapping of genomic structural
variation. Nat Meth, 6(9), 677–681.

Danecek, P., Auton, A., Abecasis, G., Albers, C., Banks, E., et al. (2011). The variant call
format and VCFtools. Bioinformatics , 27(15), 2156–8.

Earl, D., Bradnam, K., St.John, J., Darling, A., Lin, D., et al. (2011). Assemblathon 1:
A competitive assessment of de novo short read assembly methods. Genome Res , 21,
2224–2241.

Giegerich, R., Kurtz, S., and Weiller, G. (1999). An algebraic dynamic programming ap-
proach to the analysis of recombinant dna sequences. In Workshop on Algorithmic Ascpects
of Advanced Programming Languages (WAAAPL), pages 77–88.

Gusfield, D. and Stoye, J. (2004). Linear time algorithms for finding and representing all the
tandem repeats in a string. J Comput System Sci , 69(4), 525 – 546.

Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J.,
Curwen, V., Down, T., et al. (2002). The ensembl genome database project. Nucleic Acids
Research, 30(1), 38–41.

Krawitz, P., Rödelsperger, C., Jäger, M., Jostins, L., Bauer, S., and Robinson, P. N. (2010).
Microindel detection in short-read sequence data. Bioinformatics , 26(6), 722–729.

17

Lam, H. Y., Pan, C., Clark, M. J., Lacroute, P., Chen, R., Haraksingh, R., O’Huallachain, M.,
Gerstein, M. B., Kidd, J. M., Bustamante, C. D., et al. (2012). Detecting and annotating
genetic variations using the hugeseq pipeline. Nat Biotechnol , 30(3), 226–229.

Landau, G. M. and Vishkin, U. (1989). Fast parallel and serial approximate string matching.
J Algorithms , 10(2), 157–169.

Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., et al. (2007). The diploid genome
sequence of an individual human. PLoS Biol , 5(10), e254.

Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., and Hein, J. (2008). Uncertainty
in homology inferences: assessing and improving genomic sequence alignment. Genome
Res , 18(2).

Mäkinen, V. and Rahkola, J. (2013). Haploid to diploid alignment for variation calling
assessment. BMC Bioinformatics , 14(S-15), S13.

Malhotra, A., Lindberg, M., Faust, G. G., Leibowitz, M. L., Clark, R. A., Layer, R. M.,
Quinlan, A. R., and Hall, I. M. (2013). Breakpoint profiling of 64 cancer genomes re-
veals numerous complex rearrangements spawned by homology-independent mechanisms.
Genome Res , 23(5), 762–776.

Marschall, T., Costa, I. G., Canzar, S., Bauer, M., Klau, G. W., Schliep, A., and Schönhuth,
A. (2012). CLEVER: clique-enumerating variant finder. Bioinformatics , 28(22), 2875–
2882.

Marschall, T., Hajirasouliha, I., and Schönhuth, A. (2013). MATE-CLEVER: Mendelian-
inheritance-aware discovery and genotyping of midsize and long indels. Bioinformatics ,
29(24), 3143–3150.

Medvedev, P., Stanciu, M., and Brudno, M. (2009). Computational methods for discovering
structural variation with next-generation sequencing. Nat Meth, 6(11s), S13–S20.

Raphael, B. J. (2012). Structural variation and medical genomics. PLoS Comput Biol , 8(12),
e1002821.

Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R., Wilkie, A. O., McVean, G.,
Lunter, G., Consortium, W., et al. (2014). Integrating mapping-, assembly-and haplotype-
based approaches for calling variants in clinical sequencing applications. Nat Genet , 46(8),
912–918.

Sherry, S., Ward, M., Kholodov, M., Baker, J., Phan, L., et al. (2001). dbSNP: the NCBI
database of genetic variation. Nucleic Acids Res , 29(1), 308–11.

Teer, J. K., Johnston, J. J., Anzick, S. L., Pineda, M., Stone, G., Meltzer, P. S., Mullikin,
J. C., Biesecker, L. G., et al. (2013). Massively-parallel sequencing of genes on a single
chromosome: a comparison of solution hybrid selection and flow sorting. BMC Genomics ,
14(1), 253.

18

The 1000 Genomes Project Consortium (2010). A map of human genome variation from
population-scale sequencing. Nature, 467(7319), 1061–1073.

The Genome of the Netherlands Consortium (2014). Whole-genome sequence variation,
population structure and demographic history of the dutch population. Nat Genet , 46(8),
818–825.

Treangen, T. and Salzberg, S. (2012). Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet , 13, 557–567.

Trubetskoy, V., Rodriguez, A., Dave, U., Campbell, N., Crawford, E. L., Cook, E. H., Sut-
cliffe, J. S., Foster, I., Madduri, R., Cox, N. J., et al. (2014). Consensus genotyper for exome
sequencing (CGES): improving the quality of exome variant genotypes. Bioinformatics ,
page btu591.

Xi, R., Kim, T.-M., and Park, P. J. (2010). Detecting structural variations in the human
genome using next generation sequencing. Brief Func Genomics , 9(5-6), 405–415.

Ye, K., Schulz, M., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions from paired-
end short reads. Bioinformatics , 25(21), 2865–2871.

Zhang, J., Feuk, L., Duggan, G., Khaja, R., and Scherer, S. (2006). Development of bioin-
formatics resources for display and analysis of copy number and other structural variants
in the human genome. Cytogenet Genome Res , 115(3–4), 205–214.

A Selected Duplicate Deletions in Venter Dataset

No. Chr. Start coordinate End coordinate Min. dist. Min. shift
(first/second del.) (first/second del.) Kmin

25,25 smin
25,25

1 1 56 995 968 56 995 996
56 995 976 56 995 996 8 0

2 5 156 441 637 156 441 671
156 441 641 156 441 671 4 0

3 9 19 112 484 19 112 548
19 112 484 19 112 516 32 0

4 12 61 309 398 61 309 443
61 309 406 61 309 443 8 0

5 20 9 695 005 9 695 036
9 695 007 9 695 036 2 0

6 11 76 107 402 76 107 450
76 107 414 76 107 444 18 0

7 2 999 384 999 458
999 444 999 518 2 59

8 19 53 537 358 53 537 411
53 537 415 53 537 464 4 53

19

Selected calls for duplicates in the Venter Truth data set. The table shows manually picked
pairs of (25,25)-similar deletions which appear to be non-random hits due to equal start or
end coordinates (entries 1–5), complete overlap (entry 6), or huge minimum shift (entries
7 and 8). It is possible that these pairs are technical artifacts in the dataset rather than
biologically different deletions present on the two haplotypes of the sequenced individual.

B Required Neighborhood Size

20

K^min

N
on

−
un

iq
ue

 d
el

et
io

ns

0 10 20 30 40 50

1
5

50
50

0
50

00

Figure 8: (In addition to Figure 2 in the main manuscript.) Non-unique deletions in the DGV dataset.
Minimum deletion size was 38 bases. Identical predictions and deletions larger than 10K bases have been
filtered out (100 401 deletions of 140 574 were left). Pairs of similar deletions with k=25 have been computed
and the required neighborhood size (Kmin) has been recorded.

21

C Population Analysis of DGV Duplicates

DGV contains structural variations discovered in a wide range of populations. Pairs of match-
ing deletions can either represent identical deletions with inaccurately determined breakpoints
or similar but distinct deletions that we wrongly consider putatively identical (false positives).
It is indeed conceivable that similar but distinct deletions are present within and between
populations. If such pairs of similar but distinct deletions exist, they most likely represent
independent mutation events caused by the same mechanism. Therefore, each of two such
deletions can have arisen in any population and we thus make the assumption that there is
no elevated probability that the two mutations originated from the same population.

Based on this reasoning, we perform the following experiment to gather additional evi-
dence that the pairs of similar deletions we found in DGV indeed mostly represent identical
deletions with inaccurately determined breakpoints. We analyzed pairs of similar deletions
in DGV (of any size) where one deletion comes from Venter’s genome (the “reference” field
in DGV equals “Levy et al 2007”) and the other deletion comes from the 1000 Genomes
Project (the “reference” field in DGV equals “1000 Genomes Consortium Phase 1”). Since
Craig Venter is a “self-identified Caucasian” according to Levy et al., 2007, we determined
what fraction of the matching 1000G deletions have been called in Caucasians (population
id CEU).

The result is summarized in the table below, which summarizes related statistics for all
20554 1000 Genomes deletions present in DGV. The first row contains deletions that, by our
method, match a Venter deletion, and the second row is about deletions that do not match a
Venter deletion. The first column refers to deletions called in CEU individuals (to be precise:
in at least one CEU individual in the 1000G phase 1 cohort), and the second column refers
to deletions that were not called in CEU individuals.

called in CEU not called in CEU SUM
Matching Venter 335 19 354
Not matching Venter 5 967 14 233 20 200
SUM 6 302 14 252 20 554

As one can see from this table, 94.6% (335 out of 354) of the 1000G deletions matching
a Venter deletion have been called in a CEU individual; whereas for those not matching a
deletion in Venter’s genome, only 29.5% have been called in a CEU individual (5967 out of
20200). The difference is clearly significant (p = 3.3 · 10−147, one-sided Fisher’s exact test).

That means that the set of 1000G deletions that match a deletion in Venter’s genome
are strongly enriched for deletions present in the CEU population. This suggests that the
matching deletions are indeed indentical and represents evidence against the hypothesis that
we observe matches between similar but distinct deletions.

D Tools vs. “Truth”

E Full Set of Venn Diagrams

22

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k (k_T=10)

R
ec

al
l =

 T
P

/(
T

P
+

F
N

C
),

 P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

C
)

● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

Breakdancer − recall
Breakdancer − precision
Clever − recall
Clever − precision
Pindel − recall
Pindel − precision
Platypus − recall
Platypus − precision

Figure 9: Precision and Recall or callsets of different tools compared to truth (Venter dataset). Predictions
have been compared with varying neighborhood sizes to the truth with a fixed neighborhood size of kT = 10.
Precision and recall have been determined by the matching approach described in the main manuscript.

23

5280 41692193

Clever Pindel

5280 41692193

Clever Pindel

(a) based on 50% overlap

4247 31233225

Clever

(k=60)
Pindel

(k=10)

4247 31233225

Clever

(k=60)
Pindel

(k=10)

(b) based on approximate similarity

6115 15461358

Clever
Breakdancer

6115 15461358

Clever
Breakdancer

(c) based on 50% overlap

5367 7992105

Clever

(k=60) Breakdancer

(k=120)

5367 7992105

Clever

(k=60) Breakdancer

(k=120)

(d) based on similarity

5494 2036870

Pindel
Breakdancer

5494 2036870

Pindel
Breakdancer

(e) based on 50% overlap

5103 16591245

Pindel

(k=10) Breakdancer

(k=120)

5103 16591245

Pindel

(k=10) Breakdancer

(k=120)

(f) based on similarity

Figure 10: Venn diagrams for all pairs of algorithms. Continued in Figure 11. Due to space constraints,
Figure 5 in the main text only shows the comparison between CLEVER and PINDEL.

24

3838

183

2521

Pindel
Platypus

3838

183

2521

Pindel
Platypus

(a) based on 50% overlap

3819

173

2528

Pindel

(k=10) Platypus

(k=10)

3819

173

2528

Pindel

(k=10) Platypus

(k=10)

(b) based on approximate similarity

6824 2071633

Clever
Platypus

6824 2071633

Clever
Platypus

(c) based on 50% overlap

6363 16061093

Clever

(k=60) Platypus

(k=10)

6363 16061093

Clever

(k=60) Platypus

(k=10)

(d) based on similarity

2900 2703

1

Breakdancer Platypus

2900 2703

1

Breakdancer Platypus

(e) based on 50% overlap

2851 2649

50

Breakdancer

(k=120)
Platypus

(k=10)

2851 2649

50

Breakdancer

(k=120)
Platypus

(k=10)

(f) based on similarity

Figure 11: Continuation of Figure 10.

25

