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Abstract

This thesis deals with the problem of estimating and tracking the full articulation of
human hands. Algorithmically recovering hand articulations is a challenging prob-
lem due to the hand’s high number of degrees of freedom and the complexity of its
motions. Besides the accuracy and efficiency of the hand posture estimation, hand
tracking methods are faced with issues such as invasiveness, ease of deployment
and sensor artifacts. In this thesis several different hand tracking approaches are ex-
amined, including marker-based optical motion capture, data-driven discriminative
visual tracking and generative tracking based on articulated registration, and various
contributions to these areas are presented. The problem of optimally placing reduced
marker sets on a performer’s hand for optical hand motion capture is explored. A
method is proposed that automatically generates functional reduced marker layouts
by optimizing for their numerical stability and geometric feasibility. A data-driven
discriminative tracking approach based on matching the hand’s appearance in the
sensor data with an image database is investigated. In addition to an efficient near-
est neighbor search for images, a combination of discriminative initialization and
generative refinement is employed. The method’s applicability is demonstrated in
interactive robot teleoperation. Various real human hand motions are captured and
statistically analyzed to derive low-dimensional representations of hand articulations.
An adaptive hand posture subspace concept is developed and integrated into a gener-
ative real-time hand tracking approach that aligns a virtual hand model with sensor
point clouds based on constrained inverse kinematics. Generative hand tracking is
formulated as a regularized articulated registration process, in which geometrical
model fitting is combined with statistical, kinematic and temporal regularization
priors. A registration concept that combines 2D and 3D alignment and explicitly ac-
counts for occlusions and visibility constraints is devised. High-quality, non-invasive,
real-time hand tracking is achieved based on this regularized articulated registration
formulation.
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Chapter 1

Introduction

Ever since technology in general and computers in particular have started to per-
meate throughout the workplaces, homes and personal spaces of people, human-
computer interfaces have trended towards increasingly natural and intuitive inter-
action concepts. After the keyboard and mouse, multi-touch surfaces have emerged
as one of the most popular paradigms for interaction technology, being used in the
vast majority of mobile devices, such as smartphones and tablets, and also advanc-
ing to larger-scale touch monitor interfaces. A commonality of these input methods
is that they are based on the hands and fingers being the central interface to the
user. The human hand is extremely well-suited for general tool use and gestural
expression, which is why technology interfaces are increasingly headed towards
gesture-based interaction (Microsoft Kinect, Leap Motion, Nimble VR). However, de-
spite the progress being made in the field of gestural interfaces, and the general
interest in the topic in the fields of character animation and robotics, the problem of
detecting and tracking hands in their full expressiveness remains a difficult problem.
This thesis deals with various aspects of the hand tracking problem, with emphasis
put on facilitating real-time estimation of the hand’s full articulation for interactive
applications.

Hand tracking is a fundamentally challenging problem due to the high dimensionality
and complexity of the space of hand configurations. Hand motions are often fast and
intricate, exhibiting complex articulations and contact patterns. Methods aiming
at recovering hand articulations from sensor input deal with these challenges in a
variety of ways. Tracking solutions like optical motion capture systems (e.g. Vicon)
or instrumented data gloves (e.g. CyberGlove) place markers or sensors directly at
the joints of the user’s hand, which allows them to recover the hand posture almost
directly from the observed data. However, besides requiring complex setup and
calibration procedures, a main drawback of these methods is that they are invasive to
the user being tracked. Wearing a dense set of markers or a bulky data glove restricts
the user’s hand movements and thereby limits the naturalness of the motions. In
contrast, non-invasive methods aim to estimate the hand articulations without such
restrictions, usually from camera images.
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1 Introduction

These visual hand tracking methods are faced with different problems. Monocular
camera setups suffer from occlusions, ambiguities and visual clutter, all of which
impede on the tracking quality. Some of these difficulties can be overcome by using
multi-camera setups, which help in resolving occlusions or ambiguities. However,
these setups usually require lengthy calibration and computations to map the 2D
information of the cameras to 3D. As an alternative, RGBD sensors (e.g. Microsoft
Kinect) directly capture color images and depth maps simultaneously, which signifi-
cantly alleviates a lot of the problems of vision-based tracking. Using RGBD sensors
for visual hand tracking is therefore a highly viable option, especially since they
are low-cost devices, and targeted towards deployment in desktop or living room
environments. Although the data obtained from such sensors often exhibits artifacts
like noise, motion blur or gaps, their prevalence and ease of deployment make them
one of the most viable alternatives for non-invasive hand tracking. In addition to
low-quality data, various other challenges also remain for visual hand tracking using
these devices, such as the issue of self-occlusions, which frequently occur during
complex hand movements.

In order to cope with these challenges, visual tracking algorithms employ various
different techniques. The two main classes of algorithms for visual hand tracking are
appearance-based, or discriminative methods, and model-based, or generative methods.
Discriminative methods estimate the hand posture from a single frame based on a
database of known configurations. While these approaches suffer when the input
data strays from the database, generative methods are more flexible as they directly
optimize for the kinematic parameters of a virtual hand model in order to align it
with the observed data. However, purely generative approaches can be prone to sub-
optimal local minima and generally suffer from the high dimensionality of the hand
posture space. A general trade-off between accuracy and efficiency can be identified
in hand posture estimation algorithms. Offline estimation methods describe detailed
models of the hand’s kinematics and geometry, and can produce highly accurate
results using sophisticated optimization frameworks, but they are not applicable to
real-time contexts. Real-time approaches introduce simplifications that allow for fast
computations, but reduce reconstruction accuracy.

This thesis aims to resolve some of the above issues by examining a variety of dif-
ferent tracking approaches, analyzing hand articulations to identify concepts that
can be used to reduce their complexity, and developing approaches that succeed
in accomplishing non-invasive, real-time hand tracking that is accurate and ro-
bust.

Contributions

This thesis examines the problem of hand tracking and posture estimation from
various angles and analyzes aspects of several different hand tracking approaches,
including marker-based optical motion capture, discriminative vision-based tracking,
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and generative tracking based on articulated registration. In the following, the par-
ticular contributions of this thesis in these areas are clarified.

We developed a method for hand motion reconstruction from positional marker data
obtained from an optical motion capture system. In particular, we addressed the
problem of determining the optimal placement of a reduced number of markers,
in order to facilitate accurate posture reconstruction from sparse marker data. The
main contributions in this area include:

• A method for automatically generating functional reduced marker layouts
based on establishing a relationship between marker positions and subspace
representations of hand articulations.

• Specific quality criteria for marker layouts that combine numerical stability
with geometric feasibility, and a specialized marker layout optimization algo-
rithm that generates such layouts.

We extended previous work on image based discriminative hand tracking for the
purpose of interactive teleoperation of an anthropomorphic robot hand. The main
contributions in this area include:

• An efficient nearest neighbor search algorithm for color-labeled images based
on cascaded image matching using chamfering to efficiently approximate color
class distance transforms.

• An additional generative pose estimation step using a color-sensitive iterative
closest point (ICP) optimization.

We utilized reduced subspace representations of hand articulations that we de-
rived from principal component analysis (PCA) of motion captured hand posture
data, and integrated these as subspace constraints in a generative hand tracking
approach using articulated registration. The main contributions in this area include:

• A robust, subspace-constrained inverse kinematics hand posture estimation
method, integrated into a registration-based real-time hand tracking approach.

• A fast, online adaptive PCA model that is continuously updated according to
new input data based on efficient incremental covariance computations.

• A publicly available dataset of motion captured hand posture data containing
a high variety of natural hand articulations.

We formulated generative, or model-based, hand tracking as a regularized articulated
registration process that aligns a template model with point cloud data in real-time.
The main contributions in this area include:

• A robust method for real-time hand tracking that combines geometric model
fitting with statistical, kinematic and temporal priors in a unified articulated
registration framework.

• A combined 2D/3D registration and correspondence computation approach
that explicitly takes visibility and occlusion constraints into account.

• The complete source code of our implementation.
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1 Introduction

The contributions of this thesis are presented in the following publications:

• M. Schröder, C. Elbrechter, J. Maycock, R. Haschke, M. Botsch & H. Ritter
(2012), Real-Time Hand Tracking with a Color Glove for the Actuation of
Anthropomorphic Robot Hands, Proc. IEEE/RAS International Conference on
Humanoid Robots (Humanoids), pp. 262–269.

• M. Schröder, J. Maycock, H. Ritter & M. Botsch (2013), Analysis of Hand Syner-
gies for Inverse Kinematics Hand Tracking, Proc. IEEE International Conference
on Robotics and Automation (ICRA), Workshop: Hand synergies – how to tame
the complexity of grasping.

• M. Schröder, J. Maycock, H. Ritter & M. Botsch (2014), Real-Time Hand Track-
ing using Synergistic Inverse Kinematics, Proc. IEEE International Conference
on Robotics and Automation (ICRA), pp. 5447–5454.

• M. Schröder & M. Botsch (2014), Online Adaptive PCA for Inverse Kinematics
Hand Tracking, Proc. Vision, Modeling and Visualization (VMV), pp. 111–118.

• A. Tagliasacchi*, M. Schröder*, A. Tkach, S. Bouaziz, M. Botsch & M. Pauly
(2015), Robust Articulated-ICP for Real-Time Hand Tracking, Computer Graph-
ics Forum 34, Proc. Symposium on Geometry Processing (SGP), to appear. (* equal
contributors)

• M. Schröder, J. Maycock & M. Botsch (2015), Reduced Marker Layouts for
Optical Motion Capture of Hands, submitted to Motion in Games (MIG).

Outline

The remainder of this thesis is structured as follows. Chapter 2 provides an overview
of the related work on hand modeling and tracking, and introduces some key con-
cepts that are relevant to this thesis. Chapter 3 explores the problem of reduced
marker layout optimization for hand tracking based on marker-based optical motion
capture. In Chapter 4 a data-driven, discriminative visual hand tracking approach
based on nearest neighbor matching in an image database is discussed. Details on
subspace representations of hand postures, as well as a generative hand tracking ap-
proach based on subspace-constrained inverse kinematics are given in Chapter 5. In
Chapter 6 a generative hand tracking method is presented that formulates the posture
estimation problem as a real-time regularized articulated registration process. Finally,
Chapter 7 concludes the thesis with a summary and discussion.
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Chapter 2

Hand modeling and tracking

This chapter provides a general overview of the landscape of works related to hand
modeling and tracking, and introduces some key concepts that are relevant to the
contributions presented in this thesis. Later on, the individual chapters give spe-
cific and self-contained discussions of their respective related works. In the follow-
ing, the initial topic discussed is the modeling of hands. In particular, the anatomy
of the human hand is addressed, and what considerations go into the kinematic
and geometric modeling and design of virtual hand representations. After that, the
topic of hand tracking and posture estimation is approached, and a summary of the
most relevant tracking methods and how they relate to the work in this thesis is
given.

2.1 Hand modeling

The human hand consists of an intricate composition of bones, cartilage, muscles,
tendons and skin, and constitutes one of the most complex musclotendon systems in
the human body (Wheatland et al. 2015). The anatomical structure of the hand is
made up of 27 bones, which are held together by ligaments and muscles that allow
the individual joints to flexibly bend and rotate based on contraction and relaxation
forces (Agur and Lee 1999, Napier 1980). This structural setup is what gives the
hand its high capability for articulation and the high density of nerve endings in the
fingers is what makes it a useful tool for tactile actions. The 27 bones in the hand
include eight that are tightly grouped in the wrist or carpus, five bones in the palm
called metacarpals connecting the wrist to the fingers, and the five digits consist of
bones called phalanges, of which the thumb has two and the remaining four fingers
have three (Agur and Lee 1999). These phalanges are categorized into the proximal,
middle and distal phalanx, and while the four fingers all have three phalanges each,
the thumb only has a proximal and a distal phalanx. The phalanges within each
digit are connected with joints, which facilitate the hand’s articulation, and are
categorized into metacarpophalangeal joints (MCP) between the metacarpal and
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2 Hand modeling and tracking

proximal phalanx, the proximal interphalangeal joints (PIP) between the proximal
and middle phalanx, and the distal interphalangeal joints (DIP) between the middle
and distal phalanx. Each of the four fingers articulate at all three joints, but as the
thumb lacks a middle phalanx it only articulates its MCP and DIP joints. Regarding
the rotational degrees of freedom (DoFs) of the hand’s joints, the interphalangeal
joints (PIP, DIP) predominantly act as hinge joints, which can perform forward
flexion and extension. The metacarpophalangeal joints (MCP) are more flexible and
allow for sideways abduction and adduction in addition to flexion and extension.
Beyond that, the MCP joints are also slightly articulated with respect to the carpal
bones in the wrist (Wheatland et al. 2015). As the structure of the hand is not
locked in place but rather held together by flexible tendons and ligaments, there are
additional minor DoFs in the joints, such as for translation, hyperextension and twist
of the joints, although with limited ranges of motion.

Mapping the complex anatomical structure of the hand to a virtual hand representa-
tion is challenging, because there is a fundamental trade-off between the accuracy
of the simulation and the efficiency of the model for practical use. For this reason
most virtual representations of the hand make abstractions and simplifications upon
the hand’s true anatomical structure. While there are projects that specifically aim
at reconstructing the hand with high anatomical accuracy, including the modeling
of bones, muscles and skin (Albrecht et al. 2003, Tsang et al. 2005, Sueda et al.
2008), they are still based on a set of simplified assumptions about the hand struc-
ture. The joints are represented as articulated, rigid links as opposed to a flexible
musclotendon system, and the number of bones is commonly reduced from 27 to
16 (Tsang et al. 2005). However, this reduction is justified because the movement
of the additional joints is negligible in most situations and the simplified structure
still allows for accurate anatomical modeling (Albrecht et al. 2003). The articulation
of the piecewise rigid kinematic chains representing the digits is usually driven by a
limited set of flexion/extension and abduction/adduction joint angles (Oikonomidis
et al. 2011a, Schröder et al. 2014). Using four joint angles for each digit (one ab-
duction, three flexion) results in a kinematic model of 20 parameters representing
the finger articulation, or hand posture. The wrist can be modeled using six DoFs
representing the position and orientation, or the global pose of the hand, resulting
in a total number of 26 DoFs representing the kinematic state of the virtual hand
model.

While the 20-dimensional representation of hand postures allows for adequate ar-
ticulation of all individual joints in the kinematic hand model, a closer examination
of hand movements reveals that the motions of joints during hand articulations are
highly redundant and correlated, indicating that the kinematic DoFs of the hand can
be represented using a lower number of control parameters. A commonly observed
correlation between finger joints is that between the interphalangeal joints (Rijpkema
and Girard 1991, Lin et al. 2000), which can be approximated as θDIP = 2/3 · θPIP,
where θDIP and θPIP represent the DIP and PIP joint angles, respectively. In a more
principled approach, Bernstein (1967) generalized this concept to the idea of hand
synergies, which represent high-level control schemes for kinematic parameters. San-
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2.1 Hand modeling

tello et al. (1998) expanded on the hand synergies concept and processed grasp
motion data using principal component analysis (PCA) to reveal that 90% of the
variance in grasping data could be described by only 3 principal components. The
concept of identifying high-level control schemes for hand articulations based on
hand posture subspaces has since been further examined and applied in the field of
robotics (Bicchi et al. 2011, Gabiccini et al. 2011). Low-dimensional representations
for hand kinematics have also been used for the animation of virtual hands (Mu-
latto et al. 2013, Hoyet et al. 2012) and hand tracking (Wu et al. 2001, Kato et al.
2006, Schröder et al. 2014). In this thesis, extensive use is made of the concept of
low-dimensional hand posture representations to increase the robustness of hand
posture estimations.

In addition to the structural and kinematic layout of the hand, the hand’s geom-
etry also has to be accounted for in virtual hand representations. Early works on
the popular linear blend skinning (LBS) animation technique were concerned with
the applications of hand animation and object grasping (Magnenat-Thalmann et al.
1988, Gourret et al. 1989). In LBS the deformation of the surface of an articulated
geometric model is approximated based on a weighted combination of the joint
transformations of the skeleton embedded in the model. While being an efficient and
intuitive method for generating smooth skin deformations for animated objects, its
realism is limited. More advanced skinning techniques have since been developed,
which account for effects such as skin folding and bulging (Vaillant et al. 2013, 2014).
Methods targeting anatomically accurate modeling of hands compute the geometric
shape and deformation of the hand model based on physical simulation of muscle
activations and contractions (Albrecht et al. 2003, Tsang et al. 2005, Sueda et al.
2008).

Accurate hand models can also be generated based on sensor data in offline optimiza-
tion processes. In the works of Albrecht et al. (2003) and Rhee et al. (2006), hand
models that fit to the dimensions of specific users are generated by warping an initial
template model according to features extracted from 2D photographs of hands. For a
more detailed geometric reconstruction based on sensor data, depth sensing devices
can be used, which provide 3D point cloud information. Reconstruction of 3D geom-
etry from point clouds has been addressed in registration techniques (Li et al. 2008,
2009), in which a template model is deformed to fit to the input data by employ-
ing non-rigid deformation models in regularized energy optimization frameworks.
However, these particular methods do not specifically account for the articulated,
kinematic structures of hands. In contrast, Taylor et al. (2014) presented a method
for generating user-specific hand models by simultaneously adapting a hand triangle
mesh and its embedded skeleton to a sequence of depth images. Similarly, Zhu et al.
(2015) created user-specific anatomically based models of upper and lower limbs
by adapting the bone, skin and kinematic structure of an initial template model to
depth data.

While anatomically based hand models are well-suited for realistic simulations of
hands, they are not suitable for use in interactive real-time applications, which is why
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2 Hand modeling and tracking

most hand models used for the purpose of tracking are kept as simple as possible.
This thesis demonstrates that highly robust and accurate real-time hand tracking is
achievable using a simplified geometric hand representation based on piecewise rigid
cylinder segments, when combined with carefully designed kinematic constraints and
priors.

2.2 Hand tracking

One of the most reliable and widely deployed solutions for motion tracking in general
is marker-based optical motion capture (Guerra-filho 2005, Kitagawa and Windsor
2008), where the 3D positions of markers attached to a performer are tracked by a
calibrated setup of high-speed cameras with high accuracy. A typical motion capture
(mocap) setup is equipped with 4 to 32 cameras and numerous commercial solutions
(e.g. OptiTrack, PhaseSpace, Qualisys, Vicon) are deployed in research and industrial
contexts. For the specific application of hand tracking, marker-based mocap systems
are also commonly employed. Maycock et al. (2010) purposefully built an optical
aquisition setup with 14 MX3+ cameras (Vicon) in a small capture volume for track-
ing hand movements during object interactions. Lee and Tsai (2009) used an optical
mocap setup for tracking hands for the purpose of sign language recognition. Zhao
et al. (2012) combined marker-based mocap with a depth sensor for improved ac-
curacy. In an optical system based on LED-markers, Aristidou and Lasenby (2010)
tracked fingertip positions and reconstructed joint angles in a highly constrained
inverse kinematics approach. Data-driven hand motion reconstruction from sparse
marker sets was addressed in (Kang et al. 2012, Wheatland et al. 2013) and Hoyet
et al. (2012) studied the perception of hand movements captured in an optical mocap
system using reduced marker sets. In (Schröder et al. 2015) we approached the prob-
lem of automatically generating reduced marker layouts for optical mocap of hands
based on low-dimensional hand posture representations.

A downside to optical tracking systems is their sensitivity to marker occlusions,
which can occur frequently during complex hand movements. Another reliable and
widespread alternative for hand tracking that does not have this problem is to use
instrumented data gloves (e.g. CyberGlove), which directly measure the hand’s joint
angles with integrated sensors. A common application case for data gloves is hand
tracking for the purpose of robot control (Fischer et al. 1998, Griffin et al. 2000,
Turner 2001, Steffen et al. 2010). However, while these devices can be used to
infer hand articulations directly from the measured data, this requires non-trivial
calibration procedures to map from the raw sensor values to joint angles (Steffen
et al. 2011).

In addition to being complex and expensive, a major drawback to both marker-based
optical systems and data gloves is that they are invasive tracking mechanisms that re-
quire the user to wear markers or a bulky glove, both of which impede natural move-
ments. In contrast to this, a highly viable non-invasive, cheap and simple alternative
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2.2 Hand tracking

to these systems has emerged from the proliferation of consumer-level RGBD sensors
(e.g. Microsoft Kinect, ASUS Xtion PRO, Creative Senz3D), which capture depth maps
in real-time in addition to color images. This depth information significantly reduces
some of the problems often associated with markerless visual tracking, such as occlu-
sions, depth ambiguities and background clutter. The pioneering piece of hardware
in this development of commodity depth sensors was the Microsoft Kinect, which was
built for the purpose of real-time full body tracking for interactive games (Shotton
et al. 2011). These sensors have since been used in various other research contexts,
such as real-time surface reconstruction (Izadi et al. 2011, Newcombe et al. 2011) or
face tracking (Weise et al. 2011, Bouaziz, Wang and Pauly 2013, Li et al. 2013). Early
attempts at hand tracking using RGBD sensors detected fingertips in the depth map
in order to facilitate interactive, gesture-based user interfaces (Lozano-Perez et al.
2010). Hardware solutions based on depth sensing that were specifically developed
for gestural interaction in desktop and virtual reality environments have come up as
well (Leap Motion, Nimble VR). However, despite the multitude of sensors and track-
ing approaches, motion tracking in general, and hand tracking in particular based on
RGBD sensors remains a challenging problem, because the data obtained from these
low-cost sensors often has low quality, the range at which they can operate is limited
and markerless articulated tracking is inherently difficult. A detailed overview of
general human motion analysis from depth data is given in the survey of Ye et al.
(2013).

Approaches for visual hand tracking can generally be subdivided into two main
categories, namely appearance-based methods and model-based methods (Erol et al.
2007). Appearance-based methods are also referred to as discriminative methods,
as they perform the hand posture estimation based on discriminating and classify-
ing the visual input based on a set of known configurations. Such methods usually
involve training a classifier or a regressor with a large database of example hand
postures in order to map image features to hand articulations. The main advantage
of appearance-based methods is that they allow for hand posture estimation from a
single frame, which makes them highly robust against loss of tracking. Conversely,
these methods suffer when the observed input hand motions stray from the database
upon which the discriminative model was built. Therefore, appearance-based meth-
ods work optimally when only an approximate posture estimate is desired or when
highly discriminative features can be extracted from the visual input. Model-based
methods are also referred to as generative methods and they produce hand pos-
ture estimations by directly optimizing the kinematic parameters of a hand model,
thereby generating hand articulations that explain the observed visual input. In these
methods the hand posture estimation problem is regarded as an alignment problem,
in which an objective function that measures the discrepancy between a virtual
hand model and the observed input data is minimized. As model-based methods
directly optimize for the kinematic parameters of the hand model and can therefore
cover the entire configuration space of hand articulations, they are more flexible
and can achieve higher accuracy than appearance-based methods. However, the high
dimensionality and complexity of hand articulations can make the optimization of
the kinematic parameters difficult, and these optimizations can be prone to local
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minima and loss of tracking, which is usually dealt with using regularization or
reinitialization strategies.

Appearance-based methods using nearest neighbor search match the observed in-
put image, or features extracted from it, to a database of images or features anno-
tated with hand postures. Wang and Popović (2009) detected a color glove worn by
the user in the input image and found the closest match in a synthetically created
database of tiny images (Torralba et al. 2007). The glove’s unique color pattern
provided a highly discriminative feature set, which made it possible to distinguish
between a large variety of hand postures and orientations based on monocular color
input. In (Schröder et al. 2012) we extended this discriminative color glove method
with a generative estimation step that aligned the textured hand model with the
color-classified point cloud of an RGBD sensor in a color-sensitive iterative closest
point (ICP) process. In an effort to remove the dependency on the color glove, Wang
et al. (2011) later adapted their approach to silhouette images of hands instead
of color-classified glove images. Due to the reduced distinctiveness of the hand’s
appearance in silhouette images as opposed to color images, the number of postures
estimated by this system was limited. In (Romero et al. 2010, 2013) color images
of bare hands were used in a similar nearest neighbor approach for tracking hand-
object interactions. Other appearance-based methods are built upon decision trees
and forests, which allow for per-pixel classification of joint labels in the input depth
image. This method was notably used for full body tracking using RGBD sensors by
Shotton et al. (2011) and variants of the approach have been similarly employed
for hand tracking (Keskin et al. 2012, Tang et al. 2013, 2014, Krupka et al. 2014).
Decision forests are constituted by an ensemble of decision tree classifiers, which
have to be trained using a large database of annotated example depth maps of the
tracked subjects. In a different approach, Tompson et al. (2014) used pre-trained
convolutional networks to identify joint locations in depth images of hands. These
methods have demonstrated that appearance-based approaches can be successfully
used for real-time hand tracking and posture estimation from a single frame, but
their reliance of large training data sets and the limited generalization to previously
unknown hand articulations are drawbacks.

Model-based methods estimate hand postures by directly optimizing the kinematic
parameters of a hand model in order to align it with the observed input data. In
(Stenger et al. 2001, Sudderth et al. 2004) edge and contour features were used
in model-based approaches using probabilistic estimation algorithms. While these
methods used simplified hand representations, de La Gorce et al. (2008) encoded
not only the hand’s kinematics, but also the details of its geometry, texture and shad-
ing in their model. They used an analysis-by-synthesis approach, in which explicit
mathematical models for these quantities were used to generate synthetic color im-
ages that matched input camera images by performing error minimization in the
image domain. Hamer et al. (2009) addressed the challenges of occlusions and hand-
object interaction by connecting multiple individual trackers for the joint segments
in a pairwise Markov random field. Reconstruction of complex hand-hand and hand-
object interactions has been approached using model-based tracking in multi-camera
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setups (Oikonomidis et al. 2011b, Ballan et al. 2012, Wang et al. 2013). These meth-
ods simultaneously model the articulation of hands, the movement of objects and
their interactions in optimization frameworks. While these approaches showcase the
high potential for accuracy and robustness of model-based tracking, they are offline
methods and not suitable for interactive real-time applications. In (Sridhar et al.
2013, 2014) real-time tracking was achieved using Gaussian-based tracking models
in multi-camera setups. Sridhar et al. (2015) combined the model-based approach
with an appearance-based decision forest classifier for hand tracking using an RGBD
sensor.

Other approaches for model-based real-time hand tracking using RGBD sensors are
based on the work of Oikonomidis et al. (2011a), who used particle swarm optimiza-
tion (PSO, Kennedy and Eberhart 1995, 2001) to minimize the model alignment
objective function. PSO is a sampling-based optimization heuristic that iteratively
evaluates and updates a set of candidate solutions. Its main advantage is that it
allows for the optimization of arbitrary objective functions without prior knowledge
or gradient information, however it comes at the cost of requiring high computa-
tional resources. Zhao et al. (2012) combined the PSO hand tracking technique for
RGBD sensors with marker-based optical mocap for improved accuracy. Qian et al.
(2014) extended the PSO approach with fingertip detection for reinitialization and
registration-based refinement. Sharp et al. (2015) employed a PSO-based model fit-
ting in combination with a per-frame reinitializer for recovery from loss of tracking.
While modifying and extending the PSO technique has been shown to produce good
results, its inherent probabilistic and heuristic nature make it less preferential than
gradient-based approaches, which are more direct and converge faster and more
accurately when close to the solution (Qian et al. 2014). Melax et al. (2013) used
a gradient-based convex rigid body simulation in combination with reinitialization
heuristics for real-time hand tracking. In (Schröder et al. 2013, 2014, Schröder and
Botsch 2014) we performed hand tracking using a constrained inverse kinematics
approach, where the gradient-based optimization was performed in hand posture
subspaces. In (Tagliasacchi & Schröder et al. 2015) we formulated the hand track-
ing problem as a robust, real-time geometric registration process, which performs
gradient-based optimization of an objective function that combines geometric fitting
with kinematic regularizers in a unified approach.
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Chapter 3

Marker-based motion capture

The approach for hand tracking discussed in this chapter is using marker-based op-
tical motion capture, or mocap, which is widely regarded as the standard method
for acquiring motions of human performers in both research and industrial or enter-
tainment contexts. Numerous commercial solutions (Vicon, OptiTrack, PhaseSpace,
Qualisys) and considerable scientific literature exist on the topic. While there is a
multitude of alternative solutions for motion tracking, such as markerless methods
(Organic Motion, Microsoft Kinect) or systems using inertial sensors (Xsens, Biosyn),
they are not as widely deployed due to the reliability of marker-based systems.
Marker-based optical mocap systems track the 3D positions of markers attached to a
performer, which can then be used to infer the articulation of a skeletal model of the
tracked subject. Such systems typically consist of 4 to 32 cameras that capture at 30
to 2000 Hz and acquire the marker locations with very high accuracy (Kitagawa and
Windsor 2008).

However, despite the quality of marker-based mocap there are drawbacks and lim-
itations to these systems. The captured data usually needs to be post-processed
extensively, occlusions can cause gaps or mislabelings in the captured data, and any
rotational information needs to be computed retrospectively. Some of these issues
are amplified as the number of markers used for tracking increases. A common
guideline for capturing articulated objects is to cover all major joints with markers
(Guerra-filho 2005, Kitagawa and Windsor 2008). In addition to making the marker
attachment process tedious and error-prone, a high number of markers causes prob-
lems when capturing multiple subjects or tracking body movements and hand artic-
ulations simultaneously. Capturing hand articulations in detail typically requires a
dense marker set consisting of 18–23 markers in a small capture volume. In a large
capture volume that also allows for full body mocap the resolution of the optical
tracking system and the required size of the markers prohibit the usage of a full
marker set. Instead, reduced marker sets have been employed in large capture vol-
umes – however, this strongly limits the expressiveness of the captured hand motions.
Therefore, body and hand movements are sometimes captured in isolated sessions
and combined in post-processing (Wheatland et al. 2015).
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Figure 3.1: Our method generates reduced marker layouts for optical motion capture
of hands based on analyzing hand movements. Left: full marker set cov-
ering all joints of the hand. Center: qualitative illustration of regions that
are static (blue) and in motion (red) during the analyzed precision grasp
movement. Right: reduced marker set that is sufficient to reconstruct the
observed motions using our method.

In this chapter, this particular problem of optical mocap is explored more closely and
a method for automatically determining reduced marker layouts for inverse kinemat-
ics (IK) based hand motion reconstruction is presented (Schröder et al. 2015). The
employed motion reconstruction method is based on performing the IK optimization
in a subspace learned from prior hand movements, which allows for realistic recovery
of hand articulations even from sparse input data. Our method for reduced marker
set optimization is sensitive to this reconstruction method, particularly the employed
subspace constraints, and thus produces layouts that are optimal for solving the
subspace-constrained IK problem. We developed an approach that minimizes an ob-
jective function which jointly optimizes numerical stability of the marker-IK problem
and the geometric feasibility of the resulting layout. The optimization is done using
a specialized surface-constrained particle swarm optimization (PSO, Kennedy and
Eberhart 1995, 2001), which generates marker layouts bound to the surface of an
animated 3D hand model (see Figure 3.1).

We show that, rather than specifying one marker per joint of the articulated object,
it is sufficient to specify one marker per degree of freedom (DoF) of the param-
eter space that represents particular hand articulations. Reduced marker layouts
can therefore be determined by reducing the parameter space of hand postures
based on prior knowledge. Furthermore, we show the principles by which a reduced
marker layout that best corresponds to the subspace DoFs can be determined. We
demonstrate marker layout results for various hand motions, in particular manual
interaction movements based on the grasp taxonomy of Cutkosky (1989), which
distinguishes between different types of power grasps and precision grasps (see
Figure 3.2).
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Power grasp Precision grasp

Figure 3.2: Examples of different grasping types in the grasp taxonomy of Cutkosky
(1989), which we use to evaluate our results. Power grasps usually in-
volve the whole hand for interaction with large objects, whereas preci-
sion grasps usually involve only some fingers for handling smaller objects.
Illustrations from (Zheng et al. 2011).

3.1 Related work

There is a substantial amount of literature on optical motion capture, therefore the
focus is placed on the related work that is most relevant to the topics discussed in
this chapter, which include motion reconstruction based on motion subspace priors,
as well as optimized or reduced marker configurations.

Employing subspace representations of human motions has been shown to be ef-
fective for motion reconstruction from sparse input. In (Chai and Hodgins 2005,
Liu et al. 2006) local linear models were used to represent full-body motions and
recover skeletal articulations from sparse marker sets. While these methods are
completely data-driven and can therefore limit the space of recovered articulations,
our approach uses data-driven subspaces as a prior but also allows for articulation
refinements that lie outside of the ground truth database using a layered inverse
kinematics approach. Liu et al. (2006) also target the problem of determining re-
duced marker configurations by finding a subset of an initial input marker set that
can produce accurate predictions of the remaining markers. In contrast, we devel-
oped a bottom-up approach for generating optimal reduced marker layouts for hands
based on the kinematic DoFs of an articulated hand model. While previous methods
usually determine reduced marker sets by subsampling a specific initial marker set,
our method more generally prescribes properties that candidate marker regions on
the surface of a hand model should exhibit, and automatically computes the optimal
marker placement within these regions.

Other works deal with the optimal placement of markers, although not necessarily
reduced marker layouts. Recently, Loper et al. (2014) demonstrated an approach
that is able to capture fine details of soft tissue deformations in addition to full-body
skeletal motions without having to rely on very dense marker sets. To improve the
accuracy of their motion and shape capture, they extend their initial sparse marker
set in a greedy approach that iteratively adds the next best mesh vertex that min-
imizes an error metric. We show that, for the problem of finding good reduced
hand marker layouts, such greedy approaches are outperformed by our PSO-based
global search, as it is less prone to suboptimal local minima. Le et al. (2013) ex-
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plore the problem of determining optimal marker layouts for facial performance
capture using an approach that minimizes the reconstruction error for ground truth
sequences of high-resolution facial meshes. While their approach is based on surface
deformations of facial meshes, our method finds reduced marker layouts by purpose-
fully exploiting the kinematic structure and correlations within an articulated hand
model.

While a common guideline for marker placement on hands is to use one marker per
joint (Guerra-filho 2005, Kitagawa and Windsor 2008), reduced marker layouts for
hands have been frequently discussed. In (Kitagawa and Windsor 2008) an example
for a reduced “mitten” layout was given, where only one marker was placed at the tip
of a single finger. Given an estimation for the global location and orientation of the
hand, the relative movement of this marker can be interpreted as the simultaneous
bending of all fingers. Our work examines this concept more closely by considering
how correlations and redundancies in hand articulations affect marker placement.
Regarding the degree of realism of finger motions with reduced marker sets Hoyet
et al. (2012) found that humans are not particularly sensitive to the subtle details of
finger animations and the perceived quality of motions is not significantly affected
by reduced marker sets. While they manually selected reduced marker configura-
tions, we developed an automatic approach based on subspace-constrained inverse
kinematics. In contrast, Chang et al. (2007) determine the most important markers
in a reduced marker set for the purpose of grasp motion recognition by using su-
pervised feature selection based on the prediction accuracy of grasp classifiers. In
(Kang et al. 2012, Wheatland et al. 2013) a data-driven approach for hand motion
reconstruction from sparse marker sets was used, where motions are synthesized
by finding database postures that most resemble the low-dimensional input. Wheat-
land et al. (2013) computed a subset of an initial full marker set by performing
principal component analysis (PCA) on the marker trajectories and selecting the
most influential ones. Our method differs from theirs in two significant aspects: first,
our IK-based approach allows for the recovery of hand articulations that are not
present in the prior database, and second, we determine reduced marker layouts in a
bottom-up way based on the PCA of joint angles, which explicitly captures the corre-
lations and redundancies present within hand kinematics, unlike positional marker
trajectories.

Using PCA or other dimension reduction techniques for hand kinematics has found
widespread success in hand tracking, animation and automation (Bernstein 1967,
Wu et al. 2001, Kato et al. 2006, Mulatto et al. 2013, Schröder et al. 2014). To
reconstruct the kinematic parameters of an articulated hand model from positional
marker data, we apply the subspace-constrained inverse kinematics approach that
we developed in (Schröder et al. 2014) and is presented in more detail in Chapter 5.
A key insight of said approach is that while using subspace constraints, the hand
posture estimations remain realistic even when input data is missing. In this chapter,
we reverse the problem and seek to find the minimal amount of marker input data
necessary to reconstruct postures accurately using subspace priors. As in previous
works on reduced marker sets for hand mocap (Chang et al. 2007, Kang et al. 2012,
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Figure 3.3: Human hand with reflective markers attached for tracking using a Vicon
motion capture system (Vicon, Maycock et al. 2010).

Wheatland et al. 2013, Hoyet et al. 2012), our marker layouts describe only the
articulation of the hand, whereas the global position is given by markers placed on
the forearm near the wrist.

3.2 Motion reconstruction

In our setup, human hand motions are recorded using a Vicon motion capture system
with 14 MX3+ cameras capturing at 200 fps. This acquisition setup was purposefully
built to allow for the tracking of human hand motions (Maycock et al. 2010). The
dimensions of the system’s working volume are 2.1m by 1.3m by 2.1m. Given a set
of target marker positions from the optical mocap system, our motion reconstruction
method estimates the hand posture, from which the observed positions originate,
by fitting an articulated hand model to the data using inverse kinematics. In the
following, the hand model and the inverse kinematics fitting process are described
in detail.

3.2.1 Kinematic hand model

We use a kinematic hand model consisting of 16 joints: three for the proximal,
intermediate and distal phalanges of each finger and one wrist joint. The articulation
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Figure 3.4: Hand model and its underlying skeleton. Also shown are three exemplary
markers on the hand model (red) that are constrained to move towards
their target positions (blue) during inverse kinematics.

of the hand is represented by 20 degrees of freedom in our model: each finger joint
has a flexion-extension axis and the fingers’ base joints each have an additional
abduction-adduction axis. In addition to the 20 joint angles controlling the hand’s
posture, the pose of the hand is represented by 6 degrees of freedom for the global
translation and rotation. In total we use 26 parameters to control the pose and
posture of the hand in our system.

These parameters and the kinematic chains of the joint hierarchy define the forward
kinematics of the hand, which can be expressed in terms of a product of affine
transformations. A joint’s local transformation consists of the rotation defined by its
joint angle parameters and the translation relative to its parent joint, if there is one.
The global transformation matrix Tj of joint j is given by the product of the local
transformations along its kinematic chain:

Tj =
n∏
i=1

Ti(θi), (3.1)

where Ti(θi) is the local transformation matrix associated with the element θi of the
kinematic parameter vector θ = (θ1, . . . , θ26)T .

The geometric representation of the hand model is based on a triangle mesh, which
is deformed according to the articulation of the joints defined in the kinematic
hand model. The joint hierarchy serves as the skeleton of the virtual hand model, as
depicted in Figure 3.4. A point xi on the model surface can be transformed relative
to a joint j based on the forward kinematics of the skeleton:

x′i = TjT̂−1
j xi, (3.2)
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Figure 3.5: Illustration of rest pose (left), piecewise rigid forward kinematics (center)
and smooth deformation using linear blend skinning (right).

where T̂j is the rest pose transformation of joint j and its inverse is used to trans-
form xi to the joint’s local coordinate frame. Since the transformation matrices Tj

depend on the parameter vector θ, the transformation of a point xi based on the
skeleton can be expressed as a function of the parameters: xi = xi(θ). We use this
expression to calculate the forward kinematics during the motion reconstruction
process.

However, computing the deformation of the mesh-based hand model in this manner
results in a blocky, unnatural animation. Instead, we obtain a smooth deformation
of the mesh model using linear blend skinning (LBS, Jacka et al. 2007), which
computes deformed vertex positions by linearly blending the transformation matrices
of the joints influencing a vertex, which is specified by a set of convex weights
(ω1, . . . , ω16) for each vertex. The position x′i of vertex xi according to LBS is given
by

x′i =
16∑
j=1

ωjTjT̂−1
j xi. (3.3)

This results in a smooth deformation of the virtual hand model in accordance to the
control parameters of the kinematic model. Figure 3.5 schematically illustrates the
forward kinematics and skinning.

On the surface of the hand model, effector positions are defined, which correspond
to the marker target positions in the input data, as illustrated in Figure 3.4. The
associations between the target and effector positions can be obtained by either
manually labeling the observed data or computing the labels automatically (Meyer
et al. 2014). The problem of finding the hand model parameters that move the
effector positions to their corresponding targets is solved using inverse kinematics.
The details of this process are described in the following.

3.2.2 Inverse kinematics

We denote the effector positions by a stacked vector x = (x1, . . . ,xk)T and the target
positions by t = (t1, . . . , tk)T . As stated in Section 3.2.1, the effector positions can
be expressed as functions of the parameters xi = xi(θ) or x = x(θ). The IK problem,
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t = x(θ), can then be solved by iteratively finding a parameter update ∆θ from the
previous frame θ that minimizes the objective function:

EIK (∆θ) = 1
2‖x(θ + ∆θ)− t‖2 + 1

2‖D∆θ‖2 (3.4)

The first term models the least squares error between the effectors xi and their target
positions ti. The second term regularizes the problem by damping the parameter
update ∆θ with a diagonal matrix D of damping weights λ1, . . . , λ26. In our system
we use no damping (λi = 0) for the six pose parameters and only a small amount of
damping (λi = 1.0) for the 20 posture parameters.

We minimize (3.4) using a Gauss-Newton approach, each iteration of which involves
solving the linear system (

JTJ + D
)
δθ = JTe, (3.5)

where e = t− x is the current target-effector error and J is the (3k × 26) Jacobian
matrix of the effector positions

J = ∂x
∂θ

=
(
∂xi
∂θj

)
i,j

. (3.6)

The entries of the Jacobian J are computed as described in (Buss 2004). For a rota-
tional joint with position kj , rotation axis aj and joint angle θj , the Jacobian entry for
an effector position xi that is affected by the joint is given by

∂xi
∂θj

= aj × (xi − kj) . (3.7)

For a translational joint with translation axis aj and translation distance θj , the
Jacobian entry for an effector position xi that is affected by the joint is given
by

∂xi
∂θj

= aj . (3.8)

For effectors i that are not influenced by joint j the corresponding Jacobian entry is
zero.

Solving the system (3.5) yields the update direction δθ, whose step size typically is
determined by a line search. We start with δθ and successively halve it (δθ ← 1

2δθ)
until the error eventually decreases, i.e., EIK (∆θ + δθ) < EIK (∆θ). Only then the
update ∆θ ← ∆θ + δθ is accepted. This process is iterated until the Gauss-Newton
minimization converges, which typically requires 5–10 iterations. As a starting value
for ∆θ we simply use the update from the previous frame, i.e., we use a linear
prediction as initial guess.

While our technique is very similar to the popular damped least squares method
described in (Buss 2004), it differs in two important aspects: The selective damping
(cf. Buss and Kim 2004) by D (instead of λI) increases responsiveness and per-
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formance of the system, and the step size control for δθ improves robustness by
preventing oscillations. Without this step size control, a much higher damping is
required to keep the tracking stable, which however leads to a significantly higher
“laggyness”.

In order to prevent the IK optimization from generating physically impossible hand
postures, we constrain the posture parameters to plausible value ranges by adapting
the joint limit avoidance of Chan and Dubey (Chan and Dubey 1995) to our setup.
A posture parameter θi is slowed down by increasing its damping parameter λi in
the matrix D as soon as it reaches its lower or upper joint limit θi,min or θi,max,
respectively. To this end a joint limit function Hi is defined as

Hi(θi) = (θi,max − θi,min)2

(θi,max − θi) (θi − θi,min) ,

and the damping parameter λi is scaled by (1 + |∂Hi/∂θi|) iff θi is moving towards
its limits. The latter criteria is characterized by an increase of |∂Hi/∂θi| from the
previous frame to the current, i.e., if ∆ |∂Hi/∂θi| ≥ 0. If the parameter is moving
away from its limit (∆ |∂Hi/∂θi| < 0), its movement is unrestricted. This simple
method causes parameters that move close towards their limits to slow down and
to virtually stop when the joint limit is nearly reached. We obtain the joint limits
θi,min and θi,max by extracting the minimum and maximum values from a database
containing real human hand postures (Schröder et al. 2014).

The result of the inverse kinematics process is an update to the kinematic parameter
vector θ that moves the effector positions on the model to the marker target positions
in the input data. Given a full marker set that specifies the articulation of every joint
this produces accurate reconstructions of the input motion. However, when using
reduced marker sets the input data is sparse and the motions of joints that are not
constrained by marker positions cannot be recovered. For this reason, a subspace
prior that captures the correlations of joint movements is employed in the inverse
kinematics scheme.

3.2.3 Subspace prior

In order to obtain a suitable training data set for a subspace representation of hand
articulations, we captured various human hand motions using a full set of markers
(see Figure 3.3) and computed the joint angles of our hand model from the marker
positions with inverse kinematics. The global pose information was removed from
the data, since they have no influence on the correlations in hand articulation we
want to exploit. The recorded hand motions include various manual interaction
tasks, such as different grasping and twisting motions, sign language, and general
hand movements exploring the hand’s natural degrees of freedom. This gave us
a varied set of hand postures that covered many aspects of natural hand articula-
tion.
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The final data matrix Θ of m entries of the 20-dimensional posture data was pre-
processed to have zero mean before PCA was performed on it. This resulted in a
20 × 20 matrix V of eigenvectors and the set of 20 eigenvalues λ = (λ1, . . . , λ20).
Taking the eigenvectors in V corresponding to the l largest eigenvalues yields a 20× l
matrix of principal components, P. Since the data used for PCA only contains the 20
joint angles and not the additional 6 pose DoFs, we construct the conversion matrix
M that maps from the reduced (6 + l)-dimensional principal component-space (PC-
space) to the (6 + 20)-dimensional parameter space:

M =
(

I 0
0 P

)
, (3.9)

where I is a 6 × 6 identity matrix, requiring the global pose parameters to be the
first 6 in the parameter vector. The full parameter vector θ ∈ R6+20 can be converted
to the reduced parameter vector in PC-space, α ∈ R6+l, by the mapping (and vice
versa by its inverse)

α = MT (θ − µ), and θ = Mα + µ. (3.10)

Here, µ ∈ R26 is the mean of the data matrix Θ with six leading zero-entries for the
pose DoFs. This allows the PC-space parameters to be expressed as a function of the
kinematic parameters, α = α(θ), and vice versa, θ = θ(α). In order to perform the
inverse kinematics hand posture estimation using the reduced PC-space parameters,
the parameter update rule must be adapted.

Given the above mapping, the forward kinematics of an effector point xi can be
written as a function of the PC-space parameters α = (α1, . . . , αl)T : xi = xi(α) =
xi(θ(α)). According to the chain rule, the 3k × l Jacobian matrix JPC of the effector
positions w.r.t. the PC-parameters α is:

JPC = ∂x
∂α

= ∂x
∂θ
· ∂θ

∂α
= J ·M, (3.11)

where J is the Jacobian matrix defined in (3.6). The joint limit avoidance based on
selective damping can be applied to the PC-parameters in exactly the same way if
upper and lower limits αi,min and αi,max for the PC-space parameters αi are available.
We determine these parameter limits by iterating through all postures in the training
data set, projecting them into PC-space, and storing the minimum and maximum val-
ues along all PC-axes. The PC-space parameter update ∆α is obtained by replacing J
by JPC and D by an analogous (6+l)×(6+l) damping matrix in (3.5). The number of
subspace dimensions l determines the amount of variance in the input data covered
by the subspace and can be seen as a control variable for the eventual number of
markers k employed in a reduced marker layout. In (Schröder et al. 2013, 2014) and
in Chapter 5 we show that in order to represent 90% of given hand movements, 3–6
subspace dimensions are sufficient (see Section 5.5). The subspace solution naturally
constrains the reconstructed hand postures to linear combinations of the principal
components of the posture database and allows joints to move in correlation to
others even when they are not constrained by markers.
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Subspace IK Standard IK

Figure 3.6: Full and reduced marker sets and reconstructed hand postures with stan-
dard inverse kinematics optimizing for all joint angles and subspace in-
verse kinematics optimizing for reduced subspace parameters. While the
standard approach cannot articulate the markerless fingers, the subspace
approach captures the correlations between fingers and articulates them
using the reduced marker set.

However, as there can be variations between the movements contained in the
database and the ones observed in the mocap data, we only use this subspace esti-
mate as an initialization for a subsequent refinement of the full posture parameters.
By removing the subspace constraints after the initialization of the subspace pa-
rameters α and refining the estimate by solving the IK problem again for the full
parameter vector θ, the joints with markers are allowed to move more closely to
the observed marker positions. This layered IK scheme makes it possible to obtain
hand motion reconstructions that are both realistic, due to the subspace prior, and
accurate, due to the full kinematic refinement. Figure 3.6 shows a comparison of
standard IK with the subspace approach we employ.

3.3 Reduced marker layouts

Subspace-constrained inverse kinematics makes it possible to fully articulate a hand
model based on a sparse set of marker points. However, the choice of marker place-
ment is not arbitrary, and to find the optimal marker layout necessitates a method
that can assess the quality of a given layout in relation to others. In the following, we
discuss the general considerations taken into account and the specific quality metrics
employed in our marker layout optimization.

Given a ground truth trajectory of hand motions from a database, the most straight-
forward way to evaluate the quality of a given marker set is to compare the ground
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Figure 3.7: Visualization of the reconstruction error of a reduced marker layout for
grasping motions. In the analyzed motion data, all fingers bend forward
simultaneously and the reduced layout only specifies markers on three
out of the five fingers. Using standard IK this causes a large error in the
markerless fingers, but using subspace IK the movement of these fingers
is correlated to the outer markers, which lowers the error.

truth trajectory with one reconstructed using a reduced marker set. The specific
metric we consider here is the positional reconstruction error, which measures the
deviation of the reconstructed trajectories of the model vertices V from the ground
truth trajectories. While this is an intuitive measurement for the deviations in the
results of the motion reconstruction (see e.g. Figure 3.7), it is not convenient as a
metric for choosing an optimal marker layout. Its computation is prohibitively inef-
ficient and it does not generalize beyond the specific input trajectory. Instead, we
use metrics that effectively incorporate the IK problem setup, the subspace DoFs and
generic geometric considerations.

A reduced marker set must be configured in such a way that the subspace IK can
produce the most accurate results. Additionally, the layout must be designed such
that is well suited for practical use, which means that it should be unobtrusive, easy
to apply and should obviate occlusions and self-contact. In the following, we break
these requirements down into two categories, numerical stability and geometric
feasibility.

3.3.1 Numerical stability

Our IK hand motion reconstruction is based on solving the linear system (3.5). The
numerical stability of the IK problem is measured by the invertibility of the left
hand side matrix JTJ + D, the key component of which is the Jacobian J (or JPC),
which is the derivative of the marker positions with respect to the kinematic (or
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3.3 Reduced marker layouts

subspace) parameters. Different marker layouts define different Jacobians, each
marker defines three rows in the Jacobian matrix. Therefore we denote the Jacobian
matrix produced by a specific marker layoutM as JM. Each kinematic (or subspace)
DoF corresponds to a column in the Jacobian. As we are only interested in the
minimal layout necessary for accurate posture estimation (joint angles), we omit the
three columns in the Jacobian that correspond to translational DoFs, which means
that JMTJM is a 23× 23 matrix for the full parameter space and a (3 + l)× (3 + l)
matrix for the reduced parameter space.

A criterion for the invertibility of a matrix is its condition number, which is low
when the problem is well-conditioned and high when it is ill-conditioned. As we are
interested in the most numerically stable marker layout, we omit the damping matrix
D, which is not impacted by the markers, and only regard the condition number of
the matrix JMTJM. We compute the condition number of the matrix JMTJM using
its singular values as

κ
(
JMTJM

)
=

∣∣∣∣∣∣
σmax

(
JMTJM

)
σmin

(
JMTJM

)
∣∣∣∣∣∣ , (3.12)

where σmax(A) and σmin(A) denote the maximum and minumum singular values of
matrix A, respectively.

Optimizing the marker layout M for the condition number κ
(
JMTJM

)
produces

marker layouts whose IK solutions are numerically stable by covering the kinematic
DoFs of the hand. Taking into account the subspace prior in the IK system by using
the subspace Jacobian (3.11), the marker positions tend to positions that optimally
cover the subspace DoFs. Figure 3.8 illustrates this concept. Note that the num-
ber of markers needed to specify the IK problem is determined by the number of
DoFs representing the posture. The full posture space therefore cannot be used
to produce sparse marker sets (less than 8 markers), since the IK problem would
be underspecified. Employing a subspace representation facilitates reduced marker
sets.

3.3.2 Geometric feasibility

Optimizing only for the condition number of the system matrix produces numerically
stable and kinematically meaningful marker layouts, however they can be unsuitable
for practical use by placing markers at positions that are obstructive for the mocap
performer or are sensitive to occlusions and self-contact. Therefore, we consider
geometric feasibility in addition to numerical stability in order to produce well-
conditioned marker layouts that are also good in practice. We do this in part by
limiting the areas where markers can be placed. While this could be done by manually
predefining allowed regions, this would cause the need for user intervention. Instead,
we define some generic properties that the model vertices should exhibit to select
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Figure 3.8: Marker layouts of different sizes for a precision grasp movement involv-
ing the index finger and thumb. The rightmost layout with 13 markers
was computed using the full Jacobian J for the condition number metric,
whereas the others were computed using the reduced Jacobian JPC.

feasible ones automatically. Additionally, we need to model geometric properties
that cannot be accounted for by preselecting vertices, as they change during hand
motions (e.g. self-contact).

The first set of geometric feasibility properties is the potential areas for positioning
the markers on the surface of the hand model. As the hand naturally bends inwards
and can come in contact with objects in the front, markers should generally not be
placed on the front side, but rather on the back. Similarly, the markers should be pre-
vented from touching the other fingers during motion and therefore markers should
not be placed towards the sides of the fingers. We therefore define feasible regions
on the surface of the hand model based on the vertex normals. Only vertex positions
pi ∈ V whose normals ni satisfy the the condition ni · h > 0.9, where h is the hand
model’s back-facing vector, are eligible as marker positions.

The second set of geometric feasibility properties taken into account is marker move-
ment. In practice, markers placed near the joint pivot can move non-rigidly along
with the joint rotation due to stretching and sliding of the skin. To prevent this, we
identify regions on the skinned mesh that move rigidly relative to joints by consider-
ing the hand model vertices’ convex skinning weights and only using vertices with
weight 1 for one joint. Another movement-related issue is when markers can come
in contact with each other during motions, which is especially important even with
reduced marker layouts when using large markers. To prevent marker contact from
occurring, we maximize the minimum distance between markers across multiple
keyframes in the input trajectory. For a single frame, the minimum distance between
two markers in a marker setM is

δ(M) = min
a∈M

{
min

b∈M\{a}

{
‖a − b‖2

}}
. (3.13)
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Maximizing this metric over all frames causes markers to spatially disperse as far
from each other as possible, particularly when finger movements cause otherwise
spatially distant markers to approach each other more closely.

The combination of these criteria serve as a geometric regularization to the kinematic
constraints imposed on the marker set. As a result, the markers are placed in geomet-
rically feasible hand regions during the optimization. The layouts shown in Figure 3.8
combine the numerical and geometric criteria. In the following, the combination of
the discussed metrics and their respective influences are discussed.

3.4 Layout optimization

We now combine the quality measures for reduced marker layouts in an energy min-
imization scheme, in which the marker setM that minimizes an objective function
E(M) is found using stochastic optimization. To this end, we employ a specialized
surface-constrained particle swarm optimization (PSO) scheme, which confines the
solution domain to the vertices V of an animated hand model. In addition to the
vertices, the input to this optimization includes the vertex normals and skinning
weights, as well as a training set of example hand motions. The marker set quality
properties are evaluated on the model’s vertex positions. A distinction can be made
between static properties, which are invariant to hand motion and relative marker
placements, and dynamic properties, which vary with different motions and marker
layouts.

Static aspects of marker layout quality are those that prevent negative effects of
skin sliding, by penalizing the vertices’ skinning weights, and obstructiveness, by
penalizing the vertices’ normal angles. These properties can be incorporated by pre-
selecting only vertices that satisfy them. This yields a set of preselected vertices
V ′ ⊂ V on the hand model surface that are eligible as potential marker positions.
Ultimately, the optimized marker layout will be a subset M ⊂ V ′ of this preselec-
tion.

In contrast, dynamic aspects of marker layout quality cannot be evaluated as isolated
vertex properties, as they vary with changes in hand articulation and placement
of the remaining markers within the layout. These include the numerical stability
measured by the condition number of the IK system matrix JMTJM and the mini-
mum marker distance. To account for these changes with respect to different hand
articulations, we evaluate and accumulate these metrics over a set of F representa-
tive keyframes of a given input hand motion trajectory, which can be automatically
computed using farthest point optimization (Schlömer et al. 2011) in the hand
posture domain. These dynamic properties of marker set M are modeled in the
objective function E(M), whose definition and optimization are discussed in the
following.
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3 Marker-based motion capture

3.4.1 Objective function

The objective function that is minimized in the marker layout optimization is a
weighted combination of energy terms with respect to marker setM

E(M) = w1 · Econd(M) + w2 · Edist(M) , (3.14)

where Econd(M) penalizes the condition number of the IK system matrix induced by
the marker layout Jacobian, and Edist(M) penalizes the minimum distance between
any two marker positions in the layout. Both of these terms are evaluated over a set of
F frames in a hand motion trajectory that are representative of the movements that
should be captured in the reduced marker set. We denote the marker configuration
of layoutM in frame f asM(f).

Based on (3.12), the energy term penalizing the condition numbers of the induced
system matrices is defined as

Econd(M) = 1
F

F∑
f=1

κ
(
J(f)

TJ(f)
)
, (3.15)

where J(f) denotes the Jacobian of marker configurationM(f). This term minimizes
the average condition number across all F frames. Since the considered marker
layout is a subset of the preselected verticesM⊂ V ′, we can precompute the vertex
Jacobian JV ′ for all F frames and construct the respective marker Jacobians by
selecting the corresponding rows in this matrix.

Based on (3.13), the energy term penalizing the minimum distance between two
marker positions across all keyframes is defined as

Edist(M) = − 1
L

min
f∈[F ]

{
δ
(
M(f)

)}
, (3.16)

where [F ] = {1, . . . , F} and L is the length of the hand model, making the term scale
invariant. As we want to maximize the minimum distance between two markers, this
term aims to minimize the negative of the overall minimum distance over all F
frames.

Combining these two energy terms integrates the desired numerical stability and ge-
ometric feasibility properties of the marker layout in a single objective function. The
results of minimizing the two energy terms and their weighted sum is illustrated in
Figure 3.9. In this particular example, the condition energy places two markers close
to each other, because the linear system for the subspace parameters is overspeci-
fied by the number of markers, which means that close-by markers do not corrupt
the matrix conditioning. Combining the two energies improves the resulting layout.
We use weights w1 = 0.1 and w2 = 100 in our experiments. In the following, the
optimization of the objective function (3.14) is detailed.
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Econd Edist +w1Econd w2Edist

Figure 3.9: Example layouts with 10 markers for the objective function terms. The
input data is a precision grasp, where mostly the index finger and thumb
are in motion. Left: when optimizing only for the numerical stability term
Econd markers can be placed in close proximity, which is geometrically
impractical. Center: optimizing for the geometric distance term Edist
results in spatially distant markers, but the layout does not capture the
analyzed hand articulations. Right: a weighted combination of the two
terms results in a layout that is both numerically stable and geometrically
feasible.

3.4.2 Marker PSO

We find reduced marker layouts by minimizing the objective function (3.14) us-
ing particle swarm optimization (PSO, Kennedy and Eberhart 1995, 2001). PSO
is a stochastic metaheuristic for finding global optima of arbitrary objective func-
tions without the need for prior knowledge or assumptions about the optimized
problem. The method has recently found widespread application and success in
the context of visual hand tracking (Oikonomidis et al. 2011a, Qian et al. 2014,
Sharp et al. 2015). Our use of PSO for marker placement aims to overcome the
issues of suboptimal local minima often associated with non-global or greedy ap-
proaches.

In the PSO method, an optimal solution to a given problem is found by iteratively
updating and evaluating candidate solutions, or solution hypotheses. A large set of
such hypotheses is managed as a swarm or population of particles, each of which
has an associated position xt and velocity vt in the solution domain of the objective
function at iteration t. Each particle keeps track of its local previous best position
x̄par in the solution domain and the population keeps track of the global optimum
x̄pop across all particles. In each iteration of the PSO process, the velocity of every
particle is updated such that the particle is attracted to the local and global op-
tima in addition to moving along its own inertia. The local and global optima are
updated after each particle movement by evaluating the objective function at the
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Figure 3.10: Illustration of a PSO update for one marker position. First, the new ve-
locity ṽt+1 of the marker is computed as a weighted linear combination
of the vectors towards the particle’s local optimum x̄par − xt, the pop-
ulation’s global optimum x̄pop − xt and the particle’s current velocity
vector vt. This update can send the marker off the surface of the hand
model due to the curvature of the model surface. Therefore, in a second
step, the new position xt+1 is computed by projecting back onto the
surface. The velocity vt+1 is then recomputed accordingly.

new particle position. Finally, the solution of the PSO process is the global optimum
achieved after a given number of iterations or after convergence of the optimum
value.

In our application, the solution domain of the objective function is the domain of
marker layoutsM. To map this to the PSO scheme, we define a particle at iteration
t as the stacked vector of k marker positions xt ∈ R3k of the candidate solution.
We further modify the generic PSO scheme such that the 3D positions within each
particle are constrained to the surface of the hand model. Specifically, after every
particle update we project each marker position in xt onto its spatially closest vertex
in the set V ′ of preselected feasible positions on the hand model. The new position
xt+1 of a particle is determined by computing its new velocity vt+1 and translating
along this vector. To this end, we first compute the standard PSO velocity update
as

ṽt+1 = w · (vt + c1 · r1 · (x̄par − xt) + c2 · r2 · (x̄pop − xt)), (3.17)

where w is a weight determining the overall step length of the update, c1 and c2
are importance weights for the local and global attractors respectively, and r1 and
r2 are uniformly distributed random numbers in [0, 1]. Due to the curvature of the
hand model surface, applying this linear update to the current particle position
can cause the markers to stray from the surface. To counteract this, we project the
updated marker positions back onto the permissible regions defined by vertices V ′,
which we denote by a projection operator ΠV ′ . The final particle position update is
therefore

xt+1 = ΠV ′(xt + ṽt+1) . (3.18)

After this, the new particle velocity is computed as vt+1 = xt+1 − xt. Figure 3.10
illustrates the surface-constrained PSO update.

Similar to Oikonomidis et al. (2011a), we perturb one randomly chosen marker
position in 50% of the particles once in every third iteration, and use the weights
c1 = 2.8, c2 = 1.3 and w = 2/|2 − ψ −

√
ψ2 − 4ψ| with ψ = c1 + c2. We use a total
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Figure 3.11: Example for the energy minimization convergence of our PSO method
compared to a greedy approach with identical initialization. While the
greedy approach converges to a suboptimal local minimum after about
50 iterations, our stochastic optimization minimizes the energy faster
and achieves a better result.

of 1000 particles, perform 100 PSO iterations and use between 3 and 10 keyframes
depending on the input hand motion trajectory. Using this method, we can find
reduced marker layouts that optimize the objective function (3.14) and as a result
are numerically stable and geometrically feasible.

3.5 Results

We evaluated the convergence properties of our marker PSO scheme and the motion
reconstruction accuracy of the marker layouts generated using our method in a
varied set of evaluation trials. The hand movements involved in these trials included a
variety of grasping and other manual interaction movements, as well as generic finger
movements and gestures. In the performed trials, we measured runtime statistics
and average per-vertex errors of the reconstructed hand motions compared to the
ground truth input. For proper evaluation of the accuracy of our approach, the input
motions being reconstructed were not contained in the database used to generate
the subspace model. As our reduced marker sets are optimized to represent only
rotational DoFs of the hand articulation, an initial estimate for the global position of
the hand is given by a fixed anchor marker on the forearm.
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[Wheatland et al. 2013] [ours]
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Figure 3.12: Six marker layout generation for precision grasp movements using the
method of Wheatland et al. (2013) and our approach. In (a) the com-
plete set of preselected vertices V ′ is used as the base marker set, which
causes the selected markers to cluster at the index fingertip, as it ex-
hibits the most movement. In (b) a random subset with 5% of V ′ is used
as the base marker set, which leaves 3 candidate positions per joint. In
this case the markers cluster around the index and thumb tips. In (c)
1% of V ′ is used, which leaves one candidate position per joint. The
resulting marker set is distributed among the most active joints in the
input motion. In (d) our approach generates a marker layout from the
complete set V ′ based on the DoFs of our subspace model.

The convergence properties of our PSO-based marker layout optimization were eval-
uated by comparing it to a more straightforward greedy approach. For this, we
adapted the farthest point optimization scheme of Schlömer et al. (2011) to find the
marker subset of the initial vertex set V ′ that minimizes the objective function (3.14).
Briefly stated, this method first iteratively selects the next best vertex as a marker po-
sition that reduces the objective value until the desired number of markers has been
placed. Then, this greedy process is repeated such that each selected marker position
is replaced by the next better remaining vertex position, until no more substitutions
can be done to improve the objective value. This is already a more sophisticated ap-
proach than the greedy methods for constraint selection used in (Loper et al. 2014,
Thiery et al. 2012) and can therefore serve as an upper bound for the effectiveness
of such methods. Figure 3.11 compares this greedy approach with our PSO-based
one with identical initialization and shows that our method converges faster and
achieves better objective values. The runtime for our PSO method varies between
5 and 10 seconds for 100 iterations, depending on the number of keyframes (up to
10). For the same problem setup, the greedy approach takes between 45 seconds and
3 minutes to converge.

A comparison of our marker layout optimization method with the marker subset
selection approach of Wheatland et al. (2013) is shown in Figure 3.12. A crucial
aspect to note regarding this comparison is that the two methods are based on dif-
ferent marker layout generation paradigms. While Wheatland et al. (2013) select
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Figure 3.13: Average reconstruction error using marker sets of varying sizes for
grasping motions. Using marker layouts specifically generated based
on grasping input motions the reconstruction error is lower than when
using a layout based on generic motions. The manually selected marker
layouts of Hoyet et al. (2012) produce similar results as our automati-
cally generated generic layouts.

the most influential markers in an initial base marker set, our method generates
marker layouts more freely within the dense set of preselected vertices V ′ (see Sec-
tion 3.4). Figure 3.12 shows that the results of the subset selection method are
strongly influenced by the choice of the base marker layout. As the method of Wheat-
land et al. (2013) is based on computing an importance ranking for the base mark-
ers based on their positional trajectories, the selected marker layouts are clustered
around the areas of the hand that move the most in the considered hand motion.
In contrast, our method is sensitive to the hand kinematics and the subspace model
employed in our approach, which produces layouts that are well-suited for subspace-
constrained IK, as opposed to the data-driven regression approach of Wheatland
et al. (2013).

To assess the suitability of the marker layouts generated by our method for motion
reconstruction, we compare the reconstruction error of differently obtained marker
layouts in Figure 3.13. The testbed of this evaluation is a set of grasping motions
based on the grasp taxonomy of Cutkosky (1989). We generated two different types
of marker sets with varying sizes – a specific type based on grasping input motions,
and a generic type based on general gestures and hand articulations. Additionally, we
compare with the manually selected marker layouts of (Hoyet et al. 2012, Figures 4
and 8), who also performed motion reconstruction based on constrained IK. These

33



3 Marker-based motion capture

Method Average error Maximum error
Subspace IK 0.89 cm 2.1 cm
Standard IK 1.79 cm 7.9 cm

Table 3.1: Average and maximum reconstruction error using subspace-constrained IK
and standard IK with a 4 marker layout generated for a variety of manual
interaction motions. While the standard method can deviate by almost
8 cm, the subspace method achieves adequate results consistently.

manually selected layouts produce similar results as our automatically generated
generic layouts. The reconstruction error is lower when using the grasp-specific
marker layouts than generic ones. In particular, to achieve a reconstruction error
below 2 mm, a specific layout generated by our method only requires 6 markers,
whereas generic layouts require 9 markers or more. Examples for our generated
layouts are given in Figure 3.14.

We verified the accuracy and generalization capability of the subspace-constrained
IK motion reconstruction based on marker layouts produced by our method by com-
paring its average reconstruction error to the error when using standard IK. Table 3.1
shows the average and maximum errors for a variety of manual interaction motions
using standard IK and subspace IK and the 4 marker layout shown in Figure 3.7. The
improvement of the subspace method over the standard method ranges between 9
mm to almost 6 cm. The overall error produced by our layered IK scheme using the
subspace prior for initialization produces more accurate results for sparse marker
layouts than the standard IK approach.

Figure 3.14 shows some examples for reduced marker layouts computed by our
approach for various different movements. The results show that markers are pref-
erentially placed in areas that have the most involvement in the considered hand
motion. If the motions contain more varied articulations for specific fingers over
others, these fingers will receive more markers, as the low-frequency details of the
remaining markers are not influenced by as many subspace DoFs. In the third row
of Figure 3.14, the input motion involves all fingers and the reduced marker layout
accordingly distributes markers across all of them.

3.6 Discussion

We have presented a method that automatically computes reduced marker layouts
for optical motion capture using subspace-constrained inverse kinematics motion
reconstruction. Our marker layout optimization method minimizes an objective func-
tion that jointly measures the numerical stability and geometric feasibility of the
reduced marker configuration. The objective function is minimized using a special-
ized surface-constrained particle swarm optimization scheme, which stochastically
explores the solution space of feasible marker configurations on the surface of an
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Figure 3.14: Reduced marker layouts for some example motions. First row: precision
grasp motion involving multiple fingers. Second row: power grasp mo-
tion of a small object. Third row: sequence in which the thumb touches
all the other fingers. The marker layouts are optimized to allow for
accurate reconstruction of the input motion. Markerless fingers tend
to have slightly larger reconstruction errors, however they still move
in correlation to the marker-constrained fingers due to the subspace
approach.

animated hand model. We showed that the resulting marker layouts are suitable for
solving the subspace-constrained inverse kinematics problem for motion reconstruc-
tion from sparse input. Additionally, the optimized marker layouts are specific to the
type of hand motions that should be expressed with and recovered from the sparse
marker data. The marker sets are well-suited for practical use as they are intuitive
and scale well with reduced resolution of the mocap system.

Our method makes it possible to generate marker layouts that are fine-tuned to the
parameters of a given mocap setup. If there is a limitation to the number of markers
that can be used in the mocap setup, our method computes the optimal placements
for the given number of markers that allows for realistic motion reconstruction that
is also rich in expressiveness. An insight provided by our work is that it is sufficient
for high quality motion reconstruction to place individual markers on the hand
that correspond to low-dimensional control parameters of hand articulations. For
instance, to track grasping motions with high quality using our method, it is sufficient
to only place one marker on the thumb, index finger, pinky finger and wrist. The
subspace based reconstruction will plausibly interpolate the movements of joints that
are not immediately constrained by markers.

Limitations of our approach include the stochastic nature of the particle swarm opti-
mization and the need for parameter tweaking. Another drawback of our subspace-
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3 Marker-based motion capture

oriented method is that while it produces good results for specific hand movements,
it does not necessarily provide a general-purpose marker layout result that can be
used for all types of motions and produce high-quality results. The marker place-
ment as well as the motion reconstruction are limited by the subspace priors em-
ployed. However, given prior knowledge of the motions intended to be tracked,
our method produces accurate and robust results. It is conceivable that our marker
placement optimization approach can be transferred to other mocap applications,
such as facial or full body performance capture. Beyond marker placement, our
approach could be used generally to identify salient regions in articulated bodies,
which could be of interest for different avenues of motion detection and reconstruc-
tion.
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Chapter 4

Data-driven visual tracking

Despite the effectiveness of commercial tracking solutions like optical motion capture
systems, their drawbacks can outweigh their advantages in many cases. They usually
require an elaborate setup in especially constructed motion capture locations, their
usage is complex and their cost prohibits widespread consumer-level deployment.
In contrast, the recent proliferation of consumer-grade commodity depth sensors,
pioneered by the Microsoft Kinect, has opened an alternative avenue for affordable
tracking solutions. These sensors non-invasively capture both color images and depth
maps in real-time and consequently alleviate common problems of visual motion
tracking, like occlusions and depth ambiguities. However, because the data obtained
from these low-cost sensors can exhibit various artifacts, visual tracking techniques
must implement mechanisms to cope with these effects. One such mechanism is to
use data-driven approaches, which facilitate robust visual tracking by utilizing prior
knowledge from a ground truth database.

In this chapter, a data-driven, appearance-based method for visual hand tracking
using a color glove is explored. This approach is based on detecting a color glove
worn by the user in the sensor input data and using a nearest neighbor search in an
image database to retrieve the closest matching image and corresponding hand pos-
ture and coarse rotation. Our approach, following that of Wang and Popović (2009),
is a low cost real-time system that can provide accurate hand posture and position
estimation. A simplification of their algorithm along with the addition of a Microsoft
Kinect camera distinguishes both approaches. The database used to perform the data-
driven hand posture estimation was built by capturing a variety of hand movements
using an optical motion capture system (see Chapter 3).

The particular goal in our work (Schröder et al. 2012) was to create a low-cost real-
time hand tracking and pose estimation system to control anthropomorphic robotic
hands (Shadow Robot Company). The system we developed in this work allows for the
fast generation of real hand posture data that can be used in, for example, teaching
by demonstration scenarios or in the direct control of anthropomorphic robotic hands.
Whereas the approach of Wang and Popović (2009) was concerned with producing
accurate hand postures, our primary focus is on accurately estimating the pose
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4 Data-driven visual tracking

Figure 4.1: The color glove is used to facilitate hand posture estimation. The result-
ing posture and pose are used to control an anthropomorphic robot hand
in real-time.

(position and orientation) of the hand. In order to perform robot actuation in tasks
such as grasping, controlling the pose of the hand takes on greater importance than
having an accurate posture, especially when using, as we are, compliant robot hands.
The Kinect camera provides a 3D point cloud along with color information, which we
use to initially place the hand and then optimize this position using a color-sensitive
iterative closest point-to-triangle (ICP-T) algorithm.

4.1 Related work

There are many applications for hand tracking in the field of robotics and manual
interaction research, and the most commonly utilized methods for tracking are based
on commercial solutions like marker-based optical mocap systems or data gloves
(Maycock et al. 2011). Optical tracking systems that employ markers have been used
to capture highly accurate kinematic movement data of the hand (Maycock et al.
2011, Lee and Tsai 2009), but these approaches can suffer from occlusions of one or
more markers, which can occur especially when grasping and manipulating objects,
and have the disadvantage that usually an expensive and large optical system is
required. An alternative is to use data gloves that measure joint angles directly and
this method was extensively used to control robot hands in the past (Fischer et al.
1998, Griffin et al. 2000, Turner 2001). However, data gloves with embedded sensors
can be quite bulky to wear and thus impede natural movements. Furthermore, they
generally do not provide position and orientation information, and the mapping of
raw sensor values to joint angles requires non-trivial calibration procedures (Steffen
et al. 2011).
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4.2 Color glove hand tracking

The difficult problem of visual bare-hand tracking has been extensively examined
but often deemed too computationally complex for real-time applications (Sudderth
et al. 2004, de La Gorce et al. 2008, Hamer et al. 2009). It was not until significant
advances in hardware have made the problem possible to handle (Oikonomidis et al.
2011a). As a compromise between approaches based on markers or data gloves and
bare-hand tracking approaches, Wang and Popović (2009) devised a method for real-
time hand tracking and posture estimation using a color glove. A camera captures
images of the glove and after segmentation and normalization the closest matching
image in a large database, along with its unique posture, is found. A database of
synthetically generated images is used for directly matching the detected features
instead of performing a complex search in the hand configuration space. This data-
driven approach simplifies the hand tracking problem considerably and is able to
provide good posture and orientation information. Use of a color glove improves
detection, feature extraction and speed over approaches that use bare hands. In
(Wang et al. 2011) the authors adapted their method to facilitate markerless 6D
hand pose estimation using a dual camera setup in a CAD application scenario. To
cope with the drawbacks of using only images of bare hand silhouettes instead
of color images, several restrictions to the user’s freedom of movement had to be
introduced in this work. While these restrictions were acceptable in a CAD context,
they are not in our case. We use the color glove-based work by Wang and Popović
(2009) as the foundation of our hand tracking approach, however we have made a
number of simplifications to their algorithm and have introduced a Kinect camera in
order to be able to much more precisely control the absolute position and orientation
of the hand in 3D space. This is crucial if robust control of anthropomorphic robot
hands is to be achieved.

The task of hand tracking for robot control was previously dealt with in (Do et al.
2009), where the authors employed a data-driven approach for grasp recognition
and hand pose estimation and mapped the estimation results to a humanoid robot.
In their method (Romero et al. 2010) features extracted from bare hand images are
matched in a synthetically generated database to obtain the posture and orienta-
tion of the hand. This represents a discriminative hand pose estimation approach,
whereas our approach combines discriminative and generative estimation by fitting
a virtual hand model to the Kinect point cloud after obtaining the initial posture
estimate from a database, making use of the glove’s unique color pattern in both
estimation steps.

4.2 Color glove hand tracking

The color glove was designed by Wang and Popović (2009) with a pattern of 20
patches in 10 distinguishable colors (see Figures 4.1 and 4.2). We make use of its
distinctive pattern to efficiently find the current image’s closest match in the database
and thus retrieve the hand posture and a coarse estimation of the rotation of the
hand. Aligning the color image with the depth values provided by the Kinect camera
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4 Data-driven visual tracking

Figure 4.2: The glove pattern on the left, the actual glove on the right (glove pattern
courtesy of Wang and Popović (2009)). Images from (Schröder 2011).

allows us to accurately estimate the global position and orientation of the hand.
Combining the posture (joint angles) and the pose (position and orientation) allows
us to control an anthropomorphic robot hand.

Our approach relies on a database populated with images of a virtual color glove
along with their associated posture and rotation information. The depth information
from the Kinect camera is currently only used to optimize the pose of the hand and
therefore is not contained in the database. The first step was to capture natural
realistic postures with a mocap system and then to map these onto a kinematic hand
model. As in Chapter 3, the model used has 20 joint angles, specifically 15 flexion
angles and 5 abduction angles for each of the finger bases and the wrist joint (May-
cock et al. 2011). This kinematic hand model matches the kinematics of the shadow
robot hand well and makes the task of mapping joint angles to the robot easier.
Ground truth data was captured using a Vicon motion tracking system (Maycock
et al. 2010) to track reflective markers placed on a human hand as it performed
various movements. After converting the raw positional Vicon data into joint angles,
we subsampled the postures using a low-dispersion sampling method (Wang and
Popović 2009) and constructed several task-specific posture databases (see Sec. 4.3),
varying the number and type of postures contained within them. The low-dispersion
sampling of the database postures produces a subset of the original database that
contains only hand postures that are maximally different from each other. This sam-
pling is implemented as an iterative greedy approach where in each iteration, the
next farthest data point in the hand posture data is selected.

Each database contains a number of posture entries. The joint angles for each pos-
ture were used to animate a virtual hand model textured with the glove’s color
pattern. The hand model was then rendered from multiple camera views and each
database posture entry was indexed by these different views. The camera positions
were produced by uniformly sampling a virtual sphere surrounding the hand model,
which was accomplished by performing a uniform subdivision of an icosahedron to
approximate the surrounding sphere and placing the cameras at its vertices. At each
position, the camera was rotated around the optical axis in several steps to encode
the rotation of the color glove in the image plane. We used 42 camera positions with
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4.2 Color glove hand tracking

18 rotations around the optical axis each, resulting in a total of 756 views per posture
in all of our databases. Finally, for each posture and view entry, a number of tiny
images of various sizes were created. Tiny images (Wang and Popović 2009) are sim-
ply normalized downscaled color-classified images of the color glove. We generated
several tiny image sets using image dimensions ranging from 8×8 pixels up to 64×64
pixels. These are used to improve efficiency when searching for the best match in
the database for the current camera image of the hand.

Figure 4.3 provides an overview of our system. The three main parts of the system
that produce as output a final hand posture and pose are introduced in the following
sections.

4.2.1 Color-labeled point cloud

The data obtained from the Kinect sensor is processed to create a 3D point cloud
containing the positional and color information of the detected glove. The camera
parameters of the Kinect’s color and depth cameras were obtained in a stereo calibra-
tion procedure and are used to perform an RGBD-mapping, which maps color values
to the pixel coordinates of the depth image D. After applying this mapping, the
color glove is detected in the mapped image M and using a lookup table-based color
segmentation procedure a color labeled image L is created. The color segmentation
is performed in the YUV color space to reduce sensitivity to changes in lighting. Each
of the glove’s ten unique colors are labeled with numbers 1 to 10 and colors that
do not belong to any known color class are labeled 0. Now we are in a position to
compute a color-labeled 3D point cloud

C =
{
(pij , Lij) | Lij 6= 0,pijz

∈ [zmin, zmax]
}
, (4.1)

where pij is the 3D position and Lij the color class label for every glove pixel (i, j).
To create C, we first ensure that only pixels in L that are not 0 are considered. The
(x, y, z) position is computed for these pixels and in order to minimize sensitivity
to color segmentation outliers only those whose z world coordinates reside in the
working volume [zmin, zmax] are kept.

4.2.2 Database lookup

The output from the previous step is a labeled point cloud C and from this we create
a new labeled image by masking C with the labeled image L from the RGB camera.
Using a bounding box, we extract the hand from C and from this we create a set
of tiny images (with dimensions ranging from 8 × 8 pixels up to 64 × 64 pixels).
We need to be able to quickly compute the similarity between a tiny image in the
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4.2 Color glove hand tracking

(a) Tiny image distance

(b) Chamfer maps

Figure 4.4: Tiny image metric illustrated using 64× 64 images. Figure 4.4(a) shows
the distance between a query image and a database image. The distance
is visualized by displaying the Hausdorff-like distance for each pixel.
Figure 4.4(b) shows four of the ten chamfer maps generated for a tiny
image. Images from (Schröder 2011).

database and one computed from the current camera image. To do this we use a
Hausdorff-like distance (Huttenlocher et al. 1993) defined as

m(A,B) = 1
|GA|

∑
a∈GA

min
b∈Ca

‖a− b‖, (4.2)

where A = {a1, ..., an} and B = {b1, ..., bn} are the two images, GA is the set of
glove pixel coordinates in image A, Ca is the set of pixel coordinates in image B
that have the same color as the pixel at a ∈ GA and ‖ · ‖ is the Euclidean norm.
We used chamfering (Barrow et al. 1977), in contrast to Wang and Popović (2009)
who employed similarity sensitive coding (Torralba et al. 2008), to approximate
Euclidean distance transforms for every color class in the images, allowing for an
efficient direct lookup-based calculation of the distance between two images. Fig-
ure 4.4 shows examples illustrating the the tiny image distance and the chamfer
maps approximating the per-pixel Euclidean distance transforms of the glove’s color
classes.

To take advantage of the varying speed and accuracy properties of differently sized
tiny images, we perform a multi-stage k nearest neighbor lookup for each sized tiny
image computed from the current camera image. The set T = {ti}i of tiny images
is used as input to the matching cascade database lookup step (see Fig. 4.5) and
is matched successively against all N database indices dji, j ∈ {1, . . . , N}. In the
figure only 3 different tiny image sizes are used, i.e., i ∈ {1, 2, 3}. Initially, smaller
tiny images, whose Hausdorff distance can be computed quickly, albeit yielding a
lower accuracy, are used to efficiently preselect nearest neighbor candidates. At each
iteration, larger tiny image matching, which is computationally more expensive but
results in higher accuracy, is performed to find the ki nearest neighbors in signifi-
cantly smaller sets of candidate images (in the figure k1 = 5, k2 = 3, k3 = 2). The
output is created from the database indices that remain after the last cascade step
(in the figure d23 and dN3). This results in a set {(θj ,Rj , Ej)}j , where θj and Rj
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Figure 4.5: The set T = {ti}i of tiny images is matched successively against all
N database indices dji, j ∈ {1 .. N}. The output is a 3-tuple set
{(θj ,Rj , Ej)}j , where θj , Rj and Ej are the estimated posture, rota-
tion and matching error, respectively.

are the posture and rotation associated with the database index dj , and Ej is the
corresponding matching error in the last cascade step. This set {(θj ,Rj , Ej)}j is then
interpolated, weighting the contributions of (θj ,Rj) pairs with their matching error
Ej to the tiny image computed from the current camera image.

4.2.3 6D pose estimation

The result of the database lookup is the 20-dimensional hand posture estimate, θ,
along with a coarse estimate of the orientation of the hand towards the camera, R̂.
We compute the final estimate of the hand’s 6D pose (rotation R and position p)
by aligning a virtual 3D model of the hand to the observed point cloud. For this
we perform a color-sensitive Iterative Closest Point-to-Triangle (ICP-T) computation,
where the relative rigid transformation between the point cloud C and the surface
of the virtual hand model H is computed and iteratively refined. By performing a
color-sensitive closest point search, the observed points are only matched to model
surface patches with corresponding colors. As a result, the color patterns in the
observation point cloud are matched to the same color patterns on the surface of
the virtual hand model during the ICP-T process. This ensures a plausible alignment
of the model to the sensor data even if the posture estimation from the previous
step does not fit perfectly, which cannot be accomplished when using only positional
information.

As a preparation for the alignment process, the coarse rotation estimate R̂′ is mapped
to the world coordinate frame and the center of gravity (COG) of C is computed.
This yields a coarse pose estimate (R̂, p̂). We represent this pose estimate as a 4× 4
transformation matrix T̂. The virtual hand model H is initialized by animating it
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according to the joint angles θ using linear blend skinning (Jacka et al. 2007) and
transforming it using T̂. In each iteration of the color-sensitive ICP-T, we iterate
over the points in C and for each point find the closest point on the surface of H of
corresponding color. H is textured with the color glove pattern, so the color class
label of each triangle in the model is known. To find the surface point closest to
(pij , Lij) ∈ C, we iterate through all triangles in H with the same color class Lij and
store the surface point pHij with the minimal point-to-triangle distance (Schneider
and Eberly 2002). We perform back-face culling beforehand to exclude triangles
directed away from the sensor camera. Based on the set of corresponding points
{(pHij ,pij)}i,j that results from the closest point search, we calculate the 4 × 4 rel-
ative transformation matrix Tk from H to C in ICP-T iteration k using a common
approach based on eigenvector analysis and quaternions (Horn 1987). The trans-
formation Tk is then applied to the virtual hand model H, moving it towards the
target point cloud C. After this, the alignment error is given by the mean of the
new point-to-triangle distances. The ICP-T process is repeated until the alignment
error converges. After convergence, the final hand pose estimate TH is given by
the product of the initial coarse transformation matrix and all K ICP-T iteration
matrices:

TH =
( 1∏
k=K

Tk

)
T̂ =

(
R p
0 1

)
. (4.3)

The output of our hand tracking system is the final hand posture and pose estimate
(θ,R,p). To reduce jitter, we smooth the posture and pose estimation by interpolat-
ing with estimations from the three previous frames, which still allows for responsive
tracking of dynamic movements.

4.3 Results

In this section we evaluate the performance of our system in three main test sce-
narios. First we consider the accuracy of the posture and pose, then the effect of
various different matching cascades on the database retrieval accuracy and the
runtime efficiency of the database lookup, and finally the system runtime speed
versus position error with various different subsampling factors for the ICP-T algo-
rithm.

We use four different databases in the following tests: two 2-posture databases,
DBopen+pinch and DBopen+power containing an open hand and a pinch and power
grasp, respectively, a 3-posture database, DBopen+pinch+power, containing all three
postures, and a database with 20 postures, DB20 postures, containing the previous
3 postures plus 17 random movement postures. Ground truth data was created by
capturing five different movement trajectories: two containing a pinch grasp, an open
hand and some movements (Tr1 and Tr2) and three containing a power grasp, an
open hand and some movements (Tr3, Tr4 and Tr5). These movements were tracked
by our system and their computed postures and poses became the ground truth for
the subsequent tests. Re-playing these movement trajectories allowed us to create
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DBopen+pinch+power 4.64 6.01 4.65 4.04 4.82
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Figure 4.6: Posture and pose estimation errors for various ground truth experiments.
Posture and rotation errors are given in deg, position errors are given in
mm. For all ground truth trajectories, only databases containing the re-
spective grasping postures were used. The trajectory of the errors labeled
with superscript * is shown in detail in Figure 4.7, the trajectory of the
errors labeled with superscript ** is shown in detail in Figure 4.8.

synthetic ground truth Kinect data (synthetic color and depth images), which was
then used as input for our hand tracking system. Gaussian noise, whose variance was
scaled with the gradient intensity image, was added to each synthetic depth frame in
order to simulate real data. We were then able to directly calculate the error between
the ground truth postures and poses and their estimation.

4.3.1 Posture and pose estimation

To evaluate the estimation quality of our system, we computed posture, rotation
and position errors for all ground truth trajectories using all databases. Figure 4.6
shows the average errors for all experiments. Databases were only used if they
contained the main grasp (pinch or power) performed in a particular movement
trajectory. In most cases, the errors are lowest when using the respective small
grasp-specific databases (DBopen+pinch or DBopen+power) and highest with a large
database containing several hand postures in addition to both grasping postures
(DB20 postures).

Figure 4.7 gives a detailed overview of the posture and pose errors for trajectory Tr4
using database DBopen+power. This combination resulted in a low average error in
all estimation parameters. The maxima that can be observed in the posture error
can be explained by a quick hand posture change in the ground truth trajectory
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Figure 4.7: Detailed overview of trajectory Tr4 using database DBopen+power. Several
keyframes of the trajectory are visualized in the bottom of the figure.
The upper row of images shows the virtual hand model according to
the ground truth, the lower row of images shows the difference of the
ground truth and estimation depth images.
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Figure 4.8: Detailed overview of trajectory Tr1 using database DB20 postures. Analo-
gous to Figure 4.7.

47



4 Data-driven visual tracking

while opening and closing the hand. The posture estimation was lagging behind
the ground truth for several frames before assuming the correct posture. Figure 4.8
shows the posture and pose errors for trajectory Tr1 using database DB20 postures.
In this experiment, larger errors occurred when database entries not related to
the pinch grasp motion of the ground truth trajectory influenced the estimation
result.

The average positional error of our hand pose estimation lies below 1 cm in all of
our experiments. This shows a significant improvement over the results of Wang and
Popović (2009), who reported translational errors of 5–15 cm along the optical axis
of the tracking camera.

4.3.2 Database matching cascades

We evaluated the accuracy and efficiency of our system’s posture estimation with
regard to different matching cascades during the database lookup. Figure 4.9 illus-
trates the accuracy/efficiency trade-off associated with different tiny image sizes.
While very small images have a low distance computation cost, the information loss
due to the image downscaling significantly limits their accuracy. In the database
matching cascades, the smallest images can be used for a coarse preselection of
nearest neighbor candidates in the early stages that is efficiently re-ranked using the
larger images in the later stages. We performed four different matching cascades to
evaluate the behavior of the overall efficiency and accuracy of our system using two
example databases. Figure 4.10 shows the performance of the different matching
cascades. The slowest database lookup uses only 64 × 64 images and interpolates
between the 3 nearest neighbors, the fastest and least accurate one uses only 8×8 im-
ages and interpolates between the 15 nearest neighbors. Performing multiple lookup
stages improves the runtime efficiency while largely maintaining accuracy. Based
on these findings, we used a two-stage matching cascade in our experiments, prese-
lecting 500 nearest neighbor candidates based on 16 × 16 images in the first stage
and interpolating the 3 nearest neighbors based on 64 × 64 images in the second
stage.

4.3.3 Point cloud subsampling

To improve the runtime performance we uniformly subsample the sensor point cloud
that is used during the ICP-T pose optimization. This introduces a trade-off between
pose estimation accuracy and overall efficiency. A subsampled point cloud is less
computationally expensive to match to the virtual hand surface, but it contains less
positional information. This trade-off is visualized in Figure 4.11, which shows that
the overall runtime of our system quickly converges to the database lookup time
while the position estimation error slowly rises as less points are included in the
sensor point cloud. Based on this, it is possible to select a subsampling factor that
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Figure 4.9: Runtime efficiency and database retrieval accuracy for different tiny im-
age sizes. Efficiency is measured by the average computation time of
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DB20 postures
Matching Cascade Eposture [deg] Time [ms]
161000 → 32300 → 643 16.61 121.6
16500 → 643 16.49 91.2
643 16.69 178.3
815 29.68 65.1

DBopen-pinch-power
Matching Cascade Eposture [deg] Time [ms]
161000 → 32300 → 643 4.88 86.2
16500 → 643 4.88 73.5
643 4.88 78.0
815 24.92 58.8

Figure 4.10: Posture error and execution time for different matching cascades. The
notation Dk indicates a k nearest neighbor lookup using D×D images.
Arrows between two such lookups indicate the candidate preselection.
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Figure 4.11: Overall runtime and position estimation error in regard to an increasing
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provides a good compromise to achieve interactive framerates while maintaining
high accuracy.

4.4 Application

The main goal of our hand tracking system was to provide a low cost system that
facilitates interactive robot control. To test this, we conducted several experiments in
which we used the estimated posture and pose to actuate a compliant Shadow robot
hand. This application was carried out in the Bielefeld “Curious Robot” setup (Lütke-
bohle et al. 2009), which has two redundant 7-DoF Mitsubishi PA-10 robot arms
each equipped with a 20 DoF Shadow Dexterous Hand (Shadow Robot Company),
resulting in a total of 54 DoFs. The Shadow Dexterous Hands are distinguished by
their human-like design: in size, number and flexibility of joints, the hands resemble
their human counterparts in a very realistic manner. The entire system (see Fig. 4.12)
is controlled by numerous processes distributed over three PCs. The tests were car-
ried out on a single 27-DoF PA-10/Shadow hand combination. Since the kinematic
hand model used in our hand tracking system closely matches that of the Shadow
robot hands (see Sec. 4.2), the estimated joint angles can be directly transferred to
the robot by sending a command to the hand-server component. The global rotation
and translation of the hand is mapped from the tracker’s coordinate frame to the
robot’s coordinate frame and transferred to the robot by issuing a command to the
arm-server component. The Kinect camera was positioned to have a top-down view
of the user’s hand, which provided a large working volume and minimal occlusion
in our experiments.
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Tracking

Database
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Figure 4.12: System component collaboration diagram. The whole system is dis-
tributed over 3 PCs for vision, hand control and arm control. IPC is
implemented using a global Active-Memory node. The dashed line high-
lights the robot application setup.

Figure 4.13: Pick-and-place experiment, in which the user controls the robot hand
to grasp an apple and place it in a bowl. The image sequences show
the performed power grasp motion for the actuated robot hand and our
hand posture and pose estimation.
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The hand movements we investigated during the experiments ranged from general
hand movements to full interaction with objects. To illustrate the effectiveness of
our system we constructed a database with three different postures: open hand,
power grasp and pinch grasp. Using these three postures, the user controlled the
robot in pick-and-place tasks (see Figure 4.13). By observing the movements of the
robot hand while performing movements as input commands, the user can utilize
this direct visual feedback to naturally adjust the pose and perform the grasping
motion with relative ease. We found that for well-defined tasks, such as power or
pinch grasping an object, the estimation results of our system are very good with a
small database containing as little as two or three postures. The speed of our system
(approximately 15Hz on a PC with four Intel Xeon E5530 2.4 GHz CPU cores and 4
GBs of RAM) is completely sufficient for interactive robot actuation and the accurate
3D position estimation provided by using the Kinect camera facilitates an intuitive
transfer of the user’s hand motions to the robot.

4.5 Discussion

Our approach to real-time hand tracking for the control of anthropomorphic robot
hands is built on that of Wang and Popović (2009), but differs in that we place more
emphasis on retrieving an accurate hand pose than on hand posture. To produce
an accurate hand posture Wang and Popović (2009) implemented fast similarity
sensitive coding (Torralba et al. 2008), allowing more postures to be present in
the database while maintaining near real-time performance. They also added a 2D
inverse kinematics step which adapts the estimated hand posture to that of the
current camera image. These features mean that in terms of the estimated posture,
our system is not as robust as that of Wang and Popović (2009). However, for the task
of controlling a compliant robot hand in tasks such as grasping, an accurate pose is
much more important than an exact approximation of the user’s hand posture. In our
approach we achieve a higher accuracy in pose estimation by using a Kinect camera
and color-sensitive ICP-T. We argue that database approaches such as ours can be
used to provide a good initial estimate of the posture and pose of the hand and then
this can be used as a pre-initialization step for model-based tracking approaches that
suffer from situations in which the hand is temporarily lost.

We have observed that under certain conditions, such when there are occlusions or
the database is sparsely populated, it is possible that the output is an interpolation
between two quite distinct postures in the database. While this is a feature of our
system, allowing us to compute smooth transitions between discrete entries in the
database, it can result in large discrepancies between the real posture and that given
by the system. This is an artifact of the employed appearance-based method. An
inverse kinematics step could improve on this, however, as the focus of this particular
work was on the control of an anthropomorphic robot, accurate estimation of the
pose of the hand took precedence over the posture. Using a combination of visual
feedback, allowing us to adapt our hand during robot control according to what
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the situation required, and taking advantage of the compliance in the robot hand,
we were able to smoothly actuate the robot hand to perform various grasping and
interaction tasks.
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Chapter 5

Constrained inverse kinematics

Artifacts and inaccuracies in the data obtained from commodity depth sensors, like
the Microsoft Kinect, can be partly overcome by employing data-driven, appearance-
based tracking methods, which incorporate knowledge about the tracked subject
from ground truth databases. The downside to such appearance-based approaches is
that they can only discriminate between known postures and their tracking capability
is therefore limited by the employed database. In contrast, generative or model-based
approaches optimize directly for the kinematic parameters of a model and thus have
the capability to track its full articulation. However, particularly in hand tracking,
optimizing the kinematic parameters is complex due to the high dimensionality of
the space of hand articulations, which further complicates the task of hand tracking
using low-quality commodity sensors. In this chapter, an approach is presented that
combines the advantages of generative, model-based methods with those of data-
driven approaches by employing hand posture subspace constraints in a generative,
inverse kinematics-based real-time hand tracking system.

The method presented in this chapter is based on fitting an articulated hand model
to the 3D point cloud obtained from a Kinect sensor’s depth camera and using a
subspace representation for hand articulations to simplify the problem (Schröder
et al. 2013, 2014, Schröder and Botsch 2014). In this method, we estimate the hand
articulation by finding the pose and posture parameters that minimize the error be-
tween the observed point cloud and the model surface using inverse kinematics (IK).
In doing so, we find the articulation of the 3D hand model that best approximates
the observed state of the user’s hand. Regarding the issue of the high dimensional-
ity of hand articulations, the analysis of hand synergies aims to identify high-level
relationships in hand articulation in order to sensibly reduce the dimensionality of
hand posture representations. We obtain such hand synergies through the princi-
pal component analysis (PCA) of motion capture data and use them directly in the
tracking process to reduce the parameter space and to naturally constrain the hand
posture estimation. The database of motion captured hand movements is publicly
available1.

1http://graphics.uni-bielefeld.de/publications/icra14/
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5 Constrained inverse kinematics

Figure 5.1: The user’s hand posture is estimated in real-time by fitting a 3D hand
model to the Kinect point cloud using inverse kinematics.

Solving the IK problem in a subspace reduces computational complexity and con-
strains the tracking to realistic hand postures even in cases of incomplete or am-
biguous sensor data. However, this subspace tracking is a trade-off between robust-
ness and flexibility of the hand posture estimation. Hand articulations that are not
contained in the database cannot be reconstructed when tracking in a synergistic
subspace. While a large amount of natural hand postures can be represented in such
a subspace, some hand articulation details are not captured. To deal with this prob-
lem, we extend the subspace-constrained IK method in a way that adds flexibility to
the posture estimation while maintaining the robustness of tracking in a synergistic
subspace. To this end, we define an adaptive PCA model that is adjusted during
real-time tracking to account for observed hand articulations that are not covered
by the initial parameter subspace. This method extends the approach outlined in
(Li et al. 2013), where such an adaptive model was used for real-time facial per-
formance capture. Using an adaptive PCA model, we robustly combine the natural
constraints provided by subspace optimization with the flexibility of optimizing in
the full parameter space.

5.1 Related work

Model-based hand tracking approaches freely optimize for the kinematic parameters
of a hand model and therefore provide a high degree of control over the recon-
structed hand articulations. In addition to the hand itself, Hamer et al. (2009) mod-
eled its interaction with objects in an offline tracking system. Similarly, Ballan et al.
(2012) modeled objects and multiple hands in interaction. They used features such as
edges, optical flow, and salient points extracted from videos in a multi-camera setup
to estimate the articulated pose of hands interacting with objects within a single
objective function. Wang et al. (2013) realized motion capture of hand grasping and
manipulation data by simultaneously modeling hand articulation, object movement,
and interactions between the two in an optimization framework. While producing
highly accurate results, these model-based methods suffer from the high computa-
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tional complexity associated with explicitly optimizing for the kinematic parameters
of the hand and objects, and are therefore far from real-time.

On the other hand, advances in hardware have given rise to the proliferation of
GPU-optimized model-based approaches that use stochastic optimization of the hand
parameters for real-time hand tracking (Oikonomidis et al. 2011a, Qian et al. 2014,
Sharp et al. 2015). These methods use variants of particle swarm optimization
(Kennedy and Eberhart 1995, 2001), which optimizes arbitrary objective functions
by iteratively evaluating and improving candidate solutions under a hypothesize-
and-test paradigm. While achieving real-time results, these methods require a high
amount of computational resources to function well, and they are inherently heuristi-
cal and probabilistic. In contrast, we present a gradient-based hand tracking method
that optimizes the hand articulation directly in a constrained inverse kinematics
point cloud fitting process.

To cope with the complexity of hand articulations, we reduce the high-dimensional
hand posture space based on the concept of hand synergies. Bernstein (1967) was
the first to come up with the idea of synergies and defined them to be high-level
control schemes for kinematic parameters. He suggested that they could provide
a mechanism by which the central nervous system controls the high DoF human
hand in an efficient way. It was not, however, until Santello et al. (1998) published
their paper on hand synergies that the rehabilitative prostheses and robots research
communities realized their potential in terms of controlling articulated hands and
arms. Their work revealed that 90% of the variance in the data of grasps directed
towards household objects could be described by as little as 3 principal components
(PCs). Many other studies have since supported this view (Daffertshofer et al. 2004,
Tresch et al. 2006).

Using synergies or other methods to reduce the dimensionality of the problem of
hand pose estimation for hand tracking applications has a precedence. In an early
paper, Lee and Kunii (1995) placed a set of constraints on joint angle limits and move-
ment types to reduce the DoFs or reject infeasible inverse kinematics solutions. Wu
et al. (2001) used the fact that hand articulations could be represented in a lower di-
mensional space to perform a Monte Carlo tracking algorithm. Unlike Lee and Kunii,
they were able to track the hand in real-time, but their method was view dependent
and rotation and scaling were not considered. Another view dependent hand track-
ing particle filter approach (Kato et al. 2006) also reduced the dimensionality of the
problem by using independent component analysis to compute basis components for
all fingers. Bray et al. (2007) used smart particle filtering to efficiently explore the
high-dimensional search space with fewer samples.

We use dimension reduction in order to simplify and constrain the problem of in-
verse kinematics. A similar concept was previously employed in the work of Grochow
et al. (2004), who presented an inverse kinematics system based on a learned model
of human poses. Safonova et al. (2004) also used dimension reduction to synthe-
size realistic human motion. Using a synergistic approach to reduce the DoFs of
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5 Constrained inverse kinematics

a virtual hand model, we also reduce the high computational complexity associ-
ated with model based approaches, while at the same time realizing realistic (view
unrestricted) real-time bare hand tracking.

In addition to integrating a synergistic PCA subspace in the IK optimization, we
define an adaptive PCA model that can adjust the synergistic subspace to previously
unknown hand articulations in real-time. This concept was used in a similar fashion
in (Li et al. 2013) for real-time facial performance capture in order to accurately
adapt a blend-shape face model to user-specific facial expressions. Using an adaptive
PCA model we optimize the hand articulation in a low-dimensional space that both
constrains the estimation to realistic postures while still allowing for high flexibility
and accuracy. We develop an incremental update of the adaptive PCA subspace
based on direct rank-one updates, which allows for a highly efficient adaptation
process.

Our adaptive PCA model extends our subspace-constrained method in a simple and
efficient way by complementing the initial subspace model with a continuously
updated local linear model. While there are various other methods for linear or
non-linear local embeddings (Urtasun and Darrell 2008, Roweis et al. 2002), usually
their performance depends on the quality of model parameters or they do not meet
real-time requirements. Data-driven local linear models were previously used for
full-body motion capture in (Chai and Hodgins 2005, Liu et al. 2006). Our method
differs from these approaches in that we aim to specifically model articulations that
are not present in the ground truth database to facilitate robust and flexible real-time
hand tracking.

5.2 Inverse kinematics hand tracking

In our hand tracking approach, the pose and posture of the user’s hand are estimated
by fitting the virtual hand model to the point cloud obtained from a Microsoft Kinect
sensor. By finding the articulation of the hand model that minimizes the distance
to the point cloud, the state of the user’s hand that causes the observation is ap-
proximated. The hand model consists of 16 joints, which are driven by 26 kinematic
parameters θ = (θ1, . . . , θ26)T . Of those parameters, 6 describe the global pose of
the hand and the remaining 20 describe the posture.

We experimented with two distinct geometric representations of the hand model,
which are depicted in Figure 5.2. One representation is based on a skinned trian-
gle mesh and the other is based on piecewise rigid capsule segments for each joint.
The main advantage of the simplified capsule-based model is that correspondence
computations between the sensor point cloud and the hand model are very effi-
cient. Both models are animated according to the articulation of the joints defined
in the kinematic hand model. While a piecewise rigid forward kinematics scheme is
sufficient to animate the capsule-based model, the deformation of the mesh-based
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5.2 Inverse kinematics hand tracking

Figure 5.2: Hand models used for tracking. Left: skinned triangle mesh. Right: cylin-
droid capsule segment model. Both models use the same kinematic con-
trol skeleton and only differ in their hand geometry representations.

model is done using linear blend skinning (Jacka et al. 2007). In the latter case,
we therefore use a different animation technique for visualization than for track-
ing.

The point cloud is calculated from the Kinect’s color and depth images based on a
precomputed RGBD-mapping, which maps color values to the pixel coordinates of
the depth image and uses the camera parameters of the Kinect’s color and depth
cameras to calculate the global 3D positions of the sensor points. The hand is then
segmented by detecting skin-colored pixels and omitting points whose coordinates
are outside of a predefined working volume. The remaining points define the target
constraints for the hand model fitting.

These target points are matched to their spatially closest points on the surface of
the hand model. Based on these point-to-point correspondences we formulate the
problem of estimating the posture of the hand as finding the posture parameters
(joint angles and global pose) that transform the hand’s skeleton such that the error
between the deformed model and target positions is minimized. This is an inverse
kinematics (IK) problem in which the points on the model surface xi are regarded
as effector positions relative to the skeleton, which are constrained to move towards
their corresponding target positions ti in the sensor point cloud. Figure 5.3 illustrates
the principle with a simplified example.
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Δθ

t
x

Figure 5.3: Inverse kinematics posture estimation. The red squares are target posi-
tions in the sensor point cloud, the black circles are the corresponding
effector positions on the surface of the model. The joint angle is updated
such that the target-effector error is minimized.

5.2.1 Inverse kinematics

The IK optimization method used in this work is based on the same principle as the
one presented in Chapter 3. Here we briefly reiterate the most important components
of the optimization.

The positions of the k effector points on the surface of the hand model are repre-
sented as a stacked vector x ∈ R3k and move relative to the model articulation, and
can therefore be expressed as a function of the kinematic parameters, x = x(θ).
These effector positions are subject to move to their corresponding target posi-
tions t ∈ R3k in the point cloud. The IK problem t = x(θ) is solved by finding
an update to the kinematic parameter vector θ that minimizes the objective func-
tion

EIK(∆θ) = 1
2 ‖x(θ + ∆θ)− t‖2 + 1

2 ‖D∆θ‖2 . (5.1)

In this objective function, the first term models the least squares error between the
positions of the effector points x and the positions of their corresponding target
points t. The second term is a selective damping term for the parameter update ∆θ

with a diagonal matrix D. This damping stabilizes the solution and is used for joint
limit avoidance by selectively increasing the damping of kinematic parameters that
approach their upper or lower limits (Schröder et al. 2014).

To find the parameter update ∆θ, the objective function (5.1) is minimized with a
Gauss-Newton approach, in which a linear system is solved in multiple iterations.
The objective function leads to the linear system(

JTJ + D
)

∆θ = JT (t− x(θ)) , (5.2)

where J = ∂x
∂θ is the (3k × 26) Jacobian matrix of the effector positions (Buss 2004).

After solving the linear system, the resulting update ∆θ is scaled using a line search
in order to guarantee convergence. The process of solving the linear system (5.2)
and updating the effector positions is iterated 5–10 times.
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Figure 5.4: Schematic overview of the overall hand tracking process.

5.2.2 Hand tracking process

The overall hand tracking process is illustrated in Figure 5.4. After segmenting the
hand in the Kinect point cloud and finding the target-effector correspondences, the
pose estimation is initialized by finding the rigid transformation between the target
and effector point clouds using the well known rigid iterative closest points (ICP)
approach of Horn (1987), using the posture parameters from the previous frame.
In the first frame, this ICP fitting provides a good initialization if the posture and
orientation of the user’s hand roughly matches the initial neutral state of the hand
model.

Then the correspondences are updated and used as input for the iterative IK-based
pose and posture estimation. During this process, the parameter update is computed
according to (5.2) and the effector points are moved according to the updated
skeleton forward kinematics. This process is iterated until the target-effector error
converges. In practice, our IK optimization usually takes less than 10 Gauss-Newton
iterations and for real-time tracking 5 iterations are sufficient.

The process of recomputing the correspondences and solving the IK optimization is
iterated several times in a non-rigid ICP manner. As a result the virtual hand model
is aligned with the observation point cloud, which yields the hand pose and posture
estimation.
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5 Constrained inverse kinematics

5.3 Principal component analysis

In the approach outlined in the previous section all 26 parameters of the kinematic
model are freely optimized within their joint limits during the IK update. While this
allows for high freedom of movement and mostly yields plausible hand articulations,
it can also result in inaccurate or unnatural hand posture reconstructions in cases of
incomplete or ambiguous sensor data.

This problem can be overcome by employing subspace representations of realistic
hand articulations. As shown in Chapter 3, the space of possible hand postures can
be reduced in a meaningful way using hand synergies derived from the principal
component analysis (PCA) of a training data set containing real human hand motions.
Performing dimension reduction based on the most significant principal components
provides a way to decrease the number of parameters that need to be optimized and
to implicitly constrain the estimated hand postures to plausible ones resulting from
the training data, preventing unnatural hand articulations.

5.3.1 Principal component space

In the following, the most important components of the subspace IK approach
outlined in Chapter 3 are briefly reiterated. Performing PCA on a database of 20-
dimensional hand posture data yields a set of eigenvectors and eigenvalues, which
can be used to construct a 26 × (6 + l) matrix M, which maps between the full
20-dimensional posture space and a reduced l-dimensional subspace and has the
form

M =
(

I 0
0 P

)
, (5.3)

where I is a 6× 6 identity matrix and P is the 20× l matrix of principal components.
The first 6 dimensions encode the global pose of the hand, which is not captured in
the PCA model.

Given the PCA matrix M, the full parameter vector θ ∈ R26 can then be computed
from the reduced subspace parameters α ∈ R6+l as θ = Mα + µ, where µ ∈ R26 is
the mean of the database postures. This makes it possible to represent the forward
kinematics of the effector points x subject to the subspace parameters: x = x(α) =
x(θ(α)). Based on this representation, the IK problem can be expressed in terms of
the subspace parameters as well. Optimizing for the subspace parameters in (5.1)
and (5.2) is possible using the subspace Jacobian

JPC := ∂x
∂α

= ∂x
∂θ
· ∂θ

∂α
= J ·M. (5.4)

Substituting JPC for J in the linear system (5.2) and analogously changing the damp-
ing matrix D yields the IK solution for the subspace parameters.
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This facilitates hand tracking as described in Section 5.2 in the reduced principal
component-space (PC-space), which decreases the size of the matrices in the up-
date calculation and reasonably constrains the possible hand postures estimated
by the tracking system. The number l of PCs used for the dimension reduction de-
pends on the distribution of the data variance among the principal directions (see
Section 5.5).

5.3.2 Hierarchical optimization

While optimizing in a reduced PC-space yields plausible hand articulations, the
estimated hand postures are limited to those represented by linear combinations of
the PCs of the posture database. Although this improves robustness and performance,
it inherently restricts tracking flexibility to a subset of the movements contained in
the database. To combine the benefits of reduced-DoF estimation with the flexibility
of full-DoF estimation, we propose a hierarchical optimization scheme, in which a
low-dimensional posture estimate is successively refined by incrementally adding
DoFs during the estimation process.

This means that the IK optimization in the hand tracking process is performed in mul-
tiple stages, increasing the number of PC-parameters used in each stage. The early
low-DoF estimation stages yield coarse initializations for the subsequent higher-DoF
stages. In the final stage of this hierarchical scheme, all 26 DoFs are optimized. This
allows for a coarse-to-fine optimization process that robustly refines the posture esti-
mation based on hand synergies and yields highly accurate posture reconstructions.
The hierarchical approach is compared to the non-hierarchical IK in Section 5.5 and
an example for the results is shown in Figure 5.10. While accurate, this method is
not suitable for real-time tracking, firstly due to high computational cost and sec-
ondly because the method does not take advantage of temporal coherence, as the
local refinements outside of the low-dimensional synergistic subspace are lost across
frames, requiring a high number of ICP iterations. In the following, we describe
an adaptive PCA model that allows for such refinements to be performed without
negative impact on the real-time tracking performance.

5.4 Online adaptive PCA model

To overcome the limitations related to optimizing the hand posture in a reduced
parameter space, we define an adaptive PCA model. This model can be automatically
modified to account for newly observed postures which cannot be represented within
the initial PCA subspace. To this end, the PC-space conversion matrix M defined in
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(5.3) is extended by d columns corresponding to adaptive PC basis vectors, resulting
in the 26× (6 + l + d) subspace matrix

MA =
(

M 0
C

)
=
(

I 0 0
0 P C

)
, (5.5)

where I is the 6 × 6 identity matrix, P is the 20 × l matrix containing the original
principal components and C is a 20× d matrix containing the “adaptive columns”,
which by construction will lie in the null space of P.

Following the terminology of (Li et al. 2013), we refer to P as the anchor matrix and
C as the corrective matrix. The anchor matrix remains fixed and prevents gradual
drift of the PCA model, whereas the corrective matrix is adaptive and represents the
observed hand articulations that cannot be represented in the anchor space spanned
by M. The number of corrective dimensions d depends on the desired flexibility of
the adaptive model (see Sections 5.4.2 and 5.4.3).

The inverse kinematics posture estimation can be performed in the extended adaptive
PC-space by using the Jacobian matrix JA = J ·MA and an analogously extended
damping matrix in the Gauss-Newton process (5.2). The online adaptation of the
corrective matrix C takes place after the non-rigid ICP process, during which the
hand posture is estimated using the current subspace matrix MA in the inverse
kinematics optimization. Figure 5.5 gives a schematic overview of the adaptation
process.

At the beginning of the adaptation procedure, the posture estimate from the current
subspace MA is refined by an additional IK optimization in the full 26-dimensional
parameter space. This aligns the model more closely with the observed point cloud
and thereby captures details of the user’s hand articulation that cannot yet be
represented in the adaptive PC-space. Since the full-DoF IK optimization starts
from a good initial guess (the subspace IK result), it robustly improves the pos-
ture low-DoF estimate. The result of this refinement is an updated parameter vector
θ̂ ∈ R26.

Based on this refined posture we compute the anchor space residual ŝ as the or-
thogonal projection of the refined posture θ̂ onto the complement of the anchor
space:

ŝ =
(
I−MMT

) (
θ̂ − µ

)
. (5.6)

As the leading six pose DoF entries of ŝ = (s1, . . . , s26)T are zero by construction, we
only consider the vector of joint angle residuals s = (s7, . . . , s26)T in the following.
Intuitively, the residual vector s represents those aspects of the refined posture that
lie outside of the initial PC subspace P. A new residual sample s is considered valid if
‖s‖ (the distance of the refined posture from the anchor space) is above a threshold
smin (significant improvement) and below a threshold smax (no outlier). In this case,
it is stored in a FIFO ring buffer matrix S = (s1, . . . , sN ). We use validity bounds
smin = 0.1 and smax = 3 and a buffer size of N = 250.
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Figure 5.5: Online adaptation of the adaptive PCA model.

Once the buffer is full, i.e., N frames contributed significant residuals, the corrective
matrix C can be computed by performing PCA on the sample matrix S. Standard
methods for PCA compute an eigenvector decomposition of the data covariance, e.g.
by singular value decomposition (SVD) of the data matrix, or eigenvalue decompo-
sition (EVD) of the covariance matrix itself. While the former is numerically more
accurate, we found that the latter generally has better runtime performance for the
rather tall N × 20 matrices in our context. However, neither method scales well with
the size of the data matrix (see Table 5.1).

In the following, we focus on PCA computed by EVD of the sample covariance. The
covariance matrix K of the sample matrix S is defined as

K = 1
N

N∑
i=1

(si − s)(si − s)T , (5.7)

where s =
∑N
i=1 si/N is the mean of the sample points. This sum of outer products

involves many numerical calculations and can impact performance significantly for
large N . Since we need to update the corrective matrix for every new incoming
sample si, this way of performing PCA can cause a performance bottleneck. In the
following, we explore alternative methods for performing PCA in order to compute
the corrective matrix C efficiently.
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5.4.1 Corrective matrix computation

In (Li et al. 2013) the iterative expectation maximization (EM) algorithm for PCA pre-
sented in (Roweis 1998) was used to compute the corrective matrix more efficiently.
This algorithm progressively updates an approximation of a dataset’s PC subspace
given only a limited number of sample points at a time. A single EM iteration for up-
dating the corrective matrix involves the following calculations:

1. E-step: Y = (CTC)−1CTS
2. M-step: C = SYT (YYT )−1

These steps are iterated several times before orthonormalizing the result C. While
this method can outperform standard PCA methods in some cases, it still involves
many numerical operations and calculations, including a matrix orthonormalization,
and needs to be iterated 3–4 times to converge (Roweis 1998), which altogether
diminishes the runtime benefits in our application context, making it perform slightly
worse than EVD PCA for large N (see Table 5.1).

It can be observed that for larger N the cost of the EVD PCA method is dominated
not by the 20× 20 eigenvector decomposition of K, but instead by the computation
of the matrix K itself as in (5.7), which scales linearly with N .

In contrast, we exploit the incremental nature of the adaptation process by revis-
ing the computation of the covariance matrix K in such a way that allows us to
efficiently update the covariance in an incremental way, given a single new cor-
rective sample at a time. The method we propose below results in constant costs
for computing K and its eigenvector decomposition—independent of the buffer
size N .

We achieve this goal by rewriting the definition of the covariance matrix K in a way
that allows for an incremental adaptation based on rank-one updates. Expanding the
outer products in (5.7) yields

K = 1
N

N∑
i=1

(si − s)(si − s)T

= 1
N

N∑
i=1

[
sisTi − sisT − ssTi + s sT

]

= 1
N

[
N∑
i=1

sisTi −
(

N∑
i=1

si

)
sT − s

N∑
i=1

sTi +N s sT
]

= 1
N

[
N∑
i=1

sisTi −N s sT −N s sT +N s sT
]

= 1
N

[
N∑
i=1

sisTi

]
− s sT . (5.8)
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PCA method N = 100 N = 500 N = 1000
Jacobi SVD 125µs 272µs 477µs
EVD 60µs 119µs 198µs
Exp. Max. 54µs 137µs 254µs
Inc. cov. (ours) 35µs 35µs 35µs

Table 5.1: Runtimes for the corrective matrix update using different PCA methods
for varying sample buffer sizes. PCA using SVD, EVD and EM scale poorly
with increasing buffer sizes, whereas our method runs in constant time.

Based on this expression, the mean and covariance of the sample points are decou-
pled, allowing us to directly and separately update them given a single new sample
point at a time. Once the sample buffer S is full, the mean s and the covariance K
are explicitly initialized by computing (5.7). After this, each subsequent incoming
sample sin replaces an old sample sout in the FIFO ring buffer matrix S. The two
samples are then used to directly compute the updated mean s′ and covariance K′
in an incremental way:

s′ = s + sin
N
− sout

N
(5.9)

K′ = K + sin sinT

N
− sout soutT

N
+ s sT − s′s′T . (5.10)

Update (5.9) shifts the mean according to the incoming and outgoing samples and
update (5.10) is a series of rank-one updates to the covariance matrix derived from
(5.8), which can be computed efficiently in a single loop. Finally, the new correc-
tive matrix C is obtained by performing eigenvalue decomposition of the updated
covariance matrix K′.

This computation of the corrective matrix is independent from the size N of the
buffer matrix S and therefore allows for an efficient update of the adaptive model
in constant time given a single new sample. The computational cost of the update is
dominated by the eigenvalue decomposition. Table 5.1 lists average runtimes for PCA
using SVD, EVD, expectation maximization, and our incremental covariance method
and shows the latter to outperform the previous methods.

We note that it is also possible to directly update the EVD of K or the SVD of S
after rank-one modifications (Bunch et al. 1978, Brand 2006), but our approach is
more straightforward to implement and provides a significant improvement over non-
incremental methods with only minor algorithmic modifications.

5.4.2 Tracking in adaptive space

The adaptive PCA model allows us to perform local posture refinements after fit-
ting in a reduced PC-space without losing temporal coherence. Since increasing the
buffer size does not negatively impact runtime performance, we can choose a large
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buffer size containing a long history of samples. However, while using a long his-
tory captures more details missing from the anchor space, it can cause the adaptive
PCA model to drift from the initial synergistic model, which can compromise the
plausibility of the reconstructed postures. As our tracking system runs at approxi-
mately 25 fps, a sample buffer size of N = 250 captures a history of new postures
for approximately ten seconds, which can fully account for the local refinements
and additionally captures hand articulation details that are not present in the initial
synergistic subspace in a robust way.

Our analysis of hand postures in (Schröder et al. 2013, 2014) and Section 5.5
shows that 90% of the variance of a dataset of highly varying hand postures can be
represented by six PCs and 90% of the variance of specific hand movements, such
as grasping, can be covered by as little as three PCs. Based on these findings we use
l = 3 dimensions for the initial PC subspace and d = 3 corrective dimensions for
continuous tracking with the adaptive PCA model. Using more corrective dimensions
increases flexibility but comes at the price of losing robustness (see Section 5.5). Less
than three corrective dimensions cause the estimation to be driven mostly by the
initial PCs.

5.4.3 Learning a synergistic model

Beyond capturing local posture refinements, the adaptive PCA model can be used
to generate a synergistic model from scratch, as an alternative to relying on a pre-
recorded database of human hand postures. To this end, the user demonstrates indi-
vidual hand movements in a training phase, during which the adaptive model learns
the corrective DoFs that represent these movements. Then, the anchor space is incre-
mentally expanded to include the trained corrective dimensions.

In the beginning of the learning process, the anchor matrix P should be initialized
with a single manually defined hand posture. After training the adaptive model by
demonstrating a certain new hand movement, the anchor space can be expanded
by joining the anchor matrix P with the corrective matrix C and re-initializing
the adaptive model with this new anchor space. As only isolated movements are
demonstrated during the training phase, it is sufficient to use d = 1 new corrective
dimension at a time. Alternatively, more corrective dimensions can be used during
training to capture more involved movements and learn multiple synergistic DoFs
simultaneously.

5.5 Results

In this section we first illustrate the PCA of the captured hand posture data and
give examples for the DoFs that can be represented in a reduced PC-space. Then,
we present a detailed evaluation of the most important aspects of our system and
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(b) Grasp posture data

Figure 5.6: Eigenvalues and variance distribution among the principal components
of motion captured hand posture data sets.

compare the accuracy achieved by the adaptive PCA model to that of a non-adaptive
method based on synthetic input data. Finally, we provide experimental results of
our real-time tracking system using a Kinect camera.

5.5.1 Hand posture PCA results

We discuss the results of the PCA for two ground-truth posture data sets: the complete
data set of all captured movements (including various manual interaction motions,
sign language and general hand movements) and a data set containing only grasping
movements.

Figure 5.6(a) shows the distribution of the data variance among the principal compo-
nents for the complete data set. Approximately 80% of the variance is covered by the
principal components associated with the largest 3 eigenvalues, and approximately
90% of the variance is covered by 6 principal components. The 2 most significant
principal components cover about 70% of the data variance and can already be used
to represent meaningful hand synergies, which is illustrated in Figure 5.7(a). For the
grasping data set the 3 most significant principal components already cover 90% of
the variance, which can be seen in Figure 5.6(b). The less varied a data set is in terms
of movements contained, the less principal components are needed to cover most
of its variance. To clarify the information loss resulting from dimension reduction,
Figure 5.7(b) shows the approximation error for a specific hand posture w.r.t. the
number of dimensions used to represent it.

5.5.2 Evaluation with synthetic data

In order to evaluate the accuracy and overall performance of our hand tracking sys-
tem we generated sequences of synthetic Kinect images using the virtual hand model.
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(b) PCA reconstruction error

Figure 5.7: Illustration of the information represented by PCA subspaces. (a) Visual-
ization of the DoFs represented by the first and second most significant
PCs of the captured hand posture data set containing grasp movements.
(b) Posture reconstruction and approximation error for one particular
posture with increasing number of PCs. The hand postures on top show
examples of the reconstruction of the original hand posture using differ-
ent numbers of PCs.

We performed the experiments with both the mesh model and the simplified capsule
model (see Figure 5.2). We explicitly state which model was used for the respective
presented results when it is significant. The model was animated using pre-recorded
hand trajectories and synthetic depth images were rendered, which could then be
used as input for our tracking system. This made it possible to compare the postures
generated by our system with the known ground truth data.

The synthetic input data was generated with the same model that was also used for
tracking; no noise was added to the depth images. This results in an idealized experi-
mental setup, in which the potential for highly accurate posture reconstructions was
given. We analyze the issues of noisy input data and mismatch between the tracked
real hand and the virtual hand model in Section 5.5.5. Among the experiments we
conducted are tests for evaluating the trade-off between the accuracy of the hand pos-
ture reconstruction and the runtime efficiency of the tracking, analyzing the benefits
of using PC-space tracking, and the performance of single-frame posture estimation
using hierarchical optimization. All experiments were conducted on an Octa-Core
Intel Xeon(R) E5-1620 CPU at 3.60GHz with 8 GBs of RAM. Our implementation
is heavily parallelized and fully utilizes all eight cores during the correspondence
search and the construction of the Jacobian matrix.
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Figure 5.8: Posture error and tracking time using (a) subsampling density of 1/3
and varying numbers of non-rigid ICP iterations, (b) five non-rigid ICP
iterations and varying subsampling densities.

Accuracy-efficiency trade-off

The reconstruction accuracy increases with (i) the number k of point cloud-to-model
correspondences used as input for the estimation and (ii) the number of non-rigid
ICP iterations. However, in turn the runtime efficiency deteriorates with increased
correspondences and more non-rigid ICP iterations.

In order to be able to track at interactive rates, we reduce the number of corre-
spondences by linearly subsampling the input point cloud. The point cloud sampling
density and the number of correspondence iterations are therefore the parameters
that need to be adjusted to optimize the accuracy-efficiency trade-off. We tracked a
synthetic input sequence with varying values for these parameters in order to find
the best values for them. Evaluating the results for all combinations revealed that for
our purposes a subsampling density of 1/3 and five non-rigid ICP iterations provided
the best trade-off between accuracy and efficiency. Figure 5.8(a) shows the posture
error and tracking time for a subsampling density of 1/3 and varying numbers of ICP
iterations. After five iterations the error is lower than 2◦ and less than one third of
the error of a single ICP iteration. The tracking time increases linearly in the number
of iterations. Figure 5.8(b) shows the posture error and tracking time for five ICP
iterations and varying subsampling values. The tracking time is approximately 40 ms
at a subsampling density of 1/3, which facilitates sufficiently accurate tracking at
approximately 25 fps.

PCA-constrained tracking

The main benefits of PCA-constrained tracking are reduced computational complex-
ity and improved posture reconstruction in cases of incomplete or ambiguous input
data. To test this, we used a synthetic sequence of a grasping motion, in which the
fingers are occluded by the back of the hand during the grasp and thus disappear
from the input data. We tracked this sequence once with all DoFs and once with
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5 Constrained inverse kinematics

Figure 5.9: Example for posture estimation with incomplete data. The blue points
constitute the synthetically created input point cloud. The full-DoF esti-
mation (left) cannot correctly reconstruct the grasp posture because the
fingers in the input point cloud are partially occluded. The reduced-DoF
estimation (right) is able to reconstruct the posture despite the missing
data.

reduced DoFs based on PCA of the grasp training data set. The number of principal
components (PCs) was chosen such that 99% of the variance in the data set was cov-
ered, which resulted in five PCs. In this experiment, the full-DoF tracking produced
an average posture error of about 12◦, whereas the reduced-DoF tracking produced
an average posture error of only about 4◦, despite the severe self occlusions present.
The full-DoF estimation is less accurate because due to the partly missing correspon-
dence data for individual fingers, the model’s fingers stop moving or collapse into
the wrong part of the input point cloud. The reduced-DoF estimation reconstructs
the input data more accurately because the employed synergies cause the hand’s
DoFs to move in correlation to each other. This means that only some parts of the
hand model need explicit correspondence data in order to approach an accurate re-
construction of the postures underlying the input. An example of this using the mesh
hand model can be seen in Figure 5.9. Thanks to the reduced number of DoFs, our
PCA-based hand tracking improves runtime performance from 25 fps up to 30 fps in
our experiments.

Hierarchical single-frame estimation

Since our hand tracking approach is dependent on temporal coherency in the input
data, cases in which a good posture initialization is not known can be difficult to
handle. The hierarchical optimization scheme described in Section 5.3.2 alleviates
this dependency thanks to a coarse-to-fine estimation process. We confirmed this
experimentally by performing single-frame posture estimation with and without
hierarchical optimization. The input data for this experiment were several frames of
distinct sign language gestures and the only initialization given was the global pose
of the hand. The data set used for the PCA was the complete training set of recorded
sign language hand trajectories. To facilitate maximally accurate reconstructions, we
used the complete point cloud as input and performed 10 non-rigid ICP iterations.
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(a) Hierarchical single-frame estimation (b) Non-hierarchical single-
frame estimation

Figure 5.10: Example illustrating hierarchical and non-hierarchical single-frame pos-
ture estimation. The blue points constitute the synthetically created in-
put point cloud. The hierarchical estimation successively approximates
the input posture with increasing DoFs (from left to right: initial state,
1 DoF, 4 DoF, full DoF). The non-hierarchical estimation gets stuck in
a local minimum due to bad initial correspondences (left: initial state,
right: full DoF).

In cases of highly self-occluded input data it was impossible for the non-hierarchical
full-DoF estimation to produce accurate posture reconstructions from a single frame,
resulting in an average posture error of approximately 22◦ over all input frames. On
the other hand, the hierarchical estimation arrived at an accurate reconstruction
for every posture, resulting in an average posture error of approximately 0.4◦. The
computation time for each frame was about 10s. Figure 5.10 shows a comparison
between hierarchical and non-hierarchical single-frame estimation for a specific
posture example using the mesh hand model.

5.5.3 Adaptive PCA model

In the following, we evaluate the performance of our adaptive PCA model compared
with non-adaptive approaches using synthetic data. The synthetic images were par-
ticularly designed to include a high amount of self-occlusions during complex finger
movements.

The generated image sequences were tracked in multiple runs, varying the opti-
mization method (full-DoF, reduced PC-space, adaptive PC-space). For all methods,
we measured the difference between the postures generated by our system and
the known ground truth postures by computing the average joint angle error. Addi-
tionally, we report the average distance between the sensor point cloud and their
corresponding points on the hand model surface.

Figure 5.11 shows exemplary results of this evaluation using the capsule hand model.
For the depicted posture the standard full-DoF optimization produces an inaccurate
posture reconstruction due to highly occluded data, which cause bad correspon-
dences. The reduced-DoF IK approximates the ground truth posture more accurately,
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Figure 5.11: Posture reconstruction accuracy using the full 26-dimensional parame-
ter space (left), reduced space with 6 PCs (center), and adaptive sub-
space with 3 anchor DoFs and 3 corrective DoFs (right). The blue points
show the input point cloud for one specific frame. The error values are
averages over the entire synthetic sequence.

but due to the inflexibility of the PC-space the hand model is not closely aligned
with the point cloud. Our adaptive PCA model produces a result that is closer to the
ground truth posture. The average error values over the whole synthetic sequence
(Figure 5.11, bottom) reflect these properties of the different optimization methods.
The full-DoF estimation is the least accurate in terms of posture recovery, although
producing low constraint errors (partly due to wrong correspondences). The adap-
tive model combines flexible and accurate reconstruction of the hand animation with
the robustness of PC-space optimization.

When using an adaptive model with d = 6 corrective DoFs instead of d = 3, the
average constraint error slightly decreases from 5.5 mm to 5 mm, but the average
posture error increases from 8.2◦ to 9.4◦. This indicates that the flexibility gained
by additional corrective DoFs comes at the price of lower estimation quality when
incomplete sensor data produces unreliable correspondences.
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Adaptive IKPC-space IKInput point cloud PCA + RefinementFull-DoF IK

Figure 5.12: Tracking results with Kinect input. The full-DoF estimation cannot cor-
rectly recover the middle posture due to self-occlusions. Estimation in
the reduced PC-space yields a plausible result in spite of these occlu-
sions, but lacks the flexibility to accurately recover the upper and lower
postures. Estimation in the fixed PC-space with subsequent refinement
cannot recover the lower posture due to the inaccurate PC-space initial-
ization. Our adaptive model successfully recovers all postures.

5.5.4 Non-adaptive PCA and refinement

Our adaptive method continuously updates the PCA subspace to account for devia-
tions from the fixed PCA model, allowing previously unknown observed postures to
be incorporated in a temporally coherent way. Performing local posture refinements
without subsequently adapting the subspace causes the estimation to be mainly
driven by the fixed PCA model, which can produce inaccurate results in cases of
unknown hand articulations.

Figure 5.12, bottom row shows an example where the input hand posture cannot
be accurately represented in the fixed PCA subspace (third column). Subsequent
full-DoF refinement of the posture based on this initialization without an adaptive
model reaches an incorrect local minimum (fourth column). In contrast, estimation
with an adaptive model reproduces the input posture well (fifth column), because
the adaptive subspace was robustly updated according to the refined observations
during the previous frames.

5.5.5 Real-time hand tracking

In practice, most of the idealized conditions of our experimental setup do not neces-
sarily hold true, because the data obtained from the Kinect sensor can be noisy and
the virtual hand model used for tracking usually does not perfectly match the user’s
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5 Constrained inverse kinematics

Figure 5.13: Example hand tracking sequence. Top row: full-DoF posture estima-
tion. Bottom row: reduced-DoF posture estimation. The full-DoF pos-
ture estimation fails to correctly track the posture during a rapid hand
movement. The ring and pinky fingers collapse into the same point
cloud segment, resulting in an unnatural posture. The reduced-DoF pos-
ture estimation has less mobility but maintains plausible hand postures
across the whole sequence.

real hand. We found that sensor noise did not severely impair the tracking quality
within the distance of about 0.8 to 1.5 meters. To adjust to the hand sizes of differ-
ent users we changed the overall scale of the hand model, which gave satisfactory
results. This suggested that the geometric details of the virtual hand model are not
that important during tracking, as long as the model’s overall scale and proportions
matched the user’s hand.

We furthermore found that using the simplified cylinder-based capsule hand model
during tracking did not negatively affect the tracking accuracy and sped up the
correspondence search. To evaluate the effect of using a capsule hand model in-
stead of a triangle mesh, we compared the posture reconstruction error using a
capsule model and the mesh model in our evaluation framework. In both cases the
synthetic input data was rendered using the mesh model. Using full-DoF tracking
the average posture error increased from approximately 2◦ to 4◦ using the capsule
model. Using reduced-DoF tracking there was virtually no difference in the posture
error.

Figure 5.12 shows examples comparing the hand posture reconstruction using the
full-DoF, reduced PC-space, reduced PC-space with subsequent refinement and adap-
tive PC-space optimization for point clouds from a Kinect camera. Our camera setup
is arranged with a top-down view of the workspace, which contains minimal clutter
to facilitate robust segmentation of the user’s hand. Figure 5.13 shows an example
of a tracking sequence in which the full-DoF posture estimation results in an unnat-
ural state due to a rapid hand motion causing incomplete sensor data, whereas the
reduced-DoF estimation results in a natural approximation of the user’s hand. This
illustrates the benefit of performing the optimization in a reduced parameter space
based on natural hand synergies.

Our tracking system runs at approximately 25 fps with full-DoF tracking and about
30 fps with (6 + 6)-DoF tracking in PC-space. The PCA adaptation procedure involv-
ing the full-DoF posture refinement and the computation of the corrective matrix
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usually takes less than 5 ms to complete and therefore does not negatively impact
runtime performance.

5.6 Discussion

In our hand tracking approach, the hand posture is estimated using positional in-
formation from a Kinect point cloud as geometric constraints to fit a virtual hand
model by means of inverse kinematics. The extension of the method to allow for
optimization in a dimensionally reduced PC-space is simple and serves to constrain
the parameter space in a meaningful way. Using a varied set of motion capture data
as training data set facilitated the derivation of natural hand synergies that covered a
wide range of natural hand movements. Using an adaptive PCA model constrains the
estimation to realistic hand postures while simultaneously allowing for continuous
hand articulation refinements.

Optimizing in a reduced PC-space as opposed to the high-dimensional hand posture
space improves runtime performance and prevents implausible hand postures by con-
straining the estimation to realistic postures. These constraints can reduce the mobil-
ity of the posture estimation to some extent, but the overall tracking benefits from
the increase in stability and plausibility of the estimated hand postures, especially in
cases where the input data is incomplete or ambiguous.

The number of principal components needed to cover most of the variance in the
data depends on the number and type of movements contained in the data set. The
less varied the captured movements are, the less parameters are needed to represent
the most meaningful hand synergies involved. This simplifies the problem of tracking
specific movements, such as various types of grasping, to an optimization of only
2 or 3 posture parameters, but impairs the approximation of more general hand
movements.

By employing a hierarchical optimization scheme, we are able to overcome the fact
that low-DoF estimations are limited by the postures contained in the ground truth
data. Our synergistic approach improves estimation quality by explicitly including
prior knowledge about the tracked movements. If the types of movements are un-
known prior to tracking or a very general posture estimation is desired, our purely
IK-based approach yields satisfactory results unless the input data is highly inconsis-
tent.

Using an adaptive PCA model allows for highly efficient continuous refinements of
the observed postures while keeping the estimation close to realistic hand articu-
lations from a database. The direct modification of the corrective matrix based on
incremental rank-one updates during the online adaptation of the PCA model is effi-
cient and generally useful for applications related to dimension reduction. Usage of
sensors with higher frame-rate and resolution will improve the quality of our refine-
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5 Constrained inverse kinematics

ment and adaptation process. While a higher frame-rate requires a larger buffer size
N for our adaptive PCA model in order to cover the same time span, this will not
negatively impact runtime performance, since our incremental adaptation method is
independent from the buffer size N .
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Chapter 6

Regularized articulated registration

The task of real-time hand tracking using commodity depth sensors poses a variety of
challenges that need to be addressed. In addition to the data from such sensors being
prone to noise and artifacts, hand movements themselves are often fast, complex
and highly articulated, which leads to occlusions and ambiguities. Discriminative and
generative real-time tracking approaches that use data-driven priors to facilitate and
constrain the posture estimation can partly deal with these challenges but ultimately
impinge on the freedom, expressiveness and accuracy of the reconstructed motion.
In order to robustly and flexibly incorporate point cloud and hand model geometries,
as well as kinematic and data-driven articulation priors in a unified approach, hand
tracking can be expressed as a regularized geometric registration problem. In this
chapter, an articulated registration approach is presented, which estimates the state
of the user’s hand in real-time by fitting an articulated template model to the sensor
point cloud while explicitly taking into account visibility and occlusions, as well as
employing a set of priors that regularize the estimation to ensure plausibility even
with strongly degrading sensor data.

In the system we developed (Tagliasacchi & Schröder et al. 2015), the hand model is
registered to the sensor input data using depth, silhouette, and temporal information.
To effectively map low-quality depth maps to realistic hand postures, the registration
is regularized with kinematic and temporal priors, as well as a data-driven prior built
from a database of realistic hand postures. This ensures the inferred hand postures
are plausible and helps the algorithm in recovering from loss of tracking. We present a
principled way of integrating such priors into the registration optimization to enable
robust tracking without severely restricting the freedom of motion. Our articulated
registration algorithm efficiently integrates these data and regularization priors into a
unified real-time solver. A core technical contribution is a new method for computing
tracking correspondences that directly models occlusions typical of single-camera
setups. To this end, our method combines 2D and 3D registration to align the hand
model the the acquired depth map and extracted silhouette image, and data-to-model
correspondences are computed in a way that accounts for visibility and occlusions,
which significantly improves the robustness of the tracking.
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6 Regularized articulated registration

Figure 6.1: Our method captures hand motions in real-time using a single depth cam-
era based on an online registration process that accurately and robustly
reconstructs hand postures by fitting an articulated hand model to depth
images.

Notably, there is a widespread belief (Wei et al. 2012, Zhang et al. 2014, Qian
et al. 2014) that ICP-like techniques are too local and prone to local minima to
successfully deal with fast articulated motion. One of our contributions is to show
this commonly held belief should be reconsidered. We demonstrate that a regular-
ized geometric registration approach in the spirit of ICP can achieve outstanding
performance, and therefore represents a highly viable alternative to commonly em-
ployed techniques from the vision community like discriminative (Tompson et al.
2014) and PSO (Oikonomidis et al. 2011a, Qian et al. 2014, Sharp et al. 2015)
methods.

Our regularized geometric registration achieves robust, highly articulated hand track-
ing at up to 120 frames per second (fps). We quantitatively and qualitatively compare
the performance of our algorithm to recent appearance-based and model-based tech-
niques (see Section 6.5). These comparisons show a significant improvement in
accuracy and robustness compared to the current state-of-the-art. The source code
of our implementation is publicly available2.

6.1 Related work

The main focus of the work presented in this chapter is on improving the robustness
and accuracy of model-based hand tracking approaches by combining effective 2D
and 3D registration energies with carefully designed priors. While our work is tar-
geted towards using a single commodity depth sensor, accurate model-based tracking
has been achieved in multiple camera setups (Sridhar et al. 2013, 2014), where the
multiple vantage points help resolving challenging occlusions. Multiple camera sys-

2https://github.com/OpenGP/htrack

80

https://github.com/OpenGP/htrack
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tems have also been used successfully to model precise hand-hand and hand-object
interactions (Oikonomidis et al. 2011b, Ballan et al. 2012, Wang et al. 2013). All of
these methods require a complex acquisition setup and manual calibration, which
makes them less suitable for the kind of consumer-level applications that we target
with this work.

Particle swarm optimization (PSO) methods achieve interactive (15 fps) tracking
with a single RGBD camera (Oikonomidis et al. 2011a). PSO techniques have also
been applied successfully to model challenging interaction between two hands
(Oikonomidis et al. 2012) at a reduced rate of 4 fps. PSO is an optimization heuristic
that does not use the gradient information of the considered optimization prob-
lem, but instead uses a stochastic sampling strategy. For this reason the accuracy
and efficiency of PSO approaches heavily rely on the number of samples used.
Oikonomidis et al. (2014) introduced a more advanced sampling strategy that im-
proves tracking efficiency without compromising quality. Sharp et al. (2015) com-
bined the PSO model-fitting technique with a per-frame reinitializer for recovery
from loss of tracking, which increased robustness. However, gradient-based opti-
mization approaches converge faster and more accurately than PSO when close to
the solution, and are therefore well suited for real-time applications (Qian et al.
2014).

Compelling 60 fps real-time performance was recently shown using gradient-based
optimization by Melax et al. (2013), where the optimization is expressed as a convex
rigid body simulation, and numerous heuristics for reinitialization were employed
to avoid tracking failures. Rather than resorting to reinitialization for robustness,
in (Schröder et al. 2014) we formulated the optimization in a subspace of likely
hand postures. While the lower number of optimization variables leads to efficient
computations, tracking accuracy can be limited by the reduced posture complexity
induced by the subspace. We compare the method presented in this chapter to these
algorithms and demonstrate substantial improvement in tracking robustness and
accuracy.

Regarding recent appearance-based methods (Tompson et al. 2014, Tang et al. 2014),
we demonstrate comparable or improved performance when tracking hands in iso-
lation. We also highlight the potential of model-based tracking by observing how
appearance-based methods suffer from severe loss of tracking when extraneous ge-
ometry is introduced in proximity of the hand. In contrast, our technique is able
to remain stable during data aberrations typical in hand-hand, hand-object interac-
tions.

In this work, we show that hand tracking can be formulated as a single gradient-
based optimization to obtain an efficient and accurate real-time tracking system run-
ning at up to 120 fps. By using a combination of geometric and data-driven priors we
achieve significant improvements in tracking quality and robustness.
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Figure 6.2: Overview of our algorithm. For each acquired frame we extract a 3D
point cloud of the hand and the 2D distance transform of its silhouette.
From these we compute point correspondences to align a cylinder model
of the hand to best match the data. This registration is performed in an
ICP-like optimization that incorporates a number of regularizing priors
to ensure accurate and robust tracking.

6.2 Articulated ICP hand tracking

Robust hand tracking with a commodity depth sensor is highly challenging due to self-
occlusion, low quality/density of sensor data and the high degree of articulation of
the human hand. We address these issues by proposing a regularized articulated ICP-
like optimization that carefully balances data fitting with suitable priors (Figure 6.2).
Our data fitting performs a joint 2D-3D optimization. The 3D alignment ensures
that every point measured by the sensor is sufficiently close to the tracked model
H. Simultaneously, as we cannot create such constraints for occluded parts of the
hand, we integrate a 2D registration that pushes the tracked model to lie within the
sensor visual hull. A carefully chosen set of priors regularizes the solution to ensure
the recovered posture is plausible.

Acquisition device

Our system processes raw data acquired at 60 fps from a single RGBD sensor. Fig-
ure 6.3 illustrates this data for the PrimeSense Carmine 1.09 structured light sensor
as well as the Creative Gesture Camera time-of-flight sensor. From the raw data our
algorithm extracts a 2D silhouette image Ss and a 3D point cloud Xs. The two sensors
exhibit different types of imperfections. The precision of depth measurements in the
PrimeSense camera is significantly higher. However, substantial holes often occur at
grazing angles, e.g. note the gap in the data where we would expect to see the index
finger. Conversely, the Creative Gesture Camera provides an accurate and gap-free
silhouette image, but suffers from high noise in the depth measurements, therefore
resulting in very noisy point clouds. Our algorithm is designed to handle both types
of imperfections. This is achieved by formulating an optimization that jointly consid-
ers silhouette and point cloud, balancing their contribution in a way that conforms
to the quality of sensor data.
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Xs

Xs

Xs

Xs

Ss

Ss

Figure 6.3: The two different sensors used in our experiments provide data with
substantially different characteristics. Top: Intel’s Creative Interactive
Gesture camera (time of flight) provides a complete silhouette image, but
low quality depth measurements, resulting in severe point cloud noise.
Bottom: Point clouds acquired by the PrimeSense camera (structured
light) are much smoother, but the silhouette image can contain significant
gaps.

Tracking model

Our algorithm registers a template hand model to the sensor data. Similar to other
techniques (Oikonomidis et al. 2011a, Schröder et al. 2014), we employ a simple
(sphere capped) cylinder model as a geometric template; see Figure 6.4. We opti-
mize for 26 degrees of freedom, 6 for global rotation and translation and 20 for
articulation. Like in (Melax et al. 2013), the model can be quickly adjusted to the
user by specifying global scale, palm size and finger lengths. In most scenarios, it is
sufficient to perform a simple uniform scaling of the model. Such a coarse geometry
is sufficient for hand tracking, as the signal-to-noise ratio for commercially available
RGBD sensors is low for samples on the fingers when compared to the size of a finger.
Furthermore, the computation of closest-point correspondences can be performed in
closed form and in parallel, which is essential for real-time performance. While the
geometry of the model used for tracking remains coarse, our algorithm computes
joint angles (including rigid transformation) in the widespread BVH motion sequence
format; these can be used to drive a high-resolution skinned hand rig as illustrated
in Figure 6.4.

Preprocessing

The silhouette image Ss is not directly available from the sensor and needs to be
computed. This labeling can be obtained by extracting the sensor color image and
performing a skin color segmentation (Oikonomidis et al. 2012, Schröder et al.
2014), or can be obtained directly from depth images by performing a classification
with randomized forests (Tompson et al. 2014). Another possibility is to exploit a
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Figure 6.4: A visualization of the template hand model with the number and location
of degrees of freedom of our optimization. From left to right: The cylinder
model used for tracking, the skeleton, the BVH skeleton exported to Maya
to drive the rendering, the rendered hand model.

sensor cloudXs

sensor silh. Ss

wristband mask

depth image

PCA wristband hand ROI

`

Figure 6.5: We first identify the wristband mask by color segmentation, then compute
the 3D orientation of the forearm as the PCA axis of points in its proximity.
Offsetting a 3D sphere from the wristband center allows isolating the
region of interest. The obtained silhouette image and sensor point clouds
are shown on the right.
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full-body tracking algorithm (Shotton et al. 2011) and segment the hand according
to the wrist position. For gestural tracking, where the hand is typically the closest
object to the sensor (Qian et al. 2014), a black wristband can be used to simplify
segmentation by creating a gap in the depth image. Similarly to this method, in
our system the user wears a colored wristband. We first identify the position of the
wristband in the scene by color segmentation, then retrieve the 3D points in the
proximity of the wristband and compute the principal axis. This axis, in conjunction
with the wristband centroid, is then used to segment the hand point cloud. Any depth
pixel within the hand point cloud is labeled as belonging to the silhouette image Ss
as shown in Figure 6.5.

6.3 Energy optimization

In this section we derive the objective functions of our model-based optimization
method and provide the rationales for our design choices. Let F be the sensor input
data consisting of a 3D point cloud Xs and 2D silhouette Ss (see Figure 6.3). Given
a 3D hand model H with joint parameters θ = (θ1, θ2, . . . , θ26), we aim at recovering
the pose and posture θ of the user’s hand, matching the sensor input data F . To
achieve this goal, we solve the optimization problem

min
θ
E3D + E2D+Ewrist︸ ︷︷ ︸

Fitting terms

+Eposture + Ekinematic + Etemporal︸ ︷︷ ︸
Prior terms

, (6.1)

combining fitting terms that measure how well the hand parameters θ represent the
data frame F , with prior terms that regularize the solution to ensure realistic hand
postures. For brevity of notation we omit the arguments θ,Xs,Ss of the energy terms.
We first introduce the fitting terms and present our new solution to compute tracking
correspondences. Then we discuss the prior terms and highlight their benefits in
terms of tracking accuracy and robustness. More details on the implementation of
the optimization algorithm is given in Section 6.4.

6.3.1 Fitting Energies

For the geometric fitting energies, we distinguish between 3D and 2D correspon-
dences. This makes it possible to deal with discrepancies between the observed hand
and the hand model. Considering correspondences in only one direction (e.g. only
sensor to model as in Schröder et al. 2014) results in a fitting bias, which deteriorates
tracking quality. By considering 3D constraints for observed point cloud positions
and 2D constraints in image space for the rendered hand model, we make use of
all available data, which facilitates a much closer fit between the model and the
data.
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Figure 6.6: Illustration of correspondences computations. The circles represent cross-
sections of the fingers, the small black dots are samples of the depth
map. (a) A configuration that can be handled by standard closest point
correspondences. (b) Closest point correspondences to the back of the
cylinder model can cause the registration to fall into a local minimum.
Note that simply pruning correspondences with back-pointing normals
would not solve this issue, as no constraints would remain to pull the
finger towards the data. (c) This problem is resolved by taking visibility
into account, and computing closest points only to the portion of the
model facing the camera.

Point cloud alignment

The termE3D models a 3D geometric registration in the spirit of ICP as

E3D = ω1
∑

t∈Xs

‖t−ΠH(t,θ)‖2, (6.2)

where ‖ · ‖2 denotes the `2 norm, t represents a 3D point of Xs, and ΠH(t,θ) is
the projection of t onto the hand model H with hand posture θ. Note that we
compute a sum of absolute values of the registration residuals, not their squares.
This corresponds to a mixed `2/`1 norm of the stacked vector of the residuals. For 3D
registration such a sparsity-inducing norm has been shown to be more resilient to
noisy point clouds containing a certain amount of outliers such as the ones produced
by the Creative sensor (Figure 6.3). We refer to (Bouaziz, Tagliasacchi and Pauly
2013) for more details.
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(a) (b) (c)

c1 c1 c1

c2

c2 c2

Figure 6.7: Illustration of the impact of self-occlusion in correspondences computa-
tions. (a) The finger c2 initially occluded by finger c1 becomes visible,
which causes new samples to appear. (b) Closest correspondences to the
portion of the model visible from the camera do not generate any con-
straints that pull c2 toward its data samples. This is the approach in (Wei
et al. 2012), where these erroneous matches are then simply pruned. (c)
Our method also considers front-facing portions of the model that are
occluded, allowing the geometry to correctly register.

3D correspondences

The 3D registration terms involves computing the corresponding point y = ΠH(t,θ)
on the cylinder model H for each sensor point t ∈ Xs. In contrast to standard closest
point search, we define the correspondence y as the closest point on the front-facing
part “H of H. This includes parts of the model that are oriented towards the camera
but occluded by other parts. In our experiments we learned that this seemingly sim-
ple extension proved absolutely essential to obtain high-quality tracking results. Only
considering model points that are visible from the sensor viewpoint, i.e., matching to
the rendered model, is not sufficient for handling occlusions or instances of disappear-
ing and reappearing sensor data; see Figure 6.6 and Figure 6.7.

To calculate y, we first compute the closest points tC of t to each cylinder C ∈ H.
Recall that our hand model consists of sphere-capped cylinders so these closest
points can be computed efficiently in closed form and in parallel for each t ∈ Xs.
We then identify back-facing points using the dot product of the cylinder surface
normal n at tC and the view ray vector v. For efficiency reasons, we use a simplified
orthographic camera model where the view rays are constant, i.e., v = [0 0 1]T .
If a point on a cylinder is back-facing (nTv > 0), we project t onto the cylinder’s
silhouette contour line from the camera perspective, whose normals are orthogonal
to v.

A different strategy to address visibility issues has been introduced in (Qian et al.
2014). These methods propose an energy that penalizes areas of the model falling
in front of the data, which is then optimized using particle swarms. This energy can
be integrated into our optimization following the formulation in (Wei et al. 2012,
Eq. 15). However, such an energy is prone to create local minima in gradient-based
optimization, as illustrated in Figure 6.8. Here the thumb has difficulty entering the
palm region, as it must occlude palm samples before reaching its target configuration.
Our correspondence search avoids such problems. Furthermore, Qian et al. (2014)
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Figure 6.8: Correspondence computations. The top row shows the strategy used
in (Qian et al. 2014) adapted to our gradient-based framework according
to the formulation given in (Wei et al. 2012). The bottom row shows the
improved accuracy of our new approach.

follow a hypothesize-and-test paradigm where visibility constraints in the form of
ray-casting are easy to include. As discussed in (Ganapathi et al. 2012), such con-
straints are much more difficult to include in iterative optimization techniques like
ours. However, our front-facing correspondences computation provides a simple and
elegant way to deal with such shortcomings.

Silhouette alignment

The 3D alignment energy E3D robustly measures the distance between every point
in the 3D point cloud Xs to the tracked model H. However, as hands are highly artic-
ulated, significant self-occlusions are common during tracking. Such self-occlusions
are challenging, because occluded parts will not be constrained when only using a 3D
alignment energy. For this reason, we use a 2D silhouette term E2D that models the
alignment of the 2D silhouette of our rendered hand model with the 2D silhouette
extracted from the sensor data as

E2D = ω2
∑

p∈Sr

‖p−ΠSs(p,θ)‖22, (6.3)

where p is a 2D point of the rendered silhouette Sr, and ΠSs(p,θ) denotes the
projection of p onto the sensor silhouette Ss. Figure 6.9 shows why the silhou-
ette term is crucial to avoid erroneous postures when parts of the model are oc-
cluded. Without the silhouette energy, the occluded fingers can mistakenly move
to wrong locations, since they are not constrained by any samples in the depth
map.
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Ss

Ss

silhouette w/o silhouette w/ silhouette

Figure 6.9: Our 2D silhouette registration energy is essential to avoid tracking errors
for occluded parts of the hand. When no depth data is available for
certain parts of the model, a plausible posture is inferred by ensuring
that the model is contained within the sensor silhouette image Ss.

2D correspondences

In Equation (6.3), we compute the silhouette image Sr by first rendering the hand
model H from the viewpoint of the sensor, caching the bone identifier and the 3D
location associated with each pixel in a texture. The projection function ΠSs(p,θ)
to compute the closest corresponding point to the sensor silhouette is evaluated
efficiently using the 2D distance transform of Ss. We use the linear time algorithm
of (Felzenszwalb and Huttenlocher 2012) and store at every pixel the index to the
closest correspondence.

Wrist alignment

The inclusion of the forearm for hand tracking has been shown beneficial in (Melax
et al. 2013). Our wrist alignment energy encodes a much simplified notion of the
forearm in the optimization that enforces the the wrist joint to be located along its
axis.

Ewrist = ω3‖Π2D (k0(θ))−Π`(k0(θ))) ‖22. (6.4)

Minimizing this energy helps preventing the hand from erroneously rotating/flipping
during tracking. Here k0 is the 3D position of the wrist joint, and ` is the 2D line
extracted by PCA of the 3D points associated with the wristband; see Figure 6.5. Note
that Π2D causes residuals to be minimized in screen-space, therefore the optimization
of this energy will be analogous to the one of Equation (6.3). We optimize in screen
space because, due to occlusion, we are only able to observe half of the wrist and
this causes its axis to be shifted toward the camera.
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Figure 6.10: An illustration of the PCA posture-space used to regularize the optimiza-
tion. Black dots denote the samples of the data base. High likelihood
postures are located nearby the mean of the latent space (dark red).
The eigenvalues of the PCA define the metric in the low-dimensional
space, skewing it in certain directions. Postures that, according to this
metric, are far from the mean are likely to be unnatural and will be
penalized in the optimization.

6.3.2 Prior Energies

Minimizing the fitting energies alone easily leads to unrealistic or unlikely hand
postures, due to the deficiencies in the input data caused by noise, occlusions, or
motion blur. We therefore regularize the registration with data-driven, kinematic,
and temporal priors to ensure that the recovered hand postures are plausible. Each
of these terms plays a fundamental role in the stability of our tracking algorithm, as
we illustrate below.

Data-driven prior

The complex and highly coupled articulation of human hands is difficult to model
directly with geometric or physical constraints. Instead, we use our publicly available
database of recorded hand postures (Schröder et al. 2014) to create a data-driven
prior Eposture that encodes this coupling. We construct a low-dimensional subspace
of plausible postures by performing dimensionality reduction using PCA (see Fig-
ure 6.10). We enforce the hand parameters θ to lie close to this low-dimensional
linear subspace using a data term Eposture = Eprojection + Emean. To define the data
term, we introduce auxiliary variables θ̃, i.e, the PCA weights, representing the (not
necessarily orthogonal) projection of the hand posture θ onto the subspace; see Fig-
ure 6.11. The projection energy measures the distance between the hand parameters
and the linear subspace as

Eprojection = ω4‖(θ − µ)−ΠP θ̃‖22, (6.5)
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θ

θ̃
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P

Figure 6.11: An illustration of the energies involved in our posture-space prior. For il-
lustration purposes the full dimensional parameter vector θ ∈ R3, while
latent space variable θ̃ ∈ R2. The PCA optimization in (Schröder et al.
2014) constrains the posture parameters θ to lie on the subspace P. Con-
versely, we penalize the distance of our posture from P (Equation (6.5));
simultaneously, we ensure our posture remains likely by preventing it
from diverging from the mean of the distribution (Equation (6.6)).

where µ is the PCA mean. The matrix ΠP , i.e., the PCA basis, reconstructs the hand
posture from the low-dimensional space. To avoid unlikely hand postures in the
subspace, we regularize the PCA weights θ̃ using an energy

Emean = ω5‖Σθ̃‖22. (6.6)

Σ is a diagonal matrix containing the inverse of the standard deviation of the PCA
basis. Our tracking optimization is modified to consider the posture space by in-
troducing the auxiliary variable θ̃ and then jointly minimizing over θ and θ̃. The
difference between our approach and optimizing directly in the subspace is further
discussed in Section 6.4.4.

The regularization energy in Equation (6.6) helps the tracking system recover from
tracking failures. When no sensor constraints are imposed on the model, the opti-
mization will attempt to push the posture toward the mean – a statistically likely
posture from which tracking recovery is highly effective.

Figure 6.13 illustrates how the PCA data prior improves tracking by avoiding unlikely
postures, in particular when the input data is incomplete. We found that even when
data coverage is sufficient to recover the correct posture, the data term improves
the convergence of the optimization as illustrated in Figure 6.12. Figure 6.14 shows
how our regularized projective PCA formulation outperforms the direct subspace
optimization proposed in previous work.
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Figure 6.12: Beyond favoring natural postures, the data prior term also positively af-
fects convergence speed. Top: With the same number of iterations, only
with activated data term does the model fully register to the scan. The
illustration below shows how the same final state requires significantly
fewer iterations with the data term.
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Figure 6.13: Our posture-space regularization using a PCA prior ensures that a mean-
ingful posture is recovered even when significant holes occur in the
input data.
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89%, #PCA=4 96%, #PCA=6 99%, #PCA=9 79%, #PCA=2

ω4 = 108 ω4 = 108 ω4 = 108 ω4 = 102

Figure 6.14: Optimizing directly in the PCA subspace (Schröder et al. 2014) can lead
to inferior registration accuracy. We replicate this behavior by setting
ω4 in Equation (6.5) to a large value. Even when increasing the number
of PCA bases to cover 99% of the variance in the database, the model
remains too stiff to conform well to the input. Our approach is able to
recover the correct hand posture by optimizing for projection distances
even with a very limited number of bases (right).

Kinematic prior

The PCA data term is a computationally efficient way of approximating the space of
plausible hand postures. However, the PCA model alone cannot guarantee that the
recovered posture is realistic. In particular, since the PCA is symmetric around the
mean, fingers bending backwards beyond the physically realistic joint angle limits are
not penalized by the data prior. Similarly, the PCA model is not descriptive enough to
avoid self-intersections of fingers. These two aspects are addressed by the kinematic
prior Ekinematic = Ecollision +Ebounds. Under the simplifying assumption of a cylinder
model, we can define an energy Ecollision that accounts for the inter-penetration
between each pair of (sphere-capped) cylinders:

Ecollision = ω6
∑
{i,j}

χ(i, j)(d(ci, cj)− r)2, (6.7)

where the function d(·, ·) measures the Euclidean distance between the cylinders
axes ci and cj , and r is the sum of the cylinder radii. χ(i, j) is an indicator function
that evaluates to one if the cylinders i and j are colliding, and to zero otherwise.
The top row of Figure 6.15 shows how this term avoids interpenetrations of the
fingers.

To prevent the hand from reaching an impossible posture by overbending the joints,
we limit the joint angles of the hand model:

Ebounds = ω7
∑
θi∈θ

χ(i)(θi − θi)2 + χ(i)(θi − θi)2, (6.8)
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Figure 6.15: Kinematic priors augment the data prior to account for inconsistencies

in the posture space. The collision term avoids self-collisions (top row),
while the term for joint angle bounds avoids overbending of the finger
joints.

where each hand joint is associated with conservative bounds
[
θi, θi

]
. For the bounds,

we use the values experimentally determined by Chan and Dubey (1995). χ(i) and
χ(i) are indicator functions. χ(i) evaluates to one if θi < θi, and to zero otherwise.
χ(i) is equal to one if θi > θi, and zero otherwise. The bottom row of Figure 6.15
illustrates the effect of the joint angle bounds.

Temporal prior

A common problem in particular with appearance-based methods are small-scale
temporal oscillations that cause the tracked hand to jitter. A standard way to enforce
temporal smoothness is to penalize the change of model parameters θ through
time, for example, by penalizing a quadratic energy accounting for velocity ‖θ̇‖2
and acceleration ‖θ̈‖2 (Wei et al. 2012). However, if we consider a perturbation
of the same magnitude, it would have a much greater effect if applied at the root,
e.g., global rotation, than if applied to an element further down the kinematic tree,
e.g., the last phalanx of a finger. Therefore, we propose a solution that measures
the velocity and acceleration of a set of points attached to the kinematic chain. We
consider the motion of vertices k of the kinematic chain K (Figure 6.4) and build an
energy penalizing the velocity and acceleration of these points:

Etemporal = ω8
∑

ki∈K
‖k̇(θ)‖22 + ω9

∑
ki∈K

‖k̈(θ)‖22. (6.9)

Figure 6.16 illustrates how the temporal prior reduces jitter and improves the overall
robustness of the tracking.
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Figure 6.16: The effect of the temporal prior. The graph shows the trajectory of the
y-coordinate of the fingertip over time as the index finger is bend up
and down repeatedly. The temporal prior reduces jitter, but also helps
avoiding tracking artifacts that arise when fragments of data pop in and
out of view.

6.4 Optimization implementation

In this section we provide more details on the implementation of our optimiza-
tion algorithm and describe the derivation of the necessary gradients and Jaco-
bians.

Optimization

The optimization of the tracking energy of Equation (6.1) over the posture θ is per-
formed by solving the non-linear least squares problem with a Levenberg-Marquardt
approach. The assumption is that a current estimate of θ is known from which we
then compute an update. More specifically, the high acquisition speed of the sens-
ing device allows us to employ the optimized parameters from the previous time
frame as the starting estimate. We then iteratively approximate the energy terms
using Taylor expansion and solve a linear system to get the update δθ at each it-
eration. As our algorithm achieves 60 fps tracking, the previously reconstructed
posture is of sufficiently high quality allowing our solve to converge within seven
iterations.
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Figure 6.17: During fast motion, optimizing directly for a fully articulated hand can
lead to incorrect correspondences and cause loss of tracking (middle
row). By compensating for the rigid motion ahead of solving for joint
angles, our system can better capture fast movements (bottom row).

Initialization

As a user enters the scene our method is initialized by the fingertip detection and
fitting from (Qian et al. 2014). Other appearance-based methods could be used for
initialization as well (Tompson et al. 2014). We also reinitialize the tracking in case
a severe tracking failure is detected using the method of (Wei et al. 2012). Such
reinitialization occurs rarely (e.g. less than 0.5% of the frames in the sequence of
Figure 6.23).

Rigid bias

To improve the convergence of our solver in case of fast motion, we first perform
the optimization in Equation (6.1) for the rigid motion only by optimizing for the
root of the kinematic chain. As shown in Figure 6.17, optimizing first for the rigid
motion prior to the full posture estimation leads to improved robustness of the
tracking.

System parameters

For all our results we fix our parameters to ω1 = ω2 = ω5 = 1, ω4 = 103, ω3 = ω6 =
ω7 = 108, ω8 = ω9 = 3. We determined these weights empirically by re-tracking
multiple sequences with different sets of parameters. Our system was tested on an
Intel Core i7 4GHz with NVIDIA GTX980 GPU running Ubuntu 12.02. To run on a
60Hz RGBD device such as the PrimeSense Carmine 1.09 or the Creative Gesture
Camera, we perform 1 rigid iteration and 7 full iterations, at 1.5ms per iteration. We
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perform closed form closest point correspondences and Jacobian computation for
the fitting energies on the GPU. The number of iterations can be easily adapted to
run on the new Intel RealSense 3D Camera (F200) at 120Hz or at even higher frame
rates on future devices.

6.4.1 Jacobian matrices

In the following, we briefly provide the Jacobians relevant for the optimization. In
particular, the perspective projection Jacobian and the skeleton Jacobian.

Perspective projection Jacobian

The Jacobian of the perspective projection is a [2 × 3] matrix depending on the
focal length of the camera f = [fx, fy] and the 3D position x at which it is evalu-
ated (Bouaziz et al. 2014):

Jpersp(x) =
[(
fx/xz 0 −xxfx/x2

z

0 fy/xz −xyfy/x2
z

)]

Skeleton Jacobian

The skeleton Jacobian Jskel(x) is a [3 × 26] matrix. For each constraint, the bone
identifier b = id(x) associated to each 3D point x determines the affected portion
of the kinematic chain. That is, it identifies the non-zero columns of Jskel(x). As
discussed in (Buss 2004), the i-th column of Jskel(x) contains the linearization of i-th
joint about x (see also Section 3.2.2).

6.4.2 Approximation using linearized functions

To approximate the following energies, we approximate E = ‖f(x)‖22 by linearizing
f(x) as

f(x)|x ≈ f(x) + J(x)δx.

The approximation is then expressed as

Ē = ‖f(x) + J(x)δx‖22. (6.10)
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Joint bounds

The joint bounds energy can be written as

Ēbound = ω7
∑
θi∈θ

χ(i)(δθi + θi − θi)2 + χ(i)(δθi + θi − θi)2.

This energy penalizes kinematic parameters violating their upper or lower bounds
by generating a high damping weight for them.

Temporal coherence

To compute the velocity k̇(θ) and the acceleration k̈(θ) of a point k attached to the
kinematic chain, we use finite differences. The linearization of the temporal energy
becomes

Ētemporal = ω8
∑
k∈K
‖Jskel(k)δθ + (k− kt−1)‖22

+ ω9
∑
k∈K
‖Jskel(k)δθ + (k− 2kt−1 + kt−2)‖22,

where kt−1 and kt−2 are the position of such points from the two previously opti-
mized frames.

Data-driven prior

The data-driven projection energy can be rewritten as

Ēposture = ω4
∥∥∥(I−ΠPMΠT

P)(δθ + θ − µ)
∥∥∥2

2
,

where M = ω4(ω5Σ2 + ω4I)−1. The distinction between this formulation and an
orthogonal subspace projection is further discussed in 6.4.4.

6.4.3 Approximation using linearized `2 distance

To approximate the following energies, we first reformulate the quadratic form E =
‖f(x)‖22 asE = (‖f(x)‖2)2. We then linearize the `2 norm ‖f(x)‖2 as

‖f(x)‖2|x ≈ ‖f(x)‖2 + f(x)T

‖f(x)‖2
J(x)δx.
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The approximation is then expressed as

Ē =
(
‖f(x)‖2 + f(x)T

‖f(x)‖2
J(x)δx

)2

.

When the energy is of the form E = ‖x−Π(x)‖22 where Π(x) is a projection operator,
Bouaziz et al. (2012) showed that f(x)TJ(x) = f(x)T . In this case, the approximate
energy can be simplified as

Ē =
(
‖f(x)‖2 + f(x)T

‖f(x)‖2
δx
)2

.

Contrary to the approximation in Equation (6.10), the Jacobian of the projection
function does not need to be known. This formulation is useful as the approximation
in the equation above only needs to evaluate the projection function and therefore
allows to use arbitrarily complex projection functions.

Point cloud alignment

We linearize the point cloud alignment energy as

Ē3D = ω1
∑

t∈Xs

ωre(nT (Jskel(y)δθ + d))2,

where y = ΠH(t,θ) is the closest point from t on the hand model H with hand
posture θ. n is the surface normal at y, and d = (y − t). As we minimize the `2
norm we use a weight ωre = 1/‖d‖2 in an iteratively re-weighted least squares
fashion (Bouaziz, Tagliasacchi and Pauly 2013).

Silhouette alignment

The silhouette energy is expressed in screen space, and therefore employs the per-
spective projection Jacobian Jpersp(x), where x is the 3D location of a rendered
silhouette point p. Similarly to the point cloud alignment the linearization can be
expressed as

Ēsilh. = ω2
∑

p∈Sr

(nT (Jpersp(x)Jskel(x)δθ + d))2,

where d = (p−q) with q = ΠSs(p,θ), and n is the 2D normal at the sensor silhouette
location q.
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Figure 6.18: (left) Collision constraints definition, deepest penetration points
marked as xi,xj . (right) When the collision energy is minimized in
isolation the penetration points are co-located.

Collision

Figure 6.18 illustrates the necessary notation with a 2D example, where xi and xj
are the end-points of the shortest segment between the two cylinders axes. The
linearized energy is defined as

Ēcoll. = ω6
∑
{i,j}

χ(i, j)
(
nTi ((Jskel(xi)− Jskel(xj))δθ + d)

)2

where ni is the surface normal at xi (as shown in Figure 6.18), and d = (xi −
xj).

6.4.4 Projective vs. subspace PCA

In Equation (6.6), minimizingEposture over θ̃ has a closed form solution:

θ̃ = (ω5Σ2 + ω4I)−1(ω4ΠT
P(θ − µ)).

We can therefore rewrite our data-driven energy only as a function of θ as

Eposture = ω4‖(θ − µ)−ΠPMΠT
P(θ − µ)‖22,

where M = ω4(ω5Σ2 + ω4I)−1. Our formulation does not only allow the solution
to stay close to the posture space, but also penalizes unlikely postures replacing
the conventional orthogonal projection matrix ΠPΠT

P by a matrix ΠPMΠT
P taking

into account the PCA standard deviation. Note that when ω5 = 0 we retrieve the
orthogonal projection matrix ΠPΠT

P .
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6.4.5 Non-linear least squares optimization

To solve our optimization problem we use a Levenberg-Marquardt approach. We itera-
tively solve Equation (6.1) using the approximate energies described in Section 6.4.1
through Section 6.4.3 leading to a damped least squares minimization

min
δθ

Ē3D + Ēsilh. + Ēposture + Ēkin. + Ētemporal + Ēdamping,

and update our hand posture using the update θ = θ + δθ. Note that since our
energies are written in the form:

ΣiĒi = Σi‖Jiδθ − ei‖22,

our solve can be re-written as

δθ =
(
ΣiJTi Ji

)−1 (
ΣiJTi ei

)
= 0.

To stabilize the optimization, we introduce a damping energy Ēdamping = λ‖δθ‖22,
where λ = 100.

6.4.6 CPU/GPU optimization

Our technique elegantly de-couples the components of our optimization on CPU
and GPU. With regards to Figure 6.2 only large-scale and trivially parallelizable
tasks, like the computation of constraints associated with 2D/3D ICP correspon-
dences are performed on GPU, while all others run efficiently on a single CPU thread.
In particular, the inversion in Equation (6.4.5) is performed on CPU by Cholesky
factorization (Eigen3). As the final solve is performed on CPU, we designed our
optimization to minimize memory transfers between CPU/GPU. First of all, note
that although at each iteration we need to render an image of the cylinder model,
the texture is already located on the GPU buffers. Furthermore, although the large
(≈ 20k × 26) Jacobian matrices associated with E3D and E2D are assembled on the
GPU, a CuBLAS kernel is used to compute the much smaller (26 × 26, 26 × 1) ma-
trices JTi Ji and JTi ei. Only these need to be transferred back to CPU for each solver
iteration.

6.5 Results

In the following, we analyze the performance of our real-time tracking system by
providing a comparison to several state-of-the art solutions.
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Figure 6.19: We quantitatively evaluate our algorithm on the Dexter-1 dataset from
(Sridhar et al. 2013). The measurements report the root mean square
errors of fingertip placements. The acquisition setup consists of several
calibrated video cameras and a single depth camera. For our results
and the method of Tang et al. (2014), only the depth image is used
for tracking, while the algorithms of Sridhar and colleagues also use
the video streams. The blue, green, and purple bars are reproduced
from (Sridhar et al. 2014). For our algorithm we report results without
(red) and with (orange) reinitialization.

Dexter-1 dataset (Sridhar et al. 2013)

Figure 6.19 shows a quantitative comparison with several existing methods on a pub-
licly available data set acquired at 25 Hz. As the graph illustrates, our solution clearly
outperforms the method of (Tang et al. 2014) that uses regression forest classifiers in
an appearance-based approach to estimate hand postures. We also significantly im-
prove upon the gradient-based optimization methods of (Sridhar et al. 2013, 2014)
that, in addition to the depth information, use RGB data from five additional video
cameras. As the dataset is acquired at 25 Hz, the performance of our algorithm (red)
is suboptimal. In particular, in a single frame fingers are occasionally displaced by
2 to 3 times their radii, thus corrupting ICP correspondences. By reinitializing with
finger detection as in (Qian et al. 2014) our performance considerably improves, as
shown in the figure.

Subspace ICP (Schröder et al. 2014)

Figure 6.20 shows a comparison to our model-based approach from Chapter 5. As
the figure illustrates, our method outperforms this previous work. A key difference
is that the previous method optimized directly in a PCA subspace, which tends to
over-constrain the solution, while the method we present here introduces a PCA
data term as a regularizer, which preserves the full expressiveness of the tracking
model. In addition, we introduce collision handling, apply robust norms for auto-
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Figure 6.20: A few comparison frames illustrating the difference in performance of
our method compared to (Schröder et al. 2014). From left to right we
can observe problems related to: correspondences to the back of the
model, lack of silhouette energy (3 times) and loss of tracking due to
fast motion.

matic outlier detection, and employ a more advanced correspondence search that
handles self-occlusions. In combination, these factors lead to substantial improve-
ments in tracking accuracy and robustness without compromising computational
efficiency.

Convex body solver (Melax et al. 2013)

We compare to this algorithm by employing the precompiled binaries from the Intel
Perceptual Computing SDK. We modifed the demo application to save the recorded
depth/color frames to disk while tracking. We then re-tracked this data from scratch
using our technique. As illustrated in Figure 6.21, our method offers a substantial
increase in tracking robustness compared to (Melax et al. 2013). This can be at-
tributed to any of the improvements we presented, but it is difficult to quantitatively
identify the causes, because no control on tracking parameters nor source code is
given. Their approach computes closest correspondences to the entire model, there-
fore not explicitly handling occlusion. The authors also proposed a technique to
ensure that the model is fully contained in the 3D convex hull of the data. Note that
in camera space, this amounts to constraints similar to the ones enforced by our 2D
registration (Equation (6.3)), except that the distance transform would be computed
from the 2D convex hull of the silhouette image. Figure 6.21 (Frame 448) illustrates
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Figure 6.21: Comparison to the method of Melax et al. (2013). The full sequence
can be seen in the accompanying video. We highlight a few frames that
are not resolved correctly by this method, but that can be handled suc-
cessfully with our solution. The last frame shows the better geometric
approximation quality of the convex body model used in (Melax et al.
2013) compared to our simpler cylinder model.

how our 2D registration better constrains feasible solutions. While in (Melax et al.
2013) correlation between fingers is manually introduced as a grasping bias, our
optimization is data driven and encodes correlation in a more principled way. As
illustrated in Figure 6.21, this approach often loses tracking during complex motion.
However, it is sometimes capable of recovering by sampling and then evaluating a
reduced set of postures, with an approach that is similar in spirit to (Oikonomidis
et al. 2011a). One advantage of their method is the higher geometric fidelity of
their convex bodies hand model compared to our cylinder model. Furthermore, our
evaluation demonstrated how their more precise representation of the hand’s Thenar
eminence, as well as the thumb articulation, can result in more natural fitting in
these regions.

Convolutional networks (Tompson et al. 2014)

Figure 6.23 shows a quantitative comparison with the appearance-based method
of (Tompson et al. 2014) on a dataset provided by the authors of that paper. Overall,
the tracking quality is comparable, with a somewhat lower average error for our
method. However, our solution avoids many of the high-error peaks of (Tompson et al.
2014) where tracking is lost completely. An additional advantage of our approach in
comparison to any of the existing appearance-based methods is that we can handle
more complex interactions of two hands, since such configurations are not part of
the training data sets of existing methods; see Figure 6.22.
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Figure 6.22: Developing robust model-based tracking is essential to enable tracking
of hands interacting with each other or with other objects in the en-
vironment. Here we illustrate that for our method tracking accuracy
is not significantly affected even though we are not modeling the sec-
ond hand. Note that such motion cannot be tracked successfully by
appearance-based methods such as (Tompson et al. 2014).
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Figure 6.23: Quantitative comparison to (Tompson et al. 2014). The graph shows the
average root mean square tracking error w.r.t. ground truth across 2440
frames. Some frames where the accuracy of the two methods differs
significantly are highlighted in the bottom row.
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Figure 6.24: Our algorithm relies on the presence of salient geometric features in the
depth map. Challenging sequences like a rotating fist lack such features
when acquired with current commodity depth sensors, which can result
in loss of tracking.

Limitations

Single-camera depth acquisition yields incomplete data and as such the posture re-
construction problem is inherently ill-posed. Tracking errors can occur in certain
situations as explained above when insufficient data is acquired due to occlusions or
fast motion. Similarly, the resolution of the sensor limits tracking accuracy. As shown
in Figure 6.24, when geometric features become indiscriminate, our registration ap-
proach fails. Integrating color and shading information could potentially address this
issue (de La Gorce et al. 2011). While our current system requires the user to wear a
wristband for detection and stabilization, this could be replaced by automatic hand la-
beling, e.g. using forest classifiers as in (Tompson et al. 2014).

Our cylinder model proved adequate for the data quality of current commodity sen-
sors, but is overall limited in geometric accuracy, and hence might not scale with
increasing sensor resolution. Also, in our current implementation the model needs
to be manually adapted to the user through simple scaling operations. Without
such adaptation, tracking accuracy degrades as shown in Figure 6.25. This user-
specific adaption could be automated (Taylor et al. 2014) and potentially even per-
formed simultaneously with the real-time tracking as recently proposed for face
tracking (Bouaziz, Wang and Pauly 2013).

The PCA model used in the prior energy is an efficient, but rather simplistic repre-
sentation of the posture space. We currently do not consider the temporal order in
which the hand postures of the database have been acquired, which could potentially
be exploited for more sophisticated temporal priors.
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Figure 6.25: When tracking with an uncalibrated model, tracking correspondences
can map to data belonging to erroneous portions of the model. In the
figure, the index finger remains attached to samples associated with the
thumb.

6.6 Discussion

We have introduced a new model-based approach to real-time hand tracking using a
single low-cost depth camera. This simple acquisition setup maximizes ease of deploy-
ment, but poses significant challenges for robust tracking. We have demonstrated
that accurate real-time hand tracking can be performed at 60FPS on a low-cost
RGBD device using a model-based approach. Robust tracking is achieved by combin-
ing 2D and 3D information extracted from the sensor data with a set of carefully
designed priors. We compared our method with multiple state of the art approaches
and showed that our system outperforms current model- and appearance-based
approaches.

Our analysis revealed that a major source of error when tracking articulated hands
are erroneous correspondences between the hand model and the acquired data,
mainly caused by outliers, holes, or data popping in and out during acquisition. We
demonstrate that these problems can be resolved by our new formulation of cor-
respondence search. In combination with suitable 2D/3D registration energies and
data-driven priors, this leads to a robust and efficient hand tracking algorithm that
outperforms existing model- and appearance-based solutions.

In our experiments we show that our system runs seamlessly for sensors capturing
data at 60 Hz. However, we can even support higher frame rates of up to 120 fps in
anticipation of future sensors that have recently been announced. By fully disclosing
our source code and data we ensure that our method and results are reproducible, as
well as facilitating future research and product development.

Examples of such future efforts are automatic personalization of the tracking model
to the acquired user, robust two-hand tracking with object interactions, combina-

107



6 Regularized articulated registration

tions of hand tracking with full body tracking algorithms, and integrating our hand
tracking solution to new interfaces and real-time applications.
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Chapter 7

Conclusion

In this thesis several different approaches for hand tracking were explored, including
marker-based optical motion capture, data-driven discriminative visual tracking and
generative tracking based on articulated registration. Furthermore, the dimensional-
ity of hand articulations was analyzed and models for low-dimensional hand posture
representations were derived, adapted and integrated into hand posture estimation
approaches. Real-time hand tracking systems using RGBD sensors were developed
and were shown to achieve high quality results.

We designed a method for automatically generating functional reduced marker lay-
outs for marker-based optical motion capture. Such layouts containing a low number
of markers simplify the hand motion capture and reconstruction process. Based on a
subspace-constrained inverse kinematics (IK) posture reconstruction approach, we
defined specific criteria for reduced marker layouts that combine the numerical stabil-
ity of the IK problem and the practical geometric feasibility of the layout. Optimizing
for these criteria produces reduced marker layouts that are well-suited for usage
in optical motion capture of hands. We developed a specialized surface-constrained
particle swarm optimization (PSO) process to generate such marker layouts. Our
approach established a qualitative relationship between subspace representations of
hand articulations and marker placement, and showed that plausible hand posture
reconstructions can be achieved from sparse marker input.

Based on previous work on discriminative hand tracking with a color glove, we
built a real-time hand tracking system and used it for interactive teleoperation of
an anthropomorphic robot hand. We modified the method by employing a simpli-
fied, efficient nearest neighbor search algorithm for color-labeled images based on
cascaded image matching using chamfering to efficiently approximate color class
distance transforms. Using an RGBD sensor allowed us to extend the discriminative
approach by a generative pose estimation step that aligns a textured hand model
with the color-classified input point cloud in a color-sensitive iterative closest point
(ICP) process.
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7 Conclusion

Analyzing motion captured human hand motions using principal component anal-
ysis (PCA) facilitated the construction of low-dimensional representations of hand
articulations. We integrated this subspace concept into an inverse kinematics hand
posture estimation process and developed a tracking method that combined this
inverse kinematics fitting with ICP in an articulated registration approach. To over-
come the limitations associated with dimension reduction, we proposed an online
adaptive PCA model that complements an initial hand posture subspace with a
continuously updated local linear model. This approach continuously captures new
incoming data in an adaptive subspace model by performing efficient incremen-
tal covariance computations based on rank-one updates. Integrating this adaptive
scheme in the inverse kinematics hand tracking system accomplished robust and flex-
ible real-time posture estimation by combining subspace-anchoring with continuous
refinements.

We formulated model-based hand tracking as a regularized articulated registration
process, in which a template hand model is aligned with point cloud input data ob-
tained from an RGBD sensor. The developed method combines geometric fitting with
statistical, kinematic and temporal priors in a unified registration framework. We
devised a combined 2D/3D registration and correspondence computation approach
that explicitly takes visibility and occlusions into account. Our optimized GPU im-
plementation allows for efficient processing of the entire input point cloud and the
silhouette pixels of the rendered hand model during the correspondence computa-
tions. Since the method represents the model fitting and regularization priors in a
unified way, the posture estimation itself is efficiently done in single linear solve. We
demonstrated that highly robust and accurate real-time hand tracking is achievable
using a gradient-based ICP approach, when designed with explicit occlusion han-
dling and combined with carefully designed regularizers, overcoming the propensity
of gradient-based methods to fall into local minima.

Various avenues of future work based on the contributions of this thesis are con-
ceivable. Our model-based tracking approaches show promise for being extended
towards robust two-hand tracking with object interactions, as well as combination
with and extension towards real-time full body tracking. Our analysis of subspace rep-
resentations of hand articulations based on PCA simplifies the hand tracking problem
and increases realism as well as robustness. Beyond that, more sophisticated hand
articulation priors, particularly data-driven temporal motion priors, could further
improve the hand posture estimation. The accuracy achieved by our combination
of data-driven discriminative estimation with an additional generative refinement
step indicates the potential of hybrid approaches that combine the strengths of dis-
criminative per-frame initialization and generative continuous refinement. Other
works on hand tracking also often utilize the concept of method hybridization to
maximize robustness and accuracy. An important contribution of our work is that
gradient-based registration methods can achieve outstanding performance for real-
time tracking. As the various different hand tracking approaches get more refined
and hardware capabilities increase, the combination of gradient-based generative
registration, discriminative detection and reinitialization, as well as stochastic per-
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turbation has the potential to advance technological development towards seamless
and pervasive integration of hand tracking and gestural interaction technologies in
every day life.
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