CRITICAL WELL-POSEDNESS RESULTS FOR
NONLINEAR SCHRODINGER EQUATIONS ON
COMPACT MANIFOLDS

Von der Fakultét fiir Mathematik der Universitit Bielefeld angenommene
Dissertation

zur Erlangung des akademischen Grades
Doktor der Mathematik (Dr. math.)

eingereicht von

Dipl.-Math. Nils Christoph Strunk

am 13. Juli 2015



Die Annahme der Dissertation wurde empfohlen von:

Prof. Dr. Nicolas Burq Université Paris-Sud
Prof. Dr. Alexander Grigor’yan Universitit Bielefeld
Prof. Dr. Sebastian Herr Universitéit Bielefeld

Datum der miindlichen Priifung: 23. Oktober 2015



Danksagung

Mein grofter Dank richtet sich an Prof. Dr. Sebastian Herr. Seine geduldige, vertrauensvolle
und intensive Betreuung half mir bei der Erstellung dieser Arbeit ungemein. Dariiber hinaus
schitze ich seinen freundlichen und verstdndnisvollen Umgang sehr.

Ebenso richtet sich mein Dank an meinen Biirokollegen Dr. Achenef Tesfahun Temesgen. Die
gerne gefiihrten wissenschaftlichen Diskussionen fiihrten zu eigenen neuen Erkenntnissen.

Aufserdem danke ich Prof. Dr. Benoit Pausader und Prof. Dr. Alexandru Ionescu fiir die
Einladung zu einem dreiw6chigen Forschungsaufenthalt an die Princeton University und fiir
die iiberaus freundliche Betreuung wihrend dieser Zeit. Die gefiihrten Gespriche iiber die
globale Wohlgestelltheit der energiekritischen nichtlinearen Schrédingergleichung fiir grofse
Daten waren fiir mich sehr aufschlussreich.

Ferner bedanke ich mich bei meinen Kollegen Dr. Matthieu Felsinger, Dr. Marcus Rang,
Tristan Storch und Paul Voigt, die in Diskussionen iiber allgemeine mathematische Fragestel-
lungen immer hilfsbereit waren.

Nicht zuletzt gilt mein besonderer Dank meinen Eltern, Hans-Martin und Ute Strunk, die
es mir ermdglicht haben, meine volle Aufmerksamkeit auf das Studium zu richten. Einen
liebevollen Dank mdochte ich meiner Lebensgefihrtin Simone Pulvermacher fiir ihr Verstédndnis
und ihre bedingungslose Unterstiitzung in den letzten Jahren aussprechen.






Contents

Introduction

1 Basics
1.1 Notation . . . . . . . . . .
1.2 Function spaces and the Fourier transform . . . . . . ... ... ... .. ...
1.2.1 LP-spaces and Sobolev spaces . . . . . . . . .. ... ... L.
1.2.2  The Schwartz class and the Fourier transform . . . . . .. . ... ...
1.2.3 Thespaces UPand VP . . . . . . .. . .. ...
1.3 Fourier series and exponential sums . . . . . .. ..o L0000
1.3.1 Fourier series . . . . . . . . . . .
1.3.2 Hausdorff-Young inequalities . . . . . . . . .. ... ... ... ...
1.3.3 LP-estimates of exponential sums . . . . . .. ... ... ... .. ...
1.4 Riemannian manifolds . . . . . . . . .. oo
1.5 Dispersion . . . . . . ..o e e e
1.5.1 Dispersive equations . . . . . . ... oL
1.5.2  The Schrodinger equation . . . . . . . .. ... L.

2 Local and small data global well-posedness
2.1 Preliminary remarks . . . . . . . . .o
2.1.1  Relevant results on the Euclidean space . . . .. ... ... ... ...
2.1.2  Selected results on compact manifolds . . . . . ... ... ... ..
2.2 A conditional local and small data global well-posedness result . . . . . . ..
2.2.1 Sufficiency of the condition . . . . ... ... ... ... ... ...
2.2.2  On the necessity of the condition . . . . . .. .. .. ... ... ....
2.3 Rectangular tori in three dimensions . . . . . . . .. . ... ... ... ...
2.3.1 Selected results . . . . . ...
2.3.2  Set-up . . ...
2.3.3 Linear Strichartz estimates . . . . . ... .. ... ... L.
2.3.4  Almost orthogonality . . . . . ... ... ... ... ... ...
2.3.5  The trilinear Strichartz estimate . . . . . . . ... ... ... .....
2.4 Rectangular tori in two dimensions . . . . . . .. ..o 0oL
2.5 Product of spheres . . . . . ...
2.5.1 Selected results . . . . ..o
2.5.2  Set-up . . ..o
2.5.3 A trilinear estimate for spherical harmonics . . . . . . ... ... ...
2.5.4 Two exponential sum estimates . . . . . . . . .. ...
2.5.5 Almost orthogonality . . . . . .. ... ... .. ... . ...
2.5.6  The trilinear Strichartz estimate . . . . . . . ... ... .. ... ...
2.6 Further results on other manifolds and remarks . . . . . .. ... ... ....

3 Global well-posedness for large data
3.1 Setrupand mainresult . . . . ..o Lo
3.2 Basic definitions and statements . . . . . .. ... L0 L0 L

VII

N DN =

13
13
16
19
26
33
34
35

41
41
41
42
43
43
o8
99
99
61
63
64
66
67
70
70
70
71
72
74
81
84



VI CONTENTS
3.3 Local well-posedness and stability theory . . . . . . . ... ... ... ... 93
3.3.1 Estimates on the Duhamel term . . . . . . . . ... ... ... ... 94

3.3.2 Local well-posedness . . . . . . ... 97

3.3.3 Small data global well-posedness . . . . . . ... ... ... ...... 101

3.3.4  Stability . . ... 101

3.4 Euclidean profiles . . . . . . . ... 103
3.4.1 Global well-posedness on the Fuclidean space . . . . .. .. ... ... 104

3.4.2 Connection between solutions on tori and Euclidean solutions . . . . . 106

3.5 Profile decomposition . . . . . . ..o 115
3.5.1 Definition and properties . . . . . .. .. ..o 115

3.5.2 Extracting profiles from a sequence . . . . . ... ..o 0L 120

3.6 Proof of the main theorem . . . . . . . .. .. ... ... ... ... .. .... 127
3.6.1 The main argument . . . . . . .. .. ... 127

3.6.2 Proof of Lemma 3.31 . . . . . . ... 133

3.7 Further remarks . . . . . . . . . .o 144
Summary 147

Bibliography 149



Introduction

Physical relevance

Typically, the situation in physics is quite complex and one tries to approximate a physical
behavior by partial differential equations. For instance, certain phenomena in electromagnet-
ics, optics, mechanics, general relativity, and fluid mechanics can be approximately described
by nonlinear waves. There is a huge number of nonlinear wave equations. In this thesis, we
consider the nonlinear Schrodinger equation (NLS)

i0pu + Au = F(u).

The linear Schrodinger equation is one of the fundamental equations in quantum mechanics.
It provides a description of a particle in a non-relativistic setting. The nonlinear Schrédinger
equation is a prototypical dispersive nonlinear partial differential equation (see Section 1.5.1)
and has a much more complicated structure as well as many applications in physics. Some
relevant fields of application are nonlinear optics, propagation of the electric field in optical
fibers, self-focusing and collapse of Langmuir waves in plasma physics and the behavior of deep
water waves in the ocean. Moreover, various phenomena, arising in Heisenberg ferromagnets
and magnons, self-channeling of a high-power ultra-short laser in matter, condensed matter
theory, dissipative quantum mechanics, and electromagnetic fields may be described by the
NLS. [APT04, BOR15, SS99|

The nonlinear Schrédinger equation may also be derived from quantum dynamics of many-
body systems, see [ESY07]. The fundamental principle of quantum mechanics states that
a quantum system of N particles is described by a wave function of N variables satisfying
a Schrodinger equation. In realistic systems, N is so large that a direct solution of the
Schrodinger equation for interacting systems is clearly an impossible task. Thus, many-
body systems are usually approximated by simpler dynamics where only the time evolution
of a few cumulative degrees of freedom is monitored. In the simplest case only the one-
particle marginal densities are considered. This means that the many-body pair interaction is
replaced by an effective nonlinear mean-field potential and higher order quantum correlations
are neglected. The cubic nonlinear Schrodinger equation then appears in the context of Bose—
Einstein condensation with short range interactions in suitable scaling limits. The Bose-
Einstein condensation is a state of matter consisting of dilute bosonic particles which are
cooled to a temperature close to absolute zero. At this temperature, these particles tend to
occupy the lowest quantum state, which can be expressed mathematically as the ground state
of an energy functional related to the NLS. This phenomenon was proposed by Bose [Bos24]
and Einstein [Ein24, Ein25] in 1924-1925. Not so long ago, two groups, one led by Cornell-
Wiemann [AEM*95] and the other by Ketterle [DMA™95], were awarded the Physics Nobel
Prize in 2001 for (independently) verifying the Bose—Einstein condensation by experiments.
Recently, the nonlinear Schrédinger equation on the tori T2 and T3 have been derived from
many-body quantum systems as well. [ESY07, KSS11, Soh14|
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The nonlinear Schrodinger equation on the Euclidean space

The nonlinear Schrodinger equation has been studied intensively within the last decades. We
refer to [SS99, Caz03, Tao06, LP15| for some nice reviews. In this thesis, we mainly consider
the NLS with a quintic nonlinearity, that is

iOpu + Au = +|ul*u. (0.1)

The equation is called defocusing if the right-hand side has a plus and focusing if the right-
hand side has a minus. The quintic NLS posed on R? with initial data in H!(R3) is called
energy-critical since if u is a solution to (0.1), then the scaled solution (¢,x) — )\%u()\Qt, Az)
solves (0.1) and leaves the homogeneous Sobolev norm H'(R?) and the energy

E(u(t)) = %/R ]Vu(t,x)]dei%/RB u(t, 2)[5 da

invariant. For sub-quintic nonlinearities, the corresponding Cauchy problem on R? is called
sub-critical. Given a nonlinearity with super-quintic powers, the corresponding equation on
R3 is called super-critical. As explained in Section 1.5.2, studying the energy-critical equation
is more challenging than studying the sub-critical case and hence, of a particular interest.

We say that a Cauchy problem is locally well-posed in H?® if for any choice of initial data
¢ € H?, there exists a positive time 71" that may depend on the initial data such that a
solution to the initial value problem exists on the time interval [0,7"), is unique, and the
solution map depends Lipschitz continuously on the initial data ¢. In sub-critical results the
time of existence usually depends only on the norm of the initial data. If 7" can be chosen
arbitrarily large, we call the Cauchy problem globally well-posed. TLocal and global well-
posedness of the nonlinear Schrodinger equation posed on R™ have been studied extensively.
Various sub-critical and critical results have been obtained, cf. [SS99, Section 3.2] and [Caz03,
Chapter 4].

Local and small data global well-posedness of both the focusing and the defocusing energy-
critical NLS on R3 have been proved by Cazenave-Weissler [CW89] in 1989. Tt took many years
until Colliander-Keel-Staffilani-Takaoka-Tao [CKST08] finally showed that the defocusing
NLS is also globally well-posed for arbitrarily large initial data in H'(R?). On the other hand,
Christ—Colliander-Tao [CCT03, Theorem 1| showed that the quintic focusing and defocusing
NLS on R? fail to be well-posed in H*(R3) for s < 1. In addition, they demonstrated that
the focusing and defocusing energy-super-critical NLS on R? are ill-posed in H'(R?).

One of the fundamental tools in the aforementioned well-posedness results is the dispersive
estimate,

[u(t)l| oo rmy < CIEI™2 [[w(0) ] £ ),

where u is a solution to the free Schrodinger equation i0;u + Au = 0. This shows that if
the initial datum u(0) has suitable integrability in space, then the solution has a decay in
time. In many situations, the initial data do not have good integrability properties as one
often assumes the initial data to lie in a Sobolev space H*(R™). However, from the dispersive
estimate one can derive a useful set of estimates, known as Strichartz estimates, which can
handle this type of initial data, see Section 1.5.2 for more details.



IX

The nonlinear Schrodinger equation on compact manifolds

In the following, we consider the NLS on boundaryless, compact, smooth Riemannian mani-
folds. The behavior of solutions on such domains changes completely. For instance, the
dispersive estimate fails to hold true. This becomes obvious by considering the flat standard
torus. Since solutions on this manifold are periodic in time, dispersion in the classical sense
can not be present here.

Moreover, the mathematical tools at our disposal change. An important tool one misses
when moving to the setting of compact manifolds (except of tori) is the Fourier transform.
However, the spectral resolution of the Laplace-Beltrami operator A, compensates this loss
near-complete. Frequency localization projectors that have been used R™ (and can be used on
tori) can be replaced by spectral localization projectors. They are given as spectral multipliers
instead of Fourier multipliers.

Another difference is the following: Solutions to the free Schrodinger equation on R™ have the
structure of oscillatory integrals

mwb/%ﬁwm@% (0.2)

where ug denotes the initial datum. The behavior of oscillatory integrals has been studied
in great detail, see e.g. [Ste93, Chapters VIII-IX]. On compact manifolds, free solutions are
given as exponential sums such as

u(t,x) = Z e "M (hyug) (),

keNy

where A\, k € Ny, denote the eigenvalues of the Laplace-Beltrami operator and hj the pro-
jection on the corresponding eigenspace, see Section 1.4. The connection to (0.2) becomes
particularly apparent on the standard torus, in which case free solutions are given by

ult,z) = Y @I (e).

cezn

Some ideas that have been used to obtain estimates for oscillatory integrals, such as integra-
tion by parts, do not work for exponential sums and hence, we need a different approach.
In analytic number theory there is a classical theory about exponential sums, which may be
found in [Vau97, Kor92]. The main contributions to relevant results regarding exponential
sums appearing in this context, however, are due to Bourgain [Bou89, Bou93a|. Some of
these estimates require sophisticated arguments. In this thesis, we want to point out that
the presented well-posedness results rely on exponential sum estimates, whose proofs do not
require complicated arguments. To demonstrate this, we provide detailed proofs for all expo-
nential sum estimates we shall use in Section 1.3.2 and Section 1.3.3. Corollary 1.39 below,
for instance, was often cited to be a special case of the more general estimate given in [Bou89,
formula (4.1)], see also [Her13, Lemma 3.1]. Here, we show how to get Corollary 1.39 from a
variant of the classical Hardy—Littlewood circle method.

Apart from the technical difficulties described above, the essential argument used in the
Euclidean setting fails, cf. [HTT11, pages 329-330]. On R3, the Strichartz estimate [KT98,
Corollary 1.4]

lull Loz + el payyze S Nw(O)llan + 10 + A)ull o165 (0.3)
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plays an important role to establish local and small data global well-posedness. Applied to
the quintic NLS (0.1), using Hélder’s estimate, and the Sobolev embedding H'(R3) — LS(R3)
yields

el ey + llull gypre S () llgs + llull ayprellullzs -

As Cazenave—Weissler [CW90, Section 4| showed by applying the Picard iteration scheme, this
implies local and small data global well-posedness in H!(R3). This approach breaks down in
the case of compact manifolds since inequality (0.3) fails. Indeed, on the torus it follows
from adapting the one-dimensional counterexample of [Bou93a, Section 2, Remark 2] to the
three-dimensional situation, and for S? it was shown in [BGT04, Section 4.2].

More differences and details that are a bit more technical are postponed to Section 1.5.2.

Related results and main results of this thesis

Let (M, g) be a three-dimensional, smooth, compact Riemannian manifold without boundary.
One major part of the present thesis is to study large data local and small data global well-
posedness of the energy-critical nonlinear Schrodinger equation, that is

{ iOu + Agu = +lul*u in [0,T) x M 04)

u(0, -)=2¢ on M

with ¢ € H'(M). We call a Cauchy problem posed on a compact n-manifold energy-critical if
the corresponding problem posed on R" is energy-critical. The terms sub-critical and super-
critical are defined analogously.

This line of research was initiated by Bourgain [Bou93a|, who proved that the energy-sub-
critical NLS (i.e. nonlinearity with power less than 5) is globally well-posed for sufficiently
small H'-data. In 2007, Bourgain extended his sub-critical result to the class of rectangular
tori

T3 .= R/ (276, °Z x 270, "°Z x 2705 °Z),  (61,02,63) € (0,00)°.

The approach used by Bourgain relies heavily on the particular structure of the torus. In
a series of papers, Burq—Gérard—Tzvetkov [BGT04, BGT05a, BGT05b, BGT07] developed
a theory to prove sub-critical global well-posedness of (0.4) on M = S* and M = S x Sg,
where Sﬁ is the embedded sphere of radius p in R3.! One of their main, newly developed
tools is a set of multilinear spectral cluster estimates, which hold on any compact manifold.
If one considers single eigenfunctions, these estimates seem to be only relevant for “sphere like
manifolds” as they are far from being optimal for eigenfunctions on the torus.

In 2011, Herr-Tataru-Tzvetkov [HTT11] were the first to prove a local and small data global
well-posedness for the energy-critical NLS on a compact manifold, namely the flat torus T3.
Parts of their proof rely deeply on the given structure of the spectrum of A,. However, by
simple geometric considerations, it is possible to extend this result to rectangular tori with
rational ratios?. In 2013, Herr [Her13] was able to extend this result to Zoll manifolds, which
are manifolds whose geodesics are simple and closed with a common minimal period such as
S3. Herr used in an essential way that the eigenvalues of the Laplace-Beltrami operator are
clustered around square numbers.

'More generally, Burq-Gérard-Tzvetkov proved well-posedness for three-dimensional Zoll manifold and Sx M,
where M is a two-dimensional Zoll manifold.

’In this case, there exists k € N such that the scaled torus kT® can be viewed as a disjoint union of parallel
translates of the original rational torus Tj, see [GOW14, pages 977-978|.



XTI

In the present thesis, we shall consider the energy-critical NLS (0.4) on general rectangular tori
(with possibly irrational ratios) and on products of spheres, i.e. S x S%. In Chapter 2, we prove
local and small data global well-posedness. The well-posedness result on rectangular 3-tori has
been published by the present author in [Str14] and extends the results in [HTT11, GOW14].
Moreover, we present a proof of a multilinear Strichartz estimate, which implies scaling-critical
local well-posedness of the NLS with nonlinearity +|u|?**'u, k& > 3, on two-dimensional
rectangular tori. This result is part of [Str14| and extends an earlier result of Guo-Oh-Wang
[GOW14] who proved the same result for k& > 6. In this thesis, we also give the first proof of
local and small data global well-posedness of the energy-critical NLS on S x S%. It extends
a previous result of Herr and the author [HS15], in which the special case S x S?,i.e. p = 1,
was treated. In the joint work [HS15|, the essential contributions of Sebastian Herr were
Sections 1, 3, and 4; the present author’s contribution is essentially Section 2. As in the
Euclidean setting, it is known that the energy-super-critical focusing and defocusing NLS
on an analytic manifold fail to be well-posed in H' [Tho08]. In the same work, it was also
proven that both the focusing and the defocusing quintic NLS are ill-posed in H?® for s < 1.
Hence, our study completes the analysis of local well-posedness in H' on rectangular tori and
products of spheres in three dimensions.

The domain S x S/% is particularly interesting as it can be considered as an intermediate case
between the torus T? and the sphere S3. To see this, let us first compare their spectra of the
Laplace-Beltrami operator o(—A):

M o(—=Ay)

T3 C+m?+n? tmnel
Sx S m?2+p2(n®+n), meZ neNg

Sk n?+2n, neNy

The spectrum o(—A,) on the torus is—as the sum of three square numbers—badly localized,
whereas the eigenvalues of the Laplace—Beltrami operator on the three-dimensional sphere are
essentially square numbers and hence, well localized. The spectrum of —A, on S x Sf) is mainly
given as the sum of two square numbers and thus, in a certain sense, it is intermediate between
the two. A similar picture emerges regarding the multiplicities of the eigenvalues. On S3 and
S x Sg, the multiplicities behave well-tempered. On the torus, though, the multiplicities of the
eigenvalues vary heavily and increase fast. These facts are illustrated in Figure 0.1-Figure 0.3
below.

On the contrary, the eigenfunctions on the torus have very good algebraic properties since
the product of two eigenfunctions equals an eigenfunction again. This is not the case for the
eigenfunctions on S?, the so called spherical harmonics. Though, the product of two spherical
harmonics of degree m and ¢ can be expanded in terms of spherical harmonics of degree less
or equal to m + /.

Another argument why T? and S may be considered as extreme cases is due to the LP-bounds
of their eigenfunctions. While the LP-norms of eigenfunctions on the torus are bounded, the
LP-norms of spherical harmonics present a bad concentration.

The study of the nonlinear Schrédinger equation on S X Sf) is also interesting since one has to
combine the different approaches used on the torus and the sphere, which could be a first step
in understanding better how more general classes of manifolds can be treated. It seems that
one has to find a way to balance the concentration of eigenfunctions and the repartition of the
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spectrum. However, our knowledge about the spectrum and the eigenfunctions of the Laplace—
Beltrami operator on arbitrary manifolds is poor, which makes it hard to obtain results for
arbitrary manifolds. Since the NLS is locally well-posed in the two extreme cases, T? and S3,
Burq—Gérard-Tzvetkov[BGT05b, page 257] conjectured that a similar local well-posedness
result might holds true on any boundaryless, smooth, compact Riemannian 3-manifold.

50 T 120 +
40 110 +
30 T 100 +
20 + 090 +
10 T | 80 .
o+t b 0
0 10 20 30 40 50
Figure 0.1: 0(—A,) on S? 60 T
50 T 50 T
40 + 40
30 + 30 T
20 + 20 +
L ARl |
o L LR Rl AW AEREE, ol A Jil
0 10 20 30 40 50 0 10 20 30 40 50
Figure 0.2: o(—A,) on S x §? Figure 0.3: o(—A,) on T?

In [HS15], Herr discovered that a certain trilinear Strichartz estimate based on L2-spaces, see
Assumption 2.1, is sufficient to conclude energy-critical local well-posedness and small data
global well-posedness on any smooth, compact Riemannian 3-manifold without boundary.
The proof of this conditional result given in [HS15| relies on earlier works and hence, we take
the opportunity to review the whole argument in Section 2.2.

Another goal of this thesis was to find a common approach to prove local and small data
global well-posedness results in this setting. The first big step was the conditional result by
Herr that reduces the study to proving a trilinear Strichartz estimate. In the present work,
we verify this trilinear estimate for rectangular tori and products of spheres. So far, we were
able to carve out the following general strategy:

(i) Exploit almost orthogonality in space and time to restrict the spectrum of the high-
frequency term to a smaller set whose size can be expressed involving a negative power
of the largest frequency. See Section 2.3.4 for rectangular tori, Section 2.5.5 for product
of spheres, and part b) in the proof of [Her13, Proposition 3.6] for Zoll manifolds.

(ii) Prove scale invariant LY LI-bounds on exponential sums arising from the linear evolution
formula. Of course, the aim is to choose p and ¢ as small as possible. For these bounds,
it is usually hard to make use of the additional spectral localization introduced in (i).
Hence, the additional restriction of the spectrum of the high-frequency term is usually
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neglected. In the case of tori, these exponential sums are given by the linear evolution,
see Lemma 2.10. On products of spheres and Zoll manifolds, the exponential sums are
not the respective linear evolutions but they are strongly related, cf. Lemma 2.19 and
[Her13, Lemma 3.1].

(iii) So far, the additional localization of the spectrum of the high-frequency term has not
been used. However, this is easy in the L{3-estimate since it leads essentially to a lattice
point counting problem. Interpolating this with the estimates obtained in (ii) provides
LP?Li-bounds that take the additional restriction of the spectrum in (i) into account.
See Corollary 2.11 (tori) and Corollary 2.20 (products of spheres). On Zoll manifolds,
the interpolation argument is not needed since the L{ ,-bounds in [Her13, Lemma 3.1]
already take the spectral restriction in (i) into account.

(iv) Finally, one considers the trilinear estimates, applies the almost orthogonality property
in (i) and the estimates obtained in (ii) and (iii) to conclude the desired inequality.

Once a good local theory is obtained, one may ask for global well-posedness of the defocus-
ing NLS (0.4) even for arbitrarily large initial data in H'(M). TIonescu-Pausader [IP12b]
developed a method that allows to answer this question on the standard torus®. Shortly af-
ter, Pausader-Tzvetkov-Wang carried over the idea to S® [PTW14]. Recently, the present
author extended the global well-posedness result given in [IP12b] to the class of rectangular
tori [Strl5]|. In this thesis, we provide a slightly modified proof that requires only Strichartz
estimates in a smaller range instead of using Killip—Vigan’s result in [KV14, Theorem 1.1].
The Strichartz estimates we apply follow essentially from the exponential sum estimates that
are proved in Section 1.3. Since small data global well-posedness on S x S/% is studied here,
one might ask for large data global well-posedness on this domain. The difficulties arising are
briefly discussed in Section 3.7.

Unlike on R™, global control on compact manifolds can not come from dispersive decay. Hence,
one can only hope for a local-in-time control instead of a global-in-time control. This local-
in-time control has to be uniform over all small time intervals and has to handle nonzero
contributions on each time interval. Presumably, solutions with large frequencies lead to
complicated dynamics even in short time. Due to the non-dispersive nature of the geometry,
this effect could be amplified and lead to even stronger nonlinear interactions producing even
larger frequencies, cf. [[P12b, page 1582]. On R", this effect is compensated by dispersion.

The approach developed by Ionescu—Pausader relies strongly on the corresponding global well-
posedness result on R3 [CKST08]: It is proved that concentration in a certain critical norm can
only happen around a point in space-time. This must occur in a way which can be compared
to Euclidean solutions within a small time interval. However, these Euclidean-like solutions
are controlled by the Euclidean well-posedness theory.

®Builds on their earlier article [[P12a] and a joint work with Staffilani [TPS12].






1 Basics

The first chapter of this thesis is devoted to introduce notation, function spaces, and to collect
some basic propositions. Most parts of this chapter are a review of well-known material and
cited from various sources. Section 1.3.2 and Section 1.3.3 contain some exponential sum
estimates that are known and have been used before but either without a detailed proof or
as a special case of more general statements, which require sophisticated arguments to prove.
We aim to show that the exponential sum estimates used in this thesis may be obtained using
rather simple arguments.

1.1 Notation

Before we start with the actual content of this thesis, we fix some notation that is used
throughout this work.

The set of positive integers shall be denoted by N := {1,2,3,...}, and we define the set of all
non-negative integers by Ng := N U {0}.

We write A < B if there exists a harmless constant C' > 0 such that A < C'B. Analogously,
we denote A 2 Bif B < A If A < B and A 2 B, then we write A ~ B. If we want to
emphasize the dependence of the constant, then we write A <¢ B for A < C(s)B, where the
constant C'(s) depends on s. The terms A 2, B and A =~ B are defined accordingly. We
write A < B if for a large constant C' > 1 we have CA < B. Correspondingly, A > B means
that B < A.

For a multi-index o € Njj we denote as usual |a| == a1 + -+ + ap, 2@ = z{* -+ 28", and

n
0% =03} ...0%".
The indicator function of a subset A of a set X shall be denoted by 14: X — {0,1}.
The Euclidean norm on R™ is denoted by | - | and the standard inner product is written as

n
Ty = Zx]-yj, x,y € R™
j=1

Function that are k-times continuously differentiable are denoted by C*, and C'* denotes the
set of all functions that are differentiable for all degrees of differentiation. The space C§° is
the subspace of all functions C'* with compact support.

We use the convention that sums over capital letters denote a dyadic summation. For instance,
we write for ¢ > 1,

ZaN:: Z as;  and ZaN:: Z a9j .

N>c j€Np: 29>¢ N<c j€ENp: 29 <ce
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1.2 Function spaces and the Fourier transform

This section is devoted to briefly review function spaces and some of their basic properties that
play a crucial role in the present thesis. Moreover, the crucial Fourier transform is introduced.
We start with introducing the well-known LP-spaces in Section 1.2.1. Beyond defining those
spaces, we are going to cite some results which will be used in the sequel. In Section 1.2.2, the
Fourier transform of Schwartz functions and tempered distributions are defined. This allows
us to define Sobolev spaces of fractional order. Lesser-known are the UP- and VP-spaces that
have become increasingly popular in the theory of dispersive partial differential equations.
These spaces may be viewed as a powerful replacement for Bourgain’s Fourier restriction
spaces X*?. The UP- and VP-spaces are introduced in Section 1.2.3.

1.2.1 LP-spaces and Sobolev spaces

This subsection essentially follows [Gra08, Chapter 1] and [LLI7].

Let © be a measure space with a positive measure . We begin by defining the spaces of all
u-measurable functions on  whose modulus to the pth power is p-summable.

Definition 1.1 (LP-spaces). For 1 < p < oo we define the space LP(€2, 1) to be the following
class of measurable functions:

LP(Q,pu) = {f: Q= C: f is p-measurable and || f||1r(0,.) < o0},

where

o = ([ 17@Pau), 1< <o
£l oo (@) = esses;21p|f(x)| =inf{A>0:pu({z € Q:|f(z) > A}) =0}.

Remark.

(i) To simplify notation, we write LP(Q2) or LP instead of LP(€2, ) if confusions are impos-
sible. If p is the Lebesgue measure, then we simply denote du(x) by dz.

(ii) || - llr(@,u) does not distinguish all different measurable functions. For instance, from
I.f = gllLr(@,u) = 0 we can only conclude that f(r) = g(z) p-almost everywhere. For this
reason, we identify two functions that differ only on a p-null set. To make that precise,
we consider equivalence classes [f] of measurable functions defined via the equivalence
relation f ~ g if f = g p-a.e. on Q. If LP(Q, u) is defined so that its elements are not
functions but the equivalence classes [f], then || - ||z»(q,,) defines a norm.

iii) The space L?(Q, 1) is a Hilbert space with inner product
(iif) 1

%mmmw=AﬂMRBWW)

(iv) In this thesis, we use LP-spaces with mixed norms. We refer to [BP61] for more details.

O
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There is another useful description of the LP-norm via the distribution function

a0\ = p(fo € Q: [F@)] > A)).

This quantity provides information about the size of f but not about the behavior of f near a
given point. Translations of a function on R", for instance, does not change dy. However, the
provided information is sufficient to write the LP-norm in terms of the distribution function.

Lemma 1.2 ([Gra08, Proposition 1.1.4]). For f € LP(Q, 1) and 1 < p < co we have
ey =2 [ s an

We recall some well-known statements about LP-spaces. The first inequality is named after
the German mathematician Otto Holder (1859-1937). The formulation of the lemma is taken
from [LL97, Theorem 2.3].

Lemma 1.3 (Holder’s inequality). Let 1 < p < oo and p’ its conjugate Holder exponent, i.e.
1= % —i—}% with the convention that L = 0. Moreover, let f € LP(, p) and g € LP'(Q, ).

Then the pointwise product, given by (fg)(x) = f(x)g(x), is in LY(Q, u) and

‘/Qfgd,u‘ < HfHLP(Q,u)HgHLP'(Q,,u)'

Remark. The special case p = p’ = 2 coincides with the Cauchy-Schwarz inequality

‘/Qfgdﬂzﬁ/ﬂlfIQdu/QIQIQdu- ,

The next inequality got its name from Hermann Minkowski (1864-1909), a German mathe-
matician and physicist. A special case of Minkowski’s inequality is the triangle inequality for
the LP(Q, u)-norm, in this case v is the counting measure and ¢ = 1. A proof for ¢ = 1 may
be found in [LL97, Theorem 2.4]. A simple modification of this proof yields the result for
q>1.

Lemma 1.4 (Minkowski’s inequality). Suppose that Q@ and T' are any two spaces with o-
finite measures p and v, respectively. Let f: Q x T'— C be a p X v-measurable function and
1<qg<p<oo. Then,

</Q </F s dV(Z/)) % du(x)) % = </I‘ </Q |f(z,y)|P dM(x)> % du(x)> %

with the obvious modifications for ¢ < p = o0 and ¢ = p = .

Now, we come to the identification of LP(£2, u)*, the dual of LP(Q, u), for 1 < p < oo, see e.g.
[LL97, Theorem 2.14].

Lemma 1.5 (The dual of LP(Q,p)). When 1 < p < oo the dual of LP(Q, ) is L (Q, ),
where p' is conjugate Holder exponent, in the sense that every L € LP(Q,u)* has the form

Lig) = /Q v(@)g(e)du(z)

for some unique v € Lp/(Q,,u). In all cases, even p = oo, L given as above is in LP(Q, pu)*
and its norm

LI} = sup{[L(H)] = 1 e < 1} = vl o -
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A special kind of product of two functions on R" is the convolution. To keep the definition as
general as possible, we do not require any restrictions on those two functions and accept that
the right-hand side in the following definition might be undefined.

Definition 1.6 (Convolution). For f,g: R™ — C we define the convolution of f and g to be
the function f * g: R™ — C given by

f*g@ﬂ:iénﬂw—ymwﬁw-

Remark.
(i) By a change of variables, one immediately sees commutativity, i.e. f*xg=gx* f.

(ii) One has to make sure that the integral on the right-hand side is well-defined. Holder’s in-
equality, for instance, implies that this is the case whenever f € LP(R™) and g € L (R™).
Young’s inequality (see Lemma 1.7 below), named after the English mathematician
William Henry Young (1863-1942), shows that if f € LP(R") and g € LY(R"™) with
1< % + %, then the integral is finite almost everywhere and defines a function that is in

L"(R") with 1+ 1 =1 4+ L.

<

Lemma 1.7 (Young’s inequality for convolutions). Let 1 < p,q,r < oo with 1 + % ==+

1
q
as well as f € LP(R™) and g € LY(R™). Then f g€ L"(R"™) and

1
P

1f * gllr ey < Cpgranll flle@e)llgll Lo @n)-
Remark.

(i) Minkowski’s inequality is a special case since it implies for r > 1,

If * gllr@®ey < N fllor@myllgllor ey
(ii) There is a more general version of Young’s inequality which may be found in [LL97,
Theorem 4.2].

(iii) Convolutions may be defined on locally compact groups and Young’s inequality also
holds in this setting, see [Gra08, Section 1.2.2]. In Lemma 1.34 below, we state it in the
case where the locally compact group is given by T™. O

Convolutions may be applied to show that smooth functions with compact support are dense
in LP, see e.g. [AF03, Corollary 2.30] and [LL97, Lemma 2.19].

Lemma 1.8 (Density). Let Q@ C R™ be an open set and 1 < p < oo, then C§°(2) is dense in
Lr(Q).
The next result is known as Schur’s lemma and provides sufficient conditions for linear oper-

ators to be bounded on LP. We cite Schur’s lemma from [Gra08, Appendix I.1].

Lemma 1.9 (Schur’s lemma). Let (X,u) and (Y,v) be two o-finite measure spaces and
K: (X,pu) x (Y,v) = C. Furthermore, let T be a linear operator given by

T(f)(x) = /Y K (2,9)f(5) dv(y),
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where [ 1s bounded and compactly supported. If K satisfies

sup [ [K(wg)|dv(y) = A < .
xeX JY

sup / K (2, )| du(z) = B < oo,
yeY J X

1 1
then the operator T extends to a bounded operator from LP(Y) to LP(X) with norm A'~» Bv
for 1 <p<oo.

Remark.

(i) The result is named after the German mathematician Issai Schur (1875-1941). In 1911,
Schur [Sch11] proved a matrix version of the lemma for p = 2. More about the history
of Schur’s lemma can be found in [Gra08, page 461].

(ii) For positive operators, i.e. K is a non-negative measurable function on X XY, the version
of Schur’s lemma in [Gra08, Appendix I.2] provides necessary and sufficient conditions
for the LP boundedness. O

We end this subsection with a useful interpolation statement between LP-spaces, see e.g.
[Gra08, Theorem 1.3.4]. Let LPo(X, u) + LP'(X, u) be the space of all functions f: R” — C
such that there exists f; € LPO(X,pu) and fo € LPY(X,pu) with f = f1 + fo. Note that
LP(X, p) © LPO(X, p) + LP (X, p) for po < p < p1.

Proposition 1.10 (Riesz-Thorin interpolation). Let (X, u) and (Y,v) be two measure spaces.
Let T be a linear operator defined on LP°(X, p) + LPY (X, u) and taking values in the set of
v-measurable functions on Y. Let 1 < pg,p1,qo,q1 < 0o and assume that

I T (M zao vy < Mollfllzeo(x )y for all f € LPO(X, ),
1T La vy < Mal[flloe (xw  for all f € L7 (X, p).

Then for all0 < ¥ <1 and f € LP(X, u) we have

1T () pagy) < My~ MY Fll o (x )

where

1 1—-9 9 1 1—-9 9
= +— and - =
q q0 q1 p Pbo b1

1.2.2 The Schwartz class and the Fourier transform

This subsection is devoted to introduce one of the most important tools in harmonic analysis:
the Fourier transform. From the definition of the Fourier transform (see Definition 1.12 below)
it is obvious that it may be defined for functions f € L!'(R"). However, we are going to define
the Fourier transform on a smaller class of functions, the space of Schwartz functions that is
denoted by S(R™). The reason is that the space turns out to be a natural environment, for
instance, since the Fourier transform defines a homeomorphism from S(R™) onto itself and
the Fourier inversion formula holds in it. On the contrary, if the Fourier transform would be
defined as an operator on L!'(R"™), then the Fourier inversion formula requires the additional
assumption that the Fourier transform is in L!(R™).

The whole subsection is pretty close to the nice introduction given in [Gra08, Section 2.2|.
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The Schwartz space

Schwartz functions are—roughly speaking—smooth functions for which the function and all
of its derivatives decay faster than the reciprocal of any polynomial at infinity. The space is
named after the French mathematician and Fields medalist Laurent Schwartz (1915-2002).

Definition 1.11 (Schwartz functions).

(i) A complex-valued function f € C*°(R") is called Schwartz function if for every pair of

(i)

multi-indices « and 3 there exists a positive constant C, g such that

pas(f) = sup 2207 f(2)| < Cap < 0.
rxeR”

The quantities p, g(f) are called the Schwartz seminorms of f. The set of all Schwartz
functions is denoted by S(R™).

A sequence (fx)ren, in S(R™) is said to be convergent to f € S(R™) if for all multi-indices
« and [ it holds that

pas(fr — F) = sup |z*(0°(fr. — f))(z)] = 0

zeR™

as k — oo.

Remark.

(1)

There is an alternative characterization of Schwartz functions which is very useful. A
smooth function f: R™ — C is in S(R") if and only if for all positive integers N and all
multi-indices o there exists a positive constant C, y such that

(0 f)(@)] < Can(L+[a])™
for all z € R", see [Gra08, Remark 2.2.4].

If p; is an enumeration of the Schwartz seminorms p, g, then

:°° i pilf—9)
“ho ;2 L+ pi(f = 9)

defines a metric on S(R™). It is easy to check that S(R™) is complete with respect to
d. Hence, S(R™) is a Fréchet space, i.e. it is a complete metrizable locally convex space.
[Gra08, pages 96-97]

Obviously, C§°(R") is contained in S (]R") and convergence in C§°(R"™) implies conver-
gence in S(R™). The function = — e~ 1#” is a Schwartz function but not in Ce(R™).

Convergence in S(R™) is stronger than convergence in all LP(R™). [Gra08, Proposi-
tion 2.2.6] 0
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The Fourier transform of Schwartz functions

We define the Fourier transform as an operator acting on S(R™). The Fourier transform got
its name from the French mathematician and physicist (1768-1830).

Definition 1.12 (Fourier transform on S(R")). Let f € S(R™).

(i) We define the Fourier transform of f as

1
(2m)3

Fen(PN€) = —x [ () dn, R,
Sometimes we also write f := Frn(f).
(ii) The inverse Fourier transform of f is defined as

1
(271')%

Pt (@) = Fen(f)2) = — [ é*¢f(a)dn, wex

We sometimes also write f := Fal (f).

Remark. Note that the notation =~ and ~ clashes with the notation in Definition 1.26 below.
Whenever it is clear from the context, we use = and ¥ without mentioning whether it is meant
in the sense of Definition 1.12 or Definition 1.26. O

Now, we collect some important properties of the Fourier transform that may be found in e.g.
[Gra08, Proposition 2.2.11]. Let us first introduce some notation: For a measurable function
fonR" x,y € R" and a > 0 we define the translation and dilation of f by

T(f)(x) = flx—y) and &°(f)(z) = f(ax),

respectively.

Lemma 1.13 (Properties of Fgn). Given two functions f,g € S(R"), y e R", A € C, a a
multi-index, and a > 0, we have the following:

() 1 flloe@ny < 1 fllL1®ny,

(i) f+g=1F+3,
(iii) Xf = \f,
(iv) TH()(€) = e WEf(©),

(v) (€= f(x)"(€) = TV(F)(E),
(vi) (8°(f))°(€) = a "6 (F)(9),
(vii) (0°F)(€) = (i)* [ (£),

(viii) (9°F)(&) = ((—iz)*f(x))"(€),

(iz) [ € SR,

() Fxg=F3,

(zi) Fo A(€) = F(AE), where A is an orthogonal matriz and € is a column vector.

Remark. It is not hard to prove that analogue statements hold true for the inverse Fourier

O

transform.
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The following lemma investigates the relation between the Fourier transform and the inverse
Fourier transform.

Proposition 1.14 (|Gra08, Theorem 2.2.14|). Given f,g,h € S(R") we have

() | f@)ga)de = | Fla)g(z)de,
R» R»

(ii) Fourier inversion: (f)vz f= (jY)A,

(113) Parseval’s relation: f(z)h(x) dx :/ f(g)%df,
Rn n

(iv) Plancherel’s identity: || f||2@n) = ||fHL2(Rn) = ||]\{HL2(Rn),

(v) memmm:]wlmmwm.

On the one hand, the Fourier transform may easily be extended to the space L!(R™)N L?*(R")
since the integrability ensures that the integrals in Definition 1.12 are convergent and most
of the results in Lemma 1.13 hold true for those functions.! On the other hand, for L?(R")
functions the integrals in Definition 1.12 do not converge absolutely. However, since L*(R")N
L?*(R™) is dense in L?*(R™), there is a unique bounded extension of the Fourier transform
and the inverse Fourier transform on L?(R™). This extension is also an isometry on L?(R").
The Fourier transform on S(R™) and its extension share most of its properties, see [Gra08,
Section 2.2.4], and hence, we do not distinguish them notationally.

From a simple interpolation of Plancherel’s identity and Lemma 1.13 (i), we can extend the
Fourier transform on LP(R™) for 1 < p < 2, see e.g. [Gra08, Proposition 2.2.16].

Lemma 1.15 (Hausdorff-Young inequality). Let 1 < p < 2. For every function f € LP(R™)
we have the estimate

||fHLp/(Rn) < HfHLP(]R”)-

The Fourier transform of tempered distributions

It is also possible to give a meaning to the Fourier transform on the space of tempered
distributions. The following definitions and results as well as more details may be found e.g.
in [Gra08, Section 2.3].

Definition 1.16 (Tempered distribution). The space of tempered distributions is defined as
S'(R") := {u: S(R") — C : u is linear and continuous }.
Remark.

(i) It is common to denote the evaluation of u € S’(R™) at f € S(R") as

(u, f) = u(f).

(ii) Functions g that do not increase too quickly can be thought of as tempered distributions
via the identification g + Ly, where L is the functional

L= [ s iz fes

'To be precise, (i)-(vi) as well as (x) and (xi). [Gra08, Section 2.2.4]
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It is obvious that the following definitions are well-defined and coincide with the previous
definitions whenever they apply to w.

Definition 1.17. Let u € §'(R™) be tempered distribution and f € S(R™).

(i) Let a be a multi-index, then
(8%, f) == (=1)1%N(u, 5% f).
(ii) The Fourier transform @ and the inverse Fourier transform @ are defined by

(@, f) = (u, f) resp. (&, f):=(u,f).

Remark. Holder’s inequality shows that every LP(R™) function is a tempered distribution.
Hence, the Fourier transform defined in Definition 1.17 is indeed defined on a larger set
compared to the extension to L?(R™) of Fourier transform defined in Definition 1.12. Let
u € L?(R™). On the one hand, it follows that & € L?(R™) and hence,

(U, flremny = /

for all f € S(R™) by using Proposition 1.14 (i). On the other hand, if we consider u as a
tempered distribution, then we have, by definition,

@ 1) = w.F) = [ uw)fw) ds

n

~

n n

for all f € S(R™). Hence, the extension to L?(R™) of Definition 1.12 and Definition 1.17
indeed coincide. O

We refer to [Gra08, Proposition 2.3.22] for a list of properties of the (inverse) Fourier transform
of a tempered distribution.

Sobolev spaces

Next, we use the Fourier transform on S’(R™) to define Sobolev spaces and study some of
their properties. Compared to LP(R"), these spaces give more precise information about the
regularity of a function. We follow the nice introduction in [Caz03, Section 1.4].

Definition 1.18 (Sobolev spaces). Let s € R and 1 < p < oo be given.
(i) We define the inhomogeneous Sobolev space
H*P(R") = {u € S'(R") : Fp (1 + [¢]*)24) € LP(R™)}
equipped with the norm
l[ullsp = H]:_"l (a+ ‘5’2)%a)HLP(Rn)'
(ii) The homogeneous Sobolev space is defined as
H*P(R") == {u € S'(R") : Fa (|€°T) € LP(R™)}
equipped with the norm

ull o = [| P (1€1°Q)[| o ey

(iii) We denote H*(R™) := H*2(R™) and H*(R™) := H%2(R™) for brevity.
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Remark.

(i) The space H*(R") is a Hilbert space and H*P(R"™) is a Banach space. One trivially sees
that HOP(R") = LP(R").

(i) H5P(R") < H2P(R™) if 51 > ss.
(ii) If p < oo, then (H*P(R™))* = H~5¥ (R") [BL76, Corollary 6.2.8].

(iv) For m € Ny and 1 < p < oo it follows that
H™P(R™) = W™P(R") := {u € LP(R") : 0% € LP(R") for a € N with |a| < m},

where 0%u has to be understood in the sense of tempered distributions. The norm

[wlwme@n) = Z [0%ul| Lo (mn)
aeNg:
0<]a|<m

is equivalent to || - || gm.p(rn). [BL76, Theorem 6.2.3] O

Proposition 1.19 (Sobolev embedding theorem). Let s € R.
(1) Ifl<p<g<oo,reR withs—%:r—%, then

H%P(R™) — H™(R").
(1) If 1 <p< oo and 0 <'s < 2, then
HSP(R™) < L7 (R™).

(11i) If 1 < p < o0, k € Ny and [s] > k:—}—%, then every element of H>P(R™) can be modified on
a set of measure zero so that the resulting function is bounded and is k-times continuously
differentiable.

The first statement may be found in e.g. [BL76, Theorem 6.5.1] and the second embedding is
an immediate consequence of the first statement. The third embedding is a simple consequence
of

H*P(R") — HEPR") = wilr(Rr?)

and the Sobolev embedding theorem for the latter spaces, cf. [LL97, Theorem 8.8].

1.2.3 The spaces UP and VP

This subsection introduces the spaces UP and VP. We closely follow some parts of [KTV14,
Chapter 1.4| and refer the reader to [HHK09, HTT11, Her13, HTT14] for more details.

In 1924, Norbert Wiener [Wie24] studied functions of bounded p-variation. These spaces were
used in several contexts such as Riemann—Stieltjes integrals [You36| and rough paths [Lyo94,
Lyo98]. In 2005, Koch-Tataru [KT05] were the first who realized that the spaces of bounded
p-variation and its “dual” UP-spaces may be used to sharpen Bourgain’s technique of X®t-
spaces that have often been applied to achieve well-posedness results for dispersive equations.
Indeed, for the well-posedness result for the Kadomtsev—Petviashvili IT equation obtained by
Hadac-Herr-Koch [HHK09] the X*’-spaces seem to be insufficient. The theory of the UP-
and VP-spaces including some basic properties were worked out in [HHKO09] for the first time.



1.2 FUNCTION SPACES AND THE FOURIER TRANSFORM 11

Ever since, these spaces have repeatedly been applied to dispersive equations. Herr—Tataru—
Tzvetkov were the first who successfully applied these spaces to gain energy-critical small
data global well-posedness of the NLS on the three-dimensional flat torus. Later, Ionescu—
Pausader used this spaces to extend this global well-posedness for initial data with arbitrary
large H'-norm. Recently, the first book reviewing these spaces was published [KTV14].

These spaces shall only be briefly introduced in this thesis. Aside from the definitions and
some basic properties, we cite an important interpolation and a duality result.

For the remainder of this subsection, (X, || - |lx) shall denote a Banach space with the norm
I 1lx-

In the following chapters, we rely on Proposition 1.23 (v), Lemma 1.24, and Lemma 1.25
below. These results do not hold for functions in the space VP as it is defined in [KTV14] but
for the subspace of right-continuous functions in V? that is called Vi in [KTV14]. For this
reason, we only define V% as in [KTV14, pages 44-45| but call it V? for brevity.

Definition 1.20 (VP-space). Let 1 < p < oo. The space VP = VP(X) is the space of
right-continuous functions v: R — X such that

K

[olly, = sup > llv(tr) — vlte—1)[I% < 400
—oo<to<...<tg <+00 1y

with the convention v(400) := 0, and in addition, we require lim;_, o, v(t) = 0.

We collect some properties of this spaces that may be found in [KTV14, page 45].

Proposition 1.21 (Properties of V?).
(i) The space VP is a Banach space.
(i1) We have || - ||sup < || - |[ve for all 1 <p < 0.

(111) If 1 < p < q < oo, then VP — V9 and for all v € VP,

[o]lva < lvflve.

The following definition of U? is given in [KTV14, Definition 1.4.10].

Definition 1.22 (UP-space). Let 1 < p < 0o. A right-continuous step function a: R — X is
called a UP-atom if

K K
a(t) = Z 1[tk,1,tk)(t)¢k7 Z lonll =1
k=1 k=1

for a partition —oco < tg < ... <tx < o0o. Let (a;)jen be a sequence of atoms and let (\;)jen
be a summable sequence. Then
o0
u = Z Aja;
j=1

is a UP-function. We define the space UP = UP(X) as the set of functions having such a
representation and endow it with the norm

lu||lge == inf{z INj|iu= Z)\jaj}.
j

7j=1 =1
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We state some properties of UP-spaces given in [KTV14, pages 46-49].
Proposition 1.23 (Properties of UP).

(i) If a is a UP-atom, then |lal|yr < 1. The norm of an UP-atom may be less than 1.
Determining the norm of an atom is a difficult task.

(11) Functions in UP are continuous from the right and the limit as t — —oo vanishes.

(111) The expression ||-||yr defines a norm on UP, and UP is closed with respect to this norm.
Moreover, || - |lsup < || - |le-

() If 1 <p < q < oo, then UP — U? and for all u € UP,

[ullga < flullge.

(v) If 1 < p < o0, then UP — VP — L>®°(R, X) and for all u € UP,

[ullve < [lullor.
(vi) If 1 <p < q < o0, then VP — U1,

Later, we apply the following interpolation type property of the UP- and VP-spaces. The
statement may be found in [HTT11, Lemma 2.4] and [HHKO09, Proposition 2.20]. It is worth
mentioning that there is a more general interpolation statement in [KTV14, Lemma I1.4.12].

Lemma 1.24 (Interpolation). Let q1,q2,q93 > 2, (X, || - ||x) be a Banach space, and let
T:U" xU?xUB = X

be a bounded, trilinear operator with ||T (u1,ug,us)||x < Ci H§:1 llwjllga; - In addition, assume

that there exists Co € (0,C4] such that the estimate ||T(u1,ug,usz)|x < Co H?’:1 |lwjl|2 holds
true. Then, T satisfies the estimate

3
C 3
I ) < Coin 1) TT gl
j=1

for uy,ug, usz € V2.

The following duality statement plays a crucial role in our analysis, too. The statement is
taken from [KTV14, Corollary 1.4.24].

Lemma 1.25 (Duality). Let 1 < p < oo and H be a Hilbert space with complez inner product
(-,-) and dual space H*. Assume u € UP(H) with Oyu € L] (R,H) and v € VP(H), then the
following duality statements hold true:

lullsgiy = sup{ | @eu(0),500) dt s v € R A, Pollyw e =1,
ey = sup] | @uu(0)o00) dt s 0 € CR ). Nl ey = 1.
where 1 =

1,1
p+p"
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1.3 Fourier series and exponential sums

Some basic facts about the Fourier analysis on the torus T™ := R"/(27Z)" shall be discussed
in this section. Related exponential sums play an important role in the study of the nonlinear
Schrodinger equation on boundaryless compact manifolds. Estimates for exponential sums
are addressed in this section, too. A variant of the Hausdorff-=Young inequality for non-
periodic functions is studied in Section 1.3.2. LP-estimates of exponential sums are discussed
in Section 1.3.3. Most of the results in the latter two subsections have been applied before
but either without giving a thorough proof or as a special case of a more general statement.
By giving detailed proofs for all exponential sum estimates we rely on, we would like to
demonstrate that verifying these estimates do not require sophisticated arguments.

1.3.1 Fourier series

In this subsection, we adapt parts of the introduction in [Gra08, Section 3.1] to T" =
R™/(2x7Z)™ instead of T™ = R™/Z".

Functions on T™ can be considered as functions on R™ with the property that f(2r{+z) = f(z)
for all ¢ € Z™ and « € R™. Those functions are called 2mw-periodic in every coordinate.
The measure on T" is given by the restriction of the n-dimensional Lebesgue measure to
T = [0,27]™. It is a simple consequence of Holder’s inequality that the LP(T™)-spaces are
nested and L!(T™) contains all LP(T")-spaces for p > 1.

Definition 1.26.

(i) For a complex-valued function f € LY(T") and ¢ € Z" we define the {th Fourier

coefficient of f by
F© = —— [ Fayei=an

(2m)2 Jn

Sometimes we also write f := F(f).
(ii) The Fourier series of f at = € T™ is given by

> e,

1

So far it is not clear in which sense and for which € T" the Fourier series converges. However,
the following lemma holds, see e.g. [Gra08, Proposition 3.1.14].

Lemma 1.27 (Fourier inversion). If f € L*(T") with > eezn 1F(9)] < oo, then

T) = ! Fle)etre
@) =553 ge%f@

almost everywhere. As a consequence f equals almost everywhere a continuous function.

Remark. In light of the previous lemma, for a function f: Z" — C with > czn [f(§)] < 00
and x € T™ we write,

FHf)() = ﬁ > FEemt

ez

and sometimes also f = FHUL). O
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We collect some properties:

Lemma 1.28 (Properties of F). Given two functions f,g € L'(T"), y € T", A€ C, £, € Z",
and o a multi-index, we have

~

(i) supgezn |F(E)] < [ fllzaeny,

(ii) f+g=F+3,

(iii) \f = Af,

(i) TY(F)(€) = e EF(©),

(1) (e f(@)"(€) = f(§—n),

(vi) J(0) = fon f(x)da,

(vii) fxg=F3,
(viii) °F(€) = (i€)* F(€).
A useful result that connects the Fourier analysis on the torus with the Fourier analysis on R"

is the Poisson summation formula, named after French mathematician and physicist Siméon
Denis Poisson (1781-1840).

Proposition 1.29 (Poisson summation formula). Suppose that f,fe LY (R™) satisfy
[f @)+ |f ()] < CA+ |z

for some C,;§ > 0. Then f and f are both continuous, and for all x € R™ we have

Y F©eE =Y fa+6).

gezr gezr

As a consequence of Hilbert space theory, we may define the Fourier transform even for
functions f € L(T").

Lemma 1.30 ([Gra08, Proposition 3.1.15]). Let H be a separable Hilbert space with complex

inner product (-,-) and let {¢k}rez be an orthonormal system in H. Then the following are
equivalent:

(1) {ok}rez is a complete orthonormal system.

(11) For every f € H we have
£ =D [(feml.

kEZ

(111) For every f € H we have
f=lm > (f or)en,
k|<N

where the series converges in H, i.e.

=0.
H

lim Hf— > (ferder

N—oo
[k|<N
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Consider the Hilbert space L?(T™) with complex inner product

(f.g9) = [ f(z)g(z)dz.
-

We choose ¢ to be the sequence of functions x e¢ indexed by & € Z™. It is easy to see
that {¢¢}eczn are indeed orthonormal:

/ o€ g—imn oy — 1 when { =1,
[0,27] 0 when & # 7.

In order to show the completeness of the orthonormal system {¢ }¢czn, we cite the next result
that answers the question whether the Fourier coefficients uniquely determine the function.

Lemma 1.31 ([Gra08, Proposition 3.1.13]). If f,g € L'Y(T") satisfy f(g) = g(&) for all
&eZ™, then f = g almost everywhere.

The completeness is now obvious since (f, p¢) = 7 (¢) for all f € L2(T™). The previous lemma
now implies that if (f,p¢) = 0 for all £ € Z", then f = 0 almost everywhere.

The next result is a consequence of Lemma 1.30.

Proposition 1.32 ([Gra08, Proposition 3.1.16]). The following are valid for f,g € L*(T"):

(i) Plancherel’s identity: HfH%Q(Tn) = (2m)" Z |f(§)|2
gezn

(ii) The function f(x) is almost everywhere equal to the L*(T™) limit of the sequence

lim T f@)ee

—00
§€L: [§|<N

(iv) The map f +— {f(g)}gezn is an isometry from L?(T™) to (2(Z").

We already mentioned in Section 1.2.1 that the convolution may be defined on T™ and that
there is a version of Young’s inequality on that domain. We refer to [Gra08, Section 1.2],
where the convolution is defined more generally on a locally compact group and furthermore,
some convolution inequalities such as Young’s inequality are proved.

Definition 1.33 (Convolution on T"). Let f,g € L'(T"). Define the convolution f x g by

(fxg)(z) = . flz—y)g(y) dy.

Young’s inequality stays exactly the same as in Lemma 1.7:

Lemma 1.34 (Young’s inequality). Let 1 < p,q,r < oo with 1 —l—% = %—i—% as well as
feLP(T") and g € LY(T™). Then f*g e L"(T™) and

If * gllr 1y < Cpgranll fllze lgllpacrny-
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1.3.2 Hausdorff-Young inequalities

The classical Hausdorff~Young inequality for periodic functions provides for 2 < p < ¢ a
bound for the ¢P-norm of the Fourier coefficients by the L -norm of the function, where p’
denotes—as usual—the conjugate Holder exponent 1 = %—1—1%. For the same range of p, the LP-

norm of a periodic function may also be estimated by the ¢#'-norm of the Fourier coefficients,
which may be seen as a “dual” estimate of the first one. In 1913, William Henry Young [Youl3]
proved this estimate for even p. Ten years later, Felix Hausdorff [Hau23| proved the result
in general. We cite the Hausdorff-Young inequality from [Kat68, Theorems IV.2.1 & 1V.2.2],
where it is given in one dimension. To emphasize the analogy to the proof of Proposition 1.36,
we also provide a sketch of the proof of the classical Hausdorff-Young inequality.

Proposition 1.35 (Hausdorff-Young inequality). Let 2 < p < oo and p’ denote the conjugate
Holder exponent.

(1) If f € LP([0,2x]™), then

||f(f)||z§(zn) < @m)e 2l 1w 0,27)m)-

(ii) If a € (7 (Z"), then there exists a function f € LP([0,27]") such that ag = f(ﬁ) for all
&€ Z™ and moreover,

~

||f||Lp([o,27r}n) < (2m)r 2 (5)Hz§’(zn)'

Sketch of the proof. The proof is taken from [Kat68, Theorems IV.2.1 & IV.2.2].

Note that for p = 2 the first inequality matches Plancherel’s identity. Interpolating this with
the trivial estimate for p = oo,

1
(2m)%

<

R 1 A
sup 1101 = '(277)% /[02 In () de £l 21 (0,271

cezn

yields (i).

The idea of the proof of second estimate is similar. If a € £*(Z"), then f(z) := > eezn age'™t
is continuous on [0, 27]™ and 1 (&) = (2m)"/2a for every ¢ € Z". Furthermore,

. 1 ~
[ £llooogmm = sup | D> age™ S| < Y Jag| = = > |F©)],
€027 e ezn genn (2m)>
and the result follows from interpolation with Plancherel’s identity. O

In Chapter 2, we have to deal with functions of the form ¢ — >, are™, where A is a
countable set of real numbers. Depending on A, this function might not be periodic. For
this reason, we need a replacement for the classical Hausdorff-Young inequality. The first
inequality of the following lemma has been applied before, e.g. in [Bou07, formula (1.1.9)],
but yet without a rigorous proof. The second statement appeared in [BGT05b, Lemma 5.2]
for p = 2. In this case, it can be seen as non-periodic variant of Plancherel’s identity. Similarly
as for the classical Hausdorff—=Young inequality, we gain the full range of p by interpolating
with the trivial case p = oo.
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Proposition 1.36 (Non-periodic Hausdorff-Young inequality). Assume that 2 < p < 0o and
A is a countable set of real numbers. Furthermore, let p' denote the conjugate Holder exponent.

(i) Then there exists C' > 0 such that for every non-negative sequence (ay)ea,

Z ay <(C ZaAe
o

AEA: [A—k|<] k AeA

LP ([0,27])

holds true.

(1i) For every compact interval I C R there exists C; > 0 such that for every sequence
(ax)aea the “dual” estimate of (1) holds:

S o

AEA

<Cr

> anl

AEA: [A—k|<

Lr(I)

k

Proof. In this proof, = shall denote the Fourier transform on R.

First, we prove (i). Let n: R - R be a continuous function supported on [—m, 7] with 7j(7) > 0
for all 7 € R and 7(7) > 1 for all 7 € [ 5 2] For instance, if ¢ > 0 large enough, then

() = eX(-g, 41 * X[-4 )0

I

fulfills this assumptions since the Fourier transform is given by 7j(7) = ¢(sin(7/2)/7)2. Define

¥: R — R by
= axe™n(t)

AEA
Then,
ool =l X aitk =] = [0,
xea: ki<t M Thea k<l t
and thus, it suffices to prove
[0 < {|D_ axe™ (1.1)
LP(027T])

AEA

Due to the assumption on the support of 7, &(k‘) coincides with the kth Fourier coefficient of
the periodic continuation of 9| ] Hence, (1.1) follows from the (classical) Hausdorff-Young

inequality for periodic functions.

We now turn to the proof of the “dual” estimate (ii). The estimate for p = oo is immediate since
the sets {\ € A : |A\ — k| < 3} are essentially disjoint for different k € Z. By interpolation,
we are left to prove the estimate in the case p = 2 for which we closely follow the argument
of Burq—Gérard—Tzvetkov [BGT05b, Lemma 5.2].

We choose a function n € C§°(R) with the property n(t) = 1 for t € I. If we define f: R — C

as
= n(t)are™,

AEA
then
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which reduces the claim to

HfuLzm)scf(Z( 2 1““’>2>

keZ “XeA: A—k|<i

N

For 7 € R we estimate,

N< S i - Nl < Y K(n k),

KEZ NeA: [N—k|<2 kez

where K: R xR — R and A: R — R are defined as

K(r, k) = sup [n(m—A)| and h(k) = Z lax],

. 1
AEA: A—k|<1 AeA: k] <1

respectively. A simple argument shows that the inequality |\ — k| < % implies

1 - C
1+ r =X ~ 1+|7—k|

Since n € C§°(R), we see that for every N € N there exists Cy y such that

Cr N
(14 |7 — k)N

Now, we may apply Schur’s lemma to conclude the asserted estimate.

[K (7, k)| <

O

Next, we apply the previous Hausdorff-Young inequality to address lattice point counting. The
result is not new and was used by several authors before, e.g. [Bou07, CW10, GOW14, Str14],
and a rigorous proof may be found in [Str14, Lemma 3.1]. Nonetheless, we give a new proof

to highlight the close relation to Proposition 1.36.

Corollary 1.37. Let 2 < p < oo, r > % 5, and A be a countable set. There exists C. > 0 such

that for all o: A — R and for &y deﬁned as
Sp={reA:|p\)—k|<r}, kez,

the following estimate holds true:

H|6k|Hz§ <G

Z ie ()t

AEA

LY ([0,2r))

Here, p' denotes the conjugate Holder exponent.

Proof. First, we reduce it to

r—1
1Skl < 1 <> >
—r AEA: fﬁ l=—r AEA: Zi
1<p(N)—k<l+1 lo(\)— —%—k\ﬁé
Then, an application of Proposition 1.36 yields the desired estimate:
r—1 r—1
91 D SRR S o] ) >ETetl [IE o
(=—r AEA: G t=—rlxeA Lr'([0,2x]) XeA

1 1
lp(A)—L—5—k[<3

LY ([0,27])
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1.3.3 LP-estimates of exponential sums

LP-estimates of exponential sums turned out to be substantial for studying the nonlinear
Schrodinger equation on compact manifolds. Such estimates have been addressed in recent
years, cf. [Bou89, Section 4], [Bou93a, Proposition 3.114], [Bou07, formula (1.1.10)], and
[BGTO07, Lemma 5.5.3]. In all of these works, the LP-norm of sums like

2
2 : aneznt

neJNZ

have been considered, where J = [N, N|. This, however, is not sufficient for our analysis. In
fact, we have to show that the L¥-bound does only depend on the size of J rather than on the
actual position. Herr [Her13, Lemma 3.1] observed that this is the case for the exponential
sum above by modifying the arguments in [Bou89, Section 4] slightly. Corollary 1.39 can be
viewed as a special case of [Herl3, Lemma 3.1] with a,, = 1 or as an extension of [Bou07,
formula (1.1.10)] to intervals J which are not centered around zero. In this thesis, we want to
take the opportunity to give a rigorous proof of the exponential sum estimates we shall rely on.
In fact, due to technical reasons, we prove a slightly more general statement in Lemma 1.38
and conclude the required estimate in Corollary 1.39.

Lemma 1.38. Let I C R be a compact interval and 4 < p < co. There exists a constant
C > 0 such that for any N > 1, b € Z, and any multiplier (o,,), satisfying

(i) for alln € Z: 0 < o, <1; for alln € [-N,N]: 0, = 1; for all n ¢ [-2N,2N]: o, =0,
(ii) the sequence (0n41 — 0p)y is bounded by % and has bounded variation by 2,

the estimate

<CON'"3,
P

; 2
§ :O,nez(ner) t

nez

holds true. The constant C' depends only on p and |I|.

As a consequence, we get the same statement without the coefficient sequence that smoothens
out the cut-off.

Corollary 1.39. Let I C R be a compact interval and 4 < p < oo. Then, there exists a
constant C' > 0 such that for any M > 1 and J = [b,b+ M| NZ with b € Z, we have the
estimate

eith
neJ

1—2
<CM  »,
Ly(I)

where the constant C' does only depend on p and |1|.

Proof. First, we note that the inequality is trivial if p = co. Hence, we may assume p < oo
from now on.

By possibly increasing M by one, we may assume M to be even. Set N := % and V' == b+ N.

Let o5, be a sequence as given in Lemma 1.38 (with respect to N). Define 12)\: 7Z — R as
Y((n+b)?) = o, for all n € Z and 1 equals 0 otherwise. Note that ¢ € L'([0,27]). We write

2
E:eznt

neJ

Z 1[b2,(b+M)2](m)7Z)\(m)eimt

Lp([072ﬂ']) H’ITLEZ

Lr([0,27])

= 77 (e 0219 | oo 2
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Since 12 (p4ar)2] is a multiplier on LP(R) for 1 < p < oo with norm independent of the
size of the interval [Duo01, Proposition 3.6], the transference of multipliers to T™ [Gra08,
Theorem 3.6.7] and Lemma 1.38 yield

/
§ :O’ eszrb

nez

H]:il( 62, (b+M) 2]1/})“11?(027'(]

Lr([0,2]) .

The remainder of this subsection is devoted to prove Lemma 1.38.

The proof which is presented here is a variant of the Hardy—Littlewood circle method in which
one splits the integration over one period in two parts which are, due to historical reasons,
called major and minor arcs. The main contribution to the LP-norm comes from the major
arcs, which contain those ¢ that are close to a reduced fraction ¢ with 1 < a < ¢ < N1/100
This is easy to see if one chooses a = ¢ = 1. Then, ¢ is close to 1 and the modulus of the sum is
approximately N. Lemma 1.41 below provides a more precise estimate with some additional
decay in t. Lemma 1.43 below shows that we can bound the modulus of the sum by €' N1~1/200
whenever ¢ is in a minor arc. We would like to refer the reader to [Vau97, Chapter 2| for more
details and a nice introduction to this method. In fact, for J = [1, N]NZ the estimate follows

essentially from the Hardy-Littlewood circle method in the way it is presented there.

In order to prove the lemma above, we start with some basic definitions and notation. Given
a,q € 7 with either a 7& 0 or g # 0, we denote by ged(a,q) the greatest common divisor of
a and q. We set v := 155 throughout this subsection. Furthermore, |z||z := min,ez |z — n|
denotes the distance of x to the closest integer. The following definition of major and minor

arcs is standard, see [Vau97, Section 2.1].

Definition 1.40 (Major & minor arcs). Let N > 1 be the N given in Lemma 1.38. We define
the major arcs M to be the disjoint union of

Mg, a) == {te0,1): ]t - g‘ < nv2)

for all 0 < a < ¢ < N” with ged(a,q) = 1. The minor arcs shall be defined as m = [0, 1] \ 9.

Remark. The union of the 9(q, a) is indeed disjoint. If % =+ Z—: and ¢, ¢ < NV, one estimates

a a

___/ 2_12N72I/>2NI/72
qa q aq

for N > 1. Hence, either t ¢ M(q,a) or t ¢ M(q',d’). O

1

a
2]+
g

The following Weyl type lemma is due to Bourgain [Bou93a, Lemma 3.18]. The cases a = 0,
a=¢q=1,and ¢ = N were not included in the original statement. We repeat the proof and
add a couple of details to point out that Bourgain’s proof covers these cases as well. The main
improvement over the classical Weyl inequality

27i(na+n2t)

+ \/Nlnq—i— \/qlnq,

\/_

see e.g. [Mon94, Chapter 3, Theorem 1], is the additional decay in ¢. Bourgain observed that
this allows to treat both major and minor arcs with this Weyl type lemma. Originally, the
major arcs were treated by approximating the exponential sum by a product of two functions,
either of which may be estimated, cf. [Vau97, Section 2.4]. The coefficient sequence avoids
logarithmic factors on N and plays only a technical role, see the remark after the proof.
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Lemma 1.41 (Weyl inequality). Let N > 1 and (o,), be a multiplier satisfying (i) and (i1)
in Lemma 1.58. If 0 < a < q < N with ged(a,q) =1 and ||t — [z < qLN, then

N

Z O_n627ri(7w:+n2t)
1/2y°
Va(L+ Nt = 41)

nez

<C

Proof. We follow mainly Bourgain’s argument in [Bou93a, Lemma 3.18] but provide more
details. To do so, we also adapt some ideas that have been used in [PTW14, Lemma A.1] for
proving a related result.

The proof is trivial for N = 1, hence, we may assume N > 2 in the sequel. Note also that the
case a = 0 can be reduced to a = q¢ = 1 since the exponential sum is 1-periodic with respect
to t and |[|t||z = ||t — 1||z. Therefore, we assume a > 1 for the remainder of the proof.

We consider the square modulus

2

Z O,neZWi(nx+n2t) _ Z Oy Oy e?m[(nl —ng)z+(n1 —nz)(nl—l—ng)]t.

nez

n1,n2€Z
By setting k :=ny — ng and £ := ny + na, we clearly have
2

) 2 .
Z O_nez(nm—l—n t) < Z Z Uwo_e_ke%rzk(x-i-ﬁt) ]
2

2
nez LED: keZ:
[¢|<4AN k={ (mod 2)

Let ¢ € Z be fixed now. If £ is even, we write k = 2k;, otherwise, we write k = 2k; + 1. In

any case, Or+t0i—k = O[e+1 ore =: 7... We now claim
Y P OEETEE T TS 5]k T TR

1 1
,Smin{N, 5 } < 5 (1.2)
N2z + 247 N(||2z + 2¢t]|z + +)

§ : Tk1627rzk1(2z+2ét)

k1€Z

The second inequality follows from a simple case-by-case analysis. That the sum on the
left-hand side is bounded by C'N is also obvious. Thus, we are left to show

Z TkGQﬂiky

keZ

1
< 1.

for < |y[ < 1.

For the purpose of proving (1.3), we first replace the multiplier 73 by a real-valued function
that coincides with 75 for every k € Z. Let ¢n: R — [0, 1] be a smooth, compactly supported
function with ¢n(n) = oy, for all n € Z as well as |¢y(y)| < + and [¢}(y)] < 7z for all
y € R. Define

v B 01 o) = on([o2] +u) on([5] )

for all y € R, and observe that [\ (y)| < + and |¢% (y)| < 3% for any y € R. Also, we see
that 7, = ¥y (k) for all k£ € Z. We denote by ]—'2;1 the inverse Fourier transform given by

Frlh)e) = [ s de

n
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for all f € S(R™). By the Poisson summation formula, cf. [Gra08, Theorem 3.1.17],

S U (R < 315 )y + R
keZ keZ
Note that
—1 _ 1 @ omige < 1
7m0 = oz [ (g™ ) (©) de] < skl S ige 0 0.

1 1
Therefore, for & < |y| < 5

1 1
k) <

This completes the proof of (1.2), i.e

; 2
§ :O_ne27m(nz+n t)

nel

2 <> ! 5 (1.4)

dzay N[22 + 26tz + )

To estimate this further, we write ¢ = ¢ +m + 7 for some |7| < qiN and m € Z. Hence,
20t = 2= 4 20m + 207
q
For any k € Z, we define b(k) = ak (mod q), b(k) € Zy == {0,1,...,¢ — 1}. Since a and ¢

are coprime, a is invertible in Z, and the mapping k — b(k) is a bijection Z, — Z,. Hence,
for each k € Z, there are at most [%1 different values ¢ € {¢ € Z : |¢{| < 4N} such that

b(¢) = b(k). Moreover, for each r € {0,...,[g/2]} there exist at most four different b € Z,
such that . )

I« ‘2x+2—H <t

q q\7z q

We conclude that for each r € {0,...,[¢/2]} and

Nr::{éeZ:|£|§4N, ZSH%JFQMH <i}
q q llz q

we have |[N;| < C’%. Define R := U}"O:O N,.. We distinguish two cases: the resonant case £ € R
and the non-resonant case ¢ ¢ R. The latter does only exist if ¢ > 20.

We consider the non-resonant case first, i.e. £ € N, for some r > 10. Since || < 4N, we see
that

b(¢)

8
122 + 20t = H2x+2—+2£THZ > “‘2x—2 r
q

—2€|T|‘2———>
Z q

b(¢) r
| 225

We may estimate the corresponding contribution to (1.4) by

q/2
1 1
Z NZZMN Z S (1.5)

(TR N(||2z + 2¢t|z + +
|e|<aN

We are left with the resonant case. Fortunately, there are only |R| < % of them. Hence,

it is easy to see that the contribution from the resonant case is bounded by C % -N. We
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can improve this bound further provided |7| > x=. Indeed, let b € Z; be fixed now and set
My = {l € R :b{) = b}. Note that the gap between two consecutwe elements in M, is ¢
and that for £ € My,

b
122 + 26| = H2m TPl QeTH .
q z
Since R is the union of at most 44 sets My, there exists Cy > 0 such that
{12z + 2¢t||z : L e R}

is contained in at most C arithmetic sequences with increment 2¢|7|. Thus, we may estimate
the contribution from the resonant case by

Z : 12§00iz . :

fem N(l2w+20tla+ 3)° T N G (dalrl + 3)°

2]q\7'|<1/N 2]q\T|>1/N

provided |7] > # In any case, we proved

1 N2 1 }
< ming —, — o 1.6
2 1)? { q  q|7| (16)

i N (1122 + 20t]|z + )

Recall that 7 =t — & — m. Then the conclusion follows from (1.5) and (1.6) since

2 2
S artertot g g b s
Tl Y (14 N - 2%

O

Remark. Guo—-Oh—-Wang [GOW14, page 991] discussed the role of the coefficient sequence:
Consider the Weyl sum without the coefficient sequence

Wi(t,x) = Z e2milnztn®t)
In|<N

Choosing (o,,), to increase respectively decay like % in [-2N, —N] respectively [N,2N], we

may write
2N -1

ZO_ e27m(nz+n t) Z Wk t x

nez

Hence, the regularizing effect of (0,,),, may be compared to the regularizing effect of the Fejér
kernel over the Dirichlet kernel, cf. [SS03, Section 5.2]. O

For estimating the contribution from the minor arcs, we use the next three lemmas. The first
result is due to Peter Gustav Lejeune Dirichlet (1805-1859). The statement is taken from
[Vau97, Lemma 2.1], where a proof is provided as well.

Lemma 1.42 (Dirichlet’s lemma). Let t denote a real number. Then, for each real number
N > 1 there exists a rational number % with ged(a,q) =1, 1 < ¢ < N, and

a 1
-2 <
ql — gN
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For brevity we define the following function which equals the exponential sum in Lemma, 1.38
except of a dilation of 27 in the argument of the exponential function. Let (¢,), be a sequence
as given in Lemma 1.38, then we define

Fy(t) =Y o 20 (1.7)
nez

The next lemma shows that a better point-wise estimate than the trivial bound |Fy(t)| < 4N
can be obtained whenever ¢ is in the minor arcs.

Lemma 1.43. Let N > 1 and F, as in (1.7). There exists C > 0 such that for all t € m,
|[Fy(t)] < CN'~3,

where C does not depend on b.

Proof. Let t € m. By Dirichlet’s lemma, there exists a reduced fraction % with 1 < ¢ < N
and [t — 2] < qiN. Since t € (NV72,1 — N¥~2), it follows that 0 < a < ¢ < N.

On the one hand, if 1 < ¢ < NV, then [t — 2]z = [t — 2| > N"~2 because otherwise ¢t would
be in the major arcs. Applying Lemma 1.41 yields

[Fp(t)] < C

N < ‘ a L v
anl/2y — — :
Va(l+ Nt - 2|1/%)

If, on the other hand, N¥ < ¢ < N, Lemma 1.41 implies

N N v
|Fy(t)| < C < — <(CN'"z.
1+ Nt —2|)/%) ~ V4
Va(l+ Nt —2]77) n
Remark. Note that the previous proof corrects the proof of [Her13, formula (33)]. O

We also rely on a Hua type lemma. See [Vau97, Lemma 2.5] for a more general version. This
is the endpoint case of Lemma 1.38, which has an additional loss of €. This loss, however, can
be compensated in the minor arcs. We shall provide a proof of this well-known result for the
sake of completeness.

Lemma 1.44 (Hua’s lemma). For any € > 0 there exists C. > 0 such that for any N > 1
and Fy, as in (1.7), the estimate

1
1 Fo|l 14 (j0,2q]) < CeN2He

holds true.

Proof. The proof follows the idea of [Bou89, formulas (1.3)—(1.6)] for the reduction to the
number of lattice points estimate and [Herl3, Appendix A, b)| for the bound on the lattice
points.

We apply the Parseval identity with respect to ¢ and obtain

2N
HFbH;([O’%D:H Z 00y 2T (M) = (40?8
mn=—2N

2 2

<

~

L2([0.27])  ken

> 1

(m—n)(m-+n+2b)=k
1<m,n<N

)
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where N := {k € Z : I3m,n € [-2N,2N]NZs.t. k = (m + b)2 — (n + b)2}. Obviously,
INV| < 16N2. Hence, it suffices to show that for any ¢ > 0 there exists C. > 0 such that for
any N > 1,

sup  |[{(n1,n2) € N?:ny,ng < N, ni(ng +b) = k}| < C.N*. (1.8)
keN, beNy

If 0 < b < 10N? this is a consequence of the number of divisors estimate. We refer the reader
to [HW79, Theorem 315] for more details.

If b > 10N?, then the set contains at most one element. Indeed, the imposed restriction is
equivalent to

k ning
ng=-——
T b
For fixed k € N and 10N2 < b € Ny the set Ulém,naSN{% — #5221 is contained in an interval
of size less than one. Thus, there is at most one possible ny. ]

To treat the major arcs, we first prove a distributional inequality. This shall be used after
writing the LP-norm in terms of the distribution function.

Lemma 1.45. Let A > 0. For every € > 0 there exists C. > 0 such that for any N > 1 and
Fy as in (1.7),
[{teM: |Ft)] > A}| < C.NPFEA,

where the constant C. is independent of b.

Proof. Let 0 < a < ¢ < NY with ged(a,q) = 1 be fixed. In view of Lemma 1.41, we trivially

see that
N
M(q,a) : Al 1.9
{te . x/5(1+NHt—§|!2/2)> }' -

Suppose ¢ € M(q, a) is such that ||t — 2|z > g *A72, then

Ht € M(q,a) : |Fp(t)| > )\H <

N
Va(l+ Nt - 2)l/%) ~

Hence, the set in the right-hand side of (1.9) contains only those ¢ € (g, a) that fulfill
[t— %1z < g~ 'A72. From the imposed condition of the set on the right-hand side of (1.9), we

get that \ < %. These two observations lead to

[{t € M(q,a) : |F(t)] > A} Sq A2 S g2 aNZrene (1.10)

for any € > 0. Since the M(q, a) are disjoint, we get

N
[{tem:BMWI>A= " Y [{teMiga):|FH)]> A}

q=1 1<a<gq:
gcd(a,q):l

We then use (1.10) and estimate the sum over a by ¢ to get

Nl/
[{teM:|F)] > A} <Y g T2 NHENTIE < GNP
q=1

as asserted. O
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Now, we have all the ingredients, which we shall use to prove Lemma 1.38.

Proof of Lemma 1.38. The estimate is trivial for p = co and for N = 1. Hence, we may
assume 4 < p < oo and N > 1.

From the 27-periodicity of the exponential sum, we notice that we may assume I = [0, 27] if
the constant is adjusted depending on |I|. By a change of variable, it suffices to show

1
; 2
/ § :0n627rz(n+b) t
0

P 1
dt :/ |Ey(t)|P dt < NP2,
nez 0
We split the integration over [0, 1] into 9t and m. We consider the minor arcs first:

—4 1 5
[ 1R@ra < (s mol)" [ IR@ S (v Epinee g e
m tem 0

provided 0 < & < §(p — 4). Here, we used Lemma 1.43 and Lemma 1.44.

For the major arcs we write the LP-norm in terms of the distribution function and apply
Lemma 1.45:

AN AN
/ |Fy(t)|P dt < p/ ALt e M B ()] > A} dA S N2+€/ NP5 g\ < NP2, -
m 0 0

1.4 Riemannian manifolds

A brief introduction to Riemannian manifolds and some statements that are needed later
are provided in this section. From Definition 1.46 to Definition 1.50 we follow (sometimes
verbatim) Chapter 1 and Chapter 3 of the book [Jos11].

Definition 1.46 (Manifold). A manifold M of dimension n is a connected paracompact
Hausdorff space for which every point has a neighborhood U that is homeomorphic to an
open subset 2 of R™. Such a homeomorphism

z: U —=Q

is called a (coordinate) chart. An atlas is a family {U,,zq}o of charts for which the U,
constitute an open covering of M. A compact manifold is a manifold which is compact as a
topological space.

Remark.

(i) A point p € U, is determined by z,(p). Often the index « is omitted, and the com-
ponents of z(p) € R™ are called local coordinates of p. It is customary to write the
Euclidean coordinates of R™ as

and these are considered as local coordinates on M when x: U — € is a chart.

(ii) A compact manifold has a finite atlas {Uq, Zq }a=1,. K- O
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Definition 1.47 (Differentiable manifold). An atlas {U,, 2o} on a manifold is called differ-
entiable or smooth if all chart transitions

zg0x,": 20(Uy NUg) — 25(Us NUp)
are differentiable of class C°.

Remark. If M and N are smooth manifolds, the Cartesian product M x N also naturally
carries the structure of a differentiable manifold. If {U,, o }aca and {V3,ys}scp are atlases
for M and N, respectively, then {U, X Vg, (Za,Ys)}(a,8)caxp 18 a differentiable atlas for
M x N. O

Definition 1.48 (Tangent space & derivative).

(i) Let x = (z',...,2") be Euclidean coordinates of R", Q C R" open, zg € €. The tangent
space of £ at the point xg,
T f2,
is the space {xg} x E, where E is the n-dimensional vector space spanned by the basis
0 0
BaTr " Ban

(ii) If @ € R™ and Q' C R™ are open, and f: Q — ' is differentiable, we define the
derivative df (xg) for xy € Q as the induced linear map between the tangent spaces

n m

"9 Of7 0
. / pu— t ?
df(v0): T = Tr)Y, v= ;” o ZZ” Or (xO)afj'

i=1 j=1

Definition 1.49 (Riemannian manifold). A Riemannian metric on a differentiable manifold
M is given by a scalar product on each tangent space 7T,M which depends smoothly on the
base point p € M. A (smooth) Riemannian manifold is a differentiable manifold, equipped
with a Riemannian metric.

Remark. In local coordinates = = (z!,...,2"), a metric is represented by a positive definite,

symmetric matrix
(965(%)) 1 j=1, .0

where the coefficients depend smoothly on z. Since the smoothness does not depend on the
choice of coordinates, smooth dependence on the base point p as required in Definition 1.49

can be expressed in local coordinates. [Josl1, pages 13-14] %
The product of two tangent vectors v,w € T,M with coordinate representations (v!,...,v")
and (w!,...,w"), ie.v =31 0 8% and w =37, wf%, then is

n

(v, w) = Z Gij (m(p))viwj.

ij=1

0 9
oz’ QxJ

In particular, ( ) = gij. Similarly, the length of v is given by
1
o]l = (v,v)2.

The integration of a smooth, compact Riemannian manifold with boundary can now be easily

understood. The volume factor
\/g =/ det(gij)
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is used for the integration of functions F: M — C,

/ F(x)\/g(z)da' ... da"
M

The integral is independent of the choice of the coordinate representation, see [Jos11, page 14].
The space LP(M) is defined as all functions f: M — C for which the following expression
exists and is finite

1
lan = ([ PVt dst...a)’
It is natural to define the L?(M)-product
(fiP) 2 /f h(2)\/g(x)dat ... da™
for f,h € L?(M) such that

1A llz2n = (£ D) 2

We now extend the Euclidean Laplace operator A = 2?21 59—;2 to Riemannian manifolds. Let
j

M be a Riemannian manifold of dimension n with metric tensor g;; in some local coordinates
(zt,...,2"). Let f: M — C be a function on M. The gradient is defined as

N~ 00
Vol = Z 4 Dt Oz’
1,j=1
where (¢9); j=1,..n = (9i5); ) ii=1,..n- One easily checks |V, f| = |df|. Furthermore, the diver-
gence of a vector field Z = ZZ L Zl 82«1 :
. 1 &0 Z 9
2= 282 = 2§ ()
Vi

Definition 1.50 (Laplace—Beltrami operator). The Laplace—Beltrami operator of a smooth
function f: M — C is defined as

n

1 9 . Of
Bol = v Wl = fwzlaxz(ﬁgjﬁ)

In this thesis, we do not work with the definition of A, given in Definition 1.50 but with the
properties of its spectrum and eigenfunctions: If M is assumed to be compact, the spectrum
0(—=Ay) = { Mk }ren, is discrete and positive, i.e. Ay > 0 for any k£ € Ny. By reordering the Ay,
we may assume A\, < A1 for every k € Ny. Furthermore, Ag = 0 and Ay — +00 as k — +o0.
There exist corresponding eigenfunctions {yy }r which define a complete orthonormal system
in L2(M). Hence, if B}, denotes the eigenspace corresponding to the eigenvalue \; for k € Ny,

then -
- DL
k=0
i.e. for f € L2(M) we have
= (fen) r2ner(@),
k=0
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where the series converges in L?(M). For more details on this, we refer to [Shu01, Section 8.3],
[Tay11, Chapter 8], and [Jos11, Section 3.2]. Furthermore, let hy: L?>(M) — L?(M), hi(f) =
(f,¢r)r2(m)Pr denote the spectral projector onto the eigenspace Ej. For later usage, we

define the projector
Pn = Z hy,
keN:
Imle[n_lvn)

for n € N. We fix a smooth, non-negative, even function n: R — [0,1] with n(y) = 1 for
ly| <1 and suppn C (—2,2) to define a partition of unity. For a dyadic number N > 1, we
set

nn(y) = n(%) - n(%) and 11 (y) = n(ly|) (1.11)

for y € R. Note that suppny C (—2N,—N/2) U (N/2,2N). For dyadic N > 1 we define the
smooth projectors of dyadic scale as

Py =Y nn(VA)he and Poyi= > Py (1.12)

keNg M<N

Remark. The smooth projectors Py are bounded operators from LP(M) to LP(M) for any
1 < p < oo [Tay74, Theorem 2.2]. See also [SS89, Xu07] for more general results. O

Example 1.51.

(i) If M = T", then the set of eigenvalues {\}ren, is given by {|¢|> : € € Z"}. The
eigenfunctions are given as {z — €€ }¢czn. [Zel08, Section 2.3]

(ii) If M = S" equipped with the standard metric, then A\, = k? + (n — 1)k, k € Ny,
and the multiplicity of the eigenvalue A\ equals % (’HZQ). The eigenfunctions to
the eigenvalue A\ are the n-dimensional spherical harmonics of degree k. See [Tayll,
Chapter 8, Corollary 4.3] and [Zel08, Section 2.3]. O

The Sobolev space H*(M) can be defined now.

Definition 1.52 (Sobolev space H*(M)). Let s > 0. The Sobolev space H*(M) shall be
defined as H5(M) = (1 — Ag)fgLQ(M) endowed with the norm

sy = (VM Wk Dl )
k=0
where (z) = (1 + |x|2)%
Remark.

(i) Due to the L?-orthogonality of the spectral projectors, we have

2
ey = (3 V2P Ao

N>1

(ii) Apparently the first comprehensive study of Sobolev spaces on Riemannian manifolds
is due to Aubin [Aub76, Aub82]. The idea is to replace partial derivatives in R™ by
covariant derivatives in order to define Sobolev spaces of integer order. Let V, with
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a = 1,...,n be the covariant derivative with respect to a given local chart. For a
complex-valued smooth function and k& € Ny we define

n

|ka|2 — Z galﬁl ---go‘kﬁ’“Val "'Vakf'vﬁ1 Vﬁkf

Qlyeens 0, 150,86 =1

In particular, [VOf| = |f| and |V!f|? = |V f|. Then, for 1 < p < oo and k € Ny one may
define the Sobolev space W#P(M) as the completion of {h € C(M) : ||h||yy .0 vy < o0}
with respect to the norm

k
1 lwreary = IV Fllzean
=0

In 1983, Strichartz [Str83] (mainly in Section 4) introduced fractional Sobolev spaces
as HP(M) = (1 — Ay)"2LP(M) for 1 < p < oo and s > 0. For k € Ny these
spaces coincide with W*P(M), cf. [Tri92, Section 7.4.5]. We refer the reader to [Tri92,
Chapter 7], [Aub98, Chapter 2|, and [Heb99, Chapter 2-3] for more details.

(iii) Sobolev embeddings for W*P(M) may be found in [Aub98, Theorem 2.20]. In the case
M =T", Sobolev embeddings for H*(T") were studied in [ST87, Section 3.5.5]. O

We rely on the following linear spectral cluster estimate in the L*°-norm due to Sogge [Sog88,
Proposition 2.1] and some other immediate consequences. Due to the obvious relation to
Bernstein’s inequality, we sometimes refer to this as Bernstein’s inequality in the sequel.

Lemma 1.53. Let M be a smooth, connected, compact manifold without boundary of dimen-
sion n > 2.

i) There exists C > 0 such that for all f € L?>(M) and any k € N
(1) y :
n—1
IPefllreeary < CkZ || fll L2

(ii) Let 2 < p < co. There exists C > 0 such that for all f € L>(M) and any dyadic N > 1,

1

l
1Py flloary < CN™E70)| Py £l 2 s

(117) Let 2 < g < p < oo. There exists C > 0 such that for all f € LY(M) and any dyadic
N>1,

n(l_1
1Py fllzoary < ON™G 0| P f |l paas

Proof/Reference. The first inequality was proved in [Sog88, Proposition 2.1].

In order to prove the second estimate, we first deduce from applying (i) and the Cauchy—
Schwarz inequality that (cf. [Herl3, Lemma 3.4]):

2N

1PN fllzeeany < Y lloe(Pafllzean S Z KT || Py f 2 o) S N2IPy fll e
k=N/2 k=N/2

Now, an interpolation type argument yields the claim: Let 5= 9 then

1PN Fleoary < WP FI T2 | P Fll 0 S N G Py fll2n
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We are not aware of any proof of statement (iii), hence, we prove it here in detail. Tt suffices
to prove the dual estimate

1Pxgll ey < CN"G 2| Prgl (1.13)

for all g € Lp/(M) and any N > 1. Indeed, assuming this, we define Py = Pyjo+ Pn + Pan
for N > 1 and ]51 = P + P, and deduce

1Px fllzoany = sup '/ Pyf(x)Png(w)dz| < sup [Py fllLaan 1PNl Lo ar)
ger? (M geL? (M):
191 (3py <1 191, 0y <1
n(t-1) n(t-1)
<CN"a v sup  |IPNflleanllgll o vy < ONTa 2Pl pa
geL? (M):
lgll o (nry <1

The dual estimate (1.13) is a consequence of the dual estimate of (ii),

I1Pxgll 2y < ON™7 0| Prgll 1 any:

and an interpolation type argument. Indeed, choose 0 < ¢ < 1 such that i, =3 v 41 , , then

In(t_L
1Px9lle ary = IPNGE2n) | PRSIy < CNTET2 I Prgll o g
Noting that Jn(3 — 1—1)) = n(% - %) gives the desired result. O

Burq-Gérard—Tzvetkov [BGT05a, Lemma 2.6] proved the following smallness of the product
of four eigenfunctions on M, where one of the corresponding eigenvalues is much bigger than
the three others. We refer the reader to [Han12, Theorem 4.2] for a more general result.

Lemma 1.54. There ezists K > 1 such that for any v > 1 there exists C, > 0 such that for
any fj € L*(M) and eigenvalues Ay € 0(=Ay), j=0,1,2,3, with K\, < Ay, 7 =1,2,3,

' / o (J0) (@) Bt (F1)(@) g (F2) () By (f3) ) der| < €y ()™ an]nLQ(M

Using this result, we may prove the following two crude Sobolev multiplication type inequal-
ities for the fractional Sobolev spaces introduced in Definition 1.52. To our knowledge, the
following lemma has not been stated anywhere else in the literature. Hence, we give the
proof.

Lemma 1.55. Letn=3, s >0, and o > % Then there exists C' > 0 such that the following
inequality holds true for all f,g € H*(M)N H° (M),

£ gllzz=ary < C (1 esan gl e vy + 1 e any g1l 12 (ar)) -

Proof. Let K > 1 be the constant given in Lemma 1.54. Then, for A > 0 and a function
f € L3(M) we define

fer = Z he(f),  fox= Z he(f), and  fox=f— fex— for

{eNg: {eNg:
K<\ KA<)
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Let us recall the definition of the H*-norm

W lecan = (Z<@>%Hhkfuiw>)

k=0

NI

Obviously, given k € Ny we can decompose the product

hk(fg) = f<<>\kg<<)\k + fN)\kg + ng)\k - fN)\ngAk + f<<>\kg>>)\k + f>>)\kg<<>\k + f>>>\kg>>)\k'

Thanks to Lemma 1.54, we may estimate the terms fey, g<r., fer g0, and fisx, g,
easily. Indeed, the first term, for instance, can be treated in the following way:

Z SHhk f<<>\kg<<)\k)HL2(M < Z 8< Z Hhk(hf(f)hm(g))Hm(M)) :

k=0 k>0 £e€Ng: KXp<Ap,
mENg: KAm <A

By duality, we may write

(e £ () | oy = s \ [ He@)hn(0) a0 0) .

veEL?(M
||U||L2(M)

Applying Lemma 1.54 with f3 = 1, which is the eigenfunction corresponding to the eigenvalue
0, we get
Hhk(hz(f)hm(g))HLa(M) Sy O T 2 9l 22 any

By the Weyl asymptotic, see e.g. [GS94, Chapter 12|, summing over ¢, m, and k yields

o) 1
2
(A el o) S W lizanlslzzon
k=0

provided 7 is sufficiently large. The terms fey, g2, and fsn, g« can be handled similarly.
To estimate the contribution coming from fg.,,, we proceed as follows:

o0 [e.e] o0

S VA (Faan) T2 < DAV 1 gnT2an < D VAR 117 g, 172

k=0 k=0 k=0
S IF Wz ary N9l s o -
(1.14)
The same argument yields

o0

> VA M (Fone T2 ary < 1 1T 19157 ar)-
k=0

Using ¢! C ¢? and Cauchy-Schwarz, we also estimate
g

o0 o0

QSHhk JN}\ng)\k ”12 M) QS”JN)%HIQ M) HQNAkHl,OO M
( ( (M)
k——O k——O

S 1%y Z lgne 7o ary < W amy 9l e cary
k=0
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where in the last step we used

[e.e] [e.e]
> lgendlZeary £ D (VM gendZaary < 9l ary
k=0 k=0

Now, it remains to estimate the term fs), gs,. First, we note that it suffices to consider
> teNo: Kap<n, 1e(f)g~n, since the other contributions are bounded by C||fl|rz2(anllgllLz(ar)
which can be proved using Lemma 1.54. We find that

o) 2 2
> (VAR hk< > hulf gN)\[) <Z< D (V| (e )QNM)HLQ(M)>
k=0 ¢eNg: k=0 ¢eNg:

KX, <\g KXAp<Xg

using the triangle inequality and A < Ay. Hence,

(S 5 nam)[,) =S (St i)

1
2

k=0 ¢eNo:
K<)
<Y VA e () g, lz2a)-
=0

Holder’s estimate, Bernstein’s inequality, and Cauchy—Schwarz yield

o0 o0

S S 3
S WA e Hgenlzzan S D VA 2 he( D)l zan g lzaey S Il anllglme

=0 =0
which finishes the proof. O

Remark. On R" Lemma 1.55 is known to hold if one replaces H? by L, see e.g. [Tay00,
page 104, formula (0.22)]. O

A similar result holds if we assume that one function is more regular than the other.

Lemma 1.56. Letn=3, s >0, and o > % Then there exists C' > 0 such that the following
inequality holds true for all f € H*(M) and g € HT7 (M),

1 allmsaey < C U lars a9l ize ary + I f L2 an gl s+ (ary) -

Proof. We highlight the differences to the proof of Lemma 1.55.

All estimates in the previous proof are sufficient except of (1.14). This inequality may be
replaced by

o0

D VAP (g T2 ary < Z A2 122 an lgn oo ary < IF 122 an 190 e ary:

k=0 k=0

where we used Bernstein’s inequality. O

1.5 Dispersion

The Schrédinger equation is one of the most studied dispersive equations. We provide a brief
introduction to dispersive equations in this section. A short introduction to the NLS on the
Euclidean space and on compact manifolds is given and we continue the discussion about
differences in the study on those domains that was stated in the Introduction.
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1.5.1 Dispersive equations

We follow the nice introduction given by Natasa Pavlovi¢ and Nikolaos Tzirakis at the MSRI
Summer Graduate School “Dispersive Partial Differential Equations” in 2014 [PT14]. Consider
a partial differential equation on R™ without boundary conditions. Informally speaking, this
partial differential equation is said to be dispersive if its solutions spread out in space as they
evolve in time. We give another characterization after the following example that can be
found in [PT14, pages 1-2].

Example 1.57. The linear homogeneous Schrédinger equation on the real line is given by
z'(?tu + Qmu = 0,

where u: R x R — C is a function. We are looking for a simple wave solution, i.e. for u of the
form
u(t, ) = Ce'tFe=wb),

By plugging this into our equation, we see that u satisfies the equation if and only if w = k2.
Hence, the frequency is a real-valued function of the wave number k. If we denote the phase
velocity by v(k) := ¢, then

u(t,x) _ Ceik(zfv(k)t).

From this, we see that the wave travels with velocity k£ and that waves corresponding to large
wave numbers k propagate faster than waves belonging to small wave numbers.

If we choose the same wave solution ansatz for the heat equation,
Oy + Oppu = 0,

then we obtain iw = k2. Therefore, the solutions decay exponentially in time. Using this
ansatz, one can also see that the transport equation dyu — d,u = 0 and the one-dimensional
wave equation Oyu — Ozru = 0 have traveling waves with constant velocity. O

Dispersive equations may also be characterized by the support of the space-time Fourier
transform of their solutions. If the space-time Fourier transform is supported on hyper-
surfaces that have non-vanishing Gaussian curvature, we call the partial differential equation
dispersive. The following example can be found in [PT14, page 2].

Example 1.58. Consider the linear homogeneous Schrédinger equation on R™
10pu + Au = 0.
The space-time Fourier transform fulfills
i(r, €) — €1 a(r, €) = (1 — [¢*)a(r,€) = 0.
Hence, 4 is supported on the paraboloid
{(r.) e RxR" : 7 = [¢[?},
which has non-vanishing Gaussian curvature.

The linear wave equation dyu — Au = 0 on R™, on the contrary, is supported on the cone
{(1,€) e RxR"™: 7 = |{|}, which has one direction in which the principal curvature vanishes.

O
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Adding some nonlinear effects to a dispersive equation, like
i0pu 4+ A+ |ulP "y =0

for some p > 1, makes the analysis of this equation much harder. If u is very small, then
solutions to this equation behave almost like linear solutions since the linear term dominates
the nonlinear term. However, if u is large, then the nonlinear term dominates and may cause
concentration or blow-up in finite time. In general, one expects a competition between the
dispersion and the nonlinearity.

Some popular examples of nonlinear dispersive equations are
o the nonlinear Schrédinger equation

i0iu + Au — |ulPlu =0, uw:RxR"—=C, p>1,

» the Korteweg—de Vries equation

Ou+ Opppt +ud,u =0, u: RxR — R,

o the nonlinear Klein—-Gordon equation

O — Au+u+ [uPlu=0, wu:RxR" =R,

The first two equations illustrate well in which different ways the nonlinearities and the disper-
sion interact. On the one hand, the global energy solution to the NLS as stated above satisfies
a certain decay in time, see e.g. [CKS*08, Theorem 1.1] on R?, that weakens the influence of
the nonlinear term. Hence, for large times the dynamics of the NLS may be compared with
the linear problem (scattering property) [SS99, Theorem 3.21|. On the other hand, this is not
possible for the Korteweg—de Vries equation. Indeed, the dispersion and the nonlinearity are
balanced in such a way that there are solitary waves solutions. These are waves that keep
its form and size and just translate as time evolves [LP15, formula (7.6)]. Hence, a similar
scattering effect cannot be present for solutions to this equation.

A partial differential equation which is posed on some compact Riemannian n-manifold with-
out boundary is called dispersive if the corresponding equation on R™ is dispersive. In this
setting, we expect a different behavior. The reason is that due to the compactness of the
domain, the dispersion is limited. How this can be understood is addressed in the next sub-
section.

1.5.2 The Schrédinger equation

Some basic facts about the linear and the nonlinear Schrédinger equation on R™ are briefly
introduced and the terms (energy-)critical and (energy-)sub-critical are defined. Then, both
the linear and the nonlinear Schrédinger equation on compact manifolds are considered and
related to the respective equation on Euclidean domains.
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Euclidean domains

First, we consider the linear equation. For ¢ € S(R™) the function

it —1 (=il 3 () — 1 ol ul®
o) = Fal (9N = ey [ w120

solves the linear Schrodinger equation

10w +Au=0 in R xR"
u(0,-) =¢ onR".

We refer the reader to [Caz03, Lemma 2.2.4| for more details. From the definition of the
solution formula, it is obvious that the L?-norm of the solution is conserved in time, i.e.
\|eitA¢\|Lz(Rn) = [|¢[lL2@ny for any ¢t € R. Moreover, the solution satisfies the so called
dispersive estimate:

€2 Gl < (@t 210l

These two observations imply, by interpolation, the well-known estimate [Caz03, Proposi-
tion 2.2.3|

; —n(i-1 ! ron
€2 ¢l oy < () "7l o gy, ¢ € LY (R™), (1.15)

where ¢’ is the conjugated Holder exponent of 2 < ¢ < co. From this, it is not hard to see that
the Schrédinger flow does not preserve any LP(R™)-norm other than the L?(R"™)-norm. The
estimate (1.15) is the fundamental ingredient to the important Strichartz estimates [Caz03,
Theorem 2.3.3|

||€itA¢||LP(R,Lq(Rn)) < C\|¢||L2(Rn), NS L2(Rn)a (1.16)

which hold for every Schridinger admissible pair (p,q). These are pairs (p,q) that fulfill
2 = n(% - 5) with 2 < p,q < o0 and (p,q,n) # (2,00,2). These estimates are named after
Robert Stephen Strichartz (born 1943) who proved the inequality in the case p = ¢ [Str77].
Further contributions came from [GV84, Yaj87, KT98]. On the other hand, for functions
f € L*(R") with suppf C [-N, N]™, Bernstein’s inequality, see e.g. [Tao06, formula (A.6)],

implies
€72 £l oo xRy S N 2| fllz2(Rn)-

By interpolation with the Lﬁz—estimate for p = An+2) + ) given by (1.16), one obtains for f €
L2(R™) with supp f C [~N, NJ",
. n_ n+2
||€ZtAfHLP(Ran) SN2 [ fllzzmmy (1.17)
for 2nt2) <p< oo
n

Equipped with these Strichartz estimates, one may study well-posedness results for the non-
linear equation

i+ Au = aluP'u in R xR
{ ! [ (1.18)

u(0, -)=1¢ on R",
where ¢ € H*(R"™) for some s € R. If & = 1 the equation is called defocusing and if o = —1
it is called focusing. One major question in the well-posedness theory is: for which s € R can

one expect reasonable solutions? The scaling symmetry of (1.18) is important for answering
this question. If A > 0 and u a solution to (1.18), then

up(t, x) = )\ﬁu()\Qt, Az)
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2
is also a solution to the same equation with initial data ¢)(z) == Ar=1¢p(Ax). It is easy to

compute that
_ _ ys=se| bl . _n__2
1Pl iz mmy = A7 o (s 8¢ = 5 PR (1.19)
Hence, for n = 3 and p = 5 the Sobolev space H'(R?) is scaling invariant. For fixed s € R we
now study the behavior if A — 0 [PT14, Section 2.1]:

o« If s > s., then the H*-norm of the initial data ¢, decreases as A — 0. At the same
time, the time interval on which the solution wu) is defined increases. For well-posedness
results this is the best scenario. Whenever s is in this range, then the equation is called
(scaling-)sub-critical or H®(R™)-sub-critical.

e If s = s., then the Hs-norm of ¢ does not change as A\ tends to zero, but the time
interval still magnifies for increasing A. In many cases, local or even global well-posedness
results hold true but in most cases one has to work harder than in the sub-critical case.
This case is called (scaling-)critical or H*(R™)-critical.

o If s < s, the H*-norm of the rescaled initial data grows while the time interval magnifies
as A — 0. This is the worst case scenario, and we can not expect even locally defined
strong solutions. For those s, the equation is called (scaling-)super-critical or H*(R™)-
super-critical.

Another important invariance is the Galilean invariance: If u is a solution to (1.18) and
v € R™ is a vector, then A ,

Uy (t, ) = e @Iy (¢ 1 4 20t)
is a solution to this equation with initial data ¢,(x) == e~ @?¢(zx) [SS99, formula (2.3.14)-
(2.3.16)].

The L?-mass and the energy of the solution are defined as

Min()(®) = [ (e, do
and
Egn(u)(t) = %/Rn \Vu(t,z)|? dz + 2% /Rn lu(t, 2) [P da,

respectively. By multiplying the equation by , integrating over R™, and taking the imaginary
part, one formally computes conservation of the L?-mass, i.e.

d
& M (1) 1)
Similarly, multiplying (1.18) by Ou, integrating, and taking the real part (formally) shows

that the energy is conserved as well, i.e.

d

= B (1)1

There are many other invariances and conserved quantities such as invariance in time and space
translation, the Gauge invariance, the pseudo-conformal invariance, and the conservation of
the linear momentum to name just a few. For details about these and more invariances, we

refer to [SS99, Section 2.3].
For p = 5 and n = 3 one easily calculates that for any A > 0,
Egs () = Egs(ua)(0) = Egs(u)(0) = Egs(e).

Together with (1.19), we observe that the energy and the H'(R3)-norm scale equally. For this
reason, the H'(IR3)-critical NLS is also called energy-critical.
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Compact manifolds as a domain

The nonlinear Schrédinger equation posed on a boundaryless compact manifold behaves differ-
ently. After discussing a few of those differences in the introduction, we want to continue this
now. For that purpose, let (M, g) be a smooth, boundaryless, compact Riemannian manifold
of dimension n > 1 with metric g. We shall use the notation introduced in Section 1.4.

As above, we first consider the linear Schrédinger equation

0w+ Agu=0 inlxM
U(O, ):Qb on M,

where ¢ € H*(M) for some s > 0 and I is an interval around zero. The unique solution is
given by

"B g(x) =Y e M (o) (), (1.20)
k=0

where the series converges in the L?(M)-sense. From the orthogonality of {hy¢}ren,, we
immediately infer the conservation of the L2-norm:

||6itAg¢H%2(M) — Z ‘|hk¢‘|%2(M) = ||¢H%2(M)

Now, it is natural to ask whether a dispersive estimate like (1.15) can hold. However, due
to the non-dispersive nature of the geometry, this is not the case. It is easy to construct a
contradiction if we assume

1629 Bl Lagary <

’t’VH(b”Lq

to hold for some v > 0, ¢ > 2, and its conjugated Holder exponent ¢’ < 2. Indeed,

. 1 12
€29 ]l g2 ary < M2 1 €296 aqas < |l L2(m

) < M el g

=T
since M is compact. For large |t| this obviously contradicts the conservation of the L?-norm.
This raises the question how Strichartz estimates look like. Burq—Gérard—Tzvetkov [BGT04,
Theorem 1] proved for a Strichartz admissible pair (p,q) with p > 2 and ¢ < oo that for any
finite time interval I,

€29 @l o(r,paary <1 llol (1.21)

1 .
HP (M)
Compared to (1.16) there is a loss of 1 5 derivatives, but corresponds to half the loss of the trivial
estimate given by Sobolev’s embedding H?/P(M) = H™? ™/9(M) — LI(M). Inequality
(1.21) is not scale invariant and therefore not sufficient for proving critical results. Scale
invariant improvements of this Strichartz estimate are known on a few manifolds. On the
three-dimensional sphere, for instance, the scale invariant Strichartz estimate

| Pne™@9 ) 1o (IxS?) S NiTw 16l r2(s2)

is known to be true for p > 4, see [BGT07, Proposition 5.5.1] and [Her13, Lemma 3.5]?. This
corresponds to inequality (1.17) with exactly the same power of N. Similar estimates are also

“More generally, the aforementioned authors proved the scale invariant Strichartz estimate to hold true for
an arbitrary Zoll manifold.
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known for rectangular tori and for products of spheres, which are addressed in Section 2.3
and Section 2.5, respectively.

Now, we turn to the nonlinear equation

{ i+ Agu = alulPtu in T x M (1.22)

U(07):¢ ODM,

where ¢ € H*(M) and s > 0. Another concept that does not work on compact manifolds
without boundary is scaling. Therefore, we have to define the meaning of sub-critical, critical,
and super-critical. We call (1.22) critical if the corresponding equation posed on R™ is critical.
The terms sub-critical, super-critical, and energy-critical are defined analogously.

By similar arguments as in the previous subsection, one may show that the L?-mass

M(u)(t) == /M lu(t, z)|? dx (1.23)

and the energy

B(u)(t) = % /M Vyu(t, ) de + — /M lu(t, )P da (1.24)

are conserved.

Remark. Note that due to the compactness of M, the spaces LP(M) are nested in each other.
Hence, every sufficiently smooth solution u to the defocusing equation permits the following
a priori bound:

lu@ W ary = @120y + IVu®122 1) S Tl Zo(ar) + E(ult)) < B(u(t)® + E(U(t))o-

Depending on the manifold, there might be other invariances. The Galilean invariance, for
instance, holds on rectangular tori, see Lemma 2.10 for an application, but not on general
compact manifolds without boundary.

As mentioned in the introduction, the lack of dispersion and important mathematical tools,
such as the Fourier transform, require new ideas for studying well-posedness results. In the
next two sections we present methods to overcome these difficulties on specific manifolds,
namely rectangular tori and products of spheres.






2 Local and small data global well-posedness

After a few preliminary remarks in Section 2.1, we prove a conditional local and small data
global well-posedness result for the energy-critical nonlinear Schrédinger equation posed on
a three-dimensional, compact, connected, smooth Riemannian manifold without boundary
in Section 2.2. This conditional result was developed in recent years without a noteworthy
contribution of the present author.

The remainder of this section is devoted to results that are due to the author. The as-
sumption for the conditional well-posedness result is verified in the case of rectangular tori
(Section 2.3) and on products of spheres (Section 2.5). Moreover, Section 2.4 provides a mul-
tilinear Strichartz estimate, which implies a scaling-critical local well-posedness result for the
NLS on two-dimensional tori. The aforementioned results on tori have been published in
[Str14], the result on products of spheres extends a previously published result of the author
and Sebastian Herr [HS15].

2.1 Preliminary remarks

Well-posedness of the nonlinear Schrédinger equation on R™ has been studied extensively.
We give an overview of some important results on the Euclidean space to be able to put the
results on compact manifolds into context.

2.1.1 Relevant results on the Euclidean space

We give a brief review over important results for the NLS on R? with initial data in H'(R3).
Several sub-critical well-posedness results have been obtained amongst other by Ginibre—Velo
[GVT79, GV85], Kato [Kat87|, Cazenave-Weissler [CW88|. In 1989, Cazenave-Weissler [CW89]
considered the energy-critical case and proved that both the focusing and defocusing quintic
NLS are locally well-posed for any initial data in H'(R3). If the energy of the initial data
are small, then the solution is known to exist even globally in time. However, since the time
of existence given by the local theory depends on the profile of the data, the argument in
[CW89] does not extend to yield global well-posedness for large initial data.

Studying large data well-posedness for the energy-critical defocusing nonlinear Schrédinger
equation posed on the Euclidean space R? is delicate. Bourgain [Bou99| was the first who
proved global well-posedness, though, under the additional assumption that the initial data
are radial. Shortly after, Grillakis [Gri00] gave a different proof under the same spherical
symmetry assumption. In 2008, Colliander—Keel-Staffilani-Takaoka—Tao [CKS™08| finally
removed the spherical symmetry assumption and proved that the defocusing quintic NLS
is even globally well-posed for arbitrarily large initial data in H'(R®). In 2003, Christ—
Colliander-Tao [CCT03, Theorem 1] proved that the quintic NLS fails to be well-posed in
H*(R3) for any s < 1. Moreover, they proved that the energy-super-critical focusing and
defocusing NLS fails to be well-posed in H!(R3). Therefore, the well-posedness theory of
quintic NLS in R3 is complete.
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More details may be found in the monographs [SS99, Caz03, Tao06, LP15].

2.1.2 Selected results on compact manifolds

The study of well-posedness results on manifolds is quite new and started with a fundamental
work on the domain T" by Bourgain [Bou93a| in 1993. Before we turn to the study of specific
manifolds, we collect a few results that are known to hold on every compact Riemannian
manifold. In the following we assume any manifold (M, ¢) to be a compact, connected, smooth
Riemannian manifold without boundary. Due to the different behavior of the eigenfunctions
and the eigenvalues (see Introduction), it is hard to establish results that hold true on large
classes of manifolds or even on any manifold.

Early work has been done by Sogge [Sog88| who proved bounds on the LP-norm of spectral
clusters for second-order elliptic operators on compact manifolds. One of his results that is
relevant for our study is the following sharp Bernstein type inequality [Sog88, Theorem 2.2|:
Let 2 < p < 0o, then for every f € L?(M) and any k € N,

n(i_1
D f e ary S K27 o fll 22
holds true.

As mentioned earlier Burq—Gérard—Tzvetkov [BGT04, Theorem 1] proved the Strichartz esti-
mate (1.21). Because of the loss of % derivatives compared to the scale invariant version, one
can not conclude critical well-posedness results from this estimate. However, this estimate is
strong enough to gain global well-posedness in H' of the three-dimensional cubic defocusing
nonlinear Schrédinger equation on any manifold with the properties above, see [BGT04, The-
orem 3|. They even established a similar result for any two-dimensional manifold, cf. [BGT04,
Theorem 2]. The two-dimensional result was later extended by Hani [Han12] who proved that
the defocusing cubic NLS on two-dimensional manifolds M is globally well-posed in H*(M)
for s > %

Bilinear and trilinear generalizations of Sogge’s spectral cluster estimate have been obtained
by Burq-Gérard—Tzvetkov [BGT05a, BGT05b]. Although these estimates hold true on every
manifold M, they only led to good results on manifolds that are spectrally close to spheres
[BGT05a, BGT05b, Herl3, HS15].

General four-dimensional manifolds with Hartree-type nonlinearities has been studied by
Gérard—Pierfelice [GP10, Theorem 1].

We want to emphasize that apart from [Her13, HS15] none of the above results are scaling-
critical. Due to the precise knowledge of the spectrum and eigenfunctions, much more re-
sulfts (even critical) have been accomplished on specific manifolds. These are summarized in
Section 2.3, Section 2.5, and Section 2.6.

Laurent Thomann [Tho(08, Theorem 1.4] established an analogue of Christ—Colliander—Tao’s
ill-posedness result on general analytic manifolds. He proved that there is a sequence of times
t, — 0 and a sequence of smooth Cauchy data with decreasing support and decreasing H*-
norm for s < 1 such that the solution to both the focusing and defocusing quintic NLS at time
t, blows up in the H®-norm as n tends to infinity. Moreover, he showed that the focusing and
defocusing super-quintic NLS fails to be well-posed in H'. Hence, obtaining energy-critical
well-posedness results is of particular interest.

! Actually, Sogge proved the dual estimate.
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2.2 A conditional local and small data global well-posedness
result

A conditional local and small data global well-posedness result is addressed in this section. It
is shown that the energy-critical NLS on any three-dimensional, compact, connected, smooth
Riemannian manifold without boundary is well-posed provided the trilinear Strichartz esti-
mate given in Assumption 2.1 holds. Moreover, the necessity of Assumption 2.1 is discussed.

2.2.1 Sufficiency of the condition

The result discussed in this subsection was proved in [HS15, Section 3| building on earlier
results [HTT11, Herl3| and the standard contraction mapping principle. We would like to
point out that this was essentially a contribution of Sebastian Herr and not of the author of
the present thesis. We take the opportunity to review the complete argument and to expand
it to a complete proof.

Let (M, g) be a three-dimensional, compact, connected, smooth Riemannian manifold without
boundary. The Cauchy problem

{ i0pu + Agu = £|ul*u (2.1)

u(oa ) =9
with initial data in ¢ € H*(M) for s > 1 is studied. The aim of this subsection is to
prove existence and uniqueness of a solution u in a suitable function space and its Lipschitz

continuous dependence on the initial data provided a certain trilinear Strichartz estimate
holds true.

In the sequel, we use the notation introduced in Section 1.4 and Section 1.5.2, and we as-
sume:

Assumption 2.1. There ezxist an interval 7o 2 [0,1) and 6 > 0 such that for all ¢1, P2, P3 €
L?(M) and dyadic numbers N1 > No > N3 > 1 the following estimate holds true:

N, Ny

3
itA, |
H Pr;e" ™0 ¢,
7j=1

Ny 1)\’ 2
< (— ; ) NoNs T 1P, 652y (2.2)
L2(tox M) j=1

This inequality has been proved for the flat standard torus by Herr—Tataru-Tzvetkov [HTT11,
formula (26)| and for arbitrary rectangular tori by the author of this thesis [Str14, Proposi-
tion 4.1]. Furthermore, Herr [Her13] verified Assumption 2.1 on Zoll manifolds. The verifica-
tion of this trilinear Strichartz estimate for S x S? in [HS15, Proposition 2.6] was essentially
a contribution of the present author.? We review the author’s proof of Assumption 2.1 for
rectangular tori in Section 2.3. Moreover, in Section 2.5, we give the first proof of (2.2) for
M =S8 x 812)7 where 812) is the embedded sphere of radius p > 0 in R?, which extends the result
given in [HS15].

2Note that in the case of Zoll manifolds and S x S? spectral projectors with sharp cut-offs have been used, say
Pﬁf , and hence, (2.2) holds only for those projectors. However, from the L?-boundedness of these sharp
projectors and from the identity ij = PN/2 + Pn + Pan, it is easy to see that this implies (2.2) with
smooth cut-off projectors as stated in Assumption 2.1.
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Suitable function spaces based on UP and VP, which are crucial in the study of critical
well-posedness problems on compact manifolds, have first been constructed by Herr—Tataru—
Tzvetkov [HTT11, Definitions 2.6-2.7]. They defined similar function spaces as X* and Y
below but with unit scales instead of dyadic scales. In [Her13, Definition 2.3], Herr introduced
resolution spaces with dyadic scales (such as X*® and Y* below) and used them to establish
well-posedness on three-dimensional Zoll manifolds. In [HS15, Section 3], Sebastian Herr fi-
nally observed that given Assumption 2.1, local and small data global well-posedness can be
proved for every compact, connected, smooth, boundaryless, three-dimensional Riemannian
manifold using the same dyadic scale resolution spaces X* and Y* on every manifold. This
unifies the well-posedness results in [HTT11, Her13, Str14, HS15].

Following [HS15, Section 3|, we work with the following resolution spaces.
Definition 2.2 (Resolution spaces). Let s € R.

(i) The space X* is defined as the space of all u: R — H#*(M) such that e~"%9 Pyu € U?
for all dyadic N > 1 and

1

. 2
el = (Z N%ue-“%PNu||%]g) < +o0.
N>1

(ii) The space Y* is defined as the space of all u: R — H#*(M) such that e#%s Pyu € V2
for all dyadic N > 1 and

1
X 2
fully = (30 Nl e Pl ) < o
N>1

(iii) For an interval 7 C R we denote by X*(7) and Y*(7) the restriction spaces

X4(r) = {u: T — H¥(M) : [lul xs () = vier)l(fs: lv]|xs < —|—oo}

v-lr=u-1r

respectively

Y*(7)

{u: T = H* (M) : |lullyszy = inf [joflys < +OO}'
vEY S

vlr=uls
Remark.

(i) Obviously, given a function u: R — H*(M), u € X*(7) should be understood as u‘T €
X?3(7) and [Jul xs(r) = HU|T|’XS(T)- The same should apply to Y*(7).

(ii) Note that in contrast to [HS15|, the spaces are defined using smooth cut-off projectors.
This requires an additional argument in the proof of Lemma 2.5. O

The aim of this subsection is the verification of the subsequent theorem, whose formulation is
taken from [Her13, Theorem 4.1]. In the following, for ¢, € H'(M) and & > 0 we denote by
B.(¢+) the open ball in H'(M) with center ¢, and radius ¢, i.e.

Be(¢s) = {p € H'(M) : || — ¢ull (o) < €}-

Theorem 2.3. Let (M, g) be a three-dimensional, compact, connected, smooth Riemannian
manifold without boundary and let s > 1. Furthermore, assume that Assumption 2.1 holds
true. Then:
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Local well-posedness. For every ¢. € H' (M) there exist ¢ > 0 and T = T(¢s) > 0 such
that the following holds true:

(i) For all initial data ¢ € B:(¢s) N H*(M) the Cauchy problem (2.1) has a unique
solution

u=®(¢) € C([0,T),H*(M))nX*([0,T)).

(1i) The solution constructed in (i) obeys the conservation laws (1.23) and (1.24), and
the flow map

®: B.(p.) N H(M) — C((0.T), H*(M)) 1 X*(10,T))
18 Lipschitz continuous.

Small data global well-posedness. With ¢, = 0 there exists eg > 0 such that for allT > 0
the assertions (i) and (ii) above hold true.

First, we state some well-known results about the function spaces X* and Y*.

Proposition 2.4 (Properties of X*® and Y*). Let 7 = [a,b) C R be a bounded time interval.

(i) For s € R it holds that
X® <3 Y s L®(R, HY(M))
and
X%(1) = Y*(r) — L>®(r, H*(M)).

(i) In addition, assume that 0 € 7. Let s > 0 and ¢ € H*(M), then we have that e*?9¢ €

X5(7) and '

1629 @l s r) S Il 2z ar) -

(15i) Suppose uw € Y* for some s € R. Then,

1

N28 P 2 2 <
D ONF|Pyulfo ) S llullys

N>1

The corresponding statement also holds for Y*(r).

Proof. The embeddings given in (i) follow immediately from the embeddings
UP < VP s L®(R, L*(M))

in Proposition 1.23 (v). Note that U? < L>(R,L?(M)) and V? < L>®(R, L?(M)) hold with
constant one, cf. Proposition 1.21 (iii) and Proposition 1.23 (iii).

Claim (ii) follows immediately from the definition of X*: Indeed,
€29 6||xs () < [l -

We then deduce that

291X = Z NQS”e_itAgPNe”AWH?Jg < Z NQS”PNQbH%,?(M) ~ (1617 (ar)-
N>1 N>1

To prove the last statement, we recall that the V2-norm is based on the L?-norm and compute
S ONT|Pyuljo =Y N* > e o Py Pyullps S N9 Pyul|.
N>1 N>1 M>1 N>1

Obviously, a similar argument holds for Y*(7), too. O
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Let 7 = [a,b) and f € L'(7, L?(M)). Then, we define the Duhamel term as

T(1)(0) = [ 9 f5)ds (2.3)

fort e T, Z(f)(t) =0 for t < a, and Z(f)(t) = Z(f)(b) for t > b.

The following estimate of the Duhamel term is well-known in this context. The proof of this
estimate can be found for the standard torus, 7 = [0,7"), and spaces X* and Y*® with unit
scale in [HTT11, Proposition 2.11]. In [Herl3, Lemma 2.5 (ii)], a similar result was stated
with sharp spectral projectors but without a proof. The novelty here is that we show this
estimate to hold true also for smooth spectral projectors. Note that in [Her13] the following,
less restrictive condition was required:

> / /MPNf(t,w)dedt‘ < o0,

N>1

sup
veY 75 (7):
||U||y—5(7):1

Lemma 2.5. Let s € R and 7 = [a,b) C R. Furthermore, let Pyf € L'(r,L?(M)) for all
N > 1. Then, > N> Z(Pnf) = Z(f) converges in X°(7) and

TPl S s
’UEYﬁS(’T): N>1
”U”yfs(q—):l

/T /M Py f(t, x)v(t, z) dz dt‘ (2.4)

provided that the right-hand side is finite. In particular, if f € L*(7, H¥(M)), then
IZCH)xcs(ry S Nl Lt (ary)- (2.5)

Proof. For the proof of (2.7) below we adapt the idea presented in [HTT11, Proposition 2.11].

For dyadic N > 1 let the projectors with sharp cut-offs be defined as

Pj\% = Z hi and Pl# = Z hy.
k€eNg: keNp:
N§|\/>\k‘<2N 0§‘\/>\M<2

First, we remark that it suffices to consider Pﬁ; instead of the smooth projectors Py. Indeed,

let 15;3& = Pﬁﬁ + Pﬁ,& for N > 1 and ]51# = Pl#. We prove that for any ﬁﬁu € U? we have

1Pyl < | PEullye. (2.6)
Since 15;# Py = Py, this immediately implies

>N Pyulfa <201 +2%) Y N2 PFullf.
N=>1 N>1

In order to verify (2.6), it suffices to consider an UZ?-atom ]Bﬁa # 0 with representation
Pha(t) = Spq 1p, 4 () with ST 681132y = 1 and a partition (#y). Note that
O = ﬁ;\%qﬁk Define A = Zszl HPNQS/,CH%Q(M), and observe from the boundedness of Py in

L*(M) that 0 < A < 1. We may write Pya(t) = AS 1" 1y, | 40 () 222 which implies
|Pvallp2 < A and hence, (2.6) follows.
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For L > 1 we prove the estimate

IZ(P<rf)llxs S sup

vEY T N>
lvlly—s=

// Py f(t 2)o( ) da di (27)

uniformly in L. Since t s e hy(P< Z(f))(t) is for every k > 0 absolutely continuous and of
bounded variation, we conclude that ¢ s e~#29 PyT(P<p, f)(t) and t s e~ %29 PﬁI(PSLf)(t)
are in U2. Then, we see from the definition of X* that

IZ(P<i ks S Y N*lle "8 PEI(P<rf)|
1<N<L

— Z N2s

1<N<L

2

/ e~ 98 P#(Pey £)(s) - 10 (s) ds

a

Ug
By duality, ||lal|,2 = SUD| b2 =1 labl|p1. Thus, for every £ > 0 we may choose a positive sequence

b € £2(2MN0) with [[0l[2(2%0) = 1 such that

IZ(P<cflxs S D byN®
1I<N<L

+ €.

/ e8P (Pp F)(s) - 10 (s) ds

Ut

By duality (see Lemma 1.25), for any dyadic 1 < N < L, there is a V2-function vy €
C§°(R, L2(M)) with |luy|ly2 = 1 such that
€
N?

(2.8)
where—after a rotation of vy—we may assume the integral to be positive. We now define the
function v: 7 x M — C,

t .
[ e optpane) 1

P<Lf )(t, x)etPovy(t, z) dx dt'

v(t,x) = (1+275)70 S by Moo Pl (on)(t, @),
1<M<L

and notice that
Pu(t) = (14275 by Noe® PE (uy)(t).

One easily verifies v € Y% and ||v||y-s < 1. Furthermore, since > ;< PﬁPSL = Py,

IZ(P<r xS | S0 // PE(P-1f)(t,2)00F, x)dxdt'—i—C’s
1<N<L
<Z // P f(t,x)v tx)dxdt‘—i—C’s

N>1

Inequality (2.7) follows since € > 0 was arbitrary.

We conclude (2.4) now. Since the left-hand side of the following estimate is smaller than
|Z(P<Lf)| xs, inequality (2.7) implies

. 2
(Z stHe—ztAgpNI(f)H%]E) < sup

1<N<L veEY T N>
lvlly —s=

/ Py f(t,z)v(t,x) dxdt| < oo
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uniformly in . > 1. Hence,

1
. 2
(Z N2s||6ltA9PNI(f)H2Ut2> < 00,

N>1

which implies that Z(f) € X®. Thus, Z(f) € X*(7) and the estimate (2.4) holds since the
supremum in (2.4) is taken over a larger set.

The bound (2.5) follows essentially from (2.4) in conjunction with the embedding Y ~%(7) —
L>(r,H *(M)):

IZ(N)lxs(ry S sup
veY ~ S(T
||”||y 3(7—)

/fta: (t,z)dzxdt

S osup 0llpee(rm-s ey I f 2t (r, s (0
veY ~5(7):
||”||yfs(7—)§1

St ms (- 0

Even though the estimate in the next lemma is not scale invariant, it turns out to be useful
in the sequel. The estimate was proved in [Her13, Lemma 3.4].

Lemma 2.6. Let 7 C R be a bounded interval. For all functions uyi,us,uz € L (7, L*(M))
and dyadic numbers N1 > No > N3 > 1 the estimale

3
1 3
HPN1ulPN2u2PN3u3||L2(T><M) S |T| 2 (N2N3)2 H HPNjuj||L°°(T,L2(M))
j=1

holds true.

Proof. Holder’s estimate yields

1
[Py w1 P ua P usl| 2 sy < 712 [Py || oo nz (| Pz wal| g, | Prs usl| Lge, -

We fix t € 7 and apply Bernstein’s inequality, see Lemma 1.53 (ii), for j = 2,3, to obtain

3
N2

1PN g ()l oo (ary S NJ 11PN g ()l 2

By taking the supremum in ¢ € 7, we get

w

3
[ Py w1 Py ua Py usl| 2 (rxary S |7[2 (NaN3) 2 H 1PN, | oo (v, 12 (ar)) -
Jj=1 O

The result in Lemma 1.54 may be extended from single eigenfunctions to the spectral localiza-
tion operators Py. Hence, we get a bound for the product of four spectrally localized functions
on M, where the spectrum of one function is much bigger than the spectrum of all the others.
Herr [Her13, Lemma 3.3] proved that Lemma 1.54 together with the Weyl asymptotic yields
this result.
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Corollary 2.7. There exists C > 1 such that if No,..., N3 are dyadic with C~'Ny >
Ni, N2, N3 > 1, then for every v > 1 there exists C, > 0 such that for any Py, f; € L?(M),
J=0,1,2,3,

3
< NG TT NP, Fill e
=0

\ [ Prao) P 1(0) P foe) P o)

So far, we have not used Assumption 2.1. We now show that the assumption implies an
analogue bound for functions in Y°. We follow the proof of [HS15, Proposition 3.3] and add
some details.

Lemma 2.8. Let 7 C 19 be any interval. There exists 0 > 0 such that for all dyadic numbers
N1 > Ny > N3 > 1 and Pn,uj € Y0, j=1,2,3, the following holds true

3
Ny 1Y)°
[ Py w1 Py ua Py usl| 2 (rxary S (— + —) NoNs [T I1Pw; ujlyo-
j=1

Ni N
Proof. In this proof, we write Cs5(Ny, Na, N3) := (% + N%)JNQN?,.

The proof is split into three parts. In the first two steps, we prove the estimate with the U?-
norm respectively the U%-norm on the right-hand side. Then, we interpolate those estimates
in the third step to get the V2-norm on the right-hand side.

Step 1. We claim that if e =29 Py u; € U2, j =1,2,3, then
3 .
1Py 11 Pyt Py sl 2 rxcary S Cs(N1, Ny Na) [ ] lle ™29 Pov, o2, (2-9)
j=1
where 6 > 0 is the § as given in Assumption 2.1.

It suffices to prove (2.9) for U%-atoms. Indeed, first, note that if Py, u1, Pn,us, Pyyuz € U?
with representation Py, u; =2, Aj ¢Pn;aje, j = 1,2,3, then

3 o

HZ N80 P
=1/(=

since the LS-Strichartz estimate implies for any ¢y > 1 and j = 1,2, 3,

ztAgP (Z )‘j Za]Z )) _ Z )\j,geitAgPNjaj,Z(t)

= fo KZKO

[Py €29y Py, € 29up Py e | 2 1) =

L2(Tx M)

S2) (Al

LS(Tx M) =0,

Now, let € > 0 and e~ A0 Py u; € U? with e 29 Py uj = 3°0°, Aj Py, ajpand Y72, A0 <
lle~ ZmgPN ujllpz + € for j = 1,2,3 Note that e”AgPN aje are U -atoms and assume that
(2.9) holds for UZ2-atoms, then

o) 3
it A
”PN1ulPNzu2PN3u3”L2(T><M) < § ‘)‘1,51)‘2752)‘3753’ H e’ gPNjaJ'yfj
l1,02,03=1 j=1 L2(’T><M)
o
< Cs(N1, N2, N3) § |A1,01 A2, A3,05]
ly,l2,03=1

3
< Cs(N1, N2, N3) H He_’tAQPNjume +¢).
J=1
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Hence, the desired estimate (2.9) follows once we proved it for U2-atoms.

Let a1, as, and ag be U?-atoms given as

K; K;
itA 2
Pr,a5(t) = 311, (0™ Py, 6y D I0lliacn = 1.
k=1 k=1
with pairwise disjoint right-open intervals [; 1, I, ..., I; k, for j = 1,2,3. The disjointedness

of the intervals implies

2 it itA it 2
1PNy a1 Py a2 Prgas| T2 (renry < D, €72 Pry 61k, €29 Py o ey €29 Py 3.1 72 (o
k1,k2,k3

where we sum over k; = 1,...,Kj;, j = 1,2,3. Assumption 2.1 yields

3 K; i
1 Pn, a1 Py a2 Prsasl| p2(rxary S Cs(N1, Nz, N3) (H ”¢j,kH%2(M)> < Cs(N1, Na, N3).
J=1 k=1

This finally proves (2.9).

Step 2. By choosing N = Ny = Ny = N3 and ¢ = ¢1 = ¢ = ¢3 in Assumption 2.1, we see
that the following LS-estimate is implied

| Pne™ 6]l srany S NI Pwlnzan.
By the same argument as in the first step, this estimate carries over to U®%-atoms. Thus
| Pl srcnny S N3 [l Pvull s
for e="29 Pyu € US. Now, we deduce for N; > 1 and e*“AgPNjuj e US j =1,2,3, from

Holder’s inequality that

3
2 .
|| Py ua Pyt Prgus|| 2 (rary S (N1N2Na) 3 [T lle™ % Puglpe. (2.10)
j=1

Let N7 > No > N3 > 1 and p > 1. Another estimate, which is not scale invariant but does
not depend on Nj, follows immediately from Lemma 2.6 and UP < L°(7, L2(M)):

3
1 3 g
| P, u1 Py Py sl 2 (rary S 1712 (N2 N3)2 [T le 29 P, uloe. (2.11)
=1

Step 3. In this step, we interpolate the estimates given in the first two steps. For that purpose,
we distinguish two cases.

Case 1. Assume NoN3 > Nj. Applying the interpolation statement in Lemma 1.24 to (2.9)
and (2.10) yields

3
[Py s Pryua Prgusll 2 rxary S As [ e Payugllye,
j=1
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where

(N1N2N3)%

A5 = cg(Nl,NmNs)(lnm

3 N1 3
+ 1) < O5(Ny, Na, N3) (m o1y 1)
N3
5 05’(N1,N25N3)
for any 0 < ¢’ < §. This implies the claim in this case.

Case 2. Assume NyN3 < Nj. In this case, we interpolate (see Lemma 1.24) the inequalities
(2.9) and (2.11) (for some p > 2) and get

3
1Py tr Py Py sl 2 ary S Bs [ ] lle™ 29 Py,
j=1
where
NoNa2)2 3
Bs = C(;(Nl,NQ,Ng) <ln Cg((le ]\:;2) Ng) + 1) 5 C(;(Nl,NQ,Ng)(lIlNQ + 1)3
< Cs (N1, No, N3)
for any 0 < &’ < §. This finishes the proof. O

We prove Theorem 2.3 by the contraction mapping principle in a small closed ball in the space
C([0,7),H*(M)) N X*([0,T)). In order to do so, we solve the following integral equation for
a given ¢ € H*(M),

u(t) = P T iZ(|ul*u)(t), (2.12)

where Z(f) is defined as in (2.3) with 7 = [0,T).

Now, we provide an estimate for the Duhamel term measured in the restriction space X*(7).
The proof is a combination of the arguments in [HTT11, Proposition 4.1] and [Her13, Propo-
sition 4.2].

Lemma 2.9. Let s > 1 be fized and T > 0 such that [0,T) C 7. Then, for any u; €
X*([0,T)), j=1,...,5, the estimate
5 5
HI<H @) H S uwllxesqosry TT sl oy
j=1 X:([0,1)) k=1 j=1
ik

holds true, where u; denotes either u; or its complex conjugate ;.

Proof. We define 7 := [0,T) for brevity. From Lemma 2.5, we conclude that Z (H?:1 17]-) €
X*#(7) and

HZ(ﬁ@) /T/M Pn, (f[l zzj(t,x)> ug(t, z) d dt'.

In order to get rid of the time restriction on the spaces, we consider extensions to R of u;,
j=0,...,5, without changing the notation. Hence, it suffices to prove

5 5 5
>/ /MPNan@,as)H%(t,x)dxdt',suuony-sZuukuxsHuuqul. (2.13)
T j=1 k=1 j=1

No>1
Jj#k

S swo )
XS(’T) UOEY_S(T): No>1
||u0||y—3(7—):1
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We dyadically decompose every function into

U= Y Pniij, j=1,...,5.

N;>1
Since the expression is symmetric in uy,...,us, it suffices to replace the left-hand side of
(2.13) by
3= / HPNu]txdxdt'
(No,.. ,N5)€N

where A is the set of all sextuples (Ng, N1,..., N5) of dyadic numbers such that
NQZl and N12N222N521

We split ¥ into ¥ = 1 + Yo, where

/ H PN ujdx dt‘
(No,.. ,N5 YEN: (No,.. ,N5 JEN:

max{No,N2 }~=Ny max{No,N2}%N1

Y1+ =

/ HPN uj dwdt‘

First, we estimate the contribution from ;. By Cauchy—-Schwarz, it suffices to prove

> ([P, u1 Py us P us|| 12 (- an) || Pno o Py w2 Py ual| 2y
(N(),...7N5)€N:
maX{NQ,NQ}%Nl
5
< luolly—slluallxcs T llujllxe-
j=2

We split the sum into two parts ¥ 1 and ¥; 2, where X1 is defined by the constraint Ny <
No ~ Ni. Consequently, Y1 o is defined by the constraint Nog < Na ~ Njy.

Part ¥11. Applying Lemma 2.8 twice, we obtain

N5 LN\°/Ng 1\ {
Y11 S Z No N3Ny N5 N + N No + N, H 1PN, | yo
=0

(No,...,N5)eN:
N2<No~N1

for some § > 0. Using Cauchy—-Schwarz with respect to N5, N4, N3, and No as well as
Proposition 2.4 (iii), we estimate

5

L1105 Y IPwuollyoll Py uallyo [T luslly:-
N07N121: j:2
N()%Nl

Since Ny ~ Ny, we conclude from Cauchy—Schwarz

5

211 S lluolly—slluallys T lhujllyr.
j=2

Part 31 2. We apply Lemma, 2.8 twice and deduce

N5
Y12 S Z N0N3N4N5<ﬁ + ﬁ) H [Py g flyo

(No,...,N5)EN":
No<Na~N1
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for some § > 0. Since Ny < Ny, we have Ny < NiT7YNY™% for some small 0 < v < s.
Cauchy—Schwarz with respect to N5, N4, N3, and Ny as well as Proposition 2.4 (iii) yield

5

125 Y, NMTlPvuillyol Pryusllyolluolly—s [T lluglly:.

N1>N3>1: Jj=3
leNQ

Another application of Cauchy—Schwarz and using N1 = N5 leads to

5

212 S luolly-sllutflys T llusllys
j=2

as asserted.

We now estimate the contribution from Y, and split the sum into two parts Yo = a1 +
Y92, where ¥y 1 is defined by the constraint max{Ny, No} < N; and Y9 is defined by the
constraint Ny > Nj.

Part 39 1. We decompose

So0< Y > H(No,..o N5, L)()] dt,
(Nos...,Ns)EN: L>1"T
No,N2< N1

where

Py <f[ Py, @) (t, ) ﬁ Py, (t, ) dz.

=0 7=3

I(No,..., N5, L)(t) ;:/

M

On the one hand, if L 2 Ny, then we have N3, Ny, N5 < L. We can apply Corollary 2.7 to
conclude for every t € T,

5
|I(N0’ s ’N5’L)(t)| 5 L_5HPL(PNoﬂOPNlﬂlPN2a2)(t)”L2(M) H HPNjuj(t)HLQ(M)'
=3

Now, we apply Hdélder’s inequality with respect to ¢ and Lemma 2.6 to bound

5
3 3
/ [[(No,..., N5, L)(#)] dt S L7NG Ny [T I1Pw,usll oo s, 22 ary,

j=0
which in turn implies
5
S [ HNo,... N5, L(®)]dt S N2 T Iy lyo. (2.14)
L>N; 77 j=0

On the other hand, if L <« Ny, then L, No, No < Ny, and we use Corollary 2.7 to get

2
[I(Nos -+ Na, L)) S Ny TT 1Py (81 20 || P (Povg s P, T Py s ) (8) | 201 -
=0

Again, from an application of Holder’s inequality with respect to ¢ and Lemma 2.6, we infer

5
3 3
/ I(No, ..., N, L)(1)] dt < NTINZNZ T 1Pw;sll s (.22 any-
T ]:O
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This in conjunction with (2.14) gives

5
Z ’I(N07"'7N57L)(t)’dt§Nf1H|’PNjuj“Y07
L>17T j=0

and hence,

5
S0 Y, NP uslve.

(No,...,N5)EN": Jj=0
No,N2< N1

Using Cauchy—Schwarz with respect to N5, Ny, N3, and N» yields

5
S21 S Ni Py uollyo | Pay i lyo T T Ny
j=2

Multiplying (%)S_” for some small 0 < v < 1 and applying Cauchy—Schwarz with respect to

Ny and Nj leads to
5

21 S luolly—llurllxs T llujllxr.
j=2

Part ¥9 5. This case may be treated similarly as term ¥ 1 by switching the roles of Ny and
Nj. By writing

Sp< Y 3 [ H(No,.. N5, L)(B)] dt
(No,...,Ns)eN:L>1"T
No>Np

as above, we obtain the two estimates

5
3 3
/ [I(No, ..., N5, L)(t)|dt < L °NZ N H 1P, wjl| oo (v, 22 (1))
T ]:O

provided L 2 Ny and

5
3 3
/ [I(No,...,N5,L)(t)|dt < Ny°NZ N2 H 1PN, ws Loo (v, 22 (01))
T ]:0

provided L < Ny. This implies

5
So05 Y, N [T P usllve.

(No,...,N5)EN": Jj=0
No>Np

Multiplying (%’)s*” for some small 0 < v < 1 and arguing as above, we see that

5

S22 S luolly—slluallxs T llwillx,
7j=2

which finishes the proof. O

Remark. If M = T3, orthogonality implies that there is no contribution from Y. Similarly,
if M = S3, then ¥y = 0 since the product of five spherical harmonics of maximal degree k can
be developed into a series of spherical harmonics of maximal degree 5k. O
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Finally, we have all the ingredients to prove Theorem 2.3. The strategy is close to the argu-
ments on Euclidean spaces, see e.g. [CW90, Tao07|, and was first applied to obtain energy-
critical well-posedness for the NLS equation posed on a compact, boundaryless manifold by
Herr—Tataru-Tzvetkov [HTT11, Theorems 1.1 & 1.2]. We closely follow their arguments and
add the treatment for s > 1.

Proof of Theorem 2.3. Let s > 1.

Step 1 (Small data). Due to the polynomial structure of the nonlinearity, Lemma 2.9 shows
that there exists Cs 1 > 1 such that

HI(W% - \04\0)“)@([0@) < Cs,l(H“”%(s([O,T)) + Hu”%([om)) lw = vl xs(0,)

holds true for all 7' > 0 and w,v € X*([0,T)).

Given two parameters €, > 0 and J§, > 0, we define the sets

B: = {pe H*(M): |¢|lgsar) < s}
D3, = {u e €(0.1), H*(M)) N X*(0.1)) : [ullxooy < &}

Note that Dj is closed in X*([0,1)), which in turn implies that Dj is a complete space.

For ¢ € BZ, we intend to solve the equation
u = e T iZ(|ul*u) = L(¢) + NL(u),

by the contraction mapping principle in Dj . Choose

0 = (4C’s,1)7i and g5 = (2.15)

where Cj o is the implicit constant in Proposition 2.4 (ii). Let ¢ € BZ , then for every u € Dj,
we obtain

IL(¢) + NL(u)| xs(j0,1)) < Cs06s + Cs10, < b

For all u,v € Dj we also deduce

1
|NL(u) — NL(v)|| xs([0,1)) < 5““ = 0|l xs(0,1)-

This implies that for any ¢ € BZ the nonlinear map u — L(¢) + NL(u) is a contraction on
Dj . The Banach fixed-point theorem now proves that u + L(¢) + NL(u) has a unique fixed
point in Dj . The uniqueness in the full space is discussed in the third step. Furthermore, for
two functions ¢, € BZ and their corresponding fixed points u,v € Dj , we have

1
lu = vllxs(o,1)) < Csolld = Yl any + 1w = vllxs (o)
This proves the Lipschitz continuity of ¢ — u with constant 2C; .

Step 2 (Large data). Let r > 0 and N > 1 be given. For some parameters &, 05, Rs, and T
with the properties 0 < 5 < r and 0 < §; < R, we define

B, = {¢ € H*(M): ||¢>NHHS(M) < €s, H¢||HS(M) < 7“},
DESyR57Ts = {u S C([O,Ts),HS(M)) ﬂXs([O,Ts)) : HU>NHXS([0,TS)) < ds, ||uHXs([0,TS)) < Rs},
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where fsy = (Id — P<y)f. For any ¢ € BZ_ . one easily sees that
| (L(¢) + NL(U))>NHX3([O,TS)) < Cs08s + |NL(u)> N || x5 (j0,12)) -
We split NL(u) into two parts,
NL(u) = NLi(u<n,usn) + NLz(u<n,usn),

such that NL; is at least quadratic in u~y and NLg is at least quartic in u<y. Then, thanks
to Lemma 2.9, we deduce for u € D§ p .

INLy (s, usn)l|xs (o)) < Cs105R3. (2.16)
Analogously, for u,v € D§ p 7,

INL1 (u<n, usn) — NL1(v<n, vs 3| xs(o.1)) < Cs20sR3|lu — vl xs(0.7,))-

For estimating NLy(u<n,usnN), we use Lemma 2.5 to argue that is suffices to bound the non-
linearity in L'([0,Ty), H*(M)). Hence, by Lemma 1.55, Lemma 1.56, and Holder’s inequality,
one easily checks?

[NLa(u<n, usn)|lxs(j0,12)) < Cs,3N4HUHLOO([O,TS),HS(M))Hu”izt([o,Ts),Hl(M)) < Cs sN'T,R;.
(2.17)

A similar argument gives

INLa(u<n, usn) — NLa(v<n, vsn) | xs(0.10)) < Coa N TuRi|lu — vl xs(jo,12))-

Set Cs == max{C1p,...,C14,Csp,...,Csa}, where Cy ;, j = 0,...,4, are the corresponding
constants in the case s = 1, and choose

Ry = ACyr, 6, = — = O

G 2.1
SCSRE’ ( 8)

Hence, for ¢ € B, the map
L(¢) + NL: Dj, g, 1, = D5, r.1.

is a strict contraction and therefore, has a unique fixed point u, and ¢ — w is Lipschitz
continuous with constant 2C.

Step 3 (Uniqueness). By the translation invariance in time, it suffices to consider
u,v € C([0,T), HA(M)) N X*([0,T)

with %(0) = v(0) in order to prove uniqueness. That u = v for arbitrarily small 7" > 0 follows
from the uniqueness of the fixed point in Step 2.

Step 4 (Time of existence). Let ¢, € H'(M), define r := 2|¢« |l g1 (ary, and choose N > 1

large enough such that [[(¢.)>nllg1ary < 5, where 0 < g1 < r is defined by (2.18). Let

¢ € Be, j2(¢s) N H*(M), then ¢ € Bl . N H*(M). We conclude from Step 2 that there is

£1,r

Ty =Ti(r, N) > 0 given by (2.18) and a unique solution

we C(0,Ty), H' (M) n X ([0,T1)),

3For notational convenience, we choose o = 2 instead of o = %Jr in the application of Lemma 1.55 and
Lemma 1.56, accepting that the power of N is not the best we can achieve.
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which depends Lipschitz continuously on the initial data ¢. Note that the time of existence
is determined only by ¢..

For s > 1 we now prove that this solution is even more regular on the same time interval. Let
Ts max be the supremum over all 7 such that

u € C([0,Ty), H*(M)) N X*([0, Ts))

is the unique solution with initial data ¢. Step 2 guarantees that T max > 0. Assume that
Tsmax < T4, then consider 0 < Ty < T max and let Ry, d1, €1, and T} be defined as in (2.18).
Note that the parameters depend only on ¢,.

From Step 2 with s = 1, we get that [|ul|x1(7,)) < F1 and [Jusn|/x1(0,7,)) < 01. Reconsid-
ering (2.16) and applying the bounds on u in X!, we infer

INL1 (usnvs usn) s 0,2y S sl xr oz 1l o,z 1l xs o)) < Csd1 R lullxs 0,22,

where Cj is defined as in Step 2. We may also improve (2.17) to
INLa(uen, usn)lxs o1y < CsN TRy [[ull x5 0,1.))

Hence,
[ull xs (o)) < Cslldllmsay + Cs(61RY + N*T.RY)||ul x=jo11))

for any Ts < Ts max, and we conclude from the embedding X*([0,7%)) — L*°([0,Ts), H*(M))
that

sup  [u(t)|| s (ary < 20519l s (ary-
t€[0,Ts, max)

Consequently, for every sequence (t,), with ¢, € [0,Ts max) and t,, = Ts max as n — 00 we
have u(t,) € H*(M) for any n € N. Thus, there exist a subsequence (t,,); and v € H*(M)
with wu(t,,) — v in H*(M) as k — oo. By the Rellich-Kondrachov embedding theorem, we
see that u(t,, ) — vin H(M) as k — 0o. Since Ty max < 11 we know that u(t,, ) — w(Ts max)
in H'(M) as k — co. Therefore, we deduce v = u(Tsmax) € H*(M). Solving the equation
(2.1) with initial data u(Ts max) forward and backward in time, which is possible by Step 2, we
see that the solution u can be uniquely extended in H*(M). This contradicts the definition
of Ts max and hence, Ts max > T1.

The Lipschitz continuity for s > 1 follows since r, N, €1, d1, R1, and 17 depend only on ¢,
and

lu = vl xs(o,11)) < Cs0llé — ¥llms(ary + 2Cs 1R lu — vl x5 jo.71))-

Step 5 (Global well-posedness, defocusing case). We first consider s = 1. Because of the first
step, we only have to prove a suitable a priori bound on solutions in H*(M).

The conservation laws (1.23) and (1.24) and the Sobolev embedding H'(M) < L(M) imply
that there exists some d > 0 such that for every ¢,

()17 gy < 2B (u(0)) +2M (u(0)) < [[u(0)[1Z gy + d*[[u(0) 51 (ar) - (2.19)

If |u(0)[| g1 (ary is sufficiently small, then it follows that for €1 as in (2.15) the solution satisfies
[w(®)[l g (ary < €1 for any interval of existence. Hence, we can iterate the argument in the first
step indefinitely and extend the local well-posedness result to global well-posedness.

For s > 1 we proceed as follows. Let ¢ € H(M) with H'-norm small enough such that the
solution exists globally in H' and Step 1 with s = 1 is applicable. Let 7. s,max be the supremum
over all T such that

ue C([0,Ts), H*(M)) N X*(]0,T%))
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is the unique solution with initial data ¢. Define v := u(+ + Ty max — 3) and T Lif

S,max = 2
Tsmax > 1 and v = u and Tg max ‘= Tsmax otherwise. From Step 1 with s =1 and (2. 19) we
deduce that

NI

[vllx1(0,1y < 2C10llv(0) [ (ary < 2C10 (101 % ary + 41615 (ary)

and therefore, we gain the following a priori estimate

1
vl xs(0,15)) < Csollv(0)||ms (ary + §||U||Xs([o,Ts))

for any 0 < Ty < Ty 0, provided ||| g1(ay is sufficiently small. By similar arguments as
above, this yields

e o)l a2 a1y < 2Cs0l[0(0) [ 122 (ar),

s,max

and we conclude w(Ts max) € H*(M). Solving (2.1) forward and backward in time with initial
data w(Ts max) contradicts the choice of T yax-

Step 6 (Global well-posedness, focusing case). In this case, the argument is a bit different. For
u € X'([0,1)) we have

[t By gy < 2 (ul0)) + 22 (u(0)) + llu0)

(2.20)
< Nu(O)1F (ary + O3 gy + Cllu®) 15 )

Consider the function f: [0,00) — R given by f(x) := x —d?x3. The function f increases from
0 to its maximum value 2/(3v/3d) in 2 = 1/(v/3d). Moreover, f(z) > (2/3)x on the interval
I :=[0,(v/3d)™"]. In (2.20), we have proved that f(Hu(t)H%{l(M)) < gk for all t € [0,1) and
all initial data satisfying

[w(O)1F2 ary + @ Nu(O)[G1 ary < 8-

If we choose €3 = min{2/(3v/3d), (2/3)61} where £; is given as in (2.15), then we see by the
continuity of ¢ — ||u(t )”Hl(M that [lu(t)||5, ) €1 for every t € [0,1). Thus, Hu(t)H%l(M) <
(3/2)e3 < 7 for all t € [0,1), from which we 1nfer that the small data local well-posedness
argument may be iterated.

The conclusion for s > 1 works exactly as in the previous step. U

2.2.2 On the necessity of the condition

After the discussion of the sufficiency of Assumption 2.1 the question rises whether the trilinear
Strichartz estimate is also necessary. In [Gér06, Theorem 5.7 1)| (take s = 1), Gérard answered
this question by stating that Assumption 2.1 with § = 0 is necessary to obtain Theorem 2.3.
In a joint paper with the present author, Herr [HS15, Section 4] provided a proof of this by
adapting the arguments of Burq-Gérard—Tzvetkov in [BGT05a, Remark 2.12]. We want to
point out that there was no noteworthy contribution of the author to this discussion. In the
remainder of this subsection, we repeat the argument in [HS15, Section 4] almost verbatim.

Fix T > 0 and consider the map

F: HY M) — HY (M), F(¢)=u(T),
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where u is a solution of (2.1) with initial data u(0) = ¢. The fifth order differential of F at
the origin is given by

D°F(0)(h) = 3F12i/0 T8 N " He 1) (1) (o) (7) Hop () (7) Hy (1) (7) Hy (5 (7)

oEYS

where h = (hi,...,hs), Hj(T) = ¢™sh;, and we sum over the 10 = (g) of the 5! = 120
permutations o € X5, which give rise to different pairs (0(2),0(4)). Indeed, from (2.12) it
follows that DF(0)(h) = ¢'T®sh, DIF(0) = 0 for 2 < j < 4, and we obtain the above formula.
If we specify to he = hg = hy = hs, we obtain two contributions

> Hy)Hy2)Ho3)Hoa)Ho(s) = 6H1|Hy|* + AH, HS H,.

o€

Now, let us assume that D°F(0): (H'(M))> — H(M) is bounded. Then, we infer

‘/ DPF(0)(hy, ha, ... he)H{(T)dz| < th”Hl(M)thuH*l(M)”hQHZ}{l(M)'

Because of )
Re(G\H1]2\H2\4 + AH, HSHQ) > o H, 2| Ho %,

we conclude that
’ 4 4
P et < Wl Voo an el oy
We set hy == Py, ¢1, and for ¢, 3 € H' (M) we write

. . 1 . ) . )
eztAg ¢261tAg¢3 — Z <(6ztAg ba + 6ztAg¢3)2 _ (6ztAg¢2 _ 6ztAg¢3)2>

to obtain the bound

%9 Py, ¢1eitAg¢2€itAg¢3HL2([O,T]><M) S 1Py d1ll ey |02l () |31 1 (ary»

which implies the estimate in Assumption 2.1 but only with § = 0.

2.3 Rectangular tori in three dimensions

This section is devoted to verify Assumption 2.1 on flat rectangular 3-tori, which means that
the energy-critical NLS is locally well-posedness and globally well-posedness for small initial
data. We start with an overview of some related results and set up the framework. We shall
then prove the trilinear estimate in three steps. We first provide linear Strichartz estimates,
then exploit almost orthogonality, and finally conclude the desired trilinear estimate. This
proof is due to the author and has already been published in [Str14].

2.3.1 Selected results

The nonlinear Schrédinger equation on flat tori has been the most investigated among all
compact manifolds. Aside from the precise knowledge of the spectrum and the eigenfunctions,
one main reason might be that due to the periodicity of functions on T", one has access to
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the theory of Fourier series, which is often applied in this context. At first sight, the theory
of Fourier series with a common period seems not to be applicable if one considers general
rectangular tori. Indeed, if one of the ratios of the periods is irrational, there is no common
period. However, by a simple change of coordinates, one can always choose T" as the base
space, which leads to a modified Laplace-Beltrami operator, see (2.21)—(2.23). This simple
change of coordinates allows to use the theory of Fourier series also in this setting.

First, we sum up related results on the flat torus T3. In 1993, Bourgain [Bou93a| started
this line of research with a fundamental work. He established Strichartz estimates [Bou93a,
Proposition 3.114] in several dimensions and deduced well-posedness in certain sub-critical
regimes from it, see [Bou93a, Theorems 1-4|. Out of this results we just pick those that are
most relevant for our study. For p > 4 the scale invariant Strichartz estimate

. 3_5

HeZtAngLP(IXT?’) SN2 R fllers)

holds true for all f € L?(T?3) with supp f C [N, N3, cf. [Bou93a, formula (3.117)]. Using
this inequality, Bourgain was able to show that the focusing NLS equation with nonlinearity
|u|* 1w and initial data ¢ € H'(T3) which has sufficiently small H!-norm is globally well-
posed for 3 < o < 5. Since a < 5, Bourgain did not reach the energy-critical case. Local
and small data global well-posedness for both the focusing and the defocusing equation in the
energy-critical case (o = 5) was achieved by Herr-Tataru—Tzvetkov [HTT11, Theorems 1.1
and 1.2| in 2011. One of their crucial observations is the existence of almost orthogonality in
time, which is exploited in the proof of [HTT11, Proposition 3.5]. Just one year later, Ionescu—
Pausader [IP12b, Theorem 1.1]| showed that the energy-critical defocusing NLS equation on T3
is globally well-posed even for arbitrarily large H'-data. Global well-posedness is addressed
in Chapter 3.

It was again Bourgain [Bou07]| who initiated the study of the nonlinear Schrédinger equation
on three-dimensional rectangular tori. He proved Strichartz estimates for free solutions on this
domain for a smaller range of LY L#-norms compared to T3 [Bou07, Proposition 1.1]. From
this, he deduced that the energy-sub-critical defocusing NLS equation on rectangular 3-tori is
locally and globally well-posed in H' [Bou07, Proposition 1.2]. The first scaling-critical results
on rectangular tori were established by Guo-Oh-Wang [GOW 14, Theorem 1.5]. They proved
critical local well-posedness on this set of manifolds for nonlinearities |u|*'u with odd a > 7
and initial data in the corresponding scale invariant space H®. Furthermore, they considered
the energy critical case a = 5 on 3-dimensional rectangular tori, where two of the periods are
the same [GOW14, Appendix BJ. In the following, we prove a trilinear Strichartz estimate,
which, by Section 2.2.1, implies that the energy-critical NLS on any 3-dimensional rectangular
torus is locally well-posed and in addition, globally well-posed provided the initial data have
small H'-norm. The author already published this result in [Str14, Proposition 4.1]. This
result is highly significant for the study of large data global well-posedness on this domain,
which is pursued in Chapter 3.

More authors contributed to today’s knowledge about the nonlinear Schrédinger equation on
tori. We are not aiming to give a full list but we want to mention some important results.
Building on an earlier work of Bourgain-Demeter [BD15], Killip—Vigan [KV14, Theorem 1.1]
extended Bourgain’s above-mentioned scaling invariant Strichartz estimate for free solutions
to the NLS on rectangular tori in any dimension n > 1 to a larger range of Lf,x—norms. They
were able to bound free solutions in LP for p > @ These results are optimal in the sense

that the Strichartz estimates are known to fail for p = @ [Bou93a, Section 2, Remark 2].
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Comparing it to the range of Strichartz estimates on R3, see (1.17), one notices that the esti-
mates on rectangular tori cover the same range except of the endpoint. Further contributions
to linear Strichartz estimate came from [Bou07, CW10, Dem13, Boul3, GOW14].

Sub-critical well-posedness on tori in several dimensions has been addressed e.g. in [Bou93a,
Bou93b, Bou04, DPST07, Bou07, CKS™10, CW10, Han12, Dem13, GOW14].

The nonlinear Schrédinger equation on tori in various critical regimes have been studied
in [Wanl13b, HTT11, HTT14, GOW14, Str14, KV14|. The NLS on rectangular tori with
nonlinearity +|u|?**!u is known to be locally well-posed in the scaling space in the following
situations:

« n=2and k > 3 [Strl4], see also [GOW14| for k > 6,
« n=3and k > 2 [Strl4], see also [GOW14] for k > 3,
en>4and k> 2[GOWI14].

The case n = 2 and k£ > 3 is pursued in Section 2.4. Using Bourgain’s Strichartz estimate in
[Bou13], Herr-Tataru-Tzvetkov [HTT14] proved that the energy-critical NLS equation on T4
is globally well-posed for small initial data. This is remarkable as it is the only energy-critical
well-posedness result on a 4-dimensional compact manifold known yet.

It is also worth to mention that the non-elliptic nonlinear Schrodinger equation on T? has
been considered in [GT12, Wan13a|. Moreover, rough potentials [BBZ13] and the fractional
Schrodinger equation [DET13] have been studied.

2.3.2 Set-up

We start with some basic definitions and notation. T"™ shall denote the flat standard torus
T" := R"/(2nZ)". Recall from Definition 1.26 that we use the following convention for the
Fourier transform on T"

1

W - (x)e_ix'f de, 5 S Zn,

(FNHE) = f(&) =
so that we have the Fourier inversion formula

1 o .
f(x): W Z f(&)emg, xzeT".

gezr

Let the spectral projectors Py: L?(T") — L?(T") be defined as in (1.12). More generally,
given a set S C Z", we define Ps to be the Fourier multiplier operator with symbol 1g, where
1s denotes the characteristic function of S.

Given any 0 = (0y,...,0,) € (0,00)", we define the flat rectangular torus by
Ty = R"/(2w9;1/2Z X e X 2779;1/22).

We shall use the standard torus T" = T?l

v: (=T,T) x Ty — C solves the nonlinear Schrédinger equation

1) a8 base space. Let 5 € H*:(Ty), and suppose

(2.21)

{ 00 + Agv = £|v|* 1y
0(0, ) = 4,
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where k& € N. Recall from (1.19) that the scaling-critical Sobolev index is given by

n 1

== ——. 2.22
o= (222)

Let u: (=7,T) x T" — C and ¢ € H*(T") be defined as

u(t, ) = v(t, (9;1/23:1, e ,9;1/23:,1))
9712, —-1/2 . . .
and @(x1,...,x,) = qb( ToevosOn xn), respectively. By a change of spatial variables,
one easily verlﬁes that u is a solution to

i0yu + Agu = |ul* Ty (2.23)

Here, the modified Laplace-Beltrami operator Ag is defined via Ag = 91821 + -+ 9n(9§n.
On the Fourier side this corresponds to

~

F(Aof)(€) = =QE)F(E), Q) =&k + - + &7, (2.24)

for £ = (&1,...,&) € Z™. Using this notation, the free solution to (2.23) is given by

(e 225A9¢ Z ¢ 1(593 Q(&)1) (2.25)

gezr

By a change of variable in time, without loss of generality we may assume #; = 1. This turns
out to be useful in the proof of Lemma 3.21 below. From now on, we study (2.23).

The mass and the energy,

M)(®) =5 [ fulta) da,

1 1
— /’]1‘" |Vou(t,z)|* do + T2 /’]1‘" lu(t, z)|?*+2 d,

are conserved in time, whenever u: (=7,7) x T™ — C is a strong solution of (2.23). Here,

(2.26)

Vo = (010,,,....01/%0,,).

For N, M > 1 we define the collection of rectangular sets

EN v = {R CR™:3z € Z", O orthogonal n x n-matrix s.t.
OR+2z C [-N,N"t x [-M, M]}.

U n
Moreover, we set €y = %N,N'

We consider the three-dimensional quintic, i.e. & = 2, NLS in the present section. In
Section 2.4, (2.23) in two dimensions with k& > 3 is studied.
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2.3.3 Linear Strichartz estimates

The following linear Strichartz estimate for free solutions on rectangular tori was verified by
Bourgain [Bou07, Proposition 1.1|. Besides almost orthogonality, this is the main ingredient
for the trilinear Strichartz estimate in Proposition 2.13.

Lemma 2.10. Let p > % and 79 C R be a bounded interval. For every N > 1, C € (5]:\)’,, and
¢ € L*(T3) we have

. 3_2
|Pee™0 p|| 1oy zacrsy) S N4 || Pedll 2.

Proof/Reference. Using essentially the exponential sum estimates given in Section 1.3, Bour-
gain [Bou07, Proposition 1.1] proved

. 32
1Pne™ 0 Bl| Lo ry La(rsy) S N7 || Pl L2 rs). (2.27)

Moreover, he remarked that the inequality holds true also for the projector FPe. Below we
show that this may be accomplished from a Galilean transformation.

We modify the arguments from [HTT11, Proposition 3.1| to treat Ag, see also [Bou93a,
formulas (5.7)—(5.8)]. Denote & -g ¢ := £1(1 + 026202 + 03€3(3, and let &y be the center of C.
Applying the adapted Galilean transformation

T -9 &+ 1Q(E) = 7 -9 & +1Q(S0) + (z + 2t&o) -0 (£ — o) +tQ(E — &o)s

which can be easily verified, allows to shift the center of the cube C to the origin, i.e. to
Co := C — &. Define ¢g = e~ €0¢(z), and note that ¢o(&) = ¢(& + &) implies | Pedllpz(rs) =
| Peo#oll 2 (r3). We also observe that

PeyeBogp(t,z) = 3 1RG5 (¢) = 37 eflere=t)—tQE=0) g ¢).

£eCo gec

Set © := diag(1, 02, 03), and observe that = - & = (0~ 1x) -9 £&. Rewriting the phase as

x-(E— &) —tQ(E — &) = (07w +2t&) -9 £ — tQ(E) — x - & — tQ(&o)

leads to
Peye'®0 gy (t, ) = e (7R pocitBo g, 01 + 2t&).

Therefore, |]Pceim9¢HLp(mxTa) = || Pgyeitte Goll e (ryxT3)- With this, Lemma 2.10 follows im-
mediately from (2.27). O

Remark. Building on an earlier work of Bourgain—Demeter [BD15], Killip—Vigan [KV14,
Theorem 1.1] proved this Strichartz estimate to hold true for free solutions measured in
LP (19 x T3) with p > %. In this thesis, we want to point out that the Strichartz estimate
gained from the exponential sum estimate in Corollary 1.39 is sufficient to obtain the local
and small data global well-posedness result. As it will be seen in Chapter 3, it is even strong

enough for proving global well-posedness for arbitrary large initial data in H'(T?3). O
Corollary 2.11. Let p > %f and 4 < q < %. Then, for all N,M > 1 with N > M,

R e %?V’M, and all ¢ € L*(T3) it holds

. 1—-2_1 1_2
HP’ReztAG¢||LP(TO,L‘1(’]T3))SJN poaM?a||Pro| 23
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Proof. The statement is implied by Lemma 2.10, the estimate
; 1 1
| PREM0 || oo (ry 12y < IR N ZP|2 || Prbl| 219y S NM2||Pro)| 1279,

which follows from Cauchy-Schwarz in the Fourier space, and Holder’s estimate. The con-
clusion works as follows: Set f(t,z) == |Pre'*®0p(z)|, € = % — >0, and ¥ = 4 < 1.
Then,

1____
1Pre™ e llp g = £ F llpre < HfHﬁmﬁ HleL IS N TMET | PR,

2.3.4 Almost orthogonality

In several applications it turned out to be beneficial to use almost orthogonality in time.
This was first observed by Herr-Tataru—Tzvetkov [HTT11, Proof of Proposition 3.5 for the
standard torus T? and later also applied for Zoll manifolds such as S? [Her13, Proof of Propo-
sition 3.6] and S x S? [HS15, Proof of Proposition 2.6]. Since free solutions on rectangular tori
are in general not periodic in time, we can not expect almost orthogonality in the same way
as in the aforementioned articles. However, the next lemma states that in the non-periodic
setting one gets an additional term with arbitrarily high polynomial decay on the second
highest frequency. In view of Assumption 2.1, this term is negligible. The following result by
the author of this thesis can be found in [Strl4, Lemma 3.2].

Lemma 2.12. Let v > 0, k € N, and 19 C R be a bounded time interval. Furthermore, let
71 D T be an open interval. Then, for all ¢y, ..., ¢oxr1 € L*(T™) and dyadic numbers Ny >

2
. > Nogy1 > 1 there exist finitely many rectangles Ry € Xy, r, where M = maX{]]\\[[—i, 1},
with the properties that Py, = Y ,., Pr,Pn, and

2k+1

H PN €ZtA9¢]

2k+1
itA tA
PR, Pn,e" ™0 || Pr;e"0¢;

3

LQ(TO XT") V=4 L2(T1 XT”)
2k+1
— 2
+ Ny H 1Pn; 65172 (7m) -
j=1

Proof. Note that we may assume N7 > No.

Step 1. We show that due to spatial almost orthogonality, it suffices to prove the desired
estimate in the case

Pe Py, e20¢) = Py eR0 ¢, (2.28)

where C € 67,. To prove this, we consider a partition of Z" into countably many, disjoint
cubes in Z" of size Na:

=Je, Creeq,
Lel

We claim that for fixed ¢t € 79,

2k+1

HPNe

2k+1
it A it A
Fe, P01 [T Prje*®eg;
J=2

2

~D

L2(T™) ez

L2(Tn) ‘
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Indeed, fix any ¢t € 79. For a given ¢ € 7Z there are only finitely many (independent of N;
j=1,...,2k+ 1) £ € Z such that

2%+1 2%+1
<PCzP N €0 By H Py; 6”A9¢j7PcZPN1€itA9¢1 H PNjeim9¢j> # 0. (2.29)
j=2 j=2 L2(T™)

We consider lattice points & € supp F(Pe, Py, €20 ¢1), & € Supp]:(PCZPNleimegbl), and
£;,&; € Nj = supp F(Py, €80 ¢;), j = 2,...,2k + 1. Then, (2.29) follows from the fact that

/ vl ok — (Gt gy —

whenever the distance of C; and Cj is larger than 4kNz. Therefore, we may assume (2.28).

Step 2. As in the proof of [HTT11, Proposition 3.5], we define the following partition: Let &,
be the center of C and define disjoint strips of width M = max{]]\\[,—%, 1} which are orthogonal
to 50:

Re={¢e€C: & & e [[€o|ML &M+ 1))} € B,

< % for all £ € Ry. Since Ny > Ns, we

~

We conclude from the construction that £(¢,&p)
have £(¢,&) < 1. Therefore,
£ & = [¢][€o] cos £(€, &) ~ N,

which implies that £ > 0 and ¢ ~ % because [£y| = Ny. Since C = UgezRg, we clearly have
PCPN1 6ZtA9¢1 = Z(ez PRKPNleZtAeqsl-

Let x € C§°(R) be a non-negative cut-off function satisfying x(t) = 1 for all t € 79 and
x(t) =0 for all t € R\ 71. Obviously,

2k+1 2k11
H Py, e”A% Hf H Py, e”A% S+ Iy,
L2 To XT" LQ(Tl XT")
where
2k+1 A 2
Iy = Z HPReleelmeﬁﬁl H Py e ¢, )
{~N1/M j=2 L2(1 xT™)
and Iy is defined as
2%k+1 2%k+1
Z X(t)PReleeZtAe¢l H PN]' eZtA9¢j7 PRZPNl eZtA9¢1 H PNjeZtAe¢j> .
0,0~<Ny/M: j=2 =2 L2(RxTn)
[e—2]>1
We are left to show that
2%k+1
- 2 2
[I2| S Ny ¥l Pe Py d1ll72pmy H 1P, 51172 (pny -
=2

Since we extended the integration with respect to ¢ to R, we may interpret this integration as
Fourier transform on R. Then, taking the absolute value, we end up with

z : Z 2k+1 okl ) o

e 75 00| (Z Q) - Q(%))) L1 1955 (@))-

5 n ,n /s —t ]
&‘fzt%;f\f "Jv"aleef\%{ j 12€,R,22k+1 / j

(2.30)
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Similarly to the proof of [HTT11, Proposition 3.5], we get

2k+1
> (Qny) - Q(ﬁj))' = M0 —C|(0+0)+OM>*0) +O(M?*) > N2{t — 1)

Jj=1

since E,Z R~ % and |¢ — Z| > 1. Thus, for any p > 0 we may estimate

2k+1

P (30 (Z (Qny) - Q(%))) <. Ny - Ty

j=1
Using Cauchy-Schwarz with respect to n;, n;, 7 = 1,...,2k 4+ 1, on the right-hand side of
(2.30) yields

2k+1
LIS N D (0= 07" Prebullom1Pro1 2y [T 1PN, 650172 0m
£,0/Ny/M: J=2

[—2]>1

provided v < 2u — (2k + 1)n. Finally, Schur’s lemma implies

Z (0 =) Pr,d1llL2(rny |1 PR 1 | L2 (1) S ”PCPN1¢1H%2(T”)
0,0~=~N1/M:
[—C>1

provided p > 1. This finishes the proof. O

2.3.5 The trilinear Strichartz estimate

The linear Strichartz estimates in Lemma 2.10 and Corollary 2.11 as well as the almost or-
thogonality in Lemma 2.12 allow us to prove the desired trilinear L?-estimate.

Proposition 2.13. Let 7 C R be a bounded time interval. There exists & > 0 such that for
all ¢1,Pa, d3 € L2(’]I‘3) and dyadic numbers Ny > Noy > N3 > 1 the following estimate holds
true:

N 1 1 3
<24 =) NaNs [Py, 0 :
S(p4) w TPl

3
itAg 1 .
[1 P
j=1 L2(1oxT3)

Proof. From Lemma 2.12, we see that we may replace the projector Py, by PrPp, with
R € %}3\,2 o and M == max{N3/Ni, 1} provided we magnify the time interval 7o to an open
interval 7 D 7.

Let p1 > % and 4 < q1 < 3%1. Furthermore, let po and ¢o be defined via the relations
% = p% + p% and % = q% + q%, respectively. Holder’s estimate yields

|| PR P, €490 ¢y Py, €20 ¢y Py, €20 3| 121, ey
< ||PRPr €20 1 || 1 o [ Py €20 ol o pr | Py €20 h3 | 2 g (2.31)
Applying Lemma 2.10, Corollary 2.11, and Bernstein’s inequality, we infer

5 4 4 4 6

3

231) < M2 NZ P N pep Py. o,

(2.31) < LN, 3 PR PN, 1122 [T I1Pn, 051l 2ces)
j=2

7 4 8 4 8 3

N. 1\2" + >

3 a1 o1

S(Rrw) NN P Paalis T 1P 0l
j=2

Then, the claim follows for p; sufficiently close to % and ¢; sufficiently close to 4. O
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2.4 Rectangular tori in two dimensions

After studying rectangular 3-tori in the previous section, we briefly discuss scaling-critical
well-posedness on two-dimensional rectangular tori. A multilinear Strichartz estimate is
proved, which implies scaling-critical local well-posedness results by similar arguments as
in Section 2.2, cf. also [GOW14, Section 5| and the references therein: Define appropriate
iteration spaces that in which one may control the Duhamel term, cf. Lemma 2.9. Then, a
fixed-point argument similar to the proof of Theorem 2.3 proves local well-posedness. Hence,
Proposition 2.17 leads to:

Theorem 2.14. Let s. be defined by (2.22) and let 3 < k € N. Then, for all s > s. the initial
value problem (2.21) is locally well-posed in H*(T3).

We refer to Theorem 2.3 for a precise formulation of this theorem. Scaling-critical small data
global well-posedness can not be concluded as in three dimensions since the energy and H?*¢-
norm scale differently. Hence, the conservation of energy can not be exploited as in the proof
of Theorem 2.3.

Theorem 2.14 extends previous results of Guo—Oh—Wang [GOW14, Theorem 1.5] who proved
the same result for k£ > 6. This is accomplished by using a new trilinear Strichartz estimate
which serves as an improved replacement for applying Holder’s inequality and linear Strichartz
estimates. The result is already published in [Str14, Section 3].

We use the notation introduced in Section 2.3.2 and consider (2.23) on T? instead, with the
modified Laplace—Beltrami operator Ag given by (2.24).

First, the following trilinear Strichartz estimate is proved by using ideas of [Bou07|. This
improves [GOW14, Lemma 5.9] (for d = 2). The main point here is that we do not get any
factor of the highest frequency.

Lemma 2.15. Let 2 < p < 4. Then, for any N, M > 1 with N > M, C; € ng%, Co,C3 € €3,
and ¢1, g2, ¢3 € L*(T?) we have

3
itAg 1
H Fe;e"79;

Jj=1

3
_2
<M H 1 Pe; ll 2 (72)-
Lr(79,L2(T?)) j=1

Proof. This proof is a trilinear variant of the poof of [Bou07, Proposition 1.1]. Hence, we
omit details and refer the reader also to the proof of Lemma 2.19 below, in which a similar
argument is applied. For brevity we write L} L} := LP(ro, L9(T?)) and L} = LP (7).

1
2:|§
Ly

using Plancherel’s identity with respect to x and Minkowski’s inequality. Now, applying
Hausdorff-Young (Proposition 1.36 (ii)) and setting ¢;, == |¢j(n)| yields

H T HLf 5 |:Z Z Cl,a—n—mC2nC3m

kEZ'|Q(a—n—m)+Q(n)+Q(m)—k|<1

The left-hand side may be estimated by

>

acZ?

neCa,
meCs
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One easily verifies that |Q(a —n —m) + Q(n) + Q(m) — k| < 3 may be written as
|Q(3n — 2a) + 3Q(m) + 2Q(a) — 6k| < 3,
where n :=n + m and m := n — m. Hence,
[{(n,m) €Cy xC3:|Q(a—n—m)+Q(n)+Q(m)—k| <3} 6,
where o
& = {(7i,m) € Cy x Cs : |Q(7) + 3Q(m) — €] < 4},
0= [6k — 2Q(a)] € Z, and cubes
Co = ([b1,b1 + 10M] x [ba, by + 10M]) NZ* and C3 = ([bs, b3 + 10M] x [ba, by + 10M]) N Z*

for some by,...,bs € Z. This observation and applying Hoélder’s inequality twice yield

1
2
iy S (Z!@W ) ( ) mam)

LET neCs, meCs
which in turn implies
3 A % 3
1 7e e 0; <Z k= > 1T 11Pc, 851l 2(r2)-
=1 LP(70,L2(T2)) =i j=1

The assumption p < 4 ensures that 5 > 2. Thus, by Corollary 1.37 and Corollary 1.39, we
may estimate

(Siei) ™ |l & o], carted
ez j=1 (m,7)eC; Lf (1)
for some compact interval I C R provided p > 2. This implies the desired estimate. O

Corollary 2.16. Let p > 6.
(i) For every N >1,C € €%, and ¢ € L*(T?) we have

P itAg <N%_% P
[ Pee”™ 2 @l Lo (r,L6(T2)) S | Pe ol 2 (r2)-

(ii) Let 6 < g < p. Then, for all N,M > 1 with N > M, R € %%, ,;, and ¢ € L*(T?) it
holds that ' .1 s
| PRE™ 0 G| 1o (ry 1a(T2)) S Nt TR M PR L2 (T2)-

Proof. The first estimate is a direct consequence of Lemma 2.15 provided p < 12. The estimate

| Pee™ @0 || oo (ry 12y S NIIPedllr2(r2)

is trivial from Cauchy—Schwarz. For 12 < p < 0o, the desired estimate follows from Holder’s
inequality and the estimates for p = 12 and p = .

The second statement follows from (i), the estimate

. 1 1

| PRE™ | oo (ry 2y < IR NZ2|2|| PRl 212y S (NM)2 | PR 12(12),
which may easily be obtained by applying Cauchy—Schwarz in Fourier space, and Holder’s
inequality. The conclusion works as follows: Set f(t,z) = |Pre®0¢(x)|, € = %p -6 >0,
and 9 := 6 < 1. Then,

1Pre™06 prg = 157 F 7" gy < NF1pee g IFIER S N2 070 M0 PRl
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Now, we prove the multilinear estimate from which the claimed well-posedness result follows
by standard arguments.

Proposition 2.17. Let k > 3. There exists § > 0 such that for all ¢1,...,¢py1 € L*(T?)
and dyadic numbers N1 > ... > Niy1 > 1 the following estimate holds true

k+1 A Nk+1 1 ) k+1
H Py e'Be g, N (T + F) 1Py @1l 22 (72) H N\ Py @5l L2 (r2)-
i=1 L2(7’0><T2) 1 2 =2

Proof. Thanks to the almost orthogonality argument in Lemma 2.12, it suffices to replace
Py e*R0¢) by PrPy,e®0¢,, where R € %]2\,2 o With M = max{NZ/Ny,1} provided we
magnify the time interval to an open interval 71 D 7.

Let 6 < pl, 1 < 8 and 3 < pg < %. Furthermore, let p3 and ¢o be defined via the relations

% = p_1 + = p + k=2 and = —1 + % + %, respectively. By Holder’s estimate the following
holds true:
k+1
it A it A it A it A it A
HPRPNleZ o1 [ [ Pn,e™0 0, < [[PrPn, €70 d1l por pan || P €70 o Prvy €770 3| o2
j:Q L%,z
k+1
itA
x H | P, e 9¢j”Lf3Lg27
=1

(2.32)

where LyL3 = L"(1,L%(T?)) and L}, = L?L2. Let f; == |Pn,e®0¢)|, j = 2,3. Then we
treat the bilinear term as follows:

<N fof iyl f2ll s e

1F2f50702 g = ||f2f3|| 7 4
where s > 6 and = p = = —|— —. Note that ps < ?4 ensures that » < 4. By Lemma 2.15 and
Corollary 2.16, we have for all n >0,
. . 1 r_2
1P, €20 3 Py, €40 | oy < Ny T'Ng 7 (2.33)
Corollary 2.16, (2.33), and Bernstein’s inequality imply
Myi-3 1.2 2, _,1, ’iif -2 (2_1_1_1,
(2‘32) < <_) a1 N26 P1 tn N k*2 3 p1 P2 a1
k+1
X | PR PN, 5| L2 (T2) H |1PN; &5l L2 (12)-
j=2

For all 0 < v1,19 < 1, there exist § > 0 and p1,q; > 6 sufficiently close to 6 as well as po > 3
sufficiently close to 3 such that

1_3 7_2 2
o (MNz—g MNS . 6 o ot s tvitn
(1) E - E ) (11) N2 _NZ )
rT_2 2 (2_1_ 1 1 vitvg
o 2 ) -t
(iii) N36 P2 — N32 2 77’ (iv) N] k=233 p1 P2 @’ _ N] ez

where j € {4,...,k+ 1}. Since % < 8. < 1 for k> 3, we may choose 0 < vq,v9,1 < 1 small
enough to get

k+1 N, k+1
k+1
|Pepctnon T] Pyetos)| 5 (Tt s ) 1P Pry ol T V3 1P 65z
_] =2 t,z ] =2

where L2 := L*(T?). O
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2.5 Product of spheres

Assumption 2.1 is verified for M being a product of S with a two-dimensional sphere with
arbitrary radius. In this thesis, we give the first proof of this result.

2.5.1 Selected results

There are only few known results about well-posedness on products of spheres. Let p > 0
and S% be the embedded sphere of radius p in R3, then Burq-Gérard-Tzvetkov [BGTO05b,
Theorem 1] proved that

iOpu+ Agu = |ul*u

with initial data ¢ € H'(S x Sg) is globally well-posed whenever o < 5. To accomplish that
they proved a weak bilinear estimate [BGT05b, Proposition 5.3|, which implies well-posedness
for 1 < a <4, and a stronger trilinear estimate [BGT05b, Proposition 5.1|, which allows to
get the well-posedness in the case a = 5 but only for data in H*(S x S%) with s > 1. A suitable
interpolation between those to approaches yields the claimed well-posedness. Moreover, they
rely on certain multilinear spectral cluster estimates [BGT05b, Theorem 2|, which have been
proved by themselves as well.

In a joint work of Herr and the author [HS15, Theorem 1], local well-posedness and small data
global well-posedness on S x S? was established. Using almost orthogonality and replacing
the number of lattice points estimate in [BGT05b, Proposition 5.1] by a new exponential
sum estimate, it was possible to verify Assumption 2.1 [HS15, Proposition 2.6]. However,
the exponential sum estimate in [HS15, Lemma 2.3| can not be extend to handle the case of
products of spheres with different radii.

In this section, we are going to replace the exponential sum estimate in [HS15, Lemma 2.3|
by Corollary 2.20 and use a more refined almost orthogonality argument to overcome the
problems described in [HS15, Remark 1]*.

2.5.2 Set-up

We take the notation for the spectrum and the spectral projectors that has been used in
[BGTO5b, Section 5|: Set M =S x Sﬁ for brevity. The eigenvalues of —A = —A, are given

by {)‘m,n}(mm)eszo, Where

Amn = m? +k(n*+n), (m,n)€Zx Ny

)

and k = p~2. This follows simply from the fact that the spectrum of a product manifold

equals the sum of the spectra of the individual manifolds, cf. [Cha84, Section 2.1], and the
behavior of the eigenvalues under scaling of the underlying manifold, see e.g. [Hanl2, Sec-
tion 2.2]. The spectral projector onto spherical harmonics of degree n on Sf) shall be denoted
by II,,: LQ(S%) — LQ(S%). For a function f: S x Sz — C we write S x S/% 3> (0,w) — f(0,w).
For fixed w € Sf) the mth Fourier coefficient of f(-,w) shall be defined by

1 2

Omf(w) = o i f0,w)e™™0dh, meZ.

4[HS15, Remark 1] is repeated at the beginning of Section 2.5.5.
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For f € L?(M) we have the following representation

flO,w) = Z e O (f)(w)

(m,n)€ZxNg

in the L%-sense. For dyadic N > 1 the projectors are given by

Puf0,w)= > an(y Ama)e™ L0n(f)(w), (0,w) € M,

(m,n)€ZxNg

where 7y is defined in (1.11). Given a second function g € L?(M) and a point-set S C Z*,
we define the bilinear projector

Qs(f,9)(0,w) = Z eltmitma)? I, Oy () (W) Oy (9) (w)
(m1,n1,m2,n2)€SH(Z><No)2
for (0,w) € M.
Recall that the Sobolev norm, which was defined in Definition 1.52, is given by
2s s
1 san = Do (V mn) IO fl3200 ~ D NP8 fl7200)-

(m,n)€ZxNg N>1

In view of (1.20), the linear Schrédinger evolution is given by

eitAf(H, w) _ Z e—iAm,nteimG Hn@m(f)(uJ)

(m,n)€ZxNg

2.5.3 A trilinear estimate for spherical harmonics

The succeeding trilinear estimate for eigenfunctions of the Laplace-Beltrami operator on the
2-sphere is stated in [BGT05b, Theorem 2|. It is deduced as a consequence of the more general
trilinear spectral cluster estimate in [BGT05b, Theorem 3| that holds on any two-dimensional,
compact, smooth, boundaryless Riemannian manifold. Bilinear and higher-dimensional ver-
sions are provided as well.

Proposition 2.18. There erists C,, > 0 such that for all integers ny > na > n3z > 0 and
fi,fa, f3 € LQ(S/%) the following trilinear estimate holds true

3
1
Lo, fiTTny follng f3]l 12s2) < Cp((n2) (n3)) * [T T, £ill 2s2).
j=1

Remark. We want to highlight Remark 2.1 in [BGTO05b]|. If one is interested in estimating
products of single eigenfunctions, the spectral cluster estimates seem only to be relevant for
“sphere like manifolds”. On the one hand, they are far from being optimal in the case of the
torus. Indeed, the spectral cluster estimate in [BGT05b, formula (2.5)] states that there is
a constant C' > 0 such that for every two eigenfunctions f and g of the Laplace-Beltrami
operator on T? with eigenvalues n respectively m,

. 1
1f9ll2(r2y < Cmin{n,m}2 | f|lr2¢r2) 9]l L2 (T2),
whereas the dual statement of the classical result of Zygmund [Zyg74, Theorem 1] shows that

I fgll2(r2y < CllfllL2(r2) 9]l 2 (12)-
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On the other hand, Burq-Gérard-Tzvetkov discussed the optimality of this estimate on S?
[BGTO5b, Section 2.1]: Choosing the spherical harmonics R, = (z1 + ix2)", one easily

calculates
1

”Rn”LQ(SQ) ~n 1, n>1

and Ry, Ry, Rny; = Ry 4notng for ny,no,n3 > 0. Hence, for ng > ng > n3 > 1,

3
1
| Ry Ry Bing || 22(s2) 2 (n1 +n2 +n3) "1 2 (nans)™ H | Rn; [ 2(s2)-

The spectral cluster estimates given in [BGT05b, Theorem 3| have successfully been applied
to gain energy-critical well-posedness of the NLS posed on three-dimensional Zoll manifolds,
see [Her13, Proposition 3.6]. O

2.5.4 Two exponential sum estimates

The next exponential sum estimate is used for handling a term that arises from the time and S
component of the two high-frequency functions. We are only interested in p close to % since it
serves as the lower endpoint of the interpolation with an estimate in L (7 x S), which takes
the precise size of S into account. The strategy is similar to the proof of the linear Strichartz
estimates by Bourgain for free solutions on ']I‘g [Bou07, Proposition 1.1|. This lemma replaces
[HS15, Lemma 2.3| and allows to treat the case p # 1.

Lemma 2.19. Let g <p <4 and 19 C R be a bounded time interval. Then, there exists a
constant C' > 0 such that for any a € (>(Z*), N > 1, and all S € €x the estimate

3_2
< CNz vl
L} (0,L3(8))

am17n17m27n2

H Z e_i(Aml,nl +>\m2,n2)tei(ml+m2)6

(m1,n1,m2,m2)€S

holds true.

Proof. For p > 2 Plancherel’s identity with respect to 6 as well as Minkowski’s inequality
allow to estimate the left-hand side by
2:| %

[

G SIS VA
LT 2 R G ) g E—my g

(ma1 nl,f mi,n2)€S Ly
A 273
< [Z Do el g } - (231)
E€Z (m,n1,&—mi,n2)ES Lf

Fix £ € Z. An application of the Hausdorff-Young inequality, see Proposition 1.36 (ii), yields

Il < [Z T (oo s —ron ]

T7€Ng (ml,nhﬁfml,nz)ES:

p p—1

_] E (2.35)

|>‘m1m1+)‘£—M1m2_7—|§%
By rewriting (A, ny + Aecmine — 7| < % as

12(2m1 — )2 + k(2n1 +1)% + k(2ny +1)% — (47 — 262 + 2k)| < 2,
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we observe that there exists some rectangular set C = a + [0, 10N]3 such that for
Sre = {(m,n,n) € C: |2m* + kn® + kn® — (47 — 26 + 2x)| < 2}
we have
[{(m1,m1,€ —m1,n2) € S+ [Ny + Aemans — 7 < g )| < [Grgel.
Thus, applying Hélder’s inequality twice, we get

P p—1

» 2-D | p
(235) S |:Z |67_7§|2(P*1) < Z |am1,n17f—m17n2|2> :|

TENQ (m1,n1,6—m1,n2)€ES:
[Amy g FAe—my ng 775%

p—2
_p_\ 2 2
S < E ’67'76‘1]2) |: E ‘am17n1,5m17n2’2]

7€Ny (m1,n1,6—mi,n2)ES

since the inner sum is essentially disjoint for different values of 7. Plugging this into (2.34)
provides the bound

p—2

P 2p
(2-34)§sup<§ IGT,gIH> llalle-
£EL TENQ

3_
2

2
Hence, we are left to estimate the first term on the right-hand side by N2 ». Since p < 4,

we have z% > 2, and we may apply Corollary 1.37 to estimate

p=2
(3 /0%) 7 5| 35 e

7€Np (m,n,n)eC

b
LZ(I)

for some compact interval I C R. Due to the rectangular structure of C, the sum can be
factorized and Holder’s estimate leads to

p—2
_p_ p . .
<Z ’6775‘2)_2> S ' Z e?zmQt . eant .
€Ny méai+[0,10N] L (D cay410,10N] L2 (I)
~2
% Z ehin t 2)22
n€az+[0,10N] L2 (1)
uniformly in £. Since p > %, we have % > 4 and Corollary 1.39 yields
_p_ e 3_2

sup( S 1o,e7) 7 5

€z T7€Np
as asserted. O

As mentioned before, interpolating with L™ (7y x S) leads to the next estimate we shall rely
on later. The factor of |S| plays a crucial role in the upcoming arguments.

Corollary 2.20. Let p > %, 2<qg< % and 19 C R be a bounded time interval. Then, there
erists C > 0 such that for any a € (*(Z*), N > 1, and all sets S € €y the estimate

3_2 1_1
< ONT721S)E i alle
LY (70,L§(S))

—il\ F Ao, no )t i(m1+ma2)0
H § : e (Amy g +Amg ng) 6( ) Amq,n1,ma,ns

(m1,n1,m2,n2)€ES

holds.
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Proof. For brevity set

f(ta 9) = ‘ Z g~ Amim +)\m2’n2)tei(m1+m2)0am1,n1,m2,n2 :

(m1,m1,m2,n2)€ES

Let ¢ = % — % >0 and ¥ = % < 1. By Hoélder’s inequality and Lemma 2.19 we have

3_2

91— 9 1—9 11
1A llzpeg = 171 ||Lng§||f||Ltg+aLngHL§feSN‘] P|S[2 7 a]lal .

Here, we used
1
£z, < IS]2]lalle,

which follows immediately from the Cauchy—-Schwarz inequality. U

2.5.5 Almost orthogonality

The subsequent lemmas exploit almost orthogonality in space and time. In contrast to what
has been done before, we gain some factor of the lowest frequency (see (2.37)) from the two
high-frequency terms in Lemma 2.21. Since we need to get a factor N, 9 this seems to work
only in the case N; < N3Z. The idea of using this kind of almost orthogonality to achieve a
spectral localization of the two high-frequency terms in terms of the lowest frequency seems
to be new in this context. Without such an argument it is not obvious how one could obtain
a sufficiently high power of N3 in Proposition 2.24 using the estimate in Lemma 2.19. To
show this, we repeat the author’s argument in [HS15, Remark 1]: We start with a trilinear
L?(19 x M) estimate and proceed as in the proof of Proposition 2.24 until (2.43). Then, using
Holder’s inequality to put the two functions with the highest frequencies to L;G/ 3+L§, and
thus, the function with the lowest frequency, say Ns, to Lfngo. We treat the latter term as

follows: Applying Bernstein’s inequality to bound it by the Lffo;—norm gives a factor N; /4,

The exponential sum estimate in Lemma 2.19 gives N; /2~ and from the trilinear estimate for
spherical harmonics we get another N?}/ * asin (2.43). All in all, we obtain Ngf, and hence,
the power on the lowest frequency is too low to conclude well-posedness from Section 2.2.1.

The remaining case N; > N2 is treated in Lemma 2.22. By exploiting almost orthogonality
in space and time, we restrict the spectrum only of the high-frequency term. In the proof of
Proposition 2.24 below, it turns out that this case is in fact sub-critical.

Given dyadic numbers Ny, No, N3 > 1, we define the point-sets
Nj = {(m,n) € ZxNg:nn,(v/ Amn) >0}, j=1,2,3. (2.36)

Lemma 2.21. Let v > 0 and 79 C R be a bounded interval. Furthermore, let 71 D Ty be an
open interval. Then, for all ¢1,¢o, 3 € L2(M) and dyadic numbers N1 > Ny > N3 > 1 with
Ny < N2 there are finitely many sets Sy C N1 x Na of size

< . N_6N1+26N3_6 2.
Sl Nogllslgl 1 V2 3 (2.37)

with the property N1 x Ny = Uzezsﬁ such that

3 2
itA
H Py e"" 0,

j=1

. . . 9
5 ZHQS{(PNleZtAlea PNgeZtA¢2)PN3eZtA¢3HLQ(TlxM)
L2(tox M) (€7

3

+ NNy T 1Py, 6512
2 4V3 N;PillL2 (M)
j=1
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Proof. We prove this result in four steps. In the first three steps, we exploit almost orthogo-
nality in the S and the S% component, respectively. We then use almost orthogonality in time
to conclude the claim. Note that we may assume Ny > Ns.

In this proof, we agree on the notation

Z = Z and ; = Z (2.38)

A (m1,n1,m2,n2,m3,n3)€A (m1,n1,m2,n2,m3,n3)EA,

B (m1,n1,m2,n2,m3,13)EB
for given sets A, B C Z5. First, we recall that for ¢t € 7p and (#,w) € S x Sg,

3

3
Py, " ;(0,w) = Z H 1 (v )‘mjvnj)eil/\mj’njteimjennj Om; 95 (w)-
1

J= N1 xN2x N3 j=1

Step 1. Due to spatial almost orthogonality induced by the S component, it suffices to prove
the desired estimate in the case

A A itA
PRr Py, e"¢1Pn,e" = ¢ Pn,e" = ¢3,

where R C N1 N([b, b+ Na] x Ny) for some |b| < 2N;. To prove that, we consider the partition

Z= Ulk, where I, := [kNy, (k + 1)Na) N Z.
kEZ

Indeed, for fixed w € Sf) and t € 19 we can show
2

~ Y [Pry Py €2 61 Py e 6 Pry €2 03 (w) |72 s)
L2S)  kez

3
[ Pwe*2o5(w)
j=1

where Ry .= N1 N (I x Ny). For k. k € 7 we have

(Pr, PN, 2 p1 P, ™2 o Py 2 3 (w), P, R Py €2 ¢y P, €2 g P, e g (w) )2 )

3
= Z Im,n

Ry xNaxN3, J
Ry xN2xN3

i = A 5 - 0~ 6.
e i(Amjn; 3 J)tHnj@ijSj(w)Hﬁj@mﬁbj(w)’
1

where m = (mq, mg, ms, my, me, m3), n = (n1,n9,n3,n1,n2,n3), and

3
Imn = H TIN; ( V Amj,”j)an ( V )‘ﬁjﬁj) / llmrmattma =i =iz =)l g,
j=1

S

Since mj,m;, j = 1,2,3, are integers, we may conclude Iy, n = 0 provided |k — %\ > 8.

Step 2. Now, we use almost orthogonality that comes from the Sf) component. It is well-
known that the product of a spherical harmonic of degree m with another of degree ¢ can be
expanded in terms of spherical harmonics of degree less or equal to m + £. Furthermore, two
spherical harmonics of different degree are orthogonal in LZ(SZ), n € N. We finally remark
that complex conjugation does not change the degree of a spherical harmonic. Details may
be found in [SW71, Section VI.2]. These facts applied to S would lead to the same result
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that we obtained in Step 1. In Step 1, however, we wanted to point out that no theory about
spherical harmonics is required to conclude almost orthogonality in S.

We now prove that it suffices to consider the case where ny is located in an interval of the
size of the second highest frequency N». To this end, we define similarly as above a partition
of NQZ

No= |J Ir, where Iy := [kNy, (k+ 1)Ns) NN,
keNp
Fix 8 € S and t € 19, then it holds that

|| Pr Py, €2 ¢y Py, ™2 o Py €2 3(0) |12 (s2)

~ ) I Pe Pri e 61 Prye™® 62 Py, e 93(6) 12 s3),
keNg

where Ci, := R N (Z x I}). To see this, let k:,% € Ny and write

(Pe, P, "2 p1 Pr, "2 o Py, 2 ¢5(0), Fe. P, "2 ¢y P, e o Py, eitA¢3(0)>L2(Sg)

3
— Z Im,n H e_Z(Amj,nj _Ar%j,ﬁj )tei(mj'fﬁ”bj)e’
J=1

Cr XN2 X N3,
C; X Na xN3

where m = (ml,mg,mg,ﬁll,ﬁlQ,ﬁlg), n— (nl,ng,ng,ﬁl,ﬁ%ﬁg), and Imn is defined by

3
= H mj,nj)nN (\/ mj,n; <HHnJ®m1¢]7HHnJ®m1¢]>

Without loss of generality, we may assume nq > n1. Then,

L2(Sg).

3
Ym,n = Hﬁl@ﬁll ¢1 H Hnj@mj ¢]Hﬁj 9777,1' ¢] € L2(Sz)
7=2

can be expanded in terms of spherical harmonics of degree less or equal to 1y + 8 N2. Hence,
if |k — k| > 8, then

3
H mj,nj)nN (\/ )‘ﬁzj,ﬁj) <Hn1 @ml ¢1, Ym7n>L2(S§) = 0.

As a consequence, we are left to show

3 2
A A

Pe Py e ¢ I | Py, "¢,

j=1

) ) ) 9
S ZHQSZ(PM "2y, PNgeltA¢2)PNseltA¢3HL2(n x M)
L2(tox M) ez,

3
3
+ NE Ny Pe, P 2y [T 1P, 65022000,
j=2

for any fixed C := Cg, k € Ny.
Step 3. Analogously as in the first step, we see that
| Pe P, "2 1 Py 2 Py 03(0) 172 s2)

~Y 1Q e (P €2 b1, Prye™™ 80) Py € |72 s2),
kEZ
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where Rl(f) = {(m1,n1,ma,n2) € C x Na : my + mg € [kN3,(k + 1)N3)}. Again, this is a
consequence of almost orthogonality in S. We omit details since the argument is pretty close
to Step 1.

Step 4. Let k € Z be fixed and M := N3/N; > 1. We define the partition

Ng = U Jy, where J;:= [EM, (f + 1)M) N Np.
€Ny

Inspired by the proof of [HTT11, Proposition 3.5], we consider the following partition: Let &
be the center of C := C x N3, and define disjoint strips of width M that are orthogonal to &g:

Sie = {(m1,n1,ma,n3) € R;(f) : (m1,n1,ma,ng) - &o € [|€0l€M, S| (0 + 1)M) §,
where & -, ¢ = &1¢1 + k€l + €33 + kE4(4. We observe from the construction that the angle®
K((ml,nnl,mg,nng),go) < % Since Ny > N>, we have K((ml,nnl,mg,/ﬁng),fo) < %
From this, we get

(m1,n1,ma,ma) - & = |(ma, Ky, ma, kng)||€o| cos £((ma, kny, ma, kng), &) ~ N7

Thus, £ > 0 and / = % since |§g| &~ N;. Since R,(f) = Uzle/MSk,b we see that

Qe (Pr €201, Prye™@d0) = 3 Qs (Py,e"2 61, Prye’ ).
(=~N1 /M

Let x € C§°(R) be a non-negative cut-off function satisfying x(t) = 1 for all ¢ € 75 and
x(t) =0 for all t € R\ 71. Obviously,

Q@ (Pr, "2 p1, Py e’ o) Pry e 63|72 (0 )

< IVX(1)Qp e (P, "B, Py’ o) Pry ™ b3 2y xnry S Tt + Iz,

where
Iy = Z 1@Qs,., (PNleZtAgblaPN2eZtA¢2)PN36ZtA¢3H%Q(TI><M)
KZNl/M
and
o= Y (X()Qs,,(Pn,e"®¢1, Prye’™ do) Py, e 3,
GE~NL /M
—E|>1

Qs, (P, "2 p1, Prye’® hy) Py e ¢3) L2(Rx M)

It then suffices to show

3
§ —
D ksl S NNy PePry dall7zan [ 1PN 0517200 (2.39)
kEZ j=2

P£(£,¢) denotes the angle between ¢ and ¢ with respect to the standard inner product & - .
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The benefit of extending the integration with respect to t to R is that we may interpret this
integration as Fourier transform on R. Doing so and taking the absolute value, we obtain

3
Heel S Z Z %] (Z mj.n; T )‘ﬁjﬁj)> /M H [, Orm; 65115, O, 05 (w)| d(6, w).
j=1

MNNl/M Sk £><N3,
[e—2]>1 SH
(2.40)

The term |X| provides us with arbitrarily fast decay in N3. To prove this, we define the
quadratic form

Q) =& +rE + &+ k&, €=(&4,6.6,4) €2

and observe that for £ := (my,n1 + %, ma, No + %) we have

K
)\ml,m + )‘mQ,nQ = Q(é) - 5

Motivated by the proof of [HTT11, Proposition 3.5|, we write

Q(¢) = € o)? + Q€ — &) — (€ = &) &oI*-

1 1
Q&) Q&)
We note from the restriction to Sy and N3 < M?¢ that

Q&) = M** + O(M?0).
The same result holds true for the elements in Sk,Z
Q((n, 7y + L, g, 7y + 1)) = M20? + O(M?7).

Assuming |[£ — £| > 1, we see

3
Z mi,ng T mavna)

= M2+ )0 — 0|+ OM?0) + O(M?*0) > N2|t — (|

since e,? ~ % Thus, for any u > 0,
3 ~
X] (Z(Amj,nj - Amj,ﬁj)> < N30 — Ty
=1

Now, we proceed to estimate (2.40). Cauchy—Schwarz with respect to (6,w), Sk¢ X N3, and
S, 7% N3 as well as the trilinear estimate for spherical harmonics in Proposition 2.18 yield

3 9 L

1 ~ 2

izl S (NoNs)2 - 3 < > ‘X|<Z(Amjvnj_)‘ﬁ%jﬁj)> )
K,Zle/M; Sk, e xN3, j=1

=7 >1 Sk N3

3
(X TIm0m ol

Sk,ex N3 j=1

NI
NI

3
(3 I0im0m00)

Sk’zx./\/é jil
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Assume for the moment that (2.37) holds. Then, choosing § = 0, we see that the square root
of the sum over Sy, ¢ x N3 and S, 7x N is bounded by NoNy (£ — £)=# < NoNy ¥ (£ — )~
provided 2p — 3 > v. Finally, Schur’s lemma and Cauchy—Schwarz with respect to k imply

3 1 3 1
~ 2 2
> % -0 S Ilmensli) (X TTimenel)
kE€Z p 1Ny /M Sk, exN3 j=1 S, ¥ Nz j=1
[—0]>1

S 1 Pe Py @111 72 ) |1 PNz 021172 0y | Povs 031172 )
provided g > 1. This proves (2.39).

It remains to prove (2.37). Although there are two directions of size N3 and M introduced in
the third and fourth step, respectively, we can not expect |Sg¢| < M N3 N3 to be true since
these directions might be not orthogonal. If we just take the restriction of Sy, into account,
it is obvious that |Sy | < N3M. We then obtain the asserted estimate by interpolating with

a second estimate for |Sy¢|. From the restriction to R,(f), we see that there are C'N3Nj
combinations of (m1,ma,n2). The definition of Sy, ¢ implies

A < rniéoa/|bo] < A+ M, (2.41)

where §o = (£0,1,60,2,80,3,80,4) and A = M — (m18o1 + m28o3 + kn2o.a)/[§o|. Recall that
&y was chosen to be the center of C x As, where C C N7 is a cube of size Ny and the second
component is a subset of {0,...,2N;}. We deduce &2 2 N2 and consequently, &y2/|&| 2
N3 /Nj. Hence, (2.41) implies that there are C N2 /Na possible values for n; (depending on k).
All in all, we proved |Sk| < NaN3. Now, (2.37) follows from interpolating the two bounds

on |Spel. O

The following lemma treats the remaining case, where the highest frequency is larger than the
square of the lowest frequency.

Lemma 2.22. Let v > 0 and 19 C R be a bounded interval. Furthermore, let 71 D Ty be an
open interval. Then, for all ¢1,¢o, ¢3 € L*(M) and dyadic numbers Ny > Ny > N3 > 1 with
Ny > N2 there are finitely many sets T, C N1 with the properties that T; € %]2\72 v Where

M = max{NZ/Ny,1}, and N1 = Uzezn such that
3

H PNJ- e’itA ¢]

Jj=1

2

) ) . 9
5 ZHPTePNleZtA¢1PN2eZtA¢2PN3eZtA¢3HL2(71 X M)
L2(’T()><M) VI=y/

3
+ Ny T I1Pw; 03172 a)-
j=1

Proof. We use the notation introduced in (2.38). From Step 1 and Step 2 of the proof of
the previous lemma, we see that we may consider Fr Py, e ¢, instead of P, e p1, where
C gNl and C € (51%2

In what follows, we omit details since we argue along the lines of Step 4. Define the partition

. N2
Ny = U Jy, where J;:= [ZM, £+ 1)M) NNy and M = max{ﬁ,l} .
1
£eNy
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Let & be the center of C, and define disjoint strips of width M that are orthogonal to &g:
Te = {(m1,n1) € C: (ma, wn1) - &o € [[&o|€M, |Eol(€ +1)M) },

where £ > 0 and ¢ ~ % We clearly have
PePye™¢y = Y PpPye"¢r.
=Ny /M

We denote by x the same non-negative cut-off function as in Step 4. We compute

1Pe Prvy "2 61 Py €2 80 Py €2 9372 ey
< ‘|ﬂ(t)PnPN1 eitAQSlPNQ 6itA¢2PN3€itA¢3||%2(T1 M) 5 Il + 12,
where

. itA it it A 2
I = Z HPTePNl e’ ¢1PN262 ¢2PN3€Z ¢3”L2(71><M)
f%Nl /M

and I is defined as
Z (x(t)Py, Py, "™ ¢ P, €™ ¢y Py, e 3, Pr.Py, "2 gy Py, e o Py, 6im¢3>L2(RxM)-

0,0~N, /M:
[0—€]>1

We are left to estimate

|Ia| S Ny || Pe Py 172 gy | Pa b2ll72 iy || Pvs 031172 )

By the same argument that we used to obtain (2.40), we deduce

3 3
JEIpS Z Z X (Z()‘mjvnj - A@,m)) /M H [, Om; @515, O, ¢ (w)| (6, w).
j=1

0,0~Ny /M: TexNex N3, j=1
|Z*Z|>>1 TZXNQ X N3

For [( —¢|>1and ¢,/ ~ . we get

3

Z()\mh”j - )‘ﬁjﬁj)

J=1

= M2(L+0)|0— 0|+ O(M20) + O(M?0) > N2|t — 1.

Thus, for any u > 0,
3
~ —2 T\ —
135 oy = ) ) o 5 =Ty
j=1

Cauchy-Schwarz with respect to (6,w), Te x N2 x N3, and T;x N2 x N3 as well as the trilinear
estimate for spherical harmonics in Proposition 2.18 yield

Sl Z < Z m<§:()‘mjv"j—)\mj,m)>2)é

¢,0~Ny /M: QX//\\[&X/\A@ j=1
lo—f|>1 OV

3 3
(X Tmenotion) (X THMomaliw)

TexNox N3 j=1 TixNax N3z j=1

N
N
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Since |7y x No x N3| < N§ for any ¢ € Ny, we conclude
7—2
|I2| € Ny | Pe Py &1l 72 1P 021172 0y |1 Pva 831172 )

using Schur’s lemma as done in Step 4. Choosing u large enough implies the asserted result.
O

Remark. In the third step of the proof of [HS15, Proposition 2.6], an annular smallness
condition was derived. A similar restriction could have been determined in the previous two
lemmas, which was avoided here due to the more complicated number of lattice points estimate
for annular sets. O

2.5.6 The trilinear Strichartz estimate

Before we turn to the proof of Assumption 2.1, we state the following estimate of the number
of lattice points solving a Diophantine equation. The proof is similar to the proof of (1.8) and
can be found in [BGT05a, Lemma 3.2|, for instance.

Lemma 2.23. For every ¢ > 0 there exists Ce > 0 such that for every 7 € Ng and N € N,

[{(n1,n2) € [0,N] x Ng : n +n3 = 7}| < C.N®.

Now, we have everything we need to conclude the trilinear Strichartz estimate, which in turn
implies the local well-posedness result in Theorem 2.3.

Proposition 2.24. There exists § > 0 such that for all ¢1,¢2,¢3 € L*(M) and dyadic
numbers N1 > No > N3 > 1 the following estimate holds:

3
A A . Ny 1\’
|| P, €2 1 Py €2 o Py €2 3 12 (g 0ty S (ﬁ + ﬁ) NoN3 [T 1P, &5l 2oy
j=1

Proof. According to our almost orthogonality results, we have to treat the cases Ny < N3
and Ny > N§ separately. The latter case can be considered as sub-critical since a gain of a
small power of N, L allows compensate a loss of a small power of N3. This is exploited at the
end of this proof.

Case N1 < N32. Let 71 D 7y be an open interval. Thanks to Lemma 2.21, we may replace the
left-hand side by

(Z 1Qs, (P, e 61, Prye’™® do) Prg e’ 4372, XM))
LeZ

To be definite we choose § = 2 which gives that Sy C N7 x N> are sets of size M1/12N7/6 11/4

The Nj are defined as in (2.36). Recall that for ¢ € 79 and (f,w) € S x S,

QS@ (PNI eitA(bh PN2 eitA¢2)PN3eitA¢3(07 w)

- Z H 77N m] 7"1) g eszGH"J @m] ¢J ( )

(m1,n1,m2,n2,m3,n3)eEM, j=1
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where M, = Sy x N3. In the next step we treat the LQ(Sﬁ)—norm separately without los-
ing oscillations in the S component and in time. This was already used by Burq-Gérard-
Tzvetkov in the proof of [BGT05b, Proposition 5.1|. Plancherel’s identity with respect to ¢
(see Proposition 1.36 (ii)) and €, and the triangle inequality for the L2(S?))—norm yield

”QSZ(PNI eitA(bl? PNzeitA¢2)PN36itA¢3|’%2(n x M)

3 2
S Z Z H|H"j®mg¢j|
T7€No, £€Z (m1,n1,ma,n2,m3,nz)EM;y:  j=1 L2(S2)
e s TR
i , , (242)
S Z Z H 1L Om; ¢; ] :
T€Ng, E€EZL  (mq,n1,m2,n2,m3,n3)EMp: ' j=1 L2(S2)

‘)\ml ,nq +>\m2,n2 +)\m3,n3 77—‘ S%v
E=mi1+ma+ms3

In contrast to [BGT05b, Proposition 5.1], we do not estimate the number of terms of the
inner sum, but we go back to the physical space: We set a,(%z,’nj = HHnj@quSjHLz(Sg) for
j = 1,2,3 and apply Proposition 2.18 as well as Plancherel’s identity with respect to 6 and

Proposition 1.36 (i) with respect to ¢ to obtain
it A it A itA
1Qs, (P, €2 p1, P, €2 92) Pry e ds|72 ()

3 2
soowi > (T,

TENy, ¢€Z mi1,n1,ma,n2,m3,n3)EM;:
|>\m1,n1+)\m2,n2+>\m3,n3_7—|§%7
5:m1+m2+m3 (243)
1 3 . 2
< 5 Z H —’L)\mj,njt 'imjg (])
< (N2N3) e " | .
(ml,nl,mg,ng,m3,n3)6/\/{e j=1 Lt,G(TOXS)
Holder’s estimate yields
Yy
2
1 . . .
(2.43) < (NaN3)1 Z Hefz/\mj,njtezmje G)
~ mg,ng 3 9/4
(m1,m1,m2,n2)€S, j=1 Li(11,Ly"(S)) (2.44)

—iXmg,ngt im30 (3)
(& e amB,nB

(m3,n3)EN3 L§(11,Lg%(8))
Applying Bernstein’s inequality to the last term in (2.44) and then Corollary 2.20 to both
terms. This leads to

1
221

1 3
. . . 2 1 53 221
(Z 1Qs, (Pn, €1, Py, e@t%a)PNae“%sHi%xm) < N NGNS T sllnzcan

ez, j=1

which immediately implies the desired result in the first case.

Case N1 > N3. We follow the strategy of Burq—Gérard-Tzvetkov in the proof of [BGTO05b,
Proposition 5.1]. The only difference is the estimate (ii) below and how we exploit it.
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In light of Lemma 2.22, it suffices to show

itA itA it A
| P7 P, € g1 P, €2 o Prg €2 03| 12y

1) 3
Ny 1
S (524 ;) MedalPr Py onlzon T 1Py, o5lon

for some open interval 7 D 7y and 7 C N with 7 € %]2\727]\4’ where M = max{NZ /Ny, 1}.
For M =T x N5 x N3 we estimate

itA itA it A 2
”PTPN1 e’ ¢1PN2 e’ ¢2PN3€Z ¢3”L2(71 x M)

DY

TEN), £EEZ

3 2

Z H |Hnj@mj¢j|

(m1,n1,ma,n2,mz,nz)eEM:  j=1
|>\m1 ,ny +)\m2 ,ng +>\m3,n3 7T|S %7
E=mi1+ma+ms3

L2(S3)

as in (2.42) above. The triangle inequality for the L?(S?)-norm, Cauchy-Schwarz in the
summation over (mi,ny,mag,ng, ms,ng) € M, and Proposition 2.18 yield

1
1Py Py, €261 Py, ™ o Py, €™ 3|32, ary S (N2N3)? S AT H”%”Bw
T 0,

where A(&, 7) is defined as
H(mlynlam2an2,m3,n3) € M : & =my +mg+ms, |>\m1,n1 + >\m2,n2 + >\m3,n3 - T| < %H
We are left to bound A(§, 7) uniformly in £ and 7 by
Ny 1\% 3 s
— 4+ — | NZINZ.
C<N1 + NQ) 2°'3

In fact, we shall prove that there exists 7 > 0 such that

3., 3
sup  A(¢,7) <CNg "NZ. (2.45)
TEN, £EZ

In contrast to [BGT05b], we will use the smallness properties of 7 introduced by almost
orthogonality in space and time to gain a small power of M. For any € > 0 we get the
following two estimates:

(i) A(¢,7) < C.N,TeNZ, (ii) A(¢,7) < C:MNaNgte.

The estimates can be proved as follows:

(i) Here, we neglect the restriction to 7. The number of possible triples (mg,ms,n3) is
bounded by CNaNZ. Now, we fix a possible triple (ma, m3,n3) and eliminate m; by
mi =& —mg —mg. Then (ny,ny) has to satisfy

2
[(2n1 + 1) + (2ng + 1) — 1| < - (2.46)

with 7 == 2+ 2 (7 — (£ =mo —m3)? —m3 — Anyny ). Hence, Lemma 2.23 implies that the
number of integer solutions (ni,n2) € [0,2N;] x [0,2N3] of (2.46) is bounded by C.N5.
From this we deduce (i).



84 2 LOCAL AND SMALL DATA GLOBAL WELL-POSEDNESS

(ii) From the definition of 7, we see that the number of possible triples (mj,n;, ms) can
be estimated by CM NsN3. We fix a possible triple (mi,n1,m3) and eliminate mgo by
mg = & —mq —ma. In order to evaluate A(, ), we observe that (ng,ng) satisfies

2

|(2ns + 1) + (203 + 1)> — 1| < o

with r =2+ %(T — Ay — (E—=mp —m3)? — mg) By Lemma 2.23, we can estimate
the number of integer solutions by C V3.

Note that the estimates (i) and (ii) above have an additional loss of power ¢ and thus,
should not be useful in our energy-critical study. However, since Ny > N2, the factor
M = max{NZ/Ni,1} in (ii) allows to compensate this loss in either case.

On the one hand, if M = 1, then (ii) clearly yields

3
2

A(g’T) S CN2N3 )
which immediately implies (2.45).
On the other hand, if M = N2 /Ny, then we bound

9 1 _ 1 6 19
A(€,7) < Co(NFHENZ) T (N7 INGNIHE) 0 < C.N, 10N T N,0

for some ¢ > 0. Observe that Ny > N2 implies Nl_l/10 < N3—1/5. Therefore,

17

6 17
A6, 7) < C.N5 TN,

Choosing € < QLO yields (2.45) since % > 3 and g—i— 2—10 + % < 3. O

2.6 Further results on other manifolds and remarks

Apart from the energy-critical local and small data global well-posedness results proved above,

there is only very little knowledge about energy-critical well-posedness on compact mani-
folds.

As mentioned before, well-posedness on the class of Zoll manifolds, which are manifolds for
which all geodesics are simple and closed with a common minimal period, has been stud-
ied. The most important example of a Zoll manifold is S”. To the authors knowledge,
Burq-Gérard—Tzvetkov were the first who obtained energy-sub-critical well-posedness results
for the NLS on two- and three-dimensional Zoll manifolds as well as S x M where M is
a two-dimensional Zoll manifold, see [BGT05a, Theorem 1] and [BGT05b, Theorem 1.1]°.
Herr [Herl3, Theorem 1.1] finally established energy-critical local and small data global well-
posedness for three-dimensional Zoll manifolds. The proof relies on the stronger (compared
to Corollary 1.39) exponential sum estimate

_tn2
§ :cne itn

neJ

1
< CN%i(Z\cnP)Q,

neJ

LY(1)

where 4 < p < oo and J is an interval in Z of size N > 1 [Her13, Lemma 3.1]. Using an almost
orthogonality argument, the trilinear estimate in Assumption 2.1 is obtained implicitly in the

 Even though [BGTO05b, Theorem 1.1] is only stated for S* and Si x S, it is mentioned in the introduction
of Sections 4.2 and 5.2 that it applies to three-dimensional Zoll manifolds and S x M as well.
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proof of [Herl3, Proposition 3.6]. Besides this trilinear estimate, another very important
novelty in this article is the treatment of the minor contribution term X, in the proof of
[Her13, Proposition 4.2|, which corresponds ¥y in the proof of Lemma 2.9. This contribution
was zero in the previously considered case T3.” It is worth to mention that the well-posedness
study on Zoll manifolds does not rely on the geometrical property but on the fact that the
spectrum is clustered around a sequence of squares.

One might ask whether the proof of Proposition 2.24 can be extended to the class of S x M,
where M is a two-dimensional Zoll manifold. First, one should mention that the spectrum
of two-dimensional Zoll manifolds is—like in the three-dimensional case—clustered around
square numbers, see [BGT05a, Proposition 3.3] and [Gui77, Theorem 6]. As a consequence,
the spectrum does not change much compared to the previous section if one considers a
Laplace—Beltrami operator A similar as in [Her13, Lemma 2.2] instead. Hence, it seems likely
that an argument as in the proof of Lemma 2.19 allows to get a similar result. A fundamental
change has to be done in the proof of Lemma 2.21. One does not have almost orthogonality of
eigenfunctions of Zoll manifolds, though, in light of Lemma 1.54, the additional contribution
should be negligible. Hence, we strongly expect Proposition 2.24 to hold even for the product
of S with any two-dimensional Zoll manifold.

In higher dimensions even less is known. So far, there is only one energy-critical well-posedness
result on a four-dimensional compact manifold, namely on T*. This result is due to Herr—
Tataru—Tzvetkov [HTT14, Theorem 1.1] and relies heavily on the Strichartz estimates given in
[Boul3, formula (0.11)]. A natural domain to be considered next is S*. In this case, new ideas
seem to be needed due to the failure of the scale invariant wa—Strichartz estimate [BGT04,
Theorem 4]. However, Gérard—Pierfelice [GP10] proved that the quadratic NLS is locally
well-posed in HS, . (S?) for every s > 1, where HZ (S is the space of all zonal functions
in H*(S%).

"In the special case of S>—due to orthogonality reasons—the term Xy is zero, too.






3 Global well-posedness for large data

Having discussed the local and small data global theory in the previous chapter, we shall
now address the energy-critical large data global well-posedness theory on rectangular tori.
For any initial data in H' we prove that the defocusing nonlinear Schrédinger equation with
quintic nonlinearity is globally well-posed. This result, which has already been published in
[Str15] by the author of the present thesis, extends results of Ionescu-Pausader [IP12b)].

3.1 Set-up and main result

Analogously to the local theory in Section 2.3, we study the following defocusing nonlinear
Schrodinger equation

(3.1)

i0pu + Agu = ulul*
u(0, -) = ¢ € H'(T?)

with base space T and modified Laplace-Beltrami operator Ag instead of the equivalent
equation on T3,

0w + Agv = v|o[*
(0, ) = ¢ € HY(T}).
Recall the definition of the modified Laplace operator Ag given in (2.24), the notion of the

evolution operator e in (2.25), and the conservation of mass and energy, see (2.26).

For notational convenience we write V = V,, and this time, we use the equivalent H Lnorm
which is given by

1
2
. 2 2
e = (3 N2 e )
N>1
This affects only constants and in some cases changes them to one as in Proposition 3.3 (ii).
We also specify the frequency localization operators Py: We fix a smooth, non-negative,

even function n': R — [0,1] with n'(y) = 1 for |y| < 1 and suppn' C (—2,2). Then, let
n3: R? — [0,1] be defined via 73(z) == n'(x1)n' (z2)n' (x3). For a dyadic number N > 1 we

set @) = (%) B 773<%> and 73 (z) == n3(|z]).

Then, we define the frequency localization operators Py: L?(T?) — L?(T3) as the Fourier
multiplier with symbol 77;’\,. Furthermore, we set P<y = ) ;< Pv. More generally, given
a set S C Z3, we define Ps to be the Fourier multiplier with s_ymbol 1s, where 1s denotes
the characteristic function of S.

Using the space X[ (I), which is defined in Definition 3.2 below, we may formulate the main
result of this chapter.
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Theorem 3.1 (Global well-posedness). If ¢ € H(T?), then there exists a unique global
solution u € C(R, HY(T3)) N X (R) of the initial value problem (3.1). Moreover, the mapping
¢ + u extends to a continuous mapping from H'(T3) to C([-T,T], H(T?)) N X} ([-T,T))
for any T € [0,00), and the quantities M(u) and E(u) defined in (2.26) are conserved along
the flow.

Important results regarding well-posedness on tori have been summarized in Section 2.3.1.
Now, we want to put the results presented here better into context. In a series of papers,
Tonescu—Pausader [IPS12, IP12a, IP12b] ([IPS12] is a joint work with Staffilani) developed a
method to obtain energy-critical large data global well-posedness on T2. This was the first
critical result of this kind on a compact manifold. So far, the corresponding result has been
only obtained on S? [PTW14] by Pausader—Tzvetkov—Wang and on rectangular tori [Str15]
by the author. A variant of the proof of the latter result is given in this chapter. Our proof
is closely tied to the strategy developed by Ionescu—Pausader [IP12b], which itself relies on
ideas that have been applied on R3 [Bou99, CKST08, KM06]. Since some proofs are omitted in
[[P12b] as they follow analogously as on the previously considered domains in [[PS12, IP12a],
we take the opportunity to review the whole argument.

Our first step is to refine the large data local well-posedness theory presented in Section 2.3.
For that purpose, we introduce a variant of the resolution spaces X® and Y*, which give a
local-in-time control, and a weaker critical space-time norm Z. On the one hand, it is proved
that the nonlinear solution stays regular as long as the Z-norm is finite. On the other hand,
we show that concentration of a large amount of the Z-norm in finite time is self-defeating.
The reason is that a concentration of the Z-norm in finite time is equivalent to the fact of
undergoing a self-similar Kuclidean concentration, which is prevented by the Euclidean theory.
This is a consequence of the following: Concentration of a large amount the Z-norm in finite
time can only happen around a point in space-time, which itself must occur in a way that is
comparable to Euclidean solutions. Finally, it is known that Euclidean-like solutions can only
concentrate a bounded, finite amount of space-time norm [CKS™08|. To implement this, we
perform a profile decomposition of the initial data with profiles that concentrate in a point.
Such profiles are studied in detail.

We finally highlight the novelties. The main new ingredients for extending the result in
[IP12b] are the extinction lemma (Lemma 3.21) and Lemma 3.32. Unlike in the case of T3,
we can not apply the Weyl inequality in Lemma 1.41 to |Ks(t, x)|, which is defined in (3.41).
However, it turns out that throwing away the oscillations in two components and using the
Weyl inequality in one dimension, is still strong enough to obtain a similar extinction lemma
as in [IP12b, Lemma 4.3]. The main novelty in Lemma 3.32, which estimates the interaction
of a high-frequency linear solution with a low-frequency profile, is the way we estimate (3.98).
This, however, was already done in the author’s work [Str15].

In [Str15], the author already mentioned that the range of Strichartz estimates in Lemma 2.10
suffice to not only conclude small data global well-posedness but even global well-posedness for
arbitrary large initial data in H'. This is remarkable since the proof of Lemma 2.10 requires
no sophisticated arguments. Indeed, the essential tools are the exponential sum estimates
proved in Section 1.3, see [Bou07, Proposition 1.1|. This is accomplished by modifying the Z-
norm, which mainly effects the local theory that is developed here and the extinction lemma.
Motivated by the fact that the conditional result in Section 2.2 used dyadic scale resolution
spaces, we are going to define related resolution spaces X7 and Y,* with dyadic scales as well.
This differs from [IP12b, Str15], where resolution spaces with unit scales have been used.
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The argument given in [[P12b] relies heavily on earlier works and therefore, we take the
opportunity to review the whole proof here.

3.2 Basic definitions and statements

This section is devoted to introduce functions spaces with some of their properties that we shall
rely on. Furthermore, strong solutions are defined and dispersive estimates are recalled.

Recall the definition of the resolution spaces X® and Y® in Definition 2.2. Based on this
spaces, we define the norms X7 and Y% by restricting to time intervals of length at most
one.

Definition 3.2 (Resolution spaces X and Y?). Let s € R. For a time interval I C R we
define X¥(I) and Y*(I) to be the restriction spaces defined as

X (1) = {u: I — HYT?): ullxsry = sup  inf  [jv][xs < oo},
' JCI, VEX®:

|J‘_Si v-ly=u-ly

Y1) = {u: I — HYT3): lullysry = sup inf [lv|lys < oo}.
r JCI ,UEYS.

|J‘_§i U-1J=’u-1J

Remark. In [[P12b, Str15], the spaces X7 and Y;® were defined to consist of functions that
are continuous in time. We omitted this to be consistent with our small data theory in the
previous chapter. Therefore, we add this property to the definition of a strong solution,
see Definition 3.6. Besides of the aforementioned scale of resolution, this is another small

difference to [IP12b, Str15]. O

Similarly as in Proposition 2.4, we have the following basic properties of our resolution
spaces.

Proposition 3.3 (Properties of X and Y,?). Let I C R be a bounded time interval and s € R.

(i) We have
X3(I) <= Y3(I) = L>(I, H*(T%)).

(ii) Let 0 € I, s > 0, and ¢ € H*(T?), then ™0 ¢ € X3(I) and

€720 Bl xs 1y < N1l ars(z9)-

(111) Suppose |I| <1 and uw € Y(I) for some s € R. Then,

2s 2 %
(X ¥ Pvalkon)” Sl

N>1
Proof. The first two statements follow from the same argument as in Proposition 2.4.
To prove (iii), we first observe that since |I| <1,

s — i f S.
lullveay =, nt ol
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Indeed, on the one hand,

sup inf [lv]]ys < sup inf lvllys = inf lv]lys
JCI v lj(t) u-lj(t) JCI U'l[(t):U'lj(t) U'l](t):u-lj(t)

and on the other hand,

inf HUHYS < sup inf lv]]ys
17 (t)=u-1;( JCIv1;(t)=ul;(t)

since the left-hand side is the special case where J = I. Hence,

> N*||Pyullyop < ZN2S 1nf > lle 80 Py Pyul}
N>1 N>1 J=wls () 35

< inf N2|le~50 Pyo||2,,.
v.1J(t):u-1J(t)NZ>1 H ”V2

The last term equals [|ullys(;) as shown above. O

We introduce a critical norm Z which is weaker than X!. Tt is also related to the Z-norm
appearing in [[P12b, Str15], which was defined as

1
p
oz = X s (NP )

pe{at+1/10,100) €L IS AN >y

This modification is due to the attempt to use only the Strichartz estimates provided by
Lemma 2.10.

Definition 3.4 (Z-norm). Let

11

=5 q= 4 and p; =100, ¢ := 100, (3.2)

=

.__6+
po-—3

then we define P == {(po, q0),

§,l
iz = 3 s (5 NP e )

(rpep /S ISTN S

—~

p1,q1)} and the norm

B =

The following properties follow immediately:

Corollary 3.5 (Properties of the Z-norm). Let I C R be a bounded interval.
(i) For all $ € H'(T?) we have

HeimeéﬁHZ(I) S Bl e sy

(i1) tLet |I| < 1. For all p € [po,p1] and q > qp = poql(gfgq;)(ﬁl‘gf()p%) the following holds
rue:

(iii) For all u € X} (I) we have
lullzay S llullxpan

and thus, X}(I) — Z(I).
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Proof. The first statement follows from Strichartz estimates, see Lemma 2.10, and the fact
that ¢2 C (P for p>2:

' P
5ol s 3 (5N IPwolzy) S ol

(p,9)eP "N=1

=

Claim (ii) follows essentially from interpolation: Since g, > 2, we may apply Bernstein’s
inequality, cf. Lemma 1.53 (iii), to obtain

1
| PnullLe(r,acrsyy S N W HPNUHLP (1,1 (T3))

Let ¥ = z (()1(7{)) z 3, then we use Holder’s inequality and Young’s inequality for products to
deduce

|Prullp o < NPl fpo pao| Pl 177,
1_2_3 2 43 0 2,3 1 1—6
= N2 p» ap (NPO a0 QHPNu”LfOLgO) (NPl q1 2HPNu”Lf1Lgcl)

In order to prove (iii), we first observe that

§,l
Hu”Z(I) Z SUP lnf <Z N T 2)p”PNU”I£P(J,LQ(T3))>

1 =ul,

B =

Hence, Corollary 3.7 below implies

1
ull 2y S Z sup inf (ZNPHG itBe PP, > .

Yep JSI 111 1y=uly NSl
This immediately implies (iii), since U? < UP and % C P for any p > 2. O

We now state the notion of a strong solution.

Definition 3.6 (Strong solution).
(i) Let I C R be an interval, tg € I, and f € L'(I, L?(T?)), then we define the Duhamel

term as .
L)) = [ 9% f(s)ds
to
for t € TU{inf I}, Z;,(f)(t) = 0 for t < infIl, and Zy (f)(t) = lims—ysup 1 Zt, (f)(s) for
t>supl.

(ii) We call u € C(I, H(T?3)) a strong solution to
i0yu + Agu = F(u)
if u € X} (I) and u satisfies
u(t) = 'R0 (tg) — iZy, (F(u)) (t)

for all t,ty € I.
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The Strichartz estimates in Lemma 2.10 immediately imply the following result.

Corollary 3.7. Let I C R be any interval with |I| <1 and p > 8, then for any cube C C Z?
of size N > 1 and any e"*26 Poy, € UP we have

| Peull Lo r,za(r3y) S N5 |[PeeitBoy||

and
3_
2

5 .
1Peulpr(rxrsy S N2 || Pee™"0ul|m. (3.3)

In particular, if Pou € Y2(I), then
3_2
| Peullpor,raersyy S N* 7| Peullyo(n

3_5
[ Peullorxsy S N2 7 || Peullyon

Proof. We only prove the estimate (3.3) since the bound of the L}Li-norm follows from a
similar argument.

For a function Pev € UP which is defined on R, we have
itAg < %*é
| Pee UHLP(1><T3) SN2 || Fevllue. (3.4)

It suffices to prove (3.4) for a UP-atom

K
Pcv t x Z 1[tk 15 tk PCeZtAOQSk, Z ||PC¢k||L2(T3 =1

Bernstein’s inequality and the Strichartz estimate in Lemma 2.10 yield

3_5 p 3_5
N} P<Z\|Pc¢kup ) SN

1Pevl o sy < (Z [PecBogu 2, oo )

This proves (3.4).

One may obtain the bound in Y,°(I) from the bound in U? as follows: Since Peu € Y2(I), we
see that for any € > 0 there is Jy C I and an extension v € Y of Pcu{JO with

[vllyo < [[Peullyor +e.
Now, inequality (3.4) and the embedding V2 < UP give
3.5
| Peull Lo (rxm3) S NETH [vllyo S N2 77 (HPCu”Y0 + 5)
For € > 0 tending to zero this implies

| Peullze(rxrsy S N2Tr [ Peullyo(r)- ]

The following statement is an analogue of Lemma 2.5 and may be proved similarly.
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Lemma 3.8. Let I C R be a bounded interval. Furthermore, let Py f € LY(I,L?(T3)) for all
N >1andto€l. Then, 3 ns1 Tiy(Pnf) = 14, (f) € XMI) and

1Zeo (Ol xpy S sup Z /I - Py f(t,z)v(t,x) dx dt

vGYr_l(I): N>1
<1

lolly.—1;
provided that the right-hand side is finite. In particular, if f € L*(I, H'(T3)), then

1 Zeo ()l x2(ry S W llpr ez me (r2)y) - (3.5)

Consequently, for any g € CY(I,C?*(T?)) we have

1

2
lgllxxry S Nlg(to)llg (rsy + <Z | Pn (70 + A0)9‘|%1(I,H1(’]1‘3))> : (3.6)
N>1

Proof/Reference. As in the proof of Lemma 2.5, it suffices to show for any L > 1,

/ 0 | Purttantia dxdt'.

This follows along the lines of the proof of (2.7), in which we observe that (2.8) holds if we
replace a by any ty € 1.

I (P<f)llxs S sup Y

veY 75 N>1
lolly —s=1""=

Inequality (3.6) is an immediate consequence of Proposition 3.3 (ii), (3.5), and the identity
g(t) = 1% g(to) — iTy, ((i0; + Aa)g) (1)

for tg € 1. O

3.3 Local well-posedness and stability theory

Large data local well-posedness and stability results are addressed in this section. Similar
results have been obtained in [I[P12b, Section 3] for T3, in [Str15, Section 3] for rectangular
tori, and in [PTW14, Section 3] for the 3-sphere. Note that the local results proved here are
slightly more precise compared to Chapter 2, see Corollary 3.13 below.

We introduce another norm that interpolates between X! and Z. We use this norm to obtain
estimates that are linear in a norm controlling L (I, H*(T?)).

Definition 3.9. Let I C R be an interval. For u € X! (I) we define the Z’-norm

1 1
lull 21y = Hu”é(l)”uH)Q(}(I)'
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3.3.1 Estimates on the Duhamel term

Lemma 3.10. There exists 6 > 0 such that for every interval I with |I| < 1, all dyadic

numbers N; > No > N3 > 1, and Py,ui, Py,us, Pysus € XM(I) the following trilinear

estimate holds

N. 1
S+

N, N) 1Py u llyo oy 1PNy vzl 2o 0y | P sl ze ry- - (3:7)

[Py ur Py ua Prgus|| Lo (rxrs) S (

Moreover, for pg = 17 and qo = 4 defined as in (3.2) we have

4 1

| Py w1 Py ug Prgus|| 12 szS)S(N1N2) Po ““ngo *[| Py v || 20y 1Py w2l 20y | Povs sl 2y -
(3.8)

Proof. For notational convenience we write L{ , and L{L$ for LP(I x T%) and LP(I, L%(T?)),
respectively.

First, we prove inequality (3.7): This follows from interpolation between

Ny 1.2
[Py ur Py ug Prgusllze S <F+F> 1Pyt llyo (ny | Prvguzll xp oy [ Prsuslixp oy (3.9)

and
[Py ur Py ug Prgusllre S 1PNyl oy 1 Pns w2l 2oy | Prsusll 2y - (3.10)

Hence, it remains to prove (3.9) and (3.10). Inequality (3.9) follows in a well-known fashion:
From the definition of the spaces and since X}(I) < Y,}(I), we see that

NillPnyusllyory S I1PN;uillvay S 1PNl xan

for j = 1,2,3. Hence, to prove (3.9), it suffices to show

N; 1
| Pryr Pz Pgusllzs S (

26
) MaNall Py unllyacnllPraue o P uslye

which follows from Proposition 2.13 and Lemma 2.8.

Next we prove (3.10). Thanks to spatial orthogonality (see Step 1 in the proof of Lemma 2.12),
we may replace Py,u; in (3.10) by PePy,uy, where C C Z3 is a cube of side length N5. Using
Holder’s inequality, we obtain

[[Pe Py ut Py ua Prgus|pz < [[Fe Pyl ro pa 1PN, uall pro pa | P usll p e

where p := 1%' Now, Corollary 3.7 implies
32
4
[PePryuillprops S Ny ™ [FePryurllyvpry,
and from the definition of the Z-norm, we infer

1 2

1Pnyuallprops S Ny " 1 Pnyuallzy

~

We apply Corollary 3.5 (ii) to treat the remaining term:

41
[PNgusllppree S N3 % (| Prgusll 2oy
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All in all, we deduce

N3y -1
||PN1U1PNQU2PN3U3HL§J S <F2> " 2||PN1U1HYr0(I)||PN2U2||Z(I)HPNSUBHZ(I)

which implies (3.10) because of pio — 1> 0. This proves (3.7).
The bound (3.8) follows from

[ Pe Py ur Py ug Prgusllpz - < [[FePyul| pro oo [| Py uall pro oo | Pigusll pr poe

the definition of the Z-norm, and Corollary 3.5 (ii). O

The previous lemma allows us to prove an important nonlinear estimate for the Duhamel
term, which is stronger than Lemma 2.9.

Lemma 3.11. Let I C R be an interval with |I| < 1. Then, for any ty € I and u; € X}(I),
j=1,...,5, the estimate

5 5 5
‘Ito <H ﬂj) H S Mukllxa o TT sl zoan
j=1

XHD) =1 j=1
holds true, where u; denotes either u; or its complex conjugate.

i#k

Proof. To prove the lemma, we closely follow the arguments in the proofs of Lemma 2.9 and
[[P12a, Lemma 3.2|.

We decompose H?Zl uj as
> PNIUIHP<N1UJ +Z > Py, HP<Nku] H P, Tj. (3.11)
Ni>1 k=2 Nj,>2 j=k+1

This can be easily seen as follows: For a quintuple (N7, Na, N3, Ny, N5) we denote Nyax =
max;—i,...5 Nj, then

%P = [J {(Vi,...,N5) € (2")° : Nj < Nina, j <k, and Ny, = Nunac}
k=1,...,5

is a disjoint partition. Each of this sets corresponds to one of the sums in (3.11). Hence, by
symmetry, it suffices to prove the more precise estimate

5
‘ Tty ( > Py ] PSBNlaj>

5
Selalgo [Tiwlze G2
Ni>1 j=2 XHT) '
By Lemma 3.8, it suffices to show that for any ug € Y,"*(I) we have

for any B > 1.

// Pn, g ZPNlu1HP<BN1u]dxdt'<||u0HY_1(I)Hu1HX1 H||uj||z, (3.13)

No>1 Ni>1 j=2 7j=2
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in order to verify (3.12). To prove this, we decompose u dyadically in space

uk:ZPNkuk, /{::1,...,5.
Np>1

Note that the L?-norm does not change under complex conjugation and the integral is non-

trivial only if the two highest frequencies are comparable. Hence, by the Cauchy—Schwarz
inequality and symmetry, it suffices to replace the left-hand side of (3.13) by

S = [|Pny un Py us Py tis |27 m) | Paig o Py tia P ual £ 1y
N

where A is the set of all sextuples (Ngy, N1, ..., N5) such that

N1 ~p max{Ny, No} > Ny > N3 > Ny > Ns.
We subdivide the sum into two parts ¥ = Y1 + Y9, where X1 and Y9 are defined via the
constraints Ny < Ny & Ny and Ny < Ny ~ N, respectively. The trilinear estimate (3.7)
implies

5

N5 1\0 /Ny 149
ns Y () (B ) 1Pvwollven I Prunllvem TT 1Pyl
N1 N3/ \Ny Ny :
(Nos-.r,N5)EN" j=2
NQﬁN()%Nl
for some § > 0. Summing up with respect to No, N3, N4, N5, and finally with respect to
No ~ N; (using Cauchy-Schwarz) yields
5
X1 3B lluolly—r i luallxp 1—12 lwjllz: (r)-
]:

The remaining case Ng < Ny ~ N;j can be treated as follows: From (3.7) and Holder’s
estimate, we get

Ny  1\¢
25 Y () PvwlvelPrusllzm | Prsusl )

N1 N3
(No,...,N5)EN:
No<N2~N1

X HPNOUOHLSS/S(LLS(TB)) ”PN2u2”LP0(I,L‘10('H‘3)) ”PN4U4”L6(1,L20(T3))-

We observe that 32 > %6, and hence, from Sobolev’s inequality and Corollary 3.7 we may

5
estimate
197

3
[PNouoll p3s/s (1,5 (msy) S No 1PNowoll pssrs r,aqrsyy S No™® 1Pagwollvor)-
Noting that gg, given in Corollary 3.5 (ii), is less than 20, we may deduce from Corollary 3.5 (ii)
that
_27 27
| Py uzl| peo (1,00 (13)) S No * 1PN u2llzry S No ™ 1Py uzl| 2y
and ) )
| Pnyuallps(r,zoocrey) S NN Pryuallzy S NP Pryuall 21y

Summing with respect to No, N3, Ny, and Nj yields

No\ %% °
2255 2 (50) " IPvuolvoe Py o [T Isllza

N :
No,N1>1: 7j=2
No<N1
5
< luollyr sl T lesllzn,
j=2

which proves (3.13). O
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3.3.2 Local well-posedness

The foregoing estimates allow us to obtain a local existence result and a criterion for global
existence. Statement (iii) states that the solution stays regular as long as the Z-norm stays

finite.

Proposition 3.12 (Local well-posedness I). Let E > 1 and p € [—1,1] be given.

()

(i)

(iii)

There ezists 0o = do(E) < 1 such that if ||¢|| g1 (rsy < E and

€722 2 + 1 Tao (€)llxp ) < o

on some interval I > tg with |I| < 1, then there exists a unique strong solution u €
C(I,HY(T3)) N XL(I) to the approzimate nonlinear Schrédinger equation

i0pu + Agu = pulul* + e (3.14)

with initial data u(ty) = ¢. Besides,

. . 3
lu(t) = %@l iy S 1€ O2 N2 )+ 1T () 1)- (3.15)

Ife = 0 and p = 1, then the quantities E(u) and M (u), defined in (2.26), are conserved
on I.

Suppose that I C R is an open bounded interval and u € C(I, HY(T?)) N X} (I) is a
strong solution to the approzimate nonlinear Schrodinger equation (3.14) on I with

|wll oo (1,1 (m3y) < E.
There exists g = eo(E) > 0 with the property that if

lullziy < €0 and  sup || Zy,(e)| x (1) < €0,
toel

then the following holds true for all tg € I:
\|€i(t_t°m9u(fo)||zu) < €o-
Ifue C(I,HY(T3))N X (I) is a strong solution to (3.1) on some bounded open interval

I CRand
lull z(ry < +o0,

then u can be extended as a nonlinear solution to a neighborhood of I and

lull xx 1y < C(E(u), [lull z(r)

for some function C' depending on E(u) and |[ul| 71

Proof. Let E > 1 and p € [—1, 1] be given.

Ad (i). We prove the first claim by a standard fixed-point argument. Let ¢ € H'(T?) with
9l 771 (13) < E. We define the complete space (since it is closed in X))

Sr={ue O, H(T*) N X; (1) : Jullxary < 2B, |lull 2 < af,
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where 0 < a = a(F) < 1 will be chosen later. Define the mapping
B(v)(t) = Tt Boy T, (pulu]* + e)(t). (3.16)

First, we verify that ® is a contraction on Sy provided a is small enough. Let u,v € Sy, then
it follows that

19 () = D(0)l|x;p (1) < 1o (ulul* = vlo]") |l xz0)-
Consequently, thanks to Lemma 3.11, we have

3
1®(u) — @)l x1) S (lullxr iy + [vllxrn) (el zay + 0l z@) " lw = vlix 0
< Ed’|lu—vllx1 ().

We choose 0 < a < 1 such that [|[®(u) — ®(v)|/x1(n) < Hlu — v||x1(p)- Using the triangle
inequality, Proposition 3.3 (ii), and Lemma 3.11, we obtain

1 (W)l x1 ) < 12O) I x1(r) + @) = 2(0) |1 (1) < @Ml (vsy + 1 Zeo (€) 12 (1) + CEa?

for some C' > 1. If necessary, we decrease a further such that Ca* < %, and we choose §y < %
This implies [|®(u)||x1(;y < 2E. To show [|®(u)|[z/(1) < a, we estimate

180}ty < (12O z00) + [8(0) — B(O)xan)) ()12, 1
Then, we use the sub-linearity of z 22 as well as the bounds
12(0)llzry S do and  [|®(u) = D(0) ] x1 (1) S Ea
to get
()7 < C (B3 + Ba?),

By possibly decreasing a again, we may obtain that 2C Ea? < a. Now, we choose 6y = do(E)
1
to be small enough such that 2CFE %502 < a. Therefore,

”@(’I,L)Hzl(l) S a<l1.

Consequently, ® is a contraction on &7, and hence, there exists a unique fixed-point u €
Sy. This argument only gives uniqueness in S;.  Nevertheless, we justify uniqueness in
C(I,H'(T3)) N X!(I). For that purpose, assume that two solutions u,v € C(I, H(T?)) N
X (I) satisfy u(tg) = v(tp). From the continuity in time, it is clear that the set {t € I : u(t) =
v(t)} is closed in I. We prove that this set is also open in I, what finishes the proof of (i).
Let t; € {t € I : u(t) = v(t)}. One may choose an open interval J C I with ¢; € J such that
u‘J,v{J € Sy. Indeed, with E = max{||u||x1(z), [[vllx1 ()} we choose a = a(E) as above and

take J small enough such that max{||u|lz.s), [v]z.)} < E~2a. From the uniqueness in S,
we obtain u|J = U‘J. Thus, {t € I : u(t) = v(t)} is open in I and hence, is equal to I.

As noted above, for a strong solution to (3.14) and sufficiently small dp(F) < 1 we have
[a(t) — =206 xa oy = |@(@) — S0 xz (1) + 1T ()| xa (1) S Ba* + 1 Zio (€)llx 1)-
Inequality (3.15) then follows from choosing a such that
. 3
0 <a< (e%90] 50y + 1T () xp.1)®

provided the right-hand side is larger than zero. Otherwise, the left-hand side of (3.15) is zero
in which case we have nothing to show.
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Ad (ii). Let gg > 0, which shall be chosen later. Furthermore, let u € C'(I, H(T3)) N X!(I)
be a strong solution of (3.14) on some bounded interval I, and assume that

ullzry < o, tSHI} 1Zto ()l xp (1) < €0, as well as [Jul| poo (7, 1 (13y) < E.
0E

It suffices to consider intervals of length at most one. If that is not the case, then we subdivide
I into finitely many intervals of length less or equal to one, and run the following argument
on each interval separately. In the sequel, we write I = (T_,T"). Now, we show that the
assumptions imply

e’ (t0) | 201y S €0
for all tg € I provided g¢ > 0 is sufficiently small depending on E. Let ty € I be arbitrary,

and define
he [0,77 —T_] 5 R, h(s) = ||’ "% u(to) | zor_ 1 1s)-

The function h is continuous in s and satisfies h(0) = 0. We choose 2¢9 < 6y = dp(E). Then
we use (i) as long as h(s) < 160(E) and we get that

3
2

lu(t) = %0 ulto)lxpr 1 4s) Se ()7 + |1 T (llxpr 1 4s)-

For the same range of s we deduce

~ . 3
h(s) < llullza_ - +s) + Cllu(t) — e%0u(to) || x17_ 145y < €0 + C(h(5)? + 0)

3 (3.17)
< Cpeg + Ch(s)2.

We use (3.17) to conclude h(s) < %0 for all s € [0,7" — T_] provided &g is small enough. To

this end, we consider f: [0,00) = R, f(z) = x— C’x%, which increases from 0 to its maximum
value 57. Moreover, one easily sees that f(z) > £ on the interval [0, (4C?)~!]. Hence, we
proved in (3.17) that 2h(s) < f(h(s)) < Coeg provided h(s) < § == min{do/2, (4C%)~'}. We
choose g9 = g9(F) to be small enough such that Cyey < g. Suppose thereis 0 < so < T —T_
such that h(sg) < 6 and h(s) > & for all sy < s < T+ —T_. Then, the argument above shows

that h(sp) < §, which contradicts the assumption since h is continuous. Thus, h(s) < é for
any s € (0,77 — T_] and from h(s) < f(h(s)) < Coeo, we obtain the desired result

et 80n(t0)]| 2(1) < 2Coe0.

Ad (1ii). We apply the argument that was used to prove (ii). Since the Z-norm is bounded,
for any 9 > 0 there exists T} € (Tt — 1,7") such that (T7,7") C I and

lull ¢z, 7+) < o

Hence, for some tq € (Ty,TT) and &y as in (i) there exists g > 0 small enough such that the
argument above is applicable on (77, T), and we obtain

. 1
He (t tO)Aeu(t0)||Z(T1,T+) < 550

The continuity of h implies the existence of a larger time 75 > T such that T, — T < 1 and

. 3
”e (¢ tO)Aeu(to)HZ(ThTQ) < 150.
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Hence, we may apply (i). From the uniqueness, we obtain the existence of a nonlinear solution
u € C((T_,Ty), H'(T?)) N X} (T_,Ty). A similar argument allows to extend the solution to
the left-hand side.

Finally, we prove the estimate stated in (iii). Since |u(?)|g1(rs) S E(u) + E(u)% for any
t € I, we observe that
1
[ull oo (1,111 (13)) S E(u) + E(u)3 < +00.

Let g = eo(E(u)) > 0 be the g9 given by (ii). We subdivide the interval I into N =
O(|lullz(r)/e0) many subintervals I}, such that for every k =1,..., N we have

lull 21,y < o
Let t; € I. Applying the triangle inequality yields
ullx1r,) < Hei(t*t’“meu(tk)ng(lk) + [Ju(t) — ei(tft’“)Aeu(tk)ng(Ik)-
Now, (ii) implies the smallness of the free solution, i.e.
”ei(t*t'“)AGU(tk)HZ(lk) S €o-

Choosing &g possibly smaller (still depending on E(u)), we may apply (i) to obtain

i i 3
u(t) — e R0ty | x1 1) S ||€Z(t7t’“)A"u(fk)\|§(1k) <L

We may conclude that |[ul|x1(z,) is bounded uniformly in k. Summing over k gives the
desired estimate, where the right hand side only depends on the number of intervals N. Here
N depends on [Jul|z(5) and E(u) as pointed out above. O

The previous well-posedness result also implies the local well-posedness in Theorem 2.3. We
state it for later references.

Corollary 3.13 (Local well-posedness I1). Let p € [~1,1]. For every ¢, € H*(T?) there exists
e >0 and T = T(¢.) > 0 such that for all initial data ¢ € H*(T?) with ||¢ — ¢l (rs) < €
the Cauchy problem
idpu + Agu = pulul?
u(0, ) = 6 € H(T?)
has a unique solution u € C((=T,T), HY(T3)) N X} (=T, T).
Proof. Let £ > 1 be such that ||¢.| g1(psy < E—1. Then, forall0 <e < landall ¢ € H(T3)
with [[¢ — @|[ g1 (3) < € it holds that
101l (r3) < Nl pullprr(rsy + € < E-
Now, Corollary 3.5 (i) implies
1€720 ul 1y S Nl el arr(rsy < o0
for any interval I 5 0. Hence, for any § > 0 there is I with 0 € I and |I| < 1 such that
€720 || 71y < 6.
We easily get the smallness of the free solution e®?¢¢ in the Z-norm from
28]l 71y — lle™ el 21y | < Clld — bsllgrrrsy < Cee.

Indeed, this immediately leads to ||6“A9<;5||Z(1) < 0 + Ce. We now may choose € and ¢ small
enough such that § + Ce < 0y, where 0y = do(FE) is given by Proposition 3.12 (i). Finally, we
may apply Proposition 3.12 (i) to obtain the desired result. O
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3.3.3 Small data global well-posedness

In the proof of Theorem 3.1 below, we shall rely on the following small data global well-
posedness result.

Lemma 3.14 (Global well-posedness for small initial data). There exists 5o > 0 such that
for all initial data ¢ € H'(T?) with ||¢|| g1 (1) = 6 < do and every T > 0 the Cauchy problem
(3.1) has a unique solution
ueC((-1,7), H(T*) N X} (-T, 7).
Moreover, the solution satisfies
Jullxi—rry <26 and Jlu(t) — €™ 20| x1_rpy S 0.

Furthermore, the quantities E(u) and M (u), which are defined in (2.26), are conserved on
(=T,7).

Proof. The global existence follows from the same a priori bound on solutions in H' given in
(2.19). For small enough initial data, this implies that there is a uniform in time bound on the
H'-norm of the solution. Thus, the local well-posedness result may be iterated indefinitely
many times.

The bounds in the X!-norm may be similarly obtained as in the proof of Proposition 3.12.
Indeed, let @ be defined as in (3.16) (with tp = 0) and wu the solution to (3.1) with initial data
¢, i.e. u = ®(u). Recall that u € S_71), where S is defined in the beginning of the proof of
Proposition 3.12. Thus, ||u|x1—7,r) < 20 and ||ul| z/(—17) < a for a sufficiently small. Then,
we have

Jullxi 7y < [1RO) | x1(—77) + [|@(1) = B(0)|| x1(—77) < 6 + Cda* < 26
provided a* < C~!. The second bound may be obtained similarly as inequality (3.15). O

3.3.4 Stability

We close our study of the local well-posedness theory with a stability result.

Proposition 3.15 (Stability). Assume that I is an open bounded interval, p € [—1,1], and
u € C(I,HY(T3)) N XL(I) satisfies the approvimate Schrédinger equation

10U+ ANt = puli)t +e  on I x T3, (3.18)
Suppose in addition that
el zary + [l poo (1,21(73y) < M (3.19)

for some M € [1,00). Assume that to € I and ¢ € H'(T3) are such that the smallness
condition

¢ — ulto)l| g (rsy + sup 1Ze, ()|l x1(ry <€ (3.20)
1€
holds for some 0 < € < g1, where €1 <1 is a small constant depending on M.

Then, there exists a strong solution v € C(I, H'(T3)) N X (1) of the Schridinger equation

i+ Agu = pulu|*  on I x T3 (3.21)

such that u(ty) = ¢ and
lullx1cry + lwllx1y < C(M), (3.22)
Ju =il xan) < COM)e. (3.23)
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Remark. Note that the bound || x1;) < M implies

el zry + 1l Lo (1,11 (73)) S M. o

Proof. We argue close to the proof of [I[P12a, Proposition 3.5] and proceed in four steps:

Step 1. From Proposition 3.12 (i) it follows that there is §; = 6;(M) such that if for some
interval J C I and tg € J

%0 (t0) | 20y + | Zuo (€l xp () < 01,

then % is the only solution of (3.18) in C'(J, H(T3)) N X!(J) and

. _ i ~ 3
[a(t) — %0 q(to) | xa () S lleiTO%0u(t0) 125y + 1 a0 (€ x2 ()

Step 2. Proposition 3.12 (ii) implies the existence of £; = &1(M) such that if the inequalities

[ull 2y < €1 and fu8‘|z—to(e)||X}(J) <e (3.24)
0E

hold on an interval J :== [T_,T) C I, then

e/ TB0G(TL )| sy S €1 (3.25)

Step 3. Let @ be as stated in the proposition. We still consider the interval J = [T_,T") and
assume

Hei(t*T_)Aeﬂ(Tf)HZ(J) <ey,
[l 25y < e1, (3.26)
sup || Zy, (€) | x1 () < €1
toeJ

for some sufficiently small constant 1 = £1(M) such that the first two steps are applicable.
Using Step 1, the X!-norm of % on .J can be estimated by

ull x1(y < ||€i(t7T_)A9ﬂ(T7)HX}(J) + [Ju(t) — ei(th_)Aaa(Tf)HX}(J) <M+1 (3.27)

The local well-posedness (Corollary 3.13) implies that there is an interval K, > T, and a
strong solution u € C(K,, H(T?)) N X}(K,) to (3.21) such that

J(T-) - T ey < 1. (3.28)
We set w(t) = u(t) —u(t) fort € JNK,. Let K =[T_,T_ +35|NnJNK,, where
5= maX{s e R wllz/(r. 1 +sninks) < 5C061}, (3.29)

and Cp > 1 is the constant of the embedding X! <+ Z’. The maximum, and hence 3, exists
since s — ||w||z(7_ 7 +s]nJnK,) Vanishes for s = 0 and is finite and continuous for all s > 0.
One easily verifies that w is a strong solution to

iOw + Agw = p((T + w)|u + w|t - 17|?Z|4) —e.



3.4 EUCLIDEAN PROFILES 103

Duhamel’s formula yields
el < [0 (u(T) = TT) s
+[|Zr (@ + w)la + w|* — alal )ng(K) + 1 Zr(e)llxp (e
Lemma 3.11 then implies

wllxi ey < w(T=) = @(T) || sy + 120 (e) [ xq (k)
3
+ Ollxsae (Il + 0 S Mol 117 )
7=0

If &1 fulfills 5Cpeq < (M + 1)~2, we get from (3.26)—(3.29) that
o1
lwllxpr) < 261 + Cep flwllxg k) -
Hence, we conclude for &, < (2C)~* that
lwllz (k) < Collwllx1 (k) < 4Coer. (3.30)
It then follows that K = J N K, and (3.30) holds on J N K. Thus,

lullznk,) < Cllullxynk,) < C1,

and we get from Proposition 3.12 (iii) that u can be extended to the entire interval J. Also
the bounds (3.29) and (3.30) remain true with K = J.

Step 4. Now, we conclude the statement of the proposition. Take eo(M) < 1 (M) sufficiently
small and suppose that

sup [|Z¢, (e)llx1(z,) < €2
to€ly

Subdivide the interval I into finitely many intervals I, = [T}, Tk+1) such that
lull 21,y < €2

Note that the number of intervals is of size O(||u||z(1)/€2) and, in particular, independent
of |I|. On each of those intervals, we have (3.24) and hence (3.25). The latter implies
(3.26) and consequently the bounds (3.27) and (3.30) hold true on each interval. (3.30)
immediately implies (3.23). Estimate (3.22) follows from the reverse triangle inequality, (3.23),
and (3.27). O

3.4 Euclidean profiles

This section is devoted to prove estimates, which compare Euclidean and periodic solutions of
both linear and nonlinear Schrodinger equations. This kind of comparison is meaningful only
in the case of rescaled data that concentrate in a point, and then only for short time. This
short time interval is called Fuclidean window. Beyond the Euclidean window the nonlinear
solution can be compared to linear Euclidean solutions with initial data that are related to the
Euclidean scattering data. For the study beyond the Euclidean window, the extinction lemma
plays a fundamental role. In the present section, we argue closely to [IPS12, Section 3].

Let n € C§°(R3) be a fixed spherically symmetric function with n(z) = 1 for |z| < 1 and
n(x) =0 for |z| > 2.
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Definition 3.16. For ¢ € H'(R?) and N > 1 we define

Qng € H'(R?), Qné(z) = n(N~72)p(x),
oy € H'(R), on(z) = NZ Qno(Nz),
Tng € H'(T?), Tno(y) = on (T (y)),

where W is the projection on the torus defined by

x; 0<z;<m,

j=1,23.
27‘(’—1']‘ —7T<(L'j<0,

U: (—m, 73 = T3, (\Il(x))] =T = {

QN¢ equals ¢ in the ball of radius N3 and is supported in the ball of radlus IN3. oN 18
an H'-invariant rescaling of Qn¢ with support in the ball of radius 2N~ 3. The function
Tn¢ is obtained by transferring ¢ to a neighborhood of zero in T3. We make the following
observations about T:

Corollary 3.17. The operator Tr: H'(R3) — HY(T?) is linear and satisfies the estimate
TNl w3y S N1 g gy
Furthermore, there exists sufficiently large Ny = No(¢) > 1 such that for any N > Ny,

161 gy S 1Tl o).

Proof. The linearity is obvious. From a version of Poincaré’s inequality, see e.g. [Eval0,
Section 5.6, Theorem 3|, we have for every N > 1 that

TN @l 13y = llon [l sy S NOn 1l gs)

since supp ¢ C [~2,2]? for any N > 1. Now, the claim follows from the fact that ¢y is an
H'-invariant rescaling of Qy¢ and ||QN¢HH1(R3 < H¢||H1(R3) The latter may be proved as
follows:

1 1 1
In(N"2 )0l 1 gsy S N2 (Vs (N2 )@l r2rsy + 10l 1 s
1 1
S Nal[(Vrsn)d(N2 - )l L2 (rs) + [l g1 sy
5 HVR377||L3(BS(O))H¢ ’ 1suppn||L6(Bg(0)) + ||¢HH1(R3)-
Now, Sobolev’s embedding and Poincaré’s inequality imply ||¢ - Lsuppnll£6(Bs0)) S 8171 (gsy-

The second bound follows immediately from the observation that there exists Ny = Ny(¢)
such that for any N > Ny

H¢||H1(R3) < 2||QN¢HH1(R3)- ]

3.4.1 Global well-posedness on the Euclidean space

In this subsection, we recall the global well-posedness result that is known for the Euclidean
space R3. Furthermore, we show that this result holds true even if we replace the standard
Laplace operator on R3, which shall be denoted by AR3, with a Laplace operator corresponding
to Ag.



3.4 EUCLIDEAN PROFILES 105

Definition 3.18.

i) We define the modified Laplace operator on R? corresponding to Ag as
g

ii) Given ¢ € HY(R3), we define the Euclidean energy with respect to AR’ as
(ii) o) , 9y D o

3 1
o =1 [, 0
j=1

9 2 1 6
07]-(5”)‘ dm+6/R3 () (6 dar.

The proof of Theorem 3.1 relies heavily on the following results that were essentially proved
by Colliander-Keel-Staffilani- Takaoka-Tao [CKST08]. We summarize some of their results
in the following theorem.

Theorem 3.19 (G.lobal well-posedness on R?). For any ¢ € Hl(R?’), there is a unique global
solution v € C(R, H'(R®)) of the initial value problem

10w + A%Sv =vfo[t, v(0) = o, (3.31)
and the solution satisfies the estimate
”VRBUH(L;XJLgmLng)(RxRB) < C(ER3(¢))- (3.32)

Moreover, this solution scatters in the sense that there evists p=° € Hl(R?’) such that

. 3
”’U(t) o eztA% ¢im|’H1(R3) —0 (333)
as t — *o0o. Furthermore, if ¢ € HS(]R?’) for some s > 1, then v € C(R, HS(]R?’)) and
i’gg”v(t)HHs(R?') S1ll o asy 1+ (3.34)

Proof. The proof in case of the standard Laplacian may be found in [CKS*08, Theorem 1.1
and Corollary 1.2]. We reduce the statement for the modified Laplace operator to this result.

Let © = diag(91,92,93)%. There exists a unique global solution v € C(R, H'(R?)) of the
initial value problem ,
0w 4+ A v =t v(0) =1,

where 1) := ¢ 0 ©. The rescaled function u(t,z) := v(t, ©~1x) solves
10w + A%Su = ulult, u(0) = ¢.
By a change of variables, it is easy to see that the estimates (3.32) and (3.34) hold true.
Let T ¢ Hl(R3) be the scattering data corresponding to v. We claim that ¢ := T o

w3 N
©~1 are the scattering data corresponding to u. Indeed, &6 ¢t (z) = A" Lo (@—1g)
since

[ et GER € dg = det ] [ oot IR (0g) de
R3 R3

_ / 2O a6 (it 550 (£ de.
RB

Hence,
. AR3 - ARS
Hu(t) _ 6ztA9 ¢:|:OO||H1(R3) — ||U(t) _ 6ZtA ¢:|:OO||H1(R3) 50

as t — *oo. O
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3.4.2 Connection between solutions on tori and Euclidean solutions

We now turn to one of the fundamental observations. We discuss the connection between
Euclidean solutions and solutions on tori of both linear and nonlinear Schrodinger equations.
For ¢ € H'(R?) we consider solutions on tori with initial data Tié. There exists a large
T > 0 such that for all large N > 1 we distinguish the behavior of solutions on tori in the
Euclidean window, that is (=T N~2,TN~2), and beyond the Euclidean window, namely in
(=T~41,T=Y)\ (=TN~2,TN~2). We find that within the Euclidean window solutions on tori
stay close to Euclidean-like solutions, see Lemma 3.20. Outside of the Euclidean window, the
crucial extinction lemma, stability, and the Euclidean scattering property show that nonlinear
solutions on tori can be compared to the linear evolution with initial data Tn ¢, where ¢+
are the scattering data of ¢ given by Theorem 3.19.

Comparison to Euclidean solutions within the Euclidean window

Similarly as in [I[P12b, Lemma 4.2], we obtain the following lemma comparing the linear and
nonlinear evolution on tori with the Euclidean evolution within the Euclidean window.

Lemma 3.20. Let ¢ € H'(R3), Ty > 0, and p € {0,1} be given. Then the following conclu-
stons hold:

(i) There is Nog = No(¢,To) such that for any N > Ny there is a unique strong solution
Uy € C((=ToN72,ToN~2), HY(T?*))N X! (=ToN 2, TyN~2) of the initial value problem

10,UN + AgUn = pUN‘UN’4, UN(O) =Tno. (3.35)
Moreover, for any N > Ny,

IUNx} (~1oN-210N-2) SEps(9) 1-

(i) Given ¢ € H*(R®) for some s > 5, let v/ € C(R, H5(R?)) denote the solution of the
inatial value problem ,
i 4+ NS = pd' ||, W (0) = &

Furthermore, we define for N > R > 1,

Valtx) = (5 )v'(t.), (t,2) € (~To, Tp) x R,
Vg n(tz) = N2URg(N?, Nz),  (t,2) € (~TyN~2, TyN~2) x R?, (3.36)

VR,N@? y) = v}?,N (t7 \Ilil(y))7 (t7 y) € (_T0N727 T0N72) X Ts'

Then there ezists e3 = eo(Egs(p)) > 0 such that for all 0 < € < g3 and ¢/ € H*(R3)
with ||¢ — ¢/HH1(R3) < ¢ there exists Ry = Ro(To,¢') > 1 such that for any R > Ry,

J [UN = VRN lxg (-1on—2,108-2) SEes(9) €

Proof. The proof follows the arguments in [[PS12, Lemma 4.2| and [[P12a, Lemma 4.2].
We prove (i) by showing that Vg n is an almost-solution to (3.35), which implies the asserted
statement by applying our stability result. Throughout this proof, < Fys (6) denotes that the

implicit constant may depend on the large constant C~'(ER3(¢)) in (3.32). We also denote
Iy = (=ToN—2,TyN~2) for brevity.
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Let ¢ € Hl(IR{3), To > 0, and p € {0,1} be given as in the assumptions. For any ¢ > 0, we
may choose some ¢/ € H*(R?) which satisfies ||¢ — qS’HHl(Rg,) <e. Let v € C(R, H*(R?)) be
as given in the lemma. The existence of the global solution is implied by Theorem 3.19 and
so are the estimates

I Visv' || (Loe 212 18) (RxRS) SEps(¢) 1 and ig}g [V ()] b= m3) S0/l yrs a3y L (3.37)

Furthermore, we remark that we even have v’ € C(R, C3(R?)) from Sobolev’s embedding.

Step 1. In the following, we prove that there exists Ry = Ro(Tp,¢') > 1 such that Vg x is an
almost-solution to (3.35) for any N > R > Ry. For R > 1 we set

er(t,z) = ((i0; + A%B)vﬁq — pulvR|*) (¢, )

= o(n(5) ~ () ) e/ttt B2 ) () ()
+2R™! 23: o' (t, m)ajn(%).

J=1

It follows from (3.37) and Sobolev’s embedding that [v'(t,z)] <je
t € R and x € R3 we have

1. Hence, for all
lers m3)

3 3 3
ler(t, )]+ Y |0ker(t,2)| S 1jpar)(|z)) <W(t79€)\ +) o' () + > lakajvl(taw)o,

k=1 k=1 k=1

where the implicit constant depends on ||¢/|| z7s(rs). In view of this estimate and from the fact
that v' € C(R, H*(R?)), we see that there exists Ry = Ro(Tp, ¢, ¢) such that

ller] + ’vR?’eR‘HLQ((—T(),T())XR?’) = TO_%E (3.38)
for any R > Ro. If N > R > 1, then we may define
epn(t,z) = ((i0; + Aﬂg?’)vk]v — pvhyN]vhyN\‘l)(t,x) = N%eR(Nzt, Nz).
For N > 1 and R > Ry Holder’s inequality with respect to ¢ and (3.38) yield
lern]+ ‘VRBeRvN’HLl(IN,LQ(Ri”)) S TO% [N "Her| + ‘VRBGR‘HL2((—T07T0)><R3) Se (339
Note that U}%, ~ is supported in a ball of radius 2%. Now, we define

Egn(t,y) = ((i0; + Ao)VaN — pVeN|VEN|Y) (t,y) = ern (. T (y))

for N > R. From the bound (3.39), we deduce that there exists Ry = Ro(Tp, @', ) such that
VR~ is an almost-solution to (3.35) for N > R > Ry, i.e.

Sup 1Zeo (Er.N) | x1(1y) S WERN L1 (1,11 (T3)) S €- (3.40)
0CElN

Step 2. Here we verify the assumptions of the stability result in Proposition 3.15. Assumption
(3.19) follows from the definition of Vi n and (3.37). Indeed, for every R > 1 and N > R we
have

VRN oo (1 m1(19)) S WR N oo (1 1 ®3)) S VRN Lo (1, 171 (R3)) SEgs(07) 1
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Moreover, the bound on the Z-norm is obtained by using Littlewood-Paley theory (e.g. [ST87,
Section 3.5.4]) and (3.37): For N > R > 1 and N large enough (depending on Tp) such that
|In| < 1, we apply Bernstein’s inequality and compute

1
2,3 1 p
<Z ce 2>pHvaR7N|ygq(T3)>

Vanlzan < >

(pg)eP “M>1 Lr(In)
1
2 P
<y <Z M<p+1>pHvaR,Nug2(T3)>
(p,g)eP” "M=1 Lr(In)
S Z ”VR,NHLP(IN,HQ/PJrl(’]I‘?’))'
(p.9)EP
Thus, we showed that
WVanlzan S Y ey, memags)-

(p.9)EP

Note that suppv’, v € Bo(0) for all N > R. Hence, by interpolating the first bound in (3.37),
R,N g

we obtain
HU}%,N||LP(IN,H2/P+1(R3)) S ||VRSU§%,NHLP(IN,LTP(RS)) S 3 (0) s
where 7, = %.

All in all, we have
VRN zoo 1y, 11 (m3)) + VRN 2(13) < C(ER3(0))-

We remark that if necessary, we can decrease ¢ to satisfy ¢ < e1(C/(Egs(¢))), where 7 is
given in Proposition 3.15.

We still have to verify assumption (3.20). Consider the first term of (3.20). From Poincaré’s
inequality we deduce

176 — Ve Ol zs) S 1én — i w Ol s sy S 1086 — 0(0) 1 e

provided N > R. Clearly, we can find Ry = Ro(¢',¢) and Ny = Ny(¢,¢) such that for all
R > Ry and N > Ny with N > R it holds that

1Q@nd — vR(0)l 1 gsy < QNS — Bl g (rs) + 16 — &l i1 sy + 16" — VRO 1 rsy < &

The bound on the second term of (3.20) was already proved in (3.40). Possibly, we decrease
e > 0 further such that

I1TN® — VRN (0) 113y + sup || Zeo (Er.N) | x1(15) < €15

to€ln

where €1 is as defined above. This proves that the assumptions in Proposition 3.15 are fulfilled.

Step 3. Finally, we apply our stability result and obtain the existence of a strong solution
Un € C(Iy, HY(T?)) N X (In) to (3.35) for every N > No(¢, Tp) satisfying

IUNx2 (1) SBea(e) 1
Furthermore, if R > Ry, then

A}i_r)noo lUN — VR,NHX}(IN) S w3 () &
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Comparison to Euclidean solutions beyond the Euclidean window

To understand the behavior of solutions on tori beyond the Euclidean window, we have to work
a bit harder. The next lemma is fundamental for our analysis since it helps to understand the
linear and consequently (cf. Proposition 3.12 (i)) the nonlinear solution beyond the Euclidean
window. In contrast to [IP12b, Lemma 4.3], we have to deal with two additional difficulties.
The Z-norm used here makes the arguments a bit more delicate compared to [I[P12b] and due
to the modified Laplace operator, we use the weaker estimate (3.42). Nevertheless, we show
that both difficulties can be dealt with. We want to point out that the following argument
can easily be modified to treat a general three-dimensional manifold T x M.

Lemma 3.21 (Extinction lemma).

(i) Let ¢ € H'(R®). For any e > 0 there exists T = T(¢,e) and Ny = No(b, ) such that
for all N > Ny it holds that

€20 (TN )| zrn-2,7-1) S €
(ii) Let ¢ € C°(R3), p € [4,00], and 1 <T < N, then

itAg < a2
sup "2 (TN D) o1y S T TONZ 7.
tle[TN=2,T~1]

Proof. First, we prove (i) by modifying the argument in [[P12b, Lemma 4.3|. For M > 1 we
have that

; 1
(P<are™®e(Tng)) (t,z) = 27 Jus Ku(t, o —y)Tno(y) dy,
where Ky is given by
=Y @) ( 3 ) (3.41)
€ez3

The Weyl type estimate given in Lemma 1.41 yields

2 i(2161—1€2) 51) M? _
Rt S I G R g O
provided
% = g + 3, whereqe{l,..., M}, a€Z, (a,q) =1, |B| < (M(I)_l
Dirichlet’s lemma, see Lemma 1.42, and (3.42) imply for 1 < S < M,
sl oo (sns-2,5- 1505y S 572 ME. (3.43)

Indeed, assume that [t| < &, and write o= = 7+ B. Since [B] < & < 1, it follows that

‘—| < Z. Therefore, either |a| > 1, which 1mpl1es q> %, 0ora=0,and hence, q = 1 because
(a,q) = 1 In the first case, (3.43) follows from (3.42):

Kt o) S g 2 MP S S™3 P

1
2

In the second case, we have |5& — al |t ]2 and we obtain from (3.42) that

T

(K ()| S |t 2 M S S~ 2 MP



110 3 GLOBAL WELL-POSEDNESS FOR LARGE DATA

for t € [SM~2,571].

Since the Z-norm is based on LP-spaces with 1 < p < oo, we may assume that ¢ € C5°(R?).
From the definition of Ty (Definition 3.16), we get

NI
T e

TN o T3y So N (3.44)

and -
I1PL(TN )| L2(13) So <1 + N) N7

The latter estimate in combination with the Strichartz estimates in Lemma 2.10 leads to

3_2

A 3_2_3
|20 PLTN Gl 1.1)2am) Spa L7 IPLTNG) 120rs)

77777 I\ —10
Sopa E 3<1+N> Nt

(3.45)

for p > %6 and ¢ > 4. If 1 <T < N and (p,q) € P, then this allows us to bound

> LGHIIP ¢80 Py (T )
L¢[NT—1/1000 N7T'1/1000]

Hzlj’p([_lvl}vl’q(’]ra))

<o >, IPNTP4+ Y LN < T,
1SL<NT—1/1000 L>NT1/1000

Here, we sum over dyadic numbers.

Now, we use the inequalities at the beginning of the proof to estimate the remaining sum over
L € [NT—1/1000 N71/1000]  Young’s inequality for convolutions, (3.44), and (3.43) give for all
L>1,

€20 PL(TN@)|| oo (-2, 7-1)x79) < KL = Kol oo (7 mas{ £ 8p)-2,0-1)x13) 1 TN Dl 11 (799
<, T 23(L+NPN3.
Interpolating this with the estimate given in (3.45) (with p = 1—36—1— and ¢ = 4), we obtain for
L € [NT—1/1000 NT1/1000] and (p,q) € P,

1_2_3

. 1
||6ZtA9PL(TN¢)HLP([TN—Q,T—l],Lq(T?’)) S¢ T T0N2"p .
Then, (i) follows from

243 1 A
Z Z L(p q 2)pHeZt 9PL(TN¢)|’][71P([TN727T71]7L(1(T3))
(p,q)EP Le[NT—1/1000 NT'1/1000]

<y T(%-F%—%)po/looo n T—(%+%+%)p1/1000

The result follows for T' = T'(e, ¢) sufficiently large since both exponents are negative.

Now, we turn to the proof of (ii). From (3.43) and (3.44), we get
sSup ||€Zm9 P<T1/10N(TN¢)HL<>°(T3)
te[TN-2,7-1] -
< HKNTl/m‘|L°°([T(NT1/10)*27T*1}><’IF3)||TN¢||L1([—1,1]><']1‘3)
So TTON?
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as well as

Sulg HeitAepng/loN(TNéﬁ)”L2(1I3) S N~
te

Interpolating these estimates, we obtain for 2 < p < oo,

3 (3.46)

NI

. 2 _ 1
[TEHET Y 16720 P oy (TN G) | o3y S T 5N
te Y

< T~15. From the estimates

utl=

2
Note that for p > 4, we have T'5»

N 10 E N\ 10 -~
IPLTwollis So () N3 and [IPTveliag So () N7

for L > N and Sobolev’s embedding, we infer

‘ 1/ N\10
SUP||6“A9PL(TN¢)HL2(T3) <o N 1<f) ’
teR
itAg ) (NN
iuﬂgHe Pr(Tno)|lpee(r3)y < L PL(TN )1 (13) S¢p N2 <f) _
S

Consequently, for 2 < p < oo,

NI

T e

| N\7+8
sup || P (Tn o) | oo 13y Sp N <f> -
teR

Hence, we may estimate

6
NN\T+3

sup S0 (10 PL(The) | orsy S NPF Y e NTOITH0. (347)

ter L>NT1/10 L>NT1/10

We are now able to conclude the lemma using (3.46) and (3.47): For all 4 < p < oo and
t € [TN~2,T1], we have

e 2 (Tx )l o(rs)y < €20 Pegron (Tned)lorsy + D 1€ PL(Tve) | o crs)

L>NT1/10
1

1 1.3
§¢T o/N2 b, ]

Now, we shall bring everything together to compare Euclidean solutions with initial data
¢ € H'(R?) and solutions on tori with initial data Tiy¢ in a certain time frame. We begin
with some notation and the definition of renormalized Euclidean frames.

Given f € L?(T?), tg € R, and z¢ € T3, we define

(2o )(2) = f(x = o),
(g 00.f) () = (77050 f) (@ — o) = (mape ™02 f) ().

Definition 3.22 (Renormalized Euclidean frames). We define the set of renormalized Eu-
clidean frames as

Fp = {(Nk,tk,ﬂfk)kz1 N > 1, Np = +o00, t), = 0, 2 € T?,

and either ¢, = 0 for all k > 1 or lim NZ|ty| = —i—oo}.
k—o0
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Remark. In Definition 3.24 below, we introduce a slightly more general class of frames, called
Euclidean frames. As we show in the beginning of the proof of Proposition 3.30, it is enough
to prove the following proposition under the stronger assumption of a renormalized Euclidean
frame. O

Proposition 3.23. Let O = (N, ty, x)s € Fr and ¢ € H(R3).

(1) There exist T = 7(¢p) and ko = ko(¢, O) such that for all k > kg there is a strong solution
Up € C((—7,7), HY(T?)) N X! (—7,7) of the nonlinear equation (3.1) with initial data
Uk(0) =11, 4, (TN, ¢). Moreover, the solution satisfies the bound

Ukl x3(—rr) SEpse) 1-

(ii) For any s > 1 there exists a Euclidean solution u € C(R, H*(R3)) of
i0yu + A%Su = ulul* (3.48)

with scattering data ¢+ € HI(R3) defined as in Theorem 3.19 such that the following
holds up to a subsequence: For any e > 0 there exists Ty = To(¢, ) such that for all
T > Ty there is Ry = Ro(¢,e,T) such that for all R > Ry there is ko = ko(¢,¢,T, R)
with the property that for any k > ko, it holds that

1Tk = Unll 2 (gpe— < 2pngr<r-1y) < € (3.49)
where o
~ 1 “Ha _
(rai)(t) = Nin( Dz - ) v @), @350)

In addition, up to a subsequence, we have
+
||Uk(t) - Htkft,szngb OOHX}({:I:(t—tk)ZTNk_Q}ﬁ{\t|§T*1}) S 3 (351)
for k > ky.
Proof. The comparison within the Euclidean window was essentially done in Lemma 3.20. For

the comparison beyond the Euclidean window we make use of the previous extinction lemma
and our stability result. In this interval, the general idea is as follows:

Uk(t) ~ ™20 Uy, (T N, ?) (extinction lemma and Proposition 3.12 (i))
~ e (TN, ?) (stability and (3.49))
~ elthe Tn, HF>. (Euclidean scattering property)

Let O = (Ng, tg, zk)x € FE, XS Hl(RB), and € > 0 be fixed. Without loss of generality, we
may assume xx = 0.

Case 1. Assume tp = 0 for all £ > 1. Let s’ := max{5,s}. Given any 0 < & < ¢ we may
choose ¢/ € H¥ (R?) to satisfy ||¢ — V'l gsy <€’ Let ue C(R, H*'(R%)) be the solution to
the nonlinear Euclidean Schrédinger equation (3.31) with initial data u(0) = ¢’ € H* (R3) and
scattering data ¢* € H'(R3). The existence of such a solution is guaranteed by Theorem 3.19.

Let T > 0 be arbitrary. If & = &'(FEgs(¢),e) is small enough such that Lemma 3.20 (ii)
can be applied, then there is Ry = Ro(¢,e,T) > 1 such that for any R > Ry there exists
ko = ko(¢,e, T, R) with the property that for any k > kg there is a unique strong solution

Uy € C((—2TN, %, 2T'N; %), H(T?)) N X} (—2T N, %, 2T'N; %) (3.52)
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such that the estimate
Uk = Tl xp (orn-2 27n2) SEpa(e) € <€ (3.53)
holds true. This implies (3.49).

For notational convenience we prove existence of Uy beyond the Euclidean window and (3.51)
only in the case ¢ > 0. By Lemma 3.21, there exists Ty = To(¢,e’) and ko = ko(¢,€’) such
that for all T'> Ty and k& > ko,

Heime (T, ¢+OO) ”Z([TN;Q,T*H) <c (3.54)

In view of (3.52), we may conclude the existence of a unique solution Uy, on (=T *, Ty *) from
Proposition 3.12 (i) by showing

Sy -2 —
et~ TNe D20 U TN g2 1 < 0 (3:5%)

where Jy = 0o (||Ux(ToN;, *)|| 11 (13)) is given by Proposition 3.12 (i).

Let T > Ty, R > Ry, as well as k > kg, and define the interval I, = [TN,;2,T_1]. For
Jp = (0,771 — TN, ?] we deduce,

€20 U(T N 20 < (€2 (Ue(TNE) = (TN || 5
+ HeitAg (ﬂk(TN];2) o eiTNk_QAg (TNk ¢+oo

+ ||eftBe (T, ¢+OO)”Z(1,€)-

Mz

The first term is small since Corollary 3.5 (i) and (3.53) imply
IU(TNG?) = (TN 1 12y Spato) € (3.56)

The smallness of the last term is given by (3.54). It remains to estimate second term. We see
from Corollary 3.5 (i) that

% (B (TN?) = €N 20 (T, 7)) | ) S N(TN?) = 80T 67 sy,

(3.57)
For v € C(R, H'(R?)) we denote by Vg n(v) the function constructed in (3.36). Let ¢ €
H5(R3) be such that ||¢” — || g < ¢’. The triangle inequality and Poincaré’s inequality
allow to bound

< I —2 AR | oo —2
(357) ~ Huk(TNk ) - VR,Nk(e 6 ¢ )(TNk )HHI(TB)
. 3 . 3
+ [ Van (€740 672N (TN?) = Vo (€29 ") (TN 1 s
. 3 . —92
+ [V (€20 ¢") (TN %) = TN 80 (T, 67°°) | 11 3.

All terms may be bounded by C¢’ provided Tj is large enough. Indeed, from the scattering
property (3.33), it follows that there exists a possibly larger Ty = Ty(,€’) such that for all
T > TO:

. 3
[u(T) = T8 65| 1 gy < €'
A computation shows that this implies the boundedness of the first term by C¢’. The second
term is small because ¢ approximates ¢ in H'(R3). Finally, the smallness of the last term
follows from Lemma 3.20 (ii) with p = 0. Hence, we have proved

. —2
e’ E=TNRe U (TN, )| 21, < O (3.58)
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for any T' > Ty. This implies (3.55) for small enough & and therefore, we have shown the
existence of a unique solution Uy € C((~=T, 1, Ty), HY(T?) N X} (~Ty 1, Ty Y.

Next, we prove (3.51) for T > Ty, R > Ry, and k > ko. Applying the triangle inequality twice
gives
UR(t) — €20 T, 67 x1 (1) < UR(E) — € TNEDR0 U (TN | 1)
A2 — ~ -
+ [T (U(TN?) = @ (TN |y 1)
+ ||e2e (e TN Aoy (TN 2) — Ty, 67°)

=51+ Sy + 55.

HX;«I(Ik)

We are left to prove S;+Ss+ 53 < e. In the following steps, we might decrease ¢’ > 0 further,
which may increase Ty, Rp, and kg. First, we consider S;. We apply Proposition 3.12 (i) and
use (3.58) to obtain

Uk (t) — ei(tiTN’;%AeUk(TNk_Q)HX}(I,C) <Se's < %7
which proves the desired smallness of S;. The smallness of Sy is a consequence of (3.56) and
Proposition 3.3 (ii):

Sy < UR(TN?) = (TN a1 ey <

Wl ™M

Finally, we consider S3. We have
Sy < (TN ) = €N 2 (T, %) 1 o)
However, this term has already appeared in (3.57) and was shown to be smaller than /3

provided &’ is small enough. That gives the desired estimate (3.51) provided ¢, = 0 for all
k> 1.

Case 2. Assume limy_, oo NZ|tg| = +00. We may even assume limy_, oo NPt = +o00 by

symmetry. From the existence of the wave operator and Theorem 3.19, we see that there is a
solution u to (3.48) such that

. 3
() — €20 6l 1 g3y = 0
as t — —oo. In other words, ¢~ = ¢. We set $ = u(0) and apply the result of the
proposition to the frame O’ := (N, 0,0)>1. Note that this frame fulfills the assumptions of
the first case. Hence, there exists a solution to (3.1) on (=75 !, T, !), say Vi, with initial data
Vi(0) = Ty, ¢. From limy_, 4 N,?tk = 400, we have for sufficiently large k that t; > TON;2.
Hence, (3.51) implies
HVk(_tk) - HtkvoTNk(b”Hl(Tg’) S HVk(t) - H_tvoTNk(b”Xrl({7t2TON;2}ﬂ{‘t|ST071}) —0

as k — 4o00. Recall that, by definition, U(0) = II;, ¢Tn,¢. This allows us to apply our
stability result (Proposition 3.15), and we observe

IVe(- —tg) — Uk”X}(—TO_l,TO_l) — 0.

Note that Uy inherits the estimates (3.49) and (3.51) from V. O
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3.5 Profile decomposition

We show that for every given bounded sequence of functions in H'(T?), we can construct
suitable Euclidean profiles and up to a subsequence, express the sequence as an almost or-
thogonal sum of these profiles, the sequence’s weak limit, and a remainder term. The study
of Fuclidean profiles in the previous section makes this decomposition meaningful. We adapt
the strategies in [[PS12, Lemma 5.7] and [IP12a, Section 5] in which analogue statements
were proved for the nonlinear Schrodinger equation on the hyperbolic space H and R x T3,
respectively. The profile decomposition discussed here is an analogue of Keraani’s theorem
[Ker01| on rectangular tori.

3.5.1 Definition and properties

The previously introduced class of renormalized Euclidean frames Fg is extended now to the
class of Fuclidean frames. Here, we drop the assumption that either ¢ = 0 for all kK > 1 or
limy, oo N£|tk| = +400.

Definition 3.24 (Euclidean frames).

(i) The set of Euclidean frames is defined as
Fg = {(Nk7tk,xk)k21 N> 1, N = +o0o, tp, =0, xp, € Ts}.
We say that two frames, (Ng, tg, k), and (N[, t), x} )k, are orthogonal if

Ni
lim <‘ln—
Ny

k—+o00

+ NE [ty — | + Ny |z, — 962!) = +00.

Two frames that are not orthogonal are called equivalent.

(ii) If O = (N, ty, 71)x is a Euclidean frame and if ¢ € H'(R3), we define the Euclidean
profile associated to (1, O) as the sequence (Yo, ) in H(T3) with

Yo, = yy (T, ). (3.59)

In the following lemma, we summarize the basic properties of profiles associated to equivalent
and orthogonal frames. The proof follows the strategy in [[PS12, Lemma 5.7].

Lemma 3.25 (Properties of frames).

(i) If O and O" are equivalent Euclidean frames, then there is an isometry S: HY(R3) —
H'(R?) such that for any profile (Q’Z)Ok)k’ up to a subsequence, it holds that

S |Svo, = Yo lmre) = 0. (3.60)

(i) If O and O" are orthogonal frames and ({Eok)k, (%O;c)k are corresponding profiles, then,
up to a subsequence:

kli)r_f_loo<¢(9k’ ¢(’);€>H1(’]I‘3) =0, (3.61)

L o, dop llss) = 0. (3.62)
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(113) If O is a Euclidean frame and ({/;ok)k, (%ok)k are two profiles corresponding to O, then
kgffoo(HT/JOk”m(Ti’:) + |60, | 2(r3)) =0, (3.63)

lim <@Z(9k,$(9k>H1(11‘3) = <¢,¢>H1(R3)-

k——+o0

(iv) If O is a renormalized Euclidean frame and (J@k)k a profile corresponding to O, then
for every g € HY(T?),

lim sup ||¢0, gl 1373y = 0.
k—r+00

Proof. We prove every claim individually.

Ad (1). Let O = (Ng, tg, xx), and O = (N}, 1), x})r be equivalent Euclidean frames. After
passing to a subsequence, we may assume

/

A _
lim —% =N, lim N2(t —tx) =%, and lim NyU Nz} —a) =7
k—oo Nk k—oo k—o0

for some N,T € R and T € R3. Note that there exists 7p > 0 such that [t — th| < ToN, =2 for
all k. Given ¢ € HY(R3) we define S: H'(R?) — H*(R?) via

1
2

(S9)(2) = NIl o (Na) = N2 (e 204s) (N — 7)

and remark that S is an isometry on H'(R?). Furthermore, we define %Ok as in (3.59). By
definition, (3.60) follows from

khfoloHHtk,xk (Tn, (S¢)) — Ty ot (TNM)HHl(TB) =0,
which is equivalent to
Jim (|7, oy (T (S9)) = €02 (T )| 1 ) = 0. (3.64)

In order to prove (3.64), we may assume St) € C§°(R3) and ¢ € H?(R3) because of density

and the H'(R3) — H'(T?) boundedness of the operator T (Corollary 3.17). Set v(t,z) =
. 3

eito Y(x), and define vg, VRN and VRN as in (3.36). Now, we apply Lemma 3.20 (ii)

with p = 0 and T} as defined above. We deduce that for any € > 0 small enough there exists

Ry = Ry(Tp, 1, ) such that for all R > Ry,

Jlim €708 (T h) — Vi vt (b — )| pey S &

This, indeed, is true for any k > 1 since, from the choice of Tj, the evolution stays inside the
Euclidean window. By the triangle inequality, the last estimate implies that (3.64) follows if
we prove

Jim (75, (T (S9)) = Vv (b = 80 1 ey S €

for sufficiently large R. From the definitions and since S¢ € C§°(R3), this inequality is
equivalent to

lim [|NZ (S6)(Ne® 1 (y — (ax — ) — NiEor(N2(t, — 1), NpB~ (1)) iy S <

k—o0
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Note that n can be dropped in the first term because for k sufficiently large, we have that
supp((Sv¥)(Ng -)) C supp(n(N,iﬁ -)). We substitute y := ¥(z), then the inequality above is
equivalent to

lim || k‘% (S) (N — Ne@ ™ (g, — 7)) — NiZog (Ni2 (b, — 1), Njw)

k—o0

HH%(R:),) <e. (3.65)

One easily calculates that the left-hand side is equal to

AN /

. Nk 2 /2 / % r\y—1(../
Jim [|(50)() — () Ton (N~ 1), b = Npw o~ ) )

1
By definition, (Sv)(xz) = N2v(—t, Nx — T), and since Sobolev’s embedding implies vy €
C(R,C}(R3)), we deduce from dominated convergence that (3.65) is equivalent to

N2 0(~F, Na — 7) — N2og(—F, No — 3)|| 11 o) S

which is obviously true for R sufficiently large.

Ad (ii). Let O = (N, ty, xi)r and O" = (N}, t;, x}), be orthogonal Euclidean frames. With-
out loss of generality, we may assume 1, ¢ € C5°(R?). Since Ny, N] — 400 as k — +o0, we
obtain from (3.44) that

lim
k—o0

y Yo, (x)bo, () du

< dim [ Tn, ¥l 22 rs) [ T 0l 2 (2s) = O-
As a consequence, we reduced (3.61) to

lim
k—+o00

Vio, (x) - Voo, (z) dz| = 0. (3.66)
T3

To prove the remaining estimates, we select a subsequence such that either

Nl
lim —£ = 3.67
R =0 (367
or
Ni_w lim N;2|t), —t 3.68
lim ~k — i - .
N, N R Nt = oo (3.68)
for some N € (0, 00), or
: Nllc N . 1241 7 . 1t .
lim —* =N, lim N.*(t, — tx) = t, lim Nj|z), — xx| = o0 (3.69)
k—oo Ny, k—o00 k—o0

for some N € (0,00) and 7 € R.

First, we assume the case (3.67). We deduce from Green’s formula (cf. [Jos11, formula (3.1.7)]),
the definition of a Fuclidean profile, and Holder’s inequality that

= ‘/T:” J(’)k(x)Aggo;c(,I) dx rg ||TNk¢HL2(']T3)HAQ(TN]’CQb)HLQ(’]TS)

‘ /T Vo, (x) - Voo (v) du

One easily computes that ||A,(Tn )|l 23y S¢ Ny, and together with (3.44), we obtain

/

Ne. (3.70)

: <
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Furthermore, using Sobolev embeddings,
lborpoyllzscms) < 1Mo wn (TR g sy 1Mty 0, Ty D)0 2
5 7
S I(=Ag) s TN, Yl 2(rs) | (= Ag) 8 Ty bl L2 (13) (3.71)
oo (M
e ( Nk) ‘
Now, (3.66) and (3.62) follow from (3.70) and (3.71) as k — oo provided (3.67).

We consider the case (3.68) now. We first prove the following statement: For any f € H'(R?)
and all sequences M}, > 1 and s, — 0 with M,f\sk] — +00 as k — 0o, we have

Jim €520 (g, f)]| o (rsy = 0 (3.72)

for a subsequence.

This is accomplished by applying Lemma 3.21 (ii) in either of the following two sub-cases:
We may choose a subsequence such that either 0 < My|si| <1 or My|sg| > 1 for any k& > 1.

Lets first assume My|si| <1 for all £ > 1, and define T} := M,f]sk] Note that 1 < T}, < M,
for large k. Since |s| € [TxM, 2, T}, '], we may apply Lemma 3.21 (ii) from which we deduce
iSkAg T < 1 M2 -5
e (Taa, )l poersy Sy (14 My |sg|)~ 10
provided k is sufficiently large.
On the other hand, if My|sg| > 1 for any k > 1, we define T}, := |sx| L. Obviously, for k large
enough, 1 < T}, < My, and |sg| € [T M, %, T, ']. Thus, Lemma 3.21 (i) implies

; 1
le"¥20 (Tag £l oqrsy Sy lswl ™0,
and the claim is proved.

We conclude that for k large enough,

/11‘3 V@Z@k (z) - V(}SJ@;C (z)dz

= ‘/TB Ag(Tqub)(x)Ht;c_tkvx;c_afk(TN;CQS)(QT) dx

S NAGTNAN 8 oy eyt~ (T D)l o 7)-

T3)

Using [[Ag (T, ¢)
implied by

HL%(W) S 1, see (3.44), and (3.72), we obtain (3.61). The claim (3.62) is

o, boyllLsrsy < 1Tn, Bl s e 1Ty —y 21— (Tivy )l 2o 1),
(3.44), and (3.72).

We now assume (3.69). First, we claim that for all sequences Yk € T3, M, > 1 with the
properties limy_, o My, = 00, limy_,o0o Mi|yx| = 00, and all f,g € H'(R?), it holds that

lim (
k—o0

Assuming this, we may prove (3.61) and (3.62) in the case (3.69). Indeed, thanks to (3.64),
we have for f € H'(R?) and a sequence (s;,); with the property limy o N,;ng =735 € R that

[ 0T, 1) @) T )@ |+ [ (Tt ) Dot e ) =0 (573)

Jim ([T, (SF) = €720 (T f) | 1 ze) = 0, (3.74)
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where (Sf)(z) = N%( *@A%Sf)(ﬁx). We estimate

/ Vio, (x) - Voo, (z)

/ V(T ) (@) - V(T 1y 0t eI 0)(@) do

5 ‘/Ta V(TN’J/})(w) ' Trm;g*l“kv(TNk (S¢)) (x) dx
1l oy | T () — €702 (T )| s .

From (3.73), we see that the first term tends to 0 as k — oo, and from (3.74), we obtain the
same for the second term. If either NZ|t;| — oo or Nj2|t), \ — 00 as k — oo, we get from
(3.72) that

Yo, b0 |3 (rs) < Mty oy, (TN ) || Lo 23y 1MLy 2r (Thvy )| Lo 3y — O
as k — oo. Otherwise, if limy_ oo N,f]tk] T € R and limy_, N’2]t | =T’ € R, we estimate

10,00, I113(13) = || (Tay -y e ™20 (T, 00) ) e 520 (T 0)| s
S Hﬂ'Ik,x; (eiitkAe (TNkw) - jﬂ,]\fl/c (Sw)) HHI(TB) H¢|’H1(R3)

19l oy e 29 (T ) — T () sz
+ Hﬂ'xk—x; (TNI,’C (S¢))TN,’€ (§¢) HLS(TS)’

where S: HY(R3) — HY(R3), (S¢)(z) = (e‘iﬁﬂ%3 ¢)(x). Each term tends to zero because of
(3.74) and (3.73).

We turn to the proof of (3.73). Because of density and the H'(R?) — H'(T?) boundedness
of Tx (Corollary 3.17), we may assume that frg9 € C5°(R3) and replace Ty, f and Ty, g by
flz) = M2 F(MpU~(z)) and g(z) = M,j g(M,¥~1(z)), respectively. We have

‘/TS(ﬂkaf)(x) -Vg(x)dz| = M}

/RS Vi f (M (z = yi)) - Vesg(Myx) da

as well as N
(g £) Gl L3 ersy = M| f (Mi (- — yr)) g(Mj - )HLa(Ra)-

That either term tends to zero as k — oo follows from the fact that the support of these
functions become disjoint for large k, which is due to the assumption limy_, oo Mg|yr| =

Ad (iii). Let O = (Ng,tg, Tp)k be a Euclidean frame and (J@k)k, (gz~5(9k)k be two profiles
corresponding to O. Again, the H!(R3) — H'(T?) boundedness of Ty allows to assume
Y, ¢ € C(R3). Since Iy, ,, is an isometry on L?(T3), we easily get from (3.44) that

[Yonllas) = ITw o) S Ny
which in turn implies (3.63).
By the unitarity of II;, ,,, it suffices to prove

kli_{IC}JV(TNkl/J)’ V(In, )2 (13) = (Vr3®s VR3®) 12(R3)-
For f € C§°(R3), we have

[V (T, f — N,ff(kaI/—l)) | L2 rs) = 0
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1
as k — 0o, and consequently, we may replace the functions Ty, 1 and T, ¢ by N/ Y(NLU— 1)
1
and N/ #(NLW1), respectively. Thus, the desired estimate is implied, if we show

Ne{V (p(Ng @1 )), V(o(Np @ ))>L2(’]1‘3) = (Vs ¥, Vrs 9) 12(r3)
for sufficiently large k. However, this follows from a change of variables.

Ad (iv). Without loss of generality, we may assume g € C®(T?) and ¢ € C§°(R3). Let
O = (Ng, tg, ). We use (3.44) to estimate

190u9l5619) < 190ull, 3 o l9l0c29) S N

=

Letting k — o0, this implies the claim. O

Definition 3.26 (Absence from a frame). We say that a sequence of functions (f;)r, € H'(T?)
is absent from a frame O, if for every profile (¢, )i associated to O,

<fka{/;(9k>H1(’]1‘3) —0
as k — +o00.

Remark. Note that (3.61) implies that a profile associated to a frame O is absent from any
frame orthogonal to O. O

3.5.2 Extracting profiles from a sequence

The profile decomposition in the next proposition is the main statement of this subsection.

Proposition 3.27. Let (fi)r be a sequence of functions in H'(T3) satisfying

limsup || fillgrirs) S E
k——+o00

and up to a subsequence, fr, — g € H'(T3). Furthermore, let I, = (=T}, T"*) be a sequence
of intervals around the origin such that |I;| — 0 as k — +oo. Then, there exist a sequence of
pairwise orthogonal Euclidean frames (O%), and a subsequence of profiles ({/;%g)k associated
to O% such that, after extracting a subsequence, for every J > 0,

J
fe=g+Y Ude + R,

a=1

where Rg 18 absent from the frames O%, 1 < «a < J, and is small in the sense that

lim sup lim sup sup N_%\(eitAePNRg)(x)\ = 0. (3.75)
J—=+o00 k—+oo N>1,tely, zeT3

Besides, we also have the following orthogonality relations:

ka”%mr?:) = HQH%%TB) + ”RZH%Q(’EC“) + ok(1),

J
IV fill72 sy = IV 9117200y + > Vet 72 ey + VR 2 ey + 0r (1), (3.76)
a=1 .

:O’

J—4o00 k—+4oo

J
lim sup lim sup ‘ka”%ﬁ(qri’») - Hg”6LG(’IF3) - Z W%g”%ﬁ(ﬁ)
a=1

where ok (1) — 0 as k — 400, possibly depending on J.
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Before we turn to its proof, we prove two auxiliary results, which are similar to [[P12a,
Lemma 2.3] and [IP12a, Lemma 5.4].

Lemma 3.28. For every f € H'(T?),
_1 4
11800y S 1120 rsy (5up N3Py oo rs) )
N>1
holds true.

Proof. We dyadically decompose f in its frequencies, f =) ~n>1 Pnf, and obtain

1oy < D

Ni,..,Ne>1

[, P I P SN Py AP F
T

The integral is zero, unless there are elements in the support of the Fourier transforms which
add up to zero. Hence, we may assume the two highest frequencies to be comparable. We
order the frequencies to get

sy S 32 [ 1P P f Puf P P f Py da.

N1~N3>...>Ng

Estimating the two high-frequency terms in L?(T3) and the rest in L>(T?), we obtain

4
6 < sup N % P, oo
HfH[ﬁ(’]rS) ~ <N>Ii H NfHL (11‘3))

1
x > (N3sN4NsNo)2 || Pr, 1| 20y | P £ Nl 2219
leNQZNBZ---ZNG

Summing over Ng, N5, Ny, and Nj yields
6 -1 4
HfHLS(’]I‘?’) S (SUP N2 “PNJC“LOO(T?’)) Z NlN?HPN1fHL2(T3)”PN2f|’L2(’]1‘3)7
NZI leNg
which, after applying Cauchy—-Schwarz, implies the claim. U

Lemma 3.29. Let & > 0 be fived, and let (fi)r be a sequence of functions in H'(T3) satisfying

limsup || fxllr(s) S E (3.77)

k——+o00

and up to passing to a subsequence, f, — g € H'(T?). Furthermore, let I;, = (=T}, T*) be
a sequence of intervals around the origin such that |Ix| — 0 as k — +o0o. Then, there erist
J < 672 pairwise orthogonal frames O%, 1 < a < J, and profiles (J%g)k associated to O%
such that, after extracting a subsequence,

J
. o
i —9+Z:11/fog + Ry,
a=

where Ry is absent from all frames O and is small in the sense that

sup N™z2|("80 Py Ry)(z)] < 6.
N>1, tely, zeTs
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Besides, the following orthogonality relations hold true:

ka”%mr?:) = HQH%%TB) + ”RkH%Q(T3) + or(1)
J
IV fill 22 eps) = 1Vl Z2grs) + > Vst (172 sy + IV Ricl| 22 (ps) + 0k(1),
a=1
where or(1) — 0 as k — +oo.

Proof. We subdivide the proof into three steps.

Step 1. In this step, we extract a frame under the additional assumption that fi — 0 in
HY(T3). So, let (fz)r be a sequence satisfying the assumptions of the lemma, and assume
that (fx)r converges weakly in H!(T?) to zero. We define the functional A via

. 1
A((fr)r) = 1]1£JSF1;ID)N>1 sup ETSN 2|(e"20 Py fi) ()]
=4 ks T

Claim. If A((fx)r) > 6, then there exist a frame O and an associated profile (J@k)k satisfying

limsup [|[Yoy | x9S 181l go) (3.78)
k—+00
and 5
k—+00
Furthermore, if (fy)r was absent from a family of frames (O%),, then O is orthogonal to all

the frames O%.

We now prove the claim: The bound (3.78) follows for every Euclidean frame O immediately
from the definition of a Euclidean profile and the properties of T (Corollary 3.17). It remains
to select a frame as well as an associated profile, and to show (3.79). Since A((fx)x) > 9,
there exists a subsequence, which we still denote by (fx)x, such that there exists a sequence
(Ng, tg, xg ) with (Ng, tg, xg) € [1,00) X I X T3 for all k& and such that for all k,

30 < N (€20 Py fi) () (3.80)

From the definition of A, we have, after passing to a subsequence, t, — 0, ) — %o, and
either N, = No € [1,00) or N — +00.

We claim that the first case, namely Ny — Ny € [1,00), does not occur. Indeed, it holds for
g$7t,N S Coo(Ts)a

st = S A0 () ()

cezd

that

|(e":30 Py, fie) ()| = (2m) 7

| A O R e R I

We also observe that g, ;, n, converges point-wise to

9() = GraoNa (y) = Y €7 0)E [773(]\%) - n3<]\2,—i>} € C™(T?)

§€z3



3.5 PROFILE DECOMPOSITION 123

as k — oo, and thus, strongly in H~!(T?). Finally, we see that

[(frs Tonte N s =113 | < | (Fhes Gt N — 9) =113y |+ [y @) et =113y — 0
as k — oo, which contradicts (3.80).

In the remaining case, Ny — +00, we define the Euclidean frame O = (Ny, tx, zx)x and the
function

V=T (11720 = n(20)]) € H'(R?).
We prove (3.79) now. By definition,

(e Do) sl = NE i Ty, (0ONEE 0N ™)) 1

)

and it is easy to verify that this is equal to

S Je[Rei e € Q) F( £ (€)Fo (n(VZ YNk ))(©)| + 0 (1).

£e€z3

1
2
N

Here, it is important to notice that from the compact support of n, we have
1 1

F(n(NZU (Nl ™) (&) = Fra (n(NZ )9 (Ni ) (€)

for all ¢ € Z3 and for sufficiently large k. Using the scaling properties of the Fourier transform,
we deduce that

Z €[ (@€t Q) F( £,)(€) Fas (V(Ne)) ()] = Nk_%

£ez3

1 A 9
NP (€50 Py, fi)(0)] > =6

Hence, (3.79) follows if we show that

1
Sk = N]j

D [gPel e QO F(f)(€) Fpa ((NE ) = 1) (N - ))(s)‘ =0

cezd

as k — o0o. From the Cauchy—Schwarz inequality and the scaling properties of the Fourier
transform, we get that

St S Ny U fill 2 ooy (Z 61 [Fes (0 — DB(NZ ) (N, %5”2)

£ez3

Observing that 1 € S(R3), an oscillatory phase type argument yields for any N > 1 and any
p=1,
Nz

k
(14 1hN

Choosing, for instance, N = p = 4, we obtain Sp — 0 as kK — oco. This finally proves claim
(3.79).

[P ((n = DH(NZ ) (€)] S ¢ RS,

To prove the last part of the claim, assume (f;) is absent from a family of frames (O%),, i.e.
for all v and every profile (Yoq )y associated to O,

(fks Jog Yri(r3) — 0
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as k — 4o00. We argue by contradiction: Suppose there is O8 € (0%), such that O and O
are equivalent. From Lemma 3.25 (i), we see that

lim sup [0, — S¥ s |l i1 ers) = 0,
k—+o0 k
where S is the isometry given in Lemma 3.25 (i). In view of (3.79), we obtain

1) . i
5 < limsup |{fi, do,) o)

k—+o00

< llicmsup(”fk”Hl(TB)H{/;Ok - §{/JO£”H1(T3) + [(frs %@£>H1(T3)D'

—+00

Since (fx)r is absent from all the frames in (O%),, there exists a subsequence such that the
right-hand side tends to zero as k — oo, which in turn leads to a contradiction. Hence, O
and (O%), are pairwise orthogonal.

Step 2. Let (fr)r be as in the first step. Now that step one provides us with a Euclidean
frame O, we may select the localization of (fi)r in O as a linear profile. For R > 1 there
exists kg such that for any k > ky we may define

R S O ) = N () i) (¥ ().

One easily checks that
R
108 1| g may S I fellm ey
uniformly in R. Assumption (3.77) allows us to extract a subsequence that converges weakly
to a function ¥ € H'(R?) with the property
R
1" sy S 1

Because of this, we may assume that, after taking a subsequence, ¥t — 1) € Hl(IR{3), and by
the uniqueness of the weak limit, we see that for every R > 1,
T

¥i(@) = (T )vie).

For some vy € C§°(R3) we choose R > 1 to be large enough such that supp~y C Bp/2(0). Then,
we calculate for k sufficiently large,

(fes Y0 ) mr(13) = Mty o f1o TN V) 1 (T3) = <¢R,7>H1(RS) + ox(1)

(3.81)
= (U, %) g (rsy + ok(1)-
This in combination with (3.78) and (3.79) implies for k sufficiently large,
~ )
<1/}77>H1(]R3) = <fk770k>H1(T3) + Ok(l) Z Z7
and therefore, using a density argument,
TP (3.82)

Moreover, fi— zZ@k is absent from the Euclidean frame O: For every ¢ € C§°(R?) there exists
R > 1 such that for any k sufficiently large we get

(fi — Vop, P ) i (ms) = {fi Poy) i (13) — (Y0 Poy ) m (13 = ok (1), (3.83)
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where we used Lemma 3.25 (iii) and (3.81). By density, the statement holds true also for
¢ € H'(R?). This implies on the one hand,

i = Yo, ll72(ms) = 1 fillF2imsy — (Frror) r2er2) — (o, fr — Por)r2(rs)

: (3.84)
= | fkll72(psy + o (1),
which we deduce from Lemma 3.25 (iii) and (3.83). On the other hand,
IV (fx = bo )72y = IV SxlF2(rs) — 2V fr, VO, ) 12019y + I VY0, || L2(13) (3.85)

= |V fill72s) = [ Ves vl 2@y + ox(1)-

Step 3. Now, we can conclude the statement of the lemma. Let (fx); be as stated in the
lemma. We pass to a subsequence such that fp — g in H'(T?) and define f,% = fr —g. For
a > 1 and as long as A((f)r) > 6, we do the following: We apply the first two steps to get
a Euclidean frame O% and an associated profile (i%g)k Then, we define

fett = —dbe, k=1L

Note that in Step 1 we proved that O is orthogonal to all previous Euclidean frames 07,
B < «a, and by induction, all frames O?, 8 < a, are pairwise orthogonal. Furthermore, Step 2

implies that fg“ is absent from O%. Tt is an easy task to show that fg“ is absent from Of

for every 8 < a: Let ¢ € H'(R3) be arbitrary and 8 < «a, then

(0%
~ 1 ~ e ~
( ]?+1aSDZ£>H1(’]T3) = { 1f+ ,¢§)5>H1(T3) - ; <¢OZ,SDZ£>H1(T3)-
v=p3+1

This expression tends to zero by the induction hypothesis and Lemma 3.25 (ii). Note also
that, since fi = fi + g and fI — 0 in H'(T3), we have
”fk”%mri%) - ”fI%H%,Q(TC*) + 2<f1ia9>L2(T3) + ”9”%2@3) - ”f/i”%mr?») + ”9”%2(11“3) + ox(1).
By the same argument, we also obtain
IV FillZ2crsy = IV fillF2gray + IV gl 20ps) + 0r(L).
Hence, applying (3.84) and (3.85) inductively, we conclude
”ka%mrB) = ”9”%2@3) + Hf;?“”%mﬁ) + ox(1)

and

”kaH%%TB) = ”VQH%%W) + Z HVR?’T/JBH%%RB) + ”Vf;?HH%%TB) +op(1).
A=1

We still have to prove that this method stops after O(62) applications. From Strichartz
inequalities, we obtain

_1 i
sup  N7Z|(e"20 Py [ ()] S sup NPy ft leesy S IV 2 s
N>1, tel;,, x€T3 N>1

The orthogonality relations, (3.77), and (3.82) imply that there exists some large M > 0 such
that for k large enough,

IV £ 2y = (19 = ) 2agmsy — 3 V502 2y | + 0r(1) S M — 0

B=1
We deduce that it takes O(62) steps until we have A((f2*!)) < 6. In this case, we set
Qend = « and Ry, = f,‘je“dﬂ, what finishes the proof. O
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Using the two foregoing lemmas, we are finally able to conclude the main statement of this
section.

Proof of Proposition 3.27. We apply Lemma 3.29 iteratively with §, = 27t which provides us
with a sequence of Euclidean frames (O%), and profiles w%g)k- The first two orthogonality

relations in (3.76) are given by Lemma 3.29, too. It only remains to prove the last equality
of (3.76).

By Lemma 3.25 (ii), we have that for a; > 1, j =1,...,6, such that at least two of them are
different, say ay # asg,

6 6
/ T @) o < 1950 Tkl TT IG5 155 ws) < k(1.
T j=1 k k k j=3 k
Similarly, for a > 1 we deduce

/T 9198 (@) do < 198 allzscrs) 198 s rs) < k(1)
and

[, lo@)* 1585 @] dx < 1985 ls a0l ey < 0n(1)
’]1‘3

from Lemma 3.25 (iv). Moreover, we use Lemma 3.28 to see that
_1 4
18150 rs) < IR vy (500 N2 | P B s )

and we conclude from (3.75) that

lim sup lim sup (||| £l 3 ops) — [1fx = BilllG6 sy | + 1B |96 (p5y) = O- (3.86)

J—+o00 k—4o00

To see this, note that
6 J|6 6 2 T T pJ J12)3
[fil® = 1fe = Ricl® = 1l = (Iful® = R — fu Ry + | R;7)
point-wise and thus, each term contains a factor of Rj that can be put in the L5(T3)-norm.
From the point-wise estimate,

J
S5 D (191108 P+ 19° 108, )

a=1

J
JI6 _ |16 To 16
|fr — Ri|” — g —Zl|¢o;g|
o=

J
To (1.8 |5 To 1518
+ 3 (W 195 + gy P 1)
a76:1
a8

and the estimates above, we get by integration and (3.86)

lim sup lim sup ”fk”LG(’]T?’) ‘g”LG (T3) Z HT/JOQHLG(W
J—4o00 k—+o0
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3.6 Proof of the main theorem

In order to prove Theorem 3.1, we proceed quite similar as in [[P12b, Section 6]: We introduce
a functional A, which controls the global existence of solutions and is suitable for the local
and small data global theory. This functional decomposes the set of initial data into sub-level
sets of the energy and we are looking at the supremum of the functional on these sub-level
sets. If the functional increases too quickly, then the maximizers form a sequence that is
bounded in Z, which leads to a contradiction. The main obstruction to the boundedness of
the sequence comes from solutions that concentrate in a point in space-time. These solutions
have been studied in Section 3.4. The principal idea is induction on energy. Assume that
nonlinear solutions with energy less than FE . are global. That E.x > 0 follows from the
small data global theory. We decompose the initial data of the maximizers according to the
profile decomposition in Section 3.5. If one of the terms has energy FE,.y, then it is easy to
show that the sequence of maximizers stays bounded. Otherwise, nonlinear solutions to the
weak limit g and for every profile exist globally in time. It is then shown that the sum of these
nonlinear global solutions plus the linear evolution of the remainder Ri is an approximate
solution. We conclude from stability that the sequence of maximizers is bounded in Z.

3.6.1 The main argument

We see from Proposition 3.12 (iii) that it suffices to show that solutions remain bounded in
Z on intervals of length at most one. To prove this, we induct on the energy E(u).

We define the quantity
A(L,T) = sup{\|u||2z(l) :B(w) <L, |I|<7}, L,7>0,

where the supremum is taken over all strong solutions u of (3.1) with E(u) < L and all
intervals I of length at most 7. If L or 7 increases, the supremum is taken over a larger set,
and hence, the function A is increasing in both its arguments. Obviously,

AL+ 72)  sup{ gy + i3y - BCu) < L, || < 5 5 = 1,2)
5 A(L,Tl) + A(L,TQ).

The last two properties imply that if we define
A(L) = lig%)A(L, T),
then we have for all 7 > 0,
AL, 7) <400 & A(L) < +oo. (3.87)
Finally, we define the maximal energy such that A.(L) is finite:
Emax =sup{L € Ry : A,(L) < 4o0}.

Note that our small data global well-posedness result (Lemma 3.14) ensures that Eiy.x > 0.
All in all, we have that Theorem 3.1 is equivalent to the following statement.

Proposition 3.30. We have that Ena.x = +0o. In particular, every solution of (3.1) is global
in the sense given in Theorem 3.1.
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Proof. We argue by contradiction and assume Fy,,x < 4+00. By the definition of E .y, there
exists a sequence (ug)i of strong solutions to (3.1) such that

E(uk) — Fnax and HukHZ([k) — 40 (3.88)

for intervals I > 0 with |Iz| — 0 as k — +o0. Since (u;(0)) is bounded in H'(T?), there is a
subsequence that converges weakly to, say, g € H'(T?). We decompose the sequence of initial
data (ug(0)) in profiles using Proposition 3.27. This provides us with a sequence of pairwise
orthogonal frames (O%)yen and with a sequence of corresponding profiles ({/;%g)k such that,
after extracting a subsequence, for any J > 1,

J
uk(0) =g + Z¢%g +Rj.
a=1

To be able to apply Proposition 3.23 later, we have to switch to renormalized Euclidean
profiles. We show that every O% € Fg \ Fg may be replaced by some O* € Fp. To
accomplish this, consider O% = (Ng, t, xx)r € Fr\Fg. Then, after passing to a subsequence,
N,?|tk| — C for some 0 < C < co. We define 0% = (Ng, 0,21 )k € Fg and observe that this
frame is equivalent to O“. Furthermore, Lemma 3.25 (i) yields the existence of a profile
(Sa¢%a)k, k € N, such that, up to a subsequence,

k

kgrfoougg/%g - {;(OégHHI(TS) = 0’

and hence,

J
lim {|uy(0) — U (0)| | zra(pzy = 0,  where @ (0) =g+ > Sathg, + R

k——4o00
a=1

Let @y be the solution to (3.1) on I with initial data u(0). The existence follows from our
stability result in Proposition 3.15 provided k is sufficiently large. Suppose now that |[u| z(z,)
is uniformly bounded, then [[ug||x1(s,) is uniformly bounded (see Proposition 3.12 (iii)). As
a consequence, there exists M > 0 such that for all k£ large enough,

Nkl z () + Nkl oo 1y, 1 (T3)) < M.

We now conclude from stability (see (3.23)) and

el zery S lluk = Uellx ) + el 2o

that [|ur| z(z,) is uniformly bounded. Hence, from now on, we may assume each frame O to
be renormalized.

By the same argument, we may also assume that for every o # [3 either \ln(N,‘j‘/N,f)\ — 400
as k — ooor N} = Nkﬁ for all k. In the latter case, we may further assume that either ¢ = tf
for all k or (N2)?[ty — tf] — 400 as k — o0.

The conservation of energy implies E(uy) = E(uj(0)) in Ij, and the orthogonality relations
(3.76), (3.86) and Lemma 3.25 (iii) yield that, after passing to a subsequence,

J
lim (; E(a) + Jim E(Ri)) < Enax — E(g), (3.89)

J =400
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where

E(a) = lim E(l/}oa) € (0, Emax]-

k——+o00

We use the Bernstein’s inequality and the Strichartz estimates given in Lemma 2.10 to com-

pute for the remainder Rk, p € {po,p1} and ¢ = po+16/3,

_P i
S° NTE | ByeSo R,
N>1

p—aq
< <supN 2HPN6”A9RJHL<><>

t,x

1 .
3| PyetBo R 1o )

,_n

tz

,_n

pP—q

p—q
N<SUPN QHP ezmeRJH °°> Nq”PNRkHL2 (T3)
) HRkHHl(Tg),

< <SUP N3 || Pyet®o R} s,
N>1

where L = L7 (I, x T?). In view of (3.75) and (3.76), it follows
t,x t,x

lim sup lim sup ||e*2¢ R} Iz, = 0. (3.90)

J—=+o0 k—+oo

We consider three cases. The first two cases deal with the situations, where there is a term
in the profile decomposition with energy Fyax. Once we dealt with them, we may apply the
induction hypothesis in the remaining third case.

Case 1. Assume (uy(0)) converges strongly in H(T?) to its limit g € H'(T?), which satisfies
E(g) = Emax. We have that

€20 w0}l 21,y < 1€ (uk (0) = 9)llz 1) + ™20 gll 21,
and we deduce from Corollary 3.5 (i) that
"0 (ur(0) = 9l z(z) S 1w (0) = gl (z3).
Therefore there exists some small > 0 such that for k large enough,
20w (0}l 21y < 116720 gl 2y + k(1) < o,

where &y is the dp given by the local well-posedness result in Proposition 3.12 (i). This
proposition yields for k sufficiently large,

lurll 2o S llun(t) = €20 ur(0)]xz (1) + 1€ ur(0)| 2(z,) SEumax Fo-
Consequently, ||ugl|z(s,) is bounded, which contradicts (3.88).

Case 2a. Assume g = 0 and there are no profiles. Then, by (3.90), we may choose J sufficiently
large such that we get for k large enough,

€20 up,(0) || 21,y = €™ R}l 71,y < o,

where 0y is as in the first case. Applying Proposition 3.12 (i), this contradicts (3.88) as
discussed in Case 1.
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Case 2b. Assume g = 0 and there is only one Euclidean profile ({Eok)k such that

lim sup [Jug (0) — TZOk”Hl(TB) =0,
k—+o0

where O is a renormalized Euclidean frame. Let Uy, be the solution of (3.1) with initial data
Ui(0) = ¢o,. By Proposition 3.23 (i), we see that there is 7 > 0 such that for k large enough,

1Ukllxz () < WUkl XY (—rm) SEgs(w) 1-
Hence, by the embeddings Proposition 3.3 (i) and Corollary 3.5 (iii),

10kl z(—r7) + Ukl Lo (—7,7),11(13)) SELs ) 1

and the assumption implies for a subsequence,

lim [ug(0) — Uk (0)|| g1 (psy — 0.

k——4o00

From stability, see Proposition 3.15, we get for large k that

lukllzy S llullxr ) Sesw) 1-
This is a contradiction to (3.88).

Case 3. In the remaining case, we assume, up to passing to subsequences,
im {Juy(0) = g/l (p3) > 0,
k—00

and furthermore, if g = 0, then we assume that there exists a profile (1;2 )k With the property
k
that limy_ oo [|ur(0) — ¢25”H1(T3) > 0. We claim that in each case F(g) < Enax and for any
k
a €N, E(Oé) < Fmax.

Indeed, if g # 0, then E(g) > 0, which already implies E(«) < Epax by (3.89). It remains to
show that F(g) < Emax, which, in view of (3.89), follows from

J—400

J
lim <; E(a) +k£TwE(R,§)> > 0. (3.91)

This in turn is a consequence of the fact that (uy(0))x does not converge strongly in H!(T3)
to g: There is § > 0 such that we have

J
§ < lim {lug(0) = gl (r3) < kh_{r;O(; [0&e |1 12y + HRk]HHl(TS)>

uniformly in J, and consequently, there exists either a profile with positive energy or

lim lim E(R])>0. (3.92)

J—400 k——+o00

Hence, (3.91) is shown provided g # 0. If on the contrary g = 0, then we see from
limyg o0 |Jug(0) — wgBHHl(Ta) > 0 by the same argument that there is either another non-
k

trivial profile with positive energy or (3.92) holds true. Hence, (3.89) yields E(a) < Epax.

By relabeling the profiles, we can assume that for all « € N, F(a) < E(1) < Enax — 1 and
E(g9) < Emax—n for some n > 0. For any o € N let UJ* be the maximal strong solution of (3.1)
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with initial data U2 (0) = zlgg Uy’ can be understood as a nonlinear profile corresponding

to the linear profile {/;%g Analogously, let W be the maximal strong solution to (3.1) with
initial data g.

We apply the induction hypothesis: From the definition of Ep,.x and (3.87), we see that all
nonlinear profiles and W are global and up to a subsequence, satisfy

1
. n 3 ] 11
Wiz + Jim_[URlz0) S A(Bua = 3.1)" $1, 1= (=5:5)-

From now on, all implicit constants may depend on A(EmaX -4, 1). Since W is a (global)
strong solution in X!, we know that

IWlpoo (1,11 (13)) S 1-

Using Lemma 3.25 (iii) and limg_, 4 E({pvgg) = E(a) < Epax, we also have that

ol

NUE N oo (1,157 (T3Y) S (1/1(9@)+E(¢0a) SEmax 1

for every a € N and k > ko(«) large enough. Hence, stability implies that for every o € N
and k > ko(«) large enough,

IWllx:y + 10 I x2 ) S 1- (3.93)

For J, k € N we define
prof k- =W+ Z Uk
First, we prove that for all k > ko(J) sufficiently large,

U ot el X3 (1) S B 1 (3.94)

uniformly in J. Thanks to (3.89), we know that for every 0 < 6 < 1 there are finitely many
profiles (¢%g)k such that E(a) > J. After relabeling, we may assume that for all & > A it

holds E(a) < 6. We also have |[UZ(0)[|g1(rs) S E(oz)% S 5% for any o > A and k large
enough, as we may observe from

U (O)F71 2y S NUR O 76 g + IVUR O 7272y S IVUE (O 72(p) < E(UR(0)).

Now, we choose § small enough such that the small data global well-posedness result in
Lemma 3.14 can be applied. Using (3.93) and Lemma 3.14,
1Uskot llxz ) < Wk + D 1UR Ixaan + D IUR (1) = €2 UR (0) | xa ()
= a=A
' J
eltAg Z U]?(O)‘
a=A

J
S1+A+ > E(a)
a=A

XI(I)

e[S el

H(T3)
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From (3.89), we know that 3.7_ , E(a) < Epax uniformly in J. The boundedness of the last
term is implied by Lemma 3.25 (ii) and (3.89):

J
>_ Uk
a=A

for k large enough. Hence, we proved ||U” orofkllxi () S 1 for large k.

J

= Z Uk (0 HHl(T3 +oi(1) S Z E(a) 4+ 0k(1) S Emax
HI(T3 a=A

Define for J, k € N,
- J .
Uioo (1) = Uphog i (8) + €20 R] = W (t) + Y UR(t) + "2 RY.

We claim for any J > Jy and any k > ko(J) sufficiently large that Uale ;15 an approximate

solution of (3.1) on I. We note from (3.89) that for sufficiently large k and any J the H'(T3)-
norm of Ry is bounded by C(Eyax) uniformly in k and J. From this and (3.94), it follows
that there exists Cy > 0 such that

U ppk|’Z(I)+” ppk”Loo(IHl(TS) <C|u ppk”X1 < Cp.

Now, we choose €1 = £1(Cy) < 1 to be the constant of our stability result in Proposition 3.15.
Writing F(z) == z|z|*, we set

J
(Zat + AO)UTapp k F(Uz;]pp,k) = F(W) + Z F(UI?) - (Uai)p k;)
a=1

and compute

L) = (F (U alt)~F U+ 1) )+ (FOV0) + 3 FUR0) ~F (Ut
a=1
Applying Lemma 3.31, we get
€1

limsup sup [|Zs, ()|l x1(7,) < 0

k—+o00 toelk
for J > Jy(e1). Hence, by stability, we obtain that

lukll x1(r) S 1.

Note that this contradicts (3.88), which finishes the proof. O

Thus, Proposition 3.30 and Theorem 3.1 are proved once we prove the following lemma.

Lemma 3.31. With the notation in Case 3 of the proof of Proposition 3.30, we have that

J
lim sup sup (|Z¢, <F(UI;]rof i Z > ‘ =0, (3.95)
k—+o00 to€l a=1 X (Ix)
for fired J € N, and
lim suplim sup sup || Ty, (F (Uphor 1 (8) + €20 RY) = F(Upl k(t)))‘ 0. (3.96)
J—+o00 k—+oo to€ly ’ ’ X (Ik)
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3.6.2 Proof of Lemma 3.31

Before we turn to the proof of Lemma 3.31, we provide two more lemmas concerning the
interaction of a high-frequency linear solution with a low-frequency profile on the one hand
and the interaction of two profiles corresponding to two orthogonal frames on the other hand.
The general strategy is the same as for the standard tours in [IP12b, Section 7]. Due to the
modified Laplace—Beltrami operator Ag, the arguments in Lemma 3.32 are adapted, though.

We fix the following notation: For a given vector p € N we denote by @y, . (a1,...,ay,) a
|p|-linear expression which is a product of p; terms that are either equal to a; or its complex
conjugate ai and similarly for p;, a;, 2 < j < n.

Interaction of a high-frequency linear solution with a low-frequency profile

The following lemma shows that a high-frequency linear solution does not interact significantly
with a low-frequency profile.

Lemma 3.32. Assume that B, N > 2 are dyadic numbers and that w: (—%, %) x T3 — C is
a function satisfying

1 3
wl < N2Laien-1, jy<n-2y and  [Vw] < N21jgjen-1, jyn-2)-

Then, for any f € H'(T?3),

. 1 1
H©4,1(w(t),6ZtA9P>BNf)HL1((,%,%)7H1(T3)) S (B_m + N_m)HfHHl(T?’)-

Proof. For brevity, we assume that f = Pspnyf. By scaling, and we may also assume
|l £l 71 (r3y = 1. Using the product rule and Hélder’s inequality, we see that

itA
D41 (), ™2 )l a3y
N H©4,1(w(t),V€ZtA9f)HL%L% +||[Vew| + |w|HLmoHw||3ingo||€ZtA9fHLg°Lg-
Obviously, from f = P.py f and | f| g1 (s) = 1, we obtain
Heim"fHLgOLg = |Ifllr2rsy S (BN) IV fllpzas) S (BN) ™
Furthermore,
1
wllzape < N2 Lgpjen-1, jy<n-23llape <1,
3
va”Lngo <Nz ”1{\x\§N*1, |t\§N*2}”L;‘Lg° SN
All in all, we get
itA itA -1
[P (@), €2 ) 1y 1.0 00y S (P22 (w0, VR g 4y g2y + B
Set
W:RxT* =R, W(ta):=Nn"(N)n*(NU ! (z)),

and note that |w[* < W2. Hence, we estimate

H©4,1 (W(t)a veltAef) HLl((f%,%),LQ(T?’)) < HW(t)2V6 tAGfHLl((f%,%),LQ(TS))
SN W ()2 Vet £ 1o

7%7%)XT3)
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using Holder’s inequality. The latter expression can be rewritten as

HW(t) ztAefHL2( 1Lyersy = 2/1 ZtAeajf,W(t) itNg af>L2(T3 dt
2

— Z<a 1. U_z e RO (t)elthe dt} ajf>

L2 ('IF3).
The theorem is proved if we show

1K | 2213y 209y S N2 (B~ 100 + N~ 706),

(3.97)
where K : L*(T?) — L*(T3),

K(f)(z) = PsBnN / e ROV (t, ) P g e f (x) dt
R
To that purpose, we calculate the Fourier coefficients of K: Let p,q € Z3, then
pq = (7%, K(e07) (@) g2 o

_ / <P>BNeitA9 eip-z7 W(t, w)P>BN€itA9 eiq-z>
R

£2(1%) dt.
One immediately sees

F(Pspne™0e™™)(p) = (1 =) (7 )¢ 9%

and F(Pspye®0e)(¢) =0 for any & € Z3 \ {p}. Hence, we compute

Cpg = (1=17) (BP;N> (1—7n% <%) / Bit(Q(q)_Q(p))f(W(t))(p —q)dt

=0 —7") (g ) (1 =1 (F ) Fee W) Q) — Q@).p — a).

From the definition of W and scaling in ¢ and z, we get the estimate

_ ~10
el 5 37 (14 QO QO T i) P ol ©95)

Using Schur’s lemma and Young’s inequality for products, we see that

I K| L2(rsy—sr2(T3) S sup Z |Cpql + sup Z |Cp.ql-
peZ3 qEZ? qEZ peZ

In view of (3.98), it suffices to prove

—10 —10
sup > (1 ) QQ(“ ”)‘> (1 + M) SN3(B~mwo 4+ N-wa)  (3.99)
pI>BN ‘= N N

to obtain (3.97).

Define Opax = max{fy,60s,03} and © = diag(6y, 02, 03), then we split the sum over v € Z3
into three parts:

S+ So+ Sz = > - > -

|v|>N min{ N,B}1/100

|v| <N min{N,B}1/100,
|p-©v| <Omax N2 min{ N, B}1/10

|v|]<N min{N,B}1/100
|p-©v|>0max N2 min{ N, B}1/10



3.6 PROOF OF THE MAIN THEOREM 135

Thus, it suffices the show (3.99), where we replace the sum by any of the sums above. One
casily verifies that S; < N®min{N, B} /1% hecause

—10
si< Y (1+'1N'> SN0

|0|>N min{ N, B} T00 |0|>N min{N, B} T00
< N'(N min{N, B}ws)
In order to treat S, we observe that

Q(v) < Omax|V[? < Ormax N2 min{ N, B} < 00x N2 min{N, B} 10,

and thus,
(14 20=g0 ) 1 N N
N? " 2jp-©u|=Q(v) T |p- O]
We may bound Ss by
N Z lp-©Ouv|~ < min{N, B} ! Z 1
|v|<N min{N,B}!/100 |v|<N min{N,B}1/100

|p-©v|>0max N2 min{ N,B}1/10
. L
< N3min{N, B} 1o,

Finally, it remains to bound S3. For that purpose, we set p := % Since |p| > BN, it suffices

to prove that

[{veZ®: ju] < Nmin{N, B} 19, |p-Ov| < OnaxN min{N, B} 1 }| < N®min{N, B} 1o

This point-set is covered by a rectangle in R? with two sides of length N min{N, B}ﬁ and
one side of length <g N min{N, B}~ 10. Therefore, the point-set is bounded by

(N min{N, B}10)2N min{N, B}~ 16 < N3 min{N, B} 10

which proves (3.99). O

Interaction of two profiles corresponding to two orthogonal frames
In the proof of Lemma 3.31, we also rely on the following result, which shows that two profiles
corresponding to two orthogonal frames do interact very little with each other.

Lemma 3.33. Assume that O% = (N2, t3,20)r € FE, a = 1,2, are two orthogonal frames,
IC (—%, %) is a fized open interval with 0 € I, and T1,T5, R € [1,00) are fivzed numbers
satisfying R > Ty + 1. For a = 1,2 and k large enough let

Sy = {(t,x) e I x T : |t — )| < To(Ng) 7%, |z — 2| < R(NZ) '}

Assume that (wk,wk,fk,gk,hk)k is a sequence of quintuples of functions in X!(I) with the
properties that w},w? € CY(I,C*(T?)) and

_ 1
|0y wi| + (N 10 |0i05wi| < R(N,?)2+\”|16a V| <4, a=1,2,
| fellxzy <1, lgkllxz) <1, Akl xiy <1

for any k sufficiently large. Then,

(3.100)

lim sup ||Z, (wkwkfkgkhk)uxl =0.
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Proof. We fix some small 0 < e < 1. If

1 2
N2 + ]i <4e7?
Ng Ny

for any k sufficiently large, then the orthogonality of the frames implies 6,16062 = () provided k
is large enough. Indeed, since O! and O are orthogonal, we know that either (N})?|tL —t2| —
400 or N}|z} — 27| — +00. Suppose that (N})?|¢t} — 2| — +oco. Then, we may conclude for
t € &} N G2 that
[tk — 1Rl < [t = tel + |t — 8] < Ti(Np) ™2 + Ta(N) ™2
This implies
12,1 _ 42 Ni\?
(NEP2It — 3] < T+ (55 ) < o,

which contradicts our assumption. The same argument leads to a contradiction if instead
Nzl — 22| — +o0. From (3.100), we see that for k sufficiently large,

w,iw,%fkgkhk =0.

By symmetry, it suffices to consider the case

1

N}
W S 9e2 (3.101)

for any sufficiently large k. We define &3 (t) := w,%(t)l( Ty (VD)2 1k +T1(N%)72)(t), and we note

that wkwk = wkwk Furthermore, we claim that for k sufﬁmently large
- a1 -
|Gkl x ) SrL @GRl za) SrRe®,  and  [|Pscmi 2 @llxp ) Sre- (3.102)
The first bound may be computed using the estimate (3.6): If we define
Sy, ={re T : (t,x) € 6¢}, tel,

then we deduce from (3.6) and (3.100) that

N[

1321 x20) S 1RO ez ) + (Z | P (0, + Ae>wk\|i%(,,m3)))

N>1
Sr1+(ND)™? S;U?(Hat@/%(t)HHl(egt) +11A6& ()l (ee )
c : ,
<r L

The same argument combined with the Bernstein inequality,

H >e~ 1N2fHHs (T3) — Z NZSHPNP>5 1N2f”L2 Se N2 Z N2 8+1)HPN a*lN,ffHLQ
N>1 N>1

S (NG 2P e 2 fllFress oo
(3.103)

for f € H*T1(T?), yields the third inequality of (3.102). To gain the smallness of @? in the
Z(I)-norm, we first observe from

Wkl zy S ||P<e—1N2wkHZ + 1P —1N,§"~UI%||X}(I)
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that we only have to consider P -1 Ngfu,%. Let (p,q) € P. Applying Bernstein’s inequality
with respect to x yields

2,3 1 ~ _ 142 -
Yo NGFTEPPNGR, ey Sr (VD) Esup S NUTRP I PAGR(0)E .
N<2e-1N2 el N<oe—1n?
Estimating NP < (271 N?)2NP and using ¢ C (P, we may bound

2
2,31 _ NiN2g o ~2 2
S NP, ary S <—N'g) &2 sup |G (1) 51 g ) S 2
—1N2 ’ k tel k,t
N<2e~INp

This immediately implies

~ 1
1@kl 2y Sk e

We also decompose wj in low-frequency and high-frequency terms and get for sufficiently large
: 1 1 1

Wy = Peeniwy + Pooyi Wy, (3.104)
lei”Xrl(I) Sk and ”PgaNéwli”X}(I) SRE

The first bound follows as above, and the second estimate follows from
HPSaN;fHHl(Ti%) S 5N1§”P§5N;f”L2(1r3)7 e Hl(Tg)-
Indeed, for sufficiently large k& (depending on ),
”PgaN%wli(o)”Hl(Ti”) S 5Nl§”PgaN%wli(O)HLQ(G}C’O) SRE.

The two remaining terms, ||8tP§EN%w,£(O)HH1(Gi ,) and HA@PgaN%wIi(O)HHl(Gi ,)» can be esti-
mated along the same lines. ’ ’

Now, an application of the triangle inequality yields
1Zeo (wrwic gl x 1) S [|Zeo (Peeni i) frgnhix) HX}(I)
+ HIto ((P>5N,§W1i)(P>571N,§°~”1%)fk9khk) ng(z)
+ HIto ((P>5N,§wli)(Pgalegai)fkgkhk) HX}(I)
=1L +L+1I;

for every ty € I. Applying Lemma 3.11, (3.102), and (3.104), we may bound the first term
for k sufficiently large as follows

I S 1 Peenpwicllxa il o il oy low | xp oy Ikl xp ) See
I can be bounded similarly for large k:
I S llwillx (1 Pse-r n2 @l (o Il oo gl xa o el xp ) Sree-

To estimate I3, we have to use the more precise estimate (3.12) instead of Lemma 3.11.
From the relation of N} and N7 (see (3.101)), we get that eN} > 2e!N2. Thus, we have
Pe—1n2 = Po y1 Pe—1y2. We decompose the product as in (3.11), and remark that

D Pro(Pecminz@) Py (Pocniwit) P<ns i P<na g Py by, = 0.
No>2



138 3 GLOBAL WELL-POSEDNESS FOR LARGE DATA

This expression corresponds to the first summand in the second term of (3.11) if we identify
U = P>5N;W1i, Ug = Pga—lNg(:}]%, us = fr, U4 = gg, and us = hy. We conclude from (3.12)

that the factor PSs—lNg(:}g can be estimated in Z'(I). Hence, I3 <p e105. Allin all, we proved
that

1
sup 1T, (wiewie frgihu) | x2 (1) Sk €T
0E

for all € > 0 and k large enough, which implies the desired result. O

Conclusion

We finally turn to the proof of Lemma 3.31.

Proof of Lemma 3.31. In this proof, we use the successive decomposition of a nonlinear profile
U, several times.

Claim. For all § > 0 there is some T(?,Y = T(¢7,0) sufficiently large such that for every
Ty~ > T(S{ . there is Ry, sufficiently large such that for any k large enough (depending on
Ry ~) we may decompose, up to a subsequence,

1[6’7U];Y — sz’_oo _i_wZv’Y +wz7’%+oo + p27'y + piYv_OO + piYv'i_OO’ (3105)

_ ~1
where Iy, = (=T, _,

estimates hold

T, ;) and every function is in X!(Iy,). Furthermore, the following
) 7:t 07 67 7:|:
TN 20r) ”kang(IM) + oy OOHX}(IM) <40,
+ 0,
FNxr o) + llwy xi ) S 1 (3.106)

0 - 0 1
07wy, | + (N)) 2162’”@3;“157’ < RH,'V(NIZ)QHV‘IGZ”’

0
[y

67 b
||Wkﬁ/

for |v| <6 and
GZ’W = (tz) € Ipy X T : _TG,W(NIZY2 <t—t) < TG,W(NIZ)J’ |z — | < RQN(NIZ)A}'

Moreover, we have that

0,7, i(t—t))A 0,v,+
Wy PEX(E) = Ly meyom, ., (V1) -2pr, , (1) - €TI0 (T ¢7752),

where ¢71E® = Pp, ¢#7%* € S(R?) and

16% 7l g gy S 1, 16" L 2s) S Roy (3.107)

Here, wz’w describes the solution in the Euclidean window, which, by Proposition 3.23, can
be expressed in terms of a solution to the nonlinear Schrédinger equation on R, The terms
wz’%ioo characterize the behavior of the solution beyond the Euclidean window, which can be
written in terms of the scattering data of a solution to the nonlinear Schréodinger equation on
R3 as proved in Proposition 3.23. Terms that have small X!-norm are collected in the error

terms pz’7 and pz’%ioo.

Now, we turn to the proof of the claim. Proposition 3.23 (ii) states that for all # > 0 there
is a Tj) y = T(¢7,0) sufficiently large such that for every Tp ., > T , there is Ry - sufficiently



3.6 PROOF OF THE MAIN THEOREM 139

large such that for any k large enough (depending on Ry ) we may decompose, after passing
to a subsequence,

UL (t) = (t) = pp (1), t€ )T =t €Iy —Tp(N]) 2 <t — 1] < Ty (N]) 2}
where wzﬁ, pi’v € C(Jg’v, HYT3) N Xrl(Jg’“/) and on the remaining time interval
UR () = wp "5 = gy 750, te JITER = {t € Tpy \ 7 1 £t > 0}

where wzmioo,pzmioo € C’(J,f’%ioo,Hl(']I'?’)) N X}(J,f’%ioo). Moreover, Proposition 3.23

implies HpZ’WHX}(Jg,W) < 6 and ||pz’7’ioo‘|xl}(]g,w,iw) < §. In the decomposition above, wi”

plays the role of uy in (3.49), and from (3.51), we have
wz,'y,:l:oo (t) _ sz ei(tftZ)Ag (TNZ ¢€,'y,:|:00)’ te Jg,'y,:lzoo‘

From the uniform bound on U} in X!(—3, 1), see (3.93), we deduce

777:|:OO < 1

0 0,
||wk‘ HXYI(J:’%iOO) + HkaYHXYI(J:ﬁ/) ~

uniformly in v and k.

The last bound in (3.106) is immediate from (3.50) and the sufficient smoothness (even in
time) of wz’“/ is implied by Proposition 3.23 (ii) if s > 1 is chosen large enough.

We show that it suffices to assume pfrEoo €S (R?). Indeed, for any given ¢ > 0 we may
choose ¢ ¢ S(R?) such that | ¢+ — ¢6,«/,iooHH1(R3) < e. Define

_ — -
wzmioo(t) — szez(t 1) Ag (TNIZQSO,%:EOO)’ te ngioo’

then we compute

0700 _ ~07,k 0,7+ U
oo™ = @ g ooy S Ty 6777 = Ty ™71 s

S ”¢67’y7:|:00 _ $67’Y7:|:OOHH1(R3 < 8.

)~

,7Y,£00

+ ~0,v,t
S , we see that we may assume

Hence, by putting wz in the error term PZ

g?rE> € S(R?).

Using Corollary 3.17, we obtain the uniform bound on ¢?7*> in H'(R?) for sufficiently large
k:
67 7:|: . 67 7:|: 07 7:|:
16°75] sy S [Ty 67 gy o™ g S 1.

,Y,E00

The smallness of the Z’-norm follows from ||wz < 62, which is a direct con-

HZ(Jg’%iOO)
sequence of the extinction lemma, cf. Lemma 3.21 (i), after possibly increasing T} - For
possibly larger Ry ., we have

oy
Iy €8 (T Py 6775 |y govzooy S 1P o, 6775 g sy + 0k (1) 0

777:|:OO ,’Y,:l:OO —

for sufficiently large k. We add this to the error term pz and assume ¢’
PSRMgbg’%ioo. As a consequence, we can conclude the bound on the L?(R3)-norm from
Holder’s inequality now:

1Py =l aqws) S Rogy |l Fas (677 5) [ s(as) S Ro 677 g1 oy S Roo-
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We extend wz’fy, wZ’%ioo, pzﬁ, and pZ’%ioo (without changing the notation) similarly as Z,
in Definition 3.6 (i) to functions defined on Iy.,. Note that the extensions are in X} (Iy ) and
the X!(Iy~)norm equals the X!-norm on the respective support of those functions. This
finishes the proof of the claim.

Furthermore, we remark that, since [[W|ly1_1 1) S 1 (see (3.93)), we may choose for any
r 279
6 > 0 some Tp 4 > 0 such that

Wiz -y =6 and Wl apign ST
Proof of (3.95). Since F(z) = z|z|* = 2322, for a fixed J > 1,

J
F(Uprot i) = F(W) = > F(UR)

may be written as a finite linear combination of products of the form
VIVEVEVAVS, (3.108)

where ij c {W,W, UI?,U_,?, 1<a<J}, j=1,...,5 and at least two terms differ by more
than just complex conjugation.

We now assume 6 > 0 to be fixed, and we decompose every profile U, 1 < o < J, as in
(3.105). We may assume that Ty, = Ty g = Ty, for 1 < o, 8 < J. Set Ty := Tp,1, and note

that I, C (—Tg_l,Tg_l) for large k. Whenever a product as in (3.108) contains an error term

0,y ,Y,E00

py ' or PZ , then we have

sup ||Zt0(Vk1Vk2Vk3Vk4Vk5)HX}(Ik) S0,

to€ly,

which follows from Lemma 3.11 and (3.106). Analogously, we obtain the same bound if the
expression contains at least one of the following:

« two scattering terms wZ’O"iOO,

« W and one scattering term wZ’O"iOO,

o two terms W.

or

Lemma 3.33 shows that the X[ (Ij)-norm of T, (VIV2V2VAV)) converges to zero for any
to € I, whenever the product contains two different wz’a and wZ’ﬁ , a # (. Hence, in order to

finish the proof, it suffices to show

< (3.109)

0,8 0,(1’7:|:OO))‘ Xy S0

lim sup sup HIto (’D4,1(wk , Wy
k——+oc0 t()elk

for any a =0,1,...,J, 8=1,2,...,J, with a # 3 and wZ’O’ioo(t) = W(t).

We set NP := 1. Assuming that
NO(
lim —& = 00,
k—4-00 Nk

we may deduce (3.109) essentially from Lemma 3.32. The lemma ensures the existence of
B > 0 such that if we decompose

0,0, 00 0,0, 00 0,0c,+00
Wy, _PSBN,fwk +P>BN£wk )
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then
67 67 7:|:
sup [|Zy, (94,1(0%5’ P_pnowy™ )] X1y S Y-
toEl} k r
Since
07 7:|: 67 ’ 67 ’
1P sl ™=l ny S 1P agp (Tvg 64 1 mny S (1 + BNE) T 6% gy

< (1 4+ BNY(NE) %2 L2y S ox(D),

we may conclude (3.109) from Lemma 3.11.

If in contrast'
N
lim —% = oo,

k—+o00 N]?
then we proceed as follows: First, we derive for any o € {1,...,J} and any B > 1 that
0,0, _
1P> Bnewy xS I1P>Bne (Tve 8" *F) 1 (rey So.0 B~ + ok(1). (3.110)
A simple argument as in (3.103) allows to compute

1P BNe (Tne 6™ | may S (BNE) I Ps pve (Tnve 7% %) || 2 s

We only consider the highest order term that is if both derivatives fall on ¢?®*>°_ This term
may be estimated by

_ 1 _ _
(BN THNE) 2197 F NG )l g2 sy S B7HIS™ N ra oy So.0 B
where we used ¢f+ = PSReya(qSe’O"ioo), Bernstein’s inequalities and (3.107).

If a = 0, i.e. Wl ™ (t) = W (t), then we note from the definition of the X}-norm that there
is By(#) > 0 such that for any B > By,

1P s W ) < 1P W Ly ) <.

Hence, we deduce (3.110) in this case, too.

From (3.110), we may deduce for any « € {0,...,J} and any tg € I,
| Z4 (9471((.‘),2’6, wZ’a’ioo)) HX}(Ik) < || 74, (@4,1(602’6, PSBNng’a’ioo)) HX}(Ik) + 6+ ox(1)

provided B = B(0, «) is sufficiently large. We deal with the first term as in the end of the

proof of Lemma 3.33: Given § > 0, we decompose one factor of wz’ﬁ similarly as in (3.104),

0.5 _ 0,8 9.8
wi" = Pegnpwy” + P snowi”

and again, we get the bound
67
HPgélekaHX}(Ik) <080

G,Oé,ﬂ:OO))

for k sufficiently large. Hence, ||Z;, (’D471(wz’5, P<pnewy, | x1(z,) is less or equal to

HItO (91,3,1(PS5N5(.UZ’6, wzﬁ, PSBNI?WZ,&,:I:OO)) |

e (D101 (P sl . P )|

XH(Ix)

XHIy)

!Note that the case o = 0 is included here.
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The smallness of the first term follows immediately from Lemma 3.11. The second term can
be treated as in the term I3 in the end of the proof of Lemma 3.33.

If
Ng = N,f and (= tf for any k

(see the reduction at the beginning of the proof of Proposition 3.30), then wkﬁ franteo _

since the supports in time of those functions become disjoint for large enough k.

The remaining case is

zwzw?mdkmuWWW—@:m
——+o00

For any € > 0 we may choose q~59’°‘7i°° € C§°(R3) such that || 0 Foe — ngvo"iOOHHl(Rg) <e.
Define

~0,a,+ . i(t—t¢)A 70,0+ 0,0, %+
wka Oo(t) = 7'(':,3%62( ") G(TNI?gb @ OO), tEJka OO,

then we have
67 7:|: ~67 7:|: 67 ) ~67 )
oo™ = ™ oo oey S I Tvg o™ = — Tna d” = g sy
5 H(be,a,:l:oo - ge,a,j:oo”ﬂl(RB) 5 e

Because of Lemma 3.11 and (3.5), it suffices to prove

lim sup 9,17, 50+)

2t (1, m51 (13)) = O-
k——+oc0

By Hoélder’s inequality, the L(I, H*(T?))-norm is bounded by

~0,0, = ~0,0, %
IV ™= T

Lg2)-

(3.111)
We apply Lemma, 3.21 (ii) with T' = Nt} — tf\%, and we use the third inequality of (3.106),
then

0, ~0,a,%+
IVl oz oot I s 180 e, + ol oo ( 1oz + ||y

1 _ 1
(3.111) g (NP) ™2 (NE)2 (NI — £212) 710 + 04 (1) Sop (NI — ££]2) 710 + 04(1).
This finishes the proof of (3.95).

Proof of (3.96). It is easy to see that for fixed J > 1 and ¢y € I,

Hzto <F(Uf)]rof,k(t) + eitAaRg) (Upmf ot ))>

XH(Ix)

4
< 2 170 (@055 Uprot s (0, €2 RY)) || 1 1,
p=0

holds true. If p < 3, then we can control the terms easily: Indeed, from Lemma 3.11 and
(3.94), we see

J itNg pJ A
tSlelpHIto( 252 Uprot k(0 € RD) |1 1y S IR gsy €20 R 20 ot 5 (1
o€l

S €™ Ry | 711,)-
Now, (3.90) implies that

3

lim sup lim sup sup Zt 5 (U t), etro Ry =0.
J—too k—too toelkpZOH o PpspUprornlt). k))HX‘"l(I'“)
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Hence, we are left to prove

lim sup lim sup sup HIto (Da (UI‘)]rOf,k(t), eitho R,‘g))
J—=+o0 k—+4o0 toely

=0.

r (Ik)

/

Let & > 0 be fixed and A’ < J. We define U via UJ . — U =S, U2 and
hence,

J
itA
Vot e — rofk”Xl 1L S > up) — e “URO)llxz-1.1)
a=A"+1
A J
+||e"Be U,S‘(O)H :
a=A'+1 XH-33

As seen in the proof of (3.94), this can be further estimated by

J J
O DS U;;*(O)H |
a=A"+1 a=A"+1 HY(T3)

which is bounded uniformly in J. From the uniform bound of this expression, we see that
there exists A’ = A’(¢) such that for any J > A’ and all k > ko(J),

” prof.k — rofk:HXl %,%)SE

Thus, by Lemma 3.11, it remains to show

lim sup lim sup sup ||Z, (D4 1(U"¥Of7k(t), eim"Rg))

b Se.
J—=+o00 k—4oo to€l}

T (Ik)

By the definition of U4 rof . it suffices to prove that for any o, s, a3, 4 € {0,1,..., A’}

lim sup lim sup sup HZto (9171,171,1(Uk ( )a UISQ (t)a U]??) (t)a U/;M (t)a eitAeRg))‘ X1(I},) 5 6I
J—=+00 k—+oo to€ly Tk
(3.112)
holds true, where we set Up :== W and &’ := eA
Decompose all nonlinear profiles U, o = 1,..., A’, as in (3.105). As done before, we may

assume
Tyo=Typy="Ty and Ry, =Ry foralla=1,..., 4,

and that the bounds (3.106) and (3.107) hold. We apply Lemma 3.11 to the left-hand side

of (3.112) and from (3.90), we see that whenever there is an error term p'® or pl®*> a
scattering term w?®*> or W, then (3.112) holds true. Hence, it suffices to prove
0 0 0, 0, i

lim sup lim sup sup HZto (@1,171,171( wy, (), wy, a2 (t),wy, s (1), wy, (1), e”A"R,‘g)) HX}(Ik) <¢

J——+o0 k—)-‘rOO toelk
for any aq, a9, a3,a4 € {1,..., A’}. Thanks to Lemma 3.33, we may assume oy = ag = ag =
ay, which means that (3.112) reduces to

0. 4
lim sup lim sup sup || Zy, (Da,1 (w), *(t), eZtAGR,}])) 1) <¢é (3.113)

J——+o0 k‘—>+00 toelk

for any av € {1,..., A’}. Let B > 0 be fixed, we decompose

BZtAG Rg = P>BN1? eltAe Rg + PSBN;? eltAe Rg
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With B sufficiently large (depending on Ry), we apply Lemma 3.32 and get

/

) 9 ;
lim sup sup HIto (D (wy (1), Ps pne e”AGR,‘g)) €

<
k——+oo to€ly HX}(Ik) ~

for every J > A’. By possibly increasing B further, we may assume

67
||P§B—1N,gwka\|xr1 EEREOIS e

as shown in (3.104). Hence, Lemma 3.11 yields

/

lim sup sup ”Ito (94,1(P§371Nng’a(t), P<pne eitA"R;g)) ”X}(Ik) <ég.

k—+o00 to€ly

Thus, (3.113) is proved, provided we show

lim sup lim sup sup HIto (@471(P>B_1Ngw2’a(t), P<pne eithe Rg))
J—4o0o k—+oo toelk

s =0

which follows from (3.12) and (3.90) in the well-known fashion. O

3.7 Further remarks

Since one has a rather good knowledge of the local and small data global well-posedness theory
on S X Sg and on Zoll manifolds, it is natural to ask for the global theory for large data in
these cases.

On S x Sf), the main obstruction to study global well-posedness is the lack of linear Strichartz
estimates for a wide range of LP-spaces. Proposition 2.24 only implies the LS-estimate

, 2
HPNGZtAgﬁﬁHLfv‘(IxSng) S N5||Pyol 2 (sxsz)-

However, taking a closer look at the implicit linear version of Lemma 2.19 and at the proof
of Proposition 2.24, one may show for p > %,

i

. 2
1Pxe™ 96|l o2, Lo, Los)) S N2 7 [ Proll 2 (sxsz)- (3.114)

Using our approach to treat the S and S? component separately, as it was done in the proof
of Proposition 2.24, it seems unlikely that one can get anything better than LS in the S?
component. The reason is that for f € L?(S?) the scaling invariant estimate

12
I fll 2y S (n)2 ? [ flln2(s2)

is known to fail for p < 6, cf. [Sog86, page 55].

The linear Strichartz estimate (3.114), however, seems to be insufficient for estimating the
contribution X5 in the proof of Lemma 3.11.

Moreover, the extinction lemma, more precisely Lemma 3.21 (i), has to be adapted. In the
given proof, the extinction argument essentially relies on a decay in time introduced by a
one-dimensional torus component, which is also present in S x Sz. As a consequence, the
proof can be modified to cover S x Sg.

The last thing one has to take care of is Lemma 3.32. A combination of the arguments given
in the proofs of Lemma 3.32 and [PTW14, Lemma 5.3| might allow to get the desired result.
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Even though the small data global well-posedness theory has been developed on Zoll manifolds,
large data global well-posedness was only obtained in the special case S* [PTW14]. The linear
Strichartz estimates obtained in [Herl3, Lemma 3.5] allow to gain the necessary local well-
posedness and stability results in Section 3.3. The difficulties again arise in proving the
extinction lemma and an analogue of Lemma 3.32. In [PTW14], the proofs rely on explicit
formulas of the eigenprojectors and the particular localization of the spectrum.






Summary

Large parts of the introductory Chapter 1 are a review of well-known material. Though, there
have been some new aspects. Aside from short introductions to function spaces, the Fourier
transform, Riemannian manifolds, and dispersive partial differential equations, we have given a
new detailed proof of a variant of the Hausdorff~Young inequality for non-periodic exponential
sums and have related it to a lattice point counting problem. In addition, we have applied
a Weyl type inequality due to Bourgain [Bou93a], to give a proof of the exponential sum
estimate in Corollary 1.39, which we have heavily relied on. Although the statement is not
new, as it may be seen as a special case of the stronger exponential sum estimate in [Her13,
Lemma 3.1|, we show that the proof of this particular estimate does not require sophisticated
arguments. We want to emphasize that this exponential sum estimate have been used in all
our subsequent results.

In Chapter 2, local and small data global well-posedness of nonlinear Schrédinger equations
posed on compact, smooth Riemannian manifolds (M, g) without boundary have been dis-
cussed. We have started this chapter with the conditional energy-critical well-posedness result
in Theorem 2.3. It states that given the trilinear Strichartz estimate in Assumption 2.1 for
any given 3-manifold (M, g), we have that the quintic nonlinear Schrodinger equation is lo-
cally well-posedness in H' and even globally well-posedness provided the initial data are small
in H'. The proof of this result, that is essentially due to Herr [HS15], has been reviewed.
This is valuable since the proof given in [HS15] is strongly tied to earlier works. Further-
more, we have verified Assumption 2.1 for rectangular tori, which extends previous results in
[HTT11, GOW14]. The present author published this result in [Str14]|. Also, the first proof
of Assumption 2.1 on products of spheres has been provided, which expands the result given
in [HS15] to a general radius. Moreover, we have shown a multilinear Strichartz estimate
for free solutions on two-dimensional rectangular tori that implies—by standard arguments—
local well-posedness of some scaling-critical nonlinear Schréodinger equations with power type
nonlinearities.

Chapter 3 has been devoted to prove large data global well-posedness of the energy-critical
nonlinear Schréodinger equation on rectangular 3-tori. This extends the earlier result in [IP12b]
for the standard torus. The author of the present thesis published this result in [Str15], we
relied on the L*-Strichartz estimate given in [KV14]. However, we have presented a modified
proof here, which shows that Strichartz estimates for a smaller range of LP-norms, which can
be obtained essentially using the exponential sum estimates in Chapter 1, suffice to conclude
global well-posedness in H' of the quintic nonlinear Schrédinger equation on rectangular
3-tori.






Bibliography

[AEM195] M. H. ANDERSON, J. R. ENSHER, M. R. MaTTHEWS, C. E. WIEMAN, E. A.

[AF03]

[APTO4]

[Aub76]

[Aub82]

[Aub9sg]

[BBZ13]

[BD15]

[BGT04]

[BGTO05a]

[BGTO5b]

[BGTO7]

[BL76]

CORNELL: Observation of Bose-Einstein condensation in a dilute atomic vapor,
Science, pages 198-201 (1995)

R. A. Apawms, J. J. F. FOURNIER: Sobolev spaces, volume 140 of Pure and
Applied Mathematics (Amsterdam), Elsevier/Academic Press, Amsterdam, 2nd
edition (2003)

M. J. ABLOWITZ, B. PRINARI, A. D. TRUBATCH: Discrete and continuous non-
linear Schrodinger systems, volume 302 of London Mathematical Society Lecture
Note Series, Cambridge University Press, Cambridge (2004)

T. AuUBIN: Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math.
(2), 100(2):149-173 (1976)

—— Nonlinear analysis on manifolds. Monge-Ampére equations, volume 252
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences/, Springer-Verlag, New York (1982)

—— Some nonlinear problems in Riemannian geometry, Springer Monographs in
Mathematics, Springer-Verlag, Berlin (1998)

J. BOURGAIN, N. BURQ, M. ZwWORSKI: Control for Schrodinger operators on
2-tori: rough potentials, J. Eur. Math. Soc. (JEMS), 15(5):1597-1628 (2013)

J. BOURGAIN, C. DEMETER: The proof of the 12 Decoupling Conjecture, Ann.
Math., 182(1):351-389 (2015)

N. BURQ, P. GERARD, N. TZVETKOV: Strichartz inequalities and the nonlin-
ear Schrodinger equation on compact manifolds, Amer. J. Math., 126(3):569-605
(2004)

—— Bilinear eigenfunction estimates and the nonlinear Schrédinger equation on
surfaces, Invent. Math., 159(1):187-223 (2005)

—— Multilinear eigenfunction estimates and global existence for the three di-
mensional nonlinear Schrédinger equations, Ann. Sci. Ecole Norm. Sup. (4),
38(2):255-301 (2005)

—— Global solutions for the nonlinear Schrédinger equation on three-dimensional
compact manifolds, in Mathematical aspects of nonlinear dispersive equations, vol-
ume 163 of Ann. of Math. Stud., pages 111-129, Princeton Univ. Press, Princeton,
NJ (2007)

J. BERGH, J. LOFSTROM: Interpolation spaces. An introduction, Springer-Verlag,
Berlin (1976), grundlehren der Mathematischen Wissenschaften, No. 223



150

BIBLIOGRAPHY

[BOR15]

[Bos24|
[Bous9]
[Bou93a]
[Bou93b]
[Bou99]
[Bou04]

[Bou07]

[Boul3]

[BP61]

[Caz03]

[CCTO3]

[Cha84]

[CKS+08]

[CKS™10]

[CWSS]

[CWS9]

A. BAaurount, H. OuNAIES, V. D. RADULESCU: Infinitely many solutions for a

class of sublinear Schrédinger equations with indefinite potentials, Proceedings of
the Royal Society of Edinburgh: Section A Mathematics, 145:445-465 (2015)

S. N. BosEe: Plancks Gesetz und Lichtquantenhypothese, Zeitschrift fiir Physik,
26:178-181 (1924)

J. BOURGAIN: On A(p)-subsets of squares, Israel J. Math., 67(3):291-311 (1989)

Fourier transform restriction phenomena for certain lattice subsets and appli-
cations to nonlinear evolution equations. I. Schrédinger equations, Geom. Funct.

Anal., 3(2):107-156 (1993)

—— Exponential sums and nonlinear Schrédinger equations, Geom. Funct. Anal.,
3(2):157-178 (1993)

—— Global wellposedness of defocusing critical nonlinear Schrodinger equation
in the radial case, J. Amer. Math. Soc., 12(1):145-171 (1999)

—— A remark on normal forms and the “I-method” for periodic NLS, J. Anal.
Math., 94:125-157 (2004)

—— On Strichartz’s inequalities and the nonlinear Schrédinger equation on irra-
tional tori, in Mathematical aspects of nonlinear dispersive equations, volume 163
of Ann. of Math. Stud., pages 1-20, Princeton Univ. Press, Princeton, NJ (2007)

—— Moment inequalities for trigonometric polynomials with spectrum in curved
hypersurfaces, Israel J. Math., 193(1):441-458 (2013)

A. BENEDEK, R. PANZONE: The space LP, with mixed norm, Duke Math. J.,
28:301-324 (1961)

T. CAZENAVE: Semilinear Schrédinger equations, volume 10 of Courant Lecture
Notes in Mathematics, New York University, Courant Institute of Mathematical
Sciences, New York; American Mathematical Society, Providence, RI (2003)

M. CHRIST, J. COLLIANDER, T. TAO: Ill-posedness for nonlinear Schrodinger
and wave equations, ArXiv Mathematics e-prints, arXiv:math/0311048v1 (2003),
to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire

I. CHAVEL: FEigenvalues in Riemannian geometry, volume 115 of Pure and Applied
Mathematics, Academic Press, Inc., Orlando, FL (1984), including a chapter by
Burton Randol, With an appendix by Jozef Dodziuk

J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, T. TAO: Global well-

posedness and scattering for the energy-critical nonlinear Schrédinger equation in
R3, Ann. of Math. (2), 167(3):767-865 (2008)

—— Transfer of energy to high frequencies in the cubic defocusing nonlinear
Schrodinger equation, Invent. Math., 181(1):39-113 (2010)

T. CAzeNAVE, F. B. WEISSLER: The Cauchy problem for the nonlinear
Schrodinger equation in H', Manuscripta Math., 61(4):477-494 (1988)

—— Some remarks on the nonlinear Schrédinger equation in the critical case, in
Nonlinear semigroups, partial differential equations and attractors (Washington,
DC, 1987), volume 1394 of Lecture Notes in Math., pages 18-29, Springer, Berlin
(1989)



BIBLIOGRAPHY 151

[CW90]

[CW10]

[Dem13]

[DET13]

[DMA+95]

[DPSTO7]

[Duo01]

[Ein24|

[Ein25]

[ESY07]

[Eval0]

[Gér06)

[GOW14]

[GP10]

[Gra08]

[Gri00]

——— The Cauchy problem for the critical nonlinear Schrédinger equation in H?,
Nonlinear Anal., 14(10):807-836 (1990)

F. CATOIRE, W.-M. WANG: Bounds on Sobolev norms for the defocusing non-

linear Schrodinger equation on general flat tori, Commun. Pure Appl. Anal.,
9(2):483-491 (2010)

C. DEMETER: Incidence theory and restriction estimates, ArXiv Mathematics
e-prints, arXiv:1307.0051v1 (2013), to appear in Commun. Pure Appl. Anal.

S. DEMIRBAS, B. ERDOGAN, N. TZIRAKIS: Existence and Uniqueness Theory for
the Fractional Schrodinger Equation on the Torus, ArXiv Mathematics e-prints,
arXiv:1312.5249v1 (2013), to appear in Adv. Lect. Math.

K. B. Davis, M. O. MEwEgs, M. R. ANDREWS, N. J. vAN DRUTEN, D. S.
DURFEE, D. M. KURN, W. KETTERLE: Bose-Einstein Condensation in a Gas of
Sodium Atoms, Phys. Rev. Lett., 75:3969-3973 (1995)

D. DE Siwva, N. PAVLOVIC, G. STAFFILANI, N. TZIRAKIS: Global well-posedness
for a periodic nonlinear Schrodinger equation in 1D and 2D, Discrete Contin. Dyn.
Syst., 19(1):37-65 (2007)

J. DUOANDIKOETXEA: Fourier analysis, volume 29 of Graduate Studies in Math-
ematics, American Mathematical Society, Providence, RI (2001), translated and
revised from the 1995 Spanish original by David Cruz-Uribe

A. EINSTEIN: Quantentheorie des einatomigen idealen Gases, in Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, pages 261267, Verlag
der Koniglich-Preussischen Akademie der Wissenschaften (1924)

—— Quantentheorie des einatomigen idealen Gases, 2. Abhandlung, in Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, pages 3—14, Verlag der
Koniglich-Preussischen Akademie der Wissenschaften (1925)

L. ErDOGs, B. ScHLEIN, H.-T. YAU: Derivation of the cubic non-linear
Schrédinger equation from quantum dynamics of many-body systems, Invent.
Math., 167(3):515-614 (2007)

L. C. Evans: Partial differential equations, volume 19 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, 2nd edition (2010)

P. GERARD: Nonlinear Schrédinger equations in inhomogeneous media: well-
posedness and illposedness of the Cauchy problem, in International Congress of
Mathematicians. Vol. III, pages 157-182, Eur. Math. Soc., Ziirich (2006)

Z. Guo, T. OH, Y. WANG: Strichartz estimates for Schrodinger equations on
irrational tori, Proc. London Math. Soc., 109(4):975-1013 (2014)

P. GERARD, V. PIERFELICE: Nonlinear Schrodinger equation on four-dimen-
sional compact manifolds, Bull. Soc. Math. France, 138(1):119-151 (2010)

L. GRAFAKOS: Classical Fourier analysis, volume 249 of Graduate Texts in Math-
ematics, Springer, New York, 2nd edition (2008)

M. G. GRILLAKIS: On nonlinear Schréodinger equations, Comm. Partial Differ-
ential Equations, 25(9-10):1827-1844 (2000)



152

BIBLIOGRAPHY

[GS94]

[GT12]

[Gui77]

(GVT9]

[GV84]

[GVS5]

[Han12]

[Hau23|

[Heb99)]

[Her13]

[HHKO09)

[HS15]

[HTT11]

[HTT14]

[HW79]

[IP12a]

[IP12b]

[IPS12]

A. GRIGIS, J. SIOSTRAND: Microlocal analysis for differential operators, volume
196 of London Mathematical Society Lecture Note Series, Cambridge University
Press, Cambridge (1994), an introduction

N. GopeT, N. TzZVETKOV: Strichartz estimates for the periodic non-elliptic
Schrodinger equation, C. R. Math. Acad. Sci. Paris, 350(21-22):955-958 (2012)

V. GUILLEMIN: Lectures on spectral theory of elliptic operators, Duke Math. J.,
44(3):485-517 (1977)

J. GINIBRE, G. VELO: On a class of nonlinear Schrédinger equations, J. Funct.
Anal., 32(1):1-71 (1979)

—— On the global Cauchy problem for some nonlinear Schrédinger equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):309-323 (1984)

—— The global Cauchy problem for the nonlinear Schrédinger equation revisited,
Ann. Inst. H. Poincaré Anal. Non Linéaire, 2(4):309-327 (1985)

Z. HaNt: Global well-posedness of the cubic nonlinear Schrodinger equation on
closed manifolds, Comm. Partial Differential Equations, 37(7):1186-1236 (2012)

F. HAUSDORFF: Eine Ausdehnung des Parsevalschen Satzes iiber Fourierreihen,
Math. Z., 16(1):163-169 (1923)

E. HEBEY: Nonlinear analysis on manifolds: Sobolev spaces and inequalities,
volume 5 of Courant Lecture Notes in Mathematics, New York University, Courant
Institute of Mathematical Sciences, New York; American Mathematical Society,
Providence, RI (1999)

S. HERR: The quintic nonlinear Schrodinger equation on three-dimensional Zoll
manifolds, Amer. J. Math., 135(5):1271-1290 (2013)

M. Hapac, S. HERR, H. KocH: Well-posedness and scattering for the KP-II

equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(3):917—
941 (2009), erratum: ibid. 27 (3) (2010) 971-972.

S. HERR, N. STRUNK: The energy-critical nonlinear Schrodinger equation on a
product of spheres, Math. Res. Lett., 22(3):741-761 (2015)

S. HERR, D. TATARU, N. TZVETKOV: Global well-posedness of the energy-critical
nonlinear Schrédinger equation with small initial data in H'(T?), Duke Math. J.,
159(2):329-349 (2011)

—— Strichartz estimates for partially periodic solutions to Schrodinger equations
in 4d and applications, J. Reine Angew. Math., 690:65-78 (2014)

G. H. HArRDY, E. M. WRIGHT: An introduction to the theory of numbers, The
Clarendon Press, Oxford University Press, New York, 5th edition (1979)

A. D. IoNEscU, B. PAUSADER: Global well-posedness of the energy-critical de-
focusing NLS on R x T3, Comm. Math. Phys., 312(3):781-831 (2012)

—— The energy-critical defocusing NLS on T3, Duke Math. J., 161(8):1581-1612
(2012)

A. D. IoNEScU, B. PAUSADER, G. STAFFILANI: On the global well-posedness of
energy-critical Schrodinger equations in curved spaces, Anal. PDE, 5(4):705-746
(2012)



BIBLIOGRAPHY 153

[Jos11]

[Kat68]

[Kat87]

[Ker01]

[KMOG6]

[Kor92]

[KSS11]

[KT98]

[KT05]

[KTV14]

[KV14]

[LL97|

[LP15]

[Lyo94]

[Lyo98]

[Mon94|

[PT14]

J. JosT: Riemannian geometry and geometric analysis, Universitext, Springer,
Heidelberg, sixth edition (2011)

Y. KATZNELSON: An introduction to harmonic analysis, John Wiley & Sons, Inc.,
New York-London-Sydney (1968)

T. KATo: On nonlinear Schrodinger equations, Ann. Inst. H. Poincaré Phys.
Théor., 46(1):113-129 (1987)

S. KERAANI: On the defect of compactness for the Strichartz estimates of the
Schrodinger equations, J. Differential Equations, 175(2):353-392 (2001)

C. E. KeniG, F. MERLE: Global well-posedness, scattering and blow-up for
the energy-critical, focusing, non-linear Schrédinger equation in the radial case,
Invent. Math., 166(3):645-675 (2006)

N. M. KOROBOV: FEzponential sums and their applications, volume 80 of Mathe-

matics and its Applications (Soviet Series), Kluwer Academic Publishers Group,
Dordrecht (1992), translated from the 1989 Russian original by Yu. N. Shakhov

K. KIRKPATRICK, B. SCHLEIN, G. STAFFILANI: Derivation of the two-dimen-

sional nonlinear Schrédinger equation from many body quantum dynamics, Amer.
J. Math., 133(1):91-130 (2011)

M. KeEeL, T. TA0O: Endpoint Strichartz estimates, Amer. J. Math., 120(5):955-
930 (1998)

H. KocH, D. TATARU: Dispersive estimates for principally normal pseudodiffer-
ential operators, Comm. Pure Appl. Math., 58(2):217-284 (2005)

H. KocH, D. TATARU, M. VISAN, editors: Dispersive Equations and Nonlin-

ear Waves: Generalized Korteweg-de Vries, Nonlinear Schrédinger, Wave and
Schrédinger Maps, volume 45 of Oberwolfach Seminars, Birkhauser, Basel (2014)

R. KirLLip, M. VISAN: Scale invariant Strichartz estimates on tori and applica-
tions, ArXiv Mathematics e-prints, arXiv:1409.3603v1 (2014), to appear in Math.
Res. Lett.

E. H. LiEB, M. Loss: Analysis, volume 14 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI (1997)

F. LiNARES, G. PONCE: Introduction to Nonlinear Dispersive Equations, Univer-
sitext, Springer, New York, 2nd edition (2015)

T. J. Lyons: Differential equations driven by rough signals. I. An extension of
an inequality of L. C. Young, Math. Res. Lett., 1(4):451-464 (1994)

—— Differential equations driven by rough signals, Rev. Mat. Iberoamericana,
14(2):215-310 (1998)

H. L. MONTGOMERY: Ten lectures on the interface between analytic number the-
ory and harmonic analysis, volume 84 of CBMS Regional Conference Series in
Mathematics, Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society, Providence, RI (1994)

N. Pavrovic¢, N. TzIrAKIS: Lecture notes I: On local and global theory for
nonlinear Schrodinger equation (2014), lecture notes handed out during the MSRI
Summer Graduate School “Dispersive Partial Differential Equations”



154

BIBLIOGRAPHY

[PTW14]

[Sch11]

[Shu01]

[Sog86|

[Sog88|

[Soh14]

SS89)]

15599

9S03]

[STS7]

[Ste93]

[Str77]

[Str83]

[Str14]

[Str15]

[SWT71]

B. PAUSADER, N. TzZVETKOV, X. WANG: Global regularity for the energy-critical
NLS on S3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31(2):315-338 (2014)

I. ScHUR: Uber Gruppen linearer Substitutionen mit Koeffizienten aus einem
algebraischen Zahlkérper, Math. Ann., 71(3):355-367 (1911)

M. A. SHUBIN: Pseudodifferential operators and spectral theory, Springer-Verlag,
Berlin, 2nd edition (2001), translated from the 1978 Russian original by Stig I.
Andersson

C. D. SOGGE: Oscillatory integrals and spherical harmonics, Duke Math. J.,
53(1):43-65 (1986)

—— Concerning the LP norm of spectral clusters for second-order elliptic opera-
tors on compact manifolds, J. Funct. Anal., 77(1):123-138 (1988)

V. SOHINGER: A rigorous derivation of the defocusing cubic nonlinear Schrodinger
equation on T? from the dynamics of many-body quantum systems, ArXiv Math-
ematics e-prints, arXiv:1405.3003v1 (2014), to appear in Ann. Inst. H. Poincaré
Anal. Non Linéaire

A. SEEGER, C. D. SOGGE: On the boundedness of functions of (pseudo-) differ-
ential operators on compact manifolds, Duke Math. J., 59(3):709-736 (1989)

C. SuLeEMm, P.-L. SuLEM: The nonlinear Schridinger equation, volume 139 of
Applied Mathematical Sciences, Springer-Verlag, New York (1999), self-focusing
and wave collapse

E. M. STEIN, R. SHAKARCHI: Fourier analysis, volume 1 of Princeton Lectures
in Analysis, Princeton University Press, Princeton, NJ (2003), an introduction

H.-J. SCHMEISSER, H. TRIEBEL: Topics in Fourier analysis and function spaces,
A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester (1987)

E. M. STEIN: Harmonic analysis: real-variable methods, orthogonality, and oscil-
latory integrals, volume 43 of Princeton Mathematical Series, Princeton University
Press, Princeton, NJ (1993), with the assistance of Timothy S. Murphy, Mono-
graphs in Harmonic Analysis, 111

R. S. STRICHARTZ: Restrictions of Fourier transforms to quadratic surfaces and
decay of solutions of wave equations, Duke Math. J., 44(3):705-714 (1977)

—— Analysis of the Laplacian on the complete Riemannian manifold, J. Funct.
Anal., 52(1):48-79 (1983)

N. STRUNK: Strichartz estimates for Schrédinger equations on irrational tori in
two and three dimensions, J. Evol. Equ., 14(4):829-839 (2014)

N. STRUNK: Global well-posedness of the energy-critical defocusing NLS on rect-
angular tori in three dimensions, Differential Integral Equations, 28(11-12):1069—
1084 (2015)

E. M. STEIN, G. WEISS: Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J. (1971), princeton Mathematical Se-

ries, No. 32



BIBLIOGRAPHY 155

[Tao06]

[Tao07]

[Tay74]

[Tay00]

[Tay11]

[Tho08]

[Tri92]

[Vau97]

[Wan13a|

[Wan13b|

[Wie24]

[Xu07]

[Yaj87]

[Youl3]

[You36]

[Zel08]

[ZygT4]

T. TAao: Nonlinear dispersive equations, volume 106 of CBMS Regional Confer-
ence Series in Mathematics, Published for the Conference Board of the Mathe-
matical Sciences, Washington, DC; by the American Mathematical Society, Prov-
idence, RI (2006), local and global analysis

—— Scattering for the quartic generalised Korteweg-de Vries equation, J. Differ-
ential Equations, 232(2):623-651 (2007)

M. E. TAYLOR: Pseudo differential operators, Lecture Notes in Mathematics, Vol.
416, Springer-Verlag, Berlin-New York (1974)

—— Tools for PDE, volume 81 of Mathematical Surveys and Monographs, Amer-
ican Mathematical Society, Providence, RI (2000), pseudodifferential operators,
paradifferential operators, and layer potentials

—— Partial differential equations I1. Qualitative studies of linear equations, vol-
ume 116 of Applied Mathematical Sciences, Springer, New York, 2nd edition (2011)

L. TuoMANN: Instabilities for supercritical Schrodinger equations in analytic
manifolds, J. Differential Equations, 245(1):249-280 (2008)

H. TRIEBEL: Theory of function spaces. II, volume 84 of Monographs in Mathe-
matics, Birkhduser Verlag, Basel (1992)

R. C. VAUGHAN: The Hardy—Littlewood method, volume 125 of Cambridge Tracts
in Mathematics, Cambridge University Press, Cambridge, 2nd edition (1997)

Y. WANG: Periodic cubic hyperbolic Schrédinger equation on T?, J. Funct. Anal.,
265(3):424-434 (2013)

—— Periodic nonlinear Schréodinger equation in critical H*(T™) spaces, SIAM J.
Math. Anal., 45(3):1691-1703 (2013)

N. WIENER: The quadratic variation of a function and its Fourier coefficients.,
Journ. Math. Phys., 3(2):72-94 (1924)

X. Xu: New proof of the Héormander multiplier theorem on compact manifolds
without boundary, Proc. Amer. Math. Soc., 135(5):1585-1595 (2007)

K. YaJimA: Existence of solutions for Schrodinger evolution equations, Comm.
Math. Phys., 110(3):415-426 (1987)

W. H. YOUNG: On the Determination of the Summability of a Function by Means
of its Fourier Constants, Proc. London Math. Soc., s2-12(1):71-88 (1913)

L. C. YOUNG: An inequality of the Holder type, connected with Stieltjes inte-
gration, Acta Math., 67(1):251-282 (1936)

S. ZELDITCH: Local and global analysis of eigenfunctions on Riemannian man-
ifolds, in Handbook of geometric analysis. No. 1, volume 7 of Adv. Lect. Math.
(ALM), pages 545-658, Int. Press, Somerville, MA (2008)

A. ZvyGMUND: On Fourier coefficients and transforms of functions of two variables,
Studia Math., 50:189-201 (1974)



	Titlepage
	Contents
	Introduction
	1 Basics
	1.1 Notation
	1.2 Function spaces and the Fourier transform
	1.2.1 Lp-spaces and Sobolev spaces
	1.2.2 The Schwartz class and the Fourier transform
	1.2.3 The spaces Up and Vp

	1.3 Fourier series and exponential sums
	1.3.1 Fourier series
	1.3.2 Hausdorff–Young inequalities
	1.3.3 Lp-estimates of exponential sums

	1.4 Riemannian manifolds
	1.5 Dispersion
	1.5.1 Dispersive equations
	1.5.2 The Schrödinger equation


	2 Local and small data global well-posedness
	2.1 Preliminary remarks
	2.1.1 Relevant results on the Euclidean space
	2.1.2 Selected results on compact manifolds

	2.2 A conditional local and small data global well-posedness result
	2.2.1 Sufficiency of the condition
	2.2.2 On the necessity of the condition

	2.3 Rectangular tori in three dimensions
	2.3.1 Selected results
	2.3.2 Set-up
	2.3.3 Linear Strichartz estimates
	2.3.4 Almost orthogonality
	2.3.5 The trilinear Strichartz estimate

	2.4 Rectangular tori in two dimensions
	2.5 Product of spheres
	2.5.1 Selected results
	2.5.2 Set-up
	2.5.3 A trilinear estimate for spherical harmonics
	2.5.4 Two exponential sum estimates
	2.5.5 Almost orthogonality
	2.5.6 The trilinear Strichartz estimate

	2.6 Further results on other manifolds and remarks

	3 Global well-posedness for large data
	3.1 Set-up and main result
	3.2 Basic definitions and statements
	3.3 Local well-posedness and stability theory
	3.3.1 Estimates on the Duhamel term
	3.3.2 Local well-posedness
	3.3.3 Small data global well-posedness
	3.3.4 Stability

	3.4 Euclidean profiles
	3.4.1 Global well-posedness on the Euclidean space
	3.4.2 Connection between solutions on tori and Euclidean solutions

	3.5 Profile decomposition
	3.5.1 Definition and properties
	3.5.2 Extracting profiles from a sequence

	3.6 Proof of the main theorem
	3.6.1 The main argument
	3.6.2 Proof of Lemma 3.31

	3.7 Further remarks

	Summary
	Bibliography

