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Abstract

Massive vacuum integrals with a single mass scale are a class of Feynman integrals that
appear in many precision calculations within the Standard Model of particle physics and
have been calculated to the 4-loop level. In this thesis I start pushing this limit to 5
loops by considering the subclass of fully massive vacuum integrals, which can be used
to determine the S-function of Quantum Chromodynamics (QCD). To this end I employ
a method devised by Laporta for the evaluation of multi-loop Feynman integrals based
on difference equations and factorial series. Significant improvements to this method are
introduced to account for the great increase in complexity when going from 4 to 5 loops.
An implementation of the improved approach in C++ is then used to obtain high-precision

numerical results for the integrals needed for the 5-loop correction to the QCD S-function.
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1 Introduction and motivation

Quantum Field Theory (QFT) and the Standard Model (SM) in particular have proven
to be powerful tools in the description of particle physics and theoretical predictions are
in good agreement with experiments for many observables. Since the accuracy of mea-
surements is steadily increasing, it is necessary to improve the precision of calculations to
obtain more stringent tests on the theory and possibly identify new physics. Within QFT
these calculations often rely on expansions in a small coupling parameter and precision
is increased by including more orders in this parameter. Higher orders in the expansions
contain Feynman integrals with an increasing number of loop momenta which need to be
integrated over. Each additional loop significantly increases the complexity and number

of Feynman integrals that appear, making it necessary to automate their calculation.

In this thesis I refine and implement a technique for multiloop calculations first introduced
by Laporta [1], which is based on difference equations and factorial series. I apply this
method to the class of fully massive 5-loop Feynman integrals with no external momenta
and a single mass scale. Integrals without external momenta are referred to as vacuum or
tadpole integrals and appear in many calculations in QFT, but the main motivation for
this thesis is their appearance in the f-function of Quantum Chromodynamics (QCD).
This function governs the dependence of the coupling parameter of the strong interaction
on the energy scale and can be computed using only fully massive tadpoles with a single
mass scale. The S-function has been known up to the 4-loop level [2, 3] for some time and

the integrals I calculate in this thesis can be used to push this limit to 5 loops.

Fully massive tadpoles with a single mass scale have been calculated at 4 loops using
Laporta’s method in both four [4] and three [5] dimensions, while at 5 loops only a handful
of integrals can be found in the literature. Attempts have been made to apply Laporta’s
method to the 5-loop integrals [6} 7], but progress has been limited by the fact that there
is a steep increase in complexity compared to 4 loops. In this thesis I introduce a number
of improvements to the method that improve its speed by several orders of magnitude for
difficult integrals, thus making it a viable option for 5-loop calculations. The fully massive
tadpoles considered here are only the first step in the evaluation of 5-loop tadpoles. The
improvements made to Laporta’s method are not limited to this class of integrals and
could e.g. also be applied to obtain the tadpole integrals with some massless propagators,

a class of integrals which appears in many additional calculations.

The thesis is organised as follows. In the remainder of this section I motivate the calculation
of massive tadpoles by briefly presenting how they can be used to obtain the S-function
of QCD and other results in QFT. In section [2] I review some commonly used techniques

that reduce the number of Feynman integrals that need to be evaluated to a small number
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of master integrals. Many different techniques have been developed to solve these master
integrals and section [3] provides a brief introduction to some of them. The main part of the
thesis starts with section [} where I examine the original version of Laporta’s method and
discuss its applicability to the fully massive 5-loop tadpoles. My own improvements to the
method are presented in detail in sections [ through [7} Subsequently I outline in section
some of the technical details of my implementation of the method in C++ . Results for the
5-loop fully massive tadpoles are presented in section [9 before I make some concluding
remarks and list ideas for further improvements and applications of Laporta’s method in
section

1.1 The f-function of QCD

The Lagrangian for a Yang-Mills theory [8] with fermions is

r Ne
- Z i [V Dy =yl Wy — ZF;}VFGW + Lat + Lanosts »
f=114,j=
1 a
Ly=—o ("5 ) :
2 (1.1)

‘Cghosts = _Caa“ (gfabCA/l.)L + 5ac8ﬂ) Cb
[Dﬂ]ij = 51]8 ZgAa Z X
Fl, = 0,A% — 0,A% + g f*" A AS

where a gauge fixing term L, has already been introduced using the Faddeev-Popov
method [9] and L.« is the corresponding term with ghost fields ¢®. The matrices T are

the generators of the underlying Lie group SU(N,) and satisfy the algebra
|1, 1°| = ifebere (1.2)

with structure constants fe¢. For QCD ¥ ¢ are the quark fields with masses my and Ny
flavours, Aj the gluon fields, the number of colours N, is 3 and g is the coupling parameter

of the strong interaction.

Ultraviolet (UV) divergences that arise in QFT are treated in this thesis by dimensional
regularisation [10], in which the space-time dimension d = 4 —2¢ is expanded around 4 and
divergences appear as poles in the expansion parameter e. QCD can then be renormalised

[11] to remove UV divergences by rescaling the quantities appearing in the Lagrangian as

XB:ZXXRa XE{‘P,A,C,m,f}, (13)
9B = Zggri*
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where the subscripts B and R denote bare and renormalised quantities, respectively, and u
is the unit of mass introduced by 't Hooft to keep the coupling parameter gr dimensionless.

In the minimal subtraction (MS) scheme [10] the renormalisation constants Zx take the

form
L 1 (l 5 hl
Zx =1+06Zx =1+ ZZ T (1.4)
2
where h = 16R and L is the number of loops up to which UV divergences are removed.
The S-function is defined in terms of h as
oh
h) = p?=— 1.5
B = pt (1.5)

and describes the dependence of the coupling on the energy scale p. With the definition
Zy = Zg and using the fact that the bare coupling does not depend on p one finds

0 9% o
B(h) = p? 5 Loz,

Op? 162
0z,
= —ch+ hZpp*> =1
on 1.6
Jln Zh ( . )
= —eh —hB(h
eh — ()
- —eh
- oln(Zy) -
1+ p2ntZn)
Inserting equation (1.4 and expanding in h yields
h)=—chy (-1)" | h Z (625
i=0 j=1
(1.7)

_ _ehi(_l)i (h;hi( 1)t [ZZZ(M@ hlr)

= I=1 k=1

Demanding that the limit ¢ — 0 exists fixes all Z,(ll’k) with k£ > 1 in terms of the % poles.

The only terms that remain are those with ¢ = j = k£ = 1 and the g-function then reads

0
=1 ZZh“hl Zh’“ (+1)z Y = Zﬁlhl” (1.8)
=0
For the coefficients 3 = —(I + 1)Z, 7Y the renormalisation constant Zy, is needed to

L =141 loops. The calculation of the leading order

11 2
=—N.—-N 1.9
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was done in the 1970s by 't Hooft [12], Gross and Wilczek [13] and Politzer [14]. The minus
sign in this result for the beta function for N, = 3 and small Ny leads to asymptotic freedom
for the quarks at high energies as the coupling strength decreases. This discovery played
an important role in establishing QCD as the theory describing the strong interaction and
was recognised with the Nobel prize in 2004. Since the leading order was found, the 2-loop
[15, |16, [17], 3-loop [18,[19] and 4-loop |2} |3] corrections have also been obtained. In general
B(h) depends on the renormalisation scheme, but in the commonly used schemes MS and

MS [20] it is identical, since Z}, has no explicit dependence on p [2].

The p-function is closely related to the more general concept of anomalous dimensions
~vx (h) which are defined as
_ pdlo Zy(H)

> ) _ > yxahtt (1.10)

yx(h) = m
=0

where Zx is the renormalisation constant of a quantity X. In fact, up to normalisation,
B(h) is simply the anomalous dimension of the coupling parameter h. There are then
several possible choices to calculate the g-function in terms of other anomalous dimensions
or equivalently Zj in terms of other renormalisation constants. It can be obtained e.g. by
calculating the quark-gluon-vertex and the quark- and gluon-propagators, or alternatively
the quark-ghost-vertex and quark- and ghost-propagators. It is even possible to obtain
Zy, from only the gluon-propagator by using the background field method [21], albeit at
the cost of more complicated Feynman rules. Some of the QCD anomalous dimensions at
the 5-loop level have already been computed |22} 23] by reducing the calculation to the
evaluation of 4-loop massless propagator type integrals with the so-called R*-operation

[24], but a result for the S-function is still missing.

The crucial point about the calculation of the S-function and anomalous dimensions from
the point of view of this thesis is the fact that it only depends on UV-divergent, but not
finite or infrared-divergent terms. This allows for significant simplifications compared to
the calculation of full Green’s functions. One option for such a simplification is offered
by the R* operation [24] used in the above mentioned calculations of 5-loop anomalous
dimensions |22} 23]. This operation allows to extract the UV counterterms of integrals
with L loops in terms of divergent and finite parts of L — 1 loop massless propagators, but
at the cost of a rather complicated procedure. A simpler approach is given in [25, |2] and
has been used e.g. in the 4-loop calculations of the QCD f-function [2,|3]. In this approach
the UV divergences of integrals are completely extracted in terms of fully massive tadpole

integrals with a single artificially introduced mass m. This can be achieved by applying
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the exact decomposition

1 1 2kp4pP+ M —m? 1 (1.11)
(k+p)2+M2  k2+m? k2 +m? (k+p)? + M? '

to all propagators, where k is a loop momentum, p an external momentum and M the
original mass of the propagator, which can also be 0. The first term in this sum does not
depend on any external momenta and does not lead to infrared divergences. The second
term goes as 1/k3 for large loop momenta and thus has a lower superficial degree of (UV)
divergence. Since the original propagator appears in the second term, the decomposition
can be applied recursively until p and M only appear in UV-finite integrals or numerators.
The UV-finite integrals can then be dropped and the numerator dependence on p and
M can be extracted from the integrals. In the end one is left with the class of integrals
treated in this thesis, fully massive vacuum integrals with a single mass scale. Since the
decomposition in equation is exact, the final result cannot depend on the artificial
mass m. A minor inconvenience of this method is the necessity to introduce a “gluon

mass“ counterterm mTQngAZA““ [25].

1.2 Pressure in hot QCD

At high temperature T hadronic matter ungergoes a phase transition to a quark-gluon-
plasma. Studying properties like the pressure of this plasma can yield a better under-
standing of heavy ion collision experiments or help determine the expansion rate of the
early universe. In a perturbative approach one is faced with the problem that the coupling
strength g depends strongly on the momentum scale, but there are three different impor-
tant momentum scales that play a role in the plasma. In decreasing order of magnitude
these are the hard scale T of a typical particle in the plasma, the soft scale ¢T" associated
with the screening of colour-electric forces, and the ultrasoft scale ¢2>T associated with
colour-magnetic screening [26]. To separate the treatment of these scales a set of effective
theories is introduced by the process of dimensional reduction 27, 28]. In the following I
briefly summarise this approach following the notation of [29] in order to show how massive

tadpoles emerge in the calculation.

Using a Euclidean metric, the pressure of full massless QCD is defined as

T _
m —ln/DAZ DQ,Z)D?/Jexp(—SQCD)7 (1.12)

pcn(T) = Jim 7

where V' is the volume of the d-dimensional coordinate space and the action and Lagrangian
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are given by

8
Sqcp :/0 dr /dd:EEQCD ) (1.13)
1 a rha n
Lacp = [ FuFy + D (1.14)

with 8 = 1/T and F}j, and D), defined as in eq. (1.1). After the first separation of scales
with dimensional reduction the pressure is given in the resulting 3-dimensional (i.e. here
d = 3 — 2¢) effective field theory called electrostatic QCD (EQCD) as

1 T a a
pacp(T) =pe(T) + \}EHMVIH/DAk DAG exp(—Sg), (1.15)
SE:/dd:):EE, (1.16)
1
Lp = ST Ffy + Tr[Dy, Ag]” + miTr Aj + A (T A2 + AT AL+ (117)

with £ =1,...,d and g replaced by a coupling g in the definitions of Fj; and Dj. In this
effective theory pg(T') contains the contributions of the hard scale, while the remaining
partition function includes contributions of the soft and ultrasoft scales. The parameters
of EQCD with subscript E are not a priori known, but have to be determined by matching

calculations of the effective theory with calculations of the full theory.

In a second step the soft and ultrasoft scales are separated by integrating out the field
Ay to arrive at another effective theory called magnetostatic QCD (MQCD) in which the

pressure is given by

pqep(T) = pe(T) +pm(T) + pa(T) , (1.18)
. T a
pc(T) = Vlgnoovln/DAk exp(—SM), (1.19)
Sy = /ddeM, (1.20)
1 2
LM == §TrFkl + ... s (].2].)

where the hard, soft and ultrasoft scales are now contained in pg, pym and pa, respectively.
MQCD contains the new parameters py; and gy (in Fy;) which have to be matched to the
parameters of EQCD by appropriate calculations in both theories. Because £y defines a
confining theory, pg can only be computed non-perturbatively by methods such as lattice

gauge theory.

Massive tadpole integrals enter this calculation in the theory of EQCD (eq. (1.17])), which
consists of the massless gauge fields Ap and the so-called adjoint Higgs field Ay with

mass mp. In the expression for the pressure one therefore encounters vacuum integrals in
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d = 3 — 2e dimensions with both massive and massless lines, but only a single mass scale.
The calculations for EQCD have been done to the 4-loop level [29], but for full QCD there

are still unsolved 4-loop sum integrals.

Fully massive vacuum integrals can be found if the method of separating scales with
dimensional reduction is used on hot massless ¢* theory (see e.g. [30,131]). The Lagrangian

of the resulting effective 3-dimensional theory reads [31]

1 2 2
Lot =5(Ve) + 567+ Do+, (1.22)

where m and g3 are parameters that have to be matched to the full theory with sum
integrals in 4 dimensions. The pressure in this theory has been calculated up to 5-loop
contributions [31], including some of the leading e-orders of three of the fully massive

vacuum integrals considered in this thesis, which provides a check on my own results (see

sect. [9.3).

1.3 Other applications

There are many further applications for massive tadpole integrals, listed e.g. in |32} [33]
or more recently in [34]. One such application is the p parameter of the electroweak
interaction, which is defined as the ratio of the strengths of charged and neutral currents
[35]. At leading order p is simply one, but at higher orders it is sensitive to the full Standard
Model. The corrections include contributions from QCD which require the evaluation of
massive tadpoles and have been calculated to the 4-loop level 36, 33]. Higher orders of
the p parameter can also be used to improve the theoretical predictions for electroweak
observables such as the mass of the W boson (see e.g. [37, |38]) or the weak mixing angle
(see e.g. [38,139]).

Another application of massive tadpoles is given by decoupling functions. By integrating
out a heavy quark with mass m to avoid large logarithms in MS-like renormalisation
schemes one arrives at an effective theory with only N; = Ny — 1 quark flavours [34]. The

(N)

strong coupling parameter g of the effective theory differs from the coupling ¢V#) in

the full theory as
g™ (1) = ¢ (1, 9N (1), m) gV () (1.23)

where (4(p, g™ (), m) is called the decoupling function. The evaluation of (g4 involves
gluon and ghost vacuum polarisation functions as well as the gluon-ghost vertex at zero
momenta and thus requires massive tadpoles [34]. This calculation has been performed
up to 4 loops [40, 41]. ¢, plays an important role in Higgs boson production via gluon

fusion, where it is needed to obtain the coupling of gluons to the Higgs in the effective
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theory [42]. In an analogous fashion to (, one can define the photon decoupling function,
which has also been obtained to 4 loops [43] and is needed e.g. for the amplitude of Higgs
to photon decay in the effective theory [34].

In some calculations it is sufficient to only consider some low moments in external mo-
menta. Each term of the expansion in these momenta then consists of tadpole integrals
with increasingly higher powers of propagators and irreducible scalar products in the nu-
merator. This can be used e.g. in the determination of charm and bottom quark masses
[34, 44], where this technique has been applied up to the 4-loop level [45, 46]. 5-loop results
from anomalous dimensions |22, [23] have been applied in parts, but the contribution of

the S-function is still missing [34].

The above examples also depend on tadpole integrals where only some of the propagators
are massive. This class of integrals is not studied in this thesis, but is closely related to the
fully massive integrals considered here. Laporta’s method of difference equations and its
improvements presented in later sections of the thesis are not limited to the fully massive
case and thus the applications given here serve as further motivation to push the technical

limits of tadpole evaluation to the 5-loop level.
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2 Reduction to master integrals

In this chapter I will fix the notation and classification of Feynman integrals used in this
thesis. I will also describe the steps that are commonly used to express the Feynman
integrals one may encounter in calculations in terms of a relatively small set of integrals.
This reduction to so-called master integrals is often necessary due to the vast number of
integrals that appear, e.g. already at 4 loops of the order of two million integrals were
evaluated during the calculation of the QCD f-function [3].

2.1 Notation

All momentum vectors in this thesis use a Euclidean metric unless otherwise stated. Inte-
grals are regularised with dimensional regularisation |10], where the space-time dimension

d is expanded around an integer value in a small parameter €. I use

_ [ d%y A%k, )
/{k}:/kl,.._,h:/w'“/w (2.1)

as a shorthand for the integration measure, where L is the number of loops of the associated
Feynman diagram and k; are the loop momenta. A generic Feynman integral with ng

external momenta p; can then be written as

NHLsebin

Flu‘lv-"nun (p17 P ,an7 {ml}’ d) = /

o 2.2
{k} Dl ...Dt ( )

The D; are the denominators of propagatorﬂ and have the form D; = ql-2 + m%, where m;
denotes the corresponding mass and the propagator momenta ¢; are linear combinations
of both loop and external momenta with coefficients —1,0 or 1. The ¢ propagators have
exponents z;, which are typically small integers. The numerator N#1»#7 depends on

polynomials of momentum dot products and can in general also carry a Lorentz-structure.

In this thesis I will restrict myself to fully massive vacuum integrals with a single mass
scale, which means ng = 0 and m; = m = 1. Furthermore, since tensor integrals can al-
ways be expressed as linear combinations of scalar integrals where the Lorentz-structure is
independent of the loop momenta (see e.g. [47,48]), I will only consider scalar numerators
N for all integrals. N may then only depend on the w = L(L + 1)/2 dot products of loop

momenta. Since the qz-2 depend on the same dot products, the notation of numerator and

T will usually refer to the D; simply as propagators when there is no chance of confusion.



12 2 Reduction to master integrals

denominator can be unified. By choosing a set of propagator momenta
Ap = {q1|2 =1,...,w;{¢?} linearly independent} (2.3)

any numerator N can be expressed as a linear combination of the D; and m? = 1. The

remaining integrals

1
I R 2T :/ T~z o~z 24
Crveem) = [ (2.4

are then uniquely identified by their integer exponents z;, which may now also be negative.

It should be noted that the choice of Ap is not completely arbitrary,
since the set of integrals which it defines through the possible choices of
the z; is not necessarily a superset of the set of L-loop integrals which
may appear in quantum field theory calculations. The latter consists

of integrals whose denominator momenta can be mapped onto an L-

loop graph to form a Feynman diagram with momentum conservation Figure 2.1:
o . . The 2-loop

at each vertex. While in practice some of those graphs may not yield sunset

a contribution to a particular calculation, all of them can do so in graph.

principle and should therefore have associated subsets of Ay which

can be mapped onto them. It is trivial to show that not all choices of Aj cover all
possible graphs: Suppose someone would choose at the 2-loop level Ay = {q1 = k1,q2 =
k1 — k2,q3 = k1 + ka}. Even though the previous conditions (coefficients € {—1,0,1}, ¢?
linearly independent) are satisfied, there is no way to map these momenta onto the 2-loop
sunset graph in figure Ideally, one should therefore additionally require that each
L-loop graph has at least one associated subset of A;. In the 2-loop sunset example a
better choice would be e.g. Az = {q1 = k1,92 = ko, q3 = k1 — ko}. If it is not possible to
find a set Ay which covers all possible graphs, multiple sets A(Ll), A(LZ), ... are needed and
integrals will often have to be converted between them. Fortunately this is not the case
for tadpole integrals up to 5 loops and the momenta chosen for Ay, ..., As in this thesis

can be found in table [A1]

The subsets of Ay, also offer a natural starting point for the classification of the integrals

I({zi}). Every subset S C Ay, defines an infinite set of integrals

(2.5)

Zz‘ZL ifqiES
I(le"azw)
ZiSO, ifqi¢8

which I will call a sector. To refer to the 2% different possible sectors, each of them is

assigned an integer sector ID. Along with a few other useful definitions for an integral
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I({z}), it is given by

sID(I) = Z O(z)2v ¢, sector ID,
r(I) = Z ©(z)(z; — 1), denominator powers beyond 1 (dots),
' (2.6)
s(I) = Z —O(—2z)zi , numerator powers,
t(I) = Z O(z) , number of denominators,

where ©(> 0) = 1, O(< 0) = 0. The number of denominators ¢
is identical for all integrals of the same sector and, if the sector has
an associated graph, also denotes the number of lines of that graph.

The additional powers r of the denominators beyond 1 are often simply e

referred to as dots, because in a Feynman diagram they are symbolised

by dots on the line carrying their respective propagator momentum. Figure 2.2:

For the numerator powers s there is no good pictorial representation, A 3-loop
) ) i ) diagram of

since their momenta do not have any associated lines. r, s and ¢ sector 51

play an important role in establishing an ordering relation between
integrals, which will be defined in section As an example for the parameters defined

here and their connection to the diagram consider the 3-loop integral

D2
1(3,2,0,-2,1,1) :/ 4

e S 2,
(v} DID3D5Dg 27)

which is part of sector 51 and has ¢t = 4, r = 3 and s = 2. The corresponding diagram
using the set of propagator momenta Az = {ki, ko, k3, k1 — ko, k1 — k3, ko — k3} is given in
figure 2.2] with the lines numbered by the index of their associated propagators.

If one looks at the maximum number of lines an L-loop vacuum graph can have, given by

1 ifL=1
tmaz(L) = , (2.8)
3(L-1) ifL>1

one finds that tpe.(L) < w(L) = L(L + 1)/2 for L > 4. This means that there are
inevitably sectors with ¢ > t,,4; which have no associated diagram and can thus never
appear in QFT-calculations. It therefore becomes useful to divide the sectors into different

categories. I will refer to a sector with subset S C A as

e a physical sector, if it contains non-vanishing integrals and the momenta in S can be

mapped onto an L-loop graph with momentum conservation,
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e a zero-sector, if all its integrals vanish in dimensional regularisation,
e an anti-sector, if the momenta in S cannot be mapped onto any L-loop graph.

Anti-sectors are not limited to ¢ > %42, as can be seen from the 2-loop example above
with the unfortunate choice Ay = {k1, k1 — ko, k1 + ka2}, where the sector with ¢ = t;00 = 3
does not have an associated graph. Zero-sectors appear when one or more of the loop
momenta are not present in the denominator to begin with or can be removed from it by
a momentum shift (see section . This condition is trivially satisfied for ¢ < L, but can
still be met for as many as t = w(L — 1) = L(L — 1)/2 propagators. In the end one only
has to consider the physical sectors, many of which will still turn out to be equivalent

using momentum shifts.

2.2 Momentum shifts

A great number of relations between integrals can be found by simply performing the

transformation

for the loop momenta, where R is an invertible L x L matrix. To avoid introducing a
dependence on the dimension d in the exponent of the Jacobian determinant, the trans-
formations should be limited to det R = 4+1. While it is possible to construct situations
where a shift with |det R| # 1 might be called for, these do not occur in practice for
reasonably chosen momenta [7]. Transformations of the form are first needed to fit
any integral that might appear in a given calculation into the chosen classification scheme
by shifting the momenta k; in such a way that all resulting propagator momenta ¢; (or
alternatively —¢;) in the denominator are elements of Ay. Once this is accomplished, one
only needs to consider how transformations R act on the propagators D;. Since the qi2
form a basis in the space of momentum dot-products, R will map any propagator D; to a

linear combination of propagators and a pure mass term:

w
D; LN D = Z enDp +c¢, ¢y, c = const. (2.10)
n=1
For D; in the numerator a linear combination poses no problems, since one can simply
split the integral into a sum of integrals, but in the denominator it would move an integral

outside the classification scheme of Ay. For an integral I({z;}) the transformations R thus
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have to be restricted to those which satisfy
D, % Di=D; ifz >0 (2.11)

In the following I distinguish between two kinds of these transformations. If, for a given
sector S, P is the set of denominator D; and P’ the set of the corresponding D/, I call the

7

transformation R

e a symmetry shift, if P = P’ and R thus transforms integrals in S to other integrals

in S, or
e a sector shift, if P # P’ and R thus transfers integrals in S to a different sector.

It is obvious that sector shifts can only exist between sectors which are associated to the
same graph, since the transformation is simply a relabelling of the loop momenta and
does not change the structure of the graph. It also follows that all sectors associated to
the same graph are connected by sector shifts. One can therefore choose a representative
sector for each graph and shift all integrals that can be mapped onto the graph to that
sector. For higher loop orders, this drastically reduces the number of sectors that need
to be considered. In this work I always pick the sector with the greatest sector ID as
the representative. Once a minimal set of sectors is identified, the symmetry shifts within
these sectors offer a convenient option to further reduce the number of integrals that need
to be evaluated. To this end each symmetry relation will be solved for its most difficult
integral according to the ordering relation I define in section [2.4] and used to eliminate
that integral whenever it occurs in an equation. More details on the implementation of

momentum shifts are given in section [8.1.1

If an integral subjected to either a sector shift or a symmetry shift contains negative
exponents z;, the corresponding propagators in the numerator will in general be shifted to
a linear combination of propagators and a mass term (see eq. ) The classification
scheme then requires that the numerator be expanded and the integral split up into a sum
of integrals. It can happen that in some of these terms the numerator contains a factor D;
which cancels the corresponding propagator in the denominator. If an originally positive
exponent z; goes to zero or becomes negative in this way, the number of propagators ¢
is reduced. In the associated Feynman graph of the original integral this corresponds
to contracting the i-th line to a point. If the original integral is in a sector S with t
propagators, the new integral will be in a different sector S’ with ¢t — 1 propagators. In the
following I will refer to S’ as a subsector of S in this situation. More generally, I will use
the term subsector (of S) for all sectors which can be arrived at by removing propagators

from S and also all of their equivalent sectors, which can be reached via sector shifts.
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2.3 Linear relations between integrals

While the momentum shifts described in section already considerably reduce the num-
ber of integrals which need to be evaluated, there are further linear relations between
integrals to be found. These relations can be used to reduce any integral to a linear
combination of a small set of master integrals. The algorithm typically applied for this
reduction is explained in section while in this section I describe several methods to

generate the needed equations.

Since every sector contains an infinite number of integrals, one has to set constraints which
define the finite set of integrals that should be reduced. I will in the following consider
all integrals with r(I) < ryax, $(I) < Smax for some (typically small) integers mmax, Smax-
The choice of these constraints is crucial, since it can have a huge impact on the time and
memory consumption of the reduction. The integrals appearing in the expression which
one actually wants to solve provide lower bounds for rax and spax, but those might not
always be sufficient. With low constraints one risks not finding sufficient information to
determine the minimal number of master integrals, since the number of equations which
can be generated containing only integrals within the constraints is limited. If a relation
between integrals is missing from the system, the equations can contain a spurious zero
in the form of the missing relation times an arbitrary coefficient. Over the course of the
reduction such coefficients often grow rapidly up to the point where they considerably slow

down the whole calculation or even make it infeasible altogether.

When increasing rpax Or Smax on the other hand, the computation is quickly bound by
combinatorics, since the number of integrals (before symmetrisation) with fixed r and s

in a sector with ¢ propagators is given by

N(w,t,r,5) = (”“1) -<w_t+3_1> . (2.12)

r s
distribution distribution of
of dots negative powers

The rapid growth of the number of integrals can be a challenge to limited memory and
CPU capacities. To give an example, for a 5-loop sector with 8 propagators, choosing

Tmax = Smax = D, one would have to consider more than 106 integrals for that sector alone.
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2.3.1 Integration by parts

The most common way to generate relations between integrals is by taking a seed integral

I(z1,...,2y) and inserting into the integrand a differential operator O;; = {;%k:;-‘ such that

the integral vanishes in dimensional regularisation [49):

0:/{16}8‘25@1)?”1' o id=leL (2.13)
After explicitly performing the derivative, the result can be expressed as a linear combina-
tion of integrals in the chosen classification scheme with exponents possibly differing from
the seed integral, thus giving a non-trivial relation between integrals. For non-vacuum
integrals, k:jb may also be replaced with external momenta, yielding a total of L(L + ng)
equations per seed integral. This means that the system of equations generated from

integration-by-parts (IBP) is typically vastly overdetermined. In reference [50| Lee showed
0
with a smaller subset of the IBP-relations which only needs L + ng + 1 equations per seed

that the operators O;; = k;‘ form a Lie-algebra and in principle it is sufficient to work
integral. In practice however this turns out to be of little use, since for finite rma and
Smax only a small fraction of all IBP-relations can be safely skipped without risk of losing
information [7]. An efficient method of dealing with redundant equations is presented in
section [B.1.4]

2.3.2 Syzygies

For a seed integral with parameters  and s the IBP-relations in general contain integrals
for which both parameters can be increased by 1. This increase can pose a problem in the
reduction, since it introduces more complicated integrals (see section . To partially
avoid this problem, Gluza, Kajda and Kosower [51] proposed to replace the IBP-operators
O;; with linear combinations Zij Ojja;; which do not raise the number of dots r. This
can be achieved by requiring that each raised propagator is cancelled immediately, using

the condition
L L+TLE

Z Z aijgflfKJH o« D, Ve with z, > 0, (2.14)
i=1 j=1 i
where K; runs over both loop and external momenta. The «;; can be polynomials in
scalar products of momenta (or equivalently polynomials in the inverse propagators D;),
so the drawback of not raising r is that the number of powers in the numerator s might
be increased by more than 1. The solutions a to eq. are called syzygies and can
be constructed using Grobner bases or basic linear algebra [52]. By using a modified
and less strict version of condition , it is possible to also allow solutions a where
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raised propagators are eliminated due to symmetries or integrals vanishing in dimensional

regularisation |7].

Equations generated from syzygies are by design simply linear combinations of IBP-
relations and can thus not introduce information which cannot also be obtained via IBP.
Their advantage is that the linear combinations are chosen such that integrals with raised
propagator exponents never have to be considered, independent of which seed integral is
used. This can reduce the overall number of integrals, since fewer integrals are introduced
to the system in this way. The linear combination of IBP-operators does however also lead

to equations which typically have more terms than pure IBP-relations.

2.3.3 Mass derivatives and Lorentz invariance

2 in terms of a single mass scale m by

If all propagators are expressed as D; = ¢Z + z;m
introducing dimensionless parameters z; where needed, the mass dimension of an integral

can be made explicit by pulling it outside the integral:
I(z1,. .. 20) = mb 2205 X (2.15)

Here X does not depend on m and acting on both sides with % yields

Ld
—Zzixil(zl,...,zi+ oo, 2w) = (2 _ZZ’> m_QI(zl,...,zw) ) (2.16)

This turns out to simply be the IBP-relation for the operator ) ; O; and thus does not
offer any additional information. Nevertheless this particular form can be useful, since
unlike most IBP-relations it does not contain integrals where the parameter s is increased

compared to the seed integral I(z1,. .., 2y).

If the integrals in question depend on external momenta, one can also derive linear equa-
tions from the fact that they are Lorentz scalars [47]. While the equations have been shown
to be contained in the IBP-relations [50] and only vacuum integrals are considered in this
thesis, I still show the derivation for the sake of completeness. From the Lorentz-invariance
of an integral J(p1, ..., pn,) with external momenta p; follows that J is independent under

the infinitesimal transformation

pt — pt + opt = pt 4+ 5t p¥ €, = —€" (2.17)
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and thus

J({p}) = T({p+0p}) = J({p}) + oe", (sz 88M>J<{p}>+o(52) S (21

=1

Since the resulting €, (Z?fl pﬁ%) J({p}) = 0 is valid for any e, = —¢”,, the e*” can
be replaced by ppy — pgpg for arbitrary a,b and one obtains the relations

(Paph — Papy) (pr ) ({p}) =0. (2.19)

For ng independent external momenta there are ng(ng — 1)/2 non-trivial antisymmetric

combinations, each of which gives rise to one equation per seed integral.

2.3.4 Relations between different dimensions

All of the above methods to generate linear relations between integrals leave the space-time
dimension of those integrals unchanged, but it is also possible to find relations between
integrals with different space-time dimensions [53]. They are not needed in this thesis,
but can be very useful if one wants to choose a basis of (quasi-)finite master integrals [54],
which are generally more accessible to certain methods of evaluation (see sect. . In
the following I will show Tarasov’s method [53] of generating equations for integrals with

different dimensions, which relies upon the Schwinger parametrisation [55]

1
— d Z:EJ (D +ZE) 220
(Dj + ie) I'(2)) / % (2:20)
Applying this parametrisation to all propagators of an integral J(@ ({s;}, {m;}) with di-
mension d, where {s;} is the set of scalar products of external momenta, transforms the
integrations over loop momenta into Gaussian integrals. After performing these integrals

one is left with

B i /Oodl“j S (F({SM)*EW ”E))
0

D (s}, fm}) =i (Z) 7 )
b tm) = (5) "My | e o)

where U and F are the first and second graph polynomials or Symanzik polynomials (see
e.g. [56] or sect. [3.1)) of the graph which can be drawn using the propagator momenta in
J. The important thing to note at this point is that the dimension d only enters (non-

trivially) as an exponent in the denominator. Assuming for a moment that all masses are
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different, one constructs the differential operator

U@) = U@, 2, (2.22)
and notes that
UD)e 2™ = Y (z)ilel 2ammi (2.23)

since all terms in U are of degree L. Acting upon the integral one finds
U@)JD ({siy, fmi}) = 712 ({si}, {mi}) - (2.24)

The derivatives on the left hand side can be evaluated explicitly to yield a non-trivial
equation for integrals with different dimensions, which holds for any choice of the masses
m;. Equations of the form (2.24)) can be used to remove all propagators in the numerator,

but at the cost of introducing dimensions with higher dimensions [53].

2.4 Reduction

Given a set of integrals and a system of linear relations between them, generated by the
methods described in section one wants to reduce the system to a form where all
integrals are expressed in terms of a few master integrals. In other words, an algorithm is
needed for the task

SopLi=0p BN = N gl Yk, (2:25)

J J€ masters

where the index j was introduced to label the different integrals and p; and g; are in
general rational functions of d, masses and kinematic variables. This should in principle
be trivial to do, since it only involves Gaussian elimination. In practice however, it is
observed that the run time and memory consumption of such a reduction often crucially
depend on the implementation details of the algorithm used to solve the system. This is
mainly due to the fact that the coefficients of the integrals can grow very large during
the reduction, which slows down the rational algebra considerably. The growth of the
coeflicients is particularly bad when many stepsE| are performed on a set of equations where
information is “missing®, i.e. a particular linear combination X of integrals appearing in
the equations is zero, but the information X = 0 is not contained in the set. In this
case the spurious zero X can appear with arbitrary prefactors, which will typically grow

much faster with every step than the rest of the coefficients, for which many cancellations

2In the context of reductions, one step is adding one equation to another in order to cancel a particular
term.
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occur. It is therefore of particular importance to choose the order in which integrals are
eliminated and the order in which equations are considered in a way that minimises the
amount of steps and missing information for intermediate stages of the reduction, where

only part of the input equations have been treated.

An approach that works fairly well in many cases is the Laporta algom'thmEl, which was first
described in reference [1]. It has since been implemented in several public |57, |58, 59, [60]
and private codes. Laporta proposed an ordering relation for the integrals based primarily
on the parameters defined in . I will in the following use a very similar ordering,
which I refer to as an ordering by difficulty. For two different integrals the higher difficulty

is assigned to, in descending order of priority,
1. the one with greater ¢t (number of denominators),
2. the one with lower sector 1D,
3. the one with greater r (number of dots),
4. the one with greater s (numerator powers),
5. the one with greater max(z;),
6. the one with lower min(z;),
7. the one with greater z1, 29, ....

There are many possible variations of the above criteria, some of which perform slightly
better for some reductions, but worse for others. The choice given here works sufficiently
well for the tadpole integrals considered in this thesis. For a given reduction, the ordering
relation will be used to assign an index to all integrals that appear in the reduction, where

a lower index indicates higher difficulty.

To fix the order in which equations are considered, Laporta suggests to generate IBP-
relations by starting with the simplest integral as seed integral, adding the information
of the resulting equations to the system in the manner described below and then working
up to more difficult integrals. Instead of following this approach, I will first generate all
equations needed for the reduction without reducing them directly. The equations are
then reduced in order of difficulty, starting from the simplest ones, where the difficulty
of an equation is defined by the most difficult integral it contains. The resulting order
of equations is similar to the one Laporta describes, but usually performs slightly better,
since it only introduces new integrals to the system after all equations containing only

simpler integrals have already been reduced.

3Laporta’s algorithm is not to be confused with what I refer to as Laporta’s method. The latter is a
way of solving master integrals described in section El
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Once the orders of integrals and equations are set, the Laporta algorithm can be described

by a few simple steps:
1. Consider the next equation. If there are none left, stop.
2. Insert all solutions for integrals which have already been found.
3. If the equation is trivial (0 = 0), go to step 1.

4. Solve for the most difficult integral remaining and add the solution to the system of

equations.

5. Use the newly found solution to eliminate the integral from all previously found

solutions. Go back to step 1.

If one has generated sufficiently many equations, the above steps express most (if not all)
integrals in the reduction in terms of a handful of master integrals. The exact number of
masters depends on the class of integrals, but it can be proven that their number is always
finite [61].

If not all integrals can be solved in terms of master integrals, information is typically
missing on the edges of the (r, s)-plane of the reduction, where integrals have either r =
Tmax O S = Smax. This is due mostly to the fact that IBP-relations generally contain
integrals with both parameters r and s increased by 1 compared to their seed integral
(see figure [2.3(a)). Since this means that integrals on the edge of the reduction cannot
be used as seed integrals for IBP-relations, the equation density per integral in this area
of the (r, s)-plane is lower and thus there is a higher probability for missing information.
This can be remedied to some degree by also including equations generated via syzygies,
which do not increase r (fig. [2.3(b)), and via mass derivatives, which do not increase s
(fig. [2.3c)). Even more important is the inclusion of all identities that can be found
from momentum shifts, since they increase neither r» nor s and have simpler coefficients
due to the absence of the dimension d. I will always apply all symmetry and sector shift
information to all equations before applying Laporta’s algorithm, but it is also possible
to simply consider symmetry shifts as additional input equations to the algorithm. The
latter strategy can be advantageous when integrals with large parameters s are considered,
as in this case momentum shifts can produce many terms due the expansion of sums in
the numerator. Since IBP-equations reproduce some of the information contained in the
symmetry relations and can in these situations be much smaller, enforcing the use of the
latter before the former can be detrimental. For the fully massive tadpoles however I
found that the benefits of simpler coefficients in the symmetry relations and the highly
symmetric structure of the integrals due to the absence of external momenta outweigh this

problem for all values of s needed in the reductions.
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Figure 2.3: Diagrams of linear equations in the (r, s)-plane. The dots represent possible
(r, s)-values for equations generated via IBP (a), syzygies (b) or mass derivatives (c), where
rs and s, are the parameters of the seed integral.

One of the weaknesses of Laporta’s algorithm is that despite the carefully chosen orders of
integrals and equations large rational coefficients can still appear in intermediate stages of
the reduction and slow down the computation. A new approach was recently suggested by
von Manteuffel and Schabinger [62] to circumvent this problem. They propose replacing
all variables with numbers and reducing the system over a finite (machine-sized) prime
field. If one performs enough runs with different replacements and different fields, the
full rational function content of the reduced system can be reconstructed from the results
of those runs. This avoids the expression swell that can happen in normal reductions,
since all coefficients in intermediate stages are simply machine-sized integers. A public
implementation of this idea does not exist as of yet. A different application of numerical
replacements for variables and finite fields is presented in section where it is used
to minimise the number of redundant equations (also see |63]). This can be useful to
speed up the reduction, since L(L + ng) IBP-relations per seed integral plus equations
generated by other methods often lead to systems where less than 10% of all equations

actually contribute to the final result.
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2.5 Example: 4-loop sunset

In order to demonstrate how most of the steps outlined in this section
work in practice, I will show some examples for integrals belonging
to the 4-loop sunset diagram in figure [2.4] with all masses equal to 1.
For simplicity I do not start from general tensor integrals, but assume

that the projection to scalar integrals has already been performed

and all integrals are expressed in a classification scheme as defined ?fuiefA:
e 4-loo

in section Since for 4 loops and no external momenta there are sunset P

10 dot products of momenta, there are 219 = 1024 different sectors. graph.

Choosing the set of propagator momenta as (compare table [A.1)
A4 — {kla k?a ]{‘137 k47 kl - k47 k2 - k47 k3 - k47 kl - k27 kl - k37 kl - k2 - k3}’ (226)

63 of the 1024 are anti-sectors without an associated graph and another 281 are zero-
sectors for which all integrals vanish, which leaves 680 physical sectors. 15 of these 680
sectors have momenta which can be mapped onto the sunset diagram. For a reduction
up t0 Tmax = Smax = 4 this means one would have to consider 220500 integrals for the
sunset. Using sector momentum shifts to map all 15 sectors to the one with the highest
ID (sector 841) reduces this number to 14700. An example of such a mapping would be

the momentum transformation (k1, ke, k3, k4) — (ks, k1, —ka, k4) which leads to

AT S V- B R V.
R B DR AT R

and thus maps sector 481 (which has lines 2,3,4,5,10) to sector 841 (lines 1,2,4,7,10).
Out of the propagators D; which can have negative exponents for sector 481, D7 and Dy
transform non-trivially and thus for z7, z9 < 0 the shift would map a single integral to a

sum of integrals, e.g.

1(0,1,1,1,1,0,—1,0,0,1) = 2«I(1,0,0,1,0,0,1,0,0,1) + 2 * I(1,1,0,0,0,0,1,0,0, 1)
~1(1,1,0,1,0,—1,1,0,0,1) — 2% I(1,1,0,1,0,0,1,0,0,1) .

It is obvious that for negative exponents with large absolute value shifts like the above
can produce a great number of terms, since all products of sums in the numerator have
to be expanded to stay within the classification scheme. This is a problem for which no
solution is known as of yet. In the example given here one also finds two integrals with
t < 5, which belong to subsectors and have to be shifted once more to map them to their

respective representative sectors. In general this can lead to further proliferation of terms,
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but in this simple case no further sums appear and the mapping simplifies to

1(0,1,1,1,1,0,—1,0,0,1) = 4xI(1,1,1,1,0,0,0,0,0,0)
~I(1,1,0,1,0,—1,1,0,0,1) — 2« I(1,1,0,1,0,0,1,0,0,1) .

As a next step the symmetries of sector 841 can be applied, which reduces the number
of unsolved integrals for the sunset diagram in the example from 14700 to a mere 467.
As it turns out, the integral 7(1,1,0,1,0,—1,1,0,0,1) on the right hand side above can
be shifted to simpler integrals using symmetries in such a way that the mapping for the

original integral reduces to
I10o,1,1,1,1,0,-1,0,0,1) = 1(1,1,0,1,0,0,1,0,—1,1) ,

where the right hand side cannot be further simplified by any symmetry relation. This
identity could have also been found directly from the momentum shift (ki, ko, k3, k4) —
(k1 — ko, ks — kq, k1 — ko — k3, —k2), but in practice it is not feasible to try all combinations

of sector shifts and symmetries for all integrals to always find the best shift immediately.

As a last step, the reduction for sector 841 reveals that the sector contains two master
integrals and expresses all others in terms of these two and a single master integral of the

subsector 960. The integral I started out with is then finally given by

1 3
1(0,1,1,1,1,0,~1,0,0,1) = —51(1,1,0,1,0,0,1,0,0,1) + 57(1,1,1,1,0,0,0,0,0,0) ,

where only one of the master integrals of sector 841 appears. Even though it is unlikely
that all or even most of the initial 220500 integrals of the sunset diagram would appear in
any actual calculation, the fact that all of them can be expressed as linear combinations
of just three integrals shows the importance of the reduction, since it reduces the number

of integrals that need to be explicitly solved by several orders of magnitude.



26 3 Solving master integrals

3 Solving master integrals

Once the reduction has expressed all needed integrals in terms of master integrals, the
latter still need to be solved. A great number of strategies for this task has been developed
over the years, each with different advantages and ranges of applicability. In this section
I give a brief overview of some commonly used methods, but the list presented here is
by no means exhaustive. The overview does not contain Laporta’s method of difference
equations and factorial series, as it is discussed separately and in much greater detail in

the following sections.

For some of the simplest Feynman integrals the integration can be carried out directly.
This includes the 1-loop integrals of the class of massive vacuum integrals considered in

this thesis, which are given by

Hm:AJ%iDn,neN. (3.1)

By using e.g. the IBP-relation with operator a%k:’f one finds
1
2n —d

In+1)= o

I(n) (3.2)

and thus all 1-loop massive tadpoles can be reduced to the master integral J = I(1). In
this simple example, however, the reduction is not even needed, as the angular and radial
parts of the integration in eq. (3.1) are trivially separated and can be performed in a

straightforward manner to obtain the result in terms of I'-functions as

(3.3)
J=1I(1)=T(1—d/2).

The master integral J will be used in later sections to normalise higher-loop results in
order to remove the dependence on the convention for the integration measure. For more
complicated integrals the straightforward integration no longer works and more involved

strategies are needed.

3.1 Feynman parameters

A scalar integral I with L loops in the classification introduced in section [2.1] has the form

IEI(Zl,...,Zw):/ ! (3.4)

by DI DF - D
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where performing the momentum integrations is generally difficult, because the loop mo-
menta appear in more than one propagator. A nice trick to consolidate the different

propagators was suggested by Feynman [55], who noted that

1 ! Hacfi_l I'(2)
mrrror o (X ) G ey 8)

=/

where z = 71" ; z;. When applied to I, the denominator takes the form

> aiDi=k"Mk+2P - k+Q, (3.6)

where k is the L-vector of loop momenta, M is an L x L matrix, P an L-vector of external
momenta and () a scalar depending on both external momenta and masses. In this form

the integration over the loop momenta can be performed and one obtains

z— Ld )7+ .
' Félr(zf)) / o [[=" (37)

where U and F are the graph polynomials already encountered in section in the

closely related Schwinger parametrisation. Here they can be expressed as

(3.8)

B
&
!

det(M)(PTM™'P+ Q).

The sum over all parameters z; in the d-function of [ can also be performed over an
arbitrary, non-empty subset A of the parameters, if the integration range over the remaining

parameters is extended to infinity [64], such that

/:/ dxl...dazwé(l—Zm), ACH{x1, ..., xw},|A>0. (3.9)
T 0

T;EN

For the fully massive tadpole integrals with a single mass m = 1 one finds P = 0 and
Q = >, x; and thus F = U if X is chosen as the full set of parameters.

In some cases the remaining integrals over the Feynman parameters x; can be performed
analytically, but one of the main advantages of this parametrisation is that it is more
accessible to numerical integration than the loop momentum representation. If the integral
is finite, this integration can be carried out with methods such as Monte-Carlo, but the
precision that can be achieved in this way is rather limited for higher loop integrals, as
the number of integration variables is given by the number of propagators. For divergent

integrals one first has to extract the poles in €, e.g. via sector decomposition.
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3.2 Sector decomposition

Sector decomposition is a strategy to extract divergences from the Feynman parametric
representation of integrals introduced by Binoth and Heinrich [65, 66], which has since
been implemented in the publicly available codes sector_decomposition [67], SecDec
[68, 169}, |70] and FIESTA [71, |72, [73]. The best way to illustrate the idea behind it is an

example taken from [66], in which it is applied to the integral

1 1
12/ dx/ dy 2~ 1%y (2 4+ (1 — 2)y) "L . (3.10)
0 0

The main problem here is the term z + (1 — x)y, which leads to a divergence when x and y
go to zero simultaneously. The goal of sector decomposition is to factorise the divergences
into singular factors of just one integration variable. To this end the integration over the
w-dimensional hypercube (where in this case w = 2) is split into different sectorsE] by
introducing into the integrand unity composed of step functions. This is done in a way
such that for each integration variable there is one sector where this variable is always
greater than all others. In the above example one would thus split the integral into two
sectors by inserting 1 = O(z — y) + ©(y — x). The integration ranges can be remapped
to the hypercube by rescaling y — xy in the first sector and x — yx in the second sector,

after which the integral reads

1 1
1= [ dea=00 gy (s (1 -a)y) (= D)
0 0 (3.11)

1 1
—I—/O dy y_l_(‘”b)e/o dzz 179 (14 (1 — y)z) ! (=D).

Looking e.g. at the first integral I1, the term 1+ (1—x)y no longer leads to any divergences,
as these now only originate from the singular factor z—!=(@tb)¢. This can be used to
separate the 1/e pole by extracting the leading order in the Taylor expansion in x of the

remaining integral, such that I; is given by

1 1
L= / dz x_l_(a+b)€/ dyy (141 —z)y) "
0 0

=f(z)
= /01 da o~ 1@ p(0) 4 /01 da 217 @ (f(z) = £(0)) (3.12)
— _(aJ:(rog)eJr/Ol dz 2= 1=@De () — (0) .

The remaining integral is now finite and can be computed numerically.

4The word sector refers to a part of the hypercube here and is not to be confused with the concept of
a sector in the integral classification scheme.
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The main advantages of sector decomposition are its applicability to many classes of in-
tegrals, the high degree of automation and the ease of use through the publicly available
codes. However, in more complicated cases than the above example the decomposition into
multiple sectors has to be iterated several times, which can lead to an exponential pro-
liferation of terms and slow down the computation considerably, especially for integrals
with many propagators. In combination with the limited precision from the numerical
evaluation this makes sector decomposition a less favourable choice for the 5-loop tadpoles
than Laporta’s method, which can easily achieve precisions of thousands of digits for many
integrals (see sections [4] and [7)).

3.3 Parametric integration and linear reducibility

A large number of Feynman integrals can be expressed in terms of multiple polylogarithms,

which are defined as

y]fl .. .y"“"‘
Lin1,...,nr (y17 s 7y7‘) = Z T el (313)

0<k1 <<k fy® ket
Special values of multiple polylogarithms include e.g. the (multiple) (-functions [74]
Cniyoonr = Ling o, (1,000, 1) (3.14)

and harmonic polylogarithms [75]

Hy,o.omy(y) =Lin, o, (y,1,...,1) . (3.15)

Another way of expressing multiple polylogarithms are the so-called Goncharov polyloga-
rithms (GPLs, [76]) Gy, ,...n, (Y1, - ., Yr; y), which describe the same class of functions and

are connected by

1 1 1
Li oo yr) = (=1)"Ghn,y ( ;1). 3.16
e W 0) = () G (oo (3.16)

The GPLs are defined by iterated integrals as

Gnl,---,”r(yb s 7y7“;y) = G(07 . 'aoayla .. -ayrflao) cee 707yT;y) 5
——— —_——

ni—1 ny—1
Y dx Tr dx,_1 2 day
G, Yr;y) =/ . / L / (3.17)
0 Tr —YrJOo Tr—1—Yr—1 0 T1— U1
T dx
:/ - G(ylw"ay?’—l;;v?") .
0 Tr —Yr
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In the Feynman parametric representation, the GPLs can be used to solve many finite
integrals analytically |77, 78, 79]. After choosing the set \ in eq. as a single parameter
xy, this parameter is set to one by the d-function and the integrations over the remaining
parameters x; range from zero to infinity. Expanding in e yields integrands which are
rational functions in z;, U, F and logarithms thereof. The strategy for each order in
€ is to successively perform the integrals over the parameters x; by repeatedly bringing
the integrand into the form of the last line in eq. for one of the parameters. As
long as the polynomials that appear can be factorised into linear functions of the next
integration parameter x; (as is the case for the initial polynomials ¢ and F), this can be
done by partial fraction decomposition. The integration over x; then yields another GPL,
which has to be evaluated at zero and infinity, before once again bringing the integrand
into the required form for the next parameter. The procedure can be repeated until all
integrations have been performed or non-linear factors in the next integration variable
appear. Whether all integrations can be performed often depends on the choices for A
and the order of integration over the x;. In some cases a different parametrisation can
also help to avoid non-linear factors [78]. If some parametrisation and ordering of the
integration variables exists such that all factors throughout the process are linear in the
next integration variable, the integral is called linearly reducible. In this case all finite
integrals associated with the same graph are linearly reducible, as different exponents z; in
the loop momentum representation only influence the exponents of the polynomials in the
representation, but not the (linear) factors of the polynomials. A public implementation
in Maple™ [80] has been presented in [81] that automates the check for linear reducibility

and performs the integration where possible.

Parametric integration of linearly reducible integrals via GPLs is a powerful method and
has been used to obtain many results [77, |78} |79, 81], but it is limited to integrals that can
be expressed as multiple polylogarithms. This makes it infeasible for the 5-loop massive
tadpoles considered here, as it is expected from lower loop results that their e-expansions
contain at least elliptic integrals [4, 82], which are not contained in the class of multiple
polylogarithms. The restriction to finite integrals is not a major problem, as it is always
possible to choose a basis of (quasi-)finite master integrals [54], though this may introduce

integrals with higher dimensions.
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3.4 Mellin-Barnes representations

For a detailed discussion of Mellin-Barnes representations I refer to [83], which most of
the following summary is based on. The key ingredient of this method is a decomposition
which transforms a sum A + B raised to some power to a Mellin-Barnes integral [84] over
a contour C in the complex plane, in which A and B appear as separate factors in the

integrand:

! L / T T+ ) () 2 (3.18)

(A+B> ~ T(N) 27 )i ANtz
The contour C is chosen such that it divides the poles of the I'-functions appearing in this
kind of integral into two groups. Poles of I'(- - -+z) are on the left side of C (left poles), while
poles of T'(-- - — z) are on the right side of C (right poles). The above decomposition of a
sum can be applied (multiple times) to Feynman integrals e.g. to separate mass terms from
propagators in the loop momentum representation or to split the graph polynomials in the
Feynman parametric representation into monomials. The integrals over loop momenta or

parameters x; can then often be evaluated in terms of more I'-functions.

A simple example is given in [83], where the decomposition is applied to the massive

propagator of the 1-loop 2-point integral

1
F(¢*,m?) = / : 3.19
The integration over k£ can then be performed in d = 4 dimensions and yields
11 m2\” (14 2)[(—2)2
F(q? 2,:f—/d — : 3.20
(q , M )|d74 q2 omi Je z q2 F(l — Z) ( )

The left poles of this integral are at z € {—1,—2,...} and the right poles at z € {0,1,...}
and thus the contour C can be chosen to be parallel to the imaginary axis with —1 <
Re(z) < 0. After closing the contour on the right, the Mellin-Barnes integral can be
evaluated by Cauchy’s theorem in terms of the residues of the right poles. They give the

contributions ) o
In (qq2/m ) from z = 0 and
n .
1250:1<_m22> from z =1,2,... 320
q n=1 n q
and thus one finds
F(¢*,m?)|g=y = _M . (3.22)

q2

For divergent integrals the Mellin-Barnes representation will have left and right poles

which are separated by €, e.g. in the term I'(e + z)I'(—z) for z = 0 and z = —e. In the
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limit € — 0 there is no space between these poles for the integration contour. This can be
resolved by moving the contour to the left of the pole at —e¢, thus making it a right pole,
and including its residue in the result. This residue then contains the divergence and the

remaining integrand can be safely expanded in € without merging left and right poles.

For more complicated integrals than in the above example one usually arrives at multi-
dimensional Mellin-Barnes integrals, for which choosing the contour becomes more diffi-
cult. The evaluation in terms of residues as above generally leads to multiple infinite sums,
which are not always solvable analytically. In some cases it is also possible to perform the
integration directly via Barnes’ lemma [84]. A third option is to evaluate the integrals
numerically. A great number of tools such as MB 85|, MBresolve [86] or AMBRE [87, [88, [89]
have been published to automate many tasks related to Mellin-Barnes integrals, as well as
for the summation methods needed for the multiple infinite sums (see. e.g. [90]). These
tools and Mellin-Barnes representations in general have been successfully used to solve
many Feynman integrals analytically (see e.g. [83) [91] and references therein). However,
for complicated integrals the dimensionality (and thus complexity) of the Mellin-Barnes
integrals is often much higher than the dimensionality of the Feynman parameter integral
(i.e. the number of lines of the corresponding graph) [92] and non-planar massive integrals
in particular pose a problem [91], which means the method is not ideally suited for the

5-loop fully massive tadpoles considered in this thesis.

3.5 Differential equations

Differential equations have been widely used as a tool for solving many different Feynman
integrals (see e.g. (93} |94} 95| |47], also [96] for a recent review). The idea relies on the fact
that for a given class of integrals a reduction to a finite set of master integrals is available.
Taking the derivative of these master integrals with respect to a kinematic invariant will
result in a linear combination of integrals of the same class, which can once again be

expressed in terms of the master integrals. One finds

0uf(@,6) = AV, f(w,6), Bi= 0 i=1m, (3.23)
where f = (f1,...,fn) is the vector of master integrals, x = {x1,...,z,} is the set

of kinematic invariants and A® is an n x n-matrix which is rational in the x; and the
dimensional regularisation parameter e. The master integrals thus satisfy a set of partial

first order differential equations.

In the following I will for simplicity consider differential equations in only a single kinematic
invariant y, but the generalisation to multiple variables is straightforward [96]. Recently,

Henn [97] proposed that the differential equations could often be simplified by choosing
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an appropriate basis of master integrals. By changing to a new basis
g=Tf (3.24)
with an invertible matrix T the differential equations can be written as

y9(y,€) = B(y,e)g(y,e) , (3.25)

where

B=T'AT -T7'9,T. (3.26)

This freedom can be used to simplify the new matrix B compared to A. In particular
one would like to find a so-called canonical basis, in which a differential form of eq. (3.25])

reads

dg(y,e) = e (dB") g(y, €) ,
B' =Y Biloga(y) (3:27)

k
where By, are matrices independent of y and € and ay(y) are algebraic functions of y. If
the transformation 7 is rational, ag(y) = y — yx, where the y; are the singularities of the

differential equation, which then reads

f;’“yk g(y,€) . (3.28)

gy, e) =€>
~y

The big advantage of this form is the simple dependence on €, which allows for successive
rather than simultaneous evaluation of the e-orders. In the rational case the integrals
can be solved to all orders in € in terms of Goncharov polylogarithms (see eq. ),
in the general case in terms of Chen iterated integrals [98]. Several strategies have been
developed to arrive at a canonical basis [99, 100, 101} (102} [103} |96], but this is not always
possible, as e.g. for elliptic integrals the € term in the matrix B cannot be removed and

thus e cannot be factored out [96].

Regardless of whether a canonical basis is used or not, the solution of the differential
equations still requires boundary conditions to fix the integration constants. This may
in part be done by using prior knowledge of the singularities of the integrals [96], or by
evaluating them at a fixed value of y, which may still be non-trivial. For single scale
integrals like the tadpole integrals considered in this thesis the scale dependence is trivial
and thus differentiating with respect to that scale does not yield new information. In this
case one can introduce an additional artificial scale in such a way that the original integrals

are reproduced in some limit.
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3.6 Dimensional recurrence relations

The method of using recurrence relations with the space-time dimension d as their variable
has been developed in [53} (104} 105] and has since been applied to various single-scale
integrals (see e.g. [106, 107, |108, [109]). It relies on equations between integrals with
different dimensions (see sect. [2.3.4) and the reduction to master integrals. By combining

the two one can find a recurrence relation
972 = c(d) 9 + Rd) , (3.29)

where f(D = {f1,..., f,} is the vector of master integrals of a given sector (in d dimen-
sions), C(d) is an n x n-matrix with rational coefficients in d and R(d) depends on master
integrals of subsectors, which are assumed to be known analytically. For simplicity I con-
sider in the following the approach outlined in [105] for the case that the sector only has
a single master integral I, such that f(¥ = I(4) and C and R are known scalar functions.

C' can be written as

CHZTZIH(W —d/2)
Hgnzlﬁ(bj —d/2)

where the a;, b; and c are constant. After decomposing the subsector solutions into

C(d) = (3.30)

R(d)=Ry(d—2)+ R_(d), (3.31)
such that
. C(d+2)R+(d+2)‘
lim <1
d—+o0 R, (d) ’
P: -2 (3.32)

lim

250 O(d — 2)R4 (d)

<1,

the general solution of the recurrence relation can be written as [105]

—ap Il Tai—d/2) | S~ .
™ T(b; — d/2) +,§[ +(dk) = s-(d. k)]

I'D = w(d)e

Lz _ - k
si(d, k) = (_1)k(ma+mb)ck 6 (d/2+1 aZ)ER+(d +2k),
[T72 (d/2+1 = by)

m k41
k-1 Hj:bl (bj - d/2)i
[T (a; — d/2)*+

(3.33)

s_(d,k) =

R_(d — 2k)

where (2)¥ = x(x +1)...(x + k — 1) is the Pochhammer symbol. w(d) = w(d + 2) is an
arbitrary periodic function of d and is the only remaining unknown quantity in the solution

at this point. It can be determined in two steps [105]. By analysing analytical proper-
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ties of I and the known functions in the solutions, such as poles in an arbitrary stripe
S = {d|dp < Re(d) < do+ 2} of the complex plane of d or the behaviour for Im(d) — +o0,
w(d) can be fixed up to some constants. These constants are then determined by perform-

ing the integral at some convenient dimension d.

The infinite sums in the solution converge exponentially, which is convenient for numeri-
cal evaluation, however the results need to be known analytically if the master integrals
appear in the inhomogeneous part of recurrence relations for sectors with more propaga-
tors. Very recently the Mathematica [110] package SummerTime [111] has been published,
which performs these sums numerically with high precision. If a basis of functions and
numbers (e.g. multiple polylogarithms) that may appear in the result is knownﬁ, the algo-
rithm PSLQ [112, 113] may be used to obtain the analytical result from the high precision

numerical one.

5This is not yet the case for the 5-loop massive tadpoles.
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4 Laporta’s method

In this section I begin discussing the method I use for solving the fully massive tadpole
master integrals introduced in section [2.I] It is based on Laporta’s approach built on
difference equations and factorial series |1| (inspired by [114]), which I have improved in
several key aspects to make it feasible for 5-loop calculations. In the following I shortly
review the main ideas of Laporta’s method as well as some of its advantages and limitations
compared with other methods, before presenting in detail the individual steps and my

improvements in sections [5] through [7]

Henceforth I assume that the reduction of integrals described in section [2.4] is already
under control and the master integrals are known (but not solved). Laporta’s approach
then is a hierarchical one, solving first the master integrals of the simplest sectors with the
fewest propagators and then working upwards by increasing the number of propagators,
where the solution of the master integrals requires that the subsector master integrals are
already known. As a starting point, all integrals are generalised by replacing one of their

positive propagator exponents by a variable x, while all other exponents remain integers,

e.g.

1
1(1,1,0,1,0,0,1,0,0,1) — I(2,1,0,1,0,0,1,0,0,1) = / (4.1)

{ky DY D2 Dy D7 D1
for one of the master integrals of the 4-loop sunset sector 841 discussed in section
In general it can make a difference which propagator the x is put on (see sect. , but

because the sunset diagram is fully symmetric, all choices are equivalent in this case.

Since Laporta’s method allows for solving the master integrals one by one, I will in the
following simply write I(z) for the integral that needs to be solved and J;(z), i = 1,2,...
for subsector integrals which are already solved. To obtain the solution, one must first

find a difference equation for I(x) of the form

R R;

Z pr(z)(z + k) = Z Zpik(x)!]i(x + k). (4.2)
k=0 i k=0

Here the pi and p; are rational functions of x and d, but for more general integrals they

would also depend on masses and external momenta. R is called the order of the equation

and I will refer to the k in I(x + k) as the offset of the integral. Details on how to obtain

difference equations will be given in section [f

Laporta then proposes to expand the integrals as factorial series of the first kind [114],
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such that
= I'(z+1)
707 () — (m) 4.
(z) ;F(x—Km—&—s—l—l)as (43)
Iz +1) (m) agm) agm)
= (gim oy + +. ),
MNe—Kyn+1) r—Knp+1 (x—Kp+1)(z— Ky, +2)

where m labels different solutions of the difference equation (4.2) and its homogeneous
version (without the J;). The general solution can then be expressed as a sum over the

homogeneous solutions and the inhomogeneous solution as
I(@) =Y pwm (@) T™(x) | (4.4)
m

which for the integrals in this thesis can still be simplified significantly. The w,,(x) are
periodic functions with period 1, which for a truly general solution of I(z) would have to
be fixed over one whole period. Since one is typically only interested in integer values of
x, these functions can be chosen constant and are absorbed into the normalisation of the
agm) . It turns out (see sect. that for the tadpole integrals of interest here it suffices

to look at solutions with u,, = 1 and K,,, = —d/2. The expansion for the integral then
reduces to -
I(z+1)
I(x) = , 4.5
(=) s;)F(x+d/2+s+1)aS (45)

where only the coefficients as of the factorial series remain unknown.

By inserting the factorial series into the difference equation (4.2)), the latter can be trans-

lated into a recurrence relation

R’ R;
> ge($)aste =D Y gik()ai stk (4.6)
k=0 i k=0
for the coefficients as. The translation process will be explained in more detail in section
On the right hand side the a; s are the coefficients of the factorial series expansions of
the subsector integrals J;(x), which are already known. As in the difference equation, the
gr. and g;, are rational functions, but now depend on s and d. To avoid confusion due to
the similar structures of egs. and , I will always refer to equations for integrals
as difference equations and to equations for the factorial series coefficients as recurrence

relations, even though in the literature these terms are often used interchangeablyﬂ

STechnically speaking eq. (4.2) is a recurrence relation, but not a difference equation. Since any re-
currence relation can be expressed as a difference equation, the term has already been established in this
function in the literature and to avoid confusion, I will stick with calling it a difference equation.
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For further progress one needs to fix some of the as as initial conditions. Laporta describes
how to do this for various kinds of integrals in reference |1] by examining the large-z
behaviour of the integrals. In this way one can obtain values for the first few coefficients
ap,ai,...,arp_1 of the series, which for the massive tadpoles always take on the form
of linear combinations of integrals with one loop less. Since these are assumed to be
known, the recurrence relation can then be used to iteratively evaluate the next
terms aR, ag+1,... of the series. At this point it is usually impractical to continue working
analytically, since a closed form for the solution of an arbitrary as is generally very difficult
to find and each iteration of the recurrence relation increases the degree in d of the rational
functions found in the exact expression for the as;. The expression swell this would result in
can be avoided by expanding everything around the dimensional regularisation parameter
€ up to a finite order and switching to numerical values instead of rational numbers with
ever-growing integer contents. For numerical calculation it is then sufficient to evaluate

the factorial series coefficients as; up to some finite maximum value s = Syax.

Performing the sum over the factorial series requires a choice for the exponent x. Typically
one is interested in = 1, since in most cases I(1) is the master integral one wants to solve.
It is obvious from eq. however that the series has a much better convergence behaviour
for large . While some factorial series might actually converge even for z = 1 (see sect.
for details on convergence), choosing a larger value for x in the very least allows for a
lower syax and thus fewer iterations of the recurrence relation to reach the same accuracy
due to the faster convergence. After picking a maximum value xpax and evaluating the
sum over the factorial series to obtain I(z) for z € {Zpmax — R+ 1,..., Tmax — 1, Tmax }, the
difference equation can be used iteratively to push down the argument of I(x) from pax
to 1, at which point the solution for the master integral I(1) is recovered. A summary of
the steps in Laporta’s method can be found in figure

In most sectors it is possible to express all master integrals in the reduction in terms of
I(x = 1),I(x = 2),.... In this case a single difference equation suffices to calculate all
master integrals and thus all integrals in that sector. If it is not possible to express the
master integrals in this way, the sector will have more than one difference equation (see

sect. |b|) which will solve the additional master integrals analogously.

There are several reasons to pick Laporta’s above described approach as the method to
solve the fully massive 5-loop tadpoles. The most compelling one is the fact that it
has already been used to solve the same class of integrals at 4 loops for both dimension
d=4—2¢[4] and d = 3 — 2¢ |5], as well as the 4-loop tadpoles with some massless lines
[115,33]. Obtaining results in different dimensions is rather simple in this approach, since
both difference equations and recurrence relations are valid for arbitrary d and only for

the numerical evaluation does one have to pick an integer around which to expand in e.
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large-x expand e.g. via

behaviour IBP
insert translate
iteration

of rec. rel.

sum over fact.
ser. for large x
iteration

of diff. eq.

Figure 4.1: Flow chart of Laporta’s method [1] of difference equations and factorial series.
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Even though in most cases only numerical results can be obtained, it is possible to achieve
extremely high precisions (see e.g. sect. or [4]), which can be used to recover the
analytical result via an algorithm like PSLQ [112, |113], if one knows the numbers and
special functions which may appear. In the case of the 5-loop tadpoles the numerical
nature of the approach can then even be an advantage, since it is known from lower loop
results |4, 82 that elliptic integrals appear in the e-expansions. This makes the 5-loop
tadpole integrals inaccessible to some powerful analytic methods like symbolic integration
based on linear reducibility 81, [79] or first order differential equations using a canonical

basis [97], which are restricted to multiple polylogarithms [76].

While it would certainly be nice to directly obtain analytical solutions for the recurrence
relations or even the difference equation, to the best of my knowledge no strategy is known
that can accomplish this in the general case. Some algorithms exist that can express the
solutions in terms of indefinite nested sums and products (see e.g. [116, 117, 118]). They
do however rely on the fact that the recurrence relation factorises into linear partsﬂ which

is in general not the case for the massive tadpoles.

Another nice feature of Laporta’s method is the fact that it deals well with divergent
integrals. Poles in € may arise during the iterations of either difference equations or
recurrence relations and are naturally incorporated into the e-expansions of integrals and
factorial series coefficients. This quality might however lose some relevance in the future,
since a recent proposal [54] shows how to choose a basis of (quasi-)finite master integrals
for a given space-time dimension d. As a trade-off this basis generally also contains higher
dimensional integrals, but all divergences are made explicit in the form of e-poles of the

coefficients in front of the chosen master integrals.

Every step in Laporta’s method can be readily automated and I will describe my own
implementation in section 8] Once this is done, very little manual input is needed to
obtain solutions for the master integrals. This reduces the probability of human error and
is very convenient, since there are more than 100 master integrals for the fully massive
5-loop tadpoles [6]. Furthermore the quality and accuracy of the results can be estimated
from a cross-check that is built into the method (see sect. .

Despite its qualities Laporta’s method as described above does not work for the fully
massive 5-loop tadpole integrals. Several of its steps scale very poorly with the complexity
of the integrals and cannot be performed at 5 loops within a reasonable amount of time.
In addition, many of the 5-loop tadpoles exhibit divergences during the evaluation of
the factorial series. In sections [f] through [7] I will describe these problems in detail and

demonstrate how the method can be changed to solve or at least attenuate them.

"A simple example for such a factorisation is given in section
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4.1 Example: 2-loop sunset

To illustrate Laporta’s method, I will show some of the steps in its application to solve

the 2-loop sunset master integral

1
0= f TR R

_ O (4.7)

with the assumption that the subsector master integral

1
I1,1,0) = /kl,,ﬁ +1)(k2+1) O@ (4.8)

is already solved. The integrals are first generalised to I1(z) = I(x,1,1) and Iz(z) =

I(x,1,0) by replacing the exponent on the first propagator with the variable z. By com-

bining several IBP-relations for these integrals one finds

6x(z+ 1)1 (x+2)+2x(—22+d—3)[1(x+ 1)+ 2z(—x +d — 2)[1(z)

(4.9)
+((—2d + 4)x + d* — 2d) I(x) = 0
as the difference equation for I;(z). Inserting the factorial series
[e.9]
a; SF(.CU + 1)
I; = : 4.10
i(@) g)f‘(x+d/2+s+1) (4.10)

for I; and I and going through the translation process described in section [6.1] yields the

recurrence relat 1orE|

128(—2 + 5)(—1 4+ s)s(1 4 2s)ai s
—16(—2+ 5)(—1 4 5)s(—2 + d + 25)(—10 + 5d + 22)a1 51
+16(—2+ s)(—1 + s)s(—4 +d + 2s)(—2 4+ d + 25)(—13 + 4d + 10s)ay s—2 (4.11)
—12(=24 8)(=1 4 8)s(—6 4+ d + 25)(—4 + d + 25)* (=2 + d + 28)a1 3
)

(=2 +d)?d(—6 +d +25)(—4 + d + 25)*(—2 + d + 25)ags 3 =0 .

Since the pivot coefficient in the first line vanishes for s = 0, 1, 2, the first terms a1 o to a2

of the factorial series have to be obtained as initial conditionﬂ. All three can be expressed

8Here I have already used the recurrence relation for as s to reduce the number of terms.
9In this case the recurrence relation could actually be written in an alternative form which is then also
able to determine a1,0 to ai,2 in terms of the az s, but in general this is not always possible.
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(see sect. in terms of the known 1-loop master integral J = [ (kf +1)7" as

d—2
al o — —TJ
-2
a1 = _22F dzlcé(S +7d) J (4.12)
(=2 + d)d(2 + d) (104 + d(170 + 41d))
M2=- 1920 J

After expanding these values around d = 4 in € = 2 — d/2 up to a chosen order, the recur-
rence relation can be used to iteratively obtain numerical e-expansions for the remaining
series coefficients a14,a15,...,01 5., LThe azs needed to do so are already known from
the solution for Is(x). Performing the sum over the factorial series for x = xpax = 100 up

t0 Smax = 500 yields

1,(100
i 5 ) 10307153164, .- 10~ + 32505119301 .- 10~4¢2
J (4.13)

+3.2541271033. .. - 10~ %3 — 7.8779658176...- 10~ 4e* + ... |

where the normalisation with the 1-loop tadpole J = I'(1 — d/2) from eq. is intro-
duced to prevent a dependence on the convention for the integration measure. A similar
expansion can be obtained for I7(99) and since the I2(x) are known, the difference equation
can be used to iteratively compute I1(98), I1(97),...,I1(1). The final result is

I (1)
72

= —1.499999999 — 1.499999999¢ + 0.515860858¢> — 8.540503339¢> + ... . (4.14)

This agrees with the analytical solution, which is known for arbitrary d in terms of hyper-

geometric functions as [119, |115]

L(1)  3(d-2)

e RS (4.15)

4—d  5—d 3 as  27['(5 —d)
b)) T3 i 6—d
2 2 4 r (T) r (T)
Both 7;(100) and I;(1) actually contain divergences, which are masked here by the nor-
malisation due to the 1/e pole in J. The additional pole of I1(1) compared to I;(100) is

picked up without any special treatment at x = 2, where the coefficient of I;(z) in the
difference equation (4.9) starts at order €.
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Finding difference equations of the form is a task very similar to the reduction to
master integrals described in section [2] with the key difference being the introduction of
the symbolic exponent x for one of the propagators. In this section I first adapt and extend
upon some of the concepts introduced for the reduction to account for this change. I then
review Laporta’s algorithm for obtaining difference equations (sect. before presenting
my own algorithm (sect. [5.2)), which produces an alternative form of the difference equa-
tions. A comparison of the performance of the two algorithms for the 5-loop tadpoles is

given in section [5.3]

In eq. (2.6) I defined the parameters r, s, ¢ and the sector ID, which are needed for the
ordering relation of integrals given in section 2.4 To adjust these definitions to integrals

of the form

1
I(z1,..., x4+ k,..., 20 :/ zik € Z, 5.1
(=1 ) (&} DP ... D&k Daw (5.1)

I will assume that x 4+ k is positive for any offset k, so that ©(z + k) = 1 and the
definition of the sector and number of propagators ¢ is consistent with those of the master
integral one is trying to compute, where x + k is replaced by (typically) 1. The number
of propagator powers s in the numerator is then also unchanged, but the number of dots
r will be redefined to ignore the exponent containing x completely to ensure it remains a
non-negative integer. Furthermore, the offset k will be ignored in the ordering relation,
since integrals only differing in k& are related by a simple shift in . This means that
after assigning indices to the integrals, each index j now represents the set of integrals
{Ij(x + k)|k € Z} instead of a single integral.

The variable z can be used as the exponent for any propagator in the denominator, and
different positions v in general produce different difference equations. Due to symmetries
of the associated graph some choices for the position v might be related by momentum
shifts and are therefore equivalent. In this case I will by convention only consider integrals
with the smallest v out of every set of equivalent positions. This choice is incorporated
into the ordering relation by adding it after the comparison of sector IDs. For convenience,
I repeat here the ordering relation for (now sets of) integrals introduced in section with
this addition, using the parameters defined in eq. with the above described changes.
For two different (sets of) integrals of the form given in eq. the higher difficulty will

be assigned to, in descending order of priority,
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1. the one with greater ¢ (number of denominators),
. the one with lower sector 1D,
. the one with greater position v for the symbolic exponent x,

. the one with greater r (number of dots, ignoring exponent at position v),

2
3
4
5. the one with greater s (numerator powers),
6. the one with greater max(z;),

7. the one with lower min(z;),

8. the one with greater z1, 23, ....

After assigning indices j based on the ordering relation, a general equation for the integrals

has the form

K
Z Z pik(x)lj(z+k) =0, (5.2)
I k=k{

where the pj; are rational functions of x and d. In the following I refer to the difference
k:,gj ) k:l(,j ) of the top and bottom offsets of I; as the span of that integral in the equation.
The span of the whole equation is then defined as k; — kp, where k; = max(kﬁj )) and
ky = min(k:l()j )) need not necessarily appear on the same integral. This is in contrast to
the term order of the equation, which I would like to reserve for the span of the pivot
integral, in accordance with eq. . In Laporta’s algorithm the pivot integral is always
the most difficult integral in the equation, but in my alternative algorithm the choice of

pivot integral will be more involved.

A system of equations of the form can be generated by the same methods of section
which are used for the normal reduction. Reducing this system to difference equations also
follows the same basic idea of starting from simple equations and always eliminating the
most difficult integrals from as many equations as possible. More details on this reduction
will be given in sections [5.1] and When generating equations from a seed integral in
sector S with x at position v, all integrals in the resulting equations also start out with x
at v. The only way the position of  can be changed is by sector shifts or symmetry shifts.
Since for all seed integrals S is always the representative sector of its associated graph
and v is always the representative of its equivalent positionsiE7 such shifts can only occur
for integrals in subsectors of S. As a consequence, the difference equations for the same

sector S but different (non-equivalent) positions for x can be obtained independently.

In the following I call the combination of a sector S and a position v a zone and denote it as
sID(S)#wv, e.g. 84141 for the 4-loop sunset integral I(x,1,0,1,0,0,1,0,0,1). A subzone

10Choosing seed integrals from other sectors or with different positions v is possible, but would only give
redundant information.
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is then defined as any zone that can be reached by removing denominator propagators
and applying sector or symmetry shifts to the result. The set of subzones of a zone Z is a
subset of, but not necessarily the full set of all zones of subsectors of the sector of Z, e.g.
4-loop zone 101042 has subzones 993#2 and 993#4, but not 993#1. To solve a single
master integral, it is in principle sufficient to only find a difference equation in one zone
of its sector, but since most zones will be needed as subzones in difference equations for

integrals with more propagators, one usually has to reduce all zones of a given sector.

Obtaining the difference equations in all (inequivalent) zones of a given sector has the
additional benefit that it provides a cross-check for the final results. Inequivalent zones in
general have different difference equations and recurrence relations, which do not even have
to share the same orders. The final result (1) however should not depend on the position
v the exponent x occupied. Since very few sectors are fully symmetric and therefore
have only one set of equivalent zones, one almost always obtains multiple results for (1)
from different zones. Even though the equations in different zones might not be fully
independent, since they can depend on the same subzones, this still provides a non-trivial

check for the results and can be used to estimate their numerical accuracy.

k Ii(z + k)

i

.
J

a8

Figure 5.1: Pictorial representation of a typical IBP-relation between integrals I;(x). Each
box represents one integral times a coefficient, the sum over which is zero. Blue boxes are
integrals in the most difficult zone (the one of the seed integral), green boxes are integrals
in subzones.

5.1 Laporta’s algorithm for difference equations

The algorithm Laporta described in [1] to obtain difference equations is essentially the
algorithm used for the reduction to master integrals with the above described changes to
the ordering relation to account for the introduction of the symbolic exponent x. As in the
normal reduction, the system of equations is hierarchical and can be reduced zone by zone,
starting with the lowest number of propagators and then working upwards, where equations
in a zone Z may also depend on integrals in subzones of Z. Equations are generated mostly
via IBP, but all other methods described in section are also applicable. The typical
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structure of an IBP-relation between integrals I(x) is depicted in figure To reduce a
given zone Z, Laporta suggests to generate all equations for integrals I;(x + k) € Z with
7 < max, S < Smax and offsets k < kpax. With the order of equations defined as in section

[2.4] the reduction algorithm is then given by:
1. Consider the next equation. If there are none left, stop.
2. Insert solutions for all integrals which have already been found.
3. If the equation is trivial (0 = 0), go to step 1.

4. Out of the most difficult set of integrals {I;(x + k)|k € Z} remaining (the one with

the lowest index j), pick as pivot integral the one with
e the lowest offset k in the equation, if I; appears with negative offsets, or
e the highest offset k in the equation otherwise.

Solve the equation for the pivot integral.

5. Use the newly found solution to eliminate the pivot integral from all previously found

solutions. Go back to step 1.

If the system of equations contains sufficient information for the reduction, this algorithm
produces equations of the form depicted in figure[5.2] In most cases there is one difference
equation of the form in eq. , containing only one integral in zone Z with different
offsets (and possibly several integrals in subzones of Z). In analogy with the normal
reduction, this integral will be called a master integral. For more difficult integrals in the
ordering relation the algorithm generates equations of order 0, which fully determine these
integrals in terms of the master integral and subzone master integrals. These equations are
not actually needed for the solution via factorial series, but have to be kept to eliminate
their pivot integrals in reductions of superzones of Z. In some zones it also happens that
there is more than one equation with order R > 0, none of which can be reduced further.
In this case I refer to all their pivot integrals I}, (), I;,(x),... as master integrals and to
the set Mz = {I; (x),Ij,(x), ...} as the master basis of zone Z. I further define the order
of a zone to be the sum of all the orders of difference equations for integrals in that zone.
A master basis containing multiple integrals does not spoil the hierarchical nature of the
approach, since their respective difference equations only depend on their pivot integrals

and simpler integrals, so they can still be solved one by one.

There is one obvious optimisation to the algorithm described above, which I assume La-
porta also makes use of, although it is never stated explicitly in reference [1]. Since any
equation of the form (5.2) is valid for all =, one can perform shifts in x, which is a freedom

that Laporta’s description of his algorithm does not mention. This means that it is not
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Figure 5.2: Pictorial representation of fully reduced equations after Laporta’s algorithm
in the style of figure [5.1l Red boxes represent the pivot integral and coefficient of an
equation. (a) is a difference equation of the form in eq. with order 3, while (b) has
order 0 and the pivot integral is thus fully determined by simpler integrals.

necessary during the generation of equations to use seed integrals I(z + k) that have offset
k # 0, since the information gained from those equations can also be recovered if the
reduction algorithm makes use of such shifts. This is a significant improvement, since it
decreases the number of equations that have to be considered and avoids repeating the
same reduction steps for different offsets. A restatement of the above algorithm including
x-shifts and only using seed integrals with offset 0 is provided in algorithm For the
remainder of this thesis, when I mention Laporta’s algorithm for difference equations, this
is the version I am referring to, since it is the one I use in my implementation (see sect.
. It produces the same results (fig. , but is more efficient than the version without
x-shifts.

For tadpole integrals with a single mass and up to 4 loops, Laporta’s algorithm works
well to obtain all difference equations (see e.g. [4, 5, [L15]). Attempts have been made
to find the difference equations for the fully massive 5-loop tadpoles [6, 7], but progress
has been limited so far, since the calculations at 5 loops are significantly more difficult
than at 4 loops. This is partly due to the increased numbers of diagrams, propagators,
zones and integrals per zone that need to be considered. The main problem however is
a sharp increase of complexity of the rational coefficients in the equations. The size of
these coefficients scales very badly with the span of the equations, as I will show in section
This increase in complexity was already noted by Laporta in [1] in the context of
decoupling equations. At 4 loops, the maximum order and therefore also maximum span
of the difference equations is 5, while at the 5-loop level the orders reach up to 20 [7]. As
a result, the rational algebra during the execution of algorithm [I| slows down to the point

where obtaining the difference equations in this way becomes altogether infeasible.
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Algorithm 1 Laporta’s algorithm [1] using z-shifts

Require:

e An ordering relation for integrals I(x).

e A set of equations of the form , generated from seed integrals in zone Z.

e A list P of pivot equations, where P[j] is the equation with I; as a pivot integral
(if one exists). P is initially filled with equations from previous runs, e.g. for
subzones.

. If no new equations remain, stop. Otherwise pick the simplest of the remaining

equations and call it Q). Out of two equations, the more difficult one is defined to
be, in decreasing order of priority,
e the one with the most difficult integral,
e the one with the greatest leading span (the span of its most difficult integral),
e the one with the most terms,
e cither one.
r

. For j=1,2,... do:

(a) If @ does not depend on I; or P[j] does not exist yet, continue with next j.

(b) Add z-shifted versions of P[j] with appropriate factors to @ to eliminate all
integrals I;(x + k) from @ where k < 0.

(c) Let sp be the leading span of P[j]. Add z-shifted versions of P[j] with appro-
priate factors to @ to eliminate all integrals I;(z + k) from @ where k > sp.

. If Q is trivial, go to step 1.
. Let I,;, be the most difficult integral in ). Divide @ by the coefficient of Im(:c+k:§m)),

where kt(m) is the top offset of I,,,. Shift ) such that the bottom offset kém) of I, is
zero. If this introduced any offsets < 0 for other integrals, perform step 2b again for
j=m+1m+2,....

. Let sg be the leading span of Q). Use @ to eliminate all integrals I,,(z + k) in

P[1],P[2],...,Pm — 1] where k <0 or k > sq.

. Set P[m] = Q. If this replaces a previous pivot equation P[m]|, use that equation as

the next @ and go to step 2, else go to step 1.
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5.2 Minimal order reduction algorithm

In this section I present an alternative algorithm for the task of reducing general equations
of the form to difference equations. Since the main reason Laporta’s algorithm falls
short at the 5-loop level is the complexity of the coefficients in equations with high orders,
my algorithm is built to minimise the spans /orders of equations. This means that instead
of decoupling equations in a given zone Z as much as possible to find a difference equation
of order R for a single integral, it produces a set of R coupled equations with order 1
for R different integrals of the zone. Consequently I will refer to the algorithm as the
Minimal Order Reduction Algorithm (MORA), which is listed below as algorithm [2| The
difference equations are always generated in two versions, top and bottom equations, with

the respective forms given by

La+1)+ Y p@L@)+ Y pL@) =0, Le My,

I]‘EJMZ I]Equb(MZ)
() ®) - (5.3)
Li(x — 1) + Z Dij (x)[](x) + Z Dij Ij(w) =0, I € Mg,
IjE]MZ Ijequb(Mz)

where My is the master basis of Z (with |Mz| = R) and sub(My) is the union of master
bases of subzones of Z. The structure of these equations is also depicted in figure The
sets of top and bottom equations contain equivalent information, but during the reduction
it is convenient to have both forms to be able to easily solve for integrals with both positive

and negative offsets of x.

Coupled difference equations of the form are produced by the MORA using the same
kind of input equations as Laporta’s algorithm, but the former is more elaborate than
the latter. This difference in complexity is mostly due to the fact that in the MORA the
choice of pivot integral for a given equation is more involved than simply picking the most
difficult integral according to the ordering relation. The basic ideas of the two algorithms

can be briefly summarised in terms of the pictorial representations of equations introduced

in figures and [5.3] as:

° Algorithm (Laporta’s algorithm): In each equation, move as many boxes as possible
as far to the right as possible, even if it increases the number of rows. Only decrease
the number of rows in a column when it does not influence columns to the left.
= For equations of integrals I;(x + k), reduce first in j, then in k.

e Algorithm [2 (MORA): In each equation, try to move as many boxes as possible to
as few adjacent rows as possible, even if it introduces new columns to the left. Only
move boxes from left to right when it does not increase the number of rows.

= For equations of integrals I;(x + k), reduce first in k, then in j.
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Starting from the same input, the coupled equations approach of the MORA often requires
slightly more steps to arrive at a fully reduced system than Laporta’s algorithm, but the

complexity of the coefficients scales significantly better, as I will show in section [5.3

k Ij(z + k)
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(c) | .
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Figure 5.3: Pictorial representation of fully reduced equations in the coupled form in the
style of figure[5.1] The decoupled version of these equations is depicted in figure[5.2] Pivot
integrals are indicated by a red box. (a)-(c) show 3 coupled top difference equations of
order 1, while (d) is one of the corresponding bottom equations. Equation (e) has order
(and span) 0 and the pivot integral is fully determined by simpler integrals.
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Switching to coupled difference equations also opens up an additional degree of freedom
which can be used to decrease the complexity of the rational coefficients further. By
modifying the ordering relation for integrals inside a zone Z, the master basis Mz can be
changed, which leads to a different, but equivalent set of difference equations. Since the
total number of integrals considered in a zone is typically much larger than the size of
the master basis, there are many possible choices for My, which can differ significantly in
complexity of coefficients. Due to the potentially vast number of possibilities, in practice
only a subset of bases are tested by reducing a system where the dimension d is replaced
by a number for simplicity and the quality of a basis is gauged by the degrees in = of the
coefficients (for details see section [8.1.5). While the master basis could of course also be
changed for decoupled equations, there is little room for improvement in exploiting this,

since here the basis usually consists of only a single integral.

In principle it would also be possible to consider arbitrary linear combinations of integrals
I; as elements of the master basis. One might even find something akin to the canonical
basis proposed by Henn [97] for differential equations, where the coefficients of the equa-
tions have a very simple structure in the dimensional regularisation parameter €. This has
not been pursued in the work of this thesis, because choosing good candidates for the lin-
ear combinations in an automated way is a highly complex problem and it was not needed
for the integrals considered here, but it is an interesting avenue for future improvement of

the approach.

An unfortunate consequence of working with coupled equations is the necessity to solve
several integrals simultaneously. While different zones can still be considered sequentially,
all integrals in a master basis Mz have to be expanded as factorial series at the same time.
This is not a fundamental problem, but it means that some additional work is required
after translating the difference equations to recurrence relations to make the latter suitable
for the iterative evaluation of the factorial series coefficients (see sect. @ Furthermore,
the fact that the number of integrals that need to be solved in this approach increases by
a factor | M| slows down the numerical evaluation of the integrals. In order to avoid these
negative aspects of coupled equations, one might be tempted to first reduce the full system
with the MORA to coupled equations and then only decouple the difference equations for
the master basis. Since the master basis is usually only a small part of all integrals that
need to be reduced, this would avoid the large coefficients in the decoupled equations for
most of the reduction. For simpler problems this strategy might prove effective, but for
the 5-loop tadpoles I have found that even when trying to only decouple the equations for
the master basis the rational algebra of the coefficients turns out to be too costly in terms
of computation time. An additional reason for choosing coupled equations over decoupled

ones is the ability to also reduce recurrence relations, which will be described in section [6}
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Algorithm 2 Minimal Order Reduction Algorithm (MORA)

Require:

w

®©

10.
11.

e An ordering relation for integrals I(x).

e A set U of previously unused equations of the form , generated from seed
integrals in zone Z.

e Tables for keeping track of top and bottom pivot equations (P;, F,) and their
respective spans (S;, Sp) for each index j assigned by the ordering relation, i.e.
P,[j] would be the top pivot equation for integral I; and S;[j] the span of this
equation.

e Sets of currently “benched* equations, one for top (B;), one for bottom (Bj),
initially empty.

e Pivot equations from previous runs, e.g. for subzones.

. If U is empty, stop. Otherwise pick the simplest equation () € U as the next equation

to consider and remove @ from U. Out of two equations, the more difficult one is
defined to be, in decreasing order of priority,
(a) the one with the most difficult integral,
(b) the one with the greatest leading span (the span of its most difficult integral),
(c) the one with the most terms,
(d) either one.

. Using P;[j], remove all integrals I;(z + k) from @ for indices j with span S;[j] = 0.

Determine the top offset k; and the span R of Q.

. For indices j =1,2,..., do:

(a) If @ has a non-trivial coefficient of I;(x + k¢), P;[j] exists and S;[j] < R, use an
appropriately z-shifted version of P;[j] to eliminate I;(x + k;) from Q.

. If @ is trivial (0 = 0), go to step 1. If @ is non-trivial, but the span of @ has

decreased in the last step, go to step 3.

.IfR>0:

(a) Make a copy Qp of Q which will serve as a bottom equation, while @ will be a
top equation.

(b) reduce_eq(Qy, bottom) (see subr.

(c) make_pivot(Qy, bottom) (see subr.

reduce_eq(Q, top) (see subr.
make_pivot(Q, top) (see subr.

. While B; or By contain equations:

(a) Pick and remove an equation @ from either B; or By.
(b) If @' came from By:
i. reduce_eq(Q’, top)
ii. If Q' is non-trivial: make_pivot(Q’, top)
Else:
i. reduce_eq(Q’, bottom)
ii. If Q" is non-trivial: make_pivot(Q’, bottom)
reduce_systen (see subr. [3)
Go to step 1.
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Subroutine 1 reduce_eq(equation @), mode m)

Require: Same as in algorithm [2 plus one input equation ) and a mode m, which can
be top (t) or bottom (b). In the following, top mode is assumed, but bottom mode is
analogous with the obvious exchanges of high/low, top/bottom... .

1. Determine the top offset k; and the span R of Q.
2. Determine the pivot index c as the smallest index with a non-zero coefficient of
I(x + k).
3. If P[c] exists, P;lc] # Q and Si[c] < R:
(a) Use an appropriately z-shifted version of P;[c] to eliminate I.(x + k) from Q.
(b) Go to step 1.
Otherwise I.(x + k) becomes the pivot integral of Q.
4. Determine the bottom offset k; and the span R of Q.
5. Check if it is possible to remove (using the bottom pivot equations Pp) all integrals
Ii(x + kp) with bottom offset from @ without
e introducing integrals I;(x + k;) with offset k& > K,
e introducing integrals I;(z + k¢) with top offset and j < ¢,
e removing the pivot integral I.(z + k;) from Q.
If this is possible, perform the necessary steps to do so and go back to step 4.
6. Forindex j=c+1,c+2,..., do:
(a) If @ has a non-zero coefficient for I;(x + k), P[j] exists and S¢[j] < R, use
P,[j] to eliminate I;(x + k) from Q.
7. For k = ky,ky+ 1,...,k — 1 (outer loop) and j = 1,2,... (inner loop), do:
(a) If k is the lowest offset of I; appearing in @, Py[j] exists and Sy[j] < ki — k, use
Py[t] to eliminate I;(x + k) from Q.

Subroutine 2 make_pivot(equation @, mode m)

Require: Same as in algorithm [2| plus one input equation ) and a mode m, which can
be top (t) or bottom (b). Let m then denote the opposite mode.
1. Determine the highest (if m = t) or lowest (m = b) offset k,, and span R of Q.
2. Determine the pivot index ¢ as the smallest index with a non-zero coefficient of
I(z+ k).
3. Divide @ by the coefficient of I.(xz + ky,) and shift @ in x such that the average of
the lowest and highest offset in @ is either 0 or £1/2 (4 for m = ¢, — for m = b).
4. If a pivot equation P,,[c] exists and P, [c] # Q, add Py,[c] to the set B,,.
. Set Pplc] = Q and Sp,[c] = R.
6. If R =0, also perform the previous two steps for Pg[c], Sy[c] and By,.

ot

Subroutine 3 reduce_system

Require: Same as in algorithm
1. For index 5 =1,2,..., do:
(a) If P,[j] exists, reduce_eq(P;[j], top) (see subr. [1).
(b) If P,[j] was changed in (a), make_pivot(F;[j], top) (see subr. [2).
2. Perform the equivalent steps for the bottom pivot equations P,.
3. If any pivot equations were changed in this iteration, go back to step 1.
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5.3 Comparison of reduction algorithms

The key differences of the MORA compared to Laporta’s algorithm are:

e The algorithm itself is more involved and often needs slightly more steps to reduce

a system of equations.

e The master basis Mz of a zone is larger and thus more integrals need to be expanded

as factorial series. The integrals in Mz now need to be solved simultaneously.

e Each integral in Mz now has two associated difference equations (top and bottom),

which hold redundant information.

e The rational coefficients in the coupled equations produced by the MORA are typi-

cally simpler than in the decoupled equations, especially in zones with high orders.
e By changing the master basis My the rational coefficients can be further simplified.

In the following I will quantify some of these points with examples and statistics of the
fully massive 5-loop tadpoles integrals. Table shows some statistics for the reduction to
difference equations of zone 30214#1 using the different algorithms. Having 7 propagators,
this zone is still fairly easy to reduce, since it only has 3 subzones. The order of the zone
is 7, concentrated in a single difference equation in the output of Laporta’s algorithm
and spread over 7 equations of order 1 in the output of the MORA. Due to the top and
bottom versions of equations with span > 0 the latter algorithm thus produces 7 additional
equations. The table furthermore shows that the complexity of the coefficients, measured
in size as a string and degrees in x and d, is significantly lower for coupled equations
than for decoupled equations, and even more so if an optimised master basis is used. Size
as a string is used as a measure because all rational algebra in my implementation of the
algorithms is performed by the external program Fermat |120] and internally all coefficients
are only stored as strings. Besides being important for memory consumption this size also
takes into account the integer contents of the coefficients in addition to the degrees in its

variables, which is an important factor for the speed of the rational algebra.

Another effect that can be seen from table is that “accidental” zeroes are more likely
to happen for coupled equations, which reduces the average number of coefficients per
equation compared to the maximum 8 in the zone (8 = R+ 1) plus another 7 in subzones
(7 = sum of orders of those zones) which can appear in a fully reduced equation. Even
though the coupled equations tend to have fewer coefficients, the MORA needs more steps
to reduce zone 30214#1 than Laporta’s algorithm. This is due to additional work to
produce both top and bottom equations and situations like the one depicted in figure
where reducing a single integral with offset 2 takes more steps with coupled than with
decoupled equations. Despite often needing more steps for the reduction, the MORA takes
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algorithm ;1%;3;25 #eqs. | (F#coefls.) | (size) | (deg,) | (deg,) | steps | runtime
LA no 214 7.94 354 | 5.02 5.50 | 15628 36s

MORA no 221 7.51 82 1.16 3.60 | 21825 18s
MORA+B no 221 7.10 52 1.54 2.13 | 20432 10s
LA yes 214 14.90 702 | 7.75 7.39 | 34085 84s
MORA yes 221 13.99 229 | 3.13 2.77 | 39605 30s
MORA-+B yes 221 12.81 65 1.89 2.50 | 36548 17s

Table 5.1: Statistics of the reduction to difference equations for zone 30214#1 (¢t = 7,
order 7) using different algorithms: Laporta’s algorithm (LA), MORA and MORA with
an optimised master basis (MORA+B). Except for the last two columns, all numbers are
for the final reduced system including all integrals up to r < rpax = 2 and s < spax = 2,
where denominators have been cleared to have polynomial coefficients. Shown here are
the number of equations in the zone, the average number of coefficients per equation, the
average size of coefficients written as a string and the average degrees of the coefficients
in x and d. The number of steps and runtime are for the reduction of the larger system
with Tmax = 2, Smax = 3.

up less computation time than Laporta’s algorithm. For this rather simple reduction it is
difficult to judge whether this is due mainly to the less complex rational algebra or the fact
that I have spent more time optimising the implementation of the former algorithm than

the one of the latter, even though many of the optimisations are used in both versions.

Table [5.2 lists the same kind of statistics as table [B.1] for several other zones with different
orders. It is obvious from these statistics that the performance benefit of coupled equa-
tions over decoupled equations grows with the difficulty of the reduction. While for zone
3085842 with order 2 Laporta’s algorithm actually produces better coefficients and runs
faster, its coefficients in zone 29703#3 with order 8 are roughly 100 times larger than those
of the MORA. As a result, the reduction using Laporta’s algorithm takes almost 2 days{l;r]7
while the reduction to coupled difference equations only needs about a minute starting
from the same input, where most of that minute is even spent on organising the reduction
rather than the rational algebra. These extreme differences in computation time can also
show up in zones like 31246#6, which do not have a particularly high order themselves, but
may have subzones with higher orders. While the orders of zones for the 5-loop tadpoles
reach up to 20, the highest order listed in table is 8. This is due to the fact that I was
not able to reduce zones with higher orders including subzones via Laporta’s algorithm

for comparison in a reasonable amount of time.

1 See section [8] for hardware configuration.
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Figure 5.4: Pictorial representation of the reduction of a single integral I7(x + 2) in an
equation (which might have additional integrals not shown here). (a) shows the reduction
using 3 coupled difference equations of order 1 for integrals I, I7, Is (compare with fig.
(a)-(c)), while (b) shows the reduction in a system with one decoupled difference equation
of order 3 for integral Is (compare with fig. . Dashed boxes represent integrals which
were eliminated from the previous picture, which means 4 elimination steps are necessary
to reduce the initial integral in the coupled system, while only 3 are needed in the decoupled
system. This difference in number of steps would be more pronounced for orders higher
than 3 or offsets greater than 2.
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| algorithm | #egs. | (#coeffs.) | (size) | (deg,) | (deg,) | steps [ runtime

Zone 28686#1: t =6, R = 4, 1 subzone

LA 108 5.84 314 6.04 5.45 9131 9s

MORA 112 5.89 175 4.25 4.67 10421 7s

MORA4+B | 112 5.71 92 2.92 3.18 10256 4s
Zone 30858#1: t =7, R = 4, 2 subzones

LA 131 7.89 483 7.44 6.81 18743 22s

MORA 135 7.81 241 4.39 5.10 19804 14s

MORA+B | 135 7.54 194 3.90 4.58 18671 9s

Zone 308584#2: t =7, R = 2, 4 subzones
LA 399 10.53 319 5.12 5.90 70541 43s
MORA 401 10.80 843 8.15 9.71 78348 68s
MORA+B | 401 10.70 584 6.70 8.15 75370 43s

Zone 29703#1: t =7, R =7, 3 subzones

LA 335 14 2347 | 11.18 | 13.74 | 40737 833s
MORA 342 13.42 218 4.29 5.28 48540 31s
MORA+B | 342 13.02 84 2.53 3.04 46253 25s
Zone 29703#3: t =7, R = 8, 4 subzones
LA 396 17.97 29351 | 33.54 | 31.59 | 61139 2.06d
MORA 404 17.44 401 5.63 6.51 59364 68s

MORA+B | 404 16.06 243 4.65 4.51 26277 48s

Zone 312464#6: t = 8, R = 5, 7 subzones

LA 359 30 5529 | 14.38 | 19.63 | 128828 | 0.97d
MORA 364 29.55 822 5.34 10.12 | 149340 133s
MORA+B | 364 29.18 302 4.38 5.42 | 143794 78s

Table 5.2: Statistics of the reduction to difference equations for several zones using different
algorithms: Laporta’s algorithm (LA), MORA and MORA with an optimised master basis
(MORA+B). Except for the last two columns, all numbers are for the final reduced system
including all integrals up to r < rpax = 2 and s < spax = 2 where denominators have
been cleared to have polynomial coefficients. Shown here are the number of equations in
the zone, the average number of coefficients per equations, the average size of coefficients
written as a string and the average degrees of the coefficients in x and d. The number of
steps and runtime are for the reduction of the larger system with rnax = 2, Smax = 3.
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Figure 5.5: Scaling of coupled vs. decoupled equations with the order R of the zone.
Shown here are ratios of average sizes as string and average x-degrees for homogeneous
equations with all subzone integrals set to zero.

A larger dataset was used for figure [5.5, where I compare the scaling of the coefficients
with the zone-order R in the two algorithms for all zones up to R = 10 that I was able
to reduce using Laporta’s algorithm. All subzones were set to zero in these reductions to
avoid their orders influencing the result and to be able to include reductions which would
have taken too long otherwise. The data shown in figure [5.5 includes all equations for
integrals up to parameters Spmax = Tmax = 2. It is obvious from the plot that the size of
coeflicients in coupled equations scales much better than in decoupled equations. Beyond
R = 8 this trend appears to be slightly unstable, but this is likely to be a statistical
coincidence, since there are very few zones per order for R = 9,10 which I could consider
in the plot (see table for a list of orders by zone).
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As a consequence of switching to coupled difference equations, all integrals in the master
basis of a given zone will also have coupled recurrence relations for the coefficients as of

their respective factorial series expansions. The general form of such a recurrence relation

is given by
k()
> D gin(s)ajerk =0, (6.1)
I k=kY)

where j is the index assigned to the integrals and thus the factorial series coefficients by
the ordering relation. When translating R coupled difference equations, one obtains R
linearly independent recurrence relations of this form, which may also depend on factorial
series coeflicients of master basis integrals of previously solved subzones. To iteratively
evaluate the a;, using these recurrence relations one would ideally like to have their
structure such that for each index j in the master basis, there is one equation such
that kﬁj ) > k:t(i)Vi # j. With this condition it is trivial to solve for each a.

j,s—i-k,gj
thus in one iteration step all a; s for different j but same s can be obtained independently

y and

from each other. In principle it is also possible to have a more general setup where one
iteration step calculates series coefficients a; sk, with a different offset k; for each integral
and potentially not simultaneously, but in a fixed order. In either case one might have to
build linear combinations of the initial recurrence relations obtained by translation from
difference equations in order to, for each j in the master basis, have one equation which
is solved for a; s1; without depending on any series coefficients that are not known prior
to ajstk;- In Laporta’s original decoupled setup this was not necessary, since only one

factorial series was evaluated at a time.

Building linear combinations such that for each index j there is one equation in which
the highest offset is only realised for j is exactly what the MORA does for difference
equations. Since the recurrence relations in eq. have the same structure as linear
equations between integrals (eq. ), the algorithm can be used as stated in section
[5.2] to also reduce the former, with the only differences being that integrals are replaced
with factorial series coefficients and the summation parameter s of the series now plays
the role of the exponent x. While in theory this should work nicely out of the box, in
practice it turns out that the reduction of the recurrence relations, if done naively, will
generally be tremendously slow. In section [6.1] I show that the translation process for
the reduced difference equations typically produces recurrence relations with very high
spans. These go hand in hand with large coefficients (as seen in sect. , which in turn
slow down the rational algebra in the reduction. The solution is to reduce the equations

for integrals to a form specifically tailored to yield better recurrence relations after the
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translation process, which I present in section As a consequence of this step one has
to reduce the system of factorial series coefficients of all integrals, not just the ones in the
master basis. This reduction of the a;, is then almost analogous to the one for integrals
I;(x) and is the subject of section The approach described here adds several steps
to Laporta’s initially straightforward setup, but results in recurrence relations with much
smaller spans and simpler rational coefficients, which can speed up the iterative evaluation

of the factorial series coefficients a; ; considerably.

6.1 Translation process

Recurrence relations between the a; s of the form are obtained by translating dif-
ference equations for the I;(x). Even though the translation process was already well
described by Milne-Thomson [114] and Laporta [1], I repeat it here in some detail to make
an important observation which is missing in those references. Instead of working with
the general solution of a difference equation, I already set the parameters 4 = 1 and
K = —d/2 to simplify the discussion of the translation, since these are the only solutions
that contribute for the massive tadpoles (see sect. or ref. [1]). The generalisation to
arbitrary pu and K is straightforward and is treated in section

As a starting point of the translation process Milne-Thomson [114] defines the operators

p and 7 by
p"I(z) = mj'(x —m), (6.2)
wl(x) =az(I(x) —I(x —1)). (6.3)

He then shows several properties of these operators, including

prL=p" = ré(fllf 1)
7l=0, (6.4)
(7, plI(z) = pI(x)
p(m)p™I(z) = p"'p(w + m)I(z) ,
zl(z) = (p+m)I(z),

where p is an arbitrary polynomial. Laporta [1] adds to this the convenient generalisation

al(z) =
k—

0

(i(—l)ﬂ'-’“ @ smn-ﬂ') PHI(w) (6.5)

J=k
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where the Sj;, are Stirling’s numbers of the second kind. Using the properties of the

p-operator, the factorial series for an integral can be rewritten as

$+1 d/2—s
Z YTz +d/2+s+1) Zafsp ‘ (6.6)

Any linear equation for integrals Ij(x) can be shifted in « and multiplied by its denomi-
nators to be of the form

Zz%k (z—k)=0, (6.7)

7 k=0
where the g;, are now polynomials in # and d and R is the span of the equation. From
the properties in eq. (6.4)) it follows that (x — k +1)---2I(z — k) = p*I(x) and thus after
multiplying the equation by (x — R+ 1) -- -z one obtains

R—1
> Z gjn(x (Hk x — n)) P Li(x)=0. (6.8)

7 k=0

Inserting eq. and z = p + 7 then yields

R R—1 [eS)
YD airlp+m) (H (p+m— n)) P> a4 p P =0. (6.9)
s=0

j k=0 n=~k

By using the commutator in eq. (6.4), or alternatively eq. (6.5) before replacing z, all

occurrences of 7 can be shifted to the left of p to obtain

R 00
DD Fin(mpt Y ajp =0, (6.10)
s=0

j k=0

where the f;; are some polynomials in 7 and d. The parameter R’ is bounded by the
upper limit
R <R+N, (6.11)

where
N = max(deg,(q;k(2))) (6.12)

Jik
is the maximum degree in x of the coefficients in the input equation. After shifting s — s+k
and once more using the properties of eq. to move the polynomials f to the right of
p one finds
R
YD e PP f(w —d/2—5) = 0. (6.13)

j k=0s=—k
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Because 7 only acts on unity at this point, it can be dropped to obtain

00 R’
ST NN g fin(—dj2 — s) = 0 (6.14)

s——R! j k=0

with the additional understanding that ajs = 0 for s < 0. Since each power in p has to

vanish independently for this equation to hold for arbitrary x, one can finally extract

”
> ajsirfin(—d/2—5)=0 (6.15)

j k=0

as the recurrence relation for the a; corresponding to the input equation (6.7). Every
step in the translation process described here is reversible, which means there is a duality
between the difference equations and the recurrence relations, but the reverse translation

is not needed in this thesis.

The crucial new observation regarding the translation process is that the span R’ of the

resulting recurrence relation is bounded by
N<R <N+R, (6.16)

where NN is the maximum degree in x of the input equation. The upper bound was already
found in eq. , so I will in the following prove the lower bound. Without loss of
generality I drop the index j everywhere during the proof and consider equations for a
single integral I(z) or its factorial series coefficients as. The span R’ is then defined as the
difference of the highest and lowest number k in the sequence 0,1,..., N+ R—1,N + R
for which the polynomials f; in eq. do not vanish. Since of all the coefficients g ()
in the input equation only ¢y contributes to fo and gg # 0 by definition, one finds that

fo # 0 is always the first non-vanishing polynomial in this list.

To find a bound for the last non-vanishing f, it is sufficient to consider their highest order

in s. The s-degree of the f is limited by
deg,(fe(=d/2—s)) <N+ R—k (6.17)

and for each fi the maximal degree in s only receives contributions from terms of order

zV in eq. . It therefore suffices to consider a simplified input equation

N ER: ql(z—k)=0 (6.18)
k=0

with constant ¢, and, after going through the translation process, find that the coefficient
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of the term with the highest possible order in s of fi(—d/2 — s) is given by

N+R—k
95

=Ny R=H)

fi = (=1)NFEE i (N - 2) g , (6.19)

i=0 k—i

. 0 a\
Wlthas:%and <b>:0f0rb<0.

Since the (N + R + 1) x (R + 1)-matrix M defined by My; = (V/%77) has rank R + 1
for any R and N, at most R of the fk can be made to vanish without setting all ¢; to
zero and thus rendering the input equation trivial. Hence at least one of the polynomials

fN,-.. fN+R does not vanish and therefore R* > N, which completes the proof.

This result is a disaster for the reduction of recurrence relations, since it means that the
span of the output equations of the translation process is bounded by the z-degree and
not just the span of the input equations. If one were to take an input equation  and
multiply it by x before the translation, the resulting recurrence relation would have a
span which is higher by one than that of the direct translation of ). In this sense every
power of x in the input equations leads to a loss of information during the translation,
some (but not necessary all) of which might be recovered by linear combinations of the
recurrence relations. Since the translation requires all coefficients of the input equations
to be polynomial in z, one has to multiply with every denominator that occurs, whether
in the zone of the difference equation itself or in subzones. This can lead to rather high
degrees in x. Even for coupled difference equations some of the more difficult zones for the
5-loop tadpoles have orders between 10-20 and equations with xz-degree N ~ 40. Trying
to reduce a system of 10 recurrence relations with span 40 is bound to fail due to the
complexity of the coefficients, which even before the reduction have up to degree N + R
in s (see eq. ) For decoupled equations with their significantly higher degrees in
x the recurrence relations are even more complicated. While they would not need to be
reduced, this would still slow down the iterative evaluation of the factorial series coefficients
considerably. To avoid these problems, one should clearly try to not only minimise the

span R, but also the z-degree N of the input equations to the translation process.
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6.2 Optimising input equations

If one wants to perform a full reduction of the recurrence relations including the factorial
series coefficients of all integrals, it is crucial to start with a system of recurrence relations
where no information is missing. As in the reduction to difference equations and the
reduction to (ordinary) master integrals, missing information will manifest itself in the form
of spurious zeroes, which can appear with arbitrarily large coefficients. If this happens,
reducing the system often becomes infeasible. It is thus important to find ideal input
equations for the translation process to recurrence relations, so that no information is lost.
As seen in the previous section, this requires minimising both span and z-degree N of the

input equations.

A natural first attempt is to simply use the initial equations of the reduction to difference
equations as input for the translation process. All equations for integrals I;(z) generated by
the methods described in section [2.3|are at most linear in x and the most important method
(IBP) produces equations with span R < 2. It turns out, however, that (N < 1, R < 2)
is not sufficient to prevent loss of information. If one simply translates the initial integral
equations, the resulting system of recurrence relations generally still contains numerous
spurious zeroes which prevent a reduction of the system. I have therefore developed a
modified version of the MORA, which also tries to minimise the span of all equations, but
keeps N < 1 everywhere at all times during the reduction. Since this restriction renders
the algorithm considerably more complicated and lengthy than the MORA, I will not show

it here in full detail, but instead present its core ideas, which are listed in algorithm

The output of algorithm (3| consists of many equations with (R, N) = (0,0) and some with
(R,N)=(0,1), (1,0) or (1,1). The (0,0)-equations are particularly valuable, since they
do not change at all during the translation process and thus have the same form and
coefficients in the spaces of difference equations and recurrence relations. There are two
steps which improve the quality of the output of algorithm [3] further. At the moment
these are performed after the algorithm, but in future work I aim to incorporate them into
the reduction itself to improve performance. The first of the two steps is simply to take
the z-dependent equations and eliminate x from as many coeflficients as possible. This is

meant to deal with situations similar to

(6.20)

where algorithm |3 would not find the x—independen@ equation I;(z) — Iz(z) = 0, since

I; and I> would be the respective pivot integrals of the two equations. The z-independent

12T this context z-independent means N = 0.
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Algorithm 3 Reduction algorithm with NV < 1 based on MORA.

Require:

e An ordering relation for integrals I(x).
e A set U of previously unused equations of the form , with all coefficients at
most linear in z.
e Tables for keeping track of 6 different kinds of pivot equations:
— P, for top pivot equations with all coefficients independent of x.
— PF for top pivot equations where the pivot coeflicient is linear in x.
— P¥¢ for top pivot equations where the pivot coefficient is independent of =z,
but at least one other coefficient is not.
— By, P’ and Py for the equivalent bottom pivot equations.
Additionally, tables S;, SF, Sf, Sy, Sy and S} for keeping track of the spans of
the pivot equations. This means that e.g. Pf[j] would be a top pivot equation
for I;(x) with span Sf[j], which depends on x in some coefficients, but not in the
pivot coefficient.
e Sets of currently “benched“ equations, one for top (B;), one for bottom (By),
initially empty.
e Pivot equations from previous runs, e.g. for subzones.

The algorithm itself is then based on the MORA (algorithm [2)), with several modifications:

Any step which increases the x-degree N of an equation or introduces denominators
containing x is forbidden. This also means that z-independent eqs. can be used to
remove integrals from z-dependent eqs., but not vice versa.

e All z-independent equations are reduced before the z-dependent equations.
e The pivot integral of an equation is still chosen in the same way for all equations.

For P, Pf, P, and P an equation is normalised such that the pivot coefficient is 1,
for P and Py such that the pivot coefficient is x + const.

Whenever an equation is registered as a pivot equation, it is checked whether its
x-dependence can be factored out completely and thus be dropped.

x-dependent equations are first reduced by z-independent equations, then by other
z-dependent equations. P and Py are used to remove the linear parts of coefficients,
Pf and Py to remove the constant parts.

equations found in this way are then added to the system and reduced by algorithm

The second way to obtain additional xz-independent equations is to build linear combina-

tions of z-dependent equations such that all coefficients in an equation are proportional

to £ — «, where a can be a rational function of d. A simple example of this where a = +1

would be

Ii(z) + xla(x) + (z + 1)I3(x)

0 (6.21)
xl(z) + I2(x) + (z + 1)I3(x) =0,

which algorithm [3] would not reduce further, but is in fact equivalent to
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Li(z)+ I3(x) =0,

(6.22)
In(z) + Is(x) = 0.

In general finding suitable linear combinations for this second step is considerably more
difficult than the first step, since a priori the values for « for which this is possible are
not known and one would thus have to solve a non-linear system of equations. To express
this problem in a simpler way, I rewrite the system of z-dependent equations as a matrix
equation M (x) - I = 0, where I is a vector of all integrals I;(z + k) that appear in those
equations and each row of the matrix M (z) contains the coefficients of one equation of the
SystemE M (x) will be an m x n matrix with m < n of the form

M(z) = My + xM; (6.23)

where the previous step guarantees that M; has rank m. Whether an z-independent
equation can be constructed as described above is equivalent to whether non-trivial z-

independent vectors u, v exist such that for some « one has

MT(z) u=(x—aw. (6.24)
Rewriting this condition as M{ -u = —av, M{ - u = v one finds
MT(a) - u=0. (6.25)

The possible values of « are thus those for which M7 (a) has a non-trivial kernel, i.e.
M () does not have full rank. To find these values, it is sufficient to bring M («) into row
echelon form with pivot entries 1 for each row. Since M; has full rank, no row will become
trivial in this process and thus the only values « for which M («) could have less than full
rank are the roots of the denominators in the row echelon form. For each of these roots
eq. turns into a system of linear equations which can be solved to see if a non-trivial
z-independent equation arises. Any additional equations found in this way are then also
reduced by algorithm

Using algorithm |3 in combination with these two steps yields a system of equations which
is well suited for the translation process. On average, equations with (R, N) = (0,0) are
found for more than 90% of all integrals. For the remaining integrals one finds sufficiently
many equations with (R, N) = (1,0), (0,1) or (1,1) to be able to reduce the system of

recurrence relations after the translation process.

131 is sufficient to only consider top equations, since the bottom equations are equivalent. To account
for the possibility of z-shifts, equations with span 0 will be entered with both offset 0 and offset 1 to cover
the same integrals as top eqs. with span 1.
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6.3 Reducing recurrence relations

Once the integral equations with minimised R and N have been translated to recurrence
relations, the latter can be reduced with the MORA. In analogy with the reduction to
difference equations, for a given zone Z this will yield top and bottom equations of the

form

Gsrit Y 00 Gas+ D g (e =0, a €My,

J J
a;eEM/, ajEsub(M7,)
®) ») B . (6.26)
Gjs—1 + Z 9ij (s)ajs + Z 9ij (s)ajs =0, a; € My,
J J
ajeM?, a;€sub(M?,)

where M7, is the master basis of the factorial series coefficients. All a; ¢ M, will be
expressed in terms of coefficients in M/, and sub(M7) by recurrence relations of order 0.
In general M7, is not simply the set of factorial series coefficients of the integral master
basis Mz. For many zones the orders R = |My| and R’ = |M/,| are identical, but the two
master bases do not necessarily contain matching sets of integrals and series coefficients.
In several other zones one finds R > R, and thus the reduction of recurrence relations
is usually more difficult than the reduction of difference equations. For the 5-loop fully
massive tadpoles the maximum order of a zone for recurrence relations is 28, compared to
order 20 for the difference equations. A full list of orders is given in table B.7 It is also
possible to have R’ < R as in zone 32266#1, where R = 6 and R’ = 5, but this is the case

only for very few zones.

For difference equations the main advantage of a minimal order reduction over a reduction
to decoupled equations is that equations with lower spans contain considerably simpler
rational coefficients. The same holds true for recurrence relations and one can once again
choose the master basis M7, in a way that optimises the complexity of these coefficients.
There is however also an additional advantage of the new method for recurrence relations
beyond the advantages also found for difference equations. Laporta’s original method
translated a single difference equation in a zone Z with order R to a single recurrence
relation with order R . By reducing the full set of recurrence relations as described above
one often finds that the zone actually has an order R’ for the recurrence relations which
is lower than R’ . The simplest example for this is the 2-loop sunset zone 7#1. This zone

has an order 2 difference equation

—2x+d-3 —x+d—2
spr3 et
(—2d + 4)z + d? — 2d
6x(x + 1)

Il (CC + 2) +
(6.27)
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which was already seen in section where I1(z) = I(z,1,1) is the sunset integral and
Iy(x) = I(x,1,0) is in the 1-loop squared subzone 6#1. Translating this difference equation

yields the recurrence relation

—(2s + d + 4)(22s + 5d + 56)
16s + 56
(2s+d+2)(2s+d+4)(10s + 4d + 17)
+
165 + 56
—3(2s+d)(2s +d+2)*(2s+d+4)
64s + 224

a1,s+3 + 1,542

a1 (6.28)

a1,s + subzone = 0

with order 3. By translating integral equations with minimised R and N and reducing
the results, one finds that the zone actually only has order 2 for the recurrence relations,

which can be decoupled to

—(2s+d+2)(14s + 5d + 22)
as+2 + al,s+1
16s 4 40 (6.29)
3(2s +d) (25 +d+2)? '

325 + 80 a1,s +subzone = 0 .

This recurrence relation will of course produce the same values for the a; s as the one with
order 3, but since it has less terms (and simpler coefficients), the numeric evaluation will

be faster.

In this example the higher order in Laporta’s approach can be traced back to the denomi-
nator of the subzone integral in the difference equation . This denominator carries a
factor of = which is not present in the other denominators, but which the whole equation
has to be multiplied with to have polynomial coefficients for the translation process. This
increases the x-degree of the coeflicients in zone 7#1 and thus the order of the resulting
recurrence relation. If the subzone integral is set to zero before the translation, one finds
the same order 2 recurrence relation as with the new method, but without the subzone
information. The difference between R’ and R/, grows larger for more difficult zones, which
generally have a lot more subzones that can contain different denominators. While sub-
zone denominators are the main cause of this difference, it can also appear independent
of them. An example for this is the 4-loop zone 95241 which has a difference equation
with order 2 that translates into an order R} = 5 recurrence relation when all subzone

integrals are set to zero, while the full reduction of recurrence relations reveals R’ = 4.

There is one other method to avoid spurious zeroes in the reduction of the recurrence
relations besides reducing R and N of the input equations as described in section [6.2}
By redefining integrals as [}(x) = I;(x + k;) for some offsets k; and expanding the I} as
factorial series instead of the I; the series coefficients a;, and therefore the recurrence

relations are changed. The introduction of the offsets k; can make a difference in the
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translation process, since integrals with different offsets are translated differently. As an
example, consider an integral equation with span 1. The equation would be multiplied with
x during the translation to use zI(x — 1) = pI(z) to unify the arguments of the integrals.
The term pI(z) would then in the end contribute to a single term in the recurrence relation
since it is of uniform degree in p. Starting from zI(x) = (p+ m)I(z) however would yield
contributions to the factors of both as; and asy; and might thus increase the span of
the recurrence relation for this factorial series coefficient. There are several choices for
the offsets k; for which this difference during the translation leads to significantly fewer
spurious zeroes in the recurrence relation when translating IBP-relations directly, without
first reducing them using algorithm One such choice is to define the k; such that all
I ]’ (z) have the same mass dimension. While this method provides a conceptually simpler
way to avoid spurious zeroes than algorithm [3] I have found that, at least for the 5-loop
tadpoles, it produces difference equations and recurrence relations with more complicated
rational coefficients. Furthermore it is unclear whether this heuristically found decrease
in spurious zeroes is guaranteed to occur for all zones. For these reasons I have chosen

algorithm [3] over this option.
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7 Evaluation via factorial series

The top recurrence relations in eqgs. are ideally suited for the iterative evaluation of
the factorial series coefficients. For each s all a; s with aj € M}, can be calculated simul-
taneously from the a; s—1, which makes it easy to parallelise the computation. Whenever
the pivot coefficient of a recurrence relation vanishes for a particular value of s, the corre-
sponding series coefficient a;, is needed as an initial condition for the iteration (see sect.
. For coupled recurrence relations of order 1 this typically only happens for s = 0. The
top recurrence relations can then be used to obtain all a; s from s = 1 to syax for a; in the
master basis M/, of a given zone as e-expansions around the chosen dimension. The finite
sums up to smax over the factorial series in eq. are then performed for £ = . and
yield the I;(max) corresponding to M7,. If the set of integrals obtained in this way is not
the master basis M, values for the latter can be derived from the former using integral
equations with span 0. Using the bottom difference equations in the argument = in
the integrals of M is then pushed down from x,,x to 1 in the same iterative manner as

s was increased for the a;; with the recurrence relations.

In the following I discuss several aspects of the above described process in greater detail.
Section [7-2] covers the general solution of difference equations in terms of factorial series
and how the allowed values for the parameters p and K in egs. and are obtained.
The starting point of the process is then the determination of the initial conditions, which
is described in section Afterwards I discuss convergence and numerical errors for
the iterative application of both recurrence relations and difference equations (sect. [7.4]),

before making some remarks on possible issues that can arise in practice (sect. [7.5)).
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7.1 Interlude: Fibonacci numbers

A very simple example of linear recurrence relations defines the well-known sequence of

Fibonacci numbers f,, n € N. They satisfy the condition

fn+2 :fn+fn+1 (71)

with the initial conditions fy = 0 and f; = 1. The first few terms in the sequence are
thus 0,1,1,2,3,5,8,.... Equation has a much simpler structure than the difference
equations for integrals or recurrence relations for factorial series coefficients encountered
in this thesis, since it has no inhomogeneous (independent of f,,) terms and the coefficients
of the f,1x do not depend on n. Nevertheless it is instructive to study the solution of
this simple recurrence relation, as much of the structure of the solution carries over to the

more difficult cases.

By defining the operator ji, via
fitr-fn = fnt1 (7.2)

the Fibonacci recurrence relation can be rewritten as
p) fo = (A% = e = 1) fo = (s — ) (As — p2) fn =0, (7.3)
where p(ji4) is called the characteristic polynomial and its roots are

_ 1445 1-5

2 y M2 = 2

p1 (7.4)

From the factorised form it is easy to identify the two independent solutions of the recur-

rence relation as p} and pf and thus the general solution is

fo=c1pi +copg (7.5)

The coefficients ¢; and ¢y have to be determined from the initial conditions, which for the

Fibonacci numbers yields
pr — py
= ) 7.6
=" (76)
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7.2 The general solution

The general solution of a difference equation of order R for a single integral I(z) in terms

of factorial series has the form |1 [114]

@) =S > et D m (7.7
— mszol“(x+s—Km+1) 8

This is a sum of the solution of inhomogeneous difference equation and up to R solutions of

the homogeneous difference equation where subzones are set to zero. The possible values

for 4 and K for the homogeneous solutions are determined by the recurrence relations,

while the values for the inhomogeneous solutions are simply those which already appear

in subzones.

For the fully massive tadpoles with mass m? = 1 Laporta [1] has shown that only solutions
with g = 1/m? =1 and K = —d/2 contribute to the general solution (see also sect. ,
which is why those values are already assumed in the description of the translation process
in section Nevertheless the other possible values for ;1 in the homogeneous solution
play an important role for the numerical error in the determination of the factorial series
coefficients and integrals (see sect. . In the following I therefore describe how the
i are determined for a difference equation of a single integral |1, 114] and show that
these values do not change if one switches to coupled difference equations and recurrence

relations.

Starting from a homogeneous difference equation

R
> (@) (z — k) =0 (78)
k=0
the parameter p is introduced before the translation by replacing
I(z) = p*I(x) (7.9)

or equivalently g, — pu**gi. The recurrence relation then takes the form
N+R

Z fk(K - Salu)as-i-k =0 ) (710)
k=0

where the polynomials fr now depend on i and K, and N is once again the z-degree of the
input equation. The terms f; with the highest possible s-degree in the f (see eq. (6.19))



7.2 The general solution 73

are given by

R . ‘
Fe(p) = (=N TERSH <N Zi Z) G, (7.11)
1=0

where the §; are the coefficients of 2"V in the ¢;(x) and the fk do not depend on K. Of

particular interest is the characteristic polynomial of the difference equation, defined by

-M?’U
E)
T

I
=)

p(1) = fnir(K — s,p1) = fnir(p) = (7.12)

(2
since in the recurrence relation (7.10) p(u) is the coefficient of the ags with the highest

offset. Due to as<9 = 0 one finds

p(w)ao =0, p(p)ar xag, ... (7.13)

and thus p(x) must vanish in order to have non-zero factorial series coefficients. Therefore
the roots i1, . .., pp, of the characteristic polynomial with n = deg,,(p(12)) < R are the only
allowed values for y in the homogeneous solutions. This is in analogy with the example of
the Fibonacci numbers in section [7.I] The only difference is that unlike for the Fibonacci
recurrence relation the coefficients for the difference equations of integrals may depend on
x and the characteristic polynomial is only determined by the large-x behaviour of the

difference equation and not its full coefficients.

Upon choosing pt = i, the order of the recurrence relations is reduced and a different
coefficient fx, (K — s, i) becomes the top coefficient. The first iteration of the recurrence

relation would then be
fkm (K + km - S, Mm)’s:OaO =0 (714)

and thus the roots K %m), ... of fi, (K + km, pm) are the only values for K which lead to
a non-vanishing homogeneous solution in conjunction with pu,,. If two roots Ki(m), K J(-m)
differ by an integer z, their corresponding factorial series can be merged by picking the
greater root as K and requiring both a¢ and a, as initial conditions, since both will be
undetermined from the recurrence relations. The original suggestion of Laporta [1] for
this case was to evaluate a factorial series each for both K and to set a, = 0 in the series
of the greater root. This gives equivalent results, but it is nicer to avoid evaluating two
series instead of one. The only time where it might be beneficial to follow this suggestion

is when determining a, as an initial condition proves to be too difficult for large z (see
sect. [7.3)).

When switching from a single difference equation to coupled difference equations, it is
trivial to show that the allowed values for p are the same for all integrals in the master basis

My. If I.(x) is the integral for which Laporta’s algorithm found a decoupled difference



74 7 Evaluation via factorial series

equation of order R, then the reduction will also contain equations solving the other

integrals in the master basis in terms of I. in the form
+Zp]k I(x+k)=0,j#c, ;€ My. (7.15)

Since the I; are simply linear combinations of I, with different offsets and the coupled
and decoupled forms of the system of equations are equivalent, the general solution of the
coupled difference equations has the same values for u as the decoupled difference equation
for all integrals. Due to the different offsets in eq. the allowed values of K might
change by integers, but as seen above this is merely a question of finding different initial

conditions.

If the decoupled difference equation is not known, the roots p; of the characteristic poly-
nomial can also be obtained directly from the coupled difference equations. As in the
decoupled case, for each equation only the terms with the highest x-degree contribute to
p(p). The R difference equations of span 1 can always be combined such that after drop-
ping all terms except those with the highest degrees, the combinations are still linearly

independent and can be written as

R 1
xNiZZ rli(r—k)=0, i=1,...,R. (7.16)
j: :
By decoupling these equations explicitly, one finds that

p(p) = const - det A(p) ,  Aij(p) = pdijo + Gija - (7.17)

Alternatively, egs. ([7.16) can be translated to recurrence relations, where the polynomials
with the highest offsets of the equation are then given by

fiinia1 (K = s, 10) = fijne1 (1) = pdijo + Gija = Aij(p)  (compare eq. (7-12)). (7.18)

The recurrence would thus start at s = 0 with
> Aij(majo =0 Vi (7.19)
j=1

and one again obtains the condition det A(x) = 0 to have non-zero homogeneous solutions

of the difference equations.
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7.3 Initial conditions

In reference [1] Laporta shows how to obtain the first factorial series coefficients ag, a1,
..for several classes of integrals by examining their large-z behaviour. For the fully
massive tadpoles considered in this thesis only the Euclidean massive case discussed in

section 5.1 of [1] is relevant and I briefly summarise it here.

Given a fully massive Feynman integral I(x), the loop momenta can always be shifted
such that the propagator carrying the exponent x has momentum k,. After separating the

radial part of the kj-integration, I(z) can be written as

1 00 dk‘2(k}2)d/2_1
I(z) = / 1 k?) 7.20
where f (k:%) is the angular mean over ki of the ko, ..., kr-integration over the remaining

propagators. Since all propagators are massive and there are no external momenta, the
integrand has no singularities for k? > 0. For large z the integral is thus dominated by

the peak of the first propagator at k3 = 0. After expanding f(k?) as
e @]
D= fki® (7.21)
s=0
and changing variables via k3 = m%ﬁ with dk? = dum?(1 —u)~2 it can be expressed as
U oo
f(m%f) = (1 —u)¥/?H! > bout . (7.22)
u s=0
Inserting this into the integral yields

I(x)— D x/ duu®?1( Zb u® = (1)9:5: (z+1) (7.23)
Fd/2 2 570F$+s+d/2+1)

which is a factorial series with coefficients

(s +d/2)
I'(d/2)

Comparison with the general solution (7.7)) of the difference equation shows that for the

= bym (7.24)

fully massive tadpoles only solutions with 4 = 1/m? = 1 and K = —d/2 can contribute.
The factorial series coefficients as can be calculated in terms of the fs in eq. (7.21)) with as
depending on fo, f1,..., fs. The coefficients f; are in turn obtained by expanding f(k?),
which means each fs will be a sum of integrals independent of x and k; and have one loop

less than I(x). These integrals have to be moved into a classification scheme for L —1 loop
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integrals as defined in section by applying suitable momentum shifts. Afterwards they
can be expressed in terms of the master integrals at that loop level, which are assumed to

already be known.

While in theory all terms as of the factorial series could be calculated in this way, in
practice only the first few terms can be obtained. If f(k?) has a kj-dependence in the
s)

denominator, the number of dots r in the integrals I J( in fs grows with the expansion
parametex@ s. Since the number of integrals in a reduction increases significantly with
the number of dots (see eq. ), expressing the I j(s) in terms of master integrals is only
feasible for small s. When using decoupled equations, this can potentially cause problems
if some as is undetermined from the recurrence relations. In this case more than one
factorial series might need to be evaluated for the general solution in eq. (see sect.
. For all coupled recurrence relations of order 1 used in this thesis it was sufficient to

determine only the first coefficient a;o for each integral as the initial condition.

In principle it should be possible to reduce the number of a;, that need to be obtained
as initial conditions by finding linear relations between them that do not depend on s.
This would reduce the a; to some master coefficients, much like reducing z-independent
integrals to master integrals. I have not tested this idea, since it is not needed for the
fully massive tadpoles if using coupled recurrence relations, but it might prove useful for
decoupled recurrence relations or more difficult classes of integrals, where obtaining the
initial conditions is more involved [1]. To generate non-trivial equations between the a; g, I
suggest expanding the factorial series and difference equations in 1/x. The integrals would

then be written as

Z F(z+1)
T +s—K+1)

Kz LIy (5

i=1n=0

_ T(:L" +1) i hji(aj0: aj, - - ajp)
Mz+K+1) = ! '

) (7.25)

Integrals with non-zero offsets can be expanded into the same form. When inserting this
into a difference equation, the I'-functions can be dropped, since they are identical for
all integrals. The whole equation can then be expanded in 1/z and each order should
yield a relation between the factorial series coefficients. In particular, the first order 1/°
gives an equation only involving the a;o. If the equation is not trivial, it clearly contains
information which cannot be obtained from the recurrence relations for the master basis

M, since they all have spans greater than 0.

Here s is not to be confused with the number of numerator powers defined in eq. (2.6)).
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7.4 Precision and convergence

Whether a factorial series

> asI'(x+1)
2 Tars—K+1) (7.26)

converges depends on the large-s behaviour of the a;. In analogy with the difference

equations, the general solution of a recurrence relation has the form
as =Y Nal’, (7.27)
i

where the ); are the roots of the characteristic polynomial p’()) of the recurrence relation.
Unlike in the case of difference equations, the s-degree of coefficients in the recurrence
relations decreases with larger offsets (see eq. (6.17)) and thus for large s the solutions
of the recurrence relations grow like a factorial. To study the large-s behaviour in more
detail the homogeneous part of a (decoupled) recurrence relation can be written as

4 1
> (aks + B+ 0O <S)> s Fag,=0. (7.28)

k=0

The characteristic polynomial is then defined as

R/
P =" Ak (7.29)
k=0

For large s the solutions of the homogeneous recurrence relation tend to the form

agi) ~ AT (s + 0+ 1) ~ ciA\isls

k
(4) k| k N k-1 i
a5+k~/\i (S +]§:1(0'z+j)8 +) ag) (730)
~ Nigh=t (3 + ko; + k(k;_l) +0 (i)) agi) ,

where ¢; is a constant and o; can be determined by inserting this ansatz into the recurrence

relation, which yields

Dy (k(kgl)ak + ﬁk) AF

g; = 7] 7.31
S ko AF (7:31)

With eq. (7.30) the generic term of the factorial series tends to
el (m + A7t (7.32)

MNz+s—K+1)
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For |A;] < 1 the series thus converges exponentially, but if a solution with |\;| > 1 con-
tributes to the integral, the corresponding factorial series diverges and the method breaks
down. For the fully massive tadpole integrals only solutions with A = 1 can contribute,
since no exponential dependence on s appears in the exact solution for the ay in eq. .

In this case the series shares the convergence behaviour with the Dirichlet series
oo
Z gesTit i (7.33)
s=0

with bounded gs. The series thus converges on a complex half-plane bounded on the left
by the line of convergence defined by Re(z) = 7, where n > o; + K + 1 is called the
abscissa of convergence. The solution of the inhomogeneous recurrence relation might
have stronger constraints on the abscissa of convergence, but will still have A = 1 as the
the inhomogeneous parts of the equation originate in the same class of integrals. The
parameter Tmax for which the factorial series is evaluated must thus be chosen such that
Tmax > 1), but larger xna.x will accelerate the convergence. As a result of the limitation to
A =1, all factorial series for massive tadpoles converge for appropriately chosen pax. 1
expect that this limitation and thus the convergence of the factorial series also holds for
many other classes of integrals, but a general proof would be cumbersome. I do however
prove below that A = 1 is always a root of the characteristic polynomial of the recurrence

relation corresponding to any non-trivial difference equation.

Even though for the fully massive tadpoles only the roots © = 1 and A = 1 of the respective
characteristic polynomials of difference equation and recurrence relation may contribute
to the analytical solution, the remaining roots still play an important role in the numerical
evaluation. This can be illustrated nicely in the simple example of the Fibonacci recurrence
relation (see sect. [7.1]), which has the roots

1++/5 1
2 ) H2 = 2

=

M1 = (7.34)

If the initial conditions for the recurrence relation are chosen as fo = 1, fi = us, the

analytical solution to all orders is simply

fon=nz . (7.35)

If however a small numerical error is introduced, e.g. fo =1, fi = po + 107104, the ;-
branch of the general solution will quickly dominate the numerical results, since it grows

faster due to |ui| > |p2|, and one would find

n—oo

fn =~ 1071047 (7.36)
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The numerical evaluation thus favours the larger root in the limit n — oo, even though the
initial conditions are almost the same as those for which the exact solution only contains

the smaller root pa.

During the iteration of difference equations and recurrence relations for integrals the same
problem occurs. For simplicity I restrict the discussion to fully decoupled equations, but
the behaviour is identical in the coupled case. The general solution of a difference equation
with order R is given in eq. in terms of solutions u*I™)(x), where each 1™ (z) is
expanded as a factorial series. Since any numerical value for a particular solution I(™) ()
always contains a small error, the numerical sequence {I™ (z), 1™ (2 4 1),..., 10" (z +
R—1)} is a linear combination of the exact sequences {I® (z), I (z+1),..., 19 (z+R—1)}
in the space of all solutions of the difference equation. The numerical sequence thus in
general has (preferably small) contributions from solutions with i # m. When using the
difference equation to calculate (™) (x — 1) from this sequence, the contributions from
other solutions will scale with different values of x than the exact solution for 1™ (z).
The numerical error when pushing down the value of & with the difference equation thus

grows by a factor
Hm

FI(Dm) = max I
1

1

(7.37)

in each iteration. In the following I therefore refer to FI(Dm) as a push-down divergence

factor. Analogously, there is also a recurrence divergence factor

_ Hm

FI(%m) = max |\;| = max ¢ 1, max
? i M — Mg

, (7.38)
KiF fm

which is the factor by which the numerical error in the factorial series coefficients agm) Srows

in each iteration of the recurrence relation. Here the \; are the roots of the characteristic
polynomial of the recurrence relation that is obtained by setting u = w,, and it is already

assumed that only the root A = 1 contributes to the exact solution.

Laporta states in 1] that the factorial series corresponding to p = p,, with coefficients

agm) has a finite abscissa of convergence 7 if none of the roots u; satisfy the condition

04“4d,m#w, (7.39)
Hm

which is equivalent to Fém) = 1. While this is technically true, it is also misleading. The
)

abscissa of convergence does not depend on F]‘,(%m , which only plays a role for numerical

values. Furthermore, the implication that the series does not converge for F I(%m) > 1
is incorrect. A more accurate statement is that for F' ](%m) > 1 the error in a numerical

evaluation of the coefficients will diverge and start to dominate the values of agm) for some
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S = Sgiv- As long as the upper limit sy, of the sum is chosen such that spax < Sgiv, the

numerical evaluation is still viable.

The second expression for the recurrence divergence factor in eq. requires the deter-
mination of the roots \; of the recurrence relation in terms of the roots u; of the difference
equation. To start, I first rewrite the characteristic polynomial p(u) of the difference
equation defined in eq. in terms of the p; as

NE
§>
5”

E:

p(p) = Fnir(p) = (w—pi), c=const, (7.40)

Il
o

1

% %

where the §; are the coefficients of 2%V in the difference equation and n = deg, p(p) < R.
The characteristic polynomial of the recurrence relation is given in eq. (7.29)) in terms of
the coefficients o, which are identical to the fk(u) in sectionand upon setting u = i,

the characteristic polynomial reads
N+R-1

Yo Frlpm)A* (7.41)
k=0

As the form of the coefficients fj, (1) given in eq. ([7.11) does not know about the p;, it is

useful to rewrite them in terms of p(u) as

G Z (N - R )%‘MRi

_ (R : = ( 9 )N“H
(N+R—-k)! o

(7.42)
1) -

It is then instructive, but not required, to divid Pl (A) by fntrr—1(pm), since the ratios

2 ¢
_ N
]iN—i—R t(#m) = (~1)i Z <t B ) Z H Hm (7.43)
In+r—1(pm) s=1 5) sc{l,.m—Tm+1,.n}ies Hm = Hi
|S|=s—1
already feature the objects A\ = m rZTm appearing in eq. (7.38)). With these ratios the
characteristic equation takes the form

N+R

0= S ANHR(_pyi-! Z (t B S) > I Ami - (7.44)
Sc{1

t=1 yeem—1m+1,.n}i€S
|S|=s—1

5For the division to be possible, um has to be a root of p(u) with multiplicity 1, since otherwise
INyr-1(pm) = 0.
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which has the roots

1, with multiplicity N,
0, with multiplicity R — n,
Ami , with multiplicity 1 for each ¢ # m.

The relative numerical error of the a{™ due to the other roots of P, grows with A,;/1

for each iteration of the recurrence relation and thus the value for Flgim) given in eq. (|7.38))
is proven. For coupled difference equations the divergence factors F ém) and F' 1(%771) are
identical to the ones found for decoupled equations, since both types of equations share

the same values p; (see sect. [7.2]) and as a consequence also the same A,;.

Combined with the large-s behaviour of the ags, the divergence factors can be used to
estimate in advance the precision of the result I(1) in terms of the starting precision for
ap and the parameters spax and Tyax. If Dgigre is the number of correct digits in ao,
the number of correct digits of I(zmax) obtained from summing over the factorial series is

approximated by

Dsiart — Smax 10glO (FR)

F(Imax+d/2+1+3max)

D, ~ min
ag
logyo ’I‘(a:max+d/2+1) T

(7.45)

~ loglo (Imax“l’smax)

Smax

The first case takes into account the divergence of the error, while the second case estimates
the precision gained by as/T'(xmax +d/2+ 1+ s) converging to zero. Ideally the two cases
should be equal, which puts the condition

Dt Z 10g1o [(mmax + 5max> FEmaX] (746)

Smax

on the precision of ag. If this condition is satisfied, the number of correct digits Deyqg
obtained for I(1) is estimated to be

Deng = Dy — Tmax logo(Fp) ~ logy, meax " Smax) Fﬁxmaxl : (7.47)

max
Finding good choices for the parameters spmax and xmax therefore crucially depends on
the divergence factors Fp and Fr. The highest divergence factors appearing at each loop
level for the fully massive tadpoles are listed in table along with a set of choices for
Smax and Tmax which in the end yield a precision of 280 digits for the 5-loop integrals. Up
to 4 loops, only a single zone has a recurrence divergence factor greater than 1, which is

Fr = 9/8 for 4-loop zone 511#2. At 5 loops there is a significant increase in difficulty,
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Loops Fp Fr Lmax Smax Dena
1 1 1 310000 2000000 390000
2 3 1 300000 2000000 240000
3 8 1 150000 2000000 100000
4 15 1.125 21500 1000000 20000
5| 26.86 12.93 600 17000 280

Table 7.1: Maximal divergence factors found for the fully massive tadpoles for L =1-5
along with an example of choices for the parameters sp.x and zmax and the resulting
precisions. The exact values at L = 5 are Fp = 13 + 8/3 (for zone 30239#3) and
Fr = 6+ 4v/3 (zone 30222#2).

because the recurrence divergence factors reach up to 12.93. Since this means that more
than one digit is lost per iteration, this puts much stronger limits on spy.x than at lower
loops. To counter the diverging error, one has to start with a very high accuracy for ag.
Since each loop-order requires the previous one as input for the initial conditions, the lower

loop integrals then have to be computed with extremely high precision.

The treatment of the recurrence divergence factor Fr on equal grounds with Fp is a
significant improvement of the method over Laporta’s original version, which to the best
of my knowledge has not yet been considered in the literature. Laporta implied [1] that
for F'r > 1 the factorial series does not converge for any z. This is certainly not the case
for the integrals in this thesis. The recurrence relation for the as may have a solution
which diverges, but for the massive tadpoles examined here, the initial conditions for the
as set the coefficient of that solution to zero and only solutions with A = 1 remain. What
I observe is that even if Fr > 1, the terms as/T'(z + s + d/2 + 1) converge up to some
S = S4giv, which can be pushed arbitrarily high by increasing the precision. The observed
divergence for s > sqgiy is thus only due to the fact that during numerical evaluation the
coefficient of the diverging solution is inevitably not exactly zero but has a finite value.
While I cannot prove that the factorial series of all Feynman integrals have a finite abscissa
of convergence, Fr > 1 is certainly not a sufficient condition for divergence of the factorial

series.

The original method proposed by Laporta in reference |1] to deal with divergent factorial
series is to use a Laplace transformation to convert the difference equation to a differential
equation, which is subsequently solved numerically. This requires a considerable amount
of additional work and one does not obtain the factorial series coefficients as, which might
be needed as input for the inhomogeneous part of recurrence relations in higher zones.

This has been done e.g. in [115] for a 3-loop partly massive vacuum integral where the
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homogeneous part of the difference equation reads
d
2@+ 1)I(x+2)+3x+2— §)I($+ 1)—(x+3—-d)I(x)=0. (7.48)

The characteristic polynomial of this equation is given by p(u) = —2u? 4+ 3 — 1 and has
roots 1 and 1/2, which yields the recurrence divergence factor Fr = 2. I suspect that in
this case and others the divergence the authors observed was only present due to numerical
errors and the use of Laplace’s transformation could have been avoided by increasing the
precision in the evaluation of the factorial series. At the moment my own implementation
of the method (see sect. is limited to fully massive integrals, but I aim to reproduce

the result given in [115] in future work using factorial series.

7.5 Numerical evaluation in practice

One of the nice features of Laporta’s original method is that integrals in different zones
can be considered sequentially. In theory this is still possible when switching to coupled
difference equations, but in combination with the increase in precision made necessary by
the recurrence divergence factors, it is often no longer feasible in practice due to increased
memory requirements. If zones are evaluated one by one, all factorial series coefficients
need to be stored in case they appear in subzones of recurrence relations for more difficult
integrals. For the 4-loop massive tadpoles and using the parameters given in table

this would amount to:

89 Number of integrals in the master bases M, at 4 loops
x10° Smax
x 30 Number of terms in the e-expansion
x10° Number of digits for each term
x0.415B | Bytes per digit if stored ideally
~ 111TB | Disk space for all a; s

Storing the coefficients a; s on disk is clearly not a viable option in this case and thus one
has to evaluate all factorial series at a given loop level simultaneously. This allows the code
to throw away coefficients a; s once they have been incorporated into the sum for I(zmax)
and the a;¢y1 have been computed, thus cutting down on the memory requirements.

Details on the implementation and sample run times are given in section

The large-s behaviour of the factorial series coefficients given in eq. (7.30)) is problematic
for numerical computation, since for large s the values of the a;, change by several orders

of magnitude with each iteration. It is therefore beneficial to combine the a;, with the
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I-function in the series to

_ aj S
Qjs = . . 7.49
P D omax + 5 — K + 1) (7.49)
The a; s then slowly converge to zero. Their dependence on Zyax is not a problem, since
Tmax 18 typically chosen identical for all integrals of a loop order and for difference equations
of order 1 the factorial series only need to be evaluated for a single value of z. The
recurrence relations for the a;, pick up different polynomial factors from the I'-function

for each offset, but are otherwise unchanged.

It is necessary to start at lower loop orders with several more orders in ¢ than one wants
to obtain for the highest loop order. Loss of e-orders can occur during iterations of either
recurrence relations or difference equations. This typically happens for small s or  when
the pivot element of the equation starts at order ¢, > 0 and the leading order(s) of the
expansion cancel(s). In some unlucky cases this can happen independently of the value
of x or s and one thus loses orders in € in each iteration, which prevents obtaining any
result. Whenever this happened for the fully massive tadpoles, it could be remedied by
simply changing to a different master basis My or M/, for the zone in question. Another
possible issue that can be circumvented by changing the master basis My is division by
zero for small values of x. This can sometimes occur for some difference equations where
the pivot element vanishes for specific values of = (typically 1 or 2) and the argument of

the integral can thus not be pushed down further via the difference equation.
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8 Implementation details

The core of my work on the massive 5-loop tadpoles is the program TIDE (Tadpole Inte-
grals via Difference Equations), which I built to automate the methods and ideas described
in sections [2] and [4] through [7] Starting from the scalar integrals defined in section it
implements all the steps needed to arrive at numerical e-expansions for these integrals, in-
cluding momentum shifts, reduction to master integrals, the various reduction algorithms
for difference equations and recurrence relations, the translation process between these
two kinds of equations, initial conditions for the factorial series via lower loop results and
the numerical evaluation of the series. For the moment some of these steps are limited to

the class of fully massive vacuum integrals with a single mass scale.

TIDE consists of roughly 40,000 lines of code and is written entirely in C++ . The only job
that is done externally is the rational algebra during the reductions, which is handled by
Fermat |120]. For internal algebraic manipulation I use the library GiNaC [121], and its
underlying numerics library CLN [122] is used for the arbitrary precision calculations in
the factorial series expansion. Equations for integrals and factorial series coeflicients are
stored in SQLite-databases [123]. All computations for this thesis have been performed
on 5 machines with 24 cores (2.80 GHz, 12MB cache) and 48GB RAM each.

In the remainder of this section I present some of the technical details of the implementa-
tion in TIDE as well as some optimisation methods which improve performance without
really changing the underlying ideas presented in the previous sections. I furthermore
list some runtimes for several parts of the program and different reductions to show the
influence of these optimisations and the scaling of the complexity of the system with the

number of propagators of integrals.

8.1 Reductions
TIDE implements a total of four different reduction algorithms described earlier in this
thesis:

e Laporta’s algorithm for the reduction to master integrals (see sect. [2.4).

e Laporta’s algorithm for the reduction to difference equations (see sect. .

e The Minimal Order Reduction Algorithm (MORA, see sect. [5.2).

e Algorithm [3] a modified version of the MORA that also minimises the x-degree of
equations (see sect. [6.2)).
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The first algorithm works with ordinary integrals, while the other three reduce either in-
tegrals with one symbolic exponent x or factorial series coefficients a;s, where shifting
equations in x or s is an additional freedom in the reduction. The implementation of La-
porta’s algorithm for difference equations in TIDFE is now only maintained for comparative

purposes, for all production runs it has been replaced by the MORA.

Difference equations and recurrence relations are obtained zone by zone, where each zone
only requires its subzones to already be reduced. As a consequence all zones with the same
number of propagators can be reduced independently and simultaneously, which provides
a first trivial layer of parallelisation. The order of steps for a zone Z performed by TIDE

is given by
1. Generate equations with seed integrals from Z (see sect. for details).

2. Reduce the generated equations with algorithm [3| to equations with (R, N) = (0,0),
(1,0), (0,1) or (1,1).

3. Reduce the output of algorithm [3] to coupled difference equations with the MORA.
It is also possible to start the reduction from the initial IBP-relations, but algorithm

[l has to be run either way and its output is much closer to the final form of the
MORA than the IBP-relations.

4. Translate the output of algorithm [3] to recurrence relations as described in section

6.1

5. Reduce the initial recurrence relations with the MORA. In some cases it is possible
to speed up the process and use less memory by first reducing the recurrence relation
with algorithm [3] and then with the MORA, as for the difference equations.

In the following I focus on several aspects of the implementation that are needed for re-
ductions or used to improve them. Unless otherwise stated, all methods and optimisations
presented are implemented for all four kinds of reduction and valid for integrals with or

without a symbolic exponent x.

8.1.1 Momentum shifts

Any time an integral outside the classification scheme is encountered, its loop momenta
need to be shifted such that all propagators in the denominator have the form ¢? + 1 with
q; € Ar. If the original integral has ¢t propagators of the form d? + 1 in the denominator,
this is only possible for a set of £ momenta ¢; that can be mapped to the same graph as
the d;. The brute force approach would be to consider every graph with ¢ lines, take its

representative sector with subset S C Ap in the classification scheme and try to find a
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shift of the loop momenta k; such that
(dl, . ,dt) — (—i—q,;l,:lzqiz, RN :tqiz) with gi; € S. (8.1)

In the worst case (if the target sector has no symmetries) this would take as many as ¢!2!~!
attempts per sector due to the possible permutations and signs of the ¢;. To improve upon
these combinatorics, the approach is supplemented with information about the diagrams
in TIDE. A diagram for the original integral is constructed by first attaching all lines
to a single vertex and then splitting vertices repeatedly while maintaining momentum
conservation until the diagram has the correct number of loops. An example for such a
construction is given in figure 8.1} The diagram is then used to identify the correct sector
and constrain the number of permutations of the target ¢; by comparing numbers of lines
on the vertices and their neighbouring vertices with those of the diagrams of the target
sector. In some cases there are distinct diagrams that can be constructed from the same
list of momenta (see e.g. figure , but this can be accounted for by preparing a list of

all possible diagrams for each of the representative sectors in advance.

-*

(a) (b)

Figure 8.1: Construction of a 3-loop diagram for the momenta kq, ko, k3, k1 — ko and
k1 — k3. (a) is the initial diagram with one vertex, (b) after splitting the vertex once, (c)
the final diagram where no vertices can be split without breaking momentum conservation.
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Figure 8.2: Two distinct graphs for the same list of propagator momenta.
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Once all integrals are expressed in the classification scheme defined by Ay, momentum
transformations are limited to the sector and symmetry shifts introduced in section
In TIDE these are applied during the generation of equations. All integrals that can
appear in the equations are identified in a prior step and each one of them is expressed in
the simplest integrals possible according to the integral ordering relation. To do so, the

program goes through the following steps for each integral I:
1. Check if the solution for this integral is already in the database. If so, stop.

2. If the sector of I is not one of the representative sectors, perform a sector shift to
the corresponding representative sector. If there is more than one possible shift for
this task (due to symmetries of the target sector), pick the one that will transform
the propagator D; with the highest exponent |z;| in the numerator to the smallest
number of terms (these shifts are predetermined for each sector-D; combination).
Go to step 5.

3. For each possible symmetry shift of the sector, determine the most difficult integral
J in the expression that I would be shifted to. This can be done without performing
the full shift.

(a) If J is simpler than I, perform the shift and go to step 5.

(b) If J = I but the coefficient of J in [ =c¢J + ... is ¢ # 1, perform the shift and
solve for I. Go to step 5.

4. The integral cannot be simplified by momentum shifts. Add this information to the

database and stop.

5. In general the shift will have produced a sum of integrals. For each integral in the

expression, start this process at step 1 and insert the solution when finished.

6. I is now expressed by integrals which cannot be simplified further via momentum
shifts. Add this solution to the database.

8.1.2 Generation of equations and the r-s-boundaries

A reduction in TIDFE requires the parameters rmax, Smax, "gen a0d Sgen, With 7max < T'gen
and Smax < Sgen. Equations generated may then contain integrals with (7, s) < (7'gen, Sgen)
but results will only be stored for integrals with (7,s) < (rmax, Smax). In the following
I will for simplicity refer to the latter group as wanted integrals and to integrals with
(r,s) ﬁ ("max; Smax) as unwanted integrals. The inclusion of unwanted integrals is meant
to prevent loss of information at the r-s-boundaries of the reduction, where r = rpax

Or § = Smax. Empirically the system usually contains sufficient information to reduce
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all integrals used as seed integrals, but IBP-relations generally increase both r and s of
their seed integrals and the resulting integrals may not be fully reduced. To be able to use
integrals at the r-s-boundaries as seed integrals, it is thus necessary to allow integrals with
higher r and s to be generated. In most cases choosing 7gen = Tmax +1 and Sgen = Smax +1
is sufficient to fully reduce all wanted integrals. To obtain the difference equations of the

5-loop tadpole integrals I have chosen ryax = Smax = 2 and rgen = Sgen = 3.

To ensure that the unwanted integrals are always extracted first by the reduction algo-
rithms, the ordering relation is changed such that they are considered more difficult than
wanted integrals. Equations containing unwanted integrals are not stored, since they are
usually not fully reduced, but only used to extract information about the wanted integrals.
This extraction of information only requires a relatively small number of equations and
steps to actually be considered in the reduction (see sect. .

TIDE uses three types of equations (see sect. :
e IBP-relations with the operators O;; = %kﬁf )

e Linear combinations of IBP-relations which do not increase s. These are generated
for each sector and always include the mass derivative relation introduced in sec-
tion 2.3.3] They are only used on integals with s = sgen, since they are otherwise

contained in the ordinary IBP-relations, which usually consist of fewer terms.

e Syzygy relations which do not increase r (see sect. [2.3.2)). These are only used
on seed integrals with r = rgen, since they are otherwise contained in the ordinary

IBP-relations, which usually consist of much fewer terms.

The latter two types can also provide additional information at the r-s-boundaries, but
this is usually not sufficient to completely relinquish the introduction of rgen and sgen. For
all three types of equations the program first generates the equations for a general seed
integral I(z1,. .., z,) with symbolic exponents z;. When inserting the integer values z; for
a specific seed integral, all integrals are immediately replaced by their fully symmetrised
expressions as described in section [8.1.1] Before the reduction starts, the equations are
generated and sorted by their most difficult integral, span and number of terms. If memory
usage is a problem, the equations are not kept during this process and generated again
one by one during the reduction, otherwise the full system of equations is handed over to

the reduction algorithm.
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8.1.3 Rational algebra and parallelisation

For all of the more difficult reductions the bulk of the computation time is spent on the
algebra of the rational coefficients in the equations. To speed up the process this task is
delegated to the externam program Fermat [120], since it is much faster for rational algebra
than the internally used library GiNaCE Fach reduction can make use of multiple Fermat
instances which work on single coefficients independently in order to provide a low-level

layer of parallelisation.

To communicate with the Fermat executables, the main thread running the reduction
algorithm sets up an instance of a class called fermat_module. This class spawns a pre-
determined number of communication threads, each of which starts an instance of the
external Fermat executable and sets up a pipeline to it. The main thread can deposit
expressions (e.g. sums or products of coefficients of a single integral) that need to be
evaluated into a queue which is part of the fermat_module. The expressions are then dis-
tributed between the communication threads, which send them to the Fermat instances.
When the results come back, the communication threads automatically send a query to

the queue for the next expression. The structure of this process is illustrated in figure 8.3

Since the Fermat instances are external executables, the communication cannot be imple-
mented with specialised data-structures for rational functions, but relies on using strings
for the expressions. For this purpose TIDE has a lightweight wrapper class ex_string,
which stores expressions as a string, but still allows the reduction thread to perform ba-
sic algebraic manipulations on the expressions by implementing them on the string level.
During the reduction all coefficients in the system of equations are stored as ex_strings.
To save memory, the class has a trivial built-in compression function, which stores two
consecutive characters of an expression as a single character. This is possible because for a
maximum of two variables « and d or s and d the number of allowed combinations of two
consecutive symbols in Fermat output is less than the 256 possible configurations for one
byte. More sophisticated compression algorithms might yield better compression rates,
but this simple setup is certainly the fastest way to compress these particular strings. The
decompression and compression of the expressions is performed by the communication

threads before and after they are sent to the Fermat instances.

To improve the concurrency of the layer of parallelisation provided by running multiple
Fermat instances, expressions are usually sorted by size before they are added to the queue
of the fermat_module, such that the largest expressions are evaluated first. This is neces-

sary because in many situations during the reductions all expressions in the queue have to

16Very recently a library version of Fermat has been published, but it has not yet been implemented into
TIDE.
17See e.g. reference [60] for a comparison of Fermat and GiNaC.
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thread equations
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Figure 8.3: Implementation of low-level parallelisation with multiple Fermat instances.

be evaluated before the next ones can be added, e.g. when successively eliminating terms
in one equation with several other equations. Within one equation the size of coefficients
can vary quite drastically, especially when reducing zones/sectors with many subzones/-
subsectors. Starting the evaluation with the most complicated coefficients reduces the
amount of time where only a fraction of the Fermat instances is busy and the reduction
thread is waiting for the queue to be cleared. The situation can be further improved by
adding another layer of parallelisation that allows to perform several linear combinations
of equations simultaneously (see sect. [8.1.4)).
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8.1.4 Numerical runs and delayed subsector execution

For any reduction TIDF first executes one or more numerical runs{T_g], in which the dimen-
sion is replaced by a prime number and all calculations are performed over a prime field
for the integers in the coefficients, but the system is otherwise reduced the same way as in
a real run. The integral exponent x or the factorial series parameter s cannot be replaced,
because the reduction algorithms rely on shifts in those variables. A numerical run is
usually at least an order of magnitude faster than a full run with all variables, since the
rational algebra only contains at most a single variable and integers do not grow beyond
the prime chosen for the finite field. Rational algebra over a finite field is already a feature

of Fermat, making the implementation in TIDFE trivial.

In theory it is possible to reconstruct the full rational function content of the final reduced
system of equations by performing many numerical runs with different prime numbers [62].
While this has not been implemented in TIDE or any public code, even a single numer-
ical run can provide valuable information. The most notable use is the identification of
redundant equations [7, 63|. Since the system of IBP-relations is usually vastly overdeter-
mined except around the r-s-boundaries, most equations typically do not contribute any
information to the final reduced system. By identifying these equations in a fast numerical
run, the full reduction with all variables can be performed starting from a minimal set of
equations, which often results in a significant speed-up. There is a small risk that some
equations are only thrown away by the numerical run because some coefficients during the
reduction are zero for the particular chosen values of d and the finite field prime p, but not
in general. This risk of losing information in this way, however, is usually negligible due to
the overdeterminedness of the system and can be further reduced by choosing sufficiently

large{T_g] d and p or performing multiple numerical runs.

Distinguishing relevant and redundant equations is especially useful in conjunction with
unwanted integrals, which are only introduced to prevent loss of information at the r-
s-boundaries. Since equations containing these integrals are not stored anyway, they do
not have to be produced in the first place, unless needed to obtain equations for wanted
integrals. By keeping track of which of the initial equations contribute to which of the
final equations, TIDE is able to separate the minimal set of equations needed to reduce
all wanted integrals. The full reduction then usually only requires only a small subset of

the equations containing unwanted integrals.

For sectors with a high number of propagators, the bulk of the computational effort is not

8Tn this context numerical refers to the fact that the dimension is replaced by a number, not the use of
floating point numbers.
19Prime numbers with 4 digits were sufficient in all reductions performed for this thesis.
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spent on the reduction of the sectors themselves, but on the reduction of subsectorﬂ In
order to have more control over this computationally expensive part of the reduction, the
execution of the reduction is delayed in TIDFE for all subsectors. The reduction algorithm
is first performed only within the chosen sector S, with all coefficients of subsector inte-
grals being left untouched, but all steps performed being recorded. These steps can then
afterwards be performed also for the subsectors, along with the necessary steps to reduce
the subsector content of the equations for integrals in S. The advantage of this delayed
execution is that once the reduction of the new sector S is complete, all necessary steps for
the reduction of the subsector parts of the equations are known in advance, since typically
the subsectors are already fully reduced and no new information is found for them. In
some rare cases it can happen that the reduction of sector S does indeed provide new
information for a subsector S’ which cannot be found from using seed integrals of that

sector (see e.g. [124} 125]), but this can be checked efficiently with the numerical run.

The steps for the subsector parts of the equations can be divided into two categories; steps
performed during the reduction of sector S (main steps) and steps where pivot equations of
subsectors are used to eliminate terms from the equations (sub-pivot steps). The fact that
the main steps are known in advance and the pivot equations for the sub-pivot steps do not
change opens up two avenues for optimisation. The first optimisation is the introduction
of another layer of parallelisation. Many steps can be performed simultaneously, which
improves the concurrency of the parallelisation introduced by multiple Fermat instances
by increasing the number of expressions that are queued for evaluation before the main
thread has to wait for the queue to be emptied. This is difficult to achieve if subsectors
are treated in the same way as the main sector S, since the reduction algorithm usually
cannot tell whether two steps A and B can be performed simultaneously, since A might

lead to a change in pivot equations that might affect B.

The second optimisation only works for equations that can be shifted in a variable like x
or s. If such shifts occur in the main steps, they can reintroduce integrals in the subzones
that have already been removed previously. For the MORA, this includes any integrals
or factorial series coefficients with offset k # 0, since the subzones of any equations with
terms in the main zone can always be reduced to terms with offset 0. Any time a shifted
version of an equation is added to another equation in the main steps, terms with non-
zero offsets are introduced. If the subzones were reduced at the same time as the main
zone, these terms would often be removed immediately only to be reintroduced later by
a different step. In the delayed execution of the subzone in TIDE these redundant steps

can be avoided, since all main steps are known in advance.

20For integrals with a symbolic exponent z it would be more precise to speak of zones and subzones, but
here the more general term sector is used, because it is also valid when reducing ordinary integrals with
only numerical exponents.
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Conf. 1 | Conf. 2 | Conf. 3 | Conf. 4

Numerical run no yes no yes

Delayed subzone no no yes yes

# equations - 15630 - 15630

Numerical run Steps -1 24-108 -1 6.7-10°
Time - 983s - 111s

# equations 15630 462 15630 462

Full reduction Steps | 2.4-10% | 3.7-10* | 6.9-10° | 3.4-10*
Time 2671s 46s 276s 17s

Combined time 2671s 1029s 276s 128s

Table 8.1: Reduction of 5-loop zone 31246#6 with the MORA using different configura-
tions of whether or not numerical runs and delayed subzone execution are applied. The
parameters of the reduction are rmax = rgen = Smax = 2, Sgen = 3.

Table displays the effects of a numerical run and the delayed subzone execution for
the reduction of zone 3124646 with the MORA. In this example only 462 of the 15630
generated equations (~ 3%) are needed to fully reduce all wanted integrals of the zone. The
numerical run provides an efficient method of identifying these equations, which speeds up
the full reduction with all variables considerably. Zone 3124646 only has 8 propagators
and order 5 and is thus still comparatively easy to reduce, which is why the numerical
run in this example takes up more time than the full run with the reduced number of
equations. For more difficult zones with larger rational coefficients this is typically not the

case any more.

8.1.5 Choosing a master basis

In combination with the MORA, numerical runs are also useful to determine a good master
basis My for a given zone Z. Once the system is in a reduced form, the ordering relation
of integrals can be changed and upon running the MORA again a new master basis will
emerge. In this way many different bases can be tested without needing to start from
the initial equations each time. In principle this process could also be performed on the
full system including all variables, but then the benefit of smaller coefficients would only
be gained in reductions of superzones of Z. Using the reduced system of the numerical
run is much faster and also allows to pick an optimised master basis already for the full
reduction of Z. Since d is replaced in the numerical run and the integers are capped by
the finite field, the only measure for the complexity of the coefficients in the equations
for a particular master basis is the z-degree of the coefficients (or the s-degree in the
reduction of factorial series coefficients), but experience shows that this reflects the overall

complexity of the full coefficients quite well.
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In a typical reduction at the 5-loop level there are of the order of a few hundred integrals
in a given zone up to Tmax = Smax = 2 after symmetrisation. If the order of the zone
and thus the size of the master basis is greater than 2, testing all possible master bases
becomes infeasible. Instead TIDFE uses a method similar to simulated annealing described

by the following steps:

1. Start with a set B of different master bases obtained from pre-defined ordering
relations and test their quality by determining the average x-degree of the coefficients

in the equations.

2. Pick n bases in B with the smallest z-degrees (where n is a small integer parameter).
For each of these bases build all possible bases which differ only by one integral and

insert them into a new set B’ unless they have already been tested.
3. Test the quality of all bases in B’.

4. If the lowest xz-degree for bases in B’ is not lower than the one of the best basis in

B, stop and use the best basis in B.
5. Set B = B’ and go back to step 2.

This process is not guaranteed to find the global minimum, but is still able to significantly
decrease the complexity of the coefficients. For zones with orders R > 10 the size of the
coefficients is often decreased by an order of magnitude compared to those of the master
basis of the original ordering relation. The structure of the optimised basis in terms of
parameters r or s varies a lot for different zones, making it impossible to formulate a single

ordering relation that produces near-optimal master bases for all zones.
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8.1.6 Timings

In this section I list some examples for how much time the various steps and algorithms used
in this thesis take to obtain difference equations and recurrence relations. The zones for
the examples are at the 5-loop level, since TIDFE is able to obtain all difference equations
and recurrence relations for the 4-loop massive tadpole integrals in less than an hour
total. The reductions listed here are for difference equations. Reductions for recurrence

relations generally behave similarly, but are somewhat slower, since their orders are higher

on average.
Zone . Numerical run Full run Time for (z — «)- | Total
# eqs. | Time | # eqgs. | Time factorisation time

3174441 | 5 | 2.6 - 107 1s 32| <l1s <1s 1s
3225641 | 6 | 6.1-10% 6s 93| <1s <1s 6s
2868641 | 6 | 7.4-10% 24s 201 1s <1s 25s
3085842 | 7 | 2.0-10° 36s 789 10s 1s 47s
2970343 | 7 | 2.6-10° 51s 934 11s 1s 63s
30876#1 | 8 | 3.5-10° 61s 244 3s 2s 66s
3124641 | 8 | 5.6-10° | 343s 2183 | 266s 58s | 667s
3251841 | 9 | 1.1-10% [ 384s 434 8s 3s | 395s
30231#41 | 9 | 1.2-10° | 2442s 6162 | 2637s 370s | 5449s
32674#2 | 10 | 1.4-10% | 938s 106 8s 13s | 959s
32279#1 | 10 | 2.1-10° | 0.27d | 25255 | 0.27d 5020s | 0.59d
32682#1 | 11 | 4.4-10° | 3355s 2604 | 184s 25s | 3564s
32744#1 | 11 | 3.2-10% | 1.26d | 50891 | 1.56d 7988s | 2.91d

Table 8.2: Runtimes for the reduction of several 5-loop zones with algorithm |3| and pa-
rameters Tmax = Smax = 2, Tgen = Sgen = 9. For each number of propagators ¢ (except 5)
one of the most simple and one of the most difficult zones are shown here.

As a first step the 5-loop zones are reduced with algorithm[3] Table[8.2]lists timings for this
reduction for several zones with parameter rmax = Smax = 2 and Tgen = Sgen = 3, Where
for each number of propagators one of the most simple and one of the most difficult zones
were picked. The table shows that each additional propagator can increase the time for
the reduction by roughly one order of magnitude, such that each of the more difficult zones
takes significantly longer than all 4-loop zones combined. There are also vast differences
between zones with the same number of propagators, making it very difficult to predict
how much time is needed for a given reduction. No examples with the maximum of 12
propagators at the 5-loop level are shown here, since their reductions could not yet be

performed due to RAM-limitations.

The output of algorithm [3] is subsequently reduced with the MORA to obtain the final

difference equations. Since the input of the algorithm is already in a reduced form, this
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Zone ¢ | R Numerical run Full run Total
# eqgs. | Time | # egs. | Time main zone | Time subzones | time

3174441 | 5 1 35 <l1s 31 < 1s <ls| <1s
32256#1 | 6 | 2 97 <1s 89 <1s <ls| <1s
28686#1 | 6 | 4 123 <1s 108 <1s <ls| <1s
3085842 | 7 | 2 421 1s 400 1s 1s 3s
29703#3 | 7 | 8 445 1s 396 3s 1s oS
308764#1 | 8 | 2 200 1s 183 1s 1s 3s
31246#1 | 8 | 11 748 6s 670 24s 26s 56s
32518#1 | 9 | 2 193 < 1s 184 < 1s 2s 2s
30231#1 | 9 | 20 838 30s 729 980s 5594s | 6604s
3267442 | 10 | 2 111 1s 98 1s 3s 58
3227941 | 10 | 19 | 1294 32s | 1155 119s 0.15d | 0.15d
3268241 | 11 | 2 111 1s 98 1s 7s 9s
3274441 | 11 | 9 1070 4s 991 9s 0.53d | 0.53d

Table 8.3: Runtimes and orders R for the reduction of the 5-loop zones in table with
the MORA and the output of algorithm [3] as the initial equations. rmax = Smax = 2.

is much faster than starting from IBP-relations. Table lists the runtimes for these
reductions for the same zones as in table Due to the preprocessed input the zones
with small orders take virtually no time to reduce even for high numbers of propagators,
while in zones with higher orders the complexity of the coefficients and the increased
number of steps in both the main zone and subzones still have a big influence on the

runtime of the reduction.

8.2 Numerical evaluation

The high precision needed during the numerical evaluation to overcome the divergence
factors poses a challenge to both memory and CPU resources. As already mentioned in
section storing the factorial series coefficients on disk is no longer an option and as a
consequence all integrals of one loop-order have to be calculated simultaneously. Since the
recurrence relations are very interdependent, this should be done on a single machine to
avoid slowing down the process by requiring network communication. On the CPU side
extensive parallelisation and other optimisations are required to keep computation times

at a reasonable size.

The top recurrence relations in equation and the bottom difference equations in
equation are ideally suited for parallelisation, since the a; ¢4 or the I;(z —1) can be
obtained simultaneously from the a; 4 or I;(z) for all j. In TIDE this is implemented in
the same way as the parallelisation for the rational algebra. When all a; s are known, the

computations of the factorial series coefficients ai 541, a2 s+1,... are added to a queue. A
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number of worker threads then starts computing one coefficient each at a time until the
queue is emptied. To improve the concurrency the queue is sorted from long recurrence
relations to short recurrence relations. The push-down of the values of x works in the
same way with the difference equations, but takes less time since typically Zmax < Smax-
In the rare case that the master basis M/, of the factorial series coefficients is smaller than
the basis M of the integrals, additional series coefficients have to be added to M7, to find
values for all integrals. The recurrence relations for these additional coefficients originally
have order 0, which TIDFE then converts into equations of order 1 to be able to fit them

into the same evaluation pattern.

Beyond parallelisation there is not much that can be done to accelerate the additions,
multiplications and divisions of floating point numbers in the e-expansions of integrals and
factorial series coefficients. The evaluation of the rational functions of s in the recurrence
relations or z in the difference equations, however, can still be improved. These functions
have to be evaluated for many values of s or z and depending on the chosen precision
and the complexity of the functions this can take as much as, or even more, time than the
floating point operations. There are various options for the handling of denominators which
influence the size and amount of polynomials that have to be evaluated, ranging from one
denominator per term to a common denominator for all terms in an equation. The former
option has smaller polynomials due to cancellations of factors, but more denominators
and division operations, while the latter has the fewest possible polynomials, but they are
larger on average. In TIDFE 1 have opted for a middle path in which there is one common
denominator per zone. This is faster than the previous two options, since terms in one
zone typically share many factors and thus most of the possible cancellations occur, while
the number of denominators is still considerably lower than the number of terms in the

equation.

To evaluate the polynomials, I have implemented Horner’s method [126], in which a poly-

nomial p(x) is written as

p(x) =ap+ oz + ... apx"

(8.2)
=((...((anr + an_1)r+an—2)z+...)x+a1)r + ap .

In the second form p can be evaluated faster for a value of x than in the monomial form,
since the number of multiplications is reduced to at most n. Furthermore cancellations of
large terms are less likely to happen, which decreases the numerical error if the evaluation
is not done analytically@

2'Whether analytical or numerical evaluation of the polynomials is faster depends on the numerical
precision and how it compares to the size of the integers that appear during the evaluation. In the
calculations performed for this thesis analytical evaluation was usually the faster choice.
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With these optimisations the numerical evaluation of most 5-loop fully massive tadpoles
up to 11 propagators takes roughly a week running on 24 cores. The parameters for
this evaluation are Dyt = 20000, Tpmax = 600, Smax = 17000 with ~ 30 orders in €
and it yields about 280 digits precision for the results. The lower loop results needed as
input have higher precision but fewer integrals and simpler equations (see table for the
parameters used for L < 4). The time needed for their evaluation is of the same order
of magnitude as for 5 loops. Increasing the precision further might still be possible, but
would be expensive in CPU-time, since the time needed for floating point multiplication
goes as precision squared and additionally the parameters spax and zpax would have to

be increased.

In some cases it can be necessary to change the master basis My or M/, of a zone Z for
the numerical evaluation due to losses of e-orders or division by zero for small values of
x (see sect. . An appropriate basis is then found in a similar fashion as during the
master basis optimisation after the numerical reduction run (sect. . Elements in
the basis are replaced one by one and among those bases which do not have problems
with e-orders or division by zero the one with the smallest equations is chosen. To avoid
updating all equations in superzones of Z to the new basis, all elements in the old basis
which are not elements of the new basis are also included in the evaluation, even if they
are no longer needed in the zone Z itself. This slightly increases the number of integrals
or factorial series coefficients, but updating superzone equations would typically introduce

more complicated coefficients and thus have a similar effect on the runtime.

During the evaluation it is important to identify numerical zeroes whenever they occur. If
left untreated, they can quickly decrease the precision of other terms with each iteration
of the difference equations or recurrence relations. Since the a; s = a;/I'(x +s+d/2+1)
cover a large range of orders of magnitude, implementing a hard cutoff for identifying
numerical zeroes is difficult. Instead, TIDE compares each order in an e-expansion to its
neighbouring orders and sets it to zero if it is many orders of magnitude smaller than them

(e.g. by a factor 2°° ~ 10'® or more).
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9 The fully massive tadpoles up to 5 loops

9.1 Classification

To ensure that all integrals of a loop order are considered in the classification scheme, one
first has to generate all possible graphs. For vacuum integrals up to 5 loops this has been
done e.g. in [127]. As seen in section it is possible for some sets of momenta to
be mapped to distinct graphs, rendering those graphs equivalent in the sense that they
represent the same integrals. The set of equivalent graphs and their associated integrals
is referred to as a topology. In some topologies the integrals can be factorised into lower
loop integrals, which is equivalent to the graph being split into disconnected lower loop
graphs that all satisfy momentum conservation. The number of vacuum topologies up to

5 loops including factorised topologies is given by [7]:
e J-loop: 1 = 1 non-factorised topology + 0 factorised topologies

e 2-loop: 2 = 1 non-factorised topology + 1 factorised topology (1-loop squared)
= 1{2} + 1{1%}

e 3-loop: 5 =3{3}+1{13} +1{1-2}
e J-loop: 16 = 10{4} + 1{1*} + 1{12- 2} + 1{2%} + 3{1- 3}
o 5-loop: 67 =48{5} + 1{1°} + 1{13 - 2} + 1{1- 22} + 3{12 -3} + 3{2- 3} + 10{1 - 4}

All of these topologies are covered by the classification schemes defined by the momen-
tum lists Ay given in table for L =1,...,5. For each topology a possible graph and
the representative sector in the classification scheme are listed in figures and
At a given loop-order L it is not strictly necessary to obtain values for master integrals
in factorised topologies, since these are already known from lower loop-orders. Never-
theless these topologies appear during reductions as sub-topologies (defined in analogy
with subsectors) of non-factorised topologies and therefore cannot simply be discarded.
The simplest approach is to treat factorised topologies in the same way as non-factorised
topologies and re-derive all of their results known from lower loops for L loops. Since
lower loops are typically much simpler, the effect of re-deriving the results on the overall

computation time is negligible.
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_L(L+1) . Physical | Zero- | Anti-
L w(L) - 2 Topologies sectors | sectors | sectors
1 1 1 1 1 0
2 3 2 4 4 0
3 6 5 38 26 0
4 10 16 680 281 63
5 15 67 22051 5566 5151

Table 9.1: Numbers of physical, zero- and anti-sectors up to 5 loops.

The 2*(X) sectors defined by the list of momenta A, at each loop level are divided into
physical, zero- and anti-sectors and their respective numbers are listed in table The
representative sectors of the topologies have 1, 2, 5, 19 and 131 master integrals at 1, ...,
5 loops respectively[4, 6], including those of factorised topologies. If factorised topologies
are excluded, these numbers change to 1, 1, 3, 13 and 109. In each sector there is one
master integral with 7 = s = 0 (meaning z; € {0,1}), which is in the following called the
corner integral of the sector. Starting at 4 loops some of the sectors need more than one
master integral. For ease of computation with Laporta’s method I choose these additional
master integrals such that s = 0 and all dots are on a single line, but other choices are
equally valid. A full list of master integrals can be found in tables and

9.2 Results

Using the program TIDE I was able to obtain many new results for the fully massive
5-loop tadpole integrals. This includes all difference equations and almost all recurrence
relations and numerical results for integrals up to 11 propagators. For the integrals with
the highest possible number of propagators, which is 12, I obtained some of the difference
equations, but no recurrence relations yet. Further progress is currently limited by the size
of the systems of equations for the reductions of these complicated zones, which no longer
fit into the 48GB RAM of the machines I have at my disposal. I feel it is likely that TIDFE
could obtain the remaining equations on machines with more memory or if the program
was tweaked to further minimise memory usage. A third, albeit presumably much slower,
option would be to (partly) store equations on hard disk during the reduction. I aim to
look into these options in future work, but the main goal of this thesis, evaluating the
tadpoles needed for the 5-loop S-function, is already met. This is due to the fact that
the remaining integrals with 12 propagators are all finite, as can be seen from dimensional
arguments and the fact that they do not have subdivergences, and thus do not contribute

to anomalous dimensions such as the S-function (see e.g. [3]).

Some of the simpler difference equations for the 5-loop fully massive tadpoles have already
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been found in [6] and [7], but already at 8 propagators there are sectors for which all
zones are missing in these references. The main reason TIDF is now able to obtain these
difference equations and many more is the transition to maximally coupled equations and
the MORA. Due to the size of the difference equations I do not print them in this thesis,
but both they and the recurrence relations can be made available upon request. A list of
orders of the 5-loop zones for difference equations and recurrence relations as far as they
are known is given in tables and respectively, including which of the equations
have already been obtained by TIDE.

Using the coupled difference equations and recurrence relations I was able to find numerical
solutions for the master integrals of all sectors with up to 11 propagators, which include
44 of the 48 non-factorised 5-loop topologies. The solutions have been obtained as e-
expansions around both d = 4 — 2¢ and d = 3 — 2¢ with 15-30 orders in € and precisions
of at least 250 digits. Some of these results are listed in appendix [C] For compactness
only the first few orders of the e-expansions around d = 4 of the corner integrals of each
sector are included there. The full results including all master integrals in either 3 or 4

dimensions can be made available upon request.

All results in appendix |C| and the remainder of this section are normalised with 1/J%,

where J is the 1-loop massive tadpole given by

1 d
= —=Tr(1-2). 1
/ k1k%+1 ( 2) (9 )

This normalisation makes the results independent of the chosen integration measure and
thus simplifies comparison with results from other sources. It also naturally removes
the dependence on the Euler-Mascheroni constant g, which otherwise appears in the e-
expansions and is removed in many conventions by including e7®€ in the measure. The
downside of the normalisation with J~% is the inconsistent representation of poles in e,
since J is finite in odd dimensions, but has a 1/€ pole in even dimensions. As a consequence

one finds e.g. for the corner integral Isg7p3 of sector 29703

129703 :I(Ll?laoa170707070707070717171) = ) (92)
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29703 °|d—s_2¢ = 2.200000000000000000000000000000000000000000000000
+ 4.483333333333333333333333333333333333333333333333¢
+ 4.566666666666666666666666666666666666666666666666¢>
— 9.388702425687269713719528690720609983376975326212¢
+19.31407800749752756112276689558356534059581172145¢*
+ 307.3041588355847768376539185160608792355567728066¢
+...,

Ing703J °|d=3-_2¢ = 0.124999999999999999999999999999999999999999999999¢ 2
+ 1.232128232042182061098501409780212600860159185068¢ ~*
— 1.959819538475706123684950516115545603531478713580
—+ 138.7245540694362122649882401704844555745891333907€
+ 184.9851887107529343309218676313202214220379672724€>
+.

Here the 3-dimensional result shows the leading e =2 pole explicitly, while in 4 dimensions

the terms up to €* are actually divergent in Ing793. Finite integrals such as

< J75 = Ippraad ~5 L~ 2.998232873680403094168762883590095773087€>
+ 43.75280252615427411169257824938492717855€°
+...

thus start at €& for even dimensions.

Ideally one would like to obtain analytical expressions for the integrals or at least the
orders in their e-expansions. Many of the divergent orders of the integrals are trivially
identified as (-functions or rational numbers, but for the finite orders more complicated
functions like elliptic integrals are expected to appear [4]. In principle these could be
identified by algorithms such as PSLQ [112, [113], which attempt to find integer relations
between a given set of numerical expressions. In order to apply this approach one needs a
basis of numbers which can appear at a given order in € and sufficient precision for PSLQ
to identify beyond doubt the integrals as linear combinations of these basis elements. At
the moment such a basis is not known for the 5-loop fully massive tadpoles (or even all
lower loop tadpoles) and I expect that even for the first few finite orders in e several

thousand digits of precision would be needed.
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9.3 Checks

Since TIDE implements several new ideas, it is important to perform cross-checks on its
results. As a first sanity check I compared the values generated for the 4-loop master
integrals to the ones obtained in [4] (4d) and [5] (3d) and found full agreement. For the
5-loop integrals only a handful of results were already known, but a simple internal check
is already built into Laporta’s method if one compares the values for the corner integral of
a sector obtained from its different zones. With the exception of sectors 28686, 30876 and
30526, results for the corner integrals up to 11 propagators have been generated from at
least two different zones and are in agreement for 250 digits of precision or more in each
case. In sectors 28686 (with ¢ = 6 propagators) and 30876 (¢ = 8) all positions for the
exponent x are equivalent, while for sector 30526 (¢ = 11) the recurrence relations for 4
of its 5 zones are still missing. For the first two sectors some results are already known in

the literature and are listed below.

Potential errors in the results of zones 2868641 or 30876#1 would have also likely been
detected internally. The values obtained in these zones show up in the inhomogeneous
parts of their respective superzone equations, which depend on these values in different
ways, yet produce consistent results. More generally, the hierarchical structure of the
approach and the exponential divergence of numerical errors make it highly unlikely for
most mistakes to go unnoticed. Any error usually quickly produces terms which are many
orders of magnitude larger than expected due to the divergence factors and these terms

then spread to all superzones of the zone where the error first occurred.

52 Sg 54 55

Figure 9.1: The sunset topologies with L = 2,3,4,5 loops.

While the internal checks on the 5-loop results already rule out many sources of errors,
external checks are still needed to ensure that TIDE does not contain systematic errors
which might affect all integrals equally in a way that would not be detected by cross-checks
between zones of a sector. The simplest candidate for such a check is the 5-loop sunset
topology, represented in my classification scheme by sector 28686. The sunset topologies
(see fig. consist of L + 1 lines between two vertices and can be calculated (at least

numerically) for any dimension and any number of loops using coordinate-space techniques
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[128, 129]. For the 5-loop sunset corner integral S5 in four dimensions this yields [129]

3 13, 1267 . 4193
SJ*5:_3_7 e e B
5 56T 50 T 1440°  3456°

(9.3)
1 135.951¢% + 2603.82¢5 + 17828.¢7 + 180410.6% + O (€9> :

which TIDFE reproduces with 250 digits of precision. To also test the program in different
dimensions, I have generated the e-expansions for the sunset topology corner integrals for
2-5 loops and integer dimensions between 2 and 8. The expansions agree with known
results and the leading orders are listed in table

d+ 2e SQJ_2 SgJ_3 S4J_4 S5J_5
2 2.34391€? | 8.41439¢3 | 39.9455¢* | 233.508¢€°
3 1 1 45 7
4e € 16¢ €
3 5
4 —3 ) -3 -3
5 9 24 52893 26118
32¢ 35¢e 71680¢ 25025¢
5 8 5
6 —3 —3 —3 —2
7 135 480 408801375 147950130
512¢ 1001e 524812288¢ 52055003¢
8 _63 _29 _21 _27
20 10 8 10

Table 9.2: The leading orders in the e-expansion of the sunset topology corner integrals
for 2-5 loops in various dimensions. Results have been obtained numerically, but agree to
at least 250 digits precision where rational numbers are given.

4R
NP

W3 Ws

Figure 9.2: Diagrams of the wheel with L spokes for L = 3,4, 5.

Another external check is provided by the class of so-called wheel diagrams (see fig. ,
for which the leading order in € in four dimensions has been known to all loop orders for

some time [130]. For the wheel with L spokes one finds

(=1)L <2L -2

-L
Wel " =—7=\ 1 4

><(2L —3)ek 110 (eL) . (9.4)

In my classification scheme Wj5 is the corner integral of sector 32596 and the full result
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obtained by TIDFE is

Wi5J 5 = — 14.11688988334691957575716569789715463439808984791¢*
+ 235.0772959678346713145438808095041177923934723958€°
— 2267.738683293008412296299448058020585548754541373¢°
+ 17032.05736733550461114507260154791350899541515054€
+ ...
+ 10998938855208.47446157375001226506752088059942074¢

+ O (620) ,

where the leading order agrees with the expected —14((7)e*. A similar check is provided
by the zig-zag-conjecture of Broadhurst and Kreimer [131], which was subsequently proven
by Brown and Schnetz [132]. The conjecture states that the leading order of the L-loop
integral Z, of the series of zig-zag diagrams (see fig. is given in 4 dimensions by

-L (7i)2L4 (QLL:E)((QL —-3)F 1+ 0 (EL) it L is even,
arl = M(QL_2)€(2L — 3)elt L\ e (9:5)
2 I—1 e+ 0 (e ) if L is odd.
Z3 Z4 Z5

Figure 9.3: Zig-zag diagrams for L = 3,4, 5.

For 3 and 4 loops the zig-zag- and wheel-series are identical, but at 5 loops the integrals
differ, with Z5 being the corner integral of sector 32279. The result produced by TIDE is

Z5J_5 = — 11.11705078313569916590876798709400927458849575523¢*
+ 181.7822392861234082079078823601864296119874199420¢°
— 1725.999613740352080595167399244211728860770495754¢°
+...,

where the leading order agrees with the exact result —4((7)e?.

In [31] Anderson et al. have calculated the leading orders of three fully massive 5-loop

tadpoles in three dimensions for the pressure of massless ¢*-theory. Expressed in my
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classification scheme their results are

_5 :QC(S) B 721In 2

1(1,1,1,1,0,0,0,1,0,0,1,1,1,0,0)J 5 == + O (e) (sector 30876),

4 2
1 3+4In2
1(2,1,1,1,0,0,0,1,0.0,0,1,0,1,0)J % = — —¢ 2 4 =~ =1
(7 ) b 9 b b b ) ) ) ) ) ) 7) 326 + 16 6
+3—7r2—1081n2+721n3—781n22—60L125

24
+ O (e) (sector 30858),

I(1,1,1,1,0,0,0,1,0,0,0,1,1,1,0)J > = — 0.44316 + O (¢) (sector 30862).
For sectors 30876 and 30858 TIDFE reproduces these values, but for sector 30862 it finds

1(1,1,1,1,0,0,0,1,0,0,0,1,1,1,0)J75 = — 0.518821725792769087684129841769989253
+ O (e) .

The discrepancy originates in a sign error in equation (C.20) in [31], which is taken from

[133] and should read
PP HE—pogtam?
= ~ ’

C (9.6)

m
where the sign in front of the dot product p - ¢ has been corrected. With this change the
calculation in [31] also yields —0.51882... for the leading order of the corner integral of
sector 30862 22

The above checks cover two out of the three sectors for which TIDFE has only determined
results in a single zone, but for sector 30526 no results are available in the literature. An
attempt to obtain the leading order of the corner integral I3p526 by sector decomposition
with Fiesta 3.4 [73] resulted in error notifications after several hours. However, since the
integral is finite, a naive NIntegrate in Mathematica |110] over the Feynman parametri-

sation yields a numerical result, albeit with very low precision. The values found are

1.803 4+ 0.189 (Mathematica),
I30526] =1 = (9.7)
1.97039045531 ... (TIDE),

s (—1.671 £0.078) - 1074 (Mathematica),
I30526) °|a=3 = (9.8)
—1.69355884089...-10~% (TIDE).

As an additional check I ran the numerical evaluation in TIDFE again with different master
bases My and M7, for the difference equations and recurrence relations and the results

agree with the expected precision of 250 digits.

22y. Schréder, personal communication.
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10 Conclusion and outlook

In this thesis I have applied Laporta’s method [1] for evaluating multi-loop Feynman
integrals via difference equations and factorial series to the class of fully massive vacuum
integrals with a single mass scale. To make the method feasible for the evaluation of the
5-loop integrals of this class I have made several improvements over its original version.

The main improvements are:

e By using the new Minimal Order Reduction Algorithm (MORA, see sect. instead
of Laporta’s algorithm, difference equations are obtained as R coupled equations of
order one rather than one decoupled equation of order R. The coupled equations
exhibit much simpler coefficients, especially for zones with high orders. As a result,
the time needed for the reduction to difference equations scales significantly better
for the MORA and for difficult zones it is many orders of magnitude faster than
Laporta’s algorithm. This boost in speed is needed due to the much increased
complexity of the reductions at 5 loops compared to lower loops, which renders
Laporta’s algorithm infeasible for obtaining difference equations at 5 loops.

e An analysis of the process that translates difference equations to recurrence relations
revealed that the order R’ of a recurrence relation is at least the z-degree N of the
difference equation it was generated from. Each order in x of the input equations
of the translation can thus lead to a loss of information in the space of recurrence
relations. To prevent this loss of information and high orders R’, T designed algorithm
as a modified version of the MORA which reduces both order and z-degree of
difference equations. The resulting equations can be used in the translation process
without loss of information. This opens up the possibility of reducing the recurrence
relations in the same way as the difference equations, which is not done at all in the
original version of Laporta’s method. The reduction yields much simpler recurrence
relations than can be achieved by translating a decoupled difference equation and
thus speeds up the numerical evaluation.

e During the iterations of recurrence relations or difference equations the numerical
error is increased in each iteration by the divergence factors Fr or Fp, respectively.
I have shown that these factors are independent of whether coupled or decoupled
equations are used and expressed them in terms of the roots of the characteristic
polynomial of the difference equation. Knowledge of the divergence factors can be
used to determine ideal values for the parameters syax and Tmax as well as the needed
precision for the initial conditions of the factorial series coefficients. By increasing
this precision appropriately, the (numerical) divergence of the factorial series can
be avoided for all fully massive tadpoles and possibly other classes of integrals.
This completely removes the necessity to perform a Laplace transformation on the
difference equations and solve the resulting differential equations for these integrals,

which was Laporta’s original suggestion in cases where Fr > 1.
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I have implemented all necessary steps for Laporta’s method with these optimisations in
the C++ -program TIDE and have used it to obtain high-precision numerical results for
all fully massive 5-loop tadpole master integrals up to 11 propagators in three and four
dimensions. This includes all integrals needed for the 5-loop contribution to the QCD
B-function which will be determined in future work. The remaining integrals with 12

propagators are within reach.

The results show that with the improvements introduced in this thesis Laporta’s method
is capable of solving 5-loop integrals with a single scale on current hardware. The natural
next step is thus to apply the approach to the partly massive 5-loop tadpoles. This class
of integrals has many additional applications described in section [l Due to the additional
freedom of having m € {0,1} for each propagator the class has more integrals and fewer
symmetries than the fully massive tadpoles, but from experiences at the 4-loop level [4,
115] it is expected to have a similar complexity for the difference and recurrence relations.
All steps of Laporta’s method and my improvements implemented in TIDE are applicable
to partly massive tadpoles without further adjustments, with the exception of the large-x
expansion of the integrals for the initial conditions of the factorial series coefficients. This
expansion is slightly more complicated than in the fully massive case due to the additional
infrared divergences that may appear, but this case is already described in Laporta’s
original paper [1]. In principle the method can also be applied to other classes of integrals
with a single scale, e.g. massless propagator type integrals or massive propagators with

an on-shell external momentum.

While 5-loop calculations with Laporta’s method are now feasible, full sets of 6-loop in-
tegrals still seem out of reach. I have not attempted to obtain any of the 6-loop fully
massive tadpoles, but the jump in complexity from 4 to 5 loops suggest that many further
improvements would be needed to successfully do so. Not only is it likely that the orders
of difference equations and recurrence relations would be much higher than R = 20 and
R’ = 28 already found in this thesis, but the 5-loop results would have to be obtained
with much higher precision than the current 250 digits, as they would be needed as initial
conditions at 6 loops. Since the recurrence divergence factor Fr ~ 13 at 5 loops is the first
one that is much larger than one, achieving the needed precision would prove considerably
more difficult than at lower loops. It might however be possible to extract subsets of the
6-loop integrals, since the difficulty of sectors and zones varies drastically within one loop-
level. One such possible subset could be the integrals needed for ¢* theory. At 5 loops
the corresponding zones have low order difference equations and recurrence relations and
a small recurrence divergence factor, which means they could be obtained to much higher
precision than many other 5-loop integrals. If the same holds true at 6 loops, the pressure
of hot ¢* theory (see sect. [1.2)) could be calculated to this order.
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One of the major challenges of Laporta’s method going forward are large values for the
divergence factors. This is especially true for the recurrence divergence factor, since typ-
ically Smax > Tmax and Fgr jumped from 1.125 at 4 loops to 12.93 at 5 loops. While in
principle the numerical divergence of the factorial series due to the exponential growth
of the error can be avoided by increasing the precision, this approach is wasteful in the
sense that most of the starting precision is lost. A preferable solution would be to some-
how project out the divergent solutions in the numerical evaluation. If it is certain that
no roots of the characteristic polynomial with absolute value greater than one contribute
to the exact solution of a recurrence relation, the numerical error can be approximately
identified when the factorial series coeflicients start to diverge. This could be used to go
back to earlier iterations of the series coefficients and reduce the numerical error there.
The backtracking this includes would add additional computational effort, but the added
cost is linear in sy.x, whereas increasing the precision to keep the error small scales the
computation time with O (smax2) due to multiplications. An even better solution would
be to determine the factorial series coefficients analytically in closed form, but to the best
of my knowledge no technique exists as of yet which is capable of doing so for arbitrary

linear recurrence relations with rational coefficients.

Reductions of difference equations and recurrence relations could also be improved fur-
ther. An interesting step in that direction would be to allow arbitrary linear combinations
of integrals as elements of the master bases Mz and M7, instead of just single integrals.
This could have the potential to significantly reduce the complexity of coefficients in the
equations further, but a strategy would have to be developed to determine optimised basis
elements. Another promising avenue is the reduction over a finite field and subsequent
reconstruction of the rational coefficients proposed in [62]. This approach should circum-
vent the expression swell during intermediate steps of the reduction, but has not yet been
implemented in any public codes. It is only partly suited for the Minimal Order Reduction
Algorithm, as the algorithms reliance on shifts in x means that coefficients will still be
rational functions in z at all times. However, Algorithm [3] would be a good candidate for
the finite field method despite also using x-shifts, since all coefficients are at most linear

in  at any given time during the reduction.

The improvements to Laporta’s method of difference equations and factorial series sug-
gested and implemented in this thesis have already pushed the limits of feasibility of the
method to the 5-loop level by increasing its speed by many orders of magnitude. The
above ideas show that there is still much potential for further development and the im-
plementation of some of these ideas might make 6-loop calculations with this method a

realistic option in the future.
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Appendix

A Tadpole classification

Ay | Ao As Ay As
q =k |k k1 k1 k1
G2 = ks ko ko ko
qs = k1 — ko | k3 k3 k3
q4 = k1 —ko | k4 k4
g5 = k1 — k3 | k1 —kq ks
q6 = ko — ks | ko — k4 k1 — k3
qr = k3 — k4 k1 —ky
qs = k1 — ks k1 — ks
q9 = k1 — ks ko — k3
qi10 = k1 — ko — k3 | ko —ky
q11 = ko — ks
q12 = ks — ks
q13 = ky— ks
Q4 = k1 + ko — ks
q15 = ks — ky

Table A.1: Sets Aj of propagator momenta ¢; chosen for the classification of tadpole
integrals up to L = 5 loops.
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Figure A.1: All topologies for vacuum integrals up to 4 loops with the sector I Ds of the
respective representative sectors, including factorised topologies @ 127].
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B Reduction statistics

1-loop 4-loop
# sID | Master Integral || # t sID Master Integral
1 1 I 1 4 960* | I1,1,1,1,0,0,0,0,0,0
2 5 992* | 11111100000
3 5 961*% | 111,1,1,000,00,1
4 5 841 11,1,0,1,0,0,1,0,0,1
5 Toop 5 6 1008* | I11,1,1,1,1,0,0,0,0
# t sID | Master Integral (75 2 322* ?’1’1’1’1’0’0’0’0’1
. = T v 11,1,1,1,0,1,0,0,1,0
R T 1,1,1,0,1,1,1,0,0,0
oL 9 7 1016 | I11,1,1,1,1,1,0,0,0
10 7 1012* | 111.1,1,1,1,0,1,0,0
11 7 1010 | 11,1,1,1,1,1,0,0,1,0
12 7 1009 11,1,1,1,1,1,00,0,1
3-loop 13 8 1020 111,111,100
# t sID | Master Integral || 14 8 1011 D,1,1,1,1,1,00,1,1
1 3 56* 1111000 15 9 1022 I111,1,1,1,1,1,0
2 4 60* 1111100 16 9 511 Io1,1,1,1,1,1,1,1,1
3 4 51 I11,001,1 17 5 841 I3.1,0,1,0,0,1,0,0,1
4 5 62 111110 18 7 1009 | I21,1,1,1,1,0,0,0,1
5 6 63 i1 19 8 1011 I211,1,1,1,00,1,1

Table B.1: List of all chosen master integrals for 1-4 loops. The notation is
L. 2 =1(21,...,2y). Sector IDs marked with a star correspond to factorised topolo-
gies.
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# t sID Master integral # t sID Master integral
1 5 31744* | 1111,1,10,000000000 || 35 9 32329 | 1111,11,1,00,1,0,0,1,0,0,1
2 6 32256* | 111,1,1,1,1,0,00000000 || 36 9 32278 | 11,1,1,1,1,1,0,0,0,0,1,0,1,1,0
3 6 31746™ | 111,1,1,1,0,0,000000,10 || 37 9 32270 | 111,11,1,1,00,0,0,0,1,1,1,0
4 6 29702% | 111,10,1,0000000110 || 38 9 32267 | 11,11,1,1,1,00,0,0,0,1,0,1,1
5 6 28686 | 111,1000000001110 [| 39 9 31516 | [11,1,1,0,1,1,0,0,0,1,1,1,0,0
6 7 32512*% | 111,1,1,1,1,1,0,0,0,00000 || 40 9 31388 | I1111,01,01,00,1,1,1,0,0
77 32288* | 11,1,1,1,1,1,0,0,0,1,00000 || 41 9 30231 | 111101,1,0,000,1,0,1,1,1
8 7 32258% | 111,1,1,1,1,0000000,10 || 42 10 32736 | 11,1,1,1,1,1,1,1,1,1,0,0,0,0,0
9 7 31754* | 111,1,1,1,0,0,0,0,0,0,1,0,10 || 43 10 32712 | I117111,1,1,1,1,0,0,1,0,0,0
10 7 30872* | 111,1,1,000,1,001,1,000 || 44 10 32708 | I11,11,1,1,1,1,1,0,0,0,1,0,0
11 7 30858 1111,1,0,0,0,1,0,0,0,1,0,1,0 45 10 32674 11,1,1,1,1,1,1,1,0,1,0,0,0,1,0
127 30214 | I11,1,0,1,1,0,0,0000,1,1,0 || 46 10 32652% | I1111,1,1,1,1,0,0,0,1,1,0,0
13 7 29703 | 11,11,01,00,00,0001,1,1 || 47 10 32596 | 111,1,1,1,1,1,0,1,0,1,0,1,0,0
14 8 32640* Il71’1,1’1’171,170,070’0,070,0 48 10 32562 Il,1,1,1,1,1,1,0,0,1,1,0,0,1,0
15 8 32576* | I11,1,1,1,1,1,0,1,0,0,0000 || 49 10 32534 | 1111,1,1,1,1,00,0,1,0,1,1,0
16 8 32528% | I13111,1,1,1,000,1,0000 || 90 10 32398 | 11,1,1,1,1,1,0,1,0,0,0,1,1,1,0
17 8 32513*% | I11.1,1,1,1,1,00,000001 || ©1 10 32391 | 111,11,1,1,0,1,0,0,0,0,1,1,1
18 8 32386 | I11,1,1,1,1,01,000001,0 || 92 10 32279 | 111,1,1,1,1,0,0,0,0,1,0,1,1,1
19 8 32274 | I11,1,1,1,1,00,0,0,1,00,1,0 || 93 10 31420 | 1111,1,01,0,1,0,1,1,1,1,0,0
20 8 32266 117171,1717170,070’07071,071,0 54 10 30563* Il,1,1,0,171,170,1,1,0,0,0,171
21 8 32259 | 1111,1,1,1,00000001,1 || 95 10 30239 | 1111,01,1,0000,1,1,1,1,1
22 8 31380 Il7171’170,170,170’07170’170,0 56 10 29550 Il,1,1,0,071,1,0,1,170,1,1,170
23 8 31246 | 11,1,1,0,1,0,00,001,1,1,0 || o7 11 32744 | I111,1,1,1,1,1,1,1,0,1,0,0,0
24 8 30876 | 11,1,1,1,000,1,001,1,1,00 || 98 11 32737 | 11,1,1,1,1,1,1,1,1,1,0,0,0,0,1
25 8 30862 | [11,1,1,000,1,0001,1,1,0 || 99 11 32713 | I11,1,1,1,1,1,1,1,0,0,1,0,0,1
26 8 30222 | 1111,0,1,1,00000,1,1,10 || 60 11 32682 | I1,1,1,1,1,1,1,1,0,1,0,1,0,1,0
27 9 32704 | I11,1,1,1,1,1,1,1,0,0,0000 || 61 11 31736 | 1111,1,0,1,1,1,1,1,1,1,0,0,0
28 9 32648% | I1111.1.111,0001,000 || 62 11 30691 | I111,01,1,1,1,1,1,0,0,0,1,1
29 9 32608% | I11,1,1,1,1,1,0,1,1,0,0000 || 63 11 30526 | 1111,0,1,1,1,001,1,1,1,10
30 9 32592 | [111,1,1,1,1,0,1,0,1,0000 || 64 12 32745 | [111,1,1,1,1,1,1,1,0,1,0,0,1
319 32529% | 111,1,1,1,1,1,0,00,1,0001 || 60 12 31740 | 11,11,1,0,1,1,1,1,1,1,1,1,0,0
329 32518 | [11,1,1,1,1,1,00,000,1,1,0 || 66 12 30699 | I11,1,0,1,1,1,1,1,1,0,1,0,1,1
339 32394 | 1111,1,1,1,01,000,1,01,0 || 67 12 30527 | 111,1,0,1,1,1,0,0,1,1,1,1,1,1
34 9 32390 | 11,1,1,1,1,1,0,1,0,0,0,0,1,1,0

Table B.2: List of all chosen master integrals without dots at 5 loops. The notation is
L. 2 =1(z1,...,2y). Master integrals with dots are found in table Sector IDs
marked with a star correspond to factorised topologies.
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B Reduction statistics

# t sID Master integral # t sID Master integral

68 6 29702* | I31,1,0,1,0,0,0,0,000,1,1,0 || 100 9 30231 | I41.1,0,1,1,0,0,0,0,1,0,1,1,1
69 6 28686 | I31,1,0,0,0,0,0000,1,1,1,0 || 101 10 32736 | I21,1,1,1,1,1,1,1,1,0,0,0,0,0
70 7 30214 | 121,1,0,1,1,0,0,0,0,0,0,1,1,0 || 102 10 32596 | I21,1,1,1,1,1,0,1,0,1,0,1,0,0
717 30214 | I31,1,0,1,1,0,0,0,0,00,1,1,0 || 103 10 32596 | I11,1,1,1,3,1,0,1,0,1,0,1,0,0
727 29703 | I2,1,1,01,0,000,0001,1,1 || 104 10 32596 | 141,1,1,1,1,1,0,1,0,1,0,1,0,0
737 29703 | 11,1,3,0,1,0,0,0,0,0,00,1,1,1 || 105 10 32596 | I31,1,1,1,1,1,0,1,0,1,0,1,0,0
74 7 29703 | I31,1,01,0,0,0,0000,1,1,1 || 106 10 32534 | I211,1,1,1,1,0,0,0,1,0,1,1,0
75 8 32259* | I21,1,1,1,1,0,0,0,0,0,00,1,1 || 107 10 32398 | I2111,1,1,0,1,0,0,0,1,1,1,0
76 8 31246 | I1,2,1,1,0,1,0,0,0,0,0,1,1,1,0 || 108 10 32391 | I21,1,1,1,1,0,1,0,0,0,0,1,1,1
77 8 31246 12,1’1,170,170,070’0,0’1,171,0 109 10 32279 IL17172,17170,01070717071,171
78 8 31246 | I31,1,1,0,1,0,0,0,0,0,1,1,1,0 || 110 10 32279 | I21,1,1,1,1,0,0,0,0,1,0,1,1,1
79 8 30862 | I211,1,000,1,00011,1,0 || 111 10 32279 | 11131,1,1,0,0,0,0,1,0,1,1,1
80 8 30222 | I2,1,1,0,1,1,0,0,0,00,1,1,1,0 || 112 10 32279 | I3111,1,1,00,0,0,1,0,1,1,1
81 8 30222 | I1,31,0,1,1,0,0,0,00,1,1,1,0 || 113 10 30239 | I21,1,0,1,1,0,0,0,0,1,1,1,1,1
82 8 30222 | I31,1,0,1,1,0,0,0,00,1,1,1,0 || 114 10 30239 | I1,1,1,0,1,1,0,0,0,0,1,1,1,3,1
83 9 32608* | I211,1,1,1,1,0,1,1,00000 || 115 10 30239 | 111,30,1,1,0000,1,1,1,1,1
84 9 32390 127171,171,170,170,07070,17170 116 10 30239 I3,1,1,0,1,1,0,0,0,071,1,1,1,1
85 9 32278 | I21.1,1,1,1,0,000,1,01,1,0 || 117 10 29550 | I11,1,0021,01,1,0,1,1,1,0
86 9 32270 | [11,2,1,1,1,000001,1,1,0 || 118 10 29550 | I211,0,0,1,1,0,1,1,0,1,1,1,0
87 9 32270 | [121,1,1,1,0,0,0,00,1,1,1,0 || 119 10 29550 | I311,0,0,1,1,0,1,1,0,1,1,1,0
88 9 32270 | I211,1,1,1,000001,1,1,0 || 120 11 32744 | I21111,1,1,1,1,1,0,1,0,0,0
89 9 32270 | [1,3,1,1,1,1,00,0001,1,10 || 121 11 31736 | I21,1,1,0,1,1,1,1,1,1,1,0,0,0
90 9 32270 | I31,1,1,1,1,000001,1,1,0 || 122 11 30526 | I1,1,2,0,1,1,1,0,0,1,1,1,1,1,0
91 9 32267 | I2,1,1,1,1,1,00,0001,0,1,1 || 123 11 30526 | 11,2,1,0,1,1,1,0,0,1,1,1,1,1,0
92 9 31516 | 11,1,2,1,01,1,000,1,1,1,00 || 124 11 30526 | I211,0,1,1,1,00,1,1,1,1,1,0
93 9 31516 | I1,21,1,0,1,1,0,00,1,1,1,00 || 125 11 30526 | 11,31,01,1,1,00,1,1,1,1,1,0
94 9 31516 | 12,1,1,1,0,1,1,000,1,1,1,00 || 126 11 30526 | I5110,1,1,1,00,1,1,1,1,1,0
95 9 31388 | 121,1,1,0,1,0,1,0,0,1,1,1,0,0 || 127 12 31740 | I31,1,1,0,1,1,1,1,1,1,1,1,0,0
96 9 30231 | I121,1,0,1,1,0,0,0,0,1,0,1,1,1 || 128 12 30527 | I21,1,0,1,1,1,0,0,1,1,1,1,1,1
97 9 30231 | I1,1,1,0,1,1,0,00,0,1,0,3,1,1 || 129 12 30527 | 111,1,0,1,3,1,0,0,1,1,1,1,1,1
98 9 30231 | I111,01,1,00000104,1,1 || 130 12 30527 | I311,0,1,1,1,0,0,1,1,1,1,1,1
99 9 30231 | I31,1,0,1,1,0,0,0,0,1,0,1,1,1 || 131 12 30527 | 141,1,0,1,1,1,0,0,1,1,1,1,1,1

Table B.3: List of all chosen master integrals with dots at 5 loops.
., zw). Master integrals without dots are found in table Sector IDs
marked with a star correspond to factorised topologies.

Loy =1(21, ..

The notation is
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1-loop 4-loop
# t sID | Position of x | Order R || # t sID | Position of x | Order R
1 1 111 1 1 4 960* | 1 1
2 5 992* | 1,2 2,1
3 5  961*% | 1,4 2,1
2-loop 4 5 841 1 4
# t sID | Position of x | Order R 5 6 1008* | 1,3,4 2,1,2
1 2 6%|1 1 6 6 993 | 1,24 5,2,2
2 3 7T |1 2 7 6 978% | 1 2
8 6 952 |1 2
9 7 1016 |14 2,2
3-loop 10 7 1012* | 1,3 2,1
# t sID | Positionof x | Order R || 11 7 1010 | 1,2,5 2,22
1 3 56%|1 1 12 7 1009 | 1,34 3,3,3
2 4 60% |13 2,1 13 8 1020 1,3,4,8 2,2,3,2
3 4 51 |1 2 14 8 1011 | 1,3 4,3
4 5 62 | 1.2 2,2 15 9 1022 | 1,2 3,2
5 6 63 |1 2 16 9 511 |2 3

Table B.4: Difference equation orders for zones of the fully massive vacuum integrals at

1-4 loops. Sector I Ds marked with a star correspond to factorised topologies.

1-loop 4-loop
# t sID | Positionof x | Order R || # t sID | Position of x | Order R
1 1 1|1 1 1 4 960* | 1 1
2 5 992% | 1,2 2.1
3 5 961*% | 1,4 3,1
2-loop 4 5 841 1 )
# t sID | Position of z | Order R 5 6 1008* | 1,3,4 21,2
1 2 6% | 1 1 6 6 993 | 124 54,2
2 3 7 |1 2 7 6 978% | 1 2
8 6 952 |1 4
9 7 1016 |14 2,2
3-loop 10 7 1012* | 1,3 2,1
# t sID | Positionof x | Order R || 11 7 1010 | 1,2,5 2,22
1 3 56%|1 1 12 7 1009 | 1,34 5,5,3
2 4 60* | 1,3 2.1 13 8 1020 | 1,348 2,2,3,2
3 4 51 |1 3 14 8 1011 | 1,3 4.6
4 5 62 1,2 2,2 15 9 1022 1,2 3,2
5 6 63 |1 2 16 9 511 |2 4

Table B.5: Recurrence relation orders for zones of the fully massive vacuum integrals at

1-4 loops. Sector I Ds marked with a star correspond to factorised topologies.
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# t sID |Position of x | Order R # t sID |Position of x | Order R
15 31744* |1 1 35 9 32329 |1,3 2,2

2 6 32256%(1,2 2,1 36 9 32278 [1,2,3,5,14 8,3,4,3,3

3 6 31746*%|1,3 2,1 37 9 32270 [1,2,3,6,12 12,10,15,9,7
4 6 29702*%|1,3 4,2 38 9 32267 [1,2,3,5 3,3,4,4

5 6 28686 |1 4 39 9 31516 [1,2,3,6,12 6,6,11,5,5
6 7 32512*%|1,2,3 2,1,2 40 9 31388 [1,2,6 3,4,3

7 7 32288*% (1,5 2,1 41 9 30231 |1,13 20, 11

8 7 32258%|1,2,3,5 5,2,2,1 42 10 32736 |1,2,3,5,6,9 6,4,4,4,3,3
9 7 31754*%|1,3 2,2 43 10 32712 |1,2,5,6,8 3,2,2,2,2

10 7 30872*|1,4 2,1 44 10 32708 |1,2,3,4,6,13 |[3,2,2,2,2,2
11 7 30858 |1,2 4,2 45 10 32674 |1,2,3,4 3,2,2,2

12 7 30214 |1,2,3 7,6,6 46 10 32652*|1,2,3 3,12

13 7 29703 |1,3 7,8 47 10 32596 |1,6 18,12

14 8 32640%[1,2,3 2.1,2 48 10 32562 |1,3,4 3,2,2

15 8 32576*(1,2,5,6 2,2,1,2 49 10 32534 |1,2,3,4,11,13 |8,4,4,4,3,3
16 8 32528*(1,2,3 2,2,2 50 10 32398 [1,2,3,4,5,6 10,3,4,3,6,4
17 8 32513* 1,2 2,1 51 10 32391 [1,2,3,6 6,4,4,4

18 8 32386 |1,2,3 5,2,2 52 10 32279 [1,3,4,6,13,14 [19,11,18,9,9,6
19 8 32274 |1,3,4 7,2,2 53 10 31420 |1,6 3,3

20 8 32266 |1,2,3,5,6 6,2,2,2,2 54 10 30563* | 1,5 3,1

21 8 32259*%|1,2,3,5 3,3,3,2 55 10 30239 |1,3,14 19,18,6

22 8 31380 |1,2,3,8 7,2,2,2 56 10 29550 |1,6,12 10,10,7

23 8 31246 [1,2.4,6 11,8,8,5 57 11 32744 |1,2,5,6,7,8,10(9,4,4,13,3,4,3
24 8 30876 |1 2 58 11 32737 [1,2,3,5,6,9,15(3,2,3,2,2,2.3
25 8 30862 |1,2 3,3 59 11 32713 |1,2,3,4,7 3,2,3,2,2
26 8 30222 |1,2,3 8,7,8 60 11 32682 [1,2,3 2,2,2

27 9 32704 |1,2,3,4,6 2,2,2,2,2 61 11 31736 |1,3,4,7 9,3,4,4

28 9 32648*|1,2,3,4,12 3,1,2,2,2 62 11 30691 |1,2,3,5 5,3,3,2

29 9 32608*|1,5,6 4,2,3 63 11 30526 |1,2,3,6,7 17,18,11,9,18
30 9 32592 |1,3.4,6 2,2,2,2 64 12 32745 |1,2,3,7,8 3,2,3,2,2
31 9 32529*|1,2 2,2 65 12 31740 |1 5

32 9 32518 |1,2 2,2 66 12 30699 |1,2,5 7,32

33 9 32394 |1,2,3,12 5,2,2,2 67 12 30527 |1,6 18,12

34 9 32390 |1,2,3,4,5,8,13|7,3,4,3,3,3,3

Table B.6: Difference equation orders for zones of the fully massive vacuum integrals at
5 loops. Sector I Ds marked with a star correspond to factorised topologies. Zones with
underlined orders have not been fully reduced yet.



119

# t sID |Position of x | Order R # t sID |Position x Order R
15 31744* |1 1 35 9 32329 |1,3 2,2

2 6 32256%(1,2 2,1 36 9 32278 [1,2,3,5,14 8,6,4,3,5

3 6 31746*%|1,3 3,1 37 9 32270 [1,2,3,6,12 18,16,15,14,11
4 6 29702*%|1,3 5,2 38 9 32267 [1,2,3,5 5,5,4,4

5 6 28686 |1 6 39 9 31516 [1,2,3,6,12 6,10,17,10,13
6 7 32512*%|1,2,3 2,1,2 40 9 31388 |1,2,6 57,3

7 7 32288*% (1,5 2,1 41 9 30231 |1,13 27,19

8 7 32258%|1,2,3,5 5,4,2,1 42 10 32736 |1,2,3,5,6,9 6,4,4,4,7,7

9 7 31754*%|1,3 3,2 43 10 32712 |1,2,5,6,8 3,2,2,2,2

10 7 30872*|1,4 4,1 44 10 32708 |1,2,3,4,6,13 |[3,2,2,2,2,2
11 7 30858 |1,2 5,4 45 10 32674 |1,2,3,4 3,2,2,2

12 7 30214 |1,2,3 7,8,6 46 10 32652*|1,2,3 3,1,2

13 7 29703 |1,3 9,13 47 10 32596 |1,6 18,17

14 8 32640%[1,2,3 2.1,2 48 10 32562 |1,3,4 3,2,2

15 8 32576*(1,2,5,6 2,2,1,2 49 10 32534 |1,2,3,4,11,13 |8,4,4,4,6,7
16 8 32528*(1,2,3 2,2,2 50 10 32398 [1,2,3,4,5,6 8,5,4,5,6,4
17 8 32513* 1,2 2,1 51 10 32391 [1,2,3,6 8,7,4,7

18 8 32386 |1,2,3 5,4,2 52 10 32279 |1,3,4,6,13,14 |28,11,20,16,16,16
19 8 32274 |1,3,4 7,2,4 53 10 31420 |1,6 5,3

20 8 32266 |1,2,3,5,6 5,4,2,2,2 54 10 30563* | 1,5 4,1

21 8 32259*%|1,2,3,5 5,5,3,2 55 10 30239 |1,3,14 25,19,8

22 8 31380 |1,2,3,8 7,4,2.4 56 10 29550 |1,6,12 14,17,11

23 8 31246 |1,2,4,6 13,14,13,6 ||57 11 32744 [1,2,5,6,7,8,10|9,4,4,12,7,7,6
24 8 30876 |1 4 58 11 32737 [1,2,3,5,6,9,15(3,2,3,2,2,2.3
25 8 30862 |1,2 7,6 59 11 32713 |1,2,3,4,7 3,2,3,2,2

26 8 30222 [1,2,3 10,10,8 60 11 32682 [1,2,3 2,2,2

27 9 32704 |1,2,3,4,6 2,2,2,2,2 61 11 31736 |1,3,4,7 75,47

28 9 32648*|1,2,3,4,12 3,1,2,2,2 62 11 30691 [1,2,3,5 6,5,7,2

29 9 32608*|1,5,6 4,2,6 63 11 30526 |1,2,3,6,7 ?.7,7.14,7

30 9 32592 |1,3.4,6 2,2,2,2 64 12 32745 |1,2,3,7,8 7,7,7,7,7

31 9 32529* 1,2 2,2 65 12 31740 |1 ?

32 9 32518 |1,2 2,2 66 12 30699 |1,2,5 ?22.?

33 9 32394 |1,2,3,12 5,4,2,2 67 12 30527 |1,6 2.2

34 9 32390 |1,2,3,4,5,8,13(7,5,4,5,3,5,5

Table B.7: Recurrence relation orders for zones of the fully massive vacuum integrals at 5
loops. Sector I Ds marked with a star correspond to factorised topologies. Question marks
denote orders which are not yet determined.
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C Nwumerical results

Listed here are numerical results for the fully massive corner integrals of the representative
sectors of non-factorised vacuum topologies in d = 4 — 2¢ dimensions. The values given
here are normalised by the 1-loop tadpole J = [, (k* +1)~! to the power L and limited to
~50 digits precision and the leading 6 orders of the e-expansion. All results for 2-4 loops
as well as a few integrals at 5 loops are already known in the literature (see sect. , but
are listed here for completeness. The full list of results obtained in this work includes all
5-loop master integrals up to 11 propagators in three and four dimensions with 250 digits

precision and 15-30 orders in e. This list can be made available upon request.

C.1 2-loop

—1.500000000000000000000000000000000000000000000000
—1.500000000000000000000000000000000000000000000000 €
+0.515860858034188335902343433308415603643104514453 €>
—8.540503339614544671799894997792116772367413851777 €3
+1.039200541451345629937997428402437565814452745044 €*
7 —34.02412109418437876206777042875976448646874597234 €5
+...

C.2 3-loop

—2.000000000000000000000000000000000000000000000000
—1.666666666666666666666666666666666666666666666666 €
—0.499999999999999999999999999999999999999999999999 2
+8.583333333333333333333333333333333333333333333333 €3
+2.664875615375146678409775303572533678107178419288 €*
51 +196.7353782591730433858563053732030434664159925326 €°
+...

1.000000000000000000000000000000000000000000000000
+2.666666666666666666666666666666666666666666666666 €
+1.301611617264956661528646466716502126047124304425 €>
+16.17027687753648029273000749323203572619203425393 ¢
150.36368751002766464712459970887058692375220280352 €*
62 +72.00897461295336034290529765044698186018294035915 €
+...




C.3 4-loop 121

—2.404113806319188570799476323022899981529972584680 €2
+17.24761989872635488431312965422760018324025125004 €
—73.26296589040362104788617737106101541072605775907 ¢*
+259.4946671222559246930353806588203939311375233114 €
—855.0640324263683182684972461824631640925159683337 6
+2715.946776452544387893443991909756653155929639372 €’
+...

®

C.3 4-loop

—2.499999999999999999999999999999999999999999999999
—1.666666666666666666666666666666666666666666666666 €
—0.034722222222222222222222222222222222222222222222 ¢>
—0.723379629629629629629629629629629629629629629629 >
—16.14646921346643369526363642598358965658209440971 ¢
841 —302.6872495327167969437348169217252219660504959272 €
+...

S

1.624999999999999999999999999999999999999999999999
+3.729166666666666666666666666666666666666666666666 ¢
+2.299125379615384162813151516704043261202009894985 €2
+4.650303936879081587821913205052655653997240134599 €3
—30.56788162137333591569301669838011480986789770322 €
993 —117.9122191101286207914574880627219300609729760447 €5
+...

S

1.499999999999999999999999999999999999999999999999
+3.499999999999999999999999999999999999999999999999 ¢
+4.500000000000000000000000000000000000000000000000 €2
—93.10617070947878285619921448453434997229495887702 ¢3
—81.84625210730434475325055702968720656910287341851 ¢4
952 —665.2377705981047417674547611231459814404358744843 €0
¥

O

—0.749999999999999999999999999999999999999999999999
—3.249999999999999999999999999999999999999999999999 ¢
—3.202417425897434992292969700074753189070686456638 ¢2
—923.64446287166479257628968289009838183838632693733 ¢3
—220.3006425305415744221515167430864054009746 786364 ¢*
1016 +185.7267272528973291626425052793363369197872061921 ¢
¥

O
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1010

1009

1020

1011

1022

011

—0.500000000000000000000000000000000000000000000000
—2.416666666666666666666666666666666666666666666666 €
—3.801611617264956661528646466716502126047124304425 2
—18.66035288447634957262454822423808897067280295653 €3
—117.1624362179113216274714036609334161128352624409 ¢*
—267.7881552899537126565846210651081923567182641432 €
+...

—0.250000000000000000000000000000000000000000000000
—1.333333333333333333333333333333333333333333333333 €
—3.936196045125405949497394728203034387121881777886 €2
—13.23739753045445457230177460694325520434364231558 3
—11.96719509053382420804558199010921594173524238764 ¢*
—632.6163460443062532607367443489126118521477394767 €
+...

1.803085354739391428099607242267174986147479438510 €2
—16.25627696927031709985052518436630112417383502547 3
+89.07136923770214012749325727432117027978344859502 €*
—415.2908499166583053914468713910249372604539847947 €5
+1827.157710527922571754377363864904360112667327483 €°
—7810.005823814303387875767922519653528118417996091 ¢’
+...

5.184638775716849631656827432285170840285404597509 €
—59.69766594382494511956968400321266366512646089768 ¢*
+403.4851057340390854957803551819367311253200404972 €
—2176.859334630442755151786640325415718486742621480 °
+10489.716294127788841834675040570239606 78789528447 €’
—47426.26672381895197429844710388040746210832275555 €°
+...

1.348948021709708959864454302921398883618322214161 ¢*
—13.74571732844810597749673020923745948628720600820 €
+81.93595470871647214673808535391173195139074515473 €5
—394.5604329041362858532559852048213763897880141399 ¢’
+1729.012277027330435684897106721499396525546446800 €8
—7243.098846056454310669502221498142084515164984587 ¢’
+...

0.997672576874263051049093586736116142011864780629 €*
—9.822447510800679245312765479523138613161387911829 €
+56.87175492287880361818226201426416082730289764036 €°
—268.4646164025470888504319624772305496318916886153 €’
+1162.586956173976936066917303653221066671663180305 €
—4838.055969268705326219030961831177629967200659825 ¢’
+...
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C.4 5-loop

0)

28636

[\ w w
© ) )
~ [\ (07)
) — Ut
w H~ (0]

W

32386

S

32274

—3.000000000000000000000000000000000000000000000000
—1.500000000000000000000000000000000000000000000000 €
+0.541666666666666666666666666666666666666666666666 €
—0.879861111111111111111111111111111111111111111111 €
—1.213252314814814814814814814814814814814814814814 ¢*
+135.9507286879287146195649273370221857489799295358 €
+...

2.400000000000000000000000000000000000000000000000
-+4.850000000000000000000000000000000000000000000000 €
+4.575000000000000000000000000000000000000000000000 €2
—23.65000000000000000000000000000000000000000000000 €?
—30.27796017945877336856265924405093436765486859119 ¢
—646.6821301567552453993392130183196420214586363550 €”
+...

2.300000000000000000000000000000000000000000000000
+4.666666666666666666666666666666666666666666666666 €
+1.668278283931623328195313133383168792713790971092 €>
+17.33346997962794934017444319561745718432179946206 €
+27.48270453485749429709885622395161176331718534968 €*
+378.1034445044565101843926379782276708461911832629 €
+...

2.200000000000000000000000000000000000000000000000
+4.483333333333333333333333333333333333333333333333 €
+4.566666666666666666666666666666666666666666666666 €
—9.388702425687269713719528690720609983376975326212 €3
+19.31407800749752756112276689558356534059581172145 €*
+307.3041588355847768376539185160608792355567728066 €°
+...

—1.250000000000000000000000000000000000000000000000
—4.791666666666666666666666666666666666666666666666 €
—4.989917425897434992292969700074753189070686456638 €2
—16.96676519262530769410542656551085623299443619995 3
—20.36660498453406213366449147467030679539562910748 ¢*
—283.7206876437240971616865083043685798151517392566 >
+...

—1.100000000000000000000000000000000000000000000000
—4.316666666666666666666666666666666666666666666666 €
—6.209944950598289994861979800049835459380457637759 2
—12.73920238905814766408807282904215552651930513128 €3
+34.94943329201068259187129707745300452490009727762 €*
+213.1806091199780226997162011027502619633059974522 €°
+...
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&

32266

o w w
) — —
oo () )
3 = o
(@p) @) S

S

30862

@

30222

—0.925000000000000000000000000000000000000000000000
—3.945833333333333333333333333333333333333333333333 €
—5.487431188247862493577474750062294324225572047198 2
—19.46357852559288907006518158822612936218121004990 €3
—51.37125044581005545502000193263395238235621942810 ¢*
—32.17293665388255170211642453041219246621887663531 €
+...

—0.950000000000000000000000000000000000000000000000
—3.916666666666666666666666666666666666666666666666 €
—7.250805808632478330764323233358251063023562152212 2
+5.136236206398961635058304118070521281559298487664 ¢
+136.7941661696244161557232994614762050881114810483 €*
+577.7948085466907669579650716383658369845190427411 €
+...

—0.650000000000000000000000000000000000000000000000
—2.866666666666666666666666666666666666666666666666 €
—6.379117997826820425750780429234077722302217852751 €2
—7.986871170689552194100350456952925182376873868553 €3
+61.71328604092617393757994432671138847791848732886 €*
+483.7949405836061994886847573114415893067050454213 €
+...

—1.200000000000000000000000000000000000000000000000
—4.600000000000000000000000000000000000000000000000 €
—9.100000000000000000000000000000000000000000000000 €2
+41.58151865769372799823853370446411994828392323710 €3
+307.5379834095480591615102550167046723522128304691 €*
+1217.592873625123064569618404966449375534745729445 €
+...

—0.600000000000000000000000000000000000000000000000
—2.699999999999999999999999999999999999999999999999 e
—7.978312189194342094986457195875826659278655700539 €2
+13.26275192137935340676620540607222513900889972759 €
+166.6066550726641892049282925669659951472415347559 €*
+1143.183830755876459946603030383959032326831860588 €
+...

—0.600000000000000000000000000000000000000000000000
—2.862499999999999999999999999999999999999999999999 e
—5.362429092494046566101822696956705453839449413163 2
—20.06150592205425117938426029352451072780542073975 €3
—91.04498558175757706880606535229158160422425519486 ¢*
+124.6547918331255323300311262146769428568932584326 €°
+...
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125

32704

32592

32518

32394

32390

32329

0.350000000000000000000000000000000000000000000000
-+2.350000000000000000000000000000000000000000000000 €
+5.146324664586893882894531988947030258166089466274 €2
+22.98817155308797332899106065360893241182548560364 €
+274.0089059343223514840982778084796823328550375448 €*
+276.3953162324161223492950217662989416208893831455 €°
+...

0.199999999999999999999999999999999999999999999999
-+1.500000000000000000000000000000000000000000000000 €
+4.412185522621082218796875422255445861809193980728 €2
+17.86748980003246478885560812573492885211808920756 ¢
+138.8800190814273262887033709194923230003465828125 €*
+495.6219019096353859553473432652153662745354126030 €
+...

0.299999999999999999999999999999999999999999999999
-+2.100000000000000000000000000000000000000000000000 €
+5.268278283931623328195313133383168792713790971092 €>
+21.61709555808288551918575562191080888182023832579 €
+189.0932025591679233452668654348999112668959640847 €*
+928.9768843131777695594889407707604998757867839483 €
+...

—0.025000000000000000000000000000000000000000000000 €
+2.983053638530904570579293036080914975065462989319 €>
—24.80631192600415350504213398493937658599919694940 3
+81.53917321461822874704845313174387513154221260325 €*
—174.4526566373242830572957792588464058419491513672 €
—1242.325649940329230493812289223380502015253337080 €°
+...

0.150000000000000000000000000000000000000000000000
-+1.149999999999999999999999999999999999999999999999 €
+4.255373283861568235337499463598454390815887260950 €>
+15.49934852163988652697564029742361348154148789769 €
+53.70815489228393218571637006319656929587381750874 €*
+1058.743690637599920074339218910320249047898631214 €
+...

0.600000000000000000000000000000000000000000000000
-+3.600000000000000000000000000000000000000000000000 €
+5.136556567863246656390626266766337585427581942184 €2
+30.55244425105160323685899973993772011172079601426 €
+573.9603535983996600242189492738531845953917162971 €*
—1310.998766837454065997915351591681359401600370234 €
+...
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0.050000000000000000000000000000000000000000000000
-+0.449999999999999999999999999999999999999999999999 €
+2.959897593498905411558983200924166457140786158288 €2
+12.14439788313620658714878544428414606056035504366 €
32278 —0.931607035764801794625264199621398430808083114657 ¢*
+519.2711921571634652590084477778218714831547371216 €°
+...

0.100000000000000000000000000000000000000000000000
+0.799999999999999999999999999999999999999999999999 €
+2.656092761310541109398437711127722930904596990364 €2
+12.49523541032632394470980625904310422947250767949 €
32270 +79.42288218177492945909736717619494551678126000335 €*
+91.79138259686169597244585173318118920070823092485 €
+...

0.199999999999999999999999999999999999999999999999
-+1.400000000000000000000000000000000000000000000000 €
+4.033419664516838790036718319162315856268185756132 €>
+16.39165865854073090802078822602860700600572695094 €
32267 +138.0814712556014474392957458776817968536816932927 €*
+435.2026507678038979801977562646496739360425100463 €
+...

0.049999999999999999999999999999999999999999999999
-+0.450000000000000000000000000000000000000000000000 €
+2.599280522551027125939061752470731459911290270586 €2

+11.32709413193374568282983843073178885889590636962 €

31516 —3.191005458331094414020785508218687687443684029560 ¢

+568.3713151762212169690012390594477542602327225606 €

+...

0.100000000000000000000000000000000000000000000000
-+0.800000000000000000000000000000000000000000000000 €
+4.098561045102054251878123504941462919822580541172 €>

- +14.47367552703882140757535826292603809988287013862 ¢
31388 —29.37326015015386172875499984198288560748216132345 ¢*
+1530.343312055948791720072829497412494365522738369 €

+...

0.721234141895756571239842896906869994458991775404 €2
+9.133513169040430150037400064606243577881461043062 €
+18.95318188466870382986912163074957478331662315353 €*

—531.3239154772563526794344456149536831839890137843 €

30231 +7502.673824259336918591214015432109157871330630361 €°

—56141.78112476381681554972844331060055708116158225 ¢’

+...




C.4 5-loop 127

—4.1477110205734797053254619458281366 722283236 78007 €3
+56.76739666338249149041641437964339657915885294410 €*
—462.5991511795913134184217559773864774267111656564 €

+3050.201447949365799268522983594931487169247941581 €°

32736 —18170.11060050125316561097773107847431297636110621 ¢’

+102401.9758621685637296845209050483208971337755434 €8

+...

—1.442468283791513142479685793813739988917983550808 2
+15.66147121159669442917296250244952168873398529073 €3
—103.5239364022065317360170621911223435336623122810 ¢*

+580.4741067302635545111441809277187966180371850395 €°

32712 —3073.879336918165275606380025078599682843449822393 6

+15892.11991655887990072312985187902211863523504677 €’

+...

—0.721234141895756571239842896906869994458991775404 €2
+7.109501463902590643346638354317890849908000869961 €
—47.13186277613555829347294402151405507389821974085 ¢*
+296.1905625100606926666512502209231529532854818668 €
32708 —1830.159215141953821332175535667027726001198729017 6
+10898.77592636784646364500094992325948383560868844 €’
+...

—1.442468283791513142479685793813739988917983550808 2
+15.66147121159669442917296250244952168873398529073 €3
—105.5977919124932715886797931640364118697764741200 ¢*
+618.4148817887101794124334614373290213792244232458 €°
32674 —3468.946845848263789647342965213016342216640150072 €5
+19037.57014187524101245199861004587803837742830381 €’
+...

—14.11688988334691957575716569789715463439808984791 ¢*
+235.0772959678346713145438808095041177923934723958 €
—2267.738683293008412296299448058020585548754541373 €°

+17032.05736733550461114507260154791350899541515054 €’

32596 —111545.9293498842796443397483626759592296158730242 €°

+672718.6865199544529165215897086854754760252653496 €”

+...

—1.442468283791513142479685793813739988917983550808 2
+15.66147121159669442917296250244952168873398529073 €3
—102.4870086470631618096856967046653093656052313615 ¢*
+561.4255096555411802989515342532992606501630608999 €
32562 —2875.169901786174707497331215610524723044689584881 b
114309.66789055985793699059222565628586547916818050 €’
+...




128 C Numerical results

—4.1477110205734797053254619458281366 722283236 78007 €3
+58.50132562150285257111283647421178197177933543101 €*
—494.0498278380384756227917916954049142748202780855 €”

+3375.256141441903031734538323237827181282672963487 €°

32534 —20742.48877945843156784497186190848486909447787042 ¢’

+119909.9823573868996154007810746448257889599563846 €5

+...

—0.721234141895756571239842896906869994458991775404 2
+7.109501463902590643346638354317890849908000869961 €3
—44.02107951070544851447884756214295256972697698235 ¢

+242.0206490046583005827769120364688314457983154102 €°

32398 —1289.191507447673828487064581653596042700633921784 €5

+6731.574863316517557389851254642819556500391745508 €’

+...

—4.147711020573479705325461945828136672228323678007 €3
+60.23525457962321365180925856878016736439981791793 €*
—524.5845686480130275427845505840851343151310513525 €°
+3683.531526701728430839586631150125526718651926368 €°
32391 —23140.29050618808330097812925263037891370001191410 €’
+136031.0732944849606349937823398089488271105631676 €
+...

—11.11705078313569916590876798709400927458849575523 ¢*
+181.7822392861234082079078823601864296119874199420 €°
—1725.999613740352080595167399244211728860770495754 €5
+12797.99987372682404668555169033764331697450364155 €’
32279 —82986.85269258138216055904714739092570657110940340 ®
+496710.2728561483282152315089035861270426859924641 €
+...

—10.40357374872216648417853256741031235572289492149 ¢*
+167.8153530591847406196212060111246623367589829829 €
—1572.958152631546332168737012924430120732311850304 €°
+11533.80237760276728405588733233544262789155612591 €’
31420 —74112.47851638470253497575693603457890960000148877 €
+440426.3324186606812054481703013136217628511485098 €’
+...

—10.40357374872216648417853256741031235572289492149 ¢*
+170.1688791844048584426914477140315344546958573394 €°
—1617.427610985994602508736512353211593050594289109 6

+12009.95234181003289104385888288726798181425157927 €’

30239 —77990.23000502531150901441543067082347645664379563 €®

+467415.4101348601782267148097795330194668480978404 €

+...




C.4 5-loop
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29550

32744

32737

32713

32682

31736

—4.1477110205734797053254619458281366 722283236 78007 €3
+61.96918353774357473250568066334855275702030040485 €*
—554.9107156873193760774790387572128994774105894429 €’
+3986.997932439342663308489012289051330906449325858 €°
—25478.27907133643217288387221762192103140607530609 ¢’
+151608.3985358483941452720323838621642238506603135 €5
+...

—2.998232873680403094168762883590095773087401817948 €5
+43.75280252615427411169257824938492717855692308423 €5
—368.3196670775481437256647394251287786026783523899 ¢’
+2428.021906815559459021743417034929024813842389867 €
—14126.64461336412148378626905087785317127428545699 ¢’
+76819.46393126078913111863700014264017725700338615 €'0
+...

—1.348948021709708959864454302921398883618322214161 ¢*
+17.40126602800759993452487395539252598288896429420 €
—132.8921181359625936128251663536492467362941171060 €°
+820.1812392337405476607961905922885392571320396083 €’
—4583.653712987752026146669478852799809526668060525 €
+24349.66876563193939110528524660161406231921592191 €”
+...

—1.348948021709708959864454302921398883618322214161 ¢*
+16.98146619252512270971010570864997294635856828946 €°
—126.1609395979062628673838743503612545403789230552 5
+759.0688438353341280249009521651432847584038467965 €’
—4157.949764912742092381478451497483165995666418287 ®
+21777.73803722606240195514560495004324585202245229 €
+...

—3.816555015802940587938977897897169928644556668850 €
+56.69539775835035037600667776934274837412827940746 €°
—484.7075081209039516121392443550159416261392605399 €’
+3234.067040256099686441369781687971083564820981887 €®
—18980.99682611361784720299594740439856094964894219 ”
+103832.3359812046928997987333624791654461461178692 €'0
+...

—2.210962832706771782498232559647781404106379761271 >
+31.23765127619360951569435211872040110946874586881 €5
—255.3167961858489413130130317971417588790525890564 ¢”
+1643.12481525352675372746545276370226 7437901977875 €8
—9390.394008983969002019875572734851849217065687404 ¢”
+50430.86554729172863633478848042785260419782367077 €'°
+...
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C Numerical results

30691

30526

—0.997672576874263051049093586736116142011864780629 ¢*
+12.36721704421587922542846326506814370023897039672 €
—91.03946593089316708123221790357973137435127209307 5
+545.8143320342208412330857112889983318191083800052 €’
—2988.239057897256094676702060143265114831927288335 ®
+15658.31915993852108287819742826378227294484778859 €
+...

—1.970390455317890254668792371697895351281107398428 €5
+27.57073286732983476157043662447811439662240217742 €5
—223.5357199897014388795640942829354241229676230441 ¢’
+1430.172138637487321663810941305184259016492117714 €®
—8141.825356850975193558368516068423272809313860785 ¢’
+43621.10767455682105913128020964136172392172715799 €'0
+...
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