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Introduction

By Lebesgue’s decomposition theorem, any finite Borel measure on R can be decomposed

into the absolutely continuous, singular continuous and pure point parts. Namely,

dµ = dµd + dµac + dµsc.

Absolutely continuous here is considered with respect to Lebesgue measure such that

dµac = f(x)dx for some measurable function f . The pure discrete part, dµd, is a countable

sum of atomic measures. The singular continuous part, dµsc, is supported on some set

of zero Lebesgue measure, and does not give weight to any individual points µ({x}) =

0,∀x ∈ R. We will concentrate our attention on the last class of pure measures.

The classical analysis such as an integration theory does not give a comprehensive

information about singular continuous measures (specification, local description, mea-

surement, classification, geometrical properties). In particular, sets with zero Lebesgue

measure are neglected. One can give the following question: “What is the right approach

for the investigation of the singular continuous measures?”.

A first systematic study of singular probability distributions was done by P. Lévy, A.

Wintner, B. Jessen, R. Kershner, R. Salem. Starting from 1990’s a big activity both in

the fractal analysis and in the analysis of singularly continuous probability distributions

arose. It was natural to use Fractal geometry as sensitive tool to the measures with

non-trivial supports.
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Recent investigations show that singularity is main for many classes of random vari-

ables, and absolutely continuous and discrete distributions arise only in exceptional cases

(see, e.g., [Zam82], [Pra98], for details). For instance, for the subfamily of infinite

Bernoulli convolutions:

ψ(λ) =
∞∑
k=1

ψk · λk, (1)

where independent, identically distributed random variables ψk take values 0 and 1 with

probabilities 1
2
, λ ∈ (0, 1

2
), the corresponding probability measure µψ(λ) is singularly

continuous.

Possible applications in the spectral theory of self-adjoint operators ([Tri10]) is an ex-

tra reason in the intensive investigation of singularly continuous measures. It was proved

that Schrödinger type operators with singular continuous spectra are generic for special

classes of potentials ([DRJMS94]). Moreover, by using the fractal analysis of the corre-

sponding spectral singularly continuous measures, it is possible to analyze the dynamical

properties of the corresponding quantum systems ([Las96]). The number theory, fractal

geometry itself provide motivations for intensive investigations of such measures.

The thesis is devoted to the development of the fractal analysis of singularly con-

tinuous probability measures as well as to the implementation of such an analysis for

special classes of probability distributions, in particular, connecting with generalized

infinite Bernoulli convolutions and distributions of random variables with independent

Q̃-symbols.

The first step of the analysis is the study of metric, topological and fractal properties

of the spectrum (minimal closed support) of a distribution. It should be mentioned here

that usually, it is rather difficult to determine (or even estimate) the Hausdorff dimension

for sets from a given family or even for a given set is a rather non-trivial problem (see,

e.g., [Bil61, Fal04, Bar07] and references therein).

On the other hand, the topological support is a rather “rough” characteristic for a
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measure with a complicated local structure. For instance, the random variables τ(p) =∑∞
k=1

τk(p)
2k

where independent, identically distributed random variables τk(p) take values 0

and 1 with probabilities p and 1−p, the corresponding probability measures are mutually

singular and they are singular with respect to the Lebesgue measure (p ∈ (0, 1
2
)∪ (1

2
, 1)).

Nevertheless, the spectrum of every distribution ψ(p) coincides with [0, 1]. So, it will

be interesting to analyze the Haudorff dimension of the measure, i. e., minimal borel

support of the measure.

Fractal analysis. The definition of the dimension of a set is central to fractal ge-

ometry ([Fal04]). Roughly, dimension indicates how much space a set occupies near to

each of its points. Of the big variety of “fractal dimensions” in use, the definition of

Hausdorff, based on a construction of Carathdodory, is the oldest and probably the most

important. The Hausdorff dimension has the advantage of being defined for any set, and

is mathematically convenient, as it is based on measures, which are relatively easy to

manipulate.

In this project, we work with an important concept of faithful/nonfaithful covering

families for Hausdorff dimension calculation (special relatively narrow families of cover-

ings leading to the classical Hausdorff dimension of an arbitrary subset, see Section 1.3 for

details). This concept is very useful for fractal analysis of singularly continuous probabil-

ity measures, in particular, the determination or estimation of the Hausdorff dimension

of sets and probability measures. Chapter 1 contains important definitions, facts and

notations for general metric spaces. For the simplicity we shall speak here about subsets

from the unit interval. Let Φ be a fine family of coverings on [0, 1], i.e., a family of

subsets of [0, 1] such that for any ε > 0 there exists an at most countable ε-covering {Ej}

of [0, 1] with Ej ∈ Φ. Let us shortly recall that the α-dimensional Hausdorff measure of
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a set E ⊂ [0, 1] w.r.t. a given fine family of coverings Φ is defined by

Hα(E,Φ) = lim
ε→0

 inf
|Ej |≤ε

{∑
j

|Ej|α
} = lim

ε→0
Hα
ε (E, Φ),

where the infimum is taken over all at most countable ε-coverings {Ej} of E, Ej ∈ Φ.

We remark that, generally speaking, Hα(E,Φ) depends on the family Φ. The family of

all subsets of [0, 1] and the family of all closed (open) subintervals of [0, 1] give rise to the

same α-dimensional Hausdorff measure, which will be denoted by Hα(E). The quantity

dimH(E, Φ) = inf{α : Hα(E, Φ) = 0}

is called the Hausdorff dimension of the set E ⊂ [0, 1] w.r.t. a family Φ. If Φ is the family

of all subsets of [0, 1], or Φ coincides with the family of all closed (open) subintervals of

[0,1], then dimH(E, Φ) equals to the classical Hausdorff dimension dimH(E) of the subset

E ⊂ [0, 1].

The notion of comparable net measures are also well known. Roughly speaking,

net measures are special cases of Hα(·,Φ), where the family Φ satisfies the following

properties: 1) if A1 and A2 belong to Φ, then A1 ⊂ A2 or A2 ⊂ A1 or A1

⋂
A2 = ∅; 2) Φ

is countable; 3) at most a finite number of sets from Φ contain any given set from Φ. Then

the corresponding net measure Hα(E,Φ) is said to be comparable to Hausdorff measure

if the ratios of measures are bounded above and below. Comparable net measures proved

to be very useful in the study of Hausdorff measures (see, e.g., [Bes52, Rog98, Fal04] and

references therein).

Let us consider a Nk×N – Cartesian products (“matrix”) Q̃ = ||qik||, where i ∈ Nk =

{0, 1, ..., Nk − 1}, k ∈ N and 1 < Nk ∈ N ∪+∞. Let

1. qik > 0, for all i ∈ Nk and k ∈ N;
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2.
∏∞

k=1 maxi∈Nk
{qik} = 0;

3.
∑
i∈Nk

qik = 1.

There are several well-known subclasses of Cartesian products Q̃. The Q̃ – “matrix” is

denoted by:

1. S if Nk = s− 1 and qik = 1
s
, where i ∈ Nk, k ∈ N, s ∈ N\{1} ;

2. Q if Nk = s− 1 and qik = qi, where i ∈ Nk, k ∈ N, s ∈ N\{1} ;

3. Q∗ if Nk = s− 1, where i ∈ Nk, k ∈ N, s ∈ N\{1}.

4. Q∞ if Nk =∞ and qik = qi, where i ∈ Nk, k ∈ N.

5. Q̃∗ if Nk ∈ N, where k ∈ N.

It is known (see Section 1.2) that for any point x ∈ [0, 1] there is a sequence ik(x) ∈ Nk

such that

x = ai1(x) +
∞∑
k=2

[
aik(x)

k−1∏
j=1

qij(x)j

]
=: ∆Q̃

i1(x)i2(x)...ik(x)..., (2)

where aik(x) =
ik(x)−1∑
s=0

qsk under conditions ik(x) > 0 and a0 = 0.

The representation of the real number x in the form (2) is said to be the Q̃ - expansion

(representation) of the point x ∈ [0, 1]. The Q̃ - expansion is a broad generalization of

classical binary representation of real numbers.

Conditions for a fine covering family to be faithful were studied by many authors

(see, e.g., [Bil61, Cut88, AT05] and references therein). First steps in this direction have

been done by A. Besicovitch ([Bes52]), who showed the faithfulness for the family of

cylinders of binary expansion. His result was extended by P. Billingsley ([Bil61]) to the

family of S-adic cylinders, by M. Pratsiovytyi ([TP92]) to the family of Q-cylinders, and
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by S. Albeverio and G. Torbin ([AT04]) to the family of Q∗-cylinders for those matrices

Q∗ whose elements are bounded from zero inf
k
{q0k, q(s−1)k} > 0. Some general sufficient

conditions for the faithfulness of a given family of coverings are also known ([Cut88]).

Let us mentioned here that all these results were obtained by using the “standard

approach”: if for a given family Φ there exist positive constants β ∈ R and N∗ ∈ N such

that for any interval B = (a, b) there exist at most N∗ sets Bj ∈ Φ which cover (a, b) and

|Bj| ≤ β · |B|, then the family Φ is faithful. It is clear that all above mentioned families

of net-coverings are even comparable.

The family of cylinders of the classical continued fraction expansion can be considered

as a rather unexpected example of non-faithful one-dimensional net-family of coverings

([PT]). By using the approach which has been invented by Yuval Peres to prove non-

faithfulness of the family of continued fraction cylinders (see [PT]), in [AKNT] the au-

thors have proven the non-faithfulness for the family of cylinders of Q∞-expansion with

polynomially decreasing elements {qi}. The latter families of coverings give examples of

non-comparable net measures. So, it is natural to ask about the existence of faithful

covering families which are not comparable (see Section 2.3).

DP-transformations.

Erlangen program (Klein) of the group theoretic approach to geometry is well known.

What is the “fractal geometry” from this point of view? The monograph [Fal04] contains

an attempt to answer the question saying that ”... one approach to fractal geometry is to

regard two sets as “the same” if there is a bi-Lipschitz mapping between them”, i.e., frac-

tal geometry is in this sense the study of invariants of bi-Lipschitz transformations (and,

thus, affine geometry may be considered as a part of fractal geometry). In [APT04] a view

on fractal geometry was proposed in the same spirit, but with a more general definition of

allowable mappings. It was shown that the group G of all DP-transformations (one to one

mappings which preserve the Hausdorff dimension of every subset) is essentially larger
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than the group of bi-Lipschitz transformations, and the smoothness and bi-Lipschitz

properties of transformations are very rough sufficient conditions for dimension preserva-

tion. A series of papers (see, e.g., [APT04], [APT08], and references therein) is devoted

to the development of a general theory of DP-transformations and to the finding of con-

ditions for the Hausdorff dimension preservation in special classes of transformations.

It can be proven (see, e.g., [APT08]) that a one-dimensional transformation g is a DP-

transformation of R1 if and only if g preserves the Hausdorff dimension of every subset of

any interval. So, without loss of generality it is enough to study only DP-transformations

of the unit interval. It is also clear that an arbitrary continuous transformation g of [0, 1]

is either a strictly increasing distribution function Fθ of some random variable θ or it is

of the form g = 1− Fθ. Because of this reason it is enough to investigate DP-properties

of the distribution functions of random variables θ whose spectra Sθ coincide with [0, 1] .

Earlier such DP-transformations g were studied where both sets N0 =
{
x : g

′
(x) = 0

}
and

N∞ =

{
x : lim

ε→0

g (x+ε)− g(x)
ε

= +∞
}

are either finite or they form an at most countable

set.

A class of distribution functions of random variables with independent S-adic digits

was analyzed in detail in [APT08], where necessary conditions and sufficient conditions

for dimension preservation under corresponding probability distribution functions were

found. Relations between the Hausdorff dimension of the corresponding probability mea-

sures, the entropy of probability distributions, and their DP-properties were also discussed

in [APT08]. In particular, it was proved that the superfractality (dimH µ = 1) of a prob-

ability distribution µ is a necessary condition for the Hausdorff dimension preservation

under the corresponding probability distribution function. Paper [Tor07] contains a gen-

eralization of these results to the case of random variables with independent Q-symbols.

Besides of pure theoretical reasons for the development of the general theory of DP-

transformations (for instance, for the creation of an axiomatic theory of fractal geometry),
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there exists an additional reason for such a study connected with the application of DP-

transformations to the construction of new methods for the determination of the Hausdorff

dimension of concrete subsets (see, e.g., [APT04]).

Main results of Chapter 1. In Section 1.3.3 we give an equivalent conditions for

the Hausdorff dimension faithfulness of covering families. Section 1.3.4 is devoted to

general necessary conditions for a Hausdorff dimension faithfulness of covering families:

Theorem 1.2 Let W be a bounded subset of a metric space (M, ρ). Let Φ := ΦW

and Ψ := ΨW be fine covering families on W and Ψ be a faithful on W for calculation of

Hausdorff - Besicovitch dimension. Assume that there exists a positive constant C and a

function f(x) : R+ → N such that

1. for any set I ∈ Ψ there exist at most f(|I|) subsets

4I
1, 4I

2, ..., 4I
l(I) ∈ Φ,

l(I) ≤ f(|I|), |4I
j | ≤ |I| and I ⊂

l(I)⋃
j=1

4I
j ;

2. for any δ ∈ (0, α) there exists ε1(δ) > 0 such that

f(|I|) · (|I|)δ ≤ C, for any set I ∈ Ψ with diameter less then ε1(δ).

Then the family Φ is faithful on W for calculation of Hausdorff - Besikovich dimension,

i. e., dimH E = dimH(E,Φ), ∀E ⊂ W.

Main results of Chapter 2. Chapter 2 is devoted to the case of Q̃ - expansion,

where a sequence {nk}k∈N satisfies 1 < nk ∈ N and qik = 1
nk
, ∀i ∈ {0, 1, ... nk−1}. In this

case Q̃ - expansion coincides with classical Cantor expansion (see [Can69, ER59, Man10]).

So, let {nk}k∈N with nk ∈ N\{1}, k ∈ N. Then the expansion of x ∈ [0, 1] in the following
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form

x =
∞∑
k=1

αk
n1 · n2 · . . . · nk

, αk ∈ {0, 1, ..., nk − 1}

is called Cantor expansion of x.

Let A be the family of all possible semi - closed intervals (cylinders), i.e.,

A := {E : E = ∆α1α2...αk , k ∈ N, αi ∈ {0, ..., ni − 1}, i = 1, 2, ..., k} ,

where

∆α1α2...αk :=

{
x : x ∈

[
k∑
i=1

αi
n1n2 . . . ni

,
1

n1n2 . . . nk
+

k∑
i=1

αi
n1n2 . . . ni

)}
.

The main result of Section 2.1 is the sharp condition for the Hausdorff dimension

faithfulness of the Cantor series expansion coverings A.

Theorem 2.1 The family A of Cantor coverings of the unit interval is faithful for

the Hausdorff dimension calculation if and only if

lim
k→∞

lnnk
ln (n1 · n2 · . . . · nk−1)

= 0.

To the best of our knowledge this theorem gives the first sharp condition of the

faithfulness for a class of covering families containing both faithful and non-faithful ones.

Applying the latter theorem and methods from [AT05], we get the Hausdorff dimen-

sion of the probability distribution µτ of the random variable τ with independent digits

of the Cantor series expansion (Random Cantor expansion), i.e.,

τ =
∞∑
k=1

τk
n1 · n2 · . . . · nk

,

where independent random variables τk take values 0, 1, ..., nk − 1 with probabilities p0k,
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p1k, ..., pnk−1,k, respectively (
∑nk−1

i=0 pi,k = 1 and 1 < nk ∈ N, ∀k ∈ N).

Theorem 2.2 Let

∞∑
k=1

 lnnk

ln
k∏
i=1

ni


2

<∞, (3)

then the Hausdorff dimension of the probability distribution µτ of the random variable τ

with independent digits of the Cantor series expansion is equal to

dimH(µτ ) = lim
k→∞

Hk

ln (n1n2...nk)
,

where Hk =
k∑
j=1

hj, ∀k ∈ N, hj = −
nj−1∑
i=0

pij ln pij, ∀j ∈ N and 0 ln 0 := 0.

Applying our results, we show that a class of faithful net-coverings essentially wider

that the class of comparable ones. We construct, in particular, rather simple exam-

ples of faithful families A of net-coverings which are “extremely non-comparable” to the

Hausdorff measure (see Section 2.3).

In Section 2.5, we find conditions for the distribution functions of Random Cantor

series to be DP-transformations.

Theorem 2.5 Let supnk <∞. Then the distributional function Fτ of random Cantor

series τ preserves the Hausdorff dimension of any subset of the unit interval iff


dimH µτ = 1;

lim
k→∞

∑
j∈T (1)

k

ln 1
pj

k
= 0.

Generalized infinite Bernoulli convolutions. Let µξ = µ – be the distribution

of the random variable

ξ =
∞∑
k=1

ξkak, (4)
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where
∞∑
k=1

ak is a convergent series whose terms are nonnegative and where ξk are inde-

pendent random variables assuming two values 0 and 1 with probabilities p0k and p1k

respectively. The distribution µξ is called a generalized infinite Bernoulli convolution.

A theorem due to Jessen and Wintner [JW35] says that the distribution of ξ is pure.

A theorem due to Lévy [Lev31] provides necessary and sufficient conditions for µξ to be

purely discrete, namely the measure µξ is discrete if and only if

M =
∞∏
k=1

max{p0k, p1k} > 0. (5)

The criteria for ξ to be purely absolutely continuous with respect to the Lebesgue

measure (or purely singular) are not known yet even in the case of random power series

(ak = λk and p0k = 1
2
). The probability measure µλ, which corresponds to such a random

variable ξλ is known as ”infinite symmetric Bernoulli convolution”. Measures of this form

have been studied since 1930’s from the pure probabilistic point of view as well as for

their applications in harmonic analysis, in fractal analysis and in the theory of dynamical

systems.

Surveys of problems and solutions in this field are given in [PSS00, GPT09]. Some

applications of infinite Bernoulli convolutions are discussed in [AZ91, PSS00]. If the series
∞∑
k=1

ak converges fast enough that is, if

ak ≥ rk :=
∞∑

i=k+1

ai

for all sufficiently large k, then the Lebesgue structure and fractal properties of Bernoulli

convolutions are studied rather well (see [Coo98, AT08]). In contrast, if the inequality

ak < rk occurs for an infinite number of indices k, then these problems are studied much

less. The main problem in this case is how to obtain fine properties of the Bernoulli con-

volutions for which almost all (with respect to the Lebesgue measure or in the sense of the
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Hausdorff dimension) points of the spectrum have continuum many different expansions

of the form
∞∑
k=1

ωkak, where ωk ∈ {0, 1}. The probability measures of this type belong

to the class of the so-called Bernoulli convolutions with essential intersections([GPT09]).

The main aim of Chapter 3 is to prove the singularity of the distribution of the random

variable ξ and to investigate its fine properties for the case where the sequence {ak} is

such that

∀k ∈ N, ∃sk ∈ N0 := N ∪ {0} : ak = ak+1 = ... = ak+sk ≥ rk+sk , (6)

and moreover sk > 0 for an infinite number of indices k. We shall say that a general-

ized infinite Bernoulli convolution (4) is a LT - Bernoulli convolution if condition (6) is

satisfied.

Let us stress that the case when ak < rk occurs for an infinite number of indices k

is essentially more complicated. Nevertheless, we perform a complete fractal analysis of

LT -Bernoulli convolution based on the developed the P̃ − Q̃ approach (see, e.g., [AT05,

AKPT06]).

Main results of Chapter 3. In Section 3.2, we present a complete description

of Lebesgue structure of LT -Bernoulli convolution. Due to results of [AKPT11] and

by using the following two technical lemmas, we show the singularity of correspondent

infinite Bernoulli convolutions. Let {kn}n∈N be a sequence of nonnegative integer numbers

such that i ∈ {kn}n∈N if and only if si = 0. Also let ln = kn − kn−1, k0 = 0.

Lemma 3.1 Let Rln := {0, 1}ln and δ := (δ1, δ2, ..., δln) ∈ Rln , where |δ| =
∑kn

k=kn−1+1 δk

for all n ∈ N. Then there is a function ϕ(n) such that

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ ϕ(n)→ 0 (n→∞),

where 0 < p0k < 1, p1k = 1− p0k for all k ∈ N.
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Lemma 3.2 Let Rn = {0, 1}n, δ = (δ1, δ2, ..., δn) ∈ Rn, |δ| =
∑n

k=1 δk for all n ∈

N\{1}. Let (p01, p02, ..., p0n) ∈ [0, 1]n, (p11, p12, ..., p1n) = (1−p01, 1−p02, ..., 1−p0n).

Then

υ(p01, ..., p0n) =

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ Kn < 1,

where Kn is a constant that depends on n.

Section 3.3 is devoted to the fractal faithfulness of covering families (see the definition

below) on ξ-spectrum. In Section 3.4, we determine the Hausdorff dimension of the set of

those points for which there exist continuum many of different representations (Theorem

3.4). We also determine the dimension of the set of points that have a finite number of

representations.

Fine fractal properties of LT-Bernoulli convolutions are shown in Section (3.5).

Theorem 3.5 If
∞∑
n=1

(
ln rkn−1

ln rkn
− 1

)2

<∞,

then the Hausdorff dimension of the probability distribution µξ of the random variable ξ

is equal to

dimH(µξ) = lim
n→∞

Hn

− ln rkn
,

where Hn =
n∑
j=1

hj, hj = −
mj−1∑
i=0

p̃ij ln p̃ij.
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Chapter 1

Singular probability measures and

Hausdorff faithfulness of covering

families

1.1 Hausdorff measure and Hausdorff dimension

First, let us recall some basic definitions, facts and notations [Rog98, Fal04, Edg08].

Definition 1.1. Let W be a bounded subset of a metric space (M, ρ). By d(W ) denote

the diameter of the set W , i. e.,

d(W ) := sup{ρ(x, y) : x, y ∈ E}.

Definition 1.2. Let ε be a positive constant. A finite or countable family {Ej} of sets

is called an ε-covering of a set E if E ⊂
⋃
j

Ej, where

d (Ej) ≤ ε, Ej ⊂M, ∀j ∈ N.
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Definition 1.3. A family of subsets ΦW is called a fine family of coverings of a bounded

subset W if for any ε > 0 there exists an ε-covering {Ej} of the set W with

Ej ∈ ΦW ,∀j ∈ N.

Remark 1.1. A fine family of coverings does not exists for every metric space. We give a

transparent example. Let (M, ρ) be a metric space such that M = (−∞,+∞) and

ρ(x, y) =

 1 if x 6= y;

0 if x = y.

If E is a continuum set and E ⊂ [0, 1], then an ε - covering of E with ε < 1 does not

exist.

In the sequel, only metric spaces with fine covering families are considered.

Definition 1.4. Let α and ε are positive numbers. The α − ε - Hausdorff measure of

bounded set E is defined by

Hα
ε (E) := inf

d(Ej)≤ε

{∑
j

d (Ej)
α

}
,

where the infimum is taken over all at most countable ε-coverings {Ej} of E, Ej ⊂M.

Definition 1.5. Let α be a positive number. The α - dimensional Hausdorff measure

(Hausdorff measure) of a bounded set E is defined by

Hα(E) := lim
ε→0

Hα
ε (E).

Obviously, the limit Hα(E) is well defined (see Remark 1.1).

Let us recall some basic properties of the α - dimensional Hausdorff measure (see for

details [Rog98, Ch. 2], [Fal04, Ch. 2]). Fix β > α > 0.
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1. If Hα(E) <∞, then Hβ(E) = 0.

2. If Hβ(E) > 0, then Hα(E) =∞.

3. Suppose a function f : M→M is similarity transformation

ρ(f(x), f(y)) = c · ρ(x, y)

with a scale factor c > 0. Then Hα(f(E)) = cαHα(E).

4. Suppose a function f : M→M satisfies a following Holder condition

ρ(f(x), f(y)) ≤ c(ρ(x, y))s

for all x, y ∈ E and some fixed c > 0, s > 0. Then

Hα/s(f(E)) ≤ cα/sHα(E).

5. If E ⊂ E ′, then Hα (E) ≤ Hα (E ′).

6. If E ⊂
⋃
j∈N

Ej, then Hα (E) ≤
∑
j∈N

Hα (Ej).

The following definition was introduced by F. Hausdorff in 1918 ([Hau18]).

Definition 1.6. The nonnegative number α is called the Dimension of a set E if

0 < Hα(E) <∞. (1.1)

F. Hausdorff calculated the Dimension of the Cantor set

C =

{
x : x =

∞∑
k=1

αk
3k
, αk ∈ {0, 2}, ∀k ∈ N

}
.
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However Definition 1.6 is not well defined for all sets (see Section 1.4). A. Besicovitch

constructed the first example of such sets. A. Besicovitch proposed a following definition

of a metric dimension.

Definition 1.7. The nonnegative number

dimH(E) := inf{α : Hα(E) = 0}

is called the Hausdorff dimension (Hausdorff dimension) of a set E ⊂ W .

This definition is well known in modern mathematics.

Remark 1.2. The Hausdorff dimension of a set E ⊂ W is equal to

dimH(E) = sup{α : Hα(E) = +∞}

except the case when dimH(E) = 0.

Let us recall some properties of the Hausdorff dimension:

1. If E1 and E2 are geometrically similar sets then dimH(E1) = dimH(E2);

2. If E1 ⊂ E2 then dimH(E1) ≤ dimH(E2);

3. dimH(E) = 0 if E is finite or countable set;

4. dimH(
⋃
n

En) = sup
n

dimH(En).

It is well known that the α - dimensional Hausdorff measure in a case when (M, ρ) =

R1 and α = 1 coincides with Lebesgue outer measure. Hence a set with positive Lebesgue

measure has the Hausdorff dimension 1.
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1.2 Singular probability measures

Let (Ω,A) be a measurable space with probability measures µ and ν. Let {ω} ∈ A, ∀ω ∈

Ω.

Definition 1.8. The measure µ is said to be discrete if there is at most countable set

S ∈ Ω with µ(S) = 1.

Definition 1.9. The measure µ is said to be continuous if ∀ω ∈ Ω we have µ({ω}) = 0.

Definition 1.10. The measure µ is said to be absolutely continuous with respect to the

measure ν (µ� ν) if µ(E) = 0 for all E from

{E ∈ A : ν(E) = 0} .

Definition 1.11. The measure µ is said to be singular with respect to the measure λ (

µ ⊥ ν) if there is a set E ∈ A such that

ν(E) = 0 and µ(E) = 1.

In this section we will speak about sets and measures on the unit interval [0, 1]. That

is Ω = [0, 1], λ is a Lebesgue measure on [0, 1], A is a σ - algebra of Lebesgue measurable

sets on [0, 1] .

We will discuss singular and absolute continuous measures with respect to Lebesgue

measure λ.

Definition 1.12. The measure µ is said to be singular continuous if µ is continuous and

there is a set S such that λ(S) = 0 and µ(S) = 1.

Remark 1.3. If ξ is a random variable with probability distribution function Fξ, then the

corresponding probability measure µξ is singular with respect to Lebesgue measure λ if

and only if F ′ξ(x) = 0 for λ-almost all x.

22



Theorem (Lebesgue) Let µ be a probability measure on [0, 1]. Then there is a unique

decomposition of µ

µ = α1µd + α2µac + α3µsc, (1.2)

where µd is a discrete probability measure, µac is a absolutely continuous probability mea-

sure, µsc is a singularly continuous probability measure and

αi ≥ 0, ∀i ∈ {1, 2, 3}, α1 + α2 + α3 = 1.

The class of singular continuous probability measures is less studied. However there

are a significant number of papers devoted to this class (see [Cat82, Cha63, Cha64,

Coo98, Erd39, ES91, Gar62, Gar63, Gil31, HK38, Hen92, HT29, Hof95, Hu97, HL90,

JW35, KS58, Kin58, KP64, KP65, KP66a, KP66b, Lau92, Lau93, LN99b, LP96a, LN99a,

LP96b, Lev31, Lit36, MR97, MR98, Ren59, RT59, RT63, Sal42, Sal43a, Sal43b, Sal52,

Sie11a, Sie11b, Sie13, Sie14, Str91, STZ95, Tuc64, WW38, Win34, Win35, Zam82]).

The study and applications of special classes of singular measures are also important

([MR98, Pra95, Rei82a, Rei82b, Rei86, Tak78, TU95, TP92, AZ91, Coo98, Hu97, HL90,

Lau93, LN98, LN99a, LP94, LP96a, MS98, PSS00, PS96, PS98]).

In particular, we will discuss the class of probability measures generated by random

variables with independent symbols over dynamic alphabets. From one point of view, this

class contains measures with not trivial fractal properties; from another point of view,

there is direct connection with generalized Bernoulli convolutions.

We will need the following notations, assumptions and definitions.

Let us consider a Nk×N – Cartesian products (“matrix” ) Q̃ = ||qik||, where i ∈ Nk =

{0, 1, ..., Nk − 1}, k ∈ N and 1 < Nk ∈ N. Let

qik > 0, ∀i ∈ Nk, k ∈ N; (1.3)
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∞∏
k=1

max
i∈Nk

{qik} = 0; (1.4)

∑
i∈Nk

qik = 1. (1.5)

There are several well-known subclasses of Cartesian products Q̃∗. The Q̃∗ – “matrix”

is denoted by:

1. S if Nk = {0, ..., s− 1} , ∀k ∈ N, and qik = 1
s
, s ∈ N\{1};

2. Q if Nk = {0, ..., s− 1} , ∀k ∈ N, and qik = qi, s ∈ N\{1};

3. Q∗ if Nk = {0, ..., s− 1} , ∀k ∈ N, s ∈ N\{1}.

With a Q̃∗ – “matrix” we consecutively perform decompositions of the segment [0, 1)

and unit interval [0, 1] as follows.

Step 1. We decompose unit interval [0, 1] (from left to right) into the union of closed

intervals ∆Q̃∗

i1
, i1 ∈ N1 of the length

∣∣∣∆Q̃∗

i1

∣∣∣ = qi11,

[0, 1] =
⋃

i1∈N1

∆Q̃∗

i1
,

without common interior points. Each interval ∆Q̃∗

i1
is called a closed 1-rank interval

(1-rank cylinder).

In the same way we can decompose unit semi-interval [0, 1) (from left to right) into

the union of semi-closed intervals without common points. Each interval is called a

semi-closed 1-rank interval (1-rank cylinder). We will use the same notations ∆Q̃∗

i1
for

simplicity.

Step k ≥ 2. We decompose (from left to right) each closed (k − 1)-rank interval
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∆Q̃∗

i1i2...ik−1
into the union of closed intervals ∆Q̃∗

i1i2...ik
,

∆Q̃∗

i1i2...ik−1
=
⋃

ik∈Nk

∆Q̃∗

i1i2...ik
,

where their lengths ∣∣∣∆Q̃∗

i1i2...ik

∣∣∣ = qi11 · qi22 · · · qikk =
k∏
s=1

qiss (1.6)

are related as follows

∣∣∣∆Q̃∗

i1i2...ik−10

∣∣∣ :
∣∣∣∆Q̃∗

i1i2...ik−11

∣∣∣ : · · · :
∣∣∣∆Q̃∗

i1i2...ik−1ik

∣∣∣ = q0k : q1k : · · · : qikk.

Each closed interval

∆Q̃∗

i1i2...ik
(1.7)

is called a closed k-rank interval (k-rank cylinder).

As well we can decompose semi-closed interval ∆Q̃∗

i1i2...ik−1
(from left to right) into the

union of semi-closed intervals without common points. Each interval is called a semi-

closed k-rank interval (k-rank cylinder). We will use the same notations ∆Q̃∗

i1i2...ik
for

simplicity.

By assumptions (1.4) and (1.6), for any sequence of indices {ik}k∈N, ik ∈ Nk, there

corresponds the sequence of embedded cylinders

∆Q̃∗

i1
⊃ ∆Q̃∗

i1i2
⊃ · · · ⊃ ∆Q̃∗

i1i2...ik
⊃ · · ·

such that |∆Q̃∗

i1...ik
| → 0 as k →∞. Therefore, there exists a unique point x ∈ [0, 1] (except

for a case of semi-closed cylinders with ik = Nk − 1 under the condition ∀k > k0 ∈ N)

belonging to all intervals

∆Q̃∗

i1
,∆Q̃∗

i1i2
, ...,∆Q̃∗

i1i2...ik
, ... .
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Conversely, for any point x ∈ [0, 1) there exists a unique sequence of embedded semi -

closed intervals

∆Q̃∗

i1
⊃ ∆Q̃∗

i1i2
⊃ ... ⊃ ∆Q̃∗

i1i2...ik
⊃ ... ,

containing x and for any point x ∈ [0, 1] there exists a sequence of embedded closed

intervals

∆Q̃∗

i1
⊃ ∆Q̃∗

i1i2
⊃ ... ⊃ ∆Q̃∗

i1i2...ik
⊃ ... ,

containing x i.e.,

x =
∞⋂
k=1

∆Q̃∗

i1i2...ik
=
∞⋂
k=1

∆Q̃∗

i1(x)i2(x)...ik(x) =: ∆Q̃∗

i1(x)i2(x)...ik(x).... (1.8)

By the above, for any point x ∈ [0, 1] there is a sequence ik(x), ik(x) ∈ Nk such that

x = ai1(x) +
∞∑
k=2

[
aik(x)

k−1∏
j=1

qij(x)j

]
, (1.9)

where aik(x) =
ik(x)−1∑
s=0

qsk when ik(x) > 0 and a0 = 0.

The following definition is given for the case of closed embedded intervals.

Definition 1.13. The expressions (1.8) and (1.9) are called the Q̃∗ – expansion (repre-

sentation) of the point x ∈ [0, 1] .

the Q̃∗ – expansion allows to construct in a convenient way a wide classes of fractals

on R1, Rn and other mathematical objects with fractal properties (see [Pra98, AKPT06,

AKPT11, Tor05]).

There are some special cases of Q̃∗ - expansions:

1. If Q̃∗ = S, then the Q̃∗ - expansion coincides with classical s - adic expansion or

s-adic representation.

2. If Q̃∗ = Q, then the Q̃∗ - expansion coincides with Q - expansion.
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3. If Q̃∗ = Q∗, then the Q̃∗ - expansion coincides with Q∗ - expansion.

Chapter 2 is devoted to the case where a sequence {nk}k∈N satisfies 1 < nk ∈ N and

qik = 1
nk
, ∀i ∈ {0, 1, ... nk − 1}. In this case Q̃∗ - expansion coincides with classical

Cantor expansion(see [Can69, ER59, Man10]). We now recall the definition of Cantor

expansion. Let {nk}∞k=1 with nk ∈ N\{1}, k ∈ N; then the expansion of x ∈ [0, 1] in the

following form

x =
∞∑
k=1

αk
n1 · n2 · . . . · nk

, αk ∈ {0, 1, ..., nk − 1}

is called Cantor expansion of x.

Let {ξk}k∈N be a sequence of independent random variables with the following distri-

butions:

P (ξk = i) := pik ≥ 0 and
∑
i∈Nk

pik = 1, k ∈ N.

Let us consider the random variable ξ:

ξ := ∆Q̃∗

ξ1ξ2...ξk...
. (1.10)

Definition 1.14. ξ is said to be a random variable with independent symbols over dy-

namic alphabets or a random variable with independent Q̃∗ – digits.

So, the distribution ξ is defined by “matrix” Q̃∗ = ||qik|| and P̃ = ||pik||. We will

denote by µξ the correspondent probability measure.

If qik = qi and pik = pi ∀j ∈ N, i ∈ {0, 1, ..., s− 1} (i.e., ξ is a random variable with

independent identically distributed Q - digits), then the measure µξ is the self-similar

measure associated with the list (S0, ..., Ss−1, p0, ..., ps−1), where Si is a similarity with

the ratio qi (
s−1∑
i=0

qi = 1), and the list (S0, ..., Ss−1) satisfies the open set condition. More

precisely, µξ is the unique Borel probability measure on [0, 1] such that

µξ =
s−1∑
i=0

pi · µξ ◦ S−1
i ,
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(see, e.g., [Fal04, Ch. 9] Iterated function systems).

by the following theorem, distribution of the random variable ξ is of pure type.

Theorem[AKPT11] The distribution of the random variable ξ is of pure type such

that 1) µξ is of absolutely continuous type iff

ρ :=
∞∏
k=1

{∑
i∈Nk

√
pik · qik

}
> 0; (1.11)

2) µξ is of the discrete type iff

Pmax :=
∞∏
k=1

max
i∈Nk

{pik} > 0; (1.12)

3) µξ is of singularly continuous type iff

ρ = 0 = Pmax. (1.13)

1.3 Hausdorff dimension faithfulness of covering fam-

ilies for the determination of the Hausdorff dimen-

sion

1.3.1 Basic definitions and facts

Definition 1.15. Let α and ε are positive numbers. The α− ε - Hausdorff measure of a

bounded set E ⊂ W with reference to a given fine family of coverings ΦW of a bounded

set W ⊂M is defined by
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Hα
ε (E,ΦW ) = inf

d(Ej)≤ε

{∑
j

d (Ej)
α

}
,

where the infimum is taken over all at most countable ε-coverings {Ej}j∈N of E, Ej ∈

ΦW , ∀j ∈ N.

Definition 1.16. Let α be a positive number. The α - dimensional Hausdorff measure

(Hausdorff measure) of a bounded set E ⊂ W with reference to a given fine family of

coverings ΦW of a bounded set W ⊂M is defined by

Hα(E,ΦW ) = lim
ε→0

Hα
ε (E,ΦW ).

Definition 1.17 ([AT04]). The nonnegative number

dimH(E,ΦW ) := inf{α : Hα(E,ΦW ) = 0}

is called the Hausdorff dimension of a set E ⊂ W with reference to a given fine family

of coverings ΦW of a bounded set W ⊂M.

Definition 1.18. A fine covering family ΦW of a set W is said to be faithful family of

coverings for the Hausdorff dimension calculation on W if

dimH(E,ΦW ) = dimH(E),∀E ⊂ W.

Definition 1.19. A fine covering family ΦW of a set W is said to be non-faithful family

of coverings for the Hausdorff dimension calculation on W if

∃E ⊆ W : dimH(E,ΦW ) 6= dimH(E).

Remark 1.4. The family of cylinders of the classical continued fraction expansion can
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probably be considered as a rather unexpected example of non-faithful one-dimensional

net-family of coverings ([PT]). By using the approach which has been invented by Y.

Peres to prove non-faithfulness of the family of continued fraction cylinders, in [AKNT]

the authors have proven the non-faithfulness for the family of cylinders of Q∞-expansion

with polynomially decreasing elements {qi}i∈N. The latter two families of coverings give

examples of non-comparable net measures (see next section). So, it is natural to ask

about the existence of faithful covering families which are not comparable.

Conditions for a fine covering family to be faithful for the Hausdorff dimension cal-

culation on W = [0, 1] were studied by many authors (see, e.g., [Bil61, Cut88, AT05]

and references therein). First steps in this direction have been done by A. Besicovitch

([Bes52]), who proved the faithfulness for the family of cylinders of binary expansion. His

result was extended by P. Billingsley ([Bil61]) to the family of s-adic cylinders, by S. Al-

beverio and G. Torbin ([AT04]) to the family of Q∗-cylinders for those matrices Q∗ whose

elements satisfy the following restriction inf
k
{q0k, q(n−1)k} > 0. Some general sufficient

conditions for the faithfulness of a given family of coverings are also known ([Cut88]).

Let us mentioned here that all these results were obtained by using the standard

approach:

Proposition 1.1. If for a given family Φ[0,1] on [0, 1] there exist positive constants β ∈ R

and N∗ ∈ N such that for any interval B = (a, b) there exist at most N∗ sets Bj ∈ Φ

which cover (a, b) and |Bj| ≤ β · |B|, then the family Φ is faithful.

1.3.2 Comparable and non-comparable Hausdorff net measures

Definition 1.20. A family of subsets Φ is called net on W if:

(a) if A1 and A2 belong to Φ, then A1 ⊂ A2 or A2 ⊂ A1 or A1

⋂
A2 = ∅;

(b) every element ω ∈ W belongs to C ∈ Φ with d(C) = 0 or subfamily of sets Φ with

arbitrary small diameters;
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(c) Φ is countable;

(d) at most a finite number of sets from Φ contain any given set from Φ;

(e) every element from Φ is Fσ - set.

Hα(·,Φ) is called Hausdorff net measure if Φ is a net ([Rog98, Ch. 2]).

Definition 1.21. Let ΦW be a fine family of covering ΦW of a bounded set W ⊂ M

and α > 0. α - dimensional Hausdorff measure Hα( · ,ΦW ) is called comparable to the

Hausdorff measure Hα(·) if there is a constant C = C(α) > 0 such that

Hα(E,Φ) ≤ CHα(E),∀E ⊂ W.

Definition 1.22. Let ΦW be a fine family of covering ΦW of a bounded set W ⊂M and

α > 0. α - dimensional Hausdorff measure Hα( · ,ΦW ) is called non-comparable to the

Hausdorff measure Hα(·) there is a set E ⊂ W such that (Hα(E) = 0 and Hα(E,Φ) > 0)

or (Hα(E) ∈ (0,+∞) or Hα(E,Φ) = +∞).

The two families of coverings mentioned above (The family of cylinders of the classical

continued fraction expansion; the family of cylinders of Q∞-expansion with polynomially

decreasing elements {qi}i∈N) give examples of non-comparable net measures. So, it is

natural to ask about the existence of faithful covering families which are not comparable.

1.3.3 Hausdorff dimension faithfulness of covering families

We start with a very useful theorem, which can be proven easily, and, nevertheless,

presents general necessary and sufficient conditions for the faithfulness.We will need the

following convention

+∞ ≤ C · (+∞),

where C is a positive constant.

31



Theorem 1.1. Let W be a bounded subset of a metric space (M, ρ). Let Φ := ΦW be a

fine covering family on W . Then Φ is faithful on W if and only if there exists a positive

constant C such that for any E ⊂ W , any α > 0 and any δ ∈ (0, α) the following

inequality holds:

Hα(E,Φ) ≤ C ·Hα−δ(E). (1.14)

Proof. Suppose (1.14) holds. It is clear that

dimH(E) ≤ dimH(E,Φ), ∀E ⊂ W.

Let us prove the opposite inequality. Let

α∗ := dimH(E), α∗∗ := dimH(E,Φ).

Suppose that α∗ < α∗∗. Let

α′ :=
α∗ + α∗∗

2
.

Then

Hα′(E,Φ) = +∞ (1.15)

and

Hα′(E) = 0.

Let δ be an arbitrary positive real number such that α∗ < α′ − δ. Then

Hα′−δ(E) = 0.
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On the other hand, from (1.14) it follows that

Hα′(E,Φ) ≤ C ·Hα′−δ(E),

and, therefore,

Hα′(E,Φ) = 0,

which contradicts to (1.15) and proves the first part of the theorem.

To prove the second part let us assume that Φ is faithful on W , i.e.,

dimH(E) = dimH(E,Φ), ∀E ∈ W,

and consider all three possible cases:

1) if α < α∗, then

+∞ = Hα(E,Φ) ≤ C1 ·Hα−δ(E) = +∞, ∀C1 ∈ (0,+∞);

2) if α > α∗, then

0 = Hα(E,Φ) ≤ C1 ·Hα−δ(E), ∀C1 ∈ (0,+∞);

3) if α = α∗, then

Hα(E,Φ) ≤ C1 ·Hα−δ(E) = +∞, ∀C1 ∈ (0,+∞).

So, in all these cases condition (1.14) holds.

Remark 1.5. The previous theorem is moderately interesting: it is difficult directly to

verify condition (1.14) for a concrete covering family. So we will give a more practically
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useful statement in the following section.

1.3.4 General necessary conditions for a Hausdorff dimension

faithfulness of covering families

The next theorem generalizes and enhances Statement 1.1. We will use the notion |E|

for diameter of a set E for convenience.

Theorem 1.2. Let W be a bounded subset of a metric space (M, ρ). Let Φ := ΦW and

Ψ := ΨW be fine covering families on W and Ψ be a faithful on W for calculation of

Hausdorff - Bezikovich dimension.

Assume that there exists a positive constant C and a function f(x) : R+ → N such

that

1) for any set I ∈ Ψ there exist at most f(|I|) subsets

4I
1, 4I

2, ..., 4I
l(I) ∈ Φ,

l(I) ≤ f(|I|), |4I
j | ≤ |I| and I ⊂

l(I)⋃
j=1

4I
j ;

2) for any δ ∈ (0, α) there exists ε1(δ) > 0 such that

f(|I|) · (|I|)δ ≤ C, for any set I ∈ Ψ with diameter less then ε1(δ).

Then the family Φ is faithful on W for calculation of Hausdorff - Bezikovich dimension,

i. e., dimH E = dimH(E,Φ), ∀E ⊂ W.

Proof. It is clear that dimH(E) ≤ dimH(E,Φ), ∀E ⊂ W. Let us prove dimH(E) ≥

dimH(E,Φ).

Let α and δ be arbitrary real numbers with 0 < δ < α. Let {Ij}j∈N be an arbitrary

ε-covering of E by subsets from Ψ with ε ≤ ε1(δ). From assumptions of the theorem it
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follows that there exist no more then f(|Ij|) subsets

∆
Ij
1 , ∆

Ij
2 , . . . , ∆

Ij
l(Ij)

from Φ with |∆Ij
i | ≤ |Ij| for

i ∈ {1, ..., l(Ij)} , Ij ∩ E ⊂
l(Ij)⋃
i=1

∆
Ij
i .

Therefore, we have

|∆Ij
i |α ≤ |Ij|α with i ∈ {1, ..., l(Ij)} and

l(Ij)∑
i=1

|∆Ij
i |α ≤ f(|Ij|)|Ij|α = f(|Ij|)|Ij|δ|Ij|α−δ.

So, we have ∑
j

l(Ij)∑
i=1

(
∆
Ij
i

)α
≤ C ·

∑
j

|Ij|α−δ

for any α > 0, δ ∈ (0, α), and for an arbitrary ε-covering {Ij}j∈N of E, ε ≤ ε1(δ).

This gives

Hα
ε (E,Φ) ≤

∑
j

l(Ij)∑
i=1

(
|∆Ij

i |
)α
≤ C ·

∑
j

|Ij|α−δ,

for any δ ∈ (0, α), and for an arbitrary ε-covering{Ij}j∈N of set E, ε ≤ ε1(δ). Therefore

Hα
ε (E,Φ) ≤ CHα−δ

ε (E,Ψ), ∀α > 0, ∀δ ∈ (0, α), ∀ε ≤ ε1(δ).

Hence

Hα(E,Φ) ≤ CHα−δ(E,Ψ), ∀α > 0, ∀δ ∈ (0, α). (1.16)

By the faithfulness of Ψ,
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Hα(E,Φ) ≤ C1 ·Hα−δ(E), ∀α > 0, ∀δ ∈ (0, α).

By Theorem (1.1), the family Φ is faithful.

1.4 Hausdorff - Billingsley dimension

In section we review some of the standard definitions and facts about the Billingsley

dimension ([Bil60, Bil61, Bil65]).

Let (Ω,B, µ) be an arbitrary probability space with continuous measure µ (see def-

inition 1.9). Let {x1, x2, . . . , xn, . . .} be discrete stochastic process that is defined on

(Ω,B, µ) and have finite or countable state space σ.

Definition 1.23. The set

{ω : ω ∈ Ω, x1(ω) = α1, x2(ω) = α2, . . . , xn(ω) = αn}

is called n - rank cylinder with base (α1, α2, . . . , αn), αi ∈ σ.

By Φ denote a family of cylinders of all ranks.

Definition 1.24. Let ε be a positive constant. A finite or countable subset {Vi}i∈N ⊂ Φ

is called µ-ε-covering of a set E if E ⊂
⋃
i

Vi and µ(Vi) ≤ ε, ∀i ∈ N.

Definition 1.25. Let α and ε be positive numbers. The α - µ - ε - dimensional Hausdorff

- Billingsley measure of a set E with reference to Φ is defined by

Hµ(E,α, ε,Φ) = inf
∑
i

(µ(Vi))
α,

where the infimum is taken over all µ - ε - coverings {Vj}j∈N of E, Vi ∈ Φ, ∀i ∈ N.
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Definition 1.26. Let α be a positive number. The α - µ - dimensional Hausdorff -

Billingsley measure (Hausdorff - Billingsley measure) of set a E with reference to the Φ

is defined by

Hµ(E,α,Φ) := lim
ε→0

Hµ(E,α, ε,Φ).

Remark 1.6. α - µ - ε - dimensional Hausdorff - Billingsley measure is monotonically

non-decreasing under the condition that ε becomes smaller. Hence the α - µ Hausdorff -

Billingsley measure exists whenever µ-ε-covering exists .

Let us recall some properties of the α - µ Hausdorff - Billingsley measure [Bil61]:

1. If Hµ(E,α,Φ) < +∞, then ∀δ > 0 : Hµ(E,α + δ,Φ) = 0;

2. If Hµ(E,α,Φ) > 0, then ∀δ > 0 : Hµ(E,α− δ,Φ) = +∞.

Definition 1.27. Let (Ω,B, µ) be an arbitrary probability space with continuous mea-

sure µ (see definition 1.9). Let {x1, x2, . . . , xn, . . .} be a discrete stochastic process that

is defined on (Ω,B, µ) and has finite or countable state space σ. Let Φ be a family of

cylinders of all ranks. The Hausdorff - Billingsley dimension of set the E with reference

to the Φ and µ is defined by

dimµ(E,Φ) = inf{α : Hµ(E,α,Φ) = 0}.

From now on we make the assumption:

µ {ω : xn(ω) = αn, n = 1, 2, ...} = 0, ∀{αn}n∈N. (1.17)

Remark 1.7. Using (1.17), we see that Hµ(E,α,Φ) = 0, ∀α > 1, ∀E ∈ Ω. By the

previous statement

0 ≤ dimµ(E,Φ) ≤ 1,∀E ∈ Ω.
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Let ω ∈ Ω and

∆n(ω) = {ω′ : xk(ω′) = xk(ω), k = 1, 2, . . . , n}, n ∈ N,

in other words, {∆n(ω)}n∈N is a family of cylinders with point ω. P. Billingsley proved

the following too results. These results will be intensively used in a sequel.

Theorem 1.3 ([Bil61]). Let δ ≥ 0. Then

dimµ

({
ω : lim inf

n→∞

ln ν(∆n(ω))

lnµ(∆n(ω))
≤ δ

}
,Φ

)
≤ δ.

Theorem 1.4 ([Bil61]). Let δ ≥ 0. If

E ⊂
{
ω : lim inf

n→∞

ln ν(∆n(ω))

lnµ(∆n(ω))
≥ δ

}
,

Then

dimµ (E,Φ) ≥ δ dimν (E,Φ) .

We propose “the almost Cantor set” below as an example of the problem with Defi-

nition 1.6. Let us stress that the Hausdorff measure of the Cantor set equals to 1 (see

[Fal04, Example 2.7]).

Example 1.1. Suppose (M, ρ) = R1 and W = [0, 1],

C∗ =

{
x : x =

∞∑
k=1

αk
3k

; αk ∈ {0, 2} if k ∈ N\{i : i = 10n, n ∈ N}

and αk = 0 if k ∈ {i : i = 10n, n ∈ N}

}
;

Then
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Hα(C∗) =

 0, if α ≥ log3 2;

+∞, if α < log3 2.
(1.18)

Proof. Let µξ be the probability measure corresponding to the distribution of the random

variable

ξ =
∞∑
k=1

ξk
3k
,

where ξk are independent random variables with following distributions:

if k ∈ N\{i : i = 10n, n ∈ N} then ξk are equal to 0 or 1 with probability 1
2
;

if k ∈ {i : i = 10n, n ∈ N} then ξk are equal to 0 with probability 1.

Let ∆n(x) be 3-adic cylinder (see the next section, formula 1.7) of rank n that contains

a point x. By construction, we have

µξ(∆n(x)) = 2−(n−[log10(n)]) and λ(∆n(x)) = 3−n,

where x ∈ C∗. Hence

lim
n→∞

lnµξ(∆n(x))

lnλ(∆n(x))
=

log 2

log 3
,∀x ∈ C∗. (1.19)

Using Theorem 1.3 and Theorem 1.4, we get

Hα(C∗) =

 0, if α > log3 2;

+∞, if α < log3 2.

Suppose ε > 0 and k0 := inf
{
k ∈ N : 1

3k
≤ ε
}
; then the set C∗ can be covered by

2k0−[log2 k0] cylinders with length 1
3k0

. The α-volume of this ε-covering is equal to

A(ε) := 2k0−[log2 k0]

(
1

3k0·α0

)
= 2−[log2 k0] ≤ 1

k0 − 1
.

By definition of the α− ε - Hausdorff measure (see definition 1.4), we have
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Hα0
ε (C∗) ≤ A(ε) ≤ 1

k0 − 1
→ 0(ε→ 0).

Taking into account the previous inequality and the definition of Hausdorff measure (see

definition 1.5), we obtain

Hα0(C∗) = 0.

This completes the proof.
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Chapter 2

Fine fractal properties of probability

measures generated by Cantor series

expansions and their applications

2.1 Sharp conditions for the Hausdorff dimension faith-

fulness of the Cantor series coverings

Let us recall the definition of Cantor series expansion.

Definition 2.1. For a given sequence {nk}∞k=1 with nk ∈ N\{1}, k ∈ N the expression of

x ∈ [0, 1] in the following form

x =
∞∑
k=1

αk
n1 · n2 · . . . · nk

=: ∆α1α2...αk..., αk ∈ {0, 1, ..., nk − 1}

is said to be the Cantor series expansion of x.

These expansions, which have been initially studied by G. Cantor in 1869 (see, e.g.,

[Can69]), are natural generalizations of the classical s-adic expansion for reals. Cantor
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series expansions have been intensively studied from different points of view during the

last century (see, e.g., [Man10, Sch95] and references therein).

We will denote by Ak the family of the k-th rank semi-closed intervals (cylinders),

i.e.,

Ak := {E : E = ∆α1α2...αk , αi ∈ {0, ..., ni − 1}, i = 1, 2, ..., k}

with

∆α1α2...αk :=

{
x : x ∈

[
k∑
i=1

αi
n1n2 . . . ni

,
1

n1n2 . . . nk
+

k∑
i=1

αi
n1n2 . . . ni

)}
.

Let A be the family of all possible semi-closed intervals (cylinders), i.e.,

A := {E : E = ∆α1α2...αk , k ∈ N, αi ∈ {0, ..., ni − 1}, i = 1, 2, ..., k} .

Remark 2.1. The conditions of proposition 1.1 are not satisfied even in the case of “frac-

tional” covering, i.e., the family of Q̃∗-cylinders (see 1.2) such that

Q̃∗ =



1
2

1
3

. . . 1
n+1

. . .

1
2

1
3

. . . 1
n+1

. . .

1
3

. . . 1
n+1

. . .

. . . . . . . . .

1
n+1

. . .

. . .


.

Main result of the present section is a sharp condition for the Hausdorff dimension

faithfulness of the Cantor series coverings A. To the best of our knowledge this theorem

gives the first necessary and sufficient condition of the faithfulness for a class of covering

families containing both faithful and non-faithful ones.
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Theorem 2.1. The family A of Cantor coverings of the unit interval is faithful for the

Hausdorff dimension calculation if and only if

lim
k→∞

lnnk
lnn1 · n2 · . . . · nk−1

= 0. (2.1)

2.1.1 Sufficient condition

Proof. Let (2.1) holds. It is enough to prove that

dimH(E) ≥ dimH(E,A), ∀E ⊂ [0, 1).

Let I be an arbitrary interval. Then there exists a cylinder of k = k(I)-th rank

∆(k(I)) = ∆α1...αk(I) ∈ A such that:

1) ∆α1...αk(I) ⊂ I;

2) any interval of (k(I)− 1)-th rank is not a subset of I.

The interval I contains at most 2 · nk(I) cylinders from Ak. Hence I can be covered by

f(|I|) := 2 · nk(I) + 2 cylinders from Ak. Therefore,

|∆(k(I))| ≤ |I| < f(|I|) · |∆(k(I))| . (2.2)

Let us prove the following additional lemma.

Lemma 2.1. Let C be an arbitrary positive constant. Then the equality

lim
k→∞

lnnk∑k−1
i=1 lnni

= 0

holds if and only if for any positive δ there exists k0(δ) ∈ N such that ∀k > k0(δ) :

(2 · nk + 2) ·
(

2 · nk + 2

n1 · n2 · ... · nk−1 · nk

)δ
≤ C.

43



Proof. Let C be a positive constant. If the equality

lim
k→∞

lnnk∑k−1
i=1 lnni

= 0

holds, then for every real number δ > 0, there exists a natural number k1(δ) such that

for all k > k1(δ) we have

lnnk∑k−1
i=1 lnni

≤ δ

2
.

This gives

lnnk ≤ ln

(
k−1∏
i=1

ni

) δ
2

and
nk

(n1 · n2 · ... · nk−1)
δ
2

≤ 1,

for all k > k1(δ). Therefore, we have

(2nk + 2) ·
(

2 · nk + 2

n1 · n2 · ... · nk−1 · nk

)δ

≤ 4 · nk ·
(

4 · nk
n1 · n2 · ... · nk−1 · nk

)δ
=

= 41+δ

(
nk

(n1 · n2 · ... · nk−1)δ

)

≤ 41+δ

(
nk

(n1 · n2 · ... · nk−1)
δ
2

· 1

(n1 ≤ ·n2 · ... · nk−1)
δ
2

)

≤ 41+δ

(
1

(n1 · n2 · ... · nk−1)
δ
2

)
→ 0 (k →∞).
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Hence, for a given real number C>0, there exists k0(δ) > k1(δ) such that for all k > k0(δ)

we have

(2 · nk + 2) ·
(

2 · nk + 2

n1 · n2 · ... · nk−1 · nk

)δ

≤ 41+δ

(
1

(n1 · n2 · ... · nk−1 · nk)
δ
2

)
≤ C,

which proves the first part of the lemma.

Suppose that for a given positive constant C and for all δ > 0, there exists k0(δ) such

that ∀k > k0(δ) :

(2 · nk + 2) ·
(

2 · nk + 2

n1 · n2 · ... · nk−1 · nk

)δ
≤ C.

Hence, we have

nk ·
(

2 · nk
n1 · n2 · ... · nk−1 · nk

)δ
≤ C.

Therefore, for all δ > 0, there exists k0(δ) such that for all k > k0(δ) we have

nk ≤
1

2δ
C(n1 · n2 · ... · nk−1)δ ⇔ lnnk ≤ ln

(
C (n1 · n2 · ... · nk−1)δ

)
.

Hence,

lnnk
ln(n1 · n2 · ... · nk−1)

≤ lnC

ln(n1 · n2 · ... · nk−1)
+ δ, ∀δ > 0, ∀k > k0(δ).

Clearly,
lnC

ln(n1 · n2 · ... · nk−1)
→ 0 (k →∞),

and, therefore,

lim
k→∞

lnnk∑k−1
i=1 lnni

= 0,

which proves Lemma 2.1 .
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Therefore, for every δ > 0, there exists a natural number k0(δ) such that for all

k > k0(δ) we have

f(|I|) · |I|δ ≤ (2 · nk + 2) ·
(

2 · nk + 2

n1 · n2 · ... · nk−1 · nk

)δ
≤ C.

Hence from Lemma 1.2 it follows that A is faithful for the Hausdorff dimension calcula-

tion.

2.1.2 Necessary condition

Proof. We will prove the following statement. If

lim
k→∞

lnnk
lnn1 · n2 · . . . · nk−1

=: C > 0, (2.3)

then A is non-faithful for the Hausdorff dimension calculation. We shall construct a set

T = T (C) with the following properties:

1) dimH(T ) ≤ 2

2 + C
;

2) dimH(T,A) ≥ 4 + C

4 + 3C
.

From (2.3) it follows that there exists a subsequence {ki}i∈N such that for every δ ∈ (0, C),

there exists natural number N0(δ) such that for all ki > N0(δ) we have

(n1n2 . . . nki−1)C−δ ≤ nki ≤ (n1n2 . . . nki−1)C+δ. (2.4)
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It is clear that for ε > 0, there is natural number N1(ε) such that for all k > N1(ε) we

have
1

n1 · n2 · . . . · nk−1

< ε. (2.5)

Let N2(ε, δ) := max{N0(δ), N1(ε)}. Let us choose a subsequence
{
k′j
}
j∈N from the se-

quence {ki}i∈N with the following property:

ln(nk′j−1+1 . . . nk′j−1)

ln(n1n2...nk′j−1−1nk′j−1
nk′j−1+1 . . . nk′j−1)

> 1− C

4
. (2.6)

Since for every natural number j there is i such that j < i and

ln(n1 · n2 · ... · nkj)
ln(n1 · n2 · ... · nkj · nkj+1 · nkj+2 · . . . · nki)

≤ C

4
,

it follows that a sequence
{
k
′
j

}
j∈N with condition (2.6) always exists. We will use the

following set T :

T :=

{
x : x ∈ [0, 1], x =

∞∑
k=1

αk(x)∏k
i=1 ni

, αk(x) ∈
{

0, ...,
[√
nk
]}

if k ∈ {k′j}, and αk(x) ∈ {0, ..., nk − 1} if , k /∈ {k′j}
}
.

Firstly let us show that

dimH(T ) ≤ 2

2 + C
. (2.7)

Let k′j > N2(ε, δ). The set T can be covered by n1 ·n2 · . . . ·nk′j−1 semi-closed intervals

and each of them is a union of
[√

nk′j

]
+1 sets from Ak′j . The α-volume of this ε-covering

is equal to
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n1n2 . . . nk′j−1


[√

nk′j

]
+ 1

n1n2 . . . nk′j

α

.

From (2.4) it follows that

n1n2 . . . nk′j−1

([√
nk′
j

]
+1

n1n2...nk′
j

)α

≤ 2α(n1n2 . . . nk′j−1)1− 1
2
α(C−δ)−α.

Suppose

1− 1

2
α(C − δ)− α < 0,

then

Hα
ε (T ) ≤ lim

j→∞
2α(n1n2...nk′j−1)1− 1

2
α(C−δ)−α = 0.

Therefore

Hα
ε (T ) = 0, ∀α > 2

C − δ + 2
, ∀ε > 0, ∀δ > 0.

Hence

dimH T ≤
2

C − δ + 2
, ∀δ > 0.

Therefore

dimH T ≤
2

C + 2
.

Now let us show that

dimH(T,A) ≥ 4 + C

4 + 3C
.

Let

{k′′j } = {k′j}
⋂
{N2(ε, δ) + 1, N2(ε, δ) + 2, ...}.

Let µ = µN2(ε,δ) be the probability measure corresponding to the random variable

ξ =
∞∑
k=1

ξk∏k
i=1 ni

,
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where ξk are independent random variables; if k ∈ {k′′j }, then ξk takes values 0, 1, ..., [
√
nk]

with probabilities 1

[
√
nk]+1

; if k /∈ {k′′j }j∈N, then ξk takes values 0, 1, ..., nk−1 with prob-

abilities 1
nk
. So

|∆α1α2...αk | =
1

n1n2...nk

for any ∆α1α2...αk from Ak, and

µ(∆α1α2...αk) =
1

ϕ1ϕ2...ϕk
,

where ϕt = nt if t /∈ {k′′j }j∈N and ϕt =
[√
nt
]

+ 1 if t ∈ {k′′j }j∈N, ∀t ∈ N.

Let us show that

ln(µ(∆α1α2...αk))

ln(|∆α1α2...αk |)
≥ 4 + C − 2δ

4 + 3C + 4δ
, ∀k ∈ N. (2.8)

Taking into account properties of {k′′j }j∈N, one can prove by induction on j that

ln
(
ϕ1ϕ2...ϕk′′j

)
ln
(
n1n2n3...nk′′j

) ≥ 4 + C − 2δ

4 + 3C + 4δ
, ∀j ∈ N. (2.9)

For the case j = 1:

ln
(
ϕ1ϕ2...ϕk′′1−1ϕk′′1

)
ln
(
n1n2n3...nk′′1−1nk′′1

) =
ln

(
n1n2n3...nk′′1−1

([√
nk′′1

]
+1

))
ln
(
n1n2n3...nk′′1−1nk′′1

) ≥

≥
ln
(
n1n2n3...nk′′1−1

)1+C2 − δ2
ln
(
n1n2n3...nk′′1−1

)1+C+δ =
1+C

2
− δ

2

1+C+δ
,

where (in the inequalities) we have used (2.4).

Therefore, we have
ln
(
ϕ1ϕ2...ϕk′′1−1ϕk′′1

)
ln
(
n1n2n3...nk′′1−1nk′′1

) − 4+C−2δ
4+3C+4δ

≥

≥ 1+C
2
− δ

2

1+C+δ
− 4+C−2δ

4+3C+4δ
= C(C+3d)

2(1+C+d)(4+3C+4d)
> 0.

Let us now assume that (2.9) holds for j = p and prove that it is also holds for the
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case j = p+ 1:
ln
(
ϕ1ϕ2...ϕk′′p+1−1ϕk′′p+1

)
ln
(
n1n2n3...nk′′p+1−1nk′′p+1

) =

ln
((
ϕ1ϕ2...ϕk′′p−1ϕk′′p

) (
nk′′p+1...nk′′p+1−1

)([√nk′′p+1

]
+ 1
))

ln
((
n1n2n3...nk′′p−1nk′′p

) (
nk′′p+1...nk′′p+1−1

)
nk′′p+1

) . (2.10)

Using (2.6) and the elementary statement: if 0 < a < b, and 0 < c < d, then a+c
b+c

< a+d
b+d

we get that the right hand side of (2.10) is larger or equal to

ln

(ϕ1ϕ2...ϕk′′p−1ϕk′′p

)(
n1...nk′′p+1−1

)1−C4
([√

nk′′p+1

]
+1

)
ln

(n1n2n3...nk′′p−1nk′′p

)(
n1...nk′′p+1−1

)1−C4
nk′′p+1

 ≥

≥
ln

(ϕ1ϕ2...ϕk′′p−1ϕk′′p

)(
n1...nk′′p+1−1

)1+C4 −
δ
2


ln

(n1n2n3...nk′′p−1nk′′p

)(
n1...nk′′p+1−1

)1+3
4C+δ

 =

ln
(
ϕ1ϕ2...ϕk′′p−1ϕk′′p

)
+ln

(
n1...nk′′p+1−1

)1+C4 −
δ
2

ln
(
n1n2n3...nk′′p−1nk′′p

)
+ln

(
n1...nk′′p+1−1

)1+3
4C+δ

.

From now on, set

W :=
ln
(
ϕ1ϕ2...ϕk′′p−1ϕk′′p

)
+ ln

(
n1...nk′′p+1−1

)1+C
4
− δ

2

ln
(
n1n2n3...nk′′p−1nk′′p

)
+ ln

(
n1...nk′′p+1−1

)1+ 3
4
C+δ

.

From the induction assumption it follows that

ln

(
n1...nk′′p+1−1

)1+C4 −
δ
2

ln

(
n1...nk′′p+1−1

)1+3
4C+δ

=
1+C

4
− δ

2

1+ 3
4
C+δ

≤
ln
(
ϕ1ϕ2...ϕk′′p−1ϕk′′p

)
ln
(
n1n2n3...nk′′p−1nk′′p

) .

Combing the above and a property of mediant we get

W ≤
ln
(
ϕ1ϕ2...ϕk′′p−1ϕk′′p

)
ln
(
n1n2n3...nk′′p−1nk′′p

) .
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Consequently, we have

ln
(
ϕ1ϕ2...ϕk′′j

)
ln
(
n1n2n3...nk′′j

) ≥ 4 + C − 2δ

4 + 3C + 4δ
, ∀j ∈ N,

which completes the proof of (2.9).

Let k ∈ (k′′j , k
′′
j+1). Then

ln (µ (∆α1α2...αk))

ln (|∆α1α2...αk |)
≥

ln
(
µ
(

∆α1α2...αk′′
j

))
ln
(∣∣∣∆α1α2...αk′′

j

∣∣∣) ≥ 4 + C − 2δ

4 + 3C + 4δ
, ∀k ∈ N.

Let {∆′i}i∈N be an arbitrary ε-covering of T and ∆′i ∈ A, ∀i ∈ N. Then, using (2.9)

we get
4 + C − 2δ

4 + 3C + 4δ
≤ ln(µ(∆′i))

ln(|∆′i|)
< 1

which implies that

µ(∆′i) ≤ |∆′i|
4+C−2δ
4+3C+4δ .

Let α ∈
[
0, 4+C−2δ

4+3C+4δ

)
. Then we have

1 = µ(T ) ≤
⋃
i

µ(∆′i) ≤
∑
i

|∆′i|
4+C−2δ
4+3C+4δ ≤

∑
i

|∆′i|
α
.

Hence for any real numbers δ > 0, ε > 0 and α ∈
[
0, 4+C−2δ

4+3C+4δ

)
, and for any ε-covering

{∆′i} of the set T by cylinders ∆′i ∈ A we have

∑
i

|∆′i|
α ≥ 1.

Therefore

Hα
ε (T,A) ≥ 1, ∀δ > 0, ∀ε > 0, ∀α ∈

[
0,

4 + C − 2δ

4 + 3C + 4δ

)
.
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Consequently

Hα(T,A) ≥ 1, ∀δ > 0, ∀α < 4 + C − 2δ

4 + 3C + 4δ
.

Hence, we have

dimH(T,A) ≥ 4 + C − 2δ

4 + 3C + 4δ
, ∀δ > 0,

and an inequality

dimH(T,A) ≥ 4 + C

4 + 3C
,

which completes the proof.

2.2 Hausdorff dimension of the probability distribu-

tions of the Random Cantor expansions

Fractal analysis of singularly continuous distributions helps to get essential properties

of such distributions. The first step of an analysis is the study of metric, topological

and fractal properties of the spectrum (minimal closed support of a distribution) of

a distribution. It should be mentioned here that the determination of the Hausdorff-

Besocovitch dimension even for the spectrum is often a non-trivial problem.

On the other hand, the topological support is a rather “rough” characteristic for

a measure with a complicated local structure. For instance, the subfamily of infinite

Bernoulli convolutions: ξ(p) =
∞∑
k=1

ξk
2k
, where ξk is a sequence of independent random

variables taking the values 0 and 1 with probabilities p ∈ (0, 1
2
) and 1−p correspondingly.

Two distributions of random variables ξ(p1) and ξ(p2) (p1 6= p2) are mutually singular

and they are singular with respect to Lebesgue measure. Nevertheless, the spectrum of

every distribution ξ(p) coincides with [0, 1].
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Let us recall that for a given probability measure µ the number

dimH µ = inf{dimH(E) : µ(E) = 1}

is said to be the Hausdorff dimension of the measure µ. In the case of singularity this

number is a rather important characteristic of a probability measure (see, e.g., [AT05]).

Applying the latter theorem and methods from [AT05], we will get the Hausdorff

dimension of the probability distribution µξ of the random variable ξ with independent

digits of the Cantor series expansion (Random Cantor expansion), i.e.,

ξ =
∞∑
k=1

ξk
n1 · n2 · . . . · nk

, (2.11)

where independent random variables ξk take values 0, 1, ..., nk − 1 with probabilities p0k,

p1k, ..., pnk−1,k, respectively (
∑nk−1

i=0 pi,k = 1 and 1 < nk ∈ N, ∀k ∈ N).

We will need the following convention: 0 ln 0 := 0.

Theorem 2.2. Let

∞∑
k=1

 lnnk

ln
k∏
i=1

ni


2

<∞, (2.12)

then the Hausdorff dimension of the probability distribution µξ of the random variable ξ

with independent digits of the Cantor series expansion is equal to

dimH(µξ) = lim
k→∞

Hk

ln (n1n2...nk)
,

where Hk =
k∑
j=1

hj, ∀k ∈ N and hj = −
nj−1∑
i=0

pij ln pij, ∀j ∈ N.

Proof. By Jessen-Wintner’s theorem ([JW35]), the random variable ξ has a pure type.

Without loss of generality we can assume that µξ is a continuous measure (otherwise
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equation (2.12) is true).

Let x be an arbitrary point from the set Sµξ\{1}. Then there exists a cylinder ∆k(x) =

∆α1(x)α2(x)...αk(x) ∈ Ak such that x ∈ ∆k(x). Let λ be Lebesgue’s measure on [0, 1]. Then

we have

µξ(∆k(x)) = pα1(x)1 · pα2(x)2 · ... · pαk(x)k > 0,

λ(∆k(x)) =
1

n1n2...nk
.

Let us consider the following expression

lnµξ(∆k(x))

lnλ(∆k(x))
=

k∑
j=1

ln pαj(x)j

− ln (n1n2...nk)
.

Throughout the proof, {ηk}k∈N denotes an auxiliary sequence of independent discrete ran-

dom variables on probability space ([0, 1], B ([0, 1]) , µξ) ( B ([0, 1]) is a Borel σ-algebra).

Let

{ηk}k∈N = {ηk(y)}k∈N := {ln pαk(y)k}k∈N,

i.e., ηj takes values

ln p0j, ln p1j, ..., ln pnj−1,j

with probabilities p0,j, p1,j, ..., pnj−1,j. It is clear that

Eηj =

nj−1∑
i=0

pij ln pij = −hj

and

|Eηj| ≤ lnnj.

Let us show that

Eη2
j =

nj−1∑
i=0

pij ln2 pij ≤ max{4, ln2 nj}.
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To this end let z0 ∈ R \ {1} be the non-trivial root of equation

ln(z)− 2z + 2 = 0.

Here ϕ : [0, 1]→ R denotes the function such that

ϕ(z) =

 z ln2 z, if z ∈ [0, z0);

−z0 ln2 z0 · z−z01−z0 + z0 ln2 z0, if z ∈ [z0, 1].

From the definition of ϕ(z) it follows that

z ln2 z ≤ ϕ(z), ∀z ∈ [0, 1].

The function ϕ(z) is convex on [0, 1]. Therefore,using the Jensen’s inequality we have

Eη2
j ≤

nj−1∑
i=0

ϕ(pij) ≤ njϕ

(
1

nj

)
≤ max{4, ln2 nj}.

Hence,

D(ηj) = Eη2
j − (Eηj)

2 ≤ 2 max{4, ln2 nj}.

Applying Kolmogorov’s theorem ([Shi96, Ch IV, §3.2]) and the assumption (2.12) of the

theorem, we get for µξ-almost all points x ∈ [0, 1]:

lim
k→∞

(η1(x) + η2(x) + ...+ ηk(x))− E (η1(x) + η2(x) + ...+ ηk(x))

ln(n1n2...nk)
= 0. (2.13)

We remark that

E(η1 + η2 + ...+ ηk) = −Hk,

and

λ(∆k(x)) =
1

n1n2...nk
.
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Let D := lim
k→∞

Hk
ln (n1n2...nk)

and let us consider the set

T =

{
x : lim

k→∞

(
η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
− Hk

− lnλ(∆k(x))

)
= 0

}

=

{
x : lim

k→∞

(
η1 + η2 + ...+ ηk −M(η1 + η2 + ...+ ηk)

ln (n1n2...nk)

)
= 0

}
.

Since µξ(T ) = 1 , we deduce that dimµξ(T,A) = 1. Let

T1 =

{
x : lim

k→∞

(
η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
− Hk

− lnλ(∆k(x))

)
= 0

}
;

T2 =

{
x : lim

k→∞

η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
≤ lim

k→∞

Hk

− lnλ(∆k(x))

}

=

{
x : lim

k→∞

lnµξ(∆k(x))

lnλ(∆k(x))
≤ D

}
;

T3 =

{
x : lim

k→∞

η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
≥ lim

k→∞

Hk

− lnλ(∆k(x))

}

=

{
x : lim

k→∞

lnµξ(∆k(x))

lnλ(∆k(x))
≥ D

}
.

It is obvious that T ⊂ T1. Let us show inclusions T1 ⊂ T3 and T ⊂ T2.

We will use the well known inequality

lim
k→∞

(xk − yk) ≤ lim
k→∞

(xk)− lim
n→∞

(yk),

(except the cases "∞−∞" and "−∞+∞").

If x ∈ T1, then

lim
k→∞

lnµξ(∆k(x))

lnλ(∆k(x))
−D =

= lim
k→∞

(
η1(x) + η2(x) + ...+ ηn(x)

lnλ(∆k(x))

)
− lim

k→∞

Hk

− lnλ(∆k(x))
≥
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≥ lim
k→∞

(
η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
− Hk

− lnλ(∆k(x))

)
= 0.

Therefore, x ∈ T3. If x ∈ T , then

lim
k→∞

(
η1(x)+η2(x)+...+ηk(x)

lnλ(∆k(x))
− Hk
− lnλ(∆k(x))

)
= 0 and

lim
k→∞

Hk

− lnλ(∆k(x))
− lim

n→∞

(
η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))

)
≥

≥ lim
k→∞

(
Hk

− lnλ(∆k(x))
− η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))

)
=

= − lim
k→∞

(
η1(x) + η2(x) + ...+ ηk(x)

lnλ(∆k(x))
− Hk

− lnλ(∆k(x))

)
= 0

Hence x ∈ T2.

Since T ⊂ T2, we have

dimλ(T,A) ≤ dimλ(T2,A).

From Theorem 1.3 it follows that dimλ(T2,A) ≤ D. So,

dimλ(T,A) ≤ D.

From Theorem 1.4 and the inclusion T ⊂ T3, we deduce that

dimλ(T,A) ≥ D · dimµξ(T,A) = D · 1 = D.

So,

dimλ(T,A) = D.

Since λ is Lebesgue measure on [0, 1], we have dimH(T,A) = dimλ(T,A) = D.
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From our assumption (2.12) it follows that

lim
k→∞

lnnk
ln (n1n2...nk)

= 0.

According to theorem 2.1, we have that the family A of Cantor coverings is faithful for

the Hausdorff-Besicovitch dimension calculation. So,

dimH(T,A) = dimH(T ) = D.

We now prove that the above constructed set T is the "smallest" support of the

measure µξ in the sense of the Hausdorff-Besicovitch dimension. Let M be an arbitrary

support of the measure µξ. It is easily seen that the set M1 := M ∩ T is also a support

of the same measure µξ, and M1 ⊂M . So,

dimH(M1) ≤ dimH(M)

and M1 ⊂ T . We shall now prove that

dimH(M1) = dimH(T ).

From M1 ⊂ T it follows that dimH(M1) ≤ dimH(T ) = D. On the other hand, we have

M1 ⊂ T ⊂ T3 =

{
x : lim

k→∞

lnµξ(∆k(x))

lnλ(∆k(x))
≥ D

}
.

Therefore, by using the faithfulness of the family of Cantor coverings and Theorem 1.4,

we conclude

dimH(M1) = dimλ(M1,A) ≥ D · dimµξ(M1,A) = D · 1 = D.
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So, dimH(M1) = D = dimH(T ).

2.3 Faithfulness and comparability of covering families

The following two definitions provide a natural connection between the faithfulness prop-

erty of covering families and comparability property of Hausdorff measures.

Definition 2.2. A fine family of coverings ΦW of bounded set W is called comparable

if ∀α > 0 the correspondent Hausdorff measure Hα(·,ΦW ) is comparable with Hausdorff

measure (Definition 1.21) .

Definition 2.3. A fine family of coverings ΦW of bounded setW is called non-comparable

if there is α > 0 such that the correspondent Hausdorff measure Hα(·,ΦW ) is non-

comparable with Hausdorff measure (Definition 1.22).

Remark 2.2. By the definition, a arbitrary comparable family of covering ΦW is faithful

for the calculation of Hausdorff dimension on W .

Remark 2.3. Under the assumptions of proposition 1.1, a fine family of coverings is not

only faithful for the calculation of Hausdorff dimensionon [0, 1] but also comparable.

Now let us consider examples which show essential differences between the notions of

faithful family of coverings and comparable family of coverings.

Theorem 2.3. Let nk = 4k, ∀k ∈ N and let Φ be the fine family of coverings generated

by the corresponding Cantor series expansion. Then Φ is faithful for the calculation of

Hausdorff dimensionon [0, 1) and non-comparable.

Proof. Let us consider a set

A =

{
x ∈ [0, 1] : x =

∞∑
k=1

αk(x)∏k
i=1 ni

, αk(x) ∈ {0, 1, ..., 2k − 1}, ∀k ∈ N
}
,
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and prove that

dimH A =
1

2
, H

1
2 (A,Φ) ≥ 1 and H

1
2 (A) = 0.

Let λ be the Lebesgue measure on the unit interval and let µξ be the probability measure

of the random variable

ξ =
∞∑
k=1

ξk∏k
i=1 ni

,

where ξk are independent random variables taking values 0, 1, ..., 2k−1 with probabilities

1
2k
. by Theorems 1.3 and 1.4 and since A is speculum of the measure µξ, we see that

dimH(A,Φ) = 1
2
. By Theorem 2.1, the family Φ faithful for the calculation of Hausdorff

dimensionon [0, 1). So,

dimH(A) = dimH(A,Φ) =
1

2
.

Let {Ej}j∈N be an arbitrary ε-covering of the set A by cylinders from Φ. Without

loss of generality we may assume that Ej ∩ A 6= ∅, i.e., Ej = ∆nj(x) for some x ∈ A.

Applying the mass distributional principle, we have

1 = µ(A) ≤ µ(
⋃
j

Ej) ≤
∑
j

µ(Ej) =
∑
j

|Ej|
1
2

for any ε-covering of A by cylinders from Φ. Therefore, H
1
2 (A,Φ) ≥ 1.

The set A can be covered by 21 · 22 · . . . · 2k−1 · 1 intervals (each of them is a union

of 2k k-th rank cylinders) with length 2−k
2 . The 1

2
-volume of this covering is equal to

2
(k−1)k

2 ·
(

2−k
2
) 1

2
, which tends to 0 as k → ∞. Therefore, H

1
2 (A) = 0, and the proof is

complete.

The following example shows that a faithful family of covering can be "extremely

non-comparable".
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Theorem 2.4. Let nk = 4k and let Φ be the family of coverings generated by the corre-

sponding Cantor series expansion. Let

T =

{
x ∈ [0, 1] : x =

∞∑
k=1

αk(x)∏k
i=1 4i

with αk(x) ∈ {0, ...,
√
nk − 1} if k 6= 2s and

αk(x) ∈ {0, ..., k ·
√
nk − 1 } if k = 2s, s ∈ N

}
.

Then the family Φ is faithful for the Hausdorff dimension calculation on [0, 1] and

dimH T =
1

2
, H

1
2 (T,Φ) = +∞, H

1
2 (T ) = 0.

Proof. Let µξ be the probability measure with respect to the random variable

ξ =
∞∑
k=1

ξk∏k
i=1 ni

,

where ξk are independent random variables with following distributions:

if k 6= 2s, then ξk takes values 0, 1, ..., 2k − 1 with probabilities 1
2k
;

if k = 2s, then ξk takes values 0, 1, ..., k · 2k − 1 with probabilities 1
k·2k .

Let ∆n(x) be the n-th rank cylinder of the Cantor series expansion containing x. From

the construction of ξ it follows that for any x ∈ T one has

µξ(∆n(x)) = 2
−
(
n(n+1)

2
+

([log2 n]+1)[log2 n]
2

)
and λ(∆n(x)) = 4−

n(n+1)
2 .

So,

lim
n→∞

lnµξ(∆n(x))

lnλ(∆n(x))
=

1

2
,∀x ∈ T. (2.14)

By Theorems 1.3 and 1.4 and the fact that T is the spectrum of the measure µξ, we
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have

dimH(T,Φ) =
1

2

and the equation

dimH(T ) = dimH(T,Φ) =
1

2

(see Theorem 2.1). For a given m ∈ N let us consider 2m probability measures µj, j ∈

{0, ..., 2m − 1} corresponding to the random variables

ξj =
∞∑
k=1

ξjk∏k
i=1 ni

,

whose independent digits ξjk have the following distributions:

if k 6= 2s, then ξjk takes values 0, 1, ..., 2k − 1 with probabilities 1
2k
;

if k = 2s, s 6= m, then ξjk takes values 0, 1, ..., k · 2k − 1 with probabilities 1
k·2k ;

if k = 2m, then ξjk takes values j ·2k +0, j ·2k +1, ..., (j+1) ·2k−1 with probabilities

1
2k
.

Taking into account inequality lnµj(∆n(x))
lnλ(∆n(x))

≥ 1
2
,∀x ∈ Sj, and applying the mass distri-

bution principle simultaneously for all measures mj, we get H
1
2 (T,A) ≥ 2m.

The length of cylinders of 2m-th rank is 2−2m(2m+1). Let

ε(m) ≤ 2−2m(2m+1).

Then, any set ∆ ∈ Φ with λ(∆) < ε(m) and ∆ ∩ Sj 6= ∅, has an empty intersection with

the spectrum of all other Sl when l 6= j.

Let {Ev}v∈N be some ε(m) - covering of T and Ev ∈ Φ, ∀v ∈ N. Without loss of

generality let every set of the family {Ev}v∈N has not-empty intersection with the interior
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of the set T . For any

Ev, ∃! j ∈ {0, ..., 2m − 1} : Ev ∩ Sj 6= 0.

So {Ev}v∈N can be split into 2m groups such that {Ej
v}v∈N forms a covering of Sj.

Let

∆ ∈ Φ and λ(∆) < ε(m), ∆ ∩ T 6= ∅.

Let n := n(∆) be the rank of ∆. If ∆ ∈ {Ej
v}v∈N, then

µj(∆) = 2
−
(
n(n+1)

2
+

([log2 n]+1)[log2 n]
2

−m
)

and

ln(µj(∆))

ln(λ(∆))
=

ln

(
2
−
(
n(n+1)

2
+

([log2 n]+1)[log2 n]
2

−m
))

ln (2−n(n+1))

=
1

2
+

([log2 n]+1)[log2 n]
2

−m
n(n+ 1)

≥ 1

2
.

So,

µj(∆) ≤ (λ(∆))
1
2 with ∆ ∈ {Ej

v}v∈N.

Let Wj = {v : Ev ∩ Sj 6= ∅}. Therefore,

∞∑
v=1

λ(Ev)
1
2 =

2m−1∑
j=0

∑
v:v∈Wj

λ(Ev)
1
2

≥
2m−1∑
j=0

∑
v:v∈Wj

µj(Ev) ≥
2m−1∑
j=0

1 = 2m.
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So, for any {Ev}v∈N – ε(m) - covering we have

∞∑
v=1

λ(Ev)
1
2 ≥ 2m,

which results H
1
2

ε(m)(T,Φ) ≥ 2m and H
1
2 (T,Φ) ≥ 2m. So,

H
1
2 (T,Φ) = +∞.

On the other hand, the set T can be covered by

21 · 22 · . . . · 22s−1 · 21 · 22 . . . 2s−1 · 1 = 2
(2s−1)2s

2
+

(s−1)s
2

semi-intervals, each of them is a union of 2s22s cylinders from Φ2s with length

(
1

4

) 2s(2s−1)
2

· 2s22s

42s
=

(
1

2

)22s−s

.

The 1
2
-volume of this covering is equal to

2
(2s−1)2s

2
+

(s−1)s
2

(
2−22s+s

) 1
2

= 2−
1
2

(2s−s2) → 0, (s→∞).

Therefore, H
1
2 (T ) = 0.

Remark 2.4. The last proposition shows extreme differences between comparable and

faithful net-coverings and demonstrates that the class of faithful net-coverings is essen-

tially wider then the class of comparable ones. The relation between these two classes is

similar to the relation between bi-Lipshitz transformations and transformations preserv-

ing the Hausdorff dimension (see, e.g., [APT04, APT08] for details). Deeper connections

between faithfulness of net-coverings and the theory of transformations preserving the
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Hausdorff dimension will also be discussed in the forthcoming Section 2.5 .

2.4 Hausdorff dimension of the spectrum of the Ran-

dom Cantor expansions

Let us recall the definition of the Random Cantor expansion. The random variable ξ

ξ =
∞∑
k=1

ξk
n1 · n2 · . . . · nk

, (2.15)

where independent random variables ξk take values 0, 1, ..., nk − 1 with probabilities p0k,

p1k, ..., pnk−1,k, respectively, (
∑nk−1

i=0 pi,k = 1 and 1 < nk ∈ N, ∀k ∈ N) is called Random

Cantor expansion.

Proposition 2.1. Let mk be the number of non-zero elements pij, i ∈ {0, ..., nk − 1}.

Assume that

∞∑
k=1

 lnnk

ln
k∏
i=1

ni


2

<∞. (2.16)

Then the Hausdorff dimension of the spectrum Sξ of the Random Cantor expansion ξ is

equal to

dimH(Sξ) = lim
k→∞

ln (m1m2...mk)

ln (n1n2...nk)
. (2.17)

Proof. The lower estimate of the Hausdorff dimension of the spectrum Sξ follows from

Theorem 2.2. Indeed, let us construct additional measure µξ∗ with the spectrum of µξ.

So, we consider a random variable

ξ∗ =
∞∑
k=1

ξ∗k
n1 · n2 · ... · nk

,

65



where {ξ∗k}k≥1 are independent random variables taking values 0, 1, ..., nk − 1 with prob-

abilities

p∗ik =

 0, if pik = 0;

1
mk
, if pik > 0.

.

By Theorem 2.2 and equality h∗k = −
nk−1∑
i=0

p∗ik ln p∗ik = lnmk, the Hausdorff dimension

of measure µξ∗ is equal to dimH µξ∗ = lim
k→∞

ln(m1·...·mk)
ln(n1·...·nk)

. Therefore

dimH Sξ ≥ lim
k→∞

ln(m1 · ... ·mk)

ln(n1 · ... · nk)
.

On the other hand, the spectrum Sξ can be covered by m1 · m2 · ... · mk interval with

length 1
n1·...·nk

.

The α-volume of this covering is equal to m1 ·m2 · ... ·mk
1

(n1·...·nk)α
. Hence Hα

ε (Sξ) ≤

m1 · m2 · ... · mk
1

(n1·...·nk)α
, ∀ε > 1

(n1·...·nk)
. If α > B := lim

k→∞

ln(m1·...·mk)
ln(n1·...·nk)

then there is

subsequence {ks}s≥1 such that

ln(m1 · ... ·mks)

ln(n1 · ... · nks)
<
B + α

2
, ∀s ∈ N.

It follows that

m1 · ... ·mks

(n1 · ... · nks)
B+α

2

< 1, ∀s ∈ N.

Consequently

lim
s→∞

m1 ·m2 · ...mks

(n1 · n2 · ... · nks)α
= 0.

So,

Hα
ε (Sξ) = 0, ∀ε > 0,∀α > B,

and it follows that Hα(Sξ) = 0,∀α > B. Thus dimH Sξ ≤ B.
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Remark 2.5. From the above it follows that the Hausdorff dimension of the spectrum of

random variable of the Random Cantor expansion ξ equals

lim
k→∞

ln (m1m2...mk)

ln (n1n2...nk)
, (2.18)

when

sup
k∈N

nk <∞.

Moreover, formula (2.18) is true even in the case when (2.16) holds. One can think that

the formula is true without any additional restrictions on {nk}k∈N.

Proposition 2.2. The Hausdorff dimension of the spectrum Sξ of the Random Cantor

expansion ξ does not equal to

lim
k→∞

ln (m1m2...mk)

ln (n1n2...nk)

in general.

Proof. Set

ni = 24·5i−1

, ∀i ∈ N.

Let

pij =
1
√
nj
,∀i ∈

{
0, ...,

√
nj − 1

}
and

pij = 0,∀i ∈
{√

nj, ..., nj − 1
}
,

the spectrum of of the Random Cantor expansion ξ is

T =

{
x : x ∈ [0, 1], x =

∞∑
k=1

αk(x)∏k
i=1 ni

, αk(x) ∈ {0, ...,
√
nk − 1} , ∀k ∈ N

}
.
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Moreover,

lim
k→∞

lnnk
lnn1 · n2 · . . . · nk−1

=

= lim
k→∞

ln 24·5k−1

ln 24 · 24·5 · . . . · 24·5k−2 = lim
k→∞

4 · 5k−1

4 · (1 + 5 + ...+ 5k−2)
=

= lim
k→∞

4 · 5k−1

(5k−1 − 1)
= 4.

By the proof of inequality (2.7), the Hausdorff dimension of the set T satisfies the

equality

dimH(T ) ≤ 2

2 + 4
=

1

3
.

However

lim
k→∞

ln (m1m2...mk)

ln (n1n2...nk)

equals

lim
k→∞

ln
(√

24
√

24·5...
√

24·5k−1

)
ln
(
24 · 24·5 · . . . · 24·5k−1

) =
1

2
.

So,

dimH(Sξ) = dimH(T ) ≤ 1

3
<

1

2
= lim

k→∞

ln (m1m2...mk)

ln (n1n2...nk)
.

2.5 Transformations preserving the Hausdorff dimen-

sion and Random Cantor expansions

The group theoretic approach to geometry (Klein’s programm) is well known. What is the

”fractal geometry” from this point of view? The monograph [Fal04] contains an attempt

to answer the question saying that ”... one approach to fractal geometry is to regard two

sets as ”the same” if there is a bi-Lipschitz mapping between them”, i.e., fractal geometry
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is in this sense the study of invariants of bi-Lipschitz transformations (and, thus, affine

geometry may be considered as a part of fractal geometry). In [APT04] a view on fractal

geometry was proposed in the same spirit, but with a more general definition of allowable

mappings. It was shown that the group G of all DP-transformations (one to one map-

pings which preserve the Hausdorff dimension of every subset) is essentially larger than the

group of bi-Lipschitz transformations, and the smoothness and bi-Lipschitz properties of

transformations are very rough sufficient conditions for dimension preservation. A series

of papers (see, e.g., [APT04], [APT08], and references therein) is devoted to the develop-

ment of a general theory of DP-transformations and to the finding of conditions for the

Hausdorff dimension preservation of special classes of transformations. It can be proven

(see, e.g., [APT08]) that a one-dimensional transformation f is a DP-transformation of

R1 if and only if f preserves the Hausdorff dimension of every subset of any intervals.

So, without loss of generality it is enough to study only DP-transformations of the unit

interval. It is also clear that an arbitrary continuous transformation f of [0, 1] is either

a strictly increasing distribution function F ξ of some random variable ξ or it is of the

form f = 1−F ξ. Because of this reason it is enough to investigate DP-properties of the

distribution functions of random variables ξ whose spectra S ξ coincide with [0, 1] . Ear-

lier such DP-transformations f were studied where both sets N0 =
{
x : f

′
(x) = 0

}
and

N∞ =

{
x : lim

ε→0

f (x+ε)− f(x)
ε

= +∞
}

are either finite or they form an at most countable

set.

A class of distribution functions of random variables with independent s-adic digits

was analyzed in details in [APT08], where necessary conditions and sufficient conditions

for dimension preservation under corresponding probability distribution functions were

found. Relations between the Hausdorff dimension of the corresponding probability mea-

sures, the entropy of probability distributions, and their DP-properties also were discussed

in [APT08]. In particular, it was proven that the superfractality (dimH µ = 1) of a prob-
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ability distribution µ is a necessary condition for the Hausdorff dimension preservation

under the corresponding probability distribution function. Paper [Tor07] contains a gen-

eralization of these results to the case of random variables with independent Q-symbols.

Besides of pure theoretical reasons for the development of the general theory of DP-

transformations (for instance, for the creation of an axiomatic theory of fractal geometry),

there exists an additional reason for such a study connected with the application of DP-

transformations to the construction of new methods for the determination of the Hausdorff

dimension of concrete sets (see, e.g., [APT04]).

In this section we proceed with the study of distribution functions of the Random

Cantor series, i.e.,

ξ =
∞∑
k=1

ξk
n1 · n2 · ... · nk

,

where independent random variables ξk take values 0, 1, ..., nk − 1 with probabilities p0k,

p1k, ..., pnk−1,k, respectively (
∑nk−1

i=0 pi,k = 1 and 1 < nk ∈ N, ∀k ∈ N) Our main aim

is to find conditions for the distribution functions of the Random Cantor series to be

DP-transformations.

We will need the following assumptions: 1)The “matrix” P̃ ∗ = ‖pik‖ does not contain

zeros;

2)
∞∏
k=1

max
i
pik = 0. (In the converse case, the correspondent distributional function is

not a bijection of [0, 1]).

Define

n∗ = sup
k∈N

nk <∞.

Set pj := min
i
pij, ∀j ∈ N and

T (1) =

{
k : k ∈ N, pk <

1

2n∗

}
, T

(1)
k = T (1) ∩ {1, 2, ..., k}.

70



Let

A := lim
k→∞

∑
j∈T (1)

k

ln 1
pj

k
.

Theorem 2.5. Let supnk < ∞. Then the distributional function Fξ of random Cantor

series ξ preserves the Hausdorff dimension of any subset of the unit interval iff

 dimH µξ = 1;

A = 0.
(2.19)

Proof. Sufficient condition. Set dimH µξ = 1 and A = 0. We will need the following

property of entropy

hk ≤ lnnk. (2.20)

Hence the equality dimH µξ = 1 is equivalent to

lim
k→∞

h1 + h2 + ...+ hk
ln (n1 · n2 · ... · nk)

= 1, (2.21)

where hj = −
nj−1∑
i=0

pij ln pij (see Theorem 2.2).

Let ε be an arbitrary positive number such that ε < 1
2n∗

. Let us consider the following

sets:

T+
ε,k =

{
j : j ∈ N, j ≤ k,

∣∣∣∣pij − 1

nj

∣∣∣∣ ≤ ε, ∀i ∈ {0, ..., nk − 1}
}
,

T−ε,k = {1, 2, ..., k} \ T+
ε,k.

The following lemma helps to analyze the “density” of the set T+
ε,k in N. Let | E | be

a number of elements in a subset E of natural numbers (E ⊂ N).

Lemma 2.2. If condition (2.19) holds, then lim
k→∞

|T+
ε,k|
k

=1.

Proof. Suppose, contrary to our claim, that lim
k→∞

|T+
ε,k|
k
6= 1.By the above, there is a sub-
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sequence {km}m∈N such that

lim
m→∞

|T+
ε,km
|

km
= C < 1.

By the inequality (2.20), for every ε > 0 there is a positive constant δ = δ(ε) such that

hj ≤ (1− δ) ln kj for every j ∈ T−ε,k. Consequently

km∑
j=1

hj

ln(n1 · ... · nkm)
=

∑
j∈T+

ε,km

hj +
∑

j∈T−ε,km

hj

ln(n1 · ... · nkm)

≤

∑
j∈T+

ε,km

lnnj + (1− δ)
∑

j∈T−ε,km

lnnj

ln(n1 · ... · nkm)
≤ 1− δ

∑
j∈T−ε,k

lnnj

ln(n1 · ... · nkm)
.

So,
km∑
j=1

hj

ln(n1 · ... · nkm)
≤ 1− δ

|T−ε,km| ln 2

km lnn∗
. (2.22)

By the inequality (2.22), there is

1 = lim
n→∞

h1 + h2 + ...+ hkm
ln(n1 · ... · nkm)

≤ 1− δ ln 2

lnn∗
(1− C) .

So, we get a contradiction.

The set T−ε,k can be represented as a union :

T−ε,k = T
(1)
k ∪ Tε,k,

where T (1)
k is defined above and Tε,k = T−ε,k \ T

(1)
k . By Lemma 2.2, it follows that

lim
k→∞

|T−ε,k|
k

= lim
k→∞

|T (1)
k |
k

= lim
k→∞

|Tε,k|
k

= 0.

Let λ be Lebesgue measure on the unit interval. Let x ∈ [0, 1). Let ∆α1(x)...αk(x) be a
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cylinder such that x ∈ ∆α1(x)...αk(x) and λ
(
∆α1(x)...αk(x)

)
≤ ε. So,

− lnµ(∆α1(x)...αk(x)) = −

(
ln[

k∏
j=1

pαj(x)j]

)

= −

∑
j∈T (1)

k

ln pαj(x)j +
∑
j∈Tε,k

ln pαj(x)j +
∑
j∈T+

ε,k

ln pαj(x)j

 .

Obviously, ∑
j∈Tε,k

ln
1

pαj(x)j

≤ |Tε,k| ln (2n∗)

and ∑
j∈T+

ε,k

ln
1

pαj(x)j

≤
∑
j∈T+

ε,k

ln
1

1
nj
− ε

=
∑
j∈T+

ε,k

(
lnnj + ln

(
1 +

njε

1− njε

))
≤

≤
∑
j∈T+

ε,k

lnnj + |T+
ε,k|

εn∗

1− εn∗
.

By the above, it follows that

lim
k→∞

lnµξ(∆α1(x)...αk(x))

lnλ(∆α1(x)...αk(x))
≤ 1 +

εn∗

(1− εn∗) ln 2
,

where x ∈ [0, 1) and ε < 1
n∗
.

However, ∑
j∈Tε,k

ln
1

pαj(x)j

> |Tε,k| ln
2n∗

2n∗ − 1

and ∑
j∈T+

ε,k

ln
1

pαj(x)j

≥
∑
j∈T+

ε,k

ln

(
1

1
nj

+ ε

)
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=
∑
j∈T+

ε,k

(
lnnj + ln

1
nj

1
nj

+ ε

)
≥
∑
j∈T+

ε,k

lnnj − |T+
ε,k| (1 + n∗ε) .

Therefore, for any x ∈ [0, 1) and for any ε < 1
2n∗

we have

lim
k→∞

lnµξ(∆α1(x)...αk(x))

lnλ(∆α1(x)...αk(x))
≥ 1− ln(1 + n∗ε)

ln 2
.

Hence for every x ∈ [0, 1) we have

lim
k→∞

lnµξ(∆α1(x)...αk(x))

lnλ(∆α1(x)...αk(x))
= 1. (2.23)

The next lemma connects the property of faithfulness of coverings

A′ := {Fξ(E) : E ∈ Φ}

for the Hausdorff dimension of any subset of the unit interval [0, 1) and the property "to

be DP - transformation" of the distribution function Fξ.

Let us recall that: 1) Fξ is a distributional function of Random Cantor expansion and

P̃ ∗ = ||pik|| is a correspondent “matrix” with pik > 0 and

∞∏
k=1

max
i
pik = 0.

2) A be the family of cylinders of Cantor expansion.

Let A′ be a family of Q̃∗- cylinders such that

A′ := {Fξ(E) : E ∈ A}

(or Q̃∗ = P̃ ∗).
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Lemma 2.3. Assume that

lim
k→∞

lnµξ(∆α1(x)...αk(x))

lnλ(∆α1(x)...αk(x))
= 1, (2.24)

for all x ∈ [0, 1). Then

1. A′ is faithful for the Hausdorff dimension calculation on [0, 1);

2. Fξ is DP - trunsformation of [0, 1];

3. first and second items are equivalent.

Proof. By the condition (2.24), Theorem 1.3 and Theorem 1.4, we have

dimλ(E,A) = 1 · dimµξ(E,A),∀E ⊂ [0, 1),

where dimλ(E,A) and dimµξ(E,A) are Hausdorff - Billingsley dimension (1.4) with re-

spect to measures λ and µξ.

Since

dimH(E) = dimH(E,A) = dimλ(E,A),

dimµξ(E,A) = dimH

(
Fξ(E),A′

)
,∀E ⊂ [0, 1)

and the above remark, we have

dimH(E) = dimH

(
Fξ(E),A′

)
, ∀E ⊂ [0, 1). (2.25)

If A′ is faithful for the Hausdorff dimension calculation on [0, 1), then

dimH

(
E
′
,A′
)

= dimH

(
E
′
)
, ∀E ′ ⊂ [0, 1).
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By (2.25) and assumption of faithfulness of A′ , it follows that

dimH(E) = dimH (Fξ(E)) , ∀E ⊂ [0, 1],

i.e., Fξ is a DP - transform of [0, 1].

If Fξ is DP - transform of [0, 1], then

dimH

(
E
′
)

= dimH

(
F−1
ξ (E

′
)
)
, ∀E ′ ⊂ [0, 1].

By equation (2.25), it follows that

dimH

(
E
′
,A′
)

= dimH(F−1
ξ (E

′
)), ∀E ′ ⊂ [0, 1)

and we get

dimH

(
E
′
)

= dimH

(
E
′
,A′
)
, ∀E ′ ⊂ [0, 1).

Hence A′ is faithful for the Hausdorff dimension calculation on [0, 1).

Let us show thatA′ is faithful (the second part (2.) of the lemma follows immediately).

Let E ′ be an arbitrary set of unit interval [0, 1) and E := F−1
ξ

(
E
′)
. Let x ∈ E and δ > 0.

If the condition (2.24) is true, there exists the minimal number n0 := n0(δ, x) such that

∀n > n0 we have

∣∣∆Aα1(x)...αn(x)

∣∣1+δ ≤
∣∣∣∆A′α1(x′ )...αn(x′ )

∣∣∣ ≤ ∣∣∆Aα1(x)...αn(x)

∣∣1−δ , (2.26)

where x′ := Fξ(x). Set ∆n(x) := ∆Aα1(x)...αn(x) and ∆
′
n(x

′
) := ∆A

′

α1(x′ )...αn(x′ )
for simplicity.

Inequality (2.26) can be rewritten in following form

|∆n(x)|1+δ ≤
∣∣∣∆′n(x

′
)
∣∣∣ ≤ |∆n(x)|1−δ . (2.27)
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Let m ∈ N and δ > 0 are fixed. Set

Wm,δ :=
{
x : x ∈ E ∧ |∆n(x)|1+δ ≤

∣∣∣∆′n(x
′
)
∣∣∣ ≤ |∆n(x)|1−δ , ∀n > m

}
.

and

W
′

m,δ := Fξ (Wm,δ) .

From this

W1,δ ⊂ W2,δ ⊂ ... ⊂ Wm,δ ⊂ ...,

where

E :=
∞⋃
m=1

Wm,δ,∀δ > 0.

Since Fξ is continuous on [0, 1], then Fξ and F−1
ξ are uniformly continuous on [0, 1].

Hence ∀ε > 0 there is

ε
′
(ε) > 0, (2.28)

such that |I ′| ≤ ε
′
(ε) when |F−1

ξ (I
′
)| ≤ ε, ∀I ′ ⊂ [0, 1].

Let us choose ε such that
(

1
n∗

)m
= ε. Let us consider arbitrary ε′− covering

{
E
′
j

}
j∈N

of the set W ′

m,δ with E ′j := [a
′
j, b
′
j), ∀j ∈ N, with ε′ ≤ ε

′
(ε) (see 2.28). Without loss of

generality we will supposed that E ′j ∩ W
′

m,δ 6= ∅. Let Ej := F−1
ξ (E

′
j) = [aj, bj), where

aj = F−1
ξ (a

′
j), bj = F−1

ξ (b
′
j). Then {Ej}j∈N is a ε - covering of the set Wm,δ. For fixed

j ∈ N, there exists the cylinder ∆vj ∈ Avj such that vj is minimal rank and ∆vj ⊂ Ej.

Then the correspondent cylinder ∆
′
vj

:= Fξ
(
∆vj

)
∈ A′ is a subset of E ′j. From ∆vj ⊂ Ej

it follows that |∆vj | ≤ ε and vj ≥ m.

The set Ej ∩Wm,δ can be covered by 2n∗ cylinders

∆0
vj
,∆1

vj
, ...,∆lj

vj
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of vj− rank such that ∆k
vj
∩Wm,δ = ∅,∀k ∈ {0, ..., lj}. Also, we have

∣∣∣∆0
vj

∣∣∣ =
∣∣∣∆1

vj

∣∣∣ = ... =
∣∣∣∆lj

vj

∣∣∣ =
1

vj∏
i=1

ni

.

Since ∆i
vj
∩Wm,δ 6= ∅, ∀i ∈ {0, ..., lj} and ∆

′
vj
⊂ E

′
j, we have

∣∣∣∆′ivj ∣∣∣ ≤ ∣∣∣∆i
vj

∣∣∣1−δ ≤ ∣∣∣∆′ivj ∣∣∣ 1−δ1+δ ≤
∣∣∣E ′j∣∣∣ 1−δ1+δ

,∀i ∈ {0, ..., lj} ,

where ∆
′i
vj

:= Fξ

(
∆i
vj

)
, ∀i ∈ {0, ..., lj} . Hence

∣∣∣∆′ivj ∣∣∣ ≤ ∣∣∣E ′j∣∣∣ 1−δ1+δ ≤
(
ε
′
) 1−δ

1+δ
,∀i ∈ {0, ..., lj} .

Therefore
lj∑
i=0

∣∣∣∆′ivj ∣∣∣α ≤ 2n∗ ·
∣∣∣E ′j∣∣∣α· 1−δ1+δ

, α > 0.

Consequently

∑
j

lj∑
i=0

∣∣∣∆′ivj ∣∣∣α ≤ 2n∗ ·
∑
j

∣∣∣E ′j∣∣∣α· 1−δ1+δ
, α > 0. (2.29)

Hence ∀ε > 0 and ∀ε′ - covering
{
E
′
j := [a

′
j, b
′
j)
}
j∈N of the set W ′

m,δ, where ε
′ ≤ ε

′
(ε),

there exists a set of cylinders ∆i
vj
, ∀j ∈ N, i ∈ {0, ..., lj} such that

1.
∣∣∣∆i

vj

∣∣∣ ≤ (ε′) 1−δ
1+δ ;

2.
∑
j

lj∑
i=0

∣∣∣∆′ivj ∣∣∣α ≤ 2n∗ ·
∑
j

∣∣E ′j∣∣α· 1−δ1+δ , α > 0.

Therefore,

Hα

(ε′)
1−δ
1+δ

(
W
′

m,δ,A
′
)
≤ 2n∗ ·

∑
j

∣∣∣E ′j∣∣∣α· 1−δ1+δ
, α > 0.

Consequently
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Hα

(ε′)
1−δ
1+δ

(
W
′

m,δ,A
′
)
≤ 2n∗ ·Hα· 1−δ

1+δ

ε′

(
W
′

m,δ

)
, α > 0.

We have

Hα
(
W
′

m,δ,A
′
)
≤ 2n∗ ·Hα· 1−δ

1+δ

(
W
′

m,δ

)
, α > 0, (2.30)

as ε′ → 0.

Let α0 = inf
{
α : Hα· 1−δ

1+δ

(
W
′

m,δ

)
= 0
}
, then α0 · 1−δ

1+δ
= dimH

(
W
′

m,δ

)
. Therefore,

β > α0 : Hβ
(
W
′

m,δ,A
′)

= 0. Hence

dimH

(
W
′

m,δ,A
′
)
≤ 1 + δ

1− δ
· dimH

(
W
′

m,δ

)
.

Consequently, we have

dimH

(
E
′
,A′
)

= dimH

(
∞⋃
m=1

W
′

m,δ,A
′

)
= sup

m
dimH

(
W
′

m,δ,A
′
)

≤ 1 + δ

1− δ
sup
m

dimH

(
W
′

m,δ

)
=

1 + δ

1− δ
dimH

(
E
′
)
,∀δ > 0.

It follows that

dimH

(
E
′
,A′
)
≤ 1 + δ

1− δ
dimH

(
E
′
)
,∀δ > 0.

By the above,

dimH

(
E
′
,A′
)
≤ dimH

(
E
′
)
.

This proves first part (1.) of the lemma dimH

(
E
′
,A′
)

= dimH

(
E
′)
, ∀E ′ ⊂ [0, 1).

By the lemma 2.3 and (2.23), Fξ is a DP - transform of the unit interval, when the

conditions dimH µξ = 1 and A = 0 are satisfied.

Necessary condition. Let Fξ is a DP - transform of the unit interval . Let us show
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that dimH µξ = 1 and A = 0.

Let us assume that dimH µξ < 1. Then there is a Borel support E of the measure µξ

such that dimH(E) < 1. If µξ(E) = 1, then

dimH(Fξ(E)) = 1 6= dim(E).

That contradicts the assumption dimH µξ < 1. Therefore, the condition dimH µξ = 1 is

necessary for the function Fξ be a DP - transform.

Let us assume that A > 0. Let

L =
{
x : x = ∆α1...αk...; αk ∈ {0, 1, ..., nk − 1} if k /∈ T (1);

αk = fk if k ∈ T (1), with pfkk = min
i
pik

}
.

The set L is an element of family C[Q̃∗, Vk] (see [AKPT11]), where

qik =
1

nk
, ∀i ∈ {0, 1, ..., nk − 1}

and Vk = {0, 1, ..., nk − 1} when k 6∈ T (1); Vk = {fk} when k ∈ T (1).

It is well known that the sets from C[Q̃∗, {Vk}] have a zero Lebesgue measure iff
∞∑
k=1

Wk = +∞, where Wk =
∑
i:i 6∈Vk

qik. By the equalities

Wk =
nk − 1

nk
≥ 1

2
, ∀k ∈ T (1) and | T (1) |= +∞,

the set L has a zero Lebesgue measure: λ(L) = 0.

Let us show that dimH L = 1. We will need an additional random variable η:

η =
∞∑
k=1

ηk
n1 · n2 · ...nk

,
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where {ηk}k≥1 are independent random variables; if k ∈ T (1), then ηk = fk with a

probability 1; if k 6∈ T (1) , then ηk = i with a probability 1
nk
, ∀i ∈ {0, 1, ..., nk − 1}. It is

clear that the set L is a spectrum of the random variable η. Hence

dimH L ≥ dimH µη.

By Theorem 2.2,

dimH µη = lim
n→∞

h1 + h2 + ...+ hk
ln (n1 · n2 · ... · nk)

,

where hj = −
nj−1∑
i=0

pij ln pij. So, we have

hj =

 lnnj, if j 6∈ T (1);

0, if j ∈ T (1).

Consequently

dimH µξ = lim
k→∞

∑
j∈T+

k ∪Tε,k

lnnj

ln (n1 · ... · nk)

= lim
k→∞

1−

∑
j∈T (1)

k

lnnj

ln (n1 · ... · nk)

 ≥ lim
k→∞

(
1− | T

(1)
k | · lnn∗

ln(n1 · ... · nk)

)
= 1.

By the equality

lim
k→∞

∑
j∈T (1)

k

ln pj

−k
= A,

there is a subsequence {km}m∈N such that the limit

lim
m→∞

∑
j∈T (1)

km

ln pj

−km
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exists and equals to A. Therefore, we have

lim
m→∞

lnµξ(∆α1(x)...αkm (x))

lnλ(∆α1(x)...αkm (x))
=

= lim
m→∞


∑

j∈T (1)
km

ln 1
pαj(x)j

km∑
j=1

lnnj

+

∑
j∈Tε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

+

∑
j∈T+

ε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

 , ∀x ∈ L. (2.31)

Let us estimate each element of the sum (2.31). If x ∈ L, then

∑
j∈T (1)

ε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

=

∑
j∈T (1)

ε,km

ln 1
pj

km∑
j=1

lnnj

≥

∑
j∈T (1)

ε,km

ln 1
pj

km lnn∗
→ A

lnn∗
(m→∞).

By the following inequality

0 ≤ lim
m→∞

∑
j∈Tε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

≤ lim
m→∞

|Tε,km | ln 2n∗

km ln 2
= lim

m→∞

|Tε,km | ln 2n∗

km ln 2
= 0,

there is

lim
m→∞

∑
j∈Tε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

= 0, ∀x ∈ L.
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Let us estimate third element of the sum (2.31):

∑
j∈T+

ε,km

ln 1
pαj(x)j

km∑
j=1

lnnj

≥

∑
j∈T+

ε,km

ln 1
1
nj

+ε

km∑
j=1

lnnj

=

∑
j∈T+

ε,km

lnnj −
∑

j∈T+
ε,km

ln (1 + εnj)

km∑
j=1

lnnj

≥

km∑
j=1

lnnj −
∑

j∈T−ε,km

lnnj −
∑

j∈T+
ε,km

ln (1 + εnj)

km∑
j=1

lnnj

≥ 1−
| T−ε,km | · lnn

∗+ | T+
ε,km
| ln (1 + εn∗)

km ln 2
→ 1− ln(1 + εn∗)

ln 2
(m→∞).

Hence

1− 1 + εn∗

ln 2
+

A

lnn∗
≤ lim

m→∞

lnµξ(∆α1(x)...αkm (x))

lnλ(∆α1(x)...αkm (x))
, ∀ε > 0.

Therefore

1 +
A

lnn∗
≤ lim

m→∞

lnµξ(∆α1(x)...αkm (x))

lnλ(∆α1(x)...αkm (x))
.

Hence, for every real number δ > 0, there exists m(δ) such that ∀m > m(δ):

1 +
A

lnn∗
− δ ≤

lnµξ
(
∆α1(x)...αkm (x)

)
lnλ

(
∆α1(x)...αkm (x)

) , ∀x ∈ L.
The last inequality is equivalent to

µ
(
∆α1(x)...αkm (x)

)
≤ λ

(
∆α1(x)...αkm (x)

)1+ A
lnn∗−δ .

Let d(·) be a diameter of a set. Therefore, we have

d
(

∆
′

α1(x)...αkm (x)

) 1
1+c·A−δ ≤ d

(
∆α1(x)...αkm (x)

)
,∀x ∈ L, δ > 0, m > m(δ), (2.32)
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where

∆
′

α1(x)...αkm (x) = Fµξ
(
∆α1(x)...αkm (x)

)
.

Let us take δ ∈
(
0, A

lnn∗

)
. By the equality λ(L) = 0, The Hausdorff measure equals

H1
ε (L) = 0, ∀ε > 0.

Hence for some ε > 0 and some t > 0 there exists an ε-covering {Ei} of a set L with

km-rank cylinders (m depends on an ε and a t) such that
∑
i

d(Ei) < t. The family of sets

{E ′i} = {Fξ(Ei)} is ε
′-covering of L′ = Fξ(L). It follows immediately that ε′ → 0⇔ ε→ 0

(Fξ is a uniformly continuous on the unit interval).

Without loss of generality we can consider only sets Ei such that Ei ∩ L 6= ∅. By the

inequality (2.32), we have

∑
i

[
d(E

′

i)
] 1

1+ A
lnn∗ −δ ≤

∑
i

d(Ei) < t.

We can take ε and t such that

H

1

1+ A
lnn∗ −δ

ε′
(L′) = 0, ∀ε′ > 0.

Hence

H
1

1+ A
lnn∗ −δ (L′) = 0.

Therefore

dimH(L′) ≤ 1

1 + A
lnn∗
− δ

< 1, ∀δ > 0.

Consequently dimH L
′ ≤ 1

1+ A
lnn∗

. Therefore, we have a contradiction.
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Chapter 3

Generalized infinite Bernoulli

convolutions

3.1 Introduction

Let µξ = µ be the distribution of the random variable

ξ =
∞∑
k=1

ξkak, (3.1)

where
∞∑
k=1

ak is a convergent series whose terms are nonnegative and where ξk are in-

dependent random variables assuming two values 0 and 1 with probabilities p0k and

pbk = 1− p1k, respectively.

Definition 3.1. The distribution µξ is called a generalized infinite Bernoulli convolution.

It is shown in the paper [AT08] that, when studying the Lebesgue structure and

the fractal properties of the measure µξ, one can restrict consideration without loss of

generality to the case where the “matrix” ‖pik‖ does not contain zeros (that is, p0k ∈ (0, 1)

for all k ∈ N) and where the sequence {ak} is nondecreasing (that is, ak ≥ ak+1 for all

∀k ∈ N) and such that
∞∑
k=1

ak = 1.
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A theorem due to Levy (1931) provides necessary and sufficient conditions for µ to

be purely discrete

Theorem [Lev31]. The measure µ is discrete if and only if

∞∏
k=1

max{p0k, p1k} = 0.

A theorem due to Jessen and Wintner says that the distribution of ξ is pure.

Theorem [JW35]. The measure µξ is either purely discrete, or purely absolutely

continuous with respect to the Lebesgue measure, or purely singularly continuous.

Remark 3.1. The criteria for ξ to be purely absolutely continuous with respect to the

Lebesgue measure (or purely singular) are not known yet even in the case of random

power series (ak = λk and p0k = 1
2
), despite the problem having been actively studied over

last 80 years or so (see, for example, [Pra98, AT04, AZ91, Erd39, Gar62, PSS00, PS96,

PS98, Sol95]). Surveys of problems in this field are given in [PSS00]. Some applications

of infinite Bernoulli convolutions are discussed in [AZ91, PSS00].

If the series
∞∑
k=1

ak converges “fast enough”, that is, if

ak ≥ rk :=
∞∑

n=k+1

an

for all sufficiently large k, then the Lebesgue structure and fractal properties of generalized

infinite Bernoulli convolutions are studied rather well (see [Coo98, AT08]). In contrast,

if the inequality ak < rk occurs for an infinite number of indices k, then these problems

are studied much less. The main problem in this case is how to obtain appropriate

properties of the Bernoulli convolutions for which almost all (with respect to the Lebesgue

measure or in the sense of the Hausdorff - Besicovitch dimension) points of the spectrum
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have continuum many different expansions of the form
∞∑
k=1

ωkak, where ωk ∈ {0, 1}. The

probability measures of this type belong to the class of the so-called Bernoulli convolutions

with essential intersections ([GPT09]). The main aim of the section is to prove the

singularity of the distribution (in most cases) of the random variable ξ and to investigate

its fine fractal properties for the case where the sequence {ak} is such that

(∗) ∀k ∈ N, ∃sk ∈ N ∪ {0} : ak = ak+1 = ... = ak+sk ≥ rk+sk ,

and moreover sk > 0 for an infinite number of indices k.

We introduce some auxiliary notation.

Definition 3.2. We shall say that a generalized infinite Bernoulli convolution 3.1 is a

LT - Bernoulli convolution if condition (∗) is satisfied.

Let {kn}n∈N be a sequence of nonnegative integer numbers such that i ∈ {kn}n∈N if

and only if si = 0. Also let ln = kn − kn−1, k0 = 0.

3.2 Lebesgue structure of the LT - Bernoulli convolu-

tions

Let Ω = {0, 1}∞. For a fixed series
∞∑
k=1

ak consider the mapping ϕ : Ω → R defined as

follows

∀ω = (ω1, ω2, ..., ωk, ...) ∈ Ω : ϕ(ω) =
∞∑
k=1

ωkak.

Definition 3.3. The set

∆
′
= ∆

′
({ak}) = ϕ(Ω) = {x : ∃ ω ∈ Ω ∧ ϕ(ω) = x}

is called the set of incomplete sums of the series
∞∑
k=1

ak.

Since pik > 0 for all i ∈ {0, 1} and k ∈ N, the set ∆′ is the spectrum (in other words,

the minimal closed support) of the distribution of the random variable ξ.
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Following paper [GPT09], the set of real numbers of the form

∆′c1...cm :=

{
m∑
n=1

cnan +
∞∑

n=m+1

ωnan : ωn ∈ {0, 1},∀n ∈ N

}
,

is called the cylinder of rank m with the base

c1...cm (ci ∈ {0, 1}).

It is clear that the set ∆′c1...cm is the image under the mapping ϕ of the cylinder belonging

to Ω whose base is

c1...cm (ci ∈ {0, 1}).

The interval

∆c1...cm :=

[
m∑
n=1

cnan, rm +
m∑
n=1

cnan

]

is called the cylindrical interval of rank m with the base c1...cm. Note that ∆′c1...cm ⊂

∆c1...cm .

Some general properties of cylinders and cylindrical intervals follow directly from their

definitions, namely

1) inf ∆c1...cm = inf ∆
′
c1...cm

; sup ∆c1...cm = sup ∆
′
c1...cm

;

2) ∆′c1...cm = ∆′c1...cm0

⋃
∆′c1...cm1;

3) inf ∆c1...cm = inf ∆c1...cm0, sup ∆c1...cm = sup ∆c1...cm1;

4) |∆c1...cm | = rm → 0 (m→∞);

5)
⋂∞
m=1 ∆c1...cm =

⋂∞
m=1 ∆

′
c1...cm

≡ ∆c1...cm... = x ∈ ∆′ ⊂ [0, 1].

The following property is a consequence of condition (*):

6) ∆c1c2...ck1 ck1+1...ck2 ... ckn−1+1 ... ckn
= ∆d1d2...dk1 dk1+1 ... dk2 ... dkn−1+1 ... dkn

if and only

if
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

∑k1
i=1 ci =

∑k1
i=1 di∑k2

i=k1+1 ci =
∑k2

i=k1+1 di

...∑kn
i=kn−1+1 ci =

∑kn
i=kn−1+1 di

(3.2)

Below is the description of those points of the spectrum that have only a finite number

of representations. Let

x = ∆c1(x)c2(x)...ck1 (x) ck1+1(x) ... ck2 (x) ... ckn−1+1(x) ... ckn (x) ... (3.3)

be one of the representations of a point x. If
kn∑

i=kn−1+1

ci(x) 6∈ {0, ln} for an infinite number

of indices n, then the point x has continuum many representations in the form
∞∑
i=1

ciai.

Indeed, property 6) implies that if
kn∑

i=kn−1+1

ci(x) 6∈ {0, ln} then the equation

x1 + x2 + ...+ xln =
kn∑

i=kn−1+1

ci(x)

has at least two different solutions (x
(1)
1 , x

(1)
2 , ..., x

(1)
ln

) and (x
(2)
1 , x

(2)
2 , ..., x

(2)
ln

), where x(j)
i ∈

{0, 1} for all i ∈ {1, ..., ln} and j ∈ {1, 2}. Applying this reasoning to those numbers n

for which
kn∑

i=kn−1+1

ci(x) ∈ {1, 2, ..., ln−1} and taking into account that ln > 1 for infinitely

many indices n, we prove the result desired.

Note also that there are points belonging to the spectrum that have a unique repre-

sentation in the form of (3.3). If akn > rkn for infinitely many indices n, then all points

of the form

∆c1(x)c2(x)...ck1 (x) ck1+1(x) ... ck2 (x) ... ckn−1+1(x) ... ckn (x) ..., (3.4)
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where

ckn−1+1(x) + ckn−1+2(x) + ...+ ckn(x) ∈ {0, ln}, ∀n ∈ N,

has a unique form (3.3). If akn = rkn for an infinite number of indices n, then some points

of the form 3.4 have exactly two different representations (note that the set of such points

is countable): one of these representations has
”
0 “in period, while the other one has

”
1

“in period. Thus the set of those points that have a unique representation in the form of

3.3 is uncountable. It is clear that if

ckn−1+1(x) + ckn−1+2(x) + ...+ ckn(x) ∈ {0, ln}

for all sufficiently large ∀n ∈ N, then the point x has a finite number of representations

in the form of 3.3.

In Section 3.4 we determine the dimension of the set of those points for which there

exist continuum many different representations. We also determine the dimension of the

set of points that have a finite number of representations.

Our current goal is to show that the distribution of the random variable ξ is a prob-

ability measure with independent Q̃∗ -symbols.

Having this goal in mind, we introduce the sequence {mn}n∈N by

mn =

 ln + 1, if akn = rkn ;

2ln + 1, if akn > rkn .

For every n, define the stochastic vector column

qn = (q0n, q1n, ..., qmn−1,n)

as follows:
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1)mn = ln + 1

qin =
1

ln + 1
, i ∈ {0, 1, 2, ...,mn − 1} = Bn;

2)mn = 2ln + 1

qin =
rkn
rkn−1

, i ∈ {0, 2, 4, ..., mn − 1} = Bn;

qin =
akn − rkn
rkn−1

, i ∈ {1, 3, 5, ...,mn − 2}.

The stochastic “matrix” Q̃∗ = ||qin|| , whose column n coincides with the stochastic

vector qn, generates a Q̃∗-representation of numbers of the interval [0, 1] in the following

way. Let An = {0, 1, ...,mn − 1} and γn ∈ An. Consider the mapping

f : A1 × A2 × ...× An × ... 7→ [0, 1], given by

f({γn}) = x = βγ11 +
∞∑
n=2

βynn

n−1∏
i=1

qγii,

where βγnn =
∑γn−1

j=0 qjn. We also write

x = ∆Q̃∗

γ1γ2...γn ..., γn ∈ An.

The latter expression is Q̃∗ representation of a number x.

Let

∆Q̃∗

γ1...γm
=

[
βγ11 +

m∑
n=2

βynn

n−1∏
i=1

qγii, βγ11 +
m∑
n=2

βynn

n−1∏
i=1

qγii +
m∏
i=1

qγii

]
.

Since the cylindrical intervals ∆c1...ckn
of rank kn are either disjoint or coincide, there

exists a correspondence between the set of cylindrical intervals ∆c1c2...ckn
of rank kn and

the set of ∆Q̃∗
γ1γ2...γn

, γi ∈ Ai. The correspondence mentioned above is generated by the
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mapping

γi =

 cki−1+1 + ...+ cki , if aki = rki ;

2(cki−1+1 + ...+ cki), if aki > rki.

This means, for a fixed series
∑∞

k=1 ak and for an arbitrary collection

c1c2...ck1 ck1+1...ck2 ... ckn−1+1...ckn , ci ∈ {0, 1},

that there exists a unique set γ1, γ2, ..., γn( γi ∈ Ai), such that

∆c1c2...ckn
= ∆Q̃∗

γ1γ2...γn
,

where γi is defined by li symbols cki−1+1...cki according to the condition akn = rkn .

We will need the following notations. Let

Rln := {0, 1}ln

and

δ := (δ1, δ2, ..., δln) ∈ Rln

where |δ| =
∑kn

k=kn−1+1 δk for all n ∈ N.

Let {ξ̃n} be a sequence of independent random variables assuming the values

0, 1, . . . ,mn − 1

with probabilities

p̃0n, p̃1n, ..., p̃mn−1,n,
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respectively, where

p̃in =
∑

δ∈Rln ,|δ|=i

 kn∏
k=kn−1+1

pδk,k


for akn = rkn , and let

p̃in =


∑

δ∈Rln ,|δ|=
i
2

(
kn∏

k=kn−1+1

pδk,k

)
, if i is even

0, if i is odd

,

for akn > rkn .

The random variable ξ̃ with independent Q̃∗-symbols,

ξ̃ = βξ̃11 +
∞∑
n=2

βξ̃nn

n−1∏
i=1

qξ̃ii, βγnn =

γn−1∑
j=0

qjn

is determined by the stochastic “matrix” ‖qin‖ and the sequence of independent ran-

dom variables {ξ̃n}.

Remark 3.2. The random variables ξ and ξ̃ are identically distributed.

Indeed, it is sufficient to show that

Pξ(∆c1c2...ckn
) = Pξ̃ (∆Q̃∗

γ1γ2...γn
), ∀n ∈ N,

where

γi =

 cki−1+1 + ...+ cki , if aki = rki ;

2(cki−1+1 + ...+ cki), if aki > rki.

This equality is obvious in view of the construction of the random variable ξ̃ and in view

of the properties of the binomial distribution, since the random variables

ξ1, ξ2, . . . , ξkn
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are independent and identically distributed.

Theorem 3.1. The Lebesgue measure of the spectrum of the random variable ξ is equal

to

lim
n→∞

rkn

(
n∏
j=1

(lj + 1)

)
.

Proof. The spectrum of the random variable ξ̃ is an infinite intersection of unions of

Q̃∗ - cylindrical intervals (each being of a nonzero measure µξ)of all ranks. Such Q̃∗ -

cylindrical intervals of rank n coincide coincide, and the total number of these cylindrical

intervals is equal to ln + 1. Hence

Sξ̃ =
∞⋂
n=1

⋃
γ1∈B1

...
⋃

γn−1∈Bn−1

⋃
γn∈Bn

∆Q̃∗

γ1γ2...γn−1γn
.

Since

µξ̃(∆
Q̃∗

γ1γ2...γn−1γn
) = p̃γ11 · p̃γ2(x)2 · ... · p̃γn(x)n > 0 and λ(∆Q̃∗

γ1γ2...γn−1γn
) = rkn ,

the continuity of the Lebesgue measure implies that

λ(Sξ̄) = λ

 ∞⋂
n=1

⋃
γ1∈B1

...
⋃

γn−1∈Bn−1

⋃
γn∈Bn

∆Q̃∗

γ1γ2...γn−1γn

 = lim
n→∞

rkn

n∏
j=1

(lj + 1),

and this completes the proof of Theorem.

Lemma 3.1. Let Rln := {0, 1}ln and δ := (δ1, δ2, ..., δln) ∈ Rln , where |δ| =
∑kn

k=kn−1+1 δk

for all n ∈ N. Then there is a function ϕ(n) such that

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ ϕ(n)→ 0 (n→∞), (3.5)

where 0 < p0k < 1, p1k = 1− p0k for all k ∈ N.
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Proof. Let {ζj}j∈{1,...,n}− be a sequence of independent random variables assuming the

values 0 and 1 with probabilities p0j and p1j respectively (p0j + p1j = 1 ∀j ∈ N) and

Sn := ζ1 + ζ2 + ...+ ζn.

Then ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
= P{Sn = i} = p̃in.

Hence condition (3.5) is true iff

√
1

n+ 1

n∑
i=0

√
p̃in → 0(n→∞).

By Chebyshev’s inequality,

P{
∣∣∣∣Sn − ESnn

∣∣∣∣ ≥ ε} ≤
D(Sn

n
)

ε2
,∀ε > 0,

where E(τ) is a mathematical expectation of a random variable τ and D(τ) is a variance

of a random variable τ . Therefore,

P{
∣∣∣∣Sn − ESnn

∣∣∣∣ ≥ ε} = P{|Sn − ESn| ≥ εn} ≤
D(Sn

n
)

ε2
=
D(Sn)

n2ε2
,

Since the random variables {ζj}j∈{1, ..., n} are independent, it follows that

D(Sn) = Dζ1 +Dζ2 + ...+Dζn = p01p11 + p02p12 + ...+ p0np1n ≤
n

4
.

Therefore,

P{
∣∣∣∣Sn − ESnn

∣∣∣∣ ≥ ε} ≤ 1

4nε2
. (3.6)
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The Cauchy - Schwarz inequality,

(1 · a1 + ...+ 1 · am)2 ≤ m · (a2
1 + ...+ a2

m),

together with (3.6) implies that

n∑
i:| i−ESnn |≥ε

√
p̃in ≤

√√√√√√n ·
n∑

i:| i−ESnn |≥ε
p̃in ≤

√
n · 1

4n · ε2
=

1

2ε
. (3.7)

We will estimate the sum
∑√

p̃in for i such that

∣∣∣∣i− ESnn

∣∣∣∣ ≤ ε,

i.e.,

i ∈ [n · ESn − ε · n, n · ESn + ε · n] .

Since there exist at most 2n · ε+ 1 positive integer numbers i such that

i :

∣∣∣∣i− ESnn

∣∣∣∣ ≤ ε.

We again use The Cauchy - Schwarz inequality and the condition
n∑
i=0

p̃in = 1 to prove

that

n∑
i:| i−ESnn |≤ε

√
p̃in ≤

√√√√√√(2nε+ 1) ·
n∑

i:| i−ESnn |≤ε
p̃in ≤

√
2nε+ 1. (3.8)

Inequalities (3.7) and (3.8) imply that

n∑
i=0

√
p̃in ≤

1

2ε
+
√

2nε+ 1, ∀ε > 0.
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Therefore ∀ε > 0, and ∀n ∈ N:

√
1

n+ 1

n∑
i=0

√
p̃in ≤

√
1

n+ 1
(

1

2ε
+
√

2nε+ 1).

It ε = 1
4√n , then √

1

n+ 1

1

2ε
→ 0(n→∞)

and √
1

n+ 1

√
(2nε+ 1)→ 0(n→∞).

Let

ϕ(n) =
1√
n+ 1

(
4
√
n

2
+

√
2n

3
4 + 1

)
.

Then we get inequality

√
1

n+ 1

n∑
i=0

√
p̃in ≤ ϕ(n).

which completes the proof Lemma 3.1.

By Lemma 3.1, we have the following corollary.

Corollary 3.1. Let

Rln := {0, 1}ln

and let

δ := (δ1, δ2, ..., δln) ∈ Rln

where |δ| =
∑kn

k=kn−1+1 δk for all n ∈ N. Then there is n0 such that ∀n > n0:

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ 1

2
,
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where 0 < p0k < 1, p1k = 1− p0k, ∀k ∈ N.

Let us study the following expression

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)

as a function on

(p01, p02, ..., p0n) ∈ [0, 1]n.

Lemma 3.2. Let

Rn = {0, 1}n,

δ = (δ1, δ2, ..., δn) ∈ Rn, |δ| =
n∑
k=1

δk

for all n ∈ N\{1}. Let

(p01, p02, ..., p0n) ∈ [0, 1]n,

(p11, p12, ..., p1n) = (1− p01, 1− p02, ..., 1− p0n).

Then

υ(p01, ..., p0n) =

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ Kn < 1,

where Kn is a constant that depends on n.

Proof. Consider the function

ϕ(x0, x1, ..., xn) =
√
x0 +

√
x1 + ...+

√
xn

in the domain G of the hyperplane x0 + x1 + ... + xn = 1 that belongs to the (n + 1)

-dimensional cube [0, 1] n+1. Since

−−−−−−−−−−−−−−→
(
√
x0,
√
x1, ...,

√
xn)
−−−−−−−→
(1, 1, ..., 1) ≤

∣∣∣−−−−−−−−−−−−−−→(
√
x0,
√
x1, ...,

√
xn)
∣∣∣−−−−−−−−→|(1, 1, ..., 1)| =
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=
√
n+ 1,

the function ϕ(x0, x1, ..., xn) (being continuous in the domain G) attains its maximal

value
√
n+ 1 at the point with equal coordinates

x0 = x1 = ... = xn =
1

n+ 1

and

ϕ(x0, x1, ..., xn) <
√
n+ 1

for all other points of the set G.

Let

υ(p01, ..., p0n) =

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)

where

(p01, p02, ..., p0n) ∈ [0, 1]n.

This function is continuous in [0, 1]n and is bounded from above:

υ(p01, ..., p0n) ≤ max

(
ϕ(x0, x1, ..., xn)√

n+ 1

)
= 1.

The inequality becomes an equality only for the case of

∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
=

1

n+ 1

for i ∈ {0, 1, ..., n}.

Since

(p01 · p02 · ... · p0n) · (p11 · p12 · ... · p1n) ≤
(

1

4

)n
,

there is at least one product such that
(

1
2

)n
< 1

n+1
,∀n ≥ 2. Therefore,
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υ(p01, ..., p0n) < 1, ∀n ≥ 2. (3.9)

Since the function υ(p01, ..., p0n) is defined and continuous in a compact set [0, 1]n, it

attains its maximal value Kn.

By the inequality (3.9), we have

υ(p01, ..., p0n) =

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ Kn < 1, ∀n ≥ 2,

which completes the theorem.

Theorem 3.2. The random variable ξ has a singularly continuous distribution.

Proof. Let

M =
∞∏
n=1

max
i
{p̃in}.

According to Levy’s theorem ([Lev31]), the random variable ξ̃ has either a pure discrete

distribution (M > 0) or a pure continuous (M = 0) distribution.

The random variable ξ̃, as a random variable with independent Q̃∗-symbols, has a

pure absolutely continuous distribution if and only iff

∞∏
n=1

(
mn−1∑
i=0

√
qinp̃in) > 0

(see[AKPT11]).

By the construction of random variable ξ̃, it follows that

mn−1∑
i=0

√
qinp̃in =

√
rkn
rkn−1

·
ln∑
i=0

√√√√√ ∑
δ∈Rln ,|δ|=i

 kn∏
k=kn−1+1

pδk,k

.
Since

√
rkn
rkn−1

≤
√

1
ln+1

,∀n ∈ N, we get
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mn−1∑
i=0

√
qinp̃in ≤

√
1

ln + 1
·
ln∑
i=0

√√√√√ ∑
δ∈Rln ,|δ|=i

 kn∏
k=kn−1+1

pδk,k

.
The necessary condition for the convergence of the product

∞∏
n=1

(
mn−1∑
i=0

√
qinp̃in)

is given by

√
1

ln + 1
·
ln∑
i=0

√√√√√ ∑
δ∈Rln ,|δ|=i

 kn∏
k=kn−1+1

pδk,k

→ 1 (n→∞). (3.10)

By the corollary 3.1, there is a number n0 such that ∀n > n0 :

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ 1

2
.

If 2 ≤ n ≤ n0, then the Lemma 3.1 imply that ∀k ∈ {2, ..., n0}, ∃K0:

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ K0 = max{Ki : i ∈ {2, ..., n0}} < 1.

From the above it follows that ∀n ∈ N, ∃K:

√
1

n+ 1

n∑
i=0

√√√√ ∑
δ∈Rn,|δ|=i

(
n∏
k=1

pδk,k

)
≤ K = max{1

2
, K0} < 1.

Therefore,

√
1

ln + 1
·
ln∑
i=0

√√√√√ ∑
δ∈Rln ,|δ|=i

 kn∏
k=kn−1+1

pδk,k

9 1(n→∞).
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Therefore the distribution of the random variable ξ̃ cannot be absolutely continuous,

which proves the theorem. Since the distribution of the random variable ξ is pure, the

measure µξ is singular in view of Remark 3.2.

3.3 Faithfulness of covering family on the distribution

spectrum Sξ

Let Ãn be the family of cylindrical intervals of rank kn, that is,

Ãn = {E : E = ∆α1...αkn
, αi ∈ {0, 1}, i = 1, 2, ..., kn},

where

∆c1...cm =

[
m∑
n=1

cnan, rm +
m∑
n=1

cnan

)
,∀m ∈ N,

and let

Ã =
∞⋃
n=1

Ãn. (3.11)

Let us recall the

Definition 3.4. A fine covering family ΦW of a set W is said to be faithful family of

coverings for the Hausdorff-Besicovitch dimension calculation on W if

dimH(E,ΦW ) = dimH(E),∀E ⊂ W.

We can now formulate sufficient conditions for the faithfulness of covering Ã on the

spectrum Sξ.

Theorem 3.3. If

lim
n→∞

ln rkn−1

ln rkn
= 1,
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the Ã is a faithful family of coverings on the spectrum Sµξ̃\{1}.

Proof. It is easily seen that Ã fine family of covering on Sµξ̃\{1} and Sµξ̃ ⊂ [0, 1]. Let

x ∈ (0, 1). Then there is n(x) ∈ N such that x ∈ (rkn(x) , rkn(x)−1
]. Let a function

f : R+ → R+ equals 3
rkn(x)−1

rkn(x)
, where x ∈ (rkn(x) , rkn(x)−1

] and f(x) is arbitrary defined

on x ∈ [1,+∞).

Let I be an arbitrary closed interval. Then there exists a number n(|I|) such that

|I| ∈ (rkn(|I|) , rkn(|I|)−1
], where | · | is a diameter of a set. A set I ∩Sµξ̃ can be covered by 3

cylindrical intervals from Ãn(|I|)−1 and A set I∩Sµξ̃ can be covered by at most [f(|I|)]([x]

is a floor function of x) cylindrical intervals from Ãn(|I|). Therefore

I ∩ Sµξ̃ ⊂
l(I)⋃
j=1

4j(I),

where |4j(I)| ≤ |I|, j ∈ {1, ..., l(I)} and l(I) ≤ f(|I|). Hence the condition 1) of Theorem

1.2 is satisfied under the convention C = 3.

Let us check condition 2) of Theorem 1.2. Let δ ∈ (0, 1]. By assumption of the

theorem, there exists n0(δ) such that

∀n ≥ n0(δ) : 3
rkn−1

rkn
·
(
rkn−1

)δ ≤ C.

Set ε1(δ) = rkn0(δ) . Therefore, for arbitrary δ ∈ (0, 1], there exists ε1(δ) > 0 such that

f(|I|) · |I|δ ≤ C, for |I| ≤ ε1(δ). By Theorem 1.2, the family Ã is faithful for the

Hausdorff-Besicovitch calculation on the spectrum of µξ̃.
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3.4 Hausdorff - Besicovitch dimension of the spectrum

of LT - Bernoulli convolutions

We will use stochastic “matrix” Q̃∗ =‖qin‖ for determination of spectrum (minimal closed

support of a distribution) of random variable ξ̃.

Let us recall the definitions of sets and sequences from Section 3.2. A sequence

{mn}n∈N is determined as follows:

mn =

 ln + 1, if akn = rkn

2ln + 1, if akn > rkn

.

For every n, define the stochastic vector column

qn = (q0n, q1n, ..., qmn−1,n)

as follows: 1) mn = ln + 1

qin =
1

ln + 1
, i ∈ {0, 1, 2, ...,mn − 1} = Bn;

2) mn = 2ln + 1

qin =
rkn
rkn−1

, i ∈ {0, 2, 4, ..., mn − 1} = Bn;

qin =
akn − rkn
rkn−1

, i ∈ {1, 3, 5, ...,mn − 2}.

Step 1. We decompose unit interval [0, 1] (from the left to the right) into the union of

closed intervals ∆Q̃∗

i1
, i1 ∈ {0, ..., m1− 1} (without common interior points) of the length∣∣∣∆Q̃∗

i1

∣∣∣ = qi11,

[0, 1] =
⋃

i1∈ {0,...,m1−1}

∆Q̃∗

i1
.
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We shall say that the family of cylindrical intervals

Aµ1 :=
{

∆ : ∆ = ∆Q̃∗

i1
, i1 ∈ B1

}

is called spectral cylinders of first rank. Hence there are l1 + 1 spectral cylinders of first

rank with the length rk1 .

Step n ≥ 2. We decompose (from the left to the right) each closed (n − 1)-rank

interval ∆Q̃∗

i1i2...in−1
from the set Aµn−1 into the union of closed intervals ∆Q̃∗

i1i2...in−1in
, in ∈

{0, ..., mn−1} (without common interior points) of the length
∣∣∣∆Q̃∗

i1i2...in−1in

∣∣∣ = rkn−1 ·qinn,

∆Q̃∗

i1i2...in−1
=

⋃
in∈{0, ..., mn−1}

∆Q̃∗

i1i2...in
.

We shall say that the family of cylindrical intervals

Aµn :=
{

∆ : ∆ = ∆Q̃∗

i1i2...in−1in
, it ∈ Bt, t ∈ {1, ..., n}

}

is called spectral cylinders of n th rank.Hence, there are ln + 1 spectral cylinders of n-th

rank with the length rk1 .

Let Sn be a union of spectral cylinders of n-th rank Sµ, i.e.,

Sn :=
⋃
I∈Aµn

I.

Hence the spectrum of random variable ξ̃ can be seen as an intersection of sets Sn:

Sµ =
∞⋂
n=1

Sn.
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Let us construct an auxiliary family of sets. Set

Tn := {T : T =
l⋃

i=1

∆i, ∆i ∈ Aµn, 1 ≤ l ≤ ln + 1 and ∃ T ′ ∈ Aµn−1 : T ⊂ T ′},

i.e., Tn is the family of sets and every set of this family is a union of spectral cylinders

of n-th rank of Sµ (these n-th rank cylinders are subsets of one spectral cylinder with

(n− 1)-th rank of Sµ). Let

T =
∞⋃
n=1

Tn.

To determine the Hausdorff dimension of the set of those points for which there exist

continuum many of different representations, we will use an approach developed by Feng

D., Wen Z. and Wu J. in [FRW96].

Lemma 3.3 ([FRW96]). If α ∈ (0, 1], then

1

6
Hα(Sµ, T ) ≤ Hα(Sµ).

Proof. Let {Ei}i∈N be an arbitrary ε-covering of the spectrum Sµ by intervals Ei = (ai, bi).

Without loss of generality we assume Ei
⋂
Sµ 6= ∅ (one can calculate the α− ε Hausdorff

measure Hα
ε (Sµ) using the sets with condition Ei

⋂
Sµ 6= ∅). There is a spectral cylinder

Ii of n-th rank for an arbitrary interval Ei such that Ii ⊂ Ei and Ei do not contain

spectral cylinders of (n− 1)-th rank.

We must have that Ei can not intersect with more than two spectral cylinders of n−1-th

rank, for otherwise Ei contains spectral cylinder of n − 1-th rank. We will denote by

I1
i , I

2
i these cylinders. Let T 1

i and T 2
i be unions of spectral cylinders of n-th rank and

these spectral cylinders is subsets of I1
i and I2

i respectively. It is assumed that T 1
i ∩E 6= ∅

and T 2
i ∩ E 6= ∅. Of course T 1

i , T
2
i ∈ T . Without loss of generality we will make the

assumption: |T 1
i | ≥ |T 2

i |. According to the above assumption T 1
i contains at least one
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spectral cylinder of n-th rank. Hence |T 1
i |α ≤ (|Ei|+ 2rkn)α ≤ (3|Ei|)α and

|T 1
i |α + |T 2

i |α ≤ 2(3)α|Ei|α ≤ 6|Ei|α

By the construction of the sets T 1
i and T 2

i , it follows that Sµ∩Ei ⊂ (T 1
i ∩E)∪(T 2

i ∩E)

and |T 1
i |, |T 2

i | ≤ 3|Ei|.

Therefore {T 1
i }i>0 ∪ {T 2

i }i>0 is a 3ε - covering of Sµ by the sets from T . From this

for arbitrary ε - covering {Ei} of Sµ by intervals Ei = (ai, bi) and ∀α > 0 it follows that

∑
i

|Ei|α ≥
1

6

∑
i

(|T 1
i |α + |T 2

i |α),

which completes the proof.

This lemma gives important

Corollary 3.2. T is a faithful family of coverings for the Hausdorff-Besicovitch dimen-

sion calculation on the spectrum Sµ.

Lemma 3.4 ([FRW96]). Let α ∈ (0, 1] and E = {Ei} be an arbitrary ε - covering of the

spectrum Sµ by the sets from T , then there exists a covering of Sµ by spectral cylinders

of n(ε) -th rank such that

∑
i

|Ei|α ≥
1

4

∑
I∈Aµ

n(ε)

|I|α.

Proof. Let E = {Ei} be an arbitrary ε - covering of spectrum Sµ and E ⊂ T . Because Sµ

is a compact set, we can make an assumption that E is finite (see [Fal04]). Let n1 and

n2 be the minimum and maximum ranks of “forming” spectral cylinders of E (every set

from T is a union of spectral cylinders of some rank).
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Let us construct some ε-covering P by sets from E :

P1 := {I : I ∈ E and I ∈ Tn1};

P2 := {I : I ∈ Aµn1
and I 6⊂E,∀E ∈ E};

P := P1 ∪ P2.

By the definition, the family P is a covering of the set Sn1 , where elements of covering

are union of spectral cylinders of n1-th rank Sµ or simply spectral cylinders of n1-th rank.

Let us consider the following function of sets I ∈ P :

f(I, α) =


|I|α
N(I)

, if I ∈ P1;∑
E∈E, E⊂I

|E|α , if I ∈ P2;
,

where N(I) is a number of spectral cylinders of n1-th rank which and these spectral

cylinders formed the set I ∈ P1. By construction of T , it follows that: if Ei ∈ E and

Ei /∈P1, then Ei must be a subset of spectral cylinder of n1-th rank. Let the function

f(α, I) get minimum in some element Imin ⊂ P , i.e.,

f(Imin, α) = min
I∈P

f(α, I)

(Imin always exists, since P is a finite family of sets).

We have

∑
i

|Ei|α =
∑
I∈P1

|I|α +
∑
I∈P2

( ∑
Ei∈E, Ei⊂I

|Ei|α
)

=

=
∑
I∈P1

(N(I)f(I, α)) +
∑
I∈P2

f(I, α) ≥
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≥
∑
I∈P1

(N(I)f(Imin, α)) +
∑
I∈P2

f(Imin, α) =

=

(∑
I∈P1

(N(I)) +
∑
I∈P2

(1)

)
f(Imin, α). (3.12)

Let us mention that the expression

(∑
I∈P1

(N(I)) +
∑
I∈P2

(1)

)
(3.13)

is the number of n1-th rank spectral cylinders (i.e., number of elements Aµn1
). Expression

(3.13) equals to
n1∏
j=1

(lj + 1). By inequality (3.12), we have

∑
i

|Ei|α ≥
n1∏
j=1

(lj + 1)f(Imin, α). (3.14)

Let us consider two possible cases (i) and (ii).

(i) Let Imin ∈ P1. If N(Imin) = 1, then Imin ∈ Aµn1
and

∑
i

|Ei|α ≥
n1∏
j=1

(lj + 1)f(Imin, α)

=

n1∏
j=1

(lj + 1)|Imin|α =
∑
I∈Aµn1

|I|α,

which proves the lemma. If

N(Imin) ≥ 2,

then

2

(
ln1 + 1

N(Imin)
+ 1

)
|Imin| ≥ |I|, I ∈ Aµn1−1. (3.15)

(The number of gaps between unions of cylinders of n1-th rank. The maximum number

is less thet ln1+1

N(Imin)
+ 1).
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According to the above inequality, we have

|Imin| ≥
1

4

N(Imin)

(ln1 + 1)
|I|, I ∈ Aµn1−1. (3.16)

By (3.14) and (3.16), we get

∑
i

|Ei|α ≥
n1∏
j=1

(lj + 1)f(Imin, α)

=

n1−1∏
j=1

(lj + 1)

(
ln1 + 1

N(Imin)
|Imin|α

)
≥

≥
n1−1∏
j=1

(lj + 1)

(
ln1 + 1

N(Imin)

(
1

4

N(Imin)

(ln1 + 1)
|I|
)α)

≥

≥ 1

4

n1−1∏
j=1

(lj + 1)|I|α =
1

4

∑
I∈Aµn1−1

|I|α.

Hence the first statement of the lemma is true in the case N(Imin) ≥ 2.

(ii) Let Imin ∈ P2. In this case Imin is a spectral cylinder of n1-th rank. Let

Q0 = {I : I ∈ E , I ⊂ Imin}.

Let l be the distance from the left site of cylinder Imin and point 0, i.e.,

l = inf{|x| : x ∈ Imin}.

Define the family of sets Q1 by the shifting of all sets from the family Q1 by l , i. e.,

Q1 = {{{x− l} : x ∈ I} : I ∈ Q0} .
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Let

Qi+1 = {{x+ i|Imin| : x ∈ I} : I ∈ Q1}m

for i ∈ {1, ...,
n1∏
j=1

(lj + 1)− 1}. We can build a covering of the spectrum Sµ

Q =

n1∏
j=1

(lj+1)⋃
i=1

Qi.

By construction of the covering we have

∑
I∈Q

|I|α =

n1∏
j=1

(lj + 1)
∑

E∈E, E⊂Imin

|E|α.

By the above and inequality (3.14), we get

∑
i

|Ei|α ≥
n1∏
j=1

(lj + 1)f(Imin, α)

=

n1∏
j=1

(lj + 1)
∑

E∈E, E⊂Imin

|E|α =
∑
I∈Q

|I|α,

i.e.,

∑
i

|Ei|α ≥
∑
I∈Q

|I|α. (3.17)

It should be mentioned that if n′1 and n′2 are minimum and maximum “forming”

spectral cylinders of covering Q, then n1 > n′1 ≥ n′2 ≥ n2. Now we can repeat the

procedure of (i) using inequality (3.17). After a finite number of steps one can find n(ε)

such that n1 − 1 ≥ n(ε) ≥ n2 and

∑
i

|Ei|α ≥
1

4

∑
I∈Aµ

n(ε)

|I|α.
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Remark 3.3. By a standard procedure, one can proof the faithfulness of a covering family

Aµ :=
∞⋃
i=1

Aµi

on the spectrum of the random variable ξ for the case sup{ln} <∞ . But the family Aµ

can be non-faithful sup{ln} =∞ (see Theorem 2.1).

However, one can prove that the Hausdorff - Besicovitch dimension of the spectrum

of the random variable ξ equals to

lim
n→∞

(∑n
j=1 ln(lj + 1)

− ln rkn

)
.

Lemma 3.5 ([FRW96]).

dimH Sµ = lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn

Proof. It is easily seen that Aµn is a covering of spectrum Sµ. By the above,

Hα(Sµ) ≤ Hα(Sµ, T ) ≤ Hα(Sµ,Aµn)

≤ lim
n→∞

∑
I∈Aµn

Iα = lim
n→∞

rαkn ·
n∏
j=1

(lj + 1).

Hence

Hα(Sµ) ≤ lim
n→∞

rαkn ·
n∏
j=1

(lj + 1). (3.18)

Let E = {Ei}i∈mathbbN be some ε-covering of the spectrum Sµ and E ⊂ T . Let α ∈ (0, 1].

By Lemma 3.4, it follows that
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Hα(Sµ, T ) ≥ 1

4
lim
n→∞

∑
I∈Aµn

Iα.

By the above and Lemma 3.3, one can get

Hα(Sµ) ≥ 1

24
lim
n→∞

∑
I∈Aµn

Iα =
1

24
lim
n→∞

rαkn ·
n∏
j=1

(lj + 1).

Therefore

1

24
lim
n→∞

rαkn

n∏
j=1

(lj + 1) ≤ Hα(Sµ) ≤ lim
n→∞

rαkn

n∏
j=1

(lj + 1), α ∈ (0, 1]. (3.19)

If

α > lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn
,

then there exists subsequence {n(i)}i≥1 such that

α >

log
n(i)∏
j=1

(lj + 1)

− log rkn(i)
.

Hence

rαkn(i)

n(i)∏
j=1

(lj + 1) ≤ 1, ∀i ∈ N.

Therefore

lim
n→∞

rαkn

n∏
j=1

(lj + 1) ≤ 1.

By the above inequality and (3.19), one can get

Hα(Sµ) ≤ 1.

113



Hence

dimH Sµ ≤ lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn
.

Let

α < lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn
,

then for all subsequences {n(i)}i≥1

α <

log
n(i)∏
j=1

(lj + 1)

− log rkn(i)
.

Therefore ∀{n(i)}i≥1 we have

n(i)∏
j=1

(lj + 1)rαkn(i) ≥ 1, ∀i ∈ N.

So,

lim
n→∞

n∏
j=1

(lj + 1)rαkn ≥ 1.

By the above inequality and (3.19), we have

Hα(Sµ) ≥ 1

24
.

Therefore

dimH Sµ ≥ lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn
,

which proves the theorem, i.e.,

dimH Sµ = lim
n→∞

log
n∏
j=1

(lj + 1)

− log rkn
.
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Remark 3.4. The formula for dimH Sξ was proved without any restrictions on{lk}k∈N.

Theorem 3.4. 1) the Hausdorff - Besicovitch dimension of the set of points that have a

finite number of representations (3.3) is equal to

lim
n→∞

(
n ln 2

− ln rkn

)
.

2) the Hausdorff - Besicovitch dimension of the set of points that have continuum

many representations (3.3) is equal to

lim
n→∞

(∑n
j=1 ln(lj + 1)

− ln rkn

)
.

Proof. We recall some main properties of the Hausdorff - Besicovitch dimension (see

[Fal04] for details):

B1) if E1 ⊂ E2, then dimH(E1) ≤ dimH(E2);

B2) dimH(
⋃
n

En) = sup
n

dimH(En);

B3) if E1 and E2 are homothetic, then dimH(E1) = dimH(E2).

We construct an auxiliary sequence of sets {Lj}j∈N such that

Lj :=

{
x : ∆Q̃∗

γ1γ2...γn ..., γn ∈ Bn, if n ∈ {1, 2, ..., j − 1},

and γn ∈ {0,mn − 1}, if n ∈ N\{1, 2, ..., j − 1}

}
.

The set L1 coincides with the set of those points that have a unique representation (3.3).

The reasoning similar to that used in the proof of Theorem 3.5 shows that

dimH(L1) = lim
n→∞

(
n ln 2

− ln rkn

)
.
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Now we are going to show that dimH(Lj) = dimH(L1),∀j ∈ N.

Let j ∈ N\{1}. Then

L1 =
2j−1⋃
i

L
(i)
1 ,

where {L(i)
1 }i∈{1 ,..., 2j−1} are isometric sets whose intersection consists of at most one point

and where

L
(1)
1 :=

{
x : x = ∆Q̃∗

γ1γ2...γn ..., γn = 0, if n ∈ {1, 2, ..., j − 1},

i γn ∈ {0,mn − 1}, if n ∈ N\{1, 2, ..., j − 1}

}
.

The equality

dimH(L
(1)
1 ) = dimH(L1) (3.20)

follows from the properties B2) and B3).

The set Lj can be represented in the form

Lj =

j−1∏
i=1

(li+1)⋃
t=1

L
(t)
j ,

where

{L(t)
j }

t∈
{

1, ...,
j−1∏
i=1

(li+1)

}

are isometric sets whose intersection contains at most one point, and

L
(1)
1 ∈ {L

(t)
j }

t∈
{

1, ...,
j−1∏
i=1

(li+1)

}.
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Then properties B2) and B3) together with equality (3.20) imply that

dimH(Lj) = dimH(L1), ∀j ∈ N.

The preceding equality together with B2) yields

dimH(
⋃
i

Li) = sup
i

dimH(Li) = dimH(L1). (3.21)

The set of points that have a finite number of representations in the form of (3.3)

coincides with the set
∞⋃
j=1

Lj. This completes the proof of the first statement of the

Theorem.

Let L∗ be the set of points for which there exist continuum many different represen-

tations in the form of (3.3). If

dimH Sµ > dimH L1 = lim
n→∞

(
n ln 2

− ln rkn

)
,

then the equality Sµ = L∗ ∪

(
∞⋃
j=1

Lj

)
and property B2) imply that dimH L

∗ = dimH Sµ.

Hence almost all points (in the sense of the Hausdorff - Besicovitch dimension) of the

spectrum Sµ have continuum many different representations in the form of (3.3).

Now we show that dimH L
∗ = dimH Sµ, even in the case where

lim
n→∞


n∑
j=1

ln(lj + 1)

− ln rkn

 = lim
n→∞

(
n ln 2

− ln rkn

)
,

that is where dimH Sµ = dimH L1 (this is the case, in particular, if ln = 1 (n 6= 2s) and

ln = 2 (n = 2s)).

Since ln > 1 for infinitely many indices n, one can choose a sufficiently “sparse”

subsequence nt in such a way that the sets Bnt contain at least three elements. In each
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of the sets Bnt \ {0,mnt − 1} (see the beginning of the Section for the definition of Bnt)

we choose an arbitrary element and denote it by θt. Consider the set

K1 =

{
x : x := ∆̃γ1γ2...γn...,

where γk ∈ {0,mk − 1} when k /∈ {nt} and γnt = θt, ∀t ∈ N

}
.

Each point of the set K1 has continuum many representations of the form (3.3), that is,

K1 ⊂ L∗. The reasoning similar to that used in the proof of Theorem 3.4, proves that

dimH(K1) = lim
n→∞


n∑
i=1

ln(zi + 1)

− ln rkn

 ,

where zi = 0 for i ∈ {nt}, and zi = 1 for i /∈ {nt}. Then

dimH(K1) = lim
n→∞

(
(n− τ(n)) ln 2

− ln rkn

)
= lim

n→∞

(
(n− τ(n))

n

n ln 2

− ln rkn

)
,

where τ(n) is the number of members of the sequence {nt} which is less than n. Since

the sequence {nt} is sufficiently “sparse” in the sense that τ(n)
n
→ 0(n → ∞), we have

dimH K1 = dimH L1. Hence dimH L
∗ = dimH L1.

Corollary 3.3. If λ(Sµ) > 0, the almost all (with respect to the Lebesgue measure)

spectrum points have continuum many different representations (3.3).
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3.5 Hausdorff dimension of the probability distribu-

tions of LT - Bernoulli convolutions

Recall that the number

dimH(τ) = inf {dimH(E), E ∈ Bτ} ,

is called the Hausdorff dimension of the distribution of a random variable τ , where Bτ is

the class of all Borel supports (Bτ needs not necessarily be closed) of a random variable

τ ; that is,

Bτ = {E : E ∈ B, Pτ (E) = 1} .

We will need the following notations. Let

hj = −
mj−1∑
i=0

p̃ij ln p̃ij, Hn =
n∑
j=1

hj.

Theorem 3.5. If
∞∑
n=1

(
ln rkn−1

ln rkn
− 1

)2

<∞, (3.22)

then the Hausdorff dimension of the probability distribution µξ of the random variable ξ

is equal to

dimH(µξ) = lim
n→∞

Hn

− ln rkn
,

Proof. Let ∆̃[n](x) = ∆Q̃∗

a1(x)a2(x)...an(x) be a Q̃∗ cylindrical interval of rank n that contains

a point x of the spectrum Sξ\{1}. Note that the class of all cylindrical intervals coincides

with Ã (see (3.11)). Let µ be the probability measure of the random variable ξ, that is,

∀E ∈ B : µ(E) = P{ξ ∈ E}.
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Let λ - denote the Lebesgue measure in [0, 1]. Then

µ(∆̃[n](x)) = p̃a1(x)1 · p̃a2(x)2 · ... · p̃an(x)n,

λ(∆̃[n](x)) = qa1(x)1 · qa2(x)2 · ... · qan(x)n = rkn .

Consider
lnµ(∆̃[n](x))

lnλ(∆̃[n](x))
=

∑n
j=1 ln p̃aj(x)j

ln rkn
.

If x = ∆̃a1(x)a2(x)...an(x)... is chosen randomly such that

P (aj(x) = i) = p̃ij

(in other words, the distribution of the random variable x corresponds to the measure

µ), then

{ηj} = {ηj(x)} := {ln p̃aj(x)j}

is a sequence of independent random variables with the following distributions:

P{ηj = ln p̃ij} = p̃ij, i ∈ {0, ..., mj − 1} .

It is also clear that

Eηj =

mj−1∑
i=0

p̃ij ln p̃ij = −hj, and |Eηj| ≤ ln (lj + 1).

Let us show that

Eη2
j =

mj−1∑
i=0

p̃ij ln2 p̃ij ≤ max{4, ln2 (lj + 1)}.

To this end we put {x0} := {x : ln(x)− 2x+ 2 = 0}\{1}. Here ϕ : [0, 1]→ R denotes the

120



function such that

ϕ(x) =

 x ln2 x, if x ∈ [0, x0);

−x0 ln2 x0 · x−x01−x0 + x0 ln2 x0, if x ∈ [x0, 1].

From the definition of ϕ(x) it follows that

x ln2 x ≤ ϕ(x), ∀x ∈ [0, 1].

The function ϕ(x) is convex on [0, 1]. Therefore,using the Jensen’s inequality we have

Eη2
j ≤

mj−1∑
i=0

ϕ(p̃ij) ≤ (lj + 1)ϕ

(
1

lj + 1

)
≤ max{4, (ln(lj + 1))2}.

Therefore

D(ηj) = Eη2
j − (Eηj)

2 ≤ 2 max{4, ln2(lj + 1)}.

By the inequality (
ln(ln + 1)

ln rkn

)2

≤
(

ln rkn−1

ln rkn
− 1

)2

and Kolmogorov’s theorem ([Shi96, Ch IV, §3.2]) we get for x ∈ [0, 1] µξ-almost all points

x ∈ [0, 1]:

lim
n→∞

(η1(x) + η2(x) + ...+ ηn(x))− E (η1(x) + η1(x) + ...+ ηn(x))

ln rkn
= 0. (3.23)

Set

D = lim
n→∞

Hn

− ln rkn
.

Consider

T =

{
x : lim

n→∞

(
η1(x) + η2(x) + ...+ ηn(x)

lnλ(∆n(x))
− Hn

− lnλ(∆n(x))

)}
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=

{
x : lim

n→∞

(
η1 + η2 + ...+ ηn − E(η1 + η2 + ...+ ηn)

ln rkn

)
= 0

}
.

Since µ(T ) = 1, it follows that dimµ(T, Ã) = 1. Let

T1 =

{
x : lim

n→∞

(
η1(x) + η2(x) + ...+ ηn(x)

ln rkn
− Hn

− ln rkn

)
= 0

}
;

T2 =

{
x : lim

n→∞

η1(x) + η2(x) + ...+ ηn(x)

ln rkn
≤ lim

n→∞

Hn

− ln rkn

}

=

{
x : lim

n→∞

lnµ(∆̃[n](x))

lnλ(∆̃[n](x))
≤ lim

n→∞

Hn

− ln rkn

}
;

T3 =

{
x : lim

n→∞

η1(x) + η2(x) + ...+ ηn(x)

ln rkn
≥ lim

n→∞

Hn

− ln rkn

}

=

{
x : lim

n→∞

lnµ(∆̃[n](x))

lnλ(∆̃[n](x))
≥ lim

n→∞

Hn

− ln rkn

}
.

One can prove that T ⊂ T1, T1 ⊂ T3 and T ⊂ T2.

By Theorem 1.3, we get

dimλ(T2, Ã) ≤ D.

By the inclusion T ⊂ T2, we have

dimλ(T, Ã) ≤ D.

Since

T ⊂ T3 =

{
x : lim

n→∞

lnµ(∆̃[n](x))

lnλ(∆̃[n](x))
≥ D

}
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and by Theorem 1.4, we have

dimλ(T, Ã) ≥ D · dimµ(T, Ã) = D · 1 = D.

Therefore dimλ(T, Ã) = D. Since λ is the Lebesgue measure on [0, 1], we have

dimH(T, Ã) = dimλ(T, Ã) = D.

By assumption (3.22), we have

lim
n→∞

ln rkn−1

ln rkn
= 1.

From Theorem 3.3 it follows that the family Ã is faithful for Hausdorff - Bezikovich

dimension calculation on Sµ\{1} . Hence

dimH(T, Ã) = dimH(T ) = D.

We now prove that the above constructed se T is the “smallest” support of the measure

µ in the sense of Hausdorff - Besicovitch dimension. Let C be an arbitrary support of the

measure µ, that is, µ(C) = 1. It is easily seen that the set C1 := C
⋂
T is also a support

of the same measure µ , and C1 ⊂ C. Hence dimH (C1) ≤ dimH(C) and C1 ⊂ T . We

shall prove that dimH (C1) = dimH(T ). From C1 ⊂ T it follows that

dimH (C1) ≤ dimH(T ) = D.

On the other hand, we have

C1 ⊂ T ⊂ T3 =

{
x : lim

n→∞

lnµ(∆̃[n](x))

lnλ(∆̃[n](x))
≥ D

}
.
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Therefore, by using the faithfulness of the family of Cantor coverings and Theorem 1.4

and (3.3) we conclude

dimH (C1) = dimλ(C1, Ã)

≥ D · dimµ(T, Ã) ≥ D · dimµ(C1, Ã) = D · 1 = D.
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[Bar07] Krzysztof Barański. Hausdorff dimension of the limit sets of some planar

geometric constructions. Advances in Mathematics, 210(1):215–245, 2007.

[Bes52] A. Besicovitch. On existence of subsets of finite measure of sets of infinite

measure. Indag. Math., 14:339–344, 1952.

[Bil60] P. Billingsley. Hausdorff dimension in probability theory. Illinois J. Math.,

4:187–209, 1960.

[Bil61] P. Billingsley. Hausdorff dimension in probability theory. II. Illinois J. Math.,

5:291–298, 1961.

[Bil65] P. Billingsley. Ergodic theory and information. John Willey and Sons, New

York, 1965.
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