
Incremental learning of action models as HMMs
over qualitative trajectory representations

Maximilian Panzner and Philipp Cimiano

Semantic Computing Group, CITEC, Bielefeld University,
mpanzner@cit-ec.uni-bielefeld.de

http://www.sc.cit-ec.uni-bielefeld.de

Abstract. In this paper we present an incremental approach to learning
generative models of object manipulation actions as HMMs over qualita-
tive relations between two objects. We compare the incremental approach
against a traditional batch training baseline and show that the resulting
qualitative action models are capable of one-shot learning after just one
seen example while displaying good generalization behavior as more data
becomes available.

Keywords: hidden markov models, model merging, action recognition,
online classification, qualitative trajectory calculus

1 Introduction

Acquiring representations or models of actions is important for many embodied
intelligent systems that need to act in the world. We present a system which
incrementally learns action models as Hidden Markov Models (HMMs) over
qualitative relations between two objects. The incremental nature of the model
building process allows the system to learn and adapt continuously. The result-
ing action specific models are capable of one–shot learning after just one seen
example while displaying good generalization behavior as more and more data
becomes available. There has been a lot of work in the field of intelligent sys-
tems on developing formalisms for learning and representing actions, ranging
from task-space representations [1] to high-level symbolic description of actions
and their effects on objects [2]. With our system we aim at bridging the gap
between low-level representations and high-level object manipulation plans in
a way that facilitates transfer of learned concepts between the representational
levels. On the one hand, we abstract away from continuous task-space values
such as joint angles and Euclidian positions. On the other hand, in contrast to
purely symbolic descriptions like logic oriented action descriptions, we model
actions as distributions and are thus able to capture variation in action perfor-
mance. As an intermediate-level representation between two objects, we chose
to build on the qualitative trajectory calculus as a formal foundation, which
discretizes the relative position and movement of the objects into qualitative
relations. The temporal progression of action instances is modeled using HMMs.

As we target applications in the field of human robot interaction, where the
human tutors expect the robot to be responsive toward new tasks or stimuli, we
adopt an incremental model merging scheme to estimate the HMM parameters
on-line [3].

2 Method

In this approach action models are represented as Hidden Markov Models (HMM)
over sequences of qualitative relations between a trajector and a landmark ex-
pressed in the Qualitative Trajectory Calculus (QTC). This model was already
successfully applied to a co-development task using both action and linguistic
cues to emerge structured, joint representations of action performances along
with the grammatical structure of natural language sentences describing the
respective action [4].

2.1 Qualitative action models

To describe the relative position and movement between landmark and trajector
we build on the qualitative trajectory calculus - double cross (QTCC1) [5] as a
formal foundation. In general, QTC describes the interaction between two mov-
ing point objects k and l with respect to the reference line RL that connects them
at a specific point t in time. The QTC framework defines 4 different subtypes
as a combination over different basic relations between the two objects. As we
only have one actively moved object in our experiments, we decided on QTCC1

to give the best trade off between generalization and specificity of the qualita-
tive relations. QTCC1 consists of a 4-element state descriptor (C1, C2, C3, C4)
where each Ci ∈ {−, 0,+} represents a so called constraint with the following
interpretation:

C1 Distance constraint: Movement of k with respect to l at time t1:
- k is moving towards l
0 k is not moving relative to l
+ k is moving away from l

C2 Distance constraint: Movement of l with respect to k at time t1: same as
above but with k and l interchanged

C3 Side constraint: Movement of k with respect to RL at time t1:
- k is moving to the left-hand side of RL
0 k is moving along RL or not moving at all
+ k is moving to the right-hand side of RL

C4 Side constraint: Movement of l with respect to RL at time t1 analogously to
C3

As the positions in our dataset were sampled at a fixed rate, we could have
missed some situations where one or more state descriptor elements transition
through 0. These discretization artifacts are compensated by inserting the miss-
ing intermediate relations one at a time from left to right. QTCC1 is a rather

coarse discretization, leading to situations where the qualitative relation between
the two objects can hold for a longer portion of the trajectory and is, due to
the fixed rate sampling, repeated many times. Unlike many spatial reasoning
systems, where repeating states are simply omitted, we use a logarithmic com-
pression of repetitive subsequences:

|ŝ| = min(|s|, 10ln(|s|+ 1)) (1)

where |s| is the original number of repeated symbols in the sequence and |ŝ|
is the new number of repeated symbols. By applying this compression scheme
we preserve information about the acceleration along the trajectory, which in-
creases the overall performance especially for very similar actions like “jumps
over” and “jumps upon”, while still allowing to generalize over high variations in
relative pace of the action performances. The logarithmic compression of repet-
itive symbols in a sequence is in line with findings from psychophysics known as
the Weber-Fechner law[6].

2.2 Learning qualitative action models

Differing from previous work [4], where we learned action models by batch train-
ing over all underlying trajectories, we now apply an incremental learning scheme
utilizing the best first model merging [7,8] framework. Model merging is inspired
by the observation that, when faced with new situations, humans and animals
alike drive their learning process by first storing individual examples (memory
based learning) when few data points are available and gradually switching to
a parametric learning scheme to allow for better generalization as more and
more data becomes available [9]. Our approach mimics this behavior by starting
with simple models with just one underlying sequence, which evolve into more
complex models generalizing over a variety of different sequences as more data
becomes available.
The process to evolve simple models into complex ones relies on three basic oper-
ations. Data incorporation integrates a new observation sequence into an ex-
isting, possibly empty, model. State merging consolidates the resulting model
in a way which allows it to generalize to yet unseen trajectories by intertwining
paths corresponding to different action performances. Model evaluation ap-
proximates how well a given model fits its constituting dataset. This incremental
learning scheme allows our models to display good generalization performance
when faced with new samples while still being capable of one-shot learning after
just one seen example. Learning, as generalization over the concrete observed
examples, is driven by structure merging in the model in a way that we trade
model likelihood against a bias towards simpler models, known as the Occam’s
Razor principle, which among equally well predicting hypothesis prefers the sim-
plest explanation requiring the fewest assumptions. As graphical models, HMMs
are particularly well suited for a model merging approach because data incorpo-
ration, state merging and model evaluation are straightforward to apply in this
framework and implemented as graph manipulation operations:

Data incorporation: When a new sequence is to be integrated into a given
model we construct a unique path between the initial and the final state of the
model where each symbol in the sequence corresponds to a fresh state in the new
path. Each of these states emits its respective symbol in the underlying sequence
and simply transitions to the next state with probability 1, yielding a sub path
in the model which exactly reproduces the corresponding sequence.
State merging: The conversion of the memory based learning scheme with
unique sub paths for each sequence in the underlying dataset into a model which
is able to generalize to a variety of similar trajectories is achieved by merging
states which are similar according to their emission and transition densities.
Merging two states q1 and q2 means replacing these states with a new state q̂
whose transition and emission densities are a weighted mixture of the densities
of the two underlying states.
Model evaluation: We evaluate the models resulting in the merging process
using a mixture composed of a structural model prior P (M) and the data de-
pendent model likelihood P (X|M):

P (M |X) = λP (M) + (1− λ)P (X|M) (2)

The model prior P (M) acts as a data independent bias. Giving precedence to
simpler models with fewer states makes this prior the primary driving force in
the generalization process:

P (M) = e−|M |, (3)

where the model size |M | is the number of states in the model. It is also possible
to include the complexity of the transitions and emissions per state. For our
dataset we found that using only the number of states generates the best per-
forming models. While the structural prior favors simpler models, its antagonist,
the model likelihood, has its maximum at the initial model with the maximum
likelihood sub-paths. The exact likelihood of the dataset X given the model M
is computed as:

P (X|M) =
∏
x∈X

P (x|M) (4)

with

P (x|M) =
∑

q1...ql∈Ql

p(qI → q1)p(q1 ↑ x1) . . . p(ql ↑ xl)p(ql → qF) (5)

where l is the length of the sample and qI , qF denote the initial and final states
of the model. The probability to transition from a state q1 to q2 is given as
p(q1 → q2) and p(q1 ↑ x1) denotes the probability to emit the symbol x1 while
being in state q1. As we do not want to store the underlying samples explic-
itly, we use an approximation, which considers only the terms with the highest
contribution, the Viterbi path:

P (X|M) ≈
∏
q∈Q

(∏
q′∈Q

p(q → q′)c(q→q′)
∏
σ∈Σ

p(q ↑ σ)c(q↑σ)

)
(6)

Fig. 1. Sequence of models obtained by merging samples from an exemplary language
(ab)+ and subsequently merging the highlighted states. Reproduced from [7].

where c(q → q′) and c(q ↑ σ) are the total counts of transitions and emissions
occurring along the Viterbi path associated with the samples in the underlying
dataset (see [7] for details).

The simplest model in our approach is a model which simply produces a sin-
gle sequence. These models are called maximum likelihood models because they
produce their respective sequences with the highest possible probability. Start-
ing from maximum likelihood models over individual sequences we build more
general HMMs by merging simpler ones and iteratively joining similar states to
intertwine sub-paths constructed from different sequences, allowing them to gen-
eralize across different instances of the same action class. The first model M0 of
the example in figure 1 can be seen as a joint model of two maximum likelihood
sequences {ab, abab}. When generating from such a model, the actual sequence
which will be generated is determined early by taking one of the possible paths
emanating from the start state. Only the transitions from the start state display
stochastic behavior, the individual sub-paths are completely deterministic and
generate either ab or abab. Intertwining these paths is done trough state merg-
ing, where we first build a list of possible merge candidates using a measure of
similarity between state emissions and transition probability densities. In this
approach we use the symmetrized Kullback-Leibler (KL) divergence. Then we
greedily merge the best pair of states and re-evaluate the model likelihood. In
the example above, the first two merges lead to model M3 where we experienced
a drop in log likelihood from −0.602 to −0.829. We continue the merging process
until we reach a point where merging more states would deteriorate the model
likelihood to a point where it is no longer compensated by the prior favoring sim-
pler models (eq. 3). The final model M4 is now able to generate the whole set
of sequences from the exemplary language (ab)+ the two initial samples where
drawn from.

Fig. 2. Averaged class confusion matrix for the batch (left) and the incremental (right)
approach.

3 Experiments

3.1 Dataset

To acquire a dataset we implemented a simple game where the test subjects
where asked to perform an action with two objects according to a given instruc-
tion. The game screen was divided into two parts. The upper part was the actual
gamefield with the two freely movable objects and below the gamefield was a
textfield, where the test subjects could see the instruction describing the desired
action performance. We had a total of 12 test subjects yielding a dataset with
1200 sample trajectories balanced over the four action classes “jumps over”,
“jumps upon”, “circles around” and “pushes”. See [4] for a complete description
of the dataset.

3.2 Batch vs. Incremental

To validate the incremental model building scheme we evaluate the performance
of the incremental process against a traditional Baum Welch parameter estima-
tion baseline. We consider a setting where the system is trained using recorded
action performances from 11 test subjects and is then presented with a 12th set
of action trajectories recorded from a new performer. Following this scheme the
dataset is partitioned into 12 folds with 1100 training examples and 100 test

F1 precision recall σ

Batch 0.86 0.82 0.90 0.11
Incremental 0.86 0.82 0.90 0.12

Table 1. Results of the 12-fold cross-validation for the batch and the incremental
approach.

-0,2

 0

 0,2

 0,4

 0,6

 0,8

 1

 0 10 20 30 40 50 60 70 80 90

F 1
 sc

or
e

Number of states

Fig. 3. Development of F1 scores as the number of hidden states is increased for the
batch training approach. The errorbars indicate the standard deviation of the F1 scores
across the 12 folds.

examples for each fold. We trained one HMM for each of the four action classes.
Test sequences where classified according to the action specific HMM having the
highest probability to have produced the respective sequence. Both approaches
showed almost identical results (see table 1) with both having an averaged F1

score of 0.86. The only difference is a slightly higher standard deviation between
the results of the 12 folds for the incremental approach. The class confusion
matrices in figure 2 show again only slight differences for both approaches. A
noteworthy observation here is that the class confusions are not symmetric.

3.3 Parameter Sensitivity

In this experiment we evaluate the sensitivity of the batch and the incremental
approach to their respective free parameters. As can be seen in figure 3 the
classical Baum-Welch approach to HMM parameter estimation is highly sensitive
to its structural parameter, the number of hidden states. F1 scores range from
0.03 to 0.86 as the number of hidden states in the model is increased. The
incremental approach on the other hand displays an almost linear response over

0,84

0,84

0,85

0,85

0,86

 0 0,2 0,4 0,6 0,8 1

F 1
 sc

or
e

λ

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

M
ea

n
nu

m
be

r o
f s

ta
te

s

λ

Fig. 4. Sensitivity to the λ parameter of the incremental approach.

0.30

0.40

0.50

0.60

0.70

0.80

 10 20 30 40 50 60 70 80 90 100

Number of training samples

F1
precision

recall

Fig. 5. Early learning behavior of the incremental model. The model performs notably
well even with a single training example.

the whole range of values for the λ parameter (equation 2). While the F1 score
is stable with respect to λ, the number of hidden states in the model decreases
drastically from 170 to 39 (at λ = 0.95). Setting λ = 1 and thus evaluating the
model quality only by the prior favoring simpler models with less states leads to
poorly performing models with just a single hidden state.

3.4 Early learning behavior

In this experiment we evaluate the one–shot learning capability of the incremen-
tal model. We prepared training sets with only 1 to 100 examples per action
class and evaluated the classification performance as in section 3.2. As can be
seen in figure 5 the precision is with 54% already notably good after the classifier
had seen only one training example per action class.

3.5 Early classification behavior

To evaluate how well the system performs when it is presented with incom-
plete sequences, we trained the system as in section 3.2 but truncated the test
sequences. As can be seen in figure 3.5, the sequences for the push action are
rather distinctive. After the classifier has seen only 5% of the sequence, over 70%
of the respective sequences are correctly classified as belonging to that action
class. The “circles around” and “jumps over” actions get classified rather late in
the sequence because a jumping trajectory could easily look like the start of a
circles around action.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

St
ab

le
 cl

as
sifi

ca
tio

n
re

su
lts

 %

Sequence length %

circles around
pushes

jumps upon
jumps over

Fig. 6. Early sequence classification behavior. The x-axis represents the length of the
sequence presented to the classifier and the y-axis the percentage of sequences for which
their classification result will not change if more of the sequence was presented.

References

1. Komei Sugiura, Naoto Iwahashi, Hideki Kashioka, and Satoshi Nakamura. Learning,
generation and recognition of motions by reference-point-dependent probabilistic
models. Advanced Robotics, 25(6-7):825–848, 2011.

2. Moritz Tenorth and Michael Beetz. KnowRob – Knowledge Processing for Au-
tonomous Personal Robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4261–4266, 2009.

3. Andreas Stolcke and Stephen Omohundro. Hidden markov model induction by
bayesian model merging. Advances in neural information processing systems, pages
11–11, 1993.

4. Maximilian Panzner, Judith Gaspers, and Philipp Cimiano. Learning linguistic con-
structions grounded in qualitative action models. IEEE International Symposium
on Robot and Human Interactive Communication, 2015.

5. Nico Weghe, Bart Kuijpers, Peter Bogaert, and Philippe Maeyer. A Qualitative
Trajectory Calculus and the Composition of Its Relations. GeoSpatial Semantics
SE - 5, 3799(Dc):60–76, 2005.

6. Thomas Bruss and Ludger Rüschendorf. On the perception of time. Gerontology,
56(4):361–370, 2010.

7. Stephen Omohundro. Best-first model merging for dynamic learning and recog-
nition. In Advances in Neural Information Processing Systems 4, pages 958–965.
Morgan Kaufmann, 1992.

8. Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by
bayesian model merging. In Grammatical inference and applications, pages 106–
118. Springer, 1994.

9. Roger N Shepard. Toward a universal law of generalization for psychological science.
Science, 237(4820):1317–1323, 1987.

This research/work was supported by the Cluster of Excellence Cogni-
tive Interaction Technology ’CITEC’ (EXC 277) at Bielefeld University,
which is funded by the German Research Foundation (DFG).

http://pub.uni-bielefeld.de/publication/2733058
http://pub.uni-bielefeld.de/publication/2733058
http://pub.uni-bielefeld.de/publication/2733058
http://pub.uni-bielefeld.de/publication/2733058

	Incremental learning of action models as HMMs over qualitative trajectory representations

