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Abstract

Most cosmological analyses on radio galaxies interpret observations in the

homogeneous and isotropic flat Friedmann-Lemâıtre-Robertson-Walker Uni-

verse. However, the real Universe is not perfectly homogeneous and isotropic

especially on small scales. In this thesis we investigate the number counts of

sources in radio continuum surveys, including all linear order perturbations

in a perturbed flat Friedmann-Lemâıtre-Robertson-Walker Universe. The

results are expressed in terms of gauge-invariant quantities and without as-

suming any specific gauge condition. This general approach allows us to

recover gauge invariance explicitly. With the complete derivations of the

covariant volume integral on the past light cone, we have identified several

contributions to the number counts. To clarify their underlying physics,

we present each contribution in terms of scalar, vector and tensor modes.

This theoretical framework promises to be widely applicable to continuum

radio galaxy surveys to model the expected angular power spectrum and

two-point correlation.

We also measure the angular two-point correlation and angular power spec-

trum from the NRAO VLA Sky Survey (NVSS) of radio galaxies. Contrary

to previous claims in the literature, we show that it is consistent with pri-

mordial Gaussianity on all angular scales and it is consistent with the best-fit

cosmological model from the Planck analysis, as well as the redshift distri-

bution obtained from the Combined EIS-NVSS Survey Of Radio Sources

(CENSORS). Our analysis is based on an optimal estimation of the two-

point correlation function and makes use of a new mask, which takes into

account direction dependent effects of the observations, side lobe effects of

bright sources and galactic foreground. We also use a lower flux threshold

and take the cosmic radio dipole into account. The latter turns out to be



an essential step in the analysis. This improved cosmological analysis of the

NVSS stresses the importance of a flux calibration that is robust and stable

on large angular scales for future radio continuum surveys. Considering

the fact that the statistical error of the NVSS two-point correlation is too

large to detect all relativistic linear order effects, only the redshift space

distortion and gravitational lensing effect are investigated in more detail.
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Chapter 1

The Large Scale Structure of the

Universe

1.1 Homogeneity and Isotropy

The contemporary cosmological models are based on the cosmological principle, which

states that the Universe, smoothed over large enough scales, is essentially homoge-

neous and isotropic. Isotropy means given an observer point, the Universe looks the

same in every direction. Homogeneity states that matter and radiation are uniformly

distributed throughout the Universe.

Based on this principle, Friedmann and Lemâıtre began their pioneering investi-

gations on cosmology. However, the observational basis for the cosmological principle

was not known at that time. Their motivation was driven by considering the sim-

plest possible large scale structure of the Universe and the Copernican principle. The

Copernican principle state that there is no specially favored position in the Universe.

Since a universe that is isotropic everywhere (three distinct points are enough [11]) is

also homogeneous, the cosmological principle is a straightforward conclusion from the

combination of the Copernican principle and the isotropy around ourself in a smooth

spacetime.

The small structure in the Universe seems to contradict the cosmological principle,

for example the center of our Sun and interstellar space are completely different. Con-

sidering such fact, one only applies the cosmological principle on the very large scales,

and interprets it in a statistical sense. Several large scale statistical homogeneity tests

1



1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

(e.g. [12, 13]) have been applied to the Two-degree-Field Galaxy Redshift Survey [1],

the Sloan Digital Sky Survey [2] and the WiggleZ Dark Energy Survey [3], shown in

Fig. 1.1. These tests confirmed that the Universe is spatially isotropic and homogeneous

at scale above 100 Mpc.

The large scale isotropic and homogeneous cosmology picture describes with great

success a wide variety of observational data. Nevertheless, one may still question

whether the initial conditions giving rise to such a universe are natural or not. Cosmo-

logical inflation [14, 15, 16, 17], proposed in the 1980s, gives a mechanism which can

explain the initial conditions. According to the simplest inflation theory, the Universe

underwent an extremely rapid exponential expansion, namely inflation. The theory al-

lows the Universe to start from a reasonable small and nearly homogeneous and isotropic

patch of spacetime. The previously existing anisotropies and inhomogeneities are di-

luted during inflation, which leads to the flat, statistically isotropic and homogeneous

Universe today.

One of the strongest basis for the cosmological principle is coming from the Cosmic

Microwave Background Radiation (CMB). In 1965, Penzias and Wilson first observed

the CMB with Earth based Holmdel horn antenna. Later on, the space mission Cosmic

Background Explorer (COBE) was launched in 1989, which is regarded as the starting

point for cosmology as a precision science. They find the CMB fills the entire sky with

remarkably uniform intensity, except the galactic plane and kinetic dipole due to our

motion with respect to the CMB rest frame.

In order to understand the origin of the CMB, we need to briefly review the history

of the Universe. After the inflationary period, the Universe reverted to a power law

expansion rate, and the temperature continued to drop. When the temperature had

dropped to around 3000 K, protons and electrons were able to form stable hydrogen

atoms. Before that all baryonic matter was in a plasma state and the photon mean free

path was short due to Thomson scattering from the free charged particles. After the

formation of atoms, the Universe is transparent until the time of reionization. At which

time the high energetic photons emitted from the first stars reionize the Universe again.

The light released from the early plasma slightly scatter by the free electrons after the

reionization. It is perceived today as the CMB, the afterglow of the Big Bang’s heat.

2



1.1 Homogeneity and Isotropy

Figure 1.1: The large scale structure as observed with galaxy redshift surveys made by

corresponding surveys. Top: 2dF galaxy redshift survey [1], Bottom left: Sloan Digital

Sky Survey [2], Bottom right: WiggleZ Dark Energy Survey [3]. One can see the isotropic

galaxy distribution on large scales.
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1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

1.2 Inhomogeneity and Cosmological Perturbations

On the other hand, inflation also predicts the emergence of the Gaussian quantum

fluctuations, which become the seeds of large scale structures. This fact is indirectly

confirmed by the CMB observation as well. On top of the full sky 2.73 K thermal

radiation, a ∆T/T ∼ 10−5 rms temperature anisotropy signal was detected by COBE

with more than 7 σ [18] after dipole subtraction. This inhomogeneity of the early

Universe has played an important role in the history of modern precision cosmology.

One way to describe the deviations from the isotropy and homogeneity of the Uni-

verse is perturbation theory. It considers a small perturbation δgµν around a back-

ground metric ḡµν , which is homogeneous and isotropic,

gµν = ḡµν + δgµν . (1.1)

Then one can solve the Einstein equations with linear perturbations in an expanding

background,

R̄µν + δRµν −
1

2
R̄gµν −

1

2
δRḡµν −

1

2
R̄δgµν = 8πGT̄µν + 8πGδTµν . (1.2)

One can rewrite this equation into two equations, one for the background and the other

for the perturbations. This decomposition simplifies the calculation. However, one

should keep in mind that this decomposition is correct only when the perturbations

stay small enough during the evolution. For the small scale perturbations at late

time, the linear perturbation theory breaks down. One has to rely on higher order

perturbation theory or N-body simulations, dependent on the scale.

The pioneering work on perturbation theory in Friedmann-Lemâıtre-Robertson-

Walker (FLRW) cosmological models was made by Lifshitz and Khalatnikov [19]. After

that, the subject was studied by many authors.

This procedure sounds like a straightforward task. However, the interpretation

has led to confusion for several years. The fact that not all perturbed metrics are

physical, is not adequately addressed in some of the early papers. At that time most

approaches pick simple coordinate conditions and keep track of physical modes and co-

ordinate artifacts (also called gauge modes). Often simple coordinate conditions (gauge

choices) do not fix the coordinates completely. For instance, the gauge transformation

4



1.3 The Composition of the Universe

Figure 1.2: The CMB temperature anisotropy spectrum from Planck 2015 [4]. The red

solid line shows the best fit ΛCDM model

of synchronous gauge contains two arbitrary integration constants, which will lead to

unphysical gauge mode solutions for density perturbations outside the horizon.

A more elegant way to deal with this gauge issue is the gauge invariant approach

in which one only focuses on the metric variables which are independent of the choice

of coordinates. This approach eliminates the gauge dependence entirely rather than to

just specify and understand it. Bardeen [20, 21] and Gerlach and Sengupta [22] made

important work on this gauge-invariant approach to gravitational perturbations and

cosmological perturbations. The gauge invariant approach will be discussed in more

detail in chapter 2.

1.3 The Composition of the Universe

The motivation to study the large scale structure includes understanding the matter

content of the Universe, testing general relativity on large scales and testing primordial

Gaussianity. The measurement of the spatial anisotropy spectrum of the CMB tem-

perature (see Fig. 1.2) suggested that our Universe consists of 68.3% dark energy and

26.8% dark matter [23]. Dark energy has been introduced as a component driving the

accelerated expansion of the Universe and dark matter is a hypothetical matter which

5



1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

is only inferred from its gravitational effects. Both of them play important roles in the

large scale structure formation, and they are two of the greatest mysteries in modern

physics.

Many models attempt to explain observations without introducing dark energy.

The most popular solution is modifying gravity at large scales. This involves another

fundamental question, whether general relativity is the true theory for gravity. The

study of the large scale structure can help us to break the degeneracy between modified

gravity and dark energy.

One of the most well motivated ideas to understand dark energy is cosmological

back reaction [24]. The standard cosmological perturbation theory always considers the

evolution of the spatial average. However, the true observation is the spatial average

of the evolved perturbations. Spatial average and time evolution do not commute, and

the difference between the two cases can drive the expansion of the Universe. Due to

the difficulty in averaging of tensors in curved spacetime, this issue is still open.

On the other hand, the investigations of the large scale structure contribute a lot

in revealing the nature of dark matter. In the early 1980s, the hot dark matter model

was popular, which consists of dark matter particles that have a free-streaming length

much larger than a proto-galaxy. It has been ruled out latter, because hot dark matter

washes out all small structures through free streaming. The hot dark matter model

suggests that the super-clusters form first, which then fragment into galaxies. This is

in conflict with deep field galaxy observations [25].

To verify those theories, one has to rely on a large amount of large scale struc-

ture observations to give tighter constraints on the evolution of perturbations and the

expansion history.

1.4 History of Radio Cosmology

During 1960s and 1970s, people were very enthusiastic searching for the cosmological

implications of the study of radio sources. In those early days, their reasons were

quite clear [26]. First, radio emission is intense and can be observed of cosmological

distances far beyond the reach of optical telescopes. Second, the radio sky background

and foreground are relatively clean compared to the optical sky. Third, for Earth based

6



1.4 History of Radio Cosmology

Figure 1.3: Summary of main cosmological tests using radio sources as probes by Ekers

and Miley in 1977 [5]

telescopes the transparency window in radio frequency is much wider than for optical

frequencies. Forth, the galactic absorption of radio frequencies is negligible.

These advantages do not transform into significant contributions in cosmology after

the discovery of the CMB. In 1977, Ekers and Miley summarized the main radio sources

cosmological tests at that time, shown in Fig. 1.3. The first test faces the difficulty

which arises from the lack of knowledge of the radio source origin and evolution. Thus,

the radio luminosity function (RLF) is not well understood, which is still true today.

The second test requires redshift information, which is hard to determine for the radio

galaxies from radio observation alone. It is mainly because the lack of shape features

in radio spectra (except for the 21cm hydrogen line).

The remaining three tests involving angular sizes of radio sources looked promising

7



1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

to learn about the geometry of the Universe in 1970s. It measures the angular sepa-

ration of the radio components of double radio sources. Typical double radio sources

associated with optical images are shown in Fig. 1.4. However this separation cannot

be used as a standard rod, because the median angular separation of the source compo-

nents is observed to be roughly inversely proportional to redshift [27]. There are many

models that try to explain why the separation of the radio source components might

be smaller in the past. For instance, the interstellar and intergalactic gas density was

greater in the past such that the source components cannot travel so far [28].

Another version of the angular size test is using compact radio sources through

Very Long Baseline Interferometry [7]. Since the compact sources are deeply embed-

ded within the central regions of the host galaxy, they may be less affect by the inter-

galactic and interstellar medium. This angular diameter-redshift relation is shown in

Fig. 1.5. They contradict suppernova measurements, as this result is consistent with a

deceleration parameter today q0 = 0.5.

These cosmological tests are very limited due to the degeneracy between the cos-

mological model and the evolution of radio galaxy. However, one can combine these

measurements with the CMB and other cosmological observations to learn about the

properties of radio galaxies [29].

1.5 Radio Cosmology after Planck

The CMB has been the main observational tool in cosmology for about three decades

by now. It provides 2-dimensional information about the last scattering surface, which

allows us to constrain cosmological parameters with unprecedented accuracy. Recently,

the cosmological tests with CMB lensing have achieved a lot of success. The CMB

lensing information has been measured precisely and gives additional information about

the integrated gravitational potential along the line of sight [8].

Similar to the CMB lensing, radio galaxy continuum surveys can also give an in-

tegrated structure information along the line of sight. The current radio galaxy con-

tinuum surveys contain more than 106 galaxies with mean redshift around 0.5, and

provide a natural platform for large scale structure research with considerable statisti-

cal advantages. However, it has not received sufficient attention in cosmology during

the past years. The new generation of radio telescopes now under construction such as

8



1.5 Radio Cosmology after Planck

Figure 1.4: Hubble Space Telescope images of five 3CR radio galaxies with radio emission

contours from the Cambridge four-element interferometer, from [6]. In order of increasing

radio size (D): (a) 3C 266 (upper left, z = 1.272, D = 39 kpc); (b) 3C 368 (centre left,

z = 1.132,D = 73 kpc); (c) 3C 324 (upper right, z = 1.21,D = 96 kpc); (d) 3C 280 (centre

right, z = 0.996,D = 117 kpc); (e) 3C 65 (bottom, z = 1.176,D = 155 kpc).
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1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

Figure 1.5: Mean angular size against redshift for 82 compact sources by Kellermann

[7]. The solid curves represent the expected dependece for FLRW cosmological models for

a standard source with a component separation of 41 parsec and deceleration parameter

q0 of 0, 1/2 and 1 and the steady-state model (SS); the dashed line shows the 1/z law

observed for the separation of double-lobed extend sources.
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1.5 Radio Cosmology after Planck

Figure 1.6: Top: The cartoon shows how the CMB photon trajectories are affected by

the matter distribution between the receiver and the last scattering surface. Bottom: The

gravitational lensing power spectrum of the cosmic microwave background from the Planck

2015 results [8]. (Made by ESA and the Planck Collaboration)
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1. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

Low Frequency Array (LOFAR)1, the Australian Square Kilometre Array Pathfinder

(ASKAP)2, MeerKAT3 and Square Kilometre Array (SKA)4, will provide even larger

and deeper radio galaxy continuum surveys, capable of detecting galaxies above red-

shift 3. Those galaxies are roughly located in the middle of the last scattering surface

and us, having the strongest lensing effect according to general relativity. Combining

the CMB lensing and radio galaxies enables one to better test gravity and understand

the structure evolution [30].

Moreover, the next generation of radio telescopes are capable to map the intensity of

the 21cm line up to a redshift of 5. This will allow radio galaxy surveys to do precision

cosmology alone. It can be a competitive way to probe the 3-dimensional large scale

structure, which would bring precision cosmology to a new stage [31].

1URL: www.lofar.org
2URL: www.atnf.csiro.au/projects/askap/
3URL: www.ska.ac.za/meerkat/
4URL: www.skatelescope.org
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Chapter 2

Perturbation Theory and Galaxy

Number Counts

2.1 Metric Perturbations

The real universe is not perfectly homogeneous. The inhomogeneities in the matter

distribution induce metric perturbations, which can be decomposed into irreducible

components, based on the symmetry properties with respect to spatial rotations and

translations. More precisely the metric perturbations δgµν can be categorized into three

distinct types: scalar mode perturbations, vector mode perturbations and tensor mode

perturbations. At the linear order different types of perturbation evolve independently

and can thus be investigated separately. In this thesis, we consider linear perturbations

of a spatially isotropic, homogeneous and flat metric, largely following the notation of

[32]. The line element is expressed as

ds2 = −a2(1 + 2φ)dη2 − 2a2(B,i + Si)dηdxi (2.1)

+a2[(1 + 2ψ)δij + 2E,ij + Fi,j + Fj,i + hij ]dx
idxj ,

where a is the scale factor, B,i = ∂B/∂xi, and Si and Fi are transverse vectors, i.e. their

divergencies vanish (Si,i = 0 and F i,i = 0). The transverse, traceless tensor hij satisfies

the four constraints hii = 0, hij,i = 0.

The scalar mode perturbations contain four metric components φ, ψ,B,E, which

play an important role in the structure formation. The vector mode perturbations

13



2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

Si and Fi describe the rotational motion of the fluid, which decays fast as the uni-

verse expands. The tensor mode perturbation hij corresponds to the propagation of

gravitational waves.

As we discussed in the introduction, when the metric is perturbed, it is not trivial to

distinguish physical modes from the gauge modes which arise purely from the choice of

a coordinate system. In other words, the decomposition of the metric into a background

plus a perturbation is not unique [33].

There are two equivalent methods to describe the gauge transformations of these

perturbations, one is to consider them as passive coordinate transformations (also see

[32]), the other is to view them as active diffeomorphism (also see [33]), both will be

explained in the following sections.

2.1.1 Method I : Passive Coordinate Transformations

In the passive coordinate transformation method, the metric perturbation is defined

as the difference between the physical metric and the background metric at the same

physical point

δgµν(x) = gµν(x)− ḡµν(x) . (2.2)

Let us consider the infinitesimal coordinate transformation

xµ → x̃µ = xµ + ξµ . (2.3)

At a given point in space-time, the metric transforms following the tensor transforma-

tion law

g̃µν(x̃) =
∂xγ

∂x̃µ
∂xσ

∂x̃ν
gγσ(x) (2.4)

≈ ḡµν(x) + δgµν(x)− ḡµσξσ,ν − ḡγνξγ,µ .

After splitting the metric into background and perturbation in the new coordinate x̃,

one obtains

δg̃µν(x̃) = δgµν(x) + ḡµν(x)− ḡµν(x̃)− ḡµσξσ,ν − ḡγνξγ,µ . (2.5)

Since

ḡµν(x̃) ≈ ḡµν(x) + ḡµν,ρ(x)ξρ , (2.6)
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2.1 Metric Perturbations

Figure 2.1: Diffeomorphism related background spacetime and physical spacetime

we rederive the metric perturbation gauge transformation law as

δg̃µν(x̃) = δgµν(x)− ḡµν,ρ(x)ξρ − ḡµσξσ,ν − ḡγνξγ,µ (2.7)

= δgµν(x)−∇µξν −∇νξµ ,

where ∇µ is the covariant derivative.

2.1.2 Method II: Active Diffeomorphisms

In this method, the linear perturbation theory can be considered as three parts: a

background spacetimeMbg, a physical spacetimeMphy and a diffeomorphism f : Mbg →
Mphy, which states that the map between the two manifolds is invertible. One can

imagine that the manifolds Mbg and Mphy are essentially the same, but possess different

metrics. We use a flat FLRW metric ḡµν on the Mbg and on Mphy we have some general

metric gαβ. We could also say that Mbg is equipped with coordinates xµ and Mphy

equipped with coordinates yα. The diffeomorphism f allows us to move the metrics

back and forth between the background and physical space-times, as shown in Fig. 2.1.
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2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

For simplicity we construct the linear perturbation theory on the background space-

time and pull back gαβ to Mbg. The perturbation is defined as the difference between

the background metric ḡµν and the pullback metric (f∗g)µν , where f∗ can be thought

as pulling back through f ,

δgµν = (f∗g)µν − ḡµν . (2.8)

Thus the metric in Eq. (2.1) actually is the constructed pullback metric. With this

construction the components of metric perturbation δgµν are not necessary small. We

have to limit our choices to diffeomorphisms for which δgµν is small enough. Even with

this constraint, there is still a large number of allowed diffeomorphisms between the

two spacetimes. To show that, one simply assigns an infinitesimal vector field on the

background spacetime. This vector field generates a diffeomorphism s : Mbg → Mbg,

as shown in Fig. 2.1. If a diffeomorphism f fulfills the constraint, then so does f ◦ s,
where ◦ denotes the composition of two maps. The new metric perturbation becomes

δg̃µν = [(f ◦ s)∗g]µν − ḡµν

= [s∗(f∗g)]µν − ḡµν

= s∗(ḡ + δg)µν − ḡµν

= s∗(ḡµν) + s∗(δgµν)− ḡµν

≈ δgµν + Lξ ḡµν , (2.9)

where in the last line we used the approximation s∗(δgµν) ≈ δgµν , while the remaining

two terms s∗(ḡµν) − ḡµν yield Lξ ḡµν = 2∇(µξν), a Lie derivative of the background

metric along the infinitesimal vector field ξµ. Thus one gets the gauge transformation

law in linearized theory,

δg̃µν = δgµν +∇µξν +∇νξµ (2.10)

The above formula is the same as the one derived from a passive coordinate trans-

formation, up to a change of sign of ξµ. Our following calculation uses the gauge

transformation law in passive coordinate transformation convention (see Eq. (2.7)).

2.2 Gauge-invariant Metric Potentials

In a FLRW universe with a metric as in Eq. (2.1), there are in total 10 degrees of

freedom, and not all of them are physical. Using the gauge transformation law Eq. (2.7),

we obtain
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2.3 Galaxy Number Counts I

φ→ φ̃ = φ−Hξ0 − ξ̇0 , B → B̃ = B + ζ̇ − ξ0 ,

ψ → ψ̃ = ψ −Hξ0 , E → Ẽ = E − ζ ,

Si → S̃i = Si + ξ̇⊥i , Fi → F̃i = Fi − ξ⊥i,

where ξµ ≡ (ξ0, ξi) and ξi = ξi⊥ + ζ ,i. A dot denotes a derivative with respect to the

conformal time η and H ≡ ȧ/a. By choosing ξµ appropriately, we can eliminate 4

coordinate degrees of freedom or we can construct gauge invariant metric potentials:

Φ ≡ φ−H(B + Ė)− (Ḃ + Ë) , (2.11)

Ψ ≡ ψ −H(B + Ė) , (2.12)

Ui ≡ Si + Ḟi . (2.13)

They do not change under the coordinate transformations, and correspond to real

physical inhomogeneities.

2.3 Galaxy Number Counts I

We can consider our past light cone to be a three-dimensional hypersurface of the

four-dimensional space-time. Within this hypersurface, the four coordinates xµ may be

expressed by smooth functions of three parameters. For convenience we use the light

cone constraint to fix the conformal time η, and choose the three parameters on the

past light cone to be the spherical coordinates (r, θ, φ). In a second step (next section)

we connect them to the observed source positions on the sky and to observed comoving

source distances.

The total number of galaxies on the past light cone (plc) can be computed by

considering a covariant hypersurface integral [34]

N =

∫
plc
nphyu

µdSµ, (2.14)

where nphy = nphy(η, xi) is the inhomogeneous physical number density, u0 = (1 −
φ)/a, ui = vi/a are the components of the four-velocity field of galaxies and

dSµ = εµνσρdx
νdxσdxρ

= εµνσρ
∂xν

∂r

∂xσ

∂θ

∂xρ

∂ϕ
drdθdϕ, (2.15)

with εµνσρ =
√
−g[µ ν σ ρ] denoting the Levi-Civita pseudo-tensor.
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2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

At linear order, the covariant volume integral can be written as

N =

∫
plc
nphyu

µεµνσρ
∂xν

∂r

∂xσ

∂θ

∂xρ

∂ϕ
drdθdϕ

=

∫
plc
nphya

3r2[1 + 3ψ +∇2E + vieri ]drdΩ, (2.16)

where eri denotes the radial unit vector. Here, the terms 3ψ and ∇2E are due to the

distortion of the spatial volume, the term vieri is due to the light cone projection. Let

us stress that this result holds true for all coordinate systems in which the observer

is at rest, i.e. vi denote the velocity of the sources. In order to express N in another

frame (e.g. the CMB rest frame) one has to replace vi by (vi − vio), where vio denotes

the observer’s peculiar velocity. This can be easily seen from the fact that linearized

Lorentz boosts reduce to Galilean transformations which do not modify the volume,

but affect the light cone projection. By construction N is a gauge invariant quantity,

which we have checked explicitly.

2.4 Coordinates of the Observer

In the previous section, the number count has been expressed as an integral over the

coordinates (r, θ, ϕ). However, these coordinates do not agree with the coordinates

used by the observer. The actual observables are redshift and/or flux, instead of coor-

dinate distance, and position (two observed angles), instead of the angular coordinates

introduced above. The following subsection briefly reviews the redshift and luminosity

distance distortions up to first order in cosmological perturbations.

2.4.1 Conformal Transformation

Conformal transformations preserve the causal structure of space-time. Thus we can

find the null geodesics of a linearly perturbed Minkowski space-time and relate them

to the null-geodesics of the spatially flat Friedmann-Lemâıtre-Robertson-Walker cos-

mologies via a conformal transformation provided by the scale factor. This strategy

was used in [35, 36, 37].

For completeness, we repeat the most essential steps of the proof in our notation

following [38].
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2.4 Coordinates of the Observer

We consider a conformal transformation

gµν → ĝµν = Ω2gµν . (2.17)

From now onˆdenote the objects in conformal related geometry. We denote ∇µ to be

the covariant derivative operator associated with gµν , and ∇̂µ to be associated with

ĝµν . The relation between ∇̂µ and ∇µ is given by

∇̂µwν = ∇µwν − Cγµνwγ , (2.18)

where Cγµν is a smooth tensor field which satisfies Cγµν = Cγνµ. It becomes the Christof-

fel symbol, when ∇µ is an ordinary partial derivative operator. Using the symmetry

property of Cγµν and metric compatibility, we obtain

Cγµν =
1

2
ĝγρ(∇µĝνρ +∇ν ĝµρ −∇ρĝµν) (2.19)

Since ∇µgνγ = 0, we get

Cγµν = δγµ∇ν ln Ω + δγν∇µ ln Ω− gµνgγρ∇ρ ln Ω . (2.20)

We use Cγµν to compare the geodesics with respect to different metrics. Assuming V µ

is the tangent vector to an affinely parametrized geodesic, then

V µ∇µV ν = 0 , (2.21)

and thus

V µ∇̂µV ν = 2V νV γ∇γ ln Ω− (gµγV
µV γ)gνρ∇ρ ln Ω . (2.22)

In the case of null geodesics the second term vanishes, and this equation becomes the

non-affine parametrized geodesic equation. The affine parameter λ̂ for ∇̂µ is related to

the original affine parameter λ by

dλ̂

dλ
= cΩ2 , (2.23)

where c is a constant. Thus, we can conclude that null geodesics are conformally

invariant. In the following section, perturbations are first evaluated in a perturbed

Minkowski space-time and then conformally related to the physical space-time.
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2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

2.4.2 Redshift Distortions

Now, we consider a conformal transformation

gµν → ĝµν = a2gµν . (2.24)

The physical redshift is defined as

z =
ωs

ωo
− 1 =

(ûµk̂
µ)s

(ûν k̂ν)o

− 1 , (2.25)

where ωs and ωo are the frequencies at the source and observer, respectively. k̂µ and

kµ are the light-like wave vectors associated with ĝµν and gµν . ûµ and uµ are the

4-velocities associated with ĝµν and gµν .

Using Eq. 2.23 and dŝ2 = a2ds2, we obtain k̂µ = kµ/a2. Since ûµ is time-like

4-velocity ûµ = dxµ/dτ̂ , we get ûµ = uµ/a.

Thus

z =
ao(uµk

µ)s

as(uνkν)o
− 1 . (2.26)

The null geodesic xµ(λ), with λ denoting an affine parameter, can be decomposed

into a background path plus a perturbation,

xµ(λ) = x(0)µ(λ) + x(1)µ(λ), (2.27)

where x(0)µ is a null geodesic in Minkowski space-time, and we assume that the metric

perturbations are small. The lightlike wave vector is therefore

kµ =
dx(0)µ

dλ
, lµ =

dx(1)µ

dλ
. (2.28)

At first order, the null condition becomes

−k0l0 + kili = k2φ+ (B,i + Si)k
ik0

−kikj(ψδij + E,ij +
1

2
Fi,j +

1

2
Fj,i +

1

2
hij), (2.29)

where we define (k0)2 = (kiei)
2 ≡ k2.

Now we turn to the perturbed geodesic equation. The zeroth order geodesic equa-

tion simply tells us that x(0)µ is a straight trajectory, while the first order geodesic

equation is
dlµ

dλ
= −2Γ(0)µ

ρσ kρlσ − Γ(1)µ
ρσ kρkσ − Γ(0)µ

ρσ,νk
ρkσx(1)ν . (2.30)
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2.4 Coordinates of the Observer

For the flat background,
dlµ

dλ
= −Γ(1)µ

ρσ kρkσ. (2.31)

The temporal component of this equation is

dl0

dλ
= −2

dφ

dλ
k0 + k2[φ̇− ψ̇]− kikj [Ė,ij +B,ij

+
1

2
(Si,j + Sj,i + Ḟi,j + Ḟj,i) +

1

2
ḣij ], (2.32)

where we used dφ/dλ = φ̇dη/dλ+ φ,idx
i/dλ.

After integrating Eq. (2.32), we obtain the temporal component of the wave number

perturbation

l0|so = −2k0φ|so + k2

∫ λs

λo

dλ′[φ̇− ψ̇]− k2

∫ λs

λo

dλ′erierj [Ė,ij

+B,ij +
1

2
(Si,j + Sj,i + Ḟi,j + Ḟj,i + ḣij)], (2.33)

where eri denotes the unit vector pointing from the observer to the source. With l0 one

can further evaluate the redshift at linear order, by means of

1 + z =
ao

as

(k · u(0))s + (k · u(1))s + (l · u(0))s

(k · u(0))o + (k · u(1))o + (l · u(0))o
. (2.34)

Since ui is of first order, only the time component of lµ contributes and we find

1 + z =
Ao

As
[1− Φ|so + eriVi|so + k0

∫ λs

λo

dλ′(Φ̇− Ψ̇)

−1

2
k0

∫ λs

λo

dλ′erierj(Ui,j + Uj,i + ḣij)], (2.35)

with the gauge invariant ratio of scale factors Ao
As
≡ ao

as
(1−H(B + Ė)|so) and the gauge

invariant velocity Vi ≡ vi−Si+ Ė,i. Thus this expression is manifestly gauge invariant.

The affine parameter λ is related to conformal time via dη = k0dλ. Our sign convention

and the notation is illustrated in Fig. 2.3.

For convenience, we define 1+z ≡ ao
as

(1+δz), and thus the gauge dependent redshift

distortion becomes

δz = −H(B + Ė)|so − Φ|so + eriVi|so + k0

∫ λs

λo

dλ′(Φ̇− Ψ̇)

−1

2
k0

∫ λs

λo

dλ′erierj(Ui,j + Uj,i + ḣij). (2.36)
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2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

From this equation, one can clearly see the well-known gravitational redshift, the

Doppler shift and the integrated Sachs-Wolfe effect, as well as vector mode and grav-

itational wave contributions. A gauge-invariant redshift perturbation can be define

as

1 + z =
Ao

As
(1 + δZ) , δZ = δz + H(B + Ė)|so (2.37)

We also introduce the notation 1 + z̄ ≡ ao
as

to indicate the unperturbed redshift, which

will be used later.

2.4.3 Specific Flux Fluctuations

Radio sources typically have featureless (power law) spectra, see Fig. 2.2. Their red-

shift cannot be obtained from radio continuum observations. However, we observe the

specific flux. The observed specific flux of a radio source is also affected by metric

fluctuations. This effect modifies any distance estimate based on the ratio of specific

fluxes (assuming for a moment that we would know the specific luminosities).

The energy momentum tensor of monochromatic photons with frequency ω and

4-wave vector k̂µ is [39, 40]

Tµν =
1

8π
A 2(ω, λ)k̂µk̂ν , (2.38)

where A is the amplitude in the eikonal approximation of geometric optics. Here,

we use k̂µ to distinguish the physical wave vector from kµ, the wave vector in the

conformally related Minkowski space-time.

The specific flux is given by a projection of the energy-momentum,

S ≡ −eαuνoTµν hαµ, (2.39)

where hαµ is the spatial projection tensor, orthogonal to the observer four-velocity uνo ,

and eα is a unit space like vector pointing in the direction of the 3 wave vector in

the observer rest frame. These vectors are defined at the observer, and we parallel

transport the wave vector and energy-momentum tensor along the geodesic. We find

the specific flux density is

S(ω) =
1

8π
A 2(ω, λ)ω2. (2.40)

The emitted photon number in a frequency band of width dωs, solid angle dΩs, and

proper time interval dτs can be expressed in terms of the specific luminosity of a source
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2.4 Coordinates of the Observer

Figure 2.2: Radio galaxy spectrum. Top: FIR and radio spectrum of M82 (Condon, J.

J. 1992, ARA&A, 30, 575); Bottom: radio spectrum of Cygnus A, Cassiopeia A and Virgo

A (Baars, J. W. M. et al. 1977, A&A, 61, 99.)
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2. PERTURBATION THEORY AND GALAXY NUMBER COUNTS

L(ωs) ≡ 4πR2
sSs(ωs) (Rs is a distance not too far from the center of the source) and

reads

dNγ =
L(ωs)

4πωs
dωsdΩsdτs. (2.41)

Due to the conservation of photon number (neglecting absorption and emission along

the line of sight to a source) we can relate that to the observed specific flux density

[41],

L(ωs)

4πωs
dωsdΩsdτs =

So(ωo)

ωo
dωodAodτo, (2.42)

where dAo is the photons passed area which orthogonal to the ray direction in an

observer’s 3-space.

The (monochromatic) luminosity distance DL is

DL ≡

√
Ls(ωs)dωs

4πSo(ωo)dωo
=

Asωs

Aoωo
Rs (2.43)

In this thesis we provide some essential steps for deriving the luminosity distance at

linear order, which was discussed many times [35, 37, 42, 43]. Here, we closely follow

the result of Sasaki [35].

According to the energy-momentum conservation and the geodesic equation,

∇̂µ(A 2k̂µ) = 2A (
dA

dλ̂
+

1

2
A ϑ̂) = 0, (2.44)

where ϑ̂ ≡ ∇̂µk̂µ.

In the conformally related geometry, one can verify that

∇µ(A 2a2kµ) = 2A a(
d(A a)

dλ
+

1

2
A aϑ) = 0, (2.45)

where ϑ ≡ ∇µkµ is the expansion of the congruence. The evolution of ϑ is described

by its covariant derivative along the null path,

dϑ

dλ
= −Rµνkµkν −

1

2
ϑ2 − 2σ2 , σ2 =

1

2
[k(α;β)k(α;β) −

1

2
ϑ2] , (2.46)

where σ is the shear of the congruence and σ = 0 for the spherical symmetric sources

(for instance a source associated with a Kerr metric will have non zero shear). At the
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2.4 Coordinates of the Observer

Figure 2.3: Affine parameter convention of a light ray in a radio observation.

zeroth order, the Ricci tensor vanishes in the conformally related geometry, thus one

simply gets

dϑ̄

dλ
+

1

2
ϑ̄2 = 0,

ϑ̄ =
2

λ+ c
. (2.47)

We define λo and λs +∆λs for the affine parameter at observer and source, respectively.

As shown in Fig. 2.3, we assume the source is spherical (imagine a large sphere

contains core and jets) and its radius in terms of the affine parameter is ∆λs. At the

point source ϑ̄→∞, then c = −λs −∆λs, therefore to zeroth order

ϑ̄ =
2

λ− λs −∆λs
. (2.48)

At first order,
dδϑ

dλ
= −δRµνkµkν − ϑ̄δϑ. (2.49)

Integration of Eq. (2.49) with the boundary condition δϑ(λs) = 0 yields

δϑ(λ) =
1

(λ− λs −∆λs)2

∫ λs

λ
(λ′ − λs −∆λs)

2δRµνk
µkνdλ′. (2.50)
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According to Eq. (2.45)

A a = c1 exp[−
∫ λ

λo

ϑ

2
dλ]. (2.51)

Therefore
A (λs)a(λs)

A (λo)a(λo)
=
λs − λo + ∆λs

∆λs
exp[−

∫ λs

λo

δϑ

2
dλ]. (2.52)

In the local inertial frame of the source (η̃, x̃i),

ω = gµνu
µk̂ν =

−1

a2

dη̃

dλ
, (2.53)

and thus

Rs =
√
δijdx̃idx̃j = |∆η̃| = a2

s ∆λsωs. (2.54)

In the limit ∆λs → 0, the luminosity distance is

DL = (1 + z)
As

Ao
Rs

= ao(1 + z)
asωs

k0
(ηs − ηo)[1− 1

ηs − ηo

∫ λs

λo

l0dλ

−
∫ λs

λo

δϑ

2
dλ] , (2.55)

where the term proportional to l0 comes from replacing the affine parameter by the

conformal time. At leading order we can further write

1

ηs − ηo

∫ λs

λo

l0dλ =
1

λs − λo

∫ λs

λo

l0

k0
dλ. (2.56)

Using integration by parts yields∫ λs

λo

l0dλ =

∫ λs

λo

(λs − λ)
dl0

dλ
dλ+ (λs − λo)l0(λo). (2.57)

According to Eq. (2.32)∫ λs

λo

dλ(λs − λ)
dl0

dλ

=

∫ λs

λo

(λs − λ)k2

[
Φ̇− Ψ̇− 1

2
eiej(Ui,j + Uj,i + ḣij)

]
dλ

−2k0

∫ λs

λo

[
φ− (Ë + Ḃ)

]
dλ− [Ė +B]|so

+(λs − λo)[2k0φo − k0(Ëo + Ḃo) + ki(Ėo +Bo),i] ,

(2.58)
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Inserting Eq. (2.50) into the last term of Eq. (2.55), and integrating by parts, we find∫ λs

λo

δϑ

2
dλ =

∫ λs

λo

(λs − λ)(λ− λo)

2(λs − λo)
δRµνk

µkνdλ

=

∫ λs

λo

dλ
(λs − λ)(λ− λo)

2(λs − λo)
k2

[
∆[Φ−Ψ]−∆Uie

i

−[Φ−Ψ],ije
iej +

1

2
[U̇i,j + U̇j,i + ḧij −∆hij ]e

iej
]

−ψs − ψo +
2

λs − λo

∫ λs

λo

ψdλ (2.59)

Recall that the photon frequency ωs is

ωs = gµνu
µk̂ν =

1

as
[−k0 − k0φ+ ki(vi −B,i − Si)− l0s ] .

(2.60)

Finally, inserting Eq. (2.59) and Eq. (2.58) into Eq. (2.55), the luminosity distance can

be expressed in terms of gauge invariant quantities as

DL = Ao(1 + z)(χo − χs)

[
1 + Ψo − Φs + Ψs + ei(Vi)s + k0

∫ λs

λo

(Φ̇− Ψ̇)dλ

+
2

ηs − ηo

∫ λs

λo

k0(Φ−Ψ)dλ− 1

ηs − ηo

∫ λs

λo

(λs − λ)k2(Φ̇− Ψ̇)dλ

−
∫ λs

λo

dλ
(λs − λ)(λ− λo)

2(λs − λo)
k2[∆(Φ−Ψ)− (Φ−Ψ),ije

iej ]

−k0

∫ λs

λo

1

2
eiej(Ui,j + Uj,i + ḣij)dλ

+
1

ηs − ηo

∫ λs

λo

(λs − λ)k2[
1

2
eiej(Ui,j + Uj,i + ḣij)]dλ

−
∫ λs

λo

dλ
(λs − λ)(λ− λo)

2(λs − λo)
k2[

1

2
(U̇i,j + U̇j,i + ḧij −∆hij)e

iej −∆Uie
i]

]
, (2.61)

where χo − χs ≡ ηo − ηs + [Ė +B]|os .

At long wavelengths, synchrotron radiation is the dominant radiation process, which

suggests that the emitted flux density from a radio source follows a power law (see

Fig. 2.2),

Ss(ωs) ∝ ω−αs , (2.62)

where α is the spectral index.
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Figure 2.4: Flux-redshift relation for different specific luminosities typical for AGNs. The

standard Λ cold dark matter model has been adopted, and the spectral index α has been

chosen to be 0.75.

To infer the distance of a source that is neither monochromatic nor thermal requires

the detailed knowledge of its spectrum (besides its luminosity). For featureless spectra

the redshift is typically unknown. It is thus convenient to compare the observed specific

flux density to the specific luminosity at the observed frequency and we use the observed

bandwidth. We define the specific luminosity distance,

DS ≡

√
Ls(ωo)dωo

4πSo(ωo)dωo
= (1 + z)(α−1)/2DL. (2.63)

The last term in Eq. (2.63) connects the specific luminosity distance with the

(monochromatic/bolometric) luminosity distance DL.

In the following our task is to calculate the specific flux density of a radio source,

taking all linear fluctuations into account. We can write

So(ωo) = Ss(ωo)
R2

s

D2
S

=
Ls(ωo)

4π

1

(1 + z)α+1R2
o

. (2.64)

where DL = Ro(1 + z) and Ro ≡
√

dAo/dΩsis the physical distance (today).

For the standard cosmological (homogeneous and isotropic) model, this relation

between flux density and redshift is shown in Fig. 2.4 for several typical specific lu-

minosities of radio sources. The linear distortions of redshift were presented in the
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previous subsection. Analogous to the redshift distortion, we define the physical dis-

tance fluctuation δd via

Ro =
DL

1 + z
= ao(ηo − ηs)[1 + δd], (2.65)

where δd is then given by comparison with the expression for the luminosity distance

at linear order, which has been discussed in [35, 37, 42].

According to Eq. 2.61 Ro can be expressed in terms of gauge invariant quantities

as

Ro = Ao(χo − χs)

[
1 + Ψo − Φs + Ψs + ei(Vi)s + k0

∫ λs

λo

(Φ̇− Ψ̇)dλ

+
2

ηs − ηo

∫ λs

λo

k0(Φ−Ψ)dλ− 1

ηs − ηo

∫ λs

λo

(λs − λ)k2(Φ̇− Ψ̇)dλ

−
∫ λs

λo

dλ
(λs − λ)(λ− λo)

2(λs − λo)
k2

[
∆(Φ−Ψ)− (Φ−Ψ),ije

iej
]

−k0

∫ λs

λo

1

2
eiej(Ui,j + Uj,i + ḣij)dλ (2.66)

+
1

ηs − ηo

∫ λs

λo

(λs − λ)k2[
1

2
eiej(Ui,j + Uj,i + ḣij)]dλ

−
∫ λs

λo

dλ
(λs − λ)(λ− λo)

2(λs − λo)
k2[

1

2
(U̇i,j + U̇j,i + ḧij −∆hij)e

iej −∆Uie
i]

]
.

We have checked that Ro is manifestly gauge invariant.

As shown so far, distortions of the specific flux are affected by redshift distortions

δz and physical distance fluctuations δd. Besides these geometrical effects, the specific

luminosity and spectra of different sources are not identical, which provides another

source of fluctuation. Thus, we allow Ls(ωo) and α to vary and denote its fluctuations

by δLs(ωo) = Ls(ωo) − L̄s(ωo) and δα = α − ᾱ, respectively. The specific flux density

can be written as

So(ωo) = S̄o(ωo)(1 + δS), (2.67)

where

S̄o(ωo) =
L̄s(ωo)

4πa2
o(1 + z̄)ᾱ+1(ηo − ηs)2

(2.68)

and the specific flux fluctuation is

δS =
δLs(ωo)

L̄s(ωo)
− 2δd − (ᾱ+ 1)δz − δα ln(1 + z̄). (2.69)
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On one hand, at high redshifts and large fields of view (a large sample) the geometric

terms (−2δd− (ᾱ+ 1)δz) are likely to dominate δS . On the other hand, at low redshift

and small fields of view, δα and δLs may play a significant role, which might explain

some of the variation observed[44] in the differential number counts in small fields.

2.4.4 Number Counts in Observed Spherical Coordinates and Lensing

Effect

The fluctuations mentioned above have to be taken into account when we do the co-

ordinate transformation from the background coordinates (r, θ, ϕ) to the observed co-

ordinates (ro, θo, ϕo) (see Fig. 2.5). We assume that the two sets of coordinates are

related by small quantities, such that

r = ro + δr,

θ = θo + δθ, (2.70)

ϕ = ϕo + δϕ.

The comoving distance fluctuation is defined as the difference between the line of sight

distance r in the comoving coordinates and the distance ro inferred from the observed

flux density So for a fixed luminosity, measured spectral index and assumed luminosity.

Unlike the former, ro is in principle a measurable quantity and it is invariant under

coordinate transformations.

The observed flux is a function of the conformal time. Using r̄ ≡ ηo − η and

Eq. (2.68), we explicitly define the function r̄ = r̄(S̄o), and the inferred distance ro ≡
r̄(So). Expanding this definition at background flux leads to

r̄(So) = r̄(S̄o) +
dr̄

dS̄o
(So − S̄o)

ro = ηo − η −
(ηo − η)δS

2 + (ᾱ+ 1)(ηo − η)H
. (2.71)

The linear order light cone relation in the background coordinates is

ηo − η −
∫ λo

λ
dλ′l0 = r −

∫ λ

λo

dλlieri , (2.72)

where lµ is the wave vector fluctuation caused by metric fluctuation in the conformally

related geometry, which is mentioned in the previous section on redshift distortion.
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Figure 2.5: Observed position vs. background position.

According to the null condition Eq. (2.29), one can find the comoving distance fluctu-

ation

δr = r − ro (2.73)

=
roδS

2 + (ᾱ+ 1)roH
+ [

kiFi
k0
−B +

kiE,i
k0
− Ė]|so

+

∫ s

o
dλ(−k0Φ + k0Ψ− Uiki +

kikj

2k0
hij),

where we have replaced ηo − η by ro, which introduces contributions at higher order

that we neglect.

Metric perturbations can deflect and disperse light rays and thus displace the ob-

served angles on the sky (see Fig. 2.5). Following [45], we start from an infinitesimal

angle deviation δθ,

rδθ = eθiδx
i =

∫ s

o
dλeθil

i, (2.74)

where eθi is the unit vector pointing into the angular direction. Since angles are not

affected by conformal transformations, δθ can be calculated from the geodesic equation

in the conformally related geometry,

dli

dλ
= −Γ(1)i

σρ k
σkρ

= −1

2
δiα(g(1)

σα,ρ + g(1)
ρα,σ − g(1)

σρ,α)kσkρ

= −dδiαg
(1)
σα

dλ
kσ +

1

2
δiαg(1)

σρ,αk
σkρ. (2.75)
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With the help of dkµ

dλ = Γ
(0)µ
σρ kσkρ = 0, we find

eθil
i|so = −eθi[g(1)

0i k
0 + g

(1)
ji k

j ]so +
1

2

∫ s

o
dλeθig

(1)
σρ,ik

σkρ. (2.76)

Integrate eθil
i along the path to obtain

δθ = − 1

ro

∫ s

o
dλ

(
eθi[g

(1)
0i k

0 + g
(1)
ji k

j ]so

−λs − λ
2r

g
(1)
σρ,θk

σkρ
)
, (2.77)

where the double integral can be simplified as
∫ λs

λo
dλ′
∫ λ′
λo
f(λ)dλ =

∫ λs

λo
f(λ)(λs−λ)dλ,

and we use eθig
(1)
σρ,i = g

(1)
σρ,θ/r.

An analogous calculation gives

δϕ = − 1

ro sin θo

∫ s

o
dλ

(
eϕi[g

(1)
0i k

0 + g
(1)
ji k

j ]so

− λs − λ
2r sin θo

g(1)
σρ,ϕk

σkρ
)
. (2.78)

For further details see [45].

The Jacobian of the transformation from the background coordinates to the ob-

served coordinates is

det(J) =
1

So

−ro

2 + (ᾱ+ 1)roH
[1 +

dδr

dro
+
∂δθ

∂θo
+
∂δϕ

∂ϕo
]. (2.79)

The prefactor is gauge invariant, since it is the derivative of observed flux with respect

to the inferred distance ro. To linear order,

dδr

dro
=
∂δr

∂r
− ∂δr

∂η
, (2.80)

and according to the transformation law of vectors, the three-velocity of the source can

be expressed in observed coordinates as

V ′i = vi − ∂δxi

∂η
. (2.81)
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2.5 Galaxy Number Counts II

We combine the previous results with the expression for Eq. (2.16) to obtain the total

number count for the sources with identical luminosity,

N =

∫
dΩo

∫
dSo

So

a3r3
onphy

2 + (ᾱ+ 1)roH
[1 + 3ψ + ∆E

+V ′ieri + 2
δr

ro
+
∂δr

∂ro
− 2κg], (2.82)

where we changed ∂δr/∂r to ∂δr/∂ro, since δr is a first order quantity. κg denotes the

gravitational lensing convergence,

κg = −1

2
[(cot θo +

∂

∂θo
)δθ +

∂δϕ

∂ϕo
]. (2.83)

Inserting the angular displacements into Eq. (2.83), we get

κg =
1

2ro

∫ s

o
dλ(λs − λ)

[
1

2r(λ)
∇̂2
(
2k2(Φ−Ψ) + 2Uik

ik0 − kikjhij
)

(2.84)

+[(cot θo +
∂

∂θo
)eθi +

1

sin(θo)

∂

∂ϕo
eϕi]

d

dλ
(−Uik0 + hijk

j)

+[(cot θo +
∂

∂θo
)eθi +

1

sin(θo)

∂

∂ϕo
eϕi]

d2

dλ2
(E,i + Fi)

]
,

where ∇̂2 is the Laplacian operator on a unit sphere,

∇̂2 = cot θo
∂

∂θ
+

∂2

∂θ2
o

+
1

sin2(θo)

∂2

∂ϕ2
o

. (2.85)

According to its definition, κg describes the solid angle difference between the ob-

server coordinates and the background coordinates. Since the background coordinates

are not measurable, κg changes under coordinate transformations. A gauge invariant

quantity,

Kg ≡ κg −
1

2ro

∫ s

o
dλ(λs − λ)[(cot θo +

∂

∂θo
)eθi (2.86)

+
1

sin(θo)

∂

∂ϕo
eϕi]

d2

dλ2
(E,i + Fi) ,

can be inferred from the angular diameter distance fluctuations. After gauge fixing, Kg

agrees with the gravitational lensing convergence in [46, 47]. Additionally, it is useful

to also define a gauge invariant comoving distance fluctuation

δR ≡ δr − [
kiFi
k0

+
kiE,i
k0

]|so. (2.87)
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The gauge dependent contributions in κg and δr, which depend on the position of the

source, cancel the ∆E term (from
√
−g) in Eq. (2.82).

We have checked that the result Eq. (2.82) agrees with [48] at the background

level after replacing flux density by redshift. Our comoving distance fluctuation is

different due to the different choice of observable (we consider flux density, they consider

redshift).

2.5.1 Radio Galaxy Luminosity Function

In the previous sections, we have evaluated the effect of volume fluctuations, without

fully specifying the physical number density nphy. The physical number density nphy

can be separate into a mean number density n̄phy and a fluctuation around it δg,

nphy = n̄phy(1 + δg) (2.88)

where the mean number density n̄phy can be written as the composition of the radio

galaxy intrinsic luminosity function and its evolution.

Radio sources fall into two principle classes, active galactic nuclei (AGN) and star

forming galaxies (SFG). The physical number density nphy can be considered as the

sum of all classes of sources (e.g. AGN or SFG, or any finer classification),

nphy(L, So, θo, ϕo) =
∑
i

ρi(L)pi(L, ro)(1 + ∆gi(L, So, θo, ϕo)),

where the index i characterizes the different types of sources, ρi(L) and pi(L, ro) are

the local (today’s) luminosity function and the generalized evolution function. ∆gi is

the gauge invariant number density fluctuation in observed coordinates.

The measured local luminosity function is shown in Fig. 2.6. It is common to

parametrize the radio luminosity function in terms of a sum of double power-laws [49],

ρ(L) = ρn[(
L

Lc
)β + (

L

Lc
)γ ]−1. (2.89)

Another prominent function is the Schechter luminosity function [50]

ρ(L) = ρn(
L

Lc
)−β exp(− L

Lc
), (2.90)

which has a physical foundation, in contrast to the double power-law function. The

Schechter luminosity function reflects the expected mass distribution of galaxies formed
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Figure 2.6: Local luminosity function at 1.4 GHz derived separately for radio-loud AGNs

and SF galaxies in the 6 degree Field Galaxy Survey (6dFGS)-NVSS sample, copy from

[9].
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by self-similar gravitational condensation and thus should be the luminosity function

of galaxies having the same mass-to-light ratio. It fits the optical galaxies well, but

cuts off far more sharply at high luminosities for radio galaxies.

We thus arrive at one of the central results of this thesis, the expression for the

number counts including all linear order effects,

σ(> St) ≡
dN

dΩo
(> St) (2.91)

=
∑
i

∫ ∞
St

dSo

So

∫ ∞
0

dLρi(L)pi(L, ro)
A3r3

o

2 + (ᾱi + 1)roH
×

[1 + ∆gi + 3Ψ + V ′ · er + 2
δR

ro
+
∂δR

∂ro
− 2Kg].
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Chapter 3

Predictions for Galaxy two-point

Statistics

The full relativistic expression of the galaxy number count up to linear order is dis-

cussed in the previous chapter. Considering the statistical error of a radio galaxy survey

is large, we first take the dominated leading term, i.e. the physical number density

fluctuation into account and neglect all other effects. The next-to-leading effect will

be discussed in the discussion 5.4. Since the luminosity and density evolution of radio

galaxies is quite significant and there is no widely recognized evolution model in lumi-

nosity space, we turn to redshift space and define a galaxy surface density fluctuation

as

Θ(n̂) ≡ σ(> St)(n̂)− σ̄
σ̄

(3.1)

=
1

σ̄

∫
dz
a3r2

o

H
n̄phyδg

=
1

σ̄

∫
dzf(z)δg ,

where f(z) is the differential number density of sources per solid angle at redshift z with

source flux density above St. Next one has to relate the number density fluctuation to

the underlying matter density fluctuation δm. We assume that

δg(z, n̂) = b(z)δm(z, n̂) (3.2)

where b(z) denotes the bias, and δm(z, n̂) is the matter density contrast in synchronous

comoving gauge. Due to the broad shape of the luminosity function, the radio galaxy
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redshift distribution shows only a weak dependence on the flux threshold St [51, 52].

This argument holds true, as for S > few mJy the differential number counts are

dominated by active galactic nuclei, i.e. the flux density threshold is well above the flux

density of a typical star forming galaxy. Accordingly we drop the flux threshold St in

Eq. 3.1.

It is straightforward to decompose the observed sky into the spherical harmonics

Θ(n̂) =
∑
l,m

almYlm(n̂) , (3.3)

where Ylm(n̂) denote the spherical harmonic functions. One can also express Θ(n̂) as

Θ(n̂) =
1

σ̄

∫
dzf(z)b(z)

∫
d3k

(2π)3
ei
~k~rδm(~k, z)

=
1

σ̄

∫
dzf(z)b(z)D(z)

∫
d3k

(2π)3
ei
~k~rδm(~k) , (3.4)

whereD(z) is the growth factor and ~r ≡ n̂r(z). Since ei
~k~r = 4π

∑
lm i

ljl(kr)Y
∗
lm(k̂)Ylm(n̂)

the coefficient alm can be obtained as

alm =
4π

σ̄
il
∫

d3k

(2π)3

∫
dzf(z)b(z)D(z)j`|(kr)Y ∗lm(k̂)δm(~k, )

= 4πil
∫

d3k

(2π)3
Wl(k)Y ∗lm(k̂)δm(~k) , (3.5)

where j`(x) is a spherical Bessel function of the first kind and Wl(k) is the window

function

Wl(k) ≡ 1

σ̄

∫
dzf(z)b(z)D(z)j`(kr) . (3.6)

3.1 Angular Power Spectrum

Since many catalogues list angular positions of galaxies, it is practical to think of the

matter distribution as a distribution of point-like objects. By assuming all the objects

are nearly identical, one can describe the 2D distribution with the n-point correlation

functions. Among the n-point correlation functions, the two-point correlation function

is the most important one in a Gaussian random field. Even though the number of

radio sources in a pixel is governed by the Poisson distribution, Gaussian distribution

is a good approximation as long as the mean number of radio sources per pixel is large
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3.1 Angular Power Spectrum

enough (The meaning of ’large’ depends on how good an agreement one requires and

some people put requirement > 10 [53]).

The angular power spectrum Cl is defined as the variance of the alm:

〈alma∗l′m′〉 = δll′δmm′Cl , (3.7)

where 〈〉 denote ensemble averaging and

〈alma∗l′m′〉 = (4π)2il(−i)l′
∫

d3kd3k′

(2π)6
Wl(k)Wl′(k

′)Y ∗lm(k̂)Yl′m′(k̂′)〈δm(~k)δ∗m(~k′)〉 .

(3.8)

With the hypothesis of homogeneity and isotropy, 〈δm(~k)δ∗m(~k′)〉 = (2π)3P (k)δ(3)(~k −
~k′), the expression simplifies,

〈alma∗l′m′〉 = il(−i)l′ 2

π

∫
d3kWl(k)Wl′(k)Y ∗lm(k̂)Yl′m′(k̂)P (k)

= 4π

∫
dk

k
Wl(k)2k

3P (k)

2π2
δll′δmm′ (3.9)

where the last line we used the orthogonality condition for spherical harmonics and

P (k) is the matter power spectrum today.

It is worth to clarify that one can not directly measure Cl, because we have only

one universe, i.e. one set of alm. To solve this issue, one has trade averaging over an

ensemble for averaging over space. In our case, for a given multipole l we consider alms

with 2l + 1 different value of m as a statistical ensemble. Therefore, one can define an

estimator for Cl,

Ĉl ≡
1

2l + 1

l∑
m=−l

|alm|2 . (3.10)

In such case, it is important to note that we do not have much information for low

multipoles, i.e. small l. There is a fundamental uncertainty of Ĉl, named cosmic

variance. It is due to the finite number of harmonics associated with the lth multipole.

If alms are Gaussian distributed, then
∑l

m=−l |alm|2 following a χ2 distribution and the

rms of Cl is

∆Cl = Cl

√
2

2l + 1
. (3.11)
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3.2 Angular two-point Correlation Function

The angular two-point correlation w(θ) is defined as the joint probability δP of finding

galaxies in both of the elements of solid angle δΩ1 and δΩ2 separated by an angle θ

[54],

δP = σ̄2δΩ1δΩ2[1 + w(θ)] (3.12)

where σ̄ is the mean surface density.

For a statistically isotropic distribution of radio galaxies the angular two-point

correlation w(θ) can be determined from the angular power spectrum Cl,

w(θ) ≡ 〈Θ(n̂)Θ(n̂′)〉

=
∑
ll′mm′

〈Θ(n̂)Θ(n̂′)〉Ylm(n̂)Y ∗l′m′(n̂′)

=
∑
l

Cl

l∑
m=−l

Ylm(n̂)Y ∗lm(n̂′)

=
1

4π

∑
l

(2l + 1)ClPl(cos θ) , (3.13)

where Pl(x) are Legendre polynomials. Similarly, using the orthogonality of Pl(x)

Cl = 2π

∫ 1

−1
w(θ)Pl(cos θ)d cos θ . (3.14)

The angular two-point correlation could be estimated from [54]

1 + w(θ) =
DD

N(N + 1)/2

Ω

〈δΩ〉
(3.15)

where DD denotes the count of pairs at separation θ and N denotes the total number

of objects considered in the analysis. N(N + 1)/2 is the total number of possible pairs.

Ω is the solid angle of the survey, and 〈δΩ〉 is the averaged solid angle of the ring θ to

θ + δθ within Ω for a randomly placed ring center in Ω.

In the full sky case, 〈δΩ〉 = 2π sin θδθ. Several methods for computing 〈δΩ〉 have

been used. For the very complicated Ω, it cannot be computed analytically, one has to

derive 〈δΩ〉 by means of Monte Carlo integration [55].

However, it turns out that the estimator in Eq. 3.15 is not optimal. For our analysis

we use the optimized estimator found by Landy and Szalay [56],

wLS(θ) =
Nr(Nr + 1)

N(N + 1)

DD

RR
−N(Nr + 1)

DR

RR
+ 1 (3.16)
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3.2 Angular two-point Correlation Function

Figure 3.1: A typical sky coverage of a radio galaxy catalogue with declination δ > −40◦

and galactic latitude |b| > 5◦

where, RR means the averaged pair counts over a large number of random simulations,

and DR is the averaged data-random cross pair count for a large number of random

simulations. Nr denotes the number of sources in the random catalogues. It is necessary

to clarify that the simulated random sources R have to be identical for RR and DR to

minimize the statistical uncertainty. Under the assumption that higher order correla-

tions among galaxies can be ignored, the Landy and Szalay estimator has a “Poisson

error”

δwLS(θ) =
1√
DD

1 + wLS(θ)

1 + wΩ
, (3.17)

where wΩ is the mean of the two-point correlation function over the sampling geometry,

wΩ =

∫
Ω
Gp(θ)w(θ)dΩ , (3.18)

where Gp(θ) = 〈δΩ〉/Ω is a dimensionless geometric form factor which is equal to the

fraction of unique cell pairs separated by distance θ ± dθ/2 [56].

For a typical ground based radio survey in the north hemisphere of earth, the survey

can not fully cover the whole sky and the galactic plane need to be cutoff, whose

boundaries are shown in Fig. 3.1. We evaluate Gp(θ) in such boundary condition in

Fig. 3.2. This result do not significant deviate from the full sky dimensionless geometric

form factor Gfull
p (θ) = sin θδθ/2. Since the variance of angular two point correlation

is proportion to 1/Gp(θ), the Gp(θ) curve in Fig. 3.2 indicates that the angular two
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Figure 3.2: Dimensionless geometric form factor Gp(θ) of catalogues with sky coverage

identical to Fig. 3.1

point correlation is most sensitive to the angular separation around 80◦ in such survey

coverage.

3.3 Radio Dipole Correction

The radio dipole signal is believed to result dominantly from our peculiar motion [57]

with respect to the cosmic rest frame of radio galaxies, due to the fact that the mean

redshift of radio galaxies is above one. If this rest frame is the same as the CMB

rest frame, then the dipole measured in the radio catalog should agree with the CMB

dipole measured by WMAP and Planck [58, 59]. Previous studies [60, 61, 62, 63]

measured the radio dipole for the NVSS catalog. It is actually significantly bigger

than expected, by a factor of two to four, depending on the details of the analysis

[60, 61, 62, 63]. A compatible excess dipole has been found from the Westerbork

Northern Sky Survey(WENSS) catalogue [63], which observed the sky of a different

frequency. The origin of this dipole excess is currently unknown. One possibility might

be that it is a combination of local large scale structure [64] and a kinetic component

due to Doppler shift and aberration.

A local structure dipole, as well as the kinetic dipole, violate the assumption of

statistical isotropy that is implicit in the way how we estimate w(θ). The standard

dipole subtraction approach for pixelized maps is relatively straightforward. First, one
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3.3 Radio Dipole Correction

evaluates the dipole amplitude and direction through a linear dipole estimator on the

pixelized map. Then one subtracts the measured dipole contributions at each pixel.

However, we do not use the pixelized map to measure the correlation function, but

rather extract it using the measured positions of all radio sources outside the mask. In

order to do so, we have to include the effect of a dipole into the Landy-Szalay estimator.

Thus we simulate random catalogues which include the measured dipole, denoted

by Rd below, and employ the following estimator,

wd
LS(θ) =

Nr(Nr + 1)

N(N + 1)

DD

RR
−N(Nr + 1)

DRd

RR
+
RdRd

RR
. (3.19)

The dipole simulations Rd are achieved by the following procedures: First, we assign

a uniform random number t to each simulated object, then modify this number based

on the angular separation θ between the object and the dipole direction,

t = Random[0, 1) +
d

2
cos θ . (3.20)

Then we add the objects with t ≥ 0.5 to the Rd catalogue and drop the others. Each

random catalogue contains Nr = 106 objects and we average over 10 such catalogues.

The dipole modified estimator (3.19) makes use of the full position information

of the sources and by simulating a large amount of random catalogues, we minimize

the uncertainty in wd
LS(θ). The computational load is the only disadvantage of this

procedure.
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Chapter 4

NVSS Angular Power Spectrum

and two-point Correlation

4.1 The NVSS Catalogue

The NRAO VLA Sky Survey [10] used the D and DnC antenna configurations of the

Very Large Array (VLA). The survey was carried out between 1993 and 1997. Contin-

uum intensity and linear polarization images at 1.4 GHz have been obtained, covering

the whole northern and part of the southern sky at declinations δ > −40◦. The D

configuration of the VLA was used to cover the sky from δ = −10◦ to δ = 78◦, the rest

was filled in by means of the DnC configuration. The obtained images have on average

FWHM resolution θFWHM = 45′′, which is significantly larger than the median angular

size of faint extragalactic sources (around 10′′). This survey design sacrifices resolution

to achieve high surface brightness, which is needed to achieve flux-limit completeness.

Since the NVSS point-source response is much larger than the median angular size

of extragalactic sources, most of the information on the NVSS total intensity images

is well represented by elliptical Gaussian fits. The fitted parameters formed the NVSS

catalog of sources (not all of them are individual sources). The NVSS catalogue contains

almost 2 million discrete sources with flux density above 2.5 mJy. Below we use the

source positions in right ascension α and declination δ, the integrated flux density S,

as well as their errors.

The NVSS catalogue contains several artificial effects [65]: First, the catalogue

shows a configuration effect, which is easily seen in figure 4.1 as steps in surface density
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4.1 The NVSS Catalogue

Figure 4.1: Surface density σ of the NVSS source catalog in galactic coordinates in

Mollweide projection, shown at healpix resolution Nside = 32. The color bar shows the

surface density in units of number of objects per square degree. Here we include all objects

contained in the catalogue.

at δ ∼ 78◦ and δ ∼ −10◦, which are the borders between the D and DnC configurations

on the map. Secondly, the side lobes of the bright sources can obscure the presence of

weak nearby sources. They are not completely removed by cleaning. The NVSS local

dynamic range of the total intensity images is about 1000 to one. Thus, sources closer

than about 0.6◦ to a bright source of flux density S and fainter than 10−3S may only

be caused by side lobes [10].

Besides these two unphysical effects, there is also a foreground of point sources

mainly from the Milky Way (see figure 4.1) and smooth components of radiation from

the galaxy itself. These contaminations can influence the VLA noise temperature, and

further change the completeness in certain areas on the sky.

All these effects need to be treated carefully, otherwise the statistical analysis based

on the contaminated map will be biased. Here we choose to apply a lower flux density

threshold and to mask the catalogue to address these issues.
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4.2 Lower Flux Density Threshold

Two different VLA configurations (D and DnC) have been used to compile the NVSS

catalogue. The VLA C configuration is less compact and thus has a better resolution of

15′′, compared to 45′′ of the D configuration. The DnC configuration is a hybrid con-

figuration in which the antennas on the east and west arms are in D configuration, but

those on the north arm are in C configuration to enhance their view of sources at low el-

evation. Using the DnC configuration changes the synthesized beam and the resolution

of declination with respect to the D configuration. This shifts the brightness sensitivity

and completeness between the parts of sky observed with different configurations.

The source catalog is derived from intensity images, therefore it is brightness sen-

sitivity limited. Apparently, the D configuration has higher brightness sensitivity than

the DnC configuration. Thus one expects to obtain a more complete catalogue for the

part of the sky observed by means of the D configuration.

The completeness shift of the DnC configuration sky w.r.t. the D configuration

sky can be considered as a faint source selection based on the position angle, noise,

confusion and cataloging procedures. It is not clear whether this selection may further

introduce a tension in source distribution between the two parts of the sky. Therefore,

it is safe to either use one configuration alone (which would reduce the sky coverage by

an significant amount), or to choose a higher flux density threshold for the cosmological

analysis (which reduces the source density and increases the shot noise).

[66] argue that this configuration effect is only significant at flux densities S < 10

mJy. In figure 4.2 we plot the surface density fluctuation, ∆σ/σ = σ/σ − 1, as a func-

tion of declination. The dependence of the surface density fluctuation on declination

resembles the theoretical rms noise level of the NVSS catalogue [10], which is further

discussed in discussion 5.2. One can see that the declination dependence of the surface

density is less than 2.5% and the mean value of the DnC configuration is clearly lower

than that of the D configuration. This configuration effect is more pronounced at lower

thresholds.

This finding is also supported by a χ2-analysis testing for deviations from isotropy

in declination

χ2 ≡
Nbin∑
i=1

(
∆σi
σ̄

)2

(
δ
[

∆σ
σ̄

]
i

)2 =

Nbin∑
i=1

Ωi
(∆σi)

2

σi
, (4.1)
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4.2 Lower Flux Density Threshold

Figure 4.2: Surface density fluctuation, ∆σ/σ, of the NVSS catalogue as a function of

declination for several flux density thresholds. The error bars assume Poisson distributed

source counts and we mask the region |b| ≤ 5◦. For clarity, the horizontal positions of the

S > 5 mJy and S > 15 mJy data points are slightly offset.

where Ωi denotes the solid angle of the ith declination strip. The results of this test

are shown in table 4.1.

In this work, we choose flux density thresholds of 15 mJy and 25 mJy for cosmologi-

cal analysis for following the reasons: The study of the the configuration effect suggests

that there is a significant dependence on declination. As it is shown above, a flux

density threshold of 15 mJy or 25 mJy reduces the value of χ2 dramatically compared

to the situation with lower thresholds. As we do not expect a perfect agreement with

isotropy, it is not justified to rise the threshold even higher.

S > 5 mJy 10 mJy 15 mJy 25 mJy

χ2 160.1 59.7 30.7 21.5

Table 4.1: χ2-values testing for the isotropy in declination of the NVSS surface density

(here with 13 degrees of freedom).
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Our choice is supported by studies of the cosmic radio dipole from NVSS, which

is one to two orders of magnitudes larger than the higher multipole moments. The

previous NVSS dipole measurements show that for thresholds below 15 mJy, the dipole

direction differs significantly from the CMB dipole direction, and the reduced χ2 of the

quadratic dipole estimator increases significantly [60, 62, 63, 67].

No cut-off at high flux densities is introduced as there is only a small number of

sources at high flux densities and thus they play a subdominant role only. We also

expect them to be less affected by calibration systematics.

4.3 Masking Strategy

Nevertheless, we have to mask regions around the brightest sources in order to minimize

contamination from their side lobes. In the analysis of [65] all sources above 2.5 Jy

have been masked by a disk with a radius of 0.6◦. However, not all side lobes appear as

spurious entries in the catalog, a uniform masking strategy will erase all the information

from bright sources, since all sources above the cut threshold are masked. In [66] a list

of 22 masks around bright galaxies was compiled based on a visual inspection of the

survey.

Here, we introduce an automatic bright source selection method. We count the

number of nearby (within 0.6◦) sources with S > 15 mJy of the brightest sources

whose flux densities are S > 2.5 Jy. The corresponding histogram is shown in Fig. 4.3.

We assume that the number of sources in a fixed solid angle follows a Poisson

distribution, and use the so-called Poissonness plot [68] to identify the histogram bins

that are significantly deviate from a Poisson distribution, where we assume that such a

deviation is caused by the side lobe contamination of bright sources. The idea of the plot

is to consider a simple variable substitution, which transforms the exponential Poisson

distribution function to a linear function. We find that 49 sources fail the Poissonness

test at the 99% confidence level (Fig. 4.4). It is worth clarifying that ‘clean’ regions

containing bright sources that by chance contain the same amount of sources as ’dirty’

regions are also excluded. We also verify that for most of the bright sources the nearby

source count histogram is in good agreement with the histogram of randomly picked

nearby source counts, which justifies the inclusion of many of the bright sources in our

analysis.
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4.3 Masking Strategy

Figure 4.3: Nearby source count histogram (disks with radius 0.6◦). The red bins cor-

respond to nearby source counts around bright radio galaxies with S > 2.5 Jy. The blue

bins correspond to 1000 randomly picked positions outside the galactic plane (|b| > 5◦).

The maximum of randomly picked counts results in 49 neraby sources.

Figure 4.4: Poissonness plot of the nearby source counts. λo is the mean nearby count

over the survey area. N is the total number of sources with S > 2.5 Jy. The solid horizontal

line corresponds to a perfectly Possion distributed nearby source count. The error bars

denote the 99% confidence levels.
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Figure 4.5: NVSS position uncertainty map, relative to the mean beam width θFWHM =

45′′.

Let us now turn to the issue of noise and confusion. According to [10], the rms

position uncertainty σpos is,

σpos ∝
σbθFWHM

2Sp
, (4.2)

where Sp is the peak flux density, σb is the rms brightness fluctuation (noise and

confusion). Our idea is to use σp to trace σb. [10] point out that for flux densities

below 15 mJy, the rms position uncertainty is dominated by noise. Accordingly, we

create a position uncertainty map (Fig. 4.5) by averaging the position uncertainties

σθ ≡
√

σδσα
θ2

FWHM

sin(
π

2
− δ) (4.3)

for all point sources in a pixel whose flux density is smaller than 15 mJy. Note that

the dominant sources are those with low flux density. The map is constructed using

the healpix package with the pixel size fixed by Nside = 32.

The resulting position uncertainty map is shown in Fig. 4.5. One sees clearly that

the position uncertainty follows the theoretical rms noise level which, outside of the
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4.3 Masking Strategy

Figure 4.6: NVSS65 mask. The orange region makes up 64.7% of the sky. Yellow pixels

are close to the galactic plane |b| ≤ 5◦ and are excluded to suppress galactic point sources

and foregrounds. Blue pixels are excluded due to large position errors. Red and black

pixels contain bright sources with significant side lobe effects, black pixels additionally

overlap with pixels with high position error.

galactic plane, increases away from the zenith due to pickup of ground radiation, atmo-

spheric emission, ionospheric effects and uv-projection. The galactic plane and nearby

nebulas are also easy to identify. We further employ a 5% pixel cutoff for the pixels

with highest σθ > 0.132. In addition, we also mask galactic radio sources by excluding

all sources with galactic latitude |b| ≤ 5◦.

To sum up, at 15 mJy and 25 mJy thresholds we mask all pixels in the neighborhood

of 49 selected bright sources. Additional pixels and their neighborhood with highest

mean position uncertainty σΩ and galactic sources with |b| ≤ 5◦ are masked as well. In

the following we call this the NVSS65 mask1. It is shown in Fig. 4.6. In total, there is

approximately 64.7% sky left. The total number of objects after applying the NVSS65

mask at 15 and 25 mJy is shown in Table 4.3.

1At the moment the NVSS65 mask is available at https://github.com/phychensong/NVSS.
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Figure 4.7: Surface density of the NVSS source catalog for a flux density threshold of

S > 15 mJy and applying the NVSS65 mask, shown in galactic coordinates at pixel size

Nside=32. The color bar shows the surface density σ in units of number of objects per

square degree.

4.4 Theoretical Expectation

The expected Cl for the NVSS catalog are obtained using a modified version of the

class package [69]. The parameters for the best-fit cosmological model are taken from

[23]. For the theoretical prediction of the angular two-point correlation we cut the

Legendre series at lmax = 900. We convinced ourselves that this cut-off is large enough

to ensure numerical convergence of w(θ) at all angular scales considered in this work.

We use the Combined EIS-NVSS Survey Of Radio Sources (CENSORS) [70] to

model the redshift distribution of the NVSS catalogue. CENSORS contains all NVSS

sources above 7.2 mJy that are within a patch of 6 deg2 in the ESO Imaging Survey

(EIS). Following [71], we choose the gamma function redshift distribution,

dσ̄

dz
= N

(
z

z0

)β
exp

(
−β z

z0

)
, (4.4)

with N denoting a normalization factor that is irrelevant for the final result and the

best-fit parameters to CENSORS data given by z0 = 0.53+0.11
−0.13 and β = 0.81+0.34

−0.32. These
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4.4 Theoretical Expectation

numbers should however be treated with care as the redshift distribution is based on

149 galaxies only.

For the radio galaxy, the simplest constant bias is not a good approximation, in

which case the evolution effect can not be neglected. In principle, this bias depends on

the halo mass and it is a nonlinear and stochastic function of the underling dark matter

density field[72, 73]. The recently developed halo models are in reasonable agreement

with what is measured in numerical simulations with Gaussian initial conditions[74].

In this thesis, we use the Gaussian bias model[75], where the bias of one specific

radio galaxy survey is given by a mass weighted integral

b(z) =

∫∞
Mmin

dMbH(M, z)Mn(M, z)∫∞
Mmin

dMMn(M, z)
, (4.5)

where n(M, z) is the halo mass function, and bH(M, z) is the corresponding halo bias

function. Following [73], we adopted the modified Press-Schechter mass function

n(M, z) = −2An√
π

ρ̄

M2

d lnσM
d lnM

(1 +
1

(βν)γ
)

√
βν

2
e−βν/2 , (4.6)

where ν ≡ [δc(z)/σM ] and δc(z) is the critical density, above which the perturba-

tions rapidly develop into bound objects. σM denote the rms of the density contrast.

β = 0.75 , γ = 0.3 are fitted to numerical simulations[76], and An is the normalization

parameter,

1

An
≡
∫ ∞

0

dν

ν
(1 +

1

(βν)γ
)

√
βν

2
e−βν/2 . (4.7)

This mass function is more consistent with simulations than the Press-Schechter mass

function and the mass function computed using the Zeldovich approximation[77], and

it reduces to the original Press-Schechter function for β = 1, γ = 0 and An = 1. Using

this mass function and following [72, 73], the halo bias function becomes

bH(M, z) = 1 +
βν − 1

δc(z)
+

2γ/δc(z)

1 + (βν)γ
. (4.8)

Since β < 1, the massive halos are slightly less biased than the original Press-Schechter

based formula results. For the less massive halos, this bias function shows more positive

bias due to the extra term.

The Gaussian bias model strongly depends on the Mmin as shown in Eq. 4.5. Fol-

lowing [78] for the radio galaxy survey like NVSS, we choose Mmin equal to 1012.67 M�.
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N d α δ

S > 10 mJy 436,733 1.32× 10−2 142.70o 30.47o

S > 15 mJy 314,594 1.44× 10−2 153.44o −5.53o

S > 25 mJy 200,092 1.83× 10−2 157.12o −15.10o

expected 0.46× 10−2 168o −7o

Table 4.2: NVSS dipole for various flux density thresholds, measured by means of Healpix

at resolution Nside = 32 after applying the NVSS65 mask. For comparison we quote the

expected kinetic dipole for NVSS radio sources, based on the observed CMB dipole.

The full radio galaxy bias function can be approximated to a second order polynomial

of redshift as,

b(z) = 0.9
[
1 + 0.54(1 + z)2

]
. (4.9)

Utilizing Healpix, we find the radio dipole of the NVSS catalogue after masking with

NVSS65 and as shown in table 4.2. The estimated dipole at our chosen flux density

thresholds and sky coverage agrees with the estimates from the literature (see e.g. [67]

for a recent summary).

In this study, we compare the results without and with dipole subtraction. We either

subtract the measured radio dipole (see table 4.2) or the CMB predicted radio dipole.

The dipole contribution in the angular two-point correlation function can be seen from

Fig. 4.8. We find that the dipole has a significant effect and actually dominates the two-

point correlation function at large angular scales above ∼ 10◦. In the figure we account

for the measured dipole. Considering just the CMB predicted dipole reduces the large

angle correlation, but leaves us with a residual dipole that could be due to a local

structure and is hard to predict without a much more detailed study. We therefore

decide to correct for the measured NVSS radio dipole and suppress the (structure)

dipole also in the theoretical prediction.

4.5 Results

We adopt the dipole subtracted Landy-Szalay estimator to measure the angular two-

point correlations of the NVSS catalogue with thresholds 15 mJy and 25 mJy for two

different masks (NVSS65 and a constant latitude cut of the galactic plane).
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4.5 Results

Figure 4.8: NVSS angular two-point correlations for a 5◦ galactic latitude mask with and

without dipole correction.

The results agree with our expectation. After masking of the high rms noise and

confusion pixels by means of the NVSS65 mask, the two-point correlation turns out

to be less scattered, as shown in Fig. 4.9. For the simpler constant latitude cut, one

can see that the first data point at ∼ 4◦ is above the plot range of the figure. The

NVSS65 mask efficiently reduces the amount of correlation at scales of a few degrees

and brings the measurement in agreement with the theoretical expectation of the best-

fit cosmological model. One can also observe a better agreement of the 15 and 25 mJy

thresholded data sets after the mask NVSS65 has been applied. These findings are

confirmed by the χ2-values shown in Table 4.3. We infer that the new NVSS65 mask

efficiently pushes the data points towards the theoretical prediction.

One can also see from Fig. 4.9 that the measurement using the NVSS65 mask agrees

with the theoretical prediction until θ ∼ 90◦. Above that angular scale the data appear

to be more noisy. Surprising are some quite large correlations at the largest angular

scales close to 180◦.

For angular scale between 1◦ and 20◦, the 65% sky coverage guarantees that the

w(θ) estimator is averaged over a large number of independent sky patches. Artificial
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Figure 4.9: Angular two-point correlation function w(θ) from 5◦ galactic latitude cut (top

panel) and the NVSS65 mask (bottom panel). In both cases we include a dipole correction.
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4.5 Results

|b| < 5o NVSS65

N χ2 N χ2

S > 15 mJy 377,739 165.96 322,557 94.08

S > 25 mJy 240,872 222.49 205,103 99.80

Table 4.3: χ2-test for w(θ) for 49 data points [excluding first bin: 0 < θ < 3.6◦]. Note:

We neglect the correlation between the data points.

Figure 4.10: Angular two-point correlation function at 1◦ < θ < 20◦ from the NVSS

catalogue with dipole correction for two different masks.
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Figure 4.11: NVSS angular power spectrum Cl for S > 15 mJy, dipole corrected and

NVSS65 mask. Cl is evaluated via a Legendre transformation from the angular two-point

correlation function. The solid line and the band around it show the theoretical prediction

and its cosmic variance.

fluctuations caused by the survey or galactic foreground are suppressed in the average,

and side lobes and multi-components source effects are expected to contaminate smaller

angular scales (up to 0.6◦). In this range, w(θ) is expected to be consistent with the

theoretical prediction.

The result of an analysis at higher angular resolution for θ < 20◦ is shown in

Fig. 4.10. In order to suppress the shot noise contribution we now focus on the S > 15

mJy data set. We find that the NVSS65 mask improves the agreement with theoretical

predictions considerably. A discussion of the cosmological consequences is given below.

A complementary analysis to the angular two-point correlation function is to study

the angular power spectrum. One way of measuring Cl is to do a Legendre transforma-

tion of the angular two-point correlation. The result of that transformation is shown

in Fig. 4.11. The fact that many of the Cl turn out to have negative values shows

that this measurement is quite noisy. Nevertheless, in the mean the Cl seem to agree

well with the theoretical expectations, apart from a hand full of multipoles with even

l, most prominently the l = 10 mode.
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Chapter 5

Discussion

5.1 Cosmological Implications

Let us now turn to the cosmological implications and a discussion of our findings in

comparison with previous studies. In the following we focus on the results obtained by

means of the NVSS65 mask, including the dipole correction as discussed above and a

lower flux threshold of 15 mJy.

A question of interest is the determination of the cosmological parameters of our

minimal six-parameter cosmological standard model. For that purpose, the NVSS data

alone cannot compete with high fidelity data from the CMB or from optical galaxy

redshift surveys. Nevertheless it is interesting to investigate the consistency of the

NVSS angular two-point correlation and angular power spectrum with the standard

lore.

In Fig 5.1 we compare the NVSS angular two-point correlation with theoretical

predictions at angular scales below 9◦ for different values of the Hubble constant H0.

The extreme values of H0 are disfavoured, and the Planck best-fit value of H0 = 67.8

km/s/Mpc provides also a good fit to NVSS data. Unfortunately, one can not use it to

break the discrepancy with somewhat higher values from local measurements of H0.

It is important to note, that the redshift distribution function also affects the NVSS

angular two-point correlation at this angular scale. As shown in Fig 5.2, the parameter

β modifies the slope of the two-point correlation, and the parameter z0 changes its

slope and and angular scale. Our angular two-point correlation measurement seems to

prefer low z0 and β, which is agrees with the results of [71].
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Figure 5.1: Angular two-point correlation function as a test for the Hubble constant H0.

The measurement uses the NVSS65 mask with dipole correction.

Putting those studies together we see a degeneracy of H0, z0 and β. The param-

eters of the bias factor b(z) do also participate in that degeneracy, which limits our

ability to use todays radio continuum surveys for cosmological parameter estimation.

However, it is an encouraging finding that the completely independent measurements

of H0 (Planck), z0 and β (CENSORS) give rise to a picture that seems to be fully

consistent with w(θ) from NVSS.

The small angle two-point correlation is also an interesting probe of primordial non-

Gaussianity. Previous results [75] claimed evidence for a primordial non-Gaussianity at

the 3σ level. w(θ) is supposed to vanish at around 4◦ if the fluctuations are Gaussian,

however their measurement of w(θ) showed a constant shift from zero at 1◦ < θ < 10◦,

which they attributed to the effect of a primordial non-Gaussianity. However, adapting

our procedure of dipole correction and optimal estimation of w(θ), we do not see such a

shift. Our result thus fully agrees with primordial Gaussianity, as is shown in Fig. 4.10.

To turn that into a precise new upper limit on fnl is beyond the scope of this work.

Consistency with Gaussianity is also confirmed by the angular power spectrum

shown in Fig. 4.11. A primordial non-Gaussianity would lead to an increase of angular

power Cl at small multipoles [75, 79]. Our analysis shows no evidence for such an
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Figure 5.2: Angular two-point correlation function for different redshift distributions.
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increase. Note that this contradicts the previous results from [52] and [71]. We tried to

understand what is responsible for the removal of the apparent non-Gaussianity, but it

turns out that it is impossible to attribute it to a single effect. The dipole changes the

low l multipoles as one reconstructs the multipole moments from an incomplete sky,

but we verified that the dipole effect alone is not large enough. We also use a slightly

higher threshold (15 instead of 10 mJy) in our analysis, which also reduces the direction

dependent effects in the NVSS catalogue (see table 4.1). The masking of regions around

bright sources appears not to influence the analysis on the largest scales. On the other

hand, using the Landy-Szalay estimator compared to suboptimal methods seems to be

important. We conclude that the sum of our studies of the systematics of the NVSS

catalogue is essential and allows us to get rid of a spurious non-Gaussianity.

5.2 Residual Systematics

The theoretical prediction based on the ΛCDM model suggested Cl ≈ 5 × 10−6. Our

measurements agree rather well with that prediction, with some exceptions. The

quadrupole cannot be detected at any significant level and the power at l = 10 is

an order of magnitude larger than expected. However, at larger l, up to l ∼ 60, the

Cl are consistent with the theoretical prediction, which is in agreement with previous

analysis of the ISW effect [80]. Higher multipole moments are noisy and statistically

consistent with zero.

Let us finally discuss the angular scales at θ > 20◦ and look in more detail at the

corresponding multipole moments up to l = 10. For a simple galactic isolatitude cut,

we found significantly more power at low multipole moments, with l = 4 being the

dominant mode (not shown here). The essential step to get rid of this extra power is to

take into account direction dependent systematic effects in the NVSS catalogue. Our

NVSS65 mask allows us to reduce the l = 4 mode and to recover an overall flat angular

power spectrum. However, even with the NVSS65 mask, some of the Cls are one order

of magnitude larger than the prediction at l < 10. One of the reason could be due to

remaining surface density fluctuations at different declinations.

We find a clear anti-correlation between the surface density and the theoretical rms

noise of the NVSS catalog, Fig. 5.3. The declination dependence of the theoretical rms

noise fluctuations at −40◦ < δ < −10◦ is due to changes in the snapshot integration
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5.2 Residual Systematics

Figure 5.3: Top panel: Surface density fluctuation (∆σ/σ) of NVSS sources at S > 60

mJy and S > 15 mJy after applying the NVSS65 mask. Bottom panel: The theoretical

rms noise level of the NVSS catalogue from [10]. The VLA geodetic latitude is 34◦04′44′′.

time. When the VLA points to the horizon, the effect of the projection of the uv

plane, combined with ground and ionospheric noise, decreases the effective signal to

noise ratio of the survey. As can be seen in Fig. 5.3 this effect is not limited to the

faintest sources, but is also there for brighter sources at S > 60 mJy. Thus only the

most extreme influence of the direction dependent systematics can be cured by means

of a lower flux threshold.

To further probe whether these direction dependent effects affect the low-l multi-

poles, we investigated the angular pseudo-power spectrum, which are obtained through

a decomposition into spherical harmonics on the pixelized galaxy number count. For

this we used healpix. In figure 5.4 we show estimates of the pseudo-Cl for two differ-

ent normalizations. In the first case, we normalize the pixel count with the mean pixel

count of the full survey n̄, i.e.

xi =
ni − n̄
n̄

. (5.1)
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5. DISCUSSION

Figure 5.4: The healpix pseudo-Cl of the NVSS catalogue with NVSS65 mask for S > 15

mJy and radio dipole subtracted.

The second case is motivated by [81]. We divide the map along the declination, based

on durations of the snapshots, and subtract the mean pixel count n̄δi at declination δi,

xi =
ni − n̄δi

n̄
. (5.2)

The latter procedure was also used in the Planck analysis of the ISW effect [78, 82].

The second procedure, erases the source density fluctuations along the declination

direction. As can be seen in Fig. 5.4, the l = 3, 4, 5 multipoles are significantly reduced

by the declination mean subtraction, which strongly implies that the l = 4 mode

fluctuation are caused by the direction dependent noise of the NVSS catalogue. On the

other hand, the large l = 10 mode is not affected by that normalization at all and it

remains unclear why it exceeds the expectation by an order of magnitude. Using this

declination normalisation for a cosmological analysis, like [81], [83] or [82], certainly

suppresses fluctuations on large scales, but the procedure cannot distinguish direction

dependent effects from real fluctuations and it is very hard to assign an error estimate

to it.
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5.3 Parity Asymmetry

5.3 Parity Asymmetry

We also found a curious observation. Looking carefully at Fig. 4.11, we observe a parity

asymmetry in the Cl: the power of even multipoles l = 4, 8, 10, 12, 16, 22, 24, 32... is

higher than that of their odd neighbors. This even parity preference can also be seen

from the fact that w(180◦) > 0. A similar effect was observed in the CMB angular

power spectrum, where the parity asymmetry is the opposite [84]. There the odd

l(l + 1)Cl/2π are larger than the even ones, see Fig. 5.5.
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Figure 5.5: WMAP 7-year angular power spectrum - Power spectrum at even

multipoles tend to be lower than those at neighboring odd multipoles.

However, this suggests that the two parity asymmetries do not share the same origin

(if both of them are real). One possible reason for parity asymmetry is inhomogene-

ity. Breaking statistical homogeneity cause the observation depends on the observer

position. The universe can be even or odd parity preference if an appropriate observer

position is chosen.

5.4 Next-to-leading order Effects in the Radio Galaxy An-

gular Power Spectrum

In the above analysis, we only considered the density perturbations. The next-to-

leading order contributions in the galaxy number density fluctuations are the radial
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5. DISCUSSION

Figure 5.6: The angular power spectrum difference CD+RsD
l −CD

l with the NVSS redshift

distribution and Gaussian bias.

partial derivative of the comoving distance fluctuation ∂roδr and the gravitational lens-

ing convergence κ [45]. Since we choose redshift space, δr will be dominated by − δz
H

.

In the Newtonian limit, the largest contribution in δz comes from the line of sight

peculiar velocity Vie
ri. Therefore the radial partial derivative of the comoving distance

fluctuation ∂roδr becomes

∂roδr ≈ −
1

H

∂Vie
ri

∂ro
. (5.3)

This term is called redshift-space distortion and was first derived by Kaiser in 1987

[85]. The angular power spectrum with a redshift-space distortion term CD+RsD
l is

almost the same as the angular power spectrum CDl with density alone, the difference

is shown in Fig. 5.6. Unlike the redshift space distortion, the lensing effect is very

relevant. As shown in Fig. 5.7, the angular power spectrum with lensing effect is

decreased by about 30% compared to the angular power spectrum with only density.

The lensing contribution is dominated by the cross-correlation between density and the

gravitational lensing convergence −2κ from the volume distortion.

Furthermore, since what we really observe are the galaxies above a flux density

threshold St, rather than all galaxies inside a certain volume, we need to consider the
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5.4 Next-to-leading order Effects in the Radio Galaxy Angular Power
Spectrum

Figure 5.7: The angular power spectrum Cl with and without lensing effect.

luminosity distance fluctuation[86]. For the simplest case, where dnphy/dL ∝ L−s,

nphy = nphy(> Lt)(1− 2(s− 1)δd) , (5.4)

where Lt is the specific luminosity threshold Lt ≡ 4π(1 + z)α+1R2
oSt. The dominant

effect inside δd is the gravitational lensing convergence −κg, see Eq. 2.66. Thus, the

total lensing contribution is 2(s− 2)κg. For the double power-law luminosity function,

when Lt is in the bright tail, the slope s is close to 2 and the lensing effect is maximally

suppressed. However, when Lt is in the faint region, the slope s is close to 0 and the

lensing effect is amplified.

Our results are obtained with a modified version of the CLASSgal code[69]. The

previous code is designed for the redshift galaxy survey, in which the selection function

is not suit for the continuum survey. We introduce a new type of selection function

called ”continuum”, which is unit through redshift 0 < z < 2.9. Considering the shape

of the NVSS redshift distribution, our results are not sensitive to the upper bond of the

selection function. Several modifications have been made to allow more sophisticate

bias evolution function. Our results are consistent with Fig. 11 of [45].

67



Chapter 6

Conclusion

In this thesis, we present a theoretical framework for the prediction of number counts,

both analytically and by means of simulations. This framework is based on fully rel-

ativistic linear perturbations of a spatially flat, isotropic and homogeneous space-time

metric. In particular we did not assume any gauge condition. We have checked that

the number of sources above a certain flux density threshold per solid angle is gauge

invariant.

In previous works [45, 86, 87], the number density has been studied as a function

of redshift. There the redshift distortion is one of the dominant effects in the radial

direction. In our case, as shown in the chapter 2 the radial direction fluctuation comes

from four effects, i.e. redshift distortions, physical distance fluctuations, variation of

the source luminosities and spectral indices. This makes the evaluation more involved

than the case when the redshifts of each source are accessible.

With the complete derivations of the covariant volume integral on the past light

cone, we have identified several contributions in the differential number count fluc-

tuations, including Doppler effect, generalized Sachs-Wolfe effect, lensing effect and

astrophysical variations (luminosity and spectral index).

We revisited the angular two-point correlation function w(θ) and angular power

spectrum Cl of the NVSS catalogue of radio galaxies. To model the galaxy distri-

bution require not only accurate theoretical predictions, but also need to model and

measure luminosity functions, luminosity and density evolution. Since the current red-

shift distribution of NVSS catalogue is more reliable than the luminosity function with

evolution, our analyses is based on a fit of the redshift distribution of NVSS galaxies.
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To obtain the true matter fluctuation, we spend significant attention to investigate

systematic effects in the NVSS catalogue. In order to minimize the contribution of these

effects in the cosmological analysis, we provide a new NVSS mask with 64.7% percent

of sky, called NVSS65. We also find that it is essential to account for the cosmic radio

dipole and to use a lower flux threshold. We found that our mask significantly improves

the χ2 value of the angular two-point correlation function on all angular scales.

For angular scales between 1 and 20 degrees, w(θ) agrees with the flat ΛCDM model

without introducing primordial non-Gaussianity, which contrary to previous claims [75].

Thus we have shown that to fully explore the cosmological potential of continuum

radio surveys, one has to understand and investigate the systematic effects related with

flux calibration, especially direction dependent effects of the calibration. Besides, the

effect of the cosmic radio dipole affects the reconstruction of higher multipole moments

and the attempts to measure or constrain primordial non-Gaussianity.

To obtain an improved upper limit on fnl or to constrain other cosmological pa-

rameters at a redshift of about unity is beyond the scope of this work, as it would need

an extensive study of the uncertainties coming from our understanding of the density,

luminosity and bias evolution of radio galaxies. However, our analysis shows, that the

radio sky is in remarkable good agreement with the standard model of cosmology after

Planck. It will also be interesting to improve the ISW analysis of the Planck-NVSS

cross correlation by means of the new NVSS65 mask and to include a radio dipole

correction, as well as a higher flux threshold.

As a response to the first part of the thesis, we also evaluated the next-to-leading

order volume effects including redshift space distortion and gravitational lensing effect.

Our results suggest that including the lensing effect can reduce the angular power

spectrum by 30%. This number can be even larger if one considers the luminosity

distance distortion in the luminosity function. Thus, the lensing effect can not be

neglected in the radio continuum surveys angular power spectrum evaluation.

Our results further suggest that w(θ) from full sky radio continuum surveys can

be used to constrain cosmological parameters at an epoch that is hardly accessible to

other probes. Planned and upcoming surveys with instruments like LOFAR, ASKAP,

MeerKAT and eventually SKA will allow us to reduce the shot noise, increase angular

resolution and sensitivity, while covering all sky, extend the studies to several frequency

bands (all of our discussion here is limited to 1.4 GHz) and improve the control of
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6. CONCLUSION

systematic effects (see [88, 89]). Finally, with these improvements radio survey precision

cosmology will be accomplished in the nearly future.
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