
System-Level Analysis of Network Interfaces
for Hierarchical MPSoCs

Johannes Ax*, Gregor Sievers*, Martin Flasskamp*, Wayne Kelly†,
Thorsten Jungeblut*, and Mario Porrmann*

*Cognitronics and Sensor Systems Group, †Science and Engineering Faculty
CITEC, Bielefeld University, Queensland University of Technology

Bielefeld, Germany Brisbane, Australia
jax@cit-ec.uni-bielefeld.de w.kelly@qut.edu.au

ABSTRACT
Network Interfaces (NIs) are used in Multiprocessor System-
on-Chips (MPSoCs) to connect CPUs to a packet switched
Network-on-Chip. In this work we introduce a new NI archi-
tecture for our hierarchical CoreVA-MPSoC. The CoreVA-
MPSoC targets streaming applications in embedded systems.
The main contribution of this paper is a system-level analysis
of different NI configurations, considering both software and
hardware costs for NoC communication. Different configura-
tions of the NI are compared using a benchmark suite of 10
streaming applications. The best performing NI configuration
shows an average speedup of 20 for a CoreVA-MPSoC with
32 CPUs compared to a single CPU. Furthermore, we present
physical implementation results using a 28 nm FD-SOI stan-
dard cell technology. A hierarchical MPSoC with 8 CPU
clusters and 4 CPUs in each cluster running at 800 MHz
requires an area of 4.56 mm2.

Categories and Subject Descriptors
B.4.3 [Interconnections (Subsystems)]: Interfaces;
C.1.4 [Parallel Architectures]

1. INTRODUCTION
The integration of multiple CPUs on a single chip is a

common approach to satisfy the increasing performance and
energy efficiency requirements of embedded systems. This
requires an efficient on-chip communication infrastructure for
MPSoCs with dozens to hundreds of CPU cores. To cope with
limitations of the scaling of bus-based communication, state
of the art multiprocessors introduce dedicated communication
networks, i.e. Network-on-Chips (NoCs). NoCs usually (but
not solely) are based on explicit communication. This not
only affects the hardware but also requires additional work
to be done in software to initiate end-to-end communication.
The CoreVA-MPSoC used in this work features a hierarchical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NoCArc ’15, December 05 2015, Waikiki, HI, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3963-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2835512.2835513

architecture and targets streaming applications in embedded
and energy-limited systems. In [10] we have presented the
basic architectural concept of this hierarchical system. We
have shown that it is reasonable to tightly couple several
CPUs in a cluster and to couple several clusters via a NoC.

A NoC is composed of three components: The (i) routers
transport the data through the NoC in a packet-based man-
ner. Routers are connected via (ii) network links. A (iii)
network interface (NI) implements the interface between the
routers and the CPUs. In this work we focus on the design-
space-exploration of the NI of our NoC. It bridges between
the read-write transaction interface used by the CPUs and
the packet streaming interface used by the routers in the
network. Therefore, NIs have a great impact on system
performance.

The main contribution of this work is the system-level
analysis of both software and hardware costs of different NI
configurations. Particularly the CPU’s software costs for
communication using NoCs is rarely considered in related
work. The NI presented in this work is based on a novel
architecture, which supports sending requests from several
CPUs in parallel. To reduce the CPU load the NI acts
like a DMA controller with several independent transaction
channels. The partitioning of applications to hundreds of
CPUs is a challenging task, which cannot be done manually.
Therefore, several approaches for the automatic partitioning
of the applications have been introduced. For our work we
use a compiler for streaming applications presented in [6].
To compare the performance of different configurations of
the NI we use a set of streaming applications. In addition,
physical implementation results are evaluated using a 28 nm
FD-SOI standard cell technology.

2. RELATED WORK
State of the art NIs can generally be separated into two

different architectural approaches. One approach is the usage
of a packet–based streaming interface to the routers of the
NoC. This approach is commonly used in classic network
approaches and can be seen as the state of the art in NoC
research. The NI bridges between the address-based interface
used by the CPUs and the packet-streaming interface used
by the NoC. Examples are the NIs of the AEthereal NoC [8]
and the Spidergon-STNoC [9]. Packet headers and payload
data are directly stored in FIFOs or ring-buffers within the
NI. The NI typically segments the packets into atomic units,

called flits. Flits of the same packet can be identified by the
NoC flow control at the receiver. Packet transfers increase
the throughput of payload data via the NoC. For allowing
CPUs random memory access on payload data, the data
needs to be copied from the NI to their local memories and
vice versa. This leads to CPU runtime costs in software or
requires special hardware components like DMA Controllers.
Analyses in [7] have shown, that the usage of hardware sup-
port by DMA controllers in combination with scratch-pad
memories outperforms a cache-based mechanism in NoCs.
The NI presented in [12] integrates a DMA controller by stor-
ing packet information (e.g. routing coordinates and write-,
read-pointer, and size of the data) in a DMA table and
supports several DMA channels. Another NI with two inde-
pendent DMA channels is presented in the STM STHORM
MPSoC [2]. This MPSoC has a hierarchical architecture
where several CPUs are grouped in a CPU cluster and share
one NI. An alternative approach for NI architectures em-
ploys a common global address-space for the whole MPSoC.
Adapteva’s Epiphany [1] is an example for this approach. On
the one hand a global address-space allows CPUs to directly
and randomly access all memories of the MPSoC—A memory
access across the NoC can be realized with a single CPU
memory operation via the NoC. On the other hand a DMA
Controller can assist the CPUs with block transfers. The
NI transfers a single flit that contains address and payload
data to the NoC routers. In general this decreases the NoC’s
throughput of pure payload data.

Kalray’s MPPA-256 [3] does not provide a global address-
space on NoC level but uses a shared address-space within
each CPU cluster. Thus thread communication between
different CPUs is limited to a cluster. CPUs of different clus-
ters communicate via inter-process communication across the
NoC. A combination of both approaches is used by commer-
cial NoC vendors like Arteris (FlexNoC), Sonics (SonicsGN)
or NetSpeed (Orion) [4]. Incoming transactions (e.g., from
a conventional AXI interface) are converted into packets,
transfered via the NoC, and converted back to AXI. There is
no detailed information available regarding the architecture
of these commercial NoCs.

Our CoreVA-MPSoC employs a combination of both ap-
proaches as well. The NoC utilizes a packet transfer, while
the NI supports a memory-based DMA functionality to min-
imize CPU load for communication. To allow for a scalable
and efficient MPSoC the NI supports a flexible management
of independent channels at runtime.

3. THE COREVA-MPSOC
This chapter presents the hardware and software architec-

ture of the CoreVA-MPSoC (cf. Figure 1).

3.1 Architecture
The CPU contained in our MPSoC is named CoreVA [11]

and features a configurable 32 bit VLIW architecture. It
has separate instruction and data memories and six pipeline
stages. The number of VLIW issue slots, arithmetic-logic-
units (ALUs), multiply-accumulate (MAC), and load-store-
units (LD/ST) can be adjusted at design time. To avoid
CPU stalls due to bus congestion, a FIFO is used to decouple
CPU bus writes. Within a cluster several CoreVA CPUs are
tightly coupled via an interconnect fabric [10]. The cluster
implements a NUMA (Non-Uniform Memory Access) archi-
tecture, where each CPU can access the L1 data memories

Figure 1: The hierarchical CoreVA-MPSoC.

of all other CPUs within a cluster. Bus standard (AMBA
AXI4, Wishbone) and topology (shared bus, partial or full
crossbar) are both configurable at design time. In this work
the cluster interconnect is fixed to a full AXI crossbar and a
data bus width of 64 bit.

For realizing MPSoCs with dozens or hundreds of CPU
cores, a second interconnection hierarchy level, a Network
on Chip (NoC), is introduced to the CoreVA-MPSoC. Our
NoC implementation features packet switching and wormhole
routing. Each packet is segmented into small flits, each con-
taining a header for control information and 64 bit payload
data. The NoC interconnect is built up of routers, each hav-
ing a configurable number of ports. This flexibility permits
the implementation of most common network topologies. In
this work, a 2D-mesh topology is used (cf. Figure 1) and a
router has a latency of two clock cycles. One port of each
router is connected to a cluster via a network interface (NI,
cf. Section 4). For very large scaled CoreVA-MPSoCs the
NoC can be extended by a Globally-Asynchronous Locally-
Synchronous (GALS)-based approach by using mesochronous
links [5]. The NoCs considered in this work are small enough
to not require GALS.

3.2 Communication Model
The CoreVA-MPSoC platform particularly targets stream-

ing applications like signal and video processing. A typical
streaming application is build up of many different tasks
which are connected via a directed data flow graph. To al-
low communication between the tasks executed on different
CPUs, an efficient communication model is required. Within
the CoreVA-MPSoC we use a communication model with uni-
directional communication channels. This approach is more
scalable and efficient compared to shared memory concepts
where the memory access can become the bottleneck [7].

In general a task will read from one or more input channels
and write to one or more output channels. Each channel
manages one or more read/write data buffers. The appli-
cation can request a buffer to read from (getReadBuf) and
a buffer to write to (getWriteBuf). A channel manages
synchronization at the granularity of the buffer size. The
operation of requesting a buffer from a channel blocks the
CPU if sufficient data has not yet arrived or if there is no free
buffer available to write to. However, once the application
receives a buffer by the channel, it is free to read or write (as
appropriate) any memory location within that buffer without
need for any further synchronization. When the application
has finished writing to or reading from a buffer, it must
inform the channel so that the buffer can be read by the
reader (setWriteBuf) or reused by the writer (setReadBuf).

There are three different types of channels: A (i) Memo-

ryChannel for communicating between tasks mapped to the
same CPU. The communication between CPUs of the same
cluster is handled by a (ii) ClusterChannel. A (iii) NoCCha-
nnel allows for communication between CPUs of different
clusters via the NoC. Inter-CPU channels (ClusterChannel
and NoCChannel) maintain at least two separate buffers so
that latency can be hidden (double buffering).

In case of the ClusterChannel, the data buffers are allo-
cated in the receiving CPU’s memory to avoid the latency
of a read over the bus. For synchronization, a mutex pair
per buffer is used. One mutex is used for getWriteBuf and
setWriteBuf while the other one is used for getReadBuf and
setReadBuf. From a programmer’s perspective the interface
remains the same for a NoCChannel. In detail, a NoCChan-
nel is implemented as a pair of ClusterChannels, one on the
sending cluster and the other on the receiving cluster. The
NI on the sending cluster acts as a consumer and the NI on
the receiving cluster acts as a producer. For a NoCChannel,
data buffers are allocated at the sending and at the receiving
cluster.

3.3 Compiler Infrastructure
For programming a single CoreVA CPU, a C compiler tool

chain based on the LLVM compiler infrastructure has been
developed. Our compiler supports VLIW and SIMD vector-
ization. However, it is challenging for the programmer to
make effective use of a complex MPSoC. Therefore, we have
developed a compiler for streaming applications to assist in
programming the CoreVA-MPSoC [6]. The applications need
to be written in the StreamIt language [13]. An application
is represented by a structured data flow graph of its tasks.

Our MPSoC compiler for streaming applications tries to
maximize the throughput of the application. An approach
based on simulated annealing is utilized to partition the
tasks of a program onto particular cores of the MPSoC.
Additionally, it decides if a task can be cloned to exploit
data parallelism. Furthermore, the granularity of work done
in each iteration can be increased to reduce the overhead of
communication. Every partitioning is checked for hardware
limits. These can be NoC limits like maximum packet size
or CPU limits like maximum memory size.

4. THE NETWORK INTERFACE
The network interface (NI) of the CoreVA-MPSoC realizes

the communication between two CPU cores of different clus-
ters. Each CPU cluster can be addressed by its unique X and
Y coordinate in the 2D-mesh topology of the NoC. Within a
cluster a shared address space is used for all memories and
components of the CPU cluster. From the programmer’s
point of view, the communication is based on the CoreVA-
MPSoC communication model presented in Section 3.2. To
support this model with the NoC, the NI bridges between
the address-based communication of the cluster and the flow-
and packet-based communication of the NoC. The synchro-
nized buffers (packets) of a channel lead to an end-to-end
flow control, which prevents NoC deadlocks. Packets are
only send if the destination memory is writable.

The most important task of the NI is to provide an efficient
flow control between CPU cores, while minimizing the CPU’s
software costs for this communication. To achieve this, packet
data is directly stored to and read from each CPU’s local
data memory. Hence, the CPUs can benefit from the low
access latency of its local memory. Additionally, the NI

Figure 2: Network-Interface (NI).

acts like a DMA controller by sending and receiving packets
(buffers) concurrent to CPU processing.

Figure 2 gives an abstract overview of the NI architecture.
The NI is connected to the cluster interconnect via an AXI
master and an AXI slave port. Via Slave Control all CPUs
can access and configure the NI. The Send Control handles
the sending of buffers. When the source CPU has produced
a data buffer, it stores a sending request in a FIFO within
the Send Control. With the help of this FIFO the NI is able
to handle concurrent sending requests from several CPUs of
a cluster without any blocking of the CPUs. Requests within
the FIFO are executed successively by the Send Control. To
minimize the NI’s area requirements, a sending request just
consists of a pointer to the CPU’s memory where additional
channel information is stored. At first the NI starts reading
additional channel information, e.g. XY-coordinates of the
destination, or the size and pointer of the channel’s data
buffer. Afterwards the Send Control starts reading the data
from the data memory of the source CPU, segments it into
flits, and sends it to the NoC interconnect. A flit can be sent
every clock cycle and contains a control-header (containing,
e.g., flow ID) and 64-bit of payload data.

The Recv. Control handles incoming flits from the NoC in-
terconnect. Receiving is more complex compared to sending,
because flits of the same packet might not arrive successively.
It is possible that flits of packets from other sources arrive
at the NI in between. To identify flits of a packet (buffer),
all flits get the same flow ID (Transaction ID), which needs
to be unique within a receiving NI. With the unique flow ID
the Recv. Control can acquire information about the corre-
sponding channel from a look up table (LUT). The channel
information is a pointer to the CPU’s memory to store data
or to set a mutex for synchronization. With this information
the NI is able to store incoming flits directly in the data
memory of the target CPU via the Master Control. A LUT
entry must be configured before a buffer can be sent via the
NoC. According to the number of entries the LUT can be
implemented using registers or SRAM memory. The number
of LUT entries is the maximum number of independent re-
ceiving channels which can be used simultaneously by the
tasks executed on the CoreVA-MPSoC.

5. RESULTS
This section presents the analysis of the CPU software

costs of NoC-based communication. In addition, we vary the
number of independent NI channels and discuss its impact
on the performance of streaming applications and hardware
costs using a 28 nm FD-SOI standard cell technology.

5.1 Software Costs of NoC Transfers
System-level analysis of MPSoCs requires the consideration

of both hardware and software costs and latencies. Message-
based communication has to be initiated by the sending
CPU and terminated by the receiving CPU. This results in
software costs in terms of CPU cycles.

To determine these costs we have implemented a synthetic
benchmark and analyze the software costs and hardware
latencies for CPU-to-CPU communication. Two tasks are
mapped to two CPUs of different clusters. One task is pro-
ducing data and sends it periodically via a NoCChannel to
the consuming task. Figure 3 presents the abstract sequence
for sending and receiving one buffer of the channel. In ad-
dition, the software costs of the getWriteBuf, setWriteBuf,
getReadBuf and setReadBuf functions is shown (cf. Sec-
tion 3.2). These costs are independent from the buffer’s
payload size and include both the CPU’s buffer management
and the CPU’s communication with the NI. While the CPU is
executing these functions, it can not perform its actual work.
Hardware communication latencies, which are illustrated by
the data transfer arrows (cf. Figure 3), are typically hidden
by using double- or multi-buffering.

There are two approaches to handle the limited number
of physical NoCChannels. The first approach manages this
limit and restricts the number of communication channels
to the number of physical channels. LUT entries of the NI’s
receiving path (physical channels) are configured only once
during an initialization phase. Afterwards a pre-configured
LUT entry can be used periodically for the same channel.
We call this approach semi-static.

The second, more dynamic approach does not limit the
number of communication channels. In this case a sending
task can reserve a physical channel for the time which is
required to transmit a single data buffer. Afterwards the
physical channel can be used by other channels. This ap-
proach requires a reconfiguration of the LUT in the receiving
NI for every data buffer transfer. To ensure synchronization
the reconfiguration is done by the sending task, which needs
to know the address for data and mutex location at the
receiving CPU. This requires global address management or
a handshake at the application’s start up.

To show the difference between both approaches we use
a synthetic benchmark and analyze the latency for CPU-to-
CPU communication. The results in Table 1 present the

Figure 3: Sequence diagram of the NI.

Table 1: Best-case cycle count for ClusterChannel
and semi-static and dynamic NoCChannels.

semi-static dynamic cluster

getWriteBuf 15 17 15
setWriteBuf 28 126 19
getReadBuf 15 15 15
setReadBuf 19 19 19
data transfer (16 B) 26 148 20
data transfer (1 kB) 177 285 20

different software runtime costs for the transfer of one data
buffer of a channel. In addition to both NoC approaches,
costs for a CPU-to-CPU communication within a cluster are
shown. Even a cluster communication needs to manage and
synchronize the data buffers. The main difference between
all approaches is reflected in the setWriteBuf function, which
initiates the sending of the buffer. Due to the reconfigu-
ration of the LUT entry on the receiving NI, the runtime
for setWriteBuf increases by a factor of 4.5 for the dynamic
approach compared to the semi-static approach.

In addition to software costs, the latency for a data transfer
(payload size of 16 B and 1 kB) is shown. The latency is
measured from the time the sender has produced the buffer
(before setWriteBuf) until the receiver is able to consume it
(after getReadBuf). Due to the block transfer of data (1 kB)
via NI, the latency for semi-static NoC channels is 157 cycles
longer compared to a cluster communication. During the
task’s work function, CPUs within the same cluster can store
the data directly to the local memory of the other CPUs. For
a NoC transfer the entire data buffer needs to be produced
before the NI can start sending the buffer.

The results presented in this section represent best case
scenarios. All buffers are available and there is no congestion
with other traffic. If all physical channels of an NI are in
use and the dynamic strategy is chosen, a requesting CPU
is blocked until a physical channel becomes available. In
addition the read required for this request can be delayed
due to high network congestion. For this reason the semi-
static strategy is more deterministic, which is important for
real time applications.

5.2 Streaming Benchmarks
As shown in the previous section, the semi-static approach

is more efficient in terms of CPU cycle costs. The draw-
back is that the partitioning of an application becomes more
challenging due to the limited number of communication
channels. Especially streaming applications can benefit from
the semi-static strategy, because the processing of a con-
tinuous stream of data is a periodic task. Once a physical
channel is configured it can be used periodically for the whole
runtime of the application.

To determine the impact of the number of physical com-
munication channels on application performance, we use 10
streaming applications. These applications are derived from
the StreamIt benchmark suite [13]. Because our CPU lacks
floating point support, we have ported some benchmarks to
a fixed-point representation. We use our MPSoC compiler
(cf. Section 3.3) to automatically partition the different tasks
of the benchmarks to our CoreVA-MPSoC. Three different
CoreVA-MPSoC configurations with 32 VLIW CPUs are
considered: two hierarchical configurations 4x2x4 and 2x2x8

Figure 4: Speedup of MPSoC configurations with
different number of receive channels per NI com-
pared to a single CPU.

(NoC dimesion 1 x NoC dimension 2 x #CPU per cluster)
and a single CPU cluster (1x1x32).

Figure 4 shows the increase of throughput using selected
benchmarks for the considered MPSoC configurations com-
pared to a single CPU. The column Average shows the mean
speedup of all 10 applications of our benchmark suite. Addi-
tionally, we vary the maximum number of physical channels
from 32 to 512 per NI. A low number of physical channels
constrains the number of valid partitionings that are consid-
ered by the optimization algorithm of our MPSoC compiler.
Depending on the application this may effect the achievable
speedup.

Considering all benchmarks, the 1x1x32 configuration
shows the best speedup (20 in average). For this config-
uration no NoC communication is used and the number of
communication channels is only limited by the data memories
of the CPUs.

Considering hierarchical MPSoCs, BitonicSort shows the
highest impact on a low number of physical NoC channels.
For channel numbers of 32 and 128 the speedup does not
exceed 3.8 for the 4x2x4 MPSoC and 8.9 for a 2x2x8 MP-
SoC. In these cases the compiler does not find a partitioning
that benefits significantly from more than one CPU clus-
ter. The speedup increases to 20.1 (4x2x4) and 19.6 (2x2x8)
if 256 channels are used. DES shows a performance simi-
lar to BitonicSort except that 128 channels show a better
speedup (13.2) compared to 32 channels with a speedup of
3.8 (4x2x4). The 2x2x8 configuration with 256 channels
shows a higher speedup than 1x1x32 because the NI acts
like a DMA controller and offloads the CPUs from copying.
In addition the 512 channel configuration is slower due to a
local minimum of the partitioning algorithm. For FFT most
configurations show a speedup of about 20. The average of
all 10 benchmarks shows that 256 physical NoC channels is
a reasonable number. Performance increases by 27.6% or
13.1% compared to 32 or 128 NoC channels respectively. No
benchmark benefits from more than 256 NoC channels.

5.3 Physical Implementation Results
This section presents physical implementation results for a

single CPU cluster including 4 CPUs, the AXI interconnect,

Figure 5: Area requirements of routers and different
NI configurations.

the NI and one router. To connect several of these CPU
clusters, four ports of the router are used as IO-interfaces.
We use a highly automated standard-cell design-flow based
on Cadence Encounter Digital Implementation System. The
maximum frequency of the CoreVA CPU is 900 MHz in
a 28 nm FD-SOI standard cell technology1 with low- and
regular-VT standard cells. Basic blocks of our analysis are
hard macros of our CoreVA CPU using 2 VLIW slots and
16 kB L1 instruction and 16 kB L1 data memory. In this
work, we use a slightly relaxed timing of 800 MHz. This
results in area requirements of 0,116 mm2 per CPU macro.

Synthesis results presented in Figure 5 show the area re-
quirements of NI and router with a different number of
independent receiving channels per NI (LUT entries). The
router requires about 4.1% of the total area of a CPU cluster
with 4 CPUs. Router area increases only slightly with the
number of NI channels, because the channel ID (flow ID) is
part of each flit header. The size of the flit header is 24 bit for
8 physical channels and 31 bit for 1024 physical channels (for
a 4x4 NoC). An NI with 32 channels using an SRAM LUT
has an area of 0.019 mm2 and takes just 3.45% of the total
cluster area (0.563 mm2). To support up to 1024 independent
receive channels, larger SRAM memories are used, which
increase the area of the NI to 0.033 mm2 and the total cluster
area to 0.578 mm2. As expected, area requirements increase
dramatically for a register-based implementation of the LUT
and many channels. A register-based NI with 64 channels
has an area of 0.044 mm2 and takes 7.50% of the total cluster
area. For NI configurations with 8 channels (0.017 mm2) or
less, a register implementation could be an option. Using
registers reduces the latency of a flit in the receiving path by
one cycle compared to an SRAM implementation. Total area
requirements of MPSoC configurations with 32 CPU cores are
4.56 mm2(4x2x4), 4.44 mm2 (2x2x8) and 4.82 mm2 (1x1x32).
The NoC-based configurations feature an SRAM-based NI
with 256 channels.

Place and route (P&R) results of a CPU cluster with 4
CPUs and an NI with a memory block for 128 channels are
presented in Figure 6. Figure 6a shows the placed design
with the NI highlighted in red and the router highlighted
in yellow. Additionally the routed design shows routing
wires to the four IO ports of the router (cf. Figure 6b). The
area requirements (0.67 mm2) increase by 18% compared

1STMicroelectronics, 10 metal layer, Worst Case Corner:
1.0 V, 125◦C

CPU

(a) Placed design (NI is
marked red, router is
marked yellow).

(b) Routed design.

Figure 6: Physical implementation of a CPU cluster
with 4 CPU macros and 4 times 32 kB local memory.
Area requirements are 0.70 mm2.

to synthesis results. Due to our hierarchical synthesis flow,
multiple of these cluster macros can be placed next to each
other to build up the NoC.

For comparison of area requirements and application per-
formance, we use the ratio of speedup and area as a metric.
Figure 7 shows the speedup-area ratio for the considered
benchmarks and hardware configurations. On average, the
4x2x4 MPSoC with 256 NI channels shows the best speedup-
area ratio of 4.45. Configurations with both 256 and 512
NI channels show good results and outperform the 1x1x32
full crossbar CPU cluster (4.16). In addition the NoC-based
MPSoC configurations easily allow for large-scale MPSoCs
with hundreds of CPU cores.

6. CONCLUSION
In this work a novel network interface (NI) architecture for

our hierarchical CoreVA-MPSoC is presented. A system-level
analysis has been performed, considering both software and
hardware costs of different NI configurations. Benchmark
results show that NoC communication with a semi-static
channel approach outperforms a dynamic channel approach.
In addition we have compared different NI configurations
for the semi-static approach using a benchmark suite of 10

Figure 7: Speedup-area ratio of MPSoC configura-
tions with different number of receive channels.

streaming applications. The best performing NI configuration
shows an average speedup of 20 for a hierarchical CoreVA-
MPSoC with 32 CPUs compared to a single CPU. Physical
implementation results using a 28 nm FD-SOI standard cell
technology show area requirements of 4.56 mm2 for a 4x2x4
CoreVA-MPSoC at 800 MHz. Compared to a single CPU
cluster with 32 CPUs the ratio of speedup and area increases
by 7% for a 4x2x4 MPSoC with 256 NI channels. The
proposed approach enables fast design space exploration
to optimize MPSoC configurations for a given application
scenario. In future work we will extend our MPSoC compiler
to choose dynamic or semi-static channel approach at compile
time. In addition, we will connect the NI to a tightly coupled
shared L1 memory [11] of a CPU cluster. This minimizes
the NI’s write and read latencies.

Acknowledgments
This work was funded as part of the DFG Cluster of Ex-
cellence Cognitive Interaction Technology ’CITEC’ (EXC
277), Bielefeld University and the BMBF Leading-Edge Clus-
ter “Intelligent Technical Systems OstWestfalenLippe” (it’s
OWL), managed by the Project Management Agency Karl-
sruhe (PTKA).

7. REFERENCES
[1] Adapteva. E64G401 Epiphany 64-Core Microprocessor

Datasheet, 2014.

[2] L. Benini et al. P2012: Building an Ecosystem for a
Scalable, Modular and High-Efficiency Embedded
Computing Accelerator. In DATE. IEEE, 2012.

[3] B. Dinechin et al. A Clustered Manycore Processor
Architecture for Embedded and Accelerated
Applications. In HPEC. IEEE, 2013.

[4] T. R. Halfhill. Opportunity NoCs, NetSpeed Answers.
Microprocessor Report, (December), 2014.

[5] T. Jungeblut et al. A TCMS-based Architecture for
GALS NoCs. In ISCAS, pages 2721–2724. IEEE, 2012.

[6] W. Kelly et al. A Communication Model and
Partitioning Algorithm for Streaming Applications for
an Embedded MPSoC. In SoC. IEEE, 2014.

[7] T. Marescaux et al. The Impact of Higher
Communication Layers on NoC Supported MP-SoCs.
In NOCS. IEEE, 2007.

[8] A. Radulescu et al. An Efficient On-Chip NI Offering
Guaranteed Services, Shared-Memory Abstraction, and
Flexible Network Configuration. IEEE Trans. on
Computer-Aided Design, 24(1):4–17, 2005.

[9] S. Saponara et al. Design of an NoC Interface
Macrocell with Hardware Support of Advanced
Networking Functionalities. IEEE Trans. on
Computers, 63(3):609–621, 2014.

[10] G. Sievers et al. Evaluation of Interconnect Fabrics for
an Embedded MPSoC in 28nm FD-SOI. In ISCAS.
IEEE, 2015.

[11] G. Sievers et al. Comparison of Shared and Private L1
Data Memories for an Embedded MPSoC in 28nm
FD-SOI. In MCSoC, 2015. In press.

[12] J. Sparso et al. An Area-efficient Network Interface for
a TDM-based Network-on-Chip. In DATE. IEEE, 2013.

[13] W. Thies et al. StreamIt: A Language for Streaming
Applications. In Compiler Construction (CC). 2002.

