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Introdution

Physial relevane

Typially, the situation in physis is quite omplex and one tries to approximate a physial

behavior by partial di�erential equations. For instane, ertain phenomena in eletromagnet-

is, optis, mehanis, general relativity, and �uid mehanis an be approximately desribed

by nonlinear waves. There is a huge number of nonlinear wave equations. In this thesis, we

onsider the nonlinear Shrödinger equation (NLS)

i∂tu+∆u = F (u).

The linear Shrödinger equation is one of the fundamental equations in quantum mehanis.

It provides a desription of a partile in a non-relativisti setting. The nonlinear Shrödinger

equation is a prototypial dispersive nonlinear partial di�erential equation (see Setion 1.5.1)

and has a muh more ompliated struture as well as many appliations in physis. Some

relevant �elds of appliation are nonlinear optis, propagation of the eletri �eld in optial

�bers, self-fousing and ollapse of Langmuir waves in plasma physis and the behavior of deep

water waves in the oean. Moreover, various phenomena arising in Heisenberg ferromagnets

and magnons, self-hanneling of a high-power ultra-short laser in matter, ondensed matter

theory, dissipative quantum mehanis, and eletromagneti �elds may be desribed by the

NLS. [APT04, BOR15, SS99℄

The nonlinear Shrödinger equation may also be derived from quantum dynamis of many-

body systems, see [ESY07℄. The fundamental priniple of quantum mehanis states that

a quantum system of N partiles is desribed by a wave funtion of N variables satisfying

a Shrödinger equation. In realisti systems, N is so large that a diret solution of the

Shrödinger equation for interating systems is learly an impossible task. Thus, many-

body systems are usually approximated by simpler dynamis where only the time evolution

of a few umulative degrees of freedom is monitored. In the simplest ase only the one-

partile marginal densities are onsidered. This means that the many-body pair interation is

replaed by an e�etive nonlinear mean-�eld potential and higher order quantum orrelations

are negleted. The ubi nonlinear Shrödinger equation then appears in the ontext of Bose�

Einstein ondensation with short range interations in suitable saling limits. The Bose�

Einstein ondensation is a state of matter onsisting of dilute bosoni partiles whih are

ooled to a temperature lose to absolute zero. At this temperature, these partiles tend to

oupy the lowest quantum state, whih an be expressed mathematially as the ground state

of an energy funtional related to the NLS. This phenomenon was proposed by Bose [Bos24℄

and Einstein [Ein24, Ein25℄ in 1924�1925. Not so long ago, two groups, one led by Cornell�

Wiemann [AEM

+
95℄ and the other by Ketterle [DMA

+
95℄, were awarded the Physis Nobel

Prize in 2001 for (independently) verifying the Bose�Einstein ondensation by experiments.

Reently, the nonlinear Shrödinger equation on the tori T
2
and T

3
have been derived from

many-body quantum systems as well. [ESY07, KSS11, Soh14℄
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The nonlinear Shrödinger equation on the Eulidean spae

The nonlinear Shrödinger equation has been studied intensively within the last deades. We

refer to [SS99, Caz03, Tao06, LP15℄ for some nie reviews. In this thesis, we mainly onsider

the NLS with a quinti nonlinearity, that is

i∂tu+∆u = ±|u|4u. (0.1)

The equation is alled defousing if the right-hand side has a plus and fousing if the right-

hand side has a minus. The quinti NLS posed on R
3
with initial data in H1(R3) is alled

energy-ritial sine if u is a solution to (0.1), then the saled solution (t, x) 7→ λ
1
2u(λ2t, λx)

solves (0.1) and leaves the homogeneous Sobolev norm Ḣ1(R3) and the energy

E
(
u(t)

)
=

1

2

∫

R3

|∇u(t, x)|2 dx± 1

6

∫

R3

|u(t, x)|6 dx

invariant. For sub-quinti nonlinearities, the orresponding Cauhy problem on R
3
is alled

sub-ritial. Given a nonlinearity with super-quinti powers, the orresponding equation on

R
3
is alled super-ritial. As explained in Setion 1.5.2, studying the energy-ritial equation

is more hallenging than studying the sub-ritial ase and hene, of a partiular interest.

We say that a Cauhy problem is loally well-posed in Hs
if for any hoie of initial data

φ ∈ Hs
, there exists a positive time T that may depend on the initial data suh that a

solution to the initial value problem exists on the time interval [0, T ), is unique, and the

solution map depends Lipshitz ontinuously on the initial data φ. In sub-ritial results the

time of existene usually depends only on the norm of the initial data. If T an be hosen

arbitrarily large, we all the Cauhy problem globally well-posed. Loal and global well-

posedness of the nonlinear Shrödinger equation posed on R
n
have been studied extensively.

Various sub-ritial and ritial results have been obtained, f. [SS99, Setion 3.2℄ and [Caz03,

Chapter 4℄.

Loal and small data global well-posedness of both the fousing and the defousing energy-

ritial NLS on R
3
have been proved by Cazenave�Weissler [CW89℄ in 1989. It took many years

until Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄ �nally showed that the defousing

NLS is also globally well-posed for arbitrarily large initial data in H1(R3). On the other hand,

Christ�Colliander�Tao [CCT03, Theorem 1℄ showed that the quinti fousing and defousing

NLS on R
3
fail to be well-posed in Hs(R3) for s < 1. In addition, they demonstrated that

the fousing and defousing energy-super-ritial NLS on R
3
are ill-posed in H1(R3).

One of the fundamental tools in the aforementioned well-posedness results is the dispersive

estimate,

‖u(t)‖L∞(Rn) ≤ C|t|−n
2 ‖u(0)‖L1(Rn),

where u is a solution to the free Shrödinger equation i∂tu + ∆u = 0. This shows that if

the initial datum u(0) has suitable integrability in spae, then the solution has a deay in

time. In many situations, the initial data do not have good integrability properties as one

often assumes the initial data to lie in a Sobolev spae Hs(Rn). However, from the dispersive

estimate one an derive a useful set of estimates, known as Strihartz estimates, whih an

handle this type of initial data, see Setion 1.5.2 for more details.
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The nonlinear Shrödinger equation on ompat manifolds

In the following, we onsider the NLS on boundaryless, ompat, smooth Riemannian mani-

folds. The behavior of solutions on suh domains hanges ompletely. For instane, the

dispersive estimate fails to hold true. This beomes obvious by onsidering the �at standard

torus. Sine solutions on this manifold are periodi in time, dispersion in the lassial sense

an not be present here.

Moreover, the mathematial tools at our disposal hange. An important tool one misses

when moving to the setting of ompat manifolds (exept of tori) is the Fourier transform.

However, the spetral resolution of the Laplae�Beltrami operator ∆g ompensates this loss

near-omplete. Frequeny loalization projetors that have been used R
n
(and an be used on

tori) an be replaed by spetral loalization projetors. They are given as spetral multipliers

instead of Fourier multipliers.

Another di�erene is the following: Solutions to the free Shrödinger equation on R
n
have the

struture of osillatory integrals

u(t, x) =

∫

Rn

ei(x·ξ−t|ξ|
2)

xu0(ξ) dξ, (0.2)

where u0 denotes the initial datum. The behavior of osillatory integrals has been studied

in great detail, see e.g. [Ste93, Chapters VIII�IX℄. On ompat manifolds, free solutions are

given as exponential sums suh as

u(t, x) =
∑

k∈N0

e−itλk(hku0)(x),

where λk, k ∈ N0, denote the eigenvalues of the Laplae�Beltrami operator and hk the pro-

jetion on the orresponding eigenspae, see Setion 1.4. The onnetion to (0.2) beomes

partiularly apparent on the standard torus, in whih ase free solutions are given by

u(t, x) =
∑

ξ∈Zn

ei(x·ξ−t|ξ|
2)

xu0(ξ).

Some ideas that have been used to obtain estimates for osillatory integrals, suh as integra-

tion by parts, do not work for exponential sums and hene, we need a di�erent approah.

In analyti number theory there is a lassial theory about exponential sums, whih may be

found in [Vau97, Kor92℄. The main ontributions to relevant results regarding exponential

sums appearing in this ontext, however, are due to Bourgain [Bou89, Bou93a℄. Some of

these estimates require sophistiated arguments. In this thesis, we want to point out that

the presented well-posedness results rely on exponential sum estimates, whose proofs do not

require ompliated arguments. To demonstrate this, we provide detailed proofs for all expo-

nential sum estimates we shall use in Setion 1.3.2 and Setion 1.3.3. Corollary 1.39 below,

for instane, was often ited to be a speial ase of the more general estimate given in [Bou89,

formula (4.1)℄, see also [Her13, Lemma 3.1℄. Here, we show how to get Corollary 1.39 from a

variant of the lassial Hardy�Littlewood irle method.

Apart from the tehnial di�ulties desribed above, the essential argument used in the

Eulidean setting fails, f. [HTT11, pages 329�330℄. On R
3
, the Strihartz estimate [KT98,

Corollary 1.4℄

‖u‖L∞
t H1

x
+ ‖u‖

L2
tW

1,6
x

. ‖u(0)‖H1 + ‖(i∂t +∆)u‖
L2
tW

1,6/5
x

(0.3)
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plays an important role to establish loal and small data global well-posedness. Applied to

the quinti NLS (0.1), using Hölder's estimate, and the Sobolev embedding H1(R3) →֒ L6(R3)
yields

‖u‖L∞
t H1

x
+ ‖u‖L2

tW
1,6
x

. ‖u(0)‖H1 + ‖u‖L2
tW

1,6
x

‖u‖4L2
tH

1
x
.

As Cazenave�Weissler [CW90, Setion 4℄ showed by applying the Piard iteration sheme, this

implies loal and small data global well-posedness in H1(R3). This approah breaks down in

the ase of ompat manifolds sine inequality (0.3) fails. Indeed, on the torus it follows

from adapting the one-dimensional ounterexample of [Bou93a, Setion 2, Remark 2℄ to the

three-dimensional situation, and for S
3
it was shown in [BGT04, Setion 4.2℄.

More di�erenes and details that are a bit more tehnial are postponed to Setion 1.5.2.

Related results and main results of this thesis

Let (M,g) be a three-dimensional, smooth, ompat Riemannian manifold without boundary.

One major part of the present thesis is to study large data loal and small data global well-

posedness of the energy-ritial nonlinear Shrödinger equation, that is

{
i∂tu+∆gu = ±|u|4u in [0, T ) ×M

u(0, · ) = φ on M
(0.4)

with φ ∈ H1(M). We all a Cauhy problem posed on a ompat n-manifold energy-ritial if

the orresponding problem posed on R
n
is energy-ritial. The terms sub-ritial and super-

ritial are de�ned analogously.

This line of researh was initiated by Bourgain [Bou93a℄, who proved that the energy-sub-

ritial NLS (i.e. nonlinearity with power less than 5) is globally well-posed for su�iently

small H1
-data. In 2007, Bourgain extended his sub-ritial result to the lass of retangular

tori

T
3
θ := R

3/
(
2πθ

−1/2
1 Z× 2πθ

−1/2
2 Z× 2πθ

−1/2
3 Z

)
, (θ1, θ2, θ3) ∈ (0,∞)3.

The approah used by Bourgain relies heavily on the partiular struture of the torus. In

a series of papers, Burq�Gérard�Tzvetkov [BGT04, BGT05a, BGT05b, BGT07℄ developed

a theory to prove sub-ritial global well-posedness of (0.4) on M = S
3
and M = S × S

2
ρ,

where S
2
ρ is the embedded sphere of radius ρ in R

3
.

1

One of their main, newly developed

tools is a set of multilinear spetral luster estimates, whih hold on any ompat manifold.

If one onsiders single eigenfuntions, these estimates seem to be only relevant for �sphere like

manifolds� as they are far from being optimal for eigenfuntions on the torus.

In 2011, Herr�Tataru�Tzvetkov [HTT11℄ were the �rst to prove a loal and small data global

well-posedness for the energy-ritial NLS on a ompat manifold, namely the �at torus T
3
.

Parts of their proof rely deeply on the given struture of the spetrum of ∆g. However, by

simple geometri onsiderations, it is possible to extend this result to retangular tori with

rational ratios

2

. In 2013, Herr [Her13℄ was able to extend this result to Zoll manifolds, whih

are manifolds whose geodesis are simple and losed with a ommon minimal period suh as

S
3
. Herr used in an essential way that the eigenvalues of the Laplae�Beltrami operator are

lustered around square numbers.

1

More generally, Burq�Gérard�Tzvetkov proved well-posedness for three-dimensional Zoll manifold and S×M ,

where M is a two-dimensional Zoll manifold.

2

In this ase, there exists k ∈ N suh that the saled torus kT3
an be viewed as a disjoint union of parallel

translates of the original rational torus T
3
θ , see [GOW14, pages 977�978℄.
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In the present thesis, we shall onsider the energy-ritial NLS (0.4) on general retangular tori

(with possibly irrational ratios) and on produts of spheres, i.e. S×S
2
ρ. In Chapter 2, we prove

loal and small data global well-posedness. The well-posedness result on retangular 3-tori has
been published by the present author in [Str14℄ and extends the results in [HTT11, GOW14℄.

Moreover, we present a proof of a multilinear Strihartz estimate, whih implies saling-ritial

loal well-posedness of the NLS with nonlinearity ±|u|2k+1u, k ≥ 3, on two-dimensional

retangular tori. This result is part of [Str14℄ and extends an earlier result of Guo�Oh�Wang

[GOW14℄ who proved the same result for k ≥ 6. In this thesis, we also give the �rst proof of

loal and small data global well-posedness of the energy-ritial NLS on S × S
2
ρ. It extends

a previous result of Herr and the author [HS15℄, in whih the speial ase S × S
2
, i.e. ρ = 1,

was treated. In the joint work [HS15℄, the essential ontributions of Sebastian Herr were

Setions 1, 3, and 4; the present author's ontribution is essentially Setion 2. As in the

Eulidean setting, it is known that the energy-super-ritial fousing and defousing NLS

on an analyti manifold fail to be well-posed in H1
[Tho08℄. In the same work, it was also

proven that both the fousing and the defousing quinti NLS are ill-posed in Hs
for s < 1.

Hene, our study ompletes the analysis of loal well-posedness in H1
on retangular tori and

produts of spheres in three dimensions.

The domain S× S
2
ρ is partiularly interesting as it an be onsidered as an intermediate ase

between the torus T
3
and the sphere S

3
. To see this, let us �rst ompare their spetra of the

Laplae�Beltrami operator σ(−∆g):

M σ(−∆g)

T
3 ℓ2 +m2 + n2, ℓ,m, n ∈ Z

S× S
2
ρ m2 + ρ−2(n2 + n), m ∈ Z, n ∈ N0

S
3 n2 + 2n, n ∈ N0

The spetrum σ(−∆g) on the torus is�as the sum of three square numbers�badly loalized,

whereas the eigenvalues of the Laplae�Beltrami operator on the three-dimensional sphere are

essentially square numbers and hene, well loalized. The spetrum of −∆g on S×S
2
ρ is mainly

given as the sum of two square numbers and thus, in a ertain sense, it is intermediate between

the two. A similar piture emerges regarding the multipliities of the eigenvalues. On S
3
and

S×S
2
ρ, the multipliities behave well-tempered. On the torus, though, the multipliities of the

eigenvalues vary heavily and inrease fast. These fats are illustrated in Figure 0.1�Figure 0.3

below.

On the ontrary, the eigenfuntions on the torus have very good algebrai properties sine

the produt of two eigenfuntions equals an eigenfuntion again. This is not the ase for the

eigenfuntions on S
3
, the so alled spherial harmonis. Though, the produt of two spherial

harmonis of degree m and ℓ an be expanded in terms of spherial harmonis of degree less

or equal to m+ ℓ.

Another argument why T
3
and S

3
may be onsidered as extreme ases is due to the Lp-bounds

of their eigenfuntions. While the Lp-norms of eigenfuntions on the torus are bounded, the

Lp-norms of spherial harmonis present a bad onentration.

The study of the nonlinear Shrödinger equation on S× S
2
ρ is also interesting sine one has to

ombine the di�erent approahes used on the torus and the sphere, whih ould be a �rst step

in understanding better how more general lasses of manifolds an be treated. It seems that

one has to �nd a way to balane the onentration of eigenfuntions and the repartition of the
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spetrum. However, our knowledge about the spetrum and the eigenfuntions of the Laplae�

Beltrami operator on arbitrary manifolds is poor, whih makes it hard to obtain results for

arbitrary manifolds. Sine the NLS is loally well-posed in the two extreme ases, T
3
and S

3
,

Burq�Gérard�Tzvetkov[BGT05b, page 257℄ onjetured that a similar loal well-posedness

result might holds true on any boundaryless, smooth, ompat Riemannian 3-manifold.
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Figure 0.1: σ(−∆g) on S
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Figure 0.2: σ(−∆g) on S× S
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Figure 0.3: σ(−∆g) on T
3

In [HS15℄, Herr disovered that a ertain trilinear Strihartz estimate based on L2
-spaes, see

Assumption 2.1, is su�ient to onlude energy-ritial loal well-posedness and small data

global well-posedness on any smooth, ompat Riemannian 3-manifold without boundary.

The proof of this onditional result given in [HS15℄ relies on earlier works and hene, we take

the opportunity to review the whole argument in Setion 2.2.

Another goal of this thesis was to �nd a ommon approah to prove loal and small data

global well-posedness results in this setting. The �rst big step was the onditional result by

Herr that redues the study to proving a trilinear Strihartz estimate. In the present work,

we verify this trilinear estimate for retangular tori and produts of spheres. So far, we were

able to arve out the following general strategy:

(i) Exploit almost orthogonality in spae and time to restrit the spetrum of the high-

frequeny term to a smaller set whose size an be expressed involving a negative power

of the largest frequeny. See Setion 2.3.4 for retangular tori, Setion 2.5.5 for produt

of spheres, and part b) in the proof of [Her13, Proposition 3.6℄ for Zoll manifolds.

(ii) Prove sale invariant LptL
q
x-bounds on exponential sums arising from the linear evolution

formula. Of ourse, the aim is to hoose p and q as small as possible. For these bounds,

it is usually hard to make use of the additional spetral loalization introdued in (i).

Hene, the additional restrition of the spetrum of the high-frequeny term is usually
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negleted. In the ase of tori, these exponential sums are given by the linear evolution,

see Lemma 2.10. On produts of spheres and Zoll manifolds, the exponential sums are

not the respetive linear evolutions but they are strongly related, f. Lemma 2.19 and

[Her13, Lemma 3.1℄.

(iii) So far, the additional loalization of the spetrum of the high-frequeny term has not

been used. However, this is easy in the L∞
t,x-estimate sine it leads essentially to a lattie

point ounting problem. Interpolating this with the estimates obtained in (ii) provides

LptL
q
x-bounds that take the additional restrition of the spetrum in (i) into aount.

See Corollary 2.11 (tori) and Corollary 2.20 (produts of spheres). On Zoll manifolds,

the interpolation argument is not needed sine the Lpt,x-bounds in [Her13, Lemma 3.1℄

already take the spetral restrition in (i) into aount.

(iv) Finally, one onsiders the trilinear estimates, applies the almost orthogonality property

in (i) and the estimates obtained in (ii) and (iii) to onlude the desired inequality.

One a good loal theory is obtained, one may ask for global well-posedness of the defous-

ing NLS (0.4) even for arbitrarily large initial data in H1(M). Ionesu�Pausader [IP12b℄

developed a method that allows to answer this question on the standard torus

3

. Shortly af-

ter, Pausader�Tzvetkov�Wang arried over the idea to S
3
[PTW14℄. Reently, the present

author extended the global well-posedness result given in [IP12b℄ to the lass of retangular

tori [Str15℄. In this thesis, we provide a slightly modi�ed proof that requires only Strihartz

estimates in a smaller range instead of using Killip�Vi³an's result in [KV14, Theorem 1.1℄.

The Strihartz estimates we apply follow essentially from the exponential sum estimates that

are proved in Setion 1.3. Sine small data global well-posedness on S × S
2
ρ is studied here,

one might ask for large data global well-posedness on this domain. The di�ulties arising are

brie�y disussed in Setion 3.7.

Unlike on R
n
, global ontrol on ompat manifolds an not ome from dispersive deay. Hene,

one an only hope for a loal-in-time ontrol instead of a global-in-time ontrol. This loal-

in-time ontrol has to be uniform over all small time intervals and has to handle nonzero

ontributions on eah time interval. Presumably, solutions with large frequenies lead to

ompliated dynamis even in short time. Due to the non-dispersive nature of the geometry,

this e�et ould be ampli�ed and lead to even stronger nonlinear interations produing even

larger frequenies, f. [IP12b, page 1582℄. On R
n
, this e�et is ompensated by dispersion.

The approah developed by Ionesu�Pausader relies strongly on the orresponding global well-

posedness result on R
3
[CKS

+
08℄: It is proved that onentration in a ertain ritial norm an

only happen around a point in spae-time. This must our in a way whih an be ompared

to Eulidean solutions within a small time interval. However, these Eulidean-like solutions

are ontrolled by the Eulidean well-posedness theory.

3

Builds on their earlier artile [IP12a℄ and a joint work with Sta�lani [IPS12℄.





1 Basis

The �rst hapter of this thesis is devoted to introdue notation, funtion spaes, and to ollet

some basi propositions. Most parts of this hapter are a review of well-known material and

ited from various soures. Setion 1.3.2 and Setion 1.3.3 ontain some exponential sum

estimates that are known and have been used before but either without a detailed proof or

as a speial ase of more general statements, whih require sophistiated arguments to prove.

We aim to show that the exponential sum estimates used in this thesis may be obtained using

rather simple arguments.

1.1 Notation

Before we start with the atual ontent of this thesis, we �x some notation that is used

throughout this work.

The set of positive integers shall be denoted by N := {1, 2, 3, . . .}, and we de�ne the set of all

non-negative integers by N0 := N ∪ {0}.

We write A . B if there exists a harmless onstant C > 0 suh that A ≤ CB. Analogously,
we denote A & B if B . A. If A . B and A & B, then we write A ≈ B. If we want to

emphasize the dependene of the onstant, then we write A .s B for A ≤ C(s)B, where the
onstant C(s) depends on s. The terms A &s B and A ≈s B are de�ned aordingly. We

write A≪ B if for a large onstant C > 1 we have CA ≤ B. Correspondingly, A≫ B means

that B ≪ A.

For a multi-index α ∈ N
n
0 we denote as usual |α| := α1 + · · · + αn, x

α := xα1
1 · · · xαn

n , and

∂α := ∂α1
x1 . . . ∂

αn
xn .

The indiator funtion of a subset A of a set X shall be denoted by 1A : X → {0, 1}.

The Eulidean norm on R
n
is denoted by | · | and the standard inner produt is written as

x · y =
n∑

j=1

xjyj, x, y ∈ R
n.

Funtion that are k-times ontinuously di�erentiable are denoted by Ck, and C∞
denotes the

set of all funtions that are di�erentiable for all degrees of di�erentiation. The spae C∞
0 is

the subspae of all funtions C∞
with ompat support.

We use the onvention that sums over apital letters denote a dyadi summation. For instane,

we write for c ≥ 1,

∑

N≥c
aN :=

∑

j∈N0: 2j≥c
a2j and

∑

N≤c
aN :=

∑

j∈N0: 2j≤c
a2j .
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1.2 Funtion spaes and the Fourier transform

This setion is devoted to brie�y review funtion spaes and some of their basi properties that

play a ruial role in the present thesis. Moreover, the ruial Fourier transform is introdued.

We start with introduing the well-known Lp-spaes in Setion 1.2.1. Beyond de�ning those

spaes, we are going to ite some results whih will be used in the sequel. In Setion 1.2.2, the

Fourier transform of Shwartz funtions and tempered distributions are de�ned. This allows

us to de�ne Sobolev spaes of frational order. Lesser-known are the Up- and V p
-spaes that

have beome inreasingly popular in the theory of dispersive partial di�erential equations.

These spaes may be viewed as a powerful replaement for Bourgain's Fourier restrition

spaes Xs,b
. The Up- and V p

-spaes are introdued in Setion 1.2.3.

1.2.1 Lp
-spaes and Sobolev spaes

This subsetion essentially follows [Gra08, Chapter 1℄ and [LL97℄.

Let Ω be a measure spae with a positive measure µ. We begin by de�ning the spaes of all

µ-measurable funtions on Ω whose modulus to the pth power is µ-summable.

De�nition 1.1 (Lp-spaes). For 1 ≤ p ≤ ∞ we de�ne the spae Lp(Ω, µ) to be the following

lass of measurable funtions:

Lp(Ω, µ) :=
{
f : Ω → C : f is µ-measurable and ‖f‖Lp(Ω,µ) <∞

}
,

where

‖f‖Lp(Ω,µ) :=

(∫

Ω
|f(x)|p dµ(x)

) 1
p

, if 1 ≤ p <∞,

‖f‖L∞(Ω,µ) := ess sup
x∈Ω

|f(x)| = inf
{
λ ≥ 0 : µ

(
{x ∈ Ω : |f(x)| > λ}

)
= 0
}
.

Remark.

(i) To simplify notation, we write Lp(Ω) or Lp instead of Lp(Ω, µ) if onfusions are impos-

sible. If µ is the Lebesgue measure, then we simply denote dµ(x) by dx.

(ii) ‖ · ‖Lp(Ω,µ) does not distinguish all di�erent measurable funtions. For instane, from

‖f−g‖Lp(Ω,µ) = 0 we an only onlude that f(x) = g(x) µ-almost everywhere. For this

reason, we identify two funtions that di�er only on a µ-null set. To make that preise,

we onsider equivalene lasses [f ] of measurable funtions de�ned via the equivalene

relation f ∼ g if f = g µ-a.e. on Ω. If Lp(Ω, µ) is de�ned so that its elements are not

funtions but the equivalene lasses [f ], then ‖ · ‖Lp(Ω,µ) de�nes a norm.

(iii) The spae L2(Ω, µ) is a Hilbert spae with inner produt

〈f, g〉L2(Ω,µ) :=

∫

Ω
f(x)g(x) dµ(x).

(iv) In this thesis, we use Lp-spaes with mixed norms. We refer to [BP61℄ for more details.

♦
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There is another useful desription of the Lp-norm via the distribution funtion

df (λ) := µ
(
{x ∈ Ω : |f(x)| > λ}

)
.

This quantity provides information about the size of f but not about the behavior of f near a

given point. Translations of a funtion on R
n
, for instane, does not hange df . However, the

provided information is su�ient to write the Lp-norm in terms of the distribution funtion.

Lemma 1.2 ([Gra08, Proposition 1.1.4℄). For f ∈ Lp(Ω, µ) and 1 ≤ p <∞ we have

‖f‖pLp(Ω,µ) = p

∫ ∞

0
λp−1df (λ) dλ.

We reall some well-known statements about Lp-spaes. The �rst inequality is named after

the German mathematiian Otto Hölder (1859�1937). The formulation of the lemma is taken

from [LL97, Theorem 2.3℄.

Lemma 1.3 (Hölder's inequality). Let 1 ≤ p ≤ ∞ and p′ its onjugate Hölder exponent, i.e.

1 = 1
p +

1
p′ with the onvention that

1
∞ := 0. Moreover, let f ∈ Lp(Ω, µ) and g ∈ Lp

′
(Ω, µ).

Then the pointwise produt, given by (fg)(x) = f(x)g(x), is in L1(Ω, µ) and
∣∣∣∣
∫

Ω
fg dµ

∣∣∣∣ ≤ ‖f‖Lp(Ω,µ)‖g‖Lp′ (Ω,µ).

Remark. The speial ase p = p′ = 2 oinides with the Cauhy�Shwarz inequality

∣∣∣∣
∫

Ω
fg dµ

∣∣∣∣
2

≤
∫

Ω
|f |2 dµ

∫

Ω
|g|2 dµ.

♦

The next inequality got its name from Hermann Minkowski (1864�1909), a German mathe-

matiian and physiist. A speial ase of Minkowski's inequality is the triangle inequality for

the Lp(Ω, µ)-norm, in this ase ν is the ounting measure and q = 1. A proof for q = 1 may

be found in [LL97, Theorem 2.4℄. A simple modi�ation of this proof yields the result for

q > 1.

Lemma 1.4 (Minkowski's inequality). Suppose that Ω and Γ are any two spaes with σ-
�nite measures µ and ν, respetively. Let f : Ω × Γ → C be a µ× ν-measurable funtion and

1 ≤ q ≤ p ≤ ∞. Then,

(∫

Ω

(∫

Γ
|f(x, y)|q dν(y)

) p
q

dµ(x)

) 1
p

≤
(∫

Γ

(∫

Ω
|f(x, y)|p dµ(x)

) q
p

dµ(x)

) 1
q

with the obvious modi�ations for q < p = ∞ and q = p = ∞.

Now, we ome to the identi�ation of Lp(Ω, µ)∗, the dual of Lp(Ω, µ), for 1 ≤ p <∞, see e.g.

[LL97, Theorem 2.14℄.

Lemma 1.5 (The dual of Lp(Ω, µ)). When 1 ≤ p < ∞ the dual of Lp(Ω, µ) is Lp
′
(Ω, µ),

where p′ is onjugate Hölder exponent, in the sense that every L ∈ Lp(Ω, µ)∗ has the form

L(g) =

∫

Ω
v(x)g(x)dµ(x)

for some unique v ∈ Lp
′
(Ω, µ). In all ases, even p = ∞, L given as above is in Lp(Ω, µ)∗

and its norm

‖L‖ := sup{|L(f)| : ‖f‖Lp(Ω,µ) ≤ 1} = ‖v‖Lp′ (Ω,µ).



4 1 Basis

A speial kind of produt of two funtions on R
n
is the onvolution. To keep the de�nition as

general as possible, we do not require any restritions on those two funtions and aept that

the right-hand side in the following de�nition might be unde�ned.

De�nition 1.6 (Convolution). For f, g : Rn → C we de�ne the onvolution of f and g to be

the funtion f ∗ g : Rn → C given by

f ∗ g(x) :=
∫

Rn

f(x− y)g(y) dy.

Remark.

(i) By a hange of variables, one immediately sees ommutativity, i.e. f ∗ g = g ∗ f .

(ii) One has to make sure that the integral on the right-hand side is well-de�ned. Hölder's in-

equality, for instane, implies that this is the ase whenever f ∈ Lp(Rn) and g ∈ Lp
′
(Rn).

Young's inequality (see Lemma 1.7 below), named after the English mathematiian

William Henry Young (1863�1942), shows that if f ∈ Lp(Rn) and g ∈ Lq(Rn) with

1 ≤ 1
p +

1
q , then the integral is �nite almost everywhere and de�nes a funtion that is in

Lr(Rn) with 1 + 1
r = 1

p +
1
q . ♦

Lemma 1.7 (Young's inequality for onvolutions). Let 1 ≤ p, q, r ≤ ∞ with 1 + 1
r = 1

p +
1
q

as well as f ∈ Lp(Rn) and g ∈ Lq(Rn). Then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖Lr(Rn) ≤ Cp,q,r,n‖f‖Lp(Rn)‖g‖Lq(Rn).

Remark.

(i) Minkowski's inequality is a speial ase sine it implies for r ≥ 1,

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lr(Rn)‖g‖L1(Rn).

(ii) There is a more general version of Young's inequality whih may be found in [LL97,

Theorem 4.2℄.

(iii) Convolutions may be de�ned on loally ompat groups and Young's inequality also

holds in this setting, see [Gra08, Setion 1.2.2℄. In Lemma 1.34 below, we state it in the

ase where the loally ompat group is given by T
n
. ♦

Convolutions may be applied to show that smooth funtions with ompat support are dense

in Lp, see e.g. [AF03, Corollary 2.30℄ and [LL97, Lemma 2.19℄.

Lemma 1.8 (Density). Let Ω ⊂ R
n
be an open set and 1 ≤ p < ∞, then C∞

0 (Ω) is dense in

Lp(Ω).

The next result is known as Shur's lemma and provides su�ient onditions for linear oper-

ators to be bounded on Lp. We ite Shur's lemma from [Gra08, Appendix I.1℄.

Lemma 1.9 (Shur's lemma). Let (X,µ) and (Y, ν) be two σ-�nite measure spaes and

K : (X,µ)× (Y, ν) → C. Furthermore, let T be a linear operator given by

T (f)(x) =

∫

Y
K(x, y)f(y) dν(y),
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where f is bounded and ompatly supported. If K satis�es

sup
x∈X

∫

Y
|K(x, y)| dν(y) = A <∞,

sup
y∈Y

∫

X
|K(x, y)| dµ(x) = B <∞,

then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm A
1− 1

pB
1
p

for 1 ≤ p ≤ ∞.

Remark.

(i) The result is named after the German mathematiian Issai Shur (1875�1941). In 1911,

Shur [Sh11℄ proved a matrix version of the lemma for p = 2. More about the history

of Shur's lemma an be found in [Gra08, page 461℄.

(ii) For positive operators, i.e.K is a non-negative measurable funtion onX×Y , the version
of Shur's lemma in [Gra08, Appendix I.2℄ provides neessary and su�ient onditions

for the Lp boundedness. ♦

We end this subsetion with a useful interpolation statement between Lp-spaes, see e.g.

[Gra08, Theorem 1.3.4℄. Let Lp0(X,µ) + Lp1(X,µ) be the spae of all funtions f : Rn → C

suh that there exists f1 ∈ Lp0(X,µ) and f2 ∈ Lp1(X,µ) with f = f1 + f2. Note that

Lp(X,µ) ⊆ Lp0(X,µ) + Lp1(X,µ) for p0 ≤ p ≤ p1.

Proposition 1.10 (Riesz�Thorin interpolation). Let (X,µ) and (Y, ν) be two measure spaes.

Let T be a linear operator de�ned on Lp0(X,µ) + Lp1(X,µ) and taking values in the set of

ν-measurable funtions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and assume that

‖T (f)‖Lq0 (Y,ν) ≤M0‖f‖Lp0 (X,µ) for all f ∈ Lp0(X,µ),

‖T (f)‖Lq1 (Y,ν) ≤M1‖f‖Lp1 (X,µ) for all f ∈ Lp1(X,µ).

Then for all 0 < ϑ < 1 and f ∈ Lp(X,µ) we have

‖T (f)‖Lq(Y,ν) ≤M1−ϑ
0 Mϑ

1 ‖f‖Lp(X,µ),

where

1

q
=

1− ϑ

q0
+
ϑ

q1
and

1

p
=

1− ϑ

p0
+
ϑ

p1
.

1.2.2 The Shwartz lass and the Fourier transform

This subsetion is devoted to introdue one of the most important tools in harmoni analysis:

the Fourier transform. From the de�nition of the Fourier transform (see De�nition 1.12 below)

it is obvious that it may be de�ned for funtions f ∈ L1(Rn). However, we are going to de�ne
the Fourier transform on a smaller lass of funtions, the spae of Shwartz funtions that is

denoted by S(Rn). The reason is that the spae turns out to be a natural environment, for

instane, sine the Fourier transform de�nes a homeomorphism from S(Rn) onto itself and

the Fourier inversion formula holds in it. On the ontrary, if the Fourier transform would be

de�ned as an operator on L1(Rn), then the Fourier inversion formula requires the additional

assumption that the Fourier transform is in L1(Rn).

The whole subsetion is pretty lose to the nie introdution given in [Gra08, Setion 2.2℄.
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The Shwartz spae

Shwartz funtions are�roughly speaking�smooth funtions for whih the funtion and all

of its derivatives deay faster than the reiproal of any polynomial at in�nity. The spae is

named after the Frenh mathematiian and Fields medalist Laurent Shwartz (1915�2002).

De�nition 1.11 (Shwartz funtions).

(i) A omplex-valued funtion f ∈ C∞(Rn) is alled Shwartz funtion if for every pair of

multi-indies α and β there exists a positive onstant Cα,β suh that

ρα,β(f) := sup
x∈Rn

|xα∂βf(x)| ≤ Cα,β <∞.

The quantities ρα,β(f) are alled the Shwartz seminorms of f . The set of all Shwartz
funtions is denoted by S(Rn).

(ii) A sequene (fk)k∈N0 in S(Rn) is said to be onvergent to f ∈ S(Rn) if for all multi-indies
α and β it holds that

ρα,β(fk − f) = sup
x∈Rn

∣∣xα
(
∂β(fk − f)

)
(x)
∣∣→ 0

as k → ∞.

Remark.

(i) There is an alternative haraterization of Shwartz funtions whih is very useful. A

smooth funtion f : Rn → C is in S(Rn) if and only if for all positive integers N and all

multi-indies α there exists a positive onstant Cα,N suh that

|(∂αf)(x)| ≤ Cα,N (1 + |x|)−N

for all x ∈ R
n
, see [Gra08, Remark 2.2.4℄.

(ii) If ρj is an enumeration of the Shwartz seminorms ρα,β, then

d(f, g) :=
∞∑

j=1

2−j
ρj(f − g)

1 + ρj(f − g)

de�nes a metri on S(Rn). It is easy to hek that S(Rn) is omplete with respet to

d. Hene, S(Rn) is a Fréhet spae, i.e. it is a omplete metrizable loally onvex spae.

[Gra08, pages 96�97℄

(iii) Obviously, C∞
0 (Rn) is ontained in S(Rn) and onvergene in C∞

0 (Rn) implies onver-

gene in S(Rn). The funtion x 7→ e−|x|2
is a Shwartz funtion but not in C∞

0 (Rn).

(iv) Convergene in S(Rn) is stronger than onvergene in all Lp(Rn). [Gra08, Proposi-

tion 2.2.6℄ ♦
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The Fourier transform of Shwartz funtions

We de�ne the Fourier transform as an operator ating on S(Rn). The Fourier transform got

its name from the Frenh mathematiian and physiist (1768�1830).

De�nition 1.12 (Fourier transform on S(Rn)). Let f ∈ S(Rn).
(i) We de�ne the Fourier transform of f as

FRn(f)(ξ) :=
1

(2π)
n
2

∫

Rn

e−ix·ξf(x) dx, ξ ∈ R
n.

Sometimes we also write

pf := FRn(f).

(ii) The inverse Fourier transform of f is de�ned as

F−1
Rn (f)(x) := FRn(f)(−x) = 1

(2π)
n
2

∫

Rn

eix·ξf(x) dx, x ∈ R
n.

We sometimes also write

qf := F−1
Rn (f).

Remark. Note that the notation
p· and q· lashes with the notation in De�nition 1.26 below.

Whenever it is lear from the ontext, we use
p· and q· without mentioning whether it is meant

in the sense of De�nition 1.12 or De�nition 1.26. ♦

Now, we ollet some important properties of the Fourier transform that may be found in e.g.

[Gra08, Proposition 2.2.11℄. Let us �rst introdue some notation: For a measurable funtion

f on R
n
, x, y ∈ R

n
, and a > 0 we de�ne the translation and dilation of f by

τ
y(f)(x) := f(x− y) and δ

a(f)(x) := f(ax),

respetively.

Lemma 1.13 (Properties of FRn
). Given two funtions f, g ∈ S(Rn), y ∈ R

n
, λ ∈ C, α a

multi-index, and a > 0, we have the following:

(i) ‖f‖L∞(Rn) ≤ ‖f‖L1(Rn),

(ii)

zf + g = pf + pg,

(iii)

xλf = λ pf ,

(iv)

{τ y(f)(ξ) = e−iy·ξ pf(ξ),

(v) (eix·yf(x))p(ξ) = τ y( pf )(ξ),

(vi) (δa(f))p(ξ) = a−nδa
−1
( pf )(ξ),

(vii) (∂αf)p(ξ) = (iξ)α pf(ξ),

(viii) (∂α pf )(ξ) = ((−ix)αf(x))p(ξ),
(ix)

pf ∈ S(Rn),

(x)

zf ∗ g = pf pg,

(xi)

zf ◦A(ξ) = pf(Aξ), where A is an orthogonal matrix and ξ is a olumn vetor.

Remark. It is not hard to prove that analogue statements hold true for the inverse Fourier

transform. ♦
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The following lemma investigates the relation between the Fourier transform and the inverse

Fourier transform.

Proposition 1.14 ([Gra08, Theorem 2.2.14℄). Given f, g, h ∈ S(Rn) we have

(i)

∫

Rn

f(x)pg(x) dx =

∫

Rn

pf(x)g(x) dx,

(ii) Fourier inversion: ( pf )q= f = ( qf )p,

(iii) Parseval's relation:

∫

Rn

f(x)h(x) dx =

∫

Rn

pf(ξ)ph(ξ) dξ,

(iv) Planherel's identity: ‖f‖L2(Rn) = ‖ pf ‖L2(Rn) = ‖ qf ‖L2(Rn),

(v)

∫

Rn

f(x)g(x) dx =

∫

Rn

pf(x)qg(x) dx.

On the one hand, the Fourier transform may easily be extended to the spae L1(Rn)∩L2(Rn)
sine the integrability ensures that the integrals in De�nition 1.12 are onvergent and most

of the results in Lemma 1.13 hold true for those funtions.

1

On the other hand, for L2(Rn)
funtions the integrals in De�nition 1.12 do not onverge absolutely. However, sine L1(Rn)∩
L2(Rn) is dense in L2(Rn), there is a unique bounded extension of the Fourier transform

and the inverse Fourier transform on L2(Rn). This extension is also an isometry on L2(Rn).
The Fourier transform on S(Rn) and its extension share most of its properties, see [Gra08,

Setion 2.2.4℄, and hene, we do not distinguish them notationally.

From a simple interpolation of Planherel's identity and Lemma 1.13 (i), we an extend the

Fourier transform on Lp(Rn) for 1 < p < 2, see e.g. [Gra08, Proposition 2.2.16℄.

Lemma 1.15 (Hausdor��Young inequality). Let 1 ≤ p ≤ 2. For every funtion f ∈ Lp(Rn)
we have the estimate

‖ pf ‖Lp′ (Rn) ≤ ‖f‖Lp(Rn).

The Fourier transform of tempered distributions

It is also possible to give a meaning to the Fourier transform on the spae of tempered

distributions. The following de�nitions and results as well as more details may be found e.g.

in [Gra08, Setion 2.3℄.

De�nition 1.16 (Tempered distribution). The spae of tempered distributions is de�ned as

S ′(Rn) :=
{
u : S(Rn) → C : u is linear and ontinuous

}
.

Remark.

(i) It is ommon to denote the evaluation of u ∈ S′(Rn) at f ∈ S(Rn) as

〈u, f〉 = u(f).

(ii) Funtions g that do not inrease too quikly an be thought of as tempered distributions

via the identi�ation g 7→ Lg, where Lg is the funtional

Lg(f) :=

∫

Rn

g(x)f(x) dx, f ∈ S.
♦

1

To be preise, (i)�(vi) as well as (x) and (xi). [Gra08, Setion 2.2.4℄
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It is obvious that the following de�nitions are well-de�ned and oinide with the previous

de�nitions whenever they apply to u.

De�nition 1.17. Let u ∈ S ′(Rn) be tempered distribution and f ∈ S(Rn).
(i) Let α be a multi-index, then

〈∂αu, f〉 := (−1)|α|〈u, ∂αf〉.

(ii) The Fourier transform pu and the inverse Fourier transform qu are de�ned by

〈pu, f〉 := 〈u, pf 〉 resp. 〈qu, f〉 := 〈u, qf 〉.
Remark. Hölder's inequality shows that every Lp(Rn) funtion is a tempered distribution.

Hene, the Fourier transform de�ned in De�nition 1.17 is indeed de�ned on a larger set

ompared to the extension to L2(Rn) of Fourier transform de�ned in De�nition 1.12. Let

u ∈ L2(Rn). On the one hand, it follows that pu ∈ L2(Rn) and hene,

〈pu, f〉L2(Rn) =

∫

Rn

pu(x)f(x) dx =

∫

Rn

u(x) pf(x) dx

for all f ∈ S(Rn) by using Proposition 1.14 (i). On the other hand, if we onsider u as a

tempered distribution, then we have, by de�nition,

〈pu, f〉 = 〈u, pf 〉 =
∫

Rn

u(x) pf(x) dx

for all f ∈ S(Rn). Hene, the extension to L2(Rn) of De�nition 1.12 and De�nition 1.17

indeed oinide. ♦

We refer to [Gra08, Proposition 2.3.22℄ for a list of properties of the (inverse) Fourier transform

of a tempered distribution.

Sobolev spaes

Next, we use the Fourier transform on S ′(Rn) to de�ne Sobolev spaes and study some of

their properties. Compared to Lp(Rn), these spaes give more preise information about the

regularity of a funtion. We follow the nie introdution in [Caz03, Setion 1.4℄.

De�nition 1.18 (Sobolev spaes). Let s ∈ R and 1 ≤ p ≤ ∞ be given.

(i) We de�ne the inhomogeneous Sobolev spae

Hs,p(Rn) :=
{
u ∈ S ′(Rn) : F−1

Rn

(
(1 + |ξ|2) s

2 pu
)
∈ Lp(Rn)

}

equipped with the norm

‖u‖Hs,p :=
∥∥F−1

Rn

(
(1 + |ξ|2) s

2 pu
)∥∥
Lp(Rn)

.

(ii) The homogeneous Sobolev spae is de�ned as

Ḣs,p(Rn) :=
{
u ∈ S ′(Rn) : F−1

Rn

(
|ξ|spu

)
∈ Lp(Rn)

}

equipped with the norm

‖u‖Ḣs,p :=
∥∥F−1

Rn

(
|ξ|spu

)∥∥
Lp(Rn)

.

(iii) We denote Hs(Rn) := Hs,2(Rn) and Ḣs(Rn) := Ḣs,2(Rn) for brevity.
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Remark.

(i) The spae Hs(Rn) is a Hilbert spae and Hs,p(Rn) is a Banah spae. One trivially sees

that H0,p(Rn) = Lp(Rn).

(ii) Hs1,p(Rn) →֒ Hs2,p(Rn) if s1 ≥ s2.

(iii) If p <∞, then (Hs,p(Rn))∗ = H−s,p′(Rn) [BL76, Corollary 6.2.8℄.

(iv) For m ∈ N0 and 1 < p <∞ it follows that

Hm,p(Rn) =Wm,p(Rn) :=
{
u ∈ Lp(Rn) : ∂αu ∈ Lp(Rn) for α ∈ N

n
0 with |α| ≤ m

}
,

where ∂αu has to be understood in the sense of tempered distributions. The norm

‖u‖Wm,p(Rn) :=
∑

α∈Nn
0 :

0≤|α|≤m

‖∂αu‖Lp(Rn)

is equivalent to ‖ · ‖Hm,p(Rn). [BL76, Theorem 6.2.3℄ ♦

Proposition 1.19 (Sobolev embedding theorem). Let s ∈ R.

(i) If 1 < p ≤ q <∞, r ∈ R with s− n
p = r − n

q , then

Hs,p(Rn) →֒ Hr,q(Rn).

(ii) If 1 ≤ p <∞ and 0 < s < n
p , then

Hs,p(Rn) →֒ L
pn

n−sp (Rn).

(iii) If 1 ≤ p <∞, k ∈ N0 and [s] > k+ n
p , then every element of Hs,p(Rn) an be modi�ed on

a set of measure zero so that the resulting funtion is bounded and is k-times ontinuously

di�erentiable.

The �rst statement may be found in e.g. [BL76, Theorem 6.5.1℄ and the seond embedding is

an immediate onsequene of the �rst statement. The third embedding is a simple onsequene

of

Hs,p(Rn) →֒ H [s],p(Rn) =W [s],p(Rn)

and the Sobolev embedding theorem for the latter spaes, f. [LL97, Theorem 8.8℄.

1.2.3 The spaes Up
and V p

This subsetion introdues the spaes Up and V p
. We losely follow some parts of [KTV14,

Chapter I.4℄ and refer the reader to [HHK09, HTT11, Her13, HTT14℄ for more details.

In 1924, Norbert Wiener [Wie24℄ studied funtions of bounded p-variation. These spaes were
used in several ontexts suh as Riemann�Stieltjes integrals [You36℄ and rough paths [Lyo94,

Lyo98℄. In 2005, Koh�Tataru [KT05℄ were the �rst who realized that the spaes of bounded

p-variation and its �dual� Up-spaes may be used to sharpen Bourgain's tehnique of Xs,b
-

spaes that have often been applied to ahieve well-posedness results for dispersive equations.

Indeed, for the well-posedness result for the Kadomtsev�Petviashvili II equation obtained by

Hada�Herr�Koh [HHK09℄ the Xs,b
-spaes seem to be insu�ient. The theory of the Up-

and V p
-spaes inluding some basi properties were worked out in [HHK09℄ for the �rst time.
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Ever sine, these spaes have repeatedly been applied to dispersive equations. Herr�Tataru�

Tzvetkov were the �rst who suessfully applied these spaes to gain energy-ritial small

data global well-posedness of the NLS on the three-dimensional �at torus. Later, Ionesu�

Pausader used this spaes to extend this global well-posedness for initial data with arbitrary

large H1
-norm. Reently, the �rst book reviewing these spaes was published [KTV14℄.

These spaes shall only be brie�y introdued in this thesis. Aside from the de�nitions and

some basi properties, we ite an important interpolation and a duality result.

For the remainder of this subsetion, (X, ‖ · ‖X) shall denote a Banah spae with the norm

‖ · ‖X .
In the following hapters, we rely on Proposition 1.23 (v), Lemma 1.24, and Lemma 1.25

below. These results do not hold for funtions in the spae V p
as it is de�ned in [KTV14℄ but

for the subspae of right-ontinuous funtions in V p
that is alled V p

rc in [KTV14℄. For this

reason, we only de�ne V p
rc as in [KTV14, pages 44�45℄ but all it V p

for brevity.

De�nition 1.20 (V p
-spae). Let 1 ≤ p < ∞. The spae V p = V p(X) is the spae of

right-ontinuous funtions v : R → X suh that

‖v‖pV p := sup
−∞<t0<...<tK≤+∞

K∑

k=1

‖v(tk)− v(tk−1)‖pX < +∞

with the onvention v(+∞) := 0, and in addition, we require limt→−∞ v(t) = 0.

We ollet some properties of this spaes that may be found in [KTV14, page 45℄.

Proposition 1.21 (Properties of V p
).

(i) The spae V p
is a Banah spae.

(ii) We have ‖ · ‖sup ≤ ‖ · ‖V p
for all 1 ≤ p <∞.

(iii) If 1 ≤ p ≤ q <∞, then V p →֒ V q
and for all v ∈ V p

,

‖v‖V q ≤ ‖v‖V p .

The following de�nition of Up is given in [KTV14, De�nition I.4.10℄.

De�nition 1.22 (Up-spae). Let 1 ≤ p < ∞. A right-ontinuous step funtion a : R → X is

alled a Up-atom if

a(t) =
K∑

k=1

1[tk−1,tk)(t)φk,
K∑

k=1

‖φk‖pX = 1

for a partition −∞ < t0 < . . . < tK ≤ ∞. Let (aj)j∈N be a sequene of atoms and let (λj)j∈N
be a summable sequene. Then

u :=

∞∑

j=1

λjaj

is a Up-funtion. We de�ne the spae Up = Up(X) as the set of funtions having suh a

representation and endow it with the norm

‖u‖Up := inf

{ ∞∑

j=1

|λj | : u =
∞∑

j=1

λjaj

}
.
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We state some properties of Up-spaes given in [KTV14, pages 46�49℄.

Proposition 1.23 (Properties of Up).

(i) If a is a Up-atom, then ‖a‖Up ≤ 1. The norm of an Up-atom may be less than 1.
Determining the norm of an atom is a di�ult task.

(ii) Funtions in Up are ontinuous from the right and the limit as t→ −∞ vanishes.

(iii) The expression ‖ · ‖Up
de�nes a norm on Up, and Up is losed with respet to this norm.

Moreover, ‖ · ‖sup ≤ ‖ · ‖Up
.

(iv) If 1 ≤ p ≤ q <∞, then Up →֒ U q and for all u ∈ Up,

‖u‖Uq ≤ ‖u‖Up .

(v) If 1 ≤ p <∞, then Up →֒ V p →֒ L∞(R,X) and for all u ∈ Up,

‖u‖V p . ‖u‖Up .

(vi) If 1 < p < q <∞, then V p →֒ U q.

Later, we apply the following interpolation type property of the Up- and V p
-spaes. The

statement may be found in [HTT11, Lemma 2.4℄ and [HHK09, Proposition 2.20℄. It is worth

mentioning that there is a more general interpolation statement in [KTV14, Lemma I.4.12℄.

Lemma 1.24 (Interpolation). Let q1, q2, q3 > 2, (X, ‖ · ‖X) be a Banah spae, and let

T : U q1 × U q2 × U q3 → X

be a bounded, trilinear operator with ‖T (u1, u2, u3)‖X ≤ C1
∏3
j=1 ‖uj‖Uqj . In addition, assume

that there exists C2 ∈ (0, C1] suh that the estimate ‖T (u1, u2, u3)‖X ≤ C2
∏3
j=1 ‖uj‖U2 holds

true. Then, T satis�es the estimate

‖T (u1, u2, u3)‖X . C2

(
ln
C1

C2
+ 1
)3 3∏

j=1

‖uj‖V 2

for u1, u2, u3 ∈ V 2
.

The following duality statement plays a ruial role in our analysis, too. The statement is

taken from [KTV14, Corollary I.4.24℄.

Lemma 1.25 (Duality). Let 1 < p <∞ and H be a Hilbert spae with omplex inner produt

〈 · , · 〉 and dual spae H∗
. Assume u ∈ Up(H) with ∂tu ∈ L1

loc(R,H) and v ∈ V p(H), then the

following duality statements hold true:

‖u‖Up(H) = sup

{∫

R

〈∂tu(t), v(t)〉 dt : v ∈ C∞
0 (R,H∗), ‖v‖V p′(H∗) = 1

}
,

‖v‖V p(H) = sup

{∫

R

〈∂tu(t), v(t)〉 dt : u ∈ C∞
0 (R,H∗), ‖u‖Up′ (H∗) = 1

}
,

where 1 = 1
p +

1
p′ .
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1.3 Fourier series and exponential sums

Some basi fats about the Fourier analysis on the torus T
n := R

n/(2πZ)n shall be disussed

in this setion. Related exponential sums play an important role in the study of the nonlinear

Shrödinger equation on boundaryless ompat manifolds. Estimates for exponential sums

are addressed in this setion, too. A variant of the Hausdor��Young inequality for non-

periodi funtions is studied in Setion 1.3.2. Lp-estimates of exponential sums are disussed

in Setion 1.3.3. Most of the results in the latter two subsetions have been applied before

but either without giving a thorough proof or as a speial ase of a more general statement.

By giving detailed proofs for all exponential sum estimates we rely on, we would like to

demonstrate that verifying these estimates do not require sophistiated arguments.

1.3.1 Fourier series

In this subsetion, we adapt parts of the introdution in [Gra08, Setion 3.1℄ to T
n =

R
n/(2πZ)n instead of T

n = R
n/Zn.

Funtions on T
n
an be onsidered as funtions on R

n
with the property that f(2πξ+x) = f(x)

for all ξ ∈ Z
n
and x ∈ R

n
. Those funtions are alled 2π-periodi in every oordinate.

The measure on T
n
is given by the restrition of the n-dimensional Lebesgue measure to

T
n = [0, 2π]n. It is a simple onsequene of Hölder's inequality that the Lp(Tn)-spaes are

nested and L1(Tn) ontains all Lp(Tn)-spaes for p ≥ 1.

De�nition 1.26.

(i) For a omplex-valued funtion f ∈ L1(Tn) and ξ ∈ Z
n
we de�ne the ξth Fourier

oe�ient of f by

F(f)(ξ) :=
1

(2π)
n
2

∫

Tn

f(x)e−ix·ξ dx.

Sometimes we also write

pf := F(f).

(ii) The Fourier series of f at x ∈ T
n
is given by

1

(2π)
n
2

∑

ξ∈Zn

pf(ξ)eix·ξ.

So far it is not lear in whih sense and for whih x ∈ T
n
the Fourier series onverges. However,

the following lemma holds, see e.g. [Gra08, Proposition 3.1.14℄.

Lemma 1.27 (Fourier inversion). If f ∈ L1(Tn) with
∑

ξ∈Zn | pf(ξ)| <∞, then

f(x) =
1

(2π)
n
2

∑

ξ∈Z

pf(ξ)eix·ξ

almost everywhere. As a onsequene f equals almost everywhere a ontinuous funtion.

Remark. In light of the previous lemma, for a funtion f : Zn → C with

∑
ξ∈Zn |f(ξ)| < ∞

and x ∈ T
n
we write,

F−1(f)(x) :=
1

(2π)
n
2

∑

ξ∈Z
f(ξ)eix·ξ

and sometimes also

qf = F−1(f). ♦
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We ollet some properties:

Lemma 1.28 (Properties of F). Given two funtions f, g ∈ L1(Tn), y ∈ T
n
, λ ∈ C, ξ, η ∈ Z

n
,

and α a multi-index, we have

(i) supξ∈Zn | pf(ξ)| ≤ ‖f‖L1(Tn),

(ii)

zf + g = pf + pg,

(iii)

xλf = λ pf ,

(iv)

{τ y(f)(ξ) = e−iy·ξ pf(ξ),

(v) (eix·ηf(x))p(ξ) = pf(ξ − η),

(vi)

pf(0) =
∫
Tn f(x) dx,

(vii)

zf ∗ g = pf pg,

(viii)

y∂αf(ξ) = (iξ)α pf(ξ).

A useful result that onnets the Fourier analysis on the torus with the Fourier analysis on R
n

is the Poisson summation formula, named after Frenh mathematiian and physiist Siméon

Denis Poisson (1781�1840).

Proposition 1.29 (Poisson summation formula). Suppose that f, pf ∈ L1(Rn) satisfy

|f(x)|+ | pf(x)| ≤ C(1 + |x|)−n−δ

for some C, δ > 0. Then f and

pf are both ontinuous, and for all x ∈ R
n
we have

∑

ξ∈Zn

pf(ξ)eix·ξ =
∑

ξ∈Zn

f(x+ ξ).

As a onsequene of Hilbert spae theory, we may de�ne the Fourier transform even for

funtions f ∈ L2(Tn).

Lemma 1.30 ([Gra08, Proposition 3.1.15℄). Let H be a separable Hilbert spae with omplex

inner produt 〈 · , · 〉 and let {ϕk}k∈Z be an orthonormal system in H. Then the following are

equivalent:

(i) {ϕk}k∈Z is a omplete orthonormal system.

(ii) For every f ∈ H we have

‖f‖2H =
∑

k∈Z
|〈f, ϕk〉|2.

(iii) For every f ∈ H we have

f = lim
N→∞

∑

|k|≤N
〈f, ϕk〉ϕk,

where the series onverges in H, i.e.

lim
N→∞

∥∥∥∥f −
∑

|k|≤N
〈f, ϕk〉ϕk

∥∥∥∥
H

= 0.
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Consider the Hilbert spae L2(Tn) with omplex inner produt

〈f, g〉 :=
∫

Tn

f(x)g(x) dx.

We hoose ϕξ to be the sequene of funtions x 7→ eix·ξ indexed by ξ ∈ Z
n
. It is easy to see

that {ϕξ}ξ∈Zn
are indeed orthonormal:

∫

[0,2π]n
eix·ξe−ix·η dx =

{
1 when ξ = η,

0 when ξ 6= η.

In order to show the ompleteness of the orthonormal system {ϕξ}ξ∈Zn
, we ite the next result

that answers the question whether the Fourier oe�ients uniquely determine the funtion.

Lemma 1.31 ([Gra08, Proposition 3.1.13℄). If f, g ∈ L1(Tn) satisfy

pf(ξ) = pg(ξ) for all

ξ ∈ Z
n
, then f = g almost everywhere.

The ompleteness is now obvious sine 〈f, ϕξ〉 = pf(ξ) for all f ∈ L2(Tn). The previous lemma

now implies that if 〈f, ϕξ〉 = 0 for all ξ ∈ Z
n
, then f = 0 almost everywhere.

The next result is a onsequene of Lemma 1.30.

Proposition 1.32 ([Gra08, Proposition 3.1.16℄). The following are valid for f, g ∈ L2(Tn):

(i) Planherel's identity: ‖f‖2L2(Tn) = (2π)n
∑

ξ∈Zn

| pf(ξ)|2.

(ii) The funtion f(x) is almost everywhere equal to the L2(Tn) limit of the sequene

lim
N→∞

∑

ξ∈Z: |ξ|≤N

pf(ξ)eix·ξ

(iii) Parseval's relation:

∫

Tn

f(x)g(x) dx =
∑

ξ∈Zn

pf(ξ)pg(ξ).

(iv) The map f 7→ { pf(ξ)}ξ∈Zn
is an isometry from L2(Tn) to ℓ2(Zn).

We already mentioned in Setion 1.2.1 that the onvolution may be de�ned on T
n
and that

there is a version of Young's inequality on that domain. We refer to [Gra08, Setion 1.2℄,

where the onvolution is de�ned more generally on a loally ompat group and furthermore,

some onvolution inequalities suh as Young's inequality are proved.

De�nition 1.33 (Convolution on T
n
). Let f, g ∈ L1(Tn). De�ne the onvolution f ∗ g by

(f ∗ g)(x) :=
∫

Tn

f(x− y)g(y) dy.

Young's inequality stays exatly the same as in Lemma 1.7:

Lemma 1.34 (Young's inequality). Let 1 ≤ p, q, r ≤ ∞ with 1 + 1
r = 1

p + 1
q as well as

f ∈ Lp(Tn) and g ∈ Lq(Tn). Then f ∗ g ∈ Lr(Tn) and

‖f ∗ g‖Lr(Tn) ≤ Cp,q,r,n‖f‖Lp(Tn)‖g‖Lq(Tn).
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1.3.2 Hausdor��Young inequalities

The lassial Hausdor��Young inequality for periodi funtions provides for 2 ≤ p ≤ ∞ a

bound for the ℓp-norm of the Fourier oe�ients by the Lp
′
-norm of the funtion, where p′

denotes�as usual�the onjugate Hölder exponent 1 = 1
p+

1
p′ . For the same range of p, the Lp-

norm of a periodi funtion may also be estimated by the ℓp
′
-norm of the Fourier oe�ients,

whih may be seen as a �dual� estimate of the �rst one. In 1913, William Henry Young [You13℄

proved this estimate for even p. Ten years later, Felix Hausdor� [Hau23℄ proved the result

in general. We ite the Hausdor��Young inequality from [Kat68, Theorems IV.2.1 & IV.2.2℄,

where it is given in one dimension. To emphasize the analogy to the proof of Proposition 1.36,

we also provide a sketh of the proof of the lassial Hausdor��Young inequality.

Proposition 1.35 (Hausdor��Young inequality). Let 2 ≤ p ≤ ∞ and p′ denote the onjugate
Hölder exponent.

(i) If f ∈ Lp([0, 2π]n), then

‖ pf(ξ)‖ℓpξ (Zn) ≤ (2π)
n
p
−n

2 ‖f‖Lp′ ([0,2π]n).

(ii) If a ∈ ℓp
′
(Zn), then there exists a funtion f ∈ Lp([0, 2π]n) suh that aξ = pf(ξ) for all

ξ ∈ Z
n
and moreover,

‖f‖Lp([0,2π]n) ≤ (2π)
n
p
−n

2 ‖ pf(ξ)‖
ℓp

′

ξ (Zn)
.

Sketh of the proof. The proof is taken from [Kat68, Theorems IV.2.1 & IV.2.2℄.

Note that for p = 2 the �rst inequality mathes Planherel's identity. Interpolating this with

the trivial estimate for p = ∞,

sup
ξ∈Zn

| pf(ξ)| =
∣∣∣∣

1

(2π)
n
2

∫

[0,2π]n
e−ix·ξf(x) dx

∣∣∣∣ ≤
1

(2π)
n
2

‖f‖L1([0,2π]n),

yields (i).

The idea of the proof of seond estimate is similar. If a ∈ ℓ1(Zn), then f(x) :=
∑

ξ∈Zn aξe
ix·ξ

is ontinuous on [0, 2π]n and

pf(ξ) = (2π)n/2aξ for every ξ ∈ Z
n
. Furthermore,

‖f‖L∞([0,2π]n) = sup
x∈[0,2π]n

∣∣∣∣
∑

ξ∈Zn

aξe
ix·ξ
∣∣∣∣ ≤

∑

ξ∈Zn

|aξ| =
1

(2π)
n
2

∑

ξ∈Zn

| pf(ξ)|,

and the result follows from interpolation with Planherel's identity.

In Chapter 2, we have to deal with funtions of the form t 7→ ∑
λ∈Λ aλe

iλt
, where Λ is a

ountable set of real numbers. Depending on Λ, this funtion might not be periodi. For

this reason, we need a replaement for the lassial Hausdor��Young inequality. The �rst

inequality of the following lemma has been applied before, e.g. in [Bou07, formula (1.1.9)℄,

but yet without a rigorous proof. The seond statement appeared in [BGT05b, Lemma 5.2℄

for p = 2. In this ase, it an be seen as non-periodi variant of Planherel's identity. Similarly

as for the lassial Hausdor��Young inequality, we gain the full range of p by interpolating

with the trivial ase p = ∞.
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Proposition 1.36 (Non-periodi Hausdor��Young inequality). Assume that 2 ≤ p ≤ ∞ and

Λ is a ountable set of real numbers. Furthermore, let p′ denote the onjugate Hölder exponent.

(i) Then there exists C > 0 suh that for every non-negative sequene (aλ)λ∈Λ,
∥∥∥∥

∑

λ∈Λ: |λ−k|≤ 1
2

aλ

∥∥∥∥
ℓpk

≤ C

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp′ ([0,2π])

holds true.

(ii) For every ompat interval I ⊂ R there exists CI > 0 suh that for every sequene

(aλ)λ∈Λ the �dual� estimate of (i) holds:

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp(I)

≤ CI

∥∥∥∥
∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|
∥∥∥∥
ℓp

′

k

.

Proof. In this proof,
p· shall denote the Fourier transform on R.

First, we prove (i). Let η : R → R be a ontinuous funtion supported on [−π, π] with pη(τ) ≥ 0
for all τ ∈ R and pη(τ) ≥ 1 for all τ ∈

[
−1

2 ,
1
2

]
. For instane, if c > 0 large enough, then

η(t) = c χ[− 1
2
, 1
2 ]
∗ χ[− 1

2
, 1
2 ]
(t)

ful�lls this assumptions sine the Fourier transform is given by pη(τ) = c̃(sin(τ/2)/τ)2. De�ne
ψ : R → R by

ψ(t) :=
∑

λ∈Λ
aλe

iλtη(t).

Then, ∥∥∥∥
∑

λ∈Λ: |λ−k|≤ 1
2

aλ

∥∥∥∥
ℓpk

≤
∥∥∥∥

∑

λ∈Λ: |λ−k|≤ 1
2

aλ pη(k − λ)

∥∥∥∥
ℓpk

=
∥∥ pψ(k)

∥∥
ℓpk

and thus, it su�es to prove

∥∥ pψ(k)
∥∥
ℓpk

.

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp′ ([0,2π])

. (1.1)

Due to the assumption on the support of η, pψ(k) oinides with the kth Fourier oe�ient of

the periodi ontinuation of ψ
∣∣
[−π,π]. Hene, (1.1) follows from the (lassial) Hausdor��Young

inequality for periodi funtions.

We now turn to the proof of the �dual� estimate (ii). The estimate for p = ∞ is immediate sine

the sets {λ ∈ Λ : |λ − k| ≤ 1
2} are essentially disjoint for di�erent k ∈ Z. By interpolation,

we are left to prove the estimate in the ase p = 2 for whih we losely follow the argument

of Burq�Gérard�Tzvetkov [BGT05b, Lemma 5.2℄.

We hoose a funtion η ∈ C∞
0 (R) with the property η(t) = 1 for t ∈ I. If we de�ne f : R → C

as

f(t) :=
∑

λ∈Λ
η(t)aλe

iλt,

then

pf(τ) =
∑

λ∈Λ
pη(τ − λ)aλ,
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whih redues the laim to

‖ pf ‖L2(R) ≤ CI

(∑

k∈Z

( ∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|
)2)1

2

.

For τ ∈ R we estimate,

| pf(τ)| ≤
∑

k∈Z

∑

λ∈Λ: |λ−k|≤ 1
2

|pη(τ − λ)||aλ| ≤
∑

k∈Z
K(τ, k)h(k),

where K : R×R → R and h : R → R are de�ned as

K(τ, k) := sup
λ∈Λ: |λ−k|≤ 1

2

|pη(τ − λ)| and h(k) :=
∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|,

respetively. A simple argument shows that the inequality |λ− k| ≤ 1
2 implies

1

1 + |τ − λ| ≤
C

1 + |τ − k| .

Sine η ∈ C∞
0 (R), we see that for every N ∈ N there exists CI,N suh that

|K(τ, k)| ≤ CI,N
(1 + |τ − k|)N .

Now, we may apply Shur's lemma to onlude the asserted estimate.

Next, we apply the previous Hausdor��Young inequality to address lattie point ounting. The

result is not new and was used by several authors before, e.g. [Bou07, CW10, GOW14, Str14℄,

and a rigorous proof may be found in [Str14, Lemma 3.1℄. Nonetheless, we give a new proof

to highlight the lose relation to Proposition 1.36.

Corollary 1.37. Let 2 ≤ p ≤ ∞, r ≥ 1
2 , and Λ be a ountable set. There exists Cr > 0 suh

that for all ϕ : Λ → R and for Sk de�ned as

Sk :=
{
λ ∈ Λ : |ϕ(λ)− k| ≤ r

}
, k ∈ Z,

the following estimate holds true:

∥∥|Sk|
∥∥
ℓpk

≤ Cr

∥∥∥∥
∑

λ∈Λ
eiϕ(λ)t

∥∥∥∥
Lp′

t ([0,2π])

.

Here, p′ denotes the onjugate Hölder exponent.

Proof. First, we redue it to

∥∥|Sk|
∥∥
ℓpk

≤
∥∥∥∥
r−1∑

ℓ=−r

∑

λ∈Λ:
ℓ≤ϕ(λ)−k≤ℓ+1

1

∥∥∥∥
ℓpk

≤
r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ:
|ϕ(λ)−ℓ− 1

2
−k|≤ 1

2

1

∥∥∥∥
ℓpk

.

Then, an appliation of Proposition 1.36 yields the desired estimate:

r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ:
|ϕ(λ)−ℓ− 1

2
−k|≤ 1

2

1

∥∥∥∥
ℓpk

.

r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ
ei(ϕ(λ)−ℓ−

1
2
)t

∥∥∥∥
Lp′ ([0,2π])

.r

∥∥∥∥
∑

λ∈Λ
eiϕ(λ)t

∥∥∥∥
Lp′([0,2π])
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1.3.3 L
p
-estimates of exponential sums

Lp-estimates of exponential sums turned out to be substantial for studying the nonlinear

Shrödinger equation on ompat manifolds. Suh estimates have been addressed in reent

years, f. [Bou89, Setion 4℄, [Bou93a, Proposition 3.114℄, [Bou07, formula (1.1.10)℄, and

[BGT07, Lemma 5.5.3℄. In all of these works, the Lp-norm of sums like

∑

n∈J∩Z
ane

in2t

have been onsidered, where J = [−N,N ]. This, however, is not su�ient for our analysis. In

fat, we have to show that the Lpt -bound does only depend on the size of J rather than on the

atual position. Herr [Her13, Lemma 3.1℄ observed that this is the ase for the exponential

sum above by modifying the arguments in [Bou89, Setion 4℄ slightly. Corollary 1.39 an be

viewed as a speial ase of [Her13, Lemma 3.1℄ with an = 1 or as an extension of [Bou07,

formula (1.1.10)℄ to intervals J whih are not entered around zero. In this thesis, we want to

take the opportunity to give a rigorous proof of the exponential sum estimates we shall rely on.

In fat, due to tehnial reasons, we prove a slightly more general statement in Lemma 1.38

and onlude the required estimate in Corollary 1.39.

Lemma 1.38. Let I ⊆ R be a ompat interval and 4 < p ≤ ∞. There exists a onstant

C > 0 suh that for any N ≥ 1, b ∈ Z, and any multiplier (σn)n satisfying

(i) for all n ∈ Z: 0 ≤ σn ≤ 1; for all n ∈ [−N,N ]: σn = 1; for all n /∈ [−2N, 2N ]: σn = 0,

(ii) the sequene (σn+1 − σn)n is bounded by

2
N and has bounded variation by

2
N ,

the estimate ∥∥∥∥
∑

n∈Z
σne

i(n+b)2t

∥∥∥∥
Lp
t (I)

≤ CN1− 2
p ,

holds true. The onstant C depends only on p and |I|.

As a onsequene, we get the same statement without the oe�ient sequene that smoothens

out the ut-o�.

Corollary 1.39. Let I ⊆ R be a ompat interval and 4 < p ≤ ∞. Then, there exists a

onstant C > 0 suh that for any M ≥ 1 and J = [b, b +M ] ∩ Z with b ∈ Z, we have the

estimate ∥∥∥∥
∑

n∈J
ein

2t

∥∥∥∥
Lp
t (I)

≤ CM
1− 2

p ,

where the onstant C does only depend on p and |I|.

Proof. First, we note that the inequality is trivial if p = ∞. Hene, we may assume p < ∞
from now on.

By possibly inreasing M by one, we may assume M to be even. Set N := M
2 and b′ := b+N .

Let σn be a sequene as given in Lemma 1.38 (with respet to N). De�ne

pψ : Z → R as

pψ((n+b′)2) := σn for all n ∈ Z and

pψ equals 0 otherwise. Note that ψ ∈ L1([0, 2π]). We write

∥∥∥∥
∑

n∈J
ein

2t

∥∥∥∥
Lp([0,2π])

=

∥∥∥∥
∑

m∈Z
1[b2,(b+M)2](m) pψ(m)eimt

∥∥∥∥
Lp([0,2π])

=
∥∥F−1

(
1[b2,(b+M)2]

pψ
)∥∥

Lp([0,2π])
.



20 1 Basis

Sine 1[b2,(b+M)2] is a multiplier on Lp(R) for 1 < p < ∞ with norm independent of the

size of the interval [Duo01, Proposition 3.6℄, the transferene of multipliers to T
n
[Gra08,

Theorem 3.6.7℄ and Lemma 1.38 yield

∥∥F−1
(
1[b2,(b+M)2]

pψ
)∥∥
Lp([0,2π])

.

∥∥∥∥
∑

n∈Z
σne

i(n+b′)2t

∥∥∥∥
Lp([0,2π])

. N1− 2
p .M1− 2

p .

The remainder of this subsetion is devoted to prove Lemma 1.38.

The proof whih is presented here is a variant of the Hardy�Littlewood irle method in whih

one splits the integration over one period in two parts whih are, due to historial reasons,

alled major and minor ars. The main ontribution to the Lp-norm omes from the major

ars, whih ontain those t that are lose to a redued fration

a
q with 1 ≤ a ≤ q ≤ N1/100

.

This is easy to see if one hooses a = q = 1. Then, t is lose to 1 and the modulus of the sum is

approximately N . Lemma 1.41 below provides a more preise estimate with some additional

deay in t. Lemma 1.43 below shows that we an bound the modulus of the sum by CN1−1/200

whenever t is in a minor ar. We would like to refer the reader to [Vau97, Chapter 2℄ for more

details and a nie introdution to this method. In fat, for J = [1, N ]∩Z the estimate follows

essentially from the Hardy�Littlewood irle method in the way it is presented there.

In order to prove the lemma above, we start with some basi de�nitions and notation. Given

a, q ∈ Z with either a 6= 0 or q 6= 0, we denote by gcd(a, q) the greatest ommon divisor of

a and q. We set ν := 1
100 throughout this subsetion. Furthermore, ‖x‖Z := minn∈Z |x − n|

denotes the distane of x to the losest integer. The following de�nition of major and minor

ars is standard, see [Vau97, Setion 2.1℄.

De�nition 1.40 (Major & minor ars). Let N > 1 be the N given in Lemma 1.38. We de�ne

the major ars M to be the disjoint union of

M(q, a) :=
{
t ∈ [0, 1] :

∣∣∣t− a

q

∣∣∣ ≤ Nν−2
}

for all 0 ≤ a ≤ q ≤ Nν
with gcd(a, q) = 1. The minor ars shall be de�ned as m := [0, 1] \M.

Remark. The union of the M(q, a) is indeed disjoint. If

a
q 6= a′

q′ and q, q
′ ≤ Nν

, one estimates

∣∣∣t− a

q

∣∣∣+
∣∣∣t− a′

q′

∣∣∣ ≥
∣∣∣a
q
− a′

q′

∣∣∣ ≥ 1

qq′
≥ N−2ν > 2Nν−2

for N > 1. Hene, either t /∈ M(q, a) or t /∈ M(q′, a′). ♦

The following Weyl type lemma is due to Bourgain [Bou93a, Lemma 3.18℄. The ases a = 0,
a = q = 1, and q = N were not inluded in the original statement. We repeat the proof and

add a ouple of details to point out that Bourgain's proof overs these ases as well. The main

improvement over the lassial Weyl inequality

∣∣∣∣
N∑

n=1

e2πi(nx+n
2t)

∣∣∣∣ .
N√
q
+
√
N ln q +

√
q ln q,

see e.g. [Mon94, Chapter 3, Theorem 1℄, is the additional deay in t. Bourgain observed that

this allows to treat both major and minor ars with this Weyl type lemma. Originally, the

major ars were treated by approximating the exponential sum by a produt of two funtions,

either of whih may be estimated, f. [Vau97, Setion 2.4℄. The oe�ient sequene avoids

logarithmi fators on N and plays only a tehnial role, see the remark after the proof.
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Lemma 1.41 (Weyl inequality). Let N ≥ 1 and (σn)n be a multiplier satisfying (i) and (ii)

in Lemma 1.38. If 0 ≤ a ≤ q ≤ N with gcd(a, q) = 1 and ‖t− a
q‖Z < 1

qN , then

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣ ≤ C
N

√
q
(
1 +N‖t− a

q‖
1/2
Z

) .

Proof. We follow mainly Bourgain's argument in [Bou93a, Lemma 3.18℄ but provide more

details. To do so, we also adapt some ideas that have been used in [PTW14, Lemma A.1℄ for

proving a related result.

The proof is trivial for N = 1, hene, we may assume N ≥ 2 in the sequel. Note also that the

ase a = 0 an be redued to a = q = 1 sine the exponential sum is 1-periodi with respet

to t and ‖t‖Z = ‖t− 1‖Z. Therefore, we assume a ≥ 1 for the remainder of the proof.

We onsider the square modulus

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

=
∑

n1,n2∈Z
σn1σn2e

2πi[(n1−n2)x+(n1−n2)(n1+n2)]t.

By setting k := n1 − n2 and ℓ := n1 + n2, we learly have

∣∣∣∣
∑

n∈Z
σne

i(nx+n2t)

∣∣∣∣
2

≤
∑

ℓ∈Z:
|ℓ|≤4N

∣∣∣∣
∑

k∈Z:
k≡ℓ (mod 2)

σ k+ℓ
2
σ ℓ−k

2
e2πik(x+ℓt)

∣∣∣∣.

Let ℓ ∈ Z be �xed now. If ℓ is even, we write k = 2k1, otherwise, we write k = 2k1 + 1. In

any ase, σ k+ℓ
2
σ ℓ−k

2
= σ[ ℓ+1

2 ]+k1σ[ ℓ2 ]−k1
=: τk1 . We now laim

∣∣∣∣
∑

k1∈Z
τk1e

2πik1(2x+2ℓt)

∣∣∣∣ . min

{
N,

1

N‖2x+ 2ℓt‖2
Z

}
.

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . (1.2)

The seond inequality follows from a simple ase-by-ase analysis. That the sum on the

left-hand side is bounded by CN is also obvious. Thus, we are left to show

∣∣∣∣
∑

k∈Z
τke

2πiky

∣∣∣∣ .
1

Ny2
, (1.3)

for

1
N ≤ |y| ≤ 1

2 .

For the purpose of proving (1.3), we �rst replae the multiplier τk by a real-valued funtion

that oinides with τk for every k ∈ Z. Let φN : R → [0, 1] be a smooth, ompatly supported

funtion with φN (n) = σn for all n ∈ Z as well as |φ′N (y)| ≤ 4
N and |φ′′N (y)| ≤ 4

N2 for all

y ∈ R. De�ne

ψN : R → [0, 1], ψN (y) := φN

([ℓ+ 1

2

]
+ y
)
φN

([ ℓ
2

]
− y
)

for all y ∈ R, and observe that |ψ′
N (y)| ≤ 8

N and |ψ′′
N (y)| ≤ 16

N2 for any y ∈ R. Also, we see

that τk = ψN (k) for all k ∈ Z. We denote by F−1
2π the inverse Fourier transform given by

F−1
2π (f)(x) :=

∫

Rn

e2πix·ξf(x) dξ
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for all f ∈ S(Rn). By the Poisson summation formula, f. [Gra08, Theorem 3.1.17℄,

∣∣∣∣
∑

k∈Z
ψN (k)e

2πiky

∣∣∣∣ ≤
∑

k∈Z
|F−1

2π (ψN )(y + k)|.

Note that

|F−1
2π (ψN )(y)| =

1

(2πy)2

∣∣∣∣
∫

R

(
d2

dξ2
e2πiyξ

)
ψN (ξ) dξ

∣∣∣∣ ≤
1

(2πy)2
‖ψ′′

N‖L1(R) .
1

Ny2
, y 6= 0.

Therefore, for

1
N ≤ |y| ≤ 1

2 ,

∑

k∈Z
|F−1

2π (ψN )(y + k)| .
∑

k∈Z

1

N |y + k|2 .
1

Ny2
+
∑

k∈N

1

Nk2
.

1

Ny2
.

This ompletes the proof of (1.2), i.e.

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

.
∑

|ℓ|≤4N

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . (1.4)

To estimate this further, we write t = a
q +m+ τ for some |τ | ≤ 1

qN and m ∈ Z. Hene,

2ℓt = 2ℓ
a

q
+ 2ℓm+ 2ℓτ.

For any k ∈ Z, we de�ne b(k) := ak (mod q), b(k) ∈ Zq := {0, 1, . . . , q − 1}. Sine a and q
are oprime, a is invertible in Zq and the mapping k 7→ b(k) is a bijetion Zq → Zq. Hene,

for eah k ∈ Zq there are at most

⌈
8N
q

⌉
di�erent values ℓ ∈ {ℓ ∈ Z : |ℓ| ≤ 4N} suh that

b(ℓ) = b(k). Moreover, for eah r ∈ {0, . . . , [q/2]} there exist at most four di�erent b ∈ Zq

suh that

r

q
≤
∥∥∥2x+ 2

b

q

∥∥∥
Z

≤ r + 1

q
.

We onlude that for eah r ∈ {0, . . . , [q/2]} and

Nr :=

{
ℓ ∈ Z : |ℓ| ≤ 4N,

r

q
≤
∥∥∥2x+ 2

b(ℓ)

q

∥∥∥
Z

<
r + 1

q

}

we have |Nr| ≤ CN
q . De�ne R :=

⋃10
r=0 Nr. We distinguish two ases: the resonant ase ℓ ∈ R

and the non-resonant ase ℓ /∈ R. The latter does only exist if q > 20.

We onsider the non-resonant ase �rst, i.e. ℓ ∈ Nr for some r > 10. Sine |ℓ| ≤ 4N , we see

that

‖2x+ 2ℓt‖Z =
∥∥∥2x+ 2

b(ℓ)

q
+ 2ℓτ

∥∥∥
Z

≥
∣∣∣∣
∥∥∥2x− 2

b(ℓ)

q

∥∥∥
Z

− 2ℓ|τ |
∣∣∣∣ ≥

r

q
− 8

q
≥ r

5q
.

We may estimate the orresponding ontribution to (1.4) by

∑

ℓ∈Z\R:
|ℓ|≤4N

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 .
1

N

q/2∑

r=11

∑

ℓ∈Nr

q2

r2
. q

q/2∑

r=11

1

r2
. q. (1.5)

We are left with the resonant ase. Fortunately, there are only |R| . N
q of them. Hene,

it is easy to see that the ontribution from the resonant ase is bounded by CN
q · N . We
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an improve this bound further provided |τ | ≥ 1
N2 . Indeed, let b ∈ Zq be �xed now and set

Mb := {ℓ ∈ R : b(ℓ) = b}. Note that the gap between two onseutive elements in Mb is q
and that for ℓ ∈ Mb,

‖2x+ 2ℓt‖Z =
∥∥∥2x+ 2

b

q
+ 2ℓτ

∥∥∥
Z

.

Sine R is the union of at most 44 sets Mb, there exists C0 > 0 suh that

{
‖2x+ 2ℓt‖Z : ℓ ∈ R

}

is ontained in at most C0 arithmeti sequenes with inrement 2q|τ |. Thus, we may estimate

the ontribution from the resonant ase by

∑

ℓ∈R

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 ≤ C0
1

N

∑

j∈N0

1
(
2jq|τ | + 1

N

)2

.
∑

j∈N0:
2jq|τ |≤1/N

N +
1

N

∑

j∈N0:
2jq|τ |>1/N

1

(2jq|τ |)2 .
1

q|τ |

provided |τ | ≥ 1
N2 . In any ase, we proved

∑

ℓ∈R

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . min

{
N2

q
,

1

q|τ |

}
. (1.6)

Reall that τ = t− a
q −m. Then the onlusion follows from (1.5) and (1.6) sine

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

. q +min

{
N2

q
,

1

q|τ |

}
.

N2

q
(
1 +N‖t− a

q ‖
1/2
Z

)2 .

Remark. Guo�Oh�Wang [GOW14, page 991℄ disussed the role of the oe�ient sequene:

Consider the Weyl sum without the oe�ient sequene

WN (t, x) :=
∑

|n|≤N
e2πi(nx+n

2t).

Choosing (σn)n to inrease respetively deay like

1
N in [−2N,−N ] respetively [N, 2N ], we

may write

∑

n∈Z
σne

2πi(nx+n2t) =
1

N

2N−1∑

k=N

Wk(t, x).

Hene, the regularizing e�et of (σn)n may be ompared to the regularizing e�et of the Fejér

kernel over the Dirihlet kernel, f. [SS03, Setion 5.2℄. ♦

For estimating the ontribution from the minor ars, we use the next three lemmas. The �rst

result is due to Peter Gustav Lejeune Dirihlet (1805�1859). The statement is taken from

[Vau97, Lemma 2.1℄, where a proof is provided as well.

Lemma 1.42 (Dirihlet's lemma). Let t denote a real number. Then, for eah real number

N ≥ 1 there exists a rational number

a
q with gcd(a, q) = 1, 1 ≤ q ≤ N , and

∣∣∣t− a

q

∣∣∣ ≤ 1

qN
.
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For brevity we de�ne the following funtion whih equals the exponential sum in Lemma 1.38

exept of a dilation of 2π in the argument of the exponential funtion. Let (σn)n be a sequene
as given in Lemma 1.38, then we de�ne

Fb(t) :=
∑

n∈Z
σn e

2πi(n+b)2t. (1.7)

The next lemma shows that a better point-wise estimate than the trivial bound |Fb(t)| ≤ 4N
an be obtained whenever t is in the minor ars.

Lemma 1.43. Let N > 1 and Fb as in (1.7). There exists C > 0 suh that for all t ∈ m,

|Fb(t)| ≤ CN1− ν
2 ,

where C does not depend on b.

Proof. Let t ∈ m. By Dirihlet's lemma, there exists a redued fration

a
q with 1 ≤ q ≤ N

and |t− a
q | ≤ 1

qN . Sine t ∈ (Nν−2, 1−Nν−2), it follows that 0 ≤ a ≤ q ≤ N .

On the one hand, if 1 ≤ q ≤ Nν
, then ‖t− a

q ‖Z = |t− a
q | > Nν−2

beause otherwise t would
be in the major ars. Applying Lemma 1.41 yields

|Fb(t)| ≤ C
N

√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ C
∥∥∥t− a

q

∥∥∥
− 1

2

Z

≤ CN1− ν
2 .

If, on the other hand, Nν < q ≤ N , Lemma 1.41 implies

|Fb(t)| ≤ C
N

√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ N√
q
≤ CN1− ν

2 .

Remark. Note that the previous proof orrets the proof of [Her13, formula (33)℄. ♦

We also rely on a Hua type lemma. See [Vau97, Lemma 2.5℄ for a more general version. This

is the endpoint ase of Lemma 1.38, whih has an additional loss of ε. This loss, however, an
be ompensated in the minor ars. We shall provide a proof of this well-known result for the

sake of ompleteness.

Lemma 1.44 (Hua's lemma). For any ε > 0 there exists Cε > 0 suh that for any N ≥ 1
and Fb as in (1.7), the estimate

‖Fb‖L4([0,2π]) ≤ CεN
1
2
+ε

holds true.

Proof. The proof follows the idea of [Bou89, formulas (1.3)�(1.6)℄ for the redution to the

number of lattie points estimate and [Her13, Appendix A, b)℄ for the bound on the lattie

points.

We apply the Parseval identity with respet to t and obtain

‖Fb‖4L4([0,2π]) =

∥∥∥∥
2N∑

m,n=−2N

σmσne
2πi[(m+b)2−(n+b)2]t

∥∥∥∥
2

L2([0,2π])

.
∑

k∈N

∣∣∣∣
∑

(m−n)(m+n+2b)=k
1≤m,n≤N

1

∣∣∣∣
2

,
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where N := {k ∈ Z : ∃m,n ∈ [−2N, 2N ] ∩ Z s.t. k = (m + b)2 − (n + b)2}. Obviously,

|N | ≤ 16N2
. Hene, it su�es to show that for any ε > 0 there exists Cε > 0 suh that for

any N ≥ 1,

sup
k∈N, b∈N0

|{(n1, n2) ∈ N
2 : n1, n2 ≤ N, n1(n2 + b) = k}| ≤ CεN

ε. (1.8)

If 0 ≤ b ≤ 10N2
this is a onsequene of the number of divisors estimate. We refer the reader

to [HW79, Theorem 315℄ for more details.

If b > 10N2
, then the set ontains at most one element. Indeed, the imposed restrition is

equivalent to

n1 =
k

b
− n1n2

b
.

For �xed k ∈ N and 10N2 < b ∈ N0 the set
⋃

1≤n1,n2≤N{
k
b − n1n2

b } is ontained in an interval

of size less than one. Thus, there is at most one possible n1.

To treat the major ars, we �rst prove a distributional inequality. This shall be used after

writing the Lp-norm in terms of the distribution funtion.

Lemma 1.45. Let λ > 0. For every ε > 0 there exists Cε > 0 suh that for any N > 1 and

Fb as in (1.7), ∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ ≤ CεN

2+ελ−4−ε,

where the onstant Cε is independent of b.

Proof. Let 0 ≤ a ≤ q ≤ Nν
with gcd(a, q) = 1 be �xed. In view of Lemma 1.41, we trivially

see that

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣ ≤

∣∣∣∣∣

{
t ∈ M(q, a) :

N
√
q
(
1 +N‖t− a

q ‖
1/2
Z

) > λ

}∣∣∣∣∣. (1.9)

Suppose t ∈ M(q, a) is suh that ‖t− a
q‖Z ≥ q−1λ−2

, then

N
√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ λ.

Hene, the set in the right-hand side of (1.9) ontains only those t ∈ M(q, a) that ful�ll

‖t− a
q ‖Z < q−1λ−2

. From the imposed ondition of the set on the right-hand side of (1.9), we

get that λ < N√
q . These two observations lead to

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣ . q−1λ−2 . q−2− ε

2N2+ελ−4−ε
(1.10)

for any ε > 0. Sine the M(q, a) are disjoint, we get

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ =

Nν∑

q=1

∑

1≤a≤q:
gcd(a,q)=1

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣.

We then use (1.10) and estimate the sum over a by q to get

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ ≤ cε

Nν∑

q=1

q−1− ε
2N2+ελ−4−ε ≤ CεN

2+ελ−4−ε

as asserted.
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Now, we have all the ingredients, whih we shall use to prove Lemma 1.38.

Proof of Lemma 1.38. The estimate is trivial for p = ∞ and for N = 1. Hene, we may

assume 4 < p <∞ and N > 1.

From the 2π-periodiity of the exponential sum, we notie that we may assume I = [0, 2π] if
the onstant is adjusted depending on |I|. By a hange of variable, it su�es to show

∫ 1

0

∣∣∣∣
∑

n∈Z
σne

2πi(n+b)2t

∣∣∣∣
p

dt =

∫ 1

0
|Fb(t)|p dt . Np−2.

We split the integration over [0, 1] into M and m. We onsider the minor ars �rst:

∫

m

|Fb(t)|p dt ≤
(
sup
t∈m

|Fb(t)|
)p−4

∫ 1

0
|Fb(t)|4 dt . (N1− ν

2 )p−4N2+ε . Np−2

provided 0 < ε ≤ ν
2 (p− 4). Here, we used Lemma 1.43 and Lemma 1.44.

For the major ars we write the Lp-norm in terms of the distribution funtion and apply

Lemma 1.45:

∫

M

|Fb(t)|p dt ≤ p

∫ 4N

0
λp−1

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ dλ . N2+ε

∫ 4N

0
λp−5−ε dλ . Np−2.

1.4 Riemannian manifolds

A brief introdution to Riemannian manifolds and some statements that are needed later

are provided in this setion. From De�nition 1.46 to De�nition 1.50 we follow (sometimes

verbatim) Chapter 1 and Chapter 3 of the book [Jos11℄.

De�nition 1.46 (Manifold). A manifold M of dimension n is a onneted paraompat

Hausdor� spae for whih every point has a neighborhood U that is homeomorphi to an

open subset Ω of R
n
. Suh a homeomorphism

x : U → Ω

is alled a (oordinate) hart. An atlas is a family {Uα, xα}α of harts for whih the Uα
onstitute an open overing of M . A ompat manifold is a manifold whih is ompat as a

topologial spae.

Remark.

(i) A point p ∈ Uα is determined by xα(p). Often the index α is omitted, and the om-

ponents of x(p) ∈ R
n
are alled loal oordinates of p. It is ustomary to write the

Eulidean oordinates of R
n
as

x = (x1, . . . , xn),

and these are onsidered as loal oordinates on M when x : U → Ω is a hart.

(ii) A ompat manifold has a �nite atlas {Uα, xα}α=1,...,K . ♦
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De�nition 1.47 (Di�erentiable manifold). An atlas {Uα, xα} on a manifold is alled di�er-

entiable or smooth if all hart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

are di�erentiable of lass C∞
.

Remark. If M and N are smooth manifolds, the Cartesian produt M × N also naturally

arries the struture of a di�erentiable manifold. If {Uα, xα}α∈A and {Vβ , yβ}β∈B are atlases

for M and N , respetively, then {Uα × Vβ, (xα, yβ)}(α,β)∈A×B is a di�erentiable atlas for

M ×N . ♦

De�nition 1.48 (Tangent spae & derivative).

(i) Let x = (x1, . . . , xn) be Eulidean oordinates of R
n
, Ω ⊂ R

n
open, x0 ∈ Ω. The tangent

spae of Ω at the point x0,

Tx0Ω,

is the spae {x0} × E, where E is the n-dimensional vetor spae spanned by the basis

∂
∂x1

, . . . , ∂
∂xn .

(ii) If Ω ⊂ R
n
and Ω′ ⊂ R

m
are open, and f : Ω → Ω′

is di�erentiable, we de�ne the

derivative df(x0) for x0 ∈ Ω as the indued linear map between the tangent spaes

df(x0) : Tx0Ω → Tf(x0)Ω
′, v =

n∑

i=1

vi
∂

∂xi
7→

n∑

i=1

m∑

j=1

vi
∂f j

∂xi
(x0)

∂

∂f j
.

De�nition 1.49 (Riemannian manifold). A Riemannian metri on a di�erentiable manifold

M is given by a salar produt on eah tangent spae TpM whih depends smoothly on the

base point p ∈ M . A (smooth) Riemannian manifold is a di�erentiable manifold, equipped

with a Riemannian metri.

Remark. In loal oordinates x = (x1, . . . , xn), a metri is represented by a positive de�nite,

symmetri matrix (
gij(x)

)
i,j=1,...,n

,

where the oe�ients depend smoothly on x. Sine the smoothness does not depend on the

hoie of oordinates, smooth dependene on the base point p as required in De�nition 1.49

an be expressed in loal oordinates. [Jos11, pages 13�14℄ ♦

The produt of two tangent vetors v,w ∈ TpM with oordinate representations (v1, . . . , vn)
and (w1, . . . , wn), i.e. v =

∑n
i=1 v

i ∂
∂xi

and w =
∑n

j=1w
j ∂
∂xj

, then is

〈v,w〉 :=
n∑

i,j=1

gij
(
x(p)

)
viwj .

In partiular, 〈 ∂
∂xi
, ∂
∂xj

〉 = gij . Similarly, the length of v is given by

‖v‖ := 〈v, v〉 1
2 .

The integration of a smooth, ompat Riemannian manifold with boundary an now be easily

understood. The volume fator √
g :=

√
det(gij)
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is used for the integration of funtions F : M → C,

∫

M
F (x)

√
g(x) dx1 . . . dxn.

The integral is independent of the hoie of the oordinate representation, see [Jos11, page 14℄.

The spae Lp(M) is de�ned as all funtions f : M → C for whih the following expression

exists and is �nite

‖f‖Lp(M) :=

(∫

M
|f(x)|p

√
g(x) dx1 . . . dxn

) 1
p

.

It is natural to de�ne the L2(M)-produt

〈f, h〉L2(M) :=

∫

M
f(x)h(x)

√
g(x) dx1 . . . dxn

for f, h ∈ L2(M) suh that

‖f‖L2(M) = 〈f, f〉
1
2

L2(M)
.

We now extend the Eulidean Laplae operator ∆ =
∑n

j=1
∂2

∂x2j
to Riemannian manifolds. Let

M be a Riemannian manifold of dimension n with metri tensor gij in some loal oordinates

(x1, . . . , xn). Let f : M → C be a funtion on M . The gradient is de�ned as

∇gf :=
n∑

i,j=1

gij
∂f

∂xi
∂

∂xj
,

where (gij)i,j=1,...,n := (gij)
−1
i,j=1,...,n. One easily heks |∇gf | = |df |. Furthermore, the diver-

gene of a vetor �eld Z =
∑n

i=1 Z
i ∂
∂xi

is

divg Z :=
1√
g

n∑

j=1

∂

∂xj
(
√
gZj) =

1√
g

n∑

i,j=1

∂

∂xj

(√
ggij

〈
Z,

∂

∂xi

〉)
.

De�nition 1.50 (Laplae�Beltrami operator). The Laplae�Beltrami operator of a smooth

funtion f : M → C is de�ned as

∆gf := − divg∇gf = − 1√
g

n∑

i,j=1

∂

∂xj

(√
ggij

∂f

∂xi

)
.

In this thesis, we do not work with the de�nition of ∆g given in De�nition 1.50 but with the

properties of its spetrum and eigenfuntions: If M is assumed to be ompat, the spetrum

σ(−∆g) = {λk}k∈N0 is disrete and positive, i.e. λk ≥ 0 for any k ∈ N0. By reordering the λk,
we may assume λk ≤ λk+1 for every k ∈ N0. Furthermore, λ0 = 0 and λk → +∞ as k → +∞.

There exist orresponding eigenfuntions {ϕk}k whih de�ne a omplete orthonormal system

in L2(M). Hene, if Ek denotes the eigenspae orresponding to the eigenvalue λk for k ∈ N0,

then

L2(M) =

∞⊕

k=0

Ek,

i.e. for f ∈ L2(M) we have

f(x) =

∞∑

k=0

〈f, ϕk〉L2(M)ϕk(x),
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where the series onverges in L2(M). For more details on this, we refer to [Shu01, Setion 8.3℄,

[Tay11, Chapter 8℄, and [Jos11, Setion 3.2℄. Furthermore, let hk : L
2(M) → L2(M), hk(f) =

〈f, ϕk〉L2(M)ϕk denote the spetral projetor onto the eigenspae Ek. For later usage, we

de�ne the projetor

pn :=
∑

k∈N:
|√λk|∈[n−1,n)

hk

for n ∈ N. We �x a smooth, non-negative, even funtion η : R → [0, 1] with η(y) = 1 for

|y| ≤ 1 and supp η ⊆ (−2, 2) to de�ne a partition of unity. For a dyadi number N > 1, we
set

ηN (y) := η

( |y|
N

)
− η

(
2|y|
N

)
and η1(y) := η(|y|) (1.11)

for y ∈ R. Note that supp ηN ⊆ (−2N,−N/2) ∪ (N/2, 2N). For dyadi N ≥ 1 we de�ne the

smooth projetors of dyadi sale as

PN :=
∑

k∈N0

ηN (
√
λk)hk and P≤N :=

∑

M≤N
PM . (1.12)

Remark. The smooth projetors PN are bounded operators from Lp(M) to Lp(M) for any
1 < p <∞ [Tay74, Theorem 2.2℄. See also [SS89, Xu07℄ for more general results. ♦

Example 1.51.

(i) If M = T
n
, then the set of eigenvalues {λk}k∈N0 is given by {|ξ|2 : ξ ∈ Z

n}. The

eigenfuntions are given as {x 7→ eix·ξ}ξ∈Zn
. [Zel08, Setion 2.3℄

(ii) If M = S
n
equipped with the standard metri, then λk = k2 + (n − 1)k, k ∈ N0,

and the multipliity of the eigenvalue λk equals

2k+n−1
n−1

(k+n−2
k

)
. The eigenfuntions to

the eigenvalue λk are the n-dimensional spherial harmonis of degree k. See [Tay11,

Chapter 8, Corollary 4.3℄ and [Zel08, Setion 2.3℄. ♦

The Sobolev spae Hs(M) an be de�ned now.

De�nition 1.52 (Sobolev spae Hs(M)). Let s ≥ 0. The Sobolev spae Hs(M) shall be

de�ned as Hs(M) := (1−∆g)
− s

2L2(M) endowed with the norm

‖f‖Hs(M) :=

( ∞∑

k=0

〈
√
λk〉2s‖hk(f)‖2L2(M)

)1
2

,

where 〈x〉 := (1 + |x|2) 1
2
.

Remark.

(i) Due to the L2
-orthogonality of the spetral projetors, we have

‖f‖Hs(M) ≈
(∑

N≥1

N2s‖PNf‖2L2(M)

) 1
2

.

(ii) Apparently the �rst omprehensive study of Sobolev spaes on Riemannian manifolds

is due to Aubin [Aub76, Aub82℄. The idea is to replae partial derivatives in R
n
by

ovariant derivatives in order to de�ne Sobolev spaes of integer order. Let ∇α with
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α = 1, . . . , n be the ovariant derivative with respet to a given loal hart. For a

omplex-valued smooth funtion and k ∈ N0 we de�ne

|∇kf |2 :=
n∑

α1,...,αk,β1,...,βk=1

gα1β1 · · · gαkβk∇α1 · · · ∇αk
f · ∇β1 · · · ∇βkf

In partiular, |∇0f | = |f | and |∇1f |2 = |∇f |. Then, for 1 ≤ p <∞ and k ∈ N0 one may

de�ne the Sobolev spaeW k,p(M) as the ompletion of {h ∈ C∞(M) : ‖h‖W k,p(M) <∞}
with respet to the norm

‖f‖W k,p(M) :=

k∑

j=0

‖∇jf‖Lp(M).

In 1983, Strihartz [Str83℄ (mainly in Setion 4) introdued frational Sobolev spaes

as Hs,p(M) := (1 − ∆g)
− s

2Lp(M) for 1 < p < ∞ and s ≥ 0. For k ∈ N0 these

spaes oinide with W k,p(M), f. [Tri92, Setion 7.4.5℄. We refer the reader to [Tri92,

Chapter 7℄, [Aub98, Chapter 2℄, and [Heb99, Chapter 2�3℄ for more details.

(iii) Sobolev embeddings for W k,p(M) may be found in [Aub98, Theorem 2.20℄. In the ase

M = Tn, Sobolev embeddings for Hs(Tn) were studied in [ST87, Setion 3.5.5℄. ♦

We rely on the following linear spetral luster estimate in the L∞
-norm due to Sogge [Sog88,

Proposition 2.1℄ and some other immediate onsequenes. Due to the obvious relation to

Bernstein's inequality, we sometimes refer to this as Bernstein's inequality in the sequel.

Lemma 1.53. Let M be a smooth, onneted, ompat manifold without boundary of dimen-

sion n ≥ 2.

(i) There exists C > 0 suh that for all f ∈ L2(M) and any k ∈ N,

‖pkf‖L∞(M) ≤ Ck
n−1
2 ‖f‖L2(M).

(ii) Let 2 ≤ p ≤ ∞. There exists C > 0 suh that for all f ∈ L2(M) and any dyadi N ≥ 1,

‖PNf‖Lp(M) ≤ CNn( 1
2
− 1

p
)‖PNf‖L2(M).

(iii) Let 2 ≤ q ≤ p ≤ ∞. There exists C > 0 suh that for all f ∈ Lq(M) and any dyadi

N ≥ 1,

‖PNf‖Lp(M) ≤ CNn( 1
q
− 1

p
)‖PNf‖Lq(M).

Proof/Referene. The �rst inequality was proved in [Sog88, Proposition 2.1℄.

In order to prove the seond estimate, we �rst dedue from applying (i) and the Cauhy�

Shwarz inequality that (f. [Her13, Lemma 3.4℄):

‖PNf‖L∞(M) ≤
2N∑

k=N/2

‖pk(PNf)‖L∞(M) .

2N∑

k=N/2

k
n−1
2 ‖PNf‖L2(M) . N

n
2 ‖PNf‖L2(M).

Now, an interpolation type argument yields the laim: Let

1
p = ϑ

2 , then

‖PNf‖Lp(M) ≤ ‖PNf‖ϑL2(M)‖PNf‖1−ϑL∞(M) . N
n( 1

2
− 1

p
)‖PNf‖L2(M).
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We are not aware of any proof of statement (iii), hene, we prove it here in detail. It su�es

to prove the dual estimate

‖PNg‖Lq′ (M) ≤ CNn( 1
q
− 1

p
)‖PNg‖Lp′ (M) (1.13)

for all g ∈ Lp
′
(M) and any N ≥ 1. Indeed, assuming this, we de�ne P̃N := PN/2 + PN + P2N

for N > 1 and P̃1 := P1 + P2 and dedue

‖PNf‖Lp(M) = sup
g∈Lp′ (M):

‖g‖
Lp′ (M)

≤1

∣∣∣∣
∫

M
PNf(x)P̃Ng(x) dx

∣∣∣∣ ≤ sup
g∈Lp′(M):

‖g‖
Lp′ (M)

≤1

‖PNf‖Lq(M)‖P̃Ng‖Lq′ (M)

≤ CNn( 1
q
− 1

p
) sup
g∈Lp′ (M):

‖g‖
Lp′ (M)

≤1

‖PNf‖Lq(M)‖g‖Lp′ (M) ≤ CNn( 1
q
− 1

p
)‖PNf‖Lq(M).

The dual estimate (1.13) is a onsequene of the dual estimate of (ii),

‖PNg‖L2(M) ≤ CNn( 1
2
− 1

p
)‖PNg‖Lp′ (M),

and an interpolation type argument. Indeed, hoose 0 ≤ ϑ ≤ 1 suh that

1
q′ =

ϑ
2 + 1−ϑ

p′ , then

‖PNg‖Lq′ (M) = ‖PNg‖ϑL2(M)‖PNg‖1−ϑLp′ (M)
≤ CNϑn( 1

2
− 1

p
)‖PNg‖Lp′ (M).

Noting that ϑn(12 − 1
p) = n(1q − 1

p) gives the desired result.

Burq�Gérard�Tzvetkov [BGT05a, Lemma 2.6℄ proved the following smallness of the produt

of four eigenfuntions on M , where one of the orresponding eigenvalues is muh bigger than

the three others. We refer the reader to [Han12, Theorem 4.2℄ for a more general result.

Lemma 1.54. There exists K ≥ 1 suh that for any γ ≥ 1 there exists Cγ > 0 suh that for

any fj ∈ L2(M) and eigenvalues λkj ∈ σ(−∆g), j = 0, 1, 2, 3, with Kλkj ≤ λk0 , j = 1, 2, 3,

∣∣∣∣
∫

M
hk0(f0)(x)hk1(f1)(x)hk2(f2)(x)hk3(f3)(x) dx

∣∣∣∣ ≤ Cγ〈λk0〉−γ
3∏

j=0

‖fj‖L2(M).

Using this result, we may prove the following two rude Sobolev multipliation type inequal-

ities for the frational Sobolev spaes introdued in De�nition 1.52. To our knowledge, the

following lemma has not been stated anywhere else in the literature. Hene, we give the

proof.

Lemma 1.55. Let n = 3, s > 0, and σ > 3
2 . Then there exists C > 0 suh that the following

inequality holds true for all f, g ∈ Hs(M) ∩Hσ(M),

‖fg‖Hs(M) ≤ C
(
‖f‖Hs(M)‖g‖Hσ (M) + ‖f‖Hσ(M)‖g‖Hs(M)

)
.

Proof. Let K ≥ 1 be the onstant given in Lemma 1.54. Then, for λ ≥ 0 and a funtion

f ∈ L2(M) we de�ne

f≪λ :=
∑

ℓ∈N0:
Kλℓ≤λ

hℓ(f), f≫λ :=
∑

ℓ∈N0:
Kλ≤λℓ

hℓ(f), and f∼λ := f − f≪λ − f≫λ.
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Let us reall the de�nition of the Hs
-norm

‖f‖Hs(M) =

( ∞∑

k=0

〈
√
λk〉2s‖hkf‖2L2(M)

) 1
2

.

Obviously, given k ∈ N0 we an deompose the produt

hk(fg) = f≪λkg≪λk + f∼λkg + fg∼λk − f∼λkg∼λk + f≪λkg≫λk + f≫λkg≪λk + f≫λkg≫λk .

Thanks to Lemma 1.54, we may estimate the terms f≪λkg≪λk , f≪λkg≫λk , and f≫λkg≪λk

easily. Indeed, the �rst term, for instane, an be treated in the following way:

∞∑

k=0

〈
√
λk〉2s‖hk(f≪λkg≪λk)‖2L2(M) ≤

∑

k≥0

〈
√
λk〉2s

( ∑

ℓ∈N0: Kλℓ≤λk,
m∈N0: Kλm≤λk

∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

)2

.

By duality, we may write

∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

= sup
v∈L2(M):

‖v‖L2(M)≤1

∣∣∣∣
∫

M
hℓ(f)(x)hm(g)(x)hk(v)(x) dx

∣∣∣∣.

Applying Lemma 1.54 with f3 = 1, whih is the eigenfuntion orresponding to the eigenvalue

0, we get ∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

.γ 〈λk〉−s−γ‖f‖L2(M)‖g‖L2(M).

By the Weyl asymptoti, see e.g. [GS94, Chapter 12℄, summing over ℓ, m, and k yields

( ∞∑

k=0

〈
√
λk〉2s‖hk(f≪λkg≪λk)‖2L2(M)

) 1
2

. ‖f‖L2(M)‖g‖L2(M)

provided γ is su�iently large. The terms f≪λkg≫λk and f≫λkg≪λk an be handled similarly.

To estimate the ontribution oming from fg∼λk , we proeed as follows:

∞∑

k=0

〈
√
λk〉2s‖hk(fg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖fg∼λk‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f‖2L∞‖g∼λk‖2L2

. ‖f‖2Hσ(M)‖g‖2Hs(M).

(1.14)

The same argument yields

∞∑

k=0

〈
√
λk〉2s‖hk(f∼λkg)‖2L2(M) . ‖f‖2Hs(M)‖g‖2Hσ(M).

Using ℓ1 ⊂ ℓ2 and Cauhy�Shwarz, we also estimate

∞∑

k=0

〈
√
λk〉2s‖hk(f∼λkg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f∼λk‖2L2(M)‖g∼λk‖2L∞(M)

. ‖f‖2Hs(M)

∞∑

k=0

‖g∼λk‖2L∞(M) . ‖f‖2Hs(M)‖g‖2Hσ(M),
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where in the last step we used

∞∑

k=0

‖g∼λk‖2L∞(M) .

∞∑

k=0

〈
√
λk〉3‖g∼λk‖2L2(M) . ‖g‖2Hσ (M).

Now, it remains to estimate the term f≫λkg≫λk . First, we note that it su�es to onsider∑
ℓ∈N0: Kλk≤λℓ hℓ(f)g∼λℓ sine the other ontributions are bounded by C‖f‖L2(M)‖g‖L2(M),

whih an be proved using Lemma 1.54. We �nd that

∞∑

k=0

〈
√
λk〉2s

∥∥∥∥hk
( ∑

ℓ∈N0:
Kλk≤λℓ

hℓ(f)g∼λℓ

)∥∥∥∥
2

L2(M)

≤
∞∑

k=0

( ∑

ℓ∈N0:
Kλk≤λℓ

〈
√
λℓ〉s

∥∥hk
(
hℓ(f)g∼λℓ

)∥∥
L2(M)

)2

using the triangle inequality and λk ≤ λℓ. Hene,

( ∞∑

k=0

〈
√
λk〉2s

∥∥∥∥hk
( ∑

ℓ∈N0:
Kλk≤λℓ

hℓ(f)g∼λℓ

)∥∥∥∥
2

L2(M)

) 1
2

≤
∞∑

ℓ=0

〈
√
λℓ〉s

( ∞∑

k=0

∥∥hk
(
hℓ(f)g∼λℓ

)∥∥2
L2(M)

) 1
2

≤
∞∑

ℓ=0

〈
√
λℓ〉s‖hℓ(f)g∼λℓ‖L2(M).

Hölder's estimate, Bernstein's inequality, and Cauhy�Shwarz yield

∞∑

ℓ=0

〈
√
λℓ〉s‖hℓ(f)g∼λℓ‖L2(M) .

∞∑

ℓ=0

〈
√
λℓ〉s+

3
2 ‖hℓ(f)‖L2(M)‖g∼λℓ‖L2(M) . ‖f‖Hs(M)‖g‖Hσ(M),

whih �nishes the proof.

Remark. On R
n
Lemma 1.55 is known to hold if one replaes Hσ

by L∞
, see e.g. [Tay00,

page 104, formula (0.22)℄. ♦

A similar result holds if we assume that one funtion is more regular than the other.

Lemma 1.56. Let n = 3, s > 0, and σ > 3
2 . Then there exists C > 0 suh that the following

inequality holds true for all f ∈ Hs(M) and g ∈ Hs+σ(M),

‖fg‖Hs(M) ≤ C
(
‖f‖Hs(M)‖g‖Hσ(M) + ‖f‖L2(M)‖g‖Hs+σ(M)

)
.

Proof. We highlight the di�erenes to the proof of Lemma 1.55.

All estimates in the previous proof are su�ient exept of (1.14). This inequality may be

replaed by

∞∑

k=0

〈
√
λk〉2s‖hk(fg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f‖2L2(M)‖g∼λk‖2L∞(M) ≤ ‖f‖2L2(M)‖g‖2Hs+σ(M),

where we used Bernstein's inequality.

1.5 Dispersion

The Shrödinger equation is one of the most studied dispersive equations. We provide a brief

introdution to dispersive equations in this setion. A short introdution to the NLS on the

Eulidean spae and on ompat manifolds is given and we ontinue the disussion about

di�erenes in the study on those domains that was stated in the Introdution.
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1.5.1 Dispersive equations

We follow the nie introdution given by Nata²a Pavlovi¢ and Nikolaos Tzirakis at the MSRI

Summer Graduate Shool �Dispersive Partial Di�erential Equations� in 2014 [PT14℄. Consider

a partial di�erential equation on R
n
without boundary onditions. Informally speaking, this

partial di�erential equation is said to be dispersive if its solutions spread out in spae as they

evolve in time. We give another haraterization after the following example that an be

found in [PT14, pages 1�2℄.

Example 1.57. The linear homogeneous Shrödinger equation on the real line is given by

i∂tu+ ∂xxu = 0,

where u : R×R → C is a funtion. We are looking for a simple wave solution, i.e. for u of the

form

u(t, x) = Cei(kx−ωt).

By plugging this into our equation, we see that u satis�es the equation if and only if ω = k2.
Hene, the frequeny is a real-valued funtion of the wave number k. If we denote the phase
veloity by v(k) := ω

k , then

u(t, x) = Ceik(x−v(k)t).

From this, we see that the wave travels with veloity k and that waves orresponding to large

wave numbers k propagate faster than waves belonging to small wave numbers.

If we hoose the same wave solution ansatz for the heat equation,

∂tu+ ∂xxu = 0,

then we obtain iω = k2. Therefore, the solutions deay exponentially in time. Using this

ansatz, one an also see that the transport equation ∂tu − ∂xu = 0 and the one-dimensional

wave equation ∂ttu− ∂xxu = 0 have traveling waves with onstant veloity. ♦

Dispersive equations may also be haraterized by the support of the spae-time Fourier

transform of their solutions. If the spae-time Fourier transform is supported on hyper-

surfaes that have non-vanishing Gaussian urvature, we all the partial di�erential equation

dispersive. The following example an be found in [PT14, page 2℄.

Example 1.58. Consider the linear homogeneous Shrödinger equation on R
n

i∂tu+∆u = 0.

The spae-time Fourier transform ful�lls

τpu(τ, ξ)− |ξ|2pu(τ, ξ) = (τ − |ξ|2)pu(τ, ξ) = 0.

Hene, pu is supported on the paraboloid

{(τ, ξ) ∈ R×R
n : τ = |ξ|2},

whih has non-vanishing Gaussian urvature.

The linear wave equation ∂ttu − ∆u = 0 on R
n
, on the ontrary, is supported on the one

{(τ, ξ) ∈ R×R
n : τ = |ξ|}, whih has one diretion in whih the prinipal urvature vanishes.

♦
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Adding some nonlinear e�ets to a dispersive equation, like

i∂tu+∆u+ |u|p−1u = 0

for some p > 1, makes the analysis of this equation muh harder. If u is very small, then

solutions to this equation behave almost like linear solutions sine the linear term dominates

the nonlinear term. However, if u is large, then the nonlinear term dominates and may ause

onentration or blow-up in �nite time. In general, one expets a ompetition between the

dispersion and the nonlinearity.

Some popular examples of nonlinear dispersive equations are

•
the nonlinear Shrödinger equation

i∂tu+∆u− |u|p−1u = 0, u : R× R
n → C, p > 1,

•
the Korteweg�de Vries equation

∂tu+ ∂xxxu+ u∂xu = 0, u : R× R → R,

•
the nonlinear Klein�Gordon equation

∂ttu−∆u+ u+ |u|p−1u = 0, u : R× R
n → R.

The �rst two equations illustrate well in whih di�erent ways the nonlinearities and the disper-

sion interat. On the one hand, the global energy solution to the NLS as stated above satis�es

a ertain deay in time, see e.g. [CKS

+
08, Theorem 1.1℄ on R

3
, that weakens the in�uene of

the nonlinear term. Hene, for large times the dynamis of the NLS may be ompared with

the linear problem (sattering property) [SS99, Theorem 3.21℄. On the other hand, this is not

possible for the Korteweg�de Vries equation. Indeed, the dispersion and the nonlinearity are

balaned in suh a way that there are solitary waves solutions. These are waves that keep

its form and size and just translate as time evolves [LP15, formula (7.6)℄. Hene, a similar

sattering e�et annot be present for solutions to this equation.

A partial di�erential equation whih is posed on some ompat Riemannian n-manifold with-

out boundary is alled dispersive if the orresponding equation on R
n
is dispersive. In this

setting, we expet a di�erent behavior. The reason is that due to the ompatness of the

domain, the dispersion is limited. How this an be understood is addressed in the next sub-

setion.

1.5.2 The Shrödinger equation

Some basi fats about the linear and the nonlinear Shrödinger equation on R
n
are brie�y

introdued and the terms (energy-)ritial and (energy-)sub-ritial are de�ned. Then, both

the linear and the nonlinear Shrödinger equation on ompat manifolds are onsidered and

related to the respetive equation on Eulidean domains.
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Eulidean domains

First, we onsider the linear equation. For φ ∈ S(Rn) the funtion

eit∆φ(x) := F−1
Rn

(
e−i| · |

2tpφ
)
(x) =

1

(4πit)
n
2

∫

Rn

ei
|x−y|2

4t φ(y) dy, t 6= 0,

solves the linear Shrödinger equation

{
i∂tu+∆u = 0 in R× R

n

u(0, · ) = φ on R
n.

We refer the reader to [Caz03, Lemma 2.2.4℄ for more details. From the de�nition of the

solution formula, it is obvious that the L2
-norm of the solution is onserved in time, i.e.

‖eit∆φ‖L2(Rn) = ‖φ‖L2(Rn) for any t ∈ R. Moreover, the solution satis�es the so alled

dispersive estimate:

‖eit∆φ‖L∞(Rn) ≤ (4π|t|)−n
2 ‖φ‖L1(Rn).

These two observations imply, by interpolation, the well-known estimate [Caz03, Proposi-

tion 2.2.3℄

‖eit∆φ‖Lq(Rn) ≤ (4π|t|)−n(
1
2
− 1

q
)‖φ‖Lq′ (Rn), φ ∈ Lq

′
(Rn), (1.15)

where q′ is the onjugated Hölder exponent of 2 ≤ q ≤ ∞. From this, it is not hard to see that

the Shrödinger �ow does not preserve any Lp(Rn)-norm other than the L2(Rn)-norm. The

estimate (1.15) is the fundamental ingredient to the important Strihartz estimates [Caz03,

Theorem 2.3.3℄

‖eit∆φ‖Lp(R,Lq(Rn)) ≤ C‖φ‖L2(Rn), φ ∈ L2(Rn), (1.16)

whih hold for every Shrödinger admissible pair (p, q). These are pairs (p, q) that ful�ll

2
p = n

(
1
2 − 1

q

)
with 2 ≤ p, q ≤ ∞ and (p, q, n) 6= (2,∞, 2). These estimates are named after

Robert Stephen Strihartz (born 1943) who proved the inequality in the ase p = q [Str77℄.

Further ontributions ame from [GV84, Yaj87, KT98℄. On the other hand, for funtions

f ∈ L2(Rn) with supp pf ⊆ [−N,N ]n, Bernstein's inequality, see e.g. [Tao06, formula (A.6)℄,

implies

‖eit∆f‖L∞(R×Rn) . N
n
2 ‖f‖L2(Rn).

By interpolation with the Lpt,x-estimate for p = 2(n+2)
n given by (1.16), one obtains for f ∈

L2(Rn) with supp pf ⊆ [−N,N ]n,

‖eit∆f‖Lp(R×Rn) . N
n
2
−n+2

p ‖f‖L2(Rn) (1.17)

for

2(n+2)
n ≤ p ≤ ∞.

Equipped with these Strihartz estimates, one may study well-posedness results for the non-

linear equation {
i∂tu+∆u = α|u|p−1u in R× R

n

u(0, · ) = φ on R
n,

(1.18)

where φ ∈ Hs(Rn) for some s ∈ R. If α = 1 the equation is alled defousing and if α = −1
it is alled fousing. One major question in the well-posedness theory is: for whih s ∈ R an

one expet reasonable solutions? The saling symmetry of (1.18) is important for answering

this question. If λ > 0 and u a solution to (1.18), then

uλ(t, x) := λ
2

p−1u(λ2t, λx)
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is also a solution to the same equation with initial data φλ(x) := λ
2

p−1φ(λx). It is easy to

ompute that

‖φλ‖Ḣs(Rn) = λs−sc‖φ‖Ḣs(Rn), sc :=
n

2
− 2

p− 1
. (1.19)

Hene, for n = 3 and p = 5 the Sobolev spae Ḣ1(R3) is saling invariant. For �xed s ∈ R we

now study the behavior if λ→ 0 [PT14, Setion 2.1℄:

•
If s > sc, then the Ḣs

-norm of the initial data φλ dereases as λ → 0. At the same

time, the time interval on whih the solution uλ is de�ned inreases. For well-posedness

results this is the best senario. Whenever s is in this range, then the equation is alled

(saling-)sub-ritial or Hs(Rn)-sub-ritial.

•
If s = sc, then the Ḣs

-norm of φλ does not hange as λ tends to zero, but the time

interval still magni�es for inreasing λ. In many ases, loal or even global well-posedness

results hold true but in most ases one has to work harder than in the sub-ritial ase.

This ase is alled (saling-)ritial or Hs(Rn)-ritial.

•
If s < sc, the Ḣ

s
-norm of the resaled initial data grows while the time interval magni�es

as λ → 0. This is the worst ase senario, and we an not expet even loally de�ned

strong solutions. For those s, the equation is alled (saling-)super-ritial or Hs(Rn)-
super-ritial.

Another important invariane is the Galilean invariane: If u is a solution to (1.18) and

v ∈ R
n
is a vetor, then

uv(t, x) := e−i(x·v+t|v|
2)u(t, x+ 2vt)

is a solution to this equation with initial data φv(x) := e−ix·vφ(x) [SS99, formula (2.3.14)�

(2.3.16)℄.

The L2
-mass and the energy of the solution are de�ned as

MRn(u)(t) :=

∫

Rn

|u(t, x)|2 dx

and

ERn(u)(t) :=
1

2

∫

Rn

|∇u(t, x)|2 dx+
α

p+ 1

∫

Rn

|u(t, x)|p+1 dx,

respetively. By multiplying the equation by u, integrating over Rn, and taking the imaginary

part, one formally omputes onservation of the L2
-mass, i.e.

d

dt
MRn(u)(t) = 0.

Similarly, multiplying (1.18) by ∂tu, integrating, and taking the real part (formally) shows

that the energy is onserved as well, i.e.

d

dt
ERn(u)(t) = 0.

There are many other invarianes and onserved quantities suh as invariane in time and spae

translation, the Gauge invariane, the pseudo-onformal invariane, and the onservation of

the linear momentum to name just a few. For details about these and more invarianes, we

refer to [SS99, Setion 2.3℄.

For p = 5 and n = 3 one easily alulates that for any λ > 0,

ER3(φλ) = ER3(uλ)(0) = ER3(u)(0) = ER3(φ).

Together with (1.19), we observe that the energy and the Ḣ1(R3)-norm sale equally. For this

reason, the H1(R3)-ritial NLS is also alled energy-ritial.
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Compat manifolds as a domain

The nonlinear Shrödinger equation posed on a boundaryless ompat manifold behaves di�er-

ently. After disussing a few of those di�erenes in the introdution, we want to ontinue this

now. For that purpose, let (M,g) be a smooth, boundaryless, ompat Riemannian manifold

of dimension n ≥ 1 with metri g. We shall use the notation introdued in Setion 1.4.

As above, we �rst onsider the linear Shrödinger equation

{
i∂tu+∆gu = 0 in I ×M

u(0, · ) = φ on M,

where φ ∈ Hs(M) for some s ≥ 0 and I is an interval around zero. The unique solution is

given by

eit∆gφ(x) :=
∞∑

k=0

e−itλk(hkφ)(x), (1.20)

where the series onverges in the L2(M)-sense. From the orthogonality of {hkφ}k∈N0 , we

immediately infer the onservation of the L2
-norm:

‖eit∆gφ‖2L2(M) =
∞∑

k=0

‖hkφ‖2L2(M) = ‖φ‖2L2(M).

Now, it is natural to ask whether a dispersive estimate like (1.15) an hold. However, due

to the non-dispersive nature of the geometry, this is not the ase. It is easy to onstrut a

ontradition if we assume

‖eit∆gφ‖Lq(M) ≤
C

|t|ν ‖φ‖Lq′ (M)

to hold for some ν > 0, q > 2, and its onjugated Hölder exponent q′ < 2. Indeed,

‖eit∆gφ‖L2(M) ≤ |M |
1
2
− 1

q ‖eit∆gφ‖Lq(M) ≤
C

|t|ν |M |
1
2
− 1

q ‖φ‖Lq′ (M) ≤
C

|t|ν |M |1−
2
q ‖φ‖L2(M)

sine M is ompat. For large |t| this obviously ontradits the onservation of the L2
-norm.

This raises the question how Strihartz estimates look like. Burq�Gérard�Tzvetkov [BGT04,

Theorem 1℄ proved for a Strihartz admissible pair (p, q) with p ≥ 2 and q < ∞ that for any

�nite time interval I,

‖eit∆gφ‖Lp(I,Lq(M)) .I ‖φ‖
H

1
p (M)

. (1.21)

Compared to (1.16) there is a loss of

1
p derivatives, but orresponds to half the loss of the trivial

estimate given by Sobolev's embedding H2/p(M) = Hn/2−n/q(M) →֒ Lq(M). Inequality

(1.21) is not sale invariant and therefore not su�ient for proving ritial results. Sale

invariant improvements of this Strihartz estimate are known on a few manifolds. On the

three-dimensional sphere, for instane, the sale invariant Strihartz estimate

‖PNeit∆gφ‖Lp(I×S3) . N
3
2
− 5

p ‖φ‖L2(S3)

is known to be true for p > 4, see [BGT07, Proposition 5.5.1℄ and [Her13, Lemma 3.5℄

2

. This

orresponds to inequality (1.17) with exatly the same power of N . Similar estimates are also

2

More generally, the aforementioned authors proved the sale invariant Strihartz estimate to hold true for

an arbitrary Zoll manifold.
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known for retangular tori and for produts of spheres, whih are addressed in Setion 2.3

and Setion 2.5, respetively.

Now, we turn to the nonlinear equation

{
i∂tu+∆gu = α|u|p−1u in I ×M

u(0, · ) = φ on M,
(1.22)

where φ ∈ Hs(M) and s ≥ 0. Another onept that does not work on ompat manifolds

without boundary is saling. Therefore, we have to de�ne the meaning of sub-ritial, ritial,

and super-ritial. We all (1.22) ritial if the orresponding equation posed on R
n
is ritial.

The terms sub-ritial, super-ritial, and energy-ritial are de�ned analogously.

By similar arguments as in the previous subsetion, one may show that the L2
-mass

M(u)(t) :=

∫

M
|u(t, x)|2 dx (1.23)

and the energy

E(u)(t) :=
1

2

∫

M
|∇gu(t, x)|2 dx+

α

p+ 1

∫

M
|u(t, x)|p+1 dx (1.24)

are onserved.

Remark. Note that due to the ompatness ofM , the spaes Lp(M) are nested in eah other.

Hene, every su�iently smooth solution u to the defousing equation permits the following

a priori bound:

‖u(t)‖2H1(M) = ‖u(t)‖2L2(M) + ‖∇u(t)‖2L2(M) . ‖u(t)‖2L6(M) + E
(
u(t)

)
. E

(
u(t)

) 1
3 + E

(
u(t)

)
.
♦

Depending on the manifold, there might be other invarianes. The Galilean invariane, for

instane, holds on retangular tori, see Lemma 2.10 for an appliation, but not on general

ompat manifolds without boundary.

As mentioned in the introdution, the lak of dispersion and important mathematial tools,

suh as the Fourier transform, require new ideas for studying well-posedness results. In the

next two setions we present methods to overome these di�ulties on spei� manifolds,

namely retangular tori and produts of spheres.





2 Loal and small data global well-posedness

After a few preliminary remarks in Setion 2.1, we prove a onditional loal and small data

global well-posedness result for the energy-ritial nonlinear Shrödinger equation posed on

a three-dimensional, ompat, onneted, smooth Riemannian manifold without boundary

in Setion 2.2. This onditional result was developed in reent years without a noteworthy

ontribution of the present author.

The remainder of this setion is devoted to results that are due to the author. The as-

sumption for the onditional well-posedness result is veri�ed in the ase of retangular tori

(Setion 2.3) and on produts of spheres (Setion 2.5). Moreover, Setion 2.4 provides a mul-

tilinear Strihartz estimate, whih implies a saling-ritial loal well-posedness result for the

NLS on two-dimensional tori. The aforementioned results on tori have been published in

[Str14℄, the result on produts of spheres extends a previously published result of the author

and Sebastian Herr [HS15℄.

2.1 Preliminary remarks

Well-posedness of the nonlinear Shrödinger equation on R
n
has been studied extensively.

We give an overview of some important results on the Eulidean spae to be able to put the

results on ompat manifolds into ontext.

2.1.1 Relevant results on the Eulidean spae

We give a brief review over important results for the NLS on R
3
with initial data in H1(R3).

Several sub-ritial well-posedness results have been obtained amongst other by Ginibre�Velo

[GV79, GV85℄, Kato [Kat87℄, Cazenave�Weissler [CW88℄. In 1989, Cazenave�Weissler [CW89℄

onsidered the energy-ritial ase and proved that both the fousing and defousing quinti

NLS are loally well-posed for any initial data in H1(R3). If the energy of the initial data

are small, then the solution is known to exist even globally in time. However, sine the time

of existene given by the loal theory depends on the pro�le of the data, the argument in

[CW89℄ does not extend to yield global well-posedness for large initial data.

Studying large data well-posedness for the energy-ritial defousing nonlinear Shrödinger

equation posed on the Eulidean spae R
3
is deliate. Bourgain [Bou99℄ was the �rst who

proved global well-posedness, though, under the additional assumption that the initial data

are radial. Shortly after, Grillakis [Gri00℄ gave a di�erent proof under the same spherial

symmetry assumption. In 2008, Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄ �nally

removed the spherial symmetry assumption and proved that the defousing quinti NLS

is even globally well-posed for arbitrarily large initial data in H1(R3). In 2003, Christ�

Colliander�Tao [CCT03, Theorem 1℄ proved that the quinti NLS fails to be well-posed in

Hs(R3) for any s < 1. Moreover, they proved that the energy-super-ritial fousing and

defousing NLS fails to be well-posed in H1(R3). Therefore, the well-posedness theory of

quinti NLS in R
3
is omplete.
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More details may be found in the monographs [SS99, Caz03, Tao06, LP15℄.

2.1.2 Seleted results on ompat manifolds

The study of well-posedness results on manifolds is quite new and started with a fundamental

work on the domain T
n
by Bourgain [Bou93a℄ in 1993. Before we turn to the study of spei�

manifolds, we ollet a few results that are known to hold on every ompat Riemannian

manifold. In the following we assume any manifold (M,g) to be a ompat, onneted, smooth

Riemannian manifold without boundary. Due to the di�erent behavior of the eigenfuntions

and the eigenvalues (see Introdution), it is hard to establish results that hold true on large

lasses of manifolds or even on any manifold.

Early work has been done by Sogge [Sog88℄ who proved bounds on the Lp-norm of spetral

lusters for seond-order ellipti operators on ompat manifolds. One of his results that is

relevant for our study is the following sharp Bernstein type inequality [Sog88, Theorem 2.2℄

1

:

Let 2 ≤ p ≤ ∞, then for every f ∈ L2(M) and any k ∈ N,

‖pkf‖Lp(M) . k
n( 1

2
− 1

p
)‖pkf‖L2(M)

holds true.

As mentioned earlier Burq�Gérard�Tzvetkov [BGT04, Theorem 1℄ proved the Strihartz esti-

mate (1.21). Beause of the loss of

1
p derivatives ompared to the sale invariant version, one

an not onlude ritial well-posedness results from this estimate. However, this estimate is

strong enough to gain global well-posedness in H1
of the three-dimensional ubi defousing

nonlinear Shrödinger equation on any manifold with the properties above, see [BGT04, The-

orem 3℄. They even established a similar result for any two-dimensional manifold, f. [BGT04,

Theorem 2℄. The two-dimensional result was later extended by Hani [Han12℄ who proved that

the defousing ubi NLS on two-dimensional manifolds M is globally well-posed in Hs(M)
for s > 2

3 .

Bilinear and trilinear generalizations of Sogge's spetral luster estimate have been obtained

by Burq�Gérard�Tzvetkov [BGT05a, BGT05b℄. Although these estimates hold true on every

manifold M , they only led to good results on manifolds that are spetrally lose to spheres

[BGT05a, BGT05b, Her13, HS15℄.

General four-dimensional manifolds with Hartree-type nonlinearities has been studied by

Gérard�Pierfelie [GP10, Theorem 1℄.

We want to emphasize that apart from [Her13, HS15℄ none of the above results are saling-

ritial. Due to the preise knowledge of the spetrum and eigenfuntions, muh more re-

sulfts (even ritial) have been aomplished on spei� manifolds. These are summarized in

Setion 2.3, Setion 2.5, and Setion 2.6.

Laurent Thomann [Tho08, Theorem 1.4℄ established an analogue of Christ�Colliander�Tao's

ill-posedness result on general analyti manifolds. He proved that there is a sequene of times

tn → 0 and a sequene of smooth Cauhy data with dereasing support and dereasing Hs
-

norm for s < 1 suh that the solution to both the fousing and defousing quinti NLS at time

tn blows up in the Hs
-norm as n tends to in�nity. Moreover, he showed that the fousing and

defousing super-quinti NLS fails to be well-posed in H1
. Hene, obtaining energy-ritial

well-posedness results is of partiular interest.

1

Atually, Sogge proved the dual estimate.
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2.2 A onditional loal and small data global well-posedness

result

A onditional loal and small data global well-posedness result is addressed in this setion. It

is shown that the energy-ritial NLS on any three-dimensional, ompat, onneted, smooth

Riemannian manifold without boundary is well-posed provided the trilinear Strihartz esti-

mate given in Assumption 2.1 holds. Moreover, the neessity of Assumption 2.1 is disussed.

2.2.1 Su�ieny of the ondition

The result disussed in this subsetion was proved in [HS15, Setion 3℄ building on earlier

results [HTT11, Her13℄ and the standard ontration mapping priniple. We would like to

point out that this was essentially a ontribution of Sebastian Herr and not of the author of

the present thesis. We take the opportunity to review the omplete argument and to expand

it to a omplete proof.

Let (M,g) be a three-dimensional, ompat, onneted, smooth Riemannian manifold without

boundary. The Cauhy problem

{
i∂tu+∆gu = ±|u|4u

u(0, · ) = φ
(2.1)

with initial data in φ ∈ Hs(M) for s ≥ 1 is studied. The aim of this subsetion is to

prove existene and uniqueness of a solution u in a suitable funtion spae and its Lipshitz

ontinuous dependene on the initial data provided a ertain trilinear Strihartz estimate

holds true.

In the sequel, we use the notation introdued in Setion 1.4 and Setion 1.5.2, and we as-

sume:

Assumption 2.1. There exist an interval τ0 ⊇ [0, 1) and δ > 0 suh that for all φ1, φ2, φ3 ∈
L2(M) and dyadi numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds true:

∥∥∥∥
3∏

j=1

PNje
it∆gφj

∥∥∥∥
L2(τ0×M)

.

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(M). (2.2)

This inequality has been proved for the �at standard torus by Herr�Tataru�Tzvetkov [HTT11,

formula (26)℄ and for arbitrary retangular tori by the author of this thesis [Str14, Proposi-

tion 4.1℄. Furthermore, Herr [Her13℄ veri�ed Assumption 2.1 on Zoll manifolds. The veri�a-

tion of this trilinear Strihartz estimate for S × S
2
in [HS15, Proposition 2.6℄ was essentially

a ontribution of the present author.

2

We review the author's proof of Assumption 2.1 for

retangular tori in Setion 2.3. Moreover, in Setion 2.5, we give the �rst proof of (2.2) for

M = S× S
2
ρ, where S

2
ρ is the embedded sphere of radius ρ > 0 in R

3
, whih extends the result

given in [HS15℄.

2

Note that in the ase of Zoll manifolds and S×S
2
spetral projetors with sharp ut-o�s have been used, say

P
#
N , and hene, (2.2) holds only for those projetors. However, from the L2

-boundedness of these sharp

projetors and from the identity P
#
N = PN/2 + PN + P2N , it is easy to see that this implies (2.2) with

smooth ut-o� projetors as stated in Assumption 2.1.
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Suitable funtion spaes based on Up and V p
, whih are ruial in the study of ritial

well-posedness problems on ompat manifolds, have �rst been onstruted by Herr�Tataru�

Tzvetkov [HTT11, De�nitions 2.6�2.7℄. They de�ned similar funtion spaes as Xs
and Y s

below but with unit sales instead of dyadi sales. In [Her13, De�nition 2.3℄, Herr introdued

resolution spaes with dyadi sales (suh as Xs
and Y s

below) and used them to establish

well-posedness on three-dimensional Zoll manifolds. In [HS15, Setion 3℄, Sebastian Herr �-

nally observed that given Assumption 2.1, loal and small data global well-posedness an be

proved for every ompat, onneted, smooth, boundaryless, three-dimensional Riemannian

manifold using the same dyadi sale resolution spaes Xs
and Y s

on every manifold. This

uni�es the well-posedness results in [HTT11, Her13, Str14, HS15℄.

Following [HS15, Setion 3℄, we work with the following resolution spaes.

De�nition 2.2 (Resolution spaes). Let s ∈ R.

(i) The spae Xs
is de�ned as the spae of all u : R → Hs(M) suh that e−it∆gPNu ∈ U2

for all dyadi N ≥ 1 and

‖u‖Xs :=

(∑

N≥1

N2s‖e−it∆gPNu‖2U2
t

) 1
2

< +∞.

(ii) The spae Y s
is de�ned as the spae of all u : R → Hs(M) suh that e−it∆gPNu ∈ V 2

for all dyadi N ≥ 1 and

‖u‖Y s :=

(∑

N≥1

N2s‖e−it∆gPNu‖2V 2
t

)1
2

< +∞.

(iii) For an interval τ ⊂ R we denote by Xs(τ) and Y s(τ) the restrition spaes

Xs(τ) :=

{
u : τ → Hs(M) : ‖u‖Xs(τ) := inf

v∈Xs:
v·1τ=u·1τ

‖v‖Xs < +∞
}

respetively

Y s(τ) :=

{
u : τ → Hs(M) : ‖u‖Y s(τ) := inf

v∈Y s:
v·1τ=u·1τ

‖v‖Y s < +∞
}
.

Remark.

(i) Obviously, given a funtion u : R → Hs(M), u ∈ Xs(τ) should be understood as u
∣∣
τ
∈

Xs(τ) and ‖u‖Xs(τ) = ‖u
∣∣
τ
‖Xs(τ). The same should apply to Y s(τ).

(ii) Note that in ontrast to [HS15℄, the spaes are de�ned using smooth ut-o� projetors.

This requires an additional argument in the proof of Lemma 2.5. ♦

The aim of this subsetion is the veri�ation of the subsequent theorem, whose formulation is

taken from [Her13, Theorem 4.1℄. In the following, for φ∗ ∈ H1(M) and ε > 0 we denote by

Bε(φ∗) the open ball in H1(M) with enter φ∗ and radius ε, i.e.

Bε(φ∗) := {φ ∈ H1(M) : ‖φ− φ∗‖H1(M) < ε}.

Theorem 2.3. Let (M,g) be a three-dimensional, ompat, onneted, smooth Riemannian

manifold without boundary and let s ≥ 1. Furthermore, assume that Assumption 2.1 holds

true. Then:
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Loal well-posedness. For every φ∗ ∈ H1(M) there exist ε > 0 and T = T (φ∗) > 0 suh

that the following holds true:

(i) For all initial data φ ∈ Bε(φ∗) ∩ Hs(M) the Cauhy problem (2.1) has a unique

solution

u =: Φ(φ) ∈ C
(
[0, T ),Hs(M)

)
∩Xs

(
[0, T )

)
.

(ii) The solution onstruted in (i) obeys the onservation laws (1.23) and (1.24), and

the �ow map

Φ: Bε(φ∗) ∩Hs(M) → C
(
[0, T ),Hs(M)

)
∩Xs

(
[0, T )

)

is Lipshitz ontinuous.

Small data global well-posedness. With φ∗ = 0 there exists ε0 > 0 suh that for all T > 0
the assertions (i) and (ii) above hold true.

First, we state some well-known results about the funtion spaes Xs
and Y s

.

Proposition 2.4 (Properties of Xs
and Y s

). Let τ = [a, b) ⊂ R be a bounded time interval.

(i) For s ∈ R it holds that

Xs →֒ Y s →֒ L∞(R,Hs(M))

and

Xs(τ) →֒ Y s(τ) →֒ L∞(τ,Hs(M)).

(ii) In addition, assume that 0 ∈ τ . Let s ≥ 0 and φ ∈ Hs(M), then we have that eit∆gφ ∈
Xs(τ) and

‖eit∆gφ‖Xs(τ) . ‖φ‖Hs(M).

(iii) Suppose u ∈ Y s
for some s ∈ R. Then,

(∑

N≥1

N2s‖PNu‖2Y 0

) 1
2

. ‖u‖Y s .

The orresponding statement also holds for Y s(τ).

Proof. The embeddings given in (i) follow immediately from the embeddings

Up →֒ V p →֒ L∞(R, L2(M))

in Proposition 1.23 (v). Note that Up →֒ L∞(R, L2(M)) and V p →֒ L∞(R, L2(M)) hold with

onstant one, f. Proposition 1.21 (iii) and Proposition 1.23 (iii).

Claim (ii) follows immediately from the de�nition of Xs
: Indeed,

‖eit∆gφ‖Xs(τ) ≤ ‖eit∆gφ‖Xs .

We then dedue that

‖eit∆gφ‖2Xs =
∑

N≥1

N2s‖e−it∆gPNe
it∆gφ‖2U2

t
≤
∑

N≥1

N2s‖PNφ‖2L2(M) ≈ ‖φ‖2Hs(M).

To prove the last statement, we reall that the V 2
-norm is based on the L2

-norm and ompute

∑

N≥1

N2s‖PNu‖2Y 0 =
∑

N≥1

N2s
∑

M≥1

‖e−it∆gPMPNu‖2V 2 .
∑

N≥1

N2s‖e−it∆gPNu‖2V 2 .

Obviously, a similar argument holds for Y s(τ), too.
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Let τ = [a, b) and f ∈ L1(τ, L2(M)). Then, we de�ne the Duhamel term as

I(f)(t) :=
∫ t

a
ei(t−s)∆gf(s) ds (2.3)

for t ∈ τ , I(f)(t) := 0 for t < a, and I(f)(t) := I(f)(b) for t ≥ b.

The following estimate of the Duhamel term is well-known in this ontext. The proof of this

estimate an be found for the standard torus, τ = [0, T ), and spaes Xs
and Y s

with unit

sale in [HTT11, Proposition 2.11℄. In [Her13, Lemma 2.5 (ii)℄, a similar result was stated

with sharp spetral projetors but without a proof. The novelty here is that we show this

estimate to hold true also for smooth spetral projetors. Note that in [Her13℄ the following,

less restritive ondition was required:

sup
v∈Y −s(τ):

‖v‖Y −s(τ)=1

∣∣∣∣
∑

N≥1

∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ <∞.

Lemma 2.5. Let s ∈ R and τ = [a, b) ⊂ R. Furthermore, let PNf ∈ L1(τ, L2(M)) for all

N ≥ 1. Then,
∑

N≥1 I(PNf) =: I(f) onverges in Xs(τ) and

‖I(f)‖Xs(τ) . sup
v∈Y −s(τ):

‖v‖Y −s(τ)=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ (2.4)

provided that the right-hand side is �nite. In partiular, if f ∈ L1(τ,Hs(M)), then

‖I(f)‖Xs(τ) . ‖f‖L1(τ,Hs(M)). (2.5)

Proof. For the proof of (2.7) below we adapt the idea presented in [HTT11, Proposition 2.11℄.

For dyadi N > 1 let the projetors with sharp ut-o�s be de�ned as

P#
N :=

∑

k∈N0:
N≤|√λk|<2N

hk and P#
1 :=

∑

k∈N0:
0≤|√λk|<2

hk.

First, we remark that it su�es to onsider P#
N instead of the smooth projetors PN . Indeed,

let P̃#
N := P#

N/2 + P#
N for N > 1 and P̃#

1 := P#
1 . We prove that for any P̃#

N u ∈ U2
we have

‖PNu‖U2 ≤ ‖P̃#
N u‖U2 . (2.6)

Sine P̃#
N PN = PN , this immediately implies

∑

N≥1

N2s‖PNu‖2U2 ≤ 2(1 + 22s)
∑

N≥1

N2s‖P#
N u‖2U2 .

In order to verify (2.6), it su�es to onsider an U2
-atom P̃#

N a 6= 0 with representation

P̃#
N a(t) =

∑K
k=1 1[tk−1,tk)(t)φk with

∑K
k=1 ‖φk‖2L2(M) = 1 and a partition (tk)k. Note that

φk = P̃#
N φk. De�ne A :=

∑K
k=1 ‖PNφk‖2L2(M), and observe from the boundedness of PN in

L2(M) that 0 < A ≤ 1. We may write PNa(t) = A
∑K

j=1 1[tk−1,tk)(t)
PNφk
A whih implies

‖PNa‖U2 ≤ A and hene, (2.6) follows.
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For L ≥ 1 we prove the estimate

‖I(P≤Lf)‖Xs . sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ (2.7)

uniformly in L. Sine t 7→ eitλkhk(P≤LI(f))(t) is for every k ≥ 0 absolutely ontinuous and of

bounded variation, we onlude that t 7→ e−it∆gPNI(P≤Lf)(t) and t 7→ e−it∆g P̃#
N I(P≤Lf)(t)

are in U2
. Then, we see from the de�nition of Xs

that

‖I(P≤Lf)‖2Xs .
∑

1≤N≤L
N2s‖e−it∆gP#

N I(P≤Lf)‖2U2
t

=
∑

1≤N≤L
N2s

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
2

U2
t

.

By duality, ‖a‖ℓ2 = sup‖b‖ℓ2=1 ‖ab‖ℓ1 . Thus, for every ε > 0 we may hoose a positive sequene

b ∈ ℓ2(2N0) with ‖b‖ℓ2(2N0 ) = 1 suh that

‖I(P≤Lf)‖Xs .
∑

1≤N≤L
bNN

s

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
U2
t

+ ε.

By duality (see Lemma 1.25), for any dyadi 1 ≤ N ≤ L, there is a V 2
-funtion vN ∈

C∞
0 (R, L2(M)) with ‖vN‖V 2 = 1 suh that

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
U2
t

≤
∣∣∣∣
∫

τ

∫

M
P#
N (P≤Lf)(t, x)eit∆gvN (t, x) dx dt

∣∣∣∣+
ε

N
,

(2.8)

where�after a rotation of vN�we may assume the integral to be positive. We now de�ne the

funtion v : τ ×M → C,

v(t, x) := (1 + 2−s)−1
∑

1≤M≤L
bMM

seit∆gP#
M (vM )(t, x),

and notie that

P#
N v(t) = (1 + 2−s)−1bNN

seit∆gP#
N (vN )(t).

One easily veri�es v ∈ Y −s
and ‖v‖Y −s ≤ 1. Furthermore, sine

∑
1≤N≤L P

#
N P≤L = P≤L,

‖I(P≤Lf)‖Xs .

∣∣∣∣
∑

1≤N≤L

∫

τ

∫

M
P#
N (P≤Lf)(t, x)v(t, x) dx dt

∣∣∣∣+ Cε

.
∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣+ Cε.

Inequality (2.7) follows sine ε > 0 was arbitrary.

We onlude (2.4) now. Sine the left-hand side of the following estimate is smaller than

‖I(P≤Lf)‖Xs
, inequality (2.7) implies

( ∑

1≤N<L
N2s‖e−it∆gPNI(f)‖2U2

t

) 1
2

. sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ <∞
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uniformly in L ≥ 1. Hene,

(∑

N≥1

N2s‖e−it∆gPNI(f)‖2U2
t

) 1
2

<∞,

whih implies that I(f) ∈ Xs
. Thus, I(f) ∈ Xs(τ) and the estimate (2.4) holds sine the

supremum in (2.4) is taken over a larger set.

The bound (2.5) follows essentially from (2.4) in onjuntion with the embedding Y −s(τ) →֒
L∞(τ,H−s(M)):

‖I(f)‖Xs(τ) . sup
v∈Y −s(τ):

‖v‖Y −s(τ)≤1

∣∣∣∣
∫

τ

∫

M
f(t, x)v(t, x) dx dt

∣∣∣∣

. sup
v∈Y −s(τ):

‖v‖Y −s(τ)≤1

‖v‖L∞(τ,H−s(M))‖f‖L1(τ,Hs(M))

. ‖f‖L1(τ,Hs(M)).

Even though the estimate in the next lemma is not sale invariant, it turns out to be useful

in the sequel. The estimate was proved in [Her13, Lemma 3.4℄.

Lemma 2.6. Let τ ⊂ R be a bounded interval. For all funtions u1, u2, u3 ∈ L∞(τ, L2(M))
and dyadi numbers N1 ≥ N2 ≥ N3 ≥ 1 the estimate

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖PNjuj‖L∞(τ,L2(M))

holds true.

Proof. Hölder's estimate yields

‖PN1u1PN2u2PN3u3‖L2(τ×M) ≤ |τ | 12 ‖PN1u1‖L∞
t L2

x
‖PN2u2‖L∞

t,x
‖PN3u3‖L∞

t,x
.

We �x t ∈ τ and apply Bernstein's inequality, see Lemma 1.53 (ii), for j = 2, 3, to obtain

‖PNjuj(t)‖L∞(M) . N
3
2
j ‖PNjuj(t)‖L2(M).

By taking the supremum in t ∈ τ , we get

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖PNjuj‖L∞(τ,L2(M)).

The result in Lemma 1.54 may be extended from single eigenfuntions to the spetral loaliza-

tion operators PN . Hene, we get a bound for the produt of four spetrally loalized funtions

on M , where the spetrum of one funtion is muh bigger than the spetrum of all the others.

Herr [Her13, Lemma 3.3℄ proved that Lemma 1.54 together with the Weyl asymptoti yields

this result.
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Corollary 2.7. There exists C ≥ 1 suh that if N0, . . . , N3 are dyadi with C−1N0 ≥
N1, N2, N3 ≥ 1, then for every γ ≥ 1 there exists Cγ > 0 suh that for any PNjfj ∈ L2(M),
j = 0, 1, 2, 3,

∣∣∣∣
∫

M
PN0f0(x)PN1f1(x)PN2f2(x)PN3f3(x) dx

∣∣∣∣ ≤ CγN
−γ
0

3∏

j=0

‖PNjfj‖L2(M).

So far, we have not used Assumption 2.1. We now show that the assumption implies an

analogue bound for funtions in Y 0
. We follow the proof of [HS15, Proposition 3.3℄ and add

some details.

Lemma 2.8. Let τ ⊆ τ0 be any interval. There exists δ > 0 suh that for all dyadi numbers

N1 ≥ N2 ≥ N3 ≥ 1 and PNjuj ∈ Y 0
, j = 1, 2, 3, the following holds true

‖PN1u1PN2u2PN3u3‖L2(τ×M) .

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjuj‖Y 0 .

Proof. In this proof, we write Cδ(N1, N2, N3) :=
(
N3
N1

+ 1
N2

)δ
N2N3.

The proof is split into three parts. In the �rst two steps, we prove the estimate with the U2
-

norm respetively the U6
-norm on the right-hand side. Then, we interpolate those estimates

in the third step to get the V 2
-norm on the right-hand side.

Step 1. We laim that if e−it∆gPNjuj ∈ U2
, j = 1, 2, 3, then

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Cδ(N1, N2, N3)

3∏

j=1

‖e−it∆gPNjuj‖U2 , (2.9)

where δ > 0 is the δ as given in Assumption 2.1.

It su�es to prove (2.9) for U2
-atoms. Indeed, �rst, note that if PN1u1, PN2u2, PN3u3 ∈ U2

with representation PNjuj =
∑∞

ℓ=1 λj,ℓPNjaj,ℓ, j = 1, 2, 3, then

‖PN1e
it∆gu1PN2e

it∆gu2PN3e
it∆gu3‖L2(τ×M) =

∥∥∥∥
3∏

j=1

∞∑

ℓ=1

λj,ℓe
it∆gPNjaj,ℓ

∥∥∥∥
L2(τ×M)

sine the L6
-Strihartz estimate implies for any ℓ0 ≥ 1 and j = 1, 2, 3,

∥∥∥∥e
it∆gPNj

( ∞∑

ℓ=ℓ0

λj,ℓaj,ℓ(t)

)
−

∞∑

ℓ=ℓ0

λj,ℓe
it∆gPNjaj,ℓ(t)

∥∥∥∥
L6(τ×M)

. 2
∞∑

ℓ=ℓ0

|λℓ|.

Now, let ε > 0 and e−it∆gPNjuj ∈ U2
with e−it∆gPNjuj =

∑∞
ℓ=1 λj,ℓPNjaj,ℓ and

∑∞
ℓ=1 |λj,ℓ| ≤

‖e−it∆gPNjuj‖U2 + ε for j = 1, 2, 3. Note that eit∆gPNjaj,ℓ are U
2
-atoms and assume that

(2.9) holds for U2
-atoms, then

‖PN1u1PN2u2PN3u3‖L2(τ×M) ≤
∞∑

ℓ1,ℓ2,ℓ3=1

|λ1,ℓ1λ2,ℓ2λ3,ℓ3 |
∥∥∥∥

3∏

j=1

eit∆gPNjaj,ℓj

∥∥∥∥
L2(τ×M)

. Cδ(N1, N2, N3)

∞∑

ℓ1,ℓ2,ℓ3=1

|λ1,ℓ1λ2,ℓ2λ3,ℓ3 |

. Cδ(N1, N2, N3)

3∏

j=1

(
‖e−it∆gPNjuj‖U2 + ε

)
.
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Hene, the desired estimate (2.9) follows one we proved it for U2
-atoms.

Let a1, a2, and a3 be U2
-atoms given as

PNjaj(t) =

Kj∑

k=1

1Ij,k(t)e
it∆gPNjφj,k,

Kj∑

k=1

‖φj,k‖2L2(M) = 1,

with pairwise disjoint right-open intervals Ij,1, Ij,2, . . . , Ij,Kj for j = 1, 2, 3. The disjointedness
of the intervals implies

‖PN1a1PN2a2PN3a3‖2L2(τ×M) ≤
∑

k1,k2,k3

‖eit∆gPN1φ1,k1e
it∆gPN2φ2,k2e

it∆gPN3φ3,k3‖2L2(τ×M),

where we sum over kj = 1, . . . ,Kj , j = 1, 2, 3. Assumption 2.1 yields

‖PN1a1PN2a2PN3a3‖L2(τ×M) . Cδ(N1, N2, N3)

( 3∏

j=1

Kj∑

k=1

‖φj,k‖2L2(M)

) 1
2

. Cδ(N1, N2, N3).

This �nally proves (2.9).

Step 2. By hoosing N = N1 = N2 = N3 and φ = φ1 = φ2 = φ3 in Assumption 2.1, we see

that the following L6
-estimate is implied

‖PNeit∆gφ‖L6(τ×M) . N
2
3 ‖PNφ‖L2(M).

By the same argument as in the �rst step, this estimate arries over to U6
-atoms. Thus

‖PNu‖L6(τ×M) . N
2
3 ‖e−it∆gPNu‖U6

for e−it∆gPNu ∈ U6
. Now, we dedue for Nj ≥ 1 and e−it∆gPNjuj ∈ U6

, j = 1, 2, 3, from
Hölder's inequality that

‖PN1u1PN2u2PN3u3‖L2(τ×M) . (N1N2N3)
2
3

3∏

j=1

‖e−it∆gPNjuj‖U6 . (2.10)

Let N1 ≥ N2 ≥ N3 ≥ 1 and p ≥ 1. Another estimate, whih is not sale invariant but does

not depend on N1, follows immediately from Lemma 2.6 and Up →֒ L∞(τ, L2(M)):

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖e−it∆gPNjuj‖Up . (2.11)

Step 3. In this step, we interpolate the estimates given in the �rst two steps. For that purpose,

we distinguish two ases.

Case 1. Assume N2N3 > N1. Applying the interpolation statement in Lemma 1.24 to (2.9)

and (2.10) yields

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Aδ

3∏

j=1

‖e−it∆gPNjuj‖V 2 ,
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where

Aδ := Cδ(N1, N2, N3)
(
ln

(N1N2N3)
2
3

Cδ(N1, N2, N3)
+ 1
)3

. Cδ(N1, N2, N3)
(
ln
N1

N3
+ 1
)3

. Cδ′(N1, N2, N3)

for any 0 < δ′ < δ. This implies the laim in this ase.

Case 2. Assume N2N3 ≤ N1. In this ase, we interpolate (see Lemma 1.24) the inequalities

(2.9) and (2.11) (for some p > 2) and get

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Bδ

3∏

j=1

‖e−it∆gPNjuj‖V 2 ,

where

Bδ := Cδ(N1, N2, N3)
(
ln

(N2N3)
3
2

Cδ(N1, N2, N3)
+ 1
)3

. Cδ(N1, N2, N3)(lnN2 + 1)3

. Cδ′(N1, N2, N3)

for any 0 < δ′ < δ. This �nishes the proof.

We prove Theorem 2.3 by the ontration mapping priniple in a small losed ball in the spae

C([0, T ),Hs(M)) ∩Xs([0, T )). In order to do so, we solve the following integral equation for

a given φ ∈ Hs(M),
u(t) = eit∆gφ∓ iI(|u|4u)(t), (2.12)

where I(f) is de�ned as in (2.3) with τ = [0, T ).

Now, we provide an estimate for the Duhamel term measured in the restrition spae Xs(τ).
The proof is a ombination of the arguments in [HTT11, Proposition 4.1℄ and [Her13, Propo-

sition 4.2℄.

Lemma 2.9. Let s ≥ 1 be �xed and T > 0 suh that [0, T ) ⊆ τ0. Then, for any uj ∈
Xs([0, T )), j = 1, . . . , 5, the estimate

∥∥∥∥I
( 5∏

j=1

ũj

)∥∥∥∥
Xs([0,T ))

.

5∑

k=1

‖uk‖Xs([0,T ))

5∏

j=1
j 6=k

‖uj‖X1([0,T ))

holds true, where ũj denotes either uj or its omplex onjugate uj .

Proof. We de�ne τ := [0, T ) for brevity. From Lemma 2.5, we onlude that I
(∏5

j=1 ũj
)
∈

Xs(τ) and

∥∥∥∥I
( 5∏

j=1

ũj

)∥∥∥∥
Xs(τ)

. sup
u0∈Y −s(τ):

‖u0‖Y −s(τ)=1

∑

N0≥1

∣∣∣∣
∫

τ

∫

M
PN0

( 5∏

j=1

ũj(t, x)

)
u0(t, x) dx dt

∣∣∣∣.

In order to get rid of the time restrition on the spaes, we onsider extensions to R of uj ,
j = 0, . . . , 5, without hanging the notation. Hene, it su�es to prove

∑

N0≥1

∣∣∣∣
∫

τ

∫

M
PN0 ũ0(t, x)

5∏

j=1

ũj(t, x) dx dt

∣∣∣∣ . ‖u0‖Y −s

5∑

k=1

‖uk‖Xs

5∏

j=1
j 6=k

‖uj‖X1 . (2.13)
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We dyadially deompose every funtion into

ũj =
∑

Nj≥1

PNj ũj, j = 1, . . . , 5.

Sine the expression is symmetri in u1, . . . , u5, it su�es to replae the left-hand side of

(2.13) by

Σ :=
∑

(N0,...,N5)∈N

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj(t, x) dx dt

∣∣∣∣,

where N is the set of all sextuples (N0, N1, . . . , N5) of dyadi numbers suh that

N0 ≥ 1 and N1 ≥ N2 ≥ . . . ≥ N5 ≥ 1.

We split Σ into Σ = Σ1 +Σ2, where

Σ1 +Σ2 :=
∑

(N0,...,N5)∈N :
max{N0,N2}≈N1

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj dx dt

∣∣∣∣+
∑

(N0,...,N5)∈N :
max{N0,N2}6≈N1

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj dx dt

∣∣∣∣.

First, we estimate the ontribution from Σ1. By Cauhy�Shwarz, it su�es to prove

∑

(N0,...,N5)∈N :
max{N0,N2}≈N1

‖PN1u1PN3u3PN5u5‖L2(τ×M)‖PN0u0PN2u2PN4u4‖L2(τ×M)

. ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 .

We split the sum into two parts Σ1,1 and Σ1,2, where Σ1,1 is de�ned by the onstraint N2 ≤
N0 ≈ N1. Consequently, Σ1,2 is de�ned by the onstraint N0 < N2 ≈ N1.

Part Σ1,1. Applying Lemma 2.8 twie, we obtain

Σ1,1 .
∑

(N0,...,N5)∈N :
N2≤N0≈N1

N2N3N4N5

(
N5

N1
+

1

N3

)δ(N4

N0
+

1

N2

)δ 5∏

j=0

‖PNjuj‖Y 0

for some δ > 0. Using Cauhy�Shwarz with respet to N5, N4, N3, and N2 as well as

Proposition 2.4 (iii), we estimate

Σ1,1 .
∑

N0,N1≥1:
N0≈N1

‖PN0u0‖Y 0‖PN1u1‖Y 0

5∏

j=2

‖uj‖Y 1 .

Sine N0 ≈ N1, we onlude from Cauhy�Shwarz

Σ1,1 . ‖u0‖Y −s‖u1‖Y s

5∏

j=2

‖uj‖Y 1 .

Part Σ1,2. We apply Lemma 2.8 twie and dedue

Σ1,2 .
∑

(N0,...,N5)∈N :
N0<N2≈N1

N0N3N4N5

(
N5

N1
+

1

N3

)δ 5∏

j=0

‖PNjuj‖Y 0
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for some δ > 0. Sine N0 . N1, we have N0 . N1+s−ν
1 Nν−s

0 for some small 0 < ν < s.
Cauhy�Shwarz with respet to N5, N4, N3, and N0 as well as Proposition 2.4 (iii) yield

Σ1,2 .
∑

N1≥N2≥1:
N1≈N2

N1+s
1 ‖PN1u1‖Y 0‖PN2u2‖Y 0‖u0‖Y −s

5∏

j=3

‖uj‖Y 1 .

Another appliation of Cauhy�Shwarz and using N1 ≈ N2 leads to

Σ1,2 . ‖u0‖Y −s‖u1‖Y s

5∏

j=2

‖uj‖Y 1

as asserted.

We now estimate the ontribution from Σ2 and split the sum into two parts Σ2 = Σ2,1 +
Σ2,2, where Σ2,1 is de�ned by the onstraint max{N0, N2} ≪ N1 and Σ2,2 is de�ned by the

onstraint N0 ≫ N1.

Part Σ2,1. We deompose

Σ2,1 ≤
∑

(N0,...,N5)∈N :
N0,N2≪N1

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt,

where

I(N0, . . . , N5, L)(t) :=

∫

M
PL

( 2∏

j=0

PNj ũj

)
(t, x)

5∏

j=3

PNj ũj(t, x) dx.

On the one hand, if L & N1, then we have N3, N4, N5 ≪ L. We an apply Corollary 2.7 to

onlude for every t ∈ τ ,

|I(N0, . . . , N5, L)(t)| . L−5‖PL(PN0 ũ0PN1 ũ1PN2 ũ2)(t)‖L2(M)

5∏

j=3

‖PNjuj(t)‖L2(M).

Now, we apply Hölder's inequality with respet to t and Lemma 2.6 to bound

∫

τ
|I(N0, . . . , N5, L)(t)| dt . L−5N

3
2
0 N

3
2
2

5∏

j=0

‖PNjuj‖L∞(τ,L2(M)),

whih in turn implies

∑

L&N1

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−2

1

5∏

j=0

‖PNjuj‖Y 0 . (2.14)

On the other hand, if L≪ N1, then L,N0, N2 ≪ N1, and we use Corollary 2.7 to get

|I(N0, . . . , N5, L)(t)| . N−5
1

2∏

j=0

‖PNjuj(t)‖L2(M)‖PL(PN3 ũ3PN4 ũ4PN5 ũ5)(t)‖L2(M).

Again, from an appliation of Hölder's inequality with respet to t and Lemma 2.6, we infer

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−5

1 N
3
2
4 N

3
2
5

5∏

j=0

‖PNjuj‖L∞(τ,L2(M)).
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This in onjuntion with (2.14) gives

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−1

1

5∏

j=0

‖PNjuj‖Y 0 ,

and hene,

Σ2,1 .
∑

(N0,...,N5)∈N :
N0,N2≪N1

N−1
1

5∏

j=0

‖PNjuj‖Y 0 .

Using Cauhy�Shwarz with respet to N5, N4, N3, and N2 yields

Σ2,1 . N−1
1 ‖PN0u0‖Y 0‖PN1u1‖Y 0

5∏

j=2

‖uj‖Y 1 .

Multiplying (N1
N0

)s−ν for some small 0 < ν < 1 and applying Cauhy�Shwarz with respet to

N0 and N1 leads to

Σ2,1 . ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 .

Part Σ2,2. This ase may be treated similarly as term Σ2,1 by swithing the roles of N0 and

N1. By writing

Σ2,2 ≤
∑

(N0,...,N5)∈N :
N0≫N1

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt

as above, we obtain the two estimates

∫

τ
|I(N0, . . . , N5, L)(t)| dt . L−5N

3
2
1 N

3
2
2

5∏

j=0

‖PNjuj‖L∞(τ,L2(M))

provided L & N0 and

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−5

0 N
3
2
4 N

3
2
5

5∏

j=0

‖PNjuj‖L∞(τ,L2(M))

provided L≪ N0. This implies

Σ2,2 .
∑

(N0,...,N5)∈N :
N0≫N1

N−1
0

5∏

j=0

‖PNjuj‖Y 0 .

Multiplying (N0
N1

)s−ν for some small 0 < ν < 1 and arguing as above, we see that

Σ2,2 . ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 ,

whih �nishes the proof.

Remark. If M = T
3
, orthogonality implies that there is no ontribution from Σ2. Similarly,

if M = S
3
, then Σ2 = 0 sine the produt of �ve spherial harmonis of maximal degree k an

be developed into a series of spherial harmonis of maximal degree 5k. ♦
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Finally, we have all the ingredients to prove Theorem 2.3. The strategy is lose to the argu-

ments on Eulidean spaes, see e.g. [CW90, Tao07℄, and was �rst applied to obtain energy-

ritial well-posedness for the NLS equation posed on a ompat, boundaryless manifold by

Herr�Tataru�Tzvetkov [HTT11, Theorems 1.1 & 1.2℄. We losely follow their arguments and

add the treatment for s > 1.

Proof of Theorem 2.3. Let s ≥ 1.

Step 1 (Small data). Due to the polynomial struture of the nonlinearity, Lemma 2.9 shows

that there exists Cs,1 ≥ 1 suh that

∥∥I(|u|4u− |v4|v)
∥∥
Xs([0,T ))

≤ Cs,1
(
‖u‖4Xs([0,T )) + ‖u‖4Xs([0,T ))

)
‖u− v‖Xs([0,T ))

holds true for all T > 0 and u, v ∈ Xs([0, T )).

Given two parameters εs > 0 and δs > 0, we de�ne the sets

Bs
εs :=

{
φ ∈ Hs(M) : ‖φ‖Hs(M) ≤ εs

}
,

Ds
δs

:=
{
u ∈ C

(
[0, 1),Hs(M)

)
∩Xs

(
[0, 1)

)
: ‖u‖Xs([0,1)) ≤ δs

}
.

Note that Ds
δs

is losed in Xs([0, 1)), whih in turn implies that Ds
δs

is a omplete spae.

For φ ∈ Bs
εs we intend to solve the equation

u = eit∆gφ∓ iI(|u|4u) =: L(φ) +NL(u),

by the ontration mapping priniple in Ds
δs
. Choose

δs := (4Cs,1)
− 1

4
and εs :=

δs
2Cs,0

, (2.15)

where Cs,0 is the impliit onstant in Proposition 2.4 (ii). Let φ ∈ Bs
εs , then for every u ∈ Ds

δs
we obtain

‖L(φ) +NL(u)‖Xs([0,1)) ≤ Cs,0εs + Cs,1δ
5
s ≤ δs.

For all u, v ∈ Ds
δs

we also dedue

‖NL(u)−NL(v)‖Xs([0,1)) ≤
1

2
‖u− v‖Xs([0,1)).

This implies that for any φ ∈ Bs
εs the nonlinear map u 7→ L(φ) +NL(u) is a ontration on

Ds
δs
. The Banah �xed-point theorem now proves that u 7→ L(φ) +NL(u) has a unique �xed

point in Ds
δs
. The uniqueness in the full spae is disussed in the third step. Furthermore, for

two funtions φ,ψ ∈ Bs
εs and their orresponding �xed points u, v ∈ Ds

δs
, we have

‖u− v‖Xs([0,1)) ≤ Cs,0‖φ− ψ‖Hs(M) +
1

2
‖u− v‖Xs([0,1)).

This proves the Lipshitz ontinuity of φ 7→ u with onstant 2Cs,0.

Step 2 (Large data). Let r > 0 and N ≥ 1 be given. For some parameters εs, δs, Rs, and Ts
with the properties 0 < εs ≤ r and 0 < δs ≤ Rs, we de�ne

Bs
εs,r

:=
{
φ ∈ Hs(M) : ‖φ>N‖Hs(M) ≤ εs, ‖φ‖Hs(M) ≤ r

}
,

Ds
δs,Rs,Ts

:=
{
u ∈ C

(
[0, Ts),H

s(M)
)
∩Xs

(
[0, Ts)

)
: ‖u>N‖Xs([0,Ts)) ≤ δs, ‖u‖Xs([0,Ts)) ≤ Rs

}
,
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where f>N := (Id− P≤N )f . For any φ ∈ Bs
εs,r one easily sees that

∥∥(L(φ) +NL(u)
)
>N

∥∥
Xs([0,Ts))

≤ Cs,0εs + ‖NL(u)>N‖Xs([0,Ts)).

We split NL(u) into two parts,

NL(u) = NL1(u≤N , u>N ) +NL2(u≤N , u>N ),

suh that NL1 is at least quadrati in u>N and NL2 is at least quarti in u≤N . Then, thanks
to Lemma 2.9, we dedue for u ∈ Ds

δs,Rs,Ts

‖NL1(u≤N , u>N )‖Xs([0,Ts)) ≤ Cs,1δ
2
sR

3
s. (2.16)

Analogously, for u, v ∈ Ds
δs,Rs,Ts

,

‖NL1(u≤N , u>N )−NL1(v≤N , v>N )‖Xs([0,Ts)) ≤ Cs,2δsR
3
s‖u− v‖Xs([0,Ts)).

For estimating NL2(u≤N , u>N ), we use Lemma 2.5 to argue that is su�es to bound the non-

linearity in L1([0, Ts),H
s(M)). Hene, by Lemma 1.55, Lemma 1.56, and Hölder's inequality,

one easily heks

3

‖NL2(u≤N , u>N )‖Xs([0,Ts)) ≤ Cs,3N
4‖u‖L∞([0,Ts),Hs(M))‖u‖4L4([0,Ts),H1(M)) ≤ Cs,3N

4TsR
5
s.

(2.17)

A similar argument gives

‖NL2(u≤N , u>N )−NL2(v≤N , v>N )‖Xs([0,Ts)) ≤ Cs,4N
4TsR

4
s‖u− v‖Xs([0,Ts)).

Set Cs := max{C1,0, . . . , C1,4, Cs,0, . . . , Cs,4}, where C1,j , j = 0, . . . , 4, are the orresponding
onstants in the ase s = 1, and hoose

Rs := 4Csr, δs :=
1

8CsR3
s

, εs :=
δs
2Cs

, and Ts :=
δs

8CsR5
sN

4
. (2.18)

Hene, for φ ∈ Bs
εs,r the map

L(φ) +NL : Ds
δs,Rs,Ts → Ds

δs,Rs,Ts

is a strit ontration and therefore, has a unique �xed point u, and φ 7→ u is Lipshitz

ontinuous with onstant 2Cs.

Step 3 (Uniqueness). By the translation invariane in time, it su�es to onsider

u, v ∈ C([0, T ),Hs(M)) ∩Xs([0, T ))

with u(0) = v(0) in order to prove uniqueness. That u = v for arbitrarily small T > 0 follows

from the uniqueness of the �xed point in Step 2.

Step 4 (Time of existene). Let φ∗ ∈ H1(M), de�ne r := 2‖φ∗‖H1(M), and hoose N ≥ 1
large enough suh that ‖(φ∗)>N‖H1(M) ≤ ε1

2 , where 0 < ε1 ≤ r is de�ned by (2.18). Let

φ ∈ Bε1/2(φ∗) ∩ Hs(M), then φ ∈ B1
ε1,r ∩ Hs(M). We onlude from Step 2 that there is

T1 = T1(r,N) > 0 given by (2.18) and a unique solution

u ∈ C([0, T1),H
1(M)) ∩X1([0, T1)),

3

For notational onveniene, we hoose σ = 2 instead of σ = 3
2
+ in the appliation of Lemma 1.55 and

Lemma 1.56, aepting that the power of N is not the best we an ahieve.
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whih depends Lipshitz ontinuously on the initial data φ. Note that the time of existene

is determined only by φ∗.

For s > 1 we now prove that this solution is even more regular on the same time interval. Let

Ts,max be the supremum over all Ts suh that

u ∈ C([0, Ts),H
s(M)) ∩Xs([0, Ts))

is the unique solution with initial data φ. Step 2 guarantees that Ts,max > 0. Assume that

Ts,max < T1, then onsider 0 < Ts < Ts,max and let R1, δ1, ε1, and T1 be de�ned as in (2.18).

Note that the parameters depend only on φ∗.

From Step 2 with s = 1, we get that ‖u‖X1([0,Ts)) ≤ R1 and ‖u>N‖X1([0,Ts)) ≤ δ1. Reonsid-
ering (2.16) and applying the bounds on u in X1

, we infer

‖NL1(u≤N , u>N )‖Xs([0,Ts)) . ‖u>N‖X1([0,Ts))‖u‖3X1([0,Ts))
‖u‖Xs([0,Ts)) ≤ Csδ1R

3
1‖u‖Xs([0,Ts)),

where Cs is de�ned as in Step 2. We may also improve (2.17) to

‖NL2(u≤N , u>N )‖Xs([0,Ts)) ≤ CsN
4TsR

4
1‖u‖Xs([0,Ts)).

Hene,

‖u‖Xs([0,Ts)) ≤ Cs‖φ‖Hs(M) + Cs(δ1R
3
1 +N4TsR

4
1)‖u‖Xs([0,Ts))

for any Ts < Ts,max, and we onlude from the embedding Xs([0, Ts)) →֒ L∞([0, Ts),H
s(M))

that

sup
t∈[0,Ts,max)

‖u(t)‖Hs(M) ≤ 2Cs‖φ‖Hs(M).

Consequently, for every sequene (tn)n with tn ∈ [0, Ts,max) and tn → Ts,max as n → ∞ we

have u(tn) ∈ Hs(M) for any n ∈ N. Thus, there exist a subsequene (tnk
)k and v ∈ Hs(M)

with u(tnk
) ⇀ v in Hs(M) as k → ∞. By the Rellih�Kondrahov embedding theorem, we

see that u(tnk
) → v in H1(M) as k → ∞. Sine Ts,max < T1 we know that u(tnk

) → u(Ts,max)
in H1(M) as k → ∞. Therefore, we dedue v = u(Ts,max) ∈ Hs(M). Solving the equation

(2.1) with initial data u(Ts,max) forward and bakward in time, whih is possible by Step 2, we

see that the solution u an be uniquely extended in Hs(M). This ontradits the de�nition

of Ts,max and hene, Ts,max ≥ T1.

The Lipshitz ontinuity for s > 1 follows sine r, N , ε1, δ1, R1, and T1 depend only on φ∗
and

‖u− v‖Xs([0,T1)) ≤ Cs,0‖φ− ψ‖Hs(M) + 2Cs,1R
4
1‖u− v‖Xs([0,T1)).

Step 5 (Global well-posedness, defousing ase). We �rst onsider s = 1. Beause of the �rst
step, we only have to prove a suitable a priori bound on solutions in H1(M).

The onservation laws (1.23) and (1.24) and the Sobolev embedding H1(M) →֒ L6(M) imply

that there exists some d > 0 suh that for every t,

‖u(t)‖2H1(M) ≤ 2E
(
u(0)

)
+ 2M

(
u(0)

)
≤ ‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M). (2.19)

If ‖u(0)‖H1(M) is su�iently small, then it follows that for ε1 as in (2.15) the solution satis�es

‖u(t)‖H1(M) ≤ ε1 for any interval of existene. Hene, we an iterate the argument in the �rst

step inde�nitely and extend the loal well-posedness result to global well-posedness.

For s > 1 we proeed as follows. Let φ ∈ Hs(M) with H1
-norm small enough suh that the

solution exists globally in H1
and Step 1 with s = 1 is appliable. Let Ts,max be the supremum

over all Ts suh that

u ∈ C([0, Ts),H
s(M)) ∩Xs([0, Ts))
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is the unique solution with initial data φ. De�ne v := u( · + Ts,max − 1
2) and T

′
s,max := 1

2 if

Ts,max ≥ 1 and v := u and T ′
s,max := Ts,max otherwise. From Step 1 with s = 1 and (2.19) we

dedue that

‖v‖X1([0,1) ≤ 2C1,0‖v(0)‖H1(M) ≤ 2C1,0

(
‖φ‖2H1(M) + d2‖φ‖6H1(M)

) 1
2

and therefore, we gain the following a priori estimate

‖v‖Xs([0,Ts)) ≤ Cs,0‖v(0)‖Hs(M) +
1

2
‖v‖Xs([0,Ts))

for any 0 < Ts < T ′
s,max provided ‖φ‖H1(M) is su�iently small. By similar arguments as

above, this yields

sup
t∈[0,T ′

s,max)
‖v(t)‖Hs(M) ≤ 2Cs,0‖v(0)‖Hs(M),

and we onlude u(Ts,max) ∈ Hs(M). Solving (2.1) forward and bakward in time with initial

data u(Ts,max) ontradits the hoie of Ts,max.

Step 6 (Global well-posedness, fousing ase). In this ase, the argument is a bit di�erent. For

u ∈ X1([0, 1)) we have

‖u(t)‖2H1(M) ≤ 2E
(
u(0)

)
+ 2M

(
u(0)

)
+

1

3
‖u(t)‖6L6(M)

≤ ‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M) + d2‖u(t)‖6H1(M)

(2.20)

Consider the funtion f : [0,∞) → R given by f(x) := x−d2x3. The funtion f inreases from

0 to its maximum value 2/(3
√
3d) in x = 1/(

√
3d). Moreover, f(x) ≥ (2/3)x on the interval

I := [0, (
√
3d)−1]. In (2.20), we have proved that f

(
‖u(t)‖2H1(M)

)
< ε20 for all t ∈ [0, 1) and

all initial data satisfying

‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M) < ε20.

If we hoose ε20 = min{2/(3
√
3d), (2/3)ε21}, where ε1 is given as in (2.15), then we see by the

ontinuity of t 7→ ‖u(t)‖2H1(M) that ‖u(t)‖2H1(M) ∈ I for every t ∈ [0, 1). Thus, ‖u(t)‖2H1(M) ≤
(3/2)ε20 ≤ ε21 for all t ∈ [0, 1), from whih we infer that the small data loal well-posedness

argument may be iterated.

The onlusion for s > 1 works exatly as in the previous step.

2.2.2 On the neessity of the ondition

After the disussion of the su�ieny of Assumption 2.1 the question rises whether the trilinear

Strihartz estimate is also neessary. In [Gér06, Theorem 5.7 i)℄ (take s = 1), Gérard answered

this question by stating that Assumption 2.1 with δ = 0 is neessary to obtain Theorem 2.3.

In a joint paper with the present author, Herr [HS15, Setion 4℄ provided a proof of this by

adapting the arguments of Burq�Gérard�Tzvetkov in [BGT05a, Remark 2.12℄. We want to

point out that there was no noteworthy ontribution of the author to this disussion. In the

remainder of this subsetion, we repeat the argument in [HS15, Setion 4℄ almost verbatim.

Fix T > 0 and onsider the map

F : H1(M) → H1(M), F (φ) = u(T ),
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where u is a solution of (2.1) with initial data u(0) = φ. The �fth order di�erential of F at

the origin is given by

D5F (0)(h) = ∓12i

∫ T

0
ei(T−τ)∆g

∑

σ∈Σ5

Hσ(1)(τ)Hσ(2)(τ)Hσ(3)(τ)Hσ(4)(τ)Hσ(5)(τ) dτ,

where h := (h1, . . . , h5), Hj(τ) := eiτ∆ghj , and we sum over the 10 =
(5
2

)
of the 5! = 120

permutations σ ∈ Σ5, whih give rise to di�erent pairs (σ(2), σ(4)). Indeed, from (2.12) it

follows that DF (0)(h) = eiT∆gh, DjF (0) = 0 for 2 ≤ j ≤ 4, and we obtain the above formula.

If we speify to h2 = h3 = h4 = h5, we obtain two ontributions

∑

σ∈Σ5

Hσ(1)Hσ(2)Hσ(3)Hσ(4)Hσ(5) = 6H1|H2|4 + 4H1H
3
2H2.

Now, let us assume that D5F (0) : (H1(M))5 → H1(M) is bounded. Then, we infer

∣∣∣∣
∫

M
D5F (0)(h1, h2, . . . , h2)H1(T ) dx

∣∣∣∣ . ‖h1‖H1(M)‖h1‖H−1(M)‖h2‖4H1(M).

Beause of

Re
(
6|H1|2|H2|4 + 4H1

2
H3

2H2

)
≥ 2|H1|2|H2|4,

we onlude that

∫ T

0

∫

M
|H1|2|H2|4 dx dt . ‖h1‖H1(M)‖h1‖H−1(M)‖h2‖4H1(M).

We set h1 := PN1φ1, and for φ2, φ3 ∈ H1(M) we write

eit∆gφ2e
it∆gφ3 =

1

4

(
(eit∆gφ2 + eit∆gφ3)

2 − (eit∆gφ2 − eit∆gφ3)
2
)

to obtain the bound

‖eit∆gPN1φ1e
it∆gφ2e

it∆gφ3‖L2([0,T ]×M) . ‖PN1φ1‖L2(M)‖φ2‖H1(M)‖φ3‖H1(M),

whih implies the estimate in Assumption 2.1 but only with δ = 0.

2.3 Retangular tori in three dimensions

This setion is devoted to verify Assumption 2.1 on �at retangular 3-tori, whih means that

the energy-ritial NLS is loally well-posedness and globally well-posedness for small initial

data. We start with an overview of some related results and set up the framework. We shall

then prove the trilinear estimate in three steps. We �rst provide linear Strihartz estimates,

then exploit almost orthogonality, and �nally onlude the desired trilinear estimate. This

proof is due to the author and has already been published in [Str14℄.

2.3.1 Seleted results

The nonlinear Shrödinger equation on �at tori has been the most investigated among all

ompat manifolds. Aside from the preise knowledge of the spetrum and the eigenfuntions,

one main reason might be that due to the periodiity of funtions on T
n
, one has aess to
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the theory of Fourier series, whih is often applied in this ontext. At �rst sight, the theory

of Fourier series with a ommon period seems not to be appliable if one onsiders general

retangular tori. Indeed, if one of the ratios of the periods is irrational, there is no ommon

period. However, by a simple hange of oordinates, one an always hoose T
n
as the base

spae, whih leads to a modi�ed Laplae�Beltrami operator, see (2.21)�(2.23). This simple

hange of oordinates allows to use the theory of Fourier series also in this setting.

First, we sum up related results on the �at torus T
3
. In 1993, Bourgain [Bou93a℄ started

this line of researh with a fundamental work. He established Strihartz estimates [Bou93a,

Proposition 3.114℄ in several dimensions and dedued well-posedness in ertain sub-ritial

regimes from it, see [Bou93a, Theorems 1�4℄. Out of this results we just pik those that are

most relevant for our study. For p > 4 the sale invariant Strihartz estimate

‖eit∆gf‖Lp(I×T3) . N
3
2
− 5

p ‖f‖L2(T3)

holds true for all f ∈ L2(T3) with supp pf ⊆ [−N,N ]3, f. [Bou93a, formula (3.117)℄. Using

this inequality, Bourgain was able to show that the fousing NLS equation with nonlinearity

|u|α−1u and initial data φ ∈ H1(T3) whih has su�iently small H1
-norm is globally well-

posed for 3 ≤ α < 5. Sine α < 5, Bourgain did not reah the energy-ritial ase. Loal

and small data global well-posedness for both the fousing and the defousing equation in the

energy-ritial ase (α = 5) was ahieved by Herr�Tataru�Tzvetkov [HTT11, Theorems 1.1

and 1.2℄ in 2011. One of their ruial observations is the existene of almost orthogonality in

time, whih is exploited in the proof of [HTT11, Proposition 3.5℄. Just one year later, Ionesu�

Pausader [IP12b, Theorem 1.1℄ showed that the energy-ritial defousing NLS equation on T
3

is globally well-posed even for arbitrarily large H1
-data. Global well-posedness is addressed

in Chapter 3.

It was again Bourgain [Bou07℄ who initiated the study of the nonlinear Shrödinger equation

on three-dimensional retangular tori. He proved Strihartz estimates for free solutions on this

domain for a smaller range of LptL
q
x-norms ompared to T

3
[Bou07, Proposition 1.1℄. From

this, he dedued that the energy-sub-ritial defousing NLS equation on retangular 3-tori is
loally and globally well-posed in H1

[Bou07, Proposition 1.2℄. The �rst saling-ritial results

on retangular tori were established by Guo�Oh�Wang [GOW14, Theorem 1.5℄. They proved

ritial loal well-posedness on this set of manifolds for nonlinearities |u|α−1u with odd α ≥ 7
and initial data in the orresponding sale invariant spae Hs

. Furthermore, they onsidered

the energy ritial ase α = 5 on 3-dimensional retangular tori, where two of the periods are

the same [GOW14, Appendix B℄. In the following, we prove a trilinear Strihartz estimate,

whih, by Setion 2.2.1, implies that the energy-ritial NLS on any 3-dimensional retangular

torus is loally well-posed and in addition, globally well-posed provided the initial data have

small H1
-norm. The author already published this result in [Str14, Proposition 4.1℄. This

result is highly signi�ant for the study of large data global well-posedness on this domain,

whih is pursued in Chapter 3.

More authors ontributed to today's knowledge about the nonlinear Shrödinger equation on

tori. We are not aiming to give a full list but we want to mention some important results.

Building on an earlier work of Bourgain�Demeter [BD15℄, Killip�Vi³an [KV14, Theorem 1.1℄

extended Bourgain's above-mentioned saling invariant Strihartz estimate for free solutions

to the NLS on retangular tori in any dimension n ≥ 1 to a larger range of Lpt,x-norms. They

were able to bound free solutions in Lp for p > 2(n+2)
n . These results are optimal in the sense

that the Strihartz estimates are known to fail for p = 2(n+2)
n [Bou93a, Setion 2, Remark 2℄.
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Comparing it to the range of Strihartz estimates on R
3
, see (1.17), one noties that the esti-

mates on retangular tori over the same range exept of the endpoint. Further ontributions

to linear Strihartz estimate ame from [Bou07, CW10, Dem13, Bou13, GOW14℄.

Sub-ritial well-posedness on tori in several dimensions has been addressed e.g. in [Bou93a,

Bou93b, Bou04, DPST07, Bou07, CKS

+
10, CW10, Han12, Dem13, GOW14℄.

The nonlinear Shrödinger equation on tori in various ritial regimes have been studied

in [Wan13b, HTT11, HTT14, GOW14, Str14, KV14℄. The NLS on retangular tori with

nonlinearity ±|u|2k+1u is known to be loally well-posed in the saling spae in the following

situations:

• n = 2 and k ≥ 3 [Str14℄, see also [GOW14℄ for k ≥ 6,

• n = 3 and k ≥ 2 [Str14℄, see also [GOW14℄ for k ≥ 3,

• n ≥ 4 and k ≥ 2 [GOW14℄.

The ase n = 2 and k ≥ 3 is pursued in Setion 2.4. Using Bourgain's Strihartz estimate in

[Bou13℄, Herr�Tataru�Tzvetkov [HTT14℄ proved that the energy-ritial NLS equation on T
4

is globally well-posed for small initial data. This is remarkable as it is the only energy-ritial

well-posedness result on a 4-dimensional ompat manifold known yet.

It is also worth to mention that the non-ellipti nonlinear Shrödinger equation on T
2
has

been onsidered in [GT12, Wan13a℄. Moreover, rough potentials [BBZ13℄ and the frational

Shrödinger equation [DET13℄ have been studied.

2.3.2 Set-up

We start with some basi de�nitions and notation. T
n
shall denote the �at standard torus

T
n := R

n/(2πZ)n. Reall from De�nition 1.26 that we use the following onvention for the

Fourier transform on Tn

(Ff)(ξ) = pf(ξ) =
1

(2π)n/2

∫

Tn

f(x)e−ix·ξ dx, ξ ∈ Z
n,

so that we have the Fourier inversion formula

f(x) =
1

(2π)n/2

∑

ξ∈Zn

pf(ξ)eix·ξ , x ∈ T
n.

Let the spetral projetors PN : L2(Tn) → L2(Tn) be de�ned as in (1.12). More generally,

given a set S ⊆ Z
n
, we de�ne PS to be the Fourier multiplier operator with symbol 1S , where

1S denotes the harateristi funtion of S.
Given any θ = (θ1, . . . , θn) ∈ (0,∞)n, we de�ne the �at retangular torus by

T
n
θ := R

n/
(
2πθ

−1/2
1 Z× · · · × 2πθ−1/2

n Z
)
.

We shall use the standard torus T
n = T

n
(1,...,1) as base spae. Let φ̃ ∈ Hsc(Tnθ), and suppose

v : (−T, T )× T
n
θ → C solves the nonlinear Shrödinger equation

{
i∂tv +∆gv = ±|v|2k+1v

v(0, · ) = φ̃,
(2.21)
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where k ∈ N. Reall from (1.19) that the saling-ritial Sobolev index is given by

sc =
n

2
− 1

k
. (2.22)

Let u : (−T, T )× T
n → C and φ ∈ Hsc(Tn) be de�ned as

u(t, x) := v
(
t, (θ

−1/2
1 x1, . . . , θ

−1/2
n xn)

)

and φ(x1, . . . , xn) := φ̃
(
θ
−1/2
1 x1, . . . , θ

−1/2
n xn

)
, respetively. By a hange of spatial variables,

one easily veri�es that u is a solution to

{
i∂tu+∆θu = ±|u|2k+1u

u(0, · ) = φ.
(2.23)

Here, the modi�ed Laplae�Beltrami operator ∆θ is de�ned via ∆θ := θ1∂
2
x1 + · · · + θn∂

2
xn .

On the Fourier side this orresponds to

F(∆θf)(ξ) := −Q(ξ) pf(ξ), Q(ξ) := θ1ξ
2
1 + · · ·+ θnξ

2
n, (2.24)

for ξ = (ξ1, . . . , ξn) ∈ Z
n
. Using this notation, the free solution to (2.23) is given by

(eit∆θφ)(x) =
∑

ξ∈Zn

pφ(ξ)ei(ξ·x−Q(ξ)t). (2.25)

By a hange of variable in time, without loss of generality we may assume θ1 = 1. This turns
out to be useful in the proof of Lemma 3.21 below. From now on, we study (2.23).

The mass and the energy,

M(u)(t) =
1

2

∫

Tn

|u(t, x)|2 dx,

E(u)(t) =
1

2

∫

Tn

|∇θu(t, x)|2 dx± 1

2k + 2

∫

Tn

|u(t, x)|2k+2 dx,

(2.26)

are onserved in time, whenever u : (−T, T )× T
n → C is a strong solution of (2.23). Here,

∇θ := (θ
1/2
1 ∂x1 , . . . , θ

1/2
n ∂xn).

For N,M ≥ 1 we de�ne the olletion of retangular sets

R
n
N,M :=

{
R ⊆ R

n : ∃z ∈ Z
n
, O orthogonal n× n-matrix s.t.

OR+ z ⊆ [−N,N ]n−1 × [−M,M ]
}
.

Moreover, we set C n
N := Rn

N,N .

We onsider the three-dimensional quinti, i.e. k = 2, NLS in the present setion. In

Setion 2.4, (2.23) in two dimensions with k ≥ 3 is studied.
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2.3.3 Linear Strihartz estimates

The following linear Strihartz estimate for free solutions on retangular tori was veri�ed by

Bourgain [Bou07, Proposition 1.1℄. Besides almost orthogonality, this is the main ingredient

for the trilinear Strihartz estimate in Proposition 2.13.

Lemma 2.10. Let p > 16
3 and τ0 ⊂ R be a bounded interval. For every N ≥ 1, C ∈ C 3

N , and

φ ∈ L2(T3) we have

‖PCeit∆θφ‖Lp(τ0,L4(T3)) . N
3
4
− 2

p ‖PCφ‖L2(T3).

Proof/Referene. Using essentially the exponential sum estimates given in Setion 1.3, Bour-

gain [Bou07, Proposition 1.1℄ proved

‖PNeit∆θφ‖Lp(τ0,L4(T3)) . N
3
4
− 2

p ‖PNφ‖L2(T3). (2.27)

Moreover, he remarked that the inequality holds true also for the projetor PC . Below we

show that this may be aomplished from a Galilean transformation.

We modify the arguments from [HTT11, Proposition 3.1℄ to treat ∆θ, see also [Bou93a,

formulas (5.7)�(5.8)℄. Denote ξ ·θ ζ := ξ1ζ1 + θ2ξ2ζ2 + θ3ξ3ζ3, and let ξ0 be the enter of C.
Applying the adapted Galilean transformation

x ·θ ξ + tQ(ξ) = x ·θ ξ0 + tQ(ξ0) + (x+ 2tξ0) ·θ (ξ − ξ0) + tQ(ξ − ξ0),

whih an be easily veri�ed, allows to shift the enter of the ube C to the origin, i.e. to

C0 := C − ξ0. De�ne φ0 := e−ix·ξ0φ(x), and note that

xφ0(ξ) = pφ(ξ+ ξ0) implies ‖PCφ‖L2(T3) =
‖PC0φ0‖L2(T3). We also observe that

PC0e
it∆θφ0(t, x) =

∑

ξ∈C0
ei(x·ξ−tQ(ξ))xφ0(ξ) =

∑

ξ∈C
ei(x·(ξ−ξ0)−tQ(ξ−ξ0))pφ(ξ).

Set Θ := diag(1, θ2, θ3), and observe that x · ξ = (Θ−1x) ·θ ξ. Rewriting the phase as

x · (ξ − ξ0)− tQ(ξ − ξ0) = (Θ−1x+ 2tξ0) ·θ ξ − tQ(ξ)− x · ξ0 − tQ(ξ0)

leads to

PC0e
it∆θφ0(t, x) = e−i(x·ξ0+tQ(ξ0))PCe

it∆θφ(t,Θ−1x+ 2tξ0).

Therefore, ‖PCeit∆θφ‖Lp(τ0×T3) = ‖PC0e
it∆θφ0‖Lp(τ0×T3). With this, Lemma 2.10 follows im-

mediately from (2.27).

Remark. Building on an earlier work of Bourgain�Demeter [BD15℄, Killip�Vi³an [KV14,

Theorem 1.1℄ proved this Strihartz estimate to hold true for free solutions measured in

Lp(τ0 × T
3) with p > 10

3 . In this thesis, we want to point out that the Strihartz estimate

gained from the exponential sum estimate in Corollary 1.39 is su�ient to obtain the loal

and small data global well-posedness result. As it will be seen in Chapter 3, it is even strong

enough for proving global well-posedness for arbitrary large initial data in H1(T3). ♦

Corollary 2.11. Let p > 16
3 and 4 ≤ q < 3p

4 . Then, for all N,M ≥ 1 with N ≥ M ,

R ∈ R3
N,M , and all φ ∈ L2(T3) it holds

‖PRe
it∆θφ‖Lp(τ0,Lq(T3)) . N

1− 2
p
− 1

qM
1
2
− 2

q ‖PRφ‖L2(T3).
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Proof. The statement is implied by Lemma 2.10, the estimate

‖PReit∆θφ‖L∞(τ0×T3) ≤ |R ∩ Z
3| 12 ‖PRφ‖L2(T3) . NM

1
2 ‖PRφ‖L2(T3),

whih follows from Cauhy�Shwarz in the Fourier spae, and Hölder's estimate. The on-

lusion works as follows: Set f(t, x) := |PReit∆θφ(x)|, ε := 4p
q − 16

3 > 0, and ϑ := 4
q ≤ 1.

Then,

‖PRe
it∆θφ‖Lp

tL
q
x
= ‖fϑf1−ϑ‖Lp

tL
q
x
≤ ‖f‖ϑ

L
16
3 +ε

t L4
x

‖f‖1−ϑL∞
t,x

. N
1− 2

p
− 1

qM
1
2
− 2

q ‖PRφ‖L2(T2).

2.3.4 Almost orthogonality

In several appliations it turned out to be bene�ial to use almost orthogonality in time.

This was �rst observed by Herr�Tataru�Tzvetkov [HTT11, Proof of Proposition 3.5℄ for the

standard torus T
3
and later also applied for Zoll manifolds suh as S

3
[Her13, Proof of Propo-

sition 3.6℄ and S×S
2
[HS15, Proof of Proposition 2.6℄. Sine free solutions on retangular tori

are in general not periodi in time, we an not expet almost orthogonality in the same way

as in the aforementioned artiles. However, the next lemma states that in the non-periodi

setting one gets an additional term with arbitrarily high polynomial deay on the seond

highest frequeny. In view of Assumption 2.1, this term is negligible. The following result by

the author of this thesis an be found in [Str14, Lemma 3.2℄.

Lemma 2.12. Let ν > 0, k ∈ N, and τ0 ⊂ R be a bounded time interval. Furthermore, let

τ1 ⊃ τ0 be an open interval. Then, for all φ1, . . . , φ2k+1 ∈ L2(Tn) and dyadi numbers N1 ≥
. . . ≥ N2k+1 ≥ 1 there exist �nitely many retangles Rℓ ∈ Rn

N2,M
, where M := max

{N2
2

N1
, 1
}
,

with the properties that PN1 =
∑

ℓ∈Z PRℓ
PN1 and

∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ0×Tn)

.
∑

ℓ∈Z

∥∥∥∥PRℓ
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

+N−ν
2

2k+1∏

j=1

‖PNjφj‖2L2(Tn).

Proof. Note that we may assume N1 ≫ N2.

Step 1. We show that due to spatial almost orthogonality, it su�es to prove the desired

estimate in the ase

PCPN1e
it∆θφ1 = PN1e

it∆θφ1, (2.28)

where C ∈ C n
N2
. To prove this, we onsider a partition of Z

n
into ountably many, disjoint

ubes in Z
n
of size N2:

Z
n =

⋃̇

ℓ∈Z
Cℓ, Cℓ ∈ C

n
N2
.

We laim that for �xed t ∈ τ0,

∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(Tn)

≈
∑

ℓ∈Z

∥∥∥∥PCℓPN1e
it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(Tn)

.
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Indeed, �x any t ∈ τ0. For a given ℓ ∈ Z there are only �nitely many (independent of Nj ,

j = 1, . . . , 2k + 1) ℓ̃ ∈ Z suh that

〈
PCℓPN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj , PC

ℓ̃
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

〉

L2(Tn)

6= 0. (2.29)

We onsider lattie points ξ1 ∈ suppF(PCℓPN1e
it∆θφ1), ξ̃1 ∈ suppF(PC

ℓ̃
PN1e

it∆θφ1), and

ξj, ξ̃j ∈ Nj := suppF(PNje
it∆θφj), j = 2, . . . , 2k + 1. Then, (2.29) follows from the fat that

∫

Tn

eix·[ξ1+···+ξ2k+1−(ξ̃1+···+ξ̃2k+1)] dx = 0

whenever the distane of Cℓ and C
ℓ̃
is larger than 4kN2. Therefore, we may assume (2.28).

Step 2. As in the proof of [HTT11, Proposition 3.5℄, we de�ne the following partition: Let ξ0

be the enter of C and de�ne disjoint strips of width M := max
{N2

2
N1
, 1
}
whih are orthogonal

to ξ0:
Rℓ :=

{
ξ ∈ C : ξ · ξ0 ∈

[
|ξ0|Mℓ, |ξ0|M(ℓ+ 1)

)}
∈ R

n
N2,M .

We onlude from the onstrution that ∡(ξ, ξ0) . N2
N1

for all ξ ∈ Rℓ. Sine N1 ≫ N2, we

have ∡(ξ, ξ0) ≤ 1
2 . Therefore,

ξ · ξ0 = |ξ||ξ0| cos∡(ξ, ξ0) ≈ N2
1 ,

whih implies that ℓ ≥ 0 and ℓ ≈ N1
M beause |ξ0| ≈ N1. Sine C =

⋃̇
ℓ∈ZRℓ, we learly have

PCPN1e
it∆θφ1 =

∑
ℓ∈Z PRℓ

PN1e
it∆θφ1.

Let χ ∈ C∞
0 (R) be a non-negative ut-o� funtion satisfying χ(t) = 1 for all t ∈ τ0 and

χ(t) = 0 for all t ∈ R \ τ1. Obviously,
∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ0×Tn)

≤
∥∥∥∥
√
χ(t)

2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

. I1 + I2,

where

I1 :=
∑

ℓ≈N1/M

∥∥∥∥PRℓ
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

,

and I2 is de�ned as

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)PRℓ

PN1e
it∆θφ1

2k+1∏

j=2

PNje
it∆θφj, PR

ℓ̃
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

〉

L2(R×Tn)

.

We are left to show that

|I2| . N−ν
2 ‖PCPN1φ1‖2L2(Tn)

2k+1∏

j=2

‖PNjφj‖2L2(Tn).

Sine we extended the integration with respet to t to R, we may interpret this integration as

Fourier transform on R. Then, taking the absolute value, we end up with

|I2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

n1∈Rℓ, ñ1∈Rℓ′ ,
nj ,ñj∈Nj , j=2,...,2k+1

∣∣FRn(χ)
∣∣
(2k+1∑

j=1

(
Q(nj)−Q(ñj)

)) 2k+1∏

j=1

∣∣ pφj(nj)
∣∣∣∣ pφj(ñj)

∣∣.

(2.30)
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Similarly to the proof of [HTT11, Proposition 3.5℄, we get

∣∣∣∣
2k+1∑

j=1

(
Q(nj)−Q(ñj)

)∣∣∣∣ =M2|ℓ− ℓ̃ |(ℓ+ ℓ̃ ) +O(M2ℓ) +O(M2ℓ̃ ) & N2
2 〈ℓ− ℓ̃ 〉

sine ℓ, ℓ̃ ≈ N1
M and |ℓ− ℓ̃ | ≫ 1. Thus, for any µ > 0 we may estimate

∣∣FRn(χ)
∣∣
(2k+1∑

j=1

(
Q(nj)−Q(ñj)

))
.µ N

−2µ
2 〈ℓ− ℓ̃ 〉−µ.

Using Cauhy�Shwarz with respet to nj , ñj , j = 1, . . . , 2k + 1, on the right-hand side of

(2.30) yields

|I2| . N−ν
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ‖PRℓ
φ1‖L2(Tn)‖PR

ℓ̃
φ1‖L2(Tn)

2k+1∏

j=2

‖PNjφj‖2L2(Tn)

provided ν ≤ 2µ− (2k + 1)n. Finally, Shur's lemma implies

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ‖PRℓ
φ1‖L2(Tn)‖PR

ℓ̃
φ1‖L2(Tn) . ‖PCPN1φ1‖2L2(Tn)

provided µ > 1. This �nishes the proof.

2.3.5 The trilinear Strihartz estimate

The linear Strihartz estimates in Lemma 2.10 and Corollary 2.11 as well as the almost or-

thogonality in Lemma 2.12 allow us to prove the desired trilinear L2
-estimate.

Proposition 2.13. Let τ ⊂ R be a bounded time interval. There exists δ > 0 suh that for

all φ1, φ2, φ3 ∈ L2(T3) and dyadi numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds

true: ∥∥∥∥
3∏

j=1

PNje
it∆θφj

∥∥∥∥
L2(τ0×T3)

.

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(T3).

Proof. From Lemma 2.12, we see that we may replae the projetor PN1 by PRPN1 with

R ∈ R3
N2,M

and M := max{N2
2 /N1, 1} provided we magnify the time interval τ0 to an open

interval τ1 ⊃ τ0.

Let p1 > 16
3 and 4 < q1 < 3p1

4 . Furthermore, let p2 and q2 be de�ned via the relations

1
2 = 2

p1
+ 1

p2
and

1
2 = 2

q1
+ 1

q2
, respetively. Hölder's estimate yields

‖PRPN1e
it∆θφ1PN2e

it∆θφ2PN3e
it∆θφ3‖L2(τ1×T3)

≤ ‖PRPN1e
it∆θφ1‖Lp1

t L
q1
x
‖PN2e

it∆θφ2‖Lp1
t L

q1
x
‖PN3e

it∆θφ3‖Lp2
t L

q2
x
. (2.31)

Applying Lemma 2.10, Corollary 2.11, and Bernstein's inequality, we infer

(2.31) .M
1
2
− 2

q1N
5
2
− 4

p1
− 4

q1
2 N

4
p1

+ 6
q1

−1

3 ‖PRPN1φ1‖L2
x

3∏

j=2

‖PNjφj‖L2(T3)

.

(
N3

N1
+

1

N2

) 1
2
− 2

q1

N
7
2
− 4

p1
− 8

q1
2 N

4
p1

+ 8
q1

− 3
2

3 ‖PRPN1φ1‖L2
x

3∏

j=2

‖PNjφj‖L2(T3).

Then, the laim follows for p1 su�iently lose to

16
3 and q1 su�iently lose to 4.
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2.4 Retangular tori in two dimensions

After studying retangular 3-tori in the previous setion, we brie�y disuss saling-ritial

well-posedness on two-dimensional retangular tori. A multilinear Strihartz estimate is

proved, whih implies saling-ritial loal well-posedness results by similar arguments as

in Setion 2.2, f. also [GOW14, Setion 5℄ and the referenes therein: De�ne appropriate

iteration spaes that in whih one may ontrol the Duhamel term, f. Lemma 2.9. Then, a

�xed-point argument similar to the proof of Theorem 2.3 proves loal well-posedness. Hene,

Proposition 2.17 leads to:

Theorem 2.14. Let sc be de�ned by (2.22) and let 3 ≤ k ∈ N. Then, for all s ≥ sc the initial
value problem (2.21) is loally well-posed in Hs(T2

θ).

We refer to Theorem 2.3 for a preise formulation of this theorem. Saling-ritial small data

global well-posedness an not be onluded as in three dimensions sine the energy and Hsc
-

norm sale di�erently. Hene, the onservation of energy an not be exploited as in the proof

of Theorem 2.3.

Theorem 2.14 extends previous results of Guo�Oh�Wang [GOW14, Theorem 1.5℄ who proved

the same result for k ≥ 6. This is aomplished by using a new trilinear Strihartz estimate

whih serves as an improved replaement for applying Hölder's inequality and linear Strihartz

estimates. The result is already published in [Str14, Setion 3℄.

We use the notation introdued in Setion 2.3.2 and onsider (2.23) on T
2
instead, with the

modi�ed Laplae�Beltrami operator ∆θ given by (2.24).

First, the following trilinear Strihartz estimate is proved by using ideas of [Bou07℄. This

improves [GOW14, Lemma 5.9℄ (for d = 2). The main point here is that we do not get any

fator of the highest frequeny.

Lemma 2.15. Let 2 < p ≤ 4. Then, for any N,M ≥ 1 with N ≥M , C1 ∈ C 2
N , C2, C3 ∈ C 2

M ,

and φ1, φ2, φ3 ∈ L2(T2) we have

∥∥∥∥
3∏

j=1

PCje
it∆θφj

∥∥∥∥
Lp(τ0,L2(T2))

.M2− 2
p

3∏

j=1

‖PCjφ‖L2(T2).

Proof. This proof is a trilinear variant of the poof of [Bou07, Proposition 1.1℄. Hene, we

omit details and refer the reader also to the proof of Lemma 2.19 below, in whih a similar

argument is applied. For brevity we write LptL
q
x := Lp(τ0, L

q(T2)) and Lpt := Lp(τ0).

The left-hand side may be estimated by

[∑

a∈Z2

∥∥∥∥
∑

n∈C2,
m∈C3

pφ1(a− n−m)pφ2(n)pφ3(m)e2πi(Q(a−n−m)+Q(n)+Q(m))t

∥∥∥∥
2

Lp
t

] 1
2

using Planherel's identity with respet to x and Minkowski's inequality. Now, applying

Hausdor��Young (Proposition 1.36 (ii)) and setting cj,n := |pφj(n)| yields

‖ · · · ‖Lp
t
.

[∑

k∈Z

∣∣∣∣
∑

|Q(a−n−m)+Q(n)+Q(m)−k|≤ 1
2

c1,a−n−mc2,nc3,m

∣∣∣∣
p

p−1
] p−1

p

.
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One easily veri�es that |Q(a− n−m) +Q(n) +Q(m)− k| ≤ 1
2 may be written as

|Q(3ñ− 2a) + 3Q(m̃) + 2Q(a)− 6k| ≤ 3,

where ñ := n+m and m̃ := n−m. Hene,

∣∣{(n,m) ∈ C2 × C3 : |Q(a− n−m) +Q(n) +Q(m)− k| ≤ 1
2

}∣∣ . |Sℓ|,
where

Sℓ :=
{
(ñ, m̃) ∈ C̃2 × C̃3 : |Q(ñ) + 3Q(m̃)− ℓ| ≤ 4

}
,

ℓ := [6k − 2Q(a)] ∈ Z, and ubes

C̃2 =
(
[b1, b1 + 10M ]× [b2, b2 + 10M ]

)
∩ Z

2
and C̃3 =

(
[b3, b3 + 10M ]× [b4, b4 + 10M ]

)
∩ Z

2

for some b1, . . . , b4 ∈ Z. This observation and applying Hölder's inequality twie yield

‖ · · · ‖Lp
t
.

(∑

ℓ∈Z
|Sℓ|

p
p−2

) p−2
2p
( ∑

n∈C2, m∈C3
c21,a−n−mc

2
2,nc

2
3,m

) 1
2

,

whih in turn implies

∥∥∥∥
3∏

j=1

PCje
it∆θφj

∥∥∥∥
Lp(τ0,L2(T2))

.

(∑

ℓ∈Z
|Sℓ|

p
p−2

)p−2
2p

3∏

j=1

‖PCjφj‖L2(T2).

The assumption p ≤ 4 ensures that

p
p−2 ≥ 2. Thus, by Corollary 1.37 and Corollary 1.39, we

may estimate

(∑

ℓ∈Z
|Sℓ|

p
p−2

) p−2
p

.

∥∥∥∥
2∏

j=1

∑

(m̃,ñ)∈Cj
eiθj(ñ

2
j+3m̃2

j )t

∥∥∥∥
L

p
2
t (I)

.M
4(1− 1

p
)

for some ompat interval I ⊆ R provided p > 2. This implies the desired estimate.

Corollary 2.16. Let p > 6.

(i) For every N ≥ 1, C ∈ C 2
N , and φ ∈ L2(T2) we have

‖PCeit∆θφ‖Lp(τ0,L6(T2)) . N
2
3
− 2

p ‖PCφ‖L2(T2).

(ii) Let 6 ≤ q < p. Then, for all N,M ≥ 1 with N ≥ M , R ∈ R2
N,M , and φ ∈ L2(T2) it

holds that

‖PReit∆θφ‖Lp(τ0,Lq(T2)) . N
1
2
+ 1

q
− 2

pM
1
2
− 3

q ‖PRφ‖L2(T2).

Proof. The �rst estimate is a diret onsequene of Lemma 2.15 provided p ≤ 12. The estimate

‖PCeit∆θφ‖L∞(τ0×T2) . N‖PCφ‖L2(T2)

is trivial from Cauhy�Shwarz. For 12 < p < ∞, the desired estimate follows from Hölder's

inequality and the estimates for p = 12 and p = ∞.

The seond statement follows from (i), the estimate

‖PRe
it∆θφ‖L∞(τ0×T2) ≤ |R ∩ Z

2| 12‖PRφ‖L2(T2) . (NM)
1
2‖PRφ‖L2(T2),

whih may easily be obtained by applying Cauhy�Shwarz in Fourier spae, and Hölder's

inequality. The onlusion works as follows: Set f(t, x) := |PReit∆θφ(x)|, ε := 6p
q − 6 > 0,

and ϑ := 6
q ≤ 1. Then,

‖PRe
it∆θφ

∥∥
Lp
tL

q
x
= ‖fϑf1−ϑ

∥∥
Lp
tL

q
x
≤ ‖f‖ϑ

L6+ε
t L6

x
‖f‖1−ϑL∞

t,x
. N

1
2
+ 1

q
− 2

pM
1
2
− 3

q ‖PRφ‖L2(T2).
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Now, we prove the multilinear estimate from whih the laimed well-posedness result follows

by standard arguments.

Proposition 2.17. Let k ≥ 3. There exists δ > 0 suh that for all φ1, . . . , φk+1 ∈ L2(T2)
and dyadi numbers N1 ≥ . . . ≥ Nk+1 ≥ 1 the following estimate holds true

∥∥∥∥
k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
L2(τ0×T2)

.

(
Nk+1

N1
+

1

N2

)δ
‖PN1φ1‖L2(T2)

k+1∏

j=2

N sc
j ‖PNjφj‖L2(T2).

Proof. Thanks to the almost orthogonality argument in Lemma 2.12, it su�es to replae

PN1e
it∆θφ1 by PRPN1e

it∆θφ1, where R ∈ R2
N2,M

with M = max{N2
2 /N1, 1} provided we

magnify the time interval to an open interval τ1 ⊃ τ0.

Let 6 < p1, q1 < 8 and 3 < p2 ≤ 24
5 . Furthermore, let p3 and q2 be de�ned via the relations

1
2 = 1

p1
+ 1

p2
+ k−2

p3
and

1
2 = 1

q1
+ 1

3 + k−2
q2

, respetively. By Hölder's estimate the following

holds true:

∥∥∥∥PRPN1e
it∆θφ1

k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
L2
t,x

≤ ‖PRPN1e
it∆θφ1‖Lp1

t L
q1
x
‖PN2e

it∆θφ2PN3e
it∆θφ3‖Lp2

t L3
x

×
k+1∏

j=4

‖PNje
it∆θφj‖Lp3

t L
q2
x
,

(2.32)

where LrtL
s
x := Lr(τ1, L

s(T2)) and L2
t,x := L2

tL
2
x. Let fj := |PNje

it∆θφj|, j = 2, 3. Then we

treat the bilinear term as follows:

‖f2f3‖2Lp2
t L3

x
= ‖f22 f23‖

L
p2
2

t L
3
2
x

≤ ‖f2f23 ‖Lr
tL

2
x
‖f2‖Ls

tL
6
x
,

where s > 6 and

2
p2

= 1
r +

1
s . Note that p2 ≤ 24

5 ensures that r ≤ 4. By Lemma 2.15 and

Corollary 2.16, we have for all η > 0,

‖PN2e
it∆θφ2PN3e

it∆θφ3‖Lp2
t L3

x
≤ N

1
6
+η

2 N
7
6
− 2

p2
−η

3 . (2.33)

Corollary 2.16, (2.33), and Bernstein's inequality imply

(2.32) .
(M
N2

) 1
2
− 3

q1N
7
6
− 2

p1
− 2

q1
+η

2 N
7
6
− 2

p2
−η

3

k+1∏

j=4

N
1− 2

k−2
( 2
3
− 1

p1
− 1

p2
− 1

q1
)

j

× ‖PRPN1φj‖L2(T2)

k+1∏

j=2

‖PNjφj‖L2(T2).

For all 0 < ν1, ν2 ≪ 1, there exist δ > 0 and p1, q1 > 6 su�iently lose to 6 as well as p2 > 3
su�iently lose to 3 suh that

(i)

(M
N2

) 1
2
− 3

q1 =
(M
N2

)δ
, (ii) N

7
6
− 2

p1
− 2

q1
+η

2 = N
1
2
+ν1+η

2 ,

(iii) N
7
6
− 2

p2
−η

3 = N
1
2
+ν2−η

3 , (iv) N
1− 2

k−2
( 2
3
− 1

p1
− 1

p2
− 1

q1
)

j = N
1− ν1+ν2

k−2

j ,

where j ∈ {4, . . . , k + 1}. Sine 1
2 < sc < 1 for k ≥ 3, we may hoose 0 < ν1, ν2, η ≪ 1 small

enough to get

∥∥∥∥PRPN1e
it∆θφ1

k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
L2
t,x

.

(
Nk+1

N1
+

1

N2

)δ
‖PRPN1φ1‖L2

x

k+1∏

j=2

N sc
j ‖PNjφj‖L2

x
,

where L2
x := L2(T2).
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2.5 Produt of spheres

Assumption 2.1 is veri�ed for M being a produt of S with a two-dimensional sphere with

arbitrary radius. In this thesis, we give the �rst proof of this result.

2.5.1 Seleted results

There are only few known results about well-posedness on produts of spheres. Let ρ > 0
and S

2
ρ be the embedded sphere of radius ρ in R

3
, then Burq�Gérard�Tzvetkov [BGT05b,

Theorem 1℄ proved that

i∂tu+∆gu = |u|α−1u

with initial data φ ∈ H1(S × S
2
ρ) is globally well-posed whenever α < 5. To aomplish that

they proved a weak bilinear estimate [BGT05b, Proposition 5.3℄, whih implies well-posedness

for 1 < α ≤ 4, and a stronger trilinear estimate [BGT05b, Proposition 5.1℄, whih allows to

get the well-posedness in the ase α = 5 but only for data in Hs(S×S
2
ρ) with s > 1. A suitable

interpolation between those to approahes yields the laimed well-posedness. Moreover, they

rely on ertain multilinear spetral luster estimates [BGT05b, Theorem 2℄, whih have been

proved by themselves as well.

In a joint work of Herr and the author [HS15, Theorem 1℄, loal well-posedness and small data

global well-posedness on S × S
2
was established. Using almost orthogonality and replaing

the number of lattie points estimate in [BGT05b, Proposition 5.1℄ by a new exponential

sum estimate, it was possible to verify Assumption 2.1 [HS15, Proposition 2.6℄. However,

the exponential sum estimate in [HS15, Lemma 2.3℄ an not be extend to handle the ase of

produts of spheres with di�erent radii.

In this setion, we are going to replae the exponential sum estimate in [HS15, Lemma 2.3℄

by Corollary 2.20 and use a more re�ned almost orthogonality argument to overome the

problems desribed in [HS15, Remark 1℄

4

.

2.5.2 Set-up

We take the notation for the spetrum and the spetral projetors that has been used in

[BGT05b, Setion 5℄: Set M := S × S2ρ for brevity. The eigenvalues of −∆ := −∆g are given

by {λm,n}(m,n)∈Z×N0
, where

λm,n := m2 + κ(n2 + n), (m,n) ∈ Z× N0

and κ := ρ−2
. This follows simply from the fat that the spetrum of a produt manifold

equals the sum of the spetra of the individual manifolds, f. [Cha84, Setion 2.1℄, and the

behavior of the eigenvalues under saling of the underlying manifold, see e.g. [Han12, Se-

tion 2.2℄. The spetral projetor onto spherial harmonis of degree n on S
2
ρ shall be denoted

by Πn : L
2(S2ρ) → L2(S2ρ). For a funtion f : S× S

2
ρ → C we write S × S

2
ρ ∋ (θ, ω) 7→ f(θ, ω).

For �xed ω ∈ S
2
ρ the mth Fourier oe�ient of f( · , ω) shall be de�ned by

Θmf(ω) :=
1

2π

∫ 2π

0
f(θ, ω)e−imθ dθ, m ∈ Z.

4

[HS15, Remark 1℄ is repeated at the beginning of Setion 2.5.5.
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For f ∈ L2(M) we have the following representation

f(θ, ω) =
∑

(m,n)∈Z×N0

eimθ ΠnΘm(f)(ω)

in the L2
-sense. For dyadi N ≥ 1 the projetors are given by

PNf(θ, ω) =
∑

(m,n)∈Z×N0

ηN (
√
λm,n)e

imθ ΠnΘm(f)(ω), (θ, ω) ∈M,

where ηN is de�ned in (1.11). Given a seond funtion g ∈ L2(M) and a point-set S ⊆ Z
4
,

we de�ne the bilinear projetor

QS(f, g)(θ, ω) :=
∑

(m1,n1,m2,n2)∈S∩(Z×N0)2

ei(m1+m2)θ Πn1Θm1(f)(ω)Πn2Θm2(g)(ω)

for (θ, ω) ∈M .

Reall that the Sobolev norm, whih was de�ned in De�nition 1.52, is given by

‖f‖2Hs(M) =
∑

(m,n)∈Z×N0

〈√
λm,n

〉2s‖ΠnΘmf‖2L2(M) ≈
∑

N≥1

N2s‖PNf‖2L2(M).

In view of (1.20), the linear Shrödinger evolution is given by

eit∆f(θ, ω) =
∑

(m,n)∈Z×N0

e−iλm,nteimθ ΠnΘm(f)(ω).

2.5.3 A trilinear estimate for spherial harmonis

The sueeding trilinear estimate for eigenfuntions of the Laplae�Beltrami operator on the

2-sphere is stated in [BGT05b, Theorem 2℄. It is dedued as a onsequene of the more general

trilinear spetral luster estimate in [BGT05b, Theorem 3℄ that holds on any two-dimensional,

ompat, smooth, boundaryless Riemannian manifold. Bilinear and higher-dimensional ver-

sions are provided as well.

Proposition 2.18. There exists Cρ > 0 suh that for all integers n1 ≥ n2 ≥ n3 ≥ 0 and

f1, f2, f3 ∈ L2(S2ρ) the following trilinear estimate holds true

‖Πn1f1Πn2f2Πn3f3‖L2(S2ρ)
≤ Cρ

(
〈n2〉〈n3〉

) 1
4

3∏

j=1

‖Πnjfj‖L2(S2ρ)
.

Remark. We want to highlight Remark 2.1 in [BGT05b℄. If one is interested in estimating

produts of single eigenfuntions, the spetral luster estimates seem only to be relevant for

�sphere like manifolds�. On the one hand, they are far from being optimal in the ase of the

torus. Indeed, the spetral luster estimate in [BGT05b, formula (2.5)℄ states that there is

a onstant C > 0 suh that for every two eigenfuntions f and g of the Laplae�Beltrami

operator on T
2
with eigenvalues n respetively m,

‖fg‖L2(T2) ≤ Cmin{n,m} 1
2 ‖f‖L2(T2)‖g‖L2(T2),

whereas the dual statement of the lassial result of Zygmund [Zyg74, Theorem 1℄ shows that

‖fg‖L2(T2) ≤ C‖f‖L2(T2)‖g‖L2(T2).
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On the other hand, Burq�Gérard�Tzvetkov disussed the optimality of this estimate on S
2

[BGT05b, Setion 2.1℄: Choosing the spherial harmonis Rn := (x1 + ix2)
n
, one easily

alulates

‖Rn‖L2(S2) ≈ n−
1
4 , n≫ 1

and Rn1Rn2Rn3 = Rn1+n2+n3 for n1, n2, n3 ≥ 0. Hene, for n1 ≥ n2 ≥ n3 ≫ 1,

‖Rn1Rn2Rn3‖L2(S2) & (n1 + n2 + n3)
− 1

4 & (n2n3)
− 1

4

3∏

j=1

‖Rnj‖L2(S2).

The spetral luster estimates given in [BGT05b, Theorem 3℄ have suessfully been applied

to gain energy-ritial well-posedness of the NLS posed on three-dimensional Zoll manifolds,

see [Her13, Proposition 3.6℄. ♦

2.5.4 Two exponential sum estimates

The next exponential sum estimate is used for handling a term that arises from the time and S

omponent of the two high-frequeny funtions. We are only interested in p lose to 8
3 sine it

serves as the lower endpoint of the interpolation with an estimate in L∞(τ0 × S), whih takes

the preise size of S into aount. The strategy is similar to the proof of the linear Strihartz

estimates by Bourgain for free solutions on T
3
θ [Bou07, Proposition 1.1℄. This lemma replaes

[HS15, Lemma 2.3℄ and allows to treat the ase ρ 6= 1.

Lemma 2.19. Let

8
3 < p ≤ 4 and τ0 ⊂ R be a bounded time interval. Then, there exists a

onstant C > 0 suh that for any a ∈ ℓ2(Z4), N ≥ 1, and all S ∈ C 4
N the estimate

∥∥∥∥
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∥∥∥∥
Lp
t (τ0,L

2
θ(S))

≤ CN
3
2
− 2

p ‖a‖ℓ2

holds true.

Proof. For p ≥ 2 Planherel's identity with respet to θ as well as Minkowski's inequality

allow to estimate the left-hand side by

∥∥∥∥
[∑

ξ∈Z

∣∣∣∣
∑

(m1,n1,ξ−m1,n2)∈S
e−i(λm1,n1+λξ−m1,n2

)tam1,n1,ξ−m1,n2

∣∣∣∣
2] 1

2
∥∥∥∥
Lp
t

≤
[∑

ξ∈Z

∥∥∥∥
∑

(m1,n1,ξ−m1,n2)∈S
e−i(λm1,n1+λξ−m1,n2

)tam1,n1,ξ−m1,n2

∥∥∥∥
2

Lp
t

] 1
2

. (2.34)

Fix ξ ∈ Z. An appliation of the Hausdor��Young inequality, see Proposition 1.36 (ii), yields

‖ · · · ‖Lp
t
.

[∑

τ∈N0

∣∣∣∣
∑

(m1,n1,ξ−m1,n2)∈S:
|λm1,n1+λξ−m1,n2

−τ |≤ 1
2

|am1,n1,ξ−m1,n2 |
∣∣∣∣

p
p−1
] p−1

p

. (2.35)

By rewriting |λm1,n1 + λξ−m1,n2 − τ | ≤ 1
2 as

|2(2m1 − ξ)2 + κ(2n1 + 1)2 + κ(2n2 + 1)2 − (4τ − 2ξ2 + 2κ)| ≤ 2,
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we observe that there exists some retangular set C = a+ [0, 10N ]3 suh that for

Sτ,ξ :=
{
(m,n, ñ) ∈ C : |2m2 + κn2 + κñ2 − (4τ − 2ξ2 + 2κ)| ≤ 2

}

we have ∣∣{(m1, n1, ξ −m1, n2) ∈ S : |λm1,n1 + λξ−m1,n2 − τ | ≤ 1
2

}∣∣ ≤ |Sτ,ξ|.
Thus, applying Hölder's inequality twie, we get

(2.35) .

[∑

τ∈N0

|Sτ,ξ|
p

2(p−1)

( ∑

(m1,n1,ξ−m1,n2)∈S:
|λm1,n1+λξ−m1,n2

−τ |≤ 1
2

|am1,n1,ξ−m1,n2 |2
) p

2(p−1)
] p−1

p

.

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p
[ ∑

(m1,n1,ξ−m1,n2)∈S
|am1,n1,ξ−m1,n2 |2

] 1
2

sine the inner sum is essentially disjoint for di�erent values of τ . Plugging this into (2.34)

provides the bound

(2.34) . sup
ξ∈Z

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p

‖a‖ℓ2 .

Hene, we are left to estimate the �rst term on the right-hand side by N
3
2
− 2

p
. Sine p ≤ 4,

we have

p
p−2 ≥ 2, and we may apply Corollary 1.37 to estimate

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
p

.

∥∥∥∥
∑

(m,n,ñ)∈C
ei(2m

2+κn2+κñ2)t

∥∥∥∥
L

p
2
t (I)

for some ompat interval I ⊂ R. Due to the retangular struture of C, the sum an be

fatorized and Hölder's estimate leads to

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
p

.

∥∥∥∥
∑

m∈a1+[0,10N ]

e2im
2t

∥∥∥∥
L

3p
2

t (I)

∥∥∥∥
∑

n∈a2+[0,10N ]

eκin
2t

∥∥∥∥
L

3p
2

t (I)

×
∥∥∥∥

∑

ñ∈a3+[0,10N ]

eκiñ
2t

∥∥∥∥
L

3p
2

t (I)

uniformly in ξ. Sine p > 8
3 , we have

3p
2 > 4 and Corollary 1.39 yields

sup
ξ∈Z

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p

. N
3
2
− 2

p

as asserted.

As mentioned before, interpolating with L∞(τ0 × S) leads to the next estimate we shall rely

on later. The fator of |S| plays a ruial role in the upoming arguments.

Corollary 2.20. Let p > 8
3 , 2 ≤ q < 3p

4 and τ0 ⊂ R be a bounded time interval. Then, there

exists C > 0 suh that for any a ∈ ℓ2(Z4), N ≥ 1, and all sets S ∈ C 4
N the estimate

∥∥∥∥
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∥∥∥∥
Lp
t (τ0,L

q
θ(S))

≤ CN
3
q
− 2

p |S|
1
2
− 1

q ‖a‖ℓ2

holds.
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Proof. For brevity set

f(t, θ) :=

∣∣∣∣
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∣∣∣∣.

Let ε := 2p
q − 8

3 > 0 and ϑ := 2
q ≤ 1. By Hölder's inequality and Lemma 2.19 we have

‖f‖Lp
tL

q
θ
= ‖fϑf1−ϑ‖Lp

tL
q
θ
≤ ‖f‖ϑ

L
8
3+ε

t L2
θ

‖f‖1−ϑL∞
t,θ

. N
3
q
− 2

p |S|
1
2
− 1

q ‖a‖ℓ2 .

Here, we used

‖f‖L∞
t,θ

≤ |S| 12 ‖a‖ℓ2 ,
whih follows immediately from the Cauhy�Shwarz inequality.

2.5.5 Almost orthogonality

The subsequent lemmas exploit almost orthogonality in spae and time. In ontrast to what

has been done before, we gain some fator of the lowest frequeny (see (2.37)) from the two

high-frequeny terms in Lemma 2.21. Sine we need to get a fator N−δ
1 , this seems to work

only in the ase N1 ≤ N2
3 . The idea of using this kind of almost orthogonality to ahieve a

spetral loalization of the two high-frequeny terms in terms of the lowest frequeny seems

to be new in this ontext. Without suh an argument it is not obvious how one ould obtain

a su�iently high power of N3 in Proposition 2.24 using the estimate in Lemma 2.19. To

show this, we repeat the author's argument in [HS15, Remark 1℄: We start with a trilinear

L2(τ0×M) estimate and proeed as in the proof of Proposition 2.24 until (2.43). Then, using

Hölder's inequality to put the two funtions with the highest frequenies to L
16/3+
t L4

θ, and

thus, the funtion with the lowest frequeny, say N3, to L
8−
t L∞

θ . We treat the latter term as

follows: Applying Bernstein's inequality to bound it by the L8−
t L4

θ-norm gives a fator N
1/4
3 .

The exponential sum estimate in Lemma 2.19 gives N
1/2−
3 and from the trilinear estimate for

spherial harmonis we get another N
1/4
3 as in (2.43). All in all, we obtain N1−

3 , and hene,

the power on the lowest frequeny is too low to onlude well-posedness from Setion 2.2.1.

The remaining ase N1 > N2
3 is treated in Lemma 2.22. By exploiting almost orthogonality

in spae and time, we restrit the spetrum only of the high-frequeny term. In the proof of

Proposition 2.24 below, it turns out that this ase is in fat sub-ritial.

Given dyadi numbers N1, N2, N3 ≥ 1, we de�ne the point-sets

Nj :=
{
(m,n) ∈ Z×N0 : ηNj

(√
λm,n

)
> 0
}
, j = 1, 2, 3. (2.36)

Lemma 2.21. Let ν > 0 and τ0 ⊂ R be a bounded interval. Furthermore, let τ1 ⊃ τ0 be an

open interval. Then, for all φ1, φ2, φ3 ∈ L2(M) and dyadi numbers N1 ≥ N2 ≥ N3 ≥ 1 with

N1 ≤ N2
3 there are �nitely many sets Sℓ ⊆ N1 ×N2 of size

|Sℓ| . min
0≤δ≤1

N−δ
1 N1+2δ

2 N3−δ
3 , (2.37)

with the property N1 ×N2 =
⋃̇
ℓ∈ZSℓ suh that

∥∥∥∥
3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
∥∥2
L2(τ1×M)

+N
3
2
2 N

−ν
3

3∏

j=1

‖PNjφj‖2L2(M).
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Proof. We prove this result in four steps. In the �rst three steps, we exploit almost orthogo-

nality in the S and the S
2
ρ omponent, respetively. We then use almost orthogonality in time

to onlude the laim. Note that we may assume N1 ≫ N2.

In this proof, we agree on the notation

∑

A
:=

∑

(m1,n1,m2,n2,m3,n3)∈A
and

∑

A,
B

:=
∑

(m1,n1,m2,n2,m3,n3)∈A,
(m̃1,ñ1,m̃2,ñ2,m̃3,ñ3)∈B

(2.38)

for given sets A,B ⊆ Z
6
. First, we reall that for t ∈ τ0 and (θ, ω) ∈ S× S

2
ρ,

3∏

j=1

PNje
it∆φj(θ, ω) =

∑

N1×N2×N3

3∏

j=1

ηNj

(√
λmj ,nj

)
e−iλmj,nj teimjθΠnjΘmjφj(ω).

Step 1. Due to spatial almost orthogonality indued by the S omponent, it su�es to prove

the desired estimate in the ase

PRPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3,

where R ⊆ N1∩ ([b, b+N2]×N0) for some |b| ≤ 2N1. To prove that, we onsider the partition

Z =
⋃̇

k∈Z
Ik, where Ik :=

[
kN2, (k + 1)N2

)
∩ Z.

Indeed, for �xed ω ∈ S
2
ρ and t ∈ τ0 we an show

∥∥∥∥
3∏

j=1

PNje
it∆φj(ω)

∥∥∥∥
2

L2(S)

≈
∑

k∈Z
‖PRk

PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(ω)‖2L2(S),

where Rk := N1 ∩ (Ik × N0). For k, k̃ ∈ Z we have

〈
PRk

PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(ω), PR

k̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(ω)
〉
L2(S)

=
∑

Rk×N2×N3,
R

k̃
×N2×N3

Im,n

3∏

j=1

e
−i(λmj,nj−λm̃j ,ñj

)t
ΠnjΘmjφj(ω)Πñj

Θm̃j
φj(ω),

where m := (m1,m2,m3, m̃1, m̃2, m̃3), n := (n1, n2, n3, ñ1, ñ2, ñ3), and

Im,n :=

3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

) ∫

S

ei(m1+m2+m3−m̃1−m̃2−m̃3)θ dθ.

Sine mj, m̃j , j = 1, 2, 3, are integers, we may onlude Im,n = 0 provided |k − k̃| > 8.

Step 2. Now, we use almost orthogonality that omes from the S
2
ρ omponent. It is well-

known that the produt of a spherial harmoni of degree m with another of degree ℓ an be

expanded in terms of spherial harmonis of degree less or equal to m+ ℓ. Furthermore, two

spherial harmonis of di�erent degree are orthogonal in L2(Snρ), n ∈ N. We �nally remark

that omplex onjugation does not hange the degree of a spherial harmoni. Details may

be found in [SW71, Setion VI.2℄. These fats applied to S would lead to the same result
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that we obtained in Step 1. In Step 1, however, we wanted to point out that no theory about

spherial harmonis is required to onlude almost orthogonality in S.

We now prove that it su�es to onsider the ase where n1 is loated in an interval of the

size of the seond highest frequeny N2. To this end, we de�ne similarly as above a partition

of N0:

N0 =
⋃̇

k∈N0

Ik, where Ik :=
[
kN2, (k + 1)N2

)
∩ N0.

Fix θ ∈ S and t ∈ τ0, then it holds that

‖PRPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

≈
∑

k∈N0

‖PCkPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

,

where Ck := R ∩ (Z × Ik). To see this, let k, k̃ ∈ N0 and write

〈
PCkPN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(θ), PC
k̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(θ)
〉
L2(S2ρ)

=
∑

Ck×N2×N3,
C
k̃
×N2×N3

Im,n

3∏

j=1

e
−i(λmj,nj−λm̃j ,ñj

)t
ei(mj−m̃j)θ,

where m := (m1,m2,m3, m̃1, m̃2, m̃3), n := (n1, n2, n3, ñ1, ñ2, ñ3), and Im,n is de�ned by

Im,n :=

3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

)〈 3∏

j=1

ΠnjΘmjφj,

3∏

j=1

Πñj
Θm̃j

φj

〉

L2(S2ρ)

.

Without loss of generality, we may assume n1 > ñ1. Then,

Ym,n := Πñ1
Θm̃1

φ1

3∏

j=2

ΠnjΘmjφjΠñj
Θm̃j

φj ∈ L2(S2ρ)

an be expanded in terms of spherial harmonis of degree less or equal to ñ1 + 8N2. Hene,

if |k − k̃| > 8, then

Im,n =
3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

)
〈Πn1Θm1φ1, Ym,n〉L2(S2ρ)

= 0.

As a onsequene, we are left to show

∥∥∥∥PCPN1e
it∆φ1

3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
∥∥2
L2(τ1×M)

+N
3
2
2 N

−ν
3 ‖PCkPN1φ1‖2L2(M)

3∏

j=2

‖PNjφj‖2L2(M)

for any �xed C := Ck, k ∈ N0.

Step 3. Analogously as in the �rst step, we see that

‖PCPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

≈
∑

k∈Z
‖QR(2)

k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(S2ρ)

,
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where R(2)
k := {(m1, n1,m2, n2) ∈ C × N2 : m1 + m2 ∈ [kN3, (k + 1)N3)}. Again, this is a

onsequene of almost orthogonality in S. We omit details sine the argument is pretty lose

to Step 1.

Step 4. Let k ∈ Z be �xed and M := N2
3 /N1 ≥ 1. We de�ne the partition

N0 =
⋃̇

ℓ∈N0

Jℓ, where Jℓ :=
[
ℓM, (ℓ+ 1)M

)
∩ N0.

Inspired by the proof of [HTT11, Proposition 3.5℄, we onsider the following partition: Let ξ0
be the enter of C2 := C ×N2, and de�ne disjoint strips of width M that are orthogonal to ξ0:

Sk,ℓ :=
{
(m1, n1,m2, n2) ∈ R(2)

k : (m1, n1,m2, n2) ·κ ξ0 ∈
[
|ξ0|ℓM, |ξ0|(ℓ+ 1)M

)}
,

where ξ ·κ ζ := ξ1ζ1 + κξ2ζ2 + ξ3ζ3 + κξ4ζ4. We observe from the onstrution that the angle

5

∡
(
(m1, κn1,m2, κn2), ξ0

)
.κ

N2
N1

. Sine N1 ≫ N2, we have ∡
(
(m1, κn1,m2, κn2), ξ0

)
≤ 1

2 .

From this, we get

(m1, n1,m2, n2) ·κ ξ0 = |(m1, κn1,m2, κn2)||ξ0| cos∡
(
(m1, κn1,m2, κn2), ξ0

)
≈ N2

1 .

Thus, ℓ ≥ 0 and ℓ ≈ N1
M sine |ξ0| ≈ N1. Sine R(2)

k =
⋃̇
ℓ≈N1/M

Sk,ℓ, we see that

QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2) =
∑

ℓ≈N1/M

QSk,ℓ
(PN1e

it∆φ1, PN2e
it∆φ2).

Let χ ∈ C∞
0 (R) be a non-negative ut-o� funtion satisfying χ(t) = 1 for all t ∈ τ0 and

χ(t) = 0 for all t ∈ R \ τ1. Obviously,

‖QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ0×M)

≤ ‖√χ(t)QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M) . Ik,1 + Ik,2,

where

Ik,1 :=
∑

ℓ≈N1/M

‖QSk,ℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

and

Ik,2 :=
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)QSk,ℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3,

QS
k,ℓ̃
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
〉
L2(R×M)

.

It then su�es to show

∑

k∈Z
|Ik,2| . N

3
2
2 N

−ν
3 ‖PCPN1φ1‖2L2(M)

3∏

j=2

‖PNjφj‖2L2(M). (2.39)

5∡(ξ, ζ) denotes the angle between ξ and ζ with respet to the standard inner produt ξ · ζ.
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The bene�t of extending the integration with respet to t to R is that we may interpret this

integration as Fourier transform on R. Doing so and taking the absolute value, we obtain

|Ik,2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

Sk,ℓ×N3,
S
k,ℓ̃

×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)∫

M

3∏

j=1

|ΠnjΘmjφjΠñj
Θm̃j

φj(ω)| d(θ, ω).

(2.40)

The term |pχ| provides us with arbitrarily fast deay in N3. To prove this, we de�ne the

quadrati form

Q(ξ) := ξ21 + κξ22 + ξ23 + κξ24 , ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Z
4

and observe that for ξ := (m1, n1 +
1
2 ,m2, n2 +

1
2) we have

λm1,n1 + λm2,n2 = Q(ξ)− κ

2
.

Motivated by the proof of [HTT11, Proposition 3.5℄, we write

Q(ξ) =
1

Q(ξ0)
|ξ ·κ ξ0|2 +Q(ξ − ξ0)−

1

Q(ξ0)
|(ξ − ξ0) ·κ ξ0|2.

We note from the restrition to Sk,ℓ and N2
3 .M2ℓ that

Q(ξ) =M2ℓ2 +O(M2ℓ).

The same result holds true for the elements in S
k,ℓ̃

:

Q
(
(m̃1, ñ1 +

1
2 , m̃2, ñ2 +

1
2)
)
=M2ℓ̃ 2 +O(M2ℓ̃ ).

Assuming |ℓ− ℓ̃ | ≫ 1, we see

∣∣∣∣
3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

∣∣∣∣ =M2(ℓ+ ℓ̃ )|ℓ− ℓ̃ |+O(M2ℓ) +O(M2ℓ̃ ) & N2
3 |ℓ− ℓ̃ |

sine ℓ, ℓ̃ ≈ N1
M . Thus, for any µ > 0,

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)
.µ N

−2µ
3 〈ℓ− ℓ̃ 〉−µ.

Now, we proeed to estimate (2.40). Cauhy�Shwarz with respet to (θ, ω), Sk,ℓ ×N3, and

S
k,ℓ̃

×N3 as well as the trilinear estimate for spherial harmonis in Proposition 2.18 yield

|Ik,2| . (N2N3)
1
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

( ∑

Sk,ℓ×N3,
S
k,ℓ̃

×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)2) 1
2

×
( ∑

Sk,ℓ×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2(M)

) 1
2
( ∑

S
k,ℓ̃

×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2(M)

) 1
2
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Assume for the moment that (2.37) holds. Then, hoosing δ = 0, we see that the square root
of the sum over Sk,ℓ×N3 and S

k,ℓ̃
×N3 is bounded by N2N

3−2µ
3 〈ℓ− ℓ̃ 〉−µ . N2N

−ν
3 〈ℓ− ℓ̃ 〉−µ

provided 2µ − 3 ≥ ν. Finally, Shur's lemma and Cauhy�Shwarz with respet to k imply

∑

k∈Z

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ
( ∑

Sk,ℓ×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2

) 1
2
( ∑

S
k,ℓ̃

×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2

) 1
2

. ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M)

provided µ > 1. This proves (2.39).

It remains to prove (2.37). Although there are two diretions of size N3 and M introdued in

the third and fourth step, respetively, we an not expet |Sk,ℓ| . MN2
2N3 to be true sine

these diretions might be not orthogonal. If we just take the restrition of Sk,ℓ into aount,

it is obvious that |Sk,ℓ| . N3
2M . We then obtain the asserted estimate by interpolating with

a seond estimate for |Sk,ℓ|. From the restrition to R(2)
k , we see that there are CN2

2N3

ombinations of (m1,m2, n2). The de�nition of Sk,ℓ implies

A ≤ κn1ξ0,2/|ξ0| ≤ A+M, (2.41)

where ξ0 = (ξ0,1, ξ0,2, ξ0,3, ξ0,4) and A := ℓM − (m1ξ0,1 +m2ξ0,3 + κn2ξ0,4)/|ξ0|. Reall that

ξ0 was hosen to be the enter of C × N2, where C ⊆ N1 is a ube of size N2 and the seond

omponent is a subset of {0, . . . , 2N1}. We dedue ξ0,2 & N2 and onsequently, ξ0,2/|ξ0| &
N2/N1. Hene, (2.41) implies that there are CN2

3 /N2 possible values for n1 (depending on κ).
All in all, we proved |Sk,ℓ| . N2N

3
3 . Now, (2.37) follows from interpolating the two bounds

on |Sk,ℓ|.

The following lemma treats the remaining ase, where the highest frequeny is larger than the

square of the lowest frequeny.

Lemma 2.22. Let ν > 0 and τ0 ⊂ R be a bounded interval. Furthermore, let τ1 ⊃ τ0 be an

open interval. Then, for all φ1, φ2, φ3 ∈ L2(M) and dyadi numbers N1 ≥ N2 ≥ N3 ≥ 1 with

N1 > N2
3 there are �nitely many sets Tℓ ⊆ N1 with the properties that Tℓ ∈ R2

N2,M
, where

M := max{N2
2 /N1, 1}, and N1 =

⋃̇
ℓ∈ZTℓ suh that

∥∥∥∥
3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3

∥∥2
L2(τ1×M)

+N−ν
2

3∏

j=1

‖PNjφj‖2L2(M).

Proof. We use the notation introdued in (2.38). From Step 1 and Step 2 of the proof of

the previous lemma, we see that we may onsider PCPN1e
it∆φ1 instead of PN1e

it∆φ1, where
C ⊆ N1 and C ∈ C 2

N2
.

In what follows, we omit details sine we argue along the lines of Step 4. De�ne the partition

N0 =
⋃̇

ℓ∈N0

Jℓ, where Jℓ :=
[
ℓM, (ℓ+ 1)M

)
∩ N0 and M := max

{
N2

2

N1
, 1

}
.
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Let ξ0 be the enter of C, and de�ne disjoint strips of width M that are orthogonal to ξ0:

Tℓ :=
{
(m1, n1) ∈ C : (m1, κn1) · ξ0 ∈

[
|ξ0|ℓM, |ξ0|(ℓ+ 1)M

)}
,

where ℓ ≥ 0 and ℓ ≈ N1
M . We learly have

PCPN1e
it∆φ1 =

∑

ℓ≈N1/M

PTℓPN1e
it∆φ1.

We denote by χ the same non-negative ut-o� funtion as in Step 4. We ompute

‖PCPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ0×M)

≤ ‖√χ(t)PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M) . I1 + I2,

where

I1 :=
∑

ℓ≈N1/M

‖PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M)

and I2 is de�ned as

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)PTℓPN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3, PT
ℓ̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3
〉
L2(R×M)

.

We are left to estimate

|I2| . N−ν
2 ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M).

By the same argument that we used to obtain (2.40), we dedue

|I2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

Tℓ×N2×N3,
T
ℓ̃
×N2×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)∫

M

3∏

j=1

|ΠnjΘmjφjΠñj
Θm̃j

φj(ω)| d(θ, ω).

For |ℓ− ℓ̃ | ≫ 1 and ℓ, ℓ̃ ≈ N1
M , we get

∣∣∣∣
3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

∣∣∣∣ =M2(ℓ+ ℓ̃ )|ℓ− ℓ̃ |+O(M2ℓ) +O(M2ℓ̃ ) & N2
2 |ℓ− ℓ̃ |.

Thus, for any µ > 0,

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)
.µ N

−2µ
2 〈ℓ− ℓ̃ 〉−µ.

Cauhy�Shwarz with respet to (θ, ω), Tℓ×N2×N3, and T
ℓ̃
×N2×N3 as well as the trilinear

estimate for spherial harmonis in Proposition 2.18 yield

|I2| . (N2N3)
1
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

( ∑

Tℓ×N2×N3,
T
ℓ̃
×N2×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)2) 1
2

×
( ∑

Tℓ×N2×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2(M)

)1
2
( ∑

T
ℓ̃
×N2×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2(M)

)1
2

.
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Sine |Tℓ ×N2 ×N3| . N6
2 for any ℓ ∈ N0, we onlude

|I2| . N7−2µ
2 ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M)

using Shur's lemma as done in Step 4. Choosing µ large enough implies the asserted result.

Remark. In the third step of the proof of [HS15, Proposition 2.6℄, an annular smallness

ondition was derived. A similar restrition ould have been determined in the previous two

lemmas, whih was avoided here due to the more ompliated number of lattie points estimate

for annular sets. ♦

2.5.6 The trilinear Strihartz estimate

Before we turn to the proof of Assumption 2.1, we state the following estimate of the number

of lattie points solving a Diophantine equation. The proof is similar to the proof of (1.8) and

an be found in [BGT05a, Lemma 3.2℄, for instane.

Lemma 2.23. For every ε > 0 there exists Cε > 0 suh that for every τ ∈ N0 and N ∈ N,

∣∣{(n1, n2) ∈ [0, N ]× N0 : n
2
1 + n22 = τ

}∣∣ ≤ CεN
ε.

Now, we have everything we need to onlude the trilinear Strihartz estimate, whih in turn

implies the loal well-posedness result in Theorem 2.3.

Proposition 2.24. There exists δ > 0 suh that for all φ1, φ2, φ3 ∈ L2(M) and dyadi

numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds:

‖PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖L2(τ0×M) .

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(M).

Proof. Aording to our almost orthogonality results, we have to treat the ases N1 ≤ N2
3

and N1 > N2
3 separately. The latter ase an be onsidered as sub-ritial sine a gain of a

small power of N−1
1 allows ompensate a loss of a small power of N3. This is exploited at the

end of this proof.

Case N1 ≤ N2
3 . Let τ1 ⊃ τ0 be an open interval. Thanks to Lemma 2.21, we may replae the

left-hand side by

(∑

ℓ∈Z
‖QSℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M)

) 1
2

.

To be de�nite we hoose δ = 1
12 whih gives that Sℓ ⊆ N1×N2 are sets of sizeM

1/12N
7/6
2 N

11/4
3 .

The Nj are de�ned as in (2.36). Reall that for t ∈ τ0 and (θ, ω) ∈ S× S
2
ρ,

QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3(θ, ω)

=
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ

3∏

j=1

ηNj

(√
λmj ,nj

)
e−iλmj,nj teimjθΠnjΘmjφj(ω),
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where Mℓ := Sℓ × N3. In the next step we treat the L2(S2ρ)-norm separately without los-

ing osillations in the S omponent and in time. This was already used by Burq�Gérard�

Tzvetkov in the proof of [BGT05b, Proposition 5.1℄. Planherel's identity with respet to t
(see Proposition 1.36 (ii)) and θ, and the triangle inequality for the L2(S2ρ)-norm yield

‖QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

.
∑

τ∈N0, ξ∈Z

∥∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

|ΠnjΘmjφj|
∥∥∥∥∥

2

L2(S2ρ)

.
∑

τ∈N0, ξ∈Z

[
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

∥∥∥∥
3∏

j=1

ΠnjΘmjφj

∥∥∥∥
L2(S2ρ)

]2
.

(2.42)

In ontrast to [BGT05b, Proposition 5.1℄, we do not estimate the number of terms of the

inner sum, but we go bak to the physial spae: We set a
(j)
mj ,nj

:= ‖ΠnjΘmjφj‖L2(S2ρ)
for

j = 1, 2, 3 and apply Proposition 2.18 as well as Planherel's identity with respet to θ and

Proposition 1.36 (i) with respet to t to obtain

‖QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

. (N2N3)
1
2

∑

τ∈N0, ξ∈Z

(
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

a(j)mj ,nj

)2

. (N2N3)
1
2

∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ

3∏

j=1

e−iλmj,nj teimjθa(j)mj ,nj

∥∥∥∥
2

L2
t,θ(τ0×S)

.

(2.43)

Hölder's estimate yields

(2.43) . (N2N3)
1
4

∥∥∥∥
∑

(m1,n1,m2,n2)∈Sℓ

2∏

j=1

e−iλmj,nj teimjθa(j)mj ,nj

∥∥∥∥
L3
t (τ1,L

9/4
θ (S))

×
∥∥∥∥

∑

(m3,n3)∈N3

e−iλm3,n3 teim3θa(3)m3,n3

∥∥∥∥
L6
t (τ1,L

18
θ (S))

.

(2.44)

Applying Bernstein's inequality to the last term in (2.44) and then Corollary 2.20 to both

terms. This leads to

(∑

ℓ∈Z
‖QSℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M)

) 1
2

. N
− 1

216
1 N

53
54
2 N

221
216
3

3∏

j=1

‖φj‖L2(M),

whih immediately implies the desired result in the �rst ase.

Case N1 > N2
3 . We follow the strategy of Burq�Gérard�Tzvetkov in the proof of [BGT05b,

Proposition 5.1℄. The only di�erene is the estimate (ii) below and how we exploit it.
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In light of Lemma 2.22, it su�es to show

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖L2(τ1×M)

.

(
N3

N1
+

1

N2

)δ
N2N3‖PT PN1φ1‖L2(M)

3∏

j=2

‖PNjφj‖L2(M)

for some open interval τ1 ⊃ τ0 and T ⊆ N1 with T ∈ R2
N2,M

, where M := max{N2
2 /N1, 1}.

For M := T × N2 ×N3 we estimate

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M)

.
∑

τ∈N0, ξ∈Z

∥∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈M:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

|ΠnjΘmjφj |
∥∥∥∥∥

2

L2(S2ρ)

as in (2.42) above. The triangle inequality for the L2(S2)-norm, Cauhy�Shwarz in the

summation over (m1, n1,m2, n2,m3, n3) ∈ M, and Proposition 2.18 yield

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M) . (N2N3)

1
2 sup
τ∈N0, ξ∈Z

Λ(ξ, τ)
3∏

j=1

‖φj‖2L2(M),

where Λ(ξ, τ) is de�ned as

∣∣{(m1, n1,m2, n2,m3, n3) ∈ M : ξ = m1 +m2 +m3, |λm1,n1 + λm2,n2 + λm3,n3 − τ | ≤ 1
2

}∣∣.

We are left to bound Λ(ξ, τ) uniformly in ξ and τ by

C

(
N3

N1
+

1

N2

)2δ

N
3
2
2 N

3
2
3 .

In fat, we shall prove that there exists η > 0 suh that

sup
τ∈N0, ξ∈Z

Λ(ξ, τ) ≤ CN
3
2
−η

2 N
3
2
3 . (2.45)

In ontrast to [BGT05b℄, we will use the smallness properties of T introdued by almost

orthogonality in spae and time to gain a small power of M . For any ε > 0 we get the

following two estimates:

(i) Λ(ξ, τ) ≤ CεN
1+ε
2 N2

3 , (ii) Λ(ξ, τ) ≤ CεMN2N
1+ε
3 .

The estimates an be proved as follows:

(i) Here, we neglet the restrition to T . The number of possible triples (m2,m3, n3) is

bounded by CN2N
2
3 . Now, we �x a possible triple (m2,m3, n3) and eliminate m1 by

m1 = ξ −m2 −m3. Then (n1, n2) has to satisfy

∣∣(2n1 + 1)2 + (2n2 + 1)2 − r
∣∣ ≤ 2

κ
, (2.46)

with r := 2+ 4
κ

(
τ − (ξ−m2−m3)

2−m2
2−λm3,n3

)
. Hene, Lemma 2.23 implies that the

number of integer solutions (n1, n2) ∈ [0, 2N1]× [0, 2N2] of (2.46) is bounded by CεN
ε
2 .

From this we dedue (i).
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(ii) From the de�nition of T , we see that the number of possible triples (m1, n1,m3) an
be estimated by CMN2N3. We �x a possible triple (m1, n1,m3) and eliminate m2 by

m2 = ξ −m1 −m3. In order to evaluate Λ(ξ, τ), we observe that (n2, n3) satis�es

∣∣(2n2 + 1)2 + (2n3 + 1)2 − r
∣∣ ≤ 2

κ
,

with r := 2 + 4
κ

(
τ − λm1,n1 − (ξ −m1 −m3)

2 −m2
3

)
. By Lemma 2.23, we an estimate

the number of integer solutions by CN ε
3 .

Note that the estimates (i) and (ii) above have an additional loss of power ε and thus,

should not be useful in our energy-ritial study. However, sine N1 > N2
3 , the fator

M = max{N2
2 /N1, 1} in (ii) allows to ompensate this loss in either ase.

On the one hand, if M = 1, then (ii) learly yields

Λ(ξ, τ) ≤ CN2N
3
2
3 ,

whih immediately implies (2.45).

On the other hand, if M = N2
2 /N1, then we bound

Λ(ξ, τ) ≤ Cε
(
N1+ε

2 N2
3

) 9
10
(
N−1

1 N3
2N

1+ε
3

) 1
10 ≤ CεN

− 1
10

1 N
6
5
+ε

2 N
19
10
3

for some ε > 0. Observe that N1 > N2
3 implies N

−1/10
1 ≤ N

−1/5
3 . Therefore,

Λ(ξ, τ) ≤ CεN
6
5
+ε

2 N
17
10
3 .

Choosing ε < 1
20 yields (2.45) sine

17
10 >

3
2 and

6
5 +

1
20 + 17

10 < 3.

2.6 Further results on other manifolds and remarks

Apart from the energy-ritial loal and small data global well-posedness results proved above,

there is only very little knowledge about energy-ritial well-posedness on ompat mani-

folds.

As mentioned before, well-posedness on the lass of Zoll manifolds, whih are manifolds for

whih all geodesis are simple and losed with a ommon minimal period, has been stud-

ied. The most important example of a Zoll manifold is S
n
. To the authors knowledge,

Burq�Gérard�Tzvetkov were the �rst who obtained energy-sub-ritial well-posedness results

for the NLS on two- and three-dimensional Zoll manifolds as well as S × M where M is

a two-dimensional Zoll manifold, see [BGT05a, Theorem 1℄ and [BGT05b, Theorem 1.1℄

6

.

Herr [Her13, Theorem 1.1℄ �nally established energy-ritial loal and small data global well-

posedness for three-dimensional Zoll manifolds. The proof relies on the stronger (ompared

to Corollary 1.39) exponential sum estimate

∥∥∥∥
∑

n∈J
cne

−itn2

∥∥∥∥
Lp
t (I)

≤ CN
1
2
− 2

p

(∑

n∈J
|cn|2

) 1
2

,

where 4 < p ≤ ∞ and J is an interval in Z of size N ≥ 1 [Her13, Lemma 3.1℄. Using an almost

orthogonality argument, the trilinear estimate in Assumption 2.1 is obtained impliitly in the

6

Even though [BGT05b, Theorem 1.1℄ is only stated for S
3
and S

2
ρ × S, it is mentioned in the introdution

of Setions 4.2 and 5.2 that it applies to three-dimensional Zoll manifolds and S×M as well.
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proof of [Her13, Proposition 3.6℄. Besides this trilinear estimate, another very important

novelty in this artile is the treatment of the minor ontribution term Σ2 in the proof of

[Her13, Proposition 4.2℄, whih orresponds Σ2 in the proof of Lemma 2.9. This ontribution

was zero in the previously onsidered ase T
3
.

7

It is worth to mention that the well-posedness

study on Zoll manifolds does not rely on the geometrial property but on the fat that the

spetrum is lustered around a sequene of squares.

One might ask whether the proof of Proposition 2.24 an be extended to the lass of S×M ,

where M is a two-dimensional Zoll manifold. First, one should mention that the spetrum

of two-dimensional Zoll manifolds is�like in the three-dimensional ase�lustered around

square numbers, see [BGT05a, Proposition 3.3℄ and [Gui77, Theorem 6℄. As a onsequene,

the spetrum does not hange muh ompared to the previous setion if one onsiders a

Laplae�Beltrami operator ∆̃ similar as in [Her13, Lemma 2.2℄ instead. Hene, it seems likely

that an argument as in the proof of Lemma 2.19 allows to get a similar result. A fundamental

hange has to be done in the proof of Lemma 2.21. One does not have almost orthogonality of

eigenfuntions of Zoll manifolds, though, in light of Lemma 1.54, the additional ontribution

should be negligible. Hene, we strongly expet Proposition 2.24 to hold even for the produt

of S with any two-dimensional Zoll manifold.

In higher dimensions even less is known. So far, there is only one energy-ritial well-posedness

result on a four-dimensional ompat manifold, namely on T
4
. This result is due to Herr�

Tataru�Tzvetkov [HTT14, Theorem 1.1℄ and relies heavily on the Strihartz estimates given in

[Bou13, formula (0.11)℄. A natural domain to be onsidered next is S
4
. In this ase, new ideas

seem to be needed due to the failure of the sale invariant L4
t,x-Strihartz estimate [BGT04,

Theorem 4℄. However, Gérard�Pierfelie [GP10℄ proved that the quadrati NLS is loally

well-posed in Hs
zonal(S

4) for every s > 1
2 , where H

s
zonal(S

4) is the spae of all zonal funtions
in Hs(S4).

7

In the speial ase of S
3
�due to orthogonality reasons�the term Σ2 is zero, too.





3 Global well-posedness for large data

Having disussed the loal and small data global theory in the previous hapter, we shall

now address the energy-ritial large data global well-posedness theory on retangular tori.

For any initial data in H1
we prove that the defousing nonlinear Shrödinger equation with

quinti nonlinearity is globally well-posed. This result, whih has already been published in

[Str15℄ by the author of the present thesis, extends results of Ionesu�Pausader [IP12b℄.

3.1 Set-up and main result

Analogously to the loal theory in Setion 2.3, we study the following defousing nonlinear

Shrödinger equation {
i∂tu+∆θu = u|u|4

u(0, · ) = φ ∈ H1(T3)
(3.1)

with base spae T
3
and modi�ed Laplae�Beltrami operator ∆θ instead of the equivalent

equation on T
3
θ, {

i∂tv +∆gv = v|v|4

v(0, · ) = φ̃ ∈ H1(T3
θ).

Reall the de�nition of the modi�ed Laplae operator ∆θ given in (2.24), the notion of the

evolution operator eit∆θ
in (2.25), and the onservation of mass and energy, see (2.26).

For notational onveniene we write ∇ = ∇g, and this time, we use the equivalent H1
-norm

whih is given by

‖f‖Hs(T3) :=

(∑

N≥1

N2s‖PNf‖2L2(T3)

) 1
2

.

This a�ets only onstants and in some ases hanges them to one as in Proposition 3.3 (ii).

We also speify the frequeny loalization operators PN : We �x a smooth, non-negative,

even funtion η1 : R → [0, 1] with η1(y) = 1 for |y| ≤ 1 and supp η1 ⊆ (−2, 2). Then, let

η3 : R3 → [0, 1] be de�ned via η3(x) := η1(x1)η
1(x2)η

1(x3). For a dyadi number N > 1 we

set

η3N (x) := η3
( |x|
N

)
− η3

(
2|x|
N

)
and η31(x) := η3(|x|).

Then, we de�ne the frequeny loalization operators PN : L2(T3) → L2(T3) as the Fourier

multiplier with symbol η3N . Furthermore, we set P≤N :=
∑

1≤M≤N PM . More generally, given

a set S ⊆ Z
3
, we de�ne PS to be the Fourier multiplier with symbol 1S , where 1S denotes

the harateristi funtion of S.

Using the spae X1
r (I), whih is de�ned in De�nition 3.2 below, we may formulate the main

result of this hapter.



88 3 Global well-posedness for large data

Theorem 3.1 (Global well-posedness). If φ ∈ H1(T3), then there exists a unique global

solution u ∈ C(R,H1(T3))∩X1
r (R) of the initial value problem (3.1). Moreover, the mapping

φ 7→ u extends to a ontinuous mapping from H1(T3) to C([−T, T ],H1(T3)) ∩ X1
r ([−T, T ])

for any T ∈ [0,∞), and the quantities M(u) and E(u) de�ned in (2.26) are onserved along

the �ow.

Important results regarding well-posedness on tori have been summarized in Setion 2.3.1.

Now, we want to put the results presented here better into ontext. In a series of papers,

Ionesu�Pausader [IPS12, IP12a, IP12b℄ ([IPS12℄ is a joint work with Sta�lani) developed a

method to obtain energy-ritial large data global well-posedness on T
3
. This was the �rst

ritial result of this kind on a ompat manifold. So far, the orresponding result has been

only obtained on S
3
[PTW14℄ by Pausader�Tzvetkov�Wang and on retangular tori [Str15℄

by the author. A variant of the proof of the latter result is given in this hapter. Our proof

is losely tied to the strategy developed by Ionesu�Pausader [IP12b℄, whih itself relies on

ideas that have been applied on R
3
[Bou99, CKS

+
08, KM06℄. Sine some proofs are omitted in

[IP12b℄ as they follow analogously as on the previously onsidered domains in [IPS12, IP12a℄,

we take the opportunity to review the whole argument.

Our �rst step is to re�ne the large data loal well-posedness theory presented in Setion 2.3.

For that purpose, we introdue a variant of the resolution spaes Xs
and Y s

, whih give a

loal-in-time ontrol, and a weaker ritial spae-time norm Z. On the one hand, it is proved

that the nonlinear solution stays regular as long as the Z-norm is �nite. On the other hand,

we show that onentration of a large amount of the Z-norm in �nite time is self-defeating.

The reason is that a onentration of the Z-norm in �nite time is equivalent to the fat of

undergoing a self-similar Eulidean onentration, whih is prevented by the Eulidean theory.

This is a onsequene of the following: Conentration of a large amount the Z-norm in �nite

time an only happen around a point in spae-time, whih itself must our in a way that is

omparable to Eulidean solutions. Finally, it is known that Eulidean-like solutions an only

onentrate a bounded, �nite amount of spae-time norm [CKS

+
08℄. To implement this, we

perform a pro�le deomposition of the initial data with pro�les that onentrate in a point.

Suh pro�les are studied in detail.

We �nally highlight the novelties. The main new ingredients for extending the result in

[IP12b℄ are the extintion lemma (Lemma 3.21) and Lemma 3.32. Unlike in the ase of T
3
,

we an not apply the Weyl inequality in Lemma 1.41 to |KM (t, x)|, whih is de�ned in (3.41).

However, it turns out that throwing away the osillations in two omponents and using the

Weyl inequality in one dimension, is still strong enough to obtain a similar extintion lemma

as in [IP12b, Lemma 4.3℄. The main novelty in Lemma 3.32, whih estimates the interation

of a high-frequeny linear solution with a low-frequeny pro�le, is the way we estimate (3.98).

This, however, was already done in the author's work [Str15℄.

In [Str15℄, the author already mentioned that the range of Strihartz estimates in Lemma 2.10

su�e to not only onlude small data global well-posedness but even global well-posedness for

arbitrary large initial data in H1
. This is remarkable sine the proof of Lemma 2.10 requires

no sophistiated arguments. Indeed, the essential tools are the exponential sum estimates

proved in Setion 1.3, see [Bou07, Proposition 1.1℄. This is aomplished by modifying the Z-
norm, whih mainly e�ets the loal theory that is developed here and the extintion lemma.

Motivated by the fat that the onditional result in Setion 2.2 used dyadi sale resolution

spaes, we are going to de�ne related resolution spaes Xs
r and Y s

r with dyadi sales as well.

This di�ers from [IP12b, Str15℄, where resolution spaes with unit sales have been used.
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The argument given in [IP12b℄ relies heavily on earlier works and therefore, we take the

opportunity to review the whole proof here.

3.2 Basi de�nitions and statements

This setion is devoted to introdue funtions spaes with some of their properties that we shall

rely on. Furthermore, strong solutions are de�ned and dispersive estimates are realled.

Reall the de�nition of the resolution spaes Xs
and Y s

in De�nition 2.2. Based on this

spaes, we de�ne the norms Xs
r and Y s

r by restriting to time intervals of length at most

one.

De�nition 3.2 (Resolution spaes Xs
r and Y s

r ). Let s ∈ R. For a time interval I ⊆ R we

de�ne Xs
r (I) and Y

s
r (I) to be the restrition spaes de�ned as

Xs
r (I) :=

{
u : I → H1(T3) : ‖u‖Xs

r (I)
:= sup

J⊆I,
|J |≤1

inf
v∈Xs:

v·1J=u·1J

‖v‖Xs <∞
}
,

Y s
r (I) :=

{
u : I → H1(T3) : ‖u‖Y s

r (I) := sup
J⊆I,
|J |≤1

inf
v∈Y s:

v·1J=u·1J

‖v‖Y s <∞
}
.

Remark. In [IP12b, Str15℄, the spaes Xs
r and Y s

r were de�ned to onsist of funtions that

are ontinuous in time. We omitted this to be onsistent with our small data theory in the

previous hapter. Therefore, we add this property to the de�nition of a strong solution,

see De�nition 3.6. Besides of the aforementioned sale of resolution, this is another small

di�erene to [IP12b, Str15℄. ♦

Similarly as in Proposition 2.4, we have the following basi properties of our resolution

spaes.

Proposition 3.3 (Properties of Xs
r and Y

s
r ). Let I ⊆ R be a bounded time interval and s ∈ R.

(i) We have

Xs
r (I) →֒ Y s

r (I) →֒ L∞(I,Hs(T3)
)
.

(ii) Let 0 ∈ I, s ≥ 0, and φ ∈ Hs(T3), then eit∆θφ ∈ Xs
r (I) and

‖eit∆θφ‖Xs
r (I)

≤ ‖φ‖Hs(T3).

(iii) Suppose |I| ≤ 1 and u ∈ Y s
r (I) for some s ∈ R. Then,

(∑

N≥1

N2s‖PNu‖2Y 0
r (I)

) 1
2

. ‖u‖Y s
r (I).

Proof. The �rst two statements follow from the same argument as in Proposition 2.4.

To prove (iii), we �rst observe that sine |I| ≤ 1,

‖u‖Y s
r (I) = inf

v·1I (t)=u·1I(t)
‖v‖Y s .
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Indeed, on the one hand,

sup
J⊆I

inf
v·1J(t)=u·1J (t)

‖v‖Y s ≤ sup
J⊆I

inf
v·1I(t)=u·1I (t)

‖v‖Y s = inf
v·1I(t)=u·1I (t)

‖v‖Y s

and on the other hand,

inf
v·1I(t)=u·1I(t)

‖v‖Y s ≤ sup
J⊆I

inf
v·1J (t)=u·1J (t)

‖v‖Y s

sine the left-hand side is the speial ase where J = I. Hene,

∑

N≥1

N2s‖PNu‖2Y 0
r (I) ≤

∑

N≥1

N2s inf
v·1J (t)=u·1J(t)

∑

M≥1

‖e−it∆θPMPNv‖2V 2

. inf
v·1J (t)=u·1J (t)

∑

N≥1

N2s‖e−it∆θPNv‖2V 2 .

The last term equals ‖u‖Y s
r (I) as shown above.

We introdue a ritial norm Z whih is weaker than X1
r . It is also related to the Z-norm

appearing in [IP12b, Str15℄, whih was de�ned as

‖u‖Z(I) =
∑

p∈{4+1/10,100}
sup

J⊆I, |J |≤1

(∑

N≥1

N5−p/2‖PNu‖pLp(J×T3)

) 1
p

.

This modi�ation is due to the attempt to use only the Strihartz estimates provided by

Lemma 2.10.

De�nition 3.4 (Z-norm). Let

p0 :=
16

3
+

1

6
=

11

2
, q0 := 4 and p1 := 100, q1 := 100, (3.2)

then we de�ne P := {(p0, q0), (p1, q1)} and the norm

‖u‖Z(I) :=
∑

(p,q)∈P
sup

J⊆I, |J |≤1

(∑

N≥1

N ( 2
p
+ 3

q
− 1

2
)p‖PNu‖pLp(J,Lq(T3))

) 1
p

.

The following properties follow immediately:

Corollary 3.5 (Properties of the Z-norm). Let I ⊆ R be a bounded interval.

(i) For all φ ∈ H1(T3) we have

‖eit∆θφ‖Z(I) . ‖φ‖H1(T3).

(ii) Let |I| ≤ 1. For all p ∈ [p0, p1] and q ≥ qp := pq0q1(p1−p0)
p0q1(p1−p)+p1q0(p−p0) the following holds

true:

‖PNu‖Lp(I,Lq(T3)) . N
1
2
− 2

p
− 3

q ‖PNu‖Z(I).

(iii) For all u ∈ X1
r (I) we have

‖u‖Z(I) . ‖u‖X1
r (I)

and thus, X1
r (I) →֒ Z(I).
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Proof. The �rst statement follows from Strihartz estimates, see Lemma 2.10, and the fat

that ℓ2 ⊆ ℓp for p ≥ 2:

‖eit∆θφ‖Z(I) .
∑

(p,q)∈P

(∑

N≥1

Np‖PNφ‖pL2(T3)

) 1
p

. ‖φ‖H1(T3).

Claim (ii) follows essentially from interpolation: Sine qp ≥ 2, we may apply Bernstein's

inequality, f. Lemma 1.53 (iii), to obtain

‖PNu‖Lp(I,Lq(T3)) . N
3( 1

qp
− 1

q
)‖PNu‖Lp(I,Lqp (T3)).

Let ϑ := p0(p−p1)
p(p0−p1) , then we use Hölder's inequality and Young's inequality for produts to

dedue

‖PNu‖Lp
tL

qp
x

≤ ‖PNu‖ϑLp0
t L

q0
x
‖PNu‖1−ϑL

p1
t L

q1
x

= N
1
2
− 2

p
− 3

qp
(
N

2
p0

+ 3
q0

− 1
2‖PNu‖Lp0

t L
q0
x

)θ(
N

2
p1

+ 3
q1

− 1
2 ‖PNu‖Lp1

t L
q1
x

)1−θ

. N
1
2
− 2

p
− 3

qp ‖PNu‖Z(I).

In order to prove (iii), we �rst observe that

‖u‖Z(I) =
∑

(p,q)∈P
sup

J⊆I, |J |≤1
inf

v·1J=u·1J

(∑

N≥1

N ( 2
p
+ 3

q
− 1

2
)p‖PNv‖pLp(J,Lq(T3))

) 1
p

.

Hene, Corollary 3.7 below implies

‖u‖Z(I) .
∑

(p,q)∈P
sup

J⊆I, |J |≤1
inf

v·1J=u·1J

(∑

N≥1

Np‖e−it∆θPNv‖pUp

) 1
p

.

This immediately implies (iii), sine U2 →֒ Up and ℓ2 ⊂ ℓp for any p ≥ 2.

We now state the notion of a strong solution.

De�nition 3.6 (Strong solution).

(i) Let I ⊆ R be an interval, t0 ∈ I, and f ∈ L1(I, L2(T3)), then we de�ne the Duhamel

term as

It0(f)(t) :=
∫ t

t0

ei(t−s)∆θf(s) ds

for t ∈ I ∪ {inf I}, It0(f)(t) := 0 for t < inf I, and It0(f)(t) := lims→sup I It0(f)(s) for
t ≥ sup I.

(ii) We all u ∈ C(I,H1(T3)) a strong solution to

i∂tu+∆θu = F (u)

if u ∈ X1
r (I) and u satis�es

u(t) = ei(t−t0)∆θu(t0)− iIt0
(
F (u)

)
(t)

for all t, t0 ∈ I.
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The Strihartz estimates in Lemma 2.10 immediately imply the following result.

Corollary 3.7. Let I ⊆ R be any interval with |I| ≤ 1 and p > 16
3 , then for any ube C ⊂ Z

3

of size N ≥ 1 and any e−it∆θPCu ∈ Up we have

‖PCu‖Lp(I,L4(T3)) . N
3
4
− 2

p ‖PCe−it∆θu‖Up

and

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCe−it∆θu‖Up . (3.3)

In partiular, if PCu ∈ Y 0
r (I), then

‖PCu‖Lp(I,L4(T3)) . N
3
4
− 2

p ‖PCu‖Y 0
r (I),

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCu‖Y 0
r (I).

Proof. We only prove the estimate (3.3) sine the bound of the LptL
4
x-norm follows from a

similar argument.

For a funtion PCv ∈ Up whih is de�ned on R, we have

‖PCeit∆θv‖Lp(I×T3) . N
3
2
− 5

p ‖PCv‖Up . (3.4)

It su�es to prove (3.4) for a Up-atom

PCv(t, x) =
K∑

k=1

1[tk−1,tk)(t)PCe
it∆θφk,

K∑

k=1

‖PCφk‖pL2(T3)
= 1.

Bernstein's inequality and the Strihartz estimate in Lemma 2.10 yield

‖PCv‖Lp(I×T3) ≤
( K∑

k=1

‖PCe
it∆θφk‖pLp(I×T3)

) 1
p

. N
3
2
− 5

p

( K∑

k=1

‖PCφk‖pL2(T3)

) 1
p

. N
3
2
− 5

p .

This proves (3.4).

One may obtain the bound in Y 0
r (I) from the bound in Up as follows: Sine PCu ∈ Y 0

r (I), we
see that for any ε > 0 there is J0 ⊆ I and an extension v ∈ Y 0

of PCu
∣∣
J0

with

‖v‖Y 0 ≤ ‖PCu‖Y 0
r (I) + ε.

Now, inequality (3.4) and the embedding V 2 →֒ Up give

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖v‖Y 0 . N
3
2
− 5

p
(
‖PCu‖Y 0

r (I) + ε
)
.

For ε > 0 tending to zero this implies

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCu‖Y 0
r (I).

The following statement is an analogue of Lemma 2.5 and may be proved similarly.
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Lemma 3.8. Let I ⊆ R be a bounded interval. Furthermore, let PNf ∈ L1(I, L2(T3)) for all
N ≥ 1 and t0 ∈ I. Then,

∑
N≥1 It0(PNf) =: It0(f) ∈ X1

r (I) and

‖It0(f)‖X1
r (I)

. sup
v∈Y −1

r (I):
‖v‖

Y −1
r (I)

≤1

∑

N≥1

∣∣∣∣
∫

I

∫

T3

PNf(t, x)v(t, x) dx dt

∣∣∣∣

provided that the right-hand side is �nite. In partiular, if f ∈ L1(I,H1(T3)), then

‖It0(f)‖X1
r (I)

. ‖f‖L1(I,H1(T3)). (3.5)

Consequently, for any g ∈ C1(I, C2(T3)) we have

‖g‖X1
r (I)

. ‖g(t0)‖H1(T3) +

(∑

N≥1

‖PN (i∂t +∆θ)g‖2L1(I,H1(T3))

) 1
2

. (3.6)

Proof/Referene. As in the proof of Lemma 2.5, it su�es to show for any L ≥ 1,

‖It0(P≤Lf)‖Xs . sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ0

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣.

This follows along the lines of the proof of (2.7), in whih we observe that (2.8) holds if we

replae a by any t0 ∈ I.

Inequality (3.6) is an immediate onsequene of Proposition 3.3 (ii), (3.5), and the identity

g(t) = ei(t−t0)∆θg(t0)− iIt0
(
(i∂t +∆θ)g

)
(t)

for t0 ∈ I.

3.3 Loal well-posedness and stability theory

Large data loal well-posedness and stability results are addressed in this setion. Similar

results have been obtained in [IP12b, Setion 3℄ for T
3
, in [Str15, Setion 3℄ for retangular

tori, and in [PTW14, Setion 3℄ for the 3-sphere. Note that the loal results proved here are

slightly more preise ompared to Chapter 2, see Corollary 3.13 below.

We introdue another norm that interpolates between X1
r and Z. We use this norm to obtain

estimates that are linear in a norm ontrolling L∞(I,H1(T3)).

De�nition 3.9. Let I ⊆ R be an interval. For u ∈ X1
r (I) we de�ne the Z

′
-norm

‖u‖Z′(I) := ‖u‖
1
2

Z(I)‖u‖
1
2

X1
r (I)

.
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3.3.1 Estimates on the Duhamel term

Lemma 3.10. There exists δ > 0 suh that for every interval I with |I| ≤ 1, all dyadi

numbers N1 ≥ N2 ≥ N3 ≥ 1, and PN1u1, PN2u2, PN3u3 ∈ X1
r (I) the following trilinear

estimate holds

‖PN1u1PN2u2PN3u3‖L2(I×T3) .
(N3

N1
+

1

N2

)δ
‖PN1u1‖Y 0

r (I)‖PN2u2‖Z′(I)‖PN3u3‖Z′(I). (3.7)

Moreover, for p0 =
11
2 and q0 = 4 de�ned as in (3.2) we have

‖PN1u1PN2u2PN3u3‖L2(I×T3) . (N1N2)
1
2
− 2

p0
− 3

q0N
4
p0

− 1
2

3 ‖PN1u1‖Z(I)‖PN2u2‖Z(I)‖PN3u3‖Z(I).
(3.8)

Proof. For notational onveniene we write Lpt,x and LptL
q
x for Lp(I × T

3) and Lp(I, Lq(T3)),
respetively.

First, we prove inequality (3.7): This follows from interpolation between

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N1
+

1

N2

)2δ
‖PN1u1‖Y 0

r (I)‖PN2u2‖X1
r (I)

‖PN3u3‖X1
r (I)

(3.9)

and

‖PN1u1PN2u2PN3u3‖L2
t,x

. ‖PN1u1‖Y 0
r (I)‖PN2u2‖Z(I)‖PN3u3‖Z(I). (3.10)

Hene, it remains to prove (3.9) and (3.10). Inequality (3.9) follows in a well-known fashion:

From the de�nition of the spaes and sine X1
r (I) →֒ Y 1

r (I), we see that

Nj‖PNjuj‖Y 0
r (I) . ‖PNjuj‖Y 1

r (I) . ‖PNjuj‖X1
r (I)

for j = 1, 2, 3. Hene, to prove (3.9), it su�es to show

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N1
+

1

N2

)2δ
N2N3‖PN1u1‖Y 0

r (I)‖PN2u2‖Y 0
r (I)‖PN3u3‖Y 0

r (I),

whih follows from Proposition 2.13 and Lemma 2.8.

Next we prove (3.10). Thanks to spatial orthogonality (see Step 1 in the proof of Lemma 2.12),

we may replae PN1u1 in (3.10) by PCPN1u1, where C ⊂ Z
3
is a ube of side length N2. Using

Hölder's inequality, we obtain

‖PCPN1u1PN2u2PN3u3‖L2
t,x

≤ ‖PCPN1u1‖Lp0
t L4

x
‖PN2u2‖Lp0

t L4
x
‖PN3u3‖Lp

tL
∞
x
,

where p := 2p0
p0−4 . Now, Corollary 3.7 implies

‖PCPN1u1‖Lp0
t L4

x
. N

3
4
− 2

p0
2 ‖PCPN1u1‖Y 0

r (I),

and from the de�nition of the Z-norm, we infer

‖PN2u2‖Lp0
t L4

x
. N

− 1
4
− 2

p0
2 ‖PN2u2‖Z(I).

We apply Corollary 3.5 (ii) to treat the remaining term:

‖PN3u3‖Lp
tL

∞
x

. N
4
p0

− 1
2

3 ‖PN3u3‖Z(I).
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All in all, we dedue

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N2

) 4
p0

− 1
2‖PN1u1‖Y 0

r (I)‖PN2u2‖Z(I)‖PN3u3‖Z(I),

whih implies (3.10) beause of

4
p0

− 1
2 > 0. This proves (3.7).

The bound (3.8) follows from

‖PCPN1u1PN2u2PN3u3‖L2
t,x

≤ ‖PCPN1u1‖Lp0
t L

q0
x
‖PN2u2‖Lp0

t L
q0
x
‖PN3u3‖Lp

tL
∞
x
,

the de�nition of the Z-norm, and Corollary 3.5 (ii).

The previous lemma allows us to prove an important nonlinear estimate for the Duhamel

term, whih is stronger than Lemma 2.9.

Lemma 3.11. Let I ⊂ R be an interval with |I| ≤ 1. Then, for any t0 ∈ I and uj ∈ X1
r (I),

j = 1, . . . , 5, the estimate

∥∥∥∥It0
( 5∏

j=1

ũj

)∥∥∥∥
X1

r (I)

.

5∑

k=1

‖uk‖X1
r (I)

5∏

j=1
j 6=k

‖uj‖Z′(I)

holds true, where ũj denotes either uj or its omplex onjugate.

Proof. To prove the lemma, we losely follow the arguments in the proofs of Lemma 2.9 and

[IP12a, Lemma 3.2℄.

We deompose

∏5
j=1 ũj as

∑

N1≥1

PN1 ũ1

5∏

j=2

P≤N1 ũj +

5∑

k=2

∑

Nk≥2

PNk
ũk

k−1∏

j=1

P<Nk
ũj

5∏

j=k+1

P≤Nk
ũj. (3.11)

This an be easily seen as follows: For a quintuple (N1, N2, N3, N4, N5) we denote Nmax :=
maxj=1,...,5Nj , then

(2N0)5 =
⋃̇

k=1,...,5

{
(N1, . . . , N5) ∈ (2N0)5 : Nj < Nmax, j < k, and Nk = Nmax

}

is a disjoint partition. Eah of this sets orresponds to one of the sums in (3.11). Hene, by

symmetry, it su�es to prove the more preise estimate

∥∥∥∥It0
(∑

N1≥1

PN1 ũ1

5∏

j=2

P≤BN1 ũj

)∥∥∥∥
X1

r (I)

.B ‖u1‖X1
r (I)

5∏

j=1

‖uj‖Z′(I) (3.12)

for any B ≥ 1.

By Lemma 3.8, it su�es to show that for any u0 ∈ Y −1
r (I) we have

∑

N0≥1

∣∣∣∣
∫

I

∫

T3

PN0u0
∑

N1≥1

PN1 ũ1

5∏

j=2

P≤BN1 ũj dx dt

∣∣∣∣ . ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I) (3.13)
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in order to verify (3.12). To prove this, we deompose uk dyadially in spae

uk =
∑

Nk≥1

PNk
uk, k = 1, . . . , 5.

Note that the L2
-norm does not hange under omplex onjugation and the integral is non-

trivial only if the two highest frequenies are omparable. Hene, by the Cauhy�Shwarz

inequality and symmetry, it su�es to replae the left-hand side of (3.13) by

Σ :=
∑

N
‖PN1u1PN3u3PN5u5‖L2(I×T3)‖PN0u0PN2u2PN4u4‖L2(I×T3),

where N is the set of all sextuples (N0, N1, . . . , N5) suh that

N1 ≈B max{N0, N2} ≥ N2 ≥ N3 ≥ N4 ≥ N5.

We subdivide the sum into two parts Σ = Σ1 + Σ2, where Σ1 and Σ2 are de�ned via the

onstraints N2 ≤ N0 ≈ N1 and N0 < N2 ≈ N1, respetively. The trilinear estimate (3.7)

implies

Σ1 .
∑

(N0,...,N5)∈N :
N2≤N0≈N1

(N5

N1
+

1

N3

)δ(N4

N0
+

1

N2

)δ
‖PN0u0‖Y 0

r (I)‖PN1u1‖Y 0
r (I)

5∏

j=2

‖PNjuj‖Z′(I)

for some δ > 0. Summing up with respet to N2, N3, N4, N5, and �nally with respet to

N0 ≈ N1 (using Cauhy�Shwarz) yields

Σ1 .B ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I).

The remaining ase N0 < N2 ≈ N1 an be treated as follows: From (3.7) and Hölder's

estimate, we get

Σ2 .B

∑

(N0,...,N5)∈N :
N0<N2≈N1

(N5

N1
+

1

N3

)δ
‖PN1u1‖Y 0

r (I)‖PN3u3‖Z′(I)‖PN5u5‖Z′(I)

× ‖PN0u0‖L33/5(I,L5(T3))‖PN2u2‖Lp0 (I,Lq0 (T3))‖PN4u4‖L6(I,L20(T3)).

We observe that

33
5 > 16

3 , and hene, from Sobolev's inequality and Corollary 3.7 we may

estimate

‖PN0u0‖L33/5(I,L5(T3)) . N
3
20
0 ‖PN0u0‖L33/5(I,L4(T3)) . N

197
330
0 ‖PN0u0‖Y 0

r (I).

Noting that q6, given in Corollary 3.5 (ii), is less than 20, we may dedue from Corollary 3.5 (ii)

that

‖PN2u2‖Lp0 (I,Lq0 (T3)) . N
− 27

44
2 ‖PN2u2‖Z(I) . N

− 27
44

2 ‖PN2u2‖Z′(I)

and

‖PN4u4‖L6(I,L20(T3)) . N
1
60
4 ‖PN4u4‖Z(I) . N

1
60
4 ‖PN4u4‖Z′(I).

Summing with respet to N2, N3, N4, and N5 yields

Σ2 .B

∑

N0,N1≥1:
N0≤N1

(N0

N1

) 197
330 ‖PN0u0‖Y 0

r (I)‖PN1u1‖Y 0
r (I)

5∏

j=2

‖uj‖Z′(I)

.B ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I),

whih proves (3.13).
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3.3.2 Loal well-posedness

The foregoing estimates allow us to obtain a loal existene result and a riterion for global

existene. Statement (iii) states that the solution stays regular as long as the Z-norm stays

�nite.

Proposition 3.12 (Loal well-posedness I). Let E ≥ 1 and ρ ∈ [−1, 1] be given.

(i) There exists δ0 = δ0(E) < 1 suh that if ‖φ‖H1(T3) ≤ E and

‖ei(t−t0)∆θφ‖Z(I) + ‖It0(e)‖X1
r (I)

≤ δ0

on some interval I ∋ t0 with |I| ≤ 1, then there exists a unique strong solution u ∈
C(I,H1(T3)) ∩X1

r (I) to the approximate nonlinear Shrödinger equation

i∂tu+∆θu = ρu|u|4 + e (3.14)

with initial data u(t0) = φ. Besides,

‖u(t)− ei(t−t0)∆θφ‖X1
r (I)

.E ‖ei(t−t0)∆θφ‖
3
2

Z(I) + ‖It0(e)‖X1
r (I)

. (3.15)

If e = 0 and ρ = ±1, then the quantities E(u) andM(u), de�ned in (2.26), are onserved

on I.

(ii) Suppose that I ⊂ R is an open bounded interval and u ∈ C(I,H1(T3)) ∩ X1
r (I) is a

strong solution to the approximate nonlinear Shrödinger equation (3.14) on I with

‖u‖L∞(I,H1(T3)) ≤ E.

There exists ε0 = ε0(E) > 0 with the property that if

‖u‖Z(I) ≤ ε0 and sup
t0∈I

‖It0(e)‖X1
r (I)

≤ ε0,

then the following holds true for all t0 ∈ I:

‖ei(t−t0)∆θu(t0)‖Z(I) . ε0.

(iii) If u ∈ C(I,H1(T3))∩X1
r (I) is a strong solution to (3.1) on some bounded open interval

I ⊂ R and

‖u‖Z(I) < +∞,

then u an be extended as a nonlinear solution to a neighborhood of I and

‖u‖X1
r (I)

≤ C
(
E(u), ‖u‖Z(I)

)

for some funtion C depending on E(u) and ‖u‖Z(I).

Proof. Let E ≥ 1 and ρ ∈ [−1, 1] be given.

Ad (i). We prove the �rst laim by a standard �xed-point argument. Let φ ∈ H1(T3) with
‖φ‖H1(T3) ≤ E. We de�ne the omplete spae (sine it is losed in X1

r (I))

SI :=
{
u ∈ C(I,H1(T3)) ∩X1

r (I) : ‖u‖X1
r (I)

≤ 2E, ‖u‖Z′(I) ≤ a
}
,
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where 0 < a = a(E) < 1 will be hosen later. De�ne the mapping

Φ(v)(t) := ei(t−t0)∆θφ− iIt0(ρv|v|4 + e)(t). (3.16)

First, we verify that Φ is a ontration on SI provided a is small enough. Let u, v ∈ SI , then
it follows that

‖Φ(u)− Φ(v)‖X1
r (I)

≤ ‖It0(u|u|4 − v|v|4)‖X1
r (I)

.

Consequently, thanks to Lemma 3.11, we have

‖Φ(u)− Φ(v)‖X1
r (I)

.
(
‖u‖X1

r (I)
+ ‖v‖X1

r (I)

)(
‖u‖Z′(I) + ‖v‖Z′(I)

)3‖u− v‖X1
r (I)

. Ea3‖u− v‖X1
r (I)

.

We hoose 0 < a < 1 suh that ‖Φ(u) − Φ(v)‖X1
r (I)

< 1
2‖u − v‖X1

r (I)
. Using the triangle

inequality, Proposition 3.3 (ii), and Lemma 3.11, we obtain

‖Φ(u)‖X1
r (I)

≤ ‖Φ(0)‖X1
r (I)

+ ‖Φ(u)− Φ(0)‖X1
r (I)

≤ ‖φ‖H1(T3) + ‖It0(e)‖X1
r (I)

+ CEa4

for some C ≥ 1. If neessary, we derease a further suh that Ca4 ≤ 1
2 , and we hoose δ0 <

1
2 .

This implies ‖Φ(u)‖X1
r (I)

≤ 2E. To show ‖Φ(u)‖Z′(I) ≤ a, we estimate

‖Φ(u)‖Z′(I) .
(
‖Φ(0)‖Z(I) + ‖Φ(u)− Φ(0)‖X1

r (I)

) 1
2‖Φ(u)‖

1
2

X1
r (I)

.

Then, we use the sub-linearity of x 7→ x
1
2
as well as the bounds

‖Φ(0)‖Z(I) . δ0 and ‖Φ(u)− Φ(0)‖X1
r (I)

. Ea4

to get

‖Φ(u)‖Z′(I) ≤ C
(
E

1
2 δ

1
2
0 + Ea2

)
.

By possibly dereasing a again, we may obtain that 2CEa2 < a. Now, we hoose δ0 = δ0(E)

to be small enough suh that 2CE
1
2 δ

1
2
0 < a. Therefore,

‖Φ(u)‖Z′(I) ≤ a < 1.

Consequently, Φ is a ontration on SI , and hene, there exists a unique �xed-point u ∈
SI . This argument only gives uniqueness in SI . Nevertheless, we justify uniqueness in

C(I,H1(T3)) ∩ X1
r (I). For that purpose, assume that two solutions u, v ∈ C(I,H1(T3)) ∩

X1
r (I) satisfy u(t0) = v(t0). From the ontinuity in time, it is lear that the set {t ∈ I : u(t) =

v(t)} is losed in I. We prove that this set is also open in I, what �nishes the proof of (i).

Let t1 ∈ {t ∈ I : u(t) = v(t)}. One may hoose an open interval J ⊆ I with t1 ∈ J suh that

u
∣∣
J
, v
∣∣
J
∈ SJ . Indeed, with E := max{‖u‖X1

r (I)
, ‖v‖X1

r (I)
} we hoose a = a(E) as above and

take J small enough suh that max{‖u‖Z(J), ‖v‖Z(J)} < E− 1
2 a. From the uniqueness in SJ ,

we obtain u
∣∣
J
= v
∣∣
J
. Thus, {t ∈ I : u(t) = v(t)} is open in I and hene, is equal to I.

As noted above, for a strong solution to (3.14) and su�iently small δ0(E) < 1 we have

‖u(t)− ei(t−t0)∆θφ‖X1
r (I)

= ‖Φ(u)− Φ(0)‖X1
r (I)

+ ‖It0(e)‖X1
r (I)

. Ea4 + ‖It0(e)‖X1
r (I)

.

Inequality (3.15) then follows from hoosing a suh that

0 < a ≤
(
‖ei(t−t0)∆θφ‖Z(I) + ‖It0(e)‖X1

r (I)

) 3
8

provided the right-hand side is larger than zero. Otherwise, the left-hand side of (3.15) is zero

in whih ase we have nothing to show.
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Ad (ii). Let ε0 > 0, whih shall be hosen later. Furthermore, let u ∈ C(I,H1(T3)) ∩X1
r (I)

be a strong solution of (3.14) on some bounded interval I, and assume that

‖u‖Z(I) ≤ ε0, sup
t0∈I

‖It0(e)‖X1
r (I)

≤ ε0, as well as ‖u‖L∞(I,H1(T3)) ≤ E.

It su�es to onsider intervals of length at most one. If that is not the ase, then we subdivide

I into �nitely many intervals of length less or equal to one, and run the following argument

on eah interval separately. In the sequel, we write I = (T−, T+). Now, we show that the

assumptions imply

‖ei(t−t0)∆θu(t0)‖Z(I) . ε0

for all t0 ∈ I provided ε0 > 0 is su�iently small depending on E. Let t0 ∈ I be arbitrary,

and de�ne

h : [0, T+ − T−] → R, h(s) := ‖ei(t−t0)∆θu(t0)‖Z(T−,T−+s).

The funtion h is ontinuous in s and satis�es h(0) = 0. We hoose 2ε0 ≤ δ0 = δ0(E). Then
we use (i) as long as h(s) ≤ 1

2δ0(E) and we get that

‖u(t)− ei(t−t0)∆θu(t0)‖X1
r (T−,T−+s) .E h(s)

3
2 + ‖It0(e)‖X1

r (T−,T−+s).

For the same range of s we dedue

h(s) ≤ ‖u‖Z(T−,T−+s) + C̃‖u(t)− ei(t−t0)∆θu(t0)‖X1
r (T−,T−+s) ≤ ε0 +C

(
h(s)

3
2 + ε0

)

≤ C0ε0 + Ch(s)
3
2 .

(3.17)

We use (3.17) to onlude h(s) ≤ δ0
2 for all s ∈ [0, T+ − T−] provided ε0 is small enough. To

this end, we onsider f : [0,∞) → R, f(x) = x−Cx 3
2
, whih inreases from 0 to its maximum

value

4
27C . Moreover, one easily sees that f(x) ≥ x

2 on the interval [0, (4C2)−1]. Hene, we

proved in (3.17) that

1
2h(s) ≤ f(h(s)) ≤ C0ε0 provided h(s) ≤ δ̃ := min{δ0/2, (4C2)−1}. We

hoose ε0 = ε0(E) to be small enough suh that C0ε0 <
δ̃
4 . Suppose there is 0 < s0 < T+−T−

suh that h(s0) ≤ δ̃ and h(s) > δ̃ for all s0 < s < T+ − T−. Then, the argument above shows

that h(s0) ≤ δ̃
2 , whih ontradits the assumption sine h is ontinuous. Thus, h(s) ≤ δ̃ for

any s ∈ [0, T+ − T−] and from

1
2h(s) ≤ f(h(s)) ≤ C0ε0, we obtain the desired result

‖ei(t−t0)∆θu(t0)‖Z(I) ≤ 2C0ε0.

Ad (iii). We apply the argument that was used to prove (ii). Sine the Z-norm is bounded,

for any ε0 > 0 there exists T1 ∈ (T+ − 1, T+) suh that (T1, T
+) ⊆ I and

‖u‖Z(T1,T+) ≤ ε0.

Hene, for some t0 ∈ (T1, T
+) and δ0 as in (i) there exists ε0 > 0 small enough suh that the

argument above is appliable on (T1, T
+), and we obtain

‖ei(t−t0)∆θu(t0)‖Z(T1,T+) ≤
1

2
δ0.

The ontinuity of h implies the existene of a larger time T2 > T+
suh that T2 − T1 < 1 and

‖ei(t−t0)∆θu(t0)‖Z(T1,T2) ≤
3

4
δ0.
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Hene, we may apply (i). From the uniqueness, we obtain the existene of a nonlinear solution

ũ ∈ C((T−, T2),H1(T3)) ∩X1
r (T−, T2). A similar argument allows to extend the solution to

the left-hand side.

Finally, we prove the estimate stated in (iii). Sine ‖u(t)‖H1(T3) . E(u) + E(u)
1
3
for any

t ∈ I, we observe that

‖u‖L∞(I,H1(T3)) . E(u) + E(u)
1
3 < +∞.

Let ε0 = ε0(E(u)) > 0 be the ε0 given by (ii). We subdivide the interval I into N =
O(‖u‖Z(I)/ε0) many subintervals Ik suh that for every k = 1, . . . , N we have

‖u‖Z(Ik) ≤ ε0.

Let tk ∈ Ik. Applying the triangle inequality yields

‖u‖X1
r (Ik)

≤ ‖ei(t−tk)∆θu(tk)‖X1
r (Ik)

+ ‖u(t) − ei(t−tk)∆θu(tk)‖X1
r (Ik)

.

Now, (ii) implies the smallness of the free solution, i.e.

‖ei(t−tk)∆θu(tk)‖Z(Ik) . ε0.

Choosing ε0 possibly smaller (still depending on E(u)), we may apply (i) to obtain

‖u(t)− ei(t−tk)∆θu(tk)‖X1
r (Ik)

. ‖ei(t−tk)∆θu(tk)‖
3
2

Z(Ik)
≤ 1.

We may onlude that ‖u‖X1
r (Ik)

is bounded uniformly in k. Summing over k gives the

desired estimate, where the right hand side only depends on the number of intervals N . Here

N depends on ‖u‖Z(I) and E(u) as pointed out above.

The previous well-posedness result also implies the loal well-posedness in Theorem 2.3. We

state it for later referenes.

Corollary 3.13 (Loal well-posedness II). Let ρ ∈ [−1, 1]. For every φ∗ ∈ H1(T3) there exists
ε > 0 and T = T (φ∗) > 0 suh that for all initial data φ ∈ H1(T3) with ‖φ − φ∗‖H1(T3) < ε
the Cauhy problem {

i∂tu+∆θu = ρu|u|4

u(0, · ) = φ ∈ H1(T3)

has a unique solution u ∈ C((−T, T ),H1(T3)) ∩X1
r (−T, T ).

Proof. Let E > 1 be suh that ‖φ∗‖H1(T3) < E−1. Then, for all 0 < ε < 1 and all φ ∈ H1(T3)
with ‖φ− φ∗‖H1(T3) < ε it holds that

‖φ‖H1(T3) ≤ ‖φ∗‖H1(T3) + ε ≤ E.

Now, Corollary 3.5 (i) implies

‖eit∆θφ∗‖Z(I) . ‖φ∗‖H1(T3) < +∞
for any interval I ∋ 0. Hene, for any δ > 0 there is I with 0 ∈ I and |I| ≤ 1 suh that

‖eit∆θφ∗‖Z(I) ≤ δ.

We easily get the smallness of the free solution eit∆θφ in the Z-norm from

∣∣‖eit∆θφ‖Z(I) − ‖eit∆θφ∗‖Z(I)
∣∣ ≤ C‖φ− φ∗‖H1(T3) < Cε.

Indeed, this immediately leads to ‖eit∆θφ‖Z(I) < δ + Cε. We now may hoose ε and δ small

enough suh that δ + Cε < δ0, where δ0 = δ0(E) is given by Proposition 3.12 (i). Finally, we

may apply Proposition 3.12 (i) to obtain the desired result.
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3.3.3 Small data global well-posedness

In the proof of Theorem 3.1 below, we shall rely on the following small data global well-

posedness result.

Lemma 3.14 (Global well-posedness for small initial data). There exists δ0 > 0 suh that

for all initial data φ ∈ H1(T3) with ‖φ‖H1(T3) =: δ ≤ δ0 and every T > 0 the Cauhy problem

(3.1) has a unique solution

u ∈ C
(
(−T, T ),H1(T3)

)
∩X1

r (−T, T ).
Moreover, the solution satis�es

‖u‖X1
r (−T,T ) ≤ 2δ and ‖u(t)− eit∆θφ‖X1

r (−T,T ) . δ2.

Furthermore, the quantities E(u) and M(u), whih are de�ned in (2.26), are onserved on

(−T, T ).

Proof. The global existene follows from the same a priori bound on solutions in H1
given in

(2.19). For small enough initial data, this implies that there is a uniform in time bound on the

H1
-norm of the solution. Thus, the loal well-posedness result may be iterated inde�nitely

many times.

The bounds in the X1
r -norm may be similarly obtained as in the proof of Proposition 3.12.

Indeed, let Φ be de�ned as in (3.16) (with t0 = 0) and u the solution to (3.1) with initial data

φ, i.e. u = Φ(u). Reall that u ∈ S(−T,T ), where S is de�ned in the beginning of the proof of

Proposition 3.12. Thus, ‖u‖X1
r (−T,T ) ≤ 2δ and ‖u‖Z′(−T,T ) ≤ a for a su�iently small. Then,

we have

‖u‖X1
r (−T,T ) ≤ ‖Φ(0)‖X1

r (−T,T ) + ‖Φ(u)− Φ(0)‖X1
r (−T,T ) ≤ δ + Cδa4 ≤ 2δ

provided a4 ≤ C−1
. The seond bound may be obtained similarly as inequality (3.15).

3.3.4 Stability

We lose our study of the loal well-posedness theory with a stability result.

Proposition 3.15 (Stability). Assume that I is an open bounded interval, ρ ∈ [−1, 1], and
ũ ∈ C(I,H1(T3)) ∩X1

r (I) satis�es the approximate Shrödinger equation

i∂tũ+∆θũ = ρũ|ũ|4 + e on I × T
3. (3.18)

Suppose in addition that

‖ũ‖Z(I) + ‖ũ‖L∞(I,H1(T3)) ≤M (3.19)

for some M ∈ [1,∞). Assume that t0 ∈ I and φ ∈ H1(T3) are suh that the smallness

ondition

‖φ− ũ(t0)‖H1(T3) + sup
t1∈I

‖It1(e)‖X1
r (I)

≤ ε (3.20)

holds for some 0 < ε < ε1, where ε1 ≤ 1 is a small onstant depending on M .

Then, there exists a strong solution u ∈ C(I,H1(T3)) ∩X1
r (I) of the Shrödinger equation

i∂tu+∆θu = ρu|u|4 on I × T
3

(3.21)

suh that u(t0) = φ and

‖u‖X1
r (I)

+ ‖ũ‖X1
r (I)

≤ C(M), (3.22)

‖u− ũ‖X1
r (I)

≤ C(M)ε. (3.23)
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Remark. Note that the bound ‖ũ‖X1
r (I)

≤M implies

‖ũ‖Z(I) + ‖ũ‖L∞(I,H1(T3)) .M. ♦

Proof. We argue lose to the proof of [IP12a, Proposition 3.5℄ and proeed in four steps:

Step 1. From Proposition 3.12 (i) it follows that there is δ1 = δ1(M) suh that if for some

interval J ⊆ I and t0 ∈ J

‖ei(t−t0)∆θ ũ(t0)‖Z(J) + ‖It0(e)‖X1
r (J)

≤ δ1,

then ũ is the only solution of (3.18) in C(J,H1(T3)) ∩X1
r (J) and

‖ũ(t)− ei(t−t0)∆θ ũ(t0)‖X1
r (J)

. ‖ei(t−t0)∆θ ũ(t0)‖
3
2

Z(J) + ‖It0(e)‖X1
r (J)

.

Step 2. Proposition 3.12 (ii) implies the existene of ε1 = ε1(M) suh that if the inequalities

‖ũ‖Z(J) ≤ ε1 and sup
t0∈J

‖It0(e)‖X1
r (J)

≤ ε1 (3.24)

hold on an interval J := [T−, T+) ⊆ I, then

‖ei(t−T−)∆θ ũ(T−)‖Z(J) . ε1. (3.25)

Step 3. Let ũ be as stated in the proposition. We still onsider the interval J = [T−, T+) and
assume

‖ei(t−T−)∆θ ũ(T−)‖Z(J) ≤ ε1,

‖ũ‖Z(J) ≤ ε1,

sup
t0∈J

‖It0(e)‖X1
r (J)

≤ ε1

(3.26)

for some su�iently small onstant ε1 = ε1(M) suh that the �rst two steps are appliable.

Using Step 1, the X1
r -norm of ũ on J an be estimated by

‖ũ‖X1
r (J)

≤ ‖ei(t−T−)∆θ ũ(T−)‖X1
r (J)

+ ‖ũ(t)− ei(t−T−)∆θ ũ(T−)‖X1
r (J)

≤M + 1. (3.27)

The loal well-posedness (Corollary 3.13) implies that there is an interval Ku ∋ T−, and a

strong solution u ∈ C(Ku,H
1(T3)) ∩X1

r (Ku) to (3.21) suh that

‖u(T−)− ũ(T−)‖H1(T3) ≤ ε1. (3.28)

We set ω(t) := u(t)− ũ(t) for t ∈ J ∩Ku. Let K := [T−, T− + s] ∩ J ∩Ku, where

s := max
{
s ∈ R : ‖ω‖Z′([T−,T−+s]∩J∩Ku) ≤ 5C0ε1

}
, (3.29)

and C0 ≥ 1 is the onstant of the embedding X1
r →֒ Z ′

. The maximum, and hene s, exists
sine s 7→ ‖ω‖Z′([T−,T−+s]∩J∩Ku) vanishes for s = 0 and is �nite and ontinuous for all s ≥ 0.
One easily veri�es that ω is a strong solution to

i∂tω +∆θω = ρ
(
(ũ+ ω)|ũ+ ω|4 − ũ|ũ|4

)
− e.
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Duhamel's formula yields

‖ω‖X1
r (K) ≤

∥∥ei(t−T−)∆θ

(
u(T−)− ũ(T−)

)∥∥
X1

r (K)

+
∥∥IT−

(
(ũ+ ω)|ũ+ ω|4 − ũ|ũ|4

)∥∥
X1

r (K)
+ ‖IT−(e)‖X1

r (K).

Lemma 3.11 then implies

‖ω‖X1
r (K) ≤ ‖u(T−)− ũ(T−)‖H1(T3) + ‖IT−(e)‖X1

r (K)

+ C‖ω‖X1
r (K)

(
‖ω‖4Z′(K) + ‖ũ‖X1

r (K)

3∑

j=0

‖ω‖jZ′(K)‖ũ‖
3−j
Z′(K)

)
.

If ε1 ful�lls 5C0ε1 ≤ (M + 1)−2
, we get from (3.26)�(3.29) that

‖ω‖X1
r (K) ≤ 2ε1 + C̃ε

1
4
1 ‖ω‖X1

r (K).

Hene, we onlude for ε1 < (2C̃)−4
that

‖ω‖Z′(K) ≤ C0‖ω‖X1
r (K) ≤ 4C0ε1. (3.30)

It then follows that K = J ∩Ku and (3.30) holds on J ∩Ku. Thus,

‖u‖Z(J∩Ku) ≤ C‖u‖X1
r (J∩Ku) ≤ C1,

and we get from Proposition 3.12 (iii) that u an be extended to the entire interval J . Also
the bounds (3.29) and (3.30) remain true with K = J .

Step 4. Now, we onlude the statement of the proposition. Take ε2(M) < ε1(M) su�iently

small and suppose that

sup
t0∈Ik

‖It0(e)‖X1
r (Ik)

≤ ε2.

Subdivide the interval I into �nitely many intervals Ik = [Tk, Tk+1) suh that

‖ũ‖Z(Ik) ≤ ε2.

Note that the number of intervals is of size O(‖ũ‖Z(I)/ε2) and, in partiular, independent

of |I|. On eah of those intervals, we have (3.24) and hene (3.25). The latter implies

(3.26) and onsequently the bounds (3.27) and (3.30) hold true on eah interval. (3.30)

immediately implies (3.23). Estimate (3.22) follows from the reverse triangle inequality, (3.23),

and (3.27).

3.4 Eulidean pro�les

This setion is devoted to prove estimates, whih ompare Eulidean and periodi solutions of

both linear and nonlinear Shrödinger equations. This kind of omparison is meaningful only

in the ase of resaled data that onentrate in a point, and then only for short time. This

short time interval is alled Eulidean window. Beyond the Eulidean window the nonlinear

solution an be ompared to linear Eulidean solutions with initial data that are related to the

Eulidean sattering data. For the study beyond the Eulidean window, the extintion lemma

plays a fundamental role. In the present setion, we argue losely to [IPS12, Setion 3℄.

Let η ∈ C∞
0 (R3) be a �xed spherially symmetri funtion with η(x) = 1 for |x| ≤ 1 and

η(x) = 0 for |x| ≥ 2.
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De�nition 3.16. For φ ∈ Ḣ1(R3) and N ≥ 1 we de�ne

QNφ ∈ H1(R3), QNφ(x) := η(N− 1
2x)φ(x),

φN ∈ H1(R3), φN (x) := N
1
2 QNφ(Nx),

TNφ ∈ H1(T3), TNφ(y) := φN
(
Ψ−1(y)

)
,

where Ψ is the projetion on the torus de�ned by

Ψ: (−π, π]3 → T
3,

(
Ψ(x)

)
j
:= xj =

{
xj 0 ≤ xj ≤ π,

2π − xj −π < xj < 0,
j = 1, 2, 3.

QNφ equals φ in the ball of radius N
1
2
and is supported in the ball of radius 2N

1
2
. φN is

an Ḣ1
-invariant resaling of QNφ with support in the ball of radius 2N− 1

2
. The funtion

TNφ is obtained by transferring φN to a neighborhood of zero in T
3
. We make the following

observations about TN :

Corollary 3.17. The operator TN : Ḣ1(R3) → H1(T3) is linear and satis�es the estimate

‖TNφ‖H1(T3) . ‖φ‖Ḣ1(R3).

Furthermore, there exists su�iently large N0 = N0(φ) ≥ 1 suh that for any N ≥ N0,

‖φ‖Ḣ1(R3) . ‖TNφ‖H1(T3).

Proof. The linearity is obvious. From a version of Poinaré's inequality, see e.g. [Eva10,

Setion 5.6, Theorem 3℄, we have for every N ≥ 1 that

‖TNφ‖H1(T3) = ‖φN‖H1(R3) . ‖φN‖Ḣ1(R3)

sine suppφN ⊆ [−2, 2]3 for any N ≥ 1. Now, the laim follows from the fat that φN is an

Ḣ1
-invariant resaling of QNφ and ‖QNφ‖Ḣ1(R3) . ‖φ‖Ḣ1(R3). The latter may be proved as

follows:

‖η(N− 1
2 · )φ‖Ḣ1(R3) . N− 1

2‖(∇R3η)(N− 1
2 · )φ‖L2(R3) + ‖φ‖Ḣ1(R3)

. N
1
4‖(∇R3η)φ(N

1
2 · )‖L2(R3) + ‖φ‖Ḣ1(R3)

. ‖∇R3η‖L3(B3(0))‖φ · 1supp η‖L6(B3(0)) + ‖φ‖Ḣ1(R3).

Now, Sobolev's embedding and Poinaré's inequality imply ‖φ · 1supp η‖L6(B3(0)) . ‖φ‖Ḣ1(R3).

The seond bound follows immediately from the observation that there exists N0 = N0(φ)
suh that for any N ≥ N0

‖φ‖Ḣ1(R3) ≤ 2‖QNφ‖Ḣ1(R3).

3.4.1 Global well-posedness on the Eulidean spae

In this subsetion, we reall the global well-posedness result that is known for the Eulidean

spae R
3
. Furthermore, we show that this result holds true even if we replae the standard

Laplae operator on R
3
, whih shall be denoted by ∆R3

, with a Laplae operator orresponding

to ∆θ.
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De�nition 3.18.

(i) We de�ne the modi�ed Laplae operator on R
3
orresponding to ∆θ as

∆R3

θ :=

3∑

j=1

θj
∂2

∂x2j
.

(ii) Given φ ∈ Ḣ1(R3), we de�ne the Eulidean energy with respet to ∆R3

θ as

ER3(φ) :=
1

2

∫

R3

3∑

j=1

θ
1
2
j

∣∣∣ ∂φ
∂xj

(x)
∣∣∣
2
dx+

1

6

∫

R3

|φ(x)|6 dx.

The proof of Theorem 3.1 relies heavily on the following results that were essentially proved

by Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄. We summarize some of their results

in the following theorem.

Theorem 3.19 (Global well-posedness on R
3
). For any φ ∈ Ḣ1(R3), there is a unique global

solution v ∈ C(R, Ḣ1(R3)) of the initial value problem

i∂tv +∆R3

θ v = v|v|4, v(0) = φ, (3.31)

and the solution satis�es the estimate

‖∇R3v‖(L∞
t L2

x∩L2
tL

6
x)(R×R3) ≤ C̃

(
ER3(φ)

)
. (3.32)

Moreover, this solution satters in the sense that there exists φ±∞ ∈ Ḣ1(R3) suh that

‖v(t)− eit∆
R
3

θ φ±∞‖Ḣ1(R3) → 0 (3.33)

as t→ ±∞. Furthermore, if φ ∈ Hs(R3) for some s > 1, then v ∈ C(R,Hs(R3)) and

sup
t∈R

‖v(t)‖Hs(R3) .‖φ‖Hs(R3)
1. (3.34)

Proof. The proof in ase of the standard Laplaian may be found in [CKS

+
08, Theorem 1.1

and Corollary 1.2℄. We redue the statement for the modi�ed Laplae operator to this result.

Let Θ := diag(θ1, θ2, θ3)
1
2
. There exists a unique global solution v ∈ C(R, Ḣ1(R3)) of the

initial value problem

i∂tv +∆R3
v = v|v|4, v(0) = ψ,

where ψ := φ ◦Θ. The resaled funtion u(t, x) := v(t,Θ−1x) solves

i∂tu+∆R3

θ u = u|u|4, u(0) = φ.

By a hange of variables, it is easy to see that the estimates (3.32) and (3.34) hold true.

Let ψ±∞ ∈ Ḣ1(R3) be the sattering data orresponding to v. We laim that φ±∞ := ψ±∞ ◦
Θ−1

are the sattering data orresponding to u. Indeed, eit∆
R
3

θ φ±∞(x) = eit∆
R
3

ψ±∞(Θ−1x)
sine ∫

R3

e2πix·ξeit|Θξ|
2 zφ±∞(ξ) dξ = |detΘ|

∫

R3

e2πix·ξeit|Θξ|
2 zψ±∞(Θξ) dξ

=

∫

R3

e2πiΘ
−1x·ξeit|ξ|

2 zψ±∞(ξ) dξ.

Hene,

‖u(t)− eit∆
R
3

θ φ±∞‖Ḣ1(R3) = ‖v(t)− eit∆
R
3

ψ±∞‖Ḣ1(R3) → 0

as t→ ±∞.



106 3 Global well-posedness for large data

3.4.2 Connetion between solutions on tori and Eulidean solutions

We now turn to one of the fundamental observations. We disuss the onnetion between

Eulidean solutions and solutions on tori of both linear and nonlinear Shrödinger equations.

For φ ∈ Ḣ1(R3) we onsider solutions on tori with initial data TNφ. There exists a large

T > 0 suh that for all large N ≥ 1 we distinguish the behavior of solutions on tori in the

Eulidean window, that is (−TN−2, TN−2), and beyond the Eulidean window, namely in

(−T−1, T−1) \ (−TN−2, TN−2). We �nd that within the Eulidean window solutions on tori

stay lose to Eulidean-like solutions, see Lemma 3.20. Outside of the Eulidean window, the

ruial extintion lemma, stability, and the Eulidean sattering property show that nonlinear

solutions on tori an be ompared to the linear evolution with initial data TNφ
±∞

, where φ±∞

are the sattering data of φ given by Theorem 3.19.

Comparison to Eulidean solutions within the Eulidean window

Similarly as in [IP12b, Lemma 4.2℄, we obtain the following lemma omparing the linear and

nonlinear evolution on tori with the Eulidean evolution within the Eulidean window.

Lemma 3.20. Let φ ∈ Ḣ1(R3), T0 > 0, and ρ ∈ {0, 1} be given. Then the following onlu-

sions hold:

(i) There is N0 = N0(φ, T0) suh that for any N ≥ N0 there is a unique strong solution

UN ∈ C((−T0N−2, T0N
−2),H1(T3))∩X1

r (−T0N−2, T0N
−2) of the initial value problem

i∂tUN +∆θUN = ρUN |UN |4, UN (0) = TNφ. (3.35)

Moreover, for any N ≥ N0,

‖UN‖X1
r (−T0N−2,T0N−2) .E

R3(φ)
1.

(ii) Given φ′ ∈ Hs(R3) for some s ≥ 5, let v′ ∈ C(R,Hs(R3)) denote the solution of the

initial value problem

i∂tv
′ +∆R3

θ v
′ = ρv′|v′|4, v′(0) = φ′.

Furthermore, we de�ne for N ≥ R ≥ 1,

v′R(t, x) = η
( x
R

)
v′(t, x), (t, x) ∈ (−T0, T0)× R

3,

v′R,N (t, x) = N
1
2 v′R(N

2t,Nx), (t, x) ∈ (−T0N−2, T0N
−2)× R

3,

VR,N (t, y) = v′R,N
(
t,Ψ−1(y)

)
, (t, y) ∈ (−T0N−2, T0N

−2)× T
3.

(3.36)

Then there exists ε2 = ε2(ER3(φ)) > 0 suh that for all 0 < ε < ε2 and φ′ ∈ Hs(R3)
with ‖φ− φ′‖Ḣ1(R3) ≤ ε there exists R0 = R0(T0, φ

′) ≥ 1 suh that for any R ≥ R0,

lim
N→∞

‖UN − VR,N‖X1
r (−T0N−2,T0N−2) .E

R3(φ)
ε.

Proof. The proof follows the arguments in [IPS12, Lemma 4.2℄ and [IP12a, Lemma 4.2℄.

We prove (i) by showing that VR,N is an almost-solution to (3.35), whih implies the asserted

statement by applying our stability result. Throughout this proof, .E
R3(φ)

denotes that the

impliit onstant may depend on the large onstant C̃(ER3(φ)) in (3.32). We also denote

IN := (−T0N−2, T0N
−2) for brevity.
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Let φ ∈ Ḣ1(R3), T0 > 0, and ρ ∈ {0, 1} be given as in the assumptions. For any ε > 0, we
may hoose some φ′ ∈ Hs(R3) whih satis�es ‖φ − φ′‖Ḣ1(R3) ≤ ε. Let v′ ∈ C(R,Hs(R3)) be
as given in the lemma. The existene of the global solution is implied by Theorem 3.19 and

so are the estimates

‖∇R3v′‖(L∞
t L2

x∩L2
tL

6
x)(R×R3) .E

R3(φ
′) 1 and sup

t∈R
‖v′(t)‖Hs(R3) .‖φ′‖Hs(R3)

1. (3.37)

Furthermore, we remark that we even have v′ ∈ C(R, C3(R3)) from Sobolev's embedding.

Step 1. In the following, we prove that there exists R0 = R0(T0, φ
′) ≥ 1 suh that VR,N is an

almost-solution to (3.35) for any N ≥ R ≥ R0. For R ≥ 1 we set

eR(t, x) :=
(
(i∂t +∆R3

θ )v′R − ρv′R|v′R|4
)
(t, x)

= ρ
(
η
( x
R

)
− η
( x
R

)5)
v′(t, x)|v′(t, x)|4 +R−2v′(t, x)(∆R3

θ η)
( x
R

)

+ 2R−1
3∑

j=1

∂jv
′(t, x)∂jη

( x
R

)
.

It follows from (3.37) and Sobolev's embedding that |v′(t, x)| .‖φ′‖Hs(R3)
1. Hene, for all

t ∈ R and x ∈ R
3
we have

|eR(t, x)| +
3∑

k=1

|∂keR(t, x)| . 1[R,2R](|x|)
(
|v′(t, x)| +

3∑

k=1

|∂kv′(t, x)|+
3∑

k,j=1

|∂k∂jv′(t, x)|
)
,

where the impliit onstant depends on ‖φ′‖Hs(R3). In view of this estimate and from the fat

that v′ ∈ C(R,Hs(R3)), we see that there exists R0 = R0(T0, φ
′, ε) suh that

∥∥|eR|+ |∇R3eR|
∥∥
L2((−T0,T0)×R3)

≤ T
− 1

2
0 ε (3.38)

for any R ≥ R0. If N ≥ R ≥ 1, then we may de�ne

eR,N (t, x) :=
(
(i∂t +∆R3

θ )v′R,N − ρv′R,N |v′R,N |4
)
(t, x) = N

5
2 eR(N

2t,Nx).

For N ≥ 1 and R ≥ R0 Hölder's inequality with respet to t and (3.38) yield

∥∥|eR,N |+ |∇R3eR,N |
∥∥
L1(IN ,L2(R3))

. T
1
2
0

∥∥N−1|eR|+ |∇R3eR|
∥∥
L2((−T0,T0)×R3)

. ε. (3.39)

Note that v′R,N is supported in a ball of radius 2RN . Now, we de�ne

ER,N (t, y) :=
(
(i∂t +∆θ)VR,N − ρVR,N |VR,N |4

)
(t, y) = eR,N

(
t,Ψ−1(y)

)

for N ≥ R. From the bound (3.39), we dedue that there exists R0 = R0(T0, φ
′, ε) suh that

VR,N is an almost-solution to (3.35) for N ≥ R ≥ R0, i.e.

sup
t0∈IN

‖It0(ER,N )‖X1
r (IN ) . ‖ER,N‖L1(IN ,H1(T3)) . ε. (3.40)

Step 2. Here we verify the assumptions of the stability result in Proposition 3.15. Assumption

(3.19) follows from the de�nition of VR,N and (3.37). Indeed, for every R ≥ 1 and N ≥ R we

have

‖VR,N‖L∞(IN ,H1(T3)) . ‖v′R,N‖L∞(IN ,H1(R3)) . ‖v′R,N‖L∞(IN ,Ḣ1(R3)) .E
R3 (φ

′) 1.
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Moreover, the bound on the Z-norm is obtained by using Littlewood-Paley theory (e.g. [ST87,

Setion 3.5.4℄) and (3.37): For N ≥ R ≥ 1 and N large enough (depending on T0) suh that

|IN | ≤ 1, we apply Bernstein's inequality and ompute

‖VR,N‖Z(IN ) ≤
∑

(p,q)∈P

∥∥∥∥
(∑

M≥1

M ( 2
p
+ 3

q
− 1

2
)p‖PMVR,N‖pLq(T3)

) 1
p
∥∥∥∥
Lp(IN )

.
∑

(p,q)∈P

∥∥∥∥
(∑

M≥1

M
( 2
p
+1)p‖PMVR,N‖pL2(T3)

) 1
p
∥∥∥∥
Lp(IN )

.
∑

(p,q)∈P
‖VR,N‖Lp(IN ,H2/p+1(T3)).

Thus, we showed that

‖VR,N‖Z(IN ) .
∑

(p,q)∈P
‖v′R,N‖Lp(IN ,H2/p+1(R3)).

Note that supp v′R,N ⊆ B2(0) for all N ≥ R. Hene, by interpolating the �rst bound in (3.37),

we obtain

‖v′R,N‖Lp(IN ,H2/p+1(R3)) . ‖∇R3v′R,N‖Lp(IN ,L
rp(R3)) .E

R3(φ
′) 1,

where rp :=
6p

3p−4 .

All in all, we have

‖VR,N‖L∞(IN ,H1(T3)) + ‖VR,N‖Z(IN ) ≤ C(ER3(φ)).

We remark that if neessary, we an derease ε to satisfy ε < ε1
(
C(ER3(φ))

)
, where ε1 is

given in Proposition 3.15.

We still have to verify assumption (3.20). Consider the �rst term of (3.20). From Poinaré's

inequality we dedue

‖TNφ− VR,N (0)‖H1(T3) . ‖φN − v′R,N (0)‖Ḣ1(R3) . ‖QNφ− v′R(0)‖Ḣ1(R3)

provided N ≥ R. Clearly, we an �nd R0 = R0(φ
′, ε) and N0 = N0(φ, ε) suh that for all

R ≥ R0 and N ≥ N0 with N ≥ R it holds that

‖QNφ− v′R(0)‖Ḣ1(R3) ≤ ‖QNφ− φ‖Ḣ1(R3) + ‖φ− φ′‖Ḣ1(R3) + ‖φ′ − v′R(0)‖Ḣ1(R3) ≤ ε.

The bound on the seond term of (3.20) was already proved in (3.40). Possibly, we derease

ε > 0 further suh that

‖TNφ− VR,N (0)‖H1(T3) + sup
t0∈IN

‖It0(ER,N )‖X1
r (IN ) < ε1,

where ε1 is as de�ned above. This proves that the assumptions in Proposition 3.15 are ful�lled.

Step 3. Finally, we apply our stability result and obtain the existene of a strong solution

UN ∈ C(IN ,H
1(T3)) ∩X1

r (IN ) to (3.35) for every N ≥ N0(φ, T0) satisfying

‖UN‖X1
r (IN ) .E

R3(φ)
1.

Furthermore, if R ≥ R0, then

lim
N→∞

‖UN − VR,N‖X1
r (IN ) .E

R3(φ)
ε.
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Comparison to Eulidean solutions beyond the Eulidean window

To understand the behavior of solutions on tori beyond the Eulidean window, we have to work

a bit harder. The next lemma is fundamental for our analysis sine it helps to understand the

linear and onsequently (f. Proposition 3.12 (i)) the nonlinear solution beyond the Eulidean

window. In ontrast to [IP12b, Lemma 4.3℄, we have to deal with two additional di�ulties.

The Z-norm used here makes the arguments a bit more deliate ompared to [IP12b℄ and due

to the modi�ed Laplae operator, we use the weaker estimate (3.42). Nevertheless, we show

that both di�ulties an be dealt with. We want to point out that the following argument

an easily be modi�ed to treat a general three-dimensional manifold T×M .

Lemma 3.21 (Extintion lemma).

(i) Let φ ∈ Ḣ1(R3). For any ε > 0 there exists T = T (φ, ε) and N0 = N0(φ, ε) suh that

for all N ≥ N0 it holds that

‖eit∆θ (TNφ)‖Z(TN−2,T−1) . ε.

(ii) Let φ ∈ C∞
0 (R3), p ∈ [4,∞], and 1 ≤ T ≤ N , then

sup
|t|∈[TN−2,T−1]

‖eit∆θ (TNφ)‖Lp(T3) .φ T
− 1

10N
1
2
− 3

p .

Proof. First, we prove (i) by modifying the argument in [IP12b, Lemma 4.3℄. For M ≥ 1 we

have that (
P≤Meit∆θ (TNφ)

)
(t, x) =

1

(2π)3

∫

T3

KM (t, x− y)TNφ(y) dy,

where KM is given by

KM (t, x) :=
∑

ξ∈Z3

ei(x·ξ−tQ(ξ))η3
( ξ

M

)
. (3.41)

The Weyl type estimate given in Lemma 1.41 yields

|KM (t, x)| .M2

∣∣∣∣
∑

ξ1∈Z
ei(x1ξ1−tξ

2
1)η1

( ξ1
M

)2∣∣∣∣ .
M3

√
q
(
1 +M

∣∣ t
2π − a

q

∣∣1/2) (3.42)

provided

t

2π
=
a

q
+ β, where q ∈ {1, . . . ,M}, a ∈ Z, (a, q) = 1, |β| ≤ (Mq)−1

.

Dirihlet's lemma, see Lemma 1.42, and (3.42) imply for 1 ≤ S ≤M ,

‖KM‖L∞([SM−2,S−1]×T3) . S− 1
2M3. (3.43)

Indeed, assume that |t| ≤ 1
S , and write

t
2π = a

q + β. Sine |β| ≤ 1
M ≤ 1

S , it follows that∣∣a
q

∣∣ ≤ 2
S . Therefore, either |a| ≥ 1, whih implies q ≥ S

4 , or a = 0, and hene, q = 1 beause

(a, q) = 1. In the �rst ase, (3.43) follows from (3.42):

|KM (t, x)| . q−
1
2M3 . S− 1

2M3.

In the seond ase, we have | t2π − a
q |

1
2 = 1√

2π
|t| 12 , and we obtain from (3.42) that

|KM (t, x)| . |t|− 1
2M2 . S− 1

2M3
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for t ∈ [SM−2, S−1].

Sine the Z-norm is based on Lp-spaes with 1 ≤ p < ∞, we may assume that φ ∈ C∞
0 (R3).

From the de�nition of TN (De�nition 3.16), we get

‖TNφ‖Lp(T3) .φ N
1
2
− 3

p
(3.44)

and

‖PL(TNφ)‖L2(T3) .φ

(
1 +

L

N

)−10
N−1.

The latter estimate in ombination with the Strihartz estimates in Lemma 2.10 leads to

‖eit∆θPL(TNφ)‖Lp([−1,1],Lq(T3)) .p,q L
3
2
− 2

p
− 3

q ‖PL(TNφ)‖L2(T3)

.φ,p,q L
3
2
− 2

p
− 3

q

(
1 +

L

N

)−10
N−1

(3.45)

for p > 16
3 and q ≥ 4. If 1 ≤ T ≤ N and (p, q) ∈ P, then this allows us to bound

∑

L/∈[NT−1/1000,NT 1/1000]

L( 2
p
+ 3

q
− 1

2
)p‖eit∆θPL(TNφ)‖pLp([−1,1],Lq(T3))

.φ

∑

1≤L<NT−1/1000

LpN−p +
∑

L>NT 1/1000

L−9pN9p .φ T
− p

1000 .

Here, we sum over dyadi numbers.

Now, we use the inequalities at the beginning of the proof to estimate the remaining sum over

L ∈ [NT−1/1000, NT 1/1000]. Young's inequality for onvolutions, (3.44), and (3.43) give for all

L ≥ 1,

‖eit∆θPL(TNφ)‖L∞([TN−2,T−1]×T3) ≤ ‖KL −KL/2‖L∞([T (max{L,N})−2,T−1]×T3)‖TNφ‖L1(T3)

.φ T
− 1

2 (L+N)3N− 5
2 .

Interpolating this with the estimate given in (3.45) (with p = 16
3 + and q = 4), we obtain for

L ∈ [NT−1/1000, NT 1/1000] and (p, q) ∈ P,

‖eit∆θPL(TNφ)‖Lp([TN−2,T−1],Lq(T3)) .φ T
− 1

1000N
1
2
− 2

p
− 3

q .

Then, (i) follows from

∑

(p,q)∈P

∑

L∈[NT−1/1000,NT 1/1000]

L
( 2
p
+ 3

q
− 1

2
)p‖eit∆θPL(TNφ)‖pLp([TN−2,T−1],Lq(T3))

.φ T
( 2
p0

+ 3
q0

− 3
2
)p0/1000 + T

−( 2
p1

+ 3
q1

+ 1
2
)p1/1000.

The result follows for T = T (ε, φ) su�iently large sine both exponents are negative.

Now, we turn to the proof of (ii). From (3.43) and (3.44), we get

sup
t∈[TN−2,T−1]

‖eit∆θP≤T 1/10N (TNφ)‖L∞(T3)

≤ ‖KNT 1/10‖L∞([T (NT 1/10)−2,T−1]×T3)‖TNφ‖L1([−1,1]×T3)

.φ T
− 1

5N
1
2
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as well as

sup
t∈R

‖eit∆θP≤T 1/10N (TNφ)‖L2(T3) .φ N
−1.

Interpolating these estimates, we obtain for 2 ≤ p ≤ ∞,

sup
t∈[TN−2,T−1]

‖eit∆θP≤T 1/10N (TNφ)‖Lp(T3) .φ T
2
5p

− 1
5N

1
2
− 3

p . (3.46)

Note that for p ≥ 4, we have T
2
5p

− 1
5 ≤ T− 1

10
. From the estimates

‖PLTNφ‖L1(T3) .φ

(N
L

)10
N− 5

2
and ‖PLTNφ‖L2(T3) .φ

(N
L

)10
N−1

for L ≥ N and Sobolev's embedding, we infer

sup
t∈R

‖eit∆θPL(TNφ)‖L2(T3) .φ N
−1
(N
L

)10
,

sup
t∈R

‖eit∆θPL(TNφ)‖L∞(T3) ≤ L3‖PL(TNφ)‖L1(T3) .φ N
1
2

(N
L

)7
.

Consequently, for 2 ≤ p ≤ ∞,

sup
t∈R

‖eit∆θPL(TNφ)‖Lp(T3) .φ N
1
2
− 3

p

(N
L

)7+ 6
p
.

Hene, we may estimate

sup
t∈R

∑

L>NT 1/10

‖eit∆θPL(TNφ)‖Lp(T3) .φ N
1
2
− 3

p

∑

L>NT 1/10

(N
L

)7+ 6
p
.φ N

1
2
− 3

pT− 1
10 . (3.47)

We are now able to onlude the lemma using (3.46) and (3.47): For all 4 ≤ p ≤ ∞ and

t ∈ [TN−2, T−1], we have

‖eit∆θ (TNφ)‖Lp(T3) ≤ ‖eit∆θP≤T 1/10N (TNφ)‖Lp(T3) +
∑

L>NT 1/10

‖eit∆θPL(TNφ)‖Lp(T3)

.φ T
− 1

10N
1
2
− 3

p .

Now, we shall bring everything together to ompare Eulidean solutions with initial data

φ ∈ Ḣ1(R3) and solutions on tori with initial data TNφ in a ertain time frame. We begin

with some notation and the de�nition of renormalized Eulidean frames.

Given f ∈ L2(T3), t0 ∈ R, and x0 ∈ T
3
, we de�ne

(πx0f)(x) := f(x− x0),

(Πt0,x0f)(x) := (e−it0∆θf)(x− x0) = (πx0e
−it0∆θf)(x).

De�nition 3.22 (Renormalized Eulidean frames). We de�ne the set of renormalized Eu-

lidean frames as

F̃E :=
{
(Nk, tk, xk)k≥1 : Nk ≥ 1, Nk → +∞, tk → 0, xk ∈ T

3
,

and either tk = 0 for all k ≥ 1 or lim
k→∞

N2
k |tk| = +∞

}
.
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Remark. In De�nition 3.24 below, we introdue a slightly more general lass of frames, alled

Eulidean frames. As we show in the beginning of the proof of Proposition 3.30, it is enough

to prove the following proposition under the stronger assumption of a renormalized Eulidean

frame. ♦

Proposition 3.23. Let O = (Nk, tk, xk)k ∈ F̃E and φ ∈ Ḣ1(R3).

(i) There exist τ = τ(φ) and k0 = k0(φ,O) suh that for all k ≥ k0 there is a strong solution

Uk ∈ C((−τ, τ),H1(T3)) ∩ X1
r (−τ, τ) of the nonlinear equation (3.1) with initial data

Uk(0) = Πtk,xk(TNk
φ). Moreover, the solution satis�es the bound

‖Uk‖X1
r (−τ,τ) .E

R3(φ)
1.

(ii) For any s ≥ 1 there exists a Eulidean solution u ∈ C(R, Ḣs(R3)) of

i∂tu+∆R3

θ u = u|u|4 (3.48)

with sattering data φ±∞ ∈ Ḣ1(R3) de�ned as in Theorem 3.19 suh that the following

holds up to a subsequene: For any ε > 0 there exists T0 = T0(φ, ε) suh that for all

T ≥ T0 there is R0 = R0(φ, ε, T ) suh that for all R ≥ R0 there is k0 = k0(φ, ε, T,R)
with the property that for any k ≥ k0, it holds that

‖Uk − ũk‖X1
r ({|t−tk |≤TN−2

k }∩{|t|≤T−1}) ≤ ε, (3.49)

where

(π−xk ũk)(t, x) = N
1
2
k η
(NkΨ

−1(x)

R

)
u
(
N2
k (t− tk), NkΨ

−1(x)
)
. (3.50)

In addition, up to a subsequene, we have

‖Uk(t)−Πtk−t,xkTNk
φ±∞‖X1

r ({±(t−tk)≥TN−2
k }∩{|t|≤T−1}) ≤ ε (3.51)

for k ≥ k0.

Proof. The omparison within the Eulidean window was essentially done in Lemma 3.20. For

the omparison beyond the Eulidean window we make use of the previous extintion lemma

and our stability result. In this interval, the general idea is as follows:

Uk(t) ≈ eit∆θUk(TN
−2
k ) (extintion lemma and Proposition 3.12 (i))

≈ eit∆θ ũk(TN
−2
k ) (stability and (3.49))

≈ eit∆θTNk
φ±∞. (Eulidean sattering property)

Let O = (Nk, tk, xk)k ∈ F̃E , φ ∈ Ḣ1(R3), and ε > 0 be �xed. Without loss of generality, we

may assume xk = 0.

Case 1. Assume tk = 0 for all k ≥ 1. Let s′ := max{5, s}. Given any 0 < ε′ ≪ ε we may

hoose φ′ ∈ Hs′(R3) to satisfy ‖φ− φ′‖Ḣ1(R3) < ε′. Let u ∈ C(R,Hs′(R3)) be the solution to

the nonlinear Eulidean Shrödinger equation (3.31) with initial data u(0) = φ′ ∈ Hs′(R3) and
sattering data φ± ∈ Ḣ1(R3). The existene of suh a solution is guaranteed by Theorem 3.19.

Let T > 0 be arbitrary. If ε′ = ε′(ER3(φ), ε) is small enough suh that Lemma 3.20 (ii)

an be applied, then there is R0 = R0(φ, ε, T ) ≥ 1 suh that for any R ≥ R0 there exists

k0 = k0(φ, ε, T,R) with the property that for any k ≥ k0 there is a unique strong solution

Uk ∈ C
(
(−2TN−2

k , 2TN−2
k ),H1(T3)

)
∩X1

r (−2TN−2
k , 2TN−2

k ) (3.52)
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suh that the estimate

‖Uk − ũk‖X1
r (−2TN−2

k ,2TN−2
k ) .E

R3(φ)
ε′ < ε (3.53)

holds true. This implies (3.49).

For notational onveniene we prove existene of Uk beyond the Eulidean window and (3.51)

only in the ase t > 0. By Lemma 3.21, there exists T0 = T0(φ, ε
′) and k0 = k0(φ, ε

′) suh
that for all T ≥ T0 and k ≥ k0,

‖eit∆θ (TNk
φ+∞)‖Z([TN−2

k ,T−1]) ≤ ε′. (3.54)

In view of (3.52), we may onlude the existene of a unique solution Uk on (−T−1
0 , T−1

0 ) from
Proposition 3.12 (i) by showing

‖ei(t−T0N−2
k )∆θUk(T0N

−2
k )‖Z([T0N−2

k ,T−1
0 ]) ≤ δ0, (3.55)

where δ0 = δ0(‖Uk(T0N−2
k )‖H1(T3)) is given by Proposition 3.12 (i).

Let T ≥ T0, R ≥ R0, as well as k ≥ k0, and de�ne the interval Ik := [TN−2
k , T−1]. For

Jk := [0, T−1 − TN−2
k ] we dedue,

‖eit∆θUk(TN
−2
k )‖Z(Jk) ≤

∥∥eit∆θ

(
Uk(TN

−2
k )− ũk(TN

−2
k )
)∥∥

Z(Jk)

+
∥∥eit∆θ

(
ũk(TN

−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)
)∥∥
Z(Jk)

+ ‖eit∆θ (TNk
φ+∞)‖Z(Ik).

The �rst term is small sine Corollary 3.5 (i) and (3.53) imply

‖Uk(TN−2
k )− ũk(TN

−2
k )‖H1(T3) .E

R3(φ)
ε′. (3.56)

The smallness of the last term is given by (3.54). It remains to estimate seond term. We see

from Corollary 3.5 (i) that

∥∥eit∆θ

(
ũk(TN

−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)
)∥∥
Z(Jk)

. ‖ũk(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

(3.57)

For v ∈ C(R, Ḣ1(R3)) we denote by VR,N (v) the funtion onstruted in (3.36). Let φ′′ ∈
H5(R3) be suh that ‖φ′′−φ+∞‖Ḣ1(R3) ≤ ε′. The triangle inequality and Poinaré's inequality

allow to bound

(3.57) . ‖ũk(TN−2
k )− VR,Nk

(eit∆
R
3

θ φ+∞)(TN−2
k )‖Ḣ1(T3)

+ ‖VR,Nk
(eit∆

R
3

θ φ+∞)(TN−2
k )− VR,Nk

(eit∆
R
3

θ φ′′)(TN−2
k )‖Ḣ1(T3)

+ ‖VR,Nk
(eit∆

R
3

θ φ′′)(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

All terms may be bounded by Cε′ provided T0 is large enough. Indeed, from the sattering

property (3.33), it follows that there exists a possibly larger T0 = T0(φ, ε
′) suh that for all

T ≥ T0,

‖u(T ) − eiT∆
R
3

θ φ+∞‖Ḣ1(R3) ≤ ε′.

A omputation shows that this implies the boundedness of the �rst term by Cε′. The seond
term is small beause φ′′ approximates φ+∞

in Ḣ1(R3). Finally, the smallness of the last term

follows from Lemma 3.20 (ii) with ρ = 0. Hene, we have proved

‖ei(t−TN−2
k )∆θUk(TN

−2
k )‖Z(Ik) ≤ Cε′ (3.58)
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for any T ≥ T0. This implies (3.55) for small enough ε′ and therefore, we have shown the

existene of a unique solution Uk ∈ C((−T−1
0 , T−1

0 ),H1(T3)) ∩X1
r (−T−1

0 , T−1
0 ).

Next, we prove (3.51) for T ≥ T0, R ≥ R0, and k ≥ k0. Applying the triangle inequality twie

gives

‖Uk(t)− eit∆θTNk
φ+∞‖X1

r (Ik)
≤ ‖Uk(t)− ei(t−TN

−2
k )∆θUk(TN

−2
k )‖X1

r (Ik)

+
∥∥ei(t−TN−2

k )∆θ

(
Uk(TN

−2
k )− ũk(TN

−2
k )
)∥∥

X1
r (Ik)

+
∥∥eit∆θ

(
e−iTN

−2
k ∆θ ũk(TN

−2
k )− TNk

φ+∞)∥∥
X1

r (Ik)

=: S1 + S2 + S3.

We are left to prove S1+S2+S3 < ε. In the following steps, we might derease ε′ > 0 further,
whih may inrease T0, R0, and k0. First, we onsider S1. We apply Proposition 3.12 (i) and

use (3.58) to obtain

‖Uk(t)− ei(t−TN
−2
k )∆θUk(TN

−2
k )‖X1

r (Ik)
. ε′

3
2 <

ε

3
,

whih proves the desired smallness of S1. The smallness of S2 is a onsequene of (3.56) and

Proposition 3.3 (ii):

S2 ≤ ‖Uk(TN−2
k )− ũk(TN

−2
k )‖H1(T3) <

ε

3
.

Finally, we onsider S3. We have

S3 ≤ ‖ũk(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

However, this term has already appeared in (3.57) and was shown to be smaller than ε/3
provided ε′ is small enough. That gives the desired estimate (3.51) provided tk = 0 for all

k ≥ 1.

Case 2. Assume limk→+∞N2
k |tk| = +∞. We may even assume limk→+∞N2

k tk = +∞ by

symmetry. From the existene of the wave operator and Theorem 3.19, we see that there is a

solution u to (3.48) suh that

‖u(t) − eit∆
R
3

θ φ‖Ḣ1(R3) → 0

as t → −∞. In other words, φ−∞ = φ. We set φ̃ := u(0) and apply the result of the

proposition to the frame O′ := (Nk, 0, 0)k≥1. Note that this frame ful�lls the assumptions of

the �rst ase. Hene, there exists a solution to (3.1) on (−T−1
0 , T−1

0 ), say Vk, with initial data

Vk(0) = TNk
φ̃. From limk→+∞N2

k tk = +∞, we have for su�iently large k that tk ≥ T0N
−2
k .

Hene, (3.51) implies

‖Vk(−tk)−Πtk ,0TNk
φ‖H1(T3) . ‖Vk(t)−Π−t,0TNk

φ‖X1
r ({−t≥T0N−2

k }∩{|t|≤T−1
0 }) → 0

as k → +∞. Reall that, by de�nition, Uk(0) = Πtk ,0TNk
φ. This allows us to apply our

stability result (Proposition 3.15), and we observe

‖Vk( · − tk)− Uk‖X1
r (−T−1

0 ,T−1
0 ) → 0.

Note that Uk inherits the estimates (3.49) and (3.51) from Vk.
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3.5 Pro�le deomposition

We show that for every given bounded sequene of funtions in H1(T3), we an onstrut

suitable Eulidean pro�les and up to a subsequene, express the sequene as an almost or-

thogonal sum of these pro�les, the sequene's weak limit, and a remainder term. The study

of Eulidean pro�les in the previous setion makes this deomposition meaningful. We adapt

the strategies in [IPS12, Lemma 5.7℄ and [IP12a, Setion 5℄ in whih analogue statements

were proved for the nonlinear Shrödinger equation on the hyperboli spae H and R × T
3
,

respetively. The pro�le deomposition disussed here is an analogue of Keraani's theorem

[Ker01℄ on retangular tori.

3.5.1 De�nition and properties

The previously introdued lass of renormalized Eulidean frames F̃E is extended now to the

lass of Eulidean frames. Here, we drop the assumption that either tk = 0 for all k ≥ 1 or

limk→∞N2
k |tk| = +∞.

De�nition 3.24 (Eulidean frames).

(i) The set of Eulidean frames is de�ned as

FE :=
{
(Nk, tk, xk)k≥1 : Nk ≥ 1, Nk → +∞, tk → 0, xk ∈ T

3
}
.

We say that two frames, (Nk, tk, xk)k and (N ′
k, t

′
k, x

′
k)k, are orthogonal if

lim
k→+∞

(∣∣∣ln Nk

N ′
k

∣∣∣+N2
k |tk − t′k|+Nk|xk − x′k|

)
= +∞.

Two frames that are not orthogonal are alled equivalent.

(ii) If O = (Nk, tk, xk)k is a Eulidean frame and if ψ ∈ Ḣ1(R3), we de�ne the Eulidean

pro�le assoiated to (ψ,O) as the sequene (ψ̃Ok
)k in H1(T3) with

ψ̃Ok
:= Πtk ,xk(TNk

ψ). (3.59)

In the following lemma, we summarize the basi properties of pro�les assoiated to equivalent

and orthogonal frames. The proof follows the strategy in [IPS12, Lemma 5.7℄.

Lemma 3.25 (Properties of frames).

(i) If O and O′
are equivalent Eulidean frames, then there is an isometry S : Ḣ1(R3) →

Ḣ1(R3) suh that for any pro�le (ψ̃O′
k
)k, up to a subsequene, it holds that

lim
k→+∞

‖S̃ψOk
− ψ̃O′

k
‖H1(T3) = 0. (3.60)

(ii) If O and O′
are orthogonal frames and (ψ̃Ok

)k, (φ̃O′
k
)k are orresponding pro�les, then,

up to a subsequene:

lim
k→+∞

〈ψ̃Ok
, φ̃O′

k
〉H1(T3) = 0, (3.61)

lim
k→+∞

‖ψ̃Ok
φ̃O′

k
‖L3(T3) = 0. (3.62)
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(iii) If O is a Eulidean frame and (ψ̃Ok
)k, (φ̃Ok

)k are two pro�les orresponding to O, then

lim
k→+∞

(
‖ψ̃Ok

‖L2(T3) + ‖φ̃Ok
‖L2(T3)

)
= 0, (3.63)

lim
k→+∞

〈ψ̃Ok
, φ̃Ok

〉H1(T3) = 〈ψ, φ〉H1(R3).

(iv) If O is a renormalized Eulidean frame and (ψ̃Ok
)k a pro�le orresponding to O, then

for every g ∈ H1(T3),

lim sup
k→+∞

‖ψ̃Ok
g‖L3(T3) = 0.

Proof. We prove every laim individually.

Ad (i). Let O = (Nk, tk, xk)k and O′ = (N ′
k, t

′
k, x

′
k)k be equivalent Eulidean frames. After

passing to a subsequene, we may assume

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2(t′k − tk) = t, and lim

k→∞
N ′
kΨ

−1(x′k − xk) = x

for some N, t ∈ R and x ∈ R
3
. Note that there exists T0 > 0 suh that |tk − t′k| < T0N

′
k
−2

for

all k. Given ψ ∈ Ḣ1(R3) we de�ne S : Ḣ1(R3) → Ḣ1(R3) via

(Sψ)(x) := N
1
2Πt,xψ(Nx) = N

1
2 (e−it∆θψ)(Nx− x)

and remark that S is an isometry on Ḣ1(R3). Furthermore, we de�ne S̃ψOk
as in (3.59). By

de�nition, (3.60) follows from

lim
k→∞

∥∥Πtk ,xk
(
TNk

(Sψ)
)
−Πt′k,x

′
k
(TN ′

k
ψ)
∥∥
H1(T3)

= 0,

whih is equivalent to

lim
k→∞

∥∥πxk−x′k
(
TNk

(Sψ)
)
− ei(tk−t

′
k)∆θ (TN ′

k
ψ)
∥∥
H1(T3)

= 0. (3.64)

In order to prove (3.64), we may assume Sψ ∈ C∞
0 (R3) and ψ ∈ H5(R3) beause of density

and the Ḣ1(R3) → H1(T3) boundedness of the operator TN (Corollary 3.17). Set v(t, x) :=

eit∆
R
3

θ ψ(x), and de�ne vR, vR,N ′
k
, and VR,N ′

k
as in (3.36). Now, we apply Lemma 3.20 (ii)

with ρ = 0 and T0 as de�ned above. We dedue that for any ε > 0 small enough there exists

R0 = R0(T0, ψ, ε) suh that for all R ≥ R0,

lim
k→∞

‖ei(tk−t′k)∆θ (TN ′
k
ψ)− VR,N ′

k
(tk − t′k)‖H1(T3) . ε.

This, indeed, is true for any k ≥ 1 sine, from the hoie of T0, the evolution stays inside the

Eulidean window. By the triangle inequality, the last estimate implies that (3.64) follows if

we prove

lim
k→∞

∥∥πxk−x′k
(
TNk

(Sψ)
)
− VR,N ′

k
(tk − t′k)

∥∥
H1(T3)

. ε

for su�iently large R. From the de�nitions and sine Sψ ∈ C∞
0 (R3), this inequality is

equivalent to

lim
k→∞

∥∥N
1
2
k (Sψ)

(
NkΨ

−1
(
y − (xk − x′k)

))
−N ′

k

1
2 vR

(
N ′
k
2(tk − t′k), N

′
kΨ

−1(y)
)∥∥

H1
y(T

3)
. ε.
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Note that η an be dropped in the �rst term beause for k su�iently large, we have that

supp((Sψ)(Nk · )) ⊂ supp(η(N
1/2
k · )). We substitute y := Ψ(x), then the inequality above is

equivalent to

lim
k→∞

∥∥N
1
2
k (Sψ)

(
Nkx−NkΨ

−1(xk − x′k)
)
−N ′

k

1
2 vR

(
N ′
k
2(tk − t′k), N

′
kx
)∥∥
Ḣ1

x(R
3)

. ε. (3.65)

One easily alulates that the left-hand side is equal to

lim
k→∞

∥∥∥(Sψ)(x) −
(N ′

k

Nk

) 1
2
vR

(
N ′
k
2(tk − t′k),

N ′
k

Nk
x−N ′

kΨ
−1(x′k − xk)

)∥∥∥
Ḣ1

x(R
3)
.

By de�nition, (Sψ)(x) = N
1
2 v(−t,Nx − x), and sine Sobolev's embedding implies vR ∈

C(R, C1
0 (R

3)), we dedue from dominated onvergene that (3.65) is equivalent to

∥∥N
1
2 v(−t,Nx− x)−N

1
2 vR(−t,Nx− x)

∥∥
Ḣ1

x(R
3)

. ε,

whih is obviously true for R su�iently large.

Ad (ii). Let O = (Nk, tk, xk)k and O′ = (N ′
k, t

′
k, x

′
k)k be orthogonal Eulidean frames. With-

out loss of generality, we may assume ψ, φ ∈ C∞
0 (R3). Sine Nk, N

′
k → +∞ as k → +∞, we

obtain from (3.44) that

lim
k→∞

∣∣∣∣
∫

T3

ψ̃Ok
(x)φ̃O′

k
(x) dx

∣∣∣∣ ≤ lim
k→∞

‖TNk
ψ‖L2(T3)‖TN ′

K
φ‖L2(T3) = 0.

As a onsequene, we redued (3.61) to

lim
k→+∞

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ = 0. (3.66)

To prove the remaining estimates, we selet a subsequene suh that either

lim
k→∞

N ′
k

Nk
= 0, (3.67)

or

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2|t′k − tk| = ∞ (3.68)

for some N ∈ (0,∞), or

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2(t′k − tk) = t, lim

k→∞
N ′
k|x′k − xk| = ∞ (3.69)

for some N ∈ (0,∞) and t ∈ R.

First, we assume the ase (3.67). We dedue from Green's formula (f. [Jos11, formula (3.1.7)℄),

the de�nition of a Eulidean pro�le, and Hölder's inequality that

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

ψ̃Ok
(x)∆gφ̃O′

k
(x) dx

∣∣∣∣ . ‖TNk
ψ‖L2(T3)‖∆g(TN ′

k
φ)‖L2(T3).

One easily omputes that ‖∆g(TN ′
k
φ)‖L2(T3) .φ N

′
k, and together with (3.44), we obtain

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ .ψ,φ
N ′
k

Nk
. (3.70)
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Furthermore, using Sobolev embeddings,

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖Πtk ,xk(TNk

ψ)‖
L

9
2 (T3)

‖Πt′k ,x′k(TN ′
k
φ)‖L9(T3)

. ‖(−∆g)
5
6TNk

ψ‖L2(T3)‖(−∆g)
7
6TN ′

k
φ‖L2(T3)

.ψ,φ

(N ′
k

Nk

) 1
6
.

(3.71)

Now, (3.66) and (3.62) follow from (3.70) and (3.71) as k → ∞ provided (3.67).

We onsider the ase (3.68) now. We �rst prove the following statement: For any f ∈ Ḣ1(R3)
and all sequenes Mk ≥ 1 and sk → 0 with M2

k |sk| → +∞ as k → ∞, we have

lim
k→∞

‖eisk∆θ(TMk
f)‖L6(T3) = 0 (3.72)

for a subsequene.

This is aomplished by applying Lemma 3.21 (ii) in either of the following two sub-ases:

We may hoose a subsequene suh that either 0 < Mk|sk| ≤ 1 or Mk|sk| > 1 for any k ≥ 1.

Lets �rst assume Mk|sk| ≤ 1 for all k ≥ 1, and de�ne Tk := M2
k |sk|. Note that 1 ≤ Tk ≤ Mk

for large k. Sine |sk| ∈ [TkM
−2
k , T−1

k ], we may apply Lemma 3.21 (ii) from whih we dedue

‖eisk∆θ(TMk
f)‖L6(T3) .f (1 +M2

k |sk|)−
1
10

provided k is su�iently large.

On the other hand, if Mk|sk| > 1 for any k ≥ 1, we de�ne Tk := |sk|−1
. Obviously, for k large

enough, 1 ≤ Tk < Mk and |sk| ∈ [TkM
−2
k , T−1

k ]. Thus, Lemma 3.21 (ii) implies

‖eisk∆θ(TMk
f)‖L6(T3) .f |sk|

1
10 ,

and the laim is proved.

We onlude that for k large enough,

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

∆g(TNk
ψ)(x)Πt′k−tk,x′k−xk(TN ′

k
φ)(x) dx

∣∣∣∣
. ‖∆g(TNk

ψ)‖
L

6
5 (T3)

‖Πt′k−tk,x′k−xk(TN ′
k
φ)‖L6(T3).

Using ‖∆g(TNk
ψ)‖

L
6
5 (T3)

.φ 1, see (3.44), and (3.72), we obtain (3.61). The laim (3.62) is

implied by

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖TNk

ψ‖L6(T3)‖Πt′k−tk ,x′k−xk(TN ′
k
φ)‖L6(T3),

(3.44), and (3.72).

We now assume (3.69). First, we laim that for all sequenes yk ∈ T
3
, Mk ≥ 1 with the

properties limk→∞Mk = ∞, limk→∞Mk|yk| = ∞, and all f, g ∈ Ḣ1(R3), it holds that

lim
k→∞

(∣∣∣∣
∫

T3

(
πyk∇(TMk

f)
)
(x) · ∇(TMk

g)(x) dx

∣∣∣∣+ ‖πyk(TMk
f)(TMk

g)‖L3(T3)

)
= 0. (3.73)

Assuming this, we may prove (3.61) and (3.62) in the ase (3.69). Indeed, thanks to (3.64),

we have for f ∈ Ḣ1(R3) and a sequene (sk)k with the property limk→∞N ′
k
2sk = s ∈ R that

lim
k→∞

‖TNk
(Sf)− e−isk∆θ(TN ′

k
f)‖H1(T3) = 0, (3.74)
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where (Sf)(x) := N
1
2 (e−is∆

R
3

θ f)(Nx). We estimate

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

∇(TNk
ψ)(x) · ∇(Πt′k−tk ,x′k−xkTN ′

k
φ)(x) dx

∣∣∣∣

.

∣∣∣∣
∫

T3

∇(TNk
ψ)(x) · πx′k−xk∇

(
TNk

(Sφ)
)
(x) dx

∣∣∣∣

+ ‖ψ‖Ḣ1(R3)

∥∥TNk
(Sφ)− e−i(t

′
k−tk)∆θ (TN ′

k
φ)
∥∥
H1(T3)

.

From (3.73), we see that the �rst term tends to 0 as k → ∞, and from (3.74), we obtain the

same for the seond term. If either N2
k |tk| → ∞ or N ′

k
2|t′k| → ∞ as k → ∞, we get from

(3.72) that

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖Πtk ,xk(TNk

ψ)‖L6(T3)‖Πt′k ,x′k(TN ′
k
φ)‖L6(T3) → 0

as k → ∞. Otherwise, if limk→∞N2
k |tk| = T ∈ R and limk→∞N ′

k
2|t′k| = T ′ ∈ R, we estimate

‖ψ̃Ok
φ̃O′

k
‖L3(T3) =

∥∥(πxk−x′ke
−itk∆θ(TNk

ψ)
)
e−it

′
k∆θ(TN ′

k
φ)
∥∥
L3(T3)

.
∥∥πxk−x′k

(
e−itk∆θ(TNk

ψ)− TN ′
k
(Sψ)

)∥∥
H1(T3)

‖φ‖Ḣ1(R3)

+ ‖ψ‖Ḣ1(R3)‖e−it
′
k∆θ(TN ′

k
φ)− TN ′

k
(S̃φ)‖H1(T3)

+
∥∥πxk−x′k

(
TN ′

k
(Sψ)

)
TN ′

k
(S̃φ)

∥∥
L3(T3)

,

where S̃ : Ḣ1(R3) → Ḣ1(R3), (S̃φ)(x) := (e−iT
′∆R

3

θ φ)(x). Eah term tends to zero beause of

(3.74) and (3.73).

We turn to the proof of (3.73). Beause of density and the Ḣ1(R3) → H1(T3) boundedness
of TN (Corollary 3.17), we may assume that f, g ∈ C∞

0 (R3) and replae TMk
f and TMk

g by

f̃(x) :=M
1
2
k f(MkΨ

−1(x)) and g̃(x) :=M
1
2
k g(MkΨ

−1(x)), respetively. We have

∣∣∣∣
∫

T3

(πyk∇f̃)(x) · ∇g̃(x) dx
∣∣∣∣ =M3

k

∣∣∣∣
∫

R3

∇R3f
(
Mk(x− yk)

)
· ∇R3g(Mkx) dx

∣∣∣∣

as well as

‖(πyk f̃) g̃‖L3(T3) =Mk

∥∥f
(
Mk( · − yk)

)
g(Mk · )

∥∥
L3(R3)

.

That either term tends to zero as k → ∞ follows from the fat that the support of these

funtions beome disjoint for large k, whih is due to the assumption limk→∞Mk|yk| = ∞.

Ad (iii). Let O = (Nk, tk, xk)k be a Eulidean frame and (ψ̃Ok
)k, (φ̃Ok

)k be two pro�les

orresponding to O. Again, the Ḣ1(R3) → H1(T3) boundedness of TN allows to assume

ψ, φ ∈ C∞
0 (R3). Sine Πtk ,xk is an isometry on L2(T3), we easily get from (3.44) that

‖ψ̃Ok
‖L2(T3) = ‖TNk

ψ‖L2(T3) .ψ N
−1
k ,

whih in turn implies (3.63).

By the unitarity of Πtk ,xk , it su�es to prove

lim
k→∞

〈∇(TNk
ψ),∇(TNk

φ)〉L2(T3) = 〈∇R3ψ,∇R3φ〉L2(R3).

For f ∈ C∞
0 (R3), we have

∥∥∇
(
TNk

f −N
1
2
k f(NkΨ

−1)
)∥∥

L2(T3)
→ 0
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as k → ∞, and onsequently, we may replae the funtions TNk
ψ and TNk

φ by N
1
2
k ψ(NkΨ

−1)

and N
1
2
k φ(NkΨ

−1), respetively. Thus, the desired estimate is implied, if we show

Nk

〈
∇
(
ψ(NkΨ

−1 · )
)
,∇
(
φ(NkΨ

−1 · )
)〉
L2(T3)

= 〈∇R3ψ,∇R3φ〉L2(R3)

for su�iently large k. However, this follows from a hange of variables.

Ad (iv). Without loss of generality, we may assume g ∈ C∞(T3) and ψ ∈ C∞
0 (R3). Let

O = (Nk, tk, xk)k. We use (3.44) to estimate

‖ψ̃Ok
g‖L3(T3) ≤ ‖ψ̃Ok

‖
L

9
2 (T3)

‖g‖L9(T3) .ψ,g N
− 1

6
k .

Letting k → ∞, this implies the laim.

De�nition 3.26 (Absene from a frame). We say that a sequene of funtions (fk)k ⊆ H1(T3)
is absent from a frame O, if for every pro�le (ψ̃Ok

)k assoiated to O,

〈fk, ψ̃Ok
〉H1(T3) → 0

as k → +∞.

Remark. Note that (3.61) implies that a pro�le assoiated to a frame O is absent from any

frame orthogonal to O. ♦

3.5.2 Extrating pro�les from a sequene

The pro�le deomposition in the next proposition is the main statement of this subsetion.

Proposition 3.27. Let (fk)k be a sequene of funtions in H1(T3) satisfying

lim sup
k→+∞

‖fk‖H1(T3) . E

and up to a subsequene, fk ⇀ g ∈ H1(T3). Furthermore, let Ik = (−Tk, T k) be a sequene

of intervals around the origin suh that |Ik| → 0 as k → +∞. Then, there exist a sequene of

pairwise orthogonal Eulidean frames (Oα)α and a subsequene of pro�les (ψ̃αOα
k
)k assoiated

to Oα
suh that, after extrating a subsequene, for every J ≥ 0,

fk = g +

J∑

α=1

ψ̃αOα
k
+RJk ,

where RJk is absent from the frames Oα
, 1 ≤ α ≤ J , and is small in the sense that

lim sup
J→+∞

lim sup
k→+∞

sup
N≥1, t∈Ik, x∈T3

N− 1
2 |(eit∆θPNR

J
k )(x)| = 0. (3.75)

Besides, we also have the following orthogonality relations:

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖RJk‖2L2(T3) + ok(1),

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

J∑

α=1

‖∇R3ψα‖2L2(R3) + ‖∇RJk‖2L2(T3) + ok(1),

lim sup
J→+∞

lim sup
k→+∞

∣∣∣∣‖fk‖6L6(T3) − ‖g‖6L6(T3) −
J∑

α=1

‖ψ̃αOα
k
‖6L6(T3)

∣∣∣∣ = 0,

(3.76)

where ok(1) → 0 as k → +∞, possibly depending on J .
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Before we turn to its proof, we prove two auxiliary results, whih are similar to [IP12a,

Lemma 2.3℄ and [IP12a, Lemma 5.4℄.

Lemma 3.28. For every f ∈ H1(T3),

‖f‖6L6(T3) . ‖f‖2H1(T3)

(
sup
N≥1

N− 1
2‖PNf‖L∞(T3)

)4

holds true.

Proof. We dyadially deompose f in its frequenies, f =
∑

N≥1 PNf , and obtain

‖f‖6L6(T3) ≤
∑

N1,...,N6≥1

∣∣∣∣
∫

T3

PN1fPN2fPN3fPN4fPN5fPN6f dx

∣∣∣∣.

The integral is zero, unless there are elements in the support of the Fourier transforms whih

add up to zero. Hene, we may assume the two highest frequenies to be omparable. We

order the frequenies to get

‖f‖6L6(T3) .
∑

N1≈N2≥...≥N6

∫

T3

|PN1fPN2fPN3fPN4fPN5fPN6f | dx.

Estimating the two high-frequeny terms in L2(T3) and the rest in L∞(T3), we obtain

‖f‖6L6(T3) .
(
sup
N≥1

N− 1
2‖PNf‖L∞(T3)

)4

×
∑

N1≈N2≥N3≥...≥N6

(N3N4N5N6)
1
2 ‖PN1f‖L2(T3)‖PN2f‖L2(T3).

Summing over N6, N5, N4, and N3 yields

‖f‖6L6(T3) .
(
sup
N≥1

N− 1
2 ‖PNf‖L∞(T3)

)4 ∑

N1≈N2

N1N2‖PN1f‖L2(T3)‖PN2f‖L2(T3),

whih, after applying Cauhy�Shwarz, implies the laim.

Lemma 3.29. Let δ > 0 be �xed, and let (fk)k be a sequene of funtions in H1(T3) satisfying

lim sup
k→+∞

‖fk‖H1(T3) . E (3.77)

and up to passing to a subsequene, fk ⇀ g ∈ H1(T3). Furthermore, let Ik = (−Tk, T k) be
a sequene of intervals around the origin suh that |Ik| → 0 as k → +∞. Then, there exist

J . δ−2
pairwise orthogonal frames Oα

, 1 ≤ α ≤ J , and pro�les (ψ̃αOα
k
)k assoiated to Oα

suh that, after extrating a subsequene,

fk = g +

J∑

α=1

ψ̃αOα
k
+Rk,

where Rk is absent from all frames Oα
and is small in the sense that

sup
N≥1, t∈Ik , x∈T3

N− 1
2 |(eit∆θPNRk)(x)| ≤ δ.
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Besides, the following orthogonality relations hold true:

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖Rk‖2L2(T3) + ok(1)

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

J∑

α=1

‖∇R3ψα‖2L2(R3) + ‖∇Rk‖2L2(T3) + ok(1),

where ok(1) → 0 as k → +∞.

Proof. We subdivide the proof into three steps.

Step 1. In this step, we extrat a frame under the additional assumption that fk ⇀ 0 in

H1(T3). So, let (fk)k be a sequene satisfying the assumptions of the lemma, and assume

that (fk)k onverges weakly in H1(T3) to zero. We de�ne the funtional Λ via

Λ
(
(fk)k

)
:= lim sup

k→+∞
sup

N≥1, t∈Ik, x∈T3

N− 1
2 |(eit∆θPNfk)(x)|.

Claim. If Λ((fk)k) ≥ δ, then there exist a frame O and an assoiated pro�le (ψ̃Ok
)k satisfying

lim sup
k→+∞

‖ψ̃Ok
‖H1(T3) . ‖ψ‖Ḣ1(R3) (3.78)

and

lim sup
k→+∞

|〈fk, ψ̃Ok
〉H1(T3)| ≥

δ

2
. (3.79)

Furthermore, if (fk)k was absent from a family of frames (Oα)α, then O is orthogonal to all

the frames Oα
.

We now prove the laim: The bound (3.78) follows for every Eulidean frame O immediately

from the de�nition of a Eulidean pro�le and the properties of TN (Corollary 3.17). It remains

to selet a frame as well as an assoiated pro�le, and to show (3.79). Sine Λ((fk)k) ≥ δ,
there exists a subsequene, whih we still denote by (fk)k, suh that there exists a sequene

(Nk, tk, xk)k with (Nk, tk, xk) ∈ [1,∞)× Ik × T
3
for all k and suh that for all k,

2

3
δ ≤ N

− 1
2

k |(eitk∆θPNk
fk)(xk)|. (3.80)

From the de�nition of Λ, we have, after passing to a subsequene, tk → 0, xk → x∞, and

either Nk → N∞ ∈ [1,∞) or Nk → +∞.

We laim that the �rst ase, namely Nk → N∞ ∈ [1,∞), does not our. Indeed, it holds for
gx,t,N ∈ C∞(T3),

gx,t,N (y) :=
∑

ξ∈Z3

ei((x−y)·ξ−tQ(ξ))
[
η3
( ξ
N

)
− η3

(2ξ
N

)]

that

|(eitk∆θPNk
fk)(xk)| = (2π)−3

∣∣∣∣
∫

T3

fk(y)gxk ,tk,Nk
(y) dy

∣∣∣∣ . |〈fk, gxk ,tk,Nk
〉H1×H−1(T3)|.

We also observe that gxk,tk,Nk
onverges point-wise to

g(y) := gx∞,0,N∞(y) =
∑

ξ∈Z3

ei(x∞−y)·ξ
[
η3
( ξ

N∞

)
− η3

( 2ξ

N∞

)]
∈ C∞(T3)
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as k → ∞, and thus, strongly in H−1(T3). Finally, we see that

|〈fk, gxk,tk ,Nk
〉H1×H−1(T3)| ≤ |〈fk, gxk ,tk,Nk

− g〉H1×H−1(T3)|+ |〈fk, g〉H1×H−1(T3)| → 0

as k → ∞, whih ontradits (3.80).

In the remaining ase, Nk → +∞, we de�ne the Eulidean frame O = (Nk, tk, xk)k and the

funtion

ψ := F−1
R3

(
| · |−2[η3 − η3(2 · )]

)
∈ H1(R3).

We prove (3.79) now. By de�nition,

|〈fk, ψ̃Ok
〉H1(T3)| = N

1
2
k

∣∣〈fk,Πtk ,xk
(
η(N

1
2
k Ψ

−1)ψ(NkΨ
−1)
)〉
H1(T3)

∣∣,

and it is easy to verify that this is equal to

N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
η(N

1
2
k · )ψ(Nk · )

)
(ξ)

∣∣∣∣+ ok(1).

Here, it is important to notie that from the ompat support of η, we have

F
(
η(N

1
2
k Ψ

−1)ψ(NkΨ
−1)
)
(ξ) = FR3

(
η(N

1
2
k · )ψ(Nk · )

)
(ξ)

for all ξ ∈ Z
3
and for su�iently large k. Using the saling properties of the Fourier transform,

we dedue that

N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
ψ(Nk · )

)
(ξ)

∣∣∣∣ = N
− 1

2
k |(eitk∆θPNk

fk)(xk)| ≥
2

3
δ.

Hene, (3.79) follows if we show that

Sk := N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
(η(N

1
2
k · )− 1)ψ(Nk · )

)
(ξ)

∣∣∣∣→ 0

as k → ∞. From the Cauhy�Shwarz inequality and the saling properties of the Fourier

transform, we get that

Sk . N−1
k ‖fk‖L2(T3)

(∑

ξ∈Z3

|ξ|4
[
FR3

(
(η − 1)ψ(N

1
2
k · )

)
(N

− 1
2

k ξ)
]2
) 1

2

.

Observing that ψ ∈ S(R3), an osillatory phase type argument yields for any N ≥ 1 and any

µ ≥ 1,

∣∣FR3

(
(η − 1)ψ(N

1
2
k · )

)
(ξ)
∣∣ .N,µ

N
N
2
−µ

k

(1 + |ξ|)N , ξ ∈ R
3.

Choosing, for instane, N = µ = 4, we obtain Sk → 0 as k → ∞. This �nally proves laim

(3.79).

To prove the last part of the laim, assume (fk)k is absent from a family of frames (Oα)α, i.e.
for all α and every pro�le (ψ̃Oα

k
)k assoiated to Oα

,

〈fk, ψ̃Oα
k
〉H1(T3) → 0
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as k → +∞. We argue by ontradition: Suppose there is Oβ ∈ (Oα)α suh that O and Oβ

are equivalent. From Lemma 3.25 (i), we see that

lim sup
k→+∞

‖ψ̃Ok
− S̃ψOβ

k
‖H1(T3) = 0,

where S is the isometry given in Lemma 3.25 (i). In view of (3.79), we obtain

δ

2
≤ lim sup

k→+∞
|〈fk, ψ̃Ok

〉H1(T3)|

≤ lim sup
k→+∞

(
‖fk‖H1(T3)‖ψ̃Ok

− S̃ψOβ
k
‖H1(T3) + |〈fk, S̃ψOβ

k
〉H1(T3)|

)
.

Sine (fk)k is absent from all the frames in (Oα)α, there exists a subsequene suh that the

right-hand side tends to zero as k → ∞, whih in turn leads to a ontradition. Hene, O
and (Oα)α are pairwise orthogonal.

Step 2. Let (fk)k be as in the �rst step. Now that step one provides us with a Eulidean

frame O, we may selet the loalization of (fk)k in O as a linear pro�le. For R ≥ 1 there

exists k0 suh that for any k ≥ k0 we may de�ne

ψRk : R3 → C, ψRk (y) := N
− 1

2
k η3

( y
R

)(
Π−tk,−xkfk

)(
Ψ
( y

Nk

))
.

One easily heks that

‖ψRk ‖Ḣ1(R3) . ‖fk‖H1(T3)

uniformly in R. Assumption (3.77) allows us to extrat a subsequene that onverges weakly

to a funtion ψR ∈ Ḣ1(R3) with the property

‖ψR‖Ḣ1(R3) . 1.

Beause of this, we may assume that, after taking a subsequene, ψR ⇀ ψ ∈ Ḣ1(R3), and by

the uniqueness of the weak limit, we see that for every R ≥ 1,

ψR(x) = η3
( x
R

)
ψ(x).

For some γ ∈ C∞
0 (R3) we hoose R ≥ 1 to be large enough suh that supp γ ⊂ BR/2(0). Then,

we alulate for k su�iently large,

〈fk, γ̃Ok
〉H1(T3) = 〈Π−tk ,−xkfk, TNk

γ〉H1(T3) = 〈ψR, γ〉Ḣ1(R3) + ok(1)

= 〈ψ, γ〉Ḣ1(R3) + ok(1).
(3.81)

This in ombination with (3.78) and (3.79) implies for k su�iently large,

〈ψ, γ〉Ḣ1(R3) = 〈fk, γ̃Ok
〉H1(T3) + ok(1) ≥

δ

4
,

and therefore, using a density argument,

‖ψ‖Ḣ1(R3) & δ. (3.82)

Moreover, fk− ψ̃Ok
is absent from the Eulidean frame O: For every ϕ ∈ C∞

0 (R3) there exists
R ≥ 1 suh that for any k su�iently large we get

〈fk − ψ̃Ok
, ϕ̃Ok

〉H1(T3) = 〈fk, ϕ̃Ok
〉H1(T3) − 〈ψ̃Ok

, ϕ̃Ok
〉H1(T3) = ok(1), (3.83)



3.5 Profile deomposition 125

where we used Lemma 3.25 (iii) and (3.81). By density, the statement holds true also for

ϕ ∈ Ḣ1(R3). This implies on the one hand,

‖fk − ψ̃Ok
‖2L2(T3) = ‖fk‖2L2(T3) − 〈fk, ψ̃Ok

〉L2(T3) − 〈ψ̃Ok
, fk − ψ̃Ok

〉L2(T3)

= ‖fk‖2L2(T3) + ok(1),
(3.84)

whih we dedue from Lemma 3.25 (iii) and (3.83). On the other hand,

‖∇(fk − ψ̃Ok
)‖2L2(T3) = ‖∇fk‖2L2(T3) − 2〈∇fk,∇ψ̃Ok

〉L2(T3) + ‖∇ψ̃Ok
‖L2(T3)

= ‖∇fk‖2L2(T3) − ‖∇R3ψ‖L2(R3) + ok(1).
(3.85)

Step 3. Now, we an onlude the statement of the lemma. Let (fk)k be as stated in the

lemma. We pass to a subsequene suh that fk ⇀ g in H1(T3) and de�ne f1k := fk − g. For
α ≥ 1 and as long as Λ((fαk )k) > δ, we do the following: We apply the �rst two steps to get

a Eulidean frame Oα
and an assoiated pro�le (ψ̃αOα

k
)k. Then, we de�ne

fα+1
k := fαk − ψ̃αOα

k
, k ≥ 1.

Note that in Step 1 we proved that Oα
is orthogonal to all previous Eulidean frames Oβ

,

β < α, and by indution, all frames Oβ
, β ≤ α, are pairwise orthogonal. Furthermore, Step 2

implies that fα+1
k is absent from Oα

. It is an easy task to show that fα+1
k is absent from Oβ

for every β ≤ α: Let ϕ ∈ Ḣ1(R3) be arbitrary and β < α, then

〈fα+1
k , ϕ̃βOβ

k

〉H1(T3) = 〈fβ+1
k , ϕ̃βOβ

k

〉H1(T3) −
α∑

ν=β+1

〈ψ̃νOν
k
, ϕ̃βOβ

k

〉H1(T3).

This expression tends to zero by the indution hypothesis and Lemma 3.25 (ii). Note also

that, sine fk = f1k + g and f1k ⇀ 0 in H1(T3), we have

‖fk‖2L2(T3) = ‖f1k‖2L2(T3) + 2〈f1k , g〉L2(T3) + ‖g‖2L2(T3) = ‖f1k‖2L2(T3) + ‖g‖2L2(T3) + ok(1).

By the same argument, we also obtain

‖∇fk‖2L2(T3) = ‖∇f1k‖2L2(T3) + ‖∇g‖2L2(T3) + ok(1).

Hene, applying (3.84) and (3.85) indutively, we onlude

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖fα+1
k ‖2L2(T3) + ok(1)

and

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

α∑

β=1

‖∇R3ψβ‖2L2(R3) + ‖∇fα+1
k ‖2L2(T3) + ok(1).

We still have to prove that this method stops after O(δ−2) appliations. From Strihartz

inequalities, we obtain

sup
N≥1, t∈Ik , x∈T3

N− 1
2 |(eit∆θPNf

α+1
k )(x)| . sup

N≥1
N‖PNfα+1

k ‖L2(T3) . ‖∇fα+1
k ‖L2(T3).

The orthogonality relations, (3.77), and (3.82) imply that there exists some large M > 0 suh
that for k large enough,

‖∇fα+1
k ‖2L2(T3) =

∣∣∣∣‖∇(fk − g)‖2L2(T3) −
α∑

β=1

‖∇R3ψβ‖2L2(R3)

∣∣∣∣+ ok(1) . |M − αδ2|

We dedue that it takes O(δ−2) steps until we have Λ((fα+1
k )) ≤ δ. In this ase, we set

α
end

:= α and Rk := fαend+1
k , what �nishes the proof.
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Using the two foregoing lemmas, we are �nally able to onlude the main statement of this

setion.

Proof of Proposition 3.27. We apply Lemma 3.29 iteratively with δℓ = 2−ℓ, whih provides us

with a sequene of Eulidean frames (Oα)α and pro�les (ψ̃αOα
k
)k. The �rst two orthogonality

relations in (3.76) are given by Lemma 3.29, too. It only remains to prove the last equality

of (3.76).

By Lemma 3.25 (ii), we have that for αj ≥ 1, j = 1, . . . , 6, suh that at least two of them are

di�erent, say α1 6= α2,

∫

T3

6∏

j=1

∣∣ψ̃αj

Oαj
k

(x)
∣∣ dx ≤ ‖ψ̃α1

Oα1
k

ψ̃α2

Oα2
k

‖L3(T3)

6∏

j=3

‖ψ̃αj

Oαj
k

‖6L6(T3) ≤ ok(1).

Similarly, for α ≥ 1 we dedue

∫

T3

|g(x)||ψ̃αOα
k
(x)|5 dx ≤ ‖ψ̃αOα

k
g‖L3(T3)‖ψ̃αOα

k
‖4L6(T3) ≤ ok(1)

and ∫

T3

|g(x)|5|ψ̃αOα
k
(x)| dx ≤ ‖ψ̃αOα

k
g‖L3(T3)‖g‖4L6(T3) ≤ ok(1)

from Lemma 3.25 (iv). Moreover, we use Lemma 3.28 to see that

‖RJk‖6L6(T3) . ‖RJk‖2H1(T3)

(
sup
N≥1

N− 1
2‖PNRJk‖L∞(T3)

)4
,

and we onlude from (3.75) that

lim sup
J→+∞

lim sup
k→+∞

(∣∣‖fk‖6L6(T3) − ‖fk −RJk‖6L6(T3)

∣∣+ ‖RJk‖6L6(T3)

)
= 0. (3.86)

To see this, note that

|fk|6 − |fk −RJk |6 = |fk|6 −
(
|fk|2 − fkR

J
k − fkR

J
k + |RJk |2

)3

point-wise and thus, eah term ontains a fator of RJk that an be put in the L6(T3)-norm.

From the point-wise estimate,

∣∣∣∣|fk −RJk |6 − |g|6 −
J∑

α=1

|ψ̃αOα
k
|6
∣∣∣∣ .J

J∑

α=1

(
|g||ψ̃αOα

k
|5 + |g|5|ψ̃αOα

k
|
)

+
J∑

α,β=1
α6=β

(
|ψ̃αOα

k
||ψ̃βOβ

k

|5 + |ψ̃αOα
k
|5|ψ̃βOβ

k

|
)
,

and the estimates above, we get by integration and (3.86)

lim sup
J→+∞

lim sup
k→+∞

∣∣∣∣‖fk‖6L6(T3) − ‖g‖6L6(T3) −
J∑

α=1

‖ψ̃αOα
k
‖6L6(T3)

∣∣∣∣ = 0.
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3.6 Proof of the main theorem

In order to prove Theorem 3.1, we proeed quite similar as in [IP12b, Setion 6℄: We introdue

a funtional Λ∗, whih ontrols the global existene of solutions and is suitable for the loal

and small data global theory. This funtional deomposes the set of initial data into sub-level

sets of the energy and we are looking at the supremum of the funtional on these sub-level

sets. If the funtional inreases too quikly, then the maximizers form a sequene that is

bounded in Z, whih leads to a ontradition. The main obstrution to the boundedness of

the sequene omes from solutions that onentrate in a point in spae-time. These solutions

have been studied in Setion 3.4. The prinipal idea is indution on energy. Assume that

nonlinear solutions with energy less than Emax are global. That Emax > 0 follows from the

small data global theory. We deompose the initial data of the maximizers aording to the

pro�le deomposition in Setion 3.5. If one of the terms has energy Emax, then it is easy to

show that the sequene of maximizers stays bounded. Otherwise, nonlinear solutions to the

weak limit g and for every pro�le exist globally in time. It is then shown that the sum of these

nonlinear global solutions plus the linear evolution of the remainder RJk is an approximate

solution. We onlude from stability that the sequene of maximizers is bounded in Z.

3.6.1 The main argument

We see from Proposition 3.12 (iii) that it su�es to show that solutions remain bounded in

Z on intervals of length at most one. To prove this, we indut on the energy E(u).

We de�ne the quantity

Λ(L, τ) := sup
{
‖u‖2Z(I) : E(u) ≤ L, |I| ≤ τ

}
, L, τ > 0,

where the supremum is taken over all strong solutions u of (3.1) with E(u) ≤ L and all

intervals I of length at most τ . If L or τ inreases, the supremum is taken over a larger set,

and hene, the funtion Λ is inreasing in both its arguments. Obviously,

Λ(L, τ1 + τ2) . sup
{
‖u‖2Z(I1) + ‖u‖2Z(I2) : E(u) ≤ L, |Ij| ≤ τj, j = 1, 2

}

. Λ(L, τ1) + Λ(L, τ2).

The last two properties imply that if we de�ne

Λ∗(L) := lim
τ→0

Λ(L, τ),

then we have for all τ > 0,

Λ(L, τ) < +∞ ⇔ Λ∗(L) < +∞. (3.87)

Finally, we de�ne the maximal energy suh that Λ∗(L) is �nite:

Emax := sup{L ∈ R+ : Λ∗(L) < +∞}.

Note that our small data global well-posedness result (Lemma 3.14) ensures that Emax > 0.
All in all, we have that Theorem 3.1 is equivalent to the following statement.

Proposition 3.30. We have that Emax = +∞. In partiular, every solution of (3.1) is global

in the sense given in Theorem 3.1.
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Proof. We argue by ontradition and assume Emax < +∞. By the de�nition of Emax, there

exists a sequene (uk)k of strong solutions to (3.1) suh that

E(uk) → Emax and ‖uk‖Z(Ik) → +∞ (3.88)

for intervals Ik ∋ 0 with |Ik| → 0 as k → +∞. Sine (uk(0))k is bounded in H1(T3), there is a
subsequene that onverges weakly to, say, g ∈ H1(T3). We deompose the sequene of initial

data (uk(0))k in pro�les using Proposition 3.27. This provides us with a sequene of pairwise

orthogonal frames (Oα)α∈N and with a sequene of orresponding pro�les (ψ̃αOα
k
)k suh that,

after extrating a subsequene, for any J ≥ 1,

uk(0) = g +
J∑

α=1

ψ̃αOα
k
+RJk .

To be able to apply Proposition 3.23 later, we have to swith to renormalized Eulidean

pro�les. We show that every Oα ∈ FE \ F̃E may be replaed by some Õα ∈ F̃E . To

aomplish this, onsider Oα = (Nk, tk, xk)k ∈ FE \F̃E . Then, after passing to a subsequene,
N2
k |tk| → C for some 0 ≤ C < ∞. We de�ne Õα := (Nk, 0, xk)k ∈ F̃E and observe that this

frame is equivalent to Oα
. Furthermore, Lemma 3.25 (i) yields the existene of a pro�le

(S̃αψ
α
Õα

k

)k, k ∈ N, suh that, up to a subsequene,

lim
k→+∞

∥∥S̃αψαÕα
k

− ψ̃αOα
k

∥∥
H1(T3)

= 0,

and hene,

lim
k→+∞

‖uk(0)− ũk(0)‖H1(T3) = 0, where ũk(0) := g +

J∑

α=1

S̃αψ
α
Õα

k

+RJk .

Let ũk be the solution to (3.1) on Ik with initial data ũk(0). The existene follows from our

stability result in Proposition 3.15 provided k is su�iently large. Suppose now that ‖ũk‖Z(Ik)
is uniformly bounded, then ‖ũk‖X1

r (Ik)
is uniformly bounded (see Proposition 3.12 (iii)). As

a onsequene, there exists M > 0 suh that for all k large enough,

‖ũk‖Z(Ik) + ‖ũk‖L∞(Ik,H1(T3)) ≤M.

We now onlude from stability (see (3.23)) and

‖uk‖Z(Ik) . ‖uk − ũk‖X1
r (Ik)

+ ‖ũk‖Z(Ik)

that ‖uk‖Z(Ik) is uniformly bounded. Hene, from now on, we may assume eah frame Oα
to

be renormalized.

By the same argument, we may also assume that for every α 6= β either | ln(Nα
k /N

β
k )| → +∞

as k → ∞ or Nα
k = Nβ

k for all k. In the latter ase, we may further assume that either tαk = tβk
for all k or (Nα

k )
2|tαk − tβk | → +∞ as k → ∞.

The onservation of energy implies E(uk) = E
(
uk(0)

)
in Ik, and the orthogonality relations

(3.76), (3.86) and Lemma 3.25 (iii) yield that, after passing to a subsequene,

lim
J→+∞

( J∑

α=1

E(α) + lim
k→+∞

E(RJk )

)
≤ Emax − E(g), (3.89)
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where

E(α) := lim
k→+∞

E(ψ̃αOα
k
) ∈ (0, Emax].

We use the Bernstein's inequality and the Strihartz estimates given in Lemma 2.10 to om-

pute for the remainder RJk , p ∈ {p0, p1} and q = p0+16/3
2 ,

∑

N≥1

N5− p
2 ‖PNeit∆θRJk‖pLp

t,x

≤
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q ∑

N≥1

(
N

5
q
− 1

2 ‖PNeit∆θRJk‖Lq
t,x

)q

.
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q ∑

N≥1

N q‖PNRJk‖qL2(T3)

.
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q
‖RJk‖qH1(T3)

,

where Lrt,x := Lrt,x(Ik × T
3). In view of (3.75) and (3.76), it follows

lim sup
J→+∞

lim sup
k→+∞

‖eit∆θRJk‖Z(Ik) = 0. (3.90)

We onsider three ases. The �rst two ases deal with the situations, where there is a term

in the pro�le deomposition with energy Emax. One we dealt with them, we may apply the

indution hypothesis in the remaining third ase.

Case 1. Assume (uk(0))k onverges strongly in H
1(T3) to its limit g ∈ H1(T3), whih satis�es

E(g) = Emax. We have that

‖eit∆θuk(0)‖Z(Ik) ≤ ‖eit∆θ (uk(0)− g)‖Z(Ik) + ‖eit∆θg‖Z(Ik),

and we dedue from Corollary 3.5 (i) that

‖eit∆θ (uk(0) − g)‖Z(Ik) . ‖uk(0)− g‖H1(T3).

Therefore there exists some small η > 0 suh that for k large enough,

‖eit∆θuk(0)‖Z(Ik) ≤ ‖eit∆θg‖Z(−η,η) + ok(1) ≤ δ0,

where δ0 is the δ0 given by the loal well-posedness result in Proposition 3.12 (i). This

proposition yields for k su�iently large,

‖uk‖Z(Ik) . ‖uk(t)− eit∆θuk(0)‖X1
r (Ik)

+ ‖eit∆θuk(0)‖Z(Ik) .Emax δ0.

Consequently, ‖uk‖Z(Ik) is bounded, whih ontradits (3.88).

Case 2a. Assume g = 0 and there are no pro�les. Then, by (3.90), we may hoose J su�iently

large suh that we get for k large enough,

‖eit∆θuk(0)‖Z(Ik) = ‖eit∆θRJk‖Z(Ik) ≤ δ0,

where δ0 is as in the �rst ase. Applying Proposition 3.12 (i), this ontradits (3.88) as

disussed in Case 1.
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Case 2b. Assume g = 0 and there is only one Eulidean pro�le (ψ̃Ok
)k suh that

lim sup
k→+∞

‖uk(0)− ψ̃Ok
‖H1(T3) = 0,

where O is a renormalized Eulidean frame. Let Uk be the solution of (3.1) with initial data

Uk(0) = ψ̃Ok
. By Proposition 3.23 (i), we see that there is τ > 0 suh that for k large enough,

‖Uk‖X1
r (Ik)

≤ ‖Uk‖X1
r (−τ,τ) .E

R3(ψ)
1.

Hene, by the embeddings Proposition 3.3 (i) and Corollary 3.5 (iii),

‖Uk‖Z(−τ,τ) + ‖Uk‖L∞((−τ,τ),H1(T3)) .E
R3(ψ)

1,

and the assumption implies for a subsequene,

lim
k→+∞

‖uk(0) − Uk(0)‖H1(T3) → 0.

From stability, see Proposition 3.15, we get for large k that

‖uk‖Z(Ik) . ‖uk‖X1
r (Ik)

.E
R3(ψ)

1.

This is a ontradition to (3.88).

Case 3. In the remaining ase, we assume, up to passing to subsequenes,

lim
k→∞

‖uk(0)− g‖H1(T3) > 0,

and furthermore, if g = 0, then we assume that there exists a pro�le (ψ̃βOβ
k

)k with the property

that limk→∞ ‖uk(0) − ψ̃βOβ
k

‖H1(T3) > 0. We laim that in eah ase E(g) < Emax and for any

α ∈ N, E(α) < Emax.

Indeed, if g 6= 0, then E(g) > 0, whih already implies E(α) < Emax by (3.89). It remains to

show that E(g) < Emax, whih, in view of (3.89), follows from

lim
J→+∞

( J∑

α=1

E(α) + lim
k→+∞

E(RJk )

)
> 0. (3.91)

This in turn is a onsequene of the fat that (uk(0))k does not onverge strongly in H1(T3)
to g: There is δ > 0 suh that we have

δ < lim
k→∞

‖uk(0)− g‖H1(T3) ≤ lim
k→∞

( J∑

α=1

‖ψ̃αOα
k
‖H1(T3) + ‖RJk‖H1(T3)

)

uniformly in J , and onsequently, there exists either a pro�le with positive energy or

lim
J→+∞

lim
k→+∞

E(RJk ) > 0. (3.92)

Hene, (3.91) is shown provided g 6= 0. If on the ontrary g = 0, then we see from

limk→∞ ‖uk(0) − ψ̃βOβ
k

‖H1(T3) > 0 by the same argument that there is either another non-

trivial pro�le with positive energy or (3.92) holds true. Hene, (3.89) yields E(α) < Emax.

By relabeling the pro�les, we an assume that for all α ∈ N, E(α) ≤ E(1) < Emax − η and

E(g) < Emax−η for some η > 0. For any α ∈ N let Uαk be the maximal strong solution of (3.1)
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with initial data Uαk (0) = ψ̃αOα
k
. Uαk an be understood as a nonlinear pro�le orresponding

to the linear pro�le ψ̃αOα
k
. Analogously, let W be the maximal strong solution to (3.1) with

initial data g.

We apply the indution hypothesis: From the de�nition of Emax and (3.87), we see that all

nonlinear pro�les and W are global and up to a subsequene, satisfy

‖W‖Z(I) + lim
k→+∞

‖Uαk ‖Z(I) . Λ
(
Emax −

η

2
, 1
) 1

2
. 1, I :=

(
−1

2
,
1

2

)
.

From now on, all impliit onstants may depend on Λ
(
Emax − η

2 , 1
)
. Sine W is a (global)

strong solution in X1
r , we know that

‖W‖L∞(I,H1(T3)) . 1.

Using Lemma 3.25 (iii) and limk→+∞E(ψ̃αOα
k
) = E(α) < Emax, we also have that

‖Uαk ‖L∞(I,H1(T3)) . E(ψ̃αOα
k
) + E(ψ̃αOα

k

) 1
3 .Emax 1

for every α ∈ N and k > k0(α) large enough. Hene, stability implies that for every α ∈ N

and k > k0(α) large enough,

‖W‖X1
r (I)

+ ‖Uαk ‖X1
r (I)

. 1. (3.93)

For J, k ∈ N we de�ne

UJprof,k :=W +

J∑

α=1

Uαk .

First, we prove that for all k ≥ k0(J) su�iently large,

‖UJprof,k‖X1
r (I)

.Emax 1 (3.94)

uniformly in J . Thanks to (3.89), we know that for every 0 < δ < 1 there are �nitely many

pro�les (ψ̃αOα
k
)k suh that E(α) > δ. After relabeling, we may assume that for all α ≥ A it

holds E(α) ≤ δ. We also have ‖Uαk (0)‖H1(T3) . E(α)
1
2 . δ

1
2
for any α ≥ A and k large

enough, as we may observe from

‖Uαk (0)‖2H1(T3) . ‖Uαk (0)‖2L6(T3) + ‖∇Uαk (0)‖2L2(T3) . ‖∇Uαk (0)‖2L2(T3) . E
(
Uαk (0)

)
.

Now, we hoose δ small enough suh that the small data global well-posedness result in

Lemma 3.14 an be applied. Using (3.93) and Lemma 3.14,

‖UJprof,k‖X1
r (I)

≤ ‖W‖X1
r (I)

+
A−1∑

α=1

‖Uαk ‖X1
r (I)

+
J∑

α=A

‖Uαk (t)− eit∆θUαk (0)‖X1
r (I)

+

∥∥∥∥e
it∆θ

J∑

α=A

Uαk (0)

∥∥∥∥
X1

r (I)

. 1 +A+
J∑

α=A

E(α) +

∥∥∥∥
J∑

α=A

Uαk (0)

∥∥∥∥
H1(T3)

.
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From (3.89), we know that

∑J
α=A E(α) ≤ Emax uniformly in J . The boundedness of the last

term is implied by Lemma 3.25 (ii) and (3.89):

∥∥∥∥
J∑

α=A

Uαk (0)

∥∥∥∥
2

H1(T3)

=

J∑

α=A

‖Uαk (0)‖2H1(T3) + ok(1) .

J∑

α=A

E(α) + ok(1) . Emax

for k large enough. Hene, we proved ‖UJprof,k‖X1
r (I)

. 1 for large k.

De�ne for J, k ∈ N,

UJapp,k(t) := UJprof,k(t) + eit∆θRJk =W (t) +

J∑

α=1

Uαk (t) + eit∆θRJk .

We laim for any J ≥ J0 and any k ≥ k0(J) su�iently large that UJapp,k is an approximate

solution of (3.1) on Ik. We note from (3.89) that for su�iently large k and any J the H1(T3)-
norm of RJk is bounded by C(Emax) uniformly in k and J . From this and (3.94), it follows

that there exists C0 > 0 suh that

‖UJapp,k‖Z(I) + ‖UJapp,k‖L∞(I,H1(T3)) ≤ C‖UJapp,k‖X1
r (I)

≤ C0.

Now, we hoose ε1 = ε1(C0) ≤ 1 to be the onstant of our stability result in Proposition 3.15.

Writing F (z) := z|z|4, we set

eJk := (i∂t +∆θ)U
J
app,k − F (UJapp,k) = F (W ) +

J∑

α=1

F (Uαk )− F (UJapp,k)

and ompute

eJk (t) =
(
F
(
UJprof,k(t)

)
−F
(
UJprof,k(t)+e

it∆θRJk
))

+

(
F
(
W (t)

)
+

J∑

α=1

F
(
Uαk (t)

)
−F
(
UJprof,k(t)

))
.

Applying Lemma 3.31, we get

lim sup
k→+∞

sup
t0∈Ik

‖It0(eJk )‖X1
r (Ik)

≤ ε1
2

for J ≥ J0(ε1). Hene, by stability, we obtain that

‖uk‖X1
r (Ik)

. 1.

Note that this ontradits (3.88), whih �nishes the proof.

Thus, Proposition 3.30 and Theorem 3.1 are proved one we prove the following lemma.

Lemma 3.31. With the notation in Case 3 of the proof of Proposition 3.30, we have that

lim sup
k→+∞

sup
t0∈Ik

∥∥∥∥It0
(
F (UJprof,k)− F (W )−

J∑

α=1

F (Uαk )

)∥∥∥∥
X1

r (Ik)

= 0, (3.95)

for �xed J ∈ N, and

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥∥It0
(
F
(
UJprof,k(t) + eit∆θRJk

)
− F

(
UJprof,k(t)

))∥∥∥
X1

r (Ik)
= 0. (3.96)
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3.6.2 Proof of Lemma 3.31

Before we turn to the proof of Lemma 3.31, we provide two more lemmas onerning the

interation of a high-frequeny linear solution with a low-frequeny pro�le on the one hand

and the interation of two pro�les orresponding to two orthogonal frames on the other hand.

The general strategy is the same as for the standard tours in [IP12b, Setion 7℄. Due to the

modi�ed Laplae�Beltrami operator∆θ, the arguments in Lemma 3.32 are adapted, though.

We �x the following notation: For a given vetor p ∈ N
n
we denote by Dp1,...,pn(a1, . . . , an) a

|p|-linear expression whih is a produt of p1 terms that are either equal to a1 or its omplex

onjugate a1 and similarly for pj , aj , 2 ≤ j ≤ n.

Interation of a high-frequeny linear solution with a low-frequeny pro�le

The following lemma shows that a high-frequeny linear solution does not interat signi�antly

with a low-frequeny pro�le.

Lemma 3.32. Assume that B,N ≥ 2 are dyadi numbers and that ω : (−1
2 ,

1
2 ) × T

3 → C is

a funtion satisfying

|ω| ≤ N
1
21{|x|≤N−1, |t|≤N−2} and |∇ω| ≤ N

3
21{|x|≤N−1, |t|≤N−2}.

Then, for any f ∈ H1(T3),

∥∥D4,1

(
ω(t), eit∆θP>BNf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

. (B− 1
200 +N− 1

200 )‖f‖H1(T3).

Proof. For brevity, we assume that f = P>BNf . By saling, and we may also assume

‖f‖H1(T3) = 1. Using the produt rule and Hölder's inequality, we see that

∥∥D4,1

(
ω(t), eit∆θf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

.
∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1
tL

2
x
+
∥∥|∇ω|+ |ω|

∥∥
L4
tL

∞
x
‖ω‖3L4

tL
∞
x
‖eit∆θf‖L∞

t L2
x
.

Obviously, from f = P>BNf and ‖f‖H1(T3) = 1, we obtain

‖eit∆θf‖L∞
t L2

x
= ‖f‖L2(T3) . (BN)−1‖∇f‖L2(T3) . (BN)−1.

Furthermore,

‖ω‖L4
tL

∞
x

≤ N
1
2 ‖1{|x|≤N−1, |t|≤N−2}‖L4

tL
∞
x

. 1,

‖∇ω‖L4
tL

∞
x

≤ N
3
2 ‖1{|x|≤N−1, |t|≤N−2}‖L4

tL
∞
x

. N.

All in all, we get

∥∥D4,1

(
ω(t), eit∆θf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

.
∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1((− 1

2
, 1
2
),L2(T3))

+B−1.

Set

W : R× T
3 → R, W (t, x) := N4 η1(N2t) η3

(
NΨ−1(x)

)
,

and note that |ω|4 ≤W
1
2
. Hene, we estimate

∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1((− 1

2
, 1
2
),L2(T3))

≤ ‖W (t)
1
2∇eit∆θf‖L1((− 1

2
, 1
2
),L2(T3))

. N−1‖W (t)
1
2∇eit∆θf‖L2((− 1

2
, 1
2
)×T3)
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using Hölder's inequality. The latter expression an be rewritten as

‖W (t)
1
2∇eit∆θf‖2

L2((− 1
2
, 1
2
)×T3)

=

3∑

j=1

∫ 1
2

− 1
2

〈
eit∆θ∂jf,W (t)eit∆θ∂jf

〉
L2(T3)

dt

=

3∑

j=1

〈
∂jf,

[∫ 1
2

− 1
2

e−it∆θW (t)eit∆θ dt

]
∂jf

〉

L2(T3)

.

The theorem is proved if we show

‖K‖L2(T3)→L2(T3) . N2
(
B− 1

100 +N− 1
100
)
, (3.97)

where K : L2(T3) → L2(T3),

K(f)(x) := P>BN

∫

R

e−it∆θW (t, x)P>BNe
it∆θf(x) dt.

To that purpose, we alulate the Fourier oe�ients of K: Let p, q ∈ Z
3
, then

cp,q := 〈eip·x,K(eiq·x)(x)〉L2
x(T

3)

=

∫

R

〈
P>BNe

it∆θeip·x,W (t, x)P>BN e
it∆θeiq·x

〉
L2
x(T

3)
dt.

One immediately sees

F(P>BNe
it∆θeip·x)(p) = (1− η3)

( p

BN

)
e−itQ(p)

and F(P>BN e
it∆θeip·x)(ξ) = 0 for any ξ ∈ Z

3 \ {p}. Hene, we ompute

cp,q = (1− η3)
( p

BN

)
(1− η3)

( q

BN

) ∫

R

eit(Q(q)−Q(p))F
(
W (t)

)
(p − q) dt

= C(1− η3)
( p

BN

)
(1− η3)

( q

BN

)
(Ft,xW )

(
Q(p)−Q(q), p − q

)
.

From the de�nition of W and saling in t and x, we get the estimate

|cp,q| . N−1

(
1 +

|Q(p)−Q(q)|
N2

)−10(
1 +

|p− q|
N

)−10

1[BN,∞)(|p|)1[BN,∞)(|q|). (3.98)

Using Shur's lemma and Young's inequality for produts, we see that

‖K‖L2(T3)→L2(T3) . sup
p∈Z3

∑

q∈Z3

|cp,q|+ sup
q∈Z3

∑

p∈Z3

|cp,q|.

In view of (3.98), it su�es to prove

sup
|p|≥BN

∑

v∈Z3

(
1 +

|Q(p)−Q(p+ v)|
N2

)−10(
1 +

|v|
N

)−10

. N3
(
B− 1

100 +N− 1
100

)
(3.99)

to obtain (3.97).

De�ne θmax := max{θ1, θ2, θ3} and Θ := diag(θ1, θ2, θ3), then we split the sum over v ∈ Z
3

into three parts:

S1 + S2 + S3 :=
∑

|v|≥N min{N,B}1/100
+

∑

|v|<N min{N,B}1/100 ,
|p·Θv|≥θmaxN2 min{N,B}1/10

+
∑

|v|<N min{N,B}1/100 ,
|p·Θv|<θmaxN2 min{N,B}1/10

.



3.6 Proof of the main theorem 135

Thus, it su�es the show (3.99), where we replae the sum by any of the sums above. One

easily veri�es that S1 . N3 min{N,B}−1/100
beause

S1 ≤
∑

|v|≥N min{N,B} 1
100

(
1 +

|v|
N

)−10

≤ N10
∑

|v|≥N min{N,B} 1
100

|v|−10

. N10
(
N min{N,B} 1

100

)−7
.

In order to treat S2, we observe that

Q(v) ≤ θmax|v|2 < θmaxN
2 min{N,B} 1

50 < θmaxN
2 min{N,B} 1

10 ,

and thus, (
1 +

|Q(p)−Q(p+ v)|
N2

)−1

≤ N2

2|p ·Θv| −Q(v)
≤ N2

|p ·Θv| .

We may bound S2 by

N20
∑

|v|<N min{N,B}1/100
|p·Θv|≥θmaxN2 min{N,B}1/10

|p ·Θv|−10 ≤ min{N,B}−1
∑

|v|<N min{N,B}1/100
1

. N3 min{N,B}− 1
100 .

Finally, it remains to bound S3. For that purpose, we set pp := p
|p| . Sine |p| ≥ BN , it su�es

to prove that

∣∣{v ∈ Z
3 : |v| < N min{N,B} 1

100 , |pp ·Θv| < θmaxN min{N,B}− 9
10
}∣∣ . N3min{N,B}− 1

100 .

This point-set is overed by a retangle in R
3
with two sides of length N min{N,B} 1

100
and

one side of length .Θ N min{N,B}− 9
10
. Therefore, the point-set is bounded by

(N min{N,B} 1
100 )2N min{N,B}− 9

10 . N3 min{N,B}− 1
100 ,

whih proves (3.99).

Interation of two pro�les orresponding to two orthogonal frames

In the proof of Lemma 3.31, we also rely on the following result, whih shows that two pro�les

orresponding to two orthogonal frames do interat very little with eah other.

Lemma 3.33. Assume that Oα = (Nα
k , t

α
k , x

α
k )k ∈ FE, α = 1, 2, are two orthogonal frames,

I ⊆ (−1
2 ,

1
2) is a �xed open interval with 0 ∈ I, and T1, T2, R ∈ [1,∞) are �xed numbers

satisfying R ≥ T1 + T2. For α = 1, 2 and k large enough let

S
α
k :=

{
(t, x) ∈ I × T

3 : |t− tαk | < Tα(N
α
k )

−2, |x− xαk | ≤ R(Nα
k )

−1
}
.

Assume that (ω1
k, ω

2
k, fk, gk, hk)k is a sequene of quintuples of funtions in X1

r (I) with the

properties that ω1
k, ω

2
k ∈ C1(I, C4(T3)) and

|∂νxωαk |+ (Nα
k )

−2
1Sα

k
|∂t∂νxωαk | ≤ R(Nα

k )
1
2
+|ν|

1Sα
k
, |ν| ≤ 4, α = 1, 2,

‖fk‖X1
r (I)

≤ 1, ‖gk‖X1
r (I)

≤ 1, ‖hk‖X1
r (I)

≤ 1
(3.100)

for any k su�iently large. Then,

lim
k→+∞

sup
t0∈I

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
= 0.
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Proof. We �x some small 0 < ε < 1. If

N1
k

N2
k

+
N2
k

N1
k

≤ 4ε−2

for any k su�iently large, then the orthogonality of the frames implies S
1
k∩S2

k = ∅ provided k
is large enough. Indeed, sine O1

and O2
are orthogonal, we know that either (N1

k )
2|t1k−t2k| →

+∞ or N1
k |x1k − x2k| → +∞. Suppose that (N1

k )
2|t1k − t2k| → +∞. Then, we may onlude for

t ∈ S
1
k ∩S

2
k that

|t1k − t2k| ≤ |t− t1k|+ |t− t2k| ≤ T1(N
1
k )

−2 + T2(N
2
k )

−2.

This implies

(N1
k )

2|t1k − t2k| ≤ T1 + T2

(N1
k

N2
k

)2
<∞,

whih ontradits our assumption. The same argument leads to a ontradition if instead

N1
k |x1k − x2k| → +∞. From (3.100), we see that for k su�iently large,

ω1
kω

2
kfkgkhk ≡ 0.

By symmetry, it su�es to onsider the ase

N1
k

N2
k

> 2ε−2
(3.101)

for any su�iently large k. We de�ne ω̃2
k(t) := ω2

k(t)1(t1k−T1(N1
k )

−2,t1k+T1(N
1
k )

−2)(t), and we note

that ω1
kω

2
k = ω1

kω̃
2
k. Furthermore, we laim that for k su�iently large

‖ω̃2
k‖X1

r (I)
.R 1, ‖ω̃2

k‖Z(I) .R ε
1
50 , and ‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
.R ε. (3.102)

The �rst bound may be omputed using the estimate (3.6): If we de�ne

S
α
k,t := {x ∈ T

3 : (t, x) ∈ S
α
k}, t ∈ I,

then we dedue from (3.6) and (3.100) that

‖ω̃2
k‖X1

r (I)
. ‖ω̃2

k(0)‖H1(S2
k,0)

+

(∑

N≥1

‖PN (i∂t +∆θ)ω̃
2
k‖2L1

t (I,H
1(T3))

)1
2

.R 1 + (N2
k )

−2 sup
t∈I

(
‖∂tω̃2

k(t)‖H1(Sα
k,t)

+ ‖∆θω̃
2
k(t)‖H1(Sα

k,t)

)

.R 1.

The same argument ombined with the Bernstein inequality,

‖P>ε−1N2
k
f‖2Hs(T3) =

∑

N≥1

N2s‖PNP>ε−1N2
k
f‖L2 . ε2(N2

k )
−2
∑

N≥1

N2(s+1)‖PNP>ε−1N2
k
f‖L2

. ε2(N2
k )

−2‖P>ε−1N2
k
f‖2Hs+1(T3)

(3.103)

for f ∈ Hs+1(T3), yields the third inequality of (3.102). To gain the smallness of ω̃2
k in the

Z(I)-norm, we �rst observe from

‖ω̃2
k‖Z(I) . ‖P≤ε−1N2

k
ω̃2
k‖Z(I) + ‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
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that we only have to onsider P≤ε−1N2
k
ω̃2
k. Let (p, q) ∈ P. Applying Bernstein's inequality

with respet to x yields

∑

N≤2ε−1N2
k

N ( 2
p
+ 3

q
− 1

2
)p‖PN ω̃2

k‖pLp(I,Lq(T3))
.R (N1

k )
−2 sup

t∈I

∑

N≤2ε−1N2
k

N (1+ 2
p
)p‖PN ω̃2

k(t)‖pL2(T3)
.

Estimating N (1+ 2
p
)p ≤ (2ε−1N2

k )
2Np

and using ℓ2 ⊂ ℓp, we may bound

∑

N≤2ε−1N2
k

N
( 2
p
+ 3

q
− 1

2
)p‖PN ω̃2

k‖pLp(I,Lq(T3))
.R

(N2
k

N1
k

)2
ε−2 sup

t∈I
‖ω̃2

k(t)‖pH1(Sα
k,t)

.R ε
2.

This immediately implies

‖ω̃2
k‖Z(I) .R ε

1
50 .

We also deompose ω1
k in low-frequeny and high-frequeny terms and get for su�iently large

k:
ω1
k = P≤εN1

k
ω1
k + P>εN1

k
ω1
k,

‖ω1
k‖X1

r (I)
.R and ‖P≤εN1

k
ω1
k‖X1

r (I)
.R ε.

(3.104)

The �rst bound follows as above, and the seond estimate follows from

‖P≤εN1
k
f‖H1(T3) . εN1

k‖P≤εN1
k
f‖L2(T3), f ∈ H1(T3).

Indeed, for su�iently large k (depending on ε),

‖P≤εN1
k
ω1
k(0)‖H1(T3) . εN1

k‖P≤εN1
k
ω1
k(0)‖L2(S1

k,0)
.R ε.

The two remaining terms, ‖∂tP≤εN1
k
ω1
k(0)‖H1(S1

k,0)
and ‖∆θP≤εN1

k
ω1
k(0)‖H1(S1

k,0)
, an be esti-

mated along the same lines.

Now, an appliation of the triangle inequality yields

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
.
∥∥It0

(
(P≤εN1

k
ω1
k)ω̃

2
kfkgkhk

)∥∥
X1

r (I)

+
∥∥It0

(
(P>εN1

k
ω1
k)(P>ε−1N2

k
ω̃2
k)fkgkhk

)∥∥
X1

r (I)

+
∥∥It0

(
(P>εN1

k
ω1
k)(P≤ε−1N2

k
ω̃2
k)fkgkhk

)∥∥
X1

r (I)

=: I1 + I2 + I3

for every t0 ∈ I. Applying Lemma 3.11, (3.102), and (3.104), we may bound the �rst term

for k su�iently large as follows

I1 . ‖P≤εN1
k
ω1
k‖X1

r (I)
‖ω̃2

k‖X1
r (I)

‖fk‖X1
r (I)

‖gk‖X1
r (I)

‖hk‖X1
r (I)

.R ε.

I2 an be bounded similarly for large k:

I2 . ‖ω1
k‖X1

r (I)
‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
‖fk‖X1

r (I)
‖gk‖X1

r (I)
‖hk‖X1

r (I)
.R ε.

To estimate I3, we have to use the more preise estimate (3.12) instead of Lemma 3.11.

From the relation of N1
k and N2

k (see (3.101)), we get that εN1
k > 2ε−1N2

k . Thus, we have

P≤ε−1N2
k
= P≤εN1

k
P≤ε−1N2

k
. We deompose the produt as in (3.11), and remark that

∑

N2≥2

PN2(P≤ε−1N2
k
ω̃2
k)P<N2(P>εN1

k
ω1
k)P≤N2fkP≤N2gkP≤N2hk = 0.
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This expression orresponds to the �rst summand in the seond term of (3.11) if we identify

ũ1 = P>εN1
k
ω1
k, ũ2 = P≤ε−1N2

k
ω̃2
k, ũ3 = fk, ũ4 = gk, and ũ5 = hk. We onlude from (3.12)

that the fator P≤ε−1N2
k
ω̃2
k an be estimated in Z ′(I). Hene, I3 .R ε

1
100

. All in all, we proved

that

sup
t0∈I

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
.R ε

1
100

for all ε > 0 and k large enough, whih implies the desired result.

Conlusion

We �nally turn to the proof of Lemma 3.31.

Proof of Lemma 3.31. In this proof, we use the suessive deomposition of a nonlinear pro�le

Uγk several times.

Claim. For all θ > 0 there is some T 0
θ,γ = T (ψγ , θ) su�iently large suh that for every

Tθ,γ ≥ T 0
θ,γ there is Rθ,γ su�iently large suh that for any k large enough (depending on

Rθ,γ) we may deompose, up to a subsequene,

1Iθ,γU
γ
k = ωθ,γ,−∞

k + ωθ,γk + ωθ,γ,+∞
k + ρθ,γk + ρθ,γ,−∞

k + ρθ,γ,+∞
k , (3.105)

where Iθ,γ = (−T−1
θ,γ , T

−1
θ,γ ) and every funtion is in X1

r (Iθ,γ). Furthermore, the following

estimates hold

‖ωθ,γ,±∞
k ‖Z′(Iθ,γ) + ‖ρθ,γk ‖X1

r (Iθ,γ)
+ ‖ρθ,γ,±∞

k ‖X1
r (Iθ,γ)

≤ θ,

‖ωθ,γ,±∞
k ‖X1

r (Iθ,γ)
+ ‖ωθ,γk ‖X1

r (Iθ,γ)
. 1,

|∂νxωθ,γk |+ (Nγ
k )

−2
1
S

θ,γ
k

|∂t∂νxωθ,γk | ≤ Rθ,γ(N
γ
k )

1
2
+|ν|

1
S

θ,γ
k
,

(3.106)

for |ν| ≤ 6 and

S
θ,γ
k :=

{
(t, x) ∈ Iθ,γ × T

3 : −Tθ,γ(Nγ
k )

−2 ≤ t− tγk < Tθ,γ(N
γ
k )

−2, |x− xγk| ≤ Rθ,γ(N
γ
k )

−1
}
.

Moreover, we have that

ωθ,γ,±∞
k (t) = 1{±(t−tγk)≥Tθ,γ (N

γ
k )

−2}∩Iθ,γ (t) · e
i(t−tγk )∆θπxγk

(TNγ
k
φθ,γ,±∞),

where φθ,γ,±∞ = P≤Rθ,γ
φθ,γ,±∞ ∈ S(R3) and

‖φθ,γ,±∞‖Ḣ1(R3) . 1, ‖φθ,γ,±∞‖L2(R3) . Rθ,γ . (3.107)

Here, ωθ,γk desribes the solution in the Eulidean window, whih, by Proposition 3.23, an

be expressed in terms of a solution to the nonlinear Shrödinger equation on R
3
. The terms

ωθ,γ,±∞
k haraterize the behavior of the solution beyond the Eulidean window, whih an be

written in terms of the sattering data of a solution to the nonlinear Shrödinger equation on

R
3
as proved in Proposition 3.23. Terms that have small X1

r -norm are olleted in the error

terms ρθ,γk and ρθ,γ,±∞
k .

Now, we turn to the proof of the laim. Proposition 3.23 (ii) states that for all θ > 0 there

is a T 0
θ,γ = T (ψγ , θ) su�iently large suh that for every Tθ,γ ≥ T 0

θ,γ there is Rθ,γ su�iently
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large suh that for any k large enough (depending on Rθ,γ) we may deompose, after passing

to a subsequene,

Uγk (t)− ωθ,γk (t) = ρθ,γk (t), t ∈ Jθ,γk := {t ∈ Iθ,γ : −Tθ,γ(Nγ
k )

−2 ≤ t− tγk < Tθ,γ(N
γ
k )

−2}

where ωθ,γk , ρθ,γk ∈ C(Jθ,γk ,H1(T3)) ∩X1
r (J

θ,γ
k ) and on the remaining time interval

Uγk (t)− ωθ,γ,±∞
k (t) = ρθ,γ,±∞

k (t), t ∈ Jθ,γ,±∞
k := {t ∈ Iθ,γ \ Jθ,γk : ±t > 0}

where ωθ,γ,±∞
k , ρθ,γ,±∞

k ∈ C(Jθ,γ,±∞
k ,H1(T3)) ∩ X1

r (J
θ,γ,±∞
k ). Moreover, Proposition 3.23

implies ‖ρθ,γk ‖
X1

r (J
θ,γ
k )

≤ θ and ‖ρθ,γ,±∞
k ‖

X1
r (J

θ,γ,±∞
k )

≤ θ. In the deomposition above, ωθ,γk
plays the role of ũk in (3.49), and from (3.51), we have

ωθ,γ,±∞
k (t) = πxγk

ei(t−t
γ
k)∆θ(TNγ

k
φθ,γ,±∞), t ∈ Jθ,γ,±∞

k .

From the uniform bound on Uγk in X1
r (−1

2 ,
1
2), see (3.93), we dedue

‖ωθ,γ,±∞
k ‖

X1
r (J

θ,γ,±∞
k )

+ ‖ωθ,γk ‖
X1

r (J
θ,γ
k )

. 1

uniformly in γ and k.

The last bound in (3.106) is immediate from (3.50) and the su�ient smoothness (even in

time) of ωθ,γk is implied by Proposition 3.23 (ii) if s ≥ 1 is hosen large enough.

We show that it su�es to assume φθ,γ,±∞ ∈ S(R3). Indeed, for any given ε > 0 we may

hoose φ̃θ,γ,±∞ ∈ S(R3) suh that ‖φθ,γ,±∞ − φ̃θ,γ,±∞‖Ḣ1(R3) ≤ ε. De�ne

ω̃θ,γ,±∞
k (t) := πxγk

ei(t−t
γ
k )∆θ(TNγ

k
φ̃θ,γ,±∞), t ∈ Jθ,γ,±∞

k ,

then we ompute

‖ωθ,γ,±∞
k − ω̃θ,γ,±∞

k ‖
X1

r (J
θ,γ,±∞
k )

. ‖TNγ
k
φθ,γ,±∞ − TNγ

k
φ̃θ,γ,±∞‖H1(T3)

. ‖φθ,γ,±∞ − φ̃θ,γ,±∞‖Ḣ1(R3) . ε.

Hene, by putting ωθ,γ,±∞
k − ω̃θ,γ,±∞

k in the error term ρθ,γ,±∞
k , we see that we may assume

φθ,γ,±∞ ∈ S(R3).

Using Corollary 3.17, we obtain the uniform bound on φθ,γ,±∞
in Ḣ1(R3) for su�iently large

k:
‖φθ,γ,±∞‖Ḣ1(R3) . ‖TNγ

k
φθ,γ,±∞‖H1(T3) . ‖ωθ,γ,±∞

k ‖
X1

r (J
θ,γ,±∞
k )

. 1.

The smallness of the Z ′
-norm follows from ‖ωθ,γ,±∞

k ‖
Z(Jθ,γ,±∞

k )
. θ2, whih is a diret on-

sequene of the extintion lemma, f. Lemma 3.21 (i), after possibly inreasing T 0
θ,γ . For

possibly larger Rθ,γ , we have

‖πxγke
i(t−tγk)∆θ (TNγ

k
P>Rθ,γ

φθ,γ,±∞)‖
X1

r (J
θ,γ,±∞
k )

. ‖P>Rθ,γ
φθ,γ,±∞‖Ḣ1(R3) + ok(1) . θ

for su�iently large k. We add this to the error term ρθ,γ,±∞
k and assume φθ,γ,±∞ =

P≤Rθ,γ
φθ,γ,±∞

. As a onsequene, we an onlude the bound on the L2(R3)-norm from

Hölder's inequality now:

‖P≤Rθ,γ
φθ,γ,±∞‖L2(R3) . Rθ,γ‖FR3(φθ,γ,±∞)‖L6(R3) . Rθ,γ‖φθ,γ,±∞‖Ḣ1(R3) . Rθ,γ.
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We extend ωθ,γk , ωθ,γ,±∞
k , ρθ,γk , and ρθ,γ,±∞

k (without hanging the notation) similarly as It0
in De�nition 3.6 (i) to funtions de�ned on Iθ,γ . Note that the extensions are in X

1
r (Iθ,γ) and

the X1
r (Iθ,γ)-norm equals the X1

r -norm on the respetive support of those funtions. This

�nishes the proof of the laim.

Furthermore, we remark that, sine ‖W‖X1
r (− 1

2
, 1
2
) . 1 (see (3.93)), we may hoose for any

θ > 0 some Tθ,g > 0 suh that

‖W‖Z′(−T−1
θ,g ,T

−1
θ,g )

≤ θ and ‖W‖X1
r (−T−1

θ,g ,T
−1
θ,g )

. 1.

Proof of (3.95). Sine F (z) = z|z|4 = z3z2, for a �xed J ≥ 1,

F (UJprof ,k)− F (W )−
J∑

α=1

F (Uαk )

may be written as a �nite linear ombination of produts of the form

V 1
k V

2
k V

3
k V

4
k V

5
k , (3.108)

where V j
k ∈ {W,W,Uαk , U

α
k , 1 ≤ α ≤ J}, j = 1, . . . , 5, and at least two terms di�er by more

than just omplex onjugation.

We now assume θ > 0 to be �xed, and we deompose every pro�le Uαk , 1 ≤ α ≤ J , as in
(3.105). We may assume that Tθ,α = Tθ,β = Tθ,g for 1 ≤ α, β ≤ J . Set Tθ := Tθ,1, and note

that Ik ⊂ (−T−1
θ , T−1

θ ) for large k. Whenever a produt as in (3.108) ontains an error term

ρθ,γk or ρθ,γ,±∞
k , then we have

sup
t0∈Ik

‖It0(V 1
k V

2
k V

3
k V

4
k V

5
k )‖X1

r (Ik)
. θ,

whih follows from Lemma 3.11 and (3.106). Analogously, we obtain the same bound if the

expression ontains at least one of the following:

•
two sattering terms ωθ,α,±∞

k ,

• W and one sattering term ωθ,α,±∞
k , or

•
two terms W .

Lemma 3.33 shows that the X1
r (Ik)-norm of It0(V 1

k V
2
k V

3
k V

4
k V

5
k ) onverges to zero for any

t0 ∈ Ik, whenever the produt ontains two di�erent ωθ,αk and ωθ,βk , α 6= β. Hene, in order to

�nish the proof, it su�es to show

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,β
k , ωθ,α,±∞

k )
)∥∥
X1

r (Ik)
. θ, (3.109)

for any α = 0, 1, . . . , J , β = 1, 2, . . . , J , with α 6= β and ωθ,0,±∞
k (t) :=W (t).

We set N0
k := 1. Assuming that

lim
k→+∞

Nα
k

Nβ
k

= ∞,

we may dedue (3.109) essentially from Lemma 3.32. The lemma ensures the existene of

B > 0 suh that if we deompose

ωθ,α,±∞
k = P≤BNβ

k
ωθ,α,±∞
k + P

>BNβ
k
ωθ,α,±∞
k ,
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then

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,β
k , P

>BNβ
k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
. θ.

Sine

‖P≤BNβ
k
ωθ,α,±∞
k ‖X1

r (Ik)
. ‖P≤BNβ

k
(TNα

k
φθ,α,±∞)‖H1(T3) . (1 +BNβ

k )‖TNα
k
φθ,α,±∞‖L2(T3)

. (1 +BNβ
k )(N

α
k )

−1‖φθ,α,±∞‖L2(R3) . ok(1),

we may onlude (3.109) from Lemma 3.11.

If in ontrast

1

lim
k→+∞

Nβ
k

Nα
k

= ∞,

then we proeed as follows: First, we derive for any α ∈ {1, . . . , J} and any B ≥ 1 that

‖P>BNα
k
ωθ,α,±∞
k ‖X1

r (Ik)
. ‖P>BNα

k
(TNα

k
φθ,α,±∞)‖H1(T3) .θ,α B

−1 + ok(1). (3.110)

A simple argument as in (3.103) allows to ompute

‖P>BNα
k
(TNα

k
φθ,α,±∞)‖H1(T3) . (BNα

k )
−1‖P>BNα

k
(TNα

k
φθ,α,±∞)‖H2(T3).

We only onsider the highest order term that is if both derivatives fall on φθ,α,±∞
. This term

may be estimated by

(BNα
k )

−1(Nα
k )

1
2‖φθ,α,±∞(Nα

k · )‖Ḣ2(R3) . B−1‖φθ,α,±∞‖Ḣ2(R3) .θ,α B
−1,

where we used φθ,α,±∞ = P≤Rθ,α
(φθ,α,±∞), Bernstein's inequalities and (3.107).

If α = 0, i.e. ωθ,α,±∞
k (t) = W (t), then we note from the de�nition of the X1

r -norm that there

is B0(θ) > 0 suh that for any B ≥ B0,

‖P>BW‖X1
r (Ik)

≤ ‖P>BW‖X1
r (−T−1

θ ,T−1
θ ) < θ.

Hene, we dedue (3.110) in this ase, too.

From (3.110), we may dedue for any α ∈ {0, . . . , J} and any t0 ∈ Ik,

∥∥It0
(
D4,1(ω

θ,β
k , ωθ,α,±∞

k )
)∥∥
X1

r (Ik)
≤
∥∥It0

(
D4,1(ω

θ,β
k , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
+ θ + ok(1)

provided B = B(θ, α) is su�iently large. We deal with the �rst term as in the end of the

proof of Lemma 3.33: Given δ > 0, we deompose one fator of ωθ,βk similarly as in (3.104),

ωθ,βk = P≤δNβ
k
ωθ,βk + P

>δNβ
k
ωθ,βk ,

and again, we get the bound

‖P≤δNβ
k
ωθ,βk ‖X1

r (Ik)
.θ,β δ

for k su�iently large. Hene, ‖It0(D4,1(ω
θ,β
k , P≤BNα

k
ωθ,α,±∞
k ))‖X1

r (Ik)
is less or equal to

∥∥It0
(
D1,3,1(P≤δNβ

k
ωθ,βk , ωθ,βk , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)

+
∥∥It0

(
D1,3,1(P>δNβ

k
ωθ,βk , ωθ,βk , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
.

1

Note that the ase α = 0 is inluded here.
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The smallness of the �rst term follows immediately from Lemma 3.11. The seond term an

be treated as in the term I3 in the end of the proof of Lemma 3.33.

If

Nα
k = Nβ

k and tαk = tβk for any k

(see the redution at the beginning of the proof of Proposition 3.30), then ωθ,βk ωθ,α,±∞
k = 0

sine the supports in time of those funtions beome disjoint for large enough k.

The remaining ase is

Nα
k = Nβ

k and lim
k→+∞

(Nα
k )

2|tαk − tβk | = ∞.

For any ε > 0 we may hoose φ̃θ,α,±∞ ∈ C∞
0 (R3) suh that ‖φθ,α,±∞ − φ̃θ,α,±∞‖Ḣ1(R3) ≤ ε.

De�ne

ω̃θ,α,±∞
k (t) := πxαk e

i(t−tαk )∆θ(TNα
k
φ̃θ,α,±∞), t ∈ Jθ,α,±∞

k ,

then we have

‖ωθ,α,±∞
k − ω̃θ,α,±∞

k ‖
X1

r (J
θ,α,±∞
k )

. ‖TNα
k
φθ,α,±∞ − TNα

k
φ̃θ,α,±∞‖H1(T3)

. ‖φθ,α,±∞ − φ̃θ,α,±∞‖Ḣ1(R3) . ε.

Beause of Lemma 3.11 and (3.5), it su�es to prove

lim sup
k→+∞

‖D4,1(ω
θ,β
k , ω̃θ,α,±∞

k )‖L1(Ik,H1(T3)) = 0.

By Hölder's inequality, the L1(Ik,H
1(T3))-norm is bounded by

‖∇ωθ,βk ‖L4
tL

8
x
‖ωθ,βk ‖3L4

tL
8
x
‖ω̃θ,α,±∞

k ‖L∞
t,x

+ ‖ωθ,βk ‖4L4
tL

∞
x

(
‖∇ω̃θ,α,±∞

k ‖L∞
t L2

x
+ ‖ω̃θ,α,±∞

k ‖L∞
t L2

x

)
.

(3.111)

We apply Lemma 3.21 (ii) with T = Nα
k |tαk − tβk |

1
2
, and we use the third inequality of (3.106),

then

(3.111) .θ,β (Nβ
k )

− 1
2 (Nα

k )
1
2
(
Nα
k |tαk − tβk |

1
2
)− 1

10 + ok(1) .θ,β

(
Nα
k |tαk − tβk |

1
2
)− 1

10 + ok(1).

This �nishes the proof of (3.95).

Proof of (3.96). It is easy to see that for �xed J ≥ 1 and t0 ∈ Ik,
∥∥∥It0

(
F
(
UJprof,k(t) + eit∆θRJk

)
− F

(
UJprof,k(t)

))∥∥∥
X1

r (Ik)

.

4∑

p=0

∥∥It0
(
Dp,5−p

(
UJprof,k(t), e

it∆θRJk
))∥∥

X1
r (Ik)

holds true. If p ≤ 3, then we an ontrol the terms easily: Indeed, from Lemma 3.11 and

(3.94), we see

sup
t0∈Ik

∥∥It0
(
Dp,5−p(U

J
prof ,k(t), e

it∆θRJk )
)∥∥
X1

r (Ik)
. ‖RJk‖4−pH1(T3)

‖eit∆θRJk‖Z′(Ik)‖UJprof,k‖
p
X1

r (Ik)

. ‖eit∆θRJk‖Z′(Ik).

Now, (3.90) implies that

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

3∑

p=0

∥∥It0
(
Dp,5−p(U

J
prof ,k(t), e

it∆θRJk )
)∥∥

X1
r (Ik)

= 0.
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Hene, we are left to prove

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(U

J
prof ,k(t), e

it∆θRJk )
)∥∥

X1
r (Ik)

= 0.

Let ε > 0 be �xed and A′ ≤ J . We de�ne UA
′

prof,k via UJprof,k − UA
′

prof,k =
∑J

α=A′+1 U
α
k and

hene,

‖UJprof,k − UA
′

prof,k‖X1
r (− 1

2
, 1
2
) ≤

J∑

α=A′+1

‖Uαk (t)− eit∆θUαk (0)‖X1
r (− 1

2
, 1
2
)

+

∥∥∥∥e
it∆θ

J∑

α=A′+1

Uαk (0)

∥∥∥∥
X1

r (− 1
2
, 1
2
)

.

As seen in the proof of (3.94), this an be further estimated by

J∑

α=A′+1

E(α) +

∥∥∥∥
J∑

α=A′+1

Uαk (0)

∥∥∥∥
H1(T3)

,

whih is bounded uniformly in J . From the uniform bound of this expression, we see that

there exists A′ = A′(ε) suh that for any J ≥ A′
and all k ≥ k0(J),

‖UJprof ,k − UA
′

prof,k‖X1
r (− 1

2
, 1
2
) ≤ ε

Thus, by Lemma 3.11, it remains to show

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(U

A′

prof,k(t), e
it∆θRJk )

)∥∥
X1

r (Ik)
. ε.

By the de�nition of UA
′

prof,k, it su�es to prove that for any α1, α2, α3, α4 ∈ {0, 1, . . . , A′},

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D1,1,1,1,1(U

α1
k (t), Uα2

k (t), Uα3
k (t), Uα4

k (t), eit∆θRJk )
)∥∥
X1

r (Ik)
. ε′

(3.112)

holds true, where we set U0
k :=W and ε′ := εA′−4

.

Deompose all nonlinear pro�les Uαk , α = 1, . . . , A′
, as in (3.105). As done before, we may

assume

Tθ,α = Tθ,g =: Tθ and Rθ,α =: Rθ for all α = 1, . . . , A′,

and that the bounds (3.106) and (3.107) hold. We apply Lemma 3.11 to the left-hand side

of (3.112) and from (3.90), we see that whenever there is an error term ρθ,αk or ρθ,α,±∞
k , a

sattering term ωθ,α,±∞
, or W , then (3.112) holds true. Hene, it su�es to prove

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D1,1,1,1,1(ω

θ,α1

k (t), ωθ,α2

k (t), ωθ,α3

k (t), ωθ,α4

k (t), eit∆θRJk )
)∥∥
X1

r (Ik)
. ε′

for any α1, α2, α3, α4 ∈ {1, . . . , A′}. Thanks to Lemma 3.33, we may assume α1 = α2 = α3 =
α4, whih means that (3.112) redues to

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,α
k (t), eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′ (3.113)

for any α ∈ {1, . . . , A′}. Let B > 0 be �xed, we deompose

eit∆θRJk = P>BNα
k
eit∆θRJk + P≤BNα

k
eit∆θRJk .
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With B su�iently large (depending on Rθ), we apply Lemma 3.32 and get

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,α
k (t), P>BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′

for every J ≥ A′
. By possibly inreasing B further, we may assume

‖P≤B−1Nα
k
ωθ,αk ‖X1

r (− 1
2
, 1
2
) ≤ ε′

as shown in (3.104). Hene, Lemma 3.11 yields

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(P≤B−1Nα

k
ωθ,αk (t), P≤BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′.

Thus, (3.113) is proved, provided we show

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(P>B−1Nα

k
ωθ,αk (t), P≤BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
= 0,

whih follows from (3.12) and (3.90) in the well-known fashion.

3.7 Further remarks

Sine one has a rather good knowledge of the loal and small data global well-posedness theory

on S × S
2
ρ and on Zoll manifolds, it is natural to ask for the global theory for large data in

these ases.

On S×S
2
ρ, the main obstrution to study global well-posedness is the lak of linear Strihartz

estimates for a wide range of Lp-spaes. Proposition 2.24 only implies the L6
-estimate

‖PNeit∆gφ‖L6(I×S×S2ρ)
. N

2
3‖PNφ‖L2(S×S2ρ)

.

However, taking a loser look at the impliit linear version of Lemma 2.19 and at the proof

of Proposition 2.24, one may show for p > 16
3 ,

‖PNeit∆gφ‖L6(S2ρ,L
p(I,L4(S))) . N

7
12

− 2
p ‖PNφ‖L2(S×S2ρ)

. (3.114)

Using our approah to treat the S and S
2
omponent separately, as it was done in the proof

of Proposition 2.24, it seems unlikely that one an get anything better than L6
in the S

2

omponent. The reason is that for f ∈ L2(S2) the saling invariant estimate

‖Πnf‖Lp(S2) . 〈n〉
1
2
− 2

p ‖f‖L2(S2)

is known to fail for p < 6, f. [Sog86, page 55℄.

The linear Strihartz estimate (3.114), however, seems to be insu�ient for estimating the

ontribution Σ2 in the proof of Lemma 3.11.

Moreover, the extintion lemma, more preisely Lemma 3.21 (i), has to be adapted. In the

given proof, the extintion argument essentially relies on a deay in time introdued by a

one-dimensional torus omponent, whih is also present in S × S
2
ρ. As a onsequene, the

proof an be modi�ed to over S× S
2
ρ.

The last thing one has to take are of is Lemma 3.32. A ombination of the arguments given

in the proofs of Lemma 3.32 and [PTW14, Lemma 5.3℄ might allow to get the desired result.
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Even though the small data global well-posedness theory has been developed on Zoll manifolds,

large data global well-posedness was only obtained in the speial ase S
3
[PTW14℄. The linear

Strihartz estimates obtained in [Her13, Lemma 3.5℄ allow to gain the neessary loal well-

posedness and stability results in Setion 3.3. The di�ulties again arise in proving the

extintion lemma and an analogue of Lemma 3.32. In [PTW14℄, the proofs rely on expliit

formulas of the eigenprojetors and the partiular loalization of the spetrum.





Summary

Large parts of the introdutory Chapter 1 are a review of well-known material. Though, there

have been some new aspets. Aside from short introdutions to funtion spaes, the Fourier

transform, Riemannian manifolds, and dispersive partial di�erential equations, we have given a

new detailed proof of a variant of the Hausdor��Young inequality for non-periodi exponential

sums and have related it to a lattie point ounting problem. In addition, we have applied

a Weyl type inequality due to Bourgain [Bou93a℄, to give a proof of the exponential sum

estimate in Corollary 1.39, whih we have heavily relied on. Although the statement is not

new, as it may be seen as a speial ase of the stronger exponential sum estimate in [Her13,

Lemma 3.1℄, we show that the proof of this partiular estimate does not require sophistiated

arguments. We want to emphasize that this exponential sum estimate have been used in all

our subsequent results.

In Chapter 2, loal and small data global well-posedness of nonlinear Shrödinger equations

posed on ompat, smooth Riemannian manifolds (M,g) without boundary have been dis-

ussed. We have started this hapter with the onditional energy-ritial well-posedness result

in Theorem 2.3. It states that given the trilinear Strihartz estimate in Assumption 2.1 for

any given 3-manifold (M,g), we have that the quinti nonlinear Shrödinger equation is lo-

ally well-posedness in H1
and even globally well-posedness provided the initial data are small

in H1
. The proof of this result, that is essentially due to Herr [HS15℄, has been reviewed.

This is valuable sine the proof given in [HS15℄ is strongly tied to earlier works. Further-

more, we have veri�ed Assumption 2.1 for retangular tori, whih extends previous results in

[HTT11, GOW14℄. The present author published this result in [Str14℄. Also, the �rst proof

of Assumption 2.1 on produts of spheres has been provided, whih expands the result given

in [HS15℄ to a general radius. Moreover, we have shown a multilinear Strihartz estimate

for free solutions on two-dimensional retangular tori that implies�by standard arguments�

loal well-posedness of some saling-ritial nonlinear Shrödinger equations with power type

nonlinearities.

Chapter 3 has been devoted to prove large data global well-posedness of the energy-ritial

nonlinear Shrödinger equation on retangular 3-tori. This extends the earlier result in [IP12b℄
for the standard torus. The author of the present thesis published this result in [Str15℄, we

relied on the L4
-Strihartz estimate given in [KV14℄. However, we have presented a modi�ed

proof here, whih shows that Strihartz estimates for a smaller range of Lp-norms, whih an

be obtained essentially using the exponential sum estimates in Chapter 1, su�e to onlude

global well-posedness in H1
of the quinti nonlinear Shrödinger equation on retangular

3-tori.
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