
Criti
al Well-posedness Results for

Nonlinear S
hrödinger Equations on

Compa
t Manifolds

Von der Fakultät für Mathematik der Universität Bielefeld angenommene

Dissertation

zur Erlangung des akademis
hen Grades

Doktor der Mathematik (Dr. math.)

eingerei
ht von

Dipl.-Math. Nils Christoph Strunk

am 13. Juli 2015



Die Annahme der Dissertation wurde empfohlen von:

Prof. Dr. Ni
olas Burq Université Paris-Sud

Prof. Dr. Alexander Grigor'yan Universität Bielefeld

Prof. Dr. Sebastian Herr Universität Bielefeld

Datum der mündli
hen Prüfung: 23. Oktober 2015



Danksagung

Mein gröÿter Dank ri
htet si
h an Prof. Dr. Sebastian Herr. Seine geduldige, vertrauensvolle

und intensive Betreuung half mir bei der Erstellung dieser Arbeit ungemein. Darüber hinaus

s
hätze i
h seinen freundli
hen und verständnisvollen Umgang sehr.

Ebenso ri
htet si
h mein Dank an meinen Bürokollegen Dr. A
henef Tesfahun Temesgen. Die

gerne geführten wissens
haftli
hen Diskussionen führten zu eigenen neuen Erkenntnissen.

Auÿerdem danke i
h Prof. Dr. Benoît Pausader und Prof. Dr. Alexandru Iones
u für die

Einladung zu einem dreiwö
higen Fors
hungsaufenthalt an die Prin
eton University und für

die überaus freundli
he Betreuung während dieser Zeit. Die geführten Gesprä
he über die

globale Wohlgestelltheit der energiekritis
hen ni
htlinearen S
hrödingerglei
hung für groÿe

Daten waren für mi
h sehr aufs
hlussrei
h.

Ferner bedanke i
h mi
h bei meinen Kollegen Dr. Matthieu Felsinger, Dr. Mar
us Rang,

Tristan Stor
h und Paul Voigt, die in Diskussionen über allgemeine mathematis
he Fragestel-

lungen immer hilfsbereit waren.

Ni
ht zuletzt gilt mein besonderer Dank meinen Eltern, Hans-Martin und Ute Strunk, die

es mir ermögli
ht haben, meine volle Aufmerksamkeit auf das Studium zu ri
hten. Einen

liebevollen Dank mö
hte i
h meiner Lebensgefährtin Simone Pulverma
her für ihr Verständnis

und ihre bedingungslose Unterstützung in den letzten Jahren ausspre
hen.





Contents

Introdu
tion VII

1 Basi
s 1

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fun
tion spa
es and the Fourier transform . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Lp-spa
es and Sobolev spa
es . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 The S
hwartz 
lass and the Fourier transform . . . . . . . . . . . . . . 5

1.2.3 The spa
es Up and V p
. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Fourier series and exponential sums . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Hausdor��Young inequalities . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Lp-estimates of exponential sums . . . . . . . . . . . . . . . . . . . . . 19

1.4 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Dispersive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.2 The S
hrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Lo
al and small data global well-posedness 41

2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Relevant results on the Eu
lidean spa
e . . . . . . . . . . . . . . . . . 41

2.1.2 Sele
ted results on 
ompa
t manifolds . . . . . . . . . . . . . . . . . . 42

2.2 A 
onditional lo
al and small data global well-posedness result . . . . . . . . 43

2.2.1 Su�
ien
y of the 
ondition . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 On the ne
essity of the 
ondition . . . . . . . . . . . . . . . . . . . . . 58

2.3 Re
tangular tori in three dimensions . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Sele
ted results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.3 Linear Stri
hartz estimates . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.4 Almost orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.5 The trilinear Stri
hartz estimate . . . . . . . . . . . . . . . . . . . . . 66

2.4 Re
tangular tori in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 Produ
t of spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.1 Sele
ted results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.3 A trilinear estimate for spheri
al harmoni
s . . . . . . . . . . . . . . . 71

2.5.4 Two exponential sum estimates . . . . . . . . . . . . . . . . . . . . . . 72

2.5.5 Almost orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.6 The trilinear Stri
hartz estimate . . . . . . . . . . . . . . . . . . . . . 81

2.6 Further results on other manifolds and remarks . . . . . . . . . . . . . . . . . 84

3 Global well-posedness for large data 87

3.1 Set-up and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Basi
 de�nitions and statements . . . . . . . . . . . . . . . . . . . . . . . . . . 89



VI Contents

3.3 Lo
al well-posedness and stability theory . . . . . . . . . . . . . . . . . . . . . 93

3.3.1 Estimates on the Duhamel term . . . . . . . . . . . . . . . . . . . . . . 94

3.3.2 Lo
al well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.3 Small data global well-posedness . . . . . . . . . . . . . . . . . . . . . 101

3.3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Eu
lidean pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4.1 Global well-posedness on the Eu
lidean spa
e . . . . . . . . . . . . . . 104

3.4.2 Conne
tion between solutions on tori and Eu
lidean solutions . . . . . 106

3.5 Pro�le de
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5.1 De�nition and properties . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.5.2 Extra
ting pro�les from a sequen
e . . . . . . . . . . . . . . . . . . . . 120

3.6 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.6.1 The main argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.6.2 Proof of Lemma 3.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.7 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Summary 147

Bibliography 149



Introdu
tion

Physi
al relevan
e

Typi
ally, the situation in physi
s is quite 
omplex and one tries to approximate a physi
al

behavior by partial di�erential equations. For instan
e, 
ertain phenomena in ele
tromagnet-

i
s, opti
s, me
hani
s, general relativity, and �uid me
hani
s 
an be approximately des
ribed

by nonlinear waves. There is a huge number of nonlinear wave equations. In this thesis, we


onsider the nonlinear S
hrödinger equation (NLS)

i∂tu+∆u = F (u).

The linear S
hrödinger equation is one of the fundamental equations in quantum me
hani
s.

It provides a des
ription of a parti
le in a non-relativisti
 setting. The nonlinear S
hrödinger

equation is a prototypi
al dispersive nonlinear partial di�erential equation (see Se
tion 1.5.1)

and has a mu
h more 
ompli
ated stru
ture as well as many appli
ations in physi
s. Some

relevant �elds of appli
ation are nonlinear opti
s, propagation of the ele
tri
 �eld in opti
al

�bers, self-fo
using and 
ollapse of Langmuir waves in plasma physi
s and the behavior of deep

water waves in the o
ean. Moreover, various phenomena arising in Heisenberg ferromagnets

and magnons, self-
hanneling of a high-power ultra-short laser in matter, 
ondensed matter

theory, dissipative quantum me
hani
s, and ele
tromagneti
 �elds may be des
ribed by the

NLS. [APT04, BOR15, SS99℄

The nonlinear S
hrödinger equation may also be derived from quantum dynami
s of many-

body systems, see [ESY07℄. The fundamental prin
iple of quantum me
hani
s states that

a quantum system of N parti
les is des
ribed by a wave fun
tion of N variables satisfying

a S
hrödinger equation. In realisti
 systems, N is so large that a dire
t solution of the

S
hrödinger equation for intera
ting systems is 
learly an impossible task. Thus, many-

body systems are usually approximated by simpler dynami
s where only the time evolution

of a few 
umulative degrees of freedom is monitored. In the simplest 
ase only the one-

parti
le marginal densities are 
onsidered. This means that the many-body pair intera
tion is

repla
ed by an e�e
tive nonlinear mean-�eld potential and higher order quantum 
orrelations

are negle
ted. The 
ubi
 nonlinear S
hrödinger equation then appears in the 
ontext of Bose�

Einstein 
ondensation with short range intera
tions in suitable s
aling limits. The Bose�

Einstein 
ondensation is a state of matter 
onsisting of dilute bosoni
 parti
les whi
h are


ooled to a temperature 
lose to absolute zero. At this temperature, these parti
les tend to

o

upy the lowest quantum state, whi
h 
an be expressed mathemati
ally as the ground state

of an energy fun
tional related to the NLS. This phenomenon was proposed by Bose [Bos24℄

and Einstein [Ein24, Ein25℄ in 1924�1925. Not so long ago, two groups, one led by Cornell�

Wiemann [AEM

+
95℄ and the other by Ketterle [DMA

+
95℄, were awarded the Physi
s Nobel

Prize in 2001 for (independently) verifying the Bose�Einstein 
ondensation by experiments.

Re
ently, the nonlinear S
hrödinger equation on the tori T
2
and T

3
have been derived from

many-body quantum systems as well. [ESY07, KSS11, Soh14℄



VIII Introdu
tion

The nonlinear S
hrödinger equation on the Eu
lidean spa
e

The nonlinear S
hrödinger equation has been studied intensively within the last de
ades. We

refer to [SS99, Caz03, Tao06, LP15℄ for some ni
e reviews. In this thesis, we mainly 
onsider

the NLS with a quinti
 nonlinearity, that is

i∂tu+∆u = ±|u|4u. (0.1)

The equation is 
alled defo
using if the right-hand side has a plus and fo
using if the right-

hand side has a minus. The quinti
 NLS posed on R
3
with initial data in H1(R3) is 
alled

energy-
riti
al sin
e if u is a solution to (0.1), then the s
aled solution (t, x) 7→ λ
1
2u(λ2t, λx)

solves (0.1) and leaves the homogeneous Sobolev norm Ḣ1(R3) and the energy

E
(
u(t)

)
=

1

2

∫

R3

|∇u(t, x)|2 dx± 1

6

∫

R3

|u(t, x)|6 dx

invariant. For sub-quinti
 nonlinearities, the 
orresponding Cau
hy problem on R
3
is 
alled

sub-
riti
al. Given a nonlinearity with super-quinti
 powers, the 
orresponding equation on

R
3
is 
alled super-
riti
al. As explained in Se
tion 1.5.2, studying the energy-
riti
al equation

is more 
hallenging than studying the sub-
riti
al 
ase and hen
e, of a parti
ular interest.

We say that a Cau
hy problem is lo
ally well-posed in Hs
if for any 
hoi
e of initial data

φ ∈ Hs
, there exists a positive time T that may depend on the initial data su
h that a

solution to the initial value problem exists on the time interval [0, T ), is unique, and the

solution map depends Lips
hitz 
ontinuously on the initial data φ. In sub-
riti
al results the

time of existen
e usually depends only on the norm of the initial data. If T 
an be 
hosen

arbitrarily large, we 
all the Cau
hy problem globally well-posed. Lo
al and global well-

posedness of the nonlinear S
hrödinger equation posed on R
n
have been studied extensively.

Various sub-
riti
al and 
riti
al results have been obtained, 
f. [SS99, Se
tion 3.2℄ and [Caz03,

Chapter 4℄.

Lo
al and small data global well-posedness of both the fo
using and the defo
using energy-


riti
al NLS on R
3
have been proved by Cazenave�Weissler [CW89℄ in 1989. It took many years

until Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄ �nally showed that the defo
using

NLS is also globally well-posed for arbitrarily large initial data in H1(R3). On the other hand,

Christ�Colliander�Tao [CCT03, Theorem 1℄ showed that the quinti
 fo
using and defo
using

NLS on R
3
fail to be well-posed in Hs(R3) for s < 1. In addition, they demonstrated that

the fo
using and defo
using energy-super-
riti
al NLS on R
3
are ill-posed in H1(R3).

One of the fundamental tools in the aforementioned well-posedness results is the dispersive

estimate,

‖u(t)‖L∞(Rn) ≤ C|t|−n
2 ‖u(0)‖L1(Rn),

where u is a solution to the free S
hrödinger equation i∂tu + ∆u = 0. This shows that if

the initial datum u(0) has suitable integrability in spa
e, then the solution has a de
ay in

time. In many situations, the initial data do not have good integrability properties as one

often assumes the initial data to lie in a Sobolev spa
e Hs(Rn). However, from the dispersive

estimate one 
an derive a useful set of estimates, known as Stri
hartz estimates, whi
h 
an

handle this type of initial data, see Se
tion 1.5.2 for more details.



IX

The nonlinear S
hrödinger equation on 
ompa
t manifolds

In the following, we 
onsider the NLS on boundaryless, 
ompa
t, smooth Riemannian mani-

folds. The behavior of solutions on su
h domains 
hanges 
ompletely. For instan
e, the

dispersive estimate fails to hold true. This be
omes obvious by 
onsidering the �at standard

torus. Sin
e solutions on this manifold are periodi
 in time, dispersion in the 
lassi
al sense


an not be present here.

Moreover, the mathemati
al tools at our disposal 
hange. An important tool one misses

when moving to the setting of 
ompa
t manifolds (ex
ept of tori) is the Fourier transform.

However, the spe
tral resolution of the Lapla
e�Beltrami operator ∆g 
ompensates this loss

near-
omplete. Frequen
y lo
alization proje
tors that have been used R
n
(and 
an be used on

tori) 
an be repla
ed by spe
tral lo
alization proje
tors. They are given as spe
tral multipliers

instead of Fourier multipliers.

Another di�eren
e is the following: Solutions to the free S
hrödinger equation on R
n
have the

stru
ture of os
illatory integrals

u(t, x) =

∫

Rn

ei(x·ξ−t|ξ|
2)

xu0(ξ) dξ, (0.2)

where u0 denotes the initial datum. The behavior of os
illatory integrals has been studied

in great detail, see e.g. [Ste93, Chapters VIII�IX℄. On 
ompa
t manifolds, free solutions are

given as exponential sums su
h as

u(t, x) =
∑

k∈N0

e−itλk(hku0)(x),

where λk, k ∈ N0, denote the eigenvalues of the Lapla
e�Beltrami operator and hk the pro-

je
tion on the 
orresponding eigenspa
e, see Se
tion 1.4. The 
onne
tion to (0.2) be
omes

parti
ularly apparent on the standard torus, in whi
h 
ase free solutions are given by

u(t, x) =
∑

ξ∈Zn

ei(x·ξ−t|ξ|
2)

xu0(ξ).

Some ideas that have been used to obtain estimates for os
illatory integrals, su
h as integra-

tion by parts, do not work for exponential sums and hen
e, we need a di�erent approa
h.

In analyti
 number theory there is a 
lassi
al theory about exponential sums, whi
h may be

found in [Vau97, Kor92℄. The main 
ontributions to relevant results regarding exponential

sums appearing in this 
ontext, however, are due to Bourgain [Bou89, Bou93a℄. Some of

these estimates require sophisti
ated arguments. In this thesis, we want to point out that

the presented well-posedness results rely on exponential sum estimates, whose proofs do not

require 
ompli
ated arguments. To demonstrate this, we provide detailed proofs for all expo-

nential sum estimates we shall use in Se
tion 1.3.2 and Se
tion 1.3.3. Corollary 1.39 below,

for instan
e, was often 
ited to be a spe
ial 
ase of the more general estimate given in [Bou89,

formula (4.1)℄, see also [Her13, Lemma 3.1℄. Here, we show how to get Corollary 1.39 from a

variant of the 
lassi
al Hardy�Littlewood 
ir
le method.

Apart from the te
hni
al di�
ulties des
ribed above, the essential argument used in the

Eu
lidean setting fails, 
f. [HTT11, pages 329�330℄. On R
3
, the Stri
hartz estimate [KT98,

Corollary 1.4℄

‖u‖L∞
t H1

x
+ ‖u‖

L2
tW

1,6
x

. ‖u(0)‖H1 + ‖(i∂t +∆)u‖
L2
tW

1,6/5
x

(0.3)



X Introdu
tion

plays an important role to establish lo
al and small data global well-posedness. Applied to

the quinti
 NLS (0.1), using Hölder's estimate, and the Sobolev embedding H1(R3) →֒ L6(R3)
yields

‖u‖L∞
t H1

x
+ ‖u‖L2

tW
1,6
x

. ‖u(0)‖H1 + ‖u‖L2
tW

1,6
x

‖u‖4L2
tH

1
x
.

As Cazenave�Weissler [CW90, Se
tion 4℄ showed by applying the Pi
ard iteration s
heme, this

implies lo
al and small data global well-posedness in H1(R3). This approa
h breaks down in

the 
ase of 
ompa
t manifolds sin
e inequality (0.3) fails. Indeed, on the torus it follows

from adapting the one-dimensional 
ounterexample of [Bou93a, Se
tion 2, Remark 2℄ to the

three-dimensional situation, and for S
3
it was shown in [BGT04, Se
tion 4.2℄.

More di�eren
es and details that are a bit more te
hni
al are postponed to Se
tion 1.5.2.

Related results and main results of this thesis

Let (M,g) be a three-dimensional, smooth, 
ompa
t Riemannian manifold without boundary.

One major part of the present thesis is to study large data lo
al and small data global well-

posedness of the energy-
riti
al nonlinear S
hrödinger equation, that is

{
i∂tu+∆gu = ±|u|4u in [0, T ) ×M

u(0, · ) = φ on M
(0.4)

with φ ∈ H1(M). We 
all a Cau
hy problem posed on a 
ompa
t n-manifold energy-
riti
al if

the 
orresponding problem posed on R
n
is energy-
riti
al. The terms sub-
riti
al and super-


riti
al are de�ned analogously.

This line of resear
h was initiated by Bourgain [Bou93a℄, who proved that the energy-sub-


riti
al NLS (i.e. nonlinearity with power less than 5) is globally well-posed for su�
iently

small H1
-data. In 2007, Bourgain extended his sub-
riti
al result to the 
lass of re
tangular

tori

T
3
θ := R

3/
(
2πθ

−1/2
1 Z× 2πθ

−1/2
2 Z× 2πθ

−1/2
3 Z

)
, (θ1, θ2, θ3) ∈ (0,∞)3.

The approa
h used by Bourgain relies heavily on the parti
ular stru
ture of the torus. In

a series of papers, Burq�Gérard�Tzvetkov [BGT04, BGT05a, BGT05b, BGT07℄ developed

a theory to prove sub-
riti
al global well-posedness of (0.4) on M = S
3
and M = S × S

2
ρ,

where S
2
ρ is the embedded sphere of radius ρ in R

3
.

1

One of their main, newly developed

tools is a set of multilinear spe
tral 
luster estimates, whi
h hold on any 
ompa
t manifold.

If one 
onsiders single eigenfun
tions, these estimates seem to be only relevant for �sphere like

manifolds� as they are far from being optimal for eigenfun
tions on the torus.

In 2011, Herr�Tataru�Tzvetkov [HTT11℄ were the �rst to prove a lo
al and small data global

well-posedness for the energy-
riti
al NLS on a 
ompa
t manifold, namely the �at torus T
3
.

Parts of their proof rely deeply on the given stru
ture of the spe
trum of ∆g. However, by

simple geometri
 
onsiderations, it is possible to extend this result to re
tangular tori with

rational ratios

2

. In 2013, Herr [Her13℄ was able to extend this result to Zoll manifolds, whi
h

are manifolds whose geodesi
s are simple and 
losed with a 
ommon minimal period su
h as

S
3
. Herr used in an essential way that the eigenvalues of the Lapla
e�Beltrami operator are


lustered around square numbers.

1

More generally, Burq�Gérard�Tzvetkov proved well-posedness for three-dimensional Zoll manifold and S×M ,

where M is a two-dimensional Zoll manifold.

2

In this 
ase, there exists k ∈ N su
h that the s
aled torus kT3

an be viewed as a disjoint union of parallel

translates of the original rational torus T
3
θ , see [GOW14, pages 977�978℄.



XI

In the present thesis, we shall 
onsider the energy-
riti
al NLS (0.4) on general re
tangular tori

(with possibly irrational ratios) and on produ
ts of spheres, i.e. S×S
2
ρ. In Chapter 2, we prove

lo
al and small data global well-posedness. The well-posedness result on re
tangular 3-tori has
been published by the present author in [Str14℄ and extends the results in [HTT11, GOW14℄.

Moreover, we present a proof of a multilinear Stri
hartz estimate, whi
h implies s
aling-
riti
al

lo
al well-posedness of the NLS with nonlinearity ±|u|2k+1u, k ≥ 3, on two-dimensional

re
tangular tori. This result is part of [Str14℄ and extends an earlier result of Guo�Oh�Wang

[GOW14℄ who proved the same result for k ≥ 6. In this thesis, we also give the �rst proof of

lo
al and small data global well-posedness of the energy-
riti
al NLS on S × S
2
ρ. It extends

a previous result of Herr and the author [HS15℄, in whi
h the spe
ial 
ase S × S
2
, i.e. ρ = 1,

was treated. In the joint work [HS15℄, the essential 
ontributions of Sebastian Herr were

Se
tions 1, 3, and 4; the present author's 
ontribution is essentially Se
tion 2. As in the

Eu
lidean setting, it is known that the energy-super-
riti
al fo
using and defo
using NLS

on an analyti
 manifold fail to be well-posed in H1
[Tho08℄. In the same work, it was also

proven that both the fo
using and the defo
using quinti
 NLS are ill-posed in Hs
for s < 1.

Hen
e, our study 
ompletes the analysis of lo
al well-posedness in H1
on re
tangular tori and

produ
ts of spheres in three dimensions.

The domain S× S
2
ρ is parti
ularly interesting as it 
an be 
onsidered as an intermediate 
ase

between the torus T
3
and the sphere S

3
. To see this, let us �rst 
ompare their spe
tra of the

Lapla
e�Beltrami operator σ(−∆g):

M σ(−∆g)

T
3 ℓ2 +m2 + n2, ℓ,m, n ∈ Z

S× S
2
ρ m2 + ρ−2(n2 + n), m ∈ Z, n ∈ N0

S
3 n2 + 2n, n ∈ N0

The spe
trum σ(−∆g) on the torus is�as the sum of three square numbers�badly lo
alized,

whereas the eigenvalues of the Lapla
e�Beltrami operator on the three-dimensional sphere are

essentially square numbers and hen
e, well lo
alized. The spe
trum of −∆g on S×S
2
ρ is mainly

given as the sum of two square numbers and thus, in a 
ertain sense, it is intermediate between

the two. A similar pi
ture emerges regarding the multipli
ities of the eigenvalues. On S
3
and

S×S
2
ρ, the multipli
ities behave well-tempered. On the torus, though, the multipli
ities of the

eigenvalues vary heavily and in
rease fast. These fa
ts are illustrated in Figure 0.1�Figure 0.3

below.

On the 
ontrary, the eigenfun
tions on the torus have very good algebrai
 properties sin
e

the produ
t of two eigenfun
tions equals an eigenfun
tion again. This is not the 
ase for the

eigenfun
tions on S
3
, the so 
alled spheri
al harmoni
s. Though, the produ
t of two spheri
al

harmoni
s of degree m and ℓ 
an be expanded in terms of spheri
al harmoni
s of degree less

or equal to m+ ℓ.

Another argument why T
3
and S

3
may be 
onsidered as extreme 
ases is due to the Lp-bounds

of their eigenfun
tions. While the Lp-norms of eigenfun
tions on the torus are bounded, the

Lp-norms of spheri
al harmoni
s present a bad 
on
entration.

The study of the nonlinear S
hrödinger equation on S× S
2
ρ is also interesting sin
e one has to


ombine the di�erent approa
hes used on the torus and the sphere, whi
h 
ould be a �rst step

in understanding better how more general 
lasses of manifolds 
an be treated. It seems that

one has to �nd a way to balan
e the 
on
entration of eigenfun
tions and the repartition of the
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spe
trum. However, our knowledge about the spe
trum and the eigenfun
tions of the Lapla
e�

Beltrami operator on arbitrary manifolds is poor, whi
h makes it hard to obtain results for

arbitrary manifolds. Sin
e the NLS is lo
ally well-posed in the two extreme 
ases, T
3
and S

3
,

Burq�Gérard�Tzvetkov[BGT05b, page 257℄ 
onje
tured that a similar lo
al well-posedness

result might holds true on any boundaryless, smooth, 
ompa
t Riemannian 3-manifold.
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Figure 0.1: σ(−∆g) on S
3
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Figure 0.2: σ(−∆g) on S× S
2

0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50

Figure 0.3: σ(−∆g) on T
3

In [HS15℄, Herr dis
overed that a 
ertain trilinear Stri
hartz estimate based on L2
-spa
es, see

Assumption 2.1, is su�
ient to 
on
lude energy-
riti
al lo
al well-posedness and small data

global well-posedness on any smooth, 
ompa
t Riemannian 3-manifold without boundary.

The proof of this 
onditional result given in [HS15℄ relies on earlier works and hen
e, we take

the opportunity to review the whole argument in Se
tion 2.2.

Another goal of this thesis was to �nd a 
ommon approa
h to prove lo
al and small data

global well-posedness results in this setting. The �rst big step was the 
onditional result by

Herr that redu
es the study to proving a trilinear Stri
hartz estimate. In the present work,

we verify this trilinear estimate for re
tangular tori and produ
ts of spheres. So far, we were

able to 
arve out the following general strategy:

(i) Exploit almost orthogonality in spa
e and time to restri
t the spe
trum of the high-

frequen
y term to a smaller set whose size 
an be expressed involving a negative power

of the largest frequen
y. See Se
tion 2.3.4 for re
tangular tori, Se
tion 2.5.5 for produ
t

of spheres, and part b) in the proof of [Her13, Proposition 3.6℄ for Zoll manifolds.

(ii) Prove s
ale invariant LptL
q
x-bounds on exponential sums arising from the linear evolution

formula. Of 
ourse, the aim is to 
hoose p and q as small as possible. For these bounds,

it is usually hard to make use of the additional spe
tral lo
alization introdu
ed in (i).

Hen
e, the additional restri
tion of the spe
trum of the high-frequen
y term is usually
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negle
ted. In the 
ase of tori, these exponential sums are given by the linear evolution,

see Lemma 2.10. On produ
ts of spheres and Zoll manifolds, the exponential sums are

not the respe
tive linear evolutions but they are strongly related, 
f. Lemma 2.19 and

[Her13, Lemma 3.1℄.

(iii) So far, the additional lo
alization of the spe
trum of the high-frequen
y term has not

been used. However, this is easy in the L∞
t,x-estimate sin
e it leads essentially to a latti
e

point 
ounting problem. Interpolating this with the estimates obtained in (ii) provides

LptL
q
x-bounds that take the additional restri
tion of the spe
trum in (i) into a

ount.

See Corollary 2.11 (tori) and Corollary 2.20 (produ
ts of spheres). On Zoll manifolds,

the interpolation argument is not needed sin
e the Lpt,x-bounds in [Her13, Lemma 3.1℄

already take the spe
tral restri
tion in (i) into a

ount.

(iv) Finally, one 
onsiders the trilinear estimates, applies the almost orthogonality property

in (i) and the estimates obtained in (ii) and (iii) to 
on
lude the desired inequality.

On
e a good lo
al theory is obtained, one may ask for global well-posedness of the defo
us-

ing NLS (0.4) even for arbitrarily large initial data in H1(M). Iones
u�Pausader [IP12b℄

developed a method that allows to answer this question on the standard torus

3

. Shortly af-

ter, Pausader�Tzvetkov�Wang 
arried over the idea to S
3
[PTW14℄. Re
ently, the present

author extended the global well-posedness result given in [IP12b℄ to the 
lass of re
tangular

tori [Str15℄. In this thesis, we provide a slightly modi�ed proof that requires only Stri
hartz

estimates in a smaller range instead of using Killip�Vi³an's result in [KV14, Theorem 1.1℄.

The Stri
hartz estimates we apply follow essentially from the exponential sum estimates that

are proved in Se
tion 1.3. Sin
e small data global well-posedness on S × S
2
ρ is studied here,

one might ask for large data global well-posedness on this domain. The di�
ulties arising are

brie�y dis
ussed in Se
tion 3.7.

Unlike on R
n
, global 
ontrol on 
ompa
t manifolds 
an not 
ome from dispersive de
ay. Hen
e,

one 
an only hope for a lo
al-in-time 
ontrol instead of a global-in-time 
ontrol. This lo
al-

in-time 
ontrol has to be uniform over all small time intervals and has to handle nonzero


ontributions on ea
h time interval. Presumably, solutions with large frequen
ies lead to


ompli
ated dynami
s even in short time. Due to the non-dispersive nature of the geometry,

this e�e
t 
ould be ampli�ed and lead to even stronger nonlinear intera
tions produ
ing even

larger frequen
ies, 
f. [IP12b, page 1582℄. On R
n
, this e�e
t is 
ompensated by dispersion.

The approa
h developed by Iones
u�Pausader relies strongly on the 
orresponding global well-

posedness result on R
3
[CKS

+
08℄: It is proved that 
on
entration in a 
ertain 
riti
al norm 
an

only happen around a point in spa
e-time. This must o

ur in a way whi
h 
an be 
ompared

to Eu
lidean solutions within a small time interval. However, these Eu
lidean-like solutions

are 
ontrolled by the Eu
lidean well-posedness theory.

3

Builds on their earlier arti
le [IP12a℄ and a joint work with Sta�lani [IPS12℄.





1 Basi
s

The �rst 
hapter of this thesis is devoted to introdu
e notation, fun
tion spa
es, and to 
olle
t

some basi
 propositions. Most parts of this 
hapter are a review of well-known material and


ited from various sour
es. Se
tion 1.3.2 and Se
tion 1.3.3 
ontain some exponential sum

estimates that are known and have been used before but either without a detailed proof or

as a spe
ial 
ase of more general statements, whi
h require sophisti
ated arguments to prove.

We aim to show that the exponential sum estimates used in this thesis may be obtained using

rather simple arguments.

1.1 Notation

Before we start with the a
tual 
ontent of this thesis, we �x some notation that is used

throughout this work.

The set of positive integers shall be denoted by N := {1, 2, 3, . . .}, and we de�ne the set of all

non-negative integers by N0 := N ∪ {0}.

We write A . B if there exists a harmless 
onstant C > 0 su
h that A ≤ CB. Analogously,
we denote A & B if B . A. If A . B and A & B, then we write A ≈ B. If we want to

emphasize the dependen
e of the 
onstant, then we write A .s B for A ≤ C(s)B, where the

onstant C(s) depends on s. The terms A &s B and A ≈s B are de�ned a

ordingly. We

write A≪ B if for a large 
onstant C > 1 we have CA ≤ B. Correspondingly, A≫ B means

that B ≪ A.

For a multi-index α ∈ N
n
0 we denote as usual |α| := α1 + · · · + αn, x

α := xα1
1 · · · xαn

n , and

∂α := ∂α1
x1 . . . ∂

αn
xn .

The indi
ator fun
tion of a subset A of a set X shall be denoted by 1A : X → {0, 1}.

The Eu
lidean norm on R
n
is denoted by | · | and the standard inner produ
t is written as

x · y =
n∑

j=1

xjyj, x, y ∈ R
n.

Fun
tion that are k-times 
ontinuously di�erentiable are denoted by Ck, and C∞
denotes the

set of all fun
tions that are di�erentiable for all degrees of di�erentiation. The spa
e C∞
0 is

the subspa
e of all fun
tions C∞
with 
ompa
t support.

We use the 
onvention that sums over 
apital letters denote a dyadi
 summation. For instan
e,

we write for c ≥ 1,

∑

N≥c
aN :=

∑

j∈N0: 2j≥c
a2j and

∑

N≤c
aN :=

∑

j∈N0: 2j≤c
a2j .
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1.2 Fun
tion spa
es and the Fourier transform

This se
tion is devoted to brie�y review fun
tion spa
es and some of their basi
 properties that

play a 
ru
ial role in the present thesis. Moreover, the 
ru
ial Fourier transform is introdu
ed.

We start with introdu
ing the well-known Lp-spa
es in Se
tion 1.2.1. Beyond de�ning those

spa
es, we are going to 
ite some results whi
h will be used in the sequel. In Se
tion 1.2.2, the

Fourier transform of S
hwartz fun
tions and tempered distributions are de�ned. This allows

us to de�ne Sobolev spa
es of fra
tional order. Lesser-known are the Up- and V p
-spa
es that

have be
ome in
reasingly popular in the theory of dispersive partial di�erential equations.

These spa
es may be viewed as a powerful repla
ement for Bourgain's Fourier restri
tion

spa
es Xs,b
. The Up- and V p

-spa
es are introdu
ed in Se
tion 1.2.3.

1.2.1 Lp
-spa
es and Sobolev spa
es

This subse
tion essentially follows [Gra08, Chapter 1℄ and [LL97℄.

Let Ω be a measure spa
e with a positive measure µ. We begin by de�ning the spa
es of all

µ-measurable fun
tions on Ω whose modulus to the pth power is µ-summable.

De�nition 1.1 (Lp-spa
es). For 1 ≤ p ≤ ∞ we de�ne the spa
e Lp(Ω, µ) to be the following


lass of measurable fun
tions:

Lp(Ω, µ) :=
{
f : Ω → C : f is µ-measurable and ‖f‖Lp(Ω,µ) <∞

}
,

where

‖f‖Lp(Ω,µ) :=

(∫

Ω
|f(x)|p dµ(x)

) 1
p

, if 1 ≤ p <∞,

‖f‖L∞(Ω,µ) := ess sup
x∈Ω

|f(x)| = inf
{
λ ≥ 0 : µ

(
{x ∈ Ω : |f(x)| > λ}

)
= 0
}
.

Remark.

(i) To simplify notation, we write Lp(Ω) or Lp instead of Lp(Ω, µ) if 
onfusions are impos-

sible. If µ is the Lebesgue measure, then we simply denote dµ(x) by dx.

(ii) ‖ · ‖Lp(Ω,µ) does not distinguish all di�erent measurable fun
tions. For instan
e, from

‖f−g‖Lp(Ω,µ) = 0 we 
an only 
on
lude that f(x) = g(x) µ-almost everywhere. For this

reason, we identify two fun
tions that di�er only on a µ-null set. To make that pre
ise,

we 
onsider equivalen
e 
lasses [f ] of measurable fun
tions de�ned via the equivalen
e

relation f ∼ g if f = g µ-a.e. on Ω. If Lp(Ω, µ) is de�ned so that its elements are not

fun
tions but the equivalen
e 
lasses [f ], then ‖ · ‖Lp(Ω,µ) de�nes a norm.

(iii) The spa
e L2(Ω, µ) is a Hilbert spa
e with inner produ
t

〈f, g〉L2(Ω,µ) :=

∫

Ω
f(x)g(x) dµ(x).

(iv) In this thesis, we use Lp-spa
es with mixed norms. We refer to [BP61℄ for more details.

♦
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There is another useful des
ription of the Lp-norm via the distribution fun
tion

df (λ) := µ
(
{x ∈ Ω : |f(x)| > λ}

)
.

This quantity provides information about the size of f but not about the behavior of f near a

given point. Translations of a fun
tion on R
n
, for instan
e, does not 
hange df . However, the

provided information is su�
ient to write the Lp-norm in terms of the distribution fun
tion.

Lemma 1.2 ([Gra08, Proposition 1.1.4℄). For f ∈ Lp(Ω, µ) and 1 ≤ p <∞ we have

‖f‖pLp(Ω,µ) = p

∫ ∞

0
λp−1df (λ) dλ.

We re
all some well-known statements about Lp-spa
es. The �rst inequality is named after

the German mathemati
ian Otto Hölder (1859�1937). The formulation of the lemma is taken

from [LL97, Theorem 2.3℄.

Lemma 1.3 (Hölder's inequality). Let 1 ≤ p ≤ ∞ and p′ its 
onjugate Hölder exponent, i.e.

1 = 1
p +

1
p′ with the 
onvention that

1
∞ := 0. Moreover, let f ∈ Lp(Ω, µ) and g ∈ Lp

′
(Ω, µ).

Then the pointwise produ
t, given by (fg)(x) = f(x)g(x), is in L1(Ω, µ) and
∣∣∣∣
∫

Ω
fg dµ

∣∣∣∣ ≤ ‖f‖Lp(Ω,µ)‖g‖Lp′ (Ω,µ).

Remark. The spe
ial 
ase p = p′ = 2 
oin
ides with the Cau
hy�S
hwarz inequality

∣∣∣∣
∫

Ω
fg dµ

∣∣∣∣
2

≤
∫

Ω
|f |2 dµ

∫

Ω
|g|2 dµ.

♦

The next inequality got its name from Hermann Minkowski (1864�1909), a German mathe-

mati
ian and physi
ist. A spe
ial 
ase of Minkowski's inequality is the triangle inequality for

the Lp(Ω, µ)-norm, in this 
ase ν is the 
ounting measure and q = 1. A proof for q = 1 may

be found in [LL97, Theorem 2.4℄. A simple modi�
ation of this proof yields the result for

q > 1.

Lemma 1.4 (Minkowski's inequality). Suppose that Ω and Γ are any two spa
es with σ-
�nite measures µ and ν, respe
tively. Let f : Ω × Γ → C be a µ× ν-measurable fun
tion and

1 ≤ q ≤ p ≤ ∞. Then,

(∫

Ω

(∫

Γ
|f(x, y)|q dν(y)

) p
q

dµ(x)

) 1
p

≤
(∫

Γ

(∫

Ω
|f(x, y)|p dµ(x)

) q
p

dµ(x)

) 1
q

with the obvious modi�
ations for q < p = ∞ and q = p = ∞.

Now, we 
ome to the identi�
ation of Lp(Ω, µ)∗, the dual of Lp(Ω, µ), for 1 ≤ p <∞, see e.g.

[LL97, Theorem 2.14℄.

Lemma 1.5 (The dual of Lp(Ω, µ)). When 1 ≤ p < ∞ the dual of Lp(Ω, µ) is Lp
′
(Ω, µ),

where p′ is 
onjugate Hölder exponent, in the sense that every L ∈ Lp(Ω, µ)∗ has the form

L(g) =

∫

Ω
v(x)g(x)dµ(x)

for some unique v ∈ Lp
′
(Ω, µ). In all 
ases, even p = ∞, L given as above is in Lp(Ω, µ)∗

and its norm

‖L‖ := sup{|L(f)| : ‖f‖Lp(Ω,µ) ≤ 1} = ‖v‖Lp′ (Ω,µ).
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A spe
ial kind of produ
t of two fun
tions on R
n
is the 
onvolution. To keep the de�nition as

general as possible, we do not require any restri
tions on those two fun
tions and a

ept that

the right-hand side in the following de�nition might be unde�ned.

De�nition 1.6 (Convolution). For f, g : Rn → C we de�ne the 
onvolution of f and g to be

the fun
tion f ∗ g : Rn → C given by

f ∗ g(x) :=
∫

Rn

f(x− y)g(y) dy.

Remark.

(i) By a 
hange of variables, one immediately sees 
ommutativity, i.e. f ∗ g = g ∗ f .

(ii) One has to make sure that the integral on the right-hand side is well-de�ned. Hölder's in-

equality, for instan
e, implies that this is the 
ase whenever f ∈ Lp(Rn) and g ∈ Lp
′
(Rn).

Young's inequality (see Lemma 1.7 below), named after the English mathemati
ian

William Henry Young (1863�1942), shows that if f ∈ Lp(Rn) and g ∈ Lq(Rn) with

1 ≤ 1
p +

1
q , then the integral is �nite almost everywhere and de�nes a fun
tion that is in

Lr(Rn) with 1 + 1
r = 1

p +
1
q . ♦

Lemma 1.7 (Young's inequality for 
onvolutions). Let 1 ≤ p, q, r ≤ ∞ with 1 + 1
r = 1

p +
1
q

as well as f ∈ Lp(Rn) and g ∈ Lq(Rn). Then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖Lr(Rn) ≤ Cp,q,r,n‖f‖Lp(Rn)‖g‖Lq(Rn).

Remark.

(i) Minkowski's inequality is a spe
ial 
ase sin
e it implies for r ≥ 1,

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lr(Rn)‖g‖L1(Rn).

(ii) There is a more general version of Young's inequality whi
h may be found in [LL97,

Theorem 4.2℄.

(iii) Convolutions may be de�ned on lo
ally 
ompa
t groups and Young's inequality also

holds in this setting, see [Gra08, Se
tion 1.2.2℄. In Lemma 1.34 below, we state it in the


ase where the lo
ally 
ompa
t group is given by T
n
. ♦

Convolutions may be applied to show that smooth fun
tions with 
ompa
t support are dense

in Lp, see e.g. [AF03, Corollary 2.30℄ and [LL97, Lemma 2.19℄.

Lemma 1.8 (Density). Let Ω ⊂ R
n
be an open set and 1 ≤ p < ∞, then C∞

0 (Ω) is dense in

Lp(Ω).

The next result is known as S
hur's lemma and provides su�
ient 
onditions for linear oper-

ators to be bounded on Lp. We 
ite S
hur's lemma from [Gra08, Appendix I.1℄.

Lemma 1.9 (S
hur's lemma). Let (X,µ) and (Y, ν) be two σ-�nite measure spa
es and

K : (X,µ)× (Y, ν) → C. Furthermore, let T be a linear operator given by

T (f)(x) =

∫

Y
K(x, y)f(y) dν(y),
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where f is bounded and 
ompa
tly supported. If K satis�es

sup
x∈X

∫

Y
|K(x, y)| dν(y) = A <∞,

sup
y∈Y

∫

X
|K(x, y)| dµ(x) = B <∞,

then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm A
1− 1

pB
1
p

for 1 ≤ p ≤ ∞.

Remark.

(i) The result is named after the German mathemati
ian Issai S
hur (1875�1941). In 1911,

S
hur [S
h11℄ proved a matrix version of the lemma for p = 2. More about the history

of S
hur's lemma 
an be found in [Gra08, page 461℄.

(ii) For positive operators, i.e.K is a non-negative measurable fun
tion onX×Y , the version
of S
hur's lemma in [Gra08, Appendix I.2℄ provides ne
essary and su�
ient 
onditions

for the Lp boundedness. ♦

We end this subse
tion with a useful interpolation statement between Lp-spa
es, see e.g.

[Gra08, Theorem 1.3.4℄. Let Lp0(X,µ) + Lp1(X,µ) be the spa
e of all fun
tions f : Rn → C

su
h that there exists f1 ∈ Lp0(X,µ) and f2 ∈ Lp1(X,µ) with f = f1 + f2. Note that

Lp(X,µ) ⊆ Lp0(X,µ) + Lp1(X,µ) for p0 ≤ p ≤ p1.

Proposition 1.10 (Riesz�Thorin interpolation). Let (X,µ) and (Y, ν) be two measure spa
es.

Let T be a linear operator de�ned on Lp0(X,µ) + Lp1(X,µ) and taking values in the set of

ν-measurable fun
tions on Y . Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and assume that

‖T (f)‖Lq0 (Y,ν) ≤M0‖f‖Lp0 (X,µ) for all f ∈ Lp0(X,µ),

‖T (f)‖Lq1 (Y,ν) ≤M1‖f‖Lp1 (X,µ) for all f ∈ Lp1(X,µ).

Then for all 0 < ϑ < 1 and f ∈ Lp(X,µ) we have

‖T (f)‖Lq(Y,ν) ≤M1−ϑ
0 Mϑ

1 ‖f‖Lp(X,µ),

where

1

q
=

1− ϑ

q0
+
ϑ

q1
and

1

p
=

1− ϑ

p0
+
ϑ

p1
.

1.2.2 The S
hwartz 
lass and the Fourier transform

This subse
tion is devoted to introdu
e one of the most important tools in harmoni
 analysis:

the Fourier transform. From the de�nition of the Fourier transform (see De�nition 1.12 below)

it is obvious that it may be de�ned for fun
tions f ∈ L1(Rn). However, we are going to de�ne
the Fourier transform on a smaller 
lass of fun
tions, the spa
e of S
hwartz fun
tions that is

denoted by S(Rn). The reason is that the spa
e turns out to be a natural environment, for

instan
e, sin
e the Fourier transform de�nes a homeomorphism from S(Rn) onto itself and

the Fourier inversion formula holds in it. On the 
ontrary, if the Fourier transform would be

de�ned as an operator on L1(Rn), then the Fourier inversion formula requires the additional

assumption that the Fourier transform is in L1(Rn).

The whole subse
tion is pretty 
lose to the ni
e introdu
tion given in [Gra08, Se
tion 2.2℄.
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The S
hwartz spa
e

S
hwartz fun
tions are�roughly speaking�smooth fun
tions for whi
h the fun
tion and all

of its derivatives de
ay faster than the re
ipro
al of any polynomial at in�nity. The spa
e is

named after the Fren
h mathemati
ian and Fields medalist Laurent S
hwartz (1915�2002).

De�nition 1.11 (S
hwartz fun
tions).

(i) A 
omplex-valued fun
tion f ∈ C∞(Rn) is 
alled S
hwartz fun
tion if for every pair of

multi-indi
es α and β there exists a positive 
onstant Cα,β su
h that

ρα,β(f) := sup
x∈Rn

|xα∂βf(x)| ≤ Cα,β <∞.

The quantities ρα,β(f) are 
alled the S
hwartz seminorms of f . The set of all S
hwartz
fun
tions is denoted by S(Rn).

(ii) A sequen
e (fk)k∈N0 in S(Rn) is said to be 
onvergent to f ∈ S(Rn) if for all multi-indi
es
α and β it holds that

ρα,β(fk − f) = sup
x∈Rn

∣∣xα
(
∂β(fk − f)

)
(x)
∣∣→ 0

as k → ∞.

Remark.

(i) There is an alternative 
hara
terization of S
hwartz fun
tions whi
h is very useful. A

smooth fun
tion f : Rn → C is in S(Rn) if and only if for all positive integers N and all

multi-indi
es α there exists a positive 
onstant Cα,N su
h that

|(∂αf)(x)| ≤ Cα,N (1 + |x|)−N

for all x ∈ R
n
, see [Gra08, Remark 2.2.4℄.

(ii) If ρj is an enumeration of the S
hwartz seminorms ρα,β, then

d(f, g) :=
∞∑

j=1

2−j
ρj(f − g)

1 + ρj(f − g)

de�nes a metri
 on S(Rn). It is easy to 
he
k that S(Rn) is 
omplete with respe
t to

d. Hen
e, S(Rn) is a Fré
het spa
e, i.e. it is a 
omplete metrizable lo
ally 
onvex spa
e.

[Gra08, pages 96�97℄

(iii) Obviously, C∞
0 (Rn) is 
ontained in S(Rn) and 
onvergen
e in C∞

0 (Rn) implies 
onver-

gen
e in S(Rn). The fun
tion x 7→ e−|x|2
is a S
hwartz fun
tion but not in C∞

0 (Rn).

(iv) Convergen
e in S(Rn) is stronger than 
onvergen
e in all Lp(Rn). [Gra08, Proposi-

tion 2.2.6℄ ♦
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The Fourier transform of S
hwartz fun
tions

We de�ne the Fourier transform as an operator a
ting on S(Rn). The Fourier transform got

its name from the Fren
h mathemati
ian and physi
ist (1768�1830).

De�nition 1.12 (Fourier transform on S(Rn)). Let f ∈ S(Rn).
(i) We de�ne the Fourier transform of f as

FRn(f)(ξ) :=
1

(2π)
n
2

∫

Rn

e−ix·ξf(x) dx, ξ ∈ R
n.

Sometimes we also write

pf := FRn(f).

(ii) The inverse Fourier transform of f is de�ned as

F−1
Rn (f)(x) := FRn(f)(−x) = 1

(2π)
n
2

∫

Rn

eix·ξf(x) dx, x ∈ R
n.

We sometimes also write

qf := F−1
Rn (f).

Remark. Note that the notation
p· and q· 
lashes with the notation in De�nition 1.26 below.

Whenever it is 
lear from the 
ontext, we use
p· and q· without mentioning whether it is meant

in the sense of De�nition 1.12 or De�nition 1.26. ♦

Now, we 
olle
t some important properties of the Fourier transform that may be found in e.g.

[Gra08, Proposition 2.2.11℄. Let us �rst introdu
e some notation: For a measurable fun
tion

f on R
n
, x, y ∈ R

n
, and a > 0 we de�ne the translation and dilation of f by

τ
y(f)(x) := f(x− y) and δ

a(f)(x) := f(ax),

respe
tively.

Lemma 1.13 (Properties of FRn
). Given two fun
tions f, g ∈ S(Rn), y ∈ R

n
, λ ∈ C, α a

multi-index, and a > 0, we have the following:

(i) ‖f‖L∞(Rn) ≤ ‖f‖L1(Rn),

(ii)

zf + g = pf + pg,

(iii)

xλf = λ pf ,

(iv)

{τ y(f)(ξ) = e−iy·ξ pf(ξ),

(v) (eix·yf(x))p(ξ) = τ y( pf )(ξ),

(vi) (δa(f))p(ξ) = a−nδa
−1
( pf )(ξ),

(vii) (∂αf)p(ξ) = (iξ)α pf(ξ),

(viii) (∂α pf )(ξ) = ((−ix)αf(x))p(ξ),
(ix)

pf ∈ S(Rn),

(x)

zf ∗ g = pf pg,

(xi)

zf ◦A(ξ) = pf(Aξ), where A is an orthogonal matrix and ξ is a 
olumn ve
tor.

Remark. It is not hard to prove that analogue statements hold true for the inverse Fourier

transform. ♦
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The following lemma investigates the relation between the Fourier transform and the inverse

Fourier transform.

Proposition 1.14 ([Gra08, Theorem 2.2.14℄). Given f, g, h ∈ S(Rn) we have

(i)

∫

Rn

f(x)pg(x) dx =

∫

Rn

pf(x)g(x) dx,

(ii) Fourier inversion: ( pf )q= f = ( qf )p,

(iii) Parseval's relation:

∫

Rn

f(x)h(x) dx =

∫

Rn

pf(ξ)ph(ξ) dξ,

(iv) Plan
herel's identity: ‖f‖L2(Rn) = ‖ pf ‖L2(Rn) = ‖ qf ‖L2(Rn),

(v)

∫

Rn

f(x)g(x) dx =

∫

Rn

pf(x)qg(x) dx.

On the one hand, the Fourier transform may easily be extended to the spa
e L1(Rn)∩L2(Rn)
sin
e the integrability ensures that the integrals in De�nition 1.12 are 
onvergent and most

of the results in Lemma 1.13 hold true for those fun
tions.

1

On the other hand, for L2(Rn)
fun
tions the integrals in De�nition 1.12 do not 
onverge absolutely. However, sin
e L1(Rn)∩
L2(Rn) is dense in L2(Rn), there is a unique bounded extension of the Fourier transform

and the inverse Fourier transform on L2(Rn). This extension is also an isometry on L2(Rn).
The Fourier transform on S(Rn) and its extension share most of its properties, see [Gra08,

Se
tion 2.2.4℄, and hen
e, we do not distinguish them notationally.

From a simple interpolation of Plan
herel's identity and Lemma 1.13 (i), we 
an extend the

Fourier transform on Lp(Rn) for 1 < p < 2, see e.g. [Gra08, Proposition 2.2.16℄.

Lemma 1.15 (Hausdor��Young inequality). Let 1 ≤ p ≤ 2. For every fun
tion f ∈ Lp(Rn)
we have the estimate

‖ pf ‖Lp′ (Rn) ≤ ‖f‖Lp(Rn).

The Fourier transform of tempered distributions

It is also possible to give a meaning to the Fourier transform on the spa
e of tempered

distributions. The following de�nitions and results as well as more details may be found e.g.

in [Gra08, Se
tion 2.3℄.

De�nition 1.16 (Tempered distribution). The spa
e of tempered distributions is de�ned as

S ′(Rn) :=
{
u : S(Rn) → C : u is linear and 
ontinuous

}
.

Remark.

(i) It is 
ommon to denote the evaluation of u ∈ S′(Rn) at f ∈ S(Rn) as

〈u, f〉 = u(f).

(ii) Fun
tions g that do not in
rease too qui
kly 
an be thought of as tempered distributions

via the identi�
ation g 7→ Lg, where Lg is the fun
tional

Lg(f) :=

∫

Rn

g(x)f(x) dx, f ∈ S.
♦

1

To be pre
ise, (i)�(vi) as well as (x) and (xi). [Gra08, Se
tion 2.2.4℄



1.2 Fun
tion spa
es and the Fourier transform 9

It is obvious that the following de�nitions are well-de�ned and 
oin
ide with the previous

de�nitions whenever they apply to u.

De�nition 1.17. Let u ∈ S ′(Rn) be tempered distribution and f ∈ S(Rn).
(i) Let α be a multi-index, then

〈∂αu, f〉 := (−1)|α|〈u, ∂αf〉.

(ii) The Fourier transform pu and the inverse Fourier transform qu are de�ned by

〈pu, f〉 := 〈u, pf 〉 resp. 〈qu, f〉 := 〈u, qf 〉.
Remark. Hölder's inequality shows that every Lp(Rn) fun
tion is a tempered distribution.

Hen
e, the Fourier transform de�ned in De�nition 1.17 is indeed de�ned on a larger set


ompared to the extension to L2(Rn) of Fourier transform de�ned in De�nition 1.12. Let

u ∈ L2(Rn). On the one hand, it follows that pu ∈ L2(Rn) and hen
e,

〈pu, f〉L2(Rn) =

∫

Rn

pu(x)f(x) dx =

∫

Rn

u(x) pf(x) dx

for all f ∈ S(Rn) by using Proposition 1.14 (i). On the other hand, if we 
onsider u as a

tempered distribution, then we have, by de�nition,

〈pu, f〉 = 〈u, pf 〉 =
∫

Rn

u(x) pf(x) dx

for all f ∈ S(Rn). Hen
e, the extension to L2(Rn) of De�nition 1.12 and De�nition 1.17

indeed 
oin
ide. ♦

We refer to [Gra08, Proposition 2.3.22℄ for a list of properties of the (inverse) Fourier transform

of a tempered distribution.

Sobolev spa
es

Next, we use the Fourier transform on S ′(Rn) to de�ne Sobolev spa
es and study some of

their properties. Compared to Lp(Rn), these spa
es give more pre
ise information about the

regularity of a fun
tion. We follow the ni
e introdu
tion in [Caz03, Se
tion 1.4℄.

De�nition 1.18 (Sobolev spa
es). Let s ∈ R and 1 ≤ p ≤ ∞ be given.

(i) We de�ne the inhomogeneous Sobolev spa
e

Hs,p(Rn) :=
{
u ∈ S ′(Rn) : F−1

Rn

(
(1 + |ξ|2) s

2 pu
)
∈ Lp(Rn)

}

equipped with the norm

‖u‖Hs,p :=
∥∥F−1

Rn

(
(1 + |ξ|2) s

2 pu
)∥∥
Lp(Rn)

.

(ii) The homogeneous Sobolev spa
e is de�ned as

Ḣs,p(Rn) :=
{
u ∈ S ′(Rn) : F−1

Rn

(
|ξ|spu

)
∈ Lp(Rn)

}

equipped with the norm

‖u‖Ḣs,p :=
∥∥F−1

Rn

(
|ξ|spu

)∥∥
Lp(Rn)

.

(iii) We denote Hs(Rn) := Hs,2(Rn) and Ḣs(Rn) := Ḣs,2(Rn) for brevity.
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Remark.

(i) The spa
e Hs(Rn) is a Hilbert spa
e and Hs,p(Rn) is a Bana
h spa
e. One trivially sees

that H0,p(Rn) = Lp(Rn).

(ii) Hs1,p(Rn) →֒ Hs2,p(Rn) if s1 ≥ s2.

(iii) If p <∞, then (Hs,p(Rn))∗ = H−s,p′(Rn) [BL76, Corollary 6.2.8℄.

(iv) For m ∈ N0 and 1 < p <∞ it follows that

Hm,p(Rn) =Wm,p(Rn) :=
{
u ∈ Lp(Rn) : ∂αu ∈ Lp(Rn) for α ∈ N

n
0 with |α| ≤ m

}
,

where ∂αu has to be understood in the sense of tempered distributions. The norm

‖u‖Wm,p(Rn) :=
∑

α∈Nn
0 :

0≤|α|≤m

‖∂αu‖Lp(Rn)

is equivalent to ‖ · ‖Hm,p(Rn). [BL76, Theorem 6.2.3℄ ♦

Proposition 1.19 (Sobolev embedding theorem). Let s ∈ R.

(i) If 1 < p ≤ q <∞, r ∈ R with s− n
p = r − n

q , then

Hs,p(Rn) →֒ Hr,q(Rn).

(ii) If 1 ≤ p <∞ and 0 < s < n
p , then

Hs,p(Rn) →֒ L
pn

n−sp (Rn).

(iii) If 1 ≤ p <∞, k ∈ N0 and [s] > k+ n
p , then every element of Hs,p(Rn) 
an be modi�ed on

a set of measure zero so that the resulting fun
tion is bounded and is k-times 
ontinuously

di�erentiable.

The �rst statement may be found in e.g. [BL76, Theorem 6.5.1℄ and the se
ond embedding is

an immediate 
onsequen
e of the �rst statement. The third embedding is a simple 
onsequen
e

of

Hs,p(Rn) →֒ H [s],p(Rn) =W [s],p(Rn)

and the Sobolev embedding theorem for the latter spa
es, 
f. [LL97, Theorem 8.8℄.

1.2.3 The spa
es Up
and V p

This subse
tion introdu
es the spa
es Up and V p
. We 
losely follow some parts of [KTV14,

Chapter I.4℄ and refer the reader to [HHK09, HTT11, Her13, HTT14℄ for more details.

In 1924, Norbert Wiener [Wie24℄ studied fun
tions of bounded p-variation. These spa
es were
used in several 
ontexts su
h as Riemann�Stieltjes integrals [You36℄ and rough paths [Lyo94,

Lyo98℄. In 2005, Ko
h�Tataru [KT05℄ were the �rst who realized that the spa
es of bounded

p-variation and its �dual� Up-spa
es may be used to sharpen Bourgain's te
hnique of Xs,b
-

spa
es that have often been applied to a
hieve well-posedness results for dispersive equations.

Indeed, for the well-posedness result for the Kadomtsev�Petviashvili II equation obtained by

Hada
�Herr�Ko
h [HHK09℄ the Xs,b
-spa
es seem to be insu�
ient. The theory of the Up-

and V p
-spa
es in
luding some basi
 properties were worked out in [HHK09℄ for the �rst time.
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Ever sin
e, these spa
es have repeatedly been applied to dispersive equations. Herr�Tataru�

Tzvetkov were the �rst who su

essfully applied these spa
es to gain energy-
riti
al small

data global well-posedness of the NLS on the three-dimensional �at torus. Later, Iones
u�

Pausader used this spa
es to extend this global well-posedness for initial data with arbitrary

large H1
-norm. Re
ently, the �rst book reviewing these spa
es was published [KTV14℄.

These spa
es shall only be brie�y introdu
ed in this thesis. Aside from the de�nitions and

some basi
 properties, we 
ite an important interpolation and a duality result.

For the remainder of this subse
tion, (X, ‖ · ‖X) shall denote a Bana
h spa
e with the norm

‖ · ‖X .
In the following 
hapters, we rely on Proposition 1.23 (v), Lemma 1.24, and Lemma 1.25

below. These results do not hold for fun
tions in the spa
e V p
as it is de�ned in [KTV14℄ but

for the subspa
e of right-
ontinuous fun
tions in V p
that is 
alled V p

rc in [KTV14℄. For this

reason, we only de�ne V p
rc as in [KTV14, pages 44�45℄ but 
all it V p

for brevity.

De�nition 1.20 (V p
-spa
e). Let 1 ≤ p < ∞. The spa
e V p = V p(X) is the spa
e of

right-
ontinuous fun
tions v : R → X su
h that

‖v‖pV p := sup
−∞<t0<...<tK≤+∞

K∑

k=1

‖v(tk)− v(tk−1)‖pX < +∞

with the 
onvention v(+∞) := 0, and in addition, we require limt→−∞ v(t) = 0.

We 
olle
t some properties of this spa
es that may be found in [KTV14, page 45℄.

Proposition 1.21 (Properties of V p
).

(i) The spa
e V p
is a Bana
h spa
e.

(ii) We have ‖ · ‖sup ≤ ‖ · ‖V p
for all 1 ≤ p <∞.

(iii) If 1 ≤ p ≤ q <∞, then V p →֒ V q
and for all v ∈ V p

,

‖v‖V q ≤ ‖v‖V p .

The following de�nition of Up is given in [KTV14, De�nition I.4.10℄.

De�nition 1.22 (Up-spa
e). Let 1 ≤ p < ∞. A right-
ontinuous step fun
tion a : R → X is


alled a Up-atom if

a(t) =
K∑

k=1

1[tk−1,tk)(t)φk,
K∑

k=1

‖φk‖pX = 1

for a partition −∞ < t0 < . . . < tK ≤ ∞. Let (aj)j∈N be a sequen
e of atoms and let (λj)j∈N
be a summable sequen
e. Then

u :=

∞∑

j=1

λjaj

is a Up-fun
tion. We de�ne the spa
e Up = Up(X) as the set of fun
tions having su
h a

representation and endow it with the norm

‖u‖Up := inf

{ ∞∑

j=1

|λj | : u =
∞∑

j=1

λjaj

}
.
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We state some properties of Up-spa
es given in [KTV14, pages 46�49℄.

Proposition 1.23 (Properties of Up).

(i) If a is a Up-atom, then ‖a‖Up ≤ 1. The norm of an Up-atom may be less than 1.
Determining the norm of an atom is a di�
ult task.

(ii) Fun
tions in Up are 
ontinuous from the right and the limit as t→ −∞ vanishes.

(iii) The expression ‖ · ‖Up
de�nes a norm on Up, and Up is 
losed with respe
t to this norm.

Moreover, ‖ · ‖sup ≤ ‖ · ‖Up
.

(iv) If 1 ≤ p ≤ q <∞, then Up →֒ U q and for all u ∈ Up,

‖u‖Uq ≤ ‖u‖Up .

(v) If 1 ≤ p <∞, then Up →֒ V p →֒ L∞(R,X) and for all u ∈ Up,

‖u‖V p . ‖u‖Up .

(vi) If 1 < p < q <∞, then V p →֒ U q.

Later, we apply the following interpolation type property of the Up- and V p
-spa
es. The

statement may be found in [HTT11, Lemma 2.4℄ and [HHK09, Proposition 2.20℄. It is worth

mentioning that there is a more general interpolation statement in [KTV14, Lemma I.4.12℄.

Lemma 1.24 (Interpolation). Let q1, q2, q3 > 2, (X, ‖ · ‖X) be a Bana
h spa
e, and let

T : U q1 × U q2 × U q3 → X

be a bounded, trilinear operator with ‖T (u1, u2, u3)‖X ≤ C1
∏3
j=1 ‖uj‖Uqj . In addition, assume

that there exists C2 ∈ (0, C1] su
h that the estimate ‖T (u1, u2, u3)‖X ≤ C2
∏3
j=1 ‖uj‖U2 holds

true. Then, T satis�es the estimate

‖T (u1, u2, u3)‖X . C2

(
ln
C1

C2
+ 1
)3 3∏

j=1

‖uj‖V 2

for u1, u2, u3 ∈ V 2
.

The following duality statement plays a 
ru
ial role in our analysis, too. The statement is

taken from [KTV14, Corollary I.4.24℄.

Lemma 1.25 (Duality). Let 1 < p <∞ and H be a Hilbert spa
e with 
omplex inner produ
t

〈 · , · 〉 and dual spa
e H∗
. Assume u ∈ Up(H) with ∂tu ∈ L1

loc(R,H) and v ∈ V p(H), then the

following duality statements hold true:

‖u‖Up(H) = sup

{∫

R

〈∂tu(t), v(t)〉 dt : v ∈ C∞
0 (R,H∗), ‖v‖V p′(H∗) = 1

}
,

‖v‖V p(H) = sup

{∫

R

〈∂tu(t), v(t)〉 dt : u ∈ C∞
0 (R,H∗), ‖u‖Up′ (H∗) = 1

}
,

where 1 = 1
p +

1
p′ .
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1.3 Fourier series and exponential sums

Some basi
 fa
ts about the Fourier analysis on the torus T
n := R

n/(2πZ)n shall be dis
ussed

in this se
tion. Related exponential sums play an important role in the study of the nonlinear

S
hrödinger equation on boundaryless 
ompa
t manifolds. Estimates for exponential sums

are addressed in this se
tion, too. A variant of the Hausdor��Young inequality for non-

periodi
 fun
tions is studied in Se
tion 1.3.2. Lp-estimates of exponential sums are dis
ussed

in Se
tion 1.3.3. Most of the results in the latter two subse
tions have been applied before

but either without giving a thorough proof or as a spe
ial 
ase of a more general statement.

By giving detailed proofs for all exponential sum estimates we rely on, we would like to

demonstrate that verifying these estimates do not require sophisti
ated arguments.

1.3.1 Fourier series

In this subse
tion, we adapt parts of the introdu
tion in [Gra08, Se
tion 3.1℄ to T
n =

R
n/(2πZ)n instead of T

n = R
n/Zn.

Fun
tions on T
n

an be 
onsidered as fun
tions on R

n
with the property that f(2πξ+x) = f(x)

for all ξ ∈ Z
n
and x ∈ R

n
. Those fun
tions are 
alled 2π-periodi
 in every 
oordinate.

The measure on T
n
is given by the restri
tion of the n-dimensional Lebesgue measure to

T
n = [0, 2π]n. It is a simple 
onsequen
e of Hölder's inequality that the Lp(Tn)-spa
es are

nested and L1(Tn) 
ontains all Lp(Tn)-spa
es for p ≥ 1.

De�nition 1.26.

(i) For a 
omplex-valued fun
tion f ∈ L1(Tn) and ξ ∈ Z
n
we de�ne the ξth Fourier


oe�
ient of f by

F(f)(ξ) :=
1

(2π)
n
2

∫

Tn

f(x)e−ix·ξ dx.

Sometimes we also write

pf := F(f).

(ii) The Fourier series of f at x ∈ T
n
is given by

1

(2π)
n
2

∑

ξ∈Zn

pf(ξ)eix·ξ.

So far it is not 
lear in whi
h sense and for whi
h x ∈ T
n
the Fourier series 
onverges. However,

the following lemma holds, see e.g. [Gra08, Proposition 3.1.14℄.

Lemma 1.27 (Fourier inversion). If f ∈ L1(Tn) with
∑

ξ∈Zn | pf(ξ)| <∞, then

f(x) =
1

(2π)
n
2

∑

ξ∈Z

pf(ξ)eix·ξ

almost everywhere. As a 
onsequen
e f equals almost everywhere a 
ontinuous fun
tion.

Remark. In light of the previous lemma, for a fun
tion f : Zn → C with

∑
ξ∈Zn |f(ξ)| < ∞

and x ∈ T
n
we write,

F−1(f)(x) :=
1

(2π)
n
2

∑

ξ∈Z
f(ξ)eix·ξ

and sometimes also

qf = F−1(f). ♦
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We 
olle
t some properties:

Lemma 1.28 (Properties of F). Given two fun
tions f, g ∈ L1(Tn), y ∈ T
n
, λ ∈ C, ξ, η ∈ Z

n
,

and α a multi-index, we have

(i) supξ∈Zn | pf(ξ)| ≤ ‖f‖L1(Tn),

(ii)

zf + g = pf + pg,

(iii)

xλf = λ pf ,

(iv)

{τ y(f)(ξ) = e−iy·ξ pf(ξ),

(v) (eix·ηf(x))p(ξ) = pf(ξ − η),

(vi)

pf(0) =
∫
Tn f(x) dx,

(vii)

zf ∗ g = pf pg,

(viii)

y∂αf(ξ) = (iξ)α pf(ξ).

A useful result that 
onne
ts the Fourier analysis on the torus with the Fourier analysis on R
n

is the Poisson summation formula, named after Fren
h mathemati
ian and physi
ist Siméon

Denis Poisson (1781�1840).

Proposition 1.29 (Poisson summation formula). Suppose that f, pf ∈ L1(Rn) satisfy

|f(x)|+ | pf(x)| ≤ C(1 + |x|)−n−δ

for some C, δ > 0. Then f and

pf are both 
ontinuous, and for all x ∈ R
n
we have

∑

ξ∈Zn

pf(ξ)eix·ξ =
∑

ξ∈Zn

f(x+ ξ).

As a 
onsequen
e of Hilbert spa
e theory, we may de�ne the Fourier transform even for

fun
tions f ∈ L2(Tn).

Lemma 1.30 ([Gra08, Proposition 3.1.15℄). Let H be a separable Hilbert spa
e with 
omplex

inner produ
t 〈 · , · 〉 and let {ϕk}k∈Z be an orthonormal system in H. Then the following are

equivalent:

(i) {ϕk}k∈Z is a 
omplete orthonormal system.

(ii) For every f ∈ H we have

‖f‖2H =
∑

k∈Z
|〈f, ϕk〉|2.

(iii) For every f ∈ H we have

f = lim
N→∞

∑

|k|≤N
〈f, ϕk〉ϕk,

where the series 
onverges in H, i.e.

lim
N→∞

∥∥∥∥f −
∑

|k|≤N
〈f, ϕk〉ϕk

∥∥∥∥
H

= 0.
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Consider the Hilbert spa
e L2(Tn) with 
omplex inner produ
t

〈f, g〉 :=
∫

Tn

f(x)g(x) dx.

We 
hoose ϕξ to be the sequen
e of fun
tions x 7→ eix·ξ indexed by ξ ∈ Z
n
. It is easy to see

that {ϕξ}ξ∈Zn
are indeed orthonormal:

∫

[0,2π]n
eix·ξe−ix·η dx =

{
1 when ξ = η,

0 when ξ 6= η.

In order to show the 
ompleteness of the orthonormal system {ϕξ}ξ∈Zn
, we 
ite the next result

that answers the question whether the Fourier 
oe�
ients uniquely determine the fun
tion.

Lemma 1.31 ([Gra08, Proposition 3.1.13℄). If f, g ∈ L1(Tn) satisfy

pf(ξ) = pg(ξ) for all

ξ ∈ Z
n
, then f = g almost everywhere.

The 
ompleteness is now obvious sin
e 〈f, ϕξ〉 = pf(ξ) for all f ∈ L2(Tn). The previous lemma

now implies that if 〈f, ϕξ〉 = 0 for all ξ ∈ Z
n
, then f = 0 almost everywhere.

The next result is a 
onsequen
e of Lemma 1.30.

Proposition 1.32 ([Gra08, Proposition 3.1.16℄). The following are valid for f, g ∈ L2(Tn):

(i) Plan
herel's identity: ‖f‖2L2(Tn) = (2π)n
∑

ξ∈Zn

| pf(ξ)|2.

(ii) The fun
tion f(x) is almost everywhere equal to the L2(Tn) limit of the sequen
e

lim
N→∞

∑

ξ∈Z: |ξ|≤N

pf(ξ)eix·ξ

(iii) Parseval's relation:

∫

Tn

f(x)g(x) dx =
∑

ξ∈Zn

pf(ξ)pg(ξ).

(iv) The map f 7→ { pf(ξ)}ξ∈Zn
is an isometry from L2(Tn) to ℓ2(Zn).

We already mentioned in Se
tion 1.2.1 that the 
onvolution may be de�ned on T
n
and that

there is a version of Young's inequality on that domain. We refer to [Gra08, Se
tion 1.2℄,

where the 
onvolution is de�ned more generally on a lo
ally 
ompa
t group and furthermore,

some 
onvolution inequalities su
h as Young's inequality are proved.

De�nition 1.33 (Convolution on T
n
). Let f, g ∈ L1(Tn). De�ne the 
onvolution f ∗ g by

(f ∗ g)(x) :=
∫

Tn

f(x− y)g(y) dy.

Young's inequality stays exa
tly the same as in Lemma 1.7:

Lemma 1.34 (Young's inequality). Let 1 ≤ p, q, r ≤ ∞ with 1 + 1
r = 1

p + 1
q as well as

f ∈ Lp(Tn) and g ∈ Lq(Tn). Then f ∗ g ∈ Lr(Tn) and

‖f ∗ g‖Lr(Tn) ≤ Cp,q,r,n‖f‖Lp(Tn)‖g‖Lq(Tn).
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1.3.2 Hausdor��Young inequalities

The 
lassi
al Hausdor��Young inequality for periodi
 fun
tions provides for 2 ≤ p ≤ ∞ a

bound for the ℓp-norm of the Fourier 
oe�
ients by the Lp
′
-norm of the fun
tion, where p′

denotes�as usual�the 
onjugate Hölder exponent 1 = 1
p+

1
p′ . For the same range of p, the Lp-

norm of a periodi
 fun
tion may also be estimated by the ℓp
′
-norm of the Fourier 
oe�
ients,

whi
h may be seen as a �dual� estimate of the �rst one. In 1913, William Henry Young [You13℄

proved this estimate for even p. Ten years later, Felix Hausdor� [Hau23℄ proved the result

in general. We 
ite the Hausdor��Young inequality from [Kat68, Theorems IV.2.1 & IV.2.2℄,

where it is given in one dimension. To emphasize the analogy to the proof of Proposition 1.36,

we also provide a sket
h of the proof of the 
lassi
al Hausdor��Young inequality.

Proposition 1.35 (Hausdor��Young inequality). Let 2 ≤ p ≤ ∞ and p′ denote the 
onjugate
Hölder exponent.

(i) If f ∈ Lp([0, 2π]n), then

‖ pf(ξ)‖ℓpξ (Zn) ≤ (2π)
n
p
−n

2 ‖f‖Lp′ ([0,2π]n).

(ii) If a ∈ ℓp
′
(Zn), then there exists a fun
tion f ∈ Lp([0, 2π]n) su
h that aξ = pf(ξ) for all

ξ ∈ Z
n
and moreover,

‖f‖Lp([0,2π]n) ≤ (2π)
n
p
−n

2 ‖ pf(ξ)‖
ℓp

′

ξ (Zn)
.

Sket
h of the proof. The proof is taken from [Kat68, Theorems IV.2.1 & IV.2.2℄.

Note that for p = 2 the �rst inequality mat
hes Plan
herel's identity. Interpolating this with

the trivial estimate for p = ∞,

sup
ξ∈Zn

| pf(ξ)| =
∣∣∣∣

1

(2π)
n
2

∫

[0,2π]n
e−ix·ξf(x) dx

∣∣∣∣ ≤
1

(2π)
n
2

‖f‖L1([0,2π]n),

yields (i).

The idea of the proof of se
ond estimate is similar. If a ∈ ℓ1(Zn), then f(x) :=
∑

ξ∈Zn aξe
ix·ξ

is 
ontinuous on [0, 2π]n and

pf(ξ) = (2π)n/2aξ for every ξ ∈ Z
n
. Furthermore,

‖f‖L∞([0,2π]n) = sup
x∈[0,2π]n

∣∣∣∣
∑

ξ∈Zn

aξe
ix·ξ
∣∣∣∣ ≤

∑

ξ∈Zn

|aξ| =
1

(2π)
n
2

∑

ξ∈Zn

| pf(ξ)|,

and the result follows from interpolation with Plan
herel's identity.

In Chapter 2, we have to deal with fun
tions of the form t 7→ ∑
λ∈Λ aλe

iλt
, where Λ is a


ountable set of real numbers. Depending on Λ, this fun
tion might not be periodi
. For

this reason, we need a repla
ement for the 
lassi
al Hausdor��Young inequality. The �rst

inequality of the following lemma has been applied before, e.g. in [Bou07, formula (1.1.9)℄,

but yet without a rigorous proof. The se
ond statement appeared in [BGT05b, Lemma 5.2℄

for p = 2. In this 
ase, it 
an be seen as non-periodi
 variant of Plan
herel's identity. Similarly

as for the 
lassi
al Hausdor��Young inequality, we gain the full range of p by interpolating

with the trivial 
ase p = ∞.
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Proposition 1.36 (Non-periodi
 Hausdor��Young inequality). Assume that 2 ≤ p ≤ ∞ and

Λ is a 
ountable set of real numbers. Furthermore, let p′ denote the 
onjugate Hölder exponent.

(i) Then there exists C > 0 su
h that for every non-negative sequen
e (aλ)λ∈Λ,
∥∥∥∥

∑

λ∈Λ: |λ−k|≤ 1
2

aλ

∥∥∥∥
ℓpk

≤ C

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp′ ([0,2π])

holds true.

(ii) For every 
ompa
t interval I ⊂ R there exists CI > 0 su
h that for every sequen
e

(aλ)λ∈Λ the �dual� estimate of (i) holds:

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp(I)

≤ CI

∥∥∥∥
∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|
∥∥∥∥
ℓp

′

k

.

Proof. In this proof,
p· shall denote the Fourier transform on R.

First, we prove (i). Let η : R → R be a 
ontinuous fun
tion supported on [−π, π] with pη(τ) ≥ 0
for all τ ∈ R and pη(τ) ≥ 1 for all τ ∈

[
−1

2 ,
1
2

]
. For instan
e, if c > 0 large enough, then

η(t) = c χ[− 1
2
, 1
2 ]
∗ χ[− 1

2
, 1
2 ]
(t)

ful�lls this assumptions sin
e the Fourier transform is given by pη(τ) = c̃(sin(τ/2)/τ)2. De�ne
ψ : R → R by

ψ(t) :=
∑

λ∈Λ
aλe

iλtη(t).

Then, ∥∥∥∥
∑

λ∈Λ: |λ−k|≤ 1
2

aλ

∥∥∥∥
ℓpk

≤
∥∥∥∥

∑

λ∈Λ: |λ−k|≤ 1
2

aλ pη(k − λ)

∥∥∥∥
ℓpk

=
∥∥ pψ(k)

∥∥
ℓpk

and thus, it su�
es to prove

∥∥ pψ(k)
∥∥
ℓpk

.

∥∥∥∥
∑

λ∈Λ
aλe

iλt

∥∥∥∥
Lp′ ([0,2π])

. (1.1)

Due to the assumption on the support of η, pψ(k) 
oin
ides with the kth Fourier 
oe�
ient of

the periodi
 
ontinuation of ψ
∣∣
[−π,π]. Hen
e, (1.1) follows from the (
lassi
al) Hausdor��Young

inequality for periodi
 fun
tions.

We now turn to the proof of the �dual� estimate (ii). The estimate for p = ∞ is immediate sin
e

the sets {λ ∈ Λ : |λ − k| ≤ 1
2} are essentially disjoint for di�erent k ∈ Z. By interpolation,

we are left to prove the estimate in the 
ase p = 2 for whi
h we 
losely follow the argument

of Burq�Gérard�Tzvetkov [BGT05b, Lemma 5.2℄.

We 
hoose a fun
tion η ∈ C∞
0 (R) with the property η(t) = 1 for t ∈ I. If we de�ne f : R → C

as

f(t) :=
∑

λ∈Λ
η(t)aλe

iλt,

then

pf(τ) =
∑

λ∈Λ
pη(τ − λ)aλ,
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whi
h redu
es the 
laim to

‖ pf ‖L2(R) ≤ CI

(∑

k∈Z

( ∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|
)2)1

2

.

For τ ∈ R we estimate,

| pf(τ)| ≤
∑

k∈Z

∑

λ∈Λ: |λ−k|≤ 1
2

|pη(τ − λ)||aλ| ≤
∑

k∈Z
K(τ, k)h(k),

where K : R×R → R and h : R → R are de�ned as

K(τ, k) := sup
λ∈Λ: |λ−k|≤ 1

2

|pη(τ − λ)| and h(k) :=
∑

λ∈Λ: |λ−k|≤ 1
2

|aλ|,

respe
tively. A simple argument shows that the inequality |λ− k| ≤ 1
2 implies

1

1 + |τ − λ| ≤
C

1 + |τ − k| .

Sin
e η ∈ C∞
0 (R), we see that for every N ∈ N there exists CI,N su
h that

|K(τ, k)| ≤ CI,N
(1 + |τ − k|)N .

Now, we may apply S
hur's lemma to 
on
lude the asserted estimate.

Next, we apply the previous Hausdor��Young inequality to address latti
e point 
ounting. The

result is not new and was used by several authors before, e.g. [Bou07, CW10, GOW14, Str14℄,

and a rigorous proof may be found in [Str14, Lemma 3.1℄. Nonetheless, we give a new proof

to highlight the 
lose relation to Proposition 1.36.

Corollary 1.37. Let 2 ≤ p ≤ ∞, r ≥ 1
2 , and Λ be a 
ountable set. There exists Cr > 0 su
h

that for all ϕ : Λ → R and for Sk de�ned as

Sk :=
{
λ ∈ Λ : |ϕ(λ)− k| ≤ r

}
, k ∈ Z,

the following estimate holds true:

∥∥|Sk|
∥∥
ℓpk

≤ Cr

∥∥∥∥
∑

λ∈Λ
eiϕ(λ)t

∥∥∥∥
Lp′

t ([0,2π])

.

Here, p′ denotes the 
onjugate Hölder exponent.

Proof. First, we redu
e it to

∥∥|Sk|
∥∥
ℓpk

≤
∥∥∥∥
r−1∑

ℓ=−r

∑

λ∈Λ:
ℓ≤ϕ(λ)−k≤ℓ+1

1

∥∥∥∥
ℓpk

≤
r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ:
|ϕ(λ)−ℓ− 1

2
−k|≤ 1

2

1

∥∥∥∥
ℓpk

.

Then, an appli
ation of Proposition 1.36 yields the desired estimate:

r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ:
|ϕ(λ)−ℓ− 1

2
−k|≤ 1

2

1

∥∥∥∥
ℓpk

.

r−1∑

ℓ=−r

∥∥∥∥
∑

λ∈Λ
ei(ϕ(λ)−ℓ−

1
2
)t

∥∥∥∥
Lp′ ([0,2π])

.r

∥∥∥∥
∑

λ∈Λ
eiϕ(λ)t

∥∥∥∥
Lp′([0,2π])
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1.3.3 L
p
-estimates of exponential sums

Lp-estimates of exponential sums turned out to be substantial for studying the nonlinear

S
hrödinger equation on 
ompa
t manifolds. Su
h estimates have been addressed in re
ent

years, 
f. [Bou89, Se
tion 4℄, [Bou93a, Proposition 3.114℄, [Bou07, formula (1.1.10)℄, and

[BGT07, Lemma 5.5.3℄. In all of these works, the Lp-norm of sums like

∑

n∈J∩Z
ane

in2t

have been 
onsidered, where J = [−N,N ]. This, however, is not su�
ient for our analysis. In

fa
t, we have to show that the Lpt -bound does only depend on the size of J rather than on the

a
tual position. Herr [Her13, Lemma 3.1℄ observed that this is the 
ase for the exponential

sum above by modifying the arguments in [Bou89, Se
tion 4℄ slightly. Corollary 1.39 
an be

viewed as a spe
ial 
ase of [Her13, Lemma 3.1℄ with an = 1 or as an extension of [Bou07,

formula (1.1.10)℄ to intervals J whi
h are not 
entered around zero. In this thesis, we want to

take the opportunity to give a rigorous proof of the exponential sum estimates we shall rely on.

In fa
t, due to te
hni
al reasons, we prove a slightly more general statement in Lemma 1.38

and 
on
lude the required estimate in Corollary 1.39.

Lemma 1.38. Let I ⊆ R be a 
ompa
t interval and 4 < p ≤ ∞. There exists a 
onstant

C > 0 su
h that for any N ≥ 1, b ∈ Z, and any multiplier (σn)n satisfying

(i) for all n ∈ Z: 0 ≤ σn ≤ 1; for all n ∈ [−N,N ]: σn = 1; for all n /∈ [−2N, 2N ]: σn = 0,

(ii) the sequen
e (σn+1 − σn)n is bounded by

2
N and has bounded variation by

2
N ,

the estimate ∥∥∥∥
∑

n∈Z
σne

i(n+b)2t

∥∥∥∥
Lp
t (I)

≤ CN1− 2
p ,

holds true. The 
onstant C depends only on p and |I|.

As a 
onsequen
e, we get the same statement without the 
oe�
ient sequen
e that smoothens

out the 
ut-o�.

Corollary 1.39. Let I ⊆ R be a 
ompa
t interval and 4 < p ≤ ∞. Then, there exists a


onstant C > 0 su
h that for any M ≥ 1 and J = [b, b +M ] ∩ Z with b ∈ Z, we have the

estimate ∥∥∥∥
∑

n∈J
ein

2t

∥∥∥∥
Lp
t (I)

≤ CM
1− 2

p ,

where the 
onstant C does only depend on p and |I|.

Proof. First, we note that the inequality is trivial if p = ∞. Hen
e, we may assume p < ∞
from now on.

By possibly in
reasing M by one, we may assume M to be even. Set N := M
2 and b′ := b+N .

Let σn be a sequen
e as given in Lemma 1.38 (with respe
t to N). De�ne

pψ : Z → R as

pψ((n+b′)2) := σn for all n ∈ Z and

pψ equals 0 otherwise. Note that ψ ∈ L1([0, 2π]). We write

∥∥∥∥
∑

n∈J
ein

2t

∥∥∥∥
Lp([0,2π])

=

∥∥∥∥
∑

m∈Z
1[b2,(b+M)2](m) pψ(m)eimt

∥∥∥∥
Lp([0,2π])

=
∥∥F−1

(
1[b2,(b+M)2]

pψ
)∥∥

Lp([0,2π])
.
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Sin
e 1[b2,(b+M)2] is a multiplier on Lp(R) for 1 < p < ∞ with norm independent of the

size of the interval [Duo01, Proposition 3.6℄, the transferen
e of multipliers to T
n
[Gra08,

Theorem 3.6.7℄ and Lemma 1.38 yield

∥∥F−1
(
1[b2,(b+M)2]

pψ
)∥∥
Lp([0,2π])

.

∥∥∥∥
∑

n∈Z
σne

i(n+b′)2t

∥∥∥∥
Lp([0,2π])

. N1− 2
p .M1− 2

p .

The remainder of this subse
tion is devoted to prove Lemma 1.38.

The proof whi
h is presented here is a variant of the Hardy�Littlewood 
ir
le method in whi
h

one splits the integration over one period in two parts whi
h are, due to histori
al reasons,


alled major and minor ar
s. The main 
ontribution to the Lp-norm 
omes from the major

ar
s, whi
h 
ontain those t that are 
lose to a redu
ed fra
tion

a
q with 1 ≤ a ≤ q ≤ N1/100

.

This is easy to see if one 
hooses a = q = 1. Then, t is 
lose to 1 and the modulus of the sum is

approximately N . Lemma 1.41 below provides a more pre
ise estimate with some additional

de
ay in t. Lemma 1.43 below shows that we 
an bound the modulus of the sum by CN1−1/200

whenever t is in a minor ar
. We would like to refer the reader to [Vau97, Chapter 2℄ for more

details and a ni
e introdu
tion to this method. In fa
t, for J = [1, N ]∩Z the estimate follows

essentially from the Hardy�Littlewood 
ir
le method in the way it is presented there.

In order to prove the lemma above, we start with some basi
 de�nitions and notation. Given

a, q ∈ Z with either a 6= 0 or q 6= 0, we denote by gcd(a, q) the greatest 
ommon divisor of

a and q. We set ν := 1
100 throughout this subse
tion. Furthermore, ‖x‖Z := minn∈Z |x − n|

denotes the distan
e of x to the 
losest integer. The following de�nition of major and minor

ar
s is standard, see [Vau97, Se
tion 2.1℄.

De�nition 1.40 (Major & minor ar
s). Let N > 1 be the N given in Lemma 1.38. We de�ne

the major ar
s M to be the disjoint union of

M(q, a) :=
{
t ∈ [0, 1] :

∣∣∣t− a

q

∣∣∣ ≤ Nν−2
}

for all 0 ≤ a ≤ q ≤ Nν
with gcd(a, q) = 1. The minor ar
s shall be de�ned as m := [0, 1] \M.

Remark. The union of the M(q, a) is indeed disjoint. If

a
q 6= a′

q′ and q, q
′ ≤ Nν

, one estimates

∣∣∣t− a

q

∣∣∣+
∣∣∣t− a′

q′

∣∣∣ ≥
∣∣∣a
q
− a′

q′

∣∣∣ ≥ 1

qq′
≥ N−2ν > 2Nν−2

for N > 1. Hen
e, either t /∈ M(q, a) or t /∈ M(q′, a′). ♦

The following Weyl type lemma is due to Bourgain [Bou93a, Lemma 3.18℄. The 
ases a = 0,
a = q = 1, and q = N were not in
luded in the original statement. We repeat the proof and

add a 
ouple of details to point out that Bourgain's proof 
overs these 
ases as well. The main

improvement over the 
lassi
al Weyl inequality

∣∣∣∣
N∑

n=1

e2πi(nx+n
2t)

∣∣∣∣ .
N√
q
+
√
N ln q +

√
q ln q,

see e.g. [Mon94, Chapter 3, Theorem 1℄, is the additional de
ay in t. Bourgain observed that

this allows to treat both major and minor ar
s with this Weyl type lemma. Originally, the

major ar
s were treated by approximating the exponential sum by a produ
t of two fun
tions,

either of whi
h may be estimated, 
f. [Vau97, Se
tion 2.4℄. The 
oe�
ient sequen
e avoids

logarithmi
 fa
tors on N and plays only a te
hni
al role, see the remark after the proof.
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Lemma 1.41 (Weyl inequality). Let N ≥ 1 and (σn)n be a multiplier satisfying (i) and (ii)

in Lemma 1.38. If 0 ≤ a ≤ q ≤ N with gcd(a, q) = 1 and ‖t− a
q‖Z < 1

qN , then

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣ ≤ C
N

√
q
(
1 +N‖t− a

q‖
1/2
Z

) .

Proof. We follow mainly Bourgain's argument in [Bou93a, Lemma 3.18℄ but provide more

details. To do so, we also adapt some ideas that have been used in [PTW14, Lemma A.1℄ for

proving a related result.

The proof is trivial for N = 1, hen
e, we may assume N ≥ 2 in the sequel. Note also that the


ase a = 0 
an be redu
ed to a = q = 1 sin
e the exponential sum is 1-periodi
 with respe
t

to t and ‖t‖Z = ‖t− 1‖Z. Therefore, we assume a ≥ 1 for the remainder of the proof.

We 
onsider the square modulus

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

=
∑

n1,n2∈Z
σn1σn2e

2πi[(n1−n2)x+(n1−n2)(n1+n2)]t.

By setting k := n1 − n2 and ℓ := n1 + n2, we 
learly have

∣∣∣∣
∑

n∈Z
σne

i(nx+n2t)

∣∣∣∣
2

≤
∑

ℓ∈Z:
|ℓ|≤4N

∣∣∣∣
∑

k∈Z:
k≡ℓ (mod 2)

σ k+ℓ
2
σ ℓ−k

2
e2πik(x+ℓt)

∣∣∣∣.

Let ℓ ∈ Z be �xed now. If ℓ is even, we write k = 2k1, otherwise, we write k = 2k1 + 1. In

any 
ase, σ k+ℓ
2
σ ℓ−k

2
= σ[ ℓ+1

2 ]+k1σ[ ℓ2 ]−k1
=: τk1 . We now 
laim

∣∣∣∣
∑

k1∈Z
τk1e

2πik1(2x+2ℓt)

∣∣∣∣ . min

{
N,

1

N‖2x+ 2ℓt‖2
Z

}
.

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . (1.2)

The se
ond inequality follows from a simple 
ase-by-
ase analysis. That the sum on the

left-hand side is bounded by CN is also obvious. Thus, we are left to show

∣∣∣∣
∑

k∈Z
τke

2πiky

∣∣∣∣ .
1

Ny2
, (1.3)

for

1
N ≤ |y| ≤ 1

2 .

For the purpose of proving (1.3), we �rst repla
e the multiplier τk by a real-valued fun
tion

that 
oin
ides with τk for every k ∈ Z. Let φN : R → [0, 1] be a smooth, 
ompa
tly supported

fun
tion with φN (n) = σn for all n ∈ Z as well as |φ′N (y)| ≤ 4
N and |φ′′N (y)| ≤ 4

N2 for all

y ∈ R. De�ne

ψN : R → [0, 1], ψN (y) := φN

([ℓ+ 1

2

]
+ y
)
φN

([ ℓ
2

]
− y
)

for all y ∈ R, and observe that |ψ′
N (y)| ≤ 8

N and |ψ′′
N (y)| ≤ 16

N2 for any y ∈ R. Also, we see

that τk = ψN (k) for all k ∈ Z. We denote by F−1
2π the inverse Fourier transform given by

F−1
2π (f)(x) :=

∫

Rn

e2πix·ξf(x) dξ
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for all f ∈ S(Rn). By the Poisson summation formula, 
f. [Gra08, Theorem 3.1.17℄,

∣∣∣∣
∑

k∈Z
ψN (k)e

2πiky

∣∣∣∣ ≤
∑

k∈Z
|F−1

2π (ψN )(y + k)|.

Note that

|F−1
2π (ψN )(y)| =

1

(2πy)2

∣∣∣∣
∫

R

(
d2

dξ2
e2πiyξ

)
ψN (ξ) dξ

∣∣∣∣ ≤
1

(2πy)2
‖ψ′′

N‖L1(R) .
1

Ny2
, y 6= 0.

Therefore, for

1
N ≤ |y| ≤ 1

2 ,

∑

k∈Z
|F−1

2π (ψN )(y + k)| .
∑

k∈Z

1

N |y + k|2 .
1

Ny2
+
∑

k∈N

1

Nk2
.

1

Ny2
.

This 
ompletes the proof of (1.2), i.e.

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

.
∑

|ℓ|≤4N

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . (1.4)

To estimate this further, we write t = a
q +m+ τ for some |τ | ≤ 1

qN and m ∈ Z. Hen
e,

2ℓt = 2ℓ
a

q
+ 2ℓm+ 2ℓτ.

For any k ∈ Z, we de�ne b(k) := ak (mod q), b(k) ∈ Zq := {0, 1, . . . , q − 1}. Sin
e a and q
are 
oprime, a is invertible in Zq and the mapping k 7→ b(k) is a bije
tion Zq → Zq. Hen
e,

for ea
h k ∈ Zq there are at most

⌈
8N
q

⌉
di�erent values ℓ ∈ {ℓ ∈ Z : |ℓ| ≤ 4N} su
h that

b(ℓ) = b(k). Moreover, for ea
h r ∈ {0, . . . , [q/2]} there exist at most four di�erent b ∈ Zq

su
h that

r

q
≤
∥∥∥2x+ 2

b

q

∥∥∥
Z

≤ r + 1

q
.

We 
on
lude that for ea
h r ∈ {0, . . . , [q/2]} and

Nr :=

{
ℓ ∈ Z : |ℓ| ≤ 4N,

r

q
≤
∥∥∥2x+ 2

b(ℓ)

q

∥∥∥
Z

<
r + 1

q

}

we have |Nr| ≤ CN
q . De�ne R :=

⋃10
r=0 Nr. We distinguish two 
ases: the resonant 
ase ℓ ∈ R

and the non-resonant 
ase ℓ /∈ R. The latter does only exist if q > 20.

We 
onsider the non-resonant 
ase �rst, i.e. ℓ ∈ Nr for some r > 10. Sin
e |ℓ| ≤ 4N , we see

that

‖2x+ 2ℓt‖Z =
∥∥∥2x+ 2

b(ℓ)

q
+ 2ℓτ

∥∥∥
Z

≥
∣∣∣∣
∥∥∥2x− 2

b(ℓ)

q

∥∥∥
Z

− 2ℓ|τ |
∣∣∣∣ ≥

r

q
− 8

q
≥ r

5q
.

We may estimate the 
orresponding 
ontribution to (1.4) by

∑

ℓ∈Z\R:
|ℓ|≤4N

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 .
1

N

q/2∑

r=11

∑

ℓ∈Nr

q2

r2
. q

q/2∑

r=11

1

r2
. q. (1.5)

We are left with the resonant 
ase. Fortunately, there are only |R| . N
q of them. Hen
e,

it is easy to see that the 
ontribution from the resonant 
ase is bounded by CN
q · N . We



1.3 Fourier series and exponential sums 23


an improve this bound further provided |τ | ≥ 1
N2 . Indeed, let b ∈ Zq be �xed now and set

Mb := {ℓ ∈ R : b(ℓ) = b}. Note that the gap between two 
onse
utive elements in Mb is q
and that for ℓ ∈ Mb,

‖2x+ 2ℓt‖Z =
∥∥∥2x+ 2

b

q
+ 2ℓτ

∥∥∥
Z

.

Sin
e R is the union of at most 44 sets Mb, there exists C0 > 0 su
h that

{
‖2x+ 2ℓt‖Z : ℓ ∈ R

}

is 
ontained in at most C0 arithmeti
 sequen
es with in
rement 2q|τ |. Thus, we may estimate

the 
ontribution from the resonant 
ase by

∑

ℓ∈R

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 ≤ C0
1

N

∑

j∈N0

1
(
2jq|τ | + 1

N

)2

.
∑

j∈N0:
2jq|τ |≤1/N

N +
1

N

∑

j∈N0:
2jq|τ |>1/N

1

(2jq|τ |)2 .
1

q|τ |

provided |τ | ≥ 1
N2 . In any 
ase, we proved

∑

ℓ∈R

1

N
(
‖2x+ 2ℓt‖Z + 1

N

)2 . min

{
N2

q
,

1

q|τ |

}
. (1.6)

Re
all that τ = t− a
q −m. Then the 
on
lusion follows from (1.5) and (1.6) sin
e

∣∣∣∣
∑

n∈Z
σne

2πi(nx+n2t)

∣∣∣∣
2

. q +min

{
N2

q
,

1

q|τ |

}
.

N2

q
(
1 +N‖t− a

q ‖
1/2
Z

)2 .

Remark. Guo�Oh�Wang [GOW14, page 991℄ dis
ussed the role of the 
oe�
ient sequen
e:

Consider the Weyl sum without the 
oe�
ient sequen
e

WN (t, x) :=
∑

|n|≤N
e2πi(nx+n

2t).

Choosing (σn)n to in
rease respe
tively de
ay like

1
N in [−2N,−N ] respe
tively [N, 2N ], we

may write

∑

n∈Z
σne

2πi(nx+n2t) =
1

N

2N−1∑

k=N

Wk(t, x).

Hen
e, the regularizing e�e
t of (σn)n may be 
ompared to the regularizing e�e
t of the Fejér

kernel over the Diri
hlet kernel, 
f. [SS03, Se
tion 5.2℄. ♦

For estimating the 
ontribution from the minor ar
s, we use the next three lemmas. The �rst

result is due to Peter Gustav Lejeune Diri
hlet (1805�1859). The statement is taken from

[Vau97, Lemma 2.1℄, where a proof is provided as well.

Lemma 1.42 (Diri
hlet's lemma). Let t denote a real number. Then, for ea
h real number

N ≥ 1 there exists a rational number

a
q with gcd(a, q) = 1, 1 ≤ q ≤ N , and

∣∣∣t− a

q

∣∣∣ ≤ 1

qN
.



24 1 Basi
s

For brevity we de�ne the following fun
tion whi
h equals the exponential sum in Lemma 1.38

ex
ept of a dilation of 2π in the argument of the exponential fun
tion. Let (σn)n be a sequen
e
as given in Lemma 1.38, then we de�ne

Fb(t) :=
∑

n∈Z
σn e

2πi(n+b)2t. (1.7)

The next lemma shows that a better point-wise estimate than the trivial bound |Fb(t)| ≤ 4N

an be obtained whenever t is in the minor ar
s.

Lemma 1.43. Let N > 1 and Fb as in (1.7). There exists C > 0 su
h that for all t ∈ m,

|Fb(t)| ≤ CN1− ν
2 ,

where C does not depend on b.

Proof. Let t ∈ m. By Diri
hlet's lemma, there exists a redu
ed fra
tion

a
q with 1 ≤ q ≤ N

and |t− a
q | ≤ 1

qN . Sin
e t ∈ (Nν−2, 1−Nν−2), it follows that 0 ≤ a ≤ q ≤ N .

On the one hand, if 1 ≤ q ≤ Nν
, then ‖t− a

q ‖Z = |t− a
q | > Nν−2

be
ause otherwise t would
be in the major ar
s. Applying Lemma 1.41 yields

|Fb(t)| ≤ C
N

√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ C
∥∥∥t− a

q

∥∥∥
− 1

2

Z

≤ CN1− ν
2 .

If, on the other hand, Nν < q ≤ N , Lemma 1.41 implies

|Fb(t)| ≤ C
N

√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ N√
q
≤ CN1− ν

2 .

Remark. Note that the previous proof 
orre
ts the proof of [Her13, formula (33)℄. ♦

We also rely on a Hua type lemma. See [Vau97, Lemma 2.5℄ for a more general version. This

is the endpoint 
ase of Lemma 1.38, whi
h has an additional loss of ε. This loss, however, 
an
be 
ompensated in the minor ar
s. We shall provide a proof of this well-known result for the

sake of 
ompleteness.

Lemma 1.44 (Hua's lemma). For any ε > 0 there exists Cε > 0 su
h that for any N ≥ 1
and Fb as in (1.7), the estimate

‖Fb‖L4([0,2π]) ≤ CεN
1
2
+ε

holds true.

Proof. The proof follows the idea of [Bou89, formulas (1.3)�(1.6)℄ for the redu
tion to the

number of latti
e points estimate and [Her13, Appendix A, b)℄ for the bound on the latti
e

points.

We apply the Parseval identity with respe
t to t and obtain

‖Fb‖4L4([0,2π]) =

∥∥∥∥
2N∑

m,n=−2N

σmσne
2πi[(m+b)2−(n+b)2]t

∥∥∥∥
2

L2([0,2π])

.
∑

k∈N

∣∣∣∣
∑

(m−n)(m+n+2b)=k
1≤m,n≤N

1

∣∣∣∣
2

,
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where N := {k ∈ Z : ∃m,n ∈ [−2N, 2N ] ∩ Z s.t. k = (m + b)2 − (n + b)2}. Obviously,

|N | ≤ 16N2
. Hen
e, it su�
es to show that for any ε > 0 there exists Cε > 0 su
h that for

any N ≥ 1,

sup
k∈N, b∈N0

|{(n1, n2) ∈ N
2 : n1, n2 ≤ N, n1(n2 + b) = k}| ≤ CεN

ε. (1.8)

If 0 ≤ b ≤ 10N2
this is a 
onsequen
e of the number of divisors estimate. We refer the reader

to [HW79, Theorem 315℄ for more details.

If b > 10N2
, then the set 
ontains at most one element. Indeed, the imposed restri
tion is

equivalent to

n1 =
k

b
− n1n2

b
.

For �xed k ∈ N and 10N2 < b ∈ N0 the set
⋃

1≤n1,n2≤N{
k
b − n1n2

b } is 
ontained in an interval

of size less than one. Thus, there is at most one possible n1.

To treat the major ar
s, we �rst prove a distributional inequality. This shall be used after

writing the Lp-norm in terms of the distribution fun
tion.

Lemma 1.45. Let λ > 0. For every ε > 0 there exists Cε > 0 su
h that for any N > 1 and

Fb as in (1.7), ∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ ≤ CεN

2+ελ−4−ε,

where the 
onstant Cε is independent of b.

Proof. Let 0 ≤ a ≤ q ≤ Nν
with gcd(a, q) = 1 be �xed. In view of Lemma 1.41, we trivially

see that

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣ ≤

∣∣∣∣∣

{
t ∈ M(q, a) :

N
√
q
(
1 +N‖t− a

q ‖
1/2
Z

) > λ

}∣∣∣∣∣. (1.9)

Suppose t ∈ M(q, a) is su
h that ‖t− a
q‖Z ≥ q−1λ−2

, then

N
√
q
(
1 +N‖t− a

q ‖
1/2
Z

) ≤ λ.

Hen
e, the set in the right-hand side of (1.9) 
ontains only those t ∈ M(q, a) that ful�ll

‖t− a
q ‖Z < q−1λ−2

. From the imposed 
ondition of the set on the right-hand side of (1.9), we

get that λ < N√
q . These two observations lead to

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣ . q−1λ−2 . q−2− ε

2N2+ελ−4−ε
(1.10)

for any ε > 0. Sin
e the M(q, a) are disjoint, we get

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ =

Nν∑

q=1

∑

1≤a≤q:
gcd(a,q)=1

∣∣{t ∈ M(q, a) : |Fb(t)| > λ
}∣∣.

We then use (1.10) and estimate the sum over a by q to get

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ ≤ cε

Nν∑

q=1

q−1− ε
2N2+ελ−4−ε ≤ CεN

2+ελ−4−ε

as asserted.
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Now, we have all the ingredients, whi
h we shall use to prove Lemma 1.38.

Proof of Lemma 1.38. The estimate is trivial for p = ∞ and for N = 1. Hen
e, we may

assume 4 < p <∞ and N > 1.

From the 2π-periodi
ity of the exponential sum, we noti
e that we may assume I = [0, 2π] if
the 
onstant is adjusted depending on |I|. By a 
hange of variable, it su�
es to show

∫ 1

0

∣∣∣∣
∑

n∈Z
σne

2πi(n+b)2t

∣∣∣∣
p

dt =

∫ 1

0
|Fb(t)|p dt . Np−2.

We split the integration over [0, 1] into M and m. We 
onsider the minor ar
s �rst:

∫

m

|Fb(t)|p dt ≤
(
sup
t∈m

|Fb(t)|
)p−4

∫ 1

0
|Fb(t)|4 dt . (N1− ν

2 )p−4N2+ε . Np−2

provided 0 < ε ≤ ν
2 (p− 4). Here, we used Lemma 1.43 and Lemma 1.44.

For the major ar
s we write the Lp-norm in terms of the distribution fun
tion and apply

Lemma 1.45:

∫

M

|Fb(t)|p dt ≤ p

∫ 4N

0
λp−1

∣∣{t ∈ M : |Fb(t)| > λ
}∣∣ dλ . N2+ε

∫ 4N

0
λp−5−ε dλ . Np−2.

1.4 Riemannian manifolds

A brief introdu
tion to Riemannian manifolds and some statements that are needed later

are provided in this se
tion. From De�nition 1.46 to De�nition 1.50 we follow (sometimes

verbatim) Chapter 1 and Chapter 3 of the book [Jos11℄.

De�nition 1.46 (Manifold). A manifold M of dimension n is a 
onne
ted para
ompa
t

Hausdor� spa
e for whi
h every point has a neighborhood U that is homeomorphi
 to an

open subset Ω of R
n
. Su
h a homeomorphism

x : U → Ω

is 
alled a (
oordinate) 
hart. An atlas is a family {Uα, xα}α of 
harts for whi
h the Uα

onstitute an open 
overing of M . A 
ompa
t manifold is a manifold whi
h is 
ompa
t as a

topologi
al spa
e.

Remark.

(i) A point p ∈ Uα is determined by xα(p). Often the index α is omitted, and the 
om-

ponents of x(p) ∈ R
n
are 
alled lo
al 
oordinates of p. It is 
ustomary to write the

Eu
lidean 
oordinates of R
n
as

x = (x1, . . . , xn),

and these are 
onsidered as lo
al 
oordinates on M when x : U → Ω is a 
hart.

(ii) A 
ompa
t manifold has a �nite atlas {Uα, xα}α=1,...,K . ♦
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De�nition 1.47 (Di�erentiable manifold). An atlas {Uα, xα} on a manifold is 
alled di�er-

entiable or smooth if all 
hart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

are di�erentiable of 
lass C∞
.

Remark. If M and N are smooth manifolds, the Cartesian produ
t M × N also naturally


arries the stru
ture of a di�erentiable manifold. If {Uα, xα}α∈A and {Vβ , yβ}β∈B are atlases

for M and N , respe
tively, then {Uα × Vβ, (xα, yβ)}(α,β)∈A×B is a di�erentiable atlas for

M ×N . ♦

De�nition 1.48 (Tangent spa
e & derivative).

(i) Let x = (x1, . . . , xn) be Eu
lidean 
oordinates of R
n
, Ω ⊂ R

n
open, x0 ∈ Ω. The tangent

spa
e of Ω at the point x0,

Tx0Ω,

is the spa
e {x0} × E, where E is the n-dimensional ve
tor spa
e spanned by the basis

∂
∂x1

, . . . , ∂
∂xn .

(ii) If Ω ⊂ R
n
and Ω′ ⊂ R

m
are open, and f : Ω → Ω′

is di�erentiable, we de�ne the

derivative df(x0) for x0 ∈ Ω as the indu
ed linear map between the tangent spa
es

df(x0) : Tx0Ω → Tf(x0)Ω
′, v =

n∑

i=1

vi
∂

∂xi
7→

n∑

i=1

m∑

j=1

vi
∂f j

∂xi
(x0)

∂

∂f j
.

De�nition 1.49 (Riemannian manifold). A Riemannian metri
 on a di�erentiable manifold

M is given by a s
alar produ
t on ea
h tangent spa
e TpM whi
h depends smoothly on the

base point p ∈ M . A (smooth) Riemannian manifold is a di�erentiable manifold, equipped

with a Riemannian metri
.

Remark. In lo
al 
oordinates x = (x1, . . . , xn), a metri
 is represented by a positive de�nite,

symmetri
 matrix (
gij(x)

)
i,j=1,...,n

,

where the 
oe�
ients depend smoothly on x. Sin
e the smoothness does not depend on the


hoi
e of 
oordinates, smooth dependen
e on the base point p as required in De�nition 1.49


an be expressed in lo
al 
oordinates. [Jos11, pages 13�14℄ ♦

The produ
t of two tangent ve
tors v,w ∈ TpM with 
oordinate representations (v1, . . . , vn)
and (w1, . . . , wn), i.e. v =

∑n
i=1 v

i ∂
∂xi

and w =
∑n

j=1w
j ∂
∂xj

, then is

〈v,w〉 :=
n∑

i,j=1

gij
(
x(p)

)
viwj .

In parti
ular, 〈 ∂
∂xi
, ∂
∂xj

〉 = gij . Similarly, the length of v is given by

‖v‖ := 〈v, v〉 1
2 .

The integration of a smooth, 
ompa
t Riemannian manifold with boundary 
an now be easily

understood. The volume fa
tor √
g :=

√
det(gij)
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is used for the integration of fun
tions F : M → C,

∫

M
F (x)

√
g(x) dx1 . . . dxn.

The integral is independent of the 
hoi
e of the 
oordinate representation, see [Jos11, page 14℄.

The spa
e Lp(M) is de�ned as all fun
tions f : M → C for whi
h the following expression

exists and is �nite

‖f‖Lp(M) :=

(∫

M
|f(x)|p

√
g(x) dx1 . . . dxn

) 1
p

.

It is natural to de�ne the L2(M)-produ
t

〈f, h〉L2(M) :=

∫

M
f(x)h(x)

√
g(x) dx1 . . . dxn

for f, h ∈ L2(M) su
h that

‖f‖L2(M) = 〈f, f〉
1
2

L2(M)
.

We now extend the Eu
lidean Lapla
e operator ∆ =
∑n

j=1
∂2

∂x2j
to Riemannian manifolds. Let

M be a Riemannian manifold of dimension n with metri
 tensor gij in some lo
al 
oordinates

(x1, . . . , xn). Let f : M → C be a fun
tion on M . The gradient is de�ned as

∇gf :=
n∑

i,j=1

gij
∂f

∂xi
∂

∂xj
,

where (gij)i,j=1,...,n := (gij)
−1
i,j=1,...,n. One easily 
he
ks |∇gf | = |df |. Furthermore, the diver-

gen
e of a ve
tor �eld Z =
∑n

i=1 Z
i ∂
∂xi

is

divg Z :=
1√
g

n∑

j=1

∂

∂xj
(
√
gZj) =

1√
g

n∑

i,j=1

∂

∂xj

(√
ggij

〈
Z,

∂

∂xi

〉)
.

De�nition 1.50 (Lapla
e�Beltrami operator). The Lapla
e�Beltrami operator of a smooth

fun
tion f : M → C is de�ned as

∆gf := − divg∇gf = − 1√
g

n∑

i,j=1

∂

∂xj

(√
ggij

∂f

∂xi

)
.

In this thesis, we do not work with the de�nition of ∆g given in De�nition 1.50 but with the

properties of its spe
trum and eigenfun
tions: If M is assumed to be 
ompa
t, the spe
trum

σ(−∆g) = {λk}k∈N0 is dis
rete and positive, i.e. λk ≥ 0 for any k ∈ N0. By reordering the λk,
we may assume λk ≤ λk+1 for every k ∈ N0. Furthermore, λ0 = 0 and λk → +∞ as k → +∞.

There exist 
orresponding eigenfun
tions {ϕk}k whi
h de�ne a 
omplete orthonormal system

in L2(M). Hen
e, if Ek denotes the eigenspa
e 
orresponding to the eigenvalue λk for k ∈ N0,

then

L2(M) =

∞⊕

k=0

Ek,

i.e. for f ∈ L2(M) we have

f(x) =

∞∑

k=0

〈f, ϕk〉L2(M)ϕk(x),
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where the series 
onverges in L2(M). For more details on this, we refer to [Shu01, Se
tion 8.3℄,

[Tay11, Chapter 8℄, and [Jos11, Se
tion 3.2℄. Furthermore, let hk : L
2(M) → L2(M), hk(f) =

〈f, ϕk〉L2(M)ϕk denote the spe
tral proje
tor onto the eigenspa
e Ek. For later usage, we

de�ne the proje
tor

pn :=
∑

k∈N:
|√λk|∈[n−1,n)

hk

for n ∈ N. We �x a smooth, non-negative, even fun
tion η : R → [0, 1] with η(y) = 1 for

|y| ≤ 1 and supp η ⊆ (−2, 2) to de�ne a partition of unity. For a dyadi
 number N > 1, we
set

ηN (y) := η

( |y|
N

)
− η

(
2|y|
N

)
and η1(y) := η(|y|) (1.11)

for y ∈ R. Note that supp ηN ⊆ (−2N,−N/2) ∪ (N/2, 2N). For dyadi
 N ≥ 1 we de�ne the

smooth proje
tors of dyadi
 s
ale as

PN :=
∑

k∈N0

ηN (
√
λk)hk and P≤N :=

∑

M≤N
PM . (1.12)

Remark. The smooth proje
tors PN are bounded operators from Lp(M) to Lp(M) for any
1 < p <∞ [Tay74, Theorem 2.2℄. See also [SS89, Xu07℄ for more general results. ♦

Example 1.51.

(i) If M = T
n
, then the set of eigenvalues {λk}k∈N0 is given by {|ξ|2 : ξ ∈ Z

n}. The

eigenfun
tions are given as {x 7→ eix·ξ}ξ∈Zn
. [Zel08, Se
tion 2.3℄

(ii) If M = S
n
equipped with the standard metri
, then λk = k2 + (n − 1)k, k ∈ N0,

and the multipli
ity of the eigenvalue λk equals

2k+n−1
n−1

(k+n−2
k

)
. The eigenfun
tions to

the eigenvalue λk are the n-dimensional spheri
al harmoni
s of degree k. See [Tay11,

Chapter 8, Corollary 4.3℄ and [Zel08, Se
tion 2.3℄. ♦

The Sobolev spa
e Hs(M) 
an be de�ned now.

De�nition 1.52 (Sobolev spa
e Hs(M)). Let s ≥ 0. The Sobolev spa
e Hs(M) shall be

de�ned as Hs(M) := (1−∆g)
− s

2L2(M) endowed with the norm

‖f‖Hs(M) :=

( ∞∑

k=0

〈
√
λk〉2s‖hk(f)‖2L2(M)

)1
2

,

where 〈x〉 := (1 + |x|2) 1
2
.

Remark.

(i) Due to the L2
-orthogonality of the spe
tral proje
tors, we have

‖f‖Hs(M) ≈
(∑

N≥1

N2s‖PNf‖2L2(M)

) 1
2

.

(ii) Apparently the �rst 
omprehensive study of Sobolev spa
es on Riemannian manifolds

is due to Aubin [Aub76, Aub82℄. The idea is to repla
e partial derivatives in R
n
by


ovariant derivatives in order to de�ne Sobolev spa
es of integer order. Let ∇α with
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α = 1, . . . , n be the 
ovariant derivative with respe
t to a given lo
al 
hart. For a


omplex-valued smooth fun
tion and k ∈ N0 we de�ne

|∇kf |2 :=
n∑

α1,...,αk,β1,...,βk=1

gα1β1 · · · gαkβk∇α1 · · · ∇αk
f · ∇β1 · · · ∇βkf

In parti
ular, |∇0f | = |f | and |∇1f |2 = |∇f |. Then, for 1 ≤ p <∞ and k ∈ N0 one may

de�ne the Sobolev spa
eW k,p(M) as the 
ompletion of {h ∈ C∞(M) : ‖h‖W k,p(M) <∞}
with respe
t to the norm

‖f‖W k,p(M) :=

k∑

j=0

‖∇jf‖Lp(M).

In 1983, Stri
hartz [Str83℄ (mainly in Se
tion 4) introdu
ed fra
tional Sobolev spa
es

as Hs,p(M) := (1 − ∆g)
− s

2Lp(M) for 1 < p < ∞ and s ≥ 0. For k ∈ N0 these

spa
es 
oin
ide with W k,p(M), 
f. [Tri92, Se
tion 7.4.5℄. We refer the reader to [Tri92,

Chapter 7℄, [Aub98, Chapter 2℄, and [Heb99, Chapter 2�3℄ for more details.

(iii) Sobolev embeddings for W k,p(M) may be found in [Aub98, Theorem 2.20℄. In the 
ase

M = Tn, Sobolev embeddings for Hs(Tn) were studied in [ST87, Se
tion 3.5.5℄. ♦

We rely on the following linear spe
tral 
luster estimate in the L∞
-norm due to Sogge [Sog88,

Proposition 2.1℄ and some other immediate 
onsequen
es. Due to the obvious relation to

Bernstein's inequality, we sometimes refer to this as Bernstein's inequality in the sequel.

Lemma 1.53. Let M be a smooth, 
onne
ted, 
ompa
t manifold without boundary of dimen-

sion n ≥ 2.

(i) There exists C > 0 su
h that for all f ∈ L2(M) and any k ∈ N,

‖pkf‖L∞(M) ≤ Ck
n−1
2 ‖f‖L2(M).

(ii) Let 2 ≤ p ≤ ∞. There exists C > 0 su
h that for all f ∈ L2(M) and any dyadi
 N ≥ 1,

‖PNf‖Lp(M) ≤ CNn( 1
2
− 1

p
)‖PNf‖L2(M).

(iii) Let 2 ≤ q ≤ p ≤ ∞. There exists C > 0 su
h that for all f ∈ Lq(M) and any dyadi


N ≥ 1,

‖PNf‖Lp(M) ≤ CNn( 1
q
− 1

p
)‖PNf‖Lq(M).

Proof/Referen
e. The �rst inequality was proved in [Sog88, Proposition 2.1℄.

In order to prove the se
ond estimate, we �rst dedu
e from applying (i) and the Cau
hy�

S
hwarz inequality that (
f. [Her13, Lemma 3.4℄):

‖PNf‖L∞(M) ≤
2N∑

k=N/2

‖pk(PNf)‖L∞(M) .

2N∑

k=N/2

k
n−1
2 ‖PNf‖L2(M) . N

n
2 ‖PNf‖L2(M).

Now, an interpolation type argument yields the 
laim: Let

1
p = ϑ

2 , then

‖PNf‖Lp(M) ≤ ‖PNf‖ϑL2(M)‖PNf‖1−ϑL∞(M) . N
n( 1

2
− 1

p
)‖PNf‖L2(M).
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We are not aware of any proof of statement (iii), hen
e, we prove it here in detail. It su�
es

to prove the dual estimate

‖PNg‖Lq′ (M) ≤ CNn( 1
q
− 1

p
)‖PNg‖Lp′ (M) (1.13)

for all g ∈ Lp
′
(M) and any N ≥ 1. Indeed, assuming this, we de�ne P̃N := PN/2 + PN + P2N

for N > 1 and P̃1 := P1 + P2 and dedu
e

‖PNf‖Lp(M) = sup
g∈Lp′ (M):

‖g‖
Lp′ (M)

≤1

∣∣∣∣
∫

M
PNf(x)P̃Ng(x) dx

∣∣∣∣ ≤ sup
g∈Lp′(M):

‖g‖
Lp′ (M)

≤1

‖PNf‖Lq(M)‖P̃Ng‖Lq′ (M)

≤ CNn( 1
q
− 1

p
) sup
g∈Lp′ (M):

‖g‖
Lp′ (M)

≤1

‖PNf‖Lq(M)‖g‖Lp′ (M) ≤ CNn( 1
q
− 1

p
)‖PNf‖Lq(M).

The dual estimate (1.13) is a 
onsequen
e of the dual estimate of (ii),

‖PNg‖L2(M) ≤ CNn( 1
2
− 1

p
)‖PNg‖Lp′ (M),

and an interpolation type argument. Indeed, 
hoose 0 ≤ ϑ ≤ 1 su
h that

1
q′ =

ϑ
2 + 1−ϑ

p′ , then

‖PNg‖Lq′ (M) = ‖PNg‖ϑL2(M)‖PNg‖1−ϑLp′ (M)
≤ CNϑn( 1

2
− 1

p
)‖PNg‖Lp′ (M).

Noting that ϑn(12 − 1
p) = n(1q − 1

p) gives the desired result.

Burq�Gérard�Tzvetkov [BGT05a, Lemma 2.6℄ proved the following smallness of the produ
t

of four eigenfun
tions on M , where one of the 
orresponding eigenvalues is mu
h bigger than

the three others. We refer the reader to [Han12, Theorem 4.2℄ for a more general result.

Lemma 1.54. There exists K ≥ 1 su
h that for any γ ≥ 1 there exists Cγ > 0 su
h that for

any fj ∈ L2(M) and eigenvalues λkj ∈ σ(−∆g), j = 0, 1, 2, 3, with Kλkj ≤ λk0 , j = 1, 2, 3,

∣∣∣∣
∫

M
hk0(f0)(x)hk1(f1)(x)hk2(f2)(x)hk3(f3)(x) dx

∣∣∣∣ ≤ Cγ〈λk0〉−γ
3∏

j=0

‖fj‖L2(M).

Using this result, we may prove the following two 
rude Sobolev multipli
ation type inequal-

ities for the fra
tional Sobolev spa
es introdu
ed in De�nition 1.52. To our knowledge, the

following lemma has not been stated anywhere else in the literature. Hen
e, we give the

proof.

Lemma 1.55. Let n = 3, s > 0, and σ > 3
2 . Then there exists C > 0 su
h that the following

inequality holds true for all f, g ∈ Hs(M) ∩Hσ(M),

‖fg‖Hs(M) ≤ C
(
‖f‖Hs(M)‖g‖Hσ (M) + ‖f‖Hσ(M)‖g‖Hs(M)

)
.

Proof. Let K ≥ 1 be the 
onstant given in Lemma 1.54. Then, for λ ≥ 0 and a fun
tion

f ∈ L2(M) we de�ne

f≪λ :=
∑

ℓ∈N0:
Kλℓ≤λ

hℓ(f), f≫λ :=
∑

ℓ∈N0:
Kλ≤λℓ

hℓ(f), and f∼λ := f − f≪λ − f≫λ.
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Let us re
all the de�nition of the Hs
-norm

‖f‖Hs(M) =

( ∞∑

k=0

〈
√
λk〉2s‖hkf‖2L2(M)

) 1
2

.

Obviously, given k ∈ N0 we 
an de
ompose the produ
t

hk(fg) = f≪λkg≪λk + f∼λkg + fg∼λk − f∼λkg∼λk + f≪λkg≫λk + f≫λkg≪λk + f≫λkg≫λk .

Thanks to Lemma 1.54, we may estimate the terms f≪λkg≪λk , f≪λkg≫λk , and f≫λkg≪λk

easily. Indeed, the �rst term, for instan
e, 
an be treated in the following way:

∞∑

k=0

〈
√
λk〉2s‖hk(f≪λkg≪λk)‖2L2(M) ≤

∑

k≥0

〈
√
λk〉2s

( ∑

ℓ∈N0: Kλℓ≤λk,
m∈N0: Kλm≤λk

∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

)2

.

By duality, we may write

∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

= sup
v∈L2(M):

‖v‖L2(M)≤1

∣∣∣∣
∫

M
hℓ(f)(x)hm(g)(x)hk(v)(x) dx

∣∣∣∣.

Applying Lemma 1.54 with f3 = 1, whi
h is the eigenfun
tion 
orresponding to the eigenvalue

0, we get ∥∥hk
(
hℓ(f)hm(g)

)∥∥
L2(M)

.γ 〈λk〉−s−γ‖f‖L2(M)‖g‖L2(M).

By the Weyl asymptoti
, see e.g. [GS94, Chapter 12℄, summing over ℓ, m, and k yields

( ∞∑

k=0

〈
√
λk〉2s‖hk(f≪λkg≪λk)‖2L2(M)

) 1
2

. ‖f‖L2(M)‖g‖L2(M)

provided γ is su�
iently large. The terms f≪λkg≫λk and f≫λkg≪λk 
an be handled similarly.

To estimate the 
ontribution 
oming from fg∼λk , we pro
eed as follows:

∞∑

k=0

〈
√
λk〉2s‖hk(fg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖fg∼λk‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f‖2L∞‖g∼λk‖2L2

. ‖f‖2Hσ(M)‖g‖2Hs(M).

(1.14)

The same argument yields

∞∑

k=0

〈
√
λk〉2s‖hk(f∼λkg)‖2L2(M) . ‖f‖2Hs(M)‖g‖2Hσ(M).

Using ℓ1 ⊂ ℓ2 and Cau
hy�S
hwarz, we also estimate

∞∑

k=0

〈
√
λk〉2s‖hk(f∼λkg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f∼λk‖2L2(M)‖g∼λk‖2L∞(M)

. ‖f‖2Hs(M)

∞∑

k=0

‖g∼λk‖2L∞(M) . ‖f‖2Hs(M)‖g‖2Hσ(M),
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where in the last step we used

∞∑

k=0

‖g∼λk‖2L∞(M) .

∞∑

k=0

〈
√
λk〉3‖g∼λk‖2L2(M) . ‖g‖2Hσ (M).

Now, it remains to estimate the term f≫λkg≫λk . First, we note that it su�
es to 
onsider∑
ℓ∈N0: Kλk≤λℓ hℓ(f)g∼λℓ sin
e the other 
ontributions are bounded by C‖f‖L2(M)‖g‖L2(M),

whi
h 
an be proved using Lemma 1.54. We �nd that

∞∑

k=0

〈
√
λk〉2s

∥∥∥∥hk
( ∑

ℓ∈N0:
Kλk≤λℓ

hℓ(f)g∼λℓ

)∥∥∥∥
2

L2(M)

≤
∞∑

k=0

( ∑

ℓ∈N0:
Kλk≤λℓ

〈
√
λℓ〉s

∥∥hk
(
hℓ(f)g∼λℓ

)∥∥
L2(M)

)2

using the triangle inequality and λk ≤ λℓ. Hen
e,

( ∞∑

k=0

〈
√
λk〉2s

∥∥∥∥hk
( ∑

ℓ∈N0:
Kλk≤λℓ

hℓ(f)g∼λℓ

)∥∥∥∥
2

L2(M)

) 1
2

≤
∞∑

ℓ=0

〈
√
λℓ〉s

( ∞∑

k=0

∥∥hk
(
hℓ(f)g∼λℓ

)∥∥2
L2(M)

) 1
2

≤
∞∑

ℓ=0

〈
√
λℓ〉s‖hℓ(f)g∼λℓ‖L2(M).

Hölder's estimate, Bernstein's inequality, and Cau
hy�S
hwarz yield

∞∑

ℓ=0

〈
√
λℓ〉s‖hℓ(f)g∼λℓ‖L2(M) .

∞∑

ℓ=0

〈
√
λℓ〉s+

3
2 ‖hℓ(f)‖L2(M)‖g∼λℓ‖L2(M) . ‖f‖Hs(M)‖g‖Hσ(M),

whi
h �nishes the proof.

Remark. On R
n
Lemma 1.55 is known to hold if one repla
es Hσ

by L∞
, see e.g. [Tay00,

page 104, formula (0.22)℄. ♦

A similar result holds if we assume that one fun
tion is more regular than the other.

Lemma 1.56. Let n = 3, s > 0, and σ > 3
2 . Then there exists C > 0 su
h that the following

inequality holds true for all f ∈ Hs(M) and g ∈ Hs+σ(M),

‖fg‖Hs(M) ≤ C
(
‖f‖Hs(M)‖g‖Hσ(M) + ‖f‖L2(M)‖g‖Hs+σ(M)

)
.

Proof. We highlight the di�eren
es to the proof of Lemma 1.55.

All estimates in the previous proof are su�
ient ex
ept of (1.14). This inequality may be

repla
ed by

∞∑

k=0

〈
√
λk〉2s‖hk(fg∼λk)‖2L2(M) ≤

∞∑

k=0

〈
√
λk〉2s‖f‖2L2(M)‖g∼λk‖2L∞(M) ≤ ‖f‖2L2(M)‖g‖2Hs+σ(M),

where we used Bernstein's inequality.

1.5 Dispersion

The S
hrödinger equation is one of the most studied dispersive equations. We provide a brief

introdu
tion to dispersive equations in this se
tion. A short introdu
tion to the NLS on the

Eu
lidean spa
e and on 
ompa
t manifolds is given and we 
ontinue the dis
ussion about

di�eren
es in the study on those domains that was stated in the Introdu
tion.
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1.5.1 Dispersive equations

We follow the ni
e introdu
tion given by Nata²a Pavlovi¢ and Nikolaos Tzirakis at the MSRI

Summer Graduate S
hool �Dispersive Partial Di�erential Equations� in 2014 [PT14℄. Consider

a partial di�erential equation on R
n
without boundary 
onditions. Informally speaking, this

partial di�erential equation is said to be dispersive if its solutions spread out in spa
e as they

evolve in time. We give another 
hara
terization after the following example that 
an be

found in [PT14, pages 1�2℄.

Example 1.57. The linear homogeneous S
hrödinger equation on the real line is given by

i∂tu+ ∂xxu = 0,

where u : R×R → C is a fun
tion. We are looking for a simple wave solution, i.e. for u of the

form

u(t, x) = Cei(kx−ωt).

By plugging this into our equation, we see that u satis�es the equation if and only if ω = k2.
Hen
e, the frequen
y is a real-valued fun
tion of the wave number k. If we denote the phase
velo
ity by v(k) := ω

k , then

u(t, x) = Ceik(x−v(k)t).

From this, we see that the wave travels with velo
ity k and that waves 
orresponding to large

wave numbers k propagate faster than waves belonging to small wave numbers.

If we 
hoose the same wave solution ansatz for the heat equation,

∂tu+ ∂xxu = 0,

then we obtain iω = k2. Therefore, the solutions de
ay exponentially in time. Using this

ansatz, one 
an also see that the transport equation ∂tu − ∂xu = 0 and the one-dimensional

wave equation ∂ttu− ∂xxu = 0 have traveling waves with 
onstant velo
ity. ♦

Dispersive equations may also be 
hara
terized by the support of the spa
e-time Fourier

transform of their solutions. If the spa
e-time Fourier transform is supported on hyper-

surfa
es that have non-vanishing Gaussian 
urvature, we 
all the partial di�erential equation

dispersive. The following example 
an be found in [PT14, page 2℄.

Example 1.58. Consider the linear homogeneous S
hrödinger equation on R
n

i∂tu+∆u = 0.

The spa
e-time Fourier transform ful�lls

τpu(τ, ξ)− |ξ|2pu(τ, ξ) = (τ − |ξ|2)pu(τ, ξ) = 0.

Hen
e, pu is supported on the paraboloid

{(τ, ξ) ∈ R×R
n : τ = |ξ|2},

whi
h has non-vanishing Gaussian 
urvature.

The linear wave equation ∂ttu − ∆u = 0 on R
n
, on the 
ontrary, is supported on the 
one

{(τ, ξ) ∈ R×R
n : τ = |ξ|}, whi
h has one dire
tion in whi
h the prin
ipal 
urvature vanishes.

♦
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Adding some nonlinear e�e
ts to a dispersive equation, like

i∂tu+∆u+ |u|p−1u = 0

for some p > 1, makes the analysis of this equation mu
h harder. If u is very small, then

solutions to this equation behave almost like linear solutions sin
e the linear term dominates

the nonlinear term. However, if u is large, then the nonlinear term dominates and may 
ause


on
entration or blow-up in �nite time. In general, one expe
ts a 
ompetition between the

dispersion and the nonlinearity.

Some popular examples of nonlinear dispersive equations are

•
the nonlinear S
hrödinger equation

i∂tu+∆u− |u|p−1u = 0, u : R× R
n → C, p > 1,

•
the Korteweg�de Vries equation

∂tu+ ∂xxxu+ u∂xu = 0, u : R× R → R,

•
the nonlinear Klein�Gordon equation

∂ttu−∆u+ u+ |u|p−1u = 0, u : R× R
n → R.

The �rst two equations illustrate well in whi
h di�erent ways the nonlinearities and the disper-

sion intera
t. On the one hand, the global energy solution to the NLS as stated above satis�es

a 
ertain de
ay in time, see e.g. [CKS

+
08, Theorem 1.1℄ on R

3
, that weakens the in�uen
e of

the nonlinear term. Hen
e, for large times the dynami
s of the NLS may be 
ompared with

the linear problem (s
attering property) [SS99, Theorem 3.21℄. On the other hand, this is not

possible for the Korteweg�de Vries equation. Indeed, the dispersion and the nonlinearity are

balan
ed in su
h a way that there are solitary waves solutions. These are waves that keep

its form and size and just translate as time evolves [LP15, formula (7.6)℄. Hen
e, a similar

s
attering e�e
t 
annot be present for solutions to this equation.

A partial di�erential equation whi
h is posed on some 
ompa
t Riemannian n-manifold with-

out boundary is 
alled dispersive if the 
orresponding equation on R
n
is dispersive. In this

setting, we expe
t a di�erent behavior. The reason is that due to the 
ompa
tness of the

domain, the dispersion is limited. How this 
an be understood is addressed in the next sub-

se
tion.

1.5.2 The S
hrödinger equation

Some basi
 fa
ts about the linear and the nonlinear S
hrödinger equation on R
n
are brie�y

introdu
ed and the terms (energy-)
riti
al and (energy-)sub-
riti
al are de�ned. Then, both

the linear and the nonlinear S
hrödinger equation on 
ompa
t manifolds are 
onsidered and

related to the respe
tive equation on Eu
lidean domains.
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Eu
lidean domains

First, we 
onsider the linear equation. For φ ∈ S(Rn) the fun
tion

eit∆φ(x) := F−1
Rn

(
e−i| · |

2tpφ
)
(x) =

1

(4πit)
n
2

∫

Rn

ei
|x−y|2

4t φ(y) dy, t 6= 0,

solves the linear S
hrödinger equation

{
i∂tu+∆u = 0 in R× R

n

u(0, · ) = φ on R
n.

We refer the reader to [Caz03, Lemma 2.2.4℄ for more details. From the de�nition of the

solution formula, it is obvious that the L2
-norm of the solution is 
onserved in time, i.e.

‖eit∆φ‖L2(Rn) = ‖φ‖L2(Rn) for any t ∈ R. Moreover, the solution satis�es the so 
alled

dispersive estimate:

‖eit∆φ‖L∞(Rn) ≤ (4π|t|)−n
2 ‖φ‖L1(Rn).

These two observations imply, by interpolation, the well-known estimate [Caz03, Proposi-

tion 2.2.3℄

‖eit∆φ‖Lq(Rn) ≤ (4π|t|)−n(
1
2
− 1

q
)‖φ‖Lq′ (Rn), φ ∈ Lq

′
(Rn), (1.15)

where q′ is the 
onjugated Hölder exponent of 2 ≤ q ≤ ∞. From this, it is not hard to see that

the S
hrödinger �ow does not preserve any Lp(Rn)-norm other than the L2(Rn)-norm. The

estimate (1.15) is the fundamental ingredient to the important Stri
hartz estimates [Caz03,

Theorem 2.3.3℄

‖eit∆φ‖Lp(R,Lq(Rn)) ≤ C‖φ‖L2(Rn), φ ∈ L2(Rn), (1.16)

whi
h hold for every S
hrödinger admissible pair (p, q). These are pairs (p, q) that ful�ll

2
p = n

(
1
2 − 1

q

)
with 2 ≤ p, q ≤ ∞ and (p, q, n) 6= (2,∞, 2). These estimates are named after

Robert Stephen Stri
hartz (born 1943) who proved the inequality in the 
ase p = q [Str77℄.

Further 
ontributions 
ame from [GV84, Yaj87, KT98℄. On the other hand, for fun
tions

f ∈ L2(Rn) with supp pf ⊆ [−N,N ]n, Bernstein's inequality, see e.g. [Tao06, formula (A.6)℄,

implies

‖eit∆f‖L∞(R×Rn) . N
n
2 ‖f‖L2(Rn).

By interpolation with the Lpt,x-estimate for p = 2(n+2)
n given by (1.16), one obtains for f ∈

L2(Rn) with supp pf ⊆ [−N,N ]n,

‖eit∆f‖Lp(R×Rn) . N
n
2
−n+2

p ‖f‖L2(Rn) (1.17)

for

2(n+2)
n ≤ p ≤ ∞.

Equipped with these Stri
hartz estimates, one may study well-posedness results for the non-

linear equation {
i∂tu+∆u = α|u|p−1u in R× R

n

u(0, · ) = φ on R
n,

(1.18)

where φ ∈ Hs(Rn) for some s ∈ R. If α = 1 the equation is 
alled defo
using and if α = −1
it is 
alled fo
using. One major question in the well-posedness theory is: for whi
h s ∈ R 
an

one expe
t reasonable solutions? The s
aling symmetry of (1.18) is important for answering

this question. If λ > 0 and u a solution to (1.18), then

uλ(t, x) := λ
2

p−1u(λ2t, λx)
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is also a solution to the same equation with initial data φλ(x) := λ
2

p−1φ(λx). It is easy to


ompute that

‖φλ‖Ḣs(Rn) = λs−sc‖φ‖Ḣs(Rn), sc :=
n

2
− 2

p− 1
. (1.19)

Hen
e, for n = 3 and p = 5 the Sobolev spa
e Ḣ1(R3) is s
aling invariant. For �xed s ∈ R we

now study the behavior if λ→ 0 [PT14, Se
tion 2.1℄:

•
If s > sc, then the Ḣs

-norm of the initial data φλ de
reases as λ → 0. At the same

time, the time interval on whi
h the solution uλ is de�ned in
reases. For well-posedness

results this is the best s
enario. Whenever s is in this range, then the equation is 
alled

(s
aling-)sub-
riti
al or Hs(Rn)-sub-
riti
al.

•
If s = sc, then the Ḣs

-norm of φλ does not 
hange as λ tends to zero, but the time

interval still magni�es for in
reasing λ. In many 
ases, lo
al or even global well-posedness

results hold true but in most 
ases one has to work harder than in the sub-
riti
al 
ase.

This 
ase is 
alled (s
aling-)
riti
al or Hs(Rn)-
riti
al.

•
If s < sc, the Ḣ

s
-norm of the res
aled initial data grows while the time interval magni�es

as λ → 0. This is the worst 
ase s
enario, and we 
an not expe
t even lo
ally de�ned

strong solutions. For those s, the equation is 
alled (s
aling-)super-
riti
al or Hs(Rn)-
super-
riti
al.

Another important invarian
e is the Galilean invarian
e: If u is a solution to (1.18) and

v ∈ R
n
is a ve
tor, then

uv(t, x) := e−i(x·v+t|v|
2)u(t, x+ 2vt)

is a solution to this equation with initial data φv(x) := e−ix·vφ(x) [SS99, formula (2.3.14)�

(2.3.16)℄.

The L2
-mass and the energy of the solution are de�ned as

MRn(u)(t) :=

∫

Rn

|u(t, x)|2 dx

and

ERn(u)(t) :=
1

2

∫

Rn

|∇u(t, x)|2 dx+
α

p+ 1

∫

Rn

|u(t, x)|p+1 dx,

respe
tively. By multiplying the equation by u, integrating over Rn, and taking the imaginary

part, one formally 
omputes 
onservation of the L2
-mass, i.e.

d

dt
MRn(u)(t) = 0.

Similarly, multiplying (1.18) by ∂tu, integrating, and taking the real part (formally) shows

that the energy is 
onserved as well, i.e.

d

dt
ERn(u)(t) = 0.

There are many other invarian
es and 
onserved quantities su
h as invarian
e in time and spa
e

translation, the Gauge invarian
e, the pseudo-
onformal invarian
e, and the 
onservation of

the linear momentum to name just a few. For details about these and more invarian
es, we

refer to [SS99, Se
tion 2.3℄.

For p = 5 and n = 3 one easily 
al
ulates that for any λ > 0,

ER3(φλ) = ER3(uλ)(0) = ER3(u)(0) = ER3(φ).

Together with (1.19), we observe that the energy and the Ḣ1(R3)-norm s
ale equally. For this

reason, the H1(R3)-
riti
al NLS is also 
alled energy-
riti
al.
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Compa
t manifolds as a domain

The nonlinear S
hrödinger equation posed on a boundaryless 
ompa
t manifold behaves di�er-

ently. After dis
ussing a few of those di�eren
es in the introdu
tion, we want to 
ontinue this

now. For that purpose, let (M,g) be a smooth, boundaryless, 
ompa
t Riemannian manifold

of dimension n ≥ 1 with metri
 g. We shall use the notation introdu
ed in Se
tion 1.4.

As above, we �rst 
onsider the linear S
hrödinger equation

{
i∂tu+∆gu = 0 in I ×M

u(0, · ) = φ on M,

where φ ∈ Hs(M) for some s ≥ 0 and I is an interval around zero. The unique solution is

given by

eit∆gφ(x) :=
∞∑

k=0

e−itλk(hkφ)(x), (1.20)

where the series 
onverges in the L2(M)-sense. From the orthogonality of {hkφ}k∈N0 , we

immediately infer the 
onservation of the L2
-norm:

‖eit∆gφ‖2L2(M) =
∞∑

k=0

‖hkφ‖2L2(M) = ‖φ‖2L2(M).

Now, it is natural to ask whether a dispersive estimate like (1.15) 
an hold. However, due

to the non-dispersive nature of the geometry, this is not the 
ase. It is easy to 
onstru
t a


ontradi
tion if we assume

‖eit∆gφ‖Lq(M) ≤
C

|t|ν ‖φ‖Lq′ (M)

to hold for some ν > 0, q > 2, and its 
onjugated Hölder exponent q′ < 2. Indeed,

‖eit∆gφ‖L2(M) ≤ |M |
1
2
− 1

q ‖eit∆gφ‖Lq(M) ≤
C

|t|ν |M |
1
2
− 1

q ‖φ‖Lq′ (M) ≤
C

|t|ν |M |1−
2
q ‖φ‖L2(M)

sin
e M is 
ompa
t. For large |t| this obviously 
ontradi
ts the 
onservation of the L2
-norm.

This raises the question how Stri
hartz estimates look like. Burq�Gérard�Tzvetkov [BGT04,

Theorem 1℄ proved for a Stri
hartz admissible pair (p, q) with p ≥ 2 and q < ∞ that for any

�nite time interval I,

‖eit∆gφ‖Lp(I,Lq(M)) .I ‖φ‖
H

1
p (M)

. (1.21)

Compared to (1.16) there is a loss of

1
p derivatives, but 
orresponds to half the loss of the trivial

estimate given by Sobolev's embedding H2/p(M) = Hn/2−n/q(M) →֒ Lq(M). Inequality

(1.21) is not s
ale invariant and therefore not su�
ient for proving 
riti
al results. S
ale

invariant improvements of this Stri
hartz estimate are known on a few manifolds. On the

three-dimensional sphere, for instan
e, the s
ale invariant Stri
hartz estimate

‖PNeit∆gφ‖Lp(I×S3) . N
3
2
− 5

p ‖φ‖L2(S3)

is known to be true for p > 4, see [BGT07, Proposition 5.5.1℄ and [Her13, Lemma 3.5℄

2

. This


orresponds to inequality (1.17) with exa
tly the same power of N . Similar estimates are also

2

More generally, the aforementioned authors proved the s
ale invariant Stri
hartz estimate to hold true for

an arbitrary Zoll manifold.
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known for re
tangular tori and for produ
ts of spheres, whi
h are addressed in Se
tion 2.3

and Se
tion 2.5, respe
tively.

Now, we turn to the nonlinear equation

{
i∂tu+∆gu = α|u|p−1u in I ×M

u(0, · ) = φ on M,
(1.22)

where φ ∈ Hs(M) and s ≥ 0. Another 
on
ept that does not work on 
ompa
t manifolds

without boundary is s
aling. Therefore, we have to de�ne the meaning of sub-
riti
al, 
riti
al,

and super-
riti
al. We 
all (1.22) 
riti
al if the 
orresponding equation posed on R
n
is 
riti
al.

The terms sub-
riti
al, super-
riti
al, and energy-
riti
al are de�ned analogously.

By similar arguments as in the previous subse
tion, one may show that the L2
-mass

M(u)(t) :=

∫

M
|u(t, x)|2 dx (1.23)

and the energy

E(u)(t) :=
1

2

∫

M
|∇gu(t, x)|2 dx+

α

p+ 1

∫

M
|u(t, x)|p+1 dx (1.24)

are 
onserved.

Remark. Note that due to the 
ompa
tness ofM , the spa
es Lp(M) are nested in ea
h other.

Hen
e, every su�
iently smooth solution u to the defo
using equation permits the following

a priori bound:

‖u(t)‖2H1(M) = ‖u(t)‖2L2(M) + ‖∇u(t)‖2L2(M) . ‖u(t)‖2L6(M) + E
(
u(t)

)
. E

(
u(t)

) 1
3 + E

(
u(t)

)
.
♦

Depending on the manifold, there might be other invarian
es. The Galilean invarian
e, for

instan
e, holds on re
tangular tori, see Lemma 2.10 for an appli
ation, but not on general


ompa
t manifolds without boundary.

As mentioned in the introdu
tion, the la
k of dispersion and important mathemati
al tools,

su
h as the Fourier transform, require new ideas for studying well-posedness results. In the

next two se
tions we present methods to over
ome these di�
ulties on spe
i�
 manifolds,

namely re
tangular tori and produ
ts of spheres.





2 Lo
al and small data global well-posedness

After a few preliminary remarks in Se
tion 2.1, we prove a 
onditional lo
al and small data

global well-posedness result for the energy-
riti
al nonlinear S
hrödinger equation posed on

a three-dimensional, 
ompa
t, 
onne
ted, smooth Riemannian manifold without boundary

in Se
tion 2.2. This 
onditional result was developed in re
ent years without a noteworthy


ontribution of the present author.

The remainder of this se
tion is devoted to results that are due to the author. The as-

sumption for the 
onditional well-posedness result is veri�ed in the 
ase of re
tangular tori

(Se
tion 2.3) and on produ
ts of spheres (Se
tion 2.5). Moreover, Se
tion 2.4 provides a mul-

tilinear Stri
hartz estimate, whi
h implies a s
aling-
riti
al lo
al well-posedness result for the

NLS on two-dimensional tori. The aforementioned results on tori have been published in

[Str14℄, the result on produ
ts of spheres extends a previously published result of the author

and Sebastian Herr [HS15℄.

2.1 Preliminary remarks

Well-posedness of the nonlinear S
hrödinger equation on R
n
has been studied extensively.

We give an overview of some important results on the Eu
lidean spa
e to be able to put the

results on 
ompa
t manifolds into 
ontext.

2.1.1 Relevant results on the Eu
lidean spa
e

We give a brief review over important results for the NLS on R
3
with initial data in H1(R3).

Several sub-
riti
al well-posedness results have been obtained amongst other by Ginibre�Velo

[GV79, GV85℄, Kato [Kat87℄, Cazenave�Weissler [CW88℄. In 1989, Cazenave�Weissler [CW89℄


onsidered the energy-
riti
al 
ase and proved that both the fo
using and defo
using quinti


NLS are lo
ally well-posed for any initial data in H1(R3). If the energy of the initial data

are small, then the solution is known to exist even globally in time. However, sin
e the time

of existen
e given by the lo
al theory depends on the pro�le of the data, the argument in

[CW89℄ does not extend to yield global well-posedness for large initial data.

Studying large data well-posedness for the energy-
riti
al defo
using nonlinear S
hrödinger

equation posed on the Eu
lidean spa
e R
3
is deli
ate. Bourgain [Bou99℄ was the �rst who

proved global well-posedness, though, under the additional assumption that the initial data

are radial. Shortly after, Grillakis [Gri00℄ gave a di�erent proof under the same spheri
al

symmetry assumption. In 2008, Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄ �nally

removed the spheri
al symmetry assumption and proved that the defo
using quinti
 NLS

is even globally well-posed for arbitrarily large initial data in H1(R3). In 2003, Christ�

Colliander�Tao [CCT03, Theorem 1℄ proved that the quinti
 NLS fails to be well-posed in

Hs(R3) for any s < 1. Moreover, they proved that the energy-super-
riti
al fo
using and

defo
using NLS fails to be well-posed in H1(R3). Therefore, the well-posedness theory of

quinti
 NLS in R
3
is 
omplete.
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More details may be found in the monographs [SS99, Caz03, Tao06, LP15℄.

2.1.2 Sele
ted results on 
ompa
t manifolds

The study of well-posedness results on manifolds is quite new and started with a fundamental

work on the domain T
n
by Bourgain [Bou93a℄ in 1993. Before we turn to the study of spe
i�


manifolds, we 
olle
t a few results that are known to hold on every 
ompa
t Riemannian

manifold. In the following we assume any manifold (M,g) to be a 
ompa
t, 
onne
ted, smooth

Riemannian manifold without boundary. Due to the di�erent behavior of the eigenfun
tions

and the eigenvalues (see Introdu
tion), it is hard to establish results that hold true on large


lasses of manifolds or even on any manifold.

Early work has been done by Sogge [Sog88℄ who proved bounds on the Lp-norm of spe
tral


lusters for se
ond-order ellipti
 operators on 
ompa
t manifolds. One of his results that is

relevant for our study is the following sharp Bernstein type inequality [Sog88, Theorem 2.2℄

1

:

Let 2 ≤ p ≤ ∞, then for every f ∈ L2(M) and any k ∈ N,

‖pkf‖Lp(M) . k
n( 1

2
− 1

p
)‖pkf‖L2(M)

holds true.

As mentioned earlier Burq�Gérard�Tzvetkov [BGT04, Theorem 1℄ proved the Stri
hartz esti-

mate (1.21). Be
ause of the loss of

1
p derivatives 
ompared to the s
ale invariant version, one


an not 
on
lude 
riti
al well-posedness results from this estimate. However, this estimate is

strong enough to gain global well-posedness in H1
of the three-dimensional 
ubi
 defo
using

nonlinear S
hrödinger equation on any manifold with the properties above, see [BGT04, The-

orem 3℄. They even established a similar result for any two-dimensional manifold, 
f. [BGT04,

Theorem 2℄. The two-dimensional result was later extended by Hani [Han12℄ who proved that

the defo
using 
ubi
 NLS on two-dimensional manifolds M is globally well-posed in Hs(M)
for s > 2

3 .

Bilinear and trilinear generalizations of Sogge's spe
tral 
luster estimate have been obtained

by Burq�Gérard�Tzvetkov [BGT05a, BGT05b℄. Although these estimates hold true on every

manifold M , they only led to good results on manifolds that are spe
trally 
lose to spheres

[BGT05a, BGT05b, Her13, HS15℄.

General four-dimensional manifolds with Hartree-type nonlinearities has been studied by

Gérard�Pierfeli
e [GP10, Theorem 1℄.

We want to emphasize that apart from [Her13, HS15℄ none of the above results are s
aling-


riti
al. Due to the pre
ise knowledge of the spe
trum and eigenfun
tions, mu
h more re-

sulfts (even 
riti
al) have been a

omplished on spe
i�
 manifolds. These are summarized in

Se
tion 2.3, Se
tion 2.5, and Se
tion 2.6.

Laurent Thomann [Tho08, Theorem 1.4℄ established an analogue of Christ�Colliander�Tao's

ill-posedness result on general analyti
 manifolds. He proved that there is a sequen
e of times

tn → 0 and a sequen
e of smooth Cau
hy data with de
reasing support and de
reasing Hs
-

norm for s < 1 su
h that the solution to both the fo
using and defo
using quinti
 NLS at time

tn blows up in the Hs
-norm as n tends to in�nity. Moreover, he showed that the fo
using and

defo
using super-quinti
 NLS fails to be well-posed in H1
. Hen
e, obtaining energy-
riti
al

well-posedness results is of parti
ular interest.

1

A
tually, Sogge proved the dual estimate.
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2.2 A 
onditional lo
al and small data global well-posedness

result

A 
onditional lo
al and small data global well-posedness result is addressed in this se
tion. It

is shown that the energy-
riti
al NLS on any three-dimensional, 
ompa
t, 
onne
ted, smooth

Riemannian manifold without boundary is well-posed provided the trilinear Stri
hartz esti-

mate given in Assumption 2.1 holds. Moreover, the ne
essity of Assumption 2.1 is dis
ussed.

2.2.1 Su�
ien
y of the 
ondition

The result dis
ussed in this subse
tion was proved in [HS15, Se
tion 3℄ building on earlier

results [HTT11, Her13℄ and the standard 
ontra
tion mapping prin
iple. We would like to

point out that this was essentially a 
ontribution of Sebastian Herr and not of the author of

the present thesis. We take the opportunity to review the 
omplete argument and to expand

it to a 
omplete proof.

Let (M,g) be a three-dimensional, 
ompa
t, 
onne
ted, smooth Riemannian manifold without

boundary. The Cau
hy problem

{
i∂tu+∆gu = ±|u|4u

u(0, · ) = φ
(2.1)

with initial data in φ ∈ Hs(M) for s ≥ 1 is studied. The aim of this subse
tion is to

prove existen
e and uniqueness of a solution u in a suitable fun
tion spa
e and its Lips
hitz


ontinuous dependen
e on the initial data provided a 
ertain trilinear Stri
hartz estimate

holds true.

In the sequel, we use the notation introdu
ed in Se
tion 1.4 and Se
tion 1.5.2, and we as-

sume:

Assumption 2.1. There exist an interval τ0 ⊇ [0, 1) and δ > 0 su
h that for all φ1, φ2, φ3 ∈
L2(M) and dyadi
 numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds true:

∥∥∥∥
3∏

j=1

PNje
it∆gφj

∥∥∥∥
L2(τ0×M)

.

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(M). (2.2)

This inequality has been proved for the �at standard torus by Herr�Tataru�Tzvetkov [HTT11,

formula (26)℄ and for arbitrary re
tangular tori by the author of this thesis [Str14, Proposi-

tion 4.1℄. Furthermore, Herr [Her13℄ veri�ed Assumption 2.1 on Zoll manifolds. The veri�
a-

tion of this trilinear Stri
hartz estimate for S × S
2
in [HS15, Proposition 2.6℄ was essentially

a 
ontribution of the present author.

2

We review the author's proof of Assumption 2.1 for

re
tangular tori in Se
tion 2.3. Moreover, in Se
tion 2.5, we give the �rst proof of (2.2) for

M = S× S
2
ρ, where S

2
ρ is the embedded sphere of radius ρ > 0 in R

3
, whi
h extends the result

given in [HS15℄.

2

Note that in the 
ase of Zoll manifolds and S×S
2
spe
tral proje
tors with sharp 
ut-o�s have been used, say

P
#
N , and hen
e, (2.2) holds only for those proje
tors. However, from the L2

-boundedness of these sharp

proje
tors and from the identity P
#
N = PN/2 + PN + P2N , it is easy to see that this implies (2.2) with

smooth 
ut-o� proje
tors as stated in Assumption 2.1.
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Suitable fun
tion spa
es based on Up and V p
, whi
h are 
ru
ial in the study of 
riti
al

well-posedness problems on 
ompa
t manifolds, have �rst been 
onstru
ted by Herr�Tataru�

Tzvetkov [HTT11, De�nitions 2.6�2.7℄. They de�ned similar fun
tion spa
es as Xs
and Y s

below but with unit s
ales instead of dyadi
 s
ales. In [Her13, De�nition 2.3℄, Herr introdu
ed

resolution spa
es with dyadi
 s
ales (su
h as Xs
and Y s

below) and used them to establish

well-posedness on three-dimensional Zoll manifolds. In [HS15, Se
tion 3℄, Sebastian Herr �-

nally observed that given Assumption 2.1, lo
al and small data global well-posedness 
an be

proved for every 
ompa
t, 
onne
ted, smooth, boundaryless, three-dimensional Riemannian

manifold using the same dyadi
 s
ale resolution spa
es Xs
and Y s

on every manifold. This

uni�es the well-posedness results in [HTT11, Her13, Str14, HS15℄.

Following [HS15, Se
tion 3℄, we work with the following resolution spa
es.

De�nition 2.2 (Resolution spa
es). Let s ∈ R.

(i) The spa
e Xs
is de�ned as the spa
e of all u : R → Hs(M) su
h that e−it∆gPNu ∈ U2

for all dyadi
 N ≥ 1 and

‖u‖Xs :=

(∑

N≥1

N2s‖e−it∆gPNu‖2U2
t

) 1
2

< +∞.

(ii) The spa
e Y s
is de�ned as the spa
e of all u : R → Hs(M) su
h that e−it∆gPNu ∈ V 2

for all dyadi
 N ≥ 1 and

‖u‖Y s :=

(∑

N≥1

N2s‖e−it∆gPNu‖2V 2
t

)1
2

< +∞.

(iii) For an interval τ ⊂ R we denote by Xs(τ) and Y s(τ) the restri
tion spa
es

Xs(τ) :=

{
u : τ → Hs(M) : ‖u‖Xs(τ) := inf

v∈Xs:
v·1τ=u·1τ

‖v‖Xs < +∞
}

respe
tively

Y s(τ) :=

{
u : τ → Hs(M) : ‖u‖Y s(τ) := inf

v∈Y s:
v·1τ=u·1τ

‖v‖Y s < +∞
}
.

Remark.

(i) Obviously, given a fun
tion u : R → Hs(M), u ∈ Xs(τ) should be understood as u
∣∣
τ
∈

Xs(τ) and ‖u‖Xs(τ) = ‖u
∣∣
τ
‖Xs(τ). The same should apply to Y s(τ).

(ii) Note that in 
ontrast to [HS15℄, the spa
es are de�ned using smooth 
ut-o� proje
tors.

This requires an additional argument in the proof of Lemma 2.5. ♦

The aim of this subse
tion is the veri�
ation of the subsequent theorem, whose formulation is

taken from [Her13, Theorem 4.1℄. In the following, for φ∗ ∈ H1(M) and ε > 0 we denote by

Bε(φ∗) the open ball in H1(M) with 
enter φ∗ and radius ε, i.e.

Bε(φ∗) := {φ ∈ H1(M) : ‖φ− φ∗‖H1(M) < ε}.

Theorem 2.3. Let (M,g) be a three-dimensional, 
ompa
t, 
onne
ted, smooth Riemannian

manifold without boundary and let s ≥ 1. Furthermore, assume that Assumption 2.1 holds

true. Then:
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Lo
al well-posedness. For every φ∗ ∈ H1(M) there exist ε > 0 and T = T (φ∗) > 0 su
h

that the following holds true:

(i) For all initial data φ ∈ Bε(φ∗) ∩ Hs(M) the Cau
hy problem (2.1) has a unique

solution

u =: Φ(φ) ∈ C
(
[0, T ),Hs(M)

)
∩Xs

(
[0, T )

)
.

(ii) The solution 
onstru
ted in (i) obeys the 
onservation laws (1.23) and (1.24), and

the �ow map

Φ: Bε(φ∗) ∩Hs(M) → C
(
[0, T ),Hs(M)

)
∩Xs

(
[0, T )

)

is Lips
hitz 
ontinuous.

Small data global well-posedness. With φ∗ = 0 there exists ε0 > 0 su
h that for all T > 0
the assertions (i) and (ii) above hold true.

First, we state some well-known results about the fun
tion spa
es Xs
and Y s

.

Proposition 2.4 (Properties of Xs
and Y s

). Let τ = [a, b) ⊂ R be a bounded time interval.

(i) For s ∈ R it holds that

Xs →֒ Y s →֒ L∞(R,Hs(M))

and

Xs(τ) →֒ Y s(τ) →֒ L∞(τ,Hs(M)).

(ii) In addition, assume that 0 ∈ τ . Let s ≥ 0 and φ ∈ Hs(M), then we have that eit∆gφ ∈
Xs(τ) and

‖eit∆gφ‖Xs(τ) . ‖φ‖Hs(M).

(iii) Suppose u ∈ Y s
for some s ∈ R. Then,

(∑

N≥1

N2s‖PNu‖2Y 0

) 1
2

. ‖u‖Y s .

The 
orresponding statement also holds for Y s(τ).

Proof. The embeddings given in (i) follow immediately from the embeddings

Up →֒ V p →֒ L∞(R, L2(M))

in Proposition 1.23 (v). Note that Up →֒ L∞(R, L2(M)) and V p →֒ L∞(R, L2(M)) hold with


onstant one, 
f. Proposition 1.21 (iii) and Proposition 1.23 (iii).

Claim (ii) follows immediately from the de�nition of Xs
: Indeed,

‖eit∆gφ‖Xs(τ) ≤ ‖eit∆gφ‖Xs .

We then dedu
e that

‖eit∆gφ‖2Xs =
∑

N≥1

N2s‖e−it∆gPNe
it∆gφ‖2U2

t
≤
∑

N≥1

N2s‖PNφ‖2L2(M) ≈ ‖φ‖2Hs(M).

To prove the last statement, we re
all that the V 2
-norm is based on the L2

-norm and 
ompute

∑

N≥1

N2s‖PNu‖2Y 0 =
∑

N≥1

N2s
∑

M≥1

‖e−it∆gPMPNu‖2V 2 .
∑

N≥1

N2s‖e−it∆gPNu‖2V 2 .

Obviously, a similar argument holds for Y s(τ), too.
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Let τ = [a, b) and f ∈ L1(τ, L2(M)). Then, we de�ne the Duhamel term as

I(f)(t) :=
∫ t

a
ei(t−s)∆gf(s) ds (2.3)

for t ∈ τ , I(f)(t) := 0 for t < a, and I(f)(t) := I(f)(b) for t ≥ b.

The following estimate of the Duhamel term is well-known in this 
ontext. The proof of this

estimate 
an be found for the standard torus, τ = [0, T ), and spa
es Xs
and Y s

with unit

s
ale in [HTT11, Proposition 2.11℄. In [Her13, Lemma 2.5 (ii)℄, a similar result was stated

with sharp spe
tral proje
tors but without a proof. The novelty here is that we show this

estimate to hold true also for smooth spe
tral proje
tors. Note that in [Her13℄ the following,

less restri
tive 
ondition was required:

sup
v∈Y −s(τ):

‖v‖Y −s(τ)=1

∣∣∣∣
∑

N≥1

∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ <∞.

Lemma 2.5. Let s ∈ R and τ = [a, b) ⊂ R. Furthermore, let PNf ∈ L1(τ, L2(M)) for all

N ≥ 1. Then,
∑

N≥1 I(PNf) =: I(f) 
onverges in Xs(τ) and

‖I(f)‖Xs(τ) . sup
v∈Y −s(τ):

‖v‖Y −s(τ)=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ (2.4)

provided that the right-hand side is �nite. In parti
ular, if f ∈ L1(τ,Hs(M)), then

‖I(f)‖Xs(τ) . ‖f‖L1(τ,Hs(M)). (2.5)

Proof. For the proof of (2.7) below we adapt the idea presented in [HTT11, Proposition 2.11℄.

For dyadi
 N > 1 let the proje
tors with sharp 
ut-o�s be de�ned as

P#
N :=

∑

k∈N0:
N≤|√λk|<2N

hk and P#
1 :=

∑

k∈N0:
0≤|√λk|<2

hk.

First, we remark that it su�
es to 
onsider P#
N instead of the smooth proje
tors PN . Indeed,

let P̃#
N := P#

N/2 + P#
N for N > 1 and P̃#

1 := P#
1 . We prove that for any P̃#

N u ∈ U2
we have

‖PNu‖U2 ≤ ‖P̃#
N u‖U2 . (2.6)

Sin
e P̃#
N PN = PN , this immediately implies

∑

N≥1

N2s‖PNu‖2U2 ≤ 2(1 + 22s)
∑

N≥1

N2s‖P#
N u‖2U2 .

In order to verify (2.6), it su�
es to 
onsider an U2
-atom P̃#

N a 6= 0 with representation

P̃#
N a(t) =

∑K
k=1 1[tk−1,tk)(t)φk with

∑K
k=1 ‖φk‖2L2(M) = 1 and a partition (tk)k. Note that

φk = P̃#
N φk. De�ne A :=

∑K
k=1 ‖PNφk‖2L2(M), and observe from the boundedness of PN in

L2(M) that 0 < A ≤ 1. We may write PNa(t) = A
∑K

j=1 1[tk−1,tk)(t)
PNφk
A whi
h implies

‖PNa‖U2 ≤ A and hen
e, (2.6) follows.
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For L ≥ 1 we prove the estimate

‖I(P≤Lf)‖Xs . sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ (2.7)

uniformly in L. Sin
e t 7→ eitλkhk(P≤LI(f))(t) is for every k ≥ 0 absolutely 
ontinuous and of

bounded variation, we 
on
lude that t 7→ e−it∆gPNI(P≤Lf)(t) and t 7→ e−it∆g P̃#
N I(P≤Lf)(t)

are in U2
. Then, we see from the de�nition of Xs

that

‖I(P≤Lf)‖2Xs .
∑

1≤N≤L
N2s‖e−it∆gP#

N I(P≤Lf)‖2U2
t

=
∑

1≤N≤L
N2s

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
2

U2
t

.

By duality, ‖a‖ℓ2 = sup‖b‖ℓ2=1 ‖ab‖ℓ1 . Thus, for every ε > 0 we may 
hoose a positive sequen
e

b ∈ ℓ2(2N0) with ‖b‖ℓ2(2N0 ) = 1 su
h that

‖I(P≤Lf)‖Xs .
∑

1≤N≤L
bNN

s

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
U2
t

+ ε.

By duality (see Lemma 1.25), for any dyadi
 1 ≤ N ≤ L, there is a V 2
-fun
tion vN ∈

C∞
0 (R, L2(M)) with ‖vN‖V 2 = 1 su
h that

∥∥∥∥
∫ t

a
e−is∆gP#

N (P≤Lf)(s) · 1τ (s) ds
∥∥∥∥
U2
t

≤
∣∣∣∣
∫

τ

∫

M
P#
N (P≤Lf)(t, x)eit∆gvN (t, x) dx dt

∣∣∣∣+
ε

N
,

(2.8)

where�after a rotation of vN�we may assume the integral to be positive. We now de�ne the

fun
tion v : τ ×M → C,

v(t, x) := (1 + 2−s)−1
∑

1≤M≤L
bMM

seit∆gP#
M (vM )(t, x),

and noti
e that

P#
N v(t) = (1 + 2−s)−1bNN

seit∆gP#
N (vN )(t).

One easily veri�es v ∈ Y −s
and ‖v‖Y −s ≤ 1. Furthermore, sin
e

∑
1≤N≤L P

#
N P≤L = P≤L,

‖I(P≤Lf)‖Xs .

∣∣∣∣
∑

1≤N≤L

∫

τ

∫

M
P#
N (P≤Lf)(t, x)v(t, x) dx dt

∣∣∣∣+ Cε

.
∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣+ Cε.

Inequality (2.7) follows sin
e ε > 0 was arbitrary.

We 
on
lude (2.4) now. Sin
e the left-hand side of the following estimate is smaller than

‖I(P≤Lf)‖Xs
, inequality (2.7) implies

( ∑

1≤N<L
N2s‖e−it∆gPNI(f)‖2U2

t

) 1
2

. sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣ <∞
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uniformly in L ≥ 1. Hen
e,

(∑

N≥1

N2s‖e−it∆gPNI(f)‖2U2
t

) 1
2

<∞,

whi
h implies that I(f) ∈ Xs
. Thus, I(f) ∈ Xs(τ) and the estimate (2.4) holds sin
e the

supremum in (2.4) is taken over a larger set.

The bound (2.5) follows essentially from (2.4) in 
onjun
tion with the embedding Y −s(τ) →֒
L∞(τ,H−s(M)):

‖I(f)‖Xs(τ) . sup
v∈Y −s(τ):

‖v‖Y −s(τ)≤1

∣∣∣∣
∫

τ

∫

M
f(t, x)v(t, x) dx dt

∣∣∣∣

. sup
v∈Y −s(τ):

‖v‖Y −s(τ)≤1

‖v‖L∞(τ,H−s(M))‖f‖L1(τ,Hs(M))

. ‖f‖L1(τ,Hs(M)).

Even though the estimate in the next lemma is not s
ale invariant, it turns out to be useful

in the sequel. The estimate was proved in [Her13, Lemma 3.4℄.

Lemma 2.6. Let τ ⊂ R be a bounded interval. For all fun
tions u1, u2, u3 ∈ L∞(τ, L2(M))
and dyadi
 numbers N1 ≥ N2 ≥ N3 ≥ 1 the estimate

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖PNjuj‖L∞(τ,L2(M))

holds true.

Proof. Hölder's estimate yields

‖PN1u1PN2u2PN3u3‖L2(τ×M) ≤ |τ | 12 ‖PN1u1‖L∞
t L2

x
‖PN2u2‖L∞

t,x
‖PN3u3‖L∞

t,x
.

We �x t ∈ τ and apply Bernstein's inequality, see Lemma 1.53 (ii), for j = 2, 3, to obtain

‖PNjuj(t)‖L∞(M) . N
3
2
j ‖PNjuj(t)‖L2(M).

By taking the supremum in t ∈ τ , we get

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖PNjuj‖L∞(τ,L2(M)).

The result in Lemma 1.54 may be extended from single eigenfun
tions to the spe
tral lo
aliza-

tion operators PN . Hen
e, we get a bound for the produ
t of four spe
trally lo
alized fun
tions

on M , where the spe
trum of one fun
tion is mu
h bigger than the spe
trum of all the others.

Herr [Her13, Lemma 3.3℄ proved that Lemma 1.54 together with the Weyl asymptoti
 yields

this result.
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Corollary 2.7. There exists C ≥ 1 su
h that if N0, . . . , N3 are dyadi
 with C−1N0 ≥
N1, N2, N3 ≥ 1, then for every γ ≥ 1 there exists Cγ > 0 su
h that for any PNjfj ∈ L2(M),
j = 0, 1, 2, 3,

∣∣∣∣
∫

M
PN0f0(x)PN1f1(x)PN2f2(x)PN3f3(x) dx

∣∣∣∣ ≤ CγN
−γ
0

3∏

j=0

‖PNjfj‖L2(M).

So far, we have not used Assumption 2.1. We now show that the assumption implies an

analogue bound for fun
tions in Y 0
. We follow the proof of [HS15, Proposition 3.3℄ and add

some details.

Lemma 2.8. Let τ ⊆ τ0 be any interval. There exists δ > 0 su
h that for all dyadi
 numbers

N1 ≥ N2 ≥ N3 ≥ 1 and PNjuj ∈ Y 0
, j = 1, 2, 3, the following holds true

‖PN1u1PN2u2PN3u3‖L2(τ×M) .

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjuj‖Y 0 .

Proof. In this proof, we write Cδ(N1, N2, N3) :=
(
N3
N1

+ 1
N2

)δ
N2N3.

The proof is split into three parts. In the �rst two steps, we prove the estimate with the U2
-

norm respe
tively the U6
-norm on the right-hand side. Then, we interpolate those estimates

in the third step to get the V 2
-norm on the right-hand side.

Step 1. We 
laim that if e−it∆gPNjuj ∈ U2
, j = 1, 2, 3, then

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Cδ(N1, N2, N3)

3∏

j=1

‖e−it∆gPNjuj‖U2 , (2.9)

where δ > 0 is the δ as given in Assumption 2.1.

It su�
es to prove (2.9) for U2
-atoms. Indeed, �rst, note that if PN1u1, PN2u2, PN3u3 ∈ U2

with representation PNjuj =
∑∞

ℓ=1 λj,ℓPNjaj,ℓ, j = 1, 2, 3, then

‖PN1e
it∆gu1PN2e

it∆gu2PN3e
it∆gu3‖L2(τ×M) =

∥∥∥∥
3∏

j=1

∞∑

ℓ=1

λj,ℓe
it∆gPNjaj,ℓ

∥∥∥∥
L2(τ×M)

sin
e the L6
-Stri
hartz estimate implies for any ℓ0 ≥ 1 and j = 1, 2, 3,

∥∥∥∥e
it∆gPNj

( ∞∑

ℓ=ℓ0

λj,ℓaj,ℓ(t)

)
−

∞∑

ℓ=ℓ0

λj,ℓe
it∆gPNjaj,ℓ(t)

∥∥∥∥
L6(τ×M)

. 2
∞∑

ℓ=ℓ0

|λℓ|.

Now, let ε > 0 and e−it∆gPNjuj ∈ U2
with e−it∆gPNjuj =

∑∞
ℓ=1 λj,ℓPNjaj,ℓ and

∑∞
ℓ=1 |λj,ℓ| ≤

‖e−it∆gPNjuj‖U2 + ε for j = 1, 2, 3. Note that eit∆gPNjaj,ℓ are U
2
-atoms and assume that

(2.9) holds for U2
-atoms, then

‖PN1u1PN2u2PN3u3‖L2(τ×M) ≤
∞∑

ℓ1,ℓ2,ℓ3=1

|λ1,ℓ1λ2,ℓ2λ3,ℓ3 |
∥∥∥∥

3∏

j=1

eit∆gPNjaj,ℓj

∥∥∥∥
L2(τ×M)

. Cδ(N1, N2, N3)

∞∑

ℓ1,ℓ2,ℓ3=1

|λ1,ℓ1λ2,ℓ2λ3,ℓ3 |

. Cδ(N1, N2, N3)

3∏

j=1

(
‖e−it∆gPNjuj‖U2 + ε

)
.
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Hen
e, the desired estimate (2.9) follows on
e we proved it for U2
-atoms.

Let a1, a2, and a3 be U2
-atoms given as

PNjaj(t) =

Kj∑

k=1

1Ij,k(t)e
it∆gPNjφj,k,

Kj∑

k=1

‖φj,k‖2L2(M) = 1,

with pairwise disjoint right-open intervals Ij,1, Ij,2, . . . , Ij,Kj for j = 1, 2, 3. The disjointedness
of the intervals implies

‖PN1a1PN2a2PN3a3‖2L2(τ×M) ≤
∑

k1,k2,k3

‖eit∆gPN1φ1,k1e
it∆gPN2φ2,k2e

it∆gPN3φ3,k3‖2L2(τ×M),

where we sum over kj = 1, . . . ,Kj , j = 1, 2, 3. Assumption 2.1 yields

‖PN1a1PN2a2PN3a3‖L2(τ×M) . Cδ(N1, N2, N3)

( 3∏

j=1

Kj∑

k=1

‖φj,k‖2L2(M)

) 1
2

. Cδ(N1, N2, N3).

This �nally proves (2.9).

Step 2. By 
hoosing N = N1 = N2 = N3 and φ = φ1 = φ2 = φ3 in Assumption 2.1, we see

that the following L6
-estimate is implied

‖PNeit∆gφ‖L6(τ×M) . N
2
3 ‖PNφ‖L2(M).

By the same argument as in the �rst step, this estimate 
arries over to U6
-atoms. Thus

‖PNu‖L6(τ×M) . N
2
3 ‖e−it∆gPNu‖U6

for e−it∆gPNu ∈ U6
. Now, we dedu
e for Nj ≥ 1 and e−it∆gPNjuj ∈ U6

, j = 1, 2, 3, from
Hölder's inequality that

‖PN1u1PN2u2PN3u3‖L2(τ×M) . (N1N2N3)
2
3

3∏

j=1

‖e−it∆gPNjuj‖U6 . (2.10)

Let N1 ≥ N2 ≥ N3 ≥ 1 and p ≥ 1. Another estimate, whi
h is not s
ale invariant but does

not depend on N1, follows immediately from Lemma 2.6 and Up →֒ L∞(τ, L2(M)):

‖PN1u1PN2u2PN3u3‖L2(τ×M) . |τ | 12 (N2N3)
3
2

3∏

j=1

‖e−it∆gPNjuj‖Up . (2.11)

Step 3. In this step, we interpolate the estimates given in the �rst two steps. For that purpose,

we distinguish two 
ases.

Case 1. Assume N2N3 > N1. Applying the interpolation statement in Lemma 1.24 to (2.9)

and (2.10) yields

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Aδ

3∏

j=1

‖e−it∆gPNjuj‖V 2 ,
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where

Aδ := Cδ(N1, N2, N3)
(
ln

(N1N2N3)
2
3

Cδ(N1, N2, N3)
+ 1
)3

. Cδ(N1, N2, N3)
(
ln
N1

N3
+ 1
)3

. Cδ′(N1, N2, N3)

for any 0 < δ′ < δ. This implies the 
laim in this 
ase.

Case 2. Assume N2N3 ≤ N1. In this 
ase, we interpolate (see Lemma 1.24) the inequalities

(2.9) and (2.11) (for some p > 2) and get

‖PN1u1PN2u2PN3u3‖L2(τ×M) . Bδ

3∏

j=1

‖e−it∆gPNjuj‖V 2 ,

where

Bδ := Cδ(N1, N2, N3)
(
ln

(N2N3)
3
2

Cδ(N1, N2, N3)
+ 1
)3

. Cδ(N1, N2, N3)(lnN2 + 1)3

. Cδ′(N1, N2, N3)

for any 0 < δ′ < δ. This �nishes the proof.

We prove Theorem 2.3 by the 
ontra
tion mapping prin
iple in a small 
losed ball in the spa
e

C([0, T ),Hs(M)) ∩Xs([0, T )). In order to do so, we solve the following integral equation for

a given φ ∈ Hs(M),
u(t) = eit∆gφ∓ iI(|u|4u)(t), (2.12)

where I(f) is de�ned as in (2.3) with τ = [0, T ).

Now, we provide an estimate for the Duhamel term measured in the restri
tion spa
e Xs(τ).
The proof is a 
ombination of the arguments in [HTT11, Proposition 4.1℄ and [Her13, Propo-

sition 4.2℄.

Lemma 2.9. Let s ≥ 1 be �xed and T > 0 su
h that [0, T ) ⊆ τ0. Then, for any uj ∈
Xs([0, T )), j = 1, . . . , 5, the estimate

∥∥∥∥I
( 5∏

j=1

ũj

)∥∥∥∥
Xs([0,T ))

.

5∑

k=1

‖uk‖Xs([0,T ))

5∏

j=1
j 6=k

‖uj‖X1([0,T ))

holds true, where ũj denotes either uj or its 
omplex 
onjugate uj .

Proof. We de�ne τ := [0, T ) for brevity. From Lemma 2.5, we 
on
lude that I
(∏5

j=1 ũj
)
∈

Xs(τ) and

∥∥∥∥I
( 5∏

j=1

ũj

)∥∥∥∥
Xs(τ)

. sup
u0∈Y −s(τ):

‖u0‖Y −s(τ)=1

∑

N0≥1

∣∣∣∣
∫

τ

∫

M
PN0

( 5∏

j=1

ũj(t, x)

)
u0(t, x) dx dt

∣∣∣∣.

In order to get rid of the time restri
tion on the spa
es, we 
onsider extensions to R of uj ,
j = 0, . . . , 5, without 
hanging the notation. Hen
e, it su�
es to prove

∑

N0≥1

∣∣∣∣
∫

τ

∫

M
PN0 ũ0(t, x)

5∏

j=1

ũj(t, x) dx dt

∣∣∣∣ . ‖u0‖Y −s

5∑

k=1

‖uk‖Xs

5∏

j=1
j 6=k

‖uj‖X1 . (2.13)
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We dyadi
ally de
ompose every fun
tion into

ũj =
∑

Nj≥1

PNj ũj, j = 1, . . . , 5.

Sin
e the expression is symmetri
 in u1, . . . , u5, it su�
es to repla
e the left-hand side of

(2.13) by

Σ :=
∑

(N0,...,N5)∈N

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj(t, x) dx dt

∣∣∣∣,

where N is the set of all sextuples (N0, N1, . . . , N5) of dyadi
 numbers su
h that

N0 ≥ 1 and N1 ≥ N2 ≥ . . . ≥ N5 ≥ 1.

We split Σ into Σ = Σ1 +Σ2, where

Σ1 +Σ2 :=
∑

(N0,...,N5)∈N :
max{N0,N2}≈N1

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj dx dt

∣∣∣∣+
∑

(N0,...,N5)∈N :
max{N0,N2}6≈N1

∣∣∣∣
∫

τ

∫

M

5∏

j=0

PNj ũj dx dt

∣∣∣∣.

First, we estimate the 
ontribution from Σ1. By Cau
hy�S
hwarz, it su�
es to prove

∑

(N0,...,N5)∈N :
max{N0,N2}≈N1

‖PN1u1PN3u3PN5u5‖L2(τ×M)‖PN0u0PN2u2PN4u4‖L2(τ×M)

. ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 .

We split the sum into two parts Σ1,1 and Σ1,2, where Σ1,1 is de�ned by the 
onstraint N2 ≤
N0 ≈ N1. Consequently, Σ1,2 is de�ned by the 
onstraint N0 < N2 ≈ N1.

Part Σ1,1. Applying Lemma 2.8 twi
e, we obtain

Σ1,1 .
∑

(N0,...,N5)∈N :
N2≤N0≈N1

N2N3N4N5

(
N5

N1
+

1

N3

)δ(N4

N0
+

1

N2

)δ 5∏

j=0

‖PNjuj‖Y 0

for some δ > 0. Using Cau
hy�S
hwarz with respe
t to N5, N4, N3, and N2 as well as

Proposition 2.4 (iii), we estimate

Σ1,1 .
∑

N0,N1≥1:
N0≈N1

‖PN0u0‖Y 0‖PN1u1‖Y 0

5∏

j=2

‖uj‖Y 1 .

Sin
e N0 ≈ N1, we 
on
lude from Cau
hy�S
hwarz

Σ1,1 . ‖u0‖Y −s‖u1‖Y s

5∏

j=2

‖uj‖Y 1 .

Part Σ1,2. We apply Lemma 2.8 twi
e and dedu
e

Σ1,2 .
∑

(N0,...,N5)∈N :
N0<N2≈N1

N0N3N4N5

(
N5

N1
+

1

N3

)δ 5∏

j=0

‖PNjuj‖Y 0
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for some δ > 0. Sin
e N0 . N1, we have N0 . N1+s−ν
1 Nν−s

0 for some small 0 < ν < s.
Cau
hy�S
hwarz with respe
t to N5, N4, N3, and N0 as well as Proposition 2.4 (iii) yield

Σ1,2 .
∑

N1≥N2≥1:
N1≈N2

N1+s
1 ‖PN1u1‖Y 0‖PN2u2‖Y 0‖u0‖Y −s

5∏

j=3

‖uj‖Y 1 .

Another appli
ation of Cau
hy�S
hwarz and using N1 ≈ N2 leads to

Σ1,2 . ‖u0‖Y −s‖u1‖Y s

5∏

j=2

‖uj‖Y 1

as asserted.

We now estimate the 
ontribution from Σ2 and split the sum into two parts Σ2 = Σ2,1 +
Σ2,2, where Σ2,1 is de�ned by the 
onstraint max{N0, N2} ≪ N1 and Σ2,2 is de�ned by the


onstraint N0 ≫ N1.

Part Σ2,1. We de
ompose

Σ2,1 ≤
∑

(N0,...,N5)∈N :
N0,N2≪N1

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt,

where

I(N0, . . . , N5, L)(t) :=

∫

M
PL

( 2∏

j=0

PNj ũj

)
(t, x)

5∏

j=3

PNj ũj(t, x) dx.

On the one hand, if L & N1, then we have N3, N4, N5 ≪ L. We 
an apply Corollary 2.7 to


on
lude for every t ∈ τ ,

|I(N0, . . . , N5, L)(t)| . L−5‖PL(PN0 ũ0PN1 ũ1PN2 ũ2)(t)‖L2(M)

5∏

j=3

‖PNjuj(t)‖L2(M).

Now, we apply Hölder's inequality with respe
t to t and Lemma 2.6 to bound

∫

τ
|I(N0, . . . , N5, L)(t)| dt . L−5N

3
2
0 N

3
2
2

5∏

j=0

‖PNjuj‖L∞(τ,L2(M)),

whi
h in turn implies

∑

L&N1

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−2

1

5∏

j=0

‖PNjuj‖Y 0 . (2.14)

On the other hand, if L≪ N1, then L,N0, N2 ≪ N1, and we use Corollary 2.7 to get

|I(N0, . . . , N5, L)(t)| . N−5
1

2∏

j=0

‖PNjuj(t)‖L2(M)‖PL(PN3 ũ3PN4 ũ4PN5 ũ5)(t)‖L2(M).

Again, from an appli
ation of Hölder's inequality with respe
t to t and Lemma 2.6, we infer

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−5

1 N
3
2
4 N

3
2
5

5∏

j=0

‖PNjuj‖L∞(τ,L2(M)).
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This in 
onjun
tion with (2.14) gives

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−1

1

5∏

j=0

‖PNjuj‖Y 0 ,

and hen
e,

Σ2,1 .
∑

(N0,...,N5)∈N :
N0,N2≪N1

N−1
1

5∏

j=0

‖PNjuj‖Y 0 .

Using Cau
hy�S
hwarz with respe
t to N5, N4, N3, and N2 yields

Σ2,1 . N−1
1 ‖PN0u0‖Y 0‖PN1u1‖Y 0

5∏

j=2

‖uj‖Y 1 .

Multiplying (N1
N0

)s−ν for some small 0 < ν < 1 and applying Cau
hy�S
hwarz with respe
t to

N0 and N1 leads to

Σ2,1 . ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 .

Part Σ2,2. This 
ase may be treated similarly as term Σ2,1 by swit
hing the roles of N0 and

N1. By writing

Σ2,2 ≤
∑

(N0,...,N5)∈N :
N0≫N1

∑

L≥1

∫

τ
|I(N0, . . . , N5, L)(t)| dt

as above, we obtain the two estimates

∫

τ
|I(N0, . . . , N5, L)(t)| dt . L−5N

3
2
1 N

3
2
2

5∏

j=0

‖PNjuj‖L∞(τ,L2(M))

provided L & N0 and

∫

τ
|I(N0, . . . , N5, L)(t)| dt . N−5

0 N
3
2
4 N

3
2
5

5∏

j=0

‖PNjuj‖L∞(τ,L2(M))

provided L≪ N0. This implies

Σ2,2 .
∑

(N0,...,N5)∈N :
N0≫N1

N−1
0

5∏

j=0

‖PNjuj‖Y 0 .

Multiplying (N0
N1

)s−ν for some small 0 < ν < 1 and arguing as above, we see that

Σ2,2 . ‖u0‖Y −s‖u1‖Xs

5∏

j=2

‖uj‖X1 ,

whi
h �nishes the proof.

Remark. If M = T
3
, orthogonality implies that there is no 
ontribution from Σ2. Similarly,

if M = S
3
, then Σ2 = 0 sin
e the produ
t of �ve spheri
al harmoni
s of maximal degree k 
an

be developed into a series of spheri
al harmoni
s of maximal degree 5k. ♦



2.2 A 
onditional lo
al and small data global well-posedness result 55

Finally, we have all the ingredients to prove Theorem 2.3. The strategy is 
lose to the argu-

ments on Eu
lidean spa
es, see e.g. [CW90, Tao07℄, and was �rst applied to obtain energy-


riti
al well-posedness for the NLS equation posed on a 
ompa
t, boundaryless manifold by

Herr�Tataru�Tzvetkov [HTT11, Theorems 1.1 & 1.2℄. We 
losely follow their arguments and

add the treatment for s > 1.

Proof of Theorem 2.3. Let s ≥ 1.

Step 1 (Small data). Due to the polynomial stru
ture of the nonlinearity, Lemma 2.9 shows

that there exists Cs,1 ≥ 1 su
h that

∥∥I(|u|4u− |v4|v)
∥∥
Xs([0,T ))

≤ Cs,1
(
‖u‖4Xs([0,T )) + ‖u‖4Xs([0,T ))

)
‖u− v‖Xs([0,T ))

holds true for all T > 0 and u, v ∈ Xs([0, T )).

Given two parameters εs > 0 and δs > 0, we de�ne the sets

Bs
εs :=

{
φ ∈ Hs(M) : ‖φ‖Hs(M) ≤ εs

}
,

Ds
δs

:=
{
u ∈ C

(
[0, 1),Hs(M)

)
∩Xs

(
[0, 1)

)
: ‖u‖Xs([0,1)) ≤ δs

}
.

Note that Ds
δs

is 
losed in Xs([0, 1)), whi
h in turn implies that Ds
δs

is a 
omplete spa
e.

For φ ∈ Bs
εs we intend to solve the equation

u = eit∆gφ∓ iI(|u|4u) =: L(φ) +NL(u),

by the 
ontra
tion mapping prin
iple in Ds
δs
. Choose

δs := (4Cs,1)
− 1

4
and εs :=

δs
2Cs,0

, (2.15)

where Cs,0 is the impli
it 
onstant in Proposition 2.4 (ii). Let φ ∈ Bs
εs , then for every u ∈ Ds

δs
we obtain

‖L(φ) +NL(u)‖Xs([0,1)) ≤ Cs,0εs + Cs,1δ
5
s ≤ δs.

For all u, v ∈ Ds
δs

we also dedu
e

‖NL(u)−NL(v)‖Xs([0,1)) ≤
1

2
‖u− v‖Xs([0,1)).

This implies that for any φ ∈ Bs
εs the nonlinear map u 7→ L(φ) +NL(u) is a 
ontra
tion on

Ds
δs
. The Bana
h �xed-point theorem now proves that u 7→ L(φ) +NL(u) has a unique �xed

point in Ds
δs
. The uniqueness in the full spa
e is dis
ussed in the third step. Furthermore, for

two fun
tions φ,ψ ∈ Bs
εs and their 
orresponding �xed points u, v ∈ Ds

δs
, we have

‖u− v‖Xs([0,1)) ≤ Cs,0‖φ− ψ‖Hs(M) +
1

2
‖u− v‖Xs([0,1)).

This proves the Lips
hitz 
ontinuity of φ 7→ u with 
onstant 2Cs,0.

Step 2 (Large data). Let r > 0 and N ≥ 1 be given. For some parameters εs, δs, Rs, and Ts
with the properties 0 < εs ≤ r and 0 < δs ≤ Rs, we de�ne

Bs
εs,r

:=
{
φ ∈ Hs(M) : ‖φ>N‖Hs(M) ≤ εs, ‖φ‖Hs(M) ≤ r

}
,

Ds
δs,Rs,Ts

:=
{
u ∈ C

(
[0, Ts),H

s(M)
)
∩Xs

(
[0, Ts)

)
: ‖u>N‖Xs([0,Ts)) ≤ δs, ‖u‖Xs([0,Ts)) ≤ Rs

}
,
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where f>N := (Id− P≤N )f . For any φ ∈ Bs
εs,r one easily sees that

∥∥(L(φ) +NL(u)
)
>N

∥∥
Xs([0,Ts))

≤ Cs,0εs + ‖NL(u)>N‖Xs([0,Ts)).

We split NL(u) into two parts,

NL(u) = NL1(u≤N , u>N ) +NL2(u≤N , u>N ),

su
h that NL1 is at least quadrati
 in u>N and NL2 is at least quarti
 in u≤N . Then, thanks
to Lemma 2.9, we dedu
e for u ∈ Ds

δs,Rs,Ts

‖NL1(u≤N , u>N )‖Xs([0,Ts)) ≤ Cs,1δ
2
sR

3
s. (2.16)

Analogously, for u, v ∈ Ds
δs,Rs,Ts

,

‖NL1(u≤N , u>N )−NL1(v≤N , v>N )‖Xs([0,Ts)) ≤ Cs,2δsR
3
s‖u− v‖Xs([0,Ts)).

For estimating NL2(u≤N , u>N ), we use Lemma 2.5 to argue that is su�
es to bound the non-

linearity in L1([0, Ts),H
s(M)). Hen
e, by Lemma 1.55, Lemma 1.56, and Hölder's inequality,

one easily 
he
ks

3

‖NL2(u≤N , u>N )‖Xs([0,Ts)) ≤ Cs,3N
4‖u‖L∞([0,Ts),Hs(M))‖u‖4L4([0,Ts),H1(M)) ≤ Cs,3N

4TsR
5
s.

(2.17)

A similar argument gives

‖NL2(u≤N , u>N )−NL2(v≤N , v>N )‖Xs([0,Ts)) ≤ Cs,4N
4TsR

4
s‖u− v‖Xs([0,Ts)).

Set Cs := max{C1,0, . . . , C1,4, Cs,0, . . . , Cs,4}, where C1,j , j = 0, . . . , 4, are the 
orresponding

onstants in the 
ase s = 1, and 
hoose

Rs := 4Csr, δs :=
1

8CsR3
s

, εs :=
δs
2Cs

, and Ts :=
δs

8CsR5
sN

4
. (2.18)

Hen
e, for φ ∈ Bs
εs,r the map

L(φ) +NL : Ds
δs,Rs,Ts → Ds

δs,Rs,Ts

is a stri
t 
ontra
tion and therefore, has a unique �xed point u, and φ 7→ u is Lips
hitz


ontinuous with 
onstant 2Cs.

Step 3 (Uniqueness). By the translation invarian
e in time, it su�
es to 
onsider

u, v ∈ C([0, T ),Hs(M)) ∩Xs([0, T ))

with u(0) = v(0) in order to prove uniqueness. That u = v for arbitrarily small T > 0 follows

from the uniqueness of the �xed point in Step 2.

Step 4 (Time of existen
e). Let φ∗ ∈ H1(M), de�ne r := 2‖φ∗‖H1(M), and 
hoose N ≥ 1
large enough su
h that ‖(φ∗)>N‖H1(M) ≤ ε1

2 , where 0 < ε1 ≤ r is de�ned by (2.18). Let

φ ∈ Bε1/2(φ∗) ∩ Hs(M), then φ ∈ B1
ε1,r ∩ Hs(M). We 
on
lude from Step 2 that there is

T1 = T1(r,N) > 0 given by (2.18) and a unique solution

u ∈ C([0, T1),H
1(M)) ∩X1([0, T1)),

3

For notational 
onvenien
e, we 
hoose σ = 2 instead of σ = 3
2
+ in the appli
ation of Lemma 1.55 and

Lemma 1.56, a

epting that the power of N is not the best we 
an a
hieve.
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whi
h depends Lips
hitz 
ontinuously on the initial data φ. Note that the time of existen
e

is determined only by φ∗.

For s > 1 we now prove that this solution is even more regular on the same time interval. Let

Ts,max be the supremum over all Ts su
h that

u ∈ C([0, Ts),H
s(M)) ∩Xs([0, Ts))

is the unique solution with initial data φ. Step 2 guarantees that Ts,max > 0. Assume that

Ts,max < T1, then 
onsider 0 < Ts < Ts,max and let R1, δ1, ε1, and T1 be de�ned as in (2.18).

Note that the parameters depend only on φ∗.

From Step 2 with s = 1, we get that ‖u‖X1([0,Ts)) ≤ R1 and ‖u>N‖X1([0,Ts)) ≤ δ1. Re
onsid-
ering (2.16) and applying the bounds on u in X1

, we infer

‖NL1(u≤N , u>N )‖Xs([0,Ts)) . ‖u>N‖X1([0,Ts))‖u‖3X1([0,Ts))
‖u‖Xs([0,Ts)) ≤ Csδ1R

3
1‖u‖Xs([0,Ts)),

where Cs is de�ned as in Step 2. We may also improve (2.17) to

‖NL2(u≤N , u>N )‖Xs([0,Ts)) ≤ CsN
4TsR

4
1‖u‖Xs([0,Ts)).

Hen
e,

‖u‖Xs([0,Ts)) ≤ Cs‖φ‖Hs(M) + Cs(δ1R
3
1 +N4TsR

4
1)‖u‖Xs([0,Ts))

for any Ts < Ts,max, and we 
on
lude from the embedding Xs([0, Ts)) →֒ L∞([0, Ts),H
s(M))

that

sup
t∈[0,Ts,max)

‖u(t)‖Hs(M) ≤ 2Cs‖φ‖Hs(M).

Consequently, for every sequen
e (tn)n with tn ∈ [0, Ts,max) and tn → Ts,max as n → ∞ we

have u(tn) ∈ Hs(M) for any n ∈ N. Thus, there exist a subsequen
e (tnk
)k and v ∈ Hs(M)

with u(tnk
) ⇀ v in Hs(M) as k → ∞. By the Relli
h�Kondra
hov embedding theorem, we

see that u(tnk
) → v in H1(M) as k → ∞. Sin
e Ts,max < T1 we know that u(tnk

) → u(Ts,max)
in H1(M) as k → ∞. Therefore, we dedu
e v = u(Ts,max) ∈ Hs(M). Solving the equation

(2.1) with initial data u(Ts,max) forward and ba
kward in time, whi
h is possible by Step 2, we

see that the solution u 
an be uniquely extended in Hs(M). This 
ontradi
ts the de�nition

of Ts,max and hen
e, Ts,max ≥ T1.

The Lips
hitz 
ontinuity for s > 1 follows sin
e r, N , ε1, δ1, R1, and T1 depend only on φ∗
and

‖u− v‖Xs([0,T1)) ≤ Cs,0‖φ− ψ‖Hs(M) + 2Cs,1R
4
1‖u− v‖Xs([0,T1)).

Step 5 (Global well-posedness, defo
using 
ase). We �rst 
onsider s = 1. Be
ause of the �rst
step, we only have to prove a suitable a priori bound on solutions in H1(M).

The 
onservation laws (1.23) and (1.24) and the Sobolev embedding H1(M) →֒ L6(M) imply

that there exists some d > 0 su
h that for every t,

‖u(t)‖2H1(M) ≤ 2E
(
u(0)

)
+ 2M

(
u(0)

)
≤ ‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M). (2.19)

If ‖u(0)‖H1(M) is su�
iently small, then it follows that for ε1 as in (2.15) the solution satis�es

‖u(t)‖H1(M) ≤ ε1 for any interval of existen
e. Hen
e, we 
an iterate the argument in the �rst

step inde�nitely and extend the lo
al well-posedness result to global well-posedness.

For s > 1 we pro
eed as follows. Let φ ∈ Hs(M) with H1
-norm small enough su
h that the

solution exists globally in H1
and Step 1 with s = 1 is appli
able. Let Ts,max be the supremum

over all Ts su
h that

u ∈ C([0, Ts),H
s(M)) ∩Xs([0, Ts))
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is the unique solution with initial data φ. De�ne v := u( · + Ts,max − 1
2) and T

′
s,max := 1

2 if

Ts,max ≥ 1 and v := u and T ′
s,max := Ts,max otherwise. From Step 1 with s = 1 and (2.19) we

dedu
e that

‖v‖X1([0,1) ≤ 2C1,0‖v(0)‖H1(M) ≤ 2C1,0

(
‖φ‖2H1(M) + d2‖φ‖6H1(M)

) 1
2

and therefore, we gain the following a priori estimate

‖v‖Xs([0,Ts)) ≤ Cs,0‖v(0)‖Hs(M) +
1

2
‖v‖Xs([0,Ts))

for any 0 < Ts < T ′
s,max provided ‖φ‖H1(M) is su�
iently small. By similar arguments as

above, this yields

sup
t∈[0,T ′

s,max)
‖v(t)‖Hs(M) ≤ 2Cs,0‖v(0)‖Hs(M),

and we 
on
lude u(Ts,max) ∈ Hs(M). Solving (2.1) forward and ba
kward in time with initial

data u(Ts,max) 
ontradi
ts the 
hoi
e of Ts,max.

Step 6 (Global well-posedness, fo
using 
ase). In this 
ase, the argument is a bit di�erent. For

u ∈ X1([0, 1)) we have

‖u(t)‖2H1(M) ≤ 2E
(
u(0)

)
+ 2M

(
u(0)

)
+

1

3
‖u(t)‖6L6(M)

≤ ‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M) + d2‖u(t)‖6H1(M)

(2.20)

Consider the fun
tion f : [0,∞) → R given by f(x) := x−d2x3. The fun
tion f in
reases from

0 to its maximum value 2/(3
√
3d) in x = 1/(

√
3d). Moreover, f(x) ≥ (2/3)x on the interval

I := [0, (
√
3d)−1]. In (2.20), we have proved that f

(
‖u(t)‖2H1(M)

)
< ε20 for all t ∈ [0, 1) and

all initial data satisfying

‖u(0)‖2H1(M) + d2‖u(0)‖6H1(M) < ε20.

If we 
hoose ε20 = min{2/(3
√
3d), (2/3)ε21}, where ε1 is given as in (2.15), then we see by the


ontinuity of t 7→ ‖u(t)‖2H1(M) that ‖u(t)‖2H1(M) ∈ I for every t ∈ [0, 1). Thus, ‖u(t)‖2H1(M) ≤
(3/2)ε20 ≤ ε21 for all t ∈ [0, 1), from whi
h we infer that the small data lo
al well-posedness

argument may be iterated.

The 
on
lusion for s > 1 works exa
tly as in the previous step.

2.2.2 On the ne
essity of the 
ondition

After the dis
ussion of the su�
ien
y of Assumption 2.1 the question rises whether the trilinear

Stri
hartz estimate is also ne
essary. In [Gér06, Theorem 5.7 i)℄ (take s = 1), Gérard answered

this question by stating that Assumption 2.1 with δ = 0 is ne
essary to obtain Theorem 2.3.

In a joint paper with the present author, Herr [HS15, Se
tion 4℄ provided a proof of this by

adapting the arguments of Burq�Gérard�Tzvetkov in [BGT05a, Remark 2.12℄. We want to

point out that there was no noteworthy 
ontribution of the author to this dis
ussion. In the

remainder of this subse
tion, we repeat the argument in [HS15, Se
tion 4℄ almost verbatim.

Fix T > 0 and 
onsider the map

F : H1(M) → H1(M), F (φ) = u(T ),
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where u is a solution of (2.1) with initial data u(0) = φ. The �fth order di�erential of F at

the origin is given by

D5F (0)(h) = ∓12i

∫ T

0
ei(T−τ)∆g

∑

σ∈Σ5

Hσ(1)(τ)Hσ(2)(τ)Hσ(3)(τ)Hσ(4)(τ)Hσ(5)(τ) dτ,

where h := (h1, . . . , h5), Hj(τ) := eiτ∆ghj , and we sum over the 10 =
(5
2

)
of the 5! = 120

permutations σ ∈ Σ5, whi
h give rise to di�erent pairs (σ(2), σ(4)). Indeed, from (2.12) it

follows that DF (0)(h) = eiT∆gh, DjF (0) = 0 for 2 ≤ j ≤ 4, and we obtain the above formula.

If we spe
ify to h2 = h3 = h4 = h5, we obtain two 
ontributions

∑

σ∈Σ5

Hσ(1)Hσ(2)Hσ(3)Hσ(4)Hσ(5) = 6H1|H2|4 + 4H1H
3
2H2.

Now, let us assume that D5F (0) : (H1(M))5 → H1(M) is bounded. Then, we infer

∣∣∣∣
∫

M
D5F (0)(h1, h2, . . . , h2)H1(T ) dx

∣∣∣∣ . ‖h1‖H1(M)‖h1‖H−1(M)‖h2‖4H1(M).

Be
ause of

Re
(
6|H1|2|H2|4 + 4H1

2
H3

2H2

)
≥ 2|H1|2|H2|4,

we 
on
lude that

∫ T

0

∫

M
|H1|2|H2|4 dx dt . ‖h1‖H1(M)‖h1‖H−1(M)‖h2‖4H1(M).

We set h1 := PN1φ1, and for φ2, φ3 ∈ H1(M) we write

eit∆gφ2e
it∆gφ3 =

1

4

(
(eit∆gφ2 + eit∆gφ3)

2 − (eit∆gφ2 − eit∆gφ3)
2
)

to obtain the bound

‖eit∆gPN1φ1e
it∆gφ2e

it∆gφ3‖L2([0,T ]×M) . ‖PN1φ1‖L2(M)‖φ2‖H1(M)‖φ3‖H1(M),

whi
h implies the estimate in Assumption 2.1 but only with δ = 0.

2.3 Re
tangular tori in three dimensions

This se
tion is devoted to verify Assumption 2.1 on �at re
tangular 3-tori, whi
h means that

the energy-
riti
al NLS is lo
ally well-posedness and globally well-posedness for small initial

data. We start with an overview of some related results and set up the framework. We shall

then prove the trilinear estimate in three steps. We �rst provide linear Stri
hartz estimates,

then exploit almost orthogonality, and �nally 
on
lude the desired trilinear estimate. This

proof is due to the author and has already been published in [Str14℄.

2.3.1 Sele
ted results

The nonlinear S
hrödinger equation on �at tori has been the most investigated among all


ompa
t manifolds. Aside from the pre
ise knowledge of the spe
trum and the eigenfun
tions,

one main reason might be that due to the periodi
ity of fun
tions on T
n
, one has a

ess to
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the theory of Fourier series, whi
h is often applied in this 
ontext. At �rst sight, the theory

of Fourier series with a 
ommon period seems not to be appli
able if one 
onsiders general

re
tangular tori. Indeed, if one of the ratios of the periods is irrational, there is no 
ommon

period. However, by a simple 
hange of 
oordinates, one 
an always 
hoose T
n
as the base

spa
e, whi
h leads to a modi�ed Lapla
e�Beltrami operator, see (2.21)�(2.23). This simple


hange of 
oordinates allows to use the theory of Fourier series also in this setting.

First, we sum up related results on the �at torus T
3
. In 1993, Bourgain [Bou93a℄ started

this line of resear
h with a fundamental work. He established Stri
hartz estimates [Bou93a,

Proposition 3.114℄ in several dimensions and dedu
ed well-posedness in 
ertain sub-
riti
al

regimes from it, see [Bou93a, Theorems 1�4℄. Out of this results we just pi
k those that are

most relevant for our study. For p > 4 the s
ale invariant Stri
hartz estimate

‖eit∆gf‖Lp(I×T3) . N
3
2
− 5

p ‖f‖L2(T3)

holds true for all f ∈ L2(T3) with supp pf ⊆ [−N,N ]3, 
f. [Bou93a, formula (3.117)℄. Using

this inequality, Bourgain was able to show that the fo
using NLS equation with nonlinearity

|u|α−1u and initial data φ ∈ H1(T3) whi
h has su�
iently small H1
-norm is globally well-

posed for 3 ≤ α < 5. Sin
e α < 5, Bourgain did not rea
h the energy-
riti
al 
ase. Lo
al

and small data global well-posedness for both the fo
using and the defo
using equation in the

energy-
riti
al 
ase (α = 5) was a
hieved by Herr�Tataru�Tzvetkov [HTT11, Theorems 1.1

and 1.2℄ in 2011. One of their 
ru
ial observations is the existen
e of almost orthogonality in

time, whi
h is exploited in the proof of [HTT11, Proposition 3.5℄. Just one year later, Iones
u�

Pausader [IP12b, Theorem 1.1℄ showed that the energy-
riti
al defo
using NLS equation on T
3

is globally well-posed even for arbitrarily large H1
-data. Global well-posedness is addressed

in Chapter 3.

It was again Bourgain [Bou07℄ who initiated the study of the nonlinear S
hrödinger equation

on three-dimensional re
tangular tori. He proved Stri
hartz estimates for free solutions on this

domain for a smaller range of LptL
q
x-norms 
ompared to T

3
[Bou07, Proposition 1.1℄. From

this, he dedu
ed that the energy-sub-
riti
al defo
using NLS equation on re
tangular 3-tori is
lo
ally and globally well-posed in H1

[Bou07, Proposition 1.2℄. The �rst s
aling-
riti
al results

on re
tangular tori were established by Guo�Oh�Wang [GOW14, Theorem 1.5℄. They proved


riti
al lo
al well-posedness on this set of manifolds for nonlinearities |u|α−1u with odd α ≥ 7
and initial data in the 
orresponding s
ale invariant spa
e Hs

. Furthermore, they 
onsidered

the energy 
riti
al 
ase α = 5 on 3-dimensional re
tangular tori, where two of the periods are

the same [GOW14, Appendix B℄. In the following, we prove a trilinear Stri
hartz estimate,

whi
h, by Se
tion 2.2.1, implies that the energy-
riti
al NLS on any 3-dimensional re
tangular

torus is lo
ally well-posed and in addition, globally well-posed provided the initial data have

small H1
-norm. The author already published this result in [Str14, Proposition 4.1℄. This

result is highly signi�
ant for the study of large data global well-posedness on this domain,

whi
h is pursued in Chapter 3.

More authors 
ontributed to today's knowledge about the nonlinear S
hrödinger equation on

tori. We are not aiming to give a full list but we want to mention some important results.

Building on an earlier work of Bourgain�Demeter [BD15℄, Killip�Vi³an [KV14, Theorem 1.1℄

extended Bourgain's above-mentioned s
aling invariant Stri
hartz estimate for free solutions

to the NLS on re
tangular tori in any dimension n ≥ 1 to a larger range of Lpt,x-norms. They

were able to bound free solutions in Lp for p > 2(n+2)
n . These results are optimal in the sense

that the Stri
hartz estimates are known to fail for p = 2(n+2)
n [Bou93a, Se
tion 2, Remark 2℄.
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Comparing it to the range of Stri
hartz estimates on R
3
, see (1.17), one noti
es that the esti-

mates on re
tangular tori 
over the same range ex
ept of the endpoint. Further 
ontributions

to linear Stri
hartz estimate 
ame from [Bou07, CW10, Dem13, Bou13, GOW14℄.

Sub-
riti
al well-posedness on tori in several dimensions has been addressed e.g. in [Bou93a,

Bou93b, Bou04, DPST07, Bou07, CKS

+
10, CW10, Han12, Dem13, GOW14℄.

The nonlinear S
hrödinger equation on tori in various 
riti
al regimes have been studied

in [Wan13b, HTT11, HTT14, GOW14, Str14, KV14℄. The NLS on re
tangular tori with

nonlinearity ±|u|2k+1u is known to be lo
ally well-posed in the s
aling spa
e in the following

situations:

• n = 2 and k ≥ 3 [Str14℄, see also [GOW14℄ for k ≥ 6,

• n = 3 and k ≥ 2 [Str14℄, see also [GOW14℄ for k ≥ 3,

• n ≥ 4 and k ≥ 2 [GOW14℄.

The 
ase n = 2 and k ≥ 3 is pursued in Se
tion 2.4. Using Bourgain's Stri
hartz estimate in

[Bou13℄, Herr�Tataru�Tzvetkov [HTT14℄ proved that the energy-
riti
al NLS equation on T
4

is globally well-posed for small initial data. This is remarkable as it is the only energy-
riti
al

well-posedness result on a 4-dimensional 
ompa
t manifold known yet.

It is also worth to mention that the non-ellipti
 nonlinear S
hrödinger equation on T
2
has

been 
onsidered in [GT12, Wan13a℄. Moreover, rough potentials [BBZ13℄ and the fra
tional

S
hrödinger equation [DET13℄ have been studied.

2.3.2 Set-up

We start with some basi
 de�nitions and notation. T
n
shall denote the �at standard torus

T
n := R

n/(2πZ)n. Re
all from De�nition 1.26 that we use the following 
onvention for the

Fourier transform on Tn

(Ff)(ξ) = pf(ξ) =
1

(2π)n/2

∫

Tn

f(x)e−ix·ξ dx, ξ ∈ Z
n,

so that we have the Fourier inversion formula

f(x) =
1

(2π)n/2

∑

ξ∈Zn

pf(ξ)eix·ξ , x ∈ T
n.

Let the spe
tral proje
tors PN : L2(Tn) → L2(Tn) be de�ned as in (1.12). More generally,

given a set S ⊆ Z
n
, we de�ne PS to be the Fourier multiplier operator with symbol 1S , where

1S denotes the 
hara
teristi
 fun
tion of S.
Given any θ = (θ1, . . . , θn) ∈ (0,∞)n, we de�ne the �at re
tangular torus by

T
n
θ := R

n/
(
2πθ

−1/2
1 Z× · · · × 2πθ−1/2

n Z
)
.

We shall use the standard torus T
n = T

n
(1,...,1) as base spa
e. Let φ̃ ∈ Hsc(Tnθ), and suppose

v : (−T, T )× T
n
θ → C solves the nonlinear S
hrödinger equation

{
i∂tv +∆gv = ±|v|2k+1v

v(0, · ) = φ̃,
(2.21)
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where k ∈ N. Re
all from (1.19) that the s
aling-
riti
al Sobolev index is given by

sc =
n

2
− 1

k
. (2.22)

Let u : (−T, T )× T
n → C and φ ∈ Hsc(Tn) be de�ned as

u(t, x) := v
(
t, (θ

−1/2
1 x1, . . . , θ

−1/2
n xn)

)

and φ(x1, . . . , xn) := φ̃
(
θ
−1/2
1 x1, . . . , θ

−1/2
n xn

)
, respe
tively. By a 
hange of spatial variables,

one easily veri�es that u is a solution to

{
i∂tu+∆θu = ±|u|2k+1u

u(0, · ) = φ.
(2.23)

Here, the modi�ed Lapla
e�Beltrami operator ∆θ is de�ned via ∆θ := θ1∂
2
x1 + · · · + θn∂

2
xn .

On the Fourier side this 
orresponds to

F(∆θf)(ξ) := −Q(ξ) pf(ξ), Q(ξ) := θ1ξ
2
1 + · · ·+ θnξ

2
n, (2.24)

for ξ = (ξ1, . . . , ξn) ∈ Z
n
. Using this notation, the free solution to (2.23) is given by

(eit∆θφ)(x) =
∑

ξ∈Zn

pφ(ξ)ei(ξ·x−Q(ξ)t). (2.25)

By a 
hange of variable in time, without loss of generality we may assume θ1 = 1. This turns
out to be useful in the proof of Lemma 3.21 below. From now on, we study (2.23).

The mass and the energy,

M(u)(t) =
1

2

∫

Tn

|u(t, x)|2 dx,

E(u)(t) =
1

2

∫

Tn

|∇θu(t, x)|2 dx± 1

2k + 2

∫

Tn

|u(t, x)|2k+2 dx,

(2.26)

are 
onserved in time, whenever u : (−T, T )× T
n → C is a strong solution of (2.23). Here,

∇θ := (θ
1/2
1 ∂x1 , . . . , θ

1/2
n ∂xn).

For N,M ≥ 1 we de�ne the 
olle
tion of re
tangular sets

R
n
N,M :=

{
R ⊆ R

n : ∃z ∈ Z
n
, O orthogonal n× n-matrix s.t.

OR+ z ⊆ [−N,N ]n−1 × [−M,M ]
}
.

Moreover, we set C n
N := Rn

N,N .

We 
onsider the three-dimensional quinti
, i.e. k = 2, NLS in the present se
tion. In

Se
tion 2.4, (2.23) in two dimensions with k ≥ 3 is studied.
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2.3.3 Linear Stri
hartz estimates

The following linear Stri
hartz estimate for free solutions on re
tangular tori was veri�ed by

Bourgain [Bou07, Proposition 1.1℄. Besides almost orthogonality, this is the main ingredient

for the trilinear Stri
hartz estimate in Proposition 2.13.

Lemma 2.10. Let p > 16
3 and τ0 ⊂ R be a bounded interval. For every N ≥ 1, C ∈ C 3

N , and

φ ∈ L2(T3) we have

‖PCeit∆θφ‖Lp(τ0,L4(T3)) . N
3
4
− 2

p ‖PCφ‖L2(T3).

Proof/Referen
e. Using essentially the exponential sum estimates given in Se
tion 1.3, Bour-

gain [Bou07, Proposition 1.1℄ proved

‖PNeit∆θφ‖Lp(τ0,L4(T3)) . N
3
4
− 2

p ‖PNφ‖L2(T3). (2.27)

Moreover, he remarked that the inequality holds true also for the proje
tor PC . Below we

show that this may be a

omplished from a Galilean transformation.

We modify the arguments from [HTT11, Proposition 3.1℄ to treat ∆θ, see also [Bou93a,

formulas (5.7)�(5.8)℄. Denote ξ ·θ ζ := ξ1ζ1 + θ2ξ2ζ2 + θ3ξ3ζ3, and let ξ0 be the 
enter of C.
Applying the adapted Galilean transformation

x ·θ ξ + tQ(ξ) = x ·θ ξ0 + tQ(ξ0) + (x+ 2tξ0) ·θ (ξ − ξ0) + tQ(ξ − ξ0),

whi
h 
an be easily veri�ed, allows to shift the 
enter of the 
ube C to the origin, i.e. to

C0 := C − ξ0. De�ne φ0 := e−ix·ξ0φ(x), and note that

xφ0(ξ) = pφ(ξ+ ξ0) implies ‖PCφ‖L2(T3) =
‖PC0φ0‖L2(T3). We also observe that

PC0e
it∆θφ0(t, x) =

∑

ξ∈C0
ei(x·ξ−tQ(ξ))xφ0(ξ) =

∑

ξ∈C
ei(x·(ξ−ξ0)−tQ(ξ−ξ0))pφ(ξ).

Set Θ := diag(1, θ2, θ3), and observe that x · ξ = (Θ−1x) ·θ ξ. Rewriting the phase as

x · (ξ − ξ0)− tQ(ξ − ξ0) = (Θ−1x+ 2tξ0) ·θ ξ − tQ(ξ)− x · ξ0 − tQ(ξ0)

leads to

PC0e
it∆θφ0(t, x) = e−i(x·ξ0+tQ(ξ0))PCe

it∆θφ(t,Θ−1x+ 2tξ0).

Therefore, ‖PCeit∆θφ‖Lp(τ0×T3) = ‖PC0e
it∆θφ0‖Lp(τ0×T3). With this, Lemma 2.10 follows im-

mediately from (2.27).

Remark. Building on an earlier work of Bourgain�Demeter [BD15℄, Killip�Vi³an [KV14,

Theorem 1.1℄ proved this Stri
hartz estimate to hold true for free solutions measured in

Lp(τ0 × T
3) with p > 10

3 . In this thesis, we want to point out that the Stri
hartz estimate

gained from the exponential sum estimate in Corollary 1.39 is su�
ient to obtain the lo
al

and small data global well-posedness result. As it will be seen in Chapter 3, it is even strong

enough for proving global well-posedness for arbitrary large initial data in H1(T3). ♦

Corollary 2.11. Let p > 16
3 and 4 ≤ q < 3p

4 . Then, for all N,M ≥ 1 with N ≥ M ,

R ∈ R3
N,M , and all φ ∈ L2(T3) it holds

‖PRe
it∆θφ‖Lp(τ0,Lq(T3)) . N

1− 2
p
− 1

qM
1
2
− 2

q ‖PRφ‖L2(T3).
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Proof. The statement is implied by Lemma 2.10, the estimate

‖PReit∆θφ‖L∞(τ0×T3) ≤ |R ∩ Z
3| 12 ‖PRφ‖L2(T3) . NM

1
2 ‖PRφ‖L2(T3),

whi
h follows from Cau
hy�S
hwarz in the Fourier spa
e, and Hölder's estimate. The 
on-


lusion works as follows: Set f(t, x) := |PReit∆θφ(x)|, ε := 4p
q − 16

3 > 0, and ϑ := 4
q ≤ 1.

Then,

‖PRe
it∆θφ‖Lp

tL
q
x
= ‖fϑf1−ϑ‖Lp

tL
q
x
≤ ‖f‖ϑ

L
16
3 +ε

t L4
x

‖f‖1−ϑL∞
t,x

. N
1− 2

p
− 1

qM
1
2
− 2

q ‖PRφ‖L2(T2).

2.3.4 Almost orthogonality

In several appli
ations it turned out to be bene�
ial to use almost orthogonality in time.

This was �rst observed by Herr�Tataru�Tzvetkov [HTT11, Proof of Proposition 3.5℄ for the

standard torus T
3
and later also applied for Zoll manifolds su
h as S

3
[Her13, Proof of Propo-

sition 3.6℄ and S×S
2
[HS15, Proof of Proposition 2.6℄. Sin
e free solutions on re
tangular tori

are in general not periodi
 in time, we 
an not expe
t almost orthogonality in the same way

as in the aforementioned arti
les. However, the next lemma states that in the non-periodi


setting one gets an additional term with arbitrarily high polynomial de
ay on the se
ond

highest frequen
y. In view of Assumption 2.1, this term is negligible. The following result by

the author of this thesis 
an be found in [Str14, Lemma 3.2℄.

Lemma 2.12. Let ν > 0, k ∈ N, and τ0 ⊂ R be a bounded time interval. Furthermore, let

τ1 ⊃ τ0 be an open interval. Then, for all φ1, . . . , φ2k+1 ∈ L2(Tn) and dyadi
 numbers N1 ≥
. . . ≥ N2k+1 ≥ 1 there exist �nitely many re
tangles Rℓ ∈ Rn

N2,M
, where M := max

{N2
2

N1
, 1
}
,

with the properties that PN1 =
∑

ℓ∈Z PRℓ
PN1 and

∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ0×Tn)

.
∑

ℓ∈Z

∥∥∥∥PRℓ
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

+N−ν
2

2k+1∏

j=1

‖PNjφj‖2L2(Tn).

Proof. Note that we may assume N1 ≫ N2.

Step 1. We show that due to spatial almost orthogonality, it su�
es to prove the desired

estimate in the 
ase

PCPN1e
it∆θφ1 = PN1e

it∆θφ1, (2.28)

where C ∈ C n
N2
. To prove this, we 
onsider a partition of Z

n
into 
ountably many, disjoint


ubes in Z
n
of size N2:

Z
n =

⋃̇

ℓ∈Z
Cℓ, Cℓ ∈ C

n
N2
.

We 
laim that for �xed t ∈ τ0,

∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(Tn)

≈
∑

ℓ∈Z

∥∥∥∥PCℓPN1e
it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(Tn)

.
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Indeed, �x any t ∈ τ0. For a given ℓ ∈ Z there are only �nitely many (independent of Nj ,

j = 1, . . . , 2k + 1) ℓ̃ ∈ Z su
h that

〈
PCℓPN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj , PC

ℓ̃
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

〉

L2(Tn)

6= 0. (2.29)

We 
onsider latti
e points ξ1 ∈ suppF(PCℓPN1e
it∆θφ1), ξ̃1 ∈ suppF(PC

ℓ̃
PN1e

it∆θφ1), and

ξj, ξ̃j ∈ Nj := suppF(PNje
it∆θφj), j = 2, . . . , 2k + 1. Then, (2.29) follows from the fa
t that

∫

Tn

eix·[ξ1+···+ξ2k+1−(ξ̃1+···+ξ̃2k+1)] dx = 0

whenever the distan
e of Cℓ and C
ℓ̃
is larger than 4kN2. Therefore, we may assume (2.28).

Step 2. As in the proof of [HTT11, Proposition 3.5℄, we de�ne the following partition: Let ξ0

be the 
enter of C and de�ne disjoint strips of width M := max
{N2

2
N1
, 1
}
whi
h are orthogonal

to ξ0:
Rℓ :=

{
ξ ∈ C : ξ · ξ0 ∈

[
|ξ0|Mℓ, |ξ0|M(ℓ+ 1)

)}
∈ R

n
N2,M .

We 
on
lude from the 
onstru
tion that ∡(ξ, ξ0) . N2
N1

for all ξ ∈ Rℓ. Sin
e N1 ≫ N2, we

have ∡(ξ, ξ0) ≤ 1
2 . Therefore,

ξ · ξ0 = |ξ||ξ0| cos∡(ξ, ξ0) ≈ N2
1 ,

whi
h implies that ℓ ≥ 0 and ℓ ≈ N1
M be
ause |ξ0| ≈ N1. Sin
e C =

⋃̇
ℓ∈ZRℓ, we 
learly have

PCPN1e
it∆θφ1 =

∑
ℓ∈Z PRℓ

PN1e
it∆θφ1.

Let χ ∈ C∞
0 (R) be a non-negative 
ut-o� fun
tion satisfying χ(t) = 1 for all t ∈ τ0 and

χ(t) = 0 for all t ∈ R \ τ1. Obviously,
∥∥∥∥
2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ0×Tn)

≤
∥∥∥∥
√
χ(t)

2k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

. I1 + I2,

where

I1 :=
∑

ℓ≈N1/M

∥∥∥∥PRℓ
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
2

L2(τ1×Tn)

,

and I2 is de�ned as

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)PRℓ

PN1e
it∆θφ1

2k+1∏

j=2

PNje
it∆θφj, PR

ℓ̃
PN1e

it∆θφ1

2k+1∏

j=2

PNje
it∆θφj

〉

L2(R×Tn)

.

We are left to show that

|I2| . N−ν
2 ‖PCPN1φ1‖2L2(Tn)

2k+1∏

j=2

‖PNjφj‖2L2(Tn).

Sin
e we extended the integration with respe
t to t to R, we may interpret this integration as

Fourier transform on R. Then, taking the absolute value, we end up with

|I2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

n1∈Rℓ, ñ1∈Rℓ′ ,
nj ,ñj∈Nj , j=2,...,2k+1

∣∣FRn(χ)
∣∣
(2k+1∑

j=1

(
Q(nj)−Q(ñj)

)) 2k+1∏

j=1

∣∣ pφj(nj)
∣∣∣∣ pφj(ñj)

∣∣.

(2.30)
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Similarly to the proof of [HTT11, Proposition 3.5℄, we get

∣∣∣∣
2k+1∑

j=1

(
Q(nj)−Q(ñj)

)∣∣∣∣ =M2|ℓ− ℓ̃ |(ℓ+ ℓ̃ ) +O(M2ℓ) +O(M2ℓ̃ ) & N2
2 〈ℓ− ℓ̃ 〉

sin
e ℓ, ℓ̃ ≈ N1
M and |ℓ− ℓ̃ | ≫ 1. Thus, for any µ > 0 we may estimate

∣∣FRn(χ)
∣∣
(2k+1∑

j=1

(
Q(nj)−Q(ñj)

))
.µ N

−2µ
2 〈ℓ− ℓ̃ 〉−µ.

Using Cau
hy�S
hwarz with respe
t to nj , ñj , j = 1, . . . , 2k + 1, on the right-hand side of

(2.30) yields

|I2| . N−ν
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ‖PRℓ
φ1‖L2(Tn)‖PR

ℓ̃
φ1‖L2(Tn)

2k+1∏

j=2

‖PNjφj‖2L2(Tn)

provided ν ≤ 2µ− (2k + 1)n. Finally, S
hur's lemma implies

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ‖PRℓ
φ1‖L2(Tn)‖PR

ℓ̃
φ1‖L2(Tn) . ‖PCPN1φ1‖2L2(Tn)

provided µ > 1. This �nishes the proof.

2.3.5 The trilinear Stri
hartz estimate

The linear Stri
hartz estimates in Lemma 2.10 and Corollary 2.11 as well as the almost or-

thogonality in Lemma 2.12 allow us to prove the desired trilinear L2
-estimate.

Proposition 2.13. Let τ ⊂ R be a bounded time interval. There exists δ > 0 su
h that for

all φ1, φ2, φ3 ∈ L2(T3) and dyadi
 numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds

true: ∥∥∥∥
3∏

j=1

PNje
it∆θφj

∥∥∥∥
L2(τ0×T3)

.

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(T3).

Proof. From Lemma 2.12, we see that we may repla
e the proje
tor PN1 by PRPN1 with

R ∈ R3
N2,M

and M := max{N2
2 /N1, 1} provided we magnify the time interval τ0 to an open

interval τ1 ⊃ τ0.

Let p1 > 16
3 and 4 < q1 < 3p1

4 . Furthermore, let p2 and q2 be de�ned via the relations

1
2 = 2

p1
+ 1

p2
and

1
2 = 2

q1
+ 1

q2
, respe
tively. Hölder's estimate yields

‖PRPN1e
it∆θφ1PN2e

it∆θφ2PN3e
it∆θφ3‖L2(τ1×T3)

≤ ‖PRPN1e
it∆θφ1‖Lp1

t L
q1
x
‖PN2e

it∆θφ2‖Lp1
t L

q1
x
‖PN3e

it∆θφ3‖Lp2
t L

q2
x
. (2.31)

Applying Lemma 2.10, Corollary 2.11, and Bernstein's inequality, we infer

(2.31) .M
1
2
− 2

q1N
5
2
− 4

p1
− 4

q1
2 N

4
p1

+ 6
q1

−1

3 ‖PRPN1φ1‖L2
x

3∏

j=2

‖PNjφj‖L2(T3)

.

(
N3

N1
+

1

N2

) 1
2
− 2

q1

N
7
2
− 4

p1
− 8

q1
2 N

4
p1

+ 8
q1

− 3
2

3 ‖PRPN1φ1‖L2
x

3∏

j=2

‖PNjφj‖L2(T3).

Then, the 
laim follows for p1 su�
iently 
lose to

16
3 and q1 su�
iently 
lose to 4.
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2.4 Re
tangular tori in two dimensions

After studying re
tangular 3-tori in the previous se
tion, we brie�y dis
uss s
aling-
riti
al

well-posedness on two-dimensional re
tangular tori. A multilinear Stri
hartz estimate is

proved, whi
h implies s
aling-
riti
al lo
al well-posedness results by similar arguments as

in Se
tion 2.2, 
f. also [GOW14, Se
tion 5℄ and the referen
es therein: De�ne appropriate

iteration spa
es that in whi
h one may 
ontrol the Duhamel term, 
f. Lemma 2.9. Then, a

�xed-point argument similar to the proof of Theorem 2.3 proves lo
al well-posedness. Hen
e,

Proposition 2.17 leads to:

Theorem 2.14. Let sc be de�ned by (2.22) and let 3 ≤ k ∈ N. Then, for all s ≥ sc the initial
value problem (2.21) is lo
ally well-posed in Hs(T2

θ).

We refer to Theorem 2.3 for a pre
ise formulation of this theorem. S
aling-
riti
al small data

global well-posedness 
an not be 
on
luded as in three dimensions sin
e the energy and Hsc
-

norm s
ale di�erently. Hen
e, the 
onservation of energy 
an not be exploited as in the proof

of Theorem 2.3.

Theorem 2.14 extends previous results of Guo�Oh�Wang [GOW14, Theorem 1.5℄ who proved

the same result for k ≥ 6. This is a

omplished by using a new trilinear Stri
hartz estimate

whi
h serves as an improved repla
ement for applying Hölder's inequality and linear Stri
hartz

estimates. The result is already published in [Str14, Se
tion 3℄.

We use the notation introdu
ed in Se
tion 2.3.2 and 
onsider (2.23) on T
2
instead, with the

modi�ed Lapla
e�Beltrami operator ∆θ given by (2.24).

First, the following trilinear Stri
hartz estimate is proved by using ideas of [Bou07℄. This

improves [GOW14, Lemma 5.9℄ (for d = 2). The main point here is that we do not get any

fa
tor of the highest frequen
y.

Lemma 2.15. Let 2 < p ≤ 4. Then, for any N,M ≥ 1 with N ≥M , C1 ∈ C 2
N , C2, C3 ∈ C 2

M ,

and φ1, φ2, φ3 ∈ L2(T2) we have

∥∥∥∥
3∏

j=1

PCje
it∆θφj

∥∥∥∥
Lp(τ0,L2(T2))

.M2− 2
p

3∏

j=1

‖PCjφ‖L2(T2).

Proof. This proof is a trilinear variant of the poof of [Bou07, Proposition 1.1℄. Hen
e, we

omit details and refer the reader also to the proof of Lemma 2.19 below, in whi
h a similar

argument is applied. For brevity we write LptL
q
x := Lp(τ0, L

q(T2)) and Lpt := Lp(τ0).

The left-hand side may be estimated by

[∑

a∈Z2

∥∥∥∥
∑

n∈C2,
m∈C3

pφ1(a− n−m)pφ2(n)pφ3(m)e2πi(Q(a−n−m)+Q(n)+Q(m))t

∥∥∥∥
2

Lp
t

] 1
2

using Plan
herel's identity with respe
t to x and Minkowski's inequality. Now, applying

Hausdor��Young (Proposition 1.36 (ii)) and setting cj,n := |pφj(n)| yields

‖ · · · ‖Lp
t
.

[∑

k∈Z

∣∣∣∣
∑

|Q(a−n−m)+Q(n)+Q(m)−k|≤ 1
2

c1,a−n−mc2,nc3,m

∣∣∣∣
p

p−1
] p−1

p

.
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One easily veri�es that |Q(a− n−m) +Q(n) +Q(m)− k| ≤ 1
2 may be written as

|Q(3ñ− 2a) + 3Q(m̃) + 2Q(a)− 6k| ≤ 3,

where ñ := n+m and m̃ := n−m. Hen
e,

∣∣{(n,m) ∈ C2 × C3 : |Q(a− n−m) +Q(n) +Q(m)− k| ≤ 1
2

}∣∣ . |Sℓ|,
where

Sℓ :=
{
(ñ, m̃) ∈ C̃2 × C̃3 : |Q(ñ) + 3Q(m̃)− ℓ| ≤ 4

}
,

ℓ := [6k − 2Q(a)] ∈ Z, and 
ubes

C̃2 =
(
[b1, b1 + 10M ]× [b2, b2 + 10M ]

)
∩ Z

2
and C̃3 =

(
[b3, b3 + 10M ]× [b4, b4 + 10M ]

)
∩ Z

2

for some b1, . . . , b4 ∈ Z. This observation and applying Hölder's inequality twi
e yield

‖ · · · ‖Lp
t
.

(∑

ℓ∈Z
|Sℓ|

p
p−2

) p−2
2p
( ∑

n∈C2, m∈C3
c21,a−n−mc

2
2,nc

2
3,m

) 1
2

,

whi
h in turn implies

∥∥∥∥
3∏

j=1

PCje
it∆θφj

∥∥∥∥
Lp(τ0,L2(T2))

.

(∑

ℓ∈Z
|Sℓ|

p
p−2

)p−2
2p

3∏

j=1

‖PCjφj‖L2(T2).

The assumption p ≤ 4 ensures that

p
p−2 ≥ 2. Thus, by Corollary 1.37 and Corollary 1.39, we

may estimate

(∑

ℓ∈Z
|Sℓ|

p
p−2

) p−2
p

.

∥∥∥∥
2∏

j=1

∑

(m̃,ñ)∈Cj
eiθj(ñ

2
j+3m̃2

j )t

∥∥∥∥
L

p
2
t (I)

.M
4(1− 1

p
)

for some 
ompa
t interval I ⊆ R provided p > 2. This implies the desired estimate.

Corollary 2.16. Let p > 6.

(i) For every N ≥ 1, C ∈ C 2
N , and φ ∈ L2(T2) we have

‖PCeit∆θφ‖Lp(τ0,L6(T2)) . N
2
3
− 2

p ‖PCφ‖L2(T2).

(ii) Let 6 ≤ q < p. Then, for all N,M ≥ 1 with N ≥ M , R ∈ R2
N,M , and φ ∈ L2(T2) it

holds that

‖PReit∆θφ‖Lp(τ0,Lq(T2)) . N
1
2
+ 1

q
− 2

pM
1
2
− 3

q ‖PRφ‖L2(T2).

Proof. The �rst estimate is a dire
t 
onsequen
e of Lemma 2.15 provided p ≤ 12. The estimate

‖PCeit∆θφ‖L∞(τ0×T2) . N‖PCφ‖L2(T2)

is trivial from Cau
hy�S
hwarz. For 12 < p < ∞, the desired estimate follows from Hölder's

inequality and the estimates for p = 12 and p = ∞.

The se
ond statement follows from (i), the estimate

‖PRe
it∆θφ‖L∞(τ0×T2) ≤ |R ∩ Z

2| 12‖PRφ‖L2(T2) . (NM)
1
2‖PRφ‖L2(T2),

whi
h may easily be obtained by applying Cau
hy�S
hwarz in Fourier spa
e, and Hölder's

inequality. The 
on
lusion works as follows: Set f(t, x) := |PReit∆θφ(x)|, ε := 6p
q − 6 > 0,

and ϑ := 6
q ≤ 1. Then,

‖PRe
it∆θφ

∥∥
Lp
tL

q
x
= ‖fϑf1−ϑ

∥∥
Lp
tL

q
x
≤ ‖f‖ϑ

L6+ε
t L6

x
‖f‖1−ϑL∞

t,x
. N

1
2
+ 1

q
− 2

pM
1
2
− 3

q ‖PRφ‖L2(T2).
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Now, we prove the multilinear estimate from whi
h the 
laimed well-posedness result follows

by standard arguments.

Proposition 2.17. Let k ≥ 3. There exists δ > 0 su
h that for all φ1, . . . , φk+1 ∈ L2(T2)
and dyadi
 numbers N1 ≥ . . . ≥ Nk+1 ≥ 1 the following estimate holds true

∥∥∥∥
k+1∏

j=1

PNje
it∆θφj

∥∥∥∥
L2(τ0×T2)

.

(
Nk+1

N1
+

1

N2

)δ
‖PN1φ1‖L2(T2)

k+1∏

j=2

N sc
j ‖PNjφj‖L2(T2).

Proof. Thanks to the almost orthogonality argument in Lemma 2.12, it su�
es to repla
e

PN1e
it∆θφ1 by PRPN1e

it∆θφ1, where R ∈ R2
N2,M

with M = max{N2
2 /N1, 1} provided we

magnify the time interval to an open interval τ1 ⊃ τ0.

Let 6 < p1, q1 < 8 and 3 < p2 ≤ 24
5 . Furthermore, let p3 and q2 be de�ned via the relations

1
2 = 1

p1
+ 1

p2
+ k−2

p3
and

1
2 = 1

q1
+ 1

3 + k−2
q2

, respe
tively. By Hölder's estimate the following

holds true:

∥∥∥∥PRPN1e
it∆θφ1

k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
L2
t,x

≤ ‖PRPN1e
it∆θφ1‖Lp1

t L
q1
x
‖PN2e

it∆θφ2PN3e
it∆θφ3‖Lp2

t L3
x

×
k+1∏

j=4

‖PNje
it∆θφj‖Lp3

t L
q2
x
,

(2.32)

where LrtL
s
x := Lr(τ1, L

s(T2)) and L2
t,x := L2

tL
2
x. Let fj := |PNje

it∆θφj|, j = 2, 3. Then we

treat the bilinear term as follows:

‖f2f3‖2Lp2
t L3

x
= ‖f22 f23‖

L
p2
2

t L
3
2
x

≤ ‖f2f23 ‖Lr
tL

2
x
‖f2‖Ls

tL
6
x
,

where s > 6 and

2
p2

= 1
r +

1
s . Note that p2 ≤ 24

5 ensures that r ≤ 4. By Lemma 2.15 and

Corollary 2.16, we have for all η > 0,

‖PN2e
it∆θφ2PN3e

it∆θφ3‖Lp2
t L3

x
≤ N

1
6
+η

2 N
7
6
− 2

p2
−η

3 . (2.33)

Corollary 2.16, (2.33), and Bernstein's inequality imply

(2.32) .
(M
N2

) 1
2
− 3

q1N
7
6
− 2

p1
− 2

q1
+η

2 N
7
6
− 2

p2
−η

3

k+1∏

j=4

N
1− 2

k−2
( 2
3
− 1

p1
− 1

p2
− 1

q1
)

j

× ‖PRPN1φj‖L2(T2)

k+1∏

j=2

‖PNjφj‖L2(T2).

For all 0 < ν1, ν2 ≪ 1, there exist δ > 0 and p1, q1 > 6 su�
iently 
lose to 6 as well as p2 > 3
su�
iently 
lose to 3 su
h that

(i)

(M
N2

) 1
2
− 3

q1 =
(M
N2

)δ
, (ii) N

7
6
− 2

p1
− 2

q1
+η

2 = N
1
2
+ν1+η

2 ,

(iii) N
7
6
− 2

p2
−η

3 = N
1
2
+ν2−η

3 , (iv) N
1− 2

k−2
( 2
3
− 1

p1
− 1

p2
− 1

q1
)

j = N
1− ν1+ν2

k−2

j ,

where j ∈ {4, . . . , k + 1}. Sin
e 1
2 < sc < 1 for k ≥ 3, we may 
hoose 0 < ν1, ν2, η ≪ 1 small

enough to get

∥∥∥∥PRPN1e
it∆θφ1

k+1∏

j=2

PNje
it∆θφj

∥∥∥∥
L2
t,x

.

(
Nk+1

N1
+

1

N2

)δ
‖PRPN1φ1‖L2

x

k+1∏

j=2

N sc
j ‖PNjφj‖L2

x
,

where L2
x := L2(T2).
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2.5 Produ
t of spheres

Assumption 2.1 is veri�ed for M being a produ
t of S with a two-dimensional sphere with

arbitrary radius. In this thesis, we give the �rst proof of this result.

2.5.1 Sele
ted results

There are only few known results about well-posedness on produ
ts of spheres. Let ρ > 0
and S

2
ρ be the embedded sphere of radius ρ in R

3
, then Burq�Gérard�Tzvetkov [BGT05b,

Theorem 1℄ proved that

i∂tu+∆gu = |u|α−1u

with initial data φ ∈ H1(S × S
2
ρ) is globally well-posed whenever α < 5. To a

omplish that

they proved a weak bilinear estimate [BGT05b, Proposition 5.3℄, whi
h implies well-posedness

for 1 < α ≤ 4, and a stronger trilinear estimate [BGT05b, Proposition 5.1℄, whi
h allows to

get the well-posedness in the 
ase α = 5 but only for data in Hs(S×S
2
ρ) with s > 1. A suitable

interpolation between those to approa
hes yields the 
laimed well-posedness. Moreover, they

rely on 
ertain multilinear spe
tral 
luster estimates [BGT05b, Theorem 2℄, whi
h have been

proved by themselves as well.

In a joint work of Herr and the author [HS15, Theorem 1℄, lo
al well-posedness and small data

global well-posedness on S × S
2
was established. Using almost orthogonality and repla
ing

the number of latti
e points estimate in [BGT05b, Proposition 5.1℄ by a new exponential

sum estimate, it was possible to verify Assumption 2.1 [HS15, Proposition 2.6℄. However,

the exponential sum estimate in [HS15, Lemma 2.3℄ 
an not be extend to handle the 
ase of

produ
ts of spheres with di�erent radii.

In this se
tion, we are going to repla
e the exponential sum estimate in [HS15, Lemma 2.3℄

by Corollary 2.20 and use a more re�ned almost orthogonality argument to over
ome the

problems des
ribed in [HS15, Remark 1℄

4

.

2.5.2 Set-up

We take the notation for the spe
trum and the spe
tral proje
tors that has been used in

[BGT05b, Se
tion 5℄: Set M := S × S2ρ for brevity. The eigenvalues of −∆ := −∆g are given

by {λm,n}(m,n)∈Z×N0
, where

λm,n := m2 + κ(n2 + n), (m,n) ∈ Z× N0

and κ := ρ−2
. This follows simply from the fa
t that the spe
trum of a produ
t manifold

equals the sum of the spe
tra of the individual manifolds, 
f. [Cha84, Se
tion 2.1℄, and the

behavior of the eigenvalues under s
aling of the underlying manifold, see e.g. [Han12, Se
-

tion 2.2℄. The spe
tral proje
tor onto spheri
al harmoni
s of degree n on S
2
ρ shall be denoted

by Πn : L
2(S2ρ) → L2(S2ρ). For a fun
tion f : S× S

2
ρ → C we write S × S

2
ρ ∋ (θ, ω) 7→ f(θ, ω).

For �xed ω ∈ S
2
ρ the mth Fourier 
oe�
ient of f( · , ω) shall be de�ned by

Θmf(ω) :=
1

2π

∫ 2π

0
f(θ, ω)e−imθ dθ, m ∈ Z.

4

[HS15, Remark 1℄ is repeated at the beginning of Se
tion 2.5.5.
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For f ∈ L2(M) we have the following representation

f(θ, ω) =
∑

(m,n)∈Z×N0

eimθ ΠnΘm(f)(ω)

in the L2
-sense. For dyadi
 N ≥ 1 the proje
tors are given by

PNf(θ, ω) =
∑

(m,n)∈Z×N0

ηN (
√
λm,n)e

imθ ΠnΘm(f)(ω), (θ, ω) ∈M,

where ηN is de�ned in (1.11). Given a se
ond fun
tion g ∈ L2(M) and a point-set S ⊆ Z
4
,

we de�ne the bilinear proje
tor

QS(f, g)(θ, ω) :=
∑

(m1,n1,m2,n2)∈S∩(Z×N0)2

ei(m1+m2)θ Πn1Θm1(f)(ω)Πn2Θm2(g)(ω)

for (θ, ω) ∈M .

Re
all that the Sobolev norm, whi
h was de�ned in De�nition 1.52, is given by

‖f‖2Hs(M) =
∑

(m,n)∈Z×N0

〈√
λm,n

〉2s‖ΠnΘmf‖2L2(M) ≈
∑

N≥1

N2s‖PNf‖2L2(M).

In view of (1.20), the linear S
hrödinger evolution is given by

eit∆f(θ, ω) =
∑

(m,n)∈Z×N0

e−iλm,nteimθ ΠnΘm(f)(ω).

2.5.3 A trilinear estimate for spheri
al harmoni
s

The su

eeding trilinear estimate for eigenfun
tions of the Lapla
e�Beltrami operator on the

2-sphere is stated in [BGT05b, Theorem 2℄. It is dedu
ed as a 
onsequen
e of the more general

trilinear spe
tral 
luster estimate in [BGT05b, Theorem 3℄ that holds on any two-dimensional,


ompa
t, smooth, boundaryless Riemannian manifold. Bilinear and higher-dimensional ver-

sions are provided as well.

Proposition 2.18. There exists Cρ > 0 su
h that for all integers n1 ≥ n2 ≥ n3 ≥ 0 and

f1, f2, f3 ∈ L2(S2ρ) the following trilinear estimate holds true

‖Πn1f1Πn2f2Πn3f3‖L2(S2ρ)
≤ Cρ

(
〈n2〉〈n3〉

) 1
4

3∏

j=1

‖Πnjfj‖L2(S2ρ)
.

Remark. We want to highlight Remark 2.1 in [BGT05b℄. If one is interested in estimating

produ
ts of single eigenfun
tions, the spe
tral 
luster estimates seem only to be relevant for

�sphere like manifolds�. On the one hand, they are far from being optimal in the 
ase of the

torus. Indeed, the spe
tral 
luster estimate in [BGT05b, formula (2.5)℄ states that there is

a 
onstant C > 0 su
h that for every two eigenfun
tions f and g of the Lapla
e�Beltrami

operator on T
2
with eigenvalues n respe
tively m,

‖fg‖L2(T2) ≤ Cmin{n,m} 1
2 ‖f‖L2(T2)‖g‖L2(T2),

whereas the dual statement of the 
lassi
al result of Zygmund [Zyg74, Theorem 1℄ shows that

‖fg‖L2(T2) ≤ C‖f‖L2(T2)‖g‖L2(T2).
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On the other hand, Burq�Gérard�Tzvetkov dis
ussed the optimality of this estimate on S
2

[BGT05b, Se
tion 2.1℄: Choosing the spheri
al harmoni
s Rn := (x1 + ix2)
n
, one easily


al
ulates

‖Rn‖L2(S2) ≈ n−
1
4 , n≫ 1

and Rn1Rn2Rn3 = Rn1+n2+n3 for n1, n2, n3 ≥ 0. Hen
e, for n1 ≥ n2 ≥ n3 ≫ 1,

‖Rn1Rn2Rn3‖L2(S2) & (n1 + n2 + n3)
− 1

4 & (n2n3)
− 1

4

3∏

j=1

‖Rnj‖L2(S2).

The spe
tral 
luster estimates given in [BGT05b, Theorem 3℄ have su

essfully been applied

to gain energy-
riti
al well-posedness of the NLS posed on three-dimensional Zoll manifolds,

see [Her13, Proposition 3.6℄. ♦

2.5.4 Two exponential sum estimates

The next exponential sum estimate is used for handling a term that arises from the time and S


omponent of the two high-frequen
y fun
tions. We are only interested in p 
lose to 8
3 sin
e it

serves as the lower endpoint of the interpolation with an estimate in L∞(τ0 × S), whi
h takes

the pre
ise size of S into a

ount. The strategy is similar to the proof of the linear Stri
hartz

estimates by Bourgain for free solutions on T
3
θ [Bou07, Proposition 1.1℄. This lemma repla
es

[HS15, Lemma 2.3℄ and allows to treat the 
ase ρ 6= 1.

Lemma 2.19. Let

8
3 < p ≤ 4 and τ0 ⊂ R be a bounded time interval. Then, there exists a


onstant C > 0 su
h that for any a ∈ ℓ2(Z4), N ≥ 1, and all S ∈ C 4
N the estimate

∥∥∥∥
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∥∥∥∥
Lp
t (τ0,L

2
θ(S))

≤ CN
3
2
− 2

p ‖a‖ℓ2

holds true.

Proof. For p ≥ 2 Plan
herel's identity with respe
t to θ as well as Minkowski's inequality

allow to estimate the left-hand side by

∥∥∥∥
[∑

ξ∈Z

∣∣∣∣
∑

(m1,n1,ξ−m1,n2)∈S
e−i(λm1,n1+λξ−m1,n2

)tam1,n1,ξ−m1,n2

∣∣∣∣
2] 1

2
∥∥∥∥
Lp
t

≤
[∑

ξ∈Z

∥∥∥∥
∑

(m1,n1,ξ−m1,n2)∈S
e−i(λm1,n1+λξ−m1,n2

)tam1,n1,ξ−m1,n2

∥∥∥∥
2

Lp
t

] 1
2

. (2.34)

Fix ξ ∈ Z. An appli
ation of the Hausdor��Young inequality, see Proposition 1.36 (ii), yields

‖ · · · ‖Lp
t
.

[∑

τ∈N0

∣∣∣∣
∑

(m1,n1,ξ−m1,n2)∈S:
|λm1,n1+λξ−m1,n2

−τ |≤ 1
2

|am1,n1,ξ−m1,n2 |
∣∣∣∣

p
p−1
] p−1

p

. (2.35)

By rewriting |λm1,n1 + λξ−m1,n2 − τ | ≤ 1
2 as

|2(2m1 − ξ)2 + κ(2n1 + 1)2 + κ(2n2 + 1)2 − (4τ − 2ξ2 + 2κ)| ≤ 2,



2.5 Produ
t of spheres 73

we observe that there exists some re
tangular set C = a+ [0, 10N ]3 su
h that for

Sτ,ξ :=
{
(m,n, ñ) ∈ C : |2m2 + κn2 + κñ2 − (4τ − 2ξ2 + 2κ)| ≤ 2

}

we have ∣∣{(m1, n1, ξ −m1, n2) ∈ S : |λm1,n1 + λξ−m1,n2 − τ | ≤ 1
2

}∣∣ ≤ |Sτ,ξ|.
Thus, applying Hölder's inequality twi
e, we get

(2.35) .

[∑

τ∈N0

|Sτ,ξ|
p

2(p−1)

( ∑

(m1,n1,ξ−m1,n2)∈S:
|λm1,n1+λξ−m1,n2

−τ |≤ 1
2

|am1,n1,ξ−m1,n2 |2
) p

2(p−1)
] p−1

p

.

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p
[ ∑

(m1,n1,ξ−m1,n2)∈S
|am1,n1,ξ−m1,n2 |2

] 1
2

sin
e the inner sum is essentially disjoint for di�erent values of τ . Plugging this into (2.34)

provides the bound

(2.34) . sup
ξ∈Z

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p

‖a‖ℓ2 .

Hen
e, we are left to estimate the �rst term on the right-hand side by N
3
2
− 2

p
. Sin
e p ≤ 4,

we have

p
p−2 ≥ 2, and we may apply Corollary 1.37 to estimate

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
p

.

∥∥∥∥
∑

(m,n,ñ)∈C
ei(2m

2+κn2+κñ2)t

∥∥∥∥
L

p
2
t (I)

for some 
ompa
t interval I ⊂ R. Due to the re
tangular stru
ture of C, the sum 
an be

fa
torized and Hölder's estimate leads to

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
p

.

∥∥∥∥
∑

m∈a1+[0,10N ]

e2im
2t

∥∥∥∥
L

3p
2

t (I)

∥∥∥∥
∑

n∈a2+[0,10N ]

eκin
2t

∥∥∥∥
L

3p
2

t (I)

×
∥∥∥∥

∑

ñ∈a3+[0,10N ]

eκiñ
2t

∥∥∥∥
L

3p
2

t (I)

uniformly in ξ. Sin
e p > 8
3 , we have

3p
2 > 4 and Corollary 1.39 yields

sup
ξ∈Z

(∑

τ∈N0

|Sτ,ξ|
p

p−2

) p−2
2p

. N
3
2
− 2

p

as asserted.

As mentioned before, interpolating with L∞(τ0 × S) leads to the next estimate we shall rely

on later. The fa
tor of |S| plays a 
ru
ial role in the up
oming arguments.

Corollary 2.20. Let p > 8
3 , 2 ≤ q < 3p

4 and τ0 ⊂ R be a bounded time interval. Then, there

exists C > 0 su
h that for any a ∈ ℓ2(Z4), N ≥ 1, and all sets S ∈ C 4
N the estimate

∥∥∥∥
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∥∥∥∥
Lp
t (τ0,L

q
θ(S))

≤ CN
3
q
− 2

p |S|
1
2
− 1

q ‖a‖ℓ2

holds.
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Proof. For brevity set

f(t, θ) :=

∣∣∣∣
∑

(m1,n1,m2,n2)∈S
e−i(λm1,n1+λm2,n2 )tei(m1+m2)θam1,n1,m2,n2

∣∣∣∣.

Let ε := 2p
q − 8

3 > 0 and ϑ := 2
q ≤ 1. By Hölder's inequality and Lemma 2.19 we have

‖f‖Lp
tL

q
θ
= ‖fϑf1−ϑ‖Lp

tL
q
θ
≤ ‖f‖ϑ

L
8
3+ε

t L2
θ

‖f‖1−ϑL∞
t,θ

. N
3
q
− 2

p |S|
1
2
− 1

q ‖a‖ℓ2 .

Here, we used

‖f‖L∞
t,θ

≤ |S| 12 ‖a‖ℓ2 ,
whi
h follows immediately from the Cau
hy�S
hwarz inequality.

2.5.5 Almost orthogonality

The subsequent lemmas exploit almost orthogonality in spa
e and time. In 
ontrast to what

has been done before, we gain some fa
tor of the lowest frequen
y (see (2.37)) from the two

high-frequen
y terms in Lemma 2.21. Sin
e we need to get a fa
tor N−δ
1 , this seems to work

only in the 
ase N1 ≤ N2
3 . The idea of using this kind of almost orthogonality to a
hieve a

spe
tral lo
alization of the two high-frequen
y terms in terms of the lowest frequen
y seems

to be new in this 
ontext. Without su
h an argument it is not obvious how one 
ould obtain

a su�
iently high power of N3 in Proposition 2.24 using the estimate in Lemma 2.19. To

show this, we repeat the author's argument in [HS15, Remark 1℄: We start with a trilinear

L2(τ0×M) estimate and pro
eed as in the proof of Proposition 2.24 until (2.43). Then, using

Hölder's inequality to put the two fun
tions with the highest frequen
ies to L
16/3+
t L4

θ, and

thus, the fun
tion with the lowest frequen
y, say N3, to L
8−
t L∞

θ . We treat the latter term as

follows: Applying Bernstein's inequality to bound it by the L8−
t L4

θ-norm gives a fa
tor N
1/4
3 .

The exponential sum estimate in Lemma 2.19 gives N
1/2−
3 and from the trilinear estimate for

spheri
al harmoni
s we get another N
1/4
3 as in (2.43). All in all, we obtain N1−

3 , and hen
e,

the power on the lowest frequen
y is too low to 
on
lude well-posedness from Se
tion 2.2.1.

The remaining 
ase N1 > N2
3 is treated in Lemma 2.22. By exploiting almost orthogonality

in spa
e and time, we restri
t the spe
trum only of the high-frequen
y term. In the proof of

Proposition 2.24 below, it turns out that this 
ase is in fa
t sub-
riti
al.

Given dyadi
 numbers N1, N2, N3 ≥ 1, we de�ne the point-sets

Nj :=
{
(m,n) ∈ Z×N0 : ηNj

(√
λm,n

)
> 0
}
, j = 1, 2, 3. (2.36)

Lemma 2.21. Let ν > 0 and τ0 ⊂ R be a bounded interval. Furthermore, let τ1 ⊃ τ0 be an

open interval. Then, for all φ1, φ2, φ3 ∈ L2(M) and dyadi
 numbers N1 ≥ N2 ≥ N3 ≥ 1 with

N1 ≤ N2
3 there are �nitely many sets Sℓ ⊆ N1 ×N2 of size

|Sℓ| . min
0≤δ≤1

N−δ
1 N1+2δ

2 N3−δ
3 , (2.37)

with the property N1 ×N2 =
⋃̇
ℓ∈ZSℓ su
h that

∥∥∥∥
3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
∥∥2
L2(τ1×M)

+N
3
2
2 N

−ν
3

3∏

j=1

‖PNjφj‖2L2(M).
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Proof. We prove this result in four steps. In the �rst three steps, we exploit almost orthogo-

nality in the S and the S
2
ρ 
omponent, respe
tively. We then use almost orthogonality in time

to 
on
lude the 
laim. Note that we may assume N1 ≫ N2.

In this proof, we agree on the notation

∑

A
:=

∑

(m1,n1,m2,n2,m3,n3)∈A
and

∑

A,
B

:=
∑

(m1,n1,m2,n2,m3,n3)∈A,
(m̃1,ñ1,m̃2,ñ2,m̃3,ñ3)∈B

(2.38)

for given sets A,B ⊆ Z
6
. First, we re
all that for t ∈ τ0 and (θ, ω) ∈ S× S

2
ρ,

3∏

j=1

PNje
it∆φj(θ, ω) =

∑

N1×N2×N3

3∏

j=1

ηNj

(√
λmj ,nj

)
e−iλmj,nj teimjθΠnjΘmjφj(ω).

Step 1. Due to spatial almost orthogonality indu
ed by the S 
omponent, it su�
es to prove

the desired estimate in the 
ase

PRPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3,

where R ⊆ N1∩ ([b, b+N2]×N0) for some |b| ≤ 2N1. To prove that, we 
onsider the partition

Z =
⋃̇

k∈Z
Ik, where Ik :=

[
kN2, (k + 1)N2

)
∩ Z.

Indeed, for �xed ω ∈ S
2
ρ and t ∈ τ0 we 
an show

∥∥∥∥
3∏

j=1

PNje
it∆φj(ω)

∥∥∥∥
2

L2(S)

≈
∑

k∈Z
‖PRk

PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(ω)‖2L2(S),

where Rk := N1 ∩ (Ik × N0). For k, k̃ ∈ Z we have

〈
PRk

PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(ω), PR

k̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(ω)
〉
L2(S)

=
∑

Rk×N2×N3,
R

k̃
×N2×N3

Im,n

3∏

j=1

e
−i(λmj,nj−λm̃j ,ñj

)t
ΠnjΘmjφj(ω)Πñj

Θm̃j
φj(ω),

where m := (m1,m2,m3, m̃1, m̃2, m̃3), n := (n1, n2, n3, ñ1, ñ2, ñ3), and

Im,n :=

3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

) ∫

S

ei(m1+m2+m3−m̃1−m̃2−m̃3)θ dθ.

Sin
e mj, m̃j , j = 1, 2, 3, are integers, we may 
on
lude Im,n = 0 provided |k − k̃| > 8.

Step 2. Now, we use almost orthogonality that 
omes from the S
2
ρ 
omponent. It is well-

known that the produ
t of a spheri
al harmoni
 of degree m with another of degree ℓ 
an be

expanded in terms of spheri
al harmoni
s of degree less or equal to m+ ℓ. Furthermore, two

spheri
al harmoni
s of di�erent degree are orthogonal in L2(Snρ), n ∈ N. We �nally remark

that 
omplex 
onjugation does not 
hange the degree of a spheri
al harmoni
. Details may

be found in [SW71, Se
tion VI.2℄. These fa
ts applied to S would lead to the same result
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that we obtained in Step 1. In Step 1, however, we wanted to point out that no theory about

spheri
al harmoni
s is required to 
on
lude almost orthogonality in S.

We now prove that it su�
es to 
onsider the 
ase where n1 is lo
ated in an interval of the

size of the se
ond highest frequen
y N2. To this end, we de�ne similarly as above a partition

of N0:

N0 =
⋃̇

k∈N0

Ik, where Ik :=
[
kN2, (k + 1)N2

)
∩ N0.

Fix θ ∈ S and t ∈ τ0, then it holds that

‖PRPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

≈
∑

k∈N0

‖PCkPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

,

where Ck := R ∩ (Z × Ik). To see this, let k, k̃ ∈ N0 and write

〈
PCkPN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(θ), PC
k̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3(θ)
〉
L2(S2ρ)

=
∑

Ck×N2×N3,
C
k̃
×N2×N3

Im,n

3∏

j=1

e
−i(λmj,nj−λm̃j ,ñj

)t
ei(mj−m̃j)θ,

where m := (m1,m2,m3, m̃1, m̃2, m̃3), n := (n1, n2, n3, ñ1, ñ2, ñ3), and Im,n is de�ned by

Im,n :=

3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

)〈 3∏

j=1

ΠnjΘmjφj,

3∏

j=1

Πñj
Θm̃j

φj

〉

L2(S2ρ)

.

Without loss of generality, we may assume n1 > ñ1. Then,

Ym,n := Πñ1
Θm̃1

φ1

3∏

j=2

ΠnjΘmjφjΠñj
Θm̃j

φj ∈ L2(S2ρ)


an be expanded in terms of spheri
al harmoni
s of degree less or equal to ñ1 + 8N2. Hen
e,

if |k − k̃| > 8, then

Im,n =
3∏

j=1

ηNj

(√
λmj ,nj

)
ηNj

(√
λm̃j ,ñj

)
〈Πn1Θm1φ1, Ym,n〉L2(S2ρ)

= 0.

As a 
onsequen
e, we are left to show

∥∥∥∥PCPN1e
it∆φ1

3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
∥∥2
L2(τ1×M)

+N
3
2
2 N

−ν
3 ‖PCkPN1φ1‖2L2(M)

3∏

j=2

‖PNjφj‖2L2(M)

for any �xed C := Ck, k ∈ N0.

Step 3. Analogously as in the �rst step, we see that

‖PCPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3(θ)‖2L2(S2ρ)

≈
∑

k∈Z
‖QR(2)

k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(S2ρ)

,
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where R(2)
k := {(m1, n1,m2, n2) ∈ C × N2 : m1 + m2 ∈ [kN3, (k + 1)N3)}. Again, this is a


onsequen
e of almost orthogonality in S. We omit details sin
e the argument is pretty 
lose

to Step 1.

Step 4. Let k ∈ Z be �xed and M := N2
3 /N1 ≥ 1. We de�ne the partition

N0 =
⋃̇

ℓ∈N0

Jℓ, where Jℓ :=
[
ℓM, (ℓ+ 1)M

)
∩ N0.

Inspired by the proof of [HTT11, Proposition 3.5℄, we 
onsider the following partition: Let ξ0
be the 
enter of C2 := C ×N2, and de�ne disjoint strips of width M that are orthogonal to ξ0:

Sk,ℓ :=
{
(m1, n1,m2, n2) ∈ R(2)

k : (m1, n1,m2, n2) ·κ ξ0 ∈
[
|ξ0|ℓM, |ξ0|(ℓ+ 1)M

)}
,

where ξ ·κ ζ := ξ1ζ1 + κξ2ζ2 + ξ3ζ3 + κξ4ζ4. We observe from the 
onstru
tion that the angle

5

∡
(
(m1, κn1,m2, κn2), ξ0

)
.κ

N2
N1

. Sin
e N1 ≫ N2, we have ∡
(
(m1, κn1,m2, κn2), ξ0

)
≤ 1

2 .

From this, we get

(m1, n1,m2, n2) ·κ ξ0 = |(m1, κn1,m2, κn2)||ξ0| cos∡
(
(m1, κn1,m2, κn2), ξ0

)
≈ N2

1 .

Thus, ℓ ≥ 0 and ℓ ≈ N1
M sin
e |ξ0| ≈ N1. Sin
e R(2)

k =
⋃̇
ℓ≈N1/M

Sk,ℓ, we see that

QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2) =
∑

ℓ≈N1/M

QSk,ℓ
(PN1e

it∆φ1, PN2e
it∆φ2).

Let χ ∈ C∞
0 (R) be a non-negative 
ut-o� fun
tion satisfying χ(t) = 1 for all t ∈ τ0 and

χ(t) = 0 for all t ∈ R \ τ1. Obviously,

‖QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ0×M)

≤ ‖√χ(t)QR(2)
k

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M) . Ik,1 + Ik,2,

where

Ik,1 :=
∑

ℓ≈N1/M

‖QSk,ℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

and

Ik,2 :=
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)QSk,ℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3,

QS
k,ℓ̃
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3
〉
L2(R×M)

.

It then su�
es to show

∑

k∈Z
|Ik,2| . N

3
2
2 N

−ν
3 ‖PCPN1φ1‖2L2(M)

3∏

j=2

‖PNjφj‖2L2(M). (2.39)

5∡(ξ, ζ) denotes the angle between ξ and ζ with respe
t to the standard inner produ
t ξ · ζ.
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The bene�t of extending the integration with respe
t to t to R is that we may interpret this

integration as Fourier transform on R. Doing so and taking the absolute value, we obtain

|Ik,2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

Sk,ℓ×N3,
S
k,ℓ̃

×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)∫

M

3∏

j=1

|ΠnjΘmjφjΠñj
Θm̃j

φj(ω)| d(θ, ω).

(2.40)

The term |pχ| provides us with arbitrarily fast de
ay in N3. To prove this, we de�ne the

quadrati
 form

Q(ξ) := ξ21 + κξ22 + ξ23 + κξ24 , ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Z
4

and observe that for ξ := (m1, n1 +
1
2 ,m2, n2 +

1
2) we have

λm1,n1 + λm2,n2 = Q(ξ)− κ

2
.

Motivated by the proof of [HTT11, Proposition 3.5℄, we write

Q(ξ) =
1

Q(ξ0)
|ξ ·κ ξ0|2 +Q(ξ − ξ0)−

1

Q(ξ0)
|(ξ − ξ0) ·κ ξ0|2.

We note from the restri
tion to Sk,ℓ and N2
3 .M2ℓ that

Q(ξ) =M2ℓ2 +O(M2ℓ).

The same result holds true for the elements in S
k,ℓ̃

:

Q
(
(m̃1, ñ1 +

1
2 , m̃2, ñ2 +

1
2)
)
=M2ℓ̃ 2 +O(M2ℓ̃ ).

Assuming |ℓ− ℓ̃ | ≫ 1, we see

∣∣∣∣
3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

∣∣∣∣ =M2(ℓ+ ℓ̃ )|ℓ− ℓ̃ |+O(M2ℓ) +O(M2ℓ̃ ) & N2
3 |ℓ− ℓ̃ |

sin
e ℓ, ℓ̃ ≈ N1
M . Thus, for any µ > 0,

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)
.µ N

−2µ
3 〈ℓ− ℓ̃ 〉−µ.

Now, we pro
eed to estimate (2.40). Cau
hy�S
hwarz with respe
t to (θ, ω), Sk,ℓ ×N3, and

S
k,ℓ̃

×N3 as well as the trilinear estimate for spheri
al harmoni
s in Proposition 2.18 yield

|Ik,2| . (N2N3)
1
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

( ∑

Sk,ℓ×N3,
S
k,ℓ̃

×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)2) 1
2

×
( ∑

Sk,ℓ×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2(M)

) 1
2
( ∑

S
k,ℓ̃

×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2(M)

) 1
2
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Assume for the moment that (2.37) holds. Then, 
hoosing δ = 0, we see that the square root
of the sum over Sk,ℓ×N3 and S

k,ℓ̃
×N3 is bounded by N2N

3−2µ
3 〈ℓ− ℓ̃ 〉−µ . N2N

−ν
3 〈ℓ− ℓ̃ 〉−µ

provided 2µ − 3 ≥ ν. Finally, S
hur's lemma and Cau
hy�S
hwarz with respe
t to k imply

∑

k∈Z

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈ℓ− ℓ̃ 〉−µ
( ∑

Sk,ℓ×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2

) 1
2
( ∑

S
k,ℓ̃

×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2

) 1
2

. ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M)

provided µ > 1. This proves (2.39).

It remains to prove (2.37). Although there are two dire
tions of size N3 and M introdu
ed in

the third and fourth step, respe
tively, we 
an not expe
t |Sk,ℓ| . MN2
2N3 to be true sin
e

these dire
tions might be not orthogonal. If we just take the restri
tion of Sk,ℓ into a

ount,

it is obvious that |Sk,ℓ| . N3
2M . We then obtain the asserted estimate by interpolating with

a se
ond estimate for |Sk,ℓ|. From the restri
tion to R(2)
k , we see that there are CN2

2N3


ombinations of (m1,m2, n2). The de�nition of Sk,ℓ implies

A ≤ κn1ξ0,2/|ξ0| ≤ A+M, (2.41)

where ξ0 = (ξ0,1, ξ0,2, ξ0,3, ξ0,4) and A := ℓM − (m1ξ0,1 +m2ξ0,3 + κn2ξ0,4)/|ξ0|. Re
all that

ξ0 was 
hosen to be the 
enter of C × N2, where C ⊆ N1 is a 
ube of size N2 and the se
ond


omponent is a subset of {0, . . . , 2N1}. We dedu
e ξ0,2 & N2 and 
onsequently, ξ0,2/|ξ0| &
N2/N1. Hen
e, (2.41) implies that there are CN2

3 /N2 possible values for n1 (depending on κ).
All in all, we proved |Sk,ℓ| . N2N

3
3 . Now, (2.37) follows from interpolating the two bounds

on |Sk,ℓ|.

The following lemma treats the remaining 
ase, where the highest frequen
y is larger than the

square of the lowest frequen
y.

Lemma 2.22. Let ν > 0 and τ0 ⊂ R be a bounded interval. Furthermore, let τ1 ⊃ τ0 be an

open interval. Then, for all φ1, φ2, φ3 ∈ L2(M) and dyadi
 numbers N1 ≥ N2 ≥ N3 ≥ 1 with

N1 > N2
3 there are �nitely many sets Tℓ ⊆ N1 with the properties that Tℓ ∈ R2

N2,M
, where

M := max{N2
2 /N1, 1}, and N1 =

⋃̇
ℓ∈ZTℓ su
h that

∥∥∥∥
3∏

j=1

PNje
it∆φj

∥∥∥∥
2

L2(τ0×M)

.
∑

ℓ∈Z

∥∥PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3

∥∥2
L2(τ1×M)

+N−ν
2

3∏

j=1

‖PNjφj‖2L2(M).

Proof. We use the notation introdu
ed in (2.38). From Step 1 and Step 2 of the proof of

the previous lemma, we see that we may 
onsider PCPN1e
it∆φ1 instead of PN1e

it∆φ1, where
C ⊆ N1 and C ∈ C 2

N2
.

In what follows, we omit details sin
e we argue along the lines of Step 4. De�ne the partition

N0 =
⋃̇

ℓ∈N0

Jℓ, where Jℓ :=
[
ℓM, (ℓ+ 1)M

)
∩ N0 and M := max

{
N2

2

N1
, 1

}
.
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Let ξ0 be the 
enter of C, and de�ne disjoint strips of width M that are orthogonal to ξ0:

Tℓ :=
{
(m1, n1) ∈ C : (m1, κn1) · ξ0 ∈

[
|ξ0|ℓM, |ξ0|(ℓ+ 1)M

)}
,

where ℓ ≥ 0 and ℓ ≈ N1
M . We 
learly have

PCPN1e
it∆φ1 =

∑

ℓ≈N1/M

PTℓPN1e
it∆φ1.

We denote by χ the same non-negative 
ut-o� fun
tion as in Step 4. We 
ompute

‖PCPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ0×M)

≤ ‖√χ(t)PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M) . I1 + I2,

where

I1 :=
∑

ℓ≈N1/M

‖PTℓPN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M)

and I2 is de�ned as

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

〈
χ(t)PTℓPN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3, PT
ℓ̃
PN1e

it∆φ1PN2e
it∆φ2PN3e

it∆φ3
〉
L2(R×M)

.

We are left to estimate

|I2| . N−ν
2 ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M).

By the same argument that we used to obtain (2.40), we dedu
e

|I2| .
∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

∑

Tℓ×N2×N3,
T
ℓ̃
×N2×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)∫

M

3∏

j=1

|ΠnjΘmjφjΠñj
Θm̃j

φj(ω)| d(θ, ω).

For |ℓ− ℓ̃ | ≫ 1 and ℓ, ℓ̃ ≈ N1
M , we get

∣∣∣∣
3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

∣∣∣∣ =M2(ℓ+ ℓ̃ )|ℓ− ℓ̃ |+O(M2ℓ) +O(M2ℓ̃ ) & N2
2 |ℓ− ℓ̃ |.

Thus, for any µ > 0,

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)
.µ N

−2µ
2 〈ℓ− ℓ̃ 〉−µ.

Cau
hy�S
hwarz with respe
t to (θ, ω), Tℓ×N2×N3, and T
ℓ̃
×N2×N3 as well as the trilinear

estimate for spheri
al harmoni
s in Proposition 2.18 yield

|I2| . (N2N3)
1
2

∑

ℓ,ℓ̃≈N1/M :

|ℓ−ℓ̃ |≫1

( ∑

Tℓ×N2×N3,
T
ℓ̃
×N2×N3

∣∣pχ
∣∣
( 3∑

j=1

(λmj ,nj − λm̃j ,ñj
)

)2) 1
2

×
( ∑

Tℓ×N2×N3

3∏

j=1

‖ΠnjΘmjφj‖2L2(M)

)1
2
( ∑

T
ℓ̃
×N2×N3

3∏

j=1

‖Πñj
Θm̃j

φj‖2L2(M)

)1
2

.
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Sin
e |Tℓ ×N2 ×N3| . N6
2 for any ℓ ∈ N0, we 
on
lude

|I2| . N7−2µ
2 ‖PCPN1φ1‖2L2(M)‖PN2φ2‖2L2(M)‖PN3φ3‖2L2(M)

using S
hur's lemma as done in Step 4. Choosing µ large enough implies the asserted result.

Remark. In the third step of the proof of [HS15, Proposition 2.6℄, an annular smallness


ondition was derived. A similar restri
tion 
ould have been determined in the previous two

lemmas, whi
h was avoided here due to the more 
ompli
ated number of latti
e points estimate

for annular sets. ♦

2.5.6 The trilinear Stri
hartz estimate

Before we turn to the proof of Assumption 2.1, we state the following estimate of the number

of latti
e points solving a Diophantine equation. The proof is similar to the proof of (1.8) and


an be found in [BGT05a, Lemma 3.2℄, for instan
e.

Lemma 2.23. For every ε > 0 there exists Cε > 0 su
h that for every τ ∈ N0 and N ∈ N,

∣∣{(n1, n2) ∈ [0, N ]× N0 : n
2
1 + n22 = τ

}∣∣ ≤ CεN
ε.

Now, we have everything we need to 
on
lude the trilinear Stri
hartz estimate, whi
h in turn

implies the lo
al well-posedness result in Theorem 2.3.

Proposition 2.24. There exists δ > 0 su
h that for all φ1, φ2, φ3 ∈ L2(M) and dyadi


numbers N1 ≥ N2 ≥ N3 ≥ 1 the following estimate holds:

‖PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖L2(τ0×M) .

(
N3

N1
+

1

N2

)δ
N2N3

3∏

j=1

‖PNjφj‖L2(M).

Proof. A

ording to our almost orthogonality results, we have to treat the 
ases N1 ≤ N2
3

and N1 > N2
3 separately. The latter 
ase 
an be 
onsidered as sub-
riti
al sin
e a gain of a

small power of N−1
1 allows 
ompensate a loss of a small power of N3. This is exploited at the

end of this proof.

Case N1 ≤ N2
3 . Let τ1 ⊃ τ0 be an open interval. Thanks to Lemma 2.21, we may repla
e the

left-hand side by

(∑

ℓ∈Z
‖QSℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M)

) 1
2

.

To be de�nite we 
hoose δ = 1
12 whi
h gives that Sℓ ⊆ N1×N2 are sets of sizeM

1/12N
7/6
2 N

11/4
3 .

The Nj are de�ned as in (2.36). Re
all that for t ∈ τ0 and (θ, ω) ∈ S× S
2
ρ,

QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3(θ, ω)

=
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ

3∏

j=1

ηNj

(√
λmj ,nj

)
e−iλmj,nj teimjθΠnjΘmjφj(ω),



82 2 Lo
al and small data global well-posedness

where Mℓ := Sℓ × N3. In the next step we treat the L2(S2ρ)-norm separately without los-

ing os
illations in the S 
omponent and in time. This was already used by Burq�Gérard�

Tzvetkov in the proof of [BGT05b, Proposition 5.1℄. Plan
herel's identity with respe
t to t
(see Proposition 1.36 (ii)) and θ, and the triangle inequality for the L2(S2ρ)-norm yield

‖QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

.
∑

τ∈N0, ξ∈Z

∥∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

|ΠnjΘmjφj|
∥∥∥∥∥

2

L2(S2ρ)

.
∑

τ∈N0, ξ∈Z

[
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

∥∥∥∥
3∏

j=1

ΠnjΘmjφj

∥∥∥∥
L2(S2ρ)

]2
.

(2.42)

In 
ontrast to [BGT05b, Proposition 5.1℄, we do not estimate the number of terms of the

inner sum, but we go ba
k to the physi
al spa
e: We set a
(j)
mj ,nj

:= ‖ΠnjΘmjφj‖L2(S2ρ)
for

j = 1, 2, 3 and apply Proposition 2.18 as well as Plan
herel's identity with respe
t to θ and

Proposition 1.36 (i) with respe
t to t to obtain

‖QSℓ
(PN1e

it∆φ1, PN2e
it∆φ2)PN3e

it∆φ3‖2L2(τ1×M)

. (N2N3)
1
2

∑

τ∈N0, ξ∈Z

(
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

a(j)mj ,nj

)2

. (N2N3)
1
2

∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈Mℓ

3∏

j=1

e−iλmj,nj teimjθa(j)mj ,nj

∥∥∥∥
2

L2
t,θ(τ0×S)

.

(2.43)

Hölder's estimate yields

(2.43) . (N2N3)
1
4

∥∥∥∥
∑

(m1,n1,m2,n2)∈Sℓ

2∏

j=1

e−iλmj,nj teimjθa(j)mj ,nj

∥∥∥∥
L3
t (τ1,L

9/4
θ (S))

×
∥∥∥∥

∑

(m3,n3)∈N3

e−iλm3,n3 teim3θa(3)m3,n3

∥∥∥∥
L6
t (τ1,L

18
θ (S))

.

(2.44)

Applying Bernstein's inequality to the last term in (2.44) and then Corollary 2.20 to both

terms. This leads to

(∑

ℓ∈Z
‖QSℓ

(PN1e
it∆φ1, PN2e

it∆φ2)PN3e
it∆φ3‖2L2(τ1×M)

) 1
2

. N
− 1

216
1 N

53
54
2 N

221
216
3

3∏

j=1

‖φj‖L2(M),

whi
h immediately implies the desired result in the �rst 
ase.

Case N1 > N2
3 . We follow the strategy of Burq�Gérard�Tzvetkov in the proof of [BGT05b,

Proposition 5.1℄. The only di�eren
e is the estimate (ii) below and how we exploit it.
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In light of Lemma 2.22, it su�
es to show

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖L2(τ1×M)

.

(
N3

N1
+

1

N2

)δ
N2N3‖PT PN1φ1‖L2(M)

3∏

j=2

‖PNjφj‖L2(M)

for some open interval τ1 ⊃ τ0 and T ⊆ N1 with T ∈ R2
N2,M

, where M := max{N2
2 /N1, 1}.

For M := T × N2 ×N3 we estimate

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M)

.
∑

τ∈N0, ξ∈Z

∥∥∥∥∥
∑

(m1,n1,m2,n2,m3,n3)∈M:

|λm1,n1+λm2,n2+λm3,n3−τ |≤ 1
2
,

ξ=m1+m2+m3

3∏

j=1

|ΠnjΘmjφj |
∥∥∥∥∥

2

L2(S2ρ)

as in (2.42) above. The triangle inequality for the L2(S2)-norm, Cau
hy�S
hwarz in the

summation over (m1, n1,m2, n2,m3, n3) ∈ M, and Proposition 2.18 yield

‖PT PN1e
it∆φ1PN2e

it∆φ2PN3e
it∆φ3‖2L2(τ1×M) . (N2N3)

1
2 sup
τ∈N0, ξ∈Z

Λ(ξ, τ)
3∏

j=1

‖φj‖2L2(M),

where Λ(ξ, τ) is de�ned as

∣∣{(m1, n1,m2, n2,m3, n3) ∈ M : ξ = m1 +m2 +m3, |λm1,n1 + λm2,n2 + λm3,n3 − τ | ≤ 1
2

}∣∣.

We are left to bound Λ(ξ, τ) uniformly in ξ and τ by

C

(
N3

N1
+

1

N2

)2δ

N
3
2
2 N

3
2
3 .

In fa
t, we shall prove that there exists η > 0 su
h that

sup
τ∈N0, ξ∈Z

Λ(ξ, τ) ≤ CN
3
2
−η

2 N
3
2
3 . (2.45)

In 
ontrast to [BGT05b℄, we will use the smallness properties of T introdu
ed by almost

orthogonality in spa
e and time to gain a small power of M . For any ε > 0 we get the

following two estimates:

(i) Λ(ξ, τ) ≤ CεN
1+ε
2 N2

3 , (ii) Λ(ξ, τ) ≤ CεMN2N
1+ε
3 .

The estimates 
an be proved as follows:

(i) Here, we negle
t the restri
tion to T . The number of possible triples (m2,m3, n3) is

bounded by CN2N
2
3 . Now, we �x a possible triple (m2,m3, n3) and eliminate m1 by

m1 = ξ −m2 −m3. Then (n1, n2) has to satisfy

∣∣(2n1 + 1)2 + (2n2 + 1)2 − r
∣∣ ≤ 2

κ
, (2.46)

with r := 2+ 4
κ

(
τ − (ξ−m2−m3)

2−m2
2−λm3,n3

)
. Hen
e, Lemma 2.23 implies that the

number of integer solutions (n1, n2) ∈ [0, 2N1]× [0, 2N2] of (2.46) is bounded by CεN
ε
2 .

From this we dedu
e (i).
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(ii) From the de�nition of T , we see that the number of possible triples (m1, n1,m3) 
an
be estimated by CMN2N3. We �x a possible triple (m1, n1,m3) and eliminate m2 by

m2 = ξ −m1 −m3. In order to evaluate Λ(ξ, τ), we observe that (n2, n3) satis�es

∣∣(2n2 + 1)2 + (2n3 + 1)2 − r
∣∣ ≤ 2

κ
,

with r := 2 + 4
κ

(
τ − λm1,n1 − (ξ −m1 −m3)

2 −m2
3

)
. By Lemma 2.23, we 
an estimate

the number of integer solutions by CN ε
3 .

Note that the estimates (i) and (ii) above have an additional loss of power ε and thus,

should not be useful in our energy-
riti
al study. However, sin
e N1 > N2
3 , the fa
tor

M = max{N2
2 /N1, 1} in (ii) allows to 
ompensate this loss in either 
ase.

On the one hand, if M = 1, then (ii) 
learly yields

Λ(ξ, τ) ≤ CN2N
3
2
3 ,

whi
h immediately implies (2.45).

On the other hand, if M = N2
2 /N1, then we bound

Λ(ξ, τ) ≤ Cε
(
N1+ε

2 N2
3

) 9
10
(
N−1

1 N3
2N

1+ε
3

) 1
10 ≤ CεN

− 1
10

1 N
6
5
+ε

2 N
19
10
3

for some ε > 0. Observe that N1 > N2
3 implies N

−1/10
1 ≤ N

−1/5
3 . Therefore,

Λ(ξ, τ) ≤ CεN
6
5
+ε

2 N
17
10
3 .

Choosing ε < 1
20 yields (2.45) sin
e

17
10 >

3
2 and

6
5 +

1
20 + 17

10 < 3.

2.6 Further results on other manifolds and remarks

Apart from the energy-
riti
al lo
al and small data global well-posedness results proved above,

there is only very little knowledge about energy-
riti
al well-posedness on 
ompa
t mani-

folds.

As mentioned before, well-posedness on the 
lass of Zoll manifolds, whi
h are manifolds for

whi
h all geodesi
s are simple and 
losed with a 
ommon minimal period, has been stud-

ied. The most important example of a Zoll manifold is S
n
. To the authors knowledge,

Burq�Gérard�Tzvetkov were the �rst who obtained energy-sub-
riti
al well-posedness results

for the NLS on two- and three-dimensional Zoll manifolds as well as S × M where M is

a two-dimensional Zoll manifold, see [BGT05a, Theorem 1℄ and [BGT05b, Theorem 1.1℄

6

.

Herr [Her13, Theorem 1.1℄ �nally established energy-
riti
al lo
al and small data global well-

posedness for three-dimensional Zoll manifolds. The proof relies on the stronger (
ompared

to Corollary 1.39) exponential sum estimate

∥∥∥∥
∑

n∈J
cne

−itn2

∥∥∥∥
Lp
t (I)

≤ CN
1
2
− 2

p

(∑

n∈J
|cn|2

) 1
2

,

where 4 < p ≤ ∞ and J is an interval in Z of size N ≥ 1 [Her13, Lemma 3.1℄. Using an almost

orthogonality argument, the trilinear estimate in Assumption 2.1 is obtained impli
itly in the

6

Even though [BGT05b, Theorem 1.1℄ is only stated for S
3
and S

2
ρ × S, it is mentioned in the introdu
tion

of Se
tions 4.2 and 5.2 that it applies to three-dimensional Zoll manifolds and S×M as well.
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proof of [Her13, Proposition 3.6℄. Besides this trilinear estimate, another very important

novelty in this arti
le is the treatment of the minor 
ontribution term Σ2 in the proof of

[Her13, Proposition 4.2℄, whi
h 
orresponds Σ2 in the proof of Lemma 2.9. This 
ontribution

was zero in the previously 
onsidered 
ase T
3
.

7

It is worth to mention that the well-posedness

study on Zoll manifolds does not rely on the geometri
al property but on the fa
t that the

spe
trum is 
lustered around a sequen
e of squares.

One might ask whether the proof of Proposition 2.24 
an be extended to the 
lass of S×M ,

where M is a two-dimensional Zoll manifold. First, one should mention that the spe
trum

of two-dimensional Zoll manifolds is�like in the three-dimensional 
ase�
lustered around

square numbers, see [BGT05a, Proposition 3.3℄ and [Gui77, Theorem 6℄. As a 
onsequen
e,

the spe
trum does not 
hange mu
h 
ompared to the previous se
tion if one 
onsiders a

Lapla
e�Beltrami operator ∆̃ similar as in [Her13, Lemma 2.2℄ instead. Hen
e, it seems likely

that an argument as in the proof of Lemma 2.19 allows to get a similar result. A fundamental


hange has to be done in the proof of Lemma 2.21. One does not have almost orthogonality of

eigenfun
tions of Zoll manifolds, though, in light of Lemma 1.54, the additional 
ontribution

should be negligible. Hen
e, we strongly expe
t Proposition 2.24 to hold even for the produ
t

of S with any two-dimensional Zoll manifold.

In higher dimensions even less is known. So far, there is only one energy-
riti
al well-posedness

result on a four-dimensional 
ompa
t manifold, namely on T
4
. This result is due to Herr�

Tataru�Tzvetkov [HTT14, Theorem 1.1℄ and relies heavily on the Stri
hartz estimates given in

[Bou13, formula (0.11)℄. A natural domain to be 
onsidered next is S
4
. In this 
ase, new ideas

seem to be needed due to the failure of the s
ale invariant L4
t,x-Stri
hartz estimate [BGT04,

Theorem 4℄. However, Gérard�Pierfeli
e [GP10℄ proved that the quadrati
 NLS is lo
ally

well-posed in Hs
zonal(S

4) for every s > 1
2 , where H

s
zonal(S

4) is the spa
e of all zonal fun
tions
in Hs(S4).

7

In the spe
ial 
ase of S
3
�due to orthogonality reasons�the term Σ2 is zero, too.
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Having dis
ussed the lo
al and small data global theory in the previous 
hapter, we shall

now address the energy-
riti
al large data global well-posedness theory on re
tangular tori.

For any initial data in H1
we prove that the defo
using nonlinear S
hrödinger equation with

quinti
 nonlinearity is globally well-posed. This result, whi
h has already been published in

[Str15℄ by the author of the present thesis, extends results of Iones
u�Pausader [IP12b℄.

3.1 Set-up and main result

Analogously to the lo
al theory in Se
tion 2.3, we study the following defo
using nonlinear

S
hrödinger equation {
i∂tu+∆θu = u|u|4

u(0, · ) = φ ∈ H1(T3)
(3.1)

with base spa
e T
3
and modi�ed Lapla
e�Beltrami operator ∆θ instead of the equivalent

equation on T
3
θ, {

i∂tv +∆gv = v|v|4

v(0, · ) = φ̃ ∈ H1(T3
θ).

Re
all the de�nition of the modi�ed Lapla
e operator ∆θ given in (2.24), the notion of the

evolution operator eit∆θ
in (2.25), and the 
onservation of mass and energy, see (2.26).

For notational 
onvenien
e we write ∇ = ∇g, and this time, we use the equivalent H1
-norm

whi
h is given by

‖f‖Hs(T3) :=

(∑

N≥1

N2s‖PNf‖2L2(T3)

) 1
2

.

This a�e
ts only 
onstants and in some 
ases 
hanges them to one as in Proposition 3.3 (ii).

We also spe
ify the frequen
y lo
alization operators PN : We �x a smooth, non-negative,

even fun
tion η1 : R → [0, 1] with η1(y) = 1 for |y| ≤ 1 and supp η1 ⊆ (−2, 2). Then, let

η3 : R3 → [0, 1] be de�ned via η3(x) := η1(x1)η
1(x2)η

1(x3). For a dyadi
 number N > 1 we

set

η3N (x) := η3
( |x|
N

)
− η3

(
2|x|
N

)
and η31(x) := η3(|x|).

Then, we de�ne the frequen
y lo
alization operators PN : L2(T3) → L2(T3) as the Fourier

multiplier with symbol η3N . Furthermore, we set P≤N :=
∑

1≤M≤N PM . More generally, given

a set S ⊆ Z
3
, we de�ne PS to be the Fourier multiplier with symbol 1S , where 1S denotes

the 
hara
teristi
 fun
tion of S.

Using the spa
e X1
r (I), whi
h is de�ned in De�nition 3.2 below, we may formulate the main

result of this 
hapter.



88 3 Global well-posedness for large data

Theorem 3.1 (Global well-posedness). If φ ∈ H1(T3), then there exists a unique global

solution u ∈ C(R,H1(T3))∩X1
r (R) of the initial value problem (3.1). Moreover, the mapping

φ 7→ u extends to a 
ontinuous mapping from H1(T3) to C([−T, T ],H1(T3)) ∩ X1
r ([−T, T ])

for any T ∈ [0,∞), and the quantities M(u) and E(u) de�ned in (2.26) are 
onserved along

the �ow.

Important results regarding well-posedness on tori have been summarized in Se
tion 2.3.1.

Now, we want to put the results presented here better into 
ontext. In a series of papers,

Iones
u�Pausader [IPS12, IP12a, IP12b℄ ([IPS12℄ is a joint work with Sta�lani) developed a

method to obtain energy-
riti
al large data global well-posedness on T
3
. This was the �rst


riti
al result of this kind on a 
ompa
t manifold. So far, the 
orresponding result has been

only obtained on S
3
[PTW14℄ by Pausader�Tzvetkov�Wang and on re
tangular tori [Str15℄

by the author. A variant of the proof of the latter result is given in this 
hapter. Our proof

is 
losely tied to the strategy developed by Iones
u�Pausader [IP12b℄, whi
h itself relies on

ideas that have been applied on R
3
[Bou99, CKS

+
08, KM06℄. Sin
e some proofs are omitted in

[IP12b℄ as they follow analogously as on the previously 
onsidered domains in [IPS12, IP12a℄,

we take the opportunity to review the whole argument.

Our �rst step is to re�ne the large data lo
al well-posedness theory presented in Se
tion 2.3.

For that purpose, we introdu
e a variant of the resolution spa
es Xs
and Y s

, whi
h give a

lo
al-in-time 
ontrol, and a weaker 
riti
al spa
e-time norm Z. On the one hand, it is proved

that the nonlinear solution stays regular as long as the Z-norm is �nite. On the other hand,

we show that 
on
entration of a large amount of the Z-norm in �nite time is self-defeating.

The reason is that a 
on
entration of the Z-norm in �nite time is equivalent to the fa
t of

undergoing a self-similar Eu
lidean 
on
entration, whi
h is prevented by the Eu
lidean theory.

This is a 
onsequen
e of the following: Con
entration of a large amount the Z-norm in �nite

time 
an only happen around a point in spa
e-time, whi
h itself must o

ur in a way that is


omparable to Eu
lidean solutions. Finally, it is known that Eu
lidean-like solutions 
an only


on
entrate a bounded, �nite amount of spa
e-time norm [CKS

+
08℄. To implement this, we

perform a pro�le de
omposition of the initial data with pro�les that 
on
entrate in a point.

Su
h pro�les are studied in detail.

We �nally highlight the novelties. The main new ingredients for extending the result in

[IP12b℄ are the extin
tion lemma (Lemma 3.21) and Lemma 3.32. Unlike in the 
ase of T
3
,

we 
an not apply the Weyl inequality in Lemma 1.41 to |KM (t, x)|, whi
h is de�ned in (3.41).

However, it turns out that throwing away the os
illations in two 
omponents and using the

Weyl inequality in one dimension, is still strong enough to obtain a similar extin
tion lemma

as in [IP12b, Lemma 4.3℄. The main novelty in Lemma 3.32, whi
h estimates the intera
tion

of a high-frequen
y linear solution with a low-frequen
y pro�le, is the way we estimate (3.98).

This, however, was already done in the author's work [Str15℄.

In [Str15℄, the author already mentioned that the range of Stri
hartz estimates in Lemma 2.10

su�
e to not only 
on
lude small data global well-posedness but even global well-posedness for

arbitrary large initial data in H1
. This is remarkable sin
e the proof of Lemma 2.10 requires

no sophisti
ated arguments. Indeed, the essential tools are the exponential sum estimates

proved in Se
tion 1.3, see [Bou07, Proposition 1.1℄. This is a

omplished by modifying the Z-
norm, whi
h mainly e�e
ts the lo
al theory that is developed here and the extin
tion lemma.

Motivated by the fa
t that the 
onditional result in Se
tion 2.2 used dyadi
 s
ale resolution

spa
es, we are going to de�ne related resolution spa
es Xs
r and Y s

r with dyadi
 s
ales as well.

This di�ers from [IP12b, Str15℄, where resolution spa
es with unit s
ales have been used.
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The argument given in [IP12b℄ relies heavily on earlier works and therefore, we take the

opportunity to review the whole proof here.

3.2 Basi
 de�nitions and statements

This se
tion is devoted to introdu
e fun
tions spa
es with some of their properties that we shall

rely on. Furthermore, strong solutions are de�ned and dispersive estimates are re
alled.

Re
all the de�nition of the resolution spa
es Xs
and Y s

in De�nition 2.2. Based on this

spa
es, we de�ne the norms Xs
r and Y s

r by restri
ting to time intervals of length at most

one.

De�nition 3.2 (Resolution spa
es Xs
r and Y s

r ). Let s ∈ R. For a time interval I ⊆ R we

de�ne Xs
r (I) and Y

s
r (I) to be the restri
tion spa
es de�ned as

Xs
r (I) :=

{
u : I → H1(T3) : ‖u‖Xs

r (I)
:= sup

J⊆I,
|J |≤1

inf
v∈Xs:

v·1J=u·1J

‖v‖Xs <∞
}
,

Y s
r (I) :=

{
u : I → H1(T3) : ‖u‖Y s

r (I) := sup
J⊆I,
|J |≤1

inf
v∈Y s:

v·1J=u·1J

‖v‖Y s <∞
}
.

Remark. In [IP12b, Str15℄, the spa
es Xs
r and Y s

r were de�ned to 
onsist of fun
tions that

are 
ontinuous in time. We omitted this to be 
onsistent with our small data theory in the

previous 
hapter. Therefore, we add this property to the de�nition of a strong solution,

see De�nition 3.6. Besides of the aforementioned s
ale of resolution, this is another small

di�eren
e to [IP12b, Str15℄. ♦

Similarly as in Proposition 2.4, we have the following basi
 properties of our resolution

spa
es.

Proposition 3.3 (Properties of Xs
r and Y

s
r ). Let I ⊆ R be a bounded time interval and s ∈ R.

(i) We have

Xs
r (I) →֒ Y s

r (I) →֒ L∞(I,Hs(T3)
)
.

(ii) Let 0 ∈ I, s ≥ 0, and φ ∈ Hs(T3), then eit∆θφ ∈ Xs
r (I) and

‖eit∆θφ‖Xs
r (I)

≤ ‖φ‖Hs(T3).

(iii) Suppose |I| ≤ 1 and u ∈ Y s
r (I) for some s ∈ R. Then,

(∑

N≥1

N2s‖PNu‖2Y 0
r (I)

) 1
2

. ‖u‖Y s
r (I).

Proof. The �rst two statements follow from the same argument as in Proposition 2.4.

To prove (iii), we �rst observe that sin
e |I| ≤ 1,

‖u‖Y s
r (I) = inf

v·1I (t)=u·1I(t)
‖v‖Y s .
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Indeed, on the one hand,

sup
J⊆I

inf
v·1J(t)=u·1J (t)

‖v‖Y s ≤ sup
J⊆I

inf
v·1I(t)=u·1I (t)

‖v‖Y s = inf
v·1I(t)=u·1I (t)

‖v‖Y s

and on the other hand,

inf
v·1I(t)=u·1I(t)

‖v‖Y s ≤ sup
J⊆I

inf
v·1J (t)=u·1J (t)

‖v‖Y s

sin
e the left-hand side is the spe
ial 
ase where J = I. Hen
e,

∑

N≥1

N2s‖PNu‖2Y 0
r (I) ≤

∑

N≥1

N2s inf
v·1J (t)=u·1J(t)

∑

M≥1

‖e−it∆θPMPNv‖2V 2

. inf
v·1J (t)=u·1J (t)

∑

N≥1

N2s‖e−it∆θPNv‖2V 2 .

The last term equals ‖u‖Y s
r (I) as shown above.

We introdu
e a 
riti
al norm Z whi
h is weaker than X1
r . It is also related to the Z-norm

appearing in [IP12b, Str15℄, whi
h was de�ned as

‖u‖Z(I) =
∑

p∈{4+1/10,100}
sup

J⊆I, |J |≤1

(∑

N≥1

N5−p/2‖PNu‖pLp(J×T3)

) 1
p

.

This modi�
ation is due to the attempt to use only the Stri
hartz estimates provided by

Lemma 2.10.

De�nition 3.4 (Z-norm). Let

p0 :=
16

3
+

1

6
=

11

2
, q0 := 4 and p1 := 100, q1 := 100, (3.2)

then we de�ne P := {(p0, q0), (p1, q1)} and the norm

‖u‖Z(I) :=
∑

(p,q)∈P
sup

J⊆I, |J |≤1

(∑

N≥1

N ( 2
p
+ 3

q
− 1

2
)p‖PNu‖pLp(J,Lq(T3))

) 1
p

.

The following properties follow immediately:

Corollary 3.5 (Properties of the Z-norm). Let I ⊆ R be a bounded interval.

(i) For all φ ∈ H1(T3) we have

‖eit∆θφ‖Z(I) . ‖φ‖H1(T3).

(ii) Let |I| ≤ 1. For all p ∈ [p0, p1] and q ≥ qp := pq0q1(p1−p0)
p0q1(p1−p)+p1q0(p−p0) the following holds

true:

‖PNu‖Lp(I,Lq(T3)) . N
1
2
− 2

p
− 3

q ‖PNu‖Z(I).

(iii) For all u ∈ X1
r (I) we have

‖u‖Z(I) . ‖u‖X1
r (I)

and thus, X1
r (I) →֒ Z(I).



3.2 Basi
 definitions and statements 91

Proof. The �rst statement follows from Stri
hartz estimates, see Lemma 2.10, and the fa
t

that ℓ2 ⊆ ℓp for p ≥ 2:

‖eit∆θφ‖Z(I) .
∑

(p,q)∈P

(∑

N≥1

Np‖PNφ‖pL2(T3)

) 1
p

. ‖φ‖H1(T3).

Claim (ii) follows essentially from interpolation: Sin
e qp ≥ 2, we may apply Bernstein's

inequality, 
f. Lemma 1.53 (iii), to obtain

‖PNu‖Lp(I,Lq(T3)) . N
3( 1

qp
− 1

q
)‖PNu‖Lp(I,Lqp (T3)).

Let ϑ := p0(p−p1)
p(p0−p1) , then we use Hölder's inequality and Young's inequality for produ
ts to

dedu
e

‖PNu‖Lp
tL

qp
x

≤ ‖PNu‖ϑLp0
t L

q0
x
‖PNu‖1−ϑL

p1
t L

q1
x

= N
1
2
− 2

p
− 3

qp
(
N

2
p0

+ 3
q0

− 1
2‖PNu‖Lp0

t L
q0
x

)θ(
N

2
p1

+ 3
q1

− 1
2 ‖PNu‖Lp1

t L
q1
x

)1−θ

. N
1
2
− 2

p
− 3

qp ‖PNu‖Z(I).

In order to prove (iii), we �rst observe that

‖u‖Z(I) =
∑

(p,q)∈P
sup

J⊆I, |J |≤1
inf

v·1J=u·1J

(∑

N≥1

N ( 2
p
+ 3

q
− 1

2
)p‖PNv‖pLp(J,Lq(T3))

) 1
p

.

Hen
e, Corollary 3.7 below implies

‖u‖Z(I) .
∑

(p,q)∈P
sup

J⊆I, |J |≤1
inf

v·1J=u·1J

(∑

N≥1

Np‖e−it∆θPNv‖pUp

) 1
p

.

This immediately implies (iii), sin
e U2 →֒ Up and ℓ2 ⊂ ℓp for any p ≥ 2.

We now state the notion of a strong solution.

De�nition 3.6 (Strong solution).

(i) Let I ⊆ R be an interval, t0 ∈ I, and f ∈ L1(I, L2(T3)), then we de�ne the Duhamel

term as

It0(f)(t) :=
∫ t

t0

ei(t−s)∆θf(s) ds

for t ∈ I ∪ {inf I}, It0(f)(t) := 0 for t < inf I, and It0(f)(t) := lims→sup I It0(f)(s) for
t ≥ sup I.

(ii) We 
all u ∈ C(I,H1(T3)) a strong solution to

i∂tu+∆θu = F (u)

if u ∈ X1
r (I) and u satis�es

u(t) = ei(t−t0)∆θu(t0)− iIt0
(
F (u)

)
(t)

for all t, t0 ∈ I.
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The Stri
hartz estimates in Lemma 2.10 immediately imply the following result.

Corollary 3.7. Let I ⊆ R be any interval with |I| ≤ 1 and p > 16
3 , then for any 
ube C ⊂ Z

3

of size N ≥ 1 and any e−it∆θPCu ∈ Up we have

‖PCu‖Lp(I,L4(T3)) . N
3
4
− 2

p ‖PCe−it∆θu‖Up

and

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCe−it∆θu‖Up . (3.3)

In parti
ular, if PCu ∈ Y 0
r (I), then

‖PCu‖Lp(I,L4(T3)) . N
3
4
− 2

p ‖PCu‖Y 0
r (I),

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCu‖Y 0
r (I).

Proof. We only prove the estimate (3.3) sin
e the bound of the LptL
4
x-norm follows from a

similar argument.

For a fun
tion PCv ∈ Up whi
h is de�ned on R, we have

‖PCeit∆θv‖Lp(I×T3) . N
3
2
− 5

p ‖PCv‖Up . (3.4)

It su�
es to prove (3.4) for a Up-atom

PCv(t, x) =
K∑

k=1

1[tk−1,tk)(t)PCe
it∆θφk,

K∑

k=1

‖PCφk‖pL2(T3)
= 1.

Bernstein's inequality and the Stri
hartz estimate in Lemma 2.10 yield

‖PCv‖Lp(I×T3) ≤
( K∑

k=1

‖PCe
it∆θφk‖pLp(I×T3)

) 1
p

. N
3
2
− 5

p

( K∑

k=1

‖PCφk‖pL2(T3)

) 1
p

. N
3
2
− 5

p .

This proves (3.4).

One may obtain the bound in Y 0
r (I) from the bound in Up as follows: Sin
e PCu ∈ Y 0

r (I), we
see that for any ε > 0 there is J0 ⊆ I and an extension v ∈ Y 0

of PCu
∣∣
J0

with

‖v‖Y 0 ≤ ‖PCu‖Y 0
r (I) + ε.

Now, inequality (3.4) and the embedding V 2 →֒ Up give

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖v‖Y 0 . N
3
2
− 5

p
(
‖PCu‖Y 0

r (I) + ε
)
.

For ε > 0 tending to zero this implies

‖PCu‖Lp(I×T3) . N
3
2
− 5

p ‖PCu‖Y 0
r (I).

The following statement is an analogue of Lemma 2.5 and may be proved similarly.
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Lemma 3.8. Let I ⊆ R be a bounded interval. Furthermore, let PNf ∈ L1(I, L2(T3)) for all
N ≥ 1 and t0 ∈ I. Then,

∑
N≥1 It0(PNf) =: It0(f) ∈ X1

r (I) and

‖It0(f)‖X1
r (I)

. sup
v∈Y −1

r (I):
‖v‖

Y −1
r (I)

≤1

∑

N≥1

∣∣∣∣
∫

I

∫

T3

PNf(t, x)v(t, x) dx dt

∣∣∣∣

provided that the right-hand side is �nite. In parti
ular, if f ∈ L1(I,H1(T3)), then

‖It0(f)‖X1
r (I)

. ‖f‖L1(I,H1(T3)). (3.5)

Consequently, for any g ∈ C1(I, C2(T3)) we have

‖g‖X1
r (I)

. ‖g(t0)‖H1(T3) +

(∑

N≥1

‖PN (i∂t +∆θ)g‖2L1(I,H1(T3))

) 1
2

. (3.6)

Proof/Referen
e. As in the proof of Lemma 2.5, it su�
es to show for any L ≥ 1,

‖It0(P≤Lf)‖Xs . sup
v∈Y −s:

‖v‖Y −s=1

∑

N≥1

∣∣∣∣
∫

τ0

∫

M
PNf(t, x)v(t, x) dx dt

∣∣∣∣.

This follows along the lines of the proof of (2.7), in whi
h we observe that (2.8) holds if we

repla
e a by any t0 ∈ I.

Inequality (3.6) is an immediate 
onsequen
e of Proposition 3.3 (ii), (3.5), and the identity

g(t) = ei(t−t0)∆θg(t0)− iIt0
(
(i∂t +∆θ)g

)
(t)

for t0 ∈ I.

3.3 Lo
al well-posedness and stability theory

Large data lo
al well-posedness and stability results are addressed in this se
tion. Similar

results have been obtained in [IP12b, Se
tion 3℄ for T
3
, in [Str15, Se
tion 3℄ for re
tangular

tori, and in [PTW14, Se
tion 3℄ for the 3-sphere. Note that the lo
al results proved here are

slightly more pre
ise 
ompared to Chapter 2, see Corollary 3.13 below.

We introdu
e another norm that interpolates between X1
r and Z. We use this norm to obtain

estimates that are linear in a norm 
ontrolling L∞(I,H1(T3)).

De�nition 3.9. Let I ⊆ R be an interval. For u ∈ X1
r (I) we de�ne the Z

′
-norm

‖u‖Z′(I) := ‖u‖
1
2

Z(I)‖u‖
1
2

X1
r (I)

.
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3.3.1 Estimates on the Duhamel term

Lemma 3.10. There exists δ > 0 su
h that for every interval I with |I| ≤ 1, all dyadi


numbers N1 ≥ N2 ≥ N3 ≥ 1, and PN1u1, PN2u2, PN3u3 ∈ X1
r (I) the following trilinear

estimate holds

‖PN1u1PN2u2PN3u3‖L2(I×T3) .
(N3

N1
+

1

N2

)δ
‖PN1u1‖Y 0

r (I)‖PN2u2‖Z′(I)‖PN3u3‖Z′(I). (3.7)

Moreover, for p0 =
11
2 and q0 = 4 de�ned as in (3.2) we have

‖PN1u1PN2u2PN3u3‖L2(I×T3) . (N1N2)
1
2
− 2

p0
− 3

q0N
4
p0

− 1
2

3 ‖PN1u1‖Z(I)‖PN2u2‖Z(I)‖PN3u3‖Z(I).
(3.8)

Proof. For notational 
onvenien
e we write Lpt,x and LptL
q
x for Lp(I × T

3) and Lp(I, Lq(T3)),
respe
tively.

First, we prove inequality (3.7): This follows from interpolation between

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N1
+

1

N2

)2δ
‖PN1u1‖Y 0

r (I)‖PN2u2‖X1
r (I)

‖PN3u3‖X1
r (I)

(3.9)

and

‖PN1u1PN2u2PN3u3‖L2
t,x

. ‖PN1u1‖Y 0
r (I)‖PN2u2‖Z(I)‖PN3u3‖Z(I). (3.10)

Hen
e, it remains to prove (3.9) and (3.10). Inequality (3.9) follows in a well-known fashion:

From the de�nition of the spa
es and sin
e X1
r (I) →֒ Y 1

r (I), we see that

Nj‖PNjuj‖Y 0
r (I) . ‖PNjuj‖Y 1

r (I) . ‖PNjuj‖X1
r (I)

for j = 1, 2, 3. Hen
e, to prove (3.9), it su�
es to show

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N1
+

1

N2

)2δ
N2N3‖PN1u1‖Y 0

r (I)‖PN2u2‖Y 0
r (I)‖PN3u3‖Y 0

r (I),

whi
h follows from Proposition 2.13 and Lemma 2.8.

Next we prove (3.10). Thanks to spatial orthogonality (see Step 1 in the proof of Lemma 2.12),

we may repla
e PN1u1 in (3.10) by PCPN1u1, where C ⊂ Z
3
is a 
ube of side length N2. Using

Hölder's inequality, we obtain

‖PCPN1u1PN2u2PN3u3‖L2
t,x

≤ ‖PCPN1u1‖Lp0
t L4

x
‖PN2u2‖Lp0

t L4
x
‖PN3u3‖Lp

tL
∞
x
,

where p := 2p0
p0−4 . Now, Corollary 3.7 implies

‖PCPN1u1‖Lp0
t L4

x
. N

3
4
− 2

p0
2 ‖PCPN1u1‖Y 0

r (I),

and from the de�nition of the Z-norm, we infer

‖PN2u2‖Lp0
t L4

x
. N

− 1
4
− 2

p0
2 ‖PN2u2‖Z(I).

We apply Corollary 3.5 (ii) to treat the remaining term:

‖PN3u3‖Lp
tL

∞
x

. N
4
p0

− 1
2

3 ‖PN3u3‖Z(I).
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All in all, we dedu
e

‖PN1u1PN2u2PN3u3‖L2
t,x

.
(N3

N2

) 4
p0

− 1
2‖PN1u1‖Y 0

r (I)‖PN2u2‖Z(I)‖PN3u3‖Z(I),

whi
h implies (3.10) be
ause of

4
p0

− 1
2 > 0. This proves (3.7).

The bound (3.8) follows from

‖PCPN1u1PN2u2PN3u3‖L2
t,x

≤ ‖PCPN1u1‖Lp0
t L

q0
x
‖PN2u2‖Lp0

t L
q0
x
‖PN3u3‖Lp

tL
∞
x
,

the de�nition of the Z-norm, and Corollary 3.5 (ii).

The previous lemma allows us to prove an important nonlinear estimate for the Duhamel

term, whi
h is stronger than Lemma 2.9.

Lemma 3.11. Let I ⊂ R be an interval with |I| ≤ 1. Then, for any t0 ∈ I and uj ∈ X1
r (I),

j = 1, . . . , 5, the estimate

∥∥∥∥It0
( 5∏

j=1

ũj

)∥∥∥∥
X1

r (I)

.

5∑

k=1

‖uk‖X1
r (I)

5∏

j=1
j 6=k

‖uj‖Z′(I)

holds true, where ũj denotes either uj or its 
omplex 
onjugate.

Proof. To prove the lemma, we 
losely follow the arguments in the proofs of Lemma 2.9 and

[IP12a, Lemma 3.2℄.

We de
ompose

∏5
j=1 ũj as

∑

N1≥1

PN1 ũ1

5∏

j=2

P≤N1 ũj +

5∑

k=2

∑

Nk≥2

PNk
ũk

k−1∏

j=1

P<Nk
ũj

5∏

j=k+1

P≤Nk
ũj. (3.11)

This 
an be easily seen as follows: For a quintuple (N1, N2, N3, N4, N5) we denote Nmax :=
maxj=1,...,5Nj , then

(2N0)5 =
⋃̇

k=1,...,5

{
(N1, . . . , N5) ∈ (2N0)5 : Nj < Nmax, j < k, and Nk = Nmax

}

is a disjoint partition. Ea
h of this sets 
orresponds to one of the sums in (3.11). Hen
e, by

symmetry, it su�
es to prove the more pre
ise estimate

∥∥∥∥It0
(∑

N1≥1

PN1 ũ1

5∏

j=2

P≤BN1 ũj

)∥∥∥∥
X1

r (I)

.B ‖u1‖X1
r (I)

5∏

j=1

‖uj‖Z′(I) (3.12)

for any B ≥ 1.

By Lemma 3.8, it su�
es to show that for any u0 ∈ Y −1
r (I) we have

∑

N0≥1

∣∣∣∣
∫

I

∫

T3

PN0u0
∑

N1≥1

PN1 ũ1

5∏

j=2

P≤BN1 ũj dx dt

∣∣∣∣ . ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I) (3.13)
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in order to verify (3.12). To prove this, we de
ompose uk dyadi
ally in spa
e

uk =
∑

Nk≥1

PNk
uk, k = 1, . . . , 5.

Note that the L2
-norm does not 
hange under 
omplex 
onjugation and the integral is non-

trivial only if the two highest frequen
ies are 
omparable. Hen
e, by the Cau
hy�S
hwarz

inequality and symmetry, it su�
es to repla
e the left-hand side of (3.13) by

Σ :=
∑

N
‖PN1u1PN3u3PN5u5‖L2(I×T3)‖PN0u0PN2u2PN4u4‖L2(I×T3),

where N is the set of all sextuples (N0, N1, . . . , N5) su
h that

N1 ≈B max{N0, N2} ≥ N2 ≥ N3 ≥ N4 ≥ N5.

We subdivide the sum into two parts Σ = Σ1 + Σ2, where Σ1 and Σ2 are de�ned via the


onstraints N2 ≤ N0 ≈ N1 and N0 < N2 ≈ N1, respe
tively. The trilinear estimate (3.7)

implies

Σ1 .
∑

(N0,...,N5)∈N :
N2≤N0≈N1

(N5

N1
+

1

N3

)δ(N4

N0
+

1

N2

)δ
‖PN0u0‖Y 0

r (I)‖PN1u1‖Y 0
r (I)

5∏

j=2

‖PNjuj‖Z′(I)

for some δ > 0. Summing up with respe
t to N2, N3, N4, N5, and �nally with respe
t to

N0 ≈ N1 (using Cau
hy�S
hwarz) yields

Σ1 .B ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I).

The remaining 
ase N0 < N2 ≈ N1 
an be treated as follows: From (3.7) and Hölder's

estimate, we get

Σ2 .B

∑

(N0,...,N5)∈N :
N0<N2≈N1

(N5

N1
+

1

N3

)δ
‖PN1u1‖Y 0

r (I)‖PN3u3‖Z′(I)‖PN5u5‖Z′(I)

× ‖PN0u0‖L33/5(I,L5(T3))‖PN2u2‖Lp0 (I,Lq0 (T3))‖PN4u4‖L6(I,L20(T3)).

We observe that

33
5 > 16

3 , and hen
e, from Sobolev's inequality and Corollary 3.7 we may

estimate

‖PN0u0‖L33/5(I,L5(T3)) . N
3
20
0 ‖PN0u0‖L33/5(I,L4(T3)) . N

197
330
0 ‖PN0u0‖Y 0

r (I).

Noting that q6, given in Corollary 3.5 (ii), is less than 20, we may dedu
e from Corollary 3.5 (ii)

that

‖PN2u2‖Lp0 (I,Lq0 (T3)) . N
− 27

44
2 ‖PN2u2‖Z(I) . N

− 27
44

2 ‖PN2u2‖Z′(I)

and

‖PN4u4‖L6(I,L20(T3)) . N
1
60
4 ‖PN4u4‖Z(I) . N

1
60
4 ‖PN4u4‖Z′(I).

Summing with respe
t to N2, N3, N4, and N5 yields

Σ2 .B

∑

N0,N1≥1:
N0≤N1

(N0

N1

) 197
330 ‖PN0u0‖Y 0

r (I)‖PN1u1‖Y 0
r (I)

5∏

j=2

‖uj‖Z′(I)

.B ‖u0‖Y −1
r (I)‖u1‖X1

r (I)

5∏

j=2

‖uj‖Z′(I),

whi
h proves (3.13).
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3.3.2 Lo
al well-posedness

The foregoing estimates allow us to obtain a lo
al existen
e result and a 
riterion for global

existen
e. Statement (iii) states that the solution stays regular as long as the Z-norm stays

�nite.

Proposition 3.12 (Lo
al well-posedness I). Let E ≥ 1 and ρ ∈ [−1, 1] be given.

(i) There exists δ0 = δ0(E) < 1 su
h that if ‖φ‖H1(T3) ≤ E and

‖ei(t−t0)∆θφ‖Z(I) + ‖It0(e)‖X1
r (I)

≤ δ0

on some interval I ∋ t0 with |I| ≤ 1, then there exists a unique strong solution u ∈
C(I,H1(T3)) ∩X1

r (I) to the approximate nonlinear S
hrödinger equation

i∂tu+∆θu = ρu|u|4 + e (3.14)

with initial data u(t0) = φ. Besides,

‖u(t)− ei(t−t0)∆θφ‖X1
r (I)

.E ‖ei(t−t0)∆θφ‖
3
2

Z(I) + ‖It0(e)‖X1
r (I)

. (3.15)

If e = 0 and ρ = ±1, then the quantities E(u) andM(u), de�ned in (2.26), are 
onserved

on I.

(ii) Suppose that I ⊂ R is an open bounded interval and u ∈ C(I,H1(T3)) ∩ X1
r (I) is a

strong solution to the approximate nonlinear S
hrödinger equation (3.14) on I with

‖u‖L∞(I,H1(T3)) ≤ E.

There exists ε0 = ε0(E) > 0 with the property that if

‖u‖Z(I) ≤ ε0 and sup
t0∈I

‖It0(e)‖X1
r (I)

≤ ε0,

then the following holds true for all t0 ∈ I:

‖ei(t−t0)∆θu(t0)‖Z(I) . ε0.

(iii) If u ∈ C(I,H1(T3))∩X1
r (I) is a strong solution to (3.1) on some bounded open interval

I ⊂ R and

‖u‖Z(I) < +∞,

then u 
an be extended as a nonlinear solution to a neighborhood of I and

‖u‖X1
r (I)

≤ C
(
E(u), ‖u‖Z(I)

)

for some fun
tion C depending on E(u) and ‖u‖Z(I).

Proof. Let E ≥ 1 and ρ ∈ [−1, 1] be given.

Ad (i). We prove the �rst 
laim by a standard �xed-point argument. Let φ ∈ H1(T3) with
‖φ‖H1(T3) ≤ E. We de�ne the 
omplete spa
e (sin
e it is 
losed in X1

r (I))

SI :=
{
u ∈ C(I,H1(T3)) ∩X1

r (I) : ‖u‖X1
r (I)

≤ 2E, ‖u‖Z′(I) ≤ a
}
,
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where 0 < a = a(E) < 1 will be 
hosen later. De�ne the mapping

Φ(v)(t) := ei(t−t0)∆θφ− iIt0(ρv|v|4 + e)(t). (3.16)

First, we verify that Φ is a 
ontra
tion on SI provided a is small enough. Let u, v ∈ SI , then
it follows that

‖Φ(u)− Φ(v)‖X1
r (I)

≤ ‖It0(u|u|4 − v|v|4)‖X1
r (I)

.

Consequently, thanks to Lemma 3.11, we have

‖Φ(u)− Φ(v)‖X1
r (I)

.
(
‖u‖X1

r (I)
+ ‖v‖X1

r (I)

)(
‖u‖Z′(I) + ‖v‖Z′(I)

)3‖u− v‖X1
r (I)

. Ea3‖u− v‖X1
r (I)

.

We 
hoose 0 < a < 1 su
h that ‖Φ(u) − Φ(v)‖X1
r (I)

< 1
2‖u − v‖X1

r (I)
. Using the triangle

inequality, Proposition 3.3 (ii), and Lemma 3.11, we obtain

‖Φ(u)‖X1
r (I)

≤ ‖Φ(0)‖X1
r (I)

+ ‖Φ(u)− Φ(0)‖X1
r (I)

≤ ‖φ‖H1(T3) + ‖It0(e)‖X1
r (I)

+ CEa4

for some C ≥ 1. If ne
essary, we de
rease a further su
h that Ca4 ≤ 1
2 , and we 
hoose δ0 <

1
2 .

This implies ‖Φ(u)‖X1
r (I)

≤ 2E. To show ‖Φ(u)‖Z′(I) ≤ a, we estimate

‖Φ(u)‖Z′(I) .
(
‖Φ(0)‖Z(I) + ‖Φ(u)− Φ(0)‖X1

r (I)

) 1
2‖Φ(u)‖

1
2

X1
r (I)

.

Then, we use the sub-linearity of x 7→ x
1
2
as well as the bounds

‖Φ(0)‖Z(I) . δ0 and ‖Φ(u)− Φ(0)‖X1
r (I)

. Ea4

to get

‖Φ(u)‖Z′(I) ≤ C
(
E

1
2 δ

1
2
0 + Ea2

)
.

By possibly de
reasing a again, we may obtain that 2CEa2 < a. Now, we 
hoose δ0 = δ0(E)

to be small enough su
h that 2CE
1
2 δ

1
2
0 < a. Therefore,

‖Φ(u)‖Z′(I) ≤ a < 1.

Consequently, Φ is a 
ontra
tion on SI , and hen
e, there exists a unique �xed-point u ∈
SI . This argument only gives uniqueness in SI . Nevertheless, we justify uniqueness in

C(I,H1(T3)) ∩ X1
r (I). For that purpose, assume that two solutions u, v ∈ C(I,H1(T3)) ∩

X1
r (I) satisfy u(t0) = v(t0). From the 
ontinuity in time, it is 
lear that the set {t ∈ I : u(t) =

v(t)} is 
losed in I. We prove that this set is also open in I, what �nishes the proof of (i).

Let t1 ∈ {t ∈ I : u(t) = v(t)}. One may 
hoose an open interval J ⊆ I with t1 ∈ J su
h that

u
∣∣
J
, v
∣∣
J
∈ SJ . Indeed, with E := max{‖u‖X1

r (I)
, ‖v‖X1

r (I)
} we 
hoose a = a(E) as above and

take J small enough su
h that max{‖u‖Z(J), ‖v‖Z(J)} < E− 1
2 a. From the uniqueness in SJ ,

we obtain u
∣∣
J
= v
∣∣
J
. Thus, {t ∈ I : u(t) = v(t)} is open in I and hen
e, is equal to I.

As noted above, for a strong solution to (3.14) and su�
iently small δ0(E) < 1 we have

‖u(t)− ei(t−t0)∆θφ‖X1
r (I)

= ‖Φ(u)− Φ(0)‖X1
r (I)

+ ‖It0(e)‖X1
r (I)

. Ea4 + ‖It0(e)‖X1
r (I)

.

Inequality (3.15) then follows from 
hoosing a su
h that

0 < a ≤
(
‖ei(t−t0)∆θφ‖Z(I) + ‖It0(e)‖X1

r (I)

) 3
8

provided the right-hand side is larger than zero. Otherwise, the left-hand side of (3.15) is zero

in whi
h 
ase we have nothing to show.
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Ad (ii). Let ε0 > 0, whi
h shall be 
hosen later. Furthermore, let u ∈ C(I,H1(T3)) ∩X1
r (I)

be a strong solution of (3.14) on some bounded interval I, and assume that

‖u‖Z(I) ≤ ε0, sup
t0∈I

‖It0(e)‖X1
r (I)

≤ ε0, as well as ‖u‖L∞(I,H1(T3)) ≤ E.

It su�
es to 
onsider intervals of length at most one. If that is not the 
ase, then we subdivide

I into �nitely many intervals of length less or equal to one, and run the following argument

on ea
h interval separately. In the sequel, we write I = (T−, T+). Now, we show that the

assumptions imply

‖ei(t−t0)∆θu(t0)‖Z(I) . ε0

for all t0 ∈ I provided ε0 > 0 is su�
iently small depending on E. Let t0 ∈ I be arbitrary,

and de�ne

h : [0, T+ − T−] → R, h(s) := ‖ei(t−t0)∆θu(t0)‖Z(T−,T−+s).

The fun
tion h is 
ontinuous in s and satis�es h(0) = 0. We 
hoose 2ε0 ≤ δ0 = δ0(E). Then
we use (i) as long as h(s) ≤ 1

2δ0(E) and we get that

‖u(t)− ei(t−t0)∆θu(t0)‖X1
r (T−,T−+s) .E h(s)

3
2 + ‖It0(e)‖X1

r (T−,T−+s).

For the same range of s we dedu
e

h(s) ≤ ‖u‖Z(T−,T−+s) + C̃‖u(t)− ei(t−t0)∆θu(t0)‖X1
r (T−,T−+s) ≤ ε0 +C

(
h(s)

3
2 + ε0

)

≤ C0ε0 + Ch(s)
3
2 .

(3.17)

We use (3.17) to 
on
lude h(s) ≤ δ0
2 for all s ∈ [0, T+ − T−] provided ε0 is small enough. To

this end, we 
onsider f : [0,∞) → R, f(x) = x−Cx 3
2
, whi
h in
reases from 0 to its maximum

value

4
27C . Moreover, one easily sees that f(x) ≥ x

2 on the interval [0, (4C2)−1]. Hen
e, we

proved in (3.17) that

1
2h(s) ≤ f(h(s)) ≤ C0ε0 provided h(s) ≤ δ̃ := min{δ0/2, (4C2)−1}. We


hoose ε0 = ε0(E) to be small enough su
h that C0ε0 <
δ̃
4 . Suppose there is 0 < s0 < T+−T−

su
h that h(s0) ≤ δ̃ and h(s) > δ̃ for all s0 < s < T+ − T−. Then, the argument above shows

that h(s0) ≤ δ̃
2 , whi
h 
ontradi
ts the assumption sin
e h is 
ontinuous. Thus, h(s) ≤ δ̃ for

any s ∈ [0, T+ − T−] and from

1
2h(s) ≤ f(h(s)) ≤ C0ε0, we obtain the desired result

‖ei(t−t0)∆θu(t0)‖Z(I) ≤ 2C0ε0.

Ad (iii). We apply the argument that was used to prove (ii). Sin
e the Z-norm is bounded,

for any ε0 > 0 there exists T1 ∈ (T+ − 1, T+) su
h that (T1, T
+) ⊆ I and

‖u‖Z(T1,T+) ≤ ε0.

Hen
e, for some t0 ∈ (T1, T
+) and δ0 as in (i) there exists ε0 > 0 small enough su
h that the

argument above is appli
able on (T1, T
+), and we obtain

‖ei(t−t0)∆θu(t0)‖Z(T1,T+) ≤
1

2
δ0.

The 
ontinuity of h implies the existen
e of a larger time T2 > T+
su
h that T2 − T1 < 1 and

‖ei(t−t0)∆θu(t0)‖Z(T1,T2) ≤
3

4
δ0.
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Hen
e, we may apply (i). From the uniqueness, we obtain the existen
e of a nonlinear solution

ũ ∈ C((T−, T2),H1(T3)) ∩X1
r (T−, T2). A similar argument allows to extend the solution to

the left-hand side.

Finally, we prove the estimate stated in (iii). Sin
e ‖u(t)‖H1(T3) . E(u) + E(u)
1
3
for any

t ∈ I, we observe that

‖u‖L∞(I,H1(T3)) . E(u) + E(u)
1
3 < +∞.

Let ε0 = ε0(E(u)) > 0 be the ε0 given by (ii). We subdivide the interval I into N =
O(‖u‖Z(I)/ε0) many subintervals Ik su
h that for every k = 1, . . . , N we have

‖u‖Z(Ik) ≤ ε0.

Let tk ∈ Ik. Applying the triangle inequality yields

‖u‖X1
r (Ik)

≤ ‖ei(t−tk)∆θu(tk)‖X1
r (Ik)

+ ‖u(t) − ei(t−tk)∆θu(tk)‖X1
r (Ik)

.

Now, (ii) implies the smallness of the free solution, i.e.

‖ei(t−tk)∆θu(tk)‖Z(Ik) . ε0.

Choosing ε0 possibly smaller (still depending on E(u)), we may apply (i) to obtain

‖u(t)− ei(t−tk)∆θu(tk)‖X1
r (Ik)

. ‖ei(t−tk)∆θu(tk)‖
3
2

Z(Ik)
≤ 1.

We may 
on
lude that ‖u‖X1
r (Ik)

is bounded uniformly in k. Summing over k gives the

desired estimate, where the right hand side only depends on the number of intervals N . Here

N depends on ‖u‖Z(I) and E(u) as pointed out above.

The previous well-posedness result also implies the lo
al well-posedness in Theorem 2.3. We

state it for later referen
es.

Corollary 3.13 (Lo
al well-posedness II). Let ρ ∈ [−1, 1]. For every φ∗ ∈ H1(T3) there exists
ε > 0 and T = T (φ∗) > 0 su
h that for all initial data φ ∈ H1(T3) with ‖φ − φ∗‖H1(T3) < ε
the Cau
hy problem {

i∂tu+∆θu = ρu|u|4

u(0, · ) = φ ∈ H1(T3)

has a unique solution u ∈ C((−T, T ),H1(T3)) ∩X1
r (−T, T ).

Proof. Let E > 1 be su
h that ‖φ∗‖H1(T3) < E−1. Then, for all 0 < ε < 1 and all φ ∈ H1(T3)
with ‖φ− φ∗‖H1(T3) < ε it holds that

‖φ‖H1(T3) ≤ ‖φ∗‖H1(T3) + ε ≤ E.

Now, Corollary 3.5 (i) implies

‖eit∆θφ∗‖Z(I) . ‖φ∗‖H1(T3) < +∞
for any interval I ∋ 0. Hen
e, for any δ > 0 there is I with 0 ∈ I and |I| ≤ 1 su
h that

‖eit∆θφ∗‖Z(I) ≤ δ.

We easily get the smallness of the free solution eit∆θφ in the Z-norm from

∣∣‖eit∆θφ‖Z(I) − ‖eit∆θφ∗‖Z(I)
∣∣ ≤ C‖φ− φ∗‖H1(T3) < Cε.

Indeed, this immediately leads to ‖eit∆θφ‖Z(I) < δ + Cε. We now may 
hoose ε and δ small

enough su
h that δ + Cε < δ0, where δ0 = δ0(E) is given by Proposition 3.12 (i). Finally, we

may apply Proposition 3.12 (i) to obtain the desired result.
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3.3.3 Small data global well-posedness

In the proof of Theorem 3.1 below, we shall rely on the following small data global well-

posedness result.

Lemma 3.14 (Global well-posedness for small initial data). There exists δ0 > 0 su
h that

for all initial data φ ∈ H1(T3) with ‖φ‖H1(T3) =: δ ≤ δ0 and every T > 0 the Cau
hy problem

(3.1) has a unique solution

u ∈ C
(
(−T, T ),H1(T3)

)
∩X1

r (−T, T ).
Moreover, the solution satis�es

‖u‖X1
r (−T,T ) ≤ 2δ and ‖u(t)− eit∆θφ‖X1

r (−T,T ) . δ2.

Furthermore, the quantities E(u) and M(u), whi
h are de�ned in (2.26), are 
onserved on

(−T, T ).

Proof. The global existen
e follows from the same a priori bound on solutions in H1
given in

(2.19). For small enough initial data, this implies that there is a uniform in time bound on the

H1
-norm of the solution. Thus, the lo
al well-posedness result may be iterated inde�nitely

many times.

The bounds in the X1
r -norm may be similarly obtained as in the proof of Proposition 3.12.

Indeed, let Φ be de�ned as in (3.16) (with t0 = 0) and u the solution to (3.1) with initial data

φ, i.e. u = Φ(u). Re
all that u ∈ S(−T,T ), where S is de�ned in the beginning of the proof of

Proposition 3.12. Thus, ‖u‖X1
r (−T,T ) ≤ 2δ and ‖u‖Z′(−T,T ) ≤ a for a su�
iently small. Then,

we have

‖u‖X1
r (−T,T ) ≤ ‖Φ(0)‖X1

r (−T,T ) + ‖Φ(u)− Φ(0)‖X1
r (−T,T ) ≤ δ + Cδa4 ≤ 2δ

provided a4 ≤ C−1
. The se
ond bound may be obtained similarly as inequality (3.15).

3.3.4 Stability

We 
lose our study of the lo
al well-posedness theory with a stability result.

Proposition 3.15 (Stability). Assume that I is an open bounded interval, ρ ∈ [−1, 1], and
ũ ∈ C(I,H1(T3)) ∩X1

r (I) satis�es the approximate S
hrödinger equation

i∂tũ+∆θũ = ρũ|ũ|4 + e on I × T
3. (3.18)

Suppose in addition that

‖ũ‖Z(I) + ‖ũ‖L∞(I,H1(T3)) ≤M (3.19)

for some M ∈ [1,∞). Assume that t0 ∈ I and φ ∈ H1(T3) are su
h that the smallness


ondition

‖φ− ũ(t0)‖H1(T3) + sup
t1∈I

‖It1(e)‖X1
r (I)

≤ ε (3.20)

holds for some 0 < ε < ε1, where ε1 ≤ 1 is a small 
onstant depending on M .

Then, there exists a strong solution u ∈ C(I,H1(T3)) ∩X1
r (I) of the S
hrödinger equation

i∂tu+∆θu = ρu|u|4 on I × T
3

(3.21)

su
h that u(t0) = φ and

‖u‖X1
r (I)

+ ‖ũ‖X1
r (I)

≤ C(M), (3.22)

‖u− ũ‖X1
r (I)

≤ C(M)ε. (3.23)
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Remark. Note that the bound ‖ũ‖X1
r (I)

≤M implies

‖ũ‖Z(I) + ‖ũ‖L∞(I,H1(T3)) .M. ♦

Proof. We argue 
lose to the proof of [IP12a, Proposition 3.5℄ and pro
eed in four steps:

Step 1. From Proposition 3.12 (i) it follows that there is δ1 = δ1(M) su
h that if for some

interval J ⊆ I and t0 ∈ J

‖ei(t−t0)∆θ ũ(t0)‖Z(J) + ‖It0(e)‖X1
r (J)

≤ δ1,

then ũ is the only solution of (3.18) in C(J,H1(T3)) ∩X1
r (J) and

‖ũ(t)− ei(t−t0)∆θ ũ(t0)‖X1
r (J)

. ‖ei(t−t0)∆θ ũ(t0)‖
3
2

Z(J) + ‖It0(e)‖X1
r (J)

.

Step 2. Proposition 3.12 (ii) implies the existen
e of ε1 = ε1(M) su
h that if the inequalities

‖ũ‖Z(J) ≤ ε1 and sup
t0∈J

‖It0(e)‖X1
r (J)

≤ ε1 (3.24)

hold on an interval J := [T−, T+) ⊆ I, then

‖ei(t−T−)∆θ ũ(T−)‖Z(J) . ε1. (3.25)

Step 3. Let ũ be as stated in the proposition. We still 
onsider the interval J = [T−, T+) and
assume

‖ei(t−T−)∆θ ũ(T−)‖Z(J) ≤ ε1,

‖ũ‖Z(J) ≤ ε1,

sup
t0∈J

‖It0(e)‖X1
r (J)

≤ ε1

(3.26)

for some su�
iently small 
onstant ε1 = ε1(M) su
h that the �rst two steps are appli
able.

Using Step 1, the X1
r -norm of ũ on J 
an be estimated by

‖ũ‖X1
r (J)

≤ ‖ei(t−T−)∆θ ũ(T−)‖X1
r (J)

+ ‖ũ(t)− ei(t−T−)∆θ ũ(T−)‖X1
r (J)

≤M + 1. (3.27)

The lo
al well-posedness (Corollary 3.13) implies that there is an interval Ku ∋ T−, and a

strong solution u ∈ C(Ku,H
1(T3)) ∩X1

r (Ku) to (3.21) su
h that

‖u(T−)− ũ(T−)‖H1(T3) ≤ ε1. (3.28)

We set ω(t) := u(t)− ũ(t) for t ∈ J ∩Ku. Let K := [T−, T− + s] ∩ J ∩Ku, where

s := max
{
s ∈ R : ‖ω‖Z′([T−,T−+s]∩J∩Ku) ≤ 5C0ε1

}
, (3.29)

and C0 ≥ 1 is the 
onstant of the embedding X1
r →֒ Z ′

. The maximum, and hen
e s, exists
sin
e s 7→ ‖ω‖Z′([T−,T−+s]∩J∩Ku) vanishes for s = 0 and is �nite and 
ontinuous for all s ≥ 0.
One easily veri�es that ω is a strong solution to

i∂tω +∆θω = ρ
(
(ũ+ ω)|ũ+ ω|4 − ũ|ũ|4

)
− e.
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Duhamel's formula yields

‖ω‖X1
r (K) ≤

∥∥ei(t−T−)∆θ

(
u(T−)− ũ(T−)

)∥∥
X1

r (K)

+
∥∥IT−

(
(ũ+ ω)|ũ+ ω|4 − ũ|ũ|4

)∥∥
X1

r (K)
+ ‖IT−(e)‖X1

r (K).

Lemma 3.11 then implies

‖ω‖X1
r (K) ≤ ‖u(T−)− ũ(T−)‖H1(T3) + ‖IT−(e)‖X1

r (K)

+ C‖ω‖X1
r (K)

(
‖ω‖4Z′(K) + ‖ũ‖X1

r (K)

3∑

j=0

‖ω‖jZ′(K)‖ũ‖
3−j
Z′(K)

)
.

If ε1 ful�lls 5C0ε1 ≤ (M + 1)−2
, we get from (3.26)�(3.29) that

‖ω‖X1
r (K) ≤ 2ε1 + C̃ε

1
4
1 ‖ω‖X1

r (K).

Hen
e, we 
on
lude for ε1 < (2C̃)−4
that

‖ω‖Z′(K) ≤ C0‖ω‖X1
r (K) ≤ 4C0ε1. (3.30)

It then follows that K = J ∩Ku and (3.30) holds on J ∩Ku. Thus,

‖u‖Z(J∩Ku) ≤ C‖u‖X1
r (J∩Ku) ≤ C1,

and we get from Proposition 3.12 (iii) that u 
an be extended to the entire interval J . Also
the bounds (3.29) and (3.30) remain true with K = J .

Step 4. Now, we 
on
lude the statement of the proposition. Take ε2(M) < ε1(M) su�
iently

small and suppose that

sup
t0∈Ik

‖It0(e)‖X1
r (Ik)

≤ ε2.

Subdivide the interval I into �nitely many intervals Ik = [Tk, Tk+1) su
h that

‖ũ‖Z(Ik) ≤ ε2.

Note that the number of intervals is of size O(‖ũ‖Z(I)/ε2) and, in parti
ular, independent

of |I|. On ea
h of those intervals, we have (3.24) and hen
e (3.25). The latter implies

(3.26) and 
onsequently the bounds (3.27) and (3.30) hold true on ea
h interval. (3.30)

immediately implies (3.23). Estimate (3.22) follows from the reverse triangle inequality, (3.23),

and (3.27).

3.4 Eu
lidean pro�les

This se
tion is devoted to prove estimates, whi
h 
ompare Eu
lidean and periodi
 solutions of

both linear and nonlinear S
hrödinger equations. This kind of 
omparison is meaningful only

in the 
ase of res
aled data that 
on
entrate in a point, and then only for short time. This

short time interval is 
alled Eu
lidean window. Beyond the Eu
lidean window the nonlinear

solution 
an be 
ompared to linear Eu
lidean solutions with initial data that are related to the

Eu
lidean s
attering data. For the study beyond the Eu
lidean window, the extin
tion lemma

plays a fundamental role. In the present se
tion, we argue 
losely to [IPS12, Se
tion 3℄.

Let η ∈ C∞
0 (R3) be a �xed spheri
ally symmetri
 fun
tion with η(x) = 1 for |x| ≤ 1 and

η(x) = 0 for |x| ≥ 2.
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De�nition 3.16. For φ ∈ Ḣ1(R3) and N ≥ 1 we de�ne

QNφ ∈ H1(R3), QNφ(x) := η(N− 1
2x)φ(x),

φN ∈ H1(R3), φN (x) := N
1
2 QNφ(Nx),

TNφ ∈ H1(T3), TNφ(y) := φN
(
Ψ−1(y)

)
,

where Ψ is the proje
tion on the torus de�ned by

Ψ: (−π, π]3 → T
3,

(
Ψ(x)

)
j
:= xj =

{
xj 0 ≤ xj ≤ π,

2π − xj −π < xj < 0,
j = 1, 2, 3.

QNφ equals φ in the ball of radius N
1
2
and is supported in the ball of radius 2N

1
2
. φN is

an Ḣ1
-invariant res
aling of QNφ with support in the ball of radius 2N− 1

2
. The fun
tion

TNφ is obtained by transferring φN to a neighborhood of zero in T
3
. We make the following

observations about TN :

Corollary 3.17. The operator TN : Ḣ1(R3) → H1(T3) is linear and satis�es the estimate

‖TNφ‖H1(T3) . ‖φ‖Ḣ1(R3).

Furthermore, there exists su�
iently large N0 = N0(φ) ≥ 1 su
h that for any N ≥ N0,

‖φ‖Ḣ1(R3) . ‖TNφ‖H1(T3).

Proof. The linearity is obvious. From a version of Poin
aré's inequality, see e.g. [Eva10,

Se
tion 5.6, Theorem 3℄, we have for every N ≥ 1 that

‖TNφ‖H1(T3) = ‖φN‖H1(R3) . ‖φN‖Ḣ1(R3)

sin
e suppφN ⊆ [−2, 2]3 for any N ≥ 1. Now, the 
laim follows from the fa
t that φN is an

Ḣ1
-invariant res
aling of QNφ and ‖QNφ‖Ḣ1(R3) . ‖φ‖Ḣ1(R3). The latter may be proved as

follows:

‖η(N− 1
2 · )φ‖Ḣ1(R3) . N− 1

2‖(∇R3η)(N− 1
2 · )φ‖L2(R3) + ‖φ‖Ḣ1(R3)

. N
1
4‖(∇R3η)φ(N

1
2 · )‖L2(R3) + ‖φ‖Ḣ1(R3)

. ‖∇R3η‖L3(B3(0))‖φ · 1supp η‖L6(B3(0)) + ‖φ‖Ḣ1(R3).

Now, Sobolev's embedding and Poin
aré's inequality imply ‖φ · 1supp η‖L6(B3(0)) . ‖φ‖Ḣ1(R3).

The se
ond bound follows immediately from the observation that there exists N0 = N0(φ)
su
h that for any N ≥ N0

‖φ‖Ḣ1(R3) ≤ 2‖QNφ‖Ḣ1(R3).

3.4.1 Global well-posedness on the Eu
lidean spa
e

In this subse
tion, we re
all the global well-posedness result that is known for the Eu
lidean

spa
e R
3
. Furthermore, we show that this result holds true even if we repla
e the standard

Lapla
e operator on R
3
, whi
h shall be denoted by ∆R3

, with a Lapla
e operator 
orresponding

to ∆θ.
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De�nition 3.18.

(i) We de�ne the modi�ed Lapla
e operator on R
3

orresponding to ∆θ as

∆R3

θ :=

3∑

j=1

θj
∂2

∂x2j
.

(ii) Given φ ∈ Ḣ1(R3), we de�ne the Eu
lidean energy with respe
t to ∆R3

θ as

ER3(φ) :=
1

2

∫

R3

3∑

j=1

θ
1
2
j

∣∣∣ ∂φ
∂xj

(x)
∣∣∣
2
dx+

1

6

∫

R3

|φ(x)|6 dx.

The proof of Theorem 3.1 relies heavily on the following results that were essentially proved

by Colliander�Keel�Sta�lani�Takaoka�Tao [CKS

+
08℄. We summarize some of their results

in the following theorem.

Theorem 3.19 (Global well-posedness on R
3
). For any φ ∈ Ḣ1(R3), there is a unique global

solution v ∈ C(R, Ḣ1(R3)) of the initial value problem

i∂tv +∆R3

θ v = v|v|4, v(0) = φ, (3.31)

and the solution satis�es the estimate

‖∇R3v‖(L∞
t L2

x∩L2
tL

6
x)(R×R3) ≤ C̃

(
ER3(φ)

)
. (3.32)

Moreover, this solution s
atters in the sense that there exists φ±∞ ∈ Ḣ1(R3) su
h that

‖v(t)− eit∆
R
3

θ φ±∞‖Ḣ1(R3) → 0 (3.33)

as t→ ±∞. Furthermore, if φ ∈ Hs(R3) for some s > 1, then v ∈ C(R,Hs(R3)) and

sup
t∈R

‖v(t)‖Hs(R3) .‖φ‖Hs(R3)
1. (3.34)

Proof. The proof in 
ase of the standard Lapla
ian may be found in [CKS

+
08, Theorem 1.1

and Corollary 1.2℄. We redu
e the statement for the modi�ed Lapla
e operator to this result.

Let Θ := diag(θ1, θ2, θ3)
1
2
. There exists a unique global solution v ∈ C(R, Ḣ1(R3)) of the

initial value problem

i∂tv +∆R3
v = v|v|4, v(0) = ψ,

where ψ := φ ◦Θ. The res
aled fun
tion u(t, x) := v(t,Θ−1x) solves

i∂tu+∆R3

θ u = u|u|4, u(0) = φ.

By a 
hange of variables, it is easy to see that the estimates (3.32) and (3.34) hold true.

Let ψ±∞ ∈ Ḣ1(R3) be the s
attering data 
orresponding to v. We 
laim that φ±∞ := ψ±∞ ◦
Θ−1

are the s
attering data 
orresponding to u. Indeed, eit∆
R
3

θ φ±∞(x) = eit∆
R
3

ψ±∞(Θ−1x)
sin
e ∫

R3

e2πix·ξeit|Θξ|
2 zφ±∞(ξ) dξ = |detΘ|

∫

R3

e2πix·ξeit|Θξ|
2 zψ±∞(Θξ) dξ

=

∫

R3

e2πiΘ
−1x·ξeit|ξ|

2 zψ±∞(ξ) dξ.

Hen
e,

‖u(t)− eit∆
R
3

θ φ±∞‖Ḣ1(R3) = ‖v(t)− eit∆
R
3

ψ±∞‖Ḣ1(R3) → 0

as t→ ±∞.
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3.4.2 Conne
tion between solutions on tori and Eu
lidean solutions

We now turn to one of the fundamental observations. We dis
uss the 
onne
tion between

Eu
lidean solutions and solutions on tori of both linear and nonlinear S
hrödinger equations.

For φ ∈ Ḣ1(R3) we 
onsider solutions on tori with initial data TNφ. There exists a large

T > 0 su
h that for all large N ≥ 1 we distinguish the behavior of solutions on tori in the

Eu
lidean window, that is (−TN−2, TN−2), and beyond the Eu
lidean window, namely in

(−T−1, T−1) \ (−TN−2, TN−2). We �nd that within the Eu
lidean window solutions on tori

stay 
lose to Eu
lidean-like solutions, see Lemma 3.20. Outside of the Eu
lidean window, the


ru
ial extin
tion lemma, stability, and the Eu
lidean s
attering property show that nonlinear

solutions on tori 
an be 
ompared to the linear evolution with initial data TNφ
±∞

, where φ±∞

are the s
attering data of φ given by Theorem 3.19.

Comparison to Eu
lidean solutions within the Eu
lidean window

Similarly as in [IP12b, Lemma 4.2℄, we obtain the following lemma 
omparing the linear and

nonlinear evolution on tori with the Eu
lidean evolution within the Eu
lidean window.

Lemma 3.20. Let φ ∈ Ḣ1(R3), T0 > 0, and ρ ∈ {0, 1} be given. Then the following 
on
lu-

sions hold:

(i) There is N0 = N0(φ, T0) su
h that for any N ≥ N0 there is a unique strong solution

UN ∈ C((−T0N−2, T0N
−2),H1(T3))∩X1

r (−T0N−2, T0N
−2) of the initial value problem

i∂tUN +∆θUN = ρUN |UN |4, UN (0) = TNφ. (3.35)

Moreover, for any N ≥ N0,

‖UN‖X1
r (−T0N−2,T0N−2) .E

R3(φ)
1.

(ii) Given φ′ ∈ Hs(R3) for some s ≥ 5, let v′ ∈ C(R,Hs(R3)) denote the solution of the

initial value problem

i∂tv
′ +∆R3

θ v
′ = ρv′|v′|4, v′(0) = φ′.

Furthermore, we de�ne for N ≥ R ≥ 1,

v′R(t, x) = η
( x
R

)
v′(t, x), (t, x) ∈ (−T0, T0)× R

3,

v′R,N (t, x) = N
1
2 v′R(N

2t,Nx), (t, x) ∈ (−T0N−2, T0N
−2)× R

3,

VR,N (t, y) = v′R,N
(
t,Ψ−1(y)

)
, (t, y) ∈ (−T0N−2, T0N

−2)× T
3.

(3.36)

Then there exists ε2 = ε2(ER3(φ)) > 0 su
h that for all 0 < ε < ε2 and φ′ ∈ Hs(R3)
with ‖φ− φ′‖Ḣ1(R3) ≤ ε there exists R0 = R0(T0, φ

′) ≥ 1 su
h that for any R ≥ R0,

lim
N→∞

‖UN − VR,N‖X1
r (−T0N−2,T0N−2) .E

R3(φ)
ε.

Proof. The proof follows the arguments in [IPS12, Lemma 4.2℄ and [IP12a, Lemma 4.2℄.

We prove (i) by showing that VR,N is an almost-solution to (3.35), whi
h implies the asserted

statement by applying our stability result. Throughout this proof, .E
R3(φ)

denotes that the

impli
it 
onstant may depend on the large 
onstant C̃(ER3(φ)) in (3.32). We also denote

IN := (−T0N−2, T0N
−2) for brevity.
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Let φ ∈ Ḣ1(R3), T0 > 0, and ρ ∈ {0, 1} be given as in the assumptions. For any ε > 0, we
may 
hoose some φ′ ∈ Hs(R3) whi
h satis�es ‖φ − φ′‖Ḣ1(R3) ≤ ε. Let v′ ∈ C(R,Hs(R3)) be
as given in the lemma. The existen
e of the global solution is implied by Theorem 3.19 and

so are the estimates

‖∇R3v′‖(L∞
t L2

x∩L2
tL

6
x)(R×R3) .E

R3(φ
′) 1 and sup

t∈R
‖v′(t)‖Hs(R3) .‖φ′‖Hs(R3)

1. (3.37)

Furthermore, we remark that we even have v′ ∈ C(R, C3(R3)) from Sobolev's embedding.

Step 1. In the following, we prove that there exists R0 = R0(T0, φ
′) ≥ 1 su
h that VR,N is an

almost-solution to (3.35) for any N ≥ R ≥ R0. For R ≥ 1 we set

eR(t, x) :=
(
(i∂t +∆R3

θ )v′R − ρv′R|v′R|4
)
(t, x)

= ρ
(
η
( x
R

)
− η
( x
R

)5)
v′(t, x)|v′(t, x)|4 +R−2v′(t, x)(∆R3

θ η)
( x
R

)

+ 2R−1
3∑

j=1

∂jv
′(t, x)∂jη

( x
R

)
.

It follows from (3.37) and Sobolev's embedding that |v′(t, x)| .‖φ′‖Hs(R3)
1. Hen
e, for all

t ∈ R and x ∈ R
3
we have

|eR(t, x)| +
3∑

k=1

|∂keR(t, x)| . 1[R,2R](|x|)
(
|v′(t, x)| +

3∑

k=1

|∂kv′(t, x)|+
3∑

k,j=1

|∂k∂jv′(t, x)|
)
,

where the impli
it 
onstant depends on ‖φ′‖Hs(R3). In view of this estimate and from the fa
t

that v′ ∈ C(R,Hs(R3)), we see that there exists R0 = R0(T0, φ
′, ε) su
h that

∥∥|eR|+ |∇R3eR|
∥∥
L2((−T0,T0)×R3)

≤ T
− 1

2
0 ε (3.38)

for any R ≥ R0. If N ≥ R ≥ 1, then we may de�ne

eR,N (t, x) :=
(
(i∂t +∆R3

θ )v′R,N − ρv′R,N |v′R,N |4
)
(t, x) = N

5
2 eR(N

2t,Nx).

For N ≥ 1 and R ≥ R0 Hölder's inequality with respe
t to t and (3.38) yield

∥∥|eR,N |+ |∇R3eR,N |
∥∥
L1(IN ,L2(R3))

. T
1
2
0

∥∥N−1|eR|+ |∇R3eR|
∥∥
L2((−T0,T0)×R3)

. ε. (3.39)

Note that v′R,N is supported in a ball of radius 2RN . Now, we de�ne

ER,N (t, y) :=
(
(i∂t +∆θ)VR,N − ρVR,N |VR,N |4

)
(t, y) = eR,N

(
t,Ψ−1(y)

)

for N ≥ R. From the bound (3.39), we dedu
e that there exists R0 = R0(T0, φ
′, ε) su
h that

VR,N is an almost-solution to (3.35) for N ≥ R ≥ R0, i.e.

sup
t0∈IN

‖It0(ER,N )‖X1
r (IN ) . ‖ER,N‖L1(IN ,H1(T3)) . ε. (3.40)

Step 2. Here we verify the assumptions of the stability result in Proposition 3.15. Assumption

(3.19) follows from the de�nition of VR,N and (3.37). Indeed, for every R ≥ 1 and N ≥ R we

have

‖VR,N‖L∞(IN ,H1(T3)) . ‖v′R,N‖L∞(IN ,H1(R3)) . ‖v′R,N‖L∞(IN ,Ḣ1(R3)) .E
R3 (φ

′) 1.
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Moreover, the bound on the Z-norm is obtained by using Littlewood-Paley theory (e.g. [ST87,

Se
tion 3.5.4℄) and (3.37): For N ≥ R ≥ 1 and N large enough (depending on T0) su
h that

|IN | ≤ 1, we apply Bernstein's inequality and 
ompute

‖VR,N‖Z(IN ) ≤
∑

(p,q)∈P

∥∥∥∥
(∑

M≥1

M ( 2
p
+ 3

q
− 1

2
)p‖PMVR,N‖pLq(T3)

) 1
p
∥∥∥∥
Lp(IN )

.
∑

(p,q)∈P

∥∥∥∥
(∑

M≥1

M
( 2
p
+1)p‖PMVR,N‖pL2(T3)

) 1
p
∥∥∥∥
Lp(IN )

.
∑

(p,q)∈P
‖VR,N‖Lp(IN ,H2/p+1(T3)).

Thus, we showed that

‖VR,N‖Z(IN ) .
∑

(p,q)∈P
‖v′R,N‖Lp(IN ,H2/p+1(R3)).

Note that supp v′R,N ⊆ B2(0) for all N ≥ R. Hen
e, by interpolating the �rst bound in (3.37),

we obtain

‖v′R,N‖Lp(IN ,H2/p+1(R3)) . ‖∇R3v′R,N‖Lp(IN ,L
rp(R3)) .E

R3(φ
′) 1,

where rp :=
6p

3p−4 .

All in all, we have

‖VR,N‖L∞(IN ,H1(T3)) + ‖VR,N‖Z(IN ) ≤ C(ER3(φ)).

We remark that if ne
essary, we 
an de
rease ε to satisfy ε < ε1
(
C(ER3(φ))

)
, where ε1 is

given in Proposition 3.15.

We still have to verify assumption (3.20). Consider the �rst term of (3.20). From Poin
aré's

inequality we dedu
e

‖TNφ− VR,N (0)‖H1(T3) . ‖φN − v′R,N (0)‖Ḣ1(R3) . ‖QNφ− v′R(0)‖Ḣ1(R3)

provided N ≥ R. Clearly, we 
an �nd R0 = R0(φ
′, ε) and N0 = N0(φ, ε) su
h that for all

R ≥ R0 and N ≥ N0 with N ≥ R it holds that

‖QNφ− v′R(0)‖Ḣ1(R3) ≤ ‖QNφ− φ‖Ḣ1(R3) + ‖φ− φ′‖Ḣ1(R3) + ‖φ′ − v′R(0)‖Ḣ1(R3) ≤ ε.

The bound on the se
ond term of (3.20) was already proved in (3.40). Possibly, we de
rease

ε > 0 further su
h that

‖TNφ− VR,N (0)‖H1(T3) + sup
t0∈IN

‖It0(ER,N )‖X1
r (IN ) < ε1,

where ε1 is as de�ned above. This proves that the assumptions in Proposition 3.15 are ful�lled.

Step 3. Finally, we apply our stability result and obtain the existen
e of a strong solution

UN ∈ C(IN ,H
1(T3)) ∩X1

r (IN ) to (3.35) for every N ≥ N0(φ, T0) satisfying

‖UN‖X1
r (IN ) .E

R3(φ)
1.

Furthermore, if R ≥ R0, then

lim
N→∞

‖UN − VR,N‖X1
r (IN ) .E

R3(φ)
ε.
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Comparison to Eu
lidean solutions beyond the Eu
lidean window

To understand the behavior of solutions on tori beyond the Eu
lidean window, we have to work

a bit harder. The next lemma is fundamental for our analysis sin
e it helps to understand the

linear and 
onsequently (
f. Proposition 3.12 (i)) the nonlinear solution beyond the Eu
lidean

window. In 
ontrast to [IP12b, Lemma 4.3℄, we have to deal with two additional di�
ulties.

The Z-norm used here makes the arguments a bit more deli
ate 
ompared to [IP12b℄ and due

to the modi�ed Lapla
e operator, we use the weaker estimate (3.42). Nevertheless, we show

that both di�
ulties 
an be dealt with. We want to point out that the following argument


an easily be modi�ed to treat a general three-dimensional manifold T×M .

Lemma 3.21 (Extin
tion lemma).

(i) Let φ ∈ Ḣ1(R3). For any ε > 0 there exists T = T (φ, ε) and N0 = N0(φ, ε) su
h that

for all N ≥ N0 it holds that

‖eit∆θ (TNφ)‖Z(TN−2,T−1) . ε.

(ii) Let φ ∈ C∞
0 (R3), p ∈ [4,∞], and 1 ≤ T ≤ N , then

sup
|t|∈[TN−2,T−1]

‖eit∆θ (TNφ)‖Lp(T3) .φ T
− 1

10N
1
2
− 3

p .

Proof. First, we prove (i) by modifying the argument in [IP12b, Lemma 4.3℄. For M ≥ 1 we

have that (
P≤Meit∆θ (TNφ)

)
(t, x) =

1

(2π)3

∫

T3

KM (t, x− y)TNφ(y) dy,

where KM is given by

KM (t, x) :=
∑

ξ∈Z3

ei(x·ξ−tQ(ξ))η3
( ξ

M

)
. (3.41)

The Weyl type estimate given in Lemma 1.41 yields

|KM (t, x)| .M2

∣∣∣∣
∑

ξ1∈Z
ei(x1ξ1−tξ

2
1)η1

( ξ1
M

)2∣∣∣∣ .
M3

√
q
(
1 +M

∣∣ t
2π − a

q

∣∣1/2) (3.42)

provided

t

2π
=
a

q
+ β, where q ∈ {1, . . . ,M}, a ∈ Z, (a, q) = 1, |β| ≤ (Mq)−1

.

Diri
hlet's lemma, see Lemma 1.42, and (3.42) imply for 1 ≤ S ≤M ,

‖KM‖L∞([SM−2,S−1]×T3) . S− 1
2M3. (3.43)

Indeed, assume that |t| ≤ 1
S , and write

t
2π = a

q + β. Sin
e |β| ≤ 1
M ≤ 1

S , it follows that∣∣a
q

∣∣ ≤ 2
S . Therefore, either |a| ≥ 1, whi
h implies q ≥ S

4 , or a = 0, and hen
e, q = 1 be
ause

(a, q) = 1. In the �rst 
ase, (3.43) follows from (3.42):

|KM (t, x)| . q−
1
2M3 . S− 1

2M3.

In the se
ond 
ase, we have | t2π − a
q |

1
2 = 1√

2π
|t| 12 , and we obtain from (3.42) that

|KM (t, x)| . |t|− 1
2M2 . S− 1

2M3
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for t ∈ [SM−2, S−1].

Sin
e the Z-norm is based on Lp-spa
es with 1 ≤ p < ∞, we may assume that φ ∈ C∞
0 (R3).

From the de�nition of TN (De�nition 3.16), we get

‖TNφ‖Lp(T3) .φ N
1
2
− 3

p
(3.44)

and

‖PL(TNφ)‖L2(T3) .φ

(
1 +

L

N

)−10
N−1.

The latter estimate in 
ombination with the Stri
hartz estimates in Lemma 2.10 leads to

‖eit∆θPL(TNφ)‖Lp([−1,1],Lq(T3)) .p,q L
3
2
− 2

p
− 3

q ‖PL(TNφ)‖L2(T3)

.φ,p,q L
3
2
− 2

p
− 3

q

(
1 +

L

N

)−10
N−1

(3.45)

for p > 16
3 and q ≥ 4. If 1 ≤ T ≤ N and (p, q) ∈ P, then this allows us to bound

∑

L/∈[NT−1/1000,NT 1/1000]

L( 2
p
+ 3

q
− 1

2
)p‖eit∆θPL(TNφ)‖pLp([−1,1],Lq(T3))

.φ

∑

1≤L<NT−1/1000

LpN−p +
∑

L>NT 1/1000

L−9pN9p .φ T
− p

1000 .

Here, we sum over dyadi
 numbers.

Now, we use the inequalities at the beginning of the proof to estimate the remaining sum over

L ∈ [NT−1/1000, NT 1/1000]. Young's inequality for 
onvolutions, (3.44), and (3.43) give for all

L ≥ 1,

‖eit∆θPL(TNφ)‖L∞([TN−2,T−1]×T3) ≤ ‖KL −KL/2‖L∞([T (max{L,N})−2,T−1]×T3)‖TNφ‖L1(T3)

.φ T
− 1

2 (L+N)3N− 5
2 .

Interpolating this with the estimate given in (3.45) (with p = 16
3 + and q = 4), we obtain for

L ∈ [NT−1/1000, NT 1/1000] and (p, q) ∈ P,

‖eit∆θPL(TNφ)‖Lp([TN−2,T−1],Lq(T3)) .φ T
− 1

1000N
1
2
− 2

p
− 3

q .

Then, (i) follows from

∑

(p,q)∈P

∑

L∈[NT−1/1000,NT 1/1000]

L
( 2
p
+ 3

q
− 1

2
)p‖eit∆θPL(TNφ)‖pLp([TN−2,T−1],Lq(T3))

.φ T
( 2
p0

+ 3
q0

− 3
2
)p0/1000 + T

−( 2
p1

+ 3
q1

+ 1
2
)p1/1000.

The result follows for T = T (ε, φ) su�
iently large sin
e both exponents are negative.

Now, we turn to the proof of (ii). From (3.43) and (3.44), we get

sup
t∈[TN−2,T−1]

‖eit∆θP≤T 1/10N (TNφ)‖L∞(T3)

≤ ‖KNT 1/10‖L∞([T (NT 1/10)−2,T−1]×T3)‖TNφ‖L1([−1,1]×T3)

.φ T
− 1

5N
1
2
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as well as

sup
t∈R

‖eit∆θP≤T 1/10N (TNφ)‖L2(T3) .φ N
−1.

Interpolating these estimates, we obtain for 2 ≤ p ≤ ∞,

sup
t∈[TN−2,T−1]

‖eit∆θP≤T 1/10N (TNφ)‖Lp(T3) .φ T
2
5p

− 1
5N

1
2
− 3

p . (3.46)

Note that for p ≥ 4, we have T
2
5p

− 1
5 ≤ T− 1

10
. From the estimates

‖PLTNφ‖L1(T3) .φ

(N
L

)10
N− 5

2
and ‖PLTNφ‖L2(T3) .φ

(N
L

)10
N−1

for L ≥ N and Sobolev's embedding, we infer

sup
t∈R

‖eit∆θPL(TNφ)‖L2(T3) .φ N
−1
(N
L

)10
,

sup
t∈R

‖eit∆θPL(TNφ)‖L∞(T3) ≤ L3‖PL(TNφ)‖L1(T3) .φ N
1
2

(N
L

)7
.

Consequently, for 2 ≤ p ≤ ∞,

sup
t∈R

‖eit∆θPL(TNφ)‖Lp(T3) .φ N
1
2
− 3

p

(N
L

)7+ 6
p
.

Hen
e, we may estimate

sup
t∈R

∑

L>NT 1/10

‖eit∆θPL(TNφ)‖Lp(T3) .φ N
1
2
− 3

p

∑

L>NT 1/10

(N
L

)7+ 6
p
.φ N

1
2
− 3

pT− 1
10 . (3.47)

We are now able to 
on
lude the lemma using (3.46) and (3.47): For all 4 ≤ p ≤ ∞ and

t ∈ [TN−2, T−1], we have

‖eit∆θ (TNφ)‖Lp(T3) ≤ ‖eit∆θP≤T 1/10N (TNφ)‖Lp(T3) +
∑

L>NT 1/10

‖eit∆θPL(TNφ)‖Lp(T3)

.φ T
− 1

10N
1
2
− 3

p .

Now, we shall bring everything together to 
ompare Eu
lidean solutions with initial data

φ ∈ Ḣ1(R3) and solutions on tori with initial data TNφ in a 
ertain time frame. We begin

with some notation and the de�nition of renormalized Eu
lidean frames.

Given f ∈ L2(T3), t0 ∈ R, and x0 ∈ T
3
, we de�ne

(πx0f)(x) := f(x− x0),

(Πt0,x0f)(x) := (e−it0∆θf)(x− x0) = (πx0e
−it0∆θf)(x).

De�nition 3.22 (Renormalized Eu
lidean frames). We de�ne the set of renormalized Eu-


lidean frames as

F̃E :=
{
(Nk, tk, xk)k≥1 : Nk ≥ 1, Nk → +∞, tk → 0, xk ∈ T

3
,

and either tk = 0 for all k ≥ 1 or lim
k→∞

N2
k |tk| = +∞

}
.
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Remark. In De�nition 3.24 below, we introdu
e a slightly more general 
lass of frames, 
alled

Eu
lidean frames. As we show in the beginning of the proof of Proposition 3.30, it is enough

to prove the following proposition under the stronger assumption of a renormalized Eu
lidean

frame. ♦

Proposition 3.23. Let O = (Nk, tk, xk)k ∈ F̃E and φ ∈ Ḣ1(R3).

(i) There exist τ = τ(φ) and k0 = k0(φ,O) su
h that for all k ≥ k0 there is a strong solution

Uk ∈ C((−τ, τ),H1(T3)) ∩ X1
r (−τ, τ) of the nonlinear equation (3.1) with initial data

Uk(0) = Πtk,xk(TNk
φ). Moreover, the solution satis�es the bound

‖Uk‖X1
r (−τ,τ) .E

R3(φ)
1.

(ii) For any s ≥ 1 there exists a Eu
lidean solution u ∈ C(R, Ḣs(R3)) of

i∂tu+∆R3

θ u = u|u|4 (3.48)

with s
attering data φ±∞ ∈ Ḣ1(R3) de�ned as in Theorem 3.19 su
h that the following

holds up to a subsequen
e: For any ε > 0 there exists T0 = T0(φ, ε) su
h that for all

T ≥ T0 there is R0 = R0(φ, ε, T ) su
h that for all R ≥ R0 there is k0 = k0(φ, ε, T,R)
with the property that for any k ≥ k0, it holds that

‖Uk − ũk‖X1
r ({|t−tk |≤TN−2

k }∩{|t|≤T−1}) ≤ ε, (3.49)

where

(π−xk ũk)(t, x) = N
1
2
k η
(NkΨ

−1(x)

R

)
u
(
N2
k (t− tk), NkΨ

−1(x)
)
. (3.50)

In addition, up to a subsequen
e, we have

‖Uk(t)−Πtk−t,xkTNk
φ±∞‖X1

r ({±(t−tk)≥TN−2
k }∩{|t|≤T−1}) ≤ ε (3.51)

for k ≥ k0.

Proof. The 
omparison within the Eu
lidean window was essentially done in Lemma 3.20. For

the 
omparison beyond the Eu
lidean window we make use of the previous extin
tion lemma

and our stability result. In this interval, the general idea is as follows:

Uk(t) ≈ eit∆θUk(TN
−2
k ) (extin
tion lemma and Proposition 3.12 (i))

≈ eit∆θ ũk(TN
−2
k ) (stability and (3.49))

≈ eit∆θTNk
φ±∞. (Eu
lidean s
attering property)

Let O = (Nk, tk, xk)k ∈ F̃E , φ ∈ Ḣ1(R3), and ε > 0 be �xed. Without loss of generality, we

may assume xk = 0.

Case 1. Assume tk = 0 for all k ≥ 1. Let s′ := max{5, s}. Given any 0 < ε′ ≪ ε we may


hoose φ′ ∈ Hs′(R3) to satisfy ‖φ− φ′‖Ḣ1(R3) < ε′. Let u ∈ C(R,Hs′(R3)) be the solution to

the nonlinear Eu
lidean S
hrödinger equation (3.31) with initial data u(0) = φ′ ∈ Hs′(R3) and
s
attering data φ± ∈ Ḣ1(R3). The existen
e of su
h a solution is guaranteed by Theorem 3.19.

Let T > 0 be arbitrary. If ε′ = ε′(ER3(φ), ε) is small enough su
h that Lemma 3.20 (ii)


an be applied, then there is R0 = R0(φ, ε, T ) ≥ 1 su
h that for any R ≥ R0 there exists

k0 = k0(φ, ε, T,R) with the property that for any k ≥ k0 there is a unique strong solution

Uk ∈ C
(
(−2TN−2

k , 2TN−2
k ),H1(T3)

)
∩X1

r (−2TN−2
k , 2TN−2

k ) (3.52)
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su
h that the estimate

‖Uk − ũk‖X1
r (−2TN−2

k ,2TN−2
k ) .E

R3(φ)
ε′ < ε (3.53)

holds true. This implies (3.49).

For notational 
onvenien
e we prove existen
e of Uk beyond the Eu
lidean window and (3.51)

only in the 
ase t > 0. By Lemma 3.21, there exists T0 = T0(φ, ε
′) and k0 = k0(φ, ε

′) su
h
that for all T ≥ T0 and k ≥ k0,

‖eit∆θ (TNk
φ+∞)‖Z([TN−2

k ,T−1]) ≤ ε′. (3.54)

In view of (3.52), we may 
on
lude the existen
e of a unique solution Uk on (−T−1
0 , T−1

0 ) from
Proposition 3.12 (i) by showing

‖ei(t−T0N−2
k )∆θUk(T0N

−2
k )‖Z([T0N−2

k ,T−1
0 ]) ≤ δ0, (3.55)

where δ0 = δ0(‖Uk(T0N−2
k )‖H1(T3)) is given by Proposition 3.12 (i).

Let T ≥ T0, R ≥ R0, as well as k ≥ k0, and de�ne the interval Ik := [TN−2
k , T−1]. For

Jk := [0, T−1 − TN−2
k ] we dedu
e,

‖eit∆θUk(TN
−2
k )‖Z(Jk) ≤

∥∥eit∆θ

(
Uk(TN

−2
k )− ũk(TN

−2
k )
)∥∥

Z(Jk)

+
∥∥eit∆θ

(
ũk(TN

−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)
)∥∥
Z(Jk)

+ ‖eit∆θ (TNk
φ+∞)‖Z(Ik).

The �rst term is small sin
e Corollary 3.5 (i) and (3.53) imply

‖Uk(TN−2
k )− ũk(TN

−2
k )‖H1(T3) .E

R3(φ)
ε′. (3.56)

The smallness of the last term is given by (3.54). It remains to estimate se
ond term. We see

from Corollary 3.5 (i) that

∥∥eit∆θ

(
ũk(TN

−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)
)∥∥
Z(Jk)

. ‖ũk(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

(3.57)

For v ∈ C(R, Ḣ1(R3)) we denote by VR,N (v) the fun
tion 
onstru
ted in (3.36). Let φ′′ ∈
H5(R3) be su
h that ‖φ′′−φ+∞‖Ḣ1(R3) ≤ ε′. The triangle inequality and Poin
aré's inequality

allow to bound

(3.57) . ‖ũk(TN−2
k )− VR,Nk

(eit∆
R
3

θ φ+∞)(TN−2
k )‖Ḣ1(T3)

+ ‖VR,Nk
(eit∆

R
3

θ φ+∞)(TN−2
k )− VR,Nk

(eit∆
R
3

θ φ′′)(TN−2
k )‖Ḣ1(T3)

+ ‖VR,Nk
(eit∆

R
3

θ φ′′)(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

All terms may be bounded by Cε′ provided T0 is large enough. Indeed, from the s
attering

property (3.33), it follows that there exists a possibly larger T0 = T0(φ, ε
′) su
h that for all

T ≥ T0,

‖u(T ) − eiT∆
R
3

θ φ+∞‖Ḣ1(R3) ≤ ε′.

A 
omputation shows that this implies the boundedness of the �rst term by Cε′. The se
ond
term is small be
ause φ′′ approximates φ+∞

in Ḣ1(R3). Finally, the smallness of the last term

follows from Lemma 3.20 (ii) with ρ = 0. Hen
e, we have proved

‖ei(t−TN−2
k )∆θUk(TN

−2
k )‖Z(Ik) ≤ Cε′ (3.58)
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for any T ≥ T0. This implies (3.55) for small enough ε′ and therefore, we have shown the

existen
e of a unique solution Uk ∈ C((−T−1
0 , T−1

0 ),H1(T3)) ∩X1
r (−T−1

0 , T−1
0 ).

Next, we prove (3.51) for T ≥ T0, R ≥ R0, and k ≥ k0. Applying the triangle inequality twi
e

gives

‖Uk(t)− eit∆θTNk
φ+∞‖X1

r (Ik)
≤ ‖Uk(t)− ei(t−TN

−2
k )∆θUk(TN

−2
k )‖X1

r (Ik)

+
∥∥ei(t−TN−2

k )∆θ

(
Uk(TN

−2
k )− ũk(TN

−2
k )
)∥∥

X1
r (Ik)

+
∥∥eit∆θ

(
e−iTN

−2
k ∆θ ũk(TN

−2
k )− TNk

φ+∞)∥∥
X1

r (Ik)

=: S1 + S2 + S3.

We are left to prove S1+S2+S3 < ε. In the following steps, we might de
rease ε′ > 0 further,
whi
h may in
rease T0, R0, and k0. First, we 
onsider S1. We apply Proposition 3.12 (i) and

use (3.58) to obtain

‖Uk(t)− ei(t−TN
−2
k )∆θUk(TN

−2
k )‖X1

r (Ik)
. ε′

3
2 <

ε

3
,

whi
h proves the desired smallness of S1. The smallness of S2 is a 
onsequen
e of (3.56) and

Proposition 3.3 (ii):

S2 ≤ ‖Uk(TN−2
k )− ũk(TN

−2
k )‖H1(T3) <

ε

3
.

Finally, we 
onsider S3. We have

S3 ≤ ‖ũk(TN−2
k )− eiTN

−2
k ∆θ(TNk

φ+∞)‖H1(T3).

However, this term has already appeared in (3.57) and was shown to be smaller than ε/3
provided ε′ is small enough. That gives the desired estimate (3.51) provided tk = 0 for all

k ≥ 1.

Case 2. Assume limk→+∞N2
k |tk| = +∞. We may even assume limk→+∞N2

k tk = +∞ by

symmetry. From the existen
e of the wave operator and Theorem 3.19, we see that there is a

solution u to (3.48) su
h that

‖u(t) − eit∆
R
3

θ φ‖Ḣ1(R3) → 0

as t → −∞. In other words, φ−∞ = φ. We set φ̃ := u(0) and apply the result of the

proposition to the frame O′ := (Nk, 0, 0)k≥1. Note that this frame ful�lls the assumptions of

the �rst 
ase. Hen
e, there exists a solution to (3.1) on (−T−1
0 , T−1

0 ), say Vk, with initial data

Vk(0) = TNk
φ̃. From limk→+∞N2

k tk = +∞, we have for su�
iently large k that tk ≥ T0N
−2
k .

Hen
e, (3.51) implies

‖Vk(−tk)−Πtk ,0TNk
φ‖H1(T3) . ‖Vk(t)−Π−t,0TNk

φ‖X1
r ({−t≥T0N−2

k }∩{|t|≤T−1
0 }) → 0

as k → +∞. Re
all that, by de�nition, Uk(0) = Πtk ,0TNk
φ. This allows us to apply our

stability result (Proposition 3.15), and we observe

‖Vk( · − tk)− Uk‖X1
r (−T−1

0 ,T−1
0 ) → 0.

Note that Uk inherits the estimates (3.49) and (3.51) from Vk.
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3.5 Pro�le de
omposition

We show that for every given bounded sequen
e of fun
tions in H1(T3), we 
an 
onstru
t

suitable Eu
lidean pro�les and up to a subsequen
e, express the sequen
e as an almost or-

thogonal sum of these pro�les, the sequen
e's weak limit, and a remainder term. The study

of Eu
lidean pro�les in the previous se
tion makes this de
omposition meaningful. We adapt

the strategies in [IPS12, Lemma 5.7℄ and [IP12a, Se
tion 5℄ in whi
h analogue statements

were proved for the nonlinear S
hrödinger equation on the hyperboli
 spa
e H and R × T
3
,

respe
tively. The pro�le de
omposition dis
ussed here is an analogue of Keraani's theorem

[Ker01℄ on re
tangular tori.

3.5.1 De�nition and properties

The previously introdu
ed 
lass of renormalized Eu
lidean frames F̃E is extended now to the


lass of Eu
lidean frames. Here, we drop the assumption that either tk = 0 for all k ≥ 1 or

limk→∞N2
k |tk| = +∞.

De�nition 3.24 (Eu
lidean frames).

(i) The set of Eu
lidean frames is de�ned as

FE :=
{
(Nk, tk, xk)k≥1 : Nk ≥ 1, Nk → +∞, tk → 0, xk ∈ T

3
}
.

We say that two frames, (Nk, tk, xk)k and (N ′
k, t

′
k, x

′
k)k, are orthogonal if

lim
k→+∞

(∣∣∣ln Nk

N ′
k

∣∣∣+N2
k |tk − t′k|+Nk|xk − x′k|

)
= +∞.

Two frames that are not orthogonal are 
alled equivalent.

(ii) If O = (Nk, tk, xk)k is a Eu
lidean frame and if ψ ∈ Ḣ1(R3), we de�ne the Eu
lidean

pro�le asso
iated to (ψ,O) as the sequen
e (ψ̃Ok
)k in H1(T3) with

ψ̃Ok
:= Πtk ,xk(TNk

ψ). (3.59)

In the following lemma, we summarize the basi
 properties of pro�les asso
iated to equivalent

and orthogonal frames. The proof follows the strategy in [IPS12, Lemma 5.7℄.

Lemma 3.25 (Properties of frames).

(i) If O and O′
are equivalent Eu
lidean frames, then there is an isometry S : Ḣ1(R3) →

Ḣ1(R3) su
h that for any pro�le (ψ̃O′
k
)k, up to a subsequen
e, it holds that

lim
k→+∞

‖S̃ψOk
− ψ̃O′

k
‖H1(T3) = 0. (3.60)

(ii) If O and O′
are orthogonal frames and (ψ̃Ok

)k, (φ̃O′
k
)k are 
orresponding pro�les, then,

up to a subsequen
e:

lim
k→+∞

〈ψ̃Ok
, φ̃O′

k
〉H1(T3) = 0, (3.61)

lim
k→+∞

‖ψ̃Ok
φ̃O′

k
‖L3(T3) = 0. (3.62)
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(iii) If O is a Eu
lidean frame and (ψ̃Ok
)k, (φ̃Ok

)k are two pro�les 
orresponding to O, then

lim
k→+∞

(
‖ψ̃Ok

‖L2(T3) + ‖φ̃Ok
‖L2(T3)

)
= 0, (3.63)

lim
k→+∞

〈ψ̃Ok
, φ̃Ok

〉H1(T3) = 〈ψ, φ〉H1(R3).

(iv) If O is a renormalized Eu
lidean frame and (ψ̃Ok
)k a pro�le 
orresponding to O, then

for every g ∈ H1(T3),

lim sup
k→+∞

‖ψ̃Ok
g‖L3(T3) = 0.

Proof. We prove every 
laim individually.

Ad (i). Let O = (Nk, tk, xk)k and O′ = (N ′
k, t

′
k, x

′
k)k be equivalent Eu
lidean frames. After

passing to a subsequen
e, we may assume

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2(t′k − tk) = t, and lim

k→∞
N ′
kΨ

−1(x′k − xk) = x

for some N, t ∈ R and x ∈ R
3
. Note that there exists T0 > 0 su
h that |tk − t′k| < T0N

′
k
−2

for

all k. Given ψ ∈ Ḣ1(R3) we de�ne S : Ḣ1(R3) → Ḣ1(R3) via

(Sψ)(x) := N
1
2Πt,xψ(Nx) = N

1
2 (e−it∆θψ)(Nx− x)

and remark that S is an isometry on Ḣ1(R3). Furthermore, we de�ne S̃ψOk
as in (3.59). By

de�nition, (3.60) follows from

lim
k→∞

∥∥Πtk ,xk
(
TNk

(Sψ)
)
−Πt′k,x

′
k
(TN ′

k
ψ)
∥∥
H1(T3)

= 0,

whi
h is equivalent to

lim
k→∞

∥∥πxk−x′k
(
TNk

(Sψ)
)
− ei(tk−t

′
k)∆θ (TN ′

k
ψ)
∥∥
H1(T3)

= 0. (3.64)

In order to prove (3.64), we may assume Sψ ∈ C∞
0 (R3) and ψ ∈ H5(R3) be
ause of density

and the Ḣ1(R3) → H1(T3) boundedness of the operator TN (Corollary 3.17). Set v(t, x) :=

eit∆
R
3

θ ψ(x), and de�ne vR, vR,N ′
k
, and VR,N ′

k
as in (3.36). Now, we apply Lemma 3.20 (ii)

with ρ = 0 and T0 as de�ned above. We dedu
e that for any ε > 0 small enough there exists

R0 = R0(T0, ψ, ε) su
h that for all R ≥ R0,

lim
k→∞

‖ei(tk−t′k)∆θ (TN ′
k
ψ)− VR,N ′

k
(tk − t′k)‖H1(T3) . ε.

This, indeed, is true for any k ≥ 1 sin
e, from the 
hoi
e of T0, the evolution stays inside the

Eu
lidean window. By the triangle inequality, the last estimate implies that (3.64) follows if

we prove

lim
k→∞

∥∥πxk−x′k
(
TNk

(Sψ)
)
− VR,N ′

k
(tk − t′k)

∥∥
H1(T3)

. ε

for su�
iently large R. From the de�nitions and sin
e Sψ ∈ C∞
0 (R3), this inequality is

equivalent to

lim
k→∞

∥∥N
1
2
k (Sψ)

(
NkΨ

−1
(
y − (xk − x′k)

))
−N ′

k

1
2 vR

(
N ′
k
2(tk − t′k), N

′
kΨ

−1(y)
)∥∥

H1
y(T

3)
. ε.
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Note that η 
an be dropped in the �rst term be
ause for k su�
iently large, we have that

supp((Sψ)(Nk · )) ⊂ supp(η(N
1/2
k · )). We substitute y := Ψ(x), then the inequality above is

equivalent to

lim
k→∞

∥∥N
1
2
k (Sψ)

(
Nkx−NkΨ

−1(xk − x′k)
)
−N ′

k

1
2 vR

(
N ′
k
2(tk − t′k), N

′
kx
)∥∥
Ḣ1

x(R
3)

. ε. (3.65)

One easily 
al
ulates that the left-hand side is equal to

lim
k→∞

∥∥∥(Sψ)(x) −
(N ′

k

Nk

) 1
2
vR

(
N ′
k
2(tk − t′k),

N ′
k

Nk
x−N ′

kΨ
−1(x′k − xk)

)∥∥∥
Ḣ1

x(R
3)
.

By de�nition, (Sψ)(x) = N
1
2 v(−t,Nx − x), and sin
e Sobolev's embedding implies vR ∈

C(R, C1
0 (R

3)), we dedu
e from dominated 
onvergen
e that (3.65) is equivalent to

∥∥N
1
2 v(−t,Nx− x)−N

1
2 vR(−t,Nx− x)

∥∥
Ḣ1

x(R
3)

. ε,

whi
h is obviously true for R su�
iently large.

Ad (ii). Let O = (Nk, tk, xk)k and O′ = (N ′
k, t

′
k, x

′
k)k be orthogonal Eu
lidean frames. With-

out loss of generality, we may assume ψ, φ ∈ C∞
0 (R3). Sin
e Nk, N

′
k → +∞ as k → +∞, we

obtain from (3.44) that

lim
k→∞

∣∣∣∣
∫

T3

ψ̃Ok
(x)φ̃O′

k
(x) dx

∣∣∣∣ ≤ lim
k→∞

‖TNk
ψ‖L2(T3)‖TN ′

K
φ‖L2(T3) = 0.

As a 
onsequen
e, we redu
ed (3.61) to

lim
k→+∞

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ = 0. (3.66)

To prove the remaining estimates, we sele
t a subsequen
e su
h that either

lim
k→∞

N ′
k

Nk
= 0, (3.67)

or

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2|t′k − tk| = ∞ (3.68)

for some N ∈ (0,∞), or

lim
k→∞

N ′
k

Nk
= N, lim

k→∞
N ′
k
2(t′k − tk) = t, lim

k→∞
N ′
k|x′k − xk| = ∞ (3.69)

for some N ∈ (0,∞) and t ∈ R.

First, we assume the 
ase (3.67). We dedu
e from Green's formula (
f. [Jos11, formula (3.1.7)℄),

the de�nition of a Eu
lidean pro�le, and Hölder's inequality that

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

ψ̃Ok
(x)∆gφ̃O′

k
(x) dx

∣∣∣∣ . ‖TNk
ψ‖L2(T3)‖∆g(TN ′

k
φ)‖L2(T3).

One easily 
omputes that ‖∆g(TN ′
k
φ)‖L2(T3) .φ N

′
k, and together with (3.44), we obtain

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ .ψ,φ
N ′
k

Nk
. (3.70)
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Furthermore, using Sobolev embeddings,

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖Πtk ,xk(TNk

ψ)‖
L

9
2 (T3)

‖Πt′k ,x′k(TN ′
k
φ)‖L9(T3)

. ‖(−∆g)
5
6TNk

ψ‖L2(T3)‖(−∆g)
7
6TN ′

k
φ‖L2(T3)

.ψ,φ

(N ′
k

Nk

) 1
6
.

(3.71)

Now, (3.66) and (3.62) follow from (3.70) and (3.71) as k → ∞ provided (3.67).

We 
onsider the 
ase (3.68) now. We �rst prove the following statement: For any f ∈ Ḣ1(R3)
and all sequen
es Mk ≥ 1 and sk → 0 with M2

k |sk| → +∞ as k → ∞, we have

lim
k→∞

‖eisk∆θ(TMk
f)‖L6(T3) = 0 (3.72)

for a subsequen
e.

This is a

omplished by applying Lemma 3.21 (ii) in either of the following two sub-
ases:

We may 
hoose a subsequen
e su
h that either 0 < Mk|sk| ≤ 1 or Mk|sk| > 1 for any k ≥ 1.

Lets �rst assume Mk|sk| ≤ 1 for all k ≥ 1, and de�ne Tk := M2
k |sk|. Note that 1 ≤ Tk ≤ Mk

for large k. Sin
e |sk| ∈ [TkM
−2
k , T−1

k ], we may apply Lemma 3.21 (ii) from whi
h we dedu
e

‖eisk∆θ(TMk
f)‖L6(T3) .f (1 +M2

k |sk|)−
1
10

provided k is su�
iently large.

On the other hand, if Mk|sk| > 1 for any k ≥ 1, we de�ne Tk := |sk|−1
. Obviously, for k large

enough, 1 ≤ Tk < Mk and |sk| ∈ [TkM
−2
k , T−1

k ]. Thus, Lemma 3.21 (ii) implies

‖eisk∆θ(TMk
f)‖L6(T3) .f |sk|

1
10 ,

and the 
laim is proved.

We 
on
lude that for k large enough,

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

∆g(TNk
ψ)(x)Πt′k−tk,x′k−xk(TN ′

k
φ)(x) dx

∣∣∣∣
. ‖∆g(TNk

ψ)‖
L

6
5 (T3)

‖Πt′k−tk,x′k−xk(TN ′
k
φ)‖L6(T3).

Using ‖∆g(TNk
ψ)‖

L
6
5 (T3)

.φ 1, see (3.44), and (3.72), we obtain (3.61). The 
laim (3.62) is

implied by

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖TNk

ψ‖L6(T3)‖Πt′k−tk ,x′k−xk(TN ′
k
φ)‖L6(T3),

(3.44), and (3.72).

We now assume (3.69). First, we 
laim that for all sequen
es yk ∈ T
3
, Mk ≥ 1 with the

properties limk→∞Mk = ∞, limk→∞Mk|yk| = ∞, and all f, g ∈ Ḣ1(R3), it holds that

lim
k→∞

(∣∣∣∣
∫

T3

(
πyk∇(TMk

f)
)
(x) · ∇(TMk

g)(x) dx

∣∣∣∣+ ‖πyk(TMk
f)(TMk

g)‖L3(T3)

)
= 0. (3.73)

Assuming this, we may prove (3.61) and (3.62) in the 
ase (3.69). Indeed, thanks to (3.64),

we have for f ∈ Ḣ1(R3) and a sequen
e (sk)k with the property limk→∞N ′
k
2sk = s ∈ R that

lim
k→∞

‖TNk
(Sf)− e−isk∆θ(TN ′

k
f)‖H1(T3) = 0, (3.74)
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where (Sf)(x) := N
1
2 (e−is∆

R
3

θ f)(Nx). We estimate

∣∣∣∣
∫

T3

∇ψ̃Ok
(x) · ∇φ̃O′

k
(x) dx

∣∣∣∣ =
∣∣∣∣
∫

T3

∇(TNk
ψ)(x) · ∇(Πt′k−tk ,x′k−xkTN ′

k
φ)(x) dx

∣∣∣∣

.

∣∣∣∣
∫

T3

∇(TNk
ψ)(x) · πx′k−xk∇

(
TNk

(Sφ)
)
(x) dx

∣∣∣∣

+ ‖ψ‖Ḣ1(R3)

∥∥TNk
(Sφ)− e−i(t

′
k−tk)∆θ (TN ′

k
φ)
∥∥
H1(T3)

.

From (3.73), we see that the �rst term tends to 0 as k → ∞, and from (3.74), we obtain the

same for the se
ond term. If either N2
k |tk| → ∞ or N ′

k
2|t′k| → ∞ as k → ∞, we get from

(3.72) that

‖ψ̃Ok
φ̃O′

k
‖L3(T3) ≤ ‖Πtk ,xk(TNk

ψ)‖L6(T3)‖Πt′k ,x′k(TN ′
k
φ)‖L6(T3) → 0

as k → ∞. Otherwise, if limk→∞N2
k |tk| = T ∈ R and limk→∞N ′

k
2|t′k| = T ′ ∈ R, we estimate

‖ψ̃Ok
φ̃O′

k
‖L3(T3) =

∥∥(πxk−x′ke
−itk∆θ(TNk

ψ)
)
e−it

′
k∆θ(TN ′

k
φ)
∥∥
L3(T3)

.
∥∥πxk−x′k

(
e−itk∆θ(TNk

ψ)− TN ′
k
(Sψ)

)∥∥
H1(T3)

‖φ‖Ḣ1(R3)

+ ‖ψ‖Ḣ1(R3)‖e−it
′
k∆θ(TN ′

k
φ)− TN ′

k
(S̃φ)‖H1(T3)

+
∥∥πxk−x′k

(
TN ′

k
(Sψ)

)
TN ′

k
(S̃φ)

∥∥
L3(T3)

,

where S̃ : Ḣ1(R3) → Ḣ1(R3), (S̃φ)(x) := (e−iT
′∆R

3

θ φ)(x). Ea
h term tends to zero be
ause of

(3.74) and (3.73).

We turn to the proof of (3.73). Be
ause of density and the Ḣ1(R3) → H1(T3) boundedness
of TN (Corollary 3.17), we may assume that f, g ∈ C∞

0 (R3) and repla
e TMk
f and TMk

g by

f̃(x) :=M
1
2
k f(MkΨ

−1(x)) and g̃(x) :=M
1
2
k g(MkΨ

−1(x)), respe
tively. We have

∣∣∣∣
∫

T3

(πyk∇f̃)(x) · ∇g̃(x) dx
∣∣∣∣ =M3

k

∣∣∣∣
∫

R3

∇R3f
(
Mk(x− yk)

)
· ∇R3g(Mkx) dx

∣∣∣∣

as well as

‖(πyk f̃) g̃‖L3(T3) =Mk

∥∥f
(
Mk( · − yk)

)
g(Mk · )

∥∥
L3(R3)

.

That either term tends to zero as k → ∞ follows from the fa
t that the support of these

fun
tions be
ome disjoint for large k, whi
h is due to the assumption limk→∞Mk|yk| = ∞.

Ad (iii). Let O = (Nk, tk, xk)k be a Eu
lidean frame and (ψ̃Ok
)k, (φ̃Ok

)k be two pro�les


orresponding to O. Again, the Ḣ1(R3) → H1(T3) boundedness of TN allows to assume

ψ, φ ∈ C∞
0 (R3). Sin
e Πtk ,xk is an isometry on L2(T3), we easily get from (3.44) that

‖ψ̃Ok
‖L2(T3) = ‖TNk

ψ‖L2(T3) .ψ N
−1
k ,

whi
h in turn implies (3.63).

By the unitarity of Πtk ,xk , it su�
es to prove

lim
k→∞

〈∇(TNk
ψ),∇(TNk

φ)〉L2(T3) = 〈∇R3ψ,∇R3φ〉L2(R3).

For f ∈ C∞
0 (R3), we have

∥∥∇
(
TNk

f −N
1
2
k f(NkΨ

−1)
)∥∥

L2(T3)
→ 0
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as k → ∞, and 
onsequently, we may repla
e the fun
tions TNk
ψ and TNk

φ by N
1
2
k ψ(NkΨ

−1)

and N
1
2
k φ(NkΨ

−1), respe
tively. Thus, the desired estimate is implied, if we show

Nk

〈
∇
(
ψ(NkΨ

−1 · )
)
,∇
(
φ(NkΨ

−1 · )
)〉
L2(T3)

= 〈∇R3ψ,∇R3φ〉L2(R3)

for su�
iently large k. However, this follows from a 
hange of variables.

Ad (iv). Without loss of generality, we may assume g ∈ C∞(T3) and ψ ∈ C∞
0 (R3). Let

O = (Nk, tk, xk)k. We use (3.44) to estimate

‖ψ̃Ok
g‖L3(T3) ≤ ‖ψ̃Ok

‖
L

9
2 (T3)

‖g‖L9(T3) .ψ,g N
− 1

6
k .

Letting k → ∞, this implies the 
laim.

De�nition 3.26 (Absen
e from a frame). We say that a sequen
e of fun
tions (fk)k ⊆ H1(T3)
is absent from a frame O, if for every pro�le (ψ̃Ok

)k asso
iated to O,

〈fk, ψ̃Ok
〉H1(T3) → 0

as k → +∞.

Remark. Note that (3.61) implies that a pro�le asso
iated to a frame O is absent from any

frame orthogonal to O. ♦

3.5.2 Extra
ting pro�les from a sequen
e

The pro�le de
omposition in the next proposition is the main statement of this subse
tion.

Proposition 3.27. Let (fk)k be a sequen
e of fun
tions in H1(T3) satisfying

lim sup
k→+∞

‖fk‖H1(T3) . E

and up to a subsequen
e, fk ⇀ g ∈ H1(T3). Furthermore, let Ik = (−Tk, T k) be a sequen
e

of intervals around the origin su
h that |Ik| → 0 as k → +∞. Then, there exist a sequen
e of

pairwise orthogonal Eu
lidean frames (Oα)α and a subsequen
e of pro�les (ψ̃αOα
k
)k asso
iated

to Oα
su
h that, after extra
ting a subsequen
e, for every J ≥ 0,

fk = g +

J∑

α=1

ψ̃αOα
k
+RJk ,

where RJk is absent from the frames Oα
, 1 ≤ α ≤ J , and is small in the sense that

lim sup
J→+∞

lim sup
k→+∞

sup
N≥1, t∈Ik, x∈T3

N− 1
2 |(eit∆θPNR

J
k )(x)| = 0. (3.75)

Besides, we also have the following orthogonality relations:

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖RJk‖2L2(T3) + ok(1),

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

J∑

α=1

‖∇R3ψα‖2L2(R3) + ‖∇RJk‖2L2(T3) + ok(1),

lim sup
J→+∞

lim sup
k→+∞

∣∣∣∣‖fk‖6L6(T3) − ‖g‖6L6(T3) −
J∑

α=1

‖ψ̃αOα
k
‖6L6(T3)

∣∣∣∣ = 0,

(3.76)

where ok(1) → 0 as k → +∞, possibly depending on J .
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Before we turn to its proof, we prove two auxiliary results, whi
h are similar to [IP12a,

Lemma 2.3℄ and [IP12a, Lemma 5.4℄.

Lemma 3.28. For every f ∈ H1(T3),

‖f‖6L6(T3) . ‖f‖2H1(T3)

(
sup
N≥1

N− 1
2‖PNf‖L∞(T3)

)4

holds true.

Proof. We dyadi
ally de
ompose f in its frequen
ies, f =
∑

N≥1 PNf , and obtain

‖f‖6L6(T3) ≤
∑

N1,...,N6≥1

∣∣∣∣
∫

T3

PN1fPN2fPN3fPN4fPN5fPN6f dx

∣∣∣∣.

The integral is zero, unless there are elements in the support of the Fourier transforms whi
h

add up to zero. Hen
e, we may assume the two highest frequen
ies to be 
omparable. We

order the frequen
ies to get

‖f‖6L6(T3) .
∑

N1≈N2≥...≥N6

∫

T3

|PN1fPN2fPN3fPN4fPN5fPN6f | dx.

Estimating the two high-frequen
y terms in L2(T3) and the rest in L∞(T3), we obtain

‖f‖6L6(T3) .
(
sup
N≥1

N− 1
2‖PNf‖L∞(T3)

)4

×
∑

N1≈N2≥N3≥...≥N6

(N3N4N5N6)
1
2 ‖PN1f‖L2(T3)‖PN2f‖L2(T3).

Summing over N6, N5, N4, and N3 yields

‖f‖6L6(T3) .
(
sup
N≥1

N− 1
2 ‖PNf‖L∞(T3)

)4 ∑

N1≈N2

N1N2‖PN1f‖L2(T3)‖PN2f‖L2(T3),

whi
h, after applying Cau
hy�S
hwarz, implies the 
laim.

Lemma 3.29. Let δ > 0 be �xed, and let (fk)k be a sequen
e of fun
tions in H1(T3) satisfying

lim sup
k→+∞

‖fk‖H1(T3) . E (3.77)

and up to passing to a subsequen
e, fk ⇀ g ∈ H1(T3). Furthermore, let Ik = (−Tk, T k) be
a sequen
e of intervals around the origin su
h that |Ik| → 0 as k → +∞. Then, there exist

J . δ−2
pairwise orthogonal frames Oα

, 1 ≤ α ≤ J , and pro�les (ψ̃αOα
k
)k asso
iated to Oα

su
h that, after extra
ting a subsequen
e,

fk = g +

J∑

α=1

ψ̃αOα
k
+Rk,

where Rk is absent from all frames Oα
and is small in the sense that

sup
N≥1, t∈Ik , x∈T3

N− 1
2 |(eit∆θPNRk)(x)| ≤ δ.
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Besides, the following orthogonality relations hold true:

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖Rk‖2L2(T3) + ok(1)

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

J∑

α=1

‖∇R3ψα‖2L2(R3) + ‖∇Rk‖2L2(T3) + ok(1),

where ok(1) → 0 as k → +∞.

Proof. We subdivide the proof into three steps.

Step 1. In this step, we extra
t a frame under the additional assumption that fk ⇀ 0 in

H1(T3). So, let (fk)k be a sequen
e satisfying the assumptions of the lemma, and assume

that (fk)k 
onverges weakly in H1(T3) to zero. We de�ne the fun
tional Λ via

Λ
(
(fk)k

)
:= lim sup

k→+∞
sup

N≥1, t∈Ik, x∈T3

N− 1
2 |(eit∆θPNfk)(x)|.

Claim. If Λ((fk)k) ≥ δ, then there exist a frame O and an asso
iated pro�le (ψ̃Ok
)k satisfying

lim sup
k→+∞

‖ψ̃Ok
‖H1(T3) . ‖ψ‖Ḣ1(R3) (3.78)

and

lim sup
k→+∞

|〈fk, ψ̃Ok
〉H1(T3)| ≥

δ

2
. (3.79)

Furthermore, if (fk)k was absent from a family of frames (Oα)α, then O is orthogonal to all

the frames Oα
.

We now prove the 
laim: The bound (3.78) follows for every Eu
lidean frame O immediately

from the de�nition of a Eu
lidean pro�le and the properties of TN (Corollary 3.17). It remains

to sele
t a frame as well as an asso
iated pro�le, and to show (3.79). Sin
e Λ((fk)k) ≥ δ,
there exists a subsequen
e, whi
h we still denote by (fk)k, su
h that there exists a sequen
e

(Nk, tk, xk)k with (Nk, tk, xk) ∈ [1,∞)× Ik × T
3
for all k and su
h that for all k,

2

3
δ ≤ N

− 1
2

k |(eitk∆θPNk
fk)(xk)|. (3.80)

From the de�nition of Λ, we have, after passing to a subsequen
e, tk → 0, xk → x∞, and

either Nk → N∞ ∈ [1,∞) or Nk → +∞.

We 
laim that the �rst 
ase, namely Nk → N∞ ∈ [1,∞), does not o

ur. Indeed, it holds for
gx,t,N ∈ C∞(T3),

gx,t,N (y) :=
∑

ξ∈Z3

ei((x−y)·ξ−tQ(ξ))
[
η3
( ξ
N

)
− η3

(2ξ
N

)]

that

|(eitk∆θPNk
fk)(xk)| = (2π)−3

∣∣∣∣
∫

T3

fk(y)gxk ,tk,Nk
(y) dy

∣∣∣∣ . |〈fk, gxk ,tk,Nk
〉H1×H−1(T3)|.

We also observe that gxk,tk,Nk

onverges point-wise to

g(y) := gx∞,0,N∞(y) =
∑

ξ∈Z3

ei(x∞−y)·ξ
[
η3
( ξ

N∞

)
− η3

( 2ξ

N∞

)]
∈ C∞(T3)
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as k → ∞, and thus, strongly in H−1(T3). Finally, we see that

|〈fk, gxk,tk ,Nk
〉H1×H−1(T3)| ≤ |〈fk, gxk ,tk,Nk

− g〉H1×H−1(T3)|+ |〈fk, g〉H1×H−1(T3)| → 0

as k → ∞, whi
h 
ontradi
ts (3.80).

In the remaining 
ase, Nk → +∞, we de�ne the Eu
lidean frame O = (Nk, tk, xk)k and the

fun
tion

ψ := F−1
R3

(
| · |−2[η3 − η3(2 · )]

)
∈ H1(R3).

We prove (3.79) now. By de�nition,

|〈fk, ψ̃Ok
〉H1(T3)| = N

1
2
k

∣∣〈fk,Πtk ,xk
(
η(N

1
2
k Ψ

−1)ψ(NkΨ
−1)
)〉
H1(T3)

∣∣,

and it is easy to verify that this is equal to

N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
η(N

1
2
k · )ψ(Nk · )

)
(ξ)

∣∣∣∣+ ok(1).

Here, it is important to noti
e that from the 
ompa
t support of η, we have

F
(
η(N

1
2
k Ψ

−1)ψ(NkΨ
−1)
)
(ξ) = FR3

(
η(N

1
2
k · )ψ(Nk · )

)
(ξ)

for all ξ ∈ Z
3
and for su�
iently large k. Using the s
aling properties of the Fourier transform,

we dedu
e that

N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
ψ(Nk · )

)
(ξ)

∣∣∣∣ = N
− 1

2
k |(eitk∆θPNk

fk)(xk)| ≥
2

3
δ.

Hen
e, (3.79) follows if we show that

Sk := N
1
2
k

∣∣∣∣
∑

ξ∈Z3

|ξ|2ei(xk·ξ−tkQ(ξ))F(fk)(ξ)FR3

(
(η(N

1
2
k · )− 1)ψ(Nk · )

)
(ξ)

∣∣∣∣→ 0

as k → ∞. From the Cau
hy�S
hwarz inequality and the s
aling properties of the Fourier

transform, we get that

Sk . N−1
k ‖fk‖L2(T3)

(∑

ξ∈Z3

|ξ|4
[
FR3

(
(η − 1)ψ(N

1
2
k · )

)
(N

− 1
2

k ξ)
]2
) 1

2

.

Observing that ψ ∈ S(R3), an os
illatory phase type argument yields for any N ≥ 1 and any

µ ≥ 1,

∣∣FR3

(
(η − 1)ψ(N

1
2
k · )

)
(ξ)
∣∣ .N,µ

N
N
2
−µ

k

(1 + |ξ|)N , ξ ∈ R
3.

Choosing, for instan
e, N = µ = 4, we obtain Sk → 0 as k → ∞. This �nally proves 
laim

(3.79).

To prove the last part of the 
laim, assume (fk)k is absent from a family of frames (Oα)α, i.e.
for all α and every pro�le (ψ̃Oα

k
)k asso
iated to Oα

,

〈fk, ψ̃Oα
k
〉H1(T3) → 0
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as k → +∞. We argue by 
ontradi
tion: Suppose there is Oβ ∈ (Oα)α su
h that O and Oβ

are equivalent. From Lemma 3.25 (i), we see that

lim sup
k→+∞

‖ψ̃Ok
− S̃ψOβ

k
‖H1(T3) = 0,

where S is the isometry given in Lemma 3.25 (i). In view of (3.79), we obtain

δ

2
≤ lim sup

k→+∞
|〈fk, ψ̃Ok

〉H1(T3)|

≤ lim sup
k→+∞

(
‖fk‖H1(T3)‖ψ̃Ok

− S̃ψOβ
k
‖H1(T3) + |〈fk, S̃ψOβ

k
〉H1(T3)|

)
.

Sin
e (fk)k is absent from all the frames in (Oα)α, there exists a subsequen
e su
h that the

right-hand side tends to zero as k → ∞, whi
h in turn leads to a 
ontradi
tion. Hen
e, O
and (Oα)α are pairwise orthogonal.

Step 2. Let (fk)k be as in the �rst step. Now that step one provides us with a Eu
lidean

frame O, we may sele
t the lo
alization of (fk)k in O as a linear pro�le. For R ≥ 1 there

exists k0 su
h that for any k ≥ k0 we may de�ne

ψRk : R3 → C, ψRk (y) := N
− 1

2
k η3

( y
R

)(
Π−tk,−xkfk

)(
Ψ
( y

Nk

))
.

One easily 
he
ks that

‖ψRk ‖Ḣ1(R3) . ‖fk‖H1(T3)

uniformly in R. Assumption (3.77) allows us to extra
t a subsequen
e that 
onverges weakly

to a fun
tion ψR ∈ Ḣ1(R3) with the property

‖ψR‖Ḣ1(R3) . 1.

Be
ause of this, we may assume that, after taking a subsequen
e, ψR ⇀ ψ ∈ Ḣ1(R3), and by

the uniqueness of the weak limit, we see that for every R ≥ 1,

ψR(x) = η3
( x
R

)
ψ(x).

For some γ ∈ C∞
0 (R3) we 
hoose R ≥ 1 to be large enough su
h that supp γ ⊂ BR/2(0). Then,

we 
al
ulate for k su�
iently large,

〈fk, γ̃Ok
〉H1(T3) = 〈Π−tk ,−xkfk, TNk

γ〉H1(T3) = 〈ψR, γ〉Ḣ1(R3) + ok(1)

= 〈ψ, γ〉Ḣ1(R3) + ok(1).
(3.81)

This in 
ombination with (3.78) and (3.79) implies for k su�
iently large,

〈ψ, γ〉Ḣ1(R3) = 〈fk, γ̃Ok
〉H1(T3) + ok(1) ≥

δ

4
,

and therefore, using a density argument,

‖ψ‖Ḣ1(R3) & δ. (3.82)

Moreover, fk− ψ̃Ok
is absent from the Eu
lidean frame O: For every ϕ ∈ C∞

0 (R3) there exists
R ≥ 1 su
h that for any k su�
iently large we get

〈fk − ψ̃Ok
, ϕ̃Ok

〉H1(T3) = 〈fk, ϕ̃Ok
〉H1(T3) − 〈ψ̃Ok

, ϕ̃Ok
〉H1(T3) = ok(1), (3.83)
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where we used Lemma 3.25 (iii) and (3.81). By density, the statement holds true also for

ϕ ∈ Ḣ1(R3). This implies on the one hand,

‖fk − ψ̃Ok
‖2L2(T3) = ‖fk‖2L2(T3) − 〈fk, ψ̃Ok

〉L2(T3) − 〈ψ̃Ok
, fk − ψ̃Ok

〉L2(T3)

= ‖fk‖2L2(T3) + ok(1),
(3.84)

whi
h we dedu
e from Lemma 3.25 (iii) and (3.83). On the other hand,

‖∇(fk − ψ̃Ok
)‖2L2(T3) = ‖∇fk‖2L2(T3) − 2〈∇fk,∇ψ̃Ok

〉L2(T3) + ‖∇ψ̃Ok
‖L2(T3)

= ‖∇fk‖2L2(T3) − ‖∇R3ψ‖L2(R3) + ok(1).
(3.85)

Step 3. Now, we 
an 
on
lude the statement of the lemma. Let (fk)k be as stated in the

lemma. We pass to a subsequen
e su
h that fk ⇀ g in H1(T3) and de�ne f1k := fk − g. For
α ≥ 1 and as long as Λ((fαk )k) > δ, we do the following: We apply the �rst two steps to get

a Eu
lidean frame Oα
and an asso
iated pro�le (ψ̃αOα

k
)k. Then, we de�ne

fα+1
k := fαk − ψ̃αOα

k
, k ≥ 1.

Note that in Step 1 we proved that Oα
is orthogonal to all previous Eu
lidean frames Oβ

,

β < α, and by indu
tion, all frames Oβ
, β ≤ α, are pairwise orthogonal. Furthermore, Step 2

implies that fα+1
k is absent from Oα

. It is an easy task to show that fα+1
k is absent from Oβ

for every β ≤ α: Let ϕ ∈ Ḣ1(R3) be arbitrary and β < α, then

〈fα+1
k , ϕ̃βOβ

k

〉H1(T3) = 〈fβ+1
k , ϕ̃βOβ

k

〉H1(T3) −
α∑

ν=β+1

〈ψ̃νOν
k
, ϕ̃βOβ

k

〉H1(T3).

This expression tends to zero by the indu
tion hypothesis and Lemma 3.25 (ii). Note also

that, sin
e fk = f1k + g and f1k ⇀ 0 in H1(T3), we have

‖fk‖2L2(T3) = ‖f1k‖2L2(T3) + 2〈f1k , g〉L2(T3) + ‖g‖2L2(T3) = ‖f1k‖2L2(T3) + ‖g‖2L2(T3) + ok(1).

By the same argument, we also obtain

‖∇fk‖2L2(T3) = ‖∇f1k‖2L2(T3) + ‖∇g‖2L2(T3) + ok(1).

Hen
e, applying (3.84) and (3.85) indu
tively, we 
on
lude

‖fk‖2L2(T3) = ‖g‖2L2(T3) + ‖fα+1
k ‖2L2(T3) + ok(1)

and

‖∇fk‖2L2(T3) = ‖∇g‖2L2(T3) +

α∑

β=1

‖∇R3ψβ‖2L2(R3) + ‖∇fα+1
k ‖2L2(T3) + ok(1).

We still have to prove that this method stops after O(δ−2) appli
ations. From Stri
hartz

inequalities, we obtain

sup
N≥1, t∈Ik , x∈T3

N− 1
2 |(eit∆θPNf

α+1
k )(x)| . sup

N≥1
N‖PNfα+1

k ‖L2(T3) . ‖∇fα+1
k ‖L2(T3).

The orthogonality relations, (3.77), and (3.82) imply that there exists some large M > 0 su
h
that for k large enough,

‖∇fα+1
k ‖2L2(T3) =

∣∣∣∣‖∇(fk − g)‖2L2(T3) −
α∑

β=1

‖∇R3ψβ‖2L2(R3)

∣∣∣∣+ ok(1) . |M − αδ2|

We dedu
e that it takes O(δ−2) steps until we have Λ((fα+1
k )) ≤ δ. In this 
ase, we set

α
end

:= α and Rk := fαend+1
k , what �nishes the proof.
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Using the two foregoing lemmas, we are �nally able to 
on
lude the main statement of this

se
tion.

Proof of Proposition 3.27. We apply Lemma 3.29 iteratively with δℓ = 2−ℓ, whi
h provides us

with a sequen
e of Eu
lidean frames (Oα)α and pro�les (ψ̃αOα
k
)k. The �rst two orthogonality

relations in (3.76) are given by Lemma 3.29, too. It only remains to prove the last equality

of (3.76).

By Lemma 3.25 (ii), we have that for αj ≥ 1, j = 1, . . . , 6, su
h that at least two of them are

di�erent, say α1 6= α2,

∫

T3

6∏

j=1

∣∣ψ̃αj

Oαj
k

(x)
∣∣ dx ≤ ‖ψ̃α1

Oα1
k

ψ̃α2

Oα2
k

‖L3(T3)

6∏

j=3

‖ψ̃αj

Oαj
k

‖6L6(T3) ≤ ok(1).

Similarly, for α ≥ 1 we dedu
e

∫

T3

|g(x)||ψ̃αOα
k
(x)|5 dx ≤ ‖ψ̃αOα

k
g‖L3(T3)‖ψ̃αOα

k
‖4L6(T3) ≤ ok(1)

and ∫

T3

|g(x)|5|ψ̃αOα
k
(x)| dx ≤ ‖ψ̃αOα

k
g‖L3(T3)‖g‖4L6(T3) ≤ ok(1)

from Lemma 3.25 (iv). Moreover, we use Lemma 3.28 to see that

‖RJk‖6L6(T3) . ‖RJk‖2H1(T3)

(
sup
N≥1

N− 1
2‖PNRJk‖L∞(T3)

)4
,

and we 
on
lude from (3.75) that

lim sup
J→+∞

lim sup
k→+∞

(∣∣‖fk‖6L6(T3) − ‖fk −RJk‖6L6(T3)

∣∣+ ‖RJk‖6L6(T3)

)
= 0. (3.86)

To see this, note that

|fk|6 − |fk −RJk |6 = |fk|6 −
(
|fk|2 − fkR

J
k − fkR

J
k + |RJk |2

)3

point-wise and thus, ea
h term 
ontains a fa
tor of RJk that 
an be put in the L6(T3)-norm.

From the point-wise estimate,

∣∣∣∣|fk −RJk |6 − |g|6 −
J∑

α=1

|ψ̃αOα
k
|6
∣∣∣∣ .J

J∑

α=1

(
|g||ψ̃αOα

k
|5 + |g|5|ψ̃αOα

k
|
)

+
J∑

α,β=1
α6=β

(
|ψ̃αOα

k
||ψ̃βOβ

k

|5 + |ψ̃αOα
k
|5|ψ̃βOβ

k

|
)
,

and the estimates above, we get by integration and (3.86)

lim sup
J→+∞

lim sup
k→+∞

∣∣∣∣‖fk‖6L6(T3) − ‖g‖6L6(T3) −
J∑

α=1

‖ψ̃αOα
k
‖6L6(T3)

∣∣∣∣ = 0.
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3.6 Proof of the main theorem

In order to prove Theorem 3.1, we pro
eed quite similar as in [IP12b, Se
tion 6℄: We introdu
e

a fun
tional Λ∗, whi
h 
ontrols the global existen
e of solutions and is suitable for the lo
al

and small data global theory. This fun
tional de
omposes the set of initial data into sub-level

sets of the energy and we are looking at the supremum of the fun
tional on these sub-level

sets. If the fun
tional in
reases too qui
kly, then the maximizers form a sequen
e that is

bounded in Z, whi
h leads to a 
ontradi
tion. The main obstru
tion to the boundedness of

the sequen
e 
omes from solutions that 
on
entrate in a point in spa
e-time. These solutions

have been studied in Se
tion 3.4. The prin
ipal idea is indu
tion on energy. Assume that

nonlinear solutions with energy less than Emax are global. That Emax > 0 follows from the

small data global theory. We de
ompose the initial data of the maximizers a

ording to the

pro�le de
omposition in Se
tion 3.5. If one of the terms has energy Emax, then it is easy to

show that the sequen
e of maximizers stays bounded. Otherwise, nonlinear solutions to the

weak limit g and for every pro�le exist globally in time. It is then shown that the sum of these

nonlinear global solutions plus the linear evolution of the remainder RJk is an approximate

solution. We 
on
lude from stability that the sequen
e of maximizers is bounded in Z.

3.6.1 The main argument

We see from Proposition 3.12 (iii) that it su�
es to show that solutions remain bounded in

Z on intervals of length at most one. To prove this, we indu
t on the energy E(u).

We de�ne the quantity

Λ(L, τ) := sup
{
‖u‖2Z(I) : E(u) ≤ L, |I| ≤ τ

}
, L, τ > 0,

where the supremum is taken over all strong solutions u of (3.1) with E(u) ≤ L and all

intervals I of length at most τ . If L or τ in
reases, the supremum is taken over a larger set,

and hen
e, the fun
tion Λ is in
reasing in both its arguments. Obviously,

Λ(L, τ1 + τ2) . sup
{
‖u‖2Z(I1) + ‖u‖2Z(I2) : E(u) ≤ L, |Ij| ≤ τj, j = 1, 2

}

. Λ(L, τ1) + Λ(L, τ2).

The last two properties imply that if we de�ne

Λ∗(L) := lim
τ→0

Λ(L, τ),

then we have for all τ > 0,

Λ(L, τ) < +∞ ⇔ Λ∗(L) < +∞. (3.87)

Finally, we de�ne the maximal energy su
h that Λ∗(L) is �nite:

Emax := sup{L ∈ R+ : Λ∗(L) < +∞}.

Note that our small data global well-posedness result (Lemma 3.14) ensures that Emax > 0.
All in all, we have that Theorem 3.1 is equivalent to the following statement.

Proposition 3.30. We have that Emax = +∞. In parti
ular, every solution of (3.1) is global

in the sense given in Theorem 3.1.
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Proof. We argue by 
ontradi
tion and assume Emax < +∞. By the de�nition of Emax, there

exists a sequen
e (uk)k of strong solutions to (3.1) su
h that

E(uk) → Emax and ‖uk‖Z(Ik) → +∞ (3.88)

for intervals Ik ∋ 0 with |Ik| → 0 as k → +∞. Sin
e (uk(0))k is bounded in H1(T3), there is a
subsequen
e that 
onverges weakly to, say, g ∈ H1(T3). We de
ompose the sequen
e of initial

data (uk(0))k in pro�les using Proposition 3.27. This provides us with a sequen
e of pairwise

orthogonal frames (Oα)α∈N and with a sequen
e of 
orresponding pro�les (ψ̃αOα
k
)k su
h that,

after extra
ting a subsequen
e, for any J ≥ 1,

uk(0) = g +
J∑

α=1

ψ̃αOα
k
+RJk .

To be able to apply Proposition 3.23 later, we have to swit
h to renormalized Eu
lidean

pro�les. We show that every Oα ∈ FE \ F̃E may be repla
ed by some Õα ∈ F̃E . To

a

omplish this, 
onsider Oα = (Nk, tk, xk)k ∈ FE \F̃E . Then, after passing to a subsequen
e,
N2
k |tk| → C for some 0 ≤ C < ∞. We de�ne Õα := (Nk, 0, xk)k ∈ F̃E and observe that this

frame is equivalent to Oα
. Furthermore, Lemma 3.25 (i) yields the existen
e of a pro�le

(S̃αψ
α
Õα

k

)k, k ∈ N, su
h that, up to a subsequen
e,

lim
k→+∞

∥∥S̃αψαÕα
k

− ψ̃αOα
k

∥∥
H1(T3)

= 0,

and hen
e,

lim
k→+∞

‖uk(0)− ũk(0)‖H1(T3) = 0, where ũk(0) := g +

J∑

α=1

S̃αψ
α
Õα

k

+RJk .

Let ũk be the solution to (3.1) on Ik with initial data ũk(0). The existen
e follows from our

stability result in Proposition 3.15 provided k is su�
iently large. Suppose now that ‖ũk‖Z(Ik)
is uniformly bounded, then ‖ũk‖X1

r (Ik)
is uniformly bounded (see Proposition 3.12 (iii)). As

a 
onsequen
e, there exists M > 0 su
h that for all k large enough,

‖ũk‖Z(Ik) + ‖ũk‖L∞(Ik,H1(T3)) ≤M.

We now 
on
lude from stability (see (3.23)) and

‖uk‖Z(Ik) . ‖uk − ũk‖X1
r (Ik)

+ ‖ũk‖Z(Ik)

that ‖uk‖Z(Ik) is uniformly bounded. Hen
e, from now on, we may assume ea
h frame Oα
to

be renormalized.

By the same argument, we may also assume that for every α 6= β either | ln(Nα
k /N

β
k )| → +∞

as k → ∞ or Nα
k = Nβ

k for all k. In the latter 
ase, we may further assume that either tαk = tβk
for all k or (Nα

k )
2|tαk − tβk | → +∞ as k → ∞.

The 
onservation of energy implies E(uk) = E
(
uk(0)

)
in Ik, and the orthogonality relations

(3.76), (3.86) and Lemma 3.25 (iii) yield that, after passing to a subsequen
e,

lim
J→+∞

( J∑

α=1

E(α) + lim
k→+∞

E(RJk )

)
≤ Emax − E(g), (3.89)
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where

E(α) := lim
k→+∞

E(ψ̃αOα
k
) ∈ (0, Emax].

We use the Bernstein's inequality and the Stri
hartz estimates given in Lemma 2.10 to 
om-

pute for the remainder RJk , p ∈ {p0, p1} and q = p0+16/3
2 ,

∑

N≥1

N5− p
2 ‖PNeit∆θRJk‖pLp

t,x

≤
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q ∑

N≥1

(
N

5
q
− 1

2 ‖PNeit∆θRJk‖Lq
t,x

)q

.
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q ∑

N≥1

N q‖PNRJk‖qL2(T3)

.
(
sup
N≥1

N− 1
2 ‖PNeit∆θRJk‖L∞

t,x

)p−q
‖RJk‖qH1(T3)

,

where Lrt,x := Lrt,x(Ik × T
3). In view of (3.75) and (3.76), it follows

lim sup
J→+∞

lim sup
k→+∞

‖eit∆θRJk‖Z(Ik) = 0. (3.90)

We 
onsider three 
ases. The �rst two 
ases deal with the situations, where there is a term

in the pro�le de
omposition with energy Emax. On
e we dealt with them, we may apply the

indu
tion hypothesis in the remaining third 
ase.

Case 1. Assume (uk(0))k 
onverges strongly in H
1(T3) to its limit g ∈ H1(T3), whi
h satis�es

E(g) = Emax. We have that

‖eit∆θuk(0)‖Z(Ik) ≤ ‖eit∆θ (uk(0)− g)‖Z(Ik) + ‖eit∆θg‖Z(Ik),

and we dedu
e from Corollary 3.5 (i) that

‖eit∆θ (uk(0) − g)‖Z(Ik) . ‖uk(0)− g‖H1(T3).

Therefore there exists some small η > 0 su
h that for k large enough,

‖eit∆θuk(0)‖Z(Ik) ≤ ‖eit∆θg‖Z(−η,η) + ok(1) ≤ δ0,

where δ0 is the δ0 given by the lo
al well-posedness result in Proposition 3.12 (i). This

proposition yields for k su�
iently large,

‖uk‖Z(Ik) . ‖uk(t)− eit∆θuk(0)‖X1
r (Ik)

+ ‖eit∆θuk(0)‖Z(Ik) .Emax δ0.

Consequently, ‖uk‖Z(Ik) is bounded, whi
h 
ontradi
ts (3.88).

Case 2a. Assume g = 0 and there are no pro�les. Then, by (3.90), we may 
hoose J su�
iently

large su
h that we get for k large enough,

‖eit∆θuk(0)‖Z(Ik) = ‖eit∆θRJk‖Z(Ik) ≤ δ0,

where δ0 is as in the �rst 
ase. Applying Proposition 3.12 (i), this 
ontradi
ts (3.88) as

dis
ussed in Case 1.
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Case 2b. Assume g = 0 and there is only one Eu
lidean pro�le (ψ̃Ok
)k su
h that

lim sup
k→+∞

‖uk(0)− ψ̃Ok
‖H1(T3) = 0,

where O is a renormalized Eu
lidean frame. Let Uk be the solution of (3.1) with initial data

Uk(0) = ψ̃Ok
. By Proposition 3.23 (i), we see that there is τ > 0 su
h that for k large enough,

‖Uk‖X1
r (Ik)

≤ ‖Uk‖X1
r (−τ,τ) .E

R3(ψ)
1.

Hen
e, by the embeddings Proposition 3.3 (i) and Corollary 3.5 (iii),

‖Uk‖Z(−τ,τ) + ‖Uk‖L∞((−τ,τ),H1(T3)) .E
R3(ψ)

1,

and the assumption implies for a subsequen
e,

lim
k→+∞

‖uk(0) − Uk(0)‖H1(T3) → 0.

From stability, see Proposition 3.15, we get for large k that

‖uk‖Z(Ik) . ‖uk‖X1
r (Ik)

.E
R3(ψ)

1.

This is a 
ontradi
tion to (3.88).

Case 3. In the remaining 
ase, we assume, up to passing to subsequen
es,

lim
k→∞

‖uk(0)− g‖H1(T3) > 0,

and furthermore, if g = 0, then we assume that there exists a pro�le (ψ̃βOβ
k

)k with the property

that limk→∞ ‖uk(0) − ψ̃βOβ
k

‖H1(T3) > 0. We 
laim that in ea
h 
ase E(g) < Emax and for any

α ∈ N, E(α) < Emax.

Indeed, if g 6= 0, then E(g) > 0, whi
h already implies E(α) < Emax by (3.89). It remains to

show that E(g) < Emax, whi
h, in view of (3.89), follows from

lim
J→+∞

( J∑

α=1

E(α) + lim
k→+∞

E(RJk )

)
> 0. (3.91)

This in turn is a 
onsequen
e of the fa
t that (uk(0))k does not 
onverge strongly in H1(T3)
to g: There is δ > 0 su
h that we have

δ < lim
k→∞

‖uk(0)− g‖H1(T3) ≤ lim
k→∞

( J∑

α=1

‖ψ̃αOα
k
‖H1(T3) + ‖RJk‖H1(T3)

)

uniformly in J , and 
onsequently, there exists either a pro�le with positive energy or

lim
J→+∞

lim
k→+∞

E(RJk ) > 0. (3.92)

Hen
e, (3.91) is shown provided g 6= 0. If on the 
ontrary g = 0, then we see from

limk→∞ ‖uk(0) − ψ̃βOβ
k

‖H1(T3) > 0 by the same argument that there is either another non-

trivial pro�le with positive energy or (3.92) holds true. Hen
e, (3.89) yields E(α) < Emax.

By relabeling the pro�les, we 
an assume that for all α ∈ N, E(α) ≤ E(1) < Emax − η and

E(g) < Emax−η for some η > 0. For any α ∈ N let Uαk be the maximal strong solution of (3.1)
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with initial data Uαk (0) = ψ̃αOα
k
. Uαk 
an be understood as a nonlinear pro�le 
orresponding

to the linear pro�le ψ̃αOα
k
. Analogously, let W be the maximal strong solution to (3.1) with

initial data g.

We apply the indu
tion hypothesis: From the de�nition of Emax and (3.87), we see that all

nonlinear pro�les and W are global and up to a subsequen
e, satisfy

‖W‖Z(I) + lim
k→+∞

‖Uαk ‖Z(I) . Λ
(
Emax −

η

2
, 1
) 1

2
. 1, I :=

(
−1

2
,
1

2

)
.

From now on, all impli
it 
onstants may depend on Λ
(
Emax − η

2 , 1
)
. Sin
e W is a (global)

strong solution in X1
r , we know that

‖W‖L∞(I,H1(T3)) . 1.

Using Lemma 3.25 (iii) and limk→+∞E(ψ̃αOα
k
) = E(α) < Emax, we also have that

‖Uαk ‖L∞(I,H1(T3)) . E(ψ̃αOα
k
) + E(ψ̃αOα

k

) 1
3 .Emax 1

for every α ∈ N and k > k0(α) large enough. Hen
e, stability implies that for every α ∈ N

and k > k0(α) large enough,

‖W‖X1
r (I)

+ ‖Uαk ‖X1
r (I)

. 1. (3.93)

For J, k ∈ N we de�ne

UJprof,k :=W +

J∑

α=1

Uαk .

First, we prove that for all k ≥ k0(J) su�
iently large,

‖UJprof,k‖X1
r (I)

.Emax 1 (3.94)

uniformly in J . Thanks to (3.89), we know that for every 0 < δ < 1 there are �nitely many

pro�les (ψ̃αOα
k
)k su
h that E(α) > δ. After relabeling, we may assume that for all α ≥ A it

holds E(α) ≤ δ. We also have ‖Uαk (0)‖H1(T3) . E(α)
1
2 . δ

1
2
for any α ≥ A and k large

enough, as we may observe from

‖Uαk (0)‖2H1(T3) . ‖Uαk (0)‖2L6(T3) + ‖∇Uαk (0)‖2L2(T3) . ‖∇Uαk (0)‖2L2(T3) . E
(
Uαk (0)

)
.

Now, we 
hoose δ small enough su
h that the small data global well-posedness result in

Lemma 3.14 
an be applied. Using (3.93) and Lemma 3.14,

‖UJprof,k‖X1
r (I)

≤ ‖W‖X1
r (I)

+
A−1∑

α=1

‖Uαk ‖X1
r (I)

+
J∑

α=A

‖Uαk (t)− eit∆θUαk (0)‖X1
r (I)

+

∥∥∥∥e
it∆θ

J∑

α=A

Uαk (0)

∥∥∥∥
X1

r (I)

. 1 +A+
J∑

α=A

E(α) +

∥∥∥∥
J∑

α=A

Uαk (0)

∥∥∥∥
H1(T3)

.
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From (3.89), we know that

∑J
α=A E(α) ≤ Emax uniformly in J . The boundedness of the last

term is implied by Lemma 3.25 (ii) and (3.89):

∥∥∥∥
J∑

α=A

Uαk (0)

∥∥∥∥
2

H1(T3)

=

J∑

α=A

‖Uαk (0)‖2H1(T3) + ok(1) .

J∑

α=A

E(α) + ok(1) . Emax

for k large enough. Hen
e, we proved ‖UJprof,k‖X1
r (I)

. 1 for large k.

De�ne for J, k ∈ N,

UJapp,k(t) := UJprof,k(t) + eit∆θRJk =W (t) +

J∑

α=1

Uαk (t) + eit∆θRJk .

We 
laim for any J ≥ J0 and any k ≥ k0(J) su�
iently large that UJapp,k is an approximate

solution of (3.1) on Ik. We note from (3.89) that for su�
iently large k and any J the H1(T3)-
norm of RJk is bounded by C(Emax) uniformly in k and J . From this and (3.94), it follows

that there exists C0 > 0 su
h that

‖UJapp,k‖Z(I) + ‖UJapp,k‖L∞(I,H1(T3)) ≤ C‖UJapp,k‖X1
r (I)

≤ C0.

Now, we 
hoose ε1 = ε1(C0) ≤ 1 to be the 
onstant of our stability result in Proposition 3.15.

Writing F (z) := z|z|4, we set

eJk := (i∂t +∆θ)U
J
app,k − F (UJapp,k) = F (W ) +

J∑

α=1

F (Uαk )− F (UJapp,k)

and 
ompute

eJk (t) =
(
F
(
UJprof,k(t)

)
−F
(
UJprof,k(t)+e

it∆θRJk
))

+

(
F
(
W (t)

)
+

J∑

α=1

F
(
Uαk (t)

)
−F
(
UJprof,k(t)

))
.

Applying Lemma 3.31, we get

lim sup
k→+∞

sup
t0∈Ik

‖It0(eJk )‖X1
r (Ik)

≤ ε1
2

for J ≥ J0(ε1). Hen
e, by stability, we obtain that

‖uk‖X1
r (Ik)

. 1.

Note that this 
ontradi
ts (3.88), whi
h �nishes the proof.

Thus, Proposition 3.30 and Theorem 3.1 are proved on
e we prove the following lemma.

Lemma 3.31. With the notation in Case 3 of the proof of Proposition 3.30, we have that

lim sup
k→+∞

sup
t0∈Ik

∥∥∥∥It0
(
F (UJprof,k)− F (W )−

J∑

α=1

F (Uαk )

)∥∥∥∥
X1

r (Ik)

= 0, (3.95)

for �xed J ∈ N, and

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥∥It0
(
F
(
UJprof,k(t) + eit∆θRJk

)
− F

(
UJprof,k(t)

))∥∥∥
X1

r (Ik)
= 0. (3.96)
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3.6.2 Proof of Lemma 3.31

Before we turn to the proof of Lemma 3.31, we provide two more lemmas 
on
erning the

intera
tion of a high-frequen
y linear solution with a low-frequen
y pro�le on the one hand

and the intera
tion of two pro�les 
orresponding to two orthogonal frames on the other hand.

The general strategy is the same as for the standard tours in [IP12b, Se
tion 7℄. Due to the

modi�ed Lapla
e�Beltrami operator∆θ, the arguments in Lemma 3.32 are adapted, though.

We �x the following notation: For a given ve
tor p ∈ N
n
we denote by Dp1,...,pn(a1, . . . , an) a

|p|-linear expression whi
h is a produ
t of p1 terms that are either equal to a1 or its 
omplex


onjugate a1 and similarly for pj , aj , 2 ≤ j ≤ n.

Intera
tion of a high-frequen
y linear solution with a low-frequen
y pro�le

The following lemma shows that a high-frequen
y linear solution does not intera
t signi�
antly

with a low-frequen
y pro�le.

Lemma 3.32. Assume that B,N ≥ 2 are dyadi
 numbers and that ω : (−1
2 ,

1
2 ) × T

3 → C is

a fun
tion satisfying

|ω| ≤ N
1
21{|x|≤N−1, |t|≤N−2} and |∇ω| ≤ N

3
21{|x|≤N−1, |t|≤N−2}.

Then, for any f ∈ H1(T3),

∥∥D4,1

(
ω(t), eit∆θP>BNf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

. (B− 1
200 +N− 1

200 )‖f‖H1(T3).

Proof. For brevity, we assume that f = P>BNf . By s
aling, and we may also assume

‖f‖H1(T3) = 1. Using the produ
t rule and Hölder's inequality, we see that

∥∥D4,1

(
ω(t), eit∆θf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

.
∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1
tL

2
x
+
∥∥|∇ω|+ |ω|

∥∥
L4
tL

∞
x
‖ω‖3L4

tL
∞
x
‖eit∆θf‖L∞

t L2
x
.

Obviously, from f = P>BNf and ‖f‖H1(T3) = 1, we obtain

‖eit∆θf‖L∞
t L2

x
= ‖f‖L2(T3) . (BN)−1‖∇f‖L2(T3) . (BN)−1.

Furthermore,

‖ω‖L4
tL

∞
x

≤ N
1
2 ‖1{|x|≤N−1, |t|≤N−2}‖L4

tL
∞
x

. 1,

‖∇ω‖L4
tL

∞
x

≤ N
3
2 ‖1{|x|≤N−1, |t|≤N−2}‖L4

tL
∞
x

. N.

All in all, we get

∥∥D4,1

(
ω(t), eit∆θf

)∥∥
L1((− 1

2
, 1
2
),H1(T3))

.
∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1((− 1

2
, 1
2
),L2(T3))

+B−1.

Set

W : R× T
3 → R, W (t, x) := N4 η1(N2t) η3

(
NΨ−1(x)

)
,

and note that |ω|4 ≤W
1
2
. Hen
e, we estimate

∥∥D4,1

(
ω(t),∇eit∆θf

)∥∥
L1((− 1

2
, 1
2
),L2(T3))

≤ ‖W (t)
1
2∇eit∆θf‖L1((− 1

2
, 1
2
),L2(T3))

. N−1‖W (t)
1
2∇eit∆θf‖L2((− 1

2
, 1
2
)×T3)
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using Hölder's inequality. The latter expression 
an be rewritten as

‖W (t)
1
2∇eit∆θf‖2

L2((− 1
2
, 1
2
)×T3)

=

3∑

j=1

∫ 1
2

− 1
2

〈
eit∆θ∂jf,W (t)eit∆θ∂jf

〉
L2(T3)

dt

=

3∑

j=1

〈
∂jf,

[∫ 1
2

− 1
2

e−it∆θW (t)eit∆θ dt

]
∂jf

〉

L2(T3)

.

The theorem is proved if we show

‖K‖L2(T3)→L2(T3) . N2
(
B− 1

100 +N− 1
100
)
, (3.97)

where K : L2(T3) → L2(T3),

K(f)(x) := P>BN

∫

R

e−it∆θW (t, x)P>BNe
it∆θf(x) dt.

To that purpose, we 
al
ulate the Fourier 
oe�
ients of K: Let p, q ∈ Z
3
, then

cp,q := 〈eip·x,K(eiq·x)(x)〉L2
x(T

3)

=

∫

R

〈
P>BNe

it∆θeip·x,W (t, x)P>BN e
it∆θeiq·x

〉
L2
x(T

3)
dt.

One immediately sees

F(P>BNe
it∆θeip·x)(p) = (1− η3)

( p

BN

)
e−itQ(p)

and F(P>BN e
it∆θeip·x)(ξ) = 0 for any ξ ∈ Z

3 \ {p}. Hen
e, we 
ompute

cp,q = (1− η3)
( p

BN

)
(1− η3)

( q

BN

) ∫

R

eit(Q(q)−Q(p))F
(
W (t)

)
(p − q) dt

= C(1− η3)
( p

BN

)
(1− η3)

( q

BN

)
(Ft,xW )

(
Q(p)−Q(q), p − q

)
.

From the de�nition of W and s
aling in t and x, we get the estimate

|cp,q| . N−1

(
1 +

|Q(p)−Q(q)|
N2

)−10(
1 +

|p− q|
N

)−10

1[BN,∞)(|p|)1[BN,∞)(|q|). (3.98)

Using S
hur's lemma and Young's inequality for produ
ts, we see that

‖K‖L2(T3)→L2(T3) . sup
p∈Z3

∑

q∈Z3

|cp,q|+ sup
q∈Z3

∑

p∈Z3

|cp,q|.

In view of (3.98), it su�
es to prove

sup
|p|≥BN

∑

v∈Z3

(
1 +

|Q(p)−Q(p+ v)|
N2

)−10(
1 +

|v|
N

)−10

. N3
(
B− 1

100 +N− 1
100

)
(3.99)

to obtain (3.97).

De�ne θmax := max{θ1, θ2, θ3} and Θ := diag(θ1, θ2, θ3), then we split the sum over v ∈ Z
3

into three parts:

S1 + S2 + S3 :=
∑

|v|≥N min{N,B}1/100
+

∑

|v|<N min{N,B}1/100 ,
|p·Θv|≥θmaxN2 min{N,B}1/10

+
∑

|v|<N min{N,B}1/100 ,
|p·Θv|<θmaxN2 min{N,B}1/10

.
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Thus, it su�
es the show (3.99), where we repla
e the sum by any of the sums above. One

easily veri�es that S1 . N3 min{N,B}−1/100
be
ause

S1 ≤
∑

|v|≥N min{N,B} 1
100

(
1 +

|v|
N

)−10

≤ N10
∑

|v|≥N min{N,B} 1
100

|v|−10

. N10
(
N min{N,B} 1

100

)−7
.

In order to treat S2, we observe that

Q(v) ≤ θmax|v|2 < θmaxN
2 min{N,B} 1

50 < θmaxN
2 min{N,B} 1

10 ,

and thus, (
1 +

|Q(p)−Q(p+ v)|
N2

)−1

≤ N2

2|p ·Θv| −Q(v)
≤ N2

|p ·Θv| .

We may bound S2 by

N20
∑

|v|<N min{N,B}1/100
|p·Θv|≥θmaxN2 min{N,B}1/10

|p ·Θv|−10 ≤ min{N,B}−1
∑

|v|<N min{N,B}1/100
1

. N3 min{N,B}− 1
100 .

Finally, it remains to bound S3. For that purpose, we set pp := p
|p| . Sin
e |p| ≥ BN , it su�
es

to prove that

∣∣{v ∈ Z
3 : |v| < N min{N,B} 1

100 , |pp ·Θv| < θmaxN min{N,B}− 9
10
}∣∣ . N3min{N,B}− 1

100 .

This point-set is 
overed by a re
tangle in R
3
with two sides of length N min{N,B} 1

100
and

one side of length .Θ N min{N,B}− 9
10
. Therefore, the point-set is bounded by

(N min{N,B} 1
100 )2N min{N,B}− 9

10 . N3 min{N,B}− 1
100 ,

whi
h proves (3.99).

Intera
tion of two pro�les 
orresponding to two orthogonal frames

In the proof of Lemma 3.31, we also rely on the following result, whi
h shows that two pro�les


orresponding to two orthogonal frames do intera
t very little with ea
h other.

Lemma 3.33. Assume that Oα = (Nα
k , t

α
k , x

α
k )k ∈ FE, α = 1, 2, are two orthogonal frames,

I ⊆ (−1
2 ,

1
2) is a �xed open interval with 0 ∈ I, and T1, T2, R ∈ [1,∞) are �xed numbers

satisfying R ≥ T1 + T2. For α = 1, 2 and k large enough let

S
α
k :=

{
(t, x) ∈ I × T

3 : |t− tαk | < Tα(N
α
k )

−2, |x− xαk | ≤ R(Nα
k )

−1
}
.

Assume that (ω1
k, ω

2
k, fk, gk, hk)k is a sequen
e of quintuples of fun
tions in X1

r (I) with the

properties that ω1
k, ω

2
k ∈ C1(I, C4(T3)) and

|∂νxωαk |+ (Nα
k )

−2
1Sα

k
|∂t∂νxωαk | ≤ R(Nα

k )
1
2
+|ν|

1Sα
k
, |ν| ≤ 4, α = 1, 2,

‖fk‖X1
r (I)

≤ 1, ‖gk‖X1
r (I)

≤ 1, ‖hk‖X1
r (I)

≤ 1
(3.100)

for any k su�
iently large. Then,

lim
k→+∞

sup
t0∈I

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
= 0.
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Proof. We �x some small 0 < ε < 1. If

N1
k

N2
k

+
N2
k

N1
k

≤ 4ε−2

for any k su�
iently large, then the orthogonality of the frames implies S
1
k∩S2

k = ∅ provided k
is large enough. Indeed, sin
e O1

and O2
are orthogonal, we know that either (N1

k )
2|t1k−t2k| →

+∞ or N1
k |x1k − x2k| → +∞. Suppose that (N1

k )
2|t1k − t2k| → +∞. Then, we may 
on
lude for

t ∈ S
1
k ∩S

2
k that

|t1k − t2k| ≤ |t− t1k|+ |t− t2k| ≤ T1(N
1
k )

−2 + T2(N
2
k )

−2.

This implies

(N1
k )

2|t1k − t2k| ≤ T1 + T2

(N1
k

N2
k

)2
<∞,

whi
h 
ontradi
ts our assumption. The same argument leads to a 
ontradi
tion if instead

N1
k |x1k − x2k| → +∞. From (3.100), we see that for k su�
iently large,

ω1
kω

2
kfkgkhk ≡ 0.

By symmetry, it su�
es to 
onsider the 
ase

N1
k

N2
k

> 2ε−2
(3.101)

for any su�
iently large k. We de�ne ω̃2
k(t) := ω2

k(t)1(t1k−T1(N1
k )

−2,t1k+T1(N
1
k )

−2)(t), and we note

that ω1
kω

2
k = ω1

kω̃
2
k. Furthermore, we 
laim that for k su�
iently large

‖ω̃2
k‖X1

r (I)
.R 1, ‖ω̃2

k‖Z(I) .R ε
1
50 , and ‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
.R ε. (3.102)

The �rst bound may be 
omputed using the estimate (3.6): If we de�ne

S
α
k,t := {x ∈ T

3 : (t, x) ∈ S
α
k}, t ∈ I,

then we dedu
e from (3.6) and (3.100) that

‖ω̃2
k‖X1

r (I)
. ‖ω̃2

k(0)‖H1(S2
k,0)

+

(∑

N≥1

‖PN (i∂t +∆θ)ω̃
2
k‖2L1

t (I,H
1(T3))

)1
2

.R 1 + (N2
k )

−2 sup
t∈I

(
‖∂tω̃2

k(t)‖H1(Sα
k,t)

+ ‖∆θω̃
2
k(t)‖H1(Sα

k,t)

)

.R 1.

The same argument 
ombined with the Bernstein inequality,

‖P>ε−1N2
k
f‖2Hs(T3) =

∑

N≥1

N2s‖PNP>ε−1N2
k
f‖L2 . ε2(N2

k )
−2
∑

N≥1

N2(s+1)‖PNP>ε−1N2
k
f‖L2

. ε2(N2
k )

−2‖P>ε−1N2
k
f‖2Hs+1(T3)

(3.103)

for f ∈ Hs+1(T3), yields the third inequality of (3.102). To gain the smallness of ω̃2
k in the

Z(I)-norm, we �rst observe from

‖ω̃2
k‖Z(I) . ‖P≤ε−1N2

k
ω̃2
k‖Z(I) + ‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
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that we only have to 
onsider P≤ε−1N2
k
ω̃2
k. Let (p, q) ∈ P. Applying Bernstein's inequality

with respe
t to x yields

∑

N≤2ε−1N2
k

N ( 2
p
+ 3

q
− 1

2
)p‖PN ω̃2

k‖pLp(I,Lq(T3))
.R (N1

k )
−2 sup

t∈I

∑

N≤2ε−1N2
k

N (1+ 2
p
)p‖PN ω̃2

k(t)‖pL2(T3)
.

Estimating N (1+ 2
p
)p ≤ (2ε−1N2

k )
2Np

and using ℓ2 ⊂ ℓp, we may bound

∑

N≤2ε−1N2
k

N
( 2
p
+ 3

q
− 1

2
)p‖PN ω̃2

k‖pLp(I,Lq(T3))
.R

(N2
k

N1
k

)2
ε−2 sup

t∈I
‖ω̃2

k(t)‖pH1(Sα
k,t)

.R ε
2.

This immediately implies

‖ω̃2
k‖Z(I) .R ε

1
50 .

We also de
ompose ω1
k in low-frequen
y and high-frequen
y terms and get for su�
iently large

k:
ω1
k = P≤εN1

k
ω1
k + P>εN1

k
ω1
k,

‖ω1
k‖X1

r (I)
.R and ‖P≤εN1

k
ω1
k‖X1

r (I)
.R ε.

(3.104)

The �rst bound follows as above, and the se
ond estimate follows from

‖P≤εN1
k
f‖H1(T3) . εN1

k‖P≤εN1
k
f‖L2(T3), f ∈ H1(T3).

Indeed, for su�
iently large k (depending on ε),

‖P≤εN1
k
ω1
k(0)‖H1(T3) . εN1

k‖P≤εN1
k
ω1
k(0)‖L2(S1

k,0)
.R ε.

The two remaining terms, ‖∂tP≤εN1
k
ω1
k(0)‖H1(S1

k,0)
and ‖∆θP≤εN1

k
ω1
k(0)‖H1(S1

k,0)
, 
an be esti-

mated along the same lines.

Now, an appli
ation of the triangle inequality yields

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
.
∥∥It0

(
(P≤εN1

k
ω1
k)ω̃

2
kfkgkhk

)∥∥
X1

r (I)

+
∥∥It0

(
(P>εN1

k
ω1
k)(P>ε−1N2

k
ω̃2
k)fkgkhk

)∥∥
X1

r (I)

+
∥∥It0

(
(P>εN1

k
ω1
k)(P≤ε−1N2

k
ω̃2
k)fkgkhk

)∥∥
X1

r (I)

=: I1 + I2 + I3

for every t0 ∈ I. Applying Lemma 3.11, (3.102), and (3.104), we may bound the �rst term

for k su�
iently large as follows

I1 . ‖P≤εN1
k
ω1
k‖X1

r (I)
‖ω̃2

k‖X1
r (I)

‖fk‖X1
r (I)

‖gk‖X1
r (I)

‖hk‖X1
r (I)

.R ε.

I2 
an be bounded similarly for large k:

I2 . ‖ω1
k‖X1

r (I)
‖P>ε−1N2

k
ω̃2
k‖X1

r (I)
‖fk‖X1

r (I)
‖gk‖X1

r (I)
‖hk‖X1

r (I)
.R ε.

To estimate I3, we have to use the more pre
ise estimate (3.12) instead of Lemma 3.11.

From the relation of N1
k and N2

k (see (3.101)), we get that εN1
k > 2ε−1N2

k . Thus, we have

P≤ε−1N2
k
= P≤εN1

k
P≤ε−1N2

k
. We de
ompose the produ
t as in (3.11), and remark that

∑

N2≥2

PN2(P≤ε−1N2
k
ω̃2
k)P<N2(P>εN1

k
ω1
k)P≤N2fkP≤N2gkP≤N2hk = 0.
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This expression 
orresponds to the �rst summand in the se
ond term of (3.11) if we identify

ũ1 = P>εN1
k
ω1
k, ũ2 = P≤ε−1N2

k
ω̃2
k, ũ3 = fk, ũ4 = gk, and ũ5 = hk. We 
on
lude from (3.12)

that the fa
tor P≤ε−1N2
k
ω̃2
k 
an be estimated in Z ′(I). Hen
e, I3 .R ε

1
100

. All in all, we proved

that

sup
t0∈I

‖It0(ω1
kω

2
kfkgkhk)‖X1

r (I)
.R ε

1
100

for all ε > 0 and k large enough, whi
h implies the desired result.

Con
lusion

We �nally turn to the proof of Lemma 3.31.

Proof of Lemma 3.31. In this proof, we use the su

essive de
omposition of a nonlinear pro�le

Uγk several times.

Claim. For all θ > 0 there is some T 0
θ,γ = T (ψγ , θ) su�
iently large su
h that for every

Tθ,γ ≥ T 0
θ,γ there is Rθ,γ su�
iently large su
h that for any k large enough (depending on

Rθ,γ) we may de
ompose, up to a subsequen
e,

1Iθ,γU
γ
k = ωθ,γ,−∞

k + ωθ,γk + ωθ,γ,+∞
k + ρθ,γk + ρθ,γ,−∞

k + ρθ,γ,+∞
k , (3.105)

where Iθ,γ = (−T−1
θ,γ , T

−1
θ,γ ) and every fun
tion is in X1

r (Iθ,γ). Furthermore, the following

estimates hold

‖ωθ,γ,±∞
k ‖Z′(Iθ,γ) + ‖ρθ,γk ‖X1

r (Iθ,γ)
+ ‖ρθ,γ,±∞

k ‖X1
r (Iθ,γ)

≤ θ,

‖ωθ,γ,±∞
k ‖X1

r (Iθ,γ)
+ ‖ωθ,γk ‖X1

r (Iθ,γ)
. 1,

|∂νxωθ,γk |+ (Nγ
k )

−2
1
S

θ,γ
k

|∂t∂νxωθ,γk | ≤ Rθ,γ(N
γ
k )

1
2
+|ν|

1
S

θ,γ
k
,

(3.106)

for |ν| ≤ 6 and

S
θ,γ
k :=

{
(t, x) ∈ Iθ,γ × T

3 : −Tθ,γ(Nγ
k )

−2 ≤ t− tγk < Tθ,γ(N
γ
k )

−2, |x− xγk| ≤ Rθ,γ(N
γ
k )

−1
}
.

Moreover, we have that

ωθ,γ,±∞
k (t) = 1{±(t−tγk)≥Tθ,γ (N

γ
k )

−2}∩Iθ,γ (t) · e
i(t−tγk )∆θπxγk

(TNγ
k
φθ,γ,±∞),

where φθ,γ,±∞ = P≤Rθ,γ
φθ,γ,±∞ ∈ S(R3) and

‖φθ,γ,±∞‖Ḣ1(R3) . 1, ‖φθ,γ,±∞‖L2(R3) . Rθ,γ . (3.107)

Here, ωθ,γk des
ribes the solution in the Eu
lidean window, whi
h, by Proposition 3.23, 
an

be expressed in terms of a solution to the nonlinear S
hrödinger equation on R
3
. The terms

ωθ,γ,±∞
k 
hara
terize the behavior of the solution beyond the Eu
lidean window, whi
h 
an be

written in terms of the s
attering data of a solution to the nonlinear S
hrödinger equation on

R
3
as proved in Proposition 3.23. Terms that have small X1

r -norm are 
olle
ted in the error

terms ρθ,γk and ρθ,γ,±∞
k .

Now, we turn to the proof of the 
laim. Proposition 3.23 (ii) states that for all θ > 0 there

is a T 0
θ,γ = T (ψγ , θ) su�
iently large su
h that for every Tθ,γ ≥ T 0

θ,γ there is Rθ,γ su�
iently
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large su
h that for any k large enough (depending on Rθ,γ) we may de
ompose, after passing

to a subsequen
e,

Uγk (t)− ωθ,γk (t) = ρθ,γk (t), t ∈ Jθ,γk := {t ∈ Iθ,γ : −Tθ,γ(Nγ
k )

−2 ≤ t− tγk < Tθ,γ(N
γ
k )

−2}

where ωθ,γk , ρθ,γk ∈ C(Jθ,γk ,H1(T3)) ∩X1
r (J

θ,γ
k ) and on the remaining time interval

Uγk (t)− ωθ,γ,±∞
k (t) = ρθ,γ,±∞

k (t), t ∈ Jθ,γ,±∞
k := {t ∈ Iθ,γ \ Jθ,γk : ±t > 0}

where ωθ,γ,±∞
k , ρθ,γ,±∞

k ∈ C(Jθ,γ,±∞
k ,H1(T3)) ∩ X1

r (J
θ,γ,±∞
k ). Moreover, Proposition 3.23

implies ‖ρθ,γk ‖
X1

r (J
θ,γ
k )

≤ θ and ‖ρθ,γ,±∞
k ‖

X1
r (J

θ,γ,±∞
k )

≤ θ. In the de
omposition above, ωθ,γk
plays the role of ũk in (3.49), and from (3.51), we have

ωθ,γ,±∞
k (t) = πxγk

ei(t−t
γ
k)∆θ(TNγ

k
φθ,γ,±∞), t ∈ Jθ,γ,±∞

k .

From the uniform bound on Uγk in X1
r (−1

2 ,
1
2), see (3.93), we dedu
e

‖ωθ,γ,±∞
k ‖

X1
r (J

θ,γ,±∞
k )

+ ‖ωθ,γk ‖
X1

r (J
θ,γ
k )

. 1

uniformly in γ and k.

The last bound in (3.106) is immediate from (3.50) and the su�
ient smoothness (even in

time) of ωθ,γk is implied by Proposition 3.23 (ii) if s ≥ 1 is 
hosen large enough.

We show that it su�
es to assume φθ,γ,±∞ ∈ S(R3). Indeed, for any given ε > 0 we may


hoose φ̃θ,γ,±∞ ∈ S(R3) su
h that ‖φθ,γ,±∞ − φ̃θ,γ,±∞‖Ḣ1(R3) ≤ ε. De�ne

ω̃θ,γ,±∞
k (t) := πxγk

ei(t−t
γ
k )∆θ(TNγ

k
φ̃θ,γ,±∞), t ∈ Jθ,γ,±∞

k ,

then we 
ompute

‖ωθ,γ,±∞
k − ω̃θ,γ,±∞

k ‖
X1

r (J
θ,γ,±∞
k )

. ‖TNγ
k
φθ,γ,±∞ − TNγ

k
φ̃θ,γ,±∞‖H1(T3)

. ‖φθ,γ,±∞ − φ̃θ,γ,±∞‖Ḣ1(R3) . ε.

Hen
e, by putting ωθ,γ,±∞
k − ω̃θ,γ,±∞

k in the error term ρθ,γ,±∞
k , we see that we may assume

φθ,γ,±∞ ∈ S(R3).

Using Corollary 3.17, we obtain the uniform bound on φθ,γ,±∞
in Ḣ1(R3) for su�
iently large

k:
‖φθ,γ,±∞‖Ḣ1(R3) . ‖TNγ

k
φθ,γ,±∞‖H1(T3) . ‖ωθ,γ,±∞

k ‖
X1

r (J
θ,γ,±∞
k )

. 1.

The smallness of the Z ′
-norm follows from ‖ωθ,γ,±∞

k ‖
Z(Jθ,γ,±∞

k )
. θ2, whi
h is a dire
t 
on-

sequen
e of the extin
tion lemma, 
f. Lemma 3.21 (i), after possibly in
reasing T 0
θ,γ . For

possibly larger Rθ,γ , we have

‖πxγke
i(t−tγk)∆θ (TNγ

k
P>Rθ,γ

φθ,γ,±∞)‖
X1

r (J
θ,γ,±∞
k )

. ‖P>Rθ,γ
φθ,γ,±∞‖Ḣ1(R3) + ok(1) . θ

for su�
iently large k. We add this to the error term ρθ,γ,±∞
k and assume φθ,γ,±∞ =

P≤Rθ,γ
φθ,γ,±∞

. As a 
onsequen
e, we 
an 
on
lude the bound on the L2(R3)-norm from

Hölder's inequality now:

‖P≤Rθ,γ
φθ,γ,±∞‖L2(R3) . Rθ,γ‖FR3(φθ,γ,±∞)‖L6(R3) . Rθ,γ‖φθ,γ,±∞‖Ḣ1(R3) . Rθ,γ.
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We extend ωθ,γk , ωθ,γ,±∞
k , ρθ,γk , and ρθ,γ,±∞

k (without 
hanging the notation) similarly as It0
in De�nition 3.6 (i) to fun
tions de�ned on Iθ,γ . Note that the extensions are in X

1
r (Iθ,γ) and

the X1
r (Iθ,γ)-norm equals the X1

r -norm on the respe
tive support of those fun
tions. This

�nishes the proof of the 
laim.

Furthermore, we remark that, sin
e ‖W‖X1
r (− 1

2
, 1
2
) . 1 (see (3.93)), we may 
hoose for any

θ > 0 some Tθ,g > 0 su
h that

‖W‖Z′(−T−1
θ,g ,T

−1
θ,g )

≤ θ and ‖W‖X1
r (−T−1

θ,g ,T
−1
θ,g )

. 1.

Proof of (3.95). Sin
e F (z) = z|z|4 = z3z2, for a �xed J ≥ 1,

F (UJprof ,k)− F (W )−
J∑

α=1

F (Uαk )

may be written as a �nite linear 
ombination of produ
ts of the form

V 1
k V

2
k V

3
k V

4
k V

5
k , (3.108)

where V j
k ∈ {W,W,Uαk , U

α
k , 1 ≤ α ≤ J}, j = 1, . . . , 5, and at least two terms di�er by more

than just 
omplex 
onjugation.

We now assume θ > 0 to be �xed, and we de
ompose every pro�le Uαk , 1 ≤ α ≤ J , as in
(3.105). We may assume that Tθ,α = Tθ,β = Tθ,g for 1 ≤ α, β ≤ J . Set Tθ := Tθ,1, and note

that Ik ⊂ (−T−1
θ , T−1

θ ) for large k. Whenever a produ
t as in (3.108) 
ontains an error term

ρθ,γk or ρθ,γ,±∞
k , then we have

sup
t0∈Ik

‖It0(V 1
k V

2
k V

3
k V

4
k V

5
k )‖X1

r (Ik)
. θ,

whi
h follows from Lemma 3.11 and (3.106). Analogously, we obtain the same bound if the

expression 
ontains at least one of the following:

•
two s
attering terms ωθ,α,±∞

k ,

• W and one s
attering term ωθ,α,±∞
k , or

•
two terms W .

Lemma 3.33 shows that the X1
r (Ik)-norm of It0(V 1

k V
2
k V

3
k V

4
k V

5
k ) 
onverges to zero for any

t0 ∈ Ik, whenever the produ
t 
ontains two di�erent ωθ,αk and ωθ,βk , α 6= β. Hen
e, in order to

�nish the proof, it su�
es to show

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,β
k , ωθ,α,±∞

k )
)∥∥
X1

r (Ik)
. θ, (3.109)

for any α = 0, 1, . . . , J , β = 1, 2, . . . , J , with α 6= β and ωθ,0,±∞
k (t) :=W (t).

We set N0
k := 1. Assuming that

lim
k→+∞

Nα
k

Nβ
k

= ∞,

we may dedu
e (3.109) essentially from Lemma 3.32. The lemma ensures the existen
e of

B > 0 su
h that if we de
ompose

ωθ,α,±∞
k = P≤BNβ

k
ωθ,α,±∞
k + P

>BNβ
k
ωθ,α,±∞
k ,
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then

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,β
k , P

>BNβ
k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
. θ.

Sin
e

‖P≤BNβ
k
ωθ,α,±∞
k ‖X1

r (Ik)
. ‖P≤BNβ

k
(TNα

k
φθ,α,±∞)‖H1(T3) . (1 +BNβ

k )‖TNα
k
φθ,α,±∞‖L2(T3)

. (1 +BNβ
k )(N

α
k )

−1‖φθ,α,±∞‖L2(R3) . ok(1),

we may 
on
lude (3.109) from Lemma 3.11.

If in 
ontrast

1

lim
k→+∞

Nβ
k

Nα
k

= ∞,

then we pro
eed as follows: First, we derive for any α ∈ {1, . . . , J} and any B ≥ 1 that

‖P>BNα
k
ωθ,α,±∞
k ‖X1

r (Ik)
. ‖P>BNα

k
(TNα

k
φθ,α,±∞)‖H1(T3) .θ,α B

−1 + ok(1). (3.110)

A simple argument as in (3.103) allows to 
ompute

‖P>BNα
k
(TNα

k
φθ,α,±∞)‖H1(T3) . (BNα

k )
−1‖P>BNα

k
(TNα

k
φθ,α,±∞)‖H2(T3).

We only 
onsider the highest order term that is if both derivatives fall on φθ,α,±∞
. This term

may be estimated by

(BNα
k )

−1(Nα
k )

1
2‖φθ,α,±∞(Nα

k · )‖Ḣ2(R3) . B−1‖φθ,α,±∞‖Ḣ2(R3) .θ,α B
−1,

where we used φθ,α,±∞ = P≤Rθ,α
(φθ,α,±∞), Bernstein's inequalities and (3.107).

If α = 0, i.e. ωθ,α,±∞
k (t) = W (t), then we note from the de�nition of the X1

r -norm that there

is B0(θ) > 0 su
h that for any B ≥ B0,

‖P>BW‖X1
r (Ik)

≤ ‖P>BW‖X1
r (−T−1

θ ,T−1
θ ) < θ.

Hen
e, we dedu
e (3.110) in this 
ase, too.

From (3.110), we may dedu
e for any α ∈ {0, . . . , J} and any t0 ∈ Ik,

∥∥It0
(
D4,1(ω

θ,β
k , ωθ,α,±∞

k )
)∥∥
X1

r (Ik)
≤
∥∥It0

(
D4,1(ω

θ,β
k , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
+ θ + ok(1)

provided B = B(θ, α) is su�
iently large. We deal with the �rst term as in the end of the

proof of Lemma 3.33: Given δ > 0, we de
ompose one fa
tor of ωθ,βk similarly as in (3.104),

ωθ,βk = P≤δNβ
k
ωθ,βk + P

>δNβ
k
ωθ,βk ,

and again, we get the bound

‖P≤δNβ
k
ωθ,βk ‖X1

r (Ik)
.θ,β δ

for k su�
iently large. Hen
e, ‖It0(D4,1(ω
θ,β
k , P≤BNα

k
ωθ,α,±∞
k ))‖X1

r (Ik)
is less or equal to

∥∥It0
(
D1,3,1(P≤δNβ

k
ωθ,βk , ωθ,βk , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)

+
∥∥It0

(
D1,3,1(P>δNβ

k
ωθ,βk , ωθ,βk , P≤BNα

k
ωθ,α,±∞
k )

)∥∥
X1

r (Ik)
.

1

Note that the 
ase α = 0 is in
luded here.
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The smallness of the �rst term follows immediately from Lemma 3.11. The se
ond term 
an

be treated as in the term I3 in the end of the proof of Lemma 3.33.

If

Nα
k = Nβ

k and tαk = tβk for any k

(see the redu
tion at the beginning of the proof of Proposition 3.30), then ωθ,βk ωθ,α,±∞
k = 0

sin
e the supports in time of those fun
tions be
ome disjoint for large enough k.

The remaining 
ase is

Nα
k = Nβ

k and lim
k→+∞

(Nα
k )

2|tαk − tβk | = ∞.

For any ε > 0 we may 
hoose φ̃θ,α,±∞ ∈ C∞
0 (R3) su
h that ‖φθ,α,±∞ − φ̃θ,α,±∞‖Ḣ1(R3) ≤ ε.

De�ne

ω̃θ,α,±∞
k (t) := πxαk e

i(t−tαk )∆θ(TNα
k
φ̃θ,α,±∞), t ∈ Jθ,α,±∞

k ,

then we have

‖ωθ,α,±∞
k − ω̃θ,α,±∞

k ‖
X1

r (J
θ,α,±∞
k )

. ‖TNα
k
φθ,α,±∞ − TNα

k
φ̃θ,α,±∞‖H1(T3)

. ‖φθ,α,±∞ − φ̃θ,α,±∞‖Ḣ1(R3) . ε.

Be
ause of Lemma 3.11 and (3.5), it su�
es to prove

lim sup
k→+∞

‖D4,1(ω
θ,β
k , ω̃θ,α,±∞

k )‖L1(Ik,H1(T3)) = 0.

By Hölder's inequality, the L1(Ik,H
1(T3))-norm is bounded by

‖∇ωθ,βk ‖L4
tL

8
x
‖ωθ,βk ‖3L4

tL
8
x
‖ω̃θ,α,±∞

k ‖L∞
t,x

+ ‖ωθ,βk ‖4L4
tL

∞
x

(
‖∇ω̃θ,α,±∞

k ‖L∞
t L2

x
+ ‖ω̃θ,α,±∞

k ‖L∞
t L2

x

)
.

(3.111)

We apply Lemma 3.21 (ii) with T = Nα
k |tαk − tβk |

1
2
, and we use the third inequality of (3.106),

then

(3.111) .θ,β (Nβ
k )

− 1
2 (Nα

k )
1
2
(
Nα
k |tαk − tβk |

1
2
)− 1

10 + ok(1) .θ,β

(
Nα
k |tαk − tβk |

1
2
)− 1

10 + ok(1).

This �nishes the proof of (3.95).

Proof of (3.96). It is easy to see that for �xed J ≥ 1 and t0 ∈ Ik,
∥∥∥It0

(
F
(
UJprof,k(t) + eit∆θRJk

)
− F

(
UJprof,k(t)

))∥∥∥
X1

r (Ik)

.

4∑

p=0

∥∥It0
(
Dp,5−p

(
UJprof,k(t), e

it∆θRJk
))∥∥

X1
r (Ik)

holds true. If p ≤ 3, then we 
an 
ontrol the terms easily: Indeed, from Lemma 3.11 and

(3.94), we see

sup
t0∈Ik

∥∥It0
(
Dp,5−p(U

J
prof ,k(t), e

it∆θRJk )
)∥∥
X1

r (Ik)
. ‖RJk‖4−pH1(T3)

‖eit∆θRJk‖Z′(Ik)‖UJprof,k‖
p
X1

r (Ik)

. ‖eit∆θRJk‖Z′(Ik).

Now, (3.90) implies that

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

3∑

p=0

∥∥It0
(
Dp,5−p(U

J
prof ,k(t), e

it∆θRJk )
)∥∥

X1
r (Ik)

= 0.
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Hen
e, we are left to prove

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(U

J
prof ,k(t), e

it∆θRJk )
)∥∥

X1
r (Ik)

= 0.

Let ε > 0 be �xed and A′ ≤ J . We de�ne UA
′

prof,k via UJprof,k − UA
′

prof,k =
∑J

α=A′+1 U
α
k and

hen
e,

‖UJprof,k − UA
′

prof,k‖X1
r (− 1

2
, 1
2
) ≤

J∑

α=A′+1

‖Uαk (t)− eit∆θUαk (0)‖X1
r (− 1

2
, 1
2
)

+

∥∥∥∥e
it∆θ

J∑

α=A′+1

Uαk (0)

∥∥∥∥
X1

r (− 1
2
, 1
2
)

.

As seen in the proof of (3.94), this 
an be further estimated by

J∑

α=A′+1

E(α) +

∥∥∥∥
J∑

α=A′+1

Uαk (0)

∥∥∥∥
H1(T3)

,

whi
h is bounded uniformly in J . From the uniform bound of this expression, we see that

there exists A′ = A′(ε) su
h that for any J ≥ A′
and all k ≥ k0(J),

‖UJprof ,k − UA
′

prof,k‖X1
r (− 1

2
, 1
2
) ≤ ε

Thus, by Lemma 3.11, it remains to show

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(U

A′

prof,k(t), e
it∆θRJk )

)∥∥
X1

r (Ik)
. ε.

By the de�nition of UA
′

prof,k, it su�
es to prove that for any α1, α2, α3, α4 ∈ {0, 1, . . . , A′},

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D1,1,1,1,1(U

α1
k (t), Uα2

k (t), Uα3
k (t), Uα4

k (t), eit∆θRJk )
)∥∥
X1

r (Ik)
. ε′

(3.112)

holds true, where we set U0
k :=W and ε′ := εA′−4

.

De
ompose all nonlinear pro�les Uαk , α = 1, . . . , A′
, as in (3.105). As done before, we may

assume

Tθ,α = Tθ,g =: Tθ and Rθ,α =: Rθ for all α = 1, . . . , A′,

and that the bounds (3.106) and (3.107) hold. We apply Lemma 3.11 to the left-hand side

of (3.112) and from (3.90), we see that whenever there is an error term ρθ,αk or ρθ,α,±∞
k , a

s
attering term ωθ,α,±∞
, or W , then (3.112) holds true. Hen
e, it su�
es to prove

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D1,1,1,1,1(ω

θ,α1

k (t), ωθ,α2

k (t), ωθ,α3

k (t), ωθ,α4

k (t), eit∆θRJk )
)∥∥
X1

r (Ik)
. ε′

for any α1, α2, α3, α4 ∈ {1, . . . , A′}. Thanks to Lemma 3.33, we may assume α1 = α2 = α3 =
α4, whi
h means that (3.112) redu
es to

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,α
k (t), eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′ (3.113)

for any α ∈ {1, . . . , A′}. Let B > 0 be �xed, we de
ompose

eit∆θRJk = P>BNα
k
eit∆θRJk + P≤BNα

k
eit∆θRJk .
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With B su�
iently large (depending on Rθ), we apply Lemma 3.32 and get

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(ω

θ,α
k (t), P>BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′

for every J ≥ A′
. By possibly in
reasing B further, we may assume

‖P≤B−1Nα
k
ωθ,αk ‖X1

r (− 1
2
, 1
2
) ≤ ε′

as shown in (3.104). Hen
e, Lemma 3.11 yields

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(P≤B−1Nα

k
ωθ,αk (t), P≤BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
. ε′.

Thus, (3.113) is proved, provided we show

lim sup
J→+∞

lim sup
k→+∞

sup
t0∈Ik

∥∥It0
(
D4,1(P>B−1Nα

k
ωθ,αk (t), P≤BNα

k
eit∆θRJk )

)∥∥
X1

r (Ik)
= 0,

whi
h follows from (3.12) and (3.90) in the well-known fashion.

3.7 Further remarks

Sin
e one has a rather good knowledge of the lo
al and small data global well-posedness theory

on S × S
2
ρ and on Zoll manifolds, it is natural to ask for the global theory for large data in

these 
ases.

On S×S
2
ρ, the main obstru
tion to study global well-posedness is the la
k of linear Stri
hartz

estimates for a wide range of Lp-spa
es. Proposition 2.24 only implies the L6
-estimate

‖PNeit∆gφ‖L6(I×S×S2ρ)
. N

2
3‖PNφ‖L2(S×S2ρ)

.

However, taking a 
loser look at the impli
it linear version of Lemma 2.19 and at the proof

of Proposition 2.24, one may show for p > 16
3 ,

‖PNeit∆gφ‖L6(S2ρ,L
p(I,L4(S))) . N

7
12

− 2
p ‖PNφ‖L2(S×S2ρ)

. (3.114)

Using our approa
h to treat the S and S
2

omponent separately, as it was done in the proof

of Proposition 2.24, it seems unlikely that one 
an get anything better than L6
in the S

2


omponent. The reason is that for f ∈ L2(S2) the s
aling invariant estimate

‖Πnf‖Lp(S2) . 〈n〉
1
2
− 2

p ‖f‖L2(S2)

is known to fail for p < 6, 
f. [Sog86, page 55℄.

The linear Stri
hartz estimate (3.114), however, seems to be insu�
ient for estimating the


ontribution Σ2 in the proof of Lemma 3.11.

Moreover, the extin
tion lemma, more pre
isely Lemma 3.21 (i), has to be adapted. In the

given proof, the extin
tion argument essentially relies on a de
ay in time introdu
ed by a

one-dimensional torus 
omponent, whi
h is also present in S × S
2
ρ. As a 
onsequen
e, the

proof 
an be modi�ed to 
over S× S
2
ρ.

The last thing one has to take 
are of is Lemma 3.32. A 
ombination of the arguments given

in the proofs of Lemma 3.32 and [PTW14, Lemma 5.3℄ might allow to get the desired result.
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Even though the small data global well-posedness theory has been developed on Zoll manifolds,

large data global well-posedness was only obtained in the spe
ial 
ase S
3
[PTW14℄. The linear

Stri
hartz estimates obtained in [Her13, Lemma 3.5℄ allow to gain the ne
essary lo
al well-

posedness and stability results in Se
tion 3.3. The di�
ulties again arise in proving the

extin
tion lemma and an analogue of Lemma 3.32. In [PTW14℄, the proofs rely on expli
it

formulas of the eigenproje
tors and the parti
ular lo
alization of the spe
trum.





Summary

Large parts of the introdu
tory Chapter 1 are a review of well-known material. Though, there

have been some new aspe
ts. Aside from short introdu
tions to fun
tion spa
es, the Fourier

transform, Riemannian manifolds, and dispersive partial di�erential equations, we have given a

new detailed proof of a variant of the Hausdor��Young inequality for non-periodi
 exponential

sums and have related it to a latti
e point 
ounting problem. In addition, we have applied

a Weyl type inequality due to Bourgain [Bou93a℄, to give a proof of the exponential sum

estimate in Corollary 1.39, whi
h we have heavily relied on. Although the statement is not

new, as it may be seen as a spe
ial 
ase of the stronger exponential sum estimate in [Her13,

Lemma 3.1℄, we show that the proof of this parti
ular estimate does not require sophisti
ated

arguments. We want to emphasize that this exponential sum estimate have been used in all

our subsequent results.

In Chapter 2, lo
al and small data global well-posedness of nonlinear S
hrödinger equations

posed on 
ompa
t, smooth Riemannian manifolds (M,g) without boundary have been dis-


ussed. We have started this 
hapter with the 
onditional energy-
riti
al well-posedness result

in Theorem 2.3. It states that given the trilinear Stri
hartz estimate in Assumption 2.1 for

any given 3-manifold (M,g), we have that the quinti
 nonlinear S
hrödinger equation is lo-


ally well-posedness in H1
and even globally well-posedness provided the initial data are small

in H1
. The proof of this result, that is essentially due to Herr [HS15℄, has been reviewed.

This is valuable sin
e the proof given in [HS15℄ is strongly tied to earlier works. Further-

more, we have veri�ed Assumption 2.1 for re
tangular tori, whi
h extends previous results in

[HTT11, GOW14℄. The present author published this result in [Str14℄. Also, the �rst proof

of Assumption 2.1 on produ
ts of spheres has been provided, whi
h expands the result given

in [HS15℄ to a general radius. Moreover, we have shown a multilinear Stri
hartz estimate

for free solutions on two-dimensional re
tangular tori that implies�by standard arguments�

lo
al well-posedness of some s
aling-
riti
al nonlinear S
hrödinger equations with power type

nonlinearities.

Chapter 3 has been devoted to prove large data global well-posedness of the energy-
riti
al

nonlinear S
hrödinger equation on re
tangular 3-tori. This extends the earlier result in [IP12b℄
for the standard torus. The author of the present thesis published this result in [Str15℄, we

relied on the L4
-Stri
hartz estimate given in [KV14℄. However, we have presented a modi�ed

proof here, whi
h shows that Stri
hartz estimates for a smaller range of Lp-norms, whi
h 
an

be obtained essentially using the exponential sum estimates in Chapter 1, su�
e to 
on
lude

global well-posedness in H1
of the quinti
 nonlinear S
hrödinger equation on re
tangular

3-tori.
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