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Chapter 1

Introduction

Networks are a most important part of modern societies. Social networks of pro-
fessional contacts, friendships or romances, as well as infrastructure networks of
transportation, electricity or the internet are just some examples. Intuitively, it is
obvious that networks shape everyday behavior: consumption decisions are influ-
enced by opinions of friends, new jobs are found via references of social contacts,
military powers of allied countries influence each other. Another important ex-
ample that received a lot of attention in recent years is the network of interbank
loans. Mostly after the financial crisis of 2008, economists as well as politicians
became aware of the threat for worldwide economy emanating from the closely
intertwined financial market: in times of a financial crisis, the bankruptcy of one
market player can potentially lead to a cascade of bankruptcies and a breakdown
of the financial system.

In the social sciences, the importance of networks has been known for long. Well-
man and Berkowitz (1988) present many applications that were developed already
in the 1970s and 1980s. Scott (2012) gives a good overview on the development
of network analysis from a sociological perspective.

In economic research, however, the presence of networks was considered only in
few works. Examples are the early literature on job search in a social network
context (Montgomery, 1991, 1992), the matching or marriage problem (e.g., Gale
and Shapley, 1962; Roth and Sotomayor, 1992), or games with specific commu-
nication structures (e.g., Myerson, 1977). Finally, the field of operations research
considers network routing problems. For example, in the famous traveling sales-
man problem, the issue of finding the shortest path between a given number
of nodes was addressed (see, e.g., Gutin and Punnen, 2002, for an extensive
overview).

Only in the last 20 years, network theory finally became an active and well rec-
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2 Introduction

ognized field of economic research. The resulting literature on the emergence
of networks can be divided into three categories: strategic network formation,
network design and random network formation.
In the models on strategic network formation, economic agents endogenously cre-
ate a network through playing a network formation game, i.e. the construction
of links to other agents is part of the strategy set of each agent (Myerson, 1991).
A seminal contribution in this area was made by Jackson and Wolinsky (1996),
who proposed a first and until today frequently used stability concept named
pairwise stability. Subsequently, Jackson and Watts (2001) provided a dynamic
framework of network formation with the definition of an improving path. A
central aspect of the analysis is the tension between (pairwise) stable and effi-
cient networks (see Jackson and Wolinsky, 1996). Moreover, as the existence of
pairwise stable networks is not necessarily given, much work is dedicated to this
issue (e.g., Jackson and Watts, 2001; Goyal and Joshi, 2006b; Chakrabarti and
Gilles, 2007; Hellmann, 2013). Other papers develop different stability concepts,
such as strong and weak stability, pairwise Nash stability, pairwise stability with
transfers, bilateral or strict stability, among others (see, e.g., Dutta and Mu-
tuswami, 1997; Gilles and Sarangi, 2005; Bloch and Jackson, 2007; Goyal and
Vega-Redondo, 2007; Chakrabarti and Gilles, 2007).1

The second strand of literature addresses the issue of optimal network design.
Here, a network designer chooses the optimal network to maximize her objective
function in the presence of shocks. Typically, the designer aims to retain as
much of the connectivity of the network as possible, while she faces an intelligent
adversary who attacks the network subsequent to the choice of design (see, e.g.,
Goyal and Vigier, 2010; Dziubiński and Goyal, 2013b). This modeling choice
incorporates the analysis of defense against intelligent threats as well as of natural
threats in the sense of analyzing worst-case scenarios.
A number of different versions of this model has been studied in the last years.
Hoyer and De Jaegher (2010) study the threat of link as well as node deletion
without defense. Dziubiński and Goyal (2013b) study node deletion when the
designer may in addition directly defend nodes against deletion. Goyal and Vigier
(2010, 2014) assume that attacks of the adversary spread through the network.
Finally, connected to the literature on strategic network formation, other papers
consider a model of decentralized defense, such that every node is considered to
be one agent that aims to protect herself against being deleted (disconnected)
from the network (see Hong, 2008; Hoyer, 2012; Dziubiński and Goyal, 2013a).

Third, the literature on random network formation is closely connected to graph
theory. In fact, the first and until today widely used model of random networks

1Naturally, a proportionate number of papers then addresses the connections and distinc-
tions between the various concepts, e.g., Bloch and Jackson (2006); Jackson and Van den
Nouweland (2005); Gilles and Sarangi (2005).
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is the Bernoulli Random Graph model examined by Erdős and Rényi (1959).
However, as sociologists have later developed many stylized facts about real-
world networks (e.g., the small-world phenomenon or clustering2), and not all of
them can be replicated with Bernoulli Random Graphs, other models of random
network formation have been proposed. Prominent examples are the p∗ networks
(Wasserman and Pattison, 1996), rewired lattices (Watts and Strogatz, 1998) or
scale-free networks (Barabási and Albert, 1999). For a good introduction to these
models see, e.g., Jackson (2006), Section 3.1.

1.1 Contributions

This thesis aims to contribute to each of the afore-mentioned strands of research
on the emergence of economic networks. That is, we provide new results on
strategic network formation, random network formation and network design.

In Chapter 2 (joint with Tim Hellmann), we develop conditions for the existence
of pairwise stable networks in a most general framework of strategic network
formation. The only assumption made is that utility of agents only depends on
their respective positions in the network and not on their names. Incorporation
of this idea is achieved via an anonymity condition on the set of utility functions.
We then show that some ordinal link externality conditions on the utility func-
tion are sufficient for the existence of stable networks of particular architecture.
These ordinal link externality conditions define solely the impact that new links
have on incentives to form own links, like ordinal convexity and ordinal strategic
complements.3 We show that if one of these link externalities on marginal utility
is positive, pairwise stable networks of certain structure exist. Which class of
networks arises as stable depends on which externality property is satisfied.

While these link externality properties guarantee existence, they are not sufficient
to characterize classes of networks which contain all pairwise stable networks. To
achieve that, we impose stronger assumptions on the homogeneity of the society
in combination with the link externality properties. These stronger conditions are
expressing a general desire to be central in the network and are regularly assumed
in strategic network formation models starting with Jackson andWolinsky (1996).
We show that with these stronger notions of positive link externalities all pairwise
stable networks are contained in the class of nested split graphs (Cvetković and

2The small-world phenomenon describes the observation that even in large networks on
average there exist relatively short paths between two individuals, while a network exhibits
clustering if two nodes with a common neighbor have an increased probability of being con-
nected.

3Ordinal convexity and ordinal strategic complements are single crossing properties of
marginal utility in own, respectively other agents’ links.
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Rowlinson, 1990), networks where the set of neighbors of any two players can be
ordered according to the set inclusion ordering. As the society becomes more and
more homogeneous, the pairwise stable networks are only found in a subclass of
the nested split graphs, the so-called dominant group networks.

We illustrate our general results with respect to several important applications.
Among those is a model of network formation where the utility of players is
given by their Bonacich centrality (Bonacich, 1987). Such a utility function
arises for instance when individuals form costly links in the first stage and then
engage in team production in the second stage. Indeed, Ballester et al. (2006)
show that the unique pure strategy equilibrium of the second stage in such a
game is determined by the Bonacich centrality. This measure of centrality counts
the number of paths emanating from a given node, discounted by the length of
each path with a common discount factor. Utility functions given by Bonacich
centrality give rise to positive link externalities and, even more interestingly,
for small discount factors our stronger link externality properties are satisfied
as well. Hence, by applying our general results to utility given by Bonacich
centrality, we can conclude that either the empty network or the complete network
are necessarily pairwise stable (for any discount factor). Moreover, any pairwise
stable network is of nested split structure, respectively dominant group structure,
if the discount factor is small enough.

In Chapter 3 (joint with Florian Gauer), we develop a new model of random
network formation. The basic idea of this model is that heterogeneous agents
prefer links to those agents who have similar characteristics. This phenomenon
is known as homophily.
Precisely, we introduce a continuous notion of homophily into the Bernoulli Ran-
dom Graph model examined by Erdős and Rényi (1959). To this end we propose
a two-stage random process. First, agents are assigned characteristics indepen-
dently drawn from a continuous interval. Second, a network realizes, with linking
probabilities being contingent on a homophily parameter and the pairwise dis-
tance between agents’ characteristics. This enables us to account for homophily
in terms of similarity rather than equality of agents, capturing the original socio-
logical definition instead of the stylized version up to now commonly used in the
economic literature.

As a main result of this chapter, we show that in our model homophily induces
clustering, two stylized facts frequently observed in real-world networks but not
captured by the Bernoulli Random Graph model. Furthermore, clustering proves
to be strictly increasing in homophily. Additionally, two simulations indicate
that even at high homophily levels the well-known small-world phenomenon is
preserved.

We finally provide an application of the homophilous random network model
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within a stylized labor market setting. A firm that needs to fill a vacancy may
either hire through the formal job market or ask for recommendations of their
current employees, thus hire through the network of professional contacts. Work-
ers in the market have different ability levels with respect to the vacancy and are
connected via a homophilous random network. We deduce a decision rule, stating
in which constellations firms should hire via the social network. In particular,
given sufficiently high levels of homophily and the current employee’s ability, it
proves to be always optimal to hire via the social network.

In Chapter 4, we analyze a model of network design for the case of imperfect
defense. For both cases of node- and link attack, we assume that a designer may
form costly links between a given set of nodes and may additionally choose to
protect nodes or links at some cost, respectively. Subsequently, an adversary
attacks the network, aiming to disconnect it. Defense is imperfect in the sense
that defended nodes (links) can still be destroyed with some given probability.

We first consider the imperfect node-defense game. We fully characterize the set
of equilibria for attack budgets of one or two nodes. In case the adversary can
attack one node we show that the possible equilibria are the empty network, the
non-protected circle and the centrally-protected star, while the latter can be an
equilibrium only for high chances of defense and respectively small network size.
For an attack budget of two nodes the possible equilibria are the unprotected
empty network, the centrally-protected star, the fully protected circle and the
unprotected wheel network, as well as one or two networks with an intermediate
number of defended nodes.
We then use the same strategies to partially characterize the possible equilibria
of the game in case of a general attack budget of ka nodes.

The same analysis is done for the imperfect link-defense game. Again the designer
forms costly bilateral links within the given set of nodes, while now she may
(imperfectly) protect these links against deletion. Then the adversary, having a
fixed attack budget, attacks links in order to disconnect the network. Analogously
to the previous game, unprotected links are deleted with certainty, protected links
only with some given probability.
Again we first characterize the set of possible equilibria for attack budgets of
one or two links. For an attack budget of one link the results are very similar
to the node-defense game, the possible networks in equilibrium being the empty
network, fully protected trees and the non-protected circle. As before, protected
links will be present in equilibrium only for high chances of defense and small
network size.
More differences between the link-defense game and the node-defense game arise
for an attack budget of two links. Here, the possible equilibria are the empty
network, the fully protected trees, the fully protected circle and the unprotected
wheel network. In particular, in the link-defense game there are no further 2-
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connected networks in the set of equilibria, such that the designer uses either no
or full protection of links in equilibrium.
Finally, we again partially characterize possible equilibria of the game in case of a
general attack budget of ka links and find similar differences to the node-defense
game as in case of an attack budget of two links.



Chapter 2

Stable Networks in Homogeneous

Societies

2.1 Introduction

Starting with the seminal contribution of Jackson and Wolinsky (1996), a sub-
stantial literature has evolved modeling strategic network formation. Economic
agents in these models have a preference ordering over the set of networks. Exam-
ples include firms’ profit when forming R&D networks (Goyal and Joshi, 2003),
countries’ social welfare when forming trade agreements (Goyal and Joshi, 2006a),
and individuals’ importance when forming friendships (Jackson and Wolinsky,
1996). Since the structure of interaction, i.e. the social network, affects every-
day economic outcomes, it is interesting to economists which kind of interaction
structures emerge when links are formed strategically. The seminal concept of
such equilibrium outcomes is the notion of pairwise stability (Jackson and Wolin-
sky, 1996). A central question is then under which conditions stable networks
exist and which structure they have.

In this paper, we approach this question from a very general point. Rather than
assuming a particular functional form of utility, we simply look at settings where
each agent’s utility depends only on her network position but not on her name. In
other words, the utility function from the network is as general as possible with
the restriction that all players are homogeneous. We then show that some ordinal
link externality conditions on the utility function are sufficient for the existence
of stable networks of particular architecture. These ordinal link externality con-
ditions define solely the impact that new links have on incentives to form own
links, like ordinal convexity, which is a single crossing property of marginal utility
in own links, and ordinal strategic complements, i.e. a single crossing property
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8 Stable Networks in Homogeneous Societies

of marginal utility in other agents’ links. We show that if one of these link
externalities on marginal utility is positive then pairwise stable networks of cer-
tain structure exist. Which class of networks arise as stable depends on which
externality property is satisfied (see Propositions 2.3.2, 2.3.10, and 2.4.1).

While these link externality properties guarantee existence, they are not sufficient
to characterize classes of networks which contain all pairwise stable networks. To
achieve that, we impose stronger assumptions on the homogeneity of the society
in combination with the link externality properties. These stronger conditions
are expressing a general desire to be central in the network and are regularly as-
sumed in network formation models starting with Jackson and Wolinsky (1996).
We show that with these stronger notions of positive link externalities all pair-
wise stable networks are contained in the class of nested split graphs (Proposi-
tion 2.3.7). Nested split graphs (Cvetković and Rowlinson, 1990) are networks
where the set of neighbors of any two players can be ordered according to the
set inclusion ordering. As the society becomes more and more homogeneous, the
pairwise stable networks are only found in a subclass of the nested split graphs,
the so-called dominant group networks (Propositions 2.4.2 and 2.4.3).

We illustrate our general results with respect to several important applications.
Among those is a model of network formation such that the utility of players
is given by their Bonacich centrality (Bonacich, 1987). Such a utility function
arises, e.g., when individuals form costly links in the first stage and then engage in
team production in the second stage. Indeed, Ballester et al. (2006) show that the
unique pure strategy equilibrium of the second stage in such a game is determined
by the Bonacich centrality. This measure of centrality counts the number of paths
emanating from a given node which are discounted by the length of each path
with a common discount factor. Utility functions given by Bonacich centrality
give rise to the positive link externalities and, even more interestingly, for small
discount factors, our stronger link externality properties are satisfied as well.
Hence, by applying our general results to utility given by Bonacich centrality,
we can conclude that either the empty network or the complete network are
necessarily pairwise stable (for any discount factor), while any pairwise stable
network is of nested split structure, respectively dominant group structure, if the
discount factor is small enough.

General properties of stable networks are of high interest for several reasons. Our
results may help characterize stable networks for future (maybe very complex)
models of network formation, and they provide reasoning why certain stability
structures emerge in existing models of network formation: the driving force
are the link externality conditions. That our results are applicable to so many
settings is due to the generality our approach and the fact that the assumption of
a homogeneous society is not restrictive as almost all models of strategic network
formation share this property (see, e.g., several surveys and textbooks including
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Jackson, 2003, 2006; Goyal, 2005; Goyal and Vega-Redondo, 2007; Vega-Redondo,
2007; Jackson, 2008b; Easly and Kleinberg, 2010; Hellmann and Staudigl, 2014).

Although the literature on strategic network formation is enormous, only few
results concerning these general structural properties can be found. Exceptions
are Jackson and Watts (2001) and Chakrabarti and Gilles (2007) who use the
restrictive assumption of a potential function (Monderer and Shapley, 1996) to
prove existence of stable networks, and the recent paper Hellmann (2013) who –
similar to our approach – uses link externality conditions to show existence and
uniqueness of stable networks. In light of their general approach, these papers,
however, are not able to show existence of particular stable networks. We fill this
gap with the help of the homogeneity assumption.

Assuming more structure on the functional form of utility, Goyal and Joshi
(2006b) are also able to show existence of particular stable network structures
such as regular networks, dominant group structures, and exclusive group struc-
tures depending on cardinal link externalities.1 They, however, assume a specific
form of utility depending only on a particular network statistic, the vector of
agents’ degrees. We show that some of their results can be generalized in two
ways: first, they hold for arbitrary utility functions in a homogeneous society;
second, the link externality conditions can be generalized to hold also in ordinal
terms. Thereby, our results are applicable to many examples of utility which
are not captured in the framework of Goyal and Joshi (2006b), Jackson and
Watts (2001) and Chakrabarti and Gilles (2007). In these examples, our results
contribute substantially more than the more general setup in Hellmann (2013).
Among those is the afore mentioned utility function given by Bonacich centrality.

The rest of the paper is organized as follows. Section 2.2 defines the model and
presents the important assumptions and definitions used throughout the paper.
Section 2.3 presents the results ordered by the externalities that are respectively
assumed. Section 2.5 concludes. All proofs can be found in Appendix 2.A.

2.2 The model

Let N = {1, 2, ..., n} be a finite set of agents. Depending on the application these
can be firms, countries, individuals, etc. These economic agents strategically
form links and, thus, are henceforth called players. Throughout this paper we
will assume network formation to be undirected. A connection or link between
two players i ∈ N and j ∈ N , i 6= j will be denoted by {i, j} which we abbreviate
for simplicity by ij = ji := {i, j}. We then define the complete network gN =

1Regular networks are such that all nodes have the same number of neighbors (degree), while
we refer the reader to Goyal and Joshi (2006b) for a definition of exclusive group structures.
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{ij | i, j ∈ N, i 6= j} as the network where any two players are connected to each
other and the set of all networks G = {g | g ⊆ gN}.
We will further denote the set of links of some player i in a network g by Li(g) =
{ij ∈ g | j ∈ N}, and all other links g−i = g − Li(g), where g − g′ := g \ g′

denotes the network obtained by deleting the set of links g′ ∩ g from network
g. Analogously, g + g′ := g ∪ g′. The set of player i′s neighbors is given by
Ni(g) = {j ∈ N | ij ∈ g} and ηi(g) = #Ni(g) is called the degree of player i.

Players have preferences over networks. With the usual assumptions on prefer-
ences, the profile of utility functions is denoted by u(g) = (u1(g), u2(g), ..., un(g)),
where ui is a mapping from G to R for all i ∈ N . The decision of adding or delet-
ing links is based on the marginal utility of each link. We denote the marginal
utility of deleting a set of links l ⊆ g from g as ∆ui(g, l) := ui(g) − ui(g − l),
and similarly the marginal utility of adding a set of links l ⊆ gN − g to g as
∆ui(g+ l, l) = ui(g+ l)−ui(g). Observe that in this definition, ui(g) may include
any kind of disutilities arising in network g such as costs of link formation. In
many examples from the literature linear costs of link formation are assumed,
such that the utility function has the form ui(g) = v(g)− cηi(g), where c > 0 is
some constant.

Altogether, we will call G = (N,G, u) a society.

2.2.1 Network Formation and Stability

The study of equilibrium/stability of networks has been a subject of interest in
many models of network formation. Depending on the rules of network formation
which are assumed in a given model, there are many definitions of equilibrium
at hand. Here, we present only the well-known concept of pairwise stability
introduced by Jackson and Wolinsky (1996).2

Definition 2.2.1 (Pairwise Stability):

A network g in a society G = (N,G, u) is pairwise stable (PS) if

(i) ∀ij ∈ g : ∆ui(g, ij) ≥ 0 and ∆uj(g, ij) ≥ 0;

(ii) ∀ij /∈ g : ∆ui(g + ij, ij) > 0 ⇒ ∆uj(g + ij, ij) < 0.

This approach to stability defines desired properties directly on the set of net-
works. The implicit assumption of network formation underlying this approach
is that players are in control of their links; any player can unilaterally delete a

2A game theoretic foundation and a comparison of the several definitions of stability can
be found in Bloch and Jackson (2006).
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given link, but to form a link both involved players need to agree. The networks
which satisfy property (i) of Definition 2.2.1 are called link deletion proof and
the networks which satisfy (ii) are called link addition proof.

The intuition behind the definition of pairwise stability is that two players form
a link if one is strictly better off and the other is not worse off when forming
the link, while a link is deleted if one of the two involved players is better off
deleting the link. It should be noted that this definition of stability is rather a
necessary condition of stability as it is fairly weak. It can be refined to account for
multiple link deletion, called Pairwise Nash stability (Bloch and Jackson, 2006),
to account for network formation with transfers, called Pairwise stability with
transfers (Bloch and Jackson, 2007), and many more (see, e.g., Jackson, 2008b;
Hellmann and Staudigl, 2014, for a further discussion on different approaches to
stability).3

2.2.2 Homogeneity

The central assumption underlying this paper is homogeneity of the society. That
is we assume all players to be ex-ante equal in order to assure that differences
in utility of two players in a given network solely depend on their respective
network positions but not on their name.4 We will establish this homogeneity
via an anonymity condition on the utility profile.

Definition 2.2.2 (Anonymity):

Let gπ := {π(i)π(j) | ij ∈ g} be the network obtained from a network g by some
permutation of players π : N → N . A profile of utility functions is anonymous if

ui(g) = uπ(i)(gπ). (2.2.1)

A society G with a profile of utility functions satisfying anonymity will be called
homogeneous. As noted above, players in a homogeneous society are anonymous
in the sense that players in symmetric network positions receive the same utility.
The notion of symmetric position in a network, implied by Definition 2.2.2, is

3Some results presented here generalize to the stronger concept of pairwise Nash stability,
also known as pairwise equilibria. Pairwise Nash stable networks are immune against deletion of
any subsets of own links. Specifically, it is known that ordinal concavity of the utility function
(see Definition 2.2.4) implies that all pairwise stable networks are also pairwise Nash stable
(Calvó-Armengol and Ilkiliç, 2009; Hellmann, 2013). Any result in this paper that does not
require convexity, hence, also holds for pairwise Nash stability under the additional assumption
of concavity. Further, the results of this paper which hold for all pairwise stable networks,
trivially also extend to pairwise Nash stability.

4In the setup at hand, ex-ante means before any network is formed.
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such that two players i, j ∈ N , i 6= j are symmetric in a network g ∈ G if there
exists a permutation of the set of players π : N → N such that π(i) = j and
gπ = g. This is most trivially satisfied if two players i, j ∈ N , i 6= j share the
same neighbors (disregarding a possible common link), i.e. Ni(g−j) = Nj(g−i). On
the other hand, having the same degree is a necessary condition for two players
to be in a symmetric position.

Consequently, a network g ∈ G is called a symmetric network if all players are in
a symmetric position.5 Hence, a necessary condition for g to be symmetric is that
it is regular, i.e. that all players have the same degree. However, this condition
is not sufficient (see Figure 2.2.1). Some examples of symmetric positions in a
network and symmetric networks are given in Figure 2.2.1.

1 2 3

4 5

6 7 8

(a) Symmetric net-
work

1 2 3

4 5

6 7 8

(b) Non-symmetric
network

1 5

3 4

2 6

(c) Non-symmetric network

Figure 2.2.1: Networks (a) and (b) are regular, but only (a) is symmetric. In
network (b), two players of different components are not in symmetric positions.
In network (c), players 3 and 4 respectively players 1, 2, 5 and 6 are symmetric,
while the network is obviously not.

Moreover, with the notion of homogeneous society, it is easy to see that sym-
metric links provide the same marginal utility. For this, however, a symmetry
on links has to be imposed. To simplify things, note that for two players whose
neighborhood coincides (disregarding a mutual connection), any link to a third
player is symmetric which implies (ii) and (iii) of Lemma 2.2.3.

Lemma 2.2.3 (Landwehr (2012)).

Let some profile of utility functions u satisfy anonymity. Then the following
statements are true:

(i) ui(g) = uj(g), if i and j are symmetric,

(ii) ∆ui(g + ik, ik) = ∆uj(g + jk, jk) ∀k ∈ N\Ni(g), if Ni(g−j) = Nj(g−i),

(iii) ∆uk(g + ik, ik) = ∆uk(g + jk, jk) ∀k ∈ N\Ni(g), if Ni(g−j) = Nj(g−i).

5The graph theoretic equivalent to symmetric graphs we consider here are not symmetric,
but vertex-transitive graphs. In this setup, we need symmetry of the players, that is symmetry
of vertices whereas symmetry in graph theory would also demand edges to be symmetric. For
details see, e.g., Biggs (1994).
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The proof of Lemma 2.2.3 as well as all following results can be found in the
appendix. From the proof it can be easily seen that parts (ii) and (iii) of Lemma
2.2.3 hold likewise for all existing links ik, jk ∈ g.

2.2.3 Link externalities

Even if the society is homogeneous, pairwise stable networks may fail to exist.
Moreover, it is impossible to say anything about stability of particular network
structures without any assumptions on the utility function. In the literature on
network formation, however, many utility functions admit certain link externality
conditions. By link externalities we mean conditions on how marginal utility is
affected when links are added to or deleted from a network. Hence, without losing
much of the generality of our approach, we will examine whether stable networks
of certain structure exist if various combinations of link externalities in the con-
text of homogeneous societies are satisfied. We will consider the weakest version
of link externalities in the literature, namely the ordinal versions presented in
Hellmann (2013).6 For the sake of convenience, in the rest of the paper we will
speak about convexity, concavity, strategic complements and strategic substi-
tutes, keeping in mind that what is used are the respective ordinal formulations
of Definition 2.2.4.

Definition 2.2.4 (Ordinal link externalities):

A utility function ui satisfies ordinal convexity (concavity) in own links if for all
g ∈ G, li ⊆ Li(g

N − g) and ij /∈ g + li it holds that

∆ui(g + ij, ij) ≥ 0 ⇒ (⇐) ∆ui(g + li + ij, ij) ≥ 0. (2.2.2)

A utility function ui satisfies ordinal strategic complements (substitutes) if for
all g ∈ G, l−i ⊆ L−i(g

N − g) and ij ∈ Li(g
N − g) it holds that

∆ui(g + ij, ij) ≥ 0 ⇒ (⇐) ∆ui(g + l−i + ij, ij) ≥ 0. (2.2.3)

In Goyal and Joshi (2006b) two utility functions with a particular structure –
called playing the field and local spillovers– are studied with respect to existence
of stable networks. Both of these utility functions reduce the network to only one
characteristic: the vector of degrees, which reduces complexity a lot, but takes
away the generality and hence a whole field of possible applications. To establish

6Ordinal link externalities as first defined by Hellmann (2013) are implied by the more
commonly used but stronger cardinal link externalities (see, e.g., Bloch and Jackson, 2006,
2007; Goyal and Joshi, 2006b), as well as by several related concepts such as α-submodularity
(Calvó-Armengol and Ilkiliç, 2009).
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existence of stable networks, Goyal and Joshi (2006b) additionally assume various
combinations of cardinal notions of link externalities. It is straightforward to see
that our assumptions of homogeneity and ordinal link externalities are implied
by theirs. Hence not only with respect to not assuming a particular structure,
but also with respect to the notions of link externalities, our approach is a true
generalization of their approach and offers new opportunities to apply the results.

2.2.4 Example: Utility given by Bonacich Centrality

We illustrate our assumptions and results with the help of an example where
players have a desire to be central in a network. This also reflects the first ideas
of why individuals form links strategically (see, e.g., Jackson and Wolinsky, 1996).
What exactly is meant by being central very much depends on the definition of
centrality (for a discussion and comparison of different measures of centrality, see,
e.g., Jackson, 2008b). In Jackson and Wolinsky’s influential connections models
players derive utility based on a version of decay or closeness centrality.

Network theory offers a wide variety of centrality measures, and some of them
have an interesting game theoretic interpretation. Bonacich (1987) introduced a
parametric family of centrality measures in order to formulate the intuitive idea
that the centrality of a single node in a network should depend on the centrality of
its neighbors. This self-referential definition of centrality leads to an eigenvector-
based measure, which can be derived from basic utility-maximization ideas, as
shown by Ballester et al. (2006). Let A be the n× n adjacency matrix of a given
network g and ~1 be the n × 1 vector with all entries equal to 1.7 The powers of
the adjacency matrix yield information about the connectivity structure of the
network. Indeed, A~1 is an n× 1 matrix whose entries are just the degrees of the
individual nodes. The vector A2~1 counts the number of paths of length 2 starting
from the individual nodes, and more generally Ak~1 counts the number of paths
of length k. Let δ > 0 be a given parameter, discounting for path length and
chosen in such a way that the following matrix power series exists:8

B(δ, g) =
∞∑

n=0

δnAn = [I − δA]−1.

The centrality index proposed by Bonacich (1987) is then defined as

b(δ, g) = B(δ, g)~1. (2.2.4)

7The adjacency matrix A of a network g is a matrix with entries aij = 1 if ij ∈ g and
aij = 0 otherwise. Note that A is necessarily symmetric as we consider undirected network
formation.

8The necessary condition for this to be the case is that 0 < δ < λ1(A)
−1, where λ1(A) is

the eigenvalue of A having largest modulus.
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This centrality measure is actually a Nash equilibrium of an interesting class of
non-cooperative games: Suppose there are N agents who are involved in a team
production problem (for an in-depth introduction of this game, see Ballester et al.,
2006). Each player chooses a non-negative quantity xi ≥ 0, interpreted as efforts
invested in the team production. Efforts are costly, and the level of effort invested
by the other players affects the utility of player i. To capture these effects, let
the player i’s payoff from an effort profile x = (x1, . . . , xN ) be given by

πi(x1, . . . , xN) = xi −
1

2
x2
i + δ

∑

j∈Ni

xixj.

The players choose their efforts independently, and in a utility maximizing way.
It can be shown that this game has a unique Nash equilibrium x∗ given by

x∗ = b(δ, g).

Hence, the equilibrium effort invested by player i depends only on her centrality
in the network. Given the network g, and discount factor δ ∈ R, so that (2.2.4)
is well defined, the equilibrium payoff of player i can be computed as9

πi(x
∗) =

1

2
bi(δ, g)

2. (2.2.5)

This utility function now represents preferences over a set of possible network
architectures underlying the team production problem. Hence, assuming Nash
equilibrium play in the game where players choose efforts, we can now use this de-
rived preference relation to investigate the equilibrium payoffs as functions of the
interaction structure. In fact, we can find many examples in the literature where
the equilibrium outcome of a game on a network is given by the Bonacich cen-
trality. Among those are models of production economy (Acemoglu et al., 2012),
R&D cooperation (König, 2013), local public goods (Allouch, 2012; Bramoullé
et al., 2014), and trade (Bosker and Westbrock, 2014).

Thus, in a stage game such that players first decide to form costly links and then
choose efforts in a team production game, players will anticipate the equilibrium
in the second stage. Hence when they form links with linear costs the following
objective function arises,

uBC
i (g) =

1

2
bi(δ, g)

2 − ηic. (2.2.6)

When considering link formation with the utility function uBC
i (g) as the objective,

we have to make sure that bi(g, δ) is well defined for any network. Since the largest

9To see this, note that bi(g, δ) = 1 + δ
∑

j∈Ni
bj(g, δ).
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eigenvalue λ1(g) is maximized for the complete network gN , and we need δ < 1
λ1(g)

for bi(g, δ) to exist, we have to assume

δ <
1

λ1(gN)
=

1

n− 1
, (2.2.7)

in order to define a consistent model of network formation. In other words, the
set of admissible discount factors is given by δ ∈ [0, 1

n−1
).

This profile of utility functions obviously satisfies anonymity. Moreover, it is
quite intuitive to see that the Bonacich centrality bi(g, δ) satisfies positive link
externalities, i.e. convexity and strategic complements as in Definition 2.2.4,
since more own or other players’ links increase the number of paths that a new
link creates. Since a convex transformation does not change this fact and linking
costs are linear, marginal utility is increasing in own and other players’ links.

It is worth noting that to our best knowledge, there is only one result from the
literature that can be applied to shed some light into the structure of pairwise
stable networks when individuals form links according to uBC

i . From Hellmann
(2013) it is known that a pairwise stable network exists. Other models are not
applicable, since uBC

i does not fall in the category of playing the field and local
spillover games of Goyal and Joshi (2006b), and does not allow for a network
potential (cf. Jackson and Watts, 2001; Chakrabarti and Gilles, 2007). Hence,
with our general assumptions of this paper, we are able to offer some insights
into the structure of pairwise stable networks of this type of utility function.

2.3 Strategic Complements

In this section we assume that the profile of utility functions satisfies the ordinal
notion of strategic complements. Such link externalities are given if the incentives
to form links are single crossing in other players’ links in the sense that once the
incentive to form a link is positive, it stays positive when links of other players
are added. The more restrictive cardinal notion of strategic complements would
imply that the incentive to form links is increasing in other players’ links. Hence
there is a form of complementarity between links at work: Links to other players
become more valuable when links between other players are added.

However, there are two kinds of link externalities which are not captured by the
assumption of ordinal strategic complements. First, it is not clear what the effect
of own links is on incentives to form links. When these are negative, this could
potentially lead to cycling behavior.10 Second (and this cannot be captured by
the cardinal notion either), strategic complements do not specify on which links

10In the opposite case of both externalities from own and other players links being positive,
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the effect of other players’ links is stronger. That is, if two players k and l form a
link, does this increase the incentive for player i 6∈ {k, l} more to link to k (resp.
l) than to j 6∈ {k, l}, or vice versa?

To capture these different externalities in a homogeneous society, we will first
assume that additionally to strategic complements, incentives from own links
are not “too negative” in a well defined sense (Definition 2.3.1). With these
assumptions an already strong existence result can be established which trivially
also holds for the case when both link externalities are positive. We then show
that in such an environment, it is possible to characterize a class of networks to
which all pairwise stable networks belong, if the society is more homogeneous.
By that, we mean that the strategic complements property and the convexity
property act homogeneously on all links. In the case of strategic complements,
this results in the fact that players prefer to connect to players with higher degree.
We call this a strong preference for centrality (see Section 2.3.2) since this reflects
a preference to be central in the network. These assumption is not far-fetched.
We discuss examples satisfying it, among them the utility function where benefits
are given by Bonacich centrality, i.e. uBC

i . Finally, we show in Section 2.3.3, that
in a homogeneous society, strategic complements alone (in settings where the
utility functions depends on the vector of degrees and the network structure)
are sufficient for the existence of a pairwise stable network within the class of
symmetric networks.

2.3.1 Link Monotonicity

When the incentives to form links are increasing in both own and other players’
links, then network formation is reminiscent of the structure of a supermodular
game, where equilibria are easy to characterize. However, pairwise stable net-
works are not necessarily Nash equilibria of an underlying game.11 We show here
that the idea of assuming increasing incentives, i.e. positive link externalities,
can be relaxed in two ways: first, strategic complements only need to hold in
ordinal terms, and second, externalities from own links may not satisfy the single
crossing property, but instead shall not be “too negative”. In particular, we want
the potential negative effect of adding own links not to dominate the positive
effect of addition of other players’ links. This idea is inspired by the notion of
link monotonicity in Goyal and Joshi (2006b). Their notion can be generalized
to our general utility function and to only hold in ordinal terms. We formally

it is shown in Hellmann (2013) that closed cycles do not exist (see Jackson and Wolinsky, 1996,
for a definition of closed improving cycles).

11The non-cooperative game underlying network formation is due to Myerson (1991), where
the intentions to form links are announced. Nash equilibria of this game are immune to multiple
link deletion and do not consider link addition.
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define that a utility profile satisfies ordinal link monotonicity if the addition of
an own link and some other player’s link to any given network at the same time
does not turn marginal utility negative for any player.

Definition 2.3.1 (Link Monotonicity):

A utility function ui satisfies ordinal link monotonicity if for all j, k, l,m ∈ N\{i}
and all g ∈ G:

∆ui(g + ij, ij) > (≥) 0 ⇒ ∆ui(g + ik + lm+ ij, ij) > (≥) 0, (2.3.1)

Trivially, if externalities from own and other players’ links are both positive (cf.
Definition 2.2.4), then ordinal link monotonicity is satisfied, but not vice versa.
Also our notion of ordinal link monotonicity is implied by the assumption of link
monotonicity in Goyal and Joshi (2006b).

Now, in a homogeneous society, if the empty network is not stable, then any two
players want to connect to each other (cf. Lemma 2.2.2). In the presence of link
monotonicity and strategic complements, this implies that a player with less own
links than the total number of other players’ links, has an incentive to add any
link. We then show that if the number of players n is at least five, then there
always exist two unconnected players satisfying the above, what implies that they
both want to connect to each other. Hence, only the complete network can be
stable which is summarized in the following result.

Proposition 2.3.2.

Let n > 4 and let the profile of utility functions u satisfy the ordinal strategic
complements property, ordinal link monotonicity and anonymity. If the empty
network is not pairwise stable then the complete network is uniquely pairwise
stable, and vice versa.

Thus, if the society is homogeneous and ordinal strategic complements dominate
externalities from own links such that link monotonicity is satisfied, then the
pairwise stable networks have an interesting structure: if multiple networks are
pairwise stable, then there always exists a smallest and a largest stable network
in the sense of the set inclusion ordering, namely the empty and the complete
network. To the contrary, if one of these networks fails to be pairwise stable, then
the other network is uniquely pairwise stable, i.e. the least and maximal network
coincide.

Note that the assumptions in Proposition 2.3.2 allow for negative effects from
both own and other players’ links and that even concave utility functions are
allowed as long as the ordinal properties of strategic complements and link mono-
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tonicity are preserved. Hence, the range of possible applications is large, estab-
lishing a strong existence result. In such network formation models, it suffices
to check the empty and the complete network in order to find a pairwise stable
network. Especially in large societies, where the number of different networks is
enormous,12 this offers an easy way to find a stable network.

As a direct consequence of Proposition 2.3.2 we get the same result in case of
ordinal positive externalities since convexity and strategic complements imply
ordinal link monotonicity. In this case the result also holds for n ≤ 4, such that
we provide a different proof in the appendix.

Corollary 2.3.3 (Landwehr (2012)).

Let the profile of utility functions u satisfy the ordinal strategic complements
property, ordinal convexity in own links and anonymity. If the empty network
is not pairwise stable then the complete network is uniquely pairwise stable, and
vice versa.

A comparison to the literature may be in order here. First, Goyal and Joshi
(2006b) assume a lot more structure on the functional form of utility and combine
these with cardinal assumptions of link externalities. Although our approach is
more general, we are able to contribute more concerning the stability of complete
and empty network (cf. Goyal and Joshi, 2006b, Proposition 4.1).13 Second,
Hellmann (2013) studies the same assumptions on link externalities as Corollary
2.3.3, but for heterogeneous societies. There, only existence can be established,
implying that the homogeneity assumption has some impact here.

As noted in Section 2.2.4, when benefits are given by a convex transformation of
Bonacich centrality and link costs are linear (2.2.6), then positive link external-
ities and anonymity are satisfied. Hence, by Corollary 2.3.3, the empty or the
complete network are uniquely stable or that both are stable in this setting.

2.3.2 Centrality-based Utility Functions

Although it is possible to gain some insights into the structure of pairwise stable
networks in a homogeneous society when ordinal link externalities are not too
negative, these assumptions are not sufficient to characterize all pairwise stable
networks. In particular, it would be interesting to examine which stable struc-
tures emerge when the least and maximal stable network do not coincide, such

12In a society of n agents, the cardinality of G is 2n(n−1)/2.
13Note that Goyal and Joshi (2006b) do not get the same since their focus is on existence

of pairwise Nash stable networks rather than pairwise stable networks.
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that multiple stable networks exist. However, in the general framework that we
impose here there is little hope to say more about the structure of pairwise stable
networks without putting stronger assumptions on the utility function.

The basic idea behind network formation starting from the seminal contribution
Jackson and Wolinsky (1996) is that players have a desire to be as central as
possible in the network. In these settings, players prefer the connection to a
central player over the connection to a peripheral player. We reflect this idea by
defining centrality based utility functions by a weak notion and a strong notion.

Definition 2.3.4 (Weak and Strong Preference for Centrality):

A utility function ui satisfies weak preference for centrality (WPC) if for all
g ∈ G, whenever there exist j, k ∈ N\Ni(g) such that Nj(g−k) ⊆ Nk(g−j) it holds
that

∆ui(g + ij, ij) ≥ (>)0 ⇒ ∆ui(g + ik, ik) ≥ (>)0, (2.3.2)

A utility profile ui satisfies strong preference for centrality (SPC) if for all g ∈ G,
η(g) ∈ {0, .., n− 1}n such that ηj(g) ≤ ηk(g) it holds that

∆ui(g, ij) ≥ 0 ⇒ ∆ui(g + ik, ik) > 0. (2.3.3)

Our weak notion of preference for centrality captures all reasonable notions of
centrality based utility functions: player k is more central than j if k’s neighbors
are a superset of j’s, and hence any player, who has an incentive to connect
to j, also has an incentive to connect to k. The definition of weak preference
for centrality, hence, represents a necessary condition for centrality cased utility
functions,14 and thus leaves room for many utility functions, also for those which
are not directly concerned with centrality itself. Examples of utility functions
satisfying WPC are e.g. the connections model (Jackson and Wolinsky, 1996), and
the utility function with Bonacich centrality as the objective (cf. Section 2.2.4).

The notion of strong preference for centrality is more demanding: player i has
an incentive to connect to k if i has an incentive to connect to j and k has more
neighbors than j. Expressed in cardinal terms, this means that a player prefers
to connect players with higher number of neighbors.15 To interpret this definition
in terms of link externalities, consider a stronger notion of homogeneity such that

14We mean here necessary conditions for centrality based utility functions in terms of con-
nectivity. To the contrary, utility functions based on betweenness centrality where players have
an incentive to locate at structural holes may not satisfy weak preference for centrality, see also
Goyal and Vega-Redondo (2007).

15Note further that in the definition of SPC, we used the fact that ij is already in g such
that after the addition of the link ik player k has indeed strictly more links. Defining SPC
(Definition 2.3.3) this way helps simplifying notation since we do not have to deal with dis-
tinguishing weak and strict inequalities for several cases. AC (Definition 2.3.5) is analogously
defined.
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players have the same incentive to connect to players with the same degree. If
this is the case then it is easy to see that SPC is implied by ordinal strategic
complements. Hence, the condition of SPC can be satisfied in terms of more
homogeneous societies when utility satisfies strategic complements.

To capture externalities from own links consider the following notion of anony-
mous convexity.

Definition 2.3.5 (Anonymous Convexity):

A utility profile u satisfies anonymous convexity (AC) if for all g ∈ G, for all
i, j, k ∈ N , and for all η(g) ∈ {0, .., n− 1}n such that ηi(g) ≤ ηj(g) it holds that

∆ui(g, ik) ≥ 0 ⇒ ∆uj(g + jk, jk) ≥ 0. (2.3.4)

Anonymous convexity is a somehow stronger notion of ordinal convexity since it
implicitly assumes a higher degree of homogeneity (similarly to above): if a player
i likes the connection to k then any player with more links also has an incentive
to connect to k. In a more homogeneous society where players with same degree
have the same incentives, this formulation reflects the idea of ordinal convexity
since once the marginal utility of a link is positive, it stays positive if own links
are added. Hence anonymous convexity translates the convexity notion to other
players.

Recall that we aim at characterizing a class of networks which incorporates all
pairwise stable networks. The set of networks that we will need is given by the
following definition.

Definition 2.3.6 (Nested Split Graphs):

A network g ∈ G is a nested split graph (NSG) if for all players i, j, k ∈ N such
that

ηi(g) ≥ ηj(g) ≥ ηk(g),

we have that if ik ∈ g then also ij ∈ g and if jk ∈ g then also ik ∈ g.

In a nested split graph the neighborhood structure of all players is nested in the
sense that for any two players i, j ∈ N the set of their neighbors can be ordered
according to the set inclusion order, i.e. Ni(g−j) ⊆ Nj(g−i) or Ni(g−j) ⊇ Nj(g−i).
Our Definition 2.3.6 can be straightforwardly seen to be equivalent to the ones
in Cvetković and Rowlinson (1990), Mahadev and Peled (1995), and Simić et al.
(2006). In particular, a network is NSG if and only if it does not contain a
path (P4), a cycle (C4) or two connected pairs (K2,2) when restricted to any 4
players (see Figure 2.3.1).16 Moreover, nested split graphs maximize the largest

16The subgraph of some nodes I ⊂ N from network g is the network gI ⊂ g, such that



22 Stable Networks in Homogeneous Societies

1 2

3 4

(a) P4: Path of
length 4

1 2

3 4

(b) C4: Cycle of
size 4

1 2

3 4

(c) K2,2: Two com-
plete size 2 compo-
nents

Figure 2.3.1: A network is a nested split graph if it does not contain a set of four
players who form one of the subgraphs P4, C4, K2,2.

eigenvalue of networks that contain the same number of links.17

More importantly for our purposes, the set of nested split graphs contains all
pairwise stable networks when the profile of utility functions satisfies SPC and
AC.

Proposition 2.3.7.

Suppose a profile of utility functions satisfies strong preference for centrality and
anonymous convexity. Then any pairwise stable network is a nested split graph.

Although the utility function is not specified in our framework, we learn a lot
about the structure of pairwise stable networks: in a pairwise stable network we
can order any two players’ neighbors with respect to the set inclusion order when
SPC and AC are satisfied. This reduces the set of possible candidates for PS
networks considerably as the set of NSG’s only make up a very small fraction of
the set of all possible networks G.

The assumptions needed in this result may seem demanding at first sight. How-
ever, the conditions of SPC and AC may very naturally be implied by the other
notions of link externalities. To see this most easily, consider again the framework
of Goyal and Joshi (2006b). There, both conditions SPC and AC are automati-
cally satisfied in both playing the field and local spillover games, when assuming
convexity and strategic complements. Hence, in more homogeneous societies,
these notions are implied by positive link externalities. In particular, the exam-
ple of provision of a pure public good in Goyal and Joshi (2006b), inspired by a
model of Bloch (1997), satisfies the assumptions of Proposition 2.3.7. Note also
that by SPC and AC we just assumed ordinal notions, such that negative effects
from adding links can still occur, as long as the single crossing properties of these

gI = {ij | i, j ∈ I, ij ∈ g}.
17For a further elaboration on nested split graphs see König et al. (2014).
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definitions are preserved.

Further, with our general approach we are able to study interesting utility func-
tions which do not fall into the class of playing the field or local spillover games
in Goyal and Joshi (2006b). One such example is given by the important class
of utility where players strive for maximizing their Bonacich centrality given by
(2.2.6). In fact, it is possible to show that for low enough discount factors the
utility profile uBC satisfies SPC and AC and therefore pairwise stable networks
are of nested split architecture.

Proposition 2.3.8.

The profile of utility functions uBC defined by (2.2.6) satisfies strong preference
for centrality and anonymous convexity for any discount factor δ < 1

(n−1)2
.

Although the utility function given by the Bonacich centrality seems to be quite
a complex object since it considers the infinite discounted sum of all possible
paths in the networks, it is possible to characterize the set of pairwise stable
networks at least for low enough discount factors. This is due to the fact that
uBC satisfies SPC for these low discount factors since the benefits from second
order connections (degree of neighbors) dominate any benefits from higher order
connections which is shown in the proof of Proposition 2.3.8. Hence, although our
results hold for general utility functions, they are still applicable to interesting
classes of utility functions and help characterize the structure of PS networks,
even where no results are available so far.

2.3.3 Existence of Symmetric Networks

A natural question that may arise when studying homogeneous societies is whe-
ther we always get existence of symmetric network structures which are pair-
wise stable, since in symmetric networks all players receive the same utility by
Lemma 2.2.3. However, incentives to form different links may differ even in sym-
metric networks, since in our notion a symmetric network is vertex transitive but
not edge transitive (the former always exists for any degree, see Lemma 2.3.9,
while especially for high degrees there may not exist edge transitive networks). In
the previous section, we did get existence of symmetric networks since either the
empty or the complete network is always pairwise stable, although the structure of
stable networks in general can be quite asymmetric (see, e.g., Proposition 2.3.7).

In this section, we will show that strategic complements alone is sufficient to
establish the existence of a pairwise stable network of symmetric architecture for
a broad range of utility profiles. To establish the existence result we require that
a symmetric network of any degree exists. Since existence of regular networks
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(a) gbipn/2
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(b) gN − gbip3

Figure 2.3.2: The complete symmetric bipartite network gbipn/2 and a network of
same degree for which the complement is bipartite.

for all possible degrees only holds if the number of nodes n is even and regularity
is necessary for symmetry, we will first assume an even number of players. If
n is even, then it is indeed possible to show that according to our definition
of symmetry (i.e. vertex-transitive graphs, cf. Section 2.2.2), there also exist
symmetric networks of any degree.

Lemma 2.3.9 (Existence of symmetric networks).

Suppose the number of players n = |N | is even. Then for any degree p such that
0 ≤ p ≤ n − 1, there exists a symmetric network grp. Hence, for anonymous
utility functions there exists for any degree p a network grp which satisfies that
ui(g

r
p) = uj(g

r
p) for all i, j ∈ N .

In the proof we construct a sequence of symmetric bipartite networks starting
from the empty network until the complete symmetric bipartite network (of de-
gree n

2
) is reached, from which the respective complements are again symmetric

and reach the complete network.18 Notice that this construction does not repre-
sent a sequence of link addition leading from the empty to the complete network.
There is a rearrangement of links when moving from the complete bipartite net-
work gbipn/2 to the complement of the bipartite network gbipn/2−1, as illustrated in
Figure 2.3.2. In general, it is straightforward to see that a sequence of link addi-
tion encompassing symmetric networks of every degree does not exist.19

In the proof of the following result we make use of such link addition paths to the
point where the complete bipartite network gbipn/2 is reached to apply the strategic
complements property. Thus we need to make an additional assumption to assure

18A network is bipartite if players can be divided into two groups such that no link connects
two players within the same group.

19Note to the contrary, we can always construct a link addition sequence encompassing
regular networks of all degrees.
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that on the one hand it is possible to choose the path that leads to the symmetric
network of next higher degree. On the other hand, we need to ensure that when
switching from the complete bipartite network to a complement of a symmetric
bipartite network of same degree then deletion the incentive to keep links do not
turn negative. A straightforward (and certainly not the most general) way to
guarantee this is to assume degree-based utility profiles, such that utility of any
player has the form

ui(g) ≡ ui

(
ηi(g), (ηj(g))j∈Ni(g), (ηk(g))k/∈Ni(g)

)
.

While this assumption seems demanding as utility now solely depends on the
degree of players, the great majority of examples in the literature complies with
it, including all utility profiles in Goyal and Joshi (2006b).

Proposition 2.3.10.

Suppose the number of players n is even and the profile of degree-based utility
functions satisfies strategic complements and anonymity. Then there exists a
symmetric network which is pairwise stable.

The assumption of the utility profile being degree-based can be interpreted as
a strengthening of the anonymity assumption. In case of an anonymous utility
profile players do not discriminate between others that are in symmetric network
positions and where both links are edge symmetric. Here, players discriminate
neither between players of same degree they are connected to, nor between players
of same degree they are not connected to.

Hence, we generically arrive at a general result: there always exists a symmet-
ric pairwise stable network if strategic complements are satisfied. The driving
force of existence of a symmetric network seems to be the anonymity assump-
tion alongside with the condition of strategic complements. In settings where
strategic complements are not satisfied, it is easy to show that there might not
exist a stable symmetric network in a homogeneous society (this even holds in
the reduced framework of Goyal and Joshi (2006b), see also Section 2.4).

For Proposition 2.3.10 it is necessary to assume that the number of players n
is even. Otherwise there do not exist symmetric networks for every degree. In
the appendix, we show for societies of an odd number of players that almost
symmetric networks are stable if we additionally assume weak preference for
centrality (Proposition 2.A.1).

Because of the construction of link addition in Proposition 2.3.10, we can deduce
as a corollary of Proposition 2.3.10 the existence of a symmetric stable bipartite
network in a framework of two-sided network formation. Suppose there are two
groups (e.g. buyers and sellers) of the same size. Links can only be formed across
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both groups such that the set of all networks is restricted to the set of bipartite
networks, Gbip

n/2 := {g | g ⊆ gbipn/2}. Such a network formation model of buyers and

sellers is formally introduced in Kranton and Minehart (2001), see also Polanski
and Vega-Redondo (2013). Another example are two-sided matching markets,
e.g., Roth and Sotomayor (1992). When network formation is restricted to links
across two groups, it is trivially possible to apply the insights of Lemma 2.3.9
and Proposition 2.3.10. Hence, existence of a stable symmetric bipartite (buyer
seller) network is guaranteed, and we get the following result.

Corollary 2.3.11.

Consider network formation of a homogeneous society G := (N,Gbip
n/2, u) where

the profile of utility functions is degree based and satisfies strategic complements.
Then there always exists a symmetric network that is pairwise stable.

The proof follows directly from Proposition 2.3.10.

2.4 Convexity

We finally want to assess which networks are likely to form in homogeneous
societies when strategic complements are not necessarily satisfied, but instead
we assume that the utility function is convex in own links. Recall that ordinal
convexity as given in Definition 2.2.4 orders the externalities of own links on
marginal utility in a way that, once positive, it will stay positive whenever own
links are added to the network. In presence of this form of complementarity
between own links the intuition is that players that already have links are likely
to strive for more. Notice however that due to ambiguous marginal effects of other
links still cycling behavior may arise in link formation such that no pairwise stable
network would exist.

To the contrary, we show in the following that with the additional assumption of
WPC as in Definition 2.3.4 stable networks still exist. We find existence of stable
networks in the class of dominant group networks. A network is of dominant
group architecture if a subset of 0 ≤ m ≤ n− 1 players constitutes a completely
connected subgraph, while all other n−m players remain isolated. We will denote
a dominant group network with a complete subgraph of size m by gdgm .

Proposition 2.4.1.

Suppose the profile of utility functions satisfies convexity, anonymity and WPC
as in Definition 2.3.4. Then there exists a pairwise stable network of dominant
group architecture gdgm , for some 0 ≤ m ≤ n− 1.
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The intuition for Proposition 2.4.1 is as follows. First, as marginal utility satisfies
convexity, players incentive to form a link is not destroyed by additional own
links. Second, they tend to connect to players that already have more links, due
to WPC. Both effects together point to networks where players either have a lot
or no links. In the proposition we then naturally find the stable networks in the
extreme case, namely one completely connected subgroup and one subgroup of
isolated players (one of these sets can be empty).

Let us emphasize again that WPC is a very weak assumption since it rather
defines necessary conditions of preferences to be central in the network. Further,
both WPC and convexity only need to be satisfied in ordinal terms such that
the overall effect can be negative. There are many examples from the literature
which satisfy Proposition 2.4.1. We take a closer look at two of those examples
where stronger convexity assumptions result in dominant group networks being
even the unique pairwise stable network architecture.

Example 2.1 (Cost-reducing collaboration in oligopoly). One classical
example in the literature considers a Cournot oligopoly of n firms that are
supposed to be ex-ante identical, but can form bilateral collaboration links
lowering their respective marginal costs (Goyal and Joshi, 2003, 2006b; Dawid
and Hellmann, 2014).

The authors show that the equilibrium quantities of each firm are

qi(g) =
(a− γ0) + (n− 1)γηi(g)− γ

∑

j 6=i ηj(g−i)

n+ 1
, i ∈ N,

while Cournot profits are given by πi(g) = q2i (g). This results in marginal profit
of an additional link ij /∈ g being

∆πi(g + ij, ij) =
γ(n− 1)

(n+ 1)2

[

2(α− γ0) + γ(n− 1) + 2γnηi(g)− 2γ
∑

j 6=i

ηj(g)
]

− f,

where f are the costs of forming a link. From marginal utility it can be derived
that ordinal convexity is satisfied (see also Dawid and Hellmann, 2014). What is
more, WPC is satisfied as firms do not discriminate between different partners
when deciding with whom to link in this game. Thus we are indeed in the
situation of Proposition 2.4.1 and there exists a network of dominant group
architecture in this setup.

As firms however do not discriminate their neighbors by their network position
and utility is (in fact) strictly convex, marginal utility even yields the following
special property:

∆ui(g, ij) ≥ 0 ⇒ ∆ui(g + ik, ik) > 0 ∀k ∈ N\{i} (2.4.1)
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Here, Property 2.4.1 is stronger than the condition of Anonymous Convexity
(Definition 2.3.5). If such a strong property is satisfied in a network formation
game, then it is straightforward to see that only networks of dominant group
architecture can be pairwise stable.

Proposition 2.4.2.

Suppose a profile of utility functions satisfies the property given in (2.4.1). Then
any pairwise stable network is of dominant group architecture.

The proof is rather trivial (and hence skipped in the appendix): If a network
is stable, then no link can be deleted, which means that for any link ij ∈ g
we have ∆ui(g, ij) ≥ 0 which implies that any player who has a link wants a
link to any other player by (2.4.1). Hence, the only possible pairwise stable
network architecture in this case is the dominant group architecture.

Thus, Proposition 2.4.2 implies the result by Goyal and Joshi (2003) that all
pairwise stable collaboration networks are dominant group networks in the case
of Cournot competition.

Example 2.2 (Bonacich Centrality revisited). In Section 2.3.2 we have
shown that Bonacich utility uBC satisfies convexity and SPC for discount factors
δ < 1

(n−1)2
, so that we are in the situation of Proposition 2.4.1.20

However, we argue that an even stronger anonymity property will yield that
dominant group networks are even the unique pairwise stable networks. Ob-
serve first that in Proposition 2.3.8 we have shown that uBC satisfies anonymous
convexity, such that for any i, j, k ∈ N and ηi(g) ≤ ηj(g) it is

∆uBC
i (g, ik) ≥ 0 ⇒ ∆uBC

j (g + jk, jk) ≥ 0. (2.4.2)

Moreover, from equation (2.A.6) in the proof it can be directly seen that anony-
mous convexity in fact holds independently of the respective numbers of links of
players i and j, such that uBC actually satisfies the following stronger property

∆ui(g, ik) ≥ 0 ⇒ ∆uj(g + jk, jk) > 0 ∀j ∈ Nk(g
N − g), (2.4.3)

such that if some player has an incentive to connect to k, then all other players
also want to connect to k.

As in the previous example, this is a strong property since it is implied by
convexity in very homogeneous societies satisfying independence of own links.
Moreover, while Property (2.4.3) is not quite the same as Property (2.4.1) in
the first example, it is again easy to understand that only dominant group
networks can be pairwise stable.

20Remember that WPC required in Proposition 2.4.1 follows from SPC.
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Proposition 2.4.3.

Suppose a profile of utility functions satisfies the property given in (2.4.3). Then
any pairwise stable network is of dominant group architecture.

Again, this is a rather trivial statement: If some player has positive marginal
utility from a link to a player k, then anyone in the society wants to be connected
to k and consequently all non-isolated players have to be mutually connected.

Finally, since uBC satisfies Property 2.4.3, we can conclude that for low discount
factors, any network is of dominant group architecture. Of course this does not
contradict Proposition 2.3.8, as the set of dominant group networks is a subset
of the set of nested split graphs.

2.5 Conclusion

In this paper the assumption of homogeneous agents is exploited in the setting
of endogenous network formation to establish the existence of pairwise stable
networks in presence of various combinations of link externalities.

While homogeneity was implicitly assumed in most works on existence conditions
for stable networks, the main contribution of our work is to make this assumption
explicit, maintaining an otherwise very general setup. We thus have been able to
show that the driving force for existence are indeed the respective link externality
conditions.

A second contribution is the characterization of specific network architectures
that emerge in presence of link externalities. In the spirit of Goyal and Joshi
(2006b) the emergence of regular networks in case of strategic complements was
shown, while dominant group networks are likely to emerge in case of convexity.

We even go one step further in this work. When the society becomes more and
more homogeneous, not only existence is guaranteed but we are able to determine
classes of networks which contain all stable networks even though we have not
assumed a functional form of utility. We find many examples that benefit from
such characterization since previous results are not applicable.

While the present work exhibits a focus on positive link externalities it would be
interesting for future research to show similar results in case of negative link ex-
ternalities. Our conjecture for the case of both concavity and strategic substitutes
however is that existence of pairwise stable networks is not always guaranteed.
While an example of four players not yielding a pairwise stable network is pre-
sented in Hellmann (2013), this requires heterogeneous players. In fact, it is
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relatively easy to show that such an example for a homogeneous society cannot
be constructed for five or less players, thus this remains a task for future research.

Second, a full characterization of pairwise stable networks if utility profiles are
functions of Bonacich centrality still remains an open question of highest interest.
While we provide a first contribution to this goal, proving existence of a pairwise
stable network for any discount factor and characterizing stable networks for low
discount factors, it still remains a challenge to characterize stable networks for
the rest of the set of admissible discount factors. Our conjecture is that pairwise
stable networks are a subset of nested split graphs. Since Bonacich centrality
is found to be the equilibrium payoff in many network formation games in the
recent literature, such result would be of highest interest for the ongoing research
in this area.



Appendix

2.A Appendix: Proofs

Proof of Lemma 2.2.3. Let the profile of utility functions u satisfy anonymity.

(i). Suppose that i, j ∈ N are symmetric such that there exists a permutation π
with π(i) = j and gπ = g. Then by anonymity, we get

ui(g) = uπ(i)(gπ) = uj(g).

(ii). Now let i, j ∈ N such that Ni(g−j) = Nj(g−i). Define πij as the permutation
where players i and j switch positions, that is

πij : N → N, πij(k) = k ∀k ∈ N \ {i, j}, πij(i) = j.

Then since Ni(g−j) = Nj(g−i) we have gπij
= g. Take now any k ∈ N\{i, j} and

define g̃ = g + ik. Anonymity then yields

ui(g + ik) = ui(g̃) = uπij(i)(g̃πij
) = uj(g + jk).

Then it directly follows that

∆ui(g + ik, ik) = ui(g + ik)− ui(g) = uj(g + jk)− uj(g) = ∆uj(g + jk, jk).

(iii). By the same arguments as in (ii) we get

uk(g + ik) = uk(g̃) = uπij(k)(g̃πij
) = uk(g + jk).

and consequently

∆uk(g + ik, ik) = uk(g + ik)− uk(g) = uk(g + jk)− uk(g) = ∆uj(g + jk, jk).

31
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Proof of Proposition 2.3.2. Let g∅ be not pairwise stable. Take now any g ∈ G.
We need to show that g is not PS unless g = gN .

Recalling that Li(g) denotes the set of links in g that connect i, we denote
li(g) := |Li(g)| and analogously l−i(g) := |L−i(g)|.
First, consider a player i ∈ N such that in network g we have li(g) ≤ l−i(g). By
anonymity of the utility profile we have ∆ui(g

∅ + ij, ij) > 0 for all i, j ∈ N since
the empty network is assumed to be not PS. We then get, for L̄−i(g) ⊆ L−i(g)
with l̄−i(g) := |L̄−i(g)| = li(g),

∆ui(g
∅ + ij, ij) > 0

⇒ ∆ui(Li(g) + L̄−i(g) + ij, ij) > 0

⇒ ∆ui(g + ij, ij) > 0,

for all j ∈ N , where the first implication holds by link monotonicity while the
latter one holds by strategic complements.

Thus, no network g ∈ G such that there exist two players i, j ∈ N with ij /∈ g
and li(g) ≤ l−i(g), lj(g) ≤ l−j(g) can be PS since i and j have an incentive to
connect to each other. Define the set of players that satisfy li(g) ≤ l−i(g) by
E(g) := {i ∈ N : li(g) ≤ l−i(g)} and its complement by Ec(g) := N − E(g).
Denoting for A ⊆ N by g|A := {ij ∈ g|i, j ∈ A} the network restricted to A,
above reasoning implies that in order for g to be PS, g|E(g) must be completely
connected. For the remainder of the proof assume, hence, that g|E(g) is completely
connected.

Now, consider Ec(g). Note that for any network, in particular for g|Ec(g) we have,

∑

k∈Ec(g)

lk(g|Ec(g)) = 2|g|Ec(g)| = 2li(g|Ec(g)) + 2l−i(g|Ec(g)) (2.A.1)

for all i ∈ Ec(g). The first equality is due to the fact that each link in the network
g|Ec(g) is counted twice in the sum

∑

k∈Ec(g) lk(g|Ec(g)), and the second equality
is trivial since the number of links in each network is simply the sum of own
links and other players’ links which is true for every player. Summing over all
i ∈ Ec(g) then yields

∑

i∈Ec(g)




∑

k∈Ec(g)

lk(g|Ec(g))



 = 2
∑

i∈Ec(g)

li(g|Ec(g)) + 2
∑

i∈Ec(g)

l−i(g|Ec(g))

⇔ (|Ec(g)| − 2)




∑

k∈Ec(g)

lk(g|Ec(g))



 = 2
∑

k∈Ec(g)

l−k(g|Ec(g)). (2.A.2)
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In order to complete the proof, we show that Ec(g) must be the empty set. To
the contrary, suppose that |Ec(g)| ≥ 4. Hence (2.A.2) implies

∑

k∈Ec(g)

lk(g|Ec(g)) ≤
∑

k∈Ec(g)

l−k(g|Ec(g)). (2.A.3)

Denote by l̃ the number of links connecting E(g) and Ec(g), i.e. l̃ := |{ij ∈
g | i ∈ E(g), j ∈ Ec(g)}|. Then,

∑

k∈Ec(g) lk(g) =
∑

k∈Ec(g) lk(g|Ec(g)) + l̃ and
∑

k∈Ec(g) l−k(g|Ec(g))+(|Ec(g)|−1)l̃ ≤∑k∈Ec(g) l−k(g). Since |Ec(g)| ≥ 4, we then

get by (2.A.3),
∑

k∈Ec(g) lk(g) ≤
∑

k∈Ec(g) l−k(g), contradicting that li(g) > l−i(g)

for all i ∈ Ec(g).

Finally consider |Ec(g)| ≤ 3. Note that by assumption n ≥ 5. If |Ec(g)| ∈ {1, 2},
there is at most one link in g|Ec(g) while |E(g)| ≥ 3 and completely connected,
implying that li(g) ≤ 1 < 3 ≤ l−i(g) for i ∈ Ec(g), a contradiction. If |Ec(g)| = 3
there are at most three links in g|Ec(g). We hence have

∑

k∈Ec(g) lk(g|Ec(g)) ≤
∑

k∈Ec(g) l−k(g|Ec(g)) + 3. Since n ≥ 5 and hence |E(g)| ≥ 2 we have |g|E(g)| ≥ 1

and thus if there are no connections between E(g) and E(gc), l−i(g|Ec(g)) + 1 ≤
l−i(g) for all i ∈ Ec(g). Denoting, as above, by l̃ the number of links connecting
E(g) and Ec(g), we then get

∑

k∈Ec(g)

lk(g) = l̃ +
∑

k∈Ec(g)

lk(g|Ec(g)) ≤ 3 + l̃ +
∑

k∈Ec(g)

l−k(g|Ec(g)) ≤
∑

k∈Ec(g)

l−k(g),

contradicting that li(g) > l−i(g) for all i ∈ Ec(g). Thus Ec(g) must be the
empty set implying that g = g|E(g) and hence must be completely connected to
be pairwise stable.

The equivalent argument in case of gN not being deletion proof completes the
proof.

Proof of Corollary 2.3.3. Let g∅ be not pairwise stable. Take now any g ∈ G.
We need to show that g is not PS unless g = gN .

First, by anonymity of the utility profile we have ∆ui(g
∅ + ij, ij) > 0 for all

i, j ∈ N . Now, take the decomposition of g into Li(g) (links of player i) and
L−i(g) (all other links), and observe that

∆ui(g
∅ + ij, ij) > 0

⇒∆ui(g
∅ + Li(g) + ij, ij) > 0

⇒∆ui(g
∅ + Li(g) + L−i(g) + ij, ij) > 0

⇒∆ui(g + ij, ij) > 0, (2.A.4)
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where the first implication holds by convexity and the second one by strategic
complements. Thus, no network but the complete one can be addition proof.

Finally, as (2.A.4) holds also for g = gN − ij and for all i, j ∈ N , the complete
network gN is deletion proof and thus pairwise stable.

The equivalent argument in case of gN not being deletion proof completes the
proof.

Proof of Proposition 2.3.7. Suppose to the contrary that there exists a pairwise
stable network which is not a nested split graph. Then by definition there exists
a set of three distinct players i, j, k, such that ηi(g) ≥ ηj(g) ≥ ηk(g), and either
ik ∈ g while ij /∈ g or jk ∈ g while ik /∈ g.

Suppose first ik ∈ g, ij /∈ g. Since g is assumed to be stable, we have ∆ui(g, ik) ≥
0 and ∆uk(g, ik) ≥ 0. Then however

∆ui(g, ik) ≥ 0 ⇒ ∆ui(g + ij, ij) > 0,

following by SPC, and further

∆uk(g, ik) ≥ 0 ⇒ ∆uj(g + ij, ij) ≥ 0,

following by anonymous convexity. Thus i and j would want to add a link to g,
contradicting pairwise stability.

If on the other hand jk ∈ g, ik /∈ g we can argue similarly

∆uk(g, jk) ≥ 0 ⇒ ∆uk(g + ik, ik) > 0,

by SPC, and

∆uj(g, jk) ≥ 0 ⇒ ∆ui(g + ik, ik) ≥ 0,

by anonymous convexity. Again, i and k would want to add a link, so that g
cannot be stable.

Proof of Proposition 2.3.8. The idea is to find a threshold for which any terms
of order δ3 and higher can be disregarded.

Remember that

uBC
i = bi(g)− ηi(g)c = e′i

[
∞∑

t=0

δtAt

]

~1− ηi(g)c,

A being the adjacency matrix of network g and ei the i-th unit vector, and thus

∆uBC
i (g+ij, ij) = bi(g+ij)−bi(g)−c = δ+δ2ηj(g+ij)+e′i

[
∞∑

t=3

δt(At
+ij − At)

]

~1−c,
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where A+ij is the adjacency matrix corresponding to the network g + ij.

Now, take some players i, j, k ∈ N and a network g such that ij ∈ g, ik /∈ g and
ηj(g) ≤ ηk(g). We can find a lower bound for marginal utility of adding k by
disregarding third order terms,

∆uBC
i (g + ik, ik) ≥ δ + δ2(ηk(g) + 1)− c,

and we can find an upper bound for the marginal utility of deleting j by consid-
ering utility of the complete network from order 3 on,21

∆uBC
i (g, ij) ≤ δ + δ2ηj(g) +

∞∑

t=3

δtηj(g)(n− 1)t−2 − c

= δ + δ2ηj(g) + δ2ηj(g)
∞∑

t=1

δt(n− 1)t − c

= δ + δ2ηj(g) + δ2ηj(g)

(
∞∑

t=0

δt(n− 1)t − 1

)

− c

= δ + δ2ηj(g) + δ2ηj(g)

(
1

1− δ(n− 1)
− 1

)

− c

= δ +
δ2ηj(g)

1− δ(n− 1)
− c.

With this we get

δ + δ2(ηk(g) + 1)− c ≥ δ +
δ2ηj(g)

1− δ(n− 1)
− c ∀ ηj(g) ≤ ηk(g)

⇔ ηk(g) + 1 ≥ ηj(g)

1− δ(n− 1)
∀ ηj(g) ≤ ηk(g)

⇔ 1− δ(n− 1) ≥ ηj(g)

ηk(g) + 1
∀ ηj(g) ≤ ηk(g)

Since ηk(g) ≤ n− 2, the right-hand side is maximized for ηj(g) = ηk(g) = n− 2.
Thus,

⇔ 1− δ(n− 1) ≥ n− 2

n− 1

⇔ δ ≤ 1

(n− 1)2
.

21Notice that the approximations used are quite rough. For example, instead of using the
empty network as a lower bound approximation, one could instead use the star network of
ηk(g) + 1 players.
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Thus, for δ < 1
(n−1)2

it holds true that

ηj(g) ≤ ηk(g) ⇒ ∆uBC
i (g, ij) < ∆uBC

i (g + ik, ik). (2.A.5)

Let now i, j, k ∈ N such that ηj(g) ≤ ηk(g) and ∆uBC
i (g, ij) ≥ 0. Then it directly

follows from (2.A.5) that

∆uBC
i (g + ik, ik) > 0,

such that uBC satisfies strong preference for centrality.

Letting on the other hand ηi(g) ≤ ηj(g) and ∆uBC
i (g, ik) ≥ 0, it is

0 ≤ ∆uBC
i (g, ik)

= δ + δ2ηk(g) + e′i

[
∞∑

t=3

δt(At − At
−ik)

]

~1− c

< δ + δ2ηk(g + jk) + e′j

[
∞∑

t=3

δt(At
+jk − At)

]

~1− c

= ∆uBC
j (g + jk, jk),

(2.A.6)

thus uBC also satisfies anonymous convexity.

Proof of Lemma 2.3.9. Divide the set of players into two equal groups and label
the players in the groups as (i11, i

1
2, ..., i

1
n/2; i

2
1, i

2
2, ..., i

2
n/2). To construct a symmetric

regular network of degree 1 ≤ k ≤ n/2, connect each player ijm with players
(i3−j

m , ..., i3−j
m+k−1), where player ijp = ijp−n/2, so that for example i1n/2+1, i

1
1 are two

labels for the same player. It is clear that with this construction all players are
in symmetric positions.

Labeling the networks above as grk for 1 ≤ k ≤ n/2, a symmetric regular network
of degree n/2 + 1 ≤ k ≤ n− 2 can be constructed as grk = gN − grn−k−1.

Finally, the empty and the complete network are trivially symmetric, what com-
pletes the argument.

Proof of Proposition 2.3.10. The empty network g∅ is either pairwise stable or
not addition proof. In the first case the result is already established, so suppose
the latter, that is (with homogeneity)

∆ui(g
∅ + ij, ij) > 0 ∀i, j ∈ N.

With strategic complements, also ∆ui(g
r
1, ij) > 0. Notice that gr1 is necessarily

a symmetric network, so that with anonymity it is ui(g
r
1) = uj(g

r
1) for any two
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players i, j ∈ N and by the same argument ∆ui(g
r
1, ij) > 0 ∀ij ∈ gr1, making gr1

deletion proof.

Take now any symmetric regular network grk of degree 1 ≤ k ≤ n − 2 that is
deletion proof. It is either addition proof and hence pairwise stable or it holds
for some i, j ∈ N, ij /∈ grk that

∆ui(g
r
k + ij, ij) > 0,

and as the utility profile is degree-based and grk is symmetric also

∆ui(g
r
k + ij, ij) > 0 ∀ij ∈ gN − grk.

With strategic complements it holds again that in this case also ∆ui(g
r
k+1, ij) >

0 ∀ij ∈ grk+1, for grk+1 being again a symmetric regular network which exists
and can be reached by Lemma 2.3.9. Notice in particular that by assumption, as
the last link was added with positive marginal utility, all links of the player and
hence all links in the network are of positive marginal utility, as again the utility
profile is degree-based. So grk+1 is again deletion proof.

If k+ 1 = n/2 and grn/2 is not addition proof, change to gN − grn/2−1 and proceed

as above. Observe that n/2 = (n− 1)− (n/2− 1) and thus gN − grn/2−1, so for a

degree-based utility profile it is u(grn/2) = u(gN − grn/2−1), and thus the network
is again deletion proof.

The finiteness of the setting, and in particular the existence of a maximal degree
(n− 1) completes the argument and existence is established.

Proposition 2.A.1.

Suppose the degree-based profile of utility functions satisfies strategic comple-
ments, weak preference for centrality and anonymity. If the number of players n
is odd, then there exists a restricted regular network that is pairwise stable.

Proof of Proposition 2.A.1. The proof is structurally the same as of Proposition
2.3.10. Suppose in any restricted regular network g̃ = grrm , 1 ≤ m < n− 1 player i
is the isolated player, and suppose that g̃−i is a symmetric network. Observe that
if the empty network is not addition proof then an isolated player has strictly
positive marginal utility of any link in any network due to strategic complements.
Now, if g̃ is not addition proof, then either ∆uj(g̃+jk, jk) > 0 for all j, k ∈ N\{i}
or ∆uj(g̃+ ij, ij) > 0 and by WPC also ∆uj(g̃+ jk, jk) > 0 for all j, k ∈ N\{i}.
Hence we get to the network grrm+1, where again i is isolated and (grrm+1)−i is
symmetric, by the same arguments as in the proof of Proposition 2.3.10.

Suppose finally that g̃ is such that g−i is complete. Note that ∆ui(g̃ + ij, ij) >
0 for all j 6= i, thus if ∆uj(g̃ + ij, ij) < 0 then g̃ is pairwise stable, but if
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∆uj(g̃ + ij, ij) > 0 then link ij is formed.
Let now ĝ be such that ĝ = g̃ + li, where 1 ≤ |li| ≤ n− 2. Observe that ĝ ⊃ grr|li|.

As grr|li| was not pairwise stable, it is ∆ui(g
rr
|li|

+ ij, ij) > 0, ηj(g
rr
|li|
) 6= 0, and as

ηi(g
rr
|li|
) = |li| = ηi(ĝ) by strategic complements also ∆ui(ĝ + ij, ij) > 0 for all

j ∈ gN − ĝ and the complete network is pairwise stable.

Proof of Proposition 2.4.1. Suppose the complete network is not deletion proof,
i.e. it is not PS (otherwise there is nothing to show). Then by anonymity,

∆ui(g
N , ij) < 0 ∀i, j ∈ N

. Hence taking one player i ∈ N and deleting all her links yields by convexity

∆ui(g
N − Li(g

N) + ij, ij) ≤ ∆ui(g
N − ij + ij, ij) < 0 ∀i, j ∈ N

such that the network gN −Li(g
N) which is the dominant group network gdgn−1 is

addition proof.

Now let a dominant group network gdgm of size m be addition proof. If it is also
deletion proof then it is pairwise stable in which case there is nothing more to
show. Hence, suppose that gdgm is not deletion proof. Then, there exists a player
i ∈ N such that ∆ui(g

dg
m , ij) < 0.

Now, by convexity it is also ∆ui(g
dg
m − li(g

dg
m ) + ij, ij) < 0, where li(g

dg
m ) = {ik ∈

gdgm }. Observing that gdgm − li(g
dg
m ) = gdgm−1 we have by anonymity that no isolated

player i ∈ I(gdgm−1) wants to form a link to any player of the dominant group.

What is more, as ∅ = Nj ⊂ Nk for any j ∈ I(gdgm−1) and k ∈ C(gdgm−1), by

WPC also isolated players do not want to form links in gdgm−1. Thus, gdgm−1 is
again addition proof. Hence if no network gdgm is PS then the empty network is
necessarily pairwise stable. By definition, the empty and the complete network
are dominant group networks, where the latter is addition proof (since there are
no more links that can be added). Thus, by induction either all dominant group
networks are addition proof in which case the empty network is PS (since there
are no more links that can be deleted) or there exists network of dominant group
structure which is deletion and addition proof, i.e. PS.



Chapter 3

Continuous Homophily and

Clustering in Random Networks

3.1 Introduction

Suppose you own a firm and want to fill an open vacancy through the social con-
tacts of one of your current employees. Whom would you ask to recommend some-
one? Most probably you would address the worker who would himself perform
best in the position in question. While this seems to be intuitively reasonable,
why do we expect it to be optimal? One important reason is that people tend to
connect to similar others. This phenomenon is known as homophily (Lazarsfeld
et al., 1954).

In this paper we introduce a continuous notion of homophily based on incorpo-
rating heterogeneity of agents into the Bernoulli Random Graph (BRG) model
as examined by Erdős and Rényi (1959). To this end we propose a two-stage
random process. First, agents are assigned characteristics independently drawn
from a continuous interval. Second, a network realizes, with linking probabilities
being contingent on a homophily parameter and the pairwise distance between
agents’ characteristics. This enables us to account for homophily in terms of
similarity rather than equality of agents, capturing the original sociological defi-
nition instead of the stylized version up to now commonly used in the economic
literature.

As a first result we determine the expected linking probabilities between agents
(Proposition 3.3.1) as well as the expected number of links (Corollary 3.3.3).
We then calculate the expected probability that an agent has a certain number
of links (Proposition 3.3.4), showing that the according binomial distribution of
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the original BRG model is preserved to some degree. In Proposition 3.3.5 we
establish a threshold theorem for any given agent to be connected. For all these
results we demonstrate that the BRG model is recuperated as the limit case of
no homophily and we thus provide a generalization thereof.
As a main result, we show that in our model homophily induces clustering (Propo-
sition 3.4.2), two stylized facts frequently observed in real-world networks but not
captured by the BRG model.1 Furthermore, clustering proves to be strictly in-
creasing in homophily. Additionally, two simulations will indicate that even at
high homophily levels the well-known small-world phenomenon is preserved.2 We
finally provide an application of the homophilous random network model within
a stylized labor market setting to answer the introductory questions.

In the literature the presence of homophily has been established in a wide range
of sociological and economic settings. Empirical studies on social networks dis-
covered strong evidence for the similarity of connected individuals with respect
to age (e.g., Verbrugge, 1977; Marsden, 1988; Burt, 1991), education (e.g., Mars-
den, 1987; Kalmijn, 2006), income (e.g., Laumann, 1966, 1973), ethnicity (e.g.,
Baerveldt et al., 2004; Ibarra, 1995) or geographical distance (e.g., Campbell,
1990; Wellman, 1996). For an extensive survey see McPherson et al. (2001).
In recent years economists have developed an understanding of the relevance of
network effects in a range of economic contexts. Thus, bearing in mind the pres-
ence of homophily in real-world networks can be of great importance for creating
meaningful economic models.

There already exists a strand of economic literature examining homophily effects
in different settings (see, e.g., Currarini et al., 2009). Most of the models assume
a finite type-space and binary homophily in the sense that an agent prefers to
connect to others that are of the same type while not distinguishing between
other types.3 Thus, these models rather capture the idea of equality than of
similarity. However, in reality people are in many respects neither “equal” nor
“different”. We therefore believe that a notion that provides an ordering of the
“degree of similarity” with respect to which an agent orders her preference for
connections can capture real-world effects more accurately. This gives rise to a
continuous notion of homophily in networks.

This approach is followed by Gilles and Johnson (2000) and Iijima and Kamada
(2014), who examine strategic, deterministic models of network formation. In
both models individual utility is shaped directly by homophily, such that indi-
viduals connect if (and only if) they are sufficiently similar. Iijima and Kamada

1A network exhibits clustering if two individuals with a common neighbor have an increased
probability of being connected.

2The small-world phenomenon describes the observation that even in large networks on
average there exist relatively short paths between two individuals.

3For several homophily measures of this kind see Currarini et al. (2009).
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(2014) consider the extreme case of purely homophilous utility functions, entail-
ing that a high level of homophily is directly identified with efficiency. As opposed
to this, in our random graph model, a novel continuous homophily measure is
incorporated as a parameter that may be freely chosen to reflect a broad range
of possible situations.
In their multi-dimensional framework, Iijima and Kamada (2014) examine clus-
tering and the average path length as functions of the number of characteristics
agents take into account when evaluating their social distance to others, while
we investigate the relation between homophily and these network statistics. The
differences in methodology especially lead to opposing results concerning the
small-world phenomenon: while in Iijima and Kamada (2014) small worlds only
arise if agents disregard a subset of characteristics, we show that this phenomenon
is well present in our one-dimensional setting.

Besides the presence of homophily, stylized facts such as the small-world phe-
nomenon and high levels of clustering have indeed been empirically identified in
real-world networks (see, e.g., Milgram, 1967; Watts and Strogatz, 1998). As in
many cases these networks are very large and remain unknown for an analysis,
typically random networks are used as an approximation. This constitutes a
challenge to design the random network formation process in a way to ensure it
complies with the observed stylized facts.

Since the seminal work of Erdős and Rényi (1959), who developed and analyzed
a random graph model where a fixed number out of all possible bilateral connec-
tions is randomly chosen, a lot of different models have been proposed (see, e.g.,
Wasserman and Pattison, 1996; Watts and Strogatz, 1998; Barabási and Albert,
1999). The most commonly used until today is the BRG model, where connec-
tions between any two agents are established with the same constant probability.
It has been shown that for large networks this model is almost equal to the orig-
inal model of Erdős and Rényi (1959) (for details see Jackson, 2006; Bollobás,
2001).4 It is well understood that this model reproduces the small-world phe-
nomenon but does not exhibit clustering. Equally, a notion of homophily is not
present as the described random process does not rely on individual characteris-
tics.
The latter is also true for the small-world model proposed by Watts and Strogatz
(1998). Starting from a network built on a low-dimensional regular lattice, they
reallocate randomly chosen links and obtain a random network showing a small-
world phenomenon. According to their notion this encompasses an increased level
of clustering. However, the socio-economic causality of this occurrence remains
uncertain. In this regard our model can to some extend serve as a socio-economic
foundation of the work of Watts and Strogatz (1998).

4In fact, the BRG model rather than their original one is nowadays also known as the
Erdős-Rényi model.
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An approach to generate random graphs more similar to ours is proposed by the
recently emerging graph-theoretic literature on random intersection graphs (see,
e.g., Karonski et al., 1999). Here, each node is randomly assigned a set of fea-
tures. Connections are then established between any two nodes sharing a given
number of features. It has been shown that the resulting graphs also exhibit
clustering (Bloznelis, 2013).

In general, not much work has yet been dedicated to the incorporation of ho-
mophily into random networks. However, some papers exist that include similar
ideas. Jackson (2008a) analyzes the impact of increasing homophily on network
statistics such as clustering and the average distance of nodes. A finite num-
ber of types as well as linking probabilities between them are exogenously given.
Though linking probabilities may vary among types, which allows for cases where
similar types are preferred, his notion of homophily remains binary. Golub and
Jackson (2012) also assume a finite number of types as well as the linking prob-
abilities between them to be exogenously given. Based on this they analyze the
implications of homophily in the framework of dynamic belief formation on net-
works. Bramoullé et al. (2012) combine random link formation and local search
in a sequentially growing society of heterogeneous agents and establish a version
of binary homophily along with a degree distribution.
Besides the continuous notion of homophily, a major distinction of our approach
is the sequential combination of two random processes, where agents’ charac-
teristics are considered as random variables that influence the random network
formation. We thus account for the fact that in many applications in which the
network remains unobserved, it seems unnatural to assume that individual char-
acteristics, which in fact may depict attitudes, beliefs or abilities, are perfectly
known.

We conclude the paper by providing an application of our model for the labor
market, proposing an analysis of the introductory question: When is it optimal
for a firm to search for a new employee via the contacts of a current employee? We
assume the characteristic of each worker to be her individual ability to fill the open
vacancy and use our homophilous random network model as an approximation
of the workers’ network. Given an agent and her characteristic, we determine
the expected characteristic of a random contact (Proposition 3.6.1). This gives
rise to a decision rule, stating in which constellations firms should hire via the
social network. In particular, given sufficiently high levels of homophily and the
current employee’s ability, it proves to be always optimal to hire via the social
network.

Within the job search literature, Horváth (2014) and Zaharieva (2013) incorpo-
rate homophily among contacts into job search models. However, these models
are again based on a binary concept of homophily and do not include an explicit
notion of networks. This research strand traces back to the work of Montgomery
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(1991), who was the first to address this issue. Finally, our application to some
extent captures an idea proposed by Ioannides and Loury (2004) to combine this
class of models with a random network setting à la Erdős-Rényi.

The rest of the paper is organized as follows. In Section 3.2 we set up the
model. Section 3.3 reveals basic properties of homophilous random networks,
while results on clustering can be found in Section 3.4. In Section 3.5 we simulate
the model focusing on the small-world phenomenon. Section 3.6 contains the
labor market application and Section 3.7 concludes. All proofs can be found in
Appendix 3.A.

3.2 The Model

We set up a model of random network formation, where first each agent is ran-
domly assigned a continuous characteristic which then will influence the respec-
tive linking probabilities.

Consider a set of agents N = {1, 2, ..., n}, who will be connected via a non-
directed network. A connection of two agents i, j ∈ N will be denoted by ij, and
we will denote by gN = {ij | i, j ∈ N} the complete network, that is the network
where any two agents are connected. Then, we let G = {g | g ⊆ gN} be the set of
all possible non-directed networks. Further, we define Ni(g) = {j ∈ N | ij ∈ g}
to be the set of neighbors of agent i in network g, and let ηi(g) = |Ni(g)| denote
the number of her neighbors.

Each agent will be assigned a characteristic pi, where the vector p = (p1, p2, ..., pn)
will be a realization of the random variable P = (P1, P2, ..., Pn). The underly-
ing distribution of each Pi is assumed to be standard uniform, hence all Pi are
identically and independently distributed.

Subsequent to the assignment of characteristics a random network forms. Here,
we assume the following variation of the Bernoulli Random Graph (BRG) model
as introduced by Erdős and Rényi (1959). The linking probability of two agents
i, j ∈ N is given by

q(pi, pj) = λa|pi−pj |, (3.2.1)

where λ, a ∈ [0, 1] are exogenous parameters independent of agents i and j. Note
that in situations where the vector of characteristics is unknown, q(Pi, Pj) is a
random variable, such that the linking probability q(pi, pj) is in fact a conditional
probability.
Figure 3.2.1 depicts the linking probabilities q(pi, pj) for different parameters a,
first as a function of the distance of characteristics and second as a function of
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Figure 3.2.1: (a) Linking probability for all distances of characteristics, for several
homophily parameters a; (b) Linking probabilities for an agent with characteristic
pi = 0.25, for several homophily parameters a

pj for given pi = 0.25. As in our model λ simply serves as a scaling parameter
corresponding to the linking probability in the BRG model, in Figure 3.2.1 it
is fixed to 1 for simplicity. In addition, let us shortly elaborate on the role of
parameter a. Observe that the linking probability q is decreasing in |pi−pj|, as a
takes values only in [0, 1]. In particular, for a = 1 the model is equal to the BRG
model, as all linking probabilities are equal to λ and hence independent of the
agents’ characteristics, whereas if a = 0 solely agents with identical characteristics
pi = pj will connect with probability λ, while all other linking probabilities are
zero.

Insofar, the parameter a serves as a measure of homophily in the model, where
lower values correspond to a higher homophily level in the network. The notion
at hand measures homophily in a continuous instead of a binary manner, since
the distance function | · | is continuous.
Observe finally that the linking probability q is increasing in the homophily pa-
rameter a, such that an increase in homophily leads to a decreased linking prob-
ability and consequently a decreased expected degree. Whenever suitable, one
may therefore choose the scaling parameter λ dependent on a, such that the ex-
pected degree is kept constant for any level of homophily.5 We will make use of
this possibility in Section 3.5 (Simulation 3.1).

5According to Corollary 3.3.3, choosing λ = ηexp ln(a)2

2(n−1)(a−1−ln(a)) yields a (compatibly) fixed

expected degree of ηexp.
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3.3 Basic Properties of Homophilous Random

Networks

This section will constitute a foundation for the upcoming main results. To
this end we first need to collect several important properties of the homophilous
random network model, such as the expected linking probabilities and the number
of links of agents. We moreover discuss a threshold theorem for an agent to be
isolated, what will particularly be of importance for the labor market application
provided in Section 3.6.
Throughout this section we explore on the one hand situations in which the
realization of one considered agent i ∈ N is known while all others are not,
and on the other hand situations in which the whole vector of characteristics is
unknown. In any case we demonstrate that the BRG model is recuperated as the
limit case of no homophily and we thus provide a generalization thereof.

We start by determining the expected linking probabilities for two given agents
i, j ∈ N .

Proposition 3.3.1.

The expected probability that the link ij forms, given agent i’s realized character-
istic is Pi = pi while all other characteristics p−i are unknown is

E
P
[
P
G (ij ∈ G | P )

∣
∣ Pi = pi

]
=

λ

ln(a)

(
api + a1−pi − 2

)
=: ϕ(λ, a, pi). (3.3.1)

The expected probability that the link ij forms if the vector p is unknown is

E
P
[
P
G (ij ∈ G | P )

]
=

2λ

ln(a)2
(a− 1− ln(a)) =: Φ(λ, a). (3.3.2)

The proof of Proposition 3.3.1 as well as all subsequent proofs can be found in
the Appendix. It is straightforward to understand that the function ϕ indeed
has to depend on characteristic pi, as it makes a difference whether pi tends
to the center or to the boundaries of the interval [0, 1]. The closer pi is to 0.5
the smaller is the expected distance to other agents’ characteristics, hence the
higher is the expected linking probability ϕ. In particular, it is argmaxpiϕ = 0.5
and argminpi

ϕ = {0, 1} for all a ∈ (0, 1). To this respect it is obvious that
ϕ(λ, a, 0) ≤ Φ(λ, a) ≤ ϕ(λ, a, 0.5) for all λ, a ∈ [0, 1].
It is also important to notice that the expected linking probability is decreasing
in homophily, that is for all a ∈ (0, 1]

∂

∂a
Φ(λ, a) =

∂

∂a

[

2λ
a− 1− ln(a)

ln(a)2

]

= 2λ
2(1− a) + ln(a)(1 + a)

a ln(a)3
> 0.6

6We indeed can include the value a = 1 here, as it happens to be a removable discontinuity
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To verify intuition that our model reproduces the BRG model as a limit case
and to gain insights on the behavior in boundary cases the following corollary
is concerned with the limits of the expected linking probabilities with respect to
the homophily parameter a.

Corollary 3.3.2.

For maximal homophily, meaning a → 0 the expected linking probability is

lim
a→0

ϕ(λ, a, pi) = lim
a→0

Φ(λ, a) = 0. (3.3.3)

In case of no homophily, meaning a → 1 the expected linking probability is

lim
a→1

ϕ(λ, a, pi) = lim
a→1

Φ(λ, a) = λ. (3.3.4)

Maximal homophily in this model means that only agents with identical char-
acteristics would have a strictly positive linking probability. However, since the
standard uniform distribution has no mass point such two agents do not exist
with positive probability. Therefore, both according expected linking probabili-
ties ϕ and Φ tend to zero.
In case of no homophily, as mentioned before the model indeed reproduces the
BRG model, such that all linking probabilities are alike, independent of individual
characteristics p.

Based on Proposition 3.3.1 we also immediately get the expected number of links
of an agent.

Corollary 3.3.3.

The expected number of links of an agent with given characteristic Pi = pi is

E
P
[
E

G [ηi(G) | P ]
∣
∣ Pi = pi

]
= (n− 1)ϕ(λ, a, pi), (3.3.5)

and likewise if p is unknown

E
P
[
E

G [ηi(G) | P ]
]
= (n− 1)Φ(λ, a). (3.3.6)

A proof of Corollary 3.3.3 is omitted as it is clear that all expected linking prob-
abilities are independent and the result hence directly follows from the proof of
Proposition 3.3.1. Observe that from this result we can also directly calculate

of the derivative. On the contrary at a = 0 the right-handed derivative is infinity as the
expected number of links is zero with probability one.
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the expected number of links in a network to be

n(n− 1)

2
Φ(λ, a).

From Corollary 3.3.2, we deduce that the expected number of links is zero for
maximal homophily while in case of no homophily one gets λn(n− 1)/2 links in
expectation, again as in the BRG model.

In the following we calculate the expected probability for an agent with given
characteristic to have a certain number of links and thus show that the model
inherits a version of the binomial distribution known from the BRG model.

Proposition 3.3.4.

The expected probability that an agent with given characteristic Pi = pi has exactly
k ∈ {0, 1, ..., n− 1} links is given by

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

]
=

(
n− 1

k

)

· ϕ(λ, a, pi)k · (1− ϕ(λ, a, pi))
n−k−1 .

(3.3.7)

Observe that this form can be interpreted as a binomial distribution with param-
eters ϕ(λ, a, pi) and n − 1. It is also worth noting that the extreme cases meet
the expected outcome, as it is

lim
a→0

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

] (3.3.3)
=

(
n− 1

k

)

· 0k · 1n−k−1 =

{

1, if k = 0

0, else
,

lim
a→1

E
P
[
P
G (ηi(G) = k | P )

∣
∣Pi = pi

] (3.3.4)
=

(
n− 1

k

)

· λk · (1− λ)n−k−1 ,

where the latter case unsurprisingly is exactly the probability for any agent to
have exactly k links in the BRG model, where the independent linking probabil-
ity is λ.
Unfortunately, the calculation of such a form in case of the whole vector of char-
acteristics p being unknown is analytically not tractable.

One major reason why random network models are used frequently is to match
qualitative characteristics of real world networks. The Law of Large Numbers
in this case yields that large networks indeed meet these characteristics with a
high probability (see, e.g., Jackson, 2010, Chapter 4). A seminal contribution of
Erdős and Rényi (1959) was to give so-called threshold theorems for the case of
the BRG model. These results state that if the network size n goes to infinity
while the linking probability λ(n) goes to zero slower than some threshold t(n),
the limit network has a certain property with probability one, while if λ(n) goes
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to zero faster than t(n) then the limit network has the same property only with
probability zero.7

It is clear that this kind of results can only be found for monotone properties,
that is for those which yield that if any network g has the property then also any
network g′ ⊇ g has it. One example is the property that a given agent has at
least one link. Observe that particularly regarding our application of the labor
market (Section 3.6) this feature will be a prerequisite and therefore of great
importance, as determining the expected characteristic of a given agent’s contact
is meaningful only if this agent is not isolated. Thus, we now establish a threshold
function for this particular monotone property.

Proposition 3.3.5.

Assume a minimal level of homophily to be guaranteed in the model as the network
size becomes large. Then the function t(n) = 1/(n− 1) is a threshold for a given
agent to be non-isolated in the following sense:

E
P
[
P
G (ηi(G) ≥ 1 | P )

∣
∣Pi = pi

]
→ 1 ∀ pi ∈ [0, 1] if

−λ(n)/ ln(a(n))

t(n)
→ ∞,

E
P
[
P
G (ηi(G) ≥ 1 | P )

∣
∣Pi = pi

]
→ 0 ∀ pi ∈ [0, 1] if

−λ(n)/ ln(a(n))

t(n)
→ 0.

Notice first that in Proposition 3.3.5 the right-hand side conditions are equivalent
to ϕ(λ(n), a(n), p̂)/t(n) converging to infinity or 0, respectively, for any arbitrary
p̂ ∈ [0, 1]. For details refer to the proof in the Appendix.
What is surprising about this as well as about other threshold theorems is the
sharp distinction made by the threshold t(n), in the sense that if the growth of
the probability ϕ passes the threshold t(n), the probability of any agent being
isolated changes “directly” from 0 to 1. What is more, notice that the threshold
t(n) = 1/(n−1) is actually the same as in the BRG model, however it has to hold
for ϕ rather than just for λ, as in this model both λ and a may vary on the size
of the network. Indeed, it does not seem farfetched to assume that homophily
increases with the network size, as the assortment of similar agents gets larger.
Having understood this one can directly deduce the cases where only one of the
two parameters varies with n:

Corollary 3.3.6.

If a ≡ a(n) depends on n but λ does not, one gets that if a(n) goes toward zero
faster than exp(−n) then any given agent will be isolated with probability one in
the limit, while if a(n) does not go toward zero or at least slower than exp(−n)
then any given agent will have at least one link with probability one in the limit.

7For a more elaborate characterization of thresholds as well as several results see Bollobás
(1998).
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If λ ≡ λ(n) depends on n but a does not, the condition collapses to the threshold
of t(n) for λ(n) as in the BRG model, where any given agent has at least one
link if λ(n) grows faster than t(n) while if λ(n) grows slower than t(n) any given
agent is isolated with probability 1.

Both parts of Corollary 3.3.6 follow directly from Proposition 3.3.5, such that a
proof can be omitted.

3.4 Clustering

As mentioned in the Introduction a main criticism of the Bernoulli Random
Graph (BRG) model is that the resulting networks do not exhibit clustering,
while most examples of real-world networks do (see, e.g., Watts and Strogatz,
1998; Newman, 2003, 2006). In this section we will show that our model indeed
exhibits clustering and one can use the homophily parameter a to calibrate the
model to a broad range of clustering degrees.

The notion of clustering in general captures the extent to which connections in
networks are transitive, that is the frequency with which two agents are linked
to each other if they have a common neighbor. Watts and Strogatz (1998),
who introduced this concept, measure the transitivity of a network by a global
clustering coefficient C which denotes the average probability that two neighbors
of a given agent are also directly linked. A random graph model is said to exhibit
clustering, if the coefficient C is larger than the general, unconditional linking
probability of two agents (cf. Newman, 2006). Defining the set of networks that
include some link ij ∈ gN as Gij = {g ⊆ gN | ij ∈ g} ⊂ G, this can be transferred
to our model in the following way:

Definition 3.4.1 (Clustering):

For the model as introduced in Section 3.2 with λ ∈ [0, 1] and a ∈ (0, 1), the
clustering coefficient is defined as

C(λ, a) := E
P
[
P
G (G ∈ Gjk | P )

∣
∣ G ∈ Gij ∩Gik

]
,

where i, j, k ∈ N .

The model is said to exhibit clustering if C(λ, a) > Φ(λ, a).

The choice of the agents i, j and k obviously cannot have an influence in this
context, since ex-ante all agents are equal. Remember also that Φ gives the
probability of two agents to be connected, characteristics being unknown. The
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function C as well captures this probability, however conditional on the existence
of a common neighbor.
It should be clear that the original BRG model does not exhibit clustering since
every link is formed with the same probability independent of the presence of
common neighbors. However, as we will discover next, apart from the limit case
of no homophily the model at hand possesses this feature and is insofar more
realistic.

Proposition 3.4.2.

In the homophilous random network model the clustering coefficient is given by

C(λ, a) = λ
3
(
ln(a)a2 + ln(a)− a2 + 1

)

2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) .

Given a non-extreme homophily parameter the model exhibits clustering, that is
for all λ ∈ (0, 1], a ∈ (0, 1) it is

C(λ, a) > Φ(λ, a).

The intuition for Proposition 3.4.2 is the following: If there is homophily to some
degree and two agents have a common neighbor, then this fact contains additional
information. The expected distance between these two agents is smaller than if
the assumption of a common neighbor had not been given. Again due to ho-
mophily, it is therefore more likely that a link between these two agents will form.
Beyond that, Figure 3.4.1 might also contribute to a better understanding of the
situation. Notice here that it is C(λ, a)/λ = C(1, a) and Φ(λ, a)/λ = Φ(1, a).
One can perceive that the difference C(λ, a) − Φ(λ, a) is strictly decreasing in
a ∈ (0, 1) for all λ ∈ (0, 1], that is clustering is strictly increasing in the degree
of homophily. Moreover, it again turns out to be interesting to consider the limit
cases of maximal and no homophily:

Corollary 3.4.3.

For maximal homophily, meaning a → 0 it is

lim
a→0

C(λ, a) = lim
a→0

[C(λ, a)− Φ(λ, a)] =
3λ

8
.

In case of no homophily, meaning a → 1 we get

lim
a→1

C(λ, a) = lim
a→1

Φ(λ, a) = λ.
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Figure 3.4.1: Clustering coefficient C(1, a) and unconditional linking probability
Φ(1, a) for all homophily parameters a ∈ (0, 1)

If there is no homophily, we are again back in the BRG model about which we
already knew that it does not exhibit clustering. The second part of Corollary
3.4.3 confirms this. However, the more interesting case is the one of maximal
homophily. Though in the limit no link forms with positive probability, from
this analysis one can deduce properties in case of homophily being high, yet non-
maximal, due to continuity of the functional forms.
Let us clarify the intuition why the clustering coefficient for maximal homophily
takes a value strictly between zero and λ. Recall first that it is lima→0 Φ(λ, a) = 0,

since for maximal homophily only agents with identical characteristics are linked
with positive probability and such two agents exist with probability zero. How-
ever, the clustering coefficient is a probability already conditioned on the exis-
tence of links to a common neighbor. This additional information implies that
either characteristics are equal or links have formed despite differing characteris-
tics. Though both events occur only with probability zero, this does not preclude
them per se. Having understood this, it should be clear that in the first case
the probability of the third link would indeed be λ, while in the second case it
would still be zero. Taken together, this yields lima→0C(λ, a) ∈ (0, λ). However,

it remains surprising that the clustering coefficient takes the specific value 3λ
8
.
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3.5 The Small-World Phenomenon

Besides the presence of homophily and clustering another stylized fact is fre-
quently observed in many real-world networks, which is widely known as the
small-world phenomenon. It captures the finding that even in large networks
there typically exist remarkably short paths between two individuals. The origi-
nal BRGmodel is known to reproduce this characteristic (see, e.g., Bollobás, 2001;
Chung and Lu, 2002). Thus, in this section we aim to establish the small-world
phenomenon to be preserved within our homophilous random network (HRN)
model even in case of high homophily. For this purpose we will simulate a variety
of homophilous random networks, since this issue seems to be no longer analyti-
cally tractable. The simulations will provide a strong indication that also in cases
of high homophily the small-world phenomenon remains present. Additionally,
we will apply two alternative statistical notions of clustering. It will turn out
that their values are not significantly different from the analytical measure given
in Definition 3.4.1.
Figure 3.5.1 may already provide an intuition regarding the differences between
cases of high and low homophily. In particular, while the total number of links
is almost the same in both simulated 100 agent networks one observes clustering
merely in the first case.

The notion of the small-world phenomenon usually grounds on the average short-
est path length between all pairs of agents belonging to a network and having
a connecting path. With regard to real-world networks the small-world phe-
nomenon is a rather vague concept, since it is typically based on subjective
assessments of path lengths rather than on verifiable, definite criteria. How-
ever, most people will agree that the values for several real-world networks as for
instance compiled by Watts and Strogatz (1998) and Newman (2003) are sur-
prisingly low. Insofar it could be said that most of these networks exhibit the
small-world phenomenon.
A formal definition of the small-world phenomenon applicable to most random
network models is given by Newman (2003):

Definition 3.5.1 (Small-world Phenomenon):

A network is said to show the small-world phenomenon if the average shortest
path length d̄ between pairs of agents having a connecting path scales logarithmi-
cally or slower with network size n while keeping agents’ expected degree constant,
that is if d̄/ ln(n) is non-increasing in n.

As already mentioned it has been established that the original BRG model ex-
hibits the small-world phenomenon according to Definition 3.5.1 (see, e.g., Bol-
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Figure 3.5.1: (a) HRN with λ = 0.5, a = 10−8; #links = 484
(b) BRG with linking probability Φ(0.5, 10−8) = 0.0513; #links = 496 (created
with MATLAB)

lobás, 2001; Chung and Lu, 2002). However, it is not clear whether this still
holds for our generalization given a considerably high level of homophily, but the
results of the following simulations will give some indication.

Prior to this, let us additionally introduce two statistical notions of clustering,
which are frequently used in the literature and closely related to the one given in
Definition 3.4.1. The simulations will offer the possibility to compare these. Here
clustering is associated with an increased number of triangles in the network.
More precisely, both alternative clustering measures are defined based on the
ratio of the number of triangles and the number of connected triples. A triangle
is a subset of three agents all of whom being connected to each other while a
connected triple is a subset of three agents such that at least one of them is
linked to the other two. Formally, this amounts to the following definition.
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Definition 3.5.2 (Statistical Clustering):

For a given network with set of agents N = {1, ..., n} the clustering coeffi-
cients C(1) and C(2) are determined by

C(1) =
3× number of triangles in the network

number of connected triples in the network
and

C(2) =
1

n

∑

i∈N

number of triangles containing agent i

number of connected triples centered on agent i
.

The coefficient C(1) counts the overall number of triangles and relates it to the
overall number of connected triples in the network. The factor of three accounts
for the fact that each triangle contributes to three connected triples and ensures
that C(1) ∈ [0, 1]. The second one, C(2), which goes back to Watts and Strogatz
(1998), first calculates an individual clustering coefficient for each agent and then
averages these. Compared to the first one, C(2) gives more weight to low-degree
agents.8 Additionally, notice that C(2) is only well-defined if there are no isolated
or loose-end agents in the network.

To capture both the heuristic and the formal approach to the small-world phe-
nomenon, we conduct two different simulations. In the first we fix the number of
agents n = 500 and the ex-ante expected degree of any agent to E[ηi] = 15. Fur-
thermore, we select several homophily levels ranging from no homophily, i.e. the
limit case of the BRG model, to very high homophily, represented by a = 10−8.
For each a we then simulate a homophilous random network R = 1000 times and
assess the averaged network statistics. All parameters and network statistics of
the simulation are stated in Table 3.1.
Fixing the expected degree ηexp by choosing λ = ηexp ln(a)2

2(n−1)(a−1−ln(a))
(cf. Corollary

3.3.3) enables us to compare the results for the different homophily levels, as this
leads to identical values for Φ(λ, a) in all cases. Recall that Φ captures the ex-
pected probability of two agents to be connected, characteristics being unknown
(cf. Proposition 3.3.1).

Regarding the results of the simulation, we find that the average path length
increases in homophily. This is in line with intuition as agents with distant
characteristics are increasingly likely to be distant in the network. However, it
increases by less than one step from no to highest homophily and an average dis-
tance of less than 3.4 between two agents can still be considered relatively small
in a network of 500 agents with about 15 links on average. Thus regarding the
heuristic approach it seems reasonable to accept the small-world phenomenon to
be present for all homophily levels.9

8C(2) calculates the mean of the ratios while C(1) rather constitutes the ratio of the means
(see Newman, 2003).

9To calculate average shortest paths one commonly restricts to agents having a connecting
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Parameter / Statistics a = 1 a = 10−2 a = 10−4 a = 10−6 a = 10−8

n 500
R 1000
Exp. Degree ηexp 15
Exp. Linking Prob. Φ 0.0301

λ 0.0301 0.0882 0.1553 0.2239 0.2928

Avg. Degree η̄ 14.9990 15.0074 15.0098 14.9899 15.0037
(0.2475) (0.3064) (0.2986) (0.2925) (0.2839)

Avg. Shortest Path d̄ 2.5944 2.6288 2.8086 3.0806 3.3939
(0.0113) (0.0164) (0.0277) (0.0429) (0.0611)

d̄/ ln(n) 0.4175 0.4230 0.4519 0.4957 0.5461
(0.0018) (0.0026) (0.0045) (0.0069) (0.0098)

Clustering Coeff. C 0.0301 0.0411 0.0641 0.0892 0.1147

Clustering Coeff. C(1) 0.0301 0.0411 0.0642 0.0891 0.1147
(0.0013) (0.0016) (0.0023) (0.0029) (0.0035)

Clustering Coeff. C(2) 0.0301 0.0411 0.0642 0.0892 0.1148
(0.0015) (0.0019) (0.0026) (0.0032) (0.0039)

Table 3.1: Results of Simulation 1 comparing network statistics for different ho-
mophily levels ranging from no homophily (BRG) to extreme homophily; Stan-
dard errors stated in parentheses

Furthermore, we observe an increasing level of clustering for the simulated ho-
mophilous random networks, what is in line with the findings in Section 3.4. If
homophily is highest, the probability that two agents are linked given they have
a common neighbor is about four times as high as in the case of the Bernoulli
Random Graphs, where this probability coincides with the unconditional linking
probability Φ(λ, a). Another expectable yet important observation is that there
are no significant differences between the expected clustering coefficient C (cf.
Definition 3.4.1) and the values we determined for the statistical coefficients C(1)

and C(2) (cf. Definition 3.5.2).10

All in all, Simulation 3.1 indicates that the homophilous random network model
exhibits the small-world phenomenon and clustering at the same time for a ∈
(0, 1). In the following we will consider the most interesting case of highest ho-
mophily captured by a = 10−8 in more detail.

The second simulation focuses on the formal Definition 3.5.1 of the small-world
phenomenon. For this purpose we simulate a collection of R = 100 networks

path if the network is not connected. However, such a network realized extremely rarely within
this simulation, namely only in 0.06% of all cases.

10Notice that isolated and loose-end agents never appeared in the simulation guaranteeing
that C(2) was steadily well-defined.
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Parameter / Statistics n = 150 200 250 300 350 400
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 14, 99 15, 02 14, 98 15, 02 14, 97 15, 00
Average Shortest Path d̄ 3, 05 3, 14 3, 19 3, 25 3, 29 3, 33
d̄/ ln(n) 0, 609 0, 593 0, 577 0, 569 0, 562 0, 556

Parameter / Statistics n = 450 500 550 600 650 700
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 15, 01 15, 03 15, 02 15, 01 15, 00 15, 01
Average Shortest Path d̄ 3, 35 3, 39 3, 42 3, 44 3, 47 3, 50
d̄/ ln(n) 0, 549 0, 545 0, 543 0, 538 0, 536 0, 534

Parameter / Statistics n = 750 800 850 900 950 1000
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 14, 99 14, 98 15, 03 15, 04 14, 97 15, 01
Average Shortest Path d̄ 3, 52 3, 54 3, 55 3, 57 3, 59 3, 61
d̄/ ln(n) 0, 532 0, 529 0, 526 0, 524 0, 524 0, 522

Table 3.2: Results of Simulation 2 computing average degrees, shortest paths and
small world ratios of the HRN model for a growing network size.

for each size n = 150, 200, 250, ..., 1000 and compute the respective averages of
the relevant network statistics. To this end we use the parameter of highest
homophily that is considered in Simulation 3.1. The precise data is stated in
Table 3.2. Notice that the simulation for each network size is structurally the
same as in the first simulation, merely a smaller number of iterations is chosen
due to computational restrictions. However, as can be seen in Table 3.1, all
standard errors and especially the one of the ratio d̄/ ln(n) are very low. Hence,
100 iterations should be sufficient to generate a precise estimate.
Figure 3.5.2, where the ratio of the average shortest path length and the logarithm
of the network size d̄/ ln(n) is plotted for the different network sizes n, reveals
that this ratio decreases. We thus deduce that the average path length d̄ increases
slower in n than ln(n) does. Therefore, the homophilous random networks exhibit
the small-world phenomenon according to Definition 3.5.1.
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Figure 3.5.2: Small World of HRN with n from 150 to 1000 and constant expected
degree 15 (created with MATLAB)

3.6 An Example of the Labor Market

So far we gave a theoretical analysis of the suggested homophilous random net-
work model. In this section however, we want to provide one possible economic
application.

In recent years more and more research in the field of labor economics was dedi-
cated to understanding the mechanisms of different hiring channels. One of these
channels which is commonly used in reality relies on the contacts of current em-
ployees.
Starting with the seminal contribution of Montgomery (1991), a lot of researchers
decided to model the contacts between workers as a social network (see, e.g.,
Calvó-Armengol, 2004; Calvó-Armengol and Jackson, 2007; Dawid and Gemkow,
2013).11

As known from the extensive sociological literature (cf. Section 3.1), within these
social networks one should expect to observe homophily with respect to skills or
competence, performance, education, level of income, and geographical distance.
While there are lots of empirical studies confirming the existence of homophily in
worker’s social contacts and analyzing the implications (e.g., Mayer and Puller,
2008; Rees, 1966), only few work has yet been dedicated to developing theoretical

11For an extensive survey including both empirical and theoretic literature from sociology
and economics see Ioannides and Loury (2004).
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models capturing this effect.12

In our application we consider a firm that wants to fill an open vacancy. Two
possible hiring channels are available, on the one hand the formal job market and
on the other hand the possibility to hire a contact of its current employee.

Based on the model introduced in Section 3.2, consider a network of n workers
and a vector of characteristics p capturing the ability of each worker to do the
vacant job. Further, assume that agent 1 is the current employee of the firm
while all other agents 2, ..., n are supposed to be available on the job market.
While we fix p1 as a parameter of the model, meaning that the firm knows the
ability of its current employee, p−1 = (p2, .., pn) is as before a realization of the
(n−1)–dimensional random variable P−1. Finally, we assume that a homophilous
network randomly forms according to individual linking probabilities (3.2.1), for
given parameters λ, a ∈ (0, 1).

Knowing the distribution function of the random variable P−1 and the conditional
linking probabilities but not the realization, the firm has to decide on one hiring
channel. The expected characteristic of a contact of agent 1 can be calculated as
follows.13

Proposition 3.6.1.

Given some homophily parameter a ∈ (0, 1), the expected characteristic of a neigh-
bor j ∈ {2, ..., n} of agent 1 with given characteristic p1 ∈ [0, 1] is

E
P [Pj | G ∈ G1j] =

1

2
+

(ap1 − a1−p1)(1
2
− 1

ln(a)
) + 2p1 − 1

2− ap1 − a1−p1
. (3.6.1)

A plot of function (3.6.1) is given in Figure 3.6.1. However, on investigating the
expected characteristic (3.6.1), it turns out that it has some intuitive properties
for some special cases which should yield some insight to the appearance of the
rather complicated functional form. We collect these in the following Corollary.

Corollary 3.6.2.

The functional form (3.6.1) yields:

• E
P [Pj | G ∈ G1j]

∣
∣
p1=

1
2

= 1
2

∀a ∈ (0, 1),

• lima→0 E
P [Pj | G ∈ G1j ] = p1 ∀p1 ∈ [0, 1],

12Exceptions are Horváth (2014), Van der Leij and Buhai (2008) and Zaharieva (2013), all
using binary notions of homophily.

13Notice that this probability is meaningful only if the given agent 1 has at least one link. For
large networks however this is guaranteed whenever the respective condition of the threshold
theorem (cf. Proposition 3.3.5) is fulfilled.
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Figure 3.6.1: Expected characteristic of a contact (calculated and drawn in MAT-
LAB)

• lima→1 E
P [Pj | G ∈ G1j ] =

1
2

∀p1 ∈ [0, 1].

Again, all of these properties can be identified also in Figure 3.6.1.

Assuming for simplicity that the expected ability of a worker hired via the formal
job market is some value p̄ ∈ (0, 1) independent of the homophily parameter a
and the ability of the current employee p1, it becomes clear that the firm faces a
simple decision rule when to hire via the social network. Namely, for sufficiently
high p1 and low a, respectively, the expected ability of a contact exceeds any
ability level p̄, such that in this case the firm should prefer to hire a randomly
chosen contact.

3.7 Conclusion

In this work we try to set up a novel homophilous random network model in-
corporating heterogeneity of agents. In a two-stage random process, first a one-
dimensional characteristic is assigned to each vertex, throughout the paper de-
noted as agents. Second, based on the realized characteristics the links of a ran-
dom network form whilst taking into account a continuous notion of homophily
that captures the frequently observed propensity of individuals to connect with
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similar others. Due to a continuous formalization of homophily our approach
allows for a broad range of homophily levels ranging from the extreme case of
maximal homophily where only equal agents get linked with positive probability
to the case where there is no homophily at all. The latter case corresponds to
the Bernoulli Random Graph (BRG) model, often referred to as the Erdős-Rényi
model. Insofar, our model can also be regarded as a generalization hereto.
Most importantly, unlike the vast majority of related economic models we indeed
capture homophily as it is defined and used in the sociological literature in terms
of similarity rather than equality.

In Section 3.3 we reveal some basic properties and network statistics of the ho-
mophilous random network model and establish a threshold theorem. The com-
parison with the BRG model provides additional insight. In Section 3.4 we focus
on another stylized fact of real-world networks, namely the occurrence of clus-
tering, a form of transitivity among connections. Though homophily and clus-
tering are frequently observed in reality, both phenomena are not captured by
the original BRG model. While we reveal by simulations that the small-world
phenomenon is apparently preserved, we are able to show analytically that in our
model homophily induces clustering. This gives rise to the conjecture that also
in reality there might be a considerable causality between the two. It might be
worthwhile for future research to pursue this question.
Finally, we provide an easily accessible application of our model for labor eco-
nomics (Section 3.6). Assuming homophily with respect to abilities, we consider
a network of workers according to the setting of the introduced homophilous
random network model. We determine the expected ability of a given worker’s
random contact to do a certain job. This yields a simple decision rule for a firm
which wants to fill a vacancy and needs to decide whether to hire through a cur-
rent employee’s contacts or the formal job market. It proves to be always optimal
to rely on the current employee’s contacts if this worker’s ability as well as the
level of homophily in the network are sufficiently high.

While our simulation results already yield a strong indication, for future work it
still remains open to show analytically that even in cases of high homophily the
small-world phenomenon is preserved in homophilous random networks.
As a second point it would be a natural yet analytically challenging extension
to check the qualitative robustness of the findings for different distributions of
characteristics. For many applications a distribution that puts more weight on
intermediate characteristics would without doubt capture reality more accurately.
Also, an extension of the model to multidimensional characteristics would be
valuable, in particular if one would succeed to combine characteristics of both
continuous and binary nature.
Finally, a calibration of the model to real-world data is yet to be done. Doing
this in a meaningful way is most certainly a challenge, especially as the level of
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homophily within a network is not clearly observable. However, one way to deal
with this would be to calibrate the model to the observable degree of clustering,
which we showed to be directly connected to homophily in our model.



Appendix

3.A Appendix: Proofs

Proof of Proposition 3.3.1. Calculate the expected probability:

E
P
[
P
G (ij ∈ G | P ) | Pi = pi

]
= E

P
[
λa|Pi−Pj | | Pi = pi

]

= λ





∫ 1

0

fPj
(pfj)

︸ ︷︷ ︸

1

a|pi−pj |dpj





= λ

(∫ pi

0

api−pjdpj +

∫ 1

pi

apj−pidpj

)

= λ

(

api
∫ pi

0

a−pjdpj + a−pi

∫ 1

pi

apjdpj

)

= λ

(

api
1− a−pi

ln(a)
+ a−pi

a− api

ln(a)

)

=
λ

ln(a)

(
api + a1−pi − 2

)
. (3.A.1)

What is more, by integrating (3.A.1) with respect to pi we get the expected

62
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probability if p is unknown.

E
P
[
P
G [ij ∈ G | P ]

]
= E

P
[
λa|Pi−Pj |

]

= λ

(∫

[0,1]2
fPi,Pj

(pi, pj)
︸ ︷︷ ︸

=fPi
(pi)fPj

(pj)=1

a|pi−pj |d(pi, pj)

)

(3.A.1)
= λ

(∫ 1

0

(api + a1−pi − 2)

ln(a)
dpi

)

=
λ

ln(a)

[
api − a1−pi − 2pi ln(a)

ln(a)

] ∣
∣
∣
∣

1

0

=
λ

ln(a)2
[a− 1− 2 ln(a)− 1 + a]

=
2λ

ln(a)2
[a− 1− ln(a)] .

Proof of Corollary 3.3.2. Using l’Hôpital’s rule, calculate the limit of ϕ as

lim
a→0

ϕ(λ, a, pi) = lim
a→0

λ(api + a1−pi − 2)

ln(a)

= lim
a→0

λ(pia
pi−1 + (1− pi)a

−pi)

1/a

= lim
a→0

λ(pia
pi + (1− pi)a

1−pi) = 0,

and likewise

lim
a→1

ϕ(λ, a, pi) = lim
a→1

λ(api + a1−pi − 2)

ln(a)

= lim
a→1

λ(pia
pi−1 + (1− pi)a

−pi)

1/a

= lim
a→1

λ(pia
pi + (1− pi)a

1−pi) = λ.

For the case of Φ, we get by using l’Hôpital’s rule twice

lim
a→0

Φ(λ, a) = lim
a→0

2λ
a− 1− ln(a)

ln(a)2
= lim

a→0
2λ

1− 1/a

2 ln(a)/a
= lim

a→0
λ
a− 1

ln(a)
= 0,

as well as

lim
a→1

Φ(λ, a) = lim
a→1

2λ
a− 1− ln(a)

ln(a)2
= lim

a→1
2λ

a− 1

2 ln(a)
= lim

a→1
λ

1

1/a
= λ.
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Proof of Proposition 3.3.4. Calculate

E
P
[
P
G (ηi(G) = k | P ) | Pi = pi

]

= E
P




∑

K⊆N\{i}:|K|=k




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1− q(Pi, Pl))



 | Pi = pi





=
∑

K⊆N\{i}:|K|=k



E
P




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1− q(Pi, Pl)) | Pi = pi









=
∑

K⊆N\{i}:|K|=k





∫

[0,1]n−1



fP−i
(p−i)

︸ ︷︷ ︸

=1

·
∏

j∈K

(q(pi, pj)) ·
∏

l∈N\K\{i}

(1− q(pi, pl))



 dp−i





=
∑

K⊆N\{i}:|K|=k




∏

j∈K

(∫ 1

0

(q(pi, pj)) dpj

)

·
∏

l∈N\K\{i}

(∫ 1

0

(1− q(pi, pl)) dpl

)




(3.3.1)
=

∑

K⊆N\{i}:|K|=k

((
λ

ln(a)

(
api + a1−pi − 2

)
)k

·
(

1− λ

ln(a)

(
api + a1−pi − 2

)
)n−k−1

)

(3.3.1)
=

(
n− 1

k

)

· (ϕ(λ, a, pi))k · (1− ϕ(λ, a, pi))
n−k−1 .

Proof of Proposition 3.3.5. The probability that an agent with given character-
istic pi is isolated is

E
P
[
P
G (ηi(G) = 0 | P ) | Pi = pi

] (3.3.7)
= (1− ϕ(λ(n), a(n), pi))

n−1.

If we assume that there will be at least some homophily as the size of the network
becomes large, that is formally

∃ ǫ̃ > 0, n̄ ∈ N : a(n) ≤ 1− ǫ̃ ∀ n ≥ n̄

then we have that

∃ ǫ > 0 : 2− a(n)p̂ − a(n)1−p̂ ∈ [ǫ, 2] ∀ n ≥ n̄.
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Now it holds that if limn→∞[−λ(n)/(ln(a(n))t(n))] = ∞ then

lim
n→∞

(1− ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

(

1− ϕ(λ(n), a(n), pi)/t(n)

n− 1

)n−1

(3.3.1)
= lim

n→∞

(

1−
λ(n)(n−1)
ln(a(n))

(a(n)pi + a(n)1−pi − 2)

n− 1

)n−1

= lim
n→∞

exp









−λ(n)(n− 1)

ln(a(n))
︸ ︷︷ ︸

→∞

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]









=0,

while if limn→∞[−λ(n)/(ln(a(n))t(n))] = 0 we have

lim
n→∞

(1− ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

exp









−λ(n)(n− 1)

ln(a(n))
︸ ︷︷ ︸

→0

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]









=1.

Proof of Proposition 3.4.2. We calculate

C(λ, a)

= E
P
[
λa|Pj−Pk|

∣
∣ G ∈ Gij ∩Gik

]

= λ

∫

[0,1]n
a|pj−pk|fP (p | G ∈ Gij ∩Gik)dp

= λ

∫

[0,1]n
a|pj−pk|

fP,G(p,Gij ∩Gik)

fG(Gij ∩Gik)
dp



66 Continuous Homophily and Clustering in Random Networks

=
λ

fG(Gij ∩Gik)

∫

[0,1]n
a|pj−pk|fP,G(p,Gij ∩Gik)dp

=
λ

fG(Gij ∩Gik)

∫

[0,1]n
a|pj−pk|fG(Gij ∩Gik | P = p)

=1
︷ ︸︸ ︷

fP (p) dp

=
λ

∫

[0,1]n
fP (x)
︸ ︷︷ ︸

=1

fG(Gij ∩Gik | P = x)dx

∫

[0,1]n
a|pj−pk|fG(Gij ∩Gik | P = p)dp

=
λ

∫

[0,1]n
PG(G ∈ Gij ∩Gik | P = x)dx

∫

[0,1]n
a|pj−pk|P

G(G ∈ Gij ∩Gik | P = p)dp

=
λ

∫

[0,1]n
λa|xi−xj |λa|xi−xk|dx

∫

[0,1]n
a|pj−pk|λa|pi−pj |λa|pi−pk|dp

= λ

∫

[0,1]n
a|pj−pk|+|pi−pj |+|pi−pk|dp

∫

[0,1]n
a|xi−xj |+|xi−xk|dx

= λ

∫

[0,1]3
a|pj−pk|+|pi−pj |+|pi−pk|d(pi, pj, pk)

∫

[0,1]3
a|xi−xj |+|xi−xk|d(xi, xj , xk)

. (3.A.2)

Let us solve the integral in the denominator first. For the sake of readability
denote x = (xi, xj , xk).

∫

[0,1]3
a|xi−xj |+|xi−xk|dx

=

∫

x∈[0,1]3:
xj ,xk≤xi

a2xi−xj−xkdx+

∫

x∈[0,1]3:
xi≤xj ,xk

axj+xk−2xidx

+

∫

x∈[0,1]3:
xj≤xi≤xk

axk−xjdx+

∫

x∈[0,1]3:
xk≤xi≤xj

axj−xkdx

=
2 ln(a)− 4a+ a2 + 3

2(ln(a))3
+

2 ln(a)− 4a+ a2 + 3

2(ln(a))3

+
2 ln(a)− 4a+ 2a ln(a) + 4

2(ln(a))3
+

2 ln(a)− 4a+ 2a ln(a) + 4

2(ln(a))3

=
1

2(ln(a))3
[
8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

]
.

Now solve the integral in the nominator of (3.A.2), substituting x for p in order
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to use the same notation as above.

∫

[0,1]3
a|xj−xk|+|xi−xj |+|xi−xk|dx

=

∫

x∈[0,1]3:
xi≤xj≤xk

a2xk−2xidx+

∫

x∈[0,1]3:
xi≤xk≤xj

a2xj−2xidx

+

∫

x∈[0,1]3:
xj≤xi≤xk

a2xk−2xjdx+

∫

x∈[0,1]3:
xj≤xk≤xi

a2xi−2xjdx

+

∫

x∈[0,1]3:
xk≤xi≤xj

a2xj−2xkdx+

∫

x∈[0,1]3:
xk≤xj≤xi

a2xi−2xkdx

=6
ln(a)− a2 + a2 ln(a) + 1

4(ln(a))3

=
1

2(ln(a))3
[
3 ln(a)− 3a2 + 3a2 ln(a) + 3

]
.

All in all, we get

C(λ, a) = λ
3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14
.

By using this, we can now start with the actual proof. It is

C(λ, a)− Φ(λ, a)

=λ

(

3
(
ln(a)a2 + ln(a)− a2 + 1

)

2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) +
2
(
ln(a)− a+ 1

)

ln(a)2

)

=λ3 ln(a)3(a2+1)+ln(a)2(−3a2+8a+19)+ln(a)(−4a2−40a+44)+(−4a3+36a2−60a+28)

2 ln(a)2
(
2 ln(a)a+4 ln(a)+a2−8a+7

) (3.A.3)

In the following, we will use that for a ∈ (0, 1)

ln(a) = −
∞∑

m=0

(1− a)m+1

m+ 1

and therefore ln(a) < −∑M
m=0

(1−a)m+1

m+1
< 0 for all M ∈ N. The first and easier
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part is to show that the denominator of (3.A.3) is negative for all a ∈ (0, 1):

2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

=2(a+ 2) ln(a) + a2 − 8a+ 7

<− 2(a+ 2)
(
1− a+ 1

2
(1− a)2 + 1

3
(1− a)3

)
+ a2 − 8a+ 7

=1
3
(a+ 2)

(
2a3 − 9a2 + 18a− 11

)
+ a2 − 8a+ 7

=1
3

(
2a4 − 5a3 + 3a2 + a− 1

)

=− 1
3
(1− a)3(2a+ 1)

<0

Furthermore, we define

g(a) :=3 ln(a)3(a2 + 1) + ln(a)2(−3a2 + 8a+ 19) + ln(a)(−4a2 − 40a+ 44)

+ (−4a3 + 36a2 − 60a+ 28).

Then λg(a) is the nominator of (3.A.3). We calculate

dg

da
(a) =

1

a

[

6 ln(a)3a2 + ln(a)2(3a2 + 8a+ 9) + 2 ln(a)(−7a2 − 12a+ 19)

+ 4(−3a3 + 17a2 − 25a+ 11)
]

,

d2g

da2
(a) =

1

a2

[

6 ln(a)3a2 + 3 ln(a)2(7a2 − 3) + 4 ln(a)(−2a2 + 4a− 5)

+ 6(−4a3 + 9a2 − 4a− 1)
]

,

d3g

da3
(a) =

1

a3

[

18 ln(a)2(a2 + 1) + 2 ln(a)(21a2 − 8a+ 11) + 8(−3a3 − a2 + 5a− 1)
]

,

d4g

da4
(a) =

1

a4

[

18 ln(a)2(−a2 − 3) + 2 ln(a)(−3a2 + 16a− 15) + 2(25a2 − 48a+ 23)
]

,

d5g

da5
(a) =

1

a5

[

36 ln(a)2(a2 + 6) + 12 ln(a)(−2a2 − 8a+ 1) + 2(−53a2 + 160a− 107)
]

,

d6g

da6
(a) =

1

a6

[

108 ln(a)2(−a2 − 10) + 12 ln(a)(12a2 + 32a+ 31) + 2(147a2 − 688a+ 541)
]

.

Notice that

g(1) =
dg

da
(1) =

d2g

da2
(1) =

d3g

da3
(1) =

d4g

da4
(1) =

d5g

da5
(1) = 0
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and moreover

d6g

da6
(a) =

1

a6

[

108 ln(a)2 (−a2 − 10)
︸ ︷︷ ︸

<0

+12 ln(a) (12a2 + 32a+ 31)
︸ ︷︷ ︸

>0

+ 2(147a2 − 688a+ 541)
]

<
1

a6

[

108(1− a)2(−a2 − 10)− 12(1− a)(12a2 + 32a+ 31)

+ 2(147a2 − 688a+ 541)
]

=
2

a6

[

− 54a4 + 180a3 − 327a2 + 386a− 185
]

=
2

a6
(1− a)

[

54(a− 7
9
)3 + 103(a− 7

9
)− 2146

27

]

<
2

a6
(1− a)

[

542
9

3
+ 1032

9
− 2146

27

]

= −112

a6
(1− a)

< 0.

Combining this it follows for all a ∈ (0, 1)

d5g

da5
(a) > 0 ⇒ d4g

da4
(a) < 0 ⇒ d3g

da3
(a) > 0 ⇒ d2g

da2
(a) < 0

⇒ dg

da
(a) > 0 ⇒ g(a) < 0.

Taken together we have indeed that

C(λ, a)− Φ(λ, a) = λ
g(a)

2 ln(a)2
(
2 ln(a)a+ 4 ln(a) + a2 − 8a+ 7

) > 0.
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Proof of Corollary 3.4.3. By applying l’Hôpital’s rule three times we calculate

lim
a→0

C(λ, a) = λ lim
a→0

3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

= λ lim
a→0

3/a− 6a+ 6a ln(a) + 3a

8/a− 16 + 4a+ 4 ln(a) + 4

=
3λ

4
lim
a→0

1− a2 + 2a2 ln(a)

2− 3a+ a2 + a ln(a)

=
3λ

4

lima→0[1− a2 + 2a2 ln(a)]

lima→0[2− 3a+ a2 + a ln(a)]

=
3λ

4

lima→0[1]− lima→0[a
2] + lima→0[2a

2 ln(a)]

lima→0[2]− lima→0[3a] + lima→0[a2] + lima→0[a ln(a)]

=
3λ

4

1− 0 + limx→∞[2 ln(1/x)/x2]

2− 0 + 0 + limx→∞[ln(1/x)/x]

=
3λ

4

1 + limx→∞[−2x(1/x2)/2x]

2 + limx→∞[−x(1/x2)/1]

=
3λ

4

1 + limx→∞[−1/x2]

2 + limx→∞[−1/x]
=

3λ

8
.

The stated result follows immediately, since we established in Corollary 3.3.2 that
lima→0 Φ(λ, a) = 0.

On the other side, by again using l’Hôpital’s rule three times we get

lim
a→1

C(λ, a) = λ lim
a→1

3 ln(a)− 3a2 + 3a2 ln(a) + 3

8 ln(a)− 16a+ 2a2 + 4 ln(a)a+ 14

= λ lim
a→1

3/a− 6a+ 6a ln(a) + 3a

8/a− 16 + 4a+ 4 ln(a) + 4

= λ lim
a→1

3− 3a2 + 6a2 ln(a)

8− 12a+ 4a2 + 4a ln(a)

= λ lim
a→1

−6a+ 12a ln(a) + 6a

−12 + 8a+ 4 ln(a) + 4

= λ lim
a→1

12 ln(a) + 12

8 + 4/a

= λ.

According to Corollary 3.3.2 it is as well lima→1 Φ(λ, a) = λ which concludes the

proof.
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Proof of Proposition 3.6.1. We calculate

E
P [Pj | G ∈ G1j] =

∫ 1

0

pjfPj |G(pj,G1j)dpj

=

∫ 1

0

pjfPj
(pj | G ∈ G1j)dpj

=

∫ 1

0

pj
fPj ,G(pj,G1j)

fG(G1j)
dpj

=

∫ 1

0

pj
fG(G1j | Pj = pj)

1
︷ ︸︸ ︷

fPj
(pj)

fG(G1j)
dpj

=

∫ 1

0

pj
fG(G1j | Pj = pj)

∫ 1

0
fPj

(x)
︸ ︷︷ ︸

1

fG(G1j | Pj = x)
︸ ︷︷ ︸

P(G∈G1j | Pj=x)

dx
dpj

=

∫ 1

0

pj

λa|p1−pj |

︷ ︸︸ ︷

fG(G1j | Pj = pj)
∫ 1

0
λa|p1−x|dx

︸ ︷︷ ︸
λ

ln(a)
(ap1+a1−p1−2)

dpj

=
ln(a)

ap1 + a1−p1 − 2

∫ 1

0

pja
|p1−pj |dpj.

The integral can be calculated as follows:
∫ 1

0

pja
|p1−pj |dpj =

∫ p1

0

pja
(p1−pj)dpj +

∫ 1

p1

pja
(pj−p1)dpj

=
ap1 − p1 ln(a)− 1

ln(a)2
+

a1−p1(ln(a)− 1)− p1 ln(a) + 1

ln(a)2
.

It follows that

E
P (Pj | G ∈ G1j) =

ap1 + a1−p1(ln(a)− 1)− 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)
(3.A.4)

=
1

2
+

(ap1 − a1−p1)(1
2
− 1

ln(a)
) + 2p1 − 1

2− ap1 − a1−p1
. (3.A.5)

Proof of Corollary 3.6.2. Consider the functional form (3.6.1). We calculate the
properties in question, where the first and second one turn out to be straightfor-
ward. For a ∈ (0, 1) it is

E
P [Pj | G ∈ G1j ]

∣
∣
p1=

1
2

=
1

2
+

(
√
a−√

a)(1
2
− 1

ln(a)
) + 1− 1

2−√
a−√

a
=

1

2
.
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Furthermore, we get for p1 ∈ (0, 1)

lim
a→0

E
P [Pj | G ∈ G1j ] =

1

2
+

(0− 0)(1
2
+ 0) + 2p1 − 1

2− 0− 0
= p1

and for the marginals

lim
a→0

E
P [Pj | G ∈ G1j ]

∣
∣
p1=0

=
1

2
+

(1− 0)(1
2
+ 0) + 0− 1

2− 1− 0
= 0,

lim
a→0

E
P [Pj | G ∈ G1j ]

∣
∣
p1=1

=
1

2
+

(0− 1)(1
2
+ 0) + 2− 1

2− 0− 1
= 1.

Finally, we will use l’Hôpital’s rule twice. We get for p1 ∈ [0, 1]

lim
a→1

E
P [Pj | G ∈ G1j]

(3.A.4)
= lim

a→1

ap1 + a1−p1(ln(a)− 1)− 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)

= lim
a→1

p1a
p1−1 + (1− p1)a

−p1(ln(a)− 1) + a−p1 − 2p1
a

1
a
(ap1 + a1−p1 − 2) + ln(a)(p1ap1−1 + (1− p1)a−p1)

, (3.A.6)

by the first use of l’Hôpital’s rule. Then, noticing that

∂

∂a

[

p1a
p1−1 + (1− p1)a

−p1(ln(a)− 1) + a−p1 − 2p1
a

]

= p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1(ln(a)− 1)

+ (1− p1)a
−p1−1 − p1a

−p1−1 +
2p1
a2

∂

∂a

[1

a
(ap1 + a1−p1 − 2) + ln(a)(p1a

p1−1 + (1− p1)a
−p1)

]

= − 1

a2
(ap1 + a1−p1 − 2) +

2

a
(p1a

p1−1 + (1− p1)a
−p1)

+ ln(a)(p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1),

we get from (3.A.6) by the second use of l’Hôpital’s rule

p1(p1 − 1) + p1(p1 − 1)(0− 1) + (1− p1)− p1 + 2p1
−(1 + 1− 2) + 2(p1 + (1− p1)) + 0

=
1

2
,

what concludes the proof.



Chapter 4

Network Design and Imperfect

Defense

4.1 Introduction

Infrastructure networks are a crucial part of the modern society. Airports, inter-
net servers, power grids and distribution centers are only some examples. Given
this evident importance, the question arises how one should design such net-
works to optimally defend them against threats like intelligent attacks or natural
disasters.

We propose a model of network design with two players, called the Designer and
the Adversary. The goal of the Designer is to construct a network that withstands
the attack of the Adversary in the sense that connectedness is retained, while
the Adversary naturally has the opposite objective, i.e. she tries to dissolve
connectedness. The two players act successively in the sense that the Adversary
attacks the network only after it was constructed by the Designer, so that we
obtain an extensive-form zero-sum game. It is worth noting that the analysis of
a game with a strategically acting Adversary may not only represent the analysis
of optimal protection against an intelligent attacker but also the analysis of a
worst-case scenario of natural threats.

Two versions of the game are analyzed in this paper, the imperfect node-defense
game and the imperfect link-defense game. In each of them we want to identify the
set of possible equilibria of the defense game, i.e. all networks the Designer may
construct contingent on the model’s priors: the attack budget of the Adversary,
the costs of link formation and defense, and the probability of deletion of defended
nodes or links.
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First we will consider the imperfect node-defense game, based on a model pro-
posed by Dziubiński and Goyal (2013b). Here the Designer forms costly bilateral
links within the given set of nodes and may also protect nodes against dele-
tion, yet protection is imperfect. Subsequently, the Adversary can attack a fixed
number of nodes, where unprotected nodes along with their respective links are
deleted with certainty, protected nodes only with some given probability.
We fully characterize the set of possible equilibria of the defense game for attack
budgets of one or two nodes. In case the Adversary can attack one node we show
that the possible equilibria are the empty network, the centrally protected star
and the non-protected circle (Proposition 4.2.1). Protected nodes will be present
in equilibrium only for high chances of defense and small network size (Corollary
4.2.3).
For an attack budget of two nodes the possible equilibria are the unprotected
empty network, the centrally protected star, the fully protected circle and the
unprotected Harary graph of order 3, as well as one or two networks with an
intermediate number of defended nodes (Proposition 4.2.7).
As for a general attack budget of ka nodes, we aim to limit the set of possible
equilibria of the defense game by using the same strategies as before in order
to identify all non-connected, 1-connected and maximally connected networks
the Designer may choose in equilibrium (Lemma 4.2.8), as well as a set of ka-
connected networks that include all possible equilibria (Conjecture 4.2.12).

We then repeat the analysis for the imperfect link-defense game. Again the
Designer forms costly bilateral links within the given set of nodes, while now
she may (imperfectly) protect these links against deletion. Then the Adversary,
having a fixed attack budget, attacks links in order to disconnect the network.
Analogously to the previous game, unprotected links are deleted with certainty,
protected links only with some given probability.
Again we first characterize the set of possible equilibria of the defense game for
attack budgets of one or two links. For an attack budget of one link the results are
very similar to the node-defense game, the possible networks in equilibrium being
the empty network, fully protected trees and the non-protected circle (Proposition
4.3.1). As before, protected links will be present in equilibrium only for high
chances of defense and small network size (Lemma 4.3.2).
More differences to the node-defense game arise for an attack budget of two links.
Here, the possible equilibria are the empty network, the fully protected trees, the
fully protected circle and the unprotected Harary graph of order 3 (Proposition
4.3.3). In particular, in the link-defense game there are no further 2-connected
networks in the set of equilibrium strategies.
Finally, also for a general attack budget of ka links we show that, as opposed to
the node-defense case, in the imperfect link-defense game the Designer will never
choose any other ka-connected networks in equilibrium than the Harary graphs
of order ka and ka + 1 (Proposition 4.3.5).
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It is important to understand that in the proposed model the Designer has two
defense mechanisms at hand. First, she may decide to directly defend nodes or
links against deletion. Second, she may increase the connectivity of the network
to defend it against separation. Thus it is on the one hand possible to design a
network of sufficiently high connectivity such that direct node- or link defense is
not necessary. On the other hand, a minimally connected network with all nodes
or links being protected – or even some intermediate solutions – will turn out
to be possibly optimal as well. This tradeoff between two substitutable defense
mechanisms is a key characteristic of the model.

Besides the analysis of this tradeoff the paper also contributes to the literature
of graph theory, generalizing an early and seminal result of Harary (1962), who
gives the minimum number of links needed to construct a network with a given
degree of connectedness.1 Here, we determine the minimum number of links
necessary to construct a network with a given degree of connectedness and a given
number of essential nodes (Proposition 4.2.6, Proposition 4.2.10 and Conjecture
4.2.11). Essential nodes are those nodes whose deletion will result in a strictly
less connected network.

The paper is connected to two strands of literature. The first and obvious is
the literature on network design, to which various papers contributed to in the
last years. Closest to our work are Dziubiński and Goyal (2013b), who solve the
node-defense model we propose here for the case of perfect defense. In Goyal and
Vigier (2014) and Cerdeiro et al. (2015) contagion is added, i.e. all undefended
nodes connected to an attacked node will also be deleted. In Goyal and Vigier
(2010) the players decide on sizes of attack and defense, while node destruction
is determined by a Tullock contest.

Other papers consider decentralized defense, such that any node is assumed to be
a rational agent who aims to protect herself against deletion (see, e.g., Dziubiński
and Goyal, 2013a; Hoyer, 2012; Hong, 2008). Closely related is the literature on
epidemics in networks, which can be understood as decentralized-defense games
with contagion. In this literature also imperfect defense is introduced into the
games. For example, Acemoglu et al. (2013) analyze a model where agents that
are connected via a random network may ex ante invest into their individual
security level, i.e. into the probability of being immune against infection.

Only few papers consider link deletion in network design games. One example
is Hoyer and De Jaegher (2010), who look at both node- and link deletion, but
disregard defense in their model. Hong (2009) considers a model of link defense,
however for a game with an exogenously given and directed network that is to
be defended against a terrorist attack.

1A network is said to be connected of degree k if it cannot be disconnected by deleting any
k − 1 nodes along with their respective links.
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This paper and more generally the literature on network design is of course also
connected to the literature concerned with strategic network positions, following
the seminal work of Ballester et al. (2006), who determine key-players in a network
via the Bonacich centrality. Another example is McBride and Hewitt (2013),
who study the optimal disruption of a network in the presence of incomplete
information about its structure.

Finally, an older strand of literature this paper is connected to is the graph
theoretic literature on connectedness, where Harary (1962) provided their seminal
contribution, identifying the minimum number of links necessary to construct a
network of given degree of connectedness.

The rest of the paper is organized as follows. In Section 4.2 the imperfect node-
defense game is analyzed. Section 4.2.1 presents the easily accessible solution for
an attack budget of one. In Section 4.2.2 the solution of the game for an attack
budget of two is characterized, while in Section 4.2.3 the same ideas are used for
a partial characterization of the solution in case of a general attack budget. We
then turn to the analysis of the imperfect link-defense game in Section 4.3. Again,
solutions for given attack budgets of one and two are presented in Sections 4.3.1
and 4.3.2, respectively, while in Section 4.3.3 the solution in case of a general
attack budget is partially characterized. Section 4.4 finally concludes. All proofs
can be found in Appendix 4.A.

4.2 Imperfect node defense

In this section we want to introduce imperfect defense into the network design
model of Dziubiński and Goyal (2013b). In order to do so consider the following.
Let N be a given set of nodes with cardinality n. A link (edge) between two
nodes (vertices) i, j ∈ N is denoted by ij, and we define the complete network
(graph) by gN = {ij | i, j ∈ N}, i.e. the network where any two nodes are linked.
We then define the set of all networks G = {g | g ⊆ gN}. Note that we consider
undirected networks only, that is we assume that ji ∈ g whenever ij ∈ g.

The model is now defined as follows. There are two players, the Designer and
the Adversary, playing a two-stage game. In the first stage the Designer chooses
network g, where each link comes at a constant and exogenously given cost cl.
At the same time she also may defend nodes at a cost cd per node. Denote the
set of these nodes by D ⊆ N . In the second stage, the Adversary, having an
exogenously given attack budget ka, chooses which ka nodes to attack, denoted
by A ⊆ N .
Unprotected nodes are destroyed with probability 1, while protected nodes are
destroyed with probability π ∈ [0, 1]. Like this, for the case π = 0 we obtain
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exactly the model of Dziubiński and Goyal (2013b).

In the paper at hand we will study the Connectivity Game, i.e. we study the
case that the Designer aims to retain a connected residual network, while the
Adversary tries to disconnect the network.2 Defining X to be the set of all
links adjacent to successfully deleted nodes, we obtain the ex-post utility to the
Designer given as

uD(g,D,A) =

{

1− cl|g| − cd|D| if g −X connected,

−cl|g| − cd|D| otherwise,

where g − X is the residual network after the attack.3 Moreover, defining
Π(g,D,A) as the probability that network g with defense D gets disconnected
by attack A, the corresponding expected payoff is given by

EuD(g,D,A) = 1− Π(g,D,A)− cl|g| − cd|D|.

As we want the Adversary to have the opposite goal of the Designer, we simply
define her ex-post utility as

uA(g,D,A) = −uD(g,D,A).

Clearly, the Connectivity Game sets rather extreme incentives for the players. In
terms of the Designer, she gets a constant payoff of 1 whenever the network is
connected and 0 otherwise. Some different utility functions are reasonable and
existent in the literature on network design, a prominent example being a utility
function defined as the sum over all components of functions convex in component
sizes (see, e.g., Dziubiński and Goyal, 2013b). However, retaining connectivity
is still a relevant and important goal in many examples and also constitutes the
starting point of the corresponding graph-theoretic literature in the 1960s and
1970s. Moreover, we will see that also in this simple version of the model we will
be able to obtain some interesting findings.

The two different defense strategies the Designer has at hand now become appar-
ent. On the one hand, directly defending nodes against deletion at a cost cd is an
obvious strategy, while this defense is supposed to be imperfect in our model. On
the other hand, adding more links at a marginal cost cl to the network in order to
increase the connectivity constitutes a second strategy of defense, as e.g. a circle
network cannot be disconnected by deletion of only one node, independently of

2A network g is said to be connected if there exists a path between any two nodes, i.e. for
any i, j ∈ N there exist nodes {i, p1, p2, ..., pt−1, pt, j}, such that pν ∈ N for 1 ≤ ν ≤ t and
ip1, pνpν+1, ptj ∈ g for 1 ≤ ν ≤ t− 1.

3Note that for g − X to be connected there must only exist paths between any two non-
deleted nodes.
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node defense. While these two defense strategies clearly behave as substitutes in
the model, we will see in the following that it may still be optimal to combine
both.

The possible combination of the two defense mechanisms in an optimal defense
strategy represents a central difference to the case of perfect defense, which is
found in Dziubiński and Goyal (2013b) and constitutes the limit case of π = 0
in the model at hand. It is easy to see that for perfect defense, regardless of
the attack budget ka of the Adversary, the optimal strategy for the Designer is
one out of the following three network choices: the unprotected empty network
for high costs, a star network with protected center, or an unprotected but suffi-
ciently high connected network with minimal number of links (see Figure 4.2.1,
for ka = 2). Thus, in this limit case the Designer chooses only one out of the two
defense mechanisms, either a minimally connected but protected network or an
unprotected but highly connected one.

We finally need to introduce two concepts that will be central for the upcoming
analysis. First, we will call a network k-connected or connected of degree k if it
cannot be disconnected by deletion of any k − 1 nodes and their adjacent links.
Second, we will call a node k-essential in a network if deletion of this node along
with all adjacent links diminishes the degree of connectivity of the network from
k to k − 1. However, notice that if there is no risk of confusion we will with a
slight abuse of notation call such nodes essential instead of k-essential, for the
sake of simplicity.
Reconsidering Figure 4.2.1 as the solution of the limit case π = 0, with the above
definitions we see that the CP-star gs is a 1-connected network where only the
protected node is 1-essential. The circle gc is 2-connected, such that no node is
1-essential while all nodes are 2-essential. More general, Harary (1962) identified
networks of any degree of connectedness with minimal number of links. These
Harary graphs, which we will denote by gh,k for a degree of connectedness k, were
shown to have ⌈kn

2
⌉ links and will prove to be very central to our analysis.

We will now analyze the model first for attack budgets ka = 1 and ka = 2, and
finally for a general attack budget ka ≥ 3.

4.2.1 Attack Budget 1

We want to start with the analysis of the game in case of an attack budget ka = 1.
While in this case the possible equilibria do not differ much from the results in
the framework of perfect defense, we will see that as the Designer is able to
choose between the two available defense strategies (direct defense vs. increased
connectivity), directly defending nodes is part of her equilibrium choice only for
low costs and high success probability of node defense.
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(a) Empty g∅ (b) Circle gc (c) CP-star gs

Figure 4.2.1: Possible equilibria for n = 6 nodes and attack budget ka = 1. Green
colored node is protected.

As a starting point, the following result shows that if the Adversary can attack at
most one node, then for any number of nodes n ≥ 3, in equilibrium the Designer
will choose one of the networks depicted in Figure 4.2.1.

Proposition 4.2.1.

Let the attack budget of the Adversary be 1. For any number of nodes n ≥ 3,
in an equilibrium of the imperfect node-defense game the Designer will choose
either the undefended empty network g∅, the undefended circle gc or the centrally
protected star (henceforth CP-star) gs. Specifically,

• the undefended circle is an optimal choice if cl ≤ 1/n and cl ≤ cd + π.

• The undefended empty network is an optimal choice if cl ≥ 1/n and cd ≥
1− π − (n− 1)cl.

• The CP-star is an optimal choice if cd ≤ 1− π− (n− 1)cl and cd ≤ cl − π.

The proof, as well as all subsequent proofs, can be found in the appendix. Notice
that it is rather immediate, understanding that the circle gc is the Harary graph
of order 2, and the star is the tree with the lowest number of essential nodes.

The equilibria for different costs are depicted in Figure 4.2.2, for π ∈ {0, 1/(4n),
1/(2n), 3/(4n), 1/n}. Why it is enough to consider a maximum π of 1/n is shown
in the following Lemma.

Lemma 4.2.2.

For π > 1
n
, the CP-star cannot be chosen in an equilibrium of the imperfect

node-defense game.

Notice that this result does not depend on the relative sizes of payoff and costs.
The threshold π = 1/n stays the same if the payoff would increase linearly in the
number of nodes, i.e. if we considered a ex-post utility for the Designer in case
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Figure 4.2.2: Optimal networks in equilibrium for π ∈ [0, 1/n]. As the success
probability of attack π increases, the triangle region, where the CP-star is the
optimal defended network, shrinks. For π > 1/n (black lines), the CP-star cannot
be an equilibrium choice any more.

of successful defense

ũD(g,D,A) = n− cl|g| − cd|D|.

Lemma 4.2.2 has also a direct consequence for large networks. The following
corollary can be understood as a limit analysis for n → ∞.

Corollary 4.2.3.

For any positive success probability π and large enough network size n, a defended
network cannot be chosen in an equilibrium of the imperfect node-defense game.

We see that especially for large networks, while the Designer has the choice
between the two defense mechanisms of direct defense and high network connec-
tivity, the possibility of unsuccessful defense in most cases lets her decide in favor
of higher connectivity of the network.

In the following section we will see that the picture changes if the attack budget



4.2 Imperfect node defense 81

of the Adversary increases. Already for an attack budget ka = 2 the Designer
suddenly also has “intermediate” choices, i.e. it may be optimal for her to choose
a network including a degree of connectivity larger than 1 and at the same time
defending a strict subset of the nodes.

4.2.2 Attack Budget 2

We want to characterize the possible equilibria of the imperfect node-defense
game in case of an attack budget ka = 2 to the Adversary. We will show that the
networks we found in the previous section are still part of the solution. What
notably complicates the following analysis as compared to the previous section is
that the Designer from now on has not only the possibility to choose between de-
fending the network by either strategically defending essential nodes or increasing
the network connectivity. Now, combining these two measures by constructing
2-connected networks with a strict subset of nodes being essential and thus de-
fended proves to be a possibly optimal strategy.

Before turning to the results we want to further elaborate on this central point
by presenting an easily accessible example.

Example 4.1. The set of possible equilibria of the defense game for n = 8
nodes and 2 units of attack are the empty network g∅, the CP-star gs, the fully
defended circle gc and the Harary graph of order 3 gh,3 (the wheel), together
with a bipartite network of group sizes 3 and 5, where the smaller group is
protected. All these networks are depicted in Figure 4.2.3.4

Instead of presenting all lengthy calculations to determine cost regions for each
network to be the equilibrium solution, we depict the solutions graphically in
Figure 4.2.4 for various values of π.5 The figures show that indeed there exist
cost ranges and values of π for each of the 5 networks to be the equilibrium
solution of the game. While g∗ is only a possible solution for low but posi-
tive success probability of attack π and low costs, trivially all networks with
defended nodes vanish as solutions when π gets large.

Let us now start the analysis of the game in case of ka = 2 by collecting some
first intuitive and easily provable facts.

4Dziubiński and Goyal (2013b) present a similar example, however for a total number of
nodes n = 6. The authors happen to miss the fact that for such a low number of nodes the
maximal bipartite network with group sizes 2 and 4, the smaller group being fully defended,
cannot be payoff-better than both the circle (Figure 4.2.3b) and the Harary graph of order 3
(Figure 4.2.3d).

5The corresponding calculations for the case of this example are of course available from
the author.
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(a) g∅ (b) gs (c) gc

(d) g∗ (e) gh,3

Figure 4.2.3: Possible networks in equilibrium of the imperfect node-defense game
for n = 8 nodes and attack budget ka = 2. Green colored nodes are protected.

Lemma 4.2.4.

Let the attack budget be ka = 2. The following statements hold true.

• The only possible non-connected network in an equilibrium of the defense
game is the undefended empty network g∅.

• The only possible 1-connected network in equilibrium is the CP-star gs.

• The only possible 3-connected network in equilibrium is the undefended
Harary graph of order 3, gh,3.6

All of these statements are the same or equivalent to those in the previous section
(Proposition 4.2.1), such that a proof can be omitted here.

So far, we have found nothing qualitatively different from the previous case,
as the networks that are equilibria in the boundary case of perfect defense are
necessarily part of the solution here. However, in the following we will show that
in the class of 2-connected networks there are more candidates to be found.

We now want to provide some intuition why we should expect more networks
to be possibly part of an equilibrium solution of the defense game. To this end,
notice that the expected payoff 1 − Π(g,D,A) of the CP-star for the Designer
is 1 − π, while for the Harary graph of order 3 it is 1, net of costs. Now, any

6It should be clear that this result does not only include the wheel network (4.2.3e). To
be precise, by gh,k we denote all undefended k-connected networks with ⌈kn/2⌉ links. For the
sake of simplicity we call these class of networks Harary graphs.
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Figure 4.2.4: Defended networks in equilibrium for all values of cl and cd, for
different values of π. Light grey area gh,3, dark grey area g∅, yellow area gs, green
area gc, red area g∗.

adequately protected 2-connected network will yield a payoff of 1 − π2, net of
costs. Clearly it is

1 ≥ 1− π2 ≥ 1− π ∀π ∈ [0, 1],

such that we can see that whenever we can find a 2-connected network with less
links than the Harary graph, there will be a cost level such that for low π this
network may be payoff-better in expected terms. On the other side, the network
may make use of more links and more defense than the CP-star, as it yields a
higher probability of successful defense.

In order to find these 2-connected networks, we first need to identify optimal
combinations of links and essential nodes. As link formation and units of defense
are costly, the Designer needs to make sure that for any number of defended
nodes, she uses the smallest possible number of links to create the network. In
the following, we will call a network minimal if there does not exist another
network with the same number of essential nodes and degree of connectedness
that has strictly less links.7

7Note that this definition is not the same as the non-existence of a non-critical link. It is easy
to construct a network where all links are critical, i.e. their deletion would diminish connectivity
of the network, but there exists a different network with the same degree of connectedness and
the same number of essential nodes, but less links.
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(a) n = 10, q = 6 (b) n = 9, q = 5 (c) n = 12, q = 5

(d) n = 8, q = 4 (e) n = 10, q = 3 (f) n = 7, q = 2

Figure 4.2.5: Minimal 2-connected networks for different n, q. Green colored
nodes are essential.

We will first present a lemma that essentially tells us that we have to distinguish
not 2 groups of nodes (essential and non-essential), but 3 groups of nodes. The
reason is that an essential node that is connected to non-essential nodes needs to
have more links than one that is not. We will also collect some properties of the
nodes in each group.

Lemma 4.2.5.

In minimal 2-connected networks with p essential nodes

• the q = n − p non-essential nodes have at least 2 links, both to essential
nodes.

• the pq ≤ p essential nodes that are connected to non-essential nodes have
at least 3 links.

• the remaining p− pq essential nodes have at least 2 links.

The proof is the special case ka = 2 of Lemma 4.2.9 in the following section.
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Notice that we have already established two lower bounds for the number of
links. First, any node has at least two links, yielding a lower bound of n links in
the network. Second, the first bullet point of Lemma 4.2.5 yields a lower bound
of 2q links. While for small q this latter lower bound may be lower than the
other one, in the subsequent proposition we will see that it will be tight for large
enough q. Notice that Figure 4.2.5 depicts networks for various combinations of
q, p and pq.

The following proposition will now state the minimum number of links necessary
to construct a 2-connected network for a given number of essential nodes. The
main idea will be to find the optimal number pq of essential nodes to have links
to non-essential nodes.

Proposition 4.2.6.

Let n ≥ 4. The minimum number of links in a 2-connected network with 2 ≤ q ≤
n− 2 non-essential nodes is

2q + [p− pq + 1]1{p>pq} + 1{p=pq , 3p>2q}, (4.2.1)

where the number of essential nodes connected to non-essential nodes pq is

pq = min

{

p,max

{

2,

⌊
2(q + 1)

3

⌋}}

. (4.2.2)

In the proof, we first show that (4.2.1) is a lower bound for such networks by
combining the ideas of Lemma 4.2.5, and then show that networks with these
specifications can indeed be constructed.

In Figure 4.2.6 the minimum numbers of links given by Proposition 4.2.6 are
shown for all possible numbers of essential nodes, for the cases of n = 15 and
n = 17 nodes in the network. What is left is to determine those networks within
this set of candidates who may indeed be chosen by the Designer in an equilibrium
of the defense game, for specific combinations of costs cl and cd, as well as attack
probability π. The following proposition will identify these networks by making
use of the linearity of costs. The idea of the proof can also be seen in Figure
4.2.6. By linearity of costs, and as all 2-connected networks yield the same payoff
of 1 − π2, net of costs, the possible defended networks in equilibrium are those
lying on the lower left side of the convex hull of all points given by Proposition
4.2.6 in the cost space.8 Before turning to the result, observe that we denote by

8Please be sure to understand that characterizations of minimal networks here leave room
not only for permutations of the set of nodes but also for all networks that have the same degree
of connectedness and contain the same number of links as well as of essential and non-essential
nodes. There are, for example, many ways to construct Harary graphs of higher orders.
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[x]t, 0 ≤ x ≤ t− 1, a residue class modulo t, that is the set of all integers z such
that z ≡ x (mod t).

Proposition 4.2.7.

Let n ≥ 7 and ka = 2. In an equilibrium of the imperfect node-defense game, the
Designer will choose one of the networks

Λ(n) =

{

{g∅, gh,3, gs, gc, g∗} if n ∈ [0]5 ∪ [3]5 ∪ [4]5

{g∅, gh,3, gs, gc, g∗, g̃} if n ∈ [1]5 ∪ [2]5,

where g∅ the undefended empty network, gh,3 the undefended Harary graph of
order 3, gs the CP-star, gc the completely defended circle, g∗ the minimal 2-
connected network for q∗ = ⌈(3n − 2)/5⌉, and g̃ a network such that p = p∗ + 2
and |g̃| = |g∗| − 1.

In Figure 4.2.6, for all numbers of essential nodes, the minimum number of nec-
essary links to construct the corresponding 2-connected network is given, and the
possible networks in equilibrium are identified, as given in Proposition 4.2.7. One
may understand already from this graphs that indeed all of the networks in the
set Λ(n) are possible equilibrium solutions of the defense game. However, Figure
4.2.7 then depicts the cost areas for which the different networks are optimal, for
specific success probabilities of attack π.

Note finally that in the definition of the game in Section 4.2 we did not allow
the Adversary to attack the same node twice instead of attacking two different
nodes. However, in case of ka = 2 we can now see that this would not change
the results qualitatively, as the only possibility would be to attack the CP-star
center node twice. However, as

(1− π)2 < 1− π2 ⇐⇒ π < 1,

the set Λ(n) of possible defended networks in equilibrium would not change in
this case.

Limit behavior

In Section 4.2.1 we saw that the only defended network, the CP-star, was not
part of the solution set if the number of nodes n was big enough, as compared
to the destruction probability π. We now argue that this result does not hold
anymore already in the present case of ka = 2. The main reason for this is that
the difference in links between the star and the unprotected Harary graph is now
growing in n. Precisely, we have

uD(g
s, {c}, {c}) = 1− π − (n− 1)cl − cd,

uD(g
h,3, ∅, A) = 1− ⌈3n

2
⌉cl,
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Figure 4.2.6: Possible 2-connected networks in equilibrium of the imperfect node-
defense game for n = 15, n = 17.
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and thus

uD(g
h,3, ∅, A) ≥ uD(g

s, c, c)

⇐⇒
[
⌈3n

2
⌉ − (n− 1)

]

︸ ︷︷ ︸
n→∞
−→

n
2
=∞

cl ≤ π + cd,

such that we see that here in the limit of n → ∞ only for zero link costs the
Harary graph of order 3 can be payoff-better than the CP-star.

Again, we can instead of uD alternatively consider a utility function where the
payoff grows with the number of nodes in the network. As in the previous Section,
consider a utility function ũD, where in case of a connected residual network the
payoff is

ũD(g,D,A) = n− cl|g| − cd|D|,
and consider again the payoff of gs and gh,3. One gets

ũD(g
h,3, ∅, A) ≥ ũD(g

s, {c}, {c})
⇐⇒

[
⌈3n

2
⌉ − (n− 1)

]
cl ≤ nπ + cd.

This yields that in the limit n → ∞ the Harary graph of order 3 is payoff-better
than the CP-star if and only if

1

2
cl ≤ π,

such that again the CP-star is a possible solution of the defense game for any
network size.

Having fully characterized the set of possible equilibria for an attack budget
of ka = 2, we now have an idea how to approach the problem for a general
attack budget. However, while the ideas will stay the same, there will arise some
problems forcing us to only partially characterize the solution in the general setup.

4.2.3 Attack Budget ka

We now want to accomplish an analysis similar to the previous section for a
general attack budget ka. The idea will be the same as before, such that we need
to characterize the minimum number of links needed to construct a ka-connected
network with a given number of p essential nodes. Observe, however, that we now
have to consider a lot more networks, as for any degree of connectedness k such
that 1 ≤ k < ka there may still be networks that are part of the solution. This fact
makes it impossible for us to completely characterize the set of possible equilibria
Λ(n), due to the multiplicity of possible network constructions.9 However, we

9Observe, for example, that for a degree of connectedness k such that 1 ≤ k < ka, struc-
turally different networks may well have different success probabilities of attack Π, e.g. Figures
4.2.3c and 4.2.3d for ka = 4.
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will show that some obvious candidates are part of the solution and we will
furthermore define a set of networks that we can show to include all ka-connected
networks that may be chosen in equilibrium of the imperfect node-defense game.
Before doing so, note that in this section we will assume that n > ka + 1, as
otherwise the construction of an Harary graph of order ka+1, an obvious solution
candidate, would not be possible.

We start again with a lemma that comprises some first and easily derivable results,
where we see that the obvious candidates, that is the empty network, the CP-star
and the Harary graph of order ka + 1 are again part of the solution.

Lemma 4.2.8.

Let the attack budget be ka ≥ 3. The following statements hold true.

• The only possible non-connected network to be chosen by the Designer in
equilibrium is the undefended empty network g∅.

• The only possible 1-connected network in equilibrium is the CP-star gs.

• The only possible (ka+1)-connected network in equilibrium is the undefended
Harary graph of order ka + 1, gh,ka+1.

Again we omit a proof, as it is structurally equivalent to the proof of Proposition
4.2.1 in Section 4.2.1.

Instead, we turn to characterize more possible equilibria of the defense game.
Intuitively it should be clear that in the general case we may get a more diverse
set of possible defended networks in equilibrium.

To assess this problem, we aim to partially characterize the set Λ(n, ka) of ka-
connected defended networks that may be chosen by the Designer in equilibrium.
Specifically, we will identify a set of networks Γ(n, ka) that we can show to in-
clude Λ(n, ka). The idea will be the same as in the previous section: we identify
the minimal ka-connected networks for any number of essential nodes and sub-
sequently identify those that may be a solution to the game by exploiting the
linearity of costs.

The following lemma, equivalently to Lemma 4.2.5, assesses the role of non-
essential nodes in a ka-connected network.

Lemma 4.2.9.

In minimal ka-connected networks with p essential nodes, the q = n − p non-
essential nodes have at least ka links, all of them to essential nodes. Thus, any
such network has at least kaq links.
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We now want to characterize all minimal ka-connected networks, for any given
number of essential nodes p. Remember first that the minimal ka-connected
network has ⌈kan/2⌉ links. We denote this network by gh,ka , the Harary graph
of order ka. It should be clear that in gh,ka all nodes are essential, such that
consequently all nodes need to be defended in an equilibrium of the defense
game.

Similar to the case of ka = 2 in Section 4.2.2, we can now deduce the number
of links necessary to construct a ka-connected network with exactly p essential
nodes. Remember that by Lemma 4.2.9 the q = n − p non-essential nodes all
have at least ka links, all of them to essential nodes, yielding a lower bound of kaq
links. Moreover, we know that any neighbor of a non-essential node has to have
at least ka+1 links. Thus the idea is, again similar to Section 4.2.2, to determine
the optimal number pq of essential nodes connected to non-essential nodes.
A remaining issue is the construction of the networks we find. The idea in the
previous section was to establish the number of links as a lower bound and subse-
quently provide a construction algorithm for a network of this degree of connect-
edness, number of essential nodes and number of links. In the general case here
we will also provide a construction algorithm for a network and argue that it is
a valid candidate. However, a proof for this conjecture is not provided. Notice
therefore that the following proposition only provides a lower bound on the num-
ber of links, while afterwards we will add the conjecture that this lower bound
is tight, along with the construction algorithm for the corresponding networks as
an argumentation in favor of this conjecture.

Proposition 4.2.10.

Let n be big enough, then a lower bound for the minimum number of links in a
ka-connected network with 1 ≤ q ≤ n− ka non-essential nodes is given by

G(pq) =







ka(q + 1) +
⌈
max{0,(ka+1)pq−ka(q+1)}+ka(p−pq−1)

2

⌉

if pq < p,

kaq +
⌈
max{0,(ka+1)pq−kaq}

2

⌉

if pq = p,

(4.2.3)

where pq = |Pq| and Pq ⊆ P is the set of neighbors of non-essential nodes, such
that

pq = min

{

p,max

{

ka,

⌈
ka(q + 1)− 1− 1{ka[p−(kaq−3)/(ka+1)] even}

ka + 1

⌉}}

. (4.2.4)

In the following it is argued that the lower bound given in Proposition 4.2.10
might be tight, meaning that there indeed exist networks of any given degree
of connectedness and number of essential nodes, that have exactly the number
of links given in (4.2.3) and (4.2.4) of Proposition 4.2.10. We formally give this
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statement in the following conjecture and will subsequently present a correspond-
ing construction algorithm.

Conjecture 4.2.11. G(pq) as given by (4.2.3) and (4.2.4) is the minimum num-
ber of links in a ka-connected network with 1 ≤ q ≤ n−ka non-essential nodes.

The idea is to construct such a ka-connected network with exactly G(pq) links.
Proposition 4.2.10 then guarantees that there cannot be a network with the given
characteristics and less links.

For an intuition of the following construction consider Figures 4.2.8 and 4.2.9,
where two accordingly constructed networks are depicted. Define the set of non-
essential nodes as Q = {n1, ..., nq}, their neighbors Pq = {c1, ..., cpq} and all other
essential nodes P\Pq as {cpq+1, ..., cp}. Consider now the following construction.
Let pq < q and pq = p. Then for i = 1, ..., p, the non-essential node ni is
connected to the essential nodes ci, ..., ci+ka−1 (mod p), while for i = p + 1, ..., q,
ni is connected to the ci−p, ci−p+⌈p/ka⌉, ..., ci−p+(ka−1)⌈p/ka⌉ (mod p). If q−p < ⌈ p

ka
⌉,

then connect the smallest ci with ka links to ci+⌈p/ka⌉ (mod p), until all essential
nodes have ka + 1 neighbors.

Let pq < q and pq < p. Again, for i = 1, ..., pq, ni is connected to ci, ..., ci+ka−1

(mod pq), while for i = pq + 1, ..., q, ni is connected to

ci−pq , ci−pq+⌈pq/ka⌉, ..., ci−pq+(ka−1)⌈pq/ka⌉ (mod pq).

Now, the nodes cpq+1, ..., cp form a Harary graph of order ka in the following
way. Consider the nodes cq−pq+1, cq−pq+1+⌈pq/ka⌉, ..., cq−pq+1+(ka−1)⌈pq/ka⌉ (mod pq)
as being one node c̃. Then cpq+1, ..., cp and c̃ form a Harary graph of order
ka, where each node in c̃ gets one connection. Finally, if one of the nodes in
cpq+1, ..., cp and c̃ has ka + 1 links and there exists a node in c1, ..., cpq having
only ka links, w.l.o.g. the node with ka + 1 links will be c̃, where the node with
smallest index in c1, ..., cpq having only ka links is added to c̃.
Finally, if still nodes in c1, ..., cpq have only ka links, then connect the smallest ci
with ka links to ci+⌈p/ka⌉ (mod pq), until all essential nodes have ka+1 neighbors.
In this construction, if cpq+1, ..., cp are less than ka nodes, the formation of a
Harary graph is not possible. This is the case as

⌈
ka(p− pq + 1)

2

⌉

>
(p− pq + 1)(p− pq)

2

⇐⇒ ka(p− pq + 1)

2
>

(p− pq + 1)(p− pq)

2
∨
[
ka = p− 1 ∧ kap odd

]

︸ ︷︷ ︸

contradiction

⇐⇒ ka(p− pq + 1)

2
>

(p− pq + 1)(p− pq)

2
.
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In this case, cpq+1, ..., cp form a completely connected subgraph and all of them
are additionally connected to ka − (p− pq − 1) nodes from

cq−pq+1, cq−pq+1+⌈pq/ka⌉, ..., cq−pq+1+(ka−1)⌈pq/ka⌉ (mod pq),

as well as those nodes in c1, ..., cpq having only ka links.

Finally, let pq ≥ q. Observe that for ka ≥ 3 this can only be the case if q ≤ ka,
as from (4.2.4) it follows that

pq = ka

⇐⇒
⌈
ka(q + 1)− 1− 1{ka[p−(kaq−3)/(ka+1)] even}

ka + 1

⌉

≤ ka,

and for q = ka + 1 it is

⌈
ka(ka + 2)− 1− 1{ka[p−(kaq−3)/(ka+1)] even}

ka + 1

⌉

=

⌈

ka +
ka − 1− 1{ka[p−(kaq−3)/(ka+1)] even}

ka + 1

⌉

ka>2
= ka + 1.

Having understood this, we deduce that q ≤ pq = ka, as any non-essential node
has to be connected to ka distinct essential nodes.
The construction in this case works as follows. All nodes in Q are connected to
all nodes in Pq, such that the ka nodes in Pq each have q links. Notice that these
nodes need at least one more link each.
Now, consider as before all nodes in Pq as one artificial node c̃. Then all nodes
in P\Pq together with c̃ form a Harary graph of order ka, where the ka links of
c̃ are divided such that every node gets one of the links. Finally, there might be
links missing in Pq. If every node misses one link, then add links in pairs. If they
lack more links, then add a Harary graph of this degree for all nodes in Pq.

Argumentation for Conjecture 4.2.11. Consider first a network constructed as a-
bove for the case where pq = q and ka = 3 (e.g., Figure 4.2.8). In the following
we will distinguish non-essential nodes Q between “outside” nodes n1, ..., npq , and
“inside” nodes nt, t > pq. This terminology is motivated by the above construc-
tion, see Figures 4.2.8 and 4.2.9.

We need to show that there exist three node-distinct paths between any two
nodes in the network, while not using one arbitrary non-essential node.
This can however be heavily simplified. We will instead show that there exist 1)
three different paths between any two nodes in Pq, 2) node-distinct paths from
any 3 nodes in Pq to any other 3 nodes in Pq, and 3) node-distinct paths from
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Figure 4.2.8: A 3-connected network of 18 nodes, where 8 are essential and 10 are
non-essential, while pq = p. There are 4 distinct paths between any two essential
nodes.
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Figure 4.2.9: A 3-connected network of 16 nodes, where 9 are essential and 7 are
non-essential, while pq = 6.
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any node in Pq to any 3 nodes in Pq. Moreover, in each of these cases we need to
be able to omit one arbitrary node in Q.

1) Take any two nodes in Pq, call them cs and ct. W.l.o.g. let s < t and call
cs+1, ..., ct−1 the right-hand side and ct+1, .., cs−1 the left-hand side (to follow the
terminology one might consider Figure 4.2.8 and, e.g., s = 2, t = 7). Observe
that 3 links leave cs to the outside, call them the left, middle and right link. The
middle link can leave to the right (node cs+1) or to the left (cs−1). Analogously,
3 links leave ct to the outside. Distinguish now the following cases.

• cs and ct are directly connected through an inside node. Then there are
additionally two paths left and one path right on the outside, or vice versa.

• There is an inside connection from cs to some node in Pq on the left-hand
side, and an inside connection from ct to some node on the right-hand
side. Leave cs with two paths to the right, one of which will hit the node
connected to ct via the inside. The other reaches ct via the right link. Leave
cs to the left and via the inside connection. Both paths will hit ct from the
left-hand side, one via the left, one via the middle link.

• There is an inside connection from cs to some node in Pq on the left-hand
side, and an inside connection from ct to some node on the left-hand side.
Leave cs with two paths to the right-hand side, hitting ct through the right
and the middle link. Leave cs to the left to encounter the node connected
to ct via the inside. Leave cs via the inside, and continue on the left-hand
side to hit ct via the left link.

In any case, there are 4 node-distinct paths, such that 3 paths remain whenever
one chooses to omit some non-essential node.

2) Take any node cs and any group (ct1 , ct2 , ct3), all within Pq. Again, one can find
node-distinct paths from cs to the three nodes (ct1 , ct2 , ct3), while it is possible
not to use one arbitrary non-essential node. If t1, t2, t3 ≤ pq, then the proof is as
in case (1) above, noticing that the three nodes lie on the circle of essential nodes
connected to non-essential nodes, such that there is a left, center and right node.
If, on the other hand, for some ti it is ti > pq, then exchange cti for either the
node cu such that u ≤ pq and cti and cu are connected, or if this node is also part
of (ct1 , ct2 , ct3), any other node c̃u that is not part of (ct1 , ct2 , ct3) and connected
to a node cr such that r > pq. Like this we again reduced the problem to be
similar to case (1).

3) Take any two groups (cs1 , cs2 , cs3) and (ct1 , ct2 , ct3) of nodes within Pq. Again,
the same arguments can be used to show that there exist node-distinct paths from
csi to cti , i = 1, 2, 3, with the possibility not to use one arbitrary non-essential
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node. The most difficult case is if (cs1 , cs2 , cs3) and (ct1 , ct2 , ct3) lie on two different
sides of the circle c1, .., cpq (if some s1, s2, s3, t1, t2, t3 > pq, the argument works
as in case (2) above). As in case (1) there are two node-distinct paths to the
left and two to the right on the outside, while one path may start via the inside.
Thus indeed all arguments work as in case (1).

Due to the symmetry of the construction the extension of the above to higher
degrees of connectedness is straightforward.

Finally, we want to use the result of Conjecture 4.2.11 to characterize the networks
Λ(n, ka) that can possibly be chosen in equilibrium of the defense game, in case
of an arbitrary attack budget ka ≥ 3. To this end we will define a set of networks
Γ(n, ka) that we can show to include Λ(n, ka). These networks will be those with
minimum number of essential nodes for any number of links m such that |gh,ka | <
m ≤ |g∗|. Here, g∗ will again be the network with the minimum number of non-
essential nodes such that p = pq. Formally, the conjecture is the following.10

Conjecture 4.2.12. For an attack budget ka ≥ 3, the set of ka-connected net-
works that may be chosen by the Designer in equilibrium of the imperfect
node-defense game is a subset of

Γ(n, ka) = {gmin
1 , gmin

2 , ..., g∗},

where g∗ is the minimal network with minimum number of non-essential nodes
such that p = pq, while gmin

l for 1 ≤ l < |g∗| − ⌈nka
2
⌉ is the network with

⌈nka
2
⌉ + l links and the minimum possible number of essential nodes, and all

essential nodes are defended.

In the appendix, a proof of Conjecture 4.2.12 is provided, given the correctness of
Conjecture 4.2.11. To understand the idea of Conjecture 4.2.12, consider Figures
4.2.10a and 4.2.10b. The networks that are possible equilibria of the game are
those with optimal combinations of essential nodes and number of links on the
flatter right part of the graphs. However, one can see that not all of these, and
not even g∗, are necessarily in Λ(n, ka).

10Notice that despite the inclusion of a proof the following result remains a conjecture, as
this proof relies on the validity of Conjecture 4.2.11.
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Figure 4.2.10: Minimal 5-connected networks for n = 25, n = 30. Possible equi-
libria in red circles. The vertical black line marks the largest number of essential
nodes such that pq = p, i.e. the number of essential nodes corresponding to g∗.
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4.3 Imperfect link defense

Let us now assume that the Adversary does not attack nodes but links, and
likewise the Designer may defend her constructed links instead of a subset of
nodes.

Formally, we alter the setting in the following way. In the first stage, still the
Designer constructs a network g ∈ G, where each link comes at a cost cl. Ad-
ditionally, she may now choose to defend a subset of links D ⊆ g. Each unit of
defense comes at a cost cd.

In the second stage, the Adversary, having again a fixed budget of attack ka,
chooses a subset A ⊆ g to attack, where obviously |A| = ka. Still we assume that
undefended links are destroyed with probability 1, while defended links are de-
stroyed with probability π ∈ (0, 1). Furthermore, letting X be the set of success-
fully deleted links, we still obtain the ex-post utility function of the Connectivity
Game

uD(g,D,A) =

{

1− cl|g| − cd|D| if g −X connected,

−cl|g| − cd|D| otherwise,

as well as the corresponding expected payoff

EuD(g,D,A) = 1− Π(g,D,A)− cl|g| − cd|D|,

where Π(g,D,A) denotes the probability that network g with defended links
D ⊆ g gets disconnected by attack A ⊆ g.

Finally, we still assume the game to be zero-sum, such that the ex-post utility to
the Adversary is

uA(g,D,A) = −uD(g,D,A).

Before turning to the results, let us shortly assess the differences between the
two cases of node destruction and link destruction. The first and most important
difference is the definition of the residual network. Remember that in the case
of node deletion the goal of the Designer was to retain connectedness of all non-
deleted nodes. Thus, e.g. the deletion of a leaf node in a tree would not alter
her utility, as all other nodes would still be connected. As opposed to that, in
the case of link destruction connectedness is to be retained for all nodes N , as
only links are being deleted. Deleting the only link of a leaf node in a tree would
make this node isolated and thus disconnect the network. Consequently, we may
expect that retaining connectedness in the case of link defense is more demanding
than in the case of node defense.
A second difference is more technically motivated. In the node-defense game we
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were concerned with essential nodes, i.e. nodes whose deletion did diminish the
degree of connectedness in the network. We then proposed a class of networks
that we could show to minimize the number of essential nodes for a given number
of links. While the idea stays the same, we now need to consider the counterpart
of essential nodes in the set of links. To this end, from now on we call a network
k-connected, if it cannot be disconnected by deletion of k − 1 links.11 Similarly,
we define a link to be k-critical, if deletion of this link diminishes the degree of
connectedness of the network from k to k − 1.12

4.3.1 Attack budget 1

Let us first assume an attack budget of ka = 1. The following proposition will
show that the corresponding set of optimal defended networks the Designer will
possibly choose in the imperfect link-defense game is much bigger, yet quite
similar to those in the case of node destruction.

Proposition 4.3.1.

Let the budget of attack be ka = 1. In an equilibrium of the imperfect link-
defense game, the Designer will choose either the undefended empty network, the
undefended circle, or a network in the class of completely defended trees.

The difference to the case of node defense (Proposition 4.2.1) is that here all fully
defended trees are in the solution set, while before only the centrally defended
star was part of the solution. Clearly, this difference is explained by the different
definition of the residual network: while in the case of node defense the Adver-
sary would not attack a leaf node, in case of link defense she indirectly may, by
attacking the only link of this node in order to isolate it from the rest of the
network. Thus, in the model of imperfect link-defense all links of a tree network
have to be protected and there are no payoff differences within the class of trees.

Figure 4.3.1 shows for which cost combinations which defended networks are
optimal, for various values of the destruction probability π.

Comparing Figure 4.3.1 with Figure 4.2.2 in Section 4.2.1, one can see that the
models of link destruction and node destruction are most similar for the case of
a budget of attack of ka = 1. Stretching the graph by the factor of n − 1 in the

11Note that this definition differs from the definition in Section 4.2. However, for the sake
of readability we will not alter the terminology here. For a further elaboration on node- and
link-connectedness see, e.g., Hoyer and De Jaegher (2010).

12This definition is widely used for the case of 1-connected networks, where deletion of a
critical link directly disconnects the network, i.e. reduces the degree of connectedness from one
to zero.
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Figure 4.3.1: Possible defended networks in equilibrium for π ∈ [0, 1/n]. As the
success probability of attack π increases, the triangle region, where all trees are
optimal defended networks, shrinks. For π > 1/n (black lines), no tree network
can be part of an equilibrium any more.

direction of defense costs, one even retains Figure 4.2.2 from Figure 4.3.1. That
also yields an intuition for the fact that similar to Lemma 4.2.2 and Corollary
4.2.3, we immediately get the following limit analysis.

Lemma 4.3.2.

For π > 1
n
, tree networks cannot be an equilibrium choice of the Designer in the

imperfect link-defense game.

The proof, being equivalent to the proof of Lemma 4.2.2, can be omitted. Observe
that Lemma 4.3.2 yields again that for any destruction probability π and large
enough network size n, no defended network can be part of an equilibrium.

4.3.2 Attack budget 2

Analogously to Section 4.2.2, we now turn to analyze the imperfect link-defense
game for an attack budget of ka = 2. In light of the above results it seems
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reasonable to expect structurally similar results to Proposition 4.2.7 in Section
4.2.2, while it is not clear how the different effects of link attack described before
influence the existence of potential equilibria in the class of (non-minimal) 2-
connected networks.

More specifically, it is straightforward to expect the empty network, the tree
networks, the circle network and the wheel network (i.e. the Harary graph of
order 3) to be part of the solution set. The most interesting question then is
whether 2-connected networks with strictly more than n and strictly less than
⌈3n

2
⌉ links may also constitute a solution of the game.

Before turning to the result let us shortly think about the type of networks that
might be such candidates. As we are now concerned with critical links rather than
essential nodes,13 it is obvious that the networks constructed in Section 4.2.2 are
not the candidates here anymore. For example, in Figure 4.2.3d (Section 4.2.2)
only three nodes are essential, however all eight links are critical. Instead, we
need to think about necessary features of a non-critical link. The key idea then
is that a non-critical link necessarily connects two nodes with at least ka +1 = 3
adjacent links. The construction of such networks is shown for the example of
n = 10 nodes and m = 13 links in Figure 4.3.2. There, nodes n1 to n6, the green
colored nodes, each have three adjacent links. Moreover, each link that connects
two of these green colored nodes is clearly non-critical: after deletion of one such
link there still exists a cycle containing all nodes.

The following proposition now presents the solution of the case of an attack
budget ka = 2. We see that in fact non-minimal 2-connected networks cannot be
optimal in terms of expected payoff and will thus never be chosen by the Designer
in an equilibrium of the link-defense game.

Proposition 4.3.3.

Let the attack budget be ka = 2. In an equilibrium of the imperfect link-defense
game, the Designer will choose either the undefended empty network g∅, a fully
defended tree network gtree, the fully defended cycle network gc, or the undefended
wheel network gh,3.

The idea of the proof for Proposition 4.3.3 is to first determine the maximum
number of non-critical links for each number of links larger than n, and then
show that the corresponding networks can never be payoff-better than both the
circle and the wheel, in expected terms.

13For the sake of readability we write critical instead of 2-critical. Observe, however, that
a critical link in a 2-connected network is a link whose deletion will deteriorate the degree of
connectedness and thus turn the network into a connected, but not 2-connected network.
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Figure 4.3.2: Network with n = 10 nodes and m = 13 links with an optimal
number of 8 non-critical links. Green nodes have 3 links, white nodes have 2
links. All links between green nodes are non-critical, as after deletion there still
exists a cycle over all nodes.

First of all, we see that again all tree networks are part of the solution set, while in
the case of node defense only the centrally protected star was part of the solution.
The reason for this, as in the previous section, is that in case of link defense the
number of nodes in the residual network is always n, while in the node-defense
case only non-deleted nodes need to be connected in the residual network (see
Proposition 4.2.7).

More interestingly, we do not find any 2-connected networks other than the mini-
mal one to be part of the solution set. While in the node-defense case (Proposition
4.2.7) we found “intermediate” 2-connected networks to be optimal for some cost
levels, in the link-defense case at hand we see that for linear costs it is not an
optimal strategy to add links to the network in order to save part of the defense
cost. This can also be seen from Figure 4.3.3 for the case of n = 10 nodes: net-
works with strictly more than n and strictly less than ⌈3n

2
⌉ links and minimal

number of critical links (see Figure 4.3.2) are located above the line connecting
the circle and the wheel, and can thus never be payoff-better than both of them,
in expected terms. Consequently, in an equilibrium of the imperfect link-defense
game with an attack budget of ka = 2, either no or all links are defended in an
optimal network.

Figure 4.3.4 finally presents the defended networks in equilibrium for all combi-
nations of linking and defense costs, for several success probabilities of attack.
While the solution in Proposition 4.3.3 is somewhat different from Proposition
4.2.7, one can clearly see strong similarities between Figure 4.3.4 and Figure 4.2.7.
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Figure 4.3.3: For n = 10 nodes, the graph depicts for all numbers of links m ∈
[n, ⌈3n

2
⌉] the networks with minimal number of critical links c. Only the cycle

and the wheel, corresponding to the minimal and maximal network in the graph,
can possibly be payoff-optimal for linear link- and defense costs.
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Figure 4.3.4: Defended networks in equilibrium for all values of cl and cd, for
different values of π. Light grey area gh,3, dark grey area g∅, yellow area gtree,
blue area gc.
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4.3.3 Attack budget ka

Similarly to Section 4.2.3, we now want to partially characterize the solution
of the link-defense game in case of a general attack budget ka. Precisely, we
determine all possible defended networks in equilibrium of the defense game with
degrees of connectedness 0, 1, ka and ka + 1. As opposed to the case of node
defense (and similar to the previous section), we will see in the following that
while for degree of connectedness 1 the whole class of tree networks yields an
equivalent expected payoff, for degrees of connectedness 0, ka, ka+1 there indeed
exists only one network in the solution set, respectively.14 Finally, note that
similarly to Section 4.2.3 we will assume that n > ka + 1.

We start again with the obvious candidates for degrees of connectedness 0 and 1.
The following Lemma is clearly similar to various results before. In particular,
for a proof refer to the respective part of Proposition 4.3.3.

Lemma 4.3.4.

Let ka ≥ 3. In an equilibrium of the imperfect link-defense game, the only possible
non-connected network to be chosen by the Designer is the undefended empty
network, while the uniquely possible 1-connected networks are the fully defended
trees.

We finally turn to ka-connected networks. The idea is the same as in the pre-
vious section, i.e. we aim to show that no non-minimal ka-connected network
can be better than both the Harary graphs of order ka and ka + 1, in terms of
expected payoff to the Designer. Consequently, the only equilibrium candidates
are precisely these two networks.

Proposition 4.3.5.

Let the attack budget of the Adversary be ka ≥ 3. The only possible ka-connected
defended networks to be chosen by the Designer in an equilibrium of the imperfect
link-defense game are the completely defended Harary graph of order ka and the
undefended Harary graph of order ka + 1.

Observe that the result of Proposition 4.3.5 is to some extend more convenient
than the corresponding results in the node-defense case. Not only could we
characterize the solutions in the set of ka-connected networks, we also showed
that this set is most simple. Independent of the number of nodes n and the
attack budget ka there are solely the two candidates that were to be expected,

14Keep however in mind that an Harary graph here refers also to a class of networks rather
than one specific network, as was already explained previously.
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such that additional networks with more than ⌈kan
2
⌉ links can be excluded.

Again, this difference may be explained with the slightly different aim of the
Designer to retain a network after attack where all nodes are connected, while in
the game of node defense only non-deleted nodes need to be connected. This more
demanding goal makes it more costly for the Designer to construct intermediate
networks in the sense that only parts of the links are critical.

4.4 Conclusion

We proposed a model of network design with imperfect defense. In the first
version, the Designer chooses a network for a given number of nodes and can
additionally choose to protect nodes against deletion, while protection is imper-
fect. Subsequently, the Adversary attacks a fixed number of nodes. The Designer
strives for retaining a connected residual network, while the Adversary tries to
disconnect the network.
In the second version, whilst choosing a network the Designer may choose to
imperfectly protect links instead of nodes against deletion, and accordingly the
Adversary attacks a fixed number of links.

In both versions of the model we fully characterized the set of possible equilibria of
the game, i.e. the possible defended networks to be constructed by the Designer,
for the Adversary’s attack budgets of one or two nodes or links, respectively. In
case of an attack budget of one (meaning that the Adversary chooses exactly one
link to attack) the possible equilibria of the imperfect node-defense game and the
imperfect link-defense game are structurally quite similar. The only difference
is that the centrally protected star in the node-defense game is replaced by the
class of fully defended tree networks in the link-defense game. This difference can
be explained by the necessity to retain the connection between all nodes in the
link-defense game, while in the node-defense game the deleted node does trivially
not need to be connected any more. Thus, precluding links from being critical
in the link-defense game appears to be more costly than precluding nodes from
being essential in the node-defense game. In fact, this difference carries over to
larger attack budgets.

However, for an attack budget of two nodes or links, we found more differences
between the solution sets. In particular, in the case of node defense the set of
possible equilibria contains 2-connected networks with only parts of the nodes
being protected, while in the case of link defense no network with partial defense
can be an equilibrium solution of the game. A possible explanation for this
is again the larger number of nodes that need to be connected in the residual
network of the link-defense game as opposed to the node-defense game.
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We finally presented a partial characterization of equilibria in the case of a general
attack budget ka ≥ 3. The main difference between node- and link defense is – as
in the previous cases of small attack budget – that in the node-defense game it
is possible to have defended networks in equilibrium that are ka-connected with
only parts of the nodes being protected, while in the link-defense game the only
possible ka-connected networks in equilibrium are the Harary graphs of order ka
and ka + 1.

As a technical contribution to the literature on graph theory we extended the
seminal result of Harary (1962), who showed that the k-connected network of n
nodes with minimal number of links has ⌈kn/2⌉ links. Similarly, we identified
the minimum number of links for a k-connected network with p essential nodes.

In general our results suggest that for the problem of optimal network design
not only the cost structure is an important variable for the decision, but also the
extent of the threat. If the connectivity of a (large) network shall be secured
against the threat of a single node- or link deletion, then sufficiently high connec-
tivity is likely to be the best choice. If, in turn, a threat of several simultaneous
attacks is given, then, depending on cost levels, it might be optimal to mix the
two defense mechanisms by choosing a network of non-maximal connectivity and
additionally defend nodes or links, respectively.

Regarding future research, it would be most interesting yet technically challenging
to analyze the game for different utility functions. The here proposed connectivity
game is undoubtedly a valid starting point for the analysis and already yielded
interesting insights. Nevertheless, one could think of other, presumably more
realistic utility functions, e.g. a utility function being additively separable in
components of the residual network and convex and increasing in component
sizes (see, e.g., Dziubiński and Goyal, 2013b).
Also, it is not clear so far if the combination of node- and link attack into one
game would yield different results. While some networks such as the Harary
graphs are solutions of both games, still some networks that were possible in an
equilibrium of the imperfect node-defense game would be very vulnerable to link
attack. It could thus be interesting to explore a game of simultaneous node- and
link defense.
Finally, the literature on network design proposes different rules of attack, such
as contagion of attack to connected and unprotected nodes. Applying these to
the game of imperfect defense would add to the understanding of the network
design game.



Appendix

4.A Appendix: Proofs

Proof of Proposition 4.2.1. Observe first that there cannot be any network g̃ in
equilibrium, with or without defended nodes, with m > n = |gc| links, as

uD(g̃, D,A) ≤ 1−mcl < 1− ncl = uD(g
c, ∅, A) ∀D,A ∈ N.

Second, by Harary (1962) we know that a 2-connected network needs to have at
least n links. Moreover, the circle gc is the unique 2-connected network with n
links: In any 2-connected network with n links each node has exactly 2 links.
Thus deleting one node results by definition in a 1-connected residual network
with n− 1 nodes and n− 2 links (a tree), and exactly two leafs, what necessarily
constitutes a line. Now, the only possibility to get a 2-connected network out of
a line by adding one node and 2 links is constructing a circle. We thus already
know that the unprotected circle gc is the only possible network with n or more
links to be chosen by the Designer in equilibrium.

Now, observe that any 1-connected network trivially has at least n − 1 links.
Further, it has to be protected in order to constitute an expected payoff higher
than 0 (the payoff of the empty network). It is clear that in any such tree the leafs
are non-essential nodes. As the CP-Star gs is only tree with a unique essential
node (i.e., a unique non-leaf node), the expected payoff of the CP-star is strictly
higher than of all other networks with n− 1 links.

Finally, it should be clear that no non-connected network can generate higher
payoff than the empty network g∅, as it would yield a negative expected utility
for the Designer. As all networks with strictly less than n − 1 links are non-
connected, we thus found the only three networks to be chosen as an equilibrium
strategy by the Designer to be the g∅, gs and gc.

The cost levels for which each of these networks are optimal choices for the
Designer result directly from the comparison of the her expected utility.

Proof of Lemma 4.2.2. The utility of the Designer from choosing the circle or the
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CP-star is

uD(g
c, ∅, A) = 1− ncl,

uD(g
s, {1}, {1}) = 1− π − (n− 1)cl − cd,

such that she would prefer the CP-star over the circle whenever

π + cd ≤ cl. (4.A.1)

If now π > 1
n
, inequality (4.A.1) yields cl >

1
n
, for any positive defense costs cd,

and consequently

uD(g
c, ∅, A) = 1− ncl < 0 = uD(g

∅, ∅, A),
uD(g

s, {1}, {1}) = 1− π − (n− 1)cl − cd < 0 = uD(g
∅, ∅, A),

such that the Designer will prefer to choose the unprotected empty network.

Proof of Proposition 4.2.6. Denote by P the set of essential nodes and Q the set
of non-essential nodes. Let finally Pq ⊆ P denote those nodes in P that are
connected to nodes in Q.

To establish (4.2.1) as a lower bound for the number of links needed to construct
a 2-connected network with q non-essential nodes, we observe that this is a special
case of the more general Proposition 4.2.10, for ka = 2. We may then see that
(4.2.3) collapses to (4.2.1), for q > 1: First, for pq < p we have

G(pq) = 2(q + 1) +

⌈
max{0, 3pq − 2(q + 1)}+ 2(p− pq − 1)

2

⌉

= 2q + p− pq + 1 +

⌈
max{0, 3pq − 2(q + 1)}

2

⌉

,

and it is

3pq > 2(q + 1)

⇐⇒ pq >
2(q + 1)

3
(4.2.2)⇐⇒ 2(q + 1)

3
< 2

⇐⇒ q < 2.

Second, for pq = p, it is

G(pq) = 2q +

⌈
max{0, 3pq − 2q}

2

⌉

,
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such that we only need to show that in this case it is 3pq = 3p ≤ 2q+2. Suppose
instead that

3p− 2q > 2

⇐⇒ p >
2(q + 1)

3
.

However, by (4.2.2) it is ⌊2(q+1)
3

⌋ ≥ p, a contradiction.

To understand that (4.2.4) in case of ka = 2 collapses to (4.2.2) observe first that

⌈
ka(q + 1)− 1− 1{ka[p−(kaq−3)/(ka+1)] even}

ka + 1

⌉

ka=2
=

⌈
2q + 1− 1{2[p−(2q−3)/3] even}

3

⌉

=

⌈
2q + 1− 1{q/3∈N}

3

⌉

=

⌈
2q + 1{q/3/∈N}

3

⌉

,

and then ⌈
2q + 1{q/3/∈N}

3

⌉

=

⌊
2(q + 1)

3

⌋

.

This already establishes the lower bound.

It is left to show that for each n, q a 2-connected network with links as in (4.2.1)
exists. Consider the following construction, depicted in Figures 4.2.5a - 4.2.5c.
Observe first that for p > pq the number of nodes in pq is ⌊2(q + 1)/3⌋, and thus
the Harary graph of order 3 for pq nodes has q + 1 links.
Connect each two nodes in Pq via at least one node in Q or a line of all nodes in
P\Pq. If Pq = P and 3p > 2q then one direct link must be added. Figures 4.2.5a
- 4.2.5c show examples of such minimal networks.
Finally, it is clear that this construction is only valid for Pq ≥ 4. However, for
smaller Pq the construction is straightforward, as is shown in Figures 4.2.5d -
4.2.5f.

Proof of Proposition 4.2.7. We need to show that the only possible 2-connected
networks to be chosen by the designer in equilibrium are the networks gc, g∗ and,
if n ∈ [1]5 ∪ [2]5, g̃, along with the only possible 3-connected network gh,3. The
proof is structured in five parts. Consider Figure 4.2.6 for intuition of each step
of the proof.

1. For any p < p∗, the minimal network cannot be payoff-better than both g∗ and
gh,3.
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Observe first that q∗ = ⌈(3n−2)/5⌉ is the minimal number of non-essential nodes
such that p∗q = p∗, as otherwise by (4.2.2) it would need to hold that

p∗q =

⌊
2(⌈3n−2

5
⌉+ 1)

3

⌋

< n−
⌈
3n− 2

5

⌉

= p∗

⇐⇒ n >

⌊
2(⌈3n−2

5
⌉)

3
+

2

3
+

⌈
3n− 2

5

⌉⌋

⇐⇒ n >

⌊
5

3

⌈
3n− 2

5

⌉

+
2

3

⌋

=

⌊
5

3

(
3

5
n− 2

5

)

+
2

3

⌋

= n,

what constitutes a contradiction. Equivalently, for q = q∗ − 1

pq =

⌊
2(⌈3n−2

5
⌉ − 1 + 1)

3

⌋

= n−
⌈
3n− 2

5

⌉

− 1 = p

⇐⇒ n =

⌊
5

3
⌈3n− 2

5
⌉ − 1

⌋

⇐⇒ n ≤
⌊
5

3
(
3n− 2

5
+ 1)− 1

⌋

=

⌊

n− 2

5

⌋

= n− 1,

what is again a contradiction.

Thus, in this network g∗ the number of links is 2q∗ + 1{3n>5q∗} by (4.2.1), and as
q∗ = ⌈(3n− 2)/5⌉ it is

3n > 5q∗ ⇐⇒ n ∈ [2]5 ∪ [4]5.

Moreover, we know that for any g such that q > q∗ it is |g| = 2q, by Proposition
4.2.6, as 3n < 5(q∗ + 1) ≤ 5q. For this network g to be an equilibrium solution,
it needs to hold that

|g|cl + pcd ≤ |g∗|cl + p∗cd (4.A.2)

|g|cl + pcd ≤
⌈
3n

2

⌉

cl + 0cd, (4.A.3)

in order to be payoff-better than both g∗ and the Harary graph of order 3. We
show that these two equations cannot both be satisfied for g such that q = q∗+1
and therefore |g| = 2(q∗ + 1). For all q̄ > q∗ + 1 the proof is then a direct
consequence. Equation (4.A.2) yields

2(q∗ + 1)cl + (p∗ − 1)cd ≤ (2q∗ + 1)cl + p∗cd

⇐⇒ cl ≤ cd, (4.A.4)

where we used that |g∗| ≤ 2q∗ + 1. On the other hand, Equation (4.A.3) yields

2(q∗ + 1)cl + (p∗ − 1)cd ≤
⌈
3n

2

⌉

cl

⇐⇒
(⌈

3n

2

⌉

− 2

⌈
3n− 2

5

⌉

− 2

)

cl ≥
(

n−
⌈
3n− 2

5

⌉

− 1

)

cd. (4.A.5)
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Now, for both (4.A.4) and (4.A.5) to be satisfied at the same time it needs to
hold that

(⌈
3n

2

⌉

− 2

⌈
3n− 2

5

⌉

− 2

)

≥
(

n−
⌈
3n− 2

5

⌉

− 1

)

⇐⇒
⌈
3n

2

⌉

− n ≥
⌈
3n− 2

5

⌉

+ 1,

however

1

2
n+ 1 ≥

⌈
3n

2

⌉

︸ ︷︷ ︸

≤
3n
2

+1

−n ≥
⌈
3n− 2

5

⌉

︸ ︷︷ ︸

≥
3n−2

5

+1 ≥ 3n− 2

5
+ 1

⇐⇒ 1

2
n ≥ 3n− 2

5
⇐⇒ n ≤ 4,

what is a contradiction to the assumption that n ≥ 7.

2. For n > p > p∗, the only possible networks to be chosen in equilibrium satisfy
n− p = 3r + 2 for some r ∈ N0.
For n > p > p∗, we already know that pq < p and thus the number of links in a
corresponding network g is by Proposition 4.2.6

2q + [p− pq + 1] ,

for pq defined as in (4.2.2). Comparing two minimal networks g and g̃ with q and
q + 1 non-essential nodes, it is

2(q + 1) + [p− 1− pq+1 + 1]− 2q − [p− pq + 1]

=1− (pq+1 − pq),

such that whenever pq+1 = pq+1 then g cannot be an optimally defended network
in equilibrium because for g̃ corresponding to q + 1 the network has the same
number of links while having one essential node less.
Observe now that for pq < p we know that pq = ⌊2(q + 1)/3⌋ by (4.2.2) and thus
the only possible defended networks in equilibrium satisfy q = 3r+2, for r ∈ N0,
as otherwise it is pq+1 = pq + 1.

3. For any of these networks, only the maximum (i.e. the one with maximal r)
is a possible choice in equilibrium. Denote this network by gr.
Take two networks gr−1 and gr, where 0 ≤ r − 1 < r and qr−1 = 2 + 3(r − 1),
qr = 2 + 3r. For gr−1 to be an optimally defended network in equilibrium, it
needs to be payoff-better than both gr and the completely defended circle, for
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some cost levels cl, cd:

(n− 2− 3(r − 1))cd + (n+ r)cl ≤ (n− 2− 3r)cd + (n+ r + 1)cl

(n− 2− 3(r − 1))cd + (n+ r)cl ≤ ncd + ncl

what translates to

3cd ≤ cl

(2 + 3(r − 1))cd ≥ rcl,

what cannot be both satisfied at the same time.

4. For n ∈ [3]5 ∪ [4]5, n − p∗ = 3(r + 1) + 2, thus gr cannot be an optimally
defended network in equilibrium by the arguments of step 3.
Let n ∈ [3]5 ∪ [4]5, then

q∗ =

⌈
3n− 2

5

⌉

=

⌈
3n

5

⌉

.

For n = 8, it is q∗ = 5 = 3 · 1 + 2, and for n = 8 + 5r, r ≥ 1 it is thus

q∗ =

⌈
3n

5

⌉

=

⌈
3 · 8 + 15r

5

⌉

= 3(r + 1) + 2.

For n = 9 + 5r the same argument yields the result.

5. For n ≡ 0 (mod 5), n − p∗ = 3r, while |g∗| = |gr|, thus gr cannot be an
optimally defended network in equilibrium, as g∗ will be cheaper for all positive
costs cd.
Let n ≡ 0 (mod 5), then

q∗ =

⌈
3n− 2

5

⌉

=
3n

5
,

and thus for n = 5r, r ≥ 1 it is q∗ = 3r.
Now, it is by (4.2.1)

|L(g∗)| = 2q∗,

as 3(5r − 3r) = 3 · 2r, and

|L(gr)| = 2(q∗ − 1) + 2 = 2q∗,

as in gr it is pq = p− 1.

Proof of Lemma 4.2.9. Trivially, any node in a ka-connected network has at least
ka links, as the deletion of all neighbors leaves a node isolated and thus disconnects
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a network.
Let now ḡ be a network such that P = {1, .., p} is the set of essential nodes and
Q = N\P the set of non-essential nodes. Suppose further that ḡ contains a link
between two nodes i, j ∈ Q. Then it is clear that ḡ−ij is again ka-connected with
the same set of essential nodes P . To see that note that by Menger’s Theorem
there are at least ka node-disjoint paths between any two nodes in ḡ, and as Q
is the set of non-essential nodes, there are also at least ka node-disjoint paths
between any two nodes in N\{i}, for any i ∈ Q. Then it is already clear that all
of these paths remain existing in ḡ − ij, leaving the connectivity and the set of
non-essential nodes unchanged.

Suppose now there are no links between non-essential nodes. As any node in a
ka-connected network has at least ka links, we know that there are kaq links from
non-essential to essential nodes, what yields the result.

Proof of Proposition 4.2.10. We will first show that G(pq) as defined in (4.2.3)
is a lower bound for a ka-connected network of q non-essential nodes with pq
neighbors, and then find the pq that minimizes G(pq). Thus, let first ka, q and pq
be given. By Lemma 4.2.9, it is clear that non-essential nodes have exactly ka
links. Further, there need to be at least ka links between the pq neighbors of non-
essential nodes and the remaining p− pq essential nodes, yielding kaq+ ka1{p>pq}

links. Moreover, the pq neighbors of non-essential nodes need to have at least
ka+1 links, while the remaining p−pq nodes need to have at least ka links, what
together yields (4.2.3).

To determine now the minimum number of links, we need to find the pq that
minimizes (4.2.3). We will see that it suffices to find the minimum pq such that
G(pq) ≤ G(pq + 1).

Define F (pq) to be equal to G(pq) − kaq when disregarding the ceiling function,
i.e.

F (pq) =

{

k + max{0,(ka+1)pq−ka(q+1)}+ka(p−pq−1)

2
if pq < p

max{0,(ka+1)pq−kaq}
2

if pq = p.

Then it is G(pq) ≤ G(pq + 1) whenever either F (pq) ≤ F (pq + 1) or F (pq) =
F (pq + 1) + 1

2
and

max{0, (ka + 1)pq − kaq − ka1{p>pq}}+ ka(p− pq − 1)1{p>pq} (4.A.6)

even.

Consider the first of these two cases. We need to distinguish between pq < p− 1
and pq = p− 1.
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• pq < p− 1. Then

F (pq) ≤ F (pq + 1)

⇐⇒ max{0, (ka + 1)pq − ka(q + 1)}+ ka(p− pq − 1)

≤ max{0, (ka + 1)(pq + 1)− ka(q + 1)}+ ka(p− pq − 2)

⇐⇒ max{0, (ka + 1)pq − ka(q + 1)}+ ka ≤ max{0, (ka + 1)pq − kaq + 1}

⇐⇒ pq ≥
ka(q + 1)− 1

ka + 1
.

• pq = p− 1. Then

F (pq) ≤ F (pq + 1)

⇐⇒ ka +max{0, (ka + 1)pq − ka(q + 1)}/2
≤ max{0, (ka + 1)(pq + 1)− kaq}/2

⇐⇒ 2ka +max{0, (ka + 1)pq − ka(q + 1)}
≤ max{0, (ka + 1)pq − kaq + ka + 1}/2

⇐⇒ pq ≥
ka(q + 1)− 1

ka + 1
.

We observe that the two boundaries coincide.

Consider instead the second case, such that F (pq) = F (pq + 1) + 1
2
and (4.A.6)

even. We again distinguish pq < p− 1 and pq = p− 1.

• pq < p− 1. Then

F (pq)− F (pq + 1) = 1
2

⇐⇒ [max{0, (ka + 1)pq − ka(q + 1)}+ ka(p− pq − 1)]/2

− [max{0, (ka + 1)pq − kaq + 1} − ka(p− pq − 2)]/2 = 1
2

⇐⇒ max{0, (ka + 1)pq − ka(q + 1)}+ ka

−max{0, (ka + 1)pq − kaq + 1} = 1

⇐⇒ max{0, (ka + 1)pq − kaq + 1}
−max{0, (ka + 1)pq − ka(q + 1)} = ka − 1

⇐⇒ pq =
ka(q + 1)− 2

ka + 1
.
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• pq = p− 1. Then

F (pq)− F (pq + 1) = 1
2

⇐⇒ ka +
[
max{0, (ka + 1)pq − ka(q + 1)}

−max{0, (ka + 1)pq − kaq + ka + 1}
]
/2 = 1

2

⇐⇒ max{0, (ka + 1)pq − kaq + ka + 1}
−max{0, (ka + 1)pq − ka(q + 1)} = 2ka − 1

⇐⇒ pq =
ka(q + 1)− 2

ka + 1
.

Notice again that the two boundaries coincide. Finally, we plug p̄q = ka(q+1)−2
ka+1

into (4.A.6) and notice that the maximum functions are zero, such that

max{0, (ka + 1)p̄q − kaq − ka1{p>p̄q}}+ ka(p− p̄q − 1)1{p>p̄q}

=ka

(

p− ka(q + 1)− 2

ka + 1
− 1

)

=ka

(

p− kaq − 3

ka + 1

)

, (4.A.7)

such that we know that the condition simplifies to (4.A.7) being even. Altogether,
we saw that G(pq) ≤ G(pq + 1) if

pq ≥
ka(q + 1)− 1− 1{ka(p− kaq−3

ka+1 ) even}

ka + 1
,

and thus (4.2.3) and (4.2.4) yield a lower bound for a ka-connected network with
p critical links.

Proof of Conjecture 4.2.12, given Conjecture 4.2.11. To follow the intuition of
the proof one may consider Figure 4.2.10. First of all, it is clear that no network
with more essential nodes than g∗ other than the gmin

l for 1 ≤ l < |g∗| − ⌈nka
2
⌉

can be an optimally defended network in equilibrium, as there always exists one
gmin
l with the same number of links and less essential nodes.

Analogously to Proposition 4.2.7 (part 1), we need to prove that no network with
less essential nodes than g∗ can be an equilibrium strategy for the Designer. Note
first that for these networks it is always

kaq ≥ (ka + 1)p, (4.A.8)

as p∗ is the largest p to satisfy p∗q = p∗. Let us therefore consider the largest p to
satisfy (4.A.8), that is let

p =

⌊
kan

2ka + 1

⌋

.
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The idea will be to calculate the slope of a line between the two points referring
to the network g with p essential nodes and the Harary graph of order ka + 1
(consider, e.g., Figure 4.2.10a). We know that g has ka(n−p) links, while gh,ka+1

has ⌈(ka + 1)n/2⌉ links. This yields a slope of

ka(n− ⌊ kan
2ka+1

⌋)− ⌈ (ka+1)n
2

⌉
⌊ kan
2ka+1

⌋

≥
kan− k2an

2ka+1
− (ka+1)n

2
− 1

kan
2ka+1

=
(4ka + 2)kan− 2k2

an− (2ka + 1)(ka + 1)n− (4ka + 2)

2kan

= − kan+ n+ 4ka + 2

2kan
.

Further, we know that in order to add one non-essential node at the expense of
one essential node if p̃ ≤ p one needs to add exactly ka links, yielding a slope of
−ka. On the other hand, the above slope is even larger than −1, as

kan+ n+ 4ka + 2

2kan
< 1

⇐⇒ kan+ n+ 4ka + 2 < 2kan

⇐⇒ n(ka − 1) > 4ka + 2

⇐⇒ n >
4ka + 2

ka − 1
> 4.

Noting finally that the slope between the points corresponding to p = p∗ − 1 and
p∗ is necessarily smaller than −1, we know that no network with p < p∗ essential
nodes will be chosen in equilibrium by the Designer, what yields the result.

Proof of Proposition 4.3.1. First of all, it is clear that the undefended empty
network dominates all other non-connected networks, as it yields less costs.

Second, we know from Proposition 4.2.1 that the circle is the smallest 2-connected
network. As a 2-connected network cannot be disconnected by deletion of one
link, the undefended circle strictly dominates all networks with (weakly) more
than n links.

Thus, it is left to consider connected networks with n− 1 links. It is known that
these networks are necessarily trees, such that there is a unique path between any
two nodes, and every link is critical, such that it’s deletion would disconnect the
network. Consequently, in a possible equilibrium where the Designer chooses a
tree network every link is necessarily defended. We thus know that any completely
defended tree yields an expected payoff to the Designer of

1− π − (n− 1)cl − (n− 1)cd,
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such that the Designer will be indifferent between all of these networks.

Take now the three different possibly optimal payoffs for the Designer and observe
that the circle is (in expected terms) payoff-better than the empty network if

1− ncl ≥ 0

⇐⇒ cl ≤
1

n
,

while the tree networks are payoff-better than the empty network if

1− π − (n− 1)cl − (n− 1)cd ≥ 0

⇐⇒ cl + cd ≤
1− π

n− 1
,

and finally the circle is payoff-better than the tree networks if

1− ncl ≥ 1− π − (n− 1)cl − (n− 1)cd

⇐⇒ cl ≤ π + (n− 1)cd.

Proof of Proposition 4.3.3. By the same arguments as before it is clear that the
non-defended empty network is the only possible non-connected network to be
chosen in equilibrium, while the non-defended wheel network, the Harary graph of
order 3, is the only possible network g to be chosen in equilibrium with |g| ≥ ⌈3n

2
⌉.

Further, by the arguments of Proposition 4.3.1, fully defended tree networks are
the only possible 1-connected defended networks to be chosen in equilibrium.

The cycle, the Harary graph of order 2, clearly needs to be fully defended, as
otherwise it would yield strictly less expected payoff than a tree network. Thus,
it is left to show that no 2-connected network with less than n critical links can
be an equilibrium solution.

Let there be m links, where n+ 1 < m < ⌈3n
2
⌉. What is the maximal number of

non-critical links possible? Any non-critical link must connect two nodes with at
least ka +1 = 3 links, while all nodes must have at least 2 links. Clearly, with m
links in total there can be at most 2(m− n) nodes with at least 3 links. Denote
this group of nodes by Q ⊂ N .

To follow the subsequent arguments, the reader may refer to the network depicted
in Figure 4.3.2. As only links between two nodes in Q can be non-critical, it is
optimal to have as many links as possible between nodes in Q. Further, this set
of nodes Q must be connected to all other nodes through at least 2 links. This
yields that there can be at most 3(m−n)− 1 non-critical links between nodes in
Q, while the rest of the links are critical.
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Clearly, the number of links sums to m, as

3(m− n)− 1
︸ ︷︷ ︸

links in Q

+n− 2(m− n)− 1
︸ ︷︷ ︸

links in N\Q

+2 = m.

Observe that the nodes in Q form a Harary subgraph of order 3, while the nodes
of N\Q form a Harary subgraph of order 2, what can also be seen from Figure
4.3.2 for the example of n = 10 nodes and m = 13 links.

Finally, notice that for the case of m = n + 1, only two nodes can have 3 links
and thus only this link can be non-critical, while n links remain critical.

To sum up, given |g| = m,n ≤ m ≤ ⌈3n
2
⌉, the maximal number of non-critical

links is

m−mc =







0 if m = n

1 if m = n+ 1

3(m− n)− 1 if n+ 1 < m < ⌈3n
2
⌉ − 1

m if m = ⌈3n
2
⌉,

and thus the number of critical links is

mc =







n if m = n

n if m = n+ 1

3n− 2m+ 1 if n+ 1 < m < ⌈3n
2
⌉ − 1

0 if m = ⌈3n
2
⌉.

It is left to prove that for the Designer it is ex-ante always payoff-better to choose
either the fully defended cycle of the non-defended wheel than to choose any of
the intermediate networks above. As the utility function yields linear costs, we
only have to show that in the space of critical links and total number of links,
the intermediate networks lie on the upper right side of the convex combination
of the cycle and the wheel. Consequently, for any cost combination cl, cd of links
and units of defense these networks yield a worse expected utility for the Designer
(see Figure 4.3.3).
For m = n+1 links this is trivial, as this network can never be payoff-better than
the cycle, having one more link and the same number of critical, thus defended
links. For any other network, we need to show that

mcl + (3n− 2m+ 1)cd ≤ ncl + ncd

⇒ mcl + (3n− 2m+ 1)cd >

⌈
3n

2

⌉

cl.

Observe that

mcl + (3n− 2m+ 1)cd ≤ ncl + ncd

⇐⇒ (m− n)cl ≤ (2m− 2n− 1)cd. (4.A.9)
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Suppose now it is also

mcl + (3n− 2m+ 1)cd ≤
⌈
3n

2

⌉

cl

⇐⇒
(⌈

3n

2

⌉

−m

)

cl ≥ (3n− 2m+ 1)cd. (4.A.10)

Clearly, both (4.A.9) and (4.A.10) can only be true at the same time if

⌈
3n
2

⌉
−m

3n− 2m+ 1
≥ m− n

2m− 2n− 1

⇐⇒
(⌈

3n

2

⌉

−m

)

(2m− 2n− 1) ≥ (m− n)(3n− 2m+ 1)

⇐⇒ 2
⌈
3n
2

⌉
m− 2

⌈
3n
2

⌉
n−

⌈
3n
2

⌉
− 2m2 + 2mn+m

≥ 3mn− 2m2 +m− 3n2 + 2mn− n

⇐⇒ 2
⌈
3n
2

⌉
m− 2

⌈
3n
2

⌉
n−

⌈
3n
2

⌉
≥ 3mn− 3n2 − n. (4.A.11)

Suppose now first that n is even, then (4.A.11) yields

2
3n

2
m− 2

3n

2
n− 3n

2
≥ 3mn− 3n2 − n

⇐⇒ 3nm− 3n2 − 3n

2
≥ 3mn− 3n2 − n

⇐⇒ 0 ≥ n,

what constitutes a contradiction. On the other hand, if n is odd, and thus
⌈3n

2
⌉ = 3n+1

2
, (4.A.11) yields

2
3n+ 1

2
m− 2

3n+ 1

2
n− ⌈3n

2
⌉ ≥ 3mn− 3n2 − n

⇐⇒ m− n− ⌈3n
2
⌉ ≥ −n

⇐⇒ m ≥ ⌈3n
2
⌉,

again constituting a contradiction, as the number of links must be smaller than
the number of links in the wheel network.

Proof of Proposition 4.3.5. Let m = |g|, P the set of nodes having exactly ka
links, Q = N\P , and p, q the respective cardinalities. Let further

h1 = |gh,ka | =
⌈
kan
2

⌉
, h2 = |gh,ka+1| =

⌈
(ka+1)n

2

⌉

.
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Similar to the proof of Proposition 4.3.3, the basic idea is to maximize for a given
m the number of links between nodes in Q, as these links are the only ones to be
possibly non-critical. To do so, we first maximize the cardinality q of the set Q.

Observe that all nodes need to have at least ka links. Further, in case of kan
being even, in the Harary graph gh,ka all nodes have exactly ka links, while in
case of kan odd exactly one node has ka + 1 links. Any additional link would
then yield the possibility of two more nodes having strictly more than ka links.
Thus, for a given m such that h1 < m < h2, the largest possible q is

q =

{

2(m− h1) if kan even,

2(m− h1) + 1 if kan odd.
(4.A.12)

It is clear that the set P cannot be empty for m < h2, such that for a network
to be ka-connected there need to be at least ka links between nodes in P and
nodes in Q. As these links are necessarily critical, we need to find the minimum
number of such links. We have to distinguish four different cases:

• Let ka and n be even.
We thus know by (4.A.12) that q is even and consequently p is even. More-
over, ka links between P and Q are sufficient, as summing up the adjacent
links of all nodes in P (each having exactly ka links) yields

pka = ka
︸︷︷︸

to Q

+(p− 1)ka
︸ ︷︷ ︸

within P

,

which are both even terms.

• Let ka be even and n odd.
Again by (4.A.12) the cardinality q of set Q is even, thus p is odd. Still, as
ka is even it is possible to connect P and Q with exactly ka links, as again
ka and (p− 1)ka are even terms.

• Let ka be odd and n even.
Here again by (4.A.12) q is even and consequently p is even. Now, however,

(p − 1)ka is odd such that one cannot connect the nodes in P via (p−1)ka
2

links and thus

pka = ka + 1
︸ ︷︷ ︸

to Q

+(p− 1)ka − 1
︸ ︷︷ ︸

within P

.

• Let finally ka and n be odd.
Now, by (4.A.12) q is odd and thus p is even. As before, (p− 1)ka is odd,
such that an additional link between P and Q is necessary.
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We thus know that ka links between P and Q are sufficient if and only if ka is
even, while otherwise ka + 1 links between the two sets of nodes are necessary.

We may now establish a lower bound for the number of critical links mc by
summing up the necessary number of links between the sets P and Q and the
necessary number of links within the set P :

mc ≥ ka + 1{ka odd} +
pka − ka − 1{ka odd}

2

= ka +
(p− 1)ka

2
+

1

2
1{ka odd}

= ka +

⌈
(p− 1)ka

2

⌉

,

where the latter equality holds as we know that p is even whenever ka is odd.
One can see that the number of critical links mc is weakly increasing in p, such
that it is indeed optimal to choose the smallest possible p and thus the largest
possible q in order to minimize mc.

It is left to show that the expected payoff of a network g as defined above cannot
be larger than of both Harary graphs gh,ka and gh,ka+1.

Remembering that h1 < m < h2, the expected payoff of g is bounded from above
by

EuD(g,D,A) ≤ 1− πka −mcl −mccd = 1− πka −mcl −
(

ka +

⌈
(p− 1)ka

2

⌉)

cd.

In order to simplify notation define now

ρ =

⌈
(p− 1)ka

2

⌉
(4.A.12)
=

⌈
(n− 2(m− h1)− 1− 1{kan odd})ka

2

⌉

.

A necessary condition for g to yield a higher expected payoff than the Harary
graph gh,ka is that

1− πka −mcl − (ka + ρ) cd ≥ 1− πka − h1cl − h1cd

⇐⇒ (m− h1)cl ≤ (h1 − ka − ρ)cd, (4.A.13)

for some cost level cl, cd.
Moreover, the necessary condition for g to yield a higher expected payoff than
the Harary graph gh,ka+1 is that

1− πka −mcl − (ka + ρ) cd ≥ 1− h2cl

⇐⇒ (h2 −m)cl ≥ (ka + ρ)cd + πka , (4.A.14)
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for some cost level cl, cd.

Then, for the existence of a cost level such that (4.A.13) and (4.A.14) hold si-
multaneously it is a necessary condition that

h1 − ka − ρ

m− h1

≥ ka + ρ

h2 −m

⇐⇒ h1h2 − kah2 − ρh2 −mh1 + kam+ ρm ≥ kam+ ρm− kah1 − ρh1

⇐⇒ mh1 ≤ h1h2 − (ka + ρ)(h2 − h1). (4.A.15)

However, in the following we will show that inequality (4.A.15) can never be
satisfied. To this end we will as before distinguish four cases:

• Let first ka and n be odd.
It follows that

ρ = h1 − ka(m− h1)− ka.

Further, observe that in this case

h1 − ka(h2 − h1) =
kan+ 1

2
− ka

(
(ka + 1)n

2
− kan+ 1

2

)

=
ka + 1

2
> 0.

Then, inequality (4.A.15) yields

mh1 ≤ h1h2 − (h1 − ka(m− h1))(h2 − h1)

⇐⇒ m(h1 − ka(h2 − h1)) ≤ h1(h1 − ka(h2 − h1))

⇐⇒ m ≤ h1,

what constitutes a contradiction.

• Let instead ka and n be even.
It follows that

ρ = h1 − ka(m− h1)−
ka
2
.

Further, it is now

h1 − ka(h2 − h1) =
kan

2
− ka

(
(ka + 1)n

2
− kan

2

)

= 0,

and thus from (4.A.15) it follows

mh1 ≤ h1h2 − (h1 − ka(m− h1) +
ka
2
)(h2 − h1)

⇐⇒ m(h1 − ka(h2 − h1)) ≤ h1(h1 − ka(h2 − h1))− ka
2
(h2 − h1)

⇐⇒ 0 ≥ ka
2
(h2 − h1),

what again is a contradiction, as ka ≥ 3 and h2 > h1.
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• Let now ka be odd and n be even.
In this case it is

ρ = h1 − ka(m− h1)−
ka − 1

2
.

Moreover, as before it is

h1 − ka(h2 − h1) =
kan

2
− ka

(
(ka + 1)n

2
− kan

2

)

= 0,

and thus from (4.A.15) it follows

mh1 ≤ h1h2 − (h1 − ka(m− h1)− ka−1
2

)(h2 − h1)

⇐⇒ m(h1 − ka(h2 − h1)) ≤ h1(h1 − ka(h2 − h1))− ka−1
2

(h2 − h1)

⇐⇒ 0 ≥ ka−1
2

(h2 − h1),

what as before is a contradiction, as ka ≥ 3 and h2 > h1.

• Let finally ka be even and n be odd.
Now it is

ρ = h1 − ka(m− h1)−
ka
2
,

and

h1 − ka(h2 − h1) =
kan

2
− ka

(
(ka + 1)n+ 1

2
− kan

2

)

= −ka
2
,

and thus from (4.A.15) it follows

mh1 ≤ h1h2 − (h1 − ka(m− h1)− ka
2
)(h2 − h1)

⇐⇒ m(h1 − ka(h2 − h1)) ≤ h1(h1 − ka(h2 − h1))− ka
2
(h2 − h1)

⇐⇒ mka
2
≥ h1

ka
2
+ ka

2
(h2 − h1)

⇐⇒ m ≥ h2,

what again is a contradiction.

We see that in none of the four cases (4.A.15) can be satisfied and thus the proof
is completed.
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