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Abstract

The velocity of the Milky Way with respect to the (at large scales) ho-
mogeneous universe seemed to be well known from observations of the
cosmic microwave background. Such a peculiar motion also a�ects radio
observations and should lead to a dipole anisotropy in number counts of
radio sources. This anisotropy has been estimated in this thesis using the
NRAO VLA Sky Survey and the Westerbork Northern Sky Survey. On
the one hand the obtained directions agree with the expectation within
the measurement uncertainties. The radio dipole amplitudes on the other
hand show a signi�cant excess, which would correspond to an increased
velocity of the Milky Way with respect to those radio sources, if no other
explanation can be found.
In this thesis, a general introduction to the topic is given and the re-

lations to other scienti�c questions (e.g. large bulk �ows) are discussed.
Previous results concerning the cosmic radio dipole are presented, com-
pared and analysed. The radio dipole is estimated by means of linear
estimators, including a newly developed two-dimensional version, and the
obtained amplitudes are analysed in detail. Certain issues (i.e. shot noise
contributions) of the linear estimator are revealed and the e�ects of mask-
ing sources and calibration errors on the dipole estimation are discussed.
A quadratic estimator was developed and the radio dipole was re-obtained,

re�ning the results from linear estimators. It is shown that the quadratic
estimator has many advantages compared to the linear ones. The quadratic
estimator is more stable w.r.t. masking e�ects and reveals new insights
concerning the dipole in radio surveys. For example the radio sky cannot
be described well by a mono- and dipole term alone.
In a �nal step the e�ect of local structures (z � 1) on the dipole esti-

mation is investigated. For example, the e�ect of a local void contribution
on the dipole amplitude is analysed. Such structures may reduce the dis-
crepancy between the dipole in radio and microwave observations. At the
end, all obtained results are compared and discussed.



Cosmological notation

a scale factor
H0 Hubble constant
h Hubble parameter
t cosmological time
t0 age of the universe
dl luminosity distance

Ωm matter density relative to critical density
Ωb baryon matter density relative to critical density
Ωc cold dark matter density relative to critical density
ΩΛ vacuum energy density relative to critical density
Ωk curvature parameter
z redshift

fbaryon baryon fraction
σ8 density �uctuation at 8 h−1 Mpc

nscalar density �uctuation spectral index
τ optical depth
G gravitational constant



Used acronyms

AGN Active Galactic Nucleus
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CiS Catalogue in Spherical coordinates
Cosmic Microwave Background

FR I & II Fanaro� and Riley class I & II
GC Galactic Center
GN Galactic North pole
HBA High-Band Antenna
LBA Low-Band Antenna

LOFAR LOw Frequency ARray
ΛCDM Λ (cosmological constant) Cold Dark Matter
NVSS National radio astronomy observatory VLA Sky Survey
MSSS Multi-frequency Snapshot Sky Survey
SF Star Forming galaxy
SKA Square Kilometre Array
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VLA Very Large Array
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Chapter 1

Introduction

The trouble with having an open mind,

of course, is that people will insist on

coming along and trying to put things

in it.

� Terry Pratchett, Diggers

Some of the most interesting questions in physics are those, which have
counterintuitive answers. Human intuition is based on our everyday expe-
rience here on Earth. We all do have an idea of the concept called velocity.
For instance when we ride a bicycle, we experience the wind in our hair, we
see the land passing by and we hear the tires rolling in the street. When
we ride faster, we cover more distance in shorter time intervals. There
is a certain di�erence between going with 30 km/h and 15 km/h or even
standing still. From this practical experience one would expect to be able
to assign an absolute velocity to an observer. After all that seems to be
what a tachometer does.
It turns out that the situation is slightly more complicated. The velocity

of an object is the change of its position in a certain time interval, which
can be measured with some clock. But in order to be able to measure
the change of position we need a coordinate system. Such a coordinate
system consist of an origin and (for example) three axes, pointing in dif-
ferent directions. Now we can measure the change in position of the object
relative to this coordinate system. In the above example the velocity of
the bike relative to the road, which corresponds to a coordinate system,
was measured. But this coordinate system is not unique, since one could
imagine using various di�erent coordinate systems. The critical point now
is that those coordinate systems can have a relative velocity to each other.
In this case, the object's velocity relative to the �rst coordinate system
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Chapter 1 Introduction

may di�er from the velocity measured with the second one. Hence, one
cannot assign a unique velocity, independent of the coordinate choice, to
any object.

Therefore apprentices of physics learn that the concept of velocity only
has some meaning when it is combined with a reference frame. An appeal-
ing idea is, to de�ne a special reference frame for all velocity measurements
and thereby obtain a kind of absolute velocity notion. Something like the
Earth's centre or the Sun could de�ne such a frame, but typically physi-
cists search for the most general concepts and so a universal frame should
not be based on our position in the Universe.

1.1 Cosmic microwave background

In 1964 the Cosmic Microwave Background (CMB) was discovered by Arno
Penzias and Robert Wilson (Penzias & Wilson 1965). They found radia-
tion coming from every direction on the sky, presenting photons obeying
an almost perfect black-body spectrum of roughly 3 Kelvin. Today we
recognize this radiation as a kind of echo from the very early universe,
when it was roughly 3 × 105 years old. At that time the content of the
universe was so hot that neutral atoms were not stable. The universe
consisted of plasma, which was in thermal equilibrium. Due to its expan-
sion, the universe cooled down and at some point the positively charged
nuclei (consisting of protons and neutrons) combined with the negatively
charged electrons to form atoms which are neutral overall. This process
is called recombination (even so, these atomic components have never be-
fore been combined). After this recombination, the photons decoupled
from the thermally equalized plasma and began to travel freely through
the transparent universe. Today we can observe this background radiation
coming from the very edge of the observable universe. After a four-year
observation with the COBE satellite, the NASA published a picture of the
CMB, shown in �gure 1.1.

We can see here that the temperature of the CMB, inferred from the
temperature of the corresponding black body spectrum, is not isotropic.
The main anisotropy is of order 3.4 mK or 0.1% and has the form of a
dipole modulation, with two extreme values at opposite directions on the
sky. Between the maximum and the minimum value, the temperature
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1.1 Cosmic microwave background

Figure 1.1: CMB dipole anisotropy projected on the full sky in galac-
tic coordinates. [Obtained from COBE Four-Year Sky Map,
http://lambda.gsfc.nasa.gov, Bennett et al. (1996)]

amplitude di�erence varies like a cosine. This dipole e�ect was �rst seen
by Conklin (1969) and it was quite surprising at that time. One expected
the early universe to have been in thermal equilibrium, which would lead
to isotropic background radiation. Fortunately there is an explanation of
this observed dipole anisotropy that still allows a thermally equalized early
universe.

The CMB is observed from our solar system, which can have some rela-
tive velocity to the CMB. Such a velocity would lead to a Doppler e�ect,
which would be seen as a dipolar modi�cation on an isotropic background.
If we now assume that the CMB dipole is purely due to our kinetic velocity,
one can calculate how large this velocity needs to be. Therefore on uses
the equation derived by Peebles & Wilkinson (1968):

T (θ) =
T0

γ(1− β cos θ)
≈ T0(1 + β cos θ) , (1.1)

with β and γ being the usual relativistic velocity parameters, θ the angle
between the observed direction and our kinetic velocity and T0 the mean
temperature of the CMB. This was done with every new CMB sky map
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Chapter 1 Introduction

Figure 1.2: CMB as seen by Planck in galactic coordinates with dipole
anisotropy and foreground removed. [source: Planck Collabo-
ration et al. (2015a)]

release at an increased precision, most recently by Planck Collaboration
et al. (2015b) and the obtained velocity is v = 370.5±0.2 km/s. After this
dipole e�ect is removed from the CMB map, one can observe an higher
temperature exactly in the area, which is covered by the Milky Way. This
imprint of our own galaxy can also be removed. These two steps were also
performed for the most recent observation of the CMB, which is shown in
�gure 1.2.

Here we can see very small temperature �uctuations, which are of order
10−5. It turns out that this map is of great importance for cosmology,
since it can be used to measure many parameters of today's model of
the universe. In a recent work of the Planck team (Planck Collaboration
et al. 2014a) the temperature power spectrum, up to the 2500th multipole,
has been calculated from those anisotropies. To this power spectrum our
cosmological model was �tted and, besides others, the Hubble constantH0,
the baron matter density Ωb, the cold dark matter density Ωc as well as the
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1.2 Large-scale structure

curvature parameter Ωk have been measured. Some other parameters, like
the dark energy density ΩΛ or the age of the universe t0, can be derived
from those parameters.

Of course some of those parameters can also be evaluated by di�erent
observations and methods. On the other hand, there is no alternative
single observation, which can deduce so many important parameters, with
such high precision. Hence, the CMB plays an outstanding role for modern
cosmology. But there is one weakness in this line of thought. The CMB
dipole is assumed to be caused by our relative velocity and until now
we do not have an independent con�rmation of this assumption. It is very
important to be aware of this, since the velocity measured by the described
method is used in a variety of other cosmological investigation.

There is however a way to test this assumption within the CMB itself.
The dipole a�ects the CMB map on a magnitude of order 10−3. So far
we only discussed the Doppler-e�ect on the CMB average temperature,
but there are also higher multipoles in the CMB and all those higher
multipoles should be a�ected in the same way, if the dipole is due to the
observer's motion. Since those higher multipoles are of order 10−5, it is
very challenging to search for a per mille e�ect on top of those. The �rst
satellite with the ability to perform this search is the Planck satellite and
the corresponding collaboration was able to �nd a dipole e�ect on higher
multipoles, which has a direction in agreement with the CMB dipole and
an obtained velocity of 384 km/s ± 78 km/s (stat.) ± 115 km/s (syst.)
(Planck Collaboration et al. 2014c). This result is in good agreement
with the velocity from the main dipole anisotropy and hence supports the
discussed assumption. Unfortunately a �nal conclusion cannot be made
yet, since the error bars of this measurement are too large.

1.2 Large-scale structure

As discussed above, the velocity of our solar system relative to the CMB
is inferred from the dipole anisotropy in this background radiation. Re-
moving the dipole contribution in the CMB, results in a very isotropic
background, seen by an observer in the so-called CMB rest frame.

The Copernican Principle states that we do not live in a special place in
the Universe. If this holds true, not only Earth-based observers, but also
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Chapter 1 Introduction

other observers throughout the universe should see isotropic background
radiation, as long as the peculiar velocity of the observer relative to the
CMB is corrected for. When the background radiation is isotropic for every
typical observer, then it must be homogeneous throughout the universe
(Maartens 2011). Hence, the universe is modelled with an isotropic and
homogeneous space-time in cosmology.
It was discovered by Slipher (1917) that the great majority of nearby

galaxies is redshifted. Due to the Doppler-e�ect, these redshifts are in-
terpreted as relative velocities w.r.t. an Earth-based observer, pointing
outwards. The velocities increase with distance, described by the famous
Hubble law (Hubble 1929):

H0 dl = v , (1.2)

with H0 being the Hubble constant today [H0 = 67.8 ± 0.9 km/s/Mpc,
Planck Collaboration et al. (2015c)], dl the luminosity distance to an object
with relative velocity v. This Hubble law is easily obtained, when we
assume an expanding Universe and holds for nearby sources (dl � c/H0).
Due to this assumption we describe the Universe with a space-time metric
that is not constant, but features a time-dependent scale factor a(t). This
factor describes the observed stretching, by increasing typical distances
(e.g. between di�erent galaxies) with time. Any motion relative to this
background space-time, after the cosmic expansion is subtracted, we call
peculiar velocity (in practice the peculiar velocity is taken w.r.t. the CMB
rest frame).
The observed peculiar velocities of various objects are most likely caused

by the gravitational pull of inhomogeneous matter distribution on the
scales of galaxy clusters. Such a pull will lead to an acceleration of matter
towards areas with increased density. This acceleration ~g was determined
in the book of Peebles (1980) to be

~g = Ga

∫
dx′3 ρ(~x′)

~x′ − ~x
|~x′ − ~x|3 , (1.3)

where ρ(~x′) is the matter density at the co-moving coordinate ~x′, G the
gravitational constant and a the scale factor of the Universe today. This
equation implies that an object is accelerated towards nearby matter con-
glomerations.
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1.2 Large-scale structure

Figure 1.3: Map of the galaxy distribution obtained by the Sloan Digital
Sky Survey (SDSS), showing galaxies at di�erent redshift dis-
tances, [source: www.sdss.org, March 2015, (Ahn et al. 2014)]

Of course, the Universe is not perfectly homogeneous on all scales. The
Earth, the solar system and the Milky Way are examples of inhomogeneous
places inside a Universe that can be considered statistically homogeneous
on its largest scales (i.e. of orders z > 0.1) only. In �gure 1.3 we see the
distribution of galaxies in a part of the local Universe. Noteworthy are
the �laments of clustered galaxies as well as the empty regions in between,
which are called voids. The largest mass accumulations are called super-
clusters, consisting of up to hundred thousand individual (large) galaxies.

7



Chapter 1 Introduction

It is not obvious, how to de�ne the boundaries of such a cluster. For the
local supercluster, which contains the Milky Way, a new method has been
applied by Tully et al. (2014). They de�ned the local supercluster not by
regions of connected increased density, since it is hard to de�ne where the
boundaries of such a region are, due to the �lamentary structure shown in
�gure 1.3. Instead they studied the peculiar velocities of nearby galaxies
listed in the Cosmic�ows-2 catalogue (Tully et al. 2013). Regions with in-
falling galaxies are considered to be gravitational bound and will therefore
be de�ned as a bound large-scale structure. In this way they de�ned the
Laniakea supercluster of galaxies, which contains about 1017 solar masses
(including the Milky Way and the Virgo cluster) and has a diameter of
about 160 Mpc (Tully et al. 2014).
Outside the Lineakea supercluster, further matter accumulations can be

found, like the Shapely concentration. This supercluster lies, from our
point of view, approximately behind the central region of the Lineakea
supercluster. Therefore we expect the gravitational pull of both structures
to add up and cause the acceleration of the Local Group (consisting of the
Milky Way, the Andromeda Galaxy and nearby dwarf galaxies) towards
that direction. The Shapely concentration lies at the galactic coordinates
(l, b) = (305◦, 30◦) (Einasto et al. 1997), which is close to the direction
found for the CMB dipole: (l, b) = (264◦, 48◦) (Planck Collaboration et al.
2015b).
There are three main contributions to the motion which we observe w.r.t.

the CMB rest frame. First of all the Earth is moving around the sun with
a velocity of approximately 30 km/s. The direction of this velocity varies
with the year and is usually removed before data are analysed further (for
the CMB it is used to calibrate the observations). It is also an order of
magnitude smaller than the two following contributions. The Sun is on an
orbit around the centre of the Milky Way with a velocity of about 200 km/s
(Sparke & Gallagher 2000), and this centre is also moving with respect to
the Local Group. Usually all those e�ects are combined and the velocity of
the Sun relative to the Local Group has been found to be about 306 km/s
towards the galactic coordinates (l, b) = (99◦ ± 5◦, −4◦ ± 4◦)[Gibelyou &
Huterer (2012) using Maller et al. (2003) and Courteau & van den Bergh
(1999)].
Finally, the Local Group has some velocity with respect to the CMB.

In order to calculate a value of this velocity, it is necessary to consider
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1.3 Large bulk �ows

the previously mentioned velocities. Doing so leads to a velocity of the
Local Group of approximately 622 km/s towards (l, b) = (272◦, 28◦) [Maller
et al. (2003) and Gibelyou & Huterer (2012)]. This direction is even closer
to the Shapely concentration than the pure CMB dipole direction. It is
interesting to mention that the velocity of the Sun relative to the Local
Group is almost opposite to the velocity of the Local Group with respect
to the CMB.

1.3 Large bulk �ows

Large bulk �ows in the universe are measured using the following principle.
First the peculiar velocities of a large number (O(104)) of nearby galaxies
are determined and catalogued. Creating such a catalogue is highly non
trivial, since various methods must be used to obtain the peculiar velocities
of such a large number of galaxies. Due to the expansion of the universe
one cannot just use the redshift of individual galaxies, since this is always
a combination of the peculiar velocity and the cosmic redshift. Therefore
one also needs to measure the distance to such a galaxy with a redshift-
independent method. For example in the Cosmic�ows-2 catalogue (Tully
et al. 2013) six distinct methods to measure those distances are used.
Two examples are the Cepheid period-luminosity relation (Freedman et al.
2001) and the luminosity-linewidth correlation for spirals (Tully & Fisher
1977). Hence, one must be very careful to avoid any bias between the
di�erent methods in order to obtain a uniform survey. The distances of
some galaxies can be measured with more than one method. This helps to
ensure that the results of di�erent methods are in good agreement and in
some cases one method can be used to calibrate another.

When distance and redshift of an individual galaxy are known, one can
calculate its peculiar velocity. Two modi�cations for the direct redshift
measurement are needed. The �rst one is due to the peculiar motion of
every Earth-based observer relative to the CMB. After removing this e�ect,
one obtains the redshift as seen in the CMB-frame. The second e�ect comes
from the fact that the universe is expanding and thereby red-shifting all
photons travelling through space. In order to remove this e�ect, one needs
to assume a speci�c cosmological model, describing the cosmic expansion.
So the two main assumptions used here are: the cosmological model and
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Chapter 1 Introduction

the peculiar velocity of Earth relative to the CMB.
If the velocity of the solar system relative to the CMB has not exactly

the value one obtains via the dipole anisotropy, then this error propagates
to the peculiar velocity estimation of the mentioned galaxies. A signi�cant
contamination of the bulk �ow studies would be the result.
From a peculiar velocity catalogue one can measure, whether the lo-

cal universe (on scales up to 100h−1 Mpc ) is in some kind of combined
motion towards a certain direction or obtain an upper limit on such a
movement. Very large bulk �ows (≈ 400 ± 80 km/s) have been reported
(Watkins et al. 2009) in recent years, which challenges the cosmologi-
cal model. Another investigation (Watkins & Feldman 2015), using the
Cosmic�ow-2 catalogue (Tully et al. 2013), resulted in a smaller bulk �ow
velocity (≈ 290 ± 60 km/s). This second result is not inconsistent with
the ΛCDM model, but still rather large (the chance of �nding the reported
bulk �ow is of order 10% according to Watkins & Feldman (2015).
Kalus et al. (2013) measured an anisotropy in the local Hubble rate of

∆H/H = 0.026, by investigating type Ia supernovae. For a length scale
of 100h−1 Mpc, this corresponds to an anisotropy in velocities of about
v∆ = 260 km/s, which is the same order of magnitude as bulk �ows that
have been reported. Due to rather large statistical and systematically
uncertainties, this topic is not resolved yet. In any case it shows that we
do not fully understand the motions in our local universe.
Another method to investigate movements through the universe is the

kinetic Sunyaev-Zeldovich e�ect (kSZ). We observe the CMB photons after
they travelled through the universe since recombination. On their way they
can interact with normal matter. The kSZ describes the interaction be-
tween the CMB photons and electrons with high coherent velocities (vbulk)
relative to the CMB. This happens with increased likelihood in clusters of
galaxies that are moving with some peculiar velocity relative to the CMB.
In the end the kSZ leads to a change of temperature in the CMB along the
line of sight of such a cluster and thereby one obtains a dipole term C1,kin

in the power spectrum of [Kashlinsky et al. (2008) and Birkinshaw (1999)]

C1,kin = T 2
CMB〈τ〉v2

bulk/c
2 , (1.4)

with 〈τ〉 being the expected optical depth of the galaxy clusters. Note that
this method does not depend on the observer's velocity, but only on the
velocities of clusters w.r.t. the CMB.
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1.4 Dipoles at other wavelengths

One can observe the temperature �uctuations in the CMB at the cluster
positions and from this obtain the velocity of those clusters relative to the
background. If this movement is on length scales of about 100 − 600 h−1

Mpc and shows a coherent movement of the observed clusters through the
universe, then one calls it a dark �ow (similar to the previous bulk �ow, but
on larger scales). Osborne et al. (2011) studied this e�ect in the WMAP
seven-year data, resulting in an upper limit of 3485 km/s (95% con�dence)
for the dark �ow.

In a more recent work Atrio-Barandela et al. (2014) claim to have found
such a dark �ow in WMAP nine-year and Planck maps, with an amplitude
of 800±200 km/s and aligned with the CMB dipole axis. Such a high value
of the dark �ow would be in tension with the assumption of a homogeneous
universe. The Planck collaboration on the other hand, was not able to �nd
a signi�cant kSZ (Planck Collaboration et al. 2014b) in the same data set.
Therefore the issue of a possible dark �ow through the universe is also not
resolved yet.

To conclude, there are interesting hints towards unknown e�ects con-
cerning large-scale motions in our universe. If the reported large bulk
�ows turn out to be valid, the local universe would not be at rest with the
CMB. In this case further peculiar velocity measurements of our galaxy
with respect to other sources become important. Most radio galaxies are
beyond the so-called local universe, but still at much smaller distances than
the distance to the last scattering surface (CMB). Hence, they provide an
ideal opportunity, to probe the transition between those large bulk �ows
and a universe at (statistical) rest.

1.4 Dipoles at other wavelengths

The described peculiar velocity of the Earth relative to the CMB rest
frame should also a�ect other extragalactic observations, not only on the
microwave background. We need to look for objects, which do not par-
ticipate in the coherent motion of the Local Group, in order to see the
impact of this motion. Also one needs to keep in mind that the dipole
e�ect in the CMB is of order 10−3 only. Hence, we expect a similar order
of magnitude for the e�ect in other observations. Therefore it may be hard
to see the dipole pattern at all, since the nearby universe is not perfectly
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Chapter 1 Introduction

homogeneous and other anisotropies can hide the dipole pattern arising
from our peculiar velocity.
Some attempts to �nd the kinetic dipole in other observations can be

found in the literature. In this section we will focus on studies in the
γ-ray and infrared bands. The kinetic dipole signal in the infrared back-
ground has been investigated for example in Fixsen & Kashlinsky (2011).
They used the COBE FIRAS (Fixsen et al. 1996) and the DIRBE (Hauser
et al. 1998) datasets for their work. Unfortunately both datasets su�er
from galactic foreground and dust contamination. Therefore it is not pos-
sible yet to determine a kinetic dipole in the infrared background. Future
observations will be able to solve this problem. This outcome for the in-
frared background needs to be distinguished from the infrared point-source
studies, discussed in the following passages.
Previous works on infrared point-source catalogues, i.e. by Rowan-

Robinson et al. (2000), resulted in a dipole amplitude and direction in
good agreement with the CMB expectation. Due to possible bulk �ows (see
chapter 1.3) and revealed large cosmic structures (see chapter 1.2), those
results may be based on observations on too small scales (most sources
are at distances of order 100 h−1 Mpc). Hence, the following more recent
studies, utilizing deeper surveys, are superior in this aspect.
In Gibelyou & Huterer (2012) four di�erent surveys were analysed. Two

of those are in the infrared band, namely the 2MASS (Skrutskie et al. 2006)
and the 2MRS (Huchra et al. 2012) surveys. Both are point-source surveys,
including stars and galaxies from the vicinity of our local group (up to a
redshift of about z = 0.2). The 2MRS is a subsample of the 2MASS
catalogue, also including redshift information of the observed sources. In
both cases the main challenge is to separate the contribution of the kinetic
dipole from the local structure e�ects. Since the universe is only on the
largest scales isotropic, any local (z < 1) observations will also include a
dipole contribution from the anisotropic matter distribution. Gibelyou &
Huterer (2012) concluded that the measured dipole in both catalogues may
be dominated by such a structure term. This issue is still present in their
updated work Yoon et al. (2014), using the WISE catalogue (Wright et al.
2010). Since this new survey is signi�cantly deeper, the local structure
contribution went down by a factor of about 2.5. Unfortunately the WISE
catalogue is still too shallow for probing the kinetic dipole independently.
Another wavelength investigated in Gibelyou & Huterer (2012) is the
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1.5 Origin of cosmic radio signals

gamma-ray band. They used the BATSE (Paciesas et al. 1999) catalogue,
which is a survey of gamma-ray bursts (GRB). Here the main problem is
the limited amount of observed bursts (2702). Hence, the BATSE cata-
logue does not provide enough data points in order to separate the dipole
from shot noise. Future GRB surveys with more sources may allow for a
detection of the kinetic dipole within the γ-ray band. The investigation of
a radio survey from Gibelyou & Huterer (2012) will be discussed in detail
in section 2.

1.5 Origin of cosmic radio signals

This thesis is about the dipole anisotropy in extragalactic radio continuum
surveys and therefore we need to discuss what kind of radio signals we can
observe from Earth and why it is a sensible idea to use those to �nd the
kinetic dipole signal. The following brief introduction to radio astronomy is
based on the books of Burke & Graham-Smith (2010), Sparke & Gallagher
(2000) and Jones & Lambourne (2003).

Assume we would be able to look with our eyes at the night sky observing
radio frequencies, then we would see a completely di�erent sky compared
to the optical one. A typical star is not emitting very much radio signals,
so we would see much less of the stars of our own galaxy. The sun is,
compared to what we know from optical astronomy, not so bright that it
outshines every other star on the sky during the day. Also the Rayleigh
scattering (responsible for the blue colour of the daylight sky) is much less
e�ective at the long radio wavelengths, so the radio sky basically stays
dark for the whole day.

When looking at the sun with a radio telescope one notices two features
that di�er essentially from optical observations. The sun seems bigger and
does not have an (almost) perfect circular disc. Actually the form of the
sun even changes over time, when observed with radio telescopes. This
is because in radio wavelengths the corona of the sun is brighter (since it
has a higher temperature) than the sun's surface. So we actually see the
atmosphere surrounding the sun, in contrast to optical astronomy.

When looking at the radio sky we will see some unusual shapes. It turns
out that some galaxies are very strong radio emitters that outshine the
stars of our own galaxy by far. Those very bright radio galaxies usually
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Figure 1.4: Hercules A, combined optical (Hubble Space Tele-
scope) and radio (JVLA) observation. [source:
https://public.nrao.edu/gallery/supermassive-
blackholes/image?id=857, March 2015]

have one or two lobes and can be found in a variety of shapes. One example
can be seen in �gure 1.4. When comparing such a radio source with optical
images, one �nds that the point in the middle (the place where the lobes
seem to be emitted) is in the centre of the corresponding galaxy. The
lobes are so huge, that they are typically even bigger than the host galaxy,
de�ned by their accumulation of stars.

This �rst class of radio galaxy is called Active Galactic Nuclei (AGNs).
The nucleus is the central engine powering the radio lobes. It can be shown
that the AGN produces so much energy that the underlying process cannot
be atomic fusion, like it is the case for stars. Hence, it is assumed that
the central engine is powered by the gravitational energy of matter falling
towards a black hole. In this process the matter falling in heats up and
becomes plasma. Now some of the electrons have enough energy to leave
the central area while the remaining atomic nuclei keep on falling towards
the black hole, since they are more massive.
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1.5 Origin of cosmic radio signals

By some process that is not yet fully understood, the escaping electrons
are cumulated into beams. In the outer regions of the host galaxy those
electron beams interact with the intergalactic medium. They are captured
by magnetic �elds and thereby emit radio signals. Those radio signals can
then be observed from Earth and the radio galaxies can be classi�ed into
two di�erent subgroups. The more common one is called Fanaro� Riley
I (FRI) (Fanaro� & Riley 1974) and contains AGN where the main radio
emission happens close to the central engine and falls o� with increasing
distance to the centre. In Fanaro� Riley II (FRII) class galaxies, the outer
regions of the lobes emit more radio signals than the central area.
These AGN-powered radio galaxies have two features relevant for this

work. They are rather rare and very bright [Cygnus A has an absolute
magnitude in radio of (3.14 ± 0.78) × 1036 W , Braude et al. (1969)] and
can therefore be observed from very large distances (compared to optical
astronomy). Most know optical galaxies, when observed at radio frequen-
cies, just look like normal galaxies, without any lobes. The radio emission
in those galaxies comes from synchrotron radiation, created by highly en-
ergetic electrons accelerated in magnetic �elds. In contrast to AGNs, the
number of those electrons in normal galaxies is relatively small and they
are not concentrated in beams, but randomly distributed. Hence, they are
not as bright in radio frequencies as the AGN type and can therefore only
be observed at smaller distances. On the other hand, most galaxies do
not have a powerful central engine and do therefore count as normal radio
galaxies.
Among those normal galaxies, there are some with a relatively high

number of stars that are very young and still in the process of formation.
Active star-forming regions inside a galaxy emit an increased amount of
radio and infrared emission. This is due to the fact that a lot of interstellar
gas is present in those star-forming regions. The interstellar gas is heated
up by the young stars and emits the absorbed energy again at longer
wavelength. This is in principle happening in all galaxies, but only in some
galaxies those regions are large and active enough to produce a signi�cantly
increased radio emission. In order to distinguish them from normal galaxies
one talks about starburst galaxies (SBG). They can be observed up to an
intermediate range between normal and AGN-type galaxies. Some galaxies
are called radio quiet AGN. Those are AGNs, which are less bright than
the FRI and FRII galaxies, but do show the same kind of lobe structures.
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They are still brighter than normal galaxies, meaning they are only quiet
compared to the earlier discovered radio-loud AGNs.

1.6 Radio instruments and surveys

There exist a number of radio telescopes around the world. I will describe
in this section those that are relevant for my work, since they produced
radio surveys that were used for the dipole analysis or are expected to
produce such surveys in the future. All those telescopes are radio interfer-
ometers, which means they are consisting of a number of interconnected
radio antennas.

Figure 1.5: The Westerbork Synthesis
Radio Telescope. [source:
http://www.astron.nl/sites/
astron.nl/�les/cms/ luchtfoto-
WSRT.jpg, April 2015 ]

The Westerbork Synthesis
Radio Telescope (WSRT) can
be seen in �gure 1.5. One
can see the line of radio dishes
along the east-west orienta-
tion on this photograph. This
interferometer consists of 14
radio dishes, each with a di-
ameter of 25 meter. Four
of those dishes can be moved
on rails and thereby vary the
distance between the di�erent
telescope parts. The telescope
is located in Westerbork (NL)
and operated by ASTRON,
the Netherlands Institute for
Radio Astronomy.

This telescope was used to
create the Westerbork North-
ern Sky Survey [WENSS,
Rengelink et al. (1997)], which

actually stands for two catalogues at di�erent frequencies (609 MHz and
325 MHz). In both cases the so-called mosaicing technique was used,
which means that 80 di�erent �elds across the sky were observed and later
combined. The larger catalogue includes radio sources with a declination
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above 30◦. The �ux of the detected radio sources goes down to 18 mJy
and the used frequency for this part of the survey is 325 MHz. The whole
catalogue contains about 230,000 sources.

Figure 1.6: The Very Large Array
in New Mexico. [source:
http://images.nrao.edu /Te-
lescopes/VLA/307, April
2015]

The Very Large Array (VLA)
is in many ways similar to the
WSRT. It also consists of a
number of individual 25-meter
radio dishes. All in all there
are 27 dishes mounted on rails
for this interferometer. They
are not all arranged in one
line, but form a kind of three-
spiked star (see �gure 1.6).
The VLA is located in a desert
in New Mexico, USA. The ar-
ray can be used in a number
of di�erent con�gurations, de-
pending on how far the indi-
vidual dishes are moved apart.
The VLA was used to cre-

ate the NRAO VLA Sky Sur-
vey [NVSS, Condon et al. (1998)], which is a catalogue of radio sources
with declination values above −40◦. This survey was observed at a fre-
quency of 1.4 GHz and contains almost two million sources down to a �ux
of 2.5 mJy. Unfortunately the survey is not complete down to this limit,
which means that not all sources with �ux S > 2.5 mJy where identi�ed
due to various limitations (e.g. noise). It is assumed that this survey is
(almost) complete for all sources above 15 mJy (Condon et al. 1998). Due
to observational limitations some additional identi�cation problems arise
near the galactic plane as well as near very strong radio sources.
More than 200, 000 individual images were taken with the VLA, which

were later combined to create the whole NVSS catalogue. For declinations
below −10◦ and above 80◦ the DnC con�guration of the array was used,
while between those declinations the array was in the D con�guration.
This comes from the fact that it is harder to observe radio objects near
the horizon of the telescope. In order to compensate this problem to some
extent the DnC con�guration was used for the most North and South areas
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Figure 1.7: Surface density �uctuation versus declination for the NVSS
catalogue in both (D & DnC) con�gurations for the �ux limits
of S = 3.5 mJy & S = 15 mJy [source: Blake & Wall (2002)].

of the survey.

For the purpose of this work it is very important to avoid any statistical
bias between those two con�gurations. This issue was addressed by Blake
& Wall (2002) and their result is shown in �gure 1.7. For a lower �ux limit
of 3.5 mJy, one can see clearly that the surface density is smaller for the
DnC con�guration at declinations below −10◦. Such an anisotropic surface
density creates an arti�cial dipole in the catalogue. When the lower �ux
limit is raised towards 15mJy this e�ect is reduced. But one can still see
a larger �uctuation at the low declination values. Blake & Wall (2002)
concluded that for a dipole analysis one needs to use �ux limits above
15 mJy.

Between 2001 and 2012 the electronics of the VLA were upgraded.
Among others things the correlator of the telescope was replaced by a
state-of-the-art version. With this new hardware the VLA was initially
called Expanded VLA (EVLA) until it was renamed in 2012 to become
the Karl G. Jansky Very Large Array (JVLA), after the famous radio as-
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tronomer. The new JVLA has an increased sensitivity (10 times better
than the VLA) and is now able to cover the whole frequency range of
1 GHz to 50 GHz.

Figure 1.8: Operational LOFAR
stations in Germany.
[source: http://www.mpifr-
bonn.mpg.de/lofar, March 2015]

The most modern ra-
dio telescope in Europe is
the LOw Frequency AR-
ray (LOFAR). This inter-
ferometer operates at 10−
80 MHz (Low-Band An-
tennas, LBA) and 110 −
240 MHz (High-Band An-
tennas, HBA), which is at
the lower end of the at-
mospheric radio window.
Most stations are located
in the Netherlands, includ-
ing the core station near
Exloo. At the end of
2014 the sixth German sta-
tion near Hamburg began
its operation. This sta-
tion belongs to the uni-
versities of Hamburg and
Bielefeld together and im-
proves the interferometer
signi�cantly, by �lling a
gap in the so-called u-v
plane.
Combined with the international stations in Sweden, Great Britain and

France, the LOFAR radio interferometer includes baselines of order 1000 km,
resulting in a possible total resolution in the subarcsecond regime (Vare-
nius et al. 2015).
The LOFAR is one of the path�nder telescopes for the Square Kilometre

Array (SKA). This planned array will be constructed in two distinct areas,
one in South Africa and one in Australia. The construction is divided into
two phases, with the second phase starting after the �rst one is �nished.
The Australian part of the telescope is called SKA LOW, since it operates
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at 50 − 250 MHz. The �rst phase of this part is named SKA1 LOW and
will consist of about 130, 000 antennas, spread over an area of 0.4 km2.
Compared to LOFAR, this �rst phase of SKA LOW will already have an
increased resolution by 25% and the sensitivity will be 8 times higher.
In South Africa the �rst phase is called SKA1 MID, operating between

350 MHz and 14 GHz. It will consist of 200 dishes, each with a diameter
of 13.5 m. Compared to the JVLA, SKA1 Mid will have 4 times higher
resolution and 5 times the sensitivity. The construction of this impressive
instrument is planned to start in 2018. Already the �rst phase will improve
radio observations of the sky by an order of magnitude and hence we can
expect new insights in various scienti�c questions.

1.7 Cosmic radio dipole

This section highlights the most important works concerning the dipole
anisotropy in radio surveys in chronological order. The �rst work in this
�eld was made by Ellis & Baldwin (1984). They calculated the e�ect,
peculiar motion of the Solar System with respect to the rest of the universe
has on radio source catalogues. Their main result is that the radio source
counts dN/dΩ, for sources with �uxes above a certain limit S > SLimit at
a �xed frequency ν and a peculiar solar velocity v (much smaller than the
speed of light c), across the sky will to �rst order in v

c behave like

dN

dΩ obs
=

(
dN

dΩ

)

rest

[1 + d cos(θ)] , (1.5)

where d is the amplitude of the kinetic radio dipole and θ is the angle
between the line of sight on the sky and the direction of our peculiar
motion. The amplitude of this dipole modulation turns out to be

d = [2 + x(1 + α)]
(v
c

)
. (1.6)

Here x is the power law index of the radio number counts (usually x ≈ 1 is
assumed) and α is the mean spectral index (de�ned by Ssource(ν) ∝ ν−α)
of the radio sources (approximately α ≈ 0.75). A detailed derivation of
those equations can be found in section 2.1. In equation (1.6) we can plug
in the peculiar velocity derived from the CMB (370.5 km/s) and the mean
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values mentioned above. From those assumed values for x and α we get
an expected radio dipole amplitude of d = 4.6× 10−3.
Ellis & Baldwin (1984) also made the �rst attempts to measure this

dipole in radio catalogues. The 4C (Pilkington & Scott (1965), about 5000
sources at 178 MHz) catalogue was used, resulting in a dipole amplitude
of (5.6 ± 3.2) × 10−2, which is above the expected value. Because the
error bars are so large (due to shot noise), no signi�cant tension with the
CMB expectation can be asserted (note that the d = 0 case is within their
two-sigma boundaries). In order to obtain stricter limits, one needs to use
radio catalogues with a signi�cantly higher number of sources. According
to their estimation one needs about 2× 105 sources, in order to constrain
the kinetic radio dipole.
In Baleisis et al. (1998) spherical harmonics were used in order to predict

and determine the dipole in a combined radio catalogue. The two cata-
logues used in their work were the Green Bank (Condon et al. 1989) and
the Parkes-Mit-NRAO (Condon et al. 1993) catalogues. Combined those
two catalogues contain about 40, 000 sources measured at 4.85 GHz. They
found that for this survey the main dipole contribution should come from
shot noise, due to the limited number of sources. The kinetic dipole would
be below the shot noise and the contribution from large-scale structure
would be even smaller than this. On the other hand they found, that the
detected dipole (d = 2.5 × 10−2) is bigger (about 10%) than the direct
combination of those three e�ects added up. This is surprising, since there
is no reason that the shot noise must have an e�ect in the same direction
as the kinetic and large-scale structure dipoles. To some extent, this high
dipole amplitude may be explained by the fact that they use the combina-
tion of two catalogues instead of one. A small mismatch between the two
catalogues will result in a signi�cant dipole contribution.
The �rst reported detection of the dipole signal in radio surveys was

made by Blake & Wall (2002). They used the NVSS catalogue (see section
1.6) in their analysis. In order to determine the dipole, they calculated the
spherical harmonic coe�cients up to l = 3 of the NVSS and �tted a dipole
model to the resulting al,m. They masked the sky near (15◦) the galactic
plane and also removed areas within 30 arcsec of the most bright radio
sources [speci�ed by the IRAS PSCz catalogue (Saunders et al. 2000)]. In
this way they tried to avoid too much contribution from local structures.
Their results are given in a slightly di�erent notation [their δ corresponds
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Figure 1.9: Radio dipole 1 and 2σ contours for the direction uncertainties
for di�erent lower �ux limits. The black dot represents the
position of the CMB dipole [source: Blake & Wall (2002)].

to two times our amplitude d in equation 1.6], which is converted here. One
result they found is that the dipole in the NVSS depends on the applied
lower �ux limit. When this limits goes below 20 mJy the direction of
the found signal moves towards the South Pole and the overall �t gets
worse (meaning a signi�cant increase in χ2). Most likely this e�ect has
to do with the di�erent telescope con�gurations used, which resulted in
changing sensitivities for di�erent areas on the sky. Hence, at the low �ux
end of the survey the number of detected sources per area changed (see
�gure 1.7). The measured dipole directions for higher �ux limits can be
seen in �gure 1.9. From this we can conclude that the direction of the
dipole in the NVSS is in agreement with the direction obtained from the
CMB within the (quite large) one-sigma contours.

The dipole amplitude estimation of Blake & Wall (2002) is somewhat
more surprising. For the best �ts they found a dipole of d = (1.1± 0.3)×
10−2 at 25 mJy and d = (1.1± 0.4)× 10−2 at 30 mJy. This is more than
twice as big as expected from the CMB but still within the two-sigma
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environment. It is somewhat surprising that the dipole direction seems to
be in much better agreement than the amplitude. This is the �rst hint
towards increased dipole amplitude in radio surveys.

We can estimate the magnitude of such an e�ect in the following way.
First we assume the velocity relative to the CMB is given by (Planck
Collaboration et al. 2015b): ṽcmb ≈ 370 km/s. The velocity relative
to objects at a redshift of order unity are given by the one-sigma lower
boundary of the dipole found in radio surveys [i.e. Blake & Wall (2002)]:
ṽNVSS ≈ 640 km/s. The di�erence between those two velocities could bias
the later mentioned measurements by roughly

ṽbias = ṽNVSS − ṽCMB ≈ 270
km

s
. (1.7)

This result is close to the reported bulk �ow velocities discussed in 1.3.
Hence, one could imagine that the found bulk �ows may be a relic of a
faulty rest-frame transformation.

The following studies are all based on a linear estimator �rst proposed
by Crawford (2009). With this estimator each radio source is considered as
a vector ~r pointing towards the sky at the corresponding position. Those
vectors can have unity length r̂ or they can be weighted by some factor,
for example by their �ux S. For a completely isotropic source distribution
over the full sky the sum of all position vectors

~D =
∑

~ri (1.8)

vanishes. When the main anisotropy on the sky comes from a dipole,
this sum will not vanish, but one obtains a vector pointing towards the
direction of the dipole signal. This kind of estimators will be discussed in
section 2 in detail.

In Singal (2011) such a linear estimator was used on the NVSS and each
source was weighted with the corresponding �ux value. So the anisotropy
in the radio �ux distribution over the sky was analysed. Just like in Blake
& Wall (2002), a dipole was found that has about the same direction as
the CMB dipole but indicates an increased amplitude. Here the amplitude
was even higher than in previous works and showed some signi�cant dis-
crepancy compared to the CMB expectation. Another study of the NVSS
catalogue was performed by Gibelyou & Huterer (2012). They used a linear
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estimator without weights and also tried to correct for masking e�ects by
means of randomly generated data points. This simulated masking dipole
is supposed to compensate masking e�ects. Again a dipole amplitude was
found that was signi�cantly above the expectation. In this study, also the
direction of the radio dipole was not in agreement with the one from the
CMB. Both studies are discussed in detail in section Rubart & Schwarz
(2013).

Another linear estimator was used by Kothari et al. (2013). They de-
termined the spherical harmonic coe�cients alm of the NVSS catalogue
for l = 1. In contrast to Blake & Wall (2002), they did not �t a mod-
elled distribution to the alm, but used those terms directly to obtain a
dipole estimation. Hence, their estimator is also linear. In Kothari et al.
(2013), the dipole in number counts as well as in sky brightness [corre-
sponding to the �ux-weighted estimator in Singal (2011)] was investigated.
For a lower �ux limit of S = 20 mJy the dipole amplitude of the �rst
one was dN = (1.5 ± 0.2) × 10−2 and for the second one they obtained
dS = (1.7 ± 0.3) × 10−2. The direction of the found dipoles is, like in
previous works, in agreement with the CMB dipole.

The dipole estimation using the sky brightness does depend on the as-
sumption that the number count n(S) is a power law for the whole range
of used sources and not only for sources close to the lower �ux limit. For
the observed number counts of the NVSS the power law assumption is a
poor approximation and hence Kothari et al. (2013) tried an improved �t.
They model the number counts as

n(S) ∝ xS−1−x−β lnS , (1.9)

with x and β being the free �t parameters. With this new �t, one can again
determine the corresponding dipole amplitudes and from those calculate
the observer's velocity, assuming the dipole is purely kinetic. The corre-
sponding velocities obtained by estimations in sky brightness were reduced
by about 10%, while velocities in source counts did not change. With this
improved �t both estimators resulted in velocities of about 1300 ± 200
km/s for a �ux limit of 20 mJy. In order to compare this with the above-
mentioned results, we transformed the velocities back into a dipole ampli-
tude of dv = (1.6± 0.3)× 10−2, using equation 1.6.

In Tiwari & Jain (2015) the NVSS catalogue was utilized for the dipole

24



1.7 Cosmic radio dipole

estimation. In contrast to previous works, this time also cuts in polar-
ization P and in the degree of polarization p were applied. The idea is
that the degree of polarization depends on the frequency and hence those
additional cuts will increase the dipole signal. The expected amplitude in
this case is

dP = [2 + x(1 + α) + xP (1 + αP )]
(v
c

)
, (1.10)

where xP is the number-count slope with respect to the polarization and
αP is de�ned by an assumed dependence of polarization P on the frequency
ν of P ∝ ν−αP . Therefore a direct comparison of the dipole amplitudes is
impractical, but the obtained velocities can be compared. Tiwari & Jain
(2015) estimated the dipole in (a) source number and (b) polarization. The
latter case is similar to the �ux-weighted estimators mentioned above, with
polarisation P replacing �ux S.
In all those cases Tiwari & Jain (2015) found a signi�cantly larger dipole

amplitude than expected from the CMB observation. The anisotropy in
polarization seems to be even larger than in source counts. For a �ux
limit of S = 20 mJy they found a peculiar velocity of the observer relative
to the NVSS sources of 2550 ± 420 km/s. This is roughly two times the
obtained value for the source count anisotropy and almost seven times the
CMB expectation, but again the direction is in agreement with the CMB
dipole. Since the values of xP and αP are not measured in this study (but
assumed to be the same as for the number counts, i.e. xp = x & αp = α),
the mentioned velocity result should not be taken too serious yet.
From those previous works we can conclude that the radio dipole ques-

tion is an active topic in radio astronomy. Due to the limited number of
sources available in published radio catalogues, a precise measurement of
this anisotropy has not yet been performed. Recent studies also suggest
an increased dipole amplitude in radio surveys. In case those results turn
out to be robust, interesting new e�ects could be discovered and examined.
Connections to di�erent related astrophysical questions, like for example
the bulk �ows, could arise. In any case a detailed investigation seems
appropriate.
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Chapter 2

The linear Radio Dipole

The trick is the idealizations.

� Richard Feynman

2.1 Publication A&A 555, A117 (2013)

The following publication was written by the �rst author and edited by
the second. It contains a detailed analysis of various linear estimators.
First the theoretical derivation of the kinetic dipole is presented, with
an emphasis on the e�ect of the slope of corresponding number counts.
For di�erent surveys this slope is determined in order to make precise
predictions of the expected dipole amplitude.
Previous results concerning the cosmic radio dipole are discussed and

compared, including the di�erences in the estimators. A theoretical back-
ground for the expected shot noise contribution is developed and the re-
sults are tested and con�rmed by simulations. Thereby a biasing factor in
amplitude estimation due to shot noise contribution is revealed.
For the case of surveys with half-sky coverage, a two-dimensional lin-

ear estimator is presented and its properties (in comparison to the three-
dimensional one) are investigated. This version of the linear estimator will
become relevant in the light of upcoming radio telescopes.
In this publication the two radio catalogues, NVSS and WENSS, are

analysed and the radio dipoles are estimated. The signi�cance of the found
amplitude excess is studied and compared with simulations. In this way
the authors were able to show that, in spite of the shot noise bias, the
resulting amplitudes are still signi�cantly above the expected values.
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ABSTRACT

We use linear estimators to determine the magnitude and direction of the cosmic radio dipole from the NRAO VLA Sky Survey
(NVSS) and the Westerbork Northern Sky Survey (WENSS). We show that special attention has to be given to the issues of bias
due to shot noise, incomplete sky coverage and masking of the Milky Way. We compare several different estimators and show that
conflicting claims in the literature can be attributed to the use of different estimators. We find that the NVSS and WENSS estimates
of the cosmic radio dipole are consistent with each other and with the direction of the cosmic microwave background (CMB) dipole.
We find from the NVSS a dipole amplitude of (1.8 ± 0.6) × 10−2 in direction (RA, dec) = (154◦ ± 19◦,−2◦ ± 19◦). This amplitude
exceeds the one expected from the CMB by a factor of about 4 and is inconsistent with the assumption of a pure kinetic origin of the
radio dipole at 99.6% CL.

Key words. radio continuum: galaxies – large-scale structure of Universe

1. Introduction

The assumed isotropy and homogeneity of the Universe at large
scales is fundamental to modern cosmology. The isotropy is best
seen in the cosmic microwave background (CMB) radiation and
holds at the per cent level. The most prominent anisotropy of
the CMB temperature is a dipole signal of ∆T/T ≈ 10−3. It is
commonly assumed that this dipole is largely caused by the mo-
tion of the Solar system through the Universe (Stewart & Sciama
1967). This interpretation seems to be fully consistent with the
concordance model of cosmology.

However, the observation of the microwave sky is not enough
to tell the difference between a motion induced CMB dipole and
dipole contributions form other physical phenomena, i.e.

dcmb = dmotion + dprimordial + dISW + dforegrounds + dnoise. (1)

In our notation a dipole vector d modulates the isotropic sky by
a factor (1 + d · r̂), with r̂ denoting the position on the sky.

Usually it is assumed that the primordial and the integrated
Sachs-Wolfe (ISW) contribution to the CMB dipole are negligi-
bly small and that foregrounds (the Milky Way) are under con-
trol. Within the concordance model we expect a primordial con-
tribution of dprimordial ≈ 2 × 10−5. The ISW contribution could
be as large as 10−4 from the gravitational potentials induced by
local 100 Mpc sized structures, without being in conflict with
the concordance model (Rakic et al. 2006; Francis & Peacock
2010). The noise term can be ignored due to excellent statis-
tics of full sky observations. Thus the measured dcmb is directly
used to infer the velocity of the Solar system w.r.t. the CMB to
be v = 369 ± 0.9 km s−1 (Hinshaw et al. 2009). It is used in
many cosmological studies done in the CMB rest frame, e.g. su-
pernova Hubble diagrams or measurements of large scale bulk
flows.

The effects of motion are not limited to the CMB, but should
actually be detectable at any frequency. In order to test the hy-
pothesis dcmb = dmotion, it would be very interesting to measure

the dipole of another cosmic probe, such as that obtained by ra-
dio point source catalogues. In this case one expects to find

dradio = dmotion + dstructure + dforegrounds + dnoise. (2)

Besides the signal from our proper motion, we expect a signal
from structure in the Universe and we expect a random dipole
from Poisson noise. The dipole from structure is expected to
dominate any catalogue limited to redshift z � 1. Thus we are
interested in surveys with a mean redshift of order unity and a
large enough sky coverage to be sensitive to the dipole. This
makes radio catalogues the preferred probe to look at. Within
the concordance model, the dipole signal induced by the large
scale structure is then a subdominant contribution, as it is for
the CMB. If we had a large enough catalogue, we could com-
pare dradio to dcmb. Any statistically significant deviation would
be exciting, while finding a match would put the concordance
model on firmer grounds.

A first attempt to measure the radio dipole was performed
by Baleisis et al. (1998) using a combination of the Green
Bank 1987 and the Parkes-MIT-NRAO catalogues. Blake & Wall
(2002), Singal (2011) and Gibelyou & Huterer (2012) attempted
to determine the dipole vector in the NRAO VLA Sky Survey
(NVSS), with different conclusions. Blake & Wall (2002) found
a result that is in agreement with a purely kinetic origin of the
cosmic radio dipole, but this was challenged by Singal (2011),
who finds a dipole amplitude four times larger than expected,
but strangely enough pointing in a direction consistent with the
CMB dipole. The analysis of Gibelyou & Huterer (2012) finds
both a different direction and an amplitude six times as large as
the expected one. While Blake & Wall (2002) used a quadratic
estimator, Singal (2011) and Gibelyou & Huterer (2012) used
different linear estimators to find the dipole direction.

The purpose of this work is to discuss the use of linear es-
timators of the cosmic radio dipole and apply several versions
of them on the NVSS (Condon et al. 2002) and the Westerbork
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Northern Sky Survey (WENSS; Rengelink et al. 1997). We re-
solve the conflicts in the literature and extend the analysis to
other linear estimators.

The NVSS survey covers about 10.3 sr of the sky and con-
tains about 2×105 sources per steradian. For this survey the Very
Large Array (VLA) in New Mexico (USA) has been used mea-
suring at a frequency of 1.4 GHz. The survey includes over 80
per cent of the sky, missing only areas with declination δ < −40◦.
The lower flux limit lies at 2.5 mJy for the 5σ detection of point
sources. The NVSS was conducted by means of two different
configurations of the VLA above and below δ = −10◦.

The Westerbork Synthesis Radio Telescope in the
Netherlands was operated at a frequency of 325 MHz to
record the WENSS survey covering about 2.9 sr of the nothern
sky and containing about 2.3 × 105 sources in total. This survey
is made up of a main catalogue for δ ∈ (28◦, 76◦) and a polar
catalogue for δ > 72◦. The 5σ detection limit for this survey
is 18 mJy.

To analyse these surveys, we focus on linear estimators in
this work. We do so for two reasons. Firstly, recent controver-
sial results used linear estimators for the dipole direction (Singal
2011; Gibelyou & Huterer 2012) and in one work also for the
dipole amplitudes (Singal 2011). Secondly, linear estimators are
conceptually simpler. However, it is not expected that they are
optimal (unbiased and minimal variance). The linear estimators
used in our analysis are asymptotically unbiased and their vari-
ance can be easily understood by analytic calculations and by
Monte Carlo simulations.

The paper is organized as follows: first we discuss the ex-
pected kinetic radio dipole. In Sect. 3 we outline previous esti-
mates of the radio dipole. Linear estimators for full sky surveys
are investigated in Sect. 4, followed by a detailed analysis of the
effects of incomplete sky coverage and masking in the next sec-
tion. In Sect. 6 we discuss the expected dipole amplitude from
a flux based estimator. Our estimate of the radio dipole can be
found in Sect. 7 and is followed by a comparison with previous
results. We conclude in Sect. 9.

2. Kinetic radio dipole

2.1. Doppler shift and aberration

Ellis & Baldwin (1984) predicted the kinetic contribution to the
cosmic radio dipole for an isotropic and homogeneous cosmol-
ogy. At redshift of order unity and beyond, we expect this kinetic
contribution to be the dominant one.

The spectrum of a radio source is assumed to be described
by a power law,

S ( f ) ∝ f −α, (3)

where S denotes the flux and f the frequency. Each radio source
can be described by an individual spectral index α. For simplic-
ity we assumed a mean value of α for all radio sources in the
catalogue.

The number of observed radio sources per steradian depends
on the lower flux limit and can be approximated by a power law

dN
dΩ

(>S ) ∝ S −x. (4)

The value of x can be different for each survey. Typically x is
assumed to be about one.

Two effects have to be taken into account. The emitted radio
frequency frest is observed at the Doppler shifted frequency fobs.

The magnitude of this change depends on the angle θ between
the direction to the source and the direction of our motion, with
velocity v. Observed and rest frame frequencies are related by

fobs = frestδ(v, θ), (5)

where δ is given by

δ(v, θ) =
1 + v

c cos(θ)
√

1 − ( vc )2
· (6)

Thus the observed flux changes due to our motion, since it de-
pends on the frequency

S obs( fobs) ∝ δ f −αrest ∝ δ1+α f −αobs ∝ S rest( fobs)δ1+α. (7)

The first factor of δ is due to the fact that the energy of an ob-
served photon is enhanced due to the Doppler effect.

Thus, the Doppler effect will change the number of observed
sources above a given flux limit like
(

dN
dΩ

)

obs
=

(
dN
dΩ

)

rest
δx(1+α). (8)

Since the velocity of light is finite, aberration will also modify
the number counts. The position of each source is changed to-
wards the direction of motion. The new angle θ′ (observed from
Earth) between the position of the source and the direction of
motion is given by

tan θ′ =
sin θ

√
1 − v2

c2

v
c + cos θ

· (9)

Therefore, at first order in v/c, dΩ transforms like

dΩ′ = dΩ

(
1 − 2

v

c
cos θ

)
+ O

((
v

c

)2
)
· (10)

This can be combined with the Doppler effect to give the ob-
served number density. After approximating δ(v, θ) to first order
in
v

c
, the result becomes

dN
dΩ obs

=

(
dN
dΩ

)

rest

[
1 + [2 + x(1 + α)]

(
v

c

)
cos(θ)

]
. (11)

The amplitude of the kinetic radio dipole is then given by

d = [2 + x(1 + α)]
(
v

c

)
· (12)

The kinetic radio dipole points towards the direction of our pe-
culiar motion, which in an isotropic and homogeneous Universe
must also agree with the direction defined by the CMB dipole.

2.2. Expected kinetic radio dipole

The measured CMB dipole is ∆T = 3.355 ± 0.008 mK in the
direction (l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦) (Hinshaw
et al. 2009). In equatorial coordinates (epoch J2000) its direction
reads (RA, Dec) = (168◦,−7◦). Compared to the CMB tempera-
ture of T0 = 2.725±0.001 K (Fixsen & Mather 2002). this corre-
sponds to a relative fluctuation of ∆T/T = (1.231±0.003)× 10−3

and thus the velocity of the Solar system has been inferred from
the CMB dipole to be v = 369.0 ± 0.9 km s−1 (Hinshaw et al.
2009).
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Fig. 1. Number counts of the NVSS and WENSS surveys. A function
f (S ) ∝ S −x is fitted to both data sets in the range of 25 mJy < S <
200 mJy. Resulting values of x are 1.10 ± 0.02 for the NVSS survey
and 0.80 ± 0.02 for the WENSS survey.

To find the expected amplitude of the kinetic radio dipole,
we also need estimates for x and α. The typically assumed val-
ues are x = 1 and α = 0.75, which gives together with v =
370 km s−1 a radio dipole amplitude of d = 0.46 × 10−2.
However, we can improve on that as x can be measured with help
of the radio survey. Therefore we need to plot N(>S ) against S
like in Fig. 1.

For the purpose of this work we find xNVSS = 1.10 ± 0.02
and xWENSS = 0.80 ± 0.02. The mean spectral index cannot be
inferred from the catalogues, as they provide data at a single
frequency band only. We thus stick to α = 0.75, but include in
the dipole error an uncertainty of ∆α = 0.25 (Garn et al. 2008).
This results in the expectations:

dexp
NVSS = (0.48 ± 0.04) × 10−2, (13)

dexp
WENSS = (0.42 ± 0.03) × 10−2. (14)

The error is dominated by the uncertainty in the spectral index.

3. Previous results

The first measurement of the radio dipole using the NVSS cat-
alogue was performed by Blake & Wall (2002). In order to re-
move corruption by local structure, all sources within 15◦ vicin-
ity of the Galactic disk have been removed. Additionally the
clustering dipole contribution was reduced by ignoring sources
within 30′′ of nearby known galaxies. The spherical harmonic
coefficients aobs

lm from the remaining NVSS catalogue have been
determined up to l = 3. A model for a dipole distribution with
an isotropic background has been constructed (a00 and a10). Due
to masking, this dipole distribution also influences higher multi-
poles. After applying the same mask as for the NVSS catalogue,
one finds amodel

lm up to l = 3. A quadratic estimator (chi square)
was used to compare the model with the observed coefficients.

The resulting best-fit dipoles can be seen in Table 1. The
results of Blake & Wall (2002) indicate a higher radio dipole
than expected, however without statistical significance.

Singal (2011) used a linear estimator, originally proposed by
Crawford (2009),

R3D =
∑

r̂i, (15)

Table 1. Best-fit dipole parameters from Blake & Wall (2002).

Flux N RA Dec d χ2
red

(mJy) (◦) (◦) (10−2)
>40 125 603 149 ± 49 –45 ± 38 0.7 ± 0.5 1.02
>35 143 524 161 ± 44 –27 ± 39 0.9 ± 0.4 0.74
>30 166 694 156 ± 32 2 ± 33 1.1 ± 0.4 1.01
>25 197 998 158 ± 30 –4 ± 34 1.1 ± 0.3 1.01
>20 242 710 153 ± 27 –3 ± 29 1.1 ± 0.3 1.32
>15 311 037 148 ± 29 31 ± 31 0.8 ± 0.3 1.81
>10 431 990 132 ± 29 65 ± 19 0.5 ± 0.2 4.96

Notes. Coordinate system and amplitude definition are adjusted for
comparison with Singal’s results (see Tables 2 and 3). N denotes the
number of point sources with flux above the indicated limit.

Table 2. Dipole direction and amplitude from the number count estima-
tor (15) from Singal (2011).

Flux N RA Dec d
(mJy) (◦) (◦) (10−2)
≥50 91 597 171 ± 14 −18 ± 14 2.1 ± 0.5
≥40 115 837 158 ± 12 −19 ± 12 1.8 ± 0.4
≥35 132 930 157 ± 11 −12 ± 11 1.9 ± 0.4
≥30 154 996 156 ± 11 −02 ± 10 2.0 ± 0.4
≥25 185 474 158 ± 10 −02 ± 10 1.8 ± 0.4
≥20 229 365 153 ± 10 +02 ± 10 1.8 ± 0.3
≥15 298 048 149 ± 09 +15 ± 09 1.6 ± 0.3

and a variation of it, which we discuss below. For a large number
of sources the isotropic background will clear away. The remain-
ing vector R3D will point towards the main anisotropy in the dis-
tribution of number density over the sky. To get the correct dipole
amplitude d one has to normalize this estimator depending on the
number of sources. In Singal’s analysis sources within 10◦ of the
Galactic plane have been removed. In order to avoid directional
bias (see the more detailed discussion below), he reestablished a
north-south symmetry of the NVSS by cutting all sources with
dec > 40◦. The results of Singal (2011) are shown in Table 2.
The errors of the directional measurements are quite small here.
This is an effect of an unexpectedly large amplitude, which sim-
plifies the measurement. While the direction agrees with the one
found by Blake & Wall (2002), the dipole amplitude seems to be
a factor of about four higher than expected from the CMB dipole
and twice as big as found by Blake & Wall (2002).

Masking the supergalactic plane in order to reduce the con-
tribution of local structure did not resolve the discrepancy. Since
unknown clustering further away from the super Galactic plane
could also have contributed to the measurement, a second test
was performed. A clustering contribution to the dipole would not
give a signal proportional to cos θ. On the other hand, the differ-
ence in number counts of areas that are opposite to each other
should decrease with cos θ (where θ is the angle between an area
and the measured dipole direction), if the measured dipole is due
to our velocity. Singal was able to fit such a behaviour to the data.
Therefore he concludes that the radio dipole amplitude is not due
to local clustering.

Singal (2011) also used a linear estimator for the distribu-
tion of flux over the sky. This estimator is similar to the num-
ber density estimator (15), but weights each radio source by its
flux S i,

Rflux =
∑

S i r̂i. (16)
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Table 3. Dipole direction and amplitude from the flux weighted number
count estimator (16) from Singal (2011).

Flux N RA Dec d
(mJy) (◦) (◦) (10−2)
1000 > S ≥ 50 90 360 163 ± 12 −11 ± 11 2.3 ± 0.7
1000 > S ≥ 40 114 600 159 ± 12 −11 ± 11 2.2 ± 0.6
1000 > S ≥ 35 131 691 159 ± 11 −10 ± 10 2.2 ± 0.6
1000 > S ≥ 30 153 759 159 ± 11 −07 ± 10 2.2 ± 0.6
1000 > S ≥ 25 184 237 159 ± 10 −07 ± 09 2.2 ± 0.6
1000 > S ≥ 20 228 128 158 ± 10 −06 ± 09 2.1 ± 0.5
1000 > S ≥ 15 296 811 157 ± 09 −03 ± 08 2.0 ± 0.5

Like R3D, this estimator finds the main anisotropy and the am-
plitude needs to be normalized. The brightest sources (S >
1000 mJy) are removed, because they would dominate Rflux oth-
erwise. Results of this estimator are shown in Table 3. The es-
timated directions are in agreement with the results of Blake &
Wall (2002) and the number count estimator results of Singal
(2011). However, the normalized dipole amplitudes d are even
higher than those of the number count estimator R3D. In Sect. 6
we resolve this conflict.

Most recently, Gibelyou & Huterer (2012) measured a dipole
amplitude (d = 2.7 ± 0.5) × 10−2 towards (RA, Dec) = (117 ±
20◦, 6 ± 14◦) from the NVSS. This direction is inconsistent with
the studies mentioned above and the dipole amplitude is a fac-
tor of five larger than expected. The authors used separate esti-
mators for the direction and the amplitude. Their direction esti-
mate is based on a linear estimator, originally proposed by Hirata
(2009),

R3DM =

ND∑

i

r̂i − ND

NR

NR∑

j

r̂ j. (17)

This three-dimensional estimator (3DM) is intended to be unbi-
ased for arbitrary survey geometries and arbitrary masking. The
idea is to achieve that with help of the second sum, which goes
over NR randomly distributed points, subject to the same mask-
ing. Therefore, the authors include all sources of the NVSS sur-
vey, except for those within 10◦ of the Galactic plane. Below we
show that this estimator has a direction bias, which depends on
the real dipole anisotropy.

We summarize, there is no agreement on the amplitude and
direction of the cosmic radio dipole so far.

4. Linear estimators for a full sky

Let us first show that the estimator (15) provides an unbiased
estimate of the dipole direction.

Starting from the distribution of the number of radio sources
per solid angle (11), as seen by a moving observer in an oth-
erwise isotropic Universe, the probability to find a given radio
source within a solid angle dΩ of position r̂ is given by

p(r̂)dΩ =
1

4π
(1 + r̂ · d)dΩ, (18)

where d denotes the dipole vector.
To study the bias of an estimator, we calculate its expectation

value with respect to an ensemble average. We do so below by
means of Monte Carlo studies. For analytic considerations, for

large N we replace the ensemble average by a spatial average,
i.e.

〈1〉 =

∫ N∏

i=1

dΩi p(r̂i)1 = 1, (19)

thus we assume ergodicity. Note that the average is a linear
operator.

Now the expectation value of Crawford’s estimator can be
evaluated for large N,

〈R3D〉 = 〈
N∑

i=1

r̂i〉 =

N∑

i=1

〈r̂i〉 =
N
4π

∫
dΩ (1 + r̂ · d) r̂. (20)

This calculation holds for independent, identically distributed
positions r̂i, thus without clustering effects. Only the second
term survives the integration and thus the expected dipole
estimator is

〈R3D〉 =
1
3

Nd. (21)

Naively, one could now estimate the dipole signal by d3D ≡
3
N R3D.

We conclude that d3D provides us with an unbiased estimate
of the dipole direction d̂ for a full sky sample. However the esti-
mated dipole amplitude |d3D| is biased.

To understand the origin of this bias let us first consider

〈d2
3D〉 =

(
1 − 1

N

)
d2 +

9
N
> d2. (22)

The inequality holds for large N and d < 3 (in case of large
dipole amplitudes [d = O(1)] our ansatz (19) should also take
many-point correlations into account). Thus d2

3D is definitely bi-
ased towards higher amplitudes. However, to prove that |d3D| is
biased, we would need to calculate 〈|d3D|〉. We do this by means
of the random walk/flight method.

4.1. Random flight

Adding up vectors for each point of a survey corresponds to
a random walk with unit step size. To be more precise this is a
random flight, since the problem is three dimensional. Even for a
vanishing dipole, such a random flight is unlikely to return to the
origin after N steps. This describes the noise of any realisation
of an isotropic distribution of N sources.

Following Crawford (2009), we determine the distance r
from the origin after N steps from the probability density of a
random flight process

P̌N(r)dr =

[
54
πN3

]1/2

r2 exp
(
−3r2

2N

)
dr. (23)

The probability of measuring a dipole signal of an amplitude
bigger than R in a random flight is

PN(R > RpCL) =

∫ ∞

RpCL

drP̌N(r) = 1 − pCL. (24)

A confidence level pCL can be choosen, leading to errorbars
for a measured dipole vector R3D ± RpCL. To estimate the di-
rectional uncertainties of this method, Crawford (2009) made
the following argument: at a given confidence level the random
flight corresponds to a step of length up to RpCL. Adding RpCL
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Fig. 2. Ampliude bias of the full sky estimator d3D. Data represent
mean and empirical variance of 1000 simulations for each N. A func-
tion dobs(N) =

√
D2 + 9A2/N is fitted to the simulated data, with best-fit

values A = 0.908 ± 0.002,D = (0.451 ± 0.001) × 10−2. The expected
dipole amplitude (d = 0.0046) is indicated by the horizontal line.

perpendicular to the measured dipole R3D allows us to estimate
the maximal offset in direction. Using trigonometry, one can
relate RpCL to the directional uncertainties expressed as the
angle

δθpCL = arcsin
RpCL

R3D
· (25)

The expected magnitude of the random dipole contribution is
estimated from (23) as

〈Rrandom
3D 〉 =

∫ ∞

0
r
[

54
πN3

]1/2

r2 exp
(
−3r2

2N

)
dr ≈ 0.92

√
N. (26)

Since the random dipole has no distinguished direction, there is
no direction bias of the linear estimator for a full sky map.

Even for vanishing d, this gives rise to a non-vanishing esti-
mate of the dipole amplitude drandom

3D = 2.8N−1/2 and is thus the
origin of the amplitude bias.

Motivated by (22) we make the following ansatz for the
dipole amplitude and its bias:

〈d3D〉 =

√
d2 +

9
N2 〈Rrandom

3D 〉2. (27)

To verify this analytic estimate of the biased amplitude, we
simulated full sky maps including a velocity dipole (with v =
370 km s−1). From these simulated catalogues we extracted the
observed amplitude dobs. Figure 2 shows the simulated data, the
true value of the dipole amplitude and a fit of the form f (N) =√

D2 + 9A2/N.
The best-fit values are A = 0.908 ± 0.002 and D = (0.451 ±

0.001) × 10−2 (statistical errors only). These numbers should be
compared to the factor 0.92 from (26) and the simulation input
of d = 0.46×10−2. The reduced chi- square of the fit is 7×10−5.
Thus the Monte Carlo simulations agree with the theoretically
motivated ansatz (27) for the expected dipole amplitude of the
estimator d3D.

We conclude that even for a perfect full sky catalogue (no
masking, complete in flux, perfect flux and position measure-
ments), the amplitude of the linear estimator is biased towards
higher values. Increasing the number of radio sources will re-
duce the bias. The estimator d3D is asymptotically unbiased, but

this is of limited practical use for the analysis of NVSS and
WENSS data. A similar bias of the dipole amplitude is also
found for the other linear estimators introduced above. This find-
ing is in agreement with Gibelyou & Huterer (2012), who use a
linear estimator to find the direction of the dipole.

5. Linear estimators for an incomplete sky

So far we assumed full coverage of the radio sky. More realis-
tic catalogues cover just a fraction of the sky, as all earth based
telescopes are limited to observe at certain declination ranges.
Additionally, the Milky Way is masking parts of the sky. Here we
discuss some of the effects caused by incomplete sky coverage.

The upcoming Low Frequency Array (LOFAR) Tier-1 sur-
vey will cover about half of the sky (2π), thus we first focus on
this situation. As a second step we generalize this to an arbi-
trary axisymmetric survey geometry and include the effects of
masking.

5.1. Random walk

Let us assume a survey geometry that covers all of the Northern
hemisphere and ask how the estimator of the radio dipole (15)
has to be modified. For the first two Cartesian components
of R3D there should be no systematic problem, but the third com-
ponent will definitely be biased. It is necessary to remove the ef-
fect of the incomplete sky from this z component. Consider the
expectation value of R3D for the Northern hemisphere

〈R3D〉hemisphere = 〈
N∑

i=1

r̂i〉 =
N pd

2π

∫

δ>0
dΩ(1 + r̂ · d)r̂, (28)

where pd ≡ 1/[1 + (d/2) cosϑd)] accounts for the proper nor-
malisation of the probability distribution on the hemisphere in
presence of a dipole. 4π in (18) becomes 2π for obvious reasons.
The integral can be evaluated by hand. One finds

〈R3D〉hemisphere = N pd



1
3 d cosϕd sinϑd
1
3 d sinϕd sinϑd
1
2 + 1

3 d cosϑd

 , (29)

where ϑd and ϕd denote the dipole position in spherical coordi-
nates. The z direction is strongly influenced by the incomplete
sky coverage. The total number of observed sources is not inde-
pendent from the amplitude and orientation of the dipole itself.

Nevertheless there is no problem in the evaluation of ϕd be-
cause one can calculate

ϕd = arctan
Ry

Rx
· (30)

Here N as well as sinϑd cancel out. So the 2D estimator is un-
biased with respect to ϕd. Therefore we propose a pure two di-
mensional estimator:

R2D =

N∑

i


cosϕi sinϑi
sinϕi sinϑi

0

 . (31)

From this one can still use (R2
x + R2

y)
−1/2 for evaluat-

ing d sinϑdN pd/3 and ϕd. Let us take a look at the factor sinϑd.
Sources near the pole will make a smaller contribution than those
further away. If a source near the pole is shifted by a small dis-
tance, the value ϕi of this source could change dramatically.
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So the weighting terms compensate for this artificially big er-
rors, which are just a relic of the coordinate system.

Let us now estimate the uncertainties of the estimator R2D.
The problem corresponds to an isotropic random walk process
with variable step size. The probability density for a displace-
ment of r for such a random walk is

P̌N(r)2Ddr =
3
N

r exp
(
−3r2

2N

)
dr. (32)

Similar to the random flight we determine RpCL defined by

PN(R2D > RpCL) =

∫ ∞

RpCL

drP̌N(r)2D = 1 − pCL. (33)

Here again pCL is the confidence level. It is possible to solve the
above integral analytically
∫ ∞

RpCL

dr
3
N

r exp
(
−3r2

2N

)
= exp

−
3R2

pCL

2N

 · (34)

So RpCL is given by

RpCL =

√
2N
3

ln
(

1
1 − pCL

)
· (35)

Now one can use the same argument as for the random flight to
evaluate the uncertainty of the ϕd estimation

δϕpCL = arcsin
RpCL

R2D
· (36)

In this way one can directly determine error bars for measured
results of ϕd calculated via (30). Using this two dimensional esti-
mator one cannot measure the dipole amplitude d itself but only
the combination d sinϑdN pd/3. Therefore it can only give an
lower limit for d.

Like in the case of the full three dimensional estimator, this
version is also biased in the measurement of the amplitude. The
expectation of the random contribution can be calculated via

〈Rrandom
2D 〉 =

∫ ∞

0
r

3
N

r exp
(
−3r2

2N

)
dr ≈ 0.72

√
N. (37)

So we expect our estimator to measure a combination of this
random contribution and the true velocity dipole and make the
ansatz

〈d2D〉 =

√
d2 sin2 ϑd +

9
N2 〈Rrandom

2D 〉2, (38)

where we used pd ≈ 1. Like above, we verify this via
Monte Carlo simulations, shown in Fig. 3.

5.2. Direction bias

For any masked or incomplete map of the sky, we cannot
measure the mean source density N̄/(4π), i.e. the monopole.
Therefore we always have to keep in mind that the observed
mean density is just an approximation. Gibelyou & Huterer
(2012) have used an estimator proposed by Hirata (2009), which
implicitly assumes, that the monopole is known. Based on the
knowledge of the monopole, this estimator would compensate
for masking effects and incomplete sky coverage by substract-
ing a pure random isotropic map from the observed dipole term
via (17). However, we cannot know N̄.
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Fig. 3. Ampliude bias for the estimator d2D on a hemisphere. Data rep-
resent mean and empirical variance of 1000 simulations for each N. A
function dobs(N) =

√
D2 + 9A2/N is fitted to the simulated data, with

best fit values A = 0.712 ± 0.003 and D = (0.444 ± 0.002) × 10−2. The
dipole amplitude (0.0046) is indicated by the horizontal line, the dipole
vector is assumed to lie in the equatorial plane (sinϑd = 1).

For the previous example of a hemisphere, the monopole
density is N̄/(4π) = N pd/(2π), where N = ND in (17). The ran-
dom map can be made up of an arbitrary number of sources NR,
but is reweighted by the observed number of sources ND/NR,
instead of N̄/NR. This introduces a directional bias, in addition
to the previously discussed biased amplitude. One can see this
explicitly by applying (17) on our model of a dipole modified
isotropic hemisphere. We find

〈R3DM〉hemisphere =
N pd

3
d


cosϕd sinϑd
sinϕd sinϑd

cosϑd

 +
1
2

N


0
0

pd − 1

 , (39)

which clearly is not parallel to d. For small values of d we can
expand pd and obtain

〈R3DM〉hemisphere =
N
3

d


cosϕd sinϑd
sinϕd sinϑd

1
4 cosϑd

 + O
(
d2

)
. (40)

The z component of the dipole is underestimated by a factor of 4
for the geometry of a hemisphere. Despite cancelation of the
leading term of the bias of the z direction, the dipole direction
remains biased. Less symmetric survey geometries lead to a bias
of all dipole components for this estimator.

The best strategy to avoid any directional bias for a linear es-
timator is to make the survey geometry point symmetric around
the observer for three dimensional estimators like R3D or point
symmetric around the zenith in case of two dimensional estima-
tors R2D. This implies for the NVSS that one has to cut sym-
metric in declination, such that both polar caps are missing, a
strategy that was used by Singal (2011).

5.3. Masking

The use of a masked sky additionally affects the dipole measure-
ment. In general, the estimated dipole direction and amplitude
depend on the position of the true dipole relative to the mask.
Cutting areas with large dipole contribution will reduce the am-
plitude and vice versa.
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In the following we consider masks that are point symmetric
with respect to the observer for all considered 3-dimensional es-
timators, respectively point symmetric with respect to the zenith
for the 2-dimensional estimators. Constructed in such a way,
masking does not introduce any directional bias. Nevertheless,
we have to consider the effects of masking on the estimated
dipole amplitude.

A simple method to correct for this effect was put forward
by Singal (2011), who introduced a masking factor k,

Rmask
3D =

1
k3D

∑
ri. (41)

Such a factor is expected to be a function of shape and position of
the mask as well as the dipole position. In most cases an analytic
calculation of this factor is impossible. For simple mask geome-
tries some analytic results can be found in Rubart (2012). An al-
ternative approach is to simulate the effects by means of Monte
Carlos and to compare simulations with and without masking.
The ratio of both results after a large number of simulations pro-
vides the masking factor k3D.

Doing so, we found some interesting effects. The masking
factors depend on the number of objects in the simulated maps
as well as on the true dipole amplitude. This can be explained as
follows. The masking will mainly affect the kinetic dipole contri-
bution, while the random dipole will increase due to the decrease
of the number of objects in the masked catalogue. Therefore we
expect the amplitude to be

〈d3D〉mask =

√
k2

3Dd2 +
9

N2 〈Rrandom
3D 〉2. (42)

k3D should only depend on the properties of the mask and not
on the amplitude of the dipole. To test this, we created simulated
maps for two different dipole amplitudes, with values motivated
by the CMB measurement dCMB = 0.46 × 10−2 and by the mea-
surement of Blake & Wall (2002) at 25 mJy dBW = 1.1 × 10−2.
We used the direction RA = 158◦,Dec = −4◦ in both cases. The
mask agrees with the one used by Singal (2011), i.e. we removed
all sources with |δ| > 40◦ and |b| < 10◦. Resulting amplitudes for
different numbers of sources are shown in Fig. 4.

First of all we can conclude that (42) is a good fit for the
behaviour of the simulated maps in both cases. The measured
amplitudes are larger than those estimated from full sky maps.
We can now calculate k3D. In both cases it turns out to be 1.4,
which could be used to correct the amplitude estimate.

A similar argument holds for the two dimensional estimator.
Here we expect a behaviour of the form:

〈d2D〉mask =

√
k2

2Dd2 sin2 ϑd +
9

N2 〈Rrandom
2D 〉2. (43)

Using the same assumptions about the dipole term and the same
mask as before, we obtain Fig. 5.

This time, we find k2D = 1.3 for both assumed velocities.
The simulations support our assumption that the masking factor
does not depend on the dipole magnitude d.

5.3.1. Masking correction

Although the masking factor k does not depend on the ampli-
tude d, it may depend on the dipole direction d̂. Therefore it
would be necessary to repeat the analysis of the previous section
for each dipole direction found. To reduce the simulation effort,
we rely on the following method instead.
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Fig. 4. Amplitude bias of the 3-dimensional estimator for the masked
NVSS geometry of Singal (2011). Data represent mean and empiri-
cal variance of 1000 simulations for each N. A function dobs(N) =√

(KD)2 + 9A2/N is fitted to the simulated data, with best-fit values A =
0.883 ± 0.006, KD = (0.642 ± 0.005) × 10−2 and A = 0.847 ± 0.016,
KD = (1.59 ± 0.008) × 10−2 for the expected kinetic radio dipole and
the radio dipole measured by Blake & Wall (2002), respectively. The
simulated dipole amplitudes, without masking, are indicated by the hor-
izontal lines.
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Fig. 5. Amplitude bias of the 2-dimensional estimator for the masked
NVSS geometry of Singal (2011). Data represent mean and empiri-
cal variance of 1000 simulations for each N. A function dobs(N) =√

(KD)2 + 9A2/N is fitted to the simulated data, with best-fit values A =
0.810 ± 0.009, KD = (0.589 ± 0.008) × 10−2 and A = 0.745 ± 0.014,
KD = (1.493 ± 0.006) × 10−2, for the expected kinetic radio dipole
and the dipole measured by Blake & Wall (2002), respectively. The
simulated dipole amplitudes, without masking, are indicated by the
horizontal lines.

For the full, as well as for the masked sky, surveys
with 106 sources were simulated. This choice guarantees that we
investigate masking effects and not effects due to shot noise. The
mean dipole amplitudes are determined for 103 simulated full
and masked sky surveys, respectively. The ratio of the masked
sky mean amplitude to the full sky mean amplitude is denoted k̃.
This ratio provides a first approximation to the masking factor.

k̃ ≡

√
k2d2 + 9

N2 〈Rrandom〉2
√

d2 + 9
N2 〈Rrandom〉2

· (44)

The influence of the random dipole tends to bias k̃ towards 1 (as
can be easily seen in the limit of a small number of sources).
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This bias can be compensated by rewriting the above formula
into

k =

√
k̃2 +

9〈Rrandom〉2
d2N2

(
k̃2 − 1

)
. (45)

The values of N and d are input parameters of the simulation.
From the last section we know the values of 〈Rrandom〉 for the
three- as well as for the two-dimensional case. Therefore we can
transform the approximated masking factor k̃ into the unbiased
masking factor k.

6. Dipole from a flux weighted estimator

Let us now turn to a discussion of the flux weighted estima-
tor (16), which was used by Singal (2011).

We first take a closer look at the theoretically expected value
of the flux dipole dflux. For simplicity we assume full sky cover-
age. For a large number of sources,

d̂ ·
N∑

i=1

S iri ≈
∫

4π
dΩ

∫ S max

S min

dS
d2N

dΩdS
S cos θ, (46)

where θ is the angle between a source and the dipole direction d̂.
We now determine the number of sources per flux and solid

angle as a function of the observer velocity. At zeroth order in
velocity, this density n(S ) is isotropic. As for the number counts,
stellar aberration and the Doppler effect have to be taken into
account. Stellar aberration gives rise to

d2N
dΩdS

≈ n(S )
(
1 + 2

v

c
cos θ

)
. (47)

The relativistic Doppler effect alters the observed fluxes. When
we observe a source in the direction of motion, we measure a
higher flux than if we were at rest with respect to the isotropic
and homogeneous Universe. We relate the observed flux S 0 to
the flux that is measured by an observer with vanishing peculiar
motion,

S rest ≈ S 0 − S 0(1 + α)
v

c
cos θ. (48)

We assume the power law n(S ) = aS −x̃ to hold for observers at
rest and Taylor expand around the observed flux

n(S rest) ≈ n(S 0)
[
1 + x̃(1 + α)

v

c
cos θ

]
. (49)

If the assumed power law holds for all sources of a survey,
then x̃ = 1 + x, with x as defined above in (4). Combining the
Doppler effect and the stellar aberration leads to

d2N
dΩdS

= n0(S 0)
[
1 + (2 + x̃(1 + α))

v

c
cos θ

]
+ O

((
v

c

)2
)
· (50)

This result only holds under the assumption of a power law be-
haviour of the number counts. It is crucial to keep this in mind.

6.1. NVSS

Let us now see, if we are allowed to make this assumption for
the analysis of NVSS data. The plot in Fig. 6 demonstrates that
the power law is not valid for the flux range used in the analysis
of Singal (2011), i.e. fluxes up to 1 Jy. Actually the slope steep-
ens for the larger fluxes considered. The best fit power-law gives
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Fig. 6. Differential number counts of the NVSS catalogue, S min =
10 mJy, best fit values for f (s) = a · s−x̃ with 25 mJy < S < 1000 mJy
are a = 2.1 × 107 and x̃ = 1.9.

a reduced chi-squared value of χ2 = 122. That means that the
observed data cannot be fitted by a power law.

Thus Singal’s assumption x̃ ≈ 1 does not hold for two rea-
sons. Firstly, for a pure power law we would expect x̃ = 1+x ≈ 2,
which is close to what we find: x̃ ≈ 1.9. Secondly, the power-law
assumption only applies to about one half of the data.

In conclusion, the result of unexpectedly large amplitudes in
Singal (2011) could partly be explained by this two effects. With
power law behaviour one should use x̃ = 1.9 or larger to also
account for the steepening of the spectral index at high fluxes,
which increases the expectation value by

〈dobs〉|x̃ = 1.9

〈dobs〉|x = 1
> 1.4. (51)

The results of the flux weighted estimator from Singal (2011)
should be reduced by at least a factor of 1.4.

Compared to the estimator of Crawford, the estimator (16)
stresses sources with high flux. To avoid the domination of
a small number of sources, sources with S > 1000 mJy are
not taken into account. Nevertheless, this estimator is stressing
bright sources. These sources are, on average, nearer than the
rest. Hence (16) might be dominated by nearby sources and by
atypically bright ones. This seems to be yet another weakness of
this estimator, since the local universe is anisotropic.

7. Dipole estimates from NVSS and WENSS

7.1. 3D linear estimates

We are now in a position to check the three dimensional esti-
mations of the radio dipole in the NVSS catalogue. As we have
shown above, the estimator used by Gibelyou & Huterer (2012)
(17) gives rise to a biased dipole direction and thus is not fur-
ther considered in this work. The flux weighted estimator (16) is
also of limited use, as the NVSS data cannot be described by a
power-law over all fluxes of interest. We thus focus here on the
simplest linear estimator (15).

In order to obtain an unbiased direction estimate, the cut sky
geometry of Singal (2011) is adopted. The masking factor k is
determined for every measured dipole anisotropy direction, as
described in 5.3.1. The pure estimator results d3D are then cor-
rected for the masking bias and we obtain dcor

3D .
All results for right ascension agree within their error

bars. The same holds true for the dipole amplitudes. This
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Table 4. Dipole direction and amplitude from NVSS.

Flux N RA Dec d3D k dcor
3D

(mJy) (◦) (◦) (10−2) (10−2)
50 91 662 170 ± 23 −17 ± 23 2.78 1.38 2.0 ± 0.8
40 115 917 156 ± 26 −18 ± 26 2.23 1.29 1.7 ± 0.8
35 133 022 156 ± 22 −11 ± 22 2.46 1.32 1.9 ± 0.7
30 155 120 156 ± 19 −2 ± 19 2.63 1.35 1.9 ± 0.7
25 185 649 158 ± 19 −2 ± 19 2.38 1.34 1.8 ± 0.6
20 229 557 153 ± 18 2 ± 18 2.31 1.30 1.8 ± 0.6
15 298 289 149 ± 18 17 ± 18 2.02 1.28 1.6 ± 0.5

Notes. The estimator (15) was used. Excluded are sources with |δ| > 40◦
and |b| < 10◦ (J2000).

self-consistency indicates the absence of significant systematic
errors. Unfortunately, we can not state the same for the dec-
lination results. One observes an significant increase in decli-
nation with respect to deceasing flux limits. This effect is very
likely due to a relic of the NVSS survey procedure. Sources be-
low δ = −10◦ were measured by means of a different alignment
of the Very Large Array. The source density is therefore smaller
in this area. Therefore it is expected that the dipole measurement
will show increasing values of declination at the fainter flux lim-
its. This makes it hard to trust the declination results below a
flux limit of 25 mJy (note that there is no significant difference
between 20 mJy and 30 mJy).

The results of Table 4 can be compared to those in Table 2.
Number of sources and direction results are almost the same.
Deviations could be explained by minor differences in the pre-
cise form of the mask. We used a different method for estimating
uncertainties in the direction and amplitude measurement, than
those used by Singal (2011). Since our method (described above)
is more conservative, we obtain larger errorbars. All dipole am-
plitudes in this table are slightly below those from Table 2. In
Singal (2011) a different method was used to obtain the dipole
amplitude from the estimator (15), which can explain this dis-
crepancy. In principle we can recover the results of Singal (2011)
and confirm an unexpectedly high dipole amplitude.

7.2. 2D linear estimates

A disadvantage of the NVSS catalogue is that the sampling depth
changes at δ = −10◦ (less sensitivity at lower declinations). This
could lead to a directional bias of the NVSS data analysis and
thus it is interesting to also use the two dimensional estimator
presented in this work, as this effect cannot lead to a bias in
this case. For the WENSS analysis, a three dimensional linear
estimator cannot avoid directional bias.

7.2.1. NVSS

A major advantage of the estimator R2D is that it does not re-
quire a north-south symmetry of the catalogue. Therefore, the
declination limit of the NVSS catalogue is no problem.

As the estimator R2D requires a point symmetry around the
north pole, we cannot remove the Galactic plane only. For each
removed point we also need to subtract the point which is 180◦
away. When we do so, a second plane occurs, which we call the
counter Galactic plane (CG). A HEALPix1 map of the remaining
NVSS sources can be seen in Fig. 7. The colour of the pixels
encodes the number of sources per pixel.

1 http://healpix.jpl.nasa.gov

Fig. 7. Map of the number counts in HEALPix pixels from NVSS. The
pixel size corresponds to Nside = 32. Shown are equatorial coordinates
at epoch J2000. The NVSS contains data at δ > −40◦ and the Galactic
plane and a “counter galaxy” are masked (CG mask) in order to avoid
Galactic contamination and to restore point symmetry with respect to
the zenith.

Table 5. Dipole right ascension and amplitude d sin θd from NVSS.

Flux N RA d2D k dcor
2D

(mJy) (◦) (10−2) (10−2)
50 96 337 171 ± 19 2.63 1.42 1.9 ± 0.7
40 121 831 146 ± 20 2.28 1.29 1.8 ± 0.7
35 139 851 152 ± 17 2.49 1.28 1.9 ± 0.6
30 163 208 153 ± 15 2.55 1.28 2.0 ± 0.6
25 195 245 155 ± 14 2.45 1.29 1.9 ± 0.5
20 241 399 150 ± 14 2.25 1.26 1.8 ± 0.5
15 313 724 148 ± 15 1.86 1.21 1.5 ± 0.4
10 447 459 133 ± 14 1.67 1.10 1.5 ± 0.4

Notes. The 2D estimator (31) is used and all sources with δ > −40◦, ex-
cept the Galactic and counter Galactic planes (CG mask), are included.

An alternative would be the mask used by Singal (2011).
That mask is a combination of two great cycles and would there-
fore also work for R2D. However, it turns out that the mask
with the CG removes fewer sources. Thus we decided to use
the CG mask.

The next step is to evaluate the masking correction k of the
CG mask. As this factor depends on the right ascension and on
the declination of the dipole anisotropy, we need some additional
information. From R2D we estimate the right ascension. As the
declination cannot be evaluated with R2D, we use the declina-
tion as provided by the three dimensional estimator in order to
determine k. These values are certainly not exact, since a differ-
ent mask is used now. The influence of a small change in dipole
declination on the evaluated factor k is discussed in Sect. 7.2.2.

We reduce the dipole amplitude of the 2D estimator by
the masking factor k and obtain the masking corrected ampli-
tude dcor

2D . The results of this procedure for the NVSS catalogue
and different flux limits can be found in Table 5.

Obtained right ascensions and amplitudes are stable with re-
spect to different flux limits. For all flux limits ≥15 mJy, the esti-
mated right ascension of the radio dipole is in agreement with the
CMB prediction of RA = 168◦. Only when we include sources
as faint as 10 mJy, we find a 3σ deviation. However, we know
that the catalogue is incomplete at its faint end.

The masking corrected dipole amplitudes dcor
2D are signif-

icantly above the CMB prediction. To some extent this is
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Fig. 8. Map of the number counts in HEALPix pixels from WENSS.
The pixel size corresponds to Nside = 32. Shown are equatorial coordi-
nates at epoch B1950. The WENSS contains data at δ > 30◦ and the
Galactic plane and a “counter galaxy” are masked (CG mask) in or-
der to avoid Galactic contamination and to restore point symmetry with
respect to the zenith.
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Fig. 9. Differential number counts of the WENSS catalogue, S min =
5 mJy, best fit values for f (s) = a · s−x̃ with 25 mJy < S < 1000 mJy
are a = 2.6 × 106 and x̃ = 1.6.

expected due to the discussed amplitude bias. A detailed dis-
cussion is presented in the next section.

7.2.2. WENSS

We finally present the first estimation of the radio dipole from the
WENSS catalogue. We cannot use the three dimensional linear
estimators on this catalogue, since it only contains sources with
Dec > 28◦. The two dimensional estimator on the other hand can
be used here. Again, we need to remove the Galactic plane and
the counter Galactic plane to reestablish a symmetry around the
north pole. The remaining WENSS catalogue is shown in Fig. 8.

To choose the best flux limit, we analyse the differen-
tial number counts between 10 mJy and 1000 mJy. Figure 9
shows that the WENSS catalogue seems to be incomplete be-
low 25 mJy. In Rengelink et al. (1997) the completeness of
the WENSS catalogue is claimed to hold only above a limit of
30 mJy. From Fig. 9 we infer that a simple power law also ap-
plies to the source counts between 25 and 30 mJy and thus we
include sources down to a flux limit of 25 mJy in our analysis.

Table 6. Masking correction k for WENSS with CG mask and a dipole
with RA = 120◦.

Dec 45◦ 30◦ 5◦ 0◦ −5◦ −30◦ −45◦

k 0.50 0.48 0.45 0.44 0.44 0.47 0.51

Table 7. Dipole estimate from WENSS based on 2D estimator using
peak flux values for all sources with δ > 30◦, except those in the
Galactic and counter Galactic planes (CG mask).

Flux N RA d2D k dcor
2D

(mJy) (◦) (10−2) (10−2)
40 67 052 124 ± 51 1.31 0.45 2.9 ± 2.3
35 73 653 123 ± 46 1.36 0.47 2.9 ± 2.1
30 81 863 122 ± 48 1.24 0.45 2.8 ± 2.1
25 92 600 117 ± 40 1.36 0.47 2.9 ± 1.9

Notes. Our WENSS analysis uses positions at epoch B1950.

We cannot obtain information on the declination of the
dipole from the WENSS catalogue by means of the two di-
mensional estimator applied in this work. This could in prin-
ciple be a problem for the determination of the masking factor k.
Therefore, we further investigated the effect of different dipole
declinations. Assuming the WENSS symmetry and a right as-
cension of 120◦ (close to the results given in Table 7), we calcu-
lated k for 7 different values of declination, see Table 6. For this
mask, the dependence of k on the right ascension of the dipole
is relatively small, compared to shot noise uncertainties. We as-
sume dec = 0◦ for the determination of k, based on the expecta-
tion from the CMB dipole and the NVSS radio dipole estimates.

The results of the WENSS analysis are presented in Table 7.
Although the WENSS catalogue covers only one fourth of the
sky, we find that it can be used for the estimation of the ra-
dio dipole. A problem is the limited number of sources that are
left after masking the galaxy and restoring the required symme-
try of the catalogue. This leads to larger error bars, compared
with the NVSS estimates. We can conclude that the observed
dipole anisotropy in the WENSS catalogue is in agreement
with the measurements from NVSS, which is a nontrivial state-
ment, as we are probing radio sources at different frequencies
(325 MHz vs. 1.4 GHz).

8. Comparison of results

We summarize the various results from the literature and this
work in Table 8. The results of this work are highlighted with
bold faced letters. For comparison we focus on the flux limits
of 25 mJy and 15 mJy.

All estimated dipole directions, both from the NVSS and
from WENSS are in good agreement with each other and with
the direction from the CMB dipole, with the exception of the re-
sult from Gibelyou & Huterer (2012). As explained in Sect. 5.2,
their estimator shows a directional bias. We did not investigate
any further, whether this bias invalidates their findings at a rather
low flux limit. Our analysis based on the three dimensional es-
timator applied to NVSS and using the mask defined by Singal
(2011) gives (RA, Dec) = (158◦ ± 19◦,−2◦ ± 19◦).

For the amplitude of the radio dipole, the situation is more
contrived. Here we focussed on the study of linear estimators and
showed that all linear estimators under investigation returned
a biased estimate of the amplitude. The amplitude estimators
of Blake & Wall (2002) and Gibelyou & Huterer (2012) are
unbiased, but the latter one uses a biased direction estimate as an
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Fig. 10. Histogram of dipole amplitudes for 100,000 simulations of the three dimensional (left) and two dimensional (right) estimator, assuming
the CMB expectation and a slope of x = 1.1, with 185 649 (left) and 195 245 (right) sources per simulation and appropriate masks. The black
vertical lines are the NVSS results of this work.

Table 8. Comparison of results.

Source Flux > N RA Dec d
(mJy) (◦) (◦) (10−2)

NVSS
BW 25 197 998 158 ± 30 −4 ± 34 1.1 ± 0.3
SIN 25 185 474 158 ± 10 −2 ± 10 1.8 ± 0.4
SIF 25 184 237 159 ± 10 −7 ± 9 2.2 ± 0.6
SIF* 25 184 237 159 ± 10 −7 ± 9 1.6 ± 0.5
3DS 25 185 649 158 ± 19 −2 ± 19 1.8 ± 0.6
2DCG 25 195 245 155 ± 14 . . . 1.9 ± 0.5
GH 15 211 487 117 ± 20 6 ± 14 2.7 ± 0.5
3DS 15 298 289 149 ± 18 17 ± 18 1.6 ± 0.5
2DCG 15 313 724 148 ± 15 . . . 1.5 ± 0.5
WENSS
2DCG 25 92 600 117 ± 40 . . . 2.9 ± 1.9
expected
NVSS . . . . . . 168 −7 0.48 ± 0.04
WENSS . . . . . . 168 −7 0.42 ± 0.03

Notes. Radio dipole from NVSS: BW (Blake & Wall 2002), SIN (Singal
2011) number counts, SIF (Singal 2011) flux weighted number counts,
SIF* corrects SIF for slope (this work), 3DS three-dimensional es-
timator, mask adopted from Singal (2011) (this work), 2DCG two-
dimensional estimator, CG mask (this work), GH (Gibelyou & Huterer
2012); Radio dipole from WENSS: 2DCG two-dimensional estimator,
CG mask (this work). The expectations for a purely kinetic radio dipole
are given at the bottom of the table.

input and is thus of limited interest. Besides bias, we identified
another effect that reduces the dipole amplitude found by the flux
estimator used in Singal (2011). We reduced the result of this
estimator by a factor of 1.4, due to the fact that the appropriate
exponent of the differential number count is given by x̃ = x + 1
(see Sect. 6). With this correction, the result of the flux weighted
estimator (denoted by SIF* in Table 8) is now in agreement with
the result of Blake & Wall (2002).

Our three dimensional estimate with the masking of Singal
(2011) gives rise to d = (1.8 ± 0.6) × 10−2. One should keep in
mind that this is a biased result, thus one cannot naively compare
it to the expected amplitude. To figure out if our result is consis-
tent with the null hypothesis that the radio sky is statistically
isotropic, modified by the kinetic effects of our proper motion
(measured via the CMB dipole), we performed 100 000 Monte
Carlo simulations. The corresponding histogram is shown in

Fig. 10. We find that only 21 of those realizations contain a
dipole higher than the measured one and thus we can exclude
that the estimated radio dipole is just due to our proper motion
and amplitude bias at 99.6% CL. This is actually very puzzling,
as the direction of the radio dipole agrees with the direction of
the CMB dipole within the measurement error.

We can redo this analysis with the null hypothesis that the
radio dipole was accurately measured by Blake & Wall (2002).
This time we find that 3402 out of 100 000 realisations are higher
than our measured dipole. If we increase the implemented veloc-
ity towards the upper one sigma bound of the dipole amplitude
from Blake & Wall (2002), we observe every sixth simulation to
be above our own measurement (16%). Therefore our result is in
agreement with Blake & Wall (2002).

Before we turn to the discussion of potential explanations,
let us inspect the dipole amplitudes from the two dimensional
estimator. The dipole amplitudes estimated with the two dimen-
sional estimator are also in agreement with the results of Singal
(2011) and Blake & Wall (2002). We find d sinϑd = (1.9±0.5)×
10−2 for the NVSS analysis and d sinϑd = (2.9 ± 1.9) × 10−2

for WENSS, which translate into lower limits on d. Thus, the
results from the WENSS catalogue are in agreement with the
radio dipole found in the NVSS catalogue. This is encouraging
as they are prepared at different instruments and probe different
frequencies.

In Figs. 10 and 11 we present the corresponding results
from 100 000 Monte Carlo simulations for the geometries of the
NVSS and WENSS two dimensional estimators. In both cases
we find that the amplitude bias is not enough to explain the dif-
ference between the observed and the expected amplitude. In
the case of NVSS the null hypothesis (isotropic sky plus proper
motion dipole) is ruled out at 99.6% CL, while for the WENSS
analysis it is inconsistent at 98.1% CL.

The two dimensional estimation (2DCG), using the NVSS
catalogue, is also compared to simulations, assuming the re-
sults from Blake & Wall (2002). We observe 1141 and 7024 out
of 100 000 simulations to give a dipole above our measurement
for the assumptions of dtrue = 1.1 × 10−2 and dtrue = 1.4 × 10−2,
respectively. Therefore, the result of our two dimensional esti-
mator is not in contradiction to Blake & Wall (2002).

9. Conclusion

We conclude that the task to measure the cosmic radio dipole
remains relevant and we expect that interesting information on
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Fig. 11. Histogram of dipole amplitudes from 100 000 simulations for
the dimensional estimator, assuming the CMB expectation, a slope of
x = 0.8, 92,482 sources per simulation and the CG masking form for
the WENSS catalogue. The black vertical line is the WENSS result of
this work.

cosmology can be extracted from this measurement. All mea-
surements so far point towards a higher radio dipole amplitude
than expected, when we assume that the cosmic radio dipole is
just due to our peculiar motion with respect to the rest frame de-
fined by the CMB. This is quite puzzling, as the orientation of
the radio dipole agrees with the orientation of the CMB dipole
within measurement errors. This is the case for the NVSS and
the WENSS analysis, two radio point source catalogues that
cover ∼3π and ∼π of the sky, respectively. They contain informa-
tion at different frequencies (1.4 GHz and 325 MHz) and have
been put together by different instruments and thus provide a
strong constraint on systematic issues.

Our detailed analysis of various linear dipole estimators
(Crawford 2009; Singal 2011; Gibelyou & Huterer 2012) for
three dimensional estimates (αd, δd, d) and a new linear estima-
tor for a two dimensional estimate (αd, d cos δd) had to tackle
several non-trivial issues. We investigated issues of directional
bias, amplitude bias and masking. There is still room to opti-
mize the masking of the galaxy. We did not look into quadratic
estimators, as used by Blake & Wall (2002). Our studies did not
incorporate the uncertainties in point source positions, as we ex-
pect that they are subdominant (their magnitude is well below
the effect of aberration, see e.g. Rengelink et al. 1997). The mea-
surement error of the flux is also expected to be subdominant as
we included sources with flux above 15 mJy only. In the case of
NVSS these are a factor 6 above the 5σ point source detection
limit, in case of WENSS it is a factor of 1.4. The number of point
sources considered in our analysis is about 190 000 for NVSS
and 92 000 for WENSS. Putting all those facts together, we con-
sider the NVSS analysis to be more reliable. Nevertheless, the
results of the WENSS analysis are fully consistent with our re-
sults from NVSS.

Our result (3DS) for the NVSS catalogue is (RA,Dec, d) =
(154◦ ± 19◦,−2◦ ± 19◦, (1.8 ± 0.6) × 10−2). Thus we conclude
that the observed amplitude of the radio dipole exceeds the ex-
pected amplitude by about a factor of four. We could imagine
that this might be due to the structure that causes our proper mo-
tion, which in a simple model of our Hubble patch would cer-
tainly be aligned with the direction of proper motion. However,
all attempts to identify a “great attractor” by means of other ob-
servations (optical, infra-red, X-ray) have failed so far. Of all

those probes, the radio surveys are definitely the deepest probe
of the Universe, as the mean redshift of NVSS sources is esti-
mated to be 1.2 by de Zotti et al. (2010) and 1.5 by Ho et al.
(2008). To explain the observed excess radio dipole by contribu-
tions from local structure, we would need a density contrast of
order 0.05 at scales extending to about z ≈ 0.3, which does not
seem plausible. Without a detailed study of the redshift distribu-
tion of the radio sources it is impossible to judge whether this
finding is actually in agreement with the current standard model
of cosmology.

An example of such a scenario is provided by Wiltshire et al.
(2012). They claim that the spherically averaged Hubble law
on <100/h Mpc scales is significantly closer to uniform in the
Local Group frame as compared to the CMB frame and on this
basis have suggested a non-kinematic contribution to the CMB
dipole. In this case the CMB dipole could differ from the cosmic
radio dipole.

Another reason for the large amplitude of the radio dipole
could be that the linear estimators considered in this work do
not assume the deviation from isotropy to be a pure dipole.
Thus higher multipole moments also contribute to the measured
amplitude.

It has been found from the analysis of the CMB that
quadrupole, octopole and a few more low `-multipoles seem not
to be orientated randomly on the sky, but show some unexpected
alignments (Schwarz et al. 2004; Bennett et al. 2011; Copi et al.
2010) among themselves and with the CMB dipole direction.
Thus it might not be surprising that also the dominant anisotropy
direction of the radio sky lines up.

It is evident that it would be crucial to repeat this investiga-
tion with new and even deeper radio catalogues, which provide
more sources. In the near future there will be three large sky
surveys available (Raccanelli et al. 2012). A multi-wavelength
study will be possible based on the Multifrequency Snapshot
Sky Survery (MSSS) of the International LOFAR Telescope and
with the LOFAR Tier-1 survey. The Australian Square Kilometre
Array (SKA) Pathfinder (ASKAP) will produce the Evolutionary
Map of the Universe (EMU) and the Westerbrok Synthesis Radio
Telescope (WSRT) equipped with the Apertif system will com-
pile the Westerbrok Observations of the Deep Apertif Northern
sky survey (WODAN) catalogue.

The multi-wavelength surveys will also allow us to directly
measure the spectral index α, which has to be known to connect
the measured amplitude to the kinetic dipole. A steepening of
the spectral index for the lowest flux sources would increase the
expected kinetic amplitude. HI surveys will have the advantage
that they will also provide redshift information on top of posi-
tions and fluxes and we will be able to study the evolution of the
radio dipole as a function of redshift out to redshifts of a few.
Beyond that SKA will increase the number of sources in such a
survey by orders of magnitude. All these surveys will reduce the
random dipole contribution, improve on systematics, and allow
us to settle the question: Is the radio dipole in agreement with
the CMB dipole?
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Appendix A: Monte Carlo simulations

We used the pseudorandom number generator Mersenne Twister
for all Monte Carlo simulations. One simulated source consists
of two position coordinates and one flux value. The coordi-
nates will be drawn from an uniform distribution, leading to an
isotropic sky for a catalogue with many sources. To obtain a de-
sired number count power law like (4) with a certain slope x,
we calculate the flux S using a random number A (choosen be-
tween 0 and 1) by

S rest = S L(1 − A)−x, (A.1)

where S L is a flux value 20% below the simulated flux limit.
The simulation also creates sources, which only due to Doppler
shifting are counted in the final catalogue, because this value
of S L lies below the simulated flux limit. Lowering S L further
increases computational time and is not necessary, as long as the
simulated velocity v is below 0.1c.

The two physical effects (Doppler shift and spherical aberra-
tion) will be implemented separately. In cooperating the Doppler
effect is straightforward, since it only affects the flux values of
each source depending on the angle θ between the source and
the velocity direction, i.e.

S obs(νobs) = S rest


1 + v

c cos(θ)
√

1 − ( vc )2



1+α

· (A.2)

In the simulation α is fixed to 0.75 for all sources. The velocity
direction and amplitude can by chosen be the user.

To model the relativistic effect of stellar aberration one has
to change the position of each radio source. The aberration
formula is

tan(θ′) =
sin(θ)

√
1 − ( vc )2

v
c + cos(θ)

, (A.3)

where θ′ is the new angle between the velocity direction and
the radio source. Forth, the position of a radio source is trans-
lated into Cartesian coordinates by assuming that it lies on a unit
sphere. Then a straight line from this point (P) to the velocity
direction on the sphere (V) is constructed depending on a pa-
rameter t

r(t) = P(1 − t) + Vt. (A.4)

On this line we choose a t′ in such a way that r(t′) points towards
the new position. The value of t′ can be determined by

r(t′) · V = r′(t′) cos(θ′) (A.5)

→ t′ =
r′(t′) cos(θ′) − cos(θ)

1 − cos(θ)
(A.6)

with r′(t′) =
√

r′2(t′). This equation is solved by

t′1 =
sin(θ − θ′)

sin(θ − θ′) + sin(θ′)
∨ t′2 =

sin(θ + θ′)
sin(θ + θ′) − sin(θ′)

· (A.7)

We know that for θ = θ′ the result of t′ must always be 0.
Therefore the correct solution is t′ = t′1. Now one has to trans-
form r(t′) back into spherical coordinates in order to find the new
position of the radio source. The new declination ϑ′ is then (the
index v stands for the velocity direction):

ϑ′ = arccos
(

1
r′

[(1 − t′) cos(ϑ) + t′ cos(ϑv)]
)

(A.8)

and the new right ascension ϕ′:

ϕ′ = arcsin
(

(1 − t′) sin(ϑ) sin(ϕ) + t′ sin(ϑv) sin(αv)
r′ sin(ϑ′)

)
· (A.9)

This way one obtains a simulated sky, including the effect of
the observers movement. Now one can feed the different estima-
tors with those sky simulations and obtain the resulting dipole
vectors.
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2.2 Flux-weighted estimator correction

There was a critical response (Singal 2014) in the literature concerning
section 6 of Rubart & Schwarz (2013). In that part of our work we inves-
tigated the �ux-weighted linear estimators, which are similar to the linear
number-count estimators, but weight each source with the measured �ux
value,

~Rflux =
∑

Si~̂ri. (2.1)

We claimed that the expectation value for the amplitude of this estimator
is by a factor of about 1.4 above the corresponding expectation for a pure
number count estimator. It turned out that this factor is not correct.
In Rubart & Schwarz (2013) we Taylor expanded the number density of
the observed sources for the changed �ux values. Since the �ux estimator
in question also has an upper �ux limit, this method is not valid in this
case. Assuming the number density for the observed survey does obey a
power law for the whole range of used �uxes, the kinematic dipole does
not change the observed �ux values in any direction. The estimator always
considers sources between an upper and a lower �ux limit and those sources
do behave like n(> S) ∝ S−x in any case. The only e�ects playing a role
are (a) the aberration leading to a change in position of radio sources and
(b) the Doppler-e�ect leading to an increased observed number of sources
in a certain direction. Those e�ects are the same for the number count
estimator and therefore both methods should give the same expectation
value.

In order to clarify this debate, we also investigated the expectation of
the �ux estimator with simulated radio maps in comparison to a pure
number-count estimator. The simulated full-sky maps had 106 sources
each and a simulated peculiar observer velocity of v = 1200 km/s. Those
high values were chosen in order to keep the shot noise contribution small.
In the simulated maps the power law n(> S) ∝ S−x (with x = 1) was
used for drawing all �ux values and thereby the simulation ful�lled the
assumptions mentioned above. The theoretical dipole amplitude in table
2.1 was computed using equation (1.6) and corresponds to the case, without
any correction factor applied and without a shot-noise bias.

First of all we clearly see in table 2.1 that the simulations do not sup-
port any need for a correction factor between those two estimators. The
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number count estimator �ux estimator theoretical value

d (10−2) 1.515± 0.006 1.542± 0.010 1.5

Table 2.1: Mean dipole amplitudes from 1000 simulations with statistical
variance, the number count of the simulated sources behaved
like n(> S) ∝ S−x with x = 1 and the spectral index of the
sources was α = 0.75. Each simulation was full sky with 106

sources, the implemented observer velocity was v = 1200 km
s

towards RA = 180◦ and dec = 0◦.

resulting amplitudes di�er only very little and agree within their two-sigma
boundaries with each other. One sees a little bit higher error for the �ux
estimator, which can be explained in the following way: Due to the fact
that the sources are weighted with their �ux values, some become more
important in the estimation than others. This increases the shot noise of
the estimator, since the number of higher weighted sources is comparably
small. Hence, the shot noise amplitude bias will be a little bit increased
and can explain the small di�erence in amplitude for both estimators.
This supports our initial statement that the �ux estimator is less stable

and therefore one should prefer to use a pure number count estimator.
Another point is, that the �ux estimator depends crucially on the power
law behaviour of the number counts along the whole used �ux spectrum,
while the linear number estimator only assumes such a power law near
the lower �ux limit. Nevertheless, we acknowledge that both estimators
result in the same amplitude expectation for the given assumptions and
the proposed correction factor of 1.4 was an error.
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Chapter 3

Masking and Calibration e�ects

Insu�cient facts always invite danger.

� Mr. Spock, Star Trek: Space Seed

3.1 Masking

In section 2.1 the dipole amplitude measured by linear estimators was
discussed in great detail. We found a bias, due to shot noise, as well as one
due to masking. The second one was corrected for by simulated maps. The
resulting amplitudes were compared to simulations, which assumed the
CMB dipole as basis for the observer's velocity. In this way a discrepancy
between the radio maps and the expected kinetic contribution was found.
The dipole direction on the other hand was assumed to be unbiased, as

long as the masked map was point symmetric w.r.t. the observer. This
assumption was �rst made in the work of Ellis & Baldwin (1984) and
explicitly used in later studies, e.g. by Singal (2011). The basic principle
is that the monopole will not appear in the linear estimation, as long as the
mask is symmetric, since the monopole contribution due to masking will
cancel then. Implicitly the same assumption is used, when masked areas
are �lled with isotropically distributed simulated sources, for correcting
the monopole bias for incomplete skies [i.e. Crawford (2009) and Gibelyou
& Huterer (2012)]. In fact this assumption is over-simplifying the problem,
since the radio sky does also have a dipole modulation, which can interact
with the mask. In this section we study, whether the dipole direction
measured by linear estimators with a symmetric mask is unbiased or not.
One expects the biggest possible bias to emerge, when the mask is not

symmetric with respect to the dipole modulation. We created simulated
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radio maps and used the linear estimator to measure the dipole direction.
In this way we can compare, whether the measured direction is in agree-
ment with the true simulated distribution. In order to reduce shot noise
contamination, a rather high peculiar velocity (v = 1200km

s
) was assumed

and we simulated the sky with one million sources. We masked areas in two
di�erent ways. The �rst type of mask is called "caps", because the areas at
the polar caps were masked and only sources between the declination val-
ues of 40◦ and −40◦ were included in the measurement. Exactly inverted
is the mask type "ring", where only sources outside those declinations will
be taken into account.

mask type decsimd measured d× 102 measured decd
caps −40◦ 1.565± 0.017 −14.95◦ ± 0.44◦

ring −40◦ 2.016± 0.026 −74.60◦ ± 0.38◦

caps −10◦ 1.917± 0.024 −3.21◦ ± 0.38◦

ring −10◦ 0.915± 0.018 −35.84◦ ± 1.30◦

Table 3.1: Linear estimator measurements for 100 simulated maps con-
taining 106 sources (for the full sky) and implemented observer
velocity of v = 1200km

s
towards RA = 180◦ and decsimd (see ta-

ble). Masking sources within −40◦ < dec < +40◦ for the ring
type mask and with either dec > 40◦ or dec < −40◦ for the caps
type mask.

In table 3.1 the results of our simulations can be seen. The changing
dipole amplitude values were expected and for observations using radio
surveys these amplitudes are therefore modi�ed by a masking factor [see
e.g. Rubart & Schwarz (2013)]. In all simulated cases we see a directional
bias signi�cantly above the estimated variances of the simulations. For
the caps mask, the bias goes towards the celestial equator and for the
ring mask type towards the celestial poles (in this case, the celestial South
Pole). Due to symmetry considerations the caps mask in general will have
an e�ect pointing towards the equator and the ring mask away from the
equator, independent of the sign of the declination values.

For the simulated cases above we can calculate the direction bias ana-
lytically. Therefore we assume w.l.o.g. N sources on the whole sky and a
dipole with right ascension of RA = 0◦. The dipole amplitude d and the
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3.1 Masking

dipole declination decd will not be �xed. For convenience we will switch
the coordinate system into spherical coordinates, meaning we change all
declination angles into ϑ = 90◦ − dec and just rename the right ascension
RA = ϕ (i.e. ϑd = 90◦ − decd and ϕd = 0◦). We calculate the expectation
value of the linear estimator with a mask that removes sources within the
polar caps (up to an angular distance to the poles of α),

〈~R3D〉 =
N

4π

∫

| cosϑ|<| cosα|
dΩ (1 + r̂ · ~d) r̂. (3.1)

We de�ne β = cosα and the integral becomes:

N

4π

∫ 2π

0
dϕ

∫ β

−β
d cosϑ


1 +




cosϕ sinϑ
sinϕ sinϑ

cosϑ


 · d




sinϑd
0

cosϑd




 r̂.

Executing the scalar product, the integrand gives

y [1 + d cosϕ sinϑ sinϑd + d cosϑ cosϑd]




cosϕ sinϑ
sinϕ sinϑ

cosϑ


 .

The y component of 〈~R3D〉 vanishes, since the corresponding terms in the
integrand are proportional to sinϕ or sinϕ cosϕ and will therefore result
in 0 after the integration over dϕ. Now we evaluate the z component.
Here the terms cosϑ + d cosϑ cosϕ sinϑ sinϑd vanish after cosϑ and ϕ
integration respectively. Hence, we are left with

〈~R3D〉z =
N

4π

∫ 2π

0
dϕ

∫ β

−β
d cosϑ(d cos2 ϑ cosϑd) .

After resubstituting β, this integral provides the expectation value

〈~R3D〉z =
N

3
d cosϑd cos3 α . (3.2)

Here we see that the masking limit cosα does have an e�ect on the z
component of the estimator. In order to understand, whether the e�ect
propagates to the direction estimation, we also have to evaluate the x com-
ponent of the integral. Here the only nonvanishing term in the integrand
leads to
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〈~R3D〉x =
N

4π

∫ 2π

0
dϕ

∫ β

−β
d cosϑ(d cos2 ϕ sin2 ϑ sinϑd) ,

which can be solved, utilizing the relation sin2 ϑ = 1 − cos2 ϑ and again
changing β back to cosα, leading to:

〈~R3D〉x =
N

2
d sinϑd

[
cosα− 1

3
cos3 α

]
. (3.3)

The direction estimation ϑe can be obtained by tanϑe = 〈~R3D〉x
〈~R3D〉z

, which

leads to

tanϑe =
〈~R3D〉x
〈~R3D〉z

=
N/2 d sinϑd

[
cosα− 1

3 cos3 α
]

N/3 d cosϑd cos3 α
,

and this simpli�es into

tanϑe = tanϑd

[
3
2 − 1

2 cos2 α
]

cos2 α
. (3.4)

When applying no mask, meaning α = 0 → cosα = 1, the direction
estimation becomes unbiased, since the last factor in equation (3.4) will be
unity. Before this result is compared to the simulation, we also consider
the case of a mask excluding sources within a ring of | cosϑ| < | cosα|. For
this we can utilize the previous calculation, since we are considering the
exactly inverted case. Hence, the expectation of each component will be
the value for the whole sky, with the values derived above subtracted, for
sources within the ring, so

〈~R3D〉z =
N

3
d cosϑd

[
1− cos3 α

]

and

〈~R3D〉x =
N

3
d sinϑd

[
1− 3

2

(
cosα− 1

3
cos3 α

)]
.

From this we obtain

tanϑe =
〈~R3D〉x
〈~R3D〉z

= tanϑd
1− 3

2 cosα+ 1
2 cos3 α

1− cos3 α
. (3.5)
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This time the case of no applied mask corresponds to α = 90◦ → cosα = 0
and the estimator becomes unbiased again. For both cases we obtain
a di�erent bias, but the behaviour is the same in principle. The tan-
gent of the declination will be multiplied by a factor. For the case of
a caps type mask, the behaviour will be described by the factor Bc =[

3
2 − 1

2 cos2 α
]
/ cos2 α. When we mask sources inside a ring, the bias fac-

tor becomes Br =
[
1− 3

2 cosα+ 1
2 cos3 α

]
/
[
1− cos3 α

]
.

mask type | tanϑd
sim| | tanϑd

est| | tanϑd
est|

| tanϑd
sim| Bc/r

caps 1.19 3.75± 0.12 3.14± 0.11 3.13
ring 1.19 0.28± 0.01 0.23± 0.01 0.23
caps 5.67 17.84± 2.12 3.15± 0.38 3.13
ring 5.67 1.38± 0.07 0.24± 0.01 0.23

Table 3.2: Comparison of theoretical | tanϑd
esti|

| tanϑd
sim| with simulated results from

linear estimator measurements for 100 simulated maps with 106

sources (for the full sky) and implemented observer velocity of
v = 1200km

s
towards RA = 180◦ and tansimd (see table). Masking

sources within −40◦ < dec < +40◦ for the ring type mask and
with either dec > 40◦ or dec < −40◦ for the caps type mask.

In order to verify this derivation, we compared the calculated bias factors
with the results from the simulations, shown in table 3.1. Therefore we
needed to convert the declination values into spherical coordinates and
apply a tangent function on those. Then we form the ratio of the simulated
dipole and the measured one and compare this with the theoretical bias
factor. The results can be seen in table 3.2. One can directly see that
the bias factors from the simulations �t very well to the calculated ones
within the estimated uncertainties. Hence, we understood this e�ect for
both discussed cases and can conclude that masking a ring or masking
areas outside a ring does have a signi�cant e�ect on the dipole direction
estimation in general.

The estimated dipole direction will be e�ectively pushed away from the
masked areas. In both discussed cases the expectation value of the direc-
tion ϑe will be

ϑe = arctan (B tanϑd) , (3.6)
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with B standing for the bias factor Bc or Br, depending on the mask type.
The total change in angle is small, when the distance between the masked
areas and the dipole is big (meaning close to 90◦), since arctan becomes
very �at for those angles. So a dipole direction, which is far away from the
masked region is not biased as much and would therefore be comparably
stable.

The estimated dipole declination in section 2.1 is dec = −2◦. This is far
away from the largest masking areas at |dec| > 40◦, which is just what we
expect from the discussed bias e�ect. Note that in table 3.1 we see that a
dipole at dec = −10◦ can be shifted towards dec = −3◦ due to the masking
e�ect. Hence, we can estimate that our result may include a directional
bias of similar magnitude.

For the case of a mask consisting of one ring, (excluding or including
sources within) the bias can be corrected for, since it is now fully under-
stood. Unfortunately the mask, used in real dipole estimation, is more
complicated. Each mask consists of at least two masking rings (with dif-
ferent orientations), which in general even overlap. Those cases cannot
be handled as trivially by deriving a general bias factor. Even writing
down the corresponding integrals is not simple and we cannot make any
simplifying assumptions about the dipole position anymore.

It is also not possible to simulate the bias in a straightforward way,
since we cannot know the real dipole position. In order to perform a
search for the real dipole position, given a certain mask and an estimated
dipole position, we would need to simulate every possible dipole direction.
Then we must evaluate, which one of those (or possibly even more than
one) will result in a biased direction close to the measured one. Such
a simulation would eliminate the biggest advantage of the simple linear
estimator, namely that it is fast in terms of computational time.

In chapter 2.1 we discussed the masking bias in amplitude. We used
simulated data in order to correct the �nal dipole estimation for this e�ect.
With the results from above, we are able to give theoretical values for the
bias coming from the masks, in the above described simple cases. The
expectation of the linear estimator without any bias is Nd/3 and so we
de�ne the amplitude bias factor for the caps/ring mask by

Ba
c/r =

√
< Rx >2 + < Ry >2 + < Rz >2

Nd/3
. (3.7)
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Since the dipole is assumed to be at RA = 0◦ here, the < Ry > term
vanishes and the x and z contributions can be taken from the above cal-
culations. For the caps mask we obtain:

Ba
c =

√
9

4
sin2 ϑd

[
cosα− 1

3
cos3 α

]2

+ cos2 ϑd cos6 α , (3.8)

and for the ring mask:

Ba
r =

√
sin2 ϑd

[
1− 3

2
cosα− 1

3
cos3 α

]2

+ cos2 ϑd [1− cos3 α]2 . (3.9)

Both factors will vanish for the case of no mask. This derivation is an
analytic con�rmation of the amplitude bias observed with linear estimators
[e.g. Rubart & Schwarz (2013), Singal (2011)].
It is very interesting to notice, that the bias factor does not depend on

the dipole amplitude or the number of sources used in the estimations.
Therefore this e�ect will be present in all future estimation, no matter
how many sources the catalogue will include.
Summarized, we found that the dipole direction estimated from a very

simple linear estimator is of limited use, since it has a directional bias,
which cannot easily be corrected for in the general case. The results of
this chapter do not apply for more complicated linear estimators, like the
ones utilizing spherical harmonics [e.g. Kothari et al. (2013)].

3.2 Calibration

Every measurement contains a measurement uncertainty. There is no real
instrument to determine a physical value perfectly. Hence, every position
and �ux value given in a radio source catalogue (i.e. the NVSS) contains
an uncertainty. In this section we want to investigate, what e�ect mea-
surement errors will have on the dipole estimation. It is quite clear that
an error in the direction of an individual source does not have a direct
impact on the dipole. Directional errors must be correlated in order to
a�ect our estimation. It is reasonable to assume that such an error would
be on much smaller scales than the 180◦ we are investigating. Assume
all positions are systematically biased by one degree. Then the resulting
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dipole estimation would also be biased by one degree. The current dipole
position uncertainty due to shot noise is an order of magnitude higher.
Hence, the e�ect of position measurement errors on the dipole estimation
is small and we will focus on errors in �ux, during this work. A total
measurement o�set for all sources (i.e. S + 5mJy) will not have any e�ect
on the dipole search, since the applied estimator is searching for a relative
increase in source counts in a given radio survey.

The sensitivity of a radio telescope does depend on the declination of
the observed source. This is due to the fact that it is harder to observe
sources near the horizon of the telescope's �eld of view than around the
zenith. Due to the Earth's rotation a large part of the sky will be visible
high above the horizon at some point during the day. For areas near the
celestial poles this is not the case, as long as the telescope is not close to
the North or South Pole. Depending on where on the spherical earth a
telescope is located some areas of the sky will never be visible and some
will only be visible relatively near to the horizon. Hence, a radio telescope
will not have a uniform sensitivity across the whole sky.

Figure 3.1: Expected rms noise level for the NVSS on snapshot image cen-
tres [source: Condon et al. (1998)].
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In �gure 3.1 we see the estimated noise level of the VLA for the obser-
vations of the NVSS survey. The curve is not continuous since the VLA
did not observe with the same con�guration and integration time for all
declinations. Sources with declination far away from dec = 30◦ were ob-
served for longer times in order to keep the noise at a near to constant level
for the whole survey. The interesting question for this work is, whether
such a noise distribution has any impact on the dipole estimation. For
investigating this question we used computer simulated radio maps, which
included measurement uncertainties in �ux.

We focus on Gaussian random errors in the �ux measurement of indi-
vidual sources with variance σSt, where St denotes the true (simulated)
�ux of a source. The measured �ux will then be

Sm = St + σStr , (3.10)

where r is a random variable drawn from a standard normal distribution.
We will consider two distinct cases for the variance. In the �rst one we
consider a constant variance over the whole sky i.e. σ = σ0. In the second
case we try to mimic the general noise behaviour shown in �gure (3.1),
by letting the variance depend on the declination. The lowest variance is
found at declination δ∗ and from there on continuously increases in both
directions symmetrically. We found that the form of the variance of the
NVSS noise is quite well described by σ = σ0/ cos(δ − δ∗). We restrict
our simulation to declinations ful�lling |δ− δ∗| < 70◦, in order to keep the
maximal variance below three times the minimal variance.

We expect the in�uence of such calibration errors to depend on the
number count form, which is approximated by N(> S) ∝ S−x for surveys
like the NVSS near its lower �ux values. We tested di�erent values of
the slope x in order to see how the number counts may in�uence the
measurement error in these cases. In the end we may �nd a bias in the
dipole amplitude and/or direction estimations and therefore we studied
both. We did this for a constant as well as for declination-dependent σ.
In the �rst case we did not see any dependence on x and therefore we will
only show the result of x = 1 for the isotropic case.

In �gure 3.2 we see the dependence of the dipole amplitude estimation
on the calibration error. Shown in this graph is the relative error of the
estimated dipole amplitude in percent. For comparison, we also plotted
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Figure 3.2: Relative dipole amplitude error versus σ0 for di�erent values
of x and for the case of constant and declination-dependent
measurement error (with δ∗ = 30◦). Each point represents the
mean after 100 simulations and the error bars show the statis-
tical variance of those. The horizontal line denotes the error
due to shot noise for a dipole estimate based on 107 sources
[source: Schwarz et al. (2015)].

the expected shot noise contribution for the case of 107 sources. When the
calibration error is below σ0 = 0.1 we obtain an amplitude uncertainty,
which is dominated by shot noise. We can conclude that such a small
calibration e�ect will not have a signi�cant impact on the dipole estima-
tion. Larger calibration e�ects on the other hand could spoil the dipole
estimation dramatically.

For higher values of σ0 the error rises in two of the four shown cases. A
constant value of σ (isotropic case) seems to have no biasing e�ect at all.
This result we actually expected and it holds for all tests we performed,
as long as the calibration e�ect was isotropic for the whole sky. The
declination dependent cases start to show a trend towards increased dipole
amplitude estimations for higher values of σ0. This e�ect is strongest for
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Figure 3.3: Absolute dipole direction error versus σ0 for di�erent values
of x and for the case of constant and declination-dependent
measurement error (with δ∗ = 30◦). Each point represents
the mean after 100 simulations and the shown error bars come
from statistical variance of those. The horizontal lines denote
the error due to shot noise for a dipole estimate based on 107

sources [source: Schwarz et al. (2015)].

x > 1, so for a steeper number count. It is very interesting that in the
case of x = 1 the amplitude does not increase, even if the calibration does
depend on the declination. This �nding will be discussed later in more
detail.

In �gure 3.3 the absolute o�set angle after 100 simulations including
di�erent calibration uncertainties to the case without any calibration error
is shown. The expected shot noise uncertainty for a survey with 107 sources
can be seen as horizontal lines. For all cases with σ0 ≤ 0.04 we see that the
change in dipole direction due to calibration problems is below the shot
noise uncertainty. For x = 1.5 and x = 0.5 in the declination-dependent
cases we see a bias in the direction estimation. This bias is becoming
dominant with respect to the shot noise, when σ0 is increased further.
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The direction of this bias is opposite for the two discussed cases. We will
give a qualitative reason for this after we discussed the x = 1 case.

Just like for the amplitude before we see here that the cases with x = 1
do not show any dependence on σ0. For the isotropic calibration uncer-
tainty this is not surprising, but it is remarkable that also for strongly
declination-dependent measurement errors, the dipole estimation seems
not to be in�uenced. We actually found that x = 1 is a kind of 'sweet
spot', in which the dipole e�ect is independent of the �ux measurement
accuracy. In the following part of this section we will prove this statement
analytically.

The linear estimators used in this study utilize the �ux of a source from
a survey in only one way. If the measured �ux is above the applied �ux
limit S of an estimator, the corresponding source is taken into account. So
an inaccurate �ux measurement can only have two e�ects: (a) a source is
taken into account although its true �ux would have been too low or (b)
a source is ignored, even so its true �ux would have been high enough. So
some sources drop out from the estimation and others are added. Hence,
there is a new lowest �ux limit called S−, with the condition S−+2σS− =
S ⇔ S− = S

1+2σ . Actually there is no �xed limit anymore, but all sources
below this S− will to 95% certainty not be taken into account. The amount
of potential 'extra' sources can be evaluated by the integral

α

∫ S

S
1+2σ

dS S−x−1 , (3.11)

where the number of sources per �ux is dN
dS = αS−x−1 with some constant

α, so that N(> S) ∝ S−x. Of course not all of these sources will be used
in the dipole estimation, but for the sake of determining the sweet spot at
x = 1 it is su�cient to look at the amount of potentially extra sources.
The result of (3.11) is

α

x

(
S−x −

(
S

1 + 2σ

)−x)
. (3.12)

In the same way we can calculate the number of potential sources that
were ignored in the dipole estimation, although the real �ux value was
high enough. Those will be between S and S+ − 2σS+ = S ⇔ S+ = S

1−2σ
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and hence we need to integrate:

α

∫ S
1−2σ

S
dS S−x−1 =

α

x

((
S

1− 2σ

)−x
− S−x

)
. (3.13)

Both e�ects work in opposite directions, one adding and one subtracting
sources. Hence, they can cancel each other, when the magnitudes are the
same. Due to the simulation we strongly suspect that this happens for
x = 1 and so we test this hypothesis now:

α

x

((
S

1− 2σ

)−x
− S−x

)
=
α

x

(
S−x −

(
S

1 + 2σ

)−x)

⇔ 2− (1 + 2σ)x − (1− 2σ)x = 0,

(3.14)

which is true for x = 1. So we can conclude that for x = 1 a Gaussian mea-
surement error for the �ux values does not in�uence the dipole estimation
at all. This actually also holds true for e.g. higher multipole moments or
two-point correlations, not only for the dipole estimation. For the NVSS
survey, x = 1.10 ± 0.02 for �ux values of 25 mJy to 200 mJy (Rubart &
Schwarz 2013) and therefore we are close to the discussed 'sweet spot' and
expect no dominant calibration e�ect.
Now we can also understand that the absolute direction o�set for x = 1.5

and x = 0.5 in �gure (3.3) goes into opposite directions. For x = 1.5 there
are more sources coming additionally into the estimation in areas with
high σ and so we get a dipole towards regions with higher uncertainties.
In the case of x = 0.5 we will lose more sources in areas with high σ and so
the resulting dipole error points away from the areas with higher variance.
Hence, both cases must show a di�erent directional error and the case of
x = 1 lies in the middle, with no biasing e�ect at all.
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3.3 Publication arXiv:1501.03820

In 2014 a conference in Giardini Naxos, Italy, was held with the aim to
produce an updated version of the SKA science book, named Advancing
Astrophysics with the Square Kilometre Array. This book will be published
online by Proceedings of Science in 2015. The following publication is part
of this updated description of possible scienti�c projects, utilizing SKA.
Using large area (≈ 3π) radio sky surveys produced by SKA will enable

a number of important cosmological tests. The cosmic radio dipole can be
measured with such surveys at a high precision and it will be possible to
notice any directional variation w.r.t. the CMB dipole on a degree scale.
With the angular two-point correlation function it will be possible to

test the power spectrum at low multipoles and thereby probe the large
scale structure of the universe. It will be interesting to see, whether the
power spectrum of number counts with such surveys is scale invariant
at superhorizon scales, as expected by the current cosmological model.
Finally, also the Copernican Principle will be tested with such surveys,
combined with SNIa distance measurements.
The main contribution of Matthias Rubart to this publication was ex-

plained in detail in the previous sections. His work is the basis for the
second section (i.e. cosmic radio dipole) of the following publication.
This contribution has been reviewed and accepted for publication. The

science case layed out in this work became a Tier.1 science goal of SKA
(Braun et al. 2014).
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Foundations of modern cosmology Dominik J. Schwarz

1. Introduction

The Square Kilometre Array (SKA) will allow us to test fundamental assumptions of modern
cosmology at redshifts of order unity and at an accuracy level matching and complementing the
high fidelity observations of the cosmic microwave background (CMB).

The Cosmological Principle states that the Universe is spatially isotropic and homogeneous.
Strictly, this holds on sufficiently large scales and needs to be interpreted in a statistical sense.
Historically, it provided a very powerful motivation to single out the Friedmann-Lemaître models
despite a lack of knowledge regarding the initial conditions of the Universe. Cosmological infla-
tion, proposed in the 1980s, allowed the universe to start from a reasonably small patch of almost
homogeneous and isotropic space. According to the idea of cosmological inflation, suddenly at
least one small patch is inflated to contain today’s observable Universe. In the course of inflation,
any previously existing anisotropy or inhomogeneity is exponentially diluted. However, unavoid-
able quantum fluctuations are squeezed by the rapid expansion during inflation and become the
seeds for large scale structure formation in the more recent history of the Universe. This results in
a statistically isotropic and homogeneous Universe (at least locally).

The observed high degree of isotropy of CMB radiation enables us to define a CMB frame
by measuring the CMB temperature monopole, T0 = 2.2755±0.0006K and dipole, T1 = 3.355±
0.008mK towards (l,b) = (263.99◦±0.14◦,48.26◦±0.03◦) [1]. The concept of a spatially homo-
geneous Universe allows us to speak about a cosmic time or an age of the Universe. By measuring
the CMB temperature T0 and the present expansion rate of the Universe H0 we can anchor the ther-
mal history of the Universe to its expansion history. Testing the assumption of isotropy is much
simpler than testing homogeneity [2, 3].

Radio surveys played an important role to establish that the Universe extends to redshifts
beyond unity and that it is almost isotropic (see e.g. [4]). Today, observations of the CMB confirm
the predictions of cosmological inflation impressively [5, 6], especially by means of the CMB
angular temperature and polarization power spectra. However, it is unknown for how long (or
how many e-foldings) inflation took place. In order to explain the observed spatial flatness of the
Universe, about 50 to 60 e-foldings could be enough, but in many models it took much longer,
i.e. the domain in which the statistical cosmological principle applies is expected to be much larger
than the observable Universe. The quest to determine the duration of inflation, as well as the related
question of the topology of the Universe, can only be answered by observing the biggest scales.

Interestingly enough, the CMB exhibits unexpected features at the largest angular scales,
among them a lack of angular correlation, alignments between the dipole, quadrupole and oc-
tupole, hemispherical asymmetry, a dipolar power modulation, and parity asymmetries [7, 8, 9].
Understanding the statistical significance of these anomalies is a hot topic [10, 11, 12] since lack of
statistical isotropy or Gaussianity could rule out the standard cosmological model. As the precision
of these CMB measurements is limited by our understanding of the foregrounds and observational
uncertainties are already much smaller than the cosmic variance at those scales, it is very hard to
identify the cause of these anomalies without an independent probe at the same scales.

SKA will probe an enormous number of independent modes when studying the large-scale
structure of the Universe and will measure superhorizon sized modes at redshifts of order unity
(better than any existing or planned infrared, optical, or X-ray campaign). This will enable us to
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probe scales that have not been in causal contact since the first horizon crossing during inflation
and that contain information that was frozen in during cosmological inflation. In contrast to the
CMB, the radio sky provides a probe of those largest scales at a redshift of order unity (2D for
continuum surveys and 3D for HI surveys).

SKA would enable several tests of the fundamental cosmological principles. For example, the
rest frames of the CMB and large scale structure (LSS) may not coincide due to novel superhorizon
physics — for example, presence of isocurvature modes [13]. SKA’s width and depth will enable
a measurement the kinematic dipole with respect to the LSS reference frame via the relativistic
aberration and Doppler shift (“bunching up” of SKA sources in the direction of the dipole). This,
when combined with the CMB’s own measurement of the kinematic dipole would, for the first
time, enable the test of whether the two reference frames — that of the CMB and the LSS — are
one and the same, as demanded by the Cosmological Principle.

Here we describe how to use all-sky (3π) SKA continuum surveys to test statistical isotropy
and to measure the cosmic dipole and other low-` multipole moments. These issues are tightly con-
nected to tests of non-Gaussianity and the topology of the Universe, the former aspect is described
in [14]. All-sky SKA HI threshold surveys will additionally allow us to test the homogeneity of the
Universe at superhorizon scales – a test that has never before been performed. Statistical homo-
geneity and isotropy are assumed to hold true in other cosmology-related contributions to this book
[15, 16]. Tests of statistical isotropy and homogeneity will also allow (and force) us to dig deep into
the systematics of the SKA surveys and thus help to put all cosmological and non-cosmological
results of SKA surveys on firmer grounds.

The conceptually simplest probe of cosmology is differential number counts [17]. If no red-
shift information is available, one can count the number of (extragalactic) radio sources per solid
angle and flux density. Besides flux calibration issues, the cosmological information contained
in differential number counts is limited by the diversity of radio sources and their luminosity and
density evolution. Radio sources fall into two principal classes, active galactic nuclei (AGN) and
star forming galaxies (SFG). The exquisite angular resolution of SKA surveys will allow us to re-
solve most of the AGNs and thus to obtain an extra handle based on morphology. Another simple
possibility to overcome the restrictions from evolution is to study the directional fluctuations of dif-
ferential number counts [18], as we do not expect that the properties of radio sources would single
out preferred directions in the Universe. Fluctuations can be studied in harmonic or in real space,
utilizing complementary analysis techniques (note that harmonic space and real space analysis are
equivalent for full-sky data, but not for masked sky surveys).

2. Cosmic radio dipole (Early Science, SKA1, Full SKA)

The CMB dipole is generally assumed to be due to our peculiar motion and thus defines a
cosmic reference frame. However, the observation of the dipole in the microwave sky is not enough
to tell the difference between a motion-induced CMB dipole and dipole contributions from other
physical phenomena (e.g. the model in [13]).

Due to the effects of aberration and Doppler shift, the kinetic dipole must also be present in
radio observations [19]. Besides the kinetic dipole, we also expect contributions from the large-
scale structure and from Poisson noise. Such a radio dipole has been looked for in radio source
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Figure 1: Left: All-sky (3π) SKA surveys (yellow and orange) will measure the cosmic radio dipole of
differential source counts. Selecting AGNs will result in a sample with median redshift z > 1 (orange) and
thus allow us to measure the peculiar velocity of the solar system with respect to the large scale structure
on superhorizon scales. These measurements will be compared to the CMB dipole and thus test for the
existence of a bulk flow of our Hubble volume compared to the CMB rest frame. Right: Angular accuracy
at 90, 95 and 99 % C.L. of the measurement of the cosmic radio dipole as a function of observed point
sources. The blue set of curves assumes dradio = 4dcmb, the red set assumes dradio = dcmb. It is assumed that
only 50% of all detected radio sources survive all quality cuts (e.g. masking fields that contain very bright
sources). Combined with Table 1 we find that SKA Early Science allows detection of a possible deviation
from the CMB expectation at high significance. SKA1 will constrain the cosmic radio dipole direction with
an accuracy better than 5 degrees, the full SKA within a degree (at 99% C.L.).

catalogues, such as NVSS [20, 21, 22] and WENSS [22] and was found within large error bars.
While the direction of the observed radio dipole is consistent with the CMB dipole direction, its
amplitude exceeds the theoretical expectations by a factor of a few. SKA will enable us to measure
the radio dipole with high accuracy and to extract other low-` multipole moments. Recently, the
Planck mission reported a first detection of the effects of aberration and Doppler shift at high
multipole moments [23]. However, this observation is less precise than the reported measurements
of the radio dipole and allows for a primordial contribution to the CMB dipole of comparable size.

The SKA will allow us to compare ~dradio to ~dcmb, since SKA will test a super-horizon sized
volume. Any statistically significant deviation will be exciting, while finding a match would put
the concordance model on firmer grounds.

SKA continuum surveys at low frequencies (< 1GHz) should be ideal to probe the cosmic
radio dipole already in the Early Science phase for two reasons. First, it is not necessary to cover
the full area of the 3π surveys, since a sparse sampling spread out over all of the accessible sky
should be sufficient for a first estimate. And second, a focus on low frequencies and bright sources
will pick primarily AGNs which have a much higher mean redshift than the SFG.

Figure 1 illustrates the accuracy that we can hope to achieve for a measurement of the radio
dipole based on a linear estimator [24, 22]. Our estimates are based on differential number counts
from surveys in small and deep fields and simulations [25]. Our expectations for all-sky continuum
surveys are summarized in Table 1. We find that the cosmic radio dipole can be measured at high
statistical significance, even taking realistic data cuts into account (e.g. masking the galaxy and
very bright extragalactic sources, or morphology, spectral index or flux cuts).

A major concern might be the effect of flux calibration errors on the dipole estimation. This has
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SKA 3π surveys Early Science SKA1 Full SKA
(centr. frequency, ang. res.)
LOW (151 MHz, 10”) 1.0×108 (20 µJy) 2.4×108 (10 µJy) 2.2×109 (1 µJy)
MID/SUR B1 (610 MHz, 1”) 7.8×107 (10 µJy) 1.9×108 (5 µJy) 1.8×109 (0.5 µJy)
MID/SUR B2 (1.4 GHz, 0.5”) 3.8×107 (10 µJy) 9.7×107 (5 µJy) 1.2×109 (0.5 µJy)

Table 1: Expected total number of radio sources (10 σ ) in various frequency bands and survey instruments,
assuming the SKA baseline design and the cosmology and differential number counts as simulated in [25]. In
order to match observations at 1.4 GHz, the number of SFG has been multiplied by a factor of 2.5 compared
to the simulations for all frequency bands. The numbers in brackets denote the assumed rms noise levels.
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Figure 2: Left: Accuracy (in per cent) of the measurement of the dipole amplitude as function of fractional
error on flux density calibration on individual point sources. All points are based on 100 simulations. Right:
Accuracy (in degrees) of the measurement of the dipole direction. The horizontal lines denote the error due
to shot noise for a dipole estimate based on 107 sources (SKA Early Science).

been studied by means of simulations. The results of this study are shown in figure 2. We assume
Gaussian flux density errors with variance σ(δ )S, where S denotes the expected flux density of a
particular source. We consider the isotropic case in which σ(δ ) = σ is isotropic and a declination
dependent situation with σ(δ ) = σ/cos(δ − δ∗), δ∗ being fixed by the latitude of the SKA site
and |δ − δ∗| < 70 deg. For two cases we find negligible influence of callibration errors: If the
flux calibration error is completely isotropic or if the slope x of the number counts [N(> S) ∝ S−x]
is equal to one. It turns out that x = 1 is a special value, where calibration errors at the lower
flux density limit have no influence on the dipole estimator. We conclude that direction dependent
calibration effects must not exceed certain limits as shown figure 2.

Another significant contaminant of the kinetic radio dipole is the local structure dipole. We
can turn a disadvantage of continuum surveys, namely that we observe several source populations,
into an advantage as follows: The lower mean redshift of SFGs compared to AGNs allows us to
change the mean depth of the survey by scanning different fluxes density limits and frequencies.
This in fact allows for a tomographic survey of the radio dipole. For the example of a huge (∼ 100
Mpc) local void this was studied recently [26]. Figure 3 illustrates this effect.

3. Large angular scales (SKA1 and full SKA)

It is not obvious that the isotropic distribution of light implies also the isotropy of space-
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Figure 3: Amplitude of structure dipole due to a local void, affecting the measurements of the cosmic radio
dipole as a function of lower flux density limit and for two wavebands centered on 151 MHz and 1.4 GHz
(from [26]).

time itself. The vanishing of the quadrupole and octopole moments of the CMB would imply the
isotropy of space-time along the world line of the observer [2]. While those low-` multipoles are
small compared to the monopole and dipole, they do not vanish exactly. We thus we can at best
speak about an almost isotropic Universe. The radio sky offers another independent probe at z > 1
and at the largest angular scales.

Recent work has revealed the existence of CMB “anomalies" (for a review, see [27]). In brief,
the angular correlation function in the WMAP and Planck temperature maps vanishes on scales
larger than 60 degrees, contrary to theoretical expectation; moreover, the CMB quadrupole and oc-
topole anisotropy patterns are aligned both mutually and with respect to the Solar System geometry.
These anomalies have been widely studied and discussed, but their origin remains unexplained.

SKA will provide a deep and wide large-scale structure dataset that will enable separating the
effects of the early and late universe on the observed CMB anisotropy. For example, the SKA
data could be used to reconstruct the late-time contribution to the CMB anisotropy via the inte-
grated Sachs-Wolfe effect, and thus provide information about the temporal evolution of the CMB
anomalies.

3.1 Low-` multipole moments

The analysis of low-` multipoles from SKA continuum surveys can benefit from the methods
developed for the study of the CMB. Missing sky area is always a problem for low-` mode mea-
surements. For CMB studies, many methods were proposed to deal with a mask of missing data
for both power spectrum estimation and phase recovery. For the power spectrum, one the most
used methods is MASTER [28]. It consists in first building a matrix which captures the coupling
between the modes induced by the mask, and then inverting this matrix. In Figure 4 we plot the
angular power spectrum of SKA galaxies for low-` mulitpoles with error bars corresponding to a
SKA1 continuum survey.

For phase recovery, or more generally for large scale map reconstruction, many methods have
been proposed based on Wiener filtering, l2 or l1 norm regularization, constraint realizations or
diffusion (see [11] and references therein). Based on these new methodological idea, Planck data
were analyzed with a mask removing 27% of the sky [7, 12]. For a given observed sky area, the
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Figure 4: Left: Low-` multipoles of the angular power spectrum as expected for a SKA1 continuum
survey. Right: The corresponding band power. The errors contain shot noise and cosmic variance. The
figures illustrate that statistically significant measurements of multipole moments can be expected.

shape of the mask will also be important. The importance of random sampling is also described
in [29], and many small missing parts, randomly distributed, will always be much better for large
scale studies than a compact big missing part.

As for the dipole, SKA will tremendously improve the precision and quality of low-` multipole
moments and thus allow us to probe statistical isotropy, scale invariance and gaussianity.

3.2 Angular 2-point correlation function

The angular two point correlation is a powerful tool to measure the projected large-scale struc-
ture distribution of the Universe. It allows us to probe certain fundamental assumptions like scale-
invariance of the primordial perturbations, Gaussianity and the isotropy of the Universe (by com-
paring two-point correlations on sub-samples of the observed sky).

The two-point correlation at large angular scales contains many interesting aspects: Firstly, the
matter fluctuations at large scales are in the linear regime. Secondly, general relativistic effects and
cosmological evolution prefer large scales. AGNs are very good candidates to probe this, since they
are isotropically distributed on the sky and most of them have a significant (z > 1) cosmological
distance. In order to accurately investigate ultra-large scale correlations, the theoretical frame work
of differential number counts based on general relativity will be needed [30, 31, 32, 33].

In contrast to galaxy redshift surveys within the local Universe (z� 1), all linear order rela-
tivistic corrections, which include the Doppler effect, lensing, and generalized Sachs-Wolfe contri-
butions, are of relevance. The spread of luminosities of radio sources in continuum surveys washes
out much of the clustering signal, and the general relativistic corrections are also suppressed. How-
ever, SKA HI surveys in which the source redshifts will be known will resolve these effects.

With the assistance of Lyman alpha data, one can model the luminosity function and evolution.
With the SKA morphology data we expect to be able to identify different type of sources. This will
allow us to study cross correlations between star forming galaxies and AGNs. We could also
cross correlate with the CMB and different types of radio sources, which have different redshift
distributions.

These aspects are treated in more detail in other contributions to this volume [14, 15, 16]. Let
us just stress here the importance of re-establishing the almost scale-invariant power spectrum at

7



Foundations of modern cosmology Dominik J. Schwarz

superhorizon scales at z∼ 1, which will be possible by means of SKA all-sky surveys.

4. Copernican Principle and homogeneity (SKA1 & Full SKA)

The Copernican Principle is the assumption that we are not distinguished observers in the
Universe. If we observe an isotropic cosmos, then distant observers should also see a similarly
isotropic cosmos. This implies that the Universe satisfies the Cosmological Principle and is homo-
geneous on large scales. A violation of homogeneity in principle offers an alternative explanation
to the acceleration of the Universe [34], but simple inhomogeneous models without dark energy
are incompatible with current data [35]. However, radial homogeneity is only weakly constrained
in ΛCDM [36]. Any deviations would imply a radical change to the standard model and scale-
invariant initial conditions, making it a vital constraint on the standard model.

SKA HI intensity mapping on super-Hubble scales offers powerful new ways to test homo-
geneity. By comparing the radial and transverse scale of baryon acoustic oscillations we can test
isotropy of the expansion rate around distant observers [2, 40, 3]. This places direct constraints on
radial inhomogeneity about us, when redshift-space distortions, lensing and other large-scale GR
effects are accounted for. Anisotropic expansion rates act on the sound horizon at decoupling so
that by redshift z it has evolved into an ellipsoid with semi-axes

L‖(z) =
δ z(z)

(1+ z)H‖(z)
, L⊥(z) = dA(z)δθ(z), (4.1)

given the observed radial and angular scales δ z(z),δθ(z). L‖(z) = L⊥(z) in a homogeneous uni-
verse. In an inhomogeneous universe dA(z) depends on the transverse Hubble rate along the line of
sight, which will be different from the radial Hubble rate H‖(z), providing a test of homogeneity.

When combined with accurate distance data from SNIa, consistency relations can be used to
check deviations from homogeneity in a completely model independent way [41]. In a homoge-
neous universe, irrespective of dark energy or theory of gravity, the Hubble rate h(z) = H(z)/H0

and dimensionless comoving distance D(z) = (1+ z)H0dA(z) satisfy (′ = d/dz)

C (z) = 1+h2 (DD′′−D′2
)
+hh′DD′ = 0 , (4.2)

so that C (z) 6= 0 implies violation of the Copernican Principle. We expect that SKA1 will be
able to constrain C (z) to 0± 0.05 for z < 1.5, based on a naive error propagation from [39]. A
more careful forecast has yet to be done. Direct constraints on radial inhomogeneity can be given
combining with all available data sets which will significantly improve current constraints which
are much weaker than those for isotropy [36].

Finally, the Copernican Principle allows for the possibility of a fractal universe, but this is not
predicted by the concordance model – which predicts a fractal dimension of 3 on large scales –
any deviations would imply new physics. It is therefore important to measure the fractal dimension
of the distribution of radio sources at superhorizon scales. Such a test has been performed using
the SDSS and the WiggleZ surveys, finding an approach to a three-dimensional distribution at
∼ 100Mpc scales [37, 38]. A dramatic improvement will be possible based on SKA HI threshold
surveys.
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5. Summary

The Cosmological Principle provides the foundation for modern cosmology, and our under-
standing of the evolution of the Universe as well as all parameter constraints from the CMB, super-
novae or large scale structure rely on this assumption. Testing the Cosmological Principle is thus
of fundamental importance for cosmology generally as well as for the cosmological interpretation
of the SKA data itself. As this chapter shows, SKA will be able to greatly increase our confidence
that our cosmological framework makes sense (or lead to a scientific revolution if not).

We argue that SKA all-sky surveys will allow us to measure the cosmic radio dipole almost
as precisely as the CMB dipole. SKA1 will constrain the cosmic radio dipole direction with an
accuracy better than 5 degrees, the full SKA within a degree (at 99% C.L.). This measurement
could finally firmly establish or refute the commonly adopted assumption that the CMB and the
overall LSS frames agree, and will have impact on a variety of cosmological observations, from
the local measurement of H0 to the calibration of CMB experiments. A tomography of the cosmic
radio dipole might reveal a detailed understanding of local LSS.

In addition, studying the large-angular scales in SKA continuum and HI surveys might help
resolve the puzzle of CMB anomalies and test the cosmological principle. Further large-scale
structure issues, especially non-Gaussianity and relativistic corrections, are discussed in [14].

The ideas presented in this work only provide a flavor of SKA’s potential to answer funda-
mental cosmological questions. Some of those ideas can already be tested by means of the SKA
pathfinder experiments ASKAP, MeerKAT and LOFAR, but they cannot compete with SKA’s sur-
vey speed and sensitivity. Thus SKA will be a unprecedented discovery and precision machine for
modern cosmology.
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Chapter 4

Quadratic Estimators

Look up at the stars and not down at

your feet. Try to make sense of what

you see, and wonder about what makes

the universe exist. Be curious.

� Stephen Hawking

4.1 Comparison to Linear Estimators

Until now we were discussing di�erent kinds of linear estimators. They
worked by adding up all the available data points and thereby directly
provided a dipole estimation. Those results needed to be modi�ed for
masking e�ects. The big advantage of this linear method is that it is very
fast in terms of computational time. Hence, it is possible to investigate
a great number of simulated radio maps and thereby understand the esti-
mator better. For example the bias problem described in section 2.1 was
found in this way. It was possible to make use of the resulting biased
dipole amplitudes, since simulation showed that this bias can be estimated
and understood. It was shown that the bias is not su�cient to explain the
observed amplitude excess.

The so-called quadratic estimators work on another principle. They are
comparing the observational data to a given model and test, how good the
assumed model �ts to the data. The biggest disadvantage of the quadratic
estimators becomes immediately evident. One can only test a �nite number
of models to the data and is thereby restricted. This means one needs to
make speci�c assumptions before applying the estimator. In this study, the
underlying model will be that the radio sky is dominated by a monopole
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and a dipole contribution, with amplitude and direction for the latter.
Assuming this model is valid for the investigated radio surveys, one needs
to �nd all those parameters.

The monopole can be described by a single number m0 which represents
the mean density of radio sources per area on the sky. For a given survey
such a mean density could be obtained directly by just dividing the number
of sources by the given area. This approach turns out to have two problems.
Firstly, the full radio survey contains also radio signals from the Milky
Way. One can clearly see an excess in the number of radio sources near
the galactic plane in the NVSS. Hence, this area is masked before further
studies are performed. So the monopole will be obtained from a radio
map, without the area around the galactic plane. Another problem is that
the combination of a masked sky map and a dipole modulation within
this map can in�uence the monopole. This e�ect is discussed in detail in
section 2.1.

Those problems are avoided, when the monopole term is not directly
obtained from the map but considered as part of the �t model. So one needs
to �t at least four parameters: the monopole m0, the dipole amplitude d
as well as the dipole direction, parametrized by two angles ϕ and ϑ. In
order to restrict the computational e�ort it is useful to �rst pixelate the
radio catalogue. A pixel is de�ned by an area on a spherical map and to
each pixel the number of sources found in that area is assigned. The pixels
should all be distinct and chosen in a convenient way.

For this purpose the computer code HEALPix1 was used. This program
was created in order to analyse the CMB as a pixelated map with high res-
olution. It separates the sky into equally sized pixels, which is very useful
for covering the angle parameter space in a uniform way. The number of
total pixels across the sky N can be chosen by the so-called nside number.
For nside = 1 the code separates the sky into 12 pixels. Increasing nside by
a factor of two corresponds to separating each pixel of a nside/2 map into
four new pixels of equal size. The relation between nside and the number
of pixels is in general given by N = 12n2

side. One needs to decide carefully,
how �ne the resolution should be. Higher resolutions will enable a more
precise measurement but on the other hand it will also increase the needed
computational time signi�cantly.

1Hierarchical Equal Area isoLatitude Pixelization http://healpix.jpl.nasa.gov
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4.2 Method

The big advantage of the quadratic estimator is that it searches for an
actual dipole pattern on the sky. Imagine we have a radio sky, which is
very isotropic everywhere expect for one small direction. In this direction
we see much more sources than on the rest of the sky. With the linear
estimator we would obtain a dipole term, since it is sensitive to an excess
of sources on the sky, no matter what kind of distribution underlies this
excess. But we are more interested in an anisotropic distribution that goes
like a cosine. The quadratic estimator is much more useful in determine,
whether a found distribution has really a dipolar pattern, as we can also
measure the quality of the �t.

4.2 Method

First of all the catalogue will be pixelated by Healpix. Thereby one obtains
a list of N entries with the corresponding pixel centre positions as well
as the number of sources inside those pixels. Next a suitable mask is
applied. For example one could ignore all sources inside a 10◦ degree strip
of the galactic plane. But due to the pixelized map this translates into
ignoring all pixels with a pixel centre that is closer than 10◦ to the galactic
plane. Therefore the mask will not have straight edges. This e�ect must
be considered when the shape of the masked is �xed. In the worst case,
almost half a pixel may be inside the so-called masked area. Hence, the
mask should be at least half a pixel-size larger than the area one wants to
avoid.

Now one needs to decide which values for the four parameters m0, d,
ϕ and ϑ should be tested. For m0 a useful approach is to �rst determine
the mean number of sources per pixel. Even so this value cannot be used
directly for m0 (as described above), it will be a very good starting point.
One can test a number of values close to this one. After some testing we
found that a useful range to search is about 0.5% above and below the
direct mean number of sources. This value is also motivated by theory,
since the e�ect of the dipole, combined with the mask, on the monopole
should be smaller than the dipole e�ect itself. In order to test the two
dimensional parameter space of ϕ and ϑ we decided to translate those into
pixel positions. When we have a Healpix map with a certain nside value to
test, we look at a list of the positions of all those pixels on the sky.
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As dipole direction we then test all the pixel positions. The advantage
here is that we obtain uniform sky coverage in both angular directions.
Also it would not make much sense to test the parameter space at a higher
resolution than the data map is given in. We also e�ectively reduce the
number of parameters to three, since we test N di�erent positions now and
therefore the direction becomes one free parameter.

The hardest parameter to de�ne an appropriate testing range for, is
the dipole amplitude d. It is not possible to determine the best range to
test this parameter a priori. Therefore we utilize what we learned from
linear estimators as well as what we know from the expected kinetic dipole.
We always start to test d = 0 and increase this parameter until about
d = 0.05. The last value is signi�cantly above the results obtained by linear
estimators for the NVSS catalogue. If the resulting best-�t parameter turns
out to be at this upper limit, one would be forced to test even higher values
of d in order to �nd an even better set of parameters. During this study
the mentioned case did never occur.

After those considerations, we end up with a three-dimensional space
(since both angular coordinates are combined into one) that must be tested.
For each point in this parameter space we calculate

χ2 =
∑

i

(No,i −Nm,i)

Nm,i

2

, (4.1)

where i goes over all pixels that are not masked and No,i/Nm,i are the
number of sources in the ith pixel for the observed and the modelled case
respectively. This χ2 value will increase when the model does not give
similar results as the tested data set. The number of sources in pixel i for
the model are calculated via

Nm,i = m0(1 + ~d · ~ei) , (4.2)

with ~ei being a unit vector pointing towards the centre of pixel i and ~d is
the full dipole vector (with amplitude d and direction ϕi, ϑi). For each
set of parameters one obtains a di�erent result for χ2 and those can be
compared with each other. The parameter set leading to the smallest value
of χ2 is considered as the best-�t model. Hence, those parameters are the
result of the quadratic estimator.

70



4.3 Simulations

The quadratic estimator used by Blake & Wall (2002) works di�erently.
They �rst calculated the spherical harmonic coe�cients alm from the NVSS
catalogue up to l = 3. The resulting coe�cients were �tted to a dipole
model, with three free parameters, the amplitude and two angles. Hence,
their quadratic estimator operates in spherical harmonic space, while our
directly �ts the observed sources per pixels.

4.3 Simulations

Even though it is time-intensive in terms of computational time, we per-
formed some simulations in order to test the quadratic estimator before
applying it to real data. In this way we can determine a possible bias
and also see how precisely we can expect this estimator to perform. We
create the same kind of simulated maps like for the linear estimators, but
this time we pixelate them. All tests in this section were performed with
a HEALPix map at nside = 16. For the simulated dipole we assumed
d = 0.018, RA= 154◦ and dec= −2◦.

We tested the simulated maps with and without masked areas. When a
mask was applied we removed pixels within 10◦ of the galactic plane and
also removed pixels below dec= −40◦. In this way we simulated the case
we expect to use on the NVSS catalogue. The number of sources in the
masked cases is smaller, but the number of sources per pixel stayed the
same. The three cases here correspond to 185649, 1 × 106 and 2 × 106

sources on the whole sky. In order to reduce computation time, the same
simulated maps were used for the full-sky and masked-sky cases.

In �gure 4.1 we see the dipole amplitude for all three cases with and
without a mask applied. The error bars correspond to the empirical vari-
ance, determined by 100 simulations for each measurement. We see that
the dipole amplitudes are above the value an unbiased estimator should
have shown. When the number of sources per pixel is increased, this bias
decreases. At more than 600 sources per pixel the bias vanishes. Hence,
we can argue that this bias is due to shot noise, like it was for the linear
estimator.

Another feature we can see is that the estimated dipole amplitudes for
the masked case are above those for the full-sky case. This can be explained
by the shot noise contribution, since the masked sky always has a smaller
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Figure 4.1: Comparison of the simulated and measured mean dipole am-
plitude with 100 runs. Assumed velocity of observer is v =
1440km

s
towards dec = −2◦ and RA = 154◦, for the masked

case all pixels with dec < −40◦ or |b| < 10◦ are masked, pixel
resolution is nside = 16. Error bars correspond to statistical
variance for a single measurement.

number of total sources, compared to a full-sky observation with the same
number of sources per pixel.

The error bars are smaller than those we got for a linear estimator by
a factor of about 2/3. This suggests that the quadratic estimator will be
able to perform a more precise measurement of the dipole amplitude. All
in all the amplitude measurement works reasonably well in the simulated
cases.

In �gure 4.2 we see the resulting directions for the simulated maps. Here
the quadratic estimator does not show any bias towards a certain direction,
for both the full sky as well as the masked sky case. The higher empirical
variance for the masked sky results can again be explained by the lower
number of total sources and thereby increased shot noise.

One additional e�ect for the quadratic estimators is that the direction es-
timation is limited by the pixel resolution. Each simulation run will result
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Figure 4.2: Comparison of the simulated and measured mean dipole di-
rections with 100 runs. Assumed velocity of observer is v =
1440km

s
towards dec = −2◦ and RA = 154◦, for the masked

case all pixels with dec < −40◦ or |b| < 10◦ are masked, pixel
resolution is nside = 16. Error bars correspond to statistical
variance for a single measurement.

in a best �t, corresponding to the centre position of one pixel. Therefore
one always needs to add half the spacing between two pixel centres to the
error budget. The mean distance between two pixels for a resolution of
nside = 16 is about 3.66◦ and therefore we added 1.83◦ as uncertainty to
the simulated results later. The same goes for the dipole amplitude. This
amplitude is measured with certain dipole values, which are 0.2 × 10−2

apart. Hence, we always need to add 0.1 × 10−2 to the resulting dipole
amplitudes. Both e�ects can be reduced by increasing the resolution of the
estimator, but this will also increase the computational time signi�cantly.

For the linear estimator, we found biasing e�ects in amplitude and di-
rection measurements, when the tested maps included masked areas. This
is due to the fact that the linear estimator is not sensitive to the actual
form of an anisotropic source distribution. For the quadratic estimator we
do not see such an e�ect in �gure 4.1 or 4.2. In principle this could be
a special case. Hence, we also did simulations for the case of a simulated
dipole near the edge of a mask, like in section 3.1. For the linear estimator,
such setup leads to a signi�cant directional bias.
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d right ascension declination

(10−2) (◦) (◦)

Implemented 1.8 180 −40
Measured 1.77± 0.03± 0.1 180.2± 0.8± 1.9 −36.7± 0.9± 1.9

Table 4.1: Comparison of the implemented and measured mean dipole val-
ues for 99 runs with 106 sources each. Assumed velocity of
observer is v = 1440km

s
, all pixels with |dec| > 40◦ are masked,

pixel resolution is nside = 16. Error bars correspond to statisti-
cal variance and resolution limitation.

In table 4.1 we see a comparison of the implemented dipole and the sim-
ulated measurement. The obtained dipole amplitude and right ascension
values from the simulations �t very well to the implemented ones. The dec-
lination estimations seem to be a little bit too small. One point to mention
is that the closest pixel to the implemented dipole position is at RA = 180◦

and dec = −38.68◦. Hence, we expect a better �t in right ascension and a
small bias towards smaller declination values. Another point is that there
will be a small shot noise contribution in every measurement. This can
only have an e�ect inside the observed ring and therefore slightly bias the
estimation to higher declination values, since no pixel with smaller values
than dec = −40◦ was taken into account. Since the measured declination
value is still within two sigma of the simulated dipole direction, we do not
consider this as a problem here.
All in all we do not see a signi�cant masking bias for the quadratic

estimator. This makes the quadratic estimator much more useful than the
linear ones, since the resulting dipole values are expected to be unbiased
(except a small shot noise bias towards higher dipole amplitudes for low
numbers of sources). Due to resolution e�ects, we will need to include an
extra error bar, but apart from this we expect smaller uncertainties for the
quadratic estimator in comparison to the linear ones.
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4.4 Result

With the quadratic estimator, we now have the means to compare the
quality of di�erent �ts with each other, by utilizing the resulting values
of χ2. In other words, when di�erent masks give di�erent results, we now
can evaluate, which map can be better described by a model based on
monopole and dipole. Since di�erent masks result in a di�erent number
of pixels, which are still accepted for the estimation, a direct comparison
of the χ2 values is not useful. Therefore we calculate χ2/dof, where dof is
the degrees of freedom of that �t. The number of pixels �tted depends on
the mask and is labelled Np. For each parameter we need to subtract one
from the pixel number, to take into account that the parameters reduce
the degrees of freedom of the �t. Each �t has three parameters (the two
directions count as one parameter here, since they are merged in an ordered
list of pixel positions) and we get dof = Np − 3.

We used the quadratic estimator to analyse the NVSS catalogue. In
order to obtain results that are convenient to compare to those of the
linear estimators, we restricted ourselves to a lower �ux limit of 25 mJy
here. Our masks have two parameters, |b| and decmask. The galactic plane
is cut out by removing all pixels within |b| degrees of the galactic plane.
Higher values for |b| will protect the estimation from galactic in�uences
and therefore making the extragalactic dipole measurement more stable.
On the other hand, too high values of |b| will reduce the number of used
sources and thereby increase the shot noise contribution. Hence, we will
test di�erent masking parameters and judge them, depending on the �t
quality χ2/dof. A good choice should be the lowest possible value of |b|,
which does not increase χ2/dof signi�cantly.

Since the NVSS survey has no sources below declinations of −40◦, we
also need to ignore all pixels lying (at least partly) in this area. As de-
scribed in section 1.6, the NVSS has used di�erent con�gurations for dif-
ferent declinations. With the quadratic estimator we are now able to test,
whether those di�erent con�gurations in�uence the dipole measurement.
Hence, we tested the quadratic estimator with di�erent values for the low-
est declination, where pixels where still accepted.

In table 4.2 we see the result of the quadratic estimator for a Healpix
resolution of nside = 16 for di�erent masking values. One result that can
be seen clearly is that |b| = 5◦ leads to a very poor �t quality (χ2/dof > 2).
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N_t N_0 RA dec d |b| decmask χ2/dof

(◦) (◦) (10−2) (◦) (◦)

150397 109.82 87.19 41.81 2.6 5 0 3.5827

135524 109.39 157.50 2.39 1.0 10 0 1.1879

121278 109.43 154.69 -9.59 1.2 15 0 1.2096

107350 109.64 149.06 -19.47 1.4 20 0 1.2081

166440 109.65 129.38 -16.96 1.4 10 -10 1.3085

133604 109.79 129.38 -22.02 1.8 20 -10 1.2692

190429 109.67 140.63 -12.02 1.6 10 -20 1.2572

153841 109.39 140.63 -7.18 2.0 20 -20 1.2238

242031 110.01 115.31 35.69 2.4 5 -35 2.7554

220237 109.68 143.44 -9.59 1.8 10 -35 1.2526

178243 109.70 146.25 -22.02 2.2 20 -35 1.2223

Table 4.2: Results for the NVSS catalogue with the quadratic estimator
with di�erent masked areas and resolution nside = 16. The
boldface results will discussed in detail.

We can conclude that the galactic plane did have an impact in those cases.
Since our model does not take our galaxy into account, the �t gets poor.
For higher values of |b| we do not see any signi�cant dependence of χ2/dof
on this masking parameter. Therefore we assume, it is save to use a value
of |b| = 10◦.

Another e�ect of |b| we can observe is that higher galactic cuts lead
to higher dipole amplitudes. Here one needs to keep in mind that all
estimates in table 4.2 are highly correlated, since the underlying data are
always the NVSS catalogue. So we do not have a number of independent
measurements of this e�ect, we see that it does not depend on decmask.
The �ts with higher |b| values are also those with slightly lower χ2/dof,
indicating a better �t to the dipole model. On the other hand the number
of sources is smaller, when the masked area is increased. Hence, a smaller
value of |b| generally leads to less shot noise contribution.

In table 4.3 the results of the quadratic estimator with a smaller res-
olution (nside = 8) for the NVSS catalogue are given. For the masking
of the galactic plane we see exactly the same e�ect like we saw for the
higher resolution previously. The number of total sources with nside = 8
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N_t N_0 RA dec d |b| decmask χ2/dof

(◦) (◦) (10−2) (◦) (◦)

147535 439.25 123.75 -4.78 1.0 5 0 3.6723

130811 438.22 157.50 -35.69 1.4 10 0 1.2715

118658 437.70 163.13 -30.00 1.4 15 0 1.2945

105642 437.99 146.25 -24.62 1.6 20 0 1.3294

167820 438.49 135.00 -35.69 1.6 10 -10 1.3074

137224 438.48 129.38 -19.47 2.2 20 -10 1.3129

192025 437.88 146.25 -24.62 1.6 10 -20 1.3046

157945 437.04 135.00 -4.78 2.0 20 -20 1.306

239548 439.39 140.63 0.00 1.4 5 -35 2.7906

215725 437.42 151.88 -19.47 1.6 10 -35 1.2870

177855 437.72 140.63 -19.47 2.2 20 -35 1.2802

Table 4.3: Results for the NVSS catalogue with the quadratic estimator
with di�erent masked areas and resolution nside = 8.

are slightly below those in table 4.2. This comes from the fact that we
actually mask more area here, since the pixels are bigger. So over all we
have less sources and this may also explain, why the χ2/dof values are
increased a little bit in comparison. Another e�ect is that we �t a cosine
to a pixelated map. This �t will be best, when the pixel size is small so
that the cosine describes the map in an optimal way. Hence, we will focus
on the results with the higher (nside = 16) resolution from now on.

In order to estimate the error bars for the evaluated parameters we
again utilize simulated radio maps. By implementing our resulted dipole
vectors and creating 100 simulated maps each, we are able to determine
the statistical variance of those simulations. This variance will then be
added to the resolution limitation (1.83◦ in each direction and 0.1× 10−2

in amplitude). Due to the time performing those simulations, we focused
on only two of our measurements from above, which are both in bold face
in the table. The �rst one is the second result in table 4.2, since it has
the smallest χ2/dof value. The second one will be the next to last case in
table 4.2, since it hast the most sources included, without su�ering from
the galactic-plane bias.

First of all we see that the �rst case considered in table 4.4 shows con-
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N_t RA dec d |b| decmask χ2/dof

(◦) (◦) (10−2) (◦) (◦)

135524 158± 30 2± 38 1.0± 0.5 10 0 1.1879

220237 143± 13 −10± 16 1.8± 0.5 10 −35 1.2526

Table 4.4: Final results for the NVSS catalogue with the quadratic estima-
tor with di�erent masked areas and resolution nside = 16. The
error bars represent the statistical variance of 100 simulations
plus the resolution limit.

siderably higher directional error bars than the second. The main reasons
are: (a) the comparably small dipole amplitude, which makes the direction
estimation harder and (b) the lower total source number that leads to a
larger shot noise contribution. Hence, this case may feature the best �t in
terms of χ2/dof, but in terms of uncertainty this result is not as good as
the second one in table 4.4.
For both cases we run the quadratic estimator again, now with a �ner

grid in position space. The possible dipole directions were tested with
nside = 32 now, while the catalogue itself was still pixelized with nside = 16.
This will reduce the resolution limit of the estimated direction from 1.83◦

to 0.92◦ and hence the overall directional error bars went all down by 1◦.
Not increasing the map resolution limited the necessary computational
time.

N_t RA dec d |b| decmask χ2/dof

(◦) (◦) (10−2) (◦) (◦)

135524 159± 29 2± 37 1.0± 0.5 10 0 1.1870

220237 143± 12 −11± 15 1.8± 0.5 10 −35 1.2526

Table 4.5: Final results for the NVSS catalogue with the quadratic estima-
tor with di�erent masked areas and pixel resolution nside = 16.
Dipole positions were tested on a nside = 32 grid. The error
bars represent the statistical variance of 100 simulations (with
grid resolution of nside = 16) plus the resolution limit.

We see that the results in table 4.5 are in very good agreement with the
previous results. This veri�es that our estimator is stable w.r.t. changing
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the grid. The obtained values of χ2/dof changed only marginally. Hence,
the �ner grid did not improve the �t quality. The error bars are based
on the same simulations as in table 4.4, since 100 simulations with the
�ner grid would have needed signi�cantly more time and we expect no
noticeable change in the resulting error estimation anyhow.
Our �nal result for the NVSS using the quadratic estimator described in

this section is therefore a dipole with amplitude (1.8±0.5)×10−2 towards
RA = 143◦±12◦ and dec = −11◦±15◦. The amplitude is the same we got
from the linear estimator with almost the same uncertainty. We take this
as veri�cation for both methods. Again the amplitude is signi�cantly above
the expectation (0.48 ± 0.04) × 10−2 from the CMB dipole. This excess
is therefore unlikely to be due to systematic e�ects of the two estimator
types, since both resulted in the same amplitude.
In comparison to the linear estimator we obtained smaller error bars for

the direction estimation. Within their one-sigma error bars both estima-
tors agree on the dipole direction. Due to the masking bias in direction for
the linear estimator, the results of the quadratic estimator are superior.
The obtained declination is in very good agreement with the CMB expec-
tation (decCMB = −7◦). For the right ascension value we see a di�erence,
but the CMB expectation (RACMB = 168◦) is only marginally outside the
two sigma contours of this estimation. Therefore we do not see a strong
discrepancy between the CMB and the radio dipole direction using NVSS.
The WENSS catalogue (Rengelink et al. 1997) includes sources from a

smaller area (≈ π) in comparison to the NVSS survey and has therefore
less sources overall. Since WENSS represents a completely independent
observation it is interesting to test this survey for the radio dipole, like it
was done with a two-dimensional linear estimator in Rubart & Schwarz
(2013) already. The quadratic estimator is able to estimate the full dipole
direction of WENSS, not only the right ascension coordinate.
On the other hand the quadratic estimator might be sensitive to the

fact that WENSS consists of two surveys: the main (28◦ < dec < 76◦) and
the polar catalogue (dec > 72◦). This leads to a source density changing
with declination. For the previously applied two-dimensional estimator,
this characteristic was irrelevant, but for the quadratic estimator it may
spoil the dipole measurement. Hence, we tested the WENSS catalogue (a)
completely and (b) only with sources belonging to the main catalogue, i.e.
we tested two di�erent declination areas (decarea). Additionally we masked
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all sources within 10◦ of the galactic plane (|b| < 10◦) like we did for the
NVSS.

N_t RA dec d |b| decarea χ2/dof

(◦) (◦) (10−2) (◦) (◦)

110821 149 −25 2.0 10 35− 90 1.7743

85285 118± 39 −7± 24 1.6± 0.8 10 35− 65 1.2191

Table 4.6: Results for the WENSS catalogue with the quadratic estimator
with di�erent masked areas and pixel resolution nside = 16. The
error bars in the second case represent the statistical variance
of 100 simulations plus the resolution limit.

In table 4.6 we see the dipole estimation results for the WENSS cata-
logue. The �t quality χ2/dof for the �rst case is very poor in comparison
to the second one and to the NVSS results. This is due to the combination
of two distinct surveys to the full WENSS catalogue. Hence, the result
for the whole WENSS catalogue is unfeasible for our purpose. The result
for the main catalogue with declinations between 35◦ and 65◦ shows a sig-
ni�cantly lower value of χ2/dof, which is close the χ2/dof values from the
NVSS dipole estimations above. We ran simulations for that result only,
in order to estimate the measurement uncertainty.

Due to the lower number of total sources as well as the low number of
usable pixels (396), the resulting shot noise uncertainties for the WENSS
dipole estimation are signi�cantly higher than for the NVSS. Within their
error bars both results are in agreement, the main di�erence being a dif-
ferent right ascension estimation, which is 25◦ apart. The estimations for
declination and dipole amplitude for the WENSS and NVSS catalogue are
remarkable close to each other.

The resulting right ascension for WENSS is in almost perfect agreement
with the result from the linear estimator (Rubart & Schwarz 2013). The
amplitude is lower for the quadratic estimator, which can be explained by
(a) a di�erent applied mask and (b) the fact that the quadratic estimator
is more sensitive to the shape of an anisotropic source distribution than
the linear estimator is. The �nal result for the WENSS dipole estimation
has an amplitude of (1.6 ± 0.8) × 10−2 towards RA = 118◦ ± 39◦ and
dec = −7◦ ± 24◦. On the one hand this is in agreement with the CMB
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dipole but on the other hand the case of no dipole cannot be excluded from
this estimation. In the end the WENSS catalogue provides not enough
sources for e�ective dipole estimation.
Now we discuss the overall goodness of the presented �ts. The �rst

result in table 4.5 has the lowest value of χ2/dof for all cases discussed
here. The chi-square distribution can be used to evaluate the likelihood,
to �nd a certain χ2-value, given the degrees of freedom of the �t. We did
this with the program "Mathematica" and found that the likelihood for
this result is only p = 5 × 10−6. This means that the �t has a very poor
quality. Even worse is the likelihood for the second row in table 4.5, which
is only p = 5× 10−14.
The reason for the poor �t qualities is that we modelled the distribution

of sources across the sky only by monopole and dipole. Of course the
universe cannot be described by those two multipoles only, but it features a
much more complex distribution of matter. Local or large-scale structures,
like discussed in chapter 1.2, are not part of our model. Hence, we do
expect an increased χ2 value for our estimator.
Our simulations did not include structure and hence they should provide

a much better �t, for a pure mono- and dipole model. The resulting
values of χ2/dof for the two NVSS simulations mentioned above are χ2/dof
=0.991 ± 0.040 (mean and statistical variance) for the �rst case in table
4.5 and χ2/dof = 0.998±0.033 for the second. So we obtain almost perfect
�ts for our simulations.
The result using the WENSS catalogue has a p-value of 0.001915, which

is much better than the ones from the NVSS �ts. This is most likely
due to the smaller number of sources and pixels. With less data it is
harder to exclude a certain model with high signi�cance and hence the
p-value cannot be as small as in the previous cases. The simulation for the
WENSS catalogue had a mean value of χ2/dof =1.001± 0.066. Again the
simulations provided better �ts, since they did not include any structure
e�ects.
We learn from this estimator that local structure is relevant and the ef-

fects of such structures on the dipole are discussed in the following chapter.
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Chapter 5

Voids and Dipole

Something wicked this way comes.

� Shakespeare, Macbeth

5.1 Publication A&A 565, A111 (2014)

The following publication was written by the �rst author and edited by
the second and third one. In this work, the e�ect local structure (i.e. a
void) has on the radio dipole amplitude is discussed. It is shown that a
void may increase the dipole amplitude without having an e�ect on the
dipole direction.
In order to quantify this e�ect, local structures are modelled by spherical

shells of equal densities. It is shown how the dipole amplitude contribution
depends on the position of the observer relative to the structure's centre.
The introduced formalism is tested with simulations and is well con�rmed.
Observed voids are used in order to estimate the expected dipole ampli-

tude contribution from such structures. It is shown that the e�ect from a
single realistic void is not big enough to explain the observed excess in radio
dipole estimations to full extent. But on the other hand, local structures
do play a role and may explain a signi�cant fraction of the excess.
In order to distinguish the contribution of local structure from a kine-

matic dipole, two e�ects were analysed. First of all it was shown that
the line of sight dependence for both cases is identical, if the observer is
inside such a structure. Secondly it was shown that local structure e�ects
have frequency dependence. The latter e�ect may be used in order to
distinguish a kinetic from a structure dipole.
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ABSTRACT

We investigate the contribution that a local over- or under-density can have on linear cosmic dipole estimations. We focus here on
radio surveys, such as the NRAO VLA Sky Survey (NVSS), and forthcoming surveys such as those with the LOw Frequency ARray
(LOFAR), the Australian Square Kilometre Array Pathfinder (ASKAP) and the Square Kilometre Array (SKA). The NVSS has
already been used to estimate the cosmic radio dipole; it was shown recently that this radio dipole amplitude is larger than expected
from a purely kinematic effect, assuming the velocity inferred from the dipole of the cosmic microwave background. We show here
that a significant contribution to this excess could come from a local void or similar structure. In contrast to the kinetic contribution
to the radio dipole, the structure dipole depends on the flux threshold of the survey and the wave band, which opens an opportunity to
distinguish the two contributions.

Key words. large-scale structure of Universe – radio continuum: galaxies – galaxies: clusters: general

1. Introduction

In recent years, the dipole anisotropy in radio surveys, such as
the NVSS catalogue (Condon et al. 1998), has been investi-
gated (e.g. Blake & Wall 2002; Singal 2011; Gibelyou & Huterer
2012; Rubart & Schwarz 2013; and Kothari et al. 2013). It ap-
pears that the cosmic radio dipole has a similar direction to the
one found in the cosmic microwave background (CMB), but
with a significantly higher amplitude (by a factor of three to four,
based on different estimators and surveys, Singal 2011; Rubart
& Schwarz 2013). In this work we investigate one possible ef-
fect which can increase the dipole amplitude observed in radio
surveys, with respect to the CMB dipole.

There have recently been studies (e.g. Keenan et al. 2013
and Whitbourn & Shanks 2014) which claim that the local uni-
verse (i.e. on scales of 300 Mpc) has an atypically low density
of galaxies. If we do live in such a region, what would we expect
to see regarding the observed cosmic radio dipole? We are un-
likely to be living in the very centre of such a void, so there will
be some offset distance between us and the centre of the void,
which we call rv. If we imagine a sphere around the observer (in
our case the Local Group), with a radius Ro greater than the void
radius Rv, we will expect to see more galaxies in one direction
than in the other.

It is likely that the Local Group moves towards the direction
where we see more galaxies, due to their gravitational pull. This
direction has been determined to be (l, b) = (276◦ ± 3◦, 30◦ ± 3◦)
(Kogut et al. 1993) in galactic coordinates. The CMB dipole,
(l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦) from Hinshaw et al.
(2009), is caused by the motion of the Sun relative to the CMB,
while the radio dipole, (l, b) = (248◦ ± 28◦, 46◦ ± 19◦) from
Rubart & Schwarz (2013), can be expected to receive con-
tributions from the motion of the solar system with respect
to the CMB (kinetic dipole) and due to the uneven galaxy

distribution (structure dipole). Within the current accuracy, the
direction of the radio dipole agrees with the CMB direction
as well as with the motion of the Local Group with respect to
the CMB. Therefore we expect the contribution of a local void
to the radio dipole to add up with the velocity dipole, resulting
in a larger dipole amplitude in radio surveys.

The local structures considered in this work are not in con-
flict with the Copernican principle, as they are much smaller than
the Hubble scale and thus a fine tuning of the position of the ob-
server with respect to the centre of a void is not required. This is
different to scenarios in which huge voids have been invoked to
provide an alternative explanation of dark energy (e.g. Celerier
2000; Alnes et al. 2006; Alnes & Amarzguioui 2006).

In this work, we will investigate this chain of thought in
a more quantitative manner. Our model will be discussed in
Sect. 2, followed by detailed testing in Sect. 3. In Sect. 4 we
will examine the effects of realistic voids on the dipole, and we
will present our conclusions in Sect. 5.

2. Model

For simplicity we model the observed universe limited by a ra-
dius of Ro and with constant mean number density of sources
everywhere (except in the area occupied by the void). Therefore
the results of this section cannot directly be compared to radio
surveys. The more realistic case of a flux limited observation,
with certain number counts, is discussed in Sect. 4.

The configuration of our model can be seen in Fig. 1. We
consider a density contrast δ(r) in a region with radius Rv, which
we will call a void (but could be any amount of over- or under-
density). We can restrict the calculation to the regions where
δ(r) , 0, as the contribution of the mean density to the dipole
amplitude vanishes due to isotropy.
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Fig. 1. Configuration of our model of the observed volume-limited uni-
verse (radius Ro) with a void of size Rv at distance rv from the observer.

For the dipole measurement we use the linear estimator in-
troduced by Crawford (2009),

d =
1
N

N∑

i=1

r̂i, (1)

where r̂i is the normalized direction of source i on the sky as
seen by an observer in the centre of the observed universe. The
fact that this estimator is linear is a big advantage here, since we
can sum up the contributions of the background, of voids and of
over-densities in an additive way. With a quadratic estimator this
would not work out so trivially.

In order to simplify the integration, we pick a coordinate sys-
tem centred on the void. The expectation of the observed dipole
from the void, measured with the estimator (1), will be

〈d〉 = ᾱ

∫ 2π

0
dϕ

∫ 1

−1
d cosϑ

∫ Rv

0
dr δ(r)r2 r − rv

|r − rv| · (2)

Here we have a normalization factor ᾱ.
As a first case, we assume a constant density contrast δ in the

void, and an offset rv of the void in direction ẑ,

〈dz〉 = ᾱ δ

∫ 2π

0
dϕ

∫ 1

−1
d cosϑ

∫ Rv

0
dr r2 r cosϑ − rv√

r2 − 2 cosϑrrv + r2
v

·

(3)

This leads to

〈d〉 =
4π
3
ᾱ r̂v δR3

v

[
Θ (Rv − rv)

(
rv

Rv
− 1

5
r3

v

R3
v

)

+Θ (rv − Rv)
(
1 − 1

5
R2

v

r2
v

)]
, (4)

where Θ is the Heaviside function. This formula provides the
dipole contribution of a top hat over- or underdensity for an ob-
server inside or outside the void.

Our aim is to investigate void regions with arbitrary density
contrast profiles δ(r). In order to do so, we can heuristically lin-
early add up a large number N of these voids to get to a smooth
distribution δ(r).

The normalization factor ᾱ in (4) can be found by the re-
quirement that the integration over a sphere (with radius Ro big-
ger than the void size Rv) should equal unity,

1 = ᾱ4π
(∫ Ro

Rv

dr r2 +

∫ Rv

0
dr r2(1 + δ(r))

)
, (5)

leading to

ᾱ =
3

4π
1

R3
o + 3

∫ Rv

0 dr r2δ(r)
· (6)

We can see that the prefactor 3
4π cancels in (4). For convenience

we introduce α = 4π
3 ᾱ for all following formulae.

Let us consider the limit of a distant void rv � Rv. Then we
obtain

lim
rv�Rv

〈dz〉 = δ
R3

v

R3
o
· (7)

So the dipole amplitude due to a void depends on the density
contrast of the void and on the fraction of volume it occupies in
the observed universe.

For a realistic case of a flux limited observation of the uni-
verse, we need to generalise this formula to

lim
rv�Rv

〈dz〉 ≈ δ Ñv

No
· (8)

Here No is the number of sources in the observed universe and
Ñv is the number of sources we expect to see in the area occupied
by the void, if it had the same mean number density as the rest
of the universe. This number does depend on the flux limit, on
the functional shape of the number counts and on the distance
and size of the void.

2.1. Observers outside the void

Now we want to derive the expectation value of the dipole am-
plitude from voids with a density contrast δ(r), which is not con-
stant. To do so, we will add up N concentric voids, resulting
in a structure of N concentric shells, each with constant density
contrast δi, i = 1, . . . ,N. The shells are ordered by their radius,
starting at the shell with the biggest radius (shell number 1).

We only look at the absolute value of 〈d〉, since for symmetry
reasons, the direction of this expectation value will always be r̂v.
First we look at N voids as observed from outside the voids, thus
rv > Rv. The second term in (4) will give N terms, which can be
written as

|dz| = α

δ1R3
1

1 − 1
5

R2
1

r2
v

 + (δ2 − δ1) R3
2

1 − 1
5

R2
2

r2
v



+ . . . + (δN − δN−1) R3
N

1 − 1
5

R3
N

r2
v


 · (9)

From this we obtain

|dz| = αδNR3
N

1 − 1
5

R2
N

r2
v



+α

N−1∑

i=1

δi

R3
i −

1
5

R5
i

r2
v
− R3

i+1 +
1
5

R5
i+1

r2
v

 · (10)

Now we take the difference in size between consecutive shells
to be infinitesimally small, meaning Ri+1 = Ri − ε. Without loss
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of generality, we can put R1 = rv and therefore place the ob-
server on the edge of the biggest void shell (if rv > Rv then
δ(r)|r>Rv = 0). The innermost void shell will have a vanishing
radius and so RN = 0. This leads to

|dz| = α

N−1∑

i=1

δi

3R2
i ε −

R4
i ε

r2
v

 , (11)

which can be written in the form of an integral

|dz| = α

∫ rv

0
dr r2δ(r)

(
3 − r2

r2
v

)
· (12)

This is the equation we have been seeking for the dipole ob-
served by an observer outside the void.

2.2. Observers inside the void

Now we examine the case of N void shells, each of constant
density, with rv ≤ Rv; the observer is inside the void. We have

|dz| = α

[
δ1

(
R2

1rv − 1
5

r3
v

)
+ (δ2 − δ1)

(
R2

2rv − 1
5

r3
v

)

+ . . . + (δN − δN−1)
(
R2

Nrv − 1
5

r3
v

)]
. (13)

This can be rewritten as

|dz| = αδN

(
R2

Nrv − 1
5

r3
v

)
+ α

N−1∑

i=1

δi

(
R2

i rv − R2
i+1rv

)
. (14)

Again we make the difference in size between consecutive void
shells infinitesimally small, meaning Ri+1 = Ri−ε. The shell with
the smallest radius that still includes the observer (rv ≤ Rv), will
have RvN = rv and δN = δ(rv). The void shell with the biggest
radius will have R1 = Rv. This leads to

|dz| = 4
5
αδ (rv) r3

v − 2αrv

N−1∑

i=1

δiRviε, (15)

which can be written as an integral

|dz| = 4
5
αr3

vδ (rv) + 2αrv

∫ Rv

rv

dr rδ(r). (16)

This is the form we have been seeking for the dipole observed
when the observer is inside a void.

2.3. Structure dipole amplitude

When combining the results for an observer inside a void
(Sect. 2.2) and those for an observer outside the void (Sect. 2.1),
we need to be careful. The void shell at the position of the ob-
server rv and density contrast δ(rv) has been counted in both
cases. The formula for an observer outside the void (12) gives
4
5αδ(rv)r3

v, which is the same result we find for the observer in-
side the void (16) with δ(r)|r<Rv = δ(rv). Therefore we need to
subtract this term once when combining both cases. We obtain

〈d〉 = αr̂v

∫ min(rv,Rv)

0
dr r2δ(r)

(
3 − r2

r2
v

)

+αr̂vΘ(Rv − rv) 2rv

∫ Rv

rv

dr rδ(r). (17)

The upper boundary of the first integral is now the minimum
of rv and Rv, since in general it is not guaranteed that rv < Rv.

3. Testing

We test our mathematical model with the help of computer sim-
ulations. The focus of the first subsection below is to verify the
dependence of a dipole contribution on the three void parame-
ters Rv, rv and δ. Next we allow for a varying density contrast δ
with respect to r. Up to this point, we assume a volume limited
observation. The flux limited case, including realistic number
counts, is discussed in Sect. 4, where we incorporate a radio sky
simulation from Wilman et al. (2008).

3.1. Structures of constant density contrast

Let us first look at constant density contrasts δ(r) = δ inside the
void area. In order to test our calculations, we construct a simple
simulation. We draw a random point (with the random number
generator Mersenne Twister) inside a three dimensional sphere
of radius Ro, which we set to Ro = 1 (which fixes the physical
scale). The points inside this sphere are uniformly distributed.

The next step depends on whether we have an underdensity
(δ < 0) or an overdensity (δ > 0) of radius Rv. In the first case,
we keep all points which are outside the void (this represents the
average density of objects, i.e. δ = 0). For each point inside the
void, we draw a random number between 0 and 1. If this number
is bigger than δ+1 we drop this point and turn to the next one. If,
on the other hand, it is smaller than δ+1, we keep it and proceed
to a new point (this algorithm is simply a Monte Carlo sampling
between δ = −1 and δ = 0).

For the case δ > 0, we keep all drawn points inside the over-
density, and draw random numbers (0 → 1) for points outside
the overdensity. Now we drop the point only if the random num-
ber is larger than 1/(1 + δ). So we create a map with the desired
densities inside and outside the over-/underdense region.

In this way we will draw N points in total, which will be used
to measure d via (1). Due to the fact that we can only use finite
values of N, our simulation will always have a certain amount of
shot noise, whereas our calculations in Sect. 2 neglected noise. In
Rubart & Schwarz (2013) the influence of this shot noise on the
expectation value of a linear estimator is discussed. We compare
the average outcome of several simulations with

d̃ :=
√
〈d〉2 + (0.92/

√
N)2, (18)

where the second term inside the square root comes from the
shot noise contribution. For 〈d〉 we can use the results discussed
in Sect. 2, depending on the case we are simulating.

In Table 1 we see a comparison between our analytic expec-
tation and the simulated results, for cases where the observer
is inside the void. In order to quantify the performance of the
theory we estimate the error by 2|(d̃ − ds)/(d̃ + ds)|. We see in
Table 1 that this error drops as the dipole values increase. This
is due to the fact that in those cases the uncertainties due to shot
noise are less important. For the case of rv = 0.1, Rv = 0.2
and δ = −0.5 we see an unusually high error. We repeated this
configuration with 20 extra simulations and found an averaged
value of ds = 0.215 × 10−2, which is very close to d̃; so we are
confident that this relatively large disagreement arose by chance.
In all other cases we see a good agreement between the calcu-
lated values and the simulated ones. If the dipole is large, the
agreement becomes remarkably good. These results confirm the
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Table 1. Comparison of analytic model and simulation for an ob-
server inside a local spherical structure (rv < Rv) with constant density
contrast δ.

rv Rv δ d̃ ds Error
(10−2) (10−2) %

0.1 0.1 −1 0.12 0.13 8, 7
0.1 0.2 −1 0.39 0.41 2, 8
0.2 0.3 −1 1.69 1.71 1, 3
0.2 0.4 −1 3.25 3.28 0, 9
0.4 0.4 −1 5.47 5.47 0, 0
0.1 0.1 −0.5 0.10 0.11 10, 1
0.1 0.2 −0.5 0.21 0.17 20, 2
0.2 0.3 −0.5 0.84 0.84 0, 2
0.2 0.4 −0.5 1.57 1.54 2, 1
0.4 0.4 −0.5 2.65 2.68 1, 3
0.1 0.1 1 0.12 0.13 5, 7
0.1 0.2 2 0.75 0.76 1, 4
0.2 0.3 4 5.92 5.89 0, 5
0.2 0.4 5 11.52 11.50 0, 1
0.4 0.4 7 24.75 24.70 0, 2

Notes. The analytically calculated dipole is denoted by d̃. Each sim-
ulated dipole amplitude ds is an average of 10 simulations with N =
106 sources each; the error is defined as 2|(d̃ − ds)/(d̃ + ds)|.

Table 2. As Table 1, but for observers sitting outside the spherical
structure.

rv Rv δ d̃ ds Error
(10−2) (10−2) %

0.1 0.1 −1 0.12 0.10 18.7
0.2 0.1 −1 0.13 0.13 3.3
0.3 0.2 −1 0.74 0.73 1.7
0.4 0.2 −1 0.77 0.77 0.9
0.4 0.4 −1 5.47 5.46 0.2
0.1 0.1 −0.5 0.10 0.11 7.4
0.2 0.1 −0.5 0.10 0.09 12.9
0.3 0.2 −0.5 0.38 0.40 5.8
0.4 0.2 −0.5 0.39 0.36 8.4
0.4 0.4 −0.5 2.65 2.65 0.1
0.1 0.1 1 0.12 0.12 3.2
0.2 0.1 2 0.21 0.21 2.3
0.3 0.2 4 2.83 2.81 0.6
0.4 0.2 5 3.66 3.66 0.1
0.4 0.4 7 24.75 24.70 0.2

calculated expectation values of the dipole for voids with rv ≤ Rv
and constant density contrast δ.

In Table 2 we present the comparison for cases with rv ≥ Rv.
Again we can see that the difference between calculation and
simulation is quite small, and decreases as the dipole amplitude
increases.

The simulated dipole amplitude can be plotted as a func-
tion of either rv, Rv or δ. We present examples of simulations in
Figs. 2–4, where we have fitted functions of the form (4) making
use of the normalization factor (6) and including a shot noise
contribution (18).

In all cases the fitted curve follows the simulated dipole am-
plitudes very well. The first case shows the dipole amplitude
as a function of the density contrast δ; we see that the depen-
dence on δ is approximately linear. Here we used a void of size
Rv = 0.4 and an offset distance of rv = 0.2; we expect from our
theoretical model fit parameters of 〈a〉 = 0.0305, 〈b〉 = 0.064
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Fig. 2. Simulated dipole amplitudes. The graph is for a void with
Rv = 0.4 and rv = 0.2 for different values of δ, while the curve is
the best fit. Each data point is the mean value of the dipole ampli-
tude from 100 simulations with 106 sources each. The error bars rep-
resent the empirical variance of these simulations. For the fit a function

f (δ) =

√(
δ a

1 + bδ

)2
+ c2 was used.
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Fig. 3. Simulated dipole amplitudes. The graph is for a void with
Rv = 0.3 and δ = −1 for different values of rv. Each data point
is the mean value of the dipole amplitude from 100 simulations with
106 sources each, while the curve is the best fit. The error bars repre-
sent the empirical variance of these simulations. For the fit, a function
g(rv) =

√
(a rv − b r3

v)2 + c2 was used.

and 〈c〉 = 0.92 × 10−3. The values of our fit of f (δ) give us
the parameters a = 0.0303 ± 0.0002, b = 0.066 ± 0.005 and
c = (0.92 ± 0.05) × 10−3, which are in excellent agreement.

For Fig. 3 we used 106 sources, a density contrast of δ = −1
and a void radius of Rv = 0.3; we expect 〈a〉 = 0.0925, 〈b〉 =
0.206 and 〈c〉 = 0.92 × 10−3. The values of our fit of g(rv) give
us the parameters a = 0.0924 ± 0.0002, b = 0.205 ± 0.003 and
c = (0.92 ± 0.04) × 10−3. Again, this is in very good agreement
with our prediction. We can observe that the dipole increases
strongly with the offset distance rv. On the edge of the void, the
increase becomes more modest.

The graph in Fig. 4 shows the behaviour of the dipole am-
plitude as a function of the void size Rv. Here we used a density
contrast of δ = −0.25 and an offset distance of rv = 0.2; we
expect 〈a〉 = 0.2, 〈b〉 = 0.25 and 〈c〉 = 0.92 × 10−3. The values
of our fit of h(Rv) give us the parameters a = 0.205 ± 0.006,
b = 0.244 ± 0.006 and c = (0.91 ± 0.07) × 10−3. We see that the
parameters are in very good agreement with our prediction.
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Fig. 4. Simulated dipole amplitudes. The graph is for a void with
rv = 0.2 and δ = −0.25 for different values of Rv. Each data point
is the mean value of the dipole amplitude from 100 simulations with
106 sources each, while the curve is the best fit. The error bars repre-
sent the empirical variance of these simulations. For the fit, a function

h(Rv) =

√(
b a R2

v − 0.2a3

1 + b R3
v

)2
+ c2 was used.

Table 3. Comparison for cases with offset distance rv smaller than void
radius Rv.

rv Rv p d̃ ds Error
(10−2) (10−2) %

0.2 0.4 1 0.96 0.96 0.2
0.3 0.5 1 2.16 2.18 0.7
0.2 0.4 2 1.49 1.51 1.4
0.3 0.5 2 3.42 3.44 0.4
0.2 0.4 3 1.82 1.83 0.2
0.3 0.5 3 4.24 4.25 0.2

Notes. The density contrast is of the form δ(r) = rp

Rp
v
− 1 and the cal-

culated dipole is d̃. Each simulated dipole amplitude ds is an average
of 10 simulations with N = 106 sources each; the error is defined as
2| d̃−ds

d̃+ds
|.

We conclude from this section that formula (4) combined
with (18) is in very good agreement with our simulations.

3.2. Arbitrary void profile

Now we would like to test whether formula (17) is also verified
by our simulations. We consider density contrasts of the form
δ(r) = rp

Rp
v
−1 for r inside the void and δ(r) = 0 outside. In all such

cases the density contrast has the boundary values δ(0) = −1
and δ(Rv) = 0. In such cases the integrals in (17) can be solved
analytically. Results will be put into (18) in order to get d̃.

The simulation is similar to the one described in Sect. 3.1.
We choose a random number for points inside the void. This
time a point (with distance r from the void centre) is discarded
if the random number is greater than rp/Rp

v .
In Table 3 we see the comparison of our calculated dipole

expectation with the simulation results for cases rv < Rv, and
in Table 4 for cases with Rv > rv. Again we can observe the
tendency to find improved agreement with the analytic model
when the dipole amplitude is larger. In fact even for small dipole
values we see a good agreement between the simulation and our

Table 4. Comparison for cases with offset distance rv larger than void
radius Rv.

rv Rv p d̃ ds Error
(10−2) (10−2) %

0.4 0.2 1 0.21 0.21 1.9
0.5 0.3 1 0.65 0.69 4.7
0.4 0.2 2 0.32 0.31 2.8
0.5 0.3 2 1.04 1.05 1.0
0.4 0.2 3 0.40 0.42 5.1
0.5 0.3 3 1.30 1.30 0.0

Notes. The density contrast is of the form δ(r) = rp

Rp
v
− 1 and the cal-

culated dipole is d̃. Each simulated dipole amplitude ds is an average
of 10 simulations with N = 106 sources each; the error is defined as
2| d̃−ds

d̃+ds
|.

calculation. Therefore we are satisfied that Eq. (17) is confirmed
by our simulations.

4. Missing dipole contribution

Now we investigate the contribution which realistic void models
can have on the observed radio dipole. Therefore we no longer
assume a volume limited observation, but a flux limited one.

In Rubart & Schwarz (2013), a dipole amplitude dradio =
(1.8± 0.6)× 10−2 in the NVSS catalogue was reported, which is
significantly above the prediction inferred from CMB measure-
ments (Hinshaw et al. 2009) of dcmb = (0.48 ± 0.04) × 10−2.
Therefore we can infer a missing dipole contribution

∆d̃ = d̃radio − dcmb = (1.3 ± 0.6) × 10−2, (19)

where the tilde indicates that the dipole amplitudes include cor-
rection factors, which are also be applied to the void dipole esti-
mations below.

We would like to investigate whether it is possible to get
a dipole contribution of this magnitude from a void model in
which we are off-centre. We examine a void of the type de-
scribed by Keenan et al. (2013). They report an observed void
with a density contrast of about − 1

3 up to redshifts of about
z = 0.07. The influence of smaller voids, compared to Keenan
et al. (2013), on the clustering dipole, was discussed e.g. by
Bilicki & Chodorowski (2010).

Since we want to compare the void dipole dvoid with the
one derived from the NVSS catalogue, we cannot assume a
constant density outside the void. The NVSS itself does not con-
tain information about the distance of individual objects. In or-
der to have a realistic redshift distribution, we used the semi-
empirical S 3 simulation from Wilman et al. (2008) with an area
of 400 square degrees. From this we obtained a catalogue of ap-
proximately 2800 radio sources with flux densities above 25 mJy
at 1.4 GHz (the limit Rubart & Schwarz 2013, used for obtain-
ing dradio). This is now a flux limited observation, in contrast to
the volume limited model in the previous section.

Now we modify our void simulation in the following way.
Each data point will have a randomly chosen direction on the
sky and a redshift distance chosen from the S 3 catalogue. Inside
the void we will reduce the density of points in the way described
in Sect. 3.1. So we are left with number counts outside the void,
which are close to what is actually observed in the mean, and
some density contrast δ(r) inside the void.

We would like to estimate the maximal contribution of such
a void to the measured dipole amplitude. Therefore we choose

A111, page 5 of 8



A&A 565, A111 (2014)

rv = Rv, since this will give the biggest dipole amplitude for a
void which includes the observer. As we consider rv to be much
less than the Hubble distance RH, we can use the linear Hubble
law to relate distances and redshift. The shot noise in this sim-
ulation should be suppressed, since we only want to know the
pure contribution from the void (any possible shot noise is al-
ready taken into account by the error bars of dradio). So we choose
the following parameters for our simulation, which uses the red-
shift information to infer the distance parameters: Rv = 0.07RH,
δ = −1/3 and N = 107. We carried out 50 runs of our simulation,
and the average dipole we obtained is

dvoid = (0.0918 ± 0.0023) × 10−2. (20)

For rv = 0.06RH < Rv we obtained dvoid = (0.0839 ± 0.0026) ×
10−2. Lower values of rv lead to lower dipole amplitudes.

Due to masking effects (incomplete sky coverage and galac-
tic foreground) the dipole amplitude in Rubart & Schwarz (2013)
was multiplied by 3/k, where k was evaluated to be 1.34 for this
case. In order to compare both dipole amplitudes, we also need
to multiply dvoid by this number,

d̃void =
3
k

dvoid = (0.21 ± 0.01) × 10−2. (21)

If we compare this d̃void to the missing dipole ∆d we can see that
such a void can have a significant contribution to the observed
radio dipole. When we consider the lower bound of dradio we see
that d̃void could explain up to about a third of the missing radio
dipole.

If we would like to explain the missing dipole contribution
only by one void, this would need to be bigger and have a larger
density contrast. One possible combination of void parameters
would be Rv = rv = 0.11RH and δ = −0.6. For this we found,
with 50 simulations, an average dipole (including masking cor-
rections, described above) of

d̃void =
3
k

dvoid = (0.72 ± 0.01) × 10−2. (22)

A similar result, d = (0.69 ± 0.01) × 10−2, is obtained with
the parameters Rv = rv = 0.15RH and δ = −1/3. These void
models are not particularly extreme. Another possibility would
be to have a combination of different under- and over-densities,
such as e.g. superclusters. The dipole of these different structures
could add up to result in an amplitude which could potentially
explain the whole missing dipole contribution.

4.1. Flux and frequency dependence

So far we only used the S 3 simulation with a lower flux density
limit of 25 mJy. For future radio surveys we hope to be able to es-
timate the radio dipole with more sources and therefore we will
need to apply a lower flux density limit. The effect of a change in
this flux density limit for the dipole contribution of a void is not
trivially estimated. On the one hand, a lower flux density limit
means that we can see more distant sources then previously. This
means that local structure becomes less important. On the other
hand, a lower flux density limit will also lead to the detection
of nearby galaxies, which have a low radio brightness. For those
galaxies the void structure is important and we could expect an
increase in the measured dipole amplitude. Both effects will vary
in strength at different flux density ranges.

In order to estimate these effects, we again used the S 3 sim-
ulation from Wilman et al. (2008). We considered the two fre-
quencies of 1.4 GHz (e.g. NVSS or a planned survey with
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Fig. 5. Simulated dipole amplitudes for different flux limits. Each point
is the average of 50 simulations with 107 sources each. The void used
here has the parameters Rv = rv = 0.07RH and δ = −1/3. The error bars
represent the empirical variance of these simulations.

ASKAP1) and 151 MHz (e.g. LOFAR2). A continuum survey
with the SKA3 will be likely to be collected at a frequency be-
tween these (e.g. 600 MHz). Again we used the void parameters
from Keenan et al. (2013). This time we applied different flux
density limits to see the dependence of the observed dipole am-
plitudes on the flux density limit.

In Fig. 5 we see that the dependence of the measured dipole
amplitudes from the flux density limit is quite complex. Notice
that the flux limits shown cover almost five orders of magnitude.
For flux density limits below 10 mJy, the dipole amplitudes in-
crease very strongly until a maximum is reached around 1 mJy.
The contribution of a local void for the dipole in a survey with a
flux density limit of 1 mJy could be about three times as strong
as it is for a limit of 25 mJy. This means that the effect of voids
will become more important in future radio surveys. In principle
it is possible to disentangle the kinetic dipole contribution from
the structure dipole, since the kinetic dipole amplitude does not
depend on the flux density limit (the shot noise does, but this will
be taken into account by the error bars).

We can see that the general behaviour for both frequencies
is the same. The main difference is in the position of the peak
in the dipole amplitude. This comes from the fact that different
radio source populations show up at different flux density lim-
its for different frequencies. Due to this effect it seems possible
to analyse the structure component of the radio dipole by using
different frequencies and flux density limits. A kind of tomogra-
phy of the local universe would be a possible application. Radio
telescopes like LOFAR, ASKAP or SKA will be ideal to create
the necessary radio catalogues at different frequencies for this
purpose.

4.2. Line of sight dependence

It was shown by Singal (2011) that the amplitude of a linear
dipole estimator (using the NVSS survey), for different areas of
the sky, varies like cos(θ), where θ is the angle measured be-
tween the line of sight and the dipole direction. This analysis is
in agreement with the assumption that the radio dipole is domi-
nated by a kinetic contribution.

1 www.atnf.csiro.au/projects/askap/
2 www.lofar.org
3 www.skatelescope.org
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We now discuss whether a radio dipole which is partly due
to a contribution from a local void, would be in conflict with
this observed behaviour or not. Therefore we investigate how the
dipole amplitude from a void varies with respect to the angle θ
(for simplicity we assume a constant density contrast inside the
void here). Any prefactors, which do not depend on θ, are not
relevant here.

The effect of a void-like structure on the dipole amplitude is
proportional to the length of the line of sight inside the void. If
we are inside the void, we need to add the forward and back-
ward contribution, since a dipole estimator also picks up both
parts. In order to find this length, we use the equation of a circle
(radius Rv) with an offset of rv in the x-direction

(x − rv)2 + y2 = R2
v. (23)

Using polar coordinates l, θ with x = l cos θ, y = l sin θ we can
transform this to

l
Rv

=
rv

Rv
cos(θ) ±

√
r2

v

R2
v

cos θ2 + 1 − r2
v

R2
v
· (24)

For the case Rv ≤ rv we subtract one solution from the other
to get the distance between the two crossings of the line of
sight with the void boundaries. Therefore the dipole signal is
proportional to

f =

√
r2

v

R2
v

cos θ2 + 1 − r2
v

R2
v
, (25)

where f is now the fraction of the dipole effect in the direction θ,
meaning d ∝ f . For the case of an observer on the edge of the
void (rv = Rv), this simplifies to a cosine and therefore behaves
exactly like a kinetic dipole.

For the case Rv ≥ rv one solution of (24) is negative. For
an observer inside the void the fraction of the dipole effect de-
pends on the difference of the length of the line of sight in the
forward and backward direction. Thus, we need to add up the
two solutions of (24) and obtain

f = cos θ. (26)

Therefore an observer inside a void sees an effect for the dipole
estimation which behaves like a cosine. So we cannot distinguish
this case from a kinetic dipole by its angular dependence.

In Fig. 6 we show the relation of f versus θ for different
values of rv/Rv. We see that this relation is steeper when the
observer is outside the void (rv > Rv). In future surveys, such an
analysis can help to separate the kinetic dipole contribution from
a structural component and also give an estimation of rv/Rv.

The case investigated in this work is an observer living close
to the edge of a void-like structure. This scenario cannot easily
be distinguished from a pure kinetic dipole by this method, since
both will behave like a cosine in angular dependence. Therefore
the work of (Singal 2011) is not in conflict to the investigated
scenario here.

5. Conclusion

We have been able to develop a model that can describe the in-
fluence of spherically symmetric local structures on linear dipole
estimators. This model was tested and confirmed by computer
simulations to a high level of accuracy. From this model we learn
how the structure parameters (void size Rv, observer distance
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Fig. 6. Fraction of dipole effect f versus angle between dipole direction
and line of sight θ for different ratios of the offset vector rv to the void
radius Rv.

from the void centre rv and void density contrast δ) influence the
structure dipole amplitude.

Our analytical model requires a constant background density,
which is a reasonable approximation at small redshifts. In order
to include the effects of cosmic expansion and galaxy evolution,
the dipole contribution for the realistic void model was estimated
by means of simulations of the number counts of radio galaxies.
Not included in this work are estimations of the dipole contri-
bution from several galaxy clusters or other structures; because
the dipole estimator is linear, these would just be a sum of terms
similar to the ones calculated in this paper.

One might ask if a void as considered in this work would
show up in the CMB. It is clear that the size of the effect will
depend on the distance of the observer from the centre of the
void. The CMB dipole will be maximally affected for an ob-
server sitting at the edge of the void. There is no contribution
to the CMB dipole if the observer sits in the centre and the ef-
fect would show up at much smaller angular scales if the ob-
server were far away form the void. A CMB dipole would be in-
duced by the integrated Sachs-Wolfe effect (or the Rees-Sciama
effect if non-linear effects play a role) and thus the dynamics of
the void profile would be important to determine its amplitude.
Such structures have been studied previously, e.g. by Thompson
& Vishniac (1987), Tomita (2000), Rakić et al. (2006), Inoue &
Silk (2006), Maeda et al. (2011), Francis & Peacock (2010) and
Rassat & Starck (2013). An order of magnitude estimate of the
maximum possible effect (Panek 1992) gives

∆T/T ∼ δ3/2
(

Rv

RH

)3

∼ 2 × 10−4 (27)

for the model considered here. This shows that the void-like
structure considered in this paper would not be in tension
with the observed CMB dipole, but might contribute to the
CMB anomalies at small multi-pole moments. A detailed study
of this topic is beyond the scope of this work.

For the void model of Keenan et al. (2013) for our local en-
vironment, we have run simulations which include a radio sky
model from Wilman et al. (2008). We found that such a void al-
ready has a significant effect on the dipole estimation for surveys
like the NVSS. The dipole amplitude measured by the linear es-
timator from Rubart & Schwarz (2013) of this void is expected
to be d̃void = 0.21 ± 0.01 × 10−2. The discrepancy between radio
and CMB dipole measurements can be relaxed by such a con-
tribution, but the difference cannot be explained completely by
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the contribution from a single, realistic void. In forthcoming sur-
veys, with lower flux density limits, the effect of local structure
will become even more important.
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Chapter 6

Discussion and Outlook

a scientist's job is to ask questions.

� The Doctor, Dr. Who: City of Death

In this chapter we discuss the di�erent results for the cosmic radio dipole,
using the NVSS and the WENSS catalogues. In table 6.1 one sees the main
result of the estimators used in this work as well as the results of some
independent but related studies.

The dipole estimations for all methods used in this thesis (bold face
in table 6.1) are in very good agreement with each other. The dipole
amplitudes, estimated with the NVSS catalogue, are almost the same for
the two linear and the quadratic estimators. The dipole direction obtained
by the quadratic estimator di�ers slightly from one of the linear estimators,
but since their one-sigma contours overlap, there is no tension between
the results. Due to the biasing e�ects, concerning the linear estimators
(discussed in chapter 2 and 3), we presume that the quadratic estimator
result is the superior one. Additionally, the estimated error bars for the
quadratic estimator are smaller in comparison.

For the WENSS catalogue we see again that the linear estimator gives a
result in agreement with the quadratic one. The obtained right ascensions
are almost exactly the same, while the declination can only be estimated
with a quadratic estimator and hence cannot be compared. We see that the
dipole amplitude is higher for the linear estimator. This can be explained
to some degree by the amplitude bias, discussed in Rubart & Schwarz
(2013). Due to the rather large error bars (caused mainly by the low
number of total sources), the amplitudes are in no tension with each other.
The directional uncertainty is also larger for this catalogue, due to the
comparably low number of sources.
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Chapter 6 Discussion and Outlook

Source Flux > N RA dec d
(mJy) (◦) (◦) (10−2)

NVSS

BW 25 197, 998 158± 30 −4± 34 1.1± 0.3
SIF 25 184, 237 159± 10 −7± 9 2.2± 0.6
3DS 25 185,649 158± 19 −2± 19 1.8± 0.6

2DCG 25 195,245 155± 14 . . . 1.9± 0.5
QE 25 220,237 143± 12 −11± 15 1.8± 0.5
GH 15 211, 487 117± 20 6± 14 2.7± 0.5
K e.a. 20 . . . ∗ 147± 8 −22± 10 1.5± 0.2
TJ 20 . . . ∗ 137± 8 20± 10 (2.8± 0.3)∗∗

WENSS

2DCG 25 92,600 117± 40 . . . 2.9± 1.9
QE 25 85,285 118± 39 −7± 24 1.6± 0.8

expected

NVSS . . . . . . 168 −7 0.48± 0.04
WENSS . . . . . . 168 −7 0.42± 0.03

Table 6.1: Comparison of main results. Radio dipole from NVSS: BW
(Blake & Wall 2002), SIF (Singal 2011) �ux-weighted number
counts, 3DS three-dimensional linear estimator, mask adopted
from Singal (2011) (this work), 2DCG two-dimensional linear
estimator, CG mask (this work), QE quadratic estimator (this
work), GH (Gibelyou & Huterer 2012), K e.a. (Kothari et al.
2013) and TJ (Tiwari & Jain 2015) [∗ N was not mentioned in
these studies / ∗∗due to an additional cut in polarization the am-
plitude obtained in this case cannot be compared directly, but
is expected to be roughly 50% above the other results (see chap-
ter 1.7).]; Radio dipole from WENSS: 2DCG two-dimensional
linear estimator, CG mask (this work), QE quadratic estimator
(this work). The expectations for a purely kinetic radio dipole
are given at the bottom of the table.

We can nevertheless learn two important points from the analysis of the
WENSS catalogue. Firstly, the results are in agreement with the dipole
estimation from the NVSS. This reduces the chance of signi�cant obser-
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vational systematic errors. Secondly, with the WENSS catalogue we see a
hint towards increased dipole amplitude in radio as well as a hint towards a
directional o�set towards smaller right ascension values. Considering only
the WENSS results, those indications are not signi�cant, due to their large
uncertainties.
Comparing our NVSS-based results with related studies we �nd general

agreement. All analysed estimators resulted in similar dipole directions
and amplitudes. Di�erences are below two sigma, usually even below one
sigma. This shows that the di�erent estimators are consistent with each
other, even so they are based on di�erent principles. The estimator SIF
(Singal 2011) is a special case, since it analyses the anisotropy in �ux
distribution across the sky. It was shown that the expected amplitude is
the same like for the number counts.
Due to an additional cut in polarization, the TJ estimator (Tiwari &

Jain 2015) gives a higher dipole amplitude. A direct comparison of ampli-
tudes cannot be made yet, but the directional results are expected to point
towards the same direction, like for the number count studies. Within the
given uncertainties, this is the case. Results from GH (Gibelyou & Huterer
2012) may be a little bit di�erent due to a) a lower �ux limit and b) a dif-
ferent method for handling masked areas (in this case they were �lled with
random datapoints).
In Kothari et al. (2013) the same strategy for handling masked areas

as in Gibelyou & Huterer (2012) was used, but their linear estimator is
based on spherical harmonic coe�cients. Also special attention was given
to the number count slope. This does not a�ect the dipole amplitude itself,
but velocity estimations based on the dipole amplitude. Even though the
approaches are quite di�erent, the discussed excess in dipole amplitude is
consistent in all mentioned studies. So we have evidence for a cosmic radio
dipole amplitude above the CMB expectation.
Taking a closer look at the χ2 values of the quadratic dipole estimator

revealed that the radio sky is not well described by a monopole and dipole
term alone. We expect cosmic structure to play an important role in
this context. A possible improvement of the quadratic estimator could be
made by including higher multipoles or model the cosmic structure in a
similar way and include this into the �tting algorithms. In Blake & Wall
(2002) the quadro- and octopole were also �tted and local structure e�ects
were reduced, by ignoring areas on the sky close to known nearby galaxies
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(Saunders et al. 2000). Hence, the resulting dipole in Blake & Wall (2002)
is consistent with our estimation, we expect both, the higher multipole �t
and the local structure, to have no dominant e�ect. On the other hand
they might be of the order of the above given uncertainties and hence
could become relevant, when the shot noise can be reduced with future
measurements.
Since the quadratic estimator developed in this work is already slow in

terms of computational time, it would be desirable to re�ne our code. By
utilizing parallel computation on several CPUs, a �rst step towards a faster
code has been made in this work. Further enhancement could be achieved
by an advanced search algorithm. So far we used a three-dimensional con-
stant sized grid to �nd the best-�t parameters. An improvement could be
to search on a rough grid �rst and then con�ne the detailed search to a
smaller sector. Advanced searching techniques, like e.g. a Monte Carlo or
a gradient-based algorithm, are imaginable, but need to be investigated
carefully, whether obtained results are stable and reliable for this applica-
tion. A faster code would allow for more complicated �tting models, like
for example including a quadrupole contribution. One could also imagine
�tting a catalogue with di�erent monopole terms, depending on the survey
sensitivity. The NVSS catalogue for example could be split into parts with
the same con�guration used. In each part the monopole may be slightly
di�erent.
For both catalogues an improved mask is possible. Removing the galactic

plane was always done with a straight strip in galactic latitude. Modelling
the form of the Milky Way may also allow for a smaller masking area and
thereby increase the number of usable sources for the estimation. It is well
know that strong radio sources do in�uence the observation of their direct
neighbourhood on the sky, due to the limited dynamic range of telescopes.
Hence, pixels including such bright sources on the sky could be masked.
The e�ect of local structure can be investigated, by ignoring areas on the
sky with known local structures. In Blake & Wall (2002) this was done
for the whole analysis. The possible di�erence in resulting dipoles with
and without areas near local extragalactic sources would be an interesting
indicator for the structure dipole magnitude.
The frequency dependence of the structure contribution to the dipole

can be used to distinguish it from the kinetic contribution. Especially fu-
ture surveys with LOFAR or SKA will be able to provide catalogues with
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di�erent frequencies bands, using the same telescope. In 2015 the release
of the Multifrequency Snapshot Sky Survey [MSSS, Heald & LOFAR Col-
laboration (2014)] catalogue is expected, which observed at 60 MHz and
150 MHz, with 8 bands for both frequency ranges. Comparing the re-
sulting dipoles at di�erent frequencies and comparing those results to the
NVSS dipole may reveal �rst insights to the contribution of structures. As
discussed in section 3.2, a number count slope of x ≈ 1 provides a kind
of sweet spot, which supresses calibration e�ects on multipole estimations.
For future measurement, one needs to keep in mind that a change in this
slope parameter may a�ect the impact of calibration errors on the dipole
estimation.
Future radio surveys will catalogue the radio sky with increased sensi-

tivity and hence they will include a signi�cantly higher number of radio
sources. With more sources the shot noise contribution to all estimators
will be reduced and thereby the uncertainties in the dipole estimations will
be less. With smaller error bars we will be able to tell de�nitely, whether
the cosmic radio dipole is in tension with the CMB dipole. If there is
an additional contribution to the radio dipole, which is not seen in mi-
crowave, then it is very likely that the directions of both dipoles di�er at
least slightly. So far the error bars are too large to con�rm such a dif-
ference. We just see a hint towards smaller right ascension for the radio
dipole.
Unfortunately the direction of observed bulk �ows is not known, since

the kSZ e�ect does depend on v2
bulk (Birkinshaw 1999). The axis however

seems to coincide with the CMB dipole direction. There are two possible
scenarios imaginable in the context of increased radio dipole amplitude.
One is that the local universe is in coherent movement towards some very
large structure. In this case the radio dipole would be increased, since
it does observe the large structure as well as the kinetic movement. The
second scenario is that the CMB does have an intrinsic dipole. In that
case the assumed peculiar velocity of the Milky Way was incorrect. Such
an error would in�uence the bulk �ow measurement and could lead to an
apparent coherent movement. So far it is not possible to con�rm or reject
those scenarios.
The observed Hubble expansion is sensitive to both scenarios. As dis-

cussed in section 1.3, the velocity inferred from the anisotropy in Hubble
expansion found by Kalus et al. (2013) is of similar magnitude as the sus-
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pected bulk �ow. Also the observed strange alignment of the quadrupole
and octopole in CMB maps (Copi et al. 2013), which is in tension with
the ΛCDM model, may be connected to those questions. Possibly this ten-
sion is lifted, when an intrinsic CMB dipole can be distinguished from the
kinematic one. To investigate this scenario further could reveal interesting
connections.
In order to resolve those speculations, a radio dipole estimation with

high precision is needed. For this, future surveys will be utilized. The
results presented in this thesis will be very useful, since they provide a
deep understanding of di�erent estimators. Improved measurements at
other wavelengths will allow investigating the possible change of the dipole
w.r.t. di�erent cosmic distances.
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Chapter 7

Conclusion

Eliminate all other factors, and the

one which remains must be the truth.

� Sherlock Holmes, The Sign of Four

by Arthur Conan Doyle

In this thesis we carefully analysed linear and quadratic dipole estimators
of the cosmic radio dipole. We assumed that the radio sky can be well
described by a combination of a monopole and a dipole, when the galactic
plane is ignored. We assumed that radio sources, found outside the galactic
plane in the NVSS or WENSS catalogue, have extragalactic origin.
The simple linear estimators do su�er from various biasing e�ects. Due

to shot noise the obtained amplitudes are biased towards higher values.
This problem can be handled by means of simulations. The masking bias
in amplitude can also be handled, but not the directional one. Revealing
those �aws is relevant, since most radio dipole studies utilized a linear
estimator. The quadratic estimator developed during this work does not
show those biasing e�ects, with the exception of the shot noise amplitude
e�ect. Since this e�ect is understood and can be handled, the quadratic
estimator is reliable for the dipole estimation and should be preferred to a
linear estimator.
We found the radio dipole anisotropy in the NVSS at 1.4 GHz and were

able to con�rm those �ndings with a second radio catalogue, the WENSS
at 345 MHz. In both cases the dipole direction is close (within 40◦) to
the CMB dipole and the amplitudes are higher by a factor of about four.
This excess may be partially due to local structure. Such an e�ect was
discussed in detail in section 5, particularly in combination with observed
large local voids. In the end, the structure e�ect seems to be too small to
explain the observed excess completely.
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It is too early to settle the issue of the cosmic radio dipole �nally. Future
measurements, with more sources, are necessary in order to reduce shot
noise. Calibration and masking e�ects must be taken into account and
understood for future observations. The contribution of structure e�ects
must be disentangled from the kinetic contribution. Further studies must
be performed on the e�ect, a change in the assumed velocity of the Sun
with respect to the CMB would have on other observations, like e.g. the
bulk �ow measurements or the anisotropy in Hubble expansion. The work
presented in this thesis shows that it is important and interesting to pursue
the cosmic radio dipole further.
A peculiar velocity of the Sun with respect to distant radio sources that

di�ers signi�cantly from the velocity obtained by the CMB measurement
might reveal an intrinsic dipole anisotropy in the CMB. It is even imag-
inable that the radio dipole challenges the cosmological principle itself,
the assumed perfect isotropy of the universe at largest scales may be in
question and a deviation of this isotropy, on the per mille level, becomes
imaginable.
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Chapter 9

Appendix

Here, the main computer program segments used during the preparation
of this thesis are presented. In each section, a short description of the
purpose of the corresponding code is given. All code segments were used
in a variation of di�erent contexts, often combined with each other. For
example the simulation code can be combined with the various estimators
in order to test the estimators with simulated data. The codes can be run
within other programs to estimate e.g. mean results of a large number of
runs and/or the corresponding variance of those runs.

For convenience, the programs work in the spherical coordinate system
instead of an equatorial one. This means ϕ = RA and ϑ = 90◦−dec. Since
the imported maps and simulations are usually using degrees, a conversion
towards radian is necessary.

9.1 Functions

The following code represent the "anglecal.h" header �le which is used in
most of the later presented codes. It was designed for Rubart (2012) and
remained useful for later projects.

#inc lude <math . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

const double torad = 0.017453292 ;
const double todeg = 57 .29577951 ;
const double c = 299792.458 ; //km pro sec
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//This func t i on w i l l c a l c u l a t e the ang le between two
po s i t i o n s on the sky given in s ph e r i c a l
c oo rd ina t e s .

f l o a t anglebetween ( f l o a t phi1 , f l o a t theta1 , f l o a t phi2
, f l o a t theta2 )

{
f l o a t beta=0;

beta=todeg∗ acos ( s i n ( theta1 ∗ torad ) ∗ cos ( phi1 ∗ torad )
∗ s i n ( theta2 ∗ torad ) ∗ cos ( phi2 ∗ torad )+s i n ( theta1 ∗
torad ) ∗ s i n ( phi1 ∗ torad ) ∗ s i n ( theta2 ∗ torad ) ∗ s i n (
phi2∗ torad )+cos ( theta1 ∗ torad ) ∗ cos ( theta2 ∗ torad
) ) ;

r e turn ( beta ) ;
}

// This func t i on w i l l c a l c u l a t e the de l t a f a c to r ,
which trans forms the f l ux in r e s t frame to the
f l u x in the obs e rve r s frame

f l o a t de l t a ( f l o a t theta , f l o a t v )

{
f l o a t de l t a =0;

de l t a=(1+(v/c ) ∗ cos ( theta ∗ torad ) ) /( s q r t (1−pow( ( v/c
) ,2 ) ) ) ;

r e turn ( de l t a ) ;
}

// This f un c t i on s c a l c u l a t e s the ang le between a
source and the d ipo l e d i r e c t i o n a f t e r the
t rans fo rmat ion to the obs e rve r s frame has been
app l i ed
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9.2 3DLinear

double newbeta ( f l o a t theta , f l o a t v )
{

f l o a t theta2=0;

theta2=todeg∗atan ( ( s i n ( theta ∗ torad ) ∗ s q r t (1−pow( ( v
/c ) ,2 ) ) ) / ( ( v/c )+cos ( theta ∗ torad ) ) ) ;

i f ( theta2 <0)
{

theta2= theta2 +180;
}

re turn ( theta2 ) ;
}

9.2 3DLinear

A precursor of the following code was used in Rubart (2012). It reads in a
�le containig a list of radio sources and creates an output �le, in which the
results are written. The form of the mask must be either inserted manually
or can be coded in a priori. Only sources ful�lling certain criteria (i.e.
being outside the mask and above the �ux limit) are taken into account.
This code does include an error estimation of the obtained results (Rubart
& Schwarz 2013). In order to minimize numerical inaccuracies, the vector
is summed in blocks of 10, 000 sources.

// Reading the Data F i l e
do
{

f i n = fopen ( fin_name , " r ") ;
do
{

f s c a n f ( f i n ,"%c",&dummy) ;
}
whi l e (dummy!= '\n ' ) ;
s=0;
do
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{

f s c a n f ( f i n ,"% f \ t %f \ t %f \ t %f \ t %f \ t %f
\ t %f \ t %f ",&phi ,&newphi ,& theta ,&

newtheta ,&dummy1,&dummy2,&Flux ,&newFlux ) ;
// Ca l cu l a t ing the d i s t anc e o f the source to

the g a l a c t i c (b) and counter g a l a c t i c ( b2 )
p lanes .

b=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad∗(90−
newtheta ) )+cos (Torad∗deltaG ) ∗ cos (Torad
∗(90−newtheta ) ) ∗ cos (Torad ∗( newphi−alphaG ) )
) ;

b2=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad
∗(90−newtheta ) )+cos (Torad∗deltaG ) ∗ cos (
Torad∗(90−newtheta ) ) ∗ cos (Torad ∗( newphi
+180−alphaG ) ) ) ;

i f (b<0)
{
b=−1∗b ;
}
i f ( b2<0)
{
b2=−1∗b2 ;
}
i f ( cho iceb2==0)
{
b2=100;
}

i f (m<10000)
{

// Adding source po s i t i o n to the sum , i f
masking and source l im i t c r i t e r i a are
f u l f i l l e d

i f ( newFlux>=FluxLimit [ j ] && newtheta<=
SDecLimit && b>=b l im i t && newtheta>=
NDecLimit && b2>=b l im i t && newFlux<=(
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f l o a t ) UFluxLimit )
{

VecSumX[ s]+= s in ( newtheta∗Torad ) ∗ cos (
newphi∗Torad ) ;

VecSumY[ s]+= s in ( newtheta∗Torad ) ∗ s i n (
newphi∗Torad ) ;

VecSumZ [ s]+= cos ( newtheta∗Torad ) ;
i++;
m++;

}
}
e l s e
{

m=0;
VecSumX[ s+1]+=VecSumX[ s ] ;
VecSumY[ s+1]+=VecSumY[ s ] ;
VecSumX[ s ]=0;
VecSumY[ s ]=0;
VecSumZ [ s+1]+=VecSumZ [ s ] ;
VecSumZ [ s ]=0;
i f ( newFlux>=FluxLimit [ j ] && newtheta<=

SDecLimit && b>=b l im i t && newtheta>=
NDecLimit && b2>=b l im i t && newFlux<= (
f l o a t ) UFluxLimit )

{
VecSumX[ s]+= s in ( newtheta∗Torad ) ∗ cos (

newphi∗Torad ) ;
VecSumY[ s]+= s in ( newtheta∗Torad ) ∗ s i n (

newphi∗Torad ) ;
VecSumZ [ s]+= cos ( newtheta∗Torad ) ;
i++;

}

}

do
{
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f s c a n f ( f i n ,"%c",&dummy) ;
}
whi l e (dummy!= '\n ' ) ;

}
whi l e ( ! f e o f ( f i n ) ) ;
i f (m!=0)
{

VecSumX[ s+1]+=VecSumX[ s ] ;
VecSumY[ s+1]+=VecSumY[ s ] ;
VecSumZ [ s+1]+=VecSumZ [ s ] ;

}
VecX [ j ]=VecSumX[ s +1] ;
VecY [ j ]=VecSumY[ s +1] ;
VecZ [ j ]=VecSumZ [ s +1] ;
nMax=i ;
i =0;
f c l o s e ( f i n ) ;
//Now the eva lua t i on o f the sum s t a r t s

VecR [ j ]= sq r t (VecX [ j ]∗VecX [ j ]+VecY [ j ]∗VecY
[ j ]+VecZ [ j ]∗VecZ [ j ] ) ;

Vecphi [ j ]=atan (VecY [ j ] /VecX [ j ] ) ∗Todeg ;
VecTheta [ j ] = acos (VecZ [ j ] /VecR [ j ] ) ∗

Todeg ;
VecTheta [ j ]=90.0−VecTheta [ j ] ;

i f (VecY [ j ]<0 && VecX [ j ]>0)
{

Vecphi [ j ]+=360;
}
e l s e i f (VecY [ j ]>0 && VecX [ j ]<0)
{

Vecphi [ j ]=180+Vecphi [ j ] ;
}
e l s e i f (VecY [ j ]<0 && VecX [ j ]<0)
{

Vecphi [ j ]=180+Vecphi [ j ] ;
}
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l =1;

//Now the e r r o r e s t imat ion s t a r t s
do
{
i f (VecR [ j ]>=sq r t ( 2 . 0∗nMax∗ l og (1/(1− sigma [

l ] ) ) /3 .0 ) )
{

e r r o r [ l ]= as in ( sq r t ( 2 . 0∗nMax∗ l og (1/(1−
sigma [ l ] ) ) /3 .0 ) /VecR [ j ] ) ∗Todeg ;

}
e l s e
{

e r r o r [ l ]=666;
}
l++;
}
whi l e ( l<maxsigma ) ;

// Output o f r e s u l t s :
f p r i n t f ( fout , " %.0 f & $ %.1 f $ & $ %.1 f $ & $ %.0 f

$ & $ %.1 f $ & $ %.1 f $ & $ %.1 f $ & $ %i $ & $
%.4 f $ \\\\ \n " , FluxLimit [ j ] , Vecphi [ j ] , VecTheta
[ j ] , VecR [ j ] , e r r o r [ 1 ] , e r r o r [ 2 ] , e r r o r [ 3 ] , nMax
, ( ( 300∗VecR [ j ] ) / ( ( f l o a t )nMax) ) ) ; // This 300
(3∗100) i s the pure c o r r e c t i o n f o r the e s t imator
without any masking . The f a c t o r 100 i s t in order
to g ive A_vel ∗ 10^2

j++;

}
whi l e ( j<=nFlux ) ;
f c l o s e ( f out ) ;

r e turn (0 ) ; }
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9.3 2DLinear

This code is analogous to the previous one, but estimates the dipole direc-
tion only in two dimensions.

// Reading the Data F i l e
do
{

f i n = fopen ( fin_name , " r ") ;
do
{

f s c a n f ( f i n ,"%c",&dummy) ;
}
whi l e (dummy!= '\n ' ) ;
s=0;
do
{

f s c a n f ( f i n ,"% f \ t %f \ t %f \ t %f \ t %f \ t %f
\ t %f \ t %f ",&phi ,&newphi ,& theta ,&

newtheta ,&dummy1,&dummy2,&Flux ,&newFlux ) ;
// Ca l cu l a t ing the d i s t anc e o f the source to

the g a l a c t i c (b) and counter g a l a c t i c ( b2 )
p lanes .

b=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad∗(90−
newtheta ) )+cos (Torad∗deltaG ) ∗ cos (Torad
∗(90−newtheta ) ) ∗ cos (Torad ∗( newphi−alphaG ) )
) ;

b2=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad
∗(90−newtheta ) )+cos (Torad∗deltaG ) ∗ cos (
Torad∗(90−newtheta ) ) ∗ cos (Torad ∗( newphi
+180−alphaG ) ) ) ;

i f (b<0)
{
b=−1∗b ;
}
i f ( b2<0)
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{
b2=−1∗b2 ;
}
i f ( cho iceb2==0)
{
b2=100;
}

i f (m<10000)
{
// Adding source p o s i t i o n to the sum , i f

masking and source l im i t c r i t e r i a are
f u l f i l l e d
i f ( newFlux>=FluxLimit [ j ] && newtheta<=

SDecLimit && b>=b l im i t && newtheta>=
NDecLimit && b2>=b l im i t && newFlux<=(
f l o a t ) UFluxLimit )

{
VecSumX[ s]+= s in ( newtheta∗Torad ) ∗ cos (

newphi∗Torad ) ;
VecSumY[ s]+= s in ( newtheta∗Torad ) ∗ s i n (

newphi∗Torad ) ;
i++;
m++;

}
}
e l s e
{

m=0;
VecSumX[ s+1]+=VecSumX[ s ] ;
VecSumY[ s+1]+=VecSumY[ s ] ;
VecSumX[ s ]=0;
VecSumY[ s ]=0;
i f ( newFlux>=FluxLimit [ j ] && newtheta<=

SDecLimit && b>=b l im i t && newtheta>=
NDecLimit && b2>=b l im i t && newFlux<= (
f l o a t ) UFluxLimit )
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{
VecSumX[ s]+= s in ( newtheta∗Torad ) ∗ cos (

newphi∗Torad ) ;
VecSumY[ s]+= s in ( newtheta∗Torad ) ∗ s i n (

newphi∗Torad ) ;
i++;

}

}

do
{

f s c a n f ( f i n ,"%c",&dummy) ;
}
whi l e (dummy!= '\n ' ) ;

}
whi l e ( ! f e o f ( f i n ) ) ;
i f (m!=0)
{

VecSumX[ s+1]+=VecSumX[ s ] ;
VecSumY[ s+1]+=VecSumY[ s ] ;

}
VecX [ j ]=VecSumX[ s +1] ;
VecY [ j ]=VecSumY[ s +1] ;
nMax=i ;
i =0;
f c l o s e ( f i n ) ;

//Now the eva lua t i on o f the sum s t a r t s
VecR [ j ]= sq r t (VecX [ j ]∗VecX [ j ]+VecY [ j ]∗VecY

[ j ] ) ;
Vecphi [ j ]=atan (VecY [ j ] /VecX [ j ] ) ∗Todeg ;
i f (VecY [ j ]<0 && VecX [ j ]>0)
{

Vecphi [ j ]+=360;
}
e l s e i f (VecY [ j ]>0 && VecX [ j ]<0)
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{
Vecphi [ j ]=180+Vecphi [ j ] ;

}
e l s e i f (VecY [ j ]<0 && VecX [ j ]<0)
{

Vecphi [ j ]=180+Vecphi [ j ] ;
}
l =1;
//Now the e r r o r e s t imat ion s t a r t s

do
{
i f (VecR [ j ]>=sq r t ( 2 . 0∗nMax∗ l og (1/(1− sigma [

l ] ) ) /3 .0 ) )
{

e r r o r [ l ]= as in ( sq r t ( 2 . 0∗nMax∗ l og (1/(1−
sigma [ l ] ) ) /3 .0 ) /VecR [ j ] ) ∗Todeg ;

}
e l s e
{

e r r o r [ l ]=666;
}
l++;
}
whi l e ( l<maxsigma ) ;

// Output o f r e s u l t s
f p r i n t f ( fout , " %.0 f & $ %.1 f $ & $ %.0 f $ & $ %.1 f

$ & $ %.1 f $ & $ %.1 f $ & $ %i $ & $ %.4 f $ \\\\
\n " , FluxLimit [ j ] , Vecphi [ j ] , VecR [ j ] , e r r o r [ 1 ] ,
e r r o r [ 2 ] , e r r o r [ 3 ] , nMax, ( ( 3 00∗VecR [ j ] ) / ( ( f l o a t )
nMax) ) ) ; // This 300 (3∗100) i s the pure
c o r r e c t i o n f o r the e s t imator without any masking .
The f a c t o r 100 i s t in order to g ive A_vel ∗ 10^2

j++;

}
whi l e ( j<=nFlux ) ;
f c l o s e ( f out ) ;
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r e turn (0 ) ; }

9.4 Simulation

In various occasions during this work simulated radio maps were used.
Therefore the random number generator "MersenneTwister" was imple-
mented. The derivation of the used equations is shown in Rubart &
Schwarz (2013). The following code can be used in combination with an
estimator or to create stand-alone �les containing simulated radio maps,
which cotain a kinetic dipole anisotropy. The number counts are modelled
as a perfect power law with slope x here, but could also be imported from
an outside source, like e.g. the simulation from Wilman et al. (2008).

// Drawing a random source
alpha = mtrand1 ( ) ∗360 ;
Delta = Todeg∗ acos (1−2∗mtrand1 ( ) ) ; // 90−acos (2∗

mtrand1 ( )−1)∗180/M_PI;
a = mtrand1 ( ) ;
Flux = lF l im i t ∗pow((1−a ) , x ) ;

// Simulat ing the d ipo l e s i g n a l
beta=anglebetween ( alpha , Delta , Dipolephi ,

D ipo l e theta ) ;
gamma=de l t a ( beta , v e l o c i t y ) ;
beta2=newbeta ( beta , v e l o c i t y ) ;
newFlux=Flux∗pow(gamma,(1+ SI ) ) ;
t=s i n ( ( beta−beta2 ) ∗Torad ) /( s i n ( ( beta−beta2 ) ∗Torad

)+s i n ( beta2∗Torad ) ) ;
r=sq r t (1−2∗ t+2∗pow( t , 2 )+2∗(1− t ) ∗ t ∗ cos ( beta ∗Torad )

) ;
newdelta=Todeg∗ acos ( ( cos ( Delta ∗Torad )∗(1− t )+t ∗ cos

( Dipo le theta ∗Torad ) ) / r ) ;
z=( s i n ( Delta ∗Torad ) ∗ s i n ( alpha∗Torad )∗(1− t )+t ∗ s i n (

Dipo l e theta ∗Torad ) ∗ s i n ( Dipo lephi ∗Torad ) ) /( r ∗
s i n ( newdelta∗Torad ) ) ;

i f ( abs ( z ) <1.0)
{
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i f ( ( s i n ( Delta ∗Torad ) ∗ cos (
alpha∗Torad )∗(1− t )+t ∗ s i n (
Dipo l e theta ∗Torad ) ∗ cos (
Dipo lephi ∗ torad ) )>0)

{
newalpha=Todeg∗ a s in ( z ) ;
i f ( newalpha<0)
{
newalpha+=360;
}
}
e l s e
{

newalpha=−1∗Todeg∗ a s in ( z ) +180;
}

}
e l s e
{

i f ( z<0)
{

newalpha=270.0;
}
e l s e
{

newalpha=90.0;
}

}

9.5 Masking

As discussed in Rubart & Schwarz (2013), the linear estimators do have
an amplitude bias due to masking. This can be corrected for, utilizing the
following code. The basic idea is to simulate a radio map with a certain
implemented dipole. This map will be used for estimating the dipole with
and without a mask. The proportion of both results can be used as the
estimation of the bias factor k. With this code it is possible to mask areas
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with declinations above NDecLimit and below SDecLimit. All sources
within blimit of the galactic plane or the counter galactic plane (if choise
b2=1 was made) are masked too.

// Ca l cu la t ing the d i s t anc e o f the source to the
g a l a c t i c (b) and counter g a l a c t i c ( b2 ) p lanes .

b=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad ∗( ninty−
newdelta ) )+cos (Torad∗deltaG ) ∗ cos (Torad ∗( ninty−
newdelta ) ) ∗ cos (Torad ∗( newalpha−alphaG ) ) ) ;

b2=Todeg∗ a s in ( s i n (Torad∗deltaG ) ∗ s i n (Torad ∗( ninty−
newdelta ) )+cos (Torad∗deltaG ) ∗ cos (Torad ∗( ninty−
newdelta ) ) ∗ cos (Torad ∗( newalpha+ninty+ninty−alphaG )
) ) ;

i f (b<0)
{
b=−1∗b ;
}
i f ( b2<0)
{
b2=−1∗b2 ;
}
i f ( cho iceb2==0)
{
b2=100;
}

i f ( newFlux>=FluxLimit && newdelta<=SDecLimit &&
newdelta>=NDecLimit && b>=bLimit && b2>=bLimit
)

{
VecX+= s in ( newdelta∗Torad ) ∗ cos ( newalpha∗Torad

) ;
VecY+= s in ( newdelta∗Torad ) ∗ s i n ( newalpha∗Torad

) ;
VecZ+= cos ( newdelta∗Torad ) ;
F++;

}
i f ( newFlux>=FluxLimit && f<NF)
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{
VecX2+= s in ( newdelta∗Torad ) ∗ cos ( newalpha∗

Torad ) ;
VecY2+= s in ( newdelta∗Torad ) ∗ s i n ( newalpha∗

Torad ) ;
VecZ2+= cos ( newdelta∗Torad ) ;
f++;

}

}
whi l e (F<NF) ;

F=0;
f =0;

// Evaluat ing the sum and sav ing each r e s u l t

VecR [ c ]= sq r t (VecX∗VecX+VecY∗VecY+VecZ∗
VecZ) ;
VecR [ c ]=VecR [ c ] / ( f l o a t )NF;
MeanA+=VecR [ c ] ;

// MeannMax+=( f l o a t )nMax ;
VecR2 [ c ]= sq r t (VecX2∗VecX2+VecY2∗VecY2

+VecZ2∗VecZ2 ) ;
VecR2 [ c ]=VecR2 [ c ] / ( f l o a t )NF;
MeanA2+=VecR2 [ c ] ;

// MeannMax2+=( f l o a t )nMax ;
// f p r i n t f ( fout ,"% i \ t %f \n" ,Nnow,VecR [

c ] ) ;
p r i n t f ("% i \ t be i %i \n" , c ,NF) ;

c++;

}
whi l e ( c<NR) ;

// Ca l cu l a t ing the Mean Amplitude Resu l t s

MeanA=MeanA/( f l o a t ) (NR+1) ;
MeanA2=MeanA2/( f l o a t ) (NR+1) ;
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// MeannMax=MeannMax/( f l o a t ) (NR+1) ;
// Output

f p r i n t f ( fout , " Fu l l Sky r e s u l t s : %f \n" ,
MeanA2) ;

f p r i n t f ( fout , "Masked Sky r e s u l t s : %f \n" ,
MeanA) ;

f p r i n t f ( fout , " Masking va lue s : South Dec %f ,
North Dec %f , b= %f , \n Number o f Runs : %
i and Number o f s ou r c e s : %i " , SDecLimit ,
NDecLimit , bLimit ,NR,NF) ;

9.6 Calibration

In section 3.2 the e�ect of calibration errors on linear estimator was dis-
cussed. The results in that section are based simulations including the
following code. At the start a simulated map must be created or im-
ported. This code includes di�erent version of the declination depends of
the calibration error.

mue=newFlux ; // Change t h i s f o r sys temat i c
b i a s

u1 = sq r t (−2∗ l og (mtrand1 ( ) ) ) ;
u2 = 2∗M_PI∗mtrand1 ( ) ;
u3 = u1∗ cos ( u2 ) ; // This i s s tandart normal

d i s t r i b u t e d random number

//newFlux2 = sigma∗u3∗newFlux+mue ; // f o r
i s o t r o p i c case ! !

newFlux2 = ( sigma /( cos ( ( newdelta−60)∗Torad ) ) )
∗u3∗newFlux+mue ; //For co s i n e depending
case , s imple ve r s i on

// Fol lowing f o r co s i n e depending case with
changing s e n s i t i v i t y
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//n=( i n t ) l og ( cos ( ( newdelta−30)∗Torad ) ) / l og (
change ) ;

//newFlux2 = ( sigma /( cos ( ( newdelta−30)∗Torad )
∗ cos ( ( newdelta−30)∗Torad ) )−n∗ sigma ∗ ( 1 . 0 / (
change∗ change ) −1.0) ) ∗u3∗newFlux+mue ; //
f o r Test ing so f a r only sigma = sq r t (
sigma_1 + sigma_2/ cos ( d e l t a −
de l t a_te l e s cope ) ^2) , Be aware o f lower
f l u x l im i t now with 3 sigma may not be
enough .

// Continue with normal e s t imat ion now
// Measuring the d ipo l e with and without

c a l i b r a t i o n e r r o r f o r comparison p o s s i b l e

}

9.7 Chisquare

The following header �le is used for the latter presented quadratic estimtor.
The sum in this code is calculated parallized with OpenMP, a open multi
core parallisation code. In this way more than one CPU can be utilized,
reducing the needed computational time.

#inc lude <iostream>
#inc lude <omp . h>
#inc lude <math . h>
#inc lude <vector>

f l o a t Chisquare ( std : : vector<double>∗ Data , f l o a t
Phi_d , f l o a t Theta_d , f l o a t Ampli_d , f l o a t N_0) {

f l o a t r e su l t , sum , deltaG , alphaG ;
f l o a t S_d, s_d , C_d, c_d ;
bool f i r s t i n t h r e a d = true ;
sum=0;
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S_d=s in (Theta_d) ;
s_d=s in (Phi_d) ;
C_d=cos (Theta_d) ;
c_d=cos (Phi_d) ;

// Data [ 2 ] und Data [ 1 ] conta in the p o s i t i o n s !
#pragma omp p a r a l l e l f o r f i r s t p r i v a t e (

f i r s t i n t h r e a d ) reduct i on (+:sum) // The
code f o r s ta r tung the sum on mul t ip l e
co r e s

f o r ( i n t i =0; i<Data [ 0 ] . s i z e ( ) ; i++) {

f l o a t N_model=N_0∗(1+Ampli_d∗( s i n (
Data [ 2 ] [ i ] ) ∗ cos (Data [ 1 ] [ i ] ) ∗S_d∗
c_d+s in (Data [ 2 ] [ i ] ) ∗ s i n (Data [ 1 ] [ i
] ) ∗S_d∗s_d+cos (Data [ 2 ] [ i ] ) ∗C_d) ) ;

sum+=pow( ( Data [ 0 ] [ i ]−N_model) , 2 ) /
N_model ;

} ;

r e s u l t=sum;/// ( f l o a t ) (Data [ 0 ] . s i z e ( )−1) ;
r e turn r e s u l t ;

}

9.8 Quadratic

The quadratic estimators discussed in chapter 4 are based on the following
code. Imported �le must be a map pixelized by HEALPIx. The �ux limit
must have been applied before pixelisation allready. Also a �le containing
the positions that should be tested must be imported.

// Reading the Pos i t i on Data F i l e
fNs ide = fopen ( fNside_name , " r ") ;
f out=fopen ( fout_name , "w") ;

do
{
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f s c a n f ( fNside ,"% f , %f \n",& theta ,&phi ) ;
// p r i n t f ("% f %f %i \n" , phi ∗Todeg , theta ∗

Todeg , Pos i t i on [ 0 ] . s i z e ( ) ) ;
Po s i t i on [ 0 ] . push_back ( theta ) ;
Po s i t i on [ 1 ] . push_back ( phi ) ;
}

whi l e ( ! f e o f ( fNs ide ) ) ;
f c l o s e ( fNs ide ) ;
f i n=fopen ( fin_name , " r ") ;
do

{
f s c a n f ( f i n ,"% f %f %f \n",& theta ,&phi ,&N) ;

// p r i n t f ("% f %f %f \n" , phi , theta , N) ;

DataTMP [ 0 ] . push_back (N) ;
DataTMP [ 1 ] . push_back ( phi ) ;
DataTMP [ 2 ] . push_back ( theta ) ;

}
whi l e ( ! f e o f ( f i n ) ) ;

f c l o s e ( f i n ) ;

s td : : cout << "Number o f P ixe l b e f o r e Masking : " <<
DataTMP [ 0 ] . s i z e ( ) << " " << DataTMP [ 1 ] . s i z e ( ) << "
" << DataTMP [ 2 ] . s i z e ( ) << " And Number o f
Po s i t i on s to t e s t i s " << Pos i t i on [ 0 ] . s i z e ( ) << '\
n ' ;

f o r ( i n t i =0; i<DataTMP [ 0 ] . s i z e ( ) ; i++) {
// Ca l cu la te d i s t an c e s to g a l a c t i c and

counter g a l a c t i c plane
b=as in ( s i n ( deltaG ) ∗ s i n (M_PI/2.0−DataTMP [ 2 ] [ i

] )+cos ( deltaG ) ∗ cos (M_PI/2.0−DataTMP [ 2 ] [ i ] )
∗ cos ( (DataTMP [ 1 ] [ i ]−alphaG ) ) ) ;

b2=as in ( s i n ( deltaG ) ∗ s i n ( (M_PI/2.0−DataTMP [ 2 ] [
i ] ) )+cos ( deltaG ) ∗ cos ( (M_PI/2.0−DataTMP [ 2 ] [
i ] ) ) ∗ cos (DataTMP [ 1 ] [ i ]+M_PI−alphaG ) ) ;
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i f (b<0)
{
b=−1∗b ;
}
i f ( b2<0)
{
b2=−1∗b2 ;
}
i f ( cho iceb2==0)
{
b2=100;
}
// Only sav ing data po in t s ou t s i d e the mask
i f (DataTMP [ 2 ] [ i ]<=SDecLimit && b>=b l im i t &&

DataTMP [ 2 ] [ i ]>=NDecLimit && b2>=b l im i t )
{
Data [ 0 ] . push_back (DataTMP [ 0 ] [ i ] ) ;
Data [ 1 ] . push_back (DataTMP [ 1 ] [ i ] ) ;
Data [ 2 ] . push_back (DataTMP [ 2 ] [ i ] ) ;
}

}

std : : cout << "Number o f P ixe l a f t e r Masking :
" << Data [ 0 ] . s i z e ( ) << " " << Data [ 1 ] . s i z e
( ) << " " << Data [ 2 ] . s i z e ( ) << '\n ' ;

f o r ( i n t i =0; i<Data [ 0 ] . s i z e ( ) ; i++) {
//Data [ 1 ] [ i ]∗=M_PI/180 ;
//Data [ 2 ] [ i ]∗=M_PI/180 ;

t o t a l+=Data [ 0 ] [ i ] ;

}

mean = t o t a l /( f l o a t )Data [ 0 ] . s i z e ( ) ;
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Nstart = 0.995∗mean ;
Nend = 1.005∗mean ;
// This can be changed f o r f i n e r or l e s s f i n e

g r i d s
Nstep = (Nend−Nstart ) /( f l o a t ) (2∗ Prec i s ionN ) ;

// Prec i s ionN determines number o f t e s t ed
Mean va lue s

Minimum=Chisquare (Data , 0 , 0 , 0 . 5 , 1 0 ) ; //
s t a r t i n g value

std : : cout<< " F i l e Number : " <<F i l e << '\n ' ;

// Test ing Models on a g r id s t a r t s
f o r ( f l o a t N_0=Nstart ; N_0<Nend ; N_0+=Nstep ) {

f o r ( f l o a t d=0; d<0.05; d+=0.002){

f o r ( f l o a t i =0; i<Pos i t i on [ 0 ] . s i z e ( ) ; i+=1){

Sum=Chisquare (Data , Po s i t i on [ 1 ] [ i ] ,
Po s i t i on [ 0 ] [ i ] , d ,N_0) ;

// std : : cout << " cur rent
Chisquare i s " << Sum << " at Phi=
" << i << " and Theta= " << j <<
'\n ' ;

i f (Sum<Minimum){
Minimum=Sum;
M_Phi=Pos i t i on [ 1 ] [ i ]∗Todeg ;
M_Theta=Pos i t i on [ 0 ] [ i ]∗Todeg ;
M_d=d ;
M_N_0=N_0;
// std : : cout << " cur rent Minimum i s "

<< Sum << " with mean N of " <<
M_N_0 << " at Pos i t i on Phi= " <<
M_Phi << " , Theta= " << M_Theta
<< " and a Dipole Amplitude o f "
<< M_d << '\n ' ;

}
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}
}

}
// After t h i s the best f i t i s determined and w i l l be

d i sp layed
std : : cout << Minimum << " with mean N of " << M_N_0

<< " at Pos i t i on Phi= " << M_Phi << " , Theta= "
<< M_Theta << " and a Dipole Amplitude o f " << M_d
<< " f o r " << t o t a l << " sourc e s " <<'\n ' ;

// Resu l t s may a l s o be saved in a F i l e

9.9 Local Structure Dipole

In Rubart et al. (2014) we simulated the dipole contribution from local
structures. The following code was used to create those maps, which then
were tested using the linear estimators. One can choose between creating
an underdense or overdense structure of arbirtray size.

do
{
Rbin=0;
i f ( Density <=1.0) // For an underdens i ty
{
do

{
Phi=360∗mtrand1 ( ) ;
Theta = Todeg∗ acos (1−2∗mtrand1 ( ) ) ;
f s c a n f ( f i n ,"% f %f \n",& f lux ,& d i s t anc e ) ; //

f l u x and d i s t ance to obse rve r i s imported
i f ( f e o f ( f i n ) )
{
f c l o s e ( f i n ) ;
f i n = fopen ( fin_name , " r ") ;
}

RX=d i s t ance ∗ cos (Torad∗Phi ) ∗ s i n (Torad∗Theta ) ;
RY=d i s t ance ∗ s i n (Torad∗Phi ) ∗ s i n (Torad∗Theta ) ;
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RZ=d i s t ance ∗ cos (Torad∗Theta ) ;
D_x=RX−Of f s e t ∗ s i n ( Dipo l e theta ∗Torad ) ∗ cos ( (

Dipo lephi+180)∗Torad ) ;
D_y=RY−Of f s e t ∗ s i n ( Dipo l e theta ∗Torad ) ∗ s i n ( (

Dipo lephi+180)∗Torad ) ;
D_z=RZ+Of f s e t ∗ cos ( Dipo l e theta ∗Torad ) ;
D_lum=sqr t (D_x∗D_x+D_y∗D_y+D_z∗D_z) ; //

Distance to the s t r u c tu r e c ent r e
i f (D_lum<Void )
{

b ia s=mtrand1 ( ) ;
//Density=( rad iu s ∗ rad iu s ∗

rad iu s ) /(Void∗Void∗Void ) ;
// For not constant
d en s i t i e s , implemented
func t i on here

i f ( b ias<Density )
{
Rbin=1;
}

}
e l s e
{
Rbin=1;
}
i f ( f lux <( f l o a t ) FluxLimit )
{
Rbin=0;
}

}
whi l e (Rbin==0) ;

}
e l s e // f o r an ove rdens i ty
{

do
{
Phi=360∗mtrand1 ( ) ;
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Theta = Todeg∗ acos (1−2∗mtrand1 ( ) ) ;
f s c a n f ( f i n ,"% f %f \n",& f lux ,& d i s t anc e ) ;

i f ( f e o f ( f i n ) )
{
f c l o s e ( f i n ) ;
f i n = fopen ( fin_name , " r ") ;
}

RX=d i s t ance ∗ cos (Torad∗Phi ) ∗ s i n (Torad∗Theta ) ;
RY=d i s t ance ∗ s i n (Torad∗Phi ) ∗ s i n (Torad∗Theta ) ;
RZ=d i s t ance ∗ cos (Torad∗Theta ) ;
D_x=RX−Of f s e t ∗ s i n ( Dipo l e theta ∗Torad ) ∗ cos ( (

Dipo lephi+180)∗Torad ) ;
D_y=RY−Of f s e t ∗ s i n ( Dipo l e theta ∗Torad ) ∗ s i n ( (

Dipo lephi+180)∗Torad ) ;
D_z=RZ+Of f s e t ∗ cos ( Dipo l e theta ∗Torad ) ;
D_lum=sqr t (D_x∗D_x+D_y∗D_y+D_z∗D_z) ; //

Abstand zum Void Zentrum
i f (D_lum>Void )
{

b ia s=mtrand1 ( ) ;
//Density=( rad iu s ∗ rad iu s ∗

rad iu s ) /(Void∗Void∗Void ) ;
// For not constant
d en s i t i e s , implemented
func t i on here

i f ( b ias <1.0/Density )
{
Rbin=1;
}

}
e l s e
{
Rbin=1;
}
i f ( f lux <( f l o a t ) FluxLimit )
{
Rbin=0;
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}
}

whi l e (Rbin==0) ;
}

newdelta=Theta ;
newalpha=Phi ;
// now the normal e s t imat ion can s t a r t
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