
Universität Bielefeld

Universitätsstraße 21–23

33615 Bielefeld

Faculty of Technology,

Semantic Computing Group

Master’s Thesis

Ranking of Disease Gene Associations
from large Corpora of Scientific

Publications

Hendrik ter Horst

Supervisors:

Matthias Hartung, M.A.

Prof. Dr. Philipp Cimiano

Date: 26th June 2015

Abstract

The extraction of disease-gene associations from biomedical publications is a widely inves-

tigated field of research. In previous work, a frequent method was to implement natural

language processing tools that use semantic information to find such associations. How-

ever, most of these approaches are restricted to single documents. Retrieval systems that

predict novel associations across various documents often lack the ability to deal with the

huge amount of resulting candidates. In this work, we present a system that aggregates

information from a large corpora of scientific abstracts. This information is used to build a

comprehensive gene-interaction network, which is then used to predict novel disease-gene

associations. We tackle the problem of candidate reduction by integrating two separate

machine learning methods. We train a support vector machine to classify genes as disease

related or not and a support vector regression model to rank gene-candidates according to

their importance to a specific disease. Thereto, we make use of approved methods and ex-

tend them by a novel investigation of the gene-interaction network. In a model-evaluation

on two gold standards as well as in a case-study in cooperation with biomedical experts,

it is shown that the proposed methods are able to extract disease-gene-associations from

single documents and discover disease-related candidates across multiple documents.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Goals And Contributions . 2

1.3 Outline . 3

2 Related Work 5

3 Materials 11

3.1 The Investigated Corpora PubMed . 11

3.2 Data for Entity Disambiguation . 12

3.3 Gold Standards . 13

4 System Architecture 15

4.1 Information Extraction . 17

4.2 Data Conversion . 17

4.3 Data Storage and Supply . 18

4.4 Gene Ranking System . 20

5 Approach and Resource Generation 23

5.1 Disease Recognition and Normalization . 23

5.1.1 Disease Mention Recognition . 24

5.1.2 Disease Surface Form Normalization using DiNo 24

5.2 Extraction of Gene Interaction Events and Gene Normalization 34

5.2.1 Gene Event Recognition . 34

5.2.2 Gene Surface Form Normalization 36

5.3 Gene-Interaction Network . 40

5.3.1 Graph Construction and Transformation 40

5.3.2 Extraction of Path Signatures . 45

iii

Contents

5.4 The Graph Database . 49

5.4.1 Blazegraph . 50

5.4.2 Population of the Database . 50

5.5 Feature Extraction . 54

5.5.1 Co-occurrences Based Features . 55

5.5.2 Gene Interaction Based Features 62

5.5.3 The Feature Vector . 65

5.6 Summary . 68

6 Experiments and Evaluation 71

6.1 Classification of Genes Candidates . 72

6.1.1 Methods and Experimental Setup 72

6.1.2 Evaluation Results and Discussion 74

6.2 Ranking of Gene Candidates . 79

6.2.1 Methods and Experimental Setup 79

6.2.2 Evaluation Results and Discussion 82

6.3 Case Study with Pulmonary Fibrosis . 85

7 Conclusion 89

Bibliography 93

iv

1 Introduction

1.1 Motivation

The huge amount of biomedical information, which is published daily exceeds the human

abilities to recognize and process relevant knowledge manually. It is barely possible to

extract all available information without any technical support. Due to improved technol-

ogy, nowadays extraction systems can process large corpora of scientific publications for

several applications. One very well investigated research field is the automated discovery

of disease-gene associations.

Finding causal links between biomedical entities e.g. between diseases and genes, receives

a growing attention in the recent years. Fundamental sub-tasks like named entity recog-

nition, entity disambiguation and relation extraction have been tackled very successfully.

Improvements have been made in collecting and providing already extracted information

by storing them standardized in global databases. The exponential growth of research

results provides an essential groundwork for nowadays approaches and with the increasing

importance of machine learning methods, the amount of annotated corpora were enhanced

in quantity and quality. However, the frequent emergence of new challenges, for exam-

ple the BioCreative shared tasks [33, 35, 47], shows the deep and lasting interest of the

biomedical research community.

Due to the growing popularity of Swanson’s fish-oil experiment [64], the task of relation

extraction enlarged. Swanson was able to link researched information across two pub-

lications and discovered new knowledge. In his work, he defined existing information

that can be found in a single publication as private knowledge and information that can

only be gathered by linking private information as (undiscovered) public knowledge. This

encouraged many researchers to develop novel approaches that deal with the discovery

of public knowledge. However, the results of systems that automatically extract public

knowledge, often need further investigations and a subsequent human assessment. Es-

pecially the task of disease associated gene extraction, using public knowledge, should

rather be seen as the generation of disease related gene-candidates. A common way of

1

1 Introduction

public knowledge discovery is to built interaction networks of the studied concepts. These

networks tend to grow very fast, which also increases their complexity. This results in

a new problem. The number of predicted candidates rises exponentially to the size and

complexity of the network. This makes a human based assessment a lot more expensive

and time consuming.

1.2 Goals And Contributions

In this work, we present a comprehensive system for disease-gene association extraction

as well as disease-related gene-candidate prediction with respect to the human species.

Our approach consists of a modular pipeline, built of several state-of-the-art systems

for entity recognition, disambiguation, and gene-event extraction from a large corpora

of scientific publications. Besides that, we implemented a simple disease normalization

framework (DiNo). We provide a simplified GENIA-event-scheme in order to generalize

event-types. Based on the extracted information, we built a large gene-interaction network

by integrating the transformed gene-events into a graph-database. We use this network

to generate gene-candidates for a specified disease. Since the network was built by an

aggregation of information across various publications, the candidate generation goes

beyond private knowledge and allows us to discover novel disease-gene associations (hidden

public knowledge).

We tackle the problem of candidate reduction by implementing two machine learning

methods. A support vector machine is trained to classify gene-candidates as disease-

related or not, and a support vector regression model is trained to rank genes by their

importance. Both methods can be used to filter gene-candidates by discarding genes that

are either non-related or whose prediction is lower than a threshold. Our feature space

consists of already proved features based on disease-gene co-occurrences and is extended

by novel features based on the interaction network.

We evaluate our models on two different gold-standards. Further, we evaluate our system

by integrating the best performing models and conduct a case-study. We chose Pulmonary

Fibrosis as testing diseases.

Our contribution to the research field is a comprehensive system, that generates a list of

disease related gene-candidates across scientific publications ranked by their importance.

2

1.3 Outline

1.3 Outline

After the brief introduction and motivation of our presented work, we give an outline of

the remaining chapters of this thesis.

In Chapter 2, we present related work to our approach. We briefly introduce some

state-of-the-art systems that deal with sub-tasks such as Named Entity Recognition, Entity

Disambiguation, and Gene-Event Extraction. Besides that, we present existing approaches

that tackle the comprehensive task of disease-gene association extraction and systems for

candidate generation.

Chapter 3 gives a brief overview of the existing resources that we used in this work.

This includes two gold-standards, the large corpora of scientific publications, and several

databases for the task of entity disambiguation.

Chapter 4 contains a description of the overall system architecture. We provide a com-

prehensive view to the modular structure. Each module is then described more detailed

with respect to its input and output. We illustrate the functional interaction between the

modules and explain the chain of data processing.

Chapter 5 presents all methods that we use in our approach. This includes integrated

state-of-the-art systems, their functional combination, as well as their combination with

self developed methods. We explain the disease recognition and normalization, the gene-

event extraction, which subsumed the gene recognition, the gene normalization and event

transformation. On top of that, we motivate and describe the data storage and data

supply, which is part of the resource generation and enables the gene-interaction network.

In the last section, we formalize the features, which are used in the machine learning

methods.

In Chapter 6, we describe the conducted experiments and present the evaluation results.

We test various settings against two different gold-standards to determine the best per-

forming models. These models are used in a case-study to test the performance of the

gene-classification task. We present and discuss these evaluation results as well.

Chapter 7 summarizes the results of this thesis with respect to the aim of our con-

tribution. We briefly discuss the evaluation results and give an overview of remaining

problems. The discussion contains some ideas for future work that can help to improve

the system.

3

2 Related Work

We situated our work on Ranking of Disease Gene Associations from large Corpora of

Scientific Publications in the context of entity relation extraction.

Entity relation extraction (ERE) is the task of identifying relations or complex events

between entities, such as diseases, genes or proteins, in natural language texts but also

in existing databases. This includes finding relations between entities of the same type,

e.g. relations between genes, but also across various types. Two frequent types of ERE,

especially in the biomedical research field, are the extraction of gene relations among

each other (GR) and the extraction of disease-associated genes (DAG). Both of them

share common problems like Named Entity Recognition (NER) and disambiguation of

such named-entities (NED). These problems have been addressed relatively successful in

recent years.

Named Entity Relation Facing the challenges of NER, e.g. the unseen word problem or

the mention boundary problem, BANNER [39] turns out to be one of the best performing

approaches. It uses state-of-the-art machine learning techniques to maximize domain

independence. Like other NER approaches [36, 66], BANNER defines the named entity

recognition as a label sequence problem and tackles it by using conditional random fields

(CRF). This combination makes BANNER a powerful framework for extracting disease,

genes and other biomedical entities. In 2008 Dingcheng Li et al. compared CRF with

support vector machines (SVM) for the task of named entity recognition in the biomedical

field. They showed that CRFs outperform SVMs by 22 points in F-score [43] with a total

of 86%.

Named Entity Disambiguation Most of these state-of-the-art approaches extract the

surface form1 of an entity and its position, but do not take the process of NED into

account. However, this is a crucial step, especially if the extracted information need to

be further processed, e.g. in ERE-systems and should be linked to structured information

1The surface form is defined as the unmodified form of how the entity appears in a text.

5

2 Related Work

in databases or otherwise harmonized with existing knowledge from different sources.

Such normalizations are not restricted to approaches that make use of natural language

processes. In contrast, due to the establishment of many different so called standards for

biomedical named entities, its a common way for both, automatically generated databases

and curated databases to use self defined standards. This leads to a high variation of

surface forms, preferred names and IDs [12,45,67]. Thus, a disambiguation is mandatory

[2, 11,68].

Robert Leaman et al. have introduced DNorm [38], which tackles the problem of disease

name normalization. DNorm makes use of machine learning methods, that learn similari-

ties between mentions and concept names. A common technique in disease normalization

is to make use of databases such as MeSH [44] and OMIM [31] with predefined terms and

concept names for the specific domain [23].

This structure applies also for different types of concepts such as genes. In 2009, Joachim

Wermter et al. challenged the task of gene name normalization and presented GeNo [72].

They illustrated that the task of normalization and disambiguation does not only rely

on machine learning but also on dictionary string matching techniques. The mixture

of both techniques led to an F-score of 86.4 points. However, GeNo uses a build-in

named entity recognition module which is nowadays a common method [38, 71, 72]. It

offers the possibility to influence the NER-output and customize the normalization to

this specific output. Nonetheless, Haw-ren Fang et al. showed that taking NER and

entity normalization separated into account works, too [25].

Jörg Hakenberg et al. challenged a more comprehensive task by not specializing to a

specific taxonomic scope [28]. The task of gene normalization across various species

requires more than a dictionary based string matching and machine learning techniques.

Especially working with inter-species gene names is a complicated challenge. Hakenberg

presented GNAT, a publicly available system for inter-species gene name normalization.

It shows an performance of 81.4 F-score, taking 13 species into account. However, all the

adjustments to deal with the problems of inter species genes, lead to a slightly drop in

the performance for individual species. Overall, they provided an F-score of 85.4% for

human gene normalization.

Relation Extraction Named entity recognition and entity normalization are both ele-

mentary components of relation extraction systems e.g. for gene relations or gene event

extraction and disease-gene association extraction. Finding gene relations in biomedical

literatures is a well established research field. There are various approaches that imple-

ment many different methods. Claudio Giuliano et al. made use of shallow linguistic

6

information to extract relations between known entities. They implemented two kernel

functions [58] to identify useful information about local and global structures of a sen-

tence [27].

Katrin Fundel et al. used natural language processing to produce syntactic parse trees.

Using this additional layer of linguistic information, they showed, that they were able to

extract gene-protein relations from a large corpora of scientific abstracts. Fundel men-

tioned the importance of an integrated normalization in order to provide additional in-

formation from various databases [26].

Event Extraction Gene relation extraction is an important challenge for automatic dis-

covery of interactive biomedical entities. Jari Björne et al noticed a shift from relation

extraction to the more complex task of event extraction [8]. In contrast to the relation,

an event provides more than just a binary or fuzzy interaction [73] type. An event con-

tains detailed information about the specific interaction like the sentence structure and

the direction of the relation. This could be either positive, neutral or negative. On top

of that, an event could describe a hierarchical structure of multiple relations.

One of the most popular event extraction systems for gene interactions is TEES, [9].

TEES is a highly competitive system that was successfully applied to various BioCreative

shared tasks on event extraction [62]. The system’s pipeline is sub-modular designed.

A pre-processing step contains various state-of-the-art systems for sentence parsing and

named entity recognition. This modular structure makes TEES a powerful framework. It

benefits not only from self made improvements for the actual event recognition task but

also by each local improvement in individual modules.

Gene Interaction Network Sofie Van Landeghem and Jari Björne applied TEES to the

entire PubMed and built a protein/gene interaction network [69]. The main goal was to

create a comprehensive network for further research. To reduce the amount of data and

for greater usability they normalized both the extracted proteins/genes and the extracted

events. Landeghem created a network with more than 70 million protein/gene mentions

and 40 million events connecting them for 5.032 species across the full taxonomic scope.

Disease Gene Associations The extraction of disease associated genes (DAG) is a com-

plex task that got increased attention during the recent years. Especially for human dis-

orders, a lot of research was done and a huge amount of knowledge has been aggregated.

Swanson et al. differentiate between private and public knowledge [65]. They defined

7

2 Related Work

private knowledge as information that can be found within a single publication. In con-

trast, public knowledge is gathered by combining the results from various publications.

In their popular fish-oil experiment [64] they proved this hypothesis. They showed that

two complementary publications could reveal useful information. This knowledge may

not exist in a single publication alone. Their findings motivated several researchers to

face the problem to find undiscovered public knowledge in both biomedical research fields

and beyond that.

Dimitar Hristovski et al. introduced BITOLA, an interactive support system for biomed-

ical discovery of new, hypothetical relations between biomedical concepts [6]. In fact they

use their system to discover disease-gene associations by mining the literature. The main

idea is: if concept A is related to concept B and B is related to concept C than A is

potentially related to C, too. This is a common way to predict new potential candidates

for entity relation [32].

Another method to extract novel DAG candidates was introduced by Jonathan D. Wren

et al. They used text mining techniques to identify biomedical concepts of interest, e.g.

disease and genes and created a network of tentative relationships. These relationships

between concepts are based on co-occurrence. They break down the strict binary co-

occurrence relation into a fuzzy form by taking several indicators into account. The

tentative network is then ranked against a random network model to estimate statistical

significance of the relationships. Wren demonstrated their approach by finding an associ-

ation between CPZ-gene and cardiac hypertrophy. They were able to show that building

a network model has great potential for finding novel candidates.

The approach from Wilkinson et al. is build on a similar base like Wren’s. They build a

network of gene-gene co-occurrences, which were extracted from the literature. However,

their approach differs in both the method and the goal. Wilkinson described the goal as

finding gene-communities that are related to a specific disease e.g. colon cancer. These

gene communities are build by using various graph algorithms to cluster the complex

gene graph. The goal is to provide a list of genes which are either known as related

to a the disease or serve as potentially new candidates. They were able to show that

a network structure is a powerful method to organize related entities with known and

maybe unknown relations.

Özgür et al., too, ascertain the benefits of an interaction network to identify disease

associated genes. Their approach builds on a network that contains diseases and genes.

In contrast to the previous presented approaches these interactions do not rely on co-

occurrences but on text mining and dependency parsing. Özgür implemented support

vector machines to learn important associations in the network based on graph analysis

8

features like betweenness, closeness and centrality. Their goal was to rank genes within

the network to infer unknown DAGs [49]. A similar approach was developed by Changqin

Quan et al. They used a maximum entropy model with topic features and a probabilistic

context free grammar to identify disease gene associations [53].

Besides network-based approaches that are often developed to detect both private and

public knowledge, there are some approaches that restrict their information extraction

to private knowledge. They can be roughly divided into text mining and interaction

database based methods [53]. Hisham Al-Mubaid et al. presented a text mining approach

to find associations between proteins and diseases. Next to extensive NLP and machine

learning methods, a common technique is still the co-occurrence recognition in sentence

or abstract level. This has several reasons. One of them is the fact that negative results

are published with less frequency. Consequently, abstract based co-occurrence leads to a

high recall [17] whereas sentence based co-occurrence rather leads to a high precision [52].

However, Al-Mubaid presents a new technique using information theoretic concepts like

expectations, evidence and Z-score to support the co-occurrence based extraction [2].

M. A. van Driel et al. presented a web-based tool, namely GeneSeeker [68], for the

identification of disease related genes. Their approach uses deep semantic information

about biomedical entities in order to predict a relation or not. The needed information

is gathered from nine different databases. Driel’s web tool is specialized to human genes

and thereby implements some rules for human gene identification, although they gather

the information from databases. This approach requires a gene name disambiguation in

order to map genes and correctly assign collected information.

Comparison In our approach, we tackle the problem of relation extraction between

diseases and genes. We share the common goal to detect already known (private) relations,

but lay the focus on finding undiscovered (public) relations. We define a disease-gene

association as undiscovered, if it is not presented in a curated databases. We aim at genes

that are not in CTD [22], DisGeNET [51] or GTR [54]. In the current system, we restrict

our findings to human genes. However, there is no obstacle on the implementation-side,

that prevents us from taking a larger or different taxonomic scope into account. Our

method contains a pipeline of several state-of-the-art systems [9, 36, 72] and some new

developed frameworks. This pipeline can be divided into several sub-components. At first,

we extract all biomedical concepts of interest, namely diseases, genes and gene events. We

use TEES [9] to extract genes, and gene events from all 22 million abstracts in PubMed.

Both, gene mentions and events are then normalized. For the task of gene normalization,

9

2 Related Work

a modified version of GeNo [72]2 is used. In agreement with biomedical experts, we

implemented an event-normalization tool that fits the GENIA event scheme [34]. The

resulting normalized data is then used to create a gene interaction network similar to

Landeghem in [69]. This network connects normalized genes (nodes) through normalized

events (edges). Besides the gene/event extraction we integrate the CRF tagger developed

by Klinger in [36] for disease name recognition. To normalize the diseaser mentions, we

implemented a simple disease normalization tool, based on DNorm [38].

The actual task of gene candidate generation starts by extracting all abstract based

disease-gene co-occurrences. We call these genes base-genes. For each base-gene that

co-occurs with the specific disease, we create a set of additional-genes by following each

possible path (outgoing from the current base-gene) in the gene network with a specific

path-length. Both, base genes and additional-genes serve as gene candidates. Using in-

teraction networks to detect new, potential genes, leads to a large number of possible

candidates. We tackle the problem by integrating machine learning approaches to

1. classify genes as disease-related or not, using a support vector machine.

2. rank all candidates by their importance to the disease, using a support vector re-

gression model.

In the first case, the result is a set of genes that are likely related to the disease. The latter

case generates a list of genes sorted by their importance. We are able to apply a filter

to eliminate all candidates that are already presented in one of the databases, mentioned

above.

2The full pipeline of GeNo already implements a gene recognition tool was integrated. Since we are
using TEES as recognizer we use only the gene normalization tool of GeNo. A detailed description
can be found in Section 5.2.2

10

3 Materials

This chapter gives a brief overview of all materials that we utilized in this work. All

following materials are offline versions that were downloaded at the beginning of the

development in 2014. For convenience, we keep the actual name of each material, but

always refer to the downloaded (and modified) data dump. Most of these materials are

existing databases that are maintained by large biomedical companies like the National

Center of Biotechnology Information [56] (NCBI) or the U.S. National Library of Medicine

(NLM) [1] . This chapter describes six different databases that are widely used in the

literature for similar tasks and accepted by the biomedical research community. These

are

1. the Medical Literature Analysis and Retrieval System Online [1] (MEDLINE),

which is a comprehensive collection of research publications.

2. three different databases that contain biomedical concepts and provide information

for the task of entity disambiguation, namely, Online Mendelian Inheritance in

Men [31] (OMIM), Medical Subject Headings [44] (MeSH) and EntrezGene [45].

3. two curated databases of disease-gene associations. Both are used as gold stan-

dard to train our machine learning methods and evaluate our system. The Ge-

netic Testing Registry [54] (GTR) contains binary disease-gene associations and is

used to solve the classification task. In contrast, we use DisGeNET for the regres-

sion/ranking task, since DisGeNET [51] provides a fuzzy score for each disease-gene

association.

3.1 The Investigated Corpora PubMed

Medical Literature Analysis and Retrieval System Online MEDLINE is a public bib-

liographic database maintained by the U.S. National Library of Medicine. Since the

beginning of the project in 1946, the number of citations grew exponentially to a total

number of 25 million abstracts (2015). MEDLINE covers a large number of biomedical

11

3 Materials

fields and contains research results from several thousand scientists and physicians. Due

to the enormous size, the huge variety of topics and the free accessibility, MEDLINE

is one of the most important databases for biomedical researchers. The importance is

reflected particularly in the growing number of related projects. This includes many es-

tablished search engines [24,48,59] for purposeful queries, but also the growing number of

biomedical competitions. One of the most popular set of competitions is the BioCreative

shared task [3, 4, 46]. MEDLINE, in its size and complexity, provides an excellent basis

for knowledge discovery and information aggregation.

In this work, we use a downloaded MEDLINE dump from the year 2014. A brief statistic

is shown in Table 3.1. The first column contains the total number of abstracts. The

Total Abstracts ASCII Non-ASCII Considered Abstracts

Count 22.271.876 21.362.350 909.526 21.360.113

Table 3.1: Detailed statistic of the used MEDLINE data dump, downloaded in 2014.

second column contains the number of ASCII-formated abstracts. The reason to split the

abstracts into ASCII and Non-ASCII is that we had issues applying TEES to the Non-

ASCII abstracts, which is an already known problem1. We ignore all abstracts that can

not be processed with our full pipeline in the current system. On top of that, MEDLINE

contains different versions for some abstracts. Although it integrates a versioning index,

each version is listed individually. However, each version of an abstract shares the same

PubMed-ID. We assume that new versions do not change the experimental results or the

semantic content of the abstract but rather correct spelling errors etc.2. Thus, we filter

all abstracts whose PubMed-IDs occur more than once. The actual number of considered

citations is shown in the column Considered Abstracts.

3.2 Data for Entity Disambiguation

Online Mendelian Inheritance in Men OMIM [31] , maintained by the National Center

for Biotechnology Information, is a high quality database for Mendelian disorders, human

genes and gene mutations. Each entry in OMIM is the result of a biomedical experiment

that was curated and evaluated by human scientists. We use OMIM to create a compre-

hensive disease-name dictionary for our disease normalization tool described in Section

5.1.2. The downloaded data dump contains approximately 6.800 distinct diseases.

1https://github.com/jbjorne/TEES/issues/11 Access: 2015-04-25
2http://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html Access: 2015-04-25

12

https://github.com/jbjorne/TEES/issues/11
http://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html

3.3 Gold Standards

Medical Subject Headings MeSH [44], maintained by the National Library of Medicine,

is a large vocabulary thesaurus of biological terms with the main purpose of indexing

biomedical abstracts and full-text journals. Likewise to OMIM, we use MeSH for disease

normalization. MeSH consists of two different datasets, the descriptor file (Desc) and the

supplemental file (Supp). Desc can be seen as the main resource. It contains thousands of

medical subjects, such as diseases and symptoms, distributed in a large scope of semantic

types. The supplemental file contains additional information to many records of Desc.

However, in the following work we do not distinguish between Desc and Supp but always

refer to the entire MeSH. The downloaded MeSH dump provides up to 16.000 diseases

that we use for the disease normalization task in Section 5.1.2.

EntrezGene EntrezGene [45], maintained by NCBI, is a meta search engine that col-

lects genes from public gene databases. The collected genes are unified and each gene

is provided with a unique ID. EntrezGene provides a lot of information for each specific

gene. Next to others, this includes a taxonomic identifier, a preferred gene-symbol, a list

of synonyms and other nomenclatures. This very extensive storage of gene information

makes EntrezGene a very famous database for gene normalization frameworks. The taxo-

nomic ID makes it even more potent, as it can be used to filter genes that do not belong to

a specific taxonomy, e.g. homo sapiens. EntrezGene distinguishes between several types

of genes: miscRNA, ncRNA, protein-coding, pseudo, rRNA, scRNA, snoRNA, snRNA,

trRNA, other and unkown. In this work, we restrict our interest to protein-coding genes

whose taxonomic-ID is 9606 (homo sapiens). After filtering EntrezGene by applying our

constrains, 20.700 human genes remain.

3.3 Gold Standards

DisGeNET The first gold data that we use is DisGeNET [51]. It is maintained by the

Integrative Biomedical Informatics Group3 (IBI) . DisGeNET is a comprehensive database

that collects disease-gene associations from several public resources. These resources are

public databases that contain disease-gene associations, using different methods of knowl-

edge aggregation. Thus, DisGeNET provides a confidence score for each association. The

score describes a kind of quality of the corresponding association. The more considered

resources contain the specific association the higher the score. Each occurrence in a re-

source is weighted. The weight depends on the underlying method and the scope of the

resource.

3 http://ibi.imim.es/ Access: 2015-04-25

13

http://ibi.imim.es/

3 Materials

This gold standard contains a total number of 381.000 disease-gene associations between

16.000 genes and 13.000 diseases. Due to providing a score, DisGeNET can be used to

train regression models that are used to address the task of gene ranking.

Genetic Testing Registry The Genetic Testing Registry [54] (GTR) is a central database

for human researchers to migrate their results from biomedical experiments. The major-

ity of these experiments lays in the interaction between Mendelian disorders and human

genes. With respect to use GTR as gold standard to train machine learning models and

evaluate our system, the composition of GTR has pros and cons. On the one hand, due

to the human curation, it provides a high quality data set. On the other hand, GTR has

a very limited number of entries in comparison to databases whose data is automatically

aggregate. Our data dump of the Genetic Testing Registry consists of 4.200 conditions,

2.800 genes and 5.800 disease-gene associations. Since each presented association is cu-

rated by human knowledge, there is no need for a confidence score qualifying the DAG.

Thus we use GTR as gold-standard data for the disease-gene classification task that is

described in Section 6.1.

14

4 System Architecture

This chapter describes the architecture of our system. It is designed as a pipeline of

consecutive and parallel modules. In the following sections, we describe each module

separately to convey our idea of consecutive data processing. Underlying algorithms are

omitted in this chapter and will be discussed in Chapter 5. To understand the system’s

architecture, it suffices to lay the focus on the analysis of the input and output of each

module. The goal of this chapter is to provide an overview of the entire system, the

data-processing steps and to show which processes can be calculated offline and which

processes need to be calculated online.

Our main motivation to design the system as a pipeline of consecutive and parallel modules

is to provide a comprehensible way of data integration. This should not only effect the

initial data integration but later integrations as well. This design allows us to keep the

system up-to-date by simply integrating newly relevant upcoming data. The modularity

opens up the possibility to update or exchange outdated approaches. One important key

feature during development was a strong transparency of each module. This allows us to

get an understanding of what happens inside the system and makes it easy to discover

weak-points. The overall architecture is illustrated in Figure 4.1.

Information Extraction The illustration shows six separated main modules. It starts

with the Information Extraction module located in the top left corner. In this pre-

processing step, we extract all biomedical entities and information of our interest. In the

current system, this includes gene-events as well as gene and disease mentions. However,

the information extraction is easily expandable. In future work, we may extend the

information extraction to meta-data information for each entity.

Data Conversion In the second main module, namely Data Conversion, we aim at the

preparation of the extracted information to store them persistently in our database. This

step includes the entity disambiguation/normalization, data simplification and finally the

data conversion into the database readable format.

15

4 System Architecture

Figure 4.1: System overview.

Data Storage and Supply The task of persistent data storage by integrating the ex-

tracted information into a database and its fast supply, is shown in the Data Storage

and Supply module. On the one hand, it handles both the initial data integration and

integration of new data. On the other hand, it converts high-level queries into complex

low-level queries. The extracted data is then parsed into high-level objects. It should be

noted that the first three modules are mono-directional connected. Up to this point, all

processes in the modules are calculated offline. However, the bidirectionally connection

between the Data Storage and Supply module and the Gene Ranking System indicates

an online interaction. We simulate this online interaction. In order to speed up the en-

tire process, a lot of frequently queried information was pre-processed earlier and stored

in the Pre-processing Data Storage. The Pre-processing Data Storage can be seen as an

independent background module that stores already queried and processed information

and provides them instantly.

Gene Ranking System Inside the Gene Ranking System module, we distinguish be-

tween the Machine Learning sub-module, that actually processes and calculates the user

queries and the Evaluation module. The latter one is technically not part of the systems

pipeline and is only used during development. However, the user interacts with the Gene

16

4.1 Information Extraction

Ranking System module. He is able to transmit high-level user queries that are internally

converted into high-level system queries. Through the bidirectional interaction with the

database, it gathers all information that is need to accomplish the user query. This could

be either a list of ranked genes for a specified disease or a set of genes that are classified

as disease related.

In the next few sections, each main module is viewed in detail with respect to its input and

output. Therefore, a more detailed illustration of each module is given, which provides

a deeper insight. Most of the modules in turn consist of several sub-modules themselves.

To simplify the descriptions, we use a consistent view to these illustrations. Sub-modules

that are in horizontal order run consecutively. Sub-modules that are vertically stacked

run in parallel.

4.1 Information Extraction

The first module in our pipeline is the Information Extraction. The module consists

of two separated extraction frameworks, namely the Turku Event Extraction System [9]

(TEES) and the CRF based disease tagger [36] (DT). Both frameworks contain NLP

methods that can be applied to plain textual input sources. In this case the input is the

MEDLINE abstract with the PubMed-ID 23848600. We apply TEES and DT in parallel

to the input source. The output of the disease extraction is a file that contains a list

of disease mentions, found in the input text. Each mention is provided with the disease

surface form, the position within the abstract, a sentence identifier in which the disease

was found and the PubMed-ID. The gene/event extraction sub-module generates a file

that contains each gene mention and each extracted event. Similar to the previous file,

each found entity is provided with the surface form, the position within the abstract and

the PubMed-ID. However, TEES does not support a sentence identification. The entire

module with all its sub-modules for the task of information extraction is visualized in

Figure 4.2

4.2 Data Conversion

The second module is the Data Conversion. The objective of this module is to process

the previously extracted information in order to transform it into a database friendly

format. The input of this module are the two previously generated files. First, the disease

17

4 System Architecture

Figure 4.2: Detailed visualization of the Information Extraction module from Figure 4.1
The input is an MEDLINE abstract with the PubMed-ID 23848600. The output are two
independent files that contain the extracted information.

mentions and the gene mentions are normalized. Both normalizations are independent

sub-tasks. Thus, both processes can run in parallel. We use DiNo (described in Section

5.1.2) for the disease normalization and GeNo (described in Section 5.2.2) for the gene

normalization. All normalized genes are then passed to the Filtering module where all

non human-genes are filtered. Both, the normalized diseases and the normalized human

genes are passed to the Entity Linking module. It creates the first information type that

needs to be stored in the database, namely the abstract-based disease-gene co-occurrences

(DGC). In parallel, the Event Simplification module converts complex gene events into

simple gene events. It should be noted that only those gene events are persisted, whose

affected genes are human genes.

Both, simple gene events and DGCs are passed to the RDF Generation. This sub-module

converts its input into the database readable format, namely RDF-triple. The output is a

comprehensive list of triple that were created from both input sources. The entire module

with all its sub-modules is illustrated in Figure 4.3

4.3 Data Storage and Supply

The third module is the Data Storage and Supply. In contrast to the previous two models,

this module contains a bidirectional connection to its next module. The main objective

of Data Storage and Supply is to store previously extracted and converted information

18

4.3 Data Storage and Supply

Figure 4.3: Detailed visualization of the Data Conversion module. The inputs are the
previously generated files that contain the extracted information. The output is a com-
prehensive list of RDF-triples covering the extracted information.

persistently and provide them at query time. In the first step, all created RDF triples are

used as input. The sub-module Integration determines if the triples need to be updated

or not. If the database is empty, it prepares the data for a batch insertion, otherwise

the preparation happens with respect to an updating function. The second input source

comes from the Gene Ranking System in form of a high-level system query (HLSQ). If

the requested HLSQ was already queried, the Extraction module passes the query to the

Storage. The Storage outputs the previously processed high-level database result (HLDR).

If not, the HLSQ is converted into several low-level database queries (LLDQ) that are

needed to gain the requested information. BlaszeGraph processes these LLDQ and passes

the results to the Join Results sub-module. It converts the low-level database results

into HLDR. The result is then persisted in the Storage, which returns it as the modules

output. A detailed illustration of the third module can be seen in Figure 4.4

19

4 System Architecture

Figure 4.4: Detailed visualization of Data Storage and Supply module. It has two differ-
ent input sources and one output. The first input are the RDF triples that were created
during the previous modules. The second input are high-level system queries from the
Gene Ranking System. The output is a high-level database result that answers the given
query.

4.4 Gene Ranking System

The last main module of the entire pipeline is the Gene Ranking System. It is divided

into two larger sub-modules. The first sub-module is the Machine Learning module that

handles the user queries and contains all main methods that are used by the system. The

second sub-module is the Evaluation. It is, technically, not a main part of the system

pipeline but it is used for ML-model training, ML-model evaluation and for the evaluation

of the final system.

The actual main part of the module is the Machine Learning sub-module. A high-level

user query (HLUQ) serves as input. The current system can only process a ranking or

a classification query. Both queries require the same interaction with the Data Storage

and Supply module. They do only differ in the used ML-model which is handled by the

Classification and Ranking-module. Thus, we do not implement a query interpreter but

pass the HLUQ directly to the Feature Extraction module. It converts the user query

into a HLSQ and requests a HLDR from the Data Storage and Supply module. The

result is used in the Classification and Ranking module to create a high-level user result.

Therefore, it uses a previously trained ML-model. The output is a high-level user result

that contains the requested query. This is either a ranked list of genes for a specific

disease (ranking) or a set of disease related genes (classification). The Evaluation sub-

20

4.4 Gene Ranking System

Figure 4.5: Detailed visualization of the Gene Ranking System module. It has one user
input and one use output (bottom). It shares a bidirectional connection to the Data
Storage and Supply module (left) and creates evaluation results.

module provides two gold standards, such as DisGeNET and Genetic Testing Registry.

Using these gold standards, two different ML-models are trained in the Training module.

Thereto it creates evaluation queries with respect to the positive training examples from

the gold data. The results are used to train the classification model, respectively the

ranking (regression) model. A detailed illustration of the Gene Ranking System module

can be found in Figure 4.5.

21

5 Approach and Resource Generation

This chapter presents the methods of this approach and the resources that are generated

during development. The first Section (5.1) is about the disease recognition and the nor-

malization of the extracted disease mentions. We address the task of disease recognition

by using the CRF-tagger that was developed by Klinger et al. in [36]. In Section 5.1.2

we introduce DiNo: a simple disease normalization framework. Section 5.2 describes the

gene-event recognition, followed by the gene normalization and gene filtering. We use

TEES [9] for the task of gene-event extraction which subsumed the task of gene recog-

nition. In Section 5.2.2 we explain the integration of the gene normalization framework

GeNo [72] into the system’s pipeline. Section 5.3 describes the generation of the gene-

interaction network. Thereto, we introduce an event simplification method and we define

a key-term of this thesis, namely Path-Signatures. The section ends with the description

of the construction of these Path Signatures. In Section 5.4, we discuss the persistent

information storage that provides a feature extraction at query time. Those features,

that we use for our machine learning models, are formalized in Section 5.5. The chapter

ends with a brief summary of the presented methods, the generated resources and the

implemented features.

5.1 Disease Recognition and Normalization

This section describes the frameworks that we use to tackle the problem of disease recog-

nition and disease surface form normalization. The first subsection describes briefly the

CRF-tagger by Klinger et al. [36]. In Section 5.1.2 we introduce DiNo, a simple disease-

surface-form normalization framework based on the concept of the state-of-the-art system

DNorm [38].

23

5 Approach and Resource Generation

5.1.1 Disease Mention Recognition

We address the problem of disease name recognition by using a natural language tagging

framework which is based on conditional random fields. The framework was introduced by

Klinger et al in [36]. The tagging method makes use of two different annotation strategies

for disease recognition. For each strategy a CRF-model was trained separately. Follow-

ing a complex pipeline of natural language processing tools for information extraction

and sentence tagging, these strategies were applied in order to train two conditional ran-

dom field-models. During disease recognition on new sentences, these two models were

combined to get the best results.

The tagger we use in our approach was trained and evaluated on the Arizona Disease

Corpus [40] in cooperation with Matthias Hartung. The evaluation yields a performance

of 80.60% for the F-Score, as shown in Table 5.1.

Setup Precision Recall F-Measure

CRF tagger on

Arizona Disease Corpus
83.09 78.26 80.60

Table 5.1: Evaluation results for the CRF-tagger on the Arizona Disease Corpus.

We applied this model on the MEDLINE-data presented in Section 3.1 and were able to

extract more than 1.5 million instantiations of disease surface forms representing disease

candidates. By investigating the extracted disease surface forms, it turned out that the

data is very redundant and contains way more surface forms than actual disease types.

This leads us to the disease surface form normalization (or abbreviated: disease normal-

ization). We tackle this problem by using DiNo.

5.1.2 Disease Surface Form Normalization using DiNo

Implementing a biomedical normalization tool is usually not a simple task and needs

a thorough investigation of the considered data. For most biomedical entities, there is

already existing literature that describes highly optimized approaches. However, there is

always a gap between existence and usability. An integration of a state-of-the-art system

into a running pipeline often needs a cooperation with the developer and/or is very time

consuming. Due to time issues, our attempt of integrating Robert Leaman’s DNorm [38]-

approach failed. However, we were able to develop and implement DiNo, a simple disease

normalization framework. DiNo follows the example of DNorm which is roughly based on

24

5.1 Disease Recognition and Normalization

TF-IDF. It is optimized to the recognized disease mentions that are produced by the CRF

tagger. In an evaluation of DiNo, we were able to show that this approach outperforms a

previously made attempt as well as our baseline. Hereinafter, both, the implementation

of DiNo and its evaluation are described.

DiNo: A simple Disease Normalization Framework The basic idea of DiNo is to

calculate a set of scores for a disease mention, for each disease within a comprehensive

disease dictionary. The score is a product of the disease name corresponding TF-IDF value

and a string similarity function. The disease, to which the highest score was assigned,

is determined as the normalized disease. The framework can be decomposed into three

sub-components:

1. The generation of a comprehensive disease dictionary.

2. The offline calculation of all TF-IDF values.

3. The online calculation of the set of scores for a disease candidate.

1. Generation of a comprehensive disease dictionary

The first task is the generation of a comprehensive disease dictionary. Each entry in this

dictionary contains a preferred disease name, a list of synonyms and a corresponding ID.

For this purpose, the two databases MeSH and OMIM are used. The composition of both

databases was already described in Section 3.2.

MeSH for disease dictionary MeSH is an ontology based database that supports a

hierarchical structure of many biomedical concepts. Each record has a unique MeSH-ID

which corresponds to each concept in the specific record. This hierarchical structure of a

record is illustrated in Figure 5.1.

The figure shows a simplified hierarchical excerpt of a MeSH descriptor record. Each

record has a list of concepts. To each concept, one or more semantic types are assigned.

In this example, both concepts are settled in the same semantic type, namely Disease

or Syndrome. Besides the semantic type, a concept has a list of terms. Each term is a

synonym describing the main concept (in this case a disease or a syndrome) of this record.

Each dictionary entry has a preferred disease name and a list of synonyms. This preferred

disease name can be found in the preferred term of the preferred concept1.

1It can be found by following the Y -marked edges starting at the Concept List-node.

25

5 Approach and Resource Generation

Figure 5.1: Simplified hierarchical representation of a record in MeSH. Note, that this
illustration is simplified in the existent information, as well as in the number of concepts
and terms.

In the example excerpt in Figure 5.1, the preferred disease name is Vestibulocochlear Nerve

Diseases. The unique ID can be found in the root-node of the record. It is D000160.

MeSH provides more than 130 different semantical types. However, the records are not

restricted to diseases, but include any medical subject. Thus, there are a lot of semantical

types that we are not interested in. In fact, as described by Chun in [17], only 12 types

may be associated with a disease. We follow the example of Chun and consider all concepts

whose semantic type conforms to one of the 12 types that are shown Table 5.2.

OMIM for disease dictionary OMIM is separated into several files. We use the mor-

bidmap-file which contains all human diseases that are mentioned in OMIM. The struc-

ture of morbidmap is very simple. Each line contains a disease name and a corresponding

OMIM-ID. However, some entries are marked with special characters. In the current

system we ignore all entries that start with one of the following characters: ?, [or {.

26

5.1 Disease Recognition and Normalization

SemanticTypeName Count

Acquired Abnormality 142

Anatomical Abnormality 143

Cell or Molecular Dysfunction 282

Congenital Abnormality 410

Disease or Syndrome 11.737

Experimental Model of Disease 49

Finding 393

Injury or Poisoning 416

Mental or Behavioral Dysfunction 486

Neoplastic Process 1.179

Pathologic Function 425

Sign or Symptom 720

Total 16.391

Table 5.2: This table contains all semantic types that can be associated with a disease by
Chun. We count the number of occurrences and display them in the right column. Since
a concept can have multiple semantic types, the total number presented here, is actually
higher than the number of considered concepts.

The dictionary The dictionary is built with all entries of MeSH whose semantic type

matches with one of those in Table 5.2, and all non-marked entries in OMIM’s morbidmap.

During the construction of the dictionary, we noticed up to 1.140 overlapping disease

names. An example is the genetic disorder Schwannomatosis. It consists in OMIM with

the ID 162091 as well as in MeSH with the ID C536641. We decided to lay a higher

priority to the MeSH entries and assign the MeSH-ID in such cases. The reason for this

is the hierarchical structure of MeSH and the supply of synonyms.

Before these disease names are written into a comprehensive dictionary, they are pre-

normalized with the following three normalization steps:

1. Each disease name is converted into lowercase.

2. From each disease name, we remove all stopwords (on, in, to, by, at, of, the), punc-

tuations and attachments (this includes modifiers like ’s)

3. Each disease name is tokenized by whitespace-characters, which are used to build a

set of tokens.

The pre-normalization has two important reasons. At first, we reduce the amount of

entries in the dictionary by deleting semantically redundant disease names. The second

reason is to make string matching techniques more accurate.

27

5 Approach and Resource Generation

Table 5.3 shows an example of the Parkinson Disease(D010300) record. The first column

contains the actual concept term as it is mentioned in MeSH. We marked the preferred

disease name of the record with (*). After the normalization, each previous concept-term

is a set of tokens. This is displayed in the mid column in set-notation. The last column

contains the actual dictionary entry. We collapsed equal sets to one single set. These

generated dictionary sets are finally used as synonyms to the preferred set and the corre-

sponding ID. We do the same normalization steps for each OMIM entry and each disease

surface form from the two gold-standards.

Concept Term Normalized Form (Token Set) Dictionary Form

Parkinson Disease (*) {parkinson, disease}
{parkinson, disease }(*)

Parkinson’s Disease {parkinson, disease}

Idiopathic Parkinson’s Disease {idiopathic, parkinson, disease}

{idiopathic, parkinson, disease}
Parkinson Disease, Idiopathic {parkinson, disease, idiopathic}

Idiopathic Parkinso Disease {idiopathic, parkinson, disease}

Parkinson’s Disease, Idiopathic {parkinson, disease, idiopathic}

Lewy Body Parkinson Disease {lewy, body, parkinson, disease}
{lewy, body, parkinson, disease}Lewy Body Parkinson’s Disease {lewy, body, parkinson, disease}

Parkinson’s Disease, Lewy Body {parkinson, disease, lewy, body}

Primary Parkinsonism {primary, parkinsonism} {primary, parkinsonism}

Table 5.3: Summary table for the normalization of terms for the Parkinson Disease-
record. Each entry points at the same disease ID (D010300)

The composition, and the total number of diseases that are used to build the dictionary are

shown in Table 5.4. Finally, the dictionary consists of 47.336 unique term-sets, that were

built out of 73.497 disease names. These unique term-sets are mapped to 17.970 diseases.

MesH OMIM Gold Total

Disease Names 67.586 3.431 3.138 73.497

Unique IDs 11.401 3.431 3.138 14.832

Table 5.4: Composition of the disease dictionary that is used in DiNo.

2. Offline calculation of the TF-IDF values

The second step is to calculate the TF-IDF value for each entry in the dictionary. This

requires a definition of the term-variable and the document-variable. For simplicity, we

use in the following description the disease names, but always refer to the corresponding

pre-normalized set in the dictionary. We define a document as a set of all disease names

28

5.1 Disease Recognition and Normalization

and synonyms within the dictionary that points at the same disease-ID. A term is then

defined as a single token within the document. Given a term t and a document d the TF

value is calculated in formula (5.1):

tf(t, d) =
d∑
t′

f(t, t′)

f(t, t′) =

1 if t = t′

0 else

(5.1)

The corresponding term frequency values for the example from Table 5.3 are shown in

Table 5.5.

parkinson disease idiopathic lewy body primary parkinsonism

TF 3 3 1 1 1 1 1

Table 5.5: Term frequency values for all terms in the Parkinson Disease (D010300) -
document of Table 5.3.

The IDF value is calculated with the standard formula: idft = log(|N |
nt

) where N is the

number of documents D, defined as N = |D| (number of IDs) and nt is the number

of documents that contain the specific term t. We normalize the TF-IDF value with

respect to the sum of lengths of each disease name within the current document. This

normalization has the effect that the sum of all TF-IDF values for a specific disease is

equal to one, regardless of the number of tokens in the disease name. So, we avoid a bias

towards longer disease names.

Consider T (t, d) as a set of all terms in d. The final formula for the TF-IDF value is then

presented in Equation (5.2).

tfidf(t, d,D) =
tf(t, d) · idf(t,D)∑T (t,d)

t′ tf(t′, d) · idf(t′, D)
(5.2)

All these values can be calculated offline.

3. Online calculation of the scores

The next step is the calculation of the final score for each disease name within the dic-

tionary. This is calculated online as described in the following. The determination of the

score needs two parameters: a disease candidate in pre-normalized surface form C (as we

29

5 Approach and Resource Generation

did in Table 5.3) and a disease name N from the dictionary. In those representations, the

two names can be compared in order to create a score.

The score is a composition of two values. The first value is calculated by Equation (5.3).

Thereto, we define the similarity function lsd(tCi , t
N
j). It returns a maximum similarity

score with respect to the Levenshtein distance between tCi ∈ C and a term tNj ∈ N .

levenshtein(x, y) is defined as the character-based distance between the two tokens x and

y as described in [42].

mv(tNj) = max{lsd(tC0 , t
N
j), lsd(tC1 , t

N
j), . . . , lsd(tC|C|−1, t

N
j)}

lsd(tCi , t
N
j) =

3 if levenshtein(tCi , t
N
j) = 0

0.9 if levenshtein(tCi , t
N
j) = 1

max(0, (0.6−
√

tfidftNj)) if levenshtein(tCi , t
N
j) = 2

−0.1 else

(5.3)

We split the string similarity function into four different ranges. If the Levenshtein-

distance is equal to zero, the two terms are equal as well. In this case the function returns

the maximum score of three. We assume that a Levenshtein-distance of one indicates a

spelling error or a spelling variation (e.g. tumour instead of tumor). In this case, the

function returns a similarity score of 0.9. A distance of two may have different meanings.

On the one hand, it could be a spelling error or spelling variation in longer tokens. On

the other hand, it could have a complete different semantic meaning as in tremor and

tumor. An analysis of the considered disease candidates shows that the latter case often

co-appears with a very high TF-IDF score. Therefore, the return value for a distance of

two depends on the TF-IDF score of the dictionary-term. We denote it by tfidftNj . If

the distance is larger than two we assume that the two terms are always semantically

different. In this case we return a small penalty score of -0.1. The final return value is

the maximum of all compared term pairs.

Up to this point, we compared two disease tokens with focus on the dictionary entry. In

the following, another and even stronger penalty function is defined which lays the focus

on the disease candidate. For each term in C that is not in N , a penalty value is returned.

30

5.1 Disease Recognition and Normalization

This penalty is defined with respect to the total number of terms in C. The formula is

illustrated in (5.4):

pen(tCi) =

− 2.5
|C| if max{lsd(tCi , t

N
j) : j < |N |} > 0

0 else

(5.4)

With these two functions, the final score can be calculated. This is done by Equation

(5.5).

DiNo-score(C,N) =

|C|−1∑
i

pen(tCi) +

|N |−1∑
j=0

mv(tNj) ∗ tfidftNj (5.5)

The entry in the dictionary with the highest score is supposed to be the normalized form

for the disease candidate. The normalized form Dnorm is finally determined by (5.6).

Dnorm(C) = max{DiNo-score(C,N) : N ∈ Dictionary } (5.6)

Real World Example for dysfunction on lipid metabolism In the following, we give a

real world example for the disease mention dysfunction on lipid metabolism. The disease

surface form is compared to two different entries in the dictionary. Thereto, we define

C = {dysfunction, lipid,metabolism}, N1 = {lipid,metabolism, disorders}, and N2 =

{lipid,metabolism, inborn, errors}. Notice that, due to the pre-normalization, C does

not contain the stopword on anymore. Table 5.6 shows the comparison of C and N1.

Table 5.7 compares C with N2.

tCi pen(tCi) Value

dysfunction -2.5 / 3 -0.833

lipid 0 0

metabolism 0 0

(Penalty) Score = -0.833

tNj tfidftNj mv(tjN) Value

lipid 0.467 3 1.422

metabolism 0.392 3 1.195

disorders 0.141 -0.1 -0.014

Score = 2.603

Table 5.6: Comparison of the disease mention dysfunction on lipid metabolism and the
dictionary disease lipid metabolism disorders.

The penalty score is calculated on the left of Table 5.6. Since there is only one term in

C that is not in N1, namely dysfunction, and |C| = 3, the penalty is set to −2.5/3. On

the right side of Table 5.6, the positive (maximum) score is calculated. There are two

terms that match exactly to one term in N1 (lipid and metabolism). The TF-IDF values

31

5 Approach and Resource Generation

for both terms will be multiplied with three. However, disorders cannot be found in C,

so that the mv(disorders) adds a small penalty of −0.014. This penalty has very little

effect, due to the very low TF-IDF value of the frequent term disorders. Table 5.7 shows

the score calculation of N2.

tCi pen(tCi) Value

dysfunction -2.5 / 3 -0.833

lipid 0 0

metabolism 0 0

(Penalty) Score = -0.833

tNj tfidftNj mv(tjN) Value

lipid 0.307 3 0.921

metabolism 0.258 3 0.774

inborn 0.311 -0.1 -0.031

errors 0.132 -0.1 -0.013

Score = 1.651

Table 5.7: Comparison of the disease mention dysfunction on lipid metabolism and the
dictionary disease lipid metabolism inborn errors.

Table 5.7 can be interpreted analogously to Table 5.6. However, the positive (maximum)

score is with 1.651 one point lower. This has several reasons. First, N2 is one term longer

that N1. Thus, the TF-IDF values for lipid and metabolism are both lower2. On top of

that, N2 contains a third strong term, namely inborn, which is not in C.

In Equation (5.7), the values for both dictionary entries are calculated. Equally to this,

the score for each entry in the dictionary is calculated. By considering only these two

entries, the disease mention C would finally be mapped to N1.

DiNo-score(C,N1) = −0833 + 2.603 = 1.77

DiNo-score(C,N2) = −0833 + 1.651 = 0.818
(5.7)

Evaluation of the DiNo Framework We evaluated DiNo on the NCBI disease corpus

and compared it against three different approaches. The first algorithm is a simple nor-

malization approach, which normalizes disease candidates by using the pre-normalization

process that was described in Table 5.3. This approach, hereinafter referred to as SDN,

is our first baseline. The second approach normalizes disease candidates by using the

framework of Paassen [50]. We generated the ontology based database by mapping the

structure of MeSH and extended them by the considered OMIM entries. This approach is

called ODN and serves as our second baseline. On top of that, we compare DiNo against

the state-of-the-art framework DNorm as described in the literature in [38].

2The sum of all TF-IDF values within a dictionary entry is equal to one.

32

5.1 Disease Recognition and Normalization

The settings of the evaluation are equal to those described in Robert Leaman’s evaluation

in [38]. We only compare the generated sets of normalized disease names for a given

abstract. We ignore the exact locations and the total number of diseases. The number

of true positives is thereby defined as the size of the intersection between the gold set

of diseases and our generated set. We use the measures precision, recall and harmonic

F-Score to calculate the micro-average results.

During development, we adjust four parameters to optimize DiNo. This includes all re-

turn values of the lsd-function that were shown in Equation (5.3), as well as the penalty

parameter in Equation (5.4). We found out that the presented values lead to a stable re-

sult. These parameters were set during development and also used in the final evaluation.

The disease mention recognition was done with the previously described CRF tagger from

Section 5.1.1, since DiNo and the two baselines are restricted to normalizations. The per-

formances of all approaches are displayed in Table 5.8. The approach of the first baseline

Setting Precision Recall F-Score

SDN 50.16 26.03 34.28

ODN 41.21 36.21 38.55

DiNo 61.56 61.42 61.49

DNorm (From Literature) 80.30 76.30 78.20

Table 5.8: Micro average results for four different disease normalization approaches on
the NCBI disease corpus test set.

contains a simple cutoff after the first comma and convert it into lowercase. The relative

high precision of 50.16% is probably largely influenced by the high performance of the

CRF tagger (80.60% in F-Score). Although the CRF tagger does not normalize the found

disease names, it is very likely that some of them are already in their preferred form and

matches exactly a disease name in MeSH or OMIM. However, this simple normalization

has obviously a negative effect on the recall which is at 26.03%. A more balancing ap-

proach states the second baseline. It has a lower precision but a higher recall than the

first baseline. However, the F-Score is just slightly higher (38.55%). We were able to

outperform the two defined baselines with DiNo. Both, the precision and the recall are

significantly higher with 61.56% in precision, respectively 61.42% in recall. That leads to

an F-Score of 61.49%. By implementing this relatively simple approach, we outperform

both baselines by approximately 25 points. Unfortunately, we cannot range on the same

level as the highly improved state-of-the-art approach DNorm.

33

5 Approach and Resource Generation

5.2 Extraction of Gene Interaction Events and Gene

Normalization

In the previous section we described the process of disease recognition and normaliza-

tion. We successfully applied the CRF tagger in combination with DiNo to all MEDLINE

abstracts and were able to extract more than 12 thousand diseases. The next step is to ex-

tract and normalize all genes from MEDLINE. This section is about the gene recognition,

normalization and gene event extraction. The task of gene recognition is subsumed by the

gene event extraction, since we are mainly interested in those genes that are involved in

an event. Further, we only consider protein-coding genes3, we assume semantical equal-

ity between a gene and its protein. Thus, we do not distinguish between a gene and a

protein. We extract gene-events and thereby all involved genes by integrating the state-

of-the-art NLP tool TEES [9]. In a subsequent process, all found gene candidates are

normalized with GeNo [72] and filtered for human genes by comparing the taxonomic ID

with EntrezGene. We evaluate this pipeline against two baselines on the BioCreative-II

gene normalization test set.

5.2.1 Gene Event Recognition

We integrated the natural language processing tool called Turku Event Extraction System,

which is a state-of-the-art framework in the biomedical domain that extracts complex

gene-events on sentence basis. The pipeline of TEES consists of several NLP methods

to convert the plain textual input into a TEES readable format. For this purpose the

GENIA sentence splitter [55] is applied to tokenize the plain text. Each sentence is then

parsed with the Stanford sentence parser [16] to structure them. In the next step, the

NER-system BANNER [39] is used for gene recognition. The output of these consecutive

pre-processings are comprehensively tagged sentences.

The actual event extraction pipeline of TEES starts with a trigger recognition for possible

events. A trigger is defined as a word that probably states a relation between two genes

e.g. induced. The previously generated parse tree of a sentence is then extended by

the trigger annotations. The parsed sentence is used in combination with the annotated

triggers to create a semantical representation of the sentence. In this step, genes and

triggers were linked. Such a linking is called edge. After the detection of all edges, they

are converted into events. An event may consist of several edges. The complexity of a

3We use EntrezGene to identify protein-coding genes.

34

5.2 Extraction of Gene Interaction Events and Gene Normalization

single event is thereby defined through the number of edges, respectively the number of

considered genes and triggers.

The data structure of TEES An example of a fully annotated complex sentence is

illustrated in Figure 5.2.

Figure 5.2: The visualization shows a fully parsed and annotated example sentence.

TEES was developed to challenge the GENIA event extraction task [33]. Thereby, the

structure of the extracted information is consistent to the event scheme and the output

format that was especially designed for that task. This scheme is illustrated in Table 5.9.

The left column lists all possible event types that can be triggered. The first six event

types are restricted to a single core argument (a protein). However, the regulation-events

can have either one or two core arguments. These core arguments are placed in the mid

column. They differ in Theme and Cause. As we can see in Figure 5.2 both, Theme and

Cause are semantic labels, describing a relation. The actual core argument is either a

protein or another event type. The right column contains additional information that can

be extracted, if any, to each protein.

Event Type Core arguments Additional arguments

Gene expression Theme(Protein)

Transcription Theme(Protein)

Protein catabolism Theme(Protein)

Localization Theme(Protein)
AtLoc(Entity),

ToLoc(Entity)

Binding Theme(Protein) Site(Entity) +

Phosphorylation Theme(Protein) Site(Entity)

Regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)

Positive regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)

Negative regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)

Table 5.9: GENIA Event Scheme that is used by TEES.

35

5 Approach and Resource Generation

TEES generates two files that contain the extracted information in a structured format.

A detailed description of the output format can be found on their website4.

TEES was successfully evaluated on the BioNLP 09 Shared Task [8], the BioNLP 11

Shared Task [10] and on the drug-drug interaction challenge [7] as displayed in Table

5.10.

Task F-Measure Rank

BioNLP 09 52.86 1st place

BioNLP 11 51.95 1st place in 4/8 tasks

DDC 11 62.99 4th place

Table 5.10: Evaluation of TEES in several tasks and their ranking.

By integrating TEES, we can extract all gene-events from a given input source and thereby

all genes that are actually involved in an event. However, TEES does not contain a built-

in gene normalization tool. Likewise to the diseases, all genes need to be normalized in

a subsequent process after their recognition. We normalize all gene mentions by using a

state-of-the-art normalization framework called GeNo [72]. This process is described in

the following section.

5.2.2 Gene Surface Form Normalization

In the previous section we described the Turku Event Extraction System that we use in

our approach for gene recognition and gene-event extraction. These gene mentions are in

textual surface form and need to be normalized and disambiguated. This is important to

increases the data density, it enables standardized queries and facilitate the uniqueness

of the systems output. Due to the high variability in gene surface forms, a normalization

is both, an extensive and important task. The variation of the gene surface forms is

mostly given through the high number of synonyms, abbreviations and species depend-

ing spellings. Thus, a gene normalization cannot be done with a single dictionary based

approach, but requires contextual informations. To tackle the problem of gene normal-

ization, we use GeNo [72].

4http://2011.bionlp-st.org/home/file-formats Access: 2015-04-22

36

http://2011.bionlp-st.org/home/file-formats

5.2 Extraction of Gene Interaction Events and Gene Normalization

GeNo is a highly performing system for gene name recognition and normalization by

employing multiple statistical and symbolic methods. GeNo’s pipeline can be roughly

organized into four steps. The pipeline starts with the building of a comprehensive

gene dictionary. It includes data from curated gene databases like EntrezGene [45] and

UniProt [18]. The dictionary is augmented by creating variations for each entry. These

variation generator uses approved naming rules and tokenization procedures to convert

a gene surface form to its normalized form. The second step is the gene recognition and

normalization. For this purpose, the machine learning approach Jnet [21] is integrated.

To increase the recall, a dictionary-based method is applied, too. The normalization of

gene candidates is done with the same method that was used for the variant generation for

curated gene names, as described earlier. The last step is the gene mapping component,

which uses a string matching technique to compare each candidate with each entry in

the dictionary. As mentioned in [72], string matching techniques rather lead to a high

recall instead of optimizing the precision. To decrease the number of false positives, a

semantic similarity scorer is applied to each gene candidate. If this similarity score is

below a specified threshold, the candidate is discarded. The result is a list of genes with a

corresponding confidence score. The higher the score, the more likely it is that the given

gene candidate is related to the corresponding dictionary entry.

The text above describes briefly the main procedure of GeNo. However, as mentioned

before, we use TEES for gene recognition. That forces us to modify GeNo’s original

pipeline. In fact, we replace their gene recognition module (Jnet and the dicitonary-based

approach) with TEES. All gene mentions that are found by TEES are converted into a

pre-normalized form like before. After that, the pipeline continues as usual.

Evaluation of the Gene Normalization In the following, the evaluation result of the

modified GeNo pipeline is described, hereinafter referred to as (TEES+GeNo). We use the

pre-trained model GE11 for TEES which was specially trained for the task of gene-event

recognition within plain textual abstracts and was evaluated on the BioCreativ-II event

recognition task. We evaluate (TEES+GeNo) against two baselines on the BioCreative-II

gene normalization test set [46] and compare our results to the original GeNo pipeline

(GeNo) that was described in [72]. Both baselines use TEES in the same way as previously

described for the task of gene recognition.

Similar to the disease normalization evaluation, the first baseline is a very naive approach.

Gene names are case sensitive and often contain special characters like hyphens and

apostrophes. Thus, the first baseline approach simply cuts each gene candidate after the

37

5 Approach and Resource Generation

first comma. This is motivated through observations that the cut part often contains

additional information or gene-specifications. We name this approach (TEES + SGN).

The second baseline uses the ontology based approach by Paassen [50], that was also

used for the disease normalization. To build the ontology database all human genes

that are mentioned in EntrezGene are considered. Since EntrezGene is not hierarchically

structured, each gene that is labeled with the protein-coding tag represents a single root

node in the database. In order to simulate the hierarchical structure, each synonym5 for

a gene serves as child node. This second baseline is named (TEES + OBGN).

We evaluated all previously mentioned gene normalization approaches on the BioCreative-

II gene normalization task [46]. It challenges researchers to build an approach for gene

recognition and/or gene normalization. The task is specified to human-genes and does

not take other species into account. The test-set consists of 262 PubMed-abstracts with

656 annotated human-genes in total. Each annotated gene includes information about

the surface form, an EntrezGene-ID and a PubMed-ID. The actual position within the

abstract is neither given nor demanded.

The performances of the tested approaches are shown in Table 5.11.

Setting Precision Recall F-Score

TEES + SGN

(first baseline)
13.34 5.87 8.15

TEES + OBGN

(second baseline)
28.37 16.39 20.78

TEES + GeNo 56.33 54.37 55.33

GeNo

(From Literature)
87.8 85.0 86.4

Table 5.11: Evaluation results for several gene normalization approaches on the
BioCreative-II gene normalization test set for human genes.

The first baseline has a very low F-score of 8.15%. The result is composed of a precision

of 13.34% and a recall of 5.87%. The low result suggests a high complexity of the general

task of gene recognition and normalization. The first baseline covers just a simple dictio-

nary lookup without any variant generation or extensive normalization. Thereby the low

5We use the following EntrezGene fields as synonym: Synonyms, Symbol from nomenclature authority,
Full name from nomenclature authority, and Other designations

38

5.2 Extraction of Gene Interaction Events and Gene Normalization

precision is probably an effect of the huge gene name variation that can be observed in

the data. The main cause of the low recall is probably the very strict threshold of a pure

lookup with a zero error rate for string matching.

The result of the second baseline shows a slightly better performance. Both, precision and

recall are higher than the first baseline. The result is an F-score of 20.78%. The increasing

performance could be an effect of a general variant generation and normalization that is

used in this approach. However, neither the variant generation nor the generalization is

specifically tailored for gene names. This has a negative effect since common gene names

differ in their structure to other named entities e.g. disease names. This leads us to the

assumption, that a general variant generation and normalization for named entities have

little effect to specific and more complex named entities.

The pipeline of GeNo consists of such a customized variant generation and normalization.

GeNo is strongly specified to the task of gene normalization. This can be recognized in

the evaluation results. Our gene normalization pipeline (TEES + GeNo) outperforms the

two baselines with an F-score of 55.33%. Unfortunately, we were not able to reproduce

the original GeNo score from the literature. This is most likely the effect of merging two

single state-of-the-art systems that are not adapted to each other. In contrast to GeNo,

TEES and thereby the gene recognition, is not optimized to human genes, but finds each

possible candidate regardless of the taxonomic scope. This could have a negative effect on

the precision. The relatively low recall needs further investigations on TEES. A first step

to explain the recall could be an evaluation of TEES for pure gene recognition. However,

this goes beyond the scope of this work and is left for future work. The evaluation results

presented here do not exactly reflect the pipeline that is needed in our approach. To the

best of our knowledge, there is no existing benchmark that exactly captures the event-

recognition only for human genes. Although we outperform the two given baselines, in

future work we will need to work on this issue.

The normalization of biomedical entities is a crucial task of this approach. Since the

gene normalization is at the very beginning of the system, it could cause a lot of damage.

Wrongly normalized entity names influence the entire system and could lead to bad eval-

uation results and, with respect to the discovery of public knowledge, to the generation of

wrong assumptions. Especially for the task of hidden knowledge discovery and predicting

new gene candidates, it is mandatory to make the process of normalization re-traceable.

This helps researchers and annotators to understand the systems output more effectively.

39

5 Approach and Resource Generation

5.3 Gene-Interaction Network

In this section, we describe the generation process of a comprehensive gene-interaction

network. Thereto, we discuss the gene-event normalization/simplification and the process

of event graph transformation. An event has been defined as a set of coherent event

types, genes and additional arguments. In most cases, an event consists of more than

one event-type. Such complex events need to be simplified in a graph transformation

process. The objective of the transformation is to convert a given arbitrarily complex

event into simpler sub-events. We do this in order to reduce the complexity of the data

and make them persistently storable into our database. As mentioned before, TEES

generates plain textual output following the file description of the event extraction task.

These files contain structured information about the graph structure for each gene-event

that was extracted. The first step that needs to be done, is to convert this textual

output into a graph structure. Since our entire system was written in the programming

language java [5], we map the input into a java tree object. After that, the internal

tree representation is transformed into simpler sub-events. Therefore, we extract several

subtrees. Each sub-tree is restricted to a maximum number of two leaf-nodes, respectively

two genes, describing a simplified event between both. We call the converting from text

into a tree Graph Construction and the latter step Graph Transformation.

5.3.1 Graph Construction and Transformation

In order to make the graph transformation process more comprehensible, we illustrate

it based on the example sentence shown below. This example sentence is an excerpt of

the publication: “Upregulation of heat shock protein 27 confers resistance to actinomycin

D-induced apoptosis in cancer cells.” with the PubMed-ID 23848600.

(5.8) HSP27 knockdown leads to an increase in Act D-induced caspase 3 and

caspase 7 cleavage, and sensitizes rhabdosarcoma cells and breast cancer cells to

Act D-induced apoptosis[...].

Graph Construction In Section 5.2.1, two files were mentioned that are generated by

TEES. Usually, these files contain several hundred lines each. The complexity depends

on the number of events, proteins and additional information that was found in the input

text. In a merging process, all event depending lines from both files are extracted. An

40

5.3 Gene-Interaction Network

example of such extracted information from the sentence in Example 5.8 is shown in

Listing 5.1.

The generated file can be roughly divided into three different types of lines. Line 1, 2 and

3 belong to a protein/gene6. In this example, there are three different proteins HSP27,

Act D and caspase 3. The next three lines are specifications for a (sub)-event and contain

meta information. The last three lines represents the actual events. Line 7 shows an event

that is bounded to a single protein. The Negative regulation (E195) is bounded to HSP27

over a Theme-identifier. There is no specification of how this regulation needs to be initi-

ated. Line 8 shows a very frequent event type. This Positive regulation (E196) connects

two genes, precisely Act D as cause-gene and caspase 3 as theme-gene. Usually, this is

already a valid event on its own. However, it exists a more complex event that subsumed

E196. This complex event is shown in the last line. It shows a complex event between

two events. The cause-event E195 causes a positive regulation to the theme-event E196.

Considering this example, we have in fact two valid events: E196 and E198. Since E196

is subsumed by E198, we keep that in mind but lay the focus in the following to the more

complex event.

1 T371 23848600 758 763 Prote in HSP27

2 T372 23848600 798 803 Prote in Act D

3 T373 23848600 812 821 Prote in caspase 3

4 T706 23848600 764 773 N e g a t i v e r e g u l a t i o n knockdown

5 T707 23848600 804 811 P o s i t i v e r e g u l a t i o n induced

6 T708 23848600 786 794 P o s i t i v e r e g u l a t i o n i n c r e a s e

7 E195 N e g a t i v e r e g u l a t i o n : T706 Theme : T371

8 E196 P o s i t i v e r e g u l a t i o n : T707 Cause : T372 Theme : T373

9 E198 P o s i t i v e r e g u l a t i o n : T708 Cause : E195 Theme : E196

Listing 5.1: Merged information of the sentence in Example 5.8.

Up to this point, we have an understanding of the textual representation of a complex

event. The next step is to convert these lines into a graph. To address this problem,

we implemented a simple tree object in java, covering all necessary functions to store

all needed information. Figure 5.3 shows the graph representation of the complex event

E198.

6As mentioned before, we do not differentiate between genes and proteins.

41

5 Approach and Resource Generation

After converting the textual representation into a graph, the complex event can be trans-

formed into sub-events. By that, we assume that there is a possibility of dividing the

event-tree into sub-trees, without any or at least, with an acceptable loss of semantic

information. Besides minimizing the loss of information, it is also important to avoid the

generation of new and possibly wrong information. Tackling these requirements we de-

veloped an algorithm, in agreement with a biomedical expert, that takes both conditions

into account.

Figure 5.3: Graph representation of the complex event E198 that was shown in Listing
5.1.

Graph Transformation The algorithm is composed of two components that are called

subsequently for each complex event-tree. The objective of the graph transformation is

to convert complex events into simpler sub-events that can be stored in our database.

Thereby, we create a comprehensive gene-interaction network.

1. Determination of the cause-gene and the theme-genes

We define a cause-gene as a gene, which manipulated at least one other gene. Such a

manipulating role is defined by the semantic keyword Cause. Besides that, we define a

theme-gene as a gene that is manipulated by at least one cause-gene. We assume, that a

theme-gene within a cause-event of a complex event, has a manipulating role to each gene

in the sub-tree theme of the complex event. Taking the example from Figure 5.3, there

42

5.3 Gene-Interaction Network

are two valid cause-genes, namely HSP27 and Act D. If the cause is HSP27, then the set

of themes contains Act D and caspase 3. If Act D is chosen as cause, then caspase 3 is the

only theme. An other example is illustrated in Figure 5.4. In this example event, gene1

serves as cause for gene2 and gene3. gene2 serves as cause of gene3. However, gene3

is not a valid cause-gene.After the determination of causes and themes, a list of tuples

can be created. Each tuple consists of exactly one cause-gene and one corresponding

theme-gene.

Figure 5.4: Complex event with a valid cause event. Each gene in the cause event serves
as cause for the gene in the theme-event. All possible cause-genes are outlined boldly.

2. Generate sub-trees for each tuple

In the second step, we use a simple form of the Dijkstra algorithm [60] to extract the path

between the cause and the theme within a tuple. The Dijkstra algorithm always finds

the shortest path between two nodes in a given graph. Since each event is represented in

a tree rather than a graph, there is just one solution. By using this algorithm, a set of

sub-trees is generated, representing each sub-event of a complex event. Each tree within

the generated set consists of exactly two leaf-nodes (the cause-gene and the theme-gene)

and at least one event-type-node. In addition, two nodes are connected trough exactly

one directed edge, outgoing from the cause-gene. Three subtrees can be extracted from

the example in Figure 5.3. These are illustrated in Figure 5.5 and 5.6.

At the beginning of this section, we considered the complex event and mentioned a second

valid event (E196). By applying the graph transformation to the complex event, every

possible valid event is taken into account. However, a last step is required to convert

the event trees into the database readable format. In this step, all non-leaf nodes and

43

5 Approach and Resource Generation

edges are collapsed into a single edge. This new edge contains each information that was

previously represented from all edges and nodes between the two leaf-nodes. Due to the

structure of a sub-tree, this conversion can be done without any loss of information. The

result can be written as triple, that consists of two genes and their complex relation.

Figure 5.5: This figure contains two extracted subtrees for the example tree in Figure
5.3. Both of them have HSP27 as cause. The left figure shows the path to Act D, the
right figure to caspase 3. The edges are adjusted to be outgoing from the cause-gene,
marked as dashed lines. However, the edge descriptions do not changed.

Figure 5.6: This figure contains the third extracted sub-tree between Act D (cause) and
caspase 3 (theme). The edges are adjusted to be outgoing from the cause-gene, marked
with dashed lines. However, the edge descriptions do not changed.

For the three extracted sub-trees in Figure 5.5 and 5.6, we finally generate three following

new trees as shown in Figure 5.7. With these triple-like trees, a comprehensive gene-

interaction network can be built, using the graph storage ability of our database. The

actual storage is described in Section 5.4.

44

5.3 Gene-Interaction Network

Figure 5.7: This figure contains all three final trees that are generated by the graph
transformation from the tree in Figure 5.3.

5.3.2 Extraction of Path Signatures

In the previous section, the process of generating the data for a comprehensive gene-

interaction network was described. The result was a set of apparently independent triples,

that can be stored in the database. However, the database generates a comprehensive

network considering all genes and their transformed events. The integration into the

database is described in Section 5.4. The interaction network enables the connection of

genes beyond their abstract based relation and find new undiscovered public relations

[65] between genes. Therefore, we define a new term. We call consecutive relations

between two genes in the interaction graph Path Signature, referred to as signature. These

signatures are later used to formalize some features.

In the following, we describe the extraction of such signatures. On top of that, we intro-

duce a signature simplification/normalization process in order to limit the variance.

Since the network contains directed edges, a distinction between incoming and outgoing

signatures is needed. Thus, a signature can be either starting from a cause-gene gcause

and ending at a theme-gene gtheme or vice versa. Thereby it may have to pass some nodes.

These passing nodes are called bridge-genes. A signature is defined as outgoing if each

edge between gcause and gtheme is outgoing from the current node. An incoming signature

can be defined analogously. Due to the cyclic structure of the network and the huge

amount of data it is also crucial to limit a signature in its length by setting the maximum

number of bridge-genes. The generation of a signature from the gene-interaction network

is composed of three steps. All three steps are explained with respect to an outgoing

signature. Incoming signatures can be generated analogously. The generation of gcause

related signatures starts by the extraction of all gcause related raw-signatures.

45

5 Approach and Resource Generation

1) Extraction of Raw-Signatures from Database The first step is to find all paths

with a specific length between gcause and gtheme in the network. This is handled by the

database (see Section 5.4) with the following query:

1 PREFIX e: event

2 SELECT ?OutRel1 , ?OutRel2 WHERE

3 {

4 <e:HSP27 > ?OutRel1 ?BridgeGene1 .

5 ?BridgeGene1 ?OutRel2 <e:caspase+3> .

6 }

Listing 5.2: SPARQL query to retrieve a list of outgoing paths between HSP27 and

caspase3. Each path consists of two outgoing relations in consecutive order.

A maximum number of one bridge-gene leads to a number of two relations between these

genes. A maximum number of two bridge-genes leads to three relations etc. Figure 5.8

illustrates an example gene-interaction network. It shows two possible outgoing paths

starting at HSP27 and ending at caspase 3 and passing one bridge-gene. These paths are

highlighted as thick lines. The dashed lines are examples of incoming relations, starting

at HSP27 and ending at caspase 3. In this example, an incoming path exists only over

two bridge-genes. For convenience, all relations are abbreviated with Rel followed by a

unique ID e.g. Rel3. These relations can be very complex as mentioned in Section 5.3.

Figure 5.8: Illustration of a gene-interaction network of eight different genes. The re-
lations between HSP27 and caspase 3 are emphasized. The thick lines show outgoing
relations, starting at HSP27 and ending at caspase 3. The dashed lines illustrate incom-
ing relations starting at HSP27 ending at caspase 3.

46

5.3 Gene-Interaction Network

The result of this component is a set of lists of relations between gcause and gtheme, sorted

in consecutive order. Each list contains exactly n relations where n is the number of

bridge-genes+1. From the example graph in Figure 5.8, two outgoing relation-lists for

HSP27 can be extracted:

(5.9) (Rel1, Rel2)

(5.10) (Rel3, Rel4)

Due to lack of space, we create the following abbrevi-
ation table that is used in the following step.
We create the corresponding raw-signatures by build-
ing a comprehensive path, representing all relations
in the list. We do this by merging them, separated by
colons, in consecutive order as shown in Listing 5.8

Full Term Abbreviation

CAUSE CS

THEME TH

Positive relation Pos rel

Negative regulation Neg rel

Localization Loc

Figure 5.9: Abbreviation table for
event types.

1 TH: Neg reg :CS : Pos reg :TH: Pos reg :TH:CS : Pos reg :TH

2 CS: Pos reg :TH:CS : Neg reg :TH:CS : Pos reg :TH: Loc :TH

Listing 5.3: Two raw-signatures that were extracted from the example interaction

network in 5.8.

2) Signature Normalization In order to reduce the variability and make signatures more

generalizable, each relation is normalized in a subsequent process. The complexity of a

raw-signature is determined by the event-scheme in Table 5.9 and the number of bridge-

genes. Since we want to use the final Path Signature as features, their variability needs

to be reduced. This is done by a normalization / generalization of the raw-signatures. A

generalization always includes a loss of information. To minimize this loss, we have made

two assumptions in collaboration with biologists.

1. Abstraction from Semantic Path Information

The first assumption is, that the current notation contains some terms with very low

information content. These are all terms that are actually not an event, in this example

CAUSE and THEME. Both of them can be seen as semantic values that carry information

of the original event. If the Path Signature would remain in this notation, there would

be a lot of variations that may express the same or almost the same information with a

usage of slightly different terms. An example can be seen in Figure 5.7. The first two

47

5 Approach and Resource Generation

relations differ only in the last term (THEME/CAUSE). Assuming that these terms carry

only tree depending information, a crucial step is to remove all terms that do not belong

to an actual event. The modified forms so far, are listed in Listing 5.3.

1 Negat ive Regu lat ion : Po s i t i v e Regu l a t i on : Po s i t i v e Regu l a t i on : Po s i t i v e Regu l a t i on

2 Pos i t i v e Regu l a t i on : Negat ive Regu lat ion : Po s i t i v e Regu l a t i on : Lo c a l i z a t i on

Listing 5.4: Simplified form of the raw-signature in Listing 5.3. All non-event type terms

are removed. In this case it is only the THEME and the CAUSE keyword.

2. Generalizing of Event Types

On top of this reduction, we assume that similar event types can be generalized with-

out losing too much information. A modified GENIA event-scheme that we use in our

approach, is displayed in Table 5.12. It displays all reductions and generalizations. The

generalization comprises the encapsulation of Gene expression and Transcription into

Expression and all forms of regulations to Regulation.

Generalized

Event Types
Event Type Core arguments Additional arguments

Gene expression Theme(Protein)
Expression

Transcription Theme(Protein)

Catabolism Protein catabolism Theme(Protein)

Localization Localization Theme(Protein)
AtLoc(Entity),

ToLoc(Entity)

Binding Binding Theme(Protein) + Site(Entity) +

Phosphorylation Theme(Protein) Site(Entity)

Regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)

Positive regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)
Regulation

Negative regulation
Theme(Protein / Event),

Cause(Protein / Event)

Site(Entity),

CSite(Entity)

Table 5.12: Reduced GENIA event scheme.

48

5.4 The Graph Database

The simplification comprises the deletion of all additional arguments and tree depending

identifiers like Theme and Cause. The additional generalization transforms the signatures

into the following form:

1 Regulat ion : Regulat ion : Regulat ion : Regulat ion

2 Regulat ion : Regulat ion : Regulat ion : L o c a l i z a t i o n

Listing 5.5: Simplified and generalized form of the raw-signature from the example in

Listing 5.3.

Signature String Compression The third and last step of the signature generation is

a compression of the current form. On top of these simplifications and generalizations,

which are based on assumptions, we use one last compression strategy to shorten the

string length of very complex signatures. This strategy does not change the content of

information, but is just a different spelling and leads to a condensation of information.

We collapse consecutive equal relation-types and assign them a new term. These terms

are composed of the prefix Multiple, the actual generalized event-type e.g. Regulation and

an identifier that counts the number of collapsed events e.g. 2. Listing 5.6 shows the

final forms of the modified signatures from Listing 5.3.

1 Mult ip l eRegu la t i on 4

2 Mult ip l eRegu la t i on 3 : M u l t i p l e L o c a l i z a t i o n 1

Listing 5.6: Final form of the two Path Signatures from the example in Listing 5.3.

After this compression, the generation of a Path Signature is complete. In this form they

will be used to define the features in Section 5.5.2.

5.4 The Graph Database

In the last two sections, the data extraction and preparation has been described. That

includes the entity recognition, the entity normalization, the data filtering, and the data

generation to build a comprehensive gene-interaction network. The extracted data need

to be saved persistently in order to guarantee an access at query time. In this section, we

describe the population of the databases. Thereto, the choice of the database is motivated

in the following subsection. After that, the required data structure is explained and we

describe the conversion of the previously prepared data into this format.

49

5 Approach and Resource Generation

5.4.1 Blazegraph

This section describes and motivates briefly the choice of the database that was used

to store the extracted information persistently. The choice of a (Resource Description

Framework [13]) RDF-graph database is based on the fact that both, gene-disease and

gene-gene relations can be represented as a triple. The database needs to connect all

genes through their relations, not only with direct relations, but among longer paths.

Therefore, the database needs to support graph mining techniques. To address all these

requirements, we decided to use bigdata (also known as Blazegraph since 2015), which is

maintained by Systap 7. Blazegraph is a freely available database framework. It is highly

scalable up to 50 billion entries on a single machine, which makes it easily usable, even

with limited resources. Blazegraph stores each entry as resource description RDF-triple

but supports also named graph quadruples. Named graphs offer also the possibility to

add additional context knowledge in future work without changing to much of the data

structure. The data can be accessed by using powerful low level API’s like Sesame [14].

Sesame supports several query languages. This includes SPARQL, which was accepted as

a standard by the World Wide Web Consortium (W3C). Thus, a lot of well documented

examples exist that simplify the development of our system.

5.4.2 Population of the Database

To store the extracted information, the data needs to be converted into RDF-triples/

RDF-quadruples. This process is described in this section. An RDF triple contains

three fields, namely Subject, Predicate and Object. A named graph quadruple contains an

additional field, the Context. Such a triple describes a relation between the Subject and

the Object. The Predicate covers their relation. Each field can store different data types

and usually has a semantic meaning and provides predefined values. However, there is no

restriction to use the fields in a different way.

In our case, we need to store three different types of triple.

1. The first type of triple stores an abstract based co-occurrence of a disease and a

gene. We call this type of triple co-occurrence triple (COT).

2. The second type of triple stores the event-based relation between two genes. We

name it gene-event triple (GET).

7http://www.blazegraph.com/ Access: 23.04.15

50

http://www.blazegraph.com/

5.4 The Graph Database

3. The last type of triple is similar to the first type. It stores a relation between a

disease and a gene. However, this relation is not based on co-occurrences, but is

determined through the gold data. We name them gold-data triple (GDT).

Construction of the Co-occurrence Triples Each COT contains a disease, a gene and

the PubMed-ID in which both entities were extracted. Given a set of diseases D and a

set of genes G, which are extracted from the same abstract A, we built a set of triples

{d,A, g|d ∈ D, g ∈ G} to determine all COTs for A. Thus, the total number of COTs of A

can be calculated as |D| · |G|. This abstract based co-occurrence is thereby a very broad

definition. However, as motivated in the related work chapter, most of the published

findings describe successful experiments. Thus, we assume that the majority of abstract

based co-occurrences share a positive correlation. By taking all co-occurrences into ac-

count, we avoid the missing of possible relations and increase thereby the systems recall.

On the other hand, we create a lot of false positives that need to be eliminated. Table

5.13 contains an excerpt of all co-occurrences that were found in the example sentence in

Example 5.8.

Disease (Subject) AbstractID (Predicate) Gene (Object) ContextID (Context)

breast cancer 23848600 Act D C125577

breast cancer 23848600 caspase 3 C125578

breast cancer 23848600 caspase 7 C125579

breast cancer 23848600 HSP27 C125580

sarcomas 23848600 Act D C125581

sarcomas 23848600 caspase 3 C125582
...

...
...

...

sensitizes rhabdosarcoma 23848600 HSP27 C125588

Table 5.13: Excerpt from all COTs that can be extracted from the given sentence in
Example 5.8.

We built a COT as follows: The disease is put into the Subject field. The Predicate field

is filled with the abstract ID, since its meaning comes closest to a relation. Thereby, the

Object contains the related gene. In the last field we store an entry corresponding context

ID. This ID serves as pointer to the current entry. In future work we will be able to use

this ID as a reference to store additional information to the corresponding COT. This

could be for example the onset/offset of the involved entities or information about their

surface forms to make the normalization process re-traceable.

51

5 Approach and Resource Generation

Construction of the Gene Event Triples Each GET consists of a cause-gene, a theme-

gene and their event-based relation. The main process of event generation was already

described in Section 5.2. The generated triples for each extracted sub-tree as illustrated

in Figure 5.5 and 5.6, are shown in Table 5.14.

Cause

(Subject)

Complex Relation

(Predicate)

Theme

(Object)

ContextID

(Context)

HSP27 THEME:Neg reg:CAUSE:Pos reg:THEME:Pos reg:CAUSE Act D E5311

HSP27 THEME:Neg reg:CAUSE:Pos regTHEME:Pos reg:THEME caspase 3 E5315

Act D CAUSE:Pos reg:THEME caspase 3 E5316

Table 5.14: This table shows all generated triples that could be generated from the sen-
tence in Example 5.8. Due to lack of space we shortened the event type names. Thereto,
Neg rel stands for Negative regulation, Pos rel can be analogously interpreted.

The amount of gene relations in this example is substantially lower in comparison to

the number of co-occurrence triples. There are only three different GETs. The data

allocation to the individual fields is similar to the co-occurrence triple. The cause-gene

is assigned to the Subject field. The relation is stored as Predicate. The theme-gene

serves as Object. The corresponding context ID is stored in the Context field and can be

interpreted analogously to the co-occurrence context ID.

Construction of the Gold Data Triple The third type of triple covers an entry in the

gold data that were previously described in Section 3.3. The structure and meaning of a

gold triple is very similar to a co-occurrence triple. It contains exactly one disease and

one gene. They only differ in the predicate. A COT stores the abstract ID in which both

entities were found and the GDT contains the information from which particular gold

data this association was extracted. In the current system, this could be either ncbigtr or

disgenet. Table 5.15 shows six example GDTs.

Technically, all three types of named triples can be stored in a single comprehensive

database. However, we decided not to do so, but to store the event type triples in its own

database. The co-occurrence triples were put together with the gold triples. This split has

benefits and drawbacks. During the design of the feature vector, a clear distinction into

features that are based on COTs /GDTs and features that are based on GETs emerged.

Thus, a split into two databases seems legit. It will ease the way of querying data and

speed up the process. A clear negative aspect is the higher complexity of querying any

kind of interaction between COTS and GETs. This requires both, more time and resources

since pre-queried data need to be stored temporarily in the memory.

52

5.4 The Graph Database

Disease (Subject) Gold Data (Predicate) Gene (Object) ContextID (Context)

hyperlysinemia ncbigtr AASS GTR13

malignant hyperthermia ncbigtr RYR1 GTR4605

townes syndrome ncbigtr SALL1 GTR4616

malignant hyperthermia disgenet RYR1 Dis52

pulmonary fibrosis disgenet SFTPA2 Dis2141

endometriosis disgenet MMP3 Dis42577

Table 5.15: Six example triples that describe gold entries from the GTR respectively
from the DisGeNET gold data.

Another problem could appear in the future. A visualization of the entire data is not

simple. Usually there are a lot of visualization tools for RDF-data like vizualRDF 8,

RDF-Gravity9 or IsaViz 10. However, a split into two databases makes a comprehensive

visualization more complicated.

Finally, the positive aspects predominate and we decided to populate two separate databases.

Thus, all COTs and GETs are stored in the disease-genes-association-database, here-

inafter referred to as DGA-DB. All event triples are stored in the gene-interaction-

network -database, referred to as GIN-DB.

Insertion of the triples In the following we give an example query to store a co-

occurrence quadruple.

1 PREFIX c: cooccurrence

2

3 INSERT DATA

4 {

5 GRAPH <c:C0> { <c:breast+cancer > <c:23848600 > <c:Act+D> }

6 }

Listing 5.7: Concrete co-occurrence quadruple insertion into the DGA-DB for the disease

breast cancer and the gene Act D in SPARQL-notation.

8https://github.com/alangrafu/visualRDF Access: 2015-04-15
9http://semweb.salzburgresearch.at/apps/rdf-gravity Access: 2015-04-15

10http://www.w3.org/2001/11/IsaViz Access: 2015-04-15

53

https://github.com/alangrafu/visualRDF
http://semweb.salzburgresearch.at/apps/rdf-gravity
http://www.w3.org/2001/11/IsaViz

5 Approach and Resource Generation

The Resource Description Framework was technically invented to describe semantic web

data. Usually, such data is provided with a namespace that declares the scope in which

the attribute value is defined. In the current system, we do not make use of the benefits

that can be gained by choosing accurate namespaces. Nonetheless, the data is stored in

URI-notation and a namespace declaration is mandatory. The example in 5.7 shows an

insertion for a co-occurrence triple into the DGA-DB. The triple for the gold-data and

the gene-events can be inserted analogously. They differ only in the namespace gold for

gold-data triples and event for gene-event triples.

5.5 Feature Extraction

In the last sections, the data generation and the persistent storage of the extracted infor-

mation was described. The data could be separated into three different kinds of named

RDF-triple. We populate a separate database for the gene-gene associations and a sep-

arate for the disease-gene associations. This was motivated by the investigation of the

formalized features. As we will see in this section, the triple separation improves the

simplicity of querying the data. We formalize all features and describe the methods to

extract them from the two databases. Based on these features, we build a comprehensive

feature vector that represents a data point to train machine learning models. Finally, the

main goal of this work, the gene classification and the gene ranking can be tackled.

Seven feature groups are defined in total. Each feature group adds a number of features

to the comprehensive feature vector that is used as training data for the machine learning

methods. This arrangement in groups can again be divided into two types.

The first type is based on disease-gene pairs. These features are based on the co-occurrence

between diseases and genes. We call these feature groups co-occurrence based features.

They include the following five feature groups:

1. Entropy - The Entropy feature group contains the entropy of the gene and the

entropy of the disease.

2. Co-occurrence -It contains three features that describe the probability of the disease-

gene pair with respect to three different types of normalizations.

3. Grade -The grade describes the normalized occurrence of a gene or a disease in the

database.

4. Odds Ratio -The odds ratio describes the statistical dependency between a gene and

a disease within the dataset.

54

5.5 Feature Extraction

5. TF-IDF - This feature contains the TF-IDF value for a disease-gene pair. A Term

is defined by a gene that co-occurs with a disease (the document).

The second type of feature groups is called gene network features. These features are

disease independent and based only on the gene-interaction network. This type contains

the following feature groups:

1. Path Signatures - A signature describes a path between a given cause-gene and a

theme-gene in the gene-interaction network as defined in Section 5.3.2. We consider

each outgoing signature with a specific length as single feature. The actual value is

defined by the TF-IDF value of a signature within the corresponding gene.

2. Gene Connectivity - These features contain information about the connectivity of

the gene in the network with respect to the number of outgoing and incoming

signatures.

5.5.1 Co-occurrences Based Features

In the following subsection we describe all features that are based on co-occurrences

between diseases and genes.

Before formalizing these features, some variables need to be predefined. We denote Tdiseases

as the set of all triples within DGA-DB. Further we define D as the set of all existing

diseases and G as the set of all existing genes in DGA-DB.

On top of that we define three subsets of Tdiseases:

1. Td = Subset of triples with a fix disease d and all co-occurring genes.

2. Tg = Subset of triples with a fix gene g and all co-occurring diseases.

3. Tdg = Subset of triples with a fix disease d and a fix gene g.

where Tdg ⊆ Td, Tdg ⊆ Tg and Tdg = Td ∩ Tg as illustrated in Figure 5.10.

55

5 Approach and Resource Generation

Figure 5.10: Illustration of the three defined subsets: Td,Tg and Tdg of Tdiseases for the
example disease breast cancer and the gene HSP27.

To calculate these subsets, we used three SPARQL queries that are shown in Listing

5.10,5.9 and 5.10. The first query extracts all co-occurring genes for the example disease

breast cancer and is denoted as Td=breastcancer:

1 PREFIX c: cooccurrence

2 PREFIX g: gold

3

4 SELECT DISTINCT ?Rel , ?Gene WHERE

5 {

6 <c:breast+cancer > ?Rel ?Gene .

7 FILTER(?Rel != <g:disgenet > && ?Rel != <g:ncbigtr >)

8 }

Listing 5.8: SPARQL query to retrieve a list of co-occurring genes for the specific disease

breast cancer in URL notation. The result is filtered to receive entries that do not belong

to any gold standard.

In this query we add a filter in line seven to restrict the output to non-gold standard data.

Since we have two gold standards as described in Section 3.3, we need to filter both. As

described in Section 5.4, the source of a disease-gene association can be identified by their

predicate. Thus we filter all entries whose relation is either disgenet or ncbigtr. The result

is a list of relation-gene tuples that co-occur with breast cancer.

56

5.5 Feature Extraction

The extraction of all co-occurring diseases for the gene HSP27 (Tg=HSP27) works analo-

gously.

1 PREFIX c: cooccurrence

2 PREFIX g: gold

3

4 SELECT DISTINCT ?Dis ?Rel WHERE

5 {

6 ?Dis ?Rel <c:HSP27 > .

7 FILTER(?Rel != <g:disgenet > && ?Rel != <g:ncbigtr >)

8 }

Listing 5.9: SPARQL query to retrieve a list of co-occurring diseases for the specific gene

HSP27. The result is filtered to receive entries that do not belong to any gold standard.

The last query that is used extracts all co-occurrences for breast cancer and HSP27. Since

we already specified the disease and the gene, the result is simply a list of relations, which

is denoted as Td=breastcancer, g=HSP27.

1 PREFIX c: cooccurrence

2 PREFIX g: gold

3

4 SELECT DISTINCT ?Rel WHERE

5 {

6 <c:breast+cancer > ?Rel <c:HSP27 > .

7 FILTER(?Rel != <g:disgenet > && ?Rel != <g:ncbigtr >)

8 }

Listing 5.10: SPARQL query to retrieve a list of relations that connect the specific

diseases cancer with the specific gene LecB. The result is filtered to receive entries that

do not belong to any gold standard.

In the following, each feature group is described in detail by using the predefined sets.

We denote d ∈ D as the disease and g ∈ G as the gene of a given disease-gene pair to

which the features should be calculated.

Entropy

In an event that is determined by the co-occurrence of two variables, the entropy measures

the amount of uncertainty about the outcome of the event that remains when one variable

57

5 Approach and Resource Generation

is known. Following the definition of Shannon’s Entropy [57], we establish two formulas

that calculate the entropies for d, respectively g.

In the following equation, the calculation of the entropy H(d) for d is shown:

H(d) = −
G∑
g

pg(g, d) · log2(pg(g, d)) (5.11)

We define pg(g, d) as the probability at which g co-occurs with d within the data:

pg(g, d) =
|Tdg|∑G
g′ |Tdg′ |

The calculation of the entropy H(g) for the gene g works analogously as shown in Equation

(5.12).

H(g) = −
D∑
d

pd(d, g) · log2(pd(d, g))

pd(d, g) =
|Tdg|∑D
d′ |Td′g|

(5.12)

Two real world examples for INS and LecB are shown in Table 5.16. The first column

counts the number of diseases that co-occur with the gene. The second column shows the

corresponding entropy values. INS is a very frequent gene that co-occurs with more than

8.000 different diseases. The entropy shows a relative high value of 10.47. In contrast,

LecB co-occurs with only 7 different diseases. Its entropy value of 2.73 is rather small.

These values are consistent with the definition of Shannon’s entropy. A gene that co-occurs

with many different diseases has a high entropy and thereby leads to a high uncertainty.

More specific genes have small entropies and thereby low uncertainties to which disease

it could co-occur. This feature group is implemented to offer the possibility of balancing

the importance between rare and frequent genes, respectively diseases.

Mentioned Diseases Entropy

INS 8.853 10.47

LecB 7 2.73

Table 5.16: Example of the entropy for two different genes.

58

5.5 Feature Extraction

Co-occurrence

The co-occurrence feature group describes the probability of a specific disease-gene pair

with respect to three different normalizations. The first feature value Occdg(d, g) is calcu-

lated by the number of co-occurrences between d and g and is normalized by the maximum

disease-gene co-occurrence that exists in the data:

Occdg(d, g) =
|Tdg|

max{|Td′ | : d′ ∈ D}
(5.13)

The second feature Occd(d, g) value is normalized by the number of co-occurrences that

exist between the fixed disease d and any gene g′ ∈ G where g′ 6= g.

Occd(d, g) =
|Tdg|

|Td| − |Tdg|
(5.14)

Analog to the second feature, the third one is normalized with respect to a fixed gene and

any disease d′ ∈ D where d′ 6= d.

Occg(d, g) =
|Tdg|

|Tg| − |Tdg|
(5.15)

These features enable several points of view to the information that can be gained by the

specified disease-gene pair. The first feature Occdg(d, g) denotes the general strength of

their connection. The values range from zero to one. A value near to zero indicates a weak

connection, whereas a value near to one indicates a strong connection. The second and

third features define, similar to the entropy, the individual specificity of the co-occurrence

with respect to the disease respectively to the gene. The higher the value, the more

specific is the particular disease connected to the gene respectively the gene connected to

the disease.

Grades

The Grades feature group consists of two single features. The first feature counts the

number of triples that contain d. The second feature counts the number of triples that

contain g. Both values are normalized by their corresponding maximum value. Equation

(5.16) and (5.17) show the formulas to calculate both grade features.

59

5 Approach and Resource Generation

Graded(d) =
|Td|

max{|Td′ : d′ ∈ D}
(5.16)

Gradeg(g) =
|T ′g|

max{|T ′g′ : g′ ∈ G′}
(5.17)

The grade feature is another way to express the frequency of an entity. The higher the

grade, the more frequent is the specific entity.

Odds Ratio

The odds ratio describes a statistical way to measure the dependency between two at-

tributes within a dataset. We use this feature to describe the dependency between d and

g. The first attribute A is defined as the presence or absence of d within a triple. The

second attribute B works analogously with respect to g. By observing these attributes, a

matrix can be set up with four elements as shown in Table 5.17. Each field in the matrix

counts the number of pairwise occurrence of the attributes.

B ¬B

A |Tdg| |Tdg| − |Tg|

¬A |Tdg| − |Td| |Tdiseases| − |Tdg|

Table 5.17: Odds ratio attribute matrix. With the two attributes A and B corresponding
to the presence or absence to the disease (A) respectively the presence or absence of the
gene (B).

The first field AB counts the number of triples in which the disease and the gene co-occur.

A¬B represents the number of co-occurrences where d co-occurs with any gene except

g. ¬AB can be interpreted analogously. The last field ¬A¬B contains the number of all

co-occurrences that neither contain the disease nor the gene.

To calculate the odds ratio, we use the formula defined in Equation (5.18).

Oddsgd(d, g) =
(AB) ∗ (¬A¬B)

(A¬B) ∗ (¬AB)
=

|Tdg| ∗ (|T | − |Tdg|)
(|Tdg| − |Td|) ∗ (|Tdg| − |Tg|)

(5.18)

In theory, the result is a number between zero and∞. However, since we have much more

triples that match ¬A¬B than the other three conditions, the odds ratio is either greater

than one or exactly zero. Thereby we interpret the value as follows: The higher the odds

60

5.5 Feature Extraction

ratio the higher, the dependency between d and g. A value of zero can only be reached if

the (AB-term) is zero, which means there is no dependency.

TF - IDF

The term frequency (TF) and the inverse document frequency (IDF) are measures that

are often used in the task of information retrieval from texts. From a given set of textual

documents, the TF-IDF is the information that can be gained from a word in a document

in order to classify the document. We adapted this way of information retrieval to the

problem of weighting a disease-gene association. By that, we do not define a document

as textual source, but as a disease that contains co-occurring genes. Thus, a term within

this document is defined as one co-occurring gene. By investigating the considered data,

we noticed a very high variance in the number of genes that are co-occurring with a

disease. Especially rare occurring diseases often only have a few co-occurring genes,

whereas frequently occurring diseases like cancer are mentioned with up to several hundred

genes. To avoid a bias towards longer documents (diseases that co-occur with many

genes), the term frequency is calculated by using the augmented normalization, which is

calculated as shown in Equation (5.19).

tfaug(g, d) = 0.5 +

(
0.5 ∗ |Tdg|

max{|Tdg′ | : g′ ∈ G}

)
(5.19)

The inverse document frequency is defined in Equation (5.20).

idf(g,D) = log(
|D|∑D

d f(d, g)
)

f(d, g) =

1 if |Tdg| > 0

0 else

(5.20)

The final feature value tfidf is then calculated as the product of the single components:

tfidf(g, d,D) = tfaug(g, d) ∗ idf(g,D) (5.21)

The final contribution to the feature vector are two features, namely the TF-IDF value

but also the IDF value separately.

61

5 Approach and Resource Generation

5.5.2 Gene Interaction Based Features

All previously described feature groups take a disease and a gene into account. The

next two feature groups, the Path Signatures and the Gene Connectivity are disease

independent and purely calculated on the gene-interaction network. Thereto, we define

Tgenes as a set of all triples in GID-DB.

Path Signatures

In this group, each feature represents a unique outgoing signature, as described in Section

5.3.2. Thereby, the number of possible features depends on both, the number of different

genes and the maximum path length respectively the maximum number of bridge-genes.

Since the number of possible features grows exponentially by increasing one of these two

factors, we set the maximum path length to two, respectively the maximum number of

bridge-genes to one. The limitation of the number of genes cannot be restricted that

easily. In fact, there are only two ways to reduce the number of genes effectively. The

first and most important reduction is done by an effective gene-normalization framework.

An other way is to reduce the genes by limiting the taxonomic scope. This could be

for example a limitation to human genes as we did it in this work. On the one hand,

each limitation could lead to missing a significant structure in the data, which could

easily have a negative effect on the final results. On the other hand, some limitations

and assumptions need to be made in order to reduce the processing time or to focus the

results to the desired scope. A well defined purpose of the data usage is thereby crucial

and should be done very carefully in the first place.

The signature-feature value depends on two variables, a gene g and a signature s. The

actual value is defined by the TF-IDF value of the term s within the document g as

shown in the equations (5.22), (5.23) and (5.24). We define Sout(g) as a list of all outgoing

signatures (as described in Section 5.3.2) for the specified gene g. Notice that, due to the

fact that the signature are gene-independent but not their generation, these lists could

contain any signatures multiple times.

62

5.5 Feature Extraction

The basic idea of these features is to find one or more specific signatures, that may identify

an important relation between a gene that is already known as disease-related and a new

gene. Currently, only the outgoing signatures are considered in this feature group, since

we assume that outgoing signatures contribute more relevant information. In a further

improvement of the system, we should extend these features by incoming signatures as

well.

tfidfsig(s, g,G) = tfsig(s, g) ∗ idfsig(s,G) (5.22)

tfsig(s, g) =

∑Sout
g

s′ f(s, s′)

max{
∑Sout(g)

s′ f(s, s′) : s ∈ Sout(g)}

f(s, s′) =

1 if s = s′

0 else

(5.23)

idfsig(s,G) = log(
|G|∑G

g f(g, s)
)

f(g′, s) =

1 if s ∈ Sout(g

′)

0 else

(5.24)

Gene Connectivity

The last feature group describes the connectivity of a gene within the gene-network graph.

This group contains four different types of features. The number of single features depends

on the maximum number of bridge-genes. The first features count the number of outgoing

signatures for each length separately. The next features count the number of incoming

signatures for each length separately. The last two features, represent the arithmetic

mean, respectively the ratio of the previous features.

To calculate these features we denote Sin(g, l) as a list of all incoming signatures and

Sout(g, l) as a list of all outgoing signatures with the specific path length of l. Further, we

denote L as the maximum path length where l ≤ L . The query to extract all outgoing

signatures for a specific gene e.g. HSP27 is similar to that one defined in Listing 5.2. The

only difference is that we do not specify a theme-gene. The query to create Sout(g, l = 2)

63

5 Approach and Resource Generation

for HSP27 is shown in Listing 5.11.

1 PREFIX e: event

2 SELECT ?OutRel1 , ?OutRel2 WHERE

3 {

4 <e:HSP27 > ?OutRel1 ?BridgeGene1 .

5 ?BridgeGene1 ?OutRel2 ?GeneTheme1 .

6 }

Listing 5.11: SPARQL query to retrieve a list of all outgoing relations for the cause-gene

HSP27.

These extracted relations can be used to generate an outgoing signature by following the

description in Section 5.3.2. The generation of Sin(g, l = 1) is analogously. Listing 5.12

shows an example query to retrieve all incoming signatures for the specific theme-gene

HSP27.

1 PREFIX e: event

2 SELECT ?InRel WHERE

3 {

4 ?CauseGene ?InRel <e:HSP27 > .

5 }

Listing 5.12: SPARQL query to retrieve a list of all incoming relations for the theme-gene

HSP27 with a length of 1.

The first feature Outnorm(g, l) and the second feature Innorm(g, l) can be calculated as

shown in the following equations:

Outnorm(g, l) =
|Sout(g, l)|

max{|Sout(g′, l)| : g′ ∈ G}
(5.25)

Innorm(g) =
|Sin(g, l)|

max{|Sin(g′, l)| : g′ ∈ G}
(5.26)

64

5.5 Feature Extraction

The third feature, Presence(g) represents the normalized mean value and is calculated

by:

Presence(g) =
Out(g) + In(g)

max{(Out(g′) + In(g′′)) : g′, g′′ ∈ G}

Out(g) =
L∑
l

|Sout(g, l)|

In(g) =
L∑
l

|Sin(g, l)|

(5.27)

In all three features, the values range from zero to one. The higher the value, the higher

the connectivity of g in the network.

The fourth feature IORatio(g) is defined by the ratio between the incoming and outgoing

number of signatures. The ratio is defined as:

IORatio(g) =
max(1, Out(g))

max(1, In(g))
(5.28)

If the result is greater than one, the gene has more outgoing edges and has a rather

manipulating role in the gene network. In contrary, if the number is less than one, it

indicates that the gene is more manipulated by other genes. If the specific gene does not

have either an outgoing or an incoming signature, we set the corresponding value to one.

Thus, a division by zero is avoided. With a maximum path length of two, this feature

group has six features that contribute information about the gene-connectivity.

5.5.3 The Feature Vector

In the previous subsections, we formalized all features and explained their generation and

calculation in detail. In this subsection, the composition of the feature vector is described.

1. Entropy : SVentropy - The sub vector for the Entropy is a two dimensional vector:

SVentropy(d, g) =

H(d)

H(g)

 (5.29)

The values are calculated by Equation (5.11) and (5.12).

65

5 Approach and Resource Generation

2. Co-occurrence : SVcooc - The sub vector for the Co-occurrence is a three dimensional

vector:

SVcooc(d, g) =

Occdg(d, g)

Occd(d)

Occg(g)

 (5.30)

The values are calculated by Equation (5.13), (5.14) and (5.15).

3. Grade : SVgrade - The sub vector for the Grade is a two dimensional vector:

SVgrade(d, g) =

Graded(d)

Gradeg(g)

 (5.31)

The values are calculated by Equation (5.16) and (5.17).

4. Odds Ratio : SVodds - The sub vector for the Odds Ratio is a one dimensional vector:

SVodds(d, g) =

(
Oddsgd(d, g)

)
(5.32)

The value is calculated by Equation (5.18).

5. TF-IDF : SVtfidf - The sub vector for the TF-IDF is a two dimensional vector:

SVtfidf (d, g) =

tfidf(g, d,D)

idf(g,D)

 (5.33)

The values are calculated by Equation (5.20) and (5.21).

66

5.5 Feature Extraction

6. Gene Connectivity : SVconnectivity - The Gene Connectivity sub vector with a maxi-

mum path length of two is a six dimensional vector:

SVconnectivity(g) =

Outnorm(g, 1)

Outnorm(g, 2)

Innorm(g, 1)

Innorm(g, 2)

Presence(g)

IORatio(g)

(5.34)

The values are calculated by Equation (5.25), (5.26), (5.27) and (5.28).

7. Path Signatures : SVsignatures - The dimension of the sub vector for the Path Signa-

tures depends on the considered genes and the maximum path length. The latter

variable needs to be defined in the first place and must not be changed anymore.

The maximum path length was set to two. The genes were restricted to those,

who occur in the currently used gold standard. The features for the Path Signa-

tures group were then aggregated for each of those genes. Given Ggold defined as

a set of all genes that occur in the gold standard, the total amount of different

signatures/features denoted as Fsig is calculated as:

Fsig = {Sout(g, l) : g ∈ Ggold, l ≤ L} (5.35)

Thereby, the sub vector for the Signatures is a n dimensional vector, where n =

|Fsig|:

SVsignatures(g) =

tfidfsig(Fsig[0], g)

tfidfsig(Fsig[1], g)

tfidfsig(Fsig[2], g)

...

tfidfsig(Fsig[n− 1], g)

(5.36)

The values are calculated by Equation (5.22).

67

5 Approach and Resource Generation

The final feature vector FV for a given disease d and a given gene g is then a composition

of all sub vectors:

FV (d, g) =

SVentropy(d, g)

SVcooc(d, g)

SVgrade(d, g)

SVodds(d, g)

SVtfidf (d, g)

SVconnectivity(g)

SVsignatures(g)

(5.37)

with a total of 14 + |Fsig| dimensions.

5.6 Summary

In this chapter, we discussed the most important methods that we use in our approach.

In Section 5.1 we described the disease extraction pipeline. This pipeline consists of two

consecutive methods, the disease mention recognition and the disease normalization. We

integrated a CRF tagger by Klinger [36] as disease recognition. In Section 5.1.2, we

introduced DiNo, a simple disease normalization framework. We evaluated the entire

pipeline on the NCBI disease corpus [23] and archived an F-score of 61.79%.

The gene event extraction pipeline was discussed in Section 5.2. The pipeline starts with

the event extraction system TEES [9]. All genes that are found by TEES are normalized

by GeNo [72]. We evaluated the combination of both state-of-the-art systems on the

BioCreative-II gene normalization corpus [46]. The usage of TEES as gene recognition

model for GeNo yields a performance of 55.33%. During the normalization, we discarded

all genes that did not belong to the human species. We use EntrezGene [45] to accomplish

this filtering by comparing the taxonomic IDs.

By that, we heavily reduced the amount of considered genes and events. On top of that,

we transformed the remaining complex gene-events into simpler sub-events, describing a

relation between two genes. After an extensive graph transformation, the relations were

then simplified and normalized in order to reduce their complexity. The entire process of

68

5.6 Summary

event graph generation was described in Section 5.3. For the task of feature generation,

we defined a Path Signature as modified consecutive relations between two genes in the

gene-interaction network. The process of signature generation was described in Section

5.3.2.

Based on the gold-standard data, which was introduced in Section 3.3, and the extracted

diseases, genes and gene-events, we store three different types of RDF-quadruple in two

different databases. The first kind of triple covers an abstract-based co-occurrence of a

disease and a gene. The next type of triple contains a disease-gene association from the

gold data. Both types of triples were stored together in the Disease-Gene-Association

database. The third type of triple covers a simplified gene-event. By integrating all ex-

tracted gene-events into a graph database, we generated a comprehensive gene-interaction

network where genes are nodes and their relations are expressed through edges. We store

the third type of triple in a separate database called Gene-Interaction-Network database.

The triple generation and storage were described in Section 5.4.

In Section 5.5, we formalized the features that we used to train machine learning mod-

els. We distinguished between features that are based on the Disease-Gene-Association

database and those that are based on the Gene-Interaction-Network database. The first

kind included the following five features: Entropy, Co-occurrence, Grade, Odds Ratio and

TFIDF. These features take a specific disease and a specific gene into account. The sec-

ond kind of features are disease independent and are calculated on the gene-interaction

network. These are: Path Signatures and Gene Connectivity. The chapter ends with a

comprehensive view on the final feature vector that can be generated for any disease-gene

pair using the presented methods in this chapter.

69

6 Experiments and Evaluation

This work describes a system for disease-gene association extraction, with respect to the

identification of undiscovered public knowledge. We addressed this task by building and

analyzing a gene-interaction network. The aggregation of information of gene-interactions

that goes beyond the scope of a single abstract, allows us to generate novel disease as-

sociated gene candidates. Using concept-interaction networks to find hidden knowledge,

often leads to a high number of novel candidates. In order to deal with this problem, we

implement two different methods. In the first method, we train a support vector machine

to classify a gene-candidate as disease related or not. In our second method, we train a

support vector regression to rank gene-candidates by their importance to a disease. Both

methods have advantages and disadvantages, which will be described in the following

experiments. However, both methods offer the possibility to limit the amount of novel

candidates and focus the attention to the most important.

So far we have discussed:

1. the materials that we used for the information extraction in Chapter 3.

2. the system architecture in Chapter 4 that gives an insight of the resource generation

pipeline.

3. the most important methods of the resource generation in detail. And we formalized

various features to define the feature space, in Chapter 5.

In this chapter, we present several experiments to test the performance of our system. In

the first section (Section 6.1), we describe the experiments we have made to find the best

classification model. We trained various models that were built with different features-sets

and evaluate them on a test set. In Section 6.2, we describe experiments to find the best

regression model. On top of that, we integrate the best performing regression model of the

training data into our system, and pre-evaluate the ranking task on a test set. In a last

experiment, presented in Section 6.3, we examine our system’s performance with a case-

study. We use Pulmonary Fibrosis as testing disease and generate 200 gene-candidates,

which were evaluated by biomedical experts.

71

6 Experiments and Evaluation

During the case-study, we want to prove the following assumption:

(6.1) We assume that a gene-interaction network, such as we built in Section 5.3,

contains reliable features that contribute useful knowledge, which can be learned by

machine learning methods, to enhance the quality of the generated output.

6.1 Classification of Genes Candidates

In this section, we describe the general experimental setup from our experiments, finding

the best performing classification model. This includes a description of the training and

test set, the measurement and a brief overview of the used machine learning method. In

Section 6.1.2, we present and discuss the evaluation results. The main objective of these

experiments was to find the best performing model that represents the Genetic Testing

Registry-gold data, with respect of our assumption in Example 6.1.

6.1.1 Methods and Experimental Setup

Classification with Support Vector Machine In this work, we use a standard soft-

margin Support Vector Machine [19] for classification (C-SVM), and use the well estab-

lished Gaussian-kernel function, also known as Radial Basis Function (RBF), to deal with

data that is not linear separable. The C-SVM is a common supervised machine learning

method for binary classification. It classifies a data point x ∈ IRn by assigning a class

label y ∈ {−1, 1}. Given a labeled training set of N data points {(xi, yi)|i ∈ N}, the

goal of the C-SVM is to find a hyper-plane that separates binary-labeled data points with

a minimum of false classifications and a maximum generalization. The efficiency of our

C-SVMs depends on the choice of two parameters: the gamma parameter of the RBF

and the soft-margin parameter C of the C-SVM. The actual implementation of an SVM

was provided by LibSVM [15], which can be integrated into the WEKA-environment. For

more information, we refer to [19,63].

Meta Parametrization To optimize the classification results, we adjust the two param-

eters gamma and C:

• C is the parameter for the soft-margin cost function. It controls the influence of

each individual support vector that defines the hyper-plane. A larger C aims at

classifying all training examples correctly. By that, the SVM is able to select more

training points as support vectors, which leads to a high variance due to penalizing

72

6.1 Classification of Genes Candidates

miss-classifications a lot. A lower C allows the SVM to ignore miss-classified data

points with respect to finding the maximum margin.

• gamma is the parameter of the Gaussian kernel function to handle non-linear clas-

sifications. It defines the influence of each training point to the hyper-plane. A low

gamma leads to a far reach, a high gamma leads to a close reach.

C and gamma cannot be determined independently. Thus, to find the best trade-off

between a large margin and a small error penalty, we perform a grid search within a fixed

boundary for both parameters. We use the integrated grid-search function in WEKA [29],

to select the best pair between 0.1 and 10000 (exploring in decimal powers).

Feature Reduction Besides the meta parametrization, we reduce the feature space to

improve the classification and speed up the process. A common way to do this is to deter-

mine the Information Gain [37] (IG) for each feature, to rank them by their importance

and chose only the best ones. The IG evaluates the worth of a feature with respect to its

class as shown in the following equation, where H denotes Shannon’s Entropy [57]:

IG(class, feature) = H(class)−H(class|feature) (6.2)

The IG can be interpreted as the reduction of the uncertainty of the prediction by taking

a given feature into account. That means, the higher the value, the more worthy the

feature. We used the integrated WEKA-function to calculate the IG, to get a list of

features sorted by their worthy. We use the IG to extract the best n features, where

n variates during the experiments, and thereby reduce the dimensionality of our feature

space to n.

Macro Average F-Score The experimental results are measured and compared by de-

termining the precision, recall and (harmonic mean) F-Score, which were calculated as

follows:

p =
true positive

true positive + false positive

r =
true positive

true positive + false negative

f = 2 · p · r
p + r

(6.3)

We defined the number of true positives as all genes that were classified correctly as related

to the specific disease. The false positives and false negatives are defined analogously. In

these experiments, we consider the macro average results to evaluate the performance of

73

6 Experiments and Evaluation

the models. To determine the macro average results, the precision, recall and F-Score is

calculated separately for each disease. Subsequently, the arithmetic mean is built over all

diseases.

The Training and Test Set As mentioned before, we train a C-SVM to classify genes

as disease related or not. Thereto, a training and a test set is created, using the Genetic

Testing Registry as gold-standard data. All disease-gene associations in GTR are human

curated. Thus, we assume that each association represents a positive data example. We

labeled all associations from the gold-standard with the class value 1. For each disease in

GTR, we then extract gene-associations from our previously built disease-gene-association

database (see Section 5.4), hereinafter referred to as DGA-DB, to extract almost the same

amount of negative training examples. A disease-gene-association within DGA-DB is a

negative training example, if and only if the association is not mentioned in GTR. All

negative examples are labeled with the class value -1. Once the positive and negative

training examples are extracted, we divide the data into an 80-20 split. We use 80% as

training data and 20% as test data. The training data consists of 3.665 data points with

1.781 negative and 1.884 positive examples. The test set consists of 910 data points with

440 negative examples and 470 positive examples. To ensure comparable results during

the evaluation of the different models, we fixed these training and test sets.

6.1.2 Evaluation Results and Discussion

Our experiments on the classification models are separated into two parts. In the first

part, we evaluate the models on the training data, using a ten-fold cross validation. The

objective of this pre-evaluation is to extract the best and interesting models. These will

be evaluated against the test set and will later be integrated into the entire pipeline. Each

model contains a different compositions of features. They can be separated into Feature

Group-models (FG), Best N Signature Features-models (BSF) and Best M Features-

models (BMF). In Table 6.1, we compare all models in FG among themselves. Table

6.2 shows the results of all evaluated BSF models. Table 6.3 compares all models in

BMF. Finally, the best models from each model group are compared with our baseline

model on the test set. The results are shown in Table 6.4.

Feature Group Models A model in FG contains exact one feature group that was

described in Section5.5. Beyond those single-feature-group models, FG includes a model

that takes all co-occurrence based features into account (CBF) (as described in Section

74

6.1 Classification of Genes Candidates

5.5.1), and a model that takes all co-occurrences based features in combination with the

gene-connectivity features (CBF+Connectivity) into account. We evaluate all models in

FG, performing a ten-fold-cross validation on the training data. The results are presented

in Table 6.1.

Feature Group Precision Recall F-Score

Entropy 64.1 62.9 63.5

Co-occurrence 88.1 71.9 79.2

Grade 58.4 82 68.2

Odds Ratio 80.7 28.8 41.8

TF-IDF 91.3 65 75.9

Path Signatures 62.9 79.8 70.3

Connectivity 60.8 70.1 65.1

CBF 91.1 76.6 83.2

CBF+Connectivity 89.7 79.8 84.5

Table 6.1: Evaluation results of the FG-classification models on the training data using a
ten-fold cross validation. The highest value for precision, recall and F-Score is highlighted.

The Entropy reaches an F-Score of 63.5% with a precision of 64.1% and a recall of 62.9%.

The Co-occurrence-model is the best performing model that uses a single feature group,

with an F-Score of 79.2%, which is a composition of the high precision of 88.1% and a

stable recall of 71.9%. We assume that the high performance of the co-occurrence is mostly

determined by the chosen gold-standard. Since all gold-associations were human curated,

we assume that most of them are already published, which leads to a bias towards the

Co-occurrence. The Grade yields the lowest precision with 58.4%, but the highest recall

of 82%. The Grade feature takes the disease and the gene separately into account. We

assume that this influences the precision negatively. Since the Grade simply counts the

number of occurrences in the database, the high recall is maybe given through a low

occurrence-threshold. In contrast to this is the Odds Ratio, which yields a high precision

of 80.7%, but lacks at the recall (28.8%). Its F-Score of 41.8% is the lowest of all feature

groups. The TF-IDF reaches the highest precision with 91.3%, and is thereby 3.2 points

higher than the Co-occurrence. The relatively low recall of 65% leads to the second highest

F-Score of 75.9%. The performance of the Path Signature model reaches an F-Score of

70.3%, which is, in comparison to the other results, on average. The evaluation of the

Connectivity model results in an F-Score of 65.1% with a precision of 60.8% and a recall

of 70.1%, which is a very stable result, too.

75

6 Experiments and Evaluation

A conspicuous behavior can be extracted from these results. We noticed that features,

which take the disease and/or the genes separated into account, rather lead to a higher

recall. This can be seen in the Grade, Path Signatures and Connectivity feature group.

The other four feature groups rather lead to a higher precision.

The comprehensive co-occurrence based model, CBF, reaches a very high precision of

91.1% and a moderate recall of 76.6%, which leads to an F-Score of 83.2%. The com-

bination of all co-occurrence based features outperforms each model that is based on a

single feature group. However, the addition of gene-connectivity features increases the

performance at 1.3 points and is thereby the best performing model in FG. The F-Score

of 84.5% is a composition of the slightly lower precision of 89.7 and the 2.8 points higher

recall of 79.8%.

Best N Signature Feature Models A model in BSF is determined through the best

N Path Signature-features (see Section 5.5.2) according to their IG. Based on their IG,

four models were built with increasing number of features. Our BSF-experiments started

with a model that contains the best 50 Path Siganture-features, namely Best50Signatures.

All other model-names in BSF can be interpreted analogously. We evaluate four models

in BSF by performing a ten-fold-cross validation on the training data. The results are

presented in Table 6.2.

Model Setup Precision Recall F-Score

Best50Signatures 55.7 84.2 67.1

Best90Signatures 57.0 83.0 67.6

Best140Signatures 57.9 83.3 68.3

Best190Signatures 58.1 82.3 68.1

Table 6.2: Evaluation results of the BSF-classification models on the training data, using
a 10-fold cross validation. The highest value for precision, recall and F-Score is highlighted.

The Best50Signatures-model reaches an F-Score of 67.1% with a precision of 55.7% and

a recall of 84.2%. Taking 90 features into account, shows an increasing precision and a

decreasing recall. The model Best90Signatures performs with a precision of 55.7% and

a recall of 83%, which results in an F-Score of 67.6%. A similar behavior can be seen

by increasing the number of features to 140. The precision increases to 62.7%, while

the recall drops to 70.3%. The Best140Signature-models reaches an F-Score of 66.3%.

The last tested model, the Best190Signatures, pursues this trend. It reaches the highest

76

6.1 Classification of Genes Candidates

precision of all tested models in BSF with 83.2%, but the lowest recall of 57.1%. In all

tested models in BSF, we recognized an almost constant F-Score of 67.7%S (+-0.6).

Best M Feature Models A model in BMF contains the best M features, according

to their IG, regardless of the feature group, which leads to a large overlap to the BSF

models. However, in this results, we can see the impact of co-occurrence-based features.

The models in BMF are named analogously to the models in BSF. We evaluate them by

performing a ten-fold-cross validation on the training data. The results are presented in

Table 6.3.

Model Setup Precision Recall F-Score

Best20 91.1 73.8 81.5

Best50 90.8 73.7 81.4

Best100 88.9 74.5 81.1

Best150 87.5 76.9 81.8

Best200 87.5 76.8 81.8

Table 6.3: Evaluation results of classification model on the training data, using a ten-fold
cross validation. The highest value for precision, recall and F-score is highlighted.

The first model, Best20, reaches a precision of 91.1%, a recall of 73.8% and thereby an

F-Score of 81.5%. By adding the next 30 best features, the precision and recall slightly

decrease at 0.3 points, respectively 0.1 points. This trend can be pursued in the next three

model evaluations. The more features we added, the lower the precision, the higher the

recall. However, all evaluated models have an almost constant F-Score of 81.4% (+-0.4

points).

Evaluation on Test Set In Table 6.1, we saw that the co-occurrence based feature

rather leads to a high precision. In Table 6.2, we saw that increasing the number of

signatures leads to a decreasing precision, while the recall increased. A similar (but

inverted) behavior could be recognized in the last experiments in which we took all types

of features into account. The result was shown in Table 6.3. All described experiments

so far, were done, suing a ten-fold cross validation on the training set.

In our last classification-experiment, we evaluate the best models from the previous ex-

periments on the test set against our baseline model. We choose the pure document based

disease-gene co-occurrence as baseline. Thus, our baseline-model contains just a single

77

6 Experiments and Evaluation

feature: the co-occurrence as defined in Equation (5.13). We evaluate all models on the

test set. The results are presented in Table 6.4.

Setup On Test Set Precision Recall F-Score

Baseline 89.8 57.9 70.4

Best150 87.0 78.1 82.3

Best190Signatures 59.6 81.1 68.7

CBF+Connectivity 86.9 81.9 84.3

CBF 92.1 78.8 85.0

Table 6.4: Evaluation results of the best performing classification-models on the test set
in comparison with the baseline-model. The highest value for precision, recall and F-score
is highlighted.

Similar to the Co-occurrence-model in our first experiments, the baseline is clearly stronger

in the precision with 89.8%. However, due to the miss of both other features in Co-

occurrence (see Section 5.5, second paragraph), the recall stays at 57.9% in the baseline

and got an relatively high F-Score of 70.4%. The Best150 model performs similar to its

evaluation on the training set. The precision is at 87.0%, the recall at 78.1% (slightly

higher than on the training set) and it has an F-Score of 82.3%. Thereby, this model out-

performs the baseline at 12.1 points. The Best190Signatures-model lacks in the precision

(59.6%), but has a very high recall with 81.1%, which results in 68.7% F-Score and can-

not reach the performance of our baseline. The evaluation of the Co-Connectivity-model

shows very stable results in precision (86.9%) and recall (81.9%). The results are similar

to the evaluation on the training data with a slight drop in precision and an increased

recall. It reaches a performance of 84.3% in F-Score. The removal of the gene-connectivity

features leads to a higher precision and lower recall. The CBF -model performs at best

with 85.0% in F-Score with a precision of 92.1% and a recall of 78.8%.

Summary By investigating the evaluation results, we can extract several striking results:

1. Features, that are based on the gene-interaction network, rather lead to a higher

recall instead of high precision.

2. On the contrary, disease-gene co-occurrence based features rather lead to a higher

precision instead of high recall.

3. If a model contains solely Path Signature-features, increasing the number of signa-

tures leads to an increasing precision and a decreasing recall.

78

6.2 Ranking of Gene Candidates

4. In hybrid models, increasing the number of signature-features leads to a decreasing

precision and an increasing recall.

5. The best result on the test set can be achieved by discarding all non-co-occurrence

features. We assume that this is mainly given due to the fact that all positive

associations from the gold-standard (GTR) were already published, which creates

a bias towards co-occurrence based features. If we are interested in mapping the

gold-standard most accurately, this is the best model to do it. However, this may

not be the best model to find novel disease-gene associations .

6. We were able to outperform the baseline-model at 14.6 points in F-Score.

6.2 Ranking of Gene Candidates

In this section, we present the evaluation results of our experiments, regarding to the

task of gene candidate ranking. In the following sub-section, the general methods and

experimental setups is described. In Section 6.2.2, we present and discuss the evaluation

results. The main objective is to find the best performing model that represents the

DisGeNET -gold standard with respect to our assumption in Example 6.1.

6.2.1 Methods and Experimental Setup

Ranking with Support Vector Regression In the previous task we used an SVM for

binary classification. In the following experiments we need are machine learning method

that assigns a numerical value to a new data point. With these regression-values we are

able to sort/rank a gene-list. In the following experiments a Support Vector Regression

(SVR) is used. The SVR is a special case of an SVM and it shares the basic concepts

of finding the best fitting hyperplane that maximizes the margin, and minimizing the

error. To deal with non-linear separable data, we use the Gaussian-kernel function. In

addition it has a third parameter called epsilon which can be seen as a margin of tolerance.

The performance of an SVR depends on three parameters, the cost-function parameter

C, the kernel-parameter gamma and the tolerance parameter epsilon. In this work a

standard ε-SVR is used which was provided by LibSVM [15], integrated into the WEKA

environment. For a detailed description we refer to [61] and [15].

79

6 Experiments and Evaluation

Meta Parametrization Likewise to the SVM optimization, the performance of an SVR

depends on the cost-function parameter C and the kernel Parameter gamma. In addition,

a third parameter needs to be optimized, namely the epsilon (ε).

• The ε-parameter determines the width of the ε-decision-boundary, which is used to

fit the training data. The higher ε is chosen, the less support vectors can be used

to build the regression function. Higher ε-values also increase the ’flatness’ of the

regression function.

The best value-combination of the three parameters can be determined in an advanced

grid-search. To do so, we use the WEKA-integrated grid-search method [29], similar to

the determination in the classification task.

Feature Reduction For the classification, we estimated the best features by determining

the features- information gain. However, the IG can only be calculated for nominal class

values. A regression-method assign and uses numeric class values, which denies us to use

the IG. Instead, we use the Correlation Feature Selection to estimate the best subset of

features. The CFS-method [30] determines the best subset with respect to the correlation

of the features within the current subset and their correlation to the classification. The

higher the features are correlated to the classification, the higher is the worth of the subset.

In addition, the higher the correlation between the features in the subset, the lower is the

worth of the subset. We use the WEKA-integrated CFS-method to determine the subset

with the highest merit.

Measurements for Regression Experiments To measure and compare the results of the

gene-ranking evaluation, we use the Mean Reciprocal Rank [20,70] (MRR). We determine

the Correlation Coefficient (CC) and compare the Mean Absolute Error (MAE) / Root

Mean Square Error (RMSE). CC, MAE and RMSE are standard measures of a regression.

Thus, we do not further explain them here, but refer to [29, 30, 41] or [61] for more

information.

The MRR is an algorithm to measure the quality of a ranking approach according to

a set of queries. In contrary to the standard F-Measure, the MRR is calculated with

respect to the order of the results. Thereto, it compares the order of a ranking system,

which produces a sorted list of elements, to a gold-list of elements. The MRR is always

calculated for a set of queries and builds the arithmetic mean of the reciprocal rank as

shown in Equation (6.4).

80

6.2 Ranking of Gene Candidates

MRR =
1

N
∗

D∑
d

1

rank(Gd, rd0)
(6.4)

N is the number of diseases (queries) to evaluate, calculated as N = |D|. Gd is the gold-

list of genes (elements) for the specific disease d, and rd0 is the first gene in the result-list

that was created by the ranking-system for the disease d. The function rank(G, r) returns

the index of the element r in the gold-list, if it exists, or zero and is defined as follows:

rank(G, r) =

index of r in G if exists

0 else

(6.5)

Training and Test Set To train the SVR-models, we need a training and test set,

similar to the classification sets. However, they differ in one important fact. While the

classification sets contain binary labeled data points, the regression deals with numerical

labels. Thus, we choose DisGeNET (see Section 3.3) as gold-standard-data. DisGeNET

provides a confidence score for each disease-gene association. In order to reduce the

number of training and test data points, and to decrease the amount of false positive data

points1, we choose only those associations as positive examples, whose confidence score

is greater than 0.1 (see footnote2). After extracting all positive training examples from

DisGeNET, we extract almost the same amount of negative examples from our database.

A disease-gene-association within DGA-DB is a negative training example, if and only if

the association is not mentioned in DisGeNET. All negative training examples get the

class-value 0. As we did it before, our extracted positive and negative training data are

divided into an 80-20 split. We use 80% as training data and 20% as test data. The

training data consists of 25.294 data points, split into 11.658 negative and 13.636 positive

data points. The test data contains 6.320 data points, split into 2.912 negative and 3.608

positive data points. To ensure comparable results during the evaluation of the different

models, we fixed these training and test sets.

1The associations in DisGeNET are not human curated but extracted automatically. Thus, the there is
no 100% evidence for each association.

2The threshold of 0.1 was motivated by the confidence-scoring function of DisGeNET.

81

6 Experiments and Evaluation

6.2.2 Evaluation Results and Discussion

Our experiments on the ranking-models are separated into three parts. At first we evaluate

some models on the training set, using a ten-fold-cross validation. During the training, we

adjust the meta parameter and do some feature-setting experiments. The goal of the pre-

evaluations is to find the best models and settings, which are then tested against the test

set. Both steps are similar to the classification-experiments. Due to the combination of

the high number of training examples, conducting an experiment is very time consuming.

However, our feature-reduction-method CFS aims at optimizing the CC, which is also

one of our key-measures. This allows us to reduce the experiments of feature-variations

without too much loss of information. We assume that the used CFS-method returns

the subset of features that maximizes CC. With respect to the MAE and RMSE, we

investigate a few more models on the training set. All results of the evaluated models are

shown in Table 6.5.

In the second part, we evaluate the best performing and most interesting models on the

test set. The results are shown in Table 6.6. Similar to the first part, we measure the

results with respect to the CC, MAE and RMSE. The models are also compared to our

baseline-model.

In the third part, we evaluate the same models from part two, but in a different way.

Thereto, each of these models (which were previously build on the training data) is inte-

grated into the ranking-system. We then apply all diseases from the test set to the system,

which generates a sorted result-list of genes. We compare the result-lists for each disease

to the corresponding gold-list, by calculating the reciprocal rank. Finally the MRR can

be determined for each model. The evaluation results of these experiments are shown in

Table 6.7.

Evaluation on Training Set We evaluate several models on the training data, using a

ten-fold-cross validation. The main objective was to find the best meta parameter and

the best performing models. We show the best evaluation results in Table 6.5.

The first model that was tested on the training data consists of the best subset, which was

generated by the CFS-method. We called this model CFS328. Using this feature subset,

the model leads to a CC of 0.5663. The performance reaches a MAE of 0.1224 and a

RMSE of 0.1426. The high CC does not automatically lead to a low MAE/RMSE. Thus,

we evaluate the Co-occurrence Based Feature-model (CBF) and the Co-occurrence based

Features + Gene Connectivity Features-model (CBF+Connectivity). The CBF shows a

CC of 0.5480 and a MAE of 0.1213, which is slightly better, and a RMSE of 0.1457, which

82

6.2 Ranking of Gene Candidates

Setup On Training Set CC MAE RMSE

CFS328 0.5663 0.1224 0.1426

CBF 0.5480 0.1213 0.1457

CBF+Connectivity 0.5709 0.1146 0.1437

CFS399Sig 0.038 0.1475 0.1814

Table 6.5: Evaluation results of regression model on the training data, using a ten-fold
cross validation. The highest value for CC, MAE and RMSE is highlighted.

is slightly worse than the performance of the CFS328 -model. By adding the Connectivity-

features, surprisingly, we reach the highest CC of all tested models. It shows 0.5709 points.

The MAE shows the lowest error so far with 0.1146. However, the RMSE with 0.1437 is

between the CFS328 -model and the CBF -model . Finally we tested the best CFS-model

with the restriction to Path Signature-features, namely CFS399-Sig. It leads to almost

no correlation in the data points. The CC is at 0.038 and the performance shows a MAE

of 0.1213 and a RMSE of 0.1475 .

Evaluation on Test Set We evaluated some of the previous generated models against

the test set and compare our result with our baseline-model. Likewise to the classification-

experiments, our baseline-model only takes the pure co-occurrence into account, as defined

in Equation (5.13). The results are presented in Table 6.6.

Setup On Test Set CC MAE RMSE

Baseline 0.4358 0.1344 0.1609

CFS328 0.5806 0.1249 0.1453

CBF+Connectivity 0.5831 0.1164 0.1454

Table 6.6: Evaluation results of regression-model on the test data. The highest value for
CC, MAE and RMSE is highlighted.

Our baseline-model shows with 0.4358 the lowest CC of all tested models . It performs

with an MAE of 0.1344 and an RMSE of 0.1609. The baseline is slightly outperformed by

both tested models. The CFS328 -model shows a data correlation of 0.5806. The MAE

drops at 0.0095 to 0.1249. The RMSE drops to 0.1453. The CBF+Connectivity-model

83

6 Experiments and Evaluation

shows a slightly higher correlation with 0.5831, the lowest MAE of 0.1164 and almost the

same RMSE like the CFS328-model of 0.1454.

According to the evaluation results, we assume that gene-ranking is a more difficult or

complex task than gene-classification. In the classification experiments, we showed that a

C-SVM is able to learn, with an F-Score of over 80%, whether a gene is related to a disease

or not. Since the SVR and the SVM share the same basic concepts, we assume that the low

results of the ranking experiments are affected by the chosen gold-standard. In contrast

to GRT, DisGeNET is generated automatically, using various methods. Thus, it may

includes some false positive training examples, which may have affected the correlation of

the data negatively, if a correlation exists. In further experiments with less training data,

by increasing the confidence threshold, this behavior should be investigated. However,

this goes beyond the scope of this thesis and is left for future work.

Evaluation of the Ranking System In our last ranking-experiment, we evaluate our

system by integrating the previously described models into our system. For each model,

we apply all diseases in the test set to our ranking-system, which creates a ranked list of

genes for each disease. We compare the result-lists to the corresponding gold-list, which

is created with the positive data points of the test set. The results are shown in Table

6.7.

Model MRR

Baseline 0.6909

CFS328 0.7067

CBF+Connectivity 0.6816

Table 6.7: Evaluation results of the system by integrating a model.

Integrating our baseline-model leads to a Mean Reciprocal Rank of 0.6909. It is slightly

outperformed by the CFS328 -model with an MRR of 0.7067. Although, the CBF+Connectivity-

model showed slightly better results in the evaluation on the test set, its MRR shows the

lowest result with 0.6816.

Summary By investigating the evaluation results, we noticed the following things:

1. The highest data correlation can be observed by using the CBF+Connectivity-

model. However, it reaches a CC of just 0.5831. We assume that the low data

84

6.3 Case Study with Pulmonary Fibrosis

correlation is somehow affected due to the chosen gold-standard and its resource

generation.

2. The best subset that can be extracted, using only Path Signature-features leads

to almost no correlation between the data. The CC is at 0.0375. In addition, it

had the lowest performance of all tested models with 0.1213 in MAE and 0.1475 in

RMSE. By taking all features into account, the best subset shows a slightly better

performance of 0.1453 in RMSE. This displays the high influence of co-occurrence

based features.

3. We were slightly better than the baseline-model on the test set with a drop in RMSE

of 0.0146, and an increased MRR of 0.01. The comparison emphasizes again the high

influence of the co-occurrence feature. Likewise to the results in the classification

experiments, this can be partly explained, due to the exposure of positive results

of disease-gene association results. However, the significance of the improvements

needs to be determined in further experiments.

6.3 Case Study with Pulmonary Fibrosis

In the previous both experiments, we evaluated the trained models that should finally be

integrated into the system. We determined the best meta parameter and feature selection

for the classification and the ranking task. With the information that could be extracted

from the previous experiments, we built a comprehensive model, taking all positive and

negative data points into account. In this case-study, we integrated the final classification-

model into our system. We used Pulmonary Fibrosis as testing disease. We applied the

disease to our system and generated a file with 200 predicted gene-candidates. These

genes are sorted by the number of publications that contain evidence for the disease-gene

association. The file was then evaluated by biomedical experts. In the following, we

describe the analysis of the generated file.

85

6 Experiments and Evaluation

Pre-evaluation Results of the Pulmonary Fibrosis-Classification Task In a pre-evaluation

of the predicted gene-candidates, each of the 200 genes is classified with one of the fol-

lowing labels:

• True Positive: Hit was found via co-occurrence.There is a clear connection to Pul-

monary Fibrosis.

• Pathway Candidate: Hints were found, that the gene is associated with Pulmonary

Fibrosis through relevant mechanism or pathways.

• Unclear/False Co-occurrence: Hit was found via co-occurrence, but the evidence for

a connection to Pulmonary Fibrosis is unclear or negative.

• False Positive: False positive in gene recognition.

• Potential Candidate: Needs to be investigated by fibrosis experts. Unfortunately, we

do not yet have any evaluation results, regarding to the potential gene-candidates.

The results of the pre-classification is shown in Table 6.8.

True Positive Pathway Candidate
Unclear/False

Co-occurrence
False Positive Potential Candidate

Count 54 12 26 19 89

Table 6.8: Results of the pre-labeling evaluation for 200 gene-candidates.

True Positive The pre-labeling evaluation shows that we were able to extract 54 true

positive genes. These genes are already known and can be extracted from the literature

through document-based co-occurrence. A further exploration of the true positives shows

that a lot of those genes are also related to cancer-diseases. This is probably caused by

two facts:

1. Pulmonary Fibrosis and Cancer are both tissue proliferation-diseases. Thus, they

share some basis symptoms, which may explain the overlap of genes.

2. Cancer-diseases are one of the most extensive studied disorders. This results in a

very large proportion of publication that are related to cancer. The high amount

of cancer related genes is may be attributable to a publication-bias towards cancer-

diseases.

86

6.3 Case Study with Pulmonary Fibrosis

However, the predicted gene-candidates, which are also related to cancer, can be seen as

sensible hypothesis. Their actual relations to Pulmonary Fibrosis need further laboratory

experiments or experimental gene-expression data to prove that the genes are expressed

in the lung.

Pathway Candidate On top of that, we were able to find 12 genes that were related to

Pulmonary Fibrosis through gene-pathways. For example, we predicted the gene CDC42,

which is related to the gene PI3K, using a direct literature-evidence.

Unclear/False Co-occurrence 26 predicted genes are labeled as Unclear/False Co-

occurrence. One reason to assign this label, was if the provided evidence is based on

old publications. In few cases, the considered document contains a negative relation of a

gene to Pulmonary Fibrosis e.g. the publication with the PubMed ID 22273745:

”
Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but

not fibrosis.“

In the current system, we make use of a simple document based co-occurrence approach

to perform a pre-selection of gene candidates. This method includes no semantical or

contextual information at all, which leads to such false positives. However, those false

positives are very rare and their elimination demands a benefit-cost analysis in the first

place. A third reason to label a gene-candidate with Unclear/False Co-occurrence, is

a unclear relation to the disease. This could happen, if the gene-candidate is related

to a positive gene among longer or unknown pathways. To distinguish between false

positives that may have arise from wrong gene-normalization) and complex-true positives,

it requires a deeper investigation of the pathway.

False Positive 19 out of 200 are labeled with False Positive. Those genes are either

a product of a false gene recognition/normalization or belong to a viral-protein. To

identify such viral-proteins, it requires deeply contextual information. This information

can be extracted from the publication, in which the genes were described as disease-

related (directly through co-occurrence or indirectly through gene-pathways). However,

the disambiguation of proteins and viral-proteins goes beyond the scope of this thesis.

Potential Candidate All genes that need further investigations to determine, if they are

related to Pulmonary Fibrosis or not, are labeled with Potential Candidate. Our system

aims at the prediction of those potential gene-candidates and we were able to extract

87

6 Experiments and Evaluation

89. As mentioned before, the evaluation of these genes is very time consuming and

requires biomedical experts for fibrosis-diseases. As yet, we cannot draw any conclusions

concerning the accuracy of these candidates.

Summary From the pre-evaluation of the case-study, we summarize key-points:

1. We applied Pulmonary Fibrosis to our System and generate a file that contains 200

predictions of related genes.

2. In this case-study, the Best150 -classification model was used. It was previously

described in Section 6.1.2.

3. The aim of the system in combination with this model lays on the generation of

novel genes, that can be related to Pulmonary Fibrosis.

4. The genes within the generated files are ranked by their number of involved publi-

cations.

5. Our system produced 54 true positives, 19 false negatives, 12 likely-related genes,

26 unlikely-related genes and 89 other gene candidates.

88

7 Conclusion

In this chapter, we conclude our work. We discuss briefly the systems architecture and

point out some advantages and issues that we left for future work. With a higher accuracy,

we discuss the evaluation results with respect to the used methods. Here too, we share

our ideas for future work in order to improve the systems performance.

The main objective of this thesis was to develop an approach that extracts and ranks novel

disease-related genes by their importance. Our work was motivated by the fact, that

current systems, which generate such novel gene-candidates, often lack in their ability

to deal with the huge amount of produced candidates. In order to achieve this goal,

we built a comprehensive disease-gene association extraction system. The approach, we

presented in this thesis, tackles the problem of association extraction by aggregating

information across millions of scientific publications and uses machine learning methods

to learn their importance to a given disease. Thereto, we extended the feature space of

common entity-relation features, like disease-gene co-occurrences, by novel features based

on a comprehensive gene-interaction network. This network was also utilized to predict

novel gene candidates.

A great challenge was to design a comprehensive system that can deal with the large

amount of data of publications and extracted information. Besides the very time con-

suming information extraction of diseases, genes and gene-events, we had to store all

information persistently. We reduced offline and online processing time and focused our

results to human genes by limiting the taxonomic scope. Further, the design also in-

cludes the integration of existing state-of-the-art systems and self developed methods.

It implement their interactions properly and puts them into a running and functional

pipeline.

In the following, we discuss some key-designs and present ideas for future work. Our

system consists of several independent approaches for information extraction. We inte-

grated a CRF tagger by Klinger et al. [36] that tackles the disease-recognition. After

an extensive investigation of the recognized disease-mentions, we realized the need of

a disease-normalization. We tried to integrate the current state-of-the art framework

89

7 Conclusion

DNorm. Using an existing framework, which is described in the literature can be a chal-

lenging task. A proper integration into a running pipeline often requires adaptations of

the source code and/or a communication with the developer. Both are very time con-

suming and the outcome is often unpredictable. Due to time issues, we discontinued our

efforts and implemented a simple disease normalization framework, called DiNo. DiNo’s

method was motivated by DNorm and with a strict adaptation to the output of the CRF

tagger, we achieved an F-Score of 61.49% on the BioCreativeII disease normalization task.

Unfortunately, we could not range on the same level as DNorm and there is a lot of room

for improvements. In the future, we could either continue our work of integrating DNorm

or improve DiNo.

Our combination of TEES and GeNo shows, that the combination of two well performing

systems does not necessarily result in an equally performing comprehensive system. We

integrated TEES for gene-event recognition, which aims at the extraction of gene-events

but does not distinguish between genes of various species. We restricted our system

to human genes and integrated the highly performing framework GeNo for the task of

gene normalization and disambiguation of the taxonomic scopes. Although, GeNo has

an integrated gene recognition module, thus we had to change its pipeline by integrating

TEES, since we were mainly interested in event-involved genes. Both facts, TEES’ non-

limitation to human genes and intersecting GeNo’s pipeline, effects the evaluation of the

gene normalization negatively. We achieved an F-Score of 55.33% on the BioCreativeII

gene normalization task. However, to the best of our knowledge, there is no existing

approach that tackles the event extraction with respect to human genes solely. To improve

the gene normalization, a future task could be integrating GeNo as gene recognition

framework into TEES, instead of the other way around.

In this work, we presented a method to reduce the complexity of gene-events. This

method includes several graph transformations, event simplifications and event-type gen-

eralizations. In agreement with biomedical experts, we developed a reduced GENIA

event scheme, which describes the new modified events. These modifications were moti-

vated in order to increase the gene-interaction density and to reduce the dimensionality

of the feature space. Up to this point, we did not investigate the impact of such gen-

eralizations, neither run any experiments to ensure their quality. An evaluation of the

event-modifications would go beyond the scope of this thesis and is left for future work.

In the following, we discuss the evaluation results of our final experiments. In order to

evaluate our system, several experiments were performed that can be divided into three

groups. In the first bunch of experiments, we evaluate some classification models. These

models were trained with a support vector machine in order to classify a gene as disease-

90

related or not. Our dataset was composed of positive examples that could be gained

from the Genetic Testing Registry and negative examples from our database. Each data

point consisted exactly of one disease, one gene and a label (1 for a positive example,

respectively −1 for a negative example). A comprehensive feature vector was created

for each data point. To determine the best features, the Information Gain-method was

used. Our evaluations on the test set comprised several combinations of different features,

such as a limitation to the best n, only co-occurrence-based, only signature-based, etc. It

turned out, that using the co-occurrence based features led to the highest performance

(F-Score of 85.0%). The addition of the Gene Connectivity-features led to a drop in

F-Score of 0.7 points.

We recognized an interesting behavior by investigating the signature-based models on

the training set. By increasing the number of features (signatures), we recognized an

increasing precision by simultaneously decreasing recall and an almost constant F-Score of

66.5%. In combination with co-occurrence features, an opposite effect could be recognized.

Increasing the number of signature-features led to a drop in the precision but slightly

increase the recall. However, it seemed that this behavior converged at a number between

150-200 features. On the test set, the best model reached an F-Score of 82.3%.

We compared all results with the performance of our baseline-model which reached a

performance of 70.4% (F-Score) on the test set. A comparison of the results showed that,

considering the Path Signature-features only, could not outperform the baseline. However,

each hybrid-model outperformed the baseline on the training set by at least 9.8 points in

F-Score.

We decided to not choose the best performing model (Co+Connectivity) for the case-

study, but to use the best performing model that includes also signature-features. This

was mostly motivated by the following reasons:

1. The positive training examples from the gold-standard are human curated results of

experiments. We thereby assume that most of them were already published, which

lays a bias towards co-occurrence-based features.

2. One research question of our work was to determine, if signatures contain relevant

information to increase the performance of gene classification and gene ranking.

In a second evaluation, we have done several experiments to examine the performance

of the ranking task. Therefore, we trained support vector regression models with sim-

ilar setups to the classification experiments. Positive data points were extracted from

the DisGeNET -database, which provides a confidence score for each disease-gene asso-

ciation. Likewise to the classification data, we added negative training examples from

91

7 Conclusion

our database. Instead of determining the Information Gain, which can not be used on

numeric class labels, we used a Subset Evaluation-technique to extract the best feature

subset. We compared the best feature-subset model with our baseline model, which got

a correlation coefficient (CC) of 0.436 and a Mean Absolute Error (MAE) of 0.134. The

comparison showed a slight improvement in MAE of 0.01 and a CC of 0.580. However,

the best performing model was a hybrid model that uses co-occurrence based features

in combination with gene-connectivity features. It outperforms the baseline in CC with

0.583 and a MAE of 0.116. We then evaluated all three models by integrating them into

the system and measure the Mean Reciprocal Rank (MRR) of the test set. It turned out,

that the best model performs at best with a MRR of 0.7067.

In a last evaluation, we conducted a case-study. We applied Pulmonary Fibrosis to

our system and generated a file that contains 200 predicted gene candidates, using a

classification model. In a pre-evaluation, these genes were labeled as true positive, false

positive, unlikely related, likely related or potential candidate. We were able to show that

our system successfully generates way more true positives and potential candidates than

false positives. However, due to the strict timeframe of this thesis, up to this point, we

do not have any evaluation results of the potential candidates.

In this thesis, we built a comprehensive system for the task of disease-gene-association

extraction across millions of biomedical publications. The aim of this thesis was to inte-

grate a machine learning based approach that uses novel features to learn the importance

of genes to a specific disease. Although we recognized that co-occurrence based feature

lead to a higher performance, we could show that using the novel features can be used to

predict novel gene-candidates. The current system can be seen as an essential foundation

that can be further optimized, extended or adapted to similar tasks.

92

Bibliography

[1] U.S. NLM PubMed. http://www.ncbi.nlm.nih.gov/pubmed. Accessed: 2015-04-

25.

[2] Hisham Al-Mubaid and Rajit K Singh. A new text mining approach for finding

protein-to-disease associations. American Journal of Biochemistry and Biotechnol-

ogy, 1(3):145, 2005.

[3] Rie Kubota Ando. Biocreative ii gene mention tagging system at ibm watson. In Pro-

ceedings of the Second BioCreative Challenge Evaluation Workshop, volume 23, pages

101–103. Centro Nacional de Investigaciones Oncologicas (CNIO) Madrid, Spain,

2007.

[4] Cecilia N Arighi, Zhiyong Lu, Martin Krallinger, Kevin B Cohen, W John Wilbur,

Alfonso Valencia, Lynette Hirschman, and Cathy H Wu. Overview of the biocreative

iii workshop. BMC bioinformatics, 12(Suppl 8):S1, 2011.

[5] Ken Arnold, James Gosling, David Holmes, and David Holmes. The Java program-

ming language, volume 2. Addison-wesley Reading, 1996.

[6] R Baud et al. Improving literature based discovery support by genetic knowledge

integration. The New Navagators: From Professionals to Patients, 95:68, 2003.

[7] Jari Björne, Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Drug-drug inter-

action extraction from biomedical texts with svm and rls classifiers. Proceedings of

DDIExtraction-2011 challenge task, pages 35–42, 2011.

[8] Jari Björne, Filip Ginter, Sampo Pyysalo, Jun’ichi Tsujii, and Tapio Salakoski. Com-

plex event extraction at pubmed scale. Bioinformatics, 26(12):i382–i390, 2010.

[9] Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala, and Tapio

Salakoski. Extracting complex biological events with rich graph-based feature sets.

In Proceedings of the Workshop on Current Trends in Biomedical Natural Language

Processing: Shared Task, pages 10–18. Association for Computational Linguistics,

2009.

93

http://www.ncbi.nlm.nih.gov/pubmed

Bibliography

[10] Jari Björne and Tapio Salakoski. Generalizing biomedical event extraction. In Pro-

ceedings of the BioNLP Shared Task 2011 Workshop, pages 183–191. Association for

Computational Linguistics, 2011.

[11] Jari Björne, Sofie Van Landeghem, Sampo Pyysalo, Tomoko Ohta, Filip Ginter, Yves

Van de Peer, Sophia Ananiadou, and Tapio Salakoski. Pubmed-scale event extraction

for post-translational modifications, epigenetics and protein structural relations. In

Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, pages

82–90. Association for Computational Linguistics, 2012.

[12] Olivier Bodenreider. The unified medical language system (umls): integrating

biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[13] Dan Brickley and Ramanathan V Guha. Resource description framework (rdf)

schema specification 1.0: W3c candidate recommendation 27 march 2000. 2000.

[14] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A generic ar-

chitecture for storing and querying rdf and rdf schema. In The Semantic Web—ISWC

2002, pages 54–68. Springer, 2002.

[15] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[16] Danqi Chen and Christopher D Manning. A fast and accurate dependency parser

using neural networks. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 740–750, 2014.

[17] Hong-Woo Chun, Yoshimasa Tsuruoka, Jin-Dong Kim, Rie Shiba, Naoki Nagata,

Teruyoshi Hishiki, and Jun’ichi Tsujii. Extraction of gene-disease relations from

medline using domain dictionaries and machine learning. In Pacific Symposium on

Biocomputing, volume 11, pages 4–15, 2006.

[18] UniProt Consortium et al. Update on activities at the universal protein resource

(uniprot) in 2013. Nucleic acids research, 41(D1):D43–D47, 2013.

[19] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[20] Nick Craswell. Mean reciprocal rank. In Encyclopedia of Database Systems, pages

1703–1703. Springer, 2009.

[21] James A Cuff and Geoffrey J Barton. Application of multiple sequence alignment

profiles to improve protein secondary structure prediction. Proteins: Structure, Func-

tion, and Bioinformatics, 40(3):502–511, 2000.

94

Bibliography

[22] Allan Peter Davis, Cynthia Grondin Murphy, Robin Johnson, Jean M Lay, Kel-

ley Lennon-Hopkins, Cynthia Saraceni-Richards, Daniela Sciaky, Benjamin L King,

Michael C Rosenstein, Thomas C Wiegers, et al. The comparative toxicogenomics

database: update 2013. Nucleic acids research, page gks994, 2012.

[23] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus: a re-

source for disease name recognition and concept normalization. Journal of biomedical

informatics, 47:1–10, 2014.

[24] Andreas Doms and Michael Schroeder. Gopubmed: exploring pubmed with the gene

ontology. Nucleic acids research, 33(suppl 2):W783–W786, 2005.

[25] Haw-ren Fang, Kevin Murphy, Yang Jin, Jessica S. Kim, and Peter S. White. Human

gene name normalization using text matching with automatically extracted synonym

dictionaries. In Proceedings of the Workshop on Linking Natural Language Processing

and Biology: Towards Deeper Biological Literature Analysis, BioNLP ’06, pages 41–

48, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

[26] Katrin Fundel, Robert Küffner, and Ralf Zimmer. Relex—relation extraction using

dependency parse trees. Bioinformatics, 23(3):365–371, 2007.

[27] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting shallow linguistic

information for relation extraction from biomedical literature. In EACL, volume 18,

pages 401–408. Citeseer, 2006.

[28] Jörg Hakenberg, Conrad Plake, Robert Leaman, Michael Schroeder, and Graciela

Gonzalez. Inter-species normalization of gene mentions with gnat. Bioinformatics,

24(16):i126–i132, 2008.

[29] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. The weka data mining software: an update. ACM SIGKDD

explorations newsletter, 11(1):10–18, 2009.

[30] Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis,

The University of Waikato, 1999.

[31] Ada Hamosh, Alan F Scott, Joanna S Amberger, Carol A Bocchini, and Victor A

McKusick. Online mendelian inheritance in man (omim), a knowledgebase of human

genes and genetic disorders. Nucleic acids research, 33(suppl 1):D514–D517, 2005.

[32] Dimitar Hristovski, Thomas Rindflesch, and Borut Peterlin. Using literature-

based discovery to identify novel therapeutic approaches. Cardiovascular & Hema-

tological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-

95

Bibliography

Cardiovascular & Hematological Agents), 11(1):14–24, 2013.

[33] Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano, and Jun’ichi Tsujii.

Overview of bionlp’09 shared task on event extraction. In Proceedings of the Work-

shop on Current Trends in Biomedical Natural Language Processing: Shared Task,

pages 1–9. Association for Computational Linguistics, 2009.

[34] Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii. Corpus annotation for mining

biomedical events from literature. BMC bioinformatics, 9(1):10, 2008.

[35] Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert Bossy, Ngan Nguyen, and

Jun’ichi Tsujii. Overview of bionlp shared task 2011. In Proceedings of the BioNLP

Shared Task 2011 Workshop, pages 1–6. Association for Computational Linguistics,

2011.

[36] Roman Klinger, Christoph M Friedrich, Juliane Fluck, and Martin Hofmann-Apitius.

Named entity recognition with combinations of conditional random fields. In Pro-

ceedings of the second biocreative challenge evaluation workshop, 2007.

[37] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals

of mathematical statistics, pages 79–86, 1951.

[38] Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong Lu. Dnorm: disease name

normalization with pairwise learning to rank. Bioinformatics, page btt474, 2013.

[39] Robert Leaman, Graciela Gonzalez, et al. Banner: an executable survey of advances

in biomedical named entity recognition. In Pacific Symposium on Biocomputing,

volume 13, pages 652–663. Citeseer, 2008.

[40] Robert Leaman, Christopher Miller, and G Gonzalez. Enabling recognition of diseases

in biomedical text with machine learning: corpus and benchmark. In Proceedings of

the 2009 Symposium on Languages in Biology and Medicine, volume 82, 2009.

[41] Joseph Lee Rodgers and W Alan Nicewander. Thirteen ways to look at the correlation

coefficient. The American Statistician, 42(1):59–66, 1988.

[42] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[43] Dingcheng Li, Karin Kipper-Schuler, and Guergana Savova. Conditional random

fields and support vector machines for disorder named entity recognition in clinical

texts. In Proceedings of the Workshop on Current Trends in Biomedical Natural

Language Processing, BioNLP ’08, pages 94–95, Stroudsburg, PA, USA, 2008. Asso-

ciation for Computational Linguistics.

96

Bibliography

[44] Carolyn E Lipscomb. Medical subject headings (mesh). Bulletin of the Medical

Library Association, 88(3):265, 2000.

[45] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez gene: gene-

centered information at ncbi. Nucleic acids research, 39(suppl 1):D52–D57, 2011.

[46] Alexander A Morgan, Zhiyong Lu, Xinglong Wang, Aaron M Cohen, Juliane Fluck,

Patrick Ruch, Anna Divoli, Katrin Fundel, Robert Leaman, Jörg Hakenberg, et al.

Overview of biocreative ii gene normalization. Genome biology, 9(Suppl 2):S3, 2008.

[47] Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-Jae Kim, Tomoko Ohta, Sampo

Pyysalo, and Pierre Zweigenbaum. Overview of bionlp shared task 2013. In Proceed-

ings of the BioNLP Shared Task 2013 Workshop, pages 1–7, 2013.

[48] Tomoko Ohta, Yoshimasa Tsuruoka, Jumpei Takeuchi, Jin-Dong Kim, Yusuke Miyao,

Akane Yakushiji, Kazuhiro Yoshida, Yuka Tateisi, Takashi Ninomiya, Katsuya Ma-

suda, et al. An intelligent search engine and gui-based efficient medline search tool

based on deep syntactic parsing. In Proceedings of the COLING/ACL on Interactive

presentation sessions, pages 17–20. Association for Computational Linguistics, 2006.

[49] Arzucan Özgür, Thuy Vu, Güneş Erkan, and Dragomir R Radev. Identifying gene-

disease associations using centrality on a literature mined gene-interaction network.

Bioinformatics, 24(13):i277–i285, 2008.

[50] Benjamin Paassen, Andreas Stöckel, Raphael Dickfelder, Jan Philip Göpfert, Nicole

Brazda, Tarek Kirchhoffer, Hans Werner Müller, Roman Klinger, Matthias Hartung,

and Philipp Cimiano. Ontology-based extraction of structured information from

publications on preclinical experiments for spinal cord injury treatments. In Third

Workshop on Semantic Web and Information Extraction (SWAIE). The 25th Inter-

national Conference on Computational Linguistics (COLING), 2014.

[51] Janet Piñero, Núria Queralt-Rosinach, Àlex Bravo, Jordi Deu-Pons, Anna Bauer-

Mehren, Martin Baron, Ferran Sanz, and Laura I Furlong. Disgenet: a discovery

platform for the dynamical exploration of human diseases and their genes. Database,

2015:bav028, 2015.

[52] Sune Pletscher-Frankild, Albert Pallejà, Kalliopi Tsafou, Janos X Binder, and

Lars Juhl Jensen. Diseases: Text mining and data integration of disease–gene asso-

ciations. Methods, 2014.

[53] Changqin Quan and Fuji Ren. Gene–disease association extraction by text mining

and network analysis. In Proceedings of the 5th International Workshop on Health

Text Mining and Information Analysis (Louhi)@ EACL, pages 54–63, 2014.

97

Bibliography

[54] Wendy S Rubinstein, Donna R Maglott, Jennifer M Lee, Brandi L Kattman, Adri-

ana J Malheiro, Michael Ovetsky, Vichet Hem, Viatcheslav Gorelenkov, Guangfeng

Song, Craig Wallin, et al. The nih genetic testing registry: a new, centralized database

of genetic tests to enable access to comprehensive information and improve trans-

parency. Nucleic acids research, page gks1173, 2012.

[55] Rune Sætre, Kazuhiro Yoshida, Akane Yakushiji, Yusuke Miyao, Yuichiro Matsub-

ayashi, and Tomoko Ohta. Akane system: protein-protein interaction pairs in biocre-

ative2 challenge, ppi-ips subtask. In Proceedings of the Second BioCreative Challenge

Workshop, pages 209–212, 2007.

[56] Eric W Sayers, Tanya Barrett, Dennis A Benson, Evan Bolton, Stephen H Bryant,

Kathi Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Scott

Federhen, et al. Database resources of the national center for biotechnology informa-

tion. Nucleic acids research, 39(suppl 1):D38–D51, 2011.

[57] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[58] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cam-

bridge university press, 2004.

[59] Mir S Siadaty, Jianfen Shu, and William A Knaus. Relemed: sentence-level search

engine with relevance score for the medline database of biomedical articles. BMC

medical informatics and decision making, 7(1):1, 2007.

[60] S Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pages 225–227,

1990.

[61] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression.

Statistics and computing, 14(3):199–222, 2004.

[62] Pontus Stenetorp, Goran Topić, Sampo Pyysalo, Tomoko Ohta, Jin-Dong Kim, and

Jun’ichi Tsujii. Bionlp shared task 2011: Supporting resources. In Proceedings of the

BioNLP Shared Task 2011 Workshop, pages 112–120. Association for Computational

Linguistics, 2011.

[63] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine

classifiers. Neural processing letters, 9(3):293–300, 1999.

[64] Don R Swanson. Fish oil, raynaud’s syndrome, and undiscovered public knowledge.

Perspectives in biology and medicine, 30(1):7–18, 1986.

98

Bibliography

[65] Don R Swanson and Neil R Smalheiser. Undiscovered public knowledge: A ten-year

update. In KDD, pages 295–298, 1996.

[66] Tzong-Han Tsai, Shih-Hung Wu, and Wen-Lian Hsu. Exploitation of linguistic fea-

tures using a crf-based biomedical named entity recognizer. In Proceedings of Bi-

oLINK, volume 2005, 2005.

[67] Yoshimasa Tsuruoka, John McNaught, and Sophia Ananiadou. Normalizing biomed-

ical terms by minimizing ambiguity and variability. BMC bioinformatics, 9(Suppl

3):S2, 2008.

[68] Marc A van Driel, Koen Cuelenaere, Patrick PCW Kemmeren, Jack AM Leunissen,

and Han G Brunner. A new web-based data mining tool for the identification of

candidate genes for human genetic disorders. European Journal of Human Genetics,

11(1):57–63, 2003.

[69] Sofie Van Landeghem, Jari Björne, Chih-Hsuan Wei, Kai Hakala, Sampo Pyysalo,

Sophia Ananiadou, Hung-Yu Kao, Zhiyong Lu, Tapio Salakoski, Yves Van de Peer,

et al. Large-scale event extraction from literature with multi-level gene normalization.

PloS one, 8(4):e55814, 2013.

[70] Ellen M Voorhees et al. The trec-8 question answering track report. In TREC,

volume 99, pages 77–82, 1999.

[71] Chih-Hsuan Wei and Hung-Yu Kao. Cross-species gene normalization by species

inference. BMC bioinformatics, 12(Suppl 8):S5, 2011.

[72] Joachim Wermter, Katrin Tomanek, and Udo Hahn. High-performance gene name

normalization with geno. Bioinformatics, 25(6):815–821, 2009.

[73] Jonathan D Wren, Raffi Bekeredjian, Jelena A Stewart, Ralph V Shohet, and

Harold R Garner. Knowledge discovery by automated identification and ranking

of implicit relationships. Bioinformatics, 20(3):389–398, 2004.

99

Eigenständigkeitserklärung

Master’s Thesis: Declaration of Authorship - Hendrik ter Horst

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig verfasst und gelieferte

Datensätze, Zeichnungen, Skizzen und graphische Darstellungen selbständig erstellt habe.

Ich habe keine anderen Quellen als die angegebenen benutzt und habe die Stellen der

Arbeit, die anderen Werken entnommen sind - einschl. verwendeter Tabellen und Ab-

bildungen - in jedem einzelnen Fall unter Angabe der Quelle als Entlehnung kenntlich

gemacht.

Bielefeld, Mai 2015 Hendrik ter Horst

101

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goals And Contributions
	1.3 Outline

	2 Related Work
	3 Materials
	3.1 The Investigated Corpora PubMed
	3.2 Data for Entity Disambiguation
	3.3 Gold Standards

	4 System Architecture
	4.1 Information Extraction
	4.2 Data Conversion
	4.3 Data Storage and Supply
	4.4 Gene Ranking System

	5 Approach and Resource Generation
	5.1 Disease Recognition and Normalization
	5.1.1 Disease Mention Recognition
	5.1.2 Disease Surface Form Normalization using DiNo

	5.2 Extraction of Gene Interaction Events and Gene Normalization
	5.2.1 Gene Event Recognition
	5.2.2 Gene Surface Form Normalization

	5.3 Gene-Interaction Network
	5.3.1 Graph Construction and Transformation
	5.3.2 Extraction of Path Signatures

	5.4 The Graph Database
	5.4.1 Blazegraph
	5.4.2 Population of the Database

	5.5 Feature Extraction
	5.5.1 Co-occurrences Based Features
	5.5.2 Gene Interaction Based Features
	5.5.3 The Feature Vector

	5.6 Summary

	6 Experiments and Evaluation
	6.1 Classification of Genes Candidates
	6.1.1 Methods and Experimental Setup
	6.1.2 Evaluation Results and Discussion

	6.2 Ranking of Gene Candidates
	6.2.1 Methods and Experimental Setup
	6.2.2 Evaluation Results and Discussion

	6.3 Case Study with Pulmonary Fibrosis

	7 Conclusion
	Bibliography

