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Abstract 

In times of multi-resistant pathogenic bacteria, their detailed study is of utmost importance. 

Their comparative analysis can even aid the emerging field of personalized medicine by 

enabling optimized treatment depending on the presence of virulence factors and antibiotic 

resistances in the infection concerned. The weaknesses and functionality of these pathogenic 

bacteria can be investigated using modern computer science and novel sequencing 

technologies. One of these methods is the bioinformatics evaluation of high-throughput 

sequencing data.  

A pathogenic bacterium posing severe health care issues is the ubiquitous Pseudomonas 

aeruginosa. It is involved in a wide range of infections mainly affecting the pulmonary or 

urinary tract, open wounds and burns. The prevalence of chronic obstructive pulmonary 

disease cases with P. aeruginosa in Germany alone is ~600,000 per year. Within the 

framework of this dissertation, computational comparative genomics experiments were 

conducted with a panel of 20 of the most abundant Pseudomonas aeruginosa strains. 15 of 

these strains were isolated from clinical cases, while the remaining 5 were strains without a 

known infection history isolated from the environment. This division was chosen to enable 

direct comparison of the pathogenic potential of clinical and environmental strains and 

identification of their possible characteristic differences.  

When designing the bioinformatics experiments and searching for an efficient visualization 

and automatic analysis platform for read alignment (mapping) data, it became evident that no 

adequate solution was available that included all required functionalities. On these grounds, 

the decision was made to define two main subjects for this dissertation.  

Besides the P. aeruginosa pan genome analysis, a novel read mapping visualization and 

analysis software was developed and published in the journal Bioinformatics. This software - 

ReadXplorer - is partly based upon a prototype, which was developed during a preceding 

master's thesis at the Center for Biotechnology of the Bielefeld University under the name 

VAMP. The software was developed into a comprehensive user-friendly platform augmented 

with several newly developed and implemented automatic bioinformatics read mapping 

analyses. Two examples of these are the transcription start site detection and the single 

nucleotide polymorphism detection. Moreover, new intuitive visualizations were added to the 

existent ones and existing visualizations were greatly enhanced. ReadXplorer is designed to 

support not only DNA-seq data as accrued in the P. aeruginosa experiments, but also any 

kind of standard read mapping data as obtained from RNA-seq or ChIP-seq experiments. The 

data management was designed to comply with the latest performance and efficiency needs 

emerging from the large next generation sequencing data sets. Finally, ReadXplorer was 

empowered to deal with eukaryotic read mapping data as well. 

Amongst other software, ReadXplorer was then used to analyze different comparative 

genomics aspects of P. aeruginosa and to draw conclusions regarding the development of 

their pathogenicity. The list of conducted experiments includes phylogeny and gene set 

determination, analysis of regions of genomic plasticity and identification of single nucleotide 

polymorphisms. The achieved results were published in the journal Environmental Biology. 
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Chapter 1  
 

Introduction 

Pseudomonas aeruginosa is a ubiquitous, metabolically very versatile gram-negative 

gammaproteobacterium acting as an opportunistic pathogen. It colonizes plants as well as 

animals. In the latter, it can be encountered within the skin microbiome and thrives within 

wounds and in immunocompromised hosts. Such infections can cause life-threatening 

inflammation and sepsis. (Ramos, 2004-2010a, 2004-2010b) 

Additionally, more and more strains acquire resistances against multiple antibiotics, hindering 

successful healing. Hence, the Infectious Diseases Society of America declared P. aeruginosa 

as one of six "top-priority dangerous, drug-resistant microbes" (Talbot et al., 2006). In the 

latest threat report from the Centers for Disease Control and Prevention (2013), P. aeruginosa 

is also listed among the serious health concerns. Alone the prevalence of chronic obstructive 

pulmonary disease (COPD) cases with P. aeruginosa in Germany is ~600,000 per year. These 

facts explicitly show the relevance of researching genetic properties of P. aeruginosa to aid 

identification and development of medical cures. 

Present-day microbiology analysis methods allow to closely inspect the building blocks of 

bacteria like P. aeruginosa - their deoxyribonucleic acid (DNA). This is only possible due to 

the revolutionary discovery of the DNA molecule and its double-helix structure (Watson and 

Crick, 1953). In this context, the development of modern molecular biology and genome 

research was enabled by the groundbreaking invention of DNA sequencing (Sanger and 

Coulson, 1975), the deciphering of the DNA sequence of an organism under investigation. 

Since then new application areas have evolved and several new sequencing methods have 

been developed and largely improved. The output of the sequencing machines has been 

boosted to amounts allowing sequencing of complex eukaryotic genomes like a whole human 

genome in a single run. Simultaneously, the sequencing costs dropped by several orders of 

magnitude. Therefore, DNA sequencing is a key technique in molecular biology, evolutionary 

biology and microbiology. Its applications range from de novo whole genome sequencing, 

genome re-sequencing, transcriptome sequencing, metagenomics and amplicon sequencing to 

nucleotide modification assays.  

The latest developments in the field of DNA sequencing, making whole genome sequencing a 

routine task, enabled the still young research field of comparative genomics (Bachhawat, 

2006). This research field is concerned with differences and communalities of related 

organisms on the genome level. This relates to the gene content and gene products as well as 

the genome structure and single nucleotide exchanges, insertions and deletions. Generally, 

distantly related organisms are commonly compared to identify large scale genome 

rearrangements, while closely related organisms are often analyzed for smaller, but 

nonetheless important differences. The reach of comparative genomics goes as far as to aid 

successful treatment of diseases and personalized medicine. 
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Meanwhile more than 20,000 genome sequences are available in the National Center for 

Biotechnology Information (NCBI) genome database for comparative analyses and more and 

more research projects with the goal of large-scale elucidation of genomic relationships are 

launched (Grim et al., 2013; Liang et al., 2012). 

One of these projects is the P. aeruginosa pan genome project discussed in this dissertation. 

Applying the comparative genomics approach to prevalent innocuous and the most abundant 

pathogenic P. aeruginosa strains, posing the greatest threat among all P. aeruginosa strains, 

will reveal the influence of their genetic blueprint on their level of virulence. Herein, the 

inclusion of environmental strains allows an unbiased overview of the P. aeruginosa pan 

genome. 

To carry out the analyses required for a detailed pan genome study, several bioinformatical 

tools are needed. Bioinformatics is still a young research area. Thus, not all tasks are already 

solved optimally and several tasks are just emerging with new findings.  

Ready-to-use tools are already available for assembling the investigated genomes and whole 

genome comparison of their gene sets. For the analysis of small-scale sequence variations and 

the presence of accessory genomic islands and regions of genomic plasticity though, the 

manner of analysis can still be refined and simplified by an approach combining automatic 

analysis with intuitive visualizations. Both tasks can be covered by read mapping data 

analysis.  

Currently, most tools in this field either support visualization or automatic analysis of read 

mapping data. Additionally, the available analysis tools do not support the full range of 

analysis functions required for this study. To satisfy the need for an integrative intuitive and 

precise visualization and automatic analysis tool for read mapping data, a major part of this 

dissertation deals with the development of a tailored software solution with a broad scope of 

application. This tool is later applied to analyze the pan genome data. It offers established as 

well as novel tailored solutions for up-to-date bioinformatics approaches. 

1.1. Structure of the Dissertation 

An expanded overview for the key technologies and approaches mentioned earlier in this 

chapter is given in Chapter 2. It starts with an introduction to the history of sequencing 

technologies and continues with downstream analyses. In particular, sequencing data quality, 

genome assembly, large-scale comparative genomics and read mapping data analyses are 

covered by this chapter. The state-of-the-art of read mapping visualization tools is closely 

analyzed in Chapter 3. Chapter 4 presents the motivation and the goals of the dissertation in 

detail. The two chapters containing the main results are Chapter 5 and Chapter 6. Chapter 5 

explains the design, architecture and automatic analysis methods of the here developed read 

mapping visualization and analysis software ReadXplorer. Chapter 6 presents the pan genome 

analysis of P. aeruginosa. It starts with a detailed introduction to the current stand of the 

comparative genomics research of P. aeruginosa and continues with the establishment of the 

analysis workflow and the results generated by applying the developed workflow. Finally, 

Chapter 7 and Chapter 8 conclude the results of both main chapters and give a future 

perspective on enhancements of ReadXplorer and the comparative analysis of P. aeruginosa 

strains. 
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Chapter 2  
 

NGS and Comparative Genomics 

As mentioned in the previous chapter, the development of new high-throughput sequencing 

technologies in the past 15 years paved the way for the research field of comparative 

genomics. These sequencing technologies are described in Section 2.1. Section 2.2 is 

concerned with assessing the virtual DNA sequences ("reads") obtained from the sequencing 

machines. In Section 2.3, the major approaches for assembling genomic sequences from these 

reads are introduced. The next step on the path to gain insight into the functional parts of the 

DNA, the automatic genome annotation is described in Section 2.4. Nowadays, not only one, 

but dozens or more bacteria strains are sequenced in one experiment. These experiments aim 

at elucidating the evolutionary relationships and the shared genome content. The 

corresponding field of comparative genomics is introduced in Section 2.5. In Section 2.6, a 

second approach for handling sequencing reads is explained: mapping of the reads on 

reference sequences. This is done to enable downstream analyses, explicated in Sections 2.7 

and 2.8.  

2.1. Sequencing Technologies 

In this section, the development, functionality and field of application of the different 

sequencing technologies is elucidated. 

Determining the precise nucleotide sequence of an arbitrary DNA molecule is called DNA 

sequencing. It is a key technique in molecular biology, evolutionary biology and 

microbiology. On the one hand, it allows molecular biologists to identify functional regions of 

a previously unknown DNA molecule. Further, knowing the DNA sequence of an organism is 

inevitable for unravelling the molecular functions hidden in its genome. On the other hand, 

DNA sequencing can be used for large scale comparisons, e.g. of whole genome sequences or 

relevant genomic regions, in evolutionary biology and microbiology. 

The application range of DNA sequencing includes de novo (R. Li et al., 2010) and re-

sequencing of whole genomes, ribonucleic acid sequencing (RNA-seq) (Wang et al., 2009), 

full isoform sequencing (Sharon et al., 2013), amplicon sequencing (Thomas et al., 2006), 

metagenomics sequencing (Handelsman, 2004), metatranscriptomics sequencing (Simon and 

Daniel, 2011), TAG sequencing (Porter et al., 2006), large scale chromatin immuno-

precipitation sequencing (ChIP-Seq) (Johnson et al., 2007) and nucleotide modification 

assays including DNA methylation analysis (Bock et al., 2010; Flusberg et al., 2010). 

Whole genomes are generally not sequenced in one piece. They are rather fractionized into 

smaller fragments which serve as input for all sequencing methods. When RNA sequences are 

analyzed, the RNA is reversely transcribed into complementary DNA (cDNA) prior to 

sequencing. The process of assigning a nucleotide character to a sequencing signal is called 
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base calling. Not all signals show the same distinctiveness. Therefore, today the quality of a 

virtual nucleotide base obtained from sequencing is declared as PHRED quality score (Ewing 

and Green, 1998). The formula of the PHRED score Q is 𝑄 =  −10 log10 𝑃, where P is the 

error probability of the base call. Thus, this formula logarithmically relates the probability of 

a false base call to the corresponding PHRED score value. For clarification: 𝑄 =  20 serves as 

an often used default cut-off value and equates to a 99% accuracy of a correct base call. 

 

The first attempts to sequence DNA have been made in the mid 1970s by (Sanger et al., 1973; 

Sanger and Coulson, 1975; Maxam and Gilbert, 1977). Directly after its publication, Maxam-

Gilbert sequencing became more popular than Sanger sequencing (see Section 2.1.1), since it 

does not require cloning steps. Maxam-Gilbert sequencing utilizes different chemical 

treatments of copies of the same DNA template. Each of these chemicals introduces breaks at 

different points within the template. Size separation of each reaction in an electrophoresis 

then allows deducting the nucleotide sequence of the DNA template. Due to scalability 

problems and extensive use of hazardous chemicals, Maxam-Gilbert sequencing lost its 

market share to Sanger's "Sequencing with chain-terminating inhibitors", which soon became 

the de-facto gold standard for sequencing. Both Frederick Sanger and Walter Gilbert were 

awarded the Nobel Prize in Chemistry in 1980 for their major contributions to the field of 

DNA sequencing. 

 

Since the mid 1990s, second generation sequencing technologies were developed. Three 

technologies reached marketability between 2005 and 2007: 454 Life Sciences1 introduced 

"Pyrosequencing" in 2005 (see Section 2.1.2), Illumina2 introduced "Sequencing by 

synthesis" in 2006 (see Section 2.1.3) and Life Technologies3 introduced "Sequencing by 

oligonucleotide ligation and detection" (SOLiD) in 2007 (see Section 2.1.4). These 

technologies outperformed Moore's law (Moore, 1998) by a drastic decrease of sequencing 

costs especially in late 2007 and 2008 (see Figure 1). Moore's law mainly states that computer 

chip performance is expected to double every two years and thus costs of the same task 

decrease at the same rate.  

All three second generation technologies have constantly been improved in terms of output 

and cost effectiveness and are still present in the field of next generation sequencing (NGS) 

technologies. Between 2009 and 2011 three additional NGS technologies became 

commercially available. The first single molecule sequencing technology "Single molecule 

fluorescent sequencing" by Helicos BioSciences4 was introduced with the HeliScope system 

in 2009 (Bowers et al., 2009). It is based on a sequencing by synthesis approach utilizing so-

called "virtual terminator" nucleotides without the need for prior amplification of the template 

DNA. This technology was not successful at the market and Helicos BioSciences filed for 

chapter 11 bankruptcy in November 2012. Since Helicos sequencing is not available anymore 

and was not used during this dissertation, further details of this technology are omitted here. 

The other two technologies are "Single molecule real-time (SMRT) sequencing" by Pacific 

Biosciences5 introduced in 2011 (see Section 2.1.6), and "Semiconductor sequencing" by Life 

Technologies3 introduced in 2011 (see Section 2.1.5).  

 

                                                 
1 454 Life Sciences, a Roche company, Branford, CT, USA 
2 Illumina, Inc., San Diego, CA, USA 
3 Life Technologies Corporation, Carlsbad, CA, USA 
4 Helicos BioSciences Corporation, Cambridge, MA, USA 
5 Pacific Biosciences, Menlo Park, CA, USA 
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Figure 1: Development of sequencing costs per raw megabase (mb) of DNA sequence. Since late 2007 sequencing costs 

per raw megabase of DNA sequence as well as per genome dropped much faster than suggested by Moore's law 

(Wetterstrand, 2015). The development of the sequencing costs per human sized genome is shown in the inlet, which is the 

second figure from (Wetterstrand, 2015). 

Another novel sequencing technology is under development by Oxford Nanopore 

Technologies6 for almost two decades. Nanopore sequencing is based on the eponymous 

nanopore (Kasianowicz et al., 1996) and a voltage set across the nanopore containing 

membrane. Molecules, such as nucleotides, passing through the nanopore create a distinctive, 

measurable change in current. The technology is yet only available to a limited number of 

selected partners in their "Access Programme" and has not been used during the course of this 

dissertation. Therefore, it is excluded from further description here. 

 

Another trend that emerged in the last few years is the development of relatively cheap and 

small "benchtop" sequencers (e.g. Illumina MiSeq and Ion Torrent PGM). Their throughput is 

much smaller in comparison to their larger relatives, but they can be used in almost every 

laboratory, despite of the laboratory size, and still enable whole genome sequencing of several 

bacteria in one run. An overview of the different up-to-date sequencing machines and their 

costs is given in Table 1. 

 

An important approach common to all available sequencing technologies except SMRT 

sequencing is the sequencing of pairs of reads with different insert sizes. This technique was 

first introduced by (Roach et al., 1995). They generated a read pair by sequencing both ends 

of a clonal DNA template of known length. The distance between both fragment ends is 

called "insert size". Note that some programs alternatively define fragment length minus read 

length as insert size. In this work, the term read pair will be used throughout for all 

techniques involving pairs of reads. The most common techniques are paired end and mate 

pair sequencing.  

 

                                                 
6 Oxford Nanopore Technologies, Oxford, OX4 4GA, UK 
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Table 1: Comparison of sequencing platforms from (Glenn, 2011) updated in 2014. The table lists the currently available 

commercial sequencing technologies including a few upcoming technologies (marked by "fc" = "forecast"). Sequencing run 

time is less than a day for most technologies and the cheapest technology with the highest throughput is the Illumina HiSeq 

X. The abbreviation "rr" stands for "rapid run", "ho" denotes "high output", "PCR" denotes "polymerase chain reaction" and 

"gb" denotes "gigabase". Technologies from different companies are separated by a grey line. 

Instrument Amplification 
Run 

time 

Millions of 

Reads/run 
gb/run 

Bases 

/ read 

Reagent 

Cost/run 

Reagent 

Cost/gb 

Applied 

Biosystems 3730 

(capillary) 

PCR, cloning 2 hrs. 0.000096 0.000 650 $144 $2,307,692.31 

454 
       

GS Jr. Titanium emPCR 10 hrs. 0.1 0.050 400 $977 $19,540.00 

FLX Titanium emPCR 10 hrs. 1 0.400 400 $6,200 $15,500.00 

FLX+ emPCR 20 hrs. 1 0.650 650 $6,200 $9,538.46 

Illumina 
       

 GA IIx - v5 SE BridgePCR 2 days 640 23.040 36 $4,842 $210.16 

 GA IIx - v5 PE BridgePCR 14 days 640 184.320 288 $17,978 $97.54 

 MiSeq v2 Nano BridgePCR 17 hrs. 1 0.300 300 $530 $1,766.67 

 MiSeq v2 Nano BridgePCR 28 hrs. 1 0.500 500 $639 $1,278.00 

 MiSeq v2 Micro BridgePCR 19 hrs. 4 1.200 300 $798 $665.00 

 MiSeq v2 BridgePCR 5 hrs. 15 0.750 50 $747 $996.00 

 MiSeq v2 BridgePCR 24 hrs. 15 4.500 300 $958 $212.89 

 MiSeq v2 BridgePCR 39 hrs. 15 7.500 500 $1,066 $142.13 

 MiSeq v3 BridgePCR 20 hrs. 22 3.300 150 $824 $249.70 

 MiSeq v3 BridgePCR 55 hrs. 22 13.200 600 $1,442 $109.24 

 NextSeq 500 BridgePCR 15 hrs. 130 19.500 150 $975 $50.00 

 NextSeq 500 BridgePCR 26 hrs. 130 39.000 300 $1,560 $40.00 

 NextSeq 500 BridgePCR 11 hrs. 400 30.000 75 $1,300 $43.33 

 NextSeq 500 BridgePCR 18 hrs. 400 60.000 150 $2,500 $41.67 

 NextSeq 500 BridgePCR 30 hrs. 400 120.000 300 $4,000 $33.33 

 HiSeq 2500 rr BridgePCR 10 hrs. 300 15.000 50 $1,350 $90.00 

 HiSeq 2500 rr BridgePCR 27 hrs. 300 60.000 200 $3,126 $52.10 

 HiSeq 2500 rr BridgePCR 40 hrs. 300 90.000 300 $4,126 $45.84 

 HiSeq 2500 ho v3 BridgePCR 2 days 1500 75.000 50 $5,866 $78.21 

 HiSeq 2500 ho v3 BridgePCR 11 days 1500 300.000 200 $13,580 $45.27 

 HiSeq 2500 ho v4 BridgePCR 40 hrs. 2000 100.000 50 $5,866 $58.66 

 HiSeq 2500 ho v4 BridgePCR 6 days 2000 500.000 250 $14,950 $29.90 

 HiSeq X  

(2 flow cells) 
BridgePCR 3 days 6000 1,800.000 300 $12,750 $7.08 

Ion Torrent 
       

PGM 314 chip emPCR 2.3 hrs. 0.475 0.095 200 $349 $3,673.68 

PGM 314 chip emPCR 3.7 hrs. 0.475 0.190 400 $474 $2,494.74 

PGM 316 chip emPCR 3 hrs. 2.5 0.500 200 $549 $1,098.00 

PGM 316 chip emPCR 4.9 hrs. 2.5 1.000 400 $674 $674.00 

PGM 318 chip emPCR 4.4 hrs. 4.75 0.950 200 $749 $788.42 

PGM 318 chip emPCR 7.3 hrs. 4.75 1.900 400 $874 $460.00 

Proton I emPCR 4 hrs. 70 12.250 175 $1,000 $81.63 

Proton II (fc) emPCR 5 hrs. 280 49.000 175 $1,000 $20.41 

Proton III (fc) emPCR 6 hrs. 500 87.500 175 $1,000 $11.43 
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Life Technologies 

SOLiD – 5500xl 
emPCR 8 days 1410 155.100 110 $10,503 $67.72 

Pacific 

Biosciences RS II 
None - SMS 2 hrs. 0.03 0.090 3000 $100 $1,111.11 

Oxford Nanopore 
       

MinION (fc) None - SMS ≤6 hrs. 0.1 0.900 9000 $900 $1,000.00 

GridION 2000 (fc) None - SMS varies 4 40.000 10000 $1,500 $37.50 

GridION 8000 (fc) None - SMS varies 10 100.000 10000 $1,000 $10.00 

 

The main differences between both techniques are the different fragment size ranges (a few 

hundred nucleotides for paired end and several kilobases (kb) for mate pair sequencing), 

different library preparation protocols optimized for the respective fragment length and a 

different orientation of the paired reads. 

Paired end read orientation points inward of the fragment (The first read is from the forward 

strand and the second from the reverse strand), while mate pair read orientation points 

outward of the fragment (The first read is from the reverse strand and the second from the 

forward strand). A single read of a pair is referred to as mate throughout the dissertation. 

2.1.1. Sanger Sequencing 

"Sequencing with chain-terminating inhibitors", mostly called Sanger sequencing, was the 

first widely spread sequencing technique developed by (Sanger and Coulson, 1975). 

 

Initial Method 

After a first DNA sequencing approach (Sanger et al., 1973) involving a specific primer, 

radioactively labelled nucleotides and a ribosubstitution technique, Sanger and Coulson 

developed the more rapid and simpler Sanger sequencing method. This method became the 

de-facto gold standard for sequencing for more than three decades. 

The initial Sanger sequencing method uses a single stranded DNA (ssDNA) template, a DNA 

polymerase, a specific DNA primer, deoxy nucleosidetriphosphates (dNTPs) and 

radioactively or fluorescently labelled dideoxy NTPs (ddNTPs) to synthesize new DNA 

fragments of varying length complementary to the given ssDNA strand. The ddNTPs, also 

called chain-termination inhibitors, are the main component of this method, because the 

incorporation of a ddNTP terminates the DNA strand elongation due to a lack of the 3'-

hydroxyl(-OH) group. This hydroxyl group is essential for establishing a connection between 

sugar and phosphate of two neighbouring nucleotides. Four different DNA replication 

reactions are needed, each containing only one of the four ddNTPs. 
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At first, the primer is annealed to the template DNA in each of 

these reactions. Then the elongation is started by adding the 

DNA polymerase, all four types of dNTPs and one of the four 

ddNTPs. The newly synthesized DNA fragments differ in 

length, since the ddNTPs are only incorporated at each 

appropriate position by chance, competing with the 

corresponding dNTP. After several rounds of DNA extension, 

the resulting DNA fragments are separated by size in a 

denaturing polyacrylamide-urea gel-electrophoresis with one 

lane for each reaction. The bands of the DNA fragments are 

visualized by UV-light or autoradiography and show the 

sequential arrangement of chain-termination events. Ultimately, 

the DNA sequence can be composed of the relative positions of 

all bands among all four lanes by reading them against the 

electrophoresis direction (Figure 2). 

 

Enhancement: Automated Dye-Terminator Sequencing 

The initial method was enhanced by using fluorescent dye-

labelled ddNTPs and capillary electrophoresis for automation in 

a DNA sequencer.  

The use of fluorescent dye-labelled ddNTPs permits the addition 

of all four ddNTPs into a single sequencing reaction, since each 

ddNTP emits light at a different wavelength. The number of 

necessary reactions is thus reduced from four to one. The gel 

electrophoresis is replaced by the capillary electrophoresis, which separates the DNA 

fragments by their electrophoretic mobility. After primer elongation the DNA fragments are 

placed in a source vial connected to an anode. The negatively charged DNA molecules are 

then pulled through a capillary into the destination vial by electroosmotic flow of the used 

electrolyte buffer and separated by fragment size due to their electrophoretic mobility. A 

detector near the end of the capillary detects the fluorescence of the labelled ddNTPs as a 

function of time. This result is visualized as an electropherogram (Figure 3).  

 

High throughput capillary sequencing systems currently in use like the ABI3730xl can 

generate 2.1mb of sequence data per day with an average length of 900bp per sequence 

exceeding the QV20 value (PHRED score of 20, see Section 2.1).  

Until the second generation sequencing technologies emerged in 2005, the capillary 

electrophoresis was utilized for all genome sequencing projects including the Human Genome 

Project (Lander et al., 2001). 

 

Figure 2: Sequence ladder and 

electropherogram peaks. The same 

DNA sequence is shown as 

radioactive sequence ladder on the 

left, as fluorescent sequence ladder 

in the middle and as 

electropherogram peaks on the right. 

The reading direction of the 

sequenced fragment is from bottom 

to top. Source:  
commons.wikimedia.org/wi

ki/File:Radioactive_Fluo

rescent_Seq.jpg, accessed on 

05.01.2014 
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Figure 3: Automated Sanger sequencing steps. (1) List of the ingredients of the sequencing reaction. (2) Visualization of 

DNA fragments obtained during primer elongation. (3) The DNA fragments from (2) are used as input for a capillary 

electrophoresis, which separates the DNA fragments by electrophoretic mobility. (4) After laser induced detection of the used 

flourochromes, the wavelengths are translated into electropherograms and the DNA bases are called. Source: 

commons.wikimedia.org/wiki/File:Sanger-sequencing.svg, accessed on 05.01.2014 

2.1.2. Roche 454: Pyrosequencing 

In 2005 the first second generation sequencing technique reached marketability: The 

pyrosequencing method developed by 454 Life Sciences. It is based on a massive 

parallelization of the real-time sequencing technique developed by Ronaghi et al. (1996). The 

technique is based on emulsion PCR (emPCR) of DNA coated beads and pyrosequencing. 

Pyrosequencing utilizes a luciferase and sulfurylase reaction for light emission, which was 

first described in (Nyrén, 1987). 

In the first step, the template DNA is fragmented into sequences of appropriate length by 

nebulization (Sambrook and Russell, 2006). The target length depends on the selected 

sequencer and chemistry version. Specific adapters are ligated to the ends of the DNA 

fragments after the ends are blunted by polishing. Two different adapters are used, both 

consisting of a PCR amplification primer followed by a sequencing primer. One of them 

contains a 5'biotin tag (Figure 4, A). This tag is needed, to bind the ligated fragments to 

streptavidin-coated beads, since streptavidin has a very high affinity for binding biotin. Only 

fragments containing both adapters are kept and the non-biotinylated strand is released to get 

single stranded template DNA. Optimally, each fragment from the template library is then 

bound to its own primer-coated magnetic bead using the complementary adapters (Figure 4, 

B). These beads are encapsulated in droplets of a water-oil emulsion, trapping each bead in its 

own microreactor. Now the fragments are ready for clonal amplification by an emPCR, which 

creates millions of clonal copies of the distinct template DNA fragment on each bead (Figure 

4, C). After the emPCR, the DNA fragments bound to the bead surface are denatured to single 

stranded DNA.  
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Figure 4: 454 template preparation. (A) Two specific adapters, one including a biotin tag, are ligated to both ends of the 

double stranded DNA templates. (B) One DNA fragment is bound to one DNA capture bead utilizing the biotin tag. (C) Each 

bead is covered by millions of clonal copies of the same DNA fragment after the emPCR. Source: www.454.com, accessed 

on 05.01.2014 

 

Figure 5: 454 sequencing. (A) Deposition of DNA loaded beads onto the PicoTiterPlate (PTP) prior to sequencing. One 

bead fits into one well, creating a micro reaction chamber. (B) dNTPs are flowed across the PTP in cycles. On incorporation 

of a base, pyrophosphate is released and the sulfurylase-luciferase reaction generates a light signal utilizing luciferin. The 

signal is optically recorded by a CCD camera. (C) The flowgram of a sequencing read shows the intensity of each recorded 

light signal from one well on the PTP over time. The signals are proportional to the number of incorporated bases. Source: 

www.454.com, accessed on 05.01.2014 

Next, the actual sequencing steps are performed. Only DNA-covered beads are deposited into 

reaction wells of a so-called PicoTiterPlate (PTP) by centrifugation. The PTP contains 

millions of reaction wells. Their diameter is 44µm, which is adjusted to the average bead size, 

which is approximately 28µm. This ensures that only one bead is deposited in each reaction 

well (Figure 5, A). Before the pyrosequencing reaction starts, small, enzyme carrying beads 

are added to the reaction wells. They are loaded with the pyrosequencing enzymes luciferase 

and ATP sulfurylase. Additionally, the nucleotide-degrading apyrase and DNA polymerase 

are added. Sequencing is then carried out in cycles of fixed order of nucleotide addition. All 

dNTPs except dATP are added in separate cycles. dATP is not used, because it also is a 

substrate to luciferase. Instead, a-thio-dATP (dATPαS) is used, which is not a substrate for 

luciferase, but can be incorporated into a newly synthesized DNA strand. The time-lag 

between two cycles is chosen such that all remaining dNTPs of the previous cycle are 

completely degraded by the apyrase. Then, the next dNTP type is added and another 

sequencing strand elongation is triggered. Upon incorporation of a base, pyrophosphate (PPi) 

is released stoichiometrically from the incorporated dNTP(s). PPi is quantitatively converted 

to ATP in the presence of adenosine 5' phosphosulfate by the ATP sulfurylase. A detectable 

chemiluminescent light signal is then generated by the luciferase (Figure 5, B) which converts 

luciferin to oxyluciferin in the presence of ATP. The light emission is in amounts that are 

proportional to the amount of available ATP and detected by a CCD (charged-coupled device) 

camera. Therefore, the strength of a detected signal is proportional to the number of 

incorporated nucleotides (Figure 5, C). If more than 8 nucleotides are incorporated in a cycle, 

the proportionality of the light signal is not given anymore. Due to this fact, 454 

pyrosequencing is not suitable for sequencing of homopolymer regions (Margulies et al., 

2005). Since each bead is covered with clonal copies of the same DNA fragment, one 

sequencing read is generated per analyzed bead. 
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The introduction of pyrosequencing was a groundbreaking step to make the cost of whole 

genome sequencing affordable for many institutions and research projects. The main 

advantage of pyrosequencing is that it has the longest read length among all second 

generation sequencing techniques with currently 600-1000bp, almost reaching the read length 

of Sanger sequencing. Repetitive regions shorter than pyrosequencing reads can thus be 

spanned by this technology. Disadvantages of the technique are the lower throughput and 

higher costs per base in comparison to Illumina (see Section 2.1.3) and SOLiD (see Section 

2.1.4) sequencing technologies. Additionally, pyrosequencing had problems with sequencing 

of high GC-content DNA fragments due to self-annealing issues in the emPCR step until 

2011. The problem was overcome by addition of trehalose (Schwientek et al., 2011). 

2.1.3. Illumina (Solexa): Sequencing by Synthesis 

In 2006 the next second generation sequencing technique became available on the market: 

"Sequencing by synthesis" (SBS) (Bennett, 2004). The technique was initially developed by 

Solexa since 1998. In early 2007 Solexa was acquired by Illumina. The SBS technique is 

designed for massively parallel sequencing of short reads and based on the so-called 

reversible dye-terminator technology applied to DNA clusters on a glass surface. The release 

of this technique led to a rapid decrease of sequencing costs (see Figure 1). 

Most of the sequencing data generated and analyzed for this thesis was generated using the 

SBS sequencing technique. 

In order to use the SBS technology, at first the template DNA has to be fragmented by 

tagmentation (Adey et al., 2010), nebulization (Sambrook and Russell, 2006) or other suitable 

approaches. Specific adapters are ligated to both ends of the fragmented DNA (Figure 6, 1). 

The DNA double strands are then separated and immobilized on the surface of a glass flow 

cell. The flow cell surface is also coated with primers, which are complementary to the 

adapter sequences (Figure 6, 2). These primers allow the adapter-ligated fragments to form 

bridges with the complementary primer. This is the starting point of the so-called bridge 

amplification, which is divided into three steps:  

 

1. Both sides of each single stranded DNA fragment are fixed on the flow cell surface.  

2. The solid-phase PCR is started by addition of unlabeled nucleotides and an engineered 

DNA-polymerase (Figure 6, 3), synthesizing the second strand of each fragment 

(Figure 6, 4). 

3. The resulting double strands are denatured again (Figure 6, 5) and the next PCR cycle 

is initiated. 

 

This bridge amplification process creates dense clusters of both strands of the same DNA 

fragment (Figure 6, 6). Before sequencing, all reverse strand sequences are cleaved and 

washed away. 

The sequencing procedure takes place millions of times in parallel on a flow cell, once for 

every single DNA template in each cluster, and consists of one cycle for each base in the 

template. A sequencing cycle consists of the following steps:  

 

1. Primers complementary to the ligated adapters are hybridized to the remaining 

forward DNA strands, the templates of the sequencing reaction.  

2. An engineered DNA polymerase and fluorescently labelled reversible terminator bases 

(RT-bases) are added (Figure 7, 7). An RT-base is a 3'-O-azidomethyl-2'-

deoxynucleoside triphosphate, which acts as terminator of the DNA elongation 

(Bentley et al., 2008). Each of the four bases is additionally labelled with a different 
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removable fluorophore, emitting light at a distinct wavelength. The RT-bases 

guarantee, that the newly synthesized DNA strand of each template in each cluster is 

only elongated by one base in each sequencing cycle.  

3. The fluorophores are excited by a laser and an image is taken by a camera, which 

reveals the identity of the incorporated nucleotide for each cluster (Figure 7, 8).  

4. The fluorescent dye is chemically removed 

5. A new 3'-OH is added to the RT-bases to allow for the next base incorporation.  

 

The sequencing cycles are repeated until the predetermined read length is reached and the 

complete sequence of the bases of each cluster on the flow cell can be uncovered by the 

sequential images (Figure 7, 9-11). 

 

When the first Illumina sequencer, the Genome Analyzer, was released in 2006, the read 

length was very short with up to 35 bases due to the decreasing base quality in later 

sequencing cycles. The sequence information received from one flow cell after three days was 

1-2gb. During the next years, the enzymes, sequencing chemistry and software for the 

Illumina sequencers have been improved significantly. In 2013 the Illumina SBS technique is 

the state of the art sequencing technology for large sequencing projects. Currently, the HiSeq 

and Genome Analyzer IIx can generate sequencing reads up to 150bp length, while the 

benchtop sequencer MiSeq is capable of generating 300bp long reads with the latest reagent 

kit (V3). For production scale sequencing, the HiSeq X, only sold within the HiSeq X Ten 

package, has been developed with an output of 1.6 - 1.8tb per dual-flow cell, generating up to 

6 billion 150bp reads passing the quality filter in less than 3 days. For very high throughput 

sequencing the HiSeq 2500 offers an output of up to 1tb per dual-flow cell after 6 days, while 

the NextSeq 500 has a maximum output of up to 120gb per run after 29 hours and the 

benchtop sequencer MiSeq of up to 15gb per flow cell after 65 hours.  

 

Since the beginning in 2006, the most important advantage of the Illumina SBS technique is 

its versatility based upon the sheer amount of generated sequence data at a comparably low 

cost (see Table 1), especially in experiments where a detailed resolution is preferred over the 

read length. The application range of SBS is very broad. Besides the standard applications 

(see Section 2.1), it also enables DNA methylation assays (Bock et al., 2010).  

Disadvantages of the technique are problems with the assembly of repetitive regions which 

are longer than single reads and the need of powerful and automated data storage and 

management systems to handle the huge amount of generated sequence data. 
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Figure 6: Sequencing by synthesis steps 1-6. The figures describe the sample preparation and bridge amplification steps 

used in SBS. Source: seqanswers.com/forums/showthread.php?t=21, accessed on 05.01.2014 
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Figure 7: Sequencing by synthesis steps 7-12. The figures describe the Sequencing procedure of the SBS technique in 

detail. Source: seqanswers.com/forums/showthread.php?t=21, accessed on 05.01.2014. 
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2.1.4. SOLiD Sequencing 

Sequencing by Oligonucleotide Ligation and Detection (SOLiD) (Pandey et al., 2008) is the 

second short read NGS technique, which became commercially available approximately one 

year after SBS (see Section 2.1.3) in late 2007 (Liu et al., 2012). It is marketed by Life 

Technologies. In contrast to SBS, SOLiD is based on a sequencing by ligation approach 

involving fluorescently labelled di-base probes. Other distinct features of this technique are 

the two base encoding stored in colour space and the twofold sequencing of each template 

base, yielding a high sequence accuracy of 99.94%. 

 

As in all other techniques, at first the template DNA has to be fragmented. For SOLiD DNA 

shearing is recommended. At both ends of the fragmented template DNA a specific adapter is 

ligated. For mate-pairs a third adapter connects the first mate with the second to a single 

template. Next, an amplification step is carried out to amplify the template DNA fragments 

into larger clonal colonies. SOLiD first relied on the emPCR technique already mentioned in 

Section 2.1.2., but today the newest machine, the 5500 W Series Genetic Analyzer, adopts a 

more convenient isothermal PCR technique: The FlowChip itself is covered by a dense lawn 

of identical primers P1 and the template DNA is randomly immobilized on the FlowChip by 

hybridization to them. By utilizing a DNA polymerase with strand displacement and proof-

reading activity, a so called "template walking" is achieved: After elongation of the template 

strand, the original second strand is displaced to a surface-bound primer nearby. A 

complementary primer then allows finishing the second copy of the original template. These 

amplification steps are repeated until sufficient template DNA colonies have formed on the 

FlowChip.  

 

For ligation sequencing, ligase, a primer complementary to P1, and fluorescently labelled di-

base 8-mer probes are used (see Figure 8, a). Only the first two bases of the probes need to be 

complementary to the template in order to be ligated. Bases three to five are arbitrary, but also 

bind the template as degenerated bases. They are followed by a site for cleaving bases six to 

eight, which carry one of four possible fluorescent dyes. The four dyes representing all 

sixteen possible di-base pairings are chosen such that they can be decoded unambiguously 

(see Figure 8, b). In each sequencing round all probes compete for ligation. After 

incorporation of a suitable probe, the fluorescence is measured, the last three bases of the 

probe including the fluorophore are cleaved off, and unextended strands are capped. Thus, 

when starting sequencing at base n, bases n and n+1 have been uncovered in the current 

sequencing round. Since the degenerated three bases in between are not known yet, the next 

round reveals bases n+5 and n+6. Therefore, a primer reset is conducted after complete 

elongation of the ligated strand. In total four rounds of primer reset are performed for five 

different primers starting at five neighbouring positions (see Figure 8, a). This procedure 

ensures that in the end each base is covered and actually sequenced twice independently. 
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In the first years the read length was very short with 25-35bp, but the current 5500 W Series 

Genetic Analyzer is capable of producing 75bp single end and two times 50bp mate pair 

reads. This is still less than the other techniques, but the disadvantage is compensated by the 

high base accuracy. SOLiD covers the same application range than SBS (see Section 2.1.3), 

but facilitates very good single nucleotide polymorphism detection possibilities due to the 

high read quality assured by the internal read quality filter of the system. On the other hand, a 

high quality is essential for this technique, because if only one base in a SOLiD read has a 

sequencing error, the decoding of all following bases is corrupted. Another disadvantage is 

the problem of SOLiD to deal with palindromic sequences (Huang et al., 2012). 

Figure 8: SOLiD sequencing technique (Metzker, 2009). The figure describes the ligation sequencing process using two 

base encoding. 
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2.1.5. Ion Torrent 

The "Ion Torrent" sequencing technology offered by Life Technologies (Rothberg et al., 

2011) is another real-time sequencing by synthesis approach and an adaption of the 454 

pyrosequencing described in Section 2.1.2. It is based on a high density array of micro wells, 

acting as micro reactors, for single DNA templates. An ion sensitive layer and a proprietary 

ion-sensitive field-effect transistor (ISFET) sensor are located below each micro well. During 

incorporation of each DNA base in a newly synthesized strand an H+ ion is released and the 

ion sensor allows measuring this event (Figure 9). 

 

As already mentioned, this technology is based on 454 pyrosequencing. Therefore, the 

preparation of the template DNA is the same described in Section 2.1.2 and Ion Torrent 

sequencing also utilizes an emPCR with one template DNA fragment located on one bead to 

clonally amplify the fragment for sequencing. Afterwards, the loaded beads are flowed across 

a complementary metal-oxide-semiconductor (CMOS) chip (Figure 11) containing the micro 

reactors for the loaded beads with the ion sensitive layer and the ISFET sensor below (Figure 

10, a-c). The sequencing reagents including the DNA-polymerase are then added to the 

solution. 

 

The sequencing itself is carried out in cycles - one cycle for each of the four dNTP species. 

Whenever a complementary dNTP is incorporated to the leading unpaired base of the 

template strand, this process involves the formation of a hydrogen bond and the release of 

pyrophosphate and a positively charged hydrogen ion (Figure 9). Each H+ release changes the 

pH of the solution in the micro well. This triggers a voltage between substrate and oxide 

surfaces due to an ions sheath in the ISFET sensor. The strength of the voltage is proportional 

to the number of incorporated dNTPs. The electrical voltage signals of each micro reactor on 

the CMOS chip can directly be transmitted to and recorded by a computer without further 

conversion. The species of the incorporated nucleotide is set depending on the current 

sequencing cycle. After each cycle, a washing step has to be conducted in order to remove all 

free remaining dNTPs.  

 

 

Figure 9: Ion semiconductor sequencing procedure. Two H+ ions are released due to incorporation of two dTTPs. This 

event is directly recorded as an electrical signal, resulting in the corresponding peak in the lower part of the figure. Source: 

www.lifetechnologies.com, accessed on 05.01.2014. 
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The advantages of this sequencing technology are the simple sequencing chemistry, which 

does neither involve modified nucleotides, nor an enzymatic cascade, fluorescence or 

chemiluminescence. In addition, no optical signal measurement is necessary. Therefore, the 

time required for a sequencing run is short (2-7h, depending on machine and chip) and the 

costs of an Ion Torrent run are low (see Table 1). Here, the speed limiting factor is the cycling 

of substrate nucleotides through the CMOS chip and the throughput of one chip can be 

increased by further miniaturization of the chip components, which would allow for more 

micro reactors on one CMOS chip. 

 

A limitation of Ion Torrent sequencing is the correct sequencing of long homopolymer 

repeats. Like in 454 pyrosequencing, long homopolymer stretches create ambiguous signals. 

Currently, Life Technology offers two different sequencing systems. The Ion Personal 

Genome Machine (PGM) is designed for smaller scale sequencing with an output of 400,000 

up to 5.5 million reads, depending on the sequencing chip. The average read length is 200 

bases. The Ion Proton is designed for larger scale sequencing with an output of 60-80 million 

reads per run and a read length of up to 200 bases.  

 

Figure 11: (a) Fabricated CMOS 8´´ wafer containing approximately 200 individual functional ion sensor dies. (b) 

Unpackaged die, after automated dicing of wafer, with functional regions indicated. (c) Die in ceramic package wire bonded 

for electrical connection, shown with moulded fluidic lid to allow addition of sequencing reagents. Figure and description are 

adapted from (Rothberg et al., 2011). 

 

Figure 10: (a) Depicts a well in the CMOS chip, containing a DNA loaded bead, and the underlying ISFET sensor. When a 

dNTP is incorporated in the template DNA, an H+ ion is released and changes the pH (∆pH) of the solution in the well. This 

induces a change in surface potential of the metal-oxide-sensing layer, and a change in the potential (∆V) of the source 

terminal of the underlying field-effect transistor. (b) Electron micrograph showing the alignment of the wells over the ISFET 

metal sensor plate and the underlying electronic layers. (c) The sensors are arranged in a two-dimensional array. A row select 

register enables one row of sensors at a time, causing each sensor to drive its source voltage onto a column. A column select 

register selects one of the columns for output to external electronics. Figure and description are adapted from (Rothberg et 

al., 2011). 
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2.1.6. Pacific Biosciences: Real-Time Sequencing 

The second single molecule sequencing technology offered by Pacific Biosciences entered the 

market in 2011. "Single molecule real-time (SMRT) sequencing" (Eid et al., 2009) uses a 

nanoscale-optical approach utilizing so called zero-mode waveguides (ZMW) (Levene et al., 

2003; Foquet et al., 2008) to detect DNA strand elongation of a single DNA molecule by a 

single DNA polymerase using fluorescently labelled dNTPs. 

SMRT sequencing allows choosing between various DNA fragment sizes ranging from 500bp 

up to more than 20kb, depending on the application. For appropriate library fragmentation, a 

shearing approach for specific size selections is recommended. Afterwards, the fragment ends 

and other DNA damages have to be repaired using appropriate kits. Specific blunt-end hairpin 

adapters, called SMRTbells are ligated to both ends of the DNA fragments. The sequencing 

primers are complementary to the hairpin adapter (Figure 12, A). After primer annealing a 

single DNA polymerase is bound to one of the hairpins of each DNA fragment either by 

diffusion or proprietary magnetic beads. The prepared polymerase-template complexes are 

then loaded by diffusion or magnetic beads onto a silica slide of only a few nanometers in 

diameter containing the ZMWs - the SMRT cell (Figure 12, C). A ZMW is a tiny circular 

cavity of 70nm diameter, which is smaller than the approximately 390-700nm wavelength of 

visible light. Thus, the light of the laser in the sequencing machine, illuminating the SMRT 

cell from below, decays by entering the ZMW. Hereby, a nanophotonic confinement structure 

is created, which acts as confocal light microscope with an observation volume of ~20 

zeptoliters. Statistically, one polymerase-template complex enters a ZMW, but in some 

ZMWs more than one or none can be found. Due to the surface structure, the complexes only 

bind to the ZMW surface (Figure 13, A). Each species of dNTPs is phospholinked with a 

different fluorescent dye. Thus, all dNTP species can be added to the sequencing solution at 

once without cycling. 

 

 

Figure 12: SMRT sequencing template and SMRT cell. (A) A sequencing template consists of a double-stranded DNA 

fragment flanked by two hairpin loops. The hairpin loops present a single-stranded region to which a sequencing primer can 

bind (orange). (B) As a strand displacing polymerase (gray) extends a primer from one of the hairpin loops, it uses one strand 

as template strand and displaces the other. When the polymerase returns to the 5'-end of the primer, it begins strand 

displacement of the primer and continues to synthesize DNA (moving in the direction of the blue arrow). Therefore, the 

length of sequence obtained from these templates is not limited by the insert length. Furthermore, the resulting sequence is 

derived from both sense and anti-sense strands. (C) Shows a SMRT cell containing thousands of ZMWs. Figure (A), (B) and 

their description are adapted from (Travers et al., 2010), Figure (C) is taken from www.pacificbiosciences.com, 

accessed on 05.01.2014. 

The sequencing reaction is then started by injection of missing sequencing reagents such as 

metal ions. Whenever a matching nucleotide is incorporated during DNA synthesis, 

pyrophosphate is naturally released from the dNTP and thereby also the fluorescent dye 
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(Figure 13, B). The dye is excited by a laser and the fluorescence is detected for a few 

milliseconds - as long as the incorporation of a nucleotide takes and until it diffuses away 

from the confined illumination area of the laser. Only 30nm of the ZMW surface are 

illuminated due to the light decay. A prism dispersive element then records and discriminates 

the wavelength of the dye. A computer records the intensities of the fluorescent signals of 

incorporated bases over time and directly deduces the read sequence of the DNA molecule 

anchored in each ZMW (Figure 14). 

 

 
Figure 13: Principle of single-molecule real-time DNA sequencing. (A) Experimental geometry. A single molecule of 

DNA template-bound DNA polymerase is immobilized at the bottom of a ZMW, which is illuminated from below by laser 

light. The ZMW nanostructure provides excitation confinement in the zeptoliter (10−21 liter) regime, enabling detection of 

individual phospholinked nucleotide substrates against the bulk solution background as they are incorporated into the DNA 

strand by the polymerase. (B) Schematic event sequence of the phospholinked dNTP incorporation cycle, with a 

corresponding expected time trace of detected fluorescence intensity from the ZMW. (1) A phospholinked nucleotide forms a 

cognate association with the template in the polymerase active site, (2) causing an elevation of the fluorescence output on the 

corresponding color channel. (3) Phosphodiester bond formation liberates the dye-linker-pyrophosphate product, which 

diffuses out of the ZMW, thus ending the fluorescence pulse. (4) The polymerase translocates to the next position, and (5) the 

next cognate nucleotide binds the active site beginning the subsequent pulse. Figure and description are adapted from (Eid et 

al., 2009). 

 
Figure 14: Long read length activity of DNA polymerase. (A) A circular DNA template for continuous incorporation via 

strand-displacement DNA synthesis. (B) Time-resolved intensity spectrum of fluorescence emission from a single ZMW 

synthesizing alternating blocks of two phospholinked nucleotides (A555-dCTP and A647-dGTP), interspersed with the other 

two unmodified dNTPs. The corresponding total length of synthesized DNA is indicated by the top axis. The figure and 

description are adapted from (Eid et al., 2009). 

The sequencing machine currently offered by Pacific Biosciences is the PacBio RS II. One 

SMRT cell (Figure 12) has 150,000 ZMWs and 1-16 SMRT cells can be used per sequencing 

run. Typically ~50,000 reads can be generated per SMRT cell with an average read length of 

5.5-8.5kb, resulting in 275-375mb per SMRT cell and 4.4-6gb of sequence data per run. 

The application range of SMRT sequencing is very broad. It offers two different sequencing 

variants: either Continuous Long Reads (CLRs) or Circular Consensus Sequencing (CCS) 

reads. In CLR mode, the polymerase elongates the complementary strand of the template until 

it falls of the DNA. The result is a single-pass long read with an average read length of ~10kb 
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and a low single base accuracy of currently 82.1-84.4%. This mode e.g. allows scaffolding of 

longer repetitive regions in de novo sequencing projects. Optimally, other high quality short 

read data sets should be available to correct sequencing errors of the SMRT sequencing reads. 

In CCS mode, strand-displacement DNA synthesis is used to elongate the complementary 

strand of the template circularly due to the SMRTbell hairpin. In this mode, DNA templates 

with an average length of ~2kb can be sequenced multiple times in one reaction by the 

polymerase, walking along the template circularly. The base quality of the resulting read 

sequence is competitive to the other sequencing technologies and can be used in both whole 

genome de novo- and re-sequencing experiments. Additionally, SMRT sequencing can be 

used to detect over 25 base modifications including DNA methylation by measuring the 

kinetics of base incorporation (Flusberg et al., 2010). The long reads of SMRT sequencing 

also enable full isoform sequencing (Sharon et al., 2013). In 2013, a partnership between 

Pacific Biosciences and Roche Diagnostics has been announced to develop in vitro 
diagnostics relying on SMRT sequencing. 

2.2. Assessing Sequencing Read Quality 

Assessing the consistency of sequencing libraries and performing quality control are crucial 

steps prior to downstream analyses (Del Fabbro et al., 2013). This task embraces trimming 

reads by base quality (see Figure 15, left) and identification and removal of vector, adapter, 

tag and primer sequences. Inconsistencies can arise e.g. when the data shows an unexpected 

GC-content distribution not fitting the analyzed organism or vastly varying at certain read 

positions (see Figure 15, right).  
 

 
A low GC-content bias can indicate that only genomic regions up to a certain GC-content 

could be sequenced. Low base quality reads are prone to false base calls. They disturb 

genome assembly by preventing overlaps between biologically overlapping reads with many 

mismatches and render mapping impossible due to their discrepancies to the reference. For 

analyzing and dealing with these issues, several tools have been developed and are freely 

available. Del Fabbro et al. (2013) compared 8 of them in their publication. Instead of 

recommending a single read trimming tool, they rather advise researchers to make a decision 

 
Figure 15: Quality control of sequencing reads. These two figures demonstrate the importance of quality control with the 

help of FastQC (Andrews, 2010). In the analyzed Illumina (see Section 2.1.3) raw read data set, the second half of many 

reads is hallmarked by low base quality values (histogram on the left), indicated by the red area in the lower part of the 

histogram. The second issue with the presented data set is the position specific discrepancy of the base content of the reads 

(line chart on the right). If reads are uniformly sampled from the whole genome, the data set should feature a steady base 

content in accordance with the expected GC-content of the analyzed organism.  
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depending on their individual data set quality, biological research question and their 

parameter choice including the requested trade-off between data set size and read quality. 

 

In the following, an overview of these and additional trimming tools and their main features is 

presented: 

 

 FastQC (Andrews, 2010) is not a trimming tool, but rather a quality control tool 

giving insight into sequencing data sets implemented in Java. FastQC shows various 

statistics and properties of the analyzed data set, e.g. per base sequence quality, per 

sequence GC content, overrepresented sequences and k-mer content. 

 Trimmomatic (Lohse et al., 2012) is a Java tool for trimming reads by base quality 

and removing adapter sequences. Trimmomatic offers different trimming options and 

allows converting read base qualities. 

 cutadapt (Martin, 2011) is a tool for removing adapter sequences and trimming read 

sequences on the basis of the BWA trimming algorithm (Li and Durbin, 2009). 

Cutadapt is implemented in Python and C. 

 btrim (Kong, 2011) is a tool for both, removing adapter sequences and trimming low 

quality regions from reads written in C. 

 SeqTrim (Falgueras et al., 2010) is a whole pipeline for processing sequencing data 

sets and implemented in Perl. Like most of the other tools, SeqTrim can trim low 

quality regions and adapter sequences. Additionally, it can detect and remove or mask 

low complexity, contaminant and chimeric regions from reads. 

 PRINSEQ (Schmieder and Edwards, 2011) is a comprehensive read trimming tool 

implemented in Perl, which includes around 30 different options for adapter and 

quality trimming. Among them e.g. removal of polyA or polyT stretches and 

independent quality thresholds for left and right read ends. Additionally, it returns 

output statistics. 

 SolexaQA (Cox et al., 2010) is a quality control and read trimming tool implemented 

in Perl, producing visual output of read quality statistics. Besides their own trimming 

algorithm, the BWA trimming algorithm (Li and Durbin, 2009) can be used. 

 TagCleaner (Schmieder et al., 2010) is a tool for detection and removal of adapter 

sequences implemented in Perl. The adapter sequences can be unknown and are then 

estimated by the software.  

 ConDeTri (Smeds and Künstner, 2011) is a 3' end read quality trimming tool for 

Illumina sequencing data implemented in Perl. 

 ERNE-FILTER (Vezzi et al., 2012) is a read quality trimming tool implemented in 

C++ and shipped within the Extended Randomized Numerical alignEr (ERNE) 

package. Contaminant sequences are identified and removed by mapping on a set of 

contamination reference sequences. 

 FASTX-Toolkit (Gordon, 2009) is a collection of multiple C++ tools including read 

quality trimming applying a sliding window approach, trimming reads to a fixed 

length, adapter and contaminant sequences removal. 



Rolf Hilker NGS and Comparative Genomics 

 

 

23 

 Sickle (Joshi, 2011) is a read quality trimming tool relying on a sliding window 

approach, implemented in C. 

 Conveyor (Linke et al., 2011) is a general bioinformatics workflow engine. One of the 

available workflows performs trimming of single or read pair data by PHRED quality. 

The implemented approach takes the length of a low quality stretch as input along with 

a PHRED quality value and trims the read ends when a low quality stretch is 

encountered satisfying both parameters. 

In conclusion, FastQC is the perfect starting point for read quality assessment. It provides a 

first insight into the data set quality and reveals possible contaminations and problems with 

the data. On this basis, a tool of choice can be applied to trim the reads. For many cases, the 

FASTX-Toolkit or cutadapt are suitable solutions because they offer a wide range of 

trimming options and contaminant removal. For trimming reads by base quality, the Conveyor 

trimming workflow is a reasonable choice. A clear advantage is the configuration of the low 

quality stretch. Thereby not each single low quality base leads to a loss of the following bases 

if their quality is above the configured PHRED quality threshold. 

2.3. Assembling Genomes 

As already mentioned in Section 2.1, all sequencing technologies require fractionation of 

large DNA sequences, such as whole eukaryotic chromosomes or complete circular bacterial 

genomes. After sequencing, the main goal is to reconstruct the original contiguous input 

sequence from a data set of short sequencing reads. This process is called "sequence 

assembly". 

 

A DNA sequence is assembled by comparing all sequencing reads of the data set with one 

another and identifying overlaps in order to form contiguous sequences (contigs). Further 

information about the contig ordering can be obtained by utilizing scaffolding information 

from read pairs as introduced by Roach et al. (1995) (see Section 2.1).  

After contig formation, the read pair information can be used to order adjacent contigs and 

estimate the gap between them. Two contigs can be considered as adjacent if one read of the 

same pair is located in each of the contigs. Most assemblers fill remaining gaps by a number 

of 'N's, estimated by the known insert size. The resulting sequences of merged contigs are 

called scaffolds and this process is called scaffolding. If the read pair information alone fails 

to establish the correct ordering of all contigs and as verification of scaffolding, a 

computational alignment to an available reference genome (see Section 2.3.3) and an optical 

map (Zhou et al., 2007) of globally ordered restriction site locations can be used as genome 

wide scaffold. Integration of an additional SMRT sequencing data set can also drastically 

reduce the number of gaps in the assembly (English et al., 2012). 

 

Besides genome assembly, modern RNA-seq technology (Wang et al., 2009) also enables 

transcriptome assembly (Lu et al., 2013). It is important to note that transcriptome assembly 

captures the transcript presence and levels at a single time point in the investigated tissue or 

cell under given environmental conditions. Thus, the complete transcriptome of an organism 

cannot be recovered from a single RNA-seq run as at least some genes will not be expressed 

at the current development stage and environmental conditions. Two different approaches can 

be applied: De novo or reference based transcript assembly. For further reading on this topic 

and transcriptome assembly software, Lu et al. (2013) is recommended. 
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Figure 16: Schematic representation of genome (left) and prokaryotic transcriptome assembly (right). At first the DNA 

or RNA is extracted, fractionated and sequenced. The sequencing reads (red) represent small, unsorted pieces of DNA 

(RNA). During the assembly process, overlapping reads are merged into contigs or scaffolds. For finishing genomes, a gap 

closure (green) and polishing phase has to be conducted. The result is a textual representation of the genome or prokaryotic 

transcriptome under investigation (bottom line). A finished and complete prokaryotic transcriptome consists of as many 

sequences, as genes in that genome and does not contain any non-transcribed sequences. 

 

Even though dozens of tools exist for solving the task of sequence assembly (see Section 

2.3.1), it still poses a very complicated research challenge. Additionally, no perfect assembly 

metrics for assessing assembly quality could be developed to date (Baker, 2012). One of the 

major assembly challenges are almost indistinguishable highly-repetitive regions. Sequencing 

errors are another source of missassemblies and problems during genome assembly. Further, 

the genome coverage of sequencing data sets is not uniform and some regions may be 

underrepresented while others are overrepresented. E.g. pyrosequencing (see Section 2.1.2) 

and semiconductor sequencing (see Section 2.1.5) struggle with correct sequencing of 

homopolymer stretches. Also vector or primer artefacts of the sequencing process can confuse 

the assembly. Therefore, a quality assessment of sequencing data sets (described in Section 

2.2) is more crucial for the quality of an assembly than the assembler itself (Salzberg et al., 

2012).  

 

Combining multiple sequencing technologies with different insert sizes and long SMRT 

sequencing reads and producing sufficient coverage to overcome general sequencing errors 

can also greatly improve the quality of an assembly (Koren et al., 2013).  

2.3.1. Genome Assembly Software 

Two different approaches are used by up-to-date assembly tools: They are either based on 

overlap graphs or De Bruijn graphs (Li et al., 2012). Algorithms based on overlap graphs 

mainly consist of three phases forming the name of this approach: First an overlap phase, 

second a layout phase and third a consensus phase (overlap-layout-consensus algorithms) (see 

Figure 17) are conducted. 
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Figure 17: Overlap–layout–consensus approach. First, reads are provided to the algorithm. Overlapping regions are 

identified. Each read is graphed as a node and the overlaps are represented as edges joining the two nodes. The algorithm 

determines the best path through the graph (Hamiltonian path). Redundant information (i.e., unused nodes and edges) is 

discarded. This process is carried out multiple times and resulting sequences are combined to give the final consensus 

sequence that represents the genome. The figure and description are adapted from (Commins et al., 2009). 

In contrast, algorithms based on De Bruijn graphs first cut the reads into smaller pieces of 

equal size, the k-mers. These k-mers are used to construct the corresponding De Bruijn graph. 

This type of graph was discovered independently by Nicolas Govert de Bruijn (de Bruijn, 

1946) and Irving John Good (Good, 1946). A De Bruijn graph is a directed graph representing 

overlaps of consecutive character sequences. A De Bruijn graph for genome assembly is 

created by forming a node for each k-mer observed in the reads. Their length is chosen to be 

odd to avoid palindromic k-mers which would create a more complex and harder to resolve 

graph. All nodes overlapping by all except the last base are connected by directed arcs. Nodes 

forming a unique path can already be merged, but each k-mer occurring multiple times in the 

genome creates ambiguities which have to be solved by the assembler (see Figure 18). 

 

In 2015 numerous commercial as well as free assembly tools exist. Thus, it is not an easy task 

to identify the most suitable assembler for a de novo genome assembly project. Multiple 

studies have been carried out to evaluate different assemblers and to ascertain the best 

programs (Earl et al., 2011; Salzberg et al., 2012; Magoc et al., 2013; Bradnam et al., 2013). 

Assembly results can further benefit from combination of assemblies produced by different 

programs for the same data set, since most assemblers introduce mainly unique errors to the 

assembly (Salzberg et al., 2012). 



Rolf Hilker NGS and Comparative Genomics 

 

 

26 

 

Figure 18: Schematic De Bruijn graph representation as used in Velvet (Zerbino and Birney, 2008). Each node, 

represented by a single rectangle, represents a series of overlapping k-mers (in this case, k = 5) from the De Bruijn graph, 

listed directly above or below. (Red) The last nucleotide of each k-mer. The sequence of those final nucleotides, copied in 

large letters in the rectangle, is the sequence of the node. The twin node, directly attached to the node, either below or above, 

represents the reverse series of reverse complement k-mers. Arcs are represented as arrows between nodes. The last k-mer of 

an arc’s origin overlaps with the first of its destination. Each arc has a symmetric arc. Note that the two nodes on the left 

could be merged into one without loss of information, because they form a chain. The figure and description are adapted from 

(Zerbino and Birney, 2008). 

 

The most important metrics obtainable for each assembly are introduced in the following: 

 Contig count: It reveals the number of breaks and gaps in the assembly. 

 Scaffold count: In connection to the contig count it reveals how many contigs can be 

scaffolded and how many unresolved breaks and gaps remain in the assembly. This 

metric is only available if a read pair data set has been included in the assembly. 

 The average alignment depth: This measure gives an insight in the overall quality of 

the assembly. A low average alignment depth indicates that too less reads were 

available or could be integrated in any contig of the assembly. Regions of the contigs 

with low alignment depth should be examined carefully. They might be more prone to 

assembly errors. 

 N50: This value represents the length N of the shortest contig contributing to more 

than 50% of the total assembled bases when summing the assembled bases starting 

from the largest contig and continuing with the next smaller contig (Earl et al., 2011). 

The N50 gives an insight in the potential contiguity and extent of an assembly. 

More metrics, especially related to analyses in connection with a reference genome and for 

eukaryotic genomes, are discussed in the assembly evaluation publications listed above.  

In the following, relevant assembly programs and their main features are presented. If not 

stated otherwise, they support read pair data. A more complete list of assembly tools can be 

found on http://en.wikipedia.org/wiki/Sequence_assembly. 

 

Assemblers based on overlap graphs: 

 Newbler (Margulies et al., 2005) is the proprietary assembler of 454 Life Sciences 

and was mainly designed for 454 pyrosequencing data. Later, it was enhanced to work 

with Illumina and other sequencing data as well. 

 CABOG (Celera Assembler with Best Overlap Graph) (Miller et al., 2008) is an 

extension of one of the older assembly tools, developed since 1999: The Celera 

http://en.wikipedia.org/wiki/Sequence_assembly
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Assembler (Myers et al., 2000). CABOG supports hybrid assemblies of Sanger, 

pyrosequencing, SBS and SMRT sequencing data sets.  

 SGA (String Graph Assembler) (Simpson and Durbin, 2012) is a parallelizable 

assembly tool based on the concept of string graphs, which yields a reduced memory 

footprint. SGA assembles solely single end data sets. 

Assemblers based on De Bruijn graphs: 

 Velvet (Zerbino and Birney, 2008) assembles a genome based on a De Bruijn graph 

for a given k-mer. It is fast due to multithreading and supports reads from different 

sequencing platforms like SBS and SOLiD colorspace reads. 

 SPAdes (Bankevich et al., 2012): Uses paired assembly graphs, special cases of the A-

Bruijn graph (Pevzner et al., 2004), to include read pair distances in the assembly 

process. The k-mers are only used for graph construction. Afterwards, solely graph-

theoretical operations are performed based on the graph topology, coverage and 

sequence length to restore the original genome sequence. A specialty of SPAdes is 

also that it automatically combines the results from iterations with varying k-mer 

lengths. 

 SOAPdenovo2 (Short Oligonucleotide Analysis Package) (Luo et al., 2012) 

automatically combines results for multiple k-mers and was especially designed for 

fast assembly of large genomes. 

 ABySS (Assembly By Short Sequences) (Simpson et al., 2009) is a parallelizable 

assembler whose latest version 1.3.7 allows re-scaffolding after an initial assembly by 

adding additional data sets. 

 ALLPATHS-LG (Gnerre et al., 2011) mandatorily requires the combination of 

multiple data sets with different insert sizes or from different sequencing platforms in 

order to improve assembly quality. 

 Meraculous (Chapman et al., 2011) is a conservative, memory-efficient De Bruijn 

graph assembler, which has performed well in the Assemblathon 2 (Bradnam et al., 

2013). 

 Ray (Boisvert et al., 2010) can combine multiple data sets with different insert sizes 

and from different sequencing platforms to yield high quality assemblies. Running 

time is decreased by multithreading. 

Assemblers combining overlap and De Bruijn graph approaches: 

 MaSuRCA (Maryland Super-Read Celera Assembler) (Zimin et al., 2013) is the only 

assembler combining a De Bruijn graph approach with an overlap-layout-consensus 

approach. It is designed for assembling hybrid data sets from multiple sequencing 

technologies. 

For scaffolding of an initial assembly with complementary data sets or combination of 

multiple assemblies specialized standalone programs are available. The implemented 

algorithms are either greedy (e.g. SSPACE (Boetzer et al., 2010)) or based on the concept of a 
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contig graph (e.g. BESST (Sahlin, 2013), SOPRA (Dayarian et al., 2010), Bambus2 (Koren et 

al., 2011), and Opera (Gao et al., 2011)).  

In a nutshell, there is not one best assembler to recommend. It rather depends on the 

sequenced organism, the used sequencing technology, if a combination of data sets is used 

and the metrics applied to rate the assembly. In the latest assembler evaluations the best 

scoring assemblers were Newbler, ALLPATH-LG and SGA in the Assemblathon 2 (Bradnam 

et al., 2013), while in GAGE-B (Magoc et al., 2013) SPAdes and MaSuRCA scored best. 

Among these assemblers, only SGA was included in both studies, but outperformed in 

GAGE-B. To generate the most reliable assembly, the authors of the Assemblathon 2 

recommend testing different assemblers and ranking their assemblies against each other. 

2.3.2. Assembly Quality and Genome Finishing 

A single high quality consensus sequence is rarely achieved solely by computational methods. 

Instead, the result of initial assemblies is mostly a draft genome containing gaps. To close 

remaining gaps in the assembly, genome finishing is required. The cost and time requirements 

for generating a finished high quality genome are considerably higher than for generating a 

draft genome (Mardis et al., 2002), since it involves additional manual laboratory work and 

more expensive Sanger sequencing. Since 2012 also SMRT sequencing can be used for gap 

closure before other techniques are employed (English et al., 2012), but until today the 

disadvantage of this technique are the sequencing costs. 

 

Finishing can generally be divided into two steps: The first step is gap closure and the second 

is validation and refinement. The most well-established gap closure methods are either 

directed PCRs or primer walking. Directed gap closure PCRs are useful for gaps smaller than 

reads generated by Sanger sequencing (~1000bp).  

 

For this method, unique primers flanking a gap between adjacent contigs ordered according to 

a reference are designed. A PCR on the complete genomic DNA using these primers amplifies 

the missing DNA fragment, which spans the assembly gap (Figure 19, A). If the contig 

ordering is unknown, unique primers for all contig ends have to be created and tested pairwise 

for compatibility. This process can be accelerated by multiplex PCRs (Tettelin et al., 1999). 

Resulting PCR fragments are typically sequenced using the Sanger sequencing technology. 

For longer gaps, enhanced primer walking can be used. The original approach was introduced 

in (Kieleczawa et al., 1992). Today, this method either uses fosmids (Hall, 2004) or bacterial 

artificial chromosomes (BACs) (Shizuya et al., 1992) for scaffolding and gap closure. A 

fosmid is a bacterial F-plasmid with an insert size of ~40kb, while a BAC originates from a 

bacterial F-plasmid, but has a much larger insert size of up to 300kb. The first step is to create 

a fosmid or BAC library or a combination of both for the complete genome sequence. Next, 

the insert ends from all plasmids are sequenced using Sanger technology and the reads are 

mapped onto the assembled contigs. Scaffolding can be done, if both ends of one plasmid map 

to different contigs. In this case, primer walking is conducted: New primers are designed for 

the respective contig ends and the PCR products which are spanning the whole gap are 

sequenced by Sanger technology from both ends. Hereby, both contigs are extended by ~1kb 

into the gap. This primer walking is repeated, until the PCR products from both contig ends 

overlap and the whole gap is closed (Figure 19, B). 
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Figure 19: PCR genome finishing methods. The figure shows a schematic representation explaining the principle of gap 

closure PCRs (A) and primer walking (B). A) If the contig ordering is known, a gap shorter than a Sanger sequencing read 

(~1kb) can be closed by a single PCR with specific primers for both contig ends. B) In this example a gap is closed by three 

rounds of primer walking. The plasmid (fosmid (~40kb) or BAC (~300kb)) insert contains the genomic sequence of the gap, 

missing in the assembly. Once unique primers are designed for the adjacent contig ends (blue and green), a PCR and Sanger 

sequencing of the PCR product from both strands reveals ~1kb of the gap sequence. New primers are created for the new 

contig ends and another PCR is carried out. By iteratively repeating the primer walking three times the showcase gap can be 

closed, since the sequenced PCR products of round 3 contain a complementary region. An overlap has been found and the 

gap is closed. This method gets more laborious and time consuming in dependency of the gap size. 

The question if finishing is necessary for all sequenced genomes and all genomic regions 

keeps the scientific community occupied since Sanger sequencing was automated and the first 

NGS technologies emerged (Fraser et al., 2002; Branscomb and Predki, 2002). Depending on 

the research question, a draft genome of good quality can be sufficient if money and time are 

limited resources. Especially, when a finished genome sequence of a closely related organism 

is available, a draft genome is sufficient for many genomic studies. The sequence of the close 

relative can be employed to enhance the draft assembly. Additionally, most genomic features 

are contained in a draft genome of good quality which can already be generated within less 

than one week. Whereas, due to laborious work, finishing can take several weeks or even 

month (Nagarajan et al., 2010; Aury et al., 2008).  

For high-priority genomes, a finished assembly on the other hand provides a valuable 

permanent resource, allowing more detailed analyses of the data. Identifying the correct 

operon structures or patterns of gene regulation are only two examples (Nagarajan et al., 

2010). Genomic rearrangements pose another problem to draft assemblies. Rearrangements 

might get lost due to gaps between contigs and when contigs are aligned to a reference 

sequence with another genomic structure. Additionally, genes overlapping contig borders are 

often destroyed or contain at least a frame-shift. These destroyed genes and also missing DNA 

regions in a draft assembly lead to a bias in gene content analyses and do not fully reflect the 

real genome content (Alkan et al., 2009). 

 

A much less time consuming and with further decreasing sequencing costs probably cheaper 

method to generate finished genomes has been established by the long reads offered by the 

SMRT sequencing technology as of now (English et al., 2012; Koren et al., 2013).  

In fact, more than 50% of the complete genome projects listed in the Genomes Online 

Database (GOLD)7 only provide draft genomes. Thus, draft genomes are not the exception 

and genomic analysis methods should take their wise treatment into consideration. 

                                                 
7 http://genomesonline.org/cgi-bin/GOLD/sequencing_status_distribution.cgi (accessed 26.03.2014) 
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2.3.3. Genome Layout and Finishing Software 

Many software tools for genome layout and finishing have been developed since whole 

genome sequencing became feasible. One group of tools focuses on contig and scaffold 

alignment to an already known reference genome after the initial assembly. These programs 

should be used before starting with the manual finishing phase in the laboratory, since the 

knowledge of the contig order is crucial to the effort needed for closing the remaining gaps. A 

few relevant tools are: 

 r2cat (Related Reference Contig Arrangement Tool) (Husemann and Stoye, 2010) 

automatically arranges contigs or scaffolds to another reference by first applying a q-

gram filter (Rasmussen et al., 2006) and then ordering the contigs according to their 

matches by a sliding window approach. Ordering can be changed manually by drag 

and drop. 

 ABACAS (Algorithm-Based Automatic Contiguation of Assembled Sequences) 

(Assefa et al., 2009) identifies regions of synteny between contigs and reference with 

MUMmer (Kurtz et al., 2004) and arranges the contigs respectively. Primers flanking 

remaining gaps are created by an integrated version of Primer3 (Koressaar and Remm, 

2007). 

 OSLay (Optimal Syntenic Layouter) (Richter et al., 2007) does not compute matches 

between assembly and reference itself. It rather takes BLAST or MUMmer results as 

input. Its method is based on maximum weight matching within a so called layout 

graph. OSLay can also handle a reference, which consists of multiple sequences. 

 Projector2 (van Hijum et al., 2005) uses BLAST for synteny detection and orders the 

contigs according to the three criteria order, orientation and spacing. Further, it 

includes repeat masking for repetitive regions. 

All of these tools, except OSLay, can automatically design primers for the contig ends.  

For manual refinement of genome assemblies basically two widely used tools are available: 

 Consed (Gordon et al., 1998) is one of the first finishing tools and has just undergone 

a modernization (Gordon and Green, 2013). It automatically identifies problematic 

regions in assemblies and offers different visual editors, e.g. for the reference 

consensus sequence and the reads. 

 Hawkeye (Schatz et al., 2013) enables several perspectives for genome assembly data. 

It starts with basic statistics and overview of the assembly. On the next levels, the user 

is empowered to zoom into the data to inspect scaffolds, contigs, reads and 

nucleotides. Hawkeye integrates the AMOS assembly forensics pipeline (Phillippy et 

al., 2008) in order to automatically detect erroneous regions within assemblies. They 

are highlighted for easy location. 

The finishing methods explicated in the previous section need to be applied to gaps which still 

remain after computational arrangement and finishing contigs. A special finishing tool 

supporting the laboratory work with fosmid and BAC libraries is BACcardi (Bartels et al., 

2005). It visually displays mappings of fosmid or BAC end sequences on the contigs. Thus, 

BACcardi aids identification of missassemblies and creation of a scaffold for the contigs 

based on the plasmid library. 
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2.4. Automatic Genome Annotation 

Genome annotation is the identification of genomic features and the subsequent assignment of 

their biological function to a known genomic sequence (Stein, 2001). Annotation can be 

performed either manually or automatically. Manual genome annotation always involves 

tedious manual work handling each potential gene region separately up to generation and 

integration of experimental data as verification. Therefore, genome annotation is normally 

started by automatic gene and function prediction, which is afterwards refined by manual 

annotation. Due to high-throughput generation of sequence data, unrevised automatic 

annotation data is often directly kept as end result in many genome projects. The cost and 

time requirements for complete manual refinement are much too expensive for most projects 

analyzing dozens or even hundreds of genomes (Fox and Kling, 2010; Hilker et al., 2014). 

Thus, extensive manual refinement is only possible for a few high-priority genomes.  

 

The process of automatic genome annotation (Yandell and Ence, 2012) starts with repeat 

masking and filtering of non-coding regions. Available tools for this step are also listed in the 

publication of Yandell and Ence (2012). Three different approaches exist for gene prediction. 

The first method is the alignment of existent evidence to the yet unannotated novel genome 

sequence. This evidence can be represented by coding sequences (CDS), protein, expressed 

sequence tag (EST) or RNA-seq data from available databases (e.g. from the UniProt database 

(UniProt Consortium, 2011)) or parallel experiments. The second method is ab initio gene 

prediction. This method utilizes statistical models to predict the genes. The third method 

combines ab initio gene prediction with incorporation of evidence. For prokaryotic genomes, 

the third approach produces the most reliable output and is used in state-of-the-art annotation 

platforms (see below). Following gene prediction, the annotation phase assigns biological 

functions to the predicted genes by selecting the most probable ortholog from existing 

databases. 

Automatic genome annotation requires extensive compute power to efficiently analyze 

genomic data and compare it to several huge databases. Web-based platforms running on 

appropriate computing infrastructure can comply with the demand of the scientific 

community.  

In the following, the focus is placed on software platforms for microbial genome annotation. 

Such applications can be subdivided into three classes. First, simply automatic annotation 

services, secondly, annotation services including result visualizations and thirdly, more 

comprehensive annotation platforms also supporting manual annotation editing and 

visualization of the genome. Common automatic annotation services belonging to the first 

class include the NCBI Prokaryotic Genome Annotation Pipeline based on the Prokaryotic 

Genomes Automatic Annotation Pipeline (PGAAP) mentioned in (Angiuoli et al., 2008) and 

Xbase2 (Chaudhuri et al., 2008). Also pipelines for user servers (DIYA (Do-It-Yourself 

Annotator) (Stewart et al., 2009)) and desktop computers (EUGENE-PP (Sallet et al., 2014) 

and Prokka (Seemann, 2014)) have been made publicly available. A widely used platform 

belonging to the second class is RAST (Aziz et al., 2008). However, the focus here is placed 

upon commonly used comprehensive annotation web-platforms belonging to the third class: 

 GenDB (Meyer et al., 2003) is an open-source project developed as a global web 

service using Perl and common gateway interface (CGI). It offers public as well as 

private projects with restricted access and a collaborative web interface for manual 

annotation refinement after automatic annotation. The GenDB annotation pipeline is 

modular and extensible and starts with a gene prediction tool, such as Prodigal (Hyatt 

et al., 2010) or Glimmer3 (Delcher et al., 2007). Afterwards, several tools for 
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automatic annotation refinement are used (e.g. tRNAscan-SE (Lowe and Eddy, 1997) 

and SignalP (Nielsen et al., 1997)). GenDB also includes visualizations of the results 

and several functions for whole genome and metabolic pathway analysis. 

 SABIA (System for Automated Bacterial Integrated Annotation) (Almeida et al., 

2004) is a Perl and CGI based web service combining automatic assembly and 

annotation of private genome data. Assembly is performed by Consed (Gordon and 

Green, 2013). For gene prediction also Glimmer3 (Delcher et al., 2007) is employed. 

Further, SABIA supports prediction of tRNA genes with tRNAscan-SE (Lowe and 

Eddy, 1997). Results can be viewed and edited manually in the web interface. 

 AGMIAL (Bryson et al., 2006) is a web service focusing on manual expert annotators 

within private genome projects. Its annotation strategy is modular and extensible. 

AGMIAL is a two component system of one manager for the gene prediction and 

contig visualization and one for protein annotation. They use their own Hidden 

Markov Model based ab initio gene prediction tool named SHOW. AGMIAL also 

includes a few more prediction tools including tRNAscan-SE (Lowe and Eddy, 1997).  

 MicroScope (Vallenet et al., 2013) started solely as microbial annotation platform 

MaGe (Vallenet et al., 2006), employing a forest of tools for identification and 

refinement of genes (e.g. tRNAscan-SE (Lowe and Eddy, 1997) and MICheck 

(Cruveiller et al., 2005)). Afterwards the annotation can be manually modified. Today 

MicroScope has been extended by metabolic pathway and comparative genome 

analysis functions (see Section 2.5.3). MicroScope supports private as well as public 

projects. 

A more comprehensive overview of annotation platforms is given in (Bryson et al., 2006).  

When annotating a prokaryotic genome, the tool of choice depends on time restriction and 

quality requirements. When time is the critical factor, it might be useful to set up client 

software like Prokka which allows annotation of a complete bacterial genome within ~10 

minutes (min) on an average desktop computer. When more time can be spent, a 

comprehensive annotation platform facilitating subsequent manual annotation like GenDB or 

MicroScope can be recommended. These two platforms are favored, because they contain the 

broadest sets of annotation tools and thus will generate the most detailed annotation results. 

2.5. Large-Scale Comparative Genomics 

One of the applications of annotated genomes is to use them in comparative genome analyses. 

The comparative genomics research field targets the comparative analysis of multiple 

genomes and their features. Depending on the study, the analyzed genomes can originate from 

closely or more distantly related organisms. Closely related organisms are often analyzed for 

smaller, but important differences, e.g. a pathogenic and a non-pathogenic strain of the same 

bacterium. More distantly related genomes can shed light on the overall phylogenetic tree like 

for the "tree of life" (Roger and Simpson, 2009).  

Prior to the discovery of DNA, the most accurate definitions available for taxonomic division 

were in general phenotypic traits and for microbial organisms gram-staining and shape. 

Already a decade after DNA discovery, it's importance for the taxonomic classification was 

realized by (Zuckerkandl and Pauling, 1965). The era of comparative whole genome studies 

based on their genomic features began at the same time when the proposition to utilize 

measurable criteria like DNA reassociation in combination with phenotypic traits for 

phylogenetic relationships was made by (Wayne et al., 1987). One of the first comparative 

studies of whole genomes compared the genomic content of two viruses (McGeoch and 

Davison, 1986).  
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Since the Sanger sequencing era, whole prokaryotic as well as eukaryotic organisms are 

subject to comparative studies (Tettelin et al., 2008; Ureta-Vidal et al., 2003). The continuous 

tremendous growth of available genomic sequence data enabled by NGS techniques has 

further revolutionized the research field of comparative genomics. Especially studies of 

multiple small prokaryotic genomes profit from the advent of high-throughput sequencing 

technologies. An appropriate sequencer can reveal the complete DNA sequences of many 

bacteria strains in a single run. 

Several research questions can be addressed by comparative genomics. One question is the 

evaluation of evolutionary relationships between different species, strains and all organisms in 

order to understand the driving force behind evolution. In particular, the focus is placed on 

bacterial comparative genomics in the following sections due to the research topic of this 

work. Correct classification and knowledge about the genomic content of bacterial strains can 

play an important role for successful treatment of diseases caused by bacteria (Veesenmeyer 

et al., 2009). In personalized medicine, treatments can optimally be varied depending on the 

presence of virulence factors and antibiotic resistances in the current infestation. In this regard 

another relevant question is how many specimen of an organism need to be sequenced in 

order to establish a substantiated data source of its genomic information and variability. 

Among several studies (Hiller et al., 2007; Klockgether et al., 2011) have exposed that one 

specimen is clearly not sufficient. Variable elements like accessory genomic islands or 

plasmids demand sequencing of multiple specimens per bacterial strain. One example for a 

universal vaccine which could only be created due to sequencing of multiple entities of the 

same bacteria strain was presented by (Kung et al., 2010). 

2.5.1. Homology and Genomic Subsets 

When it comes to phylogenetic comparison of genomes, several terms are important to 

distinguish different evolutionary relationships. These terms where mainly shaped by (Fitch, 

1970, 2000).  

DNA, RNA and amino acid comparisons are predicated on homology. Homology denotes 

evolution and divergence of biological features, such as physical attributes, proteins or genes, 

from the same ancestor. In this context, Fitch defined several terms related to homology 

which are here taken from the review of (Bachhawat, 2006): 

 Orthologues are homologous genes that have evolved from a common ancestral gene 

by speciation. They usually have similar functions. 

 Paralogues are homologues that are related or produced by duplication within a 

genome. They often have evolved to perform different functions.  

 Xenologues are homologues that are related by an interspecies (horizontal) transfer of 

the genetic material for one of the homologues. The functions of the xenologues are 

quite often similar. 

 Analogues are non-homologous genes/proteins that have descended convergently 

from an unrelated ancestor (this is also referred to as "homoplasy"). They have similar 

functions although they are unrelated in either sequence or structure. This is a case of 

"non-orthologous gene displacement". 

 Horizontal (lateral) gene transfer is the movement of genetic material between 

species (or genus) other than by vertical descent. In bacteria this process occurs by 

either natural transformation, conjugation, or transduction (through viruses). 
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Figure 20: Gene homology. A top-down phylogenetic tree is shown, representing the origin of life and the genomes of four 

bacteria (grey rectangles) at two given time points during evolution. The ancestral genome, P. aeruginosa and E. coli share 

the orthologous yellow and dark blue genes. Note that the sequence of both genes will most probably not be identical in the 

three bacteria, but they originate from the same genes of the ancestral bacterium. A duplication event in P. aeruginosa has 

created a paralogous gene (light blue) of the dark blue gene. The green gene from E. coli has been horizontally transferred 

to the other bacterium, resulting in a xenologue gene. The dark yellow gene from the other bacterium fulfills the same 

biological function as the yellow gene in the other three bacteria. Thus, both genes are analogues of each other. 

From this list, only orthologous genes allow phylogenetic conclusions (Fitch, 1970): "Where 

the homology is the result of speciation so that the history of the gene reflects the history of 

the species (for example α hemoglobin in man and mouse) the genes should be called 

orthologous (ortho = exact). Phylogenies require orthologous, not paralogous, genes." Thus, 

the most important task of comparative genome analyses is the identification of orthologous 

genes.  

The entirety of all genes found in compared organisms is categorized in gene sets based on 

their homology as introduced in the groundbreaking publication of (Tettelin et al., 2005): 

"A bacterial species can be described by its "pan-genome" (pan, from the Greek word παν, 

meaning whole), which includes a core genome containing genes present in all strains and a 

dispensable genome composed of genes absent from one or more strains and genes that are 

unique to each strain."  

These definitions were further refined in their subsequent publication (Medini et al., 2005). 

Accordingly, the core genome of a species contains all genes essential for survival and genes 

coding for general phenotypic traits. The dispensable genome (sometimes also called 

accessory genome) consists of genes encoding niche functions or secondary pathways, which 

are advantageous in certain environments (e.g. antibiotic resistances). The dispensable 

genome adds to the diversity of a species as well as the unique genes. In bacteria, large parts 

of the dispensable genome are often organized in regions of genomic plasticity (RGP) which 

either contain genomic islands (GI) (> 10kb) or genomic islets (< 10kb) (Kung et al., 2010). 

According to (Mathee et al., 2008) an RGP is defined as a section of at least four contiguous 

CDSs not belonging to the core genome. Kung et al. (2010) further define a genomic island as 

a "horizontally acquired genetic element present in the chromosome of some strains but 

absent from closely related strains." Thus, the location of an RGP is the same in different 

strains of the same bacterium, but can contain different genetic material (Kung et al., 2010). 

 

For pan genomes, a distinction is made between open and closed (Medini et al., 2005). The 

whole closed pan genome can be identified by only sequencing a few members of a species. 

E.g. (Tamas et al., 2002) discovered an "extreme genome stability" among two Buchnera 

aphidicola strains which did not undergo any genome rearrangements or gene acquisitions. 
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Thus, the pan genome of Buchnera aphidicola seems to be closed. In contrast, the analysis of 

(Medini et al., 2005) proposed an open pan genome for Streptococcus agalactiae. Each newly 

sequenced strain added many new genes to the pan genome. The real-world pan genome of a 

species with a closed pan genome can thus be estimated after sequencing sufficient 

representatives of that species. Sequencing of more representatives from species with an open 

pan genome on the other hand will always reveal a certain amount of new genes. The number 

of new genes per genome varies vastly depending on the examined species and its general 

genome size. 

Besides comparisons on the level of whole genes, also variation on the nucleotide level in the 

form of single nucleotide and deletion-insertion polymorphisms (SNPs and DIPs) can be used 

to deduct accurate phylogenetic relationships and identify the origin of pathogenicity factors 

(Pandya et al., 2009) (see Sections 2.7.1). A combination of global genome rearrangements 

and local nucleotide mutations enables an in-depth picture of evolutionary changes in an 

organism. 

2.5.2. Application Areas 

The wide application area of comparative genomics comprises medical, industrial and 

fundamental research.  

In medical microbiology research, the main interest lies in the comparison of pathogenic and 

non-pathogenic organisms. This enables the identification of virulence factors and antibiotic 

resistances, which, in turn, aids targeted drug design and reverse vaccinology. In this favor, 

genomic comparisons of related bacterial strains in order to identify pathogenic and virulent 

traits have been carried out as soon as enough sequence material was available (Bolotin et al., 

2004; Eppinger et al., 2004; Brzuszkiewicz et al., 2006). Due to the rapidly decreasing 

sequencing costs, analyses on the single nucleotide level for point mutations within many de 

facto identical outbreak strains became affordable (Niemann et al., 2009; Ford et al., 2011). 

They allow revealing the mutations responsible for enhanced or decreased fitness and 

prevalence. Access to multiple genomes of a pathogen unfolds all its potential antigens and 

enables prioritization in reverse vaccinology. Potential widely spread and potent antigen 

targets are selected via comparative bioinformatic analysis, engineered in the laboratory, and 

subsequently tested in preclinical and clinical studies (Tettelin, 2009; Sette and Rappuoli, 

2010). Several in silico tools are available for reverse vaccinology, e.g. the online databases 

VIOLIN (Vaccine Investigation and Online Information Network) (Xiang et al., 2008) and 

Vaxign (He et al., 2010). The benefit of this relatively new approach is evident in several 

studies (De Groot and Rappuoli, 2004; Giuliani et al., 2006; Liu et al., 2009). 

 

For the industry, bacteria play an important role in producing valuable biological compounds. 

They are genetically engineered either to be able of producing a certain compound or to 

increase their yield (S. Y. Lee et al., 2005). Two important examples are insulin producing 

Escherichia coli (Goeddel et al., 1979) and amino acid producing Corynebacterium 

glutamicum (Rückert et al., 2003). Researchers study entire strains for beneficial genes or 

compare production strains on the single nucleotide level to identify SNPs leading to desired 

behavior (Ohnishi et al., 2002). Studies often aim to identify candidate genes of a product 

relevant pathway for modification (Yukawa et al., 2007; S. J. Lee et al., 2005). These genes 

are then engineered for an increasing yield of the desired substance.  

As already mentioned at the beginning of Section 2.5, the most important research targets in 

fundamental research are the reconstruction of phylogenetic relationships and the 

understanding of the mechanisms driving evolution. 
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2.5.3. Comparative Genomics Software 

Several web portals and applications are available for carrying out different comparative 

genomics analyses. Among them are VISTA tools (Frazer et al., 2004), Panseq (Laing et al., 

2010), CoGe (Lyons et al., 2008), and SEED (Overbeek et al., 2005). These tools are not 

suited for the context of this work, since it focuses on the pan genome analysis of 20 yet 

unsequenced P. aeruginosa strains. All these tools either do not allow submission of custom 

genomes, or the amount of genomes is too limited in number and size. Additional software 

solutions for extensive pan genome analyses exist and are shortly introduced and their feature 

set is compared in this section. 

 The Microbial Genomes Database (MBGD) (Uchiyama, 2003) is a web service 

mainly providing analyses for integrated genomes, but it allows uploading custom 

genomes as well. Currently, 2823 genomes from 742 microbial organisms are 

maintained in the MBGD8. Supported comparative analysis functions for selected 

genomes are orthologous gene clustering and multiple alignment of these gene 

clusters, circular genome plots, a region viewer displaying the neighborhood of a 

selected gene in multiple genomes and a pan genome table with different filters. The 

filters e.g. enable access to the list of core and singleton genes. Unfortunately, the 

MBGD user interface is quite circumstantial. Several features are hidden away from 

the main menu. They only become available on result pages after other analyses have 

been started first and are often not found intuitively.  

 Sybil (Crabtree et al., 2007) is different from the other tools, because it is a software 

package for creating a comparative genomics web server. Thus, using Sybil requires 

knowledge of how to set up a web server, databases and install all of the several 

required software libraries. Sybil is script based and offers functionality for protein or 

gene cluster search within multiple genomes, statistical pan genome analysis listing 

e.g. the expected sizes of the core genome and unique genes per genome, a region 

viewer showing the neighborhood of a gene for multiple genomes, synteny gradient 

plots, a linear genome plot including genomic features, and a shared cluster matrix for 

the core genome of a project. 

 MicroScope (Vallenet et al., 2013) is a web service for automatic genome annotation 

(see Section 2.4), as well as comparative genomics. It offers publicly available 

genomes as well as private projects for combined analysis of private and public data. 

The set of features consists of six main features: 

1. Gene phyloprofile: A feature to list unique and dispensable genes of max. 60 

selected genomes 

2. Regions of genomic plasticity: A detection of RGPs within a single selected 

genome in comparison to other genomes via three steps. 

3. Line plot: A synteny plot for comparison of two genomes. 

4. Gene fusion/fission: An analysis to detect gene fusions and fissions within a 

single selected genome. It calculates a list of candidate genes and from the 

synteny results of all genomes contained in the MicroScope database for these 

two events.  

                                                 
8 Last accessed on 13.04.2015 
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5. PkGDB synteny statistics: Comparison of a single genome to all other 

genomes in their prokaryotic genome database (PkGDB). The result lists all 

available genomes and e.g. contains the number and percentage of genes with 

bidirectional best hits and in synteny groups. 

6. Pan and core genome: Calculation of the pan and core genome for a set of 

genomes. This analysis is based upon gene families computed with SiLiX 

(Miele et al., 2011) beforehand. 

 EDGAR (Blom et al., 2009) is a web service offering public or private comparative 

genomics projects. EDGAR employs an automatically calculated global orthology 

threshold: Score ratio values (SRVs) (Lerat et al., 2003) are calculated for all genes of 

each genome and an SRV master cutoff is automatically derived for the whole project. 

Afterwards, all genomes included in the project can be analyzed with 11 main 

features: 

1. Score ratio value plots: This feature shows the plot for the SRV master cutoff 

of the current project and the SRV plot of two selected genomes. 

2. Pan and core genome: Shows a list of the pan or core genome genes of an 

arbitrary number of selected genomes from the current project. These lists can 

be exported as gene tables, multiple DNA fasta or multiple amino acid fasta 

files. 

3. Singletons: Shows a list of all unique genes of a single genome in comparison 

to all other selected genomes. 

4. Venn diagrams: This feature enables visual comparison of up to 5 genomes 

using Venn diagrams. The Venn diagram shows the distribution of genes in 

core, unique and dispensable genes. 

5. Calculate gene sets: It calculates the gene sets of multiple genomes. Each 

genome of the current project can either be included or all its genes can 

explicitly be excluded from the list. 

6. Core and singleton development plots: This feature plots the development of 

the core genome or the number of unique genes for a selection of genomes. 

7. Synteny plots: A synteny plot can be drawn for multiple genomes, enabling 

simultaneous synteny analysis of multiple genomes. 

8. Comparative viewer: A region viewer to compare the neighborhood of either a 

gene of interest or the same genomic position of multiple selected genomes. 

9. Create AAI matrix: An average amino acid identity (AAI) matrix is calculated 

for the selected genomes. 

10. Phylogenetic tree: The phylogenetic tree of all genomes included in the current 

project is shown by default. Custom sub-trees can be calculated and all trees 

can be exported into newick9 or nexus (Maddison et al., 1997) tree files. The 

                                                 
9 http://evolution.genetics.washington.edu/phylip/newicktree.html, last visited on 22.04.2014 
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phylogenetic tree calculation is either based on the amino acid or nucleotide 

sequences of all annotated genes of the core genome. 

11. Define replicon group or metacontig: This feature enables creation of either a 

replicon group, e.g. for combining a bacterial chromosome and the 

corresponding plasmids, or a metacontig. Separate metacontigs are stored for 

the pan and the core genome. A core genome metacontig contains all core 

genes taken from a selected reference genome. A pan genome metacontig 

contains all core, dispensable and unique genes from a selected reference and 

all additional dispensable and unique genes of the other included genomes. The 

replicon groups and metacontigs can subsequently be used in analysis 

functions. 

Features offered by all tools are multiple alignments and multi genome comparisons. Another 

popular feature supported by three of the four tools (Sybil, MicroScope and EDGAR) are 

synteny plots. However, EDGAR is the only tool with a synteny plot capable of plotting 

multiple genomes. All tools except Sybil feature analysis of genomic subsets. A viewer for 

orthologous regions on the other hand is contained in all tools, except MicroScope. Statistical 

development of genomic subsets is only featured by Sybil and EDGAR, while gene clustering 

analyses are exclusive to MBGD and Sybil. Collaborative work of multiple scientists from 

different geographical locations is only supported by MicroScope and EDGAR. Two unique 

features of MicroScope are RGP and fusion and fission detection. Nonetheless, EDGAR is the 

tool providing the most analysis functions from one source, such as genomic subsets 

including their statistical development, phylogenetic trees, visual genome comparisons 

especially of orthologous regions and collaborative work for all involved scientists. 

Additionally, the use of a global cutoff value for the assignment of orthologous genes via 

SRVs is another advantage of EDGAR facilitating tailored treatment of single genomes as 

well as uniform treatment of the collectivity of genomes in a project. 

2.6. Mapping of Short NGS Reads 

Short read mapping is the process of aligning a set of sequencing reads to an already known 

reference sequence with a given error threshold. Errors comprise mismatching, inserted and 

deleted bases between the reference and the mapping data set. Each error class is assigned a 

certain cost and maximum error thresholds for accepted alignments are set before starting the 

read mapping process. Mainly two approaches are used in modern read mapping software: 

Either seed based algorithms utilizing hash tables or algorithms based on the Burrows-

Wheeler transform (BWT) (Burrows and Wheeler, 1994). The output of a read mapper is 

called read mappings, or in short mappings. This section gives an insight into the 

application areas of short read mapping, both mapping approaches, the variety of available 

mapping tools and commonly used data formats. 

2.6.1. Application Areas 

Short read mapping has extensive application areas and is an inherent part of NGS data 

analysis pipelines. Short read mapping aids detection of small genetic variants (SNPs and 

DIPs), genome re-sequencing, RNA-seq (Wang et al., 2009), ChIP-Seq (Johnson et al., 2007), 

TAG sequencing (Porter et al., 2006), metagenomics (Kunin et al., 2008), and 

metatranscriptomics (Simon and Daniel, 2011). It has also proven useful for detection of 
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genome rearrangements, especially when read pairs have been sequenced (Skovgaard et al., 

2011). 

Before starting a mapping, the allowed mismatch and insertion and deletion (indel) rates have 

to be defined. They should be set according to the expected error rate of the employed 

sequencing method and the expected similarity between sample and reference. The error rate 

of Illumina and 454 sequencing is around 1% (Minoche et al., 2011; Gilles et al., 2011). The 

highest error rate of single reads is observed in SMRT sequencing with ~15% (Carneiro et al., 

2012). 

One approach in re-sequencing is to determine the consensus sequence of a yet unknown 

genome by mapping reads onto an available reference genome of a close relative. All 

positions with a sufficient amount of reads exhibiting the same mismatch or indel define the 

part of the consensus sequence which is characteristic for the novel genome. Further, an 

analysis of the coverage reveals the intervals and genes present and absent in the novel 

genome. Naturally, additional genes, genomic islands and RGPs contained in the novel 

genome cannot be identified by mapping to a reference missing these elements. For already 

known genomic islands and RGPs with existing DNA sequence data, an additional mapping 

to these references can be created and their coverage can be analyzed for completeness and 

presence of genes. Additionally, genome rearrangements of the re-sequenced genome can be 

identified when read pairs are used and both reads of a pair map to other regions of the 

reference than expected. SNPs and DIPs (see Section 2.7.1) are called in the same way as the 

consensus sequence is constructed (Nielsen et al., 2011). Just that in this case only the 

positions with a sufficient amount of deviating bases are of interest. Further, many 

experiments can benefit from closely analyzing the coverage of the reference genome. It is 

often useful to examine genomic regions showing certain coverage characteristics. 

For RNA-seq, mapping facilitates the detection of gene expression levels under different 

environmental conditions (see Sections 2.8.3 and Section 2.8.1), transcription start sites (see 

Section 2.8.2), novel transcripts (see Section 2.8.2), transcripts of small RNAs (see Section 

2.8.2) and operon structures (Passalacqua et al., 2009) (see Section 2.8.4). Beforehand of 

sequencing, the RNA needs to be reversely transcribed into cDNA. Subsequently, the 

sequenced reads can be used for the above mentioned applications. A distinction has to be 

drawn between prokaryotic and eukaryotic RNA-seq. Mapping eukaryotic RNA-seq data back 

on the genome sequence demands a splice aware alignment tool. The sequenced RNA only 

contains the exon sequences of the genes. Hence, the alignment software needs to be capable 

of mapping reads partly if the read spans an exon junction.  

For the identification of genome wide protein binding sites, mapping is a vital component of 

chromatin immunoprecipitation sequencing (ChIP-seq) (Johnson et al., 2007) - a combination 

of ChIP with NGS. Protein-DNA interactions are an essential process for gene expression and 

regulation and epigenetic chromatin modifications, i.e. histone modifications and methylation 

(O’Geen et al., 2011). ChIP-seq enables analysis of all these functions and is composed of 

several steps: At first, the sample DNA is sheared by sonication in vivo, and then all protein-

DNA complexes contained in the cell lysate are isolated. Next, selective immunoprecipitation 

for a protein of interest and its bound DNA is performed by corresponding antibody carrying 

beads. This step yields all DNA sequences to which the protein can bind. At this point, high-

throughput sequencing is employed in ChIP-seq to sequence the DNA samples. The obtained 

reads are mapped to the corresponding genome.  

Thus, if a reference genome is available, this technique is more sensitive than the older 

alternative ChIP-on-chip method (Aparicio et al., 2004), because it is not bound to predefined 

probes. Additionally, ChIP-seq indicates the affinity of a binding site (Jothi et al., 2008). 
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2.6.2. Seed-And-Extend Approach 

Seed-and-extend based alignment algorithms have already been used at the beginning of the 

1990s for DNA alignment in BLAST (Altschul et al., 1990) and are composed of two phases. 

In the first phase, the seeding phase, (nearly) exact matches of short substrings - the seeds - of 

sequencing reads are detected within the reference. In the second phase, the extension phase, 

the seed matches are extended to the complete read sequence. Only matches complying with 

the given error thresholds are kept. 

Two different techniques for seeding exist: The naive approach makes use of continuous 

seeds, while the more sophisticated and sensitive approach uses spaced seeds. A spaced seed 

allows a given number of internal mismatches. Parameters varying in the implementations of 

both techniques are the number of seed matches required and the choice of the seed length. 

The extension of candidate matches in the second phase up to the total length of the original 

read, while adhering to the predefined error threshold, is often done by dynamic programming 

approaches. Three techniques significantly increasing the performance of read extension are 

worth noting. One technique is vectorization of the standard Smith-Waterman algorithm 

(Farrar, 2007). This is achieved by utilizing widely spread CPUs capable of "single 

instructions, multiple data" (SIMD), which allows parallelizing the alignment step. The 

second technique is the confinement of dynamic programming around already detected seeds 

from the seeding phase (Eppstein et al., 1990; Slater and Birney, 2005). The third technique is 

to utilize the observation of (Myers, 1986) that a string of length a can be aligned to a 

substring of a target with length b with a maximum of D errors in O(ND) time and space, 

where N := a + b. 

Inherently, both seeding techniques do not support gaps in the seed. But gaps play an 

important role, especially in variant discovery (Krawitz et al., 2010). Three techniques are 

available to overcome this problem. Gaps can be identified during the extension phase by 

dynamic programming, by introducing small gaps at each read position (R. Li et al., 2008), or 

- the most popular approach - by utilizing a different, very efficient technique combining 

seeding and extension in just one phase, the q-gram filter (Rasmussen et al., 2006).  

A q-gram is simply a string of length q. The q-gram filter is based on the q-gram lemma 

(Jokinen and Ukkonen, 1991): 

q-gram lemma: For a query sequence (e.g. a read) and a template sequence (e.g. a substring 

of a reference) of length l with at most e errors exist at least (l + 1) - (e + 1)q valid matches of 

length q.  

Thus, one error depletes the total number of valid q-grams by e*q. When only the 
𝑙

𝑞
 non-

overlapping q-grams are considered, the pigeonhole principle can be applied, because one 

error can only decrease the number of valid q-grams by 1. The pigeonhole principle, first 

mentioned by the German mathematician Dirichlet in 1834, states that, when n items are 

placed in m containers, with n > m, then at least one container holds more than one item. In 

terms of read mapping, this observation permits the fast identification of candidate regions for 

a valid match of a read. Only a reference region in which enough valid q-grams complying 

with the given error thresholds have been identified for a read can constitute a valid match to 

the reference. A solution for reads which have a non-empty remainder r, when dividing them 

by a given q, is to shift the start of all seeds by r and start another query against the reference. 

Correlating both queries of the read reveals if a valid match is possible or not (Blom et al., 

2011). 
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2.6.3. Burrows-Wheeler Transform Approach 

Mapping algorithms based on the BWT (Burrows and Wheeler, 1994) are mainly split into 

two phases: The first phase is an alternative seeding technique. Exact mappings of seeds are 

identified in this phase. In the second phase, the inexact alignments with mismatches and 

indels are calculated. 

The basis of algorithms applying BWT in the first phase is a representation of a prefix or 

suffix trie (see Figure 21). An important advantage of a trie is that all identical substrings of 

the input string are collapsed into a single branch of the trie. Thus, identical substrings only 

need to be aligned once to identify all potential alignment positions. The most widely used 

algorithms all make use of the "Full text index in Minute space" (FM-index) (Ferragina and 

Manzini, 2000, 2005) based on the BWT. 

The BWT is generally a permutation algorithm for the characters of a string, which was 

mainly applied in the field of text compression. Text transformed by BWT can be compressed 

very efficiently due to the fact that duplicated strings are easier to compress than unique 

strings. BWT permutes the input string and places identical - duplicated - runs of characters 

next to each other in the output string. Another very important property of BWT is that it is 

reversible without the need to store additional data structures. This fact makes it very useful 

for exact string matching, because a query string contained in the BWT transformed template 

can be discovered by a backward search. 

As already mentioned, BWT alone is not a compression algorithm and thus not memory 

efficient enough for a complete human genome. Therefore it has been coupled with the FM 

index which enables a compressed full-text substring index. The advantage of this dovetailing 

is that it allows fast access to substrings of the text, although the text is efficiently compressed 

after applying BWT. The basis of an FM index is formed by a compressed suffix array (see 

Figure 21) combining the text compressed using BWT and auxiliary data structures permitting 

full-text index search. 

 

 
Figure 21: Data structures based on a prefix trie. (A) Prefix trie of string AGGAGC where symbol OE marks the start of 

the string. The two numbers in each node give the suffix array interval of the substring represented by the node, which is the 

string concatenation of edge symbols from the node to the root. (B) Compressed prefix trie by contracting nodes with in- and 

out-degree both being one. (C) Prefix tree by representing the substring on each edge as the interval on the original string. 

(D) Prefix directed word graph (prefix DAWG) created by collapsing nodes of the prefix trie with identical suffix array 

interval. (E) Constructing the suffix array and Burrows-Wheeler transform of AGGAGC. The dollar symbol marks the end of 

the string and is lexicographically smaller than all the other symbols. The suffix array interval of a substring W is the 

maximal interval in the suffix array with all suffixes in the interval having W as prefix. For example, the suffix array interval 

of AG is [1, 2].The two suffixes in the interval are AGC$ and AGGAGC$, starting at position 3 and 0, respectively. They are 

the only suffixes that have AG as prefix. Figure and description are taken from (Li and Homer, 2010). 
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The time complexity for identifying an exact match of a query to a trie or its FM-index 

representation is linear in time and space in terms of the query length. Indexing the whole 

human genome of ~3.2gb only uses 1.3 gigabyte (GB) of RAM in an efficient implementation 

(Langmead et al., 2009). 

2.6.4. The Variety of Mapping Tools 

More than 60 different short read mapping tools have been developed to date. A list 

containing many of these tools can be found on Wikipedia10. The software diversity arose due 

to the indispensable need for reliable and accurate read alignments for all downstream tasks. 

A further contribution to this development is the fact that efficient mapping of many millions 

of reads in a reasonable amount of time and space is not a trivial task. Most of the mappers 

output their results in the de facto standard for read mapping data, the sequence 

alignment/map (SAM) format (H. Li et al., 2009). However, only a handful of mapping tools 

are widely in use around the globe. In the context of this work, the two most important of 

these mappers are BWA and Bowtie 2. Both aligners employ heuristics and thus do not find 

all possible alignments under the given parameters (Blom et al., 2011). To be able to identify 

all possible alignments, the exact and efficient mapping tool SARUMAN (Blom et al., 2011) 

has been chosen. All three mappers support mismatches and gaps and the output of multiple 

alignments per read. In the following a brief description of the three aligners is given: 

 BWA (Burrows-Wheeler aligner) (Li and Durbin, 2009) is a heuristic mapping tool 

based on backward search after BWT on an FM-index. BWA samples all distinct 

substrings from the mimicked prefix trie with an edit distance ≤ the maximal allowed 

edit distance. The main features of BWA include support of read pairs and mapping 

quality output for each read. The output is written in SAM format. 

 Bowtie 2 (Langmead and Salzberg, 2012) is a heuristic mapping tool combining 

backward search in the FM-index based on BWT with dynamic programming 

approaches for extending the exact matches. The extension phase is implemented to 

benefit from parallel processing via SIMD (see Section 2.6.2). The main features of 

Bowtie 2 include support of read pairs and mapping quality for each read. The output 

is written in SAM format. 

 SARUMAN (Semiglobal alignment of short reads using CUDA and Needleman-

Wunsch) (Blom et al., 2011) is an exact and complete mapping tool returning all 

possible alignments of a read to the reference complying with a given error threshold. 

The phase for identifying exact matches is driven by a q-gram and pigeonhole 

principle based filter algorithm. The extension phase massively parallelizes the 

alignment step on the graphics processing unit (GPU) of CUDA (Compute unified 

device architecture) graphic cards to speed up the overall alignment process of a data 

set. The alignments in this phase are computed by a modified Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970). The main advantage of SARUMAN is its 

completeness while running in time competitive to the other tools. Read pairs are not 

yet supported, but read mappings can be post-processed (e.g. by SAMtools (H. Li et 

al., 2009) or as described in Section 5.2.2, Read Pair Classification). It is noteworthy 

that SARUMAN requires all input reads to have the same length. This is inevitable for 

the parallelization step on the CUDA graphic card. 

                                                 
10 http://en.wikipedia.org/wiki/List_of_sequence_alignment_software 

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
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The biological case study in this work deals with bacteria, but as already mentioned in the 

Application Areas Section 2.6.1, mapping of eukaryotic RNA-seq data requires specialized, 

splice aware alignment tools. For the sake of completeness, three widely used tools are 

pointed out here. The most famous tool is TopHat (Kim et al., 2013, 2), a splice junction 

mapper based on the aforementioned Bowtie 2 (Langmead and Salzberg, 2012). Two further 

favorable splice junction mappers are GSNAP (Wu and Nacu, 2010) and STAR (Dobin et al., 

2013), both introducing their own novel mapping algorithm. 

2.7. Re-sequencing Mapping Analyses with NGS 

Genome re-sequencing often aims at tracing the course of genome evolution on both local and 

global level. SNPs and DIPs on the one hand are small scale variations mutating a single or a 

handful of base pairs. Genome rearrangements or structural variations on the other hand are 

global changes of the genome sequence. Besides revealing evolutionary relationships, the 

analysis of genome mutations can shed light on presence or absence of important gene 

variants, whole genes or genomic regions. In general, mutations can be classified according to 

their fitness effect. They can reduce the fitness of the organism, be lethal, neutral or 

beneficial. The distribution of these types of mutations, however, varies largely among 

different organisms (Eyre-Walker and Keightley, 2007). In research concerned with bacterial 

pathogenicity, these analyses play an important role for the classification of the hazardousness 

of a strain. The following section introduces methods for analyzing both scales of genome 

evolution and available analysis tools. 

2.7.1. Single Nucleotide and Deletion-Insertion 

Polymorphisms 

Despite their size, small DNA sequence variations can have huge impact on functions of 

genes as well as regulatory elements. Three types of single nucleotide variation can occur: 

Substitution of a single DNA base by another, insertion of a new base or deletion of an 

existing base. A single nucleotide alteration can lead to a completely different gene product or 

regulatory RNA or even loss-of-function. Thus, different phenotypes may be caused by single 

nucleotide polymorphisms (SNPs) or deletion-insertion polymorphisms (DIPs). Since 

acquired mutations are passed on to progeny, they provide an insight into evolutionary 

relationships, allowing the reconstruction of phylogenetic trees based on a SNP and DIP 

analysis (Pandya et al., 2009).  

The mentioned characteristics of small sequence variations facilitate identification of the 

origin of pathogenicity factors (Pandya et al., 2009) as well as mutations leading to desired 

behaviour or phenotypes (Ohnishi et al., 2002). 

In the following, the shorter "SNP detection" is used synonymously to "SNP and DIP 

detection". 

Reference coverage is decisive for reliable SNP detection. Deep sequencing with a coverage > 

15-20 provides clearly more reliable results than shallow coverage. In the latter case 

sequencing errors or wrongly mapped reads can easily lead to false positive SNPs (Nielsen et 

al., 2011; Kosugi et al., 2013). For eukaryotes with a huge genome, such as human, deep 

sequencing of the complete genome is still expensive. Thus, researchers have to face the 

shallow coverage problem along the whole genome. Bacterial genomes are much smaller, and 

thus nowadays they are mostly sequenced at higher depth; just as the P. aeruginosa strains 

examined in this work (see Section 6.2.4). 
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Besides, this work focuses on "SNP detection" instead of "genotype calling". The first 

describes the identification of variable sites in a genome, while the latter denotes the 

assignment of explicit genotypes of individuals to the identified sites. The standard format for 

bioinformatical SNP and genotype calling used by most tools working with this kind of data 

is the Variant Call Format (VCF) (Danecek et al., 2011). 

SNP detection is influenced by many different factors: Base calling, base quality, applied 

mapping algorithm, mapping quality, allele frequencies in case of polyploid organisms and 

proximity to indels and clustering of SNPs leading to alternative mapping possibilities at the 

same genomic position. Base calling errors should be reflected by a lower base quality and 

can be filtered by appropriate thresholds. Mapping quality varies among different mapping 

tools, but should generally adhere to the meaning of PHRED scores (see Section 2.1 and 

(Ewing and Green, 1998)). The most probable mapping of a read at a possible variant site can 

be analyzed by local realignment. Especially around possible indels and clusters of SNPs, a 

local realignment can clearly reduce false positive SNPs (Kosugi et al., 2013).  

If the error rate of the sequencing technology and the read mapping is known and additional 

information such as allele frequency and patterns of linkage disequilibrium (LD) are 

available, this information can be used for a probabilistic Bayesian approach. In this case, 

prior probabilities are established, which can represent for instance the expected frequency of 

SNPs or the sequencing error probability for a given base quality. Subsequently, posterior 

probabilities are calculated for all possible variant sites. Only sites indicating a SNP by a 

significant posterior probability are kept. 

Several tools for the computational identification of SNPs and DIPs in NGS data have been 

developed in the past years. They mainly apply three different algorithmic approaches: 

1. Empirical filter parameter estimation including coverage, base quality, 

neighbourhood quality standard (NQS) (Altshuler et al., 2000), mapping quality and 

allele frequency in case of polyploid organisms. Tools based on this approach include: 

Coval (Kosugi et al., 2013), VarScan (Koboldt et al., 2009) and GenomeComb 

(Reumers et al., 2012). 

2. Probabilistic Bayesian approach determines genotype likelihoods based on prior 

probabilities incorporating knowledge about errors from base calling and read 

mapping, allele frequency and patterns of LD. SNP results enclose a statistically 

derived quality score. Tools based on this approach include: MAQ (H. Li et al., 2008), 

SOAPsnp (R. Li et al., 2009), GATK (McKenna et al., 2010), SeqEM (Martin et al., 

2010), Slider II (Malhis and Jones, 2010), SAMtools (Li, 2011) and SAVI (Trifonov et 

al., 2013). An alternative probabilistic approach is employed by SNPseeker (Druley et 

al., 2009). This tool uses large deviations theory to probabilistically detect SNPs. 

3. Machine learning approach based on already available reliable training data. Fitting 

of training data can be done by logistic regression. Tools based on this approach 

include: GATK (alternative algorithm) (DePristo et al., 2011), Atlas-SNP2 (Shen et 

al., 2010) and ProbHD (Hoberman et al., 2009). 

Many tools additionally perform local realignment at possible variant sites regardless of the 

employed algorithm family to filter or improve the quality of SNP calls (Kosugi et al., 2013; 

DePristo et al., 2011; H. Li et al., 2009).  

2.7.2. Genome Rearrangements 

In contrast to the small scale of SNPs, large scale evolution on the genomic level is driven by 

structural variations (SVs) rearranging parts of the genome. Genome rearrangements can 

insert or delete genomic regions or change their order, orientation and position. The possible 
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rearrangement events comprise insertions, duplications, deletions, inversions, transpositions, 

block interchanges, fusions and fissions (see Figure 22). The genomic content of regions 

undergoing rearrangements can be classified as described in Section 2.5.1. For example the 

content of an insertion belongs to the dispensable genome, as it is not present in all genomes 

under investigation.  

 

 
Figure 22: Genome Rearrangements. Possible genome rearrangement events are illustrated in a schematic comparison of 

two genomes, both consisting of two chromosomes (grey bars). The event types are explicated in the legend. Conserved 

genomic regions present in both genomes are interconnected by shaded colored shapes. 

An alternative to synteny analysis on the gene level is to utilize read pair data for the detection 

of genome rearrangements via read mapping. This technique became affordable due to the 

drastic decrease of sequencing costs (see Section 2.1). Read pair mapping of sufficiently large 

NGS data sets enables high-resolution insight into the exact break points of genome 

rearrangements (Fullwood et al., 2009). One of the first research areas in which this technique 

was applied is human cancer research (Campbell et al., 2008). At best, rearrangement sites 

between two organisms (which can be two human individuals, bacterial strains or other 

sufficiently related organisms) can exactly be determined by read pair or split read mapping 

with sufficient coverage.  

Read pairs from paired end or mate pair data possess an expected distance and orientation. 

Observed values for these properties violating the expected values for the given library 

indicate genome rearrangements. Generally speaking, the higher the genome coverage and the 

more read pairs support the same rearrangement event, the more reliable a rearrangement can 

be identified correctly. Thus, rearrangements are found in genomic regions with a significant 

number of discordant read pairs. The type of the rearrangement event depends on the 

characteristics of the discordance (compare Figure 22). 

 Insertion: This event inserts a new region into the mapped genome. The read pair 

distance is too small (for sufficiently long pairs) and/or sufficient pairs with only one 

mapped mate are observed in the respective region. In this case, a de-novo assembly 

(see Section 2.3) can reveal the sequence of the insertion. 

 Deletion: This event deletes a region from the reference genome in the mapped 

genome. The read pair distance is too large and no reads can be mapped to the 

interjacent region deleted in the mapped genome. 

 Transposition: This event moves a region of the reference genome to another 

position/chromosome in the mapped genome. The distance of the pairs around the 

breakpoints is too large. Depending on the size of the transposed region, concordant 

pairs might be found in between the boundaries of the region. Transpositions can be 

classified as intra- or inter-chromosomal, depending on the chromosome on which the 

mapped mate is located. 

 Block interchange: It is an event exchanging two regions of the reference genome 

with each other in the mapped genome. Read pairs with a too large distance will be 

observed around all four breakpoints of a block interchange (see Figure 22). Just as 

transpositions, block interchanges can be classified as intra- or inter-chromosomal. 



Rolf Hilker NGS and Comparative Genomics 

 

 

46 

 Inversion: This event inverts a region of the reference in the mapped genome. The 

read pair distance is too large and the orientation of the reads towards each other is 

discordant. Depending on the size of the inversed region, concordant pairs might be 

found in between the boundaries of the region. 

 Duplication: This event duplicates a region of the reference genome in the mapped 

genome. One part of the read pairs is concordant also around the breakpoints of the 

duplication, while the other part of pairs around the breakpoints is discordant. The 

latter fraction originates from a different genomic region, in which the duplicated 

region has been inserted. Thus, the region duplicated in the mapped genome is marked 

by significantly more reads mapping uniquely to the region. 

Several software tools adopting different approaches are available for identifying SV events 

using read pair data. Popular examples are: GASV (Sindi et al., 2009), SVMiner (Hayes et al., 

2012), BreakDancer (Chen et al., 2009) and SVDetect (Zeitouni et al., 2010). GASV 

(Geometric Analysis of Structural Variants) uses a geometric approach representing 

uncertainties in the prediction of a SV as a polygon in the plane. Supporting measurements for 

a variation are identified by computing intersections of these polygons by a computational 

geometry algorithm. SVMiner at first generates candidate SVs and then validates them by a 

model-based clustering approach. BreakDancer uses a different clustering approach based on 

user defined thresholds. SVDetect includes two approaches: A clustering and a sliding 

window approach. Apart from the four mentioned tools other programs specialized only on 

single SV types are also available (e.g. MoDIL (Lee et al., 2009) and AggloIndel (Wittler, 

2013) for insertions and deletions only). Results of these tools are mainly the type of 

rearrangement, its coordinates and the estimated size of the rearranged genomic regions. 

2.8. RNA-seq Mapping Analyses using NGS 

The transcriptome of an organism or cell denotes its complete set of transcripts and their 

abundances at a fixed time point under given environmental conditions including all mRNAs, 

rRNAs, tRNA, miRNAs and other small regulatory RNAs.  

The state of the art approach to analyze an entire transcriptome is called RNA-seq. It is a cost 

effective technique utilizing deep high-throughput sequencing after reverse transcribing all 

isolated RNA into cDNA. This method offers various deep insights into the transcriptional 

landscape (Wang et al., 2009). 

Before the age of massively parallel RNA-seq, microarrays and low throughput sequence 

based approaches were established. Microarrays containing DNA probes from known genes 

of interest are incubated for hybridization with fluorescently labelled cDNA in order to 

determine genes present in the sample (Bertone et al., 2004). The sequence based approaches 

started with relatively expensive Sanger sequencing before tag-based methods (e.g. SAGE 

(Velculescu et al., 1995), MPSS (Brenner et al., 2000)) were developed. Several limitations of 

these methods are largely overcome by RNA-seq and the increasing read length of the 

employed sequencing technologies: Short probes or tags often hybridize or map to multiple 

locations of the reference genome. Additionally, microarrays tend to relatively high noise 

rates, only already known gene sequences can be found, isoforms cannot be distinguished and 

they have an upper limit of sensitivity for transcript quantification. Another disadvantage of 

the older methods are their high costs in comparison to RNA-seq.  

RNA-seq sheds light on transcriptome complexity including isoforms in eukaryotes and 

operons in prokaryotes. It allows detailed insights into transcript abundances, offers single 

base resolution and low background noise. Additionally, no upper quantification limit exists. 
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Instead, the number of reads correlates with the number of transcripts. A high reproducibility 

of biological and technical replicates can also be achieved (Mortazavi et al., 2008). 

When using RNA-seq, the transcriptional landscape can be analyzed either by mapping the 

reads to an already known reference genome (see Section 2.6) or by creating a de novo 

transcriptome assembly (see Section 2.3).  

Afterwards, the main goals are to catalogue all types of transcripts (see Section 2.8.1) and to 

quantify transcript abundances under different environmental conditions at fixed time points 

or development stages. Subsequently, the different conditions are compared and differences 

and commonalities are identified (see Section 2.8.3). Another goal is the determination of 

transcript structures. Therefore, transcription start sites (TSS), 3'-ends and UTRs (see Section 

2.8.2), operon structures in prokaryotes (see Section 2.8.4) and isoforms in eukaryotes can be 

identified. Isoforms are not further addressed here, since this work focuses on bacterial 

research. A valuable introduction to isoform analysis is given in the publication of (Breitbart 

et al., 1987) about alternative splicing.  

Just like in re-sequencing experiments, SNP and DIP detection (see Section 2.7.1) can also be 

conducted with RNA-seq data for all expressed transcript regions. 

2.8.1. Read Count & Normalization Calculations 

Before calculating normalized read count values or differential gene expression (see Section 

2.8.3), the number of reads associated with specific transcripts has to be determined. For 

unannotated references or when a de novo transcriptome assembly is desired for other 

reasons, this is a challenging task approached by de novo transcriptome assembly tools like 

Velvet/Oases (Schulz et al., 2012), SOAPdenovo-trans (Xie et al., 2014) and Trinity 

(Grabherr et al., 2011). Details are not discussed here, since de novo transcriptome assembly 

is beyond the scope of this work. But even for already annotated reference genomes this is not 

a trivial task, requiring insights in the data and the planned downstream analyses.  

At first, the transcript boundaries have to be determined and the feature overlap model has to 

be chosen. The transcript boundaries are mostly chosen as the exact genomic positions of 

annotated genes of coding and non-coding RNAs. The feature overlap model choice depends 

on the application and available data. Three different models (see Figure 23) have been 

proposed by the authors of the popular HTSeq-count tool (Anders et al., 2014) for generating 

read count data: 

1. The union model collects the union of all genes overlapping the read. 

2. The intersection_strict model collects all genes which are overlapping exactly each 

position of the read. 

3. The intersection_nonempty model collects all genes which are covering all positions 

of the read, but also allows partial overlaps as long as no other gene fully overlaps the 

read. 

In HTSeq-count all reads with an empty feature set or with a set containing more than one 

gene with respect to the chosen model are discarded. Discarding the reads with multiple 

assigned genes leads to an underestimation of the real read counts. In the worst case, this 

decision can lead to false negatives if not sufficient other valid reads are mapped e.g. for 

genes shorter than the read length. Alternative to the three proposed models, a read could be 

either assigned randomly to one of the genes, to all genes, or its single read count is divided 

by the number of genes overlapped by the read. The drawback of this model is that it might 

cause false positives in a subsequent analysis.  

Reads mapping multiple times to the reference pose a similar problem. They can be handled 

by one of the above mentioned models, too. The only difference for the model including 
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multiple mapped reads is the division by the number of mappings of that read instead of the 

number of genes. 

 

 
Figure 23: Effect of three read overlapping models. The three models are described in the text above. In HTSeq-count 

(Anders et al., 2014), all reads with more than one gene assigned (ambiguous) or with no_feature assigned are not counted 

for any gene. Source: http://www-huber.embl.de/HTSeq, accessed on 17.01.2014. 

In parallel to this work, an alternative approach to determine transcript boundaries has been 

proposed by McClure et al. (2013). They also start with positions provided by annotated 

genes and novel transcript seeds. The latter are regions of sufficient coverage of a certain 

minimum length. Then, the transcript boundaries are extended by a Bayesian approach 

applied to the mapped reads connected to the seed at both transcript ends. In the final step, 

their procedure merges adjacent and overlapping extended transcripts if their coverage 

characteristics are significantly concordant. The advantage of using an approach always 

starting with transcript boundary estimation is that novel transcripts are directly available for 

all other downstream analyses like the two methods explicated in the last paragraph of this 

section.  

Normalization of read counts is an important pre-processing step for many RNA-seq data 

analyses. RNA-seq is less biased than microarrays, but nonetheless there are other biases and 

variability in the data (Robinson and Smyth, 2007). Additionally, reads are mostly shorter 

than gene transcripts and can map to multiple genes and isoforms. The same issue can be 

observed for small ncRNAs whose corresponding short reads are more likely to map to 

multiple regions of the reference genome than longer reads. It is important to review the 



Rolf Hilker NGS and Comparative Genomics 

 

 

49 

requirements of planned downstream analyses and decide on that basis if pre-processing in the 

form of sample normalization is needed. E.g. all differential gene expression analysis tools 

introduced in Section 2.8.3 require raw read counts as input, because they include 

normalization in their statistical model.  

Two widely used and straight forward normalization methods are transcripts per million 

(TPM) (B. Li et al., 2010) and reads per kb of exon model per million mapped reads - short 

RPKM - introduced by (Mortazavi et al., 2008). RPKM is meant to reflect molar 

concentration of transcripts by normalizing for transcript length and library size. This type of 

normalization is necessary for reasonable comparisons of transcript abundances both within 

one and among multiple samples. TPM has been proposed as an improvement to RPKM, 

because TPM has the advantage of being invariant between samples and species (B. Li et al., 

2010) while RPKM values may change when the mean expressed transcript length changes 

due to different sets of active genes in two samples. To take into account that reads of a given 

length cannot start at each position in a transcript, the effective length of transcripts 𝑙 is used 

for the normalization instead of the whole transcript length l. The effective length of transcript 

i has first been defined by (Trapnell et al., 2010) as 

𝑙𝑖̃ = ∑ 𝜆𝐹(𝑥)
𝑥≤𝑙𝑖

∗ 𝑙𝑖 −  𝑥 + 1, 

where x is one of the observed read length values in transcript i of length li, and 𝜆𝐹 is the 

fraction of reads for i with length x. 

The formula for the RPKM value of gene i is: 

𝑅𝑃𝐾𝑀𝑖 = 109 ∗  
𝐶𝑖

𝑁∗𝑙𝑖̃
, where 

C is the number of mappable reads for genomic feature i (e.g. a gene) and N is the total 

number of mappable reads for the experiment/data set. 

𝑇𝑃𝑀𝑖 = 106 ∗ (
𝑐𝑖

𝑙 ̃𝑖

) ∗ (1
∑

𝑐𝑗

𝑙𝑗̃
𝑗

⁄ ), where 

c is the number of mappable reads for genomic feature i and j is an integer ranging from 1 to 

the number of genomic features of the same type (e.g. genes). 

 

2.8.2. Transcription Start Site & Novel Transcript 

Detection 

Transcription initiation at the transcription start site (TSS) is one of the biological key 

mechanisms defining the function of the cell. Besides mRNA transcripts which are translated 

into proteins, numerous non-coding regulatory RNAs exist. Also these RNAs are subject to 

regulation and mostly regulate the expression of other genes as well. In general, gene regions 

can be classified into a TSS, 5' untranslated region (UTR), translation start site, coding 

sequence, stop of the CDS and 3'UTR. The identification of TSS is of high importance, as it 

aids identification of the correct translation start site, the 5'UTR and allows prediction of the 

respective promoter sequence. Knowing the promoter sequence, more reliable conclusions 

regarding transcript regulation can be made. Gene analysis also benefits from TSS detection, 

because it relies on accurate gene annotation. Additionally, genome-wide identification of 

TSS reveals not only protein-coding genes, but also novel miRNA, small regulatory RNA and 

antisense genes.  
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TSSs can be classified into primary TSSs - the most prominent TSS for a gene, alternative 

TSSs of a gene, internal TSSs - TSSs found inside annotated genes, antisense TSSs - TSSs 

found on the antisense strand of genes and orphan TSSs - TSSs indicating novel transcripts 

with no annotated features within reach.  

 

 
Figure 24: Transcription start site classification. A schematic genome sequence is shown (discontinuous horizontal grey 

line) with a sector containing only a single annotated gene (blue arrow) on the forward strand. Below, read coverage sections 

of a corresponding RNA-seq data set are shown (blue). Coverage above the center line belongs to the forward strand, while 

coverage below the center line belongs to the reverse strand. The sharp peak starts depicting a TSS are marked on their 

respective strand by vertical dotted grey lines connected to the corresponding TSS description. The leftmost TSS is classified 

as alternative TSS, because the primary TSS is more abundant in the examined data set, i.e. the primary TSS has a higher 

coverage. The figure was created with the aid of ReadXplorer (see Chapter 5). 

In the recent years, the rapidly decreasing sequencing costs enabled NGS as a key tool for 

analyses regarding transcriptional mechanisms in both eukaryotes and prokaryotes. This 

research revealed that also prokaryotic transcriptomes exhibit a complex structure (Sharma et 

al., 2010; Mendoza-Vargas et al., 2009).  

For TSS analysis in eukaryotes, the capped analysis of gene expression (CAGE) technique 

(Shiraki et al., 2003) has been developed more than 10 years ago, which is heavily used and 

has been further improved over time (Kodzius et al., 2006). CAGE extracts 5' tag sequences 

of the currently expressed transcripts in the sample utilizing the capping structure of 

unprocessed RNAs. Unfortunately, this method cannot be applied to prokaryotic organisms 

because of differences in mRNA processing, i.e. prokaryotic mRNAs do not have a cap.  

With the era of NGS and RNA-seq the entire transcriptome of a prokaryote can be sequenced. 

To identify TSSs within this data, approaches for peak detection from methods like ChIP-seq 

(Johnson et al., 2007) could be employed, but these algorithms are not suited for the noise of 

RNA-seq data. In normal RNA-seq data, an enrichment of read starts can occur apart from 

TSS locations at processing sites, secondary structures influencing RNA degradation and sites 

for chemical modification (Amman et al., 2014). Especially weak TSS signals are hardly 

interpretable in such an environment.  

To overcome these problems, the differential RNA-seq (dRNA-seq) approach (Sharma et al., 

2010) was proposed for generating large-scale experimental evidence for complete 

transcriptomes in prokaryotes. This technique generates two - differential - data sets. One is 

treated with 5' mono-phosphate-dependent terminator exonuclease (TEX) and the other is not. 

Since processed RNAs exhibit a 5' mono-phosphate, they are degraded by the TEX treatment 

while primary transcripts required for TSS detection are protected by a 5' tri-phosphate.  

The first tools for automatic prokaryotic TSS detection from dRNA-seq data became available 

during the course of this thesis and their number is still very limited. TSSPredator (Dugar et 

al., 2013) detects TSS for TEX-treated (TEX+) versus untreated (TEX-) data sets based on 

the evaluation of read start peaks enriched in the TEX+ sample by fixed thresholds. 

Rockhopper (McClure et al., 2013) follows a Bayesian approach to identify transcript 

boundaries, but has not been evaluated on dRNA-seq data. Two more sophisticated statistical 
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models have just been published last year: TSSAR (Amman et al., 2014) and TSSer (Jorjani 

and Zavolan, 2014). TSSAR models the number of read starts at a genomic position as 

Poisson distributed. They presume that the difference of the TEX+ versus the TEX- sample 

follows a Skellam distribution and detect the TSS of enriched primary transcripts on this 

basis. TSSer models the number of read starts at a genomic position by a hypergeometric 

distribution, which is approximated by a binomial distribution. TSSer allows for replicates 

and includes them in the statistical model. 

Note that only TSSs of expressed genes can be identified by dRNA-seq. In order to get 

experimental evidence for as many genes of an organism as possible it is advisable to analyze 

data sets generated from different environmental conditions including stress conditions. 

2.8.3. Differential Gene Expression Analysis 

The adaptation of an organism to different environmental conditions, developmental stages or 

genetic variants is reflected in changes of gene regulation, leading to different transcripts and 

transcript levels. This effect can be measured on the molecular level by comparison of NGS 

count data, i.e. read counts per genes in RNA-seq data sets. A gene is accepted to be 

differentially expressed between different conditions, if it can be shown that the transcript 

levels for that gene differ significantly among the conditions (see Figure 25). An important 

observation which is a premise for differential gene expression (abbreviated as DE from here 

on) analysis by RNA-seq was made by (Mortazavi et al., 2008): Read counts per gene are 

approximately linearly related to the respective transcript abundance. In eukaryotes the gene 

models are more complicated due to splicing and the necessity to distinguish different splice 

variants. Thus, in prokaryotes the RNA-seq reads can be completely mapped to the reference 

(see Section 2.6), while eukaryotic reads should be mapped using a split read mapper like 

TopHat (Trapnell et al., 2009) to be able to map reads across splice junctions.  

 

 
Figure 25: Differential Gene Expression. A schematic example of differential gene expression among three samples, each 

obtained from a different environmental condition, is shown in the figure for a single gene of interest. The first condition 

exhibits a high expression level compared to the significantly lower expression level observed in condition two and no 

expression in condition three. Such observations show that gene regulation of the gene of interest changes with the 

environmental setting. 

DE evaluation methods require suitable statistical models for normalization and DE testing. 

The chosen models should account for the extremely high dynamic range of RNA-seq data 

and incorporate suitable error modelling. Reliable normalization across conditions is 

especially important to prevent false positive results when the library sizes of the compared 

conditions vary significantly. The first methods for DE analysis were based on the assumption 

that the Poisson distribution is a suitable model for RNA-seq data, but it has been pointed out 

by (Robinson and Smyth, 2007; Nagalakshmi et al., 2008) that the Poisson distribution does 

not account for the amount of variability in RNA-seq data. The single parameter of the 
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Poisson distribution determining both variance and mean is thus too tight for the observed 

data and does not control type-I errors (false positive results). This behaviour is referred to as 

the overdispersion problem. Due to these findings, most newer approaches (including all 

mentioned approaches below) employ a Negative Binomial (NB) distribution (Whitaker, 

1914) to model the number of reads assigned to a specific gene in a specific sample. Note that 

statistical DE models address a more general problem and can also be applied to ChIP-seq 

(Johnson et al., 2007), Tag-seq (Morrissy et al., 2009), 4C-seq (van de Werken et al., 2012), 

Hi-C (van Berkum et al., 2010) data sets or counts of observed taxa in metagenomic studies. 

Available software packages for DE analysis all implemented in the statistical programming 

language R11 as R-packages within the Bioconductor project (Gentleman et al., 2004) include 

 baySeq (Hardcastle and Kelly, 2010): It is determining the prior distribution of read 

counts by a computationally intensive empirical Bayes approach. DE is measured by 

calculating the posterior probabilities. baySeq starts by storing the read counts and 

library size scaling factors together as 

𝐷𝑐 = {(𝑢1,𝑐, … , 𝑢𝑛,𝑐), (𝑙1, … , 𝑙𝑛)}, 

where 𝑐 is a gene, 𝑛 is the number of samples, 𝑢 is the read count of a gene and 𝑙 is the 

scaling factor of a sample. A distinctive feature of baySeq is that it supports designing 

multi-condition experiments by entering multiple models for the same data sets. All 

models are then tested for DE. baySeq acts on the assumption that replicates share the 

same prior distribution on the underlying parameters of each gene. The posterior 

probability of a model 𝑀 given the data 𝐷𝑐 is then calculated according to Bayes: 

ℙ(𝑀|𝐷𝑐) =  
ℙ(𝐷𝑐|𝑀) ∗  ℙ(𝑀)

ℙ(𝐷𝑐)
 

To solve this equation, the replicate sets of each 𝑀 are considered by baySeq. 𝜃𝑖 are 

the parameters of the underlying distribution of one replicate set and all replicate sets 

are represented by 𝐾 = {𝜃1, … , 𝜃𝑚}. Now, ℙ(𝐷𝑐|𝑀) is calculated as the marginal 

likelihood 

ℙ(𝐷𝑐|𝑀) =  ∫ ℙ(𝐷𝑐|𝐾, 𝑀) ∗ ℙ(𝐾|𝑀) 𝑑𝐾 

The NB distribution is used in this equation to calculate 𝐷𝑐|𝐾, 𝑀 and 𝐾|𝑀. The prior 

probability of a model ℙ(𝑀) is estimated by first choosing some prior probability 𝑝 

for the model 𝑀. 𝑝 is then used to estimate the posterior probability of ℙ(𝑀|𝐷𝑐), 

generate a new estimate 𝑝′ for the prior probability of 𝑀. This process is iterated until 

convergence to obtain an estimate for the prior probability of 𝑀. 

 DESeq (Anders and Huber, 2010): It is a widely used tool linking variance and mean 

by local regression as error model for the count data. Thus, normalization is included 

in the statistical model. DESeq includes modelling and evaluation of multi-factor 

designs. The NB distribution for the non-negative count data is given as 

𝐾𝑖𝑗 ~ 𝑁𝐵(𝜇𝑖𝑗, 𝜎𝑖𝑗
2 ), where 𝑖 = (1, … , 𝑛) is the gene index and 𝑗 = (1, … , 𝑚) is the 

sample index. Both true mean and variance are unknown and have to be fit to the data.  

 

                                                 
11 http://www.r-project.org 

http://www.r-project.org/
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DESeq calculates the mean as  

𝜇𝑖𝑗 = 𝑞𝑖,𝑝(𝑗) ∗ 𝑠𝑗 , 

𝑞𝑖,𝑝(𝑗) is a per-gene value dependent on the experimental condition 𝑝(𝑗) and estimated 

as the average of the counts of all samples in condition 𝑗: 

𝑞̂𝑖𝑝 =  
1

𝑚𝑝
∗ ∑

𝑘𝑖𝑗

𝑠̂𝑗
𝑗:𝑝(𝑗)=𝑝

, 

where 𝑚𝑝 is the number of replicates in condition 𝑝 and 𝑘𝑖𝑗 is the read count of gene 𝑖 

in condition 𝑗. 𝑠𝑗 is a library size parameter and estimated as 

𝑠̂𝑗 =  𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ∗  
𝑘𝑖𝑗

(∏ 𝑘𝑖𝑣
𝑚
𝑣=1 )1/𝑚

 

The variance is calculated as sum of a shot noise and a raw variance term in DESeq: 

𝜎𝑖𝑗
2 =  𝜇𝑖𝑗 +  𝑠𝑗

2 ∗ 𝑣𝑝(𝑞𝑖,𝑝(𝑗)), 

where 𝑣𝑝(𝑞𝑖,𝑝(𝑗)) is a smooth function of the per gene abundance 𝑞𝑖,𝑝(𝑗). The test for 

DE is carried out by assuming 𝑞𝑖,𝐴 =  𝑞𝑖,𝐵 for two conditions 𝐴 and 𝐵 as null 

hypothesis. The sum of all read counts for gene 𝑖 is denoted as 𝐾𝑖𝐴 for condition 𝐴 and 

as 𝐾𝑖𝐵 for condition 𝐵. Given that the overall sum of all counts for gene 𝑖 is 𝐾𝑖𝑆 =
 𝐾𝑖𝐴 +  𝐾𝑖𝐵, the probability 𝑝(𝑎, 𝑏) of the event 𝐾𝑖𝐴 = 𝑎 and 𝐾𝑖𝐵 = 𝑏 can be computed 

for any pair of numbers 𝑎 and 𝑏 by utilizing the above presented equations. A p-value 

for DE of gene 𝑖 can then be computed using 𝑝(𝑎, 𝑏): 

𝑝𝑖 =  

∑ 𝑝(𝑎, 𝑏)𝑎+𝑏=𝐾𝑖𝑆

𝑝(𝑎,𝑏)≤𝑝(𝐾𝑖𝐴,𝐾𝑖𝐵)

∑  𝑝(𝑎, 𝑏)𝑎+𝑏=𝐾𝑖𝑆

 

 DESeq2 (Love et al., 2014): It is an enhanced alternative to DESeq focusing on the 

DE strength instead of the presence or absence of DE. Thus it provides a more 

quantitative DE analysis than DESeq and enables gene ranking. The methodology of 

DESeq2 starts by fitting a generalized linear model (GLM) (McCullagh and Nelder, 

1989) to each gene. Like in DESeq, normalization is included in the process. The 

dispersion estimates of each gene are shrunk by an empirical Bayes approach. A 

Wald-test (Wald, 1943) is used to test for differential expression. 

 DSS (Dispersion Shrinkage for Sequencing) (Wu et al., 2013): This tool focuses on 

adequately capturing the heterogeneity of gene-specific dispersion across biological 

replicates by an empirical Bayes shrinkage more accurate than the method 

implemented in edgeR.  

 edgeR (Robinson et al., 2010): In edgeR the overdispersion is shrunk by conditional 

weighted likelihood. For statistical testing of DE two tests are employed: The Wald-

test (Wald, 1943) and their own test developed earlier (Robinson and Smyth, 2007). 

An update of edgeR enabled evaluating multi-factor designs and includes an empirical 

Bayes shrinkage estimate for the dispersion (McCarthy et al., 2012). The dispersion is 

first estimated gene-wise and subsequently the empirical Bayes approach shares 

information between genes. 
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 ShrinkSeq (Van De Wiel et al., 2013): This tool focuses on improved shrinkage of 

dispersion-related parameters. Consequently, it offers joint shrinkage of parameters. 

Further, it uses the zero-inflated NB distribution, which treats zero counts differently 

than positive counts. 

Especially for the analysis of eukaryotic genomes, the Cufflinks package (Trapnell et al., 

2012) has been developed, which contains a comprehensive DE analysis tools called Cuffdiff 

(Trapnell et al., 2013). 

2.8.4. Operon Detection 

Operons are units of co-regulated neighbouring genes located on the same strand. Classical 

operons, as coined by Jacob and Monod (Jacob et al., 1960), consist of a promoter and 

operator(s) regulating several structural genes (for details see Figure 26).  

 
Figure 26: The lac operon and its control elements. The figure illustrates regulation of the lactose operon in Escherichia 

coli K12. This was the first operon analyzed by Jacob and Monod (Jacob et al., 1960). The three structural genes (lacZ, lacY, 

lacA) of this operon control the transport and metabolism of lactose. The first regulation is constituted by the repressor 

protein binding the operator (O). It is generated from the lacI gene in the absence of lactose. The repressor ensures that all lac 

operon genes are only transcribed in the presence of lactose. A second regulation is constituted by CAP (catabolite activator 

protein). In absence of glucose CAP is loaded with cAMP (cyclic adenosine monophosphate) which in turn allows CAP to 

bind upstream of the promoter (P). Binding of RNA-polymerase to the promoter is thereby alleviated and increases 

transcription of the lac operon. The figure is adapted from: commons.wikimedia.org/wiki/File:Lac_operon-

2010-21-01.png, accessed on 03.02.2014. 

These genes are transcribed into a single polycistronic mRNA and mostly encode for similar 

functions or belong to the same metabolic pathway. However, operons can also contain 
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functionally unrelated genes (Price et al., 2006). Operons are mainly occurring in prokaryotes, 

but can also be found in eukaryotes (Hurst et al., 2004). A notable difference of operon-like 

gene clusters in eukaryotes is that their structural genes are transcribed separately in most 

cases instead of polycistronic.  

In the past few years it became evident that operons are not static entities. They are rather 

composed dynamically. Depending on the environmental conditions and development stages, 

the product of an operon can vary in terms of alternative transcription start sites, the number 

of expressed genes and even monocistronic mRNAs can be produced (Güell et al., 2009; Li et 

al., 2013). 

 

Several computational methods for predicting operons have been suggested since the first 

whole genome sequences of bacteria became available. Before the era of RNA-seq, the 

majority of approaches for operon detection relied on models trained on experimentally well-

characterized operons (Craven et al., 2000; Tran et al., 2009). These tools often achieve low 

sensitivity when they are applied to yet uncharacterized genomes with very little or no 

available training data. Alternative approaches rely on typical characteristics of operons, like 

intergenic distance, conservation of gene order among multiple reference genomes and 

functional relation of genes within an operon (Dam et al., 2007). Recent developments are 

now either based on experimental data from RNA-seq experiments or combine RNA-seq with 

computational methods using trained classifiers. RNA-seq data sets only contain data for 

expressed genes under the given conditions. Therefore, the use of RNA-seq enables 

identification of expression patterns of operons and elucidation of expression dynamics within 

an operon under different environmental conditions (e.g. an alternative transcription start site 

can lead to expression of only a sub-part of an operon). The most recent RNA-seq based 

approaches supporting these features include: 

 Rockhopper (McClure et al., 2013) is an open-source software implemented in Java 

enabling several RNA-seq data analyses, like detecting novel sRNAs, transcription 

start sites and operons. Their approach solely relies on RNA-seq data. A naive Bayes 

classifier is fed with prior operon probabilities. These probabilities are derived from 

two properties: Intergenic distance specific for the genome and expression correlation 

over all available corresponding samples. 

 RNAseg (Bischler et al., 2014) is a C++ software designed for identification of 

transcription units solely based on dRNA-seq data (see Section 2.8.2). RNAseg 

divides the genome in transcribed and untranscribed segments. For this purpose they 

extended the SCM segmentation algorithm introduced by Huber et al. (2006) to make 

use of dRNA-seq data. Afterwards, all genes overlapping the same segment are 

assigned to an operon. 

 (Fortino et al., 2014) proposed an integrative approach combining experimental 

dRNA-seq data with a classifier for genomic properties trained on a small set of 

experimentally validated operons. The RNA-seq data is analyzed for transcript 

segments utilizing RPKM (see Section 2.8.1), intergenic distance within the genome 

and the distinct transcript level of intra- and intergenic regions. All significant 

evidence found within the RNA-seq data is then cross-validated by linking the results 

to confirmed operons from the DOOR (Mao et al., 2009) database. Putative novel 

operons are also reported, but classified accordingly. This approach is implemented in 

R. 
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Chapter 3  
 

Read Mapping Analysis - State of the Art 

Specialized viewers for visualizing and dealing with high throughput NGS mapping data sets, 

called tracks, in connection with a genomic reference sequence were developed in the past 

few years. The list of available viewers already comprises more than 20 tools (Abeel et al., 

2012). Note that not all of these tools are maintained and still capable of efficiently handling 

huge data sets from today's NGS platforms. To provide an overview of the spearhead of 

genome browsers capable of visualizing and analyzing read mapping data (see Section 2.6) 

five popular state of the art open source software packages are reviewed in this chapter. All 

five tools are implemented in the platform independent programming language Java. A 

common functionality of all presented tools is the ability to visually explore genome 

sequences and their annotations in connection to corresponding RNA-seq, DNA-seq and 

ChIP-seq data. For a side-by-side comparison of the main features of all tools please visit 

Table 9 in the results section. The chapter concludes with an evaluation of available read 

mapping quality and quantity information in SAM formatted mapping files and their 

availability in the five presented tools. 

 

3.1. Savant 

Savant (Sequence Annotation, Visualization and Analysis Tool) (Fiume et al., 2010, 2012) 

aims at dynamically visualizing up to human sized genomes along with corresponding read 

mapping, point, interval and continuous data sets (see Figure 27). Additionally, it defines a 

plug-in interface to make the software extensible for external programmers. Some automatic 

analysis function, mentioned below, has already been incorporated in Savant through this 

plug-in interface. 

Multiple visualization modes are available for read mapping data in Savant (see Figure 27). 

They address manual exploration of SNPs, structural and copy number variants, peaks and 

other characteristics visible from the genome coverage. Read pairs can be visualized as arcs, 

which colour-code the distance, orientation and concordance of the reads (see Figure 28). 
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Figure 27: Savant 2 user interface. (A) The visible chromosome can be selected and is shown in the row below. (B) Below 

the chromosome, the chromosome sequence can be visualized by base specific colors. (C) A read alignment track assigning 

each read position an intensity proportional to its base quality. Mismatches within reads are denoted by colors. (D) The same 

read alignment track in Strand-SNP mode. This mode shows coverage and allele support partitioned by strand, with positive 

strand support above the black line and negative strand support below. (E) Plug-in panel. The opened GATK (McKenna et 

al., 2010) plug-in can be used to compute genotypes from read alignment tracks within the browser. (F) Variant Navigator 

panel. The Variant Navigator visualizes and guides the navigation of genetic variant data. The map page of the Variant 

Navigator displays a matrix where each column represents an individual or sample from the file and each row represents a 

variant position; each cell in the matrix is coloured according to the allele possessed by the corresponding sample and 

position, or is transparent if no allele is predicted there. The genomic range displayed in the Variant Navigator is a superset of 

the range for tracks, and users can click within the Variant Navigator to navigate to sub-ranges of the variant range. Figure 

and description are adapted from (Fiume et al., 2012). 

 

Automatic SNP detection can be performed with a plug-in for the GATK package (McKenna 

et al., 2010), allowing users which have installed GATK to run it from within Savant. GATK 

outputs VCF (see Section 2.7.1), which can be visualized by Savant in several ways: The data 

can be represented in a table, as allele frequencies for each SNP, assigned to two cohorts in 

order to compare allele frequencies and as an LD (Linkage Disequilibrium) plot (see Figure 

28). 

Two plug-ins are available for automatic analysis of RNA-seq data. The first plug-in allows to 

perform differential gene expression analysis using edgeR (Robinson et al., 2010) (see 

Section 2.8.3) from within Savant, if an edgeR installation is present. The second plug-in 

supports import or calculation of isoforms and their abundances. Other plug-ins adding 

notable functionality to the software are:  

 A plug-in for exploring protein-protein interaction partners of a query gene. 

 A wrapper plug-in for the local re-alignment tool SRMA (Homer and Nelson, 2010). 

Other than read mappers, SRMA shares information across mapped reads to locally 

realign them based on their local consensus sequence. 

 A plug-in for WikiPathways (Pico et al., 2008) is available to browse the genome 

based on functional annotation. 

 A plug-in is available allowing the integration of remote genomic content from the 

UCSC genome database (Karolchik et al., 2014). 
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Figure 28: Savant SNP and read pair visualizations. (A) The allele frequency view enabling comparison of allele 

frequencies of genetic variants from samples assigned to two cohorts is shown. (B) An LD plot of variants in the same range 

as in (A). Blue and red cells represent low and high correlation between variant positions, respectively. (C) Paired reads 

displayed as vertically scaled arcs depending on their insert size. Red arcs represent pairs that are identified as being 

discordant. All blue pairs are classified as concordant. The example indicates a deletion event in the mapped genome. (D) 

The same data as shown in (C) displayed as coverage plot. Figure and description are adapted from (Fiume et al., 2012). 

 

3.2. GenomeView 

The dynamic GenomeView software (Abeel et al., 2012) facilitates visualization of genomes 

and read mapping data (see Figure 29). This browser does not offer any automatic analysis 

functions, but a distinct feature of GenomeView in comparison to other genome browsers is 

its functionality for editing and curating gene annotations. Like Savant (see Section 3.1), 

GenomeView is extensible through a plug-in interface. Here, the Java Plug-in Framework 

(JPF) is used. To demonstrate the extensibility, a plug-in has been developed by the authors 

for visualization of DNA properties like GC-content. 
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Figure 29: GenomeView graphical user interface. The reference is displayed at the top along with all six reading frames. 

Genomic annotations are shown in their respective frame. Below, a track with CDS annotations is shown (blue). Further 

below, two read alignment data sets are shown. The information frame on the right hand side displays global information and 

context sensitive information as described in the blue balloons. Figure and description are adapted from (Abeel et al., 2012). 

Input data can be loaded from both, local files or URLs. Secure data transfer by encrypting 

the data via Secure Socket Layer (SSL) is also supported. Since genome annotations can be 

edited in GenomeView, it allows sending updated data back to a server via http-post. The 

authors claim that it is thus straight forward to integrate their software as visualization front-

end into an existing web page. 

Besides standard visualizations for genomic annotations and read alignments from RNA-seq, 

DNA-seq or ChIP-seq, GenomeView has the ability to import multiple (whole) genome 

alignments from multiple fasta or MAF (Multiple Alignment Format) files (see Figure 30). 

These data tracks are visualized in a specialized view including sequence logos at the highest 

zoom level. Zooming out on the other hand switches to overall conservation of the data.  

Visual SNP inspection is supported by emphasizing mismatching bases by a colour coded 

consensus base histogram and supporting import of VCF files (see Section 2.7.1) for pre-

computed SNPs.  

Database searches are available when a genomic annotation is selected. It can then be blasted 

against the NCBI database. 
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Figure 30: GenomeView multiple alignment and read mapping visualizations. (A) On higher zoom levels, the multiple 

whole genome alignments are shown as conservation plots (left). Zooming in further switches to a colour-coded view 

(middle), which reveals the underlying bases in the lowest zoom level (right). Alignment gaps in the histogram are shown in 

red and reference gaps in yellow. The nucleotide zoom level also contains a sequence logo visualization. (B) Coverage is 

visualized in a colour-coded plot. Coverage above (green) or below (purple) the central axis originates from the respective 

strand (forward, reverse). Coverage depicted in yellow is the total coverage mirrored above and below the central axis. The 

lower part shows the alignment view, representing the single read mappings. The strand of the alignments is coded by the 

same colors as in the coverage plot. The inset shows the visualization for read pairs or spliced reads, which are both 

connected by red lines. The histogram in the middle of (B) visually reveals one SNP (red bar). All reads mapping to that 

reference position show an 'A' instead of the reference base, which is also shown in the tool tip. Figure and description are 

adapted from (Abeel et al., 2012). 

3.3. IGV & Rockhopper 

The Integrative Genomics Viewer (IGV) (Robinson et al., 2011; Thorvaldsdóttir et al., 2013) 

focuses on visualization and data integration (see Figure 31), but does not offer any automatic 

analysis capability itself.  

Visualizations in IGV include views for RNA-seq of pro- and eukaryotes including splice 

junctions (see "RNA-seq" in Figure 32) and for DNA-seq facilitating visual variation 

detection. Distinct features of IGV are the ability to view multiple regions of the same 

genome simultaneously - either by selecting multiple genome loci of interest or by showing 

both regions of mapped read pairs - and their own data representation. Two relevant features 

for paired reads are offered: Color coding mates by size, orientation and strandedness and 

grouping by strand and mate chromosome. 
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Figure 31: IGV user interface. IGV showing a region of a eukaryotic chromosome at a medium zoom level. The view 

includes the genomic region and annotations, three ChIP-seq tracks and a NGS data track visualized as unstranded coverage 

and read alignments with mismatches. Figure and description are adapted from (Thorvaldsdóttir et al., 2013). 

Input data, such as read mapping tracks, can be preprocessed and converted into a multi-

resolution format called Tiled Data Format (TDF). This format is employed for a hybrid data-

loading approach: Depending on the current zoom level, data is either loaded from the pre-

computed TDF files or calculated on the fly from the original data file. Since 2013 

methylation patterns obtained from bisulfite sequencing (Bock et al., 2010) can be visually 

explored in IGV (see "Bisulfite-seq" in Figure 32). Data integration in IGV comprises several 

data formats including formats for genome annotations (GFF, GTF2, BED and PSL), read 

mappings (SAM, BAM), genetic variants (VCF, see Section 2.7.1) and more. The data can be 

presented in both non-indexed (slower access) or indexed (faster access) format and contain 

multiple resolutions (TDF, bigWig, bigBed (Kent et al., 2010)). Additionally, copy number or 

expression data can be imported and viewed in heat maps. IGV also supports saving a current 

session state and reopening it or sending the stored session to other collaborators. A command 

line interface enables other software or command line users to communicate with IGV. They 

support command line, socket port and HTTP access. 

A first step in the direction of a combination of automatic read mapping analysis and 

visualization has been made in parallel to the work presented here by the authors of the 

bacterial RNA-seq analysis tool Rockhopper (McClure et al., 2013). They proposed to use 

IGV for the visualization of their command-line analysis tool results. Combining Rockhopper 

and IGV enables automatic detection of bacterial transcript boundaries and normalizing their 

read count (see Section 2.8.1) for analysis and subsequent visualization of TSS (see Section 

2.8.2), differential gene expression (see Section 2.8.3), operons (see Section 2.8.4), RPKM 

and read count values (see Section 2.8.1). Still, Rockhopper lacks support for eukaryotic data, 

TPM values (see Section 2.8.1) and automatic DNA-seq analysis functions, like SNP 

detection (see Section 2.7.1) and detection of genome rearrangements (see Section 2.7.2). 

Likewise, basic analysis functions such as the detection of covered or uncovered intervals of 

the genome are not included. 
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Figure 32: Visualizations for eukaryotic RNA-seq and methylation in IGV. RNA-seq: The view includes tracks for total 

coverage, junction coverage, predicted transcripts and read alignments. Reads spanning junctions are connected by thin blue 

lines. In the junction track, the height of each arc is proportional to the total number of reads spanning the junction. Bisulfite-

seq: Read alignments with methylated bases are displayed in red, while un-methylated read alignments are displayed in blue. 

The coloring enables visual exploration of the methylation patterns. Figure and description are adapted from (Thorvaldsdóttir 

et al., 2013). 

3.4. IGB 

The Integrated Genome Browser (IGB) (Nicol et al., 2009) focuses on customization of 

visualizations, but does not contain embedded automatic analysis capabilities. Thus, many 

colour and layout adjustments can be made in IGB, like drag and drop of data tracks to the 

preferred position on the screen. Additional to the standard genome and read mapping views, 

IGB contains a viewer for genome graphs which can display numerical data. Integrated 

functionality for graphs of read coverage, read starts and mismatch density is available. Data 

tracks can either be separated by strand, or both strands can be combined (see Figure 33).  
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Figure 33: IGB user interface showing strand specific read mapping data. In this example bacterial read mapping data 

has been split by strand. The forward mappings are shown in the upper half, the reverse mappings are shown in the lower 

half. Additionally, coverage graphs (immediately above the alignments) and read start graphs (above the coverage graphs) are 

shown. The read start graph is especially interesting for visual inspection of RNA-seq data. In the right panel, the 

functionality to select restriction sites for highlighting in the reference sequence is shown. 

Reads of eukaryotes mapping across exon junctions are shown by exon blocks intercepted by 

thin lines throughout the introns (see Figure 34), but a specialized visualization for read pairs 

is not available. The introns can also be trimmed from the display by a switching on a sliced 

view. For expression data from microarrays, heatmap visualizations are available. A unique 

feature of IGB among the presented tools is the ability to show restriction sites for selected 

restriction enzymes from a predefined list (see Figure 33).  

IGB can be controlled from the command line by a simple IGB-specific scripting language, 

introduced by the IGB authors. Therefore, IGB can be embedded in web pages. It can be 

controlled via HTTP requests from these web pages or other software by their own 

mechanism QuickLoad or by the Distributed Annotation System (DAS) (Jenkinson et al., 

2008). 
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Figure 34: IGB visualization of RNA-seq reads and a reference. In this example data from Arabidopsis is shown. The 

gene models are displayed in the blue track below the read mappings in cyan and red. Overlapping alternative transcripts 

stored in the reference annotation track are expanded (blue). Split read mappings across splice junctions are connected by thin 

lines. The reads have been colored by strand. The available chromosome sequences are listed on the right hand side. Further 

customization can be carried out in the lower options panel. The figure is adapted from the user's guide on: 

http://bioviz.org/igb/, accessed on 15.02.2014. 

3.5. Artemis 

14 years ago, Artemis started as a genome visualization and annotation tool (Rutherford et al., 

2000). Its basic capabilities were the visualization of editable annotations next to the genomic 

sequence (see Figure 35, (e), (f) and (g)), some graph plots e.g. for GC-content and a table 

listing the annotations. Lately, Artemis has been extended to be able to visualize read 

mapping data next to the genomic sequence (Carver et al., 2012). This functionality is 

provided by an integrated version of the simple read mapping viewer BamView (Carver et al., 

2010, 2013). With this update five different visualizations for read mapping data became 

available (see Figure 35, (a) - (e)) and can be shown simultaneously for the same data set. To 

facilitate comparison of data sets, the viewer panel can be cloned for side-by-side 

comparisons of two data sets. 

Additional to read mapping data, Artemis can import and visualize variants from VCF files 

(see Figure 35, (f) and section 2.7.1). This functionality includes a SNP density plot. Variants 

and mappings can be filtered by different constraints by Artemis. For mappings SAM-flag 

and mapping and base quality filters are available. 

Data shown in Artemis can come from local or remote files. For remote file access, HTTP and 

FTP connections are offered. Artemis is also capable of preprocessing input data for fast 

access. Therefore, it can create index files and compress formats like VCF and SAM. Other 

user-defined numerical input coming from external analyses can be imported and visualized 

as graphs or heat maps. 

Artemis now has a built-in automatic analysis capability for SNP density, read counts and 

RPKM (see Section 2.8.1) limited to selected genes. Thus, this analysis capability is not 

designed to scan a complete genome and summarize the results. 
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Figure 35: Genomic and read mapping visualizations in Artemis. (a) The 'stack' view (paired reads are blue, multiple 

reads spanning the same region are green, single reads or reads with an unmapped pair are black). Alignment blocks across 

splice junctions are joined with a grey line. (b) The 'paired-stack' view (inverted reads are red). (c) The coverage view with a 

separate plot for each BAM. (d) The ‘inferred size’ view, plotting read pairs along the y-axis by their inferred insert size (or 

optionally the log of this). (e) The ‘strand stack’ view, with the forward and reverse strand reads above and below the scale, 

respectively. At the bottom of (e), (f) and (g) the six frame visualization of the genomic annotations are shown. (f) Shows an 

unfiltered (upper) and a filtered (lower) VCF panel above the reference. Insertions are shown in magenta. Premature stop 

codons are depicted by yellow circles. (g) Shows a user-defined input from a wiggle file, which is visualized as heat map. In 

this case, the wiggle heat map is used to visualize expression levels of a sample over seven time points (top-down). Figure 

and description are adapted from (Carver et al., 2012). 
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3.6. Mapping quality and quantity measures in SAM 

format 

The SAM format (H. Li et al., 2009) is the de-facto standard for read mapping data. It 

contains several measures related to mapping quality and quantity. In the following, an 

overview is given on these measures and their availability and applicability in the previously 

presented visualization software (see Sections 3.1 - 3.5).  

Data stored in SAM records may contain the following quality and quantity information: 

 An optional PHRED (see Section 2.1 and (Ewing and Green, 1998)) based mapping 

quality as set by the alignment software if the software supports mapping quality 

calculation. Otherwise, the mapping quality is set to "255". Thus, mapping quality 

information is not necessarily given for each mapping data set. Only Savant has the 

ability to shade mappings by mapping quality and Savant, Artemis and IGB can filter 

mappings by their mapping quality. 

 A flag for mappings not passing quality controls: This is a mapper specific flag 

which also does not have a unique definition. Generally, it should be set by the mapper 

if a read in the input data set is flagged as not passing the quality controls from the 

sequencer. But again, mappers might use this flag also for other internal quality 

controls or not at all. Thus, users cannot rely on this flag for every data set, especially, 

if it is not clear which mapper produced the alignments or how exactly the mapper 

implements handling of this flag. Savant and Artemis support filtering mappings by 

this flag. 

 An optional base quality field which is labeled by "*" if the quality is not stored. 

Otherwise, the field contains the original base qualities obtained from the sequencer 

output file. If available, these qualities can be used for position specific quality checks. 

Savant, Artemis and IGB are able to color mappings by position specific base quality, 

while only IGB allows filtering of mappings by base quality. 

 A secondary alignment flag: By convention, only one of the mappings of a read 

mapped multiple times to the reference should have the secondary alignment flag 

unset - flagging it as primary alignment. But, as this is a mapper specific flag, it does 

not contain information on why an alignment has been selected as primary alignment. 

As an illustrative example, consider a read mapping twice to the reference without 

mismatches. Which of the mappings should gain the primary alignment flag? Only 

Artemis supports filtering mappings by this flag. 

 Additional optional predefined tags from the SAM-specification (H. Li et al., 2009) 

can be used, but again, there is no guarantee that the fields have been filled by the read 

mapper as expected. The terminology of these tags is their composition from two 

characters, a capital letter and a second capital letter or number. Among the presented 

tools, only IGV has the capability of coloring mappings by any of the SAM-tags. 

Filtering mappings based on a SAM-tag is not implemented in any of the genome 

browsers. In the following table, tags among the list of predefined tags concerning 

quality and quantity information of a mapping are listed. 
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Table 2: Predefined SAM tags concerning mapping quality and quantity.  

SAM Tag Description 

NM 
It can be used to store the edit distance of a mapping to the reference, 

excluding clipped bases. 

MQ 
It is a quick access point to learn the mapping quality of the mate for read pair 

data sets. 

NH 

It can be used by the mapping tool to store the number of reported alignments 

for a read. Not all of these alignments might be stored in the resulting SAM-

formatted file. Due to this fact, the next tag is important here. 

IH 

It can be used to store the number of mappings of a read actually stored in the 

SAM-formatted file by the mapper. In combination with the "NH" tag, these 

two tags enable distinction of reads mapped multiple times to the reference 

and uniquely mapped reads when used. 

H0, H1, 

H2 

They are designed to store the number of mappings of a read with an edit 

distance of 0, 1 and 2, respectively. While it is beneficial to know how many 

perfect matches a read has, the combination of these flags does not enable 

identifying the total number of mappings of a read. All mappings with more 

than two mismatches cannot be represented here. 

CP, CC 

They allow the localization of the next mapping for reads mapped multiple 

times to the reference. CP depicts the leftmost coordinate of the next mapping 

for a read, while CC contains the name of the reference sequence on which the 

next mapping is located. This can be different if the read is mapped to another 

chromosome, contig or scaffold from the same overall reference. If these tags 

are available, they allow fast enumeration of all mappings of a read. 

 

In summary, several mapping quality and quantity related fields are available in the SAM 

format, but none of them is mandatory. Hence, users cannot rely on the presence of the 

needed flag. None of the presented tools has the capability of either visualizing or filtering 

mappings based on all mentioned measures. Artemis has the widest range of mapping filters 

and IGV is the only tool supporting coloring of mappings by one user-definable SAM tag at a 

time. 
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Chapter 4  
 

Motivation and Goals of the Dissertation 

Pseudomonas aeruginosa is a ubiquitous pathogenic bacterium involved in several prevalent 

diseases including chronic as well as perilous diseases (Ramos, 2004-2010a, 2004-2010b). P. 

aeruginosa is able to infect a wide range of hosts including humans, mammals, insects and 

plants. Thus, it is of great importance to learn more about this pathogen.  

On this account, representatives of the 15 most abundant P. aeruginosa strains (Wiehlmann et 

al., 2007) and 5 strains from common clones without any known infection history have been 

chosen for a state-of-the-art pan genome analysis (Hilker et al., 2014), in which this 

dissertation is involved. The study aims at a better understanding of the causes, developments 

and the distribution of pathogenicity within bacteria and especially P. aeruginosa. 

The NGS techniques described in the previous two chapters are well suited to elucidate the 

pan genome of the 20 Pseudomonas aeruginosa strains from a genomics point of view and to 

analyze their phylogeny in relation to their pathogenicity. Ultimately, these analyses will help 

to fathom if there is a relationship between pathogenic genome content and the local origin of 

a strain. 

The following workflow was developed for the analysis (see Figure 36): 

The first step in the analysis of the raw reads from the sequencer (see Section 2.1) is the read 

quality assessment (see Section 2.2). Afterwards, two main analysis approaches should be 

adopted:  

1. De novo genome assembly (see Section 2.3) and automatic genome annotation (see 

Section 2.4) followed by comparative analyses of the pan genome (see Section 2.5).  

2. Mapping of the sequencing reads onto an already finished and well annotated P. 

aeruginosa reference strain and common genomic islands (see Section 2.6), followed by 

automatic phylogenetic analyses of SNPs and DIPs (see Section 2.7.1) and the coverage 

of the genomic islands, revealing the absence, total or partial presence of the island in 

question (see Section 2.6.1).  

For workflow 1, specialized tools can be chosen from a variety of established tools (compare 

Sections 2.2 - 2.5). After the mapping process in workflow 2 on the other hand, several 

different tools and formats need to be combined and not all solutions are optimal (compare 

Sections 2.7 and 2.8 and Sections 3.1 - 3.5). To make important regions of a genome or 

transcriptome instantly accessible, automatic analysis functions are required. Nowadays, these 

functions are mostly implemented separately from the context visualization (compare tools 

mentioned throughout Sections 2.7 and 2.8).  

Visual exploration is clearly a major benefit to textual comparison of data, but still, each 

position of huge genomes has to be inspected manually for events of interest in simple 

genome browsers. This is a tedious and interminable task which is not feasible for whole 

genome analyses due to its huge time consumption and high personnel costs.  
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Figure 36: P. aeruginosa pan genome analysis workflow. The figure visualizes the processing steps required to analyze the 

pan genome of the 20 P. aeruginosa strains of this study. It starts with the input of raw sequencing reads in fastq format and 

then follows two routes: 1. de novo assembly and subsequent pan genome analysis of the assembled and annotated genome 

sequences (right path), 2. Mapping of the sequencing reads onto the genome sequence of the reference strain PAO1 followed 

by subsequent analyses (left path). 

The identification of this problematic gap gave the motivation to overcome it in the presented 

dissertation by developing the software ReadXplorer. It combines user-friendly visualization 

with automatic analysis functions. In addition, the software was meant to carve out 

comprehensive detailed knowledge about the read mapping data and offer novel features 

easing their evaluation. The main goal was to largely reduce manual effort for the user and 

prevent spending time on correctly installing about ten different tools and their dependencies 

by offering all relevant functionality from one source. Naturally, the P. aeruginosa pan 

genome analysis can greatly benefit from such a novel tool. 

The SAM format (H. Li et al., 2009) is the de-facto standard for read mapping data. It 

contains several measures related to mapping quality (see Section 3.6), but none of them is 

mandatory and thus, data availability depends on the implementation in the read mapping tool 

employed. 

For reliable analyses the read mapping classification is a crucial step, because sequencing 

reads often map to more than one region of the reference sequence with different amounts of 

mismatches, for instance in repetitive regions. It is not an option to simply configure the read 

mapping software (see Section 2.6) to only output one of the possible alignments of a read, 

because there is no guarantee that the returned mapping is the optimal or the only optimal 

mapping. Accordingly, not all mapped reads are equally trustworthy for each analysis, but 

these reads might still be useful for other analyses. At least, all read mappings with a 

predefined error threshold should be visible to the analyst. Thus, a highly beneficial feature is 
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a clear classification of mapped reads by mapping quality and quantity even after the mapping 

process and independent of the mapper. Incorporating this classification into user-friendly and 

intuitive visualizations is a major improvement in contrast to available mapping 

visualizations, facilitating a clear visual distinction of mappings with different quality and 

quantity properties.  

With current applications, users requiring a combination of certain mapping properties are 

forced to use multiple tools and elaborately compare their visual output. Further, it is not 

possible to select mappings based on any of the criteria mentioned in Section 3.6 for 

automated analyses in the presented genome browsers. Thus, making mappings selectable for 

each single automatic analysis function based on their classification will ease the execution of 

multiple analyses and analyses with a different scope. In addition, it will enable much more 

specific, dynamic and comparable analyses. Another advantage of this approach is the ability 

to run the same analysis with different mapping classifications. Afterwards, the impact of the 

selection of different classes can be investigated. 

A genome browser offering an optimal solution for this issue needs to bundle the most 

relevant quality and quantity measures in an intuitive and clear classification of the read 

mappings. Bundling interrelated properties has the advantage of superseding tedious manual 

configuration of several properties and increasing usability. This classification should be 

presented in visualizations as well as be selectable for performing analyses. Additionally, 

further fine tuning of the properties should be possible for advanced users. 

Since RNA-seq is still a relatively new technique, no tool was available to automatically 

detect TSS and novel transcripts from RNA-seq read mapping data when this work was 

started. Naturally, a tool automatically detecting TSS is of great value for the scientific 

community. Therefore, one goal for the development of ReadXplorer was to be able to detect 

TSS, novel, antisense and small RNA transcripts. This feature enables correction of gene 

annotations, new gene annotation and identification and confirmation of small RNAs. 

None of the programs presented in Chapter 3 is capable of automatically identifying possible 

genome rearrangement events in mapping data sets (see Section 2.7.2) supported by a certain 

number of discordant read pairs. Integrating this functionality in a platform independent read 

mapping browser could significantly alleviate fast processing of such events by a researcher 

and overcomes the obstacle of being forced to learn handling of command-line tools or being 

restricted to a UNIX-like operating system. The most suitable solutions for genome 

rearrangement detection are either to integrate a suitable tool mentioned in Section 2.7.2 or to 

re-implement one of their algorithms. 

Visualization of read pairs is another important feature of a read mapping visualization tool. 

Among the five presented tools (see Sections 3.1 - 3.5), Savant offers the best in depth 

classification of read pairs, but there is no tool available distinctively visualizing discordant 

pairs being too large and pairs being too small. The latter classification is especially relevant 

when large mate pairs (e.g. with an expected insert size of 10kb) are analyzed. Highlighting 

pairs, which have a much smaller distance, indicating an insertion in the analyzed mapping 

data set, in a distinct color could further enhance fast perception of such events and improve 

the user experience.  

In today's high-throughput experiments mostly multiple data sets need to be analyzed, often 

requiring direct comparison of two or multiple data sets. None of the presented viewers offers 

such a comparative visualization for read mapping data, apart from visualizing mapping data 

sets one below the other. This issue should also be addressed by ReadXplorer. 

Another task for working across multiple data sets is their combination while retaining the 

separate original data sets. When multiple RNA-seq replicates are available for a certain 

environmental condition, it is useful to be able to combine them for analyses other than 

differential gene expression. Two examples are SNP detection within transcripts and operon 

detection across replicates. Artemis and IGV both have the ability to combine multiple data 
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sets in their visualizations, but none of the presented tools can utilize this function for 

automatic analyses.  

Appropriate selection of the genetic code for the organism of interest is important for all 

visualizations and analyses involving DNA translation. For instance, a six frame view, 

showing all possible translation frames of a DNA sequence or amino acids affected by a SNP 

in a SNP detection should be able to adapt their underlying translation table according to the 

organism under investigation. Such functionality is only implemented in IGV for the 

visualization of the three reading frames of the currently selected DNA strand. Therefore, a 

more comprehensive integration of this feature in results of automatic analyses is desirable to 

provide interpretation-ready results.  

Another helpful visualization is the display of start and stop codons of the active genetic code. 

Especially, when analyzing RNA-seq data for complete transcripts, displaying interactive start 

and stop codons facilitates their fast perception, assessment and transcript assignment. Codon 

interactivity enhancing the user experience could include highlighting of the sequence from a 

start to the next in-frame stop codon, exporting and translating the corresponding sequence. A 

simple visualization of start and stop codons is only implemented in GenomeView, but they 

cannot be adapted to fit different genetic codes and they are not interactive. 

In summary, the main goals for the development of ReadXplorer were: 

 A user-friendly, platform independent application with minimal installation 

requirements, minimal external dependencies and functioning without an internet 

connection 

 Extensible and modular programming structure 

 Efficient and intelligible visual exploration of read mapping data and reference 

genomes 

 Detailed classification of read mapping data by mapping quality and quantity and its 

distinct visualization 

 Use and configurability of the classification for all automatic analysis functions 

 Development and implementation of an automatic TSS and novel transcript detection 

method 

 Enable calculation of normalized read counts for RNA-seq data 

 Combine existing DE methods with immediate read mapping visualization 

 Enable detection of operons from RNA-seq data 

 Enable SNP and DIP detection 

 Enable analysis of coverage 

 Combine genome rearrangement detection with immediate read mapping visualization 

 Possibility to automatically fold RNA sequences and visualize the result 

 Read pair visualization distinguishing all different read pair configurations 

(concordant, too small, too large and wrongly oriented pairs) 

 Enable comparative visualization of two data sets 

 Enable combination of multiple data sets in visualization and analysis while retaining 

the original data sets 

 Enable selection of the genetic code of the investigated organism taken into 

consideration in visualizations and analyses 
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Chapter 5  
 

Software Development for Read Mapping 
Data Analysis - ReadXplorer 

In Chapter 4 the capabilities of current read mapping visualization tools are closely analyzed 

and a problematic gap between visualization and automatic analysis functions for read 

mapping data is identified. Additionally, several visualization and analysis features can be 

enhanced and improved for higher specificity, user-friendliness and more details. 

This chapter addresses these matters by presenting ReadXplorer (Hilker et al., 2014), a novel 

software for user-friendly visualization and comprehensive analysis of read mapping data (see 

Section 2.6 for read mapping details).  

The content of this chapter is based on the aforementioned ReadXplorer publication and 

divided into three sections, starting with ReadXplorer's system design in Section 5.1, followed 

by the stream-driven data model and modular software architecture in Section 5.2. In Section 

5.3, the implementation of automatic analysis functions is explicated. Section 0 harbours an 

evaluation of ReadXplorer, comparing it against the other genome browsers introduced in 

Chapter 3 and revealing its performance on large NGS data sets. 

5.1. System Design 

The aim of the software development project for ReadXplorer was to provide a 

comprehensive open source desktop client application attaining a wide range of users. 

Therefore, it is crucial for the software to run on all major operating systems such as 

Windows, Linux or Mac OS. Especially for inexperienced users, the installation effort has to 

be kept minimal. Overcoming both of these barriers simplifies the work in multi-national 

teams at different locations around the globe with different operating system preferences and 

experience levels. Additionally, a high level of flexibility and independence shall be granted 

to the users by developing a software usable on almost any ordinary desktop computer or 

laptop and even without continuous internet access. 

Adhering to these requirements, ReadXplorer (see Figure 37) is implemented as a desktop 

client in the platform independent programming language Java 1.7 using the Netbeans IDE 

(Integrated Development Environment). Using this IDE enables implementation of software 

based on the Netbeans rich client platform12.  

The modular programming structure of a Netbeans rich client application significantly 

simplifies maintaining and extending the software. Additionally, it eases programming 

                                                 
12 http://netbeans.org/features/platform 

http://netbeans.org/features/platform
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flexible graphical user interfaces (GUIs). One virtue is the Netbeans modular docking 

framework for all GUI components. All panels can always be maximized, minimized and 

restructured in various ways, enabling the user to perform simultaneous comparisons of 

different data sets or browse different genomic regions of the same data set (see Figure 43). 

Furthermore, the last user-defined layout of the visual components is always restored after 

restarting the software.  

 

Figure 37: ReadXplorer start-up screen. By default, ReadXplorer starts with its dashboard, displaying the ReadXplorer 

logo, buttons to open or create a project database and useful quick start hints. Here, "Open existing database" was clicked and 

the corresponding wizard is displayed in the foreground. When a database has been chosen, the wizard page conveniently 

displays the selected database path. Clicking finish will open the database or create a new and empty database at the specified 

location. 

All features of ReadXplorer are bundled in the form of individual Netbeans modules (NBMs) 

in a Netbeans module suite. This modular structure can be further enhanced by new module 

suites and modules on demand.  

Each new module is embedded into ReadXplorer as plug-in via the integrated Netbeans plug-

in manager. This allows for easy extension of the rich client application: new NBMs 

developed by native or external programmers only have to be placed into ReadXplorer's 

update folder. This can be done either by automatic update checks of the central ReadXplorer 
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update center13 from within the software or by manually placing own modules in that folder. 

During the next start of the software, they are immediately integrated in the current 

ReadXplorer version. This behaviour guarantees easy distribution and integration of new 

plug-ins, which fit highly specialized user needs.  

Further, the software is composed of a classical three-tier architecture, of which a high-level 

overview is given in Figure 38. User requests for any kind of data are received by the 

application tier and handled by the business tier, whereas the persistency tier is subsequently 

responsible for executing necessary data queries. When a query succeeds, the persistency tier 

passes the result in generic data containers to the business tier. After appropriate processing, 

the data is displayed by the application tier. This behaviour guarantees independency and 

exchangeability of each tier and its components. 

To make ReadXplorer available and extensible for everyone, it is released under the GNU 

General Public License (GPL) version 314. 

ReadXplorer provides a well-defined application programming interface featuring classes for 

the development of specialized data viewers and analysis functions (see Appendix,       

Section 10.2). 

 
Figure 38: ReadXplorer tiers. This figure displays the global three-tier architecture of ReadXplorer. The application tier is 

responsible for data visualization and user input, whereas the business tier contains all logic associated with analysis 

functions and data import and export. The NGS data are maintained, written and read by the persistency tier. It either 

interacts with a database, a file or both. 

 

Most parts of the basic viewer and data storage concept have been severely adopted, purged 

and updated from the first ReadXplorer prototype - called VAMP - described in the master's 

thesis of Daniel Doppmeier (Doppmeier, 2009).  

                                                 
13 ftp://ftp.cebitec.uni-bielefeld.de/pub/readxplorer_repo/update/updates.xml  
14 www.gnu.org/licenses/licenses.html 

ftp://ftp.cebitec.uni-bielefeld.de/pub/readxplorer_repo/update/updates.xml
http://www.gnu.org/licenses/licenses.html
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The reference data formats currently supported by ReadXplorer are EMBL15 (Stoesser et al., 

2002), Genbank15 (Benson et al., 2014), GFF216/GTF17, GFF318 and FASTA19. Read mapping 

data has to be presented in SAM, BAM (H. Li et al., 2009) or in SARUMAN output format 

JOK (Blom et al., 2011). Additionally, ReadXplorer supports importing tabular data in CSV20 

or Microsoft's XLS21 format and specialized nucleotide polymorphism data in VCF (see 

Section 2.7.1). Section 5.2.1 describes how this data is integrated and treated within the 

software. The contents of a database are organized in and quickly accessible via a dashboard 

in the GUI (see Figure 39). 

 

Figure 39: ReadXplorer dashboard. The dashboard hierarchically displays the references and tracks stored in the database. 

To select a data set, a click anywhere on the corresponding data row suffices. Afterwards, all selected data sets are opened by 

clicking the prominent "Open selected items in new tab(s)" button. 

                                                 
15 www.insdc.org/files/feature_table.html 
16 www.sanger.ac.uk/resources/software/gff/spec.html 
17 mblab.wustl.edu/GTF22.html 
18 www.sequenceontology.org/gff3.shtml 
19 fasta.bioch.virginia.edu/fasta_www2/fasta_guide.pdf 
20 tools.ietf.org/html/rfc4180 
21 msdn.microsoft.com/en-us/library/cc313154%28v=office.12%29.aspx 

http://www.insdc.org/files/feature_table.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://mblab.wustl.edu/GTF22.html
http://www.sequenceontology.org/gff3.shtml
http://fasta.bioch.virginia.edu/fasta_www2/fasta_guide.pdf
http://tools.ietf.org/html/rfc4180
http://msdn.microsoft.com/en-us/library/cc313154%28v=office.12%29.aspx
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5.2. Data Model and Software Architecture 

5.2.1. The Persistency Tier 

Redundant calculations for the same experiment have to be avoided. Following this paradigm, 

all data which shall be analyzed with ReadXplorer undergoes a nonrecurring preprocessing 

step, producing a valid data basis for all users (see Section 5.2.2, Data Import, Read Mapping 

Classification and Read Pair Classification). Delimitation of experiments in ReadXplorer is 

realized by a project based data management approach, storing all relevant data in a database 

which is a purged version of the concept introduced in (Doppmeier, 2009). In VAMP, all read 

mapping data was stored in the database, while ReadXplorer directly reads all reference 

sequences and mappings from indexed files. This change results in a much better 

performance: i.e. it took a whole day and 80GB of RAM to import the P. aeruginosa strain 

F469 mapping data set (see Table 15), while now the same task is accomplished on an 

average laptop in ~45min with ~900 megabyte (MB) RAM (see Table 10).  

Based on the general three tier architecture of ReadXplorer (see Figure 38), input data first 

has to be introduced to the NBMs associated with the persistency tier (see Figure 41) for 

adequate processing and storage in the database of the current project. The data import 

process starts with the reference annotations and sequences needed for the current experiment. 

After storing them in the database, tracks can be imported for each reference. This data is 

made persistent and can be retrieved by any user of the database for viewing and analyzing 

the data.  

Two open source relational database management systems (RDBMS) are supported: H222 and 

MySQL23. During this work, H2 has been used almost exclusively, because it is file-based, 

thus guaranteeing flexibility for users. An H2 database can easily be shared with other 

collaborators around the globe by copying and opening it anywhere where the ReadXplorer 

software is available, without the necessity of running a database server. 

In the Java Platform Standard Edition (Java SE) relational databases can be handled and 

accessed natively by the standardized Java Database Connectivity (JDBC) interface24. 

Corresponding open source JDBC drivers for H2 and MySQL are available on the respective 

homepages and have been used to realize this software project.  

The schema of the ReadXplorer database is shown in Figure 40. The underlying concept 

divides the database into a reference and a track domain, containing reference specific and 

track specific data (see description of Figure 40 for details).  

The responsibilities within the persistency tier are clearly assigned to maximize maintenance, 

provide application wide access to this main component and an intelligible application 

programming interface (API). The core of the persistency tier is the singleton 

ProjectConnector (see Figure 41). The responsibilities of this class comprise handling 

of the central database connection, storing and managing data.  

 

                                                 
22 www.h2database.com 
23 www.mysql.com 
24 www.oracle.com/technetwork/java/javase/jdbc/index.html 

http://www.h2database.com/
http://www.mysql.com/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
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Figure 40: ReadXplorer database schema. The tables can be separated into a reference and a track domain. The first 

concerns the reference sequences. The REFERENCE table stores the main data of the reference including the corresponding 

sequence file (in FASTA format). The CHROMOSOME table contains information about all reference chromosomes or 

sequences. The FEATURE table stores the most relevant information of all annotated reference features. The track domain 

concerns the tracks. The TRACK table associates each track to one of the references in the database and identifies its 

corresponding read mapping file (in BAM format). The COUNT_DISTRIBUTION table holds pre-calculated binned 

distributions for each track which can be used by analysis functions and for displaying statistics. The STATISTICS table 

contains pre-calculated global statistics for each track (see Figure 43, l for the visual representation). A database version table 

containing the current database version aids tracking the version number of the database and performing version specific 

updates for downward compatibility, if necessary.  

The ProjectConnector grants access to the reference and track domains via a 

ReferenceConnector and a TrackConnector, respectively (see Figure 41). Each 

reference and track possesses its own connector instance. A ReferenceConnector grants 

access to the sequence, all features and properties of the associated reference, while the 

TrackConnector grants access to all properties and the read mapping data of the 

associated track.  

Prior to storing data, it is parsed by the corresponding parser from the parser module. To 

guarantee exchangeability and extensibility, all parsers in ReadXplorer implement the 

ParserI interface and its corresponding sub-interfaces (see Figure 41).  

ReadXplorer stores all sequences belonging to a single reference in an indexed (multiple) 

FASTA file. All read mapping data is stored in a sorted and indexed BAM file (see Section 

5.2.2, Data Import and Read Mapping Classification). For creating these files during or after 

parsing, specialized methods and writers have been implemented in the parser module (see 

Figure 41). 

Both the sequences belonging to a reference and the read mappings are directly read by their 

connectors from their indexed file, whose location is stored in the project database. E.g. read 

mapping data is obtained using either the CoverageThread or the MappingThread 

classes. These two threads have been introduced to ensure responsiveness of ReadXplorer 

during data queries and encapsulate queries to the actual data reader class, the 

SamBamFileReader (see Figure 41). The queries itself are standardized by the highly 

configurable IntervalRequest class. All methods requesting data have to create such an 

object and, if necessary, assign filter criteria (e.g. to only return data from certain read 

mapping classes (see Section 5.2.2, Read Mapping Classification)) for the data to obtain.  
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Figure 41: UML class diagram of ReadXplorer core features. The most relevant classes and methods of the ReadXplorer 

core are shown. The importer module is the starting point for importing new data into the software and requires the 

persistency tier modules parser and data back end. The application and business tier UI module takes care of the 

visualizations and receives the data via the data back end module. Analysis modules like the SnpDetection module receive 

the data to analyze from the data back end module as well. To visualize the results, analysis modules implement a 

ResultTrackAnalysis (connection and classes not shown to preserve a clear arrangement), which directly supports 

export of the results. 

The CoverageThread is designed for retrieval of coverage or read starts, while the 

MappingThread is designed for retrieval of complete alignments. The corresponding data 

holder classes for coverage, read starts (Coverage) and complete alignments (Mapping) 

provide information on the quality classification of the contained data, easing further filtering 

of the data. 

Using the IntervalRequest, the two threads and data holders in combination with the 

SamBamFileReader is a powerful concept to grant fast and generalized access to a 

genomic interval of interest and its associated data filtered by desired parameters. For fast 

access, the interval size has to be constricted to a reasonable size (e.g. 100bp-100kb). The 

maximum viewable interval size in a viewer is between 50 and 100kb, depending on the 

screen size. 
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5.2.2. Business and Application Tiers 

The business tier takes care of four main tasks: Data import, data export, providing the logic 

for data viewers and analysis functions. The application tier consists of the GUI 

implementations using the logic provided by the business tier. Since these two tiers work hand 

in hand, their description and illustration is combined in this section.  

A central aspect and major feature of ReadXplorer is the quality and quantity classification of 

read mapping and read pair data. This classification is carried out once during import of the 

mapping data. Therefore, this section starts with the import process, followed by sections 

defining the read mapping and read pair classification. Afterwards, the implementation of 

each of the remaining three main tasks is presented in their respective sub-sections. 

Data Import 

The central data import actions and functionality are bundled in the importer module (see 

Figure 41). They become selectable within ReadXplorer's toolbar and "File" menu (see Figure 

37), when the user is connected to a database. A well-structured wizard guides the user to a 

successful import of reference or read mapping data, while a second wizard provides the 

option to import any kind of table (in CSV or XLS format, as mentioned in Section 5.1) into 

ReadXplorer. A third wizard is available for VCF (see Section 2.7.1) import of single 

nucleotide polymorphism data. 

The import of references in EMBL, Genbank, GFF2/GTF or GFF3 format is realized by 

parsers, which use the Biojava 1.8.1 library25, bundled with ReadXplorer, to get quick access 

to all sequence features. 

Within ReadXplorer, mapping data sets are called tracks. The import of read mapping data is 

divided in "Track" and "Read Pair Track" import. The read pair track import is designed for 

mate pair and paired end data and includes specification of fragment length and allowed 

variation of the insert length (see Figure 42). Single end data sets are imported using the 

standard "Track" import. To be able to handle mapping data sets in SARUMAN output 

format, a converter has been implemented which converts JOK files into BAM formatted 

files. However, it is not only available as integrated version for ReadXplorer, but has also 

been compiled in a stand-alone application for end-users. During import of read mapping 

data, the additional read mapping classification (see subsequent sections "Read Mapping 

Classification" and "Read Pair Classification") calculated by ReadXplorer is stored in a BAM 

file (Li et al., 2009) which is an extended copy of the original import file (see Table 4 for an 

example).  

After completion of the reference and track import wizard, the ImportThread class (see 

Figure 41) executes the import process in a new thread to guarantee responsiveness during the 

computational intensive import. Parsing is delegated to the respective parsers and initiates 

subsequent storage of the data by calling the appropriate methods in the 

ProjectConnector. The read mapping parsers also create the extended BAM file with 

ReadXplorer's quality and quantity classification, which is explicated in the following two 

subsections. 

 

                                                 
25 http://biojava.org/wiki/BioJava:Download_1.8 

http://biojava.org/wiki/BioJava:Download_1.8
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Figure 42: Read Pair track import dialog. Multiple tracks can be imported simultaneously and ReadXplorer supports both 

single file (mostly interleaved read pairs, but the read order does not affect a successful import) and data sets where the first 

and the second read of the pairs are stored in two separate files. Since the read mapping and read pair classification only has 

to be carried out once per track, the check box for tracks which have already been imported in another ReadXplorer database 

on the same reference can be checked and merely the mapping statistics are calculated. This results in a much faster import. 

Read Mapping Classification 

As already mentioned, read mapping data has to be provided in SAM, BAM (Li et al., 2009) 

or SARUMAN (Blom et al., 2011) output format. ReadXplorer classifies the read mapping 

data during the import process (see Section 5.2.2, Data Import) by mapping quantity and 

quality measures and read pair concordance.  

Therefore, it is important to configure the upstream read mapping tool to output multiple 

mappings of a read up to a certain error threshold (see Appendix, Section 10.4 for appropriate 

calls of bwa, Bowtie 2 and SARUMAN). This is of utmost importance, because otherwise one 

cannot decide whether a read has truly only one valid mapping, or if more mappings exist 

which were just not calculated.  

A read mapped to a certain reference position is called mapping in the following. For each 

read, the number of mappings on the reference is counted along with the lowest number of 

mismatches found among the various mappings of that read during the import process. 

Uniquely mapped reads (called unique mappings) or reads with a certain amount of 

mismatches can thus easily be queried. Note that the same read can map to different reference 

positions with the same number of mismatches. The mappings are classified into one of five 

classes:  

 The Single Perfect Match class contains all reads with exactly one (single) perfect 

match.  

 The Perfect Match class contains all reads mapped multiple times without any 

mismatches.  
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 The Single Best Match class contains all mappings that cannot be placed to another 

position in the reference with the same number or fewer mismatches than at the 

current position - they exactly have one (single) best match.  

 The Best Match class contains all reads with multiple best match mappings. I.e. they 

have multiple mappings to different genomic positions with the same number of 

mismatches.  

 The Common Match class contains all remaining mappings.  

Distinguishing Single Perfect and Single Best Match mappings from Perfect and Best Match 

mappings enables quick access to reads with only one Perfect or Best Match mapping from 

mappings with multiple equally scoring mappings while not requiring the read to be uniquely 

mapped. Reads from both Single Match classes can have more mappings with lower quality, 

falling in the Common Match class. Thus, this classification is not as strict as only 

considering uniquely mapped reads with exactly one valid mapping to the reference. 

By showing the mapping classes in the GUI (see Figure 43), the user has the ability to select 

for each analysis which mapping classes are important and should be included in the analysis. 

Additionally, this fine grained classification approach allows incorporation of mappings in 

analyses which would be excluded by other programs.  

 
Figure 43: ReadXplorer main window including mapping classifications. a) global actions toolbar, b) position navigator, 

c) pattern filter, d) reference feature filter, e) reference viewer with opened legend panel, f) scroll bar and zoom slider, g) 

reference features and selected feature (blue), h) sequence bar and interactive start codons, i) reference feature details panel 

including EC-number link to an enzyme database of choice, j) track viewer with opened legend panel showing the mappings 

of all different mapping classes in distinct colors, k) track viewer tooltip, l) track statistics panel including mapping, coverage 

and read pair statistics, m) track viewer options panel, n) reference interval details panel, o) start and stop codon selection 

panel configurable via the genetic code options (see Figure 69 in Appendix). 

The classification data are stored in a BAM file (Li et al., 2009) which is an extended copy of 

the original file or a converted JOK file (Blom et al., 2011). Subsequently, ReadXplorer only 

works on these extended files. The additional SAM tags introduced by ReadXplorer in a 

globally accessible MappingClass enumeration enable quick access to the mappings of a 
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given mapping class and are listed in Table 3. The classification is carried out by the 

corresponding mapping parser (see Figure 41).  

 
Table 3: List of ReadXplorer classification SAM tags. According to the SAM specification, SAM tags starting with 'X', 'Y' 

or 'Z' or tags containing lower case letters are reserved for end-users. Therefore, tags starting with 'Y' followed by a 

lowercase letter have been chosen to store augmented mapping information in an extended version of the input file during the 

import. 

 
Table 4: Example SAM format row of a mapping classified by ReadXplorer. The four ReadXplorer tags are listed at the 

end and identify the mapping as uniquely mapped (Yt:i:1) Single Perfect Match (Yc:i:4), being paired with the given id 

(Yi:i:15323752) in a perfect read pair (Ys:i:7). The read and base quality sequences have been shortened to 15bp for clarity. 

HWI-ST486_0090:5:2205:11613:134447#TAGCTT       83      PAO1    1019    60      90M     

=       926     -183    CAACCGTACCTTCAC...   @B=EECA9CCDEC@E...      Yc:i:4  

Yi:i:15323752   Ys:i:7  Yt:i:1 

Read Pair Classification 

For paired end or mate pair mappings a read pair classification algorithm was developed 

which takes into account all occurrences of each read. In the following, a distinction is made 

between all mappings of the two reads of a pair, which are called mapping pair, and two 

mappings of a mapping pair, classified as read pair. In general, the algorithm (see Algorithm 

8 and Algorithm 9 in the Appendix) classifies the mappings into three different classes: 

Perfect Read Pairs with correct orientation and a pair distance within a certain range defined 

by the user, Distorted Read Pairs, whose distance deviates from the perfect distance interval 

and/or whose orientation is incorrect, and Single Mappings, whose partner could not be 

mapped on the reference, or multiple mapped reads of which a mapping cannot be assigned to 

a read pair (for details see Table 5).  

A special case of Single Mappings occurs when one or both reads of a mapping pair also map 

to other regions of the reference, but they cannot be associated with a Perfect or Distorted 

Read Pair. There might be more than one Perfect Read Pair for the same mapping pair. 

Further, the five mapping classes Single Perfect, Perfect, Single Best, Best and Common 

Match are considered in the read pair identification algorithm implemented in the 

SamBamReadPairClassifier class to improve the accuracy of correct predictions. For 

each mapping pair, Perfect Match read pairs are preferred to Best Match and both are 

preferred to Common Match read pairs. The read pairs are visualized in a special Read Pair 

Viewer (see Figure 44).  

All possible read pair classification types available in ReadXplorer through the 

ReadPairType enumeration are listed in Table 6. An exemplary paired read mapping is 

shown in Table 4. 

  

SAM 

Tag 

Value/Range Explanation 

Yc 1, 2, 3,4 or 5 Mapping classification in one of the five mapping classes 

1= Perfect Match, 2 = Best Match, 3 = Common Match, 4 = 

Single Perfect Match, 5 = Single Best Match 

Yt Number Number of valid mappings present in the track 

Yi Number Id of the read pair, unique within each track 

Ys 0 - 12 Read pair classification in one of the 13 read pair classes (see 

Read Pair Classification) 
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Table 5: Read Pair Classification. This is a list of possible classifications of all mappings of the two reads that belong to a 

mapping pair according to their respective mapping count on a reference sequence. The first column shows the cumulative 

mapping count of both reads and additional pairing properties. The second column depicts the classification of the mappings 

in the classes read pair or single mapping. The affiliation of each mapping to its mapping pair is always preserved to enable 

retrieval of all mappings of a mapping pair. This table and the description correspond to Table 1 from (Hilker et al., 2014). 

Number of Mappings Read Pair Classification 

1 Single Mapping 

2 Pair 

>2, including at least one Perfect 
Pair 

Perfect Pairs are stored, remaining mappings are stored 
as Single Mappings 

>2, including at least one Smaller 
Distance Pair. May also contain 

perfect pairs 

Perfect Pairs are stored, largest Smaller Distance Pair 
for each region is stored, remaining mappings are 

stored as Single Mappings 

>2, including only larger distance 
mappings 

All mappings stored as Single Mappings 

 

 
Figure 44: Read Pair viewer with default coloration. Perfect read pairs are colored green, Distorted read pairs are colored 

yellow (there is one in the lower middle part) and Single Mappings are shown in red. The color shade enables visual 

distinction of Perfect, Best and Common Match mappings from light to dark. By clicking on a read pair, a pop-up window 

with the read pair details is shown (middle) and repetitive regions can easily be scanned by selecting other mappings of the 

pair from the list of mappings in the pop-up window. This invokes an action that jumps to the selected mapping. 
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Table 6: Possible read pair classifications in ReadXplorer. This is a list of all 13 built-in read pair types of ReadXplorer, 

available through the ReadPairType enumeration. Using the classification enables direct access to read pairs with selected 

read pair properties. 

Read Pair Type ID Explanation 

PERFECT_PAIR 0 Perfect read pair (distance and orientation correct) 

DIST_LARGE_PAIR 1 Read pair with too large distance 

DIST_SMALL_PAIR 2 Read pair with too small distance 

ORIENT_WRONG_PAIR 3 Read pair with wrong orientation (distance is correct) 

OR_DIST_LARGE_PAIR 4 Read pair with too large distance and wrong orientation 

OR_DIST_SMALL_PAIR 5 Read pair with too small distance and wrong orientation 

UNPAIRED_PAIR 6 Single mapping whose mate did not map on the reference or 

where a pair assignment fails due to too many unambiguous 

mappings of both reads 

PERFECT_UNQ_PAIR 7 Unique perfect read pair (distance and orientation correct, 

both reads only mapped once) 

DIST_LARGE_UNQ_PAIR 8 Uniquely mapped read pair with too large distance 

DIST_SMALL_UNQ_PAIR 9 Uniquely mapped read pair with too small distance 

ORIENT_WRONG_UNQ_PAIR 10 Uniquely mapped read pair with wrong orientation (distance 

is correct) 

OR_DIST_LARGE_UNQ_PAIR 11 Uniquely mapped read pair with too large distance and 

wrong orientation 

OR_DIST_SMALL_UNQ_PAIR 12 Uniquely mapped read pair with too small distance and 

wrong orientation 

Data Export 

Software providing analysis functions is in need of an export function for analysis results. For 

this purpose, ReadXplorer contains an exporter module (see Figure 41) that supports export of 

tabular data in CSV or XLS format. To make the export functionality available program-wide, 

the interface ExportDataI is provided by the module. Each data container which should 

have export capability has to implement this interface. Given this implementation, such 

objects can be passed to any TableExporterI implementation. To enable comprehensive 

storage of data relating to an analysis, this interface also includes methods to store a summary 

statistic and analysis parameters for a result in an extra sheet. When the results are too long 

for one XLS data sheet, another data sheet is added to the file, until all data is stored in it. 

Thus, all results obtained with ReadXplorer are treated in a unified way, reducing code 

duplication and sharing the same basic format. The recognition value is increased for the users 

by offering the same button with the same export functionality program-wide for all analysis 

functions. 

Figures are another important type of results, e.g. for publications and documentation of the 

performed work. High resolution screenshots from any component or the whole program 

window are provided by a generic general toolbar action throughout ReadXplorer. This action 

opens a wizard offering the export of publication ready figures in scalable vector graphics 

(SVG) format.  

Viewer Logic 

ReadXplorer is designed to offer different visual perspectives on the data to highlight their 

particular properties and facilitate quick exploration of interesting regions. This feature has 

been realized by implementing several data viewers. To reduce code duplication and simplify 

extension of ReadXplorer by specialized data viewers, an abstract base class for all viewers 

has been implemented: The AbstractViewer (see Figure 41). This class belongs to the 

application tier and aims at unifying all general commonalities of the viewers. The 
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implementation provides methods for handling and synchronization of the associated 

reference interval and zoom level, scaling of the data, capabilities to show the reference 

sequence and a legend, abilities to show viewer specific options, a unified technique to handle 

the visible elements within the viewer and a performance related method to assure that data is 

only read from files or the database when it is essentially needed.  

Visualization of the reference sequence is implemented by the SequenceBar class and can 

be enabled in any AbstractViewer. 

The viewers always refer to data associated to a certain reference interval which makes 

synchronization of the visible interval between all viewers belonging to the same reference an 

essential feature. It facilitates direct comparison and correlation of data between different data 

sets and viewers. The business tier classes controlling the visible reference interval and zoom 

have been adopted from (Doppmeier, 2009). The administration of the interval is performed 

by the BoundsInfoManager class. It implements the observer design pattern and takes the 

role of the observable. Its counterparts, the observers listening for updates, have to implement 

the LogicalBoundsListener interface. Listeners registered in the 

BoundsInfoManager always receive an update, if any of its properties has been changed. 

The AbstractViewer is one of the listeners implementing this interface, thus all its 

implementations can register to the BoundsInfoManager. In addition, the current interval 

data is further tailored for each viewer to its available pixels on the screen. 

During this work, ReadXplorer received the ability to control the visible elements in a viewer 

via a list containing instances of implementations of the Classification interface. Thus, 

all visible data in ReadXplorer implements the Classification interface. Two examples 

are the FeatureType and the already mentioned MappingClass enumerations. The first 

provides all genomic feature types of the reference (e.g. gene and CDS). 

Extension of ReadXplorer's visualization capabilities by additional viewers is straightforward, 

due to the functionality already provided by the AbstractViewer. Only the new data 

representation and potentially new data classifications have to be implemented (see 

DotViewer example in the Appendix, Section 10.2). 

The mapping classification introduced above in the Read Mapping Classification paragraph is 

visualized by colour coding the base coverage and read alignments according to their 

MappingClass in the data viewers described below. The default colour code for the 

mapping classes is shown in Figure 43, j) and can be freely adapted by the user. 

In the following, the data viewers natively provided by ReadXplorer are explicated: The 

Reference Viewer displays all six reading frames besides the sequence of both strands (see 

Figure 43, e)). The Track Viewer shows a coverage plot (see Figure 43, j)). The Double 

Track Viewer visualizes the coverage differences between exactly two tracks (see Figure 45) 

and the Multiple Track Viewer combines the coverage of a number of selected tracks in a 

single data set (see Figure 43, bottom). To enhance comparability of tracks, these track 

viewers are able to normalize the coverage plot separately for each included track. 

In accordance with the model-view-controller pattern all viewers for the same reference are 

controlled by a single ViewController instance.  

The Histogram Viewer supplies intuitive exploration of position-specific coverage 

information (see Figure 47). The interactive Alignment Viewer displays each computed read 

alignment and colors the mappings according to their mapping quality (see Figure 47). Both 

Histogram and Alignment Viewer simplify the visual identification of SNPs (see Section 

2.7.1) or variation in the data. 
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Figure 45: ReadXplorer Double Track Viewer. This viewer enables direct comparison of exactly two tracks by overlaying 

their coverage. The most important characteristic is the blue area around the center line, showing the coverage difference 

between both tracks. Behind, at first the coverage of track 1 is drawn in cyan and subsequently the coverage of track 2 in 

orange. Also this color code can be freely adapted by the user. 

For paired end or mate pair data, the specialized Read Pair Viewer shows the pair 

configuration of all aligned reads (see Figure 44). Each pair is colour coded in the same 

manner as the mapping classes: Perfect pairs in green, Distorted pairs in yellow and Single 

Mappings in red. As described above in the Read Pair Classification paragraph, this viewer 

displays read pair configurations with the maximum level of details. Thus, it offers a 

specialized pair classification for all possible pairing configurations. The Thumbnail Viewer 

is available for direct comparison of the coverage of multiple genomic annotations from 

multiple data sets at a glance (see Figure 46). It is another special feature of ReadXplorer 

significantly simplifying comparison of selected genomic features of interest.  

 

Figure 46: Thumbnail Viewer. The coverage of the four genes pflB, tdcE, ybiW and pflD (rows) from four RNA-seq 

mapping data sets (first four columns) (Srinivasan et al., 2013) involved in the propanoate metabolism in Escherichia coli is 

compared using the Thumbnail Viewer of ReadXplorer. Their coverage can be compared at a glance, especially when 

overlaying two tracks using a thumbnail version of the Double Track Viewer (rightmost column). All four genes catalyze the 

same reaction (EC:2.3.1.54), but apparently only two of them are highly expressed (pflB and tdcE). It also directly catches 

the eye that tdcE (second row) has a much lower expression level in both wild type (WT, left two columns) replicates in 

comparison to both H-NS repressor deletion mutant replicates (hns, third and fourth column). Thus, this viewer is optimally 

suitable for multi-gene comparisons and figure creation, e.g. as shown here for genes from the same metabolic pathway. 
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Analysis Framework 

During the development of ReadXplorer, the implementation of automated analysis functions 

was focused enabling users to perform laborious tasks for a selected list of tracks in virtually 

no time. The implementation of all analyses supported by ReadXplorer is described in the 

following Section 5.3. It is noteworthy, that the analyses for transcription start sites and novel 

transcripts, read counts and normalization calculations and operons have been combined in 

one wizard. Thereby, read mapping data only has to be read once from the file and all 

analyses can be run in parallel. This design drastically reduces the computation time for these 

analyses, when they are run in parallel. 

All integrated analysis methods, in particular, rely on the mapping quality classification of the 

data. All parameters are user-adjustable and configured via user-friendly wizards which share 

common components and methods. Each analysis wizard starts with a panel to select the 

tracks to include in the analysis (see Figure 66 in Appendix). ReadXplorer supports 

simultaneous analysis of multiple data sets by selecting all tracks to include in this panel. This 

panel also offers the option to combine all selected data sets in the subsequent analysis. In that 

case, all their mapping data is combined and they are treated as a single data set. The next 

common wizard panel is a panel to select the included mapping classes and set a mapping 

quality threshold for the analysis. For all analyses running on genomic features it also shows 

analysis strand selection options (see Figure 67 in Appendix). They allow combining the 

mappings of both strands for unstranded sequencing libraries or switch the strand whose 

mappings are included in the analysis. All analyses relying on the presence of genomic 

features also contain a panel to configure the genomic feature types to include in the analysis 

(see Figure 68 in Appendix). Hence, it determines the output in the result table, e.g. a 

prokaryotic SNP detection is oftentimes run only on CDS features. 

The whole reference genome is analyzed for references with multiple chromosomes, contigs 

or other sequences. The general AnalysisI interface is provided by the analysis framework 

for all actual implementations of analysis algorithms (see Figure 41).  

Since all results are based on analyses of tracks, they all share common functionality and it is 

convenient to be able to treat them consistently. Therefore, the abstract class 

ResultTrackAnalysis has been introduced and is intended to be implemented by all 

track analysis results (see Figure 41). Since analysis results shall be ready for export, the 

ResultTrackAnalysis class also implements the ExportDataI interface, mentioned 

in the previous Data Export paragraph. Thereby, it is guaranteed, that each analysis result can 

be exported effortlessly. Common functionality for visualizing analysis results has been 

bundled in the abstract ResultTablePanel class (see Figure 41). Another important 

benefit of the AnalysisI interface and the two abstract result classes is that they 

additionally enable exchangeability of the algorithms, their results and visualizations. 

In general, results are displayed to the user in the form of tables which can be sorted by each 

column, filtered by column values and directly exported into XLS or CSV files (see previous 

Data Export paragraph). ReadXplorer does not limit the user to run analyses on single data 

sets. Instead, it allows running analyses for multiple tracks to either combine or compare their 

data. When multiple tracks are analyzed, an additional filter is provided. It enables viewing all 

results which have been detected either in at least or at most a given number of tracks. This 

feature enables quick identification of results present in multiple tracks. For an effortless 

visual assessment, results are additionally highlighted in their corresponding data viewers. 

Furthermore, the reference position of the currently selected result is centred in each 

corresponding data viewer. Below the result table the used parameters of the current analysis 

are shown and some statistics can be viewed by clicking on the "Show Statistics" button (see 

Figure 47). 
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The implementation of ReadXplorer's analysis framework has been designed to simplify 

addition of new analyses by extracting common tasks. The class serving this purpose is the 

AnalysisHandler (see Figure 41). This handler coordinates all data requests and the 

transmission of readout data to the respective analysis via the observer design pattern. This 

behaviour clearly separates data queries from analysis functions. 

The AnalysisHandler is capable of handling all three basic data types available within 

ReadXplorer: Coverage, read starts, mapping and read pair data (see Algorithm 1). 

Afterwards, the particular analysis function is responsible for appropriate treatment of the 

data. To reduce the memory footprint, the reference genome is split into intervals of 200kb 

length. A separate data request is sent to the corresponding data query thread for each interval. 

Thus, the software does not stall during operation of analyses. 

 

Algorithm 1: Data extraction for analyses  

Note: Only retrieval of coverage and mappings is shown here, as read starts and read pairs are retrieved in the same manner. 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

20:  

21:  

22:  

23:  

24:  

25:  

26:  

27:  

28:  

29:  

30:  

31: a 

nd ← the type of required data (coverage | mappings) 

mg ← the flag for calculation of mismatches and gaps (true | false) 

mc ← the list of included read mapping classifications 

bamFileReader ← a reader for BAM files 

iLength ← 200000  

for each chromosome c do 

for each iLength bp interval i of c do 

cl ← map of each mapping class to a coverage array with capacity iLength 

m ← empty list for mappings 

bamRecordIterator ← query bamFileReader for i from c in BAM file 

while bamRecordIterator has next do 

r ← next mapping record from bamRecordIterator  

rmc ← mapping class of r 

if r is mapped and mc contains rmc do 

if nd = coverage then  

(* increase coverage in corresponding array *) 

arrayPos ← start of r - start of i 

for arrayPos, ..., arrayPos + length of r do 

cl(rmc)[arrayPos]++ 

end for 

else if nd = mappings then 

add r to m 

end if 

if mg = true do 

scan cigar of r for mismatches and gaps and store them 

end if 

end if 

end while 

return cl or m to data requesting object 

end for 

end for 
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5.3. Automatic Analysis Functions 

In this Section, the implementation of all analyses supported by ReadXplorer is described. 

The general analysis framework on which all analyses are based is described in the previous 

Section.  

ReadXplorer offers single nucleotide and insertion-deletion polymorphism (SNP and DIP) 

detection (see Section 5.3.1), reference feature and coverage analyses (see Section 5.3.8), 

genome rearrangement detection (see Section 5.3.2) and RNA secondary structure prediction 

(see Section 5.3.7). Especially for RNA-Seq experiments, ReadXplorer offers differential 

gene expression analysis (see Section 5.3.5), transcription start site (TSS) (see Section 5.3.4), 

novel transcript (see Section 5.3.4), and operon detection (see Section 5.3.6) as well as read 

count and normalization calculations for each reference feature (see Section 5.3.3).  

 

5.3.1. Single Nucleotide & Deletion-Insertion 

Polymorphisms 

SNP and DIP detection is one of the key analyses when sequenced reads are mapped on a 

closely related reference sequence (see Section 2.7.1).  

The presented SNP and DIP detection algorithm directly reads the data from indexed BAM 

files (see Section 5.2.2) within a few minutes (see Table 10) and is based upon the following 

list of parameters:  

 A user-definable minimum percentage of variation has to be set. 

 A minimum count of mismatching bases in the mappings at the examined position 

has to be set. 

 A check box for distinguished treatment of organisms with different ploidy is offered. 

This box complements the minimum count of mismatching bases in the mappings at 

the examined position. It switches the minimum mismatching bases count between the 

single most frequent base at the current position for haploid organisms and the sum 

of all mismatching bases for di- and polyploid organisms.  

 A minimum base quality filter is offered which requires the PHRED scaled quality 

value (see Section 2.1 and (Ewing and Green, 1998)) at the current position to exceed 

the given minimum value to increase the mismatch coverage. It is only applied if the 

data set contains base qualities.  

 A minimum average PHRED base quality parameter takes care that only positions 

are considered where the average base quality of all mappings exceeds the given base 

quality value if the data set contains base qualities. 

 The read mapping classification filter (see Section 5.2.2, Read Mapping 

Classification) incorporated in all analysis functions is offered. 

The detection algorithm first queries the coverage including mismatch and gap counts via 

Algorithm 1. Afterwards, the computation proceeds as described in Algorithm 2 in linear 

time. 
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Algorithm 2: SNP and DIP detection algorithm 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

20:  

21:  

22:  

23:  

24:  

25:  

26:  

27:  

28:  

29:  

30:  

31:  

32:  

33:  

34:  

35:  

36:  

37:  

38:  

39:  

40:  

41:  

42:  

43:  

44:  

45:  

46:  

47:  

m ← list of mismatches for current chromosome interval obtained by Algorithm 1 

g ← list of gaps for current chromosome interval obtained by Algorithm 1 

coverage ← list of coverage arrays for each included mapping class for current chromosome 

interval obtained by Algorithm 1 

baseArray[][][] ← array of genome position on first level, a base index (0-5 for 

A,C,G,T,N,gap) on the second level and the base coverage count, average base and average 

mapping quality (0-2) on the third level 

gapCounts[][][][] ← first, third and fourth dimension of the array correspond to the three 

dimensions of the baseArray. The second dimension represents the gap index of successive 

gaps in the same mapping  

 

for each gap from g do 

bq ← base quality of gap 

mq← mapping quality of gap 

if bq > min. base quality or bq = -1 do 

gapCounts[gap position][gap index][gap base][0]++ 

if bq ≠ -1 do 

gapCounts[gap position][gap index][gap base][1] + bq 

else do 

hasBaseQualities = false 

end if 

if mq > 0 do 

gapCounts[gap position][gap index][gap base][2] + mq 

else do 

hasMappingQualities = false 

end if 

end if 

end for 

 

(* Increase mismatch counts obtained from m in baseArray in the same manner than for gaps 

excluding the second array dimension *) 

 

(* After gathering data for all intervals of all chromosomes *) 

for each gapCount from gapCounts do 

for each gapIndex from gapCount do 

largestCount ← largest base count among all gapIndex[gap base][0] 

accumulativeCount ← sum of gap counts among all gapIndex[gap base][0] 

if (use sum of all mismatching bases = true and largestCount > min. # 

mismatching bases) or (use sum of all mismatching bases = false and 

accumulativeCount > min. # mismatching bases) do 

averagebq ← Calculate average base quality from all gapIndex[gap base][1] 

averagemq ← Calculate av. mapping quality from all gapIndex[gap base][2] 

if (hasBaseQualities = false or averagebq > min. average base quality) and 

(hasMappingQualities = false or averagemq > min. avg. mapping quality) do 

cov ← get total coverage for current gap position from coverage 

percentage ← accumulativeCount * 100 / cov 

if percentage > min. percentage do 
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48:  

49:  

50:  

51:  

52:  

53:  

54:  

55:  

56: a 

add DIP to result list 

end if 

end if 

end if 

end for 

end for 

 

(* Calculate SNPs from baseArray in the same manner than DIPs by leaving out the 

gapIndex dimension *) 

 

The results can be examined in detail not only in the alignment or histogram viewer (see 

Figure 47), but also in the track viewer (see Figure 43). The result table not only reveals 

small-scale evolutionary differences, but also allows analysis of the resulting functional 

differences emerging from the polymorphisms. The detected SNPs and DIPs are classified 

according to their type (substitution, insertion or deletion), their location (intra- or intergenic), 

and their effect on coding sequences (match, frame shift +1 (insertion), frame shift -1 

(deletion), chemically neutral and chemically different substitution). Therefore, associated 

codons and amino acids are shown for intragenic SNPs (see Figure 47).  

 
Figure 47: SNP and DIP detection result with alignment and histogram viewers. The result and used parameters of an 

automatic SNP and DIP detection for P. aeruginosa strain E429 are shown in the table at the bottom. The SNP selected in the 

table is automatically centered in the data viewers. The alignment viewer shows almost only Single Best Match mappings in 

the visible region and all of them contain the predicted SNP in their alignment. The inlet shows a section of the histogram 

viewer for the same position. This viewer reveals the coverage deviating from the reference by base specific coloring (green 

= match coverage). Both viewers are well-suited for a quick visual inspection of observed alignment events. The SNP 

detection result table contains comprehensive information including the precise coverage of each nucleotide and several other 

details as mentioned in the text. The average base and mapping quality in the last two columns are not available in this 

mapping data set from SARUMAN, thus they are set to 0 and -1. 
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The chemical classification of amino acids has been chosen according to Knippers (2006) and 

Barnes and Gray (2003) and is shown in Table 7. A classification of "chemically neutral" 

neither means that the protein will definitely be functional, nor does a classification of 

"chemically different" imply that the protein will definitely not be functional. The amino acid 

classification is rather meant as guidance to assist quick perception of positions with possibly 

devastating mutations in contrast to harmless neutral mutations. The true effect of such 

mutations still has to be reviewed in detail and examined by experiments in the laboratory. 

 
Table 7: Proteinogenic amino acid groups. The table lists the chemical groups used in ReadXplorer to further classify the 

22 proteinogenic amino acids during SNP and DIP detection. 

Amino Acid Group Amino Acids 

Acidic  Aspartic acid, glutamic acid 

Aliphatic Alanine, valine, leucine, isoleucine, methionine 

Amide group  Asparagine, glutamine 

Aromatic Phenylalanine, tyrosine, tryptophan 

Basic Arginine, lysine 

Imidazole Histidine 

Imino group Proline 

Hydroxy Serine, threonine 

Pyrro group Pyrrolysine 

Small Glycine 

Seleno group Selenocysteine 

Thiol group Cysteine 

 

Translation of codons to amino acids is defined by the genetic code selected by the user. It 

can be freely chosen from the list of NCBI genetic codes or an own user-defined genetic code 

can be added and selected within ReadXplorer (see Figure 69 in Appendix). 

Besides the built-in SNP detection, ReadXplorer can also be used to visualize results of other 

statistical SNP detection tools (see Section 2.7.1) which use VCF output (Danecek et al., 

2011). ReadXplorer can import VCF files and display them in a table offering the same 

selection and filtering possibilities than for other tables. Direct comparison of SNP detection 

results from ReadXplorer and other tools is simplified by this feature. 

 

5.3.2. Genome Rearrangements 

SVs described in Section 2.7.2 are associated to many diseases including cancer (Iafrate et al., 

2004). As cancer research is a highly important research field in human health care, the first 

tools for SV detection based on read pair data were designed for human cancer research 

(Campbell et al., 2008). Nonetheless, genome rearrangement detection is useful for the 

analysis of other eukaryotic and prokaryotic organisms as well.  

In general, the tools for SV detection are command-line based. Integrating an established SV 

detection tool into ReadXplorer makes genome rearrangement detection accessible for 

researchers unfamiliar with command-line tools and enables immediate visual inspection of 

read pair configurations in genomic regions with predicted SVs (see Figure 48). 

The tool chosen for integration into ReadXplorer is GASV (Sindi et al., 2009) (see Section 

2.7.2). Its development focused on the human genome, but this is also true for the other tools 

mentioned in Section 2.7.2. However, GASV has also been tested successfully on other 

genomes like yeast (Zeitouni et al., 2010). The choice of GASV is advantageous, because it 

supports a broad range of SVs: insertions, deletions, inversion, translocations (see Figure 22) 

and can handle more divergent rearrangement events i.e. resulting from multiple 
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rearrangements at the same locus. Such cases hinder the reconstruction of the correct 

sequence of rearrangement operations for that locus. 

A usability advantage of GASV is its implementation in Java. Thus, it can directly be 

incorporated in ReadXplorer without giving rise to additional installation requirements. 

An analysis is started by configuring the GASV parameters in a wizard containing two pages: 

One for each GASV analysis step (BamToGASV and GASVMain). To guarantee flexibility 

for the user, all available options have been made adjustable through the wizard. Afterwards, 

GASV is started using an instance of the newly implemented GASVCaller class gathering 

all required data. GASV natively assumes that chromosome names are numbers. This is not 

the case for prokaryotes, though. To be able to use arbitrary chromosome names, ReadXplorer 

always utilizes the GASV option to set a chromosome naming file.  

Two small changes of the GASV source code were necessary: Firstly, the status messages of 

GASV have been redirected to the console within ReadXplorer to show the progress of the 

analysis to the user. Secondly, a method assuring that only Single Perfect Match and Single 

Best Match mappings are allowed for the GASV analysis has been implemented. Testing 

different mapping classifications with different example data sets showed that it is inevitable 

to use only Single Perfect Match and Single Best Match mappings to receive reasonable 

results. Otherwise, repeat regions lead to many falsely predicted rearrangements obscuring 

correct predictions.  

 
Figure 48: Visualization of genome rearrangement events using GASV. ReadXplorer offers an effortless exploration of 

the data underlying the genome rearrangements detected by GASV (table at the bottom). The region of the deletion selected 

in the table is centered simultaneously in the reference, track and read pair viewer. The hypothetical protein PA0343 is 

deleted in P. aeruginosa strain B420. No reads map to the corresponding region of P. aeruginosa PAO1 and many read pairs 

are observed in B420 with an enlarged distance of about 1200bp instead of the expected 300bp. 
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GASV writes its results into a tab separated file in CSV format on the hard disk. In order to 

immediately visualize the results after finishing an analysis (see Figure 48), this file is 

autonomously parsed by ReadXplorer in the same manner as other CSV tables (see Section 

5.1, Data Import). To increase usability and readability of the results, the left and right 

breakpoint borders have been split from a single column in the file to two columns. One lists 

the start and the other the end position of all breakpoints (see Figure 48).  

 

5.3.3. Read Count & Normalization Calculations 

This analysis offers an overview on the raw read counts and normalized read count values for 

each genomic feature. The normalization methods applied here are the TPM (B. Li et al., 

2010) and RPKM (Mortazavi et al., 2008) methods. Details of the methods are clarified in 

Section 2.8.1.  

Before normalizing read counts, the transcript boundaries and the inclusion model for the 

reads have to be determined. Thus, a decision has to be made if the exact boundaries given by 

the annotation are used or if an offset at the start, stop or both annotation ends is added. 

Introducing an offset can be crucial to downstream analyses, because ordinary gene 

annotations do not take 5'-UTRs and 3'-UTRs into account. Additionally, automatically 

annotated gene start and stop positions might be incorrect, leading to data loss. Therefore, 

offsets at the start and end of a reference feature can be defined by the user during 

configuration of the analysis in the corresponding wizard. 

The implemented read assignment model for read mappings overlapping multiple genomic 

features (e.g. genes or CDS), is similar to the union model of HTSeq-count (Anders et al., 

2014). The difference is that instead of discarding read mappings marked as ambiguous in 

Figure 23, in the first case the reads are associated to gene_A and in the second case their 

proportional fraction is added to the read counts of each of the overlapped features.  

Besides counting and normalizing the reads per reference feature, the analysis serves as filter: 

A minimum and maximum raw read count value can be set. Only reference features with read 

count values in the given range are returned in the result (see Figure 49). The TPM and 

RPKM values are well-suited for RNA-Seq data to identify genes with a certain expression 

level, whereas the read count column is applicable for both RNA-Seq and resequencing data 

to explore the read counts of reference features.  
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Figure 49: TPM, RPKM and read count calculation result. The result table (bottom) shows all important information 

regarding the genomic features and their read count (last column), TPM (third last column) and RPKM value (second last 

column). The genomic position and coverage are shown for the feature selected in the table in the reference and track viewer 

(left). The histogram comfortably visualizes the frequency of the TPM values observed within the data set at log scale. The 

histogram can be switched to show RPKM values using the dynamic "Switch to *" button at the top, where * is either RPKM 

or TPM. A figure of this plot can also be exported via the screenshot wizard (see Section 5.2.2, Data Export). The chosen 

example data set is an in-house RNA-seq data set from Corynebacterium glutamicum, kindly provided by Jörn Kalinowski. 

In addition to the general export functionality, the TPM or RPKM-value distribution of the 

analyzed data set can be viewed in a log-scaled histogram (see Figure 49). This histogram is 

implemented based on the JavaFX library contained in the standard Java Development Kit 

since version 8 (JDK 8). It calculates and displays 21 bins of TPM or RPKM values. The first 

5 bins are reserved for distinguishing values within the 0.2 quantile of the analyzed data. The 

boundaries of the next 13 and remaining 3 bins are reserved for distinguishing the 0.9 quantile 

and the largest TPM and RPKM values, respectively. All bin borders are dynamically 

calculated based on the mentioned quantiles observed in the result. Introduction of these three 

groupings was inspired by the thought to create a histogram which enables distinction of 

smaller values as well. A histogram scale geared to the largest normalization value would 

contain almost all values in the smallest bin. This becomes obvious when considering the 

largest RPKM value (16,643,308.429) from the example (see Figure 49). Such outliers are 

commonly observed in RNA-seq data. 

 

The algorithm for the assignment of reads to genomic features and the TPM and RPKM 

normalization is implemented as follows: For each analyzed reference interval, the algorithm 

gathers the read counts for all genomic features in range. After all reads are counted, the 

normalization sum for TPM is calculated followed by the final calculation of TPM and 

RPKM values. Details are shown in Algorithm 3. 
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Algorithm 3: TPM and RPKM calculation  

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

20:  

21:  

22:  

23:  

24:  

25:  

26:  

27:  

28:  

29:  

30:  

31:  

32:  

33:  

34:  

35:  

36:  

37:  

38:  

39:  

40:  

41:  

42: a 

features ← list of all genomic gene, CDS, mRNA, rRNA, tRNA and exon features 

m ← list of mappings from a single chromosome interval obtained by Algorithm 1 

li ← 0 (* Index of last assigned mapping *) 

for each feature f from features do 

if chromosome id of f = chromosome id of m do 

isFstFittingMapping ← true  

currentCount ← 0; readLengthSum ← 0 

for i ← li, ..., size of m do 

Calculate and use feature start and stop offset below according to parameters 

if stop of m(i) >= start of f and start of m(i) <= stop of f 

if isFstFittingMapping = true do 

li ← i, isFstFittingMapping ← false 

end if 

if m(i) is on the correct strand do 

countMapping ← check according to union fraction model (see 

above) if m(i) is allowed to be counted for f 

if countMapping = true do 

check if read count of preceding features also containing m(i) 

has to be decreased and decrease if necessary 

currentCount++; readLengthSum + length of m(i) 

end if 

end if 

else if start of m(i) > stop of f do 

if isFstFittingMapping = true do 

li ← i,break for 

end if 

end for 

increase read count of f by currentCount and store it 

increase read length sum of f by readLengthSum and store it 

end if 

end for 

for i = 0, ..., size of m do 

check if the count of m(i) has to be fractionated for its associated features according to 

the union fraction model 

end for 

 

(* After gathering data for all intervals of all chromosomes *) 

calculate normalization sum for TPM 

for each feature f from features do 

sum read counts of nested features (e.g. for multiple exons of a gene) of f 

calculate effective length, TPM and RPKM value for stored read count of f 

end for 
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5.3.4. Transcription Start Site Detection 

The detection of novel transcription start sites (TSS) as well as the verification and correction 

of already annotated TSS are two of the key analysis features for RNA-Seq experiments. 

When using a suitable RNA-Seq protocol such as the selective analysis of primary transcripts 

via differential RNA-seq (Borries et al., 2012) or a 5' prime RNA adapter ligation (Pfeifer-

Sancar et al., 2013), the mapped reads can be analyzed for TSSs.  

One goal of this thesis was to develop and implement an automated method which detects 

TSSs within an appropriate RNA-seq data set. When the design of this analysis was started in 

2011, no other computational methods were available to detect TSSs within prokaryotic 

RNA-seq data. Therefore, a novel approach has been developed and is presented here. This 

approach is based on analyzing the coverage properties of each neighbouring genomic 

position pair for TSSs. The analysis mainly relies on two parameters balancing each other. A 

TSS is only detected, if enough reads start at the second position of the pair and the increase 

of coverage in percentage from the first to the second position of the pair is high enough (see 

Figure 50). 

Both parameters are user adjustable, but can also be automatically estimated for each track. In 

addition, a specialized treatment for low coverage regions has been implemented: A 

maximum coverage threshold for the low coverage regions can be set and the minimum 

number of read starts parameter can be lowered for these regions.  

The automated parameter estimation only emits statistically significant positions as TSS, that 

satisfy both of the following two empirically chosen criteria: 

 

1. The absolute number of read starts is in the upper 0.0025 quantile of all other read start 

counts for all positions in the track. 

2. The percentage of coverage increase is in the upper 0.0025 quantile of all other coverage 

increase percentages in the track.  

 

By combining both parameters, the analysis is capable of rejecting positions in areas of 

already high coverage, where the total number of read starts exceeds the threshold, but the 

coverage increase only accounts for a low increase in percentage. Additionally, positions in 

low coverage regions with a high coverage increase in percentage are rejected if not enough 

reads start at the examined position to exceed the minimum read start parameter. 

This parameter choice is also suitable for 5' enriched RNA-Seq data sets, because the 

underlying distribution takes into account each n-1 pairs of neighbouring positions in a 

genome of size n. 

Prokaryotes are known to harbor approximately one gene per kb of genome size (Rogozin et 

al., 2002). With the explicated parameter choice, 2.5 genes per kb of genome size are allowed 

for each of the two parameters. Thus, there is enough room for both parameters to balance 

each other and in practice they have shown to be quite stringent (see evaluation in Table 8). 

In some cases the coverage increases in steps at a TSS. To consider this case, an option is 

available to associate all predicted TSS within a small user-defined bp window to the 

statistically most significant TSS. Hereby, neither several predicted TSS appear for one gene, 

nor are they lost the analyst. 

The bp window to associate TSSs with the next genomic feature can also be adjusted by the 

user. To identify at a glance if evidence for alternative TSSs exists e.g. for a gene, all 

identified TSS within this maximum feature distance are classified. The statistically most 

significant position is designated as "primary" TSS, while all other TSSs in this window on 

the same strand are designated as "secondary". 
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Figure 50: TSS and novel transcript detection. The highlighted TSS position in the table is centred in the Reference and 

Track viewers. The alternative secondary TSS (480,994) at the start of the gene has reads (transcripts) starting at exactly that 

position testifying for a correctly annotated gene having a leaderless transcript at the inspected position. The "Leaderless" 

column only appears in exported tables. Within ReadXplorer it can easily be deduced from the sortable "Correct Feature" and 

"Dist. Upstream Feature" columns. The selected primary TSS (480,989) harbours many more read starts. It reveals an 

interesting event suggesting an alternative transcript or a very long leader for the next gene. The chosen example data set is 

an in-house RNA-seq data set from Corynebacterium glutamicum, kindly provided by Jörn Kalinowski. The columns whose 

headers are not shown completely due to the extent of the table are (from left to right): Dist. Upstream Feature, Next 

Downstream Feature, Dist. Downstream Feature, Novel Transcript, Cov. Transcript Stop, Start Codon Pos, Leader Length, 

Stop Codon Pos and Codon CDS Length. 

The majority of transcripts contains a leader, but transcripts can also be leaderless (Pfeifer-

Sancar et al., 2013). To distinguish both cases easily, leaderless transcripts are flagged in the 

result and can thus be retrieved instantly. The maximum distance of a TSS to the actual 

translation start site can be adjusted in the wizard by the user. 

The TSS analysis in ReadXplorer also supports the detection of novel transcripts. Therefore, 

the nearest genomic feature starting in the right direction in a user-definable bp window 

around a TSS is listed. Internal TSSs are identified in the result by inspecting entries in the 

"Next Upstream Feature" column of the result table. In case a TSS is detected without a 

neighbouring genomic feature - an orphan TSS - it is marked and a novel transcript is 

suggested, starting at the TSS and ranging up to the position at which the coverage drops 

below a user-defined threshold (see Figure 50). To offer a deeper insight into the novel 

transcripts, the analysis further identifies and outputs the next start codon on the respective 

TSS strand, calculates the leader length, the next in-frame stop codon and the novel transcript 

length deduced from the assigned start and stop codons. 

Furthermore, the method can detect trans-encoded as well as cis-antisense-transcripts and 

miRNAs. Additionally, highly conserved miRNA target sites can be detected by exploiting 

the fact that reads match to their origin as well as to their target site. 

Because the detection algorithm does not need any annotations, the described method is well-

suited as a starting point to identify novel transcripts in references without any genomic 

annotations. Afterwards they can be filtered manually and verified in the laboratory. 

Additionally, ReadXplorer is capable of highlighting start and stop codons and their open 

reading frames in the reference (see Figure 43, o)). This facilitates instant comparison of 

RNA-Seq coverage with potential transcripts.  
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When the automatic parameter estimation is chosen, the read start and coverage distributions 

for each analyzed data set are retrieved from the database. During the first run of an analysis 

for a data set, the two distributions are initialized and calculated from the incoming data in 

parallel to the analysis. In this case, the initial parameter choice is very lenient. Thus, after 

analyzing the whole data sets, the read start and coverage distributions have also been 

computed. The resulting list of TSS is then filtered according to the strict parameter choice, 

obtained from the two distributions. 

 

Algorithm 4: TSS detection algorithm with automatic parameter estimation 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

20:  

21:  

22:  

23:  

24:  

25:  

26:  

27:  

28:  

29:  

30:  

31:  

32:  

33:  

34:  

35:  

36:  

37:  

38:  

39:  

40: a 

minNoReadStarts← 0.0025 quantile cutoff taken from available read start distribution for data 

set or no. mappings / (0.1 * genome length) if not yet available 

minPercentIncrease ← 0.0025 quantile cutoff taken from available percent increase 

distribution for data set or 0 if not yet available 

coverage ← coverage arrays for current chromosome interval obtained by Algorithm 1 

readStarts ← arrays of read starts for current chromosome interval obtained by Algorithm 1 

add coverage and read starts from the last position of the previous chromosome interval to the 

current coverage and readStarts if this is not the first chromosome interval 

for each chromosome position p in current interval do 

(* Calculate TSS according to selected strand option. Only the default case is shown. *) 

if combine strands option is not set and feature strand is used do 

percentIncFwd ← coverage(forward)[p+1] / coverage(forward)[p] percentage 

percentIncRev ← coverage(reverse)[p] / coverage(reverse)[p+1] percentage 

readStartsFwd ← readStarts(forward)[p+1] 

readStartsRev ← readStarts(reverse)[p] 

if coverage and read start distributions have not been calculated yet do  

Add current read start and percent increase values to their respective distribution 

end if 

if readStartsFwd > min. no. read starts and percentIncFwd > min. percent increase 

do 

associatedFeatures ← compute associated features according to max. feature 

distance and strand option in linear time by keeping track of the index of the 

first feature in range. Features are natively sorted by genomic position. 

add current TSS to result including its position p+1, associatedFeatures, 

percentIncFwd and readStartsFwd 

end if 

(* Perform same calculation for reverse strand using percentIncRev and 

readStartsRev *) 

end if 

end for 

 

if coverage and read count distributions have been calculated just now do 

Calculate new coverage percent increase and min. no. read start thresholds using the 

finished distributions 

for each TSS t in the result list do 

if read starts of t <= new min. no. read starts and percent increase of t <= new min. 

percent increase do 

remove TSS from result list  

end for 

end if 
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The TSS detection algorithm (see Algorithm 4) runs on coverage and read start data and 

identifies all positions satisfying the parameters described above. Only for these positions the 

associated reference features are identified (correct, upstream or downstream features) to keep 

the computational overhead to a minimum. This feature identification step is designed to run 

efficiently in linear time for the whole analyzed data set.  

 

As validation for the novel TSS analysis method, an RNA-Seq dataset from Corynebacterium 

glutamicum has been analyzed by this method using the automatic parameter estimation. It 

was then checked for a set of 223 experimentally validated Corynebacterium glutamicum TSS 

(see Table 8). The novel TSS detection approach was able to detect 78.87% of the TSS, which 

show at least the minimal required coverage increase. The remaining 21.13% do not satisfy 

the stringent automatic analysis parameters, either because of a low number of read starts or a 

stepwise coverage increase over multiple neighboring genome positions in this dataset. By 

relaxing the parameters manually, these TSS could also be identified.  

 
Table 8: Validation analysis of 223 known C. glutamicum TSS. The table lists the detailed result of a comparison of 223 

experimentally validated TSS with an RNA-Seq data set obtained from C. glutamicum. 194 of the 223 were manually 

identified in the analyzed data set. 29 TSS could not be observed, as there is no increase in coverage or read starts in the 

neighborhood of the expected genome position. 78.87% of the remaining 194 TSS were identified by our TSS detection 

method using the stringent automatic parameter estimation. For 13 TSS, an alternative start position has been detected in the 

analyzed data set in a distance between 13 and 45 bases up- or downstream of the expected TSS position. The 13 expected 

positions did not show any signs of a TSS in this data set. The lower part of the table apportions the undetected TSS 

according to their properties. Internal means that the start is observed within an expressed operon. Stepwise means that there 

is an observable amount of read starts/coverage increase around the analyzed position, but it is divided into multiple positions 

and thus, cannot be detected by our method. The undetected TSS can also be identified by manually choosing and relaxing 

the analysis parameters, depending on the user needs. The table and description are adapted from the supplement of (Hilker et 

al., 2014). 

# TSS Percentage Description 

223 100.00% All TSS 

29 13.00% Absent TSS in analyzed data set 

 
Distribution of detectable TSS 

194 100.00% Detectable TSS in analyzed data set 

140 72.16% Detected TSS 

13 6.70% Alternative TSS in 13-45 bp distance 

153 78.87% Total detected TSS 

41 21.13% Undetected TSS 

 Distribution of the undetected TSS 

41 100.00% Undetected TSS 

19 46.34% Signal too weak 

9 21.95% Signal too weak, internal 

5 12.20% Stepwise increase, no single position with strong signal 

8 19.51% Stepwise increase, no single position with strong signal, internal 
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5.3.5. Differential Gene Expression Analysis 

Transcript quantification by RNA-Seq offers a high resolution insight into expression levels. 

In comparison with other methods, like microarrays, it has been shown that RNA-Seq delivers 

far more accurate measurements (Wang et al., 2009) for differential gene expression (DE) 

analysis. A brief description of several computational tools for DE analysis and their 

underlying concepts is given in Section 2.8.3. All mentioned tools are publicly available free 

of charge. 

In ReadXplorer, two of these widely used tools for DE analysis have been integrated during 

the master's thesis of Kai Bernd Stadermann (Stadermann, 2013) under my supervision: 

DESeq (Anders and Huber, 2010) and baySeq (Hardcastle and Kelly, 2010). Since they both 

require R to be installed correctly, a third analysis has been implemented by the student: The 

Express Test.  

The main goal for the additional approach was to implement an ultra-fast method running 

without external dependencies and without extensive statistical tests to complement the other 

two tools. This, of course, might come at the expense of accuracy, but it allows rapid insight 

into the data. The Express Test is limited to two conditions and calculates normalized gene 

expression values and a confidence value, but does not perform a statistical test for 

differential expression. If we have two conditions A and B with n and m replicates, we have 

the samples {𝑎1, 𝑎2, … , 𝑎𝑛} and {𝑏1, 𝑏2, … , 𝑏𝑚}. 𝑤 ∈ {𝑛, 𝑚} denotes the number of samples of 

one of the two conditions. The read count of the same 𝑘 regions 𝑅𝑖 with 𝑖 ∈ {1, 2, … , 𝑘} is 

analyzed in each of these samples. 𝑅𝑖,𝑋 denotes all samples of one region belonging to a 

condition X, where 𝑋 ∈ {𝐴, 𝐵}. Mean and variance are then defined as:  

𝑚𝑒𝑎𝑛(𝑅𝑖,𝑋) =  𝑅𝑖,𝑋
̅̅ ̅̅ ̅ =

∑ 𝑅𝑣,𝑖,𝑋
𝑤
𝑣=1

𝑤
 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑖,𝑋) =
∑ (𝑅𝑣,𝑖,𝑋 − 𝑅𝑖,𝑋

̅̅ ̅̅ ̅)²𝑤
𝑣=1

𝑤 − 1
 

 

Additionally to mean and variance, the ratios: 

 
𝑚𝑒𝑎𝑛(𝑅𝑖,𝐴)

𝑚𝑒𝑎𝑛(𝑅𝑖,𝐵)
 and 

𝑚𝑒𝑎𝑛(𝑅𝑖,𝐵)

𝑚𝑒𝑎𝑛(𝑅𝑖,𝐴)
 

 

are computed. If a mean value in the denominator is zero, it is replaced by one. In the last 

step, a confidence value 𝐶𝑖 is computed for each 𝑅𝑖 with 𝑚𝑒𝑎𝑛(𝑅𝑖,𝑋) > 0 by the following 

equation: 

 

𝐶𝑖 =  − log10 [
1

2
(

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑖,𝐴)

𝑚𝑒𝑎𝑛(𝑅𝑖,𝐴)
+  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑖,𝐵)

𝑚𝑒𝑎𝑛(𝑅𝑖,𝐵)
)] 

 

For mean values of zero, 𝐶𝑖 is set to minus one. A high 𝐶𝑖 value can only be obtained by 𝑅𝑖 

with a small variance. Hence, high ratio and confidence values indicate differential gene 

expression of the associated genomic region 𝑅𝑖. To account for inhomogeneous sequencing 

depth between the samples, the Express Test offers a normalization of the results. The 

normalization ratios can be computed based on all regions or based on a list of regions (e.g. 

housekeeping genes) adjustable by the user. The advantage of the Express Test is that it is 

completely implemented in Java. Therefore, it also works, if R is not available on the current 

machine. 
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Figure 51: DESeq differential gene expression result. The table shows DESeq (Anders and Huber, 2010) results sorted by 

the most significantly differentially expressed genes (Feature column). A DESeq table contains the mean read counts of all 

tracks and the replicates of both conditions (baseMean/A/B) followed by the fold change (foldChange and log2FoldChange) 

and the original (pval) and adjusted p-value (padj). By clicking "Create Graphics" the plot window is opened. The MA plot 

enables visual exploration of the most significantly differentially expressed genes. In connection with the reference and track 

viewers (left side), the visual experience of the DE analysis is completed. They allow exploring the actual underlying data 

with a single mouse click. The Escherichia coli data set used to create this figure was published by Srinivasan et al. (2013). 

All three DE tools can be configured conveniently by a wizard within ReadXplorer. This 

wizard queries the condition and for baySeq also group setup and the assignment of tracks to 

their respective condition or groups. An additional option available in the wizard is to export 

the raw count data into an XLS or CSV file for alternative downstream processing. The count 

data to be analyzed is gathered by ReadXplorer after completing the wizard. Algorithm 1 is 

used to read the data from the mapping files and specific analysis handlers have been 

implemented to carry out the analysis in R with the respective tool. To connect Java and R, 

the open source Java library rJava26 is utilized. Note that rJava only supports one active R 

instance per Java virtual machine. This implies that currently only one DE analysis can be run 

simultaneously. Each DE analysis handler is capable of creating an R instance and 

transferring the read counts and parameter setup to R. Subsequently, the respective DE R-

package analyzes the data set. After execution, the DE result is automatically re-imported into 

                                                 
26 http://www.rforge.net/rJava 

http://www.rforge.net/rJava/
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the Java environment of ReadXplorer (see Figure 51) and stored in an analysis result 

visualized in a result table. Further, the result panel offers buttons to show the log of the R-

console for experts and to create and view analysis result plots. The set of available plots 

depends on the selected tool, but always contains an MA (log2 fold change (M) against 

normalized mean expression (A)) plot. The plots dependent on the analysis tool are static pre-

rendered SVG images generated with R, while the additional MA plot is interactive. Thus, a 

selected point in the plot links back to the annotation it represents in the viewers (see Figure 

51, tooltip in the plot). This feature allows effortless visual assessment of the original data on 

which the DE results are based. 

For interactively plotting data, a new NBM has been created during the master's thesis of Kai 

Bernd Stadermann. It utilizes the open source JFreeChart27 Java library to paint the plots.  

The list of static plots for DESeq comprises: 

 A gene dispersion (for details on the overdispersion problem see Section 2.8.3 and 

(Anders and Huber, 2010)) against normalized mean expression plot. This plot 

contains the empirical per gene dispersion values on the y-axis as black dots and the 

corresponding fitted dispersion values as a red line plotted against the mean 

expression strength of each gene on the x-axis. The plot is doubly logarithmic. 

 An alternative log2 fold change (M) against normalized mean expression (A) plot 

generated by DESeq.  

 A histogram of p-values. This plot visualizes the probability of genes not to be 

differentially expressed against its frequency in the experiment. 

For baySeq, this list comprises: 

 A priors plot. This plot shows the log prior probability means for a selected sample 

group. 

 An alternative MA plot generated by baySeq.  

 A plot of the posterior likelihoods of differential expression (see Section 2.8.3 and 

(Hardcastle and Kelly, 2010)) against log-ratio or log values. The log ratio is used 

when the value is not infinity and the log value is used where all data in the other 

sample group consists of zeros. 

The convincing advantage of the integration of both command line R-packages is that the 

user does not need to know how to work with the console. A biologist can simply view the 

data in ReadXplorer, choose the DE tool of interest, design the DE experiment in the 

wizard and everything else is carried out automatically. All important results are directly 

accessible through ReadXplorer's visualizations (see Figure 51) and can be exported in 

standard, ready-for-publication formats.  

 

5.3.6. Operon Detection 

In prokaryotes, the annotation of operons (co-transcribed sets of genes resulting in a single 

polycistronic mRNA) is of high importance (Westover et al., 2005). Operons can be identified 

in RNA-Seq data sets by analyzing the coverage (see Section 2.8.4). In terms of coverage, the 

most significant evidence in a track for two genes belonging to an operon is observed if these 

two neighbouring genes are connected by a reasonable amount of unique single reads 

overlapping both genes (see Figure 52). If the distance between both genes is too large to be 

spanned by single reads, also the minimal coverage in the interval between both genes can be 

taken into consideration.  

In ReadXplorer, two neighbouring genes (protein-coding sequences or RNAs) are assigned to 

an operon if the number of observed reads spanning the two genes is higher than a user-

                                                 
27 http://www.jfree.org/jfreechart 

http://www.jfree.org/jfreechart
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defined threshold. This threshold varies from track to track amongst others depending on the 

background noise.  

Algorithm 5: Operon detection algorithm 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

20:  

21:  

22:  

23:  

24:  

25:  

26:  

27:  

28:  

29:  

30:  

31:  

32:  

33:  

34:  

35:  

36:  

37:  

38:  

39:  

40:  

41:  

42:  

43: a 

features ← list of all features of all feature types included by the user for all chromosomes  

featurePairs ← map of the id of the first feature to a pair of neighbouring features with max. 

overlap of 20bp and max. distance of 1000bp of the same type on the same strand for all 

chromosomes and all feature types included by the user 

mappings ← list of mappings from a single chromosome interval obtained by Algorithm 1 

li ← 0 (* Index of last assigned mapping *) 

 

for each feature f from features do  

if featurePairs contains id of f do 

isFstFittingMapping ← true  

fp ← featurePairs(id of f) 

strand ← determine analysis strand according to f and the parameters 

for i ← li, ..., size of mappings do  

if start of m > stop of second feature of fp do 

break for (* Mappings are sorted by position *) 

else if strand of m does not satisfy strand do 

continue with next mapping 

end if 

if start of m <= stop of first feature of fp and stop of m >= start of second feature 

of fp do 

increase number of spanning reads for fp by 1 

if isFstFittingMapping = true do 

li ← i; isFstFittingMapping ← false 

end if 

end if  

end for 

end if 

end for 

 

(* After gathering data for all intervals of all chromosomes *) 

lastFeatureId ← 0 

operonAdjacencies ← empty list for feature pairs belonging to the same operon 

for each entry fp in featurePairs do 

if no. spanning reads of fp >= min. no. spanning reads do 

if lastFeatureId ≠ first feature id of fp and lastFeatureId ≠ 0 do 

create operon in result list from current entries in operonAdjacencies 

clear operonAdjacencies 

end if 

add fp to operonAdjacencies 

lastFeatureId ← id of second feature from fp 

end if 

end for 

create operon in result list from current entries in operonAdjacencies 
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The operon detection algorithm (see Algorithm 5) is designed as follows: At first all 

neighbouring reference feature pairs are stored in a list. All genomic mappings are queried via 

Algorithm 1. Then, the mappings are assigned to their corresponding feature pairs. Mappings 

without features in their reach are not considered. The mappings are categorized in reads 

spanning both neighbouring features, reads overlapping only the end/start of one feature and 

reads located internally between both features without overlapping their borders. Only feature 

pairs whose number of spanning reads exceeds the given parameter are stored in the result. 

This process runs in linear time. Results of an operon detection are visualized in a table (see 

Figure 52). 

 
Figure 52: Operon detection result. The table at the bottom shows an operon detection result. One operon is represented by 

one row entry. A single row represents two neighbouring features (left = Feature 1 column, right = Feature 2 column) being 

part of the same predicted operon. Hence, the selected predicted operon consists of four genes with continuous coverage 

(spanning reads column). By clicking the operon in the result table, it is centred in the reference and track viewers and the 

results can directly be inspected visually. 

5.3.7. RNA Secondary Structure Prediction 

The folding of RNA sequences, for example in untranslated regions, can reveal many 

structural and functional properties. To accommodate this, the ability to either fold a read 

alignment, or a sequence of interest chosen from the reference sequence has been included 

into ReadXplorer. For this purpose, the online service of RNAfold (Hofacker et al., 1994; 

Hofacker, 2003) is queried. The graphical output is generated by an integrated version of 

RNA Movies (Evers and Giegerich, 1999) (see Figure 53). 

The RNAMovies component also enables direct export of the visualization of the folded 

sequence.  
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A generic menu item to fold a sequence has been implemented. It is used in the 

SequenceBar to enable folding a sequence of choice in each viewer with a 

SequenceBar and in the AlignmentViewer to fold a single read alignment. 

 
Figure 53: Folded RNAs Viewer. The embedded version of RNAMovies (Evers and Giegerich, 1999), showing the tRNA 

for arginine from P. aeruginosa. The tab header and the description below the RNA structure both reveal the name and the 

exact base positions of the folded sequence. 

 

5.3.8. Coverage Analysis 

Two coverage analyses are natively available in ReadXplorer and empower an experimenter 

to detect all reference features or reference intervals that show exceptional characteristics in 

terms of their coverage. They allow either listing of all features or intervals which are covered 

to a high extent by mapped reads or, on the contrary, which are not covered by a satisfactory 

amount of reads.  

These are quite basic coverage analyses. But they are especially important, because in practice 

they can aid a variety of experiments by fast extraction of genomic regions of interest. They 

are useful for studies of both RNA-Seq and resequencing data sets. For RNA-Seq 

experiments, they facilitate the identification of genes or intervals which exhibit a certain 

minimum coverage or which are not expressed or covered at all. For resequencing 

experiments, the feature coverage analysis enables exploration of the set of common or 

divergent features between the reference and its tracks, but also among tracks mapped on the 

same reference (see Figure 54). 

The general coverage analysis e.g. allows identification of regions which could not be 

sequenced, are not present in the mapped genome (see Figure 55) or show a significantly 

higher than the average coverage.  

 



Rolf Hilker Software Development for Read Mapping Data Analysis - ReadXplorer 

 

 

108 

 
Figure 54: Feature coverage analysis. The coverage of the RGPs from P. aeruginosa strain PA14 is analyzed using the 

feature coverage analysis. Each RGP sequence is represented by a genomic feature of type "unknown" (green/blue) in the 

reference viewer. The feature coverage analysis was run on 3 data sets simultaneously. This universal ReadXplorer analysis 

option offers a great opportunity for a side by side comparison of as many data sets as desired. The result table gives in-depth 

information regarding the coverage of each RGP in the analyzed three P. aeruginosa strains E429 (strain03, top), 239A 

(strain04) and F429 (strain06). The table shows detailed information regarding the analyzed genomic feature (in the columns 

feature, chromosome, strand, start, stop, length) and its coverage (mean coverage, covered percent, covered bases). The 

linkage of the result table with the visualization enables direct comparison of the observed results with the actual coverage 

distribution, as shown here for the selected RGP-Island1 (blue in table and reference viewer). 

The feature coverage analysis requires two parameters: The first parameter defines how 

many percent of a feature have to be covered with at least a coverage larger or equal to the 

second "minimum coverage" parameter value to report the feature in the result table. A 

checkbox enables switching the analysis to all features not satisfying the given parameters, 

thus, detecting the "uncovered" features of the reference genome. 

The coverage analysis also relies on two parameters: A minimum coverage has to be given 

for each position. Additionally, the user has to choose between summing up the coverage of 

both strands or counting each strand separately. Then, the analysis lists all reference intervals 

fulfilling the minimum coverage parameter. As mentioned above, a check box is available for 

switching to the alternative mode computing all intervals which do not satisfy the minimum 

coverage parameter. Additionally, the coverage analysis allows exporting the DNA sequences 

of all detected (un)covered intervals in multiple FASTA format for downstream analyses (see 

Figure 55). 
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Figure 55: Coverage analysis. The coverage analysis was run for P. aeruginosa strain E429 to detect all regions of the 

genome which are not covered by at least one mapping of the Single Perfect or Single Best Match class. In the selected 

example, an interval of 788bp has been identified within PA0040. Due to all Perfect, Single and Common Match mappings in 

the detected interval, it is obvious that in this example we identified a repetitive region, occurring at least twice in the 

reference genome PAO1. The result table does not only list the interval boundaries and length, but also reveals its mean 

coverage. The "Export Sequences"-button enables convenient export of the underlying DNA sequences from the detected 

intervals. 

The algorithm to identify covered or uncovered features first obtains all reference features. 

Next, the coverage of all selected data sets is queried via Algorithm 1 and all positions 

satisfying the given parameters are counted for each reference feature. After finishing the 

coverage queries, the map of features is iterated and only features satisfying the given analysis 

parameters are stored in the result list (for details see Algorithm 6). 
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Algorithm 6: Feature coverage analysis algorithm 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:   

20:   

21:   

22:   

23:   

24:   

25:   

26:   

27:   

28:  

features ← list of all features of all feature types included by the user for all chromosomes  

coverage ← the list of coverage arrays of a single chromosome interval for each included 

mapping class obtained by Algorithm 1 

for each feature f from features do 

if chromosome id of f = chromosome id of m do 

noCoveredBases ← 0  

strand ← determine analysis strand according to f and the parameters 

for i ← start of f, ..., stop of f do 

cov ← coverage at i according to strand 

if cov >= min. coverage do 

noCoveredBases++ 

increase coverage sum by cov 

end if 

end for 

store noCoveredBases for f 

compute and store mean coverage of f as coverage sum of f / noCoveredBases 

end if 

end for 

 

(* After gathering data for all intervals of all chromosomes *) 

for each feature f in features do 

covPercent ← noCoveredBases of f / length of f * 100 

if covPercent > min. covered percent and detect covered features or  

   covPercent <= min. covered percent and detect uncovered features do 

add f and its coverage data (covPercent, noCoveredBases, mean coverage) to a result 

list 

end if 

end for 

 

The algorithm to identify covered or uncovered intervals of the reference (see Algorithm 7) 

queries the coverage of all selected data sets via Algorithm 1. Each position of the reference is 

then analyzed for the given analysis parameters and new intervals are started whenever the 

analysis parameters are satisfied for the first time. The current interval is extended until the 

first position not complying with the analysis parameters. Intervals spanning the borders of 

the chunks in which the coverage is queried are considered by additional temporary data 

structures not shown in Algorithm 7.  
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Algorithm 7: Coverage analysis algorithm 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:   

20:   

21:   

22:   

23:   

24:   

25:   

26:   

coverage ← the array of the summed coverage of each included mapping class of a single 

chromosome interval obtained by Algorithm 1 

If this is not the first interval of the chromosome check if the previous adjacent interval can be 

extended by the first entry of the appropriate array from coverage and extend it if necessary 

isInInterval ← false 

summedCoverage ← 0 

for i ← 0, ..., length of coverage do 

if coverage[i] >= min. coverage and detect covered intervals or  

   coverage[i] < min. coverage and detect uncovered intervals do 

isInInterval ← true 

summedCoverage + coverage[i] 

else if isInInterval = true do 

add current interval and its data (start, stop, mean coverage (as summedCoverage / 

length of interval)) to a result list 

isInInterval ← false 

end if 

end for 

 

(* After gathering data for all intervals of all chromosomes *) 

for each feature f in features do 

covPercent ← noCoveredBases of f / length of f * 100 

if covPercent > min. covered percent do 

add f and its coverage data (covPercent, noCoveredBases, mean coverage) to a result 

list 

end if 

end for 

 

5.4. ReadXplorer Evaluation 

The features implemented in ReadXplorer are summarized and compared to other genome 

browsers reviewed during this work in Table 9. In total, ReadXplorer offers the most 

comprehensive set of features and it is the only tool offering an own in-depth read mapping 

classification. The effectiveness of ReadXplorer is illustrated in Table 10 by showing the 

computational performance and requirements for several common tasks. The import process 

is the bottleneck with the longest execution time, but this task only has to be performed once 

for each data set. Additionally, a data set which has been classified by ReadXplorer once can 

skip the time consuming steps of the import in all subsequent imports in other ReadXplorer 

databases. The automatic analysis functions only require a few seconds or minutes to run, 

scaling linearly with the number of reads to analyze. In general, the memory requirement of 

importing data and performing single analyses is less than 1GB. Note that the memory 

requirements can grow larger when multiple analyses are run in parallel. 
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Table 9: Comparison of popular published read mapping visualization and analysis tools. Here, the most important 

features of all compared tools are listed. Features present in a tool are depicted by a ""and highlighted in green. Available 

features requiring a more detailed explanation are also highlighted in green. Features which are present with constraints are 

marked by "()" and highlighted in yellow. Features which are planned to be implemented are shown as " (planned)" and 

highlighted in orange. All features not supported by a tool are marked by an "" and highlighted in red. The last two columns 

show the RAM usage for two common visualization tasks tested on the same region of the same data set. The table and 

descriptions are an updated version of Table S3 from (Hilker et al., 2014). 

Feature Savant 2.0.4 IGB 8.0.1 Artemis 

16.0 

IGV 2.3.26 + 

Rockhopper 

1.3.0 

GenomeView 

2450 

ReadXplorer 

2.1 

Reference 

formats 

BED, GFF3, 

GTF, Fasta 

Genbank, 

GFF2/3, 

Fasta, 

BED 

Genbank, 

EMBL, 

Fasta 

BED, GFF2/3, 

GTF, Fasta 

BED, EMBL, 

Genbank, 

GFF3, GTF, 

Fasta, PTT, 

TBL 

Genbank, 

EMBL, 

GFF2/3, GTF, 

Fasta 

Mapping 

formats 

BAM SAM, 

BAM 

BAM, only 

one at a time 

or 

combination 

of multiple 

files 

SAM, BAM BAM, MAF SAM, BAM, 

JOK 

6 frame view    () one strand 

at a time 

  

Mapping 

classification 

      

Filter mappings Mainly pair 

SAM flags 

& mapping 

quality 

Some 

SAM 

flags, 

mapping & 

base 

quality 

All SAM 

flags & 

mapping 

quality 

  Read class, 

mapping & 

base quality 

Color mappings Mapping & 

base quality 

Base 

quality & 

some SAM 

flags 

() Base 

quality on 

lowest zoom 

level 

Some SAM 

flags & SAM 

tags 

Mapping 

quality 

Read (pair) 

class, mapping 

& base quality 

Coverage graph   () no 

position 

specific 

details 

   

Read pair 

visualization 

      

Alignment view       

Histogram 

viewer 

      

Methylation 

viewer 

      (planned) 

Thumbnail 

viewer 

      

G/C plot       (planned) 

Track 

comparison 

    () Only for 

multiple 

genome 

alignment 

 

Track 

combination 

      

Scaling       

Strand specific 

visualizations 

() only for 

coverage 

plot 

  () only for 

alignments 

  

Genetic code 

selection 

      + Addition 

of own codes 



Rolf Hilker Software Development for Read Mapping Data Analysis - ReadXplorer 

 

 

113 

SNP calling       

VCF-support       

RNA-Seq 

analyses 

Isoforms, 

abundancies, 

fragment 

length 

 Read count 

and RPKM 

calculation 

for selected 

features 

Normalization

, transcript 

assembly, 

RPKM, read 

count, operons  

 TSS, novel 

transcript, 

TPM, RPKM, 

read count, 

operon, 

(feature) 

coverage  

Differential 

gene expression 

edgeR   Similar to 

DESeq 

 DESeq, 

baySeq, 

Express Test 

Genome 

rearrangements 

     GASV 

Continuous data 

support 

TDF, 

BigWIG 

BigWIG, 

BedGraph 

 TDF, 

BigWIG, WIG 

TDF, 

BigWIG, 

WIG, pileup 

 (planned) 

Indexing     except 

Fasta 

 except 

BAM 

  

Bookmarks       (planned) 

Reformat data Indexing and 

zipping 

BED, 

GenePred, 

GFF, GTF, 

VCF, WIG, 

BedGraph, 

BAM 

 Indexing 

BAM 

Count, Sort, 

Index (except 

BAM), toTDF 

Indexing  

Fasta, BED,  

BAM 

Tab-separated 

(csv), 

Indexing 

BAM, SAM 

to BAM, JOK 

to BAM 

Project based       

Predefined 

genome list 

      (planned) 

Restriction sites       

Screenshots       

Edit annotations       (planned) 

Pattern search       

Database 

searches 

 NCBI NCBI, Pfam, 

Rfam 

 NCBI Enzyme DBs 

(e.g. ExPASy) 

Export data Fasta BED, 

bedgraph 

Fasta, PIR 

database, 

EMBL, 

Genbank, 

GFF, Sequin 

BED, txt, 

TDM 

EMBL,  

GFF3 

Xls, CSV, 

Fasta 

Genome 

visualization 

(10kb) 

220 MB 230 MB 230 MB 250 MB 250 MB 125 MB 

Mapping 

visualization 

(10kb) 

450 MB 330 MB 380 MB 460 MB 390 MB 220 MB 
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Table 10: Analysis and import benchmark of ReadXplorer. This table shows the time and memory requirements for 

common tasks within the ReadXplorer software on a Windows 7 x64 Laptop with an i7-2630QM 2GHz processor and 8GB 

RAM. Additionally, the genome size and the number of mapped reads of the investigated data set are listed for each task. 

Reference imports include the genomic features and sequence. The "Overall Memory" column refers to the maximum 

observed memory usage during the task. The memory usage does not only include the memory footprint of the task, but the 

overall used memory for displaying the reference with genomic features, the data sets used in the task and the task itself. 

Further note that the observed memory footprint might be higher than necessary, since ReadXplorer was run with more than 

1GB of available memory. This means, that the Java garbage collector does not always clean up the memory and possibly 

unneeded objects are still in memory. The table is taken from the supplement of (Hilker et al., 2014). "s" abbreviates 

"second". 

Task Genome Size Mapped reads Time Overall 

Memory 

Import/index Pseudomonas aeruginosa ~ 6.26 mb - 8 s 150 MB 

Import/index Caenorhabditis elegans ~ 99 mb - 14 s 200 MB 

Import/index Homo sapiens ~ 30 gb - 8:05 min 500 MB 

Import P. aeruginosa read pair reads ~ 6.26 mb 22 356 000 45:39 min 900 MB 

Import P. aeruginosa read pair reads ~ 6.26 mb 16 000 000 29:03 min 800 MB 

Import P. aeruginosa read pair reads ~ 6.26 mb 8 780 000 15:52 min 800 MB 

Import P. aeruginosa reads ~ 6.26 mb 22 356 000 45:10 min 900 MB 

Import P. aeruginosa reads ~ 6.26 mb 16 000 000 29:07 min 800 MB 

Import P. aeruginosa reads ~ 6.26 mb 8 780 000 16:18 min 800 MB 

Import Chlamydomonas reinhardtii reads ~ 120 mb 82,000,000 151 min 1000 MB 

DESeq analysis ~ 3 mb 19,400,000 1:29 min 510 MB 

DESeq analysis ~ 120 mb 82,000,000 8:39 min 800 MB 

baySeq analysis ~ 3 mb 19,400,000 6:03 min 390 MB 

baySeq analysis ~ 120 mb 82,000,000 62 min 800 MB 

Express test ~ 3 mb 10,770,000 45 s 400 MB 

Express test ~ 120 mb 82,000,000 5:23 min 700 MB 

TSS detection ~ 3 mb 7,839,000  19 s 510 MB 

TSS detection ~ 3 mb 17,069,000  1:10 min 440 MB 

TSS detection ~ 120 mb 82,000,000  6:27 min 480 MB 

Read count and normalization calculation ~ 3 mb 7,839,000  25 s 520 MB 

Read count and normalization calculation ~ 120 mb 82,000,000  2:32 min 860 MB 

Operon detection ~ 3 mb 17,069,000  36 s 430 MB 

Operon detection ~ 120 mb 82,000,000  5:19 min 590 MB 

Coverage analysis ~ 6.26 mb 12,115,000  37 s 420 MB 

Coverage analysis ~ 120 mb 82,000,000  3:19 min 480 MB 

Feature Coverage analysis ~ 6.26 mb 12,115,000  41 s 480 MB 

Feature Coverage analysis ~ 120 mb 82,000,000  3:20 min 560 MB 

SNP detection (55,000 SNPs found) ~ 6.26 mb 12,115,000  7:03 min 480 MB 

SNP detection (57.000 SNPs found) ~ 120 mb 82,000,000  8:35 min 710 MB 
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Chapter 6  
 

Pseudomonas aeruginosa                      
Pan Genome Analysis 

This chapter starts with an introduction to P. aeruginosa, the state of the art of comparative 

genomics approaches regarding this pathogen and the 20 P. aeruginosa strains subject to this 

dissertation. After this introduction, the here established workflow for comparative genomics 

analyses is defined and the individual steps are explicated. The next section describes the 

comparative genomics results obtained with the software EDGAR (see Section 2.5.3). It is 

followed by another comparative genomics study based on the SNPs and DIPs identified 

against a common reference strain with the newly implemented analysis methods of the 

software ReadXplorer (see Chapter 5). The last section deals with the comparative analysis of 

genomic islands and regions of genomic plasticity also performed with analysis methods 

implemented during this work into ReadXplorer (see Section 5.3.8). This chapter is mainly 

based on the P. aeruginosa pan genome analysis publication by Hilker et al. (2014). 

6.1. Comparative Genomics of Pseudomonas aeruginosa  

P. aeruginosa is a gram-negative, metabolically very versatile gammaproteobacterium which 

can be found around the globe in soil as well as in water habitats. It prefers moist surfaces and 

has been reported to colonize plants, mammals, insects and worms. In animals and humans, it 

is found within the skin microbiome and thrives within wounds and in immunocompromised 

hosts. The habitat temperatures can range from 4°C - 42°C. (Ramos, 2004-2010a, 2004-

2010b) 

As an opportunistic pathogen, P. aeruginosa causes inflammation and sepsis within infected 

hosts. P. aeruginosa infections can severely sicken and even kill the host. Therefore, this 

ubiquitous bacterium plays an important role for human health care. It is involved in a wide 

range of infections mainly affecting the pulmonary or urinary tract, open wounds and burns. 

Typical diseases involving P. aeruginosa are the Chronic obstructive pulmonary disease 

(COPD) (Murphy, 2008), ventilator associated pneumonia (VAP) (Crouch Brewer et al., 

1996) and urinary catheter infections (Mittal et al., 2009).  

The population structure of P. aeruginosa has been shown to be epidemic (Pirnay et al., 2009; 

Selezska et al., 2012). Most of the several hundred clonal complexes from environmental and 

disease habitats identified by genotyping in the recent years are rare (Wiehlmann et al., 2007; 

Cramer et al., 2012). 40% of today's P. aeruginosa population is made up by the 15 most 

frequent clones. Representatives of the two major clones C (Römling et al., 2005) and PA14 

(Rahme et al., 1995) have been identified to populate numerous habitats around the globe. A 

few examples are: chronic and acute human infections, man-made environments, fresh and 
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salt water, solitary national reserves, animals and plants. However, the next frequent clones 

preponderate for geographic areas and/or habitats. Numerous clones have no representative as 

yet among the subset of human infections and conversely, clones that had caused outbreaks of 

nosocomial infection still lack an environmental isolate in the strain collection. These data 

suggest that the P. aeruginosa population consists of global and local generalists on one hand 

and niche specialists on the other. There even may exist an interclonal gradient of 

pathogenicity ranging from innocuous to highly virulent clones.  

 

The first completely sequenced P. aeruginosa strain was PAO1 (see Figure 56) (Stover et al., 

2000). It serves as major reference strain until today. In the meantime, several other strains 

like the aforementioned highly virulent PA14 (Lee et al., 2006) followed and have been 

deposited into online databases (Winsor et al., 2011). The genome size of P. aeruginosa is 

between 5.5 and 7.5mb28 and consists of a single chromosome and a variable number of 

different plasmids. All strains are characterized by a high GC content of 65 - 67% and mostly 

contain approximately 5500 - 6500 genes. Besides the general core genome, the dispensable 

genome consists of an additional clone specific core genome (Wiehlmann et al., 2007). 

Wiehlmann et al. also state that the P. aeruginosa genome is assembled non-randomly: 

"Individual clones prefer a specific repertoire of accessory segments. Moreover, some parts of 

the core genome tolerate only a subset of the possible combinations of sequence variants, 

whereas other segments are freely recombining." In P. aeruginosa many important genes for 

pathogenicity are located in the dispensable genome (Klockgether et al., 2011). Hot spots of 

genomic island and RGP integration in the P. aeruginosa genome are tRNA genes. Notable 

differences to core genome regions are the anomalous mono- to tetradecanucleotide usage and 

GC content of RGP sequences (Klockgether et al., 2011; Kung et al., 2010). For P. 

aeruginosa, the GC content of RGPs is mostly lower than the high GC content of the core 

genome (Kung et al., 2010). Further, RGPs can be identified by mobility factors in their 

flanking regions. Frequently, the content of RGPs is even a mosaic of regions from different 

mobile elements (Klockgether et al., 2004). The above mentioned studies act on the 

assumption that P. aeruginosa has an open pan genome, because all newly analyzed strains 

added several genes to the pan genome while the core genome slowly decreased. 

 

The relevance of the dispensable genome for medicine becomes apparent when the 

acquisition of prevalence increasing secondary pathways (Aguilar-Barajas et al., 2010; 

Campos-García, 2010), new virulence factors (He et al., 2004), or antibiotic resistances 

(Mesaros et al., 2007) is considered. Another important source of adaptability are plasmids. In 

medical science very often antibiotic resistance plasmids play an important role, especially 

since multidrug resistant bacteria have become a severe issue (Shahid et al., 2003). 

 

We have described the study in our publication (Hilker et al., 2014) as follows:  

A drawback of the so far sequenced P. aeruginosa strains is that except PA14 they all belong 

to uncommon clonal complexes in the bacterial population. In this study, the genomes of 15 

P. aeruginosa strains that are representative for the 15 most frequent clonal complexes 

according to Wiehlmann et al. (2007) in the P. aeruginosa population have been analyzed. 

Based on the hypothesis that clonal complexes may occur in the environment which cannot 

cause disease in humans, five more strains from soil, plants and aquatic habitats have been 

added to this panel for genome sequencing, each of which representing a common clonal 

complex of which so far no isolate from a human niche has been detected. To address this 

issue of whether there is an association between clonal frame and virulence, the chosen strain 

panel has been analyzed computationally and by infection models in the laboratory.  

                                                 
28 http://www.ncbi.nlm.nih.gov/genome/genomes/187 

http://www.ncbi.nlm.nih.gov/genome/genomes/187
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Figure 56: Circular representation of the P. aeruginosa genome. The outermost circle indicates the chromosomal location 

in base pairs (each tick is 100kb). The distribution of genes is depicted by coloured boxes according to functional category 

and direction of transcription (outer band is the plus strand; inner band is the minus strand). Red arrows, the locations and 

direction of transcription of ribosomal RNA genes; green arrow, the inverted region that resulted from a homologous 

recombination event between rrnA and rrnB; blue arrows, location of two regions containing probable bacteriophages. The 

black plot in the centre is percentage G+C content plotted as the average for non-overlapping 1-kb windows spanning one 

strand for the entire P. aeruginosa genome. Yellow bars, regions of  3.0 kb with G+C content of two standard deviations 

(< 58.8%) below the mean (66.6%). A linear map of the genes, with the colour code for functional categories, is available at 

http://www.pseudomonas.com/functionClasses.jsp. Figure and description are adapted from (Stover et al., 2000). 

Three different infection models have been used to determine the virulence of the separate 

strains in the laboratory. The computational analysis refers to NGS analyses of the pan 

genome of the chosen strain panel. The infection model experiments are an important part of 

our publication (Hilker et al., 2014), but not subject of this dissertation. However, results from 

this analysis are correlated to the computational analysis results generated within the 

framework of this dissertation in the following subsections. The selection of the 20 strains 

enables analyzing the sequence diversity and gene content among the most common clonal 

complexes and allows estimating the gene pool of the pan genome of P. aeruginosa. For 19 of 

the 20 genomes it was planned to deliver draft genome sequences, while for the pathogenic 

and prevalent clone C the complete and finished genome sequence should be decoded. With a 

complete high quality genome sequence in hand, a powerful foundation for the analysis of the 

pathogenicity and prevalence of clone C is made available (Fischer et al., in preparation). 

http://www.pseudomonas.com/functionClasses.jsp
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Further, the complete genome sequence of relevant strains is needed as reference to 

investigate the pathogenic properties and potential in future analyses comparing P. 

aeruginosa strains.  

6.2. Pan Genome Analysis Workflow Establishment 

The 15 most common clonal complexes in the P. aeruginosa population were represented by 

isolates from the environment (2×), acute eye infection (1×), community-acquired pneumonia 

(1×), intubated patients (3×) and chronic airway infections of individuals with cystic fibrosis 

(CF) (5×) or chronic obstructive pulmonary disease (COPD) (3×). Five further environmental 

isolates were recovered from plants (2×), soil (1×), fresh (1×) and salt water (1×) respectively. 

The detailed list of the strains is shown in Table 11. The strains were deposited at the German 

Collection of Microorganisms and Cell Cultures (DSMZ) and are available under accession 

numbers DSM29238-29241, DSM29272-29281 and DSM29304-29311.  

 
Table 11: P. aeruginosa strain information. The first 15 strains represent the 15 most common clonal complexes in the P. 

aeruginosa population (sorted according to decreasing frequency). The lower five strains were from the most common clonal 

lineages without any clinical representatives found so far. Table and description taken from (Hilker et al., 2014). Clinical 

strains have been highlighted in red, the five most common environmental strains in green and the other two river isolates in 

light green. This coloration is used in all subsequent strain tables. 

 

Clone Isolate Source 

C40A NN2 CF lungs, Germany 

D421 RN3 CF lungs, Germany 

F469 60P57PA COPD airways, USA 

0C2E RP1 CF lungs, Germany 

E429 15108/-1 Intubated patient, Spain 

239A 13121/-1 Intubated patient, France 

2C22 57P31PA COPD airways, USA 

F429 A5803 Pneumonia, Germany 

B420 120SD3 River, Germany 

EA0A 39177 Keratitis, UK 

0812 27103 Intubated patient, France 

2C1A 18P17PA COPD airways, USA 

1BAE KK1 CF lungs, Germany 

3C2A TR1 CF lungs, Germany 

EC2A PT22 River, Germany 

EC21 100 Pacific Ocean, Japan 

843A BP35 Pepper plant, India 

0822 E501 Tomato plant, Italy 

149A 120SB2 River, Germany 

478A M41A.1 Soil, Colombia 

 

Sequencing of the 20 genomes was carried out by GATC Biotech29 on an Illumina Genome 

Analyzer II (see Section 2.1.3). Beforehand, tagged paired-end libraries were prepared by my 

collaborators at the MH Hanover following the manufacturer’s instructions. To be able to 

finish the clone C genome sequence, they prepared an additional 3kb mate pair library for the 

Illumina Genome Analyzer II and a 454 sequencing library for a Roche Genome Sequencer 

FLX (see Section 2.1.2), both sequenced by GATC. The resulting genome sequence reads, 

                                                 
29 GATC Biotech AG, Constance, Germany 
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except the two additional libraries for clone C, were deposited in the European Nucleotide 

Archive (ENA) hosted by EMBL/EBI, accession no. PRJEB4961. 

All computational processing steps are described in detail in their corresponding subsection 

and a global overview of the analysis workflow is given in Figure 57.  

At first, the sequencing data sets were analyzed for their quality (see Section 6.2.1). From 

here on, two different processing paths were taken: 1. de novo assembly (see Sections 6.2.2) 

and annotation (see Section 0) and 2. read mapping on the PAO1 genome (see Section 6.2.4), 

both followed by pan genome analyses described in the following Sections 6.3 - 6.5. 

 
Figure 57: P. aeruginosa pan genome analysis workflow. The figure visualizes the steps and software used to analyze the 

pan genome of the 20 P. aeruginosa strains of this study. It starts with the input of raw sequencing reads in fastq format and 

then follows two routes: 1. de novo assembly and subsequent pan genome analysis of the assembled and annotated genome 

sequences (right path), 2. Mapping of the sequencing reads onto the genome sequence of the reference strain PAO1 followed 

by subsequent analyses (left path). 
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6.2.1. Read Quality Assessment 

A variety of tools is available for different tasks related to read quality assessment (see 

Section 2.2). In this work, the tools were chosen on the basis of the required tasks. Thus, the 

most appropriate and easy to install tools for each task were used.  

All data sets presented in this work were at first statistically and visually analyzed with 

FastQC (Andrews, 2010). This analysis revealed that 10 of the 20 data sets had a strong GC-

bias. Here, regions with a GC-content above ~75% were strongly underrepresented (see 

Figure 70 in Appendix for an example). During closer inspection of the affected data sets, it 

became clear that these 10 genomes had to be sequenced a second time to include also high-

GC regions of the genomes. The sequencing procedure was the same as mentioned in the 

introduction to this section and yielded data sets of much better quality including high-GC 

regions. This incident is a textbook example proving the importance of read quality 

assessment. 

The read quality check further revealed that sequencing adapters and primers (see Appendix, 

Section 10.3 for the identified sequences) were still present in some of the data sets and had to 

be removed prior to further processing and that the base quality of most reads dropped below 

a PHRED score (see Section 2.1) of 20 towards the read ends. The latter is a common issue 

with the Illumina sequencing technology (see Section 2.1.3).  

The adapter and primer sequences were removed with the FASTX-toolkit (Gordon, 2009) (see 

Section 2.2 and Appendix, Section 10.4 for program calls). Adapter and primer trimming was 

performed for reads containing a contiguous alignment of at least 6 bases to the 

adapter/primer and all resulting reads shorter than 25 bases were discarded. 

Since the requirements of assembly and read mapping tools were different, two trimming 

strategies were applied next.  

For the assembly path (see Figure 57), reads were trimmed by base quality using a trimming 

workflow provided by the Conveyor workflow engine (Linke et al., 2011). All read ends were 

trimmed from the position on where a stretch of at least 3 bases had a PHRED quality value 

below 20 (see Appendix, Section 10.4 for program calls).  

For the read mapping path (see Figure 57), the reads were trimmed from 101 to 80bp with the 

FASTX-toolkit (Gordon, 2009) (see Section 2.2 and the Appendix, Section 10.4 for program 

calls) to yield high quality data sets. The more detailed trimming approach used for the 

assembly path cannot be used in conjunction with the read mapper SARUMAN (Blom et al., 

2011) (see Section 2.6.4). SARUMAN requires all reads to have the same length which is not 

given by this approach. Nonetheless, SARUMAN had already been chosen for read mapping, 

because it does not use a heuristic approach as most other widely used mapping tools. Instead, 

it performs an exact and complete mapping of the reads in competitive time, which is 

especially beneficial to identify reads mapping to multiple regions of the reference genome.  

After the quality assessment three data sets were available for each P. aeruginosa strain: The 

original untrimmed data set, a data set trimmed by PHRED quality score 20 and a data set 

with reads trimmed to 80bp length. Processing and analysis were continued in parallel with 

these data sets where possible to evaluate the impact of filtering and trimming (see Figure 57). 
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6.2.2. Genome Assemblies 

Assemblers considered for this work were Newbler (Margulies et al., 2005), Velvet (Zerbino 

and Birney, 2008) and ABySS (Simpson et al., 2009). ABySS had to be excluded very early 

in the comparison, because it was not possible to correctly install it on our system due to 

irresolvable program dependencies. When comparing the results of test assemblies of 

Newbler and Velvet generated with the C40A and F469 paired-end data sets (for Velvet 

results see Table S5 from the Appendix, Table 17), it became evident that the Newbler results 

by far outperformed the Velvet assemblies. This finding has been confirmed lately. Newbler 

has been shown to generate reliable results in one of the latest assembly comparison studies 

(Bradnam et al., 2013). 

The final P. aeruginosa de novo draft assemblies were generated with Newbler version 2.8. 

To produce the best possible assembly and reveal the impact of quality trimming, three 

different assembly strategies were tested: 

1. Assembling the raw and untrimmed reads. 

2. Assembling the raw and untrimmed reads utilizing the internal adapter and quality 

trimming of Newbler. 

3. Assembling the reads trimmed by PHRED quality score 20 (see Section 6.2.1). 

As expected, the result with the untrimmed reads was the worst among the three assemblies. 

Interestingly, the internal trimming of Newbler resulted in significantly better results than 

using the external base quality trimming approach (for details of the comparison see Table S6 

from the Appendix, Table 17). On this account, the genome assemblies generated with the 

internal trimming by Newbler (see Table 13) were used for all downstream processing and 

analyses. Besides the trimming flag, the minimum contig length to output was set to 150 

bases (see Appendix, Section 10.4 for the applied Newbler command). The quality of all 

assemblies is relatively similar, except for strain EC2A. This data set posed unknown 

problems to the assembly and contains more than twice as many contigs than the other 

assemblies. However, the Velvet assembly of this strain was still worse in comparison. To test 

the impact of the updates in the recently released Newbler version 3.0, new assemblies have 

been generated for EC2A using this version. The best of the new assemblies (see Table 13) 

was still not as good as for the other strains, but clearly superior to the previous assembly. 

Hence, all downstream analyses involving the draft genome sequence of this strain have been 

recalculated using the new draft genome sequence. On this account, the resulting numbers 

slightly vary in comparison to the publication (Hilker et al., 2014). 

In general, the genome size is between 6.3 and 7.05mb with an average of 6.7mb. This is a 

slightly larger size than the 6.2-6.8mb with an average of 6.5mb of the other finished genome 

sequences available in the Pseudomonas Genome Database (Winsor et al., 2011). Except for 

strain EC2A, the N50 value of contigs > 500bp ranges from 31.1 to 157.3kb with an average 

of 57.8kb, the number of scaffolds ranges from 53 to 127 with an average of 89 and the N50 

value of the scaffolds ranges from 105.1 to 291.4kb with an average of 174.3kb. 

Clone C has been treated separately, as for this strain three sequencing data sets were 

available: A 300bp Illumina paired-end data set, a 3kb Illumina mate pair data set and a 454 

single end data set. In this case, the 454 data set was first assembled with Newbler using the 

same parameters. Afterwards, the resulting clone C assembly was combined with the two 

other data sets using SSPACE (Boetzer et al., 2010). SSPACE was chosen because it also 

extends contigs by yet unmapped reads where possible and is one of the most reliable 

programs for this task (Hunt et al., 2014). Application of SSPACE led to a significantly 

improved assembly result (see Table 12): Before the combination, the assembly still had 109 

contigs. Afterwards, only 29 scaffolds with 74 gaps remained.  
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Table 12: Improvement of the clone C assembly by data set combination. The first line lists the characteristics of the 

Newbler assembly only including the 454 data set. The numbers given here refer to contigs. The second line lists the 

characteristics of the SSPACE (Boetzer et al., 2010) assembly combining the 454 assembly with the two other data sets. The 

numbers given here refer to scaffolds. 

Assembly 
# contigs / 

scaffolds 
Sum (bp) Max size 

Min 

size 

Average 

size 
N50 

Newbler with only 454 

(contigs) 
109 6 872 252 495 312 150 63 048 198 672 

SSPACE combination 

(scaffolds) 
29 6 889 368 2 950 570 118 237 564 2 515 587 

 

The resulting scaffolds of all assemblies were ordered according to the reference strain PAO1 

(Stover et al., 2000) using the software r2cat (Husemann and Stoye, 2010) (see Figure 57 and 

Section 2.3.3). All scaffolds, which could not be mapped on PAO1, were appended at the end 

of the scaffolds fasta file.  

To prepare manual finishing of the clone C assembly, the size of the 74 gaps was estimated 

according to the gaps seen in the alignment of neighboring scaffolds to the PAO1 reference 

sequence: 18 had a length of 1 - 2bp, 29 were smaller than 220bp, 7 were 220 - 1000bp long 

and 20 were larger than 1000bp. All these gaps have been successfully closed by my 

cooperation partners at the MH Hanover (Fischer et al., in preparation). The smallest gaps 

could already be closed in silico, while ~40 gaps had to be closed manually in the laboratory. 

 



  

 

 

Table 13: Genome assembly characteristics of the sequenced P. aeruginosa strains except C40A. Clone C has been left out since the assembly strategy was different for this strain. For assembly 

results of clone C see Table 12. 

Strain  # Reads  
# Assembled 

Reads  

Genome size 

(bp) 

Average  

Alignment 

Depth 

# Contigs 

Total  

# Contigs > 

500bp  

N50 Contigs > 

500bp  
# Scaffolds  

 # Scaffold 

Contigs  

N50 

Scaffolds  

[%] GC 

Content  

D421  21 555 950  18 424 853  6 902 893 249 836  292  64 490  79  247  147 505  65.37  

F469  50 622 084  35 457 943  6 910 555 442 478  423  32 053  102  401  156 565  64.12  

OC2E  23 613 860  21 081 757  6 914 674 285 303  162  96 592  75  142  193 120  65.83  

E429  15 001 126  13 722 786  7 039 190 182 441  226  89 852  124  190  105 063  65.46  

239A  21 737 820  20 106 731  6 915 596 272 506  340  46 617  127  299  122 854  65.32  

2C22  58 743 200  48 970 069  6 519 939 644 426  352  34 499  71  336  195 426  65.37  

F429  19 073 646  16 583 740  6 801 202 228 359  210  79 653  105  175  113 680  65.91  

B420  11 840 794  9 557 706  6 368 472 140 286  170  83 786  97  154  152 318  66.01  

EA0A  17 618 710  15 267 462  6 629 320 215 359  189  91 761  88  153  197 743  65.92  

0812  16 187 298  14 576 315  6 652 994 205 265  139  157 306  68  119  227 478  65.92  

2C1A  16 922 710  15 598 163  6 425 255 227 402  323  38 208  69  310  188 951  65.24  

1BAE  30 392 666  24 634 302  6 798 656 288 678  404  31 453  77  388  195 431  65.01  

3C2A  35 419 090  28 737 477  6 774 714 338 649  402  34 502  95  387  148 219  65.05  

EC2A  28 832 664 2 8229 896 7 044 851 270 1 203 741 17 514 585 585 17 922 65.73 

EC21  46 799 478  37 632 112  6 652 626 451 619  390  34 187  90  374  172 679  65.23  

843A  46 633 194  37 454 053  6 351 657 469 561  336  31 129  76  324  187 394  65.67  

0822  40 049 592  32 784 497  7 037 971 375 471  397  32 219  93  374  144 373  64.69  

149A  35 606 102  29 020 165  7 007 315 333 698  493  31 303  97  431  195 945  64.62  

478A  40 849 968  32 582 423  6 370 109 406 378  337  31 678  53  334  291 401  65.45  
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6.2.3. Annotation 

When the clone C genome sequence had been finished, it was ready for genome annotation. 

However, the other 19 draft genomes had to be prepared for the annotation first. The ordered 

scaffolds were concatenated by a stop linker on all six reading frames (CTAGCTAGCTAG) 

with a script written in-house by Dr. Jochen Blom (see Appendix, Section 10.4 for the script 

call). The advantage of the stop linker over other linker sequences is that it prevents wrong 

prediction of genes across contig borders.  

The resulting fasta files only contain a single draft genome sequence and were automatically 

annotated with the GenDB annotation platform version 2.2 (Meyer et al., 2003) using the 

standard pipeline based on gene prediction with Prodigal (Hyatt et al., 2010) (see Appendix, 

Section 10.4 for the used GenDB commands). The corresponding GenDB project is 

"GenDB_Paepan" and is still hosted on the GenDB server of Bielefeld University30 with 

restricted access. To use the annotated draft genomes for subsequent comparative genomics 

analyses, they were all exported as GenBank formatted files from GenDB. The number of 

annotated genes per strain ranges from 5,892 - 6,904 with a mean of 6,358 genes (see Table 

14). This observed mean is a bit higher than that of the genomes already published in the 

NCBI database. The available P. aeruginosa genomes contain 6,178 genes on average31. 

 
Table 14: Genome annotation results of all 20 analyzed P. aeruginosa strains. The table lists the number of genes 

predicted for each genome by the automatic annotation platform GenDB (Meyer et al., 2003). 

Clone # predicted genes 

C40A 6 583 

D421 6 412 

F469 6 566 

0C2E 6 529 

E429 6 585 

239A 6 575 

2C22 6 135 

F429 6 397 

B420 5 892 

EA0A 6 213 

0812 6 157 

2C1A 5 959 

1BAE 6 381 

3C2A 6 386 

EC2A 6 904 

EC21 6 285 

843A 5 931 

0822 6 715 

149A 6 536 

478A 6 009 

 

  

                                                 
30 https://gendb.cebitec.uni-bielefeld.de 
31 http://www.ncbi.nlm.nih.gov/genome/genomes/187 

https://gendb.cebitec.uni-bielefeld.de/
http://www.ncbi.nlm.nih.gov/genome/genomes/187
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6.2.4. Read Mapping and Analysis 

The paired-end reads trimmed to 80bp were used to generate read alignments matching the 

reference genome PAO1 (NC_002516.2) for each strain. As read mapping tool, the exact and 

complete read mapper SARUMAN version 1.0.7 (Blom et al., 2011) was used with a 

maximum of 8% mismatches per read and standard Levenshtein distance (see Appendix, 

Section 10.4 for the applied command). Then the ReadXplorer (Hilker et al., 2014) database 

"P.aeruginosa-on-PAO1.h2.db" was created and the annotated PAO1 genome (in GenBank 

format) was imported into that database. The JOK mapping files obtained from SARUMAN 

were imported into this database as read pair data sets with ReadXplorer (fragment size set to 

300bp and an allowed deviation of 80%). Especially for the JOK format, a Java converter 

module (see Section 5.2.2, Data Import) was written and integrated into the official 

ReadXplorer version to support conversion of JOK files into BAM formatted alignment files 

(H. Li et al., 2009). This module was used to write the extended BAM files containing the 

ReadXplorer read mapping classification (see Section 5.2.2, Read Mapping Classification and 

Read Pair Classification) for all sequenced P. aeruginosa strains. The resulting number of 

read mappings and the amount of mappings in each ReadXplorer read mapping classification 

are shown in Table 15.  

Next, SNPs and DIPs were computed with the SNP and DIP detection functionality of 

ReadXplorer (see Section 5.3.1). Each examined reference position had to be covered by at 

least 30 reads of which at least 90% had to show the same polymorphism. The read mapping 

classes included in the SNP detection were the four classes Single Perfect, Single Best, 

Perfect and Best Match (see Section 5.2.2, Read Mapping Classification). All Common Match 

mappings were discarded as non-reliable. The results of the SNP and DIP detection are 

explicated in Section 6.4. 

To analyze the presence or absence of known genomic islands and RGPs, the mapping tool 

BWA (Li and Durbin, 2009) (see Section 2.6.4) was chosen in conjunction with the paired-

end reads trimmed to PHRED quality score 20 (see Section 6.2.1). Apart from the default 

parameters, BWA was run with a maximum of 2 allowed gap extensions and a maximum of 5 

mappings per read (see the Appendix, Section 10.4 for program calls) to map the reads on the 

mobile element sequences. 



  

 

 

Table 15: Read Mapping Data Overview. The table presents the number of read mappings in total and in each read mapping class available within ReadXplorer for all 20 P. aeruginosa strains. 

The percentage columns list the coverage of the reference genome PAO1 in the different mapping classes. The last two columns show the number of Read Pairs and Single Mappings as classified by 

ReadXplorer. For further details on the Read Pair statistics of these data sets see Table S4 from the Appendix, Table 17. 

Strain Mappings 

Single 

Perfect 

Match 

Perfect 

Match 

Single 

Best 

Match 

Best 

Match 

Common 

Match 

Total 

Covered 

Bases 

Single 

Perfect 

Match 

Coverage 

Perfect 

Match 

Coverage 

Single 

Best 

Match 

Coverage 

Best 

Match 

Coverage 

Common 

Match 

Coverage 

Read Pairs 
Single 

Mappings 

C40A 37 880 131 13 288 989 1 076 968 22 345 382 771 622 397 170 95.56% 81.48% 4.86% 94.47% 13.12% 1.45% 16 555 645 4 604 427 

D421 15 997 937 4 205 150 226 676 11 066 542 341 346 158 223 96,52% 74,27% 3,42% 95,56% 6,67% 1,70% 7 389 251 864 978 

F469 24 484 716 11 410 186 751 258 11 669 287 305 299 348 686 95.41% 81.79% 1.25% 95.30% 1.70% 2.59% 11 601 176 50 628 

OC2E 19 167 378 7 561 794 260 235 10 861 332 321 632 162 385 97,25% 87,58% 3,24% 96,21% 5,23% 1,65% 9 041 735 813 136 

E429 11 999 891 3 165 472 183 257 8 252 827 267 025 131 310 96.43% 74.03% 3.15% 95.43% 6.26% 1.64% 5 605 980 654 222 

239A 18 021 718 6 938 646 320 167 10 120 875 447 158 194 872 97.12% 87.21% 3.47% 96.10% 5.39% 1.72% 8 442 394 826 386 

2C22 37 047 772 23 166 865 1 069 960 11 901 112 354 117 555 718 96.73% 90.02% 1.29% 95.67% 1.66% 2.80% 18 138 627 501 274 

F429 15 022 231 4 118 238 221 584 10 245 349 303 882 133 178 95.98% 73.78% 3.34% 95.00% 7.03% 1.50% 6 921 597 842 898 

B420 8 778 724 1 257 243 113 268 7 122 971 215 189 70 053 93.29% 45.51% 2.34% 92.28% 7.61% 1.34% 3 809 418 776 912 

EA0A 14 537 456 5 757 284 214 354 8 165 008 257 899 142 911 96.92% 87.25% 3.46% 95.92% 5.86% 1.68% 6 704 230 755 849 

0812 13 578 108 5 522 655 208 698 7 487 193 233 140 126 422 98.50% 90.02% 3.27% 97.60% 4.85% 1.71% 6 375 267 567 331 

2C1A 15 624 607 6 256 280 244 625 8 710 813 261 375 151 514 96.99% 86.89% 3.28% 96.04% 5.46% 1.59% 7 354 611 747 160 

1BAE 16 241 253 9 803 978 488 081 5 505 429 189 575 254 190 96.55% 89.57% 1.34% 95.49% 1.70% 2.68% 7 960 935 257 938 

3C2A 18 606 086 11 176 196 614 743 6 288 450 227 058 299 639 95.43% 88.49% 1.36% 94.36% 1.70% 2.69% 9 108 553 321 376 

EC2A 22 355 197 13 094 241 787 813 7 840 372 286 614 346 157 96.83% 89.88% 1.49% 95.68% 1.86% 2.80% 10 899 564 469 670 

EC21 26 126 649 11 965 799 821 278 12 559 793 338 482 441 297 97.88% 84.31% 1.44% 96.82% 1.90% 2.94% 12 763 476 493 119 

843A 26 973 987 15 858 613 780 418 9 573 824 348 775 412 357 96.85% 89.89% 1.31% 95.60% 1.69% 2.77% 13 215 376 427 099 

0822 20 581 839 12 262 556 639 214 7 077 732 261 754 340 583 96,87% 89,90% 1,32% 95,84% 1,69% 2,74% 10 083 475 342 352 

149A 17 776 695 10 493 885 543 798 6 205 930 240 169 292 913 96,59% 89,17% 1,42% 95,49% 1,78% 2,79% 8 714 117 299 540 

478A 22 863 267 13 694 605 692 174 7 896 835 252 024 327 629 96,30% 89,63% 1,28% 95,19% 1,66% 2,70% 11 209 930 349 526 
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6.3. Comparative Genomics using EDGAR 

The GenBank files of the draft genomes and the reference strain PAO1 were used to create an 

EDGAR version 1.2 (Blom et al., 2009) (for a description of the EDGAR functionality see 

Section 2.5.3) project for the pan genome and core genome analysis. This project is named 

"EDGAR_Paeru_MHH" and available with restricted access on the EDGAR server32. 

The score ratio value (SRV) (Lerat et al., 2003) used as master cut-off for this project is 30%. 

This means that only reciprocal BLASTP hits for coding sequences with an SRV higher than 

or equal to 30% are marked as being present in two compared genomes. All further 

calculations are based on this parameter choice33.  

The core and pan genome of all 20 sequenced strains and the additional reference strain PAO1 

have been calculated iteratively. The prevalent clone C was chosen as reference to start with. 

Then all other genomes were added to the calculations one after another. The complete core 

genome consists of 4,787 genes and the pan genome contains 13,277 genes (see Figure 58). 

The actual lists of core and pan genome genes can be found in the supplementary data files 

listed in the Appendix, Table 17 as Table S1 and S2. The theoretical development of the core 

and pan genomes as predicted by EDGAR is shown in Figure 59 and Figure 60, respectively.  

Figure 58: The pan genome of the 20 sequenced strains representing the most common clonal complexes in the P. 

aeruginosa population. P. aeruginosa PAO1 was included as the reference strain. The coding genetic repertoire of the core 

genome and of the pan genome was constructed as follows: starting from the most frequent clone C (hexadecimal code 

C40A), core and pan genome were stepwise constructed by the addition of genes not present in the predecessor (pan genome) 

or by the subtraction of genes absent in the successor (core genome). The numbers were obtained by the core and pan 

genome functions of EDGAR. Figure and description are updated versions from (Hilker et al., 2014). The lists of core and 

pan genome genes can be found in the supplementary data files listed in the Appendix, Table 17 as Table S1 and S2. 

 

                                                 
32 https://www.edgar.computational.bio 
33 Note that the numbers here are slightly different than in the publication (Hilker et al., 2014). This is due to the 

fact that the assembly with the by far most contigs, the assembly of strain EC2A (see Table 13), could be 

improved by using the recently released version 3.0 of the Newbler assembler. This version was not yet available 

when the publication was submitted. 
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Figure 59: P. aeruginosa core genome development plot. The maximum number of 15 genomes was chosen to calculate 

the prediction for the core genome development with increasing genome numbers using a nonlinear least squares model fit as 

implemented in EDGAR (Blom et al., 2009). To generate a conservative estimate, the 15 most divergent strains were chosen 

as input for the calculation. The plot suggests a number higher than 4000 genes for the complete P. aeruginosa core genome.  

 
Figure 60: P. aeruginosa pan genome development plot. The maximum number of 15 genomes was chosen to calculate the 

prediction for the pan genome development with increasing genome numbers using a nonlinear least squares model fit as 

implemented in EDGAR (Blom et al., 2009). To generate a conservative estimate, the 15 most divergent strains were chosen 

as input for the calculation. The plot suggests an open pan genome for P. aeruginosa. 

Further, the quantity of unique genes, occurring only in one of the genomes, was evaluated 

with EDGAR. The result is visualized in the histogram in Figure 61 and the actual list of 
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unique genes per strain is available in the supplementary data file listed in the Appendix, 

Table 17 as Table S2.  

The strains contain between 27 (PAO1) and 406 (0822) unique genes with an average of 126 

genes. The major portion of these genes is organized in operons or DNA blocks of up to 312 

CDS. Most genes were assigned to the categories of nucleic acid metabolism, mobile genetic 

elements or hypotheticals. The disease isolates additionally carried a few paralogues of 

housekeeping enzymes and/or elements of mobility or secretion, the most spectacular 

example being an additional set of pilus biogenesis genes in the intubated patient isolate E429 

(see Table S2). The environmental isolates harboured larger sets of strain-specific genes than 

the clinical isolates, and these genes conferred numerous extra potential for bioenergetics, 

metabolism, transport and immunity such as a CRISPR-Cas system (Bondy-Denomy et al., 

2013). Recurrent features were operons for the biogenesis of heme proteins and for the 

transport and metabolism of amino acids and sulphur compounds.  

 

 
Figure 61: Number of unique genes per strain. All genes unique per strain were extracted with EDGAR. On average, 126 

genes were unique per strain. This average is indicated by the line. The complete list of genes can be found in the 

supplementary data file listed in the Appendix, Table 17 as Table S2. 

To measure and weigh the evolutionary distance among all the strains, a phylogenetic tree 

was calculated based on the core genome (see Figure 62). The tree shows that there is one 

outlier strain among the selected strain panel - B420. This is an innocuous and the most 

common strain among isolates from the inanimate environment (Selezska et al., 2012). In this 

case, the analyzed representative was isolated from a river. All environmental strains are 

spread across the whole tree and do not cluster together as could be suspected. Only the two 

environmental strains EC2A and 843A cluster together as closest relatives.  
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Figure 62: Phylogenetic tree of the 20 sequenced P. aeruginosa strains including the PAO1 reference strain. The tree 

has been generated with EDGAR (Blom et al., 2009) based on the amino acid sequences of the 4787 genes from the core 

genome of all listed strains. The distances in the tree are based on the amino acid substitution model established by (Kimura, 

1983) and the tree layout is calculated by an implementation of the neighbor-joining algorithm (Saitou and Nei, 1987). The 

scale indicates their sequence diversity. The 5 strains without any clinical representatives to date are highlighted in green. 

The two other river isolates are marked in light green. The figure and the description are adapted from (Hilker et al., 2014). 

The gene content of P. aeruginosa has been described as combinatorial (Lee et al., 2006). 

This primarily reflects the combinatorial composition of the accessory genome with genomic 

islands (GIs) and insertions in RGPs (Mathee et al., 2008; Klockgether et al., 2011). 

To review this argument, four exemplary genome sets of four strains each are shown in Figure 

63. The sets have been chosen to cover the different strain groups contained in the sequenced 

strain panel: Environmental strains (C), pathogenic strains (D), close relatives (B) and finally 

the most abundant pathogenic and apathogenic strains (A). All four gene set comparisons 

confirm the previous findings, i.e. all possible fields of singles, dyads, triples and quad are 

occupied by genes. The core genome has a similar size in all four comparisons (5217-5446 

genes). In Figure 63, (C), strain 0822 and 139A have the largest phylogenetic distance and 

also hold the largest number of unique genes (926 for 0822 and 705 for 139A) among all 

displayed comparisons. The outlier B420 contains an unexceptional number of unique genes 

with 327 genes. Even among the four closest relatives shown in Figure 63, (B) the number of 

unique genes is quite high and varies strongly between the four genomes (239-646 genes). 
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Figure 63: Genome gene set comparisons of selected P. aeruginosa strains. Venn diagrams of the number of strain-

specific and shared genes each in a panel of four P. aeruginosa strains. (A) Shows the gene sets of the apathogenic B420 

strain, the highly virulent F469 strain and the two strains belonging to the major clones C (C40A) and PA14 (D421). (B) 

Shows the gene sets of a set of four closest relatives from the phylogenetic tree. (C) Shows the gene sets of four 

environmental strains without any known infection history. (D) Shows the gene sets of four pathogenic strains. Figure A and 

its description are adapted from (Hilker et al., 2014). 
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6.4. Comparative SNP and DIP Analysis 

Mapping of the 20 genome sequences onto the P. aeruginosa PAO1 reference genome (see 

Section 6.2.4) identified sequence variation between PAO1 and the respective strain at 

23,907-114,260 positions of the PAO1 genome, which corresponds to a sequence diversity at 

the single nucleotide level of 0.38-1.82% (see Table 16, and supplementary tables S3A and 

S3B). A portion of 17.2-19.97% of single nucleotide polymorphisms (SNPs) caused an amino 

acid substitution in CDS. Based on the criterion of single nucleotide substitution (SNP) 

diversity, the clonal complexes were grouped into two clusters and one outlier (B420) (see 

Figure 62). The larger cluster including the most abundant clone C (C40A) differs at 0.38-

0.48% positions from the PAO1 genome, whereas the smaller cluster including the second 

most abundant clone PA14 (D421) exhibits a sequence diversity of 0.85-0.89% (see Table 

16).  

The two clusters do not segregate clinical from environmental isolates, as both contain 

members of each group of strains. 

The DIP frequency within the genomes is much lower than the SNP frequency at a level of 

0.0041-0.019%. Only 13.97-20.39% of these DIPs account for events within a gene. In 

absolute numbers the count of DIPs affecting CDS ranges from 40-216.  

Another rare case of polymorphism is a stop codon mutation within a gene. In our examined 

strain panel, the count within each genome ranges from 7 stop mutations in strain 478A to 43 

stop mutations in strain B420 accounting for 0.03-0.07% of all polymorphisms in the 

respective strain. 

When examining the non-synonymous polymorphisms within genes, which make up between 

17.2-19.97% of all polymorphisms of the respective strain, a tendency towards base 

exchanges resulting in chemically different amino acids becomes apparent (for the chemical 

amino acid classification within ReadXplorer see Section 5.3.1). Only 36.53-39.13% of them 

are associated to the same chemical amino acid group as the original amino acid, leaving the 

larger portion of 60.87-63.47% to code for a chemically different amino acid. 

Most oligonucleotide insertions or deletions were in frame and caused the incorporation or 

loss of a single codon (see supplementary tables S3A and S3B). Single nucleotide frameshift 

mutations predominantly affected conserved hypotheticals. Deleterious frameshift mutations 

in functionally characterized genes were only detected in the 13 clinical isolates of our panel 

but in none of the seven environmental isolates. Recurrent loss-of-function hits were observed 

in gene clusters encoding the biosynthesis or regulation of flagella, pili, quinolones, the O-

antigen of lipopolysaccharides, effectors of type III secretion, siderophores and their receptors 

and the biosynthesis of the antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (Lee et 

al., 2010) (Tables S3A and S3B). This spectrum of mutations is consistent with a conversion 

of bacterial phenotype that often occurs during human infections, i.e. loss of motility, LPS 

deficiency and modulation of virulence, signalling and iron homeostasis (Döring et al., 2011).  

 



  

 

 

 
Table 16: Number of SNPs and DIPs of each of the 20 sequenced strains to the reference PAO1. The three SNP frequency clusters are indicated by white, orange and 

aquamarine background color in the total number of SNPs column. 

Strain 

Total 

number 

of SNPs 

Substitutions Insertions Deletions 
Intergenic 

SNPs 

Synonymous 

SNPs 

Chemically 

neutral 

SNPs 

Chemically 

different 

SNPs 

Insertions 

in Gene 

Deletions 

in Gene 

Stop 

Mutations 

C40A 24 856 24 504 147 205 3 983 16 292 1 711 2 803 25 42 10 

D421  55 854 55 171 331 352 8 066 37 995 3 715 5 957 48 73 20 

F469  53 456 52 869 263 324 7 807 36 252 3 600 5 715 30 52 20 

OC2E  27 657 27 246 183 228 4 081 18 076 2 036 3 387 37 40 9 

E429  55 122 54 469 303 350 7 923 37 417 3 732 5 939 50 61 20 

239A  27 879 27 521 185 173 3 883 18 492 2 024 3 407 43 30 14 

2C22  27 513 27 196 148 186 4290 17878 1964 3338 26 34 13 

F429  55 281 54 602 331 348 7 930 37 559 3 745 5 938 43 66 25 

B420  114 260 113 067 518 675 13 876 80 516 7 690 11 962 83 133 43 

EA0A  27 373 26 991 179 203 4 078 17 837 2 001 3 380 35 42 12 

0812  23 907 23 578 167 162 3 408 15 668 1 740 3 034 30 27 8 

2C1A  28 332 27 932 174 226 4 079 18 685 2 061 3 441 31 35 9 

1BAE  26 547 26 285 100 162 3 854 17 475 1 933 3 245 15 25 13 

3C2A  26 637 26 369 107 161 3 863 17 553 1 938 3 241 16 26 19 

EC2A  27 043 26 760 101 182 4 002 17 779 1 935 3 285 17 25 11 

EC21  52 974 52 506 210 258 7 595 36 155 3 570 5 578 30 46 16 

843A  29 870 29 555 123 192 4 306 19 900 2 088 3 517 23 36 10 

0822  27 581 27 306 110 165 4 006 18 204 1 944 3 377 19 31 11 

149A  28 453 28 153 130 170 4 208 18 845 2 033 3 318 18 31 13 

478A  27 260 26 980 118 162 3 881 18 258 1 893 3 177 18 33 7 
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6.5. Comparative Analysis of Shared Genomic Islands 

and Regions of Genomic Plasticity 

Lateral gene transfer and recombination shape the dynamics of bacterial genomes. An 

extensive list of known mobile genomic elements from P. aeruginosa (GIs as well as RGPs) 

can be found in the publication of Klockgether et al. (2011). The combinatorial repertoire of 

GIs (see Figure 64) and RGPs (see Figure 65) of the 20 strains indicates a continuous 

horizontal gene flow between the clonal complexes of P. aeruginosa. Numerous but not all 

strains, for example, shared complete copies of the LESprophage 1 and LESGI-4 (Winstanley 

et al., 2009) and harboured similar but not identical members of the PAGI-2 and pKLC102 

island families (Klockgether et al., 2007). The RGPs identified in PA14 are all completely 

preserved in the PA14 representative D421. A few other islands are not present in any of the 

strains: PAGI-3, PAGI-11, except for a complete copy in strain EA0A, LESGI-5, LES-

prophage 4, except for a minor preserved part in the strains OC2E and D421, a few RGPs like 

C3719-RGP8, C3719-RGP16, C3719-RGP28, C3719-RGP52 and PACS2-RGP62 and most 

of the RGPs found in PA7 - only very few strains contain a few of the PA7 RGPs with high 

identity. In fact, PA7-RGP73 is the only PA7-RGP present with high identity in several of the 

20 sequenced strains (in 11). 
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Figure 64: Genomic island coverage heatmap. The variable presence and conservation of each of the 29 known genomic 

islands among all 20 analyzed P. aeruginosa strains is visualized by this heatmap. None of the genomic islands is contained 

in all strains as complete copy. The degree of their presence has been determined by read mapping on the respective island 

sequence and automatic coverage analysis with ReadXplorer (Hilker et al., 2014). Absent islands are depicted in green, while 

highly conserved islands are shown in red. The dark green and red colors in between depict islands only partly conserved in 

the respective strain. 
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Figure 65: RGP coverage heatmap. The variable presence and conservation of each of the 161 known RGPs among all 20 

analyzed P. aeruginosa strains is visualized by this heatmap. The grey lines on the left side indicate the RGP strain borders, 

while the grey lines on the right side connect each fifth RGP legend entry of the first column to the heatmap for guidance. 

Only 8 of the genomic islands are contained in all strains as complete copy. The applied procedure and color code is the same 

as for Figure 64.  
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6.6. Conclusion 

The conducted P. aeruginosa pan genome analyses (see Sections 6.3 - 6.5) provide 

comprehensive results elucidating the genomic content of the analyzed strain panel and the 

phylogenetic relationships of the strains. The earlier ascertained combinatorial composition of 

the accessory genome (Lee et al., 2006) is also supported by all of these analyses. Further, the 

EDGAR and SNP results complement one another with regard to the segregation of the 

strains into two clusters and one outlier. These clusters do not segregate clinical from 

environmental strains. When considering the composition of GIs and RGPs, the picture is 

more diverse and indicates a continuous horizontal gene flow. This observation is in 

concordance with the observations from (Mathee et al., 2008; Klockgether et al., 2011). 
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Chapter 7  
 

Discussion and Outlook 

This chapter discusses the work described in the previous two chapters and pictures the future 

perspective in both subject areas treated in this dissertation. 

7.1. A Novel Platform for Read Mapping Visualization 

and Analysis  

The implementation of the comprehensive open source Java desktop client application 

ReadXplorer (Hilker et al., 2014) was a substantial contribution to conduct a state-of-the-art 

pan genome analysis of 20 prevalent Pseudomonas aeruginosa strains possible. 

Certainly, the value of ReadXplorer (see Chapter 5) reaches much further. It is a substantial 

tool to bridge the problematic gap between visualization and automatic analysis functions for 

read mapping data (see Chapter 4). ReadXplorer enables visual and meaningful conjunction 

of reference genome sequences and annotations, NGS read mapping data and additional 

related tabular data.  

By employing the Netbeans Rich Client Platform as foundation for ReadXplorer, the 

extensibility of the software for other programmers is guaranteed. It is based on the classical 

three-tier architecture (see Figure 38) and makes extensive use of common programming 

design patterns to ease the entrance for new developers. 

Furthermore, the modular software composition and plug-in framework enable simple 

integration of additional highly specialized modules by other developers. Therefore, selected 

ReadXplorer features have already been implemented by students within the framework of a 

two weeks course without any prior knowledge of ReadXplorer. 

The efficient data handling and support of various reference formats (see Section 5.2.2) 

enables fast and responsive handling of all kinds of genomes, ranging from viruses to 

prokaryotes to eukaryotic genomes. 

 

The most important data for which ReadXplorer has especially been developed, the read 

mapping data, is not simply displayed, but further classified by quality and quantity measures 

based on the read mappings from the original mapping file fed into ReadXplorer (see Section 

5.2.2, Read Mapping Classification and Read Pair Classification). This classification 

approach does not only cover detailed decoding of the mappings, but also of read pair data. 

An algorithm considering all mapped reads and classifying them into the most probable 

pairing configurations has been developed and implemented in ReadXplorer. The 

distinctiveness of this classification is constituted by keeping all read mappings available to 
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the researcher in contrast to ultimately discarding unwanted mappings, e.g. multiple mapped 

reads. This read mapping classification is available throughout the whole software in all 

analysis functions and corresponding colour-coded visualizations, offering a deeper insight 

into the characteristics of the read mapping data than the other presented tools with a 

comparable scope (see Chapter 3). 

 

Besides the classification, ReadXplorer comprehensively features mapping and base quality 

handling. A mapping quality threshold can be set in each data viewer and during 

configuration of each analysis function. A base quality threshold can be set during 

configuration of the SNP and DIP detection and the alignment viewer takes care of the base 

quality visualization by shading each base of an alignment according to its base quality. 

Another unique aspect of ReadXplorer is the availability of several views illuminating 

different aspects of the underlying data. Notable specialized viewers are the Double Track 

Viewer for direct comparison of two tracks, the Thumbnail Viewer for genomic feature 

comparisons at a glance, the Read Pair Viewer for color-coded visualization of read pair 

configurations and the Multiple Track Viewer for combined data analysis. Additionally, 

normalization of coverage has been introduced for all viewers displaying coverage. 

ReadXplorer makes the genetic code user-selectable. Then, it makes global use of this 

property in visualizations as well as analysis functions. The Reference Viewer is capable of 

interactively visualizing selected start and stop codons for the currently selected genetic code. 

They can highlight the sequence from the start to the next in-frame stop codon and allow 

copying, translating and extracting the corresponding CDS. This feature e.g. facilitates instant 

comparison of RNA-Seq (Wang et al., 2009) coverage with potential transcripts obtained 

from the implemented automatic analysis methods.  

 

An automatic analysis framework has been developed to scan read mapping tracks for certain 

characteristics. By using this single analysis framework for all implemented analysis 

functions, the recognition value for researchers testing a different than their usual analysis for 

the first time in ReadXplorer is fueled. 

The automatic analysis functions offered by ReadXplorer (see Sections 2.7 and 2.8 for the 

theory and Section 5.3 for the implementations) include differential gene expression analysis, 

detection of TSS, novel transcripts, operons as well as calculating TPM, RPKM and feature 

read count values especially for RNA-Seq (Wang et al., 2009) data sets. Further, it contains 

automatic detection of SNPs and DIPs, genome rearrangements, RNA secondary structure 

prediction and two unique automatic analysis methods: An analysis of the coverage of 

reference features and an analysis of the coverage of the whole reference sequence. 

In addition to the implemented analyses, ReadXplorer also features import of tabular data. 

SNP and DIP tables obtained from other tools can be reviewed effortlessly by using the VCF 

import. The tabular data import is also available for any other kind of tabular data and enables 

working with the data along with the other visualizations and ReadXplorer internal analysis 

results. Results generated with ReadXplorer itself are treated even more specific for the best 

possible processing of the data. 

Another unique feature of ReadXplorer is the ability to combine multiple mapping data sets 

and treat them as one not only in the visualization, but also for each analysis. 

Also comparative analysis of multiple tracks from the same reference is provided by 

ReadXplorer through comparative filters which can be applied to analysis result tables (see 

Section 5.2.2, Viewer Logic). 

 

By providing all the different analysis functions in conjunction with the visualizations from 

one source, there is no need to install and handle several different tools. The manageability of 

complicated multi-dimensional NGS experiments is greatly simplified while all program 
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features are provided with solid usability and performance. Thus, the learning curve for users 

is shortened and tedious conversion of different output from different tools is no longer 

required. 

Subsequent use of ReadXplorer results is easy. The results of all analysis functions can be 

exported in two popular tabular formats and high quality screenshots can be obtained directly 

from within the software.  

 

As a matter of course, ReadXplorer has not been developed solely for the P. aeruginosa pan 

genome project. In fact, it supplies a large range of application areas dealing with genome 

browsing and read mapping data. ReadXplorer is available for everyone at the homepage 

www.readxplorer.org and thus already in use at external sites (e.g. see (Soares-Castro and 

Santos, 2015; Tong et al., 2015)). The most important experiments conducted by myself in 

cooperations or by colleagues from our universities and their main results generated by 

ReadXplorer are explicated in the following. 

 

The effective handling of medium sized eukaryotes has been demonstrated during an in-house 

collaboration for the SNP and DIP analysis of three closely related Chlamydomonas 

reinhardtii (Merchant et al., 2007) strains in a resequencing experiment (Schierenbeck et al., 

2015). 

The TSS and operon detection, as well as the differential gene expression analysis tools have 

effectively been applied to experiments on different Corynebacterium glutamicum strains 

(e.g. (Mentz et al., 2013; Pfeifer-Sancar et al., 2013)). The integrated differential gene 

expression toolkits delivered similar results as corresponding microarray experiments (data 

not shown). The differences in both assays might be induced by the higher resolution and 

flexibility of RNA-Seq in comparison to microarrays. 

Recently, I have used ReadXplorer successfully to analyze Haloferax volcanii dRNA-seq data 

for TSS (Maier et al., 2015). Currently, we are preparing a more comprehensive TSS analysis 

of Haloferax volcanii dRNA-seq data using ReadXplorer. 

In the past year 44 Listeria strains have been sequenced in-house to analyze their 

pathogenicity potential from a genomics point of view. Within this framework, I have 

performed comparative pan genome studies utilizing the here developed pan genome analysis 

workflow. The SNP and DIP analyses of all these strains have been carried out with 

ReadXplorer, too (Hilker et al., in preparation). 

Furthermore, I have recently applied ReadXplorer's differential gene expression capabilities 

to three Listeria experiments each comparing two different environmental conditions 

(Schultze et al., in preparation; Hilker et al., in preparation). 

Outlook 

Forthcoming features complementing the abilities of ReadXplorer in terms of user-friendly 

visualization and automatic analysis are explicated in the following paragraphs. 

The SNP and DIP, TSS and operon detections could all be enhanced by a statistical detection 

model. For the SNP and DIP detection, a variety of methods including machine learning 

approaches are available to choose from (see Section 2.7.1). For the TSS detection three 

statistical models have been developed recently (Amman et al., 2014; Jorjani and Zavolan, 

2014; McClure et al., 2013). One of these methods could be used to enhance the here 

presented empirical model to provide even more reliable analysis results. Similar to 

Rockhopper (McClure et al., 2013), the TSS detection algorithm could be developed further 

into a full transcript recovery algorithm, predicting both transcript boundaries. The decision 

http://www.readxplorer.org/
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for the most accurate approach should be made on the basis of an evaluation of the tools 

against experimentally validated TSS from different organisms. Further, an algorithm for the 

identification of promoter regions could be incorporated to predict transcripts in conjunction 

with their promoters. 17 tools for eukaryotic promoter identification have been reviewed in 

(Abeel et al., 2009), 4 of which score best in their evaluation. One of them or a combination 

of these tools could be integrated into ReadXplorer. For prokaryotes 7 freely available tools 

are mentioned in the publication of Jong et al. (2012). They propose and use MEME (Bailey 

et al., 2009) in their PePPER web-service. For integration or implementation of the most 

suitable algorithm, the available open-source tools can be evaluated regarding specificity, 

sensitivity and convenience of integration. 

 

For the operon detection one can adopt the methods presented by Bischler et al. (2014) for the 

RNAseg tool or integrate parts of Rockhopper (McClure et al., 2013) for the operon detection. 

Further, comparisons to existing operon databases can be established as proposed by Fortino 

et al. (2014). They check possible operons against the DOOR database (Mao et al., 2009). 

The SNP and DIP detection can be further developed in the direction of comparative analysis 

of large sets of tracks. Besides the implemented occurrence filter (see Section 5.3.1), plots 

visualizing the SNPs and DIPs of multiple tracks comparatively would be highly beneficial. A 

starting point has been made during the master's thesis of Margarita Steinhauer (Steinhauer, 

2014) which I have supervised. In this context, the generation and visualization of a 

phylogenetic tree based on the SNPs within selected tracks is highly desirable. 

 

ReadXplorer offers several automatic analysis functions. For all these analyses 

complementary plots intuitively visualizing the results can be added to the software. E.g. a 

SNP distribution plot, showing the distribution of SNPs and DIPs along the whole genome in 

a histogram could be implemented. Similar plots can be realized for the other automatic 

analysis methods, i.e. showing TPM and RPKM values and read counts of genes, their 

distribution, operons, covered genomic features and covered intervals. For TSS, besides their 

distribution also their expression strength can be visualized in the histogram by showing 

either the number of read starts or the coverage increase in percent on the y-axis.  

A great enhancement, which will however take a considerable amount of time to design and 

implement, would be to offer annotation editing. This could be based on analysis results 

calculated from the tracks belonging to the reference or the user could have independent 

access to this feature to adapt and add genomic features as required. Updating of genomic 

annotations on the basis of analysis results can be implemented in an automatic fashion. In 

this case, the researcher defines certain criteria as foundation for the update. E.g. the results of 

a TSS detection from a high-quality RNA-seq data set can be used to automatically identify 

and correct wrongly annotated gene starts. 

In connection to annotation editing, also the export of the updated annotations in a common 

format, such as GFF3, GenBank or EMBL should be implemented to enable their direct use in 

downstream applications or for an updated online genome database submission. 
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Establishing links to other cross related databases, such as NCBI34, KEGG35, Pfam36, Rfam37, 

would be highly beneficial to shorten the path for attaining a holistic cognition regarding 

particular data elements of interest (e.g. genes or motifs). 

 

The recent and growing field of epigenetics (Carey, 2013) demands suitable visualization and 

automatic analysis tools. Epigenetic methylation assays produce the same sequence data 

already visualized in ReadXplorer (Bock et al., 2010), but an additional mode is needed to 

extract and visualize methylation information from read mapping files. Only IGV is currently 

able to visualize methylation data. Still, the data sets have to be scanned manually in IGV. 

Automatic analyses listing genomic areas with certain methylation characteristics and 

allowing differential methylation analysis on multiple data sets, similar to differential gene 

expression analysis, could largely simplify the analysis of such data. 

The support of external continuous data such as bigWig38 and BedGraph39 could further 

enhance and complete the scope of ReadXplorer. This feature would provide another 

effortless possibility to combine results from ReadXplorer and other tools while 

simultaneously providing the corresponding graphical visualization of all corresponding data. 

A feature simplifying the locating and import of reference genomes would be their supply via 

online genome databases. Then, the researcher can simply choose from the list of available 

genomes, like in the other presented genome viewers (see Table 9). 

The addition of a bookmark system would be an adjuvant usability enhancement allowing 

each user to mark and share genomic positions and data sets of special interest for quick 

access. 

7.2. Insights into the Pseudomonas aeruginosa pan 

genome 

The workflow developed for the pan genome analysis of the ubiquitous pathogenic bacterium 

Pseudomonas aeruginosa (see Section 6.2) has been successfully applied to all 20 P. 

aeruginosa genomes.  

The goal of completely finishing the clone C (C40A) genome sequence was achieved by the 

here presented assembly approach combining multiple data sets (see Section 6.2.2) and the 

finishing by (Fischer et al., in preparation). These efforts provide a valuable reference genome 

to the community, since clone C is the most abundant among all P. aeruginosa strains.  

The automatic genome annotation with GenDB (Meyer et al., 2003) provided reliable results 

which could subsequently be used to elucidate the phylogenetic relationship, the core, pan and 

accessory genome of the sequenced strains in an EDGAR (Blom et al., 2009) evaluation. This 

whole genome evaluation revealed that the major clonal complexes of the P. aeruginosa 

population segregate into outliers and two clusters with the ubiquitous clones C and PA14 as 

the most prominent representatives. According to the results, the P. aeruginosa pan genome 

                                                 
34 www.ncbi.nlm.nih.gov 
35 www.genome.jp/kegg 
36 http://pfam.xfam.org 
37 http://rfam.xfam.org 
38 http://genome.ucsc.edu/goldenpath/help/bigWig.html 
39 http://genome.ucsc.edu/goldenpath/help/bedgraph.html 

http://www.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg
http://pfam.xfam.org/
http://rfam.xfam.org/
http://genome.ucsc.edu/goldenpath/help/bigWig.html
http://genome.ucsc.edu/goldenpath/help/bedgraph.html
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consists of a conserved core genome of at least 4,000 genes (see also Figure 59), an accessory 

genome of common GIs and RGPs of about a further 10,000 genes and rare genes that are 

only present in few strains or clonal complexes. In this and other genome sequencing projects, 

dozens to hundreds of genes previously unknown in P. aeruginosa have regularly been 

observed whenever a strain of a yet uncharacterized clonal lineage was subjected to genome 

sequencing. Because more than 300 clonal complexes have been identified for P. aeruginosa 

to date, we can estimate a pool of at least 30,000 'private' genes that are rare or very rare in the 

P. aeruginosa population (see also Figure 60). Our empirical data fit perfectly with Koonin 

and Wolf's (2012) concept that a prokaryotic pan genome is made up of a small, highly 

conserved core, a much larger 'shell' of genes with limited conservation and a vast 'cloud' of 

rare poorly conserved genes.  

 

In conjunction with mouse infection experiments conducted by my colleagues within the 

framework of our pan genome study (Hilker et al., 2014), it was possible to rank the involved 

pathogenicity factors by relevance: Type III secretion, adhesins and Cif seem to be major 

stand-alone factors for virulence in mice, whereas the contribution of other elements such as 

siderophores or type II secretion is combinatorial depending on the asset of pathogenicity 

factors in the core and accessory genome of the individual strain. 

The individual P. aeruginosa genome consists of a conserved core, a variable composition of 

common gene islands and a small set of rare genes that are chiefly hypotheticals of unknown 

function. Although there are associations between clonal frame and the composition of the 

accessory genome (Wiehlmann et al., 2007), the clonal complexes freely exchange their genes 

by recombination and transfer of gene islands.  

The detection of the presence or absence of the genomic islands and RGPs benefitted from the 

coverage analysis (see Section 5.3.8) implemented in ReadXplorer (Hilker et al., 2014). 

Mapping of the reads on the accessory element followed by the automatic ReadXplorer 

analysis conveniently provided the exact base pair count and percentage of presence and 

conservation of the accessory element. 

Results of complementing analyses all allowed the deduction that the P. aeruginosa core 

genome freely recombines. The evenly distribution of environmental isolates throughout the 

whole phylogenetic tree (see Figure 62) and the closer inspection of four subsets of four 

genomes each (see Figure 63) both support this hypothesis. In contrast, a delimitation of 

pathogenic and innocuous strains should be observable if these strains would evolve directed 

in their specific pathogenic or innocuous genome cluster - which is not the case here. Finally, 

the free exchange of DNA between the P. aeruginosa strains was confirmed by the 

combination of the SNP detection results (see Section 6.4 and Table 16) computed by 

ReadXplorer (see Section 5.3.1) for each sequenced strain with a further investigation of the 

frequency distribution of syntenic SNPs executed by my colleagues (Hilker et al., 2014).  

 

The benefit of the read mapping classification approach used in ReadXplorer was directly 

evident. Alone for the most divergent strain B420 1,300 SNPs, of which more than 900 are 

intragenic, would have not been identified, if only uniquely mapped reads had been 

considered. The choice of Single Perfect and Single Best Match mappings, discarding all 

Common Match mappings, enabled these additional findings. The SNP detection results are 

also in concordance with the phylogenetic tree. The number of SNPs within the strains clearly 

separates the same two groups and the outlier B420 from each other. 

Additionally, the varying number of unique genes per strain (see Figure 61) indicates that P. 

aeruginosa frequently exchanges DNA with other organisms. 

The key question of molecular epidemiology of whether a bacterial species has a clonal, 

panmictic or epidemic population structure has been typically investigated in the past by 

multilocus sequence typing (Maiden, 2006) and/or analysis of polyphasic datasets of 
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phenotypic polymorphisms (Pirnay et al., 2009). The outcome was often dependent on the set 

of parameters selected for analysis.  

The pan genome analysis workflow undertaken in this dissertation and complemented by the 

additional methods as described in (Hilker et al., 2014), allows an unbiased and complete 

analysis with a definitive outcome. Therefore, this analysis workflow can be highly 

recommended for future pan genome and population structure studies. 

All types of SNP and DIP events occur at approximately the same frequencies within the 

analyzed strain panel. This suggests that they are all exposed to the same steady evolutionary 

forces advancing the mutation rate at a fixed pace disregarding the location and habitat of the 

bacterium. This observation is consentient with the observations from (Drake et al., 1998).  

 

The here presented study shows that single to few bp insertions and deletions are rarely 

observed in the analyzed strain panel. However, this does not allow the conclusion that 

insertions and deletions in general occur more seldom than substitutions. More complex 

insertions and deletions are still hard to identify by read mapping, as the reads are differing 

more and more from the reference until they exceed the maximal allowed error threshold for a 

valid alignment. As an example, a ReadXplorer coverage analysis of the closest relative of the 

reference PAO1 (see Figure 62), strain 0812, reveals 43 intervals between 1-100bp covering 

~1.7kb and further 16 intervals between 100-500bp covering ~3.5kb without any mapped 

reads. In total 94 uncovered intervals covering ~94kb of PAO1 can be identified for 0812 (see 

Table S7 from the Appendix, Table 17). These intervals either indicate deletions in 0812 or 

insertions in PAO1 or these regions posed a problem to sequencing. Even if some intervals 

originated from sequencing problems, the remaining ones are evidence that deletions and 

insertions are common rearrangement operations. Additional laboratory experiments will be 

necessary to further evaluate this issue. 

Especially within genes, the number of DIPs is only a small fraction of all DIPs. A likely 

explanation is the destructive effect of a frame shift in the DNA sequence on the resulting 

protein. Due to the high gene density in bacteria, most SNPs arise in intragenic regions 

(~85%). However, only ~18% of these SNPs are causing amino acid exchanges - showing a 

clear preference of evolution to synonymous SNPs in the examined genomes. 

 

To investigate whether the oppositional phenotypes of the most virulent strain F469 (Cramer 

et al., 2012) and the innocuous strain B420 are reflected in their genetic material and to 

identify the causes of virulence, both genomes were subject to a detailed comparison in 

(Hilker et al., 2014). This comparison was enabled by the groundwork established during this 

dissertation.  

EDGAR revealed that both genomes share 92.3% of their genes. This large overlap suggests 

that just a few features of their genetic repertoire may account for their differential 

pathogenicity. By this comparison, my collaborators could identify a couple of unique gene 

variants involved in the course of human diseases. In the future, these genes can be analyzed 

experimentally for their role in the high pathogenicity of F469. For strain B420, they 

discovered that it lacks several genes and gene clusters which are known to play an important 

role in the course of P. aeruginosa infections. Additionally, the high number of SNPs and 

DIPs identified here for B420 in comparison to PAO1 (see Section 6.4) may constitute 

another reason for the innocuousness of B420. My collaborators also closely investigated the 

DIP positions supplied by ReadXplorer for strain B420 (see Table S3A from the Appendix, 

Table 17). A notable finding is that frequently combined compensatory frameshift mutations 

were observed among the DIPs. 
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Outlook 

Continuative analyses of P. aeruginosa on the basis of the here presented results are 

explicated in the following. 

First of all, the data basis could be improved in a similar fashion as for the strain C40A, 

utilizing a current state-of-the-art sequencing technology. With SMRT sequencing (see 

Section 2.1.6) in combination with the already available Illumina data sets (see Section 6.2) a 

promising attempt can be made to completely finish the here presented draft genome 

sequences (Koren et al., 2013). Using the long SMRT sequencing reads, the processing step 

of aligning the assembly scaffolds to a reference (see Section 6.2.2) can be omitted if the long 

reads allow scaffolding of all contigs. Denying the reference alignment step is a great chance 

to correctly reconstruct the corresponding genome and readily detect genome rearrangements 

without any bias introduced by the reference alignment. Additionally, this effort would result 

in even more precise genome annotation and pan genome analysis.  

 

In connection to an improved data basis, also the number of pan genome, core genome and 

unique genes can be honed by broadening the strain panel and applying the here proposed 

workflow to the enlarged set of genomes. Such a project is feasible, as sequencing costs have 

again dropped considerably in comparison to the beginning of 2011 (see Section 2.1).  

Sequencing more P. aeruginosa strains will also make it easier to classify a fresh isolate from 

a patient. The knowledge gained from all the fundamental bioinformatics analyses and 

laboratory experiments can be used to aid personalized medicine. Eventually, rapid tests can 

be developed on this basis for supporting doctors in their diagnosis and pharmaceutical 

choice. To achieve this large-scale goal, further in-depth analyses of possible pathogenicity 

factors (as discussed earlier in this Section and in (Hilker et al., 2014)) including laboratory 

experiments as verification should be conducted. 

 

To reveal new medically and metabolically interesting genes, genes of yet unknown function 

can be analyzed in detail in the laboratory. Promising candidates for such a laborious task can 

be chosen from the core genome and from highly pathogenic strains like F469. Highly 

preserved hypothetical genes from the core genome are at least likely to play an important 

role in P. aeruginosa. Researching predicted genes of yet unknown function with a possible 

relation to pathogenicity is vital as well. Hereby useful points of attack to cure P. aeruginosa 

infections could be revealed. 

 

The P. aeruginosa strains can be analyzed for genome rearrangements. An overview image 

could summarize and visualize the genome remodelling. On the one hand, this can be 

achieved with a Mauve analysis (Darling et al., 2004) of the assembled genome sequences; on 

the other hand, ReadXplorer could be used with the read mapping data and the integrated 

version of GASV (Sindi et al., 2009). The result of such an analysis is expected to endorse the 

phylogenetic relationships received from the here presented work. 
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Chapter 8  
 

Conclusion 

The localization of this work between bioinformatical software engineering and applied 

bioinformatics is an important aspect of its successful completion. Both main issues of this 

dissertation, the software development of the short read mapping visualization and analysis 

tool ReadXplorer and the pan genome analysis of the pathogenic bacterium P. aeruginosa, 

could benefit from this combination. Fundamental research questions that emerged during the 

pan genome analysis lead to the development of several useful features and improved 

algorithms for ReadXplorer, like the feature coverage and the coverage analyses. Otherwise, 

ReadXplorer facilitated the efficient solution of several biological research questions from the 

pan genome analysis, like the determination of the amount of SNPs and DIPs and the 

existence of known RGPs in the analyzed strain panel.  

 

Several different studies using ReadXplorer show that many of its features can now be 

applied to other research projects as well. Thus, ReadXplorer is a valuable contribution to the 

field of read mapping analysis and visualization. Its amount of integrated analysis functions 

and the multiplicity of visualizations allow the application of the software to a wide range of 

research questions - as long as they involve the analysis of read mapping data or a genome 

sequence. The modular framework of the software enables easy integration of new analyses 

and visualizations on demand.  

 

The pan genome analysis of P. aeruginosa enabled comprehensive insights into the genomes 

of its major clonal complexes and the most prominent clones. Not least, the pathogenicity of 

the strains could be evaluated and ranked and pathogenicity factors could be identified. 

Further, the workflow enabled estimation of the amount of core and pan genome genes as 

well as singleton genes expected for P. aeruginosa. Naturally, the unbiased and complete pan 

genome analysis workflow applied to P. aeruginosa can be recommended for future pan 

genome and population structure studies, thus forming a permanent scientific value. 

 

Hence, the integration of both research fields, bioinformatical software engineering and 

applied bioinformatics, constitutes a high virtue in this context.  
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Chapter 10  
 

Appendix 

 

10.1. Algorithms 

Algorithm 8: Read Pair Classification Algorithm Outer Part 

Note that this algorithm is designed for mapping data sets sorted by read name 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:  

bamFileReader ← a reader for BAM files sorted by read name 

bamFileWriter ← a writer for BAM files 

lastReadName ← empty String 

classification ← classification data and mappings of current read pair  

while bamFileReader has next mapping do 

if r is mapped to given reference do  

if lastReadName ≠ read name of r do 

call Algorithm 9 to classify the current read pair 

use the bamFileWriter to store all classified mappings of the pair 

clear classification 

end if 

if r is first read of the pair do 

add mismatch count for first read to classification  

update smallest no. of mismatches for first read in classification if this is the 

smallest 

end if (* Do the same for r being the second of the pair or for unpaired reads *) 

lastReadName ← read name of r 

end if 

end while 
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Algorithm 9: Read Pair Classification Algorithm Inner Part 

Note that the designation "(type x)" refers to the read pair types listed in Table 6. 

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

14:  

15:  

16:  

17:  

18:  

19:   

20:   

21:   

22:   

23:   

24:   

25:   

26:   

27:   

28:   

29:   

30:   

31:   

32:   

33:   

34:   

35:   

36:   

37:   

38:   

39:   

40:   

41:   

42:   

43:   

44:   

45:   

46:   

classification ← classification data and mappings of current read pair  

if classification has exactly 1 mapping for both reads of the pair do 

d ← distance of both mappings 

if orientation of both mappings is concordant with expected orientation do  

if d is in the valid range do 

store both mappings as perfect pair (type 7) 

else if d is too small do 

store both mappings as distance too small pair (type 9) 

else if d is too large do 

store both mappings as distance too large pair (type 8) 

end if 

else do 

if d is in the valid range do 

store both mappings as wrongly oriented pair (type 10) 

else if d is too small do 

store both mappings as wrongly oriented distance too small pair (type 12) 

else if d is too large do 

store both mappings as wrongly oriented distance too large pair (type 11) 

end if 

end if 

else if classification has more mappings for current read pair do 

potentialLists ← create hierarchical set for potential pair lists 

omitList ← empty list for mappings already assigned to a mapping pair 

for each mapping m1 of read 1 do 

for each mapping m2 of read 2 do 

if omitList does not contain m1 and m2 do 

if orientation of m1 and m2 is concordant with expected orientation do  

if d is in the valid range do 

if m1 and m2 are Perfect or Best Match mappings do 

store m1 and m2 as perfect read pair 

add m1 and m2 to omitList 

else do 

add m1 and m2 to potential pair list of potentialLists 

end if 

else if d is too small do 

if d is currently the largest too small distance and m1 and m2 are 

Perfect or Best Match mappings do 

add m1 and m2 to potential small pair list of potentialLists 

else if d is currently the largest potential too small distance do 

add m1 and m2 to potential small pair level two list of 

potentialLists 

end if 

end if (* No pairs are created when d is too large here *) 

else do 

if d is in the valid range do 

if m1 and m2 are Perfect or Best Match mappings do 
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47:   

48:   

49:   

50:   

51:   

52:   

53:   

54:   

55:   

56:   

57:   

58:   

59:   

60:   

61:   

62:   

63:   

64:   

65:   

66:   

67:   

68:   

69:   

70:   

71:   

72:   

73:   

74:   

75:   

76:   

77:   

78:   

79:   

add m1 and m2 to potential wrongly oriented pair list of 

potentialLists 

else do 

add m1 and m2 to potential wrongly oriented pair level two list 

of potentialLists 

 

end if 

else if d is too small do 

if d is currently the largest wrongly oriented too small distance and 

m1 and m2 are Perfect or Best Match mappings do 

add m1 and m2 to potential wrongly oriented small pair list of 

potentialLists 

else if d is currently the largest potential wrongly oriented too small 

distance do 

add m1 and m2 to potential wrongly oriented small pair level 

two list of potentialLists 

end if 

end if 

end if 

end if 

end for 

end for 

for each list l from potentialLists in the following order: small pair list, wrongly 

oriented pair list, wrongly oriented small pair list, pair list, small pair level two list, 

wrongly oriented small pair level two list, wrongly oriented pair list do  

store all potential pairs from l if both mappings of a pair are not in the omitList 

(type 0-5)  

add all mappings from l to the omitList 

end for  

store remaining mapping not in omitList as single mapping (type 6) 

else do (* Only one read of the pair is mapped *) 

store all mappings of the mapped read as single mapping (type 6) 

end if 
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10.2. Programming Example 

Below is an example class illustrating that only a few steps are necessary for implementing a 

custom viewer, the DotViewer, for ReadXplorer: 

package your.package; 

 

import de.cebitec.readxplorer.data back end.IntervalRequest; 

import de.cebitec.readxplorer.data back end.ThreadListener; 

import de.cebitec.readxplorer.data back end.connector.TrackConnector; 

import de.cebitec.readxplorer.data back end.dataobjects.Mapping; 

import de.cebitec.readxplorer.data back end.dataobjects.MappingResult; 

import de.cebitec.readxplorer.data back end.dataobjects.PersistentReference; 

import de.cebitec.readxplorer.ui.datavisualisation.BoundsInfo; 

import de.cebitec.readxplorer.ui.datavisualisation.BoundsInfoManager; 

import de.cebitec.readxplorer.ui.datavisualisation.abstractviewer.AbstractViewer; 

import de.cebitec.readxplorer.ui.datavisualisation.basepanel.BasePanel; 

import java.awt.Color; 

import java.awt.Graphics; 

import java.util.ArrayList; 

import java.util.List; 

 

 

/** 

 * An exemplary viewer painting a black dot at genomic positions where at least one  

 * read starts. 

 * @author Rolf Hilker <rolf.hilker at mikrobio.med.uni-giessen.de> 

 */ 

public class DotViewer extends AbstractViewer implements ThreadListener { 

 

    private final TrackConnector trackConnector; 

    private MappingResult mappingResult; 

    private List<Integer> pointList; 

 

    public DotViewer( BoundsInfoManager boundsManager, BasePanel basePanel,  

           PersistentReference reference, TrackConnector tc ) { 

        super( boundsManager, basePanel, reference ); 

        this.trackConnector = tc; 

        mappingResult = new MappingResult( new ArrayList<>(), null ); 

        pointList = new ArrayList<>(); 

    } 

 

    @Override 

    protected int getMaximalHeight() { 230; } //a standard height 

 

    @Override 

    public void boundsChangedHook() { 

        BoundsInfo bounds = getBoundsInfo(); 

        IntervalRequest request = new IntervalRequest( 

                bounds.getLogLeft(), //start position of the mapping request 

                bounds.getLogRight(), //stop position of the mapping request 

                getReference().getActiveChromId(), //id of the chromosome to query 

            //data from 

                this, //the sending object receiving the result of the request 

                false, //true, if diffs and gaps shall be included in the result, 

      //false otherwise 

                getReadClassParams() ); //Contains ReadXplorer's read mapping  

     //classification parameters and if only uniquely

     //mapped reads shall be used or all reads. 

        trackConnector.addMappingRequest( request ); 

    } 

 

    @Override 

    public void changeToolTipText( int logPos ) { 

        setToolTipText( String.valueOf( logPos ) ); 

    } 
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    @Override 

    public void notifySkipped() { /* not supported here */ } 

 

    @Override 

    public void receiveData( Object data ) { 

        if(data.getClass().equals( mappingResult.getClass() ) ) { 

            pointList.clear(); 

            mappingResult = ((MappingResult) data); 

            for( Mapping m : mappingResult.getMappings() ) { 

                int readStart = m.isFwdStrand() ? m.getStart() : m.getStop(); 

                int readStartPixel =  

   (int) getPhysBoundariesForLogPos( readStart ).getPhyMiddle(); 

                //getPhyMiddle() returns the middle pixel of the position area 

                pointList.add( readStartPixel ); 

            } //Note that anything else can be done with the mappings here instead 

        } 

    } 

 

    @Override 

    public void paintComponent( Graphics graphics ) { 

        super.paintComponent( graphics ); 

        graphics.setColor( Color.BLACK ); 

        for( Integer xCoord : pointList ) { //draw a point where a mapping starts 

            graphics.drawLine( xCoord, 10, xCoord, 10 ); 

        } 

    } 

} 

10.3. Primers and Adapters 

In the following, Illumina adapter and primer sequences which had to be removed from 

several data sets prior to any other processing are listed: 

 Oligonucleotide sequences for the Multiplexing Sample Prep Oligo Only Kit 

 Multiplexing Index Read Sequencing Primer 

 5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3' 

 

 Oligonucleotide sequences for Genomic DNA 

 Adapters 

 5'-GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG-3' 

 PCR Primers 

 5'-CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT-3' 
Oligonucleotide sequences © 2007-2013 Illumina, Inc. All rights reserved. 

10.4. Program Calls 

This is the FastQC command to evaluate the read quality of all data sets in the current 

directory: 
fastqc *.fastq.gz 
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This command was applied for the Conveyor read trimming workflow: 
singleendqualityfilter -l 25 -q 20 -i <dataset>.fastq -o <dataset>-trimmed20.fastq 

-l = minimum read length to keep the read 

-q = PHRED quality value cutoff 

-i = input file 

-o = output file 

 

This command was applied to trim the reads from 101 to 80 bp using the FASTX-toolkit: 
fastx_trimmer -l 80 -o <dataset>-trimmed80.fastq <dataset>.fastq 

-l = length to trim all reads to 

-o = output file 

 

This command was applied to filter adapter sequences from read data sets using the FASTX-

toolkit: 
fastx_clipper -a <adapter> -l 25 -n -M 6 -o <dataset>-filtered.fastq 

<dataset>.fastq 

-l = minimum read length to keep the read 

-n = keep reads containing N's 

-M = minimum contiguous alignment required to identify an adapter or primer 

-o = output file 

 

These Newbler commands were used to assemble a paired end data set: 

1. Create assembly folder: 

 newAssembly <assemblyFolderName> 

2. Add all read data sets to the folder: 

 addRun <assemblyFolderName> <dataFiles> 

3. Start the assembly: 

 runProject -cpu 0 -minlen 20 -trim -tr -a 150 -vs 

suspectedPrimersAdapters.fasta <assemblyfolder> 

 

-cpu 0 = use all CPUs 

-minlen = minimum read length to include reads in computation 

-trim = flag to switch on internal quality and primer trimming 

-tr =flag to output the trimmed read data sets 

-a = minimum length of contigs 

-vs = adapter/primer database in fasta format for filtering 
 

This command was used to concatenate all sequences of a multiple fasta file when 

concatenating all scaffolds of a draft genome: 
concat.pl -f input_file.fasta -n output_file -S 

-f = multiple fasta file to concatenate 

-n = output file name omitting file ending 

-S = scaffold-mode: Insert linkers at start and end of multi-N-Regions 

 

This command was used to import and annotate genomes with GenDB: 
run_gendb_pipeline -p GenDB_Paepan -f <genome>.fasta -G NEG -a -D B 

-p = project to import the data into 

-f = fasta file to import 

-G = gram type (POS or NEG, NEG for P. aeruginosa) 

-a = create automatic annotator of the pipeline 

-D = domain (bacteria in this case (B)) 
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This command was used to map reads to the PAO1 reference sequence with SARUMAN: 
saruman-1.0.7 -q -e 0.08 -r <reads>.fastq -g Pseudomonas_aeruginosa-PAO1_ncbi.fna -

l 80 -c 2000000 -s 19500 -m 0 -i 1 -G 10000000 > <reads>-with-PAO1.jok 

-q = input is in fastq format 

-e = maximal allowed number of mismatches in percent 

-r = input reads file 

-g = reference sequence fasta file 

-l = read length 

-c = number of reads to gather from input file in one chunk 

-s = number of reads to align in one chunk 

-m = cost for a match 

-i = cost for a mismatch 

-G = size of the genome chunks gathered in one pass 

 

These BWA commands were used to map reads to the genomic islands and RGPs of P. 

aeruginosa: 
bwa index <GIorRGP>.fasta 

bwa aln -e 2 -t 4 <GIorRGP>.fasta <DataSet>-trimmed20-<read1|read2>.fastq > 

<DataSet>-trimmed20-<read1|read2>.sai 

-e = Maximum number of gap extensions 

-t = Number of threads for calculations 

bwa sampe -n 5 <GIorRGP>.fasta <DataSet>-trimmed20-read1.sai <DataSet>-trimmed20-

read2.sai <DataSet>-trimmed20-read1.fastq <DataSet>-trimmed20-<read2.fastq > 

<DataSet>-trimmed20-on-<GIorRGP>.sam 

-n = Maximum number of alignments per read 

 

This BWA command using the newer maximal exact matches algorithm can be used to map 

data appropriately for ReadXplorer: 
bwa mem -t 16 -a <Reference>.fasta <DataSet> [<MatesDataSet>] 

-t = Number of threads for calculations 

-a = Output all found alignments. They are flagged as secondary 

 

This Bowtie 2 command can be used to map data appropriately for ReadXplorer: 
bowtie2-build <Reference>.fasta <ReferenceIndexBaseNameToUse> 

bowtie2 --very-sensitive -k 5 -N 1 -p 32 -x <ReferenceIndexBaseNameToUse> -1 

<DataSet-Read1>.fastq -2 <DataSet-Read2>.fastq -S <Output>.sam 

--very-sensitive = The most sensible preset option 

-N = either 1 or 0. 1 allows for 1 mismatch in the seed, but is slower. Choose 0 if 

the calculation lasts too long 

-k = maximum number of alignments to output per read 

-S = output file 

-p = Number of threads for calculations 
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10.5. Additional Figures 

 

 
Figure 66: ReadXplorer Track Selection. The explorer component listing the tracks is used for both opening tracks and 

selecting tracks for any of the incorporated analysis methods. This example shows the track selection for the transcription 

analyses wizard. To combine multiple tracks into one data set for the Track Viewer or an analysis simply the "Combine 

selected tracks"-button has to be checked. Selecting all tracks or deleting the current selection is simplified by the "Select all" 

and "Deselect all" buttons. 
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Figure 67: Read mapping classification and analysis strand configuration. This wizard page is re-used in each wizard 

and enables the selection of the read mapping classes to include in the analysis. Also the minimum mapping quality of a 

mapping can be set if the analysis requires such information. In the lower part of the panel, the strand configuration of the 

analyzed tracks can be adjusted. For a track originating from a stranded sequencing library the default value is normally the 

desired choice. But for unstranded libraries it is useful to combine the data from both strands during an analysis. 
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Figure 68: Genomic feature type selection wizard page. This wizard page is incorporated in each analysis wizard requiring 

reference features. It enables selection of a single or multiple feature types, depending on the user needs. 

 

 
Figure 69: Genetic code selection. This options panel enables selection of one of the NCBI standard genetic codes for all 

ReadXplorer features involving translation of DNA sequences. Additionally, own codes consisting of lists of start and stop 

codons can be added and chosen. 
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Figure 70: FastQC GC content analysis of strain F469. The actual GC content distribution strongly deviates from the 

theoretical distribution. Thus, the data set contains more low GC reads than expected (between 35 and 50%) and, despite the 

fact that the P. aeruginosa genome contains regions with a higher GC content, it lacks reads with GC content above 75%.  
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10.6. Supplementary Data Description 

Table 17: Description of additional files. These files are stored on the included supplemental data CD. 

ID File name Description 

Table S1 P.aeruginosa-

CoreGenome-

EDGAR.xls 

List of genes contained in the core genome of 

all 20 sequenced P. aeruginosa strains and the 

reference strain PAO1 generated with EDGAR. 

Table S2 emi12606-

SuppInfo_Table_S1.xls 

The first sheet lists all pan genome genes of all 

20 sequenced P. aeruginosa strains and the 

reference strain PAO1. The second sheet lists 

and visualizes all genes unique per strain. The 

data has been generated using EDGAR. This 

file is also a supplementary file from (Hilker et 

al., 2014). 

Table S3A emi12606-

SuppInfo_TableS2A.xls 

List of SNPs and DIPs of the first 8 P. 

aeruginosa genomes computed by 

ReadXplorer. This file is also a supplementary 

file from (Hilker et al., 2014) 

Table S3B emi12606-

SuppInfo_TableS2B.xls 

List of SNPs and DIPs of the remaining 12 P. 

aeruginosa genomes computed by 

ReadXplorer. The last sheet contains the SNP 

and DIP detection overview statistics. This file 

is also a supplementary file from (Hilker et al., 

2014) 

Table S4 ReadXplorerMappingSta

tistics.xlsx 

Complete Read Mapping Data Overview, 

complementing Table 15 with all Read Pair 

track statistics available in ReadXplorer. 

Table S5 P._aeruginosa-

Velvet_Assemblies.xlsx 

Overview of the P. aeruginosa Velvet 

assemblies, having a considerably lower quality 

than the Newbler assemblies. 

Table S6 P._aeruginosa-

TrimmingStrategyEvalua

tion.xlsx 

Gives examples elucidating the differences of 

the 3 tested assembly strategies. 

Table S7 CoverageAnalysis-09-

0812-uncovered-1-

both.xls 

ReadXplorer analysis of uncovered intervals in 

strain 0812 mapped on PAO1. 

- ReadXplorer folder ReadXplorer 2.1 source code 
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