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Abstract

Infant eye gaze is frequently studied because of its rel-
evance as an indicator of early attention and learning.
However, the coupling of eye gaze with an individual’s
head motion is often overlooked. This paper analyzes
how head motion develops within a social interaction
context. To measure this interaction, we developed an
approach that can estimate infant head motion from
ego perspective recordings as they are typically provided
by eye-tracking systems. Our method is able to quan-
tify infant head motion from existing social interaction
recordings even if the head was not explicitly tracked.
Therefore, data from longitudinal studies that has been
collected over the years can be reanalyzed in more detail.
We applied our method to an existing longitudinal study
of parent infant interaction and found that infants’ head
motion in response to social interaction shows a devel-
opmental trend. Furthermore, our results indicate that
this trend is less visible within gaze data alone. This
suggests that head motion is an important element for
understanding and measuring infants’ behavior during
parent-child interactions.
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Introduction

Head control is important developmental milestone for
human infants. We move our head when we track ob-
jects and must be able to coordinate it with our body
when reaching and grasping. The development of such
capabilities can be seen in the first few months of in-
fancy where infants’ head movement patterns change
and become more controlled around 3 months of age (de
Lima-Alvarez, Tudella, van der Kamp, & Savelsbergh,
2014). When 6-month old infants follow a target, on
average their head moves nearly as much as the object
does (Jonsson & Von Hofsten, 2003). Furthermore, head
control is an important factor in the development of
reaching to provide a stable support for gazing at the
target (Bertenthal & von Hofsten, 1998).

Head movements are also relevant for social communi-
cation. For children it is crucial to be able to follow their
caretaker’s social references. This ability does not only
require following objects by eye movements alone, but

Figure 1: Visualization tool displaying a history of frames
with corrected horizontal and vertical camera motion.

also performing large shifts in head orientation in a short
amount of time. For example, during gaze switching be-
tween the caretaker’s face and an object. Eye gaze alone
is not sufficient to reach this flexibility in all situations.
What we do not yet know is how social interactions be-
tween the parent and infant play a role in facilitating
the development of head movements. In this paper, we
investigate how the development of these kinds of head
movements emerges from specific social referencing con-
texts of parents naming and acting on objects. We use a
corpus that was a part of a lager project conducted by
Yoshida and Burling (2013). Infants from 6 to 24 months
of age play with their mother who shows toys and objects
from a predefined set. This allows analyzing infant head
motion while differentiating interaction conditions—for
example, when the parent is holding the object.

Like a number of observation studies aiming to track
children’s attention, this data set includes measurements
of infants’ gaze by using a head-mounted eye-tracking sys-
tem, but does not contain instrumentation for detecting
head position. The present study specifically considers
this limitation. A trivial solution would be to conduct
another study and include additional sensors or a track-
ing system to record the infants head pose. However,
longitudinal studies are time and resource intensive. Fur-



Figure 2: Debug visualization of the vid.stab library
(Martius, 2014) showing blocks with sufficient contrast
and estimated vectors.

thermore, some tracking systems can induce additional
difficulties in conducting a study, as they might distract
infants. A common option to solve this problem is to
rely on third person view recordings of the infant and
to apply video-based tracking methods (Delaherche et
al., 2012). However, third person view recordings, if not
taken from an ideal perspective, can contain segments
where the tracking target is occluded. Another problem
is that low resolution and the absence of markers can pose
difficulties for accurate head tracking. Therefore, we will
propose a method that is able to directly extract head
movements from a head mounted eye-tracking system.
The current approach also enables previously collected
data to be reanalyzed using this new method. Usually,
head mounted eye-tracking systems record an ego per-
spective video which is subsequently used to overlay the
tracking data, so it can be understood where the person
was looking. Head movements can be estimated from a
head mounted camera by using optical flow to find shifts
between subsequent frames. Similar techniques have
already been applied in analyzing differences between
parent and infant visual experiences (Raudies, Gilmore,
Kretch, Franchak, & Adolph, 2012). We will demonstrate
how open source video stabilization software can be used
to estimate head motion from ego perspective recordings.

In summary, this paper will address the following ques-
tions. Does infant head motion change over the course of
development under different interaction conditions? Can
this trend also be found on gaze data alone? How can we
measure head motion from ego perspective recordings?

Head Motion Extraction Based on Video
Stabilization Techniques

In the following sections, we describe our method of
estimating children’s head motion from head-mounted
camera recordings. The process is depicted in Figure 3.

Cropping and Calibration Before the videos were
processed we cropped and calibrated the video data to
remove black borders and lens distortion using standard
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Figure 3: Process of estimating head motion and calcu-
lating the average head and gaze activity.

OpenCV methods (Bradski, 2000). The calibration infor-
mation is obtained from a separately recorded calibration
pattern.

Global Motion Estimation The child centered view
recorded by the eye-tracking device reflects head motion
during infant head rotations. Assuming an infant does not
change location, the global motion from frame to frame
provides an estimation of the horizontal and vertical shift
due to head rotation. Stabilizing a shaky video requires
frame-by-frame estimation of global motion to shift each
frame to compensate the shaking motion accordingly.
Open-source software can be used for solving this problem.
We used the vid.stab library (Martius, 2014) that can be
used by FFmpeg (FFmpeg , 2014) to motion compensate
shaky video. Usually the main task of the library is to
estimate global motion transformations in a first pass
and then apply them in a second pass to render a new
deshaked video. For our purpose, we use the library’s
debug output to retrieve the global motion vectors. The
advantage of using a video stabilization library is that
the implementation is already tuned to the task of global
motion estimation. The vid.stab library uses several
heuristics to minimize noise due to low contrast areas
and moving elements in the video. The basic approach
relies on block matching. First, a coarse-grained motion
search using a large block size is performed. Subsequently,
the search is refined towards local motion by using smaller
blocks (see Figure 2). The global motion is estimated by
finding a transformation that minimizes the error to the
local motion fields. Outliers that potentially correspond
to moving objects are excluded. A possible limitation



Figure 4: Exemplary third person view of the experimen-
tal setting.

of this approach is the limited search width. Thus, very
fast head rotations cannot be captured. Another problem
can be local object movement that covers most of the
camera’s viewing angle. In this case, object motion might
be incorrectly registered as global motion.

Visualization To verify that the head motions were
correctly estimated, we developed our own visualization
and analysis tool which projects each video frame into an
egocentric view using the estimated global motion infor-
mation (see Figure 1). In contrast to the standard video
deshaking approach, we specifically aimed to project a
low-resolution frame onto a larger surface to maintain the
frame’s original resolution. Thus, the tool reads video
frames and displaces them according to their global mo-
tion into a high-resolution frame. Rotations are ignored
due to their relatively low accuracy. Furthermore, the
tool integrates the gaze data into this view. With this
tool, we verified if the head motions were correctly es-
timated. The accuracy is locally sufficient to render a
scene as in Figure 1 which extends the camera’s field
of view by overlaying the current frame over the past
renderings. Since the approach cannot measure the ab-
solute head position, small errors accumulate over time.
Therefore, this method is more useful to analyze head
motion dynamics instead of absolute positions. A more
detailed quantitative evaluation will be an important
step to further develop the method but is omitted at this
point.

Gaze and Head Motion Processing

In this part we use the head motion vectors (~m) that were
extracted in the previous step and calculate the average
head activity. The average gaze activity is calculated
based on gaze vectors (~g) from the eye tracking data.
Furthermore, an annotation is used to select frames that
belong to different interaction conditions (see Figure 3).
Both head motion and eye-tracking data is smoothed
by fitting cubic splines to suppress high-frequency noise
using the R software (R Development Core Team, 2011).
The gaze coordinates are converted to relative gaze shift
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Figure 5: Schematic visualization of gaze and motion
vector components.

vectors by taking the first derivative before smoothing. To
measure the development of infant’s head motion activity
we define a measurement that will be used to summarize
each trial under the different annotated conditions. We
use the Euclidean norm to calculate the magnitude of each
motion vector ~m per frame at time step t (see Figure 5).
The average head motion activity (HMA) per trial is the
mean of these magnitudes:

HMA =
1

N

N∑
t=1

√
mx (t)

2
+ my (t)

2
(1)

Each infant’s average gaze activity (GA) is measured
analogously based on the gaze shift vector ~g (see Fig-
ure 5):

GA =
1

N
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√
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2
(2)

If the number of frames matching a certain condition is
below 100 the corresponding average activity is excluded
from the analysis due to lack of sufficient samples.

Corpus

We used 21 sessions from data collected by Yoshida and
Burling (2013). Infants from 6 to 24 months of age play
with their mother with the goal of learning the names
of objects (see Figure 4). The mother has access to a
predefined set of objects where she uses toys of her choice
based on the current word to be learned by the children,
which is given by audio instruction. The mother is free to
choose any of the objects at any point during the session,
and is instructed to interact as naturally as possible. The
child is wearing a Positive Science eye tracker, which
records eye gaze and a video from the child’s perspective.
The method described in this paper operates on this
video data. Furthermore, the corpus is annotated frame-
by-frame providing a coding of the ongoing action. In
this work, we focus on frames falling under the following
conditions, which we define as social conditions: (1) the
infant is looking at the mothers face; (2) the mother is
holding a toy; (3) the mother is naming a toy.



Table 1: Regression analysis results for the relationship
between head activity and age

Condition R2 F p

Parent Holding Toy 0.32 F(1,19)=8.92 0.01 **

Parent Not Holding Toy 0.01 F(1,19)=0.28 0.60

Child Gazing at Parent 0.24 F(1,17)=5.28 0.03 *

Child Not Gazing at Parent 0.05 F(1,19)=1.01 0.33

Parent Naming Toy 0.26 F(1,16)=5.72 0.03 *

Parent Not Naming Toys 0.01 F(1,19)=0.24 0.63

Table 2: Regression analysis results for the relationship
between gaze motion and age

Condition R2 F p

Parent Holding Toy 0.16 F(1,19)=3.57 0.07

Parent Not Holding Toy 0.15 F(1,19)=3.45 0.08

Child Gazing at Parent 0.14 F(1,17)=2.71 0.12

Child Not Gazing at Parent 0.09 F(1,19)=1.90 0.18

Parent Naming Toy 0.34 F(1,16)=8.25 0.01 *

Parent Not Naming Toys 0.05 F(1,19)=0.96 0.34

For each condition the complementary non-matching
condition is named non-social condition. The non-social
conditions include frames where the mother is not inter-
acting with the child (e.g., putting a toy away).

Regression Analysis Results

To test for a developmental trend in head activity, linear
models for the infant’s age were estimated for each social
and non-social condition (see Table 1). The individual
models are visualized in Figure 6. In this figure each chart
displays the relationship of age and average head activity
per subject on frames within a given condition. The gray
area indicates a 95% confidence interval of the regression
line. All three conditions show significant correlations
suggesting that head activity plays an increasing role in
social interactions as infants develop. For the conditions
that children look at the mothers face and the mother is
naming a toy the correlations were significant. A strongly
significant correlation was found for the condition that
infants look at the toy. A comparison of each model’s
R2 value (see Figure 7) shows that given parents hold a
toy, the relation between age and activity can be best
explained by a linear model. We were unable to show
a significant linear relationship between age and head
activity for the non-social conditions. This suggests that
this developmental trend depends on social interaction
contexts, which supports our initial hypothesis.

To test for a developmental trend in gaze activity, lin-
ear models for the infant’s age were estimated given each
condition, including models for the non-social conditions
(see Table 2). The individual models are visualized in
Figure 8 along with the average gaze activity per subject.

The only significant correlation can be found for the con-
dition that the parent is naming a toy. The linear model
for the condition that parents are not naming a toy was
not significant. To further analyze the estimated linear
models, we use the R2 statistic to compare how much of
the variance of the underlying data is expressed by each
linear model. A large difference in the goodness of fit
was found when comparing the R2 values (see Figure 9),
suggesting that this developmental trend depends on the
social interaction condition. This difference is not visi-
ble for when the parent-holding-toy condition and the
child-gazing-at-parent condition.

In general, several outliers are visible (see Figure 8).
Although, a minimum number of 100 frames matching
the condition is required for the mean activity to be
included in each linear model these outliers are caused to
a relatively low number of frames matching the condition.
In the child is gazing at the parent condition, the larger
gaze activity values can be caused by children only quickly
looking to the mother and back.

In Figure 6, a difference in head activity, if parents are
holding a toy, is visible for very young infants around 6
months of age. The head activity is lower compared to
the condition where parents are not holding a toy. We
interpret this is due to scaffolding that parents perform
by holding the object directly in front of the child. This
effect is not visible for gaze activity (see Figure 8).

Discussion

In the present work, we used developmental data con-
cerning children’s visual experiences. We proposed a new
alternative method using video stabilization techniques
to extract commonly missing information such as head
movement from this data. New methods for studying
development using head-mounted eye-tracking have been
gradually emerging over time (Franchak, Kretch, Soska,
& Adolph, 2011; Kretch & Adolph, 2014). Our method
can provide additional detail and new ways of analyzing
these data. An important use-case is the reanalysis of
existing longitudinal studies where repeating the study is
costly. Our visualization module can also contribute to
the analysis of eye gaze, since it helps to determine gaze
locations outside the currently recorded frame. Further-
more, our approach is flexible, since it does not depend
on the availability of unoccluded third person perspective
recordings. The current limitations are the estimation
of rapid head rotations and visual field covering object
movements without enough peripheral view. However,
their practical impact is minor.

The regression analysis of head motions and eye gaze
linked to social interaction conditions revealed significant
developmental trends for both head activity and gaze.
Head motions and eye gaze for non-social conditions did
not exhibit any significant developmental trends. This
supports our hypothesis that both gaze and head activity
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Figure 6: Relationship of age and average head activity
per subject on frames falling under the given conditions.
The gray area indicates a 95% confidence interval of the
regression line.
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Figure 7: Comparison of R2 for all head activity models.
Match = yes / no indicates the result for frames matching
/ not matching the condition.
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Figure 8: Relationship of age and average gaze activity
per subject on frames falling under the given conditions.
The gray area indicates a 95% confidence interval of the
regression line.
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Figure 9: Comparison of R2 for all gaze activity models.
Match = yes/no indicates the result for frames matching
/ not matching the condition.



undergo developmental changes during social interactions.
However, eye gaze activity only shows a significant and
social context specific trend when the parent was naming
an object, an event that is relatively short. In contrast,
the most significant trend for head activity was found
when parents hold an object, which is a comparably longer
event. This suggests that eye gaze is coupled with social
contexts when they require immediate attention. Head
activity is required when children want to attend to a
wider visual space. Parents might adapt to the children’s
increased motor capabilities and expand the space they
use for their interplay. Thus, head activity reflects a
property that is present for longer durations in social
interactions. These differences in the development of
head and gaze activity highlight that gaze analysis alone
is incomplete in reflecting infants’ developing response to
social referencing contexts.

Furthermore, different attention shift patterns can be
found in parent-child social interactions. For example,
parents initiative in moving an object might create a
bottom-up visual cue the child reacts to. In contrast,
child’s initiative might originate from intentional playing
with toys and thus result in top-down attention shifts.
Doshi and Trivedi (2012) showed that bottom-up vi-
sual cues result in different eye-head movement latencies
compared to top-down initiated attention shifts. Thus,
additional analysis of head movements has the potential
to identify different types of social interaction patterns
automatically. Gaze analysis alone might not be sufficient
to analyze these patterns.

The present attempt not only indicates the potential
early psychological significance of head motion, but it
may also provide a new insight into how early head
motion can offer systematic cues for caregivers. Parents
tend to respond to infants’ attention, gesture, and facial
affect, in timely manner. Responses to these cues can
foster early learning but we know little how parents do so.
Thus, further developing and applying this new approach
to the domain of development of social cognition could
help to understand the underlying mechanism of parental
responsiveness within parent-infant interactions.

Using our new analysis method, we were successfully
able to extract head motion and to measure head activity.
Based on the results we showed that head activity in
addition to gaze activity robustly reflects important de-
velopmental trends that indicate possible links to social
cognition.
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