
Towards Dimensionality Reduction

for Smart Home Sensor Data

Bassam Mokbel, Alexander Schulz ∗

CITEC centre of excellence, Bielefeld University, Germany

{bmokbel|aschulz}@techfak.uni-bielefeld.de

Preprint of the publication [11], as provided by the authors.

Abstract

In this paper, we investigate in how far nonlinear dimensionality reduction (DR) tech-
niques can be utilized to tackle particular challenges of sensor data from smart home envi-
ronments. Smart homes often contain a large number of sensors of various types, providing
output in real time, which results in a sequence of high-dimensional, heterogeneous data
vectors. We propose that DR techniques can provide a truthful low-dimensional representa-
tion (i.e. a compression) of this kind of data, together with a corresponding reconstruction
(i.e. decompression). This yields an automatic fusion of uncoordinated raw sensor signals,
as well as an economical storage format, with a certain robustness against sensor failure. In
proof-of-concept experiments, we present first empirical results to test our approach based
on real-world data.

1 Introduction

Motivation

In recent years, the topic of smart homes gained major attention in the electronics and elec-
trical appliances industry. The term describes environments, in which a collection of different
sensors and individual devices are utilized for home automation, for assisted living in healthcare
situations, or other interactive home scenarios to provide convenience and intelligent assistance
in everyday life. In this context, efficient data mining and machine learning algorithms play a
prominent role, in order to adapt these systems to the inhabitants and their environment, based
on given sensor data. For example, smart devices may learn the daily habits of a user, and infer
rules to detect the corresponding living situations automatically.

Data in smart home environments are typically characterized by temporal streams of het-
erogeneous, high-dimensional sensor readings as well as preprocessed sensor evaluations, e.g.
temperature sensors, motion sensors, or cameras providing face detection and the location of
inhabitants. In this context, we expect the following challenges for machine learning:
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(I) High-dimensional data Given the increasing ubiquity and precision of sensors, together with
the limited memory capacity in typical home automation devices, it becomes challenging
to analyze the output of all available sensors at once, and to store a sufficient amount of
historical data in order to apprehend an adequate temporal context for analysis tasks.

(II) Heterogeneous data At the same time, the large variety in the output data from different
sensor types typically requires hand-tuning and expert knowledge to set up a successful
machine learning system for the given data. Thereby, raw sensor readings are preprocessed
and meaningfully represented in accordance with other sensor output. It would be beneficial
to avoid costly human effort for such problem-specific adaptations.

(III) Uncoordinated sensors Similarly, it can be expected that the available collection of
sensors and sensor modalities is very diverse in general, and may even be flexible over time:
home environments are different in shape and size, so the technical configuration will also
vary, while sensors may dynamically change or possibly fail. Therefore, a hand-crafted
organization of sensors to gain higher-level abstract data representations seems no longer
appropriate. Rather, machine learning techniques will have to deal with loose collections
of sensors, which provide individual local views of the environment and may yield missing
values.

Nonlinear dimensionality reduction

Regarding these three challenges, the aspect of ‘high-dimensional data’ can be addressed directly
by dimensionality reduction (DR) techniques: With a large collection of sensors available in a
smart home, it is expectable that several signals will be correlated, and the intrinsic dimension-
ality is actually lower than the number of sensor outputs. Therefore, DR is a promising tool to
establish a low-dimensional representation from the original sensor data, which is easier to handle
in terms of storage space and complexity for data analysis and machine learning algorithms.

DR has been an emergent research topic over the last decade, with successful applications
in a variety of scientific and industrial fields, especially for nonlinear DR methods. Recent
advances include novel acceleration techniques for big data sets [12, 4], as well as principled
evaluation and parameterization approaches [7, 6]. Hence, there are many DR algorithms readily
available, see [8, 13] for overviews. Some existing work in the literature demonstrates the general
benefit of DR also in the context of sensor data: for example, linear DR [14], and sparse coding
techniques [1] were used to achieve compressed representations from sensor signals.

However, given the heterogeneous characteristics of sensor data in smart homes, as described
in our challenge (II), we can expect that correlations are usually not linear. Therefore, linear DR
may fail to capture the relevant information in the data, unless problem-specific preprocessing
steps (including nonlinear transformations) are established by human experts. Hence, we believe
that nonlinear DR techniques would be more appropriate, which has not yet been sufficiently
investigated in current literature.

There exist successful applications of manifold-based nonlinear DR techniques like the self-
organizing map (SOM) [2] or Isomap [5] for spatio-temporal sensor data. However, those ap-
proaches realize a rather restrictive embedding: while the SOM depends heavily on the a-priori
choice of a lattice structure for the embedded points, Isomap requires an appropriate neighbor-
hood graph in the original data space. This makes both methods less flexible w.r.t. unseen data.
Regarding challenges (II) and (III), we believe that the generalization ability of a DR embedding
is a key ingredient for treating smart home data, and should be investigated further. Modern
high-performance nonlinear DR techniques have proven to be successful in terms of generalization
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for biological data, see [3]. Therefore, these approaches seem like a viable alternative to tackle
the challenges of smart home data. In this contribution, we present first empirical results by
testing the t-SNE [13] method in particular, together with a recent extension by a kernel mapping
approach [4], using a small data set of raw sensor signals for proof-of-concept experiments.

2 Dimensionality reduction for smart home data

The goal of DR is to find low-dimensional (low-D) vectors {y1, . . . ,yN} = Y ⊂ RL, which resem-
ble the structure of the original high-dimensional (high-D) data set {x1, . . . ,xN} = X ⊂ RH .
The dimensionality L of the embedding space RL is defined a priori by the user, and is often cho-
sen as 2 or 3 for the benefit of visualizing the embedded points in a scatter plot. Many nonlinear
DR techniques optimize the low-D vector locations such that their neighborhoods resemble the
neighborhood structure in the original data w.r.t. certain criteria of distance preservation. If the
data’s intrinsic dimensionality is higher than L, not all pairwise distances between the data can
be represented accurately in the embedding, and a certain loss of information is inevitable. To as-
sess how truthful a given embedding represents the original high-D data, there exist independent
quality criteria to evaluate the reliability of their low-D counterparts, see e.g. [9, 10].

Typically, nonlinear DR methods emphasize the preservation of local neighborhoods in fa-
vor over a faithful reproduction of larger distances. In this work, we use the well-established
nonlinear DR technique t-distributed stochastic neighbor embedding (t-SNE) [13], which aims to
minimize the discrepancy between neighborhood probability distributions in the original, and
the embedding space, as measured by the Kullback-Leibler divergence. The approximate size of
the considered neighborhood can be controlled explicitly via the perplexity parameter in t-SNE.
One limitation of t-SNE (and most other nonlinear DR techniques) is that the embedding Y is
obtained by an optimization procedure based on the given data X, but there is no functional
form available for the mapping. In case of time series as they occur in smart homes, this has
certain downsides: On the one hand, we require an explicit function to add unseen data (e.g.
incoming sensor readings) seamlessly to the existing low-D representation of previous data, i.e.
an embedding function of the form f : RH → RL with xi 7−→ f(xi) = yi for all i = {1, . . . , N}.
On the other hand, we may see the embedding as a compressed data representation, which al-
lows us to store and handle all yi as a compact alternative to xi. Hence, we also demand a
corresponding ‘decompression’ function, by which we can reproduce original sensor signals from
their low-dimensional counterparts, i.e. an inverse mapping g : RL → RH which approximately
recovers high-D points x̃i ∈ RH with yi 7−→ g(yi) = x̃i ≈ xi for all i = {1, . . . , N}.

To achieve these desired properties, we refer to a recent extension called kernel t-SNE [4].
This method uses the original high-D points together with their low-D counterparts embedded
by the regular t-SNE, and establishes a mapping between the two via regression. Therefore, a
generalized linear mapping is assumed, with parameters α and an appropriate basis function, in
our case a normalized Gaussian kernel of bandwidth σ, see [4] for details. This addresses both of
our requirements. On the one hand, we can train the kernel mapping to establish an embedding
function f(x) = y for unseen data x. On the other hand, we can obtain an inverse function
g(yi) = x̃i ≈ xi for reconstructing high-D points from low-D inputs, by using the same learning
scheme in the opposite manner: the kernel mapping is then trained for given low-D vectors with
their high-D counterparts as regression targets.
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3 Experimental evaluation

Application background & technical setting

In our experiments, we use real world sensor data from “The Cognitive Service Robotics Apart-
ment as Ambient Host” project (CSRA) at the CITEC research facility in Bielefeld, Germany.
The CSRA project involves an intelligent apartment for research purposes, where multiple sen-
sors constantly monitor various conditions of the environment, as well as human interactions
in each room. The apartment consist of a living room with an adjacent kitchen area, a small
entrance hallway, and a fitness room, each holding appropriate furniture and home appliances.
Details can be found on the project’s website1.

We are addressing two modalities of sensor readings, both producing multi-dimensional data
streams in real-time. With a rather small dimensionality and limited complexity of this data,
we are not covering all three challenges from Section 1 to the full extent with our experiments.
However, we believe that the data represents all three aspects to some degree, and our results
may serve as a first proof-of-concept.

In the first modality, we use 3-dimensional person tracking data from three different overhead
camera systems: These depth-image cameras are installed in the ceiling at the entrance, the
kitchen, and the living room. Each camera preprocesses the depth image to yield a person
location hypothesis in its local 3D coordinate system, whenever a person is detected in the
camera’s field of view. Since the fields of view of adjacent cameras are overlapping, a person
hypothesis may be present in several local coordinate systems at a time, in case a user is moving
through the overlapping areas. Note, that these depth cameras are low-cost devices similar to
the Microsoft Kinect model, which seems realistic for person tracking in future home automation
systems. Additionally, the fact that the cameras yield separate local tracking results (rather
than unified spatio-temporal data in a global coordinate system) is in line with our premise of
‘uncoordinated sensors’ from Section 1. From all three cameras with individual 3D coordinate
systems, we gain 9 real-valued data dimensions in each time step.

The second modality comes from a SensFloor R⃝ tactile floor mat, which is installed on the
kitchen ground. It yields continuous pressure levels for 8 individual segments which are evenly
partitioned in a clockwise fashion. Like in the case of a single camera, we can expect changing
values only when a person is moving in the kitchen area. With these 8 pressure sensors, and the
9-dimensional data from person tracking, we are addressing 17 real-valued data dimensions in
total. Since the distribution and correlation of values in the pressure sensors are much different
from the camera tracking output, our scenario involves the challenge of ‘heterogeneous data’.

In the following, we will address three distinct research problems in the context of smart home
data, which relate to the challenges in Section 1. For each problem, we will present experimental
results from our described setting. The data for our experiments consist of two sequences, in
which a single person walks through the apartment in an exploratory manner. The duration
of Sequence A is 86 seconds, while Sequence B lasts 50 seconds. In both sequences, the person
enters the field of view of every camera at least once, and is walking over the tactile floor panels
briefly.

Each sequence is a time series (x1, . . . ,xN ) of 17-dimensional vectors xi ∈ RH=17. Every
vector represents the sensor values provided within a 50 millisecond time frame. We applied only
general, fairly simple preprocessing steps, which are not specific to the given scenario or sensor
characteristics: If a sensor provides missing values (e.g. when a camera does not detect any
person), we continue to write the last known values in the subsequent vectors for each following

1http://cit-ec.de/en/content/cognitive-service-robotics-apartment-ambient-host

http://cit-ec.de/en/content/cognitive-service-robotics-apartment-ambient-host
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Figure 1: Top-down view of the person tracking coordinates from the kitchen camera. The
symbols indicate which of the three cameras is tracking the person at that time point.

time step, until the sensor delivers values again. Next, every vector, where no change to its
predecessor is observed, was removed from the sequence, in order to avoid many zero distances
between distinct data points. To avoid strong discontinuities between subsequent vectors, we
additionally smoothed2 the time series by setting each vector entry [xi]d to the mean value of
corresponding entries in a window of 10 predecessors and successors. (This translates to 1 second
in the original time series, if no steps were removed from the sequence.) Lastly, we used a z-score
transformation for the whole sequence to balance the numeric representation of all dimensions.

As an example, the person tracking results from the kitchen camera are displayed in a top-
down3 plot in Figure 1. A line connects the points in the order of their temporal progression.
The symbolic labels indicate whether each of the three cameras is tracking the person at that
time: the binary code signifies the tracking status of the first camera (in the kitchen), the second
(in the living room), and the third (in the entrance area), e.g. “1 0 1” means that the kitchen
camera is tracking the person, while the camera in the living room is not tracking, and the
entrance camera is tracking as well4.

Problem 1 – low-dimensional representation

Our first question is, whether we can obtain a reliable low-dimensional representation of the time
series data, without a problem-specific preprocessing of the given sensor signals. Specifically, can
we observe a rather smooth temporal trajectory in the embedding, despite the given heteroge-

2Note that this common preprocessing step is not problem-specific. However, it is necessary, since discontinu-
ities in the data can lead to clustered low-D representations (in our case due to the pressure sensors in particular).
This would yield an insufficient basis for training robust kernel mappings.

3Note that the tracking data is in fact 3D, however, the depth values follow a standard pattern of decreasing
with the distance to the camera’s center, and are thus omitted in this top-down perspective.

4Since we display the particular field of view of the kitchen camera in Figure 1, the first bit of the points’
labels is always 1 in these plots.
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Figure 2: 3D embedding obtained by the t-SNE method for both 17-dimensional sequences. The
colored symbols indicate which of the three cameras is tracking the person at that time. The
temporal progression of the sequence is mostly captured by a smooth trajectory in 3D.

neous multi-dimensional sensor data? This relates mainly to challenge (II) from Section 1.
We applied the t-SNE method with a target dimensionality of L = 3, for both given sequences

A and B. Our assumption is that a 3-dimensional embedding can represent the original data
rather truthfully, since only a single person is moving through the spatio-temporal sensor system.
Since t-SNE relies on a non-convex optimization starting from a random initialization, we ran
the method several times and evaluated the reliability of every embedding in terms of the quality
criterion QNX, as proposed in [9]. Additionally, we evaluated the quality index Qxi

NX for every
single point, as proposed in [10], which yields the ratio of preserved neighbors in a point’s k-
neighborhood. We chose the best respective 3D embedding in terms of this evaluation; the result
for each sequence is presented in Figure 2.

In both embeddings, we can see that the time series is represented as a rather smooth trajec-
tory, with only a few positions where the sequence is torn apart. The average quality Qxi

NX over
all points is 91.6% for A and 91.9% for B, in a k = 10 neighborhood. This substantiates our
positive visual assessment. From these results, we can conclude, that DR can actually produce
a fairly accurate 3D embedding of the 17-dimensional original sensor data, even without hand-
crafted preprocessing steps. The low-D representation yields a homogeneous representation of
heterogeneous sensor signals.
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Problem 2 – explicit parametric mapping & inverse

Is it possible to obtain an explicit embedding function, which generalizes to unseen data, as well
as an inverse mapping, which allows for an approximate reconstruction of the original sensor
signals from the compressed low-dimensional representation? This relates mainly to challenge
(I) from Section 1, since it would enable a compression and reconstruction of high-D sensor
signals for more efficient storage and handling, without too much loss of information.

With the kernel t-SNE method, we now train a kernel mapping f based on the embeddings
in Figure 2. To measure the discrepancy between the original embedding and the result of our
trained mapping function, we can simply calculate the mean squared error (MSE) between both
sets of vectors. We evaluate the generalization ability by averaging the training and test errors for
random splits of the data over a 5-fold cross-validation with 10 repeats. After meta-parameters
have been adjusted to the given data, an acceptable average error for both embedded sequences
was observed, although with rather high standard deviations (std.): For Sequence A, we achieved
a mean MSE of 9.5 (0.5 std.) on the training, and 31.1 (11.2 std.) on the test set. For Sequence
B, the errors were generally lower with a mean MSE of 1.4 (1.2 std.) on the training, and 10.4
(2.0 std.) on the test set. From the experiment, we observed that the kernel mapping was often
not able to capture the few discontinuous parts of the embedded trajectory. The other parts were
reproduced more truthfully by the learned mapping. However, the training behavior in general
tended to overfit. This may be due to the fact that the input data contains many degrees of
freedom which are mapped to considerably less variables in the output.

Instead, training an inverse mapping function g was much easier in the experiments. We
again used a repreated 5-fold cross-validation, which resulted in very low errors in general. The
mean MSE for Sequence A was 0.007 (0.001 std.) on the training, and 0.017 (0.005 std.) on the
test set. For Sequence B, we achieved 0.037 (0.006 std.) MSE on the training, and 0.741 (0.883
std.) on the test set. We can exemplify these very good results by visualizing the respective
reconstructions of the person tracking data from Figure 1: In the Figure 3, we show the original
person tracking from the kitchen camera, together with its reconstruction via the inverse mapping
function for both sequences. In each case, the original trajectory is resembled rather smoothly,
which verifies our quantitative evaluation showing very high performance on the test set.

We can conclude that training an accurate forward mapping function f(xi) is harder than
training the inverse mapping g(yi). Therefore, the idea of using a DR technique for compressing
sensor signals can be a viable option to handle smart home data efficiently, since we are able to
reconstruct the approximate original signals via a trained kernel mapping g(yi). However, the
idea to use a kernel mapping f(x) to extend the DR embedding to unseen data seems less robust
with the techniques we applied, and needs further refinement.

Problem 3 – robustness against sensor failure

Can we utilize the learned embedding f(x) and reconstruction function g(yi) to fill missing
sensor readings with plausible values? This relates to challenge (III) from Section 1, since it
would signify that the compressed representation is robust in a dynamically changing technical
environment.

Therefore, we chose an arbitrary 30% time window in Sequence B, and manipulated the
original data by filling one dimension with erroneous values. We replaced the y-coordinate of the
entrance camera in that time frame with values that simulate a failing sensor: small Gaussian
noise around the average output of the y-coordinate over the given sequence. Figure 4a shows
the manipulated camera data. We then used the previously trained mapping f to embed these
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Figure 3: The original person tracking data from the kitchen camera (the thin black line),
together with the reconstruction (the red dashed line) based on a 3D embedding of the respective
17-dimensional sequence.

erroneous data vectors in 3D, and applied the trained inverse function g to reconstruct the original
sensor signals. The result showed the interesting effect of reconstructing the original trajectory
nearly perfectly, see Figure 4b. Hence, the trained kernel mappings seem robust against local
failures of single sensors, and can help to fill missing values in dynamic sensor environments.

Conclusion

Our preliminary results show, that modern nonlinear DR techniques offer promising features to
tackle the challenges of smart home sensor data. Trained kernel mappings are able to capture the
characteristics of our example data and did generalize well. Our ongoing research will include a
comparative study with other DR methods (e.g. sparse coding).
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