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PREFERENCES UNDER IGNORANCE

OLIVIER GOSSNER AND CHRISTOPH KUZMICS

Abstract. A decision maker (DM) makes choices from different sets of

alternatives. The DM is initially fully ignorant of the payoff associated

to each alternative, and learns these payoffs only after a large number

of choices have been made. We show that, in the presence of an outside

option once payoffs are learned, the optimal choice rule from sets of

alternatives is one that is as if the DM had strict preferences over all

alternatives. Under this model, the DM has preferences for preferences

while being ignorant of what preferences are “right”.

Keywords: consistency, rationality, weak axiom of revealed preferences,

strict preference

Journal of Economic Literature classification numbers: C73, D01, D11

1. Introduction

Recent empirical evidence shows that although individual agents’ deci-

sions are at large consistent with a theory of preferences, these preferences

vary wildly across agents. For instance, using scanner data of household pur-

chases, Echenique, Lee, and Shum (2011) and Dean and Martin (2015) find

that individual households make consistent choices.1 On the other hand

Dean and Martin (2011) and Crawford and Pendakur (2013), show that

households exhibit significant heterogeneity in preferences over consump-

tion bundles.2

From the point of view classical consumer theory (see e.g. Mas-Collel,

Whinston, and Green (1995, Chapter 1) for a textbook treatment), evidence

of consumer behavior “as if” they had rational preferences is reassuring.

We are very grateful to Tymon Tatur and Matthew White and conference participants at
the conference on the Biological Basis of Economic Behavior, Vancouver, and the workshop
on Strategic Information Acquisition and Transmission, Munich, as well as seminar partic-
ipants at Northwestern University, London School of Economics, University of Warwick,
Paris Game Theory Seminar, Roy Seminar, European University Institute, Center for Ra-
tionality at Jerusalem, Tel-Aviv University, Johns Hopkins University, and the University
of British Columbia for helpful comments and suggestions.
1To quote Echenique, Lee, and Shum (2011, p. 1205), “[i]t is fair to say that most of the
empirical literature, using both field and experimental data, finds relatively few violations
of GARP”
2Both findings of consistent and heterogenous behavior are confirmed by Choi, Fisman,
Gale, and Kariv (2007) in the context of risk-preferences, see also Dean and Martin (2010,
Section 5.2.3).
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This theory also accounts for heterogeneity of preferences, as is evidenced

by the literature on consumer preference aggregation as in e.g. Gorman

(1953); Chiappori and Ekeland (1999).

From the point of view of the more recent literature trying to understand

individual behavior from an evolutionary point of view (see, e.g. Robson,

2001b), the observed heterogeneity of consistent decision making is more

of a puzzle. In fact, this literature explains the prevalence of behaviors

by the evolutionary advantages provided. But then, one of the following

two must be true. Either consumption affects fitness and better choices

provide an evolutionary advantage, in which case agents using non fitness

maximizing rules should gradually disappear given the evolutionary force

is against them. Or consumption does not affect fitness, in which case all

decision rules provide the same fitness. But in the second case, why would

agents have preferences at all since no decision rules, rational or not, can

provide any advantage over another?

In this paper we present a possible rationale for heterogeneous but always

consistent choice behavior even if nature’s objective function is the same

for all individuals she is working on. In this we follow the literature on

the principal agent approach to evolution as in Robson (2001a), Samuelson

and Swinkels (2006), and Robson and Samuelson (2011), among others, by

modeling nature as the principal who endows the individual agent with a

rule (e.g. utility function) that the agent then uses to make choices.

More closely we follow Robson (2001a), Rayo and Becker (2007), Netzer

(2009), and Steiner and Stewart (2014) in that we make nature choose a

rule of behavior before she knows the exact environment the individual will

find herself in.3

The model we provide can also be understood to provide normative recom-

mendations to a decision maker who has to make repeated decisions without

ex-ante knowing which alternatives are better than others. In this sense this

paper is conceptually similar also to the literature on “rational inattention”

as in e.g. Matejka and McKay (2015).

To fix ideas consider the following two scenarios. Two friends decide to go

on a diet (with the purpose to lose weight, to feel better, to feel less tired, to

combat an illness, or for some such goal). Both dieters are offered, each day,

food from different menus, but they are ignorant as to what choices are good

to achieve their objective. Independently of each other, they both choose a

choice rule, i.e. a rule that specifies what choice to make depending on each

3Otherwise there is no point in nature giving us a utility function or making us think.
Nature could just make us make the “right” choices. See e.g. Robson (2001b) for a
discussion of this issue.
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possible menu. After a while they meet and exchange their experience. The

least successful dieter can then decide to adopt the most successful dieter’s

choice rule. How should they choose their diet to begin with?4

A contestant in a game show is informed that she will have to make re-

peated choices from subsets of a set of balls of different colors. Repeatedly,

the contestant is presented with a different basket containing balls of differ-

ent colors, out of which she always chooses a single one. After all choices are

made, a lottery determines the dollar value of each color. The contestant

can then either choose to earn a dollar amount equal to the sum of all the

ball values, or opt out for a fixed prize. How should the contestant choose

from each basket?

The model we provide to tackle our questions can be roughly sketched

as follows. A decision maker (DM) will be asked to make repeated choices

from subsets of a finite set of grand alternatives. The DM is asked to choose

a choice rule that specifies what choice she would make for every possible

subset of the set of all alternatives. A choice rule can be consistent (i.e.

derived from a rational preference relation) but can also be non-consistent in

the sense of exhibiting cycles or other non-transitivities. We allow all choice

rules. At the time of this choice, the DM acts under a veil of ignorance and

knows nothing about the value of the various alternatives to her. Nature

(random nature, not mother nature) then randomly chooses a gain function

that attaches material gains (or fitness) to each alternative. After some time

the DM learns how well her choice rule is doing on average without learning

how each alternative contributes to the overall material gain. The DM can

then stick to her chosen rule and obtain the resulting average material payoff

or adopt an outside option, the value of which is chosen ex-ante randomly.

The DM evaluates material payoff with a fixed expected utility function.

We show that, provided the DM is not too risk averse, any optimal choice

rule must be a strictly consistent choice rule. Moreover we identify condi-

tions under which all strictly consistent rules are equally optimal.

The argument for this claim is roughly as follows. We show that in such an

environment all choice rules produce the same expected material fitness. We

then show, and this is the crucial result, that strictly consistent rules are in

some sense the most risky rules. To be more precise we note that any choice

rule induces (at the ex-ante level) a probability distribution over material

gains. It can then be shown that for any choice rule there is a distribution

over strictly consistent choice rules that induces a distribution over material

4Consider a witch doctor in some village choosing treatments from a set of available
treatments (dictated for instance by the weather among other things) for his various
patients. Or farmers choosing crops for their various fields. Or see-farers stranded on an
exotic island with strange fruits and animals.
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gains that is a strict mean preserving spread over the distribution of material

gains induced by the given choice rule. If the DM is not too risk averse she

will then strictly prefer this distribution over strictly consistent rules over

the given choice rule, because of the outside option.5 Thus, for any choice

rule the DM will find a strictly consistent choice rule that she prefers strictly

over the given choice rule.

If the DM is sufficiently risk averse, however, then the DM will find strictly

consistent rules too risky and choose a choice rule that is not strictly con-

sistent and may even exhibit non-transitivities.

Thus, under ignorance, consistent decision making is optimal when 1) the

DM is not too risk averse, and 2) there is some form of outside option the

DM can adopt at the end.

Our model provides a rationale for heterogenous preferences for the two

following reasons. First, we show there are conditions on the distribution

over choice sets for the agents, under which even if all agents face the same

such distribution over choice sets, all strictly consistent rules are equally

good and all other rules suboptimal. Different agents may thus adopt differ-

ent strictly consistent rules while each of them being optimal.6 Second, we

show that while all agents have the same utility function, different distribu-

tion over choice sets or different distributions over outside options lead to

different optimal strictly consistent rules. Hence, a strictly consistent rule

that is optimal for one agent may be suboptimal for another even though

they both share the same utility function and face the same complete un-

certainty as to which alternatives are good for them.

The paper proceeds as follows. In Section 2 we provide the model. Section

3 we state the main theorem and sketch its proof, in the course of which we

establish two additional results that are of interest in their own right. Section

4 provides a discussion of the exact role the assumptions play for the various

results. In section 5 we use a simple example with two purposes. First, it

should help the reader to understand both the model and its workings.

Second, it demonstrates the boundaries of our results by highlighting what

is not true in this model. Section 6 finally discusses a few possible extensions

of the model.

2. Model

5This is the same logic as in finance, e.g. in Merton (1973) and Rasmusen (2007), where
increasing risk increases option value.
6While each individual chooses one strictly consistent choice rule, the aggregate behavior
will look like that of a random utility model as in Luce (1959) with implications as in
Block and Marschak (1960), see also Gul and Pesendorfer (2013).
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2.1. Choice. Let K = {1, ..., |K|}, |K| > 1 be the set of all possible alter-

natives. Let L = P(K)\∅ denote the set of all non-empty subsets of K.

We call an element in L a choice set. A decision maker is repeatedly asked

to make a choice from different choice sets.

Definition 1. A choice rule is a function R : L → L such that R(L) ⊆ L
for all L ∈ L. Let R denote the set of all such choice rules.

Following Uzawa (1956) and Arrow (1959) (see also Chapter 1.B in Mas-

Collel, Whinston, and Green (1995)), let � denote a binary (preference)

relation over elements in K with the interpretation that when i � j an

individual holding this preference relation weakly prefers i over j. The

relation � is complete if for any two i, j ∈ K, i � j or j � i (or both), it is

transitive if i � j and j � l imply i � l. A complete and transitive relation

is called consistent (often also termed “rational”, see e.g. Definition 1.B.1

in Mas-Collel, Whinston, and Green (1995)). In this paper a special case of

consistent preferences plays a prominent role, namely, strict preferences.

A relation � is anti-symmetric if whenever i � j and j � i then i = j.

We call a preference relation strictly consistent if it satisfies completeness,

transitivity, and anti-symmetry.

These definitions extend from preference relations to the corresponding

individual’s behavior.

Definition 2. A choice rule R ∈ R is consistent if there exists a complete

and transitive preference relation � such that, for every L, R(L) is the set

of maximal elements in L for �. It is strictly consistent if it is consistent

and R(L) is a singleton for all L ∈ L. Let Rs denote the set of strictly

consistent rules.

It is easily verified that a strictly consistent rule is one based on a strictly

consistent preference relation.

A rule that plays a particular role in our set-up is one that accepts the

whole offered set. It is defined by RI(L) = L for every L. Since this is the

choice rule associated to an indifferent preference relation, we call the rule

RI the indifferent rule.

2.2. The environment. An environment consists of two components. First,

nature chooses a gain function that associates gain levels to possible choices.

It is useful to consider a fixed finite set of gain levels G ⊂ IR+. A gain func-

tion g : K → G is then a function from the set of all possible choices to this

set of possible gain levels, with the interpretation that g(k) ∈ G is the gain

an individual receives when choosing k ∈ K.
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We extend any gain function to the set L of choice sets by setting

g(L) =
1

|L|
∑
k∈L

g(k)

for L ∈ L, with the natural interpretation that g(L) is the expected gain for

the decision maker when L is the set of accepted alternatives, thus assuming

that each element in L is then chosen by the decision maker with equal

probability.

Second a distribution over choice sets p ∈ ∆(L) describes the fre-

quency with which choice sets are presented to the decision maker. We

assume that enough choice sets are available with positive frequency, thus

making the assumption that p has full support over the non-singleton subsets

of L.

In some cases, it is useful to consider neutral distributions, for which all

alternatives play the same role.

Definition 3. A distribution p over choice sets is neutral if, for every

permutation π of K, and every choice set L ⊆ K, p(L) = p(π(L)).

Obviously, the uniform distribution is neutral. Other examples of neutral

distributions over choice sets are the uniform distributions over choice sets

of fixed size l, for 1 ≤ l ≤ |K|.
In order to define the average gain of a rule R given a distribution of choice

sets p and a gain function g, we need to first specify the choices realized by

the decision maker when facing the choice set L. If R(L) is a singleton, the

decision maker ends up getting the alternative R(L), and obtains a payoff

(for this period) of g(R(L)). If R(L) is not a singleton we assume that the

decision maker accepts all alternatives in R(L) equally, and ends up with

each of them with equal probabilities.7 Given our set extension of g, the

average payoff received by the decision maker is also, in this case, g(R(L)).

Given gain function g and a distribution of choice sets p, the (average)

material gain of any rule R ∈ R is then given by

gp(R) = IEpg(R(L)) =
∑
L∈L

p(L)g(R(L)).

Let G be a finite set of gain functions, and let q ∈ ∆(G) be a distribution

over gain functions. For a permutation π : K → K and a gain function

g : K → G let gπ : K → G be the permutation of g defined by gπ(l) = g(π(l))

for all l ∈ K.

7We believe this to be an innocuous assumption, which, however, provides us with the
property that the set of all decision rules is finite. We do not believe that any additional
insight can be gained by relaxing this assumption.
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Definition 4. A distribution over gain functions, q ∈ ∆(G), is symmetric

if gπ ∈ G and q(g) = q(gπ) for every gain function g ∈ G and for every

permutation π : K → K.

A decision maker holding a symmetric belief over gain functions is com-

pletely agnostic as to what choices carry better payoffs than others, and

by how much. Furthermore, if the distribution over choice sets is neutral,

nothing allows to distinguish different choices. Our objective in this paper

is to show when such an agnostic decision maker is strictly better-off by

using a strictly rational choice rule, thus behaving “as if” she had a strict

preference over choices in K.

In what follows, we assume that the distribution q over gain functions

is symmetric and that its support contains at least one non-constant gain

function.

2.3. Risk aversion and utilities. We distinguish gains, which are inter-

preted as material or monetary payoffs, from utilities. The agent has a

utility function u : IR → IR, and u(g) is the agent’s utility for a material

gain of g. We assume that u is twice differentiable, increasing and concave,

and that the coefficient of absolute risk aversion ρ(g) = −u′′(g)
u′(g) is bounded

between a lower bound ρ and an upper bound ρ. In what follows we say

that the agent is sufficiently risk averse if ρ is large, and not too risk averse

if ρ is close to 0.

2.4. Outside options. After observing the “average” material payoff cor-

responding to the rule R, the decision maker may either stick to the induced

material payoff, or switch to an outside option with material gain g′. The

value g′ is random and statistically independent of q. The realized value of

g′ is observed by the decision maker after she learns the average material

payoff induced by her chosen rule. We assume that g′ has a positive density

in the interval [mink g(k),maxk g(k)]. This assumption excludes the trivial

cases in which g′ is either smaller than mink g(k) with probability 1 and the

outside option is never chosen, as well as the case in which it is larger than

maxk g(k) with probability 1 and the outside option is always selected. Note

however that it encompasses situations in which the outside option is avail-

able with positive probability only, as they are captured by distributions of

g′ that put positive probability on values less than mink g(k).

2.5. The decision maker’s problem. The decision maker (DM) knows

the set of alternatives K, the distribution of choice sets p the distribution

of gain functions q as well as the distribution of the outside option g′. The

timing of the decision problem is as follows. First, the DM chooses a rule in
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R. Then nature chooses a gain function according to q. This gain function is

not known to the DM at this time. The DM makes choices according to her

chosen rule in every choice set L which she faces with frequency p(L). The

DM then learns the average realized gain gp(R). The outside option value

g′ realized and is observed by the DM, who can then choose the maximum

of this average realized gain and g′. In short, the DM chooses a rule R ∈ R
in order to maximize her ex-ante expected utility

IEq,g′
[
max

{
u(gp(R)), u(g′)

}]
.

The timing of events in the model is described in Table 1.

0 • DM chooses rule R
1 • gain function g and average gain gp(R) realizes
2 • outside option g′ realizes
3 • DM receives material gain ĝ = max{gp(R), g′} providing utility u(ĝ)

Table 1. Timeline of events

3. Results

In this section we first state the main result (Theorem 1) and then sketch

its proof by providing two intermediate results that are of interest in their

own right (Theorems 2 and 3).

3.1. Optimal choice: indifferent versus strictly consistent. The main

result of this paper is the following theorem.

Theorem 1. If the DM is sufficiently risk averse and p is neutral, then

the indifferent choice rule RI is optimal and all strictly consistent rules are

suboptimal. If the DM is not too risk averse, then for every p every optimal

rule is strictly consistent and for p neutral every strictly consistent rule is

optimal.

The proofs of all results are given in the Appendix. In what follows we

provide a sketch of the proof and identify two intermediate results that are

of interest in their own right.

First we note that, given the assumption of q symmetric, i.e. the assump-

tion that the DM is fully ignorant as to what alternatives are good for her,

all choice rules yield the exact same ex-ante expected gain. In other words,

absent an outside option and for a risk neutral agent, all rules are equally

good.

Lemma 1. Let R,R′ ∈ R be arbitrary decision rules. Then

IEqgp(R) = IEqgp(R
′).
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If all the rules give the same expected utility, they can still differ in the

level of risk they provide.

Let R, R′ be two rules. We say that R is strictly riskier than R′ if

the distribution of gp(R) under q is a strict mean-preserving spread of the

distribution gp(R) under q. One distribution is a strict mean-preserving

spread of another is it is a mean-preserving spread of and not identical to

the other. If µ is a distribution over rules and R′ is a rule, we say that µ is

strictly riskier than R′ if the distribution of gp(R) under q and µ is a strict

mean-preserving spread of the distribution gp(R) under q.

The next theorem shows that the indifferent rule is risk-minimizing when

p is neutral.

Theorem 2. Assume that p is neutral. Then RI is a least risky rule.

The above theorem explains why RI is an optimal decision rule for suf-

ficiently risk averse agents. Note in passing that it also shows that, absent

any outside option, RI is optimal for any risk-averse agent.

Our next result shows that the strictly rational rules maximize risk in an

unambiguous sense.

Theorem 3. Let R be any non strictly consistent rule, then there exists

a distribution µ over strictly consistent rules such that µ is strictly riskier

than R. If p is neutral, then every strictly consistent rule is strictly riskier

than any non strictly consistent rule.

By force of this theorem a risk neutral DM, and in the presence of an

outside option, when considering a non strictly consistent rule, will always

find a distribution over strictly consistent rules (a mixed strategy putting

weight only on strictly consistent rules) that she strictly prefers over the

given rule. To then finish the argument we note that, as the DM strictly

prefers this distribution over strictly consistent rules over the given rule, she

must also strictly prefer one of these strictly consistent rules over the given

rule.

We have thus explained how Theorems 2 and 3 can be used to proof the

main result, Theorem 1. The proof of Theorems 2 and 3, identifying how

rules can be partially ordered by the mean-preserving spread order, rests on

a key lemma, which we establish in the next subsection.

3.2. Choice rules and choice distributions. A key to a better under-

standing a choice rule’s performance in the decision maker’s problem is to

consider the probability distribution over choices in K induced by this choice

rule and by the distribution over choice sets. Given the distribution p over
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choice sets and a choice rule R, let λp(R)(k) denote the overall probability

with which an element k ∈ K is selected under the rule R; it is given by

λp(R)(k) =
∑

L:k∈R(L)

p(L)

|R(L)|
.

We call λp(R) the choice distribution associated to R. This choice distri-

bution summarizes the frequency with which each item in K is selected by

R. This distribution is known to the agent.

Since the gain function g : K → G is not known to the agent, neither is

the payoff gp(R) associated to R, but this payoff can be easily deduced from

g and λp(R), as

gp(R) =
∑
k

λp(R)(k)g(k).

For a fixed g, a rule’s average payoff is entirely determined by its choice

distribution. And for g unknown, the distribution of payoffs induced by R

and g is entirely determined by λp(R) and by the distribution of g. As we

shall see, it is useful to think of the choice distribution induced by her rule

as the object of choice for the agent.

For a given distribution p over choice sets, let Λp denote the set of all

choice distributions available to the agent, i.e.

Λp = {λp(R), R ∈ R}.

Similarly, denote by Λsp the subset of Λp consisting of distributions induced

by strictly consistent rules, i.e.

Λsp = {λp(R), R ∈ Rs}.

The following result locates the choice distributions induced by consistent

rules as extreme points in the set of choice distributions. It shows that the

extreme points of the convex hull of Λp consists of points in Λsp only.

Lemma 2. Every choice distribution in Λp is a convex combination of choice

distributions in Λsp.

This lemma is proven in Appendix A. It is this lemma that provides

the key insight needed to prove Theorem 3 by establishing that the strictly

consistent rules are, in a certain sense made precise in the statement of the

Theorem, most risky.

4. Discussion of the assumptions

Here we briefly discuss the role played by the different assumptions in our

main results. We first argue that the assumptions of full support for p and

g′ are not important and relaxing these changes the results only slightly. We
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then discuss why some results require the assumption of p neutral and how

the results change if q is not symmetric.

Section 2 assumes that p has full support over non-singleton choice sets.

Now suppose that p does not have full support. Note first that the conclu-

sions of Lemmas 1 and 2 still hold. The same applies to Theorem 2: the

indifferent rule is still a least risky rule and to the first sentence in Theorem

1: the indifferent rule is an optimal rule for a sufficiently risk averse DM.

The conclusions of Theorem 3 are slightly modified: it is true that for any

non strictly consistent rule there is a distribution over strictly consistent

rules that yields a mean-preserving spread in terms of distributions of gains,

but this spread does not anymore have to be strict. The second sentence

in Theorem 1 needs to be adapted to say that under sufficiently low risk

aversion, there exists an optimal strictly consistent rule. This rule is not

unique when p doesn’t have full support, since choices outside the support

of p do not affect payoffs, thus are irrelevant. In this case, it can be shown

that all optimal rules must coincide with a strictly consistent rule on the

support of p.

We also assumed that the outside option g′ has full support over a suf-

ficiently large interval. Note first that this assumption is only relevant for

Theorem 1. Relaxing this assumption does not change the conclusion of the

first sentence in Theorem 1 and only changes the conclusion of the second

sentence in the same way as relaxing the assumption of p full support does:

there exists a strictly consistent optimal rule, but not only strictly consistent

rules may be optimal. To see this, observe for instance that if g′ takes only

values outside of the range of gp(R), all rules yield the same payoff hence

are optimal.

The assumption of p neutral does not enter Lemmas 1 and 2, but does

enter all three Theorems. Indeed it is important in Theorem 2 and the first

sentence in Theorem 1. If p is non-neutral, then the indifferent rule is not

necessarily least risky, and thus also not necessarily optimal for a highly risk

averse DM. To see this consider K = {a, b} with p({a}) = p({a, b}) = 1
4 and

p({b}) = 1
2 . Then the indifferent rule yields a choice distribution 3

8a + 5
8b

and, under q symmetric, is more risky than the strictly consistent rule that

corresponds to the preference a � b which yields a choice distribution of
1
2a+ 1

2b.

Note that even when p is neutral, under p full support, the indifferent

rule RI is never the unique risk-minimizing rule as long as K contains at

least three elements. Consider all subsets L of K with |K| − 1 elements. By

p neutral all theses sets have the same weight under p. Consider any rule R

that coincides with RI on all sets except these sets L, such that R(L) is a
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singleton for every L and such that all R(L) differ. Then, λp(R) = λp(R
I).

More generally a rule that has appropriate cycles, and is thus non-consistent,

is also least risky.

The most interesting implication of p non-neutral is the role p plays in

Theorem 3 and the second sentence in Theorem 1. The example in Section 5

below shows that, for p non-neutral, yet q symmetric, it is not the case that

all strictly consistent rules are most risky and that all strictly consistent

rules are equally good and all optimal for a DM with low risk aversion.

There does not always exists a unique most risky strictly consistent rule,

and different p’s imply different most risky rules (even keeping q the same).

We finally turn to the two assumptions made on q. Assuming that there

is at least one non-constant gain function in the support of q only avoids

that the model is trivial. The second assumption, q symmetric, makes the

model interesting by assuming the decision maker has a veil of ignorance.

We believe that it is under this condition that results showing the optimal-

ity of strictly consistent rules are the most striking. Nevertheless, it is still

interesting to examine the implications of an asymmetric q. The first obser-

vation in this case is that the conclusion of Lemma 1 does generally not hold

if q is not symmetric. In this case (for instance in the trivial case in which

q is supported by one payoff function only), some rules can provide a higher

expected gain than others. Interestingly, however, under the presence of an

outside option and for a not too risk averse DM, the optimal rule is not

generally the rule that maximizes the expected gain under the most likely

gain function under q, as show in Section 5 below.

It is still true, however, that even if q is non-symmetric, if p and g′ have

full support, the optimal rule for a DM with low risk aversion (second part

of Theorem 1) is strictly consistent. The proof requires little adaptation.

The key argument is the following. By Lemma 2, for every non strictly

consistent rule, there exists a distribution over strictly consistent rules (as

in Theorem 3) that produces a strict mean preserving spread in terms of

choice distributions. This distribution also provides a strict mean preserving

spread of payoffs for every q. Thus, a low risk averse DM will, for any q,

prefer this distribution on strictly consistent rules over the given non strictly

consistent rule. Hence, at least one of these strictly consistent rules provides

a higher expected payoff than the non strictly consistent rule. Which of the

strictly consistent rules is optimal can then depend on q and the distribution

of the outside option g′.
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5. An example

We study an example in detail, showing in particular how the optimal

choice rules can depend on the data of the problem when p is not neutral.

Let K = {a, b, c}, and p be given by: p({a, b}) = p({a, c}) = 1
4 , and

p({b, c}) = p({b}) = p({c}) = 1
8 , p({a, b, c}) = p({a}) = 1

16 . Note that b and

c are symmetrically treated in p, but that p is not neutral.

Given the symmetries in the setup, there are, without loss of generality,

only three strictly consistent rules with potentially different payoff distribu-

tions. The strict preferences corresponding to these rules are:

Ra a � b � c

Rb b � c � a

Rc c � a � b

Their corresponding choice distributions are λ(Ra) = 5
8a+ 1

4b+ 1
8c, λ(Rb) =

1
16a+ 9

16b+ 3
8c, and λ(Rc) = 5

16a+ 1
8b+ 9

16c.

Let us consider gain functions that attach gain 1 to one element in K and

0 to then other two, and q the uniform distribution over these three gain

functions. The payoff distributions of the strictly consistent rules under q

are given in the following table (one • represents a probability weight of 1
3).

R 1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

Ra • • •
Rb • • •
Rc • • •

It is seen that the payoff distributions of Ra and Rb are mean preserving

spreads of the payoff distribution of Rc, but that neither the payoff distribu-

tion of Ra nor Rb is a mean preserving spread of the other. It follows that

it is always the case that one of the two rules Ra or Rb is optimal.

We now show that which of Ra or Rb is optimal depends on the distribu-

tion of outside options. First consider a distribution of g′ with full support

that puts high probability on some value x ∈
(

9
16 ,

10
16

)
, and for simplification

think of the limit case in which the distribution puts probability 1 on x).

Under Rb, the option is always chosen, hence the expected payoff is x, while

under Ra the option is chosen with probability 2
3 and the expected payoff

is 1
3

10
16 + 2

3x > x. The option value is maximal under Ra which is then the

only optimal rule. On the other hand, if the distribution of g′ puts high

probability (think of it as being 1) on some value x ∈
(

1
16 ,

2
16

)
, the option

is never chosen under Ra, which then yields an expected payoff of 1
3 , while

it is chosen with probability 1
3 under Rb which yields an expected payoff of
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1
3x+ 1

3
6
16 + 1

3
9
16 >

1
3 . Hence in this second case the option value is maximal

under Rb which is now the only optimal rule.

Note that ex-ante all elements of K have the same chance of being the

best choice. Nevertheless it is not true that all (strictly consistent) rules are

equally good. Together with our result for p neutral and q symmetric, this

implies that p has a subtle effect on which rules are good and which are bad.

The optimal rule depends on p (just as much) as on q.

Now consider the same example but with a slightly different distribution

over gain functions, denoted q′. Let q′ be such that it is derived from q by

taking a small ε > 0 probability weight from all gain functions other than

the ga ∈ G with ga(a) = 1 and ga(b) = ga(c) = 0 and move that total

probability mass to that gain function ga. Thus, ga is the most likely gain

function under q′. Let g′ put high probability on some value x ∈
(

1
16 ,

2
16

)
.

Then for sufficiently small ε, rule Rb is strictly better than Ra, even though

Ra is the unique optimal rule for gain function ga. Thus, even if one gain

function is more likely than all others, the strictly consistent rule associated

with this gain function may not be optimal.

6. Extensions

We first point out one general robustness property of our results. Most

of our main results in Theorems 1, 2, and 3 are of the following kind. We

show that according to some partial order of “better than” certain decision

rules are strictly better than other decision rules. This implies that any

sufficiently small change to the model, i.e. any ε (positive yet small) addition

of something cannot change the result (given the continuity of the DM’s

objective function).

In what follows we show several directions in which the model can be

extended.

6.1. Costly experimentation and impatience. The model studied so

far considers that if the outside option is chosen, then the resulting utility

is the one corresponding to the outside option’s gain. This means that

experimentation of a rule R is costless in the sense that when the outside

option is chosen, the payoff generated by R is irrelevant. We can instead

consider that experimentation is costly in the following sense. The payoff

from R materializes in a first stage, and the agent obtains the corresponding

utility. Then in a second stage the agent may decide to switch to the outside

option, or not. The agent has a discount factor of 0 < δ < 1, meaning that

the objective is to maximize (1− δ) times the utility in the first period plus

δ times the utility in the second period. The agent’s problem then becomes
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to maximize over all rules R the total expected utility:

IEp,g′
[
max{u(g(R)), (1− δ)u(g(R)) + δu(g′)}

]
.

Note that max{u(g(R)), (1 − δ)u(g(R)) + δu(g′)} = (1 − δ)u(g(R)) +

δmax{u(g(R)), u(g′)}. Thus, the DM’s objective is to maximize

(1− δ)IEp,g′ [u(g(R))] + δIEp,g′
[
max{u(g(R)), u(g′)}

]
.

This new objective function differs from the one before only by the additional

first term.

If the DM is risk averse the first term in the objective function is max-

imized at a least risky rule. Thus, the first sentence in Theorem 1 is still

true: the indifferent rule, being least risky, is optimal for a sufficiently risk

averse DM. The second sentence is also true in this setup. By Lemma 1

all rules yield the same expected gain. Thus, for low risk aversion, all rules

produce almost the same expected utility. As risk aversion becomes smaller

and smaller the first term in the objective function becomes irrelevant, and

is dominated by the second term. This second term, however, coincides with

the original objective function.

6.2. Finite sampling. In our main model, we consider that the agent ob-

serves the expected payoff gp(R) = IEpg(R(L)) before deciding whether to

use the rule R or take the outside option. The payoff gp(R) can be un-

derstood as the average of g(R(L)) over an infinite sequence of realizations

of the choice set L according to p. Now consider a variation of the model

in which the agent gets to observe the average payoff 1
n

∑
t g(R(Lt)) over a

finite and iid. sequence with law p of choice sets L1, . . . , Ln before deciding

to take the outside option or not.

In this new decision problem, the DM is less informed than in the original

model, as gp(R) is only observed with noise. Thus the value from choosing

any rule is not higher in the new model than in the original. Note however

that the payoff of the indifferent rule gp(R
I) equals 1

|K|
∑

k g(k) and is thus

known in advance. This implies that whenever RI is optimal in the original

model, it is still optimal in the modified one for any value of n.

In the modified model, the choice as to whether to switch to an out-

side option or not depends on a subtile bayesian updating after observing
1
n

∑
t g(R(Lt)). Still, the DM can use the following rule: switch to g′ iff

g′ > 1
n

∑
t g(R(Lt)). Since by the law of large numbers, 1

n

∑
t g(R(Lt))

converges almost surely to IEpg(R(L)) when n becomes large, this switch-

ing rule yields an expected payoff going to max{gq(R), g′} when n becomes

large. This implies that the choice of a rule in the modified problem gives



16 OLIVIER GOSSNER AND CHRISTOPH KUZMICS

an expected payoff that becomes arbitrarily close to the payoff in the origi-

nal problem. Therefore, whenever all optimal rules are strictly consistent in

the original model, the same remains true with finite sampling, for n large

enough.

Note finally that the results of this section extend to any model in which

gp(R) is observed with noise. The result on the optimality of the indifferent

rule is true for any noise structure, and the one on the optimality of strictly

consistent rule holds as long as the noise is small enough.

6.3. Risk loving. The utility function u in our model could, of course,

be also derived from evolutionary concerns as in e.g. Robson (1996a) and

Robson (2001a). In many such models the endogenously determined utility

function exhibits risk-neutrality or -aversion. In winner-take-all environ-

ments Robson (1996b) and Dekel and Scotchmer (1999) find that evolution

favors risk-loving utility functions at least to some extent. Our results show

that in this case, with or without the presence of an outside option, the

decision maker’s utility maximizing choice rule is a strictly consistent one.

6.4. Small and large stakes. Instead of considering high or low risk aver-

sion levels, our results have a natural interpretation for a fixed risk aversion

level, but considering different sizes of stakes.

Consider indeed the same decision problem as in our model, but in which

all material payoffs, whether from decisions or from the outside option, are

multiplied by a constant γ > 0. Then, the decision problem is the same

as before, except that the decision maker’s utility u(g) is now replaced by

v(g) = u(γg). Since the coefficient of risk aversion of v at g is γ times that

of u at γg, it is bounded above by γρ and γρ.

We say that stakes are high when γ is sufficiently large, and that stakes

are low when γ is sufficiently small. Our main theorem can be now rephrased

in terms of stakes instead of risk aversion as follows:

Theorem 4. Consider a risk averse decision maker. If the stakes are suf-

ficiently high and p is neutral, then the indifferent choice rule RI is optimal

and all strictly consistent rules are suboptimal. If stakes are sufficiently low,

then for every p every optimal rule is strictly consistent and for p neutral

every strictly consistent rule is optimal.
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Appendix A. Proofs

A.1. Proof of Lemma 1. Recall that, for a given rule R ∈ R, the ex-ante

expected payoff is given by

IEqgp(R) = IEqIEpg(R(L))

=
∑
g∈G

q(g)
∑
L∈L

p(L)g(R(L))

=
∑
g∈G

q(g)
∑
L∈L

p(L)
1

|R(L)|
∑

k∈R(L)

g(k)

=
∑
L∈L

p(L)

|R(L)|
∑

k∈R(L)

∑
g∈G

q(g)g(k),

where the last equality follows from a simple change in the order of summa-

tion.

We complete the proof of Lemma 1 by showing that
∑

g∈G q(g)g(k) does

not depend on k. Since q is symmetric, for every permutation π of K we

have ∑
g∈G

q(g)g (k) =
∑
g∈G

q(g)g(π(k)).

By averaging over all permutations π we obtain:∑
g∈G

q(g)g(k) =
1

|K|!
∑
π

∑
g∈G

q(g)g(π(k))

=
1

|K|!
∑
g∈G

q(g)
∑
π

g(π(k))

=
1

|K|!
∑
g∈G

q(g)
∑
k′

|K|!
|K|

g(k′)

=
1

|K|
∑
k′

g(k′).

QED

A.2. Proof of Lemma 2. We prove that Λsp contains the extreme points of

the convex hull of Λp in IR|K|. By the supporting hyperplane theorem, it suf-

fices to prove that, for any vector v = (v(k))k ∈ IR|K|, maxλp∈Λp

∑
k λp(k)v(k)

is attained at some λp ∈ Λsp. Interpret v(k) as a “fictitious utility” for the

choice k. For L ⊆ K, let v(L) = 1
|L|
∑

l∈L v(l). Let π be a permutation of K

that orders the coordinates of v such that v(π(1)) ≥ v(π(2)) ≥ . . . ≥ v(π(k)).

Maximizing
∑

k λp(k)v(k) over λp ∈ Λp is equivalent to maximizing the ex-

pected “fictitious utility”
∑

L∈L p(L)v(R(L)) over all rules.
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The rule Rπ that selects the least element according to π in every choice

set, R(L) = min{l, π(l) ∈ L}, maximizes each term of the sum
∑

L∈L p(L)v(R(L)),

so it maximizes the sum. Also, Rπ is strictly consistent, since it is the rule

that corresponds to the preference relation π(1) � π(2) � . . . � π(k). Hence,

λp(R
π) belongs to Λsp, and achieves maxλp∈Λp

∑
k λp(k)vk.

QED

A.3. Proof of Theorem 3. In order to prove Theorem 3 the following two

Lemmas are useful.

Lemma 3. Let R ∈ Rs and R′ ∈ R. If λp(R
′) = λp(R), then R′ = R.

Proof: Consider w.l.o.g. the strictly consistent rule R corresponding to

the preference relation 1 � 2 � 3 � ... � |K|, and let R′ be a rule such that

λp(R
′) = λp(R). Since R(L) = {1} whenever 1 ∈ L,

λp(R)(1) =
∑
1∈L

p(L) ≤
∑

1∈L,1∈R′(L)

p(L)

|R′(L)|
= λp(R

′)(1).

Since p has full support, the inequality above is an equality iff.R′(L) = {1}
whenever 1 ∈ L. Now we have

λp(R)(2) =
∑

2∈L,16∈L
p(L) ≤

∑
2∈L,1 6∈L,2∈R′(L)

p(L)

|R′(L)|
= λp(R

′)(2).

Here again, equality holds only if R′(L) = {2} whenever 2 ∈ L and 1 6∈ L.

By induction on k, we obtain that R′(L) = {k} whenever k ∈ L and

1, . . . , k − 1 6∈ L, i.e.R′ = R.

QED

Lemma 4. For every non-constant vector (ak)k∈K ∈ IR|K| and every non-

constant gain function g, there exists a permutation gπ of g such that
∑

k akg
π(k) 6=

0.

Proof: Consider a vector (ak)k∈K ∈ IR|K| such that for all permutations

gπ of a non-constant gain function g we have
∑

k akg
π(k) = 0. Consider the

permutation π that only exchanges two indexes, i, j ∈ K. Then we have

both ∑
k 6=i,j

akg(k) + aig(i) + ajg(j) = 0

and ∑
k 6=i,j

akg(k) + aig(j) + ajg(i) = 0.

The difference of these two expressions gives

aig(i) + ajg(j) = aig(j) + ajg(i),
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or, equivalently,

(ai − aj)(g(i)− g(j)) = 0.

Thus, for every i, j ∈ K we have ai = aj or g(i) = g(j). By assumption there

exist i, j ∈ K such that g(i) 6= g(j), and thus for these we have ai = aj . Let

a = ai = aj .

For every k 6= i, j, since we cannot have both g(k) = g(i) and g(k) = g(j)

we have either ak = ai = a or ak = aj = a. Therefore the vector (ak)k∈K is

constant.

QED

Proof of Theorem 3: Let R ∈ R \ Rs. By Lemma 2, λp(R) is a convex

combination of choice distributions in Λsp. That is, there exists a distribution

µ over Rs such that

λp(R) =
∑

R′∈Rs

µ(R′)λp(R
′).

We now have for every g:

(A.1) gp(R) =
∑

R′∈Rs

µ(R′)gp(R
′) = IEµgp(R

′).

Therefore, for every g, the distribution of gp(R
′) under µ is a mean preserving

spread of the constant gp(R). This remains true when g is taken at random

according to q: the distribution of gp(R
′) under q and µ is a mean preserving

spread of the distribution of gp(R) under q.

We now show that this mean-preserving spread is strict. To show that it

suffices to show that the mean preserving spread of equation (A.1) is strict

for one g in the support of q. I.e. we need to prove that there exists g in the

support of q and R′ in the support of µ such that gp(R
′) 6= gp(R).

By Lemma 3 there exists a rule R′ ∈ Rs such that α(R′) > 0 and λp(R
′) 6=

λp(R). Let ak = λp(R
′)(k) − λp(R)(k). Since λp(R

′) 6= λp(R), there exists

k s.t. ak 6= 0. But then since
∑

k ak = 0, a is non-constant. Then, by q

symmetric and Lemma 4, there exist g in the support of q s.t.
∑

k∈K akg(k) 6=
0. The results follows since gp(R)− gp(R′) =

∑
k akg(k).

To prove the final statement of Theorem 3 we note that under p neutral for

any two strictly consistent rules R′, R′′ ∈ Rs their choice distributions λp(R
′)

and λp(R
′′) are permutations of each other. But then under q symmetric

the induced distribution over material gains g is the same for both rules.

QED

A.4. Proof of Theorem 2. We first show that under p neutral, the choice

distribution of the indifference rule RI is uniform: For every k and every
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permutation π of K we have

λp(R
I)(k) =

∑
L,k∈L

p(L)
1

|L|

=
∑
L,k∈L

p(π(L))
1

|π(L)|

=
∑

L,k∈π−1(L)

p(L)
1

|L|

Averaging over all permutations π we have:

λp(R
I)(k) =

1

|K|!
∑
L

∑
π,k∈π−1(L)

p(L)
1

|L|

=
∑
L

|L|
|K|

p(L)
1

|L|

=
1

|K|
,

hence the result.

Now consider an arbitrary rule R ∈ R with R 6= RI . Assume λp(R) =

λp(R
I). Then R and RI yield the same distribution over gains for any

distribution q.

Thus, suppose λp(R) 6= λp(R
I). Consider an arbitrary gain function g

in the support of q. If g is constant then both rules R and RI induce the

same payoff distribution (equal to the constant value of g with probability

1). Now consider g non-constant. Then, by the assumed symmetry of q, all

its permutations gπ satisfy q(gπ) = q(g). Denote by the orbit of g the set

of all permutations of g (all of which receive the same probability weight

under q). Then rule RI induces the same payoff (equal to 1
|K|
∑

k g(k)) for

all gain functions in the orbit of g.

This is not true for rule R. To see this let ak = λp(R)(k) − λp(RI)(k).

Since λp(R) 6= λp(R
I), there exists k s.t. ak 6= 0. But then since

∑
k ak = 0,

a is non-constant. Then, by Lemma 4, there exist a permutation gπ of g

s.t.
∑

k∈K akg
π(k) 6= 0. Since gπp (R) − gπp (RI) =

∑
k akg

π(k), this implies

that gπp (R) 6= gπp (RI).

Thus, while for any non-constant g in the support of q, the overall ex-

pected gain conditional on q realizing in the orbit of g is the same for both

rules R and RI , the gain from rule RI is the same for all g in the orbit,

while there is variation of this gain for rule R. Hence, conditional on this

orbit, the payoff distribution of under R is a strict mean preserving spread

of the payoff distribution under RI .
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To complete the proof, observe that the payoff distribution of a rule un-

der q is the average of all its payoff distributions over the different orbits.

Since the payoff distribution of R is a mean preserving spread of the payoff

distribution of RI on all orbits, and since there is one orbit with positive

probability under q for which this mean preserving spread is strict, the pay-

off distribution of R under q is a strict mean preserving spread of the payoff

distribution of RI under q. QED

A.5. Proof of Theorem 1. We first prove the first statement of the theo-

rem by showing that, under p neutral, if the DM is sufficiently risk averse,

then for any rule R ∈ R and for any distribution of the outside option g′

(given the full support assumption) we have

IEq,g′
[
max

{
u(gp(R

I)), u(g′)
}]
≥ IEq,g′

[
max

{
u(gp(R)), u(g′)

}]
,

with a strict inequality for R ∈ Rs.
The above inequality is satisfied with equality for any rule R ∈ R such

that λp(R) = λp(R
I). Thus, suppose λp(R) 6= λp(R

I) (as is the case for any

R ∈ Rs by Lemma 3). Then as q is symmetric and as it has at least one

non-constant gain function in its support, note that the argument in the

proof of Theorem 2 actually implied that rule R induces a distribution over

gains under q that has a strictly wider support than the distribution over

gains induced by rule RI . (This is true for every orbit of any non-constant

gain function g, and, thus, true for any q that satisfies our assumptions.)

As u is an increasing function we have that max {u(gp(R)), u(g′)} =

u (max {gp(R), g′}) (for any R).

For any R ∈ R let X(R) = max {gp(R), g′}. By the full support assump-

tion for g′, we then have that X(R), with R such that λp(R) 6= λp(R
I), has

strictly wider support than X(RI).

For any discrete random material gain distribution, X, the certainty

equivalent, denoted CE(X), tends to the lowest value in its support, as

the lower bound of absolute risk aversion ρ tends to infinity. Thus, an in-

finitely risk averse DM strictly prefers rule RI over R. By continuity, there

then must be a minimal level of absolute risk aversion such that any DM

with risk aversion uniformly higher than this level also strictly prefers rule

RI over R.

We now prove the second sentence of the theorem by proving that, for

any p and for any R′ ∈ R \ Rs there is a R∗ ∈ Rs such that a risk-neutral

DM strictly prefers R∗ over R′, i.e. such that IEq,g′ [max {gp(R′), g′}] <
IEq,g′ [max {gp(R∗), g′}]. Then by continuity, there is a maximal level of

absolute risk aversion such that any DM with risk aversion uniformly lower

than this level also strictly prefers rule R∗.
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By Theorem 3 for any R′ ∈ R \ Rs there is a distribution µ over strictly

consistent rule that is strictly riskier than rule R′.

As the maximum is a convex function and as g′ has full support (in

particular it has support where the gains distributions induced by rule R′

and distribution µ differ) we have

IEq,g′
[
max{gp(R′), g′}

]
< IEq,g′

 ∑
R∈Rs

µ(R) max{gp(R), g′}

 .
Interchanging the order of summation we have

IEq,g′
[
max{gp(R′), g′}

]
<
∑
R∈Rs

µ(R)IEq,g′
[
max{gp(R), g′}

]
.

Thus, there must be at least one R∗ ∈ Rs such that

IEq,g′
[
max{gp(R′), g′}

]
< IEq,g′

[
max{gp(R∗), g′}

]
.

To finish the proof note that under p neutral all strictly consistent rules

induce the same distribution over gains. QED
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