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0.1 Introduction

This dissertation describes the overgroups H of an elementary block-diagonal subgroup
EU(v) of an even unitary group U over a quasi-finite form ring, under the assumption
that the minimal size of a self-conjugate block of EU(v) is at least 6 (or 4 in the case
that the form parameter of the ground ring is sufficiently large) and the minimal size
of a non-self-conjugate block of EU(v) is at least 5. The main result is the following
sandwich classification theorem: let H, EU(v) and U be as above. Then there exists a
unique major exact form net of ideals (o, ") over the ground form ring such that H fits
into the sandwich
EU(0,T") < H < Ny(U(e,T)),

where Ny(U(o,T")) denotes the normalizer in U of the form net subgroup U(o,I") of U
of level (0,1") and EU(c,I") the elementary form net subgroup of U(c,T).

To put this result into context we provide a brief overview of related results describing
the subgroup structure of linear groups over fields. In [Dyn57a), Dyn57b] Dynkin deter-
mined the maximal closed connected subgroups of classical algebraic groups over C. In
particular, he showed that all reductive maximal closed connected subgroups are pre-
cisely the stabilizers of totally isotropic or non-degenerate subspaces. Similar results for
classical groups over algebraically closed fields of positive characteristic were obtained
by Gary Seitz [Sei87] and for exceptional groups by Donna Testerman [Tes88]. In the
papers [Asc84) [Asc85, [Asc86] Michael Aschbacher described the maximal subgroups of
finite simple classical groups. The subgroup structure theorem of Aschbacher says that
every maximal subgroup of a finite simple classical group belongs to either one of 8
explicitly defined classes C;—Cg of large subgroups or to the class S of almost simple
groups in irreducible representations. An exposition of results regarding the members
of Aschbacher classes in finite classical groups can be found in the book of Kleidman
and Liebeck [KL90]. The Aschbacher classes which are relevant for us are the classes
C; and Cy. The subgroups of class C; are stabilizers of proper totally isotropic or non-
degenerate submodules of the module on which the group is acting. The subgroups of
class Cy are the stabilizers of direct decompositions of that module into the summands of
a fixed dimension. Given a member H of an Aschbacher class the book of Kleidman and
Liebeck provides a recipe for constructing a maximal overgroup of H that is in turn also
a member of some not necessarily the same Aschbacher class. Unfortunately, a similar
result for classical groups over arbitrary commutative rings or more generally unitary
groups over form rings has not yet been obtained. However, it is possible to describe the
lattice structure of the set of all overgroups of a given member of an Aschbacher class or
of an appropriate modified notion thereof in terms of the structure of the ground ring.

The literature contains several modifications of the notion of Aschbacher classes. The
current dissertation focuses on a specific simultaneous modification of the Aschbacher
classes C; and Cy which we call block-diagonal subgroups. These subgroups are the
stabilizers of certain direct decompositions of the quadratic module on which the unitary
group is acting into totally isotropic or non-degenerate submodules. As our methods only
employ the elementary unitary matrices contained in these block-diagonal subgroups,



we will describe the overgroups of elementary block-diagonal subgroups instead of full
block-diagonal subgroups. The problem of describing overgroups of elementary block-
diagonal matrices was first considered for the case of the general linear group in papers
[BVNT0, BV82, Vav83, [BV84, Vav87| of Z.I. Borewicz, N. A. Vavilov and W. Narkiewicz
over commutative rings and rings satisfying a stable rank condition. These papers
do not use localization. Over quasi-finite rings the problem is solved in [BS01] using
localization. For the case of other classical groups over a commutative ring with 2
invertible, this classification was generalized in chapter V of the habilitation of Nikolai
Vavilov, although complete proofs were only published much later in [Vav04] for the split
orthogonal case and [Vav0§| for the symplectic case. Important auxiliary results can be
also found in [Vav93|, [Vav88] and in the references therein. Roughly the main results
in the above references can be described as follows. Let G denote a Chevalley group of
type A;, B;,C; or D; over a commutative ring R or the general linear group GL(n, R)
over a quasi-finite ring R. If G # G(A;, R) or GL(n, R), assume that 2 € R*. Let H be a
subgroup of G containing a group of elementary block-diagonal matrices whose minimal
block size is sufficiently large. Then there exists a unique net of ideals ¢ such that H
fits into the sandwich
E(o) < H < N(o),

where E(0) is the elementary subgroup associated with o and N(¢) is the normalizer in
G of the net subgroup G(co). In [BV84] such a description was called standard. We shall
refer to it as standard sandwich classification.

Unfortunately, due to known counterexamples the standard sandwich classification
in [Vav08] for the symplectic group Sp(2n, R) when 2 is invertible in the ring R does
not generalize to the case of an arbitrary commutative ring. The obstacle is that the
notion of a net of ideals is not fine enough when 2 is not invertible in the ring and
has to be replaced by the notion of a form net of ideals. This is analogous to the
situation encountered in the sandwich classification of subgroups of Bak unitary groups
[Bak69|, which are normalized by the elementary subgroup. Here the notion of ideal
had to be refined by the notion of form ideal when 2 is not invertible in the ground
ring. Significant work on developing the concept of a form net of ideals in the context
of even unitary groups over fields and simple Artinian rings was done already by E.
Dybkova [Dyb98|, [Dyb99, Dyb06], Dyb07, Dyb09]. Further review of known results on
the problem of describing overgroups of subsystem subgroups in classical-like and some
exceptional groups can be found in [VS13]. As mentioned there, no steps have yet been
taken towards describing overgroups of subsystem subgroups in classical (other than
GL) groups over an arbitrary commutative ring or Bak unitary groups over form rings
other than simple Artinian form rings.

Historically, results regarding the subgroup structure of even unitary groups were
usually proved first for the classical symplectic group, then for the classical orthogonal
group, and only after that carried over to the general case of an arbitrary even dimen-
sional Bak unitary group. Also, most of the results in this area involve versions of the
localization-completion method, first introduced by Bak in [Bak91] for the general linear
group and further developed by Bak, Golubchik, Hazrat, Mikhalev, Stepanov, Suslin,



Vaserstein, Vavilov and many others. Following both of these trends, this dissertation
consists first of analysing the case of the classical symplectic group over a commuta-
tive ring and then the general case of an even unitary group over a quasi-finite ring.
This leaves open the problem of describing the overgroups of a block-diagonal subgroup
in classical odd dimensional orthogonal groups, namely Chevalley groups of type B,,
over an arbitrary commutative ring and more generally its generalization the Bak odd
dimensional unitary groups over form rings.

We sketch now in more detail the main results in this dissertation. Given an ab-
stract group G and two subgroups A and B of G, call the subset Transp,(A, B) =
{9 € G |9A < B} the transporter in G from the subgroup A to the subgroup B. In
general, a transporter is not necessarily a subgroup. In fact, it contains the identity
element if and only if A < B and is in general not closed under taking products or
multiplicative inverses. However, in some situations it turns out to be a subgroup, for
example, when A < B and B is normal. Furthermore, the normalizer Ng(B) of B in G,
which is a group, is by definition Transp, (B, B) and in general Ng(B) < Transp. (A, B)
whenever A < B.

Given an exact form net of ideals (o,I") over a form ring (R, A) denote by U(o,T")
the net subgroup of the even dimensional unitary group U(2n, R, A) defined by the
form net (0,I"). Let EU(0,I") denote the subgroup of U(o,I') generated by the (o,I')-
elementary unitary matrices. For a unitary equivalence relation v on the index set
{1,...,n,—n,...,—1} denote by EU(v) the group of elementary block-diagonal unitary
matrices defined by v. We will call (0,I") a major form net of ideals with respect to
v if EU(v) < EU(o,T"). Finally, let h(v) denote the ordered pair (p,q), where p is the
minimal size of a self-conjugate equivalence class of v and ¢ is the minimal size of a
non-self-conjugate equivalence class of v.

Theorem 1. Let (R,A) be a quasi-finite form ring. Let h(v) > (4,5) and suppose
either h(v) > (6,5) or RA+ AR = R. Let H be a subgroup of U(2n, R, ) such that
EU(v) < H. Then there exists a unique major form net of ideals (o,1") over (R, A) such
that

EU<J> F) < H < TranSpU(Qn,R,A) (EU(Ua F)7 U<O> F))

Furthermore, (0,T') is the mazimal form net of ideals such that EU(0,T') < H.

The next theorem shows that indeed the transporter Transpyy g, g ) (EU(, '), U(o, T))
in Theorem (1|is a group which is equal to the normalizer Ny(2,,z.)(U(0,I")) of the net
subgroup U(o,I"). Moreover it can be defined in terms of congruences as in the theorem
below.

Theorem 2. Let (R, ) be an arbitrary form ring with respect to an involution = with
symmetry A. Let h(v) > (4,3) and suppose either h(v) > (6,4) or RA+ AR = R. Let
(0,T) be an exact major form net over (R, A). Then Transpy s, g ) (EU(0,T), U(0,T))
coincides with the normalizer Ny, gy (U(0, ")) and consists precisely of all matrices a
in U(2n, R, \) that satisfy the following three conditions: for an invertible matriz a let
a,: = (a™Y)y; and Sk_r(a™t) be the length of the k’th row of a™.

ij



(T1) a;jojkay, < oy foralli,j, k,lel

(T2) a;j€Sk, k(@™ )AEW=D/2ENA=0D2g!

j—i <Liforalli,j,k €1 and § € oy

(T?)) aijfja',j7,l- < Fz fOT’ all Z?] el

The rest of this dissertation is organized as follows. Basic notation regarding matrices
and equivalence relations is given in Section After that, the dissertation is divided
into three chapters. Each chapter begins with an outline of the results of that chapter.
Chapter [1] treats the special case of Theorem [l for the classical symplectic group and
assumes that the elementary block-diagonal subgroup has no non-self-conjugate blocks.
This is designed to make the proofs more transparent, while at the same time to highlight
certain basic constructions, such as major and exact form nets of ideals. Chapter
presents the general symplectic case. Whereas the treatment in Chapter [1| does not
use localization, Chapter [2] does and paves the way for its extensive use in Chapter [3]
Chapter [3] proves the general case of Theorems [I] and [2]

0.2 Notations

Throughout this paper we will adhere to the following notations and conventions. By
ring we will always mean associative unital ring. Given a ring R and a natural number
n we will denote by M(n, R) the full matrix ring of rank n over R and by GL(n, R) the
group of invertible elements of M(n, R). For any matrix a in M(n, R) we will denote by
a;; the entry of a at the position (4, j) and by aj; the corresponding entry of the matrix
inverse to a. We will denote by a the matrix transpose of a, i.e. the matrix in M(n, R)
such that (a');; = aji. By a; and a,; we will denote the 7’th row and j’th column of a
respectively. Naturally, a}, and a}; should be read as the i’th row and j’th column of
a~! respectively. We will also use the notation diag(&y,...,&,) for the diagonal matrix
with entries &1, . . . &, reading from the top-left corner and sdiag(&y, .. ., &,) for the skew-
diagonal matrix with entries &, ... &, reading from the top-right corner. When the rank
of the matrix ring is clear from the context, we will also denote by diag the diagonal
embedding of R into M(n, R), i.e. diag : R — M(n, R) is a ring homomorphism sending
each £ € R to the diagonal matrix diag(¢) = diag(¢,...,&). We will denote by e, the
identity of the matrix ring M(n, R). When the rank is clear from the context, we will
simply write e. The entries of e, as an exception from the above convention, will be
denoted by d;; (Kronecker delta), while e;; will stand for the corresponding standard
matrix unit, i.e the matrix in M(n, R) whose (7, j)’th entry equals 1 and whose other
entries are zero. Given a ring morphism ¢ : R — () we will denote by M,,(¢) = M(y) the
induced ring morphism of the matrix rings M(n, R) and M(n, Q). If we consider M(y)
as a morphism of the multiplicative monoids of M(n, R) and M(n, Q) then its kernel is
precisely the set M(n, R, ker(¢)) = {a € M(n,R) | a;; = d;; mod ker(p) for all ¢, j}.
Note that GL(2n, R, ker(y)) = GL(2n, R) N M(2n, R, ker(y)) is a normal subgroup in
GL(2n, R).



In our applications it is convenient to index the rows and columns of 2n x 2n matrices
by the ordered set I = Iy, = {1,...,n,—n,...,—1}. We equip the poset I with the sign
map € : [ — {£1}, defined by

. {+1 >0
e(i) = , .
-1 <0
For the sake of shortening formulas we will also denote (i) by &;.

Now consider an equivalence relation v on the set I. If two indices ¢ and j are
equivalent under v, we will write ¢ ~” j or just ¢ ~ j when the equivalence relation
is clear from the context. The equivalence class of an index ¢ will be denoted by v(i).
Call v unitary if for any equivalent indices ¢ and j the indices —: and —j are also
equivalent. All the equivalence relations mentioned in this paper are unitary and thus
we will sometimes omit the word “unitary”. The index set I can be decomposed as a
disjoint union of equivalence classes:

I=CuCyU---Ud;.

We can introduce a left action of {1} on the set Cl(v) = {C}, ..., C;} of all equivalence
classes C; of v by putting: 1-v(i) = v(i) and —1-v(i) = v(—i), for any ¢ € I. Following
[Vav08| we will call the classes stable under this action self-conjugate (i.e. the classes C,
such that for every i € C) one has also —i € C}). Accordingly the non-stable classes will
be called non-self-conjugate. We will denote by h(v) the ordered pair consisting of the
minimum size (as a set) of all self-conjugate equivalence classes of v and the minimum size
(also as a set) of all non-self-conjugate equivalence classes of v. Note, that an arbitrary
equivalence relation does not necessary have equivalent classes of both types; therefore
h(v) is an element in NU {oco} x NU{oo}. We will always view NU {oco} x NU{oo} as a
partially ordered set with the product order, i.e. (ay,b1) < (ag,by) if and only if a1 < a
and b1 S bz.

We call a k-tuple (iy, ..., i) of indices in I a C-type base k-tuple [of indices] if for each
1 <r#s <k, wehave i, # +i, and 7, ~ iy ~ —ig ~ —i,. Similarly, we call a k-tuple
(i1,...,1) of indices in I an A-type base k-tuple [of indices] if for each 1 < r # s <k,
we have i, # +i,s and i, ~ is. The condition h(v) > (a,b) is equivalent to the condition
that every index 7 € I can be included in either an A-type base b-tuple, or a C-type base
(%W -tuple. This simple observation will be used repeatedly without specific mention in
the rest of the paper.

Finally, by angular brackets (-) we will denote the subgroups and ideals defined in
terms of generators. The rest of the notations are standard for the field of this research.



1 Standard sandwich classification for
symplectic subsystems in symplectic
subgroups

In this chapter we classify the overgroups of elementary block-diagonal subgroups in
symplectic groups over arbitrary commutative rings provided that all the blocks are self-
conjugate. The methods we use to prove the standard sandwich classification theorem
in this case closely resemble those used in [Vav08] with two main differences. First, we
use long root unipotents, that are conjugates of long elementary symplectic transvec-
tions, rather than long root involutions, that are conjugates of long elementary diagonal
matrices, as in [Vav08]. Second, we remove the assumption that 2 is invertible in the
ground ring. As a result, we will have to deal with form nets of ideals instead of just
nets of ideals.

Let R denote a commutative ring and Sp(2n, R) the classical simplectic group with
coefficients in R. Let Ep(2n, R) denote the elementary subgroup of Sp(2n, R). Given a
form net of ideals (o, I") denote by Ep”(c,I") the subgroup of Ep(2n, R) generated by
all long symplectic transvections 7; _;(«), where ¢ € I and a € I';. The central result of
this chapter is the following theorem.

Theorem 3. Let v be a unitary equivalence relation on the index set I such that

h(v) > (4,5). Let Ep(v, R) denote the block-diagonal elementary subgroup of Sp(2n, R)
defined by v. Let H be a subgroup of Sp(2n, R) such that Ep(v, R) < H. Denote by
(0,T") the form net of ideals associated with H. Then

H < TranSpSp(Qn,R)(EpL(Ua F)7 Sp(a, F))

Another important result is that the transporter Transpg, s, gy (Ep(c,I'), Sp(o,T')) co-
incides with the normalizer in Sp(2n, R) of Sp(o,I') and can be described in terms of
congruences.

Theorem 4. Let v be a unitary equivalence relation on the index set I such that all the
equivalence classes of v contain at least 3 elements. Let (o,1') be a form net of ideals
over R such that [v]gr < (0,T'). Then the transporter Transpg, s, r)(Ep(c, '), Sp(c,T'))
coincides with the normalizer Ngpan, g (Sp(0,I')) and consists precisely of all matrices a
in Sp(2n, R) such that the following three properties hold:

(T1) a;jojkay, < oy foralli,j,k,lel

(T2) afja%Sk,,k(a_l) el foralli,j kel



(T3) a3;I'; < Ty for alli,j € 1.

Note that both Theorem [3] and Theorem [4] hold without the assumption that all the
equivalence classes of v are self-conjugate. However, the conclusion of Theorem [3|is too
weak for us. We want the stronger conclusion of Theorem [5| below. This is where we
use the assumption that all the equivalence classes of v are self-conjugate. With this
assumption we will show that Theorem [f] follows already from Theorem [3] Theorem
is already a generalization of the main result in [Vav08].

Theorem 5. Let v be a unitary equivalence relation on the index set I such that all the
equivalence classes of v are self-conjugate and contain at least 4 elements. Let H be a
subgroup of Sp(2n, R) such that Ep(v, R) < H. Then there exists a unique exact form
net of ideals (o,T") > [v]r such that

Ep(o,I") < H < Ngpan,r)(Sp(o,T)).

An important difference in the methodology of the current chapter compared to that
of successive ones is the absence of localizing, radical reduction, direct decomposition,
scaling, and Morita equivalence. Theorem [5|is the frontier of results that can be proved
without using localization methods.

The rest of this chapter is organized as follows. In Section [L.1] we give all the required
definitions. In Section [1.2] we define the net associated with a subgroup and prove The-
orem [4 In Section [I.3] we collect the results on extracting transvections from parabolic
subgroups. Finally, in Section [1.4] we describe the method of extracting transvections
from a long root element, which mimics the extracting transvections from a long root
involution which is used in [Vav08], but without the assumption that 2 is invertible in
the ground ring. Theorems [3| and [5] are proved there.

1.1 Preliminaries

Symplectic group Let R be a commutative ring. Fix a natural number n. Let
Sp(2n, R) denote the classical symplectic group of rank 2n. It is known that a ma-
trix a in GL(2n, R) belongs to Sp(2n, R) if and only if the equality

(l;j = &i&50—5—
holds for all possible indices. In the future, this property will be used without refer-
ence. We will also use the extension to a column or a row rather then single matrix

element. The extension is given in the following proposition and can be checked by a
straightforward calculation.

Proposition 1.1.1. Let -t denote the transpose operator in matrices. Let a be a matrix
in Sp(2n, R). Fiz arbitrary indices i and j. Then

Qi = 5i(pa;77i)t and ay; = —¢j(a_j.p)’,
where p = sdiag(1,..,1,—1,..,—1). Obuviously
pl=p'=—p



Given an element £ € R and an index ¢ € I we will call the matrix
T -i(§) = e+ Eei i

the [elementary| long [symplectic] transvection. Given an additional index j # +i we
will call the matrix

Tij(€) = e + Leiy — cigjée—j—i

the [elementary| short [symplectic] transvection.

It’s a well known fact, that all the long and short elementary symplectic transvections
are containd in Sp(2n, R) and satisfy the following relations known as the Steinberg
relations for all £, ¢ in R:

) =T _i(—eie;€) for all i # +j
R2) T3;(§)T;(C) = Tij(§ +¢) for all i # j
T35 (§), Thi(C)] = e for all h # j, —i and k # i, —j
[T5(), Tyn(C)) = T(€C) for all i,h # %5 and i # +h
[T35(€), Tj—i(Q)] = T;,-4(2£C) for all i
R6) [T3-i(€), T-iy(Q)] = T3 (€Q) T (eig;€C?) for all 4 # L.

In future we will sometimes use these relations without a reference.

For any matrix ¢g in Sp(2n, R), any short symplectic transvection T.(£§) and any
long symplectic transvection T, _4(¢), we call the matrices 97,.(§) = ¢gTs(€)g" and
9T, —s(C) = gTs.—s(C)g™ " [elementary] short and long root elements respectively.

Equivalence relations and block-diagonal subgroups Given a unitary equivalence
relation v on the index set I we will call the subgroup

Ep(l/) = Ep(l/a R) = <T11,71(£)7Tjk(€> ’ i~ _i7j ~ ka] 7é ikaf € R>

the elementary block-diagonal subgroup of type v in Sp(2n, R). Note that Ep(v, R) does
not necessarily consist of block-diagonal matrices. It can only be the case if all (or at
least all but one of) the equivalence classes of v are non-self-conjugate. However, these
groups behave like block-diagonal matrices because for each such group Ep(v, R) there
exists a permutation matrix B in GL(2n, R), but not necessarily in Sp(2n, R), such that
B -Ep(v, R) - B~! is block-diagonal in the usual sense.

From the point of view of Chevalley groups, the elementary block-diagonal subgroup
is precisely the elementary subsystem subgroup. Namely, let Cy, —C,...Cs, —Cy be all
the non-self-conjugate classes, and Cs1, ..., C; be the self-conjugate ones. Set n; = |C}]
for1 <i<sandl;=|Cj|/2for s+1<i<t Thenni+---+ns+lgp1+---+lh=n
and

Ep(v, R) =~ E(ny, R) X - -+ X E(ng, R) x Ep(2ls41, R) X --- x Ep(2l;, R),



where E(n;, R) denotes the usual elementary subgroup of GL(n;, R) appearing in the
hyperbolic embedding and the product is meant as a product of linear groups. From the
viewpoint of algebraic groups this is exactly the elementary Chevalley group of type A,
where

A=Ay 1+ +A,1+C, +--+C.

The reader is referred to [Vav0§| and the references therein for further details.

This analogy allows the following geometric interpretation of concepts of A-type and
C-type base tuples By choosing an equivalence relation v we fix a subsystem A < C,
consisting of all roots a;; € C,, where i ~" j. Irreducible components of A are in
one to one correspondence with equivalence classes of v, namely the components of
type C} correspond to self-conjugate equivalence classes and the components of type
Ay correspond to pairs of non-self-conjugate classes. Then an A- or C- type base k-
tuple (i1, ...,1) provides us with a root subsystem in A of type A;_; or Cy respectively,
namely (@, iy, .., Qiy 1) OF (Qiyigs - -+ Qi iy, iy ), Tespectively. Moreover, both gen-
erating sets above can be chosen as systems (or bases) of simple roots in the subsystems
they generate.

Form nets of ideals and corresponding groups Consider a square array o = (0y;); jer
of (2n)? ideals of the ring R. We will call it a net of ideals over R if for any indices i, j
and k, we have the following inclusions:

OikOkj < 0.

A net of ideals o is called unitary, if 0;; = o_;_; for each i and j. We will call o a
D-net, if 0;; = R for every i in I. Equip the net of ideals ¢ with 2n additive subgroups
[' = (T')ies of R such that for any indices i, j € I the following inclusions hold:

1. 205 < Ty <oy
2. O'Fj S Fia

where 20, ; = {2a | a € 0;_;} and 0 = {&%€ € oy;}. In this situation T is called
a column of form parameters for o and the pair (o,I') a form net of ideals. It is the
analogue for nets of ideals of the concept of form ideal of Bak [Bak69] for form rings. A
form net of ideals (¢, 1) is said to be ezact if for any index i the equality

holds. Any form net of ideals is assumed to be a unitary exact form D-net of ideals.
Introduce a partial ordering on the set of all form nets of ideals over R by setting

(0,T") < (0", 1) whenever for all 4, j € I the inclusions oj; < of; and I'; < I'} hold.

As a matter of convenience, given an element £ € R and indices s and r we will write

“¢ € (0,')g” instead of “¢ € o, if r # —s and £ € Iy otherwise”.



We can associate two kinds of subgroups of Sp(2n, R) to each form net of ideals (o, I")
over R. We call the subgroup

Ep(O’, F) = <TZ(£),T%,Z<CK) ‘ i 7& +j,§ € Tij, O € Fl>

the elementary form net subgroup of level (o,1"). We call the above generators of Ep(o, )
the short and long (o,T')-elementary symplectic transvections, respectively. Note that
any equivalence relation v on the set of indices I defines a form net

V]r = (0,,T0),

where

R, ifi~"jg R, ifi~"—i
(00)ij = { (') = { .

0, ifimn”y 0 ix” —

This is clearly a D-net. Clearly the elementary block-diagonal subgroup is a special
case of an elementary form net subgroup. We will call a form net of ideals (o,T") major
[with respect to v] if [V]g < (0,T). The notion of elementary form net subgroup is a
generalization of that of relative elementary subgroup of even unitary groups introduced
in Bak [Bak81l p. 66]. The concept of the relative principal congruence subgroups
therein is generalized as follows. We will call the subgroup

Sp(O’, F) = {g € Sp(2n, R) ’ V’l,j el Gij € 0ij, SL,l(g) S F,L}7

the form net subgroup of level (o,1"), where

Si-i(g) = ZgijQ},_i

Jj>0

is the so called length of the row g;.. The element S; _;(g) is clearly in o; _;, by definition
of a net of ideals, and insisting that S; _;(¢) € I'; < 0, _; is a further restrinction on g.
The word “length” was introduced by You in [Youl2].

In the situation when I'; = R for all ¢ the form net subgroup coincides with the regular
net subgroup Sp(c) = {g € Sp(2n, R) | Vi,j € I g;; € 0;;}. The next proposition allows
us to compute lengths of rows of products of two matrices in terms of lengths of rows of
factors.

Proposition 1.1.2. Let a and b be two matrices in Sp(2n, R). Then
Si,,i(ab) = Si,,i(a) + Z aikSkﬁk(b)aLkﬁi—

k
) b b ad . —
4,101, —; —],k:ak:,—z

3,k 1>0

/ / / /
-2 E E (ai,_kb_k,_jb_ﬂal,_i +aikbk,—jb—j7—la—l,—i)'

J,k>0 1>k
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Proof. By the definition of the length of a row and the formula for the coefficients of the
product of two matrices we get:

Sii(ab) =Y (ab)ij(ab)_; = > > awbiblya ;.

7>0 >0 k,l

Next we collect the summands corresponding to the four different combinations of signs
of the indices k and [, rewrite them in a way that all the sums are taken over positive
indices and then group them in the following way:

Sicilab) = > (anbpbyar ; + ai_rb_ ;b _a )+

4.k, 1>0

+ Z (&i7_kb_k7jb;la27_i + aikbkjb;_la'_l,_i). (11)
7,k,0>0

Denote the first sum of ((1.1) by X and the second by Y. In X swap the indices k and
[ in the second summand in brackets and then replace every matrix entry in the same
summand with the corresponding one of the inverse matrix. Doing this, we get

o ;o / /
X = E (aikbkjbjlal,fi - a’i:kbkﬁjbfj,lal,fi)'
7,k,01>0

Now as ) by;bly = (b- ") = O we have
J

X = Zaika;’_i —2 Z ambk’_]‘b/_jlag’_i = SZ',_Z'(CL) -2 Z ainka_jb/_jJCLE’_i. (12)

k>0 3.k,1>0 3,k 1>0

Consider the summand Y. We group together the summands of Y such that [ > k, [l =k
and | < k to obtain three summands. In the last summand swap the indices [ and k.
Finally we join the first and last summands together. Summing up,

Y= Z Z ((aivfkb*kvjb;la;,—i + ai,*lbflJb;'ka/;:’_i)

Jk>0 1>k
/ / / /
+ (bt _ya’y s + agbyl _ya’y ;) (1.3)
+ (a- b_ib,al . + apbp:b _ad )
1,—kYV—k,jYjk%k,—i kYkjY5 %k —i) -
k>0

Denote the first sum in (1.3)) by Z and the second by W. Clearly

W = Zaik (Z bk]b;’k> a’fkﬁi == ZaikSk,_k(b)aLkﬁi. (14)
k

5>0 k
As for Z, passing where necessary to the elements of inverse matrices we get:

o /o / /
Z = E E ((ai,—kb—k,jbjlal,fi _aiy—kb—h—jbfj,lal,fi)

7,k>0 1>k

/ / / /
+ (@bt a0’y — awby, 50" 0", ;)

11



and using the formula ) ; b—k,jb;'z = 0 whenever k,[ > 0 we get

Z =" (—2ai kb j,a;_ — 2apbp ;b d, ). (1.5)

§.k>0 >k

Combining the equalities ((1.1)), (1.2)), (1.4) and (L.5)) we get the required formula.  [J
Corollary 1.1.3. Let (o,T') be a form net of ideals over R. Suppose a,b € Sp(c), then

Siy,l-(ab) = Siy,i(a) + Z akak,,k(b) mod Fl (16)
k

In particular, the form net subgroup Sp(o,T') is indeed a group.

Proof. Clearly e € Sp(o,I"). Next the congruences (1.6 together with the condition
02T, < T; show that Sp(c,T") is closed under taking products. Let a € Sp(c,T'). By
(1.6) we get that

0=25;_i(e) = Si,_i(a_la) = Sij_l-(a_l) + Z(agk)gsk,_k(a) = SL_Z-(a_l) mod T';.
k

Therefore a=! € Sp(c,T") and Sp(c,T') is a group. ]

The following two corollaries allow us to compute the lengths of rows in products of
matrices in Sp(o) and short (o, I")-symplectic transvection as well as lengths of rows of
some root elements.

Corollary 1.1.4. Let a € Sp(o) and T,,(§) be a short symplectic transvection in
Ep(o,T"). Then

Si—i(a) if i #p,—q
Si—i(Tpg(&)a) = § Sp_p(a) + €25, _q(a) ifi=p mod T;
S—qﬂq(a) + 525—174)(“) ifi=—q

and for all i € 1
Si—i(aTp,(€)) = Si—i(a) mod T;.

Corollary 1.1.5. Let a € Sp(o), Ts(§), Tst(C) be short root elements in Ep(o) and
s # £r,+t and r # +t. Then

Si,—i(aTsr(g)Tst(C>a_1) = a?sCQSt,—t(a'_l) + a?s€2ST,—T(a_1)+
+a; (S gs(a™h) +a;i_ &S (") mod T

In particular if ¢ =0 then

Si—i(aTy(&)a™) = al.8*S, r(a™") + al &5 5(a”") mod I,

12



Proof. Clearly aTy,.(§)Tw(¢)a™" € Sp(c). Then combining Proposition and Corol-
lary we get

Si—i(aTs (g)Tst(oa_l)

Si—ila) + Y cieraly S i(Ter(§)Tu(()a ™)
k

SZ',_Z'(CL) + Z 51-6;4;@?,6(5;@7_;@(@_1)—1—
k

+ 5ksC25t,ft(a_1) + 51655257",77”(@_1)"’_
+ 0k, —1C*S_s s (a™h) + 6 €3S s 5(a™h))

=S i(a-a™ ') +eieal,(2S 1(ah) + g0 828, (a7 )+
+eieaa; (S ss(a) +eepal &S s s(a™h).

Clearly S;_;(e) = 0 for all + and the signs are insignificant due to the inclusion 20; _; <
I';. Therefore we get the required congruence. ]

We finish this section with two technical results which will be used repeatedly and
without reference in proofs throughout the paper. The first one shows that major form
nets of ideals are partitioned into blocks in which all ideals are equal and all form
parameters are equal. The second one allows simplifying reasoning dealing with case-
by-case analysis of small equivalence classes. The proofs of both results can be checked
straightforwardly and are left to the reader.

Proposition 1.1.6. Let (0,T") be a form net of ideal such that Ep(v) < Ep(o,T"), with
h(v) > (4,3). Then for any indices i, j, k,l such that k ~ i, | ~ j, we have:

1. Okj = 045 = 04

Proposition 1.1.7. Let v be a unitary equivalence relation on the index set I such that
h(v) > (4,3). Leti,j be two indices in I such that i # j. Then one of the following
holds:

1. v(i) = {i,—i,7,—j}

2. There exists an index k in I such that k # +i,+7 and k ~" 1.

1.2 Form net associated with a subgroup and the
description of the transporter

Form net of ideals associated with a subgroup. Let v be a unitary equivalence
relation on the index set I such that h(v) > (4,3). Let H be a subgroup of Sp(2n, R)
such that Ep(v, R) < H. An exact form net of ideal (o, T") is called the net associated with
H if Ep(o,I') < H and if for any exact form net of ideals (¢, I") such that Ep(¢’,1") < H,
it follows that (¢/,I") < (o,I"). Clearly, if (¢, ") exists then it is unique. The next lemma
shows that (o, ") exists.

13



Lemma 1.2.1. Let v be a unitary equivalence relation on I such that h(v) > 3 and H
a subgroup of Sp(2n, R) that contains the subgroup Ep(v, R). For each i # +j € I set

oij={(€R|T;;§) eH}, TI''={aecR|T,_i(0) e H}, 0; =R,
Oii = Y 005 + (T3) . (1.7)

J#Fxi
Then (o,1") is the form net of ideals associated with H.

Proof. First, we will prove that (o,I") is a form net of ideals. We will split the proof of
this into the following steps:

1. 045 is an ideal of R for any indices ¢,j € I and I'; is an additive subgroup for all
1€ 1.

2. 20;_; <T;foranyi¢e€l.
3. 0,505, < oy for any 7, j and k.

4, Fz < 04— forallz € I.

5. 050y < T for any 7 and j.

The rest of the properties required for (o,I') being a form net of ideals are obviously
fulfilled.

1. Due to the Steinberg relation (R2) it’s clear that all o;; and I'; are additive sub-
groups in R. Moreover, for any ¢, j € I such that i ~” j as well as j = £, 0;; is an ideal
by definition. To prove, that all o;; are ideals it only remains to handle the case when
1 # +7 and i ~” j. In this situation, according to Proposition [L.1.7] it’s possible to pick
an index k # =i such that (j, k) is an A-type base pair. Take any £ in ¢;; and any ¢ in
R = 0j; = oy. By the Steinberg relation (R4) we get

T;(6¢) = [[T35(8), Tix(Q)], Th; (1)] € H

and thus £ € R. Therefore o;; is an ideal in R.

2. Next we will show that for every index ¢ the ideal 20;_; is contained in I';. As
we already know that I'; is an additive subgroup, it’s sufficient to check this property
separately for each summand in the definition of o; ;. Let a € 0, _;. First suppose «
admits a decomposition o = aja, where ay € 0;; and ay € 0 _; for some j # +i. This
means that T;;(o) and T _;(as) are contained in H. Then, by the Steinberg relation
(R5):

T -i(2an0z) = [Tij(n), Tj —i(ao)] € H,

and thus 2a € I';. Now take « in I';. We will show that 2 lies in I'; for any £ € R.
Take any index j such that j # +i and ¢ € 0j;. According to the relation (R6) we get

T; - (aQ)Tj—j(sig0C?) = [T; —i(), T—; —;(¢)] € H.

14



Then if i » —j, it follows from Proposition that there exists an index k # £j such
that (i, k) is an A-type base pair. Then

T —j(a¢) = [Ti(1), [Tha(1), Ti,—5(aQ) T} - (eig0¢?)]] € H,

hence a¢ € o; ;. In the case when 7 ~ —j this inclusion is trivial. Thus we have proved
the following useful relation:
Ujiri S 0j,—i (18)

for all j # +1.
Now take j such that (i,7) is an A-type base pair. Then (1.8)) yields the inclusion
a € 0;_; and it’s only left to notice that

Ti—i(20€) = [T35(8), Tj—i()] € H.

3. Now we prove the inclusions 00, < oy for all indices ¢, 7 and k in 1.

For indices 7, j, k such that ¢ # +j, £k and j # +k these relations obviously follow from
the Steinberg relation (R4). Note also, that for & ~" ¢ the corresponding inclusions are
redundant as the right-hand side equals R by definition. The inclusions are also obvious
for the case k = —i due to the definition of o; _;. If j = ¢ or j = k, the inclusion follows
from the fact that every o;; is an ideal. Thus, we can assert that k # £i,7 # 4,j # k
and k ~" i. Therefore it’s enough to consider the case j = —i, k # +i. But in this case,
as j »~ k there exists an extra index [ ~ ¢ such that [ # +i, +k. Thus

04,0k = Z 0it0t—i0—ik + (L) 0_ik.
tA+i
We already know that o0y 0 ;) < oy for all ¢ # +i,+k. By (1.8) we get that
(Iyyo_ix = lio_ip < o4. Obviously o0k _i0_; ) < 04 and so it’s only left to prove
that 04, —k0—k,—i0—ik S Oik- But

O, —kO—k,—iO—ik = 04 kO —k,—iO—i kOkl < O kO _k,—i0—_i] < O _pO_p 1 < Oy

and it’s clear that oy < o0y R = 001 < 0. SO 04 _KO_k —iO_ik < Oj.

4. Fix an index ¢ € I. Pick another index j such that (i, j) is an A-type base pair. By
(1.8) we get 0;;,I'; < 0;_;. We have already proved that o, _; < Ro;_; = 0,05 _; < 0, _;.
As o0j; contains the identity it follows that I'; < o; _; for all 7 in I.

5. Finally we prove that for any indices ¢, 7 we have the following inclusion: aFj <Ty.
Let a € I'j and £ € 0y;. If j # +i, then by the Steinberg relation (R6) we get

T —i(a€)T; _i(eig;0€?) = [Tj—5(a), T—; —i(€)] € H.

Recall that according to (1.8) we have Tj_;(a€) € H and thus also T; _;(¢;c;08%) € H
which proves that O’%Fj < T, for all j # +i.

Now the case when i = j is quite obvious. Pick any index k such that (7,k) is an
A-type base pair. By we get

U%]Fi = R@Fi = 0,%.1“1- <Ip< R@Fk = a%il“k <T;.

15



Finally it remains to consider the case j = —i. Again pick an index j such that (i, )
is an A-base pair. Then

a%]fif‘,i = (Ujio'i,fi>@]~17i S J%fif‘,i S Fj S O'%-Fj S Fz

Therefore aFj < T, for all i and j. Hence, (o,T") is an exact major form net of ideals.
By construction, Ep(o,I') < H and for any exact form net of ideals (¢/,T") such that
Ep(o’,I") < H, it follows that (¢/,I") < (o,I'). This completes the proof. O

Description of the transporter. The rest of this section is devoted to the proof of
Theorem [d] The following proposition shows that the lengths of rows of matrices in
Sp(2n, R) that already satisfy the property (T1) look relatively simple modulo minimal
form parameters. This is an analogue and a generalization of Proposition [I.1.2]

Proposition 1.2.2. Let (0,1") be an exact form net. Suppose a € Sp(2n, R) satisfies
the condition

/
A0k, < O

for all i,5,k,l € I. Then for any matriz g € Sp(o,') and any i € I the following
congruence holds:

S;_ilaga™) = Z a2, (Sk,_k(g) + Sp_p(a™) + Zg,ztSt,_t(a_l)) mod T;.

kel tel

Proof. By Proposition we get

Si,_i(aga_l) = Si,—i(a) + Z z—:ieka?ksk,_k(ga_l)

kel
—2 Y au(ga " )—jlag™)_jua
.k, >0 (1.9)
23 (ai—w(ga ) k—ilag™)jua) i+
7,k>0 >k

ai(ga " e—j(ag™)-j 0, ;).

Consider the summand of the second big sum above. By the assumption that a;jo;xa;,; <
o, we get

aa(ga™ )-5(ag™)juah i = D (augpa), ;) (a-q9uth ;) < 0150 < 05 (1.10)
p,qel

and therefore the doubled second big sum in (1.9)) is contained in 20; _; < I';. Applying
the same principle to the last summand in ([1.9) we get the inclusion

ai—k(9a ")k —j(ag™")—jua; _; + ai(ga™ e —jlag™)—ja’, ;) € 0i . (1.11)
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Combining ((1.9), (1.10) and (1.11)) we get
Si_i(aga™) = S;_i(a) + Zeiskakakv_k(ga_l) mod T';. (1.12)

kel

Expand (1.12)) further using Proposition [1.1.2}

Si,_i(aga_l) = Sl-’_i(a) + Z 6¢6ka?k5k7_k(ga_1)

kel
— 2 2 —1
= Si—i(a) + ) cicgaj, <Sk,k<g) + ) ereignSe—i(a)
kel tel
! !
—2 E k10— tGy
7,t,1>0
! / ! /
-2 E E (gk,—ta—t,—ja—jvlgl,—k+gitat,—ja—jv—lg—l,—l)>
7,t>0 >t

(1.13)
= Si,—i(a’) + Z €i€kafk <Sk,_k(9) + Z Ekgtgitst,—t(a_l))

kel tel

2 . / . / /
- AikGriQy —jA—jtG¢ Ak —;
7,t,0>0

/ / /
—2 g E (aikgk,—ta_t,_ja—j,lgz,_ka—k,—i
73,t>0 I>t
/ / /
+aik9¢tat,_ja—j,—lg_z,_za—k,—i)
mod T';.

Using the same trick as before we may conclude that both doubled terms of (|1.13) are
contained in 20; _; < I';. Summing up, we get the congruence

Si_i(aga™") = S; _i(a) + Zsiska?k (Sk,_k(g) + ZskstgitSt,_t(a_l)> mod I';.

kel tel
Finally it’s easy to see that
ekt Skk(9) = Y (awguay,)(apg)_yaly ;) € o1
[>0,pel

and

eicnererafgnSe—1(a™") =Y (amgreay)(a 9"y a0l _;) € 0ii.
>0

Therefore the choice of signs in ([1.14]) is insignificant and we can rewrite ([1.14]) as follows

S;_ilaga™) = S; _i(a) + Z a2, (Shk(g) + Zg,%tSt,t(al)> mod T';. (1.15)

kel tel
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It’ clear that S; _;(e) = 0 for all 7. Rewrite the formula (1.15) for g = e. As S, _;(a) =
Zj>0 aljéjja] _; < 04, we can also change the sign at the ﬁrst term:

0=>Si_i(a-a") =-S5 _i(a) +> a3 (a™') modT:;. (1.16)
kel

Finally, adding ((1.16)) to (1.15) we get the required inclusion

S; _i(aga™) Zalk <Sk 1(9) + Sk _x(a™) —l—ZgitSt’t(al)) mod T';.

kel tel
This completes the proof. O

Proof of Theorem [4. Denote by N the set of all matrices in Sp(2n, R) satisfying the
conditions (T1) — (T3). It’s easy to see that N < Ngpon,z)(Sp(c,I')). Indeed, pick any
g € Sp(o,I') and any a € N. Then condition (T1) guarantees that

(aga )ij = § QipGpqQy; < E , AipOpqQy; < 0ij
p,q€l p,g€l

for all ¢, 5 € I. Now applying Proposition [1.2.2] we get

S;_ilaga™") = Z (a?ksk,_k( )+ a3 Se_r(a™) + Z az. 9 St )) mod T';.

kel tel

Observe that by condition (T3) it follows that a? Sk _x(¢7") € a3 Ty < I';. Next, by
condition (T2) we get a2,g?,S; +(a™') € a%,02S; +(a™') < T, and a2, Sy _x(a™?) = a, -
12- 8y _(a™) € a?,02,.5k _x(a™t) <T;. Therefore, S; ;(aga™')) € T; for all i. Tt follows
that aga™ € Sp(o,T') and thus a € Nsp(gn,R)<Sp(0', r)).

The proof of the inclusion Transpg, o, g (Ep(c,T'), Sp(o,I')) < N is slightly trickier.
Consider an arbitrary matrix a in Transpg,, z)(Ep(o,T'),Sp(o)) and a short (o,I')-
transvection T,,(&). By definition of the transporter we get

5@' + airfa;j — 5(7’)5((9)@1‘7,55@,_7”- = (aTrs<5>>ij & 05j- (117)

Now given two short (o, I')-transvections T,5(€) and T (¢) such that r # £t we get by
a straightforward computation

0i; + anéCay; = (aT,s(§)Ta(Q)a™ )iy — (aTrs(€)a™ )i — (aTw(C)a™ )i + 6. (1.18)

And therefore using (1.17) we get the inclusions hirorsosCay; < oy for all i, j,s,rt € 1
such that s # +r, £t and r # +t.
Next for a long (o, I')-elementary transvection T _s(cv) we get

8ij + aisaa_, = (“Ts _s())ij € 04 (1.19)
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Finally for r, s € I such that r # +s we get
5ij + airgaal_s = (aTrs(f)Ts,—s(a)a_1>ij - (aTrs(f)a_1>ij - (aTs,—s(a)a_l)ij + 5ij (120)

and therefore by (1.19) we get the inclusions a;,0,,'s —sa,; < 0;; for all 4,j € I and all
r,s € I such that s # +r.

Now let r and t be two indices such that r # +t. Then either v(r) = {£r, £t}, or
there exists an index s ~ ¢ such that s # £r, £¢. In the former case using (1.20]) we get

/ / /
QirOptQy; = airRUrtatj = CLZ'TO'n,tF,t’tatj < 0yj
for all 4,7 € I. In the latter case using (1.18) we get
/ !/ /
QirOptQyj = QO Ray; = 305051035 < 03

for all i,5 € I.
Now assume ¢ = r. Then there exists an index s ~ r such that s # £r and using the
fact that ), ., ala;s = 1 we get

!/ !/ /
WinOrpt; = Y (ai0pstly)(sosal;) < ooy < 0.
lel lel

Finally if t = —r then o, = 37, , 0n01— + (I';). By (L.19) it follows that

Qi <Fr> Cl/ . < Oij-

g S
It’s only left to notice that

/ / /
Uiy 07101, —pQyj = E (aionay,)(anor,—a_, ;) < E OikOj < 0.
k k

Therefore, any matrix a in the transporter satisfies condition (T1). In particular, we
can apply Proposition to any such matrix a.
Pick any short (o, I')-elementary transvection 7j,(£). By Proposition we get

Si7_i(a7}k(§)a_1) = a?j{’QSk,_k(a_l) + a?7_k§25_j7j(a_1) mod T';. (1.21)

Now, given a long (o, I')-elementary transvection T} _;(a) we obtain by the same propo-
sition

S; _i(aT; _j(a)a™) = a?ja + a?joz25_j7j(a_1) mod I';. (1.22)
Given two short (o, I')-elementary transvections T} (§) and Ty, (¢) such that j # +m
we get

Si—i(aTjr(§) Tim (Q)a™ ") = a7, Sk —r(a™) + af ,&25_;,(a™)
+ a3 (S m(a™t) + ai_mCQS_k,k(a_l) (1.23)
+ a3, Sm—m(a™") mod T;.
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Finally given a short and a long (o, I')-elementary transvections 7} (§) and Ty _x () we
get
Si—i(aTj ()T -k(¢)a™") = af,&Se—i(a™") + af 825 ;(a™")
+ ajo + aja’S g p(a™) (1.24)
+ afj§2a2S,k,k(a’1) mod T';.
Comparing ((1.23) and ([1.21])) we get the inclusions

2 -1
4350530k Sk k(@) € I

for all 4,j,k,m € I such that j # £k, +m and k # £+m. Similarly comparing (|1.24])

with (1.22)) and (|1.21)) we get the inclusions

a.0? I‘.S_mm(a_l) el

ijo gmT m

for all 7, j,m € I such that j # +m.
Now let j,m € I such that j # £m. As h(v) > (4,3) either there exists an index
k ~ m such that k # +j, +=m or —m ~ m. In the first case we get

’Lj JmSm m( 1) - azy ]kR@Sm m<a71) =, O-]Q]ka%msm m(ail) S Fl
for all © € I. In the second case we get similarly

202 R%S, (a7t =da20? T2 S _n(a™') <Ty

CL U Sm m(afl)z 1795 iJ J -m> —m

’L] ]m

for all i € I. To prove the inclusions (T2) for the matrix a it’s only left to consider the
cases when m = j and m = —j. Fix an index k ~ j such that k # £j. Observe that

2
1= (Z aﬁﬁtatk> = Zaﬁafk mod 2R

tel tel

and therefore

1] ]mSm m( - <Zaktat’€> Ul?m m, m(a’_l)

tel

- Z zg jk akt atkU%mSm7,m(CLil))

<Za r, <T;

tel

where the congruence is meant modulo I';.
Thus a satisfies condition (T2). Finally using (1.22) and (T2) we get the inclusions
(T3) for all 7,5 € I. Thus we have proved that

Transpgpan g (Ep(o, 1), Sp(0, T)) < N.
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Finally, it is easy to see that Transp is contravariant in the first variable and therefore

NSP(QWR) (Sp(a, F)) < TranSpSp(Qn,R) (Ep(av F)? Sp(U, F))

Hence also

NSp(2n,R)(Sp(Ov [)) = TranSpSp@n,R)(Ep(U? ['),Sp(o,I')) = N.

1.3 Extraction of transvections in parabolic subgroups

The current section is devoted to the extraction of transvections in parabolic subgroups
of Sp(2n, R). We will show that the matrices in H lying in some explicitly defined
subgroups of parabolic subgroups lie in Sp(o,T"), where (0,T') is the form net of ideals
associated with H. The results of this section as well as the methods involved in their
proofs are standard for this area of research. However, there are not many papers where
similar results are stated for form nets of ideals. In this sense, the results of this sections
are new.

Till the end of this section we fix a subgroup H of Sp(2n, R) such that Ep(v, R) < H
and denote by (0,I") the form net of ideals associated with H. We will start with the
extraction of transvections from the unipotent radical of type Uj.

Lemma 1.3.1. Assume h(v) > (4,3). Let a be a matriz in H such that for some index
p, a;j = 0;; whenever © # —p and j # p. Additionally assume that ap, = a_, _, = 1.
Then a is contained in Ep(o,T") and consequently in Sp(c,T').

Proof. A direct calculation using only the fact that a is a symplectic matrix shows that
a can be decomposed in Ep(2n, R) as follows:

“= (H Tp,j(@p,j)Tp,j(ap,j)> T pp(S—ppla))- (1.25)

Our goal is to prove, that each short elementary transvection on the right-hand side of
the equation is contained in H and thus in Ep(o,I"). Then, as a is contained in
H, the last multiplier 7", ,(S_,,(a)) is also contained in H and the proof is complete.

Fix any j # £p. We will show that 7", ;(a_, ;) € Ep(c,I'). For j ~ —p this inclusion
is trivial as 0_,,; = R. Suppose that j = —p. According to Proposition there
exists an index k # £p such that (k,j) is an A-type base pair. Consider the matrix
b=[a,Tjx(1)] in H. Using the Steinberg relations (R3) and (R4) we get that b is actually
a product of two commuting short elementary transvections

b=T pr(ap;)T—p—j(*),

and the parameter of the second one is not important. Now if —j ~ —p, then the
second elementary transvection in the decomposition of b above automatically lies in H.
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Therefore so does the first one. Finally, assuming that +; ~ —p, either there exists an
index h ~ j ~ k such that h # +7j,+h, +p or k ~ —k. In the first case it follows again
from the Steinberg relations that

T pnla—p;) = b, Ten(1)] € H
and thus also 1, j(a_, ;) € H by Proposition [1.1.6] In the last case, one gets that
Tpjlap;) = [0, Th (D], Tk ;(1)] € H.
This completes the proof. n

The next lemma allows us to perform the extraction of elementary transvections in
the whole parabolic subgroup of type P;.

Lemma 1.3.2. Assume h(v) > (4,3). Let (p,q) be an A-type base pair and a a matriz
in H such that a,, = e.,. Then agj,a_j_, € o4 for all j # —p. Moreover if a € Sp(o)
then also S, _4(a) € T',.

Proof. First, as a is symplectic, we also have a}, = e,, and also a_,. =a’,, = e_p..
Consider the matrix b = a='T},,(1)a. It’s easy to see that

/

/
b= e+ a,,a4 —€peqa, _,

— !
(_pys = €+ Cuplgx — EpEqly _4€_px,

and thus b satisfies the conditions of Lemma(1.3.1] Therefore b € Ep(c,T"). In particular,
aq; = byj € o, for all j # £p and S, _,(b) € I',. Applying all the above to the matrix
a~" we get the inclusions a_, _; = £d, € 0j, for all j # —p.

Now if a € Sp(c¢) then by Corollary we get

Sp,-p(0)

By the conditions of the lemma a;, =1 and S_,, ,(a) = 0, therefore S, ,(a) € y. [

(a/>127pSQ7_Q(a) + (a/)2 S—p,p<a) mOd Fp,

p,—q

The next lemma allows us to extract elementary transvections from matrices having
zeros in some specific positions.

Corollary 1.3.3. Assume h(v) > (4,3). Let a be a matriz in H. Pick two indices k
and p. If there exist two more indices h,l ~ k such that k,l # +£h (but [ can be equal
tok or —k) and a_p_p, =1, ap_p = a = a_p; = 0, then a; € oy for all j # —I.
Moreover if a € Sp(o) then Sy _i(a) € T'y.

Proof. Consider the short root element
b=a'"Tw(l)a = e+ ad.,ap — 5h6ka;’7ka_h,*.

As ay = a_p,; = 0 it follows that b,y = e. Thus by lemma we get by; € oy, for all
J # —l. It’s only left to notice that by; = 0n; + apyan; = aj,_a_nj = Onj + a;.
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Now if a € Sp(o) then also b € Sp(c). By Lemma we get Sp_p(b) € I'y. Now
by Corollary we get

Sh-n(b) = ()7 Sk—r(a) + (@)} _pS-nn(a) mod Ty
By the conditions of the lemma aj;, =1 and aj, ; = 0. Therefore
Sk—x(a) = Sp_n(b) =0 mod T'.
[l

The next three lemmas are direct corollaries of the last two results. The classes of
matrices described below may look artificial, however they represent some subgroups of
a parabolic subgroup which appear in the proof of Theorem

Lemma 1.3.4. Assume h(v) > (4,3). Let (p,q) be a C-type base pair and let a be a
matriz in H such that a;; = 0;; whenever i # £p, —q and j # £p,q. Then a € Sp(o).

Proof. It’s enough to prove the inclusions ayy, ag —p, arg € oxp for all k. If £ ~ p then
the inclusions ayy, a,—p, Akq € Okp are trivial. Thus assume from now on that & -~ p. As
h(v) > (4,3) the index k can either be included into an A-type base triple (k, h,l) or a
C-type base pair (k, h). In the last case put [ = —k. Then h # £k and a_j, 5, = 1 and
ag—n = ag = a_p; = 0. Using Corollary we get the inclusions gy, agg, Gk —p € Okp
for 11 k. m

Lemma 1.3.5. Assume h(v) > (4,4). Let (p,q) be an A-type base pair such that the
equivalence class of p is non-self-conjugate. Let a € H be a matriz such that a;; = 0;;
whenever i # —p,—q and j # p,q. Then ay, € oy, for all k # —p, —q. If additionally
a € Sp(o) then also S_, ,(a) € T'_,,.

Proof. As h(v) > (3,4) and p = —p it follows that p can be included into some A-type
base quadruple (p, g, h,l). Consider the matrix

b=T_p n(—a—p-n)T-g-n(—a-g-n)a.

Clearly b € H and b,_, = e._p,. By Lemma we get by, € oy, for all i # —h.
Therefore a;, = b;, € 0y, for all i # —p, —q, £h, in particular a_x, € 0_j,. Swapping
the indices £ and h above we get the last inclusion a_p, € 0_jp.
Now if @ € Sp(o) then by Lemma we get S_,,(b) € I'_,. According to Corollary
[L.1.4] we get
S_pp(b) = S_pp(a) + a2, _1S_kr(a) modI'_,.

It’s only left to notice that S_j x(a) = 0. O

Lemma 1.3.6. Assume h(v) > (4,5). Let (p,q,t) be an A-type base triple such that
p ~ —p and let a be an element of H such that a;; = d;; whenever i # —q,—t,+p and
J # q.t,E£p. Then ayy, axy € okp for all k # —p, —q, —t. If additionally a € Sp(o), then
also S_g4(a) € T'_,.
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Proof. Fix an index k ~ p such that k # —p, —q,—t. As h(v) > (4,5), there exists an
index h ~ k such that h # +k, —p, —q, —t. If the class of k is self-conjugate, put | = —k.
Otherwise, if k& = —p there exists another [ ~ k such that | # +k,+h, —p, —q, —t. If
k ~ —psetl=—t. In any case, a_,_, =1 and ay_p = ap =a_p; =0 and [ # —p, —q.
Therefore by Corollary we get gy, agg € oy for all k # —p, —q, —t.

Suppose that a € Sp(c). By Corollary we also get Sy _r(a) € Iy for all k »~ p
such that k # —p, —q, —t. Finally assuming that the p « —p there exist indices h, [ such
that (p,q,t, h,l) is an A-type base quintuple. Consider the matrices

b= T_q7h(—a_q7h)a Cc = T_q7_l(—b_q7_l)b.

Clearly b,c € Sp(o). It’s easy to see that ¢;, =1 and c_y ), = c_g 1 = ¢y = 0. Thus
by Corollary we get the inclusion S_, ,(c) € I';. Now by Corollary we get

S_qgq(€) = S_g4(b) + b S_11(b) = S_y4(a) + azthShﬁh(a) e S_yy(a) modT'_,.

q,—1 q,—1

We have already proved that S, _p,(a) € I'_;. Also, note that a5 _; = 0 and thus
b_q—i = a_q_;. Therefore

S_qqla) + a2, ;S_la) € T, (1.26)

To eliminate this last summand we have to perform one more trick. First of all after
swapping the indices [ and h in ((1.26]) we get

S_gqla) + aQ_q’_hS_h,h(a) el (1.27)

Consider the matrix d = T, _p(a_q—n)a. It’s clear that d € Sp(c) and d itself satisfies
the conditions of this lemma. Therefore we get the inclusion (1.26]) for the matrix d also
and with the use of Corollary we get:

S,q,q(a) + a2_q7_hS,h7h(a) + (a,qH + a,h,,l)ZS,u(a) = S,q’q<d) + d> S l,l(d) € F,q.

_q7_l -

(1.28)

Now recall that a_, _; = 0 and subtract (1.27) from (1.28). We get
a’, ;S_u(a) €T, (1.29)
Combining (|1.26]) and (1.29)) we get S_,,(a) € I'_,. This completes the proof. O

1.4 Extraction of transvections using a long root
element

Suppose h(v) > (4,5). Let H be a subgroup of Sp(2n, R) such that Ep(v, R) < H and
let (o,I") be the form net of ideals associated with H. In this section we will show that
any long root element

b=aT, _,(&)a" =e+ald,,,
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where a € H and £ € Iy, is contained in Sp(c,I').

For any g € Sp(2n, R) let g = g — e. We don’t require that the matrix g belongs
to Sp(2n, R). The hat notation will be used only to shorten the formulas. We set
0i; = 9ij — 0;; for any 4,5 € I and g/\’ij = g;; — 0 for any 4,5 € I.

The following property of long root elements can be checked straightforwardly. For
any i, € I,

bl = —eieb b,

* 1=]V*, =] —1,%)

o P (1.30)
b*ibj* = _5i€jb*,—jb—i,*-

A slightly more sophisticated calculation shows that for the long root element b and
any indices ¢, j, k € I we have the equality

B2Skw(b7) = =i} Sy (07) + ek + )04 (1.31)
Indeed using ([1.30]) we get

/b\?jsk,—k‘(b_l) = —¢&}, (Z <31]3;cm> (%32_771)) - 5k/gzgjg;f,—k

m>0
SO SO e
— (Z (015 ) (B8 jy_m>> .
m>0
72 — 2 7 727
= —eg;b] S (071) + b} kb5 — enbiibi

= —epeib? S (b7 + (e + )20

The last two formulas will be used repeatedly in the proofs of the current section.

The following lemma is the analogue of Lemma 12 of [Vav08] although with slightly
different conditions on « and 3 and covering the case of long root elements as opposed
to long root involutions in the mentioned paper. Note, that this is indeed a more general
case as any long root involution is a product of some long root elements.

Lemma 1.4.1. Assume h(v) > (4,5). Let H be a subgroup in Sp(2n,R) such that
Ep(v,R) < H and let (o,1") be the form net of ideals associated with H. Let a be a
matriz in H and Ts _4(€) be a (0,I')-elementary long transvection. Let b denote the long
root element aTs _s(§)a™t. If (p, h) is an A-type base pair then

apsbin, € oip, for all i # —p, —q. (1.32)
If additionally b € Sp(c) then also
az,S_pu(b”') €Ty (1.33)

Proof. If the class of p is non-self-conjugate, let ¢ be an index in I such that (p, ¢, h) is an
A-type base triple. If the class of p is self-conjugate, set ¢ = —p. If i ~ h the inclusions
are trivial. Assume i » h and consider the matrix ¢ = bT},, ()T}, (3)b~ where
a, B € R such that aa,s + Ba,s = 0. Then

c=e-+ b*h(ab;* + 5b'q*) —en(epab, _, + €qﬁb*7,q)b’7hy*.
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As aays + Bags = 0 it’s easy to see that
ab' + 6bq* =0 and Epozg*,_p + aﬁg*,_q =0.
Therefore

¢ = ban(eps + Begy) — enl(epaes —p + ggBes o)y, .

In particular ¢;; = 6;; for all i # —q, —p and j # p,q. Hence, the matrix c satisfies the

conditions of Lemma if ¢ = —p or Lemma if ¢ # —p. Therefore ¢;, € oy,
for all © # —p, —q. Put o = —ays, 8 = a,s and note that ¢;; = Bbyy, for all 1 # —p, —q.
Therefore a,sb;y, € oy, for all @ # —p, —q.

Now suppose b € Sp(o). If p ~ —p, the inclusions are trivial. If p = —p,
it is clear that the matrix ¢ is also contained in Sp(¢) and by the lemma we get

S_qq(c) € I'_,. By Corollary we get

S_(M(c) = bQ—q,hO‘QSp,—p(b_l) + bz—q,hﬁzsq,—q(b_l)+

1.34
TR (e I N L (/i (1.34)

Now using ((1.31)) we get
bgqvhSp,_p(b’l) 5h5p 7q pS_h h(b 1) + (5h + &Tp)bfq pb/ hh (135)
D nSama(d™) = —enegl o Sonn(d™) + (en + )02y by (1:36)

Therefore as 25 5, ,(b7') € 20_p, < T_p, we get combining (1.34), (1.35) and (1.36)
that

S_qq(c) = BS_pn(07h) + (e + g,)b% by + B (eh—l—sq)b b (1.37)

It’s only left to notice that +a?b?, _ =+ 62()2 ¢ € 2R and therefore we get from ([1.37)
that S_,,(c) = B2S_pn(b71) mod T h- Therefore

aisS,hyh(bfl) = 6257}17}1([)71) el'_,.

This completes the proof.
O

In the next two lemmas we use short root elements to extract more transvections. It
turns out to suffice for the proof of Theorem [3]

Lemma 1.4.2. Assume h(v) > (4,5). Let H be a subgroup of Sp(2n,R) such that
Ep(v,R) < H and let (o,1') be the form net of ideals associated with H. Let a be a
matriz in H, Ts_s(§) a long (o,1")-elementary transvection and b the long root element
aTs_s(&)a™t. Let p be an index in I such that the equivalence class of p € I is non-self-
conjugate. Then for any v € I we have the inclusion

bip S Oip- (138)
If additionally b € Sp(o), then S_,,(b~') € T_,.
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Proof. By the assumptions of the lemma we can choose an A-type base quintuple
(p,q, h,t,1) containing p. The proof is made by applying Lemma to the matrix
b and then a modification of Lemma to the short root element ¢ = Ty, (1) € H.
The element ¢ has the difficulty that it is not a long root element but a short one and
thus does not fit Lemma However it turns out that for our goals it suffices that b
itself is a long root element. R

Take take any o and § in R such that a(1+2b,,)+ 52a,, = 0 and consider the matrix

d = CThp() Thy(B)e™" = ¢ + canlacy, + Bcl,) — enlepace p + 2B g)cp . (139)

We will show that d satisfies the conditions of Lemma and moreover that d;, = Bbi,
for all  # —p, —q, —h.

Denote by d the first term c.,(ac,, + Bc,) of the right-hand side of the expression in
. A direct calculation using the formulas shows that

d= Can(a(epe — bppb/h* + 5p5hbp7—hb/—p,*) + Bleg — bqpb,h* + 5pghbq,—hb,—p,*)) =
= Can(@(epe — bppbj,, — /b\ppb;z* +Bpp€h* + EpEnbp,—h€—p,s)+
+ B(ege — bagpbhs — bapbhs + bgpens + Epenby—ne—p.)) =
= can(= (a1 + 2byy) + B(2Dgp)) b+
+ (€pe + bypehe + EEnbp e _p.) + BCqe + baphn + EpEnby e _p.))

= Can((eps 4 bppens + €pnbp —ne_ps) + B(ege + bgpens + pnbg—ne—_py))-

This formula shows that d is a matrix all columns of whose except for the ones indexed
by p, —p,q and h are zero and d,, = Bc.,. Symmetrically the last term of d, namely
—en(epacs ptegBes q)cy, , is a matrix all the rows of whose except for the ones indexed
by p, —p, —q, —h are zero. Indeed using Proposition one gets

_€h<€1’ac*7_1’ + 5qﬁc*,—q)cl—h,* - (pc*h(ac;* + /BC;*)p)t - _(p Jp_l)ta

where p is a product of a permutation matrix swapping the indices ¢ and — for all ¢ and
a scalar matrix with entries +1.

Therefore d satisfies the conditions of Lemma and thus B¢, = diy € 044 for all
i # p, —p, —q, —h while the inclusion corresponding to i = p is trivial.

We are ready to prove the inclusions b;, € 0,. Take i = p. Thus i # p,q,h,t,L

Suppose i # —p, —q, —h. Using ({1.30]) we get
Tip 2 diq = Bein = (1 + 2/b\pp) (bipb;m - 5h5pbi,—hb/—p,h) = (1 + Q/b\pp) (bip + 2bip/\;1h) =
= by + 2bip/\lhh + 25ppbip + 4Bppbip/6;zh- (1-40)

-~

The second and the fourth summands immediately above, namely QbipA’hh and 4bppbip/b\'hh,
are both multiples of apsb;, which belongs to o, by Lemma for all ¢ # —h, —q.
Thus so does the rest of ((1.40)), in other words

bz'p -+ Zprbip € Oip- (141)
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Now recall that ¢ is an arbitrary element of the additive subgroup I's _; and thus we
can get the inclusion (|1.41) with £ substituted by —¢. Combining it with the original

inclusion (|1.41)) we get

Qbip c Oip-

This inclusion in turn together with gives us the required inclusions for all
i # —p, —q, —h, in particular b_;, € g_;,.
Applying the inclusions to the matrix f = T, _,(1)aTs_s(&)a™ Ty _p(—1)
instead of to b we get
bty +bopp = fotp € 0y,

and therefore also
bpp €0 pp-

Finally, the inclusions for ¢ = —h and 7 = —q are obtained by swapping the indices t, q
and h in all the reasoning above. Therefore the inclusions (|1.38)) hold for any i € I.
Now assume b € Sp(o). Then ¢,d € Sp(c). By Corollary we get

Si,—i(c_l) = b?pSm_h(b_l) + b?’_hs_np(b_l) mod Fz (142)
Next by Lemma we have

a?, SnonbH) el aS ,,b1)erl,. (1.43)

-bp,s

Combining (|1.42)) and ([1.43)) we get

Sya(¢™) € Tq 12,5 a(b™") + b2 1S pp(b7) =
+ a0, Snon(b™) £ alan, S, (07" €Ty + T,

qs = —p,S

and using also (1.31]) we get

Sonn(c™) € Dop 402y S -n(b71) + 02, _,S—pp(b7")
=T+ ()2 nS—pp(07Y) + (e + 2p)b by )+ (1.45)

—b,p

(1+ 2B—h,—h +/b\—h,—h)25—p7p(b_1) = S—pm(b—l) +Tp

(1.44)

Next by Lemma we have S_, ,(d) € I'_, and by Corollary we have

qu,q(d) = ng,hazsp,fp(cil) + Czq,hﬂzsq,fq(cil)‘i‘
+c, a?S un(ch) + 02_q7_q525_h,h(c_1) el_,.

—4q,—p

(1.46)

Recall that oo = 2a,,; therefore

1 02Spp(c™), 2 S pn(ch) <20, <T_y. (1.47)

q, - -

Now by (1.30) we have c_,, = b_y (b}, "‘&m) and therefore by (1.44)) we have

C%q,h52sq,fq(cil) = b%q,p(b;bh +/b\;zh>2623qﬁq(071> S Uzq,pRz(Fq +T,) <T 4 (1.48)
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Again by (1.30) we have c_; 4 =1+ 2b_4,b), , and therefore by ([1.45) we get

g BPS pn(c™) = (14 2b_g by, _)*(1+ 2Bp,,)2s_h,h(c—1) =S ,,(b7") modT_,.

(1.49)
Combining (|1.49)), (1.48)), (1.47)) and ((1.46) we get the inclusion
S_pp(dbh) e,
This completes the proof. n

Lemma 1.4.3. Assume h(v) > (4,5). Let H be a subgroup in Sp(2n, R) such that
Ep(v,R) < H and let (o,1") be the form net of ideals associated with H. Let a be a
matriz in H, Ty _s(§) a long (o,1")-elementary transvection and b the long root element
aT, _s(&)a™ . If p is an index in I such that the equivalence class of p is self-conjugate
then for any index © € I the inclusions

bip € Oip (150)
hold.

Proof. Fix some h € I such that (p,h) is a C-type base pair. Obviously, for i ~ p the
inclusions ([1.50) are trivial and thus from now on we assume that ¢ ~ p, in particular
i # £p, £h.
Consider the matrices ¢ = bT,,(1)b~! and
d= CThp(a)Th,—p(ﬂ)C_l =e+ C*h(OZC;* + /Bcl—p,*) — en(EpCu,—pax + 5h5—pc*pﬁ)cl—h,* € H.
Exactly as in Lemma will show that provided o = —2b_,, and 8 =1 + Q/b\pp the
matrix d satisfies the conditions of Lemma |1.3.4 Denote by d the matrix c.,(ac, +

Bc,.) in M(2n, R). Using (1.30) we get

d= Cun(@(epe — bypbls + Ehgpbp,—hb/—p,*) + Ble—p — boppbls + 5p5hb—p,—hb/—p,*))
= Can(a(epe — (1 +Bpp)b;z* _Bpp/g;z* + EpEnbp,—ne—p)+
+ Be—py — b_ppbhy, — bfp,p/b\;z* + €pEnbp—ne_ps))
= can(—(a(l+ 2/5pp) + B(2b-pp)) + leps +/b\pp€h* + Epenbp—nep)+
+ Ble—px + b ppne + Epenb_p e _p.))
= Con(@eps + bypens + Epnbp—nEps) + B(€—ps + boppehs + Epenbop—_ne_ps))-

__ Therefore all columns of d except for the ones indexed by +p and h are zero and
di—p = Bean. Let d = —ep(epce —pa + 5h6_pc*pﬂ)cih7*. By Proposition [1.1.1{ we get

d=—(pdp™")".
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Therefore d is a matrix with all rows zero except for the ones indexed by +p, —h.
Therefore d = e + d + d satisfies the conditions of Lemma m Thus d;_, € o;_, for
all 7. Thus for i ~ p we get

Gip 3 di—p = Bean = (1+ 2byy) (bipblyy — enspbs—nb,p) =
= (1 + 2by) (bip + 2bpb}1,) = by + 2bipbly + 2bypbip + Abypbiphl . (1.51)

The last summand
Abypbiphly, = —day€a’, jasca, jansca’,,
lies in o, by Lemma Thus the rest of also lies in this ideal, namely
bip + 2bipb, + 2bppbip € 0. (1.52)

Now recall that ¢ is an arbitrary element of I'; _;. Thus we can make the substitution
& — =& in , and subtract the result from itself. This operation doubles
the summand with an odd number of multipliers £ and cancels the ones with an even
number. We get

Qbip S Oip-
Looking back at ((1.52)) we also get
bip S Oip-
This finishes the proof. O

We are ready to prove the main results of this chapter.

Proof of Theorem [3| Pick any matrix a € H and any long long (o, T')-elementary
transvection Ty _(£). Denote by b the long root element aT,  (£)a™'. Pick an index
p € 1. If the equivalence class of p is self-conjugate, by Lemma|l.4.3|we get the inclusions
bi, € o0;p for all @ € I. If the equivalence class of p is non-self-conjugate, we get the
inclusions by, € 0y, for all ¢ by Lemma [1.4.2] Therefore b € Sp(o).

Now if p ~ —p we obviously have S_,,(b™') € I'_,. Assume p » —p. By Lemma
we also get the inclusions S_,, ,(b~1) € I'_,. Therefore b~! € Sp(c,T") and by Corollary
also b € Sp(o,T"). Due to the arbitrary choice of the elementary transvections
Ts,—s(&) we can conclude that a € Transpsp(gn’R)(EpL(a, I'),Sp(o,I")). O

Proof of Theorem [5l Pick any matrix a € H and any short (o, T')-elementary trans-
vection T,.(£). Denote by b the short root element aTy,.(§)a™!. Then b € H. Since
1 € I'_;, because the equivalence class of 7 is self-conjugate, we get by Theorem [3| that

b_i7_7; . 1 . bij - CT_Z'J' = Oij-
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But

boiibiy = (1+aiay _; —eserai ,Eal ) ailay; — esera; ,Eal ;) =
=b;; + a_z-,sfa’rﬁiaisfa;j — 685Ta_i,sga;ﬁia@_rfa'fs’j_

—eserai €0, aigay; +a; ,Eal  _a; Ea ;=

- bij - gigr(ai,—ra;nj)f2a—i,sais - 5557'(a—i,sa,—s,j)§2a;~,_iai,—r_

— eser(asral)E%a, i + eies(asal, ) a i _ra; ;.

i QisQ g 5y Qi _py, aisa’_ 5 are all contained

Finally by Theorem 1 we know that a; _,a L s,
in 0;;. Therefore b;; is also contained in o;; and b € Sp(o) = Sp(c,I'). Therefore
H < TranSpSp(Qn,R) (Ep(O’, F), Sp(07 F))

Now we prove the uniqueness of a form net (o,T") such that
Ep(V, R) < Ep(0-7 F) <HKL TranSpSp(Zn,R) (Ep(O’, F)7 Sp(07 F))

Assume there exists an exact form net of ideals (o, T”) > [v]|g such that Ep(o’,1") < H,
which doesn’t coincide with the net (o,I') associated with H. Therefore there ex-
ists an index s # +r and an element & € oy \ 0.,.. Clearly, h = Ty, (§) € H <
Transpgpa, gy (Ep(o’, '), Sp(e’,I")) and thus we can apply Theorem {l to the matrix h
and the form net of ideals (0/,1") and get & = hg. - 1- Rl € o... This contradicts the
assumption that & ¢ o, . O
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2 Sandwich classification in symplectic
groups: general case

In this chapter we continue describing overgroups of elementary block-diagonal sub-
groups in classical symplectic groups. The central result of this chapter is the following
theorem. For a form net of ideals (o, T') denote by Ep® (o, T') the subgroup of Ep(2n, R)
generated by all short (o, I')-elementary transvections, i.e.

Ep®(0,1) = (T;5(€) | i # £5,6 € 035) .

Theorem 6. Let v be a unitary equivalence relation on the index set I such that
h(v) > (4,5). Let H be a subgroup of the classical symplectic group Sp(2n, R) over
a commutative ring R. Suppose Ep(v, R) < H and let (o,1") denote the form net of
1deals associated with H. Then

H < TranSpSp(2n7R) (Eps(gv F)a Sp(J, F))

Theorem [0 is the analogue of Theorem [3] for short root elements instead of the long
ones. However the proof of Theorem [0] is noticeably more complicated than that of
Theorem . One of the primary technical reasons for this is that the rows (or columns)
of the matrix b — e, where b is a long root element, are linearly dependant, unlike in the
case when b is a short root element. In fact, if a is an arbitrary matrix in Sp(2n, R),
T,.(€) a short symplectic transvection, b the short root element a7y, (§)a ' and p # g € T
then sufficient conditions for the rows (b — e),. and (b — e),. to be linearly dependant is
that the system of equations

Qg+ D (21)
aap _, + Bag—, =0 '

has a nontrivial solution. It’s easy to see that ab,. + Bbg. = e, + Beg, for any solution
(cr, B) of the system . Under the assumption that the system has a nonzero
determinant, one can see that a solution of can be found in the form of a degree
2 polynomial in the variables ays, ags,ap —» and a,_,. Unfortunately, this is not very
rewarding as it turns out to be very hard to get rid of a quadratic multiplier during the
extraction of transvections. However, if we assume that the entries a, _, and a,_, are
zero then the system becomes equivalent to the single linear equation aa,s+ Saqs =
0 which always has a nontrivial solution and thus we can use approximately the same
techniques as in Chapter [, This brings us to the problem of obtaining zeros in given
positions of the matrix a. This task is particularly easy over a local ground ring. But
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to get from an arbitrary commutative ring to a commutative local ring requires using a
localization method to prove Theorem [l Theorem [6] together with Theorems [3 and
will yield the standard sandwich classification theorem for the classical symplectic group:

Theorem 7. Let v be a unitary equivalence relation on the index set I such that h(v) >
(4,5). Let H be a subgroup of Sp(2n, R) such that Ep(v, R) < H. Then there exists a
unique ezxact form net of ideals (o,T") > [v]r such that

Ep(o,I") < H < Ngpan,r)(Sp(o,T)).

The rest of this chapter is organized in the following way. In Section [2.1| we establish a
convenient setting for our localization proof, and call it the standard setting. Section
is devoted to extracting transvections using first an element of a small parabolic subgroup
and then a short root element aTy,.(£)a™, a € H, provided that some coefficients of a
are zero. In Section we will show that the intersection of an overgroup H of a block-
diagonal subgroup and the principal congruence subgroup of level the Jacobson radical
(in fact, a set of matrices slightly larger than this intersection) is contained in the form
net subgroup of level the net associated with H. This result is used in Section to
prove the standard sandwich classification theorem for the classical symplectic group
over a local ring. In Section we generalize this result using localization to arbitrary
commutative rings and prove Theorems [6] and

2.1 Standard setting

Let R be a commutative associative unital ring, R’ a subring of R and S a subset of the
intersection R’ N R*, where R* stands for the set of invertible elements of the ring R.
We call the triple (R, R',S) a standard setting if for any £ € R there exist an element
x in S such that £ € R'. Clearly, the canonical ring homomorphism S™!R’ — R is an
isomorphism. Now let (¢/,I") be an exact form net of ideals of rank 2n over R’ such
that [v|r < (¢/,1"). For each i,j € I set

Uij:{£ER|E|SC€SSL’€€O';j}
Ii={a€cR|3IrecSr’acl)}
We will call the pair (o,T") the S-closure of the form net of ideals (o/,1") [in R]. We will
show (Proposition [2.1.1]) that S-closures of exact form D-nets of ideals are themselves
exact form D-nets of ideals.

Fix a subgroup H of Sp(2n, R). We call a net (¢/,1") over R S-associated with the
subgroup H if the following two conditions are fulfilled:

1. Ep(¢’,I") < H

2. For any elementary symplectic transvection Ty,.(§) contained in H there exists an
element z € S such that z(1+=5)¢ € (o', TV),,.
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It is easy to see that a subgroup may have several different S-associated nets, but their
S-closures in R will coincide.
We will introduce now a family of net-like objects. For an arbitrary g € Sp(2n, R) set

={{€R|FxeSVhe R IT,;(x60) € H},i # +j

ol =R
I'Y={a€R|3xecSV0ec R IT, (*0*a)€c H} (2.2)
=D ohol i+ Ty
J#+i
where the product a ;, denotes the Mlnkowskl product, that is the ideal generated
by all products £, where § € O' cand ¢ € o7 _.. In general there is no guarantee that the

objects (09,1'), defined in the 0bv1ous way from the above data are form nets of ideals.
We will show that in cases of interest to us the objects (¢09,1'%) are form nets of ideals
and coincide with the S-closure of any net which is S-associated with the subgroup H.

For the rest of this section we fix a standard setting (R, R’,S), a unitary equivalence
relation v and a subgroup H of Sp(2n, R).

Proposition 2.1.1. Let (¢/,1") be an exact major form net of ideals over R' and (o,T")
the S-closure of (o/,I') in R. Then (o,T') is an exact magjor form net of ideals over R.
Further, assume that h(v) > (4,3) and that (o',1") is S-associated with the subgroup H.
Then the form net of ideals (o,I") is coordinate-wise equal to (o€, T'¢).

Proof. Clearly 0;; = R whenever ¢ ~ j and I'; = R whenever i ~ —i. We will show first
that for all 4,5 € I the sets o;; and I'; are additive subgroups of R. Let £, ¢ € (o,T);;.
By definition, there exist elements z,y in S such that z(1+%-)¢ y(1+9-0¢ € (o7, T);;.
As (0/,T") is a form net of ideals, it follows that (zy)+%-)¢ (zy)H%5-0¢ € (0!, 1),
and thus also (zy)+%-)(¢ 4 ¢) € (0’,T");;. Therefore & + ¢ € (0,T);;. The rest of the
properties of (o,I") as an exact form net of ideals can be deduced in the same way from
the corresponding properties of (¢/,I").

Assume h(v) > (4,3). It’s obvious that (o¢,I%);; < (o,1");; for all possible indices ¢
and j and thus also that of i < 00 for all © € I. The reverse inclusions are obtained in
the following way. Fix some i » j and £ € (0,I');;. By definition, there exists an element
x € S such that Ty;(z(1+%-¢) € H. Assume first, i # —j. Then, as h(v) > (4, 3), there
exists another 1ndex k ~ j such that k # +j, £i. Then T};(0),Ty;(1) € H for all § € R’
and therefore

Ty (208) = [[Ty5(x6), Tyn(0)], Tig (1) € H.
Hence, § € of;. If i = —j then there exists another index k ~ 1@ such that k # +i. As
(0,T) is an exact form net of ideals, it follows by Proposition that 22§ € T, ;.
Thus we get

7—;771'(—€i€jl’292£)Tk’,i(l’29€) = [Tky,k(xzﬁ),T,k,,i(G)] € H.

If k ~ —i, then T), _;(220¢) € H and therefore T; _;(—e;e;220%¢) € H. If k » —i, there
exists another index [ ~ k such that | # +k,+i. By relation (R4)

Ty—i(—2208) = [T1a(1), [T (=1), [Tk, —(2%€), T_y—s(0)]]] € H.
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Therefore T; _i(—;e;4°6°¢) € H and ¢ € T§. Summing up, (0,T);; < (0,T)5; for all
i,j € I. As (0,T) is exact, it follows that 0; _; < o7 ;. This completes the proof. ]

The last proposition allows us to consider the elementary form net subgroup Ep(o,T")
of Sp(2n, R). The following proposition establishes certain properties of the objects
(09,19) which follow directly from its definition and the Steinberg relations. This will
show that (09,19) is “almost a form net of ideals”.

Proposition 2.1.2. Assume h(v) > (4,3). Let g be an element of Ep(o,T'). If [v]r <
(09,19) coordinate-wise then the following inclusions hold:

1. of,05, < oy, for alli # £j, j # £k

2. F?afi’k < o} and Ufﬁkl’gfk <o} forallikel
3. (U%)@Fg <TY for alli # +j

4. 20809 ; <T7 for all i # £j,

where products are Minkowski products.

Proof. 1. The first property follows directly from the Steinberg relation (R4). Indeed,
pick any £ € o0;; and any ¢ € oj;, such that ¢ # £j,+k and j # £k. Then there exist
elements z¢, v € S such that 97}, (x€), 9T (2 0C) € H for all § € R'. By relation (R4)
we get

ITi(wewc06C) = [PTi5(wek), 9 Tjr(xc0C)] € H

for all @ € R'. Therefore £ € of.. The corresponding inclusions for the cases when
i = £k trivially follow from the definition of (09,1').
2. The second inclusion is trivial when i = £k for the same reason as above. Assume
i # +k. We will prove the inclusion I'Y¢? in < o%. The other one can be treated
similarly. Pick any o € I'; and § € 0_; ;. Then there exist elements z,,z¢ € S such that
for any 6 € R’ we have
IT, _i(22a), 9T k(z£0€) € H.

By relation (R6) it follows that
ITip (w22e00€)IT g g (22220°?) = 7T _i(22a), 9T (x0)] € H. (2.3)

If k ~ —Fk then by the definition of TV, we get 9T ;(z22760°€®) € H. Thus we get
IT(x2xebal) € H and of € o9 If k = —k then, as h(v) > (4,3), there exists another
index [ ~ ¢ such that [ # +i,4+k. Then there exist elements z;,zo, € S such that
9T1i(x1),9Ty(z2) € H. By the Steinberg relations (R3) and (R4) together with we
get

T (w1 70w5we00€) = [Ty (w2), ["Tii(1), T (wq w6008 T o (wome 0 ag?)]] € H

for all 0 € R'. Tt follows that & € o,
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3. The next series of inclusions is established similarly. Fix some indices i # +7j, an
element & € Ufj and an element o € F? . Then there exist elements x¢, x, € S such that

T j(wexi0€a) - Tp—i(xgad 0’ ) = [T (x¢0€), °T; s (x50)] € H (2.4)

for all # € R'. By assertion (2) of the current lemma, the first term of the left-hand side
of is contained in H whenever # is a multiple of some xq € S. Therefore the second
term of is also contained in H for the same values of parameter 6. This shows that
Saely.

4. Finally, fix an index i # £j, an element ¢ € of; and an element ¢ € o ;. Then
there exist x¢, z¢ € S such that 97;;(x¢0¢),9T; _;(x0C) € H for all § € R’; in particular
ITii(xexc08),9T; i (zcxe0C) € H for all # € R'. By the Steinberg relation (R5) it follows
that

IT;—i(20026%¢C) € H

for all # € R'. Hence, £C € T;. O

Lemma 2.1.3. Assume h(v) > (4,3). Let (o', I") be an exact magjor form net of ideals
over R', which is S-associated with H. Let (0,1") denote the S-closure of (¢/,1") in R.
Then for every g € Ep(o,T") the coordinate-wise equality

(0,1) = (09, 1Y) (2.5)
holds. In particular, each such (c9,19) is an exact major form net of ideals over R.

Proof. We will prove this lemma by induction on the word length L(g) of g in terms of
the generators of Ep(c,I'). Proposition serves as a base of induction, namely it
shows that when L(g) = 0 and g = e we have the equality (o,1") = (¢¢,T°).

Before proving the induction step, we will prove a slightly stronger statement. Namely,
assume g € Ep(o,I") such that (¢,I') < (¢9,19). Fix an element T,,(¢) € Ep(c,I'). We
will show that (09,T9) < (g974() T97%a()), Note that, as (o,I) < (09,1), it follows
that ¢ € (09,1Y),,. Fix any & € (09,1Y),, for some indices s # r. Then there exists an
element x¢ € S such that for every 6§ € R’ the inclusion 975, (x£0%¢) € H holds, where
k=1+0s_,. For any x € S we have the equality

Toa O, (2507¢) = 9Ty (C), Ty (x76%€)] - 9T (2705€). (2.6)

Below we will construct an element zy such that after the substitution x = =z the
right-hand side of is contained in H for all § € R'. It will follow that £ €
(O-ngq(C)7 T1974(<) )sr~

Clearly the second term of the right-hand side of is contained in H whenever x
is a multiple of z¢. The first term, which we will denote by h = h(f), requires a more
detailed investigation. First, assume that the transvections T, (*) and T),(*) commute.
In this case, h = e and thus we can put g = z¢. Assume that i # e. The following six
alternatives exhaust all possibilities:

(1) s # +r,p # £q and one of the following holds
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(i) s=q,r#+p
(i) r=—gs#+p
(iii) s = —p,r # +q
(iv) —r = —p,s # *q.
Then h is a single short transvection. We will prove only the case (i). The other ones
can be treated similarly. By the Steinberg relation (R4), h = 97, (26¢£). Recall

that
Vr < (0,T) < (09,1Y).

By Proposition we get (€ € of,.. Therefore there exists an element z; € S such
that h is contained in H whenever x is a multiple of z.. Put z¢ = z¢cz.

(2) p # £q,s # £r and one of the following holds:

(i) s=q,r=—p

In this case we can compute h using the Steinberg relation (R5). Again, we will
prove only the case (i). As ( € oJ,, there exists an element z, € S such that
9Tpg(xcC) € H. Then h € H for all § € R’ and xy = zex¢. Indeed,

h = ["Tpq(Q), " Tg—p(wcwc0€)] =TTy (20w cxc0E) = ["Tpq(Ce), " Ty —p(xc0€)] € H
for every § € R' due to the choice of x¢ and z.

q = —p,s # +r and either s = —p or r = p. In both cases h is a product of a
long and a short symplectic elementary transvection. We will consider only the first
option. By relation (EUG6),

h = [T, —p(C), “Tpr (w0€)] = O T (206C) T, (£2767€C). (2.7)

By Proposition it follows that {¢ € T'9o_,,,» < 0§, and £C e (Ugw)@lﬂg <TrY,.
Therefore there exist elements xec, xe2c € S such that the first term of the right-
hand side of belongs to H whenever x is a multiple of x¢; and the second term
whenever z is a multiple of xe2e. Put g = zewec ez,

p # +q,r = —s and either s = q or s = —p. Then h is a product a long and a short
transvection. We prove only the first option, s = ¢. By the Steinberg relations (R1)
and (R6) we have

h = ["T,(C), gTq,—q(ngzg)] = ngrq(ix292€ong,—p(ixQQQCQO' (2.8)

As before, by Proposition we have £¢ € 09,19 < 09 _, and (*¢ € (09, )29 < T9.
Therefore there exist elements x¢c, xc2¢ € S such that the right-hand side of (2.8) is
contained in H whenever z is a multiple of x¢cxc2e. Put xp = Texecacoe.
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(5) Either s = ¢,7 =por s = —p,r = —q. Without loss of generality we can assume
the former. In this case, we can’t apply any of the Steinberg relations directly, but
we can first decompose Ty, (*) as a product of transvections for which we know the
commutators with T,,(*). As h(v) > (4,3) there exists either another index h ~ p
such that h # £p, +q, or p ~ —p. In the first case,

IO (260€) = T2 O[T (y0E), Thp(2)]
= [Tpe(Q), Tun (YO Tyn (y0E), (114 (C), Thp(2)| Thp(2)] (2.9)
= [TTon(y0CE) - I Tyn(y0), " Thg(—2C) - I Thp(2)]

whenever z = yz. Observe that { € o, g ol R = o3, gh < aqh, §C € oy, 3h < aph,
¢€oa), < Roy, = ahp y S ah and 1 E ah Thus we can choose y and z in S such
that all four terms of the rlght hand side of . are contained in H for all § € R'.
Then we can put zp = yzae.

If the equivalence class of p equals {#p, £q} then we can decompose T.(*) in a
different way, using long transvections. Namely,

ngq(C)qu)(fo) = 9Tpa(Q) ([Tq q( ) T—qp(zef)] —pp(i22‘92§ y))
=7 ([ p— q(Cy )T, P, p(ig ) q, q(92)7
g.q(—2C208) T4, (208)]T5, p(iC2292£ %)
T, q(iC22292§2y2) (270777
whenever x = y%2. Using the previous cases, we can choose y and z such that the
right-hand side of is contained in H for all § € R'. Put x5 = y°z.

(2.10)

(6) ¢ =s = —p,r = p. Then there exists an index h ~ p such that h # +p. Then

gTPv*p(OT_pvp(ﬁQQf) — 9Tp,-p(Q) ([T_h,h(y292§),Th,p(iZ)]X
T—h,p(i923925>)
= gT,h,,p(szﬂZg’f) . ngh,h(y42292€2C>'
gT—h,p(:I:yZZQQg)a

(2.11)

whenever z = y%2. Observe that
g 9 _ 9 9
§el?l, <RI, =07, T7, < _hp
& e aihmrg < thﬁp
&€ (0%,,)°Ty <T7,.

Hence we can choose elements y and z in S such that every term of the right-hand
side of (2.11)) is contained in H for all § € R'. Put zy = y%2.

The alternatives above are exhaustive. Therefore (69,19),, < (g9704(¢) T9T%a(9), for
all s # r € I. The inclusions agT”Q(O < o9 and ¢9©) < 09 follow easily from

i i,—1 — Yi,—1i
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the definition of (¢9,1'9). Therefore we have proved that (¢9,19) < (g97pa(Q) [97pa(Q))
coordinate-wise, whenever (o,T") < (¢9,1Y).

The induction step looks as follows. Assume that for all elements g € Ep(c,T") such
that L(g) < Lo, the equality holds. Let T,,(¢) be an elementary transvection in
Ep(o,T') such that L(g - T,,(¢)) = Lo + 1. Then, as we have proved above, (09,1'%) <
(09Ta(Q) T97%4(Q) "in particular (o,T) < (09%%4() T9%(Q)), For the same reason

(O-ngq(C)7 FQqu(C)> < (O-QTPQ(Oqu(*C)7 I‘ngq(C)qu(*C)) — (0-97 I‘!])

Summing up, by induction we get the required equality (2.5) for all g € Ep(o,T"). O

We will also use the lemma above in the form of the following obvious corollary. It
represents the concept of a common denominator for a finite family of fractions.

Corollary 2.1.4. Assume h(v) > (4,3). Let (o/,I") be an exact major form net of
ideals which is S-associated with the subgroup H and let (o,1") be the S-closure of (o,T")
in R. Then for any finite family {T,,,(&)}ier of (0,1)-elementary transvections and
any finite family {g; }iex of elements of Ep(o,T") there exists an element x € S such that

Wy (20) 09 70)6)) € H

forallie K;je€Jand 0 € R'.

2.2 Extraction of transvections

In this section we perform the extraction of transvections first using matrices in small
parabolic subgroups and then using short root elements. The results of this section
directly correspond to and follow the general lines of the results of Sections and [1.4]
Throughout this section we fix a standard setting (R, R’,S), a unitary equivalence
relation v, a subgroup H of Sp(2n, R) and an exact major form net of ideals (o’,1")
which is S-associated with H. We let (o,I") denote the S-closure of (¢/,I") in R.

Extraction of transvections in parabolic subgroups

Lemma 2.2.1. Let a be a matriz in Sp(2n, R) such that for some index p € I the
following conditions hold:

1 app=a_p_p=1
2. a;; = 0;; whenever i # —p and j # p.
Then
a= < 1T Tp,j(ap,j)Tp,j(ap,j)> T pp(S-pp(a)). (2.12)

1<j#Ep<n

Further, suppose h(v) > (4,3) and there exists an element g € Ep(o,T") such that9a € H.
Then a € Ep(o,T).
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Proof. The decomposition can be checked by a straightforward calculation. Let
J # £p. If j ~ —p then the inclusion a_,, ; € 0_, ; is trivial as v is major. From now on,
assume j » —p. As h(v) > (4,3), we can choose an index k ~ j such that k # 45, £p.
Choose using Corollary an element z; € S such that 9Ty, (x1) € H. Then

X =9T prpla_pjzr)Tp_j(Fa_p xr1)) = 9a, Tir(z1)] € H.

If the equivalence class of j is non-self-conjugate then either j ~ p or there exists another
index h ~ j such that h # £k, £j, £p. In the former case, +a_, xx; € 0¥ _; =R and
by Corollary - 2.1.4] the element z; can be chosen such that 97, j(j:a_p kxl)) € H and
thus also 97 x(a_p ;v1) € H. It follows that a_,; € 07 , = 07 ;. In the latter case
choose using Corollary m an element z, € S such that ngh(xQ) IThi(220) € H for
any 6 € R’. Then for the same 6 we get

Ty j(m1x30a_y;) = [ X, Ten(x2)], The(220)] € H

If the equivalent class of j is self-conjugate, it contains at least the elements 47, t+k.
Pick an element zo € S such that 97}, _;(z2), 9T ; x(x2), 9Tj(x20) € H for all § € R’
Then

Ty j(wrw3fay;) = ([[X, O Th—j(x2)], O T js(w2)], “Thj(220)] € H

Therefore a_, ; € afp,j and by Lemma a_p; € 0_,; for all j # £p.

In order to prove that a € EU(0,T") it only remains to show that 7", ,(S_,,(a)) €
Ep(o,I'). If —p ~ p then I'_, = R and the inclusion 7", ,(S_, ,(a)) € Ep(o,T") is trivial.
Assume p = —p. Set

=9 H T_pj(a—p;) T p—j(ap—j)-
J>0,57#+%p

Then 17 ,(S—pp(a))g~t =% € H and g1,g7* € EU(0,T). As p = —p, we can choose
two more indices ¢ and ¢ such that (p,q,t) is an A-type base triple. Pick an element
y1 € S such that 97,,(y0),9T,,(y0) € H for all § € R’ whenever y is a multiple of y;.
By the Steinberg relation (R6) we have

T (Y80S p(a) - 9Ty g (—epegy?0?S_p (@) - 9 Ty (y0)
= Ty p(S—pp(a)), Tpg(y0)] - Tpq(y0) (2.13)
= (ng—p;p(S—p,p(a))gil) (ngq<ye)gil) (QT—p,p(_S—p,p<a))gfl) :
The right-hand side of as well as the third term of the left-hand side of is

contained in H whenever y is a multiple of y; in S. Therefore
Mg (Y0S—pp(a)) 'glT—qvq(_gpgqwaS—p,p(a)) €cH (2.14)

for all # € S whenever y is a multiple of ;. Pick y» € S such that 97, _;(y2),
BT, _p(y2) € H. We get

"Iy, q(y?hes—pp( ) =0Ty i (y2), [ Tt p(y2), " T g (YOS p(a))-
NT_gq(—epeqy 925710,10(@))“
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and thus by the choice of yo together with we get that 97, (y0S_,,(a)) € H
for all @ € R’ whenever y is a multiple of y;y3. Combining this result again with
we get that 917, ,(—e,e,4°0%S_p,(a)) € H for all §# € S whenever y is a multiple of
y1y3. Thus, S_,,(a) € T_, and by Proposition [1.1.6] S_,,(a) € T'_,. This completes the
proof. O

Lemma 2.2.2. Assume h(v) > (4,3). Let (p,q) be an A-type base pair and let a be
an element of Sp(2n, R) such that a., = €., or a_p. = e_p,.. Assume that there exist
elements g1, g2 € Ep(o,T") such that grags € H. Then the inclusion a.; € o4 holds for
each j # —p. If additionally a € Sp(o) then also S, _4(a) € T,.

Proof. As a is symplectic it’s easy to see that the conditions of the lemma provide the
equalities a., = a,, = e, and a_p, = a’,, = e, .. Choose via Corollary an
element z € S such that % T, »q(z) € H and consider the matrix

b= a_lqu(x)a =e+ a;pm%* — 5p6qa;’_qa:a_p7*
= €+ Cupllge — EpEqlll, _4TC_p.s.
It’s easy to see that b;; = d;; whenever 7 # p and j # —p, that b,, =b_, _, = 1 and that

b = (graga) (g3 " Tpe()g2) (g5 a gr") € H.

Therefore by Lemma the inclusion b,; € o,; holds for each j # £p. Note that
b,; = way; whenever j # +p. Therefore a,; € o4 for all j # —p. By Lemma we
also get the inclusion S, _,(b) € I';. Assume a € Sp(o). By the corollary we have

Sp—p(b) = a;22°S, _(a) + a;2 2*S_pp(a) mod Tp™.

Recall that a_,. = e_,.. Thus S_,,(a) = 0. Further a;,, = 1, and therefore S, _,(b)
Sy—q(a) mod T',. Hence, S, _,(a) € T,

l

Lemma 2.2.3. Assume h(v) > (4,4). Let (p,q) be an A-type base pair and a be an
element of Sp(2n, R) such that a;j = 6;; whenever i # —p, —q and j # p,q. Assume that
there exists an element g € Ep(o,I') such that %a € H. Then the inclusion ag, € oy
holds for each k # —p, —q. If additionally a € Sp(o) then also S_,,(a) € T'_,.

Proof. Fix any k ~ p. As h(v) > (4,4), there exists an index h ~ k such that h #
+k, £p, £q. Pick using Corollary an element x € S such that 97T},(z) € H and
consider the matrix

-1 / /
b=a "Th(r)a = e+ a,,Tap — ERERa, _pTA_p -

It is easy to see that by, = way, and 90 € H. Further, there exists an index [ ~ £ such
that [ # +h, —p and b,; = ey. Indeed, if & ~ —k, one can simply take [ = —k. If the
class of k is non-self-conjugate then such [ exists due to the condition h(v) > (4,4) (I
can be equal to —q if —g ~ k). Therefore, by Lemma we get xayy, € Opp = Okp.
Thus agy, € 0.
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Assume a € Sp(o). If the equivalence class of p is self-conjugate, clearly S_,,(a) €
R =T_,. If the equivalence class of p is non-self-conjugate then, as h(r) > (4,4), there
exists an index ¢ ~ p such that (p,q,t) is an A-type base triple. Consider the matrix

c=T p t(—a_p )T g -t(a_y_1)a.
As t ~ p ~ q it follows that ¢ € Sp(o). Note that a_; _+ = 1, hence ¢, _; = e, _; and
9T —i(a—g) Tp—e(a—p—i)cg™" € H.
By Lemma it follows that S_, ,(c) € I'_,. Finally, by Corollary we have

S ,p(c)=S_pp(a)+a*, S ii(a) modT_,

7p77t
and as S_;,(a) = 0 we get S_,,(a) € ['_,,. O

Lemma 2.2.4. Assume h(v) > (4,4). Let p be an index in I with self-conjugate equiv-
alence class and let a be an element of Sp(2n, R) such that a;; = &;; whenever i # +£p
and j # +p. If there exists an element g € Ep(o,I") such that 9a € H, then ay, € oy,
forall k e 1.

Proof. If k ~ p the inclusion ay, € oy, is trivial. Assume k ~ p, in particular k # =£p.
As h(v) > (4,4), there exists another index h ~ k such that h # +k £ p. Pick using
Corollary an element x € S such that 97}, (x) € H and consider the matrix

-1 / /
b=a Th(r)a = e+ a,,map — Eper, L Ma_p.

We will show that it satisfies the conditions of Lemma Indeed, by choice of z
the inclusion 9 € H holds. Pick an index ¢ such that (p,q) is a C-type base pair. It
is easy to see that ¢ =~ +k. Clearly b,, = e.,. Applying Lemma to the matrix
a, the elementary transvection Tji(x) and the pair (—p,q), we get b_,; € o_,; for
all 5 # —¢. Thus b_,_, € 0_,_), = opp and it is only left to notice that b_, _, =
—enera’_, jxa_p_p = £rag, Therefore ay, € o, for all k € 1. O

Extraction of transvections using short root elements

Lemma 2.2.5. Assume h(v) > (4,4). Let (p,q, h) be an A-type base triple, a an element
of Sp(2n, R) and T, (§) a short elementary transvection. Let b denote the short root
element aT,.(€)a™t. Suppose that ap—y = Qg = 0. Assume that there exist elements

91,92 € Ep(o,T) such that giags € H and 951TST(§) € H. Then aysby, € oy for all
i # —p, —q. If additionally a € Sp(o) then also aj,S_pn(b~") € T_p.

Proof. 1t is easy to see that 91b € H. Indeed

b = (grag2) (95 ' Ter(€)g2) (95 'a g1 ") € H.
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Using Corollary pick an element x € S such that 9 T,(—a.sx), 7 Thy(a,sz) € H.
Set o = —aysv and B = apsx. Clearly, aa,s + Bags = 0. Consider the matrix

¢ = bThp()Thg(B)b™" = e+ b (ab],, + Bb,,) — en(epabs —p + €4Bbi )b, (2.15)

Obviously, 9'c € H and by the conditions that a, _, = a4, = 0 and aa,s + Bag = 0 it
easily follows that (aby, + Bb),) = (aep. + Beg.) and (gpab. , + €8s ) = (epes p +
gq0es—q). Thus we can rewrite (2.15)) as follows

¢ = e+ ban(aep, + Beg) — en(epaes _p + egBes o)y, ..

In particular, ¢;; = d;; whenever ¢ # —p, —q and j # p, ¢. Applying Lemma to the
matrix ¢ we get the inclusion ¢;, € o0y, for all ¢ # —p, —q. Notice that c;; = Bbi, = xaysbip,
for i # —p, —q. This completes the proof of the first part of the lemma.

Assume a € Sp(o). It follows that b, ¢ € Sp(c). Therefore by Lemma we get the
inclusion S_, ,(c) € I'_,. By Corollary we have

S_gqlc) = bQ—q,hx2(a§sSpﬁp(bil) + azSqufq(bil))

) (2.16)
+ (bQ_q,_pags + b2_q7_qa1238)1‘25_h7h(b 1) € F_q.
As S_pp(b7h) €0_yy and 20_,, < T it follows that
2 2 2 24,2 1y
(b_q7_paqs —+ b_q,_qaps)x th,h(b ) = (217)

(b plgs + b_g—qaps)?T*S_pp(b™") mod I'_,.

A straightforward calculation shows that b_, _,aqs+b_q _4a,s € a,s+2R, which together

with (2.17)) yields
(0%, _pacs + b2, a2 )z*S_pn(b™) = ada®S_p (™) mod T'_,. (2.18)

—a,—pqs T Y—q,—¢%ps
As a,_, = a,_, =0, we have

/o L /
byi = Opj — apsa.;

;) /
bqj = 0gj — aqsﬁarj.

. / Y, o _ 3 _
In particular, bj, , =b, ,=1b, ,="b, _, =0. Therefore
2 -1y _ Z 20 Z 2 2621
aquIL—P(b ) = ~¢%p aqsbpjbp,fj = —&p a’qsaps§ arjar,fj
J>0,57+p,+q J>0,57+p,%q

= Epgqaissqﬁq(biw

and thus

bQ—q,th(agsSp,*p(bil) + aj}%SS(L*q(bil)) €20 g9 =Ty (2.19)
Combining (2.16)), (2.17), (2.18) and we get the inclusion al,x*S_, 5 (b7") € T'_p.
By the property (I'2) of a form net of ideals it follows that a2,S_,,(b™") € T'_. O
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Lemma 2.2.6. Assume h(v) > (4,4). Let (p,q) be a C-type base pair, a an element
of Sp(2n, R) and Ts_s(§) a long elementary transvection. Let b denote the long root
element aTs _s(&)a~t. If there exist elements g1, gs € Ep(o,T) such that giags € H and

92_1T87_5(£) € H, then aysbin, € oy, for alli € 1.

Proof. Clearly b € H. Indeed

91h = graT, _o(€)a~ 97" = (graga)(* Ty _o(€))(g5 "a g)

and each term in brackets is contained in H. Pick z € S such that 9"T},(—a_, ),
Ny —plapsx) € H. Set @« = —a_,, ;¢ and = a,,x. Clearly apsa+a_p = 0. It easily
follows that b, a+0" .8 = epa+e .0 and (epab. —,+e_pBby,) = (epaes p+e_pBes,).
Consider the matrix

¢ = bThp(a)Th—p(B)b~" = e+ bup (b, + b, . 3) — enlepabs —p + BV,

= e+ banlepe + e_p i) — enlepaes, —p +e_pBep)b .

It is easy to see that ¢;; = 0;; whenever 7 # £p and j # +p. By Lemma it follows
that ¢; _, € 0y, for all i € I. It’s only left to notice that ¢; _, = by, = zaysbin whenever
© # +p. Hence aysb;, € oy, for all ¢ € 1. O

2.3 At the level of the Jacobson radical

Let J = Rad(R) be the Jacobson radical of the ground ring R and Sp(2n, R, J) be
the principal congruence subgroup of Sp(2n, R) of level J, i.e. the subgroup {g €
Sp(2n, R) | gij = 6;; mod J for all 4, j € I}. In this section we will focus on the extrac-
tion of transvections using matrices having a submatrix which looks like a submatrix
of an element of Sp(2n, R, J). By definition, every element z of the Jacobson radical
J is quasi-regular, i.e. 14+ xy € R* for all y € R, in particular 1 + z € R*. It follows
that R* 4+ J < R*. Indeed, let x be invertible and y € J then, as y is quasi-regular,
1+ 27 'y € R*. Therefore, and z +y = x(1 + 2~ 1y) is a unit since it is a product of two
units. We will use this property without reference.

Throughout this section we fix a standard setting (R, R’,S), a unitary equivalence
relation v, a subgroup H of Sp(2n, R) which contains Ep(v, R') and an exact major
form net of ideals (¢’,I") which is S-associated with H. Let J denote the Jacobson
radical of the ring R and let (o,I") denote the S-closure in R of the form net of ideals
(o’, ).

Lemma 2.3.1. Assume h(v) > (4,4). Let (p,q, h,t,l) be an A-type base quintuple and
a an element of Sp(2n, R) such that a_p s = a_p_4 = a_j 4 = Apg = apg = 0, a_pqa; _,,
a_nqay_, € J and ag, € R*. If there exist elements g1 and gy in Ep(o,T") such that
giags € H then a, 4 € 0p, 4.
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Proof. Pick using Corollary an element o € S such that % qut(a:) € H and consider
the matrix b = aT,(x)a™'. By choice of the parameter x we have

b = (g1ags) (g3 ‘T (2)g2) (95 'a ar") € H.

Pick using Corollary another element y € S such that 97", _,(y) € H and consider
the matrix ¢ = bT_, _,(y)b~'. Clearly, 9*c € H for the same reason as above. We are
going to apply Lemmato the matrix b, the short elementary transvection 1_, _,(y)
and the A-type base triple (—p, —[, —h). In order to do this we have to show first that
b_pn = b_;, = 0. Indeed, by the assumptions of this lemma aj, = e;epa_p, _, = 0 and
a—p = a_; = 0. Thus

boph = p Ty, = €qE1a—p 1 Ta_gp, =0

/ /
boip = a_qray, — gq€ta—y—xa_,, = 0.
, .
As a_pqa;_, € J, it follows that

_ r ’
bop—p=1+ A—p gy 4 — EqELA—p —tTA_

=1+a_pgza,_,€1+J <R

q,—p

Therefore by Lemma we get the inclusions b_, _,c;_ € o0;_p and, as b_p,_, is
invertible, also ¢; _, € 0,y for all i # p, (. In particular,
bq,—pybl_h,—h - 6p€hbqhyb;7_h - C(I7_h G O’q7_h. (220)
Recall that a_j 4a; ,, € J Therefore
Vo n=1—a_pera;_j, +eggia_p_yva , 4, =1—a_pqra; , €1+J<R. (221)

Observe that

/ o / / o
b = —UpgTay _p + EqEsay yxa_, ;= 0. (2.22)

Substituting (2.21) and (2.22) into (2.20) we get the inclusion b, _, € o4 —n = 04 —p.
Finally, recall that a,, € R* and @', , = 46,0, = 0. Therefore
— £4E40q,—yra’_,

/ _ / _
AqqTly —p = Qqqlly, = bg,—p € 04—

-p P
Thus a; _, € 04 p. It only remains to notice that
J— / —
Up,—t = —EpEtly _y, € Og,—p = Op,—t-

[]

Lemma 2.3.2. Assume h(v) > (4,4). Let (p,q,h,t,l) be an A-type base quintuple and
a an element of Sp(2n, R) such that at least one of the following three conditions holds:

: , , o
1. The entries a_p 4, G_p,—t, Qpgy Ahgy G—p Qs _, ANA A_p @y _p, are contained in the Ja-
cobson radical and the entries a,,, a,q and a__4 are invertible.
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2. The rows apy, Qgs, aps and the column a, _; coincide modulo the Jacobson radical
with the corresponding rows and columns of the identity matriz.

3. The rows a_t s, G_px, 0—p s and columns a., and a., coincide modulo the Jacobson
radical with the corresponding rows and columns of the identity matriz.

If there ezist g1, g2 € Ep(0,I') such that gyage € H then a, 4 € o, 4.

Proof. Note that the first condition in the statement of this lemma trivially follows from
any of the others. Consider the matrix

b= aTy( _a;pl Upg)-

By the assumption that the entry a,, is contained in the Jacobson radical b = a mod J.
Clearly, by, =0, b, —+ = a, —; and byq,b_ 4 € R*. Further, consider the matrix

¢ = Thg(—bnghgg )T—p—s(=b_p—tb—¢ _)Tp—t(=b_p b=y _ )Tt —t(—b_y—b=; _)b.

As b = a mod J, we have byq,b0_, _ and b_j _; in the Jacobson radical. Therefore
Cix = ai mod J whenever i # t,— (and also ¢; = a,; mod J whenever j # [, —t).
In particular ¢, ¢, ;¢ pqc; , € J and cgy € R*. Tt is easy to see that ¢, = cpy =
C_p—t =C_p—t=cC_—=0. Finally, gscgs € H, where
g3=aq (Thq(_bhqb;ql)T—p,—t(_b—p,—tbjﬁt)X
_ _ -1
T—q,—t(_b—q,—tbftl,ft)T—l,—t(_b—l,—tbf%,ft)) )
g4 = qu(a;plapq)m-
Clearly, g3 and g4 are contained in Ep(c,I"). Therefore, ¢ satisfies the conditions of
Lemma|2.3.1{and it follows that ¢, _; € o, . It’s only left to notice that ¢, s = a, . [

Lemma 2.3.3. Assume h(v) > (4,4). Let (p,q, h,t) be an A-type base quadruple and a
an element of Sp(2n, R) such that a, _p, g, at—n € 0p_pNJ, a_pp € o_p,NJ. Suppose
agp € J and app,a_p_p, € R* and suppose that there exists an element g € Ep(o,T)
such that 9a € H. Then a;, € o4, for all i € 1. If additionally a € Sp(o) then also
S,hyh(a_l) el'_,.

Proof. Consider the matrix
b= T—h,p(_a—h,pa;pl)a'

As a_y, € J it follows that b = a mod J. Additionally b, _;, b, 5 and b; _;, are con-
tained in 0, _, and b_j, = 0. Consider the matrix

¢= Tpﬁh(_bpﬁhb:}lz,—h)Tqﬁh(_bq,fhb:llz,—h)Ttﬁh(_btﬁhb:llz,—h)b

Again, ¢ = @ mod J, in particular cp,,c_, _, € R*. As c is a symplectic matrix, it also
follows that C/—p,h = 0and ¢, € R*. It’seasy tosee that ¢, _,, = ¢, = c1_p = c_pp = 0.
Finally, ggicg™! is contained in H, where

g1 = (Tpﬁh(_b:ilz,—hbpﬁh)Tqﬁh(_b:ilz,—hbqﬁ@X
Tt,_h(—b:i’,hbt,_h)T_h,p(—aljpla_hp))71 € Ep(O’7 F)
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Pick an element x € S such that 97, ph(:z:) € H. Applying Lemma [2.2.5] to the matrix
¢, the short symplectic transvection T, (z) and the A-type base triple (p, ¢, h), we get
for all ¢ # —p, —q the inclusion ¢,,(cT, ph( ) V)in € oin. As ¢,y is invertible, we also get

Sin + Cipxhy, — gpé?hci’_hxc'fp’h = (c¢Tyn(x)e Han € o (2.23)

for all i # —p, —¢. We can apply Lemma to the same matrix and transvection,
but to a different A-type base triple (p, ¢, h) and get the inclusion also for 1 = —q.
As ¢}, is invertible and ¢_,, = 0, it follows from (2.23)) that c¢;, € oy, for all i # h, —p.
Observe that a;, = ¢, for all i # p,q,t,—h. Therefore a;, € o, for all i # p,q,t, —h, —p.
The inclusions a;, € 04y, for i = p, q and t are trivial and the corresponding 1nclu31on for
t = —h is provided by the assumptions of the lemma. Therefore a;, € 0, for all 7 # —p.

Pick an element y € S such that 97,,,(y) € H and consider the matrix d = T,,,(y)a.
Clearly, it satisfies all the conditions of this lemma. Indeed, d,_; = a,_p + yaq,—n €
Op—p NI, dpy = app +yag € R+ J < R* and the rest of the entries of d involved in
the conditions of this lemma coincide with the corresponding entries of a itself. Thus
we get the inclusions d;, € o0, for all i # —p. In particular, d_,, € o_,,. It’s only left
to notice that d_g, = a_q, — €peqa—pp and a_g, is already contained in o_, ,, while y is
invertible. Therefore a_,, € o_,,.

Assume a € Sp(c). By Lemma we get the inclusion S_j,(c™') € T'_,. As
at = c'g; !, by Corollary we get S_pp(a™t) €Ty, O

We combine Lemmas [2.3.2] and [2.3.3] in the following corollary.

Corollary 2.3.4. Assume h(v) > (4,4). Let (p,q,h,t,1) be an A-type base quintuple
and a an element of Sp(2n, R). Let I' denote the set {p,q, h,t}. Suppose that a; = e;,
mod J and a,_; = e,_; mod J whenever i € I'. Further, suppose that there exists an
element g € Ep(o,I') such that 9a € H. Then a;, € oy, for all i € I. If additionally
a € Sp(o) then also S_,,(a™) €T,

Proof. 1t’s easy to see that the matrix a satisfies condition (2) of Lemma[2.3.2] Thus we
can conclude that the entries a, _p, aq 5 and a;_j are contained in o, _,. Moreover, the
same entries are contained in the Jacobson radical by assumption. Since a also satisfies
the condition (3) of Corollary [2.3.2] it follows that a_,, is contained in o_,. Note that
by assumption, ap,,a_p —, € R* and ag, € J. Summing up, a satisfies the conditions of
Lemma . Hence a;, € 0, for all i € I. If a € Sp(o) then by Lemma we get
the inclusion S_;,;(a') € T'_;. Switching the indices p and h in the reasoning above,
we get the required inclusion S_, ,(a™') € S_, . O

Lemma 2.3.5. Assume h(v) > (4,4). Let (p, h) be a C-type base pair and a an element
of Sp(2n, R) such that ayp,a_p_, € R* and a_p_, € J. If there exists an element
g € Ep(o,T") such that 9a € H, then a;, € 0;, for alli € I.

Proof. Consider the matrix

b= Thp((—an, + 1)agp1)a.
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Clearly, by, = a,, is invertible, by, = 1 and
bop—p = a_p_p — Encp(—any + L)a ap_p, € R*+J < R

Pick using Corollary an element z € S such that 97, _,(z?) € H. By Lemma[2.2.6]
we get the inclusions

bpp<5iﬁh + biprb/—p,—h) - bpp(pr,fp@z)bil)iﬁh € Oi—h

for all i € I. It’s only left to notice that b,, and x?b" h—p are invertible and thus
bi, € o;_p, for all ¢ € I. Finally, a;, = b;, whenever i # h, —p. Thus a;, € 0. O

The following corollary is an illustration of application of Corollary and Lemma
2.3.5 Suppose R' = R and S = {1}. Then it is clear that (¢/,I") = (o,T") is the net
associated with H in Sp(2n, R). Corollary together with Lemma yield the

following corollary.

Corollary 2.3.6. Let R be a commutative associative unital ring with Jacobson radical
J. Let v be a unitary equivalence relation on the index set I such that h(v) > (4,5).
Let H be a subgroup of Sp(2n, R) such that Ep(v, R) < H and let (0,T") be the form net
associated with H. Then

HNSp(2n,R,J) < Sp(o,T),

where Sp(2n, R, J) denotes the principal congruence subgroup of Sp(2n, R) of level J.

2.4 Over a local ring

Throughout this section fix a standard setting (R, R, .S), where R is a commutative local
ring. Let J denote the Jacobson radical of R (which is the only maximal ideal of R).
Further, fix a subgroup H of Sp(2n, R) and an exact major form net of ideals (¢/,T")
which is S-associated with H. Let (0,I") denote the S-closure of the (¢/,I") in R. In
this section we will show that

H < TranSpSp(Qn,R) (EpS(OJ, F/)a Sp((f, F))
provided h(v) > (4,5).

Lemma 2.4.1. Assume h(v) > (4,4). Let a be an element of H and Ts.(§) a short
(o', T")-elementary transvection. Let b denote the short root element aTy.(§)a™t. If
(p, h) is a C-type base pair then for all i € I the inclusion

bip € Oip (224)

holds.
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Proof. We will organize the analysis into four cases.

1. Assume that the elements a_, _,,a,_, and one of the element a_j _, or aj _, is
contained in J. Without loss of generality, we may assume that a_; _, € J. Then it’s
easy to see that b,, and b_, _, are invertible and b_;, _, € J. Indeed,

bpp = 1+ apsla,, — escpay ,Ea’, , € 14+ J < R,

bop—p=1+ a_pﬁfa;,,,p - 5357«@—;;,—7«5@/,3,7]3 €l+J< R,

bon—p = a_psla, , —escrap, Ea’,, € J.

Therefore, the matrix b satisfies the conditions of Lemma and we get the inclusions
bip c Oip forall 7 € 1.

2. Assume that either aj, _, or a_j _, is invertible. Without loss of generality we may
assume that ay _, is invertible. Consider the matrices

c= Tph(—ap,,Ta}:,l_r)T,p’h(—a,p,ﬂ,a};l_r) d= Tfh,h(_cfh,frblz,l—r)d

It’s easy to see that d, , = d_, _, = d_;_, = 0 and by definition ¢;d = a € H, where
g1 € Ep(o,T"). By the previous case we get the inclusion f;, € oy, for all ¢ € I, where
[ =dTs(€)d™". Tt’s only left to notice that b;, = f;, whenever i # —h, +p and the rest
of the required inclusions are trivial.

3. Assume a_,_, is invertible. Consider the matrix ¢ = T} _,(1)a. Clearly, ¢,
is invertible and 7}, _,(—1)c € H. By case 2 we get the inclusions f;, € o;,, where
f =Ty (&)c!. Finally, b, = fi, whenever i # h, p.

4. Assume a,_, is invertible. By the case 2, the inclusion b;;, € o, holds for any
i € I. Consider the matrix ¢ = Tj,(1)a. Then ¢, _, is invertible and by case 2 we get the
inclusions fi, € oy, for all i € I, where f = ¢T,,.(¢)c™!. Finally, f;, = b;, + by, whenever
i # h,—p and thus also b;, € 0, for all ¢ € I.

As the ring R is local, the cases above exhaust all the possibilities for the entries
Ap —r,0_p _y,ap—p and a_p _,. Therefore b, € o, for all 7 € I. O

Lemma 2.4.2. Assume h(v) > (4,4), Let a be an element of H, T,.(§) a short (o, 1")-
elementary transvection and b the short root element aTy.(§)a™". Let (p,q,h,t,1) be an
A-type base quintuple. Then the inclusion

bip € 03y (2.25)
holds for any i € I. If additionally b € Sp(o) then also
S, er.,. (2.26)
Proof. Denote by I’ the set {p, q, h,t,1}. This proof is organized as follows.

1. We will show that if a; _, is invertible then the inclusion (2.25]) holds for any i € I
and if additionally b € Sp(o) then also (2.26)) holds.

2. We will show that if there exists an index ¢ € I’ such that a; _, or a;, is invertible
then the inclusion (2.25)) holds for any ¢ € I and if additionally b € Sp(o) then
also (2.26)) holds. This case can be reduced to the previous one.
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3.

Finally, if a; _,,a;s € J for all ¢ € I’ then the required inclusions (2.25)) and ([2.26])
can be obtained using Corollary [2.3.4]

. Suppose q;_, € R*. Let

9= T;fl (at»—ral_,ir)Thl (ahy—fal_,ir)qu (a‘Zv_Tal_,ir)Tpl (a’pv_ral_,ir) .

Let ¢ = g7'a and d = T (&)™ = 97 'b. It is easy to see that ¢, _, = ¢q_p =
Ch—r = ¢t—r = 0 and if b € Sp(o) then also d € Sp(c). We will consider three
subcases:

i. There is an index i; € I' \ {p, !} such that ¢;, , is invertible.
ii. The only ¢y € I"\ {l} such that ¢;, s € R* is i1 = p.
iii. ¢y € Jforallie I"\ {l}.

For each of the cases (i)-(iii) we will prove that d;, € oy, for all i € I and if
b € Sp(o) then S_,,(d7') € T_,. Note that d;, = by, for all i # p,q,h,t,—I, the
inclusions by, € 0, for i = p,q, h,t are trivial and

d—lJD - b—lJ? j: Cpb—p,p :t Cqb—q,p :t Chb—h,p :l: Ctb—t,]:n
where (; € Rand b_;), € 0_,, for i = p,q,t,h. Therefore b_;, € 0_;,. Summing
up, by, € o, for all 7 € I.
Assume that b € Sp(o). By Corollary we get

1

S pp™) =8, b =5_,,(d") modT_,

Hence, S_,,(b™') € T'_,. This completes the analysis of the case 1. Now we
consider the cases (1.1)—(1.iii).

i. Suppose there exists an index 4; € I’ \ {p, [} such that ¢;, ; € R*. By Lemma

we get ¢;, sdip € 0y for all i # —iy and if b € Sp(o) then also ¢ ,S_,,(d7") € T'_,,.
As ¢, 5 s invertible, it follows that d;, € oy, for all i # —i; and if b € Sp(o) then

Pick an index iy € I' \ {p,l,i1}. If ¢;, s is invertible in R we can replace i; in the
reasoning above with 7 and get the missing inclusion d_;, , € 0_;, ,. If ¢, is
not invertible, consider the matrices f = Ty, ;,(1)c and g = fT,,. (&) f~! = (g,
Clearly f, = fy v = frnv = fir = 0and fi, s, fi.s € R*. Moreover 9Tn.2(=Dp €
H. Therefore by Lemma we get fi, sg—iyp € 0_p,p and thus g_;,, € 0_p,.
Finally g_;,, = d—i,p £d_;, , and, as d_;,, € 0_,,, it follows also that d_; , €
o_pp- Therefore d;, € oy, for all i € I and if b € Sp(o) then also S_, ,(d™) € T_,,.

ii. Suppose cps, Cys, C1s € J, but ¢,s € R*. By the case (1.i) the inclusion d;;, € oy, holds

for any 7 € I and if b € Sp(o) then also S_j, ,(d™!) € T'_. Consider the matrices
f=Ty(1)cand g = TvMd. Then 9Tw(YVbec H, f, . = fo v = fov=Ffir =0
and frs € R*. By case (1.i) we get ¢;, € o, for all i € I and if b € Sp(o) then
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also S_,,(g7") € T_,. Observe that g;, = d;;, + dy, for all i # h, —p and, as d;, is
already contained in o_,, for all i € I, we get d;, € 0y, for all i # —p. Finally

g*PdD = d,pyp + d,h’p + dfp,h + dfh,h (227)

and, as d_jp = id:;h = £d_, , the last three summands in :2.22) are contained
ino_p,. Thusd_,, € 0_,,. If b€ Sp(o) then by Corollary |1.1.4] we have

Spplg7) = S—p,p(Thp(l)dil) =S_pp(d™) +S_pu(d™!) mod T,
and, as S_p,,(d7') € T, we get S_,,,(d7') € T,

L.iii. Suppose ¢;s, ¢;—r € J for alli € I'\{l}. Then b;; = §;; mod J wheneveri € I'\ {l}
or —j € I"\ {l}. By Corollary we get the required inclusions d;, € oy, for all
i € I and if b € Sp(o) then also S_,,(d7') € T'_,.

2. Suppose a;_, € J, but there still exists an index ¢; € I’ such that a;, _, € R* or
a;, s € R*. First, assume a;, _, € R*. By case 1 we have b; € 0; for all i € [ and
if b € Sp(o) then also S_;;(b~') € I'_;. Consider the matrix ¢ = T};,(1)a € H. Let
d denote the matrix Ti1(Mp. Then c,—r € R* and by case 1 we get d;, € 0;, and if
b € Sp(o) then also S_,,(d"') € I'_,. Note that if a € Sp(c) we have

S—p,p(d_l) = S—p,p(Tl,il(l)b_l) = S—p,p(b_l) + 5p,i15—l,l(b_1)-

Therefore S_,,(b™") € T_,,. As d;, = by + 0;, pby for all i # 1, —iy, it follows that
bip, € 0, for all © # —iy. Finally we have

d*il,p - bfil,p :|: bfl’p + 5i1,pb7i1,l :l: 5i1,pbfl,l (228)

and, as b_;, = +b_,;, the last three summands in are contained in o_, .
Therefore b_;, , € 0_,,. Thus b, € 0, for all i € I and if b € Sp(o) then also
S_pp(db71) €T

Finally, if a;, s € R* we can use the Steinberg relation (R1), namely T, (§) =
T . o(£8). Set d = aT_,._,(§)a'. We have already shown that in this case
dip € oyp for all i € I and S_, ,(d7') € T'_,. Finally b;, = +d;, for all i # p and if
b e Sp(o) then S_, ,(d7 ") =S, ,(b7")£2b_,,(2—b_p ) =S_,,(b7) mod T'_,.
Therefore S_,,(b~') € T'_,.

3. Suppose a;s,a; — € J for all i € I'. Exactly as in case (1.iii) we get the required
inclusions by Corollary [2.3.4]

This completes the proof. n
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2.5 Localization

In this section we will prove Theorems [6] and [/} Suppose Theorem [I] holds for any
Noetherian ground ring. It is a well known fact that every commutative ring R is a
direct limit lim R’ of its Noetherian subrings R’. Fix a commutative ring R, a unitary
equivalence relation v such that h(v) > (4,5) and a subgroup H such that Ep(v, R) < H.
Let (0,I") denote the exact major form net of ideals associated with H, c¢f. Lemma
[1.2.1] For any Noetherian subring R’ of R set H' = H N Sp(2n, R'). Then Ep(v, R') <
Ep(v, R) N Sp(2n, R') < H'. By Lemma there exists an exact major form net of
ideals (¢’,1") over R’ associated with H'. By the construction in Lemma of a form
net associated with a subgroup it follows that if R < R” then (¢/,I") < (¢”,1"). Clearly
Sp(o’,T7) < Sp(¢”,T"”). As any element g of Sp(2n, R) is contained in Sp(2n, R") for
some Noetherian subring R” of R such that R’ < R”, it follows that

Sp(o,T') = limg Sp(a’, T). (2.29)

R’ is Noetherian

Pick any a € H and T, (§) € Ep(o,T"). There exists a Noetherian subring R’ of R such
that a,Ts.(§) € Sp(2n, R'). Clearly, a € H' and T,.(§) € Ep(¢’,1”). By assumption,
Theorem (1| holds for the ground ring R’. Therefore

aTy.(€)a™" € Sp(o’, T). (2.30)

Moreover the inclusion ([2.30) holds for any Noetherian subring R” such that R' < R”.
Combining (2.30) with (2.29) we deduce that

Ep(07 F) <HL TranSpSp(Qn,R) (Ep(O’, F)) Sp(U, F))

Therefore we only need to prove the existence of an exact major form net of ideals
satisfying the sandwich inclusions in Theorem [f] for a Noetherian ground ring.

Proof of Theorem [6l As remarked above, it suffices to prove the theorem when R is
Noetherian. Pick an element a in H, a short (o, I')-elementary transvection T, () and
denote by b the short root element aTy,(£)a™t. Our goal is to show that b is contained
in Sp(o,T"). For each i, € I put

Xij={£ € R| &by € 05}
Z; = {f €ER | 5251',_1'(17) S Fz}

We will show that the sets X;; and Z; are unimodular, i.e. generate the unit ideal R, for
all 4, j € I. Fix a maximal ideal m of R and denote by S the compliment R\ m of m in R.
Let R, denote the localization S™!R of the ring R at the multiplicative system S and F},
denote the corresponding localization morphism R — R,,. Let R, denote the image of
R under F,, and S, denote the image of S under Fy,. Clearly (Ry, R}, Sw) is a standard
setting, cf. Section We show there is an element zy € S such that F,, is injective
on zoR. Indeed, for each x € S set Ann(x) = {£ € R | 2§ = 0}. As R is Noetherian,
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the set of ideals {Ann(x) | € S} contains a maximal element Ann(zq). Let £z, (xg
be two arbitrary elements of zgR. Assume F,(£x¢) = Fy(Cxg). Then there exists an
element y € S such that yxo(§ — () = 0. Therefore £ —( € Ann(yxy) > Ann(xy) and by
the maximality of Ann(zg) it follows that £ — ( € Ann(zg). Consequently xg = (xo.
Therefore the localization morphism Fj, is injective on zyR.

Let H,, denote the image of H under M(F},). Clearly Ep(v, R,) < Hy. The following
proposition allows lifting transvections from H,, to H.

Proposition 2.5.1. Let ( € R and x € S. If T,y(%) € Hy then
(14+0p,~q)  ,.0p,—
oy cx’rme. () € H.

Proof. If p ~ g, the inclusion qu(x(()1+5p’_Q) x4 . () € H is trivial. Assume p = ¢ and
p # —q. There exists another index h ~ ¢ such that h # +p, +¢q. By the Steinberg
relation (R4)

¢

Toa(Fn(©) = [[T3a () Tan(@)], Thg(1)] € H.

Pick any pre-image g of the matrix T,,(F(¢)) contained in H. Then again by (R4)
Tpg(Fa(Co)) = M(En)([lg, Ton(o)], Tho(1)]) € M(Fu)(Sp(2n, R, moR) N H).

As F,, is injective on Sp(2n, R, zoR), it follows that T},,((zo) € H.
Assume ¢ = —p and p » —p. Pick two more indices h,t € I such that (p, h,t) is an
A-type base triple. By the Steinberg relations (R3), (R4) and (R6) we get

T (—2yon Fu(2)) = [Ty (), Ty ()]

X [T (=1), [Tip(1), [Tp,p(g%Tp,h(fC)]H € Hp.

Pick any pre-image g of T}, _p(—epenFm(Cx)), which is contained in H. Then by the
Steinberg relations (R3), (R4) and (R6)

T —p(Fun(Cr5)) = M(F)([9, T-n—p(20))[Tie(=1), [T (1), [g, Ton,—p(1)]]])
€ M(Fy,)(Sp(2n, R,xoR) N H).

By the injectivity of M(Fy,) on Sp(2n, R, xoR) it follows that T, ,(Czx3) € H. O

Let (o},,I",) denote the coordinate-wise image of (o,I') under F,. It is easy to

see that (of,,I) is an exact major form net of ideals over Rl. Proposition [2.5.]]

m)Tm

allows us to conclude that (o),I) Sp-associated, cf. Section 2.1} with Hy,. In-
deed, the inclusion Ep(o},,I',,) < Hy is obvious. Suppose T,,(>) € H, for some
elementary transvection qu(g) in Ep(2n, R,). By Proposition it follows that
qu(ﬁ(mo)1+5”’*q) = qu(fxdp’quélwpﬁq)) € H. Thus gmép’quélwpﬁq € (0,1)pq and
Fm(S)Fm(zt‘spv*qa:(()lﬁ”’_“) € (ofy, I'n)pg- Therefore (oy,,I',) is indeed Sp-associated with
H,.
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Let (0w, 'w) denote the Sy-closure of (o/,,I) in Ry,. By a combination of Lemmas
12.4.2{ and [2.4.1| it follows that M(Fy,)(b) € Sp(om, 'm)-

Now we will show that each set X;; and Z; contains an element of S and thus each
is not contained in m. For i ~ j it is easy to see that X;; = R, therefore we may
assume that ¢ ~ j. Let i # —j. As Fy(b;;) € (0m)ij, there exists an element z € S
such that T;;(Fu(bi;z)) € Hyn. By Proposition it follows that b;;zzo € 0;; which
means that xzg € X;;. If j = —i then there exists an index k ~ ¢ such that 7 # +k.
Therefore Fiu(b; ;) € (0m)i—i = (0m)i—r. Exactly as in the previous case we get that
bijxry € 04, = 0, _; for some x € S. Finally, let ¢ =« —i. As F,(S; (b)) € (I';,);, there
exists an element x € S such that T; _;(Fy(S;_i(b)z?)) € Hyn. By Proposition it
follows that T; _;(Fn(S;_i(b)x*23)) € H, which yields that zox € Z;.

Fix some indices ¢ and j. We have shown that the set X;; is unimodular, therefore
bi; € (Xij)bij € 0;;. Thus b € Sp(o). We have also shown that the set Z; is also
unimodular. Therefore there exist elements (i, ..., € Z; and elements &;,...,& € R
such that Zle &¢ = 1. Thus Zle £2¢? =1 mod 2R and

k
) €D &G Si—i(b) +2RS; _i(b) <T; +20; _; <.
t=1

Summing up, b € Sp(o,I'). This completes the proof. n

Proof of Theorem [7l Combining Theorems [6] [3] and [4] we get that there exists an
exact major form net of ideals (o, I"), namely the form net of ideals associated with H,
such that

Ep(0,T) < H < Neyon.(Sp(. ). (2:31)

It only remains to prove that a form net of ideals such that (2.31)) holds, is unique.
Assume the contrary: let (7, B) be an exact major form net over (R, A) such that

Ep(T, B) < H < NSp(2n,R) (Sp(Tu B))7

but (7, B) is not equal to (o,T"). As (0,T") is maximal among exact form nets such that
Ep(o, F) < H, it follows that (1,0) < (o,T'). Pick any € € (0,1");;. Then T;;(§) € H <
Nsp2n,r) (Sp(7, B)). First, assume 7 # —j. By property (T1) of Theorem {| applied to
the net ( , B) it follows, because (T;;(§));; = 1, that

§ = (Tij(&))is - 1- (T5(8))j5 < (Ti5(8))is - 735 - (135(8))s5 < 7ij-
Therefore 7,; = 0;; for all i # —j. If i = —j then by property (T2) of Theorem
£ = (T, (€))7 - 1%+ S5 (T -i(€)) < (Tisl€))7 - 72+ Si—i(Ti-s(€)) < B

Therefore B; = T; for all i € I. Finally as both form nets (o,I') and (7, B) are exact, it
follows that (o,T') = (7, B). O
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3 Sandwich classification in Unitary
groups

In this chapter we will prove the main results of this dissertation, Theorems [1| and
2l The general toolbox we use in this chapter mimics the one used in the case of the
classical symplectic group. In the Chapter 2 we relied on the fact that the localization
of a commutative ring at the compliment of a maximal ideal is a local ring and thus for
any element £ of the localization, £ is either invertible or is contained in the Jacobson
radical of the localization. In the non-commutative setting, localizing a form ring (R, A),
which is module finite over a subring C of the center of R, at the compliment in C' of a
maximal ideal of C' gives only a noncommutative semilocal ring. In order to overcome
this obstacle we have to first factor the Jacobson radical out of the semilocal ring, which
yields a semisimple ring; and then use Morita theory to reduce the semisimple case to
the case of a product of division rings with involution with symmetry. Our result over
semisimple rings are in the spirit of [Dyb07].

Now we explain the general flow of the proof of Theorem [1| of the Introduction and
simultaneously describe the structure of the rest of the chapter. The prerequisites are
gathered in Section [3.1] We start with a form ring (R, A) over a quasi-finite ring R,
a unitary equivalence relation v subject to a certain condition on the minimal sizes
of equivalence classes and a subgroup H of U(2n, R, A) that contains the elementary
block-diagonal group EU(v, R, A). In Section we define form nets of ideals and
form net subgroups and construct the form net of ideals associated with H, namely the
maximal exact form net of ideals (o,1") such that the corresponding elementary form
net subgroup EU(c,T") is contained in H. Theorem 2| of the Introduction is also proved
there. Using a localization method presented in Section we reduce the proof of
Theorem (1| over a quasi-finite ring to a similar result over a semilocal ring. However,
the image of the subgroup H in the localization does not have to contain the elementary
block-diagonal subgroup defined by v, and therefore we can’t define the form net of ideals
associated with the image of H. To get around this problem, we refine concept of the
form net of ideals associated with a subgroup by a pair of nets with special properties.
For this reason we introduce in Section the concept of a standard setting and the
corresponding theory of form nets of ideals. For this theory to work, it is crucial that
the canonical map of the original ring to the quotient of a localization by its Jacobson
radical is surjective. In Section we present the method of extracting elementary
unitary matrices, first, in small parabolic subgroups and, next, using a root element.
We continue extracting in Section elementary unitary matrices using elements close
to the principal congruence subgroup of the level the Jacobson radical. This allows us to
reduce the proof of Theorem (I to the case of a semisimple ground ring. This reduction
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is done in Section Section contains important technical results on morphisms
of standard settings, direct decompositions, form ring scaling and direct limits of form
rings, form nets of ideals and related subgroups. In Section we further reduce the
proof of Theorem [I| to the case of a division ring or a product of two copies of a division
ring interchanged by the involution with symmetry. Finally, in Section we prove
Theorem [I] in these two cases.

3.1 Preliminaries

Hermitian and quadratic forms. Our goal now is to define the even unitary group
which first appeared in [Bak69]. We will mostly follow the notations of [BV0Q] while
working in the generality of [HO89).

Let R be an associative unital ring. Equip R with an anti-automorphism =, i.e.
automorphism of the underlying additive group of R which satisfies the property ab =
for all @ and b in R. Let M be a right R-module. We will call a map

an
b-a

f:MxM-—R

a - -sesquilinear form or simply a ~-form on M if it is additive in both variables and
satisfies the 1%— linearity property

f(za,yb) =af(x,y)b

for all x,y € M and a,b € R. Assume there is a unit A in R such that the square of the
automorphism ~ is given by conjugation by A, i.e. such that @ = AaA~! for all @ € R,
and in addition A = A~'. In this situation with will call A a symmetry for = and the
pair (7, A) an involution with symmetry. We will also say that = is an involution with
symmetry A. We will call and the triple (R,~,\) a ring with involution with symmetry.
Note that an involution with symmetry is also called in the literature an anti-structure.

Note that in [BV00] and in many other sources the symmetry A was assumed to be
central; however this assumption is not necessary and most of the results concerning
unitary groups hold without it, but computations become more tedious because one has
to constantly keep track of the position of A in any product of elements. Given two
rings with involution with symmetry (R,~,\) and (Q,™, ) we call a ring morphism
©: R — Q a morphism of rings involution with symmetry if ¢ preserves the involution
with symmetry, i.e. “op = po~ and p(\) = u. An isomorphism of rings involution with
symmetry is by definition a morphism of rings with involution with symmetry, which is
invertible as a ring morphism and its inverse morphism is also a morphism of rings with
involution with symmetry. Clearly an image of a morphism of rings with involution with
symmetry is a ring with involution with symmetry. If (R,~, A) is a ring with involution
with symmetry and R’ is a subring of R we call (R',~, \) a subring of R with involution
with symmetry if X is contained in R’ and R’ is stable under ~.

A ~-form h on M is called A-hermitian if

h(z,y) = h(y, x)A

26



for all z,y € M. This is an example where the position of X is important. Given a ~-form
f we can always construct a A-hermitian form by setting h(z,y) = f(z,y) + f(y, ).
A choice of an involution with symmetry fixes two additive subgroups of the ring R

A™ = AMN(R) = {o — @\ | a € R},
A™ = AmX(R) = {o € R | @\ = —al}.

We will call an additive subgroup A of R a form parameter for R in the sense of [Bak81],
if

(Al) Amin S A S A max
(A2) aAa < A for any o € R.

For each i € I set
A; = ANCTE@)/2,

Clearly both subgroups A™" and A™* are form parameters for R. They are called the
minimum and mazimum form parameters respectively. The pair (R, A) is called a form
ring [over R]. By R in the notation of a form ring we will always mean ring equipped
with involution with symmetry. In case it is important which particular involution with
symmetry on R we have in mind we will write ((R,~, A), A) in place of (R, A). Clearly
the form parameters of a given ring with involution with symmetry form a lattice with
respect to inclusions. For a ring with involution with symmetry (R, ™, A) we will denote
the lattice of form parameters for (R,~,\) by FP(R,~, A).

The notion of a form subring is defined in the natural way. Namely, a form subring
(R',A’) of (R,A) consists of a subring R’ of R such that A € R’, the involution with
symmetry on R induces the involution with symmetry on R’, and A’ C A. Clearly,
(R'y,AN R') is a form subring of (R, A).

let ((R,=,A),A) be a form ring and (R’,~, \) be a subring of R with involution with
symmetry. Let A’ be a form parameter for R’ such that A’ C A. Then the form ring
(R, \) is called a form subring of the form ring (R, A).

Given two form rings ((Ry,~, A1), A1) and ((Ra, =, A2), Ag) we will call a morphism of
rings with involution with symmetry ¢ : (Ry, ™, A1) = (Ra, ™, A2) a form ring morphism
if (A1) < Ay. We will call a form ring morphism a form ring isomorphism if it is an
isomorphism of rings with involution with symmetry and ¢(A;) = Ay. The following
obvious proposition provides an example of a morphism of form rings.

Lemma 3.1.1. Let ((Ry,~,A\1),A1) be a form ring and (Rz, -, \2) be a ring with in-
volution with symmetry. Let ¢ : (Ry,~, A1) — (Ra2,™, A2) be a morphism of rings with
involution with symmetry. Then Ay = p(A1) is a form parameter for (p(Rz2), ™, A2)
and ¢ defines a morphism (Ry,~, 1) — (©(R2),~,\2) of form rings. 1If ¢ is an
1somorphism of rings with involution with symmetry then ¢ defines an isomorphism

(R1,7, A1) = (p(R2), ™, X2) of form rings.
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Proof. Note that ¢(R;) is closed under the action of = and Ay = (A1) € ¢(Ry).
Therefore (¢(R1), ™, A2) is a ring with involution with symmetry. It is easy to see that
A™(o(Ry)) = @(A™™(R;)) and A™*(p(Ry)) = @(A™>(Ry)). Therefore the property
(A1) above is fulfilled for As. Pick any ¢ € ¢(R;) and any pre-image £ of ¢ under ¢.
Then

(Ao = p(EME) < (M) = Ay,
therefore Ay is a form parameter for (p(Ry), ™, A2). The second conclusion of this lemma

is obvious. O
Fix a right R-module M and a ~-form f on M. Define the maps
h:MxM-—R and qg: M — R/A
by setting
h(z,y) = f(@,y) + [y, 2)A and q(z) = f(z,2) + A,

for all ,y € M. We call the pair (h, q) a A-quadratic form on M, and the form f in this
case is said to define (h,q). As we have already mentioned, the form h constructed in
this way is always A-hermitian. A non-zero vector x € M is called isotropic if g(x) =0
in R/A and anisotropic otherwise.

A quadratic module over (R,A) is a triple (M, h,q), where M is an R-module and
(h,q) is a A-quadratic form on M. (M, h,q) is called free hyperbolic if the module M
has an ordered basis X = {z1,...,%9,} consisting of isotropic vectors such that the
Gram matrix (h(x;, z;)) of h in this basis equals

€n
e, ’

where e,, is an identity matrix of size n x n. Any such basis X is called a hyperbolic
basis of the module M. Following [BV00] we will use a different basis for quadratic
modules as it allows to shorten some computations. We fix an ordered index set I =
{1,...,n,—n,...,—1} and define the ordered basis € = {ey,...,e,, €6 p,...,e_1} by

putting
€; =
Tn; if i <O.
In this basis the form f defining the A-quadratic form (h,q) has the Gram matrix
(h(es, e;)) equal to (8 ](9))’ where p = sdiag(1,...,1) is an n X n matrix which has 1’s

along the second (skew) diagonal and zeros elsewhere, i.e.
(0 _ _
f(ﬂ?,y):.ft (0 g)y:xly—1++$ny—n

Thus
h(l’,y) = f(xay) + f(yv x)/\ = E1y—1 + +Eny—n +f—1)\?/1 + - +f—n>‘yn

and
qg(x) = f(x,2) + A =Tz + - + Tpr_p + A
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Unitary groups. We define the unitary group U(M) of a quadratic module (M, h,q) as
the group of isometries of the quadratic module M, i.e.

U(M) ={g € GL(M) | h(gx, gy) = h(x,y) and q(gz) = q(z) for all x,y € M}.

Define the even (or hyperbolic) unitary group U(2n, R,A) of rank 2n over the form
ring (R, A) to be the unitary group of the free quadratic module (R*", h, q), where the
0 p
0 0/

It follows from the defintion of an even unitary group that if (R’, A’) is a form subring
of the form ring (R, A) then U(2n, R',A’) is a subgroup of U(2n, R, A). The following
lemma provides a characterisation of U(2n, R, A) in terms of matrix elements. It’s a
direct analogue of Lemma 2.3 of [BV00] (or lemma 3.4 of [Bak81], in the case of the
ordered basis x1, ..., x9n above) and can be proven exactly in the same way.

A-quadratic form (h, q) is defined by the form f with Gram matrix

Lemma 3.1.2. A necessary and sufficient condition for a matriz g € GL(2n,R) to
belong to U(2n, R, A) is that the following two properties are satisfied

(U1) gj; = A-COD2g o NEDTD/2 for alli,j € I
(UQ) S@_i(g) = Zj>0 gijg;_i - Az = A)\(*E(i)fl)/2 fO’f‘ alli € 1.

We call the sum S; _;(g) the length of i’-th row of the matriz g. Note that condition
(2) above can be replaced by a similar condition on columns rather than rows. Further,
in the case of a maximal form parameter A, condition (1) infers (2), cf. [Bak81, Th.
1.1].

Elementary subgroup. We introduce two special types of elements of U(2n, R, A)
called elementary unitary matrices. For any pair of indices i, j € I such that i # 4+j and
an element £ € R set

Tij (&) = e+ Eeyy — )\(E(j)*1)/25)\(1*6(2'))/267%%,_

Such a matrix is called a short elementary unitary matriz. For any ¢ € [ and o € A; =
A)\—(&(i)+1)/2 set
7-'1‘7,,5(06) =e+ ae; ;.

Such a matrix is called long elementary unitary matrices.
Another important class of unitary matrices is the class of elementary diagonal unitary
matrices which are defined for every ¢ € I and every invertible 6 in R as follows:

Dy(0) = e+ (0 — 1)ess + AEO-D2FT _ 1)\a-</2_,

It is an easy exercise to check that the short and long elementary unitary matrices
as well as the elementary diagonal unitary matrices actually belong to U(2n, R, A).
Denote by EU(2n, R, A) the subgroup of U(2n, R, A) generated by all long and short
elementary unitary matrices. We call the subgroup EU(2n, R, A) the elementary unitary
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subgroup. Denote by A(2n, R) the subgroup of U(2n, R, A) generated by all elementary
diagonal unitary matrices. The subgroup A(2n, R) is called the diagonal subgroup of
U(2n, R, A). Note that A(2n, R) does not depend on the choice of a form parameter.
But an elementary diagonal unitary matrix is not necessarily contained in the elementary
unitary subgroup.

Elementary unitary matrices satisfy the following set of relations known as elementary
relations which can be checked by straightforward calculation.

(EU1) Ty (5) = T _i(=AED=D/2eNA=2@)/2) for all § # j and additionally ¢ € A; if
j e —

EU2) T3;(§)T;(¢) = Ty (§ +¢) for all i # j and £, € R

EU3) [T;;(), Tu(¢)] = e, whenever i # 1, —k,j, j # k,—l and k #
) [T35(€), Tjr(Q)] = Ti(£C) for all i # j, £k, j # £k

EUS5) [T;(€), Tj,-i(C)] = Ti,—i(6¢ — A2/ (g () A1 ==(0)/2)

)

EU6) [T; _i(a), T_i;(€)] = Ti;(a&)T_; j(=AEDD2ZENA+@)/20¢) for all i # +7, a € A,
and 5 € R.

(
(
(EU4
(
(

The last relation we are going to consider is a combination of (EU1) and (EU6) and
thus is not independent. However it is useful in this form.

(EU6') [T3(€), T;—j ()] = T;_j(€a)T; _i(€aXNE@DD2ENA=@)/2) for all § # 435, £ € R
and o € Aj.

Adopting the terminology of Chevalley groups we will call any conjugate of a long or
short elementary unitary matrix a long or short root element respectively.

Form ideals. As we have mentioned in the introduction to this dissertation, in the
context of even unitary groups over rings with 2 not invertible, the concept of an ideal
in a ring is not fine enough and has to be replaced by the concept of a form ideal, cf.
[Bak81]. Let J be an involution-invariant (i.e. J = .J) ideal of the ring R. Set

QU = QER(J) = {£ N[} + (ot | e Jaeh)

and
Qmax — Qmax<J) — J ﬂ A’

where angular brackets stand for the additive subgroup generated by the argument. We
call an additive subgroup 2 in R a relative form parameter of level J if

(1) Qmin S 0 S (Qmax
(2) €Q¢ < Qforall £ € R.

In this case the pair (J,Q) is called a form ideal of the form ring (R,A). If J = R then
(J,2) = (R, A). Define
Q; = QA1==@)/2,
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3.2 Unitary form nets of ideals and related objects

Form nets of ideals. Fix a form ring (R, A). We call a square array o = (0y;); jer of
(2n)? two-sided ideals of R a unitary net of ideals over R if the following two conditions

are fulfilled:
(X1) oy =0_j_; foralli,jel
(22) oij05x < oy forall 4,5,k € 1.
A choice of a unitary net of ideals fixes for each ¢ € I two additive subgroups of ; _;
[min — fo — \(C1me@)/2g\1=@)/2 | o ¢ i}
[P =0y i N Ay,
where
A; = ANCTE@)/2,
We will call a column I' = (I';);e; of 2n additive subgroups of o; _; such that
(I'1) Imin < Ty < T for each i € 1
([2) NEWD=D2ENA+@20¢ < T  foralli,j € T and £ €0+ 0

a column of form parameters of level o. Note that the condition (I'2) above can be
equivalently stated as follows

([2') €T NEO-D/2e\0=2@)/2 < T, for all 4,5 € I and & € 0 + 0.

We call a pair (0,1"), where ¢ is a unitary net of ideals and I' a column of form
parameters of level o, a form net of ideals [of rank 2n] over (R,A). We call a form net
of ideals (0,1") a form D-net of ideals if o;; = R for all i € I; further we will call (o,T")
exact if for any index ¢ € I the equality

Oi—i = Z 0i50j—i + (')
JFEE

holds. The next proposition formalizes the following idea. In the case of the classical
symplectic group the minimal form parameter I'™™ was always equal to 20; ;. This
allowed us in many situations in which form parameters play a role to perform compu-
tations as if we were working over a ring of characteristic 2. It turns out that a similar
effect takes place in the general situation.

Proposition 3.2.1. Let (0,I') be a form net of ideals over (R, A), which is not neces-
sarily exact or a D-net. Let i € I. Then for each o € I'*™* we have

&= _\EDFD/2,)E6)-1)/2,

Thus
2 < T
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Proof. Recall that by definition I'"™* = o0; _; N A;. Pick any a € I'"™ = 0, _; N A; <
oi i N APNE1==0)/2 - Ag o € 0, _;, by definition of T'™" we have

o = NC1E@2gAI=e@)/2 - pod Tmin, (3.1)

Take an element 5 € A < A™* such that a = SA(T1@0)/2 By definition of A™* we get
B = —fB\. Therefore

T = )\(1+€ 1)) /26 1+z—: /25)\ 1+z—:(z))/2 )\(s(i)fl)/2' (32)
This is precisely the first formula in the statement of this proposition. Substituting (3.2))
into (3.1) we get @« = —a mod '™, Clearly, as o was chosen arbitrarily this amounts
to saying that 20max < [nin, O

Another simple but important proposition shows that the left-hand side of (I'2) is
additive with respect to &.

Proposition 3.2.2. Let (0,1") be a form D-net of ideals over (R, A). Let o € T and
§,C€o0_i;. Then

A(a(j)—l)/Z(g + C))\(Ha(i)wa(f +() = )\(8(9‘)—1)/2@\(1+6(i))/2a§
+ )\(8(3‘)—1)/2@\(1+6(i))/2ac mod FT}“.

Proof. Consider

THEF QAT (E + Q)
)\(E(J D/2g\A+e@)/20e )\(E(J D/2E\+e@)/2 0, (3.3)
= AEDDRENOHDI 20 4 NED=DRENF20¢ mod TP

Using the second part of Proposition [3.2.1| we get

)\(E(j)_l)/z()\(s(j)fl)/2g)\(1+s1 /ZO‘C) A\(+e()/2 :)\(E(j)—1)/22)\(1%(1'))/2@6

As NEWD=D2ENU+@)/20¢ € ¢ ;. it follows that

/\(E(j)—1)/22)\(1+5(i))/2a€‘ + )\(E(j)—l)/QZ)\(l"‘E /2a§ c me, (3.4)
Comparing (3.3) and (3.4]) we get the required inclusions. ]

Clearly, a similar proposition can be stated for the left-hand side of (I'2’).

An important example of a form net of ideals is a constant form net of ideals. Pick a
form ideal (J,(2) and define o;; = J whenever i # j and I'; = QA=O=1/2 Then (o,T)
is an exact form net of ideals over (R, A). If we additionally set o;; = R then we get an
exact form D-net. Another important example of a form net of ideals is provided by the
following proposition.
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Proposition 3.2.3. Let (0,I') be an ezact form D-net of ideals and (J,2) be a form
ideal with maximal relative form parameter, i.e. Q= JNA. For each i,j € I set

j j
Then (o + J,I' + Q) is an ezact form D-net of ideals.

Proof. 1t’s easy to see that (o + J) is a unitary net of ideals. Considering the corre-
sponding minimal form parameter it’s easy to see that

0 (g + J) = {a — NCEODRGAO=/2 | o c g, 4+ T}
=M (g) + {a —al\ | a € JINTEO-D/2 < pming ) 4 Qminy (=e()-1)/2,
Similarly we get
Do+ J) = (0i—i+ J) N A = TP (o) + QuN=O=072,

It’s also easy to see that (I' + 2); is an additive subgroup for any ¢ € I. Therefore
condition (I'1) is fulfilled for I' + 2. Now we will check the condition (I'2"). Pick any
£€dj+(c+J); and any o € (I'+Q);. Then there exist elements & in 6;; + 05, & in
J, aq in T and ag € QAEO-1/2 quch that € = & + & and @ = a; + ay.

Note that for any 8 € A7** the following formula holds:

B = —\E@D/2g)\E0)-1)/2. (3.5)

in particular (3.5)) holds for a; and asy. As we have mentioned prior to the proposition,
any form ideal defines to a constant form D-net of ideals, in particular the relation (I'2')
holds for the constant D-net of ideals corresponding to the form ideal (R, A). Therefore

we get the inclusion
CAj)\(e(j)_1)/25/\(1‘5(j))/2 < A,

for any ¢ € R and as A; = A;AEO)==@)/2 it follows that
CA].)\(E(J')*l)/QZ)\(lfs(i))/2 < A, (3.6)
Consider the equality
CaNCDD2ENA—/2 — (¢ 4 &)(ag + an)AEDD2(E 4 G)AI—=0)/2, (3.7)
Expanding the brackets in (3.7)) we get eight terms of the form
£, \EDD/2E (=<2, (3.8)

where p,q,h € {1,2}. The term corresponding to p = ¢ = h = 1 is contained
in I'; < (' + Q); by the relation (I'?") for the form net (o,I"). If p = h and at least
one of the indices p,q or h is equal to 2, the corresponding term (3.8)) is contained in
AN T < (T'+Q); by the relation (3.6]).
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Finally if p # h, by (3.5) we can see that

£, NCDDE N2 4 g, o \EG-D/2E \(=e)/2 _
(eG)=1)/28 \(1=2(0)/2 _ \(~e()=1)/2¢ o, \(()=1)/2g \(1-e(0))/2 ) (1-e(0)),/2
€0\ 129 A €00\ En\ A

cIn(J) < Q,,

where I'™(.J) stands for the minimal i’th form parameter for the constant form net
with all off-diagonal ideals equal to J. Therefore the term is contained in (I' + §2);
whenever p # h. Summing up, is contained in (I" 4+ Q); and thus (o + [,['+ ) is
indeed a form D-net of ideals over (R, A). It’s easy to check that it is exact. O

The last important example of a form net of ideals which we would like to mention is
the form net of ideals corresponding to an equivalence relation. Fix a unitary equivalence
relation v and set

R ifin i A, if i~ —i
Uz‘j—{ yiti~ g Fi—{ if 4 i

0 , otherwise 0 otherwise |
Then the pair (o,1") is a form net of ideals over (R, A). We will denote this net by

V()

Introduce a partial ordering on the set of all form nets of ideals of a given rank over
(R, A) by setting (o', 1) < (0", 1) if and only if for all 4,j € I the inclusions oj; < o7
and I"; < T hold. Call a form net of ideals (o,I") major with respect to an equivalence
relation v if [V](ga) < (0,T). If (0,I") is a major form net of ideals and and h(v) > (4,0)
then o; ; = R and I'; = A; for all ¢ € I. For convenience, given an element £ € R and
indices s and r we will write

€€ (0,1
if £ € 0, when 7 # —s and £ € I'y when r = —s. Call an elementary unitary matrix
T (&) (o,T)-elementary if £ € (0,14

We finish this subsection with a proposition which can informally be stated as follows:
if a form net of ideals is major with respect to an equivalence relation with sufficiently
big blocks, then it is partitioned into rectangular blocks in which all ideals are equal and
all form parameters are equal up to a multiplication by a power of A. The proof is left
as an exercise using the elementary relations.

Proposition 3.2.4. Assume h(v) > (4,3). Let (o,1") be an exact major form net of
ideals over (R, A\). Then for all i ~ j and any k € I the equalities

1. Oik = Ojk and Oki = Okj

2. Ty\E@=()/2 = \((®O—<G)/2D, = r;.

hold.

64



Form net subgroups. Given a form net of ideals (o, [') we can define the following two
subgroups of U(2n, R, A). Call

U(o,I') ={g € U@2n,R,A) | gij = 6;; mod 0y;,5;_i(g) € I'; for all 4,5 € I}.
the form net subgroup of level (o,T") and
EU(0,T") = (T;;(§), Ti—i(a) | i # £4,€ € 045, € T) .

the elementary form net subgroup of level (o,T").
If (0,') = [V](r,n) for some equivalence relation v, we will denote the corresponding
elementary form net subgroup EU(o,T") by

EU(v, R, A)

and call it the elementary block-diagonal subgroup of type v.
We still have to prove that U(o, ') is a group. It’s clear that

U(o) =U(2n,R,A)NGL(0) ={g € U2n, R,A) | g;j =6;;; mod oy, for all 4,5 € I'}

is a group because U(2n, R, A) and GL(0) are subgroups of GL(2n, R). Therefore it
only remains to prove that for any a,b € U(c,I') the inclusions S; _;(ab) € I'; and
S@,i(a_l) € I'; hold for any i € I. The next proposition allows us to compute the length
of a row of a product of two matrices. This is a standard computation and it was done
in a slightly weaker form by Dybkova in [Dyb04]. In fact, Lemma 1 therein is precisely
the second conclusion of Proposition below.

Proposition 3.2.5. Let a and b be elements of U(2n, R,A). Then for any i € I the
equality

Si—i(ab) = S; _i(a) + Z aikSk:,—k(b)a,—k,—z‘
k

— > (@b b pa; ;= AT (b b a JACE?)

7,k,01>0

— > ((@ikbopjjpap = ATCEOT 2y by b JAEE2)
k,j>0;l>k

+ (aapbi, by g0ty = AT a0l AT,

holds. In particular, if (o,T) is a form net of ideals which is not necessarily exact of a

D-net over (R,A) and a,b € U(o), then

Si,_i(ab) = Si,_i(a) + Z aiksk,—k(b)aikﬁi mod Finin. (39)
k

Finally, if a,b € U(o,T'), then ab,a™ € U(o,T).
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Proof. We start from the following simple but useful observation. Let i, j, k,l € I. Then

aipbigblya) _; = N"EOT (g, by b P k7_i))\(1*5("))/2. (3.10)

This equality directly follows from condition (1) in Lemma and the definition of
an involution with symmetry. By definition of the length of a row we get

Siilab) =3 (ab)iy(ab)s_ = SN apbyibya; .

>0 i>0 kil

Collect the summands corresponding to the four different combinations of the signs of
the indices k and [, rewrite them in a way such that all the sums are taken over positive
indices and group them in the following way:

Si-ilab) = > (awby;bai _ + ai kb b 0’ )+

3,k 1>0

+ Z (aiﬁkb,k’jb;-la;ﬁi + aikbkjb;-ﬁla'flﬁi). (311)
7,k,01>0

Denote the first sum in (3.11) by X and the second by Y. We will first simplify X.
Recall that Zj bijy = O Using |3.10 we get

X = Z Z aikbrbya)

k>0 jel
— > (aabp b jya; = N 2 a0 GO
Gk >0 (3.12)
= Si,_i(a)
— > (awbp b ja; = NI (b 00 GNP,
3,k,1>0

Now consider the summand Y. We group together the summands of Y such that
Il >k, Il =Fkand!l < k to obtain three summands. In the last summand we swap the
indices [ and k. Finally we join the first and last summands together. Summing up,

Y =) 0 (a5 -kboigbyay  + ai by ah, )

4,k>0 1>k
/ ! / /
+ (aikbkjbj,_za—z,—i + ailbljbj,—ka—k,—i)) (3'13)
/ / / /
+ E (Gi,—kb—k,jbjkak,—z’ + aikbkjbj,—ka—k,—i)'
4,k>0

Denote the first sum in (3.13)) by Z and the second by W. Clearly

W= Z ik (Z bkjb;',—k> a_y_; = Z i Sk,—k(b)a 4, ;. (3.14)
k k

7>0
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Simplify Z as follows.

Z =3 ((aisborya) _; + ai b ;b )

Jk>0 1>k
+ (aimbisb ja_y _; + anbyb; _pa’y ;)

= (by (3.10))
DD (i kbokbyai s + aibib_ya’, )

k>0 jel 1>k
- Z Z((ai,—kb—/ﬁ—jb/—j,la;,—i_
k,7>0 1>k
_ /\_(a(iHl)/Q(ai,—kbk,_jblj,laﬁy,i)A(l_g(i))m) (3.15)
+ (aigbr, b5 _galy g = ATEO R ag by bl A2
= (because Z biill = Orat)
jel
- Z Z((airk‘b—krjb/—j,lag,—i_
k,j>0 I>k

_ A/ JA(=<)/2)

iﬁkbkﬁjb/—j,za;,—i
a’y _;— Ai(s(ml)/z(aikbk,fjb'_j,_zal_z,_i))\(176@))/2))-

+ (aikbk,—jb/,jy,l

Combining the equalities (3.11)), (3.12)), (3.13)), (3.15) and we get the first part
of the lemma. The second part follows from the definition of I'™" and the fact that
a,b € U(o). It follows form that if a,b € U(o,I") then their product ab is also in
U(o,T'). Finally it’s obvious that e € U(c,T"). Therefore if a € U(o,T") then we get

0= SL,@'(B) = Si,,i(afl . CL) = Si,,i(afl) -+ Z a;k5k7,k(a)a,k,,i = Si,,i(afl) mod FZ
k

Therefore S; _;(a™') € T; for all i € I. O
We will often be interested in the following corollary of the last lemma.

Corollary 3.2.6. Let (0,1") be a form net of ideals over R, that is not necessarily exact
or a D-net. Let a be a matriz in U(o) and T,,(€) a short (o,I')-elementary unitary
matriz. Then the following congruences hold modulo T™":

Si,—i(a)u if @ 7’£ b, —q
1. 8i-i(Tpe(§)a) = Spp(a) + ESy o (a)NEDDZENA==WN2 - jf i = p

S (@) + NED-DZENI0D2G ()¢ ifi— —q.
2. Si—i(aT,y(§)) = Si—i(a) forallie .

y SiiaTy(€)a™) = a8, g(a” N DN 2y

7p777'

+ ai’7q)\(€(q)*1)/25)\(1*€(p))/2571)4’(afl)ga;ﬁi_
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Given a morphism ¢ : ((Ry,7, A1), A1) = ((R2, ™, \2), Ag) of form rings and a form
net of ideals (o, ") we define the image under ¢ of the form net of ideals (o,1") to be a
pair (7, B), where 7 is a 2n X 2n array with entries

Tij = (0ij)
and B is a 2n column with entries

It is easy to see that an image of a form net of ideals is a form net of ideals. The
following proposition shows how form net subgroups are transformed by unitary group
morphisms induced by form ring morphisms. We leave it without a proof.

Proposition 3.2.7. Let ¢ : ((R1,~, A1), A1) = ((R2, ™, A2), Aa) be a morphism of form
rings. Let (0,T') be a form net of ideals over (Ry,A1). Let (1, B) denote the form net of
ideals over (Ry, Ay) defined by applying ¢ to (o,1"). Then

1. (1,B) is a form net of ideals over (¢(Ry),p(A1))

2. if (o,1) is an exact or D- form net, then (1,B) is an exact or D- form net,
respectively.

3. M(¢)(U(o,T')) = U(r, B)
4. M(¢)(EU(0,T1") = EU(T, B).

Description of the transporter In this paragraph we will prove Theorem [2] The
following proposition will allow computing lengths of root elements corresponding to
matrices which satisfy property (T1).

Proposition 3.2.8. Let (0,I') be an exact form D-net of ideals over (R,A) and a an
element of U(2n, R, \) that satisfies property (T1) of Theorem[d, namely:

/
;00 < Oy

for alli,j,k,l € I. Then for any matriz g € U(o,') and any index i € I the following
congruence holds modulo T™" :

S;_i(aga™) = Z @ik <5k7_k(g) + Sp_rla™) + ngtst,_t(a_l)g’_t’_k> a ;.

kel tel
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Proof. By Proposition |3.2.5| we have
Si_i(aga™) = S; _(a) + Z aieSk,—r(ga " )a_, _;

kel

— Z <az‘k(ga_1)k7—j(ga_l)/fj,lagﬁi

7,k,01>0

—M-E@-”/?<az~k<ga—1>k,_j<ga—1>'_j,la;,_i>A<1—€<i>>/2)
-2 Z((az oo™ ilga ™)l (3.16)

7,k>0 >k

- A /2( i,—k(gail)—k,—j(gail)Lj,la;ﬁi))\(l_a(i))/?>
+ <aik(gail)k,fj(gail)l_jy_lal_h_i

- AC /2(ak(ga Yk—i(ga™ )_j la_l Z))\(l—E(i))/2>>'

Consider the expression ag(ga™")r,—;(ga™")";,a; ;. By property (T1) we get

ai(ga e—i(ga™) 5.0 = (angipal, ;) a—jqguai ;) € 0i—jo_j—i < 0i ;.
p,qel

Therefore the whole term
a(ga e _s(ga")ap s — AEOV2(aglga ), (ga 1), al )AL=

of the second sum in (3.16)) is contained in I'™". For the same reason, the third sum in
(3.16)) is also contained in I'™™ and (3.16]) can be rewritten as follows:

Si,_i(aga_l) = Si,_i(a) + Z aikSh_k(ga_l)aLkﬁi mod anin'

kel

By Proposition [3.2.5| we obtain

Si—ilaga™) = 8; i(a) + ) (aiksk,k<g)a/—k,—i

kel

-1 / / / /
—I—E Qi Gkt St,—(a@ )g_t,_ka_k,_i— E ik <gk:tat,_ja—j,lgl7_k

tel 4,61>0

_)\(=k)-1)/2 (gkta;fja—j,lgl/,_k)A(l_a(k))/Q) al—k,—i

- Z Zaik ((gk,fta/,t,,jafj,lgz,fk (3.17)

t,7>0 1>t

A2 T g ) A(ke(k)m)

!/ /
+ <gktat,fja—j,—lg—l,fk

—)\(_E(k)_l)/Z(gktaé,_ja—j,—lglfl,fk)A(l_e(k))/2>> a/_k’_i> )
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Note that
(aikgktagﬁjx *Jlgl _pal k—i) < Oi—i

and

agp AW )/2(gktag,—ja*j,lgll,—k)A(lie(k)walfk — =
)\(—6(1')—1)/2(

azkgk:tat_] _Jlgl ka’—k 1))\(1 e(1)/2.

Therefore the whole term

)\(*E(k)*l)/Q ))\(1 e(k)) /2)

/ / / /
ik (gktat,—ja*j}lgl,—k - IktQy _jA—519) a_f,—i

of (3.17)) is contained in T, For the same reason the terms of the third sum in (3.17)
are also contained in I'™™. Thus we can rewrite (3.17) as follows

Si—ilaga™) = S i(a) + Y anSk r(9)a’y

kel

, (3.18)
+ Z aikgktst’_t(a_l)g/_t7_ka/_k7_i mod F?nn.
kel
Apply (3.18) to the special case when g = e:
0= Si7_i(d . a_l) = S@_i(a) + Z aikSk,_k(a_l)a'_h_i mod Pznin. (319)
kel
Note that
_ a) = Zaija;_i € Zaijajja;_i S O'i,fi
kel kel

and, as a € U(2n, R, A), it follows that S; _;(a) € A"**. Therefore S; _;(a) € I'"™*. By
Proposition it follows that 25; _;(a) € T'™". Hence, we can rewrite ([3.19) as

Zaszk _w(a™)d " i mod F;“i“. (3.20)
kel

Substituting (3.20)) into (3.18]) we get the required congruence

Si—i(aga™") Zazk (Sk —i(g) 4 Sk—i( +ngt5t (Mg, k)a’k i

kel tel

for all possible indices i, k,t € 1. O

Proof of Theorem [2l Let N denote the set of all matrices in U(2n, R, A) satisfying
conditions (T1)—(T3). It’s easy to see that N < Nyn,ra)(U(o,T)). Indeed, pick any
g € U(o,T") and a € N. By condition (T1) it follows that

(agail)ij = Z aipgpqa;j < Z aipapqa;j < 0y (3.21)

p,q€l p,g€l
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for all indices 7 and j. Applying Proposition to the matrix a and an element g of
U(o,T') we get the following congruence modulo I';:

Si—i(aga 1 Zam (Sk —k(g) + Sk.—k(a 1)

kel

(3.22)
+ ngtst —t 9 t, k) al_;ﬁ_i-
tel

By property (T3) it follows that
aikSk,-k(9)a’y _; < aplra’,, _; < T (3.23)

By property (T2) it follows that

az‘kgktst,—t(a_l)gl_t,_ka’_k,_i =
. . 5 (3.24)
aikgktSt,_t(a ))\(E() g t)\ k))/ a_p _; eI,
As 1 € oy, by property (T2) we get

aikSkv_k(a_l) = Ak 1. Sk’_k(a_l))\(a(k /21>\ (1= )/2CL/ —k,—i € Fz (325)

Combining (3.22)), (3.23)), (3.24) and we get the inclusion S; _;(aga™") € T; for all
¢ € 1. This together with allows us to conclude that aga™' € U(o,T') whenever
a € N and g € U(0,T") Therefore N < Nyan,za)(U(o,T)).

Now we will show that Transpy s, g a)(EU(0,I'),U(0,T')) < N. Fix an element a of
Transpy o, g a)(EU(0,T'), U(o,T')) and a short (o, I')-elementary unitary matrix T, (§).
By definition of the transporter

Oij + @is€ay; — ai,_,,/\(E(T)_1)/25)\(1_6(5))/2@'_51]» = (aT(&)a ™)y € 0y (3.26)
foralli,j € I. If T, ,(«) is a long (o, I')-elementary unitary matrix then
8ij + i —rua_, ; = (aT_,,(@)a™ ")y € 03 (3.27)
If 7,4(¢) is another short (o, I')-elementary unitary matrix then

(61'3‘ + aisga;j — ai,_r)\( () /25)\(1 e(s))/2,, ,—53)

+(5ZJ + airca;j — ai’_t)\(s(t)—l)/QZ/\(l—s r /20,_7;3‘) + aisgcatj o ij (328)
= (aTo(§)Tw(C)a™ )y € 03

for all 7,5 € I. Similarly we have

(5U + g, Taa—Tj) ((51] + airca;j - aiv*t)\(g(t)_1)/22)\(1_E(T))/2al—raj)
+ az'7_TOé€CL2j - (5@‘ (329)
= (anr,r<04)Trt(<>ail)ij € 0yj
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for all 7,7 € I. Comparing with we conclude that
aisgga;j = (aTsr(f)Trt(C)a_l)ij - (a’Tsr<§)a_1)ij - (aTrt(C)G_l)z‘j - 5z‘j € 0ij.
Therefore due to the arbitrary choice of £ and (,
UisOsr Oy < 03 (3.30)

for all 4,5 € I and all s,r,t € I such that s # +r, £t and r # +¢. Similarly comparing

with and we get
ai,—raCay; = (AT, () Te(Qa™)yj — (aT-(a)a™)ij — (aTre(Q)a™)yj — 6y € 03
for all 7,5 € I and varying ¢ and a we get the inclusion
i, Loy € 0y (3.31)

for all 7,j € I and all r,¢t € I such that r # +t. Exactly in the same way we get the
inclusions
aisfsa,s,ta;j S 0354 (332)

for the same indices as in (3.31)) We are ready to show that the condition (T1) is fulfilled
for the matrix a. First, let s # +t. Assume, there exists another index r ~ t such that
r # £s,+t. In this case oy = 0. R = 04 R = 0404 By (3.30) it follows that

/ /
aisastat]’ = aisasrartat]‘ < 04

for all ¢, 5 € I. The only situation when we fail to find an index r as described above is
when the equivalence class of t is precisely {£s,£t}. In this case by assumption of the
theorem we have RA + AR = R. It’s easy to see that the last condition is equivalent to
RA_;+AsR = R Therefore 0yy = R= RA_,+AsR=R=0,__;+I';0_s;. Combining
with we get

/ / /
QisO sty < aisas,ftrftatj + aisfsa,s,tatj < Oij

for all 4, j € I. Therefore a;s04a;; < 0y whenever s # +t. If s = £t then there exists
an index r ~ t such that r # +s and we get

/ /! !/ !/
WisTtly = WisOsp - 1 Oty = Y (ais05ay,)(apomay; < oy
pel

for all ¢ and j in I. Summing up, the matrix a satisfies property (T1).
Pick a short (o, I')-elementary unitary matrix 7}, (§). By Proposition the follow-
ing congruence modulo ™" takes place:

Si_s(aTu(€)a)) = aijﬁsk,_k(a_l))\(E(k)_1)/25)\(1_6(j))/2a/*j’*" (3.33)
+ ;g AER D2 \(1—<())/2 S_jilaMeaj, ;.
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Pick a long (o, I')-elementary unitary matrix 7}, _;(c). By Proposition the congru-
ence

Si_i(aTy _p(a)a™) = agraay, i+
aikOéS—k,k((Z_l)A(_a(k)_1)/25>\(1_8(k))/2a/_k7_~ mod F;nin

(2

(3.34)

holds. Fix yet another short (o, I')-elementary unitary matrix Ty (¢). By Proposition
the following congruence modulo '™ holds:

S —i(aTji()Tia()a™") = ai€ Sy, g(a™ AW NI,
oy ACBD/ZEN 102 g ..( Yed,

+ aéSi—i(a” ))\( ©- 1/25)\1 W2 —k,—i (3.35)
+ a;  NEO-D2ZENA=RD2G (g™ Héay

+ ai;ECS) _l(a—l))\(E(l)—1)&&)\(1—6(3‘))/2&/_ )

g
Similarly considering a product of a short and a long elementary unitary matrix we get
by Proposition the following congruence modulo '™
Si—i(aTj(§) Tk (a)a™") = a;;ESk,—i(a _1)/\(E(k)_1)/25/\(1_€(j))/2a'_j,_i
+ ai,—k:A( 1>/2§A (1—e(y /QS ( —1>§a§f »
+ aijoza,k’,i -+ aikaS k k( ))\( &( 1)/2_)\ (1=e(k)) /20,/ k,—i
+ CLiijéS,kvk(CLil))\( /2506)\ (1-2( /2 ! i
Denote the left-hand side of (T2) by X (). By Proposition we have X (¢ +() =

X (&) + X(¢) mod I'™n. Therefore it is enough to check property (T2) for some set of
additive generators of the ideal 0.

Recall that a € Transpys, g a)(EU(0,T'),U(e,T')) Comparing (3.35)) with (3-33) we
get the inclusion

(3.36)

a3€CS, i(a”YANEOTVRENUIR e Ty (3.37)

—j,—1
for all ¢ € I, all j, k, l e I such that j # +k,xl, k # £l and all £ € 0, and ¢ € oy.
Similarly comparing (3.36]) with ( and - we get the inclusion

az-jéozsfk,k(a*w TOREAITEI e Ty (3.38)

for all i € I and all j, k € I such that j # £k and all £ € 0, and « € I';. Similarly we
get the inclusion

a0 S_p(a” HANTER DNy e Ty (3.39)

for all 7 € I and all j,k € I such that j # £k and alla € I'; and £ € 0_; _.

We are ready to check property (T2) for the matrix a. Fix two indices j,1 € I such
that j # £l. If there exists an index k ~ [ such that £ # £jm £ [ then 0 = 0,05 and
furthermore the inclusion (T2)

aijé-Sl,fl(ail))\(E(l)71)/22)\(176(‘7'))/20//,' =y

7,1
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for any ¢ and any £ € o0 is given by together with Proposition If we fail to
find the index k as above then it follows that the equivalence class of [ consists precisely
of four elements {£j, +{}. Therefore RA+ AR = R. Hence 0j; = 0; 4I'_;+T';o_;; and
the inclusion (T2)

aijé-Sl,fl(ail))\(E(l)71)/25)\(176(]'))/20//73-’77: el

for all i € I and £ € 0;; is obtained as a combination of (3.38]) and (3.39).
If 7 = 41 then there exists an index k ~ j such that k # +j and thus k£ # +[. Then
01 = 0jx0y. Pick any & € o, and any & € oy;. Consider

aij§1§251,71 (afl)>\(€(l)*1)/2@>\(176(J’))/2a/7j7

—1

=a;;&1 (Z aﬁepapk) &8 _1(a”YANED-D/2g, \(1-<(k)/2

pel

« (Z " kqaq,_k> AE-D/ZE \A=e)/2g (3.40)

qel

= 3 (aubaaly )apoSi (™ HACO D)2

p,qel

x g (ag G AW D2ENA-O2 )
Denote the summand of the right-hand side of (3.40) by Y'(p,q). It’s easy to see that
Y(p,—p) € I'; for all p € I. Indeed, we have already proved that

apkaSz,—z(a_l))\(s(l)_1)/25_2>\(1_€(k))/2a/_k,_p cT,
for all p. Note that a;;&1ay, € 04 and

(AW \ (122

—J,—t

= )\(5(”)_1)/2(aijfla;p))\(l_e(i))/g.

Therefore by relation (I'2') it follows that Y (p, —p) is indeed contained in T';. Tt’s clear
that Y (p,q) € o, _; for all p,q € I. It’s easy to see that Y (p,q) + Y (—q, —p) € T™" for
all p,q € I. Therefore

YY) =D Y,—p)+ > (Y(p,g)+Y(—¢,—p)) €T

Therefore property (T2) holds for the matrix a for all possible indices. Combining (T2)
with (3.34)) we get property (T3) for all 4,5 € I. Therefore

TranspU(%’R’A)(EU(U, I'),U(e,T")) < N.

It’s only left to notice that, as Transp is contravariant in the first variable, it follows
that

NU(2n,R,A) (U(U7 F)) = TranSpU(Qn,R,A) (U(U7 F)7 U(Uv F))
< TranSpU(Qn,R,A) (EU(O-’ F)7 U(Ua P)) <N.
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Form net associated with a subgroup Fix a subgroup H of U(2n, R, A). An exact
form net of ideals (o, I') is called the form net of ideals associated with H if Ep(o,T') < H
and if for any exact form net of ideals (¢/,I") such that Ep(o’,I") < H it follows that
(o', T") < (0,T"). It is obvious, that if a form net of ideals associated with H exists then
it is unique. The following lemma shows that it exists whenever H contains EU(v, R, A)

and h(v) > (4,3).
Lemma 3.2.9. Assume h(v) > (4,3). Let H be a subgroup of U(2n, R, \) such that
EU(v,R,A) < H. Set

0y = {€ € R| Ty(€) € HY for alli # +;

Fi = {Oé c Al ’ 11@'771'(@) S H} fO’F allv el

04— = Z 04504, —i + <Fl> fO?" all 1 € 1.
jAEi

Then (o,T") is the form net of ideals associated with H.

Proof. By the elementary relation (EU2) it follows that o;; and I'; are additive subgroups
for all 4,7 € I. We will show that o;; is a two-sided ideal for all ¢,j € I. Indeed, take
three indices 4, j, k € I such that ¢ # 5, £k and j # +k and any £ € 0;;,( € 0jz. Then
by the elementary relation (EU4) we get

Tin(§6) = [T35(8), Tir(C)] € H.
In other words

0ij0k < 04, whenever i # +j, £k and j # £k. (3.42)

If i ~ j, then 0;; = R is obviously a two-sided ideal. By definition, o0;_; is also a
two-sided ideal. Assume i » j and i # 5. As h(r) > (4,3), there exists another index
k ~ j such that k # 4, £j. Then o, = o3; = R and by (3.42)) we get

oy R = 0505, < oy < oy R = ooy < 045,

Therefore o5 is a right ideal. Similarly, 0;; is a left ideal and, consequently, a two-sided
ideal.
Now we will prove that
Fia—i,j S Oij (343)

for all 4,7 € I. If i ~ j this inclusion (3.43) is trivial. The inclusion (3.43) for i = —j

follows from the following obvious observation:
Fio'—i,j == PZR S 04—

Assume 7 » j and i # —j. Pick any ao € I'; and { € 0_; ;. According to the elementary
relation (EU6) we have

&= Ty(a€)T-;4(8) = [T (), Ty (©)] < A,
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where 3 = —AEW=D/2EN0+@)/20¢ is an element of A_;. If j ~ —j then T, ;(3) € H
for all § € I'_;. Therefore T;;(af) € H. If j » —j then there exists an index k ~ i such
that k # +i, +7. In this case by the elementary relation (EU4) we have

Tij(ag) = [Tix(1), [Thi(1), 2]] € H.

Therefore a§ € 0;;. This completes the proof of the inclusion (3.43) for all ¢,j € I.
Assume i # +j. Combing (EU6) and ([3.43|) we have

/\(e(j)—1)/25/\(1+6(i))/2ri§ <T; (3.44)
for all £ € 0_; ;. Indeed, in this situation by (EU6) we get
Tj(a) T ;(NEDDEENTFHDag) = [T, i(a), T-,(¢)] € H (3.45)

whenever a € I';. By the first term of the left-hand side of is also in H.

The inclusion I'™® < T'; follows from the relation (EU5). Indeed, fix an index i € I.
As I, is an additive subgroup, it’s enough to prove that o — \~(1+e@)/2g\(1—-=®)/2 ¢ T,
only for o in some set generating o; _; as an additive subgroup. First, take o of the form
€C, where € € 05 and ¢ € 0, _; for some j # +i. By (EU5) we get

T, il = OO EGAI02) — [T,(6), T3 (0)] € H.

Now let a be an additive generator of (I';)p, i.e. a = &B& for some 6 E I'; and
£1,& 6 R. Pick any index j ~ i such that j # £i. Then 1 € 0_; _; and by ((3.44)) we get
Ne@=()/23 ¢ \(E@==(0))/2T, < F As & € o0_j_;, by (3.43] - we get AE0)- j) 12B€, <
Tjo_j_; < o;_; Finally, as §AE0=0)/2 ¢ R = g, it follows by (EU5) that

T;_i(a — )\—(1+a(i))/25)\(1—8(%'))/2) T; (51 )/2) 7}7_1'(/\(5(")_5(]'))/2552)] c H.

Therefore all additive generators of I'™™ are contained in I';, Thus ™" < T; for all
1€ 1.

Now we will prove that o0, < oy for all 4,5,k € I. We have already proved (see
(3.42) these inclusions whenever i # +j, +k and j # +k. If i ~ k then 0;, = R and the
inclusion o005, < oy is trivial. The inclusion corresponding to the case when k = —i
follows from the definition of o; ;. Assume k ~ i, k # +i. If j = k or i = j then the
corresponding inclusion 0;;0;; < oy, is equivalent to the fact that each o;; is a two-sided
ideal. Therefore it only remains to consider two possibilities. The first one is that i = —j
and k # =£i. The second one is that j = —k and i # £k. We will only consider the first
one. The second one can be treated similarly. Observe that

Oi—i0_i) = E 0101, —i0—i + (L) 0_; k.
IA+i

By (3.43) we know that (I';) o0_; . < oy, Moreover for each | # +i, £k we already know
that o0, _ij0_;r < 04, Finally, for | = k oy,05 —i0_; ) < 0i as oy, is an ideal. We are
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only left to prove that o; _ro_j _i0_; < 0. As k » ¢ there exists another index ¢ ~ k
such that ¢t # +k, +i. Then

Oy kO —k—iO i < O 1Ok —i0 ik Okt < O3 kO k0 it < 04 kO gy < Oy
Therefore 0, _jo0_; < 0y < o0tk < 0y, Thus we have proven the inclusion
0ij0jk < Ok

for all ¢, 5,k € I.
Now we will prove the inclusion (I'2). We have already checked (see (3.44)) these

inclusions for all ¢+ # £j. Let j € {%i}. Fix some £ € 0_; ;. There exists an index k ~ i
such that k # =+i. Then £ € 0_;, and by (3.44) we get

NER=D/2g\U=@)2p e < T, (3.46)
As 1 € oy, by we get
NEW=e®)2p < r,. (3.47)
Combining and we get

ACG)=D/2EN(1=2)/2D, = \E)=<(W)/2)\(ER)-D/ZE\1-2)/2[ ¢ < T_.

Therefore, the inclusions (I'2) hold for all 4,5 € I.

Notice that the inclusion I'; < I'}"® is obvious by . The condition 0;; =0_; _;
follows obviously from (EU1) whenever j # +i and is trivial when i = j. Finally, if
j = —i there exists another index k ~ i such that k # +¢. Then

Oi—i S OkiOi—j < O S OO i < 044
and thus o, _; = o, —;. Similarly o; _ = 0; _;. Thus
Oi—i = Of—i = Oj— = O —j-

Therefore (0,I") is a form net of ideals. It is clear that (o,I") is exact and major. By
definition, EU(c,T") < H. Finally, it is easy to see that for any exact form net of ideals
(¢o',I") such that EU(¢o’,I") < H it follows that (¢/,I") < (o,I"). This completes the
proof. O]

3.3 Standard setting

In this section we are going to introduce the concept of a standard setting. Let (R, A)
be an associative [unital] form ring and (R, A’) be a form subring of (R, A). Let S be
a multiplicative set in R’ (i.e. a multiplicatively closed set containing the identity) such
that S C R*NCenter(R)N{¢ € R | £ = ¢}. Assume that for every ¢ € R there exists an
element = € S such that 2§ € R and for every o € A there exists an elements x € S such
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that z?«a € A’. Then we call the triple ((R,A), (R',A"),S) a standard setting. In this
setting we will associate with a subgroup H < U(2n, R, A) such that EU(v, R,A) < H,
a form net of ideals (¢/,I") over (R, A’) and a form net of ideals (o, I") over (R, A) such
that EU(0,T") < H and (0,T") is S-related (in appropriate sense) with (o, I").

Let (0',I") be an exact form net of ideals of size 2n over (R',A’). For all indices
1,7 € I define the following subsets in R:

Uij:{£€R|E|$ES, .fL'fEO'Z/-j}

Ii={acA;|Fzes 2°acT}.
The pair (o,1") is called the S-closure of the form net (o', I") in the form ring (R, A).
We will show that (o,1") is an exact form D-net over (R, A).

Fix a subgroup H of U(2n, R,A). We say that a form net (¢/,I") over (R',A) is
S-associated with the subgroup H if the following two conditions are fulfilled:

1. EU(',I") < H

2. For any elementary unitary matrix T,.(§) contained in H there exists an element
x € S such that the inclusion z(!+-<)¢ € (o', T"),, holds.

Next we introduce a family of net-like objects defined by H. Under certain conditions
they become form nets of ideals over (R, A). For any g € U(2n, R, A) and any i # +j
set

o, ={{ € R|Jx €S, V0,€5T;x0¢) € H}

ol =R
IY={aech|IxeS VoeS, T, ;(x*0°a) € H} (3.48)
O-Z—i = Z O-igkzo-i,—i +(I'7),
ki

where the product afkai_i above is the additive subgroup generated by all products £,

where £ € 0f; and ¢ € ] ;.

The rest of this section directly follows the analogous results for the symplectic groups
presented in Section 2.1} A lot of these results translate to the current setting literally.
Freely speaking, all the computations involving only short elementary unitary matrices
remain unchanged.

For the rest of this section we fix a standard setting ((R,A), (R',A’),S), a unitary
equivalence relation v on our index set I and a subgroup H < U(2n, R, A).

Proposition 3.3.1. Let (o/,1") be an exact major form net of ideals over (R, \"). Let
(0,T") denote the S-closure of (o/,1") in (R,A). Then (o,T') is an exact major form net
of ideals over (R, \). Further, suppose h(v) > (4,3) and (o',1") is S-associated with H.
Then the form net of ideals (o,T') is coordinate-wise equal to (o€, T).

Proof. 1t’s clear that o;; = R whenever i ~ j and I'; = A; whenever ¢ ~ —i. We will
show that for all 7, j € I the sets 0;; and I'; are additive subgroups of R. Indeed, let £, ¢ €
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(0,T);;. Then there exist elements z,y in S such that z(1+%-:)¢ y(1H95-0¢ € (of TV),;.
As (¢o/,T") is a form net of ideals, it follows that (xy)+%-I¢ (xy)H5-I¢ € (0!, T7)y;.
Thus (zy)1+%-9(6+() € (¢/,1");;. Therefore £+ € (0,T);;. The remaining properties
of (0,I") as an exact form net of ideals can be deduced in the same way from the
corresponding properties of (o/,I").

Suppose h(v) > (4,3) and (0',1") is S-associated with the subgroup H. It’s obvious
that (0¢,1¢)i; < (0,1'); for all possible indices 7 and j. Thus also of ; < oy ; for all i.
The reverse inclusions are obtained in the following way. Fix some i ~ j and § € (o,I');;.
By definition, it means that there exists an element = € S such that Tj;(z(*%-)¢) € H.
If i # —j then, as h(v) > (4, 3), there exists another index k ~ j such that k # +7, +i.
Then T;,(0),T;;(1) € H for all € S. Therefore

T,y (w66) = [[T3(2€), T(0)], Ty (1)] € .

Hence, § € of;. If i = —j then there exists another index k ~ i such that k # +i. As
(o', T") is an exact form net of ideals, it follows by ProposMonthat Ne@—e(k)/2:2¢ ¢
[, _j- By relation (EU6) we have

Ty i (—ACOEON2L29O0T, i (220%€) = [Th_p(ACO=ED202) T (—0)] € H

for all § € S. If k ~ —i, then Ty _;(—=AEO==®/2220¢) ¢ H and therefore also
T;—i(2%60%¢) € H. If k = —i then there exists another index [ ~ k such that [ # +k, +i.
By (EU4)

T, —i(NED==0N2020¢) = [T3,(1), [T (1), [T,k (ANED=0N222) T, (0)]]] € H.

Therefore T; _;(2%6°¢) € H. Hence, £ € I'{. Summing up, (0,T);; < (o,T);; for all
i,j € I. Clearly o; _; < 0of ; by definition. This completes the proof. n

The following proposition shows that (c9,1'%) has at least those properties of exact

form nets of ideals which follow directly from the elementary relations. Given two subsets
Vi, Vo € R we will call the additive subgroup (£¢ | € € Vi,( € Vi) of R the Minkowsi
product of Vi and V5.

Proposition 3.3.2. Assume h(v) > (4,3). Let H be a subgroup of U(2n, R, A), g an
element of U(2n, R, A) and (09,19) as in (3.48). If [V](rn) < (09,19) then the following
inclusions hold:

(1) 0%, < af), for all i # +j, j # *k.

(2) Ffa*‘ii,k < o¥ and Ji_kFg_k <ol forallikel

(3) &¢ — A= 2eCNO—O/2 € T for all i # +j, £ € 0% and ¢ € of_;

(4) ANEW=D2E\A+e@2TIE < T9 - for all i # +k and € € Uii,k

(4) ETINEO-N2e\U=®)/2 < T for all i # +k and & € o,
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where the products are Minkowsk: products.

Proof. By the elementary relation (EU2), each of; and I'j; is an additive subgroup of R.

(1). The inclusion (1) for ¢ = %k is trivial by definition of o7,. Assume i # +k. Fix
an element § € of; and ¢ € o7,. By definition of (¢9,1'%) there exist elements x¢, z¢ € S
such that 97;;(zc0§), 9T, (xcC) € H for all § € S. By relation (EU4) we get

Tk (wewc0€C) = ["Ti(2ebS), “Tin(2cC)] € H

for all § € S. Therefore £¢ € o7,

(2) and (4). For ¢ = £k the inclusion (2) is trivial. Assume i # +k. We will show
that I'Jo?,, < o} as well as (4). The second inclusion in (2) and (4') are treated
similarly. Pick any a € T'Y and £ € o? ix- Then there exist elements z,,x¢ € S such
that 97; _;(22),9T_; 1 (2¢0€) € H for all § € S. By relation (EUG) we have

gTik(QJiQ@af)ng;{,k(—Jfgxi@z/\(e(k)71)/25/\(1%(@'))/2045)

= [97—;7_1‘(1’(210_/)7gT_ivk(xgeg)] c H. (349)

As h(v) > (4,3), either there exist another index | ~ ¢ such that | # =i, %k, or
v(i) = {xi,£k}. Assume the former. As 1 € R = o}, = o}, there exist elements
x1,x9 € S such that 9T} (x),9T(z2) € H. By (EU3), (EU4) and (3.49) combined we
get

ITi (22 wemizabal) = [PTy(x1), [PThi(xa), I T (22 webe) X
gT—k,k(—1'255292A(a(k)_1)/2@\(1+8(i))/2af)]] cH

for all # € S. This shows that af € o},. We can reformulate the last statement as
follows: 9T (z2z¢0a€) € H whenever 6 is a multiple of x1z5. Combined with (3.49)),
this yields the inclusion

gTihk(_xgxixlx292)\(E(k)*1)/25)\(1%(%'))/2065) cH

for all § € S. Thus —\EFR=D/2E\U+0)/20¢ ¢ T_;. Tt’s only left to recall that T'_y, is an
additive group.

Finally, if v(i) = {£4, £k} then o}, = R and the corresponding inclusions (2) and (4)
are trivial.

(3). Fix indices i # 47, an element ¢ € o}; and an element ¢ € of ;. By definition of
(09,19), there exist elements z¢, z¢ € S such that for all # € S the subgroup H contains
the elements 97};(x70€) and 9T} _;(x30C). By relation (EU5) we get

gTi’_i(xgxg@?(gg _ /\(—1—6(2'))/2§)\(1+6(i))/2)) - [gjﬂz,j@g@g),g]}’_i(xggo] cH

for all & € S. Therefore £ — A(T1=50)/2g¢\(H+2(@D)/2 ¢ T This proves the inclusions
(3). O
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Lemma 3.3.3. Assume h(v) > (4,3) and either h(v) > (6,3) or RA+ AR = R. Let
H be a subgroup of U(2n, R, A\) and (o,T") the S-closure of an major form net of ideals
(o', I") which is S-associated with H. Let g be an element of EU(o,T") and (09,19) as

in (3.48). Then
(09,19) = (o,T1). (3.50)

In particular, (69,19) is an exact major form net of ideals over (R, \).

Proof. We will prove this lemma via induction on the word length L(g) of ¢ in terms of
the generators of EU(o,T"). Proposition serves as a base of induction, namely it
shows that when L(g) =0, i.e. g = e, we get the equality (o,I") = (0, 1).

Before proving the induction step, we will prove a slightly stronger statement. Suppose
that g € EU(o,I') is such that (o,I') < (¢9,1). Fix an element 7,,(¢) of EU(0,I"). We
will show in this case that (09, T9) < (097(Q) T97%(Q) Note that, as (o,I') < (09,19),
it follows that ¢ € (09,1'9),,. Pick indices s # r € I and & € (09,1'),,. There exists an
element ¢ € S such that the inclusion 9T, (20"¢) € H holds for every 6 € R', where
k=14 65_,. For any z € S we have the following equality

ngq(C)Tsr(lﬁgmg) _ g[qu(C)7 Tsr(ffﬁgnf)] . QTST(xﬁeﬁg)_ (351)

Below we will construct an element xy such that after the substituting x = xq the

right-hand side of (3.51) is contained in H for all § € S. This will infer that £ €
(O—ngq (C)’ Fngq<O)sr

Clearly the second term of the right-hand side of (3.51)) is contained in H whenever
x is a multiple of z¢. The first term, which we will denote by h = h(f), requires a more
detailed investigation. Consider the following exhaustive list of alternatives:

1. p#r,—sand g # s,—r. According to the relation (EU3) we get h = e € H.

2. p # £q,s # *+r and one of the following options holds:
(i) s =q,r# +p
(ii) 7= —q,s # +p
(iii) s = —p,r # *q
(iv) —r = —p,s # *q.
In any of these cases, h is equal to a single short elementary unitary matrix. We

will consider only the first case. The other cases can be reduced to it using relations
(EU1) and (EU2). By relation (EU4) we have

h = Ty (26¢8).

By Proposition we get (€ € 0,09, < of.. Therefore there exists an element

prq-qr
x¢e € S such that h is in H whenever z is a multiple of z¢e. Put zo = xeace.

3. p # £q,s # *+r and one of the following options hold:

81



In any of these four cases h is a single long elementary unitary matrix. We will
consider only the first case. By relation (EU5) we get

h =Ty, (Cafe — N1==@D/2Tgg\1=2))/2)
~ T,y (9106~ XA 35
= [Tpg(yC), Ter(208)],

whenever © = yz. As ¢ € of,, there exists an element z¢ € S such that 97,,,(y() €
H whenever y is a multiple of z¢ in S. Put g = z¢x¢, y = 2¢, and z = x¢. Then

the equality (3.52)) shows that h(0) € H for all 0 € S.

4. p # +q,r = —s and either s = q or s = —p. Then h is a product of a long and a
short elementary unitary matrix. We will consider only the first option, s = ¢. By
relation (EU6') we get

h = 9T, _o(20¢E) T, —p(xOCENED DN —=wN/Z), (3.53)

By Proposition it follows that (¢ € o4 I'Y < o, _,. Therefore there exists
an element z.. € S such that the first term of the right-hand side of (3.53)) is
contained in H for all # € S whenever z is a multiple of z¢. As ¢ € of, and

5 € Fqg7 by Pl"OpOSitiOIl we ha\/e
—-1)/2 1— 2

Therefore there exists an element x¢¢¢ € S such that the second term of the right-
hand side of (3.53)) is contained in H for all § € S whenever x is a multiple of xc¢..
Put Ty = TeXcelgee-

5. ¢ = —p,s # *+r and either s = —p or r = p. In both cases h is a product of a long
and a short elementary unitary matrix. We will consider only the first option. By
relation (EU6) we get

h =911, (C), T-pr(20€)] =
= 9T, (20CE)T,, <x202(_)\(t’f('r)_l)/Qg)\(l—‘ra(p))/265)) ‘

By Proposition we have (£ € T90? . < 09, and

(3.54)

—AEM=D/2ENA+E)/2ce e T

Therefore there exist elements x¢¢, z¢ce € S such that the first term of the right-
hand side of (3.54) is contained in H for all # € S whenever x is a multiple of x¢
and the second term whenever x is a multiple of z¢ce. Put 29 = zexcerece.
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6. p # +q,s # *+r and either s = ¢,r = por s = —p,r = ¢. As usual, we will
only consider the first case. In this situation we can’t directly apply any of the
relations (EU3)-(EUG6). Therefore we have to decompose the elementary unitary
matrix T,,(xz6¢) into a product of other elementary unitary matrices, for which we
can compute the commutator with T,,(¢). This is precisely the place in our proof
where the condition, that either h(v) > (6,3) or RA+ AR = R is used.

Suppose there exists an index [ ~ p such that [ # £+p, £q. Then for any elements
x,y,z € S such that z = yz and any 6 € S we have by relation (EU4)

ngq(C)qu(xeé) — g[qu(C) (yef) qu(C)jjl ( )]

= I[Tpg(C), T (O T (y0E), [Tpg(C), Tip(2)| Tip(2)] (3.55)
= ["Tu(y0Cs) - T (y08), *Tig(—2C) - *Tip(2)].

Recall that (£ € R = pl, l1eR= alp By Proposition @ §€od, <ol R=
od,00 9 < ag and ¢ € of, < Roj, = al 09, < of,. Therefore there ex1st elements
Yo, 20 € S such that the right—hand side of is contained in H for all € S
whenever y is a multiple of yy and z is a multiple of zy. In this case we can put
Lo = Yozo-

The only case when we fail to choose an index [ as above is when the equivalence
class of p is precisely {£p, £¢}. By assumption, we have RA + AR = R. As \ is
invertible, it follows that RA_, + A;R = R. In particular, there exists a natural
number m and elements 7,1, € R and o; € A_,, o, € A, for all 1 < ¢ < m such
that £ = > ", (n;; + afn}). For the sake of clarity, we will assume m = 1, in other
words { = na + o'y’ for some o € A_,, o' € A; and 1,7’ € R. Assuming =z = yz,
by relations (EU2), (EU6) and (EU6') we have

ngq(C)qu(x9€> — gTPQ(C)qu(xena) . gTPQ(C)qu(xealfr]/)
= 9T ([T, (yOn), Ty p(2)]

Tqv_q(—y2z82n04/\(_1_6(p))/2ﬁ)\(1_€(‘1))/2) % (3.56)
[Ty —q(ya), T qp(2977')]
T (2 y92>\ 1)/27 A (1+e(9))/2 /77/>)

Observe that by cases (3) and (4) we have n € R = ag < ang‘Z(C), n € R =
0y = agqu(o acelA =17 < Fg »©) and of € Ay =T9 < Fg ( ), Finally, by

Proposition [3.3.2] we get

)\(a(p) 1)/277 //\ (1+e(q /2&/77/ c Fg < Fngq(C)

7704)\ —-1- E(19))/277/\(1 e(@)/2 ¢ Y < Fngq(C)
Summing up, there exist elements yo, 2o € S such that the right-hand side of (3.56))
is contained in H for all # € S whenever y is a multiple of yy and z is a multiple

of z5. Put o = ypz9. The case that m > 1 is treated similarly with the additional
help of relation (EU2).
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7. The last possible option is that ¢ = s = —p, and » = p. In this case we again have
to first decompose T_,, ,(z0¢). As h(v) > (4,3), there exists another index [ ~ p
such that | # +p. By relation (EU6) we get

ng,,p((j)T_p’p(xé)é') — 9Tp,—p(C) [T_u(_ygA(E(l)—s(P))/2§)’ ,-Tlp(z)] %

90O, (y2AEO-0)/2¢), (3.57)

whenever z = yz*. As{ €I jand 1 € oil, by Proposition together with cases
(1) and (5) above we get that \EO—=@)/2¢ ¢ T, FgT” A of, < 09Tn—r(¢)
and \EO==E)/2¢ € TY o o), <o’y < ag?” -+ Therefore we can choose elements

y and z in S Such that for all § € S the right-hand side of (§ is contained in
H. Put x = y2%

The induction step looks as follows. Assume that for all elements g € EU(0,T")
such that L(g) < Ly, the equality (2.5) holds. Let 7,,(¢) be an elementary unitary
matrix in EU(o,T") such that L(g - T,,4(()) = Lo + 1. Then, as we have proved above,
(09,T9) < (0974l T9%4C)) in particular (o,I) < (g9%4(©) 197%4(C)). For the same
reason

(O—QTM(O’ FgTPq(C)) < (O—Qqu(C)qu(_C)’ Fngq(Oqu(_C)) = (Og’ Fg)

Summing up, by induction we get the required equality (3.50) for all g € EU(0,I"). O

Corollary 3.3.4. Assume h(v) > (4,3) and either h(v) > (6,3) or RA+ AR = R. Let
H be a subgroup of U(2n, R,A\) and (0,T) the S-closure of an exact major form net of
ideals (o, 1") which is S-associated with H. Then for any finite family {T, ,,(&) Yier of
(o, ')-elementary unitary matrices and any finite family {g; }icx of elements of EU(o, )
there exists an element v € S such that

giTsj,rj((xe)(l—i_&sjﬁrj)gj) €H
forallie K;j5€ J andf € S.

Remark 3.3.5. Assume h(v) > (4,3), R = R and A = A’. Fix a subgroup H >
EU(v, R, A) of U(2n, R,A). Let (0,I") denote the form net of ideals associated with H
(cf. Lemma. It is clear that any form net of ideals S-associated with the subgroup
H coincides with (o,I"). Further the S-closure of any form net of ideals coincides with
the original form net of ideals. Finally, for any ¢ € EU(0,I') < H the net (¢9,1Y) by
definition coincides with (o,T). In this case Propositions [3.3.1] and [3.3.2] Lemma [3.3.3]
and Corollary are redundant.

3.4 Extraction of elementary matrices

In this section we extract elementary unitary matrices first using elements of small
parabolic subgroups and then using certain root elements. We generally follow the
scheme of proof of the analogous results for the classical symplectic group in Section
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2.2l Throughout this section we fix a standard setting ((R,A), (R, A’),S), a unitary
equivalence relation v on the index set I of size 2n, a subgroup H of U(2n, R, A) and
an exact major form net (¢/,I") which is S-associated with H. Let (o,I") denote the
S-closure of (¢/,I") in (R, A).

The results of this section rely on the conclusion of Lemma|3.3.3] We can ensure that
the conclusion of Lemma holds either by satisfying the hypotheses of Lemma |3.3.3
itself hold or using Remark [3.3.5] We will say that v is good for the standard setting
above if at least one of the following three options holds:

1. h(v) > (6,3)
2. h(v) > (4,3) and RA+AR=R
3. h(v) > (4,3) and (R,A) = (R, \).

Lemma 3.4.1. Let a be an element of U(2n, R, A) such that for some index p € I the
following conditions are satisfied

1 appy=a_p_p=1
2. a;; = 0;j whenever i # —p and j # p.
Then
0= ( 1T T_p,j<a_p,j>T_p,_j<a_p,_j>) Ty (Sop(a)) (3.58)

J>0,j#%p
Further, suppose v is good for the standard setting ((R,A), (R, \'),S) and there exists
an element g € EU(0,T") such that 9a € H. Then a € EU(o,T).

Proof. As a € EU(2n, R, A), it follows by Lemma that S_,,(a) € A;. Therefore
all the elementary unitary matrices on the right-hand side of are defined. The
equality can be verified by a direct matrix calculation.

Assume 9%a € H for some g € EU(0,I') and v is good for the standard setting
((R,A),(R',A"),S). Either by Lemma or by Remark we have (09,19) =
(0.1) = [V]ra).

Fix some j # *+p. We will show that 7", ;(a_,;) € 0_,;. If j ~ —p then, as
[V](ra) < (0,T), the inclusion T, ;(a—p;) € 0_p; is trivial. Assume, j = —p. Pick any
index k ~ j such that k # +j,+p. By Corollary there exists an element x; € S
such that 97}, (z10) € H for all § € H. By the elementary relations (EU1), (EU3) and
(EU4) we have

gT,p,k(xea,p7j)9T,p7,j(—)\(E(j)’e(k))/Qxa,p,,k) = a, Tjr(x0)] € H, (3.59)

whenever x is a multiple of z;.

Let b(6) denote the left-hand side of (3.59). By choice of z1, b(0) € H for all § € H
whenever x is a multiple of z;. If j ~ p then there exists an element x5 € S such that
the second term of b(#) is contained in H whenever x is a multiple of z5. Thus, the first
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term thereof is also contained in H for all # € S whenever x is a multiple of zyx5. In
this case we get a_,; € 0_ ;.

Assume j ~ +p. If the equivalence class of j is non-self-conjugate then there exists
yet another index [ ~ j ~ k such that [ # +j, +k, £p. By Corollary we can choose
an element x3 € S such that 97y (x3),97;;(x3) € H. Then substituting x = x; into b(6)
by (EU4) we get

T_pj(xrx30a_y,;) = [[b(F), T (xs), 9T (x3)] € H

forall@ € S. Thereforea_,; € 0_, ;. Finally, if the equivalence class of j is self-conjugate
then there exists an element x4 € S such that 9Ty _;(x4), 9T, k(z4), and 9T}, (x4) € H.
Again, substituting x = z; into b(f) and using (EU4) we get

T pj(wr130a_p;) = [[D(0), 9Tk (x4)], 9T j 1 (24)], 9 Thj(x4)] € H

for all € S. Summing up, we’ve proved that a_,; € o_,; for all j # £p. To prove
that a € EU(0,T") it only remains to show that 7_,,(S_,,(a)) € EU(co,T"). If —p ~ p
then I'_, = A_, and the required inclusion is trivial. Assume, p ~ —p. Set

n=4g H T_pj(ap;)Tp—j(a—p,—;)-
Jj>0,j#+p

Then ¢;T ,(S_pp(a))g™t =% € H and g;,g7* € EU(0,T). As p = —p, we can choose
two more indices ¢ and ¢ such that (p,q,t) is an A-type base triple. Pick an element
y1 € S such that 97,,(y10), 9 Tye(y10) € H for all § € S. Therefore

NPT q(Y0S—pp(a)) - Ty q(— 292)‘ (@<l )/QS—p,p(a)) I T (y0)
=Ty 5 (S—pp(a)), Tpg(y0)] - " Tq(y0) (3.60)
= (ngfp,p(Sfp,p(a))gil) (ngq(ye)gil) (ngp,p(_Sfp,p(a))gfl) .

The right-hand side and the third term of the left-hand side of (3.60)) are contained in

H whenever y is a multiple of y; in S. Therefore
T (0 pp(@)) - Ty (NG () e H  (3.61)

for all # € S whenever y is a multiple of y;. Pick y» € S such that 7., _,(y») and
NT 4 _p(y2) € H. By relations (EU3) and (EU4) we get

nT- pq(nyQSfp,p(a)) = [T t(y2), [Tt p(y2), " Tp o (YOS —p p(a)):

BT (—yreaE sy O

By the choice of y, together with we get that 97, (y8S_,,(a)) € H for all
6 € S whenever y is a multiple of y;y2. Combining this result with we get that
BT, (= 292)\ )==@)/28 | (a)) € H for all § € S whenever y is a multiple of y;y2.
Thus, —A( =(a) /QS_pyp(a) € I'_,. Finally, by Proposition[3.2.4)we have S_, ,(a) € T'_,,.
This completes the proof. n
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Lemma 3.4.2. Assume that v is good for the standard setting ((R,A), (R',\"),S). Let
(p,q) be an A-type base pair and a an element in U(2n, R, A) such that either a, _, =
€x—p OT Qpe = €. Suppose, there exist elements g1, g2 € EU(0,T") such that grag, € H.
Then a_q; € 0_q; for all j # p. If additionally a € U(o) then also S_,4(a) € I'_,.

Proof. Note that a, _, = a;ﬁp = ey_p and ap. = a;,* = epr. Choose using Corollary
3.3.4 an element = € S such that %7, _,(z) € H and consider the matrix
b=a"'T , 4(x)a=e+a, ,za_q.— a;q)\(s(p)_e(q))ﬂxap*

= e+ e pra_g, — d NP 250

It’s easy to see that b,, = b_,_, = 1, b;; = 0;; whenever i # —p and j # p and
b_p; = wa_q; whenever j # £p. Clearly

gglb = (gz_la_lgl_l) (ng—/p,—q@)gl_l) (91a92) € H.

By Lemma we get a_g; = tb_p; € 0_p; = 0y, for any j # +p and S_,,(b) €
r_,

Assume that a € U(o). Note that a,, = a’
[3.2.6] we have

p—p = 1Land S, ,(a) = 0. By Corollary

S_ () = a'_n_pxg_%q(a))\(6(—Q)—1)/25)\(1—6(—17))/2%17

+ al,p,q)\(e(_q)_1)/25)\(1_5(_7’))/251),_1)(a)xa_%p
=S, q(a))\(E(fq)*l)/2§>\(1*€(7p))/2 mod T'_,.

Therefore, x5_, ,(a)\ECD=V/2g\0==(=P)/2 ¢ T As 7z is invertible, by property (I'2)
we have also S_, ,(a) € I'_,. O

Lemma 3.4.3. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,q) be an A-type base pair and a an element in U(2n, R, \)
such that a;; = 0;; whenever i # —p, —q and j # p,q. Suppose there exists an element
g € EU(0,T) such that 9%a € H. Then ay, € oy, for all k # —p,—q. If additionally
a € U(o) then also S_, ,(a) € I'_,,.

Proof. First, we will prove the inclusion ax, € oy, for all k # —p, —q. If k ~ p then the
inclusion ay, € oy, is trivial. Assume k ~ p. There exists another index h ~ k such that
h # +k,+p, +q. Using Corollary pick an element = € S such that 9T, (x) € H

and consider the matrix
b=a 'Ti(r)a = e+ d,vam — a;_k)\(5("”)_1)/2T)\(1_5(h))/2a_h,*.

By choice of z it’s clear that 9b € H. We will show that there exists an index [ ~ k such
that [ # —p, +h and by = e,. In this case by Lemma applied to the matrix b,
the short elementary unitary matrix Ty, (x) and an A-type base pair (I, k), the inclusion
agp = bpp € opp holds. Now we will show the existence of an index [ as above. If the
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equivalence class of h is self-conjugate then we can simply set [ = —k. If the equivalence
class of h is non-self-conjugate then there are two more possibilities. If h ~ —p then
we can set [ = —q. Finally, if h «~ —p then the equivalence class of h contains as least
4 elements and doesn’t intersect with +v(p). Therefore we may take for [ any index
in v(k) \ {k,h}. In any of the above cases the index [ clearly satisfies the required
properties. Therefore, the first part of this lemma is proved.

Assume that a € U(o). If p ~ —p then the inclusion S_, ,(a) € I'_, is trivial. Assume,
p =~ —p. There exists another index t € I such that (p, ¢, t) is an A-type base triple. Let
g1 denote the matrix T, _;(—a_p, )Ty _+(—a_q_¢). Clearly, g; € EU(0,I"). Consider
the matrix ¢ = gya. It’s clear that ¢, _; = e, 4, c € U(o) and gg9;'cg™' € H. By Lemma

we get the inclusion S_,,(c) € I'_,. Finally, by Corollary we get

S pplc) =S ppla) + Cl_p,_tS—t,t(a))\(a(_t)_l)/Qa_

“AIEEN2 od T, (3.63)
It is clear that S_;;(a) = 0. By (3.63)) it follows that S_,,(a) € T'_,. O

Lemma 3.4.4. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let p be an index in I such that p ~ —p and let a be a matriz in
U(2n, R, \) such that a;; = 0;; whenever i # £p and j # £p. Suppose, there exists an
element g € EU(0,T") such that 9a € H. Then ay, € oy, for all k € 1.

Proof. 1f k ~ p then the inclusion ay, € oy, is trivial. Assume k ~ p. There exists an
index h ~ k such that h # +k, £p. Using Corollary pick an element x € S such
that 9Ty, (z) € H and consider the matrix

b=a '"Ti(x)a = e+ a,,zap, — d, _ AEWD2gpAI-em)2g

Clearly 9b € H. Pick an index g € I such that (—¢,p) is an A-type base pair. It’s easy
to see that ap, = a_pq = 0. Therefore b,, = e,,. By Lemma [3.4.2] applied to the matrix
b and the A-type base pair (—¢,p) we get b_,; € 0_,; for all j # —¢. In particular,
b_p—n € 0_p_1 = 0Okp. Observe that

by = —a, NEOD2g N2,

and a_p_, = 1. By Lemma[3.1.2, o/, _, = AE@=D2g X(==M)/2 - Summing up, we get
_)\(5(1’)*1)/201—@1,)\(175(@)/2 — b, €T

Clearly, this yields the inclusion ag, € o,. O

Lemma 3.4.5. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let p,q and h be three indices in I such that either (p,q,h) is an
A-type base triple or (p,h) is a C-type base pair and ¢ = —p. Let a be an element
of U(2n, R,\) such that giags € H for some elements g1,92 € EU(0,T'). Let Ty, (&)
be an elementary unitary matriz (long or short) such that % Ty (€) € H and let b =
aTy(&)a™t. If s # +r, assume additionally that a, . = a, _, = 0. Let a,3 € R be a
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solution of the equation ca,s + Bags = 0. Then b, bipS € o4, for all @ # —p,—q. If
additionally b € U(o) then also
)\(E(p)—l)/Za)\(l—E(h))ﬂSih h(g,—l)& el

AC@-D/25 =)/ g W BET.,. (3.64)

Proof. In the case that the elementary unitary Ty.(§) is short, the additional condition

ap —r = aq_, = 0 guarantees the following property:

/ /
b = €px — apsEay.,

;o /
by = €gx — sy,

_ 3.65
bery = Cap — e AEOIDZENOED 2 (3.65)
berg = €0y — 0 NCODZENAOD 2
Using Lemma we can rewrite the last two equalities in (3.65)) as follows
by = €s_p — ay _ ANENTD/2eq—21=2())/2
e g (3.66)

b g = Coq — G _T)\(E(T)—1)/25@)\(1—8@))/2_

Combining the condition aa,s + fa,s = 0 and the first two equalities in (3.65)), we get
the following property
aby,, + Bby, = aep. + Beg.. (3.67)

Similarly (3.66]) yields
b ACOD2G L ACDDPG o NG 4o ACODPF (368)

Pick using Corollary an element x € S such that 9T}, (za), 9" The(xB) € H.
Consider the matrix
¢ = bTyy(2Q) Thy(zB)b 1.

Note that
b = (g1a92) (95 ' Tsr(€)g2) (95 '@ g1 ") € H.

Therefore 9'c € H. It’s easy to see that ¢ has the shape described in Lemma |3.4.3], namely
cij = 0;; whenever i # —p, —q and j # p,q. The first equality below is straightforward
and the second one is due to (3.68)) and (3.67):

¢ =+ buad), — b, MDD g0y
4+ b*wﬁb;* — b*,—q)\(g(Q)_1)/23510)\(1_5(}1))/217’_,17*
— e+ b*hxozep* _ 6*7_p)\(€(p)_1)/26:10)\(1_6(}‘))/217’_,1’*
+ b*hxﬁeQ* _ €*’_q)\(e(q)—1)/2Bx/\(1—6(’1))/2[)’_}%*.
By Lemma applied to the matrix ¢ we get the inclusions c¢;,,c;, € o0y, for all

i # —p, —q. Note that c¢;, = bjpa, ¢;y = b8 whenever ¢ # —p, —qg. This proves the first
conclusion of the current lemma.
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If p ~ —p then inclusions are trivial. Assume p » —p and b € U(c). Then
¢ € U(0). By Lemma[3.4.3) we get the inclusions S_,,(c) € T'—p, S_g4(c) € T—,. We will
show that these inclusions yield the inclusions (3.64). Expand S_,,(c) using Corollary
3.2.6/in the following way

I ,35,,()=X+Y, (3.69)
where
X = by (2) Sy (7 IV (370
b,p,h(xﬁ)Sq,,q(b*I)A(E(q)*I)/2 (xﬁ))\(lis(h))ﬂbih’p '
and
Y = b, NPTV (o) \EEMI2G L (57 (wa)b),+ 57)

bfp,fq/\(s(q)71)/2W)\(175(h))/257h,h(bfl) (:cﬁ)b;p
We will show that the expression X is trivial modulo I'_, and the expression Y is
congruent to
)\(E(p)*1)/2m)\(1*€(h))/257h’h(bfl)(xa)
modulo I'_,. Assuming this for the moment and keeping in mind that Z = x and that
x is central we get the required inclusion

AEDD/2G\0=/2g (o e T,

The second inclusion in can be treated similarly.

We start by considering the expression X. In the following computation the first
equality is by definition of S, _,(-), the second by and and the third again
by definition of S, _,(-):

5Sq,,q(b’1))\(5(q)’1)/23 —

= Z 5 bj—q 5j77q))\(s(q)*1)/23
7>0
+ ( 1)(6((1 /255 ((o-1)/23
=3 alt = 8,)(bs-, g 372)
7>0
+ (- 1)(€(q /25() )—1)/23

= S, _, (b AP -D/2g (_1)(E(p)—1)/2abp7_p)\(g(p)_1)/ga
+ (_1)(a(q)—l)/Qﬁbq’_qA(e(q)—1)/23'

If s # +r then the last two summands on the right-hand side of (3.72)) are equal to zero,
as by _p = by _q = 0. If r = —s then it’s easy to see the following:

(_1)(E(q)*1)/255%7[1)\(6((1)*1)/23 — (—1)(E(q)*1)/2ﬁaqsfa’_8,_q)\(E(q)*l)ﬂg
234, ENED-D/2G 5

(=1)

(_1)(E(q)*1)/204%35)\(5(8)*1)/2% &
:(_1)(€(q)*1)/2aapsfa’ p)\(s(p)*l)/2a

(=1)

(3.73)

CDE@DD20  AE@)D2g,
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where the first equality is straightforward, the second is by Lemma |3.1.2} the third is by
the condition aa,s + Ba,s = 0, the penultimate is again by Lemma and the last is

straightforward. Using (3.73) we can rewrite (3.72) as follows:

BSy_g(b"INE@DD25 — 5 (p)A\ED-D/2g

3.74
+((~1)E@-D/2 _ (L)E0-D/2) g AR 2, (3.74)

Note that the last formula works regardless whether or not s = —r. Using (3.74]) we can

rewrite (3.70) as
X = 2b_pp(2)S, (b~ HAEP D2 (o) \A-eh)/2y
(—1)E@-D/2 _ (—1)E@=D/2) _ (za)h, , A(e( P02 g\ /2y
=927 + ((_1)(601)*1)/2 _ (_1)(6(1))*1)/2) W,
where
Z = b_pp(20) Sy (b YAEPTD2 (ga) NI==D/2y] (3.75)

and
W = b_p(za)by, AP D2 (ga)\E—=M)2y (3.76)

We will show that Z, W € ™2, Then, as the coefficient ((—1)E@=1/2 — (—1)E@=1)/2)
takes only even values (namely, —2,0 and 2), Proposition allows us to conclude
that
_ e(q)—1)/2 e(p)—1)/2 max min
X =27+ ((—1)E@=D2 — (1))=Y jy7 g gpmax < Tmin, (3.77)

Indeed, as S,_,(b™') € A,, we get by relation (I'2’) applied to the constant net generated
by the ideal (R, A) that

(xa)gpﬁp@fl))\(e(p)fl)/2(xa)k(lfe(h))ﬂ e A,

By combining property (I'2’) and Lemma we have

b (£0) Sy (b INED D2

Comparing (3.75)) with (3.78) we get

Zel, (3.79)

YAy, e A, (3.78)

If s # +r, then b, , =0 and thus W =0 € I'™*. Assume r = —s. As { € [, < A,
we get by Lemma and property (I'2') applied to the constant net (R, A)

bp,—p = apséa/,&,p = aps£>\(€ /2—)\ (1—e(p))/ E A
By property (I'2') applied to the constant net (R, A) we get

(za)by, AP =V2(ga) N2 2 A
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By combining property (I'2’) and Lemma we get

bopp(wa)by _ NPTV () NIty e A (3.80)
Comparing ((3.80) with (3.76) we get
WeA_,. (3.81)

It’s easy to see that, as b € U(o) and xa € R = oy, we have Z, W € 0_,,,. By (3.79)
and (3.81) we have Z, W € A™*. As we noticed before, this yields (3.77).
Now we will treat Y in a similar way. Using Lemma|3.1.2] we can rewrite Y as follows:

Y = )\(5(17)*1)/2(xab;p))\(lfs(h))ﬂs_h’h(bfl)(xab;p)_i_
)\(5(?)*1)/2 (xﬁb/p))\(lfs(h))/Qsih’h(b—l)(xﬂb/qp>'

q

pp?

Note that S_ ,(b7") € ™ and zab),,, ©6b,, € oy,. By Proposition it follows that

Y = MWD (b, + B ) AT (07 (z(ab), 4+ BY,,))  mod T (3.82)

Using (13.67) we can rewrite (3.82)) as
Y = NEO-D2(ga)\A=t)/2g (b7 (za)  mod e, (3.83)

As we noticed before, the combination of (3.69) (3.77) and (3.83]) suffices to deduce
that

)\(6(1))—1)/25/\(1—6(h))/25_h7h(b—l)a er_,.
This completes the proof. O

Corollary 3.4.6. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,N\),S). Let p,q and h be three indices in I such that either (p,q,h) is
an A-type base triple or (p,h) is a C-type base pair and ¢ = —p. Let a be a matric
in U(2n, R,A\) such that giags € H for some element g1,g92 € EU(0,T"). Let Ty ()
be an elementary unitary matriz (long or short) such that QQITST(S) € H and let b =
aTy(&)a™t. If s # +r, assume additionally a,_, = a,_, = 0. If one of the following
conditions hold

1. aps or ags 15 invertible in R
2. aps o1 ags =0
3. R s either a division ring or a product of two copies of a division ring

then by, € oy, for all i # —p,—q. If additionally b € U(c) then also S_p,(b7') € T_y.
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Proof. Suppose we can find a solution of the equation aa,s + Ba,s = 0 such that «a,
B or a + f is invertible. First, assume « is invertible. By Lemma the inclusion
binae € oy, holds for all @ # —p, —q. Thus by, € oy, for all i # —p, —q. If b € U(o) then
by Lemma |3.4.5 we also get the inclusion

AED-D2GA0-/2g (o e T,

As a7t € oy, it follows by property (I'2) that S_; ,(b!) € T'_y.
The case that ( is invertible can be treated similarly. Assume o + [ is invertible. By
Lemma [3.4.5) we get the inclusions b;,«, b3 € oy, for all @ # —p, —q. Therefore also

bin(av + B) € oy, and by, € oy, If b € U(o) then we get by Lemma the inclusions

AC=D/2\ 0=z (Y e T,

AE@-D/2E)1=)/2g (=Yg e r, (3.84)

Rewrite the second inclusion using Proposition as follows:
)\(E(p)_l)/QB/\(l_g(h))/zS—h7h(b_l)ﬁ €T, (3.85)

Clearly, S_, (b)) € ™. Applying Proposition m to the first inclusion in (3.84)
and to (3.85]) we get the inclusion

AE@-D/2( T BA=M2g (b (o + B) € T, (3.86)

As (a+ )" € o, by combining property (I'2) and we get the required inclusion
S,hyh(b_l) el'_,.

It’s only left to show that we can always find a and S as above. First, assume that
aps is invertible. Then we can put o = —aqsazjsl and f = 1. If aps = 0 put @ = 1 and
B = 0. The case when agys is invertible or equals zero is treated similarly. Finally, assume
the ground ring R is either a division ring or a direct product of two division rings. In
the first case the element a,, is always either zero or invertible and thus we can use one
of the cases above. Assume R is a product of two division rings both the elements a,,
and a,s are neither invertible nor zero. Assume a,, = (z,0) and a4 = (y,0), where
a1,b1 # 0. Then we can put o = (—yz~',1) and 8 = (1,1). The case when a,; = (0, )
and a,s = (0,y) is treated in the same way. Finally, assume a,s = (z,0) and a,s = (0, y).
Then we can set o = (0,1), § = (1,0) and thus o + 8 = 1 is invertible. The last case
when a,s = (0,2) and a4 = (y,0) is treated similarly. This completes the proof. O

3.5 At the level of the Jacobson radical

Fix a standard setting ((R, A), (R',A’),.S), a unitary equivalence relation v on our index
set I, a subgroup H of U(2n, R, A) and an exact major form net of ideals (¢’,I") which is
S-associated with H. Let (o,T") denote the S-closure of (¢/,I") in (R, A). Let J denote
the Jacobson radical of the ring R. In this section we continue extracting elementary
unitary matrices, this time, using elements “close to” the principal congruence subgroup

U(J) = U@2n, (R, A), (J,Q"(.J))) = U(2n, R, A) N GL(2n, R, J)
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of level J. The general idea is as follows. Pick any matrix a € U(2n, R) such that
girags € H for some elements g;, go € EU(0,T"). Corollary shows that it is possible
to extract transvections using short root elements once some zero entries are present.
It is also clear that if we have a unit on the diagonal, say, a,, € R* for some p € [
and know that ay, € o5, for some h # £p then the matrix Thp(—ahpa;pl)a has zero in
position (h,p) and Thp(—ahpa;pl) € EU(o,I'). Thus, we can create zeros in positions
with equivalent coordinates, provided that some of the diagonal elements are invertible.
This allows us to extract entries on the block skew-diagonal (Corollary and then,
using zeros on the block skew-diagonal, we can extract any other entry.

For the rest of this section we will be assuming that v is good for our standard setting,

cf. Section B.4l

Lemma 3.5.1. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A), (R,\),S). Let (p,q,h,t,l) be an A-type base quintuple and a an element of
U@2n, R, A) such that a_, s = a_p s = a1 = Qpg = apqg =0, a_paa; _,,a pqa;_, € J
and a,y € R*. If there exist elements g1 and gy in EU(0,I') such that g1ags € H then
Qp,—¢ S Op,—t-

Proof. Pick using Lemma [3.3.3 an element x € S such that % 1th(m) € H and consider
the element b = aT,,(x)a™" of U(2n, R, A). By choice of the parameter x we have

b = (grag2) (g5 ' Tu(2)g2) (95 '@ tay') € H.

Pick again using Lemma an element y € S such that 97_, _;(y) € H and consider
yet another matrix ¢ = bT_,, ,(y)b~'. Clearly, 9'c € H for the same reason as above.
We are going to apply Corollary to the element b, the elementary unitary matrix
T,(x) and the A-type base triple (—p, —{, —h). In order to do this we have to show first
that b_,5 = b_;, = 0 and b_, _, is invertible. Indeed, by assumption of this lemma,
ay, = NEO-D2g5 = \EMW+HD/2 = 0 as well as a_,,_; = a_;_; = 0. Thus

b_ph = Gpglly, — ap ACOD2TAO—@ 20!

oy = ayqzay, — a  NEOTDPEAA=D2g] = 0,

As a_pqa; _, € J, it follows that
=1+ a,mxa;ﬁp cl+J <R

By Corollary applied to the matrix b, the short elementary unitary matrix 7", _,(y)
and the A-type base triple (—p, —[, —h), we get the inclusion ¢; _j, € o; _, for all ¢ # p, (.
In particular,

Dg,—pyb_p _p — bgp AEPDEGNA—=D2Y, — e € oy . (3.87)
Recall that a_j, 4a; ,, € J. Thus,

b/—h,_h =1- a_thxagv_h + a—h,—tA(a(t)_1)/25)\(1_8('1))/2@’_

! @h (3.88)
=l-apgra, , €1+J <R
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and also
W,y = —pgwd; _j, + a, AEOD2gA=@)2g . (3.89)

Substituting (3.88) and (3.89) into (3.87) we get the inclusion b,_, € oy—n = 04 —p.

Recall that by assumption of the lemma we have a,, € R* and

a — )\(E(q)*l)/2a—m)\(1*€(p))/2 =0.

—q,—p

Then

_— o (e(0)=1)/27)\(1-e(2))/2 —
UgqTy ) = QgqQy _, — Qg ¢\ TA a_, _p,=byp €04 p

Therefore a; _, € 04 . It only remains to notice that

tpy = NV A2 e e g

]

Corollary 3.5.2. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,q,h,t, 1) be an A-type base quintuple and a an element of
U(2n, R, A) such that at least one of the following three conditions holds:

1. The elements a_p 1, a_p ¢, Gpg, Ang, G—p @y, and a_pqa; , are contained in the
Jacobson radical and the elements ayy,, aqq and a_; _; are invertible.

2. The Tows Qpy, Ggw, aps and the column a, _; coincide modulo the Jacobson radical
with the corresponding rows and columns of the identity matrix.

3. The rows a_¢ «, A—p«, 0—p « and the columns a,, and a., coincide modulo the Jacob-
son radical with the corresponding rows and columns of the identity matriz.

If there exist elements g1, go € EU(0,I") such that giage € H then a, 4 € 0, 4.

Proof. Note that the first option in the statement of the corollary trivially follows from
any of the others. Consider the matrix

b= aT)( _a;pl ipg)-

By the assumption that the entry a,, is contained in the Jacobson radical, b = a mod J.
Clearly, by, =0, b, —+ = a, 4 and byq, b+ € R*. Further, consider the matrix

c= Thq(—bhqbq_ql)T—p,—t(—b—p,—tb:tl,—t)T—h,—t(—b—h,—tb:%,_t)T—l,—t(—b—l,—tbj,—t)b

As b =a mod J, we have by, b_, _+ and b_j, _; are in the Jacobson radical. Therefore
Cix = a mod J whenever i # t,—I (and also ¢; = a,; mod J whenever j # [, —t).
In particular ¢, ¢; ¢ nqec; , € J and ¢ € R*. It is easy to see that ¢,y = cpg =
C_p—t =C_p—t =C_; 4 = 0. Finally, gscgs € H, where

g3=0 (Thq(_bhqb;ql)T—p,—t(_b—p,—tbj,ft) X
T—q,—t<_b—q,—tb:t1,ft)T—l,—t(_b—l,—tb:z},ft»_1 )
g4 = qu(a;plapq)%-

Clearly, g3 and g4 are contained in EU(c,I"). Therefore, ¢ satisfies the conditions of
Lemma(3.5.1{and it follows that ¢, _; € o, ;. It’s only left to notice that ¢, _; = a, ;. O
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Lemma 3.5.3. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,q,h,t) be an A-type base quadruple and a an element of
U(2n, R, A) such that ap_p,aq—pn,at—n € 0p_p N J, a_pp € 0_pp, N J. Suppose agy € J
and a,, and a_p, _p, are units and suppose there exists an element g € EU(0,T") such that
9a. € H. Then a;, € oy for all i € I. If additionally a € U(o), then also S_pp(a™t) €
th-

Proof. Consider the matrix
b= T—hm(_a—h,pa;pl)a'

As a_p, € J it follows that b = ¢ mod J. Additionally b, _j,b,_n and b;_; are con-
tained in 0, _, and b_j, = 0. Consider the matrix

¢= Tpﬁh<_bpﬁhb:}lz,—h)Tqﬁh(_bq,fhbillz,—h)Tt,fh(_bt,fhb:/lz,—h)b

Again, ¢ = a mod J, in particular ¢, c_ —, € R*. By Lemma [3.1.2]it also follows that
c ,n="0and ¢, € R*. It’s easy to see that ¢, » = c; n = c;n = cpp=0. Finally,

ggicg~! is contained in H, where

g1 = (T (=4 by n)Ty (=4 by )X
(=070 ) Tonp(—apia s,))” € EU(o,T).

Pick an element 2 € S such that 97}, (x) € H. Applying Corollary [3.4.6]to the matrix
¢, the short elementary unitary matrix 7,,(z) and the A-type base triple (p, g, h) we get
the inclusions

tsih + Cipxc;m — Ci’_h/\(_6 /2_/\ =(h)+1) /2 ! n € Oin (390)
for all i« # —p, —q. We can apply Corollary to the same matrix and an elementary
matrix, but to a different A-type base triple (p,t,h) and get the inclusion also
for i = —q. As ¢}, is invertible and ¢’ is equal to zero, it follows from that
Cip € oy, for all ¢ # h, —p. Observe that a;, = ¢;, for all @ # p,q,t, —h. Thus Aip € Ojp
for all ¢ # p,q,t, —h, —p. The inclusion a;, € o, for ¢ = p, q,t is tr1v1a1 and the inclusion
a_pp € 0_p, is provided by the assumption of the lemma. Therefore a;, € oy, for all
1% —p.

Pick an element y € S such that 97,,(y) € H and consider the matrix d = T),(y)a.
Clearly, it satisfies all the conditions of this lemma. Indeed, d,_; = a,_p + ya,_n €
Op—p N J, dpp = apy +yag € R+ J < R* and the rest of the entries involved in the
conditions of this lemma coincide with the corresponding entries of a itself. Thus we
get the inclusions d;, € oy, for all i # —p. In particular, d_,, € 0_,,. It’s only left to
notice that d_q = a_gp — ATV 2GNE@DFD/2q  and a_,, is already contained in
0_qp, While Al “w- )2\ E@+1) /2 is 1nvert1ble Therefore A_pp € O_pp.

If @ € U(o) then by Corollary we get the inclusion S_;,(c™!) € T, As
a~' =c gt we get by Corollary 3.2.6 that S_p(a™) € T_y. O
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Corollary 3.5.4. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,q,h,t, 1) be an A-type base quintuple and a an element of
U(2n, R, A). Let I' denote the set {p,q,h,t}. Suppose a;. = a;e; mod J and a,_; =
a_je._; mod J whenever i € I', where o; is some invertible element of R for each
i € I'. Further, suppose there exists an element g € EU(o,T") such that 9a € H. Then
aip € 0y for all i € 1. If additionally a € U(c) then also S_,,(a™') € T_,.

Proof. It’s easy to see that the matrix a satisfies condition (2) of Corollary . Thus
we can conclude that the entries a, _j, aq 5 and a;_j are contained in o, _,. Moreover,
the same entries are contained in the Jacobson radical by assumption of this corollary.
Next, a also satisfies condition (3) of Corollary [3.5.2] Therefore, a_y, is contained in
0_pp. By assumption, ap,a_p_, € R* and a4 € J. Summing up, a satisfies the
conditions of Lemma . Therefore a;, € oy, for all i € I. If a € U(o) then by
Lemma we get the inclusion S_j,(a™!) € T'_;. Switching the indices p and h in
the reasoning above, we get the required inclusion S_, ,(a™) € S_,,,. O

We will state another version of the last corollary. It is proved exactly in the same
way.

Corollary 3.5.5. Assume that h(v) > (4,4) and that the equivalence relation v is
good for the standard setting ((R,A),(R',A),S). Let (p,q,h,t,l) be an A-type base
quintuple and a an element of U(2n, R,\). Let I' denote the set {p,q,h,t}. Suppose
a_ix = a_ie_;, mod J and a,; = ae,; mod J whenever i € I', where o is some
invertible element of R for each i € I'. Further, suppose that a,_j = e, _, mod J and
that there exists an element g € EU(0,I') such that 9a € H. Then a;, € oy, for alli € 1.
If additionally a € U(o) then also S_pp(a™') € Ty,

Proof. As in Corollary it follows from Corollary that a;; € 0;; whenever i €
I'U(=1I') and j ~ —i. By assumption, a,q, @_pp, ap_p, Qg —p, Gt—p € J and ayp, a_p_p, €
R. By Lemma it follows that a;, € 0y, for all i € I. If a € U(o) then by Lemma
3.5.3| we get the inclusion S_j,;(a™!) € T'_y. O

Lemma 3.5.6. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R',\),S). Let (p,h) be a C-type base pair and a an element in U(2n, R, A)
such that a, _, NJ and app,a_p_p € R*. If there exist an element g € EU(0,T") such
that 9a € H, then a;, € 04y for alli € 1.

Proof. Consider the matrix
b= T—hm(_a—h,pa;pl)a-

Clearly, b_j, = 0 and by, = a,., in particular b,, is invertible and b,_, € J. As
a,_p € J, it follows that

bop—p=a_p_p— a_h7pa1;p1ap7_h eER+J<R".
Counsider the matrix

c= Tp,fh(_bpﬁhbjb,—ﬁTfp,fh(_bfpﬁhb:}lz,—hw-
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Clearly7 Cp—h = C—p_p = O’ C_hp = b—h,p = 0’ C_h,—h = b—h,—h is invertible. As b—h,p = O,
it follows that
Cpp = bpp — bp,—hb:ilz,—hb—h,p = by € R".

By Lemma this means that ¢}, is invertible and ¢, = 0. Finally, ggicg™" € H,
where

_ _ 11
g1 = (Tp,—h(_bp,—hb—i,—h)T—p,—h(_b—p,—hb—i,—h)T—h,p(_a—h,pappl)) € EU(o, ).

Pick an element x € S such that 97,,(z) € H. Applying Corollary to the matrix ¢,
the short elementary unitary matrix 7,,(x) and the C-type base pair (p, h) we get that

Sin + Cipchy, — Ci_pANTEPDTNRENCEMINRL L (T (2)e i € o (3.91)

for all i € I. Recall that ¢’ , , =0 and ¢, € R*. Therefore the inclusions (3.91]) can be
rewritten as ¢;;, € o, = 0 for all ¢ € 1. Recall that for all i # £p, +h, a;, = ¢;, and
therefore a;, € oy, for all ¢ # £p, £h. The missing four inclusions are trivial. O]

Corollary 3.5.7. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,h) be a C-type base pair and a be an element in U(2n, R, A)
such that either a, = a;e; mod J for i € {p,—h} or a, = ae.; mod J for i €
{p,—h}, where a; € R* fori € {p,—h}. Suppose there ezists an element g € EU(o,T")
such that 9a € H. Then a;, € o4y for alli € 1.

The last corollary allows us to perform radical reduction whenever the minimal size
of self-conjugate components is at least 6. However, it’s also possible to do this when
this bound is lowered to 4. In this case we utilize the condition RA + AR = R.

Lemma 3.5.8. Assume that h(v) > (4,4) and that v is good for the standard setting
((R,A),(R,\),S). Let (p,h) be a C-type base pair and a be a matriz in U(2n, R, \)
such that ay,,a_p, _, € R* and a_p, _, € J. Suppose there exists an element g € EU(o,T")
such that 9a € H. Then a;,A € oy, for all i € I.

Proof. Consider the matrix
b= Th((—any, + 1)a,,) )a.

Clearly, by, = a,), is invertible, by, = 1 and

bopp=0_p_p— )\(6(17)—1)/2(_ahp + 1)a;p1>\(1_8(h))/2a_h,_p c R*.

Pick any a € A, and an element x € S such that 97, _,(z%a) € H. As by, is invertible,
we get by Corollary

5i,—h + bipljab/fpﬁh = (an_p(l’Q )bil)i,_h €0;n

for all i € I. As zbl,  is invertible, bja € 0y 4, for all i € I and « € A,. Finally,
a;, = by, whenever ¢ # h, —p. Thus a;,A < 0. O
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3.6 Scaling, form ring morphisms, direct products and
direct limits

In this section we will show that all the conditions used in the statement of our main
result, Theorem [I] are compatible with form ring direct decompositions, direct limits,
form ring scaling and isomorphisms of even unitary groups induced by isomorphisms
of form rings. Therefore in addressing the problem of describing the overgroups of
elementary block-diagonal subgroups of even unitary groups over quasi-finite rings we
may restrict ourselves to proving Theorem (1] for a certain class of rings provided that all
finite rings can be obtained from this class of rings using the four operations mentioned
above.

Let ((Ry, A1), (R}, A}),S1) and ((Ra, Ag), (R, AL), S2) be standard settings and let
¢ (Ri,A1) — (Rg, A2) be a morphism of form rings. We will call ¢ a morphism of
standard settings if p(R}) < R}, o(A]) < A and ¢(S1) C Ss.

Lemma 3.6.1. Let ((R;,\;), (R, A)),S;) be a standard setting for each i € {1,2} and
let
T2 ((R17A1)7 (R,hAll)v Sl) — ((R27A2)7 (RIQaAIQ)7SQ)

be a morphism of standard settings. Then:
1. ((p(Ry1), (A1), (p(R)), (A})), v(S1)) is a standard setting.
2. M(p)(U(2n, Ry, A1) < U(2n, Ry, Aj).

Fiz a subgroup Hy of U(2n, Ry, A1) and let (o7, T}) be an exact form D-net of ideals over
(R1, A1), which is S-associated with Hy. Denote by (01,1'1) the S-closure of (o,17) in
(R1,A1). Denote by (05,1%) and (09,1'3) the images of (01, I")) and (01,T's) under ¢
respectively. Then:

3. Suppose Hi contains the kernel of M(p). Then (04,1%) is an ezxact form D-
net, which is ¢(S1)-associated with Hy as a subgroup of U(2n,p(Ry),¢(A1)), and
(09,1'9) is the p(S1)-closure of (4,1%) in (@(R1), p(A1)).

4. The following equalities hold:

M(p)(U(0y,T%)) = U(oy, %),
M(p)(U(o1,T1)) = U(oz, I'y),

M(p)(EU(07, 1)) = EU(03, 1),
M(@)(EU(O‘l, Fl)) = EU(UQ, Fg)
Proof. As p(A]) C A, it follows by Lemma that (p(R}),¢(A])) is a form subring
of (¢(R1),¢(A1)) and a form subring of subring of (R5, A}). Now the conclusion (1) is
straightforward.

Applying Proposition to the constant form net of ideals defined by the unit form
ideal (R}, A}) of the form ring (R}, A}) we get the assertion (2). By Proposition [3.2.7]
we also get (4).
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By Proposition [3.2.7, (05,T%) is an exact form D-net of ideals over (¢(R}),@(A))).
It is clear that EU(0%,1%) = @(EU(01,1Y)) < ©(Hy) = Hy. Let T (§) € Hy for
some & = ¢©(¢) € ¢(Ry). As Hy contains the kernel of M(yp), it follows that T%.(() €
H,. Thus there exists an element x € S; such that (7%~ € (o4, T"),. Therefore
@(x)H0=r)¢ € (04, T%)s. Summing up, (¢/,T") is an exact form D-net of ideals, which
is ¢(S)-associated with Hs as a subgroup of U(2n, o(R1),¢(A1)). The fact that (o9, T's)
is the ¢(S1)-closure of (o4, 1) in (p(Ry), p(A1)) is straightforward. O

The following proposition plays a crucial role in the localization method used in Section
and allows to lift certain elementary unitary matrices along not necessarily injective
morphisms.

Proposition 3.6.2. Let ¢ : (R, A1), (R}, A)),S1) — ((Ra, A2), (R, AL), Ss) be a mor-
phism of standard settings such that ¢ is injective as a ring morphism on the principal
ideal woR, where 1y € Ry N Center(Ry) N{¢ € R | & = ¢}, Let H be a subgroup of
U(2n, Ry, A1) such that EU(v, R}, A]) < H, where v is a unitary equivalence relation
on the index set I such that h(v) > (4,3). Suppose that the elementary unitary ma-
triz Ts, (&) € EU(2n, Ry, As) is contained in o(H). Further, suppose there exists an
element & € R} and an element v € R N Center(R;) N{¢ € R | € = &} such that

90(6,) — Sp(aj)(l—&-c?s,—r)f and that Zf?“ — —5 then 5/ c (A/l)s Then Tsr(l.(()1+§s,fr)5,) c H.

Proof. First, assume s ~ r. Note that xélJrés’_T)&’ € R and if r = —s then also
2T e (A}),. Therefore T (28 7°77¢") € BU(v, R}, A,) < H. From now on
assume s ~ —r. Fix a pre-image h of T.(§) which is contained in H. If s # —r then
there exists another index ¢ ~ r such that ¢t # £r, £s. Then

[[h, Tr+(x)], Ty (z0)] € HNGL(2n, R, zoR).
Therefore by the relation (EU4)

Ty (p(26€")) = Torlpl0)p(2)€) = [[Tor (), Tre(p )], Tor ()]
— M(¢)([[h, Tn(2)], T (20)]) € M(p)(H 1 GL(2n, R, 2,R)).

(3.92)

Clearly, the matrix Ty, (xof’) is a pre-image of Ty, (p(20€')) and is contained in

M(2n, R, xoR). As M(¢) is injective on M(2n, R, 2o R), it follows that Ty, (z¢¢’) is the only

pre-image of T, (¢(zo’)) in M(2n, R, xoR). Thus by it follows that T, (zo&’) € H.
Assume r = —s and s » —s. There exists two more indices [, in I such that (s,t,()

is an A-type base triple. Then

[, Ty —o(202)] - [Tur(=1), [Tis(1), [, Ty i (wox)]]] € H O M(20, R, o R).

100



By the elementary relations (EU3), (EU4) and (EU6) we get

Tio(p(=ACO=OPe0e) = T, t(—A(E(s"a(t”/zs@(iﬂo)290(:15)25)

1(Ep(o)z) Ty (=A== 2 (0)2 0 () ) T, —i(—Eip (o) )
—i(§p(zo)2)Th —+(— AE() =< /80<5U0)290(1')25)
X [Ta(e(-1)), [T (s@(l)),TS_t( o))
(1))

o
X Ty (- A )] (3.93)

= [T —s(€), T—s—+(p(x02))]

X [Ta(o(=1)), [Tis(0(1)), [h, T—s 1 (p(202))]]]

= M(p)([h, T_s —(zox)] - [T(—1), [T15(1), [h, Ts —t(xoz)]]])
M(p)(H N M(2n, R, xoR)).

For the same reason as in the previous case, yields the inclusion
X = Tt,_t(—A(E(S)_E(t))/%gﬁ') c H.
Finally, by the elementary relations (EU3), (EU4) and (EU6) we get
Tos(25€') = [X, Tt s ()] - [Ta(=1), [T (1), [X, T ()] € H.
O

Note that the assumption that zq is central in not essential and was imposed just to
make the computations easier. A similar result can be stated without this assumption.

Direct decompositions. Let (Ry,~,\;) and (Ry, ™, A2) be two rings with involution
with symmetry. Then we can naturally consider the ring (R; X Ry) with a component-
wise involution with symmetry. We will call the resulting ring (Ry X Ro, (7, ), (A1, A2))
the direct product of the rings with involution with symmetry (Ry,~, ) and (Rz, ™, 1).
In this case the projections

pry: (Bi x Ro, (7,7), (A1, A2)) — (Br, ™, M),
ry (R X Ra, (7,7), (A1, A2)) — (Ra, ™, )
are morphisms of rings with involution with symmetry. Let ((R;, A;), (R., A}),S;) be

standard settings with respect to involutions with symmetry (K, \;) for ¢ € {1,2}.
Then it’s easy to see that

((Rl X RQ,Al X A2)7 (Rll X R/Q,All X AIQ),Sl X Sg)

is also a standard setting. We will call such a standard setting the direct product of
the standard settings ((Ry, A1), (R}, A}),S1) and ((Ra, A2), (R, AS), Ss). The following
lemma shows that the notion of a standard setting is compatible with direct products.
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Lemma 3.6.3. Let a standard setting (R, A), (R',A\’), S) be equal to a direct product of
two standard settings

(<R7 A), (R/,A/),S) = <<R17A1)7 (R/17A/1)7 Sl) X ((R27A2>7 (R/27A/2)752)
Then

1. U(2n, R,A) = U(2n, Ry, A1) x U(2n, Ry, Ag) and U(2n, R',A") = U(2n, R}, A}) X
U(2n, R}, AY), where the direct products are meant as direct products of abstract
groups.

Further, let H be a subgroup of U(2n, R, A), (¢o/,T") and (o,T") be exact form nets of
ideals over (R',\") and (R, \), respectively. Denote by (0;,T';) and (o},T") the respective
images of (o,1') and (o', T") under pr; fori € {1,2}. Denote by H; the image of H under
pr; fori € {1,2}.

2. Let v be a unitary equivalence relation on the index set I such that h(v) > (4,3).
Then EU(v, R';N') < H if and only if EU(v, R;, \}) < H; for i € {1,2}. Further,
(o', 1) is a major form net of ideals which is S-associated with H if and only if
(01, T%) is a magjor form net of ideals which is S;-associated with H; for i € {1,2}.
Finally, (o,1") is the S-closure of (o',I") in (R, A) if and only if (0;,1;) is the
S;-closure of (o}, 1) in (R;, \;) fori € {1,2}.

3. The following equalities hold

EU(0,T) = EU(0,T}) x EU(0s, Is)
U(o,T') = U(oy, ') x U(o,'y)
EU(o',T") = EU(0y, ) x EU(0},T%)
U(o', T") = U(o},T7) x U(oy, T%).

4. The condition RA+ AR = R is equivalent to the condition RiA1 + ARy = Ry and
R2A2 + A2R2 = RQ.

Proof. 1. By assumption the unitary groups U(2n, R;, A;) and U(2n, R}, A]) are defined.
The fact that U(2n, R, A) is a direct product of U(2n, Ry, A;) and U(2n, Ry, A) is obvious
because M(pr;)(a);r = pr;(ajx) for all i € {1,2} and j,k € I. The same goes for the
second equality in (1).

2. It is clear that EU(v, R',A’) < H if and only if EU(v, R}, A}) < H; for i € {1,2}.
Assume, (o/,1") is a major form net of ideals which is S-associated with H and (o,T)
is the S-closure of (¢/,1") in (R, A). We will show that (o},I"}) is a major form net of
ideals which is S;-associated with H; and (o;,I';) is the S;-closure of (of,I") in (R;, A;)
for i € {1,2}. The converse is straightforward.

Recall that pr, is a surjective morphism of forms rings. By Proposition it follows
that (o}, I'}) is an exact form D-net of ideals over (R;, A;) for each i € {1,2}. We will show
now that (o}, I") is S;-associated with H;. Note that pr is injective on (1,0)R = R;. Let
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Ty (§) € Hy. Pick an element z € S such that z(¢£,0) € R if s # —r and 2%(&,0) € (A'),
if s = —r. Set ¢ = (1+95=7)(¢£,0). Then pr, (&) = pr,(z)1F9 "¢, By Propositionﬂ
it follows that T,.((1,0)x(*%=7)(£,0)) € H. Therefore there exists an element y € S
such that (zy)*%7(£,0) € (¢o/,1"). It follows that pry(zy)+s=7¢ € (o4, T))s
Summing up, we have proved that (of,I")) is a net S;-associated with H;. Similarly,
(04,1%) is a net Sy-associated with Hj.

3. Now we will show that (o;,I';) is the S;-closure of (o},I) in (R;,A;). Denote
the Si-closure of (¢, 1%) in (R;,A;) by (7, B;). It’s easy to see that (o;,I;) is con-

%) (2

tained in (7;, B;). Let & € (73, B;)sr- Then there exists an element z; € S; such that
Tsr(xg”‘**’")g) € H;. Pick an element y € S such that (yz;)!%-)(£,0) € R'. Clearly,
if s = —s then £ € (A;),, therefore y can be chosen so that (yz;)(!*%-)(£,0) € A,.
Finally, pr,((yz;) %) (¢,0) = pr;((1,1))¢. By Proposition it follows that

Tor((ya) "+2)(€,0)) € H.

Therefore there exists an element z € S such that (zyx;)1+%—)(¢£,0) € (¢/,T")s,. Thus
(£,0) € (0,14 It only remains to notice that in this case & € (0;,;)s. Therefore
(13, Bi) < (04,T;) and thus (04, 1) is indeed the S;-closure of (o7, I") in (R;, A;).

4. The conclusion 4 is obvious. O

We will use Lemma |3.6.3| in combination with the following proposition which shows
that for a standard setting ((R,A), (R',A’),S) a direct decomposition of R as a ring
with involution with symmetry induces a direct decomposition of ((R, A), (R',A’), S) as
a standard setting.

Proposition 3.6.4. Let ((R,A),(R,A),S) be a standard setting with respect to an
involution with symmetry (—, \) and let (R,~,\) = (Ry, K1, \1) X (Rg, K3, A2) be a direct
product of rings with involution with symmetry. Denote the corresponding projections
by pry and pry. Let R, = pr;(R'), A, = pr;(A’) and S! = pr;(S) fori € {1,2}. Then
((Ri, N\i), (R, A, S:) is a standard setting for each i € {1,2} and

((R’ A)v (Rlv A/)’ S) = ((R17 A1)7 (Rll’ All)a Sl) X ((RQu A2)’ (Rlza A/Q)’ SQ)
Proof. Straightforward. O

Scaling. The next topic we are going to discuss is scaling of form rings as presented in
[Bak&1l, §9] or [HO89, Ch. 5, Sec. 1C, p. 191]. Let (R,~, A) be a ring with involution
with symmetry. Given an invertible element 5 in R we can introduce a new involution
with symmetry on R by setting { BEF~Y and p = BALA. Tt’s easy to see that (7, u)
is indeed an involution with symmetry on R. We say that the ring with involution with
symmetry (R,™, ) is obtained from the ring with involution with symmetry (R, ™, \)
by scaling by B. If ((R,=,A),A) is a form ring, then ((R,™,u), BA) is a form ring. We
will say that the form ring (R, SA) is obtained from the form ring (R, A) by scaling by
B. Note that scaling is not a morphism of form rings, however it several nice properties.
First of all, the corresponding unitary groups are conjugate in GL(2n, R), namely

U(2n, R, BA) = BU(2n, R,A)B™",
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where B = diag(1,...1,3,...,0). Moreover this correspondence preserves all the im-
portant classes of matrices. First,

BD;(0)B~" = D] (0),

where D?(6) denotes the elementary diagonal unitary matrix in U(2n, R, SA), cf. Section
3.1l Further, as mentioned in [Dyb07], if (0,T) is a form net of ideals over (R,A) and

—1—e(3)

I’ = Bl_TE(i)FiB#, then (0,T7) is a form net of ideals over (R, SA) and
U(o, 1) = BU(0,T)B™* EU(0,1") = BEU(0, 1) B~

More precisely,
BT;(§)B™" = T;(¢),

where Tg(& ) stands for a short elementary unitary matrix in EU(2n, R, A), and

1—e(i) —1—e(3)

BTi,—z’(a)B_lszﬂ'(ﬁ 2 a7 ),

where TZ'B _,(+) stands for a long elementary unitary matrix in EU(2n, R, SA).

Finally, it’s easy to see that if H is a subgroup of U(2n, R, A) such that EU(v, R, A) <
H and (o,T) is the form net of ideals associated with H, then (o, I'?) is the form net of
ideals associated with BHB™! as a subgroup of U(2n, R, SA). In the present paper we
will not discuss scaling of standard settings. The following proposition clearly follows
from the reasoning above.

Proposition 3.6.5. Let (R,A\) be a form ring and (R, BA) be the form ring obtained
from (R, \) by scaling by 5. Assume Theorem holds for the ground form ring (R, A).
Then it holds also for the ground form ring (R, BA).

Direct limits.

Proposition 3.6.6. Let ((R,~,\),A) be a form ring such that R is a direct limit lim R;
of some involution invariant subrings of R that contain the symmetry A. Denote by A;
the intersection R; N A for all i. If Theorem || holds for each of the rings (R;, \;) then
it also holds for the ring (R, \).

Proof. Let (0,I") denote the exact major form net of ideals associated with H, which
constructed in Lemma |3.2.9 For any ring R; in the directed system, set H; = H N
U(2n, R;,A\;). Then EU(v, R;,A;) < EU(v,R,A) N U(2n, R;,A;) < H;. By Lemma
there exists an exact major form net of ideals (o;,I";) associated with H;. By the
construction in Lemma |3.2.9|of a form net of ideals associated with a subgroup, it follows
that if (R;, A;) < (R;,A;) then (04,T) < (04,1;). Clearly U(o;,I';) < U(0;,T';) because
the net subgroup is defined in terms of inclusions. As any element of g of U(2n, R, A) is
contained in U(2n, R;, A;) for some R; in the directed system, it follows that

U(o,T) = liﬂU(Ui,Fi). (3.94)
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Pick any a € H and T,.({) € EU(0,I'). There exists a subring R; of R such that
a,Ts-(§) € U(2n, R;, ;). Clearly, a € H; and T,.(§) € EU(0,I';). By assumption,
Theorem [1] holds for the ground form ring (R;, A;). Therefore

aTy (&)a™ € U(oy, Ty). (3.95)

Moreover the inclusion ([3.95]) holds for any subring R; in the directed system such that
R; < R;. Combining (3.95) with (3.94]) we deduce that

EU<O7 F) <HKL TranSpU(Qn,R,A) (EU(U7 F)7 U(U7 F)) (396)

The proof of the uniqueness of (o,T') in (3.96) can be deduced easily from Theorem [2]
This will be done in the end of Section [3.10 O

3.7 Unitary groups over semisimple Artinian rings

In this section we reduce the study of even dimensional unitary groups over semisimple
Artinian rings to the case of unitary groups over products of division rings. Fix a
semisimple Artinian ring R together with an involution with symmetry (=, \). The
famous Artin-Wedderburn theorem establishes a ring isomorphism of R and a finite
direct product of full matrix rings over division rings

R= M(ml, Dl) X X M(mN, DN), (397)

where the dimensions m; are defined up to permutation of indices and the divisions
rings D; up to permutation of indices and isomorphisms. We will show that every even
dimensional unitary group over R is isomorphic to a direct product of unitary groups,
where each group in the product is either an even dimensional unitary group over D;
or an even dimensional unitary group over D; x D; for some ¢ and j such that the
involution interchanges D; and D;. This result follows form a more general Morita
theory of qudratic modules, cf. [Bak81, §9]. Results of this section regarding form nets
of ideals mimic those of [Dyb07] and we utilize numerous results thereof.

Our immediate goal is to classify the possible involutions with symmetry on R in terms
of direct decomposition of rings with involution with symmetry, cf. Section [3.6] The
direct decomposition of R provides us with N central primitive (i.e. generating
a minimal two-sided ideal) idempotents fi,..., fx, where f; is the N-tuple having the
identity of M(m;, D;) as it’s i-th component and zeros elsewhere. Clearly, fi+-- -+ fy =1
and f;R = M(m;, D;). It’s easy to see that fi, ..., fx is also a system of central primitive
idempotents such that f; +--- 4+ fy = 1. By the uniqueness condition in the Artin-
Wedderburn theorem, there exists a permutation 7 of the indices 1,..., N such that
fiR = M(my(i), Dagy). Let A = (Ai,...,\,). If 7(i) = i then the involution = leaves
M(m;, D;) invariant and induces an involution J; with symmetry \; on M(m;, D;). If
7(i) # i, then 72(i) = i because £ = AéA™! for € € R. In this case the involution leaves
M(mi, D;) x M(mx@y, Dry) invariant and induces on M(m;, D;) X M(my ), D)) an
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involution J; with symmetry (A;, Az;)). It follows that m; = my;) and D; = Dyg;y. The
action of the involution J; on each of the components induces two anti-automorphisms -*
and -+ of M(m;, D;) such that J; sends each (,¢) to (¢*,&1). Further, the compositions
~* and -*L are given by conjugation by A; and A, respectively. Finally \;" = Ny
and /\;(li) = \{. Summing up, we have proved the following two propositions.

Proposition 3.7.1. Let R be a semisimple Artinian ring with involution with symmetry
(7, A\). Then R is isomorphic as a ring with involution with symmetry to a direct product
of rings with involution with symmetry (R;, J;, \;), where each R; is either a simple
Artinian ring or a product of two copies of a simple Artinian ring, the symmetries \;
are 1mages \ under the projections pr;, : R — R; and the involutions J; with symmetry
Ai are obtained from ~ by taking compositions with the projections pr;,. Each of the
components (R;, J;, \;) can’t be further decomposed as direct products of simple Artinian
rings with involution with symmetry.

Proposition 3.7.2. Let (R,~,\) be a ring with involution with symmetry such that R
is a direct product of two copies of a simple Artinian ring Q). Then either (R,~,\) can
either be decomposed as a direct product of two rings with involution with symmetry over
Q, or there exist two anti-automorphisms -* and -+ of the ring Q such that (a,b) =
(b*,at) for all a in b in Q. Moreover, if X = (A1, \2) then the compositions -+* and -**
are given by conjugation by Ay and Ay respectively. Finally, \{' = X5 and \;* = M.

It is well known that the anti-automorphisms of M(m, D) where D is a division ring
are described in terms of the anti-automorphisms of D. Check for example [Jac43], ch.
2, 85, theorem 8| for the proof.

Proposition 3.7.3. Let R = M(m, D) be a simple Artinian ring, where D is a division
ring. Then for any anti-automorphism = of the ring R there exists an anti-isomorphism
= of the division ring D and a matriz b € GL(m, D) such that for any a € M(m, D) the
equality

a=>b-a-b!

holds, where @' is the hermitian transpose of a with respect to the involution =, i.e.
(Et)ij = Gji fOT’ all Z,j el

In other words, all the anti-automorphisms of M(m, D) are defined by anti-automor-
phisms of D up to an inner automorphism of M(m, D).

Let @ be any associative unital ring. Following [Dyb07] we will pay special attention
to the anti-automorphisms of M(m, ()) obtained from an anti-automorphism of @) via the
following procedure. Let = be an anti-automorphism of ). Consider an automorphism
* sending each a € M(m, Q) to a* = pa'p, where @ is the hermitian transpose of a
with respect to = and p = sdiag(1,...,1) is the monomial matrix having ones on the
skew-diagonal and zeros elsewhere. For each i in {1,...,m}, set

i=m+1—1i.
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Then
(@")ij = @jx ix,

i.e. a* is obtained from a by first applying the anti-automorphism ~ to each of its
entries and then reflecting it with respect to the skew-diagonal. We will call the anti-
automorphism -* the standard anti-automorphism of M(m, Q) corresponding to ~. It’s
an obvious corollary of Proposition that any anti-automorphism of R = M (m, D),
where D is a division ring, is a composition of a standard anti-automorphism and an
inner automorphism of R.

Clearly M(m, D) x M(m, D) is isomorphic as a ring to M(m, D x D) via the map which
sends a pair of matrices (a,b) € M(m, D) x M(m, D) to the matrix A € M(m, D x D)
such that A;; = (a;j,b;;) for all 1 < i,5 < m. Denote this isomorphism by ¢. Given
an involution = on M(m, D) x M(m, D) with symmetry A\ we obtain an involution ~ =
po oy ton M(m,D x D) with symmetry ¢(\). Therefore any ring with involution
with symmetry over M(m, D) x M(m, D) is isomorphic to a ring with involution with
symmetry over M(m, D x D). By Lemma form nets and the related subgroups
over isomorphic rings with involution with symmetry biject onto one another. In future
we won't distinguish the elements of M(m, D) x M(m, D) and M(m, D x D), neither the
involutions ~ and ~.

The next proposition shows that all the anti-automorphisms of a product of two copies
of a matrix ring over a division ring are standard up to an inner automorphism.

Proposition 3.7.4. Let D be a division ring and - an anti-automorphism of the matrix
ring M(m, D x D). Then there exists an anti-automorphism = of D x D and a matriz
b € GL(m, D x D) such that for any a € M(m, D x D)

a=b-a"-b "

where -* is the standard anti-automorphism on M(m, D x D) corresponding to the anti-
automorphism ~ of D x D.

Proof. Consider the image X of M(m, D x {0}) = M(m, D) x {0} under ~. By the
Artin-Wedderburn theorem either X = M(m, D x {0}) or X = M(m, {0} x D). In the
first case, it’s easy to see that = can be decomposed as a direct product of two anti-
automorphisms of M(m, D) and the conclusion of the proposition can be easily deduced
from Proposition [3.7.3] If X = M(m, {0} x D) then we get two anti-automorphisms -’
and -X of M(m, D) such that for any (z,y) € M(m, D) x M(m, D) the equality

(,9) = (v, 2%)

holds. By Proposition there exist anti-automorphisms J;, K; of D and elements
¢, d € GL(m, D) such that

e =d. 282 g7t vy =c-x -,

where K, and J, stand for standard anti-automorphisms of M(m, D) corresponding to K

and J; respectively. Set (£,¢) = (¢/1,5Y) for any (€,¢) in D x D. Further, set b = (c, d).
Clearly, ~ is an anti-automorphism of D x D, b is an element of GL(m, D) x GL(m, D) =
GL(m,D x D) and @a=0b-a*-b"! for any a € M(m, D x D). O
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Given an associative unital ring @) such that all the anti-automorphism of M(m, Q) are
standard up to an inner automorphism a reasonable question is, whether the involutions
with symmetries of () define involutions with symmetries on M(m, Q) and vice versa?
The simple answer is, yes. The following proposition gives a formalization of this fact.
In the particular case of @) being a division ring it is precisely Proposition 3 of [Dyb07].

Proposition 3.7.5. Let () be an associative unital ring and = an anti-automorphism of
the ring R = M(m, Q). Suppose there is an anti-automorphism =~ of Q) and a matriz b in
GL(m, Q) such thata = ba*b~" for alla € R, where -* is the standard anti-automorphism
of R corresponding to ~. Let diag : Q — R be the diagonal embedding of Q) into R. Then
the following holds:

1. If = is an involution on R with symmetry | then there exists an element A € Q)
such that diag(\) = b*b~'1 and ~ is an involution on Q with symmetry \.

2. If = is an involution on @ with symmetry X then = is an involution on R with
symmetry | = b(b*) ! diag(\).

Proof. 1. By definition of an involution with symmetry, for any a € M(m, @)) we have

lal™! = @ = ba*b—) = b(b~1)*a** b1 (3.98)

Therefore
a*(b*b ) = (b*b ')a (3.99)
for any a € M(m, Q). It’s easy to see how standard anti-automorphisms act on matrix
units, namely for any i,j € {1,...,m}, €j; = ejx;x. Thus ejf = e;; for all 4, j. This,

together with (3.99), yields that the invertible matrix (b*b~'1) commutes with all matrix
units. Therefore (b*b~11) is scalar. Denote by \ the pre-image of (b*6~11) under diag. By
it follows that € = MéA™! for any &€ € Q. Finally, the condition A = 1 is equivalent
to the condition diag(\) diag(A)* = e and thus easily follows from the condition [ =1,

2. The second conclusion of the lemma can be checked via a straightforward compu-
tation. []

Summing up, any involution with symmetry on a matrix ring over either a division
ring or a product of two copies of a division ring is standard up to scaling of form rings.
By Proposition [3.6.5| it follows that all the form nets and the corresponding subgroups
respect scaling, therefore we may in future limit ourselves to considering only standard
involutions with symmetries on matrix rings.

The following proposition is a well know recipe for building a form parameter of a
matrix ring from a form parameter of the ground ring. It has appeared in the literature
multiple times, e.g. [HO89, Ex. 4, sec. 5.1C, p. 191] or [Dyb07, Prop. 4]. We include a
sketch of the proof, whose full details are easy to recover.

Proposition 3.7.6. Let (Q be an associative unital ring with involution with symmetry
(7,1), R the matriz ring M(m, Q) of rank m > 1 over Q and -* the standard involution
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on R with symmetry A = diag(l) corresponding to the involution = with symmetry [ on
Q. Then the map Vg, sending a form parameter A of the ring R to the set

Ui (A) = {a € Q| ae;ix € A for some index 1 <i < m}

is an isomorphism of the lattice FP(R,-*,\) of form parameters for (R,-*,\) onto the
lattice FP(Q,~,1) of form parameters for (Q,~,1). The inverse of Wy, is given by the
following formula

\I/f_pl(L) ={a € R|a;; =—ajx;xl for alli,j and a;;x € L for all i}
={a € R|a;;x € L for all i} N A™*.

Proof. Let A™® and A™" denote the maximal and minimal, respectively, form param-
eters for (R,-*,\) and L™ and L™" the maximal and minimal, respectively, form
parameters for (Q,~,1).

First, we will show that W, and \Ilf’pl preserve inclusions and then show they send
form parameters to form parameters. Applying property (A2) of the form parameter A
to matrix units it’s easy to conclude that ae;;x € A if and only if ap € A, where p =
sdiag(1,...,1). It immediately follows that W, preserves inclusions as well as additive
subgroups, We,(A™") = L™ and Wp,(A™>) = L™ The property (A2) for ¥g,(A)
follows from the corresponding property for A applied to scalar matrices. Therefore Wy,
is a well defined morphism from FP(R,-*, \) to FP(Q, ™, ).

Denote by ¢ the map which sends a form parameter L for (Q,~,1) to the set

{a € R| a;; = —@;x ;=1 for all 4, and a;,;« € L for all i}.

Write the definition of the maximal and minimal form parameters for R in terms of
matrix entries:

Amax — {a c R | aij — —Wl for all i,j};
A"t ={a € R|Vi,je{l,...,m}a; = —Gpe Vi 30; € Q : azgx = o — Gl }
— {a c R | ai,ix & Lmin} N Amax'

The definition of ¢ can be rewritten as follows
o(L)={a € R |a;;x € L for all i} N A™™. (3.100)

It’s clear that p(L™1) = A™In o [MaX) = AM3X and o preserves inclusions. The condition
(A2) for (L) also follows from the corresponding condition for L in a view of (3.100)).

It’s easy to see that g, 0 p = id. Finally, one can easily check that a — 1" | a; xe€; ;x
is contained in A™" whenever a is contained in A™®. Thus

m
a = E Qg 5% €4 % mod A™"
i=1
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for all @ € A™**. Therefore, Wy, is strictly monotone. Let A denote a form parameter
for (R,-*,\) and a € A. Then

Qg ;% €4 jx = 6;‘><7i><a6i><72‘>< SN

for all 1 < i < m. Thus A < ¢(Ug,(A)). Finally, we have to prove that ¢(Ug(A)) <
A. Assume for some A the form parameter ¢(We,(A)) is strictly greater than A. We
have proved, that Wy, is strictly monotone. Recall that Wg, o ¢ = id. Thus Ug,(A) =
Uiy (@(Wgp(A))) is strictly greater than We,(A), which is obviously false. It follows that
©(¥g(A)) < A which finishes the proof that ¢ o Uy, = id. O

For the proposition we need to introduce the following notation. Define a map ind :

IQn ? Ian bY pUttlng
) — 1 >0

jm—1 ,j<0.

Given a matrix A in GL(2n, R), where R = M(m, ), we want to rewrite it as a matrix
in GL(2mn, Q). We do this by letting a denote the mn x mn matrix over () whose Q-
coefficient @ina(i)+k,ina(j)+ in the (ind(i) + k,ind(j) + [)’th position, where 7, j € I, and
k.l € {1,...,m}, is given by

(Aij)kl = Qind(s)+k,ind(j)+i-

(ind(7),ind(j)) stands for the coordinates of the (7, j)'th m xm block in a. From now on,
whenever we write Gind(i)+k,ind(j)+1 for a matrix a in GL(2mn, Q) we mean that 7, j,m,
are uniquely determined indices such that i, j are in I, and m, [ are in {1,...,m}. The
following relation can be checked via a straightforward calculation:

—(ind(4) + k) = ind(—i) + k™.

Proposition 3.7.7. Let (Q,™,1) be an associative ring with involution with symmetry,
R the matriz ring M(m, Q) of rank m > 1 over Q and -* the standard involution on R
with symmetry A = diag(l) corresponding to the involution with symmetry (~,1) on Q.
Let L be a form parameter for Q and A = \IJf_pl(L) be the corresponding form parameter
for R. Then a matriz g € GL(2n, R) is contained in U(2n, R, \) if and only if as a
matriz in GL(2mn, Q), g is contained in U(2mn, Q, L).

Proof. The proof is a routine check of the conditions of Lemma |3.1.2] Let A denote a
matrix in GL(2n, R) and let a denote the same matrix as an element of GL(2mn, Q).
Write condition (U1l) of Lemma for the matrix A in terms of matrix entries:
Gind(i)+hind()+t = (Al = (A2 (A )7 AEDTD)
v s e (CURSITE

_ l(_l_g(i))/zaind(—j)—&-lx,ind(—i)""kxZ(E(
_ J(~1—e(ind(i)+k))/2

kl

7)+1)/2

T (1nd(7)+0) —(md() oyl SOV,
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Then we get precisely condition (U1) of Lemma for the matrix a. As we have men-
tioned after Lemma [3.1.2] condition (U1) thereof yields condition (U2) for the maximal
form parameter.

Assume both A and a satisfy condition (U1). According to Proposition we have
A={g € R|giix € L for all i} N A™*.

As S; _i(A) € A for all i € I, condition (2) for A is equivalent to the inclusions
(Si—i(A)), 1x € Ly for all kK in {1,...,m}. It’s only left to notice that

(Simi(A)) e = DY (A4 )i

j>0 1=1

m
_ /
—E E QAind (i) +k,ind () + Vind () +1,ind (—7)+k
>0 1=1

= Z aind(i)Jrk,ind(j)Jrla{nd(j)—l—l,—(ind(i)+k:)
ind(j)+1>0

= Sind(i)-+k,(ind(i)+k) (@)
Thus conditions (U2) for the matrices A and a are equivalent. ]

An important question is if the isomorphism of unitary groups described in the last
proposition preserves elementary subgroups (full, block-diagonal or form net). The infor-
mal answer is, it preserves sufficiently large elementary subgroups. To make a distinction,
we will denote the short and long elementary unitary matrices in EU(2mn, Q, L) by the
small letter ¢ and the ones in EU(2n, R, A) by the capital letter 7. Then it’s easy to see
that

Tij(a) = H tind(i)+k,ind () +1 (Ak1) (3.101)
k=1
whenever i # +j and
T; _i(a) = H Lind(i)-+k,ind(—1)+1 (k1) - H tind(i)+k, — (ind(3)+) (Chkx )- (3.102)
k>1% k=1

It follows that EU(2n, R,A) < EU(2mn,Q, L). Let tina@)+k,—(ind@)+k) () be a long ele-
mentary unitary matrix in EU(2mn, @, L). By (3.102) it follows that

Lind(i) 4k, — (ind(3)+k) (Oé) = Tz‘,—z‘(aek,kX) € EU(Qn, R, A)-

Let tind(s)+k,ind()+1(§) be a short elementary unitary matrix in EU(2mn,Q, L). If i # j

then by (13.101)) we have

tind(i)+k,ind(j)+l(£) = Tij(fekz) € EU(Qn, R, A)-
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However, if ¢ = 5 then
tind(i)+k,ind(s) +1(§) = Di(e + Een),

where D; is defined as right after Lemma [3.1.2] We know that such an element can,
but does not have to be contained in the elementary subgroup EU(2n, R, A). We will
address this issue in Proposition [3.7.9|

We will establish now a correspondence between form nets of ideals over the form
rings (R, A) and (@, L). The following recipe in a slightly weaker form (namely, only
for the case when R is a simple Artinian ring) is described in [Dyb07]. We will call a
form net (o,I") of order 2mn over (@, L) an m-block form net if Gind(i,)+hi imd( )+t =
Oind(iz)+ke,ind(j2)+l2 whenever il = ig and jl = jg and Find(i1)+k1 = Find(iz)—‘rkz whenever
i1 = 49, i.e. o consists of 4n? “blocks” of equal ideals of size m x m and I' consists of
2n “blocks” of m equal form parameters each. We will show that form nets of ideals of
order 2n over (R, A) can be identified with m-block form nets of order 2mn over (Q, L).
For a form net of ideals (o, I') of order 2n over (R, A) we will construct an m-block form
net of ideals (7, B) of order 2mn over (Q, L) by setting

Tind(i)+k,ind(5)+1 = {5 €Q ’ e € Uij} and Bind(i)—i—k = \I’fp(ri)

for all i,7 € I, and k,l € {1,...,m}. We will denote the form net of ideals (7, B)
constructed above by W, (o, T").

Proposition 3.7.8. Let (Q),™,1) be an associative unital ring with involution with sym-
metry, R denote the matriz ring M(m, Q) of rank m > 1 over @ and -* be the standard
involution on R with symmetry A\ = diag(l) corresponding to the involution with sym-
metry (<,1) on Q. Let L be a form parameter for Q and A = \Iff;l(L) the corresponding
form parameter for R. Then the map Vg, defined immediately before is a bijection of
the set of all exact form D-nets of order 2n over the form ring (R, \) onto the set of all
m-block exact form D-nets of order 2mn over the form ring (Q, L).

Proof. Fix an exact form D-net (o,I") of rank 2n over (R,A) Let (7, B) denote the
image W, (0,I') of (0,1"). We will first show that Wy, is an exact form D-net of ideals
over (@, L). It’s clear that 7 is a unitary D-net of ideals over (). As in the proof of
Proposition [3.7.6 condition (I'2) in the definition of a form net allows us to conclude
that

V(i) ={& e Q| &p e i},

where p denotes the matrix sdiag(1,...,1). It immediately follows from this observation
that Wy, preserves inclusions, additive subgroups and maps I'™"(¢) and I'™>(o) to
™in(7) and I'™>(7) respectively. Condition (I'2) for B also follows in an obvious way
from the corresponding condition for I'. Finally, the exactness condition for the net
(1, B) can be checked straightforwardly.

The injectivity of Wy, is clear and it’s easy to see that for any m-block form D-net (7, B)
of rank 2mn over (Q, L), ;. '(7, B) is a net (o,T)) such that 0ij = M(™M, Tind(i)+1,ind(j)+1)
and I'; = \Ilf’pl(Bind(i)H). The proof of this fact precisely follows from the corresponding
part the proof of Proposition [3.7.6] ]
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Given an equivalence relation v on Iy, = {1,...,n,—n, ..., —1}, define an “m-block”
equivalence relation We,(v) on Iay, be setting ind(i) + &k ~Yr™) ind(j) + [ if and only if
i~ g

Proposition 3.7.9. Let v be a unitary equivalence relation on the index set I, such
that h(v) > (4,2). Let (Q,~,1) be an associative unital ring with involution with sym-
metry, R denote the matriz ring M(m, Q) of rank m > 1 over Q) and -* be the standard
involution on R with symmetry A\ = diag(l) corresponding to the involution with sym-
metry (<,1) on Q. Let L be a form parameter for Q and A = \I/f_pl(L) the corresponding
form parameter for R. Let (0,1) be an exact major form net of ideals of rank 2n over
(R,A). Let (1,B) = Ug(0,T") denote the corresponding exact form net of rank 2mn
over (Q,L). Then EU(0,I") = EU(7, B) and U(o,I") = U(7, B), where the equalities are
understood modulo the isomorphism of groups U(2n, R, A) and U(2mn,Q, L). In partic-
ular, EU(2n, R,A) = EU(2mn, Q, L) whenever n > 2. Further, suppose h(v) > (4,3)
and (0,1") is the form net of ideals associated with a subgroup H > EU(v, R, A). Then
(1, B) is the form net of ideals associated with H as a subgroup of U(2mn,Q, L).

Proof. We will first show the inclusion EU(o,I') < EU(7, B). Pick any short elementary
unitary matrix 7;;(a) € EU(c,T"). Then for any possible indices k and [ we have

ap e = Zehkaelh € 045. (3103)
h=1

Therefore ay € Tind(s)+k,ind(j)+ for all & and [. Thus by we conclude that T;;(a) €
EU(7, B). Pick any T; _;(a) € EU(0,I'). Then ay € Tind()+k,ind() for all k& > 1. By
relation (I'2) we get

Ak > € fpx = €]:><7k>< Apx px € r; (3104)

for all k. Thus aggx € Binags)+x for all k. Hence, by we get the inclusion 7; _;(a) €
EU(7,b). Therefore EU(0,T") < EU(7, B).

It’s easy to see that tina()+k,inda()+1(§) € EU(o,I') whenever i # j. If i = j then, as
h(v) > (4,2), there exists an index i’ ~ i such that ¢ # +i. Therefore,

tind(i)+k,ind i)+ (§) = [Lind(6)+hind(@)+x (1), tind(i")+-k,ind() 11 (§)] € EU(o,T). (3.105)

Thus EU(7, B) < EU(0,I"). The equality U(r, B) = U(o,I') follows straightforwardly
from (3.103) and (3.104).

Assume h(v) > (4,3) and (o,I') is the form net of ideals associated with a subgroup
H > EU(v, R, A). It’s easy to see that Wg,([v](ra)) = [V](g,L)- By Lemma [3.2.9 the net
(7', B") associated with H as a subgroup of U(2mn, Q, L) is defined. Let tind(i)+,ind(j)+1(§)
be an elementary unitary matrix in EU(2mn, @), L) contained in H. If i # j the inclusion

£ € (7, B)ind(i)+k,ind(j)+1 easily follows from the formulas (3.101) and (3.102). If i = j

then 7,; = Q = 7/;. Therefore (7, B) is the form net of ideals associated with H as a
subgroup of U(2mn, @, L). ]
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3.8 Sandwich classification over division rings

In this section we will prove Theorem [I] provided that the ground ring is either a division
ring or a product of two copies of a division ring. We will show that form net subgroups
over such rings are quite close to the corresponding elementary form net subgroup. This
fact will be an important ingredient for the radical reduction described in the next
section.

Throughout this section we fix a form ring ((R, =, A), A), a unitary equivalence relation
v on the index set I and a subgroup H of U(2n, R, A) such that EU(v, R,A) < H. We
will refer to the results of Section in the special case of the trivial standard setting
((R,A),(R,A),{1}). The equivalence relation v is automatically good for the standard
setting above whenever h(v) > (4, 3).

Proposition 3.8.1. Assume h(v) > (4,3). Let (o,I") be an exact major form net of
ideals over (R,\), b a matriz in U(2n, R, A) and p some indez in I. Let g and h be two
indices in the equivalence class of p such that q # +h (however p can be contained in
{+q,4h}). Let c denote the conjugate T Ob of b by Ty,(€) for some € € R. Then:

1. Suppose b;, € 04y for alli € I. If p = h, suppose that by, € 0;p. If p = —q, suppose
that b; _y, € 0ip. Then ¢, € 0y, for all v € 1.

2. Suppose b € U(a) and S_,,(b=") € T'_,. If p = h, suppose that S_,,(b) € T'_,.
If p= —q, suppose that Sy _p(b~1) € T,. Then S_,,(c™') € T_,.
Proof. Consider the matrix d = Ty, (§)b. Clearly, ¢ = dT,,(—¢). A direct calculation
shows that
dip = by + 0ig€bpp — 05 AWV 2ENO—(@)/2y, (3.106)
Cip = iy — Opndigl + 0p_gd; _p NEWD/ZENA=e@)/2, (3.107)
Clearly, d; = by, € 04, whenever ¢ # ¢, —h. The inclusion dg, € o4, = R is trivial. It
follows by (3.106) that d_,, = b_j,, — AEW=D/2EN0==@)/2p_ and both b_j,, and b_,,
are contained in o_p 4. Thus d_j,, is contained in o_j, ,. Therefore d;;, € o0y, for all ¢ € 1.
Similarly, if p = h, then d,;; € 0, for all 7 € I and if p = —q then d; _;, € 0y, for all i € I.
It follows by that ¢;, € 0y for all 7 € I.
Assume b € U(o). Clearly T,4(§) € U(o). By Corollary we get
S—p,p(c_l) = S—p,p(th(f)b_quh(_€)> = S—p,p(th(g)b_l)
=S (b7 + 0y &Sh (D" HAEM D2\ =(@)/2 (3.108)
+ 57p,7h)\(5(h)_1)/2g)\(1_8((1))/2qu,qf mod Frilll)n

Relations (I'2) and (I'2") together with (3.108)) give us the required inclusion S_, ,(c™!).
[l

The following lemma on generating ideals in products of division rings is trivial and is
stated without a proof. Note that the angular brackets here stand for a two-sided ideal
generated by the argument.
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Lemma 3.8.2. Let D be a division ring an let R be either equal to D or to D x D.
Let u and v be two elements of R. Then there exist an element £ in {0,1} if R= D or
{(0,0),(1,0),(0,1),(1,1)} if R =D x D such that (u,v) < (u+ &v).

Lemma 3.8.3. Assume that h(v) > (4,4) and that R is either a division ring D or a
direct product D x D of two copies of a division ring. Let (o,1') be the form net of ideals
associated with H, a an element of H, Ts.(§) a short (o,T')-elementary unitary matriz
and (p,q, h,1) an A-type base quadruple. Denote by b the short root element aTy,.(&)a™?.
Then by, € oy for all i € I. If additionally b € U(o) then also S—_,,(b~") € T'_,,.

Proof. If r = —s then the conclusion of this proposition follows directly from Corollary
[3.4.6] Assume r # =+s.

1. Assume that a, _,,aq_r,an—r € (@;—,)r. Then there exist elements ¢,, &, and &,
in R such that a; _, = —&a;_, for i = p, ¢, h. Consider the matrix

¢ = Tp(&p) Tu(€g) Tha(8n)a.

Clearly, ¢y = ¢4y = Ccp—» = 0 and g = ca=' € EU(0,T"). Denote by d the matrix
Ty (§)c™ = 9b. Tt’s clear that 97'd € H. By Corollary We get the inclusions d;, €
oip for all i € I. By Proposition [3.8.1 we get the inclusions by, € oy, for all i € I. Assume
that b € U(0). Then d € U(o). By Corollary [3.4.6/we get the inclusion S_,, ,(d~') € T_,,.
Finally, by Proposition we also get the inclusion S_, ,(b~') € I'_,,.

2. Assume a, _, € (a;_,)g. By Lemma we may choose elements (,, , and ¢; in
R such that a,_,, aq—r, ap—r € (¢;_r) g, Where

¢ = Tig(¢) Tin(Ch)a-

Let f = T, (§)c!. By case 1 we have d;, € 0;,. By Proposition we get by, € 04p.
Assume b € U(o). Then d € U(c). By case 1 the inclusion S_, ,(d™) € I'_, holds. By
Proposition we get S_,,(b71) €T,

3. Assume a; _, € {(a, _,)r. By case 2 we have the inclusions by € oy and S_;;(b™') €
I'_;. By Lemma there exists an element ¢ € R such that a, _, € (a;_, + Cap_r)r-
Consider the matrices ¢ = Tj,(¢()a and d = ¢T,,(&)c™ = T»(©Ob. By case 2 we obtain
d;p € 0y, for all i € I. By Proposition we get b, € 0;,. Assume b € U(o). Then
d € U(o). By case 2 it follows that S_,,(d"') € I'_,. By Proposition we get
S_pp(d71) €Ty

If R is a division ring then the options 2 and 3 are exhaustive. Let R = D x D be a
product of two copies of a division ring. Assume that neither of options 2 and 3 holds.
Then the unordered pair of ideals (a, _,)r and (a;_,)g is {0} x D and D x {0}. If
ap,—r € (ap_y)R, O Gp _ € (ap ) g then by case 3 or 2, respectively, we get the required
inclusions. In the opposite case, it’s clear that (as ,)r = (a;—,)g. Then there exists an
element ¢ such that Cay,, _, = a;_,. Consider the matrices ¢ = Tj,(—()a and d = Tin(=9)p,
Clearly, ¢;_, = 0. Therefore ¢;_, € (¢, _,)r. By case 3 it follows that d;, € o, for all
i € I. By Proposition [3.8.1]it follows that b;, € 0y, for all i € I. Assume b € U(o). Then
d € U(o). Tt follows by case 3 that S_,,(d™') € I'_,. This together with Proposition

yvields the inclusion S_, ,(b™') € T_,,. O
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Lemma 3.8.4. Assume h(v) > (4,4) and R is either a division ring D or a direct
product D X D of two copies of a division ring. Let (o,1") be the exact major form net of
ideals associated with H, a an element of H, T.(§) a short (o,T')- elementary unitary
matriz and (p,h) a C-type base pair. Denote by b the short root element aTy.(&)a™t.
Then by, € oy for alli € I.

Proof. If r = —s then the conclusion of this proposition follows directly from Corollary
9.4.0l

Assume r # +s. Consider the following cases.

1. Assume ap—p, a_p—p € (a—p ). Pick elements &, &, such that aj_, = —&pa_p
and a_p, _, = —§_pa_, _,. Let

¢ = Th—p(&n)T-n,—p(&-n)a-

Clearly, g = ca™' € EU(0,T). Let d denote the root element ¢T,.(£)c™' = 9 'b. By
construction, ¢, —, = c_j,—, = 0. By Corollary it follows that d;, € o, for all i € I.
By Proposition we obtain b;, € o, for all ¢ € I.
2. Assume a;, _, € R*. By case 1 we have b; _j, € 0;_p for all ¢ € I. Let
c=T_,,((1—- a_p,_r)a,:,l Ja d=cT,(&)c

b

Then c_, _, = 1. By case 1 it follows that d;, € oy, for all i € I. By Proposition [3.8.1]
we also obtain the inclusion b;, € 0, for all ¢ € 1.

2’. Assume a_j__, € R*. This case can be treated in the same way as case 2.

3. Assume that a5 _, = a_,_, = 0. By Corollary we obtain the required
inclusion b;, € oy, for all ¢ € I.

If R = D then the cases 2, 2" and 3 are exhaustive. Assume R = Dx D. By Proposition
it follows that either R can be decomposed as a direct product of rings, each with
involution with symmetry, or D x 0 = 0 x D. In the former case, the conclusion of
this lemma follows from the case when R = D, Lemma [3.6.3] and Proposition If
D x 0 =0 x D then there exists an invertible element in A™". Indeed, (1,0) = (0, a),
where a # 0, therefore

ap = (1, —aXy) = (1,0) — (1,0)A € A™* N R*.

We will continue with a case by case analysis.

4. Assume (ap,_r, a—p—r) = R, but neither a; _, nor a_, _, is invertible. In this case
ap,—r and a_p _, generate two maximal ideals D x 0 and 0 x D of R. It’s easy to see
that aj,_, + apAT17=0)/2q_, s invertible. Let

c= Th,_h(ag)\(_l_a(h)w)a d=cT,(&)c

Therefore ¢, is invertible. By case 2 we get the inclusion d;, € o0y, for all @ € 1. It’s
only left to notice that b;, = d;;, for all < # h and that the inclusion by, € oy, is trivial.

5. Assume none of the cases 1, 27, 2, 3 or 4 hold. Then each of the entries a; _, and
a_p,—, generate the same maximal ideal of R. Without loss of generality we may assume
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that this ideal is D x 0. Then, as case 1 doesn’t hold, it follows that a_,_, € 0 x D.
We will split this case in two subcases.

5a. Assume D x 0 < (a,_,). By case 1 we get the inclusion b; _, € oy, for all i € I.
It’s easy to see that D x 0 < (apAEP)~1/2q, ). Consider the matrices

¢ =T, (apAE@~D/2)g d=cTy (&)

Clearly, ¢ = ap—p, C—p—r = a_p—, and D x 0 < (c_, _,). By case 2 it follows that
dip € oy, for all 4 € I. It’s only left to notice that b, = d;, — cll-7_pc3z())\(‘5(p)*1)/2 for all
i # —p. Therefore b;, € 0, for all i € I.

5b. Assume a,_, < 0 x D. Consider the matrices

c=Tun(1)a d=cTy (&)

It’s easy to see that D x 0 < (¢p—r), Ch—yp = Qp—p a0d c_p_, = a—p . Ifa_, _, =0
then c_j, _, = a_j _,. By case ba it follows that d;, € o, for all i € I. If a, _, generates
the ideal 0 x D then c_j, _, is invertible as a sum of the generator a_j _, of the ideal
D x 0 and the generator —)\(s(h)*sp)/Qa_n_T of the ideal 0 x D. By case 2’ it follows
that d,, € 0;, for all @ € I. As b;, = d;, for all 7 # p, —h it follows that b;, € o;, for all
1€1. O

Combining the last two lemmas we get the following important result.

Corollary 3.8.5. Assume that h(v) > (4,4) and that R is either a division ring D or a
direct product D x D of two copies of a division ring. Let H > EU(v, R, A) be a subgroup
of U2n, R,A\) and (o,T") the form net of ideals associated with H. Then

H< TranSpU(Zn,R,A) (EU(07 F)a U(Ov F))

Further, combining Corollary [3.8.5], Propositions [3.7.9] 3.6.5] [3.7.1], [3.6.4] and Lemma
we get the following corollary.

Corollary 3.8.6. Assume that h(v) > (4,4) and that R is a semisimple Artinian ring.
Let H be a subgroup of U(2n, R, A) which contains EU(v, R, A) and let (o,T") be the form
net of ideals associated with H. Then

H < TranSpU(2n,R,A) (EU<07 F)a U(Ua F))

We finish this section by describing the form net subgroup U(c,T") over a division ring
or a product of two copies of a division ring. This description is required for the radical
reduction.

Lemma 3.8.7. Let (0,1") be a form D-net of ideals over an arbitrary form ring (R, A).
Then A(2n, R) normalizes EU(0,T'), where A(2n, R) is defined as after Lemma [3.1.9
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Proof. It’s enough to check that for any generators D;(#) of A(2n,R) and T} (§) of
EU(0,T) the conjugate h = P/ T}, (€) is contained in EU(c, T'). Clearly, h = e whenever
1 # j,—k. Assume i = j.

If k=—j7=—iand £ €T; a direct matrix calculation shows that

h=T, _i(95/\(6(1')—1)/25/\(1—6(2'))/2)_
By (I'2) we get h € EU(0,T"). If k # +i and £ € oy, then it’s easy to check that
h = Tix(0€)

and thus h € EU(c,T).
If k = —i, then by the relation (EU1) we get
T, (&) =T, _j(_)\(6(—1‘)—1)/2)@\(1—6(3‘))/2)

j
and we already know that in this situation h € EU(0,T). O

Let 1, . .. Ck denote the self-conjugate equivalence classes of v and Cx 1, —Cki1, .. .,
Cy, —C the non-self-conjugate classes of v. For each ¢ from 1 to N fix a representative
p; of the class C;. Denote by I’ the set of all +p; for i = 1,..., N. Clearly, I’ contains
exactly one representative of each non-self-conjugate equivalence class and exactly two
representatives +p;, which are opposite by sign, of each self-conjugate class. Clearly
I' = —I'. For each set I’ constructed via the procedure above we define a subgroup
Fr(R,A) of U(2n, R, A) as follows

Fp(R,A) ={a€U(2n,R) | a;; = 6;; whenever i ¢ I' or j ¢ I'}.

Lemma 3.8.8. Assume R is a division ring or a product of two copies of a division
ring. Let (o,") be an exact major form net of ideals over (R, A) and let I' be chosen as
described immediately before this lemma. Then

U(o,T') < EU(0,T') - A(2n, R) - Fi/(R,A).

Proof. We will start with an element of U(o,I") and multiply it on the left consecutively
by elements of EU(o,T") - A(2n, R) until we reach an element of Fj (R, A). Note, that
by Lemma the subgroups EU(o,I') and A(2n, R) commute.

Pick a matrix a in U(e,I"). Let I” denote the minimal subset of I such that I’ C I”,
I" = —I" and such that a,, = 0,, whenever p € I \ I” and ¢ € I\ I". If I” = I’ then
a € Fp(R,A). If I” 2 I’ then we will show that there exists an index ¢ € I” \ I’ and an
element of d € EU(0,T") - A(2n, R) - a such that d,, = d,, whenever p € I\ (I”\ {£i})
or g€ I\ (I"\{+£i}). Clearly d € U(c,T'), because (o,I') is a major form net of ideals,
thus U(c,T") contains A(2n, R). Repeating this procedure sufficient number of times, we
will end up with a matrix in EU(e, ") - A(2n, R) - Frr(R, A).

Step 1. Let (i, k) be an A-type base pair such that i € I”\ I’ and k € I”. In this step
we will construct a matrix b in EU(o,I') - A(2n, R) - a such that b; € R* and by, = 0,
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whenever p € I\ I” or ¢ € I\ I". If a;; is already invertible, simply put b = a. Suppose
a;; is not invertible. First, assume that R is a division ring. Then a;; = 0. Observe, that
there exists an index j # ¢ such that aj; # 0 and 0;; = R, otherwise

1= Za;jaji < Z oijaj; =0,
JEl JeN{i}
which is impossible. Suppose such j can be chosen in I” \ {£i} and consider the matrix
b = T;j(1)a. Clearly, b; = aj; is invertible. As both ¢ and j are contained in I”, the
condition that b,, = d,, whenever p,q € I\ I"” is preserved. If the only such j is
equal to —i, by the choice of j we have ay; = 0 (as 0y = 0; = R) and a_x; = 0 (as
oi— = 0;—; = R). Then we can consider the matrix b = T; _4(1)7T_j _;(1)a. Clearly,
bii = a;_; is invertible. Again, +i,+k € I” and thus the condition that b,, = 6y,
whenever p € I\ I"” or g € I\ I" is preserved.

Assume R is the product D x D of two copies of a division ring D. R has precisely two
maximal ideals D x 0 and 0 x D. Assume, a;; is contained in D x 0. We will construct
a matrix ¢ in EU(o,T") - A(2n, R) - a such that ((¢;)1)p = ((ai)1)p and (¢i)2 # 0,
where ¢;; = ((¢ii)1, (¢ii)2) and a;; = ((aii)1, (ai)2). If (a;)1 # 0 then we can assume that
(ari)1 = 0. Otherwise, we can replace a with Ty;(—ag;(((ai)1)™,0))a. Additionally, we
will ensure that ¢,;, = 0,, whenever p € I \ I"” or ¢ € I\ I”. Observe, that there exists
an index j € I” such that a;; ¢ D x 0 and 0 x D < ¢;;. Indeed, assume the contrary,

then oj; < D x 0 and
1= Za;jaﬁ < Z oija;; < D x 0,
JelI jen{i}

which is impossible. If such j can be chosen not equal to +i, put ¢ = 7;;((0,1))a. If the
only such j can be chosen equal to —i, put ¢ = T; _;((0,1))7_,—;((0,1))a. Clearly, in
any of the two cases above the matrix ¢ satisfies all the required conditions. Similarly
we can construct a matrix b in EU(o, ') - A(2n, R) - ¢ such that (b;)2 = (¢i;)2 # 0 and
(bi;)1 # 0, where ¢;; = ((cii)1, (cii)2) and by = ((by)1, (bii)2). Therefore b; € R*. It is
easy to see that the operation above preserves the condition b,, = d,, whenever p € I\ 1"
orqge I\I"

Step 2. In this step we will replace the matrix b with a matrix d in EU(o,T")-A(2n, R)-b
such that d,; = d,, whenever p € I'\ (I” \ {%i}) or g € I\ (I”\ {£i}). Without loss of
generality we may assume that b; = 1. Indeed, we can always replace b with with the
matrix D;(b;;"')b. Consider the matrix

c= I  Ti(-b)Tja(=b_ja)b.
e(j)=—¢(i),j#~i
It’s clear that c;; = 0 whenever j # +i and ¢; = 1. Finally,
Cii=b_i;+ Z AED=D/2 7o\ (40D 2y
e(j)=—¢(i),j#~1

=1-byy > Wby > Wby =4S (07" el
e(j)=—e(i).j#~i e(j)=—(i)
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Thus, T_;;(—c_;;) € EU(o,T"). Put g = T, ;,(—c_;;)c. Clearly, g.; = e, and conse-
quently g_; . = e_; .. In particular, g_; _; = 1. Consider the matrix

= H T —i(=9j-i)T—j—i(—9-j—i)g-
e(j)=e(4).j#i

Notice that f., = ey, fix = e_;ix and f;_; = 0 whenever j # =+i. As before, one
can easily check that f; ; = +S; ;(¢7") € ;. Finally, put d = T, _;(—fi_:)f. By
construction, d € EU(0,T") - A(2n,R) - a. It’s easy to see that d,, = ¢,, whenever
pel\(I"\{£i})orqel\ "\ {£i}). ]

Let (@, L) be a form ring. Consider the form ring (R,A), where R = M(m,Q)
and A = \Iff;l(L). Fix a unitary equivalence relation v on I, and let I’ be chosen
as before Lemma [3.8.8, Consider the subset I” = {x(ind(i) + 1) | i € I';i > 0} of
I5n. Using Proposition it’s easy to see that Frv(Q,L) < Fp(R,A). Further,
A(Q,L) < A(R,A). This combined with Propositions [3.7.9] and Lemma [3.6.3

allows us to deduce the following corollary.

Corollary 3.8.9. Assume h(v) > (4,3) and R is a semi-simple Artinian ring. Let (o,T")
be an exact magjor form net of ideals over (R,\) and let I' be chosen as described before
Lemmal3.8.8 Then

U(o,T) < EU(0,T') - A(2n, R) - Fi (R, A).

3.9 Radical reduction

Throughout this section we fix a standard setting ((R, A), (R, A’),S), a unitary equiva-
lence v on I and a subgroup H of U(2n, R, A). We will study the factor of a standard
setting ((R,A), (R, \'),S) by the Jacobson radical J of the ring R. First of all, it’s
easy to see that the Jacobson radical is invariant under the action of the involution
with symmetry ~. Indeed, an element £ in R belongs to J if and only if 1 — £( is left
invertible for all ( € R. As ~ is an anti-automorphism, this is equivalent to saying that
1 —¢&C =1—C-¢€ is right-invertible for all ¢ € R. As R = R, it follows that ¢ is also
in the Jacobson radical. Therefore we may consider the factor form ring (R/J, A/Q;),
where 2; = J N A is the maximal relative form parameter of level J. Next, J' = R'NJ
is obviously a two-sided ideal in R’. It’s also clear, that

J=RnNJ=RnNnJ=RnJ=J.

Therefore we may consider the factor form ring (R'/J', A'/Qy), where Qp = A" N J" is
the maximal relative form parameter in R’ of level J'. Notice that, as A’ < A, it follows
that

Qr=ANnJ=RnAnNANNnJ=AnJ)N(RNN)=Q,;NnA\.
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Therefore (R'/J',A'/2;) can be viewed as a form subring of (R/J,A/Q ;). Clearly, the
subset S/J = {r + J' | x € S} in R'/J" is a multiplicative set which is contained in
(R/J)* N Center(R/J)N{& € R/J | &= ¢} Summing up,

((R/J,N/S2y), (R') T N [Q), S]T)

is a standard setting and the reduction morphism p : R — R/J is a morphism of standard
settings. Denote by U(J) the principal congruence subgroup U(2n, (R, A), (J,€;)) =
U(2n, R,A) N GL(2n, R, J) of U(2n, R, A) of level (J,€;). Note that U(J) is a normal
subgroup in U(2n, R, A).

Lemma 3.9.1. Assume that h(v) > (4,5) and that either h(v) > (6,5) or RA+AR = R.
Further, assume N' = AN R'. Let H be a subgroup of U(2n, R, A) and (¢/,1") an ezact
magjor form net of ideals which is S-associated with H. Let (o,1") denote the S-closure
of (¢, I") in (R,A\). Then (o' +J IV 4+ Qy) (cf. Lemmam is an exact major form
net of ideals which is S-associated with the subgroup U(J) - H and the form net of ideals
(04 J,I'+ Q) is the S-closure of (o' + J', IV + Q).

Proof. The inclusion EU(¢’ + J', IV + Q) < U(J) - H is straightforward. Pick any
T (&) € U(J) - H, where £ € R. If s ~ r the existence of an element x € S such that
x€ € (0, 1) < (o + J,T" + Qy)s is guaranteed by definition of a standard setting.
Assume that s = r. Pick any element g € U(J) such that h = ¢75,.(§) € H. Our
immediate goal is to show that h € U(o). Clearly, h;. = e;x mod J whenever i # s, —r
and h,; = e,; mod J whenever j # r, —s.

Pick any index p € I. Assume, the equivalence class of p is self-conjugate. Then
we can always choose an index [ ~ p such that [ # +p and either h;, = e;, mod J
for i € {p,—l} or hy; = e,; mod J for i € {p,—I{}. By Corollary it follows that
hi, € o4 for all ¢ € I. Next, assume that the equivalence class of p is non-self-conjugate
and p # s, —r. If the equivalence class of p contains not more than one element of the
set {s,—r}, clearly there exists an A-type base quadruple (p, q,t,1) such that a; = e,
mod J and a, _; = e,_; mod J whenever ¢ € {p,q,t,l}. By Corollary it follows
that a;, € o0y, for all i« € I. Assume the equivalence class of p contains both s and
—r. As s » r, it follows that p # +s,£r. Recall that h(v) > (4,5). Therefore there
exist at least one more index [ ~ p such that | # =£p,+s,£r. Then h_;, = e_;.
mod J and h,; = a,; mod J whenever ¢ € {p,l,s,—r}. Additionally, hy = ey. By
Corollary we get h;, € o, for all 7 € I. Now we have to consider the cases when
p € {s,—r}. Assume, p = s. Recall that s » r. Therefore there exists at least three more
indices ¢,l,t € I such that (s,q,1,t) is an A-type base quadruple and r # +¢q, £, +t.
Consider the matrix f = Ty (—1)hT(1). Clearly, f_;. = e_;. and f.; = e,; whenever
i € {s,q,h,t}. Moreover f,; = e,. By Corollary it follows that f;; € o;. It’s only
left to notice that f; = hy + h;s whenever i # s, —t. We we have already shown that
hy € o5, therefore h;s € 0,5 for © # —t. Finally,

Joti=hgi+hys—h sy—h_gs=h_,, modo_,.

Therefore h;s € 0,5 for all ¢ € I. The case when p = —r can be treated in the same way.
Therefore, h € U(o).
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Assume s # —r. Then gy + gss& = hgr € 0g.. Recall that g, € J and g is
invertible, therefore £ € og. + J. It’s obvious that there exists an element x € S such
that £ € o, + J'. Let r = —s. Note that by assumption, s = r = —s. Thus the
equivalence class of s is non-self-conjugate. Therefore there exist three more indices
q,t,l € I such that (s,q,t,1) is an A-type base quadruple. It’s easy to see that h;. = e,
and h._; = e,_; whenever ¢ € {—s,—q,—h,—I}. By Corollary it follows that
Ss._s(h™') € T'y. By Proposition we have

Dy 3 Ses(h™) =S a(Tura(—€)g7") = =6+ ) auSk—r(g a s,
k

/ /
- § (askgk,—jg—jlal,—s

7,k,0>0
- Z ((as,fkgl—k,fjgfj,la;,fs

k,j>0;1>k

ORI

(3.109)

asa_kglli’,—jg_jvla/g,—s)A<1_€(s>)/2)
+ (askGr,_j9—j,-10";
A gl gl AN,

where a stands for Ty _(—¢). It’s easy to see that every term of the last two big sums
in contains a factor g}€7_j,f_j, g—j1 or g—;;, which is contained in J. Moreover,
these two big sums are obviously contained in in A™ and therefore in (€;)s. Every
length Sy _x(g™') is contained in (2;) for the same reason. Thus

askSk,fk(gil)a/_kv_s = GskSk,fk(971))\(E(k)fl)ma_‘sk)\(l*g(s))/Q € (2)s,

where the equality is due to Lemma and the inclusion is due to property (I'2').
This combined with yields the inclusion —¢ € T's + (Q)s. Again, it’s clear that
there exists an element z € S such that x?¢ € I, + (Q),. Thus we have proved that
(0" +J', I"+Qy) is a form net of ideals which is S-associated with H. The fact that the
net (0+J,1'+€) is the S-closure in R of the net (¢'4J', "4 /) is straightforward. [

Corollary 3.9.2. Assume that h(v) > (4,5) and that either h(v) > (6,5) or RA+AR =
R. Let p: R — R/J denote the reduction morphism and assume that the restriction
plp + R — R/J of p is surjective. Let H be a subgroup of U(2n,R,A), (¢/,I") an
exact major form net of ideals which is S-associated with H, and (o,1") the S-closure
of (¢/,I) in (R,A\). Then (R'/J',N'/Qy) = (R/J,A/2;) and the images (o', 1)) and
(07,T) under p of the form nets of ideals (¢’',T") and (o,T'), respectively, coincide and
each is the net associated with Hy = M(p)(H).

Proof. The surjectivity of p|, immediately yields the equality of the form rings
(R'/J', N /Qp) and (R/J,A/Qy). Clearly, Hy = M(p)(U(J) - H) and (0',,1";) coincides
with the image of (¢/ +J', I+ /). By Lemma we know that (o' 4+ J', IV + Q) is
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an exact form net of ideals which is S-associated with U(J)- H and that (c+J,['+Q) is
the S-closure of (¢/+J', 1"+ Q ). As U(J)- H contains the kernel U(.J) of the reduction
morphism p, by Lemma it follows that (o/;,17) is a net S/J-associated with H;
and that (o;,T';) is the S-closure of (¢/,,17;). By Remark it follows that the form
net of ideals (07}, ") is the net associated with H; and coincides with (o;,1)). O

Corollary shows, in particular, that the full pre-image of EU(o,,I";) under p is

contained in EU(¢’,I") - U(J). Now we perform the radical reduction.

Lemma 3.9.3. Assume that h(v) > (4,5) and that either h(v) > (6,5) or RA+AR = R.
Let ((R,A),(R',N),S) be a standard setting such that R is a semilocal ring and the
canonical morphism R' — R/ J is surjective. Let H be a subgroup of U(2n, R, A), (o/,1")
an ezxact magjor form net which is S-associated with H, and (o,1") the S-closure of (o/,1")
in (R,A). Then

H < Transpy g, g ay(EU(0", T7), U(0,T)).

Proof. Let T,.(§) be a (¢’,I")-elementary unitary matrix and a an element in H. Con-
sider the matrix b = aTy,.(§)a™'. We will show that b € U(o,T'). Denote by p the
reduction morphism R — R/J. Combining Corollary with Corollary we ob-
tain the inclusion p(b) € U(o,,T';), where (o4,1';) is the image of (¢/,I) under p. By
Corollary the inclusion

U(UJ7FJ) S EU(UJ7FJ) . A(Qn,R/J) . F]/(R/J, A/(J N A))

holds for any choice of I’. As we have mentioned after Corollary [3.9.2] the pre-image
of EU(oy,I'y) under p is contained in EU(¢’,I") - U(J). Further, the pre-image of
A(2n,R/J) - Fr(R/J,A/(JNA)) under p is contained in the group FJp (R, A) defined
as follows:

FJp(R,A) ={a€U@2n,R,A) | a; € R* whenever i ¢ I’
a;; € J whenever i # j and either i ¢ I' or j ¢ I'}.

Note, that F'Jp (R, A) contains U(J). Summing up, we get the inclusion
b e BU(o",T") - F.Jp(R, A)

for any choice of I’. Fix any decomposition b = ¢ - d, where ¢ € EU(¢’,I") and d €
FJp(R,A). Clearly d = ¢™'b is also contained in H. Thus d € HN FJp (R, A).

Fix an index p ¢ I’. Assume that the equivalence class of p is non-self-conjugate, then
we can chose an A-type base quintuple (p, g, h,t,1) such that p,q, h,t ¢ I'. By Corollary
3.5.4| we get d;, € 0y, for all i € I and, as ¢ € U(o,I"), also b, € 0y, for all i € I.

Assume p is self-conjugate. If h(r) > (6,5) then we can choose a C-type base pair
(p, h) such that h is also not contained in I’. By Corollary we get the inclusions
d;p, € 04 for all ¢ € I. Thus b;, € 0y, for all © € I. Finally, if RA + AR then by Lemma
we get d;,A < 0, and thus also by, A < oy, for all 7 € 1.
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Applying the results above to all possible sets of representatives I’, we get the in-
clusions b;, € o, for all i € I and all p such that p ~ —p. If h(v) > (6,5) we also
have the inclusions b;, € oy, for all 7 € [ and all p such that p ~ —p. Finally, if
RA + AR = R then we have the inclusions b;,A < oy, for all ¢ € I and all p ~ —p.
Therefore if h(v) > (6,5) we already have b € U(o). Assume RA + AR = R. Fix
some C-type base pair (p, h) and some n € R. Consider the matrix f = T),(n)a and
g = [T, (&)f~'. Applying the results above to the matrix g we get the inclusions
ginA < oy, for all 4 € I. Note that g;;, = b, + bipn for all @ # p, —h and thus b;,nA < o),
for all 7 € I. By arbitrariness of choice of 7, it follows that b, RA < 0y, for all « € I.
Thus b;, € bj,R = b;, RA + bj, AR < 0;,, for all i € I. We conclude that b € U(o).

For any p ~ —p we can choose I’ in such a way that p ¢ I’. By Corollary we
get S_,,(d7') € T'_, for any choice of p. Note, that d~! = b~'c¢ and both b and ¢ are
contained in U(o,T"). By Proposition the following congruence holds:

S_pp(d™) =8 (b7 e) = S_pp (07 + D U 1 Skk(c)bgp mod T™F. (3.110)
kel

As ¢ € EU(o, ), it follows that Sy _x(c) € Iy, for all & € I. Finally, combining property
(U1) of Lemma with property (I'2) of a form net of ideals we get

bip7kSk,—k(c>b—k,p = )\(E(p)71)/2b_k7p)\(1+s(k))/2sk7_k(C)b_hp € F_p (3111)
for all k € I. Substituting (3.111)) into (3.110) we conclude that S_, ,(b™') € T, As p
was chosen arbitrarily it follows that b~! € U(c,T') and thus b € U(o,T). O

3.10 Localization

Proposition 3.10.1. Let (R, =, \) be a ring with involution with symmetry, where R is
finitely generated as a module over its center. Then R is the direct limit of a directed
system {(R;,~, \)}e of subrings with involution with symmetry of (R,~,\) such that
for each index i € © there exists an involution invariant finitely generated Noetherian
subring C; in the center of R; such that R; is a finitely generated C;-module, ¢ = ¢ for
any c € C; and any form parameter A; for R; is a C;-module.

Proof. Let L denote the center of R. Clearly the ring L is involution invariant, ie.
L = L. By assumption,
R=xz1L+---+2ayL

for some N € N and z;,...,2zy € R. For each 7 from 1 to IV the product z;z; can be
expressed as a sum Zivzl TRk, where a;;, € L. For each ¢ from 1 to N the element z;
can be expressed as a sum Z]kvzl Trbip, where a;;, € L. Finally, A = fozl TrCir, Where
cir. € L. Consider the ring

K = Z[aijk7m7 bik?@? Cikﬁ@ | 1 S Z.7.].7]{; S N]

124



It is clear, that K is an involution-invariant, finitely generated, commutative (and thus
Noetherian) ring that contains A. Clearly, L is a K-algebra. Moreover L is the limit
of the directed set {L;};co of all involution invariant K-subalgebras L; of L which are
finitely generated over K (and thus also Noetherian).

Fix an index 7 € © set R; = x1L; + ...xnyL;. It's easy to see that R; is an involution
invariant subring of R such that \ € R; for each i € ©. It is also clear that R = hgl R;.
For each i € O, let C; be the ring spanned by all elements c¢, where ¢ € L;. Our goal
is to show that R; is is finitely generated as a C;-module. We represent here the proof
by Hazrat ([Haz02, Lemma 3.7]). Note that C; also contains the elements of the shape
c+¢ for any ¢ € L;. Indeed

ct+ec=(c+1)(c+1)—cc—1.

Pick elements ay, ..., a; € L; such that they generate L; as a Z-algebra (i.e. any element
of L; is a polynomial in variables aq, . .. , a; and coefficients in Z). Then L is also a finitely
generated ring over C; (with the same set of generators). Next, L; is an integral extension
of C;. Indeed, any of it’s Z-generators a; satisfies a monic polynomial

Therefore L; is an integral extension of C; and a finitely generated ring over C;. It’s
well known that in this case L; is a finitely generated module over C; (see for example
[Kap70, p.11, Theorem 17]). It also follows that if A; is a form parameter for R;, then
A; is a Cy-module, i.e. cA; < A; for all ¢ € C;. O

Proof of Theorem [1l Note that if (R, A) is a quasi-finite form ring we can always
choose a directed system { R;};co such that R = lim R; and each ring R; is an involution
invariant ring module finite over its center that contains A\. Combining this observation
with Propositions [3.10.1] and [3.6.6| we can from the very beginning assume that R is a
finitely generated module over a finitely generated subring C' in the center of R such
that ¢ = ¢ whenever ¢ € C' and A is a C-module. Let (o,I") be the net associated with
H. Fix an element a € H and an elementary unitary matrix 7s.(£) in EU(o,I"). Let b
denote the conjugate aT%,.(¢)a™'. We will show that b € U(o,T).

Pick a maximal ideal m of C'. Let S denote the compliment of m in C. Consider
the localisation R, = S™'R of the ring R at the multiplicative set S together with the
localization morphism Fy, : R — R,. It is well known that R, is semilocal. Let A,
denote the form parameter S~'A for Ry, R’ denote the image Fi,(R) of R in Ry, A,
denote the form parameter Fy,(A) for R), and S, denote the multiplicative set Fiy(5). It
is easy to see that (R, Aw), (Rh, AL), Sw) is a standard setting. Clearly we can consider
the form ring (R, A) as a trivial standard setting ((R, A), (R, A), {1}). It’s easy to see that
Fy, is a morphism of standard settings ((R,A), (R, A),{1}) and ((Rm, Aw), (R}, AL), Sm)
We will show that there exists an element xy € S such that Fj, is injective on xqR. For
cach s € S set Ann(s) = {£ € R | s¢ = 0}. Note that Ann(s) is an ideal of R for any
s € S. As R is Noetherian, it follows by Zorn’s lemma that there are maximal elements
in the set {Ann(s) | s € S}. Let xo € S be such that Ann(zg) is maximal. Then F, is
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injective on zgR. Indeed, let Fy,(7o€) = Fu(zo(). Then there exists an element s € S
such that szo(§ — ¢) = 0, therefore (§ — () € Ann(sxg) 2 Ann(zg). As Ann(xg) is
maximal it follows that (£ — () € Ann(zy) and zo& = (.

We will show that the image (o}, I",) under F,, of the form net of ideals (o,T") is
Sm-associated with the image Hy, = M(Fy)(H) of H in U(2n, R;,,A,). By Proposi-
tion it follows that (o}, I",) is an exact form D-net of ideals over (R, Al,) and
M(Fw)(U(o,T")) = U(o},,I,), in particular, U(op,, ') < Hun. Let Tg,.(€) be an ele-
ment of EU(2n, Ry, Ay) contained in Hy,. Then & = %, where ( € R and x € S, thus
Fo(Cad—7) = Fy(x)1+9—)¢ Clearly, if s = —r that (2% € A,. By Proposition
it follows that Tsr(x(()lJrés”T)(x‘SS’—r) € H. Therefore mélJrés"T)Cx‘SSv—T € (0,1
Thus (zzo)*%-)¢ € (o ,T"). Hence, (o),T%) is indeed a from net of ideals which is
Sm-associated with H,.

Let J, denote the Jacobson radical of the ring R,. Then the canonical morphism
R — Ry/Jn is surjective. Indeed, as the ring C' is commutative it follows that C'/m is
a field, therefore S+m is invertible in C'/m. Thus, the canonical morphism R}, /F,(m) —
Rw/(S7'm-Ry) is surjective. Further, the ring Ry, is module finite over the commutative
local ring S™'C' with the Jacobson radical S~'m. According to [Bas68, P. I, Ch. III, §2]
the inclusion Ry,-S™'m < J,, holds. Therefore the canonical morphism R/(S™'m-Ry,) —
R/ Jw is surjective. Summing up, the canonical morphism
R, — Ry /Jn is surjecive as a composition of surjective morphisms

R, — R /Fn(m) — Ry/(S7'm- Ry) — R/ Jn.

m

By Lemma it follows that
Hy, < Transp(EU(0), %), U(om, T'n)), (3.112)

m) T m

where (0, ') is the Sy-closure of the (o7, I';,) in (Rw, Aw). One can show that (o, I'y)
is the localization (S~'o, S7IT") of the form net of ideals (o,T), although it is not im-
portant for this proof. Denote by X;; the set of all elements x € C' such that zb;; € o;;.
We will show that X;; contains an element of S for all ¢« # j. Assume ¢ # £j. By
it follows that Fy(b;;) € (ow)i;. Thus there exists an element x € S such that
Ti;(Fu(x)Fu(bij)) € H. By Proposition it follows that T;;(zoxb;;) € H. Therefore
xoxbi; € 05 and xoxr € X;; N S. If i = —7 then there exists an index k € I such that
(i, k) is an A-type base pair. Then Fin(b; ;) € (0m)i—i = (Om)k—i- In the same way as
above, this yields that zpx € X; _; NS for some z € S.

Similarly, for any ¢ € I let Z; _; be the set of all elements x € C such that xS; _;(b) €
I';, We will also show that Z; _; contains an element of S. By it follows that
Si—i(Fu(b)) € (I'm);- Thus there exists an element = € S such that

T —i(Fu(2)*Fu(Si—i(b))) € H.

By Proposition it follows that T; _;(x32%S; _;(b)) € H. Therefore 22225; _;(b) € T;
and x32* € Z; _;.

Assume i # j. Because the maximal ideal m of C' is arbitrary it follows that the set
X, generates the whole ring C' as an ideal, therefore b;; € (X;;)c - bij < 0y5. Similarly,

126



Z; _; also generates the ring C' as an ideal. As I'; is a C-module, it follows that S; _;(b) <
(Zi—i)o - Si—i(b) <T. Summing up, b € U(o,I"). Therefore,

EU(0,T") < H < Transp(EU(e,T'), U(o, ). (3.113)

The uniqueness of an exact form D-net of ideals (¢, ") such that holds follows
from Theorem [2] Indeed, let (7, B) be any such exact form D-net not coinciding with
(0,T). Clearly, (1, B) < (0,I"). Fix some i # +j and pick any £ € ;5. Then T;;(&) €
H < Transpy g, ga)(EU(7, B), U(7, B)). By Theorem [2] it follows that § = ¢-1-1 €
(T35(8))ij755(Ti5(8))}; < 755 Therefore 7;; = oy for all @ # —j. Let a € I'; for some
i € I. Then T; i(—a) € H < Transpya, g a)(EU(T, B),U(7, B)) and 1 € 7;;. Therefore
by Theorem [2| (property (T2)) it follows that

a = (Tj—i(—))ii - 1+ Si—i(T; (@) ANEODDEINOO2 (T, ()i i € By .

Hence, I'; = B; for all ¢ € I. Finally, as both form nets of ideals (o,I') and (7, B) are
exact, it follows that o; ; = 7, _; for all ¢ € I. Thus (o,I') = (7, B). O
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