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Abstract
The control of self-motion is a basic, but complex task for both technical and biological sys-

tems. Various algorithms have been proposed that allow the estimation of self-motion from

the optic flow on the eyes. We show that two apparently very different approaches to solve

this task, one technically and one biologically inspired, can be transformed into each other

under certain conditions. One estimator of self-motion is based on a matched filter

approach; it has been developed to describe the function of motion sensitive cells in the fly

brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived

analytically with a technical background. If the distances to the objects in the environment

can be assumed to be known, the two estimators are linear and equivalent, but are

expressed in different mathematical forms. However, for most situations it is unrealistic to

assume that the distances are known. Therefore, the depth structure of the environment

needs to be determined in parallel to the self-motion parameters and leads to a non-linear

problem. It is shown that the standard least mean square approach that is used by the KvD

algorithm leads to a biased estimator. We derive a modification of this algorithm in order to

remove the bias and demonstrate its improved performance by means of numerical simula-

tions. For self-motion estimation it is beneficial to have a spherical visual field, similar to

many flying insects. We show that in this case the representation of the depth structure of

the environment derived from the optic flow can be simplified. Based on this result, we

develop an adaptive matched filter approach for systems with a nearly spherical visual field.

Then only eight parameters about the environment have to be memorized and updated dur-

ing self-motion.

1 Introduction
Knowing one’s self-motion is crucial for navigation, course control and attitude stabilization.
Although GPS can provide information about the position and thus about the self-motion of
an agent, this information depends on the reliability of the contact to satellites. GPS is not
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available to animals which have to rely on other means to gain information about their position
and self-motion. A direct method to measure self-motion for a walking artificial or biological
agent is counting the steps or, in the case of a wheeled vehicle, to monitor the turns of the
wheels. In contrast, most flying agents rely on their visual system to solve this task.

The visual system of an artificial or biological agent obtains information about self-motion
from pixel shifts in the retinal image over time. These pixel shifts can be described by vectors,
the optic flow vectors. The flow vectors depend on both the rotational and translational com-
ponents of self-motion as well as on the viewing direction. Moreover, for the translational com-
ponent it also depends on the distance to objects in the environment.

For small translations and rotations, the flow vector for viewing direction ~di is given by (see
[1] for derivation)

~pið~t ;~r; miÞ ¼ �mið~t � ð~t �~diÞ~diÞ �~r �~di

¼ �mið~di �~t �~diÞ �~r �~di;
ð1Þ

where μi is the inverse distance (“nearness”) to the object seen in direction ~di ,~t is the transla-
tion vector, and~r is the rotation vector (defining a rotation of angle r ¼j~r j around the axis
given by~r= j~r j). According to Eq (1), the flow vector~pi is perpendicular to the corresponding

viewing direction ~di . (We use 3d vectors to represent optic flow vectors. Otherwise one would
have to define a tangential plane for every viewing direction.)

There are two principally different ways to use optic flow information for self-motion esti-
mation. One way is to identify features in the retinal image at one point in time and find the
same features at the next time point in order to compute their displacement. Several technical
estimation methods for self-motion are based on these feature correspondences [2, 3]. They
rely on a small number of corresponding image points and have to concern about outliers.
Such estimation methods are widely used in the technical literature to determine the move-
ment and/or the calibration of a camera [4]. When the self-motion steps are small or the
frame rates are high an alternative way to extract self-motion information is possible. Instead
of extracting features in the image the local pixel shifts on the retina, called optical flow, pro-
duced by the self-motion of the agent is determined through spatiotemporal intensity corre-
spondences in the pattern. This can be done by a gradient-based detector like the Lucas-
Kanade detector [5], which compares spatial and temporal derivatives, or by a biologically
inspired detector, like the elementary movement detector of the correlation type [6, 7], which
uses spatiotemporal auto-correlation signals.

Here we propose a new adaptive approach which combines the advantages of two methods
for self-motion estimation based on optical flow, the matched filter approach (MFA) proposed
by Franz and Krapp [8] and an algorithm proposed by Koenderink and van Doorn (KvD algo-
rithm) [1]. The MFA estimates self-motion by using linear filters, so called matched filters.
Matched filters have the structural form of the pattern they are meant to detect [9] and are the
optimal detectors for patterns, which are disturbed by Gaussian errors. In this case the linear
filters of the MFA resemble ideal flow fields. Franz and Krapp [8] introduced six filters of this
type for the six self-motion components, three for translation and three for rotation. Each of
these six filters was tuned to one of the flow fields generated by the six self-motion components,
although in general the filters react also to flow generated by the other self-motion compo-
nents. There is one exception: For a flow field which covers the whole viewing sphere and for
isotropic distances, i.e. in the center of a sphere, Borst and Weber [10] showed that model neu-
rons acting as such linear filters are not influenced by other flow fields. To eliminate the
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influence of other flow fields in the case of an arbitrary field of view Franz et al. [11] introduced
a coupling matrix and used its inverse to uncouple the output of the model neurons.

The KvD algorithm is iterative and tries to determine not only the self-motion components
but also the distances of the moving agent to objects and surfaces in the environment. These
distances influence the translational optic flow and therefore the self-motion estimate. The
KvD algorithm starts with a simple distance estimate and determines in the same iteration
preliminary self-motion components. In the next iteration these preliminary self-motion com-
ponents are used as the basis for determining a better distance estimate, which is then used for
improving the motion estimate. By the MFA the distances are taken into account statistically
and are integrated without further changes in the filters. Dahmen et al. [12] have shown that
one iteration step of the KvD algorithm corresponds to the MFA of Franz and Krapp [8] by
assuming that some terms in the KvD algorithm are negligibly small. As an important step for
the the development of an adaptive approach we show that the MFA with a specific coupling
matrix is fully equivalent to one iteration step of the KvD algorithm and not just an approxi-
mation. The Gauss-Markov-Theorem [13] gives an explanation of this equivalence. This theo-
rem guarantees the existence of a unique optimal estimator for a linear estimation problem.
Both mentioned methods find this optimal solution, although the two approaches seem to be
totally different.

The MFA was proposed to explain the motion sensitivity structure of the tangential cells in
the fly visual system [8, 14–23]. These cells are directionally selective for motion within their
large receptive fields [16, 17, 24–26]. The spatial pattern of their motion sensitivity resembles
flow fields on the retina generated by self-motion. Therefore, these cells were proposed to act
as matched filters for self-motion estimation and to help the fly to solve visual orientation
tasks [8]. However, since the MFA makes a priori assumptions about the 3D structure of the
environment, self-motion estimation deteriorates in an environment with variable distance
distribution.

It is known that the fly’s nervous system can adapt to sensory inputs [27–32]. With this in
mind, we propose a biologically inspired adaptive MFA, which adapts to the depth structure of
the environment. This new model avoids the multiple iteration steps used by the KvD algo-
rithm, on the one hand, and the hard-wired distance dependence of the MFA, on the other
hand. The adaptive MFA extracts the depth structure from the optic flow field similar to the
KvD algorithm. When the distances are not known the self-motion estimation problem
becomes non-linear. Although the KvD algorithm is an optimal estimator in the linear case, it
is, as we will show, a biased estimator in the non-linear case. The error in the quantities which
are estimated does not converge to zero with increasing number of flow vectors. Therefore, we
propose a modified version of the KvD algorithm. Numerical simulations indicate that the
modified version has no bias.

On the basis of this modified KvD algorithm an adaptive MFA is developed that is inspired
by a property of the visual system of insects: Insects have a field of view which nearly covers
the whole sphere. It will be discussed that this property is beneficial for self-motion estimation
and hence is desirable also for artificial agents which navigate by means of their visual system.
The insect or agent should only adapt to the global properties of the depth structure and
ignore irrelevant details. To achieve this, the inverse distances are expanded in a complete set
of orthonormal functions, the spherical harmonics. It is desirable that the first-orders of this
function set contribute most to the solution of the self-motion problem. We show that in the
case of spherically distributed flow vectors all orders beyond the second-order of this function
set do not contribute to self-motion estimation and can, thus, be neglected without losing
information. Hence, if insects or artificial agents adapt to the depth structure they have to be
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sensitive only to low order depths functions, which are the dipole and quadrupole moments
of the depth structure.

2 Results
Amajor objective of this study is to show that two well-established self-motion estimators are
mathematically equivalent: The MFA equals one iteration step of the KvD algorithm when the
inverse distances to objects in the environment are assumed to be known. To achieve this, we
derive the MFA in an alternative way.

We then show that the KvD approach leads to an biased estimator in the general case when
distances are unknown and have to be estimated together with the self-motion parameters. We
present a modification of the KVD iteration equation that removes the bias and derive an adap-
tive MFA from this corrected version, which includes a simple but, with respect to self-motion
estimation, complete depth model.

Before dealing with these topics, both the basic equations underlying the MFA approach
and the KvD algorithm need to be introduced.

2.1 The matched filter approach
In the original MFA [8, 11, 33, 34] the depth structure of the environment is not determined
from the current flow field but described statistically with a fixed distribution that is assumed
to be known. The first statistical parameter considered in [11] is the average inverse distance
�m i, which is measured in every viewing direction over a number of learning flights in different
environments. The variability of the distances is given by the covariance matrix Cμ. Secondly,
the noise in the flow measurement is determined for each viewing direction ni where a zero
mean is assumed. The noise values are combined in the covariance matrix Cn. The third statis-
tical parameter is the distribution of the translations t. It is assumed that the agent does not
translate in every possible direction with the same probability. The corresponding statistical
parameter is the covariance matrix Ct.

An optic flow vector~pi has only two degrees of freedom because it is the projection of object

motion on the retina and thus orthogonal to the corresponding viewing direction~di. To con-
sider only these degrees of freedom Franz et al. [11] introduce a local two-dimensional vector

space for each viewing direction~di which is orthogonal to the direction~di:

xi ¼~pi �~ui ¼~p0
i �~ui þ nx;i ð2Þ

yi ¼~pi �~vi ¼~p0
i �~vi þ ny;i ð3Þ

where~u and~v are the basis vectors of the new vector space. The values xi and yi represent the
two degrees of freedom of~pi. The measured vector~pi consists of the true optic flow vector~p0

i

and an additive noise ni.
In [11] the weightsW for the matched filters which are multiplied with the optic flow com-

ponents~x (where~x is a 2N dimensional vector containing all flow components xi and yi, i = 1,

2, . . ., N) to estimate the six self-motion components~yest,

~yest ¼ W �~x; ð4Þ
are derived by a least-square principle:

e ¼ E k~y �~yestk2
� �

; ð5Þ
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where~y are the true self-motion components. The weight matrix that minimizes the error e is:

W ¼ ðFTC�1FÞ�1 � FT � C�1: ð6Þ

The covariance matrix C combines the covariance matrices Cμ, Cn and Ct. The matrix F is
given by

F ¼
��m1~u1

~u1 �~d1

;
��m1~v1

~v1 �~d1

;
��m2~u2

~u2 �~d2

;
��m2~v2

~v2 �~d2

; . . .

 !T

; ð7Þ

where �m i is the average or expected inverse distance for direction �di. The introduction of the
matched filter approach is kept short because an alternative derivation of this approach is
introduced in section 2.3, which is more suitable for the comparison with the KvD algorithm.

2.2 The Koenderink-van-Doorn (KvD) algorithm
As described by Koenderink and van Doorn [1], a straightforward approach for estimating the

self-motion parameters is to find, in accordance with Eq (1), a translation vector~t , a rotation
vector~r and inverse distances {μi}i = 1, 2, . . ., N that minimize the mean squared error between

the theoretical optical flow vectors according to Eq (1), f~pið~t ;~r ; miÞgi¼1;2;...;N and the measured

optical flow vectors f~pigi¼1;2;...;N :

eð~t ;~r; fmigÞ ¼
1

N

XN

i¼1

k~pið~t ;~r; miÞ �~pik2: ð8Þ

¼ 1

N

XN

i¼1

k � mi
~t � ~t �~di

� �
~di

� �
�~r �~di �~pik2 ð9Þ

Since the optic flow vector (see Eq [1]) depends on the product of~t and μi, the same flow vector

is obtained by multiplying~t and dividing μi by the same factor. Thus, an additional constraint
is imposed to ensure convergence of the minimization procedure. The algorithm described in

[1] uses the constraint k~tk ¼ 1 and, starting from an initial guess, solves for the motion param-
eters by iterating the following equations derived from Eq (8) until convergence:

mi ¼ �
~t � ~pi �~di �~r
� �
1� ~t �~di

� �2 ; ð10Þ

~t ¼ �x hm~pi þ~r � m~d
D E

� m2 ~t �~d
� �

~d
D En o

; ð11Þ

~r ¼ ~p �~d
D E

þ~t � m~d
D E

þ ~r �~d
� �

~d
D E

: ð12Þ

where ξ is a Lagrange multiplier ensuring the constraint k~tk ¼ 1. The brackets hi stand for the
average over all viewing directions, i.e. the summation over all directions i = 1, 2, . . ., N divided

by the number of directions N, e.g. m~ph i ¼ 1
N

PN
i¼1 mi~pi.
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2.3 Alternative derivation and properties of the coupling matrix in the
MFA
To compare the two self-motion estimators one needs another mathematical form of the cou-
pling matrix and the filters as given by the MFA (see 2.1). This can be achieved in two different
ways. One can either transform the original Eqs (4), (6) and (7) of the MFA or derive the MFA
in an alternative manner and show the equivalence to the original MFA afterward. Here, the
second way is chosen. The matched filters will be derived according to the theory of optimal fil-
ters. The coupling of the estimated self-motion parameters will then be determined by inserting
the filters in the flow Eq (1).

The optimal weights in the MFA depend on the statistics of the distances, of the noise and
of the preferred translations. Here we assume that nothing is known about these distributions
and thus consider the simplest case: The noise values are set to the same value independent of
the viewing direction. We assume no preference for specific translation directions. The average
inverse distances �m i are regarded as known.

The theory of optimal filters states that for a uniform Gaussian noise the best linear filter is
a matched filter which has the same form as the pattern it has to detect [9]. Therefore, the tem-
plates for estimating translational flow fields have the form of a translational flow field.

~T t
ia ¼ �mi

~di �~ea �~di

� �
: ð13Þ

We have three translational templates one for each possible direction of translation represented
by the three basis vectors~ea (a = 1,2,3).

Similarly, we have three rotational templates

~Tr
ia ¼ �~ea �~di: ð14Þ

The three translational and three rotational templates ~T t
a and ~T

r
a will be called “standard

templates”.

The scalar product ~T�~p
D E

of a flow field~p and a template ~T , where the brackets stand for

the mean over all viewing directions, can be interpreted as the output of a specific model

neurona ¼ ~T �~p
D E

. In general, the model neurons do not only react to the flow fields they are

tuned to, but also to other flow fields. To solve this problem Franz et al. [11] introduced a
matrix (FT C−1 F)−1 (see Eq (6)) which compensates for the coupling to other flow fields. The
coupling between the self-motion estimates and therefore the coupling matrix are determined

be inserting the templates ~T t
a and ~T

r
a in the flow Eq (1). For this, the translation~t and the rota-

tion~r must be separated into their components,~t ¼ t1~e1 þ t2~e2 þ t3~e3 and
~r ¼ r1~e1 þ r2~e2 þ r3~e3, with the six self-motion parameters t1, t2, t3 and r1, r2, r3.

Since the cross product is linear a~a þ b~b
� �

�~c ¼ a ~a �~cð Þ þ b ~b �~c
� �

, the overall flow

field is the sum of the six standard templates ~TA (A = 1, 2, . . ., 6) weighted by the six self-
motion components θA:

~pi ¼ t1~T
t
i1 þ t2~T

t
i2 þ t3~T

t
i3 þ r1~T

r
i1 þ r2~T

r
i2 þ r3~T

r
i3 ;

¼ y1~T i1 þ y2~T i2 þ y3
~T i3 þ y4

~T i4 þ y5~T i5 þ y6~T i6:
ð15Þ

Following our notation, the response of model neuron aA with corresponding template ~TA to
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the flow field~p (Eq (15)) is

aA ¼ ~TA �~p
D E

¼ ~TA �
X
B

~TByB

* +
¼
X

~TA � ~TB

D E
yB ¼

X
B

M̂AByB: ð16Þ

Combining the responses of all six model neurons in one equation gives

~a ¼ M̂ �~y; ð17Þ

where the vectors~a and~y are considered as six dimensional vectors. Each entry of the 6 × 6

dimensional matrix M̂ , the coupling matrix, can be seen as the generalized scalar product of
two of the six standard templates:

M̂AB ¼ ~TA � ~TB

D E
ð18Þ

We can also write the coupling matrix as

M ¼
Mtt Mtr

Mrt Mrr

 !
; ð19Þ

where the indices t and r of the 3 × 3 sub-matrices indicate which templates are multiplied.

Using the inverse of the coupling matrix we can estimate the motion parameters~y from the
responses of the model neurons,

~yest ¼ M̂�1~a ¼ M̂�1

~T t
1 �~p

D E
~T t

2 �~p
D E
~T t

3 �~p
D E
~Tr

1 �~p
D E
~Tr

2 �~p
D E
~Tr

3 �~p
D E

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: ð20Þ

The product ~T �~p
D E

and the multiplication with M̂�1 are linear transformations of the optical

flow. One can therefore define new templates T0 which include the linear transformation given

by the matrix M̂�1.
Dahmen et al. [12] tested previously the self-motion estimation performance for different

fields of view. The self-motion estimation performance even for error prone flow vectors is
high, if the flow fields corresponding to different self-motion components differ essentially
over the field of view. For a restricted field of view, for example a small region in front of the
agent, upward translation cannot be distinguished from a pitch rotation of the agent. In this
case the coupling matrix with constant distances becomes nearly singular and cannot be prop-
erly inverted.

In section 5.4 of the appendix it is shown by means of a coordinate transformation of two
dimensional flow vectors (in tangent planes) into three dimensional ones (on the sphere) that
Eq (20) is equivalent to Eq (4) with the weights given by Eq (6).
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2.3.1 Properties of the coupling matrix. The equivalence between the MFA and one iter-
ation of the KvD algorithm is shown in three steps. The first step was the alternative derivation
of the MFA described above. The following second step is a simplification of the four sub-
matrices of the coupling matrix.

Three cases have to be considered when calculating the entries of the matrix: the scalar
product between two translational templates, the scalar product between two rotational tem-
plates and the scalar product between a translational and a rotational template.

The scalar product between two translational templates leads to the following expression:

Mttð Þab ¼ ~T t
a � ~T t

b

D E
¼ m2h i~ea �~eb � m2 ~ea �~d

� �
� ~eb �~d
� �D E

:
ð21Þ

The scalar product between two rotational templates results in

Mrrð Þab ¼ ~Tr
a � ~Tr

b

D E
¼ ~ea �~eb � ~ea �~d

� �
� ~eb �~d
� �D E

:
ð22Þ

Finally, the scalar product between a translational and a rotational template leads to

Mtrð Þab ¼ �Mrtð Þab ¼ ~T t
a � ~Tr

b

D E
¼ ~eb �~eað Þ � m~d

D E
:

ð23Þ

Eq (21) informs us that the estimates of the three translation parameters t1, t2 and t3 are cou-

pled unless the term ~ea �~d
� �

� ~eb �~d
� �D E

inMtt is proportional to the identity matrix. The

same holds for the coupling between the three rotation parameters r1, r2 and r3 described by

Mrr, see Eq (22). Similarly, the term m~d
D E

inMtr, Eq (23), must be zero for the translation and

rotation estimates to be uncoupled.
2.3.2 The case of constant distances and a spherical field of view. Borst and Weber [10]

showed that for viewing directions homogeneously covering the whole sphere, and for identical
distances (μi = constant for all i) the model neurons respond only to the components of the
flow field they are tuned to. This result can be easily verified within the conceptual framework
provided here by replacing the sums in Eqs (21), (22) and (23) with integrals over the unit

sphere and by introducing spherical coordinates. The direction vectors~di are then replaced by

the vectors~dWφ that depend on the elevation angle ϑ and azimuth angle φ. In appendix 5.3 it is

shown that the direction vectors~dWφ in the spherical coordinate system have the same form as

the three real-valued dipole functions of the spherical harmonics. Due to the orthogonality of

the spherical harmonics the integral
R

~ea �~dWφ

� �
� ~eb �~dWφ

� �
sin ϑdϑdφ becomes zero in the

case of spherically distributed flow vectors, if~ea and~eb denote different basis vectors. The scalar
product between a translational and a rotational template Eq (23) leads to the integralR

~eb �~eað Þ �~dWφ sin WdWdφ which can be regarded as the product between a first-order dipole

function and the zeroth order spherical harmonic function (which is a constant). Due to the
orthogonality of the spherical harmonics this integral is zero.
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2.4 The relationship between the MFA and the KvD algorithm
In a final step we will show that the MFA with the coupling matrix is equivalent to one iteration
of the KvD algorithm [1] for known distances. Hence, the two approaches do not represent
principally different methods, but rather one method with two different ways of dealing with
the depth structure. An additional way to take the depth structure into account is given in sec-
tion 2.6 where an adaptive MFA is proposed.

Dahmen et al. [12] have already demonstrated that a MFA can be derived from the KvD
algorithm, if certain terms are small and can be neglected. We will show that these terms are
identical to entries of the coupling matrix, which was derived in the previous chapter.

The equivalence of the MFA and one iteration step of the KvD algorithm. Not only in
the MFA, but also in the KvD approach coupling terms can be identified. In the translation Eq
(11), the second term on the right side comprises the rotation. The rotation Eq (12) in turn
contains a translational term. These terms were called “apparent rotation” and “apparent trans-
lation” by Dahmen et al. [12], and they couple translation and rotation. The third terms in
both equations couple different components of the translation or the rotation whenever

m2~d �~d
D E

in m2 ~t �~d
� �

~d
D E

¼ m2~d �~d
D E

�~t or ~d �~d
D E

in ~r �~d
� �

~d
D E

¼ ~d �~d
D E

�~r con-
tain off-diagonal components. The following derivation will show that these coupling terms
are equivalent to the terms of the coupling matrix in the MFA.

The derivation starts with the MFA including the coupling matrix. From Eq (17) one
obtains together with the equations for the coupling matrix Eqs (21), (22) and (23):

~a ¼ M̂ �~y ¼
Mtt Mtr

Mrt Mrr

 !
�

~t

~r

0
@

1
A ¼

~T t
1 �~p

D E
~T t

2 �~p
D E
~T t

3 �~p
D E
~T r

1 �~p
D E
~T r

2 �~p
D E
~T r

3 �~p
D E

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

ð24Þ

Mttð Þab ¼ m2h i~ea �~eb � m2 ~ea �~d
� �

� ~eb �~d
� �D E

ð25Þ

Mtrð Þab ¼ m ~ea �~ebð Þ � ~d
D E

ð26Þ

Mrtð Þab ¼ � m ~ea �~ebð Þ � ~d
D E

ð27Þ

Mrrð Þab ¼~ea �~eb � ~ea �~d
� �

� ~eb �~d
� �D E

ð28Þ

On the left side of Eq (24), the vectors~t and~r are multiplied with the entries of the coupling
matrix. On the right side the optical flow vectors~p are multiplied with the templates. After
some algebraic simplifications, which are given in appendix 5.1, and a rearrangement of the
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terms one obtains the known equations for translation Eq (11) and rotation Eq (12) of the KvD
algorithm:

~t ¼ � 1

m2h i m~ph i þ~r � m~d
D E

� m2 ~t �~d
� �

~d
D En o

;

~r ¼ ~p �~d
D E

þ~t � m~d
D E

þ ~r �~d
� �

~d
D E

;

where 1

m2h i represents the Lagrange multiplier ξ.

Hence, the MFA and the KvD algorithm are identical for one iteration step.

2.5 The bias of the KvD algorithm
The equivalence of the KvD algorithm and the MFA for known distances follows directly from
the Gauss-Markov theorem [13], which states that an ordinary least-squares estimator is the
best unbiased estimator for an estimation problem which is linear and has uncorrelated errors
with equal variances. Both methods start with such a least-squares approach. The MFA mini-
mizes the quadratic error between the six true self-motion values and the estimated values as
can be seen in Eq (5), whereas the KvD algorithm minimizes the quadratic error between the
measured optic flow and the theoretical optic flow as can be seen in Eq (8). For known dis-
tances, the optic flow and the self-motion values are connected through a linear transforma-
tion. Thus, the two least-square approaches lead to the same self-motion estimator. This
estimator is the unique optimal estimator as stated by the Gauss-Markov theorem.

The situation is different if the distances are not known and have to be estimated by the esti-
mator together with the self-motion values. Then the problem is no longer linear and the
Gauss-Markov theorem does not hold. Nonetheless, it seems likely that a least-square approach
like in Eq (8) leads to an optimal estimator in the sense that the error in the estimated self-
motion components approaches zero with increasing number of measured optical flow values.
However, as will be shown in this section, the KvD algorithm in general does not converge to
the true self-motion values for an infinite number of flow vectors. It is still an open question
from which minimization principle an optimal estimator can be derived. The increasing num-
ber of flow vectors raises the problem that for each flow vector which gives two additional
error-prone values one additional value has to be estimated: the inverse distance in the respec-
tive viewing direction. Although the number of measured values increases towards infinity, the
ratio between the number of estimated and measured values does not decrease to zero. Hence,
even for an infinite number of flow vectors the estimated inverse distances are still afflicted
with errors. However, it should still be possible to correctly estimate the fixed number of self-
motion values for an infinite number of flow vectors. In section 2.5.2 a modified KvD algo-
rithm will be derived. The modification is tested numerically under two conditions where the
original KvD algorithm turns out to be biased (section 2.5.3).

2.5.1 The non-vanishing error term. The KvD algorithm is an unbiased estimator only
under certain conditions. To show this, the propagation of the error in the flow vectors~pi over
the iterations will be analyzed. We model the measured flow vectors~pi as the sum of the true
vector~p0

i and a random error vector D~pi,~pi ¼~p0
i þ D~pi. Similar to vector~pi, the vectors~p

0
i and

D~pi have only two degrees of freedom. It will be assumed that the random vectors D~pi are unbi-
ased, i.e. the expectation values for all directions i are zero, E D~pið Þ ¼ 0.

Two special conditions will be considered in the following:

1. The viewing directions ~di are equally distributed over the sphere.
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2. The random vectors D~pi are uncorrelated and their variances constant, independent of the
directions i, var D~pið Þ ¼ E D~pi � D~pið Þ ¼ constant.

The Gauss-Markov theorem assumes condition (2) to be fulfilled. We will also consider devia-
tions from this condition, because the KvD algorithm and its modified version that will be
derived in section 2.5.2 behave differently then. Condition (2) is violated if, for example, the
error of the optic flow measurement depends on the length of the measured optic flow vectors.

In subsection 5.2 of the appendix it is shown that, in general, the translation estimated by
the KvD algorithm contains errors that do not vanish even for an increasing number of flow

vectors. There are two error terms which are additive to the real translation~t 0.

~t ¼~t 0 þ D~t ¼~t0 þ aþ b

a / D~p � D~p

1� ~t 0 �~d
� �2

* +
1

�~t0

b / ~t 0 � ðD~p � D~pÞ �~t 0
ð1� ð~t0 �~dÞ2Þ2

ð~d �~dÞ
* +

1
�~t0

The index1 of the brackets hi stands for the limit of an infinite number of flow vectors. The

discrete direction vectors~di can be exchanged by their continuous counterparts~dWφ, and the

sum over i can be replaced by an integral over the field of view.
The iteration equation for~r , Eq (12), does not contain terms that lead to a bias in the esti-

mated motion values. However, the estimated rotation will be affected indirectly by errors in
the estimated translation.

First the integrals containing the denominators D1 ¼ 1� ~t 0 �~d
� �2

and D2 ¼

1� ~t0 �~d
� �2

� �2

are analyzed, disregarding the numerators. The integrals over 1
D1
and 1

D2
are

zero only if the first condition of equally distributed flow vectors is fulfilled. To avoid the singu-

larity for~d ¼~t0 a small constant ε was added to the denominators.
If conditions (1) and (2) are fulfilled, the terms a and b are zero and the KvD algorithm is an

unbiased estimator.
If condition (1) holds but condition (2) does not as, for instance, in the case of realistic

EMDs or gradient-based detectors, we have to integrate over a direction dependent function
resulting from the direction dependent flow errors D~p. Hence the terms a and b converge to
finite values.

The error terms a and b do not play a role if they are proportional to the identity matrix,

because of the rescaling of the translation vector, which ensures k~tk ¼ 1. The matrices E1 ¼
D~p � D~ph i and E2 ¼ D~p � D~pð Þ � ð~d �~dÞ

D E
are proportional to the unit matrix, if and only if

both conditions (1) and (2) are satisfied. This can be shown by taking into account the symme-
try of viewing directions and the constant variances of the flow errors.

Most interestingly, if condition (2) is fulfilled (a pre-condition of the Gauss-Markov theo-
rem) but condition (1) is not, the terms a and b converge to finite values. In this case the inte-
grals over the denominators D1, D2 and the integrals over the numerators E1, E2 have finite
values. This means that the ordinary least-squares approach from Eq (8) leads to a biased self-
motion estimator.
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2.5.2 Modification of the KvD iteration equations. To improve the KvD algorithm a
modified version of the iteration Eq (11) will be derived. The flow Eq (1) can be transformed:

~pi ¼ �mi
~t � ~t �~di

� �
~di

� �
�~r �~di ð29Þ

mi
~t ¼ �~pi �~r �~di þ mi

~t �~di

� �
~di : ð30Þ

By taking the average and solving for~t we obtain

m~t
� � ¼ � ~ph i � ~r �~d

D E
þ m ~t �~d

� �
~d

D E
;

~t ¼ mh i�1 � ~ph i � ~r �~d
D E

þ m ~t �~d
� �

~d
D En o

;

~t ¼ �x ~ph i þ~r � ~d
D E

� m ~t �~d
� �

~d
D En o

; ð31Þ

where ξ ensures that~t is normalized. Compared with the original equation for the translation
Eq (11) the additional factor μi is absent. Nonetheless, the above equation for the translation
depends still on the distances. An analog derivation leads to the same iteration equation for the
rotation as in the original KvD algorithm.

If the flow vectors have no errors the modified version converges, as does the original algo-
rithm, to the true self-motion parameters. In contrast to the result for the original KvD algo-
rithm in appendix 5.2, the iteration equations of the modified version do not contain m~p or μ2

and the true self-motion values are fix points of the iteration (only when the true values are fix
points in the iteration the algorithm can converge to these values).

2.5.3 Numerical tests of the original and modified KvD algorithm. In Fig 1 the bias of
the KvD algorithm is shown numerically (see section ‘Material and Methods’, 4.3 for a detailed
description of the numerical test). The left part of the figure shows simulation results for flow

vectors with added errors of equal variance. The field of view given by the viewing directions~di

is non-equally distributed: The flow vectors are equally distributed except for two regions of
the sphere which do not contain any flow vectors. The two regions are quarters of the half-
sphere which lie opposite to each other in the upper half-sphere. Thus, the simulation result
provides an example where condition (2) of section 2.5.1 is fulfilled but condition (1) is not.
The translation error of the original KvD algorithm is significantly larger and increasingly devi-
ates from that of the modified version with increasing number of flow vectors. Due to the cou-
pling of the iteration equations, the error of the rotation, in case of the original KvD algorithm,
is affected by the translation error and, thus, also deviates from that of the modified version.

The right part of the figure shows results where the standard deviation of4~pi is propor-
tional to the length of the local flow vector~pi. This time, the viewing directions cover the whole
sphere homogeneously and, thus, condition (1) of section 2.5.1 holds while condition (2) does
not. Again, the original KvD algorithm is biased (see also section 2.5.1). However, the error of
the rotation in the original KvD algorithm is not influenced by the translation error as a conse-
quence of the spherically distributed viewing directions.

The error of the modified KvD algorithm is in both analyzed cases inversely proportional to
the square root of the number of flow vectors (see black line in Fig 1). The modified KvD algo-
rithm shows therefore an error behavior as is characteristic of an unbiased linear estimator.
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2.6 An adaptive MFA
The approach of Franz and Krapp [8] is based on the assumption that the statistics of the
depth structure of the environment is fixed as well as the preferred translation directions of the
agent are known. For the simplest statistical model, which assumes that the distance variability,
the noise in the flow measurements and the preferred translation of the agent are independent
from the viewing direction, the dedicated covariance matrices are proportional to the identity
matrix. Most important, one has to specify the depth structure of the environment by defining
the average inverse distances hμii or, as in [8], the average distances hDii. Franz and Krapp [8]
modeled the distances hDii by

Dh ii ¼
D0 εi � 0 ;

bD0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2 � 1

	 

cos 2 εið Þ

q εi < 0;

8>><
>>: ð32Þ

where D0 denotes a typical distance in the upper hemisphere, εi the elevation angle of viewing
direction i and b ¼ h

D0
< 1 the ratio of the average flight altitude h and D0. This model takes

into account that the distances are usually smaller for viewing directions below the horizon.
It is obvious that the performance of self-motion estimation is poor when the fixed depth

model Eq (39) is not a good description of the depth structure at the current position of the
agent. Therefore, we propose an adaptive MFA, which allows the agent to adapt its depth
model to the current environment. This is only possible, if we can assume that the depth struc-
ture properties of the environment do not change abruptly from one time step to the next. A
time constant describes the intervals in which the depth model will be updated. Between
updates the depth model remains fixed and has to be memorized by the agent. The depth infor-
mation is obtained from the optic flow, as well as the self-motion values. Since the original
KvD algorithm is biased in this case, we use our modified KvD version as the starting point for
deriving the adaptive model.

Fig 1. The averaged angle error, arccos
~θest
N

�~θ
j~θest

N
j�j~θ j

� �
, between the estimation~θest

N , which depends on the number of flow vectorsN, and the true values

~θ , is shown for translation (solid lines) and rotation (dashed lines).Red curves show the errors for original KvD algorithm, green curves for the modified
KvD algorithm. The errors are averaged over 40 trials (see methods 4.3). For each trial the true self-motion parameters are chosen randomly, equally
distributed over the sphere, in such a way, that the resulting translational flow equals the resulting rotational flow in magnitude. The distances, also
determined randomly, lie with equal probability between one and three in arbitrary units. The results for three different variances 4~pð Þ2 are shown (from
bottom to top): 1, 3, and 9 times the flow vector length, where the factor is interpreted differently in the two graphs.A) Results for non-equally distributed flow
vectors with equal variance of the flow vector errors4~pi (the variance is matched to the mean flow vector). B)Results for equally distributed flow vectors,
where the variance of the errors4~pi depends linearly on the length of the~pi (the variance is matched to the local flow vector).

doi:10.1371/journal.pone.0128413.g001
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As will be shown in the following, it is not necessary to represent the full depth information,
because it is sufficient to memorize just eight distance dependent parameters. Three parameters

are contained in the distance-dependent term of the rotation Eq (12),~t � m~d
D E

or (t1, t2, t3)
T ×

(μ sin (ϑ) cos (φ), μ sin (ϑ) sin (φ), μ cos (ϑ))T. In the translation equation of the modified KvD

algorithm Eq (31) only m~d �~d
D E

�~t depends on μ. As the matrix m~d �~d
D E

is symmetric it

contains only six different μ-dependent elements.
The first three orders of spherical harmonic functions, the zeroth, first and second order,

comprise nine parameters, but only eight parameters can be determined from the optic flow.
The zeroth order remains undefined, because one cannot distinguish between the situation,
where all objects have half the distance to the agent, and the situation, where the agent trans-
lates with double speed: The optical flow will be the same. Hence, from optic flow fields only
the direction of the translation can be identified.

Between updates of the depth model, rotations, in particular, impair its validity, but can be
easily compensated by counter-rotating the depth model. This is achieved by multiplying the
depth dependent coupling matrix with a rotation matrix obtained from the rotation parameters
of the current self-motion estimate.

The adaptive model will be derived first for the general case with an arbitrary field of view.
Then a more biologically plausible adaptive model with a spherical field of view will be pre-
sented. A spherical field of view facilitates an intuitive interpretation of the depth model. In
this specific case, the nine depth-dependent parameters are exactly the coefficients of the first
three orders of the spherical harmonics expansion, i.e the dipole and quadrupole moments of
the depth structure μϑφ.

2.6.1 Motivation for an adaptive MFA. In Fig 2 the initialization phase of the adaptive
model is shown. The agent flies inside a sphere in such a way, that the depth model is the same
for every trajectory step (see Figs 2 and 3B and methods 4.4 for details). The error in the esti-
mated self-motion parameters decreases exponentially. Hence, the error is corrected to a large
extent in the first few iteration steps.

In natural environments one can detect subspaces where the distances to a moving agent do
not change over a certain time [35]. Hence, one can assume that the overall depth model
changes only slightly from one step to the next in a given environment and can expect good
self-motion estimates even for only a single iteration step of the KvD algorithm based on the
old depth model. Furthermore, the depth model can be used even for a longer time interval. In
this case the depth model is not updated instantaneously after receiving new optic flow infor-
mation, but less frequently after several optic flow processing steps. Because the self-motion
parameters and the depth model are formulated in the body coordinate system of the agent,
the depth model has to be rotated together with the agent.

2.6.2 Matched filters and depth-dependent coupling matrix for the adaptive MFA. The
equations of the modified KvD algorithm form the basis of the adaptive MFA (a small constant ε

is inserted in Eq (33), the equation of the inverse distance, to avoid the singularity in case~di ¼~t):

mi ¼ �
~t � ~pi �~di �~r
� �

1� ~t �~di

� �2

þ ε
; ð33Þ

~t ¼ �1

mh i ~ph i þ~r � ~d
D E

� m ~t �~d
� �

~d
D E� �

; ð34Þ
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Fig 2. An agent flies inside the sphere on a circular trajectory (see Fig 3A). The center of the circle does not coincide with the center of the sphere to avoid
symmetries in the depth model. The correct depth model is constant in this configuration, only the initialization of the depth model is tested. The y-axis shows the

angle error arccos ~yest �~y
j~yest j�j~y j

� �
, between the estimated self-motion axis of~yest and the axis of the true self-motion values~y. The depth model is initialized with constant

distances. With every update step of the depth model the error decreases exponentially for the translation (blue) as well as for the rotation (red).

doi:10.1371/journal.pone.0128413.g002

Fig 3. A) shows a circular trajectory to analyze the initialization phase of the adaptive MFA. The height of the trajectory lies above the middle point of the
sphere to avoid trivial depth models. Due to symmetry the depth model for this configuration is the same at every trajectory point.B) shows a sinusoidal
trajectory. It is used to analyze the self-motion estimation error during adaptation. Again the height of the trajectory is lifted up against the middle point of the
sphere to make the depth model more complex in relation to an agent, which flies along the trajectory.

doi:10.1371/journal.pone.0128413.g003
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~r ¼ ~p �~d
D E

þ~t � m~d
D E

þ ~r �~d
� �

~d
D E

: ð35Þ

As shown in section 2.4 these iteration equations can be decomposed into the product of the cur-
rent optical flow and a standard template, on the one side, and a coupling matrix, on the other
side (see following equation). The coupling matrix is the part of the adaptive model that contains
the depth values μi:

Mtt Mtr

Mrt Mrr

 !
�

~t

~r

 !
¼

�~ph i
~p �~d
D E

0
@

1
A; ð36Þ

Mtt ¼ mh iI � m~d �~d
D E

; ð37Þ

Mtr ¼ � ~½d��
D E

; ð38Þ

Mrt ¼ m ½~d��
D E

; ð39Þ

Mrr ¼ I � ~d �~d
D E

; ð40Þ

where the matrix ~½d�� is defined by
~½d��~v ¼~d �~v;

~½d�� ¼
0 �d3 d2

d3 0 �d1

�d2 d1 0

0
B@

1
CA;

i.e. the cross product of the two vectors~d and~v can be expressed as multiplication of matrix
~½d�� and vector~v .

2.6.3 The case of spherically distributed flow vectors. For the special case of spherically
distributed flow vectors the depth-dependent coupling matrix (see subsection (2.3.1) is given
explicitly. In the simplest case of an agent being in the center of a sphere, i.e. if all inverse dis-
tances have the same value, the depth-dependent coupling matrix is proportional to the iden-
tity matrix (see end of subsection (2.3.1). In the general case, i.e. when the inverse distances can
have arbitrary values, the entries of the depth-dependent coupling matrix are the expansion
coefficients of the first three orders of the real valued spherical harmonic functions.

Then the environmental depth structure μi can be described by a real-valued function μϑφ
parameterized by the azimuth angle φ and the elevation angle ϑ (in a spherical coordinate sys-
tem). Such functions can be described by an expansion of real-valued spherical harmonic func-
tions [36] (see appendix 5.3 and Fig 4). Lower orders of these functions contain less details
than higher order functions.

Given a function μ(ϑ, φ) depending on azimuth angle φ and elevation angle ϑ the expansion
coefficients aln are

aln ¼
Z 2p

φ¼0

Z p

W¼0

Rln W;φð Þ � m W; φð Þ � sinWdWdφ: ð41Þ
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Rln (ϑ, φ) represent, for example, a dipole function for specific l and n. The corresponding coef-
ficient aln provides information about how pronounced the specific dipole part is in the
expanded function μ (ϑ, φ).

With the help of all coefficients aln the expanded function μ (ϑ, φ) is given by the reverse
transformation

m W;φð Þ ¼
XN
l¼0

Xþl

n¼�l

alnRln W;φð Þ; ð42Þ

with N = 0, 1, 2, . . ..

The terms hμi and m~d �~d
D E

inMtt and the term m½~d��
D E

inMrt are the sole terms which

contain the inverse distances μi. In appendix (5.3) it is shown, that~d �~d and~d can be
expressed through real valued spherical harmonic functions when these term are given by their

continuous counterparts~dWφ. It can be directly seen that the continuous counterparts of~d are

the first-order real valued harmonic functions (except for a constant factor), whereas some

transformations are needed to see that the continuous counterparts of~d �~d are linear combi-
nations of the zeroth and second order real valued harmonic functions.

Due to the linearity of an integral expression and the orthogonality of the spherical har-
monic functions [36], Z

Rln W;φð ÞRl0n0 W;φð ÞdO ¼ dll0dnn0 ; ð43Þ

the terms hμi, m~d �~d
D E

and m½~d��
D E

can be interpreted as the definition equations for spe-

cific coefficients of a spherical harmonic expansion of μ (ϑ, φ) [see Eq (41)]. Hence, in the

spherical case hμi, m~d �~d
D E

and m½~d��
D E

in the coupling matrix (Eqs (38) until (40)) can be

Fig 4. Spherical harmonic functions from the expansion of the inverse distances μi. A) The sum of the zeroth order function and a first-order dipole-
function.B) The sum of the zeroth order function and a second-order quadrupole-function.

doi:10.1371/journal.pone.0128413.g004
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replaced by the coefficients of spherical harmonic functions:

Mtt ¼
ffiffiffiffiffiffi
4p

p
� a � I � 1

3
I

� �
�

ffiffiffiffiffiffi
4p
15

r
� C

C ¼

�c4 �
ffiffiffi
1

3

r
� c1 c5 c2

c5 c4 �
ffiffiffi
1

3

r
� c1 c3

c2 c3

ffiffiffi
4

3

r
� c1

0
BBBBBBBB@

1
CCCCCCCCA

Mtr ¼ 0

Mrt ¼
ffiffiffiffiffiffi
4p
3

r
� B

B ¼
0 �b3 b2

b3 0 �b1

�b2 b1 0

0
B@

1
CA

Mrr ¼ 2

3
I

where a is the coefficient of the zeroth spherical harmonic function, which cannot be deter-
mined by the algorithm as explained earlier. The three b’s are the three coefficients of the first-
order spherical harmonic functions, the dipole functions. The five c’s are the five coefficients of
the second-order spherical harmonic functions, the quadrupole functions.

The only non-constant parameters in the depth-dependent matrix are the nine coefficients
of the expansion by spherical harmonics. The nine parameters the agent has to memorize dur-
ing flight have, in the case regarded here, a physical interpretation: They are the dipole and
quadrupole parts of the depth distribution of the environment. The non-existence of higher-
order coefficients in the depth-dependent matrix indicates that these orders contain no infor-
mation for solving the self-motion problem. If the distances are constant, the matrixM is the
identity matrix (except for a normalization constant) as mentioned before.

The computation of the nine coefficients might not seem to be biologically plausible at first
sight. However, the computation of one coefficient aln of the expansion corresponds to a
weighted wide-field integration and is reminiscent of the function of LPTCs in flies [16, 17, 25,
26]. One could imagine a neuron for each of the nine parameters aln, which represents a spe-
cific global property of the depth structure.

With regard to the computational effort a full inversion of a 6 × 6 matrix is not required.
The submatrixMtr is zero in the spherical case, hence only an inversion of the submatrixMtt is
required. If the quadrupoles in this submatrix are sufficiently small, the inverse matrix can be
linearly approximated by a Neumann series [37], (I−A)−1 = I+A+A2+A3+. . ..

2.6.4 Test of the adaptive MFA. In this section we compare quantitatively the adaptive
and the original MFA. We present a simulation in a very simple environment where the agent
moves inside a sphere (see Fig 3 and methods 4.4). Nothing is known in advance about the
flight directions and whereabouts of the agent inside the sphere. Hence, the covariance
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matrices of the original MFA are set proportional to the unit matrix. The chosen trajectory in
this setting is a sinusoidal curve. On this trajectory the current depth distribution differs essen-
tially from that in the center of the sphere (Fig 3A).

The amount of translation and rotation in each step varies along the trajectory. The steps
are chosen so that the maximum rotation angle is about 8 degrees per step ensuring that the
approximation of the KvD algorithm, which is valid for small rotation angles, still holds. The
maximum rotation angles between the processed images is in the same range as the maximum
rotation angles during saccades of flying insects [38, 39].

On the whole, the adaptive MFA performs better than the original non-adaptive MFA (Fig
5). The second y-axes on the right side of the figure show the averaged ratio between the rota-
tional and translational optic flow at every time step. Due to the sinusoidal trajectory of the
agent this ratio varies between a factor of hundred in favor of the rotational or translational
optic flow. When an optic flow component is overlayed hundredfold by the other flow compo-

nent the coupling terms~r � ~d
D E

and~t � m~d
D E

between the flow components are the domi-

nant parts in the related estimation Eqs (34) and (35). For a spherical field of view the term

~r � ~d
D E

is zero. But the term~t � m~d
D E

depends on the dipole components of the inverse dis-

tance μ (see appendix 5.3.1). Hence, only the rotation estimate is affected by errors in the esti-
mated dipoles. Because the original MFA does not determine the values for the dipole
components of the inverse distance for the current optical flow, the rotation estimates become
totally useless, whenever the translational flow component is dominant. The angle error
between the estimated rotation axis and the true rotation axis increases to a value of about hun-
dred degrees. Whereas the angle error of the adaptive MFA does not exceed few degrees.

If an Gaussian error is added to the optical flow with a standard deviation of ten percent of
the averaged overall flow value (Fig 5), one could expect that a translational or rotational flow
component, which is overlayed hundredfold by the other flow component disappears totally in
this flow error, because the error is tenfold higher as the flow component in this situation. But
the estimators use hundreds or a few thousands of flow vectors to estimate self-motion. Due to
the large number of flow vectors (insects usually have between a few hundred (e.g. fruit fly)
and a few thousand ommatidia (bee, dragonfly) per eye), the self-motion can be still estimated
in this case within a useful error range. The results are shown for about 5000 flow vectors (Fig
5). The error increases for both the translational and the rotational self-motion estimate to a
value of about 10 degrees. This error is additive to the error described in the upper panels of
Fig 5 and affects the adaptive MFA in the same way as the original MFA.

In the bottom panels of Fig 5 different update rates are tested. Even for an update at only
every twentieth optical flow processing step the errors remain in a useful range.

Albeit the simplicity of the simulation it shows some basic features of the compared algo-
rithms. The simulation does not generate any outliers due to moving objects or depth disconti-
nuities. A small number of outliers will not affect the MFA as a consequence of the linear
summation over thousands of optic flow vectors. More complex simulations in virtual environ-
ments with rendered images and EMDs is left to future work (Strübbe et al., in prep.).

3 Discussion
The aim of this study is to develop an adaptive matched filter approach to self-motion estimation
which could be in principle the underlying concept of self-motion estimation in flying insects. As
a novel characteristic, this approach assumes an adaptation to the depth structure in the insect
visual motion pathway, an assumption that is supported by recent experimental evidence [31, 40,
41]. Our approach starts from a theoretical point of view by analysing and unifying the
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non-adaptive matched filter approach (MFA) to self-motion estimation together with the Koen-
derink van Doorn (KVD) algorithm which incorporates an estimation of the depth values.

To take advantage of both algorithms, some mathematical problems had to be solved. First,
it was shown that the two algorithms are equivalent in case the distances to objects in the

Fig 5. As in Fig 2 an agent flies inside a sphere (see methods 4.4). The trajectory is a sinus curve with two full periods. The amplitude of the sinus curve is
0.5 of the radius of the sphere. The sinus curve is lifted in the sphere by 0.3 units in z-direction to avoid symmetries in the depth model. The agent performs
600 steps which result in rotation angles of up to 8 degrees per frame. The initialization phase is not shown. The left figures shows the error of the translation

estimates and the right figures shows the error of the rotation estimates. The y-axes show the angle error arccos ð ~yest �~y
j~yest j�j~y j

� �
Þ, between the estimated self-motion

axis of~yest and the axis of the true self-motion values~y. The estimated angle errors have a pole, when the rotation gets zero at the inflection points of the
sinusoidal curve (see methods 4.4). The small region around the poles are cut out in the figures.A, B) The two figures show the error of the adaptive MFA
(red curve) and the original MFA (blue curve) with a constant inverse distant assumption for the original MFA. The adaptive MFA is updated every time step.
The right y-axes of the figures show the averaged ratio between the rotational and translational optic flow. C, D) shows the adaptive MFA and the original
MFA as in figures A and B, but with an error of 10% added to the optical flow. E, F) show different update frequencies of the depth model. All models rotate
with the agent. The update frequencies are: black = 1 frame, green = 5 frames, blue = 10 frames and violet = 20 frames.

doi:10.1371/journal.pone.0128413.g005
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environment are assumed to be known. Secondly, a bias in the KvD algorithm was removed by
a small correction of the iteration equations. And last but not least, an analysis of the specific
case of a spherical field of view, reminiscent of that of flying insects, shows that the depth struc-
ture can be represented by only eight parameters without losing relevant information for self-
motion estimation and that these eight parameters are the dipole and quadrupole moments of
the spherical harmonics.

Technical and biological systems have different origins and often operate under different
conditions. Biological systems arise through evolutionary adaptation. They usually have to
operate in a great variety of environments. Hence, the neural computations underlying the ani-
mal’s behavior need to be particularly robust. In addition, the animal has restrictions with
respect to its computational hardware. Neuronal circuits can perform linear transformations in
parallel by a dendritic weighted summation of the inputs of a neuron and non-linear opera-
tions through the non-linear response behavior of a neuron to its overall input. Nonetheless, a
non-linear operation, such as computing the inverse of a matrix, with changing entries, is not
easy to implement by neuronal hardware. The bio-inspired computational model analyzed
here is the MFA of self-motion estimation. It is a linear model for a fixed depth assumption,
derived under the side condition of maximal robustness against errors in the measured optical
flow field (see Eq (5) from Franz et al. [11]).

The KvD algorithm of self-motion estimation which is compared with the MFAmodel was
derived analytically in a technical framework on the basis of a minimization principle. The
resulting iteration equations represent a gradient descent where the current self-motion parame-
ters are used to determine a better depth model and the new depth model is used to determine a
better estimate of self-motion in the next iteration step. If one considers only one iteration step,
where the depth model is seen as fixed, the self-motion estimation is linear. It is not only linear,
but also equivalent to the biologically inspired MFA which uses a fixed depth distribution.

The equivalence of both models becomes evident within the framework of linear estimator
theory. There exists an unique optimal estimator for a linear estimation problem with error-
prone inputs. The Gauss-Markov theorem describes this estimator. Both compared methods
represent this optimal solution.

However, some differences exists. In the MFA Franz et al. [11] weighted the filters by matri-
ces that represent additional assumptions about the situation under which the self-motion is
estimated. If these assumptions are correct, the weighting of the filters improves self-motion
estimation; however, if these assumptions are incorrect in the current situation, the estimator
gets worse. Hence, the additional matrices make the estimator more specific. These matrices
can also be implemented in the KvD algorithm by a modification of the minimization princi-
ple. When, for example, it is known, that the optical flow can be measured more accurately
below the horizon, because the objects are generally closer there, this knowledge can be taken
into account by introducing weights in the initial equation. We argue that it is not always useful
to take knowledge about the preferred self-motion directions into account. Even when the
moving agent solely translates in the forward direction a disturbance can lead to a passive
translation also in other directions.

From a mathematical point of view the bias of the KvD algorithm is remarkable. When the
depth distribution of the environment has to be determined together with the self-motion
parameters, the estimation problem is no longer linear. The standard procedure for estimating
parameters from inputs, which are disturbed by Gaussian errors, is the minimization of the
mean squared error. It might be counter-intuitive that the true self-motion values are not even
a local minimum. The standard approach fails, because the standard condition assumes that an
increasing number of measured values, here the flow vectors, are accompanied by a fixed num-
ber of estimation parameters. However, for the non-linear estimation problem the number of
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distance values increases together with the number of flow vectors. Only the number of self-
motion parameters remains constant. With every additional flow vector additional information
about the self-motion parameters is obtained, because one gets two additional independent val-
ues from the flow vector, but only one additional parameter has to be estimated (the distance
corresponding to the flow vector). However, the standard approach does not use this additional
information in an optimal way.

Here we derived a modified version of the KvD algorithm that is not derived from a minimi-
zation principle. Hence it is not clear whether it leads to the best estimate for a given finite
number of flow vectors. Rather, the numerical simulation indicates that the modified version
has the desired property that the algorithm converges to the real self-motion values for an infi-
nite number of flow vectors. It is left to further mathematical work to analyze optimal criteria
for the non-linear estimation problem in case of a finite number of flow vectors.

Based on this modified version of the KvD algorithm an adaptive MFA was derived. It was
shown that it is a critical issue to correctly determine the dipole components. If a small rotation
is superimposed by a large translation the non-adaptive MFA cannot provide useful rotation
estimates, whereas the adaptive MFA is accurate up to a few degrees. A situation where a rela-
tively large translation encounters a relatively small rotation is given in the inter-saccadic
phases of insect flight [38, 39, 42]. In these phases the insect tries to avoid any rotation. If the
insect stabilizes its flight with the help of the visual system, the non-adaptive MFA cannot be
the underlying concept to detect small rotations in these phases in environments it is not tuned
to. To estimate rotations, which are superimposed by a large translation, one has to determine
the current dipole components, as is done by the adaptive MFA.

The adaptive MFA was inspired by the finding that for a spherical field of view the depth
structure of the environment can be represented by only eight parameters without losing rele-
vant information for self-motion estimation and by the fact that the visual system of insects
has an almost spherical field of view. The spherical field of view is also a desirable property of
technical systems which are designed to estimate their self-motion on the basis of optical flow
fields. Such systems can be realized by panoramic cameras [43, 44].

Adaptation to the depth structure of the environment means that the adaptation takes place
on another time scale than the image processing itself. Hence, some information about the depth
structure has to be memorized by the system. The result that exact self-motion can only be esti-
mated for a spherical field of view, if eight parameters about the depth structure of the environ-
ment are known, is therefore in accordance with the limited computational resources of insects.

Motion adaptation was analyzed in the insect visual pathway and found to depend on the
overall velocity in the visual field [27, 31, 32, 40, 41, 45]. Since, at least during translational
motion, the overall retinal velocity depends on the depth distribution of the environment. The
experimentally characterized processes of motion adaptation may well play a role in an adaptive
mechanism of self-motion estimation as proposed in the present study. Here we give a short
analysis from a theoretical point of view which components are needed for the adaptive MFA.
Minimalistically, one needs eight model neurons for the eight depth parameters. The weighted
summation over the inputs of one of these model neurons corresponds to one of the eight inte-
grals over the depth distribution, where the spherical harmonic functions play the role of the
weighting parameters. Examples of neurons performing such an integration are the LPTC neu-
rons of flies, the neuronal candidates for the six model neurons, which represent the matched
filters for the six self-motion components. Given the properties of LPTCs [16, 17, 24–26], it is
likely that one hypothetical model neuron for depth representation does not cover the whole
sphere. Due to the linearity of self-motion estimation LPTCs can be combined to represent one
self-motion component. On this basis, it might be possible that one LPTC codes information for
both translation and rotation when the corresponding flow fields resemble each other within
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the receptive field of the neuron. Hence, the hypothetical depth neurons could be realized by a
network of neurons with each neuron receiving input from only part of the visual field.

The hypothetical neurons representing the depth structure need some pre- and post-pro-
cessing. In the adaptive MFA, only the pre-processing contains non-linear operations, namely
the transformation of the optical flow into local depth values that are integrated afterwards by
the hypothetical model neurons. One can assume that the determination of the depth values is
simplified during nearly pure translation as is characteristic of the insect saccadic flight strategy
[19]. In these phases the depth structure can be determined more easily, because the optic flow
is not superimposed by a rotational component [46, 47].

The post-processing concerns the determination of the depth-dependent matrix which cor-
rects the outputs of the six model neurons, corresponding to the motion sensitive LPTC cells.
From a mathematical point of view, two subsequent linear transformations can be combined in a
single linear transformation. In the adaptive MFAwe have two subsequent linear transformations:
the fixed linear transformation by the six model neurons that receive direct optical flow input and
the adaptive linear transformation by the depth-dependent matrix, the entries of which are the
responses of the eight depth neurons. There are two options where the adaptation could take
place: The two linear transformations could be merged into one linear transformation, which
means that the adaptation takes place at an early stage of optic flow processing. Alternatively, one
could assume that the two linear transformations are spatially separated, and the depth-depen-
dent matrix is realized by an adapting linear circuitry, which wires the early stage neurons.

The linear transformation given by the depth dependent matrix can be obtained without a
matrix inversion by applying an appropriate linearization of the inverse depth dependent
matrix (see section 2.6.3). With this simplification and the above simplification of depth cap-
turing the adaptive MFA can be realized by relatively simple neuronal circuits.

4 Materials and Methods

4.1 Numerical test and simulation
We used a numerical test (Fig 1) and a simulation (Fig 5) to show the performance of the con-
sidered self-motion estimators based on optical flow fields. The optical flow fields used here are
computed in all cases from the flow Eq (1) where the distances, the viewing directions and the
self-motion parameters are given. In some cases a Gaussian error was added to the optical flow
values. The task of the self-motion estimators is to determine the self-motion parameters from
these flow fields.

Whereas the distances in the numerical test are obtained by a random process, the distances
in the simulation are defined by the environment. In the numerical test the individual estimates
are independent of each other. In the simulation a trajectory through the environment is con-
structed to enable an agent to use the depth model of the environment for a series of estimates
at subsequent trajectory points.

For programming and testing the algorithm the programming language Matlab was used.

4.2 Construction of a spherical field of view
For the simulation and the numerical test a spherical visual field of view is needed. It is not a
trivial task to arrange a number of viewing directions on a sphere in a way that the density is
equally distributed. Here we used an iterative solution. The iteration starts with a Platonic
solid, an octahedron. An octahedron has eight faces: Eight equilateral triangles with the same
side lengths, which surround a symmetric solid.

In each iteration step every triangle is replaced by four new triangles with one triangle
placed in the middle of the old triangle and the other three are placed in corners. The mid-
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points of the sides of the old triangle coincide with the corners of the new triangles. These mid-
points are projected radially on the surface of the sphere which surround the object so that all
corners of the new triangles lie on this sphere.

In each iteration step the sphere is covered with nearly identical triangles. After the last iter-
ation step the mid-points of each triangle give a viewing directions. With an arbitrary number
of iterations n the number of viewing directions are 8 � 4n.

4.3 Numerical test of the bias of the KvD algorithm
In the numerical test of the bias of the KvD algorithm two configurations are tested, one with a
spherical field of view and one with a non-spherical field. The non-spherical field of view is
realized by the same procedure as in the spherical case (see methods 4.2), but two starting tri-
angles are left out. The omitted triangles are opposite triangles both placed in the upper part of
the sphere. This configuration has some obvious symmetry, but avoids the case that each omit-
ted viewing direction has an omitted counterpart on the other side of the sphere.

The number of viewing directions is increased by increasing the number of iterations start-
ing from an octahedron. Each step increases the number of viewing directions by four. For
each number of viewing directions 40 self-motion estimation trials are tested.

4.4 Simulation of the adaptive MFA
The environment used for the simulation is a unit sphere in which the agent flies on a sinusoi-
dal trajectory. The effect of adaptation should be larger if, for example, the agent flies outdoors
and then enters a tunnel which is a common experimental set-up for navigation studies in fly-
ing insects [48–51]. However, the test of the adaptive MFA in this kind of environment needs a
3-d engine for rendering images, on which the flow vectors are estimated with motion detectors
like the Reichardt detector or the Lucas-Kanade detector. This issue will be addressed in
another study (Strübbe et al., in prep.).

For the trajectory a sinusoidal curve was chosen (see Fig 3 right). Although it is typical that
flying insects use a saccadic flight strategy to separate translation and rotation, the self-motion
estimators in this study were analyzed under the condition of a combined translation and rota-
tion. In each run the agent flies along the trajectory and the angle error between the true self-
motion axes and the estimated axes of the tested estimators are shown in Fig 5.

5 Appendix

5.1 Derivation of the equivalence of the MFA and KvD algorithm
From Eq (17) one obtains together with the equations for the coupling matrix Eqs (21), (22)
and (23) and the definitions of the templates Eqs (13) and (14):

~a ¼ M̂ � ~y ¼ Mtt Mtr

Mrt Mrr

 !
�

~t

~r

 !
¼

~T t
1 �~p

D E
~T t

2 �~p
D E
~T t

3 �~p
D E
~T r

1 �~p
D E
~T r

2 �~p
D E
~T r

3 �~p
D E

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð44Þ
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Mttð Þab ¼ m2h i~ea �~eb � m2 ~ea �~d
� �

� ~eb �~d
� �D E

ð45Þ

Mtrð Þab ¼ m ~ea �~ebð Þ �~d
D E

ð46Þ

Mrtð Þab ¼ � m ~ea �~ebð Þ �~d
D E

ð47Þ

Mrrð Þab ¼~ea �~eb � ~ea �~d
� �

� ~eb �~d
� �D E

ð48Þ

~T t
ia ¼ �mi

~di �~ea �~di

� �
ð49Þ

~Tr
ia ¼ �~ea �~di ð50Þ

Multiplying~t and~r with the matrices and~p with the templates leads to the two equations:

Mtt �~t þMtr �~r	 

a
¼ m2h ita � m2

X
b

~ea �~d
� �

� ~eb �~d
� �

� tb
* +

þ m
X

b

~ea �~ebð Þ �~d
� �

� rb
* + ð51Þ

¼ ~T t
a �~p

D E
¼ m~p � �~d �~ea �~d

� �D E
ð52Þ

Mrt �~t þMrr �~r	 

a
¼ � m

X
b

~ea �~ebð Þ �~d
� �

� rb
* +

þ ta �
X

b

~ea �~d
� �

� ~eb �~d
� �

� tb
* + ð53Þ

¼ ~Tr
a �~p

D E
¼ ~p � ~d �~ea

� �D E
ð54Þ

The term
P

b ~ea �~d
� �

� ~eb �~d
� �h i

ab
� vb with an arbitrary vector~v can be expressed through

the dyadic product
P

b
~d �~d
h i

ab
� vb ¼ ~v �~d

� �
da, and the term

P
b ~ea �~ebð Þ �~d
� �

� vb can be

transformed with the triple product rule intoX
b

~ea �~ebð Þ �~d
� �

� vb ¼ ~d �~ea
� �

�Pb~eb � vb ¼ ~d �~ea
� �

�~v

¼ ~v �~d
� �

�~ea ¼ ½~v �~d�a ð55Þ

The right side of the Eq (52), m~p � �~d �~ea �~d
� �D E

, is equal to

m~p � �~ea þ ~ea �~d
� �

~d
� �D E

¼ �m~p �~eah i ¼ � m~ph i½ �a, because~p and~d are orthogonal. With
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the triple product identity ~p � ~d �~ea
� �D E

in Eq (54) is transformed into

~ea � ~p �~d
� �D E

¼ ~p �~d
D Eh i

a
.

Writing the a indexed values as vectors, we obtain

m2h i~t � m2 ~t �~d
� �

~d
D E

þ~r � m~d
D E

¼ � m~ph i

�~t � m~d
D E

þ~r � ~r �~d
� �

~d
D E

¼ ~p �~d
D E

;

which results in the iteration Eqs (11) and (12) of the KvD algorithm:

~t ¼ � 1

m2h i f m~ph i þ~r � m~d
D E

� m2 ~t �~d
� �

~d
D E

g;

~r ¼ ~p �~d
D E

þ~t � m~d
D E

þ ~r �~d
� �

~d
D E

;

where 1

m2h i represents the Lagrange multiplier ξ.

5.2 Bias-term of the KvD algorithm

The iteration Eqs (10), (11) and (12) do not converge to the true parameters~t0,~r0 and m0
i in

general, even in the limit of an infinite number of flow vectors. We consider unbiased and inde-

pendently distributed flow vector errors, E D~pið Þ ¼ 0, cov D~pi;D~pj

� �
¼ 0 if i 6¼ j. Their vari-

ance var D~pið Þmay depend on the direction i.
The mean of an infinite number of independent flow vector errors converges to the mean of

the expectation value,

D~pih i1 ¼ 0; ð56Þ

for an arbitrary integration area around viewing direction i. Because the error vectors are inde-
pendent from each other, the mean of the product of the error vectors and an arbitrary direc-

tion dependent vector function~f i is zero,

~f i � D~pi

D E
1
¼ 0: ð57Þ

To show that the KvD algorithm does not converge to the real values for an infinite number of
flow vectors, we start by assuming the opposite. If the KvD algorithm had a minimum at the

true values~t0,~r0 and m0
i we could insert these values in the iteration Eqs (10), (11) and (12) and

would get the same values back. Substituting the true values for translation and rotation in the
equation for the nearness Eq (10), we get the nearness error4μi which directly depends on the
flow vector errors:

Dmi ¼ � ~t 0 � D~pi

1� ~t 0 �~di

� �2 :

The estimated translation after an infinite number of iterations~tð1Þ ¼ limn!1~tðnÞ shows
the following equation. Please note that we consider two limits: the limit of infinite iteration
steps, limn ! 1, and the limit of an infinite number of flow vectors, indicated by an infinity
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symbol as index of the brackets which stands for the mean over all viewing directions.

~t 1ð Þ ¼ ~t 0 þ D~t ¼ �x m~ph i1 þ~r0 � m~d
D E

1
� m2 ~t 0 �~d

� �
~d

D E
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n o
¼ �x m0 þ Dmð Þ ~p0 þ D~pð Þh i1 þ~r0 � m0 þ Dmð Þ~d

D E
1
� m0 þ Dmð Þ2 ~t0 �~d

� �
~d

D E
1

n o
:

If~tð1Þ is a stable minimum4~t must vanish:

4~t ¼ �x m0D~p þ4m~p0 þ4mD~ph i1 þ~r0 � 4m~d
D E

1
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� �2 D~p
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1
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� �2

� �2
~t 0 �~d
� �

~d

* +

1

8>>><
>>>:

9>>>=
>>>;

¼ x
D~p � D~p

1� ~t0 �~d
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* +
1

~t 0 þ ~t 0 � ðD~p � D~pÞ �~t0

1� ~t0 �~d
� �2

� �2 ð~d �~dÞ
* +

1

~t0

8>>><
>>>:

9>>>=
>>>;

For the analysis of the conditions under which the term4~t vanishes, see the text (subsection
2.5.1).

5.3 Expression of~d and~d �~d by spherical harmonics

The vector~d and the dyadic product~d �~d are expressed by linear combinations of real-valued
spherical harmonics, which are itself linear combinations of complex spherical harmonicsYlm,

Rlm ¼

1ffiffiffi
2

p Ylm þ �1ð ÞmYl �mð Þ

� �
m > 0

Yl0 m ¼ 0

1ffiffiffiffi
2i

p Yl �mð Þ � �1ð ÞmYlm

� �
m < 0

ð58Þ

8>>>>><
>>>>>:

The real-valued spherical harmonics from zero order to second-order are:
Zeroth-Order

g0 ¼
ffiffiffiffiffiffi
1

4p

r
ð59Þ

First-order

f1 ¼
ffiffiffiffiffiffi
3

4p

r
sinW cosφ / sinW cosφ ð60Þ

f2 ¼
ffiffiffiffiffiffi
3

4p

r
sinW sinφ / sinW sinφ ð61Þ
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f3 ¼
ffiffiffiffiffiffi
3

4p

r
cosW / cosW ð62Þ

Second-order

h1 ¼
ffiffiffiffiffiffiffiffi
5

16p

r
3 cos 2W� 1ð Þ / 3 cos 2W� 1 ð63Þ

h2 ¼
ffiffiffiffiffiffi
15

4p

r
sinW cosW cosφ / sinW cosW cosφ ð64Þ

h3 ¼
ffiffiffiffiffiffi
15

4p

r
sinW cosW sinφ / sinW cosW sinφ ð65Þ

h4 ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W cos 2φð Þ / sin 2W cos 2φð Þ ð66Þ

h5 ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W sin 2φð Þ / sin 2W sin 2φð Þ ð67Þ

5.3.1 Expression of~d through spherical harmonics. The components of~d correspond to
the first-order real-valued spherical harmonics fi (i = 1, 2, 3). This can be seen when the compo-

nents of~d are written in a spherical coordinate system:

~d ¼
d1

d2

d3

0
B@

1
CA ¼

sinW cosφ

sinW sinφ

cosW

0
B@

1
CA ¼

ffiffiffiffiffi
4p
3

r
� f1ffiffiffiffiffi

4p
3

r
� f2ffiffiffiffiffi

4p
3

r
� f3

0
BBBBBBBB@

1
CCCCCCCCA
: ð68Þ

The components d1, d2 and d3 are equal in this arrangement to the first-order functions f1, f2
and f3 except of a normalization factor.

5.3.2 Expression of~d �~d through spherical harmonics. First the dyadic product~d �~d
is formulated in a spherical coordinate system

~d �~d ¼

d1

d2

d3

0
BBBBB@

1
CCCCCA�

d1

d2

d3

0
BBBBB@

1
CCCCCA ¼

d2
1 d1d2 d1d3

d2d1 d2
2 d2d3

d3d1 d3d2 d2
3

0
BBBBB@

1
CCCCCA

¼

sin2Wcos2φ sin2Wsinφcosφ sinWcosWcosφ

sin2Wsinφcosφ sin2Wsin2φ sinWcosWsinφ

sinWcosWcosφ sinWcosWsinφ cos2W

0
BBB@

1
CCCA:

ð69Þ

The following analysis shows that the off-diagonal elements of this matrix can each be
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expressed by a single second-order real-valued harmonic function, whereas the diagonal ele-
ments are linear combinations of the zeroth-order and several second-order real-valued spheri-
cal harmonic functions.

Off-diagonal elements. The element d1 d3 is proportional to the function h2 and the ele-
ment d2 d3 is proportional to the function h3.

d1d3 ¼
ffiffiffiffiffiffi
4p
15

r
� h2

d2d3 ¼
ffiffiffiffiffiffi
4p
15

r
� h3

To see that the element d1 d2 is proportional to the function h5, h5 must be rearranged,

h5 ¼
ffiffiffiffiffiffiffiffi
15

16p

r
� sin 2W sin 2φð Þ ¼

ffiffiffiffiffiffi
15

4p

r
� sin 2W sinφ cosφ; ð70Þ

d1d2 ¼
ffiffiffiffiffiffi
4p
15

r
� h5; ð71Þ

via the addition theorem: sin (2x) = 2 � sin(x)cos(x).
Diagonal elements. The diagonal element d2

3 ¼ cos2W can be expressed by a proper linear

combination of h1 ¼
ffiffiffiffiffi
5

16p

q
� 3cos2W� 1ð Þ ¼

ffiffiffiffiffi
45
16p

q
� cos2W�

ffiffiffiffiffi
5

16p

q
and g0 ¼

ffiffiffiffi
1
4p

p
, in such a way

that the constant in h1 compensate the constant in g0.

h1 þ
ffiffiffi
5

4

r
� g0 ¼

ffiffiffiffiffiffiffiffi
45

16p

r
� cos2W

d2
3 ¼

ffiffiffiffiffiffiffiffi
16p
45

r
� h1 þ

ffiffiffi
5

4

r
� g0

 !
¼

ffiffiffiffiffiffiffiffi
16p
45

r
� h1 þ

ffiffiffiffiffiffi
4p
9

r
� g0

For the expression of d2
1 and d

2
2 the function h4 needs a closer examination. With cos (2x) =

cos2 x − sin2 x the function h4,

h4 ¼
ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W cos 2φð Þ ¼

ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W cos 2φ� sin 2φð Þ; ð72Þ

is rearranged in the two versions ha
4 and h

b
4,

ha
4 ¼

ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W 1� 2 � sin 2φð Þ ¼

ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W�

ffiffiffiffiffiffi
15

4p

r
� sin 2W sin 2φ; ð73Þ

sin 2W sin 2φ ¼ �
ffiffiffiffiffiffi
4p
15

r
ha
4 þ

ffiffiffi
1

4

r
sin 2W ð74Þ

hb
4 ¼

ffiffiffiffiffiffiffiffi
15

16p

r
sin 2W �1þ 2 � cos 2φð Þ ¼ �

ffiffiffiffiffiffiffiffi
15

16p

r
sin 2Wþ

ffiffiffiffiffiffi
15

4p

r
� sin 2W cos 2φ ð75Þ

sin 2W cos 2φ ¼
ffiffiffiffiffiffi
4p
15

r
hb
4 þ

ffiffiffi
1

4

r
sin 2W; ð76Þ

Self-Motion Estimation with Adaptive Filters

PLOS ONE | DOI:10.1371/journal.pone.0128413 August 26, 2015 29 / 35



with the use of cos2 φ + sin2 φ = 1. The second term in ha
4 has the same form as the element d2

1

and the second term in hb
4 equals d

2
2 . It is left to show, that the term sin2 ϑ can be expressed by

the zero and the second-order real-valued spherical harmonic functions.

To see this the term
ffiffi
1
4

p
sin2W will be rearranged,ffiffiffi

1

4

r
sin 2W ¼

ffiffiffi
1

4

r
�

ffiffiffi
1

4

r
cos 2W ¼ �

ffiffiffiffiffi
1

36

r
3 cos 2W� 1ð Þ þ

ffiffiffi
1

9

r
; ð77Þ

¼ �
ffiffiffiffiffiffi
4p
45

r
h1 þ

ffiffiffiffiffiffi
4p
9

r
g0 ð78Þ

which is a linear combination of h1 and g0.
Together d2

1 and d
2
2 can be expressed through the following spherical harmonics:

d2
1 ¼ �

ffiffiffiffiffiffi
4p
15

r
h4 �

ffiffiffiffiffiffi
4p
45

r
h1 þ

ffiffiffiffiffiffi
4p
9

r
g0

d2
2 ¼

ffiffiffiffiffiffi
4p
15

r
h4 �

ffiffiffiffiffiffi
4p
45

r
h1 þ

ffiffiffiffiffiffi
4p
9

r
g0

5.4 The weight matrix of the original MFA
To see that Eq (20) corresponds to Eq (4) as derived by Franz et al. in 2004 [11] for the original
MFA, a change of the basis of the vector space is applied. In [11] the coordinates of each flow
vector~pi were given with respect to different basis vectors~ui,~vi, spanning the tangential plane

on the sphere for viewing direction~di. In the following we derive the transformation matrix to
transform the coordinates of a vector given in the standard Euclidean basis vectors~e1,~e2 and~e3
into the basis defined by ð~ui;~vi;

~diÞi¼1;2;...;N . With N optical flow vectors we define a 3 × N

dimensional vector space, which is the N-fold Cartesian product of the three basis vectors~e1,~e2
and~e3.

All flow vectors~pi are represented now by a single stacked column vector~p,

~p ¼

~p1

~p2

..

.

~pN

0
BBBBB@

1
CCCCCA; ð79Þ

which has the dimension of 3 × N. In the same way the templates are written as

~TA ¼

~T 1;A

~T 2;A

..

.

~TN;A

0
BBBBBB@

1
CCCCCCA
; ð80Þ

where the index A stands for one of the six standard templates. The six templates ~TA are
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combined to matrix T̂ with six columns and 3 × n rows:

T̂ ¼

~T 1;1
~T 1;2 � � � ~T 1;6

~T 2;1
~T 2;2 � � � ~T 2;6

..

. ..
. . .

. ..
.

~TN;1
~TN;2 � � � ~TN;6

0
BBBBBB@

1
CCCCCCA
: ð81Þ

The responses of the six model neurons~a in this notation are

~a ¼ T̂ T �~p; ð82Þ

where T̂ T stands for the transpose of T̂ . Together with the coupling matrix one obtains for the
self-motion components (see Eq (20)):

~yest ¼ M̂�1 �~a ¼ M̂�1 � T̂ T �~p: ð83Þ

The complete vector basis of the above templates and flow vectors is described by two indi-
ces j = 1,2,3 and i = 1, 2, . . ., N and has the form

B ¼ ~e1;1;~e2;1;~e3;1;~e1;2;~e2;2;~e3;2; . . . ;~e1;N ;~e2;N ;~e3;N
	 


; ð84Þ

where the~e1;i,~e2;i and~e3;i are the same for each i. The basis vectors in the notation of Franz

et al. [11] are

B0 ¼ ~u1;~v1;
~d1;~u2;~v2;

~d2; . . . ;~un;~vn;
~dn

� �
; ð85Þ

where the viewing directions~di supplemented the local vector spaces to a three dimensional
space.

The new basis vectors B0 can be expressed by the old B,

~ui ¼ u1;i~e1;i þ u2;i~e2;i þ u3;i~e3;i;

~vi ¼ v1;i~e1;i þ v2;i~e2;i þ v3;i~e3;i;

~di ¼ d1;i~e1;i þ d2;i~e2;i þ d3;i~e3;i;

where u1, i etc. is one component of~u1. The transformation matrix V̂ between the two bases
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with the dimension [3 × N] � [3 × N] is

V̂ ¼

u1;1 u2;1 u3;1 0 0 0 � � � 0 0 0

v1;1 v2;1 v3;1 0 0 0 � � � 0 0 0

d1;1 d2;1 d3;1 0 0 0 � � � 0 0 0

0 0 0 u1;2 u2;2 u3;2 � � � 0 0 0

0 0 0 v1;2 v2;2 v3;2 � � � 0 0 0

0 0 0 d1;2 d2;2 d3;2 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 0 0 � � � 0 0 0

0 0 0 0 0 0 � � � u1;N u2;N u3;N

0 0 0 0 0 0 � � � v1;N v2;N v3;N

0 0 0 0 0 0 � � � d1;N d2;N d3;N

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The matrix V̂ transforms the coordinates of a vector given in basis B, Eq (84), into basis B0,
Eq (85). Eq (83) becomes

~yest ¼ M̂�1 � T̂ T �~p ¼ T̂ T � T̂	 
�1 � T̂ T �~p
¼ T̂ T � V̂ T � V̂ � T̂	 
�1 � T̂ T � V̂ T � V̂ �~p

¼ V̂ � T̂	 
T � V̂ � T̂
� ��1

� V̂ � T̂	 
T � V̂ �~p:

The term V̂ �~p is equivalent to~x in Eq (4) from the original MFA of Franz et al. [11]. The term
~x combines all optic flow components of the local two dimensional vector spaces as spanned

by the two local vectors~u and~v . The third component is zero because~p and~d are orthogonal.

To see that V̂ � T̂ is F ¼
��m1~u1

~u1 �~d1

;
��m1~v1

~v1 �~d1

; . . .

 !T

the first row of V̂ � T̂ is scrutinized.

The six components are

~u1 � ~T 1;1; ~u1 � ~T 1;2; ~u1 � ~T 1;3; ~u1 � ~T 1;4; ~u1 � ~T 1;5; ~u1 � ~T 1;6:

The first three components are (j = 1, 2, 3)

�m1 �~u1 � ~d1 �~ej �~d1

� �
¼ �m1 �~u1 � ~ej � ~ej �~d1

� �
~d1

� �
¼ �m1 �~uj;1;

and the second three components are

�~u1 � ~ej �~d1

� �
¼~ej � ~u1 �~d1

� �
¼ ~u1 �~d1

� �
j
:
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