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                                                                                                                                    Summary 

i 

Summary 

Extensive use of fossil fuels has encouraged governments and research community 

to find alternative energy sources in order to reduce greenhouse gas (GHG) 

emissions and dependence on fossil fuels. One of these alternative energy sources 

is biogas, a mixture of gases, mainly CH4 and CO2, produced by the anaerobic 

fermentation of organic matter. One of the multiple substrates for the production of 

biogas are microalgae which are microorganisms that can transform sunlight and 

CO2 into biomass.  

In this work, a new approach for the production of biogas from the anaerobic 

fermentation of microalgae was investigated. Here we propose to perform the 

anaerobic digestion at alkaline conditions (pH~10; 2.0 M Na+). This can have several 

advantages over traditional anaerobic digestion systems. One advantage is that due 

to the higher CO2 solubility at alkaline conditions, the medium in the anaerobic 

reactor can act as a CO2 scrubber resulting in biogas rich in methane.  

To perform the anaerobic digestion at such alkaline conditions, sediments from 

alkaline lakes were used as inoculum. Several anaerobic reactors were set up to 

study the anaerobic digestion of Spirulina. These reactors were used to determine 

the optimal process parameters such as hydraulic retention time and organic loading 

rate. Several bottle necks were identified in this new approach, mainly related to 

ammonia inhibition and to poor granule formation. The produced biogas was rich in 

methane which made it suitable for the direct use in national gas grids or as fuel for 

vehicles. 

Metagenome analysis was the applied method to taxonomically and functionally 

characterize the unique extremophilic microbial community present in the alkaline 

anaerobic reactors. The taxonomy profile of this particular anaerobic alkaline 

community was similar, at higher taxonomic levels, to known traditional anaerobic 

digester communities with Bacteria clearly dominating over Archaea. The main 

observed differences could be attributed to the type of bacteria and archaea found, 

mainly haloalkaliphilic. Uncultured haloalkaline bacteroidetes and other halotolerant 

bacteria such as Halanaerobium were among the most dominant bacteria, while 

among the methanogenic archaea a clear dominance of Methanocalculus was 

observed.  

Genes related to the different strategies used by haloalkaline bacteria to cope with 

high pH were detected in the functional analysis. In the alkaline anaerobic reactor, 

the hydrogenotrophic methanogenesis pathway was the most prominent pathway 

while most genes of the acetoclastic pathway were practically absent. 
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1. Introduction 

Human emissions of greenhouse gases (GHGs) are currently considered the main 

cause of climate change. The global energy demand is growing rapidly and it is 

expected that by the year 2035 it will reach 739 quadrillion BTU that is over twofold 

the consumption from 1990 (Oncel, 2013). Today about 88% of this demand is 

covered by fossil fuels (Weiland, 2010). The rise in oil prices and the need to reduce 

the GHGs emissions have led governments to increase investment into the use of 

alternative energy sources. One of these alternative energy sources is biogas, a 

mixture of gases, mainly CH4 and CO2, produced by the anaerobic fermentation of 

organic matter. 

1.1. The anaerobic digestion process 

Anaerobic digestion (AD) is a natural process where the decomposition of organic 

matter takes place at anaerobic conditions to produce biogas, a mixture of mainly 

methane and carbon dioxide. First records of biogas usage date as early as the 10th 

century B.C., when biogas was used for heating bath water in Assyria, and records 

appear later in the 16th century in Persia (Abbasi et al., 2012; Lusk, 1998). In the 17th 

century, Van Helmont associated the production of flammable gas to the decay of 

organic matter, and later, in 1776, Volta correlated the amount of gas produced to the 

amount of decaying organic matter. In 1808 Sir Humphry Davy determined that 

methane was present in the gases produced during the AD of cattle manure (Abbasi 

et al., 2012; Deublein and Steinhauser, 2008; Gunnerson and Stuckey, 1986; Lusk, 

1998). The first known anaerobic digestion plant was built in Bombay (India) in 1859, 

but it was not until 1895 that the use of AD plants reached Europe (Abbasi et al., 

2012; Lusk, 1998). The production of biogas as an alternative energy supply was 

used quite extensively when energy supplies were reduced during and after World 

War II (Lusk, 1998). Today, it is possible to find urban, industrial or manure anaerobic 

digestion plants around the world, even though most of them have been built in the 

EU. The large implementation of the AD in the EU is a result of the financial support 

for projects in the field of alternative energy sources and energy savings as well as 

the implementation of the Landfill Directive (Directive 99/31/EC) (Astals Garcia, 

2013). Today, over 13,000 biogas plants operate in Europe which produce over 10.1 

million tons of oil equivalents (Mtoe) per year and these values are expected to grow 
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in the next years (EurObserv’er, 2012). The energy obtained in a biogas plant can be 

used to provide heat, electrical power, or transport. Substrates for anaerobic 

digestion plants can be obtained from agro food industries (sugar, potato, starch, 

cannery, fruit, vegetable, dairy, baker), beverage industries (beer, malting, wine, 

coffee), alcohol distilleries (sugarcane juice, sugarcane molasses, sugar beet 

molasses), pulp and paper industries (recycle paper, mechanical pulp, sulfite pulp, 

straw, bagasse), and other miscellaneous fields (chemical, pharmaceutical, sludge 

liquor, municipal sewage, landfill leachate, acid mine water, etc.) (Borja, 2011; Al 

Seadi et al., 2008). 

1.1.1. Main parameters affecting the anaerobic digestion process 

The anaerobic digestion process is a complex biological process where organic 

matter is degraded in the absence of oxygen which results in the production of 

methane and CO2. Effective anaerobic digestion of a given substrate is influenced by 

multiple factors:  

(i) Temperature: Anaerobic digestion can be performed at three different 

temperatures ranges, mesophilic (20 - 45°C), thermophilic (45 - 60°C) or psycrophilic 

(<20°C). The temperature directly affects the solubility of several compounds (CH4, 

NH3, volatile fatty acids, etc.) and the retention time needed to hydrolyze the 

substrate. Temperatures between 35 and 55°C are considered optimal (Borja, 2011; 

Al Seadi et al., 2008). 

 (ii) pH: The pH is one of the most important factors to take into account for 

effective digestion, because pH values too low or too high inhibit the anaerobic 

microbial community. The optimal operation pH range varies from 6.5 to 8.0 and the 

process is severely inhibited when the pH decreases below 6.0 or increases above 

8.5. A drop or increase in the pH value mainly affects the methanogenic community 

as it is more sensitive to pH changes, whereas the fermentative bacteria are much 

more resistant. The pH in anaerobic reactors is mainly controlled by the bicarbonate 

buffer system. Therefore, the pH value inside digesters depends on the partial 

pressure of CO2 and on the concentration of alkaline and acid components in the 

liquid phase (Borja, 2011; Al Seadi et al., 2008). This thesis investigates the 

possibility to perform AD at higher pH values with a pH-tolerant microbial consortium 

obtained from alkaline soda lakes (See section 1.3.3 for details). 
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(iii) HRT / SRT / OLR: Hydraulic retention time (HRT), Solid retention time 

(SRT) and Organic loading rate (OLR) also affect the process performance (Astals 

Garcia, 2013). HRT represent the average time that dissolved molecules stay inside 

the reactor, while SRT represent the average time that solid biomass remains inside 

the reactor; the OLR is the amount of substrate or organic matter introduced per day 

and digester volume into the system (Borja, 2011; Burke P. E, 2001; Al Seadi et al., 

2008). The OLR can be increased / decreased by reducing / increasing the HRT or 

increasing / reducing the organic matter concentration of the digester feedstock. Both 

the HRT and the SRT are important as they set the amount of time available for 

bacteria to grow and subsequently convert the substrate into methane. In this sense, 

the HRT and SRT must be long enough so that the amount of microorganisms 

removed with the effluent (digestate) is not higher than the amount of 

microorganisms reproduced. Too short HRT or SRT can result in the washout (loss) 

of active biomass while an excessively long HRT / SRT can result in accumulation of 

toxic compounds. Both situations result in a decrease of the biogas production rate. 

Too high OLR can result in the overload of the reactor which leads to the 

accumulation of toxic compounds and results in poor biogas production (Astals 

Garcia, 2013; Borja, 2011; Burke P. E, 2001; Kwietniewska and Tys, 2014; Al Seadi 

et al., 2008). Therefore, the HRT, the SRT and the OLR need to be optimized 

together to maximize the degradation of the substrate and obtain the highest possible 

biogas production rate. 

 (iv) VFA: Volatile fatty acids (VFAs), which typically include acetate, 

propionate, butyrate and valerate, are the main intermediates of the AD process 

produced during acidogenesis. Therefore, their concentrations are often monitored 

as a proxy for digester performance and stability (Astals Garcia, 2013; Al Seadi et al., 

2008). For example, accumulation of VFAs reflects an uncoupling between acid 

formers and methanogens, and can result from stress caused by hydraulic or organic 

overloading, sudden temperature variations, or the presence of toxic or inhibitory 

compounds. In most cases, accumulation of VFAs results in a drop of pH-value which 

in turn reduces the biogas production rate (Borja, 2011; Al Seadi et al., 2008). 

(v) Ammonium / Ammonia: Ammonium (NH4) and ammonia (NH3) are 

produced by the degradation of proteins and other nitrogenous compounds. 

Ammonium is an important source of nitrogen for bacteria and beneficial to the 
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process (Kwietniewska and Tys, 2014). However, the free form of ammonia (FA), 

NH3, is toxic for the methanogenic archaea and its accumulation results in digester 

failure (Chen et al., 2008; Kwietniewska and Tys, 2014; Pind et al., 2003; Al Seadi et 

al., 2008). The concentration of free NH3, according to Eq. 1, is influenced by the pH 

and the temperature. Therefore, an increase in the pH would result in an 

accumulation of FA and an increase in toxicity (Chen et al., 2008). 

N-NH3 =
TAN ∗  10pH

e
(

6344
273.15+T

)
+  10pH

 Eq. (1) (Anthonisen et al., 1976) 

Free ammonia seems to be the main cause of inhibition because it is freely, 

passively membrane permeable and causes proton imbalance and / or potassium 

deficiency (Kwietniewska and Tys, 2014).   

(vi) Other parameters: Several other parameters affect the AD process. Ions 

such as sodium (Na+), calcium (Ca2+), potassium (K+) and magnesium (Mg2+) are 

known to be important for an effective digestion and their absence or excessive 

accumulation can have negative effects on the biogas production (Chen et al., 2008). 

Addition of micronutrients and / or vitamins is also important for a correct 

performance (Al Seadi et al., 2008). 

The above list enumerates the most important factors and parameters affecting the 

anaerobic digestion process. For a deeper understanding, multiple reviews exist that 

explain the AD process and its parameters in greater details (Borja, 2011; Burke P. 

E, 2001; Deublein and Steinhauser, 2008; Kwietniewska and Tys, 2014; Pind et al., 

2003; Al Seadi et al., 2008).  

1.1.2. Adding value through anaerobic digestion 

One of the main advantages of the anaerobic digestion process is that it can be 

fueled with multiple organic substrates, from manure to wheat straw to microalgae. 

Production of biofuels (such as bioethanol or biodiesel) or other products from 

biomass only makes use of a fraction of the biomass. The remaining biomass is often 

a good substrate for methane production (Ahring, 2003). For example, the anaerobic 

co-digestion of glycerol, a by-product of the biodiesel production process, with 

manure not only boost the biogas production (Astals et al., 2012) but can also 

contribute to reduce the biodiesel production cost by adding value to a waste. In this 
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sense, the use of residual algal biomass, obtained during the production of biofuels, 

can also contribute to reduce the algal production costs while providing energy (de 

Boer et al., 2012; Kwietniewska and Tys, 2014).    

1.2. Microalgae as substrate for anaerobic digestion 

Commercially operated biogas plants use organic wastes such as wastewater, the 

organic fraction of solid urban waste, agroindustrial waste (manure) or biomass to 

produce methane which then can be converted into heat, electricity or used directly 

as natural gas (Angelidaki et al., 2003; Holm-Nielsen et al., 2009; Weiland, 2010). In 

past recent years however, biogas production plants are also being fuelled with 

whole-crop silage, the so called energy crops, which to date contribute over 50 % of 

the total biogas production (Weiland, 2010). The use of these energy crops presents 

several long-term disadvantages and drawbacks: (i) they compete for arable land 

with traditional crops, (ii) they use large quantities of fresh water and (iii) they require 

fertilization (Karp and Richter, 2011). On the other hand, microalgae are 

microorganisms that can transform sunlight and atmospheric CO2 into biomass (Eq. 

2) without the drawbacks associated with energy crops.  

Microalgae have several advantages over energy crop biomass; (i) they have a 

higher photon conversion efficiency which can result in a higher biomass yield per 

hectare, (ii) they also have a higher CO2 absorption capacity compared to energy 

crops, (iii) they can be grown in liquid medium including salt and waste water 

streams, (iv) algae can be produced on marginal land which does not compete with 

arable land and their production is not seasonal, (v) they have minimal environmental 

impact such as deforestation, and (vi) they require less fertilizers and pesticides (de 

Boer et al., 2012; Clarens et al., 2010; Gouveia, 2011; Hannon et al., 2010; Wiley et 

al., 2011).  

One of the first attempts to use algal biomass as substrate for AD  was performed by 

Gouleke et al., 1957 who digested a mixture of Chlorella sp. and Scenedesmus sp. 

biomass. Later, in the 70ties and 80ties, Foree and McCarty, 1970; Samson and 

LeDuy, 1982; Samson and LeDuy, 1986; Varel et al., 1988 continued with the study 

of the anaerobic digestion of algae, mainly the cyanobacteria Spirulina. However, the 

circumstances at that time, cheap oil prices (Mouawad, 2008) and less environmental 

[a] CO2 + [b] nutrients + sunlight  [c] O2 + CH2O (biomass) Eq. (2) (Davis et al., 2011) 
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concerns led to a loss of interest. The need to use non-fossil energy sources, the 

biorefinery concept and the oil price spike in 2008 has brought back the attention to 

using algal biomass for the production of biofuels (de Boer et al., 2012; El-Mashad, 

2013; Mussgnug et al., 2010; Ras et al., 2011; Sialve et al., 2009). 

Algal biomass can be used for several purposes. Next to using algal biomass as 

source for renewable energy by the production of biodiesel or biogas (de Boer et al., 

2012), algae can also be a source for value added products such as proteins, 

polysaccharides, pigments, animal feed, nutritional dietary products, etc. (Gouveia, 

2011).  

To date, the production of biofuels from microalgae is not economically feasible 

mainly because with the current technology and developments, the energy balance 

between the in-put and the output is still negative, that is, more energy is consumed 

than produced (de Boer et al., 2012; Clarens et al., 2010). Several factors related to 

algae production and harvest, extraction and conversion of oils make the process of 

obtaining biofuels from algae still expensive. Slade et al., 2013 compared the 

production of algal biomass in open raceway ponds (ORP) with the production of 

algae using a photobioreactor system (PBR). According to Slade and Bauen, 2013, 

the cost of 1.0 Kg of algae ranges from 1.8 € in the ORP system to 10.0 € in the PBR 

system. These costs do not yet include the extraction and conversion of algae into 

fuels. According to a Life Cycle Analysis (LCA) performed by Davis et al., 2011, the 

selling price of 1.0 gallon (3.78 L) of biodiesel would be located at approximately 7.0 

€ for the ORP and 15.0 € for the PBR system which is markedly higher than the 

average current price of 3.0 € per gallon1. The main production costs in the open 

raceway pond are associated to fertilizer, CO2, algae harvest, compacting, drying and 

oil extraction and in the photobioreactors system to electricity, drying and oil 

extraction (Slade and Bauen, 2013; de Boer et al., 2012; Davis et al., 2011). Direct 

digestion of the algal biomass into methane can have several advantages over the 

production of biodiesel from microalgae: (i) nutrients, P and N can be recirculated 

from the anaerobic digester to the algae culture system (de Boer et al., 2012; Collet 

et al., 2011; Oncel, 2013); (ii) for anaerobic digestion, solids with a higher water 

content can be used, therefore reducing the harvesting and the drying costs (Collet et 

al., 2011; Torres et al., 2013; Wiley et al., 2011); (iii) with the direct digestion of algae 

                                                           
1
 Prices were calculated based on the US market and converted to Euros. 
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there is no need to use solvents for lipid extraction (de Boer et al., 2012); (iv) CO2 

generated during the AD process can be recycled to the algae (de Boer et al., 2012; 

Slade and Bauen, 2013; Wiley et al., 2011); (v) there is no need to use high lipid 

production strains (Torres et al., 2013; Wiley et al., 2011) and, (vi) the possibility to 

use algae adapted to extreme conditions which reduces contamination (Hannon et 

al., 2010).   With these advantages, it is well possible that the direct anaerobic 

digestion of algae can become a suitable source of renewable energy. 

As identified by the majority of the LCA studies, the supply of CO2 to the algae 

represents a high percentage of the production costs (Davis et al., 2011; Slade and 

Bauen, 2013). This high energy consumption, especially in the ORP, can be 

attributed to the low dissolution rate of atmospheric CO2 in water, which results in a 

low CO2 fixation efficiency (Slade and Bauen, 2013; Wiley et al., 2011). The CO2 loss 

due to evaporation in the PBR is minimal, as the system is closed and CO2 can be 

directly pumped into the medium with minimal losses, increasing the CO2 fixation 

efficiency (Slade and Bauen, 2013). This problem, high CO2 consumption due to low 

fixation efficiency, could be overcome by growing algae at alkaline conditions. At 

alkaline conditions, that is, high pH, the dissolution capacity of CO2 is greater 

therefore more CO2 becomes available for the cells to grow (Eq. 2). 

Compared to a traditional AD system, there are several additional advantages of also 

performing the anaerobic digestion of the algal biomass at alkaline conditions. The 

high pH and alkalinity of the sludge from the anaerobic digester can act as a CO2 

scrubber, capturing the produced CO2 and obtaining biogas rich in methane which, 

with minor upgrade, could directly be used as biomethane (Persson et al., 2006; 

Weiland, 2010). Alkaline sludge rich in carbonate can be recirculated to the algae 

cultivation pond / photobioreactor reducing the amounts of CO2 needed. Another 

possible advantage is that the alkaline conditions favor the precipitation of nitrogen 

and phosphorous which can be recirculated to the culture tank as a supply of 

nutrients for growth (Collet et al., 2011; Wang et al., 2013). And, as stated by other 

authors, cultivating algae at extreme conditions also reduces risk of contamination by 

invasive species (Hannon et al., 2010; Wiley et al., 2011). Therefore, combining both 

approaches, alkaline culture of algae and subsequent alkaline digestion of the algal 

biomass can be an interesting and attractive way to obtain energy from algae.  
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To put this new approach into practice, two main issues need to be addressed. The 

first issue is related to the selection and cultivation of an algal strain that is able to 

grow at such extreme conditions. The second issue is the identification of a suitable 

microbial community capable of performing the AD at alkaline conditions. Concerning 

the selection of a suitable algal strain, several algae are known to be able to grow in 

environments with high pH and high salt concentrations (Hannon et al., 2010). For 

example, several cyanobacteria, e.g. Spirulina, are known to grow and thrive in 

alkaline or soda lakes and in hypersaline habitats (Grant, 2006; Jones and Grant, 

1999; Kompantseva et al., 2009; Sorokin et al., 2014). Other species such as 

Dunaliella viridis and Chlorella minutissima are known to tolerate alkaline conditions 

(Ballot et al., 2004; Melack, 1981). The selection and cultivation of a specific 

microalga at alkaline conditions is beyond the scope of this doctoral thesis, which 

addresses the second issue, a high-pH adapted anaerobic microbial community. 

Such communities exist naturally in alkaline environments such as soda lakes. 

Alkaline or soda lakes are natural occurring environments with a high concentration 

of carbonates and pH values up to 12 (Grant, 2006; Jones et al., 1998). Several 

studies have already shown that methanogenesis occurs in such environments which 

indicates the presence of an active methanogenic community (Nolla-Ardèvol et al., 

2012; Sorokin et al., 2004). 

1.3. Extreme alkaline (soda) lakes 

Alkaline lakes or soda lakes are naturally occurring high pH and high salt habitats 

with pH up to 12 and high salt concentration (in some lakes up to 7 M Na+) which, 

despite their extreme conditions, are among the most eutrophic / prolific habitats.  

1.3.1. Characteristics of soda lakes  

Soda lakes and soda deserts represent the major types of naturally occurring highly 

alkaline environments, in which the micro flora is subjected to extreme conditions. 

Soda lakes can be found in dry or cryoarid areas of America, Africa and Asia among 

others (Baumgarte, 2003; Kompantseva et al., 2009; Sorokin et al., 2014). One of the 

main characteristics of alkaline lakes is the almost complete absence of Ca2+ and 

Mg2+ which is a key feature for the generation of high alkalinity. Concentration of the 

ions in the groundwater through evaporation leads to a shift in the carbon dioxide / 

bicarbonate / carbonate equilibrium in favor of carbonates. The carbonate, 
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CO2/HCO3
-/CO3

2-/OH-, equilibrium is responsible for the high alkalinity observed in 

these lakes. Alkalinity develops by a shift in the equilibrium towards a preponderance 

of CO3
2- in the absence of significant amounts of Ca2+ (which would precipitate CO3

2- 

from the solution as CaCO3) (Duckworth et al., 1996). An increase in carbonate ion 

concentration results in the precipitation of insoluble carbonates of, first, calcium, 

and, then, magnesium, removing these from solution and allowing the more soluble 

carbonates of sodium and potassium to accumulate. As a result, and due to the 

presence of Na+ and Cl– in the surroundings, an alkaline soda / salt brine with pH 

values up to 12 develops, creating a highly alkaline environment (Baumgarte, 2003; 

Grant, 2006; Jones et al., 1998; Sorokin and Kuenen, 2005b). In contrast to other 

alkaline environments, such as low-salt alkaline springs, soda lakes maintain a stable 

alkaline pH due to the high buffering capacity of the soluble carbonates. This 

particularity of double extreme conditions, high pH and high salinity, make soda lakes 

a unique ecosystem (Foti et al., 2008). 

1.3.2. Soda lakes of the Kulunda steppe (Russia)  

The best known and studied soda lakes are those located in the East African Rift 

valley in Kenya (Baumgarte, 2003; Grant, 2006). In this project however, the interest 

is set on the Central Asian soda lakes of the Altai province (Russia), in the south 

region of the Kulunda steppe (Figure 1.1).  

The characteristics of this cryoarid region, such as the geological terrain structure, 

the poor river network, the extremely continental dry climate, permafrost, and 

seasonally frozen ground led to the formation of numerous small soda lakes, which 

have the peculiarity of relatively low water mineralization resulting in shallow brackish 

lakes (Kompantseva et al., 2007; Kompantseva et al., 2009). Furthermore, the lakes 

are subjected to unstable water and temperatures regimens between -40°C and 

+40°C, causing frequent fluctuations of the water level and salinity (Foti et al., 2008). 

These water fluctuations results in salinity levels of up to 400 mg L-1 while the pH 

ranges from 8 to 10.6 (Sorokin et al., 2014).  
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1.3.3. Microbial diversity of soda lakes 

Despite the extreme environmental conditions present in soda lakes, these habitats 

are among the most productive natural ecosystems (Grant et al., 1990; Jones and 

Grant, 1999; Kompantseva et al., 2009; Melack, 1981). For example, in the soda 

lakes of the East African Rift, the photosynthesis rate can exceed 10 g C m-2 day-1. 

Lakes in the Altai region are also highly productive with rates of photosynthesis up to 

1.32 g C m-2 day-1 (Kompantseva et al., 2009). The presence of sodium carbonate in 

variable combinations with sodium chloride and sodium sulfate creates a unique, 

buffered haloalkaline habitat appropriate for a stable development of obligate 

(halo)alkaliphilic microorganisms growing optimally at pH around 10 (Sorokin and 

Kuenen, 2005a). Among these highly active (halo)alkaliphilic organisms multiply 

types of bacteria and archaea and some cyanobacteria (Spirulina, Phormidium) and 

microalgae (Dunaliella viridis, Chlorella sp) can be found (Ballot et al., 2004; 

Kompantseva et al., 2009). For example, cyanobacterial mats, mainly composed of 

Spirulina, have been reported to colonize such alkaline lakes (Grant, 2006; 

Kompantseva et al., 2009). Also a high number of crustaceans, mainly Artemia sp, 

have been detected (Kompantseva et al., 2009). 

Figure 1.1 Central Asian soda lakes  
Geographic location of the soda lakes from the Kulunda steppe (Russia). Soda lake photograph 
courtesy of Dr.Dimitry Sorokin 
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In the bacterial domain, multiple extremely halotolerant and alkaliphilic groups have 

been detected. Most of the identified alkaliphilic microorganisms belong to the 

phylum Firmicutes, but members of other phyla such as Actinobacteria, 

Proteobacteria, Bacteroidetes, Thermotogae and Spirochaetes have also been 

widely detected (Yumoto et al., 2011). Among the Proteobacteria, members 

belonging to the Gammaproteobacteria class (e.g. Ectothiorhodospira and 

Halomonas), and Alphaproteobacteria of the family Rhodobacteraceae are known to 

be present in soda lakes (Duckworth et al., 1996; Kompantseva et al., 2010). Gram-

positive Bacilli such as Alkalibacillus, Halolactobacillus and Bacilli of the Family VII 

Insertae Sedis have also been isolated (Duckworth et al., 1996; Yumoto et al., 2011). 

Among the Clostridia, members of the genus Alkaliphilus, Natronincola and Tindallia 

have been identified in multiple soda lakes (Humayoun et al., 2003; Kevbrin et al., 

2013; Wani et al., 2006; Yumoto et al., 2011; Zhilina et al., 2009). Likewise, other 

Clostridia such as Natranaerobius and Anaerobranca are also known to be part of 

the microbial community of soda lakes (Humayoun et al., 2003; Mesbah and Wiegel, 

2009; Yumoto et al., 2011). Sorokin and Kompantseva have conducted extensive 

research on the presence of chemolithoautotrophic sulfur-oxidizing bacteria in soda 

lakes (Kompantseva et al., 2010; Sorokin et al., 2004; Sorokin and Kuenen, 2005a; 

Sorokin and Kuenen, 2005b). Further information can be found in the different 

reviews on the halotolerant and alkaline microbial communities from soda lakes that 

have been published (Duckworth et al., 1996; Grant, 2006; Kivistö and Karp, 2011; 

Sorokin et al., 2014; Yumoto et al., 2011).  

The main groups of anaerobes, such as fermentative, acetogenic, methanogenic and 

sulfate-reducing bacteria are represented in soda lakes by unique haloalkaliphilic 

species (Sorokin and Kuenen, 2005b). Methanogenesis has also been reported and 

extensively studied in soda lakes. Members of the orders Methanomicrobiales, 

Methanobacteriales and Methanosarcinales are present in these extreme habitats 

(Grant et al., 1999; Grant, 2006; Mesbah et al., 2007a; Oren, 2008). Methanogenic 

archaea isolated to date are mainly methylotrophic, utilizing a variety of one carbon 

(C1) compounds including methanol and methylamine. C1 compounds are likely to 

be abundant in soda lakes, probably derived from the anaerobic digestion of 

cyanobacterial mats. Methanosalsum and Methanolobus are two of the 

methylotrophic methanogens present in such lakes (Grant, 2006). This suggests that 

methane in soda lakes is mainly formed via the methylotrophic pathway with some 
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contribution of the hydrogenotrophic pathway, while the acetoclastic methanogenesis 

is practically absent (McGenity, 2010; Sorokin et al., 2014). Despite the dominance of 

methylotrophic methanogens, Zhilina et al., 2013 recently isolated and identified the 

first truly alkaliphilic methanogen, Methanocalculus natronophilus, isolated from 

sediments of the Tanatar lake system. This Methanocalculus can grow at pH values 

between 8.0 and 10.2, with an optimum pH of 9.9 – 9.5, and it requires between 0.5 

and 1.6 M of carbonates and between 0.9 and 3.3 M of Na+. M. natronophilus is a 

hydrogenotrophic methanogen and cannot use acetate as substrate for 

methanogenesis but it requires acetate for growth as carbon source. In addition to 

detecting the presence of multiple methanogens and their isolation, several studies 

have already shown the possibility of methane production from soda lakes 

sediments. In this sense, the presence of active haloalkaline methanogens in soda 

lake sediments from the Kulunda Steppe has already been demonstrated (Nolla-

Ardèvol et al., 2012), while van Leerdam et al., 2008 were able to operate an 

anaerobic reactor inoculated with sediments from several soda lakes. 

1.3.4. Biotechnological applications of haloalkaliphiles 

Extremophiles have multiple biotechnological applications mainly related to the 

production of enzymes capable of working under extreme conditions, from 

thermotolerant to psycrophilic and acidophilic enzymes (Berlemont and Gerday, 

2011). The biotechnological application of halotolerant and alkaliphilic 

microorganisms has also been widely studied (Grant et al., 1990; Horikoshi, 1999; 

Kivistö and Karp, 2011; Margesin and Schinner, 2001; Sarethy et al., 2011). The 

main biotechnological applications of alkaliphiles are related to the use of enzymes 

such as alkaline proteases, amylases and lipases as detergent additives (Grant et 

al., 1990; Horikoshi, 1996; Sarethy et al., 2011), alkaline proteases for leather 

tanning (Grant et al., 1990; Sarethy et al., 2011), chitinases for the treatment of 

seafood waste (Sarethy et al., 2011), alkaline proteases for the recovery of silver 

from X ray films (Horikoshi, 1996) and thermo stable alkaline xylanases for the 

enzymatic debleaching in pulp-mill industries (Horikoshi, 1996) among many others. 

Alkaliphiles are also used for the industrial production of cyclodextrins (Horikoshi, 

1996) and of multiple metabolites such as carotenoids, siderophores, antibiotics and 

enzyme inhibitors (Horikoshi, 1996; Sarethy et al., 2011).  
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In the case of Halophiles, to date no direct industrial applications have been fully 

developed (Kivistö and Karp, 2011). However, multiple future possible applications 

are under exploration: biopolymers, biosurfactants and bioplastics; multiple enzymes; 

possible biological waste treatment of high salt and heavy metal containing 

wastewaters and production of H2; bacteriorhodopsin for the application in 

holography, artificial retina and 3D computer memory. Halotolerant bacteria are also 

being used for the detoxification of chemical warfare agents (Kivistö and Karp, 2011; 

Margesin and Schinner, 2001). Despite all the above mentioned applications, to date, 

only the study of van Leerdam et al., 2008 explored the possibility of using 

haloalkaline extremophiles for the production of biogas.  

1.4. Microbial community of the anaerobic digestion process 

The anaerobic digestion is a complex biological process where multiple bacteria 

collaborate to degrade organic matter in the absence of oxygen with the release of 

methane. A good knowledge of the different players and understanding of their 

relationships can contribute to optimize the production of methane. 

1.4.1. Microbiology of the anaerobic digestion process 

The anaerobic degradation of organic matter, also known as methanogenesis, is a 

four step biological process in which a consortium of microorganisms transforms 

complex molecules into methane and carbon dioxide. The four steps of the 

methanogenesis involve (i) hydrolysis of macromolecules, (ii) acidogenesis and 

formation of volatile fatty acids, (iii) acetogenesis or formation of acetate and finally 

(iv) the methanogenesis or transformation of acetate, H2 and CO2 into CH4 (Figure 

1.2). 

(i) Hydrolysis: This initial step involves the hydrolysis of complex organic 

polymers such as carbohydrates, lipids, nucleic acids and proteins into glucose, 

glycerol, purines, pyridines and amino acids (Gerardi, 2003; Al Seadi et al., 2008). 

Generally, this hydrolysis step is conducted by multiple hydrolytic enzymes, 

proteases, cellulases, pectinases, amylases and chitinases released by hydrolytic 

bacteria (Anderson et al., 2003; Pavlostathis, 2011; Al Seadi et al., 2008).  
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The bacteria responsible for this initial hydrolysis step are mainly Clostridium, 

Bacteroides, Acetivibrio, Bifidobacterium, Lactobacillus, Streptococcus and others 

(Anderson et al., 2003; Borja, 2011). The result of this hydrolysis step is the 

production of simple soluble organic compounds such as volatile acids, alcohols and 

other monomers (Borja, 2011; Gerardi, 2003).  

(ii) Acidogenesis: In this second step, the products of hydrolysis such as 

long-chain fatty acids and alcohols are converted into intermediate products like 

volatile fatty acids (mainly acetate, propionate, butyrate), hydrogen, CO2, and 

ammonia (Anderson et al., 2003; Pavlostathis, 2011; Al Seadi et al., 2008). The 

acidogenesis is performed by many different fermentative genera such as 

Clostridium, Bacteroides, Lactobacillus and others like Butyribacterium, 

Propionibacterium, Eubacterium, Desulfobacter, Bacillus and Escherichia (Anderson 

et al., 2003). 

(iii) Acetogenesis: The products from the acidogenesis step which cannot be 

directly transformed into methane by methanogenic bacteria, such as long and short 

chain fatty acids, other than acetate, as well as lactate, methanol, and ethanol are 

Figure 1.2 The anaerobic digestion process. 
Microbiology and steps of the anaerobic digestion process: 
1 Hydrolysis; 2 Acidogenesis; 3 Acetogenesis; 4 Methanogenesis. 
*SAO: Syntrophic Acetate Oxidizing bacteria. See text for details. 
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converted into acetate, H2 and CO2, the three main substrates for methanogens 

(Anderson et al., 2003; Pavlostathis, 2011; Al Seadi et al., 2008). Two groups of 

acetogenic bacteria can be distinguished on the basis of their metabolism. The first 

group, the obligate hydrogen producing acetogens produce acetic acid, CO2 and H2 

from propionate, butyrate, valerate and alcohols. So far, only a limited number of 

bacteria of this first group have been isolated and identified, Syntrophomonas wolfei 

and Syntrophobacter wolinii, which oxidize butyrate and propionate, respectively 

(Anderson et al., 2003). The second group, the homoacetogens are responsible for 

the conversion of H2 and CO2 to acetate (Anderson et al., 2003; Pavlostathis, 2011). 

Homoacetogenic bacteria include Acetoanaerobium, Acetogenium, Butyribacterium, 

Clostridium, Eubacterium, and Pelobacter (Borja, 2011).  

(iv) Methanogenesis: The final step in the anaerobic digestion process is the 

production of methane (CH4) by methanogenic Archaea (Figure 1.2). These can be 

acetoclastic methanogens, which use acetate, or hydrogenotrophic methanogens, 

which use H2 and CO2. In addition, some methanogens can also use methylamines, 

methanol, formate, and carbon monoxide (CO) (Anderson et al., 2003; Pavlostathis, 

2011). Acetate is regarded as the most important precursor of methane production 

which can account for up to 70% of the produced methane. In spite of this fact, only 

two methanogenic genera are known acetoclastics, Methanosaeta and 

Methanosarcina both of the order Methanosarcinales (Anderson et al., 2003; Demirel 

and Scherer, 2008). The hydrogen partial pressure is an important parameter, which 

defines process stability or upsets in an AD process. Therefore, and even though 

generally only about 30% of the produced methane is produced by hydrogenotrophic 

methanogens, the activity of this type of methanogens is crucial for a stable and 

efficient process performance (Anderson et al., 2003; Demirel and Scherer, 2008). 

These methanogens reduce carbon dioxide, formate, methanol and methylamines, 

using the hydrogen produced during the acidogenesis and acetogenesis steps 

(Anderson et al., 2003). Hydrogenotrophic methanogens can be found in all known 

methanogenic orders, Methanobacteriales, Methanococcales and 

Methanomicrobiales (Demirel and Scherer, 2008). It is worth noting that under certain 

circumstances, for example in alkaline lakes, the main methane producers are the 

methylotrophic methanogens, which use methylated compounds as substrate. In 

soda lakes hydrogenotrophic and acetoclastic methanogenesis are almost 

undetectable (Sorokin et al., 2014). 
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Methanogenesis is the critical step in the entire anaerobic digestion process, and it is 

regarded as the limiting step as it is the slowest biochemical reaction of the process 

(Anderson et al., 2003; Al Seadi et al., 2008). Methanogenesis is severely affected by 

the operational conditions and any disturbance in the process results in its inhibition. 

The two main factors affecting methanogenesis are acetate and free ammonia, and 

their accumulation results in the inhibition of mainly the acetoclastic methanogens 

(Angelidaki and Ahring, 1993; Calli et al., 2005; Koster and Lettinga, 1988).  

An interesting phenomenon during the anaerobic digestion, which under certain 

circumstances plays a key role in the production of methane, is the syntrophic 

association between bacteria and methanogenic archaea (Hattori, 2008; Müller et al., 

2013; Schink, 2006). Syntrophy is a specific case of symbiotic relationship that 

occurs between two metabolically different types of microorganisms that depend on 

each other for the degradation of a substrate. This syntrophic degradation involves 

the transfer of one or more metabolic intermediates between the two organisms 

(Schink, 2006). The most important syntrophic relationship in the AD process is the 

one established between the syntrophic acetate oxidizers (SAO) and the 

hydrogenotrophic methanogens (Hattori, 2008; Müller et al., 2013). SAO normally 

grow as lithotrophs or heterotrophs, producing acetate through the Wood–Ljungdahl 

pathway, however, when they grow in syntrophy with hydrogenotrophic 

methanogens, they reverse this pathway and are capable of consuming acetate by 

oxidizing it to hydrogen and carbon dioxide (Figure 1.2) (Hattori, 2008; Müller et al., 

2013). The oxidation of acetate to methane by the syntrophic association between 

SAO and hydrogenotrophic methanogens generally takes place when the 

acetoclastic methanogens are inhibited due to ammonia accumulation. Other factors 

affecting this relationship are acetate concentration, operational parameters, and 

microbial community structures (Ahring, 2003; Hattori, 2008; Müller et al., 2013). If 

the hydrogenotrophic methanogens are inhibited or absent and the available H2 is not 

consumed, the syntrophic relation does not develop (Garcia et al., 2000). So far a 

number of SAO bacteria have been identified, mainly belonging to the genera 

Syntrophobacteri, Syntrophomonas, Syntrophospora and Clostridium (Garcia et al., 

2000).  
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Taken together, the anaerobic digestion of organic matter is a complex process with 

multiple functionally interconnected microbial populations that play specific roles, 

each of them crucial for the effective conversion of complex substrates into methane. 

1.4.2. Metagenomics to study the anaerobic digestion process 

Next Generation Sequencing technologies have allowed the study of complex 

communities by sequencing at lower costs and higher throughput than the Sanger 

based sequencing technology (Scholz et al., 2012). The lower sequencing costs 

have boosted metagenomics, which has become a common way to study the 

taxonomy, gene composition and gene function of microbial communities (Simon and 

Daniel, 2011).  

The anaerobic digestion of organic matter is a complex process which involves the 

participation of numerous types of bacteria and archaea (Schlüter et al., 2008; Wirth 

et al., 2012). Elucidating the microbial composition of an anaerobic digester and 

understanding the function and relationships of the different microorganisms involved 

in the process could help to improve the biogas production. So far, a number of 

metagenome studies from several biogas producing plants and lab scale anaerobic 

reactors have been performed (Jaenicke et al., 2011; Li et al., 2013; Schlüter et al., 

2008; Wirth et al., 2012). However, few metagenomic approaches have been used to 

study the microbial community of alkaline lakes or hypersaline environments. For 

example, Lanzén et al., 2013 studied the prokaryotic diversity in a Kenian soda lake 

using the GS-FLX Titanium sequencing platform. To date, the only known work in 

which a metagenomic approach was applied to study an anaerobic microbial 

community at high pH was recently performed by Wong et al., 2013, in which they 

pretreated waste activated sludge at pH 10 which was subsequently used as 

inoculum for an anaerobic digester. 

Several High Throughput Sequencing (HTS) techniques are available for the 

sequencing of large metagenomes which use different approaches to produce the 

sequenced reads (Logares et al., 2012; Metzker, 2010). The sequencing of reads 

with Roche’s 454 platform produces reads up to 800 bp in length and is based on 

single-nucleotide addition. Incorporation of specific nucleotides is detected as a light 

signal. Illumina is another commonly used sequencing platform, where sequencing is 

done by the addition of nucleotides one at the time which are labeled with different 



Introduction ________________________________________________________________  
 

18 

fluorophores. This results in reads up to 500 bp long. The SOLiD platform 

sequencing is done by ligation which can produce reads with a length of 75 bp, while 

the IonTorrent PGM, which measures the protons that are released when a 

nucleotide is incorporated to a DNA strand, can produce reads with a length of up to 

400 bp. 

Two main approaches can be used to obtain information from the metagenomic 

reads. In the first approach, short reads are directly compared against DNA or protein 

coding sequences in databases using alignment tools such as BLAST. In the second 

approach reads are first assembled into long contigs and all subsequent analyses 

are based on these assembled contigs (Liu et al., 2013; Teeling and Glöckner, 2012). 

The analysis in the second approach can be performed via sequence homology 

where contigs are compared to reference sequence databases using BLAST, or via a 

sequence compositional analysis, where the classification takes place by matching, 

for example, the tetranucleotide frequency found within each contig to the genome(s) 

with the most similar frequency. Since the tretranucleotide frequencies are relatively 

conserved between taxa, it is possible to use this for classification purposes (Logares 

et al., 2012; Strous et al., 2012). Obtained reads and/or contigs can be used to 

perform taxonomic classification or functional analysis using one or several of the 

multiple available tools and pipelines (Simon and Daniel, 2011). 
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2. Challenges  

The production of biogas via the anaerobic digestion of biomass is a commonly used 

technology for energy production, where the obtained biogas can be used for the 

production of electricity and heat or as transport fuel  (Persson et al., 2006; Weiland, 

2010). The production of biogas from microalgal biomass is one of the multiple 

approaches to obtain energy from this specific type of biomass. Microalgal biomass 

can be used directly or after extraction of high value products such as oil. The use of 

whole algal biomass as substrate for biogas has the advantage that both processes, 

the algal production and the anaerobic digestion, can be directly coupled, which 

results in the reduction of processing costs (de Boer et al., 2012; Clarens et al., 2010; 

Hannon et al., 2010). A main issue during algal cultivation is the need to supply 

carbon dioxide in order to obtain high biomass density which results in relatively high 

production costs associated with the use and loss of carbon dioxide (Slade and 

Bauen, 2013; Wiley et al., 2011). A possible solution to eliminate this bottleneck 

would be the cultivation of microalgae at elevated pH as this contributes to an 

increase of CO2 solubility and availability for the microalgae. In order to directly 

couple the algal production with the anaerobic digestion process, and to reduce 

processing costs, the latter has to be performed also at high pH.  

The anaerobic digestion process is currently performed, independent of the biomass 

used, under a strict pH range due to the pH sensitivity of methanogens (Chen et al., 

2008). Several studies have shown that sediments from soda or alkaline lakes 

contain active methanogens capable of producing methane at elevated pH (Nolla-

Ardèvol et al., 2012; Sorokin et al., 2004). Moreover, a recent study has 

demonstrated the possibility of performing anaerobic digestion at high pH by 

inoculating the reactor with sediments from alkaline lakes containing active 

methanogens (van Leerdam et al., 2008). Producing methane in an anaerobic high 

pH reactor would make it possible to couple this process to the production of algal 

biomass also at high pH conditions. The combination of these two processes could 

contribute to the overall reduction of the production costs and make the use of 

microalgae as energy source an economically viable option.   
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3. Objectives 

Microalgae are microorganisms that can transform sunlight and CO2 into biomass 

and their suitability as substrate for the production of biogas has already been 

shown. One of the bottlenecks in algae cultivation is the low absorption rate of CO2 

which results in high production costs. These could be partially reduced by cultivating 

algae at high pH. Performing the anaerobic digestion of microalgae at high pH as 

well could be beneficial as: (i) the anaerobic reactor would function as a CO2 

scrubber, leading to biogas rich in methane which, with minor upgrade, could directly 

be used as biomethane, and (ii) the dissolved CO2 along with phosphorous and other 

nutrients could be directly recycled to the photobioreactor and used for algae growth. 

Therefore, the combination of algal biotechnology and anaerobic digestion at high pH 

might be economically favorable, and such a combined system could be a possible 

source for renewable energy. 

In this work, the study of the anaerobic digestion of the microalga Spirulina at alkaline 

conditions, pH~10 and 2.0 M Na+, will be addressed. To do so, sediments from soda 

lakes, which are natural alkaline habitats, will be adapted to perform the anaerobic 

digestion at controlled alkaline conditions. One anaerobic reactor will be set to 

determine the optimal operational conditions, such as hydraulic retention time and 

organic loading rate, in order to obtain the highest possible biogas yield. 

Subsequently a reactor will be operated at the identified optimal parameters.      

In addition to the study of the anaerobic digestion, DNA will be extracted from the 

alkaline anaerobic reactor and sequenced in order to obtain the metagenome of the 

haloalkaline microbial community. This will be analyzed both taxonomically and 

functionally, with the aid of several bioinformatics tools, to study the haloalkaline 

microbial community present in the reactor.  

In parallel to this work, multiple biomethane potential tests will be set up to study the 

anaerobic digestion at alkaline conditions of other substrates of interest such as 

wheat straw and fresh algal biomass. 

To serve as a control and comparison system, an anaerobic reactor will be set up to 

study the production of biogas from the digestion of Spirulina at mesophilic pH 

conditions. As for the alkaline system, the metagenome of the microbial population in 

the mesophilic digester will also be studied.   
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4. General discussion 

The work presented here is dedicated to demonstrate the possibility to produce 

biogas form microalgae both, at mesophilic and haloalkaline conditions. Most 

importantly, the anaerobic digestion (AD) of the microalga Spirulina was performed at 

high pH, pH~10, and high sodium content, 2.0 M Na+. To do so, sediments from 

Central Asian soda lakes, a natural alkaline environment, were used to inoculate an 

anaerobic reactor which was continuously fed with Spirulina.  

Anaerobic digestion of microalgae at alkaline conditions can have two main 

advantages over digestion at mesophilic conditions. At alkaline conditions, most of 

the CO2 produced during the AD remains dissolved in the medium, and the obtained 

biogas is rich in methane. This methane-rich biogas, also known as biomethane, can 

then be directly fed into the national gas grid. Secondly, digestion at alkaline 

conditions enables the cultivation of the microalgae at alkaline conditions. With more 

CO2 dissolved in the alkaline culture medium higher biomass yield could be obtained. 

The combination of the two processes, alkaline anaerobic digestion and alkaline 

microalgae cultivation, can contribute to the reduction of production costs associated 

to microalgae cultivation, making the microalgae a more economically viable energy 

source.  

The second part of this thesis is devoted to analyzing the metagenome of the 

anaerobic microbial communities that produce methane from algal biomass. A better 

understanding of the composition and function of the microbial community 

responsible for the degradation of the organic matter and the subsequent production 

of methane can contribute to an improvement of the process. Therefore, 

metagenomics was used to characterize the microbial community in terms of 

taxonomy and function of two different anaerobic reactors, one at mesophilic pH 

conditions and a second one at alkaline conditions.  
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 4.1. Anaerobic digestion of Spirulina at mesophilic pH [3] 

The use of Spirulina as substrate for the production of biogas was first studied in the 

1980ies by Samson and LeDuy, 1982, 1983, 1986 and Varel et al., 1988. In recent 

years, due to climate change and the concern with regard to the depletion of fossil 

fuels, the anaerobic digestion of Spirulina has attracted fresh interest (El-Mashad, 

2013; Mussgnug et al., 2010).  

The results obtained with the mesophilic anaerobic reactor were in accordance to the 

previous studies where Spirulina was used as substrate (El-Mashad, 2013; Samson 

and LeDuy, 1982; Samson and LeDuy, 1983; Samson and LeDuy, 1986). The 

optimal organic loading rate (OLR) was identified to be 4.0 g Spirulina L-1 day-1 (dry 

biomass) and yielded biogas with 68% methane content and a specific biogas 

production of 393 mL g VS-1 (Table 1; [3]). These values were similar to the ones 

obtained by others. For example, De Schamphelaire and Verstraete, 2009, obtained 

between 380 to 490 mL biogas g VS-1 from the digestion of Chlamydomonas 

reinhardtii and Pseudokirchneriella subcapitata while Tartakovsky et al., 2013 

obtained 370 ml of biogas g VS-1 from the digestion of Scenedesmus (Table 4.1). 

The biogas production only decreased when the OLR was set to 5.0 g Spirulina L-1 

day-1 due to accumulation of toxic compounds (Figure 1; Table 1; [3]).  

One of the main bottlenecks of the AD of microalgae in general is the low 

biodegradability and the resistance to hydrolysis of most of the studied microalgal 

strains which results in low methane yields (Ward et al., 2014). In the mesophilic 

reactor for example, the biodegradability of Spirulina reached 42% similar to the 

biodegradability of Chlamydomonas vulgaris, 51% (Ras et al., 2011) and 

Scenedesmus 53% (Tartakovsky et al., 2013).  

To overcome this problem and to increase methane yields, long hydraulic retention 

times (HRT) need to be applied allowing the substrate to be further hydrolyzed (Ras 

et al., 2011). However, increasing the HRT can also have a negative effect on the 

biogas production as accumulation of inhibitory substances such as ammonia can 

occur (Ras et al., 2011; Salminen and Rintala, 2002). This can also have a negative 

effect on the anaerobic digestion at alkaline conditions. In the mesophilic reactor, 20 

days of HRT were set as a compromise between the different HRT presented in the 

literature (Samson and LeDuy, 1986; Varel et al., 1988; Ward et al., 2014).  
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Table 4.1 Biogas production and methane content 
Biogas production and methane content of the anaerobic digestion of different microalgae 
and other substrates with continuous systems at alkaline and mesophilic conditions 

Substrate Conditions 
Yield 

(mL g VS-1) 
CH4 

(%) 
Reference 

Spirulina pH 7-8 393 BG* 68 Nolla-Ardèvol [3] 

Spirulina pH 10; 2.0 M Na
+
 84 BG 86 Unpublished Results [4] 

Methanethiol pH 10; 0.8 M Na
+
 50 – 200 BG 78 Van Leerdam 2008 

Spirulina pH 7-8 260
 
CH4 70-75 Samson 1982 

Spirulina pH 7-8 310
 
CH4 56-74 Samson 1983 

Spirulina pH 7-8 350 CH4 56-74 Samson 1986 

Spirulina pH 7-7.27 470 CH4
a
 65 Varel 1988 

C. reinhardtii 
Ps. Subcapitata 

pH 7-8 380-490
 
BG 40-60 De Schamphelaire 2009 

Post- transesterification 
Chlorella residues 

pH 7-7.5 240 BG 61-69 Ehimen 2001 

N. salina pH 7-8; 0.2 M Na
+
 0.3 – 0.9

b 
BG 60-65 Schwede 2013 

Scenedesmus pH 7-7.4 370 BG 64-66 Tartakovsky 2013 

* BG: Biogas; a: ml CH4 ml day
-1

; b: m
3
 m

3 
day

-1 

 

At this HRT, no accumulation of toxic compounds occurred when a low OLR was 

used and negative effects could only be seen when an OLR of 5.0 g Spirulina L-1 day-

1 (dry biomass) was applied (Figure 1; Table 1; [3]).  

The information and experience gained with the anaerobic digestion of Spirulina at 

mesophilic pH conditions was applied to choose the initial parameters for the set-up 

and operation of the anaerobic reactors at alkaline conditions.  

4.2. Selection of alkaline inoculum and substrate [1] 

Conventional anaerobic digestion facilities and laboratory reactors perform the 

process under mesophilic pH conditions, as the mesophilic methanogenic archaea 

have limited pH and salt tolerance (Chen et al., 2008; Gerardi, 2003; Sialve et al., 

2009). Therefore, in order to set up an anaerobic reactor working at alkaline 

conditions, pH~10 and 2.0 M Na+, a microbial population adapted to such conditions 

is needed. Soda or alkaline lakes are natural alkaline environments inhabited by 

haloalkaline bacteria and archaea which are capable of tolerating high pH and high 

salt concentrations and where methanogenesis naturally occurs (Grant, 2006; Ollivier 

et al., 1994; Sorokin et al., 2004). The presence of active methanogens in sediments 

from such soda lakes has already been demonstrated [1] (Nolla-Ardèvol et al., 2012). 

Moreover, a recent study already demonstrated the possibility of using sediments 

from soda lakes as inoculum for an anaerobic reactor (van Leerdam et al., 2008). In 
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this study however, the main goal was not the production of biogas but the 

degradation of methanethiol, an impurity present in liquefied petroleum gas.  

Methanogens identified in alkaline soda lakes belong to the orders 

Methanomicrobiales, Methanosarcinales and Methanobacteriales (Grant, 2006; 

Surakasi et al., 2007). The genus Methanocalculus, from the order 

Methanomicrobiales, includes the, so far, only isolated and characterized alkaliphilic 

hydrogenotrophic methanogen Methanocalculus natronophilus (Zhilina et al., 2013). 

This methanogen is capable of growing at pH from 8.0 to 10.2, and requires between 

0.9 and 3.3 M of Na+. It has been isolated from the Tanatar soda lake system (Altai, 

Russia). Sequencing of the marker gene mcrA, which encodes the alpha subunit of 

the methyl coenzyme M reductase, the enzyme that catalyzes the final step in 

methanogenesis (Luton et al., 2002), confirmed the presence of members of this 

genus in the soda lake sediments used as inoculum for the anaerobic alkaline reactor 

[1] (Nolla-Ardèvol et al., 2012). As the selected sediments had been stored at 4°C for 

over a year, tests to assess the activity of the methanogenic haloalkaline microbial 

community under different pH and salt conditions were performed. At alkaline 

conditions, pH~10 and 2.0 M Na+, the highest methane production was obtained with 

H2 as substrate, indicating first, that the methanogens were still active, and second 

that, consistent with the type of methanogen detected, the hydrogenotrophic 

methanogenesis seemed to be the dominant pathway in this alkaline sediments [1] 

(Nolla-Ardèvol et al., 2012). These findings were in accordance to other studies from 

similar sediments where hydrogenotrophic methanogens were also present (Antony 

et al., 2012; Surakasi et al., 2007; Wani et al., 2006). The presence of methanogens 

from this and other genera in the studied soda lake sediments and their ability to 

utilize several substrates for the production of methane [1] (Nolla-Ardèvol et al., 

2012) showed that this inoculum was suitable for the realization of AD at alkaline 

conditions. 

Once an adequate inoculum had been selected, the appropriate algal substrate had 

to be chosen. As one of the advantages of the AD at alkaline conditions would be the 

possibility of coupling the process directly to an alkaline algae cultivation system, it 

was decided to use as substrate a microalga capable of growing at high pH 

conditions. Several algae such as the cyanobacteria Spirulina and the microalgae 

Dunaliella viridis and Chlorella minutissima are known to grow at such conditions 
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(Ballot et al., 2004; Baumgarte, 2003; Melack, 1981). Because Spirulina can grow at 

high pH (Vonshak, 1997), and because it has been identified as one of the major 

organisms present in the soda lakes of the Altai province (Grant, 2006; Jones et al., 

1998), it was considered as the optimal substrate for the anaerobic alkaline reactor. 

As the goal of this study is the anaerobic digestion of the microalga and not its 

cultivation, freeze dried Spirulina was used in substitution of fresh algae. Freeze 

dried Spirulina has several advantages over the use of fresh cultured Spirulina; it has 

a constant and known composition (Cañizares-Villanueva et al., 1995), and it is 

available to others enabling, reproduction of this work. As shown in [3] freeze dried 

Spirulina also appeared to be a suitable substrate for the anaerobic digestion at 

mesophilic conditions.  

4.3. Anaerobic digestion of Spirulina at alkaline conditions (pH~10; 

2.0 M Na+) [2, 4, 5]  

A mixture of sediments originating from the Altai province (Russia) soda lake system 

were used to inoculate a 1.5L anaerobic reactor which was operated at alkaline 

conditions, pH~10, 2.0 M Na+, and fed with freeze dried Spirulina. The anaerobic 

reactor was used in several experiments to determine the optimal HRT and the 

optimal OLR of the digestion of Spirulina [2]. A second batch of fresh sediments, from 

the same soda lake system, was used to operate a second anaerobic reactor at the 

identified optimal conditions [4] and for the determination of biomethane potential 

(BMP) of several substrates at alkaline conditions [5].  

The work presented here shows that anaerobic digestion of the microalgae Spirulina 

at alkaline conditions (pH 10 and 2.0 M Na+) in a semi-continuous anaerobic reactor 

is possible and that the obtained biogas was, as expected, rich in methane. The 

alkaline conditions of pH 10 and 2.0 M Na+ were chosen to offer the highest CO2 

dissolution capacity, in order to retain the CO2 in the liquid as much as possible, and 

thus to obtain a high methane content in the produced biogas.  

As the production of biogas at alkaline conditions from biomass has so far not been 

performed, several experiments had to be conducted in order to determine the 

optimal hydraulic retention time and the optimal organic loading rate [2]. Once these 

were found, an anaerobic reactor working with the determined parameters was 

operated for 60 days [4].  
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4.3.1. Determination of the optimal hydraulic retention time [2] 

As mentioned previously, one of the reported bottlenecks of biogas production from 

microalgae is the difficulty to completely digest the supplied substrate. A common 

approach to increase the biodegradability of a substrate is to increase the time of 

residence in the anaerobic reactor (Ras et al., 2011; Weiland, 2010). By increasing 

the HRT, the hydrolytic microbial consortium has more time to act on the substrate 

and therefore, a higher degradability is obtained. This approach has, however, a 

possible negative effect. Increasing the time of residence implies a reduction in the 

medium exchange, which in turn can lead to an accumulation of inhibitory 

substances. Therefore, it is necessary to find a specific residence time for which the 

maximum biodegradability is achieved without compromising the correct function of 

the process. In the AD of Spirulina at alkaline conditions, this best compromise 

between highest biodegradability and process performance was determined to be 15 

days HRT with an OLR of 1.0 g Spirulina L-1 day-1 [2]. 

To determine this optimal HRT an alkaline anaerobic reactor (Alk-HRT) was set-up in 

which several HRT, 20, 5, 10, 30 and 15 days, were tested [2]. The selection of the 

different residence times, and the actual duration of each period, was adapted to the 

observed circumstances and to avoid reactor failure at each given time point. This 

selection was also conditioned by the type of substrate used, a protein rich microalga 

(Ortega-Calvo et al., 1993). The anaerobic digestion of Spirulina generates high 

amounts of ammonium nitrogen which, at mesophilic conditions, does not affect the 

biogas production, unless, a high organic loading rate is applied (Figure 1; [3]). 

However, at high pH, and according to the equation by Anthonisen et al., 1976, the 

released ammonia is present mainly in the dissociated form (NH3), and is toxic for 

methanogens (Sterling Jr et al., 2001; Strik et al., 2006). This characteristic 

influenced the selection of the different HRT tested and it clearly affected the biogas 

production [2]. 

Initially a 20 days HRT was used as it gave a reasonable degradability at mesophilic 

conditions (Table 4.2), however, at alkaline conditions, an accumulation of NH3 

occurred (Figure 2a; [2]). To avoid eventual reactor failure, it was decided to 

drastically reduce the HRT from 20 to 5 days. With this, the NH3 concentration was 

reduced and the biogas production was expected to increase. Unfortunately, a 

reduction in the biogas production was observed (Figure 2a; [2]). This reduction in  
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Table 4.2 Specific methane production and biodegradability of Spirulina 
 Specific methane production and biodegradability of Spirulina obtained in each period of the 
different alkaline and mesophilic anaerobic reactors  

Reactor Period 
HRT 

(days) 
OLR 

(g L-1 day-1) 
mL CH4 g VS-1 

BDCH4 

(%)* 
CH4 

(%) 
CO2 
(%) 

Alkaline Alk-HRT
a
 

I 20 1.0 21 ± 6 3 79 19 

II 5 1.0 14 ± 3 2 89 10 

III 10 1.0 11 ± 4 2 81 12 

IV 30 1.0 12 ± 7 2 86 9 

V 15 1.0 31 ± 7 5 83 14 

Alkaline Alk-OLR
a
 

I 15 0.25 43 ± 12 7 77 5 

II 15 0.50 38 ± 5 6 80 9 

III 15 1.0 27 ± 6 4 88 3 

Alkaline Alk-Sed-2
b
 

I 15 0.50 47 ± 10 7 88 5 

II 15 1.0 36 ± 8 6 91 2 

Iva 15 0.50 51 ± 7 8 90 2 

IVb 15 0.50 60 ± 5 10 91 1 

Alkaline Alk-Opt
b
 - 15 0.25 71 ± 15 11 86 4 

Mesophilic
c
 

I 20 1.0 246 ± 37 39 69 30 

IV 20 4.0 262 ± 14 42 68 31 

Based on results from: a: [2]; b: Unpublished results [4]; c: [3] 
* Percentage of biodegradability calculated as in Raposo et al., 2011 and based on the theoretical 
methane content of Spirulina: 627 ml CH4 g VS

-1 

 

the daily biogas production could be attributed mainly to a washout effect. The 

washout effect generally occurs when microorganisms are purged in excess from the 

anaerobic reactor medium which leads to a reduction of the biogas production 

(Gunnerson and Stuckey, 1986; Tartakovsky et al., 2013; Ward et al., 2014; Zhang 

and Noike, 1994). Reducing the HRT implies an increase in the amount of medium 

exchanged, in this case from 75 to 300 mL of medium exchanged daily (Table 2; [2]). 

To reduce the loss of microbial biomass two methods were applied: a settler was 

installed, through which the medium was exchanged, which retained biomass inside 

the reactor, and a timer was set in order to stop the stirring for at least 2 hours before 

the exchange time point to allow a settling of the microbial biomass [2]. However, 

despite this, a considerable loss of microbial biomass occurred as seen by the 

reduction in biogas production at low hydraulic retention times 

The main explanation for this excess loss of biomass, regardless of the two 

mitigating procedures, is the fact that hardly any aggregates were formed in the 

alkaline reactor (data not shown). The formation of microbial aggregates contributes 

to (i) the precipitation of the microbial biomass and (ii) to the interaction between the 

different bacteria (Borja, 2011; Yu et al., 2001). Thus, biomass washout and low 

formation of aggregates resulted in a decrease of biogas production when compared 
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to the previous period (Figure 2a; [2]). In response to this reduction of the daily 

biogas production, the HRT was increased first to 10 days HRT and subsequently to 

30 days. As explained previously, a risk of applying a long HRT is the possible 

accumulation of toxic and inhibitory substances which can lead the reactor to failure. 

This also occurred during the 30 days HRT period. An excessive accumulation of 

volatile fatty acids (VFAs), undegraded biomass and NH3, which reached a maximum 

of 1,200 mg L-1, caused a reactor failure (Figure 2a and Table 2; [2]). After applying 

measures to recover the reactor, the HRT was set to 15 days in order to reach a 

compromise between avoiding accumulation of substances and washout of biomass. 

At the set HRT, the daily biogas production was the highest achieved during this 

experiment, 37 ml biogas g VS-1, the NH3 was stable at around 1,000 mg L-1 and the 

biogas production was constant for 100 days (Figure 2; [2]). From the different 

hydraulic retention times studied and considering all the observed factors it was 

concluded that the optimal HRT for the anaerobic digestion at alkaline conditions of 

Spirulina with an organic loading rate of 1.0 g L-1 day-1 (dry weight), was 15 days 

(Table 2; [2]). At this HRT, the highest methane production, 31.3 ml CH4 g VS-1, and 

the highest biodegradability, 5%, of this experiment were obtained (Table 4.2).  

4.3.2. Determination of the optimal organic loading rate [2] 

Once the optimal hydraulic retention time was determined, it was necessary to find 

the optimal organic loading rate in order to obtain the highest specific methane 

production per gram of substrate. The alkaline anaerobic reactor, Alk-OLR, was 

operated at the identified optimal HRT, 15 days, and three different OLR were 

applied, 0.25, 0.50 and 1.0 g Spirulina L-1 day-1 (dry weight) [2]. Considering the 

results obtained with the previous experiment, accumulation of NH3 and VFAs, it was 

decided to start the experiment with a low OLR in order to avoid inhibition of the 

reactor and to try to achieve the maximum possible bioconversion. Setting the HRT 

time at 15 days had a positive effect on the presence of NH3 in the medium, which 

did not accumulate in any of the three different OLR tested indicating that the 

medium exchange rate was adequate (Table 3; [2]). 

As was expected, whenever the OLR was increased, the daily biogas production also 

increased (Figure 1a; [2]). This increase in biogas was however, not linearly 

correlated with the increase in substrate added, indicating that part of the additional 

supplied substrate was not being converted to methane by the microbial community 
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and accumulated in the reactor medium. This accumulation of undegraded organic 

matter (CODT and CODS) was highly acute when the OLR was set to 1.0 g Spirulina 

L-1 day-1 and gradually led to reactor failure because of substrate overload (Figure 3; 

[2]). Reactor failure from substrate overload generally occurs when the microbial 

community is unable to completely digest the supplied substrate and toxic 

compounds accumulate (González-Fernández and García-Encina, 2009; 

Kwietniewska and Tys, 2014; Salminen and Rintala, 2002).  

From the three different OLR tested, 0.25 g L-1 day-1 was the optimal one. With this 

OLR the highest specific methane production per gram of VS added was achieved 

(Table 3; [2]). Moreover, with this OLR the biodegradability of Spirulina was also the 

highest obtained so far at alkaline conditions, 7% (Table 4.2). Even though this 

percentage of biodegradability is much lower than what was achieved at mesophilic 

conditions, it is an improvement over the highest biodegradability obtained in the 

previous experiment (Table 4.2). This increase could be attributed mainly to the low 

OLR applied in combination with the 15 days HRT used which avoided both, 

accumulation of toxic compounds and bacterial washout (Table 3; [2]).   

Parallel to this anaerobic reactor, a second reactor, Alk-Sed-2, was inoculated with a 

batch of fresh soda lake sediments [4]. This reactor was operated at 15 days HRT, 

and the OLR was initially set to 0.5 g Spirulina L-1 day-1 (dry weight). The main goal 

of this reactor was to determine if the use of fresh sediment which had not been 

stored for over one year and which had not experienced inhibitory conditions would 

increase the daily biogas production. This reactor also confirmed that apparently, at 

alkaline conditions, overload of the reactor occurs rapidly when the OLR is set to 1.0 

g L-1 day-1 (dry weight), a threshold identical to the one observed with the Alk-OLR 

reactor [2]. In addition to the substrate overload, a slight ammonia inhibition was also 

observed (Figure 4.1b; [4]). During the operation of this second reactor, several 

strategies were applied to try to increase the biogas production. Of these, the use of 

a different micronutrients solution supplemented with vitamins led to more 

satisfactory results [4]. Sufficient supply of micronutrients is crucial as a lack of a 

certain element can inhibit both bacteria and archaea (Anderson et al., 2003; Zhang 

et al., 2012). In this case, changing the composition of the initial micronutrients 

solution and adding other micronutrients such as cobalt, nickel, and zinc, plus the 

addition of vitamins (D-Biotin, Folic acid, vitamin B12 and others), resulted in an 
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increase in the daily biogas production (Figure 4.1; [4]). The amount of substrate 

degraded also increased from 7 to 10% (Table 4.2). This increase in production and 

biodegradability could be attributed to a better performance of the microbial 

community due to the addition of the mentioned micronutrients and vitamins.   

Setting the HRT to 15 days in both reactors, contributed to maintaining the levels of 

ammonia and VFAs controlled. Both reactors produced biogas continuously during 

100 days before signs of reactor failure could be seen (Figure 1; [2] and Figure 4.1; 

[4]). This indicates that when a low OLR is combined with a 15 days HRT, the biogas 

production is continuous without occurrence of inhibitions.   

4.3.3. Biogas production under the optimal process parameters [4] 

Once the optimal hydraulic retention time and organic loading rate were identified, 15 

days and 1.0 g Spirulina L-1 day-1 (dry weight) [2], an alkaline anaerobic reactor, Alk-

Opt, was set to study the anaerobic digestion with these determined parameters [4]. 

With the selected optimal parameters, the biogas production was constant for a 

period of over 60 days (Figure 4.2; [4]). In this time, no accumulation of toxic 

metabolites occurred, NH3 was kept below the inhibitory threshold, and volatile fatty 

acids and organic matter also remained controlled (Figure 4.2 and Table 4.3; [4]).  

Even though the biogas production was constant and no accumulation of inhibitory 

substances occurred, the daily biogas production was considerably lower than at 

mesophilic conditions [3], and lower than in other studies (Table 4.1). This low biogas 

yield could be attributed to several factors:  

(i) Substrate type: As already mentioned, the biodegradability of Spirulina is 

relatively low compared to other microalgae and other organic substrates. Moreover, 

the high protein content of Spirulina, 60 – 70% (Ortega-Calvo et al., 1993), limits the 

maximum organic loading rate at which to operate the reactor due to excessive 

release of ammonia which increases with the increase in pH and can result in reactor 

failure [2, 4]. 

(ii) Poor granule formation: granule formation is a key element for the 

functioning of several types of anaerobic reactors, specially the UASB reactor (Borja, 

2011; Schmidt and Ahring, 1996). Granulation is the process in which suspended 

biomass agglutinates and forms granules due to a combination of microbial 
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morphology, the type of substrate used, and accumulation of inorganic salts 

(Anderson et al., 2003; Borja, 2011; Yu et al., 2001). The presence of granules 

contributes to a better reactor performance (Anderson et al., 2003), and they also 

help to reduce inhibition as the methanogenic populations are protected in the inner 

layers of the granules (Rozzi and Remigi, 2004). Moreover, studies show that biogas 

yields are reduced when granules are disrupted or low in abundance (van Lier et al., 

2001). Several factors contribute to formation of granules. For example the presence 

of calcium ions, Ca2+, contribute to enhance the three steps of sludge granulation, 

adsorption, adhesion and multiplication (van Langerak et al., 1998; Yu et al., 2001). 

pH is also an important factor as it influences the formation and maintenance of 

granules. Sandberg and Ahring, 1992 showed that increasing the pH above 8.3 

resulted in a serious disintegration of granules which lead to process failure. In all the 

set up alkaline reactors, granules were present in low quantities or they were 

practically absent (data not shown). This sparse formation of granules could mainly 

be attributed to the absence of Ca2+ ions in the reactor medium and possibly to the 

high pH. Soda lakes from the Altai province are known to be almost completely 

calcium free environments (Baumgarte, 2003; Grant, 2006; Ulukanli and Rak, 2002). 

According to several studies, the addition of calcium to the reactor medium, in the 

range of 150 to 500 mg L-1, could enhance granules formation (Yu et al., 2001). 

However, at alkaline conditions, Ca2+ reacts with carbonates, CO3
2-, to produce 

CaCO3 which precipitates. A similar phenomenon would occur with the addition of 

Mg2+ which at alkaline conditions precipitates in the form of MgCO3 (Grant et al., 

1990). Adding Ca2+ or Mg2+ could thus have a negative effect, as precipitated 

carbonate most likely would disturb the correct functioning of the reactor due to 

scaling of the reactor and scaling of biomass and reduce the activity of methanogens 

(Chen et al., 2008). Also, as seen in the biomethane potential of pretreated wheat 

straw [5], the presence of Ca2+ in the alkaline medium appeared to cause some 

unknown inhibition affecting bacteria and/or archaea, as no biogas production was 

observed (Figure 5.2; [5]). A possible measure for increasing granule formation 

would be the addition of synthetic and inert zeolites which could provide a surface for 

the attachment of the bacterial community.  

Other results that support the low presence of granules in the alkaline reactors is the 

observation that the bacteria and archaea known to form and colonize the granules 

were practically absent in our reactor. For example, two of the main methanogens 
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responsible for granule formation, Methanosarcina and Methanosaeta (Díaz et al., 

2006; Saiki et al., 2002; Schmidt and Ahring, 1996) could only be identified when the 

metagenome analysis was performed with the MG-Rast metagenome analyzer 

(Meyer et al., 2008), and in both cases, the number of assigned reads was extremely 

low. Among the bacteria that colonize the granules, the results were similar. 

Syntrophobacter and Pelobacter, both bacteria present in granules (Schmidt and 

Ahring, 1996) were almost completely absent.  

(iii) Syntrophic conversions: Another factor causing the low biogas yield 

could be the low activity of the syntrophic bacteria associated with methanogens 

such as syntrophic acetate oxidizers (SAO) and syntrophic propionate oxidizers 

(SPO). SAO and SPO are secondary fermenters that ferment acetate, propionate 

and other VFAs to H2 and CO2 (Hattori, 2008; Lee et al., 2009; Westerholm, 2012). At 

mesophilic pH conditions, SAO and SPO are mainly active when acetoclastic 

methanogenesis is inhibited by high levels of NH3 and high concentrations of acetate 

(Angelidaki and Ahring, 1993; Salminen and Rintala, 2002; Westerholm, 2012). At 

alkaline conditions, however, the acetoclastic pathway is practically absent (Sorokin 

et al., 2014) and the hydrogenotrophic pathway seems to be the most active pathway 

[1] (Nolla-Ardèvol et al., 2012). Therefore, at alkaline conditions an active syntrophic 

fermentative community is essential for the oxidation of acetate and propionic acid 

and the supply of H2 and CO2 for the hydrogenotrophic methanogens. However, 

relatively high levels of acetate, propionic acid and other VFAs, were detected in all 

alkaline reactors (Tables 2, 3 [2] and Table 4.2 [4]). Even at the optimal process 

conditions, the levels of acetic acid were relatively high ~ 1.5 g L-1 (Figure 4.2; [4] and 

Table 4.3; [4]).  

Interestingly, in the metagenome analysis of the alkaline reactor only one hit was 

identified belonging to the enzyme formyltetrahydrofolate synthethase, which is a key 

enzyme used by syntrophic acetate oxidizing bacteria to oxidize acetate to H2 and 

CO2 through the Wood–Ljungdahl pathway (Müller et al., 2013). The absence of this 

key enzyme correlates with the extremely low abundance of reads assigned to SAO 

bacteria. For example, Clostridium ultunense, a syntrophic acetate oxidizing 

bacterium (Schnürer et al., 1996) and other SAO such as Tepidanaerobacter and 

Syntrophaceticus (Westerholm et al., 2010; Westerholm et al., 2011), both members 

of the order Thermoanaerobacterales, were not detected. Moreover, the order 
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Thermoanaerobacterales recruited less than 800 reads. Other possible SAO such as 

Geobacter and Anaeromyxobacter (Westerholm, 2012) recruited less than 500 

reads. This lack of SAO correlates perfectly with the relatively high concentration of 

acetic acid present in the alkaline anaerobic reactor [2, 4].  

An additional factor affecting the activity of the syntrophic bacteria is the low 

abundance of granules, as these provide the microenvironment were the syntrophic 

relationships between SAO / SPO and methanogens take place (Nelson et al., 2012). 

Thus, the inhibition or low activity of the syntrophic fermenters causes a reduction in 

the availability of substrates for the hydrogenotrophic methanogens resulting in a low 

biogas production despite the abundant substrate.  

In summary, the type of substrate used, the degradation of which causes the release 

of NH3, the scarce presence of aggregates, which favor biomass washout, the 

possible inhibition of syntrophic fermenters, deduced from the relatively high levels of 

acetate and of undegraded organic matter (Table 4.3, [4]), most likely caused a so 

called “inhibited-steady state” of the reactor, characterized by a stable but overall low 

biogas production (Angelidaki and Ahring, 1994; Astals et al., 2012).  

Despite the low biogas production, it is worth noting that the percentage of 

bioconversion of Spirulina increased with each process improvement, from the initial 

3% in the Alk-OLR reactor, to 11% in the Alk-Opt reactor (Table 4.2). Likewise, the 

methane yield also improved reaching 71 ml CH4 g VS-1 in the Alk-Opt, a value 

similar to that obtained with the alkaline batch tests (Table 4.3). This increase in 

bioconversion and yield suggest that, with the adequate substrate and reactor set-up, 

enhanced biogas production could be achieved. 

4.3.4. Alkaline digestion of other substrates [5] 

Biomethane potential tests (BMP), are a fast and inexpensive approach to determine 

the methane content of a particular substrate and can also provide details about the 

biodegradability of a given substrate (Angelidaki et al., 2009; Raposo et al., 2011). 

Biomethane potential tests have been widely used to assess the potential methane 

production of algae, Spirulina, and other substrates at mesophilic pH conditions 

(Bourque et al., 2008; El-Mashad, 2013; Mussgnug et al., 2010; Pobeheim et al., 

2010; Zamalloa et al., 2012), but have not been used to study the potential methane 

production of complex substrates at alkaline conditions. Here, BMPs were used to 
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assess the potential methane production of Spirulina, fresh algal biomass and wheat 

straw at alkaline conditions. 

BMP performed with fresh algal biomass have shown that selecting the appropriate 

type of microalgae, for example with lower protein content, is a crucial step in order 

to obtain high methane yields. Biogas production from fresh microalgae reached 222 

mL biogas g VS-1 compared to the 85 mL biogas g VS-1 obtained with Spirulina as 

substrate (Table 5.2; [5]). This indicates that running an anaerobic alkaline digester 

with a more suitable microalgae as substrate, could avoid some of the problems 

associated with the use of Spirulina, mainly the accumulation of NH3, favoring the 

biogas production and making this approach a more competitive option. 

Wheat straw wastes represent a potential energy resource if they can be properly 

converted into energy through anaerobic digestion. However, due to its composition, 

a mixture of lignocellulosic matrix, the anaerobic biodegradability of wheat straw is 

limited (Motte et al., 2014). To increase the biodegradability several approaches have 

been proposed, among them the chemical alkaline pretreatment (Song et al., 2014; 

Zahoor and Tu, 2014). Performing the anaerobic digestion of wheat straw at alkaline 

conditions could thus increase the biogas production as the alkaline medium would 

act as a pretreatment.  

BMP tests with wheat straw showed that performing anaerobic digestion of this 

substrate at alkaline conditions was possible and the methane yield obtained, as well 

as the biodegradability of the substrate were higher than those obtained at 

mesophilic conditions. Biogas production and biodegradability of wheat straw 

reached 282 mL biogas g VS-1 and 63% of conversion respectively, values 

comparable to those obtained with microcrystalline cellulose (Table 4.3). The results 

confirm that the alkaline medium acts as a pretreatment, increasing the 

biodegradability of the wheat straw. This opens the possibility of performing direct 

anaerobic digestion of wheat straw, and similar lignocellulosic substrates, in a single 

reactor, without the need of having to perform pretreatment and digestion in two 

steps. Generally, the use of pretreatment steps requires energy and/or chemicals 

which increase the overall production costs and limit the economic feasibility. For 

substrates which currently require alkaline pretreatments, the possibility of performing 

the digestion in one single step can thus contribute to a drastic reduction of the 

processing costs. 
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Table 4.3 Biomethane potential tests  
Biogas production, methane content and biodegradability of different substrates at alkaline and 
mesophilic conditions performed in batch test 

Substrate Conditions 
Yield 

(mL g VS-1) 
CH4 
(%) 

BDCH4 

(%)a 
Reference 

Spirulina Alkaline 85 BG* 92 12 Unpublished results [5] 

Fresh algal biomass Alkaline 223 BG 94 33 Unpublished results [5] 

Microcrystalline 
cellulose (Avicel) 

Alkaline 288 BG 90 62 Unpublished results [5] 

Wheat straw Alkaline 282 BG 93 63 Unpublished results [5] 

Spirulina Mesophilic 481 BG 61 83 Mussgnug et al., 2010 

D. salina Mesophilic 505 BG 64 93 Mussgung et al., 2010 

C. vulgaris Mesophilic 369 BG 53 - Prajapati et al., 2014 

Wheat straw Mesophilic 104 CH4 - 24
¥
 Demirbas, 2006 

Wheat (Nodes) Mesophilic 141 CH4 - 33
¥
 Motte et al., 2014 

Wheat (rachis) Mesophilic 180 CH4 - 42
¥
 Motte et al., 2014 

Wheat (Internodes) Mesophilic 148 CH4 - 35
¥
 Motte et al., 2014 

Wheat (leaves) Mesophilic 242 CH4 - 57
¥
 Motte et al., 2014 

a: Percentage of biodegradability calculated as in Raposo et al., 2011 
* BG: Biogas 
¥ Calculated using wheat straw theoretical methane content: 426 ml g VS

-1 

 

4.3.5. Biogas rich in methane [2, 4, 5] 

The main objective of this PhD project was to evaluate the possibility to produce 

biogas at alkaline conditions as this can have several advantages over the traditional 

mesophilic systems. The main advantage of the alkaline conditions is that the 

alkaline medium retains the produced CO2 as bicarbonate, leading to biogas rich in 

methane. In all performed experiments, and with all the different substrates tested, 

this was confirmed experimentally, and the obtained biogas was extremely rich in 

methane, between 77 and 91% (Table 4.2) [2, 4, 5]. At specific time points, the 

methane content reached 96% and the CO2 content was practically zero (Figure 1a; 

[2] and Figure 4.2; [4]). In addition, the alkaline medium also prevented the release of 

H2S which was not detected in the biogas of any of the different alkaline reactors [2, 

4, 5]. The absence of H2S is significant as it is one of the major impurities present in 

currently produced biogas which causes odors and corrosion (Pavlostathis, 2011). 

Biomethane is the term used for the biogas which has been upgraded to increase the 

percentage of methane by removing CO2 and impurities, and can be used in the 

national gas grid or as fuel for vehicles (Persson et al., 2006; Weiland, 2010). With 

the biogas obtained at alkaline conditions, this upgrade would be unnecessary, or 

minimized, as the gas meets the minimum methane content required in most of the 

national gas grid systems. For example, in Germany the minimum required content of 
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methane in biomethane is 96%, in Norway 95% and in The Netherlands 88% 

(Persson et al., 2006). Thus, the absence of H2S and the low percentage of CO2, 

would allow the reduction of downstream processing costs, making the production of 

biogas at these conditions an alternative to traditional biogas producing systems. 

4.4. Metagenomics of the anaerobic digestion process [3, 6] 

Metagenomics has become a common way to study taxonomy, gene composition 

and gene function in microbial communities (Simon and Daniel, 2011). A good 

understanding of the taxonomic composition and the functional interactions between 

the involved microbial populations, can contribute to the optimization of the anaerobic 

digestion of the desired substrate.  

Two main approaches were used for the taxonomic analysis of the microbial 

communities present in the mesophilic and in the alkaline anaerobic reactors. In the 

first approach, sequenced reads were assembled into contigs and subsequently 

binned, in order to obtain provisional whole genome sequences of abundant 

community members (Strous et al., 2012). Since tetranucleotide frequencies are 

relatively conserved between taxa, it is possible to use them for classification 

purposes. This characteristic, makes binning based classifiers better suited to deal 

with sequences originating from unknown species (Logares et al., 2012), in contrast 

to similarity based classification of reads which yields poor results for populations 

without a nearby reference genome in the databases. Moreover, provisional whole 

genome sequences allow the inference of an ecological function for each major 

community member (e.g. biomass hydrolysis, fermentation, methanogenesis etc.). 

The binning analysis was done with both, the mesophilic pH metagenome [3] and the 

alkaline metagenome [6].  

The second strategy, which was only applied for the mesophilic metagenome, 

comprised the classification of single reads using the M5NR tool of the MG-Rast 

metagenome analyzer (Meyer et al., 2008). This approach was used for the 

comparison between the mesophilic pH metagenome and a publicly available 

metagenome from a biogas plant (Jaenicke et al., 2011) [3]. In this case it was 

decided to use the MG-Rast approach because the taxonomic analysis in the original 

work from Jaenicke et al, 2011 was done based on the classification of reads and not 

on the classification of contigs.   
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On the other hand, the functional analysis of the two metagenomes was done with 

the classification of single reads using several tools of the MG-Rast metagenome 

analyzer combined with a search for specific protein domains (Pfams). 

4.4.1. Characteristic taxonomic structure of anaerobic digester microbial 

communities [3, 6] 

So far, a number of metagenomic studies from several biogas producing plants and 

lab scale anaerobic reactors treating a variety of different substrates have been 

performed (Jaenicke et al., 2011; Krause et al., 2008; Li et al., 2013; Schlüter et al., 

2008; Sundberg et al., 2013; Wirth et al., 2012). This is, however, the first study of a 

metagenome derived from the anaerobic digestion of Spirulina at mesophilic pH 

conditions [3]. 

On the other hand, to date, only one known work involving a metagenomic approach 

to study the anaerobic microbial community of a biogas reactor at high pH was 

published by Wong et al., 2013. In this study however, the high pH was only applied 

as a pretreatment and the anaerobic reactor was operated at neutral pH during 30 

days before sampling for DNA, therefore it cannot be considered as an example of 

the analysis of a truly haloalkaline microbial community. So far the microbiology of 

this process at alkaline conditions has only been addressed by van Leerdam et al., 

2008b who used DDGE to characterize the archaeal community. On the other hand, 

several studies have already analyzed the microbial composition of soda lakes and 

related habitats (Kanekar et al., 2008; Lanzén et al., 2013; Ochsenreiter et al., 2002; 

Rees et al., 2004). The work presented here is therefore the first metagenome 

analysis of a haloalkaline microbial community that has been adapted to produce 

biogas in a closed and controlled process [6]. 

The taxonomic analysis of both metagenomes showed that despite the origin of the 

inoculum and despite the environmental and process conditions, the microbial 

community structure of the anaerobic digestion process is remarkably similar at 

higher taxonomic levels, with Bacteria clearly dominating over Archaea [3, 6]. 

Furthermore, in both cases the same abundant phyla were detected, Firmicutes, 

Bacteroides, Thermotogae and Euryarchaeota. At lower taxonomic levels, different 

representatives of these phyla were dominant, with a clear presence of extremophilic 

genera detected in the alkaline bioreactor. 
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At mesophilic conditions, the microbial composition is similar to that obtained in other 

anaerobic reactors (Jaenicke et al., 2011; Li et al., 2013; Schlüter et al., 2008; Wirth 

et al., 2012) with the dominance of Firmicutes, Bacteroides and Thermotogae. 

Moreover, and as in a previous study of anaerobic digestion of a proteinaceous 

substrate (Kovács et al., 2013), Clostridiales were the most abundant bacteria (Table 

3; [3]). Among the archaea, Methanomicrobiales and Methanosarcinales were 

detected as the dominant methanogens (Suppl. Table 1; [3]), as previously observed 

in other anaerobic reactors (Li et al., 2013; Liu et al., 2009; Ziganshin et al., 2013).  

At alkaline conditions, as expected, and due to the origin of the inoculum, a relatively 

high percentage (~40%) of the microbial population was unknown and, most of the 

identified bacteria and archaea were closely related to known halotolerant and/or 

alkaliphilic microorganisms. The high abundance of unidentified taxa in the 

population was probably due to the low number of sequenced genomes and 16S 

rDNA genes belonging to halophiles and alkaliphiles present in the nucleotide 

databases.  

The composition of the microbial community of the alkaline process does not differ 

much from the already known composition of other anaerobic mesophilic digesters; 

Bacteria clearly dominate over Archaea (Table 6.3; [6]). At a glance, the major 

difference between the alkaline anaerobic community and that found in a mesophilic 

pH reactor was the fact that Bacteroidetes and Firmicutes appeard to be the co-

dominant hydrolytic bacteria in contrast to the mesophilic environments where 

Firmicutes clearly dominate [3]. At a closer look, more differences could be observed 

with respect to the mesophilic microbial population. In the alkaline reactor, members 

of the Cytophaga-Flavobacteria-Bacteroidetes group (CFB), classified as “ML635J-

40 aquatic group” clearly dominate, representing over 27% of the total abundance 

(Table 6.3; [6]). This group has been previously identified in other soda lakes 

(Baumgarte, 2003; Grant, 2006; Humayoun et al., 2003) which indicates that it is 

probably one of the most abundant and wide spread haloalkaline bacterial groups. 

Unfortunately, no full characterization of members of the ML635J-40 aquatic group 

exists. The closest relatives are other members of the CFB and only a few members 

of this group have been fully characterized (Denger et al., 2002; de la Haba et al., 

2011; Zhilina et al., 2004). Halanaerobiales and Natranaerobiales, which are 

moderate halophilic Clostridia able to ferment multiple substrates, from glucose to 
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amino acids, and have been detected in several soda lakes (Brown et al., 2011; 

Ivanova et al., 2011; Mesbah and Wiegel, 2009; Zhao et al., 2011), were also among 

the most abundant bacteria present in the alkaline metagenome.  

In the alkaline reactor the production of methane was carried out mainly by members 

of the Methanomicrobiales order and especially the genus Methanocalculus (Table 

6.3 and Figure 6.4; [6]). This genus contains the, to date, only known strict alkaliphilic 

methanogen, Methanocalculus natronophilus, isolated from a soda lake from the 

same lake system as our inoculum (Zhilina et al., 2013). Methanocalculus was one of 

the methanogens detected, by means of the marker gene mcrA, in the sediments 

that served as inoculum for one of the alkaline reactors [1] (Nolla-Ardèvol et al., 

2012). This might indicate that Methanocalculus was able to adapt to the process 

conditions, pH 10 and 2.0 M Na+, and outcompete the other methanogens present in 

the sediment [1] (Nolla-Ardèvol et al., 2012). Methanocalculus is a hydrogenotrophic 

methanogen which is unable to use acetate as substrate for methanogenesis (Ollivier 

et al., 1997; Zhilina et al., 2013). Therefore, the detection of Methanocalculus as the 

main methanogen and the low abundance or probably even absence of syntrophic 

acetate oxidizers, would explain the relatively high levels of acetate present in the 

alkaline reactors [2, 4]. 

These results presented here suggest that, the microbiology of the anaerobic 

process is constant throughout the different environments and conditions. In the 

alkaline metagenome, the observed differences are mainly attributed to the capacity 

of the identified bacteria to thrive in such an extreme environment. 

4.4.2. Identification of specific functional characteristics in the alkaline 

metagenome [6] 

The classification of single short reads through the Subsystems hierarchical classifier 

of the MG-Rast metagenome analyzer showed that, as expected, and as already 

seen in other functional analyses of anaerobic microbial communities (Li et al., 2013; 

Schlüter et al., 2008; Wirth et al., 2012), the functions that received the highest 

number of hits, were those related to basic metabolic processes, energy production 

and housekeeping genes which are indicative of the presence of an active microbial 

community (Figure 6.5; [6]).  
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It is not a surprise that, as most of the identified bacteria in the alkaline anaerobic 

reactor are known halophiles and alkaliphiles, multiple enzymes involved in the 

adaptation strategies of the halotolerant and haloalkaline bacteria present at these 

extreme conditions were identified among the sequenced reads [6]. In this group of 

genes it is important to highlight the detection of several Na+, K+ and Cl- porters and 

antiporters which are commonly used to allow flow of these ions through the bacterial 

membrane in order to maintain the intracellular pH at mesophilic conditions, one of 

the two strategies of halophiles and alkaliphiles to cope with the osmotic pressure 

(Kivistö and Karp, 2011; Mesbah et al., 2007b; Ulukanli and Rak, 2002)..The 

accumulation of organic compounds and compatible solutes which function as 

osmoprotectants is another strategy applied by halotolerant bacteria to cope with 

high salt concentrations (Ma et al., 2010; Mesbah and Wiegel, 2012; Ventosa, 2006). 

Enzymes related to the use of osmoprotectants like ectoins, betaines and choline 

were also detected in the metagenome. 

The functional analysis with the Subsystems classification of reads in combination 

with the identification of specific protein domains (Pfam) showed that the 

hydrogenotrophic methanogenic pathway recruited more reads than the acetotrophic 

pathway [6]. These results suggest that the methanogens present in the alkaline 

reactor produce CH4 preferably via the reduction of CO2 in the presence of H2, which 

is in accordance with the relatively higher abundance of hydrogenotrophic 

methanogens among the detected archaea [6]. These findings corroborate previous 

reports that indicate that in alkaline lakes one of predominant methanogenic 

pathways is the hydrogenotrophic pathway and that the acetoclastic pathway is 

practically absent (Sorokin et al., 2014) 

4.4.3. Comparison of metagenomes derived from anaerobic digesters fed with 

either protein rich or cellulose rich substrates [3] 

The availability of public metagenomes can be of interest as it allows researchers to 

directly compare two or more habitats or environments. In this project, a publicly 

available metagenome from a biogas plant treating agroindustrial waste (Jaenicke et 

al., 2011) was downloaded and compared, using the MG-Rast metagenome analyzer  

(Meyer et al., 2008), with the metagenome of the mesophilic reactor digesting 

Spirulina. With this, it was possible to compare two different anaerobic microbial 

communities, one responsible for the degradation of mainly cellulosic material and 
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the second one responsible for the decomposition of a protein rich substrate [3]. This 

direct comparison also allows us to determine the effect of substrate on the 

composition and function of the anaerobic microbial community. 

Comparing both metagenomes revealed minor differences with regards to the 

general microbial composition as bacteria clearly dominate over archaea [3]. 

Differences could be observed among the bacteria abundance at low taxonomic 

ranks, genus and species, and could be related to the type of substrate degraded. 

For example, most of the abundant bacteria in the Spirulina reactor were the least 

abundant in the cellulose rich reactor and vice-versa. In the reactor fed with Spirulina, 

a protein rich substrate, Alkaliphilus, which is known to be able to use or require 

amino acids for growth and some of its members are unable to degrade complex 

sugars such as cellobiose and xylose (Farrow et al., 1995; Lien et al., 1998) recruited 

over 6% of the reads while it only recruited 2% in the cellulose rich metagenome 

(Suppl. Table 3; [3]). Furthermore, taxa recruiting most reads in the metagenome 

from the biogas plant, Candidatus Cloacamonas and Clostridium, which are known to 

be able to degrade cellulosic material (Kovács et al., 2013; Tachaapaikoon et al., 

2012) recruited less reads in the Spirulina metagenome (Suppl. Table 3; [3]). In 

accordance to these findings, both metagenomes contained genes which encode 

enzymes for the degradation of the specific type of substrate. In this sense, in the 

metagenome from the Spirulina reactor, a higher number of genes related to the 

degradation of amino acids, peptides and proteins could be detected compared to 

those genes related to the degradation of cellulose. The opposite was seen for the 

metagenome from the biogas plant (Figure 4; Table 4; [3]). A similar result was 

obtained with the alkaline metagenome. A higher number of genes and Pfams were 

detected that could be related to the degradation of proteinaceous substrates in 

contrast to the number of genes related to the degradation of cellulose rich 

substrates (Table 6.5; [6]).  

Major differences between the two studied metagenomes could be seen among the 

Archaea. Methanoculleus and Methanosarcina dominated in the Spirulina reactor in 

contrast to the clear dominance of Methanoculleus in the biogas plant (Figure 3; [3]). 

Methanoculleus is a hydrogenotrophic methanogen while Methanosarcina is one of 

the methanogens with a broader range of substrates, from acetate, H2-CO2 to methyl 

compounds (Garcia et al., 2000). As methanogens are responsible for the last step in 
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the anaerobic digestion process, the formation of methane, they are not dependent 

on the initial type of substrate degraded by the hydrolytic bacteria, but they are 

affected by the environmental factors inside the reactor. These factors are mainly 

presence or absence of particular inhibitory substances such as ammonia, or excess 

acetate (Chen et al., 2008). Possibly, acetoclastic methanogens are more sensitive 

to the presence of high concentrations of ammonia and VFAs (Angelidaki and Ahring, 

1993; Calli et al., 2005). Thus, the dominance of a hydrogenotrophic methanogen, 

Methanoculleus, and a methanogen capable of using multiple substrates, 

Methansarcina, in the Spirulina reactor was attributed to a relatively high level of NH3 

and VFAs resulting from the hydrolysis of Spirulina biomass (Figure 1; [3]).  

In literature, the explanations of the observed differences in the archaeal composition 

are partially contradictory. One the on hand the environmental conditions in the 

reactor such as relatively high levels of VFAs and ammonia, favor the dominance of 

a certain type of methanogens (Angelidaki and Ahring, 1993; Calli et al., 2005). On 

the other hand, the work by Ziganshin et al., 2013 showed that in some cases, the 

methanogenic community seemed to be more influenced by the origin of the 

inoculum than by the environmental conditions in the reactors. In addition, the 

experiments carried out by Pholchan et al., 2013 showed that the environmental 

conditions in a reactor are linked to an increase in the diversity of the microbial 

community. In this case, a combination of both factors, origin of the inoculum and 

environmental conditions seem to be the most plausible explanation for the presence 

of two abundant methanogens.  

The microbial diversity of both metagenomes was also addressed in order to 

determine if the digestion of a mono-substrate (Spirulina) resulted in a less diverse 

microbial community when compared to the digestion of a mixture of substrates 

(maize, green rye and chicken manure) [3]. In accordance to what was observed in 

the taxonomic analysis, no significant differences could be seen in the bacterial 

diversity, despite the type of substrate used. This is similar to the results obtained by 

Pholchan et al., 2013. They demonstrated that the use of a complex substrate does 

not always imply an increase in microbial richness. In contrast, the diversity of the 

methanogens was increased in the Spirulina reactor in comparison to the biogas 

plant. This increase in diversity could be attributed to the co-dominance of two 
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methanogens in the Spirulina reactor vs the dominance of a single methanogen in 

the biogas plant [3].  

4.4.4. Can metagenomics facilitate the optimization of the anaerobic digestion 

process? [3, 6] 

Metagenomics is a useful way to study complex microbial communities. With 

metagenomics, it is possible to answer the question Who is there? and to some 

extend estimate the relative abundance of the different members of the studied 

microbial community. Moreover, metagenomics can also provide a first insight into 

the different functions that are present in the microbial community (Chistoserdova, 

2014; Kunin et al., 2008; Thomas et al., 2012).  

In the different fields of metagenomics, such as environmental metagenomics (Tringe 

and Rubin, 2005), medical metagenomics (Virgin and Todd, 2011) and 

metagenomics applied to industrial processes (Lorenz and Eck, 2005) the same 

issues are addressed, namely, the identification of the different organisms present, 

their possible functions and their relationships and interactions. Especially in the 

medical and industrial process, the general idea is that the information obtained with 

metagenomics could be used to understand the interactions between the different 

organism in order to develop new therapeutics or to enhance the studied process 

(Lorenz and Eck, 2005; Virgin and Todd, 2011). However, to date, one has the 

impression that so far, the information given by the analysis of a metagenome is 

more related to the biological aspects. In this sense, despite all the information that 

can be obtained with a metagenomics approach, in most of the cases, it seems that 

this information only contributes to increase basic knowledge related to general 

microbiology and ecology such as which organisms are present and what are their 

possible functions (Chistoserdova, 2014). The information obtained after analyzing a 

metagenome has yet to be used to improve an industrial process.  

In this sense, the results presented here with regard to the taxonomic analysis are 

interesting in the perspective of general microbiology as they point to the direction 

that the microbial communities responsible for the anaerobic digestion of organic 

matter are relatively stable and similar in their general composition, independent of 

the substrate used, protein rich or cellulose rich, and independent of the type of 

inoculum used, mesophilic or alkaline [3, 6]. However, as the information obtained is 
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only from a specific time point, it is difficult to say if the taxonomic information gained 

could be used to improve the anaerobic digestion of Spirulina. In this direction, and in 

relation to the production of biogas at alkaline conditions, it would be interesting for 

future projects to explore options to actively increase the number of syntrophic 

acetate oxidizing bacteria as their current low abundance seems to be linked to an 

overall low biogas production [2, 4]. 

The functional information obtained with metagenomics is just a snapshot which 

indicates the functional potential of the microbial community, but does not reflect the 

functional activity at the time of sampling (Moran, 2009; Urich et al., 2008). The 

functional analysis of both, the mesophilic and the alkaline metagenomes pointed to 

the direction of a higher abundance of genes related to the degradation of proteins in 

contrast to the relatively low abundance of genes involved in the degradation of 

cellulosic material [3, 6]. However, as metagenomics does not give information about 

the activity of the different functions (Moran, 2009), these results have to be 

interpreted with caution. More experiments should be carried out in order to deeply 

analyze the impact of a certain substrate in the composition of the microbial 

community and their functions. In this sense, it would be interesting to perform 

studies where DNA samples are obtained from several time points from two or more 

reactors treating distinct substrates.  

A solution to understand which functions are actually performed at a given time point 

would be the application of metatranscriptomics, a technique similar to 

metagenomics but in which the mRNAs are sequenced and analyzed (Moran, 2009; 

Urich et al., 2008). As mRNAs from a specific gene are only produced when it is 

expressed, the identification and quantification of mRNAs gives information about 

which functional genes are active and which are not active (Gilbert et al., 2008; Urich 

et al., 2008).  

In this sense, the combination of the binning approach, where provisional whole 

genome sequences of the abundant community members are generated, with the 

mapping of transcriptome reads to these provisional genomes, would give firsthand 

information about the actual function of each of the most abundant organisms 

present in the reactors (Chistoserdova, 2014). In this direction, a recent work by Yu 

and Zhang, 2012 already addressed this possibility by analyzing the metagenome 

and the metatranscriptome of the microbial community present in an active sludge. 
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The combination of metagenomics and metatranscriptomics applied to the anaerobic 

digestion process could provide a more comprehensive understanding of the 

functions and interactions of the different anaerobic bacteria and archaea, and the 

obtained information could be used to enhance the process. 

4.5. Conclusions 

In this work, the anaerobic digestion of Spirulina at alkaline conditions (pH~10; 2.0 M 

Na+) has been demonstrated to be feasible and the obtained biogas was rich in 

methane, with up to 96%. 15 days HRT and 0.25 g Spirulina L-1 day-1were identified 

as the optimal process conditions for which the highest biogas yield was obtained, 84 

mL biogas g VS-1. Several bottlenecks have been identified which were responsible 

for the relatively low biogas production: (i) the type of substrate used, rich in proteins, 

which resulted in excessive release of ammonia, (ii) poor granule formation due to 

possible lack of calcium, and (iii) low activity of the syntrophic acetate oxidizers which 

resulted in accumulation of volatile fatty acids.   

The anaerobic digestion of wheat straw at alkaline conditions was satisfactory and 

opens the possibility of performing the biometanization of lignocellulose rich 

substrates in a single step. 

The taxonomic analysis of both metagenomes showed that despite the origin of the 

inoculum and despite the environmental and process conditions, the microbial 

community structure of the anaerobic digestion process is remarkably similar at 

higher taxonomic levels, with bacteria clearly dominating over archaea. Furthermore, 

in both cases the same abundant phyla were detected, Firmicutes, Bacteroides, 

Thermotogae and Euryarchaeota. Differences in the microbial composition between 

the mesophilic and the alkaline reactors were related to the ability of the bacteria 

identified in the alkaline system to withstand the haloalkaline conditions. The 

methane production in the alkaline reactor was mainly performed by 

Methanocalculus, a hydrogenotrophic methanogen, while evidence for acetoclastic 

methanogenesis was practically absent.  
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5. Perspective 

In this work the anaerobic digestion of Spirulina biomass and other substrates has 

been shown to be feasible at alkaline conditions (pH 10; 2.0 M Na+) [2, 4, 5]. Running 

the process at the optimal organic loading rate and hydraulic retention time has 

resulted in the constant production of biogas rich in methane. However, the biogas 

production was low when compared to a mesophilic pH approach. Several factors 

have been identified to which the low biogas production could be attributed to, mainly 

the type of substrate used and the excessive washout of the active biomass. Several 

actions could be taken in the future in order to overcome these limitations. As has 

been shown, the use of substrates with low nitrogen content such as microcrystalline 

cellulose and wheat straw resulted in higher biogas productions. Likewise, the use of 

fresh algal biomass produced relatively high amounts of biogas. This suggests that 

with the appropriate substrate the production of biogas could be drastically 

increased. To avoid washout of the active biomass, a modified reactor configuration 

could be applied. The use of anaerobic membrane bioreactors could be suitable as it 

would solve two problems; reducing washout by applying long solid retention times 

and reducing the accumulation of inhibitory compounds by applying short liquid 

retention times (Watanabe et al., 2014; Zamalloa et al., 2011). Another approach to 

reduce the washout could be the addition of zeolites or microcarriers. These would 

facilitate the attachment and development of syntrophic interaction of the active 

biomass and would avoid the washout effect (Chauhan and Ogram, 2005; Milán et 

al., 2001). Other options to increase the biomass retention time would involve the 

addition of particles, metal ions or similar, to enhance the granule formation 

(Phalakornkule and Khemkhao, 2012; Yu et al., 1998). With this potential of 

optimization in mind, anaerobic digestion at alkaline conditions can be a promising 

alternative process for the production of biomethane for commercial use. 

The presented results also open the possibility of producing biogas from wheat straw 

and similar lignocellulosic substrates in a single pot reaction. As shown, the alkaline 

medium acts as a substituted for a pre-treatment step which contributes to a more 

efficient hydrolysis of cellulosic substrates. The possibility of using lignocellulosic 

material as substrate for biogas without the need of applying a pre-treatment step 

could drastically reduce the production costs and increase the economic viability of 

the anaerobic digestion process. 
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In addition, the anaerobic digestion at alkaline conditions could also be beneficial for 

the treatment of wastewaters that today are difficult to process. For example, waste 

waters from the fishery industry which contain high levels of Na+ could possibly be 

used as substrate (Chowdhury et al., 2010; Sandberg and Ahring, 1992). Alkaline 

wastewaters such as waste streams from brewery industries, concentrated sugar 

wastewaters and leather tannery wastewaters among many others, could also be an 

optional substrate (Lofrano et al., 2013; Rosenwinkel et al., 2005). 

For all the above mentioned possible applications, the anaerobic digestion at alkaline 

conditions could soon be an interesting technology for the revalorization of biomass 

or wastewaters. 
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Abstract 

Methanogens are of biotechnological interest because of their importance in biogas 

production. Here we investigate the suitability of sediments from Central Asian soda 

lakes as inoculum for high pH methane-producing bioreactors. Methane production in 

these sediments was modest (up to 2.5 µmol/mL sediment), with methanol and 

hydrogen as the preferred substrates. The responsible methanogenic community 

was characterized based on mcrA gene sequences. McrA gene sequences so far 

specific to these habitats indicated the presence of two clusters within the orders 

Methanobacteriales and Methanomicrobiales, one apparently including 

representatives of the genus Methanocalculus and another distantly related to the 

genus Methanobacterium. 

Introduction 

Methanogenic microorganisms are of great interest for environmental biotechnology 

because of their importance in the anaerobic treatment of industrial wastewaters and 

the digestion of domestic (bio)waste and wastewater sludge (EC reports on 

renewable energy, Nayono et al., 2010, Sabra et al., 2010, Tabatabei et al., 2010, 

van Leerdam et al., 2006). The possibility to produce methane from waste streams is 

all the more interesting because the produced ''biogas'' provides a renewable 

replacement for natural gas. Biogas is already produced commercially at large scale 

but can never completely replace natural gas because of the relatively small carbon 

flows in the waste streams compared to the amount of gas necessary for current 

consumption. For this reason, the supply of renewable energy by the combination of 

biomass production and its subsequent digestion into methane is being actively 

explored, for example via the cultivation of microalgae (Mussgnug et al., 2010). Algal 

biotechnology does not depend on arable land and offers the possibility to effectively 

recycle nutrients (nitrogen, phosphorous), but it suffers from high process costs.  

The supply of sufficient carbon dioxide to the algae is an important bottleneck for the 

process and contributes to these costs (Norsker et al., 2011, Wijffels, 2008). If it was 

possible to grow algae at high alkalinity and also digest them into methane under 

these conditions, this bottleneck may be overcome. Not only would carbon dioxide 

absorption be more effective, but the carbon dioxide produced during digestion would 

also mainly stay in solution and not become part of the biogas. This way, carbon 

dioxide could easily be recycled to the phototrophs in a closed process. For this 
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process, an inoculum for an anaerobic reactor that contains a methanogenic 

microbial community adapted to high pH values and high salt concentrations is 

required. Since pH tolerance of methanogenic species used in conventional biogas 

plants is restricted (Weiland, 2010), alkaline soda lakes may provide such an 

inoculum. These extreme environments are characterized by high carbonate 

alkalinity and high pH and have considerable biotechnological potential (e.g.: 

Horikoshi, 1999, Margesin and Schinner, 2001, Kanekar et al., 2008, Sorokin et al., 

2011a). For example, a high pH bioreactor was previously developed that converts 

methanethiol into methane (van Leerdam et al., 2008).  

Soda lakes are habitats of microbial communities with high primary productivity 

(Jones et al., 1998, Sorokin et al., 2004, Zhilina and Zavarzin, 1994), especially 

during the wet season when massive algal/cyanobacterial blooms occur (Grant, 

2006, Jones et al., 1998, Melack and Kilham, 1974, Zhilina and Zavarzin, 1994). 

Methanogenesis occurs as one of the terminal processes during decomposition of 

organic matter in the anoxic sediments of soda lakes. Several (halo)alkaliphilic 

methanogenic archaea have been isolated or identified in situ based on their 16S 

rRNA genes (Boone 2002, Liu et al., 1990, Mathrani et al., 1988, Mesbah et al., 

2007, Surakasi et al., 2007, Thakker and Ranade, 2002, Wani et al., 2006, Worakit et 

al., 1986, Zhilina and Zavarzin, 1994). The species which have been isolated belong 

to the genera Methanobacterium, Methanocalculus, Methanoculleus, Methanolobus, 

Methanosalsum and Methanosarcina. As is often the case, only few of the 16S rRNA 

sequences detected in situ correspond to any of the species isolated or enriched so 

far (Antony et al., 2012). 

The present study investigates the potential of sediments from the Central Asian 

hypersaline soda lakes to serve as inoculum for alkaliphilic methanogenic bioreactors 

for the anaerobic digestion of micro-algae. We combine direct measurements of 

methane production from different substrates with the molecular characterization of 

the methanogenic populations via the marker gene mcrA, encoding the alpha subunit 

of the methyl coenzyme M reductase. This enzyme catalyzes the final step in 

methanogenesis (Friedrich, 2005). Topologies of mcrA and 16S rRNA phylogenetic 

trees are largely congruent (Hallam et al., 2003, Luton et al., 2002, Springer et al., 

1995). Although mcrA targeted PCR has been used for the detection of methanogens 

in a number of environmental studies (see, for example, Narihiro and Sekiguchi, 
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2011, and references therein), mcrA sequences have only been once amplified 

directly from an alkaline lake to date (Antony et al., 2012), and thus not much of the 

mcrA in situ diversity in alkaline habitats is known. 

Materials and Methods 

Sampling: Sediments were collected from several hypersaline soda lakes of the 

Kulunda steppe in the Altai province of Russia (Sorokin et al., 2010). After collection 

they were pooled and stored at 4°C in the dark in an air tight glass container with 

argon in the gas phase. 

Methane production: Incubations were performed in 6 mL vials as follows: First 3 

mL of anoxic soda buffer (pH 9.5-10, salt concentration 0.6-2 M, see Table 1), 60 µL 

of substrate (methanol or acetate, final concentration 5 mM) and 60 µL Na2S (final 

concentration 0.5 mM) were transferred into each vial. Then, 0.8-1.5 g sediment (wet 

weight) was added (density of the sediments: 1.148 g mL-1). Finally, the vials were 

completely filled with the corresponding anoxic buffer solution and 1.5 mL of the 

buffer were replaced with 1.5 mL He. For vials with H2 as substrate the procedure 

was the same but without adding methanol or acetate, and 1.5 mL of buffer were 

replaced with 1.5 mL H2. Vials were incubated for 10 days in the dark at room 

temperature. Methane concentration in the headspace was measured with an HP 

5890 gas chromatograph with a Porapaq Q column and an FID detector. Two 

replicates were performed for each condition. 

Detection and analysis of the mcrA gene in total DNA extracted from soda lake 

sediments, and from methanogenic pure cultures: Extraction of total DNA from 

approx. 3 mL sediment was performed as described by Zhou et al. (1996) with minor 

modifications. Extracted DNA was purified via ion exchange chromatography 

(NucleoBond AXG 20, Macherey Nagel, Germany) and used as template for PCR 

with Phusion High fidelity PCR master mix (Finnzymes). Three different DMSO 

concentrations were tested in the PCR reactions, 0%, 3% and 5%. Primers for 

amplification of mcrA were ME1 and ME2 (Hales et al., 1996). The PCR protocol was 

30 sec initial denaturation at 98°C, followed by 30 cycles of 10 sec denaturation 

(98°C), 30 sec annealing (57°C) and 30 sec extension (72°C), and 10 min final 

extension (72°C). The obtained PCR products were cloned into cloning vector pSC-B 

(StrataGene blunt end PCR clonig kit, Stratagene, Canada).  
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Table 1 Composition of the five buffers used for the sediment 
incubations 

Salt, g/l  0.6 M Na
+ 

 1.0 M Na
+  

2 M Na
+ 

pH  9.5 10  10  9.5 10 

Medium No.  1 2  3  4 5 

Na2CO3 (g/L)  15 23  39.6  64 95 

NaHCO3 (g/L)  20 7  14.4  40 15 

NaCl (g/L)  3 6  6  18 16 

K2HPO4 (g/L)  1 1  1  1 1 

 

For sequencing of the clones, pSC-B derivatives with ME1/2 amplicon inserts were 

subjected to PCR with M13 primers. M13 PCR products were analyzed by Sanger 

sequencing with primer T7 as sequencing primer.  

Partial mcrA sequences were also amplified from two Methanocalculus isolates 

(strains AMF-Pr1 and AMF2) obtained from sediment of the same location (Sorokin, 

unpublished data). Genomic DNA from culture pellets was obtained by three freeze-

thaw cycles (liquid nitrogen, 65°C water bath) in a lysis solution (0.5% SDS, 125 mM 

NaCl, 50 mM Na2EDTA [pH 8.0], 250 mM Tris-HCl [pH 8.0]), followed by treatment 

with proteinase K, phenol-chloroform extraction and ethanol precipitation. Primers 

mlas and mcrA-rev (Steinberg and Regan, 2008) were used to amplify partial mcrA 

from the extracted DNA, using Taq polymerase (Evrogen, Moscow, Russia) in the 

following PCR protocol: 4 min initial denaturation at 94°C, 30 cycles of 20 sec 

denaturation (94°C), 20 sec annealing (59°C), 30 sec extension (72°C), and 30 min 

final extension (72°C). The PCR products were purified using agarose 

electrophoresis and Wizard SV Gel and PCR Clean-Up System (Promega, USA) and 

were then sequenced using the Big Dye Terminator kit (version 3.1, Applied 

Biosystems) on an automatic ABI 3730 sequencer (Applied Biosystems, Inc.). 

Analysis of the obtained sequences was performed at the amino acid level. The 

cloned sequences obtained with the ME primer set were homologous to the region 

spanning Phe238 to Pro476 of the translated mcrA gene of Methanopyrus kandleri 

(GI:1354840), and were compared to homologous sequence parts of mcrA 

sequences available in Genbank (NCBI). The two sequences amplified from the soda 

lake isolates with primer set mlas/mcrA-rev were homologous to Leu346-Pro476 of  
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Table 2 mcrA sequences used for comparison with mcrA clones in Figure 2. Listed are gene ID 
numbers for protein sequences and originating species. 

Gene ID Species Reference 

284413651 Methanobacterium oryzae Mori et al., 2011 

284413655 Methanobacterium subterraneum    as above 

304315257 
Methanothermobacter marburgensis str. 
Marburg 

Liesegang et al., 2010 

340624872 Methanococcus maripaludis direct submission (Wang et al., 2009) 

333911106 Methanotorris igneus direct submission (Lucas et al., 2011) 

256810887 Methanocaldococcus fervens    as above 

312136958 Methanothermus fervidus Anderson et al., 2010 

15679140 Methanothermobacter thermautotrophicus Smith et al., 1997 

282163186 Methanocella paludicola direct submission (Sakai et al., 2009) 

226897268 Methanolinea sp. TNR    as above 

330506955 Methanosaeta concilii Barber et al., 2011 

288561180 Methanobrevibacter ruminantium Lehay et al., 2010 

20094093 Methanopyrus kandleri Slesarev et al., 2002 

91713341 Methanococcoides burtonii direct submission (Copeland et al., 2006) 

143328284 Methanobacterium formicicum direct submission (Ma,K. and Dong,X., 2007) 

284413641 Methanobacterium bryantii 
direct submission (Mori,K. and Harayama,S., 
2010) 

284413639 Methanobacterium alcaliphilum    as above 

284413653 Methanobacterium palustre    as above 

261599977 Methanospirillum lacunae Iino et al., 2010 

13259179 Methanospirillum hungatei JF-1 Lueders et al., 2001 

13259177 Methanoculleus thermophilus    as above 

145370912 Methanoculleus bourgensis Watanabe et al., 2009 

145370896 Methanosarcina mazei    as above 

145370889 Methanothermobacter wolfeii    as above 

145370875 Methanobrevibacter arboriphilus    as above 

154240556 
Methanothermococcus 
thermolithotrophicus Nunoura et al., 2008 

154240552 Methanosalsum zhilinae    as above 

154240550 Methanohalophilus mahii    as above 

30230517 Methanocorpusculum parvum Simankova et al., 2003 

   

M. kandleri mcrA. Database sequences were identified via Blast searches (Altschul 

et al., 1990) and aligned by ClustalW or Muscle (Edgar, 2004, Larkin et al., 2007) 

(Tables 2 and 3). 
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Phylogenetic trees were generated using FastTree (Price et al., 2010). For bootstrap 

analysis, 500 random alignment combinations were generated with seqboot (from 

PHYLIP version 3.67; Felsenstein, 2005). The CompareToBootstrap.pl script (Price 

M. N.) was used to implement the bootstrap values into the main tree. Trees were 

drawn using Dendroscope (Huson et al., 2007). The obtained representative clone 

sequences were submitted to GenBank (accession numbers JN712773 to 

JN712780). Accession numbers for Methanocalculus strains AMF-Pr1 and AMF2 

sequences are JQ511367, HM053969 (16S rRNA), and JQ511368, JQ511369 

(mcrA). 

Results 

Potential methane production in the soda lake sediments was determined as a 

function of salt concentration (0.6-2M Na+) and pH (9.5-10) for three different 

substrates: methanol, acetate and hydrogen. The total amounts of methane 

produced after 10 days of incubation are shown in Figure 1. The highest production 

(2.53 µmol CH4 mL-1) was measured for the substrate methanol at pH 10 and salt 

concentration of 1 M. Methane production from hydrogen was within the same order 

of magnitude and at pH 10 increased with salt concentration. Acetate did not 

stimulate methane production independent of pH and salt. These results suggest that 

the sediment contained at least two different populations of methanogens, with 

different substrate spectra and pH/salt optima. 

To further characterize these populations taxonomically, the functional marker gene 

mcrA was used. Amplification of mcrA genes from sediment DNA with primer set ME 

yielded a product of the expected size (760 bp). The product was cloned into E. coli 

and 33 cloned mcrA sequences were analyzed by Sanger sequencing. One of the 33 

sequences did not encode mcrA. For the remaining 32 clones, sequence comparison 

yielded eight different sequences at nucleotide level. Two of these eight sequences 

were identical on amino acid level, therefore seven different amino acid sequences 

were obtained (Figure 2). The mcrA genes represented two different taxonomic 

clades, one most similar to database mcrA sequences of the genera 

Methanospirillum and Methanocorpusculum and one most similar to mcrA sequences 

of the genera Methanobacterium and Methanothermobacter (Figure 2).  
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Figure 1. Total methane production for three different substrates as a function of pH and salt 
concentration. n.d.: not detectable 

Most of the obtained sequences were all clearly different from so far published mcrA 

sequences and also from other sequences previously obtained from soda lake 

sediments or other environments (percent identity at the amino acid level below 93%, 

see Table 3). However, comparison with partial mcrA sequences of two 

Methanocalculus isolates from the same location (strains AMF2 and AMF-Pr1, 

Sorokin, unpublished data) showed either high amino acid similarity (98%) or even 

identity to clone 3-21 and 91% amino acid similarity to clone 1-1 (Figure 2). Most 

similar to clone 1-1 was a partial mcrA sequence, “clone MCR25“, amplified from 

Lonar lake sediment in India (Antony et al., 2012), which was not detected via BlastP 

search. Similarity between clone MCR25 and clone 1-1 was 97% on DNA and on 

protein level. 

Discussion 

Cultivation and digestion of micro-algae at high pH and alkalinity might be a new and 

interesting option for the biological production of renewable energy sources. Such a 

process depends on a well adapted haloalkaliphlic anaerobic microbial community 

that ultimately produces methane. In the present study we investigated the suitability 

of sediments from Central Asian soda lakes as an inoculum for a high pH 

methanogenic bioreactor. 

Methanogens were shown to be active in the sampled soda lake sediments of the 

Kulunda steppe in Russia. The highest methane production was obtained with 

methanol as the substrate at pH 10 (2.5 µmol CH4 mL1), much higher than the total 
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Figure 2. Phylogenetic tree of mcrA sequences (amino acid level). Italic type: sequences 
obtained in this study – red: sequences from sediment clones, blue: sequences from isolate 
cultures. Bold type: sequences returned as top hits in BlastP searches. Sequences of uncultured 
clones from GenBank are listed with their GI numbers and were among the top ten BlastP hits of 
the mcrA clones obtained in this study, except for Lonar lake clone MCR25 sequence which was 
not detected in the performed BlastP searches. Bootstrap values at nodes are obtained from 500 
replicates and are presented as percentage values (shown only for branches with at least 50% 
support). The scale bar represents 0.1 amino acid substitutions per site. 
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 production obtained by Oremland et al. (1982) after 16 days of incubation (5.8 and 

2.6 nmol mL-1 at pH 9.7 and 11 respectively). In agreement with previous studies, 

methanol yielded the highest methane production (Oremland et al., 1982, Oren 1988, 

Sorokin et al., 2004). Winfrey and Ward (1983) studied methane production in salt-

marsh sediments from the French coast supplemented with acetate and H2. In their 

study however, they did not see any CH4 production from H2 and acetate while we do 

report moderate activity (0.43 – 1.17 µmol CH4 ml-1) from H2. CH4 production from 

acetate was very low in our study (0.7 - 22 nmol CH4 ml-1). King (1988) studied 

methane production from sediments from a hypersaline algal mat which was mainly 

composed of Spirulina. In his study, sediments were supplemented with methanol, 

acetate and H2. King reported a total production of 2.5 µmol CH4 mL-1 sediment 

supplemented with methanol after 6.5 days of incubation. In both studies, King's and 

ours, compared to methanol, adding H2 as substrate results in lower methane 

production, 0.2 µmol CH4 mL-1 and 1.5 µmol CH4 mL-1 respectively. Interestingly, in 

King’s study, acetate is a good substrate for methanogens and after 6.5 days 

incubation with acetate he obtained around 0.2 µmol CH4 mL-1 sediment while in our 

study, acetate does not seem to be metabolized into methane in relevant amounts. 

The fact that King observed considerable methane production from a hypersaline 

pond where the main biomass came from Spirulina gives an example that it should 

be possible to obtain methane from the anaerobic digestion of Spirulina in a 

bioreactor. 

It should also be noted that in the overall digestion processes, methanogenesis may 

not be the rate limiting step; the results only show that under alkaline conditions, 

methanol may be an important intermediate during biomass digestion. Methane 

production from hydrogen was not much lower and at high salt concentrations even 

exceeded the amount produced from methanol. In agreement with previous studies, 

acetate was not an important intermediate in anaerobic metabolism in situ (Giani et 

al., 1984, Oremland et al., 1982, Oren 1988, Sorokin et al., 2004, Zhilina and 

Zavarzin, 1994). Alternatively, the lower methane production obtained with acetate 

and, to a lesser extent, hydrogen, may be explained by competition with sulfate or 

sulfur reducers that are known to use hydrogen and acetate (Oren 1988). There is 

direct evidence of anaerobic acetate oxidation at sulfate-reducing conditions by soda 

lake syntrophic cultures (Zhilina et al, 2005; Sorokin, unpublished data). 
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Table 3 Source and references of mcrA sequences originating from relevant uncultured 
organisms used in Figure 2. All sequences listed are among the top ten BlastP hits for the 
obtained mcrA clones. All BlastP top hits are shown. For hits on positions two to ten, sequences 
were reduced to a set with not more than 97% identity (in ClustalW alignment). 

Gene ID Sequence origin 

Top 
blastp hit 
of mcrA 
clone

a 

Percentage identity 
between mcrA 
clone and top 

blastp hit 

Reference 

188572657 
Shallow sediments of the 
Pearl River Estuary, 
Southern China 

    Jiang et al. (2011) 

209486373
a
, 

209486511, 
209486521, 
209486589, 
209486465, 
209486333 

Leach-bed reactor of a 
two-phase biogas plant 
supplied with cattle 
manure and triticale silage 

1-1 87 
direct submission  
(Nettmann et al., 2008) 

238837030
a Lake Kivu water column, 

hypolimnion 
3-21 91 

direct submission  
(Buergmann et al., 2009) 

13259281
a Rice field soil and 

enrichment cultures 
1-18 92 Lueders et al. (2001) 

13259325
a
, 

13259331 
Rice field soil and 
enrichment cultures 

3-8 92 Lueders et al. (2001) 

126013260 Acidic Peat Bog     
direct submission  
(Metje and Frenzel, 2006) 

284443839, 
284443873, 
284443876, 
110592156 

Wetland soil     
direct submission  
(Lee et al., 2009) 

294488855 
Marine sediments from 
the Cascadia Margin 

    
direct submission  
(Maruyama et al., 2009) 

71149601
a Acidic peat from a 

northern wetland 
2-12, 3-5, 
3-16, 1-34 

90 / 1-34: 89 Metje et al. (2005) 

aGene IDs in bold print represent BlastP top hit sequences of the mcrA clones that are listed in column 
three, respectively. Identities between mcrA clone and the corresponding top hit sequence are listed as 
percentage values. 

The incubations were performed with sediments that were stored anaerobically in the 

dark at 4°C for more than one year. Apparently, the microbial community can be 

preserved with ease, favoring its use as an inoculum for high pH methanogenic 

bioreactors. 

It is interesting that the methane production for each substrate was dependent on 

both pH and salt concentration. This indicates that different methanogenic 

communities with different substrate spectra, pH and salt optima may live side by 

side in these soda lake sediments. This conclusion was further supported by the 

molecular work. 



Publication [1] ______________________________________________________________  

64 

Sequences of the methanogenesis marker gene, mcrA, were successfully amplified 

from direct sediment DNA extracts, and eight different mcrA clones of so far unknown 

sequences were identified. The topology of the tree in Figure 2 indicates that most of 

the obtained mcrA sequences belong to so far unknown species of the genus 

Methanobacterium or of the genus Methanothermobacter (six out of the eight non-

redundant sequences of this study). These six clones form a distinct cluster within 

known Methanobacterium/Methanothermobacter mcrA sequences, among which is 

the mcrA sequence of Methanobacterium alkaliphilum, an organism enriched from 

alkaline lake sediments of the Wadi-el Natrun, Egypt (Worakit et al., 1986). With 

regard to the mesophilic habitat they come from, it is likely that these clone 

sequences belong to the genus of Methanobacterium rather than to 

Methanothermobacter, of which all so far described species are thermophilic. The 

remaining two clones (1-1 and 3-21) belong to a different cluster that contains mcrA 

sequences of the genera Methanospirillum, Methanocorpusculum, Methanoculleus 

and Methanocalculus. They can therefore be assigned to the Methanomicrobiales 

order. A more specific affiliation with Methanocalculus is possible by the comparison 

with mcrA sequences amplified from two haloalkaliphilic methanogenic isolates from 

sediment of the same location as the sediment used in this study (Sorokin, 

unpublished data). Based on their 16S rRNA sequences, the two isolates were 

assigned to Methanocalculus (strains AMF2 and AMF-Pr1). The partial mcrA 

sequences amplified from these strains are very similar (95% on DNA level) or 

identical to clone mcrA_3-21. The sequence most similar to clone 1-1 (97% on DNA 

level) was clone MCR25, a partial mcrA sequence recently published by Antony et 

al., (2012) that was amplified from sediment of Lonar lake, a moderately saline 

alkaline lake in India (Surakasi et al., 2007). In their study, Anthony et al. found only 

moderate similarity to MCR25 among the accessible database sequences, the most 

similar sequence being mcrA of Methanolinea sp. TNR (84% on DNA level). It is 

possible that clone 1-1 and MCR25 also originate from Methanocalculus. The 

similarities with strain AMF-Pr1 mcrA on DNA level are 88% and 89%, and 

Methanocalculus strains were already isolated from Lonar lake (Surakasi et al, 2007). 

Of these strains, however, only 16S rRNA sequences are available to date. 

Generally, of methanogens, much fewer mcrA sequences are in the databases than 

are 16S rRNA sequences. This is especially the case for methanogens detected in 

soda lakes or other alkaline habitats. 
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It is highly likely that even more methanogens are present in these sediments that 

were not amplified by the ME primers (Hales et al., 1996) we used or were missed 

because of the relatively small amount of clones that were sequenced in this study. 

For example, the methanol utilizing methanogens in the sediment could not be 

detected by mcrA cloning. Amplification of mcrA was not always successful with the 

ME primers (e.g. Scholten et al., 2005), and, especially concerning the amplification 

of mcrA from Methanosarcinae, an alternative primer set, MLf/r, developed by Luton 

et al. (2002) appears to target a greater sequence variety (Jerman et al., 2009, 

Jouttonen et al., 2006). Also Hallam et al. (2003) found a bias of ME derived 

amplicons towards particular mcrA groups. However, the ME primers target a longer 

gene fragment (approx. 760 bases), than the ML primers (approx. 660 bases). Thus 

the ME amplicons contain more phylogenetic information, which is the main reason 

why this set was chosen in this study. It is possible that, using the ML primers, a 

greater proportion of the existing diversity in the sediments could have been 

detected. Another reason for missing a fraction of the variety of methanogens could 

be incomplete DNA extraction. A method yielding high molecular weight DNA was 

used which had been shown to yield relatively high amounts of DNA from 

environmental samples (Mitchell and Tacaks-Vesbach, 2008, Zhou et al., 1996), yet 

without bead beating an enzymatic/chemical lysis resistant fraction of the archaeal 

diversity might have remained undetected (Salonen et al., 2010).  

Taxonomic investigation of the anaerobic microorganisms in the Central Asian soda 

lakes has taken place for two decades, yet hardly focused on methanogens and 

more on sulfate reducers and acetogens (Sorokin et al., 2010 and 2011b, Sorokin 

and Kuenen, 2005, Zavarzin and Zhilina, 2000, Zhilina et al., 2011). Taxonomic 

information on alkaliphilic methanogens at these sites is still lacking, since they have 

been studied in detail only in other regions. The present study gives a first glance into 

the taxonomy of the alkaliphilic methanogens active in the Kulunda steppe soda 

lakes. The results indicate that these remarkable natural systems harbor specific 

methanogenic communities that are well adapted to high pH and which may be 

essential for the successful startup of high pH methanogenic bioreactors. The fact 

that the biotechnological conversion of methanethiol into methane at high pH was 

already successful (van Leerdam et al., 2006) with these sediments supports this 

conclusion. The remaining challenge is to realize a complete digestion of biomass to 

methane at high pH and alkalinity. 
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Abstract  

The anaerobic digestion of the microalga Spirulina was successfully achieved under 

alkaline conditions (pH 10, 2.0 M Na+). Soda lake sediments were used to inoculate 

two 1.5 L semi-continuous stirred tank reactors for the production of biogas. 

Continuous biogas production was observed and the obtained biogas was rich in 

methane, up to 96 %. Alkaline medium acted as a CO2 scrubber which resulted in low 

amounts of CO2 and no traces of H2S in the produced biogas. 37 and 56 ml of biogas 

g VS-1 were obtained under the optimal hydraulic retention time, 15 days, and at the 

optimal organic loading rate, 0.25 g Spirulina L-1 day-1, respectively. Key parameters 

affecting the reactor’s performance such as ammonia and volatile fatty acids were 

also identified. Anaerobic digestion at alkaline conditions can be a promising 

alternative process for the production of biomethane for commercial use. 

Keywords 

High pH; Biogas; Methane rich; Microalgae; Alkaline Lake; Biomethane 

 

1. Introduction 

Microalgae are microorganisms that can transform sunlight and CO2 into biomass 

and their suitability as substrate for the production of biogas has already been shown 

experimentally  [1–3]. However, one of the remaining bottlenecks in algae cultivation 

is the low absorption rate of CO2 which results in high production costs [4]. The 

absorption rate of CO2 could be improved by growing algae at high pH [4,5], as at 

high pH, CO2 is more soluble in water and therefore better accessible for algae. Not 

only would the cultivation of algae at high pH be advantageous for the production of 

biomass [4–7], but also anaerobic digestion at high pH would have several 

advantages over traditional systems: (i) the anaerobic reactor would function as a 

CO2 scrubber, leading to biogas rich in methane which, with minor upgrade, could 

directly be used as biomethane [8,9], and (ii) the dissolved CO2 along with 

phosphorous and other nutrients could be directly recycled to the photobioreactor 

and used for algae growth [10,11]. Therefore, the combination of algal biotechnology 

and anaerobic digestion might be economically favorable at high pH and salt 
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concentrations, and such a combined system could be a possible source for 

renewable energy. 

High pH alkaline lakes, also known as soda lakes, are natural ecosystems with pH 

values of up to 12 and high salt concentrations [12]. Some studies have already 

demonstrated the presence of methanogenic archaea as well as the production of 

methane in soda lakes and in soda lake sediments [13,14]. Spirulina is a microalga 

known to grow in such soda lakes [15] and has already been used as substrate for 

biogas production at mesophilic pH conditions [1,16,17]. To date, the successful 

anaerobic digestion of biomass at high pH has not been reported. Two recent studies 

have, however, demonstrated the possibility to obtain methane from methanethiol in 

a bioreactor inoculated with soda lake sediments and operating at pH 10 [18,19]. 

Here we present, to the best of our knowledge, the first study of biogas production 

from the microalgae Spirulina at alkaline conditions (pH ~10; 2.0 M Na+) in a semi-

continuous stirred tank reactor inoculated with sediments from soda lakes.  

2. Methods 

2.1. Bioreactor set-up 

A 2.0 L semi-continuous stirred tank reactor (S-CSTR) with a working volume of 1.5 L 

operating at 35 °C and at high pH ~ 10 and high salt concentration (2.0 M Na+) was 

set up. The same reactor was used in three different experiments: start-up (Alk-Start), 

study of the Hydraulic Retention Time (Alk-HRT) and study of the Organic Loading 

Rate (Alk-OLR). Inoculum for the start-up bioreactor (Alk-Start) was the same mixture 

of soda-lake sediments used in Nolla-Ardèvol et al., [14]. The substrate, freeze dried 

Spirulina, was acquired from Sonnenmacht GmbH (Germany). To maintain alkalinity, 

the medium (in which also the substrate for feeding was dissolved) was as follows, in 

g L-1: Na2CO3, 95.0; NaHCO3, 15.0; NaCl, 16.0 and K2HPO4, 1.0; micronutrients were 

as in Vidal et al., [20]. The medium was prepared in lots of 1.0 L, the pH was 

adjusted to 10.0 at 35 °C, and the medium was stored at 37 °C. Feed was prepared 

fresh every day with the appropriate amount of Spirulina in order to obtain the 

desired organic loading rate. The daily purge and feed were performed manually with 

a syringe and through a settler. To avoid excessive loss of microorganisms, the 

biomass was settled before purging by stopping the stirring for at least 2 hours. 

Periodically the purged sludge was sampled for analysis; in that case the stirring was 
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not stopped. pH and redox potential in the reactors were monitored with a Mettler 

Toledo pH probe (HA405-DPA-SC-S8/225) and a Mettler Toledo Redox probe 

(Pt4805- DPA-SC-S8/225) respectively (Mettler Toledo GmbH, Germany). Mesophilic 

temperature conditions were maintained with a Pt-1000 temperature sensor and a 

heater.  

2.2. Analytical methods 

In addition to continuous measurements of pH and redox potential, alkalinity and total 

and volatile solids (TS and VS) in the digesters were periodically analyzed. Biogas 

production was determined by measuring the pressure build up with a pressure-

meter (WAL-BMP-Test system 3150, WAL, Germany) and normalizing to standard 

conditions (0 °C; 1.0 atm). Biogas composition was analyzed once a week by means 

of a Shimadzu GC-2010 plus Gas Chromatograph (Shimadzu Corp, Japan) equipped 

with an Agilent GS-Gaspro capillary column (part # 113-4362) (Agilent Technologies, 

USA). Samples for biogas composition were obtained using a gas-tight syringe and 

were kept in 3.0 ml gas-tight vials (Labco Limited, UK) until analysis. Analyses to 

characterize the digester effluent were carried out periodically directly with the raw 

sample and with the soluble fraction by centrifuging the samples at 4,600 rpm for 5 

minutes and filtering the supernatant through a Rotilabo CME 0.45 µm nylon filter 

(Carl Roth GmbH, Germany). Once a week, TS and VS were analyzed following the 

American Public Health Association [21]  standard methods. Alkalinity, organic matter 

(OM), measured as total chemical oxygen demand (CODT), and ammonium nitrogen 

(NH4
+-N) were analyzed using colorimetric methods (Hach Lange GmbH, Germany). 

Soluble COD (CODS) and total nitrogen (TN) were analyzed once every two weeks 

also with Hach Lange colorimetric methods. Free ammonia nitrogen (NH3-N) 

concentration was calculated as in Astals et al., [22]. Samples for measuring specific 

volatile fatty acids (acetate, propionate, iso-butyrate, n-butyrate, iso-valerate and n-

valerate) were prepared according to the APHA, 2005 procedure and analyzed using 

a Shimadzu GC-2010 plus Gas Chromatograph coupled to an FID detector and 

quipped with a Macherey-Nagel Optima FFA plus capillary column (Macherey-Nagel 

GmbH & Co. Germany). 

2.3. Start-up reactor 

Alk-Start reactor was used as a start-up reactor and was inoculated with 

approximately 150 g of soda-lake sediments and 750 ml of alkaline medium (pH 10, 



                                                                                                                             Publication [2] 

75 

2.0 M Na+, total working volume of 850 ml). The initial substrate consisted of a 

mixture of: Spirulina, 2.0 g (dry weight) L-1; glucose, 0.5 g L-1; acetate, 5 mM; and 

methanol, 5 mM. The headspace of the reactor was flushed with N2 gas in order to 

create anoxic conditions. 37.5 ml were purged and fed every two days and the 

organic loading rate (OLR) was set to 2.0 g Spirulina L-1 day-1. Purged alkaline 

sludge was stored in order to be used as re-inoculum in the following days. On day 

43, a mixture of 75 ml of fresh alkaline medium plus 75 ml of purged alkaline sludge 

were added to increase the working volume to 1,000 ml and the OLR was reduced to 

1.0 g Spirulina L-1 day-1. On day 70 the working volume was again increased by 

adding 100 ml of alkaline medium plus 100 ml of alkaline sludge to a final volume of 

1,200 ml. The reactor operated at 1,200 ml until day 175 when it was stopped. At this 

point, the 1,200 ml of alkaline sludge were left to settle for 14 days after which a 

“wash” of the alkaline sludge was performed by removing 700 ml of the supernatant 

and replacing it with fresh pH 10 medium. This procedure was repeated once more 

and the resulting “washed” alkaline sludge was used to inoculate the following 

reactor. 

2.4. Determination of the optimal hydraulic retention time (HRT) 

The same bioreactor setup was used to determine the optimal hydraulic retention 

time (Alk-HRT). Reactor Alk-HRT was inoculated with 1,200 ml of “washed” alkaline 

sludge obtained from the start-up reactor plus 300 ml of fresh alkaline medium 

resulting in a total volume of 1,500 ml. The reactor was operated with an OLR of 1.0 

g Spirulina L-1 day-1 (dry weight) and at five different HRT, 20, 5, 10, 30 and 15 days. 

An initial 25 days adaptation period was performed where the purge and feeding of 

the reactor was performed daily at a HRT of 20 days but feeding was done only 

every two days at 1.0 g Spirulina L-1 day-1 (dry weight). Subsequently the HRT was 

set to 20 days and the experiment started. Table 1 shows the duration and the 

amount of medium exchanged daily in each different HRT tested. A five day non-

feeding period where 50 ml of sludge were exchanged with fresh alkaline medium 

was applied from day 117 to day 122 in order to recover reactor activity. After 215 

days of continuous biogas production the experiment was concluded and the reactor 

stopped. The same “washing” procedure of the sludge as in Alk-Start was applied 

before inoculating the next reactor. 
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Table 1 Operational parameters and duration of each different period for the two reactors used, Alk-HRT and 

Alk-OLR reactors. 

Hydraulic Retention Time experiment (Alk-HRT reactor) 

                         Units Period I Period II Period III Period IV Period V 

Duration Days 20 25 40 38 92 

From – To Days 1 -20 21 – 44 45 – 84 85 – 123 124 - 215 

HRT Days 20 5 10 30 15 

Purge/Feed ml  day
-1

 75 300 150 50 100 

OLR g Spirulina (LR day)
-1

* 1.0 1.0 1.0 1.0 1.0 

 

Organic Loading Rate experiment (Alk-OLR reactor) 

                        Units Period I Period II Period III Recovery Period 

Duration Days 52 46 41 49 

From – To Days 1 – 53 54 – 99 100 – 141 142 – 189 

HRT Days 15 15 15 15† 

Purge/Feed ml  day
-1

 100 100 100 100† 

OLR g Spirulina (LR day)
-1

* 0.25 0.50 1.0 1.0† 

* Dry weight. 
†Values not constant. See section 2.5 for details. 

 

2.5. Determination of the optimal organic loading rate (OLR) 

1,200 ml of “washed” sludge from the Alk-HRT reactor plus 300 ml of alkaline 

medium were used to inoculate the same S-CSTR, now Alk-OLR. The Alk-OLR 

reactor was operated at 15 days HRT and at different OLR, 0.25, 0.5 and 1.0 g 

Spirulina L-1 day-1 (dry weight) (Table 1). Before the experiment was started, the 

reactor was fed every two days and operated at a loading rate of 0.25 g Spirulina L-1 

day-1 for a period of 15 days. On day 141 and on day 162, two strategies to recover 

biogas production were applied. First (day 141), on every other day the feeding was 

replaced by the addition of alkaline medium without Spirulina. In a second approach 

(day 162), once every seven days the biomass in the reactor was let to settle for 6 

hours, subsequently 400 ml of supernatant were removed, centrifuged and the pellet 

re-inoculated with 400 ml of fresh alkaline medium. This procedure was repeated 4 

times. The overall experiment lasted for 189 days after which the reactor was 

stopped. 

3. Results 

The anaerobic digestion of the microalgae Spirulina at alkaline conditions, pH ~ 10, 

2.0 M Na+, and high alkalinity (60 to 95 g CaCO3 L-1), was studied in several 

experiments. 

3.1. Expansion and start-up  

Approximately 150 g of a mixture of soda lake sediments were used to inoculate the 

start-up anaerobic reactor. During the start-up period, the biogas production was low, 
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10 to 30 ml of biogas per day and not continuous. Measurement of the biogas 

composition was nevertheless possible. N2 in the headspace gradually decreased 

while the percentage of methane increased. However, the methane content did not 

increase above 45 to 50% and the carbon dioxide remained high, between 15 and 

20%. At the organic loading rate applied (2.0 g of Spirulina L-1 day-1) both, free 

ammonia nitrogen (NH3-N), and total organic matter (OM), determined via total 

chemical oxygen demand, CODT, accumulated. To reduce these accumulations, on 

day 125 of the start-up period the feeding was stopped for 14 days and every two 

days 60 ml of sludge were exchanged for fresh medium free of substrate. After these 

14 days, the OLR was reduced to 1.0 g Spirulina L-1 day-1, maintaining the every two 

day feeding regime. These actions reduced both the accumulation of NH3-N and the 

CODT values which led to a slightly increased and more constant biogas production 

of 30 – 35 ml biogas per day. However, the biogas production was still not 

continuous and after 175 days of operation the reactor was stopped.  

3.2. Determination of the optimal Hydraulic Retention Time (HRT)  

In Alk-HRT reactor, five different HRT were tested, 20, 5, 10, 30 and 15 days, periods 

P-I to P-V respectively. In the course of the experiment the HRT was adjusted to 

improve the biogas production rate: it was reduced when accumulation of potentially 

harmful ammonia and volatile acids was observed, and it was increased when the 

concentration of these compounds was low and biomass washout was more likely to 

be the cause of reduced biogas production. The pH was constant throughout the 

experiment and the alkalinity was kept high (Table 2). Biogas production in Alk-HRT 

reactor was continuous and the produced biogas was, as expected, rich in methane 

(Fig. 1A). Changes in the hydraulic retention time had a clear effect on the daily 

biogas production (Fig. 1A). Changing the HRT from 20 to 5 days (P-I to P-II) 

resulted in a decrease in the daily biogas production while doubling the HRT to 10 

days (P-III) did not result in a marked increase in the biogas production (Fig. 1A). 

Increasing the HRT to 30 days (P-IV) led to an increase in the biogas production 

during the first days, however, on day 99 (day 14 of period P-IV), a sudden drop from 

27 to 11 ml of gas per day was observed. In the subsequent days, the daily biogas 

production gradually recovered until day 115 when it dropped to 1.9 ml (Fig. 1A). 
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After two days of almost zero biogas production, accumulated potentially inhibitory 

substances were removed by arresting Spirulina feeding and by replacing 50 ml of 

sludge each day with fresh alkaline medium. After 5 days the feeding was resumed 

at 1.0 g Spirulina L-1 day-1 and the HRT was set to 15 days (P-V). The five day 

exchange of sludge for fresh medium had a positive effect and the daily biogas 

production increased from 27 ml (day 123) to 60 ml of biogas per day (day 162) 

during period P-V. From this point forward, the biogas production was stable at 

around 50 ml of gas per day until the end of the experiment (Fig 1A). 

 

3.3. Determination of the optimal Organic Loading Rate 

The optimal organic loading rate was determined with alkaline reactor Alk-OLR which 

was operated at 15 days HRT. The starting OLR was set to 0.25 g Spirulina L-1 day-1 

and was gradually increased until reactor failure. As in Alk-HRT, the pH was constant  

Table 2. Effect of the Hydraulic Retention Time on the biogas and methane production, sludge characteristics and specific 

biogas and methane productions of the Alk-HRT reactor. Mean values and standard deviation of the measurements from 
each different period. 

                                       Units Period I Period II Period III Period IV Period V 

OLR g Spirulina (LR day)
-1

* 1.0 1.0 1.0 1.0 1.0 

HRT Days 20 5 10 30 15 

Purge/Feed ml  day
-1

 75 300 150 50 100 

Biogas production and composition 

Daily biogas production ml biogas day
-1

 35 ± 9 21 ± 5 18 ± 6 17 ± 10 50 ± 8 

Daily methane production ml CH4 day
-1

 29 ± 13 16 ± 9 16 ± 7 14 ± 10 42 ± 15 

CH4 % 79 ± 6 89 ± 3 81 ± 7 86 ± 13 83 ± 9 

CO2 % 19 ± 5 10 ± 2 12 ± 7 9 ± 8 14 ± 6 

N2;O2 % 2 ± 2 1 ± 1 7 ± 4 5 ± 2 3 ± 5 

H2S % n.d n.d n.d n.d n.d 

Sludge characteristics 

pH  10.1 ± 0.04 10.2 ± 0.10 10.1 ± 0.03 10.0 ± 0.04 10.1 ± 0.07 

Alkalinity g CaCO3 L
-1

 64.9 ± 3.7 68.8 ± 5.5 72.7 ± 2.2 72.4 ± 3.4 82.3 ± 6.9 

Total Solids g Kg
-1

 111.1 ± 5.9 112.5 ± 7.9 109.5 ± 2.6 111.1 ± 5.3 131.7 ± 4.1 

Volatile Solids g Kg
-1

 16.8 ± 6.6 18.6 ± 7.1 11.0 ± 3.2 13.0 ± 3.0 23.3 ± 9.4 

Fixed Solids g Kg
-1

 94.3 ± 0.8 93.9 ± 2.1 98.5 ± 0.9 98.1 ± 2.9 108.4 ± 5.6 

Volatile Fatty Acids (VFA) 

Acetic acid mg  L
-1

 2,168 ± 58 1,161 ± 319 1,965 ± 631 3,721 ± 467 3,105 ± 124 

Propionic acid mg  L
-1

 223 ± 117 118 ± 65 289 ± 122 784 ± 158 688 ± 31 

iso-butyric acid mg  L
-1

 127 ± 10 69 ± 20 109 ± 35 221 ± 32 181 ± 14 

Butyric acid mg  L
-1

 57 ± 10 n.d 63 ± 28 180 ± 28 128 ± 10 

iso-valeric acid mg  L
-1

 300 ± 10 158 ± 50 251 ± 82 471 ± 54 384 ± 40 

n-valeric mg  L
-1

 n.d n.d n.d 219 ± 10 41 ± 10 

Total VFAs mg  L
-1

 2,875 1,506 2,677 5,596 4,527 

Specific productions 

SBP-VS added mlbiogas (day g VS)
-1

 26 ± 7 15 ± 4 14 ± 4 13 ± 8 37 ± 6 

SBP-Spirulina added  mlbiogas (day g Spirulina)
-1

 23 ± 6 14 ± 4 12 ± 4 11 ± 7 33 ± 5 

SMP-VS added mlmethane (day g VS)
-1

 21 ± 6 14 ± 3 11 ± 4 12 ± 7 31 ± 7 

SMP-Spirulina added mlmethane (day g Spirulina)
-1

 19 ± 5 12 ± 3 10 ± 3 10 ± 6 29 ± 6 

* Dry weight. 
n.d: non detected. 
SBP: Specific biogas production. 
SMP: Specific methane production. 
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Figure 1 Daily biogas production (gray line) (Left axis) and biogas composition (Right axis): CH4 
(●); CO2 (■) and N2 (▲), from the anaerobic digestion of Spirulina at alkaline conditions in (A) 
Alk-HRT reactor. Dashed vertical lines indicate a change in the hydraulic retention time: 20, 5, 
10, 30 and 15 days; Gray area corresponds to the five day non-feeding period; (B) Alk-OLR. 
Dashed vertical lines indicate a change in the organic loading rate: 0.25, 0.5 and 1.0 g Spirulina 
L

-1
 day

-1
. Continuous vertical lines indicate the two different strategies to try to recover the biogas 

production. 

at pH 10 and the alkalinity high (Table 3). As expected, an increase in the OLR led to 

an increase in the biogas production (Fig. 1B). Increasing the OLR from 0.5 to 1.0 g 

Spirulina L-1 day-1, however, eventually had a negative effect on the biogas 

production. After an initial rise in biogas production to 60 ml per day a gradual 

decrease to 30 ml per day was observed (Fig. 1B). Two strategies for removal of 

inhibitory substances and recovery of higher biogas production were applied (see 

section 2.5.). However, none of the applied strategies had the desired effect and the 

biogas production remained at around 30 ml per day (Fig. 1B). At this point the 

reactor was stopped.  

3.4. Biogas rich in methane 

The anaerobic digestion at alkaline conditions produced, as expected, biogas rich in 

methane (Fig. 1). In the Alk-HRT reactor, the composition of the biogas was not 

constant and it varied with the changes in the HRT (Fig. 1A). The mean percentage 

of methane throughout the experiment was around 83% while the carbon dioxide and 

nitrogen were 12 and 5% respectively (Table 2). The highest methane content was 

obtained in P-IV, day 93 with 96% and in P-V, day 171 with 94% while the CO2 

content on these two days was 2% and 5% respectively (Fig. 1A). The drop in 

methane percentage on day 123 (P-IV) was due to a need to open the reactor. From 

this day on, the methane content rapidly increased from 67 to 86% and then further 

to 94% on day 171. At the same time, the carbon dioxide in the headspace was 

gradually reduced. The biogas in the Alk-OLR was likewise rich in methane, with a  
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Table 3. Effect of the Organic Loading Rate on the biogas and methane production, sludge 

characteristics and specific biogas and methane productions of the Alk-OLR reactor. Mean values 
and standard deviation of the measurements from each different period. 

                            Units Period I Period II Period III 

OLR g Spirulina (LR day)
-1

* 0.25 0.5 1.0 

HRT days 15 15 15 

Purge / Feed ml day
-1

 100 100 100 

Biogas production and composition 

Daily biogas production ml biogas day
-1

 18 ± 5 32 ± 5 40 ± 9 

Daily methane production ml CH4 day
-1

 14 ± 4 25 ± 8 36 ± 9 

CH4 % 77 ± 4 80 ± 4 88 ± 3 

CO2 % 5 ± 6 9 ± 4 3 ± 3 

N2;O2 % 17  ± 4 11 ± 3 8 ± 1 

H2S % n.d  n.d n.d 

Sludge characteristics 

pH  10.2 ± 0.1 10.1 ± 0.1 10.0 ± 0.1 

Alkalinity g CaCO3 L
-1

 93.3 ± 2.8 94.8 ± 5.3 94.1 ± 4.0 

Total Solids g Kg
-1

 111.6 ± 3.0 115.3 ± 3.9 113.6 ± 3.7 

Volatile Solids g Kg
-1

 5.7 ±  2.9 9.2 ± 3.6 9.7 ± 1.9 

Fixed Solids g Kg
-1

 105.9 ± 0.5 106.1 ± 0.9 104.0 ± 2.7 

Total Nitrogen g L
-1

 0.5 ± 0.1 0.7 ± 0.1 1.2 ± 0.3 

NH4
+
-N g L

-1
 0.02 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 

NH3-N g L
-1

 0.28 ± 0.04 0.43 ± 0.07 0.73 ± 0.13 

Volatile Fatty Acids (VFA) 

Acetic acid mg  L
-1

 576 ± 95 880 ± 204 1,374 ± 133 

Propionic acid mg  L
-1

 124 ± 19 185 ± 38 378 ± 93 

iso-butyric acid mg  L
-1

 64 ± 16 61 ± 12 101 ± 13 

Butyric acid mg  L
-1

 36 ± 19 21 ± 12 62 ± 19 

iso-valeric acid mg  L
-1

 119 ± 26 135 ± 30 211 ± 20 

n-valeric acid mg  L
-1

 47 ± 15  n.d n.d 

Total VFAs mg  L
-1

 966  1,282  2,125  

Specific productions 

SBP-VS added mlbiogas (day g VS)
-1

 56 ± 15 48 ± 7 31 ± 7 

SBP-Spirulina added  mlbiogas (day g Spirulina)
-1

 49 ± 13 41 ± 7 28 ± 6 

SMP-VS added mlmethane (day g VS)
-1

 43 ± 12 38 ± 5 27 ± 6 

SMP-Spirulina added mlmethane (day g Spirulina)
-1

 38 ± 10 34 ± 5 24 ± 5 

* Dry weight. 
n.d: non detected. 
SBP: Specific biogas production. 
SMP: Specific methane production. 

 

mean value of 82% throughout the three periods (Table 3). In contrast to the Alk-

HRT, the composition was more constant and it reached its peak on day 116 with 

92% of CH4 (Fig. 1B). Carbon dioxide was less present in the headspace when 

compared to the Alk-HRT reactor (6%) while nitrogen percentage was higher (12%) 

(Table 3; Fig. 1B).    

3.5. Parameters affecting the biogas production 

Several main parameters such as free ammonia (NH3), VFAs and organic matter 

apparently affected the biogas production in both reactors. Changes in the HRT, and 

therefore in the amount of sludge exchanged daily, had a clear effect on the levels of 

free ammonia, VFAs and OM present in the Alk-HRT medium (Fig. 2). A gradual 

accumulation of these compounds from P-I to P-II and especially in P-IV was 

observed. At the end of P-IV, the NH3 reached 1,200 mg L-1 (Fig. 2A), a 
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Figure 2 Parameters affecting the anaerobic digestion of Spirulina at alkaline conditions in the 
Alk-HRT reactor. Daily biogas production (gray line); (A) Total Nitrogen (●), Total Ammonium 
Nitrogen (TAN) (■) and Free Ammonia Nitrogen (FAN) (▲) profile; (B) Acetic (●) and propionic 
(■) acid evolution and (C) Chemical oxygen demand, Total (●) and Soluble (■). Dashed vertical 
lines indicate a change in the hydraulic retention time: 20, 5, 10, 30 and 15 days. Gray area 

corresponds to the five day non-feeding period.  

concentration much higher than the previously reported inhibitory thresholds, 

between 150 and 900 mg L-1 [23,24]. At the same time, both the acetic acid 

concentration and the CODT reached their maximum, over 4.0 g L-1 and 28.0 g O2 L
-1 

respectively (Fig. 2B,C). Replacing 50 ml of sludge with fresh alkaline medium with 



Publication [2] ______________________________________________________________  

82 

no added substrate five times during five days reduced the free ammonia content to 

850 mg L-1, as well as the VFAs and the CODT, which was low enough for the biogas 

production to resume (Fig. 2). By setting the HRT to 15 days the accumulation of 

ammonia, VFAs and COD was prevented and the inhibitory effect reduced, which 

resulted in a stable biogas production.  

In the Alk-OLR reactor, the free ammonia did not reach levels as high as in the Alk-

HRT reactor (Table 3). The NH3 concentration in Alk-OLR reached its maximum, 0.73 

g L-1, in P-III when 1.0 g Spirulina L-1 day-1 was fed as substrate (Table 3). In contrast 

to the Alk-HRT reactor, in the Alk-OLR reactor, the concentrations of VFAs remained 

low throughout the experiment with a slight increase in P-III when 1.0 g Spirulina L-1 

day-1 was fed (Table 3). The biogas production in the Alk-OLR was more affected by 

the accumulation of OM which drastically affected its performance (Fig. 3). When the 

organic loading rate was increased to 1.0 g Spirulina L-1 day-1, the CODT rapidly 

increased, causing a bioreactor failure due to substrate overload. Strategy one to try 

to recover the biogas production markedly reduced the total COD, yet once the 

second strategy was applied it increased to levels similar to those observed P-III (15 

g O2 L
-1) (Fig. 3).    

4. Discussion 

In the work presented here we show that anaerobic digestion of the microalgae 

Spirulina at alkaline conditions (pH 10 and 2.0 M Na+) is possible and the obtained 

biogas rich in methane (Fig. 1).  

4.1. Biogas rich in methane 

As expected, by applying alkaline conditions in our anaerobic digester, methane rich 

biogas was obtained (Fig. 1). This was due to the fact that the solubility of carbon 

dioxide in a solution is determined mainly by the pH of the solution and its buffering 

capacity. Because of the high pH, the (bi)carbonate concentration in the medium can 

be high while a driving force for carbon dioxide absorption is maintained. Since all 

absorbed/hydrated carbon dioxide immediately reacts with OH- to form (bi)carbonate, 

CO2 absorption kinetics are faster than at neutral pH. With the high pH and alkalinity 

used in our experiments, the reactor’s medium acted as a CO2 scrubber and the 

carbon dioxide remained in solution as carbonates (alkalinity) (Table 2 and 3) which 

resulted in a low percentage of CO2 in the headspace (Fig.1). In both reactors this
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Figure 3 Evolution of the organic matter in the Alk-OLR. Biogas production (gray line) and Total 
(●) and Soluble (■) Chemical oxygen demand. Dashed vertical lines indicate a change in the 
organic loading rate: 0.25, 0.5 and 1.0 g Spirulina L

-1
 day

-1
. Continuous vertical lines indicate the 

two different strategies to try to recover the biogas production. 

 

scrubber effect produced biogas with a high percentage of methane that ranged from 

77 to 88% (Table 2 and 3) with peaks up to 96% in the Alk-HRT (Fig.1 A) and  92% 

in the Alk-OLR (Fig.1 B). These values for methane content are higher than the 78% 

obtained in the study of van Leerdam et al., [18], which is, to date, the only other 

study of anaerobic digestion at high pH. A further interesting and important 

observation was that, as in the case of van Leerdam et al., [18], no H2S was detected 

in the biogas during the two experiments. This high methane content and the 

absence of H2S make this biogas suitable to be used as biomethane for vehicles and 

national gas supply grids with none or only a minor upgrade. For example, in 

Germany the minimum required content of methane in biomethane is 96%, in Norway 

95% and in The Netherlands 88% [9]. 

4.2. Biogas production 

Daily biogas production ranged from 35 to 60 ml per day in both reactors Alk-HRT 

and Alk-OLR (Fig.1) comparable to what was found previously with methanethiol as 

substrate which to date is the only other known substrate digested at alkaline 

conditions [18]. This daily biogas production is, however, low if compared to studies 

performed at mesophilic pH and alkalinity. Samson and Leduy [16,25,26] obtained 

between 260 and 350 ml of methane from the continuous anaerobic digestion of 

Spirulina while Varel et al., [17] obtained between 300 and 470 ml of methane.  
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The low daily biogas production could be attributed to a non-complete degradation of 

the supplied substrate. As can be seen in Fig. 2C and Fig. 3, COD values were high 

throughout the two experiments which is indicative of a non-complete degradation of 

the substrate. It is know that Spirulina is a difficult substrate to degrade. For example, 

El-Mashad [27] achieved a 56% of degradation in batch studies and our own studies 

at mesophilic conditions show similar values, 41% (unpublished data).  

4.3. Identification of HRT and OLR as key parameters 

Changing the HRT (Alk-HRT experiment) had a clear effect on the biogas production. 

A reduction of the daily biogas production was observed for short HRTs (P-I to P-III) 

which could be attributed mainly to a washout of the active biomass [28,29]. This was 

especially pronounced in P-II (HRT of 5 days) when 300 ml of medium were 

exchanged daily which caused a considerable drop in the biogas production (Fig 1A). 

To overcome the washout effect, the HRT was again increased in P-IV. However, 

this relatively drastic increase in the HRT in P-IV to reduce the washout effect, also 

negatively affected the daily biogas production, marked by sudden drops on days 99 

and 115 (Fig 1A). These drops were attributed mainly to an inhibitory effect due to 

accumulation of VFAs, organic matter and especially free ammonia (Fig. 2) which 

can cause an inhibition of the methanogenic community [29,30]. Spirulina is a protein 

rich substrate, (60 to 75% dry weight) [31], and its degradation releases high 

amounts of nitrogen in the form of ammonium (NH4
+) which, at high pH, is mostly 

transformed into NH3, a highly toxic form for methanogens [32,33]. This accumulation 

of ammonia, OM and VFAs, led to an almost complete failure of the Alk-HRT reactor 

(Fig. 2). Reducing the HRT to 15 days in P-V and therefore increasing the amount of 

exchanged sludge per day had a positive effect in controlling the accumulation of 

NH3, VFAs and OM and the biogas production was resumed (Fig. 2). Of the five 

different HRT tested, a HRT of 15 days resulted in the best values for the calculated 

specific biogas and methane potentials (SBP and SMP), 33 and 29 ml of biogas and 

methane g Spirulina-1 respectively (Table 2). For this HRT, both excessive biomass 

washout and the accumulation of inhibitory substances were avoided which in turn 

favored the biogas production.  

Daily biogas production was also affected by the amount of organic matter fed to the 

reactor and whenever the OLR was increased the biogas production also increased 

(Alk-OLR experiment) (Fig 1B). However, the increase in biogas production did not 
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correlate linearly with the increase in the OLR. In Alk-OLR, from P-I to P-II the OLR 

was doubled, from 0.25 to 0.5 g Spirulina L-1 day-1, while the biogas production 

increased by 77%. From P-II to P-III, the OLR was again doubled, yet the biogas 

production only increased by 26%. These results indicate that the additional 

substrate provided was not effectively converted to methane. Instead, it accumulated 

mainly as total and soluble OM (increasing COD values) and as VFAs (Fig. 3; Table 

3). This accumulation eventually caused a substrate overload which resulted in a 

slow but constant reduction of the daily biogas production during P-III. The two 

strategies applied to try to recover the biogas production in Alk-OLR helped to reduce 

the total and soluble COD but did not have the desired effect and the relatively high 

values for daily biogas production in Alk-OLR from the beginning of P-III were not 

recovered (Fig. 3). Of the three different OLR tested, 0.25 g Spirulina L-1 day-1 (P-I) 

was the optimal, yielding the highest SBP and SMP, 49 and 38 ml of biogas and 

methane per gram of Spirulina respectively (Table 3).  

Based on the chemical composition of Spirulina (C4H7O1N0.8S0.02) [31] its theoretical 

biomethane potential is 627 ml CH4 g VS-1 [34]. Using these values, it was possible to 

determine the percentage of biodegradability in each experiment. In Alk-HRT, 4.9% 

of conversion into methane was achieved with the 15 days HRT while in the Alk-OLR 

the highest biodegradability, 6.7%, was obtained with an OLR of 0.25 g Spirulina L-1 

day-1. These percentages of biodegradability obtained for Spirulina in both reactors 

were much lower than the reported previous work where it reached 55% [16]. 

However, in both experiments the percentage of conversion increased when the 

conditions were optimized which indicates that there is still room for improvement.  

4.4. Low biogas production 

The relatively low biogas production during the periods of best performance for each 

reactor (HRT=15 days and OLR = 0.25 g Spirulina L-1 day-1) (Table 2 and 3) might 

either be explained by inherently low metabolic rates of the haloalkaline microbial 

community, but could also indicate that the reactors are working under what is known 

as “inhibited steady state”, a state in which reactors are working stable but with low 

biogas yields [22,35]. We attribute the low biogas production and conversion in both 

reactors to the extreme conditions in which the reactors were operated, to the type of 

substrate used (rich in proteins) and, mainly to the inhibition caused by the 

accumulation of free ammonia, VFAs and organic matter. It was not within the scope 
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of this study to exactly identify and specify the factors that led to reactor failure before 

a constant biogas production was achieved but to demonstrate that continuous 

production of biogas that is rich in methane from the anaerobic digestion of organic 

matter at alkaline conditions is possible, and the results presented will be a valuable 

starting point for optimization in future studies. 

 

5. Conclusions  

The anaerobic digestion of the microalga Spirulina was possible at alkaline 

conditions, pH 10, 2.0 M Na+. Continuous biogas production was observed and the 

obtained biogas was rich in methane (up to 96%). However, the biogas production 

was low and affected by several factors such as free ammonia nitrogen and volatile 

fatty acids accumulation. These drawbacks might be overcome by using alternative 

substrates and/or reactor configurations where a long biomass retention time and a 

short hydraulic retention time can be combined (e.g. membrane or granule 

bioreactor). With this potential of optimization in mind, anaerobic digestion at alkaline 

conditions can be a promising alternative process for the production of biomethane 

for commercial use. 
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Abstract 

Background 

Anaerobic digestion is a biological process during which complex organic compounds 

are transformed into methane and carbon dioxide by a consortium of microorganisms. 

A good understanding of the interactions between the populations that form this 

consortium can contribute to successful anaerobic digestion of the desired substrate. 

In this study we combine the analysis of the biogas production by a laboratory 

anaerobic digester fed with the microalgae Spirulina, a protein rich substrate, with the 

analysis of the metagenome of the consortium responsible for digestion, obtained by 

high-throughput DNA sequencing. The obtained metagenome was also compared 

with a metagenome from a full scale biogas plant fed with cellulose rich material. 

Results 

The optimal organic loading rate for the anaerobic digestion of Spirulina was 

determined to be 4.0 g Spirulina L-1 day-1 with a specific biogas production of 350 mL 

biogas g Spirulina-1 with a methane content of 68%. 

Firmicutes dominated the microbial consortium at 38% abundance followed by 

Bacteroidetes, Chloroflexi and Thermotogae. Euryarchaeota represented 3.5% of the 

total abundance. The most abundant organism (14.9%) was related to Tissierella, a 

bacterium known to use proteinaceous substrates for growth. Methanomicrobiales 

and Methanosarcinales dominated the archaeal community. Compared to the full 

scale cellulose-fed digesters, Pfam domains related to protein degradation were 

more frequently detected and Pfam domains related to cellulose degradation were 

less frequent in our sample. 

Conclusions 

The results presented in this study indicate that Spirulina could be a suitable 

substrate for the production of biogas. The proteinaceous substrate appeared to 

have a selective impact on the bacterial community that performed anaerobic 

digestion. A direct influence of the substrate on the selection of specific 

methanogenic populations was not observed.  
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Background 

The problems associated with climate change, and the limited supply of fossil fuels 

has led to an increasing interest in renewable energy sources. One of these 

alternative energy sources is biogas (a mixture of mainly methane and carbon 

dioxide) which is obtained through the anaerobic digestion of organic matter [1]. In 

recent years, energy crops, crops used to produce energy in form of biofuels, have 

contributed over 50% of the total biogas production [2]. However, the use of such 

crops as substrate for biogas production has several drawbacks: (i) use of arable 

land; (ii) consumption of large quantities of water and (iii) increased use of fertilizers 

[3, 4]. An alternative to energy crops could be the use of algal biomass. This would 

overcome the main problems mentioned above; algae do not compete for arable land 

and with algae it is possible to close the water and nutrient balances [4].  

Anaerobic digestion of the microalgae Spirulina was studied in the late 80s by 

several authors [5–7], however, the circumstances at that time, low oil prices and 

less environmental concerns, led to a loss of interest. The need to use non-fossil 

energy sources and the biorefinery concept has brought back the attention to using 

algal biomass to produce biofuels [4, 8–10]. In this context, the use of the microalga 

Spirulina as substrate for the production of biogas is again an interesting option. 

Anaerobic digestion is a biological process in which a wide range of anaerobic 

bacteria hydrolyze and ferment complex organic compounds first into organic acids, 

then further to acetate, hydrogen and carbon dioxide, which are subsequently 

transformed into methane by methanogens [11]. A good understanding of the 

taxonomic composition and the functional interactions between the involved microbial 

populations, can contribute to the optimization of the anaerobic digestion of the 

desired substrate. High-throughput DNA sequencing technologies and their 

application for metagenome analysis have greatly enhanced the study of microbial 

communities of environmental samples. Several metagenome studies both of biogas 
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producing plants and lab scale anaerobic digesters have been performed to date 

[12–16].  

In the study presented here we combine the analysis of the anaerobic digestion 

process of Spirulina with the analysis of the metagenome from the microbial 

community in the digester. Total DNA was extracted from a lab scale bioreactor 

digesting Spirulina and sequenced using the Ion Torrent (PGM) platform. Sequencing 

reads where assembled into contigs and these were analyzed with regard to the 

predicted genes, and by binning to acquire provisional whole genome sequences of 

abundant community members [17]. 

In contrast to the cellulose rich substrates commonly used to date in many large 

scale biogas production plants, Spirulina is a protein rich substrate [18]. To determine 

if the microbial community in the Spirulina fed lab-scale digester displays significant 

adaptation to the substrate, the MG-Rast metagenome analyzer [19] was used to 

compare the gene content of the obtained metagenome to that of a publicly available 

metagenome from a fully operative biogas plant fed mainly with cellulose rich 

material [14]. 

Results and discussion 

Biogas production via the anaerobic digestion of Spirulina 

The anaerobic digestion of freeze dried Spirulina was studied using a 2.0 L semi 

continuous stirred tank reactor (S-CSTR) operated at pH 7.5 – 8.2, at 37ºC and with 

a 20 days hydraulic retention time (HRT). After a 71 days start-up period constant 

daily biogas production (742 ml biogas day-1), and constant process parameters 

(alkalinity, total solids (TS), volatile solids (VS)) were observed, indicating that the 

bioreactor had reached a pseudo steady state condition. Starting from this pseudo 

steady state, five different organic loading rates (OLR), from 1.0 to 5.0 g Spirulina L-1 

day-1 (dry weight) were studied to determine the optimal OLR for freeze dried 

Spirulina. The biogas production in each period was constant and, as expected, 

increased when the OLR was increased (Table 1). The biogas production ranged 

from 470 mL of biogas day-1 (69% of methane) in period I, with an OLR of 1.0 g 

Spirulina L-1 day-1, up to 2,210 mL biogas day-1 (62% methane) in period V, with an 

OLR of 5.0 g Spirulina L-1 day-1. 
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Table 1 Biogas production and sludge characteristics  
Biogas and methane production, biogas characteristics, specific biogas and methane 
productions and sludge characteristics from the anaerobic digestion of Spirulina obtained with 
the five organic loading rate tested. Shown are the mean values with the standard deviation. 
                                                   Units Period I Period II Period III Period IV Period V 

 Days 116 74 100 21 29 

OLR g Spirulina (LR day)
-1
 1.0 2.0 3.0 4.0 5.0 

Daily biogas production mL biogas day
-1
 470 ± 69 986 ± 176 1,487 ± 252 2,096 ± 118 2,210 ± 325 

Daily methane production mL CH4 day
-1
 327 ± 49 648 ± 117 972 ± 190 1,397 ± 79 1,399 ± 260 

CH4 % 69 ± 5 69 ± 2 70 ± 13 68 ± 1 62 ± 4 

CO2 % 30 ± 5 30 ± 2 25 ± 10 31 ± 1 37 ± 4 

N2;O2 % 1 ± 1 1 ± 1 5 ± 16 1 ± 1 1 ± 1 

H2S % n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d 

Specific biogas and methane productions 

SBP-VS added mLbiogas (day g VS)
-1
 354 ± 52 369 ± 66 372 ± 63 393 ± 22 334 ± 47 

SBP-g Spirulina added mLbiogas (day g Spirulina)
-1
 313 ± 46 329 ± 58 330 ± 55 349 ± 19 297 ± 42 

SMP-VS added mLmethane (day g VS)
-1
 246 ± 37 243 ± 44 243 ± 47 262 ± 14 211 ± 39 

SMP-g Spirulina added mLmethane (day g Spirulina)
-1
 218 ± 33 216 ± 39 216 ± 42 233 ± 13 188 ± 34 

Sludge characteristics 

pH  7.5 ± 0.3 7.9 ± 0.1 8.5 ± 0.1 8.6 ± 0.1 8.6 ± 0.1 

Alkalinity g CaCO3 L
-1
 8.6 ± 0.7 11.4 ± 0.8 16.5 ± 3.1 20.8 ± 1.2 25.4 ± 2.4 

Total Solids g Kg
-1
 17.6 ± 1.3 21.7 ± 1.2 26.6 ± 2.6 29.3 ± 1.4 38.2 ± 5.0 

Volatile Solids g Kg
-1
 10.2 ± 1.0 13.7 ± 1.2 18.9 ± 2.5 21.1 ± 1.2 29.1 ± 4.6 

CODT g O2 L
-1
 17.2 ± 1.0 24.1 ± 3.5 33.2 ± 2.5 36.6 ± 3.8 54.8 ± 8.34 

CODs g O2 L
-1
 3.9 ± 1.0 5.5 ± 0.5 8.6 ± 2.9 7.2 ± 0.1 19.3 ± 6.5 

BOD5 g O2 L
-1
 2.0 ± 0.6 3.3 ± 1.1 4.4 ± 0.1 4.9 ± 0.1 12.9 ± 0.1 

Total Nitrogen g L
-1
 3.2 ± 0.3 4.5 ± 0.6 5.8 ± 0.3 6.7 ± 0.6 8.0 ± 0.8 

NH4
+
-N g L

-1
 2.2 ± 0.2 2.9 ± 0.2 2.8 ± 0.2 3.0 ± 0.2 3.7 ± 0.4 

NH3-N g L
-1
 0.1 ± 0.1 0.3 ± 0.1 1.1 ± 0.2 1.4 ± 0.2 1.6 ± 0.3 

Acetic acid mg L-1 376 ± 301 646 ± 168 1647 ± 858 1,836 ± 919 3,117 ± 1,526 

Propionic acid mg L-1 35 ± 10 173 ± 66 629 ± 614 713 ± 623 1,582 ± 521 

n.d: non detected 
 

The increment in biogas production was not completely proportional to the loading 

rate (Table 1). Apparently, at higher loading rates digestion of the algal biomass was 

no longer complete which eventually led to substrate overload causing a reactor 

failure (Fig. 1). This was apparent from: (i) the drop in biogas production at the end of 

period V (Fig. 1), (ii) the decreasing methane content of the biogas at high loading 

rate and (iii) the increase in all the parameters related to organic matter in the sludge, 

TS, VS, total and soluble chemical oxygen demand (COD) and five day biological 

oxygen demand (BOD5) (Table 1). This accumulation of organic matter was 

especially acute during period V with a 30% increase for TS, 37% for VS, 50% for 

total organic matter (CODT), and 163% for BOD5 compared to period IV. Soluble 

organic matter, acetic acid, propionic acid and NH3 also accumulated in period V (Fig. 

1, Table 1). Spirulina is a protein rich substrate [18], therefore its nitrogen content is 

high, which led to the accumulation of total nitrogen in the sludge (Table 1). The 

degradation of proteins leads to the production of ammonia nitrogen (NH3-N) which 

increased gradually from 0.1 g L-1 in in period I to 1.6 g L-1 in period V (Table 1, Fig. 

1). This increase can be attributed both to the increase in substrate concentration 

and, according to the equation of Anthonisen et al. [20] (eq 1), to the increase of pH 
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Fig. 1 Biogas, methane production and sludge characteristics  
Left axis: daily biogas (●) and methane (Gray-■) production normalized to standard temperature 
and pressure conditions (20°C; 0 atm); Right axis: Soluble COD (Blue- ∆); acetic acid (Purple- 
◊); propionic acid (Red-ᴏ), NH3-N (Orange-■) obtained from the anaerobic digestion of Spirulina. 
Vertical dashed line indicates a change in the organic loading rate from 4.0 g Spirulina L

-1
 day

-1
 to 

5.0 g Spirulina L
-1

 day
-1

. 

from 7.5 to 8.6. Methanogens are sensitive to ammonia [21] and the accumulation of 

this compound can lead to digester failure. The reported levels of free ammonia 

nitrogen in period V are high and comparable to other reported levels that caused 

reactor inhibition [21–24]. The accumulation of non-degraded biomass and VFAs 

along with the relatively high total nitrogen (8.0 g L-1) and free ammonia nitrogen (1.6 

g L-1) concentrations led to the reduction of the biogas production from 2,651 mL day-

1 on day 329 to 1,586 mL day-1 on day 330 (Fig. 1) which might indicate a substrate 

overload in the digester. 

One of the main bottlenecks of the anaerobic digestion of microalgae is its apparently 

low biodegradability, which result in low methane yields [25]. To overcome this 

problem long HRT need to be applied in order to increase the residence time 

allowing the substrate to be further hydrolyzed [8]. However, this on the long run can 

have a negative effect on the biogas production as accumulation of inhibitory 

substances such as ammonia can occur [8, 26]. The optimal organic loading rate for 

freeze dried Spirulina in our experiment was 4.0 g Spirulina L-1 day-1 (period IV). At 

this OLR, the specific biogas production (SBP) per gram of Spirulina was 350 mL 

biogas with 68% methane content (Table 1). The highest biodegradability was 
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Table 2 Sequencing statistics 
Dataset-1 sequencing data and assemblies statistics. 
 Bases  Reads  Mean Read length GC % 

Sequencing data     
PGM raw data 1 GB 5,630,598 155 (bp) 38 
Post Trimmomatic data 974 MB 5,240,830 185 (bp) 38 

 

Assembled contigs 

Assemblies 
# 

Submitte
d reads 

Minimum 
read 

length 

# 
Contigs 

# Contigs 
>500bp 

N50 
contig 
size 

Mean 
contig size 

Largest 
contig size 

Assembly A* 5,240,830 50 (bp) 54,246 21,998 3,810 (bp) 1,807 (bp) 171,327 (bp) 
Assembly B* 5,240,830 50 (bp) 278,958 30,987 1,226 (bp) 1,115 (bp) 18,073 (bp) 
Assembly C* 1,984,110 220 (bp) 27,994 14,915 4,380 (bp) 1,899 (bp) 75,139 (bp) 

* See Material & Methods for details about assembly settings. 
 

obtained, 42% and no accumulation of inhibitory substances occurred in this period. 

Both values, SPB and biodegradability are similar to those observed in other studies 

[5, 7, 10]. Our results show that 20 days HRT seem to be an adequate compromise 

between an optimal methane yield and accumulation of toxic compounds.  

Metagenome analysis of the anaerobic digester community 

DNA was extracted from the sludge of the Spirulina digester and sequenced on a 

318TM Chip with the Ion Torrent Personal Genome Machine (PGM) platform. 

Obtained sequence reads were quality trimmed (Table 2) (see Material and methods 

for details) and the remaining reads were either assembled into contigs or analyzed 

directly with the MG-Rast metagenome pipeline.  

Binning and 16S rDNA taxonomy analysis 

Three different assemblies were used for the detection of ribosomal 16S genes to 

taxonomically characterize the microbial community (see Material and Methods for 

details). Assembly A produced the largest contig, 171,327 bp (Table 2). Due to the 

stringent settings, assembly B produced the highest number of contigs but shorter, 

while assembly C (only reads with a minimum read length of 220bp were assembled) 

produced contigs with the longest mean size (Table 2).  

Contigs from assembly A were binned using the Metawatt v1.7 pipeline to investigate 

the most abundant populations of the microbial consortium in more detail. From the 

113 obtained bins, after manual selection and curation, 10 remained which displayed 

characteristic tetranucleotide frequencies, assembly coverages and consistent 

phylogenetic signature and together accounted for almost 80% of the total sequence 

data (Table 3; Additional File-1 Suppl. Fig. 1). As was observed in other anaerobic 
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Table 3 Characteristics and taxonomical classification of selected microbial bins 
Characteristics and 16S rDNA taxonomical classification of the 10 selected bins obtained from 
the Spirulina metagenome.                                                

Bin characteristics  

Bin 
Contigs 

(#) 
Size 
(Mb) 

N50 
contig 
length 
(Kb) 

GC 
(%) 

Cov 
(X) 

tRNA 
(#) 

Conserved 
genes 

(#) 

Abun 
(%) 

16SrDNA 
taxonomical 
classification 

A 443 1.87 9.8 32.0 66.8 21 113 / 139 14.9 Un. Tissierella; 
Un. Clostridiales; 
Un. Clostridiales 

B 489 2.58 17.2 29.8 42.4 19 105 / 139 13.1 
C 443 2.40 13.0 31.9 36.6 21 79 / 139 10.5 
D 468 3.37 22.5 42.0 22.3 77 103 / 139 9.0 Proteiniphilum 

E 384 1.91 16.2 47.3 33.3 49 92 / 139 7.6 Un. Anaerolineaceae 

F 397 2.44 27.7 31.1 23.4 49 106 / 139 6.9 Un. Thermotogaceae 

G 225 2.53 39.5 51.6 21.8 71 164 / 139 6.5 Unknown 

H 879 3.05 7.9 37.8 11.5 44 82 / 139 4.2 Un. Bacteroidetes 

I 4,267 4.10 1.6 49.2 7.1 70 75 / 139 3.5 Unknown 

J 8,444 5.11 0.7 55.5 5.6 31 161 / 139 3.5 Un. Methanomicrobia 

Cov: Coverage 
Abun: Abundance 
Un: Uncultured 
 

digesters, populations affiliated with Firmicutes were most abundant, and constituted 

38% of the total community [13–16, 27], followed by Bacteroidetes (abundance 

approx. 13%), Chloroflexi (8%) and Thermotogae (7%). Euryarchaeota represented 

only 3.5% of the total abundance. Two bins of unknown taxonomic origin accounted 

for 10% of the sequenced data (Table 3).  

16S rDNA sequences corresponding to 8 of the 10 bins were identified among the 

contigs of the three different assemblies and/or recovered independently by iterative 

read mapping with EMIRGE (Fig. 2a, Additional File-2 Suppl. Table 1). Unfortunately, 

the three 16S sequences obtained by EMIRGE and affiliated with Firmicutes (EM-1, 

EM-2 and EM-3) could not be assigned conclusively to any of the three Firmicutes 

bins (A, B and C). However, based on comparison of sequencing coverage between 

the recovered EMIRGE 16S sequences and the contigs in the Firmicutes bins it was 

most likely that the dominant organism, Bin-A, 14.9% abundance, (Table 3) was most 

closely related to Tissierella praeacuta (EM-1, Fig 2a). Bins B and C were assigned 

to uncultured Clostridiales (Table 3). The 16S rDNA sequence classified as 

Atopostipes (contig01659 of assembly A) was assembled well in all three 

assemblies, yet it could not be linked to any of the bins. Based on the low 

sequencing coverage of this 16S sequence, the population was probably of relatively 

low abundance (Additional File-2 Suppl. Table 2). 

As in a previous study of anaerobic digestion in which a proteinaceous substrate was 

used, Clostridiales were the most abundant bacterial order [27]. The genus 
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Fig. 2 16S rDNA bacterial and archaeal phylogenetic trees 
Phylogenetic trees of (a) Bacterial and (b) Archaeal 16S rDNA sequences. Although the binning 
was only performed with contigs of assembly A, most of the binned 16S rDNA sequences were 
also assembled in assemblies B and C. If so, for the tree the longest assembled sequence was 
chosen. 16S rDNA sequences not assembled in assembly A, but in B or C, or detected by 
EMIRGE are also included. Colored: sequences obtained from metagenomic reads. Assignment 
to Metawatt bins is indicated if applicable. Reference sequences in bold: top hits in blast search 
against NCBI non-redundant nucleotide collection, bold+italics: top hits in blast search against 
NCBI reference RNA sequences. Additional reference sequences in the Bacteria tree represent 
genera detected in other anaerobic digesters. 16S rDNA sequences of Arthrospira platensis and 
Methanopyrus kandleri were chosen as outgroups, respectively. Bootstrap values at nodes are 
obtained from 500 replicates and are only shown for branches with at least 50% support (values 
> 0.499). The scale bar represents 0.1 nucleotide substitutions per site. Accession numbers of 
reference sequences are available in Additional File-2 Suppl. Table 7. 
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Tissierella  has already been detected in other anaerobic digesters yet in much lower 

abundance [14, 28, 29]. The specific function of members of this taxon in anaerobic 

digesters is still not clear. However, members of this genus are known to require the 

presence of certain amino acids and formate for growth and they seem to be unable 

to utilize carbohydrates such as glucose, cellobiose or xylose [30] which is in 

accordance to the type of substrate used in our experiment. Proteiniphilium, (Bin-D, 

Table 3) a member of the Bacteroidales that utilizes peptone and is unable to grow 

on carbohydrates [31], was previously identified in several biogas studies [12, 14, 28, 

32]. Anaerolineales and Thermotogales were also identified in other biogas reactors 

but in much lower abundance [15, 33, 34]. Their function in anaerobic digestion is not 

clear yet, however, their relatively high abundance when compared with other 

anaerobic reactors could be explained by the fact that they are known to utilize 

proteins as substrate [35, 36], therefore they might play an important role in the 

degradation of protein rich Spirulina. 

Among the Archaea, we identified one bin, Bin-J, with 3.5% of abundance, for which 

the 16S rDNA fragments were classified as uncultured Methanomicrobia (Table 3). 

Methanomicrobiales were also identified as the most abundant methanogens in an 

anaerobic reactor fed exclusively with casein [27, 37]. A closer look at the 16S rDNA 

phylogeny (Fig. 2b and Additional File-2 Suppl. Table 1) suggests the possibility that 

two methanogenic populations may have been binned together, one related to 

Methanomicrobiales and one to Methanosarcinales. Members of both these orders 

are frequently encountered in anaerobic digesters [13, 38] and they use H2, CO2, 

formate and acetate as their C source [14, 39]. Formate and acetate are both 

fermentation products of Clostridiales and Anaerolineales [30, 35], both populations 

present in high abundance in our experiment (Table 3).  

Effect of substrate at taxonomic and functional level 

In parallel to this genome-focused analysis, the effect of substrate on both taxonomic 

composition and presence of functional genes was also studied at the level of 

individual sequences, by comparing the unassembled reads from our study to a 

publicly available metagenome from a biogas plant using the MG-Rast platform. 

Sequencing dataset Spirulina-S1, was obtained from our anaerobic reactor fed with 

Spirulina, a protein rich substrate, while the second sequencing dataset, Maize-Rye 
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Table 4 Comparison of identified COG/NOG and specific Pfams 
Comparison of the COG/NOG categories obtained with the MG-Rast platform (E-value 
1e-5; min 60% identity; 15 bp min length) and the selected Pfams obtained with the 
Hmmscan (E-value cutoff 1.0). 

 
Spirulina-S1 dataset Maize-Rye dataset 

Initial # reads 1,019,333 1,019,333 

Initial # ORF 6,115,998 6,115,998 

 Hits % Hits % 

COG/NOGs 

Total # hits 215,831  344,104  

Information Storage and Processing 48,761 22.6a 86,925 25.3a 

Cellular processes and signaling 38,183 17.7a 60,697 17.6a 

Metabolism 89,707 41.6a 125,357 36.4a 

Poorly characterized 39,180 18.2a 71,125 20.7a 

AaM / CM Ratiob 1.26  0.89  

PFAMs 

Total identified PFAMs 1,132,766 
 

2,205,177 
 Cellulose degradation PFAMs 1,881 0.17c 6,554 0.30c 

Amino acid degradation PFAMs 10,628 0.94c 16,052 0.73c 

Protein degradation PFAMs 7,148 0.63c 11,498 0.52c 

Ratio Proteases / Cellulases (P/C) 3.80 
 

1.75 
 Ratio Amino acid / Cellulases (A/C) 5.65  2.45  

a % of total identified COG/NOGs 
b “Amino acid transport and metabolism” / “Carbohydrate transport and Metabolism”  
c % of total identified PFAMs 
 

(M-R), was originating from a biogas plant fed with a mixture of substrates, mainly 

cellulose rich substrates [13]. 

Effect on the microbial community composition 

The taxonomic composition of the Spirulina reactor metagenome obtained from the 

two analyses, single read analysis with the MG-Rast pipeline and binning of 

assembled contigs, was not identical but similar. Therefore, a comparison of the 

Spirulina-S1 data with the M-R data set based on single read analysis was feasible. 

The general taxonomic composition did not appear to depend on the type of 

substrate used. Based on the MG-Rast M5NR analysis of the metagenomic reads, 

bacteria clearly dominated in both datasets while Archaea represented less than 10% 

in the M-R dataset and merely 3% in the Spirulina-S1 dataset (Table 4). Amongst 

bacteria, Firmicutes, Bacteroidetes and Proteobacteria dominated in both sets, but 

differences could be seen in the abundances of other phyla. Hits in Thermotogae 

were more abundant in the protein rich substrate digester data (5.4%) compared to 2% 

in the cellulose rich substrate digester dataset. This was also true for Chloroflexi, 2.7% 
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in Spirulina-S1 when compared to the M-R dataset, 1.3%. On the other hand, within 

the Archaea such a variety at phylum level was not seen, and as expected, 

Euryarchaeota dominated with over 90% of all Archaea in both datasets.  

Among the Bacteria, Clostridiales dominated in both datasets with 40% and 30% of 

the total assigned reads in the Spirulina-S1 dataset and the M-R dataset respectively, 

followed by Bacteriodales, Thermoanaerobacterales and Bacillales (Fig. 3a). In both 

datasets, M-R and Spirulina-S1, the genus to which most of the reads were assigned 

was Clostridium (18 and 14% of recruited reads respectively) (Additional File-2 Suppl. 

Table 3). Furthermore, as in the case of Kovács et al. [27], who used casein and pig 

blood as substrate, a relatively high number of reads in the Spirulina-S1 dataset 

(almost 40,000 reads – 6% of total hits) were most similar to members of the genus 

Alkaliphilus, which is in contrast to the M-R dataset, where only about 2% of the 

reads were assigned to this genus (18,000 hits). Bacteroides, who recruited 7.5% of 

the hits in the M-R dataset accounted for 4.1% in the Spirulina-S1 dataset. Among 

other substrates, Bacteroides are known to utilize cellobiose and xylose [32], both 

absent in Spirulina, which could explain their lower abundance in our reactor. 

Interestingly, Candidatus Cloacamonas, which accounted for 4,1% of the bacteria M-

R reads, 36,032 hits, recruited less than 0.1% of the hits in the Spirulina-S1 dataset 

(280 hits) (Additional File-2 Suppl. Table 3). This bacterium was also present in high 

abundance at the initial adaptation period of two biogas reactors fed with casein and 

pig blood and its detection was not possible after 12 weeks of substrate adaptation, 

which might indicate that it cannot survive without a source of carbohydrates [27]. 

Major differences regarding bacterial taxa were also seen for Thermotogales and 

Anaerolineales which were considerably more abundant in the dataset from the 

protein rich substrate digester, with 5 and 1% respectively when compared to the 

dataset from the cellulose rich substrate biogas plant, 1.7 and 0.1% respectively (Fig. 

3a). These two orders are known to include bacteria which utilize proteins as 

substrate [34, 35, 37].  

Among the Archaea orders, Methanomicrobiales clearly dominated in the M-R 

dataset recruiting almost 75% of the hits. In the Spirulina-S1 dataset, a co-

dominance of Methanosarcinales (31% of the hits) and Methanomicrobiales (29% of 

the hits) was observed (Fig. 3b; Suppl. File-2 Table-3), confirming the analysis of the 

assembled 16S rDNA sequences (Fig. 2b). Methanosarcinales are known to be able 
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Fig. 3 Comparison of the taxonomic classification of Spirulina-S1 and M-R reads at 
order level 
Percentage of the total taxonomic assigned reads of each dataset obtained with MG-Rast M5NR 
representative hit tool (E-value 1e

-5
; min 60% identity; 15 bp min length). (a) Bacterial orders with 

the 20 most abundant assigned read hits and (b) all Archaeal orders with assigned hits from the 
metagenomic reads.              

 

to use acetate, H2 and CO2 as substrate [39], which are the main fermentation 

products of Tissierella and other Clostridia [30], and they are usually dominant in 

reactors where VFAs and NH3 are present in high concentration as in our case (Fig. 

1) [41, 42]. On the other hand, Methanomicrobiales do not use acetate but can grow 

on H2, CO2 and formate [43] the latter a common fermentation product of bacteria 

belonging to the Chloroflexi phylum [35] which in our dataset represent almost 8% of 

the abundance (Table 2). This combination of factors, high VFAs and ammonia plus 

the production of formate, H2 and CO2 can explain why the protein rich reactor was 

not dominated by one single methanogen. The observed co-dominance of two 
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methanogenic populations, as in our Spirulina reactor, was also observed in several 

other studies [15, 28, 44]. For example Ziganshin  et al [44] observed co-dominance 

of Methanoculleus and Methanosaeta in reactors fed with cattle manure and dried 

distillers grains, and of Methanosarcina and Methanoculleus in reactors treating 

maize straw and cattle manure, while Li et al [15], also detected the same co-

dominant methanogens in a reactor treating multiple substrates (chicken waste, pig 

manure and excess sludge). This co-dominance of methanogens detected in such a 

broad range of substrates might indicate that, rather than the type of used substrate, 

the characteristics of the sludge (NH3, VFAs, temperature, pH, etc.) and the initial 

type of inoculum (wastewater, manure, etc.) determine which Archaea become 

dominant in anaerobic digesters. 

In order to see whether the diversity of the species community was affected by the 

used substrates, the species diversities in both datasets, were compared with Lorenz 

curves and Simpson’s diversity index (SDI) [45–47]. The mixture of substrates used 

in the biogas plant (maize silage, 63%; green rye, 35% and chicken manure, ~2%), 

might lead to a higher bacterial diversity than in the reactor solely fed with Spirulina. 

However, Lorenz curves, describing population evenness, of both datasets were 

similar (Additional File-1 Suppl. Fig 3a), as well as Simpson’s diversity index values 

(SDI=0.0078 for the Spirulina-S1 dataset and SDI=0.0062 for the M-R dataset; where 

SDI=1 indicates low diversity and SDI=0 indicates high diversity). The similarity in 

evenness and diversity in both bacterial populations can be explained by the fact that 

Spirulina as such is not a “simple” substrate, as would be glucose, starch or glycerol, 

and therefore needs a microbial population with a certain complexity to be fully 

digested. Apparently, the differences between the substrate types (complex mono-

substrate or substrate mixture) used in the two compared systems did not affect the 

diversity of the whole population, yet rather the abundance of certain bacterial taxa 

(Fig. 3). 

For Archaea, on the other hand, Lorenz curves and SDI indicated a difference in their 

diversity in the two studied datasets. The archaeal population in the Spirulina reactor 

was more even than the archaeal community in the maize-rye biogas plant 

(Additional File-1 Suppl. Fig 3b). Given the same species richness, a more even 

population is also more diverse. Indeed, by calculating the SDI a higher diversity for 

the archaeal community in the Spirulina reactor was observed (SDI=0.0761) than in 
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the M-R biogas plant (SDI=0.3695). The lower SDI for the Archaea in the M-R 

dataset is best explained by the clear dominance of Methanoculleus in the archaeal 

reads of this dataset (Fig. 3b). 

Taken together, the results suggest that the type of substrate used in anaerobic 

digestion mainly affects the bacterial composition, to some extent, at low taxonomic 

levels, especially at genus and species level. Proteolytic Bacteria were probably 

present in all dominant phyla of the Spirulina-S1 digester, whereas in the Maize-Rye 

biogas plant, cellulolytic Bacteria were dominant. Regarding the Archaea, an 

influence of the substrate on their presence and composition is not as clear as for the 

Bacteria. This could be explained by the fact that the Archaea perform the final step 

in the process of anaerobic digestion, and their presence is probably more 

dependent on the population composition of the primary substrate degraders 

(Bacteria), of their metabolic products, the presence or absence of inhibitory 

compounds and the origin of the inoculum, rather than on the substrate itself. 

Effect on the abundance of functional genes 

Both datasets, Spirulina-S1 and M-R were compared at functional level with two 

approaches, MG-Rast’s COG/NOG comparison, and identification of specific protein 

domains (Pfams) related to the cellulose degradation pathway and to protein and 

amino acid degradation (Table 4).  

Due to the different types of substrates used, it was expected to see differences 

regarding the COG/NOGs related to amino acids and protein metabolism. However, 

with respect to the detected functional genes, the differences between both datasets 

were minor (Fig. 4). The highest difference was observed in category L “Replication, 

recombination and repair” which represented 8.6% of the hits in the Spirulina-S1 

dataset and 11.6% in the M-R dataset. This category contains COGs related to 

groups of genes which participate in the replication process of the microbial 

community and were more abundant in the M-R dataset. This difference could be 

explained by the fact that at the time of sampling of the Spirulina-S1 dataset, day 336, 

the reactor was suffering from substrate overload which resulted in an accumulation 

of toxic compounds (NH3, VFAs) that hindered the correct function of the bacteria 

and reduced the daily biogas production (Fig. 1). COG/NOGs related to category E, 

“Amino acid transport and metabolism” were slightly more abundant in the protein 
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rich dataset (9.7%), than in the cellulose rich dataset (7.3%) while COGs from 

“Carbohydrate transport and metabolism” (category G), were less abundant in the 

Spirulina-S1 dataset 7.7% than in the M-R dataset 8.1% (Fig. 4). Amongst the amino 

acid metabolism related COGs, some differences could be seen. For example, 

COG4608, an “Oligopeptide transport system”, recruited 0.32% of all assigned hits in 

the Spirulina-S1dataset and 0.22% in the M-R dataset. Similar differences were seen 

in other amino acid COGs such as COG1164 an” Oligopeptidase” and COG2195 a 

“Di and tri-peptidase” amongst many others. In contrast, important differences could 

be seen among the Carbohydrate category GOGs, especially in those COGs directly 

related to the degradation of cellulose, xylanose and other complex sugars. For 

example, COG3507/COG3664 a “Beta-xylosidase” represented 0.10% in the M-R 

dataset and only 1/10 of this abundance (0.01%) in the Spirulina-S1 dataset. 

Similarly, COG2160, an “L-arabinose isomerase”, was almost absent in the Spirulina-

S1 dataset (0.005% of all assigned hits) but represented almost 0.05% in the M-R 

dataset. Similar results were observed with other COGs such as COG3693 a “Beta-

1,4-xylanase” and COG0366 a “Glycosidase” which were both significantly less 

abundant the Spirulina-S1 dataset. This difference in the abundance of COGs 

correlates with the type of substrate used, Spirulina, which has low content of 

complex sugars [18]. These differences in percentage might be subtle for some of 

the COGs but they still indicate that the selected microbial community might display 

particular functions in response to the used substrate.  

Since the COG/NOG categories only give information about general function, specific 

protein domains (Pfams) related to cellulose degradation and to protein and amino 

acid degradation were searched for in both datasets (Additional File-2 Suppl. Tables 

4, 5 and 6). Pfams domains associated with cellulose summed up to 0.30% of the 

total identified Pfams in the M-R dataset compared to 0.17% in the Spirulina-S1 

dataset (Table 4). The proteases related Pfams were slightly more abundant in the 

Spirulina-S1 dataset with 0.63% of all identified Pfams compared to 0.52% in the M-

R dataset (Table 4). Also the amino acid degradation Pfams were more abundant in 

the Spirulina-S1 reads (0.95% of all the Pfams) than in the M-R reads (0.74%).  

As the percentages of abundances were relatively low, it is not certain that the 

substrates significantly affected the microbial community at functional level. Two 

Pfam ratios, Proteases to Cellulases ratio (P/C ratio), and Amino acid to Cellulase
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Fig. 4 COG/NOG functional hierarchical classifications  
Comparison of the COG/NOG classified reads of the Spirulina-S1 and the M-R metagenomes 
obtained with the MG-Rast metagenome analyzer (E-value 1e

-5
; min 60% identity; 15 bp min 

length). X axis: (I) Information storage and processing: A, RNA processing and modification; 
B, chromatin structure and dynamics; J, translation, ribosomal structure and biogenesis; K, 
transcription; L, replication, recombination and repair; (II) Cellular processes and signaling: D, 
cell cycle control, cell division, chromosome partitioning; M, cell wall/membrane/envelope 
biogenesis; N, cell motility; O, posttranslational modification, protein turnover, chaperones; T, 
signal transduction mechanisms; U, intracellular trafficking, secretion and vesicular transport; V, 
defense mechanisms; W, extracellular structures; Z, cytoskeleton; (III) Metabolism: C, energy 
production and conversion; E, amino acid transport and metabolism; F, nucleotide transport and 
metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; 
I, lipid transport and metabolism; P, inorganic ion transport and metabolism;  Q, secondary 
metabolites biosynthesis, transport and catabolism; (IV) Poorly characterized: R, general 
function prediction only; S, function unknown.  

 

ratio (Aa/C) were also calculated to determine the relative abundance of each group. 

The P/C ratio in the Spirulina-S1 dataset, 3.80, was double the P/C ratio in the M-R 

dataset, 1.75, and a comparable result was obtained with the Aa/C ratios, 5.65 for 

the Spirulina-S1 and 2.45 for the M-R dataset (Table 4). When a COG/NOG “Amino 

acid transport and metabolism” to “Carbohydrate transport and metabolism” ratio was 

calculated (AaM/CM), the result was similar, 1.26 for the Spirulina-S1 dataset and 

0.89 for the M-R dataset (Table 4). The differences in the obtained P/C, Aa/C and 

AaM/CM ratios suggest that the microbial community in both reactors did adapt to the 

type of substrate degraded, protein or cellulose rich. Since both substrates were not 

either pure carbohydrates or proteins, but consisted of both in different proportions, 

further studies are necessary to determine whether the observed differences in the 

presence of functional genes would become more distinct for longer run times of the 
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Spirulina digester, or if the microbial community was already at functional equilibrium 

when it was sampled for the metagenome analysis presented here.  

Binning of contigs vs classification of single reads 

In this work, the same metagenome has been taxonomically analyzed by two 

different approaches, assembly of reads into contigs followed by a binning strategy 

combined with a16S rDNA analysis, and blasting of single reads against a general 

nucleotide database. Despite the differences in methodology, the results obtained 

can be extrapolated; the microbial picture is very similar in both cases (Table 3; Fig. 

3). The advantage of using the binning approach is that the obtained bins form a 

consensus genome of the most abundant organisms which better represent the 

microbial community and its abundances (Table 3), and the 16S rDNA taxonomical 

classification of contigs is more reliable than the classification of short reads. In 

contrast, MG-Rast classification of short reads only gives information about the taxa 

but does not provide any extra information on the populations abundances. In this 

sense it can be argued that 80% of the genes identified by MG-Rast belong to the 8 

bins which together account for 80% of the abundance even though they have, 

based on single read assignment, been assigned to many different taxa.    

Conclusions 

The results presented in this study indicate that Spirulina could be a suitable 

substrate for the production of biogas with a mean production of 350 ml of biogas per 

gram of substrate. As in previous studies, a dominance of Clostridia and 

Bacteroidetes was observed in bacteria while Methanomicrobiales and 

Methanosarcinales dominated amongst the archaea. The microbial community 

present in the anaerobic digester adapted to the type of substrate used, both in 

taxonomy and function. Binning of contigs and 16S rDNA analysis gives reliable 

information about the identification and abundances of the different bacterial 

populations, in contrast to the traditional classification of reads. 
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Material and methods 

Bioreactor set-up 

One 2.0 L semi-continuous stirred tank reactor (S-CSTR) with a working volume of 

1.5 L, operated at 37°C with 20 days hydraulic retention time (HRT) was set up to 

study the anaerobic digestion of freeze dried Spirulina. The overall experiment lasted 

440 days which included a 33 days adaptation to Spirulina and a 71 days start-up 

period. The remaining 336 days were divided into 5 periods (P-I to P-V) in which the 

organic loading rate (OLR) was gradually increased from 1.0 g to 5.0 g Spirulina L-1 

day-1 (dry weight). The inoculum was obtained from a local wastewater treatment 

plant (Heepen Klaerwerk, Bielefeld, Germany) and the substrate, freeze dried 

Spirulina, was acquired from Sonnenmacht GmbH (Germany). Biogas production 

was measured with an on-line Milligascounter MGC-1 equipped with the Rigamo 

software v3.0 (Ritter Engineering, Germany) and normalized to standard conditions 

(0 °C; 1.0 atm). pH and redox potential were monitored, but not controlled, with 

Mettler Toledo pH (HA405-DPA-SC-S8/225) and redox (Pt4805- DPA-SC-S8/225) 

probes (Mettler Toledo GmbH, Germany). Mesophilic conditions were obtained with a 

Pt-1000 temperature sensor and a heater. In order to avoid rupture of the bacterial 

granules, constant stirring was performed with a floating magnet (Fisher Scientific 

GmbH, Germany). Daily purge and feed were performed manually with a syringe. 

Before purging, the biomass was settled by stopping the stirring for at least 30 

minutes. Periodically the purged sludge was sampled for analysis; in that case the 

stirring was not stopped. The medium used to dissolve the freeze dried Spirulina for 

dosing at the desired OLR was modified after Vidal et al. [48] excluding the NH4Cl. 

The Spirulina mixture was prepared freshly once per day. 

Analytical methods 

The performance of the laboratory digester was continuously monitored by the on-

site pH probe, the biogas measurement device and by periodical analysis of alkalinity. 

Carbon dioxide content of the biogas was determined daily by bubbling the produced 

biogas through an alkaline solution (KOH 50 g L-1). Biogas composition was 

determined once a week by means of a Shimadzu GC-2010 plus Gas 

Chromatograph (Shimadzu Corp, Japan) equipped with an Agilent GS-Gaspro 

capillary column (part # 113-4362) (Agilent Technologies, USA). Samples for biogas 
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quality and composition were obtained using an airtight syringe. If biogas 

composition was not analyzed immediately, samples were kept in gas-tight 

vacutaniers (BD-Plymouth, UK). Analyses to characterize the liquid effluent were 

carried out periodically. Total solids (TS) and volatile solids (VS) were analyzed once 

a week following the APHA standard methods [49]. Five day biological oxygen 

demand (BOD5) was analyzed with a WTW Oxitop® according to the APHA 2005 

5210D procedure. Alkalinity, total and soluble chemical oxygen demand (CODT and 

CODS), total nitrogen (TN) and ammonium nitrogen (NH4
+-N) were analyzed by 

colorimetric methods (Hach Lange GmbH, Germany). The free ammonia (NH3-N) 

concentration was calculated by as in Astals et al [50]. Analyses were performed 

directly to the raw sample or to the soluble fraction by centrifuging the samples at 

4,600 rpm for 5 minutes and filtering the supernatant through a Rotilabo CME 0.45 

µm nylon filter (Carl Roth GmbH, Germany). Specific volatile fatty acids (acetate, 

propionate, iso-butyrate, n-butyrate, iso-valerate and n-valerate) were analyzed using 

a Shimadzu GC-2010 plus Gas Chromatograph coupled to an FID detector and 

equipped with a Macherey-Nagel Optima FFA plus capillary column (Macherey-

Nagel GmbH & Co. Germany).  

Bioreactor adaptation and start-up 

The start-up of the bioreactor consisted of an adaptation period for the microbial 

community to the use of Spirulina as the main substrate. To do so, initially the reactor 

was fed with plain glucose (1.66g L-1 day-1) which was gradually substituted for 

freeze dried Spirulina, following the substitution strategy from Vergara-Fernandez et 

al. [51] until only Spirulina was fed at 1.66 g L-1 day-1. Once the microbial community 

was adapted to Spirulina, the bioreactor was fed with 2.0 g Spirulina L-1 day-1 until the 

biogas production and the process parameters (alkalinity, TS and VS) were constant. 

In order to start the experiment with the lowest possible residual Spirulina biomass in 

the bioreactor’s sludge the feeding was stopped until the biogas production was 

below 100 mL day-1. After the starvation period, the study of the anaerobic digestion 

of freeze dried Spirulina began.  
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Metagenome analysis 

DNA sample preparation, sequencing and quality trimming 

15.0 mL of sludge obtained from the bioreactor digesting freeze dried Spirulina were 

used for DNA extraction (sampling day 336, biogas production, 1,676 mL biogas day-

1, methane content 60%). DNA was extracted according to Zhou et al. [52] with minor 

modifications. 2.5 µg of extracted DNA were used to prepare a 200bp insert size 

sequencing library for the Ion Torrent Personal Genome Machine (PGM) platform 

(Life Technologies, USA). The instructions according to the Ion Xpress™ - Plus 

gDNA Fragment Library Preparation manual were followed, except for the initial DNA 

fragmentation, which was done using a GS  FLX Standard Nebulizer Kit (Roche 

Applied Science, Germany), nebulization for 3 min at 32 psi. Sequencing template 

preparation was performed using the OneTouch Instrument and the OneTouch ES 

module. Enriched ISP particles were sequenced with the Ion PGM™ 200 Sequencing 

Kit (Life Technologies, USA) on a 318™ Chip with 520 flows following the 

manufacturer's instructions. Automated analysis was performed with the Torrent 

Suite™ Software v3.2 using default settings. Additional quality filtering was done 

using the Trimmomatic tool v3 [53], with settings for removal of trailing bases of a q-

value lower than 20, and removal of reads shorter than 50 bases.  

Assembly of quality trimmed reads 

Quality trimmed reads longer than 50bp were assembled into contigs by means of 

the Genome Sequencer De Novo Assembler Software v2.6 (Newbler assembler, 

Roche Applied Science, Germany). In total, three read assemblies were performed, 

one with default settings for genomic DNA (assembly A), one with more stringent 

settings for better assembly of 16S rDNA sequences (assembly B), according to Fan 

et al., 2012 [54] and a third one (assembly C) with default settings but using only 

reads with a minimum length of 220 bp in order to better assemble Clostridial 

sequences. Additionally, EMIRGE [55] was used to reconstruct 16S rDNA fragments 

that did not assemble with our procedures. 

In-depth taxonomy analysis 

Contigs from assembly A were binned into provisional whole genome sequences of 

abundant populations in order to taxonomically analyze the microbial population. 
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Contigs were binned, based on tetranucleotide pattern combined with interpolated 

Markov models (IMMs), and submitted to a blast search [56] against a database 

containing all bacterial genomes downloaded from NCBI on May 2013 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.gbk.tar.gz)  using the Metawatt v1.7 

pipeline (http://sourceforge.net/projects/metawatt) (for further details concerning the 

binning pipeline see Strous et al. [17]). Binning options were set as follows: read 

length 200 nt; minimum bin size 100 kb and minimum contig size 500 bp. Generated 

bins were manually revised and assigned to a taxon by blasting all contigs from the 

selected bins against the 16S rRNA SILVA database [57]. Coverage and bin size of 

each particular bin were used to estimate the abundance of each population. 

Furthermore, transfer-RNAs of each bin were identified with ARAGORN [58] and the 

genome completeness for each population was estimated by the identification of 139 

conserved Pfams as described by Campbell et al. [59].  

Phylogeny of assembled 16S rDNA sequences 

To identify 16S rDNA sequences among the assembled contigs, all contigs from the 

three assemblies  were submitted to a blastn search against the RDP database (v10-

32) [60]. Sequence parts with a hit were extracted and aligned parts with a minimum 

length of 1000 (Bacteria) or 500 bases (Archaea) were further analyzed. Together 

with the 16S rDNA fragments detected using EMIRGE, the assembled 16S rDNA 

sequences were submitted both to the RDP classifier [61] and the SINA classifier [62] 

with the confidence threshold or minimum sequence similarity set to 80% 

respectively. The sequences were also submitted to a blastn search against the 

current (Feb. 2014) NCBI nucleotide collection (nr/nt), and reference RNA sequences 

(refseq_rna). For both blastn searches the top blast hit for each query sequence was 

obtained. All sequences (contig parts, blast search hits, further representative 16S 

rDNA sequences) were aligned with muscle [63]. Phylogenetic trees were generated 

with FastTree [64] with the GTR+CAT model, bootstrapping (500 reps.) was done 

using seqboot (v3.67, http://evolution.genetics.washington.edu/phylip.html [65]), and 

the CompareToBootstrap.pl script (Price M. N., 

http://www.microbesonline.org/fasttree/treecmp.html) was used to implement the 

bootstrap values into the main tree. Trees were drawn using dendroscope [66]. 

 

ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.gbk.tar.gz
http://sourceforge.net/projects/metawatt
http://evolution.genetics.washington.edu/phylip.html
http://www.microbesonline.org/fasttree/treecmp.html
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Metagenome comparison 

To determine if the substrate had any effect on the microbial community both in 

composition and function,  a publicly available metagenome from a fully operational 

biogas plant treating mainly cellulose rich material: maize silage, 63%; green rye, 35% 

and low amounts of chicken manure, around 2%, was downloaded from the NCBI 

database (SRR034130.1) [14] and compared to our lab scale metagenome. 

To compare both metagenomes the same normalization procedure as in Jaenicke et 

al. [14] was applied to the 50bp quality trimmed reads dataset which resulted in a 

dataset with 1,019,333 reads (Spirulina-S1). See Additional File-3 Supplementary 

Material and Methods for further normalization details.  

Taxonomic and functional comparison 

Spirulina-S1 dataset and the biogas plant dataset, Maize-Rye dataset (M-R), were 

uploaded to the MG-Rast pipeline. Taxonomy analysis was done with the M5NR 

representative hit classification while functional analysis was done with the 

COG/NOG classification both with an e-value of 1e-5, 60% minimum identity and 15 

bp minimum length. Furthermore, specific protein domains (Pfam) related to cellulose 

degradation, and protein and amino acid degradation were identified in both datasets. 

In short, both datasets were first translated into amino acids and searched for open 

reading frames (ORFs) and subsequently blasted against the Pfam-A protein 

database [67]. See Additional File-3 Supplementary Material and Methods for details.  

Microbial diversity 

To assess the microbial diversity of both populations, Spirulina-S1 and M-R, two 

approaches were used: (i) the determination of the evenness by Lorenz curves [45, 

68] and (ii) the determination of the diversity by calculating Simpson’s diversity index 

(SDI) [46, 47]. These approaches were applied at species level (i) on the bacterial 

population and (ii) on the archaeal population. 

Accession numbers 

Metagenomic reads and assembled contigs are accessible via NCBI under the 

Bioproject PRJNA239997. The sequenced reads were submitted to the Sequence 

Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/) with the sample accession 

http://www.ncbi.nlm.nih.gov/Traces/sra/
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number SRS565943. Contigs of the tree assemblies (A, B and C) were submitted to 

GenBank, under the accession numbers JMBV00000000, JMBW00000000 and 

JMBX00000000. The versions described in this paper are versions JMBV01000000, 

JMBW01000000 and JMBX01000000.  The sample numbers for the three 

assemblies are SAMN02727904, SAMN02727905, SAMN02727906; they are 

grouped in sample group SAMN02671764. The 11 16S rDNA sequences used for 

the generation of the phylogenetic trees in Fig. 2 were submitted to GenBank under 

the sample number SAMN03078811, with accession numbers KM851210-KM851220. 

All metagenomes analyzed with the MG-Rast metagenome analyzer are publicly 

available with the following IDs: Spirulina-S1 metagenome (4545162.3); Maize-Rye 

metagenome (4545349.3). 

Abbreviations 

Spirulina-S1: metagenomic sub-dataset 1 from the Spirulina reactor; M-R: Maize-Rye 

metagenome dataset. SDI: Simpson’s diversity index; S-CSTR: semi-continuous stirred tank 

reactor; HRT: Hydraulic retention time; OLR: Organic loading rate; TS: Total solids; VS: 

Volatile solids; BOD5: Five day biological oxygen demand; CODT
; Total chemical oxygen 

demand; CODS: Soluble chemical oxygen demand; TN: Total nitrogen; NH3-N: Ammonia 

nitrogen; NH4
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potential; SMP: Specific methane potential. 
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7. Unpublished results 

[4] Nolla-Ardèvol V. Anaerobic digestion of Spirulina at alkaline conditions (pH ~10; 

2.0 M Na+) from fresh soda lake sediments. 
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conditions. 
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[4] Anaerobic digestion of Spirulina at alkaline conditions 

(pH ~10; 2.0 M Na
+
) from fresh soda lake sediments 

V. Nolla-Ardèvol 

1. Introduction 

In a previous work [2] the study of the anaerobic digestion of the protein rich 

microalga Spirulina at alkaline conditions (pH~10; 2.0 M Na+ and high alkalinity ~100 

g L-1 CaCO3) was initiated. In this previous work, the optimal process conditions, 15 

days HRT and 0.25 g Spirulina L-1 day-1 (dry weight) OLR were identified. The 

obtained results showed that it was possible to digest Spirulina at alkaline conditions 

and that as expected the obtained biogas was rich in methane, 88%, with peaks up 

to 96% (Figure 1; Table 2; [2]). However, the biogas production was low throughout 

the process. This low production could be attributed to two main factors: (i) the 

inoculum utilized, Sediment-1, was an alkaline sediment which was kept at 4ºC for 

over a year and (ii) during the process of adaptation and parameter optimization, the 

microbial community responsible for the degradation of Spirulina was exposed to 

high concentrations of ammonia nitrogen [2]. 

To corroborate these findings, a second alkaline reactor was inoculated with fresh 

alkaline sediment (Sediment-2) originating from the same group of soda lakes. The 

purpose of this second experiment was to determine if with a fresh and non-inhibited 

microbial population, the biogas production could be increased. 

Eventually, a third alkaline reactor was inoculated and operated at the previous 

determined optimal process conditions, 15 days HRT and 0.25 g Spirulina L-1 day-1 

OLR [2]. This reactor was set to study the biogas production and biogas quality at the 

optimal conditions. 

2. Material and Methods 

2.1. Experiment set-up 

A 2.0 L semi-continuous stirred tank reactor (S-CSTR) with a working volume of 1.5 L 

operating at mesophilic conditions (35 °C) and at high pH ~ 10 and high salt 
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concentration (2.0 M Na+) was used to study the anaerobic digestion of Spirulina at 

alkaline conditions. The S-CSTR set up and operated was as described in [2] and 

was used for two experiments:  

(i) Experiment one (Alk-Sed-2) was utilized to further study the effect of the organic 

loading rate (OLR). The inoculum of the reactor consisted of a fresh mixture of soda 

lake sediments sampled from central Asian soda lakes and obtained in July 2012 

(Sediment-2). Substrate and medium were the same as in [2]. Two different 

micronutrients solutions were used throughout the experiment (Table 4.1). Solution 1 

was used from day 1 to day 159 and solution 2 from day 160 to the end of the 

experiment. Vitamin solution RPMI-1640 (Sigma-Aldrich product # R-7256) was 

added to the micronutrient solution 2 from day 182 to the end of the experiment. The 

reactor was operated at the optimal hydraulic retention time identified in the previous 

study, 15 days [2].  

250 g of soda lake sediment-2 plus 300 mL of alkaline pH 10 medium were used as 

inoculum leading to a total working volume of 500 mL. The start-up substrate 

consisted of a mixture of Spirulina, 0.5 g L-1 (dry weight); glucose, 0.5 g L-1; 

methanol, 10 mM and sodium acetate, 10 mM. The mixture, inoculum plus substrates 

was transferred into a 1.0 L glass bottle, the headspace was flushed with Helium gas 

for 5 minutes and the bottle was incubated anaerobically at 37 ºC and constantly 

stirred. 

The start-up of the 1.0 L reactor consisted of a 15 days adaptation period in this 1.0 L 

reactor. During this period the reactor was fed every two days with 0.5 g Spirulina L-1 

and the purged alkaline medium was kept in a sealed bottle for further use. 

Subsequently, the content of the 1.0 L bottle was transferred into the 2.0 L S-CSTR. 

200 mL of the alkaline sludge purged during the start-up period plus 800 mL of fresh 

alkaline medium were added to achieve a final working volume of 1,500 mL. The 

headspace of the reactor was again flushed with Helium for 5 minutes. The reactor 

was fed every two days at an OLR of 0.5 g Spirulina L-1 (dry weight) for another 15 

days. After this second adaptation period the feeding regime was switched to a daily 

feed of 0.5 g Spirulina L-1 and the experiment was started. After 100 days the OLR 

was doubled to 1.0 g Spirulina L-1 day-1 (dry weight). EDTA and vitamins were added 

to the micronutrients at day 112 and 182 respectively (See Results and discussion 

for details). 
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Table 4.1 Micronutrient solution composition  
Solution was prepared in 1 L batch and added to the macronutrient solution at a 
concentration of 10 mL per litter 

 Solution-1* Solution-2** 

From day - to day 0 – 159 160 – end 

Compound mg L
-1

 mg L
-1

 

FeSO4 · 7H2O - 2,000 

FeCl2 ·4 H2O 2,000 - 

MnCl2 · 4H2O 500 500 

H3BO3 50 300 

ZnCl2 50 - 

CoCl2 · 6H2O - 200 

Na2SeO3 · 5H2O 164 164 

NiCl2 ·6H2O - 92 

ZnSO4 ·7H2O - 100 

AlCl3 ·8H2O - 90 

(NH4)6Mo7O24 ·4H2O 50 50 

CuCl2 · 6H2O 38 38 

Yeast extract 200 200 

* Modified from Vidal et al., 1997 
** Dr. Dimitry Y Sorokin personal communication 

 

(ii) Experiment two (Alk-Opt) consisted in the anaerobic digestion of Spirulina at the 

optimal conditions identified in the previous work [2]. The HRT was set to 15 days 

and the OLR to 0.25 g Spirulina L-1 day-1. The inoculum for this second experiment 

was the 1.5 L sludge that remained in the Alk-Sed-2 reactor at the end of the 

experiment. The medium used was identical to experiment one supplemented with 

the micronutrient solution-2 plus vitamin solution RPMI-1640. Prior to the start of the 

reactor, the alkaline sludge was exhausted for a period of 10 days to allow the 

consumption of any possible remaining undegraded biomass. The start-up of Alk-Opt 

reactor consisted of a 15 days period where the feeding was performed every two 

days, at the end of which the experiment started. 

2.2. Analytical methods 

In addition to continuous measurements of pH and redox potential, alkalinity and total 

and volatile solids in the digesters were periodically analyzed. Biogas production, 

biogas composition and determination of the sludge characteristics (Total and 

Volatile solids, Total Nitrogen, Chemical Oxygen Demand, Volatile Fatty Acids etc.), 

were determined as in [2].  
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3. Results and discussion 

3.1. Alk-Sed-2: Biogas production from fresh soda lake sediment  

The anaerobic digestion of Spirulina at alkaline conditions was studied with a fresh 

inoculum of soda lake sediments, Sediment-2. The microbial community adapted to 

the reactor’s configuration within 5 days as seen by the detection of biogas on day 5 

after inoculation of the 1.0 L start-up reactor (data not shown). During the next 10 

days, biogas production was constant. After transferring the sludge to the 2.0 L 

reactor and the addition of extra alkaline medium and sludge, biogas production was 

detected at day 3 after the transfer (data not shown). In this second start-up period, 

biogas production was constant at 29 mL per day and the composition shifted from 

21 to 80% of methane, 11 to 6 % of CO2 and 68 to 14% of N2 gas. 

Figure 4.1a shows the biogas production and the biogas composition throughout the 

experiment. In period P-I, with an OLR of 0.5 g Spirulina L-1 day-1, the daily biogas 

production was constant with a mean daily biogas production of 36 mL biogas (Table 

4.2).This production was in accordance with previous findings where with the same 

OLR, 32 mL of daily biogas production were achieved (Table 3; [2]). During this 

period, the biogas obtained was, as expected, rich in methane, ranging from 79 to 

92%, slightly higher than in the previous study [2]. This slightly increase in biogas 

production could be attributed mainly to the fact that, in contrasts to the first 

experiment [2], the microbial community of this second reactor had not suffered 

previous inhibitions and therefore bacteria and archaea were fully active. In addition 

to this, the sediments used for the inoculation of the reactor, Sediment-2, were 

freshly obtained, in contrast to the previous inoculum which had been stored at 4ºC 

for over a year. 

During period P-I, both, the total nitrogen and the ammonia present in the reactor’s 

medium were relatively low, 830 and 500 mg L-1 respectively (Figure 4.1b). Both 

levels were in the same order as the ones obtained in P-II of reactor Alk-OLR [2]. At 

this OLR of 0.5 g Spirulina L-1 day-1, the levels of organic matter measured as total 

and soluble COD, as well as the levels of VFAs, mainly acetic and propionic acid, 

remained stable throughout period P-I (Figure 4.1c, d). 
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Figure 4.1 Alk-Sed-2 reactor performance 
Alk-Sed-2 reactor performance from the anaerobic digestion of Spirulina at alkaline conditions. 
Daily biogas production (gray line – left axis); a) biogas composition: CH4 (■); CO2 (●) and N2 
(▲); b) Total nitrogen (●) and free ammonia (NH3) (■); c) Total (●) and soluble (■) organic matter 
(CODT and CODS); d) Acetic (●) and propionic (■) acid. Dashed gray vertical lines indicate a 
change in the organic loading rate, red vertical dotted line indicates vitamin solution addition time 
point and gray area corresponds to the non-feeding period (see text for details). 

 

After 100 days of constant biogas production, the organic loading rate was doubled 

from 0.5 g to 1.0 g Spirulina L-1 day-1 (P-II). The daily biogas production, as expected, 

almost doubled from 40 to 60 mL day-1 and it gradually increased during the next 4 

days when it reached its maximum, 77 mL of biogas (Figure 4.1a). From this point 

onwards, the biogas production experienced a slow but constant reduction. This 

reduction was similar to what occurred when the organic loading rate was increased 

from 0.5 to 1.0 g Spirulina L-1 day-1 in the Alk-OLR reactor (Figure 3, Period P-II; [2]).  

In both cases, the change in the OLR had an initial positive effect and the biogas 

production increased, but after a short period of time it started to gradually decrease. 

As can be seen in Figure 1, all the parameters that were constant in P-I, TN, NH3, 

CODT, CODS and VFAs, experienced a rapid increase within the firsts days after the 

change in the OLR. Accumulation of free ammonia inhibits methanogens, especially 

aceticlastic methanogens (Angelidaki and Ahring, 1993; Koster and Lettinga, 1984) 
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Table 4.2 Alkaline Alk-Sed-2 reactor biogas production 
Biogas production, biogas characteristics, specific biogas and methane productions from the 
anaerobic digestion of Spirulina at alkaline conditions. Mean values and standard deviation of 
the measurements from each different period 

                                   Units Period I Period II 
Period  

IVa 
Period  

Ivb 

 Days 100 40 22 28 

OLR g Spirulina (LR day)
-1

 0.5 1.0 0.5 0.5 

HRT Days 15 15 15 15 

Micronutrients  Micro-1 Micro-1 Micro-2 Micro-2 + Vit 

pH  10.02 ± 0.1 9.97 ± 0.02 10.07 ± 0.03 9.98 ± 0.02 

Alkalinity g CaCO3 L
-1

 104 ± 9 99 ± 3 99 ± 2 99 ± 1 

Biogas production and composition 

Daily production mL biogas day
-1

 36 ± 8 53 ± 13 37 ± 5 43. ± 3 

Daily production mL CH4 day
-1

 32 ± 7 48 ± 11 33 ± 4 39 ± 3 

CH4 % 88 ± 4 91 ± 2 90 ± 2 91 ± 3 

CO2 % 5 ± 5 2 ± 2 2 ± 3 1 ± 2 

N2;O2 % 7  ± 2 7 ± 1 8 ± 1 7 ± 1 

H2S % n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d 

Specific biogas and methane productions 

SBP-VS added mLbiogas (day g VS)
-1

 55 ± 12 40 ± 9 57 ± 8 65 ± 4 

SBP-g Spirulina added mLbiogas (day g Spirulina)
-1

 49 ± 11 35 ± 8 50 ± 7 57 ± 4 

SMP-VS added mLCH4 (day g VS)
-1

 47 ± 10 36 ± 8 51 ± 7 60 ± 4 

SMP-g Spirulina added mLCH4 (day g Spirulina)
-1

 42 ± 9 32 ± 7 45 ± 6 52 ± 4 

n.d: non detected 
SBP: specific biogas production 
SMP: specific methane production 
 

which in turn increases the levels of acetic acid in the medium. Under such 

circumstances, high NH3 and high acetate, syntrophic acetate-oxidizing bacteria 

(SAO) should take over and oxidize acetate into H2 and CO2 (Karakashev et al., 

2006). However, in the reactor, acetic acid levels also accumulated which might 

indicate that the SAO bacteria were also inhibited or not fully active (Hattori, 2008; 

Karakashev et al., 2006). The accumulation of total organic matter (COD) is generally 

indicative of substrate overload which occurs when the amount of substrate fed in to 

the reactor exceeds the degradation capacity of the hydrolytic bacteria (Borja, 2011; 

Schnürer and Jarvis, 2010). At the same time, the total organic matter increased 

more rapidly than the soluble organic matter which is a clear indication that the 

added biomass was not completely degraded by the hydrolytic bacteria. In this 

particular case, it was observed that there was an accumulation of ammonia 

nitrogen, acetic acid and total organic matter accompanied by a reduction of the daily 

biogas production (Figure 4.1). The combination of all these factors led to a drop in 

the biogas production.  
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One of the possible reasons for the low hydrolysis of organic matter and the low 

consumption of volatile fatty acids might be that the bacteria were unable to utilize, 

due to the particular process conditions (pH~10; 2.0 M Na+), some of the essential 

elements present in the micronutrients dissolved in the medium. It is well known that 

micronutrients play an important role in the function of the different microbes involved 

in the anaerobic digestion process and the absence of a certain compound can 

reduce their activity (Zhang et al., 2012a). Therefore, to increase the solubility of the 

micronutrients, and with it the uptake by the microbial community, EDTA, a chelating 

agent present in the composition of multiple mediums used for anaerobic digestion 

(González-Gil et al., 2002; Liu et al., 1999; Strik et al., 2006), was introduced to the 

micronutrient solution. Initially, it was decided not to add this compound in the 

micronutrient solution-1 because the initial approach of the project was to design an 

alkaline medium as simple as possible and with the idea that Spirulina, itself would 

provide the sufficient minerals and vitamins (Cañizares-Villanueva et al., 1995; 

Ortega-Calvo et al., 1993). As can be seen in Figure 4.1, day 112 (gray area), the 

addition of 2.0 g L-1 of EDTA to the micronutrient solution did not have a positive 

effect, on the contrary, the reduction in daily biogas production accelerated. The 

biogas production in this period of EDTA addition fell from 67 to 41 mL day-1, that is, 

26 mL in 7 days, while in the previous 10 days the reduction was only of 10 mL, from 

77 to 67 mL of biogas per day. This rapid reduction in the biogas production clearly 

indicated that the addition of EDTA did not stimulate the activity of the microbial 

community. At this point, day 118, it was decided to return to the previous 

micronutrient solution-1. Returning to the original micronutrient solution had slight a 

positive effect and the biogas production recovered to the levels before the addition 

of EDTA. However, the inhibition persisted and the biogas production continued to 

drop from 58 to 37 mL of biogas per day (Figure 4.1).  

At the end of P-II the parameters related to the degradation of organic matter, TN, 

NH3, VFAs and CODS reached their peak (Figure 4.1b, c, d). Total and soluble 

organic matter increased in this period from 10.7 to 19.2 and from 6.3 to 9.5 g O2 L
-1 

respectively. Total nitrogen almost doubled in this period, from 845 mg L-1 to 1,500 

mg L-1 while the ammonia nitrogen also increased, from 558 to 866 mg L-1. After 40 

days of feeding at an OLR of 1.0 g Spirulina L-1 day-1 and no indication of reactor 

recovery the supply of Spirulina was stopped. 
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To remove inhibitory substances and excess of undegraded organic matter, 100 mL 

of reactor liquid was replaced with alkaline medium without substrate every two days. 

This procedure was repeated during 19 days until the biogas production was almost 

zero and it drastically reduced the concentrations of acetic acid, total and soluble 

organic matter and nitrogenous compounds (Figure 4.1). During this period the 

methanogenic archaea were still active and the biogas production was constant at 

around 10 mL of biogas per day with 88% methane content. 

After this starvation period, the feeding was resumed at 0.5 g Spirulina L-1 day-1 (dry 

weight) and a new micronutrient solution, solution-2 (Table 4.1), specifically designed 

for haloalkaline microbial communities (Dr. Sorokin personal communication) was 

used. As can be seen in Figure 4.1a period P-IVa, as soon as the feeding was 

resumed the biogas production was also resumed. The biogas production during this 

period was similar to P-I, around 37 mL of biogas per day and the biogas obtained 

was also rich in methane, 91%. At day 182, when the biogas production was fully 

recovered, a cocktail of vitamins was added to the micronutrient solution-2 in order to 

determine its effect on the performance of the microbial community. The addition of 

vitamins (Figure 4.1; Red dotted line) did have a slight positive effect and the biogas 

production increased steadily until it reached its maximum of 43 mL day-1. The 

absolute increase in biogas production was not very high, yet the addition of vitamins 

appeared to have a positive effect on the consumption of acetic acid which, was 

stabilized at around 1.0 g L-1, levels similar to the ones in P-I (Figure 4.1). 

The optimal specific biogas and specific methane productions (SBP and SMP) were 

obtained with the addition of vitamins to the micronutrient solution-2, period P-IVb. In 

this period, 57 and 52 mL of biogas and methane per gram of Spirulina were 

obtained respectively. The methane content in this period was also the highest 

achieved, 91% (Figure 4.1a; Table 4.2). These results are higher than the previous 

findings with the Alk-OLR (49 mL of SBP and 38 mL of SMP) and much higher than 

with the Alk-HRT reactor, 33 and 29 mL of biogas and methane per gram of 

substrate (Tables 2 and 3; [2]). 

This experiment confirmed that the biogas production from Spirulina at alkaline 

conditions was possible, yet with several limitations. The main bottleneck appears to 

be the slow and incomplete degradation of substrate, provably due to sub-optimal 

conditions for the hydrolytic bacteria and the methanogenic archaea, the latter being 
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inhibited by the accumulation of volatile fatty acids, ammonia and undegraded 

organic matter. This bottleneck was also identified in the previous experiments [2]. 

However, in the current experiment, an overall higher biogas production was 

obtained which could attribute to the fact that the inoculum used, Sediment-2, was 

relatively fresh in comparison to Sediment-1 which was used in the previous set of 

experiments. 

3.2. Alk-Opt: Biogas production at optimal operational conditions 

(15 days HRT; 0.25 g Spirulina L-1 day-1 OLR) 

In a previous publication, the optimal process conditions for the successful anaerobic 

digestion of Spirulina at alkaline conditions, 15 days hydraulic retention time and 0.25 

g Spirulina L-1 day-1 were identified [2]. Reactor Alk-Opt was operated at these 

conditions for 67 days (Figure 4.2a). The biogas production during this period 

oscillated between 20 and 37 mL of biogas per day with a mean daily production of 

27 mL per day (Table 4.3). The obtained biogas was rich in methane, 86%, with 

peaks up to 90% (Figure 4.2a; Table 4.3), which are in the same range as the 

previous findings [2].  

Performing the digestion at the optimal conditions avoided the problems encountered 

during the previous experiments As can be seen in Figure 4.2b,c, the organic matter 

(COD) did not accumulate throughout the experiment. Moreover the ammonia levels 

remained low, 150 mg L-1, and acetic and propionic acid were also controlled and no 

accumulation occurred after 67 days of continuous biogas production (Figure 4.2d). 

The no accumulation of organic matter (CODT), the constant levels of soluble organic 

matter (CODS) and the controlled levels of acetic acid indicate that the degradation 

and consumption rates were in equilibrium. In addition, the low ammonia levels in the 

reactor’s medium avoided the inhibition of methanogens which could transform the 

available acetate, CO2 and H2 into methane. The results presented in Figure 4.2 and 

Table 4.3 indicate that at this set of conditions (15 days HRT and 0.25 g Spirulina L-1 

day-1) the microbial community was able to successfully digest part of the supplied 

substrate and was not affected by inhibitory substances. 

The obtained SBP, 74 mL of biogas per gram of added substrate, was much higher 

than the ones obtained with the previous experiments, 33 mL in Alk-HRT, 49 mL with 

Alk-OLR [2] and 57 mL with the Alk-Sed-2. 
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Figure 4.2 Alk-Opt reactor performance 
Alk-Opt reactor performance from the anaerobic digestion of Spirulina at alkaline conditions with 

optimal process settings, 15 days hydraulic retention time and 0.25 g substrate L
-1

 day
-1

 organic 

loading rate. Daily biogas production (gray line – left axis); a) biogas composition: CH4 (■); CO2 

(●) and N2 (▲); b) Total nitrogen (■) and free ammonia (NH3) (●); c) Total (■) and soluble (●) 

organic matter (CODT and CODS); d) Acetic (■) and propionic (●) acid. 

This increase in the SBP was attributed to several factors: 

 (i) The selected micronutrients, Solution-2, and the addition of vitamins to the 

feeding mixture provided an improved environment for the optimal growth of the 

microbial community involved in the anaerobic process. 

(ii) With this low organic loading rate, 0.25 g Spirulina L-1 day-1, equilibrium 

was reached between the hydrolysis and the consumption rates which avoided 

accumulation of undegraded organic matter, of ammonia nitrogen and of volatile fatty 

acids, compounds that could cause inhibition and therefore reduce the capacity of 

the anaerobic community.  

 (iii) The selected HRT, 15 days, avoided an excessive washout of the active 

biomass and at the same time removed sufficient inhibitory substances. 

 (iv) The inoculum used for the Alk-Opt experiment was a relatively fresh 

inoculum which was transferred directly from the Alk-Sed-2 experiment and, contrary 
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Table 4.3 Alkaline Alk-Opt reactor biogas production 
Biogas production, biogas characteristics, specific biogas and methane productions 
from the anaerobic digestion of Spirulina at alkaline conditions with optimal process 
settings, 15 days hydraulic retention time and 0.25 g substrate L-1 day-1 organic loading 
rate. Mean values and standard deviation of the measurements. 

                                     Units Steady state 

 Days 67 

OLR g Spirulina (LR day)
-1

 0.25 

HRT Days 15 

Biogas production and composition 

Daily production mL biogas day
-1

 27 ± 4 

Daily production mL CH4 day
-1

 23 ± 5  

CH4 % 86 ± 5  

CO2 % 4 ± 3  

N2;O2 % 10 ± 1  

H2S % n.d ± n.d 

Sludge characteristics 

pH  10.1 ± 0.1 

Alkalinity g CaCO3 L
-1

 91 ± 4 

Total Solids g Kg
-1

 110 ± 1  

Volatile Solids g Kg
-1

 5 ± 0.3 

Fixed Solids g Kg
-1

 105 ± 0.5 

Total COD g O2 L
-1

 6.4 ± 0.4 

Soluble COD g O2 L
-1

 3.9 ± 0.3 

Total Nitrogen g L
-1

 0.52 ± 0.04 

NH4
+
-N g L

-1
 0.01 ± 0.01 

NH3-N g L
-1

 0.15 ± 0.01 

Volatile Fatty Acids (VFA) 

Acetic acid mg  L
-1

 1,488 ±  92 

Propionic acid mg  L
-1

 252 ± 15 

iso-butyric acid mg  L
-1

 21 ± 5  

Butyric acid mg  L
-1

 20 ± 6  

iso-valeric acid mg  L
-1

 47 ± 25  

n-valeric acid mg  L
-1

 n. d  

Total VFAs mg  L
-1

 1,828 

Specific biogas and methane productions 

SBP-VS added mLbiogas (day g VS)
-1

 84 ± 14 
SBP-g Spirulina added mLbiogas (day g Spirulina)

-1
 74 ± 12 

SMP-VS added mLCH4 (day g VS)
-1

 71 ± 15 
SMP-g Spirulina added mLCH4 (day g Spirulina)

-1
 62 ± 13  

n.d: non detected 
SBP: specific biogas production 
SMP: specific methane production 
 

to the inoculums used for the Alk-HRT and Alk-OLR, was not exposed to severe 

inhibitory conditions.  

Almost 10% of conversion of Spirulina was achieved with the optimal process 

conditions, which was higher than the bioconversion values of the previous studies, 

8.3% in reactors Alk-Sed-2, 4.9% in Alk-HRT and 6.7% in Alk-OLR [2], and similar to 

the bioconversion obtained in the Alk-BT2 batch test of Spirulina (Table 5.2; [5]). 
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However, this percentage is relatively low compared to the value obtained at 

mesophilic pH conditions, 41% [3].  

In summary, applying the optimal settings determined for the alkaline anaerobic 

digestion of Spirulina prevented accumulation of VFAs, NH3 and organic matter 

(COD), and led to an increase in biogas production. The daily biogas production was, 

however, still far from the production obtained at mesophilic pH conditions, 262 mL 

CH4 g VS-1 [3]. This low biogas production could be attributed to the fact that, even 

though the reactor was operating at the optimal identified conditions, it was doing it in 

the so called “inhibited steady-state”, a condition where the reactor is working 

correctly but with a low biogas production (Angelidaki and Ahring, 1994). This 

condition could be attributed to the type of substrate used, to the extreme applied 

conditions which slow down the microbial conversion of the substrate, or to an 

inherent low activity of the microbial community. 

4. Conclusions 

The results presented here contribute to support and validate the results obtained in 

the previous work [2]. It was confirmed that a rapid inhibition, due to ammonia and 

VFA accumulation, occurred when a relatively high organic loading rate (1.0 g 

Spirulina L-1 day-1) was applied. The results also show that when the reactor was 

operated at the optimal process conditions, 15 days HRT and with and OLR of 0.25 g 

L-1 day-1, the continuous anaerobic digestion of Spirulina was possible with no 

accumulation of inhibitory substances. The obtained biogas was rich in methane 

which makes it suitable to be used as biomethane, requiring only minor purification. 

The results also indicate that further improvement should be possible in order to 

increase the overall biogas production. 
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[5] Biomethane potential of different substrates at alkaline 

conditions 

V. Nolla-Ardèvol 

1. Introduction  

Biomethane potential tests (BMP), are a fast and inexpensive approach to determine 

the methane content of a particular substrate (Angelidaki et al., 2009; Raposo et al., 

2011). Moreover, BMP tests can also give information about the percentage of 

biodegradability, BDCH4 (%), of a substrate (Raposo et al., 2011), which helps to 

assess its potential as feed for an anaerobic reactor. Biomethane potential tests have 

been widely used to evaluate the methane production potential of algae and other 

substrates at mesophilic pH conditions (Bourque et al., 2008; El-Mashad, 2013; 

Mussgnug et al., 2010; Pobeheim et al., 2010). In this work, BMP tests were 

performed to study the capacity of certain substrates for methane production at 

alkaline conditions (pH~10 and 2.0 M Na+). 

The biomethane potential from Spirulina at mesophilic pH conditions has already 

been determined by several authors (El-Mashad, 2013; Zamalloa et al., 2012), 

however, its BMP at alkaline conditions has never been tested. In this study, BMP of 

Spirulina and microcrystalline cellulose (Avicel) was determined at alkaline 

conditions. The main advantage of using Avicel is that, its chemical composition 

(C6H10O5) and also its theoretical methane potential, 415 mL CH4 g VS-1, are known, 

making it suitable to act as a positive control (Raposo et al., 2011). A mixture of fresh 

algal biomass consisting of Dunaliella (Eukaryotic) and Geitlerinema (Cyanobacteria) 

was also tested for its BMP. These two microalgae were obtained from the same 

soda lakes where the sediments for the alkaline anaerobic digester were originate, 

the soda lake system of the Kulunda steppe [2, 4]. Biomethane potential of Dunaliella 

has already been extensively performed at mesophilic pH conditions (Dębowski et 

al., 2013; Mussgnug et al., 2010; Sialve et al., 2009) and more recently at high salt 

concentrations using halophilic sediments (Mottet et al., 2014). Using a fresh 

microalgae substrate, which has been cultured under specific conditions, can give 

more precise information about the real capability of the alkaline microbial consortium 

to produce methane under controlled conditions. Chitin, a long chain polymer of N-

acetylglucosamine derived from glucose, was also used as a substrate. In such 



Unpublished Results [5] ______________________________________________________  

134 

haloalkaline lakes, massive presence of the crustacean Artemia, or Brine shrimp, 

occurs (Kompantseva et al., 2009). When these crustaceans die their skeletons, 

which are mainly composed of chitin, precipitate and accumulate in the sediments 

top layers (Kompantseva et al., 2009 and Dr. Dimitry Sorokin personal 

communication). In addition, several studies have shown the possibility of digesting 

this compound under anaerobic conditions (Boyer, 1986; Pel and Gottschal, 1986; 

Reguera and Leschine, 2001). 

The anaerobic degradation of wheat straw to produce biogas has been studied at 

mesophilic conditions mainly as co-substrate with other more easily digestible 

substrates such as manure (Zhang et al., 2013), or after being subjected to 

pretreatments in order to increase its digestibility (Zahoor and Tu, 2014). However, 

the direct digestion of un-pretreated wheat straw is generally not efficient due to the 

nature of its components, lignin, cellulose and hemicellulose in different proportions 

(Taherzadeh and Karimi, 2008). To increase its biodegradability, pretreatment of 

wheat straw is a common procedure as it contributes to decompose cellulose and 

hemicellulose into more easily biodegradable substrates (Song et al., 2014) For 

example, alkaline pretreatments increase the organic solubilization and increase the 

surface area available for the action of enzymes (Song et al., 2014; Zahoor and Tu, 

2014). To date, only one reference has been found in which wheat straw was used 

as substrate in biomethane potentials were soda lake sediments were used (Porsch 

et al., 2013). Therefore, in this study, both un-pretreated wheat straw and pretreated 

wheat straw were tested as substrates in order to determine whether the alkaline 

medium has a “pretreatment” effect and therefore make the hydrolysis of the 

cellulolytic material easier.  

Finally, glycerol, a by-product of the biodiesel industry was used as co-substrate 

since it is an easily degradable molecule which is known to greatly increase the 

biogas production when co-digested in the presence other substrates (Astals et al., 

2012; Astals et al., 2013). 

2. Material and methods  

Alkaline sludge from reactors Alk-HRT [2] and Alk-Sed-2 [4] were used to perform 

several sets of batch tests: 
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(i) Batch tests Alk-BT1: Batch tests were performed in 100 mL glass bottles 

with a gas tight rubber septum. Each batch test was inoculated with 50 mL of alkaline 

sludge obtained from the Alk-HRT reactor [2] which had previously been substrate-

exhausted by incubation at 37ºC for 20 days. Three different substrates were used: 

Freeze dried Spirulina, microcrystalline cellulose (Avicel PH-101; Sigma-Aldrich Art # 

11365) and Chitin (Sigma-Aldrich Art # C7170). Spirulina was also co-digested with 

Avicel (50% w/w), Chitin (50% w/w) and Glycerin (5% w/w). A control test was 

performed without substrate. In addition, 25 mL of fresh alkaline pH 10 medium were 

added to each batch test to achieve a final working volume of 75 mL and a 

headspace volume of 25 mL.  

(ii) Batch test Alk-BT2: These batch tests were inoculated with alkaline 

sludge from the Alk-Sed-2 reactor [4] which was previously substrate-exhausted for 

20 days at 37ºC. The substrates added in the test were freeze dried Spirulina, Avicel, 

wheat straw, pretreated wheat straw and mixture of fresh algal biomass (Dunaliella 

and Geitlerinema). Wheat straw was kindly provided by Dr. Kleinsteuber, and prior to 

its use it was grinded and filtered through a 0.5 mm sieve. Pretreatment of wheat 

straw was as follows. 5 grams of sieved straw were incubated at room temperature 

for 24 hours in a mixture of 0.5 g Ca(OH)2 (lime) and 115 mL of distilled water. Prior 

to its addition to the batch tests as much possible of the liquid was removed (Dr. 

Kleinsteuber personal communication). Fresh algal biomass was kindly cultured and 

provided by MSc Viktor Klassen. Algal biomass was cultured at alkaline pH ~10 with 

a continuous supply of air for 14 days, and the harvesting procedure consisted in 5 

minutes centrifugation at 3,000 g. Harvested biomass was stored at -20ºC to prevent 

degradation until used. Batch tests without substrate addition, Spirulina, Avicel and 

pretreated wheat straw were performed in 100 mL bottles and inoculated with 75 mL 

of alkaline sludge. Batch tests for wheat straw and fresh cyanobacterial biomass 

were done in 250 mL bottles with 75 mL of alkaline sludge.   

Batch tests from both sets were performed in triplicate, substrate concentrations 

were added according to VDI_4630 guide lines of the Verein Deutscher Ingenieure 

(VDI, 2004), closed with a gas tight rubber septum and the headspace was flushed 

with Helium for 1 minute prior to incubation at 37ºC in an incubating chamber. Biogas 

production was measured by determining the pressure build up inside the headspace 

with a portable pressure meter (WAL-BMP-Test system 3150, WAL, Germany). As it 
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took only about 30 seconds to measure the pressure in the headspace for each 

reactor, a constant temperature inside the headspace was assumed (El-Mashad, 

2013). Bottles were manually shaken before and after the pressure measurement. 

When needed the headspace was evacuated to release pressure. Composition of the 

produced biogas was measured with a Shimadzu GC-2010 gas chromatograph with 

settings as in [2]. Gas samples were obtained from the headspace and directly 

injected into the chromatograph with a gas-tight syringe.  

Ammonia nitrogen was measured according to [2] in both exhausted sludge, Alk-HRT 

and Alk-Sed-2, prior to the addition of the different substrates and again at the end of 

the experiments. Likewise, pH was also measured at the beginning and end of each 

experiment. Theoretical methane potential (BMPTH) for both protein containing 

(Spirulina) and protein free substrates (Chitin, Avicel, Wheat straw, Glycerol) and 

Biodegradability percentage BDCH4(%) were determined according to Raposo et al., 

2011. Spirulina’s BMPTH was calculated with Ortega-Calvo et al., 1993 chemical 

composition, C4H7ON0.8S0.02. The same chemical composition was used for the 

cyanobacterial biomass. For Avicel the chemical composition of cellulose (C6H10O5) 

was used, for Chitin, C16H28O11N2, and for glycerol C3H8O3. 426 mL CH4 g VS-1 was 

used as the BMPTH for wheat straw (Kaparaju et al., 2009). 

3. Results and discussion 

Biomethane potential tests (BMP) are a fast and inexpensive method to assess the 

potential biogas production of a particular substrate (Angelidaki et al., 2009; Raposo 

et al., 2011) and were used to determine the suitability of several types of substrates 

as potential candidates for the anaerobic digestion at alkaline conditions. Spirulina 

and Avicel were used in both sets of batch tests, Alk-BT1 and Alk-BT2, because two 

different soda lake sediments were tested throughout the PhD project. It was 

suspected that the microbial community present in the sludge originated from 

sediment-1 and used as inoculum for Alk-BT1 was strongly inhibited and that part of 

its components, mainly hydrolytic bacteria, had been lost during the previous 

processes [2]. This assumption was made after evaluating the results obtained with 

the Alk-BT1 tests. Therefore, to try to obtain a more accurate methane potential of 

these two compounds it was decided to repeat the batch test using alkaline sludge 

originated from fresh sediment-2, Alk-BT2, which did not suffer from inhibition [4].  
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The first important result obtained was that the anaerobic digestion at alkaline 

conditions is a relatively slow process compared to standard mesophilic conditions 

were the average BMP process lasts between 13 and 87 days with a mean duration 

of 32 (Raposo et al., 2011). Here, the batch anaerobic fermentation tests were 

incubated at 37ºC for a period of 100 days in the case of Alk-BT1 and 325 days in the 

case of the Alk-BT2. 

3.1. Alk-BT1 batch tests: biogas production under inhibitory 

conditions 

In the first set of batch tests, Alk-BT1, the highest biomethane potential was achieved 

with microcrystalline cellulose (Avicel) where a total of 33.2 mL of methane g VS-1 

were obtained. This production however was far from its theoretical value 415 mL 

CH4 g VS-1 (Table 5.1).  

Likewise, the BMP of Spirulina, 6.2 mL CH4 g VS-1, was extremely low compared to 

its theoretical value, 627 mL CH4 g VS-1. When chitin was used as substrate no 

production was observed (Table 5.1) which was unexpected as this compound is 

abundant in alkaline soda lakes (Kivistö and Karp, 2011; Kompantseva et al., 2009; 

Kompantseva et al., 2010), its composition is chemically related to cellulose and it 

has already been degraded at mesophilic pH conditions (Boyer, 1986; Pel and 

Gottschal, 1986). 

The absence of biogas production in the chitin test could be explained by (i) lack or 

complete inhibition of sulfate reducers and specific chitin degraders which are 

essential for its degradation (Boyer, 1986) and (ii) the digestion of chitin at such 

extreme conditions might be a slow process requiring more than the 100 days 

incubation period in this experiment. 

The co-digestion of substrates did not increase the overall production and the biogas 

production was below 10 mL g VS-1 in all studied substrates (Table 5.1). When 

Spirulina was co-digested with Avicel, the BMP obtained was similar to plain 

Spirulina but much lower than plain Avicel. This reduction of production when 

compared to sole Avicel could indicate that the microbial community in the co-

digestion test did not use the supplied Avicel, as was already suffering from inhibition 

caused by the degradation of Spirulina. This supposition can be explained by the
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Table 5.1 Alkaline batch tests Alk-BT-1 biogas and methane potentials  
Biogas and methane potential of different substrates at alkaline conditions after 100 days of 
incubation at 37ºC  

 Substrates 

 Spirulina Avicel Chitin 
Spirulina 

+  
Avicel 

Spirulina 
+ 

 Chitin 

Spirulina 
+  

Glycerol 

Theoretical CH4 (mL g VS
-1

)*  627 415 423 521 525 619 

Experimental Biogas (mL g VS
-1

) 8.6 37.3 0.3 7.6 8.6 5.5 

% CH4 72 89 60 78 81 65 

% CO2 15 6 20 10 11 16 

% N2 13 5 20 12 18 19 

Experimental CH4 (mL g VS-1)** 6.2 33.2 0.2 6.0 7.0 3.5 

Biodegradability BDCH4 (%)* 1.0 8.0 0.04 1.1 1.3 0.6 

Initial pH 10.01 10.01 10.01 10.01 10.01 10.01 

Final pH 9.93 9.71 10.23 10.05 10.07 9.97 

Initial NH3 (mg L
-1

) 267 267 267 267 267 267 

Final NH3 (mg L
-1

) 1,121 171 366 858 823 1,164 

*Calculated as in Raposo et al 2011 
** Calculated with the experimental methane % 
 

observation that the degradation of plain Avicel started after 5 days of incubation 

while in the same period of time, degradation of plain Spirulina already reached its 

maximum and a plateau followed. 

This plateau after only 5 days of incubation was mainly attributed to an accumulation 

of NH3 derived from the degradation of Spirulina which resulted in the complete 

inhibition of the methanogenic community. A similar plateau after 5 days of 

incubation was also observed in the co-digestion of Spirulina and Avicel indicating 

that the methanogenic community was inhibited and therefore could not use the 

additional microcrystalline cellulose. If the methanogenic community would have not 

been inhibited, then an increase in the biogas production should appear after day 5 

of incubation, as occurred with plain Avicel. Co-digesting Spirulina with chitin 

produced similar results and no increase in the biogas production was observed 

when compared to digestion of plain Spirulina. One of the benefits of co-digesting 

two or more substrates is that possible inhibitory metabolites released during the 

digestion of the compounds are diluted (Astals et al., 2012). This dilution effect 

became visible by a reduction in the levels of ammonia present in the batch tests 

where Spirulina was co-digested with Avicel or chitin at a 1:1 ratio (Table 5.1). 

However, in both cases, this reduction was still not sufficient and inhibition of the 

methanogenic bacteria eventually occurred. Adding glycerol, a carbon rich substrate, 

did not stimulate the biogas production, on the contrary it reduced the production 
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when compared to digesting plain Spirulina. This was unexpected as glycerol 

generally boosts the biogas production when used as co-substrate (Astals et al., 

2012; Astals et al., 2013), but gain could be attributed to an inhibition of the 

methanogenic community. 

In all batch tests, except in Avicel, the obtained biogas was, in some cases, not as 

rich in methane as expected by the results obtained with the continuous system [2]. 

The highest methane content, 89%, was obtained with the digestion of plain Avicel 

while Spirulina produced biogas with 72% methane (Table 5.1). Apparently the 

expected CO2 scrubber effect of the alkaline medium was not so acute in some of the 

batch tests, especially in those with extreme low biogas production, chitin and the co-

digestion of Spirulina plus glycerol.  

An additional fact pointing towards a general inhibition of the alkaline sludge used as 

inoculum could be seen in the biodegradability of each compound (Table 5.1). The 

highest biodegradability, BDCH4 (%), was achieved with Avicel but it accounted for 

less than 10 percent of the total methane potential. The biodegradability of Spirulina 

at these conditions was extremely low, 1%, while chitin remained almost 

undegraded, 0.04%. Co-digestion of Spirulina with Avicel and chitin slightly increased 

the biodegradability compared to Spirulina only.  

The low biogas production in all batch tests could be attributed to (i) ammonia 

inhibition in the case of tests whit Spirulina as substrate and (ii) to a low activity of the 

hydrolytic bacteria, or to a low number of these bacteria in the cellulose digestion 

test. Ammonia nitrogen, NH3, a molecule that is toxic for methanogenic archaea (Calli 

et al., 2005; Strik et al., 2006), accumulated in the tests that digested Spirulina (Table 

5.1). When Spirulina was used as the sole substrate ammonia reached 1,121 mg L-1 

at the end of the incubation period, a value which is in accordance to the inhibitory 

levels obtained in reactor Alk-HRT [2]. On the other hand, when non-proteinaceous 

substrates were used, the ammonia levels remained low (Table 5.1). In these cases 

the low biogas production could not be attributed to ammonia inhibition but to a low 

number or low activity of hydrolytic bacteria. 

These results show that the alkaline medium utilized as inoculum was extremely 

inactive either by ammonia inhibition which affects methanogens or by a low number 

or lack of activity of the hydrolytic bacteria. 
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Figure 5.1 Alk-BT2 Biomethane potential 

Alk-BT2 cumulative biogas potential alkaline conditions (pH 10; 2.0 M Na
+
) and 37°C 

incubation a) After 325 days of incubation; b) 40 initial days of incubation (enlarged red box). 

 

3.2. Alk-BT2 batch tests: biogas production under non-inhibitory 

conditions  

As the previous results suggested that the alkaline inoculum utilized was heavily 

inhibited, a new set of batch tests were prepared with alkaline sludge obtained in the 

first days of the start-up process of reactor Alk-Sed-2 [4]. 

Using a non-inhibited inoculum had, as expected, a positive effect on the biogas 

production and the overall biogas yields were much higher than the ones obtained 

with the Alk-BT1 tests (Figure 5.1; Table 5.2). Contrary to what was observed in the 

Alk-BT1 tests, the biogas produced from all substrates was rich in methane. The 

highest methane content, 94%, was obtained with fresh algal biomass as substrate 

which is comparable to the results obtained with the continuous alkaline Alk-Opt 

reactor (Table 3; [4]). In all tests, the alkaline medium acted as a carbon dioxide 

scrubber and its presence in the headspace was minor and in some cases absent 

(Table 5.2). 

Wheat straw and Avicel were the substrates with the highest biomethane potential, 

262 and 259 mL CH4 g VS-1 respectively (Table 5.2). The biodegradability of 

microcrystalline cellulose also increased using a fresh inoculum, from 6.5% in Alk-

BT1 to 62.4% in Alk-BT2. Both the biomethane potential and the biodegradability 

were, however, still far from the theoretical maximum methane potential for cellulose, 

415 mL CH4 g VS-1 and were also lower than results at mesophilic pH conditions 



                                                                                                              Unpublished Results [5] 

 141 

Table 5.2 Alkaline batch tests Alk-BT-2 biogas and methane potentials  
Biogas and methane potential of different substrates at alkaline conditions after 325 days of 
incubation at 37ºC 

 Substrates 

 Spirulina Avicel 
Wheat 
straw 

Pretreated 
Wheat 
straw 

Fresh algal 
biomass 

Theoretical CH4 (mL g VS
-1

)*  627 415 426 415 627 

Experimental Biogas (mL g VS
-1

) 85 287 281 18 222 

% CH4 93 90 93 92 94 

% CO2 0 5 3 0 2 

% N2 7 5 4 8 4 

Experimental CH4 (mL g VS
-1

)** 78 259 262 17 210 

Biodegradability BDCH4 (%)* 12.5 62.4 63.2 4.2 33.4 

Initial pH 10.01 10.01 10.01 10.01 10.01 

Final pH 9.70 9.51 9.60 9.84 9.7 

Initial NH3 (mg L
-1

) u.d. u.d. u.d. u.d. u.d. 

Final NH3 (mg L
-1

) 1123 93 133 119 401 

*Calculated as in Raposo et al 2011 
** Calculated with the experimental methane % 
u.d.: Hach Lange LCK302 test under detection limit (47 mg L

-1 
NH4-N) 

 

reported in literature which range from 340 to 390 mL CH4 g VS-1 (Raposo et al., 

2011; Turick et al., 1991).  

Spirulina was also degraded better in Alk-BT2 tests. Its BMP increased to 85 mL of 

methane per gram of volatile solids and the biodegradability increased by factor 12 

compared to the previous batch test (Table 5.2). This BMP is higher than the specific 

methane potential obtained with reactor Alk-Opt, 71 mL CH4 g VS-1, which was 

operated under optimal process conditions (Table 3; [4]). However, these results are 

still far from the ones obtained at mesophilic pH and alkalinity, around 250 mL of CH4 

g VS-1 (Mussgnug et al., 2010).  

Interestingly, when a fresh mixture of algal and cyanobacterial biomass was used as 

substrate, the methane potential drastically increased, reaching 210 mL of methane g 

VS-1. Likewise, the biodegradability of the fresh algal biomass was also greater than 

the biodegradability of freeze dried Spirulina, 33.4 and 12.5% respectively (Table 

5.2). 

This increase in biogas production and biodegradability could be attributed to the 

type of algal mixture used, Geitlerinema, a cyanobacterium and Dunaliella a 

microalga. The latter has a higher BMP at mesophilic pH conditions, 323 mL CH4 g 

VS-1 when compared to Spirulina 293 mL CH4 g VS-1 (Mussgnug et al., 2010). This 

higher BMP potential of Dunaliella over Spirulina is mainly due to the fact that 



Unpublished Results [5] ______________________________________________________  

142 

Dunaliella does not have a cell wall (Mussgnug et al., 2010), and is therefore more 

easily biodegradable compared to Spirulina, which has a proteinaceous cell wall. 

Dunaliella also has a lower content of proteins, 57%, compared to Spirulina, 70% 

(Becker, 2007) which leads to less ammonia production when digested. This explains 

the ammonia concentrations in the fresh algal batch tests which were much lower, 

401 mg L-1, than in the Spirulina batch tests, 1,123 mg L-1 NH3 (Table 5.2). This lower 

ammonia content is clearly below the inhibitory levels reported in our continuous 

anaerobic reactor, 1,200 mg L-1 [2] and therefore methanogens in these batch tests 

were less inhibited than in the Spirulina batch tests. Not much is known about 

Geitlerinema’s biomass composition and biodegradability but it is known that it has a 

filamentous morphology with no spirals which possibly makes it easier to degrade. 

Another factor that could improve the biodegradation of the fresh algal biomass is 

that it was cultivated under alkaline conditions in contrast to the cultivation of 

Spirulina which is normally done at neutral pH. Growth of Spirulina at neutral pH and 

subsequent dehydration can cause Spirulina to aggregate due to ionic interaction 

which can make the digestion process more complex.  

An interesting result was obtained when wheat straw was used as substrate. As can 

be seen in Figure 5.1a the alkaline conditions of the inoculum (pH~10 and around 

100 g CaCO3 L
-1) apparently acted as a pretreatment for the digestion of wheat straw 

and, its biodegradability reached 63.2 % of its theoretical methane potential (Table 

5.2). The BMP and the percentage of conversion of untreated wheat straw digested 

at mesophilic pH conditions (pH~7.5) ranges from 100 mL CH4 g VS-1 and 24% 

conversion to 242 mL CH4 g VS-1 and 57% (Demirbas, 2006; Motte et al., 2014; Song 

et al., 2014). Therefore, the obtained production was higher or similar to that 

obtained at normal pH conditions.  

It is worth noting that when the wheat straw was submitted to an external 

pretreatment (incubation with Ca(OH)2) the biomethane potential and the 

biodegradability were extremely low when compared to the non-treated wheat straw 

(Figure 5.1a; Table 5.2). This result was unexpected as, under mesophilic conditions, 

the pretreatment with Ca(OH)2 usually increases the BMP of wheat straw (Song et 

al., 2013; Song et al., 2014). One possible explanation for this reduction in biogas is 

that the bacterial population was inhibited by the presence of Ca2+. It is known that in 

Soda lakes, in order to have such a high pH and alkalinity, Ca2+ and Mg2+ have to 
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absent from the water (Ulukanli and Rak, 2002). In this context, the soda lake 

microbial community might be sensitive to Ca2+ and thus its presence might have 

caused inhibition of the hydrolytic bacteria or the methanogenic community (Chen et 

al., 2008).   

The digestion of all tested substrates, except pretreated wheat straw, seemed to take 

place in three distinguishable phases (Figure 5.1). In each case however, the three 

phases could be attributed to different causes: 

- Wheat straw: In the first phase, from day 0 to day 10, 12% (35 mL) of the 

total biogas was produced (Figure 5.1a). In this phase the hydrolytic bacteria rapidly 

consumed all the easily available sugars. After day 10, an adaptation phase took 

place which lasted for 30 days in which only 12 mL of biogas were produced (Figure 

5.1b). Wheat straw is mainly composed of cellulose, hemicellulose and lignin in low 

amounts (Zahoor and Tu, 2014) and, during this “lag” period, the alkaline conditions 

of the medium contributed to degradation by disrupting its crystalline structure and 

making cellulose and hemicellulose more accessible for enzyme attack (Kumar et al., 

2009). After this “pretreatment” period, cellulose and more simple sugars were 

released and made accessible for hydrolytic bacteria which resulted in a second 

biogas production phase, from day 40 to day 200, where 75% of the total biogas was 

produced (Figure 5.1a). After this, a plateau was reached, from day 200 to 325 in 

which 22 mL of biogas were produced. This low biogas production indicated that the 

majority of the biodegradable biomass was consumed and only lignin and minor 

amounts of complex sugars remained undigested. 

- Avicel: A similar trend was observed when microcrystalline cellulose (Avicel) 

was used as substrate and three distinct phases could be identified (Figure 5.1). In 

this case however, an initial lag, or adaptation phase took place during the first 16 

days. In this period the biogas production was extremely low with a production of 0.2 

mL of biogas per day (Figure 5.1b). The fact that during the first 16 days the biogas 

production was low corroborates the findings in the wheat straw tests where the initial 

biogas was originated from easily degradable sugars. After this adaptation period, 

and as in the case of the wheat straw, the alkaline medium contributed to the 

disruption of the cellulose molecules and the hydrolytic bacteria were able to start to 

degrade it resulting in a sharply increased of the biogas production from day 16 to 

90. During this period, the daily production was 1.4 mL of biogas. The third phase 
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started at day 90 and ended at day 200 in which 60% of the total biogas was 

produced. After this phase a plateau of almost no biogas production was reached 

(Figure 5.1a). 

Considering that with both cellulose rich substrates, wheat straw and Avicel, most of 

the biogas produced was obtained after a relatively long lag phase it is reasonable to 

state that the fermentation of cellulolytic material, including disruption of the 

crystalline structure by the alkaline medium and subsequent release of sugars and 

easily degradable molecules, is a relatively slow process.  

- Spirulina: In this case, a rapid biogas production was observed during the 

first 16 days, after which a very long lag phase occurred, 154 days (Figure 5.1a). 

During this lag phase only 4.0 mL of biogas were produced. The long lag phase 

could be attributed to a period of adaptation in order to overcome a possible inhibition 

by ammonia accumulated during the first degradation phase, which temporarily 

reduced the activity of the methanogenic bacteria. After the lag phase, or adaptation 

phase, from day 170 onwards, biogas production was resumed, and 50 mL of biogas, 

(60% of total produced biogas) were obtained.  

- Fresh algal biomass: In the case of fresh algal biomass the initial 

production phase lasted from day 0 to 16 where 23% of the total biogas was 

produced. This phase was again followed by a 74 days lag phase where almost no 

biogas was produced (Figure 5.1a). After this period, the biogas production was 

resumed until day 325. During this time, 153 mL of biogas were produced, 69% of 

the total produced gas. In this case, however, and in contrasts to what occurred in 

the Spirulina batch test, the 74 days lag phase could not be attributed to an 

adaptation to ammonia inhibition as the levels of ammonia at the end of the 

experiment were low (Table 5.2). A possible explanation for the observed lag phase 

could be the mixture of fresh algae used. We can only speculate, but it is possible 

that during the first 16 days only the easily accessible parts of both microalgae were 

rapidly digested, and at the same time, the alkaline medium acted relatively slowly on 

the more complex molecules, causing the lag phase. Once the breakdown of the 

organic matter by the alkaline conditions led to the release of compounds that could 

be further degraded by the microbial community, the biogas production was resumed 

(Figure 5.1). One observation that points to this possibility is that the lag phase was 

much shorter in the fresh algal biomass, 74 days, when compared to the lag phase in 
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the Spirulina tests, 154 days. This could indicate that, as speculated, the lag phase 

was due to a slow breakdown of the substrate rather than to an adaptation to 

inhibitory conditions. 

The results obtained with the Alk-BT2 batch tests indicate firstly, that in order to 

obtain a high biogas production at alkaline conditions it is best to use fresh inoculum 

or, inoculum that has not suffered from harsh inhibitory conditions. It is also worth 

noting, that fresh algal biomass has a greater biogas potential than freeze dried 

Spirulina. These results suggest that a biogas system working at alkaline conditions 

and using fresh cyanobacterial biomass as substrate might be an interesting option 

for the production of biogas. Another interesting application of biogas at alkaline 

conditions might be the option of using wheat straw as a substrate. As was shown 

here, the alkaline medium acts as a pretreatment that breaks down the complex 

cellulolytic material which then can be converted into biogas. This approach opens 

the possibility to produce biogas from cellulose biomass in a single step process. 

4. Conclusions 

The results presented are the first attempt of biomethane potential (BMP) from 

Spirulina, fresh algal biomass, and wheat straw at alkaline conditions using the 

sludge originated form an alkaline anaerobic reactor. The results show that fresh 

algal biomass has a higher BMP potential when compared to freeze dried Spirulina. 

These results make fresh algal biomass a possible substrate for an alkaline 

anaerobic digester. BMP of un-pretreated wheat straw at alkaline conditions was 

high, achieving 63% of biodegradability. The presented results open the possibility of 

using un-pretreated wheat straw as substrate for biogas production at alkaline 

conditions in one single step.  
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[6] Metagenome analysis of the microbial population from 

an alkaline anaerobic digester fed with the microalga 

Spirulina  

V Nolla-Ardèvol  

1. Introduction 

Metagenomics has become a commonly used tool to study taxonomy, gene 

composition and gene function in microbial communities (Simon and Daniel, 2011). 

So far, a number of metagenome studies from several biogas producing plants and 

lab scale anaerobic digesters have been performed (Jaenicke et al., 2011; Krause et 

al., 2008; Li et al., 2013; Schlüter et al., 2008; Wirth et al., 2012). In a previous work 

high throughput DNA sequencing was used to study the microbial community 

involved in the anaerobic digestion of the microalga Spirulina at mesophilic pH 

conditions [3]. 

Several studies have applied molecular approaches and sequencing technologies to 

study the microbial diversity of alkaline or hypersaline environments (Kanekar et al., 

2008; Ochsenreiter et al., 2002; Rees et al., 2004). Detection of the methanogenic 

marker gene mcrA has also been used to study the methanogenic population of 

hypersaline and soda lakes (García-Maldonado et al., 2012; Nolla-Ardèvol et al., 

2012). However, few metagenomic approaches have been performed to study the 

microbial community of alkaline lakes or hypersaline environments. López-López et 

al., 2013, studied the archaeal diversity in a hypersaline mat by sequencing selected 

fosmids and Lanzén et al., 2013 studied the prokaryotic diversity in a Kenyan Soda 

lake using the GS-FLX Titanium sequencer. The only known work in which a 

metagenomic approach was applied to study an anaerobic microbial community at 

high pH was recently performed by Wong et al., 2013 in which waste activated 

sludge was pretreated at pH 10 and subsequently used as inoculum for an anaerobic 

digester. 

The anaerobic digestion of organic matter is a complex process that involves the 

participation of both bacteria and archaea (Schlüter et al., 2008; Wirth et al., 2012). 
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Table 6.1 DNA extraction protocols  
Modifications made to the Zhou et al., 2006 DNA extraction protocol to increase 
DNA extraction yields. 

Sample A1 A2 A3 A4 

Protocol Zhou et al., 2006 Zhou et al., 2006 

Modifications     

Wash - NaCl
a
  NaCl  NaCl  

AlNH4(SO4)2 (mM) - - 100 200 

Sequenced No No No Yes 

a; 1.0 M solution 
 

Under alkaline conditions this likely also applies but to date, the different functional 

groups have only been addressed individually (Antony et al., 2012; Kivistö and Karp, 

2011; Sorokin and Kuenen, 2005b). In this work, the metagenomic analysis of the 

anaerobic community of an alkaline reactor digesting Spirulina is discussed with 

regards to taxonomy and function. Elucidating the microbial composition of the 

biogas alkaline digester and understanding the function and relationships of the 

different microorganisms could help to improve the biogas production at alkaline 

conditions. 

2. Material and methods 

DNA for metagenomic analysis was extracted from the Alk-Sed-2 alkaline reactor on 

day 111 of operation [4]. 

2.1. DNA extraction  

Due to the harsh conditions of the sludge, high pH and high alkalinity and to possible 

presence of inhibitory substances such as humic acids and PCR inhibitors, different 

protocols for DNA extraction were compared. DNA was extracted from four samples 

(A1 – A4) following the Zhou et al., 1996 protocol with several modifications in order 

to optimize the DNA extraction (Table 6.1).Extraction of DNA from sample A1 was 

done following the Zhou et al., 1996 protocol without any extra modification.

The remaining samples, A2, A3 and A4 were first washed three times with a 1.0 M 

NaCl solution to reduce the alkalinity by centrifuging 10 minutes at 4,600 rpm. DNA 

from sample A2 was then extracted as in sample A1. For samples A3 and A4 an 

extra modification was made. During the Lysozyme incubation period, 200 µL of 100 

and 200 mM AlNH4(SO4)2 solution was added to samples A3 and A4 respectively to 

precipitate humic acids (Braid et al., 2003; Foti et al., 2008).  
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Extracted DNA from all four samples was purified with an ion exchange column 

(Macherey-Nagel, Germany) and re-suspended in TE buffer. Concentration of 

extracted and purified DNA was determined with the NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, USA). The absorption ratios at 

260nm/230nm (DNA/humic acid) and 260nm/280nm (DNA/protein) were determined 

and used to assess the purity of the extracted DNA. A A260 to A280 ratio higher than 

1.8, indicates the successful removal of proteins, while an A260 to A230 ratio greater 

than 2, indicates high purity of DNA regarding the absence of humic acids and other 

PCR inhibitory substances. 

2.2. DNA sequencing 

2.5 µg of purified DNA obtained from the A4 sample and were used to prepare a 400 

bp insert size sequencing libraries for the Ion Torrent Personal Genome Machine 

(PGM) platform (Life Technologies, USA) and sequenced on a 318™ Chip as in [3]. 

Automated quality control of the sequence reads was performed with the Torrent 

Suite™ Software v3.2 using default settings. Additional quality filtering was done 

using the Trimmomatic tool v3 (Lohse et al., 2012) with settings for removal of trailing 

bases of a q-value lower than 20, and removal of reads shorter than 100 bp and 

longer than 450 bp.  

2.3. Removal of reads belonging to Spirulina 

Quality trimmed reads were uploaded to the MGX platform, a metagenomics platform 

currently being developed at the CeBiTec, for a rapid prescreening of the reads. A 

preliminary taxonomic analysis revealed over 30% of reads assigned to Spirulina 

which were removed as follows: First, 3,125 sequences, from all genomes and 

curated sequences (RefSeq) from the NCBI database (November 2013) classified as 

Spirulina/Arthrospira, were downloaded. Next, quality trimmed reads were blasted 

against the 3,125 sequences in order to identify reads that could potentially belong to 

Spirulina. Blast was performed with an e-value of 1e-10, a maximum of one target 

per sequence and with a minimum of 98% of identity. Any read that had a blast hit to 

any of the downloaded sequences was identified as belonging to Spirulina and 

therefore removed from the dataset. The remaining reads, quality trimmed with no 

Spirulina reads, were used for functional and taxonomical computational analysis. 
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2.4 Analysis of sequencing reads 

2.4.1 Direct analysis of sequencing reads  

Reads were uploaded to the MG-Rast metagenome analyzer (Meyer et al., 2008) 

with default settings and searched for functional genes with the Subsystem 

hierarchical classification option with an e-value of 1e-5, 50% minimum identity and 

15 amino acid minimum length.  

A second functional analysis was performed by identifying specific protein domains 

(Pfam) related to cellulose degradation, and protein and amino acid degradation. 

Pfam identification was done as in [3] with minor modifications. In this case, the 

Translatedna v 1.75 script (www.mbari.org/staff/haddock/scripts/), with the “1” option, 

print best ORF, was used to obtain the best possible ORF for each read. According 

to the scripts user manual, the criteria to select the best ORF are (i) length of longest 

ORF and (ii) the number of individual ORFs. 

2.4.2 Analysis of assembled reads 

In total, two assemblies (A and B ) were performed with the Genome Sequencer De 

Novo Assembler Software v2.6 (Roche Applied Science, Germany); assembly A was 

done with default settings for genomic DNA, and assembly B was done with more 

stringent settings, according to Fan et al., 2012, for better assembly of 16S rDNA 

sequences. Metawatt v1.7, with settings as in [3], was used to perform the binning of 

contigs from assembly A for genome-centric analysis. Automatically generated bins 

with a consistent phylogenetic signature were manually selected and annotated (16S 

rDNA, tRNA and genome completeness) as in [3]. 

2.4.3. Phylogeny of assembled 16S rDNA sequences 

To identify 16S rDNA sequences among the assembled contigs, all contigs from 

assemblies A and B  were submitted to a blastn search against the RDP database 

(v11-2) (Cole et al., 2014). Sequence parts with a hit were extracted and aligned 

parts with a minimum length of 1000 bp for bacteria and archaea or 500 bp for 

Bacteroidetes were used to create phylogenetic trees as in [3] with minor 

modifications. Blastn searches were done against the current (May 2014) NCBI 

nucleotide collection (nr/nt), and reference RNA sequences (refseq_rna) with default 

settings. 

http://www.mbari.org/staff/haddock/scripts/
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3. Results and discussion 

3.1. Optimization of a DNA extraction protocol 

DNA for metagenomic analysis was extracted from alkaline sludge of the Alk-Sed-2 

anaerobic reactor [4]. Due to the harsh conditions of the sludge, pH 10, high alkalinity 

(100 g CaCO3 L-1), high salt concentration, high presence of both degraded and 

undegraded organic matter, the extraction efficiency of DNA was low when using 

standard protocols. The main problem associated with the high amount of organic 

matter might have been the presence of humic acids and other PCR inhibitors which 

co-precipitate with the extracted DNA and impede further enzymatic processing for 

PCR or high throughput sequencing library preparation (Braid et al., 2003; Foti et al., 

2008). In the first DNA extractions attempts (data not shown), the total DNA extracted 

was high but contaminated with high amounts of humic acids (A260/A230 ration ~ 

1.0). In these trials, after DNA purification, only a small fraction of the original DNA 

remained, in most cases with concentrations which were too low for metagenomic 

DNA library preparation Therefore, it was decided to optimize the protocol from Zhou 

et al 1996 and adapt it to the harsh conditions of the sludge. The modifications 

consisted in adding an initial washing step with NaCl in order to lower the alkalinity 

and in the addition of AlNH4(SO4)2 to increase the precipitation of humic acids and 

other PCR inhibitors (Braid et al., 2003; Foti et al., 2008).  

Table 6.2 shows the DNA concentration and the purity achieved with each of the 

different extraction methods. As can be seen, the original Zhou et al., 1996 method 

(sample A1) yielded the lowest DNA concentration and both ratios that determine the 

purity of the extracted DNA were far from their optimal values. A A/260/A280 ratio 

lower than 1.8 is indicative of protein contamination while a A260/A230 ratio below 

indicates the presence of humic acids and other contaminants (Siddhapura et al., 

2010). 

The use of the modified protocol had a positive effect both on the amount of 

extracted DNA and in the reduction of contaminants (Table 6.2). The ratios 

A/260/A280 and A260/A230 were still below their optimal values but were higher than 

the ones obtained with the original DNA extraction procedure. The results show that 

washing with NaCl plus the addition of AlNH4(SO4)2 is a valid strategy to extract high 
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Table 6.2 DNA obtained with the different extraction protocols  
Amount and quality of the total and purified DNA extracted from 15 mL of 
alkaline sludge originating from the Alk-Sed-2 reactor according to the different 
used protocols. 

Sample A1 A2 A3 A4 

Protocol Zhou et al., 2006 NaCl
a
  

NaCl  
100 mM

b
 

NaCl  
200 mM 

Raw DNA 

µg total DNA 1.84 50.56 27.47 20.5 

A260/A280** 1.65 1.59 1.75 1.74 

A260/A230** 0.49 0.87 0.94 1.01 

Purified DNA 

µg total DNA N.P 4.17 4.59 4.84 

A260/A280 N.P 1.95 1.84 2.06 

A260/A230 N.P 2.22 3.44 4.78 

Sequenced No No No Yes 

a: Wash with NaCl 1.0 M; b: mM of AlNH4(SO4)2; N.P: Not performed 
**A260/A280 ratio <1.8 is indicative of protein contamination.   
**A260/A230 ratio >2 is indicative of high purity of DNA. 
 

molecular DNA from alkaline sludge and might be applicable to other types of 

extreme environmental samples.  

3.2. Analysis of the sequenced metagenome 

A DNA sample was extracted from the alkaline reactor Alk-Sed-2 on day 111 of 

operation where the biogas production was 70 mL biogas day-1 with 92% methane 

content [4]. The sequencing run produced 4,602,427 reads and after quality trimming 

and removal of reads that potentially belonged to Spirulina, 2,032,005 reads 

remained.  

3.2.1. Taxonomic analysis of assembled reads 

Contigs obtained from assembly A were processed by binning into provisional whole 

genome sequences of abundant community members (Strous et al., 2012) and 

annotation of these whole genome sequences. From the initial automatic generate 

bins nine were manually identified, based on consistent phylogenetic profiles, 

presence of a complete set of encoded tRNA molecules and presence of a near 

complete set of conserved single copy genes, to contain a provisional whole genome 

sequence belonging to an abundant population. Fragments of 16S rDNA sequences 

were assigned to each of the bins based on correlation of the phylogenetic profile of 

the bins with the phylogenetic affiliation of the identified 16S sequences. 60% of the 

sequenced reads were mapped to these data, indicating that together these



                                                                                                              Unpublished Results [6]  

153 

Table 6.3 Selected microbial bins  
Characteristics and 16S rDNA taxonomical classification of the 9 selected bins obtained from the 
alkaline metagenome. 

Bin characteristics  

Bin 
Contigs 

(#) 
Size 
(Mb) 

N50 
contig 
length 

(kb) 

GC 
(%) 

Cov 
(X) 

tRNA 
(#) 

Conserved 
Genes* 

(#) 

Abun 
(%) 

16S rDNA taxonomic 
classification** 

A 703 2.6 7.3 49.6 21.2 32 128/139 21.2 Bacteroidetes 

B 334 1.9 23.1 42.4 9.0 11 103/139 11.1 Clostridiales 

C 1,900 2.2 1.8 36.9 5.0 24 164/139 7.4 Halobacteroidaceae 

D 2,851 1.6 0.6 35.2 2.2 4 38/139 2.3 Halanaerobiaceae 

E 2,693 2.9 1.6 51.2 3.2 9 111/139 6.0 Bacteroidetes 

F 2,217 2.4 1.9 51.0 2.8 30 97/139 4.5 Methanocalculus 

G 6,796 3.7 0.6 38.6 2.1 43 232/139 5.1 Haloanaerobiales 

H 1,750 1.2 0.7 46.5 2.9 7 20/139 2.2 Clostridiales 

I 1,671 0.8 0.5 61.8 2.3 3 55/139 1.3 Rhodobacteraceae 

Cov: Coverage 
Abun: Abundance 
*Number of Conserved Single Copy Genes detected (out of a set of 139). Numbers higher than 139 
indicate the presence of DNA originating from more than a single population in the bin. Numbers lower than 
139 indicate the provisional genome sequence associated with the bin may be incomplete. 
**Taxonomical assignment based on the SILVA and RDP maximum coincidence level. See Table 6.4 for 
assignment details. 
 

populations accounted for 60% of the microbial community present in the alkaline 

reactor at day 111 (Table 6.3). 

The inoculum used for the anaerobic reactor consisted of sediments from a 

haloalkaline lake, which have not been studied extensively at molecular level and, 

therefore, it was not surprising that a high percentage of the assembled contigs 

(~40%) could not be assigned to any particular taxon by blastn. This difficulty in the 

assignment of taxa indicates that a great number of the bacteria and archaea present 

in the alkaline reactor were, as expected, relatively unrelated to reference organisms 

with sequenced genomes.  

As in the case of the mesophilic digester microbial community [3], Bacteria clearly 

dominated with 8 of the 9 bins representing over 95% of the binned populations. Only 

a single of the binned populations belonged to Archaea and was related to 

Methanocalculus (4.5% abundance; (Table 6.3). 

Interestingly, and in contrast to previous studies where Clostridia dominated the 

bacterial population of anaerobic digesters (Jaenicke et al., 2011; Kovács et al., 

2013; Li et al., 2013; Schlüter et al., 2008; Wirth et al., 2012), here Bacteroidetes 

were predicted to be the dominant. Firmicutes accounted for 28.1% of the identified 
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microbial population while Bacteroidetes represented 27.2%. Proteobacteria were 

also present but in much lower abundance, 1.3% (Table 6.3). As expected, most of 

the identified 16S rDNA populations were assigned to halotolerant and alkaliphilic 

groups such as Halanaerobium and other members of the Halanaerobiaceae family 

(Baumgarte, 2003; Kapdan and Erten, 2007; Kivistö and Karp, 2011; López-López et 

al., 2013), Anaerobranca (Grant, 2006; Humayoun et al., 2003; Yang et al., 2013), 

Orenia (Kivistö and Karp, 2011; Rainey et al., 1995; Wuchter et al., 2013) and the 

methanogen Methanocalculus (Garcia et al., 2000; Lanzén et al., 2013; McGenity, 

2010; Nolla-Ardèvol et al., 2012; Surakasi et al., 2007), which have previously been 

identified in alkaline lakes and saline habitats (Table 6.4). 

3.2.1.1 Taxonomy of the fermentative bacteria 

The first three steps of the anaerobic digestion process, hydrolysis, acidogenesis and 

acetogenesis are performed, at mesophilic pH conditions, mainly by bacteria of the 

phyla Firmicutes, Bacteroidetes and Thermotoga among others (Jaenicke et al., 

2011; Pavlostathis, 2011; Schlüter et al., 2008; Al Seadi et al., 2008). In the case of 

the anaerobic digestion at alkaline conditions these groups of bacteria also appear to 

be responsible for these processes but in different proportions than previously found 

(Table 6.3).  

(i) Cytophaga-Flavobacterium-Bacteroides group (Bacteroidetes)  

The most abundant population, 21.2%, corresponding to bin A (Table 6.3), contained 

three contigs, contig08670, contig11253 and contig24233, with 16S rDNA sequences 

that were all assigned to “ML635J-40 aquatic group” by the SILVA classifier, and to 

Bacteroidetes Incertae Sedis, Flavobacteria and Bacteroidia by the RDP classifier, all 

members of the Cytophaga-Flavobacterium-Bacteroidetes group (CFB) (Table 6.4). 

Contig08670, assigned by SILVA to the “ML635J-40 aquatic group” and by RDP to 

Bacteroidia was closely related (97% blastn identity) with “clone ML635J-56”, an 

uncultured Bacteroidetes identified in soda lake sediments (Humayoun et al., 2003) 

(Figure 6.1). 16S rDNA sequences assigned to “ML635J-40 aquatic group” and to 

“ML635J-56” have previously been identified in Mono lake (California, USA) 

(Humayoun et al., 2003) and Lonar crater lake sediments (Maharastra, India) (Wani 

et al., 2006), both saline soda lakes. This group of uncultured bacteria is currently 

classified as members of the Bacteroidetes phylum. The class Bacteroidia includes 
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only one family, Marinilabiaceae, which is known to include a halophilic anaerobic 

fermentative bacterial species, Anaerophaga thermohalophila (de la Haba et al., 

2011). This same contig, contig08670, was assigned to Anaerophaga by the RDP 

classifier but only with 47% confidence at family level and 25% at genus level (data 

not shown). Contig08670 was also closely related to contig05582 from assembly B 

which could be classified by RDP as Bacteroidia with 100% identity (Table 6.4) and 

was also classified as Anaerophaga (25% identity; data not shown). Even though the 

RDP classification of both contigs suggested that they belonged to Anaerophaga, 

their phylogenetic classification places them closer the “ML635J-40 aquatic group” 

(Figure 6.1). Contig11253, also assigned to “ML635J-40 aquatic group” by SILVA, 

was classified as Flavobacteria by RDP (Belliella with 25% identity; data not shown). 

Phylogenetically it was closely related to cloneCSS133, (99% blastn identity) another 

uncultured Bacteroidetes sequenced from coastal soil (Keshri et al., 2012; direct 

submission) and both were also placed into the “ML635J-40 aquatic group” clade 

(Figure 6.1). The third contig, contig24233, could only be assigned at class level as a 

Bacteroidia Incertae Sedis by RDP (Marinifilum 18% identity; data not shown) and 

again to “ML635J-40 aquatic group” by SILVA. These results indicate that bin A was 

composed of DNA sequences from an uncultured Bacteroidetes of the CFB group 

phylogenetically close to the “ML635J-40 aquatic group”.  

A similar result was obtained in bin E, 6% abundance (Table 6.3), where all four 16S 

rDNA sequences were also assigned to “ML635J-40 aquatic group” by SILVA and to 

Flavobacteria and Sphingobacteria, by RDP (Table 6.4). Contig05178, assigned to 

“ML635J-40 aquatic group” by SILVA, was assigned to Alkaliflexus by RDP (27% 

identity; data not shown), an alkaliphilic Bacteroidetes of the CBF group (Zhilina et 

al., 2004). Phylogenetically was closely related (99% blastn identity) to an uncultured 

Bacteroidetes clone WN-HWB-154 isolated from Wadi An Natrun alkaline lake in 

Egypt (Mesbah et al., 2007a) and to contig13353 from assembly B, which was 

assigned by RDP to Paludibacter (29% data not shown), another Bacteroidales 

(Figure 6.1; Table 6.4). The “ML635J-40 aquatic group” (Baumgarte, 2003), 

Anaerophaga (Denger et al., 2002), Belliella (Brettar et al., 2004), Marinifilum (Na et 

al., 2009) and Alkaliflexus (Zhilina et al., 2004) belong to what is known as the 

Cytophaga–Flavobacterium–Bacteroides group. 
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Table 6.4 Contigs containing 16S rDNA sequences of the 9 selected bins 
16S rDNA taxonomical assignment of binned and unbinned contigs from assembly A and contigs from assembly B performed with the SILVA 
and RDP databases. Assignment was done with 80% minimum identity. Numbers in brackets indicate the highest percentage of identity. No 
number indicates 100% identity. 

Ass* Bin Contig DB Phylum Class Order Family Genus 

A A 

Contig08670 
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40 aquatic group  

RDP Bacteroidetes  Bacteroidia (61)    

Contig11253  
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40  aquatic group  

RDP Bacteroidetes  Flavobacteria (63)    

Contig24233 
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40  aquatic group  

RDP Bacteroidetes (99) Incertae sedis (24)    

A B Contig02281  
SILVA Firmicutes Clostridia Clostridiales   

RDP Firmicutes  Clostridia  Clostridiales  Clostridiaceae (74)  

A C Contig01919  
SILVA Firmicutes Clostridia Halanaerobiales Halobacteroidaceae  

RDP Firmicutes Clostridia Halanaerobiales Halobacteroidaceae Orenia (76) 

A D 

Contig03844  
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae  Halanaerobium 

RDP Firmicutes Clostridia Halanaerobiales (98) Halanaerobiaceae (91) Halocella (52) 

Contig21218  
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae   

RDP Firmicutes Clostridia Halanaerobiales (99) Halanaerobiaceae (98) Halothermothrix (64) 

Contig25077  
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae  Halanaerobium  

RDP Firmicutes Clostridia Halanaerobiales  Halanaerobiaceae (98) Halanaerobium (61) 

A E 

Contig05178 
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40 aquatic group  

RDP Bacteroidetes  Flavobacteria (55)    

Contig25151  
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40 aquatic group  

RDP Bacteroidetes Flavobacteria (38)    

Contig26930  
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40  aquatic group  

RDP Bacteroidetes (98) Sphingobacteria (31)    

Contig29659  
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40  aquatic group  

RDP Bacteroidetes (91) Flavobacteria (71)    

A F Contig01776  
SILVA Euryarchaeota Methanomicrobia Methanomicrobiales Incertae Sedis Methanocalculus 

RDP Euryarchaeota Methanomicrobia Methanomicrobiales Incertae Sedis Methanocalculus 

* Ass: Assembly used. See Material and Methods section for details 
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Table 6.4 Continuation 
Ass* Bin Contig DB Phylum Class Order Family Genus 

A G 

Contig11185 
SILVA Firmicutes Bacilli Bacillales Bacillaceae  

RDP Firmicutes (97) Clostridia (86) Halanaerobiales (61)   

Contig12844 
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

RDP Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium  

Contig14076 
SILVA Firmicutes Clostridia    

RDP Firmicutes (89) Clostridia (73)    

Contig18213 
SILVA Firmicutes     

RDP Firmicutes (68)     

Contig18995 
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

RDP Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium  

Contig25642 
SILVA Firmicutes Clostridia Halanaerobiales   

RDP Firmicutes (90) Clostridia (81) Halanaerobiales (73)   

Contig25685 
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

RDP Firmicutes (86) Clostridia (73)    

Contig26525 
SILVA Firmicutes     

RDP Firmicutes (91) Clostridia (89) Halanaerobiales (70)   

Contig27756 
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

RDP Firmicutes (84) Clostridia (78)    

Contig29794 
SILVA -     

RDP Firmicutes (76)     

A H 
Contig01782  

SILVA Firmicutes Clostridia Clostridiales Clostridiaceae  

RDP Firmicutes Clostridia Clostridiales Clostridiaceae Tindallia  

Contig02379  
SILVA Firmicutes Clostridia Clostridiales Incertae Sedis XIV Anaerobranca 

RDP Firmicutes Clostridia (99) Clostridiales (98) Incertae Sedis XIV (88) Anaerobranca (88) 

A I 
Contig04714  

SILVA Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

RDP Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Rhodobaca (52) 

Contig08033  
SILVA Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  

RDP Proteobacteria Alphaproteobacteria Rhodobacterales  Rhodobacteraceae (99) Rhodobaca (45) 

* Ass: Assembly used. See Material and Methods section for details 
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Table 6.4 Continuation 

Ass* Bin Contig DB Phylum Class Order Family Genus 

A Un** Contig01627  
SILVA Firmicutes Clostridia Natranaerobiales Natranaerobiaceae  

RDP Firmicutes Clostridia  Natranaerobiales Natranaerobiaceae Natranaerobius 

B Un** 

Contig02658 
SILVA -     

RDP Firmicutes Clostridia Natranaerobiales Natranaerobiaceae Natronovirga 

Contig03146 
SILVA Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

RDP Firmicutes Clostridia Halanaerobiales Halanaerobiaceae Halanaerobium 

Contig05582 
SILVA -     

RDP Bacteroidetes Bacteroidia Bacteroidales (43)   

Contig05874 
SILVA Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Salinarimonas 

RDP Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Chelatococcus 

Contig07456 
SILVA -     

RDP Firmicutes Clostridia Halanaerobiales Halanaerobiaceae (73)  

Contig13353 
SILVA Bacteroidetes Bacteroidia Bacteroidales ML635J-40 aquatic group  

RDP Bacteroidetes Bacteroidia Bacteroidales (65)   

* Ass: Assembly used. See Material and Methods section for details 
** Un: Unbinned contigs 
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Figure 6.1 16S rDNA Cytophaga-Flavobacterium-Bacteroides phylogenetic tree 
16S rDNA phylogenetic tree of the contigs assigned to members of the Cytophaga-Flavobacteria-
Bacteroides group (CFB) by the RDP and SILVA classifiers. Although the binning was performed 
with contigs of assembly A, the tree also includes those contigs that were obtained from 
assembly B and were not assembled in assembly A. Minimum contig length of 500bp. Colored: 
sequences obtained from metagenomic reads. Assignment to Metawatt bins and percentage of 
bin abundance is indicated if applicable. Reference sequences in bold: top hits in blast search 
against NCBI reference RNA sequences database; bold+italics: top hits in blast search against 
NCBI non-redundant nucleotide collection. Additional reference sequences tree represent genera 
detected in other alkaline environments or anaerobic digesters. 16S rDNA sequence of E. coli 
RREC_I was chosen as outgroup. Bootstrap values at nodes are obtained from 500 replicates 
and are only shown for branches with at least 50% support (values > 49.9). The scale bar 
represents 0.01 nucleotide substitutions per site. Accession numbers of reference sequences are 
available in Suppl. Table 6.1 

This is an important group of bacteria present in aquatic and haloalkaline 

environments (Humayoun et al., 2003; Rees et al., 2004) which participate in the 

degradation of organic matter and complex polysaccharides (Brettar et al., 2004) 

Some of their members are able to utilize proteins as substrate (Chen and Dong, 

2005) and all the identified organism can grow in the presence of salt (Brettar et al., 

2004; Denger et al., 2002; Na et al., 2009). 

Members of the phylum Bacteroidetes have been previously identified in several 

biogas reactors but at lower abundance (Jaenicke et al., 2011; Rivière et al., 2009; 

Schlüter et al., 2008). The relatively high abundance of these populations in the data 

presented here, 21% bin A, and 6% bin E (Table 6.3), is in accordance with the 

findings of several studies from alkaline and saline environments where CFB bacteria 
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were found to dominate microbial communities. For example Mouné et al., 2003 

found that CFB dominated in anoxic sediments below cyanobacterial mats from 

Mediterranean hypersaline ponds while Boutaiba et al., 2011 detected 40% 

abundance of Bacteroidetes in the sediments of Sidi Ameur hypersaline lake 

(Algeria). Bacteroidetes were also the dominant phyla in the waters of lake Chaka 

(China) an athalassohaline lake with a 32% salinity (Jiang et al., 2006). In addition, 

Bacteroidetes have also been found to be present in anaerobic reactors fed with 

protein rich substrates like Spirulina [3], casein and pig blood (Kovács et al., 2013). 

The ability to degrade proteins and the relatively high abundance of members of the 

CFB group observed in these habitats might be indicative that this particular group 

plays an important role in the degradation of protein rich substrates at alkaline 

conditions. 

(ii) Clostridiales, Natranaerobiales and Halanaerobiales (Firmicutes) 

Clostridiales (bin B and bin H) were the second most abundant identified populations, 

together accounting for 13% of the identified community (Table 6.3). Contig02281 

from bin B was assigned, with 62% identity (data not shown) to the genus 

Natronincola by the RDP classifier while SILVA could only assign the contig to the 

order Clostridiales (Table 6.4). Contig02281 was phylogenetically related to an 

uncultured bacterium clone x216 identified in sediments from soda lake Xiarinur in 

Inner Mongolia (Cao et al., 2009; direct submission) and to Clostridium difficile 630 

(Figure 6.2). Members of the genus Clostridium are ubiquitous, and capable of 

growing both at neutral and alkaline pH (up to pH 11), and some require sodium. 

Clostridium can utilize yeast extract as carbon and energy source and they produce 

acetate as the main fermentative product (Yutin and Galperin, 2013).  

The 16S rDNA sequences detected in Bin H could be assigned to Anaerobranca and 

Tindallia, both Clostridiales, which are alkaliphilic bacteria, that is, members of this 

group can grow optimally at pH above 9.0 (Yumoto, 2002) (Table 6.4). Contig02379 

was assigned to Anaerobranca by both classifiers. Phylogenetically, the 16S rDNA 

sequence was closest to Proteinovarax tanatarense (96% blastn identity against 

NCBI NR database, assigned to genus Anaerobranca in the RDP database) isolated 

from a decaying algal bloom obtained from the Tanatar soda lake (Russia) (Kevbrin 

et al., 2013) (Figure 6.2). Contig01782 was assigned to Tindallia by RDP. As can be 

seen in Figure 6.2 its closest related 16S rDNA sequence originates from Clostridium
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Figure 6.2 16S rDNA Firmicutes phylogenetic tree 
16S rDNA phylogenetic tree of the contigs assigned to members of the Firmicutes phyla by the 
RDP and SILVA classifiers. Although the binning was performed with contigs of assembly A, the 
tree also includes those contigs that were obtained from assembly B and were not assembled in 
assembly A. Minimum contig length of 1000bp. Colored: sequences obtained from metagenomic 
reads. Assignment to metawatt bins and percentage of bin abundance is indicated if applicable. 
Reference sequences in bold: top hits in blast search against NCBI reference RNA sequences 
database; bold+italics: top hits in blast search against NCBI non-redundant nucleotide 
collection. Additional reference sequences tree represent genera detected in other alkaline 
environments or anaerobic digesters. 16S rDNA sequence of Arthrospira platensis was chosen 
as outgroup. Bootstrap values at nodes are obtained from 500 replicates and are only shown for 
branches with at least 50% support (values > 49.9). The scale bar represents 0.01 nucleotide 
substitutions per site. Accession numbers of reference sequences are available in Suppl. Table 
6.1 

 
elmenteitii (99% blastn identity against NCBI NR database, assigned to genus 

Tindallia in the RDP database) an organism identified in soda lakes (Jones et al., 

1998).  

16S rDNA clones related to Anaerobranca and to Proteinovarax have already been 

detected in several soda lakes (Humayoun et al., 2003; Kevbrin et al., 2013). 

Anaerobranca was also among the most abundant Clostridia in an anaerobic reactor 

used for the production of short chain fatty acids at alkaline conditions (Zhang et al., 

2010). Anaerobranca requires Na+ for growth and members of this genus are 

capable of degrading proteins and carbohydrates to acetate CO2 and H2 at pH values 

between 6.0 and 10.5 (Engle et al., 1995). Proteinivorax is also an anaerobic 
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alkaliphilic bacterium which can grow at pH up to 10.8 and can only use 

proteinaceous substrates such as albumin, peptone and yeast extract as carbon, 

nitrogen and energy sources (Kevbrin et al., 2013). 

The first representative pf the genus Tindallia, was isolated from a Kenyan alkaline 

lake, Lake Magadi by Kevbrin et al., 1998 and more recently similar clones have 

been again identified in sediments from the same lake (Baumgarte, 2003). Members 

of the genus Tindallia belong to the group of organisms called acetogenic 

ammonifers, and are able to ferment amino acids such as arginine and ornithine to 

acetate, propionate, H2 and ammonia. They are also unable to utilize carbohydrates 

or polymeric compounds (Kevbrin et al., 1998; Oren, 2005). Tindallia use arginine 

and ornithine as substrates, and because they have been isolated from soda lakes 

where significant blooms of cyanobacteria occur, it has been suggested that these 

organisms use cyanophycine, an amino acid polymer composed of aspartic acid and 

arginine which can be found in most Cyanobacteria, as the substrate (Kevbrin et al., 

1998). 

As can be seen in Figure 6.2, bin H appears to be composed of sequences 

originating from two different organisms, one encoding the 16S rDNA sequence of 

contig02379, most similar to Anaerobranca, and the other of contig 01782, most 

similar to Tindallia (contig01782) (Table 6.4). This could be explained by the fact that 

for both the contigs have similar sequence coverage (25.1X for contig02379 and 

19.7X for contig01782), and they both have similar tetranucleotide patterns which 

causes them to cluster together in the same bin. As a result, it can be speculated 

that, bin H contains sequence information from two different populations of related 

Clostridia.  

Multiple clostridial clones have been identified in several soda lakes (Baumgarte, 

2003; Jones et al., 1998; Kivistö and Karp, 2011; Mesbah et al., 2007a), but the 

specific function is still unknown. In mesophilic pH anaerobic digesters members of 

the order Clostridiales are known to play a major role in the decomposition of organic 

matter and are among the most abundant orders (Jaenicke et al., 2011; Kovács et 

al., 2013; Li et al., 2013; Schlüter et al., 2008). With the scarce information regarding 

the physiology of this type of bacteria adapted to alkaline conditions, their function in 

the anaerobic digestion process at alkaline conditions can only be a speculation.  
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Bins, C, D and G, were assigned to members of the order Halanaerobiales, families 

Halobacteroidaceae and Halanaerobiaceae (Table 6.3 and 6.4). Bin C contained one 

contig encoding a 16S rDNA sequence, contig01919 (1495 bp; 13X coverage; data 

not shown), which was assigned to the halotolerant family, Halobacteroidaceae. The 

SILVA classifier could only classify the contig to family level, while the RDP classifier 

assigned the contig at genus level to Orenia (76% identity) (Table 6.4). 

Phylogenetically, the 16S sequence was most similar to that of an uncultured 

organism, clone MAT-CR-H3-B08 (assigned to genus Orenia in the RDP database), 

isolated from a microbial mat originating in a saltern pond (Puerto Rico) (Isenbarger 

et al., 2008), and also closely related to an Orenia 16S sequence obtained from a 

hypersaline oil reservoir (Joulian 2012; Direct submission) (Figure 6.2). Members of 

the genus Orenia were first isolated from the hypersaline lake Dead Sea and are 

known to be moderately halophilic, they can ferment glucose to formate, acetate, 

butyrate, CO2 and H2 and they have also been identified in sediments of lake Magadi 

(Kenya) (Baumgarte, 2003; Kivistö and Karp, 2011; de la Haba et al., 2011). Even 

though the function of Orenia in the anaerobic digestion process is not known, 

members of the family Halobacteroidaceae are also known to be able to ferment 

sugars and amino acids (Oren, 2008).  

Bin D contains three contigs with 16S rDNA sequences that were assigned to the 

same family, Halanaerobiaceae, but to different genera, Halanaerobium, Halocella 

and Halothermothrix (Table 6.4). Among the three contigs, only contig03844 

contained a 16S rDNA sequence part longer than 1,000 bp and was included into the 

alignment for the phylogenetic tree. The 16S sequence part of contig03844 was 

almost identical (99% blastn identity) to clone CSS150, an uncultured Firmicutes 

detected in coastal soil of the Gulf of Khambhat (India) (Keshri et al., 2012; Direct 

submission) and fell into the same clade as Halanaerobium and Halocella (Figure 

6.2). These results and considering that the 16S sequence of this contig was similar 

to the 16S sequence found on contig03146 from assembly B, which was also 

classified as Halanaerobium by SILVA and RDP (Table 6.4), suggest that bin D might 

represent a bacterium closely related to Halanaerobium.  

The Halanaerobiaceae are moderate halophilic bacteria and the family consists of 

species of the genus Halanaerobium, Halothermothrix and Halocella (de la Haba et 

al., 2011). Members of this family are able to ferment glucose, fructose and pectin 
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among other substrates and they produce butyrate, acetate, propionate, H2 and CO2 

(Kivistö and Karp, 2011). Halanaerobium 16S sequences and similar clones have 

been identified in alkaline lakes (Brown et al., 2011), in hypersaline ponds (Mouné et 

al., 2003) and in hypersaline sediments from Great Salt Lake (USA) (Ivanova et al., 

2011) among other extreme environments. Interestingly, Kapdan and Erten, 2007 

used a  type of Halanaerobium, H. lacusrosei, to anaerobically treat saline 

wastewater using an up-flow anaerobic packed bed reactor which indicates that 

members of this group have biotechnological potential for the treatment of saline and 

alkaline wastewaters. 

Bin G was difficult to assign to a particular organism by both 16S classifiers due to 

two main reasons: (i) bin G recruited a high number of short contigs (Table 6.3) and 

the identified 16S rDNA sequences were also short, less than 500 bp each (data not 

shown), and (ii) the number of tRNAs and conserved genes is the highest among all 

selected bins (Table 6.3) which indicates that the bin contains DNA originating from 

multiple organisms. Taking into account that most of the contigs that could be 

classified were assigned to Halanaerobium suggest that bin G belongs to the order 

Halanaerobiales which is in accordance to the type of inoculum utilized. 

Two other contigs, an unbinned contig from assembly A, contig01627, and 

contig02658 from assembly B were assigned to members of the Natranaerobiales 

order (Table 6.4). Contig01627, assigned to Natranaerobius by RDP and to the 

family Natranaerobiaceae by SILVA was phylogenetically related to Natronovirga 

wadinatrunensis and to Natranaerobius thermpohilus both halophilic bacteria isolate 

from soda lakes (Mesbah and Wiegel, 2009; Zhao et al., 2011) (Figure 6.2). N. 

thermophilus is a polyextremophilic bacteria first isolated from Fazda soda lake 

(Wadi An Natrun, Egypt) by Mesbah et al., 2007b which is capable of growing under 

high salt concentrations (3.1 - 4.9 M Na+), high temperature (35 - 56°C) and high pH 

(8.5 - 10.6) and can use peptone as carbon and energy source. N. wadinatrunensis 

also isolated from a Wadi An Natrun soda lake, requires the presence of yeast 

extract and tryptone to utilize glucose, fructose and other sugars as carbon and 

energy sources and it is unable to degrade cellobiose and other cellulose derived 

substrates (Mesbah and Wiegel, 2009). These nutritional characteristics plus the fact 

that members of the order Natranaerobiales have also been detected in a lab-scale 
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anaerobic reactor fed with casein (Kovács et al., 2013) might indicate that these 

bacteria play a role in the digestion of protein rich substrates.   

(iii) Rhodobacterales and Rhizobiales (Alphaproteobacteria) 

Alphaproteobacteria were also detected in the alkaline anaerobic reactor but their 

abundance was low, 1.3% (Table 6.3). Bin I was assigned by both classifiers to the 

purple non-sulfur bacteria Rhodobaca of the family Rhodobacteraceae (Table 6.4). 

Of the known 16S sequences, the one most similar to that of contig04714 was from 

an uncultured bacterium, clone TX4CB_152, isolated from sediments of former 

alkaline lake Texcoco (Mexico) (Valenzuela-Encinas et al., 2009). Other 

Rhodobacterales isolated from alkaline environments also had 16S sequences 

similar to that of contig04714 (Figure 6.3). The closest cultured organism was 

Rhodobacter sp. isolated from alkaline olive oil waste (Ntougias et al., 2006). 

Rhodobacter related bacteria are widespread in aquatic environments with abundant 

organic matter. They grow photoautotrophically under anaerobic conditions in the 

presence of sulfide or chemoorganoheterotrophically in aerobic conditions (Venkata 

Ramana et al., 2008; Wani et al., 2006). Members of the family Rhodobacteraceae 

have been identified and isolated from several soda lakes (Kompantseva et al., 2007; 

Kompantseva et al., 2010; Lanzén et al., 2013), from mesophilic pH biogas reactors 

(Krause et al., 2008; Nelson, 2011) and also from an anaerobic reactor treating dye 

wastewaters (Zhang et al., 2012b).  

In assembly B, a contig containing a 16S sequence related to an 

alphaproteobacterium of the order Rhizobiales was also identified (Table 6.4). 

Contig05874 was classified as a Salinarimonas by SILVA and as a Chelatococcus by 

RDP. This 16S sequence showed 99% blastn similarity to cloneSA_118, identified in 

Lonar soda lake (India) (Figure 6.3). Rhizobiales and related members are known 

polyextremophilic and have been identified in other alkaline environments 

(Baumgarte, 2003; Valenzuela-Encinas et al., 2009) and in salt mines (Liu et al., 

2010), as well as in mesophilic pH anaerobic reactors (Héry et al., 2010; Krause et 

al., 2008; Zhang et al., 2012b). Chelatococcus and Salinarimonas, the closest known 

organisms, are both halotolerant and can grow at high pH and they both require 

Tryptone Soya medium for growth which indicates that they need a source of amino 

acids to grow (Liu et al., 2010; Yoon et al., 2008).  



Unpublished Results [6] ______________________________________________________  

166 

 
Figure 6.3 16S rDNA Alphaproteobacteria phylogenetic tree  
16S rDNA phylogenetic tree of the contigs assigned to members of the Alphaproteobacteria class 
by the RDP and SILVA classifiers. Although the binning was performed with contigs of assembly 
A, the tree also includes those contigs that were obtained from assembly B and were not 
assembled in assembly A. Minimum contig length of 1000bp. Colored: sequences obtained from 
metagenomic reads. Assignment to Metawatt bins and percentage of bin abundance is indicated 
if applicable. Reference sequences in bold: top hits in blast search against NCBI reference RNA 
sequences database; bold+italics: top hits in blast search against NCBI non-redundant 
nucleotide collection. Additional reference sequences tree represent genera detected in other 
alkaline environments or anaerobic digesters. 16S rDNA sequence of B. subtilis was chosen as 
outgroup. Bootstrap values at nodes are obtained from 500 replicates and are only shown for 
branches with at least 50% support (values > 49.9). The scale bar represents 0.01 nucleotide 
substitutions per site. Accession numbers of reference sequences are available in Suppl. Table 
6.1 
 

Both, Rhizobiales and Rhodobacterales have been detected in anaerobic reactors 

and in alkaline environments but their ecological role has not yet been fully 

understood. As both, Salinarimonas and Rhodobacter can grow at aerobic and 

anaerobic conditions, it is possible that their relatively high presence is not only 

related to their capacity to grow in haloalkaline environments but to possible 

presence of oxygen in the anaerobic reactor due to the relatively low biogas 

production rate. 

3.2.1.2 Taxonomy of the methanogenic archaea 

The final step in the anaerobic digestion process is the production of methane and is 

carried out by methanogenic archaea. Methanogenesis in alkaline environments has 

been widely studied for the last decades (Grant, 2006; McGenity, 2010; Oremland et 
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al., 1982; Sorokin and Kuenen, 2005a; Zhilina and Zavarzin, 1994) but so far only 

one study by van Leerdam et al., 2008 described the methanogenic population in lab-

scale anaerobic alkaline reactors. In that study, Methanolobus oregonensis, a 

methylotrophic member of the Methanosarcinales (Liu et al., 1999), was the 

dominant methanogen. In a previous work, several (halo)alkaliphilic methanogenic 

Archaea related to Methanobacteriales and Methanomicrobiales were identified from 

soda lake sediments based on the mcrA marker genes (Nolla-Ardèvol et al., 2012).  

Apparently in the alkaline anaerobic reactor, a single population of methanogens, 

Methanocalculus, a Methanomicrobiales, dominated among the archaeal community 

(Table 6.3). Bin F contained one 16S rDNA sequence, contig01776, which was 

classified by both classifiers as Methanocalculus (Table 6.4). Phylogenetically, this 

sequence was closely related to Methanocalculus sp. AMF-Bu2, identified in 

sediments from soda lakes of the Kulunda Steppe (Altai, Russia), the same lake 

system from which the inoculum for the alkaline reactor was obtained (Sorokin 2012; 

direct submission), and to Methanocalculus natronophilus, isolated from sediments of 

soda lakes of the Tanatar II system, also in the Kulunda region (Zhilina et al., 2013) 

(Figure 6.4). As expected, the identified methanogen fell in the same clade as other 

halotolerant Methanomicrobiales and it is clearly distant from Methanomicrobiales 

isolated and identified in mesophilic pH anaerobic reactors (Figure 6.4). Members of 

the genus Methanocalculus have been identified in other alkaline environments such 

as Lonar crater lake in India (Antony et al., 2012; Surakasi et al., 2007; Wani et al., 

2006), Ethiopian soda lakes (Lanzén et al., 2013), and an hypersaline oil reservoir 

(Ollivier et al., 1997) among others. Members of the genus Methanocalculus are 

hydrogenotrophic, and one of its members, M. halotolerans is the most halotolerant 

hydrogenotrophic methanogen identified so far. It can grow in the presence of up to 

12.5% NaCl (Ollivier et al., 1997). All known members of this genus, including M. 

halotolerans have restricted pH growth ranges from 6.7 to 8.3 (Lai et al., 2002; 

Ollivier et al., 1997), with one exception, Methanocalculus natronophilus. M. 

natronophilus is so far the only known member of this genus to be strictly alkaliphilic, 

it can only grow at pH between 8.0 to 10.2, with an optimum between pH 9.0 and 9.5, 

it also requires between 0.5 and 1.6 M of carbonates and from 0.9 to 3.3 M of Na+. 

M. natronophilus is an hydrogenotrophic methanogen and cannot use acetate as 

substrate for methanogenesis albeit it requires it for growth as carbon source (Zhilina 

et al., 2013).  
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Figure 6.4 16S rDNA Methanogens phylogenetic tree 
16S rDNA phylogenetic tree of the contigs assigned to methanogenic archaea by the RDP and 
SILVA classifiers. Minimum contig length of 1000bp. Colored: sequences obtained from 
metagenomic reads. Assignment to Metawatt bins and percentage of bin abundance is indicated 
if applicable. Reference sequences in bold: top hits in blast search against NCBI reference RNA 
sequences database; bold+italics: top hits in blast search against NCBI non-redundant 
nucleotide collection. Additional reference sequences tree represent genera detected in other 
alkaline environments or anaerobic digesters. 16S rDNA sequence of M. kandleri was chosen as 
outgroup. Bootstrap values at nodes are obtained from 500 replicates and are only shown for 
branches with at least 50% support (values > 49.9). The scale bar represents 0.01 nucleotide 
substitutions per site. Accession numbers of reference sequences are available in Suppl. Table 
6.1. 

 

At mesophilic pH conditions the methanogenesis step is generally performed mainly 

by Methanomicrobiales such as Methanoculleus (Ács et al., 2013; Schlüter et al., 

2008; Sundberg et al., 2013; Wirth et al., 2012), and members of the order 

Methanosarcinales such as Methanosarcina (Li et al., 2013) and Methanosaeta 

(Rivière et al., 2009; Sundberg et al., 2013). 

However, in the alkaline system, a Methanocalculus related methanogen appeared to 

be the dominant archaeal organism (Table 6.3). This could be explained by (i) the 

type of inoculum used, which was obtained from soda lakes where Methanocalculus 

related methanogens were present (Nolla-Ardèvol et al., 2012) and (ii) by the 

operational conditions from the reactor, pH~10 and 2.0 M Na+, which fit the growth 

requirements of M. natronophilus, and thus likely also contributed to the prevalence 
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of the M. natronophilus related methanogen over other alkaliphilic and halotolerant 

methanogens  

3.2.1.3 Microbial structure of the anaerobic digestion process at alkaline 

conditions 

To date, anaerobic digestion has been performed generally at mesophilic pH 

conditions and the structure and composition of the microbial community has been 

relatively constant among the different reactors and substrates studied. Here, the 

breakdown of organic matter from complex substrates to acetate, volatile fatty acids, 

CO2 and H2 has been carried out mainly by bacteria of the order Clostridiales 

(Firmicutes), with abundances from 30 to 80% of the total bacterial population. 

Second in abundance have generally been Bacteroidetes and Bacilli (abundances 

around 10 - 15%) followed by multiple other classes such as alpha and gamma 

Proteobacteria, Actinobacteria, and Sphingobacteriia, Thermotogae among many 

others  (Li et al., 2013; Rivière et al., 2009; Schlüter et al., 2008; Sundberg et al., 

2013; Wirth et al., 2012; Ziganshin et al., 2013). At alkaline conditions, however, 

significant differences were observed, not only with regard to the type of bacteria 

present, mostly halotolerant, but also to their relative abundance (Table 6.3 and 6.4). 

The most remarkable difference was the high abundance of Bacteroidetes. At the 

alkaline conditions used in this study, the main breakdown of the organic matter 

seems to be performed not by members of the order Clostridiales, but by 

Bacteroidales related bacteria which dominate over the other orders with 27% of the 

total abundance (bins A and E) (Table 6.3 and 6.4). Clostridiales were still present 

but here only account for around 13% of the abundance (bins B and H) and were 

replaced by other Firmicutes such as members of the order Halanaerobiales ~15% 

(bins C, D and G). Alphaproteobacteria, mainly represented by Rhodobacterales, 

might have played a role in the degradation of organic matter at alkaline conditions 

(1.3% abundance) in contrast to mesophilic conditions where they are scarcely 

present. However, it has to be taken into account that the identified 

Alphaproteobacteria are both anaerobic facultative therefore, their presence could be 

related to possible oxygen leaks into the anaerobic reactor. With respect to the last 

step, the formation of methane, clear differences were observed regarding the 

involved taxa when compared to mesophilic pH reactors. At alkaline conditions 

Methanocalculus, a genus of methanogens which includes already isolated 
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alkaliphilic members, clearly dominates over the rest of methanogenic archaea 

(Table 6.3).  

The results presented here suggest that at these alkaline conditions, pH 10 and 2.0 

M Na+, the microbial community responsible for the anaerobic digestion of organic 

matter differs, not only regarding the fact that the identified bacteria and archaea are 

mostly halotolerant and alkaliphilic but, also with regard to the relative abundance of 

the major players, Bacteroidetes, Clostridiales and Methanomicrobiales, when 

compared to mesophilic pH anaerobic microbial communities. 

3.2.2. Direct analysis of sequencing reads 

Two different approaches were used to study the function of the alkaline microbial 

community. In the first method, in order to get an insight into the different biological 

processes that took place in the alkaline anaerobic reactor, quality trimmed reads, 

not including Spirulina reads, were uploaded to the MG-Rast metagenome analyzer 

and functional proteins where annotated with the Subsystem hierarchical classifier. 

This is a categorization system which organizes functional categories of genes into a 

hierarchy with five levels of resolution. Each subsystem is comprised of a set of 

genes with functional roles that together implement a specific biological process or 

structural complex (Overbeek et al., 2005). In the second approach, all reads were 

translated into amino acids and blasted against the Pfam-A database to identify 

specific protein domains. 

Of the 1,194,051 reads that were annotated to a protein by MG-Rast, 980,677 reads 

(82.1% of the annotated reads), were assigned to a Subsystem category (Figure 

6.5). The subsystem that recruited the highest number of reads was “Clustering-

based subsystems” with 151,597 hits (15% of the assigned reads). “Carbohydrates”, 

“Protein Metabolism” both with 9.9% and “Amino acid and derivatives” with 9.2% 

were the following most abundant subsystems (Figure 6.5). The “Clustering-based 

subsystems” includes genes related to bacterial cell division, DNA replication, RNA 

metabolism, carbohydrate related genes, and stress related proteins among many 

others. The “Carbohydrates” subsystem includes groups of proteins related to 

monosaccharide and polysaccharide metabolism, fermentation, C1 compounds 

metabolism and to the general central carbon metabolism, while the “Amino acid and 

derivatives” subsystem includes mainly proteins involved in amino acid metabolism. 
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Figure 6.5 Subsystem hierarchical classification of functional reads 
Number of reads assigned to each individual Subsystem category by the MG-Rast metagenome 
analyzer. Value in brakes corresponds to the percentage of total assigned reads to the 
Subsystems categories. Assignment was done with an e-value of 10e

-5
, 50% minimum identity 

and 15 amino acid minimum length.  

 

Categories related to the general function of an active community also recruited a 

high number of reads. For example, subsystems “DNA metabolism” and “RNA 

metabolism” both recruited over 45,000 hits (Figure 6.5). Within the first one, genes 

related to DNA replication, recombination and repair were detected while in the latter, 

proteins related to RNA processing, modification and transcription could be identified. 

Other general metabolic functions were also detected in the annotated reads. 

Subsystem “Respiration”, which includes genes encoding basic functions such as 

ATP synthases, hydrogenases, carbon monoxide dehydrogenases and enzymes 

related to anaerobic respiration such as anaerobic dehydrogenases recruited over 

30,000 hits. As expected, most of the identified functions were related to the basic 

metabolism of organic macromolecules such as synthesis of proteins and amino 

acids as well as general housekeeping mechanisms all of which are required for an 

appropriate performance of an active microbial community. 

So far, most of the metagenomic functional analyses of biogas reactors focus their 

search on enzymes related to the degradation of complex sugars derived from the 

degradation of cellulosic material (Li et al., 2013; Schlüter et al., 2008; Wong et al., 



Unpublished Results [6] ______________________________________________________  

172 

2013). In the present work, however, as the substrate used for the alkaline reactor is 

a protein rich substrate which does not contain cellulose related compounds, 

enzymes related to the degradation of proteins and peptides were analyzed. 

Subsystems “Amino acids and derivatives” and “Protein metabolism” contain 

enzymes which participate in the metabolism of peptides, while the “Carbohydrate” 

subsystem contains the cellulose degradation enzymes such as xylanases and 

cellulosome related proteins. In the alkaline metagenome 74,000 reads of the 

subsystems “Amino acid and derivatives” and “Protein metabolism” were assigned to 

enzymes that could be related to protein and amino acid degradation while only 

18,000 reads of subsystem “Carbohydrate” were assigned to enzymes directly 

related to the degradation of cellulose (Table 6.5). A similar result was obtained when 

the number of detected protein specific domains (Pfams) related to the degradation 

of proteins, 29,000, was compared to the number of detected Pfams related to the 

degradation of cellulose, 5,000 (Table 6.6). 

As proteases, peptidases and other enzymes involved in the degradation of protein 

and amino acids are ubiquitous and present in all bacteria it is difficult to directly 

couple the higher abundance of these enzymes to the type of substrate used. 

Nevertheless and as already seen in [3], the higher relative abundance of these 

enzymes, combined with the low abundance of cellulolytic enzymes might indicate 

that the microbial community does adapt to the type of substrate used by increasing 

the abundance of enzymes able to degrade the supplied substrate. The results 

obtained here are the outcome of the first observations of the functional potential of 

this alkaline community and more work is necessary to determine if the microbial 

community really adapts to the type of substrate used.  

Multiple enzymes involved in the adaptation strategies of the halotolerant and 

haloalkaline bacteria present at these extreme conditions could also be identified 

among several subsystems. The general strategy of halotolerant and haloalkaline 

microorganisms to adapt to such a high salt concentration is to maintain their 

intracellular pH and salt concentration at “mesophilic” levels (Ventosa, 2006). In this 

sense, most alkaliphilic and halophilic bacteria require Na+, K+, Cl- and other ions for 

growth and to compensate the intracellular osmolarity (Kivistö & Karp, 2011; Mesbah, 

Hedrick, Peacock, Rohde, & Wiegel, 2007; Ulukanli & Rak, 2002). Several genes 

encoding proteins related to Na+ and K+ transporters and related proteins could also
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be detected. For example a “Na+/H+ antiporter” gene of the “Miscellaneous” 

subsystem recruited 1,400 reads while an osmosensitve K+ channel gene was 

detected among the “Potassium metabolism” subsystem sequences. Genes 

encoding several sodium symporters such as sodium/glycine symporter, 

proline/sodium symporter and sodium/choline symporter, which participate in the re-

entry of Na+ into the cell’s cytoplasm, were also identified. NAD-dependent isocitrate 

dehydrogenase is an halophilic enzyme, that requires salt for its correct activity and 

stability, which is present in several extremely halophilic bacteria such as Salinibacter 

(Ventosa, 2006). Several NAD-Isocitrate dehydrogenase genes were also detected 

among the functionally annotated reads of the “Carbohydrate” subsystem. The 

Table 6.5 Specific Subsystem features 
Specific Subsystem features from categories “Amino acid and Derivatives”, “Carbohydrates” and 
“Protein Metabolism” related to amino acid, protein and carbohydrate degradation obtained with 
the MG-Rast Subsystem hierarchical classification. Assignment was done with an e-value of 10e-5, 
50% minimum identity and 15 amino acid minimum length. 

Amino acid Hits Carbohydrate Hits 

Anaerobic oxidative degradation of L-Ornithine 2160 Beta-Glucoside Metabolism 594 

Arginine and Ornithine degradation 5961 Cellulosome 1967 

Aromatic amino acid degradation 1275 D-allose utilization 8 

Branched chain amino acid degradation 4574 D-galactarate, D-glucarate catabolism 226 

Creatine and Creatinine degradation 454 D-galactonate catabolism 24 

Glutamate and Aspartate uptake  379 L-Arabinose utilization 339 

Glycine and Serine utilization 8164 L-fucose utilization 260 

Glycine cleavage system 3460 L-rhamnose utilization 575 

Histidine degradation 3222 Maltose and Maltodextrin utilization 7899 

Isoleucine degradation 5401 Mannose metabolism 1704 

Leucine degradation  4582 Predicted carbohydrate hydrolases 538 

Lysine degradation 2202 Sucrose utilization 102 

Methionine degradation 6664 Trehalose uptake and utilization 1217 

Proline, 4-hydroxyproline uptake  1372 Unknown carbohydrate utilization  872 

Threonine degradation 2183 Xyloglucan utilization 51 

Valine degradation 4869 Xylose utilization 811 

Total 56922 Fructooligosaccharides(FOS) utilization 919 

 Melibiose utilization 272 

Proteins Total 18378 

Aminopeptidases (EC 3.4.11.-) 1049   

Dipeptidases (EC 3.4.13.-) 647 

 

Metallocarboxypeptidases (EC 3.4.17.-) 815 

Metalloendopeptidases (EC 3.4.24.-) 39 

Proteasome bacterial 3914 

Protein degradation 2474 

Proteolysis in bacteria, ATP-dependent 7860 

Serine endopeptidase (EC 3.4.21.-) 206 

Total 17004 

 



Unpublished Results [6] ______________________________________________________  

174 

Table 6.6 Identified Protein Domains (Pfams) 
Pfams related to amino acid, protein and cellulose degradation identified in 
the alkaline dataset. Pfams were identified with the hmmscan tool with a 1.0 
E-value cutoff. 
Initial # of reads 2,032,005 

Initial # of ORFs 3,622,083 

Total identified Pfams 2,503,581 

 
# Pfams % identified Pfams 

Amino acid degradation 8,537 0.34 

Proteases 20,922 0.84 

Cellulase 5,118 0.20 

Methanogenesis 2,246 0.09 

 
accumulation of organic compounds and compatible solutes which function as 

osmoprotectants is another strategy applied by halotolerant bacteria to cope with 

high salt concentrations (Ma, Galinski, Grant, Oren, & Ventosa, 2010; Mesbah & 

Wiegel, 2012; Ventosa, 2006). Accordingly, genes encoding several enzymes related 

to the use of ectoins, betaines and choline were detected which recruited over 3,800 

reads. In the “Osmotic stress” cluster within the “Stress response” subsystem an L-

ectoin synthase and an ectoin hydrolase gene were detected. Further detected 

genes encoded enzymes related to betaine and choline uptake and biosynthesis 

such as multiple glycine betaine ABC transportes, several osmotically activated L-

carnitine/choline ABC transporters, an ATP-binding protein, a choline ABC transport 

system and one high-affinity choline uptake protein BetT. 

The methanogenesis related gens, which recruited over 4,000 reads, are clustered in 

the “One carbon metabolism” (“Carbohydrates” subsystem). Among these, the gene 

with the highest number of hits, 570, was the CoB-CoM heterodisulfide reductase 

gene, encoding an enzyme that regenerates co-enzyme M and co-enzyme B, the first 

a product of methyl-coenzyme M reduction (Hedderich, Hamann, & Bennati, 2005). 

Methyl-coenzyme M reductase, the enzyme that catalyzes the final step of 

methanogenesis (Ermler, 1997) was assigned to almost 200 reads. Methanogens 

can produce methane via two main routes, the hydrogenotrophic pathway by 

reducing CO2 with H2 to form CH4, or they can split acetate into CH4 and CO2, using 

the acetotrophic pathway (Madigan, Martinko, Bender, Buckley, & Stahl, 2012). Of 

the two pathways, 896 reads were assigned to the specific enzymes of the 

hydrogenotrophic pathway, while only 86 reads were assigned to specific enzymes of 

the acetotrophic pathway. Formylmethanofuran dehydrogenase recruited 433 of the 

hydrogenotrophic pathway reads. This enzyme catalyzes the first step in the 
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reduction of CO2 to CH4, the reduction of CO2 to formyl-methanofuran (Madigan et al., 

2012). The search of Pfams which group enzymes from the methanogenesis 

pathways showed similar results and Pfams from enzymes which participate in the 

hydrogenotrophic pathway were more abundant than Pfams from enzymes of the 

acetoclastic pathway. The most abundant Pfam identified among the 

methanogenesis related Pfams was tetrahydromethanopterin S-methyltransferase 

Subunit-G” (MtrG) (PF04210), an enzyme involved in the production of methane from 

CO2 (Sauer, 1986). Moreover, five other subunits from the same enzyme, MtrA, MtrB, 

MtrC, MtrF and MtrH were also identified. In addition, other enzymes from the 

methanogenesis pathways were also detected. For example, three of the detected 

Pfams, PF02240, PF02241 and PF02249 represent the three subunits, alpha, beta 

and gamma, of the Methyl coenzyme M reductase, while PF04029 represents a 2-

phosphosulpholactate phosphatase which participates in the biosynthesis of 

Coenzyme M (CoM), an essential cofactor for the production of methane (Graham, 

Graupner, Xu, & White, 2001). 

These results suggest that the hydrogenotrophic pathway might be the pathway 

mainly used by the methanogens present in the reactor, which is in accordance with 

the fact that Methanocalculus, a hydrogenotrophic methanogen, was the most 

abundant methanogen detected in the alkaline metagenome (Table 6.3). They also 

indicate that, as already reported in other studies (Nolla-Ardèvol, Strous, Sorokin, 

Merkel, & Tegetmeyer, 2012; Sorokin et al., 2014), in alkaline environments the 

hydrogenotrophic methanogenesis is dominant over the acetotrophic 

methanogenesis which is practically absent.  

5.4. Conclusions 

The metagenome analysis of the haloalkaline anaerobic microbial community 

responsible for the anaerobic digestion of biomass at alkaline conditions reveals 

differences when compared to the microbial community present in the mesophilic pH 

anaerobic reactor. Two main differences were observed, the type of bacteria which, 

as expected, were mostly halotolerant and alkaliphilic and the relative abundance of 

each microbial group. Among the bacteria, in contrast to traditional anaerobic 

digesters where Clostridia class clearly dominate, at alkaline conditions a co-

dominancy between Clostridia and Cytophaga-Flavobacteria-Bacteroides (CFB) was 
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observed. At lower taxonomical levels, this difference was more acute and CFB 

bacteria such as the uncultured “ML635J-40 aquatic group” clearly dominated over 

Clostridiales, Halanaerobiales and Rhodobacterales. Differences between the 

alkaline and the mesophilic archaeal community could also be seen. At alkaline 

conditions, the alkaliphilic methanogen Methanocalculus was the clear dominant. 

This is a hydrogenotrophic methanogen which might indicate that at these extreme 

conditions methane is mainly produced from CO2 and H2. 

Functional analysis of the sequenced reads allowed the identification of several gene 

clusters related to the strategies utilized by halotolerant bacteria to cope with the 

extreme environmental conditions. Genes and specific protein domains involved in 

the degradation of proteinaceous compounds were identified in higher number 

compared to genes and proteins related to the degradation of cellulosic material 

which might indicate that the microbial community adapts to the type of substrate 

present in the anaerobic reactor. 
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9. Appendix: Supplementary figures and tables  

Publication [3]: Metagenome analysis and biogas production from 

the anaerobic digestion of the protein rich microalga Spirulina  

V. Nolla-Ardèvola*, M. Pecesbc, M. Strousade, H.E. Tegetmeyerae 

Additional File-1 Supplementary Figures 

 

 

 

 

 

 

 

Suppl. Figure 1 Contig coverage, GC content and taxonomic classification of 
selected bins  

Dot plot graph generated with the Metawatt v1.7 pipeline representing all the assembled 
contigs (grey) and the 10 selected bins (represented by black dots in the center of the bins, 
including bars showing contig distribution in each bin.) 
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Suppl. Figure 2 16S rDNA Firmicutes phylogenetic tree 

Includes the sequences of the Firmicutes branch in Figure 2a and additionally the unbinned 

contigs listed in Suppl. Table 2 that are not included in Figure 2a. Values at nodes are from 

the FastTree default Shimodaira-Hasegawa test. 

 

 

 

 

 

 

 

Suppl. Figure 3 Microbial population evenness 

Lorenz curves for the estimation of population evenness at species level from the Spirulina-
S1 and the Maize-Rye datasets. a) Bacterial evenness curves. b) Archaeal evenness curves.  
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Additional File-2 Supplementary tables  

Suppl. Table 1 RDP and SINA classification results for assembled and EMIRGE 

detected 16S rDNA sequences 

Classification of 16S rDNA sequences with RDP and SINA sequence classifiers. Sequences 

are assigned with a minimum of 80% confidence for the RDP, for SINA with a minimum of 80% 

identity to reference sequences and 10 LCA neighbors. 

Sequence 

name 

16S rDNA 

fragment 

length [bp] 

Detected 

by/in 

RDP classification  

(lowest classified rank) 

SINA classification 

(lowest classified rank) 

FirmicutesEM-1 1425 EMIRGE 
Clostridiales: 1 / Clostridiales Incertae 

Sedis XI: 0.99 / Tissierella (genus): 0.99 

Clostridiales; Family XI Incertae 

Sedis (family) 

FirmicutesEM-2 1450 EMIRGE 
Clostridiales: 1 / Incertae Sedis XI: 0.87 

/ Clostridium XII (genus): 0.87 

Clostridiales; Family XI Incertae 

Sedis; Tepidimicrobium (genus) 

FirmicutesEM-3 1357 EMIRGE 

Clostridia: 1 / Clostridiales: 0.98 

/Clostridiales_Incertae Sedis XI: 0.95 /  

Tepidimicrobium (genus): 0.85 

Clostridia (class) 

Contig01659 1559 Assembly A Atopostipes (genus): 1 Atopostipes (genus) 

Contig04220 1061 Assembly C Bacteria (Domain): 1 Firmicutes; OPB54 (class) 

Contig03630 1528 Assembly A 
Thermotogaceae: 1 / Petrotoga 

(Genus): 1 
Thermotogaceae (family) 

Contig05284 1442 Assembly B Anaerolineaceae (family): 1 
Anaerolineaceae (family); 

uncultured 

Contig00447 1512 Assembly C 
Porphyromonadaceae: 1 / 

Proteiniphilum (genus): 0.99 
Porphyromonadaceae (family) 

Contig03141 1272 Assembly A 

Bacteroidetes: 1 / Flavobacteria: 0.82 / 

Flavobacteriales: 0.82 / 

Cryomorphaceae (family): 0,81 

Bacteroidetes; 

Sphingobacteriia; 

Sphingobacteriales (order) 

Contig06470 925 Assembly A 

Methanomicrobia: 1/  

Methanosarcinales: 1 / Methanosarcina 

(genus): 1 

Methanomicrobia (class) 

Contig11126 551 Assembly B Methanoculleus  (genus): 1 Methanoculleus (genus) 
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Suppl. Table 2 Assembly depth values and classification results of selected 

contigs encoding 16S rDNA sequences 

Contig classification according to RDP and SINA classifiers. Similarity to EMIRGE detected 

16S rDNA sequences is based on alignment (see phylogenetic tree topology in Additional 

File-1 Suppl. Figure 2). 

Bin 
16S 

contig 
Assembly Cov* RDP SINA EMIRGE 

Bin 
Cov (X) 

Unbinned 

01659 A 11.4 Atopostipes Atopostipes  

n.a 

06164 B 8.4 Atopostipes Atopostipes  
01612 C 7.1 Atopostipes Atopostipes  

20643 A 158.9 
Clostridiales, 
Inc. Sed. XI 

Clostridiales, 
Inc. Sed. XI 

EM-1 13029 B 76.5 Tissierella 
Clostridiales, 
Inc. Sed. XI 

06646 C 102.3 Tissierella 
Clostridiales, 
Inc. Sed. XI 

13399 B 141.4 
Clostridiales, 
Inc. Sed. XI 

Tepidimicrobium 

EM-2 
04208 C 164.2 

Clostridiales, 
Inc. Sed. XI 

Tepidimicrobium 

04220 C 33.4 Clostridia Firmicutes; OPB54  

D 
03740 A 38.2 Proteiniphilum Proteiniphilum  

22.3 03861 B 25.8 Proteiniphilum Proteiniphilum  
00447 C 18.5 Proteiniphilum Porphyromonadaceae  

E 
05284 B 24.6 Anaerolineaceae Unc. Anaerolineaceae  

33.3 
02468 B 25 Anaerolineaceae Unc. Anaerolineaceae  

F 
03630 A 50.3 Petrotoga Thermotogaceae  

23.4 03105 B 34.4 Petrotoga Thermotogaceae  
03129 C 26.1 Petrotoga Thermotogaceae  

H 
03141 A 8.9 Cryomorphaceae Sphingobacteriales  

11.5 10506 B 6.9 Flavobacteria Bacteroidetes  
02933 C 5.5 Cryomorphaceae Sphingobacteriales  

* Assembly depth value from Newbler output 
Unc: Uncultured 
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Suppl. Table 3 Taxonomic classification of metagenomic reads            

Classification of reads from datasets “Spirulina-S1” and “MR” with the MG-Rast metagenome 

analyzer. Listed are the 10 most abundant bacteria and 3 most abundant archaea of both 

datasets based on the M5NR database with a 1e-5 E-value cutoff, a 60% minimum identity 

and 15 bp minimum length reads. 

Spirulina-S1 dataset 

Class Order Family Genus Hits 

Bacteria 

Clostridia Clostridiales Clostridiaceae Clostridium 89870 

Clostridia Clostridiales Clostridiaceae Alkaliphilus 39255 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 25932 

Clostridia Clostridiales Peptostreptococcaceae Peptostreptococcaceae 21781 

Bacilli Bacillales Bacillaceae Bacillus 20918 

Thermotogae  Thermotogales Thermotogaceae Petrotoga 20262 

Clostridia Clostridiales Fam XI Insertae Sedis Peptoniphilus 12495 

Clostridia Thermoanaerobacterales Thermoanaerobacteraceae Caldanaerobacter 11096 

Anaerolineae Anaerolineales Anaerolineaceae Anaerolinea 8033 

Clostridia Clostridiales Peptococcaceae Desulfitobacterium 6833 

Archaea 

Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina 5122 

Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus 3997 

Methanococci Methanococcales Methanococcaceae Methanococcus 431 

Maize-Rye dataset 

Bacteria 

Clostridia Clostridiales Clostridiaceae Clostridium 114140 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 47051 

Unclassified Unclassified Unclassified Candidatus Cloacamonas 36032 

Bacilli Bacillales Bacillaceae Bacillus 32446 

Clostridia Clostridiales Clostridiaceae Alkaliphilus 18065 

Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides 16365 

Clostridia Clostridiales Peptococcaceae Desulfotomaculum 16053 

Clostridia Clostridiales Peptococcaceae Desulfitobacterium 13461 

Clostridia Clostridiales Peptococcaceae Pelotomaculum 12639 

Bacilli Bacillales Bacillaceae Geobacillus 11970 

Archaea 

Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoculleus 54153 

Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcia 4768 

Methanomicrobia Methanomicrobiales Methanomicrobiaceae Methanoplanus 4062 
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Suppl. Table 4 Identified Pfams related to cellulose degradation  

Number of cellulose degradation Pfams identified with the hmmscan tool with a 1.0 E-value 

cutoff in each dataset. 

 

 

 

 

 

 

 

Pfam ID Function 
Spirulina-S1  

dataset 
M-R  

dataset
*
 

PF00150 Cellulase Hydrolyses glycosidic bond 61 304 

PF00331 Glyco_hydro_10 Hydrolyses glycosidic bond 34 429 

PF00404 Dockerin_1 Cellulosome structure 188 316 

PF00457 Glyco_hydro_11 Hydrolyses glycosidic bond 2 36 

PF00553 CBM_2 Carbohydrate binding module 15 80 

PF00703 Glyco_hydro_2 Carbohydrate degradation 56 254 

PF00704 Glyco_hydro_18 Hydrolyses glycosidic bond 150 309 

PF00722 Glyco_hydro_16 Carbohydrate degradation 41 100 

PF00734 CBM_1 Carbohydrate binding domain 78 139 

PF00759 Glyco_hydro_9 Hydrolyses glycosidic bond 3 81 

PF00840 Glyco_hydro_7 Hydrolyses glycosidic bond 3 11 

PF00933 Glyco_hydro_3 Carbohydrate degradation 358 908 

PF00942 CBM_3 Carbohydrate binding module 17 27 

PF01183 Glyco_hydro_25 Carbohydrate degradation 31 37 

PF01270 Glyco_hydro_8 Hydrolyses glycosidic bond 11 56 

PF01341 Glyco_hydro_6 Hydrolyses glycosidic bond 1 16 

PF01464 SLT Carbohydrate degradation 169 320 

PF02011 Glyco_hydro_48 Hydrolyses glycosidic bond 4 18 

PF02013 CBM_10 Carbohydrate binding domain 24 34 

PF02015 Glyco_hydro_45 Hydrolyses glycosidic bond 3 2 

PF02018 CBM_4_9 Carbohydrate binding module 31 446 

PF02055 Glyco_hydro_30 Hydrolyses glycosidic bond 14 67 

PF02156 Glyco_hydro_26 Hydrolyses glycosidic bond 7 38 

PF02836 Glyco_hydro_2_C Hydrolyses glycosidic bond 202 483 

PF02837 Glyco_hydro_2_N Hydrolyses glycosidic bond 166 529 

PF02839 CBM_5_12 Carbohydrate binding module 74 104 

PF03422 CBM_6 Carbohydrate binding module 29 249 

PF03442 CBM_X2 Carbohydrate binding module 5 79 

PF03443 Glyco_hydro_61 Hydrolyses glycosidic bond 2 1 

PF04616 Glyco_hydro_43 Hydrolyses glycosidic bond 72 1008 

PF12891 Glyco_hydro_44 Hydrolyses glycosidic bond 4 21 

PF14587 Glyco_hydr_30_2 Hydrolyses glycosidic bond 10 20 

PF14600 CBM_5_12_2 Carbohydrate binding module 16 32 

* M-R: Maize-Rye dataset 
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Suppl. Table 5 Identified Pfams related to protein degradation 

Number of protein degradation Pfams identified with the hmmscan tool with a 1.0 E-value 

cutoff in each dataset. 

Pfam ID Function 
Spirulina-S1  

dataset 
M-R  

dataset
*
 

PF00082 Peptidase_S8 Peptide degradation 770 900 

PF00089 Trypsin Protein degradation 198 425 

PF00246 Peptidase_M14 Peptide degradation 117 207 

PF00326 Peptidase_S9 Peptide degradation 496 1019 

PF00413 Peptidase_M10 Peptide degradation 36 97 

PF00450 Peptidase_S10 Peptide degradation 10 31 

PF00557 Peptidase_M24 Peptide degradation 586 1054 

PF01400 Astacin Degradation of polypeptides 9 12 

PF01431 Peptidase_M13 Peptide degradation 47 164 

PF01434 Peptidase_M41 Peptide degradation 672 847 

PF01447 Peptidase_M4 Peptide degradation 3 18 

PF01546 Peptidase_M20 Peptide degradation 878 1276 

PF01551 Peptidase_M23 Peptide degradation 801 1273 

PF02031 Peptidase_M7 Peptide degradation 2 47 

PF02868 Peptidase_M4_C Peptide degradation 10 9 

PF03070 TENA_THI-4 Secretion extracellular 
enzymes  

10 31 

PF03575 Peptidase_S51 Peptide degradation 37 78 

PF04389 Peptidase_M28 Peptide degradation 219 531 

PF05134 T2SL Secretion of proteases 20 14 

PF05257 CHAP Peptidoglycan hydrolysis 31 60 

PF05342 Peptidase_M26_N Peptide degradation 12 32 

PF05362 Lon_C Peptide degradation 363 852 

PF05543 Peptidase_C47 Peptide degradation 6 3 

PF05548 Peptidase_M11 Peptide degradation 4 7 

PF05569 Peptidase_M56 Peptide degradation 268 230 

PF05576 Peptidase_S37 Peptide degradation 2 13 

PF05577 Peptidase_S28 Peptide degradation 33 34 

PF05649 Peptidase_M13_N Peptide degradation 31 156 

PF06480 FtsH_ext Membrane bound protease 88 223 

PF07502 MANEC Protease activator and 
inhibitor 

11 15 

PF07580 Peptidase_M26_C Peptide degradation 2 4 

PF07687 M20_dimer Peptide degradation 610 584 

PF08548 Peptidase_M10_C Peptide degradation 6 7 

PF12388 Peptidase_M57 Peptide degradation 8 28 

PF13365 Trypsin_2 Peptide degradation 288 539 

PF13485 Peptidase_MA_2 Peptide degradation 245 370 

PF13529 Peptidase_C39_2 Peptide degradation 109 129 

PF13574 Reprolysin_2 Peptide degradation 40 43 

PF13582 Reprolysin_3 Peptide degradation 51 93 

PF13583 Reprolysin_4 Peptide degradation 19 43 

* M-R: Maize-Rye dataset 
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Suppl. Table 6 Identified Pfams related to amino acid degradation 

Number of amino acid degradation Pfams identified with the hmmscan tool with a 1.0 E-value 

cutoff in each dataset. 

Pfam ID Function 
Spirulina-S1  

dataset 
M-R  

dataset
*
 

PF00056 Ldh_1_N Lactate/malate dehydrogenase 146 390 

PF00070 Pyr_redox Oxidoreductases 1254 2574 

PF00155 Aminotran_1_2 Aminotransferase 1372 2613 

PF00185 OTCace Transferring one-carbon groups 282 482 

PF00205 TPP_enzyme_M Thiamine binding 134 460 

PF00208 ELFV_dehydrog Glutamate catabolism 590 882 

PF00291 PALP Amino acid metabolism 934 1024 

PF01053 Cys_Met_Meta_PP Amino acid metabolism 1383 1166 

PF01212 Beta_elim_lyase Degradation of amino acids 767 1391 

PF01571 GCV_T Degradation of amino acids 334 375 

PF02254 TrkA_N  Transporter 671 1608 

PF02347 GDC-P Degradation of amino acids 598 713 

PF02729 OTCace_N Transferring one-carbon groups 302 362 

PF02812 ELFV_dehydrog_N Glutamate catabolism 304 289 

PF02852 Pyr_redox_dim Oxidoreductases 377 367 

PF02866 Ldh_1_C Lactate/malate dehydrogenase 37 111 

PF03313 SDH_alpha Degradation of amino acids 462 337 

PF03315 SDH_beta Degradation of amino acids 126 135 

PF04898 Glu_syn_central Amino acid metabolism 9 54 

PF04960 Glutaminase Amino acid metabolism 188 156 

PF05995 CDO_I Amino acid metabolism 16 22 

PF07085 DRTGG Amino acid metabolism 111 196 

PF08669 GCV_T_C Degradation of amino acids 90 183 

PF12544 LAM_C Amino acid metabolism 141 162 

* M-R: Maize-Rye dataset 
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Suppl. Table 7 Accession numbers of reference 16S rDNA sequences in 

phylogenetic trees 

Accession numbers of reference 16S rDNA sequences for which in the phylogenetic trees 

(Fig 2) only organism names are shown. 

 

Organism name Accession 

Arthrospira platensis C1 gi|423061881:1247729-1249205 

Tepidimicrobium ferriphilum strain SB91 gi|343198615|ref|NR_043077.1| 

Atopostipes suicloacalis strain PPC79 gi|265678531|ref|NR_028835.1| 

Clostridium ultunense strain BS gi|219846939|ref|NR_026531.1| 

Tissierella praeacuta strain NCTC 11158 gi|343206268|ref|NR_044860.1| 

Gelria glutamica strain TGO gi|343201113|ref|NR_041819.1| 

Alkaliphilus crotonoxidans gi|19072573|gb|AF467248.1| 

Bacillus subtilis subsp. subtilis str. BSP1 gb|CP003695.1|:compl(3947493-3945959) 

Symbiobacterium thermophilum IAM 14863 gi|444439729|ref|NR_075044.1| 

Clostridium_cellulolyticum H10 strain H10 gi|507147961|ref|NR_102768.1| 

Clostridium thermocellum ATCC 27405 gi|444304204|ref|NR_074629.1| 

Moorella glycerini strain JW/AS-Y6 gi|265678890|ref|NR_029198.1| 

Petrotoga mobilis SJ95 strain SJ95 gi|444303977|ref|NR_074401.1| 

Levilinea saccharolytica strain KIBI-1 gi|343200285|ref|NR_040972.1| 

Proteiniphilum acetatigenes strain TB107 gi|343202727|ref|NR_043154.1| 

Owenweeksia hongkongensis DSM 17368 gi|470466026|ref|NR_074100.1| 

Anaerolinea thermophila UNI-1 strain UNI-1 gi|444303960|ref|NR_074383.1| 

Thermotoga_lettingae TMO strain TMO  gi|444439636|ref|NR_074951.1| 

Bacteroides paurosaccharolyticus JCM 15092 gi|166063925|dbj|AB298727.2| 

Alistipes finegoldii DSM 17242 gi|507148137|ref|NR_102944.1| 

Fluviicola taffensis DSM 16823 gi|444304123|ref|NR_074547.1| 

Methanosarcina siciliae strain T4/M gi|559795168|ref|NR_104757.1| 

Methanoculleus marisnigri JR1 strain JR1 gi|470467424|ref|NR_074174.1| 

Methanospirillum hungatei JF-1 strain JF-1 gi|470467480|ref|NR_074177.1| 

Methanobacterium flexile strain GH gi|304336835|gb|EU333914.2| 

Methanosaeta concilii strain Opfikon gi|254971324|ref|NR_028242.1| 

Methanocorpusculum parvum strain DSM 3823 gi|343206139|ref|NR_044728.1| 

Methanothermobacter marburgensis strain Marburg gi|254971323|ref|NR_028241.1| 

Methanolobus oregonensis strain WAL1 gi|254971319|ref|NR_028237.1| 

Methanococcus maripaludis gi|1145365|gb|U38484.1| 

Methanopyrus kandleri AV19 strain AV19 gi|444304115|ref|NR_074539.1| 
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Additional File-3 Supplementary Material and Methods 

1. Metagenome normalization and comparison    

In order to compare our metagenomic data with a publicly available metagenome, 

(SRR034130.1) [1], normalization had to be applied to our data. Normalization of 

Dataset-1 was performed as in Jaenicke et al., [1]. During the normalization 

procedure, reads shorter than 100 bp and longer than 309 bp were removed. From 

the initial 5,240,830 reads, after normalization, 2,486,976 reads remained. 

Subsequently from these 2.4 million reads, the same amount of reads as in the 

Jaenicke et al., dataset, 1,019,333, were randomly selected in triplicates, Spirulina-

S1, S2 and S3. To make sure that the three randomly generated datasets were not 

biased, they were imported and analyzed using MGX platform, a metagenomics 

platform currently being developed at CeBiTec, Bielefeld University. The MGX 

platform employs the Conveyor workflow engine [2] for executing all analysis tasks.   

As can be seen in Figure 1a,b,c and d, no differences between the three randomly 

generated datasets were detected for any of the analyzed parameters. Spirulina-S1 

dataset was chosen for the comparison with the public available metagenome. The 

two compared datasets, Spirulina-S1 and M-R were also analyzed with the MGX 

platform in terms of read length and GC content (Fig. 1e,f). 

2. Generation of ORF and identification of specific protein domain (Pfam)  

Specific protein domains (Pfams) were search in the randomly generated dataset 

Spirulina-S1 and the biogas plant dataset, Maize-Rye dataset (M-R). To do so, the 

following procedure was applied. First, all reads were translated to amino acids and 

searched for ORFs with the “Translate DNA” script (Translatedna v 1.75 

www.mbari.org/staff/haddock/scripts/) with the “0” option, “print all possible ORF for 

each read”. Second, to identify Pfams among the reads, the resulting ORFs were 

blasted against the Pfam-A database [3] with the hmmscan-v3 tool 

(http://hmmer.org/) with the –E and - -domE values set to 1.0. Third, Pfams identifiers 

of particular interest were obtained from two sources; (i) directly from the Pfam 

database (http://pfam.sanger.ac.uk/) with the search terms “extra cellular proteases”, 

“cellulases” and “cellulosome”  and (ii) Pfams from genes involved in the Protein, 

Amino acid and Cellulose degradation pathways from the MetaCyc Database of 

http://www.mbari.org/staff/haddock/scripts/
http://hmmer.org/
http://pfam.sanger.ac.uk/
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metabolic pathways [4]. Subsequently the list of desired Pfams was searched 

amongst the Pfam domains identified in the hmmscan search. 
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Supplementary Material and Methods Figure 1 Datasets comparison with the 

MGX platform  

Comparison of the three randomly generated Spirulina datasets in terms of (a) Read 

length; (b) GC %; (c) 25 most abundant Phyla; (d) 20 most abundant COGs; and 

comparison of the Spirulina-S1 and the Maize-Rye dataset in (e) terms of read length 

and (f) GC %. 
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Unpublished result [6]: Metagenome analysis of the microbial 

population from an alkaline anaerobic digester fed with the 

microalga Spirulina  

V. Nolla-Ardèvol  

Suppl. Table 6.16S rDNA accession numbers 
Accession numbers of reference 16S rDNA sequences for which in 
the phylogenetic trees (Figures 6.1; 6.2; 6.3 and 6.4) only clones and 
organism names are shown. 

Organism name / Clone Accession 

Cytophaga-Flavobacteria-Bacteroides 
Salinibacter ruber C37 gb|KF668249.1| 

Flavobacterium aquatile LMG_4008 ref|NR_118482.1| 

Sphingobacterium sp.21 ref|NR_074508.1| 

Gramella forsetii KT0803 ref|NR_074707.1| 

Anaerophaga thermohalophila Fru22 emb|AJ418048.1| 

Belliella pelovolcani CC-SAL-25 gb|EU685336.1| 

Alkaliflexus imshenetskii Z-7010 emb|AJ784993.1| 

Paludibacter propionicigenes dbj|AB078842.2| 

Cellulophaga algicola DSM14237 ref|NR_074452.1| 

Draconibacterium orientale ref|NR_121783.1| 

Escherichia coli RREC_I gb|AF527827.1| 

CloneML635J-20 gb|AF507861.1| 

CloneBSA1B-12 dbj|AB175366.1| 

CloneML635J-56 gb|AF507862.1| 

CloneWN-HWB-154 gb|DQ432348.1| 

CloneCSS133 gb|JX240684.1| 

Contig00447 Mesophilic-Reactor JMBV00000000 

Clostridiales 
Orenia sp. 1D4 gb|JQ690693.1| 

Proteinivorax tanatarense Z-910 gb|JQ904541.1| 

Tindallia magadiensis Z-7934 ref|NR_026446.1| 

Halanaerobium hydrogeniformans ref|NR_074850.1| 

Clostridium elmenteitii E2SE1 emb|AJ271453.1| 

Natranaerobius thermophilus JW/NM-WN-LF ref|NR_074181.1| 

Alkaliphilus crotonoxidans gb|AF467248.1| 

Clostridium difficile 630 ref|NR_074454.1| 

Thermincola potens JR ref|NR_074717.1| 

Thermoanaerobacter sp. X514 ref|NR_074779.1| 

Natronoanaerobium salstagnum O-M12SP-2 emb|AJ271450.1| 

Anaerobranca bogoriae gb|AF203703.1| 

Natronincola ferrireducens Z-0511 gb|EU878275.1| 

Halocella cellulosilytica DSM 7362T emb|X89072.1| 

Halothermothrix orenii H 168 ref|NR_074915.1| 

Natronovirga wadinatrunensis JW/NM-WN-LH1 gb|EU338489.2| 

Arthrospira platensis C1 gi|423061881| 

CloneCSS28 gb|JX240605.1| 

Clonex216 gb|GU083685.1| 

CloneCT1C2AC09 gb|JQ427824.1| 

CloneCSS150 gb|JX240699.1| 

CloneCSS73 gb|JX240655.1| 

CloneMAT-CR-H3-B08 gb|EU245154.1| 

Contig04220 Mesophilic-Reactor JMBV00000000 

Firmicutes-EM1 Mesophilic-Reactor No Accession # 
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Suppl. Table 6.1 Continuation 

Organism name / Clone Accession 

Alphaproteobacteria 
Rhodobaca bogoriensis SLB gb|EU908048.1| 

Chelatococcus sp. J-9.1 emb|FR774565.1| 

Rhodobacter sp. R-8 gb|AY914074.1| 

Roseinatronobacter sp. MOL1.10 gb|KJ486297.1| 

Rhodobaca barguzinensis VKM_B-2406 ref|NR_044285.1| 

Rhodobacter sphaeroides 2.4.1 ref|NR_074171.1| 

Methylobacterium extorquens AM1 ref|NR_074138.1| 

Salinarimonas rosea YIM-YD3 ref|NR_116487.1| 

Bacillus subtilis emb|X60646.1| 

CloneSA_118_ gb|JQ739039.1| 

CloneTUM-Mbac-MR4-B1-KC14 gb|EU812964.1| 

CloneQEEA3DF04 emb|CU918797.1| 

CloneML602J-43_ gb|AF507829.1| 

CloneTX4CB_152 gb|FJ153021.1| 

Methanogens 
Methanoculleus bourgensis MS2 ref|NR_042786.1| 

Methanosarcina mazei zm-15 gb|KF360023.1| 

Methanocalculus sp. AMF2 gb|HM053969.1| 

Methanocalculus sp. AMF-Bu2 gb|JQ724113.1| 

Methanocalculus halotolerans ref|NR_041843.1| 

Methanocalculus natronophilus strain Z-7105 ref|NR_118529.1| 

Methanobacterium oryzae gb|AF028690.2| 

Methanospirillum lacunae dbj|AB517986.1| 

Methanosalsum zhilinae DSM4017 ref|NR_102894.1| 

Methanobacterium alcaliphilum NBRC105226 ref|NR_112910.1| 

Methanocaldococcus sp. FS406-22 ref|NR_074228.1| 

Uncultured Methanohalophilus sp. cloneGNA03F08 gb|EU731585.1| 

Uncultured Methanococcoides sp. cloneET5-1H2 gb|EU585970.1| 

Uncultured Methanocalculus sp. cloneNRA1 gb|HM041902.1 

Uncultured Methanocalculus sp. cloneD008023G07 gb|GU179434.1| 

Methanopyrus kandleri AV19 ref|NR_074539.1| 

CloneARC204 gb|JN185089.1| 

CloneFL-52 gb|DQ089009.1| 

CloneWN-FWA-130 gb|DQ432522.1| 

CloneNRP-N dbj|AB243805.1| 

Clone61ArcR3 gb|JF421670.1| 

CloneA161 gb|FJ205789.1| 

CloneAS22 gb|EU358672.1| 

Contig11126 Mesophilic-Reactor JMBV00000000 
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