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Introduction

In natural sciences we frequently confront with open systems, i.e. systems which are influenced
by their surroundings through exchanges of energy and matters [38,68,122]. In physics, clas-
sical models for such systems are given by the so-called system-plus-reservoir, see e.g. [113].
These models describe the Hamiltonian dynamics of a test particle (system) moving in a
fluid (reservoir). The fluid is formed by a large number of particles, hence one can usu-
ally neglect the influence that the system has on it. Clearly, the system can be interpreted
both as the particle of a dilute gas or as a small part of the reservoir. In the latter case,
a full understanding of the problem provides an understanding of the fluid itself. Classical
examples of such models are the Rayleigh and Lorenz gas. They were originally proposed
by Lord Rayleigh in 1891, see [105], and H. A. Lorenz in 1905, see [93], respectively, to de-
scribe the motion of a pendulum in the presence of friction and the diffusion of conduction
electrons in metals, respectively. The subsequent century has seen a rapid grow of results
concerning these and related models, which found applications in many different fields such
as probability [3, 116], dynamical systems [115], statistical mechanics [30, 40], transport phe-
nomena [28,75] and so on. Particularly important are the applications in quantum mechanics,
where the so-called open quantum systems revealed to be essential in the study of the approach
to equilibrium [87,92], quantum decoherence [11–13] and more recently in nanosystems [110].
For an extensive overview of all these subjects we refer to [29,67,90,106,113].

In this thesis we consider a specific class of system-plus-reservoir models, so-called random
walks in random environments (RWREs). A RWRE describes the random walk (RW) of a
particle jumping in some (phase) space X according to a transition kernel which depends on
a random field on X, which we call random environment (RE). The study of these models has
started in the early 1970s motivated by some problems in biology [24, 119] and disordered
systems [41, 74]. Progressively, applications have spread out through different fields and
nowadays RWRE represents a wide and very active area of research. The main reason of
this rapid development lies in the fact that such models can differ drastically from ordinary
RWs and new interesting phenomena appear. We refer to [22,72] for an account of the history
of the subject and a review of classical results. In the rigorous study of RWRE models one
can distinguish two distinct situations depending if the RE is static or dynamic. In the
first case, the environment is randomly chosen at time zero and remains fixed throughout
all the time evolution. A mathematical analysis of such models was started in the ’70s
by Solomon [73, 112] and, at present, their behavior is fairly well understood even if some
questions still remain open, especially in high dimensions. We refer to [118, 125] for a recent
review of the topic. Contrarily, in RW in dynamic RE the environment changes over time
according to a (stationary) stochastic process. The first models of this type appeared more
recently in the ’90s, see [15,17], and in the last years they have been intensively studied under
different assumptions, see e.g. [6, 18,19,35,104,124].

All the models of RW in static and dynamic RE mentioned above are defined on a lattice,
namely one takes X = Zd for some d ≥ 1. Another possibility that has been analyzed in
several papers concerns RWs evolving on some random graph, see e.g. [9, 101, 117]. In this
work we concentrate on models of RWs in dynamic REs on Rd, d ≥ 1. Such models are not
so widely studied in the literature. They were introduced for the first time in [16], where the
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authors considered the RW of a particle moving in Rd and interacting with a RE represented
by a stationary Glauber-type dynamics in Rd (see e.g. [82]). In particular, assuming a low
activity-high temperature regime for the Glauber dynamics and small coupling between the
tagged particle and the environment, they obtained the large time asymptotic for the particle
position distribution. Here, we want to study the complementary situation where the RE is
described by a non-equilibrium Markov process and the interaction between the particle and
the environment is not necessarily weak. It is worth noting that in these two cases not much
is known even on lattice, see e.g. [4, 26,36,37] for some results in this direction.

More concretely, we consider the RW of a tagged particle moving in Rd according to a
jump process and interacting with a RE formed by infinitely many identical particles. The
evolution of these particles is described by some non-equilibrium Markov dynamics in Rd,
which can be a birth-and-death dynamics or the dynamics of jumping particles, see some
examples in [60]. We assume that each particle of the model is completely characterized by
its position in the space. Moreover, having in mind that any element has a physical size, we
impose that in any bounded region there are only a finite number of particles of RE and, at
the same time, we forbid them to occupy the same position in the space. As a consequence,
the phase space of the model is given by Γ(Rd)×Rd, where Γ(Rd) is the space of locally finite
configurations over Rd, see e.g. [1,2,77]. Any (microscopic) state of the system is represented
by the pair (γ, y), where y ∈ Rd identifies the position of the tagged particle, and γ ∈ Γ(Rd)
is the configuration formed by all particles of the environment. On a microscopic level the
dynamic of the RWRE is described by a heuristic Markov generator L acting on a proper
space of functions on Γ(Rd)× Rd. This generator can be written as

L := LRE + LRW (γ), (1)

where the operator LRE defines the Markov dynamics of the particles of RE, see [60], and
LRW (γ) describes the RW of the tagged particle. The latter depends on the configuration
of particles of the RE, γ ∈ Γ(Rd), due to some interaction of the tagged particle with the
RE. This interaction is represented by a non-negative function λint(γ, y, z) which modulates
the density rate of a jump from a point y ∈ Rd to z ∈ Rd. These models of RWREs can
be considered as a stochastic version of the Rayleigh and Lorenz gases mentioned previously.
They are inspired, in particular, by ecological systems: one can interpret them as a prey (RW)
running away from a group of predators (RE) or as a predator (RW) moving in a group of
prey (RE) depending on the form of λint, see e.g [25] and reference therein.

The essential problem in the study of the models of RWRE introduced above is that,
contrary to the lattice case, the construction of a spatial Markov process in Rd, describing
the (non-equilibrium) stochastic evolution of RE,

Γ
Ä
Rd
ä
3 γ 7→ Xγ

t ∈ Γ
Ä
Rd
ä
, t > 0,

is a difficult question which is not completely solved, in general, at present, see e.g. [65, 100].
Let us note that for systems on a lattice and systems in continuum with a finite number of
particles this construction can be done for a wide class of systems, see e.g. [64, 91]. On the
other hand, as it is well known in statistical mechanics [71], such a microscopic description
of the dynamics is often too detailed to be really useful in concrete applications. Indeed,
in the real-world systems the number of particles is so huge that, typically, we are not able
to follow the trajectories of each them, but one can take into account just the statistical
characteristics of the evolution. This leads to a statistical description of complex systems, see
e.g. [55, 60, 62]. In such an approach, we study the evolution of states in the course of the
(microscopic) stochastic evolution of RWRE. From the mathematical point of view a state
corresponds to a measure µ(dγ, dy) on Γ(Rd) × Rd. Heuristically, the evolution of a state is
given by the Kolmogorov (or Fokker-Planck) equation

∂

∂t
µt = (L∗RE + L∗RW )µt, t ≥ 0, (2)
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where L∗ := L∗RE + L∗RW is the adjoint operator of L w.r.t. to the pairing between functions
and measures on Γ(Rd) × Rd. Following the approach of statistical mechanics, in order to
study (2) we reformulate the evolution of states in terms of the corresponding correlation
functions k(n)

t (x1, . . . , xn, y) on (Rd)n × Rd, n ≥ 0. As a result, the Markov dynamics of
RWRE is described in terms of the hierarchy for correlation functions

∂

∂t
kt =

Ä
L̂∗RE + L̂∗RW

ä
kt, t ≥ 0, (3)

where L̂∗ := L̂∗RE + L̂∗RW is the corresponding image of the operator L∗ acting on sequences of
functions kt = {k(n)

t (x1, . . . , xn, y)}∞n=0. Equation (3) can be considered as a chain of infinite
equations for k(n)

t , which is an analog of the BBGKY hierarchy for Hamiltonian systems, see
e.g. [34]. The correlation functions {k(n)

t }∞n=0 contain all the statistical quantities related to
the evolution of RWRE, cf. [71,109], and they play a key role in our analysis. In recent years
this statistical approach has been successfully applied to study the non-equilibrium stochastic
dynamics of many interacting particle systems in the continuum, see [10,45,49,58,81,84] and
references therein.

As in all hierarchical equations, we can attempt to study the existence and uniqueness
of solutions to (3). However, in general, one cannot expect to obtain an explicit form of the
solution or, at least, some information about its behavior. On the other hand, from kinetic
theory we know that the dynamics of many-body systems (system-plus-environment models
included) can be approximated through kinetic equations. The latter are differential equa-
tions of first-order in time which describe the evolution of the density (first-order correlation
function) of particles distributions, see e.g. [5,67,113] for an account of the field. The kinetic
equations can be easily guessed by truncating the BBGKY hierarchy at the first-order, see
e.g [71]. In many cases, this approximation gives a fairly good understanding of the underlying
microscopic dynamics. One of the central problems in non-equilibrium statistical mechanics is
to understand the approximate validity of these kinetic equations. From a mathematical point
of view this is translated in finding a scaling limit leading to the kinetic equations starting
from a microscopic model. Such limits have been the object of several studies from physicists,
mathematicians and ecologists. We refer to [76, 95, 103, 114] for a review of rigorous results
both for Hamiltonian dynamics and interacting particle systems.

In this thesis we focus on the mesoscopic limits, in particular, we will study a Vlasov-type
limit [113]. In physics, the corresponding Vlasov equation describes the Hamiltonian motion
of a system of infinitely many particles in the mean-field limit, namely taking into account the
influence of weak and long-range interactions, see e.g. [113]. This equation was first suggested
by A. A. Vlasov in the physics of plasmas, see [121]. The convergence of the Vlasov-type
scaling limit was shown by W. Braun and K. Hepp [23], for the Hamiltonian systems, and
later by R. L. Dobrushin [33], for general dynamical systems. Note that these two approaches
cannot be applied to the model of RWREs considered here. The main reason is that, as
already discussed above, we are not able to define the evolution of the particles in terms of
a proper stochastic equation. Another problem is related to the possible variation of particle
number in the RE during the evolution. As observed in [113], for Hamiltonian systems the
correct Vlasov-type limit can be easily guessed from the BBGKY hierarchy. In [8], by a low
density scaling limit of the evolution of correlation functions, the authors derive (point-wisely)
a kinetic equation for systems of random number of particles with collision, fragmentation
and coagulation both in Rd and Zd. More recently, in [51] a general scheme to derive the
Vlasov equation for Markov evolutions of infinite particle systems in continuum has been
developed. This scheme, and in particular the convergence of the scaling limit, has been
rigorously analyzed in different models: birth-and-death dynamics [45, 52, 54, 56–58, 61] and
jumping particle systems [10,43].

We use the scheme proposed in [51] to derive a mesoscopic limit for the stochastic dynamics
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of RWREs. The basic idea is to rescale, by means of a parameter ε > 0, the generator L̂∗,
making the interaction among all particles weak and the density of RE appropriately high.
The result will be a renormalized operator, L̂4ε,ren := L̂4RE,ε,ren + L̂4RW,ε,ren, which describes the
rescaled evolution of the correlation functions. By means of the considered scaling we arrive
to a limiting Vlasov hierarchy of the form

∂

∂t
kt =

Ä
L4RE,V + L4RW,V

ä
kt, t ≥ 0, (4)

where the operator L4V := L4RE,V + L4RW,V is the point-wise limit of L̂4ε,ren as ε goes to zero.
It is worth noting that we do not need to define a reduced dynamics of the tagged particle,
see e.g. [113]. As consequence of this fact, in the mesoscopic limit we obtain a system of two
kinetic equations, so-called Vlasov equations, for the densities of RE and of the tagged particle,
ρt, rt : Rd → R, t ≥ 0, respectively. Due to the special structure of the operator L, the kinetic
equation for the density of RE, ρt, is independent, while the equation for the density of the
jumping particle, rt, depends on the solution of the previous one. In this approach, the kinetic
equations follow from the chaos preservation property of the Vlasov hierarchy (4). The latter
implies that uncorrelated states, k(n)

t (x1, . . . , xn, y) =
∏n
i=1 ρt(xi)rt(y), t ≥ 0, are preserved

in the course of the limiting evolution. The Vlasov equations turn out to describe a non-
autonomous RW whose transition kernel is modulated by a function λt(y, z), y, z ∈ Rd, which
depends on the density of particle in RE ρt, t ≥ 0. The function λt is an effective interaction
in the mean-field theory which describes the "mean effect" that the original interaction λint
has on the RW of the tagged particle.

Outline of the thesis

In this thesis we present a rigorous analysis of several models of RWREs according to the
statistical approach described above. More precisely, we realize the following program:

(1) we construct the evolution of correlation functions as the solution to hierarchy (3);

(2) we use the Vlasov-type scaling to derive the mesoscopic evolution of the correlation
functions. In particular, we prove that the rescaled evolution of correlation functions
converges to the solution of the limiting hierarchy (4);

(3) we show that Vlasov hierarchy (4) satisfies the chaos preservation property and derive
the corresponding kinetic equations;

(4) we prove the existence, uniqueness and some uniform bounds for the solutions to the
Vlasov equations.

Clearly, the space where we study the evolution of correlation functions depends on the
applications one has in mind. For interacting particle systems, it is rather natural to consider
correlation functions which satisfy the so-called Ruelle bounds, see e.g. [107,108]. In our case,
this bound implies that for some C > 0∣∣∣k(n)

t (x1, . . . , xn, y)
∣∣∣ ≤M (y)Cn, x1, . . . , xn, y ∈ Rd, n ∈ N. (5)

Here, we distinguish two different situations depending whether the functionM(·) is bounded
on Rd or integrable over the whole Rd. We denote by K∞C and K1

C , respectively, the corre-
sponding (Banach) spaces of sequences of functions {k(n)

t }∞n=0 (cf. (2.31) and (2.32)). Note
that the analysis of existence problems in such spaces is quite non-trivial and requires deep
techniques in infinite dimensional analysis. In recent years different methods to address these
problems have been developed, see e.g. [45,48,54,61], which we may also apply in the present
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context. The Vlasov equations, instead, will be studied for measurable non-negative func-
tions ρt(x) ≤ C, a.a. x ∈ Rd, and rt ∈ Lq(Rd), with q = ∞, 1 depending on the class of
functions M, cf. (5), we consider. Such solutions can be obtained by using the standard
theory of first-order differential equations in Banach spaces, see e.g. [69, 85]. These results
should be considered as a preliminary step for a future study of the properties of these kinetic
equations. In our analysis, we consider different classes of REs, in particular birth-and-death
processes, see e.g. [45, 50, 54, 57, 82], and jumping particle systems, see e.g [10, 43], and we
provide general conditions that the interaction λint should fulfill. Such conditions are satisfied
in many specific situations, including also possibly unbounded interactions. Roughly speak-
ing, we can consider functions λint which grow at most linearly with the number of particles
of RE, namely λint(γ, ·, ·) ≤ α0 + α1|γ| whenever |γ| < ∞, where | · | denotes the number of
points (cardinality) of a configuration. For the sake of clarity, some of these models will be
discussed in details and others will be just mentioned briefly through the work.

The thesis is organized as follows.
In Chapter 1 we introduce a general framework to describe models formed by one par-

ticle which interacts with an infinite particle system. For such models, we consider two
different spaces: the phase space Γ(Rd)× Rd and the additional product space Γ0(Rd)× Rd,
where Γ0(Rd) is the space of all finite configurations over Rd. Section 1.1 is devoted to a
description of these spaces. More precisely, we review the harmonic analysis on configura-
tions spaces developed in [77] in the considered product spaces. This analysis is based on
the so-called K-transform. The latter defines a mapping between functions on Γ0(Rd) × Rd
(quasi-observables) and functions on Γ(Rd) × Rd (observables), see Section 1.1.2. In Sec-
tion 1.2 we study measures (states) on the phase space. In particular, using the K-transform
we define the concept of correlation functions associated to a given state, see Definition 1.30.
The sequence of correlation functions {k(n)}∞n=0 can be represented as a function k(η, y) on
Γ0(Rd)×Rd. This representation allows us to establish a duality between correlation functions
and quasi-observables, see Remark 1.49 and (2.24).

In Chapter 2 we describe the evolution of RWREs on the three different levels: microscopic,
statistical and mesoscopic. We consider the case where the particles of RE evolve according
to a birth-and-death dynamics or to a jumping stochastic dynamics. In Section 2.1 we give
a detailed description of the Markov pre-generator L. We state minimal conditions on the
parameters of the models and provide some concrete examples for the interaction λint. In
Section 2.2, we determine the explicit form of the hierarchy for correlation functions (3). This
is done in two steps. First, in Section 2.2.1 we calculate the image of the operator L under the
K-transform, i.e. L̂ := K−1LK, which describes the evolution for quasi-observables. Then,
the operator L̂∗ is obtained by using the duality between quasi-observables and correlation
functions, see Section 2.2.2. Afterwards, in Section 2.3 we give a general description of
the Vlasov-type scaling proposed in [51] for the considered models of RWREs. An explicit
realization of such a mesoscopic limit is done in Section 2.3.1. We state general conditions on
the parameter of the model in order to derive the Vlasov equations of a RW moving in RE
under a general interaction λint, cf. Lemma 2.25. This derivation is informal, in the sense
that the limit is performed on the forms of the hierarchies rather than on their solutions.
To conclude, in Section 2.3.2 we present a list of kinetic equations for different examples of
interaction.

In the remaining three chapters we proceed with a rigorous study of some concrete models
of RWREs.

In Chapter 3 we consider the case where the particles of RE evolve according to a birth-
and-death dynamics. The evolution of correlation functions is constructed in Section 3.1. In
particular, we provide sufficient conditions on the birth and death intensities as well as on λint
for the existence of a strongly continuous semigroup with generator L̂∗ on a proper subspace
of K∞C , see Theorem 3.8. In order to show this result we adapt the approach developed
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in [54]. The idea is to use the duality (2.24) and consider the pre-dual evolution for quasi-
observables in some pre-dual L1-space, see Theorem 3.3. In Section 3.2 we study the Vlasov-
type scaling limit. In Section 3.2.1 we show a weak*-convergence of the rescaled evolution of
correlation functions to the solution of the Vlasov hierarchy (4) in terms of the corresponding
semigroup in K∞C . Namely, we prove the strong convergence of the pre-dual semigroups in
the space of quasi-observables, see Theorem 3.35. The latter follows from a general result
about the strong convergence of resolvent operators in Banach spaces, see Lemma 3.19 or
also [54, Lemma 4.3]. Next, in Section 3.2.2 we study the solutions to the resulting system
of Vlasov equations, see (3.124a)-(3.124b). For a birth-and-death dynamics it is natural to
assume that the corresponding Vlasov equation (3.124a) has a non-negative and uniformly
bounded solution, see e.g. [48, 57, 82]. Under these conditions in Theorem 3.41 we show
that the kinetic equation of the RW (3.124b) also has a unique, non-negative and uniformly
bounded solution. The general results obtained throughout this chapter are discussed for
different interactions λint in the particular case of a RW moving in BDLP model of RE, see
Section 3.1.3 and 3.2.3. The BDLP model is an individual based model in spatial ecology
introduced by B. Bolker and S. Pacala [20, 21], U. Dieckmann and R. Law [31] to describe
the competition among plants. The evolution of correlation functions and the Vlasov-type
scaling for such a model have been studied in [50] and [56], respectively.

In Chapter 4 we consider the model of RW moving in a birth-and-death environment with
a constant birth rate and a death rate inverse proportional to the number of particles in RE.
This particular birth-and-death dynamics has been proposed in [45] and one can easily see
that the smigroup techniques of the previous chapter cannot be applied. In Section 4.1, we
study the evolution (3) in the scale of Banach spaces {K1

C : 0 < C ≤ C0}. Under some general
conditions on the interaction λint, in Theorem 4.3 we show that (3) has a unique solution on
a proper space of the scale, but on a finite time interval. The proof of this result is given in
Section 4.1.1 and it is carried out by using an Ovsjannikov-type result given in Theorem 4.2
and proved thoroughly in Appendix A. The assumptions on λint are verified for a number of
particular examples in Section 4.1.2. Section 4.2 is devoted to the study of the Vlasov-type
scaling. In Section 4.2.1, by using an Ovsjannikov-type result for families of initial value
problems on a scale of Banach spaces, see Theorem 4.9 or [45, Theorem 3.3], we show that the
rescaled evolution for correlation function converges to the solution to the Vlasov hierarchy (4)
on a finite time interval. The precise result is stated in Theorem 4.17. The corresponding
system of kinetic equations, see (4.76a)-(4.76b), is studied in Section 4.2.2. In Theorem 4.22
we show that, if the initial density of RE is small enough, the Vlasov equations have unique,
non-negative and uniformly bounded solutions for any time interval. Moreover, if the initial
density of RW is integrable on Rd then it remains integrable in the course of the evolution.
Note that the restriction on the initial density of RE prevents any type of aggregation in
the environment, see [45]. These results will be also discussed for concrete forms of λint in
Section 4.2.3.

Finally, in Chapter 5 we consider the model of a RW interacting with a jumping particle
system which evolves according to a Kawasaki dynamics, see e.g. [43]. For this model, we do
not study the statistical evolution in terms of correlation functions, but we reformulate the
problem in terms of the corresponding Bogoliubov generating functionals, see e.g. [8,14,63,79].
The analysis of the model will be performed for the concrete interactions λint = λ(1) and
λint = λ(2) introduced in Section 2.1. In Section 5.1 we define and characterize the generating
functionals for a RWRE. To any finite measure µ(γ, y) on Γ(Rd) × Rd we may associate a
Bogoliubov functional Zµ(θ, ψ) on L1(Rd)×L∞(Rd) according to Definition 5.1. In particular,
we consider functionals which are entire and of bounded type. Under these assumptions, we
can recover the notion of correlation functions introduced in Chapter 1, see Proposition 5.7.
The latter specifies the connection between the Bogoliubov functional Zµ and the correlation
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functions kµ associated to a state µ (cf. (5.23)),

B (θ, y) :=
δZµ (θ, ψ)

δψ (y)
=

ˆ
Γ0

dλ (η)
∏
x∈η

θ (x) kµ (η, y) , θ ∈ L1(Rd), y ∈ Rd. (6)

In Section 5.2 we construct the statistical evolution of the considered models. Using the
identity above, we rewrite the hierarchy for correlation functions (3) as an evolution equation
for the generating functionals Bt of the form

∂

∂t
Bt =

Ä
L̃′RE + L̃′RW

ä
Bt, t ≥ 0. (7)

The expression of operators L̃′RE and L̃′RW is given by (5.40) and (5.41), respectively. Let
Eα, α > 0, be the (Banach) space of all functionals Bt associated with correlation functions
kt ∈ K1

1/α via (6) (cf. Definition 5.14). In Section 5.2.1 we study the solutions to (5.37)
in Eα. In particular, in Theorem 5.19 and 5.21 we show an existence and uniqueness result
in the case where the interaction λint is given by λ(1) and λ(2), respectively. The analysis
is carried out by using the Ovsjannikov-type Theorem 4.2 in the scale of Banach spaces
{Eα : 0 < α ≤ α0} leading to local in time solutions. In Section 5.2.2, we reformulate the
Vlasov-type scaling in terms of the Bogoliubov functionals. As a result, we obtain a limiting
evolution equation for the generating functionals Bt, which has also a chaos preservation
property, cf. Lemma 5.27. The convergence of the rescaled evolution of generating functionals
to their limiting evolution can be proved (on a finite time interval) by using Theorem 4.9. In
Theorem 5.32 and 5.37 we show this convergence for the interactions λ(1) and λ(2), respectively,
and derive the corresponding systems of Vlasov equations. Existence, uniqueness and uniform
bounds of solutions to these two systems of kinetic equations can be proved by using a general
result stated in Lemma 4.21, see Theorem 5.33 and 5.38, respectively.

In Appendix A which we give a detailed proof of Theorem 4.2 we use in Chapter 4 and 5.
The latter is a slight generalization of the classical Ovsjannikov Theorem, see e.g. [44,98,120].





Chapter 1

One-particle system in a random environment

In this chapter we describe a mathematical framework for the study of the stochastic dynamics
of a one-particle system in a random environment. In our case, the environment is represented
by an interacting particle system consisting of an infinite number of identical particles. All
particles of the composed model, i.e. system plus environment, are allowed to move in the
space Rd and each of them is completely identified by its position in the space.

In Section 1.1, we introduce the phase space of the model, describing its general structure
and the main properties. Any (microscopic) state is represented by the position of the tagged
particle and the configuration formed by all particles of the environment. Then, in order to
arrive to a more convenient statistical description of the model, in Section 1.2 we introduce
statistical states as measures on the phase space. Moreover, we will define the concept of
correlation functions, which will be the main object of investigation in the (non-equilibrium)
dynamics of our models.

1.1 Phase space of the model

Let us proceed to the mathematical realization of a complex systems formed by a particle
interacting with an environment. In this context, environment refers to a system of infinitely
many particles, identical to each other.

We assume that all particles of the complex system can move in the space Rd and each
of them can be characterized by its position in the space. Moreover, we impose that in any
bounded region there are only a finite number of particles of the environment and, at the same
time, we forbid them to occupy the same position in the space. Thus, as suggested in [60,62],
in an abstract mathematical context we may conveniently describe the tagged-particle as a
point in Rd and the environment as a discrete set (configuration) of the underlying physical
space. This leads to the following definition.

Definition 1.1. We consider as the phase space of the model the product space

Γ̃(Rd) := Γ(Rd)× Rd, (1.1)

where Γ(Rd) denote the space of locally finite configurations over Rd, namely

Γ(Rd) := Γ =
¶
γ ⊂ Rd : |γΛ| := |γ ∩ Λ| <∞ for all Λ ∈ Bb(Rd)

©
. (1.2)

Here | · | means the cardinality of a set and Bb(Rd) denotes the collection of all bounded sets
from the family B(Rd) consisting of all Borel sets in Rd.

The phase space contains all possible microscopic states of the model. Any microscopic
state is given by a pair (γ, y) ∈ Γ̃(Rd), where y ∈ Rd corresponds to the position of the
jumping particle, whereas γ ∈ Γ(Rd) is the configuration of points identified by the position
of all the particles of the environment.
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Configuration space (1.2) has been intensively studied in the last decades, see [1,2,77,78,
80, 86]. The space (1.1) can be considered as a special case of two components configuration
spaces [62], the aim of this section is to extend the theory of configuration spaces Γ to the
phase space Γ̃. In the following, with a small abuse of notation, we keep the same notation
commonly used in configuration space analysis.

Any configuration γ ∈ Γ(Rd) can be identified with a non-negative Random measure

Γ 3 γ 7→
∑
x∈γ

δx ∈M(Rd),

where δx is the Dirac measure with unit mass in x andM(Rd) denotes the space of all non-
negative Radon measures on B(Rd). By definition

∑
x∈∅ δx indicates the zero measure. This

embedding allows us to endow the configuration space Γ(Rd) with the topology induced by
the vague topology onM(Rd), i.e. the weakest topology with respect to which all mappings

Γ 3 γ 7→ 〈γ, f〉 :=

ˆ
Rd
f (x) dγ(x) =

∑
x∈γ

f (x) ,

are continuous for any f ∈ Cbs(Rd), where Cbs(Rd) is the set of all continuous functions on
Rd with bounded support. We denote by B(Γ) the corresponding Borel σ-algebra on Γ(Rd).

Remark 1.2. Independently of the topological structure of Γ(Rd), the Borel σ-algebra B(Γ)
can be characterized as the smallest σ-algebra on Γ(Rd) for which all mappings

Γ 3 γ 7→ NΛ(γ) := |γΛ| ∈ N0

are measurable for any Λ ∈ Bb(Rd), namely

B (Γ) = σ
Ä
{NΛ : Λ ∈ Bb(Rd)}

ä
.

See [77] for further details.

Remark 1.3. We can give a different description of the measurable space (Γ(Rd),B(Γ)),
which will be useful later on in order to introduce a measure on this space. For any set
Λ ∈ B(Rd), let us define the space of configurations contained in Λ given by

Γ (Λ) :=
{
γ ∈ Γ(Rd) :

∣∣∣γ ∩ (Rd \ Λ)
∣∣∣ = 0

}
.

On this space we can introduce a Borel σ-algebra B(Γ(Λ)) as in Remark 1.2, namely

B (Γ(Λ)) := σ
Ä
{NΛ′ �Γ(Λ): Λ′ ∈ Bb (Λ)}

ä
.

Let us consider the measurable projection pΛ defined by

Γ(Rd) 3 γ 7→ pΛ (γ) := γ ∩ Λ ∈ Γ (Λ) . (1.3)

It can be shown, see e.g. [111], that the space (Γ,B(Γ)) coincides (up to an isomorphism)
with the projective limit of the family of measurable spaces

{Γ(Λ),B(Γ(Λ)) | Λ ∈ Bb(Rd)},

with respect to the projections pΛ. In particular, B(Γ) coincides with the smallest σ-algebra
for which all the projections (1.3) are measurable, namely

B (Γ) = σ
Ä
{pΛ : Λ ∈ Bb(Rd)}

ä
.

Furthermore, we can introduce a filtration of Γ(Rd) given by

BΛ

Ä
Γ(Rd)

ä
:= σ

Ä
{NΛ′ : Λ′ ∈ Bb(Rd),Λ′ ⊂ Λ}

ä
.

Note that the σ-algebras B (Γ(Λ)) and BΛ (Γ) are isomorphic, see e.g. [77].
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As a result, we can equip the phase space Γ̃(Rd) with the topology induced by the
product topological spaces Γ(Rd) × Rd and with the corresponding Borel σ-algebra, namely
B(Γ̃) := B(Γ)⊗ B(Rd). It is worth noting that this topology may be metrizable in such a way
that Γ̃ becomes a Polish space, see e.g. [80] and reference therein.

Functions on the phase space Γ̃(Rd) are called observables. This notion is borrowed from
physics and it represents physical quantities which can be measured in course of empirical
investigations. We denote by L0(Γ̃,B(Γ̃)) the space consisting of all B(Γ̃)-measurable functions
F : Γ × Rd → R ∪ {∞} such that |F (γ, y)| < ∞ whenever |γ| < ∞. In particular, a
function F ∈ L0(Γ̃,B(Γ̃)) is called a cylinder function if it is also measurable with respect to
BΛ(Γ)⊗ B(Rd) for some Λ ∈ Bb(Γ), namely if

F (γ, y) = F �Γ(Λ)×Rd (γΛ, y) , for any γ ∈ Γ(Rd) and y ∈ Rd.

The class of cylinder functions is denoted by Fcyl(Γ̃).
Let us introduce a subset of the phase space which contains only configurations of the

environment with a finite number of particles.

Definition 1.4. We define the product space

Γ̃0(Rd) := Γ0(Rd)× Rd, (1.4)

where Γ0(Rd) denote the space of finite configurations over Rd, namely

Γ0(Rd) := Γ0 :=
¶
η ∈ Γ(Rd) : |η| <∞

©
. (1.5)

Remark 1.5. The space of finite configurations Γ0(Rd) can be represented as a disjoint union
of the spaces of n-point configurations Γ(n)(Rd), namely

Γ0(Rd) =
∞⊔
n=0

Γ(n)(Rd), (1.6)

where for any n ∈ N
Γ(n)(Rd) :=

¶
η ∈ Γ(Rd) : |η| = n

©
(1.7)

and Γ(0)(Rd) := {∅}.

In order to introduce a topological structure on the space Γ0(Rd), it is convenient to use
the representation (1.6). The n-point configuration space Γ(n)(Rd) can be easily constructed
starting from the real space (Rd)n. More precisely, for any n ∈ N we can introduce a surjective
mapping between the space‡(Rd)n := {(x1, . . . , xn) : xi 6= xj if i 6= j} (1.8)

and the n-point configuration space Γ(n)(Rd), defined as the symmetrization map

symn
Rd : ‡(Rd)n → Γ(n)(Rd)

(x1, . . . , xn) 7→ {x1, . . . , xn} .
(1.9)

Clearly, the mapping (1.9) produces a one-to-one correspondence between Γ(n)(Rd) and the
symmetrized space ‡(Rd)n/Sn1. Thus, we can use this bijection to induces a metrizable topol-
ogy on Γ(n)(Rd) and, thereafter, we endow Γ0(Rd) with the topology of disjoint union of
topological spaces. We denote by B(Γ(n)) and B(Γ0) the corresponding Borel σ-algebras on
Γ(n)(Rd) and Γ0(Rd), respectively. As a consequence, we can equip the space Γ̃0(Rd) with the
topology induced by the product topological spaces Γ0(Rd)×Rd and with the corresponding
Borel σ-algebra, namely B(Γ̃0) := B(Γ0)⊗ B(Rd).

1The symmetrization of the space fl(Rd)n is given by fl(Rd)n/Sn where Sn is the permutation group over the
coordinate index {1, . . . , n}.
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Remark 1.6. It is worth noting that, from a topological point of view, the space Γ0(Rd)×Rd
cannot be considered a subset of the phase space Γ(Rd) × Rd. Indeed, the topology induced
on Γ0 by the vague topology on Γ does not coincide with the topology we have defined on
the space of finite configurations. From our point of view the space Γ0(Rd) × Rd should be
considered as complementary mathematical object of the physical space Γ(Rd)× Rd.

Functions on the space Γ̃0 are called quasi-observables. They are not observables them-
selves, but they can be used to construct observables, see Section 1.1.2. Let L0(Γ̃0,B(Γ̃0)) be
the space of all B(Γ̃0)-measurable functions G : Γ0×Rd → R. We denote by L0

ls(Γ̃0) the set of
all measurable functions on Γ̃0 with local support on Γ0. Namely G ∈ L0

ls(Γ̃0) iff G ∈ L0(Γ̃0)
and there exists a set Λ ∈ Bb(Rd) such that

G (η, y) �(Γ0\Γ(Λ))×Rd= 0, for any η ∈ Γ0(Rd) and y ∈ Rd.

A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N such that

M ⊂
N⊔
n=0

Γ(n) (Λ) .

Let Bb(Γ0) be the collection of all bounded sets in Γ0. We will also consider the set Bbs(Γ̃0)
formed by all bounded measurable functions which have a bounded support on Γ0. The latter
means that there exists a bounded set M ∈ Bb(Γ0) such that

G (η, y) �(Γ0\M)×Rd= 0, for any η ∈ Γ0(Rd) and y ∈ Rd.

Remark 1.7. Let us consider quasi-observables G : Γ0 × Rd → R. Having in mind the
representation given by (1.6)-(1.7), for any n ∈ N0 the restriction G(·; y) �Γ(n)×Rd can be
written as

G (η; y) �Γ(n)×Rd= g̃(n)(x1, . . . , xn; y), for any η = {x1, . . . , xn} ∈ Γ(n), y ∈ Rd,

where g̃(n) : ‡(Rd)n×Rd → R is a measurable function symmetric under permutations of points
in ‡(Rd)n. Moreover, the function g̃(n) we can extend it to all space (Rd)n × Rd, namely one
can define the measurable function g(n) : (Rd)n × Rd → R

g(n) (x1, . . . , xn, y) =

{
g̃(n)(x1, . . . , xn; y), if (x1, . . . , xn) ∈‡(Rd)n,
0, otherwise.

(1.10)

As consequence, any quasi-observables on Γ0×Rd can be represented as a sequence of functions
of increasing number of variables (1.10), namely¶

g(n)(x1, . . . , xn, y)
©∞
n=0

.

For any n ∈ N0, we denote by L0
symn((Rd)n×Rd) the space of all functions of the form (1.10).

In the following subsections, we continue the analysis of the mathematical structure of the
spaces introduced above. In particular, we consider and adapt to our case some important
notions well-known in the theory of configuration spaces.
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1.1.1 The phase space as a measure space

In this section we want to define the phase spaces Γ̃(Rd) and Γ̃0(Rd) as measure spaces.
For this purpose we need to introduce a measure on the measurable spaces (Γ̃,B(Γ̃)) and
(Γ̃0,B(Γ̃0)).

We start for convenience with the space (Γ̃0,B(Γ̃0)). On the space of finite configurations
(Γ0,B(Γ0)), we can introduce a measure by using the construction described in formulas (1.5)-
(1.9), see [77] for details. More precisely, let σ be a non-degenerate and non-atomic Radon
measure on the space (Rd,B(Rd)), for example, the Lebesgue measure on Rd. For each n ∈ N
we denote by σ⊗n the product measure on ((Rd)n,B((Rd)n)). Since the measure σ is non-
atomic it follows that σ⊗n((Rd)n \‡(Rd)n) = 0. Then, one can consider the restriction of the
measure σ⊗n to the space (‡(Rd)n,B(‡(Rd)n)) and use the mapping (1.9) to define a measure,
denoted by σ(n), on the space on n-point configurations (Γ(n)(Rd),B(Γ(n)(Rd))) as

σ(n) := σ⊗n ◦
(
symn

Rd
)−1 , n ∈ N, (1.11)

where the r.h.s. denotes the image, or push-forward, measure under the mapping symn
Rd . For

n = 0 we put σ(0) := 1. Finally, we can use representation (1.6) to define a measure on the
space (Γ0,B(Γ0)) as sum of the measures (1.11).

Definition 1.8. On the measurable space (Γ0×Rd,B(Γ0)⊗B(Rd)) we can define the product
measure

λ̃σ = λσ ⊗ dy, (1.12)

where λσ is the Lebesgue-Poisson measure with intensity σ on the space (Γ0,B(Γ0)), defined
by

λσ :=
∞∑
n=0

1

n!
σ(n). (1.13)

Moreover, the triplet (Γ̃0,B(Γ̃0), λ̃σ) define a measure space.

Remark 1.9.

(i) The measure space (Γ0,B(Γ0), λσ) is called the Lebesgue-Poisson space.

(ii) In the case that dσ(x) = dx, x ∈ Rd, we denote the Lebesgue-Poisson measure λσ by λ.

Next, let us consider the phase space (Γ̃,B(Γ̃)). On the configuration space (Γ,B(Γ))
one can introduce the Poisson measure as a projective limit of the normalized finite-volume
distributions of the Lebesgue-Poisson measure λσ, see Remark 1.3 and [77]. More precisely,
given a Λ ∈ Bb(Rd) let us consider the restriction of the Lebesgue-Poisson measure λσ on the
space (Γ(Λ),Bb(Γ(Λ))), namely

λσ�Γ(Λ)
=
∞∑
n=0

1

n!
σ

(n)
Λ , σ

(n)
Λ := σ⊗n ◦ (symn

Λ)−1 , σ
(0)
Λ ≡ 1.

Note that, since σ is a Radon measure, the measure λσ�Γ(Λ)
is finite with total mass

λσ�Γ(Λ)
(Γ(Λ)) = λσ (Γ(Λ)) = eσ(Λ).

Thus, one can define a probability measure on (Γ(Λ),Bb(Γ(Λ))) given by

πΛ
σ = e−σ(Λ)λσ�Γ(Λ)

. (1.14)

The family of probability measures {πΛ
σ : Λ ∈ Bb(Rd)} is consistent, namely

∀Λ1,Λ2 ∈ Bb(Rd) : Λ1 ⊂ Λ2, πΛ2
σ ◦ (pΛ2,Λ1)−1 = πΛ1

σ ,
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where, according to the notation (1.11), πΛ2
σ ◦ (pΛ2,Λ1)−1 is the image measure under the the

projections pΛ2,Λ1 defined as (compare to (1.3))

Γ (Λ2) 3 γ 7→ pΛ2,Λ1 (γ) := γ ∩ Λ1 ∈ Γ (Λ1) . (1.15)

Hence, by the Kolmogorov theorem for the projective limit spaces, see [99, Theorem 5.1], the
family {πΛ

σ : Λ ∈ Bb(Rd)} determines a unique probability measure πσ on the configuration
space (Γ,B(Γ)) such that

∀Λ ∈ Bb (Λ) , πΛ
σ = πσ ◦ (pΛ)−1 ,

where πσ ◦ (pΛ)−1 is the image measure under the projection (1.3).

Definition 1.10. On the measurable space (Γ×Rd,B(Γ)⊗B(Rd)) we can define the product
measure

π̃σ = πσ ⊗ dy, (1.16)

where the probability measure πσ is called the Poisson measure with intensity σ. Moreover,
the triplet (Γ̃,B(Γ̃), π̃σ) define a measure space.

Remark 1.11. The probability space (Γ,B(Γ), πσ) is called the Poisson space.

Let us now present some important results concerning the Poisson-Lebesgue measure (1.8)
which will be used later on. We refer to [97] for their proofs.

Lemma 1.12. Let n ∈ N, n ≥ 2 be given. Then
ˆ

Γ0

dλσ (η1) . . .

ˆ
Γ0

dλσ (ηn)G (η1 ∪ · · · ∪ ηn, y)H (η1, . . . , ηn, y)

=

ˆ
Γ0

dλσ (η)G (η, y)
∑

(η1,...,ηn)∈Pn(η)

H (η1, . . . , ηn, y) , (1.17)

for all positive measurable functions G : Γ0 × Rd → R and H : (Γ0)n × Rd → R with respect
to which both sides make sense.

Let us note that for n = 2, Lemma 1.12 coincides with the well-known Minlos formula,
see e.g. [83], which will play an important role in further calculations.

Corollary 1.13. For all measurable positive functions G : Γ0×Rd → R, H : (Γ0)2 × Rd → R
one hasˆ

Γ0

dλσ (η)G (η, y)
∑
ξ⊂η

H (ξ, η \ ξ, y) =

ˆ
Γ0

dλσ (η)

ˆ
Γ0

dλσ (ξ)G (η ∪ ξ, y)H (ξ, η, y) , (1.18)

provided that both sides of the equality make sense.

Remark 1.14. Let us consider the particular case where G (η, y) ≡ 1 and

H (ξ, η, y) =

®
h (x, η, y) , if ξ = {x},
0, otherwise, ,

for any η, ξ ∈ Γ0 and y ∈ Rd. Then, from Minlos formula (1.18) we obtain
ˆ

Γ0

dλσ (η)
∑
x∈η

h (x, η \ x, y) =

ˆ
Γ0

dλσ (η)

ˆ
Rd

dσ(x)h (x, η, y) , (1.19)

for any measurable function h : Rd × Γ0 ×Rd → R such that both sides make sense. Identity
(1.19) is an analog of the Mecke formula for Poisson measures.
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1.1.2 The K-transform

In this section we want to investigate the connection between the phase space (Γ×Rd,B(Γ)⊗
B(Rd)) and the space (Γ0×Rd,B(Γ0)⊗B(Rd)). In particular, we introduce a mapping which
transforms functions defined on Γ0×Rd into functions on Γ×Rd, the so-called K-transform.

Definition 1.15. Let G ∈ L0
ls(Γ0), we define the function KG : Γ→ R given by

(KG) (γ) :=
∑
ηbγ

G (η) , γ ∈ Γ(Rd), (1.20)

where the sum is taken over all finite sub-configurations η of the (infinite) configuration γ.
The mapping K is called K-transform.

Remark 1.16. Note that the fact that G ∈ L0
ls(Γ0) implies that the function KF is well-

defined. Indeed, in this case, the sum in (1.20) has only a finite number of summands different
from zero.

The K-transform introduced above can be extended to a mapping between functions on
Γ0 × Rd and functions on Γ0 × Rd, namely for any G ∈ L0

ls(Γ0 × Rd)

(KG(·, y)) (γ) :=
∑
ηbγ

G (η, y) , (1.21)

for any fixed y ∈ Rd and all γ ∈ Γ.
The notion of K-transform first appears in the pioneering works of Lenard in statistical

mechanics [88, 89] and has been formalized in [77]. From mathematical point of view, the
main attraction of this transformation is the fact that it has a pure combinatorial nature
independent of the measure under consideration. We will not go into details concerning
the deriving combinatorial harmonic analysis. We just present the main properties of the
K-transform which will be used throughout the thesis.

Proposition 1.17. Let us consider the K-transform defined in (1.21). Then

(i) The mapping K is linear and positivity preserving.

(ii) The K-transform maps L0
ls(Γ̃0) into Fcyl(Γ̃). In particular, if G ∈ Bbs(Γ̃0) then there

exists C > 0, Λ ∈ Bb(Rd) and N ∈ N such that

|(KG(·, y)) (γ)| ≤ C (1 + |γΛ|)N , γ ∈ Γ, y ∈ Rd.

(iii) The mapping K : L0
ls(Γ̃0)→ Fcyl(Γ̃) is invertible withÄ

K−1F (·, y)
ä

(η) :=
∑
ξ⊂η

(−1)η\ξ F (ξ, y) , η ∈ Γ0, y ∈ Rd. (1.22)

Moreover, the inverse K-transform is well-defined for any F ∈ L0(Γ̃).

Proof. Let us consider a function G ∈ L0
ls(Γ̃0). For any fixed y ∈ Rd we can look at it as a

function G(·; y) ∈ L0
ls(Γ0). Then, we can proceed as in the proof of Proposition 3.1 in [77].

Before concluding, let us consider the K-transform in some concrete case which appear in
applications.
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Example 1.18. Let f : Rd ×Rd → R be a function such that there exists a bounded set M ∈ B(Rd)

f (x, y) = 0, for any x ∈ Rd \M,y ∈ Rd,

and consider the quasi-observable G : Γ0 × Rd defined by

G (η, y) =

ß
f (x, y) , if η = {x}2,

0, otherwise.

Then, the image of G under the K-transform is given by

(KG(·, y)) (γ) =
∑
ηbγ

G(η, y) =
∑
x∈γ

f (x, y) , γ ∈ Γ
(
Rd
)
, y ∈ Rd.

Example 1.19. Given two B(Rd)-functions f and g, let us consider the quasi-observable

G (η, y) = g (y)
∏
x∈η

f (x) ,

where B(Rd) is the set of all bounded measurable functions on Rd and Bbs(Rd) is the set of all
bounded measurable functions on Rd with bounded support. For brevity we introduce the so-called
Lebesgue-Poisson exponent defined by

eλ (f, η) =
∏
x∈η

f (x) , (1.23)

with the convention that eλ(f, ∅) = 1 and

eλ (0, η) = 0|η| =

ß
0, if |η| ≥ 1,
1, if |η| = 0.

Then, for any f ∈ Bbs(Rd) and g ∈ B(Rd), the image of G under the K-transform is given by

(KG(·, y)) (γ) = g (y)
∑
ηbγ

eλ (f, η) = g (y)
∏
x∈η

(1 + f(x)) ,

for any γ ∈ Γ
(
Rd
)
and y ∈ Rd. Let us note that for any f ∈ L1(Rd, σ) the Lebesgue-Poisson

exponent (1.23) is integrable with respect to the Lebesgue-Poisson measure λσ. In particular, one has
ˆ

Γ0

dλσ (η) eλ (f, η) = e
´
Rd dσ(x)f(x). (1.24)

1.1.3 Algebraic product on phase spaces: ?-convolution

In this section we introduce some operation among functions on the space Γ0(Rd) × Rd. As
it is known, see for example [77, 97], on the space of functions on Γ0(Rd) one can introduce
different algebraic products. Among them, we will focus on the so-called ?-convolution. This
particular convolution has been introduced in [77] and it turns out to be a powerful tool for
concrete calculations in applications.

Definition 1.20. Let us consider two functions G1, G2 ∈ L0(Γ0,B(Γ0)). The ?-convolution
of G1 and G2 is defined by

(G1 ? G2) (η) :=
∑

(η1,η2,η3)∈P3(η)

G1 (η1 ∪ η2)G2 (η2 ∪ η3)

=
∑
ξ⊂η

G1 (ξ)
∑
ζ⊂ξ

G2 ((η \ ξ) ∪ ζ) , η ∈ Γ0, (1.25)

where P3(η) denotes the set of all partitions of η in three parts which may be empty.
2It would be more precisely to write here f((sym1

Rd)
−1(η), y), but we will use the notation above to simplify.
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Remark 1.21. Note that the space L0(Γ0,B(Γ0)) endowed with the ?-convolution has the
structure of a commutative algebra with unit element given by eλ(0, ·),

(eλ(0, ·) ? G) (η) = G (η) , η ∈ Γ0.

Example 1.22. Let us consider the Lebesgue-Poisson exponents introduced in Example 1.19. For
these functions the ?-convolution has a particular simple form, namely

(eλ (f, ·) ? eλ (g, ·)) (η) = eλ (f + g + fg, η) , η ∈ Γ0

(
Rd
)
, (1.26)

for all functions f, g ∈ Bbs(Rd). More generally, given a function G ∈ L0(Γ0,B(Γ0)), we have

(G(·) ? eλ (f, ·)) (η) =
∑
ξ⊂η

G (ξ) eλ (f + 1, ξ) eλ (f, η \ ξ) , η ∈ Γ0

(
Rd
)
. (1.27)

In Definition 1.20, we have defined the ?-convolution as an algebraic product of functions
in L0(Γ0,B(Γ0)). However, we can extend it to functions on Γ0(Rd) × Rd. In this case, for
any G1, G2 ∈ L0(Γ̃0,B(Γ̃0)) one has

(G1(·, y) ? G2(·, y)) (η) :=
∑

(η1,η2,η3)∈P3(η)

G1 (η1 ∪ η2, y)G2 (η2 ∪ η3, y)

=
∑
ξ⊂η

G1 (ξ, y)
∑
ζ⊂ξ

G2 ((η \ ξ) ∪ ζ, y) , (1.28)

for any fixed y ∈ Rd and all η ∈ Γ0.
The main reason behind the introduction of ?-convolution resides on the following prop-

erty: for any F1, F2 ∈ L0(Γ̃) one has, see e.g. [77],Ä
K−1F1

ä
?
Ä
K−1F2

ä
= K−1 (F1F2) . (1.29)

Remark 1.23. The identity above enables us to consider the K-transform as a combinatorial
Fourier transform on the configuration space, see e.g. [86].

1.2 Correlation measures and correlation functions

In the study of (non-equilibrium) stochastic dynamics in continuum, the main object of in-
vestigation is represented by the so-called correlation functions, see for example [55,113] and
references therein. In this section we will introduce the concept of correlation functions as-
sociated to a measure on the phase space Γ(Rd) × Rd. In the following, by using a physical
terminology, we will often call these measures states to stress their role in the description of
a system.

We proceed similarly to what has been done in [77] on the configuration space Γ(Rd). First,
by using the K-transform, we introduce the concept of correlation measure. Afterwards,
we consider a special class of correlation measures to derive an explicit relation between
correlation functions and states (in this special case).

1.2.1 Correlation measure of a state

In Section 1.1.1 we have already introduced a Poisson-type measure on the space Γ × Rd,
see Definition 1.10. However, as is well known in statistical mechanics, Poisson measures
describe the equilibrium of a system of particles without interactions. Then, in order to study
the (non-equilibrium) dynamics of our model we should introduce a more general class of
measures.

Let us denote byM(Γ×Rd) the space of all measures on the space (Γ×Rd,B(Γ)⊗B(Rd)).
In the following we always assume that the states are measures with local finite moments.
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Definition 1.24. A measure µ(dγ, dy) ∈ M(Γ × Rd) has finite local moments (w.r.t. Γ-
variable) of all orders if the following property holds

ˆ
A

ˆ
Γ
|γΛ|n µ (dγ, dy) <∞, (1.30)

for all A,Λ ∈ Bb(Rd) and n ∈ N 3. We denote byMfm(Γ× Rd) the set of all such measures.

In the present work we study the evolution of two different types of states:

(1) bounded states, corresponding to measures µ which are finite on Γ× Rd and such that
Rd-marginal distributions have an integrable density w.r.t. the Lebesgue measure on
Rd, namely

µ
Ä
Γ× Rd

ä
=

ˆ
Rd

ˆ
Γ
dµ (γ, y) <∞ (1.31)

and
µ (Γ, dy) =

ˆ
Γ
µ (dγ, dy) = r (y) dy, with r ∈ L1(Rd). (1.32)

We denote by M1(Γ × Rd) the set of all these measures. Similarly we can define the
subspaceM1

fm(Γ×Rd) if, additionally, condition (1.30) is satisfied. Note that bounded
states are non-normalized finite measures on Γ× Rd.

(2) locally-bounded states, corresponding to all measures µ on Γ×Rd which are finite w.r.t.
the first variable γ ∈ Γ and are Radon measures with bounded density w.r.t. the second
variable y ∈ Rd. Namely, for any set A ∈ Bb(Rd) one has

µ (Γ×A) =

ˆ
A

ˆ
Γ
dµ (γ, y) <∞

and ˆ
Γ
µ (dγ, dy) = r (y) dy, with r ∈ L∞(Rd).

We denote byM∞(Γ×Rd) the set of all these measures. Analogously to the case above,
we define the subspaceM∞fm(Γ× Rd).

Through the K-transform, introduced in Section 1.1.2, one can associate to each measure
fromMfm(Γ× Rd) a measure on the space Γ0(Rd)× Rd.

Definition 1.25. Let µ ∈ Mfm(Γ × Rd) be given. Then, we can define a measure ρµ on
(Γ0 × Rd,B(Γ0 × Rd)) by

ρµ (B ×A) :=

ˆ
Rd

ˆ
Γ

(K1A (y)1B (·)) (γ) dµ (γ, y) (1.33)

=

ˆ
A

ˆ
Γ

(K1B) (γ) dµ (γ, y) ,

for all bounded sets B ∈ Bb(Γ0) and A ∈ Bb(Rd). The measure ρµ is called the correlation
measure corresponding to µ.

Remark 1.26. The fact that µ ∈ Mfm(Γ × Rd) insures that ρµ (B ×A) < ∞ for all B ∈
Bb(Γ0) and A ∈ Bb(Rd). Indeed, if B ∈ Bb(Γ0) then there exists Λ ∈ Bb(Rd) and N ∈ N0 such
that B ⊂ ⊔Nn=0 Γ(n)(Λ). Thus, by using the definition of the K-transform, one can estimate

ρµ (B ×A) ≤
N∑
n=0

ˆ
A

ˆ
Γ

Ä
K1Γ(n)(Λ)

ä
(γ) dµ (γ, y)

3Cf. definition in [77, Proposition 4.1].
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=
N∑
n=0

ˆ
A

ˆ
Γ

Ç
|γΛ|
n

å
dµ (γ, y) <∞. (1.34)

A measure ρµ which satisfies condition (1.34) is called locally finite. The set of all these
measures is denoted byMlf(Γ0 × Rd).

Using standard measure theory, identity (1.33) may be proved for a wider class of functions
on Γ0(Rd)× Rd.

Proposition 1.27. Let us consider a measure µ ∈Mfm(Γ×Rd). Then, for any G ∈ Bbs(Γ̃0)
one has ˆ

Rd

ˆ
Γ0

G (η, y) dρµ (η, y) =

ˆ
Rd

ˆ
Γ

(KG (·, y)) (γ) dµ (γ, y) . (1.35)

Proof. We can show identity (1.35) for functions of the form Gchar (η, y) = 1B (η)1A (y),
B ∈ Bb(Γ0), A ∈ Bb(Rd), by using straightforward the definition of correlation measures
(1.33). Hence, we can prove it for all functions G ∈ Bbs(Γ̃0) by approximating them with a
linear combination of characteristic functions.

Let us note that identity (1.35) defines a relation between measures on Γ×Rd and measures
on Γ0 ×Rd. In particular, this provides a natural mapping between the spacesMfm(Γ×Rd)
andMlf(Γ0 × Rd) given by

K∗ : Mfm(Γ× Rd) 7→ Mlf(Γ0 × Rd)
µ 7→ ρµ := K∗µ.

(1.36)

As an example, we can apply the K∗-transform to the Poisson-type measure π̃σ in (1.16).
Since K∗πσ = λσ, see e.g. [77], we have

K∗π̃σ = (K∗πσ)⊗ dy = λσ ⊗ dy := λ̃σ, (1.37)

where λ̃σ is the Lebesgue-Poisson-type measure defined in (1.12).

1.2.2 Correlation functions of a state

In this section we finally define the correlation functions associated to a state.
According to the definition in (1.3), for any Λ ∈ Bb(Rd) we introduce the projection p̃Λ

defined by
Γ(Rd)× Rd 3 (γ, y) 7→ p̃Λ (γ, y) := (γ ∩ Λ, y) ∈ Γ (Λ)× Rd. (1.38)

We use the notation µΛ = µ ◦ p̃−1
Λ to indicate the projection of the measure µ onto the mea-

surable space (Γ(Λ)×Rd,B(Γ(Λ))⊗B(Rd)). Then, we say that a measure µ ∈Mfm(Γ×Rd)
is locally absolutely continuous with respect to π̃σ = πσ ⊗ dy if and only if µΛ = µ ◦ p̃−1

Λ is
absolutely continuous with respect to π̃Λ

σ =
Ä
πσ ◦ p−1

Λ

ä
⊗ dy for all Λ ∈ Bb(Rd). Let us note

that the absolute-continuity property of a measure µ is reflected on the corresponding corre-
lation measure ρµ. This fact allows us to introduce the correlation functional kµ associated
to the measure µ.

Lemma 1.28. Let µ ∈ Mfm(Γ× Rd) be a measure locally absolutely continuous with respect
to π̃σ = πσ⊗dy. Then, its correlation measure ρµ = K∗µ is absolutely continuous with respect
to λ̃σ = λσ ⊗ dy. Furthermore, for all Λ ∈ Bb(Rd) we have

kµ(η, y) :=
dρµ
dλ̃σ

(η, y) =

ˆ
Γ(Λ)

dµΛ

dπ̃Λ
σ

(γ ∪ η, y)πΛ
σ (dγ) , (1.39)

for λ̃σ-a.a. η ∈ Γ0 and y ∈ Rd.
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Remark 1.29. Formula (1.39) is well known in statistical mechanics and in point process
theory, see e.g. [107] and [27], respectively.

Proof. Let us consider the sets B ∈ Bb(Γ0) and A ∈ Bb(Rd) such that λ̃σ (B ×A) = 0. Since
λ̃σ is the correlation measure of π̃σ, we have

0 = λ̃σ (B ×A) =

ˆ
Rd

ˆ
Γ(Λ)

1A (y) (K1B (·)) (γ) dπ̃Λ
σ (γ, y) ,

for some Λ ∈ Bb(Rd) such that B ⊂ Γ(Λ). Then, since 1A(y)(K1B(·))(γ) ≥ 0, we must have

(K1B×A(·, y))(γ) ≡ 0, a.a.− π̃Λ
σ , (1.40)

for π̃Λ
σ -a.a. γ ∈ Γ0(Rd) and y ∈ Rd. On the other hand, by hypothesis of the lemma, the

correlation measure ρµ can be written as

ρµ (B ×A) :=

ˆ
Rd

ˆ
Γ
1A (y) (K1B (·)) (γ) dµ (γ, y) (1.41)

=

ˆ
Rd

ˆ
Γ(Λ)

1A (y) (K1B (·)) (γ)
dµΛ

dπ̃Λ
σ

(γ, y) dπ̃Λ
σ (γ, y) = 0, (1.42)

because of (1.40). The latter identity implies that ρµ = K∗µ is absolutely continuous with
respect to λ̃σ = λσ ⊗ dy.

Let us note that, by definition of the K-transform, for some A ∈ Bb(Rd) and Λ ∈ Bb(Rd)
such that B ⊂ Γ(Λ) the correlation measure ρµ can be rewritten

ρµ (B ×A) =

ˆ
A

ˆ
Γ(Λ)

(K1B) (γ)
dµΛ

dπ̃Λ
σ

(γ, y) dπΛ
σ (γ) dy (1.43)

=

ˆ
A

ˆ
Γ(Λ)

∑
η⊂γ

1B (η)
dµΛ

dπ̃Λ
σ

(γ, y) dπΛ
σ (γ) dy. (1.44)

Then, by applying the Minlos formula 1.18, one has

ρµ (B ×A) =

ˆ
A

ˆ
Γ(Λ)

ˆ
Γ(Λ)

1B (η)
dµΛ

dπ̃Λ
σ

(γ ∪ η, y) dπΛ
σ (γ) dλΛ

σ (η) dy (1.45)

=

ˆ
A

ˆ
Γ(Λ)

1B (η)

ñˆ
Γ(Λ)

dµΛ

dπ̃Λ
σ

(γ ∪ η, y) dπΛ
σ (γ)

ô
dλ̃Λ

σ (η, y) . (1.46)

Finally, by using the Radon-Nikodym Theorem we obtain (1.39).

From the lemma above we have the following natural definition.

Definition 1.30. Let µ ∈ Mfm(Γ × Rd) be a measure locally absolutely continuous with
respect to π̃σ = πσ ⊗ dy. We define the correlation functional associated to the measure µ as
the measurable function kµ : Γ0 × Rd → R+

4 given by the Radom-Nikodym derivative

kµ(η, y) :=
dρµ
dλ̃σ

(η, y) . (1.47)

According to Remark 1.7, the correlation functional kµ can be represented as a sequence of
non-negative measurable functions, so called correlation functions, defined as

{k(n)
µ (x1, . . . , xn, y)}∞n=0, (1.48)

where, k(n)
µ ∈ L0

symn((Rd)n × Rd) for any n ∈ N.
4Hereinafter, R+ denotes the set of all non-negative real numbers, i.e. R+ := [0,∞).
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Remark 1.31. As a result of Lemma 1.28 we have characterized a measure µ ∈Mfm(Γ×Rd)
with a sequence of real functions {k(n)

µ (x1, . . . , xn, y)}∞n=0. Clearly, one may consider also
the opposite problem, namely if it is possible to reconstruct a measure starting from a set
of correlation functions. This interesting question is an analog of the well-known moment
problem in classical analysis, but it will not be discussed in this work.

Let us note that, according to Definition 1.30, identity (1.35) can be rewritten as
ˆ
Rd

ˆ
Γ

(KG (·, y)) (γ) dµ (γ, y) =

ˆ
Rd

ˆ
Γ0

G (η, y) kµ (η, y) dλσ (η) dy, (1.49)

for any G ∈ Bbs(Γ̃0), or equivalently
ˆ
Rd

ˆ
Γ

∑
{x1,...,xn}⊂γ

G(n) (x1, . . . , xn, y) dµ (γ, y)

=
1

n!

ˆ
Rd

ˆ
(Rd)

n
G(n) (x1, . . . , xn, y) k(n)

µ (x1, . . . , xn, y) dx1 . . . dxndy, (1.50)

for any bounded function G(n) on (Rd)n × Rd with bounded support in (Rd)n. Equations
(1.49) and (1.50) can be considered as alternative definitions of the correlation functional and
correlation functions, respectively.

Remark 1.32. Let us mention that the r.h.s. of equation (1.49) defines a duality between
quasi-observables and correlation functionals, see Section 2.2 for details.





Chapter 2

Random walks in Markov environments

In this chapter we present a general description of the random walk (RW) of a jumping
particle moving in Rd and interacting with an evolving random environment (RE). The latter is
represented by an infinite particle system described by some non-equilibriumMarkov dynamics
in Rd.

According to the general framework introduced in Chapter 1, we analyze these models of
RWRE on three different levels. We start by defining a microscopic dynamics of the particles
in terms of an heuristic Markov generator which describes an evolution of observables defined
on the phase space. Afterwards, we derive a statistical description of the stochastic evolution
in terms of a hierarchy for correlation functions associated with states of the model. Finally,
we consider a mesoscopic limit of the evolution which leads to a system of two kinetic equations
for the densities of the jumping particle and of particles of the environment.

General considerations will be illustrated in details in many concrete models which will
be analyzed rigorously in the next chapters.

2.1 Microscopic description of the model

We study the RW of a particle moving in Rd accordingly to a jump process and interacting
with a RE formed by infinitely many particles. These particles are identical each other and
are described by some non-equilibrium Markov dynamics in Rd.

According to Definition 1.1, we consider as phase space of the model Γ(Rd) × Rd, where
Rd is the phase space of the tagged particle, and Γ(Rd) is the phase space of the environment.
Let us recall that an element of the phase space is given by a pair (γ, y), where y ∈ Rd
corresponds to the position of the jumping particle, whereas γ ∈ Γ(Rd) is the configuration
of points representing the position of all the particles of the environment. We call functions
F (γ, y) on the space Γ(Rd)× Rd observables.

Heuristically, the mechanism of evolution of the model can be described by a Markov
pregenerator L acting on some proper space of observables. As we have two distinct systems,
this pregenerator has the following general form

L = LRE + LRW , (2.1)

where the operator LRE defines the Markov dynamics of the particles of the environment and
LRW describes the RW of the tagged particle. Given an observable F : Γ× Rd → R : the oper-
ator LRE acts only on the first argument γ ∈ Γ(Rd), namely (LREF )(γ, y) = (LREF (·, y))(γ)
for any y ∈ Rd; whereas, the operator LRW acts on y ∈ Rd, but depends, due to some interac-
tion, on the configuration of RE, γ ∈ Γ(Rd). In formulas, (LRWF )(γ, y) := (LRW (γ)F )(γ, y).

Remark 2.1. Note that as common characteristic of RWREs: the generator LRE is Marko-
vian by definition, the generator LRW is not Markovian due to the presence of the interaction
with RE, but, on the other hand, the whole generator L will still be Markovian.
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The independent evolution of RE is described by a non-equilibrium Markov dynamic of
infinitely many particles in continuum with phase space Γ(Rd). We consider two important
classes of such interacting particle systems: birth-and-death models and hopping particle
systems. Birth-and-death dynamics on the configuration space are non-conservative Markov
dynamics where particles do not move, but randomly appear and disappear in Rd with the
rates

d (x, γ) , for death of a particle at x ∈ γ of a configuration γ;
b (x, γ) , for birth of a new particle at x ∈ Rd in a configuration γ.

The corresponding Markov generator LRE on Γ(Rd) × Rd has the following heuristic repre-
sentation 1

(LREF ) (γ, y) :=
∑
x∈γ

d (x, γ \ x) [F (γ \ x, y)− F (γ, y)] +

ˆ
Rd

dx b (x, γ) [F (γ ∪ x, y)− F (γ, y)] , (2.2)

where we assume that

0 ≤ d (x, η) , b (x, η) <∞, η ∈ Γ0 \ {∅}, x ∈ Rd \ η, (2.3)ˆ
M

(d (x, η) + b (x, η)) dλ (η) <∞, M ∈ Bb(Γ0), a.a. x ∈ Rd, (2.4)
ˆ

Λ
(d (x, η) + b (x, η)) dx <∞, η ∈ Γ0,Λ ∈ Bb(Rd). (2.5)

Different birth-and-death models, corresponding to different choices of rates d(x, γ) and
b(x, γ), may be found in [60] and references therein.

In contrast, hopping particles models are conservative Markov dynamics where different
particles randomly jump over the space Rd according to a rate

c
(
γ, x, x′

)
, hop of the particle at x ∈ γ to a site x′ ∈ Rd.

The Markov generator LRE describing this dynamics on Γ(Rd)× Rd has the form

(LREF ) (γ, y) :=
∑
x∈γ

ˆ
Rd

dx′ c
(
γ, x, x′

) [
F
(
γ \ x ∪ x′, y

)
− F (γ, y)

]
, (2.6)

where we assume that

0 ≤ c
(
η, x, x′

)
<∞, η ∈ Γ0, x, x

′ ∈ Rd \ η, (2.7)ˆ
M
c
(
η, x, x′

)
dλ (η) <∞, M ∈ Bb(Γ0), a.a. x, x′ ∈ Rd, (2.8)

ˆ
Rd
c
(
η, x, x′

)
dx′ <∞, η ∈ Γ0, a. a. x ∈ Rd. (2.9)

Many examples of hopping-particles systems, corresponding to different choice of the jump
rate c(γ, x, x′) may be found in [60] and references therein.

Remark 2.2. It is possible to check that, under assumptions (2.3)-(2.5) and (2.7)-(2.9), the
operator LRE , both in (2.2) and (2.6), is such that

LREF ∈ L0(Γ̃) for all F ∈ K
Ä
Bbs(Γ̃0)

ä
.

For further details see e.g. [49, 60].
1In the following, for simplicity of notation, we will always write x instead of {x}.



2.1. Microscopic description of the model 25

The free RW of the tagged particle is a jump Markov process in Rd. The intensity of the
jump from a point y ∈ Rd to z ∈ Rd is given by a kernel a(y − z), which we assume to be
non-negative, even and integrable:

0 ≤ a ∈ L1(Rd, dx), a(−x) = a(x) for all x ∈ Rd.

We introduce an interaction of the tagged particle with the other particles of the environment
through a non-negative function λint(γ, y, z) ≥ 0 which modulates the intensity of jumps of
the tagged particle in depending on RE, namely

a (y − z)λint (γ, y, z) , y, z ∈ Rd and γ ∈ Γ(Rd).

Then, the corresponding generator LRW in Γ(Rd)× Rd becomes

(LRWF ) (γ, y) :=

ˆ
Rd

dz λint (γ, y, z) a (y − z) [F (γ, z)− F (γ, y)] . (2.10)

Throughout this work, we assume some minimal condition on the interaction λint, in particular
we demand that

∀η ∈ Γ0, ∀y ∈ Rd, ess sup
z∈Rd

λint (η, y, z) <∞. (2.11)

Remark 2.3. Note that condition (2.11) guarantees that

LRWF ∈ L0(Γ̃) for all F ∈ K
Ä
Bbs(Γ̃0)

ä
,

see e.g. (2.45) in the proof of Proposition 2.12.

In our analysis we discuss in details some concrete types of interaction λint, which corre-
spond to different physical situations. We always assume that φ : Rd → R is a measurable
non-negative even function, namely for any x ∈ Rd

φ (x) = φ (−x) , φ (x) ≥ 0. (2.12)

Case I. For any γ ∈ Γ(Rd) and y, z ∈ Rd,

λint (γ, y, z) = λ(1) (γ, y) = e−
∑

x∈γ φ(x−y). (2.13)

Such interaction implies that the tagged particle moves slower in regions with high
concentration of points of the environment.

Case II. For any γ ∈ Γ(Rd) and y, z ∈ Rd,

λint (γ, y, z) = λ(2) (γ, y) = λ0 +
∑
x∈γ

φ (x− y) , (2.14)

where λ0 is some non-negative constant and the pair potential φ(·) is additionally
bounded. Such interaction implies that the tagged particle moves faster in regions
with high concentration of points of the environment.

Case III. For any γ ∈ Γ(Rd) and y, z ∈ Rd,

λint (γ, y, z) = λ(3) (γ, z) = e−
∑

x∈γ φ(x−z). (2.15)

Such interaction implies that the tagged particle tends to move towards regions with
low concentration of points of the environment.
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Case IV. For any γ ∈ Γ(Rd) and y, z ∈ Rd,

λint (γ, y, z) = λ(4) (γ, z) = λ0 +
∑
x∈γ

φ (x− z) , (2.16)

where λ0 is some non-negative constant and the function φ(·) is also bounded. Such
interaction implies that the tagged particle tends to move towards regions with high
concentration of points of the environment.

Remark 2.4. Let us note that all the interactions defined above satisfy condition (2.11),
see Section 2.2.1 for details. In principle, many others are possible. For example one may
consider a combination between the interaction I or III and the interaction II or IV, such as

λint (γ, y, z) = e−
∑

x∈γ β(x−y)
∑
x′∈γ

φ
(
x′ − z

)
, γ ∈ Γ, y, z ∈ Rd,

where β, φ : Rd → R are two non-negative even functions and φ is additionally bounded.

2.2 Statistical description of the model: evolution of correla-
tion functions

In this section we study the stochastic dynamics of RWREs defined by the heuristic genera-
tor (2.1). Let us note that for such models there are essential difficulties for the construction
of the corresponding spatial Markov process,

Γ(Rd)× Rd 3 (γ, y) 7−→ Z
(γ,y)
t = (Xγ

t , Y
y
t ) ∈ Γ(Rd)× Rd, t > 0.

Indeed, Markov processes on the configuration space describing the evolution of RE can
be constructed only in some special case, see e.g. [100] for a recent review and [65, 70]
for more detailed results about birth-and-death processes. As an alternative approach, we
consider the evolution of states associated with the underlying Markov dynamics. Such a
statistical approach has been proposed in [55,60,62] and is often the only available technical
tool to construct the non-equilibrium stochastic evolution of interacting particle systems in
the continuum, see e.g. [10,45,49,58,84].

Let us recall that, for the considered models, a state corresponds to a measure on the
phase space, i.e. µ(dγ, dy) ∈ M

Ä
Γ× Rd

ä
. The evolution of states can be described by the

forward Kolmogorov equation, or the Fokker-Planck equation. Let us consider the backward
Kolmogorov equation associated to the pregenerator (2.1) for observables F ∈ K(Bbs(Γ̃0)),

∂

∂t
Ft = (LRE + LRW )Ft, t ≥ 0. (2.17)

Using the pairing between functions and measures on Γ× Rd,

〈F, µ〉 :=

ˆ
Γ

ˆ
Rd

dµ (γ, y)F (γ, y) , (2.18)

we can consider the evolution equation

∂

∂t
〈F, µt〉 = 〈(LRE + LRW )F, µt〉, t ≥ 0, (2.19)

in some proper space of measures on Γ(Rd)×Rd. In fact, the solution to the equation (2.19)
describes the time evolution of distributions instead of the initial points in the Markov process.
We can rewrite it in the following heuristic form

∂

∂t
µt = (L∗RE + L∗RW )µt, t ≥ 0, (2.20)
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where L∗ := L∗RE + L∗RW is (informally) adjoint operator of L w.r.t. the pairing (2.18).
An important technical observation to study the evolution equation (2.19) concerns the

possibility to reformulate the problem in terms of the corresponding correlation functions.
According to Section 1.2.2, let us suppose that µt ∈Mfm

Ä
Γ× Rd

ä
is a solution to (2.19) which

remains locally absolutely continuous w.r.t. the Poisson-type measure π̃, for all t > 0 provided
that µ0 has such a property. Then, we know that the measure µt can be characterized by a
sequence of non-negative functions, the so-called correlation functions (cf. Definition 1.30),

{k(n)
µt (x1, . . . , xn, y)}∞n=0, xi, y ∈ Rd, i ≥ 1. (2.21)

In the following, for convenience, we set k(n)
t := k

(n)
µt , for any n ≥ 0. For the present purpose,

it is convenient to rewrite the sequence of correlation functions as a function, called correlation
functional, on the space Γ0(Rd)× Rd,

kt (η, y) : Γ0(Rd)× Rd → R+, t ≥ 0. (2.22)

The evolution equation for the correlation functional kt(η, y) can be derived by using
harmonic analysis on the configuration space and, in particular, the K-transform introduced
in Section 1.1.2. Using identity (1.49), we may rewrite equation (2.19) in the following way

d
dt
〈〈K−1F, kt〉〉 = 〈〈K−1LF, kt〉〉, L = LRE + LRW , (2.23)

where we consider the pairing between functions on Γ0 × Rd given by

〈〈G, k〉〉 =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y) kµ (η, y) . (2.24)

Remark 2.5. According to Remark 2.2 and 2.3, under conditions (2.3)-(2.5) (or (2.7)-(2.9))
and (2.11), we have

LF ∈ L0(Γ̃) for all F ∈ K
Ä
Bbs(Γ̃0)

ä
.

Then, one can calculate K−1LF in (2.23) by using (1.22).

Next, if we substitute F = KG, G ∈ Bbs(Γ̃0), in (2.23), we find

d
dt
〈〈G, kt〉〉 = 〈〈(L̂RE + L̂RW )G, kt〉〉, (2.25)

where the operator L̂ := L̂RE + L̂RW is the image of L under the K-transform, namely

L̂ = K−1LK = K−1LREK +K−1LRWK =: L̂RE + L̂RW . (2.26)

Let us recall that this operator is well defined (point-wise) for all G ∈ Bbs(Γ̃0), see Remark 2.5.
As a result, we are interested in a weak solution to the initial value problem®

∂
∂tkt =

Ä
L̂∗RE + L̂∗RW

ä
kt

kt|t=0 = k0
, t ≥ 0, (2.27)

where the operator L̂∗ := L̂∗RE + L̂∗RW is the adjoint operator of L̂ w.r.t. the duality (2.24),
namely

ˆ
Rd

ˆ
Γ0

dy dλ (η)
Ä
L̂G
ä

(η, y) k (η, y) =

ˆ
Rd

ˆ
Γ0

dy dλ (η)G (η, y)
Ä
L̂∗k
ä

(η, y) . (2.28)

Note that due to the linearity of the pairing (2.28), we have
ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y)
Ä
L̂∗k
ä

(η, y) =
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=

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂REG

ä
(η, y) k (η, y) +

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RWG

ä
(η, y) k (η, y)

=:

ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y)
Ä
L̂∗REk

ä
(η, y) +

ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y)
Ä
L̂∗RWk

ä
(η, y) .

(2.29)

The procedure of deriving the operator L̂ for a given L is fully combinatorial, while in obtaining
the expression for the operator L̂∗ we use the discrete integration by parts formula represented
by the Minlos’s formula (1.18).

Remark 2.6. It may be useful to consider not directly the evolution equation (2.27) for
correlation functionals, but its pre-dual problem, w.r.t. (2.28), namely

∂

∂t
Gt =

Ä
L̂RE + L̂RW

ä
Gt, t ≥ 0, (2.30)

for functions, so-called quasi-observables, G ∈ Bbs(Γ̃0). Here the operator L̂ := L̂RE + L̂RW
is given by (2.26).

Remark 2.7. Let us recall that any correlation functional k(η, y) may be identified with
an infinite vector of (correlation) functions of the growing number of variables, cf. (2.21).
Thus, as matter of fact, instead of equation (2.20) for measure we deal with an infinite system
of equations for functions of finite number of variables. This chain of evolution equations
constitutes the so-called hierarchy which is an analog of the BBGKY hierarchy for Hamiltonian
systems, see e.g. [34].

One of the main aims of the present thesis is to study the classical solution to (2.27) in a
proper space. Clearly, the choice of such a space is motivated by the applications one has in
mind. In this sense we consider two different cases:

(1) sub-Poissonian bounded functions: for C > 0, we consider the Banach space K∞C con-
sisting of all measurable functions k : Γ0 × Rd → R such that

ess sup
(η,y)∈Γ0×Rd

C−|η| |k (η, y)| <∞. (2.31)

We equip K∞C equipped with the norm ‖ · ‖K∞C given by the r.h.s. of (2.31).

(2) sub-Poissonian integrable functions: for C > 0, we consider the Banach space K1
C

consisting of all measurable functions k : Γ0 × Rd → R such thatˆ
Rd

dy ess sup
η∈Γ0

C−|η| |k (η, y)| <∞. (2.32)

We equip K1
C equipped with the norm ‖ · ‖K1

C
given by the r.h.s. of (2.32).

We use the notation KqC with q =∞, 1 to indicate the two different spaces.

Remark 2.8. Note that in both cases listed above, we consider measurable functions which
satisfies the so-called Ruelle bounds [107] in the space Γ0. Indeed, for any k ∈ KqC , q =∞, 1,
one has

|k (η, y)| ≤M(y)C |η|, λ̃− a.a. η ∈ Γ0, y ∈ Rd, (2.33)

with M(y) := ess supη∈Γ0
C−|η||k(η, y)|. For interacting particle systems this is a rather

natural assumption, for example, for the correlation functions associated to a Gibbs measure
inequality (2.33) holds true, see e.g. [108]. On the other hand, concerning the dependence of
k(η, y) on y ∈ Rd, we have more choices and we can consider measurable functions which are
essential bounded or integrable in y ∈ Rd, for λ-a.a. η ∈ Γ0. This second case appears to be
more interesting from a physical point of view since such correlation functions are, in general,
associated to some probability measure.
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The study of the evolution equation for correlation functions (2.27) in the Banach spaces
KqC is a highly non trivial problem in infinite dimensional analysis. Nevertheless, one can
consider three alternative methods to perform this analysis, see e.g. [45,49,61] and references
therein.

The first technical possibility is to construct a strongly continuous semigroup in the space
KqC , q = ∞, 1, with generator L̂∗. However, by the Lotz’s theorem [94] we know that in a
L∞-space any strongly continuous semigroup is associated to a bounded generator. Note that
in our case the operator L̂∗ is unbounded in KqC . To avoid this difficulty one can use a trick
which goes back to Phillips [102]. The main idea of this method is to consider a semigroup
in L∞ as the dual semigroup to a strongly continuous semigroup in the pre-dual L1-space.
As result we will have a strongly continuous semigroup not on the whole space L∞ but only
on the closure of the domain of its generator. We will apply successfully this approach on
the space K∞C only, see Chapter 3. The use of this method on the space K1

C presents some
technical difficulties that have not been solved completely at present.

For the study of the initial value problem (2.27) on the space K∞C , the Philips’s technique
leads to the following scheme. By means of duality (2.28), we consider the evolution equation
for quasi-observables (2.30) in the pre-dual space

LC := L1
Ä
Γ0 × Rd, C |η|dλ(η)dy

ä
.

If we can construct a strongly continuous semigroup “T (t) in LC with generator L̂, then, from
Philip’s result it will follow that the restriction of the dual semigroup “T ∗(t) onto Dom(L̂∗) is
a strongly continuous semigroup with generator which is a part of L̂∗. The dual semigroup“T ∗(t) will provide a solution to (2.27) on the space Dom(L̂∗). Afterwards, we would like to
find a more useful universal subspace of K∞C where to formulate this result.

Another possibility for the study of the Cauchy problem (2.27) is to consider this evolution
equation in a proper scale of Banach spaces {KqC}C∗≤C≤C∗ , q =∞, 1. This approach can be
realized by using the so-called Ovsyannikov’s method see e.g. [98, 120]. Compared with the
semigroup approach, this method provides less restrictions on the parameters of the system,
but leads to a local in time solution only. The Ovsyannikov’s method can be applied on both
Banach spaces K∞C and K1

C . In this thesis, see Chapter 4, we consider only the latter space.
In this case we can show that there exits T > 0 such that for any t ∈ [0, T ) the initial value
problem (2.27) has an unique solution kt which lies in the space K1

Ct
for some Ct ∈ [C∗, C

∗].
Finally, a third possibility consists in expressing the dynamic of correlation functions

in terms of the corresponding generating functionals, the so-called Bogoliubov functionals
[14,79], defined by

Zµ (θ, ψ) =

ˆ
Rd

dyψ (y)

ˆ
Γ0

dλ (η) eλ (θ, η) kµ (η, y) , θ ∈ L1(Rd), ψ ∈ L∞(Rd). (2.34)

Informally, this new formalism allows us to rewrite the infinite system of equations (2.27) as
a functional equation on the Banach space of all (entire) generating functionals, see e.g. [79].
This new evolution equation can be again solved using Ovsyannikov’s method in the framework
of a scale of Banach spaces. We refer to Chapter 5 for a detailed description of this approach
in the study of the initial value problem (2.27) on the space K1

C .

Remark 2.9. Let us also mention a further possibility to study the evolution equation (2.27),
which will not be considered in this work. This approach consists in a combination of semi-
group techniques and the Ovsyannikov’s method described above in the spirit of [47, 48]. In
this case, we will have again a solution local in time, but under different physical assumptions
on the parameters of the model.

In the next subsections we will derive explicitly the evolution equation for quasi-observables
and correlation functions, respectively, for concrete models of REs and RWs.
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2.2.1 Generator for quasi-observables

Informally, the evolution for quasi-observables, G : Γ0 × Rd → R, is described by the initial
value problem, cf. equation (2.30),®

∂
∂tGt =

Ä
L̂RE + L̂RW

ä
Gt

Gt|t=0 = G0
, t ≥ 0, (2.35)

where the L̂RE and L̂RW are the image of the operators LRE and LRW , respectively, under
the K-transform, see (2.26),

L̂RE = K−1LREK and L̂RW = K−1LRWK.

The expression of the generator for the quasi-observables L̂RE , associated to the environ-
ment, in the case of a birth-and-death process, as well as a hopping particle system, may be
found in [60]. For completeness we formulate general results.

Proposition 2.10. Let us consider an operator LRE as in (2.2) and such that conditions
(2.3)-(2.5) hold. Then, the action of L̂RE on functions G ∈ Bbs(Γ̃0) is given byÄ

L̂REG
ä

(η, y) = −
∑
ξ⊂η

G (ξ, y)
∑
x∈ξ

Ä
K−1d (x, · ∪ (ξ \ x))

ä
(η \ ξ) +

∑
ξ⊂η

ˆ
Rd

dxG (ξ ∪ x, y)
Ä
K−1b (x, · ∪ ξ)

ä
(η \ ξ) . (2.36)

Moreover, one has L̂REG ∈ L0(Γ̃0) for any G ∈ Bbs(Γ̃0).

Proposition 2.11. Let us consider an operator LRE as in (2.6) and such that conditions
(2.7)-(2.9) hold. Then, the action of L̂RE on functions G ∈ Bbs(Γ̃0) is given byÄ
L̂REG

ä
(η, y) =

ˆ
Rd

dx′
∑
ξ⊂η

∑
x∈ξ

[
G
(
ξ \ x ∪ x′, y

)
−G (ξ, y)

] Ä
K−1cx,x′ (· ∪ (ξ \ x))

ä
(η \ ξ) .

(2.37)
Moreover, one has L̂REG ∈ L0(Γ̃0) for any G ∈ Bbs(Γ̃0).

Let us now consider the generator of quasi-observables L̂RW associated to the RW of the
tagged particle. First we compute an explicit formula for a generic interaction λint and after
we specify it for each of the concrete examples I-IV in Section 2.1.

Proposition 2.12. Let us consider the RW of a jumping particle described by an operator
LRW as in (2.10) and such that condition (2.11) holds. Then, the action of L̂RW on functions
G ∈ Bbs(Γ̃0) is given byÄ

L̂RWG
ä

(η, y) =

ˆ
Rd

dz a (y − z)
∑
ξ⊂η

(G (ξ, z)−G (ξ, y))
Ä
K−1λint (· ∪ ξ, y, z)

ä
(η \ ξ) .

(2.38)
Moreover, one has L̂RWG ∈ L0(Γ̃0) for any G ∈ Bbs(Γ̃0).

Proof. We start from the heuristic Markov generator of the RW defined in equation (2.10),
namely for any F ∈ Fcyl(Γ̃)

(LRWF ) (γ, y) =

ˆ
Rd

dz λint (γ, y, z) a (y − z) [F (γ, z)− F (γ, y)] , γ ∈ Γ, y ∈ Rd.

For F = KG, with G ∈ Bbs(Γ̃0), by using the linearity of the K-transform, we can write it as

(LRWF ) (γ, y) =

ˆ
Rd

dz λint (γ, y, z) a (y − z)
î

(KG) (γ, z)− (KG) (γ, y)
ó
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=

ˆ
Rd

dz λint (γ, y, z) a (y − z) (K [G (·, z)−G (·, y)]) (γ) ,

and by applying the inverse K-transform, we obtainÄ
L̂RWG

ä
(η, y) =

Ä
K−1LRWF

ä
(η, y)

=

ˆ
Rd

dz a (y − z)
(
K−1

î
λ (·, y, z)K

Ä
G (·, z)−G (·, y)

äó )
(η) . (2.39)

If for any η ∈ Γ0 and y, z ∈ Rd we define

A (η, y, z) :=
Ä
K−1λ (·, y, z)

ä
(η) , (2.40)

then, from the identity (1.29), it follows thatÄ
L̂RWG

ä
(η, y) =

ˆ
Rd

dz a (y − z)
Ä
A (·, y, z) ? [G (·, z)−G (·, y)]

ä
(η) . (2.41)

Next, using the definition of the ?-convolution, see formula (1.28), one hasÄ
L̂RWG

ä
(η, y) =

ˆ
Rd

dz a (y − z)

∑
ξ⊂η

(G (ξ, z)−G (ξ, y))
∑
ζ⊂ξ

A ((η \ ξ) ∪ ζ, y, z)

 . (2.42)

Note that the second sum in the square brackets can be rewritten in terms of K-transform,
i.e. Ä

L̂RWG
ä

(η, y) =

ˆ
Rd

dz a (y − z)

∑
ξ⊂η

(G (ξ, z)−G (ξ, y)) (KA ((η \ ξ) ∪ ·, y, z)) (ξ)

 .
Hence, we can use of the simple identityÄ

K−1F (· ∪ η2, y, z)
ä

(ξ1) = (KG (ξ1 ∪ ·, y, z)) (η2) , ξ1 ∩ η2 = ∅ (2.43)

and obtain (2.38). Note that in this formula the term (K−1λint(· ∪ ξ, y, z))(η) has sense due
to (2.11).

Finally, by Proposition 1.17 for any F = KG, with G ∈ Bbs(Γ̃0), there exist Λ ∈ Bb(Rd),
N ∈ N and C > 0 such that

|F (γ, z)− F (γ, y)| ≤ C (1 + |γΛ|)N , γ ∈ Γ, y, z ∈ Rd. (2.44)

Therefore, by using (2.11) one has

|(LRWF ) (η, y)| ≤ C (1 + |ηΛ|)N
ˆ
Rd

dz λint (η, y, z) a (y − z)

≤ 〈a〉C (1 + |ηΛ|)N sup
z∈Rd

λint (η, y, z) <∞, η ∈ Γ0, y ∈ Rd (2.45)

and, consequently,∣∣∣ÄL̂RWGä (η, y)
∣∣∣ =

∣∣∣ÄK−1LRWF
ä

(η, y)
∣∣∣ <∞, η ∈ Γ0, y ∈ Rd. (2.46)

In particular, the latter justifies all the interchange order of summations and integrations in
the previous computations.
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Case I. Let us consider a RW whose interaction with the RE is given by

λint(γ, y, z) := λ(1) (γ, y) = e−
∑

x′∈γ φ(x′−y), γ ∈ Γ, y, z ∈ Rd, (2.47)

where φ : Rd → R is some non-negative measurable even function. Clearly condition (2.11) is
satisfied.

Having in mind Example 1.19, we can rewrite this interaction as

λ(1)(η, y) = eλ
Ä
e−φ(·−y), η

ä
=
Ä
Keλ

Ä
e−φ(·−y) − 1, ·

ää
(η) , (2.48)

for any η ∈ Γ0 and y ∈ Rd. Hence, from equality (2.40) we can identify

A (η, y) = eλ
Ä
e−φ(·−y) − 1, η

ä
=
∏
x′∈η

Ä
e−φ(x′−y) − 1

ä
(2.49)

and, by means of the identity (2.43), we findÄ
K−1λ(1) (· ∪ ξ, y)

ä
(η \ ξ) = (KA ((η \ ξ) ∪ ·, y)) (ξ)

=
Ä
Keλ

Ä
e−φ(·−y) − 1, (η \ ξ) ∪ ·

ää
(ξ) ,

for any ξ ⊂ η ∈ Γ0 and y ∈ Rd. Next, we can use straightforward definition of K-transform
to rewrite it asÄ

K−1λ(1) (· ∪ ξ, y)
ä

(η \ ξ) =
∑
ζ⊂ξ

∏
x′∈(η\ξ)∪ζ

Ä
e−φ(x′−y) − 1

ä
=

∏
x′∈(η\ξ)

Ä
e−φ(x′−y) − 1

ä∑
ζ⊂ξ

∏
x′∈ζ

Ä
e−φ(x′−y) − 1

ä
= λ(1) (ξ, y) eλ

Ä
e−φ(·−y) − 1, (η \ ξ)

ä
, ξ ⊂ η ∈ Γ0, y ∈ Rd.

(2.50)

Thus, according to the result of Proposition 2.12, for interaction (2.47) the generator L̂RW
for quasi-observables G ∈ Bbs(Γ̃0) is given byÄ
L̂RWG

ä
(η, y) =

∑
ξ⊂η

λ(1) (ξ, y) eλ
Ä
e−φ(·−y) − 1, (η \ ξ)

äˆ
Rd

dz a (y − z) [G (ξ, z)−G (ξ, y)] .

(2.51)

Case II. Let us consider the interaction given by

λint(γ, y, z) := λ(2)(γ, y) = λ0 +
∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y, z ∈ Rd, (2.52)

where λ0 is some non-negative constant and φ : Rd → R is some non-negative measurable
even function such that

Cφ∞ := ess sup
x∈Rd

φ (x) <∞. (2.53)

Under conditions above, it is easy to check that condition (2.11) holds. Indeed∣∣∣λ(2)(η, y)
∣∣∣ ≤ λ0 + |η| ‖φ‖∞ <∞, for any η ∈ Γ0, y ∈ Rd. (2.54)

In this case, by using the results in Example 1.18, we can rewrite this interaction in the
following way

λ(2) (η, y) = λ0 +
∑
x′∈η

φ
(
x′ − y

)
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= (Kλ0eλ (0, ·)) (η) + (Kφ (· − y)) (η)

= (K (λ0eλ (0, ·) + φ (· − y))) (η) , η ∈ Γ0, y ∈ Rd,

where, cf. Example 1.19,

eλ (0, η) = 0|η| =

®
0, if |η| ≥ 1,
1, if |η| = 0.

(2.55)

Similarly one has

λ(2) ((η \ ξ) ∪ ξ, y) = λ0 +
∑

x′∈(η\ξ)∪ξ
φ
(
x′ − y

)
= λ(2) (ξ, y) + (Kφ (· − y)) (η \ ξ) , ξ ⊂ η ∈ Γ0, y ∈ Rd.

Let us apply the inverse K-transform to it. By linearity we findÄ
K−1λ(2) (· ∪ ξ, y)

ä
(η \ ξ) =

Ä
K−1λ(2) (ξ, y)

ä
(η \ ξ) +

Ñ
K−1

∑
x′∈·

φ
(
x′ − y

)é
(η \ ξ) ,

for any ξ ⊂ η ∈ Γ0 and y ∈ Rd. Concerning the first term, we simply haveÄ
K−1λ(2) (ξ, y)

ä
(η \ ξ) = λ(2) (ξ, y)

Ä
K−11

ä
(η \ ξ) = λ(2) (ξ, y) 0|η\ξ|,

where we used the notation (2.55). On the other hand, the second term can be computed by
directly applying the definition of the K-transform, as a result we findÑ

K−1
∑
x′∈·

φ
(
x′ − y

)é
(η \ ξ) = φ

(
x′ − y

)
1Γ(1)

(
(η \ ξ) =

{
x′
})
.

By combing the last two equalities we findÄ
K−1λ(2) (· ∪ ξ, y)

ä
(η \ ξ) = λ(2) (ξ, y) 0|

η/ξ| + φ
(
x′ − y

)
1Γ(1)

(
(η \ ξ) =

{
x′
})
, (2.56)

for any ξ ⊂ η ∈ Γ0 and y ∈ Rd. Hence, according to the result of Proposition 2.12, for
interaction (2.52) the generator L̂RW for quasi-observables G ∈ Bbs(Γ̃0) is given byÄ

L̂RWG
ä

(η, y) =λ(2) (η, y)

ˆ
Rd

dz a (y − z) [G (η, z)−G (η, y)] +

∑
x′∈η

φ
(
x′ − y

)ˆ
Rd

dz a (y − z)
[
G
((
η \ x′

)
, z
)
−G

((
η \ x′

)
, y
)]
. (2.57)

Case III. Let us consider

λint(γ, y, z) := λ(3) (γ, z) = e−
∑

x′∈γ φ(x′−z), γ ∈ Γ, y, z ∈ Rd, (2.58)

where φ : Rd → R is some non-negative measurable even function. Clearly condition (2.11) is
again satisfied.

Analogously to Case I, cf. formula (2.50), we haveÄ
K−1λ(3) (· ∪ ξ, z)

ä
(η \ ξ) = λ(3) (ξ, z) eλ

Ä
e−φ(·−z) − 1, (η \ ξ)

ä
, (2.59)

for any ξ ⊂ η ∈ Γ0 and y ∈ Rd. Thus, according to the result of Proposition 2.12, for the
considered interaction the generator L̂RW for quasi-observables G ∈ Bbs(Γ̃0) has the formÄ
L̂RWG

ä
(η, y) =

∑
ξ⊂η

ˆ
Rd

dz a (y − z)λ(3) (ξ, z) eλ
Ä
e−φ(·−z) − 1, (η \ ξ)

ä
[G (ξ, z)−G (ξ, y)] .

(2.60)
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Case IV. Consider the interaction given by

λint(γ, y, z) := λ(2)(γ, z) = λ0 +
∑
x′∈γ

φ
(
x′ − z

)
, γ ∈ Γ, y, z ∈ Rd, (2.61)

where λ0 is some non-negative constant and φ : Rd → R is some non-negative bounded even
function in L∞(Rd) with

Cφ∞ := ‖φ‖∞ =

ˆ
Rd

dxφ (x) . (2.62)

One can check that condition (2.11) holds (compare to (2.54)). Moreover, according to (2.56),
we haveÄ

K−1λ(4) (· ∪ ξ, z)
ä

(η \ ξ) = λ(4) (ξ, z) 0|η\ξ| + φ
(
x′ − z

)
1Γ(1)

(
(η \ ξ) =

{
x′
})
, (2.63)

for any ξ ⊂ η ∈ Γ0 and y ∈ Rd. Thus, by using the result of Proposition 2.12 for the considered
interaction, the generator L̂RW for quasi-observables G ∈ Bbs(Γ̃0) has the formÄ

L̂RWG
ä

(η, y) =

ˆ
Rd

dz λ(4) (η, z) a (y − z) [G (η, z)−G (η, y)] +

ˆ
Rd

dz a (y − z)
∑
x′∈η

φ
(
x′ − z

) [
G
((
η \ x′

)
, z
)
−G

((
η \ x′

)
, y
)]
. (2.64)

2.2.2 Generator for correlation functions

As already discussed, the evolution of correlation functionals, k : Γ0 ×Rd → R+, is described
by the following hierarchy ®

∂
∂tkt =

Ä
L̂∗RE + L̂∗RW

ä
kt

kt|t=0 = k0
, t ≥ 0, (2.65)

where the operators L̂∗RE and L̂∗RW are the adjoint operators of L̂RE and L̂RW , respectively,
w.r.t. the duality (2.28), see (2.29).

The precise form of the operator L̂∗RE , associated to the environment, can be found in [60]
for different types of birth-and-death processes as well as hopping particles systems. Below
we formulate these general results.

Proposition 2.13. Let us consider an operator LRE as in (2.2) and such that conditions
(2.3)-(2.5) hold. Then the action of L̂∗RE on functions k ∈ Bbs(Γ̃0) is given byÄ

L̂∗REk
ä

(η, y) = −
∑
x∈η

ˆ
Γ0

dλ (ζ) k (ζ ∪ η, y)
Ä
K−1d (x, · ∪ η \ x)

ä
(ζ) +

∑
x∈η

ˆ
Γ0

dλ (ζ) k (ζ ∪ (η \ x) , y)
Ä
K−1b (x, · ∪ η \ x)

ä
(ζ) , (2.66)

where L̂∗REk is defined by (2.29).

Proposition 2.14. Let us consider an operator LRE as in (2.6) and such that conditions
(2.7)-(2.9) hold. Then the action of L̂∗RE on functions k ∈ Bbs(Γ̃0) is given byÄ

L̂∗REk
ä

(η, y) =
∑
x′∈η

ˆ
Rd

dx
ˆ

Γ0

dλ (ξ) k
(
ξ ∪ (η \ x′) ∪ x, y

) Ä
K−1cx,x′

(
· ∪ (η \ x′)

)ä
(ξ)−

ˆ
Γ0

dλ (ξ) , k (ξ ∪ η, y)
∑
x∈η

ˆ
Rd

dx′
Ä
K−1cx′,x

(
· ∪ (η \ x′)

)ä
(ξ) , (2.67)

where L̂∗REk is defined by (2.29).
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In the following proposition we compute explicitly the exact form of the operator L̂∗RW
for a generic interaction λint.

Proposition 2.15. Let us consider the RW of a jumping particle described by an operator
LRW as in equation (2.10) and such that condition (2.11) holds. Then the action of L̂∗RW on
functions k ∈ Bbs(Γ̃0) is given byÄ

L̂∗RWk
ä

(η, y) =

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dz a (y − z)
î
k (ζ ∪ η, z)

Ä
K−1λint (· ∪ η, z, y)

ä
(ζ)−

k (ζ ∪ η, y)
Ä
K−1λint (· ∪ η, y, z)

ä
(ζ)
ó
, (2.68)

where L̂∗RWk is defined by (2.29).

Proof. The operator L̂∗RW is defined through the identity

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RWG

ä
(η, y) k (η, y) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y)
Ä
L̂∗RWk

ä
(η, y) , (2.69)

for any G, k ∈ Bbs(Γ̃0). By using the result of Proposition 2.12, the double integral in the
l.h.s can be rewritten explicitly as

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RWG

ä
(η, y) k (η, y) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)


ˆ
Rd

dz a (y − z) k (η, y)
∑
ξ⊂η

[G (ξ, z)−G (ξ, y)]
Ä
K−1λint (· ∪ ξ, y, z)

ä
(η \ ξ)

 .
Using the Minlos formula (1.18) we obtain

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RWG

ä
(η, y) k (η, y) =

=

ˆ
Rd

dy
ˆ

Γ0

dλ (ξ)

ˆ
Γ0

dλ (η)

ˆ
Rd

dz a (y − z) k (η ∪ ξ, y)G (ξ, z)
Ä
K−1λint (· ∪ ξ, y, z)

ä
(η)−

ˆ
Rd

dy
ˆ

Γ0

dλ (ξ)

ˆ
Γ0

dλ (η)

ˆ
Rd

dz a (y − z) k (η ∪ ξ, y)G (ξ, y)
Ä
K−1λint (· ∪ ξ, y, z)

ä
(η) .

Note that in the first integral we exchange variables y ↔ z and write
ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RWG

ä
(η, y) k (η, y) =

=

ˆ
Rd

dy
ˆ

Γ0

dλ (η)G (η, y)

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dz a (y − z)×î
k (ζ ∪ η, z)

Ä
K−1λint (· ∪ η, z, y)

ä
(ζ)− k (ζ ∪ η, y)

Ä
K−1λint (· ∪ η, y, z)

ä
(ζ)
ó
.

Thus, by comparing the expression above with (2.69), we obtain the statement (2.38). To
conclude, let us note that the correctness of using (1.18) follows from the assumptions G, k ∈
Bbs(Γ0 × Rd) and (2.11), which make all integrals above to be finite.

Let us apply the result of the proposition above to each of the interactions I-IV in Sec-
tion 2.1.
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Case I. Let us consider the interaction

λint (γ, y, z) = λ(1)(γ, y) = e−
∑

x′∈γ φ(x′−y), γ ∈ Γ, y, z ∈ Rd,

defined as in (2.47). In this case we have (cf. (2.50)),Ä
K−1λ(1) (· ∪ η, y)

ä
(ζ) = λ(1) (η, y) eλ

Ä
e−φ(·−y) − 1, ζ

ä
,

for any η, ζ ∈ Γ0 and y ∈ Rd. Therefore, according to Proposition 2.15, the operator L̂∗RW for
k ∈ Bbs(Γ̃0) is given byÄ

L̂∗RWk
ä

(η, y) =

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dza (y − z)
î
k (ζ ∪ η, z)λ(1) (η, z) eλ

Ä
e−φ(·−z) − 1, ζ

ä
−

k (ζ ∪ η, y)λ(1) (η, y) eλ
Ä
e−φ(·−y) − 1, ζ

äó
.

(2.70)

Case II. Consider the interaction

λint (γ, y, z) = λ(2)(η, y) = λ0 +
∑
x′∈η

φ
(
x′ − y

)
, γ ∈ Γ, y, z ∈ Rd,

defined as in (2.52)-(2.53). In this case, see (2.56),Ä
K−1λ(2) (· ∪ η, y)

ä
(ζ) = λ(2) (η, y) 0|ζ| + 1Γ(1)

(
ζ =

{
x′
})
φ
(
x′ − y

)
,

for any η, ζ ∈ Γ0 and y ∈ Rd. Then, according to Proposition 2.15, the operator L̂∗RW for
k ∈ Bbs(Γ̃0) is given byÄ

L̂∗RWk
ä

(η, y) =

ˆ
Rd

dza (y − z)λ(2) (η, z) k (η, z) +

ˆ
Rd

dx′
ˆ
Rd

dz a (y − z) k
(
x′ ∪ η, z

)
φ
(
x′ − z

)
−

k (η, y)λ(2) (η, y)

ˆ
Rd

dza (y − z)−
ˆ
Rd

dx′
ˆ
Rd

d a (y − z) k
(
x′ ∪ η, y

)
φ
(
x′ − y

)
. (2.71)

Case III. For λint (γ, y, z) = λ(3)(η, z), γ ∈ Γ, y, z ∈ Rd, as in (2.58) we have, see (2.59),Ä
K−1λ(3) (· ∪ η, z)

ä
(ζ) = λ(3) (η, z) eλ

Ä
e−φ(·−z) − 1, ζ

ä
, η ∈ Γ, z ∈ Rd.

Then, according to Proposition 2.15, in this case the operator L̂∗RW for k ∈ Bbs(Γ̃0) is given
by Ä

L̂∗RWk
ä

(η, y) =

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dza (y − z)
î
k (ζ ∪ η, z)λ(3) (η, y) eλ

Ä
e−φ(·−y) − 1, ζ

ä
−

k (ζ ∪ η, y)λ(3) (η, z) eλ
Ä
e−φ(·−z) − 1, ζ

äó
.

(2.72)
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Case IV. Consider the interaction λint (γ, y, z) = λ(4)(η, z) defined as in (2.61)-(2.62). In
correspondence, we have (cf. (2.63)),Ä

K−1λ(4) (· ∪ η, z)
ä

(ζ) = λ(4) (η, z) 0|ζ| + 1Γ(1)

(
ζ =

{
x′
})
φ
(
x′ − z

)
, γ ∈ Γ, z ∈ Rd.

Then, by Proposition 2.15 the operator L̂∗RW for k ∈ Bbs(Γ̃0) is given byÄ
L̂∗RWk

ä
(η, y) =λ(4) (η, y)

ˆ
Rd

dza (y − z) k (η, z) +

ˆ
Rd

dx′
ˆ
Rd

dz a (y − z) k
(
x′ ∪ η, z

)
φ
(
x′ − y

)
−

k (η, y)

ˆ
Rd

dz a (y − z)λ(4) (η, z)−
ˆ
Rd

dx′
ˆ
Rd

dza (y − z) k
(
x′ ∪ η, y

)
φ
(
x′ − z

)
. (2.73)

2.3 Kinetic description of the model: mesoscopic limit

In the previous section we gave an effective description of the (non-equilibrium) stochastic
dynamics for models of RWREs in continuum in terms of hierarchical equations for correlation
functions. As we have already discussed, the study of existence and uniqueness of solutions to
these hierarchical chain-equations is a delicate problem that can be resolved by using different
techniques, which will be considered in next chapters.

In order to get information about the evolution of the system we can consider a proper
scaling limit of the stochastic dynamics and derive the corresponding kinetic equations. In [51]
the authors proposed a general scheme to derive the Vlasov-type equations for Markov dy-
namics of interacting particle systems on configuration spaces. This approach is based on a
scaling of the hierarchy of correlation functions which takes into account the influence of weak
long-range interactions. It has been realized for several models, see e.g. [10, 45, 54, 58]. In
this section we apply the general scheme proposed in [51] to study the mesoscopic limit for a
RWRE described by the heuristic generator

(LF ) (γ, y) = (LREF ) (γ, y) + (LRWF ) (γ, y) , (2.74)

where the operator LRW := LRW (λint) is defined as in (2.10) and LRE is of the form (2.2)
or (2.6), depending on which model of environment we want to consider. In order to keep
the discussion as general as possible, in the following we denote LRE := LRE(b, d, c). For the
moment we aim to present an heuristic description of this mesoscopic scaling in the general
case, postponing a more rigorous analysis to Section 2.3.1.

For RWREs the evolution of correlation functional, kt : Γ0 × Rd → R+, is described by
the hierarchical equations: 2® dkt

dt =
Ä
L4RE + L4RW

ä
kt

kt|t=0 = k0
, t ≥ 0, (2.75)

where the generator L4 = L4RE +L4RW is defined as in Section 2.2.2. The construction of the
Vlasov-type scaling of the hierarchy (2.75) can be summarized in three main steps.

As the first step, we chose an initial function k0,ε in (2.75) which has a singularity in ε,
namely such that

lim
ε→0

ε|η|k0,ε (η, y) = r0 (η, y) , η ∈ Γ0, y ∈ Rd, ε > 0, (2.76)

2Note that, for brevity, in this section we will use the notation L4 := L̂∗.
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for some (correlation) function r0. Intuitively, we are considering initial states of the system
where the particle of RE becomes more and more dense (singular) as the parameter ε goes to
zero. It is convenient to introduce the renormalized correlation functional defined as

k0,ε,ren(η, y) := ε|η|k0,ε (η, y) = (Rεk0,ε) (η, y) , (2.77)

where for any ε > 0 we have defined the mapping of functions on Γ0 × Rd

(Rεk0,ε) (η, y) := ε|η|k0,ε (η, y) . (2.78)

Note that this mapping is self-dual w.r.t. duality (2.28). Moreover, R−1
ε = Rε−1 .

In correspondence with the previous scaling of initial condition, as the second step, we
rescale also the generator L4 in (2.75):

L4 7−→ L4ε , ε > 0. (2.79)

The family of operators L4ε , ε > 0, is being built by a proper scaling of the generator L,
namely

L = LRE (b, d, c) + LRW (λ) 7−→ Lε : = LRE,ε (b, d, c) + LRW,ε (λint)

= LRE
Ä
ε−1bε, dε, cε

ä
+ LRW (λint,ε) . (2.80)

Clearly the choice of the scaling (2.80) depends on the model under consideration: intuitively,
the idea is to reduce the strength of the interaction among all particles (weak-coupling limit).
The precise form of the rescaled rates bε, dε and cε may be found in [51] for different models,
while, the rescaled interaction λε := λint,ε will be discussed later on in each of the cases I-IV
of Section 2.1.

As a result of the two scalings defined above, we arrive to a "renormalized version" of the
hierarchy (2.75), namely® dkt,ε,ren

dt =
Ä
L4RE,ε,ren + L4RW,ε,ren

ä
kt,ε,ren

kt,ε,ren|t=0 = k0,ε,ren
, t ≥ 0, (2.81)

where we have defined the renormalized generator

L4ε,ren = Rε−1L4ε Rε = Rε−1L4RE,εRε +Rε−1L4RW,εRε =: L4RE,ε,ren + L4RW,ε,ren, (2.82)

and (cf. (2.77))
kt,ε,ren (η, y) := ε|η|kt,ε (η, y) , η ∈ Γ0, y ∈ Rd. (2.83)

The explicit expression for the operators L4RE,ε,ren L4RW,ε,ren will be given later in Proposi-
tion 2.17, 2.18 and 2.19.

We are interested in the limit for ε going to zero of the renormalized hierarchy (2.81).
Then, in the third and last step, we consider this limit by imposing two conditions. First,
we require that the scaling preserves the order of the singularity of the initial function k0,ε

during the evolution. Namely, given (2.83) for any t > 0 we impose that

lim
ε→0

kt,ε,ren (η, y) = rt (η, y) , η ∈ Γ0, y ∈ Rd. (2.84)

The second condition we want to demand, it is the so-called chaos-preservation property of
the limiting evolution. More precisely, if at time t = 0 we start from an (uncorrelated) state,

r0 (η, y) =

Ñ∏
x∈η

ρ0(x)

é
r0 (y) , (2.85)
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then, at time t > 0 we want still to have a state of the same type,

rt (η, y) =

Ñ∏
x∈η

ρt(x)

é
rt (y) , (2.86)

for any η ∈ Γ0 and y ∈ Rd. In applications the functions ρ, r : Rd → R may be interpreted as
the density distribution of RE and density distribution of RW, respectively.

Informally, under condition (2.84), we want to show that the solution of the renormalized
hierarchy (2.81) converges (in a proper sense) to some function rt (η, y) which is solution to
the Vlasov hierarchy ® drt

dt =
Ä
L4RE,V + L4RW,V

ä
rt

rt|t=0 = r0
, t ≥ 0, (2.87)

where
L4V = lim

ε→0
L4ε,ren = lim

ε→0
L4RE,ε,ren + lim

ε→0
L4RW,ε,ren =: L4RE,V + L4RW,V . (2.88)

Note that the limiting hierarchy (2.87) can be obtained (point-wise) under general conditions,
see Proposition 2.20, 2.21 and 2.22 for details.

Finally, if the limiting evolution satisfies the chaos preservation property (2.85)-(2.86), it
follows that Vlasov hierarchy (2.87) with initial condition (2.85) has a solution of the form
(2.86), where the pair of functions (ρt, rt) are solutions of a system of coupled differential
equations

∂

∂t
ρt (x) = (VREρt) (x) , (2.89a)

∂

∂t
rt (y) = (VRW (ρt) rt) (y) , (2.89b)

which we will call the Vlasov equations of RWRE. Here, VRE and VRW (ρt) are two operators
acting on a proper space of functions on Rd.

The kinetic equations (2.89a) and (2.89b) will be derived point-wise in Lemma 2.25.(i), for
the moment let us just stress some remarkable common features. The first equation (2.89a),
describing the evolution of the density of RE ρt, is non-linear, but independent of the RW.
Whereas, the second equation (2.89b), describing the evolution of the density distribution of
the RW rt, is linear and depends on the solution of the first equation, ρt, due to the presence
of the interaction λint. In our model of RWRE, Vlasov equations (2.89a)-(2.89b) have a nice
probabilistic interpretation. More precisely, cf. Lemma 2.25.ii, equation (2.89b) describes a
non-autonomous RW with the heuristic generatorÄ

LRW (t)f
ä

(y) :=
Ä
LRW (λt)f

ä
(y)

=

ˆ
Rd

dzλt (y, z) a (y − z) [f (z)− f (y)] , (2.90)

for a proper class of functions f : Rd → R, which we call reduced observables. The function
λt(y, z) depends on the solution of (2.89a) and represents some effective interaction which
approximates the interaction with the particles of RE, see formula (2.126) in next section.

Remark 2.16. It may be convenient to consider the Vlasov-type scaling in terms of quasi-
observables G, which are the pre-duals of correlation functionals k w.r.t. (2.28). By means of
the scaling (2.80), we can define the rescaled generator for quasi-observables as

L̂ε = K−1LεK = K−1LRE,εK +K−1LRW,εK =: L̂RE,ε + L̂RW,ε. (2.91)
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Then, since the map Rε in (2.78) is self-dual w.r.t. (2.28), we can define the renormalized
hierarchy for quasi-observables® dGt

dt =
Ä
L̂RE,ε,ren + L̂RW,ε,ren

ä
Gt

Gt|t=0 = G0
, t ≥ 0, (2.92)

with

L̂ε,ren = Rε−1L̂εRε = Rε−1L̂RE,εRε +Rε−1L̂RW,εRε =: L̂RE,ε,ren + L̂RW,ε,ren, (2.93)

and the corresponding limiting hierarchy® dGt
dt =

Ä
L̂RE,V + L̂RW,V

ä
Gt

Gt|t=0 = G0
, t ≥ 0, (2.94)

where
L̂V = lim

ε→0
L̂ε,ren = lim

ε→0
L̂RE,ε,ren + lim

ε→0
L̂RW,ε,ren =: L̂RE,V + L̂RW,V . (2.95)

2.3.1 Derivation of Vlasov equations

In this section we apply the general scheme of the Vlasov-type scaling to a wide class of
RWREs described by the heuristic generator (2.74). We state general conditions on the
parameter of the model which give a point-wise convergence of the rescaled generator to
the limiting generator of the releated hierarchies. Finally, we derive informally the Vlasov
equations for the considered RWREs.

For any ε > 0 using the scaling (2.76)-(2.80) we can define the renormalized hierarchy for
correlation functions given by (2.81) with the generators

L4RE,ε,ren := Rε−1L4RE,εRε and L4RW,ε,ren := Rε−1L4RW,εRε. (2.96)

The explicit expression for the operator L4RE,ε,ren can be found in [51] for different types of
birth-and-death processes and hopping particle systems. Below we describe general results.

Proposition 2.17. Let us consider an operator LRE as in (2.2). Assume that we have some
scaling of birth and death rates bε and dε, respectively, such that conditions (2.3)-(2.5) are
satisfied for any ε > 0. Then, for any k ∈ Bbs(Γ̃0), L4RE,ε,renk ∈ L0(Γ̃0) andÄ

L4RE,ε,renk
ä

(η, y) =−
∑
x∈η

ˆ
Γ0

dλ (ξ) k (ξ ∪ η, y) ε−|ξ|
Ä
K−1dε (x, · ∪ η \ x)

ä
(ξ) +

∑
x∈η

ˆ
Γ0

dλ (ξ) k (ξ ∪ (η \ x) , y) ε−|ξ|
Ä
K−1bε (x, · ∪ η \ x)

ä
(ξ) . (2.97)

Moreover, for any G ∈ Bbs(Γ̃0) it follows that L̂RE,ε,renG ∈ L0(Γ̃0), whereÄ
L̂RE,ε,renG

ä
(η, y) =−

∑
ξ⊂η

ε−|η\ξ|G (ξ, y)
∑
x∈ξ

Ä
K−1dε (x, · ∪ (ξ \ x))

ä
(η \ ξ) +

∑
ξ⊂η

ˆ
Rd

dx ε−|η\ξ|G (ξ ∪ x, y)
Ä
K−1bε (x, · ∪ ξ)

ä
(η \ ξ) . (2.98)
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Proposition 2.18. Let us consider an operator LRE as in (2.6). Assume that we have some
scaling of the jump rate cε such that conditions (2.7)-(2.9) are satisfied for any ε > 0. Then,
for any k ∈ Bbs(Γ̃0), L4RE,ε,renk ∈ L0(Γ̃0) andÄ

L4RE,ε,renk
ä

(η, y) =

=
∑
x′∈η

ˆ
Rd

dx
ˆ

Γ0

dλ (ξ) k
(
ξ ∪ (η \ x′) ∪ x, y

)
ε−|ξ|

Ä
K−1cx,x′

(
· ∪ (η \ x′)

)ä
(ξ)−

ˆ
Γ0

dλ (ξ) k (ξ ∪ η, y)
∑
x∈η

ˆ
Rd

dx′ε−|ξ|
Ä
K−1cx′,x

(
· ∪ (η \ x′)

)ä
(ξ) . (2.99)

Moreover, for any G ∈ Bbs(Γ̃0) it follows that L̂RE,ε,renG ∈ L0(Γ̃0), whereÄ
L̂RE,ε,renG

ä
(η, y) =

ˆ
Rd

dx′
∑
ξ⊂η

∑
x∈ξ

ε−|
η/ξ| [G (ξ \ x ∪ x′, y)−G (ξ, y)

]
×Ä

K−1cx,x′ (· ∪ (ξ \ x))
ä

(η \ ξ) . (2.100)

In the following proposition we present the expression of the renormalized the operators
L4RW,ε,ren and L̂RW,ε,ren for a general rescaled interaction λε.

Proposition 2.19. Let us consider the RW of a jumping particle described by an operator
LRW as in (2.10). Assume that we have some scaling of the interaction λε ≥ 0 such that
condition (2.11) holds for any ε > 0. Then, for any k ∈ Bbs(Γ̃0), L4RW,ε,renk ∈ L0(Γ̃0) andÄ
L4RW,ε,renk

ä
(η, y) =

ˆ
Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) ε−|ξ|
î
k (ξ ∪ η, z)

Ä
K−1λε (· ∪ η, z, y)

ä
(ξ)−

k (ξ ∪ η, y)
Ä
K−1λε (· ∪ η, y, z)

ä
(ξ)
ó
.

(2.101)

Moreover, for any G ∈ Bbs(Γ̃0) one has L4RW,ε,renG ∈ L0(Γ̃0), whereÄ
L̂RW,ε,renG

ä
(η, y) =

ˆ
Rd

dza (y − z)
∑
ξ⊂η

ε−|
η/ξ| (G (ξ, z)−G (ξ, y))

Ä
K−1λε (· ∪ ξ, y, z)

ä
(η \ ξ) .

(2.102)

Proof. Let us first compute the renormalized operator for correlation function L4RW,ε,ren. Ac-
cording to Proposition 2.15, by means of the scaling (2.80), we haveÄ

L4RW,ε,renk
ä

(η, y) =

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dz a (y − z)
î
k (ζ ∪ η, z)

Ä
K−1

0 λε (· ∪ η, z, y)
ä

(ζ)−

k (ζ ∪ η, y)
Ä
K−1

0 λε (· ∪ η, y, z)
ä

(ζ)
ó
.

For Rε−1k we can write it asÄ
L4RW,ε,renRε−1k

ä
(η, y) =

=

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dz a (y − z) ε−|ζ∪η|
î
k (ζ ∪ η, z)

Ä
K−1

0 λε (· ∪ η, z, y)
ä

(ζ)−

k (ζ ∪ η, y)
Ä
K−1

0 λε (· ∪ η, y, z)
ä

(ζ)
ó
.
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Finally by applying the map Rε to it, since η ∩ ζ = ∅ for λ-a.a. ζ ∈ Γ0, we obtainÄ
L4RW,ε,renk

ä
(η, y) =

Ä
RεL

4
RW,εRε−1k

ä
(η, y)

=

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dz a (y − z) ε−|ζ|
î
k (ζ ∪ η, z)

Ä
K−1

0 λε (· ∪ η, z, y)
ä

(ζ)−

k (ζ ∪ η, y)
Ä
K−1

0 λε (· ∪ η, y, z)
ä

(ζ)
ó
,

as we wanted to show. Similarly, using Proposition 2.12 we can compute the renormalized
generator for quasi-observables in (2.102).

Next, we want to show that for ε going to zero the generators in the renormalized hierar-
chy (2.81) converge point-wise to the generators in the Vlasov hierarchy (2.87), namely

L4RE,V := lim
ε→0

L4RE,ε,ren, and L4RW,V := lim
ε→0

L4RW,ε,ren. (2.103)

Let us stress that, at present, we are considering a general scaling of the rates bε, dε, cε and
interaction λε. However, in order to calculate the two limits above, we need to impose some
assumptions on the limiting behavior (in ε) of these rescaled parameters, which should be
verified in each concrete model. In the next two propositions we give the precise expression
for the limiting operator L4RE,V for a birth-and-death process and hopping particle system,
respectively. These general results, as well as applications in specific models, can be found
in [51].

Proposition 2.20. Let us consider the operators L4RE,ε,ren and L̂RE,ε,ren, ε > 0, given by
(2.97) and (2.98), respectively. Suppose that for all η, ξ ∈ Γ0 and a.a. x ∈ Rd the following
limits exist and coincide

lim
ε→0

ε−|ξ|
Ä
K−1dε (x, · ∪ η)

ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1dε (x, ·)

ä
(ξ) =: DV

x (ξ) , (2.104)

lim
ε→0

ε−|ξ|
Ä
K−1bε (x, · ∪ η)

ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1bε (x, ·)

ä
(ξ) =: BV

x (ξ) (2.105)

and let DV
x (ξ) and BV

x (ξ) satisfy conditions to (2.3)-(2.5). Then, for any k,G ∈ Bbs(Γ̃0) the
following formulas hold:Ä
L4RE,V k

ä
(η, y) = −

∑
x∈η

ˆ
Γ0

dλ (ξ) k (ξ ∪ η, y)DV
x (ξ) +

∑
x∈η

ˆ
Γ0

dλ (ξ) k (ξ ∪ (η \ x) , y)BV
x (ξ)

(2.106)
andÄ

L̂RE,VG
ä

(η, y) = −
∑
ξ⊂η

G (ξ, y)
∑
x∈ξ

DV
x (η \ ξ) +

∑
ξ⊂η

ˆ
Rd

dxG (ξ ∪ x, y)BV
x (η \ ξ) . (2.107)

Moreover, L4RE,V k, L̂RE,VG ∈ L0(Γ̃0).

Proposition 2.21. Let us consider the operators L4RE,ε,ren and L̂RE,ε,ren, ε > 0, given by
(2.99) and (2.100), respectively. Suppose that for all η, ξ ∈ Γ0 and a.a. x, x′ ∈ Rd the
following limits exist and coincide

lim
ε→0

ε−|ξ|
Ä
K−1cε

(
· ∪ η, x, x′

)ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1cε

(
·, x, x′

)ä
(ξ) =: CVx,x′ (ξ) (2.108)

and let CVx,x′(ξ) satisfies conditions (2.7)-(2.9). Then, for any k,G ∈ Bbs(Γ̃0)) we haveÄ
L4RE,V k

ä
(η, y) =

∑
x′∈η

ˆ
Rd

dx
ˆ

Γ0

dλ (ξ) k
(
ξ ∪ (η \ x′) ∪ x, y

)
CVx,x′ (ξ)
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−
ˆ

Γ0

dλ (ξ) k (ξ ∪ η, y)
∑
x∈η

ˆ
Rd

dx′CVx′,x (ξ) (2.109)

and Ä
L̂RE,VG

ä
(η, y) =

ˆ
Rd

dx′
∑
ξ⊂η

∑
x∈ξ

[
G
(
ξ \ x ∪ x′, y

)
−G (ξ, y)

]
CVx′,x (η \ ξ) . (2.110)

Moreover, L4RE,V k, L̂RE,VG ∈ L0(Γ̃0).

Now, under some general conditions on the rescaled interaction λε we derive the explicit
form for the limiting operators L4RW,V and L̂RW,V .

Proposition 2.22. Let us consider the operators L4RW,ε,ren and L̂RW,ε,ren, ε > 0, given by
(2.101) and (2.102), respectively. Suppose that for all η, ξ ∈ Γ0 and a.a. y, z ∈ Rd the
following limits exist and coincide

lim
ε→0

ε−|ξ|
Ä
K−1λε (· ∪ η, y, z)

ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1λε (·, y, z)

ä
(ξ) =: AV (ξ, y, z) (2.111)

with
sup
z∈Rd

A (η, y, z) <∞, ∀η ∈ Γ0, ∀y ∈ Rd. (2.112)

Then, for any k,G ∈ Bbs(Γ̃0) the following formulas holdÄ
L4RW,V k

ä
(η, y) =

ˆ
Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) [k (ξ ∪ η, z)AV (ξ, z, y)− k (ξ ∪ η, y)AV (ξ, y, z)]

(2.113)

and Ä
L̂RW,VG

ä
(η, y) =

∑
ξ⊂η

ˆ
Rd

dz a (y − z) (G (ξ, z)−G (ξ, y))AV (η \ ξ, y, z) . (2.114)

Moreover, L4RW,V k, L̂RW,VG ∈ B0(Γ̃0).

Proof. The limiting generator L4RW,V is defined asÄ
L4RW,V k

ä
(η, y) = lim

ε→0

Ä
L4RW,ε,renk

ä
(η, y) .

By (2.101) we can write this limit explicitly asÄ
L4RW,V k

ä
(η, y) =

ˆ
Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z)
ï
k (ξ ∪ η, z) lim

ε→0
ε−|ξ|

Ä
K−1

0 λε (· ∪ η, z, y)
ä

(ξ)−

k (ξ ∪ η, y) lim
ε→0

ε−|ξ|
Ä
K−1

0 λε (· ∪ η, y, z)
ä

(ξ)

ò
.

Hence, assumption (2.111) yields (2.113). Similarly, starting from (2.102), one can de-
rive (2.114).

Finally, let us show that the Vlasov hierarchy (2.87), specified by Proposition 2.20, 2.21
and 2.22, has the chaos preservation property and, then, derive the corresponding kinetic
equations. Firstly, let us present the Vlasov equations for a generic birth-and-death dynamics
and hopping particle system, see [51,54] and reference therein for details.
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Proposition 2.23. Let us consider the generator L4bad,V defined as in (2.106). Assume that
the Vlasov equation

∂ρt (x)

∂t
= −ρt (x)

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)D
V
x (ξ) +

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)B
V
x (ξ) , (2.115)

has a point-wise solution ρt : Rd → R, t ≥ 0. Then, for any time t ≥ 0 the evolution equation®
∂
∂tkt (η) =

Ä
L4bad,V kt

ä
(η)

kt (η)|t=0 = eλ(ρ0, η)
, kt : Γ0 → R, (2.116)

has a solution of the form kt = eλ(ρt). Namely,

∂

∂t
eλ(ρt, η) =

Ä
L4bad,V eλ(ρt, ·)

ä
(η) , η ∈ Γ0, t ≥ 0. (2.117)

Proposition 2.24. Let us consider a generator L4hp of the form (2.109). Assume that the
Vlasov equation

∂ρt (x)

∂t
=

ˆ
Rd

dx′ρt
(
x′
)ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)C
V
x′,x (ξ)−

ρt (x)

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dx′eλ (ρt, ξ)C
V
x,x′ (ξ) , (2.118)

has a point-wise solution ρt : Rd → R, t ≥ 0. Then, for any time t ≥ 0 the evolution equation®
∂
∂tkt (η) =

Ä
L4hp,V kt

ä
(η)

kt (η)|t=0 = eλ(ρ0, η)k0 (η)
, kt : Γ0 → R, (2.119)

has a solution of the form kt = eλ(ρt). Namely,

∂

∂t
eλ(ρt, η) =

Ä
L4hp,V eλ(ρt, ·)

ä
(η) , η ∈ Γ0, t ≥ 0. (2.120)

Next, we derive the Vlasov equations for RWRE described by the limiting generator
L4V := L4RE,V + L4RW,V , where L

4
RW,V is given by (2.113) and L4RE,V is of the form (2.106) or

(2.109). According to results of Proposition 2.23 and 2.24, in order to keep the discuss as
general as possible, we assume that for any η ∈ Γ0 and t ≥ 0

∂

∂t
eλ(ρt, η) =

Ä
L4RE,V eλ(ρt, ·)

ä
(η) , (2.121)

where ρt : Rd → R is a point-wise solution to the kinetic equation

∂

∂t
ρt (x) = (VREρt) (x) , t ≥ 0. (2.122)

Lemma 2.25. Let us consider the generator L4RW,V defined as in (2.113) and let L4RE,V be
an operator such that conditions (2.121) and (2.122) hold.

(i) Assume that the Vlasov equation

∂rt (y)

∂t
=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dz a (y − z) [rt (z)AV (ξ, z, y)− rt (y)AV (ξ, y, z)] ,

(2.123)
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has a point-wise solution rt : Rd → R, t ≥ 0. Then, for any time t ≥ 0 the limiting
Vlasov hierarchy (2.87), with initial condition of the form k0(η, y) = eλ(ρ0, η)r0(y), has
a solution of the form kt = eλ(ρt, η)rt(y) and

∂

∂t
[eλ(ρt, η)rt(y)] =

Ä
[L4RE,V + L4RW,V ]eλ(ρt, ·)rt

ä
(η, y) , (2.124)

for any η ∈ Γ0, y ∈ Rd and t ≥ 0.

(ii) The system of Vlasov equations (2.122)-(2.123) describes a non-autonomous RW with
heuristic generator LRW (t) acting on proper functions f : Rd → R byÄ

LRW (t)f
ä

(y) =

ˆ
Rd

dzλt (y, z) a (y − z) [f (z)− f (y)] , (2.125)

where
λt (y, z) =

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)AV (ξ, y, z) , t ≥ 0, (2.126)

and ρt (x) is solution to (2.122).

Remark 2.26. The Vlasov equation (2.123) can be rewritten in terms of the effective inter-
action (2.126) as follow

∂rt (y)

∂t
=

ˆ
Rd

dz a (y − z)
î
rt (z)λt(z, y)− rt (y)λt(y, z)

ó
.

Proof of (i). In order to derive the Vlasov equations we need to check that, if ρt and rt satisfies
(2.122) and (2.123), then

∂

∂t
[eλ(ρt, η)rt (y)] =

Ä
L4RE,V eλ(ρt, ·)rt (·)

ä
(η, y) +

Ä
L4RW,V eλ(ρt, ·)rt (·)

ä
(η, y) , (2.127)

for any η ∈ Γ0 and y ∈ Rd. By using the product rule of derivatives, sinceÄ
L4RE,V eλ(ρt)rt

ä
(η, y) = rt (y)

Ä
L4RE,V eλ(ρt, ·)

ä
(η) ,

we can rewrite (2.127) explicitly as

rt (y)

ï
∂

∂t
eλ(ρt, η)

ò
+ eλ(ρt, η)

∂rt (y)

∂t
=rt (y)

Ä
L4RE,V eλ(ρt, ·)

ä
(η) +Ä

L4RW,V eλ(ρt, ·)rt (·)
ä

(η, y) . (2.128)

Note that, under hypothesis (2.121), this condition is equivalent to

eλ(ρt, η)
∂rt (y)

∂t
=
Ä
L4RW,V eλ(ρt, ·)rt (·)

ä
(η, y) . (2.129)

Then, by using the result of Proposition 2.22, one has

eλ(ρt, η)
∂rt (y)

∂t
=

=

ˆ
Γ0

dλ (ξ)

ˆ
Rd

dza (y − z) eλ(ρt, ξ ∪ η) [rt (z)AV (ξ, z, y)− rt (y)AV (ξ, y, z)]

= eλ(ρt, η)

ˆ
Γ0

dλ (ξ) eλ(ρt, ξ)

ˆ
Rd

dza (y − z) [rt (z)AV (ξ, z, y)− rt (y)AV (ξ, y, z)] ,

(2.130)

where in the last step we used the fact that ξ ∩ η = ∅ for λ-a.a. ξ ∈ Γ0 and the identity
eλ(f, ξ ∪ η) = eλ(f, ξ)eλ(f, η). Finally, we can easily deduce that (2.130) is satisfied if rt
satisfies (2.123).
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Proof of (ii). The kinetic equation (2.123) can be seen as the Fokker-Planck equation for the
density rt. We rewrite it formally as

∂rt (y)

∂t
=
Ä
L
∗
RW (t)rt

ä
(y) , t ≥ 0, (2.131)

where the operator L∗RW (t) is given byÄ
L
∗
RW (t)rt

ä
(y) :=

ˆ
Rd

dz a (y − z)
î
rt (z)λt(z, y)− rt (y)λt(y, z)

ó
, (2.132)

with λt defined as in (2.126). Next, by using the duality between functions and densities on
Rd, defined by the pairing

〈f, p〉 =

ˆ
Rd
f (x) p (x) dx, (2.133)

we can derive the corresponding backward Kolmogorov equation for (reduced) observables
ft : Rd → R,

∂ft (y)

∂t
=
Ä
LRW (t)ft

ä
(y) , t ≥ 0, (2.134)

where LRW (t) is the pre-dual operator to L∗RW (t) w.r.t. the pairing (2.133), namely

〈LRW (t)f, r〉 = 〈f, L∗RW (t)r〉. (2.135)

By using (2.132), the r.h.s. of the above identity can be written explicitly as

〈f, L∗RW (t)r〉 =

ˆ
Rd

dy f (y)

ˆ
Rd

dz rt (z) a (y − z)λt (z, y)−
ˆ
Rd

dy f (y) rt (y)

ˆ
Rd

dz a (y − z)λt (y, z) .

In the first integral in the r.h.s. we can just exchange y with z to obtain

〈f, L∗RW (t)r〉 =

ˆ
Rd

dy rt (y)

ˆ
Rd

dz a (y − z)λt (y, z) [f (z)− f (y)] . (2.136)

Finally, comparing this expression with the l.h.s. of (2.135), we obtain the desired result.

Remark 2.27.

(i) In this work we aim to study the Vlasov-type scaling in the Banach spaces K∞C and
K1
C , defined in (2.31) and (2.32), respectively. In particular, we discuss the existence

of the renormalized and the limiting evolutions, see equations (2.81) and (2.87), as well
as the convergence for the solutions of the considered hierarchies. This analysis can
be performed by using one the three methods explained at the end of Section 2.2, see
also [45, 54,61] and references therein.

(ii) The question about existence and uniqueness of solutions of Vlasov equations shall
be considered as a separated problem. The space of these solutions depends on the
class of correlation functions that has been considered. In particular, if k ∈ KqC , with
q =∞ or 1, then, ρ ∈ L∞ and r ∈ Lq. In this thesis we will study existence and unique-
ness problem of these equations and prove some uniform estimate of their solutions.
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2.3.2 Examples of Vlasov equations

In this section, we present the explicit form of the Vlasov equations of RWRE for each of the
interaction I-IV introduced in Section 2.1. In what follows we alway assume that the density
of particles of RE, ρt : Rd → R, is the solution of some Vlasov-type equation given by

∂

∂t
ρt (x) = (VREρ) (x) , t ≥ 0. (2.137)

Clearly, the exact form of this equation depends on the model of RE one is considering, cf.
(2.115) and (2.118).

Case I. Let us consider the interaction λint = λ(1) defined by (2.47). For any ε > 0 we
consider the following scaling of λ(1),

λ(1)
ε (γ, y) := e−ε

∑
x′∈γ φ(x′−y) = eλ

Ä
e−εφ(·−z), γ

ä
, (2.138)

for any γ ∈ Γ and y ∈ Rd. In correspondence to such a scaling, analogously to (2.50), we haveÄ
K−1λ(1)

ε (· ∪ ξ, y)
ä

(η) = λ(1)
ε (ξ, y) eλ

Ä
e−εφ(·−y) − 1, η

ä
(2.139)

and letting ε go to zero, one obtains

A
(1)
V (η, y) := lim

ε→0
ε−|η|

Ä
K−1λ(1)

ε (· ∪ ξ, y)
ä

(η)

= lim
ε→0

e−ε
∑

x∈ξ φ(x−y)eλ

Ç
e−εφ(·−y) − 1

ε
, η

å
= eλ (−φ (· − y) , η) , (2.140)

for all η, ξ ∈ Γ0 and a.a. y ∈ Rd. Note that in the last step we used the identity

lim
ε→0

eεf − 1

ε
= f, f > 0. (2.141)

In this case, we can define the effective interaction (compare to (2.126)),

λ
(1)
t (y) :=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)A
(1)
V (ξ, y)

= e−
´
Rd dx′ρt(x′)φ(x′−y), y ∈ Rd. (2.142)

Then, according to Remark 2.26, the corresponding Vlasov equation can be written as

∂rt
∂t

= −〈a〉e−(ρt∗φ)rt +
ÄÄ
e−(ρt∗φ)rt

ä
∗ a
ä
, (2.143)

where we have defined

〈a〉 :=

ˆ
Rd

dz a (z) . (2.144)

Here and below, the symbol ∗ indicates the usual notion of convolution on Rd, namely

(f ∗ g) (x) =

ˆ
Rd
f
(
x′
)
g
(
x′ − x

)
dx, f, g ∈ Rd.
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Case II. Let us consider the interaction λ(2) defined as in (2.52)-(2.53). For any ε > 0 we
rescale this interaction as follows

λ(2)
ε (γ, y) := λ0 + ε

∑
x′∈γ

φ
(
x′ − y

)
, (2.145)

for any γ ∈ Γ and y ∈ Rd. In correspondence to such a scaling, analogously to (2.56), we haveÄ
K−1

0 λ(2)
ε (· ∪ ξ, y)

ä
(η) = λ(2)

ε (ξ, y) 0|η| + εφ
(
x′ − y

)
1Γ(1)

(
η =

{
x′
})

(2.146)

and considering the limit for ε going to zero, one finds

A
(2)
V (η, y) := lim

ε→0
ε−|η|

Ä
K−1λ(2)

ε (· ∪ ξ, y)
ä

(η)

= lim
ε→0

λ00|η| + ε
∑
x∈ξ

φ (x− y) 0|η| + ε−|η|εφ
(
x′ − y

)
1Γ(1)

(
η =

{
x′
})

= λ00|η| + φ
(
x′ − y

)
1Γ(1)

(
η =

{
x′
})
, (2.147)

for all η, ξ ∈ Γ0 and a.a. y ∈ Rd. Then, one can define the effective interaction (compare
to (2.126)),

λ
(2)
t (y) :=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)A
(2)
V (ξ, y)

=λ0 +

ˆ
Rd

dx′ρt
(
x′
)
φ
(
x′ − y

)
, y ∈ Rd. (2.148)

and from Remark 2.26 the corresponding Vlasov equation can be written as

∂rt
∂t

= (a ∗ [rt (λ0 + (ρt ∗ φ))])− 〈a〉rt [λ0 + (ρt ∗ φ)] . (2.149)

Case III. For any ε > 0, we consider the following scaling of the interaction (2.58),

λ(3)
ε (γ, z) := e−ε

∑
x′∈γ φ(x′−z) = eλ

Ä
e−εφ(·−z), γ

ä
, (2.150)

for any γ ∈ Γ and z ∈ Rd. In correspondence, analogously to equations (2.139) and (2.140),
we find Ä

K−1λ(3)
ε (· ∪ ξ, z)

ä
(η) = λ(3)

ε (ξ, z) eλ
Ä
e−εφ(·−z) − 1, η

ä
(2.151)

and, letting ε go to zero,

A
(3)
V (η, z) := lim

ε→0
ε−|η|

Ä
K−1λ(3)

ε (· ∪ ξ, z)
ä

(η)

= eλ (−φ (· − z) , η) , (2.152)

for all η, ξ ∈ Γ0 and a.a. z ∈ Rd. We can introduce the effective interaction (cf. (2.126)),

λ
(3)
t (z) :=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)A
(3)
V (ξ, z)

=e−
´
Rd dx′ρt(x′)φ(x′−z), z ∈ Rd. (2.153)

Then, according to Remark 2.26 the corresponding Vlasov equation has the form

∂rt
∂t

= e−(ρt∗φ) (rt ∗ a)− rt
Ä
e−(ρt∗φ) ∗ a

ä
. (2.154)
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Case IV. For any ε > 0 we rescale interaction (2.61) as follows

λ(4)
ε (γ, z) := λ0 + ε

∑
x′∈γ

φ
(
x′ − z

)
, (2.155)

for any γ ∈ Γ and z ∈ Rd. Then, analogously to (2.146) and (2.147), we haveÄ
K−1

0 λ(4)
ε (· ∪ ξ, z)

ä
(η) = λ(4)

ε (ξ, z) 0|η| + εφ
(
x′ − z

)
1Γ(1)

(
η =

{
x′
})

(2.156)

and, in the limit ε→ 0,

A
(4)
V (η, z) := lim

ε→0
ε−|η|

Ä
K−1λ(4)

ε (· ∪ ξ, z)
ä

(η)

= λ00|η| + φ
(
x′ − z

)
1Γ(1)

(
η =

{
x′
})
, (2.157)

for all η, ξ ∈ Γ0 and a.a. z ∈ Rd. Next we define the effective interaction (cf. (2.126)) given
by

λ
(4)
t (z) :=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)A
(4)
V (ξ, z)

=λ0 +

ˆ
Rd

dx′ρt
(
x′
)
φ
(
x′ − z

)
, for a.a. z ∈ Rd. (2.158)

Hence, from Remark 2.26 the corresponding Vlasov equation can be written as

∂rt
∂t

= (rt ∗ a) [λ0 + (ρt ∗ φ)]− rt [λ0〈a〉+ ((ρt ∗ φ) ∗ a)] . (2.159)

Remark 2.28. In all examples discussed in this section, the effective interaction λt can be
obtained from the original interaction λint through the substitution

∑
x∈γ

φ(x− ·) −→
ˆ
Rd

dx ρt(x)φ(x− ·), γ ∈ Γ.

This simple observation emphasize the nature of the mesoscopic limit that we realized. Indeed,
on the microscopic level we have a many-body interaction λint which describes the interaction
between the tagged particle and other particles of RE. Then, by means of the Vlasov-type
scaling limit, we arrive to the two-body interaction λt which takes into account the mean
effect that particles of RE has on the RW of the tagged particle.





Chapter 3

Random walks in birth-and-death
environments

We study the model introduced in Chapter 2 of the RW of a jumping particle which interacts
with an evolving RE described by a non-equilibrium birth-and-death dynamics [54].

Following the general approach described in [49, 54], we present conditions on the birth-
and-death intensities as well as on the interaction between the target particle and the other
particles of the environment, which are sufficient for the existence of an (statistical) evolution
as a strongly continuous semigroup (C0-semigroup) on a proper Banach space of correlation
functions satisfying a Ruelle-type bound. Moreover, by using the Vlasov-type scaling in-
troduced in [51] and described in Section 2.3 we study the corresponding dynamics in the
mesoscopic limit.

Our analysis can be applied to different classes of RE, see e.g. [42, 50, 57, 82], as well as
to different types of interactions of RW with RE. As an example of these applications, we
will discuss in details the concrete model of RW evolving in a Bolker-Dieckmann-Law-Pacala
(BDLP) model of RE under each of the interactions I-IV introduced in Section 2.1.

3.1 Non-equilibrium evolutions

In this section we want to study the statistical evolution corresponding to the Markov dy-
namics of RWRE described by the heuristic generator

(LF ) (γ, y) = (LREF ) (γ, y) + (LRWF ) (γ, y) , (3.1)

where, for any F ∈ K(Bbs(Γ0 × Rd)), the generators LRE and LRW are defined by (2.2) and
(2.10), respectively, such that conditions (2.3)-(2.5) as well as (2.11) hold.

From Section 2.2 we know that the evolution of correlation functions is described by a
hierarchy of the form®

∂
∂tkt (η, y) =

Ä
L̂∗REkt

ä
(η, y) +

Ä
L̂∗RWkt

ä
(η, y)

kt (η, y)|t=0 = k0 (η, y)
, t ≥ 0, (3.2)

where the operators L̂∗RE and L̂∗RW are given by (2.66) and (2.68), respectively. We also define
L̂∗ = L̂∗RE + L̂∗RW .

For any fixed C > 1, we study the solution to the initial value problem (3.2) in the Banach
space (cf. (2.31)),

K∞C =
¶
k : Γ0 × Rd → R | C−|η|k(η, y) ∈ L∞

Ä
Γ0 × Rd, dλdy

ä©
, (3.3)

equipped with the norm

‖k‖K∞C := ess sup
(η,y)∈Γ0×Rd

C−|η| |k (η, y)| . (3.4)
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In order to solve (3.2) we will use the Phillips’ trick [54,102] as explained in Section 2.2. By
means of the duality (2.24), we consider the hierarchy for quasi-observables G ∈ Bbs(Γ0×Rd)
given by (cf. Remark 2.6)®

∂
∂tGt (η, y) =

Ä
L̂REGt

ä
(η, y) +

Ä
L̂RWGt

ä
(η, y)

Gt (η, y)|t=0 = G0 (η, y)
, t ≥ 0, (3.5)

where the operators L̂RE and L̂RW are defined in (2.36) and (2.38), respectively. This initial
value problem will be solved in the (pre-dual) Banach space

LC := L1
Ä
Γ0 × Rd, C |η|dλ(η)dy

ä
, C > 1, (3.6)

equipped with the norm

‖G‖C :=

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ(η) |G (η, y)| . (3.7)

In Section 3.1.1 we construct a holomorphic semigroup “U(t) on the space LC which gives a
solution to (3.5) in this space. The dual semigroup “U∗(t) provides a weak*-solution to (3.2)
in the space K∞C . Then, in Section 3.1.2 we find a proper subspace of K∞C in which a strong
solution of (3.2) exists.

3.1.1 Evolution of quasi-observables

In this section, we want to construct a semigroup on the Banach space LC , defined in (3.6),
with generator L̂ = L̂RE + L̂RW given by formulas (2.36) and (2.38).

In order to accomplish this task we will use a modification of the approach proposed in [54]
to construct the state evolution associated to a birth-and-death dynamics on the configuration
space. More precisely, following [54] we assume that there exist a1 ≥ 1, a2 > 0 such that for
all ξ ∈ Γ0 and a.a. x ∈ Rd∑

x∈ξ

ˆ
Γ0

C |η|dλ(η)
∣∣∣K−1d (x, · ∪ ξ \ x)

∣∣∣ (η) ≤ a1

∑
x∈ξ

d (x, ξ \ x) , (3.8)

∑
x∈ξ

ˆ
Γ0

C |η|dλ(η)
∣∣∣K−1b (x, · ∪ ξ \ x)

∣∣∣ (η) ≤ a2

∑
x∈ξ

d (x, ξ \ x) . (3.9)

In addition, we make the following assumption on the interaction λint.

Assumption 3.1. Suppose that there exist α0, α1 ≥ 0 such that for all ξ ∈ Γ0 and a.a.
y, z ∈ Rd ˆ

Γ0

C |η|dλ(η)
∣∣∣K−1λint (· ∪ ξ, y, z)

∣∣∣ (η) ≤ α1

∑
x∈ξ

d (x, ξ \ x) + α0. (3.10)

Remark 3.2. As we will see in the discussion of concrete models in Section 3.1.3, conditions
(3.8)-(3.10) imply that the mortality of RE should be large enough "to dominate" both the
birth of new particles and the interaction λint.

Let us consider the generator L̂ with domain given by

D = {G ∈ LC : D(η)G(η, y) ∈ LC}, D (ξ) :=
∑
x∈ξ

d (x, ξ \ x) . (3.11)

Note that the set D is a dense set in LC . Thus, under the assumptions above, we can formulate
the following theorem about the existence of the corresponding semigroup in LC . The proof
of this result is given in Section 3.1.1.1.
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Theorem 3.3. Suppose that the hypotheses (3.8)-(3.10) hold with

a1 +
a2

C
+ 2〈a〉α1 <

3

2
, (3.12)

then the operator (L̂,D) is the generator of a holomorphic semigroup “T (t) on LC .

3.1.1.1 Proof of Theorem 3.3

We proceed with a rigorous analysis of the operator L̂ in the Banach space LC . According to
the results obtained in Proposition 2.10 and 2.12, for any G ∈ Bbs(Γ0 × Rd), we can rewrite
the operator L̂ asÄ

L̂G
ä

(η, y) = (L0G) (η, y) + (L1G) (η, y) +
Ä
L̂RWG

ä
(η, y) , (3.13)

where L̂RW is given by formula (2.38),

(L0G) (η, y) = −D (η)G (η, y) (3.14)

and

(L1G) (η, y) =−
∑
ξ⊆η

G (ξ, y)
∑
x∈ξ

Ä
K−1d (x, · ∪ (ξ \ x))

ä
(η \ ξ)

+
∑
ξ⊂η

ˆ
Rd

dxG (ξ ∪ x, y)
Ä
K−1b (x, · ∪ ξ)

ä
(η \ ξ) . (3.15)

Let us first consider the multiplication operator (L0,D), with D given by (3.11). Multiplica-
tion operators are quite simple to define and analyze, see e.g. [39]. In the present case we can
show the following lemma.

Lemma 3.4. The operator (L0,D) is a generator of a contraction semigroup on LC . More-
over, L0 is a sectorial operator of any angle ω ∈ (0, π/2), i.e. for each ε ∈ (0, ω) and
z ∈ C \ {0}, with |arg z| ≤ π/2 + ω − ε, there exists Mε > 0 such that

∥∥∥(z1− L0)−1
∥∥∥
C
≤ Mε

|z|
. (3.16)

Furthermore, condition (3.16) holds with Mε = 1/ cosω for all ε ∈ (0, ω).

Proof of Lemma 3.4. The statement can be shown by using the same arguments used in the
proof of Lemma 3.3 in [54].

As it is well known, see e.g. [39, Theorem II.4.6], any sectorial operator of angle ω generates
a bounded semigroup which is holomorphic in the sector

Sect (ω) = {z ∈ C | |arg z| < ω} ,

for all ω ∈ (0, π/2). Then, in order to construct a semigroup associated to the generator
(L̂,D), we can use the theorem about perturbations of holomorphic semigroups, see e.g.
[39, Theorem III.2.10]. For this purpose, it is enough to show that both the operators L1 and
L̂RW are, at least, relatively bounded by the operator L0 (L0-bounded) in the space LC .

The operator L1 has been already studied in [54] and we know thereform that, under
assumptions (3.8) and (3.9), it is L0-bounded in LC . In particular, we can formulate the
following result.
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Proposition 3.5. Let us suppose that conditions (3.8) and (3.9) hold. Then, the operator
(L1,D) is a well-defined operator in LC , such that

‖L1G‖C ≤
Å
a1 − 1 +

a2

C

ã
‖L0G‖C , G ∈ D. (3.17)

Proof of Proposition 3.5. The proof is similar to that one of Lemma 3.4 in [54].

Now let us consider the operator L̂RW . In the space LC we can prove the following
estimate.

Proposition 3.6. Let us suppose that hypothesis (3.10) is fulfilled. Then, the operator
(L̂RW ,D) is a well-defined operator in LC satisfying∥∥∥L̂RWG∥∥∥

C
≤ 2〈a〉α1 ‖L0G‖C + 2〈a〉α0 ‖G‖C , G ∈ D. (3.18)

Proof of Proposition 3.6. We calculate the LC-norm of the operator L̂RW in (2.38) explicitly.
By definition, for any G ∈ D we have∥∥∥L̂RWG∥∥∥

C
≤
ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dz a (y − z)×∑
ξ⊂η

∣∣∣K−1λint (· ∪ ξ, y, z)
∣∣∣ (η \ ξ) |G (ξ, z)−G (ξ, y)| .

Applying the Minlos identity (1.18) we can rewrite it as∥∥∥L̂RWG∥∥∥
C
≤
ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dza (y − z)×
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣K−1λint (· ∪ ξ, y, z)

∣∣∣ (η) |G (ξ, z)−G (ξ, y)| .

Then, one can use condition (3.10) and estimate∥∥∥L̂RWG∥∥∥
C
≤
ˆ

Γ0

C |ξ|dλ (ξ) (α1D (ξ) + α0)

ˆ
Rd

dy
ˆ
Rd

dza (y − z) |G (ξ, z)−G (ξ, y)|

≤ 2〈a〉α1

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ)D (ξ) |G (ξ, y)|+

2〈a〉α0

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ) |G (ξ, y)| . (3.19)

Finally, by using the definition of the generator L0 in (3.14) we obtain the desired result.

Remark 3.7. Note that the first inequality in (3.19) implies∥∥∥L̂RWG∥∥∥
C
≤ 2〈a〉α1

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ)D (ξ) |G (ξ, y)|+

α0

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ)

ˆ
Rd

dza (y − z) |G (ξ, z)−G (ξ, y)|

≤ 2〈a〉α1 ‖L0G‖C + α0

∥∥∥L(0)
RWG

∥∥∥
C
, G ∈ D, (3.20)

where L(0)
RW is the generator of the free RW of the tagged particle, i.e.(

L
(0)
RWG

)
(η, y) :=

ˆ
Rd

dza (y − z) [G (ξ, z)−G (ξ, y)] . (3.21)

for any G ∈ D. In other words, through assumption (3.10) we can incorporate all dependence
of L̂RW on λint in the operator L0.
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We are now in the position to show the result stated in Theorem 3.3.

Proof of Theorem 3.3. Let us set

θ := a1 +
a2

C
− 1 + 2〈a〉α1. (3.22)

From Lemma 3.4, we know that (L0,D) is a sectorial operator of angle ω ∈ (0, π/2) such that∥∥∥(z1− L0)−1
∥∥∥
C
≤ Mε

|z|
, Mε =

1

cosω
, (3.23)

for any z 6= 0 with |z| ≤ π/2 + ω. Moreover, by combining results of Proposition 3.5 and 3.6
we obtain the following estimate in LC

‖(L1 + LRW )G‖C ≤
ïÅ
a1 − 1 +

a2

C

ã
+ 2〈a〉α1

ò
‖L0G‖C + 2〈a〉α0 ‖G‖C . (3.24)

Hence, by the first part of the proof of Theorem III.2.10 in [39], we know that the operator
(L̂ = L0 + L1 + L̂RW ,D) is the generator of an holomorphic semigroup on LC , denoted by“T (t), for all values of θ such that

θ ≤ α with α :=
1

1 +Mε
=

1

1 + 1
cosω

> 0. (3.25)

Note that for ω ∈ (0, π/2) we have α ≤ 1/2. Since we are not interested in the in the
domain of analyticity of the semigroup “T (t), we can choose the value of ω in (3.25) to get the
weakest bound on θ, namely θ ≤ 1/2. The latter together with (3.22) yields condition (3.12)
in Theorem 3.3.

3.1.2 Evolution of correlation functions

In this section we want to use the semigroup “T (t), acting on the space LC , to construct
a solution to the evolution equation (3.2) on the Banach space K∞C defined in (3.3). This
construction is adapted from [49, 54]. Let us first outline the general idea of this method
which allows us to formulate the main result of this section.

According to (2.24), the dual space (LC)′ = L∞
Ä
Γ0 × Rd, dλCdy

ä
, with λC := C |·|λ, is

isometrically isomorphic to the Banach space K∞C , where the isomorphism is given by the
isometry RC

(LC)′ 3 k 7→ RCk := C−|·|k ∈ K∞C . (3.26)

Let (L̂′,Dom(L̂′)) on (LC)′ be the dual operator of (L̂,D) on LC . Its image on K∞C , under the
isometry RC , will be the operator L̂∗ = RCL̂

′RC−1 with the domain Dom(L̂∗) = RCDom(L̂′).
Similarly, one can consider the adjoint semigroup “T ′(t) on (LC)′ and its image “T ∗(t) on K∞C .

Let us note that the space LC is not reflexive, hence, “T ∗(t) is not a C0-semigroup on
K∞C , but it is weak*-continuous, weak*-differentiable in 0 and with weak*-generator L̂∗, see
e.g. [39, Section II.2.5]. As a matter of fact, one has an evolution for correlation functions in
K∞C only in a weak*-sense.

To overcome this handicap, we can restrict the semigroup “T ∗(t) to its subspace of strong
continuity, see e.g. [39, Section II.2.6]. Namely, we consider the restriction “T�(t) of the
semigroup “T ∗(t) onto its sun dual subspace K�C = Dom(L̂∗) ⊆ K∞C 1. According to [39, Section
II.2.6], “T�(t) is a strongly continuous semigroup on Dom(L̂∗) whose generator, L̂�, is a part
of the dual operator (L̂∗,Dom(L̂∗)), i.e.

L̂�k = L̂∗k for any k ∈ Dom(L̂�) =
{
k ∈ Dom(L̂∗) : L̂∗k ∈ Dom(L̂∗)

}
. (3.27)

1Here and below all closures are w.r.t. to the norm (3.4) of the space Banach K∞C .
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However, we would like to have a strongly continuous semigroup on an universal subspace of
K∞C which does not depend on the operator L̂∗. As in [54], the next step is to restrict the
semigroup “T�(t) on the subspace K∞αC ⊆ K∞C , for some α ∈ (0, 1). It is not difficult to see that,
under some simple conditions, K∞αC ⊆ Dom(L̂∗), cf. Proposition 3.10. Moreover, the set K∞αC
is a “T�-invariant subspace of K∞C , see Lemma 3.12. Therefore, according to [39, Section II.2.3],
the restriction “T�α of the semigroup “T� to K∞αC will be a strongly continuous semigroup with
generator L̂�α, which is the part of L̂� on K∞αC . As a consequence, we can formulate the
following theorem about the evolution (3.2) in the space K∞C . We refer to Section 3.1.2.1 for
a detailed proof.

Theorem 3.8. Let us assume that hypotheses (3.8)-(3.10) hold. Suppose that there exist
A > 0, N ∈ N0 and ν ≥ 1 such that for ξ ∈ Γ0 and x /∈ ξ

d (x, ξ) ≤ A (1 + |ξ|)N ν|ξ|, (3.28)

with
ν <

C

a2

Å
3

2
− a1 − 2〈a〉α1

ã
. (3.29)

Then, for any

α ∈

Ñ
a2

C
Ä

3
2 − a1 − 2〈a〉α1

ä , 1

ν

é
, (3.30)

the evolution equation (3.2), with initial condition k0 ∈ K∞αC , has a unique solution in the
space K∞αC given by kt = “T�α(t)k0.

Remark 3.9. Let us note that condition (3.29) implies (3.12), as ν ≥ 1.

3.1.2.1 Proof of Theorem 3.8

In this section we want to carry out the proof of Theorem 3.8 outlined above. In order to
accomplish this task we will show some auxiliary results which are used later to prove the
theorem.

First of all, we establish for which values of α ∈ (0, 1) the subspace K∞αC ⊆ K∞C belongs
to the domain of the generator L̂∗, specified by (2.66) and (2.68).

Proposition 3.10. Let us assume that hypotheses (3.8)-(3.10), as well as condition (3.28)
hold. Then for any α ∈ (0, 1/ν)

K∞αC ⊂ Dom
Ä
L̂∗
ä
. (3.31)

Proof of Proposition 3.10. In order to prove the statement, it is enough to verify that for any
k ∈ K∞αC there exist k∗ ∈ K∞C such that for any G ∈ Dom(L̂)

〈〈L̂G, k〉〉 = 〈〈G, k∗〉〉. (3.32)

We know that (3.32) holds for any k ∈ K∞αC with k∗ = L̂∗k, provided k∗ ∈ K∞C . The latter
condition is equivalent to

C−|·|
Ä
L̂∗k
ä
∈ L∞(Γ0 × Rd, dλdy). (3.33)

In our case, we have

C−|η|
∣∣∣ÄL̂∗kä (η, y)

∣∣∣ ≤ C−|η| ∣∣∣ÄL̂∗REkä (η, y)
∣∣∣+ C−|η|

∣∣∣ÄL̂∗RWkä (η, y)
∣∣∣ . (3.34)
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From [54, Proposition 3.5], we know that, under the conditions (3.8) and (3.9), for any k ∈
K∞αC , C−|·|L̂∗REk ∈ L∞(Γ0 × Rd, dλdy). In particular, one can show that for any k ∈ K∞αC ,

ess sup
(η,y)∈Γ0×Rd

C−|η|
∣∣∣ÄL̂∗REkä (η, y)

∣∣∣ ≤ ‖k‖K∞αC
Å
a1 +

a2

αC

ã
A

αν2

Ç
N + 1

−e ln(αν)

åN+1

<∞. (3.35)

Let us now consider the second term in the r.h.s of equation (3.34). For any k ∈ K∞αC we have

C−|η|
∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤
≤ C−|η|

ˆ
Γ0

dλ (ζ)

ˆ
Rd

dza (y − z) |k (ζ ∪ η, z)|
∣∣∣ÄK−1λ (· ∪ η, z, y)

ä
(ζ)
∣∣∣+

C−|η|
ˆ

Γ0

dλ (ζ)

ˆ
Rd

dza (y − z) |k (ζ ∪ η, y)|
∣∣∣ÄK−1λ (· ∪ η, y, z)

ä
(ζ)
∣∣∣

≤ α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ)
∣∣∣ÄK−1

0 λ (· ∪ η, z, y)
ä

(ζ)
∣∣∣+

α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ)
∣∣∣ÄK−1

0 λ (· ∪ η, y, z)
ä

(ζ)
∣∣∣ .

Then, by using hypothesis (3.10), one can estimate

C−|η|
∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤ 2α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z) [α1D (η) + α0]

≤ 2〈a〉 ‖k‖K∞αC
î
α1α

|η|D (η) + α0α
|η|
ó
.

Note that from condition (3.28) it follows that

D (η) =
∑
x∈η

d (x, η \ x) ≤ A
∑
x∈η
|η|N ν|η|−1 ≤ A (1 + |η|)N+1 ν|η|−1, (3.36)

therefore, we get

C−|η|
∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤ 2〈a〉 ‖k‖K∞αC
î
Aα1α

|η| (1 + |η|)N+1 ν|η|−1 + α0α
|η|
ó
.

At this point we can use the elementary inequality

at(1 + t)b ≤ 1

a

Å
b

−e ln a

ãb
, t ≥ 0, a ∈ (0, 1) , b ≥ 1, (3.37)

to obtain for any α ∈ (0, 1/ν)

ess sup
(η,y)∈Γ0×Rd

C−|η|−1
∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤ 2〈a〉 ‖k‖K∞αC

[
Aα1

1

αν2

Ç
N + 1

−eln(αν)

åN+1

+ α0

]
<∞,

which concludes the proof of the proposition.

Next, let us consider the pre-dual space LαC . In this space, we define the set

Dα = {G ∈ LαC |D (·)G ∈ LαC} , α ∈ (0, 1). (3.38)

Note that, if condition (3.28) holds, then for any α ∈ (0, 1/ν) we have the following inclusions
D ⊂ LC ⊂ Dα ⊂ LαC , compare to [54, Lemma 3.6]. Proceeding as in Theorem 3.3, one can
construct a C0-semigroup on LαC with generator (L̂,Dα).
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Proposition 3.11. Let us assume that condition (3.28) as well as hypotheses (3.8)-(3.10)
hold with

a1 +
a2

αC
+ 2〈a〉α1 <

3

2
, (3.39)

for some α ∈ (0, 1). Then, the operator (L̂,Dα) is the generator of a holomorphic semigroup“Tα(t) on LαC .

Proof. For any α ∈ (0, 1), it is easy to check that the domain Dα is dense in LαC and that
the densely defined operator L0 is closed in LαC . Then for the operator (L0,Dα) we can show
the statement of Lemma 3.4, but with C replaced by αC. Moreover, by using the results
of Proposition 3.5 and 3.6, for αC instead of C, we obtain the following estimate in LαC
(compare with (3.24))

‖(L1 + LRW )G‖αC ≤
Å
a1 − 1 +

a2

αC
+ 2〈a〉α1

ã
‖L0G‖αC + 2〈a〉α0 ‖G‖αC , G ∈ Dα.

Hence, we can proceed as in the Proof of Theorem 3.3 and get the statement.

Now, we can come back to the space K∞αC and show the following result.

Lemma 3.12. Let us assume that hypotheses (3.8)-(3.10) are satisfied. Suppose, additionally,
that condition (3.28) holds with (3.29). Then, for any

α ∈

Ñ
a2

C
Ä

3
2 − a1 − 2〈a〉α1

ä , 1

ν

é
, (3.40)

both the sets K∞αC and K∞αC are “T�-invariant subspaces of K∞C .

Proof. We show that K∞αC ⊂ Dom(L̂∗) is “T�-invariant subspace of K∞C . Then, the statement
for K∞αC follows from the continuity of the family “T ∗(t). First of all, let us note that condition
(3.40) implies that the operator (L̂,Dα) generates an holomorphic semigroup “Tα(t) on LαC ,
see Proposition 3.11. Next, following the proof of [54, Proof of Theorem 3.8], we prove that
for any G ∈ LC ⊂ LαC “TαG = “TG. (3.41)

According to [39, Corollary V.5.5], it is sufficient to show that the resolvents of “T and “Tα,
R(z, L̂) and R(z, L̂α), respectively, coincide on LC for elements z ∈ ρ(L̂) ∩ ρ(L̂α) real and
large enough. Here ρ(L̂) denotes the resolvent set of (L̂,D) and ρ(L̂α) is the resolvent set of
(L̂α,Dα). From [39, Lemma III.2.6], we know that there exists a constant r ≥ 0 such that
(r,∞) ∈ ρ(L̂) ∩ ρ(L̂α). Let us consider some fixed z ∈ (r,∞), then for any G ∈ LC we have
R(z, L̂)G ∈ D ⊂ Dα. Moreover, since L̂α = L̂ on D, we find

R(z, L̂)G−R(z, L̂α)G = R(z, L̂α)
î
(z1− L̂α)− (z1− L̂)

ó
R(z, L̂)G = 0

and, consequently, “TαG = “TG on LC . The latter implies that for any G ∈ LC and k ∈ K∞C ,

〈〈“Tα (t)G, k〉〉 = 〈〈“T (t)G, k〉〉 = 〈〈G, “T ∗ (t) k〉〉. (3.42)

On the other hand, due to the duality (2.24), for any G ∈ LC ⊂ LαC and k ∈ K∞αC ⊂ K∞C , we
have

〈〈“Tα (t)G, k〉〉 = 〈〈G, “T ∗α (t) k〉〉, (3.43)

where “Tα (t)G ∈ LαC and “T ∗α (t) k ∈ K∞αC . Hence, by combining equations (3.42) and (3.43),
for any k ∈ K∞αC we find “T ∗ (t) k = “T ∗α (t) k ∈ K∞αC . (3.44)

Finally, since T�(t) is the restriction of “T ∗(t) on Dom(L̂∗) and K∞αC ⊂ Dom(L̂∗), it follows
that K∞αC is T�(t)-invariant.
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Having disposed of these preliminary steps, we can now return to the proof of Theorem
3.8.

Proof of Theorem 3.8. From Theorem 3.3 we know that the operator (L̂,D) is the generator
of the holomorphic semigroup “T (t). By [39, Section II.2.6], the restriction “T� of the dual
semigroup “T ∗ on the subspace of strong continuity Dom(L̂∗) is again a holomorphic semigroup
with generator L̂�, which is the part of L̂∗ on D(L̂�) = Dom(L̂∗). On the other hand, in
Lemma 3.12 we showed that K∞αC ⊂ Dom(L̂∗), is T�(t)-invariant. Then, the restriction “T�α
of the dual semigroup “T� onto K∞αC is also a strongly continuous semigroup. Moreover,
its generator L̂�α is the restriction of L̂� on K∞αC , see e.g. [39, Corollary II.2.3]. As a
result, the evolution equation (3.2) with initial condition k0 ∈ K∞αC has a unique solution
kt = “T�α(t)k0 ∈ K∞αC . In order to complete the proof of the theorem we can just note that,
by Lemma 3.12, the subspace K∞αC ⊆ K∞αC , is also T�(t)-invariant.

3.1.3 Examples: random walks in a spatial ecological model of environment

Let us consider the case where RE is described by a BDLP model, see for instance [50] and
reference therein. Heuristically, the dynamics of this birth-and-death process is described by
a Markov pregenerator of the form (2.2) with

d (x, γ \ x) = m+ χ−
∑

x′∈(γ\x)

a−
(
x− x′

)
, x ∈ γ, γ ∈ Γ, (3.45)

b (x, γ) = χ+
∑

x′∈(γ\x)

a+ (x− x′) , x ∈ Rd \ γ, γ ∈ Γ, (3.46)

where m > 0, χ± ≥ 0 are some positive constants and 0 ≤ a± ∈ L1(Rd, dx)
⋂
L∞(Rd, dx) are

even non-negative functions such that
ˆ
Rd

dx a±(x) = 1. (3.47)

In this case, for any η, ξ ∈ Γ0 and a.a. x ∈ Rd we have (cf. derivation of (2.56))Ä
K−1d (x, · ∪ ξ \ x)

ä
(η) = d (x, ξ \ x) 0|η| + χ−1Γ(1)

(
η = {x′}

)
a−
(
x− x′

)
(3.48)

and Ä
K−1b (x, · ∪ ξ \ x)

ä
(η) = b (x, ξ \ x) 0|η| + χ+1Γ(1)

(
η = {x′}

)
a+ (x− x′) . (3.49)

As a consequence,
ˆ

Γ0

C |η|dλ(η)
∣∣∣K−1d (x, · ∪ ξ \ x)

∣∣∣ (η) = d (x, ξ \ x) + Cχ−

and ˆ
Γ0

C |η|dλ(η)
∣∣∣K−1b (x, · ∪ ξ \ x)

∣∣∣ (η) = b (x, ξ \ x) + Cχ+.

Now if we assume that there exists a constant δ > 0 such that

(4 + δ)Cχ− ≤ m, (3.50)

4χ+a+(x) ≤ Cχ−a−(x), a.a. x ∈ Rd, (3.51)

one finds ˆ
Γ0

∣∣∣K−1d (x, · ∪ ξ \ x)
∣∣∣ (η)C |η|dλ(η) ≤

Å
1 +

1

4 + δ

ã
d (x, ξ \ x)
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and 2 ˆ
Γ0

∣∣∣K−1b (x, · ∪ ξ \ x)
∣∣∣ (η)C |η|dλ(η) <

C

4
d (x, ξ \ x) .

Hence, conditions (3.8) and (3.9) are satisfied with

a1 =

Å
1 +

1

4 + δ

ã
, a2 =

C

4
. (3.52)

Moreover,

d (x, ξ) < m

Ç
1 +
‖a−‖∞

4C

å
(1 + |ξ|) .

Thus, (3.28) holds with ν = 1.

3.1.3.1 RW in a BDLP model of environment: Case I and III

Let us consider the RW of a jumping particle whose interaction with RE is given by

λint(γ, y, z) := λint (γ,w) = e−
∑

x′∈γ φ(x′−w)

= eλ
Ä
e−φ(·−w), γ

ä
, γ ∈ Γ, w ∈ Rd, (3.53)

with w = y or z. Note that for w = y we have the interaction λint(γ,w) = λ(1)(γ, y) given
by (2.13), whereas for w = z we obtain λint(γ,w) = λ(3)(γ, z) defined by (2.15).

In the following we assume that φ : Rd → R is a non-negative even function such that

C ′φ :=

ˆ
Rd

Ä
1− e−φ(x)

ä
dx <∞. (3.54)

In this case, according to (2.50), for any ξ ∈ Γ0 and w ∈ Rd one hasÄ
K−1λint (· ∪ ξ, w)

ä
(η) = λint (ξ, w) eλ

Ä
e−φ(·−w) − 1, η

ä
, (3.55)

and we can prove the following estimate.

Proposition 3.13. Suppose that condition (3.54) holds. Thenˆ
Γ0

C |η|dλ(η)
∣∣∣K−1λint (· ∪ ξ, w)

∣∣∣ (η) ≤ eCC
′
φ , (3.56)

for any ξ ∈ Γ0, a.a. w ∈ Rd and C > 0.

Proof. By definition we can writeˆ
Γ0

∣∣∣K−1λint (· ∪ ξ, w)
∣∣∣ (η)C |η|dλ(η) ≤ e−

∑
x′∈ξ φ(x′−w)

ˆ
Γ0

C |η|dλ(η)eλ
(∣∣∣e−φ(·−w) − 1

∣∣∣ , η)
(3.57)

and since the potential φ is non-negative one hasˆ
Γ0

∣∣∣K−1λint (· ∪ ξ, w)
∣∣∣ (η)C |η|dλ(η) ≤

ˆ
Γ0

C |η|dλ(η)eλ
Ä
1− e−φ(·−w), η

ä
. (3.58)

Then, by using identity (1.24) and condition (3.54), the r.h.s. can be estimated as followsˆ
Γ0

∣∣∣K−1λint (· ∪ ξ, w)
∣∣∣ (η)C |η|dλ(η) ≤

ˆ
Γ0

C |η|dλ(η)eλ
Ä
C
Ä
1− e−φ(·−w)

ä
, η
ä

≤ eC
´
Rd dx(1−e−φ(x−w))

≤ eCC
′
φ , (3.59)

which concludes the proof of the proposition.
2 Note that by integrating both sides of (3.51) over Rd we get 4χ+ ≤ Cχ− < m/4.
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From the proposition above it follows that both interactions λ(1) and λ(3) fulfill Assump-
tion 3.1 with

α1 ≡ 0, α0 = eCC
′
φ . (3.60)

Moreover,

a1 +
a2

C
+ 2〈a〉α1 = 1 +

1

4 + δ
+

1

4
<

3

2
. (3.61)

Let us consider the operator L̂RE defined by (2.36) with (3.45)-(3.46) and let L̂RW be an
operator given by (2.51) or (2.60) Then, according to Theorem 3.3 and 3.8, we have the
following existence and uniqueness result for the initial value problem (3.2) in the Banach
space K∞C .

Corollary 3.14. Suppose that condition (3.54) holds. Assume that the functions a± and the
constants χ±, m and C satisfy conditions (3.50)-(3.51). Then

(i) The operator (L̂,D) is the generator of a holomorphic semigroup “U(t) in LC .

(ii) For any α ∈ (1/2, 1), the evolution equation (3.2) with initial condition k0 ∈ K∞αC has a
unique solution in the space K∞αC given by kt = “T�α(t)k0.

3.1.3.2 RW in a BDLP model of environment: Case II and IV

Let us consider now the interaction given by

λint(γ, y, z) := λint(γ,w) = λ0 +
∑
x′∈γ

φ
(
x′ − w

)
, γ ∈ Γ, w ∈ Rd, (3.62)

where w = y or z depending if we want to analyze the interaction λ(2)(γ, y) or λ(4)(γ, z),
see (2.14) and (2.16), respectively. In what follows, we assume that λ0 ≥ 0 and φ : Rd → R
is a non-negative even function such that

Cφ1 := ‖φ‖1 =

ˆ
Rd

dxφ (x) <∞ (3.63)

and
Cφ∞ := ‖φ‖∞ = ess sup

x∈Rd
φ (x) <∞. (3.64)

According to equation (2.56) one hasÄ
K−1λint (· ∪ ξ, w)

ä
(η) = λint (ξ, w) 0|η| + 1Γ(1)

(
η =

{
x′
})
φ
(
x′ − w

)
, (3.65)

for any ξ ∈ Γ0 and ω ∈ Rd. Then, we can prove the following estimate.

Proposition 3.15. Let us assume that conditions (3.63) and (3.64) hold. Then
ˆ

Γ0

C |η|dλ(η)
∣∣∣K−1λint (· ∪ ξ, w)

∣∣∣ (η) ≤ λ0 + CCφ1 + Cφ∞|ξ|, (3.66)

for any ξ ∈ Γ0, a.a. w ∈ Rd and C > 0.

Proof. By (3.65) one can write
ˆ

Γ0

∣∣∣K−1λint (· ∪ ξ, w)
∣∣∣ (η)C |η|dλ(η) ≤ λint (ξ, w)

ˆ
Γ0

C |η|dλ(η)0|η|+

ˆ
Γ0

C |η|dλ(η)1Γ(1)

(
η =

{
x′
})
φ
(
x′ − w

)
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≤ λ0 +
∑
x∈ξ

φ(x− w) + C

ˆ
Rd

dxφ (x− w) .

Then, by using conditions (3.63) and (3.64), we find

ˆ
Γ0

∣∣∣K−1λint (· ∪ ξ, w)
∣∣∣ (η)C |η|dλ(η) ≤ λ0 + C ‖φ‖1 + ‖φ‖∞ |ξ|,

which concludes the proof of the proposition.

Note that from (3.45) it follows that for any ξ ∈ Γ0∑
x∈ξ

d (x, ξ \ x) = m |ξ|+ χ−Ea
−

(ξ) , Ea
−

(ξ) =
∑
x∈ξ

∑
x′∈ξ\x

a−
(
x− x′

)
≥ 0. (3.67)

Therefore, Proposition 3.15 implies that Assumption 3.1 is satisfied with

α1 =
Cφ∞
m

, α0 = λ0 + CCφ1 . (3.68)

Hence, for the interactions λ(2) and λ(4) we can apply Theorem 3.3 and 3.8 and formulate
the following result for the evolution of correlation functions in the Banach space K∞C .

Corollary 3.16. Let us consider the operator L̂RE defined by (2.36) with (3.45)-(3.46). Let
L̂RW be an operator of the form (2.57) or (2.64) such that conditions (3.63) and (3.64) hold.
Suppose that there exists δ > 0 such that the functions a± and the constants χ±, m and C
satisfy the conditions

Cχ−a−(x) ≥ 4χ+a+(x), a.a. x ∈ Rd, (3.69)

m ≥ (4 + δ)
Ä
Cχ− + 2〈a〉Cφ∞

ä
. (3.70)

Then

(i) The operator (L̂,D) is the generator of a holomorphic semigroup “U(t) in LC .

(ii) For any α ∈ (1/2, 1), the evolution equation (3.2) with initial condition k0 ∈ K∞αC has a
unique solution in the space K∞αC given by kt = “T�α(t)k0.

Remark 3.17. Note that conditions (3.69)-(3.70) are stronger than (3.50)-(3.51) and one can
easily check that hypotheses (3.8), (3.9) and (3.12) are still satisfied.

Remark 3.18. Let us stress that in all models of RW in BDLP model of environment consid-
ered above we found a unique solution to the evolution equation for correlation functions (3.2)
on the space K∞αC , α ∈ (1/2, 1), only if the mortality m is large enough, see conditions (3.50)
and (3.70). Actually, it is possible to remove this restriction on the parameter m by studying
the initial value problem (3.2) with the method mentioned in Remark 2.9. This approach was
introduced in [47,48] and consists of a combination of the semigroup techniques described in
this chapter and the Ovsyannikov’s method, see e.g. [98,120], which will be considered in next
chapter. In this approach we get a solution kt to (3.2) on some space K∞Ct for any mortality
m > 0, but for a finite time interval only.
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3.2 Mesoscopic evolutions: Vlasov-type scaling

Let us consider the Vlasov-type scaling of the statistical evolution for RW in a birth-and-death
environment studied in the previous section.

According to the general scheme discussed in Section 2.3, for any ε > 0 we introduce the
renormalized hierarchy® dkt,ε,ren

dt =
Ä
L4RE,ε,ren + L4RW,ε,ren

ä
kt,ε,ren

kt|t=0 = k0
, t ≥ 0, (3.71)

where the generator L4RE,ε,ren and L4RW,ε,ren are given by by formulas (2.97) and (2.101),
respectively. We also define L4ε,ren := L4RE,ε,ren + L4RW,ε,ren.

Next let us assume that the limits (2.104),(2.105) and (2.111) exist. Then, letting ε go to
zero, we have the Vlasov hierarchy® drt

dt =
Ä
L4RE,V + L4RW,V

ä
rt

rt|t=0 = r0
, t ≥ 0, (3.72)

where the generators L4RE,V and LRW,V are defined by (2.106) and (2.113), respectively.
Also, we set L4V := L4RE,V + L4RW,V . Moreover, the hierarchy (3.72) has the so-called chaos
preservation property, see (2.85)-(2.86). As a result, we obtain a system of kinetic equations
for the densities ρt and rt given by (2.115) and (2.123).

In next sections we study this mesoscopic limit in the Banach space K∞C , defined by (3.3).
In Section 3.2.1, we show the convergence of the Vlasov-type scaling for the considered evo-
lutions. Then, in Section 3.2.2 we derive the corresponding Vlasov equations and study their
solutions.

3.2.1 Convergence of the Vlasov-type scaling

In this section we study the convergence of the solutions of the family of renormalized hi-
erarchies (3.71) to the solution of the limiting Vlasov hierarchy (3.72) in the Banach space
K∞αC . As in the construction of the time evolution of correlation functions in Section 3.1, we
consider the duality (2.24) and study the convergence of Vlasov-type scaling in the pre-dual
space LC defines in (3.6), see Remark 2.16. Our approach is adapted from [54]. Let us outline
the strategy that we will follow.

First, we show that for any ε > 0 the renormalized operator L̂ε,ren := L̂REε,ren + L̂RW,ε,ren,
defined by (2.97) and (2.102), is the generator of a strongly continuous contraction semigroup“Uε(t) on LC , see Lemma 3.22.1. Then, we show that the limiting operator L̂V is also the
generator of a strongly continuous contraction semigroup “UV (t) on LC , see Lemma 3.30.1.
Finally, we prove that the semigroup “Uε(t) converges to “UV (t) strongly in LC as ε goes to zero,
see Theorem 3.35. The last statement will be a consequence of an abstract result about the
strong convergence of resolvent operators, see for instance [54, Lemma 4.3]. For the reader’s
convenience, we will formulate this general result below.

Lemma 3.19. Let X be a Banach space, and let (Aε, Dε), (Bε, Dε), with ε ≥ 0, be closed,
densely defined operators on X. Suppose that there exist a constant u > 0 and u ∈ C with 3

Ru > u such that u ∈ ρ(Aε) for all ε ≥ 0 and that the following conditions hold

κ := sup
ε>0

∥∥∥(Aε − u1)−1
∥∥∥ <∞, (3.73)

σ := sup
ε>0

∥∥∥Bε (Aε − u1)−1
∥∥∥ < 1, (3.74)

3We denote by Ru the real part of u ∈ C.



64 Chapter 3. Random walks in birth-and-death environments

(Aε − u1)−1 s−→ (A0 − u1)−1 , ε→ 0, (3.75)

Bε (Aε − u1)−1 s−→ B0 (A0 − u1)−1 , ε→ 0. (3.76)

Then, u belongs to the resolvent set of Lε := Aε +Bε, for any ε ≥ 0, and

(Lε − u1)−1 s−→ (L0 − u1)−1 , ε→ 0. (3.77)

Transferring the general theory about adjoint semigroups, see e.g. [39, Section II.2.5],
onto the semigroups U4ε (t) and U4V (t) we deduce that they will be weak*-continuous, weak*-
differentiable at 0 and with weak*-generators L4ε,ren and L4V , respectively, on K∞C . Moreover,
we obtain the weak*-convergence of the semigroups U4ε (t) to U4V (t) in K∞C .

Remark 3.20. The question about the strong convergence to the solution of the limiting
hierarchy is still open. Indeed, we can show that the restrictions “U�αε,ren(t) and “U�αV (t) of the
semigroups U4ε,ren(t) and U4V (t), respectively, are C0-semigroups on the subspace K∞αC ⊆ K∞C ,
for some α ∈ (0, 1), see Lemma 3.22.2 and 3.30.2. The main problem consists of the fact
that we have an explicit expression for the sun dual generator L�αV = L4V only on the core
{k ∈ K∞αC | L

4
V ∈ K∞αC}. In [53] the strong convergence of the Vlasov-type scaling has been

shown for the Glauber-type dynamics in continuum by using an approximative approach, see
[53, 59] for details. Unfortunately, such a technique can be successfully applied only in that
particular model.

Renormalized evolutions. According to Proposition 2.17 and 2.19, for any G ∈ Bbs(Γ̃0)
the operator L̂ε,ren, ε > 0, can be written in the following formÄ

L̂ε,renG
ä

(η, y) =
(
L

(ε)
0 G

)
(η, y) +

(
L

(ε)
1 G

)
(η, y) +

(
L̂

(ε)
RWG

)
(η, y) , (3.78)

where L̂(ε)
RW := L̂RW,ε,ren is given by (2.102),(

L
(ε)
0 G

)
(η, y) = −Dε (η)G (η, y) , Dε (η) =

∑
x∈η

dε (x, η \ x) (3.79)

and (
L

(ε)
1 G

)
(η, y) =−

∑
ξ⊆η

G (ξ, y) ε−|η\ξ|
∑
x∈ξ

Ä
K−1dε (x, · ∪ (ξ \ x))

ä
(η \ ξ) +

∑
ξ⊂η

ˆ
Rd

dxG (ξ ∪ x, y) ε−|η\ξ|
Ä
K−1bε (x, · ∪ ξ)

ä
(η \ ξ) . (3.80)

Let us analyze the operator (3.78) in the space Banach space LC . For any ε > 0 we define as
domain the set

D(ε) = {G ∈ LC |Dε (·)G ∈ LC} . (3.81)

Following the approach in [54, Proposition 4.1], for any ε ∈ (0, 1] we assume that there exist
ã1 ≥ 1, ã2 > 0 such that for all ξ ∈ Γ0 and a.a. x ∈ Rd∑

x∈ξ

ˆ
Γ0

C |η|dλ(η)ε−|η|
∣∣∣K−1dε (x, · ∪ ξ \ x)

∣∣∣ (η) ≤ ã1

∑
x∈ξ

dε (x, ξ \ x) , (3.82)

∑
x∈ξ

ˆ
Γ0

C |η|dλ(η)ε−|η|
∣∣∣K−1bε (x, · ∪ ξ \ x)

∣∣∣ (η) ≤ ã2

∑
x∈ξ

dε (x, ξ \ x) . (3.83)

Moreover, analogously to the non-rescaled case (cf. (3.10)), we make the following assumption
on the rescaled interaction λε.
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Assumption 3.21. Suppose that for any ε ∈ (0, 1] there exist α̃0, α̃1 ≥ 0 such that for all
ξ ∈ Γ0 and a.a. y, z ∈ Rdˆ

Γ0

C |η|dλε(η)ε−|η|
∣∣∣K−1λε (· ∪ ξ, y, z)

∣∣∣ (η) ≤ α̃1

∑
x∈ξ

dε (x, ξ \ x) + α̃0. (3.84)

Under the conditions listed above, we can formulate the following results abut the existence
of the semigroups “UV and U4V on the spaces LC and K∞C , respectively.

Lemma 3.22.

1. Suppose that (3.82)-(3.84) hold with

ã1 +
ã2

C
+ 2〈a〉α̃1 <

3

2
. (3.85)

Then, for any ε ∈ (0, 1] the operator (L̂ε,ren,D(ε)) is the generator of a holomorphic
semigroup “Uε(t) on LC .

2. Assume, additionally, that for any ε ∈ (0, 1] there exist A > 0, N ∈ N0 and ν ≥ 1 such
that for any ξ ∈ Γ0 and x ∈ ξ

dε (x, ξ) ≤ A (1 + |ξ|)N ν|ξ|, (3.86)

with
1 ≤ ν < C

ã2

Å
3

2
− ã1 − 2〈a〉α̃1

ã
. (3.87)

Then, for any ε ∈ (0, 1] and for any

α ∈
Ç

ã2

C(3
2 − ã1 − 2〈a〉α̃1)

;
1

ν

å
, (3.88)

there exists a strongly continuous semigroup “U�αε (t) on the space KαC with generator
L̂�αε = L4ε,ren on the domain Dom(L̂�αε ) = {k ∈ KαC : L̂∗ε,renk ∈ KαC}.

Proof of Lemma 3.22.1. We can proceed as in Section 3.1.1.1. Indeed, it is easy to check
that, for any ε ∈ (0, 1], the operator (L

(ε)
0 ,D(ε)) has the same properties of the correspond-

ing non-renormalized operator (L0, D). In particular, we can show the following result (cf.
Lemma 3.4).

Lemma 3.23. For any ε ∈ (0, 1], the operator (L
(ε)
0 ,D(ε)) is the generator of a contraction

semigroup on LC . Moreover, L(ε)
0 is a sectorial operator for any ω ∈ (0, π/2) and for all

z ∈ C \ {0} with |arg z| ≤ π/2 + ω − ε,∥∥∥∥(z1− L(ε)
0

)−1
∥∥∥∥
C
≤ Mε

|z|
, (3.89)

where Mε = 1/ cosω for all ε ∈ (0, ω).

Moreover, from [54] we know that for any ε ∈ (0, 1] the operator L(ε)
1 is relatively bounded

by L̂(ε)
0 in LC .

Proposition 3.24. Let us suppose that conditions (3.82) and (3.83) hold. Then, the operator
(L

(ε)
1 ,D(ε)), ε ∈ (0, 1], is a well-defined operator in LC satisfying∥∥∥L(ε)

1 G
∥∥∥
C
≤
Å
ã1 − 1 +

ã2

C

ã
‖L0G‖C , G ∈ D(ε). (3.90)
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Next we can show that the operator L̂(ε)
RW is also L(ε)

0 -bounded in LC .

Proposition 3.25. Let us suppose that assumption (3.84) is satisfied. Then, the operator
(L̂

(ε)
RW ,D(ε)), ε ∈ (0, 1], is a well-defined operator on LC and the following bound holds∥∥∥L̂(ε)

RWG
∥∥∥
C
≤ 2〈a〉α̃1 ‖L0G‖C + 2〈a〉α̃0 ‖G‖C , G ∈ D(ε). (3.91)

Proof of Proposition 3.25. We need to estimate the following norm in LC∥∥∥L̂(ε)
RWG

∥∥∥
C
≤
ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dz a (y − z)×

∑
ξ⊂η

ε−|η\ξ|
∣∣∣K−1λε (· ∪ η, y, z)

∣∣∣ (η \ ξ) |G (ξ, z)−G (ξ, y)| .

One can proceed as in the proof of Proposition 3.6, by using condition (3.84) instead of (3.10).
As a result, we obtain∥∥∥L̂(ε)

RWG
∥∥∥
C
≤2〈a〉α̃1

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ)Dε (ξ) |G (ξ, y)|+

2〈a〉α̃0

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ) |G (ξ, y)| ,

which concludes the proof of the proposition.

Having disposed this preliminary results, we can prove the first part of the lemma by
applying the same arguments used in the proof of Theorem 3.3.

Proof of Lemma 3.22.2. In order to construct a strongly continuous semigroup on the space
K∞C we follow the same strategy outlined in Section 3.1.2. From the first part of the lemma,
we can deduce that the operator L4ε,ren is the weak*-generator of the semigroups U4ε (t) which
is weak*-continuous and weak*-differentiable at 0 in the Banach space K∞C , for any ε ∈ (0, 1].
Hence, by [39, Section II.2.6], it follows that the restrictions U�ε (t) of the semigroups U4ε (t)

onto its sun-dual subspaces Dom(L4ε,ren) is a strongly continuous semigroup whose generator
L�ε,ren is a part of the operator L4ε,ren onto Dom(L�ε,ren) = Dom(L4ε,ren), ε ∈ (0, 1]. Next, we
restrict the C0-semigroup U�ε (t) onto the subspace K∞αC ⊆ K∞C for some α ∈ (0, 1). For this
purpose, it sufficient to show that the set K∞αC satisfies the inclusion

K∞αC ⊂
(⋂
ε>0

Dom(L4ε,ren)

)

and is a U4ε -invariant subspace of K∞C , for any ε ∈ (0, 1). These two conditions follows directly
from the following propositions which will be proved at the end of the proof.

Proposition 3.26. Let us assume that hypothesis (3.82)-(3.84) are satisfied. Suppose that
for any ε ∈ [0, 1) there exist A > 0, N ∈ N0 and ν ≥ 1 such that for ξ ∈ Γ0 and x /∈ ξ

dε (x, ξ) ≤ A (1 + |ξ|)N ν|ξ|. (3.92)

Then for any α ∈ (0, 1/ν)

K∞αC ⊂
⋂
ε>0

Dom
Ä
L4ε,ren

ä
. (3.93)
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Proposition 3.27. Suppose that the hypotheses of Lemma 3.22 are satisfied. Then, the set
K∞αC is a “U�ε -invariant subspace of K∞C .

As a result of the two propositons above, for any ε ∈ (0, 1] the restriction U�αε (t) of
the semigroup U�ε (t) to the closed subspace K∞αC is a strongly continuous semigroup with
generator L�αε,ren is the restriction of L�ε,ren to K∞αC , see e.g. [39, Section II.2.3]. This concludes
the proof of Lemma 3.22.2.

Proof of Proposition 3.26. As discussed in Propostion 3.10, in order to prove the statement,
we need to show that for any ε ∈ (0, 1] and k ∈ K∞αC

C−|·|L4ε,renk ∈ L∞(Γ0 × Rd, dλdy).

By definition, we have

C−|η|
∣∣∣ÄL4ε,renkä (η, y)

∣∣∣ ≤ C−|η| ∣∣∣ÄL4RE,ε,renkä (η, y)
∣∣∣+ C−|η|

∣∣∣ÄL4RW,ε,renkä (η, y)
∣∣∣ .

From the proof of Proposition 4.1.2 in [54], we know that C−|·|L4RE,ε,renk ∈ L∞(Γ0 × Rd, dλdy),
i.e. for any k ∈ K∞αC , α ∈ (0, 1/ν),

ess sup
(η,y)∈Γ0×Rd

C−|η|
∣∣∣ÄL̂4RE,ε,renkä (η, y)

∣∣∣ <∞.
Let us now consider the operator L4RW,ε,ren, ε ∈ (0, 1]. As in the proof of Proposition 3.10, for
any k ∈ K∞αC , α ∈ (0, 1/ν), one can estimate

C−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)

∣∣∣ ≤
≤ α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ) ε−|ζ|
∣∣∣ÄK−1λε (· ∪ η, z, y)

ä
(ζ)
∣∣∣+

α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ) ε−|ζ|
∣∣∣ÄK−1λε (· ∪ η, y, z)

ä
(ζ)
∣∣∣

≤ 2〈a〉 ‖k‖K∞αC
î
α̃1α

|η|Dε (η) + α̃0α
|η|
ó
,

where in the last step we use (3.84). Note that from hypothesis (3.92) it follows that

Dε (η) =
∑
x∈η

dε (x, η \ x) ≤ A (1 + |η|)N+1 ν|η|−1, (3.94)

then, by using elementary inequality (3.37) we find

C−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)

∣∣∣ ≤ 2〈a〉 ‖k‖K∞αC
î
Aα̃1α

|η| (1 + |η|)N+1 ν|η|−1 + α̃0α
|η|
ó

≤ 2〈a〉 ‖k‖K∞αC

[
Aα̃1

1

αν2

Ç
N + 1

−eln(αν)

åN+1

+ α̃0

]
<∞,

which concludes the proof of the proposition.

Proof of Proposition 3.27. Similarly to the proof of Lemma 3.22.1, we can show that the
operator (L̂ε,ren,D(ε)

α ), ε ∈ (0, 1], with D(ε)
α = {G ∈ LαC : DεG ∈ LαC}, is the generator of an

holomorphic semigroup “Uαε,ren on LαC for any α ∈ (0, 1] such that

ã1 +
ã2

αC
+ 2〈a〉α̃1 <

3

2
. (3.95)

Note that under hypothesis (3.88) of the lemma the condition above is always satisfied. Then,
we can proceed as in the proof of Lemma 3.12.
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Limiting evolutions. Using Proposition 2.20 and 2.22, for any G ∈ Bbs(Γ0 × Rd) we can
rewrite the operator L̂V asÄ

L̂VG
ä

(η, y) =
Ä
LV0 G

ä
(η, y) +

Ä
LV1 G

ä
(η, y) +

Ä
L̂VRWG

ä
(η, y) , (3.96)

where L̂VRW := L̂RW,V is defined in (2.114),Ä
LV0 G

ä
(η, y) = −DV (η)G (η, y) , DV (η) =

∑
x∈η

DV
x (∅) (3.97)

and Ä
LV1 G

ä
(η, y) = −

∑
ξ⊂η

G (ξ, y)
∑
x∈ξ

DV
x (η \ ξ) +

∑
ξ⊂η

ˆ
Rd

dxG (ξ ∪ x, y)BV
x (η \ ξ) . (3.98)

Similarly to [54, Proposition 4.2], we define the set

DV = {G ∈ LC |DV (·)G ∈ LC} (3.99)

and we assume that for a.a. x ∈ Rdˆ
Γ0

∣∣∣DV
x (η)

∣∣∣C |η|dλ(η) ≤ ã1D
V
x (∅) , (3.100)

ˆ
Γ0

∣∣∣BV
x (η)

∣∣∣C |η|dλ(η) ≤ ã2D
V
x (∅) , (3.101)

where the constants are the same as in (3.82)-(3.83). In addition, we make the following
assumption on the limiting interaction (2.111).

Assumption 3.28. Suppose that for a.a. y, z ∈ Rd the following bound holds
ˆ

Γ0

C |η|dλ(η) |AV (η, y, z)| ≤ α̃0, (3.102)

with the same constant of (3.84).

Note that, under Assumption 3.28, the operator L̂VRW is bounded in LC .

Proposition 3.29. Suppose that condition (3.102) holds. Then the operator L̂VRW satisfies
the following bound in LC ∥∥∥L̂VRWG∥∥∥C ≤ 2〈a〉α̃0 ‖G‖C , G ∈ LC . (3.103)

Proof. Let us compute the norm of L̂VRW in LC , by definition we have∥∥∥L̂VRWG∥∥∥C ≤
ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dza (y − z)
∑
ξ⊂η
|AV (η \ ξ, y, z)| |G (ξ, z)−G (ξ, y)| .

We can proceed as in the proof of Proposition 3.6, using (3.102) instead of (3.10). As a result
we have ∥∥∥L̂VRWG∥∥∥C ≤ 2〈a〉α̃0

ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ) |G (ξ, y)| ,

which concludes the proof of the proposition.

As a consequence, we can show the following results about the existence of renormalized
and limiting semigroups on the spaces LC and K∞C .
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Lemma 3.30.

1. Suppose that hypotheses (3.100)-(3.102) hold with

ã1 +
ã2

C
<

3

2
, (3.104)

then the operator (L̂V ,DV ) is the generator of a holomorphic semigroup “UV (t) on LC .

2. Assume, additionally, that there exist A > 0 such that for a.a. x ∈ Rd

DV
x (∅) ≤ A. (3.105)

Then, for any

α ∈
Ç

ã2

C(3/2− ã1)
; 1

å
, (3.106)

there exists a strongly continuous semigroup “U�αV (t) on the space K∞αC with generator
L̂�αV = L4V on Dom(L̂�αV ) = {k ∈ K∞αC : L4V k ∈ K∞αC}.

Proof of Lemma 3.30.1. From [54, Proposition 4.2], we know that, under hypotheses (3.100)
and (3.101), the operator (LV0 + LV1 ,DV ) generates a holomorphic semigroup in LC . On
the other hand, from Proposition 3.29 we know the operator L̂VRW is bounded in LC , under
hypothesis (3.102). Hence, we can apply [39, Theorem III.1.3] and obtain the desired result.

Proof of Lemma 3.30.2. In order to show the second statement we follow the proof of Lemma
3.22.2. In this case, we make use of the following auxiliary results. Their proof is given at the
end of this paragraph.

Proposition 3.31. Let us assume that conditions (3.100)-(3.102) and (3.105) are satisfied.
Suppose, additionally, that there exists A > 0 such that for a.a. x ∈ Rd

DV
x (∅) ≤ A. (3.107)

Then, for any α ∈ (0, 1/ν),
K∞αC ⊂ Dom

Ä
L4V
ä
. (3.108)

Proposition 3.32. Suppose that the hypotheses of the Lemma 3.30 are satisfied. Then, the
set K∞αC is a “U�V -invariant subspace of K∞C .

Let us now consider the restriction U�αV (t) of the semigroups U�V (t) onto the closed sub-
space K∞αC . As a consequence of the two propositions above, U�αV (t) is a strongly continuous
semigroups with generators L�αV which is the restriction of the corresponding operator L�V .
This proves Lemma 3.30.2.

Proof of Proposition 3.31. In order to prove the statement, it is enough to verify that for any
k ∈ K∞αC ,

C−|·|L4V k ∈ L
∞(Γ0 × Rd, dλdy).

In general we can write

C−|η|
∣∣∣ÄL4V kä (η, y)

∣∣∣ ≤ C−|η| ∣∣∣ÄL4RE,V kä (η, y)
∣∣∣+ C−|η|

∣∣∣ÄL4RW,V kä (η, y)
∣∣∣ .
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From [54, Proposition 4.2.2], we know that C−|·|L4RE,V k ∈ L∞(Γ0 × Rd, dλdy), namely

ess sup
(η,y)∈Γ0×Rd

C−|η|
∣∣∣ÄL4RE,V kä (η, y)

∣∣∣ <∞.
Moreover, by using (3.102) one can estimate

C−|η|
∣∣∣ÄL̂4RW,V kä (η, y)

∣∣∣ ≤ C−|η| ˆ
Γ0

dλ (ζ)

ˆ
Rd

dza (y − z) |k (ζ ∪ η, z)| |AV (η, z, y)|+

C−|η|
ˆ

Γ0

dλ (ζ)

ˆ
Rd

dza (y − z) |k (ζ ∪ η, y)| |AV (η, y, z)|

≤ α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ) |AV (η, z, y)|+

α|η| ‖k‖K∞αC

ˆ
Rd

dza (y − z)
ˆ

Γ0

(αC)|ζ| dλ (ζ) |AV (η, y, z)|

≤ 2〈a〉α̃0 ‖k‖K∞αC α
|η|

≤ 2〈a〉α̃′0 ‖k‖K∞αC <∞,

and the proof follows.

Proof of Proposition 3.32. Similarly to the proof of Lemma 3.30.1 one can show that the
operator (L̂V ,DVα ), with DVα = {G ∈ LαC : DVG ∈ LαC}, is the generator of a holomorphic
semigroup “UαV on LαC for any α ∈ (0, 1] such that

ã1 +
ã2

αC
<

3

2
.

Then, we can proceed as in the proof of Lemma 3.12 and obtain the desired result.

Convergence to the limiting evolution. Now we show the main result of about the
convergence of the semigroups “Uε(t), ε ∈ (0, 1], to “UV (t) in the space LC . In order to prove
this convergence we need to impose stronger conditions then (2.104),(2.105) and (2.111).
As in [54, Theorem 4.4.], we demand that the convergences (2.104)-(2.105) hold also in
L1(Γ0(Rd), C |η|dλ(η)) and we make the following assumption on limit (2.111).

Assumption 3.33. Suppose that limit (2.111), explicitly

lim
ε→0

ε−|η|
Ä
K−1λε (· ∪ ξ, y, z)

ä
(η) = lim

ε→0
ε−|η|

Ä
K−1λε (·, y, z)

ä
(η) = AV (η, y, z) , (3.109)

holds for any η ∈ Γ0 as well as in L1(Γ0(Rd), C |η|λ(η)), for all ξ ∈ Γ0 and a.a. y, z ∈ Rd.

Remark 3.34. Let us note that the convergence in L1(Γ0(Rd), C |η|λ(η)) of (2.104) and
(2.105) together with conditions (3.82) and (3.83) yields (3.100) and (3.101), respectively.

Theorem 3.35. Let conditions (3.82)-(3.85) and (3.102) hold. Suppose that the convergences
(2.104), (2.105) and (2.111) take places for all η ∈ Γ0 as well as in L1(Γ0(Rd), C |η|λ(η)).
Assume also that there exists σ > 0 such that (cf. (2.104)) either

dε (x, ξ) ≤ σDV
x (∅) or dε (x, ξ) ≥ σDV

x (∅) (3.110)

is satisfied for all ξ ∈ Γ0 and for a.a. x ∈ Rd. Then, the semigroup “Uε(t) converges strongly
to “UV (t) in LC as ε→ 0 uniformly on any finite interval of time.
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Proof of Theorem 3.35. From Lemma 3.22.1 and 3.30.1, we already know that “Uε(t) and “UV (t)
are holomorphic semigroups in LC . Then, to prove their convergence, it is enough to show
the strong convergence of the resolvents corresponding to the their generators, namelyÄ

L̂ε,ren − u1
ä−1

G
s−→
Ä
L̂V − u1

ä−1
G, (3.111)

for any G ∈ LC , see e.g. [39, Theorem III.4.8]. In order to verify the latter assertion, we
apply Lemma 3.19 taking Lε = L̂ε,ren and Dε = D(ε) with Aε = L

(ε)
0 , Bε = L

(ε)
1 + L̂

(ε)
RW . Of

course, Lε≡0 = L̂V and D0 ≡ DV with A0 = LV0 , B0 = LV1 + L̂VRW . Then, the statement of
Theorem 3.35 will be proved once we check the conditions of Lemma 3.19 are satisfied.

Condition (3.73) is straightforward. Indeed for any u ∈ C with Ru > 0 fixed, we have∥∥∥∥(L(ε)
0 − u1

)−1
G

∥∥∥∥
C
≤
∥∥∥∥ G

Dε + u

∥∥∥∥
C
≤ 1

Ru
‖G‖C , (3.112)

for all ε ∈ (0, 1]. Condition (3.75) follows directly from (2.104) (cf. proof of Theorem 4.4
in [54]). In particular, we can show the following result.

Lemma 3.36. Let us assume that condition (3.82) as well as convergence (2.104) hold. Then
for any u ∈ C with Ru > 0 fixed, we have(

L
(ε)
0 − u1

)−1 s−→
Ä
LV0 − u1

ä−1
, (3.113)

in LC as ε→ 0.

It remains to verify conditions (3.74) and (3.76). They are consequence of Proposition 3.37
and Lemma 3.38, respectively. The proof of the following two auxiliary results is given at the
end of this section.

Proposition 3.37. Set, for brevity, Bε := L
(ε)
1 + L̂

(ε)
RW and suppose that conditions (3.82)-

(3.84) hold. Then, given u ∈ C with Ru > u > 0, for any ε ∈ (0, 1] the following estimate
holds ∥∥∥Bε (u1− L0)−1

∥∥∥
C
≤ ã1 − 1 +

ã2

C
+ 2〈a〉α̃1 +

2〈a〉α̃0

u
. (3.114)

Lemma 3.38. Set for brevity Bε := L
(ε)
1 + L

(ε)
RW and B0 := LV1 + LVRW , Then, under the

hypotheses of the main theorem, for any u ∈ C with Ru > 0, we have

Bε
(
L

(ε)
0 − u1

)−1 s−→ B0

Ä
LV0 − u1

ä−1
, (3.115)

in LC as ε→ 0.

Note that, under hypothesis (3.85), Proposition 3.37 gives us the following bound∥∥∥∥(L(ε)
1 + L

(ε)
RW

) (
u1− L(ε)

0

)−1
∥∥∥∥
C
≤ 1

2
+

2〈a〉α̃0

u
, (3.116)

for any u ∈ C with Ru > u > 0. Hence, we can choose u big enough to make the r.h.s.
smaller than 1, as condition (3.74) requires.

Finally, by combining (3.112) and (3.116) together with the results of Lemma 3.36 and
3.38 we obtain the desired result.

Proof of Proposition 3.37. Let us calculate the LC-norm of the operator Bε(u1−L(ε)
0 )−1. By

definition we can write∥∥∥∥Bε (u1− L(ε)
0

)−1
∥∥∥∥
C
≤
∥∥∥∥L(ε)

1

(
u1− L(ε)

0

)−1
∥∥∥∥
C

+

∥∥∥∥L̂(ε)
RW

(
u1− L(ε)

0

)−1
∥∥∥∥
C
. (3.117)
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From [54, Proposition 4.1], it follows that (cf. (4.14) in [54])∥∥∥∥L(ε)
1

(
u1− L(ε)

0

)−1
∥∥∥∥
C
≤ ã1 − 1 +

ã2

C
.

Now let us consider the second term in the r.h.s. of (3.117). For any G ∈ LC , by using the
result of Proposition 3.25, for (L

(ε)
0 − u1)−1G instead of G, we obtain∥∥∥∥L̂(ε)

RW

(
L

(ε)
0 − u1

)−1
G

∥∥∥∥
C
≤ 2〈a〉α̃1

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (ξ)
Dε (η)

Dε (η) + Ru
|G (ξ, y)|+

2〈a〉α̃0

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (ξ)
|G (ξ, y)|

Dε (η) + Ru
.

Note that for Ru > u > 0 one has

Dε (η)

Dε (η) + Ru
≤ 1,

1

Dε (η) + Ru
≤ 1

Ru
<

1

u
, (3.118)

yielding ∥∥∥∥L̂(ε)
RW

(
L

(ε)
0 − u1

)−1
G

∥∥∥∥
C
≤2〈a〉α̃1

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (ξ) |G (ξ, y)|+

2〈a〉α̃0

u

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (ξ) |G (ξ, y)| ,

which concludes the proof of the proposition.

Proof of Lemma 3.38. For any G ∈ LC , let us consider the following norm∥∥∥∥Bε (L(ε)
0 − u1

)−1
G−B0

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C
≤

≤
∥∥∥∥L(ε)

1

(
L

(ε)
0 − u1

)−1
G− LV1

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C

+

≤
∥∥∥∥L̂(ε)

RW

(
L

(ε)
0 − u1

)−1
G− L̂VRW

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C
. (3.119)

We want to show that the r.h.s. of (3.119) vanishes as ε goes to zero. From the proof of
Theorem 4.4 in [54], we easily deduce that∥∥∥∥L(ε)

1

(
L

(ε)
0 − u1

)−1
G− LV1

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C

s−→ 0 as ε→ 0, (3.120)

if either dε (x, ξ) ≤ σDV
x (∅) or dε (x, ξ) ≥ σDV

x (∅) holds for all ξ ∈ Γ0 and a.a. x ∈ Rd.
Next let us consider the second term in the r.h.s of (3.119). We can estimate it as follows∥∥∥∥L̂(ε)
RW

(
L

(ε)
0 − u1

)−1
G− LVRW

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C
≤

≤
∥∥∥∥(L(ε)

RW − L̂
V
RW

) (
L

(ε)
0 − u1

)−1
G

∥∥∥∥
C

+

∥∥∥∥LVRW ï(L(ε)
0 − u1

)−1
−
Ä
LV0 − u1

ä−1
ò
G

∥∥∥∥
C
,

more explicitly, we can write it∥∥∥∥L̂(ε)
RW

(
L

(ε)
0 − u1

)−1
G− L̂VRW

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C
≤

≤
ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dza (y − z)×
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∑
ξ⊂η

∣∣∣ε−|η\ξ| ÄK−1
0 λε (· ∪ ξ, y, z)

ä
(η \ ξ)−AV (η \ ξ, y, z)

∣∣∣ |G (ξ, z)−G (ξ, y)|
Dε (ξ) + |u|

+

ˆ
Rd

dy
ˆ

Γ0

C |η|dλ (η)

ˆ
Rd

dza (y − z)×

∑
ξ⊂η
|AV (η \ ξ, y, z)| |Dε (ξ)−DV (ξ)|

(Dε (ξ) + |u|) (DV (ξ) + |u|)
|G (ξ, z)−G (ξ, y)| .

By using the Minlos formula (1.18), we find∥∥∥∥L̂(ε)
RW

(
L

(ε)
0 − u1

)−1
G− L̂VRW

Ä
LV0 − u1

ä−1
G

∥∥∥∥
C
≤

≤
ˆ
Rd

dy
ˆ

Γ0

C |ξ|dλ (ξ) |G (ξ, y)| ×ñˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

ˆ
Γ0

C |η|dλ (η)
∣∣∣ε−|η| ÄK−1λε (· ∪ ξ, y, z)

ä
(η)−AV (η, y, z)

∣∣∣+
ˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

ˆ
Γ0

C |η|dλ (η)
∣∣∣ε−|η| ÄK−1λε (· ∪ ξ, z, y)

ä
(η)−AV (η, z, y)

∣∣∣+
|Dε (ξ)−DV (ξ)|

(Dε (ξ) + |u|) (DV (ξ) + |u|)

ˆ
Rd

dza (y − z)
ˆ

Γ0

C |η|dλ (η) |AV (η, y, z)|+

|Dε (ξ)−DV (ξ)|
(Dε (ξ) + |u|) (DV (ξ) + |u|)

ˆ
Rd

dza (y − z)
ˆ

Γ0

C |η|dλ (η) |AV (η, z, y)|
ô
.

(3.121)

Note that by (2.104), for all η ∈ Γ0 we have

Dε (η)→ DV (η) , ε→ 0. (3.122)

The latter together with the convergence in L1(Γ0(Rd), C |η|λ(η)) for (2.111) implies that all
four integrands, as function of (ξ, y), appearing in (3.121) converge to zero λ̃-a.s, as ε → 0.
Then, in order to use the dominated convergence theorem and show the convergence of the
corresponding integrals, it is enough to show that these functions are uniformly bounded.

Let us consider the first integrand

I1 (ξ, y) :=

ˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

ˆ
Γ0

C |η|dλ (η)
∣∣∣ε−|η| ÄK−1λε (· ∪ ξ, y, z)

ä
(η)−AV (η, y, z)

∣∣∣
≤
ˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

ˆ
Γ0

C |η|dλ (η)
[∣∣∣ε−|η| ÄK−1λε (· ∪ ξ, y, z)

ä
(η)
∣∣∣+ |AV (η, y, z)|

]
.

By using conditions (3.84) and (3.102), one can estimate

I1 (ξ, y) ≤
ˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

[α̃1Dε (ξ) + 2α̃0]

≤ 〈a〉α̃1
Dε (ξ)

Dε (ξ) + |u|
+

2〈a〉α̃0

Dε (ξ) + |u|

≤ 〈a〉α̃1 +
2〈a〉α̃0

Ru
<∞.

Similarly, for the second integrand in equation (3.119) we obtain

I2 (ξ, y) :=

ˆ
Rd

dz
a (y − z)
Dε (ξ) + |u|

ˆ
Γ0

C |η|dλ (η)
∣∣∣ε−|η| ÄK−1

0 λε (· ∪ ξ, z, y)
ä

(η)−AV (η, z, y)
∣∣∣

≤ 〈a〉α̃1 +
2〈a〉α̃0

Ru
<∞.
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Next let us consider the third integrand in equation (3.119), namely

I3 (ξ, y) :=
|Dε (ξ)−DV (ξ)|

(Dε (ξ) + |u|) (DV (ξ) + |u|)

ˆ
Rd

dza (y − z)
ˆ

Γ0

C |η|dλ (η) |AV (η, y, z)| .

By using condition (3.102), we have

I3 (ξ, y) ≤ 〈a〉α̃0
|Dε (ξ)−DV (ξ)|

(Dε (ξ) + |u|) (DV (ξ) + |u|)

≤ 〈a〉α̃0

ñ
Dε (ξ)

(Dε (ξ) + |u|) (DV (ξ) + |u|)
+

DV (ξ)

(Dε (ξ) + |u|) (DV (ξ) + |u|)

ô
≤ 2
〈a〉α̃0

Ru
<∞.

Analogously for the last integrand in equation (3.119) we find

I4 (ξ, y) :=
|Dε (ξ)−DV (ξ)|

(Dε (ξ) + |u|) (DV (ξ) + |u|)

ˆ
Rd

dza (y − z)
ˆ

Γ0

C |η|dλ (η) |AV (η, z, y)|

≤ 2
〈a〉α̃0

Ru
<∞,

which concludes the proof of the lemma.

3.2.2 Vlasov equations

In this section we want to study the Vlasov equations that appear in the Vlasov-type scaling
limit. We begin with a rigorous derivation of the Vlasov equations starting from the Vlasov
hierarchy (3.72) in the space K∞C defined by (3.3).

Given C > 0, we denote by B∞C a closed ball of radius C in the Banach space L∞(Rd).

Lemma 3.39. For any α ∈ (α0, 1) as in (3.106), let ρ0 and r0 be two functions belonging
to B

∞
αC and L∞(Rd), respectively. Suppose the hypotheses (3.100)-(3.102) hold. Then, the

evolution equation (3.72) with initial conditions k0(η, y) = eλ(ρ0, η)r0(y) ∈ K∞αC has an unique
solution of the form

kt (η, y) = eλ (ρt, η) rt (y) in K∞αC , t ≥ 0, (3.123)

provided that ρt ∈ B
∞
αC and rt ∈ L∞(Rd) satisfy the system of equations, so-called Vlasov

equations,

∂ρt (x)

∂t
= −ρt (x)

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)D
V
x (ξ) +

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)B
V
x (ξ) , (3.124a)

∂rt (y)

∂t
=

ˆ
Rd

dz a (y − z)
î
rt (z)λt(z, y)− rt (y)λt(y, z)

ó
, (3.124b)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0, respectively, where λt is defined by (2.126).

Proof. From Proposition 2.23 and Lemma 2.25.(i), it follows that if ρt and rt solve (3.124a) and
(3.124b), then kt = eλ(ρt, ·)rt solves Vlasov hierarchy (3.72). On the other hand, ρ0 ∈ B

∞
αC ,

r0 ∈ L∞(Rd) implies k0 ∈ K∞αC , hence, the uniqueness of solution (3.123) follows directly from
Lemma 3.30.2.
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Next let us consider the existence and uniqueness problem for the solutions to the system
of Vlasov equations (3.124a)-(3.124b). The pair of functions (ρt, rt) is defined to be a solution
of the Vlasov equations on R+ if and only if

ρ, r ∈ C1
Ä
(0,+∞)→ L∞(Rd)

ä
∩ C
Ä
[0,+∞)→ L∞(Rd)

ä
:= C1

Ä
R+;L∞(Rd)

ä
and they solve (3.124a) and (3.124b) on R+. We are mostly interested in non-negative solu-
tions, ρt(x), rt(x) ≥ 0, a.a. x ∈ Rd, to have that kt = eλ(ρt, ·)rt is a correlation functional. In
the following we also assume that if ρt(x) ≥ 0 for a.a. x ∈ Rd and t ≥ 0, then

λt (y, z) =

ˆ
Γ0

dλ(ξ)eλ (ρt, ξ)AV (ξ, y, z) ≥ 0, y, z ∈ Rd. (3.125)

Remark 3.40. Note that condition (3.125) is satisfied by each of the interaction I-IV intro-
duced in Section 2.1, see e.g. Section 2.3.2.

The kinetic equation of RE (3.124a) coincides with the Vlasov equation of a birth-and-
death model, see e.g. [54]. At present there are no general results regarding its solutions.
However, Vlasov equations for a birth-and-death dynamics have been intensively studied con-
cerning the existence, uniqueness and behavior of its solution ρt, in many concrete models,
see e.g. [52, 56, 57] and reference therein. In the following theorem we assume that equa-
tion (3.124a) has a unique solution ρ ∈ C1(R+;L∞(Rd)) which is non-negative and uniformly
bounded, then we show that the solution to (3.124b) exists and it is unique, non-negative and
uniformly bounded in L∞.

Theorem 3.41. Let us consider the system of equations (3.124a)-(3.124b). Given C > 0,
suppose that equation (3.124a) with initial condition 0 ≤ ρ0 ∈ B

∞
C has a unique solution

ρ ∈ C1(R+;L∞(Rd)) such that 0 ≤ ρt ∈ B
∞
C , for any t > 0. Then, if we assume that (3.102)

and (3.125) hold, equation (3.124b) with initial condition 0 ≤ r0 ∈ L∞ has a unique solution
0 ≤ r ∈ C1(R+;L∞(Rd)). Moreover, if additionally r0 ∈ B

∞
C′ , C ′ > 0, then rt ∈ B

∞
C′ on R+.

Proof. The proof will be divided in 2 steps.
Step.1. Existence and uniqueness of the solution. We have to establish existence and unique-
ness of solutions r ∈ C1(R+;L∞(Rd)) for the non-autonomous Cauchy problem®

∂
∂trt (y) =

´
Rd dz a (y − z)

î
rt (z)λt(z, y)− rt (y)λt(y, z)

ó
rt (y)|t=0 = r0 (y)

, (3.126)

where ρ ∈ C1(R+;L∞(Rd)) with 0 ≤ ρt(x) ≤ C for a.a. x ∈ Rd.
For any t ≥ 0 we consider the linear operatorÄ
L
∗
RW (t)rt

ä
(y) =

ˆ
Rd

dz a (y − z)
î
rt (z)λt(z, y)− rt (y)λt(y, z)

ó
=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dza (y − z) [rt (z)AV (ξ, z, y)− rt (y)AV (ξ, y, z)] .

(3.127)

Let us first note that the operator (3.127) is bounded in L∞(Rd) for any t ≥ 0. Indeed, for
r ∈ L∞(Rd) we can write∣∣∣ÄL∗RW (t)r

ä
(y)
∣∣∣ ≤‖r‖∞ ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dza (y − z) |AV (ξ, z, y)|+

‖r‖∞
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dza (y − z) |AV (ξ, y, z)| .
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As 0 ≤ ρt ∈ B
∞
C , by using condition (3.102) one may estimate∣∣∣ÄL∗RW (t)r

ä
(y)
∣∣∣ ≤ ‖r‖∞ ˆ

Rd
dza (y − z)

ˆ
Γ0

C |ξ|dλ (ξ) |AV (ξ, z, y)|+

‖r‖∞
ˆ
Rd

dza (y − z)
ˆ

Γ0

C |ξ|dλ (ξ) |AV (ξ, y, z)|

≤ 2 ‖r‖∞
ˆ
Rd

dza (y − z) [α̃0]

≤ 2α̃0〈a〉 ‖r‖∞ ,

which proves the claim. Next, since ρt is continuous on [0,∞) and differentiable on (0,∞),
one can easy check that L∗RW (t) ∈ C(R+;L(L∞)), where L(L∞) is the Banach algebra of all
linear operators on L∞(Rd). Then, we can conclude that the Cauchy problem (3.126) has a
unique solution in L∞(Rd), see e.g. [85, Section II.2].
Step.2. Non-negativity and uniform bound of the solution. In order to show that the solution
r ∈ C1(R+;L∞(Rd)) to (3.126) is non-negative and uniformly bounded, we will construct a
sequence of functions which converges to rt in L∞(Rd) for any finite time interval.

Let us fix a moment of time T > 0 and define the space XT,∞ = C([0, T ];L∞(Rd)) of all
continuous functions on [0, T ] with values in L∞(Rd). As usual we introduce a norm into this
space according to the formula

‖r‖T = max
t∈[0,T ]

‖rt‖∞. (3.128)

In this norm the space XT,∞ is a Banach space. We denote by X+
T,∞ the cone of all

non-negative functions from XT,∞. Note that the set X+
T,∞ with a metric induced by the

norm (3.128) constitutes a complete metric space.
For any 0 ≤ r0 ∈ L∞, let Φ be a mapping which assigns to any v ∈ XT,∞ the solution ut

of the (local) Cauchy problem®
∂
∂tut (y) =

´
Rd dz a (y − z)λt (z, y) vt (z)− ut (y)

´
Rd dz a (y − z)λt (y, z)

ut (y)|t=0 = r0 (y)
. (3.129)

Therefore, we can write, see e.g. [69],

(Φv)t (y) = e−
´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) +ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)vs (z) . (3.130)

Let us show some basic properties of the mapping Φ. First, we can note that Φv ∈ X+
T,∞

for any v ∈ X+
T,∞. Indeed, v ∈ X+

T,∞ and (3.125) imply that Φv ≥ 0. Moreover, since
0 ≤ ρt ∈ B

∞
C , from condition (3.102) it follows that

0 ≤ λt (y, z) ≤
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ) |AV (ξ, y, z)| ≤ α̃0, (3.131)

for t ≥ 0 and a.a. y, z ∈ Rd. Then, one can estimate

(Φv)t (y) ≤ r0 (y) + ‖v‖T
ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)

≤ r0 (y) + α̃0〈a〉 ‖v‖T
ˆ t

0
ds e−α̃0〈a〉(t−s). (3.132)

Note thatˆ t

0
ds (α̃0〈a〉) e−α̃0〈a〉(t−s) =

ˆ t

0
ds

∂

∂s

Ä
e−α̃0〈a〉(t−s)

ä
= 1− e−α̃0〈a〉t, (3.133)
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thus,

(Φv)t (y) ≤ r0 (y) + ‖v‖T
Ä
1− e−α̃0〈a〉t

ä
≤ r0 (y) + ‖v‖T <∞. (3.134)

Next, we show that the mapping Φ is a contraction on the cone X+
T,∞. For any v, w ∈ X+

T,∞,
let us consider the following difference

|(Φv)t (y)− (Φw)t (y)| ≤

≤
ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y) |vs (z)− ws (z)|

≤ ‖v − w‖T
ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y).

By repeating the same estimation done in (3.131)-(3.133), we find

|(Φv)t (y)− (Φw)t (y)| ≤ ‖v − w‖T
Ä
1− e−α̃0〈a〉t

ä
.

Then, for any t ∈ [0, T ] we can write

|(Φv)t (y)− (Φw)t (y)| ≤ ‖v − w‖T
Ä
1− e−α̃0〈a〉T

ä
< ‖v − w‖T .

Given n ≥ 1 and v(0) ∈ X+
T,∞, we use the contraction mapping Φ to define the iterative

scheme v(n) = Φnv(0). Namely,

v
(n)
t (y) = e−

´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) +ˆ t

0
dse−

´ t
s ds′

´
Rd dza(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)v(n−1)
s (z) , (3.135)

with
v

(0)
t (y) = e−

´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) . (3.136)

According to the classical Banach fixed point theorem, since Φ is a contraction and the cone
X+
T is a complete metric space, the sequence {v(n)} ⊂ X+

T has a unique fixed point v ∈ X+
T .

The limiting point vt ∈ L∞ corresponds to the non-negative solution of (3.126) on the interval
[0, T ].

Now given C ′ > 0 and 0 ≤ r ∈ B∞C′ , let us show that the solution vt, t ∈ [0, T ], is uniformly
bounded. We proceed by induction: by hypothesis we know that

v
(0)
t (y) ≤ r0 (y) ≤ C ′, for a.a. y ∈ Rd. (3.137)

We assume that the same bound holds at step n− 1, n ≥ 1, i.e.

v
(n−1)
t (y) ≤ C ′, for a.a. y ∈ Rd, (3.138)

and, then, we prove it at the n-th step. In this case we have

v
(n)
t (y) ≤ e−

´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) +ˆ t

0
dse−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)v(n−1)
s (z) .

By definition of the induction scheme, see equation (3.137) and (3.138), for a.a. y ∈ Rd we
have

v
(n)
t (y) ≤ C ′e−

´ t
0 ds

´
Rd dz a(y−z)λs(y,z)+
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C ′
ˆ t

0
dse−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y).

Then, by using (3.131) and (3.133), one can estimate

v
(n)
t (y) ≤ C ′e−〈a〉α̃0t + C ′

ˆ t

0
ds

∂

∂s

Ä
e−〈a〉α̃0(t−s)

ä
≤ C ′e−〈a〉α̃0t + C ′

Ä
1− e−〈a〉α̃0t

ä
≤ C ′, for a.a. y ∈ Rd. (3.139)

Letting n go to infinity it follows that vt(y) ≤ C ′, for any t ∈ [0, T ] and a.a. y ∈ Rd. Clearly,
changing the initial condition in (3.126) to rt|t=T = vT , we may extend all our considerations
on the time interval [T, 2T ] and so on. As a result, the initial value problem (3.126) has a
unique global bounded non-negative solution rt(y) ∈ L∞(Rd) on R+.

Remark 3.42. In concrete applications we are mainly interested in finding a solution to
Vlasov equation (3.124b) in the space L1(Rd), namely r ∈ C1

Ä
R+;L1(Rd)

ä
. Indeed, in

this case the corresponding correlation functions kt = eλ(ρt)rt are associated to some finite
measure. This problem will be considered in Section 4.2.2.

In the next section we will apply this general result to study the existence and uniqueness
of solutions to the Vlasov equations in the concrete models of RW in a BDLP model of
environment, under each of the interactions I-IV introduced in Section 2.1.

3.2.3 Examples: random walks in a spatial ecological model of environment

Let us consider the case where the environment is described by the BDLP model introduced
in Section 3.1.3. The Vlasov-type scaling for this model has been studied in details in [54,56].

For any ε ∈ (0, 1] we consider the following scaling of rates (3.45) and (3.46)

dε (x, γ \ x) = m+ εχ−
∑

x′∈(γ\x)

a−
(
x− x′

)
, x ∈ γ, γ ∈ Γ, (3.140)

bε (x, γ) = εχ+
∑

x′∈(γ\x)

a+ (x− x′) , x ∈ Rd \ γ, γ ∈ Γ. (3.141)

In correspondence we have (cf. (3.48)-(3.49))Ä
K−1dε (x, · ∪ (ξ \ x))

ä
(η) = dε (x, ξ) 0|η| + εχ−1Γ(1)

(
η = {x′}

)
a−
(
x− x′

)
and Ä

K−1bε (x, · ∪ ξ)
ä

(η) = bε (x, ξ) 0|η| + χ+1Γ(1)

(
η = {x′}

)
a+ (x− x′) .

Therefore, under assumptions (3.50)-(3.51), hypotheses (3.82), (3.83) and (3.86) are satisfied
with

ã1 = 1 +
1

4 + δ
, ã2 =

C

4
, ν = 1, (3.142)

for some δ > 0. Moreover, it is easy to check that the following limits hold in L1(Γ0, C
|η|dλ(η))

(i) DV
x (η) = lim

ε→0

Ä
K−1dε (x, · ∪ ξ)

ä
(η) = m0|η| + χ−1Γ(1)

(
η = {x′}

)
a−
(
x− x′

)
;

(ii) BV
x (η) = lim

ε→0

Ä
K−1bε (x, · ∪ ξ)

ä
(η) = χ+1Γ(1)

(
η = {x′}

)
a+ (x− x′) ,

for a.a. x ∈ Rd. See [54] for further details. According to these results the Vlasov equation
(3.124a) has now the form®

∂ρt
∂t = −mρt − χ−ρt (ρt ∗ a−) + χ+ (ρt ∗ a+)
ρt|t=0 = ρ0

, t ≥ 0. (3.143)
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This kinetic equation was studied in [47, 48, 56]. For technical reasons, it is convenient to
consider solutions ρ ∈ C1(R+;Cb(Rd)). Here, Cb(Rd) is the Banach space of all bounded
continuous functions on Rd equipped with norm

‖f‖∞ := sup
x∈Rd

|f(x)| , f ∈ Cb(Rd).

Note that the Banach space Cb(Rd) can be isomorphically embedded into L∞(Rd). For
simplicity of notation, we define B̃∞C := Cb(Rd) ∩B

∞
C .

In the Banach space Cb(Rd) we can formulate the following existence and uniqueness result
for the evolution equation (3.143). We refer to [48] for a detailed proof.

Theorem 3.43. Given C > 0, let us consider a function 0 ≤ ρ0 ∈ B̃∞C . Suppose that there
exists θ > 0 such that

a+(x) ≤ θa−(x), a.a. x ∈ Rd. (3.144)

Then, the Cauchy problem (3.143) has a unique solution ρ ∈ C1(R+; B̃∞C ) such that 0 ≤ ρt ∈
B̃∞C for any t > 0.

3.2.3.1 RW in BDLP model of environment: Case I

Let us consider the RW of a jumping particle whose interaction with RE is given by

λint(γ, y, z) := λ(1) (γ, y) = e−
∑

x′∈γ φ(x′−y)

= eλ
Ä
e−φ(·−y), γ

ä
, γ ∈ Γ, y ∈ Rd, (3.145)

where φ : Rd → R is a non-negative even function such that

Cφ1 :=

ˆ
Rd
φ (x) dx <∞. (3.146)

Following the analysis in Section 2.3.2, for any ε ∈ (0, 1] we rescale interaction (3.145) as
follows

λ(1)
ε (γ, y) := e−ε

∑
x′∈γ φ(x′−y) = eλ

Ä
e−εφ(·−y), γ

ä
γ ∈ Γ, y ∈ Rd. (3.147)

According to (2.139), we haveÄ
K−1λ(1)

ε (· ∪ ξ, y)
ä

(η) = λ(1)
ε (ξ, y) eλ

Ä
e−εφ(·−y) − 1, η

ä
, (3.148)

for any η, ξ ∈ Γ0 and y ∈ Rd. Thus, one can show the following estimate.

Proposition 3.44. Suppose that condition (3.146) holds. Thenˆ
Γ0

C |η|dλ(η)ε−|η|
∣∣∣K−1λ(1)

ε (· ∪ ξ, y)
∣∣∣ (η) ≤ eCC

φ
1 , (3.149)

for any ξ ∈ Γ0, a.a. y ∈ Rd and C, ε > 0.

Proof. By repeating exactly the same estimates done in the proof of Proposition 3.13 we arrive
to ˆ

Γ0

C |η|dλ(η)ε−|η|
∣∣∣K−1λ(1)

ε (· ∪ ξ, y)
∣∣∣ (η) ≤ eCε

−1
´
Rd dx(1−e−εφ(x−y)). (3.150)

Next, we can use the inequalities φ ≥ 0 and

1− e−εφ(x)

ε
≤ φ (x) , x ∈ Rd, (3.151)

to get the statement.
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Note that from the proposition above, it follows that Assumption 3.21 is trivially satisfied
with

α̃1 ≡ 0, α̃0 = eCC
φ
1 . (3.152)

Now let us consider the limit for ε→ 0 of (3.148). We can show the following result.

Proposition 3.45. Let φ : Rd → R be a non-negative even function. Then

A
(1)
V (η, y) := lim

ε→0
ε−|η|

Ä
K−1λ(1)

ε (· ∪ ξ, y)
ä

(η) = lim
ε→0

ε−|η|
Ä
K−1λ(1)

ε (·, y)
ä

(η)

= eλ (−φ (· − y) , η) , (3.153)

for all η, ξ ∈ Γ0 and a.a. y ∈ Rd. Moreover, if condition (3.146) holds then we have the
convergence in L1(Γ0, C

|η|dλ(η)) of (3.153) andˆ
Γ0

C |η|dλ(η)
∣∣∣A(1)

V (η, y)
∣∣∣ ≤ eCC

φ
1 , (3.154)

for a.a. y ∈ Rd and C > 0.

Proof. From Section 2.3.2, see in particular (2.140), we know that the limit (3.153) holds point-
wise. In order to prove that this convergence takes place also in the sense of L1(Γ0, C

|η|dλ(η)),
we need to show that for all ξ ∈ Γ0 and a.a. y ∈ Rdˆ

Γ0

C |η|dλ (η)
∣∣∣ε−|η| ÄK−1λ(1)

ε (· ∪ ξ, y)
ä

(η)−A(1)
V (η, y)

∣∣∣→ 0, as ε→ 0.

From the dominated convergence theorem, it is enough to show that the integrand above is
dominated by a function belonging to L1(Γ0, C

|η|dλ(η)). By definition, we can write∣∣∣ε−|η| ÄK−1λ(1)
ε (· ∪ ξ, y)

ä
(η)−A(1)

V (η, y)
∣∣∣ ≤

≤
∣∣∣∣∣e−ε∑x∈ξ φ(x−y)eλ

Ç
e−εφ(·−y) − 1

ε
, η

å
− eλ (−φ (· − y) , η)

∣∣∣∣∣
≤
∣∣∣∣∣e−ε∑x∈ξ φ(x−y)eλ

Ç
e−εφ(·−y) − 1

ε
, η

å∣∣∣∣∣+ |eλ (−φ (· − y) , η)| .

Since the potential φ is non-negative, one has∣∣∣ε−|η| ÄK−1λ(1)
ε (· ∪ ξ, y)

ä
(η)−A(1)

V (η, y)
∣∣∣ ≤ eλÇ1− e−εφ(·−y)

ε
, η

å
+ eλ (φ (· − y) , η)

and by using the inequality (3.151) we obtain∣∣∣ε−|η| ÄK−1λ(1)
ε (· ∪ ξ, y)

ä
(η)−A(1)

V (η, y)
∣∣∣ ≤ 2eλ (φ (· − y) , η) ,

for any ξ, η ∈ Γ0 and y ∈ Rd. It is easy to check that the function on the r.h.s. belongs to
L1(Γ0, C

|η|dλ(η)). Indeed, by using identity (1.24), we findˆ
Γ0

C |η|dλ(η)eλ (φ (· − y) , η) = eC
´
Rd dxφ(x−y) = eCC

φ
1 , (3.155)

which concludes the proof of the proposition.

From the proposition above, it follows that both Assumption 3.28 and 3.33 are satisfied
with

α̃0 = eCC
φ
1 . (3.156)

As a consequence of the analysis above, we can apply Lemma 3.22 and 3.30, Theorem 3.35
and Lemma 3.39, to formulate the following result about the Vlasov-type scaling for the
considered model.
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Corollary 3.46. Suppose that condition (3.146) holds. Assume that the functions a± and
the constants χ±, m and C satisfy conditions (3.50)-(3.51). Then

1a. for any ε ∈ (0, 1], the operator (L̂ε,ren,D(ε)) is the generator of a holomorphic semigroup“Uε(t) on LC ;

1b. for any α ∈ (1/2, 1), the operator (L̂�αε,ren,Dom(L̂�αε,ren)) is the generator of a strongly
continuous semigroup “U�αε (t) on the space K∞αC ;

2a. the operator (L̂V ,DV ) is the generator of a holomorphic semigroup “UV (t) on LC ;

2b. for any α ∈ (1/2, 1), the operator (L̂�αV ,Dom(L̂�αV )) is the generator of a strongly con-
tinuous semigroup “U�αV (t) on the space K∞αC ;

3. “Uε(t)→ “UV (t), as ε→ 0, strongly in LC uniformly on finite time intervals;

4. for any α ∈ (1/2, 1), given ρ0 ∈ B
∞
αC and r0 ∈ L∞(Rd), the Vlasov hierarchy (3.72),

with k0(η, y) = ρ0(η)r(y) ∈ K∞αC , has a unique solution kt (η, y) = eλ (ρt, η) rt (y) in
K∞αC provided that ρt ∈ B

∞
αC and rt ∈ L∞(Rd), t > 0, satisfy the Vlasov equations® ∂ρt

∂t = −mρt − χ−ρt (ρt ∗ a−) + χ+ (ρt ∗ a+)
∂rt
∂t = −〈a〉e−(ρt∗φ)rt +

ÄÄ
e−(ρt∗φ)rt

ä
∗ a
ä , (3.157)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0.

Moreover, by combining the results of Theorem 3.41 and 3.43, we have the following
existence and uniqueness result of the solution of system of Vlasov equations.

Theorem 3.47. Assume that conditions (3.146) and (3.144) hold. Given C,C ′ > 0, let
0 ≤ ρ0 ∈ B̃∞C (Rd) and 0 ≤ r0 ∈ B

∞
C′(Rd). Then, the system of equations (3.157) has a unique

solution (ρt, rt), with ρ ∈ C1(R+;L∞(Rd)) and r ∈ C1(R+;L∞(Rd)) such that 0 ≤ ρt ∈ B̃∞C
and 0 ≤ rt ∈ B

∞
C′ , for any time t > 0.

3.2.3.2 RW in BDLP model of environment: Case II

Let us consider the interaction given by

λint(γ, y, z) := λ(2)(γ, y) = λ0 +
∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y ∈ Rd, (3.158)

where λ0 ≥ 0 and φ : Rd → R is a non-negative even function such that conditions (3.63)
and (3.64) hold. In this case, according to Section 2.3.2, for any ε ∈ (0, 1] we consider the
following scaling

λ(2)
ε (γ, y) := λ0 + ε

∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y ∈ Rd. (3.159)

As a consequence one hasÄ
K−1λ(2)

ε (· ∪ ξ, y)
ä

(η) = λε (ξ, y) 0|η| + εφ
(
x′ − y

)
1Γ(1)

(
η =

{
x′
})
, (3.160)

for any η ∈ Γ0 and y ∈ Rd.

Proposition 3.48. Suppose that conditions (3.63) and (3.64) hold. Then, given ε ∈ (0, 1] we
have ˆ

Γ0

C |η|dλ(η)ε−|η|
∣∣∣K−1λ(2)

ε (· ∪ ξ, y)
∣∣∣ (η) ≤ λ0 + CCφ1 + Cφ∞, (3.161)

for any ξ ∈ Γ0, a.a. y ∈ Rd and C > 0.
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Proof. Following the proof of Proposition 3.15 one can show
ˆ

Γ0

C |η|dλ(η)
∣∣∣K−1λ(2)

ε (· ∪ ξ, y)
∣∣∣ (η) ≤ λ0 + ε ‖φ‖∞ |ξ|+ εC ‖φ‖1 . (3.162)

Then, since ε ≤ 1 we get the desired result.

According to (3.140), from the above proposition it follows that Assumption 3.21 is satis-
fied with

α̃1 =
Cφ∞
m

, α̃0 = λ0 + CCφ1 . (3.163)

Next let ε go to zero in (3.160). We can show the following result.

Proposition 3.49. Let φ : Rd → R be a non-negative even function. Then

A
(2)
V (η, y) := lim

ε→0
ε−|η|

Ä
K−1λ(2)

ε (· ∪ ξ, y)
ä

(η) = lim
ε→0

ε−|η|
Ä
K−1λ(2)

ε (·, y)
ä

(η)

= λ00|η| + φ
(
x′ − y

)
1Γ(1)

(
η =

{
x′
})
, (3.164)

for all η, ξ ∈ Γ0 and a.a. y ∈ Rd. If additionally we assume that condition (3.63) holds, in
(3.164) we have a L1(Γ0, C

|η|dλ(η))-convergence and, moreover, the following estimate holds
ˆ

Γ0

C |η|dλ(η)
∣∣∣A(2)

V (η, y)
∣∣∣ ≤ λ0 + CCφ1 , (3.165)

for a.a. y ∈ Rd and C > 0.

Proof. We already know that limit (3.164) holds point-wise, see (2.147) in Section 2.3.2.
Since φ ∈ L1(Rd), the L1(Γ0, C

|η|dλ(η))-convergence follows directly from the dominated
convergence theorem. Finally, we can note that

ˆ
Γ0

C |η|dλ(η)
∣∣∣A(2)

V (η, y)
∣∣∣ =

ˆ
Γ0

C |η|dλ(η)
î
λ00|η| + φ

(
x′ − y

)
1Γ(1)

(
η =

{
x′
})ó

= λ0 + C

ˆ
Rd

dxφ (x− y)

= λ0 + CCφ1 , (3.166)

which concludes the proof of the proposition.

As a consequence of the above proposition, both Assumption 3.28 and 3.33 are fulfilled
with

α̃0 = λ0 + CCφ1 . (3.167)

We are now able to apply the general results about the Vlasov-type scaling stated in Theo-
rem 3.35 and Lemma 3.39.

Corollary 3.50. Let us assume that the functions a±, φ and the constants χ±, m and C
satisfy conditions (3.63) and (3.64) as well as (3.69) and (3.70). Then, for any ε ∈ (0, 1] and
α ∈ (1/2, 1):

1a. the operator (L̂ε,ren,D(ε)) is the generator of a holomorphic semigroup “Uε(t) on LC ;

1b. the operator (L̂�αε,ren,Dom(L̂�αε,ren)) is the generator of a strongly continuous semigroup“U�αε (t) on the space K∞αC ;

2a. the operator (L̂V ,DV ) is the generator of a holomorphic semigroup “UV (t) on LC ;
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2b. the operator (L̂�αV ,Dom(L̂�αV )) is the generator of a strongly continuous semigroup“U�αV (t) on the space K∞αC ;

3. for ε0, “Uε(t)→ “UV (t) strongly in LC uniformly on any finite interval of time;

4. for ρ0 ∈ B
∞
αC and r0 ∈ L∞(Rd), the evolution equation (3.72) with initial conditions

k0(η, y) = ρ0(η)r(y) ∈ K∞αC , has a an unique solution kt (η, y) = eλ (ρt, η) rt (y) in K∞αC
provided that ρ0 ∈ B

∞
αC and r0 ∈ L∞(Rd) satisfy the system of equations®

∂ρt
∂t = −mρt − χ−ρt (ρt ∗ a−) + χ+ (ρt ∗ a+)
∂rt
∂t = (a ∗ [rt (λ0 + (ρt ∗ φ))])− 〈a〉rt [λ0 + (ρt ∗ φ)]

, (3.168)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0.

Finally, we can apply Theorem 3.41 and 3.43 to establish existence and uniqueness of
solutions to Vlasov equations.

Theorem 3.51. Assume that conditions (3.63) and (3.144) hold. Given C,C ′ > 0, let
0 ≤ ρ0 ∈ B̃∞C (Rd) and 0 ≤ r0 ∈ B

∞
C′(Rd). Then, the system of equations (3.168), has a unique

solution ρt ∈ C1(R+;L∞(Rd)) and rt ∈ C1(R+;L∞(Rd)) with 0 ≤ ρt ∈ B̃∞C and 0 ≤ rt ∈ B
∞
C′ ,

on R+.

3.2.3.3 RW in BDLP model of environment: Case III

Let us consider the interaction

λint(γ, y, z) := λ(3) (γ, z) = e−
∑

x′∈γ φ(x′−z)

= eλ
Ä
e−φ(·−z), γ

ä
, γ ∈ Γ, z ∈ Rd, (3.169)

where φ is a non-negative even function on Rd such that condition (3.146) holds.
The scaling of such an interaction has been discussed in the see Case III of Section 2.3.2.

Using results of Proposition 3.44 and 3.45, one can see that Assumption 3.21, 3.28 and 3.33
hold with constants identical to those found in Section 3.2.3.1. Therefore, we can show the
same results as in Lemma 3.46. In this case, the Vlasov equation has the form® ∂ρt

∂t = −mρt − χ−ρt (ρt ∗ a−) + χ+ (ρt ∗ a+)
∂rt
∂t = e−(ρt∗φ) (rt ∗ a)− rt

Ä
e−(ρt∗φ) ∗ a

ä . (3.170)

Then, by applying Theorem 3.41 and 3.43 as has been done in Theorem 3.47, we have the
following existence and uniqueness result.

Theorem 3.52. Assume that conditions (3.146) and (3.144) hold. Then, given C,C ′ > 0 the
system of Vlasov equations (3.170), with initial conditions 0 ≤ ρ0 ∈ B

∞
C and 0 ≤ r0 ∈ B

∞
C′

has a unique solution ρt ∈ C1(R+;L∞(Rd)), rt ∈ C1(R+;L∞(Rd)) such that 0 ≤ ρt ∈ B̃∞C ,
0 ≤ rt ∈ B

∞
C′ for any t > 0.

3.2.3.4 RW in BDLP model of environment: Case IV

Let us consider the interaction

λint(γ, y, z) := λ(2)(γ, z) = λ0 +
∑
x′∈γ

φ
(
x′ − z

)
, (3.171)

where λ0 ≥ 0 and φ are defined as in Section 3.2.3.2.
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In this case, according to general results obtained in Section 2.3.2 (see Case IV), we can
repeat straightforward the analysis done in Section 3.2.3.2 and so prove the same results as
in Lemma 3.50. The Vlasov equations has now the form®

∂ρt
∂t = −mρt − χ−ρt (ρt ∗ a−) + χ+ (ρt ∗ a+)
∂rt
∂t = (rt ∗ a) [λ0 + (ρt ∗ φ)]− rt [λ0〈a〉+ ((ρt ∗ φ) ∗ a)]

. (3.172)

Since Assumption 3.28 is still satisfied with (3.167), we can apply Theorem 3.41 and 3.43 and
show the following existence and uniqueness result for the solution of the system of equations
above.

Theorem 3.53. Assume that conditions (3.63) and (3.144) hold. Then, the system of Vlasov
equations (3.172) with initial conditions 0 ≤ ρ0 ∈ B

∞
C and 0 ≤ r0 ∈ B

∞
C′, C,C ′ > 0, has

a unique solution ρt ∈ C1(R+;L∞(Rd)) and rt ∈ C1(R+;L∞(Rd)) such that 0 ≤ ρt ∈ B̃∞C ,
0 ≤ rt ∈ B

∞
C′ for any t > 0.



Chapter 4

Random walks in a birth-and-death
environment with aggregation

Let us consider the RW of a jumping particle moving in a birth-and-death environment.
In this chapter we study the particular case of a non-equilibrium birth-and-death dynamics
which has constant birth rate and density dependent decreasing death rate. This birth-and-
death model has been introduced in [45], where the authors constructed the corresponding
evolution of states and derived the limiting mesoscopic dynamics that appear in the Vlasov-
type scaling. We present some general conditions on the interaction λint to extend this analysis
to the considered model of RWRE. These conditions can be satisfied by different types of
interactions, it will be seen in detail in some concrete examples.

It is worth noting that for these models of RWRE cannot be included in the general class of
those studied in the previous chapter. Indeed, in this case RE does not satisfy the conditions
stated in Theorem 3.8. Our approach is based on an Ovsjannikov-type result, which yields to
an evolution in a scale of Banach spaces and restricted to a finite time interval.

Let us also mention that the same technique can be applied to study RW in different REs
which are not included in this chapter, for instance Glauber-type dynamics [46] and systems
of hopping particles [10].

4.1 Evolution for correlation functions

In this section we study the statistical evolution of a tagged particle jumping in Rd and inter-
acting with other particles which evolve according to the birth-and-death dynamics described
in [45].

Heuristically, the dynamics of the model is specified by the heuristic Markov generator

(LF ) (γ, y) = (LREF ) (γ, y) + (LRWF ) (γ, y) , F ∈ K(Bbs(Γ0 × Rd)), (4.1)

where the generator LRW is defined by (2.10), whereas LRE is given by (2.2) with

b (x, γ) ≡ b > 0, (4.2)

for any x ∈ Rd \ γ, γ ∈ Γ, and

d (x, γ \ x) = me−
∑

x′∈γ\x V (x−x′)
, m > 0, (4.3)

for any x ∈ γ, γ ∈ Γ. We always assume that V : Rd → R+ is an even non-negative function,

V (x) = V (−x) > 0, ∀x ∈ Rd, (4.4)

which satisfies the following integrability condition

C ′V :=

ˆ
Rd

Ä
1− e−V (x)

ä
dx <∞. (4.5)

We also adhere to the convention that d(x, γ) = 0 if
∑
x′∈γ V (x− x′) =∞.
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Remark 4.1. Let us note that the death rate in (4.3) is a decreasing function in γ. Namely
given γ′ ⊂ γ then

d (x, γ \ x) ≤ d
(
x, γ′ \ x

)
.

In other words the probability to die for a particle of a configuration γ is lower if the particle
lies in a dense area. This represent some kind of attraction interaction between the particles
in the terminology of interacting particle systems theory, see e.g. [91]. Heuristically, for a
large enough initial number of particle an aggregation effect is expected in the environment,
see [45] for further details.

According to the results of Section 2.2, the evolution of correlation functions for the current
model of RWRE is described by the hierarchy, t ≥ 0,®

∂
∂tkt (η, y) =

Ä
L̂∗REkt

ä
(η, y) +

Ä
L̂∗RWkt

ä
(η, y)

kt (η, y)|t=0 = k0
, (4.6)

where the operator L̂∗RW is defined by (2.68), whereas L̂∗RE is of the form (cf. Proposition 2.13
and [45])Ä

L̂∗REk
ä

(η, y) =−m
∑
x∈η

e−
∑

x′∈η\x V (x−x′)
ˆ

Γ0

dλ (ξ) eλ
Ä
e−V (x−·) − 1, ξ

ä
k (η ∪ ξ, y) +

b
∑
x∈η

k (η \ x, y) . (4.7)

Given C > 0, we want to solve the initial value problem (4.6) in the Banach space K1
C

defined by (2.32). In this space we introduce the norm

‖k‖K1
C

:=

ˆ
Rd

dy ‖k (·, y)‖KC ,

where we defined
‖k (·, y)‖KC := ess sup

η∈Γ0

C−|η| |k (η, y)| .

Following [45] we study this evolution problem in the framework of scales of Banach spaces.
Indeed, we can easily see that for any 0 < C ≤ C ′

K1
C ⊂ K1

C′ , ‖·‖K1
C
≥ ‖·‖K1

C′
. (4.8)

Hence, for any C0 ≥ 0 the family {K1
C : 0 < C ≤ C0} is a scale of Banach spaces. Within this

framework, we can use the following existence and uniqueness result. We refer to Appendix A
for a detailed proof.

Theorem 4.2. Let {Bs : 0 < s ≤ s0} be a one parameter family of Banach spaces such that
Bs′′ ⊂ Bs′, ‖ · ‖s′ ≤ ‖ · ‖s′′ , for any pair (s′, s′′) such that s ≤ s′ < s′′ ≤ s0, where ‖ · ‖s denotes
the norm of Bs. Consider the initial value problem® du(t)

dt = Au (t)
u (0) = u0 ∈ Bs0

, (4.9)

where, for each s ∈ (0, s0) fixed and for each pair (s′, s′′) such that s ≤ s′ < s′′ ≤ s0, the
mapping A : Bs′′ → Bs′ is linear satisfying

‖Au‖s′ ≤M0 ‖u‖s′′ +
M1

s′′ − s′
‖u‖s′′ , (4.10)

for some M0,M1 ≥ 0 and for all u ∈ Bs′′ . Here, M0 and M1 are two constant independent of
s′, s′′ and u, however they might depend continuously on s and s0.

Then, for each s ∈ (0, s0) there is a constant δ = (eM1)−1 > 0 such that there exists a
unique function u : [0, δ(s0− s)) 7→ Bs which is continuously differentiable on (0, δ(s0− s)) in
Bs, Au ∈ Bs and solves the initial value problem (4.9) in the time interval 0 ≤ t < δ(s0− s).
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The application of this general theorem to hierarchy (4.6) is stated below. The proof of
this result is given is Section 4.1.1

Theorem 4.3. Suppose that condition (4.5) holds. Assume that there exist α0, α1 ≥ 0 such
that for all η ∈ Γ0 and a.a. y, z ∈ Rd

ˆ
Γ0

C |ξ|dλ (ξ)
∣∣∣K−1λint (· ∪ η, y, z)

∣∣∣ (ξ) ≤ α1 |η|+ α0. (4.11)

Then, given C0 > 0 arbitrary and fixed, for each C > C0 there exists a moment of time

T (C0, C) :=
C0 (C − C0)

C2
Ä
meCC′V + b

C0
+ 2〈a〉α1

ä > 0, (4.12)

such that the initial value problem (4.6), with k0 ∈ K1
C0
, has a unique solution kt in the space

K1
C on the time interval [0, T (C0, C)).

The theorem above ensures the existence and uniqueness of solutions to the evolution
equation (4.6) on a finite time interval only. Moreover, starting with an initial condition from
a certain Banach space K1

C0
in general this solution evolves on a larger Banach space K1

C with
C > C0 > 0.

4.1.1 Proof of Theorem 4.3

First we study the operator L̂∗ := L̂∗RE + L̂∗RW given by (2.68) and (4.7) on the Banach
space K1

C . In general, the operator L̂∗ is unbounded on K1
C , however it might be bounded as

an operator between two different spaces of functions. From [45] one can easily deduce that
L̂∗RE is a bounded operator from K1

C′ to K1
C for any 0 < C ′ < C. In particular we can show

the following result.

Proposition 4.4. Suppose that condition (4.5) holds. Let C > C0 > 0 be arbitrary and fixed.
Then for any C ′, C ′′ such that C0 ≤ C ′ < C ′′ ≤ C, the operator L̂∗RE is a linear operator
acting from K1

C′ to K1
C′′ such that

∥∥∥L̂∗REk∥∥∥K1
C′′
≤ 1

C ′′ − C ′
C

e

Å
meCC

′
V +

b

C0

ã
‖k‖K1

C′
, (4.13)

for any k ∈ K1
C′ .

Proof of Proposition 4.4. The statement follows immediately from Proposition 3.2 in [45].

Next we can use condition (4.11) to prove a similar estimate for the operator L̂∗RW .

Proposition 4.5. Suppose that there exist α0, α1 ≥ 0 such that for all η ∈ Γ0 and a.a.
y, z ∈ Rd condition (4.11) holds. Let C > C0 > 0 be arbitrary and fixed. Then for any C ′, C ′′

such that C0 ≤ C ′ < C ′′ ≤ C, the operator L̂∗RW is a linear operator acting from K1
C′ to K1

C′′

and for any k ∈ K1
C′ ∥∥∥L̂∗RWk∥∥∥K1

C′′
≤ 2〈a〉

Å
1

C ′′ − C ′
C

e
α1 + α0

ã
‖k‖K1

C′
. (4.14)

Proof of Proposition 4.5. According to (2.68), for any k ∈ K1
C′ we have

(
C ′′
)−|η| ∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤
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≤
(
C ′′
)−|η| ˆ

Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) |k (ξ ∪ η, z)|
∣∣∣K−1λint (· ∪ η, z, y)

∣∣∣ (ξ) +

(
C ′′
)−|η| ˆ

Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) |k (ξ ∪ η, y)|
∣∣∣K−1λint (· ∪ η, y, z)

∣∣∣ (ξ)
≤
Ç
C ′

C ′′

å|η| ˆ
Rd

dz a (y − z) ‖k (·, z)‖KC′

ˆ
Γ0

C |ξ|dλ (ξ)
∣∣∣K−1λint (· ∪ η, z, y)

∣∣∣ (ξ) +Ç
C ′

C ′′

å|η|
‖k (·, y)‖KC′

ˆ
Rd

dz a (y − z)
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣K−1λint (· ∪ η, y, z)

∣∣∣ (ξ) .
Then, by using assumption (4.11) one may estimate

(
C ′′
)−|η| ∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤
≤
Ç
C ′

C ′′

å|η|
(α1 |η|+ α0)

ˆ
Rd

dz a (y − z)
î
‖k (·, z)‖KC′ + ‖k (·, y)‖KC′

ó
.

Since C ′/C ′′ < 1, we can use the elementary inequality

att ≤
Å

1

−e ln a

ã
, t ≥ 0, a ∈ (0, 1) , (4.15)

to obtain(
C ′′
)−|η| ∣∣∣ÄL̂∗RWkä (η, y)

∣∣∣ ≤
≤
ñ

α1

e (lnC ′′ − lnC ′)
+ α0

ôˆ
Rd

dz a (y − z)
î
‖k (·, z)‖KC′ + ‖k (·, y)‖KC′

ó
.

The latter implies that

∥∥∥L̂∗RWk∥∥∥K1
C′′
≤ 2〈a〉 ‖k‖K1

C′

ñ
α1

e (lnC ′′ − lnC ′)
+ α0

ô
.

On the other hand, there exists a constant c ∈ [C ′, C ′′] ⊂ [C0, C] such that

lnC ′′ − lnC ′ =
1

c

(
C ′′ − C ′

)
≥ 1

C

(
C ′′ − C ′

)
> 0, (4.16)

which concludes the proof of the proposition.

Let us note that by combining the results of Proposition 4.4 and 4.5, for any C ′, C ′′ such
that C0 ≤ C ′ < C ′′ ≤ C and k ∈ K1

C′ we obtain the following bound for the operator L̂∗

∥∥∥L̂∗k∥∥∥
K1
C′′
≤ 2〈a〉α0 ‖k‖K1

C′
+

1

C ′′ − C ′
C

e

ïÅ
meCC

′
V +

b

C0

ã
+ 2〈a〉α1

ò
‖k‖K1

C′
. (4.17)

Having established of this preliminary result, we can now proceed to prove Theorem 4.3.

Proof of Theorem 4.3. Let us apply Theorem 4.2 to the scale of Banach spaces {Bs : 0 ≤ s ≤ s0}
with

Bs := K1
1/s (4.18)

and s0 := 1/C0. For s = 1/C and

s′′ :=
1

C ′′
<

1

C ′
=: s′,
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one can rewrite (4.17) in the following way∥∥∥L̂∗k∥∥∥
Bs′′
≤ 2〈a〉α0 ‖k‖Bs′ +

s′s′′

s′ − s′′
1

se

ñ
me

C′
V
s + bs0 + 2〈a〉α1

ô
‖k‖Bs′

≤ 2〈a〉α0 ‖k‖Bs′ +
1

s′ − s′′
s2

0

se

ñ
me

C′
V
s + bs0 + 2〈a〉α1

ô
‖k‖Bs′

≤M0 ‖k‖Bs′ +
M1 (s, s0)

s′ − s′′
‖k‖Bs′ , (4.19)

where
M0 = 2〈a〉α0 (4.20)

and

M1 := M1 (s, s0) =
s2

0

se

ñ
me

C′
V
s + bs0 + 2〈a〉α1

ô
. (4.21)

Then, directly applying Theorem 4.2, we obtain an evolution

K1
C0

:= Bs0 ∈ k0 7−→ kt ∈ Bs := K1
C , (4.22)

for any time t ≥ 0 less than

T (C0, C) :=
s0 − s

eM1 (s, s0)
=

ñ
s2

0

s

Ç
me

C′
V
s + bs0 + 2〈a〉α1

åô−1

(s0 − s)

=
C0 (C − C0)

C2
Ä
meCC′V + b

C0
+ 2〈a〉α1

ä , (4.23)

and the proof is complete.

4.1.2 Examples

In this section we apply the general result stated in Theorem 4.3 to each of the interactions
I-IV introduced in Section 2.1. For this purpose it is enough to show that these interactions
satisfy condition (4.11).

4.1.2.1 RW in an aggregation model of environment: Case I and III

Let us consider the interactions defined in Section 3.1.3.1 given by

λint(γ, y, z) := λ(1) (γ, y) = e−
∑

x′∈γ φ(x′−y), γ ∈ Γ, y ∈ Rd, (4.24)

and
λint(γ, y, z) := λ(3) (γ, z) = e−

∑
x′∈γ φ(x′−z), γ ∈ Γ, z ∈ Rd, (4.25)

where φ : Rd → R is a non-negative even function such that

C ′φ :=

ˆ
Rd

dx
Ä
1− e−φ(x)

ä
<∞. (4.26)

From Proposition 3.13 we know that both interactions (4.24) and (4.25) satisfy condition (4.11)
with

α0 = eCC
′
φ and α1 ≡ 0. (4.27)

Therefore, we can apply Theorem 4.3 to construct the evolution of correlation functions.

Corollary 4.6. Let us consider the operator L̂∗RE defined by (4.7). Let L̂∗RW be an operator of
the form (2.70) or (2.72) and such that condition (4.26) holds. Then, given a C0 > 0 arbitrary
and fixed, for each C > C0 the evolution equation (4.6) with initial condition k0 ∈ K1

C0
has a

unique solution kt ∈ K1
C on the time interval [0, T (C,C0)) with

T (C,C0) =
C0 (C − C0)

C2
Ä
meCC′V + b

C0

ä . (4.28)
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4.1.2.2 RW in an aggregation model of environment: Case II and IV

Let us consider a RW whose interaction with RE is given by

λint(γ, y, z) := λ(2)(γ, y) = λ0 +
∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y, z ∈ Rd. (4.29)

As in Section 3.1.3.2 we assume that λ0 ≥ 0 and φ : Rd → R is a non-negative even function
such that the following two conditions hold

Cφ1 := ‖φ‖1 =

ˆ
Rd

dxφ (x) <∞, (4.30)

Cφ∞ := ‖φ‖∞ = ess sup
x∈Rd

φ (x) <∞. (4.31)

Using the result of Proposition 3.15, we see that for interaction (4.29) condition (4.11) holds
with

α0 = λ0 + CCφ1 and α1 = Cφ∞. (4.32)

Then, according to Theorem 4.3 we have the following existence and uniqueness result.

Corollary 4.7. Let us assume that conditions (4.30) and (4.31) hold. Given C0 > 0, for
each C > C0 hierarchy (4.6) specified by (4.7) and (2.71) with initial condition k0 ∈ K1

C0
has

a unique solution kt ∈ K1
C on the time interval 0 ≤ t < T (C,C0), where

T (C,C0) =
C0 (C − C0)

C2
Ä
meCC′V + b

C0
+ 2〈a〉Cφ∞

ä . (4.33)

Clearly the same result can be also proved for the interaction

λint(γ, y, z) := λ(4)(γ, z) = λ0 +
∑
x′∈γ

φ
(
x′ − z

)
, γ ∈ Γ, y, z ∈ Rd. (4.34)

Remark 4.8. Let us note that, compared with the semigroup approach discussed in Chap-
ter 3, the Ovsjannikov’s method requires weaker conditions on the interaction λint. Indeed in
this case we do not have any constraint on the parameters α0 and α1.

4.2 Mesoscopic evolution: Vlasov-type scaling

In this section we want to study the mesoscopic evolution of RWs in an aggregation model
of RE.

The mesoscopic limit of the considered stochastic dynamics can be obtained by applying
the general scheme of the Vlasov-type scaling, described in Section 2.3, to the hierarchy
for correlation functions (4.6). A detailed discussion of the scaling for the generator (2.2)
with (4.2)-(4.3) can be found in [45]; throughout the next sections we will intensively use the
results of this paper.

Following the general construction, for any ε > 0 we consider a renormalized hierarchy
given by ® dkt,ε

dt =
Ä
L4RE,ε,ren + L4RW,ε,ren

ä
kt,ε

kt,ε|t=0 = k0,ε
, (4.35)

where L4RW,ε,ren is defined as in (2.101) and (cf. [45, Proposition 4.1])Ä
L̂4RE,ε,renk

ä
(η, y) =−m

∑
x∈η

e−ε
∑

x′∈η\x V (x−x′)
ˆ

Γ0

dλ (ξ) eλ

Ç
e−εV (x−·) − 1

ε
, ξ

å
k (η ∪ ξ, y) +
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b
∑
x∈η

k (η \ x, y) . (4.36)

Then, if we assume that the condition (2.111) holds in the limit ε→ 0 we obtain the Vlasov
hierarchy ® dkt,V

dt =
Ä
L4RE,V + L4RW,V

ä
kt,V

kt,V |t=0 = k0,V
, (4.37)

where L4RW,V is given by (2.113) and (cf. [45])Ä
L4RE,V k

ä
(η, y) = lim

ε→0

Ä
L̂4RE,ε,renk

ä
(η, y)

= −m
∑
x∈η

ˆ
Γ0

dλ (ξ) eλ (−V (x− ·) , ξ) k (η ∪ ξ, y) + b
∑
x∈η

k (η \ x, y) . (4.38)

In the remaining part of this chapter we study the Vlasov-type scaling in the Banach space
K1
C . In Section 4.2.1 we prove the convergence of the renormalized evolution to the solution

of the limiting hierarchy (4.37). Finally, in Section 4.2.2 we present the explicit form of the
Vlasov equations and study the properties of their solutions.

4.2.1 Convergence of the Vlasov-type scaling

We proceed by studying the convergence of the Vlasov-type scaling for the considered statis-
tical evolution in the Banach space K1

C . We follow the same strategy realized in [45].
First, we use Theorem 4.2 in the scale of Banach space {K1

C : 0 < C ≤ C0}, C0 > 0, to
find a solution to the renormalized and to the limiting evolution equations, (4.35) and (4.37),
respectively. It is important that these two solutions are defined on the same time interval
and with values in the same Banach space. Indeed, in this case it is natural to study under
which conditions we have a convergence. The latter will be done by using a general result
presented in [61], which we formulate below for the reader’s convenience.

Theorem 4.9. Let the family of Banach spaces {Bs : 0 < s ≤ s0} be such as in Theorem 4.2.
For any ε > 0 consider the family of initial value problems

duε
dt

= Aεuε (t) , uε (0) = uε, (4.39)

where, for each s ∈ (0, s0) fixed and for each pair (s′, s′′) such that s ≤ s′ < s′′ ≤ s0,
Aε : Bs′′ 7→ Bs′ is a linear mapping and there is a constant M > 0 such that for all u ∈ Bs′′

‖Aεu‖s′ ≤
M

s′′ − s′
‖u‖s′′ . (4.40)

Here M is independent of ε, s′, s′′ and u, however, it might depend continuously on s and
s0. In addition, assume that for each ε > 0 there is a Nε and a p ∈ N such that for each pair
(s′, s′′) with s ≤ s′ < s′′ ≤ s0 and for all u ∈ Bs′′

‖Aεu−A0u‖s′ ≤
p∑

k=1

Nε

(s′′ − s′)k
‖u‖s′′ , (4.41)

with
lim
ε→0

Nε = 0. (4.42)

Then, if
lim
ε→0
‖uε(0)− u0(0)‖s0 = 0, (4.43)
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for each s ∈ (0, s0) there is a constant δ > 0, depending on M , such that the family of initial
value problems (4.39) has a unique solution uε : [0, δ(s0− s)) 7→ Bs for each ε > 0. Moreover,
for all t ∈ [0, δ(s0 − s)) we have

lim
ε→0
‖uε(t)− u0(t)‖s = 0. (4.44)

Following the scheme outlined above, let us consider the hierarchies (4.35) and (4.37). As
in Theorem 4.3, in order to apply the Ovsjannikov’s method, see Theorem 4.2, to these two
initial value problems, we should impose some conditions on the rescaled interaction λε and
on the function AV defined in (2.111).

Assumption 4.10. Suppose that for any ε > 0 there exist α̃0, α̃
′
0 > 0 and α̃1 ≥ 0 such that

for all η ∈ Γ0 and a.a. y, z ∈ Rdˆ
Γ0

C |ξ|dλ (ξ) ε−|ξ|
∣∣∣K−1λε (· ∪ η, y, z)

∣∣∣ (ξ) ≤ α̃0 + α̃1 |η| , (4.45)

ˆ
Γ0

C |ξ|dλ (ξ) |AV (ξ, y, z)| ≤ α̃′0. (4.46)

Without loss of generality we can assume that α̃′0 = α̃0.

Under the assumption above we can prove the following result.

Lemma 4.11. Let V be a non-negative even function such that

CV1 :=

ˆ
Rd

dx V (x) <∞. (4.47)

Suppose that conditions (4.45) and (4.46) are satisfied. Then, given C0 > 0 arbitrary and
fixed, for any C > C0 there exists a moment of time

T1 (C0, C) :=
C0 (C − C0)

C2
Ä
meCCV1 + b

C0
+ 2〈a〉α̃1

ä , (4.48)

such that for any ε > 0 the evolution equations (4.35) and (4.37) with initial conditions
{k0,ε, k0,V } ⊂ K1

C0
, have unique solutions kt,ε and kt,V , respectively, in the space K1

C on the
time interval 0 ≤ t < T (C0, C1).

Proof of Lemma 4.11. Let us first analyze the generators that appear in (4.35) and (4.37).
From [45, Proposition 4.2] we have the following result for the operators L4RE,ε,ren and L4RE,V .

Proposition 4.12. Suppose that conditions (4.47) holds. Let C > C0 > 0 arbitrary and fixed.
Then for any C ′, C ′′ such that C0 ≤ C ′ < C ′′ ≤ C, and for any k ∈ K1

C′ one has∥∥∥L4RE,#k∥∥∥K1
C′′
≤ 1

C ′′ − C ′
C

e

Å
meCC

V
1 +

b

C0

ã
‖k‖K1

C′
, (4.49)

where # = "ε, ren" or "V ".

Next, under hypotheses (4.45) and (4.46), we can show the following two estimates for the
operators L4RW,ε,ren and L4RW,V , respectively.

Proposition 4.13. Let us assume that condition (4.45) holds. Then, given C > 0 arbitrary
and fixed, for any C ′, C ′′ such that 0 < C ′ < C ′′ ≤ C, and for any k ∈ K1

C′ the following
estimate holds∥∥∥L4RW,ε,renk∥∥∥K1

C′′
≤ 2〈a〉

Å
1

C ′′ − C ′
C

e
α̃1 + α̃0

ã
‖k‖K1

C′
, ε > 0. (4.50)
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Proof of Proposition 4.13. We can proceed as in the proof of Proposition 4.5 using condition
(4.45) instead of (4.11). This is equivalent to replace (α0, α1) with (α̃0, α̃1) in (4.14).

Proposition 4.14. Suppose that (4.46) holds. Let C > 0 be arbitrary and fixed. Then, for
any C ′, C ′′ such that 0 < C ′ < C ′′ ≤ C, and for any k ∈ K1

C′ we have∥∥∥L4RW,V k∥∥∥K1
C′′
≤ 2〈a〉α̃0 ‖k‖K1

C′
. (4.51)

Proof of Proposition 4.14. We can follow the proof of Proposition 4.5 setting α0 = α̃0 and
α̃1 ≡ 0.

Let us come back to the proof of Lemma 4.11. According to Proposition 4.13 and 4.14,
for any C ′, C ′′ such that 0 < C0 < C ′ < C ′′ ≤ C and k ∈ K1

C′ one has

∥∥∥L4RW,#k∥∥∥K1
C′′
≤ 2〈a〉α̃0 ‖k‖K1

C′
+

1

C ′′ − C ′
C

e
2〈a〉α̃1 ‖k‖K1

C′
, (4.52)

where # = "ε, ren" or "V ". Then, by combining this estimate with that in Proposition 4.12
we obtain∥∥∥L4#k∥∥∥K1

C′′
≤ 2〈a〉α̃0 ‖k‖K1

C′
+

1

C ′′ − C ′
C

e

ïÅ
meCC

V
1 +

b

C0

ã
+ 2〈a〉α̃1

ò
‖k‖K1

C′
, (4.53)

for any k ∈ K1
C′ and with # = "ε, ren" or "V ". Finally, an application of Theorem 4.2 similar

to the one in the proof of Theorem 4.3 leads us to desired result.

Next let us study the convergence of the solutions of (4.35) to the solution of (4.37) on
the time interval [0, T1(C0, C1)) as ε goes to zero. Following [45] we assume that

V := ess sup
x∈Rd

V (x) <∞. (4.54)

In addition we need to impose a stronger condition than (2.111).

Assumption 4.15. Assume that the limits

lim
ε→0

ε−|ξ|
Ä
K−1λε (· ∪ η, y, z)

ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1λε (·, y, z)

ä
(ξ) = AV (ξ, y, z) , (4.55)

hold point-wise in ξ ∈ Γ0 as well as in L1(Rd, C |ξ|λ(ξ)), for all η ∈ Γ0 and a.a. y, z ∈ Rd.
In particular, given ε > 0, we demand that there exist σ̃0, σ̃1 ≥ 0 such that for all η ∈ Γ0

and a.a. y, z ∈ Rd
ˆ

Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ| ÄK−1λε (· ∪ η, y, z)

ä
(ξ)−AV (ξ, y, z)

∣∣∣ ≤ ε (σ0 + σ1|η|) . (4.56)

Remark 4.16. We can always writeÄ
K−1λε (· ∪ η, y, z)

ä
(ξ) := Aε (ξ, y, z) + Ãε (ξ, η, y, z) , (4.57)

where
Aε (ξ, y, z) :=

Ä
K−1λε (·, y, z)

ä
(ξ) (4.58)

and
Ãε (ξ, η, y, z) :=

Ä
K−1λε (· ∪ η, y, z)

ä
(ξ)−Aε (ξ, y, z) . (4.59)
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Then assumption (4.56) is satisfied if
ˆ

Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|Aε (ξ, y, z)−AV (ξ, y, z)

∣∣∣ ≤ εσ0, (4.60)
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ãε (ξ, η, y, z)

∣∣∣ ≤ εσ1|η|, (4.61)

for all η ∈ Γ0 and a.a. y, z ∈ Rd. Note that in concrete models conditions (4.60) and (4.61)
are, in general, easier to verify than (4.56).

In the following theorem we show the main result of this section about the convergence of
the Vlasov-type scaling.

Theorem 4.17. Let T1(C0, C) be given by (4.48) and V be a even non-negative function on
Rd such that (4.47) and (4.54) hold. Suppose that conditions (4.45)-(4.46) as well as (4.56)
are satisfied. Then, given C > C0 > 0 fixed, the evolution equations (4.35) and (4.37) with
initial conditions {k0,ε, k0,V }ε>0 ⊂ K1

C0
have unique solutions, kt,ε and kt,V , respectively, in

K1
C on the time interval [0, T1(C0, C)). If, additionally, we assume that

lim
ε→0
‖k0,ε − k0,V ‖K1

C0

= 0, (4.62)

then
lim
ε→0
‖kt,ε − kt,V ‖K1

C
= 0. (4.63)

on the time interval 0 ≤ t < T1(C0, C).

Proof of Theorem 4.17. The existence of solutions to (4.35) and (4.37) in K1
C has been already

proved in Lemma 4.11. In order to show the convergence in (4.63), we apply Theorem 4.9
to (4.35). Below we check that the conditions of this general theorem, see (4.40)-(4.42), are
fulfilled.

We already know that condition (4.40) is satisfied. Indeed, from the proof of Lemma 4.11
we have (cf. (4.53))∥∥∥L4#k∥∥∥K1

C′′
≤ 1

C ′′ − C ′
C

e

ï
meCC

V
1 +

b

C0
+ 2〈a〉α̃1 + c(C,C0)

ò
‖k‖K1

C′
, (4.64)

for any k ∈ K1
C′ , where # = "ε, ren" or "V " and

c (C,C0) := 2〈a〉α̃0
e
C

(C − C0) . (4.65)

On the other hand, conditions (4.41) and (4.42) are a direct consequence of the following
proposition. Its proof is given at the end of this section.

Proposition 4.18. Assume that hypotheses of Theorem 4.17 are satisfied. Given C > C0 > 0
fixed, let us consider any C ′, C ′′ such that C0 ≤ C ′ < C ′′ ≤ C. Then for any k ∈ K1

C′ the
following estimate holds

∥∥∥L4ε,renk − L4V k∥∥∥K1
C′′
≤ε
Ç

M̃1

C ′′ − C ′
+

M̃2

(C ′′ − C ′)2

å
‖k‖K1

C′
+

2ε〈a〉
ñ
σ̃0 +

Cσ̃1

e (C ′′ − C ′)

ô
‖k‖K1

C′
, (4.66)

with

M̃1 =
mCV1 C

2

2e
V eCC

V
1 , M̃2 =

4mC2

e2
V eCC

V
1 . (4.67)
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According to the result stated above, for any C0 ≤ C ′ < C ′′ ≤ C and all ε > 0, for any
k ∈ K1

C′ we have

∥∥∥L4ε,renk − L4V k∥∥∥K1
C′′
≤ ε

‖k‖K1
C′

(C ′′ − C ′)

ï
M̃1 +

2C

e
〈a〉σ̃1 + c̃ (C,C0)

ò
+ ε

‖k‖K1
C′

(C ′′ − C ′)2 M̃2, (4.68)

where
c̃ (C,C0) := 2〈a〉σ̃0 (C − C0) . (4.69)

Hence, by (4.64) and (4.68) we can apply Theorem 4.9 for p = 2 and

Nε = εmax

ß
M̃1 +

2C

e
〈a〉σ̃1 + c̃ (C,C0) , M̃2

™
. (4.70)

This concludes the proof of Theorem 4.17.

Proof of Proposition 4.18. For any k ∈ K1
C′ let us estimate∥∥∥L4ε,renk − L4V k∥∥∥K1

C′′
≤
∥∥∥L4RE,ε,renk − L4RE,V k∥∥∥K1

C′′
+
∥∥∥L4RW,ε,renk − L4RW,V k∥∥∥K1

C′′
. (4.71)

By using [45, Proposition 4.6], for all ε > 0 and for any C ′, C ′′ such that C0 ≤ C ′ < C ′′ ≤ C
one can show ∥∥∥L4RE,ε,renk − L4RE,V k∥∥∥K1

C′′
≤ ε
Ç

M̃1

C ′′ − C ′
+

M̃2

(C ′′ − C ′)2

å
‖k‖K1

C′
, (4.72)

where the constants M1 and M2 are given by (4.67).
Next let us estimate the second term in the r.h.s. of (4.71). By (2.101) and (2.113) we

have

(C ′′)−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)−

Ä
L4RW,V k

ä
(η, y)

∣∣∣ ≤
≤
(
C ′′
)−|η| ˆ

Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) |k (ξ ∪ η, z)| ×∣∣∣ε−|ξ| ÄK−1λε (· ∪ η, z, y)
ä

(ξ)−AV (ξ, z, y)
∣∣∣+

(
C ′′
)−|η| ˆ

Γ0

dλ (ξ)

ˆ
Rd

dz a (y − z) |k (ξ ∪ η, y)| ×∣∣∣ε−|ξ| ÄK−1λε (· ∪ η, y, z)
ä

(ξ)−AV (ξ, y, z)
∣∣∣ .

Then, since k ∈ K1
C′ we obtain

(C ′′)−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)−

Ä
L4RW,V k

ä
(η, y)

∣∣∣ ≤
≤
Ç
C ′

C ′′

å|η| ˆ
Γ0

C |ξ|dλ (ξ)

ˆ
Rd

dz a (y − z) ‖k (·, z)‖KC′ ×∣∣∣ε−|ξ| ÄK−1λε (· ∪ η, z, y)
ä

(ξ)−AV (ξ, z, y)
∣∣∣+Ç

C ′

C ′′

å|η| ˆ
Γ0

C |ξ|dλ (ξ)

ˆ
Rd

dz a (y − z) ‖k (·, y)‖KC′ ×∣∣∣ε−|ξ| ÄK−1λε (· ∪ η, y, z)
ä

(ξ)−AV (ξ, y, z)
∣∣∣ .
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By using condition (4.56) in Assumption 4.15, one may estimate

(C ′′)−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)−

Ä
L4RW,V k

ä
(η, y)

∣∣∣ ≤
≤
Ç
C ′

C ′′

å|η| ˆ
Rd

dz a (y − z) ‖k (·, z)‖KC′ ε (σ0 + σ1|η|) +Ç
C ′

C ′′

å|η| ˆ
Rd

dz a (y − z) ‖k (·, y)‖KC′ ε (σ0 + σ1|η|)

≤ ε
Ç
C ′

C ′′

å|η|
(σ0 + σ1|η|)

ˆ
Rd

dz a (y − z)
î
‖k (·, z)‖KC′ + ‖k (·, y)‖KC′

ó
.

Now following the proof of Proposition 4.5 we can use inequality (4.15) to find

(C ′′)−|η|
∣∣∣ÄL4RW,ε,renkä (η, y)−

Ä
L4RW,V k

ä
(η, y)

∣∣∣ ≤
≤ ε
ñ
σ0 +

σ1

e (lnC ′′ − lnC ′)

ôˆ
Rd

dz a (y − z)
î
‖k (·, z)‖KC′ + ‖k (·, y)‖KC′

ó
.

As a result, we have

∥∥∥L4RW,ε,renk − L4RW,V k∥∥∥K1
C′′
≤ 2ε〈a〉

ñ
σ0 +

σ1

e (lnC ′′ − lnC ′)

ô
‖k‖K1

C′
.

But there exists a constant c ∈ [C ′, C ′′] ⊂ [C0, C] such that

0 < lnC ′′ − lnC ′ =
1

c

(
C ′′ − C ′

)
≥ 1

C

(
C ′′ − C ′

)
, (4.73)

therefore ∥∥∥L4RW,ε,renk − L4RW,V k∥∥∥K1
C′′
≤ 2ε〈a〉 ‖k‖K1

C′

ñ
σ0 +

Cσ1

e (C ′′ − C ′)

ô
, (4.74)

which concludes the proof of the proposition.

4.2.2 Vlasov equations

This section is devoted to the study of Vlasov equations for the considered model of RWRE.
First, let us consider the Vlasov hierarchy (4.37). We want to show that this limiting

evolution has the chaos preservation property, see (2.85)-(2.86), and, then, we derive the
corresponding kinetic equations.

Lemma 4.19. Given C > C0 > 0, let us consider functions ρ0 ∈ B
∞
C0

and r0 ∈ L1(Rd).
Suppose that conditions (4.46) and (4.47) hold. Then, the initial value problem (4.37) with
initial condition k0 = eλ(ρ0, ·)r0 ∈ K1

C0
has a unique solution

kt,V = eλ(ρt, ·)rt ∈ K1
C , (4.75)

provided that ρt ∈ B
∞
C and rt ∈ L1(Rd) are solutions to the Vlasov equations

∂ρt (x)

∂t
= −mρt (x) e−(ρt∗V )(x) + b, (4.76a)

∂rt (y)

∂t
=

ˆ
Rd

dz a (y − z)
î
rt (z)λt (z, y)− rt (y)λt (y, z)

ó
, (4.76b)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0, on the time interval [0, T1), where
T1 := T1(C,C0) is given by (4.48) and λt is defined as in (2.126).
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Proof. By combining the results of Proposition 2.23 and Lemma 2.25.(i), we can easily show
that kt,V = eλ(ρt, ·)rt is a solution to the initial value problem (4.37) with initial conditions
k0 = eλ(ρ0, ·)r0 provided that ρt and rt are solutions to (4.76a)-(4.76b). The uniqueness of
solution (4.75) follows directly from the result of Lemma 4.11. Indeed, we can note that for
ρ0 ∈ B

∞
C0

and r0 ∈ L1(Rd) the function k0 = eλ(ρ0, ·)r0 belongs to K1
C0
.

In the remainder of this section we want to study the question about existence and unique-
ness of solutions to the Vlasov equations (4.76a)-(4.76b). We will be interested in non-negative
solutions (ρt, rt) on R+ with

ρ ∈ C1
Ä
R+;Cb(Rd)

ä
, r ∈ C1

Ä
R+;L1(Rd)

ä
,

where let us recall that, given X = Cb(Rd), L1(Rd),

C1
Ä
R+;X

ä
:= C1

Ä
(0,+∞)→ X

ä
∩ C
Ä
[0,+∞)→ X

ä
.

The kinetic equation (4.76a) has been studied in [45]. Below we briefly recall some results
about properties of its solutions. Consider the stationary homogeneous equation for (4.76a),
namely

b = mρe−C
V
1 ρ. (4.77)

It is easy to check that, under condition

b <
m

CV1 e
, (4.78)

equation (4.77) has two solutions, denoted by κ1 and κ2, such that 0 < κ1 < (1/CV1 ) < κ2.
Then we can formulate the following result for solutions to (4.76a). For more details we refer
the reader to [45].

Theorem 4.20. Assume that (4.47) holds. Suppose that condition (4.78) is satisfied and let
κ1 and κ2 be constant solutions to (4.77). Then, given 0 ≤ ρ0 ∈ Cb(Rd) with ‖ρ0‖∞ ≤ κ2,
equation (4.76a) has a unique non-negative solution 0 ≤ ρ ∈ C1(R+;Cb(Rd)) with ‖ρt‖∞ ≤ κ2,
for all t ≥ 0. Moreover, for an arbitrary c ∈ [κ1, κ2], the condition κ1 ≤ ρ0(x) ≤ c, x ∈ Rd,
yields κ1 ≤ ρ0(x) ≤ c, x ∈ Rd.

Next let us consider the kinetic equation (4.76b). As in Section 3.2.2, for the moment, we
assume that ρt ∈ L∞(Rd), t ≥ 0, is a non-negative bounded function. Then, we can show the
following existence and uniqueness result.

Lemma 4.21. Let r0 ∈ L1(Rd) be such that r0(y) ≥ 0 for a.a. y ∈ Rd. Given C > 0, suppose
that ρ ∈ C1(R+;L∞(Rd)) with 0 ≤ ρt(x) ≤ C for a.a. x ∈ Rd, t ≥ 0. Then, if we assume that
(3.125) and (4.46) hold, the evolution equation (4.76b) has a unique non-negative solution
0 ≤ r ∈ C1(R+;L1(Rd)). Moreover, given C ′ > 0

(i) if ‖r0‖1 ≤ C ′ then ‖rt‖1 ≤ C ′ for any t > 0;

(ii) if r0(x) ≤ C ′, a.a. x ∈ Rd, then rt(x) ≤ C ′, a.a. x ∈ Rd, for any t > 0.

Proof. The proof of the statement will be divided in 2 steps. First we show that there exists
a unique solution r ∈ C1(R+;L1(Rd)) to (4.76b). Afterwards, we prove that, for non-negative
initial conditions, this solution is non-negative and satisfies the bounds (i) and (ii). To
perform this task we follow the same strategy as in the proof of Theorem 3.41.
Step.1. Existence and uniqueness of solutions. As we have already seen in the proof of
Theorem 3.41, the evolution equation (4.76b) can be written as®

∂
∂trt (y) =

Ä
L
∗
RW (t)

ä
rt (y)

rt (y)|t=0 = r0 (y)
, (4.79)
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where L∗RW (t) is a linear operator defined by (3.127). We can easily show that this operator
is bounded in L1(Rd) on R+. Indeed for any r ∈ L1(Rd) we have
ˆ
Rd

dy
∣∣∣ÄL∗RW (t)r

ä
(y)
∣∣∣ ≤ˆ

Rd
dy
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dz a (y − z) |AV (ξ, z, y)| |r (z)|+
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dz a (y − z) |AV (ξ, y, z)| |r (y)| .

By hypothesis we know that 0 ≤ ρt ∈ B
∞
C , then we can use (4.46) to estimate

ˆ
Rd

dy
∣∣∣ÄL∗RW (t)r

ä
(y)
∣∣∣ ≤ ˆ

Rd
dy
ˆ
Rd

dz a (y − z) |r (z)|
ˆ

Γ0

C |ξ|dλ (ξ) |AV (ξ, z, y)|+
ˆ
Rd

dy
ˆ
Rd

dz a (y − z) |r (y)|
ˆ

Γ0

C |ξ|dλ (ξ) |AV (ξ, y, z)|

≤ α̃0

ˆ
Rd

dy
ˆ
Rd

dz a (y − z) |r (z)|+ α̃0

ˆ
Rd

dy
ˆ
Rd

dz a (y − z) |r (y)|

≤ 2α̃0〈a〉 ‖r‖1 .

Therefore, from [85, Section II.2] we know that the initial value problem (4.76b) has a unique
solution r ∈ C1(R+;L1(Rd)).
Step.2. Non-negativity and uniform bounds of the solution. Let us first show that for initial
conditions 0 ≤ r0 ∈ L1(Rd) with ‖r0‖1 ≤ C ′ we have a non-negative solution 0 ≤ rt ∈ L1(Rd)
such that ‖rt‖1 ≤ C ′, for any time t > 0.

Given T > 0 let us consider the Banach space XT,1 = C([0, T ];L1(Rd)) equipped with the
norm

‖r‖T,1 = max
t∈[0,T ]

‖rt‖1 = max
t∈[0,T ]

ˆ
Rd

dy rt (y) . (4.80)

We denote by X+
T,1 the cone of all non-negative functions from XT,1. This cone forms a

complete metric space with a metric induced by the norm in XT,1.
Following Step.2 in the proof of Theorem 3.41, for any 0 ≤ r0 ∈ L1(Rd) let us consider

the mapping Ψ which assigns to any v ∈ XT,1 the solution ut of the (local) Cauchy problem®
∂
∂tut (y) =

´
Rd dz a (y − z)t (z, y) vt (z)− ut (y)

´
Rd dz a (y − z)λt (y, z)

ut (y)|t=0 = r0 (y)
, (4.81)

namely, see e.g. [69],

(Ψv)t (y) = e−
´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) +ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)vs (z) . (4.82)

for all t > 0 and a.a. y ∈ Rd. Let us recall that, under condition (3.125) and (4.46), for
0 ≤ ρt ∈ B

∞
C we have (cf. (3.131))

0 ≤ λt(y, z) ≤ α̃0, for all t > 0 and a.a. y, z ∈ Rd. (4.83)

It is easy to check that Ψ maps X+
T,1 into itself X+

T,1. Indeed, for any v ∈ X
+
T,1 one has Ψv ≥ 0.

Furthermore, using (4.83) one can estimate

‖(Ψv)t‖1 ≤
ˆ
R
dy e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)r0 (y) +

ˆ
R
dy
ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)vs(z)
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≤
ˆ
R
dy r0 (y) + α̃0

ˆ t

0
ds e−〈a〉α̃0(t−s)

ˆ
R
dy
ˆ
Rd

dz a (y − z) vs(z)

≤‖r0‖1 + α̃0〈a〉
ˆ t

0
ds e−α̃0〈a〉(t−s) ‖vs‖1

≤‖r0‖1 + ‖v‖T,1 α̃0〈a〉
ˆ t

0
ds e−α̃0〈a〉(t−s). (4.84)

Then from identity (3.133) it follows that

‖(Ψv)t‖1 ≤‖r0‖1 + ‖v‖T,1
Ä
1− e−α̃0〈a〉t

ä
≤‖r0‖1 + ‖v‖T,1 <∞. (4.85)

Hence, we can conclude that Ψv ∈ X+
T,1. Actually, we can also prove that Ψ defines a

contraction mapping on X+
T,1. Indeed, for any v, w ∈ X

+
T,1 we have

‖(Ψv)t − (Ψw)t‖1 ≤
ˆ
Rd

dy
ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)×

ˆ
Rd

dz a (y − z)λs(z, y) |vs (z)− ws (z)| .

Then by repeating the same arguments used to estimate ‖(Ψv)t‖1, for any t ∈ [0, T ] we obtain

‖(Ψv)t − (Ψw)t‖1 ≤ ‖v − w‖T,1
Ä
1− e−α̃0〈a〉T

ä
< ‖v − w‖T,1 . (4.86)

Next, for any n ≥ 1 let us consider the iterative scheme v(n) = Ψnv(0), v(0) ∈ X+
T,1, defined

by (3.135) and (3.136). From the Banach fixed point theorem, it follows that the sequence
{v(n)} ⊂ X+

T,1 has a unique fixed point v ∈ X+
T,1, which provides a unique non-negative

solution to (4.76b).
Assume additionally that ‖r0‖1 ≤ C ′, C ′ > 0, then proceeding by induction we can also

show that ‖vt‖1 ≤ C ′, for any t ∈ [0, T ]. Indeed, from (3.136) we have

‖v(0)
t ‖1 =

ˆ
Rd

dy e−
´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y)

≤
ˆ
Rd

dy r0 (y) ≤ C ′, t ∈ [0, T ]. (4.87)

Suppose that the same bound holds also for v(n−1)
t , n ≥ 1, namely

‖v(n−1)
t ‖1 ≤ C ′, t ∈ [0, T ]. (4.88)

Let us show it for v(n)
t . According to (3.135), for any t ∈ [0, T ] we can write

‖v(n)
t ‖1 ≤

ˆ
Rd

dy e−
´ t
0 ds

´
Rd dz a(y−z)λs(y,z)r0 (y) +

ˆ
Rd

dy
ˆ t

0
dse−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)v(n−1)
s (z) .

By using (4.83) together with (4.87) and (4.88), one can estimate

‖v(n)
t ‖1 ≤ e−〈a〉α̃0t

ˆ
Rd

dy r0 (y) + α̃0

ˆ t

0
dse−〈a〉α̃0(t−s)

ˆ
Rd

dy
ˆ
Rd

dza (y − z) v(n−1)
s (z)
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≤ C ′e−〈a〉α̃0t + C ′〈a〉α̃0

ˆ t

0
dse−〈a〉α̃0(t−s).

Then, identity (3.133) yields

‖v(n)
t ‖1 ≤ C ′e−〈a〉α̃0t + C ′

Ä
1− e−〈a〉α̃0t

ä
≤ C ′, t ∈ [0, T ]. (4.89)

Clearly, taking the limit n → ∞ we obtain that ‖vt‖1 ≤ C ′, for any t ∈ [0, T ]. Note that we
can repeat the above proof for the initial condition 0 ≤ rT ≤ C ′ and extend all our results to
the time interval [T, 2T ] and hence to R+.

It remains to prove claim (ii). Let us take initial conditions r0 ∈ L1(Rd) such that
0 ≤ r0(y) ≤ C ′, C ′ > 0, for a.a. y ∈ Rd. For brevity, we introduce the set B+

T,C′ consisting of
all functions v ∈ X+

T,1 such that v(y) ≤ C ′ for a.a. y ∈ Rd. It is easy to show that this set
constitutes a complete metric space with the metric induced by the norm (4.80).

Consider the map Ψ defined by (4.81)-(4.82). Then, for any v ∈ B+
T,C′ we have Ψv ∈ B+

T,C′ .
Indeed, by (4.83) and (3.133) one can estimate

0 ≤ (Ψv)t (y) =r0 (y) e−
´ t
0 ds′

´
Rd dz a(y−z)λs′ (y,z)+ˆ t

0
ds e−

´ t
s ds′

´
Rd dz a(y−z)λs′ (y,z)

ˆ
Rd

dz a (y − z)λs(z, y)vs(z)

≤C ′e−〈a〉α̃0t + C ′(1− e−〈a〉α̃0t)

≤C ′. (4.90)

Furthermore, from (4.86) it follows that Ψ : B+
T,C′ → B+

T,C′ is a contraction mapping on the
complete metric space B+

T,C′ . Now we can apply the Banach fixed point theorem as done
above. As a result, the mapping Ψ has a unique fixed point v ∈ B+

T,C′ which solves (3.124b)
on [0, T ]. By definition, this solution is non-negative and essentially bounded by C ′ > 0.
Obviously, taking as initial condition vT ∈ B+

T,C′ , the same considerations can be extended
on the time interval [T, 2T ] and, consequently, to all R+. This concludes the proof of the
lemma.

Finally, we can combine Theorem 4.20 with Lemma 4.21 to formulate our main result
about the existence and uniqueness of non-negative solutions to the system of Vlasov equa-
tions (4.76a)-(4.76b).

Theorem 4.22. Let
b ≤ m

CV1 e
(4.91)

and let κ1 and κ2 be constant solutions to equation (4.77). Suppose that 0 ≤ ρ0 ∈ Cb(Rd)
with ‖ρ0‖∞ ≤ κ2 and 0 ≤ r0 ∈ L1(Rd). Then, if we assume that conditions (3.125), (4.46)
and (4.47) hold, the system of equations (4.76a)-(4.76b) has a unique solution 0 ≤ ρt ∈
C1(R+;Cb(Rd)) and 0 ≤ rt ∈ C1(R+;L1(Rd)) such that ‖ρt‖∞ ≤ κ2, for any t > 0. Moreover,
given C ′ > 0

(i) if ‖r0‖1 ≤ C ′ then ‖rt‖1 ≤ C ′ for any t > 0;

(ii) if r0(x) ≤ C ′, a.a. x ∈ Rd, then rt(x) ≤ C ′, a.a. x ∈ Rd, for any t > 0.

Remark 4.23. Let us note that the theorem above provides a solution to the Vlasov equations
only if the initial density ρ0 is small enough, i.e. if ‖ρ0‖∞ ≤ κ2. If not, an aggregation effect is
expected in RE. More precisely, it is possible to show that if ρ0 is large enough in some volume
then the solution to (4.76a) grows (point-wise) to infinity in this volume, see [45, Section 5.2]
for further details. In this case, the study of existence and uniqueness of solutions to (4.76a)
requires a more subtle analysis.
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4.2.3 Examples

In this section we study the Vlasov-type scaling and the corresponding Vlasov equations in
the considered model of RWRE for each of the interactions I-IV described in Section 2.1.

4.2.3.1 RW in an aggregation model of environment: Case I and III

Let us study the interaction given by

λint(γ, y, z) := λ(1) (γ, y) = eλ
Ä
e−φ(·−y), γ

ä
, γ ∈ Γ, y, z ∈ Rd, (4.92)

where φ : Rd → R is a non-negative even function such that

Cφ1 := ‖φ‖1 =

ˆ
Rd

dxφ (x) <∞, (4.93)

Cφ∞ := ‖φ‖∞ = ess sup
x∈Rd

φ (x) <∞. (4.94)

For any ε > 0 we consider the following scaling of interaction (4.92),

λ(1)
ε (γ, y) := eλ

Ä
e−εφ(·−y), γ

ä
, γ ∈ Γ0, y ∈ Rd. (4.95)

According to the results obtained in Section 3.2.3.1, we haveÄ
K−1λ(1)

ε (· ∪ η, y)
ä

(ξ) = e−ε
∑

x′∈η φ(x′−y)eλ
Ä
e−εφ(·−y) − 1, ξ

ä
(4.96)

and letting ε go to zero

A
(1)
V (ξ, y) := lim

ε→0
ε−|ξ|

Ä
K−1λε (· ∪ η, y)

ä
(ξ) = lim

ε→0
ε−|ξ|

Ä
K−1λε (·, y)

ä
(ξ)

= eλ (−φ(· − y), ξ) , (4.97)

for any ξ, η ∈ Γ0 and y ∈ Rd. From Proposition 3.44 and 3.45, we know that the limit (4.97)
holds in L1(Γ0, C

|ξ|dλ(ξ)), for a.a. η ∈ Γ0 and y ∈ Rd, and Assumption 4.10 is satisfied with

α̃0 = α̃′0 = eCC
φ
1 , α̃1 ≡ 0. (4.98)

Next let us check Assumption 4.15. In order to do that we will show that conditions (4.60)
and (4.61) hold, see Remark 4.16. In this case, the rescaled interaction (4.95) can be rewritten
in the following form (cf. (4.57))Ä

K−1λ(1)
ε (· ∪ η, y)

ä
(ξ) = A(1)

ε (ξ, y) + Ã(1)
ε (ξ, η, y) , (4.99)

where
A(1)
ε (ξ, y) = eλ

Ä
e−εφ(·−y) − 1, ξ

ä
(4.100)

and
Ã(1)
ε (ξ, η, y) =

î
eλ
Ä
e−εφ(·−y), η

ä
− 1
ó
eλ
Ä
e−εφ(·−y) − 1, ξ

ä
, (4.101)

for any ξ, η ∈ Γ0 and y ∈ Rd. For functions (4.100) and (4.101) we can show the following
estimates.

Proposition 4.24. Suppose that conditions (4.93) and (4.94) hold. Then one hasˆ
Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|A(1)

ε (ξ, y)−A(1)
V (ξ, y)

∣∣∣ ≤ εC
2
eCC

φ
1 Cφ1C

φ
∞ (4.102)

and ˆ
Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(1)

ε (ξ, η, w)
∣∣∣ ≤ εeCCφ1 Cφ∞|η|, (4.103)

for a.a. η ∈ Γ0 and y ∈ Rd.
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Proof. First let us show (4.102). By using inequalities φ(x) ≥ 0 and

1− e−εφ(x)

ε
≤ φ(x), x ∈ Rd, (4.104)

we can writeˆ
Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|A(1)

ε (ξ, y)−A(1)
V (ξ, y)

∣∣∣ =

=

ˆ
Γ0

C |ξ|dλ(ξ)

∣∣∣∣∣eλ
Ç
e−εφ(·−y) − 1

ε
, ξ

å
− eλ (−φ (· − y) , ξ)

∣∣∣∣∣
=

ˆ
Γ0

C |ξ|dλ(ξ)

ñ
eλ (φ (· − y) , ξ)− eλ

Ç
1− e−εφ(·−y)

ε
, ξ

åô
, (4.105)

for a.a. y ∈ Rd. Note that

0 ≤eλ (φ (· − y) , ξ)− eλ
Ç

1− e−εφ(·−y)

ε
, ξ

å
≤
∑
x′∈ξ

Ç
φ
(
x′ − y

)
− 1− e−εφ(x′−y)

ε

å
eλ
(
φ (· − y) , ξ \ x′

)
, (4.106)

for any ξ ∈ Γ0, y ∈ Rd, and

φ
(
x′ − y

)
− 1− e−εφ(x′−y)

ε
=

1

ε2φ2 (x′ − y)

Ä
e−εφ(x′−y) + εφ

(
x′ − y

)
− 1
ä
εφ2 (x′ − y) ,

(4.107)
for any y, x′ ∈ Rd. Then, since

0 <
e−t + t− 1

t2
<

1

2
, t > 0, (4.108)

we find ˆ
Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|A(1)

ε (ξ, y)−A(1)
V (ξ, y)

∣∣∣ ≤
≤ ε

2

ˆ
Γ0

C |ξ|dλ(ξ)
∑
x′∈ξ

φ2 (x′ − y) eλ (φ (· − y) , ξ \ x′
)
.

Finally, using the Minlos formula (1.18) together with conditions (4.93)-(4.94), one can esti-
mate ˆ

Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|A(1)

ε (ξ, y)−A(1)
V (ξ, y)

∣∣∣ ≤
≤ ε

2

ˆ
Γ0

C |ξ|dλ(ξ)

ˆ
Rd
Cdx′φ2 (x′ − y) eλ (φ (· − y) , ξ)

≤ εC
2
eCC

φ
1

ˆ
Rd

dx′φ2 (x′ − y)
≤ εC

2
eCC

φ
1 Cφ1C

φ
∞.

Next, let us consider the l.h.s of (4.103). Since φ ≥ 0, we can write it as
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(1)

ε (ξ, η, y)
∣∣∣ ≤ ˆ

Γ0

C |ξ|dλ (ξ)
î
1− eλ

Ä
e−εφ(·−y), η

äó
eλ

Ç
1− e−εφ(·−y)

ε
, ξ

å
.
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By using the elementary inequality

n∏
i=1

bi −
n∏
i=1

ai ≤
n∑
i=1

(bi − ai)
n∏

j=1,j 6=i
bj , bi ≥ ai > 0, 1 ≤ i ≤ n, n ∈ N,

it is easy to check thatî
1− eλ

Ä
e−εφ(·−y), η

äó
eλ

Ç
1− e−εφ(·−y)

ε
, ξ

å
≤
∑
x′∈η

εφ
(
x′ − y

)
eλ (φ (· − y) , ξ) , (4.109)

for any ξ, η ∈ Γ0 and y ∈ Rd. By using this estimate we get
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(1)

ε (ξ, η, y)
∣∣∣ ≤ ε∑

x′∈η

ˆ
Γ0

C |ξ|dλ (ξ)φ
(
x′ − y

)
eλ (φ (· − y) , ξ) .

Then, taking into account hypotheses (4.93) and (4.94), one can estimate
ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(1)

ε (ξ, η, y)
∣∣∣ ≤εeCCφ1 ∑

x′∈η
φ
(
x′ − y

)
≤εeCC

φ
1 Cφ∞|η|, for a.a. η ∈ Γ0,

which concludes the proof of the proposition.

From the above proposition it follows that Assumption 4.15 is satisfied with

σ̃0 =
C

2
eCC

φ
1 Cφ1C

φ
∞, σ̃1 = eCC

φ
1 Cφ∞. (4.110)

Now we are in the position to apply Theorem 4.17 and Lemma 4.19 to show the convergence
of the Vlasov-type scaling and derive the corresponding kinetic equations. The formulation
of these results for this particular model is given in the corollary below.

Corollary 4.25. Let us assume that conditions (4.47),(4.54), (4.93) and (4.94) are satisfied.
Given C0 > 0 arbitrary and fixed let us consider k0,ε, kV,ε ∈ K1

C0
, ε > 0, with

lim
ε→0
‖k0,ε − k0,V ‖KC0

= 0. (4.111)

Then, for any C > C0 there exists a time T (C,C0) ≥ 0 given by (4.28) such that the evolution
equations (4.35) and (4.37) have unique solutions, kt,ε and kt,V , respectively, in K1

C such that

lim
ε→0
‖kt,ε − kt,V ‖K1

C
= 0. (4.112)

on the time interval [0, T1(C0, C)).
Moreover, given ρ0 ∈ B

∞
C0

and r0 ∈ L1(Rd), if we take

k0,V = eλ(ρ0, ·)r0 ∈ K1
C0
, (4.113)

then we have
kt,V = eλ(ρt, ·)rt ∈ K1

C , (4.114)

provided that ρt ∈ B
∞
C and rt ∈ L1(Rd), are solutions to the Vlasov equations® ∂ρt

∂t = −mρte−β(ρt∗V ) + b
∂rt
∂t = −〈a〉e−(ρt∗φ)rt +

ÄÄ
e−(ρt∗φ)rt

ä
∗ a
ä , (4.115)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0, on the time interval [0, T1(C,C0)).
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Let us study the solution to the Vlasov equations (4.115). We know that condition (4.46)
holds, then from Theorem 4.22 we have the following existence and uniqueness result.

Corollary 4.26. Assume that conditions (4.91) (4.47), (4.93) and (4.94) hold. Let κ1 and
κ2 be constant solutions to (4.77) and consider 0 ≤ ρ0 ∈ Cb(Rd) and 0 ≤ r0 ∈ L1(Rd) with
‖ρ0‖∞ ≤ κ2. Then, the system of equations (4.115) has a unique non-negative solution given
by 0 ≤ ρt ∈ C1(R+;Cb(Rd)) and 0 ≤ rt ∈ C1(R+;L1(Rd)) with ‖ρt‖∞ ≤ κ2 for any t > 0.

Moreover, if there exists a constant C ′ > 0 such that ‖r0‖1 ≤ C ′, or r0(y) ≤ C ′, a.a.
y ∈ Rd, then we have ‖rt‖1 ≤ C ′, or rt(y) ≤ C ′, a.a. y ∈ Rd, for any t > 0.

Note that all the results obtained in Corollary 4.25 and 4.26 can be also extended to the
interaction

λint(γ, y, z) := λ(3) (γ, z) = eλ
Ä
e−φ(·−z), γ

ä
, γ ∈ Γ, y, z ∈ Rd. (4.116)

Let us just mention that in this case Lemma 4.19 leads to the following Vlasov equations (see
Case III in Section 2.3.2)® ∂ρt

∂t = −mρte−β(ρt∗V ) + b
∂rt
∂t = e−(ρt∗φ) (rt ∗ a)− rt

ÄÄ
e−(ρt∗φ)

ä
∗ a
ä , (4.117)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0.

4.2.3.2 RW in an aggregation model of environment: Case II and IV

Let us study the interaction defined by

λint(γ, y, z) := λ(2) (γ, y) = λ0 +
∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y, z ∈ Rd, (4.118)

where λ0 ≥ 0 and φ : Rd → R is a non-negative even function such that conditions (4.93) and
(4.94) hold.

As discussed in Section 3.2.3.2, for any ε > 0 we introduce the rescaled interaction

λ(2)
ε (γ, y) = λ0 + ε

∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y ∈ Rd. (4.119)

In correspondence we have, see (3.160),Ä
K−1λ(2)

ε (· ∪ η, y)
ä

(ξ) = Aε (ξ, y) + Ãε (ξ, η, y) , (4.120)

where
A(2)
ε (ξ, y) = λ00|ξ| + εφ

(
x′ − y

)
1Γ(1)

(
ξ = {x′}

)
(4.121)

and
Ã(2)
ε (ξ, η, y) = ε

∑
x′∈η

φ
(
x′ − y

)
0|ξ|, (4.122)

for any ε > 0, η, ξ ∈ Γ0 and y ∈ Rd. Then, as ε → 0 we have the following limit in
L1(Γ0, C

|ξ|dλ(ξ))

A
(2)
V (ξ, y) := lim

ε→0
ε−|ξ|

Ä
K−1λ(2)

ε (· ∪ η, y)
ä

(ξ) = lim
ε→0

ε−|ξ|
Ä
K−1λ(2)

ε (·, y)
ä

(ξ)

= λ00|ξ| + φ
(
x′ − y

)
1Γ(1)

(
ξ = {x′}

)
, (4.123)

for a.a. η ∈ Γ0 and y ∈ Rd, see Proposition 3.49.
From Proposition 3.48 and 3.49, we also know that conditions (4.45) and (4.46) in As-

sumption 4.10 are satisfied with

α̃0 = α̃′0 = λ0 + CCφ1 , α̃1 = Cφ∞. (4.124)

It remains to check Assumption 4.15. The latter will be a consequence of the following
proposition.
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Proposition 4.27. Let us assume that condition (4.94) is satisfied. Then, we haveˆ
Γ0

C |ξ|dλ(ξ)
∣∣∣ε−|ξ|A(2)

ε (ξ, y)−A(2)
V (ξ, y)

∣∣∣ ≡ 0 (4.125)

and ˆ
Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(2)

ε (ξ, η, y)
∣∣∣ ≤ εCφ∞|η|, (4.126)

for a.a. η ∈ Γ0 and y ∈ Rd.
Proof. Identity (4.125) follows immediately by (4.121) and (4.123). Let us now show (4.126).
By (4.122) we have ˆ

Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(2)

ε (ξ, η, y)
∣∣∣ = ε

∑
x′∈η

φ
(
x′ − y

)
, (4.127)

for a.a. η ∈ Γ0 and y ∈ Rd. Then, from (4.94) it follows thatˆ
Γ0

C |ξ|dλ (ξ)
∣∣∣ε−|ξ|Ã(2)

ε (ξ, η, y)
∣∣∣ ≤ εCφ∞|η|, (4.128)

which concludes the proof of the proposition.

According to the above proposition and Remark 4.16, we can easily see that condition
(4.56) holds with

σ̃0 ≡ 0, σ̃1 = Cφ∞. (4.129)

As a consequence, by Theorem 4.17 and Lemma 4.19 we can show the following result about
the Vlasov-type scaling.

Corollary 4.28. Assume that conditions (4.47),(4.54), (4.93) and (4.94) are satisfied. Let
C > C0 > 0 be fixed and T1(C0, C) be given by (4.33). Suppose that {k0,ε, kV,ε}ε>0 ⊂ K1

C0
,

and, moreover,
lim
ε→0
‖k0,ε − k0,V ‖KC0

= 0. (4.130)

Then, the evolution equations (4.35) and (4.37) have unique solutions in K1
C and

lim
ε→0
‖kt,ε − kt,V ‖K1

C
= 0, (4.131)

on the time interval 0 ≤ t < T1(C0, C). Moreover, let ρ0 ∈ B
∞
C0

and r0 ∈ L1(Rd). If
k0,V = eλ(ρ0, ·)r0 ∈ K1

C0
then kt,V = eλ(ρt, ·)rt ∈ K1

C provided that ρt ∈ B
∞
C and rt ∈ L1(Rd),

are solutions to system of equations®
∂ρt
∂t = −mρte−β(ρt∗V ) + b, ρt|t=0 = ρ0,
∂rt
∂t = (a ∗ [rt (λ0 + (ρt ∗ φ))])− 〈a〉rt [λ0 + (ρt ∗ φ)] , rt|t=0 = r0,

(4.132)

on the time interval 0 ≤ t < T1(C,C0).

Clearly the same analysis can be repeated for the interaction

λint(γ, y, z) := λ(4) (γ, z) = λ0 +
∑
x′∈γ

φ
(
x′ − z

)
, γ ∈ Γ, y, z ∈ Rd. (4.133)

Indeed, Assumption 4.10 and 4.15 still hold with constants (4.124) and (4.129) and we can
show the same result as in Corollary 4.28. The corresponding Vlasov equations are now given
by (cf. case IV in Section 2.3.2)®

∂ρt
∂t = −mρte−β(ρt∗V ) + b, ρt|t=0 = ρ0,
∂rt
∂t = (rt ∗ a) [λ0 + (ρt ∗ φ)]− rt [λ0〈a〉+ ((ρt ∗ φ) ∗ a)] , rt|t=0 = r0.

(4.134)

The solutions to the systems of equations (4.132) and (4.134) can be studied by using
Theorem 4.22. Note that for both interactions (4.118) and (4.133), under condition (4.94),
we can show the same result as in Corollary 4.26.





Chapter 5

Random walks in a Kawasaki model of
environment via generating functionals

We present an alternative approach to the study of the statistical dynamics of RWREs de-
scribed in Chapter 2 in terms of the corresponding Bogoliubov generating functionals. A
description of this approach for interacting particle systems in continuum can be found
in [43,58,61,63].

First we introduce the Bogoliubov functionals associated to the states of the considered
models. In the study of interacting particle systems it is natural to consider entire functionals
allowing us to recover the definition of correlation functions given in Section 1.2.2. Then, we
reformulate the evolution of correlation functions of RWREs in terms of the corresponding
generating functionals. In this case, the statistical dynamics of the system will be described by
an evolution equation for holomorphic functionals over an infinite-dimensional space. More-
over, we apply this new formalism to study the Vlasov-type scaling, introduced in Section 2.3
for correlation functions, through Bogoliubov functionals.

For concreteness, we employ this general method to study some models of RWREs, in the
case where the environment is formed by infinitely many particles which jump according to a
Kawasaki dynamics, see e.g. [43]. However, the Bogoliubov functional approach can be also
applied to other types of RE such as Glauber-type of environment, see e.g. [61]. Note that
the analysis of all these cases is carried out by using the Ovsjannikov’s method in the scale
of Banach space presented in Chapter 4.

5.1 The Bogoliubov generating functionals

The Bogoliubov generating functionals were originally introduced by N.N. Bogoliubov [14] to
study correlation functions in statistical mechanics. Over the years, these functionals and their
generalizations found many others application in classical and quantum statistical mechanics,
theory of point process and so on. We refer to [96] for an extensive review of the subject.

In this section we define and characterize the Bogoliubov functional for a one-particle
system interacting with an environment consisting of infinitely many particles. For the mo-
ment we do not specify any dynamics for such model. In what follows, we use the general
framework introduced in Chapter 1. In particular, we restrict our attention to the so-called
bounded states, namely to measures µ ∈ M1(Γ × Rd), see (1.31)-(1.32). Bogoliubov func-
tionals for interacting particle systems in continuum have been studied in [79] and [62] for
one-component and two-component systems, respectively. These definitions can be modified
to fit our case.

Definition 5.1. The Bogoliubov generating functional Zµ corresponding to a finite measure
µ ∈M1(Γ×Rd) is a functional defined at each pair of B

Ä
Rd
ä
-measurable functions (θ, ψ) by

Zµ (θ, ψ) =

ˆ
Rd
ψ (y)

ˆ
Γ

∏
x∈γ

(1 + θ (x)) dµ (γ, y) , (5.1)
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provided the right-hand side exists.

From Definition 5.1 it is clear that the set of (θ, ψ) for which Zµ is well-defined depends
on the measure µ. Conversely, this set reflects properties of the underlying measure. Let
M1

fexp(Γ× Rd) denote the set of all measures µ ∈ M1(Γ× Rd) which have finite local expo-
nential moments (w.r.t. Γ-variables), namely such that

ˆ
Rd

ˆ
Γ
eα|γΛ|dµ (γ, y) <∞,

for all α > 0 and all Λ ∈ Bb(Rd). Then, for µ ∈ M1
fexp(Γ × Rd) one can easily see that the

Bogoliubov functional Zµ is well defined, for instance, for all pairs of functions (θ, ψ) such
that ψ is bounded and θ is bounded with bounded support. The converse is also true and
follows from the following identity

ˆ
Rd

ˆ
Γ
eα|γΛ|dµ (γ, y) = Zµ ((eα − 1)1Λ, 1) , α > 0, Λ ∈ Bb(Rd).

Throughout this chapter we consider Bogoliubov functionals defined on the whole space
L1(Rd)× L∞(Rd). Furthermore, we assume that the following representation holds

Zµ (θ, ψ) =

ˆ
Rd

dy ψ (y)Bµ (θ, y) , θ ∈ L1(Rd), ψ ∈ L∞(Rd), (5.2)

where for a.a. y ∈ Rd, Bµ(·; y) is an entire functionals on L1(Rd).

Remark 5.2. Note that representation (5.2) allows us to identify the generating functional
Bµ(θ, y) as the functional derivative of Zµ(θ, ψ) w.r.t ψ(y), i.e.

Bµ (θ, y) :=
δZµ (θ, ψ)

δψ(y)
, (5.3)

for any θ ∈ L1(Rd), ψ ∈ L∞(Rd) and a.a. y ∈ Rd.

For a comprehensive review of the general theory of holomorphic functionals we refer to
[7, 32]. Here we just recall that for a.a. y ∈ Rd, the functional Bµ(·; y) : L1(Rd) → C is
said to be entire on L1(Rd) if it is locally bounded and for all θ, θ0 ∈ L1(Rd) the mapping
C 3 z 7→ Bµ(θ0 +zθ; y) ∈ C is entire. Thus, at each θ0 ∈ L1(Rd) the entire functional Bµ(·; y)
can be expressed in terms of its Taylor expansion,

Bµ (θ0 + zθ; y) =
∞∑
n=0

zn

n!
dnBµ (θ0; y; . . . , θ) , z ∈ C, θ ∈ L1(Rd), (5.4)

where dnBµ (θ0, y; θ, . . . , θ) denotes the differential of order n w.r.t. θ evaluated in θ0. The
main properties of these differentials are specified in the theorem below. For a proof we refer
the reader to [97, Theorem 9.2], where an analogous result has been showed.

Lemma 5.3. For a.a. y ∈ Rd, let Bµ(·; y) be an entire functional on L1(Rd). Then, for each
n ∈ N the differential dnBµ (θ0; y; θ, . . . , θ), θ0 ∈ L1(Rd), is defined by a symmetric kernel in
L∞((Rd)n) denoted by

δnBµ (θ0; y)

δθ0 (x1) . . . δθ0 (xn)
(5.5)

and called the functional derivative of nth order of Bµ(θ0; y) w.r.t. θ0. More precisely,

dnBµ (θ0; y; θ1, . . . , θn) =
∂n

∂z1 . . . ∂zn
Bµ

(
θ0 +

n∑
i=1

ziθi; y

)∣∣∣∣∣
z1=...=zn=0
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=

ˆ
Rd

dx1 . . .

ˆ
Rd

dxn

(
n∏
i=1

θi (xi)

)
δnBµ (θ0; y)

δθ0 (x1) . . . δθ0 (xn)
, (5.6)

for all θ1, . . . , θn ∈ L1(Rd). Furthermore, for any r > 0 one has∥∥∥∥∥δBµ (θ0; y)

δθ0 (·)

∥∥∥∥∥
L∞(Rd)

≤ 1

r
sup

‖θ′‖L1≤r

∣∣Bµ (θ0 + θ′; y
)∣∣ (5.7)

and, for n ≥ 2,∥∥∥∥∥ δnBµ (θ0; y)

δθ0 (·) . . . δθ0 (·)

∥∥∥∥∥
L∞((Rd)n)

≤ n!

Å
1

r

ãn
sup

‖θ′‖L1≤r

∣∣Bµ (θ0 + θ′; y
)∣∣ . (5.8)

Remark 5.4. Note that the fact Bµ(·; y), a.a. y ∈ Rd, is entire on L1(Rd) does not ensure
that the supremum in (5.7) and (5.8) is always finite. For simplicity, we assume that this
entire functional is also bounded in L1(Rd), that is,

sup
‖θ′‖L1≤r

∣∣Bµ (θ0 + θ′, y
)∣∣ <∞, (5.9)

for all r > 0, θ0 ∈ L1(Rd) and a.a. y ∈ Rd.

According to Lemma 5.3 and the Taylor expansion (5.4), the Bogoliubov functional Zµ
can be written in the form

Zµ (θ0 + θ, ψ) =
∞∑
n=0

1

n!

ˆ
Rd

dy ψ (y)

ˆ
Rd

dx1 . . .

ˆ
Rd

dxn

(
n∏
i=1

θi (xi)

)
δnBµ (θ0, y)

δθ0 (x1) . . . δθ0 (xn)

=

ˆ
Rd

dy ψ (y)

ˆ
Γ0

dλ (η) eλ (θ, η)
Ä
D|η|Bµ

ä
(θ0, y; η) , (5.10)

where we introduced the notationÄ
D|η|Bµ

ä
(θ0, y; η) :=

δnBµ (θ0, y)

δθ0 (x1) . . . δθ0 (xn)
, (5.11)

for η = {x1, . . . , xn} ∈ Γ(n), n ∈ N and a.a. y ∈ Rd. In the simple case where η = {x} ∈ Γ(1),
we simply write (D|η|Bµ)(θ0, y; η) := (DBµ)(θ0, y;x).

Having in mind the representation in (5.10), Lemma 5.3 yields the following result.

Corollary 5.5. Let Zµ be a Bogoliubov functional on the space L1(Rd)×L∞(Rd) corresponding
to some measure µ ∈ M1(Γ× Rd). If we assume that for a.a. y ∈ Rd the functional Bµ(·; y)
is entire on L1(Rd), then the measure µ is locally absolutely continuous with respect to the
Poisson-type measure π̃ = π ⊗ dy. Namely, for all Λ ∈ Bb(Rd) the measure µΛ = µ ◦ (p̃Λ)−1

is absolutely continuous with respect to π̃Λ = (π ◦ p−1
Λ )⊗ dy. In particular, for all Λ ∈ Bb(Rd)

one has

dµΛ

dπΛ
(γ, y) = eσ(Λ)

Ä
D|γ|Bµ

ä
(−1Λ, y; γ) , π̃Λ − a.a. (γ, y) ∈ Γ(Λ)× Rd,

where σ(Λ) =
´
Rd dx1Λ(x).

Remark 5.6. Note that if the entire functional Bµ(·; y), a.a. y ∈ Rd, is of bounded type in
L1(Rd), i.e. (5.9) holds, then for each r > 0 there exists a constant C ≥ 0 such that∣∣∣∣∣dµΛ

dπΛ
(γ, y)

∣∣∣∣∣ ≤ eσ(Λ)C |γ|!
Åe
r

ã|γ|
,

for π̃Λ-a.a. (γ, y) ∈ Γ(Λ)× Rd.
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Proof of Corollary 5.5. Let us consider functions θ ∈ L1(Rd) with support contained in some
Λ ∈ Bb(Rd) and ψ ∈ L∞(Rd). Then, the Bogoliubov functional Zµ can be written as

Zµ (θ, ψ) = Zµ (−1Λ + (θ + 1Λ), ψ)

=

ˆ
Rd

dy ψ (y)

ˆ
ΓΛ

dπΛ (η)
∏
x∈γ

(1 + θ(x)) eσ(Λ)
Ä
D|η|Bµ

ä
(−1Λ, y; η) , (5.12)

where in the second inequality we apply (5.10) with θ0 = −1Λ and identity (1.14).
On the other hand, one can easily see that for functions θ ∈ L1(Rd) with support contained

in some Λ ∈ Bb(Rd), the definition of a Bogoliubov functional Zµ reduces to the Bogoliubov
functional ZµΛ , namely

Zµ (θ, ψ) =

ˆ
Rd
ψ (y)

ˆ
Γ(Λ)

∏
x∈γ

(1 + θ (x)) dµΛ (γ, y) , ψ ∈ L∞(Rd). (5.13)

Therefore, by comparing (5.12) with (5.13) we find
ˆ
Rd
ψ (y)

ˆ
Γ(Λ)

∏
x∈γ

(1 + θ (x)) dµΛ (γ, y) =

ˆ
Rd

dy ψ (y)

ˆ
ΓΛ

dπΛ (η)
∏
x∈γ

(1 + θ(x)) eσ(Λ)
Ä
D|η|Bµ

ä
(−1Λ, y; η) , (5.14)

for all functions θ ∈ L1(Rd) with support contained in some Λ ∈ Bb(Rd) and ψ ∈ L∞(Rd).
Then the statement follows by a monotone class argument.

As discussed at the beginning of the section, a Bogoliubov functional Zµ that is well
defined on the whole space L1(Rd)×L∞(Rd) is necessarily associated to measures µ ∈M1

fexp.
On the other hand, for such measures one can define the corresponding correlation measure
ρµ, see Remark 1.26. Consequently, taking into account Proposition 1.27 and Example 1.19,
we can rewrite the Bogoliubov functional Zµ in terms of the measure ρµ. More precisely, we
have

Zµ (θ, ψ) =

ˆ
Rd

ˆ
Γ

(Kψ (y) eλ (θ, ·)) (γ) dµ (γ, y)

=

ˆ
Rd
ψ (y)

ˆ
Γ0

eλ (θ, η) dρµ (η, y) , θ ∈ L1(Rd), ψ ∈ L∞(Rd). (5.15)

In this new formalism Lemma 5.3 leads to the following result (cf. Lemma 1.28).

Proposition 5.7. Let Zµ be a Bogoliubov functional on the space L1(Rd)×L∞(Rd). Suppose
that the Bµ(·; y) is an entire functional of bounded type on L1(Rd), for a.a. y ∈ Rd. Then,
the measure ρµ = K∗µ is absolutely continuous with respect to λ̃σ = λσ ⊗ dy and the Radon-
Nikodym derivative, or correlation functional, is given by

kµ(η, y) :=
dρµ
dλ̃σ

(η, y) =
Ä
D|η|Bµ

ä
(0, y; η) , (5.16)

for λ̃-a.a. (η, y) ∈ Γ0 × Rd. Furthermore, for each r > 0 there exists a constant C ≥ 0 such
that

|kµ(η, y)| ≤ C |η|!
Åe
r

ã|η|
, (5.17)

for λ̃-a.a. (η, y) ∈ Γ0 × Rd.
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Remark 5.8. Consider a Bogoliubov functional Zµ defined as in the proposition above.
From (5.17) it follows that the correlation functionals associated to it satisfy a generalized
Ruelle bound, that is, for any ε ∈ [0, 1] and r > 0 there exists some constant C ≥ 0 such that

|kµ(η, y)| ≤ C (|η|!)1−ε
Åe
r

ã|η|
, λ̃− a.a. (η, y) ∈ Γ0 × Rd. (5.18)

Clearly if condition (5.18) holds for ε = 1 and for some r > 0, then it coincides with the
classical Ruelle bound, see (2.33). In our case, (5.18) holds for ε = 0.

Proof of Proposition 5.7. Using representation (5.10) for θ0 = 0, we can rewrite the Bogoli-
ubov functional Zµ in the following form

Zµ (θ, ψ) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)ψ (y) eλ (θ, η)
Ä
D|η|Bµ

ä
(0, y; η) . (5.19)

Comparing the formula above with (5.15) we can identify kµ(η, y) with (D|η|Bµ)(0, y; η).
Then, in order to conclude the proof we can just note that, since Bµ is of bounded type, from
Lemma 5.3 we have ∣∣∣ÄD|η|Bµä (0, y; η)

∣∣∣ ≤ C |η|!Åe
r

ã|η|
, (5.20)

λ̃-a.a. (η, y) ∈ Γ0 × Rd for some C ≥ 0 depending on r > 0.

Having in mind (5.15), Proposition 5.7 yields to a description of the Bogoliubov functional
in terms of the correlation functionals kµ:

Zµ (θ, ψ) =

ˆ
Rd

dyψ (y)

ˆ
Γ0

dλ (η) eλ (θ, η) kµ (η, y) , (5.21)

for all θ ∈ L1(Rd) and ψ ∈ L∞(Rd).
Let us now specify the connection between the Bogoliubov functional Zµ and the cor-

responding correlation functionals kµ. By (5.3) and (5.11), the Radon-Nykodym deriva-
tive (5.16) can be written explicitly as

kµ (η, y) := k(n)
µ (η, y) =

δ(n)Bµ (θ, y)

δθ (x1) . . . δθ (xn)

∣∣∣∣∣
θ=0

=
δ(n,1)Zµ (θ, ψ)

δθ (x1) . . . δθ (xn) δψ (y)

∣∣∣∣∣
(θ,ψ)=(0,0)

, (5.22)

for η = {x1, . . . , xn} ∈ Γ(n), n ∈ N, and a.a. y ∈ Rd. Hence, we can see that the Bogoliubov
functional Zµ is the generating functional for the correlation functions k(n)

µ . Indeed, this was
the reason why N. N. Bogoliubov introduced these functionals, see e.g. [14]. However, it is
worth noting that, for the present model of a particle moving in RE, all the information about
the correlation functionals k(n)

µ is included in the generating functionals Bµ. Indeed, by using
the representation (5.21) the latter can be written as

Bµ (θ, y) :=
δZµ (θ, ψ)

δψ (y)
=

ˆ
Γ0

dλ (η) eλ (θ, η) kµ (η, y) , θ ∈ L1(Rd), (5.23)

for a.a. y ∈ Rd. For this reason, the generating functionals Bµ turns out be the main object
of investigation in the study of evolution of correlation functions in the models of RWREs.

Before concluding this section, let us show some useful relation between functional deriva-
tives of the generating functional Bµ.
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Proposition 5.9. Assume that for a.a. y ∈ Rd, Bµ(·; y) is an entire functional of bounded
type on L1(Rd). Then the following relation between variational derivatives holdsÄ

D|η|Bµ
ä

(θ; y; η) =

ˆ
Γ0

dλ (ξ) eλ (θ, ξ) kµ (η ∪ ξ, y) (5.24)

and, more generally,Ä
D|η|Bµ

ä
(θ1 + θ2; y; η) =

ˆ
Γ0

dλ (ξ)
Ä
D|η∪ξ|Bµ

ä
(θ1; y; η ∪ ξ) eλ (θ2, ξ) , (5.25)

for any θ1, θ2 ∈ L1(Rd) and λ̃-a.a. (η, y) ∈ Γ0 × Rd.

Proof. First of all let us note that (5.24) is a special case of (5.25) when θ1 = 0 and θ2 = θ.
Therefore, we only need to show (5.25).

For θ0 := θ1 + θ2 formula (5.10) reads

Zµ (θ1 + θ2 + θ, ψ) =

ˆ
Rd

dy ψ (y)

ˆ
Γ0

dλ (η) eλ (θ, η)
Ä
D|η|Bµ

ä
(θ1 + θ2, y; η) , (5.26)

for any θ1, θ2, θ ∈ L1(Rd) and ψ ∈ L∞(Rd). On the other hand, if we replace θ0 by θ1 and θ
by θ2 + θ, the same formula gives

Zµ (θ1 + θ2 + θ, ψ) =

ˆ
Rd

dy ψ (y)

ˆ
Γ0

dλ (η) eλ (θ2 + θ, η)
Ä
D|η|Bµ

ä
(θ1, y; η) . (5.27)

Note that for all η ∈ Γ0 one has

eλ (θ2 + θ, η) =
∏
x∈η

(θ2(x) + θ(x))

=
∑
ξ⊂η

Ñ∏
x∈ξ

θ(x)

éÑ ∏
x′∈η\ξ

θ2(x′)

é
=
∑
ξ⊂η

eλ (θ, ξ) eλ (θ2, η \ ξ) .

Then, by applying the Minlos formula (1.18) to (5.27) we find

Zµ (θ1 + θ2 + θ, ψ) =

ˆ
Rd

dy ψ (y)

ˆ
Γ0

dλ (η)

ˆ
Γ0

dλ (ξ) eλ (θ, ξ)×

eλ (θ2, η)
Ä
D|η∪ξ|Bµ

ä
(θ1, y; η ∪ ξ) . (5.28)

Finally, by comparing this expression with (5.26) we obtain the desired result.

Remark 5.10. Given Λ ∈ Bb(Rd), for θ1 = −1Λ and θ2 = 1Λ identity (5.25) yields

kµ (η, y) =
Ä
D|η|Bµ

ä
(0, y; η) =

ˆ
ΓΛ

dλ (ξ)
Ä
D|η∪ξ|Bµ

ä
(−1Λ; y; η ∪ ξ) .

Then, from Corollary 5.5 we obtain

kµ (η, y) =

ˆ
Γ(Λ)

dµΛ

dπ̃Λ
σ

(γ ∪ η, y)πΛ
σ (dγ) , λ̃-a.a. (η, y) ∈ Γ0 × Rd.

In other words, the definition of correlation functionals given by (5.16) is equivalent to that
stated in Lemma 1.28.
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5.2 Random Walk in a Kawasaki model of environment

Let us consider the RW of a tagged particle jumping in Rd and interacting with an infinite
system of other hopping particles. For such a model, on the phase space Γ(Rd) × Rd we
introduce a stochastic dynamics defined by the Markov pregenerator, F ∈ K(Bbs(Γ0 × Rd)),

(LF ) (γ, y) = (LREF ) (γ, y) + (LRWF ) (γ, y) , (5.29)

where LRW is defined by (2.10), whereas LRE is the pregenerator of the Kawasaki dynamics
given by (2.6) with, see e.g. [43],

c
(
x, x′, γ

)
:= c̃

(
x− x′

)
e−
∑

x′′∈γ V (x′−x′′), (5.30)

for any x, x′ ∈ Rd \ γ and γ ∈ Γ. In what follows, we assume that c̃, V : Rd → R are two
non-negative even functions which are integrable in Rd. For convenience, we denote

〈c̃〉 :=

ˆ
Rd

dx c̃ (x) <∞ (5.31)

and
C1
V :=

ˆ
Rd

dxV (x) <∞. (5.32)

In Section 2.2 we have seen that the evolution of states µt ∈ M1
fm(Γ× Rd) for models of

RWRE can be reformulated in terms of the corresponding correlation functional kt := kµt ,
t ≥ 0. This leads to the initial value problem®

∂
∂tkt (η, y) =

Ä
L̂∗REkt

ä
(η, y) +

Ä
L̂∗RWkt

ä
(η, y)

kt (η, y)|t=0 = k0
, η ∈ Γ0, y ∈ Rd, (5.33)

where the generator L̂∗ = L̂∗RE + L̂∗RW is defined by (2.26) and (2.28).
Identity (5.21) allows us to express the dynamics of correlation functionals kt in terms

of the Bogoliubov functional Zt := Zµt associated to the measure µt, provided that this
functional exists. Informally, by using (2.29), for all θ ∈ L1

Ä
Rd
ä
, ψ ∈ L∞

Ä
Rd
ä
and t ≥ 0 we

can write

∂

∂t
Zt (θ, ψ) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η) eλ (θ, η)ψ (y)

Å
∂

∂t
kt (η, y)

ã
=

ˆ
Rd

dy
ˆ

Γ0

dλ (η) eλ (θ, η)ψ (y)
îÄ
L̂∗REkt

ä
(η, y) +

Ä
L̂∗RWkt

ä
(η, y)

ó
=

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
îÄ
L̂REeλ (θ, η)ψ

ä
(η, y) +

Ä
L̂RW eλ (θ, η)ψ

ä
(η, y)

ó
kt (η, y) .

Then, if we introduce the operator L̃ := L̃RE + L̃RW such thatÄ
L̃REZt

ä
(θ, ψ) :=

ˆ
Γ0

dλ (η)

ˆ
Rd

dy
Ä
L̂REeλ (θ)ψ

ä
(η, y) kt (η, y) (5.34)

and Ä
L̃RWZt

ä
(θ, ψ) :=

ˆ
Γ0

dλ (η)

ˆ
Rd

dy
Ä
L̂RW eλ (θ)ψ

ä
(η, y) kt (η, y) , (5.35)

the evolution of the Bogoliubov functional Zt is obtained as the solution of the equationÅ
∂

∂t
Zt

ã
(θ, ψ) =

Ä
L̃Zt
ä

(θ, ψ) =
Ä
L̃REZt

ä
(θ, ψ) +

Ä
L̃RWZt

ä
(θ, ψ) , (5.36)
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for all θ ∈ L1
Ä
Rd
ä
, ψ ∈ L∞

Ä
Rd
ä
and t ≥ 0.

As already pointed out in Section 5.1, we do not study the Bogoliubov functional Zt di-
rectly, but its first-order derivative in ψ, namely the generating functional Bt(·, y) := Bµt(·, y),
a.a. y ∈ Rd, on L1(Rd), see identity (5.23). According to representation (5.2), the evolution
equation for Bt, t ≥ 0, can be written as®

∂
∂tBt (θ, y) = (L̃′REBt)(θ, y) + (L̃′RWBt)(θ, y)
Bt (θ, y)|t=0 = B0 (θ, y)

, (5.37)

where the operators L̃′RE and L̃′RW are defined by the identities

(L̃REZt)(θ, ψ) =

ˆ
Rd

dy ψ (y) (L̃′REBt)(θ, y) (5.38)

and
(L̃RWZt)(θ, ψ) =

ˆ
Rd

dy ψ (y) (L̃′RWBt)(θ, y), (5.39)

for any θ ∈ L1(Rd) and ψ ∈ L∞(Rd).
In the case of a RW in Kawasaki model of RE associated to the Markov generator (5.29):

the operator L̃′RE is given by, see e.g. [43, 60],Ä
L̃′REB

ä
(θ, y) =

ˆ
Rd

dx
ˆ
Rd

dx′c̃
(
x− x′

)
e−V (x−x′) (θ (x′)− θ (x)

)
×

δB
Ä
θe−V (·−x′) +

Ä
e−V (·−x′) − 1

ä
, y
ä

δθ (x)
, (5.40)

while the explicit form of the L̃′RW will be computed in the following proposition.

Proposition 5.11. Let us consider the operator L̂RW defined by (2.38). Suppose that B(·; y)
is an entire functional of bounded type on L1(Rd), for a.a. y ∈ Rd. Then, the following
formula holdsÄ

L̃′RWB
ä

(θ, y) =

=

ˆ
Rd

dza (y − z)
ˆ

Γ0

dλ (η) eλ (θ + 1, η)
îÄ
K−1λint (·, z, y)

ä
(η)
Ä
D|η|B

ä
(θ, z; η)−Ä

K−1λint (·, y, z)
ä

(η)
Ä
D|η|B

ä
(θ, y; η)

ó
,

(5.41)

provided that the right-hand side makes sense.

Remark 5.12. It may be useful to reformulate the result above in some special case that
appears in concrete applications. In particular, ifÄ

K−1λint (·, y, z)
ä

(η) = eλ (`y,z(·), η) , η ∈ Γ0, y, z ∈ Rd,

for some measurable function ly,z : Rd → R, y, z ∈ Rd. Then, according to formula (5.10),
the operator L̃′RW reduces toÄ

L̃′RWB
ä

(θ, y) =

ˆ
Rd

dz a (y − z) [B (θ + (1 + θ) `z,y (·) , z)−B (θ + (1 + θ) `y,z (·) , y)] ,

(5.42)
for all θ ∈ L1(Rd, dx) and y ∈ Rd. It is worth noting that in contrast to (5.41), in this case
the operator L̃′RW doesn’t depend on any functional derivative of B.
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Proof of Proposition 5.11. Let us derive the expression for the operator L̃RW defined by
(5.35), that is Ä

L̃RWZ
ä

(θ, ψ) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)
Ä
L̂RW eλ (θ)ψ

ä
(η, y) k (η, y) ,

for all θ ∈ L1(Rd) and ψ ∈ L∞(Rd). From (2.40) and (2.41) we haveÄ
L̂RW eλ(θ)ψ

ä
(η, y) =

ˆ
Rd

dz a (y − z)
î
A (·, y, z) ?

Ä
eλ(θ, ·)ψ (z)− eλ(θ, ·)ψ (y)

äó
(η) .

Due to the linearity of the ?-convolution, by using (1.27) we can writeÄ
L̂RW eλ(θ)ψ

ä
(η, y) =

ˆ
Rd

dz a (y − z) (ψ (z)− ψ (y)) [A (·, y, z) ? eλ(θ, ·)] (η)

=

ˆ
Rd

dz a (y − z) (ψ (z)− ψ (y))
∑
ξ⊂η

A (ξ, y, z) eλ (θ + 1, ξ) eλ (θ, η \ ξ) .

Consequently,Ä
L̃RWZ

ä
(θ, ψ) =

ˆ
Rd

dy
ˆ

Γ0

dλ (η)

ˆ
Rd

dza (y − z) (ψ (z)− ψ (y))×

∑
ξ⊂η

A (ξ, y, z) eλ (θ + 1, ξ) eλ (θ, η \ ξ) k (η, y) .

Next we can apply the Minlos formula 1.18 to getÄ
L̃RWZ

ä
(θ, ψ) =

ˆ
Rd

dy
ˆ

Γ0

dλ (ξ)

ˆ
Rd

dzeλ (θ + 1, ξ) a (y − z) (ψ (z)− ψ (y))×

A (ξ, y, z)

ˆ
Γ0

dλ (η) eλ (θ, η) k (ξ ∪ η, y) .

Having in mind (5.2), by using identity (5.24) we haveÄ
L̃RWZ

ä
(θ, ψ) =

ˆ
Rd

dy
ˆ
Rd

dza (y − z) (ψ (z)− ψ (y))×
ˆ

Γ0

dλ (ξ)A (ξ, y, z) eλ (θ + 1, ξ)
Ä
D|η|B

ä
(θ, y; η) ,

and (5.41) follows.

Remark 5.13. Let us note that the Cauchy problems (5.33) and (5.37) are closely connected
to each other. More precisely, if kt, t ≥ 0, is a solution to (5.33) then the functional

Bt (θ, y) =

ˆ
Γ0

dλ (η) eλ (θ, η) kt (η, y) , θ ∈ L1(Rd), y ∈ Rd,

solves (5.37). Conversely, given a solutionBt, t ≥ 0, of (5.37) one can construct the measurable
function

kt (η, y) =
Ä
D|η|Bt

ä
(0, y; η) , η ∈ Γ0, y ∈ Rd, (5.43)

which solves (5.33).
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The next sections are devoted to the study of solutions to the Cauchy problem (5.37) on a
proper Banach space. According to the considerations above, the nature of this space depends
directly on the class of correlation functions we are interested in. In this chapter we consider
correlation functionals from the Banach space K1

C defined by (2.32). Let us recall that every
k ∈ K1

C is a measurable function such that

|k (η, y)| ≤M(y)C |η|, λ̃− a.a. η ∈ Γ0, y ∈ Rd,

where C > 0 and M(·) is a positive and integrable function on Rd. As a consequence, by
using (5.23) together with (1.24), one has

B (θ, y) ≤M(y)

ˆ
Γ0

C |η|dλ (η) eλ (θ, η)

≤M(y)eC‖θ‖1 , θ ∈ L1(Rd), a.a. y ∈ Rd.

This estimate motivates the definition of the following family of Banach spaces.

Definition 5.14. Given α > 0, let Eα be the Banach space of all generating functionals
B (θ, y) on L1(Rd)× Rd such that for a.a. y ∈ Rd, B (·; y) is entire on L1(Rd) and

‖B‖α :=

ˆ
Rd

dy ‖B (·, y)‖α∞ <∞, (5.44)

where
‖B (·, y)‖α∞ := sup

θ∈L1

(
|B (θ, y)| e−

1
α
‖θ‖1

)
. (5.45)

Remark 5.15. The fact that (Eα, ‖B‖α), α > 0, defines a Banach space follows from the
result in [79, Proposition 23].

In Section 5.2.1 we construct the time evolution of the generating functional Bt, t ≥ 0,
as the solution of the initial value problem (5.37) in the Banach space Eα. Afterwards, in
Section 5.2.2 we apply the general scheme of Vlasov-type scaling described in Section 2.3
to (5.37): we study the convergence to the corresponding mesoscopic evolution and derive the
kinetic equations for the considered model.

5.2.1 Non-equilibrium evolution of generating functionals

In this section we study the existence and uniqueness of solutions to initial value prob-
lem (5.37) in the Banach space Eα introduced in Definition 5.14.

The time evolution of Bogoliubov functionals for the Kawasaki dynamics in (5.29) has
been constructed in [43]. This construction was carried out by using an Ovsjannikov-type
result in a scale of Banach spaces. In the present case, from Definition 5.14 it follows that,
for each α0 > 0, the family {Eα : 0 < α ≤ α0} defines a scale of Banach spaces. In fact, for
any α′ ≥ α > 0 we have

Eα′ ⊆ Eα, ‖·‖α ≤ ‖·‖α′ .

In this settings, the solutions to the Cauchy problem (5.37) can be analyzed by applying the
existence and uniqueness result stated in Theorem 4.2.

In the following two subsections we consider explicitly the cases for the interactions λ(1)

and λ(2) defined in (2.13) and (2.14), respectively. Clearly, similar considerations can be
also applied to λ(3) and λ(4), see (2.15) and (2.16), respectively. Before proceeding with this
analysis, let us recall a general result from [43, Proposition 3.2] regarding the operator L̃′RE ,
which we will use later on.
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Lemma 5.16. Suppose that condition (5.32) holds. Let 0 < α < α0 be given. If B ∈ Eα′′ for
some α′′ ∈ (α, α0], then L̃′REB ∈ Eα′ , and∥∥∥L̃′REB∥∥∥α′ ≤ 2

α0

α′′ − α′
〈c̃〉e

C1
V
α ‖B‖α , (5.46)

for all α ≤ α′ < α′′ ≤ α0.

Remark 5.17. Note that a similar estimate can be shown in the case where L̃′RE is the gener-
ator associated to a Glauber-type dynamics, see e.g. [61, Proposition 3.2]. As a consequence,
the scheme illustrated above can be also applied to study RWs moving in a Glauber-type
environment.

5.2.1.1 RW in a Kawasaki model of environment: Case I

Let us consider a RW whose interaction with RE is given by

λint(γ, y, z) := λ(1) (γ, y) = e−
∑

x′∈γ φ(x′−y), γ ∈ Γ, y, z ∈ Rd, (5.47)

where φ : Rd → R is a non-negative even function such that

C1
φ :=

ˆ
Rd

dxφ (x) <∞. (5.48)

For interaction (5.47) we have, compare to (2.49),Ä
K−1λ(1) (·, y)

ä
(η) = eλ (`y(·), η) , `y (·) = e−φ(·−y) − 1,

for any η ∈ Γ0 and y ∈ Rd. Then, taking into account (5.42), the initial value problem (5.37)
reads ®

∂
∂tBt (θ, y) = (L̃′REBt)(θ, y) + (L̃

(1)
RWBt)(θ, y)

Bt (θ, y)|t=0 = B0 (θ, y)
, (5.49)

where the operator L̃′RE is defined by (5.40), while L̃(1)
RW is given by(

L̃
(1)
RWB

)
(θ, y) :=

ˆ
Rd

dza (y − z)
î
B
Ä
θe−φ(·−z) +

Ä
e−φ(·−z) − 1

ä
, z
ä
−

B
Ä
θe−φ(·−y) +

Ä
e−φ(·−y) − 1

ä
, y
äó
. (5.50)

Note that under assumption (5.48) the operator L̃(1)
RW turns out to be bounded in Eα. In

particular we can show the following result.

Lemma 5.18. Suppose that condition (5.48) holds. Then, given an α > 0, for all B ∈ Eα
and α′ ≤ α we have L̃(1)

RWB ∈ Eα′ and∥∥∥L̃(1)
RWB

∥∥∥
α′
≤ 2〈a〉e

C1
φ
α ‖B‖α . (5.51)

Proof. Let us fix a y ∈ Rd and denote

ϕ (·; y) = e−φ(·−y), χ (·; y) = e−φ(·−y) − 1.

As the potential φ is non-negative and integrable, ϕ(·; y) ∈ L∞(Rd) and χ(·; y) ∈ L1(Rd). In
particular, one has

‖ϕ (·; y)‖∞ ≤ 1 (5.52)
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and
‖χ (·; y)‖1 =

ˆ
Rd

dx′
∣∣∣e−φ(x′−y) − 1

∣∣∣ ≤ ˆ
Rd

dx′ |φ (x)| =: C1
φ. (5.53)

In this notation the operator L̃(1)
RW can be written as

(
L̃

(1)
RWB

)
(θ, y) =

ˆ
Rd

dza (y − z)B
Ä
θϕ(·, z) + χ(·, z), z

ä
− 〈a〉B

Ä
θϕ(·, y) + χ(·, y), y

ä
.

Since B ∈ Eα, for all θ ∈ L1 and y ∈ Rd one has

|B (θϕ(·, y) + χφ(·, y), y)| ≤ ‖B (·, y)‖α∞ e
‖θϕ(·,y)‖1

α
+
‖χ(·,y)‖1

α

≤‖B (·, y)‖α∞ e
‖θ‖1
α

+
C1
φ
α ,

where the last inequality follows from (5.52) and (5.53). As a result, we find

∣∣∣(L̃(1)
RWB

)
(θ, y)

∣∣∣ ≤ e
‖θ‖1
α

+
C1
φ
α

ïˆ
Rd

dza (y − z) ‖B (·, z)‖α∞ − 〈a〉 ‖B (·, y)‖α∞
ò
. (5.54)

Hence, the norm of L̃(1)
RW in the space Eα′ can be estimated as follows

∥∥∥L̃(1)
RWB

∥∥∥
α′

=

ˆ
Rd

dy sup
θ∈L1

e−
‖θ‖1
α′
∣∣∣ÄL̃′RWBä (θ, y)

∣∣∣
≤ e

C1
φ
α

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

åïˆ
Rd

dy
ˆ
Rd

dza (y − z) ‖B (·, z)‖α∞ − 〈a〉 ‖B (·, y)‖α∞
ò

≤ 2〈a〉e
C1
φ
α ‖B‖α

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

å
.

Note that the latter supremum is finite for all α′ ≤ α. In such cases we simply have

∥∥∥L̃(1)
RWB

∥∥∥
α′
≤ 2〈a〉e

C1
φ
α ‖B‖α , (5.55)

which conludes the proof of the lemma.

By Proposition 5.16 and 5.18, given 0 < α < α0 for any α ≤ α′ < α′′ ≤ α0 and B ∈ Eα′′
we have the following estimate

∥∥∥(L̃′RE + L̃
(1)
RW

)
B
∥∥∥
α′
≤ 2

α0

α′′ − α′
〈c̃〉e

C1
V
α ‖B‖α′′ + 2〈a〉e

C1
φ
α ‖B‖α′′ . (5.56)

Then a direct application of Theorem 4.2 leads to the following existence and uniqueness
result for (5.49).

Theorem 5.19. Suppose that conditions (5.32) and (5.48) hold. Then, given an α0 > 0, for
each α ∈ (0, α0) there exists a moment of time

T1 := T1 (α, α0) =
e−

C1
V
α
−1

2α0〈c̃〉
, (5.57)

such that the Cauchy problem (5.49) with initial condition B0 ∈ Eα0 has a unique solution
Bt ∈ Eα, on the time interval [0, T1).

Proof. The result follows from Theorem 4.2 by (5.56).
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5.2.1.2 RW in a Kawasaki model of environment: Case II

Let us consider the interaction given by

λint(γ, y, z) := λ(2)(γ, y) = λ0 +
∑
x′∈γ

φ
(
x′ − y

)
, γ ∈ Γ, y, z ∈ Rd, (5.58)

where λ0 ≥ 0 and φ : Rd → R is a non-negative even function such that

C1
φ :=

ˆ
Rd

dxφ (x) <∞ (5.59)

and
C∞φ := ess sup

x∈Rd
φ (x) <∞. (5.60)

According to (5.41) and (2.56), in this case the operator L̃′ has the formÄ
L̃
′
B
ä

(θ, y) =
Ä
L̃
′
REB

ä
(θ, y) +

(
L̃

(2)
RWB

)
(θ, y) , (5.61)

where L̃′RE is given by (5.40) and(
L̃

(2)
RWB

)
(θ, y) = λ0

ˆ
Rd

dza (y − z) (B (θ, z)−B (θ, y)) +

ˆ
Rd

dz a (y − z)
ˆ
Rd

dx [φ (x− z) (DB) (θ, z;x)− φ (x− y) (DB) (θ, y;x)] +

ˆ
Rd

dz a (y − z)
ˆ
Rd

dx θ (x) [φ (x− z) (DB) (θ, z;x)− φ (x− y) (DB) (θ, y;x)] .

(5.62)

For the latter we can show the following estimate in the Banach space Eα.

Lemma 5.20. Assume that conditions (5.59) and (5.60) hold. Then, given α > 0, for all
B ∈ Eα and α′ < α we have L̃′RWB ∈ Eα′. Moreover,

∥∥∥L̃(2)
RWB

∥∥∥
α′
≤ 2

Ç
λ0〈a〉+

e〈a〉
α

C1
φ +

α′

α− α′
〈a〉C∞φ

å
‖B‖α . (5.63)

Proof. For brevity, we write(
L̃

(2)
RWB

)
(θ, y) :=

(
L̃

(2)
RW,1B

)
(θ, y) +

(
L̃

(2)
RW,2B

)
(θ, y) +

(
L̃

(2)
RW,3B

)
(θ, y) ,

where (
L̃

(2)
RW,1B

)
(θ, y) = λ0

ˆ
Rd

dza (y − z) (B (θ, z)−B (θ, y)) , (5.64)

(
L̃

(2)
RW,2B

)
(θ, y) =

ˆ
Rd

dz a (y − z)
ˆ
Rd

dx [φ (x− z) (DB) (θ, z;x)− φ (x− y) (DB) (θ, y;x)]

(5.65)

and (
L̃

(2)
RW,3B

)
(θ, y) =

ˆ
Rd

dz a (y − z)
ˆ
Rd

dx θ (x) [φ (x− z) (DB) (θ, z;x)−

φ (x− y) (DB) (θ, y;x)] . (5.66)
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Let us estimate these three terms separately. We start with the operator L̃(2)
RW,1 . From

Definition 5.14, given a B ∈ Eα for all θ ∈ L1 and a.a. y ∈ Rd we have

|B (θ, y)| ≤ e
‖θ‖1
α ‖B (·, y)‖α∞ .

Thus, one may estimate∣∣∣(L̃(2)
RW,1B

)
(θ, y)

∣∣∣ ≤ λ0

ˆ
Rd

dz a (y − z) |B (θ, z)|+ 〈a〉 |B (θ, y)|

≤ λ0e
‖θ‖1
α

ïˆ
Rd

dza (y − z) ‖B (·, z)‖α∞ + 〈a〉 ‖B (·, y)‖α∞
ò
.

As a consequence, its norm in Eα′ can be bounded as follows∥∥∥L̃(2)
RW,1B

∥∥∥
α′

=

ˆ
Rd

dy sup
θ∈L1

e−
‖θ‖1
α′
∣∣∣(L̃(1)

RW,2B
)

(θ, y)
∣∣∣

≤ λ0

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

åïˆ
Rd

dy
ˆ
Rd

dz a (y − z) ‖B (·, z)‖α∞ + 〈a〉
ˆ
Rd

dy ‖B (·, y)‖α∞
ò

≤ 2λ0〈a〉 ‖B‖α

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

å
.

In particular, if we chose α′ ≤ α we simply find∥∥∥L̃(2)
RW,1

∥∥∥
α′
≤ 2λ0〈a〉 ‖B‖α . (5.67)

Next let us consider the operator L̃(2)
RW,3 defined by (5.66). By (5.60), for all θ ∈ L1(Rd) and

y ∈ Rd we have∣∣∣(L̃(2)
RW,3B

)
(θ, y)

∣∣∣ ≤ˆ
Rd

dz a (y − z)
ˆ
Rd

dx |θ (x)|
î
φ (x− z) |(DB) (θ, z;x)|+

φ (x− y) |(DB) (θ, y;x)|
ó

≤‖θ‖1C
∞
φ

ˆ
Rd

dz a (y − z)
î
‖(DB) (θ, z; ·)‖∞ + ‖(DB) (θ, y; ·)‖∞

ó
.

From Lemma 5.3, we know that for all r > 0,

‖(DB) (θ, z; ·)‖∞ ≤
1

r
sup
‖θ0‖1≤r

|B(θ + θ0, z)| . (5.68)

On the other hand, since B ∈ Eα for all θ0 ∈ L1 such that ‖θ0‖1 ≤ r and a.a. y ∈ Rd we have

|B(θ + θ0, z)| ≤ e
r
α

+
‖θ‖1
α ‖B(·, z)‖α∞ . (5.69)

These two estimates yield

∣∣∣(L̃(2)
RW,3B

)
(θ, y)

∣∣∣ ≤ C∞φ e
r
α

r
‖θ‖1 e

‖θ‖1
α

ïˆ
Rd

dza (y − z) ‖B(·, z)‖α∞ + 〈a〉 ‖B(·, y)‖α∞
ò
. (5.70)

Then, by (5.70) the norm of L̃(2)
RW,3 in Eα′ can be estimated as follows

∥∥∥L̃(2)
RW,3B

∥∥∥
α′

=

ˆ
Rd

dy sup
θ∈L1

e−
‖θ‖1
α′
∣∣∣(L̃(3)

RW,2B
)

(θ, y)
∣∣∣
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≤ C∞φ
e
r
α

r

Ç
sup
θ∈L1

‖θ‖1 e
−( 1

α′−
1
α)‖θ‖1

åˆ
Rd

dy
ˆ
Rd

dza (y − z)
î
‖B(·, z)‖α∞ + ‖B(·, y)‖α∞

ó
≤ 2〈a〉C∞φ

e
r
α

r
‖B‖α sup

θ∈L1

(
‖θ‖1 e

−( 1
α′−

1
α)‖θ‖1

)
,

where the last supremum is finite provided that α′ < α. In such a situation, by using the
elementary inequality

xe−mx ≤ 1

em
, x ≥ 0, m > 0, (5.71)

we find ∥∥∥L̃(2)
RW,3B

∥∥∥
α′
≤ 2〈a〉C∞φ

e
r
α

r

α′α

e (α− α′)
‖B‖α . (5.72)

Note that the best bound can be obtained by minimizing the term in the r.h.s. with respect
to the parameter r, that is, for r = α. With this choice it follows

∥∥∥L̃(2)
RW,3B

∥∥∥
α′
≤ α′

(α− α′)
2〈a〉C∞φ ‖B‖α . (5.73)

Finally let us consider the operator L̃(2)
RW,2 given by (5.65). Since the potential φ is integrable,

see (5.59), one has

∣∣∣(L̃(2)
RW,2B

)
(θ, y)

∣∣∣ ≤ˆ
Rd

dz a (y − z)
ˆ
Rd

dx
î
φ (x− z) |(DB) (θ, z;x)|+

φ (x− y) |(DB) (θ, y;x)|
ó

≤C1
φ

ˆ
Rd

dz a (y − z) [‖(DB) (θ, z; ·)‖∞ + ‖(DB) (θ, y; ·)‖∞] ,

for all θ ∈ L1(Rd) and y ∈ Rd. Next, by using estimates (5.68) and (5.69), we find

∣∣∣(L̃(2)
RW,2B

)
(θ, y)

∣∣∣ ≤ C1
φ

e
r
α

r
e
‖θ‖1
α

ïˆ
Rd

dz a (y − z) ‖B(·, z)‖α∞ + 〈a〉 ‖B(·, y)‖α∞
ò
.

Thus,

∥∥∥L̃(2)
RW,2B

∥∥∥
α′

=

ˆ
Rd

dy sup
θ∈L1

e−
‖θ‖1
α′
∣∣∣(L̃(2)

RW,2B
)

(θ, y)
∣∣∣

≤ C∞φ
e
r
α

r

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

åˆ
Rd

dy
ˆ
Rd

dz a (y − z)
î
‖B(·, z)‖α∞ + ‖B(·, y)‖α∞

ó
≤ 2〈a〉C∞φ

e
r
α

r
‖B‖α

Ç
sup
θ∈L1

e−( 1
α′−

1
α)‖θ‖1

å
.

Note that the latter supremum is finite for any α′ ≤ α. In such a case, if we take again r = α,
we obtain ∥∥∥L̃(2)

RW,2B
∥∥∥
α′
≤ 2e

α
〈a〉C1

φ ‖B‖α . (5.74)

Finally, the combination of (5.67), (5.73) and (5.74) provides (5.63).

Now we can apply Theorem 4.2 and formulate the following results about the evolution
of the generating functionals.
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Theorem 5.21. Suppose that conditions (5.32), (5.59) and (5.60) hold. Given an α0 > 0,
let B0 ∈ Eα0 . Then, for each α ∈ (0, α0) there exists a moment of time

T2 := T2(α, α0) =
2α0Ç

〈c̃〉e
C1
V
α + 〈a〉C∞φ

å , (5.75)

such that the initial value problem®
∂
∂tBt = (L̃′REBt) + (L̃

(2)
RWBt)

Bt|t=0 = B0
, (5.76)

has a unique solution Bt ∈ Eα on the time interval [0, T2).

Proof. By combining the results stated in Proposition 5.16 and 5.20, for any B ∈ Eα′′ and
0 < α ≤ α′ < α′′ ≤ α0 we have∥∥∥ÄL̃′RE + L̃′RW,2

ä
B
∥∥∥
α′
≤ M1

α′′ − α′
‖B‖α′′ +M0 ‖B‖α′′ , (5.77)

where

M1 := M1 (α, α0) = 2α0〈c̃〉e
C1
V
α + 2α0〈a〉C∞φ

and

M0 := M0 (α, α0) = 2〈a〉
(
λ0 +

eC1
φ

α

)
.

Then the statement is a direct consequence of Lemma 4.2.

5.2.2 Vlasov-type scaling via generating functionals

In this section we want to investigate the Vlasov-type scaling limit for the stochastic dynamics
associated to the heuristic Markov generator (5.29)-(5.32). Through this section we assume
that

C∞V := ess sup
x∈Rd

V (x) <∞. (5.78)

In Section 2.3 we described a general scheme to construct the Vlasov-type scaling of the
evolution of correlation functions for RWREs. Here, we reformulate the problem in terms
of generating functionals. For the Kawasaki dynamics (5.29) this mesoscopic limit has been
studied in [10] and [43] through correlation functions and generating functionals, respectively.

Let us recall that the Vlasov-type scaling can be realized in three steps starting from the
hierarchy for correlation functions (5.33). First we rescale the initial condition of (5.33) in
order to increase the density of particles of RE. Namely, for any ε > 0 we introduce a rescaled
correlation function k(ε)

0 such that

k0,ε,ren (η, y) := ε|η|k
(ε)
0 (η, y) −→ r0 (η, y) ,

as ε goes to zero, for any η ∈ Γ0(Rd) and y ∈ Rd. In correspondence, for each ε we define the
rescaled generating functional

B
(ε)
0 (θ, y) :=

ˆ
Γ0

dλ (η) eλ (θ, η) k
(ε)
0 (η, y)

and the renormalized generating functional

B0,ε,ren (θ, y) :=

ˆ
Γ0

dλ (η) eλ (θ, η) k0,ε,ren (η, y)
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=

ˆ
Γ0

dλ (η) eλ (εθ, η) k
(ε)
0 (η, y) = B

(ε)
0 (εθ, y) , (5.79)

for any θ ∈ L1(Rd) and y ∈ Rd. Afterwards, we consider a proper scaling of the generators in
(5.33), which makes all interactions among particles weak. Formally, we write

L4 = L4RE(V ) + L4RW (λint) 7−→ L4ε = L4RE(εV ) + L4RW (λε). (5.80)

The form of the rescaled interaction λε has been already discussed in Section 2.3.2 in dif-
ferent cases. As in Section 5.2, we can use (5.21) to construct a scaling of the operator
L̃′ = L̃′RE + L̃′RW . Consequently, scaling (5.79) and (5.80) yield the renormalized initial value
problem®

∂
∂tBt,ε,ren (θ, y) = (L̃′RE,ε,renBt,ε,ren)(θ, y) + (L̃′RW,ε,renBt,ε,ren)(θ, y)

Bt,ε,ren|t=0 = B0,ε,ren
, (5.81)

where for any θ ∈ L1(Rd), y ∈ Rd and t > 0,

Bt,ε,ren (θ, y) := B
(ε)
t (εθ, y) =

ˆ
Γ0

dλ (η) eλ (εθ, η) k
(ε)
t (η, y) . (5.82)

According to [43, Proposition 4.1], the operator L̃′RE,ε,ren is given byÄ
L̃′RE,ε,renB

ä
(θ, y) =

ˆ
Rd

dx
ˆ
Rd

dx′c̃
(
x− x′

)
e−εV (x−x′) (θ (x′)− θ (x)

)
×

δB

Å
θe−εV (·−x′) + e−εV (·−x′)−1

ε , y

ã
δθ (x)

. (5.83)

In the following proposition we compute the precise form of L̃′RW,ε,ren for a generic rescaled
interaction λε.

Proposition 5.22. Given ε > 0 the following formula holdsÄ
L̃′RW,ε,renB

ä
(θ, y) =

ˆ
Rd

dza (y − z)
ˆ

Γ0

dλ (ξ) eλ (εθ + 1, ξ)×î
ε−|ξ|Aε (ξ, z, y)

Ä
D|ξ|B

ä
(θ, z; ξ)− ε−|ξ|Aε (ξ, y, z)

Ä
D|ξ|B

ä
(θ, y; ξ)

ó
,

(5.84)

for all θ ∈ L1(Rd, dx) and y ∈ Rd.

Remark 5.23. According to Remark 5.12, in the caseÄ
K−1λε (·, y, z)

ä
(ξ) = eλ

Ä
`(ε)y,z (·) , ξ

ä
, ξ ∈ Γ0(Rd), y, z ∈ Rd, (5.85)

we have Ä
L̃′RW,ε,renB

ä
(θ, y) =

ˆ
Rd

dza (y − z)
î
B
Ä
θ(1 + `(ε)z,y) + ε−1`(ε)z,y, z

ä
−

B
Ä
θ(1 + `(ε)y,z) + ε−1`(ε)y,z, y

äó
. (5.86)
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Proof of Proposition 5.22. The renormalized operator L̃′RW,ε,ren is defined by

(L̃RW,ε,renZt)(θ, ψ) =

ˆ
Rd

dy ψ (y) (L̃′RW,ε,renBt)(θ, y), (5.87)

where Ä
L̃RW,ε,renZ

ä
(θ, ψ) :=

ˆ
Γ0

dλ (η)

ˆ
Rd

dy
Ä
L̂RW,ε,reneλ (θ)ψ

ä
(η, y) k (η, y) ,

for any θ ∈ L1(Rd) and ψ ∈ L∞(Rd). On the other hand, according to (2.41) and (2.91) we
haveÄ
L̂RW,ε,reneλ(θ)ψ

ä
(η, y) = ε−|η|

Ä
L̂RW,εeλ(εθ, ·)ψ(·)

ä
(η, y)

=

ˆ
Rd

dz a (y − z) (ψ(z)− ψ(y)) ε−|η|
îÄ
K−1λε (·, y, z)

ä
(ξ) ? eλ(εθ, ·)

ó
(η) .

In particular, by using (1.27) we can writeÄ
L̂RW,ε,reneλ(θ)ψ

ä
(η, y) =

=

ˆ
Rd

dza (y − z) (ψ(z)− ψ(y)) ε−|η|
∑
ξ⊂η

Ä
K−1λε (·, y, z)

ä
(ξ) eλ(εθ + 1, ξ)eλ(εθ, η \ ξ),

which yieldsÄ
L̃RW,ε,renZt

ä
(θ, ψ) =

ˆ
Rd

dy
ˆ
Rd

dza (y − z) (ψ(z)− ψ(y))×
ˆ

Γ0

dλ (η) kt (η, y)
∑
ξ⊂η

ε−|ξ|
Ä
K−1λε (·, y, z)

ä
(ξ) eλ(εθ + 1, ξ)eλ(θ, η \ ξ).

Next, using Minlos identity (1.18) together with (5.24), we findÄ
L̃RW,ε,renZt

ä
(θ, ψ) =

ˆ
Rd

dy
ˆ
Rd

dza (y − z) (ψ(z)− ψ(y))×
ˆ

Γ0

dλ (ξ) ε−|ξ|
Ä
K−1λε (·, y, z)

ä
(ξ) eλ(εθ + 1, ξ)

ˆ
Γ0

dλ (η) eλ(θ, η)kt (η, y)

=

ˆ
Rd

dy
ˆ
Rd

dza (y − z) (ψ(z)− ψ(y))×
ˆ

Γ0

dλ (ξ) ε−|ξ|
Ä
K−1λε (·, y, z)

ä
(ξ) eλ(εθ + 1, ξ)

Ä
D|ξ|B

ä
(θ, y; ξ) . (5.88)

Having in mind (5.87), from (5.88) we can easily obtain (5.84).

As the next step we consider the limit when ε goes to zero of the two generators which
appear in (5.81). From [43, Proposition 4.2] we have the following result about the point-wise
convergence of L̃′RE,ε,ren.

Proposition 5.24. Suppose that condition (5.32) is satisfied. Then,

(i) given B ∈ Eα, for some α > 0, the following limit holdsÄ
L̃′RE,VB

ä
(θ, y) = lim

ε→0

Ä
L̃′RE,ε,renB

ä
(θ, y)

=

ˆ
Rd

dx
ˆ
Rd

dx′c̃
(
x− x′

) (
θ
(
x′
)
− θ (x)

) δB (θ − V (· − x′), y)

δθ (x)
,

(5.89)

for any θ ∈ L1(Rd) and y ∈ Rd.
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(ii) given α0 > α > 0, if B ∈ Eα′′ , for some α′′ ∈ (α, α0], we have¶
L̃′RE,ε,renB, L̃

′
RE,VB

©
⊂ Eα′ , for all α ≤ α′ < α′′,

moreover, ∥∥∥L̃′RE,#∥∥∥α′ ≤ α0

α′′ − α′
2〈c̃〉e

C1
V
α ‖B‖α′′ , (5.90)

where # = "ε, ren" or "V ".

In the proposition below we consider the point-wise limit of L̃′RW,ε,ren.

Proposition 5.25. Assume that

lim
ε→0

ε−|ξ|
Ä
K−1λε (y, z, ·)

ä
(ξ) = AV (ξ, y, z) , (5.91)

for a.a. ξ ∈ Γ0(Rd) and y, z ∈ Rd. Then, for any B ∈ Eα, α > 0, the following limit holds:Ä
L̃′RW,VB

ä
(θ, y) = lim

ε→0

Ä
L̃′RW,ε,renB

ä
(θ, y)

=

ˆ
Rd

dza (y − z)
ˆ

Γ0

dλ (ξ)
î
AV (ξ, z, y)

Ä
D|ξ|B

ä
(θ, z; ξ)−

AV (ξ, y, z)
Ä
D|ξ|B

ä
(θ, y; ξ)

ó
, (5.92)

for all θ ∈ L1(Rd) and y ∈ Rd.

Proof. The limit in (5.92) follows directly from (5.84). Indeed, we can note that for ε→ 0

eλ (εθ + 1, ξ) −→ eλ (1, ξ) ≡ 1

and, due to hypothesis (5.91),

ε−|ξ|
Ä
K−1λε (·, y, z)

ä
(ξ) −→ AV (ξ, y, z) .

Remark 5.26. As in Remark 5.23, let us consider the case where (5.85) holds. In this case,
if we assume that

lim
ε→0

ε−1`(ε)y,z (x) = `(V )
y,z (x) , (5.93)

for all x ∈ Rd and a.a. y, z ∈ Rd, the operator L̃′RW,ε,ren in (5.86), converges as ε goes to zero,
to Ä

L̃′RW,VB
ä

(θ, y) =

ˆ
Rd

dza (y − z)
î
B
Ä
θ + `(V )

z,y , z
ä
−B

Ä
θ + `(V )

y,z , y
äó
. (5.94)

Indeed, in the case (5.85), the operator L̃′RW,ε,ren is given by (5.86). Condition (5.93) implies
that

`(ε)y,z (x)→ 0, ε→ 0,

and the statement follows.

According to Proposition 5.24 and 5.25, we can define the limiting Cauchy problem®
∂
∂tBt,V (θ, y) = (L̃′RE,VBt,V )(θ, y) + (L̃′RW,VBt,V )(θ, y)

Bt,V |t=0 = B0,V
. (5.95)

Following the analysis in Section 2.3.1, in the next lemma we show that the limiting evo-
lution (5.95) preserves chaos, see (2.85)-(2.86), and, therefore, we derive (point-wisely) the
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kinetic equations associated to the Markov dynamics (5.29). Note that for states of the form
r0(η, y) = eλ(ρ0, η)r0(y), η ∈ Γ0 and y ∈ Rd, the corresponding generating functional reads

B0,V (θ, y) =

ˆ
Γ0

dλ (η) eλ (θ, η) eλ(ρ0(·), η)r0(y) = r0 (y) e
´
Rd dx θ(x)ρ0(x), (5.96)

for any θ ∈ L1(Rd) and y ∈ Rd. Then, the chaos preservation property (2.85)-(2.86) implies
that for initial conditions B0,V of the form (5.96) the evolution B0,V 7→ Bt,V , t > 0, is such
that

Bt,V (θ, y) = rt (y) e
´
Rd dx θ(x)ρt(x) =: B

(coh)
t,V (θ, y) , (5.97)

for any θ ∈ L1(Rd) and y ∈ Rd.

Lemma 5.27. Given 0 < α < α0, let ρt ∈ B
∞
1/α0

and rt ∈ L1(Rd), t ≥ 0, be solutions to the
Vlasov equations

∂ρt(x)

∂t
= (ρt ∗ c̃) (x)e−(ρt∗V )(x) − ρt(x)

Ä
c̃ ∗ e−(ρt∗V )

ä
(x), (5.98)

∂rt (y)

∂t
=

ˆ
Γ0

dλ (ξ) eλ (ρt, ξ)

ˆ
Rd

dz a (y − z)
î
rt (z)AV (ξ, z, y)− rt (y)AV (ξ, y, z)

ó
, (5.99)

with initial conditions ρt|t=0 = ρ0 and rt|t=0 = r0. Then, B
(coh)
t,V ∈ Eα0 ⊂ Eα, t ≥ 0, solves the

Cauchy problem (5.95) with initial condition B(coh)
0,V ∈ Eα0.

Proof. First let us note that ρt ∈ B
∞
1/α0

and rt ∈ L1(Rd) implies that B(coh)
t,V ∈ Eα0 ⊂ Eα,

t ≥ 0. Next let us show that B(coh)
t,V (θ, y) solves equation (5.95), namely

∂

∂t
B

(coh)
t,V (θ, y) = (L̃′RE,VB

(coh)
t,V )(θ, y) + (L̃′RW,VB

(coh)
t,V )(θ, y), (5.100)

for any θ ∈ L1(Rd) and y ∈ Rd. By (5.97), the derivative in the l.h.s. can be written explicitly
as

∂

∂t
B

(coh)
t,V (θ, y) =

∂

∂t

î
rt (y) e

´
Rd dxθ(x)ρt(x)

ó
=
∂rt (y)

∂t
B

(coh)
t,V,RE (θ) +B

(coh)
t,V (θ, y)

ˆ
Rd

dxθ(x)
∂ρt(x)

∂t
, (5.101)

where
B

(coh)
t,V,RE (θ) := e

´
Rd dxθ(x)ρt(x). (5.102)

On the other hand, according to (5.89) and (5.92), we have(
L̃′VB

(coh)
t,V

)
(θ, y) :=

(
L̃′RE,VB

(coh)
t,V

)
(θ, y) +

(
L̃′RW,VB

(coh)
t,V

)
(θ, y)

=

ˆ
Rd

dx
ˆ
Rd

dx′c̃
(
x′ − x

) (
θ(x′)− θ(x)

) (
DB

(coh)
t,V

) (
θ − V (x′ − ·), y;x

)
+

ˆ
Rd

dz a (y − z)
ˆ

Γ0

dλ (ξ)
[
AV (ξ, z, y)

(
D|ξ|B

(coh)
t,V

)
(θ, z; ξ)−

AV (ξ, y, z)
(
D|ξ|B

(coh)
t,V

)
(θ, y; ξ)

]
.

Next, since (
D|ξ|B

(coh)
t,V,RE

)
(θ; ξ) = eλ (ρt, ξ)B

(coh)
t,V,RE (θ) ,

one has (
D|ξ|B

(coh)
t,V

)
(θ, y; ξ) = rt (y)

(
D|ξ|B

(coh)
t,V,RE

)
(θ; ξ)
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= rt (y) eλ (ρt, ξ)B
(coh)
t,V,RE (θ)

= eλ (ρt, ξ)B
(coh)
t,V (θ, y)

and we can write(
L̃′VB

(coh)
t,V

)
(θ, y) =B

(coh)
t,V (θ, y)

ˆ
Rd

dx
ˆ
Rd

dx′c̃
(
x′ − x

) (
θ(x′)− θ(x)

)
ρt(x)e−(ρt∗V )(x′)+

B
(coh)
t,V,RE (θ)

ˆ
Rd

dz a (y − z)
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)
î
rt (z)AV (ξ, z, y)−

rt (y)AV (ξ, y, z)
ó

=B
(coh)
t,V (θ, y)

ˆ
Rd

dx θ(x)
î
(c̃ ∗ ρt) (x)e−(ρt∗V )(x) − ρt(x)

Ä
c̃ ∗ e−(ρt∗V )

ä
(x)
ó

B
(coh)
t,V,RE (θ)

ˆ
Rd

dz a (y − z)
ˆ

Γ0

dλ (ξ) eλ (ρt, ξ)
î
rt (z)AV (ξ, z, y)−

rt (y)AV (ξ, y, z)
ó
.

(5.103)

Finally, by comparing the r.h.s. of (5.101) and (5.103), we can conclude that B(coh)
t,V (θ, y)

solves (5.95) if ρt and rt are solutions to the system of equations (5.98)-(5.99).

In the remaining part of this chapter we want to give a rigorous meaning to the Vlasov-type
scaling described above in some specific model. In particular, in Section 5.2.2.1 and 5.2.2.2
we consider the cases where the interaction λint is given by (5.47) and (5.58), respectively.

In the analysis that follows, we will use the same techniques as in Section 4.2.1 and 4.2.2.
More precisely, in the scale of Banach spaces {Eα : 0 < α ≤ α0} by using Ovsjannikov-type
result in Theorem 4.2 we show that the initial value problems (5.81) and (5.95) have unique
solutions, Bt,ε and Bt,V , respectively, on the same time interval and with values in the same
Banach space. Hence, by means of Theorem 4.9 we prove that solutions Bt,ε converge to Bt,V .
This will lead to a rigorous derivation of the Vlasov equations for the considered models. The
existence and uniqueness of their solutions can be established by using the same techniques
as in the proof of Lemma 4.21. Let us recall that properties of solutions to (5.98) have been
studied in [10]. In particular, one can show the following existence and uniqueness result.

Lemma 5.28. Given C > 0, let ρ0 ∈ L∞(Rd) with 0 ≤ ρ0(x) ≤ C for a.a. x ∈ Rd. Suppose
that condition (5.32) holds. Then, equation (5.98) with initial condition ρt|t=0 = ρ0 has a
unique non-negative solution 0 ≤ ρ ∈ C1(R+;L∞(Rd)) Moreover, the solution ρt is uniformly
bounded on any finite time interval.

5.2.2.1 RW in a Kawasaki model of environment: Case I

Let us consider interaction λ(1) given by (5.47) and such that condition (5.48) holds and

C∞φ := ess sup
x∈Rd

φ (x) <∞. (5.104)

The scaling of this interaction has been discussed in Case I of Section 2.3.2. From (2.139)
and (2.140), we can writeÄ

K−1λ(1)
ε (·, y)

ä
(ξ) = eλ

Ä
`(ε)y (·), ξ

ä
, `(ε)y (·) = e−εφ(·−y) − 1, ε > 0,

and
A

(1)
V (ξ, y) = eλ

Ä
`(V )
y (·) , ξ

ä
, `(V )

y (·) = −φ (· − y) , (5.105)
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for any ξ ∈ Γ0 and a.a. y ∈ Rd. Then, according to Remark 5.23, given α > 0 for any ε > 0
and B ∈ Eα, we define the renormalized operator L̂′ε,ren by

(L̃′ε,renB)(θ, y) = (L̃′RE,ε,renB)(θ, y) + (L̃
(1)
RW,ε,renB)(θ, y), (5.106)

where L̃RE,ε,ren is given by (5.83) and

(L̃
(1)
RW,ε,renB)(θ, y) =

ˆ
Rd

dz a (y − z)
ñ
B

Ç
θe−εφ(·−z) +

e−εφ(·−z) − 1

ε
, z

å
−

B

Ç
θe−εφ(·−y) +

e−εφ(·−y) − 1

ε
, y

åô
. (5.107)

Moreover, as ε→ 0, by combining (5.94) and (5.105), we have the point-wise limit

(L̃′VB)(θ, y) = (L̃′RE,VB)(θ, y) + (L̃
(1)
RW,VB)(θ, y), (5.108)

where L̃RE,V is defined by (5.89) and(
L̃

(1)
RW,VB

)
(θ, y) =

ˆ
Rd

dza (y − z) [B (θ − φ (· − z) , z)−B (θ − φ (· − y) , y)] . (5.109)

As in Proposition 5.18, one can show that both L̃(1)
RW,ε,ren and L̃(1)

RW,V are bounded operators
on the Banach space Eα.

Proposition 5.29. Suppose that condition (5.48) is satisfied. Given α > 0, for all B ∈ Eα
and α′ ≤ α we have {

L̃
(1)
RW,ε,renB, L̃

(1)
RW,VB

}
ε>0
⊂ Eα′ .

Moreover, the following inequality holds∥∥∥L̃(1)
RW,#

∥∥∥
α′
≤ 2〈a〉e

C1
φ
α ‖B‖α , (5.110)

where # = "ε, ren" or "V ".

Proof. Let us first consider the renormalized operator L̃(1)
RW,ε,ren. We can proceed as in the

proof of Lemma 5.18 replacing ϕ and χ by

ϕε (·, y) = e−εφ(·−y), χε (·, y) =
e−εφ(·−y) − 1

ε
,

for any y ∈ Rd and ε > 0, respectively. Note that for any ε > 0 and y ∈ Rd we still have
ϕε(·; y) ∈ L∞(Rd) and χε(·; y) ∈ L1(Rd), with

‖ϕε (·; y)‖∞ ≤ 1

and

‖χε (·; y)‖1 = ε−1

ˆ
Rd

dx′
∣∣∣e−εφ(x′−y) − 1

∣∣∣ ≤ ˆ
Rd

dx′
∣∣φ (x′)∣∣ =: C1

φ.

For the limiting operator L̃(1)
RW,V we can still use the same arguments as in Lemma 5.18, but

choosing this time

ϕ (·; y) ≡ 1 ∈ L∞(Rd)

and

χ (·; y) = −φ (· − y) ∈ L1(Rd).



5.2.2 Vlasov-type scaling via generating functionals 129

Let us now proceed with the analysis of the Vlasov-type scaling outlined in the previous
section. First, we show the existence of the rescaled and limiting evolution associated to the
generators (5.106) and (5.108), respectively. This will be a consequence of the general result
stated in Theorem 4.2.

Lemma 5.30. Assume that conditions (5.32) and (5.48) are satisfied. Given α0 > 0, let
{B0,ε, B0,V }ε>0 ⊂ Eα0. Then, for each α ∈ (0, α0) the initial value problems (5.81) and (5.95)
have unique solutions Bt,ε ∈ Eα and Bt,V ∈ Eα, respectively, on the time interval [0, T1), where
T1 is given by (5.57).

Proof. From Proposition 5.24 and 5.29, given α ≤ α′ < α′′ ≤ α0 for any B ∈ Eα′′ we have

∥∥∥L̃′#B∥∥∥α′ ≤ 2
α0

α′′ − α′
〈c̃〉e

C1
V
α ‖B‖α′′ + 2〈a〉e

C1
φ
α ‖B‖α′′ , (5.111)

where # = ”ε, ren” or ”V ”. Then, we can apply Theorem 4.2 to each of the Cauchy prob-
lems (5.81), (5.95) and get the statement.

Note that as desired, the solutions to (5.81) and (5.95) are defined on the same time
interval and on the same Banach space, namely Bt,ε, Bt,V : [0, T1) → Eα, ε > 0. Next, we
analyze conditions under which Bt,ε converges to Bt,V . In order to apply Theorem 4.9, one
needs the following estimate.

Proposition 5.31. Assume that conditions (5.32), (5.78), (5.48) and (5.104) are satisfied.
Given 0 < α < α0, let α′, α′′ such that α ≤ α′ < α′′ ≤ α0. Then, for all B ∈ Eα′′ and ε > 0
the following estimate holds

∥∥∥L̃′ε,renB − L̃′VB∥∥∥α′ ≤2ε〈c̃〉C∞V
eα0

α
‖B‖α′′ e

C1
V
α

ÇÅ
2eC1

V +
α0

e

ã
1

α′′ − α′
+

8α2
0

(α′′ − α′)2

å
+

2εC∞φ 〈a〉e
C1
φ
α ‖B‖α′′

Å
α0

α′′ − α′
+

e
α
C1
φ

ã
. (5.112)

Proof. For any B ∈ Eα′′ we have∥∥∥L̃′ε,renB − L̃′VB∥∥∥α′ ≤ ∥∥∥L̃′RE,ε,renB − L̃′RE,VB∥∥∥α′ + ∥∥∥L̃(1)
RW,ε,renB − L̃

(1)
RW,VB

∥∥∥
α′
. (5.113)

From [43, Proposition 4.3], we know that for any α ≤ α′ < α′′ ≤ α0 and ε > 0

∥∥∥L̃′RE,ε,renB − L̃′RE,VB∥∥∥α′ ≤ 2ε〈c̃〉C∞V
eα0

α
‖B‖α′′ e
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V
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ÇÅ
2eC1
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e

ã
1

α′′ − α′
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8α2
0

(α′′ − α′)2

å
.

(5.114)

Next, let us consider the second term in the r.h.s of (5.113). By (5.107) and (5.109) we can
write∣∣∣(L̃(1)

RW,ε,renB
)

(θ, y)−
(
L̃

(1)
RW,VB

)
(θ, y)

∣∣∣ ≤
≤
ˆ
Rd

dza (y − z)
∣∣∣∣∣B
Ç
θe−εφ(·−z) +

e−εφ(·−z) − 1

ε
, z

å
−B (θ − φ (· − z) , z)

∣∣∣∣∣+
ˆ
Rd

dza (y − z)
∣∣∣∣∣B
Ç
θe−εφ(·−y) +

e−εφ(·−y) − 1

ε
, y

å
−B (θ − φ (· − y) , y)

∣∣∣∣∣ .
(5.115)



130 Chapter 5. RWs in Kawasaki model of RE

In order to estimate the two integrand functions that appear in (5.115), given θ1, θ2 ∈ L1(Rd)
and y ∈ Rd let us define the function

Cθ1,θ2,y (t) := B (tθ1 + (1− t) θ2, y) , t ∈ [0, 1].

According to the result of Lemma 5.3, one has

∂

∂t
Cθ1,θ2,y (t) =

∂

∂s
Cθ1,θ2,y (t+ s)

∣∣∣∣
s=0

=
∂

∂s
B (θ2 + t (θ1 − θ2) + s (θ1 − θ2) , y)

∣∣∣∣
s=0

= dB (θ2 + t (θ1 − θ2) , y; θ1 − θ2)

=

ˆ
Rd

dx (θ1(x)− θ2(x)) (DB) (θ2 + t (θ1 − θ2) , y;x) ,

which yields

|B (θ1, y)−B (θ2, y)| = |Cθ1,θ2,y (1)− Cθ1,θ2,y (0)| ≤ max
t∈[0,1]

∣∣∣∣ ∂∂tCθ1,θ2,y (t)
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≤ ‖θ1 − θ2‖1 max

t∈[0,1]
‖(DB) (θ2 + t (θ1 − θ2) , y; ·)‖L∞(Rd) .

Moreover, since B ∈ Eα′′ , by using estimate (5.7) we obtain, for any r > 0,

|B (θ1, y)−B (θ2, y)| ≤ ‖θ1 − θ2‖1
1

r
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t∈[0,1]
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The latter implies that for any θ ∈ L1(Rd) and y ∈ Rd∣∣∣∣∣B
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θe−εφ(·−y) +
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ε
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α′′ (‖θ‖1+‖φ‖1), (5.116)

where the last inequality follows from (4.104) and estimates (4.107)-(4.108). As a result, we
find∣∣∣(L̃(1)

RW,ε,renB
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(θ, y)−
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)
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ò
.

Thus, the corresponding norm in Eα′ can be bounded as follows∥∥∥L̃(1)
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≤ 2εC∞φ 〈a〉e
C1
φ
α ‖B‖α′′

Å
α0

α′′ − α′
+

e
α′′
C1
φ

ã
, (5.117)

where in the last step we use inequality (5.71). Finally, by combining (5.114) with (5.117) we
obtain the desired result.

We are now in the position to show the following result about the convergence of the
Vlasov-type scaling.

Theorem 5.32. Assume that conditions (5.32), (5.78), (5.48) and (5.104) are satisfied. Let
0 < α < α0 be fixed and T1 be given by (5.57). Suppose also that {B0,ε, B0,V }ε>0 ⊂ Eα0 and

lim
ε→0
‖B0,ε −B0,V ‖α0

= 0. (5.118)

Then initial value problems (5.81) and (5.95) have unique solutions Bt,ε, Bt,V : [0, T1) → Eα
such that for each t ∈ [0, T1),

lim
ε→0
‖Bt,ε −Bt,V ‖α = 0. (5.119)

Moreover, if

B0,V (θ, y) = B
(coh)
0,V (θ, y) = r0 (y) e

´
Rd dxθ(x)ρ0(x), θ ∈ L1

Ä
Rd
ä
, y ∈ Rd, (5.120)

for some function ρ0 ∈ B
∞
1/α0

and r0 ∈ L1(Rd), then for each t ∈ [0, T1),

Bt,V (θ, y) = B
(coh)
t,V (θ, y) = rt (y) e

´
Rd dxθ(x)ρt(x), θ ∈ L1

Ä
Rd
ä
, y ∈ Rd, (5.121)

provided that ρt ∈ B
∞
1/α0

and rt ∈ L1(Rd) are solutions to the Vlasov equations

∂ρt
∂t

= (ρt ∗ c̃) (x)e−(ρt∗V )(x) − ρt(x)
Ä
c̃ ∗ e−(ρt∗V )

ä
(x), (5.122a)

∂rt
∂t

= −〈a〉e−(ρt∗φ)rt +
ÄÄ
e−(ρt∗φ)rt

ä
∗ a
ä
, (5.122b)

with initial conditions ρt|t=0 = ρ0 ∈ B
∞
1/α0

and rt|t=0 = r0 ∈ L1(Rd).

Proof. In Lemma 5.30 we have already showed the existence of solutions to the initial value
problems (5.81) and (5.95). In order to prove convergence (5.119) we apply Theorem 4.9
to (5.81). For this purpose it is enough to verify the validity of conditions (4.40)-(4.42)
for the considered model. As shown in the proof of Lemma 5.30, see in particular (5.111),
condition (4.40) is satisfied with

M = 2α0〈c̃〉e
C1
V
α + cα,α0 , with cα,α0 = 2〈a〉e

C1
φ
α (α0 − α) .

Moreover, by Proposition 5.31 for any α ≤ α′ < α′′ ≤ α0 and all ε > 0 we have∥∥∥L̃′ε,renB − L̃′VB∥∥∥α′ ≤2εα0
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where
c′α,α0

=
e
αα0

C1
φ (α0 − α) .

Hence, conditions (4.41)-(4.42) are satisfied with p = 2 and

Nε = 2εα0 max
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Let us now prove the second part of the statement. From Lemma 5.27 and (5.105) one can
easily see that B(coh)

t,V ∈ Eα is solution to (5.95) with initial condition B(coh)
0,V ∈ Eα0 if ρt and rt

solve (5.122a)-(5.122b), on the time interval [0, T1). The uniqueness of this solution is ensured
by Lemma 5.30.

The existence and uniqueness of solutions to the kinetic equations (5.122a)-(5.122b) is
considered in the following theorem.

Theorem 5.33. Given C > 0, let us consider ρ0 ∈ L∞(Rd) and r0 ∈ L1(Rd) such that
0 ≤ ρ0(x) ≤ C, for a.a. x ∈ Rd, and r0(y) ≥ 0, for a.a. y ∈ Rd, respectively. Suppose that
conditions (5.32) and (5.48) and hold. Then, the system of Vlasov equations (5.122a)-(5.122b)
have a unique non-negative solution 0 ≤ ρ ∈ C1(R+;L∞(Rd)) and 0 ≤ r ∈ C1(R+;L1(Rd)).
Moreover, given C ′ > 0 for any time t > 0

(i) if ‖r0‖1 ≤ C ′ then ‖rt‖1 ≤ C ′;

(ii) if r0(y) ≤ C ′, a.a. y ∈ Rd, then rt(y) ≤ C ′, a.a. y ∈ Rd.

Proof. First let us note that, according to Lemma 5.28, equation (5.122a) has a unique
non-negative solution 0 ≤ ρ ∈ C1(R+;L∞(Rd)) which is uniformly bounded on any finite
time interval. Then, the statement can be shown proceeding as in Step.2 of the proof of
Lemma 4.21.

5.2.2.2 RW in a Kawasaki model of environment: Case II

Consider interaction λ(2) defined by (5.58)-(5.60). According to the results of Section 2.3.2,
see (2.146) and (2.147), in this case we haveÄ

K−1λ(2)
ε (·, y)

ä
(ξ) = λ00|ξ| + εφ

(
x′ − y

)
1Γ(1)(ξ = {x′}), ε > 0, (5.124)

and
A

(2)
V (ξ, y) = λ00|ξ| + φ

(
x′ − y

)
1Γ(1)

(
ξ =

{
x′
})
, (5.125)

for any ξ ∈ Γ0 and a.a. y ∈ Rd. Then, by Proposition 5.22 and 5.25, given α > 0 for any
B ∈ Eα the operators L̃′RW,ε,ren and L̃′RW,V have the formÄ
L̃′RW,ε,renB

ä
(θ, y) =

(
L̃

(2)
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ε
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(
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(
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)
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(5.126)

andÄ
L̃′RW,VB

ä
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)
(θ, y) =

= λ0

ˆ
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dza (y − z) (B (θ, z)−B (θ, y)) +

ˆ
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)
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(
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)
− φ

(
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)
(DB)

(
θ, y;x′

)]
.

(5.127)

For the two operators above we can show the following estimate in the scale of Banach
spaces {Eα, 0 < α ≤ α0}.
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Proposition 5.34. Assume that conditions (5.59) and (5.60) hold. Given α0 > α > 0, let
B ∈ Eα′′ for some α′′ ∈ (α, α0]. Then,

∥∥∥L̃(2)
RW,ε,ren

∥∥∥
α′
≤ 2

Ç
λ0〈a〉+

e〈a〉
α

C1
φ +

α0

α′′ − α′
〈a〉C∞φ

å
‖B‖α′′ , (5.128)

for all α ≤ α′ < α′′ and ε ∈ (0, 1], and

∥∥∥L̃(2)
RW,V

∥∥∥
α′
≤ 2

Ç
λ0〈a〉+

e〈a〉
α

C1
φ

å
‖B‖α′′ , (5.129)

for all α ≤ α′ ≤ α′′.

Proof. The operators L̃(2)
RW,ε,ren and L̃(2)

RW,V can be written as(
L̃

(2)
RW,ε,renB

)
(θ, y) =

(
L̃

(2)
RW,1B

)
(θ, y) +

(
L̃

(2)
RW,2B

)
(θ, y) + ε

(
L̃

(2)
RW,3B

)
(θ, y) ,(

L̃
(2)
RW,VB

)
(θ, y) =

(
L̃

(2)
RW,1B

)
(θ, y) +

(
L̃

(2)
RW,2B

)
(θ, y) ,

where L̃(2)
RW,1, L̃

(2)
RW,2 and L̃(2)

RW,3 are defined by (5.64)-(5.66). Then, we can repeat the same
estimate as in Lemma 5.20. and obtain the desired results.

An application of Theorem 4.2 yields the following existence and uniqueness result for the
solutions of the initial value problems (5.81) and (5.95).

Lemma 5.35. Assume that conditions (5.32), (5.59) and (5.60) are satisfied. Given α0 > 0,
for each α ∈ (0, α0) the Cauchy problems (5.81) and (5.95) with B0,ε, B0,V ∈ Eα0, ε ∈ (0, 1],
have unique solutions Bt,ε, Bt,V : [0, T1) → Eα on the time interval [0, T2), where T2 is given
by (5.75).

Proof. By combining the results stated in Proposition 5.24 and 5.34, for any α ≤ α′ < α′′ ≤ α0

we have∥∥∥L̃′#B∥∥∥α′ ≤ 2
α0

α′′ − α′

Ç
〈c̃〉e

C1
V
α + 〈a〉C∞φ

å
‖B‖α′′ + 2

Ç
λ0〈a〉+

e〈a〉
α

C1
φ

å
‖B‖α′′ , (5.130)

where # = ”ε, ren” or ”V ”. Then the statement follows from Theorem 4.2.

We can now ask whether solutions Bt,ε converge to Bt,V on the interval [0, T2) as ε goes to
zero. For this purpose we first derive an auxiliary result which provides an estimate analogous
to that one in Proposition 5.31.

Proposition 5.36. Assume that conditions (5.32), (5.78), (5.59) and (5.60) are satisfied.
Given 0 < α < α0, let α′, α′′ such that α ≤ α′ < α′′ ≤ α0. Then, for any B ∈ Eα′′ and
ε ∈ (0, 1] the following estimate holds

∥∥∥L̃′ε,renB − L̃′VB∥∥∥α′ ≤2ε〈c̃〉C∞V
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‖B‖α′′ . (5.131)

Proof. For any B ∈ Eα′′ one has∥∥∥L̃′ε,renB − L̃′VB∥∥∥α′ ≤ ∥∥∥L̃′RE,ε,renB − L̃′RE,VB∥∥∥α′ + ∥∥∥L̃(2)
RW,ε,renB − L̃

(2)
RW,VB

∥∥∥
α′
. (5.132)
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From (5.126) and (5.127), for any ε ∈ (0, 1] we have∣∣∣(L̃(2)
RW,ε,renB

)
(θ, y)−

(
L̃

(2)
RW,VB

)
(θ, y)

∣∣∣ ≤ ε ∣∣∣(L̃(2)
RW,3B

)
(θ, y)

∣∣∣ ,
where the operator L̃(2)

RW,3 is given by (5.66). Then, by using (5.73), one may estimate∥∥∥L̃(2)
RW,ε,renB − L̃

(2)
RW,VB

∥∥∥
α′
≤ 2ε〈a〉C∞φ

α0

α′′ − α′
‖B‖α′′ , (5.133)

for any α ≤ α′ < α′′ ≤ α0 and ε ∈ (0, 1]. The latter inequality together with (5.114) yields
the desired result.

Having established this preliminary result, the convergence of solutions of (5.81) to the
solution of (5.95) can be shown by using Theorem 4.9.

Theorem 5.37. Suppose that conditions (5.32), (5.78), (5.59) and (5.60) are satisfied. Let
0 < α < α0 be fixed and consider B0,ε, B0,V ∈ Eα0, ε ∈ (0, 1], such that

lim
ε→0
‖B0,ε −B0,V ‖α0

= 0. (5.134)

Then, given T2 defined by (5.75), the Cauchy problems (5.81) and (5.95) have unique solutions
Bt,ε, Bt,V : [0, T2)→ Eα such that for each t ∈ [0, T2),

lim
ε→0
‖Bt,ε −Bt,V ‖α = 0. (5.135)

Moreover, given ρ0 ∈ B
∞
1/α0

and r0 ∈ L1(Rd), for B0,V (θ, y) = r0(y)e
´
Rd dxθ(x)ρ0(x), y ∈ Rd

and θ ∈ L1(Rd), we have

Bt,V (θ, y) = B
(coh)
t,V (θ, y) = rt (y) e

´
Rd dxθ(x)ρt(x), (5.136)

provided that ρt ∈ B
∞
1/α0

and rt ∈ L1(Rd) are solutions to the system of equations

∂ρt
∂t

= (ρt ∗ c̃) (x)e−(ρt∗V )(x) − ρt(x)
Ä
c̃ ∗ e−(ρt∗V )

ä
(x), (5.137a)

∂rt
∂t

= (a ∗ [rt (λ0 + (ρt ∗ φ))])− 〈a〉rt [λ0 + (ρt ∗ φ)] , (5.137b)

with initial conditions ρt|t=0 = ρ0 ∈ B
∞
1/α0

and rt|t=0 = r0 ∈ L1(Rd), on the time interval
[0, T2).

Proof. The proof is similar to that of Theorem 5.32. Having in mind the results of Lemma 5.35
and Proposition 5.36, in order to show the first part we can apply Theorem 4.9 taking p = 2
and

Nε = 2εα0 max

®
〈c̃〉C∞V

e
α
e
C1
V
α

Å
2eC1

V +
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e

ã
+ 〈a〉C∞φ , 8〈c̃〉C∞V

e
α
e
C1
V
α (α0)2

´
.

Concerning the second part, by uniqueness of solutions to (5.95), it is enough to show that
Bt,V given in (5.136) solves (5.95). The latter follows from Lemma 5.27 by (5.125).

Finally, we can give the following existence and uniqueness result for the solutions to the
systems of Vlasov equations (5.137a)-(5.137b).

Theorem 5.38. Assume that conditions (5.32), (5.59) and (5.60) are satisfied. Given C > 0,
let us consider ρ0 ∈ L∞(Rd) and r0 ∈ L1(Rd) such that 0 ≤ ρ0(x) ≤ C, a.a. x ∈ Rd, and
r0(y) ≥ 0, a.a. y ∈ Rd, respectively. Then, the system of Vlasov equations (5.137a)-(5.137b)
has a unique non-negative solution 0 ≤ r ∈ C1(R+;L1(Rd)) and 0 ≤ ρ ∈ C1(R+;L∞(Rd)).
Moreover, given C ′ > 0, for any time t > 0
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(i) if ‖r0‖1 ≤ C ′ then ‖rt‖1 ≤ C ′;

(ii) if r0(y) ≤ C ′, a.a. y ∈ Rd, then rt(y) ≤ C ′, a.a. y ∈ Rd.

The proof of the above theorem is analogous to that one of Theorem 5.33. The details are
left to the reader.





Appendix A

Ovsjannikov-type theorem

In this appendix we present a detailed proof of the Ovsjannikov-type result stated in Theo-
rem 4.2 which we used to construct statistical dynamics of RWREs in Chapter 4 and 5.

The Ovsjannikov theorem provides existence and uniqueness of solutions to certain sin-
gular Cauchy problems in a scale of Banach spaces. This result is based on Picard-type
approximations and a method by A. G. Kostyuchenko and G. E. Shilov presented in [66, Ap-
pendix 2, A2.1]. This method, originally considered for equations with time independent
coefficients, has been extended to an abstract and general framework by T. Yamanaka in
[123] and L. V. Ovsjannikov in [98] in the linear case, and many applications were exposed
by F. Treves in [120]. For a recent review of the Ovsjannikov’s method we refer to [44].

In Theorem 4.2 we consider a bounded perturbation of singular operators in a scale of
Banach spaces. The proof of this theorem is similar to the original proof of the Ovsjannikov
theorem see [61] and [120, Chapter 3] for existence and uniqueness, respectively.

A.1 Proof of Theorem 4.2

We divide the proof of the theorem in two steps. First we find a solution to the initial value
problem (4.9). Then we show that this solution in unique.

Step.1 Existence of the solution.
For some t > 0 which will be properly chosen later on, let us consider the sequence of functions
(un)n∈N0 with u0(t) = u0 ∈ Bs0 and

un (t) := u0 +

ˆ t

0
ds (Aun−1) (s) , n ∈ N. (A.1)

By an induction argument, it is easy to check that un(t) ∈ Bs for any s < s0, see e.g. [120].
Moreover, in an equivalent way, the sequence above may be rewritten as

un (t) := u0 +
n∑

m=1

tm

m!
Amu0. (A.2)

Fix 0 < s < s0. We want to show the convergence of sequence (A.2) in Bs. Let us consider a
partition of the interval [s, s0) into m equal parts, [sl, sl+1), with

sl := s0 −
l (s0 − s)

m
, l = 0, . . . ,m.

By assumption for each l = 0, . . . ,m we have

‖A‖slsl+1
:= ‖A‖Bl 7→Bl+1

≤ mM1

s0 − s1
+M0 (A.3)
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and thus

‖Am‖s0s ≤ ‖A‖s0s1 . . . ‖A‖sm−1s
≤
Å
mM1

s0 − s1
+M0

ãm
. (A.4)

From this follows that the norm in Bs of the series in (A.2) can be written as

n∑
m=1

tm

m!
‖Amu0‖s ≤ ‖u0‖s0

n∑
m=1

tm

m!

Å
mM1

s0 − s1
+M0

ãm
. (A.5)

In order to establish its convergence we use the Cauchy’s root criterion, yielding

m

 
tm

m!

Å
mM1

s0 − s1
+M0

ãm
=

tM1

s0 − s
m
m
√
m!

+ tM0
1

m
√
m!
.

Letting m go to infinity we find

lim
m→∞

m

 
tm

m!

Å
mM1

s0 − s1
+M0

ãm
=

tM1e
s0 − s

< 1,

whenever

t <
s0 − s
M1e

. (A.6)

This means that under condition (A.6), the series (A.2) converges in Bs to the function

u (t) := u0 +
∞∑
m=1

tm

m!
Amu0. (A.7)

Moreover, setting δ := 1/(eM1) this convergence is uniform on any interval [0, T ] ⊂ [0, δ(s0 − s)).
Similar arguments show that an analogous situation occurs for the time derivative of (A.2),

dun (t)

dt
=

n∑
m=1

tm−1

(m− 1)!
Amu0. (A.8)

Indeed, by using (A.4) we obtain

n∑
m=1

tm−1

(m− 1)!
‖Amu0‖s ≤ ‖u0‖s0

n∑
m=1

tm−1

(m− 1)!

Å
mM1

s0 − s1
+M0

ãm
. (A.9)

Then, by using again the Cauchy criterion we have

m

√
tm−1

(m− 1)!

Å
mM1

s0 − s1
+M0

ãm
=

1
m
√
t

 tM1

s0 − s
m

m
»

(m− 1)!
+ tM0

1
m
»

(m− 1)!


and thus

lim
m→∞

m

√
tm−1

(m− 1)!

Å
mM1

s0 − s1
+M0

ãm
=

tM1e
s0 − s

< 1,

whenever condition (A.6) holds. This means that on the time interval (0, δ(s0 − s)) the
function u(t) is continuously differentiable in Bs. Finally, it is also possible to check, see e.g.
[61], that Au(t) ∈ Bs, showing that u(t) is a solution to the initial value problem (4.9).
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Step.2 Uniqueness of the solution.
It is enough to show that if a function u(t) : [0, δ(s0 − s))→ Bs0 satisfies® du(t)

dt = Au (t)
u (0) = 0

, (A.10)

then, it is identically zero. The set of points N = {t ∈ [0, δ[s − s0)) : u(t) = 0} where the
function u vanishes is closed; we are going to show that it is also open. This will imply that
N ≡ [0, δ(s− s0)) and complete the proof.

Let τ ∈ N . Then one has

u (t) =

ˆ t

τ
dt′ (Au)

(
t′
)
. (A.11)

Given an 0 < s < s0 such that 0 < ε < s0 − s, from assumption (4.10) it follows that

‖u (t)‖s ≤
ˆ t

τ
dt′

∥∥(Au)
(
t′
)∥∥
s

≤
Ä
ε−1M1 +M0

äˆ t

τ
dt′

∥∥u (t′)∥∥s+ε . (A.12)

We want to show that, given 0 < s < s0, for any k ≥ 1 whenever t is in some compact
neighborhood K of τ contained in the set [0, δ(s− s0)), the following inequality holds

‖u (t)‖s ≤M
ïÅ eM1

s0 − s
+

eM0

k

ã
|t− τ |

òk
, (A.13)

where
M := max

t∈K
‖u (t)‖s0 .

Note that for k = 1 it follows directly from (A.12). Indeed, since ‖ · ‖s′ ≤ ‖ · ‖s0 for any
s′ < s0, we have

‖u (t)‖s ≤
Ä
ε−1M1 +M0

äˆ t

τ

∥∥u (t′)∥∥s0 dt′
≤M

Ä
ε−1M1 +M0

ä
|t− τ | .

In particular, if we choose ε = (s0 − s)/e we obtain

‖u (t)‖s ≤M
Å eM1

s0 − s
+M0

ã
|t− τ |

≤M
Å eM1

s0 − s
+ eM0

ã
|t− τ | . (A.14)

For k ≥ 2 we prove (A.13) by induction. We know that for k = 1 it is satisfied. We assume
that it holds for k − 1, with k ≥ 2, namely

‖u (t)‖s ≤M
ïÅ eM1

s0 − s
+

eM0

k − 1

ã
|t− τ |

òk−1

(A.15)

and we check it for k. Condition (A.15) can be rewritten in the following form

‖u (t)‖s ≤M
ñ
eM1 |t− τ |
s0 − s

ôk−1 ñ
1 +

M0(s0 − s)
M1(k − 1)

ôk−1

. (A.16)

By inserting (A.16) in (A.12) we find

‖u (t)‖s ≤Mε−1 (M1 + εM0)

ï eM1

s0 − s− ε

òk−1
ñ
1 +

M0(s0 − s− ε)
M1(k − 1)

ôk−1 ˆ t

τ

∣∣t′ − τ ∣∣k−1 dt′
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≤Mε−1M1

Å
1 +

εM0

M1

ã ï eM1

s0 − s− ε

òk−1
ñ
1 +

M0(s0 − s− ε)
M1(k − 1)

ôk−1 |t− τ |k

k
.

As a matter of fact we can take

ε =
s0 − s
k

, s0 − s− ε = (s0 − s)
Å

1− 1

k

ã
. (A.17)

With this choice we have

‖u (t)‖s ≤Mek−1
ï
M1

s0 − s

òk Ç 1

1− 1/k

åk−1 ñ
1 +

M0(s0 − s)
M1k

ôk
|t− τ |k (A.18)

and since Ç
1

1− 1/k

åk−1

=

Å
1 +

1

k − 1

ãk−1

≤ e,

we obtain

‖u (t)‖s ≤ M

ï eM1

s0 − s

òk ñ
1 +

M0(s0 − s)
M1k

ôk
|t− τ |k

≤ M

ïÅ eM1

s0 − s
+

eM0

k

ã
|t− τ |

òk
. (A.19)

Then, taking

|t− τ | < 1

eM1
(s0 − s)

and k →∞, we see that u(t), as an element of Bs, vanishes in a neighborhood of τ . Clearly,
as Bs0 is naturally injected in Bs, this must be true also when we consider u(t) as an element
of Bs0 . This means that the set N is open.

This concludes the proof of the theorem.
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